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PREFACE

fMHE papers here collected together treat of the figure and of the move-
-*- ment of an actual or an ideal planet or satellite. I have failed to
devise a short title for this volume which should describe exactly the scope
of the subjects considered, and the title on the back of the book can only be
held to apply strictly to three-quarters of the whole.

The first three papers fall somewhat further outside the proper meaning
of the abridged title than do any of the others, for they are devoted to the
mathematical solution of a geological problem. The second paper is indeed
only a short note on a controversy long since dead; and the third is of little
value.

The discussion of the amount of the possible changes in the position of
the earth's axis of rotation, resulting from subsidences and upheavals, has
some interest, but the conclusions arrived at in my paper are absolutely
inconsistent with the sensational speculations as to the causes and effects
of the glacial period which some geologists have permitted themselves to
make.

At the end of this first paper there will be found an appendix containing
an independent investigation by Lord Kelvin of the subject under discussion.
He was one of the referees appointed by the Royal Society to report upon
my paper, and he seemed to find that on these occasions the quickest way of
coming to a decision was to talk over the subject with the author himself—
at least this was frequently so as regards myself. Our discussion in this
instance is very memorable to me, since it was the means of bringing me
into intimate relationship with Lord Kelvin. The first two volumes of these
collected papers may be regarded as the scientific outcome of our conversation
of the year 1877; but for me at least science in this case takes the second
place in importance.

The next four papers fall in more exactly with the proper meaning of my
title, since they deal with the theory of the figure of the earth and of the
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VI PREFACE.

planets. The ninth paper contains an attempt to determine the figures of a
liquid planet and of its satellite when they are very close together. During
the time that I was at work at this, M. Poincare's great memoir, "Sur
l'equilibre d'une masse fluide animee d'un mouvement de rotation," was not
available to guide me. When it appeared I found therein the enunciation of
the fundamental principles of stability, and as my work was not quite
finished I kept it back for some time with the object of applying those
principles to my problem. However I made a mistake in the attempted
application, and the erroneous portion of the work is now suppressed. The
failure to determine the stability of these figures of equilibrium deprives the
work of much of the interest which it might have possessed. The present
value of the paper is moreover yet further diminished by the fact that
substantially the same problem, inclusive of the determination of stability, is
solved in the last paper in the volume by means of far more appropriate
analytical methods.

The next four papers are devoted to an extension of M. Poincare's results
as to figures of equilibrium, and he must be regarded as the presiding genius
—or shall I say my patron saint—in this volume, just as Lord Kelvin was
for the two preceding ones.

It was, I think, M. Poincare who pointed out the resemblance to a pear
of his conjectural drawing of the new figure of equilibrium which he had
discovered. A name is generally convenient in such a case, and I have called
it the pear-shaped figure, although when actual numerical values became
available for drawing the figure, the resemblance to a pear was seen to have
become much less striking.

The pear-shaped figure being derived from Jacobi's ellipsoid, its form
must be defined by means of ellipsoidal harmonic deformations of a certain
ellipsoid. Accordingly the solution of the problem demanded a thorough
working knowledge of these harmonic functions of Lame.

Ellipsoidal harmonic analysis has been used effectively in various analytical
investigations—as for example in this very discovery by M. Poincare of the
new form of rotating liquid; but to the best of my belief no one had
previously made systematic use of the method for numerical work. My
first task, therefore, was the codification of the functions in a form convenient
for practical use. It is not for me to pronounce on the merits of my scheme,
yet it may be claimed that at least it attained its object by providing
straightforward rules, whereby the computation could be carried out to any
required degree of accuracy.
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PREFACE. Vll

Numerical values were found in this way for the speed of rotation and
for the form of the pear-shaped figure. Further than this, its stability was,
as I believe, established. Yet it should be stated, in contradiction to this
last result, that M. Liapounoff claims to have proved that the figure is
unstable; and neither of us is as yet able to reconcile his result with that of
the other. In this volume I naturally state my own point of view.

I cannot refrain from drawing attention to the tour de force whereby
M. Poincare has performed the apparently impossible task of applying
harmonic analysis so as to take into account the thickness of the layer which
constitutes the departure from the standard form of reference. As a verifi-
cation of the complicated analysis applicable to the ellipsoid, I have, as
appears below, applied this method to the cases of Jacobi's and Maclaurin's
ellipsoids, using respectively spheroidal and spherical harmonic analysis.

In the last paper in this volume ellipsoidal harmonic analysis is applied
to the extension and verification of the work of another great Frenchman,
Edouard Roche. It has been already pointed out that this paper affords a
far more complete solution of the problems proposed, than that attempted in
the ninth paper.

Immediately after this preface, as in volumes I. and II., there is given
a chronological list of my papers, corrected and extended up to the present
time.

In conclusion I wish once more to acknowledge the admirable care
bestowed by the printers and readers of the Cambridge University Press on
the production of this book. Their task was rendered somewhat more
difficult from the fact that several of the papers, especially the twelfth, have
undergone extensive revision.

G. H. DARWIN.

December, 1909.
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1908 ' Bewegung der Hydrosphare' (jointly with Mr S. S. Hough). Encyklo- IV
padie der Mathematischen Wissenschaften, vi. 1, B. 81 pp.

1908 The Rigidity of the Earth. Atti del iv congresso internat. dei matematici IV
(Roma, 6—11 Aprile 1908), Vol. in. Sez. in. A, pp. 5—11 ; and
'Scientia,' Rivista di Scienza, Vol. v. (1909), N. x—2. 13 pp.

1909 The Genesis of Double Stars. Essay xxvin. of ' Darwin and Modern IV
Science,' pp. 543—564.

1909 A theory of the evolution of the solar system. Internationale Wochen- IV
schrift, 3 Jahrgang Nr 30, 24 Juli 1909, pp. 921—932.

1909 On certain families of Periodic Orbits. Roy. Astron. Soc. Month. Not., IV
70, 1909, pp. 108—145.

1910 Reduction of the tidal observations made in the Antarctic expedition of IV
the 'Nimrod.'

Unpublished Article ' Tides.' Encyclopaedia Britannica, new edition to
be published hereafter (by permission of the proprietors).

Certain sections in I
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ERRATA.

Vol. I., p. 377, line 14 from foot of page,
for 28 read 27.

Vol, III., p. 81, line 20, in the last term of Ue' for i f read A.

„ p. 84, in the second of equations (12)

for -§fAP4 read -ffA

p. 95, in the first term of the first equation in § 8 the factor (1-A) is
omitted ; read therefore

p. 394, line 4 from foot of page,

for ah1 read A^.

p. 402, line 12 from foot of page,

for EF' + F'F-FF' read EF' + E'F-FF'.
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1.

ON THE INFLUENCE OF GEOLOGICAL CHANGES ON THE

EARTH'S AXIS OF ROTATION.

[Philosophical Transactions of the Royal Society, Part I. Vol. 167 (1877),
pp. 271—312.]

THE subject of the fixity or mobility of the earth's axis of rotation in that
body, and the possibility of variations in the obliquity of the ecliptic, have
from time to time attracted the notice of mathematicians and geologists.
The latter look anxiously for some grand cause capable of producing such an
enormous effect as the glacial period. Impressed by the magnitude of the
phenomenon, several geologists have postulated a change of many degrees in
the obliquity of the ecliptic and a wide variability in the position of the poles
on the earth; and this, again, they have sought to refer back to the upheaval
and subsidence of continents.

Mr John Evans, F.R.S.*, the late President of the Geological Society, in
an address delivered to that Society, has recurred to this subject at con-
siderable length. After describing a system of geological upheaval and
subsidence, evidently designed to produce a maximum effect in shifting the
polar axis, he asks:—" Would not such a modification of form bring the
axis of figure about 15° or 20° south of the present, and on the meridian of
Greenwich—that is to say, midway between Greenland and Spitzbergen ?
and would not, eventually, the axis of rotation correspond in position with
the axis of figure ?

"If the answer to these questions is in the affirmative, then I think it
must be conceded that even minor elevations within the tropics would produce
effects corresponding to their magnitude, and also that it is unsafe to assume
that the geographical position of the poles has been persistent throughout all
geological timef."

* [Subsequently Sir John Evans, K.C.B.]
t Quart. Journ. Geol. Soc, 1876, xxxn. Proc, p. 108.

D. III. 1

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492
https://www.cambridge.org/core


2 STATEMENT OF THE PROBLEM. [1

On the few occasions on which this subject has been referred to by
mathematicians, the adequacy of geological changes to produce effects of such
amount has been denied. Amongst others, the Astronomer Royal and Sir
William Thomson have written briefly on the subject*, but, as far as I know,
the subject has not hitherto been treated at much length.

The following paper is an attempt to answer the questions raised by
Mr Evans; but as I have devoted a section to the determination of the form of
continent and sea which would produce a maximum effect in shifting the polar
axis, I have not taken into consideration the configuration proposed by him.

The general plan of this paper is to discuss the following problems :—

First. The precession and nutation of a body slowly changing its shape
from internal causes, with especial reference to secular alterations in the
obliquity of the ecliptic.

Second. The changes in the position of the earth's axis of symmetry,
caused by any deformations of small amount.

Third. The modifications introduced by various suppositions as to the
nature of the internal changes accompanying the deformations.

In making numerical application of the results of the previous discussions
to the case of the earth, it has of course been necessary to betake one's self
to geological evidence ; but the vagueness of that evidence has precluded any
great precision in the results.

In conclusion I must mention that, since this paper has been in manuscript,
Sir William Thomson, in his Address to the Mathematical Section of the
British Association at Glasgow, has expressed his opinion on this same subject.
He there shortly states results in the main identical with mine, but without
indicating how they were arrived at.

The great interest which this subject has recently been exciting both in
England and America, coupled with the fact that several of my results are
not referred to by Sir William Thomson, induces me to persist in offering my
work to the Royal Society.

I. PRECESSION OF A SPHEROID SLOWLY CHANGING ITS SHAPE.

I begin the investigation by discussing the precession and nutation of an
ellipsoid of revolution slowly and uniformly changing its shape. The changes
are only supposed to continue for such a time, that the total changes in the
principal moments of inertia are small compared to the difference between
the greatest and least moments of inertia of the ellipsoid in its initial state.

For brevity, I speak of the ellipsoid as the earth; and shall omit some parts
of the investigation, which are irrelevant to the problem under discussion.

* In papers referred to below.
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1877] THE EQUATIONS OF MOTION. 3

The changes are supposed to proceed from internal causes, and to be any
whatever; and in the application made they will be supposed to go on with
a uniform velocity.

§ 1. The Equations of Motion.

M. Liouville has given the equations of motion about a point of a body
which is slowly changing its shape from internal causes*; these equations, he
says, are only applicable to the case of the point being fixed or moving
uniformly in a straight line. They may, however, be extended to the motion
of the earth about its centre of inertia, because the centrifugal force due to
the orbital motion and the unequal orbital motion will not add anything to
the moments of the impressed forces. These equations are, in fact, an
extension of Euler's equations for the motion of a rigid body, which are
ordinarily applied to the precessional problem. To make them intelligible I
reproduce the following from Mr Routh's Rigid Dynamics f, where the proof
is given more succinctly than in the original:—

" Let x, y, z be the coordinates of any particle of mass m at the time t,
referred to axes fixed in space. Then we have the equation of motion

„ / dHj d?x\ , T .

and two similar equations.

v / dy dx
Let },3=^n{xdt-y-dt

with similar expressions for hlt h.,.

"Then the equation (1) becomes

" Let the motion be referred to three rectangular axes Ox', Oy', Oz'
moving in any manner about the origin 0. Let a, /3, 7 be the angles these
three axes make with the fixed axis of z. Now li3 is the sum of the products
of the mass of each particle into twice the projection on the plane of xy of
the area of the surface traced out by the radius vector of that particle drawn
from the origin. Let /«/, k2', h:i' be the corresponding ' areas' described on
the planes y'z', z'x, x y respectively. Then by a known theorem proved in
Geometry of Three Dimensions, the sum of the projections of h/, lu, h/ on xy
is equal to lt3; therefore

hs = 1\ cos a + h.2' COS {3 + /*-,' cos 7 (4)

* Liouville'a Journ. Math., 2rae serie, t. in., 1858, p. 1.
t Page ISO, edit, of 1860, but omitted in later editions. L, M, N are the couples of the

impressed forces about the axes.

1—2
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4 MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. [1. § 1

" Since the fixed axes are quite arbitrary, let them be taken so that the
moving axes are passing through them at the time (. Then

W — hi, W = fh, h3' = hz

and by the same reasoning, as in Arts. 114 and 115, we can deduce from
equation (4) that

where 01: 0i, 03 are the angular velocities of the axes with reference to them-
selves. Hence the equations of motion of the system become

—=- — A2 03 + h302 = L
at

(6)

—3-h0 A6>=N
dt

" These equations may be put under another form which is more con-
venient. Let x, y\ z' be the coordinates of the particle m referred to the
moving axes, and let

"Since the fixed axes coincide with these at the time t, we have x = x,
y=y', and by Art. 114,

Therefore h3' = H3 + C03 - E^ - D^2*

and by similar reasoning

/tl' = H1 + A ^ - F ^ - E ^
h.2' = H2 + B02-Dd3-F01

" Hence the general equation of motion becomes

j t (C03 - E0, - T>6, + H.) + F (0J - 0f) + (B - A) 0A + ^&A - D0A

+ ^1H2-^2H1 = N (7)
and two similar equations.

" Let the moving axes be so chosen as to coincide with the principal axes
at the time t. Then D = 0, E = 0, F = 0, and the equations become,"

^(Xj^i + Hj) — (X2— X.3) 0203 + 02H3— ^3H2= L

and two similar equations; where X1( X̂ , ^ (replacing the A, B, C of

* A, B, C, D, E, F are, as usual, the moments and products of inertia.
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1877] MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. 5

Mr Routh) are the three principal moments of inertia, and are functions
of the time.

In order to apply these equations to the present problem, we must consider
the meaning of the quantities 8ly d2, 83. A system of particles may be made
to pass from any one configuration to any other by means of the rotation of
the system as a whole about any axis through any angle, and a subsequent
displacement of every particle in a straight line to its ultimate position. Of
all the axes and all the angles about and through which the preliminary
rotation may be made, there is one such that the sum of the squares of the
subsequent paths is a minimum. By analogy with the method of least
squares this rotation may be said to be that which most nearly represents the
passage of the system from one configuration to the other. If the two con-
figurations differ by little from one another, and if the best representative
rotation be such that the curvilinear path of any particle is large compared to
its subsequent straight path, the system may be said to be rotating as a rigid
body, and at the same time slowly changing its shape. Now this is the case
we have to consider in a slow distortion of the earth.

Divide the time into a number of equal small intervals T, and in the first
interval let the earth be rigid, and let each pair of its principal axes rotate
about the third (with angular velocities double those with Avhich they actually
rotate). At the end of that interval suppose that each pair has rotated about
the third through angles 2(0^T, 2<U2T, 2O>3T. Then reduce the earth to rest,
and during the next interval let the matter constituting the earth flow (with
velocities double those with which it actually flows) so that the pairs of principal
axes have, at the end of the interval, rotated with respect to the third ones
through the angles - 2ar, - 2/3T, - 2yT. Lastly let 2 ^ T , 202T, 20sr be the
rotations of each pair of axes about the third by which they could have been
brought directly from their initial to their final positions in the time 2T.

Therefore, by the principle of superposition of small motions,

0i = a>! — a, 6.2 = a>2 — /3, 0s = G>3 — 7

Now supposing these two processes to go on simultaneously with their
actual velocities, instead of in alternate intervals of time with double velocities,
it is clear that 6lt 8.2, 03 are " the angular velocities of the axes with reference
to themselves"; «,, eo.2, &>3 are the component angular velocities of the earth
considered as a rigid body; and — a, — /3, — 7 are the component angular
velocities of the principal axes relatively to the earth, arising from the
supposed continuous distortion of that body.

With respect to the other quantities involved in the equations of
motion:—

Let C, A be the principal moments of inertia of the earth initially when
t is zero; and at any time t, let

\ x = A + at, \ , = A + bt, \ 3 = C + ct
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6 MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. [1, § 1

We here suppose that the changes in the earth are so slow that terms
depending on the higher powers of t may be neglected.

Lastly the quantities Hl7 H2, H3 are respectively twice the areas conserved
on the planes of 8283, 8i8l, 8l6,i by the motion of the earth relative to these
axes. If the earth were rigid, they would all be zero, because there would be
no motion relative to the principal axes: thus a,, tu2, &>;s do not enter into
these quantities. Now the motion which does take place may be analysed
into two parts. Divide the time into a number of equal small elements T,
and in the first of them let the matter constituting the earth flow (with a
velocity double that with which it actually flows) ; this motion will conserve
double-areas on the planes of 8283, 838X, 8^b\, which we may call 2pJ2T,
2p=J2T, 2p^3T. In the next interval of time let each pair of axes rotate round
the third (with angular velocities double those with which they actually
rotate), so that at the end of the interval they have turned through the angles
— 2aT, — 2/9T, — 2<yr. Now since during this second interval the axes have
rotated in a negative direction through the solid, therefore the solid has
rotated in a positive direction with reference to the axes. Remembering
then that X1; X2, \ 3 are the principal moments of inertia, the double-areas
conserved on the three planes in this second interval are 2\!aT, 2\2/3T, 2\37T.

Hence if 2HJT, 2H2T, 2H3T be the double areas conserved in this double
interval of time, we have 211^= 2f^,T + 2\jar, 2H2T = 2p|2T + 2\2/8T,

Therefore if we now suppose the two processes to go on simultaneously
with their actual velocities, instead of in alternate elements of time with
double velocities, and if we substitute for \lt X,2, \3 their values in terms of
A, a, t, &c, we get

H1 = (A + a<)a + f̂ 1) H2 = (A + ht) (3 + f$Sj H3 = (C + ct)y + |^3

where pjj, pj2 , |i=̂ 3, denote those parts of the double areas conserved, which
depend only on the internal motions accompanying the change of shape.

Then, if the changes proceed with uniform velocity, a, a, $î , &c. are all
constant.

Corresponding also to the equations of motion are the geometrical
equations

-T- = 82 cos (p + 61 sin <f>

- J - sin 8 = — 81 cos cj> + 82 sin <£

In figure 1, A, B, C are the axes, about which the moments of inertia are

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492
https://www.cambridge.org/core


1877] EQUATIONS OF MOTION. 7

Xi, X2, X3; XY is the ecliptic; and the meaning of the other symbols is
sufficiently indicated *.

PIG. 1.

Substituting, then, for the various symbols in the original equations of
motion, it will be found that

7

A ~j~ — (A ' — C)
CtL

= L — £ ja - j - i — (b — c) 4-

{C/3- aWl - {A'7 + ^ 3 }

and two similar equations^.

Now the terms on the right-hand side are always very small compared to

A -~, because the time will not run on until they have become large; hence

approximate values may be substituted therein.
Let the angular velocity of rotation of the earth be — n, and let II cosec 0

be the precession of the equinoxes; then in the small terms the following
substitutions may be made:—

<j> = — (nt + e), &>] = — II cos (nt + e), &>2 = — II sin (nt + e), co3 = — n

and the e may be omitted for brevity.

Further, N (depending on the attractions of the sun and moon) is very
small; and a consideration of the third equation of motion shows that, when
integrated, it leads to a>3 = — n + terms, which are very small during the
limited period under consideration. And if these terms were substituted on
the left-hand side of the two former equations, they would be still further

* [I have followed Mr Eouth in using "perverted" coordinate axes, but it does not seem
worth while to revert to the more desirable usage by redrawing the figure and by changing the
signs of many of the terms.]

t The A is written A' in two places, where it may be taken to stand for B; and then the other
equations may be found by cyclic changes of letters and suffixes.
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8 EQUATIONS OF MOTION. [1 . § 2

diluted by multiplication by the small quantities —-r— and II. Hence the

third equation may be neglected, and in the two former equations — n may
be substituted for o>,.

C — A
Making these substitutions, then, and writing fj, for —j— n, the equations

become

da>2

dt
+ urn, = -r— A" -I— a + b + c - — 11 cos nt + -. sin nt - IT (7 + x 5 ) c o s nt

^ A A ( w J A \ A /

+ a\ —.- % + --^(n + y)

Then neglecting 7/7? compared to unity, pu t t ing C + ct = A in the small
terms, and only retaining the more important terms,

da>i L IIw. , , . Ila _ f iB3l . . n

^p- fico2 = x - -> {a - b + c} t sin nt + . cos nt+I\\y+^[ sin n« - n̂ 3

M 1IW . n , , , n b . x _ I ©3) ,
+ /U.<B1 = - F + »- {-a + b + cj i cos nt + —r-- sinm< - I I J 7 + ^ [ cosnt

These are the required equations of motion, and in integrating them they
may be treated as linear.

§ 2. Inequalities independent of the Impressed Forces.

First, then, suppose that L = M = 0.

Integrate the equations, and neglect fj, compared with n, and we have

°>i — ~k (a ~~ b + c) t cos nt + -T— (b — c) sin nt (7 + ^ 3 ) cos nt
A An ' n \ ' A /

n , i x - n , n / ?&,\ .
: x (~ a + b + c) tsm ™ + T ~ (c — a ) cos nt I 7 + /£-1 s i n n*

— F sin at — G cos at

* If we wish to treat a, a, ^ , &e. as variable, we have only to add to the right-hand sides

of these equations T t cos nt -£ - - -M.1, and - t sin n t r - T ^ respectively. If we put
A i t A (it ' A dt A dt ^ J v

L = M = 0 and neglect pji, Jg2» ?§s. these equations will be found to be identical with the equa-
tions (2) given by Sir W. Thomson in App. C. I had not noticed until it was pointed out by
him, how nearly applicable my equations were to the case of varying velocities of distortion.—
April 26, 1877.
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1877] THE EULERIAN NUTATION. 9

The last two terms in &>, and <o2 represent the complementary function;
and the values of F and G must be determined from the initial conditions.

Now it will be shown later that a, /3, 7 are comparable with -^—-r ,
O — A.

bepi—T- , ^—-r ; hence the terms in the second lines are much more important
\j — A \j — A

than those in the first. Thus in determining the values of F and G we may
neglect the first lines.

Initially, the instantaneous axis coincides with the axis of greatest
moment of inertia; so that when t = 0, a1 = &>a = 0, and therefore

The terms in F and G represent an inequality of 306 days period.

§ 3. The Inequality of 306-Days Period *.

I have worked out the values of p ^ and p | 2 in two supposed cases of
elevation, under certain suppositions as to the nature of the internal move-

ments of the earth. In one of them I found ^~- = XJT> and f̂ , = 0; and in
pA

the other f^ = p j 2 = 0. In order not to interrupt the thread of the argument,
the calculation is given in Appendix A; it will also be more intelligible after
the latter part of this paper has been read. In the general case the same
kind of proportion will subsist between p ^ and Acr, "pj2 and A/3, and we may
therefore, without serious error, neglect the former compared with the latter.

Thus, as far as concerns the present inequality,
no. «/3 .

&>! = — (1 — cos fit) sin fit
f l f l
na. . nfi . .

<o2 = — s in fit H ( 1 — cos fit)
fi fi

* I have thought it necessary to discuss this inequality fully, both on account of its intrinsic
interest, and because it has been referred to by the Astronomer Eoyal [Sir George Airy] and
Sir William Thomson.

The former says (Atheiiceum, Sept. 22, 1860):—" Now, let us suppose the earth not absolutely
rigid, but that there is susceptibility to change of form, either from that degree of yielding or
fracture to which most solid substances are liable, or from the hydrostatic pressure of internal
fluid. This, as I conceive, puts an end to all supposition of change of axis. The first day's
whirl would again make the axis of rotation to be a principal axis, and the position of the axis
would then be permanent."

But Sir George Airy is here speaking of the effect of the elevation of a mountain mass in
about latitude 45°, by something like a gaseous explosion. This supposition is not at all in
accordance with the belief of geologists, whereas a gradual elevation is so.

Sir W. Thomson, on the other hand, says (Trans. Geol. Soc. Glasgow, 1874, Vol. xiv.,
p. 312):—" In the present condition of the earth, any change in the axis of rotation could not
be permanent, because the instantaneous axis would travel round the principal axis of the solid
in a period of 296 days In very early geologic ages, if we suppose the earth to have been
plastic, the yielding of the surface might have made the new axis a principal axis. But certain
it is that the earth at present is so rigid that no such change is possible." And he adds that
practical rigidity has prevailed throughout geologic history.
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10 PATHS OF INSTANTANEOUS AXIS AND OF POLE. [1, § 4

On account of this inequality the greatest angular distance (in radians) of

the instantaneous axis from the pole is 2 (a2 + /32)^//A. It will appear from
the latter part of this paper that, if the elevation of a large continent proceeds

at the rate of two feet in a century, (a2 + /32)5 may be about T±~' per annum,
and fi is 360° in 306 days; whence it follows that the greatest angle made by
the instantaneous axis with the axis of figure is comparable with ^fa", a
quantity beyond the power of observation. On the score of these terms the
instantaneous axis will therefore remain sensibly coincident with the axis of
figure.

They will, moreover, produce no secular alteration in the obliquity of the
ecliptic, nor in the precession, because they will appear as periodic in d0/dt
and sin 8 dyjrjdt, with arguments n and n ± fi.

Now although this inequality is so small, it nevertheless is of interest.

If we map, on a tangent plane to the earth at its initial, pole, the relative
motion of the instantaneous axis and the pole of figure, we get, as the equation
to the curve,

x = — (1 — cos tit) sin fit
/i fi

y = — sin fxt + — (1 — cos fit)
fi /i

If t be eliminated from these equations, we get

Thus the relative motion is a circle, passing through the origin, and
touching a line inclined to the axis of y at an angle tan"1 a//3. Therefore the
instantaneous axis describes a circle passing through the pole of figure every
306th day; and this circle touches the meridian, along which the axis of
figure is travelling with uniform velocity, in consequence of the geological
deformation of the earth.

The motion of the instantaneous axis in the earth is a prolate cycloid.

§ 4. Adjustments to a Form of Equilibrium.

If the earth were a viscous fluid there is no doubt but that the pole of
figure would tend to displace itself towards the instantaneous axis, whose
mean position would be the centre of the circle above referred to.

But Sir William Thomson has shown* that the earth is sensibly rigid;
and in any case the earth is not a viscous fluid, properly so called, although
it may be slightly plastic.

* In his Address to the British Association, 1876, he states that the argument derived from
precession (Thomson and Tait's Natural Pliilosophy, p. 691) is fallacious; he adduces, however,
a number of cogent arguments on this point.
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1877] ADJUSTMENTS OF THE EARTH TO THE FIGURE OF EQUILIBRIUM. 11

M. Tresca has shown that all solids are plastic under sufficiently great
stresses, but that, until a certain magnitude of stress is reached, the solid
refuses to flow*. Now in the case of a very small inequality like this, the
stresses introduced by the want of coincidence of the instantaneous axis with
the axis of figure are very small, even when at their maximum; and every
306th day they are zero. It seems, therefore, extremely improbable that the
stresses can be great enough to bring the earth into what M. Tresca calls the
state of fluidity; and therefore it is unlikely that there can be any adaptation
of the earth's form to a new form of equilibrium in consequence thereof.

In all the other inequalities introduced, whether arising from the first
three terms above given in a, and &>2, or arising from the impressed forces, to
be treated hereafter, the centre of the positions of the instantaneous axis is
coincident with the pole of figure, and therefore there can hardly be any
adaptation of figure eccentric to the axis of greatest moment to balance the
stresses introduced by centrifugal force.

It would appear probable that, whilst a geological change is taking place,
the earth is practically rigid for long periods. But as the earth comes to
depart more and more from a form of equilibrium, the stresses due to the
mutual gravitation of the parts, and to the rotation, increase gradually, until
they are sufficiently great to cause the solid matter to flow. A rough kind of
adjustment to a form of equilibrium would then take place. The existence
of continents, however, shows that this adjustment does not take place by the
subsidence of the upheaved part; and as this adaptation of form would be
produced by an entirely different cause from that to which the upheaval was
due, that upheaval would probably persist independently of the approximate
adoption of a new form of equilibrium by the earth.

M. Tresca's experiments on the punching of metals would lead one to
believe that the change would take place somewhat suddenly, and would in
fact be by an earthquake, or a succession of earthquakes. On each of these
occasions the tendency would be to adjust the form to one of equilibrium
about the instantaneous axis. Now the principal axis X3 has (in consequence
of the postulated deformation) been travelling along the meridian in longitude
7r + tan"1 a//3, measured from the plane containing X-j and \s.

The earthquake will take place when, to the stresses due to mutual
gravitation, are superadded the maximum stresses due to centrifugal force;
that is to say, when the instantaneous axis is at its greatest distance from X3,
the axis of greatest moment of inertia. At the instant of the earthquake the
principal axis will be moved towards the position of the instantaneous axis.
And as the circle described by the instantaneous axis touches the meridian of
displacement of the principal axis, therefore the principal axis will be carried

* " Sur l'ficoulement des Corps Solides," Mem. des Sav., torn, XVIII.
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12 ADJUSTMENTS WHEN THE PLANET IS VISCOUS. [1 , § 5

by the adjustment towards the centre of the circle described by the instan-
taneous axis, and therefore perpendicular to the meridian of displacement.

Thus, if the adjusting earthquakes take place at long intervals, the
motion of the principal axis will not deviate sensibly from continuing along
the meridian, along which it would travel in consequence merely of the
geological deformation. If, however, the adjustments are frequent, the path
of \3 will diverge sensibly from the meridian along which it started. If the.
readjustments become infinitely frequent and infinitely small, there is a con-
tinuous flow of the matter of the earth, which is always seeking to bring
back the earth's figure to one of equilibrium, from which figure it is also
supposed to be continuously departing under the action of internal forces.
In this state the earth may be considered as formed of a stiff viscous fluid.

According to these ideas, at each adjustment \ , \.2, X3 will be suddenly
reduced to nearly their primitive values, A, A, C; but a, ft, 7 depend on the
rate of accession and diminution of matter at various parts of the earth, and
remain constant. The only effect, then, is that each adjusting earthquake
must be taken as a new epoch.

As far as I can see, it seems quite possible that the earth may be sensibly
rigid to the tidally deforming influences of the sun and moon, and yet may
bring itself back from any considerable departure from a form of equilibrium
to approximately that form. It therefore seems worth while to consider the
case of the adjustments being continuous, whilst the deformation is also
continuous.

§ 5. Adjustments to the Form of Equilibrium continuous*.

I therefore propose to consider geometrically, but not dynamically, the
paths of the instantaneous axis, and of the principal axis, when the earth is
viscous and continuously deformed by internal forces. It is supposed that
the velocities of flow of the matter of the earth are so small that inertia may
be neglected, and that the displacements are so small that the principle of
the superposition of small motions is applicable.

As before the paths of the instantaneous and principal axes may be
mapped on a tangent plane to the spheroid, at the extremity of the primitive
pole, the mean radius of the spheroid being taken as unity.

In consequence of the continuous deformation, the principal axis travels
with a linear velocity (on the map) — \/(a? + /32) along the meridian of longi-
tude tan"1 a//3. Take this meridian as axis of x, and measure y, so that the
angular velocity //. is from x towards y, and call V(<*2 + /32), u.

Then the principal axis \3 moves along the axis of x with a uniform
linear velocity — u, and, from dynamical principles, the instantaneous axis I
moves round the instantaneous position of \s with a uniform angular velocity /i.

* [Compare § 4, Paper 1, " On the tides of viscous...spheroids...," Vol. n., p. 11.]
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1877] CURVE OF PURSUIT DESCRIBED BY THE INSTANTANEOUS AXIS. 13

But because of the earth's viscosity, X3 always tends to approach I. The
stresses introduced in the earth by the want of coincidence of X3 with I vary
as X3I. Also the amount of flow of a viscous fluid, in a small interval of time,
varies jointly as that interval and the stress. Hence the linear velocity (on
the map), with which X3 approaches I, varies as X3I (equal to r suppose). Let
this velocity be vr, where v depends on the viscosity of the earth, diminishing
as the viscosity increases.

Thus the principal axis describes a sort of curve of pursuit on the map;
it is animated with a constant velocity — u parallel to x, and with a velocity
vr towards I, which rotates round it with a uniform angular velocity fi.

The motion of I, relative to X3, is that of a point moving with a constant
velocity u parallel to x, rotating round a fixed point with a constant angular
velocity fi, and moving towards that point with a velocity vr.

Let f, 7} be the relative coordinates of I with respect to X3, and x, y the
coordinates of X3. Then the differential equations which give the above
motions are:—

^U-VS-M (1)

If (1) and (2) be integrated, and the constants determined so that, when
i = 0, £ = 77 = 0 (which expresses that initially X3 and I are coincident), it will
be found that

>- u { ,-, , .-, t • )t = ; < v {1 — e~vt cos at) + /ie~vt sin at yV2+fl-{ r- r- i~ j

rj = -j-j^~, -!/*(! — e~"( cos fit) — ve~"t sin fit

These give the path of I relative to X3. It may be seen to be a spiral
curve diminishing with more or less rapidity, according as the earth is less or
more viscous. If v = 0, it becomes the circle found above from the dynamical
equations.

Substitute in (3) and (4) for f and t]; integrate, and determine the con-
stants, so that when t = 0, *• = y — 0. It will then be found that

x = — j — — 2 \v (v2 — fi2) + fiH + -----—2 {— (i>a - fi2) e~vt cos fit + 2five~vt sin fit}

« = — — - 2[ii>2 + wvt + ———; \2five~vt cos fit + (v2 — w2) e~vt sin at}

* V^ + fl* \_ V2 + fl^n J
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14 PATH DESCRIBED BY THE POLE. [1, § 5

These give the path of Xs on the map. It may be seen to be a cycloidal
curve, in which the radius of the rolling circle diminishes with more or less
rapidity, according as the earth is less or more viscous.

After some time e~vt becomes very small, and the motion is steady; and
then f = uv/(fx'2 + v"), rj = K,/J./(V'2 + /u?), or I is fixed, relatively to \3, at a distance

w/(z>2 + fx2)^ from it, and on the meridian, measured from the axis of x, in
longitude tan"1 /x/v. This point is the centre of the above-mentioned spiral
curve.

If v be very small (or the earth nearly rigid) this meridian differs by little
from the axis of'y. But it may be that v is so small that e~vt has not time to
become insensible before the geological changes cease. This case corresponds
very nearly to the hypothesis, in the last section, of adjusting earthquakes.

If the earth be very mobile, or v large, £ = u/v, rj = 0.

Again, with respect to the path of X3, when the motion has become steady,

Uv (v2 — a2) u?u

V2 + /i8 V2 + /X2

11 = +
J ,.2 I . ,2 v2 + fj?

and eliminating t, vx + fxy = — uv2.

That is to say, when the motion is steady, X3 moves parallel to the

meridian of longitude ir — tan"1 v/fi, and distant from it uv2j(v2 + /i2)^ on the
negative side. This straight line is the degraded form of the above-mentioned
cycloidal curve.

If the earth is nearly rigid this path does not differ sensibly from the axis
of x; if very mobile, it is nearly perpendicular to the axis of x, and a long way
from the origin. In this last case the solution becomes nugatory, except as
showing that the very small inequality of 306 days would be capable of
disturbing and quite altering the path of the principal axis, as arising merely
from geological changes on the surface of the earth.

In the case contemplated by the Astronomer Royal, where the elevation
is explosive, u must be put equal to zero, and the constants of integration so
determined, that when t = 0, £ = E suppose, and rj = x = y = 0. It will then
be found that when the agitation has subsided, *• = Ri<2//i42, y — Re//i, or the
pole of figure will have taken up a position on one side of the meridian, along
which it was initially propelled by the explosion.

It thus seems probable that during the consolidation of the earth there
was a great instability in the position of the principal axis, and therefore
also of the axis of rotation which followed it.
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1877] CHANGE IN THE OBLIQUITY OF THE ECLIPTIC. 15

§ 6. Secular alteration in the obliquity of the Ecliptic, resulting from
terms independent of the Impressed Forces.

To return to the main line of the inquiry:—If the values of ^ and &>2,
found in § 2, be substituted in the geometrical equations for dO/dt and
sin Odifr/dt (see § 1). a number of periodic terms will arise, and these terms
have diurnal and semidiurnal periods, but their amplitudes are so small that
they have no practical interest.

The only thing which concerns us is to inquire whether there can be any
secular change in the obliquity of the ecliptic.

Select, then, only terms in sin nt in «,, and in cos nt in <w2, and substitute
in the geometrical equation ddjdt = - &>! sin nt + <o2 cos nt, and reject periodic
terms. It will then be found that

de n . , . ,

§ 7. Terms dependent on the Impressed Forces.

It now remains to consider the effect of the impressed forces on the
precession and obliquity of the ecliptic.

The equations of motion are reduced to

rf&>! C — A L

rfw2 C - A M

dw, _ N
dt ~ A

If we write L + BL, M + SM, SN for L, M, N, and indicate by L and M
the couples caused by the attractions of the sun and moon on the protuberant
parts of the earth before it has begun to change its shape, then L and M only
cause the ordinary precession and nutations. For the present problem it is
therefore only necessary to consider the effects of SL, 8M, SN, which arise
from the change of shape of the earth.

It follows, from the same arguments that were used in § 1, that the change
in the earth's angular velocity of rotation due to SN will only have a very
small effect on Wj and a>2; so that, as far as is now important, a>s may be put
equal to — n in the first two equations, which may then be written

da>l SL

SM
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16 CHANGE IX THE OBLIQUITY OF THE ECLIPTIC. [1 , § 8

Now SL and SM are the changes in L and M, when A + at, A + bt, C + ct
are written for A, A, and C respectively. If SL, SM be thus formed, and the
equations integrated, it will be found that the principal terms, arising from
the sun's attraction, are nine both in ddjdt and sin 6 dyfr/dt; the same number
of terms arise in the precession and nutation with respect to the plane of the
lunar orbit, and these would have to be referred to the ecliptic. Sixteen out
of the eighteen terms represent, however, only very small nutations, and the
only terms of any interest are those which give rise to a secular change in
the obliquity of the ecliptic. These terms may be picked out without repro-
ducing the long calculation above referred to, for they arise entirely out of
the constant couple acting about the equinoctial line, which gives rise to the
uniform precession.

Now this constant couple is CIITO; whence

L = CII« sin nt, M = — CII»i cos nt

And since II involves (C — A)/C, therefore

SL = - GUn p--T-1 sin nt, BM = — Clln p~ \ t cos nt

If these be substituted in the equations of motion and the equations
integrated, and only terms in sin nt in a)x and those in cos nt in w2 be
retained, we get

l i b — c . , l i e — a
w1 — ~ r sin nt, ro, = ~ r cos nt

n C - A " n C - A
Substituting in the geometrical equation ddjdt = — co1 sin nt + &>2

 c o s nt
and rejecting periodic terms,

d6 _ n a + b - 2 c
dt ~ In C - X " "

§ 8. General result with respect to the Obliquity of the .Ecliptic.

It was found in § 6 that the secular rate of change of 6, as due to the

internal changes in the earth, was — ™-. -;- . Since C — A is small
An A.

compared to A, this term is small compared with the term found at the end
of § 7. Hence, finally, taking all the terms together, we get the approximate
result,

d£_U a + b - 2 c
di~2n' C-A

and for small changes in the obliquity, insufficient to affect II materially,
-, . ,11 a + b - 2 c

2n C - A
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1877] SENSIBLE CONSTANCY OF THE OBLIQUITY OF THE ECLIPTIC. 17

This equation has been obtained on the supposition that the change in
the earth's form never becomes so great that at, ht, ct exceed small fractions
of C — A; a condition which is satisfied in the case of such geological changes
as those of which we have any cognizance at present.

It will appear from a comparison with results given hereafter, that

—p—-r—- t cannot ever exceed two or three degrees; and since II/2/i is

a very small fraction, it follows that the obliquity of the ecliptic must have
remained sensibly constant throughout geological history*. Also the instan-
taneous axis of rotation must always have remained sensibly coincident with
the principal axis of figure, however the latter may have wandered in the
earth's body.

It has hitherto been assumed that the change of form and the angular
velocities of the principal axes in the earth's body are uniform. But the
preceding investigation shows clearly that no material change would be
brought about by supposing the changes to proceed with varying velocities.
This being so, dynamical considerations may be dismissed henceforth; and
accordingly the next part of this paper will be devoted to the kinematical
question, as to the change in position of the earth's axis of figure as due to
geological changes.

* During the Glacial Period there must have been heavy ice-caps on one or both poles of the
earth. The above equation will give the disturbance of the obliquity of the ecliptic produced
thereby.

I will take what I believe is the most extreme view held by any geologist. Mr Belt is of
opinion that an enormous ice-sheet, which was thickest in about lat. 70° N. and S., descended
from both poles down to lat. 45°; the amount of ice was so great that the sea stood some
2000 feet lower than now throughout the unfrozen regions between lat. 45° N. and S.

Suppose that the whole of this equatorial region was sea, and that the water contained in
2000 feet of depth of this sea was gradually piled on the polar regions in the form of ice. Then
the effect in diminishing C and increasing A cannot be so great as if the whole of this mass
were subtracted actually from the equator and piled actually on the poles. The latter supposi-
tion will then give a superior limit to the amount of alteration in the obliquity of the ecliptic.
I have calculated this alteration by means of the above formula, taking the numerical data used
later in this paper, and taking the specific gravity of water to that of surface-rock as 4 to 11.
I find, then, that the superior limit to the increase of the obliquity of the ecliptic would be
0"-00045; that is to say, the position of the arctic circle cannot have been shifted so much as
half an inch. And this is an accumulated effect, and the matter is distributed in the most
favourable manner possible.

In this case the amount of matter displaced is enormous, and is placed in the most favourable
position for affecting the obliquity; hence, a fortiori, geological changes in the earth cannot
have sensibly affected the obliquity.

But although this equation leads to no startling results in the geological history of the earth,
I hope to show in a future paper that it may have some bearing on the very remote history of
the earth and of the other planets [see Paper 3, p. 51]. In consequence of a mistake in the
work it was erroneously stated in the abstract of this paper in the Proceedings that the change
in the position of the arctic circles might amount to 3 inches, instead of to half an inch.

D. III. 2
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18 NATURE OF THE SUPPOSED DEFORMATION OF THE EARTH. [1, § 9

The various assumptions made above will incidentally be justified in the
course of the work.

For some remarks of Sir William Thomson on this part of the paper see
Appendix C.

II. THE PRINCIPAL AXES OF THE EARTH.

| 9. Preliminary Assumptions.

It is assumed at first that, in consequence of some internal causes, the
earth is undergoing a deformation, but that there is no disturbance of the
strata of equal density, and that there is no local dilatation or contraction
in any part of the body. The cases at present excluded will be considered
later.

The result of this assumption is, that the volume of the body remains
constant, and that the parts elevated or depressed above or below the mean
surface of the ellipsoid have the same density as the rest of the surface.
Such changes of form must, of course, be produced by a very small flow of the
solid matter of the earth. Since the whole volume remains the same, this
hypothesis may be conveniently called that of incompressibility; although, if
the matter of the earth flowed quite incompressibly, there would be some
slight dislocation of the strata of equal density.

It is immaterial for the present purpose what may be the forces which
produce, and the nature of, this internal flow; but it was assumed in the
dynamical investigation that the forces were internal, and that the flow
proceeded with uniform velocity.

After deformation the body may be considered as composed of the original
ellipsoid, together with a superposed layer of matter, which is positive in
some parts and negative in others. The condition of constancy of volume
necessitates that the total mass of this layer should be zero. If we take axes
with the origin at the centre of the ellipsoid and symmetrical thereto, and let
/iF (6, c}>) represent the depth of the layer at the point 6, $, the condition of
incompressibility is expressed by the integral of F (0, <f>) over the surface of
the ellipsoid being zero. Then by varying h, elevations and depressions of
various magnitudes may be represented.
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1877] MOMENTS AND PRODUCTS OF INERTIA. 19

§ 10. Moments and Products of Inertia after Deformation.

Before the deformation :—

Let A, C be the principal moments of inertia of the earth; a, b its semi-
axes ; M its mass; 19 its mean density; p its surface density; and c its mean
radius, so that 3c = la + b; and let the earth's centre of inertia be at the
origin.

After the deformation:—

Let a, b, c, D, E, F be the moments and products of inertia of the above
ideal shell of matter about the axes; aij, yx, z1 the coordinates of the earth's
centre of inertia.

Then, since the ellipticity of the earth is small, the integrals may be
taken over the surface of a sphere of radius c, instead of over the ellipsoid.
Therefore,

a = hpc1 (JF (0, (f>) sin 0 (sin3 0 sin2 <f> + cos2 6) dOd(j>

Ma?, = hpc3 / T F (0, 0) sin2 6 cos <f>d6d<f>

M = f TTDC3

and other integrals of a like nature for b, c, D, E, F, y1, zx.

Since ITF (0, <f>) sin 0 d0 d<f> = 0, therefore a + b + c = 0

If A be the moment of inertia of the body, after deformation, about an
axis parallel to x, through w1: ylt zlt

A = A + a - M (yf + z?)

Now a varies as h/c, whilst M (y-f + z/) varies as (h/c)2. But the greatest
elevation or depression to be treated of is about two miles, whilst the mean
radius c is about 4000 miles; hence h/c cannot exceed about ^00> a n ^
accordingly the term M (y^ + zf) is negligible compared to a. Whence
A = A + a.

In like manner, the terms introduced in the other moments and products
of inertia by the shifting of the earth's centre of inertia are negligible com-
pared to the direct changes. Thus it may be supposed that the centre of
inertia remains fixed at the origin, and that the moments and products of
inertia of the earth after deformation are A + a, A + b, C + c, D, E, F.

2—2
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20 CHANGE OF POSITION OF THE PRINCIPAL AXES. [1, § 11

§11. General Theorem with respect to Principal Axes.

A general theorem will now be required to determine the position of the
principal axes after the deformation.

Take as axes the principal axes of a body about which its moments of
inertia are A, B, 0. Let the body undergo a small deformation, which turns
the principal axes through small angles a, /3, 7 about the axes of reference,
and makes the new principal moments A', B', C. And let the moments and
products about the axes of reference become in consequence A + a, B + b,
C + c, D, E, F. Then it is required to find a, /3, 7 in terms of these last
quantities.

Let I, vi, n be the direction cosines of any line through the origin, and let
them remain unaltered by the deformation. Let I be the moment of inertia
about this line after deformation. Let I + SI, m + 8m, n + Sn be the direction
cosines of the line with respect to the new principal axes. Then, by a well-
known theorem,

SI = 7m — /3«, 8m = a.n — <yl, 8n = /3l — am
Now

I = (A + a) l" + (B + b) m2 + (C + c) n2 - 2T>mn - 2Enl - 2Flm

But it is also equal to

A' (I + 8l)2 + B' (TO + 8mf + G'(n + 8n)2

and by substituting for SI, 8m, Sn, this is equal to

A72 + B'm2 + CV - 2mn (C - B') « - 2ln (A' - C) /3 - 2lm (B' - A') 7
to the first order of small quantities.

This expression must be identical with the former for all values of
l,m,n; hence putting 1 = 1, m = n = 0, A' = A + a, and similarly B' = B + b,
C = C + c. Wherefore also

D D

and /3 = ^ ^ ,
A.— U ±) — A

and these are the required expressions for a, /3, 7.

If, however, B = A, 7 becomes infinite, and the solution is nugatory: but
since, under this condition, all axes in the plane of xy were originally principal
axes, the axes of reference may always be so chosen that F is zero absolutely;
and then

D E
C — A' C - A ' ^ ~

Therefore the new principal axis C is inclined to the old C at a small angle

(D2 + E2)-/(C — A), and is displaced along the meridian, whose longitude,
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1877] DISPLACEMENT OF THE EARTH'S AXIS OF FIGURE. 21

measured from the plane of xz, is ir + tan"1 D/E. This is the case to be dealt
with in the present problem. The positions of the other principal axes will
be of no interest.

em.§ 12. Application of preceding Theoren

To solve the problem numerically in any particular case, it will be neces-
sary to find the integrals

D = hpc* f I F (0, <f>) sin2 0 cos 0 sin <]>d0d4>

E = hpc* I Y F (0, <f>) sin2 0 cos 0 cos (j>d0dcf>

If D/Apc4 and E/Apc4 be called d and e, then d and e stand for the above
integrals, which depend on the distribution of surface-matter in continents
and seas.

It will be convenient to use a foot as the unit for measuring h, and
seconds of arc for the measurement of the inclination i of the new principal
axis to the old. For this purpose the value of the coefficient pc4/(G — A) may
be calculated once for all. Let its value when multiplied by the appropriate
factors for the use of the above units be called K *. Now

Then if we take e = '0033439, being the mean of the values given by
Colonel A. R. Clarke, m = 1/28966, and c = 20,899,917 feetf, M = |TTBC3,

and U/p = 2, we get

C - A = f TT-JOC4 x -0010809 x 20,899,917

and K = 1-08986

If, in accordance with Thomson and Tait, B /p = 2'1, K = 1-0380, but I
shall take K as 1-090. Then we have i" = Kh V(d2 + e2), where K = 1-090,
h being measured in feet, and i" being the angular change in the position of
the principal axis of greatest moment of inertia of the earth, due to a
deformation given by AF (0, </>) all over the surface of the spheroid.

a, -t. t) 2c
The angle —~—. t is clearly of the same order of magnitude as i, as

i_y — A.

it was assumed to be in Part I.

* I have to thank Prof. J. C. Adams for his help with respect to the numerical data, and for
having discussed several other points with me.

t See Thomson and Tait, Natural Pliilosoplty, pp. 648, 651.
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22 SPECIAL FORMS OF CONTINENTS AND OCEANS. [1, §§ 13, 14

III. FORMS OF CONTINENTS AND SEAS WHICH PRODUCE THE MAXIMUM

DEFLECTION OF THE POLAR AXIS.

§ 13. Conditions under which the Problem is treated.

On the hypothesis of incompressibility, the effect of a deformation in
deflecting the pole is exactly equivalent to the removal of a given quantity
of matter from one part of the earth's surface to another. But as no
continent exceeds a few thousand feet in average height, the removal is
restricted by the condition that the hollows excavated, and the continents
formed, shall nowhere exceed a certain depth and height. The areas of
present continents and seas, and their heights and depths, give some idea of
the amount of matter at disposal, as will be shown hereafter. It is interesting,
therefore, to determine what is the greatest possible deflection of the pole
which can be caused by the removal of given quantities of matter from one
part of the earth to another, subject to the above condition as to height and
depth.

§ 14. Problem in Maxima and Minima.

This involves the following problem:—To remove a given quantity of
matter from one part of a sphere to another, the layers excavated or piled up
not being greater than k in thickness, so as to make *J(D~ + E2) a maximum,
the axes being so chosen as to make F = 0.

If D', E' be the products of inertia referred to other axes having the same
origin and axis of z as before, it may easily be shown, from the fact that
D2 + E2 = D'2 + E'2, that D2 + E2 is greatest and equal to E'2 for that distribution
of matter which makes D' = 0 and E' a maximum.

The problem is thus reduced to the following:—Rectangular axes are
drawn at the centre of a sphere of radius c; it is required to effect the above-
described removal of matter, so that the product of inertia about a pair of
planes through z, and inclined to xz at 45° on either side, shall be a
maximum, subject to the above condition as to depth, k being small compared
to c. For convenience, I refer to the plane xy as the equator, to xz as prime
meridian, from which longitudes •v/r are measured from x towards y, and to 6
the colatitude. These must not be confused with the terrestrial equator,
longitude, and latitude.

A little consideration shows that the seas and continents must be of
uniform depth k, that there must be two of each, that they must all be of the
same shape, must be symmetrical with respect to the equator, and that the
continents must be symmetrical with respect to the prime meridian, and the
seas with respect to meridians 90° and 270°.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492
https://www.cambridge.org/core


1877] SPECIAL FORMS OF CONTINENTS AND OCEANS. 23

Also the total product of inertia P, produced by this distribution, is
16 times that produced by the part of one continent lying in the positive
octant of space; and the mass of matter removed is 8 times the mass of this
same portion of one continent.

The problem is, therefore, to find the outline of the continent, so that P
may be a maximum, subject to the condition that the mass is given.

Take the surface-density of the sphere as unity, and let the mass removed
be given as an elevation of a height k over a fraction q of the whole sphere's
surface; so that the mass removed from hollow to continent is ^ir&kq. Then
it may easily be shown that

P = 4£;c4f ""sin'flsii^fdfl
Jo

1 fiw

and o = - 2i/r sin 6d8
T JO

where \{r is a function of 6 to be determined. Then writing a for 2i|r, and
/it for cos 6, we have to make

!(1 — /A2) sin a> — a> cos2 a} dfi a maximum

for it will be seen later that — c2 cos2 a is a proper form for the constant, to
be introduced according to the principles of the Calculus of Variations. This
leads at once to

(1 — /A2) cos to = cos2 a.

or sin2 6 cos 2i|r = cos2 a

That is to say, the outline of the continent is the sphero-conic formed by
the intersection with the sphere of the cone, whose Cartesian equation is

y2 (1 + cos2 a) + z2 cos2 a = a? sin2 a

Reverting to the expressions for P and q, altering the variable of integra-
tion, and the limits, so as to exclude the imaginary parts of the integrals, we
have as the equation to find a

7T Jo

, /cos aV ,
cos y cos""1 ay

x Vcos x!
and P = 4&c4 I cos y V(cos4 y — cos4 a

Jo
These integrals are reducible to elliptic functions; but in order not to inter-

rupt the argument, I give the reduction in Appendix B. If cos 2-y = cos2 a,
the result is that

wq = V2 C°S 2l LIP ( - 2 sin2
 7 ) - F1]

cos 7

or « = 1 - -
7T
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24 CONTINENTS GIVING MAXIMUM DEFLECTION OF THE POLE. [1 , § 15

and T-J = § V2 cos 7 [E1 - cos 2 7 F
1]

tec
where the modulus of the complete functions E1, F1, II1 is tan 7, and where
E, F have a modulus cos a/cos 7 and an amplitude \nr — 7.

It will be observed that a is the semi-length of the continent in latitude,
and 7 the semi-breadth in longitude.

From these expressions I have constructed the following Table:—

Semi-breadth of
continent

(7)

0
5

10
15
20
25
30
35
40
45

Semi-length of
continent

(a)

0 0
7 5

14 13
21 28
28 55
30 42
45 0
54 12
G5 22
90 0

Fraction of surface
elevated or depressed

(?)

•0000
•0054
•0216
•0486
•0867
•1362
•1979
•2732

•5000

Product of inertia
/ P \

•0000
•0672
•2628
•5697
•9603

1-3981
1 -8399
2-2371

2-6667

§ 15. Application of preceding problem to the case of the Earth.

In the application to the case of the earth, what has been called, for
brevity, the equator (EE in fig. 2) must be taken as a great circle, passing
through a point in terrestrial latitude 45°.

N. POLE

FIG. 2.
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1877] DISCUSSION OF GEOLOGICAL EVIDENCE. 25

Figure 2 gives the stereographic projection of the forms of continents and
seas, the firm lines showing continents, and the broken ones seas, when
covering various fractions of the whole surface; a and 7 are indicated on
one of the continents. The other hemisphere is the same as this figure,
when seen in a looking-glass. It will be observed that the limiting case is
when the two continents fill up two quarters of the earth, and the two seas
the other two.

It is clear that the greatest deflection of the polar axis which can be
produced by the elevation of continents of height k and having a total area
4nrc2q, and the depression of similar seas, will be PK.

A numerical Table of results will be given below, formed by interpolation
in the above Table.

IV. ON GEOLOGICAL CHANGES ON THE EARTH'S SURFACE.

§16. The points to be considered.

It is now necessary to consider what kind and amount of superficial
changes are brought about in the earth's shape by such geological changes as
are believed to have taken place. The points to be determined are :—

i. Over what extent of the earth's surface is there evidence of consenta-
neous subsidence, or upheaval, during any one period.

ii. What is the extreme vertical amount of that subsidence or upheaval.

iii. How the sea affects the local excesses and deficiencies of matter on
the earth's surface.

iv. How marine and aerial erosion affect the distribution of the excess or
deficiency of matter.

v. The possibility of wide-spread deformations of the earth, which
approximately carry the level surfaces with them.

The object of this discussion is to find what areas and amounts of
elevation and subsidence on a sealess and rainless globe are equivalent, as
far as moving the principal axis, to those which obtain on the earth. These
areas and effects will be referred to as " effective areas and amounts of
elevation or subsidence."

It is probable that during the elevation or subsidence of any large area,
the change proceeds at unequal rates in different parts; probably one part
falls or rises more quickly than another, and then the latter gains on the
former. But it has been shown, in the dynamical part of this paper, that the
axis of rotation sensibly follows the axis of figure. Hence it is immaterial by
what course the earth changes its configuration, provided the changes do not
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26 AREAS OF SUBSIDENCE AND ELEVATION. [1, § 17

proceed by large impulses, a supposition which may be certainly excluded.
The essential point is, to compare the final and initial distributions of matter,
after and before a period of large geographical change.

§ 17. Areas of subsidence and elevation.

When a new continent is being raised above the sea, there is no certainty
as to the extent to which areas in the adjoining seas partake in the elevation;
even in the case of S. America, where the area of elevation is supposed to be
abruptly limited towards the west, the line of 15,000 feet depth lies a long
way from the coast.

As soon, moreover, as the land is raised above the sea, the rivers begin
washing away its surface, and the sea eats into its coasts. The materials
of the land are carried away, and deposited in the surrounding seas. Thus to
form a continent of 1000 feet in height, perhaps entails an elevation of the
surface of from 3000 to 4000 feet, and all the matter of the additional 2000
to 3000 feet is deposited in the sea. This tends to make the adjoining seas
shallower, and to cause some increase to the area of the land. Therefore in a
sealess globe the effect must be represented by a greater area of elevation
and a less height.

The bed of a deep sea is hardly at all subject to erosion, and therefore the
tendency seems to be to make the negative features of an ocean-bottom more
pronounced than the positive features of mountain-ranges, at least in the
parts very remote from land.

The areas, then, of existing continents may not be a due measure of the
areas of effective elevation; we can only say that the latter may considerably
exceed the former. The direct evidence as to the extent of the earth's surface
over which there has been a general movement during any one period, is also
very meagre. It appears certain that very large portions of S. America have
undergone a general upward movement within a recent geological period;
but there is no certainty whatever as to the limits of this area, nor as to
whether the beds of the adjoining seas have partaken to any extent of this
general movement. Thus the case of S. America is of scarcely any avail in
determining the point in question. The presence of deep ocean up to the
Chilian coast seems, however, to make it probable that areas of elevation are
more or less abruptly divided from those of rest or subsidence.

There is only one area of large extent in which we possess fairly well-
marked evidence of a general subsidence ; and this is the area embracing the
Coral islands of the Pacific Ocean. The evidence is derived from the
structure of the Coral islands, and is confirmed in certain points by the
geographical distribution of plants and animals. Some naturalists are of
opinion that there is evidence of the existence of a previous continent; others
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1877] AREAS OF SUBSIDENCE AND ELEVATTON. 27

(and amongst them my father, Mr Charles Darwin) that there existed there
an archipelago of islands. In this dearth of precise information, only a rough
estimate of area is possible.

My father, who has especially attended to the subject of the subsidence of
the Pacific islands, has marked for me, on the map given in his work on
Coral Reefs, a large area which he believes to have undergone a general
subsiding motion. This area runs in a great band from the Low Archipelago
to the Caroline Islands, and embraces the greater number of the islands
coloured dark-blue in his map. The boundary may be defined as passing
through:—

Lat....
Long...

3
150

5 |

140 |

E.

15
150

iN.

22
165

18
180

10
165

*
150

5
135

1 15 1
| 120 |

w.

25
120

S.

| 30

| 135

18

150

15
165

10
180

8
165
E.

He also marked a smaller area, embracing New Caledonia, the S.E. corner
of New Guinea, and the N.E. coast of Australia.

It is noteworthy that the former large area consists of sea more than
15,000 feet deep, except in patches round some of the islands, where it
appears to be from 10,000 to 15,000 feet deep*.

I marked these areas on a globe, and cut out a number of pieces of paper
to fit them, and then weighed them. By this method I determined that the
former area was "055 of the whole surface of the globe, and the latter was "01;
the two together were therefore "065.

It thus appears that we have some evidence of an area of between 5 and
7 per cent, of the globe having undergone a general motion of subsidence
within a late geological period. But between this area and the coast of
S. America there is a vast and deep ocean, and nothing whatever is known
with respect to the movements of its bed. Hence it is quite possible that the
area which has really sunk, in this quarter of the globe, is considerably larger
than the one above spoken of.

On the whole, then, perhaps from '05 to '1 of the whole surface may at
various times have partaken of a consentaneous movement, so as to convert
deep sea into land, and vice versa.

Besides this kind of general movement, there have certainly been many
more or less local rises and falls, but this small oscillation is not fitted to
produce any sensible effect on the position of the earth's axis.

* See frontispiece-map to Wallace's Geographical Distribution of Animals.
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28 AMOUNT OF EFFECTIVE ELEVATION. [1, § 18

| 18. Amount of Elevation, and the effects of Water.

Humboldt has shown that the mean height of the present continents is a
little less than 1100 feet from the sea-level*. But this, of course, does not
give the limit to the amount of change of level. On the other hand, there
are perhaps 50,000 to 80,000 feet of superposed strata at most places on the
earth; but neither does this give the indication required, because the surface
must have risen and fallen many times during the deposition of these strata.

But, as before pointed out, the actual upward or downward movement of
land is by no means the same as its effective elevation or subsidence; for
erosion causes the effective to be far slower than the actual. And the actual
upward or downward movement of an ocean-bed is different from the effective;
for the sea-water will flow off or in from the adjoining seas. The specific
gravity of water is about one-third of that of surface rock, and the local loss
or gain of matter is the actual loss or gain of surface rock, less the mass of
the sea-water admitted or displaced. Thus the effective downward or upward
movement of a sea-bed is about § of the actual; of this a more accurate
estimate will be given presently.

It is fortunately not important to trace the series of changes through
their course; and in order to avoid the complication of doing so, the way
seems to be to estimate the amount of transference of matter entailed in the
conversion of a deep ocean into a continent of the present mean height.

Suppose, then, that an ocean area of 15,000 feet in depth were gradually
elevated, and that the final result, notwithstanding erosion, were a continent
of 1100 feet in height. Conceive a prism, the area of whose section is unity,
running vertically upwards from what was initially the ocean-bed. Initially
this prism contained 15,000 feet of sea-water, and finally it contains 16,100
feet of rock; so that the local gain of matter, on this unit of area of the
earth's surface, is the difference between the masses of this prism, initially
and finally.

Now l-02 is the specific gravity of sea-water, and 2'75 that of surface
rock; therefore the same local gain of matter, in a sealess globe, would be
given by an elevation of

16,100 - iff of 15,000 = 10,436 feet

That is to say, 10,436 feet has been the effective elevation.

I therefore adopt 10,000 feet as the effective elevation equivalent to the
conversion of deep ocean into a continent; and in the examples given here-
after, where I find the deflection of the pole for various forms and sizes of
continent, I shall give the results of such an assumed conversion.

* Sir J. Herscliel seems to have doubled the height through a misconception of Humboldt's
meaning. The mean height of the land is in English feet: Europe, 671; N. America, 748;
Asia, 1132; S. America, 1151. See a letter to Nature, by Mr J. Carrick Moore, April 18th, 1872.
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1877] POSSIBILITY OF MASKED ELEVATIONS AND SUBSIDENCES. 29

§ 19. Wide-spread Deformations of the Earth.

It has hitherto been assumed that the elevation of land would not affect
the sea-level; but there can be no doubt but that elevations, such as those
already spoken of, would do so to the extent of, say, a hundred feet. In so
far, then, as this is the case, the elevation would be masked from the eyes of
geologists. But if the change of form were a gradual rising over a very wide
area, the level surfaces would approximately follow the form of the rocky
surface. For instance, the elliptical form of the equator carries the ocean
level with it; the amount of this ellipticity is such that the difference between
the longest and shortest equatorial radii is 6378 feet*. So long, however, as
these bulges remain equatorial they cannot affect the position of the principal
axis, even should they vary in amount from time to time. But this kind of
deformation, if not symmetrical with respect to the equator, would alter the
position of the principal axis, without leaving any trace whatever of elevation
or depression for geologists to discover.

The discrepancy which is found between the ellipticity of the earth, as
deduced from various arcs of meridian, is, I presume, attributable to real
inequalities in the earth's form, and not entirely to errors of observation
and to the elliptical form of the equatorial section. It seems, moreover,
quite possible that these wide-spread inequalities may have varied from time
to time.

Hence, even if the deposit of strata in the sea did not produce a con-
tinual shifting of the weights on the earth's surface, and even if geologists
should ultimately come to the conclusion that there has never been any
consentaneous elevation and depression of very large continents relative to
the sea-level, but that the oscillations of level have always been local, it
would by no means follow that the earth's axis has remained geographically
fixed.

V. NUMERICAL APPLICATION TO THE CASE OF THE EARTH.

§ 20. Continents and Seas of Maximum Effect.

As far as I can learn, geologists are not of opinion that there is any more
reason why upheavals and subsidences should take place at one part of the
earth's surface than at another. It is accordingly of interest to suppose the
elevations and depressions to take place in the most favourable places for
shifting the axis of figure. The area over which a consentaneous change
may take place is also a matter of opinion.

The theorem in maxima and minima in Part III. makes it easy to con-
struct a table from which that area may be selected which seems most

* Thomson and Tait, Natural Philosophy, p. 648.
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30 EXAMPLES OF THE AMOUNT OF POLAR DEFLECTION. [1, § 21

probable to geologists. The following Table is formed by interpolation in
the Table in § 14; the first column gives the fraction of the earth's surface
over which an elevation is supposed to take place, a depression over an equal
area taking place simultaneously. The second column gives the angular
shift in the earth's axis of figure, due to 10,000 feet of effective elevation; as
was shown in Part IV., this would convert a deep ocean into a continent.
If 10,000 feet be thought too high an estimate, the last column may be
reduced in any desired proportion. Lastly, fig. 2 shows the forms of these
continents and seas of maximum effect.

Area of elevation
or subsidence, as

fraction of Earth's
surface

•001
•005
•01
•05
•1
•15
•2
•5

Deflection of pole
for 10,000 feet

effective elevation

H
2 2 |

1° 46 j
3° 17'
4° 3 3 |
5° 36f
8° 4 |

N.B. The area of Africa is about -059, and of S. America
about -033 of the Earth's surface.

§ 21. Examples of other forms of Continent.

I will now apply the preceding work to a few cases where the continents
and seas do not satisfy the condition of giving the maximum effect.

Figures 3, 4, 5, and 6 represent the shapes of the continents as projected
stereographically. The shaded parts represent areas of elevation, the dotted
parts those of depression; and in the shelving continents and seas the contour
lines are roughly indicated. P ' shows the new position of the pole. In every
case here given d = 0 and F = 0.

Fig. 3. F(6>, 0) = sin 20cos 20, from 0 = 0 to TT, and <j> = -\w to +-\w,
and zero over the rest of the globe.

e = 2 I sin3 6 cos3 6 cos 20 cos <f> ddd<f> = if \J2
•>» J ~{n

i" = K/te = -5480/t

If the effective elevation or depth in the middle of continent or sea be
10,000 feet, PP' = 1° 31£'.

This is the form of continent for which p^a is worked out in Appendix A.
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1877] FORMS OF CONTINENTS AND OCEANS DISCUSSED. 31

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.
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32 POLAR DEFLECTIONS DUE TO SPECIAL FORMS OF CONTINENT. [1 , § 22

Fig. 4. The same shape as the last, but of uniform elevation and depres-
sion of 10,000 feet.

e = :
'o

i" =Khe = 1-028 xh

PP' = 2° 51^' when h = 10,000; an extreme supposition, as the area
affected is a quarter of the whole globe.

Fig. 5. F(d, <f>) = l, from 6 = 0 to ^TT, and from (f> = -\TT to +^7r, and
— -f over the rest of the globe. This is equivalent to F (0, </>) = f within
the above limits.

Then i" = 7 x 1-028 xh = '587 x h

and PP ' = 1° 38', when h = 10,000 feet

Fig. 6. F (6, </>) = sin 26 cos 2cf>, from 0 = 0 to \ir, and from <f> = - ±ir to
+ ^TT, and zero over the rest of the globe.

r\* ri7r

e = 2 sin3 6 cos2 6 cos 2<i cos d> dddd> = A

i" = KAe = -194 x A; PP ' = 32J', when A = 10,000 feet

On the whole, then, it appears that continents, such as those with which
we have to deal, are competent to produce a geographical alteration in the
position of the pole of between one and three degrees of latitude. But all
these results are obtained on what I have called the hypothesis of incom-
pressibility.

VI. HYPOTHESES OF INTERNAL CHANGES OF DENSITY ACCOMPANYING

ELEVATION AND SUBSIDENCE.

§ 22. A general Shrinking of the Earth.

It may be supposed that the earth is gradually shrinking, but that it
shrinks quicker than the mean in some regions and slower in others. This
would of course lead to depression and elevation below and above the mean
surface in those regions. A deformation of this kind may be represented as
a uniform compression of the earth, superposed on changes such as those
considered on the hypothesis of incoinpressibility. If a be the coefficient of
contraction of volume, it is clear that the values of D and E, as already
found, must be diminished in the proportion of 1— fa to unity, and C —A
must be diminished in the like proportion. Hence the deflections of the polar
axis, on this hypothesis, are exactly the same as those already found. This
seems, perhaps, the most probable theory, but it is well to consider others.
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1877] ELEVATION PRODUCED BY INTUMESCENCE. 33

The redistribution of matter caused by the erosion of continents will
clearly produce the same effect as deformations on the theory of incom-
pressibility.

§ 23. Changes of Internal Density producing Elevation.

In discussing the above hypothesis, I shall confine myself to the case of
the upheaval or subsidence being of uniform height over given areas, and
shall make certain other special assumptions. This will considerably facilitate
the analysis, and will give sufficient insight into the extent to which previous
results will be modified.

I assume, then, that the elevation of the surface is produced by a swelling
of the strata contained between distances rY and r2 from the centre of the
globe and immediately under the area of elevation, and that the coefficient
of cubical expansion a. is constant throughout the intumescent portion.

This will cause a fracture of the strata of equal density, and will produce
a discontinuity such as that shown in figure 7, where the dotted circle of
radius r2 indicates the upper boundary of the swelling strata before their
intumescence.

But the shift of the earth's axis, caused by
this kind of deformation, will differ insensibly
from what would obtain if there were a more or
less abrupt flexure of the strata of equal density
at the boundaries of the intumescent volume
and of the area of elevation.

Suppose, as before, that h is the height to
which the continent is raised above the surface;
then we require to know a in terms of h.

Before intumescence, let r, 8, <f> be the co-
ordinates of any point within the intumescent
volume; and suppose that r becomes r + u,
whilst 0 and <j>, of course, remain constant.

The equation of continuity is easily found to be

du 2M
-T-H = o
dr r

of which the integral is wr2 = iar3 + /3.

If /3 be determined, so that when r = ru u = 0,

FIG. 7.

p. m.
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34 ELEVATION PRODUCED BY INTUMESCENCE. [1 , § 23

But when r = r2, u = h, the elevation of the surface; therefore

_Sh 1

the required expression for a in terms of h.

Also, before intumescence, Laplace's law of internal density held good,
viz. Q sin qr/r, therefore afterwards the density of the stratum distant r + u
from the centre is Q (1 — a) sin qr/r.

Now the propositions given in Part II., as to the change in the position
of the earth's axis, remain true here also; and the only difference is that the
products of inertia D and E must now be expressed by different integrals.

After intumescence the earth may be conceived to consist of:—first, itself
as it was before; secondly, of negative matter, of which the law of density is
Q sin qr/r, throughout the space bounded by r=rlt r = c, and the cone of
elevation; and, thirdly, of the matter which formerly lay within this space,
in the configuration attained by it after intumescence.

The first part clearly contributes nothing to D and E; and the second
contributes

- Q jljr* sin qr sin2 d cos 6 j ™ ̂  drddd<j>

integrated throughout the above space, that is from r = rx to r = c, and
throughout the cone of elevation.

As to the third part, the mass of any element remains unchanged, whilst
its distance from the centre has become r + u. Hence the third part con-
tributes

<# • + uf sin qr sin2 6 cos 0 \ , drd6dd>1 (cos <p

integrated throughout the above space.

Therefore, taking all together, and treating u as small,

„ I = 2Q ([(ur> sin qr sin2 d cos 0 | S m f drd8d<b
&) JJJ (cos<£

Therefore — = - = 2Q Iwr2 sin qrdr

where d and e have the same meanings as before, in Part II. § 12.

Now this last integral divides itself into two parts: first, from r = c to
r = r2>u = h; and, secondly, from r = r2 to r = rx, u = ^a (r3 — rfl/r*.

Therefore

-r = - = 2QA / r2 sin qrdr + IQa I (r3 — r^) sin qrdr
u e J ri J r.
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1877] ELEVATION PRODUCED BY INTUMESCENCE. 35

If the value of a. be substituted, and the integrations effected, it will be
found that

D _ E _ cotg-c 2 S 3c 1 1 T
2&phci ~ 2ephc4 ~ qc (qcf sin qc r2 " (qcf 1 - r^jri singe

= U suppose

where S stands for the expression - sin qr + cos qr, taken between the limits

7.2 r \ 2

c and r2, and T for the expression — sin qr + 2 - . — cos qr — -,—r-2 sin qr, taken
between the limits r2 and r,.

Substituting in the expression i = \/(D2 + E2)/(C — A), and using the
coefficient K, we get

i" = 2KUA V(d2 + e2)

It must be noticed that this investigation is applicable as much to
subsidence caused by internal compression as it is to elevation; and the
word intumescence is used to cover both phenomena. In the case of sub-
sidence h is negative.

Now on the hypothesis of incompressibility it was shown that

Hence, on the present hypotheses, the estimated deflection of the pole must
be diminished in the proportion of 2U: 1.

Taking go = 141° (which makes 3©/p = 2, very nearly), I have calculated

the values of 2U, when — = f§§, and — = | | , T%, f, £, 0. If the earth's radius
G C

be taken as 4000 miles, this gives, that the superficial strata for 10 miles in
thickness do not swell, but are merely heaved up, and that the lower surface
of the intumescent volume is at the various distances from the earth's surface
given in the first column of the following Table. The second column gives
2U, or the factor by which previous results would have to be diminished on
the present hypothesis. The third column gives the so diminished value of
1° of deflection of the pole.

Depth below surface
of bottom of

intumescent volume,
in miles,
(e-r2)

50
400

1000
2000
4000

Factor of
diminution of
former results,

(2U)

•0126
•1011
•2731
•5171
•6721

A deflection of
1° would be
reduced to
(2U x 1°)

46"
6' 4"

16' 23"
31' 2"
40' 20"

3—2
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36 SUMMARY. [1, § 24

The last row, of course, indicates that the intumescence extends quite
down to the centre of the earth.

This Table shows that if elevation is due to the swelling of strata at all
near the surface, the alteration in the position of the polar axis would be
reduced to quite an insignificant amount. The alleged deficiency of density
under the Himalayas affords some slight evidence that it is so, at least
occasionally. I believe, also, that Mr Mallet is of opinion that the centre of
disturbance of earthquake-shocks is not at a greater distance than 30 miles
below the surface*. It does not, of course, follow from this evidence that
there may not be elevations of both kinds going on, some being approximately
superficial phenomena, and others probably due to unequal shrinking of the
earth as a whole. The latter kind would be likely to produce more extensive
deviations from the external form of equilibrium than the former.

On the whole, then, it appears that the deflection of the polar axis cannot
exceed that which was found in the case of incompressibility, and it may
possibly be considerably less. The complete want of knowledge of the internal
movements only allows us to state a superior limit to the change which might
be produced by any one upheaval or subsidence.

VII. SUMMARY AND CONCLUSION.

§ 24. Summary.

For the sake of those who do not read mathematics, I will shortly
recapitulate the chief results arrived at.

The change in the obliquity of the ecliptic caused by any gradual defor-
mation of the earth's shape of small amount is very small. Even so great a
redistribution of weights on the earth's surface as is entailed by immense
polar ice-caps during the Glacial Period, cannot have altered the obliquity by
so much as -%£$$ of a second of arc; and this is the most favourable redistri-
bution of weights for producing this effect. Thus throughout geological
nistory the obliquity of the ecliptic must have remained sensibly constant.
And, further, when the earth undergoes any such deformation, the axis of
rotation follows, and remains sensibly coincident with the principal axis of
figure.

It thus only remains to consider the change in the geographical position
of the poles caused by the deformation.

The principal axes at the centre of inertia of a body are three lines
mutually perpendicular, and their position is entirely determined by the
shape of the body. Hence if a nearly spherical body be slightly deformed,

* Referred to at Becond hand by Mr Carruthers, Trans. New-Zeal. Inst., Vol. VIII., p. 363.
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1877] CHANGES IN THE GEOGRAPHICAL POSITION OF THE POLE. 37

the extremities of these principal axes will move from their original positions
and describe paths on the surface of the body, which may be shortly described
as the paths of the principal axes. In the case of the earth, as geologically
deformed, it is only of interest to consider the path of one of these axes,
which is, in common parlance, the earth's axis.

If the earth be sensibly rigid, or should only readjust itself to an
approximate form of equilibrium at long intervals (as maintained in Part I.),
the geographical path of the axis is very nearly the same as is due merely to
the geological deformation of the earth's shape; but if the earth be more or
less plastic, or should readjust itself frequently to an approximate form of
equilibrium, the dynamical reactions introduced are such as more or less to
modify the geographical path of the axis. In the case of great plasticity
these reactions would suffice to entirely alter the character of the path. It
seems probable that during the consolidation of the earth there was great
instability in the geographical position of the poles. Throughout the rest of
the investigation suppositions of plasticity are set aside, and the hypothesis
of sensible rigidity is adhered to.

Formulae for the change in the geographical position of the pole due to
any small deformation are found in Part II.

On the assumption that the internal density of the earth remains un-
changed by the deformation, the forms of continent and depression which
produce the greatest deflection of the poles, for the transport of a given
quantity of matter from one part of the earth's surface to another, are then
investigated. These forms are shown, projected stereographically, in fig. 2
(p. 24).

Part IV. gives what evidence I have been able to collect of the areas and
amounts of deformation to which the earth may have been subjected in
geological history; but as the discussion is not mathematical, it seems
unnecessary to give an abstract thereof.

Part V. gives numerical applications of the preceding theorems to the
case of the earth, on the assumption that the internal density is unaltered by
the deformation. From this it appears that the poles may have been deflected
from 1° to 3° in any one geological period; but the reader is referred back to
that part for details.

If upheaval and subsidence of the surface are due to a shrinking of the
earth as a whole, but to a more rapid shrinking in some regions than others,
the deflection of the poles is the same as that found where there is no
disturbance of the strata of equal density.

But if the upheaval and subsidence are due to local intumescence and
contraction of the strata underneath the rising or falling areas, the previous
numerical estimates must be largely reduced; for the extent of this reduction
the reader is referred to the Table in § 23 (p. 35).
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38 CONCLUSION. [1 . § 25

I t thus appears tha t the deflection of the poles first given is a superior

limit to tha t which is possible.

§ 25. Conclusion.

There remain, in conclusion, one or two miscellaneous points to be
referred to.

In a letter to Sir Charles Lyell read before the Geological Society*,
Sir John Herschel has pointed out that the isothermal strata near the surface
of the earth must approximately follow the solid surface. Therefore, when a
thick stratum is deposited at the bottom of the ocean, the primitive bottom
is gradually warmed and expands. There is thus a tendency for the upheaval
of sea-beds, on which a large amount of matter has been deposited; but this
kind of upheaval certainly falls within the case of superficial intumescence,
and could therefore affect the geographical position of the poles but little
more than would be due merely to the weight of the deposited stratum. It
must be noticed, moreover, that the weight of the deposited stratum would
tend to compress the primitive sea-bed, and might counteract the expansion
due to rise of temperature.

If the earth were absolutely rigid the pole could never have wandered
more than from 1° to 3° from its primitive position, whatever geological changes
were successively to take place; because the new pole could never be brought
to a greater distance from its original position, by any fresh distribution of
the matter forming the continents, than the maximum for this amount of
matter arranged in continents of a like height.

But it was maintained in Part I. that from time to time the earth makes
a kind of rough adjustment to a figure of equilibrium. If this adjustment is,
as seems probable, by an earthquake, it will take place with reference to the
axis of rotation at the instant of the earthquake. Now there exists in erosion
and marine deposits a cause of terrestrial deformation which is certainly
independent of such adjustments; and it seems probable that the causes of
geological upheaval and subsidence are so also. We have therefore clearly a
state of things in which the pole may wander indefinitely from its primitive
position. On this hypothesis, as in successive periods the continents have
risen and fallen, the pole may have worked its way, in a devious course, some
10° or 15° away from its geographical position at consolidation, or may have
made an excursion of smaller amount and have returned to near its old
position. May not the Glacial Period, then, have been only apparently a
period of great cold ? If at that period the N. pole stood somewhere where
Greenland now stands, would not the whole of Europe and a large part of
N. America have been glaciated ? And if the N. pole retreated to its present

* Proc. Oeol. Soc, Vol. n., p. 549.
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1877] THE MOMENTS OF MOMENTUM DUE TO GEOLOGICAL CHANGES. 39

position, would it not leave behind it the appearance of a very cold climate
having prevailed in those regions ?

But although such a cumulative effect is possible with respect to the
geographical position of the pole, none such is possible with respect to the
obliquity of the ecliptic.

Now this kind of wandering of the poles would of course require extensive
and numerous deformations, and it is hard to see how there can have been a
shifting of the surface weights sufficient to produce it, without frequent
changes in the geographical distribution of land and water. If, then,
geologists are right in supposing that where the continents now stand they
have always stood, would it not be almost necessary to give up any hypothesis
which involved a very wide excursion of the poles ?

APPENDIX A. (See p. 9.)

To calculate p^, and p | 2 in a supposed case of elevation and subsidence.

Take the case of § 21 (fig. 3), where the elevation is given by ht sin 26 cos 2<£,
from 0 = 0 to -n, and from </> = — \TT to \ir, and zero over the rest of the sphere.
Suppose that the internal motion is entirely confined to the quarter of the
sphere defined by the above limits of 8 and $, that radial particles are always
radial, and that the motion is entirely meridional.

Let 6 + ^ be the disturbed colatitude of the point 8, $. Then the
equation of continuity, which expresses that the volume of the elementary
pyramid ^c3 sin ddOdcj) remains constant, when 8 becomes 0+^t, is

~ (% sin 0) + — sin 6 sin 26 cos 2<f> = 0
do c

the integral of which is

^ sin 6 H t cos 2$ sin3 6 = a constant

and since ^ is zero, when cf> = + \-rr, for all values of t, ^ = t cos 2<£ sin'2 6,
cc

d*& 2h
and -,— = cos 2<b sin2 6

dt c

Hence H2, twice the area conserved on the plane of xz, is

111 or2 sin ddrdddd). —=— cos 6JJJr T dt
taken from r = 0 to c, 8 = 0 to TT, <f> = — \tr to + \ir.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492
https://www.cambridge.org/core


40 THE MOMENTS OF MOMENTUM DUE TO GEOLOGICAL CHANGES. [1, APP. A

If the sphere be taken as homogeneous,

jy2 = - — p IY[r4 sin3 6 cos 2</> cos <j>drddd<t>
0 J J J

Hx and H3 are both clearly zero.

The above value of H2 is larger than what it would be in the case of the
earth, if Laplace's law of internal density were true, because the external
layers have been taken too heavy, and the internal too light. But taking
that law of density, A = ̂ Mc2 very nearly.

„ H2 4 V2 hHence ~ = —-1 .
A O7T C

If we let the time run on until the highest point of the continent has
o 4. . Jit 1 ., Stt 4 V2 1

risen one foot, so that - = OA n A A AAA , then - r - = -c ~ 20,900,000' A 5TT 20,900,000 '

But reference to § 21 (fig. 3) shows that i" = -5480/i, or in the present
notation,

_ , „ 7T
H"~ " ~ 648,000

„,, 272 8x648^2 . ,
1 herefore F f l = - i n , m n j = - xir neai-!y

But generally, since the angular velocities a, /3, 7 of the moving axes, to
which y&%i, |^2 > |^8 refer, are very small, therefore

to the first order of small quantities, within the limited period to which the
investigation applies. So that in this particular case,

^ = - T | T nearly, and ̂  = ^ = 0

And, besides, this value of pJ2/A/3 is larger than it ought to be, because
p^2 was calculated on an assumed homogeneity of the earth. This, then,
justifies the conclusion in the text on p. 9.

In the elevation and subsidence given by ht sin 26 sin 2<p from 6 = 0 to \-K,
and from <j> = — \TT to \TT, Hl and H2 are clearly zero, under a like supposition
as to the nature of the internal motions accompanying upheavals.
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1877] CALCULATION OF CERTAIN ELLIPTIC INTEGRALS. 41

A P P E N D I X B. (See p. 23.)

[a cos2 a [a

To reduce the integrals cos y cos"1 —— dv and cos y V(cos4 y — cos4 a
Jo * cos2y A Jo

io elliptic functions.

Call the former J. and the latter B.

Integrating A by parts,

. (a . , ( , cos2 <x\
A = — sin y a cos J ——

Jo A V cos2yy

Put * = sin y, and cos 27 = cos2 a, then we get

dx
1 - 2*2 + sin2 27)

and if x = \/2 sin 7 sin <£, this becomes

A/2 f FI1 (— 2 sin2 7) — F1}, where the modulus is tan 7
cos 7

Again, integrating B by parts,

S = J 0
 S l n X -2V(cos 4 y -cos 4 a )

= 2 rV2SmV

; 0 V(a;4 — 2*2 + sin2 27)
fV2siny oir.2 O«. »2 ("1 ™2\ ~2

"r» n i i S i l l ^ v — t// — 1 1 A I ^ J , „ n

But B is also = —jy-^— ^ — ^ - V - dx from the expression
J o ^(x4 - 2x2 + sin2 27)

before partial integration. Multiplying the latter expression by 2 and
adding to the former,

J o */(sin2 2y — 2*2 + a;4)

and substituting the above value for x,

Whence B = f V2 cos 7 [E1 — cos 27 F1], the modulus being tan 7.
B may be calculated from this form by means of the tables in Legendre's
Fonctions Mliptiques, torn. 11. But A is not yet in a form adapted for
numerical calculation.

The parameter — 2 sin2 7 of II1 is negative and numerically greater than
the square of the modulus; therefore II1 falls within Legendre's second class
(op. cit. torn. 1. p. 72). Now it is shown by Legendre (torn. 1. p. 138) that

b2sin 0 cos 0 rTXn . . _,, , ...

A ( 6 ^ T [ ( " ' C ) " (C)]

= \-rr + F 1 (c) F (b, 6) - E1 (c) F (b, 0) - F 1 (c) E (b, 0)
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42 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

In this case 0 will be found to be \ir — y,

b2 sin 6 cos 6 , .„ cos 2v , , cos a
— $ v 2 • , and 0 =

2 cos
xn n\ — $ v 2 • , and 0 =

A (b, 6) 2 cos 7 cos 7

whence A = ir - 2 { E ' F - F1 (F - E)}

where the moduli of F and E are cos a/cos 7, and their amplitude ^TT — 7.

From this form A may be calculated numerically.

APPENDIX C. (Added April 1877.)

Sir William Thomson, who was one of the referees requested by the Royal
Society to report on this paper, has remarked that the subject of Part I. may
also be treated in another manner.

The following note contains his solution, but some slight alterations have
been made in a few places.

The axis of resultant moment of momentum remains invariable in space
whatever change takes place in the distribution of the earth's mass; or, in
other words, the normal to the invariable plane is not altered by internal
changes in the earth.

Now suppose a change to take place so slowly that the moment of
momentum round any axis of the motion of any part of the earth relatively
to any other part may be neglected compared to the resultant moment of
momentum of the whole*; or else suppose the change to take place by
sudden starts, such as earthquakes. Then, on either supposition (except
during the critical times of the sudden changes, if any), the component
angular velocities of the mass relatively to fixed axes, coinciding with the
positions of its principal axes at any instant, may be written down at once
from the ordinary formulae, in terms of the direction-cosines of the normal to
the invariable plane with reference to these axes, and in terms of the moments
of inertia round them, which are supposed to be known.

Hence we find immediately the angular velocity and direction of the
motion of that line of particles of the solid which at any instant coincides
with the normal to the invariable plane at the origin. This is equal and
opposite to the angular velocity with which we see the normal to the
invariable plane travelling through the solid, if we, moving with the solid,
look upon the solid as fixed. Let, at any instant, x, y, z be the direction-
cosines of the normal to the invariable plane relatively to the principal axes;
and let A, B, C be the principal moments of inertia at that instant. Let h

* This is equivalent to neglecting |§i, 3Jj2, JIJ3 of Part I.; by which Sir W. Thomson is of
opinion that nothing is practically lost.
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1877] LORD KELVIN'S TREATMENT OF THE PROBLEM. 43

be the constant moment of momentum (or twice the area conserved on the
invariable plane).

Consider axes fixed relatively to the solid in the positions of the principal
axes at any instant, but not moving with them, if they are being shifted in
virtue of changes in the distribution of portions of the solid.

The component angular velocities of the rest of the universe are, relatively
to these axes, hx/A, hy/B, hz/C; and therefore, if N" be the point in which
the normal to the invariable plane at the origin cuts a sphere of unit radius,
the components parallel to these axes of the velocity of N relatively to them
are

h h\ fh

Now, suppose that by slow continuous erosion and deposition the positions
of the principal axes change slowly and continuously relatively to the solid.

Let -CT, p, a be the components round the axes (which, of course, are
always mutually at right angles) of the angular velocity of the actual solid
relatively to an ideal solid moving with the principal axesf. Then the
component velocities relatively to this ideal solid of the point of the body
coinciding at any instant with N are

zp — ya, xcr — zm, ysr — xp

and the components parallel to the principal axes of the velocity of N
relatively to these axes are dxjdt, dyjdt, dzjdt. Hence we have

dx _ I h h

dy _ ill h

dz I h h

These three equations give % -±- + y ~=- + z -y- = 0, and therefore they are

equivalent to two independent equations to determine two of the three
unknown quantities x, y, z as functions of t, the three fulfilling the condition
a? + ya + z'*=l, and it being understood that ta, p, <r are given functions of
the time.

* The angular velocity of the rest of the universe relatively to the earth being opposite to the
angular velocity of the earth relatively to the rest of the universe, the components of the former
round the axes x, y, z are taken as in the negative direction, i.e. from z to y, x to z, y to x.

t IB, p, a are the same as — o, - j3, - y of Part I.
J These equations are the same as those given by me in Part I., p. 8.
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44 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

To apply these equations to the questions proposed as to the earth's axis,
let the normal to the invariable plane be very nearly coincident with the
axis of greatest moment of inertia C. Let 0 be the point where the axis
C cuts the earth's surface, and let OX, OY be parallel to the axes A and B.
Then z = 1; and if the earth's radius be taken as unity, x and y will be the
coordinates relatively to OX, OY of the point P in which the normal to the
invariable plane cuts the surface.

Putting therefore z = 1 in the preceding equations, we find for the deter-
mination of x, y that

dx (1 1

dy i I l 1
dt \A C

dx _

dt

where a = h(^ --^) - a, b = h(1r-7^)-a

ra-

.(3)

and u — — p , w =

in these equations we are to regard a, b, u, v as given functions of
the time.

Eliminating y, we have

d (1 d

which is a linear equation, from which x may be found by integration; and
then, by the first of equations (3),

1 / dx\
- M-"T7 (5)

a \ dt/ v '
= - [ u

If B = A, the presence of a in the equations would merely mean that the
axes of x and y revolve with an angular velocity a; and so we lose nothing
of interest with reference to the terrestrial problem by supposing a = 0. If,
then, we take A and B constant, equation (4) becomes,

d?x „ du, \

dt2 dt ( 6 )

where a>2 — ah )

To integrate this according to the method of variation of parameters, put

x = P cos cot + Q sin a>t (7)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492
https://www.cambridge.org/core


1877]

and

so that

We find

LORD

then

KELVIN'

dx

dt~
dF
dt

S TREATMENT OF

— Pa) sin cot + Qo)

cos at + ~ sin cot
dt

THE PROBLEM.

cos cot

= 0

45

(8)

„ 1 f/du , . , .
P = -,- — av ) sin tot at)

coj\dt ) I
r (9)

n 1 f/du \ f
U = — - j - — au ) cos cotdt

co J \at j I

For the case considered in Part I., where u and v are constant,

P = - —, cos cot + G, Q = — - sin cot + C
co2 a2

and therefore by (7)

x = + G cos cot + C' sin cot (10)

The solution expressed in equations (5), (7), (8), (9) is convenient for
discontinuous as well as for continuously varying and constant values of
u and v.

Consider, then, the case of u = 0 and v = 0, except at certain instants

when u and v have infinite values, so that udt and I vdt express the
J i' JT

components of a single abrupt change in the position of the instantaneous
axis; where T and T' denote any instants before and after the instant of the
change, but so that the interval does not include more than one abrupt
change.

Therefore, if t0 be the instant of the change

I v sin wtdt = sin cot0 I vdt
J T; JT

fT fT \
I v cos cotdt = cos cot,, I vdt
JT JT I

Hence the part of x depending on v vanishes at the instant immediately
after the abrupt change when t = t,,. Also we have by integration by parts,

- p sin cotdt = M sin not — co \u cos cotdt
dt J

I - j - cos cotdt = u cos cot + co \u sin cotdt
J at J •
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46 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

And, therefore, taking the integrals between the prescribed limits, since
u = 0 both when t = T and when t = T", we have

fdu . fT \
I -=- s in a>t dt = — » cos a>t0 I udt

Jdt JT (13)
fdu .,t . . fT ,,

-JT cos tot at = ft) sm &)<„ I udt
J at JT '

Using these in (9) and (7) we find, at the instant after the abrupt change,
fT

x= udt (14)
JT

and similarly y = I vdt (15)

which of course might be deduced from (8) and (5).
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1.

ON THE INFLUENCE OF GEOLOGICAL CHANGES ON THE

EARTH'S AXIS OF ROTATION.

[Philosophical Transactions of the Royal Society, Part I. Vol. 167 (1877),
pp. 271—312.]

THE subject of the fixity or mobility of the earth's axis of rotation in that
body, and the possibility of variations in the obliquity of the ecliptic, have
from time to time attracted the notice of mathematicians and geologists.
The latter look anxiously for some grand cause capable of producing such an
enormous effect as the glacial period. Impressed by the magnitude of the
phenomenon, several geologists have postulated a change of many degrees in
the obliquity of the ecliptic and a wide variability in the position of the poles
on the earth; and this, again, they have sought to refer back to the upheaval
and subsidence of continents.

Mr John Evans, F.R.S.*, the late President of the Geological Society, in
an address delivered to that Society, has recurred to this subject at con-
siderable length. After describing a system of geological upheaval and
subsidence, evidently designed to produce a maximum effect in shifting the
polar axis, he asks:—" Would not such a modification of form bring the
axis of figure about 15° or 20° south of the present, and on the meridian of
Greenwich—that is to say, midway between Greenland and Spitzbergen ?
and would not, eventually, the axis of rotation correspond in position with
the axis of figure ?

"If the answer to these questions is in the affirmative, then I think it
must be conceded that even minor elevations within the tropics would produce
effects corresponding to their magnitude, and also that it is unsafe to assume
that the geographical position of the poles has been persistent throughout all
geological timef."

* [Subsequently Sir John Evans, K.C.B.]
t Quart. Journ. Geol. Soc, 1876, xxxn. Proc, p. 108.

D. III. 1
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2 STATEMENT OF THE PROBLEM. [1

On the few occasions on which this subject has been referred to by
mathematicians, the adequacy of geological changes to produce effects of such
amount has been denied. Amongst others, the Astronomer Royal and Sir
William Thomson have written briefly on the subject*, but, as far as I know,
the subject has not hitherto been treated at much length.

The following paper is an attempt to answer the questions raised by
Mr Evans; but as I have devoted a section to the determination of the form of
continent and sea which would produce a maximum effect in shifting the polar
axis, I have not taken into consideration the configuration proposed by him.

The general plan of this paper is to discuss the following problems :—

First. The precession and nutation of a body slowly changing its shape
from internal causes, with especial reference to secular alterations in the
obliquity of the ecliptic.

Second. The changes in the position of the earth's axis of symmetry,
caused by any deformations of small amount.

Third. The modifications introduced by various suppositions as to the
nature of the internal changes accompanying the deformations.

In making numerical application of the results of the previous discussions
to the case of the earth, it has of course been necessary to betake one's self
to geological evidence ; but the vagueness of that evidence has precluded any
great precision in the results.

In conclusion I must mention that, since this paper has been in manuscript,
Sir William Thomson, in his Address to the Mathematical Section of the
British Association at Glasgow, has expressed his opinion on this same subject.
He there shortly states results in the main identical with mine, but without
indicating how they were arrived at.

The great interest which this subject has recently been exciting both in
England and America, coupled with the fact that several of my results are
not referred to by Sir William Thomson, induces me to persist in offering my
work to the Royal Society.

I. PRECESSION OF A SPHEROID SLOWLY CHANGING ITS SHAPE.

I begin the investigation by discussing the precession and nutation of an
ellipsoid of revolution slowly and uniformly changing its shape. The changes
are only supposed to continue for such a time, that the total changes in the
principal moments of inertia are small compared to the difference between
the greatest and least moments of inertia of the ellipsoid in its initial state.

For brevity, I speak of the ellipsoid as the earth; and shall omit some parts
of the investigation, which are irrelevant to the problem under discussion.

* In papers referred to below.
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1877] THE EQUATIONS OF MOTION. 3

The changes are supposed to proceed from internal causes, and to be any
whatever; and in the application made they will be supposed to go on with
a uniform velocity.

§ 1. The Equations of Motion.

M. Liouville has given the equations of motion about a point of a body
which is slowly changing its shape from internal causes*; these equations, he
says, are only applicable to the case of the point being fixed or moving
uniformly in a straight line. They may, however, be extended to the motion
of the earth about its centre of inertia, because the centrifugal force due to
the orbital motion and the unequal orbital motion will not add anything to
the moments of the impressed forces. These equations are, in fact, an
extension of Euler's equations for the motion of a rigid body, which are
ordinarily applied to the precessional problem. To make them intelligible I
reproduce the following from Mr Routh's Rigid Dynamics f, where the proof
is given more succinctly than in the original:—

" Let x, y, z be the coordinates of any particle of mass m at the time t,
referred to axes fixed in space. Then we have the equation of motion

„ / dHj d?x\ , T .

and two similar equations.

v / dy dx
Let },3=^n{xdt-y-dt

with similar expressions for hlt h.,.

"Then the equation (1) becomes

" Let the motion be referred to three rectangular axes Ox', Oy', Oz'
moving in any manner about the origin 0. Let a, /3, 7 be the angles these
three axes make with the fixed axis of z. Now li3 is the sum of the products
of the mass of each particle into twice the projection on the plane of xy of
the area of the surface traced out by the radius vector of that particle drawn
from the origin. Let /«/, k2', h:i' be the corresponding ' areas' described on
the planes y'z', z'x, x y respectively. Then by a known theorem proved in
Geometry of Three Dimensions, the sum of the projections of h/, lu, h/ on xy
is equal to lt3; therefore

hs = 1\ cos a + h.2' COS {3 + /*-,' cos 7 (4)

* Liouville'a Journ. Math., 2rae serie, t. in., 1858, p. 1.
t Page ISO, edit, of 1860, but omitted in later editions. L, M, N are the couples of the

impressed forces about the axes.

1—2
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4 MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. [1. § 1

" Since the fixed axes are quite arbitrary, let them be taken so that the
moving axes are passing through them at the time (. Then

W — hi, W = fh, h3' = hz

and by the same reasoning, as in Arts. 114 and 115, we can deduce from
equation (4) that

where 01: 0i, 03 are the angular velocities of the axes with reference to them-
selves. Hence the equations of motion of the system become

—=- — A2 03 + h302 = L
at

(6)

—3-h0 A6>=N
dt

" These equations may be put under another form which is more con-
venient. Let x, y\ z' be the coordinates of the particle m referred to the
moving axes, and let

"Since the fixed axes coincide with these at the time t, we have x = x,
y=y', and by Art. 114,

Therefore h3' = H3 + C03 - E^ - D^2*

and by similar reasoning

/tl' = H1 + A ^ - F ^ - E ^
h.2' = H2 + B02-Dd3-F01

" Hence the general equation of motion becomes

j t (C03 - E0, - T>6, + H.) + F (0J - 0f) + (B - A) 0A + ^&A - D0A

+ ^1H2-^2H1 = N (7)
and two similar equations.

" Let the moving axes be so chosen as to coincide with the principal axes
at the time t. Then D = 0, E = 0, F = 0, and the equations become,"

^(Xj^i + Hj) — (X2— X.3) 0203 + 02H3— ^3H2= L

and two similar equations; where X1( X̂ , ^ (replacing the A, B, C of

* A, B, C, D, E, F are, as usual, the moments and products of inertia.
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1877] MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. 5

Mr Routh) are the three principal moments of inertia, and are functions
of the time.

In order to apply these equations to the present problem, we must consider
the meaning of the quantities 8ly d2, 83. A system of particles may be made
to pass from any one configuration to any other by means of the rotation of
the system as a whole about any axis through any angle, and a subsequent
displacement of every particle in a straight line to its ultimate position. Of
all the axes and all the angles about and through which the preliminary
rotation may be made, there is one such that the sum of the squares of the
subsequent paths is a minimum. By analogy with the method of least
squares this rotation may be said to be that which most nearly represents the
passage of the system from one configuration to the other. If the two con-
figurations differ by little from one another, and if the best representative
rotation be such that the curvilinear path of any particle is large compared to
its subsequent straight path, the system may be said to be rotating as a rigid
body, and at the same time slowly changing its shape. Now this is the case
we have to consider in a slow distortion of the earth.

Divide the time into a number of equal small intervals T, and in the first
interval let the earth be rigid, and let each pair of its principal axes rotate
about the third (with angular velocities double those with Avhich they actually
rotate). At the end of that interval suppose that each pair has rotated about
the third through angles 2(0^T, 2<U2T, 2O>3T. Then reduce the earth to rest,
and during the next interval let the matter constituting the earth flow (with
velocities double those with which it actually flows) so that the pairs of principal
axes have, at the end of the interval, rotated with respect to the third ones
through the angles - 2ar, - 2/3T, - 2yT. Lastly let 2 ^ T , 202T, 20sr be the
rotations of each pair of axes about the third by which they could have been
brought directly from their initial to their final positions in the time 2T.

Therefore, by the principle of superposition of small motions,

0i = a>! — a, 6.2 = a>2 — /3, 0s = G>3 — 7

Now supposing these two processes to go on simultaneously with their
actual velocities, instead of in alternate intervals of time with double velocities,
it is clear that 6lt 8.2, 03 are " the angular velocities of the axes with reference
to themselves"; «,, eo.2, &>3 are the component angular velocities of the earth
considered as a rigid body; and — a, — /3, — 7 are the component angular
velocities of the principal axes relatively to the earth, arising from the
supposed continuous distortion of that body.

With respect to the other quantities involved in the equations of
motion:—

Let C, A be the principal moments of inertia of the earth initially when
t is zero; and at any time t, let

\ x = A + at, \ , = A + bt, \ 3 = C + ct
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6 MOTION OF A BODY WHICH IS CHANGING ITS SHAPE. [1, § 1

We here suppose that the changes in the earth are so slow that terms
depending on the higher powers of t may be neglected.

Lastly the quantities Hl7 H2, H3 are respectively twice the areas conserved
on the planes of 8283, 8i8l, 8l6,i by the motion of the earth relative to these
axes. If the earth were rigid, they would all be zero, because there would be
no motion relative to the principal axes: thus a,, tu2, &>;s do not enter into
these quantities. Now the motion which does take place may be analysed
into two parts. Divide the time into a number of equal small elements T,
and in the first of them let the matter constituting the earth flow (with a
velocity double that with which it actually flows) ; this motion will conserve
double-areas on the planes of 8283, 838X, 8^b\, which we may call 2pJ2T,
2p=J2T, 2p^3T. In the next interval of time let each pair of axes rotate round
the third (with angular velocities double those with which they actually
rotate), so that at the end of the interval they have turned through the angles
— 2aT, — 2/9T, — 2<yr. Now since during this second interval the axes have
rotated in a negative direction through the solid, therefore the solid has
rotated in a positive direction with reference to the axes. Remembering
then that X1; X2, \ 3 are the principal moments of inertia, the double-areas
conserved on the three planes in this second interval are 2\!aT, 2\2/3T, 2\37T.

Hence if 2HJT, 2H2T, 2H3T be the double areas conserved in this double
interval of time, we have 211^= 2f^,T + 2\jar, 2H2T = 2p|2T + 2\2/8T,

Therefore if we now suppose the two processes to go on simultaneously
with their actual velocities, instead of in alternate elements of time with
double velocities, and if we substitute for \lt X,2, \3 their values in terms of
A, a, t, &c, we get

H1 = (A + a<)a + f̂ 1) H2 = (A + ht) (3 + f$Sj H3 = (C + ct)y + |^3

where pjj, pj2 , |i=̂ 3, denote those parts of the double areas conserved, which
depend only on the internal motions accompanying the change of shape.

Then, if the changes proceed with uniform velocity, a, a, $î , &c. are all
constant.

Corresponding also to the equations of motion are the geometrical
equations

-T- = 82 cos (p + 61 sin <f>

- J - sin 8 = — 81 cos cj> + 82 sin <£

In figure 1, A, B, C are the axes, about which the moments of inertia are
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1877] EQUATIONS OF MOTION. 7

Xi, X2, X3; XY is the ecliptic; and the meaning of the other symbols is
sufficiently indicated *.

PIG. 1.

Substituting, then, for the various symbols in the original equations of
motion, it will be found that

7

A ~j~ — (A ' — C)
CtL

= L — £ ja - j - i — (b — c) 4-

{C/3- aWl - {A'7 + ^ 3 }

and two similar equations^.

Now the terms on the right-hand side are always very small compared to

A -~, because the time will not run on until they have become large; hence

approximate values may be substituted therein.
Let the angular velocity of rotation of the earth be — n, and let II cosec 0

be the precession of the equinoxes; then in the small terms the following
substitutions may be made:—

<j> = — (nt + e), &>] = — II cos (nt + e), &>2 = — II sin (nt + e), co3 = — n

and the e may be omitted for brevity.

Further, N (depending on the attractions of the sun and moon) is very
small; and a consideration of the third equation of motion shows that, when
integrated, it leads to a>3 = — n + terms, which are very small during the
limited period under consideration. And if these terms were substituted on
the left-hand side of the two former equations, they would be still further

* [I have followed Mr Eouth in using "perverted" coordinate axes, but it does not seem
worth while to revert to the more desirable usage by redrawing the figure and by changing the
signs of many of the terms.]

t The A is written A' in two places, where it may be taken to stand for B; and then the other
equations may be found by cyclic changes of letters and suffixes.
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8 EQUATIONS OF MOTION. [1 . § 2

diluted by multiplication by the small quantities —-r— and II. Hence the

third equation may be neglected, and in the two former equations — n may
be substituted for o>,.

C — A
Making these substitutions, then, and writing fj, for —j— n, the equations

become

da>2

dt
+ urn, = -r— A" -I— a + b + c - — 11 cos nt + -. sin nt - IT (7 + x 5 ) c o s nt

^ A A ( w J A \ A /

+ a\ —.- % + --^(n + y)

Then neglecting 7/7? compared to unity, pu t t ing C + ct = A in the small
terms, and only retaining the more important terms,

da>i L IIw. , , . Ila _ f iB3l . . n

^p- fico2 = x - -> {a - b + c} t sin nt + . cos nt+I\\y+^[ sin n« - n̂ 3

M 1IW . n , , , n b . x _ I ©3) ,
+ /U.<B1 = - F + »- {-a + b + cj i cos nt + —r-- sinm< - I I J 7 + ^ [ cosnt

These are the required equations of motion, and in integrating them they
may be treated as linear.

§ 2. Inequalities independent of the Impressed Forces.

First, then, suppose that L = M = 0.

Integrate the equations, and neglect fj, compared with n, and we have

°>i — ~k (a ~~ b + c) t cos nt + -T— (b — c) sin nt (7 + ^ 3 ) cos nt
A An ' n \ ' A /

n , i x - n , n / ?&,\ .
: x (~ a + b + c) tsm ™ + T ~ (c — a ) cos nt I 7 + /£-1 s i n n*

— F sin at — G cos at

* If we wish to treat a, a, ^ , &e. as variable, we have only to add to the right-hand sides

of these equations T t cos nt -£ - - -M.1, and - t sin n t r - T ^ respectively. If we put
A i t A (it ' A dt A dt ^ J v

L = M = 0 and neglect pji, Jg2» ?§s. these equations will be found to be identical with the equa-
tions (2) given by Sir W. Thomson in App. C. I had not noticed until it was pointed out by
him, how nearly applicable my equations were to the case of varying velocities of distortion.—
April 26, 1877.
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1877] THE EULERIAN NUTATION. 9

The last two terms in &>, and <o2 represent the complementary function;
and the values of F and G must be determined from the initial conditions.

Now it will be shown later that a, /3, 7 are comparable with -^—-r ,
O — A.

bepi—T- , ^—-r ; hence the terms in the second lines are much more important
\j — A \j — A

than those in the first. Thus in determining the values of F and G we may
neglect the first lines.

Initially, the instantaneous axis coincides with the axis of greatest
moment of inertia; so that when t = 0, a1 = &>a = 0, and therefore

The terms in F and G represent an inequality of 306 days period.

§ 3. The Inequality of 306-Days Period *.

I have worked out the values of p ^ and p | 2 in two supposed cases of
elevation, under certain suppositions as to the nature of the internal move-

ments of the earth. In one of them I found ^~- = XJT> and f̂ , = 0; and in
pA

the other f^ = p j 2 = 0. In order not to interrupt the thread of the argument,
the calculation is given in Appendix A; it will also be more intelligible after
the latter part of this paper has been read. In the general case the same
kind of proportion will subsist between p ^ and Acr, "pj2 and A/3, and we may
therefore, without serious error, neglect the former compared with the latter.

Thus, as far as concerns the present inequality,
no. «/3 .

&>! = — (1 — cos fit) sin fit
f l f l
na. . nfi . .

<o2 = — s in fit H ( 1 — cos fit)
fi fi

* I have thought it necessary to discuss this inequality fully, both on account of its intrinsic
interest, and because it has been referred to by the Astronomer Eoyal [Sir George Airy] and
Sir William Thomson.

The former says (Atheiiceum, Sept. 22, 1860):—" Now, let us suppose the earth not absolutely
rigid, but that there is susceptibility to change of form, either from that degree of yielding or
fracture to which most solid substances are liable, or from the hydrostatic pressure of internal
fluid. This, as I conceive, puts an end to all supposition of change of axis. The first day's
whirl would again make the axis of rotation to be a principal axis, and the position of the axis
would then be permanent."

But Sir George Airy is here speaking of the effect of the elevation of a mountain mass in
about latitude 45°, by something like a gaseous explosion. This supposition is not at all in
accordance with the belief of geologists, whereas a gradual elevation is so.

Sir W. Thomson, on the other hand, says (Trans. Geol. Soc. Glasgow, 1874, Vol. xiv.,
p. 312):—" In the present condition of the earth, any change in the axis of rotation could not
be permanent, because the instantaneous axis would travel round the principal axis of the solid
in a period of 296 days In very early geologic ages, if we suppose the earth to have been
plastic, the yielding of the surface might have made the new axis a principal axis. But certain
it is that the earth at present is so rigid that no such change is possible." And he adds that
practical rigidity has prevailed throughout geologic history.
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10 PATHS OF INSTANTANEOUS AXIS AND OF POLE. [1, § 4

On account of this inequality the greatest angular distance (in radians) of

the instantaneous axis from the pole is 2 (a2 + /32)^//A. It will appear from
the latter part of this paper that, if the elevation of a large continent proceeds

at the rate of two feet in a century, (a2 + /32)5 may be about T±~' per annum,
and fi is 360° in 306 days; whence it follows that the greatest angle made by
the instantaneous axis with the axis of figure is comparable with ^fa", a
quantity beyond the power of observation. On the score of these terms the
instantaneous axis will therefore remain sensibly coincident with the axis of
figure.

They will, moreover, produce no secular alteration in the obliquity of the
ecliptic, nor in the precession, because they will appear as periodic in d0/dt
and sin 8 dyjrjdt, with arguments n and n ± fi.

Now although this inequality is so small, it nevertheless is of interest.

If we map, on a tangent plane to the earth at its initial, pole, the relative
motion of the instantaneous axis and the pole of figure, we get, as the equation
to the curve,

x = — (1 — cos tit) sin fit
/i fi

y = — sin fxt + — (1 — cos fit)
fi /i

If t be eliminated from these equations, we get

Thus the relative motion is a circle, passing through the origin, and
touching a line inclined to the axis of y at an angle tan"1 a//3. Therefore the
instantaneous axis describes a circle passing through the pole of figure every
306th day; and this circle touches the meridian, along which the axis of
figure is travelling with uniform velocity, in consequence of the geological
deformation of the earth.

The motion of the instantaneous axis in the earth is a prolate cycloid.

§ 4. Adjustments to a Form of Equilibrium.

If the earth were a viscous fluid there is no doubt but that the pole of
figure would tend to displace itself towards the instantaneous axis, whose
mean position would be the centre of the circle above referred to.

But Sir William Thomson has shown* that the earth is sensibly rigid;
and in any case the earth is not a viscous fluid, properly so called, although
it may be slightly plastic.

* In his Address to the British Association, 1876, he states that the argument derived from
precession (Thomson and Tait's Natural Pliilosophy, p. 691) is fallacious; he adduces, however,
a number of cogent arguments on this point.
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1877] ADJUSTMENTS OF THE EARTH TO THE FIGURE OF EQUILIBRIUM. 11

M. Tresca has shown that all solids are plastic under sufficiently great
stresses, but that, until a certain magnitude of stress is reached, the solid
refuses to flow*. Now in the case of a very small inequality like this, the
stresses introduced by the want of coincidence of the instantaneous axis with
the axis of figure are very small, even when at their maximum; and every
306th day they are zero. It seems, therefore, extremely improbable that the
stresses can be great enough to bring the earth into what M. Tresca calls the
state of fluidity; and therefore it is unlikely that there can be any adaptation
of the earth's form to a new form of equilibrium in consequence thereof.

In all the other inequalities introduced, whether arising from the first
three terms above given in a, and &>2, or arising from the impressed forces, to
be treated hereafter, the centre of the positions of the instantaneous axis is
coincident with the pole of figure, and therefore there can hardly be any
adaptation of figure eccentric to the axis of greatest moment to balance the
stresses introduced by centrifugal force.

It would appear probable that, whilst a geological change is taking place,
the earth is practically rigid for long periods. But as the earth comes to
depart more and more from a form of equilibrium, the stresses due to the
mutual gravitation of the parts, and to the rotation, increase gradually, until
they are sufficiently great to cause the solid matter to flow. A rough kind of
adjustment to a form of equilibrium would then take place. The existence
of continents, however, shows that this adjustment does not take place by the
subsidence of the upheaved part; and as this adaptation of form would be
produced by an entirely different cause from that to which the upheaval was
due, that upheaval would probably persist independently of the approximate
adoption of a new form of equilibrium by the earth.

M. Tresca's experiments on the punching of metals would lead one to
believe that the change would take place somewhat suddenly, and would in
fact be by an earthquake, or a succession of earthquakes. On each of these
occasions the tendency would be to adjust the form to one of equilibrium
about the instantaneous axis. Now the principal axis X3 has (in consequence
of the postulated deformation) been travelling along the meridian in longitude
7r + tan"1 a//3, measured from the plane containing X-j and \s.

The earthquake will take place when, to the stresses due to mutual
gravitation, are superadded the maximum stresses due to centrifugal force;
that is to say, when the instantaneous axis is at its greatest distance from X3,
the axis of greatest moment of inertia. At the instant of the earthquake the
principal axis will be moved towards the position of the instantaneous axis.
And as the circle described by the instantaneous axis touches the meridian of
displacement of the principal axis, therefore the principal axis will be carried

* " Sur l'ficoulement des Corps Solides," Mem. des Sav., torn, XVIII.
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12 ADJUSTMENTS WHEN THE PLANET IS VISCOUS. [1 , § 5

by the adjustment towards the centre of the circle described by the instan-
taneous axis, and therefore perpendicular to the meridian of displacement.

Thus, if the adjusting earthquakes take place at long intervals, the
motion of the principal axis will not deviate sensibly from continuing along
the meridian, along which it would travel in consequence merely of the
geological deformation. If, however, the adjustments are frequent, the path
of \3 will diverge sensibly from the meridian along which it started. If the.
readjustments become infinitely frequent and infinitely small, there is a con-
tinuous flow of the matter of the earth, which is always seeking to bring
back the earth's figure to one of equilibrium, from which figure it is also
supposed to be continuously departing under the action of internal forces.
In this state the earth may be considered as formed of a stiff viscous fluid.

According to these ideas, at each adjustment \ , \.2, X3 will be suddenly
reduced to nearly their primitive values, A, A, C; but a, ft, 7 depend on the
rate of accession and diminution of matter at various parts of the earth, and
remain constant. The only effect, then, is that each adjusting earthquake
must be taken as a new epoch.

As far as I can see, it seems quite possible that the earth may be sensibly
rigid to the tidally deforming influences of the sun and moon, and yet may
bring itself back from any considerable departure from a form of equilibrium
to approximately that form. It therefore seems worth while to consider the
case of the adjustments being continuous, whilst the deformation is also
continuous.

§ 5. Adjustments to the Form of Equilibrium continuous*.

I therefore propose to consider geometrically, but not dynamically, the
paths of the instantaneous axis, and of the principal axis, when the earth is
viscous and continuously deformed by internal forces. It is supposed that
the velocities of flow of the matter of the earth are so small that inertia may
be neglected, and that the displacements are so small that the principle of
the superposition of small motions is applicable.

As before the paths of the instantaneous and principal axes may be
mapped on a tangent plane to the spheroid, at the extremity of the primitive
pole, the mean radius of the spheroid being taken as unity.

In consequence of the continuous deformation, the principal axis travels
with a linear velocity (on the map) — \/(a? + /32) along the meridian of longi-
tude tan"1 a//3. Take this meridian as axis of x, and measure y, so that the
angular velocity //. is from x towards y, and call V(<*2 + /32), u.

Then the principal axis \3 moves along the axis of x with a uniform
linear velocity — u, and, from dynamical principles, the instantaneous axis I
moves round the instantaneous position of \s with a uniform angular velocity /i.

* [Compare § 4, Paper 1, " On the tides of viscous...spheroids...," Vol. n., p. 11.]
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1877] CURVE OF PURSUIT DESCRIBED BY THE INSTANTANEOUS AXIS. 13

But because of the earth's viscosity, X3 always tends to approach I. The
stresses introduced in the earth by the want of coincidence of X3 with I vary
as X3I. Also the amount of flow of a viscous fluid, in a small interval of time,
varies jointly as that interval and the stress. Hence the linear velocity (on
the map), with which X3 approaches I, varies as X3I (equal to r suppose). Let
this velocity be vr, where v depends on the viscosity of the earth, diminishing
as the viscosity increases.

Thus the principal axis describes a sort of curve of pursuit on the map;
it is animated with a constant velocity — u parallel to x, and with a velocity
vr towards I, which rotates round it with a uniform angular velocity fi.

The motion of I, relative to X3, is that of a point moving with a constant
velocity u parallel to x, rotating round a fixed point with a constant angular
velocity fi, and moving towards that point with a velocity vr.

Let f, 7} be the relative coordinates of I with respect to X3, and x, y the
coordinates of X3. Then the differential equations which give the above
motions are:—

^U-VS-M (1)

If (1) and (2) be integrated, and the constants determined so that, when
i = 0, £ = 77 = 0 (which expresses that initially X3 and I are coincident), it will
be found that

>- u { ,-, , .-, t • )t = ; < v {1 — e~vt cos at) + /ie~vt sin at yV2+fl-{ r- r- i~ j

rj = -j-j^~, -!/*(! — e~"( cos fit) — ve~"t sin fit

These give the path of I relative to X3. It may be seen to be a spiral
curve diminishing with more or less rapidity, according as the earth is less or
more viscous. If v = 0, it becomes the circle found above from the dynamical
equations.

Substitute in (3) and (4) for f and t]; integrate, and determine the con-
stants, so that when t = 0, *• = y — 0. It will then be found that

x = — j — — 2 \v (v2 — fi2) + fiH + -----—2 {— (i>a - fi2) e~vt cos fit + 2five~vt sin fit}

« = — — - 2[ii>2 + wvt + ———; \2five~vt cos fit + (v2 — w2) e~vt sin at}

* V^ + fl* \_ V2 + fl^n J
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14 PATH DESCRIBED BY THE POLE. [1, § 5

These give the path of Xs on the map. It may be seen to be a cycloidal
curve, in which the radius of the rolling circle diminishes with more or less
rapidity, according as the earth is less or more viscous.

After some time e~vt becomes very small, and the motion is steady; and
then f = uv/(fx'2 + v"), rj = K,/J./(V'2 + /u?), or I is fixed, relatively to \3, at a distance

w/(z>2 + fx2)^ from it, and on the meridian, measured from the axis of x, in
longitude tan"1 /x/v. This point is the centre of the above-mentioned spiral
curve.

If v be very small (or the earth nearly rigid) this meridian differs by little
from the axis of'y. But it may be that v is so small that e~vt has not time to
become insensible before the geological changes cease. This case corresponds
very nearly to the hypothesis, in the last section, of adjusting earthquakes.

If the earth be very mobile, or v large, £ = u/v, rj = 0.

Again, with respect to the path of X3, when the motion has become steady,

Uv (v2 — a2) u?u

V2 + /i8 V2 + /X2

11 = +
J ,.2 I . ,2 v2 + fj?

and eliminating t, vx + fxy = — uv2.

That is to say, when the motion is steady, X3 moves parallel to the

meridian of longitude ir — tan"1 v/fi, and distant from it uv2j(v2 + /i2)^ on the
negative side. This straight line is the degraded form of the above-mentioned
cycloidal curve.

If the earth is nearly rigid this path does not differ sensibly from the axis
of x; if very mobile, it is nearly perpendicular to the axis of x, and a long way
from the origin. In this last case the solution becomes nugatory, except as
showing that the very small inequality of 306 days would be capable of
disturbing and quite altering the path of the principal axis, as arising merely
from geological changes on the surface of the earth.

In the case contemplated by the Astronomer Royal, where the elevation
is explosive, u must be put equal to zero, and the constants of integration so
determined, that when t = 0, £ = E suppose, and rj = x = y = 0. It will then
be found that when the agitation has subsided, *• = Ri<2//i42, y — Re//i, or the
pole of figure will have taken up a position on one side of the meridian, along
which it was initially propelled by the explosion.

It thus seems probable that during the consolidation of the earth there
was a great instability in the position of the principal axis, and therefore
also of the axis of rotation which followed it.
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1877] CHANGE IN THE OBLIQUITY OF THE ECLIPTIC. 15

§ 6. Secular alteration in the obliquity of the Ecliptic, resulting from
terms independent of the Impressed Forces.

To return to the main line of the inquiry:—If the values of ^ and &>2,
found in § 2, be substituted in the geometrical equations for dO/dt and
sin Odifr/dt (see § 1). a number of periodic terms will arise, and these terms
have diurnal and semidiurnal periods, but their amplitudes are so small that
they have no practical interest.

The only thing which concerns us is to inquire whether there can be any
secular change in the obliquity of the ecliptic.

Select, then, only terms in sin nt in «,, and in cos nt in <w2, and substitute
in the geometrical equation ddjdt = - &>! sin nt + <o2 cos nt, and reject periodic
terms. It will then be found that

de n . , . ,

§ 7. Terms dependent on the Impressed Forces.

It now remains to consider the effect of the impressed forces on the
precession and obliquity of the ecliptic.

The equations of motion are reduced to

rf&>! C — A L

rfw2 C - A M

dw, _ N
dt ~ A

If we write L + BL, M + SM, SN for L, M, N, and indicate by L and M
the couples caused by the attractions of the sun and moon on the protuberant
parts of the earth before it has begun to change its shape, then L and M only
cause the ordinary precession and nutations. For the present problem it is
therefore only necessary to consider the effects of SL, 8M, SN, which arise
from the change of shape of the earth.

It follows, from the same arguments that were used in § 1, that the change
in the earth's angular velocity of rotation due to SN will only have a very
small effect on Wj and a>2; so that, as far as is now important, a>s may be put
equal to — n in the first two equations, which may then be written

da>l SL

SM
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16 CHANGE IX THE OBLIQUITY OF THE ECLIPTIC. [1 , § 8

Now SL and SM are the changes in L and M, when A + at, A + bt, C + ct
are written for A, A, and C respectively. If SL, SM be thus formed, and the
equations integrated, it will be found that the principal terms, arising from
the sun's attraction, are nine both in ddjdt and sin 6 dyfr/dt; the same number
of terms arise in the precession and nutation with respect to the plane of the
lunar orbit, and these would have to be referred to the ecliptic. Sixteen out
of the eighteen terms represent, however, only very small nutations, and the
only terms of any interest are those which give rise to a secular change in
the obliquity of the ecliptic. These terms may be picked out without repro-
ducing the long calculation above referred to, for they arise entirely out of
the constant couple acting about the equinoctial line, which gives rise to the
uniform precession.

Now this constant couple is CIITO; whence

L = CII« sin nt, M = — CII»i cos nt

And since II involves (C — A)/C, therefore

SL = - GUn p--T-1 sin nt, BM = — Clln p~ \ t cos nt

If these be substituted in the equations of motion and the equations
integrated, and only terms in sin nt in a)x and those in cos nt in w2 be
retained, we get

l i b — c . , l i e — a
w1 — ~ r sin nt, ro, = ~ r cos nt

n C - A " n C - A
Substituting in the geometrical equation ddjdt = — co1 sin nt + &>2

 c o s nt
and rejecting periodic terms,

d6 _ n a + b - 2 c
dt ~ In C - X " "

§ 8. General result with respect to the Obliquity of the .Ecliptic.

It was found in § 6 that the secular rate of change of 6, as due to the

internal changes in the earth, was — ™-. -;- . Since C — A is small
An A.

compared to A, this term is small compared with the term found at the end
of § 7. Hence, finally, taking all the terms together, we get the approximate
result,

d£_U a + b - 2 c
di~2n' C-A

and for small changes in the obliquity, insufficient to affect II materially,
-, . ,11 a + b - 2 c

2n C - A
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1877] SENSIBLE CONSTANCY OF THE OBLIQUITY OF THE ECLIPTIC. 17

This equation has been obtained on the supposition that the change in
the earth's form never becomes so great that at, ht, ct exceed small fractions
of C — A; a condition which is satisfied in the case of such geological changes
as those of which we have any cognizance at present.

It will appear from a comparison with results given hereafter, that

—p—-r—- t cannot ever exceed two or three degrees; and since II/2/i is

a very small fraction, it follows that the obliquity of the ecliptic must have
remained sensibly constant throughout geological history*. Also the instan-
taneous axis of rotation must always have remained sensibly coincident with
the principal axis of figure, however the latter may have wandered in the
earth's body.

It has hitherto been assumed that the change of form and the angular
velocities of the principal axes in the earth's body are uniform. But the
preceding investigation shows clearly that no material change would be
brought about by supposing the changes to proceed with varying velocities.
This being so, dynamical considerations may be dismissed henceforth; and
accordingly the next part of this paper will be devoted to the kinematical
question, as to the change in position of the earth's axis of figure as due to
geological changes.

* During the Glacial Period there must have been heavy ice-caps on one or both poles of the
earth. The above equation will give the disturbance of the obliquity of the ecliptic produced
thereby.

I will take what I believe is the most extreme view held by any geologist. Mr Belt is of
opinion that an enormous ice-sheet, which was thickest in about lat. 70° N. and S., descended
from both poles down to lat. 45°; the amount of ice was so great that the sea stood some
2000 feet lower than now throughout the unfrozen regions between lat. 45° N. and S.

Suppose that the whole of this equatorial region was sea, and that the water contained in
2000 feet of depth of this sea was gradually piled on the polar regions in the form of ice. Then
the effect in diminishing C and increasing A cannot be so great as if the whole of this mass
were subtracted actually from the equator and piled actually on the poles. The latter supposi-
tion will then give a superior limit to the amount of alteration in the obliquity of the ecliptic.
I have calculated this alteration by means of the above formula, taking the numerical data used
later in this paper, and taking the specific gravity of water to that of surface-rock as 4 to 11.
I find, then, that the superior limit to the increase of the obliquity of the ecliptic would be
0"-00045; that is to say, the position of the arctic circle cannot have been shifted so much as
half an inch. And this is an accumulated effect, and the matter is distributed in the most
favourable manner possible.

In this case the amount of matter displaced is enormous, and is placed in the most favourable
position for affecting the obliquity; hence, a fortiori, geological changes in the earth cannot
have sensibly affected the obliquity.

But although this equation leads to no startling results in the geological history of the earth,
I hope to show in a future paper that it may have some bearing on the very remote history of
the earth and of the other planets [see Paper 3, p. 51]. In consequence of a mistake in the
work it was erroneously stated in the abstract of this paper in the Proceedings that the change
in the position of the arctic circles might amount to 3 inches, instead of to half an inch.

D. III. 2
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18 NATURE OF THE SUPPOSED DEFORMATION OF THE EARTH. [1, § 9

The various assumptions made above will incidentally be justified in the
course of the work.

For some remarks of Sir William Thomson on this part of the paper see
Appendix C.

II. THE PRINCIPAL AXES OF THE EARTH.

| 9. Preliminary Assumptions.

It is assumed at first that, in consequence of some internal causes, the
earth is undergoing a deformation, but that there is no disturbance of the
strata of equal density, and that there is no local dilatation or contraction
in any part of the body. The cases at present excluded will be considered
later.

The result of this assumption is, that the volume of the body remains
constant, and that the parts elevated or depressed above or below the mean
surface of the ellipsoid have the same density as the rest of the surface.
Such changes of form must, of course, be produced by a very small flow of the
solid matter of the earth. Since the whole volume remains the same, this
hypothesis may be conveniently called that of incompressibility; although, if
the matter of the earth flowed quite incompressibly, there would be some
slight dislocation of the strata of equal density.

It is immaterial for the present purpose what may be the forces which
produce, and the nature of, this internal flow; but it was assumed in the
dynamical investigation that the forces were internal, and that the flow
proceeded with uniform velocity.

After deformation the body may be considered as composed of the original
ellipsoid, together with a superposed layer of matter, which is positive in
some parts and negative in others. The condition of constancy of volume
necessitates that the total mass of this layer should be zero. If we take axes
with the origin at the centre of the ellipsoid and symmetrical thereto, and let
/iF (6, c}>) represent the depth of the layer at the point 6, $, the condition of
incompressibility is expressed by the integral of F (0, <f>) over the surface of
the ellipsoid being zero. Then by varying h, elevations and depressions of
various magnitudes may be represented.
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1877] MOMENTS AND PRODUCTS OF INERTIA. 19

§ 10. Moments and Products of Inertia after Deformation.

Before the deformation :—

Let A, C be the principal moments of inertia of the earth; a, b its semi-
axes ; M its mass; 19 its mean density; p its surface density; and c its mean
radius, so that 3c = la + b; and let the earth's centre of inertia be at the
origin.

After the deformation:—

Let a, b, c, D, E, F be the moments and products of inertia of the above
ideal shell of matter about the axes; aij, yx, z1 the coordinates of the earth's
centre of inertia.

Then, since the ellipticity of the earth is small, the integrals may be
taken over the surface of a sphere of radius c, instead of over the ellipsoid.
Therefore,

a = hpc1 (JF (0, (f>) sin 0 (sin3 0 sin2 <f> + cos2 6) dOd(j>

Ma?, = hpc3 / T F (0, 0) sin2 6 cos <f>d6d<f>

M = f TTDC3

and other integrals of a like nature for b, c, D, E, F, y1, zx.

Since ITF (0, <f>) sin 0 d0 d<f> = 0, therefore a + b + c = 0

If A be the moment of inertia of the body, after deformation, about an
axis parallel to x, through w1: ylt zlt

A = A + a - M (yf + z?)

Now a varies as h/c, whilst M (y-f + z/) varies as (h/c)2. But the greatest
elevation or depression to be treated of is about two miles, whilst the mean
radius c is about 4000 miles; hence h/c cannot exceed about ^00> a n ^
accordingly the term M (y^ + zf) is negligible compared to a. Whence
A = A + a.

In like manner, the terms introduced in the other moments and products
of inertia by the shifting of the earth's centre of inertia are negligible com-
pared to the direct changes. Thus it may be supposed that the centre of
inertia remains fixed at the origin, and that the moments and products of
inertia of the earth after deformation are A + a, A + b, C + c, D, E, F.

2—2
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20 CHANGE OF POSITION OF THE PRINCIPAL AXES. [1, § 11

§11. General Theorem with respect to Principal Axes.

A general theorem will now be required to determine the position of the
principal axes after the deformation.

Take as axes the principal axes of a body about which its moments of
inertia are A, B, 0. Let the body undergo a small deformation, which turns
the principal axes through small angles a, /3, 7 about the axes of reference,
and makes the new principal moments A', B', C. And let the moments and
products about the axes of reference become in consequence A + a, B + b,
C + c, D, E, F. Then it is required to find a, /3, 7 in terms of these last
quantities.

Let I, vi, n be the direction cosines of any line through the origin, and let
them remain unaltered by the deformation. Let I be the moment of inertia
about this line after deformation. Let I + SI, m + 8m, n + Sn be the direction
cosines of the line with respect to the new principal axes. Then, by a well-
known theorem,

SI = 7m — /3«, 8m = a.n — <yl, 8n = /3l — am
Now

I = (A + a) l" + (B + b) m2 + (C + c) n2 - 2T>mn - 2Enl - 2Flm

But it is also equal to

A' (I + 8l)2 + B' (TO + 8mf + G'(n + 8n)2

and by substituting for SI, 8m, Sn, this is equal to

A72 + B'm2 + CV - 2mn (C - B') « - 2ln (A' - C) /3 - 2lm (B' - A') 7
to the first order of small quantities.

This expression must be identical with the former for all values of
l,m,n; hence putting 1 = 1, m = n = 0, A' = A + a, and similarly B' = B + b,
C = C + c. Wherefore also

D D

and /3 = ^ ^ ,
A.— U ±) — A

and these are the required expressions for a, /3, 7.

If, however, B = A, 7 becomes infinite, and the solution is nugatory: but
since, under this condition, all axes in the plane of xy were originally principal
axes, the axes of reference may always be so chosen that F is zero absolutely;
and then

D E
C — A' C - A ' ^ ~

Therefore the new principal axis C is inclined to the old C at a small angle

(D2 + E2)-/(C — A), and is displaced along the meridian, whose longitude,
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1877] DISPLACEMENT OF THE EARTH'S AXIS OF FIGURE. 21

measured from the plane of xz, is ir + tan"1 D/E. This is the case to be dealt
with in the present problem. The positions of the other principal axes will
be of no interest.

em.§ 12. Application of preceding Theoren

To solve the problem numerically in any particular case, it will be neces-
sary to find the integrals

D = hpc* f I F (0, <f>) sin2 0 cos 0 sin <]>d0d4>

E = hpc* I Y F (0, <f>) sin2 0 cos 0 cos (j>d0dcf>

If D/Apc4 and E/Apc4 be called d and e, then d and e stand for the above
integrals, which depend on the distribution of surface-matter in continents
and seas.

It will be convenient to use a foot as the unit for measuring h, and
seconds of arc for the measurement of the inclination i of the new principal
axis to the old. For this purpose the value of the coefficient pc4/(G — A) may
be calculated once for all. Let its value when multiplied by the appropriate
factors for the use of the above units be called K *. Now

Then if we take e = '0033439, being the mean of the values given by
Colonel A. R. Clarke, m = 1/28966, and c = 20,899,917 feetf, M = |TTBC3,

and U/p = 2, we get

C - A = f TT-JOC4 x -0010809 x 20,899,917

and K = 1-08986

If, in accordance with Thomson and Tait, B /p = 2'1, K = 1-0380, but I
shall take K as 1-090. Then we have i" = Kh V(d2 + e2), where K = 1-090,
h being measured in feet, and i" being the angular change in the position of
the principal axis of greatest moment of inertia of the earth, due to a
deformation given by AF (0, </>) all over the surface of the spheroid.

a, -t. t) 2c
The angle —~—. t is clearly of the same order of magnitude as i, as

i_y — A.

it was assumed to be in Part I.

* I have to thank Prof. J. C. Adams for his help with respect to the numerical data, and for
having discussed several other points with me.

t See Thomson and Tait, Natural Pliilosoplty, pp. 648, 651.
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22 SPECIAL FORMS OF CONTINENTS AND OCEANS. [1, §§ 13, 14

III. FORMS OF CONTINENTS AND SEAS WHICH PRODUCE THE MAXIMUM

DEFLECTION OF THE POLAR AXIS.

§ 13. Conditions under which the Problem is treated.

On the hypothesis of incompressibility, the effect of a deformation in
deflecting the pole is exactly equivalent to the removal of a given quantity
of matter from one part of the earth's surface to another. But as no
continent exceeds a few thousand feet in average height, the removal is
restricted by the condition that the hollows excavated, and the continents
formed, shall nowhere exceed a certain depth and height. The areas of
present continents and seas, and their heights and depths, give some idea of
the amount of matter at disposal, as will be shown hereafter. It is interesting,
therefore, to determine what is the greatest possible deflection of the pole
which can be caused by the removal of given quantities of matter from one
part of the earth to another, subject to the above condition as to height and
depth.

§ 14. Problem in Maxima and Minima.

This involves the following problem:—To remove a given quantity of
matter from one part of a sphere to another, the layers excavated or piled up
not being greater than k in thickness, so as to make *J(D~ + E2) a maximum,
the axes being so chosen as to make F = 0.

If D', E' be the products of inertia referred to other axes having the same
origin and axis of z as before, it may easily be shown, from the fact that
D2 + E2 = D'2 + E'2, that D2 + E2 is greatest and equal to E'2 for that distribution
of matter which makes D' = 0 and E' a maximum.

The problem is thus reduced to the following:—Rectangular axes are
drawn at the centre of a sphere of radius c; it is required to effect the above-
described removal of matter, so that the product of inertia about a pair of
planes through z, and inclined to xz at 45° on either side, shall be a
maximum, subject to the above condition as to depth, k being small compared
to c. For convenience, I refer to the plane xy as the equator, to xz as prime
meridian, from which longitudes •v/r are measured from x towards y, and to 6
the colatitude. These must not be confused with the terrestrial equator,
longitude, and latitude.

A little consideration shows that the seas and continents must be of
uniform depth k, that there must be two of each, that they must all be of the
same shape, must be symmetrical with respect to the equator, and that the
continents must be symmetrical with respect to the prime meridian, and the
seas with respect to meridians 90° and 270°.
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1877] SPECIAL FORMS OF CONTINENTS AND OCEANS. 23

Also the total product of inertia P, produced by this distribution, is
16 times that produced by the part of one continent lying in the positive
octant of space; and the mass of matter removed is 8 times the mass of this
same portion of one continent.

The problem is, therefore, to find the outline of the continent, so that P
may be a maximum, subject to the condition that the mass is given.

Take the surface-density of the sphere as unity, and let the mass removed
be given as an elevation of a height k over a fraction q of the whole sphere's
surface; so that the mass removed from hollow to continent is ^ir&kq. Then
it may easily be shown that

P = 4£;c4f ""sin'flsii^fdfl
Jo

1 fiw

and o = - 2i/r sin 6d8
T JO

where \{r is a function of 6 to be determined. Then writing a for 2i|r, and
/it for cos 6, we have to make

!(1 — /A2) sin a> — a> cos2 a} dfi a maximum

for it will be seen later that — c2 cos2 a is a proper form for the constant, to
be introduced according to the principles of the Calculus of Variations. This
leads at once to

(1 — /A2) cos to = cos2 a.

or sin2 6 cos 2i|r = cos2 a

That is to say, the outline of the continent is the sphero-conic formed by
the intersection with the sphere of the cone, whose Cartesian equation is

y2 (1 + cos2 a) + z2 cos2 a = a? sin2 a

Reverting to the expressions for P and q, altering the variable of integra-
tion, and the limits, so as to exclude the imaginary parts of the integrals, we
have as the equation to find a

7T Jo

, /cos aV ,
cos y cos""1 ay

x Vcos x!
and P = 4&c4 I cos y V(cos4 y — cos4 a

Jo
These integrals are reducible to elliptic functions; but in order not to inter-

rupt the argument, I give the reduction in Appendix B. If cos 2-y = cos2 a,
the result is that

wq = V2 C°S 2l LIP ( - 2 sin2
 7 ) - F1]

cos 7

or « = 1 - -
7T
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24 CONTINENTS GIVING MAXIMUM DEFLECTION OF THE POLE. [1 , § 15

and T-J = § V2 cos 7 [E1 - cos 2 7 F
1]

tec
where the modulus of the complete functions E1, F1, II1 is tan 7, and where
E, F have a modulus cos a/cos 7 and an amplitude \nr — 7.

It will be observed that a is the semi-length of the continent in latitude,
and 7 the semi-breadth in longitude.

From these expressions I have constructed the following Table:—

Semi-breadth of
continent

(7)

0
5

10
15
20
25
30
35
40
45

Semi-length of
continent

(a)

0 0
7 5

14 13
21 28
28 55
30 42
45 0
54 12
G5 22
90 0

Fraction of surface
elevated or depressed

(?)

•0000
•0054
•0216
•0486
•0867
•1362
•1979
•2732

•5000

Product of inertia
/ P \

•0000
•0672
•2628
•5697
•9603

1-3981
1 -8399
2-2371

2-6667

§ 15. Application of preceding problem to the case of the Earth.

In the application to the case of the earth, what has been called, for
brevity, the equator (EE in fig. 2) must be taken as a great circle, passing
through a point in terrestrial latitude 45°.

N. POLE

FIG. 2.
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1877] DISCUSSION OF GEOLOGICAL EVIDENCE. 25

Figure 2 gives the stereographic projection of the forms of continents and
seas, the firm lines showing continents, and the broken ones seas, when
covering various fractions of the whole surface; a and 7 are indicated on
one of the continents. The other hemisphere is the same as this figure,
when seen in a looking-glass. It will be observed that the limiting case is
when the two continents fill up two quarters of the earth, and the two seas
the other two.

It is clear that the greatest deflection of the polar axis which can be
produced by the elevation of continents of height k and having a total area
4nrc2q, and the depression of similar seas, will be PK.

A numerical Table of results will be given below, formed by interpolation
in the above Table.

IV. ON GEOLOGICAL CHANGES ON THE EARTH'S SURFACE.

§16. The points to be considered.

It is now necessary to consider what kind and amount of superficial
changes are brought about in the earth's shape by such geological changes as
are believed to have taken place. The points to be determined are :—

i. Over what extent of the earth's surface is there evidence of consenta-
neous subsidence, or upheaval, during any one period.

ii. What is the extreme vertical amount of that subsidence or upheaval.

iii. How the sea affects the local excesses and deficiencies of matter on
the earth's surface.

iv. How marine and aerial erosion affect the distribution of the excess or
deficiency of matter.

v. The possibility of wide-spread deformations of the earth, which
approximately carry the level surfaces with them.

The object of this discussion is to find what areas and amounts of
elevation and subsidence on a sealess and rainless globe are equivalent, as
far as moving the principal axis, to those which obtain on the earth. These
areas and effects will be referred to as " effective areas and amounts of
elevation or subsidence."

It is probable that during the elevation or subsidence of any large area,
the change proceeds at unequal rates in different parts; probably one part
falls or rises more quickly than another, and then the latter gains on the
former. But it has been shown, in the dynamical part of this paper, that the
axis of rotation sensibly follows the axis of figure. Hence it is immaterial by
what course the earth changes its configuration, provided the changes do not
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26 AREAS OF SUBSIDENCE AND ELEVATION. [1, § 17

proceed by large impulses, a supposition which may be certainly excluded.
The essential point is, to compare the final and initial distributions of matter,
after and before a period of large geographical change.

§ 17. Areas of subsidence and elevation.

When a new continent is being raised above the sea, there is no certainty
as to the extent to which areas in the adjoining seas partake in the elevation;
even in the case of S. America, where the area of elevation is supposed to be
abruptly limited towards the west, the line of 15,000 feet depth lies a long
way from the coast.

As soon, moreover, as the land is raised above the sea, the rivers begin
washing away its surface, and the sea eats into its coasts. The materials
of the land are carried away, and deposited in the surrounding seas. Thus to
form a continent of 1000 feet in height, perhaps entails an elevation of the
surface of from 3000 to 4000 feet, and all the matter of the additional 2000
to 3000 feet is deposited in the sea. This tends to make the adjoining seas
shallower, and to cause some increase to the area of the land. Therefore in a
sealess globe the effect must be represented by a greater area of elevation
and a less height.

The bed of a deep sea is hardly at all subject to erosion, and therefore the
tendency seems to be to make the negative features of an ocean-bottom more
pronounced than the positive features of mountain-ranges, at least in the
parts very remote from land.

The areas, then, of existing continents may not be a due measure of the
areas of effective elevation; we can only say that the latter may considerably
exceed the former. The direct evidence as to the extent of the earth's surface
over which there has been a general movement during any one period, is also
very meagre. It appears certain that very large portions of S. America have
undergone a general upward movement within a recent geological period;
but there is no certainty whatever as to the limits of this area, nor as to
whether the beds of the adjoining seas have partaken to any extent of this
general movement. Thus the case of S. America is of scarcely any avail in
determining the point in question. The presence of deep ocean up to the
Chilian coast seems, however, to make it probable that areas of elevation are
more or less abruptly divided from those of rest or subsidence.

There is only one area of large extent in which we possess fairly well-
marked evidence of a general subsidence ; and this is the area embracing the
Coral islands of the Pacific Ocean. The evidence is derived from the
structure of the Coral islands, and is confirmed in certain points by the
geographical distribution of plants and animals. Some naturalists are of
opinion that there is evidence of the existence of a previous continent; others
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1877] AREAS OF SUBSIDENCE AND ELEVATTON. 27

(and amongst them my father, Mr Charles Darwin) that there existed there
an archipelago of islands. In this dearth of precise information, only a rough
estimate of area is possible.

My father, who has especially attended to the subject of the subsidence of
the Pacific islands, has marked for me, on the map given in his work on
Coral Reefs, a large area which he believes to have undergone a general
subsiding motion. This area runs in a great band from the Low Archipelago
to the Caroline Islands, and embraces the greater number of the islands
coloured dark-blue in his map. The boundary may be defined as passing
through:—

Lat....
Long...

3
150

5 |

140 |

E.

15
150

iN.

22
165

18
180

10
165

*
150

5
135

1 15 1
| 120 |

w.

25
120

S.

| 30

| 135

18

150

15
165

10
180

8
165
E.

He also marked a smaller area, embracing New Caledonia, the S.E. corner
of New Guinea, and the N.E. coast of Australia.

It is noteworthy that the former large area consists of sea more than
15,000 feet deep, except in patches round some of the islands, where it
appears to be from 10,000 to 15,000 feet deep*.

I marked these areas on a globe, and cut out a number of pieces of paper
to fit them, and then weighed them. By this method I determined that the
former area was "055 of the whole surface of the globe, and the latter was "01;
the two together were therefore "065.

It thus appears that we have some evidence of an area of between 5 and
7 per cent, of the globe having undergone a general motion of subsidence
within a late geological period. But between this area and the coast of
S. America there is a vast and deep ocean, and nothing whatever is known
with respect to the movements of its bed. Hence it is quite possible that the
area which has really sunk, in this quarter of the globe, is considerably larger
than the one above spoken of.

On the whole, then, perhaps from '05 to '1 of the whole surface may at
various times have partaken of a consentaneous movement, so as to convert
deep sea into land, and vice versa.

Besides this kind of general movement, there have certainly been many
more or less local rises and falls, but this small oscillation is not fitted to
produce any sensible effect on the position of the earth's axis.

* See frontispiece-map to Wallace's Geographical Distribution of Animals.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.004
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.004
https://www.cambridge.org/core


28 AMOUNT OF EFFECTIVE ELEVATION. [1, § 18

| 18. Amount of Elevation, and the effects of Water.

Humboldt has shown that the mean height of the present continents is a
little less than 1100 feet from the sea-level*. But this, of course, does not
give the limit to the amount of change of level. On the other hand, there
are perhaps 50,000 to 80,000 feet of superposed strata at most places on the
earth; but neither does this give the indication required, because the surface
must have risen and fallen many times during the deposition of these strata.

But, as before pointed out, the actual upward or downward movement of
land is by no means the same as its effective elevation or subsidence; for
erosion causes the effective to be far slower than the actual. And the actual
upward or downward movement of an ocean-bed is different from the effective;
for the sea-water will flow off or in from the adjoining seas. The specific
gravity of water is about one-third of that of surface rock, and the local loss
or gain of matter is the actual loss or gain of surface rock, less the mass of
the sea-water admitted or displaced. Thus the effective downward or upward
movement of a sea-bed is about § of the actual; of this a more accurate
estimate will be given presently.

It is fortunately not important to trace the series of changes through
their course; and in order to avoid the complication of doing so, the way
seems to be to estimate the amount of transference of matter entailed in the
conversion of a deep ocean into a continent of the present mean height.

Suppose, then, that an ocean area of 15,000 feet in depth were gradually
elevated, and that the final result, notwithstanding erosion, were a continent
of 1100 feet in height. Conceive a prism, the area of whose section is unity,
running vertically upwards from what was initially the ocean-bed. Initially
this prism contained 15,000 feet of sea-water, and finally it contains 16,100
feet of rock; so that the local gain of matter, on this unit of area of the
earth's surface, is the difference between the masses of this prism, initially
and finally.

Now l-02 is the specific gravity of sea-water, and 2'75 that of surface
rock; therefore the same local gain of matter, in a sealess globe, would be
given by an elevation of

16,100 - iff of 15,000 = 10,436 feet

That is to say, 10,436 feet has been the effective elevation.

I therefore adopt 10,000 feet as the effective elevation equivalent to the
conversion of deep ocean into a continent; and in the examples given here-
after, where I find the deflection of the pole for various forms and sizes of
continent, I shall give the results of such an assumed conversion.

* Sir J. Herscliel seems to have doubled the height through a misconception of Humboldt's
meaning. The mean height of the land is in English feet: Europe, 671; N. America, 748;
Asia, 1132; S. America, 1151. See a letter to Nature, by Mr J. Carrick Moore, April 18th, 1872.
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1877] POSSIBILITY OF MASKED ELEVATIONS AND SUBSIDENCES. 29

§ 19. Wide-spread Deformations of the Earth.

It has hitherto been assumed that the elevation of land would not affect
the sea-level; but there can be no doubt but that elevations, such as those
already spoken of, would do so to the extent of, say, a hundred feet. In so
far, then, as this is the case, the elevation would be masked from the eyes of
geologists. But if the change of form were a gradual rising over a very wide
area, the level surfaces would approximately follow the form of the rocky
surface. For instance, the elliptical form of the equator carries the ocean
level with it; the amount of this ellipticity is such that the difference between
the longest and shortest equatorial radii is 6378 feet*. So long, however, as
these bulges remain equatorial they cannot affect the position of the principal
axis, even should they vary in amount from time to time. But this kind of
deformation, if not symmetrical with respect to the equator, would alter the
position of the principal axis, without leaving any trace whatever of elevation
or depression for geologists to discover.

The discrepancy which is found between the ellipticity of the earth, as
deduced from various arcs of meridian, is, I presume, attributable to real
inequalities in the earth's form, and not entirely to errors of observation
and to the elliptical form of the equatorial section. It seems, moreover,
quite possible that these wide-spread inequalities may have varied from time
to time.

Hence, even if the deposit of strata in the sea did not produce a con-
tinual shifting of the weights on the earth's surface, and even if geologists
should ultimately come to the conclusion that there has never been any
consentaneous elevation and depression of very large continents relative to
the sea-level, but that the oscillations of level have always been local, it
would by no means follow that the earth's axis has remained geographically
fixed.

V. NUMERICAL APPLICATION TO THE CASE OF THE EARTH.

§ 20. Continents and Seas of Maximum Effect.

As far as I can learn, geologists are not of opinion that there is any more
reason why upheavals and subsidences should take place at one part of the
earth's surface than at another. It is accordingly of interest to suppose the
elevations and depressions to take place in the most favourable places for
shifting the axis of figure. The area over which a consentaneous change
may take place is also a matter of opinion.

The theorem in maxima and minima in Part III. makes it easy to con-
struct a table from which that area may be selected which seems most

* Thomson and Tait, Natural Philosophy, p. 648.
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30 EXAMPLES OF THE AMOUNT OF POLAR DEFLECTION. [1, § 21

probable to geologists. The following Table is formed by interpolation in
the Table in § 14; the first column gives the fraction of the earth's surface
over which an elevation is supposed to take place, a depression over an equal
area taking place simultaneously. The second column gives the angular
shift in the earth's axis of figure, due to 10,000 feet of effective elevation; as
was shown in Part IV., this would convert a deep ocean into a continent.
If 10,000 feet be thought too high an estimate, the last column may be
reduced in any desired proportion. Lastly, fig. 2 shows the forms of these
continents and seas of maximum effect.

Area of elevation
or subsidence, as

fraction of Earth's
surface

•001
•005
•01
•05
•1
•15
•2
•5

Deflection of pole
for 10,000 feet

effective elevation

H
2 2 |

1° 46 j
3° 17'
4° 3 3 |
5° 36f
8° 4 |

N.B. The area of Africa is about -059, and of S. America
about -033 of the Earth's surface.

§ 21. Examples of other forms of Continent.

I will now apply the preceding work to a few cases where the continents
and seas do not satisfy the condition of giving the maximum effect.

Figures 3, 4, 5, and 6 represent the shapes of the continents as projected
stereographically. The shaded parts represent areas of elevation, the dotted
parts those of depression; and in the shelving continents and seas the contour
lines are roughly indicated. P ' shows the new position of the pole. In every
case here given d = 0 and F = 0.

Fig. 3. F(6>, 0) = sin 20cos 20, from 0 = 0 to TT, and <j> = -\w to +-\w,
and zero over the rest of the globe.

e = 2 I sin3 6 cos3 6 cos 20 cos <f> ddd<f> = if \J2
•>» J ~{n

i" = K/te = -5480/t

If the effective elevation or depth in the middle of continent or sea be
10,000 feet, PP' = 1° 31£'.

This is the form of continent for which p^a is worked out in Appendix A.
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1877] FORMS OF CONTINENTS AND OCEANS DISCUSSED. 31

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.
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32 POLAR DEFLECTIONS DUE TO SPECIAL FORMS OF CONTINENT. [1 , § 22

Fig. 4. The same shape as the last, but of uniform elevation and depres-
sion of 10,000 feet.

e = :
'o

i" =Khe = 1-028 xh

PP' = 2° 51^' when h = 10,000; an extreme supposition, as the area
affected is a quarter of the whole globe.

Fig. 5. F(d, <f>) = l, from 6 = 0 to ^TT, and from (f> = -\TT to +^7r, and
— -f over the rest of the globe. This is equivalent to F (0, </>) = f within
the above limits.

Then i" = 7 x 1-028 xh = '587 x h

and PP ' = 1° 38', when h = 10,000 feet

Fig. 6. F (6, </>) = sin 26 cos 2cf>, from 0 = 0 to \ir, and from <f> = - ±ir to
+ ^TT, and zero over the rest of the globe.

r\* ri7r

e = 2 sin3 6 cos2 6 cos 2<i cos d> dddd> = A

i" = KAe = -194 x A; PP ' = 32J', when A = 10,000 feet

On the whole, then, it appears that continents, such as those with which
we have to deal, are competent to produce a geographical alteration in the
position of the pole of between one and three degrees of latitude. But all
these results are obtained on what I have called the hypothesis of incom-
pressibility.

VI. HYPOTHESES OF INTERNAL CHANGES OF DENSITY ACCOMPANYING

ELEVATION AND SUBSIDENCE.

§ 22. A general Shrinking of the Earth.

It may be supposed that the earth is gradually shrinking, but that it
shrinks quicker than the mean in some regions and slower in others. This
would of course lead to depression and elevation below and above the mean
surface in those regions. A deformation of this kind may be represented as
a uniform compression of the earth, superposed on changes such as those
considered on the hypothesis of incoinpressibility. If a be the coefficient of
contraction of volume, it is clear that the values of D and E, as already
found, must be diminished in the proportion of 1— fa to unity, and C —A
must be diminished in the like proportion. Hence the deflections of the polar
axis, on this hypothesis, are exactly the same as those already found. This
seems, perhaps, the most probable theory, but it is well to consider others.
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1877] ELEVATION PRODUCED BY INTUMESCENCE. 33

The redistribution of matter caused by the erosion of continents will
clearly produce the same effect as deformations on the theory of incom-
pressibility.

§ 23. Changes of Internal Density producing Elevation.

In discussing the above hypothesis, I shall confine myself to the case of
the upheaval or subsidence being of uniform height over given areas, and
shall make certain other special assumptions. This will considerably facilitate
the analysis, and will give sufficient insight into the extent to which previous
results will be modified.

I assume, then, that the elevation of the surface is produced by a swelling
of the strata contained between distances rY and r2 from the centre of the
globe and immediately under the area of elevation, and that the coefficient
of cubical expansion a. is constant throughout the intumescent portion.

This will cause a fracture of the strata of equal density, and will produce
a discontinuity such as that shown in figure 7, where the dotted circle of
radius r2 indicates the upper boundary of the swelling strata before their
intumescence.

But the shift of the earth's axis, caused by
this kind of deformation, will differ insensibly
from what would obtain if there were a more or
less abrupt flexure of the strata of equal density
at the boundaries of the intumescent volume
and of the area of elevation.

Suppose, as before, that h is the height to
which the continent is raised above the surface;
then we require to know a in terms of h.

Before intumescence, let r, 8, <f> be the co-
ordinates of any point within the intumescent
volume; and suppose that r becomes r + u,
whilst 0 and <j>, of course, remain constant.

The equation of continuity is easily found to be

du 2M
-T-H = o
dr r

of which the integral is wr2 = iar3 + /3.

If /3 be determined, so that when r = ru u = 0,

FIG. 7.

p. m.
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34 ELEVATION PRODUCED BY INTUMESCENCE. [1 , § 23

But when r = r2, u = h, the elevation of the surface; therefore

_Sh 1

the required expression for a in terms of h.

Also, before intumescence, Laplace's law of internal density held good,
viz. Q sin qr/r, therefore afterwards the density of the stratum distant r + u
from the centre is Q (1 — a) sin qr/r.

Now the propositions given in Part II., as to the change in the position
of the earth's axis, remain true here also; and the only difference is that the
products of inertia D and E must now be expressed by different integrals.

After intumescence the earth may be conceived to consist of:—first, itself
as it was before; secondly, of negative matter, of which the law of density is
Q sin qr/r, throughout the space bounded by r=rlt r = c, and the cone of
elevation; and, thirdly, of the matter which formerly lay within this space,
in the configuration attained by it after intumescence.

The first part clearly contributes nothing to D and E; and the second
contributes

- Q jljr* sin qr sin2 d cos 6 j ™ ̂  drddd<j>

integrated throughout the above space, that is from r = rx to r = c, and
throughout the cone of elevation.

As to the third part, the mass of any element remains unchanged, whilst
its distance from the centre has become r + u. Hence the third part con-
tributes

<# • + uf sin qr sin2 6 cos 0 \ , drd6dd>1 (cos <p

integrated throughout the above space.

Therefore, taking all together, and treating u as small,

„ I = 2Q ([(ur> sin qr sin2 d cos 0 | S m f drd8d<b
&) JJJ (cos<£

Therefore — = - = 2Q Iwr2 sin qrdr

where d and e have the same meanings as before, in Part II. § 12.

Now this last integral divides itself into two parts: first, from r = c to
r = r2>u = h; and, secondly, from r = r2 to r = rx, u = ^a (r3 — rfl/r*.

Therefore

-r = - = 2QA / r2 sin qrdr + IQa I (r3 — r^) sin qrdr
u e J ri J r.
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1877] ELEVATION PRODUCED BY INTUMESCENCE. 35

If the value of a. be substituted, and the integrations effected, it will be
found that

D _ E _ cotg-c 2 S 3c 1 1 T
2&phci ~ 2ephc4 ~ qc (qcf sin qc r2 " (qcf 1 - r^jri singe

= U suppose

where S stands for the expression - sin qr + cos qr, taken between the limits

7.2 r \ 2

c and r2, and T for the expression — sin qr + 2 - . — cos qr — -,—r-2 sin qr, taken
between the limits r2 and r,.

Substituting in the expression i = \/(D2 + E2)/(C — A), and using the
coefficient K, we get

i" = 2KUA V(d2 + e2)

It must be noticed that this investigation is applicable as much to
subsidence caused by internal compression as it is to elevation; and the
word intumescence is used to cover both phenomena. In the case of sub-
sidence h is negative.

Now on the hypothesis of incompressibility it was shown that

Hence, on the present hypotheses, the estimated deflection of the pole must
be diminished in the proportion of 2U: 1.

Taking go = 141° (which makes 3©/p = 2, very nearly), I have calculated

the values of 2U, when — = f§§, and — = | | , T%, f, £, 0. If the earth's radius
G C

be taken as 4000 miles, this gives, that the superficial strata for 10 miles in
thickness do not swell, but are merely heaved up, and that the lower surface
of the intumescent volume is at the various distances from the earth's surface
given in the first column of the following Table. The second column gives
2U, or the factor by which previous results would have to be diminished on
the present hypothesis. The third column gives the so diminished value of
1° of deflection of the pole.

Depth below surface
of bottom of

intumescent volume,
in miles,
(e-r2)

50
400

1000
2000
4000

Factor of
diminution of
former results,

(2U)

•0126
•1011
•2731
•5171
•6721

A deflection of
1° would be
reduced to
(2U x 1°)

46"
6' 4"

16' 23"
31' 2"
40' 20"

3—2
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36 SUMMARY. [1, § 24

The last row, of course, indicates that the intumescence extends quite
down to the centre of the earth.

This Table shows that if elevation is due to the swelling of strata at all
near the surface, the alteration in the position of the polar axis would be
reduced to quite an insignificant amount. The alleged deficiency of density
under the Himalayas affords some slight evidence that it is so, at least
occasionally. I believe, also, that Mr Mallet is of opinion that the centre of
disturbance of earthquake-shocks is not at a greater distance than 30 miles
below the surface*. It does not, of course, follow from this evidence that
there may not be elevations of both kinds going on, some being approximately
superficial phenomena, and others probably due to unequal shrinking of the
earth as a whole. The latter kind would be likely to produce more extensive
deviations from the external form of equilibrium than the former.

On the whole, then, it appears that the deflection of the polar axis cannot
exceed that which was found in the case of incompressibility, and it may
possibly be considerably less. The complete want of knowledge of the internal
movements only allows us to state a superior limit to the change which might
be produced by any one upheaval or subsidence.

VII. SUMMARY AND CONCLUSION.

§ 24. Summary.

For the sake of those who do not read mathematics, I will shortly
recapitulate the chief results arrived at.

The change in the obliquity of the ecliptic caused by any gradual defor-
mation of the earth's shape of small amount is very small. Even so great a
redistribution of weights on the earth's surface as is entailed by immense
polar ice-caps during the Glacial Period, cannot have altered the obliquity by
so much as -%£$$ of a second of arc; and this is the most favourable redistri-
bution of weights for producing this effect. Thus throughout geological
nistory the obliquity of the ecliptic must have remained sensibly constant.
And, further, when the earth undergoes any such deformation, the axis of
rotation follows, and remains sensibly coincident with the principal axis of
figure.

It thus only remains to consider the change in the geographical position
of the poles caused by the deformation.

The principal axes at the centre of inertia of a body are three lines
mutually perpendicular, and their position is entirely determined by the
shape of the body. Hence if a nearly spherical body be slightly deformed,

* Referred to at Becond hand by Mr Carruthers, Trans. New-Zeal. Inst., Vol. VIII., p. 363.
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1877] CHANGES IN THE GEOGRAPHICAL POSITION OF THE POLE. 37

the extremities of these principal axes will move from their original positions
and describe paths on the surface of the body, which may be shortly described
as the paths of the principal axes. In the case of the earth, as geologically
deformed, it is only of interest to consider the path of one of these axes,
which is, in common parlance, the earth's axis.

If the earth be sensibly rigid, or should only readjust itself to an
approximate form of equilibrium at long intervals (as maintained in Part I.),
the geographical path of the axis is very nearly the same as is due merely to
the geological deformation of the earth's shape; but if the earth be more or
less plastic, or should readjust itself frequently to an approximate form of
equilibrium, the dynamical reactions introduced are such as more or less to
modify the geographical path of the axis. In the case of great plasticity
these reactions would suffice to entirely alter the character of the path. It
seems probable that during the consolidation of the earth there was great
instability in the geographical position of the poles. Throughout the rest of
the investigation suppositions of plasticity are set aside, and the hypothesis
of sensible rigidity is adhered to.

Formulae for the change in the geographical position of the pole due to
any small deformation are found in Part II.

On the assumption that the internal density of the earth remains un-
changed by the deformation, the forms of continent and depression which
produce the greatest deflection of the poles, for the transport of a given
quantity of matter from one part of the earth's surface to another, are then
investigated. These forms are shown, projected stereographically, in fig. 2
(p. 24).

Part IV. gives what evidence I have been able to collect of the areas and
amounts of deformation to which the earth may have been subjected in
geological history; but as the discussion is not mathematical, it seems
unnecessary to give an abstract thereof.

Part V. gives numerical applications of the preceding theorems to the
case of the earth, on the assumption that the internal density is unaltered by
the deformation. From this it appears that the poles may have been deflected
from 1° to 3° in any one geological period; but the reader is referred back to
that part for details.

If upheaval and subsidence of the surface are due to a shrinking of the
earth as a whole, but to a more rapid shrinking in some regions than others,
the deflection of the poles is the same as that found where there is no
disturbance of the strata of equal density.

But if the upheaval and subsidence are due to local intumescence and
contraction of the strata underneath the rising or falling areas, the previous
numerical estimates must be largely reduced; for the extent of this reduction
the reader is referred to the Table in § 23 (p. 35).
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38 CONCLUSION. [1 . § 25

I t thus appears tha t the deflection of the poles first given is a superior

limit to tha t which is possible.

§ 25. Conclusion.

There remain, in conclusion, one or two miscellaneous points to be
referred to.

In a letter to Sir Charles Lyell read before the Geological Society*,
Sir John Herschel has pointed out that the isothermal strata near the surface
of the earth must approximately follow the solid surface. Therefore, when a
thick stratum is deposited at the bottom of the ocean, the primitive bottom
is gradually warmed and expands. There is thus a tendency for the upheaval
of sea-beds, on which a large amount of matter has been deposited; but this
kind of upheaval certainly falls within the case of superficial intumescence,
and could therefore affect the geographical position of the poles but little
more than would be due merely to the weight of the deposited stratum. It
must be noticed, moreover, that the weight of the deposited stratum would
tend to compress the primitive sea-bed, and might counteract the expansion
due to rise of temperature.

If the earth were absolutely rigid the pole could never have wandered
more than from 1° to 3° from its primitive position, whatever geological changes
were successively to take place; because the new pole could never be brought
to a greater distance from its original position, by any fresh distribution of
the matter forming the continents, than the maximum for this amount of
matter arranged in continents of a like height.

But it was maintained in Part I. that from time to time the earth makes
a kind of rough adjustment to a figure of equilibrium. If this adjustment is,
as seems probable, by an earthquake, it will take place with reference to the
axis of rotation at the instant of the earthquake. Now there exists in erosion
and marine deposits a cause of terrestrial deformation which is certainly
independent of such adjustments; and it seems probable that the causes of
geological upheaval and subsidence are so also. We have therefore clearly a
state of things in which the pole may wander indefinitely from its primitive
position. On this hypothesis, as in successive periods the continents have
risen and fallen, the pole may have worked its way, in a devious course, some
10° or 15° away from its geographical position at consolidation, or may have
made an excursion of smaller amount and have returned to near its old
position. May not the Glacial Period, then, have been only apparently a
period of great cold ? If at that period the N. pole stood somewhere where
Greenland now stands, would not the whole of Europe and a large part of
N. America have been glaciated ? And if the N. pole retreated to its present

* Proc. Oeol. Soc, Vol. n., p. 549.
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1877] THE MOMENTS OF MOMENTUM DUE TO GEOLOGICAL CHANGES. 39

position, would it not leave behind it the appearance of a very cold climate
having prevailed in those regions ?

But although such a cumulative effect is possible with respect to the
geographical position of the pole, none such is possible with respect to the
obliquity of the ecliptic.

Now this kind of wandering of the poles would of course require extensive
and numerous deformations, and it is hard to see how there can have been a
shifting of the surface weights sufficient to produce it, without frequent
changes in the geographical distribution of land and water. If, then,
geologists are right in supposing that where the continents now stand they
have always stood, would it not be almost necessary to give up any hypothesis
which involved a very wide excursion of the poles ?

APPENDIX A. (See p. 9.)

To calculate p^, and p | 2 in a supposed case of elevation and subsidence.

Take the case of § 21 (fig. 3), where the elevation is given by ht sin 26 cos 2<£,
from 0 = 0 to -n, and from </> = — \TT to \ir, and zero over the rest of the sphere.
Suppose that the internal motion is entirely confined to the quarter of the
sphere defined by the above limits of 8 and $, that radial particles are always
radial, and that the motion is entirely meridional.

Let 6 + ^ be the disturbed colatitude of the point 8, $. Then the
equation of continuity, which expresses that the volume of the elementary
pyramid ^c3 sin ddOdcj) remains constant, when 8 becomes 0+^t, is

~ (% sin 0) + — sin 6 sin 26 cos 2<f> = 0
do c

the integral of which is

^ sin 6 H t cos 2$ sin3 6 = a constant

and since ^ is zero, when cf> = + \-rr, for all values of t, ^ = t cos 2<£ sin'2 6,
cc

d*& 2h
and -,— = cos 2<b sin2 6

dt c

Hence H2, twice the area conserved on the plane of xz, is

111 or2 sin ddrdddd). —=— cos 6JJJr T dt
taken from r = 0 to c, 8 = 0 to TT, <f> = — \tr to + \ir.
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40 THE MOMENTS OF MOMENTUM DUE TO GEOLOGICAL CHANGES. [1, APP. A

If the sphere be taken as homogeneous,

jy2 = - — p IY[r4 sin3 6 cos 2</> cos <j>drddd<t>
0 J J J

Hx and H3 are both clearly zero.

The above value of H2 is larger than what it would be in the case of the
earth, if Laplace's law of internal density were true, because the external
layers have been taken too heavy, and the internal too light. But taking
that law of density, A = ̂ Mc2 very nearly.

„ H2 4 V2 hHence ~ = —-1 .
A O7T C

If we let the time run on until the highest point of the continent has
o 4. . Jit 1 ., Stt 4 V2 1

risen one foot, so that - = OA n A A AAA , then - r - = -c ~ 20,900,000' A 5TT 20,900,000 '

But reference to § 21 (fig. 3) shows that i" = -5480/i, or in the present
notation,

_ , „ 7T
H"~ " ~ 648,000

„,, 272 8x648^2 . ,
1 herefore F f l = - i n , m n j = - xir neai-!y

But generally, since the angular velocities a, /3, 7 of the moving axes, to
which y&%i, |^2 > |^8 refer, are very small, therefore

to the first order of small quantities, within the limited period to which the
investigation applies. So that in this particular case,

^ = - T | T nearly, and ̂  = ^ = 0

And, besides, this value of pJ2/A/3 is larger than it ought to be, because
p^2 was calculated on an assumed homogeneity of the earth. This, then,
justifies the conclusion in the text on p. 9.

In the elevation and subsidence given by ht sin 26 sin 2<p from 6 = 0 to \-K,
and from <j> = — \TT to \TT, Hl and H2 are clearly zero, under a like supposition
as to the nature of the internal motions accompanying upheavals.
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1877] CALCULATION OF CERTAIN ELLIPTIC INTEGRALS. 41

A P P E N D I X B. (See p. 23.)

[a cos2 a [a

To reduce the integrals cos y cos"1 —— dv and cos y V(cos4 y — cos4 a
Jo * cos2y A Jo

io elliptic functions.

Call the former J. and the latter B.

Integrating A by parts,

. (a . , ( , cos2 <x\
A = — sin y a cos J ——

Jo A V cos2yy

Put * = sin y, and cos 27 = cos2 a, then we get

dx
1 - 2*2 + sin2 27)

and if x = \/2 sin 7 sin <£, this becomes

A/2 f FI1 (— 2 sin2 7) — F1}, where the modulus is tan 7
cos 7

Again, integrating B by parts,

S = J 0
 S l n X -2V(cos 4 y -cos 4 a )

= 2 rV2SmV

; 0 V(a;4 — 2*2 + sin2 27)
fV2siny oir.2 O«. »2 ("1 ™2\ ~2

"r» n i i S i l l ^ v — t// — 1 1 A I ^ J , „ n

But B is also = —jy-^— ^ — ^ - V - dx from the expression
J o ^(x4 - 2x2 + sin2 27)

before partial integration. Multiplying the latter expression by 2 and
adding to the former,

J o */(sin2 2y — 2*2 + a;4)

and substituting the above value for x,

Whence B = f V2 cos 7 [E1 — cos 27 F1], the modulus being tan 7.
B may be calculated from this form by means of the tables in Legendre's
Fonctions Mliptiques, torn. 11. But A is not yet in a form adapted for
numerical calculation.

The parameter — 2 sin2 7 of II1 is negative and numerically greater than
the square of the modulus; therefore II1 falls within Legendre's second class
(op. cit. torn. 1. p. 72). Now it is shown by Legendre (torn. 1. p. 138) that

b2sin 0 cos 0 rTXn . . _,, , ...

A ( 6 ^ T [ ( " ' C ) " (C)]

= \-rr + F 1 (c) F (b, 6) - E1 (c) F (b, 0) - F 1 (c) E (b, 0)
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42 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

In this case 0 will be found to be \ir — y,

b2 sin 6 cos 6 , .„ cos 2v , , cos a
— $ v 2 • , and 0 =

2 cos
xn n\ — $ v 2 • , and 0 =

A (b, 6) 2 cos 7 cos 7

whence A = ir - 2 { E ' F - F1 (F - E)}

where the moduli of F and E are cos a/cos 7, and their amplitude ^TT — 7.

From this form A may be calculated numerically.

APPENDIX C. (Added April 1877.)

Sir William Thomson, who was one of the referees requested by the Royal
Society to report on this paper, has remarked that the subject of Part I. may
also be treated in another manner.

The following note contains his solution, but some slight alterations have
been made in a few places.

The axis of resultant moment of momentum remains invariable in space
whatever change takes place in the distribution of the earth's mass; or, in
other words, the normal to the invariable plane is not altered by internal
changes in the earth.

Now suppose a change to take place so slowly that the moment of
momentum round any axis of the motion of any part of the earth relatively
to any other part may be neglected compared to the resultant moment of
momentum of the whole*; or else suppose the change to take place by
sudden starts, such as earthquakes. Then, on either supposition (except
during the critical times of the sudden changes, if any), the component
angular velocities of the mass relatively to fixed axes, coinciding with the
positions of its principal axes at any instant, may be written down at once
from the ordinary formulae, in terms of the direction-cosines of the normal to
the invariable plane with reference to these axes, and in terms of the moments
of inertia round them, which are supposed to be known.

Hence we find immediately the angular velocity and direction of the
motion of that line of particles of the solid which at any instant coincides
with the normal to the invariable plane at the origin. This is equal and
opposite to the angular velocity with which we see the normal to the
invariable plane travelling through the solid, if we, moving with the solid,
look upon the solid as fixed. Let, at any instant, x, y, z be the direction-
cosines of the normal to the invariable plane relatively to the principal axes;
and let A, B, C be the principal moments of inertia at that instant. Let h

* This is equivalent to neglecting |§i, 3Jj2, JIJ3 of Part I.; by which Sir W. Thomson is of
opinion that nothing is practically lost.
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1877] LORD KELVIN'S TREATMENT OF THE PROBLEM. 43

be the constant moment of momentum (or twice the area conserved on the
invariable plane).

Consider axes fixed relatively to the solid in the positions of the principal
axes at any instant, but not moving with them, if they are being shifted in
virtue of changes in the distribution of portions of the solid.

The component angular velocities of the rest of the universe are, relatively
to these axes, hx/A, hy/B, hz/C; and therefore, if N" be the point in which
the normal to the invariable plane at the origin cuts a sphere of unit radius,
the components parallel to these axes of the velocity of N relatively to them
are

h h\ fh

Now, suppose that by slow continuous erosion and deposition the positions
of the principal axes change slowly and continuously relatively to the solid.

Let -CT, p, a be the components round the axes (which, of course, are
always mutually at right angles) of the angular velocity of the actual solid
relatively to an ideal solid moving with the principal axesf. Then the
component velocities relatively to this ideal solid of the point of the body
coinciding at any instant with N are

zp — ya, xcr — zm, ysr — xp

and the components parallel to the principal axes of the velocity of N
relatively to these axes are dxjdt, dyjdt, dzjdt. Hence we have

dx _ I h h

dy _ ill h

dz I h h

These three equations give % -±- + y ~=- + z -y- = 0, and therefore they are

equivalent to two independent equations to determine two of the three
unknown quantities x, y, z as functions of t, the three fulfilling the condition
a? + ya + z'*=l, and it being understood that ta, p, <r are given functions of
the time.

* The angular velocity of the rest of the universe relatively to the earth being opposite to the
angular velocity of the earth relatively to the rest of the universe, the components of the former
round the axes x, y, z are taken as in the negative direction, i.e. from z to y, x to z, y to x.

t IB, p, a are the same as — o, - j3, - y of Part I.
J These equations are the same as those given by me in Part I., p. 8.
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44 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

To apply these equations to the questions proposed as to the earth's axis,
let the normal to the invariable plane be very nearly coincident with the
axis of greatest moment of inertia C. Let 0 be the point where the axis
C cuts the earth's surface, and let OX, OY be parallel to the axes A and B.
Then z = 1; and if the earth's radius be taken as unity, x and y will be the
coordinates relatively to OX, OY of the point P in which the normal to the
invariable plane cuts the surface.

Putting therefore z = 1 in the preceding equations, we find for the deter-
mination of x, y that

dx (1 1

dy i I l 1
dt \A C

dx _

dt

where a = h(^ --^) - a, b = h(1r-7^)-a

ra-

.(3)

and u — — p , w =

in these equations we are to regard a, b, u, v as given functions of
the time.

Eliminating y, we have

d (1 d

which is a linear equation, from which x may be found by integration; and
then, by the first of equations (3),

1 / dx\
- M-"T7 (5)

a \ dt/ v '
= - [ u

If B = A, the presence of a in the equations would merely mean that the
axes of x and y revolve with an angular velocity a; and so we lose nothing
of interest with reference to the terrestrial problem by supposing a = 0. If,
then, we take A and B constant, equation (4) becomes,

d?x „ du, \

dt2 dt ( 6 )

where a>2 — ah )

To integrate this according to the method of variation of parameters, put

x = P cos cot + Q sin a>t (7)
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and

so that

We find

LORD

then

KELVIN'

dx

dt~
dF
dt

S TREATMENT OF

— Pa) sin cot + Qo)

cos at + ~ sin cot
dt

THE PROBLEM.

cos cot

= 0

45

(8)

„ 1 f/du , . , .
P = -,- — av ) sin tot at)

coj\dt ) I
r (9)

n 1 f/du \ f
U = — - j - — au ) cos cotdt

co J \at j I

For the case considered in Part I., where u and v are constant,

P = - —, cos cot + G, Q = — - sin cot + C
co2 a2

and therefore by (7)

x = + G cos cot + C' sin cot (10)

The solution expressed in equations (5), (7), (8), (9) is convenient for
discontinuous as well as for continuously varying and constant values of
u and v.

Consider, then, the case of u = 0 and v = 0, except at certain instants

when u and v have infinite values, so that udt and I vdt express the
J i' JT

components of a single abrupt change in the position of the instantaneous
axis; where T and T' denote any instants before and after the instant of the
change, but so that the interval does not include more than one abrupt
change.

Therefore, if t0 be the instant of the change

I v sin wtdt = sin cot0 I vdt
J T; JT

fT fT \
I v cos cotdt = cos cot,, I vdt
JT JT I

Hence the part of x depending on v vanishes at the instant immediately
after the abrupt change when t = t,,. Also we have by integration by parts,

- p sin cotdt = M sin not — co \u cos cotdt
dt J

I - j - cos cotdt = u cos cot + co \u sin cotdt
J at J •
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46 LORD KELVIN'S TREATMENT OF THE PROBLEM. [1, APP. C

And, therefore, taking the integrals between the prescribed limits, since
u = 0 both when t = T and when t = T", we have

fdu . fT \
I -=- s in a>t dt = — » cos a>t0 I udt

Jdt JT (13)
fdu .,t . . fT ,,

-JT cos tot at = ft) sm &)<„ I udt
J at JT '

Using these in (9) and (7) we find, at the instant after the abrupt change,
fT

x= udt (14)
JT

and similarly y = I vdt (15)

which of course might be deduced from (8) and (5).

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.004
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.004
https://www.cambridge.org/core


2.

ON PROFESSOR HAUGHTON'S ESTIMATE OF

GEOLOGICAL TIME.

[Proceedings of the Royal Society, XXVII. (1878), pp. 179—183.]

IN a paper recently read before the Royal Society*, Professor Haughton
has endeavoured by an ingenious line of argument to give an estimate of the
time which may have elapsed in the geological history of the earth. The
results attained by him are, if generally accepted, of the very greatest
interest to geologists, and on that account his method merits a rigorous
examination. The object, therefore, of the present note is to criticise the
applicability of his results to the case of the earth; and I conceive that my
principal criticism is either incorrect, and will meet its just fate of refutation,
or else is destructive of the estimate of geological time.

Professor Haughton's argument may be summarised as follows:—The
impulsive elevation of a continent would produce a sudden displacement of
the earth's principal axis of greatest moment of inertia. Immediately after
the earthquake, the axis of rotation being no longer coincident with the
principal axis, will, according to dynamical principles, begin describing a
cone round the principal axis, and the complete circle of the cone will be
described in about 306 days. Now, the ocean not being rigidly connected
with the nucleus, a 306-day tide will be established, which by its friction
with the ocean bed will tend to diminish the angle of the cone described
by the instantaneous axis round the principal axis: in other words, the
" wabble" set up by the earthquake will gradually die away.

Then by means of Adams and Delaunay's estimate of the alteration of
the length of day, which is attributed to tidal friction, Professor Haughton
obtains a numerical value for the frictional effect of the residual tidal current.
He then applies this to the 306-day tide, and deduces the time required to
reduce a " wabble " of given magnitude to any given extent.

* "Notes on Physical Geology. No. III. On a New Method of finding Limits to the Dura-
tion of certain Geological Periods." Proc. Roy. Soc, Vol. xxvi., pp. 534—546 (December 20,
1877).
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48 HAUGHTON'S ESTIMATE OF GEOLOGICAL TIME. [2

He is of opinion that if, at the present time, the instantaneous axis of
rotation of the earth were describing a circle of more than 10 feet in diameter
at the earth's surface, then the phenomenon could not escape detection by
modern astronomical instruments. From the absence of any such inequality
he concludes, after numerical calculation, " if Asia and Europe were manu-
factured per saltum, causing a sudden displacement of the axis of figure
through 69 miles, that this event cannot have happened at an epoch less
than 641,000 years before the present time, and that this event may have
occurred at an epoch much more remote."

He then passes on to consider the case where the elevation takes place
by a number of smaller impulses instead of by one large one. He treats first
the case of "69 geological convulsions, each of which displaced the axis of
figure through one mile," and where " the radius of the wabble " is " reduced
from one mile to 5 feet in the interval between each two successive con-
vulsions "; and, secondly, the case where " the increase of this radius is
exactly destroyed by friction during each wabble, so that the radius of 5 feet
continues constant."

In the first case he finds that the total time occupied by the manufacture
of Europe and Asia is 27^ millions of years, and also that " no geological
change, altering the position of the axis of figure through one mile, can have
taken place within the past 400,000 years." And in the second case, he
finds that the same elevation would occupy 4,170 millions of years. A little
lower he adds: " It is extremely improbable that the continent of Asia and
Europe was formed per saltum, and therefore our minor limit of time is
probably far short of the reality."

It appears from these passages that Professor Haughton is of opinion
that a succession of smaller impulses at short intervals will necessarily
increase the radius of the "wabble"; but it is not very clear to me whether
he means that the radius of the " wabble " would be the same by whatever
series of impulses the principal axis was moved from one position to another.
Now, I conceive that it is by no means necessary that a second impulse
succeeding a first should augment the radius of the "wabble"; it might,
indeed, annihilate it. I admit that by properly timed impulses the radius of
the " wabble " might be made as great as if the whole change took place by
a single convulsion. But where the impulses take place at hazard there will
be a certain average effect on the radius of the " wabble," which, as far as
I can see, Professor Haughton makes no attempt to determine. It seems,
therefore, an unjustifiable assumption that sufficient time must elapse
between the successive impulses to reduce the radius of the " wabble" to
5 feet, for if the impulses took place more frequently they might tend to
some extent to counteract one another. If this assumption is unjustifiable,
then Professor Haughton's estimate of time falls with it.
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1878] NUTATION CAUSED BY GEOLOGICAL UPHEAVAL. 49

In my paper on the " Influence of Geological Changes on the Earth's
Axis of Rotation*," I have considered the effects of a slow continuous
distortion of the earth. The results there attained would, of course, have
been identical, had I considered the effects of a series of infinitely small and
infinitely frequent earthquakes. I presume Professor Haughton will agree
with me in thinking this supposition more consonant with geological science
than the larger earthquakes which he postulates.

I will now show, from the results of my paper, that without calling in any
effects whatever of tidal friction, Asia and Europe might have been gradually
upheaved in 19,200 years, without leaving any "wabble" sufficiently large
to be detected astronomically, and, moreover, that at no time during the
elevation could the " wabble " have been detected had astronomers been in
existence to make observations; and further, that under certain not im-
probable suppositions, this estimate of time may be largely reduced. Let a
be the angular velocity of the principal axis relatively to the solid earth,
arising from the continuous elevation of the continent; n the earth's angular
velocity of rotation; C, A the greatest and least principal moments of inertia
of the earth; and /u, = (C — A) n/A.

Then, in section 2 of my paper, I show that the extremity of the instan-
taneous axis describes a circle at the earth's surface in 306 days, and that
this circle passes through the extremity of the principal axis, and touches
the meridian along which the principal axis is travelling with velocity a in
consequence of the postulated geological change. Strictly speaking, the
curve described by the instantaneous axis, is a trochoid, because the circle
travels in the earth along with the principal axis; but the motion of the
circle is so slow compared with that of the instantaneous axis along its arc,
that it is more convenient to say that the instantaneous axis describes a
circle which slowly changes its position. It must be noticed that this circle
is unlike the " wabble" considered by Dr Haughton, inasmuch as the
extremity of the principal axis lies on its arc instead of being at its centre.
It is also shown in the same section that the diaixieter of the circle is equal
to 2a//i.

I will now suppose that the geological changes begin suddenly from rest,
and proceed at such a rate that the variations in the position of the principal
axis are imperceptible to astronomical observation. I will suppose, therefore,
that the extremity of the instantaneous axis is never more than 5 feet
distant from the extremity of the principal axis. Now, 5 feet at the earth's
surface, subtends very nearly 0"-05 at the earth's centre, and, therefore, to find
a on this supposition, 2a/ft must be put equal to 0""05.

fi is an angular velocity of 360° in 306 days, and if we wish to express a

* Phil. Trans., Vol. 167, Part I., p. 271. [Paper 1.]

D. III. 4
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50 NUTATION CAUSED BY GEOLOGICAL UPHEAVAL. [2

in seconds of arc per annum, fi must be expressed in those units, and 0"#05
must be expressed in circular measure. Thus

18-263 „ .
"• = A v e ry nearly.

Therefore, a is an angular velocity of 1° (or 69 miles) in 19,200 years.

But, according to Professor Haughton, 69 miles is the displacement of
the earth's principal axis, due to the elevation of Europe and Asia; hence,
at this rate of elevation, Europe and Asia would have been heaved up in
19,200 years.

Now, if the elevation be supposed to stop suddenly, the instantaneous
axis cannot, at the time of the stoppage, be more than 5 feet distant from
the axis of figure, and it may even be coincident with it. Therefore the
stoppage cannot set up a " wabble " of more than 10 feet in diameter, and
it may set up none at all. But even this maximum " wabble " of 10 feet,
would, according to Professor Haughton, be imperceptible, and a fortiori the
circle of 5 feet in diameter, described in the course of the elevation, would be
imperceptible.

On any of the following suppositions, the elevation might be much more
rapid, without increasing the residual " wabble " :—

(1) The stoppage of the elevation to take place at a time when the
instantaneous axis is separated from the principal axis by a small angle.

(2) The elevation partly counterbalanced by simultaneous elevations in
other parts of the world, so that the upheaval of Europe and Asia would not
displace the pole of figure by so much as 69 miles.

(3) The elevation partly or altogether produced by the intumescence of
the strata immediately underlying those continents. (See Part VI. of my
paper above referred to.)

(4) The elevation not uniform but more rapid in the earlier portion of
the time, so that the magnitude of the "wabble" would be reduced by the
friction of the 306-day tide; for we are by no means compelled to believe
that that inequality of motion must always have remained as small as it is at
present.

It appears to me, from these considerations, that the continents of Europe
and Asia might have been elevated in very much less than 20,000 years, and
yet leave no record of the fact in the present motion of the earth. There-
fore, if my solution of the problem is correct, it is certain that Professor
Haughton's method can give us no clue to the times which have elapsed in
the geological history of the earth.
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3.

ON A SUGGESTED EXPLANATION OF THE OBLIQUITY

OF PLANETS TO THEIR ORBITS*.

[Philosophical Magazine, in. (1877), pp. 188—192.]

IN a former paperf I have shown that if 6 be the obliquity to the ecliptic
of a planet which is slowly changing its shape, so that its principal moments
of inertia at the time t are A + &t, A + \>t, C + ct, then, so long as at, ht, ct
remain small compared with C — A,

dd _ II a + b - 2c
It ~2n C-A

II cosec 0 being the precession of the equinoxes, and — n the rotation of the
planet. This equation will hold true for long periods, if all the quantities on
the right hand are treated as functions of the time; and if a = b it may be
written

dd n Jt(C ~ A )

di~ n C — A
In the case of the earth,

6TT2(1 1 1 - f sinH'l C - A _ n _p C - A
IT IT2 + T~2 1+v } ~C~ ~ sin 6 cos 0 ' n ^ C ~ ' S U p P ° 8 e

where T, T' are the year and month, v is the ratio of the earth's mass to the
moon's, and % is the inclination of the lunar orbit to the ecliptic. In the
corresponding function for any other planet there will be a term for each
satellite, and 1 — f sin2 i will be replaced by a certain function called \ by
Laplace.

* [I attach very little importance to this paper, but a reference ie given to it in Vol. n.,
p. 456, and it is now included for the sake of completeness. ]

t " On the Influence of Geological Changes on the Earth's Axis of Rotation." [Paper 1.]

4—2
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52 SPECULATION AS TO THE ORIGIN OF THE OBLIQUITY. [3

The equation may now be written

Cn dO, , a 1 d / r i . .r- log tan 0 = r (C — A)p dt & ndtK '

The object of the present note is to apply this equation to the supposition
that the planets were originally nebulous masses, and contracted symmetrically
under the influence of the mutual gravitation of their parts. This application
involves a large assumption, viz. that the precession of a nebulous mass is
nearly the same as though it were rigid. In defence thereof I can only quote
Sir W. Thomson, who says, " Now although the full problem of precession
and nutation, and what is now necessarily included in it—tides, in a con-
tinuous revolving liquid spheroid, whether homogeneous or heterogeneous,
has not yet been coherently worked out, I think I see far enough towards a
complete solution to say that precession and nutations will be practically the
same in it as in a solid globe, and that the tides will be practically the same
as those of the equilibrium theory*."

I therefore once for all make this assumption.

The coefficient p depends solely on the orbit of the planet and of its
satellites, and during the contraction of the mass will have been constant, or
very nearly so. To determine the other quantities involved, we have the
three following principles :—

(1) The conservation of angular momentum.

(2) The constancy of mass of the planet.

(3) That the form of the planet is one of equilibrium.

(1) is expressed by the equation C«= H, a constant; and, if a, p be the
mean radius and density of the planet at any time, (2) by f trpa;' = M, the
mass. Then, if the law of internal density during contraction be that of
Laplace, viz. Q sin qrjr, if k be the ratio of the surface-density to the mean
density, e the ellipticity of the surface, and m the ratio of the centrifugal
force at the distance a to mean pure gravity, the third principle gives f

5m _ (qa)2 _
2e 3k(qa-l)

Also C =

C - A = | (e - \m) Ma2

m =

* Address to Section A. of the British Association at Glasgow, Nature, September 14, 1876,
p. 429.

t Compare Thomson and Tait's Natural Philosophy, § 824 (14), § 827 (20).
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1877] SPECULATION AS TO THE ORIGIN OF THE OBLIQUITY. 53

Hence (1), (2), and (3) lead to the following equations:—

H (4)

a*=— (5)

5
(6)

If during contraction qa remains constant, and if the coefficient of Ma2n in
(4) be called 7, and that of Ma2w2/47r/i/> in (6) be called ft, then it will be
found that

Id r H/8 1 dp
nJt{^~A)~~ 7

Hence, remembering that Cn = H,

| l o g t a n 0 = -

Integrate, and let D, I be the present values of p and 0; then
tan6> pP f D\

g tan I ~127!>D7 { 9)
If we assume that qa has always the same value as it now has in the case of
the earth*,

7 = -3344, p = -9507, and ^ = 2-8433
7

If during contraction the planet were always homogeneous, the factor p/y
would be replaced by ±£~, or 3'75.

Let K stand for 2"8433, or 3'75, as the case may be; let

Q = fp + S T'2 (1 + v)

let P be the periodic time of a pendulum of length equal to the present mean
radius of the planet, swinging under mean pure gravity. Then

P _
2'

and the equation becomes

log Y = iKP2Q (1
tan J. \ p

* In determining the precessional constants of Jupiter and Saturn, Laplace assumed that
their law of internal density was the same as that of the earth. The assumption is, I believe,
unjustifiable; but it will give sufficiently good results for the present purpose. The limit-
ing value of pjy, when the surface-density is infinitely small, and if the Laplacian law still
holds good, is 1-99. [See Paper 5].
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54 SPECULATION AS TO THE ORIGIN OF THE OBLIQUITY. [3

This equation shows that as p diminishes 8 diminishes, and when p is
infinitely small 6 is zero. That is to say, if a nebulous mass is rotating about
an axis nearly perpendicular to the plane of its orbit, its equator tends to
become oblique to its orbit as it contracts.

In the case of the earth, P2Q = 8'5577 x 10~s; and taking the present
obliquity of the ecliptic as 23° 28', the equation may be written

Log10 tan 6 = 9-63761 - ^

On the hypothesis of homogeneity, T7612 must be replaced by 23229.

The extreme smallness of the coefficient of D/p shows that the earth must
have had nearly the same obliquity even when its matter was rare enough to
extend to the moon. But if it can be supposed that the moon parted from
the earth without any abrupt change in the obliquity of the planet to the
ecliptic, then from that epoch backwards the function Q would have had only
one term, viz. 1/T2, and P2Q would be 2-5750 x lO"8. The coefficient of D//j in
the above equation would be reduced to 5-30 x 10~9, or 7'00 x 10~9, according
to whichever value of K is taken. This being granted, it follows that when
the diameter of the earth was 1000 times as large as at present, the obliquity
to the ecliptic was only a few minutes.

This somewhat wild speculation can hardly be said to receive much support
from the cases of other planets; but it is not thereby decisively condemned.
In all the planets up to and inclusive of Jupiter, the expression Q will have
to be reduced to its first term 1/T2, because the satellites are rather near
their primaries. Hence one would expect that the obliquities of the planets
to their orbits would diminish as we go away from the sun. It is believed
(but the observations seem doubtful) that Mercury and Venus are very
oblique to their orbits; and Mars has an obliquity nearly the same as that of
the earth. The region of the asteroids is a blank; and then we come to
Jupiter, with a very small obliquity.

The next in order is Saturn: and his case is unfavourable; for he is
slightly more oblique to his orbit than is the earth. Nevertheless it must be
observed that he has a large number of satellites, and some are very remote
from him, and his mean density is very small; hence, if the satellites can
have affected the obliquity in any case, one would expect them to have done
so in that of Saturn.

No light whatever is thrown on the case of Uranus, whose axis is said to
lie nearly in the plane of his orbit.
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4.

NOTE ON THE ELLIPTICITY OF THE EARTH'S STRATA.

[Messenger of Mathematics, vi. (1877), pp. 109, 110.]

IN Pratt's Figure of the Earth, the following expression is given for the
ellipticity e of the stratum of mean radius a, viz.

/ 3 \ 3(1 — HangcHe _ tan ga — ga \ qa?J qa
e tan qa — qa (. 3 \ , 3

\ q'&V * qa

where e, a are the ellipticity and mean radius of the Earth's surface. A similar
expression, but with a different notation, will be found in Thomson and Tait's
Nat. Phil., | 824 (9). It is proposed to reduce this to a simpler form. In
what follows, D' denotes the mean density, and p the stratum or surface
density of the spheroid of mean radius a, excluding the parts of the earth
which lie outside this spheroid; D, p, a have parallel meanings for the whole
earth.

Laplace's law for the density of the stratum a may be written p - -—— ;1 J J r a sm qa,
then it may easily be shown that

l
(qa,)2 \ tan qa.

And if (following Pratt) z = 1 — —-

If / = 1 , it is clear also that
tan get

(qaf
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56 THE ELLIPTICITY OF THE EARTH'S STRATA. [4

Hence tan qn — qa = qa

3 N 3 1-D/p
1— •• , tan oa + — = -, - -oa

q'-<\ j q& 1 — z

and two parallel expressions with italics and accents.

66
Substituting in the expression for , we get

e _ z_ 1 -JP'lp _ a? 1 -_pjl>'
e ~ ? I -Dip ~ d- 1 -

If in the case of the earth j \ = l,

(i-

But whether this proportion of D to p holds good or not, it follows that the
ellipticity of any stratum is proportional to the attraction of a particle, whose
mass is proportional to 1 — p'/D', placed at the earth's centre at the distance
of the stratum in question.

p'/D' diminishes as we go away from the centre, and therefore 1 — p'jD'
increases from zero to 1 — pjD; on the other hand a2 increases rapidly, and
therefore one would be led to expect (as is the fact) that the ellipticity
increases on going away from the centre.

The preceding expression also leads to another curious expression for the
ellipticity.

If we add a small stratum of thickness Ba to the spheroid of mean radius
a, the mean density of course falls, and it is very easily shown that

whence it follows at once, that

dlogU
ex-
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5.

ON AN OVERSIGHT IN THE MEGANIQUE CELESTE, AND ON

THE INTERNAL DENSITIES OF THE PLANETS.

[Royal Astronomical Society, Monthly Notices, xxxvn. (1877), pp. 77—89.]

IN the following paper an endeavour is made to point out an inconsistency,
which appears to have escaped the notice of Laplace, in his determination of
the precessional constants of the planets Jupiter and Saturn. From this I
have been led on to speculate on the law of internal density of those planets,
and of Mars, and to make some reference to the ellipticities of Mercury and
Venus.

§ 1. Laplace's Law of the Internal Density of the Planets.

In the investigation of the figure of the Earth, Laplace assumed that, in
molten rock, the hydrostatic pressure plus a constant varies as the square of
the density. The result of this assumption is that, after the consolidation of
a planet, the density of any stratum of mean radius r is given by the law

— sin —, where a is the mean radius of the surface, and 6 and F are constants.
r a

Throughout the rest of this paper, besides the foregoing, the following
notation is used:—

a, /3, the equatoreal and polar radii;
e the ellipticity of the surface;

m the ratio of the centrifugal force of the planet's rotation at the
distance a to the mean pure gravity;

/ the ratio of the mean to the surface density;
C, A, the greatest and least principal moments of inertia of the planet;
P or (C — A)/C the precessional constant; and
M the mass.

Other symbols will be defined as they arise.
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58 LAPLACE'S LAW OF INTERNAL DENSITY. [5, §1

Then the results of the Laplacian law may be embodied in the following
equations*:—

»/-i-=^ w
5m 3

6 (/-I)

•(2)

.(3)

.(4)

.(5)

Now, if (following Thomson and Tait) we take for the Earth / = 2 ' 1 ,
which corresponds with 8 = 144°, we have

P = 1-994 ( e - l m ) (6)

m = 2-562 •(7)

Hence, in any planet, where the law of density is the same as in the Earth
(i.e., / = 2-1, 6 = 144°), we should find (7) satisfied, and (6) would give the
precessional constant.

In order to illustrate the Laplacian law, the following table has been
constructed, giving the values of / and 5mj2e for every 10° of 8, with the
omission of a few at the early part, which are rather troublesome to calculate,
and are of little value.

8

0"
10"
20°
30°
40°
50°
60"
70"
80°
90°

voooo
1-0082
1-0188
1-0341
1-0548
1-0817
11161
1-1600
1-2159

5m/2e
2 000

2029
2-046
2-067
2-094
2-126
2165

ft

90°
100
110°
120°
130°
140°
150°
160°
170°
180°

/
1-2159
1-2879
1-3827
1-5109
1-6922
1-9657
2-4225
33363
60750
infin.

5/n/2e
2-165
2213
2-270
2-338
2-422
2-525
2-652
2-813
3-019
3-290

This table shows how 5m/2e increases, as the planet passes from homo-
geneity to infinitely small surface density; 5m/2e can never be less than 2,
nor greater than 3'290. Although it is not strictly involved in the subject

* See Thomson and Tait's Natural Philosophy, §§ 824, 827. Equation (3) is independent of
Laplace's assumption.
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1877] JUPITER'S PRECESSIONAL CONSTANT. 59

of this paper, I may point out that the first column of the table may be
employed to calculate the ellipticity of any internal stratum. I have shown
elsewhere* that the ellipticity e of any stratum of mean radius &'a\Q is
given by

e = (6Vf(f-l)

where f, 9 refer to the surface, and f is the value corresponding to & in the
table. For example, to find the ellipticity of the Earth's stratum of mean
radius -f^a, we must take #' = 60°, because 0 = 144°; then from the table
/ ' = 1-0817, and

• 1-0817 x 1-1 1-204

= T&T w h e n e = W

§ 2. Jupiter's Precessional Constant.

To determine the precessional constant Laplace uses the following
argument:—" If we suppose the densities of the strata of Jupiter and the
Earth, at distances proportional to the diameters of these planets, to be in a
constant ratio to each other In this hypothesis, if both planets be fluid,
their ellipticities will be, as in [2068 k, etc., in. v. § 43] proportional to the
respective values of <f>f, corresponding to each of them ; or to their ellipticities,
if they be homogeneous. If we suppose the ratio to obtain in their actual
state, and we have seen in [2069, in. v. § 43] that this is nearly conformable
to observation, then the values of (2C — A — B)/C will be, for each of these
planets, respectively proportional to the ellipticities corresponding to the case of
homogeneity. These ellipticities by the same article [2068"], are as "10967000
to 0-00433441}." He uses -00291193 as the Earth's precessional constant,
and thence deduces (2C - A - B)/C = -14735, or in my notation P = -07368.

By the theory of the perturbations of the satellites, he finds

this value does not involve any assumption as to the law of internal density,
except, I conceive, that the strata of equal density must be nearly spherical||.

Then by the periodic time of the Fourth Satellite, and its observed
distance from Jupiter, he finds m = -0987990; whence e= -O713OO8§.

* [Paper 4, p. 55.] The notation is, however, different.
t The m of this paper.
t Bowditch, Trans, of Mec. Gel. vin. vii., § 23.
§ 76. vm. ix., § 27.
!| See Pratt's Figure of Earth, Arts. 90—94.
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60 INCONSISTENCY OF LAPLACE. [5, § 2

Using these values of m and e, we get 5m/2e = 3-4642. Now Laplace
does not seem to have noticed that these values are not only incompatible
with the identity of the law of internal density in the Earth and Jupiter, but
are also incompatible with that form of law at all; for, as appears from the
table, 5m/2e can never be greater than 3*290.

My attention was first drawn to the point by observing that, if there were
this identity of law of density, the precessional constant of Jupiter ought to
be nearly twice e — Jnx, or "0438; whereas Laplace, by a different method,
founded on the same assumption, finds it to be '0737. This of course indicated
that the assumption was untenable.

In view of this discrepancy, it will be well to go over Laplace's work again
by the light of later, and presumably better, observations.

The distance of the Fourth Satellite is open to some doubt, but the
following has seemed to me the best value attainable. Bessel gives the
apparent distance at the planet's mean distance as the angle 498"'8663*.

M. Kaiser gives, as the result of a long series of his own observations
when united with those of Bessel, that the polar and equatoreal diameters of
Jupiter subtend at the same distance 35"'l70 and 37"'563 respectivelyf.

Hence the mean distance D of the satellite is 26'5616 equatoreal radii;
or D = 26-5616 a; T the satellite's periodic time is 16'68902 m. s. days,
t Jupiter's sidereal day is -4135 m. s. days. Therefore

/T
m = U

= -0869258 (1 - e) = m' (1 - e) suppose
Professor J. C. Adams informs me that M. Damoiseau has recalculated

the values of e — \m, and of the masses of the satellites, basing his work on
better observations than those which were available to Laplace \. He has
taken, however, certain coefficients from Laplace, which ought to have been
recalculated. This work has been completed by Professor Adams himself,
and he has obtained the following value for e — \m, of which he has, with
very great kindness, allowed me to make use, viz.

e - \m = -0216623 §

* Astron. Untersuch. Bestim. der Masse des Jupiter, Konigsberg, 1842.
t Astron. Nachr. 48, p. 111.
X Tables des Satellites de Jupiter. Bur. des Long., Bachelier, Paris, 1836.
§ The corresponding masses of the Satellites multiplied by 1000 are found by him to be :

•283113
•232355
•812453
•214880

They seem to bear hardly any relation to the ordinarily received values.
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1877] REVISION OF JUPITER'S PRECESSIONAL CONSTANT. 61

Substituting then for m, we have, for the ellipticity of Jupiter,

_ jm' +-0216623 _ _ _ 1
6 T T i W U W 4 1 ~ 16-022

and m = m ' ( l - e ) =-081501*

Laplace remarks f that the ellipticity of Jupiter may be found by this
method with greater accuracy than by the best observations. It is interesting,
therefore, to observe how closely this value agrees with that of all the later
observations. The following are the values given for the reciprocal of the
ellipticity by—Secchi, 16'06 [Ast. Nach. 43, p. 142]; Kaiser, (i) 15-36,
(ii) 15'98 [Ast. Nach. 45, p. 211]; Bessel and Kaiser, 15-70; Bessel, 15-73;
Secchi, 15-99 [Ast. Nach. 48, p. I l l ] ; Schmidt, 15'6 [Ast. Nach. 65, p. 102];
Main, 16'84 [Month. Not. Ast. Soc. 16, p. 142]. The reductions were in
several cases made by myself.

It is, nevertheless, a curious coincidence that the value of e found by
Laplace agreed well with the older observations of Struve, who found
e = l/13-74 [Ast. Nach. 45, p. 211].

Using the above value of m, I find (following Planaj) that on the
hypothesis of homogeneity a//3 = 1-1164 (compare with T116515 of Plana),
and therefore the homogeneous ellipticity is '10405. But the homogeneous
ellipticity of the_Earth is 1/230-433 (Plana) ; and the Earth's precessional con-
stant is "003272; hence, following Laplace's method, we should have for Jupiter,

P = -10405 x 230-433 x -003272

= -078451

But if Laplace's assumption as to the internal density of Jupiter were
justifiable, we ought to have by equation (6),

P = l-994(e-Jm) = 1-994 x -02166

= •043

Thus these new values of the quantities involved leave as wide a
discrepancy as before between the two values of P. Therefore, Laplace's
method cannot be justified.

§ 3. The Internal Density of Jupiter.

But this unjustifiability may be seen in another way, for the new values
of m and e give 5m/2e = 3'2646; and reference to equation (7) shows that this
differs widely from the corresponding value for the Earth. It is not, however,
inconsistent with the Laplacian form of law, as was the same function when
Laplace's values of m and e were used. In fact, I find, after some rather

* This value may be compared with -08163 found by Plana, Astr. Nachr. 36, p. 155.
t Mec. Gel., vm. ix., § 27.
J All future references to M. Plana are to his paper in Astr. Nachr. 36, p. 154.
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62 INTERNAL DENSITY OF JUPITER. [5, § 4

troublesome arithmetic, that 5m/2e = 3'2646 corresponds to 0 = 179° 11' 20"
nearly, and to / = 68.

Using these values of 6 and f, I find by equation (5) that Jupiter's
precessional constant = 2'528 (e — %m) = "0548; and this I take to be far
nearer the truth than the value assigned by Laplace.

On account of the uncertainty in the determination of the quantity m, the
above values of 6 and f can, of course, have no claim to precision. In fact, if
following Herschel, Loomis, and others, we take D/a = 26-99835, we should
find 6 = 1/16-52, m = -0778, and 5m/2e = 3-211. This last corresponds to 6
about 177° 42', and / about 24.

The value of the precessional constant will, however, be but little changed,
being 2"489 (e - £m) = -0539.

Now it seems reasonable a priori to assume that the law of internal
density within Jupiter is of the same nature as in the Earth, and from that
assumption it follows that the surface density of Jupiter is vastly less than
the mean: for it must, I think, be admitted that numerical values can be
assigned to m and e with some precision.

But the true meaning of this result would seem to be that the Laplacian
law of density is not exact for Jupiter, but that that planet must be very
much denser in the centre than at the surface. Is it not possible that Jupiter
may still be in a semi-nebulous condition, and may consist of a dense central
part with no well-defined bounding surface 1 Does not this view accord with
the remarkable cloudy appearance of the disk, and the remarkable belts ?

§ 4. Saturn.

The preceding method cannot be applied very satisfactorily to the case of
Saturn, on account of the uncertainty in all the quantities which enter into
the determination of m and e; but the balance of evidence appears to me
decidedly in favour of his surface density being far less than the mean.

m may be best determined from the motion of Japetus.

There seems almost complete unanimity as to his periodic time, and I
take T = 79'3296 m. s. days.

Two values are assigned for the sidereal day of Saturn, viz., '4370 (Hansen),
and '4278 (Herschel) m. s. days, the latter being more generally accepted;
I take then £ =-430.

There is a wide difference of opinion as to the mean distance D of Japetus,
the estimates varying from 57'4a (Jacob, Mem. Astr. Soc. Vol. xxvm.) to
64-359a (used by Herschel, Loomis, and others, and most generally accepted).
I take D = 62a.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.008
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.008
https://www.cambridge.org/core


1877] THE SYSTEM OF SATURN. 63

The ellipticity seems fairly well determined at Jy*.

Using these quantities in the formula

I find m = -131270 - -610568* - -006358 (-) - -142818e(-) - -1

(i) If all the small variations are zero, and e = y^, we get -̂— — 3*610.

(ii) Loomis, Pract. Astron., Tables 33, 34,

D
a.£=•437, ^ = 64-359, e=TV

St=-007, b~= 2-359, S6 =-01909a

then m = -1093, ~ = 2-732
2e

(iii) Hind's Solar System, pp. 103-4,

t = -4278, - = 60-3436, e = - ^ according to Bessel

St = - -0022, 8 - = _ 1-6564, Be = -00637a

then m= -1422, ^ = 3-66

If we take e = ^^ from the Greenwich Observations, -̂— will be slightly

smaller.

(iv) Captain Jacob's Madras Observations give - =57-4, and S — = — 4'6,

this with e = y^ and all the other small variations zero, gives m = "160 and

-~- very nearly 4^.

No doubt other values might be assigned to -^- with equal plausibility,

but I think (ii) and (iv) contain extreme values in the two directions, and
the truth probably lies at some intermediate point. It is noticeable that

* I find the following in a paper by Mr Grant (Monthly Notices of the Royal Astronomical
Society, Vol. XIII., p. 195), where he reduces observations of apparent ellipticity to their real
values, viz., Lassell 1/11-05, Main 1/9-227, De La Rue 1/10-611. The mean of all Bessel's obser-
vations would seem to be 1/10-20, but Mr Hind (see below) assigns a slightly different value as
Bessel's result.

Sir W. Herschel found 1/10-368 (see p. 79 of above vol.), but 1/10-384 is also attributed to
him on the same page.
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64 SATURN'S PRECESSIONAL CONSTANT. [5, § 4

even the value (ii) indicates a larger ratio of mean to surface density than in
the Earth, namely 2'809 (corresponding to 6 = 155° 14'), whilst all the other
values are far outside the limits of admissibility under the Laplacian law.

I have tried also to find m from the motion of Titan. Taking

5 = 21, T = 15-9454, t = -43, e = T
1
T

I find m = -13648 - 1174& - -0195S - - -1485Se
a

If the small increments are zero, 5m/2e = 3'75; and if the various possible
values be assigned to them, the results will be found to be very similar to
those given above.

The value of m assigned by Laplace is "165970*, and this, together with
the ellipticities ^ and T

f
?, gives 5m/2e equal to 3-734 and 4979 respectively,

either value quite incompatible with the Laplacian law of density. The
ellipticity of the planet had apparently not been observed in his time, and
the numbers used by him involve an ellipticity of 1/68-6, which we now know
is far too small.

Laplace makes Saturn's precessional constant | of -27934 or -13967 (vin.
xvii. § 37), but this value is inconsistent with any of those given above for
m and e.

Taking 6 = ^ , m = "1313, we have e — ^m ='0252. It can hardly be
supposed that Saturn is more nearly homogeneous than is the Earth, and if
the law of density were the same we should, by (6), have P = -050.

On the other hand, if the Laplacian law of density were to hold good, and
if the surface density were zero—of course an ideal casef—we should have
by (5),

e — \m 6 1
P = ^ = 2^5505

or P = 2-5505 x '0252 = -064

I conceive then, that Saturn's precessional constant must be very nearly
equal to '06, since the former of these values is certainly too small, whilst the
latter is a little too large.

* Mec. Gel., vm. xvii., § 36.
t It may be observed, that to be thoroughly consistent we should have in this case,

P = -663m=-873e, because 5m/2e = 3-290; but the method is here only used to find the limiting
value of the coefficient of e - \m.
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1877] THE SYSTEM OF MARS. 65

§ 5. Mars.

Mars rotates in 24h 37m 22s-6, or 1-025956 m. s. days, according to the
elaborate observations of M. Kaiser*. His density is "948 of that of the
Earthf. The sidereal day is '997270 m. s. days, and for the Earth m is

; hence for Mars,

_ 1 / -997270V- _ J _ _
m ~ -948 U702595~W mfM

= 0 0 3 4 4 0 9 = ^ 1

With respect to the ellipticity of the planet the most various estimates
are given. Thus, for the reciprocal of the ellipticity I find, according to
Loomis (Pract. Astr., Table 33) 50; Main (Month. Not. Ast. Soc. xvi., p. 142)
62; Kaiser (Guillemin, Le del, p. 257) 118; Arago, doubtfully, 32; Bessel
failed to detect ellipticity in observations at Konigsberg; and lastly, from
observations of Dr Winnecke, to which I shall recur below, 225 (Ast. Nach.
48, p. 97). According to Dr Winnecke, M. Kaiser doubts whether Mr Main's
result represents any corresponding reality.

With an ellipticity of -^-s, we have 5m/2e=l'93, and with the other
values of ellipticity, a very much smaller value.

Now a reference to the table in § 1 will show that not only is even the
largest of these quantities incompatible with the Laplacian law of density, but
they are also incompatible with the homogeneity of the planet. We should
require the planet to decrease in density towards the centre, or actually to be
hollow; and on any theory of original fluidity such a state of things is almost
inconceivable.

The wide discrepancy between various observations shows that the results
are to be very little depended on; and for the following reasons, I venture to
think that all the above values of the ellipticity are almost worthless, but
that Dr Winnecke's is by far the nearest to the truth. He gives§ as the
equatoreal and polar apparent diameters, 9"-227 and 9"'186, subject to mean
errors of 0"'045 and 0""032 respectively.

* See a paper by M. Julius Schmidt, Astr. Nackr., 82, p. 333.
t Guillemin, Le del, p. 257. The other details with respect to Mars are given on the

authority of M. Kaiser, and this I presume is so also.
J Plana gives 1/288-84, using slightly different data; with Herschel's value of the density

•72, m=1/220-7.
§ Astr. Nachr., 48, p. 97. The observations are said to be reduced for " Phase und Refrac-

tion," but I do not see it expressly stated that they are corrected for the Earth's Martian
declination.

D. in. 5
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66 MARS, VENUS AND MERCURY. [5, § 6

From these measurements I find that the probable error of the ratio of
the axes is '0050441. The ratio itself is in decimals "9955564, and therefore
the ratio of the axes is '9955564 + -0050441. That is to say, it is an even
chance that the ratio of the axes lies between the l'0006 and '990512. In
other words, it results from Dr Winnecke's observations that it is an even
chance that the figure of Mars lies between a prolate spheroid, with an
ellipticity of y^gy, and an oblate one with an ellipticity of T ^ ; the observed
values give an ellipticity of

Dr Winnecke himself says, " Es sprechen diese Messungen entschieden
gegen eine Abplattung dcs Mars, die fur das Berliner Instrument messbar
ware."

Now the telescope shows that Mars has an external physical constitution
exceedingly like that of the Earth, and therefore there is a strong probability
that its internal structure is somewhat the same. Seeing then that the
observations of the best observers permit such very wide limits of error, and
that the value of m can be assigned with some precision, I submit that there
is a far better chance of being near the truth in trusting to indirect evidence
than to direct observation, for the determination of the ellipticity. Assuming
then that the law of internal density is the same as in the Earth, I find an
ellipticity of -^g, and this, I venture to think, is nearer the truth than any of
the above-quoted values derived from observation*.

§ 6. Mercury, Venus.

M. Plana assigns as the values of m for these planets, l/325'82 and
1/251'54 respectively; and following the arguments used in the case of Mars
(although they have not here equal force), we should assign to Mercury an
ellipticity of about •s^-s, and to Venus of about ^ .

* [This paper was written before the discovery of the Martian Satellites. I find from Asaph
Hall's Observations and Orbits of the Satellites of Mars (Washington Government Printing Office,
1878), that the mean distance of Deimos is 32"-3541, and of Phobos 12"-9531; their periodic
times are respectively ld-262429 and 0d-3189244.

If we adopt Winnecke's value of the equatoreal radius of Mars, viz., 4"-6135, we find that
Deimos furnishes for m the value ^l-g (1 - e), and Phobos gives -^^ (1 - e). Hence m must be very
nearly equal to 1/228, agreeing closely with Hersehel's value given above.

Now from the table in § 1 we see that 5m/2e must lie between 2 and 3-290. Hence the re-
ciprocal of 6 must lie between 184 and 300.

From the general similarity of Mars to the Earth, it seems reasonable to suppose that 5m/2e is
about 2-525, this would make the ellipticity of Mars 1/230, agreeing nearly with Winnecke's
value. November, 1908.]

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.008
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.008
https://www.cambridge.org/core


1877] SUMMARY. 67

§ 7. Conclusion.

The results arrived at may be summed up as follows:

The values assigned by Laplace to the precessional constants of Jupiter
and Saturn cannot be maintained ; and the objections to them remain equally
strong when later observations are consulted.

Professor Adams's calculation of e — \m gives, as the ellipticity of Jupiter,
1/16-02.

The surface density of Jupiter is far less than the mean, and he may
perhaps still be in a semi-nebulous condition.

There is a considerable probability that the like is true of Saturn.

The value of Jupiter's precessional constant is about '0548; and that of
Saturn probably about "06. No dependence is to be placed on the obser-
vations of the ellipticity of Mars, because of their wide limits of error.
Indirect evidence of the ellipticity seems safer, and we are thereby led to
assign to him an ellipticity of ^ B . [But observations of the satellites indicate
an ellipticity of about îhy-] I n the cases of Mercury and Venus, we have
only indirect evidence to rely on, and these ellipticities are probably about

ah a n d shs-

In conclusion, I must add that if in any case I have underrated or neglected
the work of important observers, or have overrated the worth of other obser-
vations, my excuse must be my previous slight acquaintance with observational
astronomy.

POSTSCRIPT.—The method of this paper may perhaps give some idea of
the amount of difference which might be expected to be found between the
apparent equatoreal and polar diameters of the Sun.

To find m, the Earth may be treated as a solar satellite, and the same
formula as before applied. d/D is here the Sun's mean apparent radius
(which I take as 961""82) in circular measure.

T = 365-2569 m. s. days.

t, according to Carrington, is 25'38 m. s. days.

But Mr Christie (to whom I owe my thanks for his help in this matter)
informs me that the true period may perhaps be 26 or 27 days. The following
results are therefore given in duplicate; in those marked with an accent t is
taken as 27.

Then m = -00002100, or m = -00001829.
5—2
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68 PROBABLE AMOUNT OF THE SUN'S ELLIPT1CITY. [5, § 7

If the law of internal density were the same as in the Earth, we should
have,

e =-00002048, or e' = "00001784

These correspond to differences of apparent diameter of 0"'0394 and
0"-0343 respectively. If the Laplacian law of density were to hold good,
and if the surface density were zero, we should have, e='00001596, or
6' = -00001390, which correspond to differences of 0"*0307 and 0"-0267
respectively.

Mr Christie informs me that the probable error in the determination of
the Sun's apparent diameter is not less than 0"'l, and it appears that the
observed difference of diameters is also 0"'l.

May we not conclude that the difference of the apparent diameters is
probably less than 0"'04, but perhaps greater than 0"'03 ?
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6.

ON THE FIGURE OF EQUILIBRIUM OF A PLANET OF

HETEROGENEOUS DENSITY.

[Proceedings of the Royal Society, xxxvi. (1884), pp. 158—166.]

THE problem of the figure of the earth has, so far as I know, only received
one solution, namely, that of Laplace*. His solution involves an hypothesis
as to the law of compressibility of the matter forming the planet, and a
solution involving another law of compressibility seems of some interest, even
although the results are not perhaps so conformable to the observed facts
with regard to the earth as those of Laplace f.

The solution offered below was arrived at by an inverse method, namely,
by the assumption of a form for the law of the internal density of the planet,
and the subsequent determination of the law of compressibility. One case of
the solution gives us constant compressibility, and another gives the case
where the modulus of compressibility varies as the density, as with gas.

It would be easy to fabricate any number of distributions of density, any
one of which would lead to a law of compressibility equally probable with
that of Laplace; but the solution of Clairaut's equation for the ellipticity of
the internal strata of equal density seems in most cases very difficult. Indeed,
it is probable that Laplace formulated his law because it made the equation
in question integrable, and because it was not improbable from a physical
point of view.

* Since this paper was presented I have seen a reference to a paper by the late M. Edouard
Eoohe, in Vol. i. of the Memoirs of the Academy of Montpellier (1848), in which the problem is
solved, when the rate of increase of the density varies as the square of the radius. See Tisserand,
Comptes Bendus, 23rd April, 1883.

t Laplace's hypothetical law of compressibility arises from a law of internal density for
which the problem had previously been worked out, as an example, by Legendre. See Tod-
hunter's History of the Figure of the Earth, Vol. n., pp. 117 and 337.
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70 THE ELLIPTICITY OF STRATA OF EQUAL DENSITY. [6

The following notation will be adopted:—

For an internal stratum of equal density let

r be the radius vector of any point,

a the mean radius of the stratum,

e the ellipticity,

w the density,

<f> colatitude from the axis of rotation,

p the hydrostatic pressure at the point r, (p.

For the surface let t, a, t, fa denote the similar things.

Let M be the mass of the planet, p its mean density, a> the angular
velocity of rotation, m the ratio &>2/|7T/3.

Let k be the ratio of the density of the stratum a to the mean density of
all the matter situated inside that stratum, and fe the surface value of &*.

Let C, A be the greatest and least principal moments of inertia of the
planet about axes through its centre of inertia.

Let (B be the ellipticity which the surface would have if the planet were
homogeneous with density p, so that ce = %tn.

The condition that the surface of the planet is a level surface is satisfied by

C - A = |Ma 2 (0- |m) (1)

The condition that the internal surfaces are also surfaces of equilibrium
demands that e should satisfy Clairaut's equation

( p 6<LUa
wa>da +2wa* (¥ + *) = o (2)

\da? a?J Jo \da a/
It may be proved from (2), and the consideration that w must diminish as

a increases, that e cannot have a maximum or minimum value.
Also it may be shown that the constants introduced in the integral of

this equation must be such that

when a is put equal to a after differentiation.

The mean density is given by

a3p = 3 I wa?da (4)
Jo

. , i. fa
A n d fe = -

P
* h, ft, are the reciprocals of/, f, according to the notation adopted in Thomson and Tait's

Natural Philosophy (edit, of 1883), § 824.
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1884] ASSUMPTION AS TO THE LAW OF DENSITY. 71

Neglecting the ellipticity of the strata, we have the moment of inertia
about any diameter of the planet given by

wa4da (5)
' o

The ratio of (1) to (5) gives the precessional constant. The pressure and
density are connected by the equation

1 dp . \ , 4?r [a , , A tK.
—f- + 4<Trwa \da-i wa?da = 0 (o)
w da ) a J o

Now if •sr be a function such that wdp = dnr, the differentiation of (6)
leads to

da

and a second differentiation to

-T wa?da=0 (7)
a2 Jo v '

(8)

It is well known that Laplace assumed that the modulus of compressibility
of rock varies as the square of the density. Since this modulus is wdp/dw,
Laplace's hypothesis makes ts proportional to w, and the equation (8) is at
once soluble.

After the determination of w as a function of a, the solution of all the
other equations follows.

In this paper I propose to find a new solution, and to compare the results
with those of Laplace.

In order to simplify the analysis let the unit of length be equal to the
mean radius a of the planet, and the unit of time be such that the surface
density h) of the planet is also unity.

Now let us assume that the law of internal density is

w = a~n (9)

Then the mean density of all the matter lying inside the stratum a is
a~nj(l — \ri). Hence, by definition we have

h = \-\n (10)

Thus we see that k is a constant for all strata, and therefore also for the
surface. In Laplace's theory k is variable. With our assumed law of density
and the special units, p the mean density is equal to the reciprocal of k.

It is clear that n must be positive, otherwise heavier strata lie above
lighter, and it must be less than 3 in order to avoid infinite mass at the
centre of the planet.

Now let us find the law connecting pressure and density, and the modulus
of compressibility.
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72 THE MODULUS OF COMPRESSIBILITY. [6

Equation (7) becomes
a

l—n

da -3 1 - \n

and by definition of w and the assumption (9),
dp _

4 a''

Integrating this, with the condition that the pressure vanishes at the
surface, we have

whence the modulus of compressibility is

, . , ^ X — irrr - OI)-2 (l—»)/»

aw 6 n(l—$n)
The case of n = 1 is interesting; it gives a constant modulus of com-

pressibility equal to 2TT, and the law of pressure p = 2TT log w.

If n be less than unity the compressibility, or reciprocal of the modulus,
increases with the density, which is of course physically improbable. If n be
greater than unity and less than 3, the compressibility becomes less the
greater the density. The assumed law probably does not give such good
results as those of Laplace, because the decrease of compressibility with
increasing density is not sufficiently rapid.

The range of n = 3 to n = 1 gives the results which possess most physical
interest.

In comparing results with those of Laplace there will be occasion to
express the modulus as a length; that is to say, we are to find the length of
a column of unit section whose weight (referred to the surface gravity of the
planet) is equal to the force specified in the modulus.

Now if g be gravity

Hence the modulus is - Wnn-Dm _ «ajjj x _ ( ) the units a, to being
n J n Vto/

reintroduced to give the expression the proper dimensions. Now ^ato is a
pressure, and therefore the lensrth of the modulus is - h- 1 . Thus the

& n Vto/
surface matter has a length modulus equal to a/n.

Now let us find the ellipticity of the internal strata.
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1884] THE ELLIPTICITY OF STRATA OF EQUAL DENSITY. 73

Substituting for w from (9) in (2), we have

d?e _ ,n > de e
a -f—, + 2 (3 -n)-j 2m - = 0

da- da a

If the solution be assumed of the form e = ca?, ft must satisfy

/3 (/9 - 1) + 2 (3 - n) /3 - 2ra = 0

whence ft = - ( f - w) + V{(f)2 ~ w ( 3 ~ «-)}

Now re(3 —n) is a maximum when it is equal to (f)2, and therefore the
square root can never become imaginary.

From the sign of the last term in the equation for ft, it is clear that one
of the values of ft is negative. Hence to avoid infinite ellipticity at the
centre, the c corresponding to the negative root must be zero. Hence the
solution of Clairaut's equation (2) is

The surface value of - -y- (ea2) is clearly n — ^ -f VKf)2 — n(3 — n)}. Thus

from (3) we have

_ - w « _ n + i ./(C5\! _ „ / ' } _ « v

Then substituting for w from (9) in (5),

8TT

3 (5 - w)

And since M = ^irp = f 7r — , we have for the precessional constant

C - A 5 - m , , ,

Now let us collect these results, and express them in terms of k instead
of n. The solution is

w = a"3'1-*'

And the mass inside any radius a is -^j- a3k

OK
,j0 (4-6*1/(3-3*) _ J

dp W(4-6*)/(S-3*>

dw J 3k (1 — i )

And when & = § . p = 27rlogw, w -^- = 2TT, W = a"1
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74 ALGEBRAIC RESULT OF THE SOLUTION. [6

The length of the modulus at the surface is 1/3 (1 — k) of the planet's
radius.

C - A 2 + 3* . . ,

- c - = -ab-(«-*»0
Any value from unity to an infinitely small value may be assigned to k,

that is to say, we may have any arrangement of density from homogeneity to
infinitely small surface density, but if k be greater than f the compressibility
increases with the density, which is physically improbable.

The infinite density and infinite pressure, which occur in this solution
actually at the centre, may be avoided by imagining the centre occupied by
a rigid spherical homogeneous nucleus, of very small radius ha, and of density
l/kSa^-kK

We have to compare this solution with Laplace's.

For this case k is not constant, and its surface value is ft.

Let ^ = ajic, where K is a constant, being the arbitrary constant introduced
in this solution; and let 0 be the surface value of S*.

mi I j. • $ s m S

1 he solution is w = =-

And the mass inside any radius a is

sin 6

'ik

dp ,
W -~- = 47TK2 W2

aw
7 ^

3(1 — ^ (
The length of the modulus at the surface is 1/(1 - 0 cot 6) or 3ft#-2 of the

planet's radius.
62l-k

(B 62

t 6 (1 - ft)
C = [ l -6( l

C-A 1
C ~ i _ 6 ( l - f t ) 0 - 2 {Z ~ *m)

* See Thomson and Tait's Natural Philosophy, 1883, § 824.
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1884] NUMERICAL RESULTS OF THE SOLUTION. 75

The following table gives the numerical values of the solution, together
with columns for comparison with the results of Laplace's theory, for various
values of the ratio of surface to mean density. The case of ft = 0 gives the
planet infinite mass at the centre, and the values are only inserted in order
to complete the series.

ft

1-0
•9
•8
•7
•6
• 5

•4
•3
•2
•1

•o
•667
•333

Length mod.
at surface

in terms of
a as unity

CO

3-333
1-667
1-111

1-
1-
1-
1-
1-
1-
1-

1
1-

-1-2
-1-5
-1-8
-2-1
-2-4
-2-7
-3-0

•000
-2-0

e = tax

where
x =

o-ooo
0-132
0-293
0-488
0-722
1-000
1-322
1-688
2-093
2-532
3-000

0-562
1-562

fB

e

1-000
1-066
1-147
1-244
1-361
1-500
1-661
1-844
2-047
2-266
2-500

1-281
1-781

Laplaee

t

1-00
1-04
1-09
1-15
V21
1-27
1-34
1-41
1-48
1-56
1-65

1-17
1-39

C - A
C (I - frit)

1-667
1-741
1-833
1-952
2-111
2-333
2-667
3-222
4-333
7-667

CO

2-000
3-000

Laplace
C-A

C(t-iro)

1-67
1-71
1-77
1-83
1-90
1-98
2-07
2-17
2-28
2-40
2-55

1-85
2-13

pan (w"~l)
where

y=

— ao
-4-667
-1-333
-0-067

0-333
0-667
0-889
1-048
1-167
1-259
1-333

p oc log w
1-000

Note.—The values in the two columns applicable to Laplace's theory were found by
graphical interpolation from a series of values given in [Paper 5, p. 58], or Thomson and
Tait, Natural Philosophy (1883), § 824'.

In Laplace's theory p<x (w2—1), and the modulus of compressibility aw2. In the
present theory the modulus oc wy.

The value ft = -667 corresponds to constant compressibility, and fc=333 to gaseous
compressibility.

One of the grounds on which Laplace's solution is held to be satisfactory
is that if we take the value of as, as determined by the known angular velocity
and mean density of the earth, and the value of t as determined by geodesy,
and find the value of ft, the ratio of surface to mean density, which corre-
sponds with the ratio ce/t, this same value of ft is found to give a proper value
to the coefficient of t — \m, so as to obtain the observed precessional constant.
To be more precise, m is found to be l/289'66, which gives ce = l/231-7, and t
has been found to be approximately 1/295. These give ce/t = 1"273, and this
corresponds with ft = l/2'06 = '49. This value of ft, with the same values of
e and m, gives the precessional constant as -0033, and Leverrier and Serret
give its value as •00327.

Now it appears remarkable that almost as good a correspondence is
obtainable from my solution. The value ce/t = 1'273 corresponds with ft = -675,
and when ft =-675 the coefficient of t—\m in the precessional constant is
1'99, which gives the same precessional constant -0033.
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76 DISCUSSION OF THE RESULTS. [6

This value of ft corresponds very nearly with constant modulus of com-
pressibility, and with pressure determined by p = 2ir log w.

It is claimed in favour of the Laplacian hypothesis that it corresponds to
a surface density which is nearly a half of the mean density of the earth, and
that we know that average rock has a density of about 2'8. Also it is pointed
out in Thomson and Tait's Natural Philosophy that the length modulus of
compressibility of the surface rock is about 1/4*4 of the earth's radius, which
is very nearly the observed length modulus of iron.

These conditions are not well satisfied by the present solution, for the
surface density is found to be "675, or 1/T48 of the mean density of the planet,
whence the specific gravity at the surface is 3-7; and the length modulus at
the surface is equal to the planet's radius. It is to be admitted that this
density is large, and that the substance is also highly incompressible.

Thus in these respects the Laplacian hypothesis has the advantage. It
seems to me, however, that too much stress should not be laid on these
arguments. We know nothing of the materials of the earth, excepting for a
mile or two in thickness from the surface, hence it is not safe to argue con-
fidently as to the degree of compressibility of the interior. There seems
reason to believe that there is a deficiency in density under great mountain
ranges, and this would agree with the hypothesis that our continents are a
mere intumescence of the surface layers.

According to this view we might expect to find a rather sudden change in
density within a few miles of the surface. Now in any theory of the earth's
density such a sudden change in the thin shell on the surface could not be
taken into account, and the numerical value for the surface density should be
taken from below the intumescent layer if it exists. Hence it is not unreason-
able to say that a solution of the problem, which gives a higher surface density
than that of rock, lies near the truth. I do not maintain that my solution is
as likely as that of Laplace, but it is not to be condemned at once because it
does not satisfy these conditions as to the density and compressibility of rock.

The two cases which are given at the foot of the above table each possess
an interest, the first of constant compressibility, because it corresponds with
the case of the earth, and the second of modulus of compressibility varying
as the density, because this is the gaseous law.

With constant compressibility the internal ellipticity varies as the -562
power of a, or nearly as the square root of the radius; with gaseous com-
pressibility it varies as the T562 power of a, or nearly as the square root of
the cube of the radius.

A numerical comparison of the case of constant compressibility with
Laplace's solution for ft = i gives the following results :—
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1884] DISCUSSION OF THE RESULTS. 77

a =

(Laplace) - =

(Constant e
compress.) c

0

0

0
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•812

•459
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•693

S-a

•902

•851

a

1-000

1-000

Thus the Laplacian solution attributes much higher ellipticity to the
internal strata. The solution with constant compressibility in fact gives so
large a proportion of the mass in the central region, that attraction has a
greater influence compared with rotation, than in the solution of Laplace.

POSTSCRIPT.—If, as is not improbable, the increase of density in the
interior of the earth is due rather to the heavier materials falling down to
the centre than to great pressure compressing the material until it has a high
density, then the determination of a modulus of compressibility would be
fallacious, and it would be more logical to leave the expressions for the
pressure and the density both as functions of the radius, without proceeding
to eliminate the radius and to form an expression for the modulus of com-
pressibility. I owe this suggestion to a conversation with Sir William
Thomson.
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7.

THE THEORY OF THE FIGURE OF THE EARTH CARRIED
TO THE SECOND ORDER OF SMALL QUANTITIES.

[Monthly Notices of the Royal Astronomical Society, LX. (1900),
pp. 82—124]

INTRODUCTION.

As far as I know, Airy was the first to include quantities of the second
order in investigating the theory of the Earth's figure; his paper is dated
1826, and is published in Part III. of the Philosophical Transactions of the
Royal Society for that year.

He gave the formula for gravity which I have obtained below (§ 6 (40)).
Our results would be literatim identical but that my e is expressed by
e -=- (1 — e) in his notation, and that I denote by — f the quantity which he
wrote as A. He also established equations, equivalent to my (13) and (14),
which express the identity of the surfaces of equal density with the level
surfaces. He remarked that these may be reduced to the form of differential
equations, but he did not give the results, since he found himself unable to
solve them, even for an assumed law of internal density. I have succeeded in
solving these equations in this paper.

Airy further concluded that the Earth's surface must be depressed below
the level of the true ellipsoid in middle latitudes. He gave no numerical
estimate of this depression, but expressed the opinion that it must be very
small.

In the second volume of his Hohere Geoddsie, Dr Helmert has also
investigated the formula for gravity to the second order of small quantities.
The expression for gravity which has been compared with the results of
pendulum experiments by Dr Helmert was taken as having no term dependent
on the fourth power of the sine of the latitude. The results of the experiments
are somewhat irregular, and there was no apparent advantage in the inclusion
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1900] PREVIOUS INVESTIGATIONS. 79

of such a term ; accordingly Dr Helmert assumed that such a term is actually
evanescent, and pointed out that this implies that the Earth's surface is
elevated above the true ellipsoid, instead of being depressed below it, in
middle latitudes. There can, I think, be no doubt that there should be
depression, and it therefore seems as if it would be safer to adopt such a
formula as that given below in § 6 (41) in future reductions of pendulum
experiments.

In volume xix. (1889, pp. E, 1-84) of the Annals of the Observatory of
Paris M. Callandreau has carried out an elaborate investigation of the
problems considered in this paper. The publication of my work might,
indeed, have been unnecessary were it not that my procedure is, as I think,
simpler than his, and that my formulae are presented in a more tractable
shape. I have, however, in some respects, as for instance in the numerical
solution of the differential equations, carried the work somewhat further than
he has done; but, on the other hand, he has considered several interesting
points on which I do not touch. Our two methods differ in detail from first
to last, and it would be rather troublesome to compare them from point to
point. I have then been satisfied with the knowledge that we are travelling
along parallel roads. M. Callandreau has also written a short but valuable
note on the same subject in the Bulletin Astronomique for 1897. I refer to
this paper in § 12.

Lastly Professor Wiechert has published an important memoir on the
distribution of masses in the interior of the Earth in the Transactions of the
Royal Society of Sciences of Gottingen (1897, pp. 221-243). He has there
adduced weighty arguments in favour of the hypothesis that the Earth
consists of an iron nucleus with a superstratum of rock. He also has taken
into account quantities of the second order, and has calculated interesting
numerical results corresponding to his theory. I refer to this paper in §§ 10,
12, and in the summary.

The first part of my paper contains the mathematical investigation, and
this is followed by a summary and discussion of results.

MATHEMATICAL INVESTIGATION.

§ 1. The Moments of Inertia and the Potential of a homogeneous
Spheroid.

The equation to the surface of a homogeneous oblate ellipsoid of revolution
of density w whose semi-axes are a and a (1 — e) is

where r is the radius vector and 6 the colatitude measured from the axis of
revolution.
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80 EQUATION TO A SPHEROID EXPRESSED IN HARMONICS. [7, § 1

If the cubes and higher powers of e are neglected, the equation may be
written

r = a {1 - e cos2 6 - §e2 sin2 6 cos2 6}

Now let us consider a spheroid of which the equation is

r = a {1 - e cos2 6 + ( / - f e2) sin2 6 cos2 6}

where / is of the same order of magnitude as e\
This surface has ellipticity e, and the excess of its radius vector over that

of the true ellipsoid is af sin2 6 cos2 6. The maximum excess occurs in
colatitude 45°, and it amounts to \af.

I now introduce the zonal harmonics

P2 = f c o s 2 0 - | , P4 = %& cos4 0-JL« cos2 <9+f

so that cos2 6 = §P3 + i, sin2 6 cos2 6 = - ^ P ( + ^2
TP2 + T%

Accordingly, the equation to the spheroid may be written

This form of the equation will be needed hereafter, but for the present it
is convenient to regard the body as consisting of a homogeneous ellipsoid of
density w, and with semi-axes a and a (1 — e), together with the excess above
the ellipsoid of a body of which the equation is

r = a { l + A / + & / P 2 - & / P « } (2)
The developments will only be carried to the order e2, and therefore we may
regard this excess as a layer of surface density

distributed over the surface of a sphere of radius a.

The mass of the excess is clearly 4nrwaP (xsf), and the mass of the ellipsoid
is |7rwa3 (1 — e) ; hence the mass of the spheroid is given by

M = lsTrwa3(l-e + %f) (3)

If p, 0, <j> be the polar coordinates of a point whose Cartesian coordinates
are x, y, z we have

*2 + f = !P2 (i - P,), {£ I * = i r (i + ip*) ± iP2 sin2 e cos 2<£
Now let C, A', denote the moments of inertia of the shell (2) about the

axes of z, and of a; or of y, and we have

integrated throughout the layer comprised between the surface (2) and the
sphere a.
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1900] THE POTENTIAL OF A HOMOGENEOUS SPHEROID. 81

Then, since \pidp = \a? {§/+ Jx/P2 — jfP^, and since the integrals over

the surface of a sphere of a spherical harmonic, and also of the product of two
harmonics of different orders vanish, we have

C = 4nrwa> (T\f - ^T/P2
2) sin 6dd

A' = i-n-wa51 * (&/+ A-/P,1) sin Odd
Jo

Also | Ps
2 sin Odd = §, and therefore

Jo
C = T%7rWa5 (f-/), ^ ' = ^Trwa5 ( f / )

Now denoting the moments of inertia of the homogeneous ellipsoid by
G", A", we have

G" = ^Trwa5 (1 - e), A" = ̂ irwa? (1 - 2e + f e2)

The sums C + G", A' + A", give the moments of inertia of the spheroid; so
that

It is, in the next place, necessary to evaluate the potential of the spheroid
both internally and externally, and I will begin by considering the part con-
tributed by the shell defined by (2). It consists of a spherical shell of mass
-^g-mva?/ and radius a, together with surface density -£lwafPi—-^wafPi.
Accordingly, if Ue', TJ( denote the external and internal potentials

U: = &7rwa*£+ %-K . &waf. £ P2 - f TT . tfwaf. £ P ,

Ut' = ^7rwa2/+ \ir . ftwaf. T- P2 - |TT . f-gWaf. - P4

We have now to find the external and internal potentials of the ellipsoid,
which may be denoted by Ue", 17/'.

It is well known that the external potential of an ellipsoid of revolution
of semi-major axis a, eccentricity rj, and mass M' is

Also if 7) — sin 7, the internal potential is

Ut" = W? - f J*L- (7 - sin 7 cos y) (x* + f)
sin 7 4 a3 sitf 7

- f -j-T-r- (tan 7 - 7) z2
2 a? sin3 7

Now

D. III.
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82 THE POTENTIAL OF A HOMOGENEOUS SPHEROID. [7, § 1

Also (^ + 2/2) = § r 2 ( l -P 2 ) ( *2 =

Therefore

But 7/2=2e(l —|e) and M' =^irwa3 (1 — e), and on substitution in the
above formulae it will be found that

U" = iirw£(1 - e ) - f t T T W ^ e (1 - | e ) P 2 + tfir«, £ e2P4

U" = 27rwa2 (1 - \ e - |e2) - §7rwr2 - ^Trwr2(e + T\e2) P2

The external potential t7e of the spheroid is equal to Ue' + Ue", and the
internal potential TJ{ is equal to XJ{ + U". For application to the problem
of the figure of the Earth the potential of rotation must be added, and if m
be the angular velocity of rotation, this potential is

^&)2r2sin20 or £&)2r2(l-P2)

Now let Ve, Vi be the external and internal potentials, inclusive of
rotation, and we have

% 4 + Wr*(1 - PJ

- | e - | e 2 + f % / ) - fTrw/r2

- (e + £e* _ | / ) p2 _ m^w £fPi + Wr> (1 - P2)

The first term of V{ is independent of r, ^ and is only inserted in order
that V may be a continuous function at the surface of the spheroid.

It will be supposed hereafter that the heterogeneous Earth is built up of
layers of density w, bounded externally and internally by spheroids defined
by a + Sa, e + 8e,f+ Sf and a, e, f. It is obvious that the potential of such a
body may be written down from (5) by replacing each term by an integral.

If a, e, f denote the superficial values of a, e, f we shall have such
integrals as

a and pw*-[e + &*-lf

For the sake of brevity I shall write these

Pwd[a5(e--§e2-f /)J and \&wd [e + ^ e 2 - }/]
JO J a
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1900] A HETEROGENEOUS PLANET. 83

It may be well to note here that for the heterogeneous Earth

r = f TT Trod [«•(!-« + / ) ] '
Jo

M-.

A = ^ T T Fwd [as (1 - 2e + fe2 + • £ / ) ] !
Jo I

.(6)

§ 2. Heterogeneous Planet. The surfaces of equal density are
level surfaces.

I t will now be supposed that the substance of which the heterogeneous
planet is formed is plastic enough to allow the surfaces of equal density to be
level surfaces.

I t is necessary to write down the potential of the planet at any internal
point, and for this purpose I find it better to introduce a new parameter in
place of the ellipticity e. This parameter is h, defined by

A=e-ffe2-|/ (7)
I do not quite understand why this substitution should lead to simplifi-

cation, but I may remark that h = e — 2e2 — \ (/— |e2), and that / — f e2 is the
coefficient of sin2 6 cos2 8 in the equation to the spheroid. Thus the existence
of the fraction f f is in some sense explained.

I t will be found that the equation (1) to the stratum a, in terms of this
parameter, becomes

r = a {1 —\h — \^h? + i\f— %h (1 + 2/t) iJ
2 + -^ (%h? — / ' ) P*} • • -(8)

Also G = f^TT F wd [a5 (1 - h- f»A2 + f / ) ] )
J[ [ (9)

G - A = ^ T T Fwd [a6 (h + f
Jo

Let us now for brevity write
ra j-a

So = wd [a3 (1 — e +1/)] = / wd [a3 (1 — h —
Jo Jo

S2 = Fwd [a6 (e - | e 2 - }/)] = Fwd [a5 (h + f A2)]
Jo Jo

St = j\d [a7 (e2 - f/)] = j^wd [a7 {h? - f/)]

T2 = I wd [e + ^e- — | / ] = 1 wd \h
J a J a

6—2
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84 THE SURFACES OF EQUAL DENSITY LEVEL SURFACES. [7, § 2

The terms of the second order in So are not required, so that, in fact,

I take So = Fwd [a3 (1 - h)].
Jo

The formulae (5) and (10) enable us to write down the potential at any
internal point as follows:—

(i i )
If it be assumed that the equipotential surfaces are also surfaces of equal

density, the equation V = constant must be reducible to the form (8). Hence,
if in (11) we attribute to r the value (8), the coefficients of P2 and of P4 must
vanish. In effecting this substitution we attribute to r its full value in the
term of the lowest order, namely S0/r; in terms of the first order, namely
those involving S2, T2, and w2, we may put a ( l — \h — §/*P2) for r; and in
the terms of the second order, namely, those involving $4 and Tit we simply
put a for r. A consideration of (11) shows that there are several functions
of r, P2, P4, which will have to be evaluated, and it is obvious that the
expressions in question, when developed to the required order, will involve
Pi. But

P2
2 = i + | P 2 + | | P 4

and it will be found by aid of this formula that, to the required order of
approximation,

....(12)

J2 (1 - P3) = 1 - $h - (1 + f h) P2 + f|/*P4

By aid of (12) it may be shown that the conditions that the level surfaces
shall be surfaces of equal density are

(14)

Since w^a3/^ is a quantity of the same order as h, (13) involves terms of
two orders, but (14) consists entirely of terms of the second order.

If the terms of the second order be omitted, (13) becomes
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1900] THE SURFACES OF EQUAL DENSITY LEVEL SURFACES. 85

This may be used for the elimination of T3 and of a>2 from (14); for
multiplying it by 2h and adding it to (14) we have

f A s ) - 3 | A + f § - K ^ = 0 (16)

The conditions for the identity of the two surfaces are then (13) and (16).

In order to obtain the differential equations to be satisfied by h and / , it
is necessary to eliminate the 8 and T integrals by differentiation, and the
results may be much simplified by the use of the approximate form (15) of
(13), and of its derivatives.

Our first task is, then, to pursue the approximate equation (15).

The equation (15) may be written in the form

®?h-2-~- &T - 56"2 = 0
a3 5 a 6 5 2 87r

ra
To the same degree of approximation we have $0 = 3 wo? da, so that

Jo

-=-? = So' = Swa2. It follows, therefore, that
ctG

On differentiating our equation and using (17) we find

Differentiating again, and effecting some reductions, we have

fdh , (19)

It would be easy, by means of (18), to eliminate S2 from the terms of the
second order in (13), but I prefer to postpone that elimination for the present;
we can, however, at once eliminate it from (16). Effecting this elimination,
and repeating (13), our conditions are

The equation (19) has not been used yet, but it will prove useful
hereafter.
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86 THE DIFFERENTIAL EQUATIONS TO BE SATISFIED. [7, §§ 3, 4

§ 3. The Differential Equation for f.

By differentiating the second of (20) and using (17) and (19), I find

S^lf-sl + ̂ -nf + a^l-^-S^O (21)
[da a l a da \daj j

Differentiating again, and again using (17) and (19), I find

ada

4- +
2 / -4 A ;-6^-3ff )Uo ...(22)

ada a2 a2 ada \da/ )

I now introduce a new symbol w0, which is to denote the mean density of
all the matter lying inside the spheroid defined by a; then

= I wda3 = w^a?
Jo

So' =

In obtaining this result the ellipticity of the spheroid has been neglected,
but for the present this approximation suffices, and (22) is then easily
reducible to the form

w0 ada

_ ( 1 + 9 « ) ( £ Y = O...<23)
1 wj \daj •

This is the differential equation for f, and I shall in § 9 solve it on the
assumption of a certain law of internal density of the Earth.

§ 4. The Differential Equation for h.

I now return to the first of (20), and divide it by a" (1 — ff-A), so that it
becomes

| ( A + f f A ' ) - § | ' ( l + M A ) - f ^ - | ^ ( l + * A ) = O (24)

As a preliminary to the differentiation which will eliminate the T2 integral
I indicate certain transformations.

We have So = fwd [a3 (1 - h)]
Jo
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1900] THE DIFFERENTIAL EQUATION FOR THE ELLIPTICITY. 87

If S2, T2 as defined in (10) be differentiated, and if the value of w as given
in (25) be used, it will be found that

da a"
dh
da

fi8 dh ,1
J 1 da 6 \ da

and

^(26)

* T ^ " " d o ~ ^

On differentiating (24) and using (26) and (18) it will be found that

h , dh nh
2

 7aldh , , fdhy) &>2a6 dh „ . _
• hT^ i T + ^ • ' ^ T 1" 7-i-a -̂ — >• r; i— =: 0 . . . (27)

a A da 'a bA da h" \daj ) DTT da v y

On differentiating (27) and again using (26) and (19) in the small terms
it will be found that

da? a2

,dh
' da

th
' a

ah~
da

3a)2a2.

dh

Since So = w0a3(l — h), it follows from (25) that

So' 3 w I dh\
So a wo\ ^ da)

I shall later denote by m the ratio of equatorial centrifugal force to
equatorial gravity, and by an extension of this notation I will now write

.(29)

m •• (30)

By means of (29) and (30) equation (28) becomes

da2 w0 ada w ada -Ht)
. (h dh\\ . ._,.
4m —+—r = 0 ...(31)

Va2 ada)\ v '
This is the differential equation to be satisfied by h. If the terms of the

second order be omitted it is the equation for the ellipticity of internal strata
as given in any treatise on the theory of the figure of the Earth.
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88 RADAU'S TRANSFORMATION FOR THE ELUPTICITY. [7, § 5

The transformation by which h was substituted for e has enabled us to
obtain an equation for h in which f is not involved. Moreover h has been
chosen as such a function of e that all the latter terms are multiplied by the
simple factor 1 — wjw0, instead of by various more complex functions of the
density, as was the case in the differential equation for/.

§ 5. Radaus form of the Differential Equation of the Ellipticity.

I shall now include the terms of the second order in M. Radau's very
remarkable transformation of the equation of the last section.

Since woa
3 (I - h) = {"wd [a3 (1 - A)]

Jo

., , „ , w n , /-, . dh\ adw0

it follows that — = l | l 1 + k - r —5-̂
w0 v da) wada

The equation (31) may therefore be written

d-A - dh adiv0 I dh A\
da2 ada wada \ad~a a-/

,adwn(^.h3
 rnhdh „ , fdhV . I dh h\) .

" woda { a? ' ada ' \daj \ada a2/)

The last term here includes all the terms of the second order.

TJ, . adh
It we write ri = }—=-

hda

- A ( dV. _ , su
a'2 a2 \ da I'

^ - A ( V. _ , su ^^
da'2 a2 \ da I' ada a'2

Thus the equation becomes

dv r o adw0

da
da woda

Now it is easy to prove that

dn 2V(l+i)) d , / adwo\
aa w0a

4 aa / J V wodaj

Therefore the equation may be written

- 1 0 ( 1
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1900] INCLUSION OF TERMS OF THE SECOND ORDER. 89

I n t h e t e r m s of t h e s e c o n d o r d e r w e m a y p u t — r 5 e q u a l t o — 3 ( 1
J r woda ^ V w0

therefore

...(33)

This is M. Radau's equation, with the inclusion of the terms of the
second order. These terms have been determined by M. Callandreau, but
the form in which he gives them appears to me more complicated than the
above.

Let us consider the function within { } on the right-hand side of the
equation (33), and in the first place omitting the terms of the second order

consider the function jjzj-—"*? .
V(l + v>

It is equal to unity when t) is zero, rises to a maximum of 1*00074 when
V=h and only falls to -8 when rj = 3. Now it has been proved that TJ is
necessarily less than 3, and is positive*. In all the cases which are likely to
prove of practical interest r] is very much less than 3. In the case of the
Earth, for example, rj is equal to about '56 at the surface, and vanishes at
the centre. Now when rj = '56 this function is equal to '99971. Therefore
between the centre and the surface it rises from unity to l-00074 and then
falls to '99971. It is obvious that any kind of average value of the function,
estimated over the range from centre to surface, can at most differ from unity
in the fourth place of decimals. When the terms of the second order are
included I think the average value is yet nearer unity than when they are
omitted, for in such a case as that of the Earth (1 + \r) — ^Q??2) -H V(l + v) is

greater than unity throughout the greater part of its range, and, although
I cannot prove it absolutely, I believe that

or 18- |§y 2 - + J

is always positive. If this is the case the whole function is on the average
nearer unity than when the terms of the second order are omitted.

Supposing, then, that 1 + X denotes a proper mean value of the function

estimated over the whole range from centre to surface, we must have

a
w0a

4da (34)

Jo
* Professor Helmert tells me that he doubts the universal validity of the proof of this.

I have to thank him for valuable information given me while writing this paper.
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90 THE DETERMINATION OF GRAVITY. [7, § 6

where w0, a, ^ denote the superficial values of those quantities; and we may
feel sure that 1 + \ will not differ from unity until we come at least to the
fourth place of decimals.

I shall in § 12 attempt to use this remarkable result for evaluating the
ellipticity of the Earth's surface from the Precessional Constant.

§ 6. Gravity at the Earth's Surface.

In order to render this presentation of the theory of the Earth's figure
more complete I shall now go on to find the theoretical expression for gravity,
although the same investigation is to be found in various other places.

At the surface of the planet the integrals T^, Tt vanish, and the potential
(11) becomes

3V_S0 ,S2P2 ^ f l P , a>V
4 w r o ^ "I" as ^ "I" 47r U rJ

In this section, as elsewhere, the superficial values of the various quantities
are denoted by Roman in place of Italic type.

Through the vanishing of T2, Tt the equations (20), which denote that the
surface is a level surface, become

It must be observed that the mass M of the spheroid is equal to f7rS0;
and we deduce

The potential may therefore be written

i-sMh+?h'~iT<i-

At the equator r = a, P2 = —|, P4 = §, and equatorial gravity, say ge, is
equal to —dVjdr.

It is easy then by differentiation to show that

(36)
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1900] THE DETERMINATION OF GRAVITY. 91

Now let m denote the ratio of equatorial centrifugal force to equatorial
gravity, so that

w2a
m =

9*
It follows that

= m[l + h - f m + f f h2 - f \ mh + f m2 - f f ] (36)

The function which naturally arises in the consideration of figures of
equilibrium of rotating fluid is the ratio of &>2 to the density. But

M = |7rwoa
3 (1 - h - ffh2 +

Q 2

hence -; = m [1 — f m + f m2 — 4mh — Xf 1

If m were an ideally perfect parameter in which to express our results,
h and f should have entirely disappeared from this equation, since m should
only depend on w2 and w0, and should be perfectly independent of the figure
of the planet.

However, for our present purpose it suffices to take

^ m C l + h - f m ) , or ^ - = m ( l - f m ) (36)

To this order there is no objection to the use of m, and I bow to custom
in continuing to use it.

The potential of the planet may now be written

V = M fl - § ̂  (h - |m + fh2 + \mh + fm2) P2

£($* - fmh - f) P4 + Jm (1 + h - |m)^( l - P2)] ...(37)

It will perhaps be more convenient here to reintroduce the ellipticity
instead of h. I observe, then, that h + fh2 is equal to e — ^e2 — |f, and that
throughout the rest of the expression e may be written for h.

The quantity 1) used by Dr Helmert in his Geodesy (Vol. II. pp. 77—85)
is the same as my |e2 — f me - f, and my results will be found to agree with
his.

We have, then,

V = M [ i - | ^ (e - Jm - £e2 + jme + £m2 - jf)

- f) P4 + Jm (1 + e - f m) £ (1 - P,)]

M
9e = -, [ 1 + e - f m + e* - fjme + |m2 - f f ]

...(38)
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92 THE DETERMINATION OF GRAVITY. [7, § 6

Clairaut's ratio is that of the excess of polar above equatorial gravity
to equatorial gravity. I follow Dr Helmert in denoting this ratio by b ;
so that

At the pole r = a ( l - e ) , P3 = P 4 = 1. If -dV/dr be found and these
values introduced, we get

M
9P = "i (x + m + fme - fm2 - ?f)

M
Then ffP-ge = ~2 (f m - e - e2 + ff me - ifm* - ff)

M
and since to the first order ge = — (1 + e — f m), we have

a

b = f m - e - {|me - \f (39)

The form of the potential shows that the general expression for gravity
must be

g = ge [1 + b cos2 0 + a sin2 6 cos2 0]

where it remains to determine a.

This may be written

g = ge [1 + i t + T%a + (|b + &a) P, - ^«P4]

The value of a is then determinable by finding the coefficient of P4 in the
expression for g.

Now 92=[~j~) "^ \~la) > w n e r e after differentiation the value (1) is

attributed to r.

.. dV M r _ _ ^,n dV M TT , ,, „
Suppose that w— = — Cr0 + U--^ + Cr» , —r̂  = —;Ji1, where the sumxesr r dr a2 "J rdd a2

denote the orders of the several terms; then it is easy to prove that

9-~[GO + 01+G, + ^ .

Since Go is equal to unity as far as the order zero,

In order to find Hx the terms of the second order in (38) are to be
dropped, and we find

dV M o • a a-^p. = — . 2e sm 0 cos 0
rdd a2

Therefore Hx = 2e sin 0 cos 0

and i-H",2 = 2e2 sin2 Q cos2 6
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1900] THE FORMULA FOR GRAVITY. 93

We are only concerned with the term in P4, and this portion of the
M

transverse component of gravity is — if — e2P4.

dV
It is next required to find the term in P4 in — -j-. After the

differentiation of V we shall require to determine the term in P4 in the

following functions, namely, —, ~AP^ —ep4> - (1 — -P2).

Now ^ = - ^ (f e2 - f) P4 + 3 (f e)3 P2
2 + ... = #£P 4 + ...

^P2 = feP2
2+...=§e4fP4+... =ffeP4+...

P - P

It follows that the term in P4 in — d Vjdr has a coefficient

M
- [iff - 2 (e - \m) ffe + f (§e* - |me - f) - fm. tfe]

The term is therefore
M

Then adding the transverse component, it appears that the whole term is

But the coefficient of P 4 was shown to be — f-%gea-', and since ge = M/a2

to the order zero, the coefficient in the expression for g is given by

In the expression for gravity the geocentric colatitude 6 is used, and it
remains to introduce the true colatitude X, which is connected with 6 by the
formulae

0 = X + 2e sin X cos X

and cos2 6 = cos2 X — 4e sin2 X cos2 X

Thus finally

g=ge[l + b cos2X - (fme - | e 2 - 3f)sin2Xcos2X]

where ge = -2[1 + e - fm + e2 - f | m e + | m 2 - f f ] J- (40)

b = f m - e - j | m e - f f )
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94 COMPARISON WITH OBSERVATION. [7, § 7

I shall show in § 9 that f is probably about - -00000205; m is H^-TT ,

or -0034672, and if e be taken as ^ g

fme - £e2 - 3f•= "0000295

Thus g = ge {1 + b cos2 X - -0000295 sin2 A. cos2 \} (41)

The results of the pendulum experiments which have been made up to
the present time are hardly sufficiently numerous or concordant amongst
themselves to make it worth while to take into account this small term.
If it represented a detectable inequality in gravity the residuals given on
page 240 of volume II. of Helmert's Geodesy would vary more or less as the
square of the sine of twice the latitude; but they are quite irregular, being
as follows:—

Latitude
5°

15°
25°
35°

Residuals
- -0000139

054
+ 246
+ 008

Latitude
45°
55°
65°
75°

Residuals

- -0000015
73
62

+ 40

A great mass of material now awaits reduction, and we shall no doubt
soon have from Dr Helmert far more accurate results for gravity and for the
ellipticity of the Earth's figure than any that have been obtained up to the
present time.

§ 7. The superficial values of the rates of increase of h and f.

The rates of increase of h and/are given in (27) and (21); whence

= 0
da T 2 ' V da / 21\daJ 2TTS \dajda, T 2 ' V da, / 21\da,J 2TTS0 \daj S0a

-j 5i + -^-h — 7n -j— + - j — - *3- g— = 0
aa l \ da, j \ da, J * S0a4

But So = ^ - M
4?r

Whence

adh _,

a d n ^
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1900] FIGURE OF A HOMOGENEOUS MASS WITH A SMALL NUCLEUS. 95

But ^ p = m(l — h— fm), so that the last term of the first of these

equations may be written — f m (1 — fh — § m + ^ -y—), and the last term
\ eta /

da, I'

of the second is + -̂ 5-mh. The first equation then shows that to the first

order -j- = fm — 2h. If this be used to eliminate dh/da from the terms of •

the second order in the first equation, and completely from the second,
we get

~ - = f m - 2h + -V8-h2 - -V-mh - \§ m2

\ (42)
^ =-4f+5mh--y-m 2

The second of these may be combined with the first in the simple form

The parameter h denotes e — f-f e2 — \f\ whence it may be shown that

ade
da.~ = f m - 2e - e2 + ff me - ^- m2 - ff

§ 8. The Figure of a Homogeneous Mass with a small Nucleus.

In order to obtain a preliminary estimate of the magnitude of / in the
case of the Earth I shall first consider the case of a homogeneous mass with
a nucleus at the centre of finite mass, but of infinitely small linear
dimensions.

If we suppose the mass of the nucleus to be fi times that of the fluid,
and that the form of surface is defined by the parameters a, h,f, it is clear
from (10) and (11) that the external potential of the whole is

F= i-KW ̂  (1 + M) - f^w ^ (h + f h') P2 + if™ £ (h* -if)Pt+ Wr* (1 -P.)

The equation to the surface will be of the form (8), and the transformations
(12) hold good.

The conditions that the surface shall be level are, as before, that in V the
coefficients of P2 and P4 shall vanish when r has the value (8).

These conditions are

8 (1 + ,*) o« ( / - W) ~ ¥<** + f a* (^ - / ) + ̂ ~ h = 0
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96 MAXIMUM DEPARTURE FROM THE TRUE ELLIPSOID. [7, § 8

whence h (1 + tyh) = 44 — - -^— (43)

To the first order of small quantities — = 4-ft (1 + |u) h, so that the second

equation becomes
- — jfth2 . .

/ - Y^n ^ '
If ft vanishes f also vanishes, and the surface is a true ellipsoid, as

obviously should be the case.

Let us apply these formulae (43) to the case of the Earth. It is known
that w*a?IM is about ^|^, and it may be denoted by m, although the meaning
of that symbol is slightly changed from that which it bears elsewhere.

Then m =
(1 +

and L±£

The equation which determines the value of //. which makes f a
maximum is

This reduces to the quadratic /J? — \ft — \ = 0, of which the positive
root is

It = I [1 + V33] == -84307

The departure from the true ellipsoidal figure is greatest when the
nucleus forms T

8
H\3j or '457 of the whole mass, and in this case

/=_-2946(fm)2

Taking f TO = -^
/ = _ -0000055

The Earth's equatorial radius is about 6,378,000 metres, and the
depression of the surface below the true ellipsoid in latitude 45° is \af,
which gives 8'8 metres for this ideal case.

It is clear that the depression in actuality must be considerably less than
this, and we shall hereafter see reason to believe that it is about one-third
of this maximum value.
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1900] DEPARTURE OF THE EARTH'S FIGURE FROM THE ELLIPSOID. 97

§ 9. Evaluation of the actual departure of the Earth's Figure
from true Ellipticity.

In order to determine the superficial value of f it is necessary to make
some definite hypothesis as to the law of internal density.

The theory of the Earth's figure has been worked out according to several
hypotheses as to the internal density. Two of these may be described as
more prominent than others; they are the hypotheses of Laplace and of
Roche. The results derived from both these theories are conformable to our
knowledge, and as Roche's hypothesis seems more tractable than the other
I shall adopt it.

Roche then supposes that the mean density iu0 of all the matter lying
inside equatorial radius a is expressed by the formula

The mean density of the whole Earth is clearly given by w0 = p (1 — k).

/vail

Since w = w0 — Act -7—, it follows that
da

This is only true as a first approximation, but it suffices for the present.
I now put

and change the independent variable from a to x in the differential equations
for / and h, the latter only being taken to the first order of small quantities.

The equations (31) and (23) then become

N d2h -, ,K .,, N dh ,

dot? * '\dx x) \dx zx
w h e r e

. . . ( 4 5 )

^ « , n o i / dh\ , _ / dhV I f , . / dh\ . „ / dh^]
Q = 2h3 + 13/t [x-7- +16 [x-y- - - 7 [x-j- + 10 [x-r)^ V dsoj \ dx) x \_ V dxj \ dxj J

The first of these is Roche's equation, and I proceed to find the solution*.

* Tisserand, Mec. Gel., Vol. n. A full account of the researches of Legendre, Laplace,
Roche, Radau, Tisserand, Callandreau, and of others is given in this work.

D. III. 7
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98 SOLUTION FOR / ACCOKDING TO ROCHE'S HYPOTHESIS. [7, § 9

If it be assumed that

o
where H0=l, it is easy to prove that

Then if (n) denotes 1 =
w w3 + f n + \

h = E[l+ (0)x + (0)(1)*-2 4-(0)(1) (2)xs + ...]

Translating this into numbers I find

h , 2 13 52 47 4 658 , 31913

(46)

From this I make the following series of deductions:—

h3 , 4 218 , O312 3 20045 4 3896
Fa ~ + 7 * + *" + X + * +7 * + 3VT2 * + 3*77niX + 3* .72.11 * + 35.5.7

A. ( dh\2 218 3406 40090 4 1948 5

J 7 * + WTf**1"+ 3V7^Tl *" + STTTTI *" + 35. 7 *

1 / d/A 2 26 , 52 „ 188 4 658 r 63826 6

E\fdx)~TC^^.Th + 3 M 1 + 3 M 1 +3*. l l + 3*.5.11.17 + - "

(49)

1 / dhV 4 104 ., 20540 , 4960 r 251176 . m

F« I* ̂ J = 7«" + 3T7i""+ 3*77*711 * + 3̂  .7 .11 *"+ 8 ^ 1 ? * + '" ' ( 5 0 )

By means of these developments I find that the function Q in (45) is
given by

Q 256 7024 13120 , 578128 , 116120320 . ,
E, 3 ^ 7 ^ + 31,71 . n * + 3 l > 7 n i t + 3 5 . 7 M 1 + 3 5 . 5 . 7 . 1 1 M 7 +"*

00

Then, assuming f—E21,Knx
n, and substituting in the second of (45),

we get
S [n (» + fl) K»+1 - (n"- + |« - | ) Kn] x'"+Q = 0

or (V-.K, - 31T,) *• + (13K, - 2j-K2) x* + {^-K, - 20Ks) of

> + ... + Q = 0
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1900] SOLUTION FOR / ACCORDING TO ROCHE'S HYPOTHESIS. 99

The coefficients of the several powers of * are to be equated to zero, and the
successive equations solved. Carrying out this process I find

K2 = JJ K, - 3^
2

U = 54545^ - 15545 \

^ ^ ? 4 4 ° 5 6 ^ - -19663IO8 ^ " 3^?X3

iO3*-8T^8 - 3 9 1 6 1 * - 2 9 4 9 9

8 8 2
 Tr 11668616 _

^ 3^TTTT37l7 - 3 6 2 8 1 * - 403125 11.13.17 ' 35.72.11.13.17

K _ 15876 K 15778709488
11 IS 17 1Q S5 5 72 II2 IS 17 19"

Extrapolated* = - 3 3 0 * --635 '

(51)

The coefficient * remains indeterminate as yet, and I must now show
how it is to be found.

The second of equations (20), (21), and (23) are as follows:—

da a a da

, „ w\lidh
«),ada V"" " wj a2"*" i " Vx wj a2 ' V "" wj ada

° «>
In obtaining (6) from (a) we multiplied (a) by w(l/a

2, differentiated, and
divided by woja?. When x is independent variable we multiply by (1 —x)Jx,

perform on the result the operation *•- ̂ - , and divide by (1 — x)jx.

Supposing all the functions to be expressed in series of powers of x, the
equation (a) may be taken to be

P1x + P2x*+ ... +Pnx
n+ ... = 0 (a')

It must be understood that the P's are numbers and not spherical
harmonics. Then the equation (b) would be

(P,-P1)x$ + (2P3 - P2 - P0 xi + (3P4 -Pt-Pt-P,) xi

+ (4PS -P4~PS-P,- PjJ + ... = 0 (br)

Again, (c) was derived from (b) by multiplication by w0a
8, differentiation, and

division by w0a
8. When x is independent variable we multiply by ar*(l — a;),

7—2
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100 SOLUTION FOR / ACCORDING TO ROCHE'S HYPOTHESIS. [7, § 9

perform the operation *'-T~. and divide by af{\—x). Hence (c) must be

equivalent to

xi + (3.15P4 - 19P 3 - 15P 2 -

+ (4 . l 7P 5 -21P 4 -19P 3 -15P 2 - l lP 1 )« 4 + . . .=0 . . . ( c ' )

Now the coefficients in f were evaluated by equating to zero the coefficients
of the successive powers of x in (c) or (c')- Therefore

P 2 _ P 1 = 0, 2 .13P 3 -15P 2 -11P 1 = O

and so forth.

These equations are satisfied by

Pl = P2 = Ps=...=P1l

but one of the coefficients, say P,, remains indeterminate.

The equation (&') is satisfied by the same condition; but in order that
(a1) may be satisfied it is necessary not only that all the P's should be equal,
but that they should also vanish.

Accordingly (a) affords us one more condition from which Kr will be
determinable.

When x is the independent variable, the equation (a) may be written

Since f/E- is expressible by a series beginning with Krx, we shall be able
to find K1 by developing this equation in a series, but only carrying the
development out as far as the first term.

I drop the factor E2 for the sake of brevity.

Then,/= K,x; h? = 1 + fs, from (47); h3 - 1 / = 1 + f» - %Kxx;

fX (1 - |*0 d \xi (/t» - $ / ) ] = a-5 (1 - f g > - 1^*)
J 0

whence - * \ \ \ - fc) d \£ (h> - | / ) ] = f +
2x* (1 — x)- o

Also ^ + 2h(~)
2 da:J
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1900] SOLUTION FOR / ACCORDING TO ROCHE'S HYPOTHESIS. 101

Therefore as far as the first power of x the equation is

K,x + &x - \K,x - ixf^ (1 - ^ ) d (£) = 0

Thus, reintroducing the factor E-,

But

Therefore

A

and ~ J*(1 - §x)d ( | ) = K2k + (Ks - fIQ k» + ...

On substituting for the K's their values, I find

, + /T = if, (-27273k - -00699k2 - -04895k3 - -06335k4 - -07002k5 - -0737^...)

- (-07773k + -03355k2 + -03826k3 + -01719k4 - -00793k5 - '04475k6...)

To find k we have the equations

2 2raJ.Mk" _ kdh _ adh
2,Ank

n ~ hdk~hda

h = e - \|e2 - |f

The solution is virtually contained in the table of § 12 below*. From this
it appears that when e is -^, k is "464.

Now with k = -464 I find

Kx (-11426) - -0464 = K, + ¥
4
T

whence on substitution in (51)

Ky. = - -2674
K* = - -3013
K3 = - -3144
Kt = - -3997
K, = - -5002
K6 = - -6136

and K7 = — "72, by extrapolation.

* In making the computations I treated f as zero.
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102 AMOUNT OF DEPRESSION BELOW THE ELLIPSOID. [7, § 10

With these values for the K's, and with k = -464,

But with k = -46, -^ =1-20465, and with k = -47, ^=1-21193; whence with

" 3585"
Hence finally f=--00000205 |

£af = - 3-26 metres J

This result shows that the Earth's surface is 3£ metres below the ellipsoid in
latitude 45°.

I have already used this value of f in the evaluation of gravity in
equation (41) § 7.

M. Callandreau has not solved his differential equation which corresponds
with mine, but he concludes that the depression in latitude 45° must be less
than 5 metres *.

§ 10. The departure from true Ellipticity according to
Professor Wiechert's hypothesis.

Professor Wiechertf has adduced forcible arguments in favour of the
hypothesis that the Earth consists of an iron nucleus, of approximately
uniform density, with a superposed layer of rock. He concludes that the
nucleus must occupy about four-fifths of the radius. He considers the
conditions that both nucleus and surface may be level, and gives valuable
numerical tables.

The method of this paper permits us to give the conditions from which
his tables were computed somewhat more succinctly than he does. I will
therefore give my results in outline.

Let p', p be the densities of the nucleus and of the superficial layer; let
a', e' or h',f define the figure of the nucleus, and a, e or h, f that of the
surface; also let p0 be the mean density of the whole.

It is clear that
fa'Y i \

(53)
^ = £ - f 1 - ^ ( " Y ( l -h + hf)
Po Po \ poJ\a/

whence

* "Ann. de l'Obs. de Paris," Memoires, t. xix., 1889, p. E. 51.
t "Ueber die Massenvertheilung im Innern der Erde," Nachr. K. Gesell. zu GMtingen,

1896-7, p. 221.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.010
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.010
https://www.cambridge.org/core


1900] THE DEPRESSION ACCORDING TO WIECHERT'S HYPOTHESIS. 103

The mean density p0 may be taken as known, but if the values of p and
of a'/a be assumed, the value of p can only be rigorously found after the
determination of h, hf. As a first approximation, very near the truth however,
we may take h = h', so that

( )(
Po Po V pj \a'

The integrals <S'O, S3, Sit T<>, T4, defined in (10) are only required when
a = a' at the boundary of the nucleus, and when a = a at the surface.

When a —a'

Similarly, the integrals corresponding to a = a may be written down. If p
be then eliminated by means of (53), it will be found that they are

S2 = /30a
3 171 - £) h'(l-h + %h') a'2 + •£ h (1 + f A) a2]

\_\ Po/ Po J

S4 = Poa'

r2 = o, Tt = o
The conditions that the surfaces a' and a may be level surfaces are given

in (13) and (16), with the above values for the S and T integrals. I find
that a considerable simplification in the expression results from considering
h(l +lj-h), h' (1 +-tf-h') as the unknown quantities instead of simply A and h'.
Accordingly I write

k=h(l+ V-A). k' = h'(l+ JjlA')

It may be remarked in passing that k = e — -^e2 — ̂ f.

Without giving details I may state that the condition (13) leads to the
two equations

Po

2 pj 15 irp0

We might first neglect the small terms on the right, and use the
approximate value of p on the left, solve the equations and then proceed
to a second approximation. The approximate solution

15a)2

k k' 8717)0

(2p + 3/3) a? + 3 (p0 - pj a'"- 5p0a
2 ( 5 ^ - 3/») (2p' + Sp) a2 - 9/> (p0 - p) a'2
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104 THE DEPRESSION ACCORDING TO WIECHERT'S HYPOTHESIS. [7, § 11

is, however, very near the truth, because the small terms on the right not
only depend on the squares of the ellipticity, but also involve k — k', which is
itself much smaller than either k or k'.

In these equations we have, of course, -5 = f m (1 — im).
oTrp0

Now turning to the condition (16), in which it is clearly permissible to
write k, k', for h, h!, I find

< 5 5 )

If p were infinite and a zero, but p'a'* = (ipa3(l — h), we ought to come
back on the result for the nucleus of infinitely small dimensions in § 8; and
this is so.

In one of the cases considered by Professor Wiechert he took p — 3'2,
p'= 8-206, a'/a ='78039, and found the ellipticity of the surface to be -fa.
The case corresponds closely with that of the Earth. He also computed a
certain function from which my / might be derived. I find, however, by
computation directly from (55), t h a t / = — "00000175, and \af— — 2"79 metres.

With Roche's hypothesis I found f = - -00000205, and Jaf = - 326 metres.
Thus the two hypotheses lead to nearly the same result.

§11 . Solution of the Differential Equation for h.

I propose to solve the equation (31) with Roche's hypothesis, and thus
to estimate the contribution of the terms of the second order to the value
of h.

As in § 9, x is to be the independent variable.
The expression for w in (44) is no longer sufficient, but a term of the first

order must be included in it.
It was proved in (32) that

)

Now w0 = p (1 — x) and a -=- = 1x --,- , so thatr v ' da dx

and wo — w = fpa; ! + §(«:T-J (55)! + §(«:T-J
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1900] SOLUTION FOE THE ELLIPTICITY WITH ROCHE'S HYPOTHESIS. 105

When x is introduced as independent variable in (31), and when the
equation is divided by 4, the terms of the first order assume the form given
in the first of (45). Then by aid of (55) the terms of the second order are
easily determined, and the equation will be found to assume the following
form:—

where P= ih 2 + | f \h[x -=- I + [x-^-\ \ } ....,....(56)

dh

In the last of these m denotes -; ; this is equal to -, . ~° or

1 - k
m . Accordingly

(56)

By means of the series (47), (48), and (49) I find

(7 100 23890 149084 „ 4134965 4 11540024

1658730884
37.7M12.17 "

or
P = E2 {§ + 2-0408« + 2-5796,-B2 + 3-4149*3 + 4-5100*4

+ 5-8738*5 + 7-5248a;6 + 9-45*' + ...}
the last term being extrapolated.

Now we saw in the last section that for the Earth the reciprocal of E was
358-5. As a fact I have here used the value 361*8, and it does not seem
worth while to recompute on account of this small change in E.

Then

P = E {-006450 + -005641a; + -007131*2 + -009440ar'

+ -012467a4 + -016237a? + -020801*6 + -0261a;7 + ...}

When the fractions in (46) and (49) are expressed in decimals, I find

And

+ -85714a; + imii5af + 1-22559^

+1-42424^ + l-62469a-» + 1-82597*6 + 2-028«7 + ... J

7 ^ dhh + 2% y~
-TJ — =E{\ + 1-85714« + 2-88889*2 + 4-11448*3

1 —x '
+ 5-53872«4+ 7-16341«0 + 8-98938*'6+ 11*016af
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106 SOLUTION FOR THE ELLIPTICITY WITH ROCHE'S HYPOTHESIS. [7, § 11

This last must be multiplied by |m (1 — k) in order to find R.

Now m = -00346, k = -464; so that the factor is -001236.

Then

R = E {-001236 + -002296a; + -003572a;2 + -005087^

+ -006848a.4 + -008857a;5 + -011114a^ + -0136a7 + ...}
Finally

PrJz = -005214 + -003345a; + -003559a;2 + -004353a;15

+ -005619a;4 + -007380a;5 + -009687a;6 + -0125a;' + ...
OO

I now assume as before, h = E~%Hnx
n

o
so that the differential equation (56) gives

2 [(n2 + f n +1) Hn+1 - («2 + f n + 1) Hn] xn + ^ ^ = 0

When the coefficients of the successive powers of x are equated to zero
the first equation is

\HX -!£<> = - -005214

If we assume Ho= 1, which is clearly permissible,

Hx = f - -001490

Then from the successive equations I find

H., = ^= - -001448

^ = 3Ul-°°1444

4.7
#4 =„•.*: . , - -001473

3 1 9 1 3 -001594
3 \ 5.11.17

583552

The first part of each of these coefficients is the corresponding coefficient
in the first approximation, given in (46). If, therefore, we denote by 8h the
correction to be applied to the first approximation as arising from the terms
of the second order, we have

Bh = -E {-00149a; + -00145a;2 + -00144a? + -00147/z4 + -00152a?

+ -00159^ + -00170a;7 + ...}
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1900] SOLUTION FOR THE ELLIPTICITY WITH ROCHE'S HYPOTHESIS. 107

By an empirical summation of this series, we may assert that a fair
approximation to the result is given by

Ex
hh = - -0015

l - x

But i , = 1 , so that the correction becomes
1 — x wa

or since E is about ^ ,

A = - - 0 0 2 2 5 j E ? ( l - —

/ on

Bh = - -0000062 (1 - —
V w0

The superficial value of h corresponding to e = ^T is "003349, and

It is, however, better to look at this correction from another point of view.
If /i0 denotes h as derived from the first approximation, we have, by means of
the empirical solution,

h = h0 - -0015 T ^ -
1 — x

,, , dh dh0 nM r Ex
so that x • T- = x ~ - -0015dx dx (1 — *')2

We have seen in § 9 that k in Roche's hypothesis is derived from the
equation

ZAnk
n *h Z + T n T ^ 14 h

I t now appears that, when terms of the second order are included in the
differential equation for h, the left-hand side of this equation becomes

1 —k

Now I found that when k = -464, ZAnk
n = 1-20756, %nAnk

n = -33666.

Therefore

k» -

B k " ( l - -00720)

1 5 Q

= 2^1nk" (1 - -00108)
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108 THE MOMENT OF INERTIA OF THE EARTH. [7, § 12

Since 1 Z L ^ | 0 i _-00612 = -99388, it follows that the left-hand side
1 — '00108

of the equation for k is

The principal effect of the terms of the second order will therefore be
slightly to alter the value of k which satisfies the observed conditions. In
every hypothesis as to the internal density there is some parameter derivable
from observation, and a similar investigation would show that its value is but
slightly affected by the terms of the second order. It is clear, then, that
there is not much to be gained by pursuing this investigation further.

§ 12. The Moments of Inertia, the Precessional Constant, and the
Ellipticity of the Earth,

It was shown in (6) of § 1 that

If the terms of the second order be omitted we may drop/and replace e

by h. Also to the first order 8.2 = I wd {a?h); and by (35)
Jo

Hence C = § v I *wa4da - -fMa2 (h - Am)
Jo

It was shown in (32) that

da da da
fa fa

SO
fa fa ra ra dh

that I wa4da = tv0a
4da +1 I a5dw0 + A, I a6 -%- dw0

Jo Jo Jo Jo da
If the middle term in this expression be integrated by parts we have a

term — # iv^da, which will fuse with the first term. Therefore
Jo r fa fa dh

wa4da = A, woa
s — f I w^da + h\ a6 -j- dw0

Jo Jo wa
and

2 fa

/
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1900] THE MOMENT OF INERTIA OF THE EARTH. 109

But to the order of approximation here adopted

Therefore

n a n T ^ f i 2 ( l + h ) p 1 fa .dh, , "1

L woa" J» 3w0a5J0 da ° J J

We now make use of M. Radau's transformation. I t was proved in (34),
§ 5, that

woa
5 V(l + T?I) = 5 ( 1 + X) J tuoa*da

Jo

where 1 + X is a mean value of a certain function.

Therefore
2(l + h)fa _(l + h)

woa
4da — — !• 4^

woaJ Jo ;> 1 + x

Now I a6 T - dw,, = w0a6 -= w0 (6«5 -,-—H a6 -j—, I da
J 0 da da Jo \ aa da2/

But /i satisfies the differential equation

^ + 6 ^ - 6 ( 1 - ^ = 0
da* w0 ada \ wj a-

, dw0 3 . .
and - j — = (w0 — w)

da a

Therefore

y*a / flit (l^h\ Ta / dh\
I w0 (6a5 -j- + a6 -,~ ) da = 6 (w0 — w) ( ha* + a5 j - 1 da
Jo v da dav J 0 \ da/

ra /"a ^ ^
= 6 I (w0 — w) ha4 da — 2 I a6 j - dw0

Jo Jo da

Therefore

Ta dh f'd
ae -y- dwa = - woa5h«! + 6 (IU^ — w) ha4da

Jo da Jo

Now let A, = 4(1

= — ^h^i + — r I (wa — w) hal
wo a° J 0

da f

andwehave C = |Ma2[l - f (1 + h) V'(l + Vi) + im + A] (57)

The only part of the expression for G which involves the law of internal
density is A, and we shall see that A is very small compared with unity.
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110 THE MOMENT OF INERTIA OF THE EARTH. [7, § 12

M. Callandreau has established a formula for 0 with which, as far as
I can make out, mine agrees*.

It is clear that the two parts of A originate in quite different ways, A!
depending on the equation for the internal ellipticity, and A2 depending on
the terms of the second order.

It is first necessary to evaluate X from the equation

^ (58)/•
I

Jo
m m

where 1 + «, = i T— 1 + 4£h — 4tm - j f - r -
It is not hard to obtain a close approximation to X when Laplace's

hypothesis as to the density is adopted, but that hypothesis is not so tractable
as Eoche's, and I therefore adopt the latter.

According to Roche

w0 — p (1 — x), where x = k I - 1
\a/

Therefore I w0a
4da = | - -^ I (l—x)x%dx

1 — k
Accordingly 1 + X = j - - - ^ V(l + Vi)

Since wo = p(l — k), and with close approximation, w=p(l— |k), we

have p = ( | w0 — f w), k = °—jr—̂  very nearly. Hence we may also write

g+*L ( 5 9 )
Therefore A, = | (1 + h) [V(l + Vi) ~ 1 - $0- - w/w,)] (60)

* Bulletin Astronomique, Vol. xiv., 1897, p. 217.
t The approximation here consists in neglecting the variation of ellipticity in evaluating the

density w from the mean density w0. In Laplace's hypothesis w =p - sin -. If we neglect the

variation of ellipticity in determining the mean density w0 from the density w, it will be found
that

K* 1 - W / W O

Since -^ = -^ / 1 — cot - J, K may be regarded as a function of wo/w, and X is seen to be

function of wo/w and of TH , as in the text.
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1900] THE MOMENT OF INERTIA OF THE EARTH.

It is now required to evaluate A2.

With Roche's hypothesis

o /*& ^ r k
I (w0 — w) ha'da = -| — . —,. hx*dx

w0a6V 3
Wo k f j o

00

I write the series (46) h =U'%Anx
n, and then

9 /-a

woa-

/•a

( w o -

111

But h =

or

", and therefore

4kS
A, = - »?, + •

w
w,,

V
2 .(61)

In order to estimate the magnitude of the correction A I have computed
it, and its two constituents, in the following table:—
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Table of Results according to Roche's Hypothesis.

Ratio of mean to surface
density

Reciprocal of ellipticity ...

Moment of inertia, uncor-
rected

First correction ...

Second correction

Ratio of total correction to
moment of inertia

k

wo/w

1
e

h x 106

C-r pia«

AxlO«

A! X 10«

A2 x 10"

S-^-xH*

•1

= 1-08

= 239-3

= 4148

= -58728

= 47

= 19

= — 2

'•= 29

v"-
•2

1-2

248-2

4001

•57137

184

79

- 1 0

120

288-41 /

•3

1-4

262-2

3788

•55088

387

174

- 2 8

265

•4

1-8

280-7

3541

•52360

548

262

- 6 3

380

•46

2-314

295-7

3362

•50245

516

258

- 9 5

322

•47

2-446

298-6

3329

•49847

493

248

- 1 0 2

293

•5

3 0

308-2

3227

•48557

422

218

- 1 2 5

192

•55

5-4

327-5

3037

•46036

99

54

- 1 7 3

- 2 5 8

. 
-*

IT
S t» td H O e! g s o w i

It will be observed that X and Ax reach maxima when k is '4, whereas — A2 increases throughout as k increases.
The last line gives the factor of augmentation, diminished by unity, of the uncorrected value of C. The columns
k = -46 and -47 are those which correspond to the case of the Earth most closely, and they show that C must be
augmented by a factor l'0003 when A is taken into account.
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1900] THE PRECESSIONAL CONSTANT. 113

We are now in a position to give the formula for the Precessional

Constant —~— .
0

It appears from (9), (10), (35), and (36) that

a - J . = §Ma2[h-£m + fh2 + fmh+fm2] (61)

So that, dividing (61) by (57),

C-A_
C - i

where 1 + % = § ™ _ i + i^h - ^-m - \\ ~

We have reason to believe that the term A may be allowed for by first
treating it as zero, and afterwards multiplying the result by '9997.

The Precessional Constant is known with a high degree of accuracy, and
I cannot but think that this investigation shows that it may be used for
determining the actual ellipticity of the Earth's surface with perhaps as little
error as by any other method. The uncertainty is, indeed, of a different kind,
being dependent on our ignorance of the interior of the Earth. I reduce the
formula (62) to numbers in the following manner. I assume a definite value
for the ellipticity, namely e0 = ^ = "00334448. Then, with f = - -00000205,
h0 is computed and found to be '00332480. I take also m = -0034672.

Now let No, Do be the numerator and denominator of (62), with these
values of h, m, and with A put equal to zero. Then, if N = iV0 + BN,
D = B0+ BD, h = h0 + Sh be the true values of those quantities, it is clear
that

N = No + (1 + -V8-h + f m) Sh

From these we may compute BN and BD.

I find then, JV, =-00161608, N = NO(1 +

A = -4991436, D = Do (1 + 248-0 Sh)

Then ifo/Do = "00323771, and since the denominator should be augmented
by 1-0003, it follows that the corrected value of JV0/D0 = '00323674, and

G~A = ^ = -00323674 (1 + 376-4 Bh)
Li U

The most generally accepted value of the precessional constant is '003272,
and this exceeds our corrected i\ro/A by "00003526. Therefore

D. III.
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114 THE ELLIPTICITY DEDUCED FROM THE PRECESSIONAL CONSTANT. [7, § 12

But h0 was -00332480, so that h = -0033537. If f|h2 + | f be added to h,
we obtain e; the result is

e - -0033734 = ^ *

I have, in fact, repeated the computation with this value of e, and find
N

_? = -003273, which only differs from the Precessional Constant by unity in

the sixth place of decimals. Oppolzerf adopts the value -003261 for the

Precessional Constant, and this leads to ^ as the value of the ellipticity.
2i i 'ODr Wiechert has considered the hypothesis that the Earth consists of an

iron nucleus with a superstratum of rock. With the Precessional Constant

at -003272 it may be concluded from his table that the ellipticity is 007T0 •

These results, then, point to an ellipticity between ^ and ^ g , and they
agree well with the results of all the methods of determining the ellipticity
except that of the pendulum. Dr Helmert's+ result from the pendulum is

oooTo«—lToft > a n c ' is certainly slightly smaller than the value found here.

In the paper above referred to M. Callandreau has used the Precessional
Constant for evaluating the ellipticity of the Earth, which he finds to be

. The agreement of my work with his is thus very satisfactory.

* As it is desirable that the ellipticity of the earth should be evaluated with all the accuracy
possible, it may be well to advert to the augmentation of ellipticity which is due to the direct
actions of the Moon and the Sun.

The tide-generating potential of each of these bodies contains a term which is independent of
the time, and to which there must correspond a permanent tide.

If i be the obliquity of the ecliptic; and m, c, ea the mass, mean distance and eccentricity of
orbit for the Moon; while m', c', e0' represent the same for the Sun; the tide-generating potential
contains the term,

[ | (1 + W) + % (1 + l"o'2)] I (1 - I sin2 i) r* (J - cos2 8)

This is equal to (1-46035) § ™ (1 - f sin2 i + |e0
2) r* (J - cos2 6)

The ellipticity of the Earth which corresponds with this term is

3m fa\3. . 2 . 2

(1-46035) m \ ~ c r - * s l n ' + ^ > -00000004708
l - fw/w 0 l - fw/w 0

If we take wo/w = 2-l, the ellipticity is -00000006588. The meaning of this is that the Earth's
surface is 28 cm. lower at the poles, and 14 cm. higher at the equator, than would be the case if
the Sun and the Moon were obliterated. This term may therefore be safely omitted.

t Helmert, Hiihere Geodasie, Vol. n., p. 437.
J 16., Vol. ii., p. 241.
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1900] SUMMARY AND DISCUSSION. 1 1 5

SUMMARY AND DISCUSSION.

The space in the neighbourhood of an oblate ellipsoid of revolution may
be divided into three regions by two spheres touching it internally and
externally. It is clearly possible to express the potential of such a solid
homogeneous ellipsoid by series of spherical harmonics which are convergent
both inside the smaller sphere and outside the larger one, but for the space
between them the convergency is uncertain. In the treatment of the
attractions of spheroids by means of spherical harmonics, it is usual to assume
the ellipticity to be small, so that the region of possible divergency becomes
negligible.

But this method is no longer certainly justifiable when we seek to carry
the development as far as the squares of small quantities, and proof is needed
of the applicability of the series within the middle region of space. If,
having found our two series expressive of the potential for internal and for
external space respectively, we determine the form of the surface inside the
middle region at which these two potentials are continuous as far as the
second order of small quantities, we find that the surface in question is that
of the ellipsoid itself. The two series then form a continuous function at the
surface of the ellipsoid, and they obviously satisfy the differential equation of
the potential both inside and outside the ellipsoid. It follows that although
the series were determined by a process which is open to doubt as respects
the middle region, they lead to results which are trustworthy as far as the
second order of small quantities.

There is, however, another method of finding the potential of the ellipsoid,
by which the difficulty as to convergency is avoided. It is well known that
the potential of a solid ellipsoid is expressible in a series of spherical har-
monics, and that the series is convergent up to the surface, at least for all
ellipsoids with eccentricity less than | . Also there is a rigorous expression
in finite terms for the internal potential, involving only the second harmonic.
If only the second power of the ellipticity be retained, these two expressions
are found to be identical with those derived from integration, and the
question of convergency is settled.

If an oblate ellipsoid of revolution be slightly distorted in any way, the
deformation being of the order of the square of the ellipticity, the additional
terms in the potential may obviously be expressed by the ordinary formulae
of spherical harmonic analysis.

In the theory of the Earth's figure it is unnecessary to contemplate the
existence of any other departure from true ellipticity than one expressible by
a zonal harmonic of the fourth order. Three parameters are needed to
express the surface of such a spheroid. If a and b denote the equatorial and
polar radii, the first parameter is a the equatorial radius; the second is the

8—2
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116 THE INTERIOR IN HYDROSTATIC EQUILIBRIUM. [7

ellipticity e defined as being equal to (a — b)/a; and it seems convenient to
take as the third a quantity proportional to the elevation of the surface of
the spheroid above that of the true ellipsoid in latitude 45°. If the third
parameter be denoted by f, the elevation in question is £a /

I have found, however, that there is a gain in simplicity by displacing the
ellipticity e from its position as the second parameter, and by substituting for
it a parameter h, which is defined by

A = e_lje2_l/

To the first order of small quantities it is clearly immaterial whether h or
e be used, but the advantage of the change is found to arise when quantities
of the second order are retained in the developments.

When the external and internal potentials of a homogeneous spheroid
defined by a, h, f are known, it is easy to express by means of integrals the
potential of a heterogeneous body built up by a succession of layers, each of
which has its external and internal surfaces defined as a spheroid of the kind
under consideration. When the object in view is the study of the figure of
a planet, the potential corresponding to a uniform angular velocity must
of course be added. The processes explained here are carried out in
§| 1 and 2.

It is generally assumed that the matter of which the Earth is formed is
sufficiently plastic to permit the condition of hydrostatic equilibrium to be
satisfied throughout the mass. Even if this condition is not rigorously
correct, it must be nearly so.

In | 2 the condition of hydrostatic equilibrium is determined. It is
expressed by two equations, of which the first corresponds to that ordinarily
given for the ellipticity of internal strata, but it contains also terms of the
second order. The second equation consists entirely of terms of the second
order, and involves the parameter/. The advantage due to the substitution
of h for e is now apparent, for the first equation is entirely independent of /
These two equations involve integrals which are eliminated by integration,
and we obtain two differential equations of the second order for h and for/;
the equation for h does not involve /(§§ 3, 4).

M. Radau has shown that it is possible to reduce the differential equation
for the ellipticity to one of the first order, at least to a close degree of
approximation. In § 5 his process is carried out with the retention of
quantities of the second order. It appears that the approximation is even
better than when only the terms of the first order are retained.

The formula for gravity is obtained in § 6. It was given for the first time
by Airy, as already remarked in the Introduction. The results of pendulum
experiments do not appear as yet to be sufficiently numerous or consistent,
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1900] THE DEPARTURE FROM THE ELLIPSOIDAL FORM. 117

inter se, to render a revision of the value of the elliptieity of the Earth's
surface practicable by aid of this more accurate formula for gravity.

The rates of change of h and of f at the earth's surface are determined in
§7 . As a preliminary to the evaluation of the departure of the Earth's
figure from true elliptieity, I then consider the figure of a homogeneous mass
of fluid with a small heavy nucleus at its centre (§ 8). The departure is
found to be greatest when the nucleus contributes "457, and the fluid '543 of
the whole mass. For such a planet, with the same mean density, size, and
length of day as the Earth, it is found that the surface is 8"8 metres below
the true ellipsoid in latitude 45°. In the actual Earth the departure will
certainly be less than this maximum.

The evaluation of f for a heterogeneous planet is only possible when the
law of internal density is known. I have, then, adopted Roche's hypothesis,
according to which the mean density of all the matter lying inside any surface
of equal density is less than the central density by an amount which varies as
the square of the equatorial radius of that surface. In the notation of the
paper the law is expressed by wo=p [1 — k (a/a)2]. It is found in § 9, by some
rather tedious analysis and computation, that the surface is depressed in
latitude 45° by 3J metres.

Dr Wiechert has maintained that the Earth probably consists of an iron
nucleus with a rocky superstratum. His theory leads to the conclusion that
the depression in latitude 45° amounts to 2'75 metres (§ 10). The close
agreement between the results of such diverse hypotheses as those of Roche
and of Wiechert appears to justify us in maintaining with confidence that the
level surface is depressed below the true ellipsoid by 3 metres in latitude 45°.

A solution of the differential equation for A in § 11 does not lead to
results of much general interest, and I refer the reader to that section for
details.

It has been stated in the Introduction that M. Callandreau has treated
these problems by methods which differ somewhat from mine. He has con-
cluded, but without definitely solving the differential equation, that the
depression in latitude 45° must be less than 5 metres.

In § 12 formulae are found for the moment of inertia of the Earth about
its axis of rotation, and thence for the Precessional Constant. Similar
formulae have been found by M. Callandreau in the papers referred to above,
but I think that my formulas are somewhat more succinct and tractable
than his.

In the various theories of the figure of the Earth which have been
propounded up to recent times, the value of the Precessional Constant has
always been appealed to as the test whereby the correctness of the hypothesis
as to internal density may be tried. But it appears from M. Radau's remark-
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118 THE ELLIPTICITY DETERMINED FROM THE PRECESSIONAL CONSTANT. [7

able investigation that the Earth's moment of inertia about the axis of
rotation is in reality nearly independent of the law of internal density; and
the difference between the greatest and least moments of inertia depends
rigorously on superficial data. Accordingly, the value of the Precessional
Constant may be inferred with a considerable degree of accuracy from the
form of the surface, and it affords evidence of little weight as to the law of
internal density. But although from this point of view the comparison of
this constant with theory becomes almost nugatory, yet the very result which
shows its uselessness in one respect points out its utility in another, for we
may now appeal to it as affording the means for an independent evaluation of
the ellipticity of the Earth's surface.

In § 12 an estimate is made of the amount by which the moment of
inertia of the earth is affected by the law of internal density. A formula is
found for the moment of inertia, which consists of the sum of two parts, the
first being dependent only on superficial data, and the second on the law of
internal density. From the numerical table of results given in that section
it appears that if the moment of inertia C be computed as though the second
part were non-existent, it must be multiplied by the factor l-0003 in order
to take into account the neglected portion. Since the moment of inertia G
occurs in the denominator of the Precessional Constant, it is obvious that the
uncorrected value should be multiplied by -9997. Proceeding from these
results and from the value of the constant, it appears that the ellipticity of
the Earth's surface must be about ^ T . M. Callandreau has arrived also at
the same conclusion, and it is confirmed by Dr Wiechert, although his
suggested law of internal density differs very widely from that adopted by
other investigators. This estimate of the ellipticity agrees well with that
derived from all the other methods, except that of the pendulum, from which
it is concluded that the ellipticity is about ^ . It may be hoped that the
various results may be brought into closer agreement with one another when
the great mass of pendulum results now accumulated has been reduced.

It has been contended by Tisserand that the ellipticity of the Earth's
surface is greater than any value which it is possible to reconcile with the
existence of internal hydrostatic equilibrium; and with the values of the
constants used by him, this is certainly so. But it seems to me that when
the terms of the second order are included, and when more recent data are
employed, there is but little evidence in favour of this conclusion. If
Tisserand were correct, it would indicate that the internal layers of the earth
are more elliptic than is consistent with the present angular velocity of
rotation. On the other hand, Dr Wiechert seeks to show that his iron
nucleus is deficient in ellipticity. His argument does not, however, carry
conviction to my mind, as the data seem to be too uncertain for any such
conclusion. It is, I think, preferable to maintain that nothing can, as yet, be
decided on this point.
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8.

ON JACOBI'S FIGURE OF EQUILIBRIUM FOR A ROTATING
MASS OF FLUID.

[Proceedings of the Royal Society, XLI. (1887), pp. 319—336.]

I AM not aware that any numerical values have ever been determined for
the axes of the ellipsoids, which are figures of equilibrium of a rotating mass
of fluid*.

In the following paper the problem is treated from the point of view
necessary for reducing the formulae to a condition for computation, and a
table of numerical results is added.

Let a, b, c be the semi-axes of a homogeneous ellipsoid of unit density;
let the origin be at the centre and the axes of x, y, z be in the directions
a, b, c.

* The following list of papers bearing on this subject is principally taken from a report to the
British Association, 1882, by W. M. Hicks :—

Jacobi, Acad. des Sciences, 1834; Lionville, Journ. icole Polyteeh., Vol. xrv., p. 289; Ivory,
Phil. Trans., 1838, Part I., p. 57; Pontecoulant, Syst. du Monde, Vol. n. The preceding are
proofs of the theorem, and in more detail we have:—C. 0. Meyer, Grelle, Vol. xxiv., p. 44;
Liouville, Liouville's Journ., Vol. xvi., p. 241 ; a remarkable paper by Dirichlet and Dedekind,
Borchardt's Journ., Vol. LVIII., pp. 181 and 217; Eiemann, Abh. K. Ges. Wiss. Ob'ttingen, Vol. ix.,
1860, p. 3; Brioschi, Borchardt's Journ., Vol. LIX., p. 63; Padova, Ann. delta Sc. Norm. Pisa,
1868-9 (being Dirichlet and Eiemann'a work with additions); Greenhill, Proc. Gamb. Phil. Soc,
Vol. in., p. 233 and Vol. iv., p. 4; Lipschitz, Borchardt's Journ., Vol. LXXVIII., p. 245; Hagen,
Schlomikh's Zeitsch. Math., Vol. xxiv., p. 104; Betti, Ann. di Matem., Vol. x., p. 173 (1881);
Thomson and Tait's Natural Philosophy (1883), Part II., § 778; a very important paper by
Poincare, Ada Mathem., 7, 3 and 4 (1885).

[I have been criticised in respect to this paper by S. Kruger (Niemo Archief voor Wiskunde,
2nd Series, 3rd Part, van Leeuwen, 89 Hoogewoerd, 1896), on " Ellipsoidale Evenwichtsvormen,"
in a Thesis for the doctorate of Leiden, because I wrote it in ignorance of certain previous work,
especially of a paper by Plana (Astr. Nachr., 36, n. 851, c. 169). But as it appears that Plana
gave a number of numerical results which were wholly wrong, a knowledge of that paper would
have caused me much further trouble.

See also E. Kaibara, " On the Jacobian Ellipsoid," Tokyo Sugaku-Buturigakkwai Kizi,
2nd Series, Vol. iv., No. 5 (1907).]

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.011
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.011
https://www.cambridge.org/core


120 THE POTENTIAL OF AN ELLIPSOID.

Then if we put

°° du

t«

•(1)a n d * - J o ABC
it is known* that the potential of the ellipsoid at an internal point x, y, z is
given by

a da o rio c

Now let us introduce a new notation, and let

c = acos7, K = ^J~^^' a n d «'2 = l - « 2

Let an auxiliary angle /3 be defined by

sin /3 = K sin 7

Then b = a V(l — «2 sin2 7) = a cos /3

Also let A" = u. + 1
sin2 6 sin2

whence

and

Thus

J52 =
sin2

a2 sin2„ , , a2 sin2 7 „
C* = u + c2 = . ' cos2

sm2^

, 2a2 sin2 7
sm! 6

du = 2a2 sin

cos

in2 7 P ^ d0 = 2«2 sin2 7 f" ^
Jo sm'tf 'Jo sin3^ 7 f ^

sm'tf 'Jo sin37

Lastly, let A = V(l - /c2 sin2 7)

and in accordance with the usual notation for elliptic integrals let

Then we have the following transformations:—

a da
_
" J

o ABC a sin 7
du 2

o Z ^ ~ ^ ~ s m ^
sin2 fy 2
~X™ dV = 3̂ „> ™ s . . ( F ~ E )

_ &\P _ p _Q!M_ _ 2 p s i n ^ y ,
&96 ""Jo ^ ^ G " a3 s i n 3 7 ) 0 " ^ 7

du tan2

^ ( ^

•(3)

..(4)

.(5)

...(6)

cdc

* Thomson and Tait's Natural Philosophy (1883), § 494, I. The form in which the formula
is here given is slightly different from that in (8), (11), (15) of §§ 494, k, I.
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1887] THE POTENTIAL OF AN ELLIPSOID. 121

I t remains to reduce the last two of (6) to elliptic integrals.

The following are known transformations in the theory of elliptic in-
tegrals, viz.:—

f dy 1 p, K2 sin 7 cos 7 .^.

Hence
Jo

7=4 P ^ 7 = -L_E - ™ ^ ^ - ^F (9)
J «2J 0 A 3 K2K2 / e - A K2

In the present case A = cos /3.

Thus (8) and (9) enable us to complete the required transformation of (6)
to elliptic integrals.

Substituting from (6) (8) (9) in the expression

4 { a da b db c

where m = | irabc — J im3 cos /3 cos 7
we have

Uj o l i l *Y U/ O1I1 •¥ I ft \ ft- <̂ *Ji3 AJ

+ ~ (E - tan 7 cos /3) | (10)

Now suppose the ellipsoid to be rotating about the axis of z with an
angular velocity to, and let us choose the axes a, a cos /3, a cos 7, and the
angular velocity to, so that the surface may be a surface of equilibrium.

For this purpose V + \to2 (x2 + y2) = constant, must be identical with

x2 if z2

1 1 = 1

a2 a2 cos2 p a2 cos2 7

In (10) we have V in the form

V = Lx2 + My2 + Nz2 + P (11)

whence a? (L + \ a>2) = a2 (M +1 a2) cos2 j3 = a?N cos2 7

Hence L-M + iV cos2 7 tan2/3 = 0*|

£«2 = i V c o s 2 7 - L I (12)

or ^w2sin2/3 = J f c o s 2 / 3 - Z J
There are two kinds of solutions of these equations (12).
First, since

T jSM* a cos 8 cos 7 fy sin2 7 .
L = 7TOC ^— = - 2w r - - I — v - i 0(

oa sin3 7 Jo A
. , 9̂ P o cos /8 cos 7 fy sin2 7 .

db sin3 7 Jo A8

it is obvious that L— M vanishes when K = 0.
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122 THE EQUATION TO BE SOLVED FOR FINDING JACOBl's ELLIPSOID. [8

And since when K vanishes, /3 also vanishes, the equation

L-M+N cos2 7 tan2 0 = 0

is satisfied by K — 0, /3 = 0

That is to say there is a solution of the problem which makes a = b.

Thus there is a solution which gives us an ellipsoid of revolution.

When K = 0, we have also /3 = 0, A = 1, and

T 2TT cos 7 fv 77- cos 7 . . .
L = ^ — s in 2 7<X7=—i (s in 7 cos 7 — <y)

am3 7 J 0 sin3 7 ' '
, , 2TT COS 7 / " ' > ' , „ 7 ir cos 7 ._ _ .

N = ~t—
L tan2 7^7 = —^--^(27-2 tan 7)

smJ 7 J 0 sin' 7
Therefore

rrr

[27 — 2 tan 7 — (1 + tan2 7) (sin 7 cos 7 — 7)]tan3 7

= - ^ - [7 (3 + tan2 7) - 3 tan 7] (14)*
tan- 7

and the eccentricity of the ellipsoid of revolution is sin 7.
To find the other solution when K is not zero, we have by comparison

between (10) and (11),

„

2TT COS /3 cos 7

K2 sin3 7 K2 sin 7 cos 7 „ E
cos /3 cos '2 cos /3 K'227T cos /3 cos 7 «'2 cos /3

K2 sin3

.(15)

27TCOS/3COS7 K2

Hence the first of (12) gives

= — (E - tan 7 cos y
K2 '

or

4 [1 4- (K tan /3 cos 7)
2] - (2F - E) - 43 tan /3 cos 7 ( 1 + sin2 /3) = 0 .. .(16)

In order to adapt this for computation, we may introduce the auxiliary
angles defined by

tan £= K tan /Scos 7, tan S = sin/3 (17)

and the equation becomes

^ n f = 0 (18)

* Compare with Thomson and Tait's Natural Philosophy, § 771 (3); or any other work which
gives a solution of the problem.
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1887] THE EQUATION TO BE SOLVED FOR FINDING JACOBl's ELLIPSOID. 123

The second of (12) gives

«* « W T rf'2 ( E _ t a n 7 c o s / 3 ) - ( E - F )
47T COS /3 COS 7 K

, to2 F — E E coss 7 cos /3 cos 7
~4ar cos /3 cos 7 K2 sin3 7 «'2 sin3 7 tc2 sin2 7

~ = cot /3 cosec 0 cot 7 (F - E) + cot3 7 cos /3 ~ - C ^ ^ ^ ' . . . ( 1 9 )

Some of the subsequent computations were, however, actually made from
a formula deduced from the third of (12), which leads to

O>2 K?
j - = cot /3 cot 7 cosec3 /3 (1 + cos2 /3) (F - E) - —2 cot3 /3 cot 7 cosec /3E

By subtracting (20) from (19) we can deduce (16); hence it follows that
(19) and (20) lead to identical results. Most of the subsequent results were
computed from both (19) and (20), thus verifying the solution of (18).

[Since the date at which this paper was written I have, however, obtained
a much better form for the expression for a>2, as follows:—

If we retain the partial differentials of M? in the expression for V, it is
clear that

V + &̂)2 (*2 + y2) = constant

is another form of the equation

Hence a2 - ^ + s — r ) = b2tT-r+ _ - - .- = c2 - r -
\ada 2-rrabcJ \bdb zirabcJ cdc

These two equations may be written in the forms

(21)

ft)2 _ be I dV dW\
2TT a \ 3C da)

a2b2 cdc bdb ada

If the differentials of M* be expressed as integrals by means of (6), we
have

a,2 cos /3 cos 7 f fy sin2 7 , h tan2 -

} (22)
. 2 2 p tan 2

7 fvsm4
7 '

sin2 7 cos2 7 I —-—i- ay = cos2 p I ----' ay
J 0 Ĵ J 0 ^

But for the present I retain the differentials of ^ as in (21).
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124 THE EXPRESSION FOB THE ANGULAR VELOCITY. [8

Since V is the potential of an ellipsoid of unit density V2 V = — iir.

Hence ^ r + r^r + ^ r = - " j - (23)
aoa bob coc abc

Also since M* is a homogeneous function of degree — 1 in a, b, c
avir a\i/ a\r/

ad^ + bd~ + cf- = -V (24)
da do dc

We may now eliminate the differentials of M?" from the four equations
(21), (23), (24) by means of a determinant or otherwise.

The result of the elimination is

* *

Introducing the notation involving the angles y and 0, and expressing \P

in terms of the elliptic integral F , we have

COS 0 COS ry 3

to2 _ sin 7 1 + sec2 0 + sec2 7 ._

+ C0S P ~ 1 + sec^S + sec2 7

This formula is much better than those given in (19) and (20) from which
I computed the results given hereafter.

The formulae (18) and (19) are suitable for finding the solution, except
when K is small or sin"1 K is nearly 90°, when the elliptic integrals are
awkward to use. I shall therefore find approximate forms for these cases*.

The formula (28) will always enable us to compute a> when K has been
determined, and therefore it is only the determination of K which need be
considered. In both the cases, namely where K is small and where it is
nearly equal to unity, I proceed from the second of equations (22).

First when K is small:—

For the sake of brevity I write

p = cos 7, q = sin 7

It is obvious that I/A and I/A3 may be expanded in powers of K, SO that

—
A3

* [This portion of the paper has been rewritten and improved.]
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1887] APPROXIMATE SOLUTION FOR SHORT ELLIPSOIDS. 125

When these expressions are introduced into the second of (22) we have
two kinds of definite integrals which may be evaluated as follows :—

5L-*y= 2 ( 2 n - l ) q™~*
Jo p P Jo

Now noting that cos2 0—1 — /c2q2, we have the means of obtaining
approximate values of both sides of (22). I find in this way that the equation
for determining K is as follows:—

1<¥ + 3 - ^ (3 + 8/>Y) + «8 [- W + V-f + ¥ - ~ (¥- + 3g2 - 6g«)]

+«4 [- i<t - f t ? 4 + w ? + i n - ~ m+w - -v-?4)]+...=o.. .(29)

If K be zero we have

_ pq (3 + 10<f) _ sin 7 cos 7 (3 + 10 sin2 7)
7 3 + 8pV ~ 3 + 8 sin2 7 cos2 7

This may also be written in the form

sin 27 — j ^ cos 47
7 1 — \ cos 47

when it becomes more convenient for solution by trial and error.

The solution is 7 = 54° 21' 27"

If we write tan 7 =/ , as in Thomson and Tait's Natural Philosophy,
§ 778', this equation becomes

tan~1/_ 1

which is the equation (9), § 778' of that work.

The ellipsoid of revolution of which the eccentricity is sin 54° 21' 27"
belongs to the revolutional series of figures of equilibrium, and is the starting
point of the Jacobian series of figures. As shown by Lord Kelvin, it is the
flattest revolutional figure which is dynamically stable. The Jacobian figures
of equilibrium are initially stable, and as stated by M. Poincare*, bhere is for
this value of 7 a crossing point of the two series, and an exchange of
stabilities.

When K is small the result must be computed from (29), but as K increases
with great rapidity as 7 increases, it would be necessary to take in higher
powers of K than the fourth to obtain accurate results when 7 exceeds
54° 21'27" by more than a degree.

* Ada Mathem., 7 (1886).
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126 APPROXIMATE SOLUTION FOR LONG ELLIPSOIDS. [8

When 7 only exceeds 54° 21' 27" (or say S) by a few minutes of arc, it is
easy to prove that

7 — 8 = \ K? sin 8 cos 8

Whence K2 = 10'9266821 sin (7 - 54° 21' 27")

These approximate formulse have been used to confirm the results to be given
hereafter for the early values in the table, where the use of the elliptic
integrals became troublesome.

We now turn to the second case where the elliptic integrals again become
troublesome to use, namely where K is nearly unity and sin"1 K is nearly 90°.
It happens that in these cases «'2tan27 is a moderately small fraction and
since

A2 = 1 - K2 sin2 7 = cos2 7 (1 + K'2 tan2 7)

it is possible to develope I/A and I/A3 in powers of «' tan7.

In § 11 of the last paper in the present volume it became necessary to
develope the integrals'with which we are now concerned in this way.

In that paper I write

^ . K. cos3 ft fy sin2 7 , ^ K fy sin2 7 K. COS2 7 [1 tan2 7 ,
&11 = —^~ - T T ^ dy, WLX = -T-r— — • ~ dy, Aj1 = ~^—--1 -——-'• dy

sin27 Jo A3 sin27Jo A ' sin2 7 Jo A

The equations (22) for determining Jacobi's ellipsoid and the angular
velocity may be written in this new notation, as follows:—

&!1 - A,1 - (cos2 7 + /c'2 sin2 7) (g&i - A,1) = 0

w2 _ cos ft cot 7
47T K

Now when K is nearly unity and *' tan 7 small we have

&!1 - Aj1 = * - 2- (<T« - a^'- + <72«'4 - . . . )sin 7

^ - Ax
] = ^ - (T0 - rlK'2 + T,K'* - ...)

where the o-'s and T'S are certain functions of 7 defined in (38) of the paper
referred to.

Hence we find

K'2 (cr0 + Tj cos2 7 — To sin2 7) = T0 cos2 7 -t- K'4 (CTJ + T2 cos2 7 — Tj sina 7)

— K'6 (cr2 + T3 cos2 7 — T2 sin2 7 ) . . .

ft)2 _ COS ft COS 7 j- ,2 ' 4 - 1

From the first of these it is easy to find «'"2 for a given value of 7 by
successive approximation, and then either from the second we find cc2j4nr, or
else we may use equation (28) of the present paper.
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1887] DETERMINATION OF THE MOMENT OF MOMENTUM. 127

The entries corresponding to 7 = 80° and 85° in the table given below
have been recomputed in this way for the present volume.

We shall return later to equation (30) which will afford the value of a>2

for very long ellipsoids.]

Besides the angular velocity and the axes of the ellipsoid, the other
important functions are the moment of momentum, the kinetic energy of
rotation, and the intrinsic energy of the mass. In order to express these
numerically we must adopt a unit of length, and it will be convenient to
take a, where

a3 = abc = a3 cos /3 cos 7

Thus a = a (sec /3 sec 7)3

Let a be the density of the fluid which has hitherto been treated as unity,

and let (^ira-^aFfi, (|7r<r)2a5e be the moment of momentum and kinetic
energy, then

(f -n-vf a > = im (a2 + b") <o = T
4s7To-a5 (sec/3 sec 7)§(1 + cos3/S) {^-rro-f ( j

Thus it = W 3 (sec /3 sec 7)s(l + cos2 8) T—) (31)
0 V47TCT/

The function (31) is the quantity which will be tabulated.

Again (f TTO-)2 a5 e = J {^crf a>w = J V3 ( | TTO-)2 a5,

sothat e = ̂ /llt/s(^Ai (32)

The function (32) is the quantity which will be tabulated.

Thus in the tables the unit of moment of momentum is taken as

(|7ro-)2a5, or m'2"a% and the unit of energy as (|7ro-)2a5 or m2/a.

It remains to evaluate the intrinsic energy, or the energy required to
expand the ellipsoid against its own gravitation, into a condition of infinite
dispersion.

If dt be an element of volume, then this energy is

integrated throughout the ellipsoid.

This will be denoted by (|7r<r)2 a5 (i - 1), or rrfar1 (i - 1 ) , so that i will be
positive.

Now V = Lx2 + My2 + Nz2 + P, and if we denote by A, B, C, the principal
moments of inertia of the ellipsoid, we have

Jjjafadt = | (B + C - A) = £
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128 DETERMINATION OF THE ENERGY. [8

[ft fff

and similarly, jljy2a-dt = ^mb2, \\\ziadt = \;me2

Also Hja-dt = m

Hence — ( i - 1) = •^m[Lai + Mb* + Nti» + 5P]
= JLma2 (sec 6 sec 7)^ [L + M cos2 /3 + N cos2 7 + 5Pa-2]

But if we take the values of L, M, N given in (15), and note that
2

P — iras cos 8 cos 7 . —; F
a sin 7

it easily follows that
L + M cos2 8 + N cos2 7 + Pa-2 = 0

7YL7YL 2

Hence — (i -1) = - fma2 (sec 8 sec 7)3 . Pa~2

8b
8b

= -fma2(sec/3sec7)s.f ^ . — ? — F0 4 a2 a sin 7

_ _ g m
2 (cos 8 cos 7)^ „

T a sin 7sin 7

The re fo r e i = 1 -1 ^l^A F (33)
* sin 7 v y

For a sphere 7 becomes infinitely small, and F becomes equal to 7, so that
F/sin 7 = 1. Thus i — 1 = - | . Therefore the exhaustion of energy of a
sphere of radius a is |m2/a; which is the known result. For an ellipsoid of
revolution K = 0, and 8 =» 0, and F = 7; so that

t l 7 .
B ' sin 7

The function (33) is the quantity tabulated below. It seemed preferable
to tabulate a positive quantity, and it is on this account that the intrinsic
energy corresponding to the infinitely long ellipsoid is entered as unity.

Having now obtained all the necessary formula?, we may proceed to
consider the solution of the problem.

We have to solve

^ t a n i | e C ^ = 0 ( 3 4 )^ ( ) |

where tan f = K tan 8 cos 7, tan 8 = sin 8 = K sin 7

and
J 0

The axes of the ellipsoid are

ba , n .1 b a _ c a .__.
- = (sec 8 sec 7)", - = - c o s / 3 , - = -0037 (do)
Si 3, 3i £1 Si
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1887] METHOD OF SOLUTION. 129

If e1; e2, 63 are the eccentricities of the sections through ca, cb, ab
respectively, we have

e3 = K sin 7 sec 8 (36)

Having obtained the solution, we have to compute

&>2 _ „ ,_, _,. COt3 8 COS /3 „ COS2 8 COt2 7 A ._>_.

-,— = cot 8 cosec/3cot 7 ( F - E) H —,- E —, ' * ...(SI)

4nr<r 7 K 2 K'2

or the preferable/formula (28) may be used.

Then we next compute /M and e and i from the formulae (31), (32), (33).
The functions F and E are tabulated in Table IX of the second volume

of Legendre's Traite des Fonctions Elliptiques, in a table of double entry for
sin"1 K and 7 for each degree.

The solution of (34) by trial and error was laborious, as it was necessary
to work with all the accuracy attainable with logarithms of seven figures.

The method adopted was to choose an arbitrary value of 7, and then by
trial and error to find two values of sin"1 K one degree apart, one of which
made the left-hand side of (34) positive, and the other negative.

The smallest value of 7 is 54° 21' 27", but after that value integral degrees
for 7 were always chosen.

The solutions for 7 = 55° and 57° could not be found very exactly from
the elliptic integrals with logarithms of only seven figures, but the solutions
were confirmed by the approximate formulas (29). The solution for 7 = 80°
was confirmed by the approximate formulas and that for 7 = 85° was only
computed therefrom, since when 7 = 80° the approximate formula gave nearly
identical results with the exact one.

The solution obtained is embodied in the table on the next page. The
first three columns give the auxiliary angles 7, sin"1 K, 8, from which the
remaining results are computed.

* As stated above, some of the computations were actually made from the formula (20).

D. III.
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Solutions of Jacobi's Problems*.

Auxiliary angles

7

54° 21' 27"
55°
57°
60°
65°
70°
75°
80°
85°
90°

sin"1*

0° 0'
17f°
34f°
49° 7'
64° 19'
74° 12'
81° 4'
85° 49'
88° 48'
90°

|8

0" 0'
Uh°
28}°
40" 54'
54° 46'
64° 43'
72° 36'
79° 10'
84° 52'
90°

Axes

a/a

1-1972
1-216
1-279
1-3831
1-6007
1-899
2-346
3-1294
5-0406

00

ft/a

1-1972
1-179
1-123
1-0454

•9235
•8111
•7019
•5881
•4516

•o

c/a

•6977
•698
•696
•6916
•6765
•6494
•6072
•5434
•4393
•0

Eccentricities of sections

(ac)
«i

•81267
•819
•839
•8660
•9063
•9397
•9659
•9848
•9962

1-000

(6c)
«2

•81267
•806
•784
•7500
•6807
•5991
•5014
•3822
•2313
•000

(aft)

•0000
•246
•478
•6547
•8168
•9042
•9542
•9822
•9960

1-000

Ang.
vel.

•09356
•0935
•093
•09060
•08295
•07047
0536
•03307
•01293
•000

Mom. of
momentum

y-

•30375
•304
•306
•3134
•3407
•3920
•4809
•6387

1-0087
00

Energy

Kinetic
e

•08046

•0817
•0850
•0901
•0964
•1006
•0993

•ooo

Intrinsic
i

•41495

•4188
•4394
•4489
•4808
•533
•645

1-000

Total
E

•49541

•5005
•5244
•5390
•5772
•634
•744

1-000

05 o

N.B.—The moment of momentum of the system is (§7ro-)^a5. fi, or the kinetic energy is . e, or m2a~ and the intrinsic
energy is (§7rcr)2a5. (i— 1), or m 2 a 1(i — 1), 6M< im *A« aSove taWe MMiVy has been added to make the results positive; E = e + t.

* [In the paper referred to in the note at the beginning of this paper, M. E. Kaibara has computed the Jacobian ellipsoids by Weierstrass's method
of treating the elliptic integrals, and has then interpolated results which are intended to be exactly comparable with mine. But there must have been
some degree of inaccuracy in the interpolations, because the product of the three axes should always come to unity, and in every case Kaibara's product
exceeds unity. In most of the entries this discrepancy is so small that it would not affect the last significant figure in the axes, but in the last three
entries (for which my results have been recomputed for this volume) the discrepancy becomes considerable. The following table exhibits the discrepancies
expressed in units of the fourth place of decimals. It must be borne in mind that several of my results for the axes (marked with asterisks) do not claim
to go beyond three places of decimals.

(Discrepancies in units of the iih place of decimals.)

7
54° 21' 27"
55°
57°
60°
65°
70°
75°
80°
85°

a/a
D - K

0
- 2*
+ 3*
+ 9
- 3
- 19**
- 91*
+ 72
-117

ft/b
D - K

0
+ 3*
+ 2*
+ 12
+ 2
+ 3
+ 5
- 1
+ 2

c/c
D - K

+ 1
+ 4*
+ 5*
- 4

0
0

+ 2
— 1
+ 1

abcja?
D

1-00026
•99985

1-00001
•99999

aftc/a3

K

1-00089
1-00268
1-00066
1-00178

«2/47rcr
D - K

0
- 2
- 7*
- 3

0
- 1
- 4
- 4 1
- 5

co d 0
0

The internal evidence seems therefore to be adverse to the correctness of M. Kaibara's last three entries.]
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1887] SECTIONS OF JACOBl's ELLIPSOIDS. 131

As a graphical result is much more intelligible than a numerical one,
I have given two figures, showing the three principal sections in two cases,
namely, where 7= 60°, and 7 = 75°. For these figures a is taken as 2 cm., so
that the volume of fluid is f IT x 23 cubic cm.

7=60°

FIG. 1.

^ b

- 7 5

•70)9 ^ .

a = 2-346 ^

Fio. 2.

It will be noticed that the longer the ellipsoid the slower it rotates. It is
interesting to observe that while the angular velocity continually diminishes,
the moment of momentum continually increases. The long ellipsoids are very
nearly ellipsoids of revolution about an axis perpendicular to that of rotation.
Thus in fig. 2 the section through b and c is not much flattened.

9—2
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132 APPROXIMATE FORMULA FOR LONG ELLIPSOIDS. [8

The most remarkable point is that there is a maximum of kinetic energy
when a/a is about 3, or when the length of the ellipsoid is about five times
its diameter. However, notwithstanding this maximum of kinetic energy,
the total energy always increases with the length of the ellipsoid.

The kinetic energy is the product of two factors, one of which always
increases, and the other of which always diminishes; thus it is obvious that
it must have a maximum. The result was, however, quite unforeseen, and it
seems worth while to obtain simpler formulas for the case of the long ellipsoids.
This may be done by taking as the parameter a/a, or the length of the
ellipsoid, instead of 7.

From the table we see that in the later entries 8 is very nearly equal to
7, and that sin"1 K becomes very nearly equal to 90°. Hence we may put
K = 1, and B = 7.

Thus, approximately,

- = (sec B sec 7)* = (sec y)5

, / a \ $ ,
anu cos 7 = I — I , 7 = -kir •

\aj

The axes of the ellipsoid are

a

[As we are treating K as unity, K vanishes and the second equation of
(34) becomes

ft)2

~ = T 0 c o t ° 7

Now T0 = - § + ( | - \ sin2 7) D,

where 11 = -.— loge ' = -=— loge cot (Iw - A7)
sin 7 ° C0S7 sin 7 2

Therefore

If we adopt a less accurate approximation the formula becomes much
simpler. Since 7 is nearly equal to 90°, the coefficient becomes | (a/a)3, and

log, cot (1 ̂  - 17) = log, ^ ™ 7 = loge 2 + § log ^

Therefore writing 1 - § log, 2 = C, so that C = "537902, we have

477 0"
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1887] APPROXIMATE FORMULAE FOR LONG ELLIPSOIDS. 133

If we put a/a = 5-04064 this formula gives o)2/47ro-= 0-012645. The full
value in the preceding tables was 0'01293; thus even with so short an
ellipsoid as this the results agree within about 2 per cent.

For the moment of momentum we have

/A = \ \/3 (sec /3 sec y)$ (1 + cos2 /3)
47TO-/

3 a2 a
-
a

The limit of this is infinite, when a is infinite.]

Again e = ^ V 3 ^ — J

Now the function - floge - — C] has a maximum, when

log , -=1 + 0 = 1-5379

that is when a/a = 4-65. It is probable that this approximation is not a very
close one, but it shows that there is actually a maximum of kinetic energy.

Since when K = 1, the elliptic integral

F = log, cot (ITT -1 7 ) - f [log, \ +1 log, 2]

we have

If we like we may express these several results in terms of the minor and

major axes of the ellipsoid, for b = c = tfi/a*, and therefore a3 = c2a.

Thus

2a
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134 RESULTS FOR CONSTANT MOMENTUM AND VARIABLE DENSITY. [8

[POSTSCRIPT.—If throughout the series of Jacobian ellipsoids we keep the
moment of momentum constant and equal, say, to h, and throw the change
on to the density or, we have

|7ra3<r = m; m2a2/J, = h; say fi = -v—

where fi and O have the numerical values tabulated above.

It is easy then to show that

the coefficients in brackets being constants.

The following values indicate the march of the angular velocity through-
out the series:—

7 = 54° 21'27" 60° 70° 80°

fiV= "0086 -0093 -0160 -0488

Instead of diminishing throughout the series, the angular velocity always
increases.]
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9.

ON FIGURES OF EQUILIBRIUM OF ROTATING MASSES
OF FLUID.

[Philosophical Transactions of the Royal Society, Vol. 178, A (1887),
pp. 379—428.]

IN a previous paper* I remarked that there might be reason to suppose
that the earliest form of a satellite might not be annular. Whether or not
the present investigation does actually help us to understand the working of
the nebular hypothesis, the idea there alluded to was the existence of a
dumb-bell shaped figure of equilibrium, such as is shown in the figures at
the end of this paper. These figures were already drawn when a paper by
M. Poincare appeared, in which, amongst other things, a similar conclusion
was arrived at. My paper was accordingly kept back in order that an
attempt might be made to apply the important principles enounced by him
to this mode of treatment of the problem. The results of that attempt are,
for reasons explained below, given in the Appendix "f".

The subject of figures of equilibrium of rotating masses of fluid is here
considered from a point of view so wholly different from that of M. Poincare
that, notwithstanding his priority and the greater completeness of his work,
it still appears worth while to present this paper.

The method of treatment here employed is simple of conception; but it
is unfortunate that, to carry out the idea, a very formidable array of analysis
is necessary.

In the last section a summary will be found of the principal conclusions,
in which analysis is avoided.

* Phil. Trans., Part II., 1881, p. 534 [Vol. n., p. 457, footnote].
t [The attempt failed, and the greater part of the Appendix is omitted.]
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136 TRANSFERENCE OF ORIGIN FOR ZONAL HARMONICS. [9, § 1

§ 1. Formula} of Spherical Harmonic Analysis.

Let there be two sets of rectangular axes, as shown in fig. 1; and let z be
measured from o to 0, whilst Z is measured from 0 to o; let r2 — x2 + y2 + z*,
R* = Z 2 + F2 + Z2; and let c = oO.

Then x + X=0, y+Y=0, z + Z = c (1)

Let Wi, Wi, denote the solid zonal harmonics of degree i of the coordinates
x, y, z, and X, Y, Z, respectively.

Now we shall require to express the solid zonal and certain tesseral
harmonics of negative degrees with respect to
the origin 0 as solid zonal and tesseral harmonics
of positive degrees with respect to the origin o,
and vice versa; moreover, the results will have to
be applied to a sphere of radius a with centre o,
and to a sphere of radius A with centre 0. This
last clause is introduced in order to explain the x—
introduction of the symbols a, A, in this place.

The formulse required will be called " trans-
ference formulae," because they are to be used in
shifting the origin from one point to the other.

The obvious symmetry of our axes is such that every transference formula
from 0 to o has its exact counterpart for transference from o to 0; thus a
second symmetrical formula with capital and small letters interchanged will
generally be left unwritten. When necessary, 6, cf), will be written for
co-latitude and longitude with regard to x, y, z; and ©, <E>, for the same
with respect to X, Y, Z.

Then, since R2 = r2 + c2 — 2rc cos 0

we have the usual expansion in zonal harmonics

c - *s" Wk ml (2)
The usual formula for the derivation of the zonal harmonic of negative

degree i +1 from 1JR is

i\ dZiR~R*+* K '

Hence, on differentiating (2) i times with respect to Z, or, which is the same
thing, with respect to - z, we have, from (3),

But

C R*+i ~ i] t~0 dzi c*
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1887] TRANSFERENCE OF ORIGIN FOR CERTAIN TESSERAL HARMONICS. 137

Hence c«J!Jl_ = i 2 _ ^ i _ ?fjg

In interpreting this formula, it will be noted that, if i is less than k, the
term vanishes: hence the summation runs from k = <x> to k = i; it is there-
fore better to write k + i for k, and we thus obtain

clWi 1 k=x> k + i! /aA* Wfc

This is the first transference formula by which the solid zonal harmonic
of degree —i — 1 with respect to 0 is expressed as a series of solid harmonics
of positive degree with respect to o. The formula (4) includes (2) as the
particular case where i — 0. The right-hand side of (4) is convergent for r
less than a. A similar formula, convergent for r greater than a, is easily
obtainable, but with this we shall not concern ourselves.

It remains to find the transference formula for certain tesseral harmonics.

If we put P~\ (x2 + y2) (5)
the general expression for the zonal harmonic is

where the summation extends from k = 0 to k = \i or \ (i — 1).

From (6) we have

~df-*{ > i fe!».»•-2*r* p

Now, since r2 = z* + Asp, we have

Z{ ) l-lk+ll\i-2k-2\+k\\i-2kl]Z

k
P(k+l).k\\i-2kl Z P

Also 2(2i + l)Wi = S(-)^M(^±WtiL!^p , ( 9)

Subtracting (9) from (8), and simplifying the difference, we have

t! <k + V *****2 ̂  k+l,Jt!-2k-2l

the last transformation being derived from (7) with i + 2 in place of i, and
k + 1 in place of k.
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138 TRANSFERENCE OF ORIGIN FOR CERTAIN TESSERAL HARMONICS. [9, § 1

Differentiate (10) with respect to p, and notice that dr^/dp = 4, and
we have

2 r 2 n *

(11)

r dp' l {l1 l) dp - dp*

Then, with i+2 in place of i,

%_ 2 ( 2 i + 3 ) ^ = ^
dp* ' dp dp2

Now -y- —£- = -rjx- -^2-7J : - 2 (2t
dp r2 l + 1 r21+3 ( dp

Differentiating again,

6> dp

Id*
b

° r

But since p = ^ (*2 + t/2), it follows that, in operating on a function involving
x and y only in the form x* + y1,

d , d d , d , d d , . „ „. d
dx ^ dp dy ™ dp' dx J dy AK u' dp

Ai d 2 _ i d ^ l 2 d * * _ i A a . i . *

Nowletusput *

Then S2=

and therefore (12) may be written

These expressions in (14) are obviously solid tesseral harmonics.

The transference formula required is for -fwqj2 •

By the formula (4) we have

c^Wi-z = 1 *|« ^ + t - 2 ! Wi
" ^ - 3 ~c i=o i —2! A?! cfc
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1887] THE MUTUAL INFLUENCE OF TWO SPHEROIDS. 139

Operating on both sides by S2, and applying (14), we have

Now the general formula (6) for the zonal harmonic shows us that
is zero when k = 0, 1, 2, 3, and hence h^w^ vanishes for the same values of k.
Thus the summation in (15) is from k= cc to k = 4, or, if we write k + 2 for k,
from oo to 2. Hence (15) gives

cl
 k,w 1 *=.« k + il (a\k&wk+2

This is the second transference formula required.

We observe that the transference of a negative zonal harmonic gives us
positive zonals, and that tesseral harmonics of the type 82 TFf+2/-R

2l+1 give us
harmonics of the type 82wk+2.

§ 2. The Mutual Influence of two Spheres of Fluid without Rotation.

Imagine two approximately spherical masses of fluid of unit density, with
their centres at the origins o and 0 respectively, and with mean radii a and
A respectively.

We shall find that each exercises on the other certain forces, one part of
which has as potential a solid zonal harmonic of the first degree. This part
of the force must remain essentially unbalanced in the supposed system, but
we shall see hereafter that it is balanced by the rotation to be afterwards
imposed on the system.

Meanwhile it will be supposed that it is annulled in some way, and we
shall content ourselves with finding the mutual influence of the spheroids,
and the outstanding term of the first degree of harmonics.

Let us assume that the equations, referred to our two origins, of the
surfaces of the two spheroids, when they mutually perturb one another, are

- = 1 + — I Z - r o (v- hir~lWi
a \aj i=2 2i~2 \cj I

The h's and H's are unknown coefficients, to be determined.

We have now to find the potential at any point in space.

The mass of the spheroid o is f 7ra3, and its potential is f 7ra3/V.

The potential due to the departure from sphericity, represented by the
term in hi in the first of (17), is
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140 THE MUTUAL INFLUENCE OF TWO SPHEROIDS. [9, § 2

This is written in a form convenient for passing to the case of r = a. It
may also be written in the form

4 ™ . d 3 / _ | * » / I Q\

when it is in a suitable form for application of the transference formula (4).

We shall now introduce two new symbols, namely,

•><

Then (19) may be written

(aY 3AiY'~1 ciWi
\c) 2i=2 r^

and, of course, the similar potential with the other origin is

(Ay

The whole potential at any point of space consists of the potentials of the
two spheres and of the inequalities on each. The potential of the inequalities
of the sphere o may be written in the form (18), and of sphere 0 in the
form (21).

Thus the whole potential is

4nra3

The first line of (22) refers to origin o, the second to origin 0, and to this
latter half the transference formula (4) must be applied.

Now apply (2) to the first term of the second line, and (4) to one term of
the series in the second term, and we have

i-jrA3 c 4>TTAS kZ,x (a\k w^

3c R ~ 3c 4=o \c) ak

and

L 3 Vc) 2i-2 ]R2i+i~ 3c \c) 2i-2 4=0 k\i\ \c

Thus the second line of (22) when transferred is

3c L*=o \cJ ak \cJ »=2 *=o k \ i \ i - l \oj a * J '

Then (22—i.) and (22—ii.) together constitute the potential now entirely
referred to origin 0.

We want to choose the h's and H's so that each spheroid may be a level
surface, save as to the outstanding term of the first degree.
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1887] CONDITIONS FOR EQUILIBRIUM. 141

In order that (17) may be a level surface, when we substitute for r its
value (17) in (22), the whole potential must be constant. In effecting this
substitution, we may put r = a in the small terms, but in \ira?\r we must
give it the full value (17).

The constancy of the potential is secured by making the coefficient of
each harmonic term vanish separately—excepting the first harmonic, which
remains outstanding by supposition.

We may consider each harmonic term by itself.

As far as concerns the term involving wk, we have, from (22—i.) and
(22-ii.), as the value of the potential,

( k wkr Shk (a\k (a\k+* wk (a\k w
[2k - 2 [cj [r) rk + \c) a"

s (a\k

*{c) [c.
ik

 ly° k + il p - 1

!* ,= 2 klil i — 1

and the value of r which must make this constant is

(Ay2k+l/a\*+\ wk

but in the small terms inside [ ] we may put r = a simply.

Make, therefore, the substitution, and equate the coefficient of wk to zero.

On dividing that coefficient by —«- . (-) ,we find

c) -2 TT7T fcl^' (23)

and, by symmetry,
Hr=1+%(j)% TnVi"!**

Multiplying both sides of (24) by the coefficient of Hr in (23), we have

fa\3 k + rl P - 1
 rj. „ /a\3 A; + r I P " 1p) klrl r - 1 r 2 V c / klrl r - 1

; = 2 r HI klrl i — 1 r — .

Performing 2 on both sides, and substituting from (23),

r = 2 klrl r—

" - 2 2 r + ! r + f:-?—i—^.. .(25)
c / \ c j r = 2 i=-.2 r l i l k l r l i — l r — l v /
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142 CONDITIONS FOR EQUILIBRIUM. [9, § 2

Now let (k, r) = ' 2° kf^ ^ 4
r=z k\r\ 1— 1
rlx if ( M - (26)

And (25) may be written

By imparting to k all integral values from 2 upwards, we get a system of
linear equations for the determination of the h's, and it will appear below
that as many of them may be found numerically as may be desired.

We now have to consider the series (26).

0 ^ *
and denote the operations

Consider the function y~'EK . 7log(l +

Now

Thus (A>7) = -£*.7log(l+/8), (&,r) = ~-S*.riog(H-£) (28)
7 x

Therefore
1 M r = =c yk+r ^ r | » fc + r I ^r

r - 1 r = 2 & ! r I r - '.

7"
Next consider the function y-^EkEi. 7 log (1 + /8).

r = c o ^ _|_ ^, j -,»•

As before, J5*. 7 log (1 + j3) = 2 -.--.- • '— -^

and ^JE* . 7 log (1+ /3) = -̂, -^ ' 2°° V ^ f ̂ - 4
' & v k ! (17* r = 2 i ! r ! r - 1

_ rS,°° i + r ! k + r \ yr

~ r=2 T ! rlrlkl r-1

Hence

[k, i, 7] = - EfEf-. 7 log (1 + /3), [A, t, r ] = | , &W-. T log (1 + fi) .. .(29)

We must now develop the symbolical sums of the series in (28) and (29).
The following theorems are obvious :—
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1887] CONDITIONS FOR EQUILIBRIUM. 143

Then, by their aid, we have from Leibnitz's theorem
M t = k h I fit Jk-t

^ P) = I , - y ^ ^ 7 - %=. log (1 + M

k\ k + V.k-t-V. yk~t+1

t~vt\k-t\ k-t+ll (1 - 7)*- '

in which we interpret (— 1) !/(l — 7)0 as log (1 + ft).

Thus ^^tik-tAiik-Dtri-Ti^ < 3 0 )

with ft°/0 = log (1 + ft).

Again

: -=—. 7* -T-. \yk+1 log (1 + ft)}

1 ! A; - t - 1 ! <# ryi+k-t+l

i ! <=0 * I k - 11 k - t + 1 ! dyt (1 - 7)*-

V.k-t-lli + k-t + V.i+k-r-t-V. a.,t ,
— {Li > % — — — — — • - —

7 ttorto tlk-tlrli-rlk-t+llk-t-lli + k-
Hence

Ic + lli + k-t + V. .ff+±r-*_
x """" yt _ t + 1! • t Vk-t! rT7 - r ! "'-(- '

In (30) and (31) the infinite series are replaced by finite series.

From the form of the series it is obvious that the result must be sym-
metrical with respect to k and i, so that [k, i, y] = [i, k, y], but this is not
obvious on the face of the formula (31).

We shall find, therefore, the symmetrical form of (31) for the first few
terms.

If t = k, r = i, we obviously have

First term = (k + 1) (i + 1) log (1+ ft)

The second term arises from t = k, r = i—l, and t = k—l, r = i. The two
corresponding values of (31) will be found to add together, and we get

Second term = \ (k + 1) (i + 1) [2 (i +k) + ik] ft

The third term arises from t = k, r = i— 2; t =k — 1, r = i — 1; t = k— 2,
r = i, and we find

term = ̂ —^ (k + 1) (i + 1
2!

ik(i + 2)(k + 2)
"2 f 3 T2 f 3 T 2 ! 2
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144 TABLES OF CERTAIN FUNCTIONS. [9, §2

A symmetrical form for further terms may be obtained by writing (31)
first with i before k and then with k before i, and taking half the sum of the
two results. In computing these coefficients it is a useful check to compute
from both unsymmetrical forms, when the identity of results verifies the
computation.

The following Tables have been computed from (30) and (31). The
numbers are the coefficients of the quantities at the heads of the columns for
the values of k and i written in the first column. The series (k, y) is
terminable with /3*, and the series [k, i, y] is terminable with /3*+i.

In \k, i, 7] the coefficients have only been computed as far as /36, so that
the last which is given completely is [2, 4, 7]; however, with such values of
/3 as we require, the series are carried far enough to give numerical results
with sufficient accuracy.

h=Z
A=4
* = 5

Log(l + /3)

3

4

5

6

TABLE of (k,

+?

3

6

10

15

2

5

10

7)-

+ 03

i
1§
5

+ 04

...
i

+ „

5

yfc=2, j = 2

£ = 2, t'=3

£ = 2, J'=4

/fc = 2, i=5
£=3, j = 3

£ = 3, i=4

£=3, i=5

£=4, t = 4

k=A, i=5

h=b, i = 5

Log (1 + /3)

9

12

]5

18

16

20

24

25

30

36

TABLE of

27

48

75

108

84

130

186

200

285

405

+ /S2

18£
46

92|

163

108

210

362

400

680

1145

[k, i,

+ /S3

8

31

85

190

103

260

552

625

1285

2585

y]-

+p

H
12

50J
151J
63

219

594

687f
175OJ
4272

+ ,35

...

2

17

77|
22

118

434J
514

1681

5098f

+ /3«

...

23

H
36|

206

248£
1110

4345

...

&c.

&c.

&o.

&c.

&c.

&c.

We must now go back and determine the value of the outstanding
potential of the first degree of harmonics, which will be annulled when
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1887] THE POTENTIAL DUE TO ROTATION. 145

rotation is imposed on the system. The potential is given in (22-i.) and
(22—ii.); (22-i.) contributes nothing, and (22—ii.) gives us, for k = l,

3c Lc i \cj i=z 1U ! i — 1 ] a

Thus, if we call Wj, Z7a the outstanding potential of the first degree, when
referred to the two origins respectively, we have

Ul = 1 4 !
3c

h + f py Y rH
•(32)

§ 3. T&e Potential due to Rotation.

Intermediate between the two origins o and 0 take a third Q, and take
the axes of £ and rj parallel to those of % and y, and that of £ identical with
that of z. Let Qo = d,QO = D.

Then suppose that the system of the two spheroids is in uniform rotation
about the axes of f with an angular velocity a>.

The potential D, of the centrifugal force is given by

n = w(v2 + ¥) (33)
But z = £ + d, Z = D-%, d + D = c\

y = n Y=-v (34)

x = Z, X = -% J
Hence

H = |o>2 (2/2 + z3- 2zd + d2)

= ^ [- | («2 - f) + ^ (^ - i ̂  - ^y») + 1 {a? + f +1?) - 2zd + <?]

Then, remembering that

w2 = z2— |*2 - -Jjr2, wx = «

and if we put q2 = *2 - J/2, Q3 = Z2 - F2

we have n = -4«2^2 + ia)2w2-w2dw1+ ^w2r2 + <̂»2d2 (35)

Similarly the rotation potential, when developed with reference to the
other origin 0, is

n = - > 2 Q 2 + ^»2Tf2-»2i)F1 + i(B
2_R2 + |aJ

2i)2 (36)

The last terms of (35) and (36) are constants, and the term in r2, and
that in JB2 are symmetrical about each origin, and so the corresponding forces
can produce no departure from sphericity in either mass; thus these terms

D. in. 10
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146 THE ZONAL ROTATIONAL TERM. [9, § 4

may be dropped. Next we have in (35) and (36) the outstanding potentials
— a}2dw1 and - a>iDW1, which will be annulled by other similar terms, and so
need not be considered now. We are left, therefore, with the terms in <fc
and w3, or in Q2 and TF2. The g2 is a sectorial harmonic, the w2 a zonal, and
it will be convenient to treat them separately. We shall begin with the
zonal term.

§ 4. Disturbance due to the Zonal Harmonic Rotational Term.

The potential whose effects we are to consider is ^w2w2 or ^<o2W2, according
to the origin which we are considering.

If an isolated spheroid of fluid of unit density be rotating with angular
velocity co, the ellipticity of the spheroid is 15a>2/167r; therefore we put

( 3 7 )

Let us assume, for the equations to the two spheroids,
r , , . " ' . M Y ' V 2i + 1 (a\i+1 j wi

A ~ ^ ^ R? T \Aj

where l(, Li, are unknown coefficients which are to be determined. We now
have to determine the potentials at any point of the inequalities (38) on the
two spheroids.

The potential of the inequality ^ew2/r
2 in the first of (38) is

£ (39)
The similar inequality in the second of (38) gives us

W 4,-n-A3

V (40)

The term in lh in the first of (38) gives us, as in § 2,

3c 2k-2\cJ \rj

The term in Z,- in the second of (38) gives us, as in § 2,

(42)c / % - 2

The potential due to rotation is ^co"w2 or ^co2W2, being the second term
of (35) or (36); this term we find it convenient to write

a) i* <43>
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1887] THE ZONAL ROTATIONAL TERM. 147

The sums of the several terms (39), (40), (41), (42), and (43) are to be
regarded as the potential of perturbing forces by which the spheroid a or the
spheroid A is disturbed, and the arbitrary constants I and L are to be so
chosen that each may be a figure of equilibrium.

We may consider the spheroid a by itself, and the solution for it will
afford us the solution for the spheroid A by symmetry. In order to find the
disturbance, the formulae (40) and (42) must be transferred.

Now by (4), with i = 2,

f 2T*TU) 3* - ( 4 0 )

And again, by (4),

(Ay SLj^-1 c{Wj _4nrA:>3 (a\3 *2» k + il T^1 , (a\k wk ,.
\c) ¥ T F i ~ 3c *W *=<> ~iTkTi^lLi\c) ~^--{ '3c V c / 2i-

Then (39), (40'), the sum of (41) from k = oo to k=2, the sum of (42') from
i = oo to i = 2, and (43) together constitute the disturbing potential, all now
referred to the origin o.

In order to find the disturbance of the spheroid a, we add the perturbing
potential to |7ra3/r, giye r its value (38) in this term, put r = a in the per-
turbing potential, and make the whole potential constant by equating to zero
the coefficient of each harmonic term.

We will begin by putting r/a= 1 + ^ew2/r
2, and considering only the

perturbing potentials (39) and (43). We have then, for the coefficient
of w2/r

2,

- f7 ra 2 . i6+> 2 a 2 + ia , 2 « 2

Now, with the value of e in (37),

Hence the coefficient of w2/r
2 vanishes, and the term in e in (38) has been

properly chosen to satisfy the perturbing potentials (39) and (43).

Following the similar process with the remaining terms of (38), and
equating to zero the coefficient of wk, we have from (40'), (41), and (42'),

2k+l , . 34 , , (Ayk-

whence 1% =-^e I — 1 , . 9 . + f ( — I ^ T~PT i ^* v™)
\ C J rC \ £ \ \C / i — % iC \ % • 1 J.

By symmetry, the condition that the spheroid A may be a level surface is

Lr=ie[~) vhfi'+HW ,?, Tdit^li (45)

10--2
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148 THE ZONAL ROTATIONAL TERM. [9, § 4

fa\3 v + k ! P
Multiply both sides of (45) by f (- 1 —-j-r' z , and perform 2 on

the whole, and substitute from (44); and we have

2lr_ i (AV & + 21 _ , / a V 3 fa\3 r=°>

Introducing the notation (26) for the series involved in (46), we have

2) + $ ( | )2 (f )3 [*. 2,

Each value of fe gives a similar equation, and there is a similar series of
equations with small and large letters interchanged.

Now put lk = ̂ e (-Y (k+l)(k+2)Xk

and (47) becomes
3

J U / (*
We attribute to k in (49) all values from oo to 2, and thus find a series of

equations for the \'s. A similar series of equations holds for the A's.

We must now find the outstanding potential of the first degree of
harmonics. No such term exists in (39), (41), (43), but it arises entirely
out of (40') and (42'). If we write î  for the outstanding potential, we have
clearly

47rJ.3f, (A\> 3! a w, . „ /a\3 *=°° i + 1! F - 1
 r aw,

_ 3c {^\cj 2 ! l ! c -
whence

j i=2 z - 1 l) c a

and, by symmetry,
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1887] THE SECTORIAL ROTATIONAL TERM. 149

§ 5. Disturbance due to the Sectorial Harmonic Rotational Term.

In (35) and (36) we have found this term to be — \co2q2 or — -Jo)2^.
7 2 7g

We have already, observed that, if the operation -y—2 — -=—a or S2 be per-

formed on Wi, the result vanishes when i = 1, 2, 3.

Now, by (6), w4 = ^(-)kJcf^2k)zi~2kPk

4_ 4! J ^ 2
1 !2 2 ! ^ 2 !2 0 ! ^

Hence \d2w1/dp'1 = 3, and, since S2w4 = \ (x2 — y2) d2wt/dp2, it follows that

q2 = xi-y2 = \&wi, and Q2 = iB2W4 (52)

Hence the sectorial rotational term is —-foo^&Wi or — ^w2h'iWi; this
potential is of the second order of sectorial harmonics.

Now, with e as defined in (37), let us assume as the equations to the two
surfaces,

a ~ ~ff6 ~r~2 \a) ^ 2T^2 \c) Wi rl

A ~ 1 ~ «6 i? ~ U i .=2 2»- 2
We have now to determine the potentials of the inequalities on the two

spheroids expressed by (53).

The potential of the inequality — T
1
ffeS2w4/r

2 in the first of (53) is

(54)

The potential of the similar inequality in the second of (53) is

-WKc ^e^RT <55>
The term in mk in the first of (53) gives us

ft.**** f\ 3 -t-yyi , / a \ *G //"f \ A*~rl >\«y?f •.
TJ/J XL ailvJQ / Lv \ / \JU \ U WjfcJ-2 / , , \

The term in Mi in the second of (53) gives us

47T-A3 / a \ 3 3Mi ri_i c%o2Wj+i , ^.
3c W 2 f - 2 X iJ2'+> ( 5 7 )

Lastly, the sectorial term itself is
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150 THE SECTORIAL ROTATIONAL TERM. [9, § 5

The sums of the several terms (54), (55), (56), (57), and (58) are to be
regarded as the potential of perturbing forces by which the spheroid a, or the
spheroid A, is disturbed, and the arbitrary constants m, M, are to be so
chosen that they may each be figures of equilibrium. We may consider the
spheroid a by itself, and the solution for it will afford the solution for the
spheroid A by symmetry. In order to find the disturbance, the formula? (55)
and (57) must be transferred. For this purpose we require the second trans-
ference formulae.

By (16), with i = 2, we have for (55)

3c \c) T i j6 R° ~~ 3c

And by (16) we have for (57)

k + 2l (a\k S°-wk+2 ,.
!fc + 2 ! W ~& '"K }

/ a y 3Jf< •_,
3c \c) 2i-2

J. i 0' 1 lPi—1 / / 7 \
+ i U \3c

Then (54), (55'), the sum of (56) from k= oo to k = 2, the sum of (57')
from i=<x to i = 2, and (58) together constitute the disturbing potential, all
now referred to the origin o.

In order to find the disturbance of the spheroid a, we add the perturbing
potential to ^Tra3/r, give r its value (53) in this term, put r=a in the
perturbing potential, and make the whole potential constant by equating to
zero the coefficients of each harmonic term.

We will begin by putting r/a= 1 — ^eS2w4/r
2, and considering only the

perturbing potentials (54) and (58). We have then, for the coefficient of

Now, with the value of e in (37),
2, and

Hence the coefficient of B2w4jr
2 vanishes, and the term e in (53) has been

properly chosen to satisfy the perturbing potentials (54) and (58). Following
the similar process with the remaining terms of (53), and equating to zero
the coefficient of B2wk+2, we have, from (55'), (56), (57'),

2k-2 * 2k-2

or

By symmetry the condition that the spheroid A may be a level surface is
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1887] THE SECTORIAL ROTATIONAL TERM. 151

Multiply both sides of (60) by | (-) ' -—= , and perform

2 on the whole, and substitute from (59), and we have

r\

+(i
Now let us write

A\3 r=<*> i = co

2 ~̂
r + i I k + r!

C / r = 2 i = 2 l - Z l ' .

[k, T} = 2

I k,i, r ] = 2 T-

so that (61) may be written

r + t! A; + r ! .(62)

®20 uJ,?, L M J U T ^
(63)

Mf c ..(64)Next put

and (63) becomes

We attribute to k in (65) all values from oo to 2, and thus find a series of
equations for the fi's. A similar series of equations holds for the M's.

We now have to sum the series (62).

Consider the function

: [ ( l -7)-*-2- l ]

1 fk+2
-7 + 2! 72+ ...]

1 - - - r\

Hence

Next

' k + 2 ,.=2 * + 1! r - 1! r=2 & + 2 ! r - l ! 7

(66)

1. i - 1! df~2
 r=2 A; + 2 ! r - 1!

r=co A; + r ! i 4- r!
3 ^ i ^ l ! i f c + " 2 ! r - l ! r + 2 ! '

7W

vr+2
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152 THE SECTORIAL ROTATIONAL TERM. [9, § 5

Hence

^ ^ | = ; 7 - [ ( l + ^ - l ] ! (67)

The differential in (67) must now be evaluated. We have, by Leibnitz's
theorem,

2 ' ^ rZ6 r l i - r - 2 l dyr

- 3 T 7 + ( i _ 7 ^ .

Substituting in (67), we have

(68)

The following Tables, computed from (66) and (68), give the values of

, y} and | k, i, y | as far as k = 5, and k — 5, i — 5.

o/ {fc, 7}.

Table of \k,i,y\.
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1887] THE ANGULAR VELOCITY. 153

§ 6. Determination of the Angular Velocity of the System.

The angular velocity of the system must now be determined in such a
way as to annul the outstanding potential of the first degree of harmonics.

Referring to origin o, we have from (35) — aPdwx directly from the rotation
potential; the remaining terms are ux + vx, since the sectorial harmonic term
does not contribute anything.

Thus, taking ux from (32), and vx from (50), we get for the potential

Equating this to zero,

.-ra » -

And, by symmetry,

c J i = 2 i - 1

Add (70) to (69), note that d + D = c, and ^e = 3<»7327r, and solve for
and we have

,5 ^

Now let 1 + K denote the factor by which (A/c)3 + (a/c)3 is multiplied in
(71). Then, if the two masses were particles, K would be zero, and (71)
would simply be the usual formula connecting masses, mean motion, and
mean distance in a circular orbit. Hence 1 + K is an augmenting factor by
which the value of the square of the angular velocity must be multiplied if
it be derived from the law of the periodic time of two particles revolving
about one another. K, in fact, gives the correction to Kepler's law for the
non-sphericity of the masses.
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154 THE SOLUTION OF THE PROBLEM. [9, § 7

This completes the solution of the problem, for we have determined the
angular velocity in such a way as to justify the neglect of the harmonic terms
of the first degree in §§ 2 and 4.

§ 7. Solution of the Problem.

We may now collect from the preceding paragraphs the complete solution
of the problem.

In (38) and (53) we have found that there are terms in rja as follows:—

H/2 S2w4

Now w2 = 22 - | a? - %f, and S2w4 = 3 (x2 - f)

hence w2-^82w4 = z" - Ix^ + tf = r 2 - 3«2

and these terms are therefore equal to e (J — xL\ri).

We note that e = 15<B2/167T = f «2/f 7r, and that a)2/!1"" is the ratio generally
written m in works on the figure of the Earth. Then, from (17), (38), (53),
the equations to the two surfaces are

(72)

From (27), (49), (65), we see that h2, hs... hi..., X2, X3... \ ..., fi2, ps •••
in ..., are to be found by solving the equations resulting from all values of k
from 2 to infinity in the following:—

(73)

and symmetrical systems of equations for obtaining the H's, A's, and M's.

With the values found by the solution of these equations we then evaluate
K by formula (71); and we have
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1887] THE SOLUTION OF THE PROBLEM. 155

We are now enabled to find the Z's and m's by the formulae (48) and
(64), viz.,

lk = &e(k+l)(k + 2)(A-)\)
KcJ [ (75)

and the symmetrical forms give us the L's and M's.
Having thus evaluated all the auxiliary constants, (72) gives the solution

of the problem.
It is well known that f x 3o)2/47r is the ellipticity of a single homogeneous

mass of fluid rotating with angular velocity co. Hence the first terms of (72)
simply denote the ellipticity due to rotation in each of the masses, as if the
other did not exist. Now the rigorous solution for the form of equilibrium of
a rotating mass of fluid is an ellipsoid of revolution with eccentricity sin g,
the value of g being given by the solution of

~ = c o t 3 g [ ( 3 + t a n 2 g ) g - 3 t a n g ] * (76)

Hence it will undoubtedly be more correct to construct the surface, of which
the equation is (72), by regarding the part of r under the symbol 2 as the
correction to the radius-vector of an ellipsoid of revolution with eccentricity
determined by (76), where «2/27r is found from (74).

§ 8. Examples of the Solution.

The principal object of the preceding investigation is to trace the forms
of the two masses when they approach to close proximity; we shall thus be
able to determine the forms when they are on the point of coalescing into a
single mass, and shall finally obtain at least an approximate figure of the
single mass. For this purpose we require to push the approximation by
spherical harmonic analysis as far as it will bear. We shall below endeavour
to estimate the degree of departure from correctness involved by the use of
this analysis. The results will, therefore, be worked out numerically for such
values of c/a as bring the two masses close together, and it will appear that
the largest value of c/a assumed for numerical solution is such that the
surfaces cross; in this case the reality will be a single mass of a shape which
it will be possible to draw with tolerable accuracy.

The computations are facilitated if, instead of assuming c to be an exact
multiple of a, we take c2 a multiple of a2; that is to say, we shall take 1/y as
an integer, and therefore 1//3 also an integer.

We shall in the first instance suppose the two masses to be equal. In the
following examples, then, we have A = a, T = <y, B = /3, and the two masses
assume the same shape.

* See, for example, Thomson and Tait's Natural Philosophy (3), § 771, with/= tan g.
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156 NUMERICAL RESULTS. [9, §8

The computations will be carried through in detail in two cases, viz.,
when 8 = 1, and when /3 = 4. The results will also be given for 8 = 1.

When 8 = h y = $, c/a = 2-8284, and when 8 = ±, y = £, cja = 2-449.
Thus the distances of the centres apart are 2-f and 2 | of the mean radius
respectively. The numerical details of the two computations may be stated
pari passil, and the numbers applying to 8 = £ will be distinguished by being
printed in small type.

In the case of 8 = ^, we have ? = }, c/a = 2'6458; but only the final
result is given, without intermediate details.

The first step is to compute the values of the several series by means of
the Tables in §§ 2 and 5.

The numerical results are as follows.

TABLE of (k, y). TABLE of {k, y}.

k=4

k=b

•839
1-433
2-204
3-163

0 = i

1-167
2-012
3-] 25
4-536

& = 4
k=b

•177
•190
•205
•221

•268

•298

•331

•369

TABLE of [k, i,

k=2, 4 = 2

£ = 2, 2 = 3

/fc = 2 , 4 = 4

£ = 2, 4-=5

£=3, 4 = 2

k = 3, i = 3
k = 3, 4 = 4

k = 3, 4 = 5

yfc = 4 , 4 = 2

k = 4, 4 = 3

/fc = 4 , 4 = 4

k=i, i=b

k = 5, 4 = 2

k = b, 4 = 3

^ = 5 , 4 = 4

k = b, 4 = 5

5-460

9-494

14-875

21-780

9-494

16-667

26-384

39-047

14-875

26-384

42-214

63-183

21-780

39-047

63-183

95-690

7]-

7-847

13-895

22-201

33-190

13-895

24-969

40-517

61-574

22-201

40-517

66-840

103-372

33190

61-574

103-372

162-831

TABLE

£=2, 4 = 2

A = 2, i = 3
yfc=2, 4 = 4

k=2, 4 = 5

A = 3, 4 = 2

i = 3, 4 = 3

k=Z, 4=4
^ = 3 , 4 = 5

k=4, 4 = 2

* = 4, 4 = 3

/fc = 4 , 4 = 4

A = 4, 4 = 5

^ = 5, 4 = 2

£ = 5, 4 = 3

£ = 5, 4 = 4

^ = 5, 4 = 5

of \k,_h_

p=\

•177
•475

1-024
1-933

•190

•519

1-137
2-183

•205
•569

1 -266

2-471

•221

•624

1-412

2-803

7J-

P=i

•268

•744

1-655
3-229

•298

•844

1-921

3-837

•331

•961
2-238

4-578

•369

1-096

2-616

5-479
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1887] NUMERICAL RESULTS. 157

With these values for the series, we have to compute the coefficients of
the systems of simultaneous equations (73). The equations lend themselves
more readily to solution if we consider A; — 1, X4- — 1, m — 1, as the unknowns
instead of A;, Xi, fii. The results are given in the following equations.

The upper coefficients correspond to the case of /3 = \ ; the lower ones,
printed in small type, to the case of /S = J.

-00004(A4-l)+-00001(A5-l) + ..
-00036 -00007

+-00001 + . .
-00012

+-00002 + . .
-00021

+-00003 +. .
-00033

•13516 -01362

h3-1=10086+-00522
•23385 -02412

A4-l = -15529+-008l7
•36467 -03854

A5-l = -22321+-01196
•53150 -05762

-00201

+-00057
-00361

+-00091
-00586

+-00134
-00891

-00036

+-00008
-00065

+-00012
-00108

+-00018
-00165

•15158

X3-l=-06677 +
•16114

X4-l=-06976 +
•17174

X5-l=-07297 +
•18352

•02818

fis-1 =-01274 +
•03127

/u,4-l=-01374 +
•03478

/ u 5 - l = -01482 +
•03879

•00300 (X2-l)+-00054(X3-l)+-00011
•01362 -00335 -00089

•00313
•01447

•00327
•01542

•00342
•01646

00010 (/it.
•00047

•00010
•00052

•00011
•00057

•00012
•00064

+•00057
•00361

+•00060
•00391

+•00064
•00424

!-l)+-00003(/x3
•00022

+-00004
•00024

+ •00004
•00028

+ •00004
•00032

+-00011
•00098

+•00012
•00108

+-00013
•00118

-l)+-00001
•00008

+-00001
•00009

+-00001
•00011

+-00001
•00013

(X4-l)+-00002(X5-l)+...
•00023

+-00002 + . . .
•00026

+-00002 + . . .
•00029

+-00003 + . . .
•00033

G*,-i)+-oooooo*»-i) + ...
•00003

+-ooooo + . . .
•00003

+-00000 + . . .
•00004

+-00000 + . . .
•00004

The solutions of these equations are obviously found by an easy approxi-
mation ; they are

X2 = 1-0642
1-1544

X3 = 1-0670
1-1642

I, = 1-0593
1-1377

'(3=1-1012
1-2382

hi = 1-1559
1-3719

hs= 1-2241
1-5424

\ 4 = 1-0700
1-1750

X5 = 1-0732
1-1870

, = 10118
1-0282

, = 1-0127
1-0313

t = 1-0137
1-0348

5 = l-0148
1-0388

the small figures corresponding, as before, to the case of/3 = ^.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.012
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:09, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.012
https://www.cambridge.org/core


158 NUMERICAL RESULTS.

With these values of the h'a and \'a, I find

[9. §8

22 i y- i hi = -8718; 22 ( ' + 1)2

1 ~ L 1-3005 l ~ l

the summations, of course, stopping with i = 5.

Applying these in (71), we have, when

ii = 1-3949;
2-8542

- Y = -00829
•°J -01701

1 - -00880

1+-0664

-1-0880

1--0195
= 1-0877or, when

whence

Thus the angular velocity of the system has been found.

3ft)2

: = p _ = -08839 x 1-0380 = '09175
4 7 r -13608 x 1-0877

Next we have = -001434
-00309

Introducing this into (48) and (64) with the previously found values of the
X's and fi'a,

Z2 = -0183, m2 = -00145 \ / h2 + l2 = 1-0776
•0428 -0032 1-1806

ls = -0306, m3 = -00145
•0720 -0032

k = -0460, m4 = -00145
•1089 -0032

4 =-0646, m5=-00145
•1541 -0032

-; and hence •<

l3 = 1-1318
1-3100

lt = 1-2019
1-4808

ls = 1-2887
1-6965

By taking the differences of h + I, we may conclude that

and this sixth harmonic term will now be included.

It appears from the values of the m's that the harmonics of the type
B2wi+2 are practically negligible, excepting the term S2w4, and that in that we
may neglect the part depending on m2.

Now, if r denotes the radius-vector due to the rotation, and 8r the increase
of radius-vector due to the mutual influence of the two masses, we have

- = -1191 -; + -0309 ̂  + -0100 ^ + -0035 ^ + -0013 ^
•2008 •0637 r» •0252 0108 •0048 r6 .(77)

We next have to consider the values of r, the radius-vector of the ellipsoid,
due to rotation.
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1887] NUMERICAL RESULTS. 159

We might compute from the spherical harmonic formula

The results so computed will be compared with the others computed as
shown below.

The following Table of the angular velocity and corresponding eccentricity
e of the equilibrium ellipsoid of revolution is extracted from Thomson and
Tait's Natural Philosophy, § 772 :—

e

3

4

5

6

7
8

2TT

•0243
•0436
•0690
•1007
•1387
•1816

From this we find by interpolation that, when 3co°-/4nr = '09175, e = "472; and,
when 3«V4TT = 1481, e = -594.

These, then, are the eccentricities of the ellipsoids whose radius-vector is
r in the two cases /3 = -f, /3 = £.

The equations to the generating ellipses are

r 1--0806 . . , , r 1--1353 , . ,
a l--2228cotfg * * ' a 1

The following are the computed values of r/a for each 15° of 6, the latitude,
the small figures written below appertaining to the case of /3 = i.

0= 0° 15° 30° 45° 60° 75° 90°

/3 = f: - = 10429, 1-0330, 1-0074, -9753, -9461, -9264, -9194
OJ

| S = i : 1-075, 1-056, 1-009, '953, -906, -875, -865

Computing from the spherical harmonic formula, I find

/3=f: - = 1-0382, 1-0305, 1-0096, "9809, -9522, -9312, -9235
(1/

/3 = | : 1-0616, 1-0490, 1-0154, -9692, -9230, -8892, -8768

The greatest discrepancy occurs when /3 = £ and 9 = 90°, and the difference
between the two results is ^ of either. It follows, therefore, that in drawing
the figures it is not of much importance which results we take. But, as above
remarked, the radius-vectors computed from the true ellipsoidal figure are the
more correct.
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3 = 4: —
a

+ •165
+ •280

+ •141

+ •257

+ •084
+ •142

+ •019
+ •024

160 NUMERICAL RESULTS. [9, § 8

The formula (77) for Br consists of a series of zonal harmonics. The pole
of symmetry of these harmonics lies in the equator of the ellipsoid of revolution
defined by r, and is that point of each mass which lies nearest to the other.
Then, denoting by 0 co-latitude estimated from this pole, I find that the
numerical values of Br for each 15° of 0 are as follows:—

0= 0° 15° 30° 45° 60° 75° 90°

-•031 --055 --056
- -060 - -094 - -092

105° 120° 135° 150° 165° 180°
-•037 --004 +-032 +-065 +-088 +-096
-•059 --002 +-055 +-106 +-143 +-15o

These have to be combined with r, so as to give the radius-vectors of the
mass of fluid along two sections, one perpendicular to the axis of rotation
(which may be called the equatorial section), the other through the axis and
the two centres (which may be called the section through the prime meridian).
Taking the case of /3 = 4, we add the successive values of Br to the equatorial
value of r, viz., l'O43, and thus find the equally-spaced radius-vectors along
the equatorial section. Next we add the successive values of Br to the cor-
responding values of r, and thus find the equally-spaced radius-vectors along
the prime meridian. The results are as follows:—

0= 0° 15° 30° 45° 60° 75° 90°

t Equator, T + r = 1-208

Pr. Merid. = 1-208
1-184
1-174

105°
1006
•889

1-126
1-091

120°
1039
•942

1062
•994

135°
1-075
1-008

1-012
•915

150°
1-108
1072

•988
•871

165°
1131
1-121

•987
•863

180°
1139
1139

These results apply to the case of /3 = \; those for /3 = £ are found in the
same way, and are given in the figures referred to below.

When /3 = | the distance between the centres is given by c/a = 2-828.
I have also worked out the case of /9 = £, although none of the numerical
details are given here.

In figs. 2, 3, 4, and 5 are exhibited the figures which result from some of
these computations.

Figs. 2 and 3 refer to /? = \, 4 and 5 to that of /S = i , and the numerical
values for /3 = \, given above, make it easy to draw a figure for /3 = {.

Since in these cases the masses are equal, the two halves of the figure are
the images of one another. The numerical value of each radius-vector is
entered on the figures; and other numerical data and explanations are given.
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1887] FIGURES ILLUSTRATING THE RESULTS. 161

FIG. 2. Dumb-bell figure of equilibrium. Section perpendicular to axis of rotation.

[A = a; cja = 2-449; j3 = l ; y = l; U 2 /4T = - 0 4 9 4 ; momentum = (|7r)* ¥>x -482.]

PIG. 3. Dumb-bell figure of equilibrium. Section through axis of rotation.

[A=a; c/a = 2-449; /3 = i ; 7 = 1 ; W2/4TT =-0494; momentum = (f7r)* ¥> x -482.]

FIG. 4. Equal masses nearly in contact. Section perpendicular to axis of rotation.

[A = a; cja = 2-&i%; /? = £; y=\; «2/47r = -038; momentum = (fsr)i Ifi x -472.]

FIG. 5. Equal masses nearly in contact. Section through axis of rotation.

[A = a; c/a = 2-646; j8 = -J; y = } ; co2/47r = -O38; momentum = (|ir)^ ?/5x-472.]

D. III. 11
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162 ON THE DEGREE OF ACCURACY ATTAINABLE. [9, § 9

Figs. 2 and 3 correspond to 0 = -J, and here the figures as computed cross
one another. The reality must, therefore, be two bulbs joined by a stalk,
like a dumb-bell. The dotted lines have been filled in conjecturally, and
must show pretty closely what that single figure, formed by the coalescence
of the two masses, must be.

Figs. 4 and 5 show in a similar manner the case of /3 = ^, and here the
two masses are separate, although nearly in contact. When /3 = -f the shapes
present similar characters, but are wider apart.

§ 9. On the Use of Spherical Harmonic Analysis as a
Method of Approximation.

Spherical harmonic analysis gives less accuracy as the bodies considered
depart more and more from spheres. How far, then, do our results present
an approach to accuracy ? To answer this question, we have to find how
nearly the potentials at the surfaces of these figures may be computed from
the spherical harmonic formulae.

It would be laborious to make an accurate computation of the potential,
and it fortunately appears to be unnecessary to do so, since a sufficient
answer may be obtained in another way.

The potential of an ellipsoid of revolution may be computed either
rigorously or by harmonic analysis. With a certain degree of eccentricity
the approximate result will agree badly with the rigorous one.

If the ellipsoid consists of a fluid of unit density, there is a certain angular
velocity which makes it a level surface. If w be that angular velocity, then
we know that the spherical harmonic solution would give 1 — IBCO^/WTT as the
ratio of the minor to the major axis. If then c, a, are the rigorous values of
the minor and major semi-axes, the harmonic approximation is good if c/a
does not differ much from 1 - 15&>2/167r.

If we denote by 1 — //. the factor by which the approximate value of the
ratio of the axes is to be multiplied in order to obtain the rigorous value, we
have

M = i cLa——
^ 1 - 15O)2/167T

and fi may be regarded as a measure of inaccuracy.

A table of the values of &)2/27r, corresponding to various eccentricities
e = \/{l — (c/af}, is computed from the transcendental equation in Thomson
and Tait's Natural Philosophy, § 772. From these I compute as follows:—
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1887] ON THE DEGREE OF ACCURACY ATTAINABLE. 163

•2
•3
•4
'5
•6

•7
•8
•9

•9949
•9798
•9539
•9165
•8660
•8000
•7141
•6000
•4359

15o>2

16ir

•9949
•9799
•9544
•9182
•8705
•8111
•7399
•6595
•5869

Difference

•0000
•0001
•0005
•0017
•0045
•0111
•0258
•0595
•1510

1

M

Large
9799
1909

540
193
73
29
11-1

3-9

The measures of inaccuracy corresponding to the values of e in the first
column, or the values of c/a in the second, are the reciprocals of the numbers
in the last column. We thus see that there is still a considerable degree of
approximation when e = -8, or when the ratio of the axes is 3 to 5, for the
measure of inaccuracy is T

J
T; but for e = -9 the approximation is bad.

Now the shapes of certain egg-like bodies have been computed by the
spherical harmonic method, and it seems safe to assume that the approximation
has given about the same degree of accuracy as would hold in the case of an
ellipsoid of revolution whose minor axis bears to its major axis the same ratio
as the shorter axis of the egg to the longer.

Turning now to our computation, and considering only the more elongated
or meridional sections, we see that, when /3 = \, the longer axis is 1*355 + 1-230
or 2-585, while the shorter is 2 (1 - -227) or 1-546. The ratio 1-546: 2-585 is -6,
which corresponds to the measure of inaccuracy 1/11*1. I t might, however, be
more legitimate to adopt two different measures, and at the pointed end of the
egg to take the ratio -773: l-355 = *57, which will correspond to a measure of
inaccuracy about ^ ; and at the blunt end to take the ratio -773 :1-230 = '63,
which would correspond to a measure of inaccuracy ^ or -^.

In the case of /3 = \ the two masses cross one another, and the result has
been used to give an approximate picture of the dumb-bell figure of equilibrium.
We now see that even in this case there is a sufficient degree of approximation
to give a very good idea of the accurate result.

In the case of the meridional section, where /3 = £, we have for the ratio
of axes at the pointed end of the egg

1 —1717 _ *8283

~ 1*2712

and at the blunt end

•8283

1-2712

and measure of inaccuracy about -^ :

1 - 1717
1-1746

and measure of inaccuracy ^V-

1*1746
= •71

11—2
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164 ON THE DEGREE OF ACCURACY ATTAINABLE. [9, § 9

In the case of /3 = \ the similar figures are, for the pointed end,

1--137 -863 _
1-208 1-208

and measure of inaccuracy about -^; and for the blunt end

1--137 -863 _ .
1-139 1-139

and measure of inaccuracy perhaps about jfc.

It thus appears that as the bodies recede the accuracy increases with
great rapidity, and in the two cases considered last it is hardly necessary,
from a physical point of view, to consider greater accuracy than that attained.

It must be remarked, however, that this way of estimating the degree of
inaccuracy must necessarily give much too unfavourable a view.

If we have a single mass of fluid departing considerably from the spherical
form, it is clear that the potential computed on the hypothesis of a layer of
surface density on the true sphere will come to depart largely from the
potential at the surface of the fluid. If, however, we compute the potential
of such a mass at points a little remote from the surface, the approximation
will be much closer. Now, where there are two masses, as in our problem,
the potential at the surface of either mass consists of two parts, one due to
the mass itself, the other due to the other mass. As regards the first of these
two parts, the above criterion is applicable, but as regards the second part it
gives too unfavourable a view.

Now in the case of the single mass the deformative forces due to centri-
fugal force are considerably vitiated by computation at the spherical surface
instead of the true surface, whilst in the case of the two masses the tide-
generating forces are computed with greater accuracy than is shown by the
criterion.

Under these circumstances it has appeared worth while to give another
figure below, which, judged by the criterion, would be no approximation
at all.

The reasons for giving this figure will be stated hereafter.
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1887] THE MOMENT OF MOMENTUM OF THE SYSTEM. 165

§ 10. To find the Moment of Momentum of the System.

Rotating figures of equilibrium are classified according to the amount of
moment of momentum with which they are endued. It is, therefore,
interesting to determine the moment of momentum of the systems now
under consideration.

We must begin by finding the moments of inertia of the two masses.
Let SI, Si, denote the moments of inertia of the shells of zero mass lying on
the mean spheres of radii A, a.

Then Si = jj (y2 + z2) (r - a) a?d™

where dvr = s,in Oddd<f>, and where the integral is taken throughout angular
space.

Now ^ = K + i

and r — a is the sum of a series of harmonics. Then, in consequence of the
properties of harmonic functions, we need only consider the harmonics of the
second degree in r — a, and

But j j y d O T = | 7 r ; JJ(*-,.-] <*- = **. 3, i e - j ^

and the moment of inertia of the mean sphere is J^TTO? ; hence, if we write

the moments of inertia, i and / , are given by

We already have in (71)

3«2

Hence the sum of the rotational momenta of the two masses is

{i + I) o> = I (^)O [a? (1 + / ) + A' (1 + F)] \{^j + (^'jj (1 + K)i
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166 THE MOMENT OF MOMENTUM OF THE SYSTEM. [9, § 10

The whole system revolves orbitally about the centre of inertia with an
angular velocity a> : hence the orbital momentum is

Bnt d~a? + A" ^'at + A*

Hence the orbital momentum is

" "" " w e 8

A3 + a3

s a?Asc^
and this is equal to (I"")2 1 (1 +

4 (A* + rfIt will be convenient to refer the mass to the radius of a sphere of the
same mass as the sum of the two.

Let 6 be the radius of such a sphere; then

bs = As + a?

Thus the whole moment of momentum is

We shall therefore compute the coefficient of (f 7r)2 65.

Computing from this formula, I find the following values of the moment
of momentum in the case where the masses are equal, when

0 = J, „ x -472

/3 = | , „ x -482

Now I find by a numerical investigation* that, if we imagine a mass of
fluid equal to |TT63 rotating in the form of a Jacobian ellipsoid of three

unequal axes, then, when the momentum is (f TT)2 66 x -392, the axes of the
ellipsoid are T898&, 0-81136,0-6496; and when the momentum is (|TT)266 X "644,
the axes are 3-1366, 0-5866, 0-5456.

It seems probable, then, that the Jacobian ellipsoid of mass f 7r63 becomes
unstable, at least as soon as when the moment of momentum is somewhere
about (f7r)^65 x -5f.

It may be worth mentioning that the greatest moment of momentum for
which the ellipsoid (of mass f 7r63) is stable, when it is a figure of revolution,
is (4 TT)2 65 x -30375.

* Boy. Soc. Proc, Vol. XLI., 1887, p. 319.
t [In § 7 of Paper 12 the factor here conjectured to be -5 is proved to be -389570.]
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1887] TWO MASSES OF LIQUID IN CLOSE PROXIMITY. 167

§ 11. On the Conditions under which the two Masses may
be close to one another.

If at any point on the surface of either mass the sum of the tide-generating
and centrifugal forces is greater than gravity, it is obvious that equilibrium
cannot subsist. It is also clear that, if this condition is to be found anywhere,
it will be at that point of the smaller mass which lies nearest to the larger
mass. Hence, in order that the system may be a possible one, we must satisfy
ourselves that at that point the gravity of the body itself exceeds the sum of
the tide-generating and centrifugal forces.

To determine the limitations of size and proximity of the smaller of the
two masses to a high degree of approximation would be very laborious, and
we shall, therefore, content ourselves with a rough investigation, to be
explained below.

We shall now find approximations for the shapes of the two masses and
for their potentials.

The radius-vector of either mass and the potential may be expanded in
powers of a/c and A/c, and a term involving c" in the denominator will be
referred to as being of the nth order.

Now the term of the highest order which can be included without the
introduction of great complication is the 7th, and we shall content ourselves
with that term.

The expressions for the various parts of the potential have been developed
above, but it may be observed that the terms involving the first order of
harmonics may be omitted, since they are subsequently annulled by a proper
choice of the angular velocity.

From (22—i.) we have„
3 r ' 3c

The last term in the development to the 7th order is that involving w6.
Then it is clear that we require h2 correct to the 4th order, A3 to the 3rd, and
so on. But (25) shows us that the h's are equal to unity to the 4th order
inclusive. Hence, in the above, all the h's may be treated as unity.

Again (22—ii.) when written in reference to the origin o affords other
terms, in which all those included under 22 are of the 8th and higher orders,
and negligible; and the rest (with omission of the first harmonic term) gives

4TTA3 1
JThus this first part of the potential is, to the 7th order inclusive,

47m2 a j 4>vA3 *=6 (a\f j 3

r^ 3c ' CAoJ \2(fc-l)
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168 TWO MASSES OF LIQUID IN CLOSE PROXIMITY. [9, § 11

Next, from the expression for 12 in § 3, we have a term in the potential
due to rotation + â>V2. The remaining terms due to rotation will be taken
up later.

From (71) we see that, to the 7th order inclusive,

3w2 [A ay
Hence a>2 and e are of the 3rd order; and from (48) and (64) it follows

that the factors by which the I's and m's are derived from the \ 's and /J,'S are
of the 5th order. And, since the X's and /i's only differ from unity in terms
of the 5th order, it follows that the I's and m's are of the 5th order. Then
(41) and (56) show us that all the terms in I and m are negligible.

The first set of terms due to rotation and to the corresponding deformation
are given in (39) and (43), and together contribute

»•"[•©•+©'] 3
The second set of terms due to rotation, and to the corresponding defor-

mation, are given in (54) and (58), and together contribute

Hence, to the 7th order inclusive, we have

47m2 a 4>TTAS *=6 /a\k f 3 fa\k+1 fr\k)wk

J~+ 3' \) Wk^Y) [) + [] j Vk
47m a 4>TTA /a\ f 3 fa\+ fr\k

J~r+ 3c' ,=2 \c) Wk^Y) [r) + [a] j

Now the expression (72) for the radius-vector of the mass a to the same
order of approximation gives us

r_ _ 5»2 /w2 - f<52w4\ /Ay *=« 2k + 1 /a\k~2 wk

a

and a similar expression for R/A.
To determine the inward force at the pole of the mass a, where it is

nearest to the mass A, we must evaluate —dV/dr, and in the first term
substitute the above expression for r, and in the remaining terms put r = a;
also at this pole w2/r

2 = 1, and S2w4 = 0.

Then, differentiating (78),

dr 3 r2 3 Vc7 *=a W \ 2(/fc-l)
f S H 1

...(79)
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1887] TWO MASSES OF LIQUID IN CLOSE PROXIMITY. 169

But at the pole
4™ a2 47ra « „ 4?ra /A\3 *^(i 2k +

Substituting this for the first term of (79), we have

dV
dr 3 l 5 3 U

But

hence
47r«

Thus the criterion of the possibility of equilibrium is that

should be positive.

But the radius-vectors of the poles are

and, similarly,

Therefore

r + E = a + il + j | j [(7a + 4 ) ^l3 + (a + 1A) a3] + ̂  ^l3a2 (̂ 1 + a)

+ % Asa3 + ̂  A3as (a + A) + ~ Asas (a2 + A'2)
c" 8c6 10c7

Now the interval between the two masses is c — (r + It); hence, if the two
masses are jus t in contact,

c = a + A + - ^ [(7a + A) A3 + (a + 7 A) a3] + ̂ - J.2a2 (A + a)

q ii iq
+ ~AW + ̂ A3a3(a + A) + :[^A°d*(a> + Az) (81)

In order, then, to test whether equilibrium is still possible when the two
masses are just in contact, it is necessary to determine c from (81); and then,
substituting in (80), find whether G is positive or not.
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170 THE RATIO OF THE MASSES IN THE CASE OF CONTACT. [9, § 11

The solution of such an equation as

/3 Y 8 e £
c3 c4 c5 c6 c7

and the determination of
B T A E Z

(_, — 1 : f. • I

C 3 C C C6 C7

can only be performed by trial and error.

Now suppose that the solution is c0 + 8c, where 8c is small; and that
^ T c-1-—-r-
CQ" CO CO C O

Then it is obvious that
8c cx — c0

i <?n I"" 4d \ OC - i n n

and 60 = I —- H + ... I — , and 0 = (J1

I t is not hard to find an approximate solution c0 by trial and error, and
the correct results may then be found thus.

Consider the case where the two bodies are equal to one another, and put
a = A = l. The equations then become

^ 2 0 7 3 11 13

3c3 2c4 2c5 2c» 2c7

By trial and error we find c = 2-535, C= + "557.

From this we conclude that equilibrium still subsists when the two masses
are in contact.

When a = A = 1, c = 2-535, we have

^ ^ = <m> and e-ivrt
Our figures showed that when 8 ='^ the two masses were nearly in contact,
and when 8 = ^ they crossed.

This result is, therefore, in accordance with the figures.

Next pass to the case of an infinitesimal satellite, and suppose a infinitely
small compared with A and c, and that A = l. The equations are

1+

-43-
12c3
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1887] THE RATIO OF THE MASSES IN THE CASE OF CONTACT. 171

The solution of the first equation is c = 1-226, and this value of c makes
G = — -94. Hence we conclude that an infinitesimal fluid satellite cannot
revolve with its surface in contact with its planet.

0 vanishes when c = (ff)^ = l"89. Hence it appears that the nearest
approach of the infinitesimal satellite to the planet is T89 mean radii of the
planet. The nature of the approximation adopted is, however, such that in
reality the satellite must lie further from the planet than this, perhaps at two
radii distance*. The satellite and planet of which we here speak are, of
course, supposed to revolve as parts of a rigid body. Now, if for equal masses
equilibrium still subsists when the two masses are in contact, whilst for
infinitesimal mass of one equilibrium is impossible with the masses in contact,
it follows that for some ratio of masses equilibrium can just subsist when they
are in contact.

The question, therefore, remains to determine this limiting ratio of
masses.

1 find, then, that when a = 1, A — 3-4, we have

c - 4-4 + [2-25684] c~3 + [1-94945] c~4 + [2-07156] c"6

+ [2-37619] c"6 + [2-80737] cr7

( 7 = 1 - [2-15205] c"3 - [2-13850] c~4 - [2-24765] c~5

- [2-33480] c-" - [2-40735] c~7

the numbers in [ ] being the logarithms of the coefficients.

The solution of this is c = 5'57, which makes G = — "006.

Again, when a = 1, A = 33, we have

c = 4-3 + [2-21556] c~3 + [1-91353] c~* + [2-03266] cr5

+ [2-32731] c-6 + [2-74467] c~7

G=l- [2-11347] c~s - [2-09961] c~4 - [2-20876] c~s

- [2-29591] c"6 - [2-36846] c~7

the solution of which is c = 5'45, which makes G = + '010. Since (3'4)3 = 39'3,
and (3'3)3 = 35'9, it follows that the ratio of the masses in the first case is
1:39-3, and in the second 1:35"9.

From this it appears that when the ratio of the masses is about 1 to 38
equilibrium is still just possible when the two masses touch.

It must be borne in mind, however, that the nature of the approximations
adopted in this investigation is such that the results in this limiting case
are only given very roughly, and it is certain that actually the limiting size
of the smaller of the two masses must be greater than as thus computed.

* See Eoche, Montpellier Acad. Sci. Mem., Vol. i., 1847-1850, p. 243. [The accurate result
is proved in Paper 15 to be 2-4553.]
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172 THE LIMITING PROXIMITY OF THE MOON TO THE EARTH. [9, § 12

We can only conclude that the limiting case occurs when the ratio of the
masses is about 1 to 30, or the ratio of the radii about 1 to 3.

There is one other case which it is interesting to consider, namely, to find
the limiting proximity of the Moon to the Earth, both bodies being treated
as homogeneous fluids of the same density, revolving as a rigid body.

The case of Moon and Earth is well represented by a = 1, A = 4"333;
for this gives 1 to 81 "35 as the ratio of the masses. With these values I find

G = l - [2-46626] c"3 - [2-45443] c~4 - [2-56358] c"6

- [2-65073] c~6 - [2-72328] c~7

and

r + R = 5-333 + [2'59898] cr3 + [2-24358] c"4 + [2-38748] c~s

+ [2-77563] c"6 + [3-32042] c~7

Now c = 7'0 will be found to make G vanish, and, with this value of c,
c-(r + R) = -414.

If A be 4000 miles, c = 6500 miles, and c-(r+R) = 380 miles.

Thus, as far as this investigation goes, it appears that when the fluid
Moon is on the point of breaking up from stress of tidal and centrifugal
forces the distance between the centres of Moon and Earth is 6500 miles,
and the shortest distance between the two surfaces is 380 miles.

This result must, however, from the nature of the approximation, be an
underestimate of the distances.

The whole of the present section has been suggested by a pamphlet by
Mr James Nolan* in which he criticises some of my previous papers. I have
commented elsewhere on his criticisms -f\

§ 12. On the Case where the two Masses are unequal.

The results of the previous section point to a very remarkable limitation
to the possibility of approach of two masses of unequal size. It has, therefore,
seemed worth while to consider this case numerically, and a case is therefore
chosen which shall approach near to that which we know is the limit of
possibility. I choose, therefore, a — I, A = 3, which makes the ratio of the
masses 1 to 27, and c = 5'3, which brings the protuberances into close
proximity.

The numerical details are omitted, but figs. 6 and 7 give the results, the
numerical values of the radius-vectors being, as before, entered on the figure.

* Darwin's Theory of the Genesis of the Moon. Eobertson: Melbourne, Sydney, Adelaide, and
Brisbane, 1885.

t Nature, February 18 and July 29, 1886.
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1887] A SMALL MASS CLOSE TO A LARGE ONE. 173

FIG. 6. Unequal masses. Section perpendicular to axis of rotation.

f /a=3; (4/fl)3 = 27; a./c =-189; -4/c = -566; 7 =-036; r = -321; w2/4^ = -06

momentum = (,*TT)? 65 x -29.]

\2-«7

i
h-s*

3-23

FIG. 7. Unequal masses. Section through axis of rotation.

[Ala-3; (4/«.)3 = 27; n/c =-189; J /c = -566; 7 = -036; r = -321; w2/4ir = -066;

momentum = (f TT) "S 65 x -29.]

The elongation of the smaller mass is so extreme that it is obvious that,
strictly speaking, the spherical harmonic approximation must be considered
to break down. Nevertheless, I conceive that these curious figures may be
held to indicate the general nature of the true result.

It is remarkable that the smaller mass exhibits a marked furrowing round
the middle. This seems to indicate that such a system tends to break up by
the separation of the smaller mass into two parts.

§ 13. Summary.

The intention of this paper is, first, to investigate the forms which two
masses of fluid assume when they revolve in close proximity about one
another, without relative motion of their parts; and, secondly, to obtain a
representation of the single form of equilibrium which must exist when
the two masses approach so near to one another as just to coalesce into a
single mass.
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174 SUMMARY. [9, § 13

When the two masses are far apart the solution of the problem is simply
that of the equilibrium theory of the tides. Each mass may, as far as its
action on the other is concerned, be treated as spherical, and the tide-
generating potential is given with sufficient accuracy by a single term of
the second order of harmonics. As the masses are brought nearer to one
another, this approximation ceases to be sufficient, terms of higher orders of
harmonics become necessary to represent the potential adequately, and the
departure from sphericity of each mass begins to exercise a sensible deforming
influence on the other.

When the departure from sphericity of one body produces a sensible
deformation in the other, that deformation in its turn reacts on the first, and
thus the actual figure assumed by either mass may be regarded as a
deformation due to the primitive influence of the other mass, on which is
superposed the sum of an infinite series of reflected deformations.

But each mass is deformed, not only by the tidal action of the other,
but also by its own rotation about an axis perpendicular to its orbit. The
departure from sphericity of either body due to rotation also exercises an
influence on the other, and thus there arises another infinite series of reflected
deformations. It is shown in this paper how the summations of these two
kinds of reflections are to be made by means of the solution of three sets of
linear equations for the determination of three sets of coefficients.

The first set of coefficients are augmenting factors, by which the tides of
each order of harmonics are to be raised above the value which they would
have if the perturbing mass were spherical. It appears that, the higher the
order of harmonics, the more do these factors exceed unity.

The second set of coefficients correspond to one part of the rotational
effects. They appertain to terms of exactly the same form as the tidal terms,
and in the final result the terms to which they apply become fused with the
tidal terms. These terms are the zonal harmonics of the several orders with
respect to the axis joining the centres of the two masses.

The third set of coefficients correspond to the remainder of the rotational
effect, and they appertain to a different kind of deformation. These defor-
mations are represented by sectorial harmonics involving cos 2<f>, where <f> is
azimuth measured from the plane passing through the axis of rotation of the
system and the centres of the two masses. That term of this set which is of
the second order of harmonics, and which represents the ellipticity of either
mass augmented by mutual influence, is the only term which is considerable,
even when the two masses are very close together; but the existence of the
other harmonic deformations of this class is interesting. We may say, then,
that all the tides of either mass are augmented above the values which they
would have if the other mass were spherical; that the ellipticity corresponding
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1887] SUMMARY. 175

to rotation is augmented; and that the deformation due to rotation is no
longer exactly elliptic-spheroidal.

The angular velocity of the system is found by the consideration that the
repulsion due to centrifugal force between the two masses shall exactly
balance the resultant attraction between them. If the masses were spherical,
the square of the orbital angular velocity, multiplied by the cube of the
distance between the centres, would be equal to the sum of the masses.
When the masses are deformed, however, this law is no longer true, and the
angular velocity has to be augmented by a factor a little greater than unity,
which depends on the amounts of the deformations.

The theory here sketched is applied above numerically to several cases,
and the results will be found in the preceding paragraphs. We shall first
consider the cases where the two masses are equal to one another.

In the first example (/3 = j) solved numerically, the distance between the
centres of the two masses is 2-83 times the mean radius of either of them.
The two bodies are found to be elongated until they approach near to one
another; but, as the character of the distortion is better illustrated in a
subsequent case, the result is not given graphically. All the data, however
are found which will enable the reader to draw the figure if he should wish
to do so.

In the next example (/3 = ^), with the masses still equal, the distance
between the centres is reduced to 2'646 of the mean radius of either. The
result of the solution is illustrated by two figures. In fig. 4, the section of
the masses by a plane perpendicular to the axis of rotation is shown, and in
fig. 5 we have the section by a plane passing through the axis and the centres
of the two masses. On both figures are inscribed the values of the radii for
each 15° of latitude in terms of the mean radius as unity, and the mean sphere,
from which the distortion is computed, is marked by a short line on each
radius. The elongation of the masses is, of course, considerably greater in
the section through the axis than in the other section. Each mass is shaped
somewhat like an egg, and the small ends face one another and come very
nearly into contact.

In the headings to the figures, amongst other numerical data, are given
the square of the angular velocity and the angular momentum of the system.
The density of the fluid being unity, the angular velocity a> is given by the
value of a)2/4nr; this is the function of angular velocity which is usually given
when reference is made to figures of equilibrium of rotating fluid, such as the
revolutional or Jacobian ellipsoids of equilibrium. The moment of momentum
of the system is given by reference to the angular velocity of a sphere, of the
same mass as the sum of our two masses, rotating so as to have the same
momentum. If, in fact, b be such a length that a sphere of fluid of that
radius has the same mass as our system (so that b:i = a3 + ^3), then the
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176 SUMMARY. [9, § 13

moment of momentum is given by a number //, in the expression (f 7r)2 b5 x /u..

By this notation the angular velocity and moment of momentum are made

comparable with the results given in a previous paper* on the Jacobian

ellipsoid of equilibrium.

I n figs. 4 and 5, af/i-ir is "038, and the momentum /J, is "472. On com-
parison with the Table of Jacobi's ellipsoids, we see tha t this corresponds
with a considerably slower rotation than the 6th solution, and nearly the
same moment of momentum.

In the next case the two masses are still closer (/3 = j), t he distance
between the centres being only 2-449 t imes either mean radius. The result
is illustrated in figs. 2 and 3 ; the explanation of figs. 4 and 5 serves, mutatis

mutandis, for these two figures also.

This case is interest ing because the masses have approached so near to
one another tha t they partially overlap. Two portions of mat te r cannot, of
course, occupy the same space, and the continuity of figures of equilibrium
leads us to believe tha t the reali ty must consist of a single mass of fluid. In
figs. 2 and 3 conjectural dotted lines are drawn to show how it is probable
tha t the overlapping of the two masses is replaced by a neck of fluid joining
them. The figures as thus amended serve to give a good representation of
the single dumb-bell shaped figure of equilibrium.

The angular velocity is here given by &>2/47r = -049, and the moment of
momentum by '482. In the sixth entry of the Table of Solutions of Jacobi's
problem we find &>2/47r = -0536, and the moment of momentum / i = " 4 8 1 .
This ellipsoid has, then, the same moment of momentum, and only about
4 per cent, more angular velocity, than our dumb-bell. I t has seemed, there-
fore, worth while to mark (in chain-dot) on figs. 2 and 3 the outline of this
Jacobian ellipsoid of the same mass as the dumb-bell. The actual vertex of
the ellipsoid jus t falls outside the l imits to which it was possible to extend
the figure.

I n the paper above referred to it is shown how the energy of the Jacobian
ellipsoid is to be computed. If we denote the kinet ic energy by (f 7r)2b5 x e,
and the intrinsic energy by ( |7 r ) 2 b 5 x (i — l)f, then i t appears tha t in the
case of the ellipsoid drawn in these figures e = -0964, i = "4808, and the total
energy E=e + i = "5772.

Now in the case of our dumb-bell figure it appears, from calculations
which are not reproduced, that e = '0925, i= '4873, and E= '5798. Hence in
the dumb-bell figure the kinetic energy is less, but the intrinsic energy is so
much greater that the total energy is about a half per cent, greater. These

* Roy. Soc. Proc., Vol. XLI., 1887, p. 319. [Paper 8, p. 119.]
t The intrinsic energy being negative, it ia more convenient to tabulate i a positive quantity.
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1887] SUMMARY. 177

numbers are, of course, computed from the approximate formulae, and mus t
not be taken as rigorously correct for the dumb-bell figure of equilibrium.

Wi th reference to a figure of transition from the Jacobian ellipsoid,
Sir William Thomson has remarked*:—

" We have a most interest ing gap between the unstable Jacobian ellipsoid,
when too slender for stability, and the case of smallest moment of momentum
consistent with stability in two equal detached portions. The consideration
of how to fill up this gap with intermediate figures is a most a t t ract ive
question, towards answering which we at present offer no contribution f."

Figs. 2 and 3 are intended to form such a contribution, bu t it is certain

tha t the mat te r is far from being probed to the bottom.

M. Poincare has made an admirable investigation of the forms of equi-
librium of a single rotat ing mass of fluid, and has especially considered the
stability of Jacobi's ellipsoid J. H e has shown, by a difficult analytical
process, t ha t when the ellipsoid is moderately elongated (he has not arrived
at a numerical resu l t | ) instability sets in by a furrowing of the ellipsoid
along a line which lies in a plane perpendicular to the longest axis. I t is,
however, extremely remarkable t ha t the furrow is not symmetrical with
respect to the two ends, and thus there appears to be a tendency to form a
dumb-bell with unequal bulbs.

If M. Poincare's result shall appear to be not only t rue, bu t to contain
the whole t r u th concerning the mode in which instabili ty of the ellipsoid
supervenes, then there must be some other transitional form between the un-
symmetrically furrowed Jacobian ellipsoid and the dumb-bell ; except, perhaps,
in the case where the two bulbs pass on to two masses of a definite ratio.

M. Poincare's work seemed so important tha t this paper was kept back
for a year, whilst I endeavoured to apply the principles, which he has pointed
out, to the discussion of the stabili ty of the two masses. The a t tempt , which
[was originally] given in the Appendix, [was erroneous, and is now omitted.]

* Thomson and Tait's Natural Philosophy, 1883, § 778" (i).
t In 778" (g) he remarks that " a deviation from the ellipsoidal figure in the way of thinning

it in the middle and thickening it towards the end would, with the same moment of momentum,
give less energy." I conceive that the energy referred to throughout this paragraph is kinetic
only, and we have seen that the kinetic energy is less for the dumb-bell than for the ellipsoid.

If we write U for a quantity proportional to the excess of kinetic above intrinsic energy, so
that U = e+(l - i ) , then figures of equilibrium are to be determined by making U stationary for
variations of the parameters involved in it. This course is actually pursued in the Appendix
below, the function (viii.) being, in fact, this U; and the variations of it, being made stationary,
afford a controlling solution of the problem of this paper. The similar method may easily be
applied to the case of Jacobi's ellipsoids. From this point of view the interesting function to
tabulate is e+( l - i ) , and we observe that in the case of the Jacobian ellipsoid referred to
on p. 130 it is -6052, and for the dumb-bell it is '6156. Is not the energy referred to by
Sir W. Thomson this function U?

J Acta Mathematica, vn., 3 and 4, 1885.
§ [The numerical result will be given in Paper 12 below.]

D. III. 12
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178 SUMMARY. [9, § 13

We must, therefore, leave this complex question in abeyance*.

Allusion has just been made to the imperfection of spherical harmonic
analysis, and this brings us naturally to face the question whether that
analysis may not have been pushed altogether too far in the computation of
the figures of equilibrium under discussion. This question is considered in
§ 9, and a rough criterion of the limits of applicability of this analysis is
there found. From this it appears that even in the cases of figs. 2 and 3
the result must present a fair approximation to correctness. The criterion,
indeed, appears to be such as necessarily to give too unfavourable a view of
the correctness of the result.

The rigorous method of discussing the stability of the system having
failed, certain considerations are adduced in § 11 which bear on the con-
ditions under which there is a form of equilibrium consisting of two fluid
masses in close proximity. It appears that there cannot be such a form with
the two masses just in contact, unless the smaller of the two masses exceeds
in mass about one-thirtieth of the larger.

If we take into consideration the fact that the criterion of the applicability
of harmonic analysis is too severe, it appears to be worth while to find to what
results the analysis leads when two masses, one 27 times as great as the other,
are brought close together. The numerical work of the calculation is omitted,
since the numbers can only represent the true conclusion very roughly; but
the result is illustrated graphically in figs. 6 and 7. These figures can only
serve to give a general idea of the truth, but the form into which the smaller
mass is thrown is so remarkable as to be worthy of attention. The deep
furrow round the smaller mass, lying in a plane parallel to the axis of rotation,
cannot be due merely to the imperfection of the solution; and it appears to
point to the conclusion that there is a tendency for the smaller body to
separate into two, just as we have seen the Jacobian ellipsoid become dumb-
bell shaped and separate into two parts.

In this paper, indeed, we have sought to trace the process in the opposite
direction, and to observe the coalescence of two masses into one. The
investigation is complementary to, but far less perfect than, that of
M. Poincare, who describes the series of changes which he has been tracing
in the following words:—

"Considerons une masse fluide homogene animee originairement d'un
mouvement de rotation; imaginons que cette masse se contracte en se
refroidissant lentement, mais de facon a rester toujours homogene. Supposons
que le refroidissement soit assez lent et le frottement interieur du fluide assez
fort pour que le mouvement de rotation reste le meme dans les diverses
portions du fluide. Dans ces conditions le fluide tendra toujours a prendre

* [See Paper 15.]
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1887] SUMMARY. 179

une figure d'equilibre seeulairement stable. Le moment de la quant i te de
mouvement restera d'ailleurs constant.

" A u debut, la densite e tant tres faible, la figure de la masse est un
ellipsoide de revolution tres peu different d'une sphere. Le refroidissement
aura d'abord pour effet d 'augmenter l 'aplatissement de l'ellipsoide, qui restera
cependant de revolution. Quand l 'aplatissement sera devenu a peu pres egal
a f, l'ellipsoide cessera d'etre de revolution et deviendra un ellipsoide de
Jacobi. Le refroidissement continuant, la masse cessera d'etre ellipsoidale;
elle deviendra dissyinetrique par rapport au plan des yz, et elle affectera la
forme representee dans la figure, p. 347 *.

" Comme nous l'avons fait observer a propos de cette figure, l'ellipsoide
semble se creuser legerement dans sa part ie moyenne, mais plus pres de Fun
des deux sommets du grand a x e ; la plus grande par t ie de la matiere tend
a se rapprocher de la forme spherique, pendant que la plus pet i te part ie sort
de rellipsoide par un des sommets du grand axe, comme si elle cherchait a
se detacher de la masse principale.

" I I est difficile d'annoncer avec cert i tude ce qui arrivera ensuite si le
refroidissement continue, mais il est permis de supposer que la masse ira en
se creusant de plus en plus, puis en s 'etranglant dans la part ie moyenne, et
finira par se par tager en deux corps isoles.

" On pourrait etre ten te de chercher dans ces considerations une con-
firmation ou une refutation de l 'hypothese de Laplace, mais on ne doit pas
oublier que les conditions sont ici tres differentes, car notre masse est
homogene, tandis que la ne'buleuse de Laplace devait etre tres fortement
condensee vers le centre f."

I t was in the hope tha t the investigation might throw some light on the
nebular hypothesis of Laplace and K a n t t ha t I first undertook the work. I t
must be admitted, however, t ha t we do not obtain much help from the results.
I t is jus t ly remarked by M. Poincare tha t the conditions for the separation of
a satellite from a nebula differ from those of his problem in the great con-
centration of density in the central body. But both his investigation and
the considerations adduced here seem to show that , when a portion of the
central body becomes detached through increasing angular velocity, the
portion should bear a far larger ratio to the remainder than is observed in
the satellites of our system as compared with their p lane t s ; and it is hardly
probable tha t the heterogeneity of the central body can make so great a
difference in the result as would be necessary if we are to make an application
of these ideas. I t appears then a t present necessary to suppose tha t after the
birth of a satellite, if it takes place at all in this way, a series of changes
occur which are quite unknown.

* The furrowed ellipsoid of Jacobi.
t Poincare, Ada Mathematica, vn., 1885, p. 379.

12—2
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180 THE MUTUAL ENERGY OF TWO SPHEROIDS. [9, APP.

APPENDIX.

On the Energy and Stability of the System.

M. Poincare has shown in his admirable memoir, referred to in the
Summary, how the dynamical stability of a rotating fluid system in relative
equilibrium depends on the energy. Certain coefficients in the expression for
the energy, which he calls coefficients of stability, are there proved to afford
the required criterion.

[An attempt was made in this Appendix to determine these coefficients
of stability, but a mistake of principle was made and the attempt failed.
The subject is treated in Paper 15 in this volume, and it will appear that all
these figures of equilibrium are unstable. The instability arises from tidal
friction, and as this cause is very slow in its operation, it seems possible that
the figures drawn in the present paper might subsist for a considerable time.

My attempt to discuss this problem in this Appendix throws an interesting
light on the methods by which the equations of the two masses were deter-
mined, and therefore a portion of the Appendix is now reproduced.]

The task before us is to determine the " exhaustion of potential energy "
of the two masses in presence of one another as due to the deformation of
each from the spherical figure by yielding to gravitation and to centrifugal
force.

The work will be rendered simpler by the introduction of a new notation.
Let us write, then, as the equations to two shapes, which are not necessarily
together a figure of equilibrium :—

r , k^°° 2fc+l (A\* fa\k" ( wk

i2 * j« 2fc + 1 /ay(A\*-*I W
(i.)

It will be observed that these equations have the same form as (72), but
that the constants introduced are different from the h, I, m, e, which were
determined, so that the figures might be figures of equilibrium. At present
we do not assume that (i.) do represent figures of equilibrium.

The energy lost may be divided into several parts:—

d, the energy lost by the mass a yielding from its spherical figure to the
gravitation of the mean sphere a.

e2, the exhaustion of mutual energy of that layer of matter on the mass a
which constitutes its departure from sphericity.

es, the loss of energy due to the deformation of the mass a in presence of
the mean sphere A.

Ei, E2, E3, the similar quantities for the mass A.
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1887] THE MUTUAL ENERGY OF TWO SPHEROIDS. 181

(Ee)i, the loss of mutual energy of the two layers in presence of one
another.

e6, the loss of energy due to the deformation of the mass a in the presence
of centrifugal force due to rotation on.

En, the similar loss for A.

1st. el is equal and opposite to the work required to raise each element
of the layer on a through half its own height against the gravity due to the
mean sphere a. This gravity is ^wa. Co-latitude and longitude being
denoted by 6, (f>, let dsx = sin 6d8d<f>, an element of solid angle. In effecting
the integrations, the properties of spherical harmonic functions are used
without comment, viz. :—

4,TT [[/B^Wk+.y 4TT k + 2!

J){) d

ll>wk8
2wk+id'B- = 0, lnuiWkdvr = 0 ,

Then, taking only a typical term of the first of (i.),

. V2k+lfAy/a\k-2\ wk

-*- [2*-2W (c) | V - ^
3 t ) ( ) % + 2JbT2l*»J

whence, with all the terms, and remembering that (ajcf — 7, (Afc)2 = F,

f (-
The formula for ^ may be written down by symmetry.

2nd. e2, the exhaustion of mutual energy of the layer on itself, is half the
potential of the layer at any element, multiplied by the mass of the element,
and integrated over the whole sphere.

The potential of the layer is

4nrA3 *=x 3 fa\k fa\k+1
a\k

r)
* k+2

V* r" Vk ~^)
Then, at an element of the layer r = a, and taking a typical term only, we
have

whence
\3 *=« 3 7*"1 f „ k + 2 !

The formula for E2 may be written down by symmetry.
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182 THE MUTUAL ENERGY OF TWO SPHEROIDS. [9, APP.

The addition of e, to ea, and of Ex to E3, simplifies these expressions by
cutting out the factor immediately following the 2 in either, and replacing it
by unity.

3rd. e3 is the loss of energy due to raising the layer on a in presence of
the mean sphere A. We multiply the potential of the sphere A by the mass
of the element on a, and integrate throughout angular space.

The potential of the sphere A, when transferred to the origin o, is
4nrA3 *=°° fa\k (r\k wk

"~ )3c 4=0 \cj \aj r*
Then, at an element of the layer r = a and taking a typical term,

2k+

A3a? fA\3 k=x yk~1

whence es = (frr)3-—§( — ) 2 ^—: nk (iv.)

The expression for E3 may be written down by symmetry. On collecting
results from (ii.), (iii.), and (iv.), we have

\3k=xi n/*"1 f k + 2 '

and a similar expression for Er + E2 + E3.

4th. (Ee\ is the loss of energy of one layer in the presence of the other.
We take the potential of the layer on A, multiply it by the mass of an
element on a, and integrate.

The potential of the layer on A when transferred to the origin o, as in
(22-ii.), is

„ fay (*|«° *|°
3c

*W W
_ ^

t - 2 ! H 2 ! » - l * W W
Introducing this into the integral, only taking a typical term, and neglecting
those terms in the integral which must vanish, we get

)

Effecting the integrations, and putting in the 22, we get

k + il k + 2l k + il

This involves the two figures symmetrically.
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1887] THE MUTUAL ENERGY OF TWO SPHEROIDS. 183

5th. e5 is the loss of energy in the yielding of the figure a to centrifugal
force. To find it, we multiply the potential due to rotation by the mass of
each element of the layer a, and integrate.

By (35) and (52) we know that the rotation potential is

As this only involves harmonics of the second order, we may neglect in
the layer a all terms except those of the second order. Thus we get

The expression for E5 may be written down by symmetry. Collecting
results from (v.), (vi.), and (vii.), we get, for the whole exhaustion of energy,

AW *=- r
— =kl [2 [ cj k—l\ 2 4 . & - 2 K

(k+i\ ,r k + 2\ k + i\ D
x {TUT Nin"+ ¥1^21 i=2Tk + T\ PiPk

The expression is found without any assumption that the two masses are
bounded by level surfaces, and therefore in equilibrium. But the condition
for equilibrium is that the differential coefficients of E with respect to any
one and all of the parameters n, p, N, P, shall vanish. If we equate to zero
dV/dit;,;, we get

\ o j j = 2 ̂ - l k i l l

If, however, k = 2, there is on the left-hand side an additional term

16ir\c) ' ¥ U J 1~8TT \AJ ~ 1 5 U

The equation of dVjdNi to zero gives a similar equation.
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184 THE CONDITION FOR EQUILIBRIUM. [9, APP.

If we equate to zero dV/dp/c, we get

If, however, k = 2, there is on the left-hand side an additional term
/ 4 ! c j 2 / ^ \ 3 f t / / . \ 3

16TT \cj ' ¥Vcy 12!O!"87rV4y 4.3 15 U ,

The equation of d V/dPi to zero gives a similar equation.

Now, if we put hk + 1% for nk, except when k = 2, and then put

and similarly introduce the H's and L's; and if we put pk = mk, except when
k — 2, and then put p2 = m2 + j^e (c/A)3, and similarly introduce the M's, it is
easy to see that the equations (i.) to the two surfaces become the same as
(72), and the equations of condition between n and N, and between p and P,
become exactly those which we found by a different method above in (23),
(44), and (59). The only difference is that the equations for h and I are fused
together.

This, therefore, forms a valuable confirmation of the correctness of the
long analysis employed for the determination of the forms of equilibrium.

The formula (viii.) also enables us to obtain the intrinsic energy of the
system, that is to say, the exhaustion of energy of the concentration of the
matter from a state of infinite dispersion to its actual shape, with its sign
changed.

The last line of (viii.) depends on the yielding of the fluid to centrifugal
force, and must be omitted from the exhaustion of energy.

Besides the rest of (viii.), we have in the exhaustion of energy of the
system, the exhaustion of the two spheres and their mutual exhaustion.

It is clear, then, that the exhaustion of energy of the system, apart from
that due to centrifugal force, is

4=2 i = 2

[This is the function called E in § 2 of Paper 15 below.
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1887] THE MOMENT OF INERTIA. 185

In order to apply the methods indicated in that paper we require the
moment of inertia / .

Now

1 = | T if (a°+Ah) + - T J ^ + \ —^- [a2(m2 + 6^2) + A* (N^ + 6P2)]

The parameters which define the system are c, nj,, pt, N^, P^.

The attempt to form the determinants, indicated in § 2 of Paper 15, leads
to formulas of inextricable complication, and thus the hope of obtaining the
coefficients of stability must be abandoned. However the investigations of
Paper 15 show how instability must first arise and prove the instability of
these figures, as I have already said.

The remainder of this Appendix is omitted on account of the mistakes
involved in it.]
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10.

ELLIPSOIDAL HARMONIC ANALYSIS.

[Philosophical Transactions of the Royal Society, Vol. 197, A (1901),
pp. 461—557.]
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1901] INTRODUCTION. 187

INTRODUCTION.

LAMP'S functions or ellipsoidal harmonics have been successfully used in
many investigations, but the form in which they have been presented has
always been such as to render numerical calculation so difficult as to be
practically impossible. The object of the present investigation is to remove
this imperfection in the method. I believe that I have now reduced these
functions to such a form that numerical results will be accessible, although
by the nature of the case the arithmetic will necessarily remain tedious.

Throughout my work on ellipsoidal harmonics I have enjoyed the immense
advantage of frequent discussions with Mr E. W. Hobson. He has helped me
freely from his great store of knowledge, and beginning, as I did, in almost
complete ignorance of the subject, I could hardly have brought my attempt
to a successful issue without his advice. In many cases the help derived
from him has been of immense value, even where it is not possible to indicate
a specific point as due to him. In other cases he has put me in the way of
giving succinct proofs of propositions which I had only proved by clumsy and
tedious methods, or where I merely felt sure of the truth of a result without
rigorous proof. In particular, I should have been quite unable to carry out
the investigation of § 19, unless he had shown me how the needed series were
to be determined.

My original object in attacking this problem was the hope of being
thereby enabled to obtain exact numerical results with respect to M. Poincar^'s
pear-shaped figure of equilibrium of a mass of liquid in rotation. But I soon
found that a partial investigation with one particular point in view was
impracticable, and I was thus led on little by little to cover the whole field,
in as far as it was necessary to do so for the purpose of practical application.
This paper had then grown to such considerable dimensions that it seemed
best that it should stand by itself, and that the discussion of the specific
problem should be deferred.

A paper of this kind is hardly read even by the mathematician, unless he
happens to be working at a cognate subject. It appears therefore to be
useful to present a summary, which shall render it possible for the mathe-
matical reader to understand the nature of the method and results, without
having to pick it out from a long and complex train of analysis. Such a
summary is given in Part III.
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188 PRELIMINARY STATEMENT. [10, § 1

PART I.

FORMATION OF THE FUNCTIONS.

| 1. The Principles of Ellipsoidal Harmonic Analysis.

The basis of this method of analysis is expounded in various works on the
subject. I begin with a statement of results in my own notation.

If Mj2, u.2, u£ denote the three roots of the cubic

a? y2 z2

a2 + u2 b2 + M2 c2 + u2

it may be proved that

„ = (a2 4 V ) (a2 + uj) (a2 + M3
2)

X ( 6 2 - a 2 ) ( c 2 - a 2 )

and ?/2, z"1 may be written down by cyclical changes.

If for brevity we write

Laplace's equation becomes

/ iJ \ 2

+ (M1
2-M2

2)fA3B3C3- | -J Vi = 0

The solution is V< = U!U2U3

where U1; U2, U3 are functions of ult u2, u3 respectively, and satisfy

and two other equations with suffixes 2 and 3, involving the same K, a
constant, and the same i, a positive integer.

If a, b, c are in ascending order of magnitude we may suppose u? to lie
between — a2 and oo, u£ between — c2 and — 62, and M3

2 between — 62 and — a2.

If slt s2, s3 denote the three orthogonal arcs formed by the intersections of
the three orthogonal quadrics,

/ <fai V = («i'-«i')(«i'-Mi')
{u.duj A^B^d2

and two other equations found by cyclical changes of suffixes.
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1901] NOTATION. 189

§ 2. Notation; limits of /3 so as to represent all Ellipsoids.

I now change the notation, and let the three roots be defined thus:—

where v ranges from oo to 0, fi between + 1, <f> between 0 and 2TT.

Let the axes of the fundamental ellipsoid of reference be

b2 = - k*

c2= 0
The ellipsoid defined by v has its three axes a, b, c given by

z-±P\ b* = k*(va-l), C2 = jfcv, (a<b<c)

This mode of defining the axis is such as to indicate the relationship to
the prolate ellipsoid a = b< c. But another hypothesis may be made which
will bring the axes into relationship with those of the oblate ellipsoid
a=b> c; for if we take a new k, numerically equal to the old one but
imaginary, and replace v1 by — f2, we have

l ) , c2 = ^ 2 , (a>b>c)

If /3 be made to range from 0 to oo, all possible ellipsoids are comprised
in either of these types. I t will, however, now be shown that, by a proper
choice of type, all ellipsoids may be included with the range of /3 from 0 to J .

Let us suppose the axes to be expressed in three forms, as follows:—

(1) (2) (3)

a* =

tf +1)

Then we have 62 - a2 = ? ^ | = h? = - hi
1 — p

— P2
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190 RANGE OF THE PARAMETER j3. [10, § 2

Therefore
¥-a? 2/3 1 - /3 , l + /32

c2-62 1-/3 2/8, 2/32

c2 - a2 _ 1 + /3 _ 1 + fl 1 - &
c r - 62 ~ 1 - /3 ~ 2ft" ~ 2/32

And ^~« 2 Lz& i+A
2c2-a2-&2~~ P 1 + 3/8, i - 3/8,

Now let /3 increase from 0 to oo.

As /3 passes from 0 to i , form (1) is appropriate.

As /3 passes from £ to 1, & decreases from ^ to 0, so that form (2) is
appropriate.

Lastly, as /3 passes from 1 to oo , ft increases from 0 to ^, so that form (3)
is appropriate.

But we might equally well have written forms (1) and (3) so ;is to involve
£, and form (2) so as to involve v, and it follows that all possible ellipsoids are
comprised in the range of /3 from 0 to ^, provided that the type be appro-
priately chosen.

The developments in this paper are made in powers of /3. It will,
therefore, be well to show that there is a class of ellipsoids, analogous to
ellipsoids of revolution, which might form the basis of developments similar
to those carried out below.

Ellipsoids of revolution are defined by the condition

a2 - c2 = b2 - c\ or a2 = 62

In the class to which I refer

a2 - c2 = c2 - b\ or c2 = \ (a2 + 62)

Ellipsoids of this kind are given by /3 = & = — /32 = ^; for in this case
62 = \ (a2 + c2). They are also given by

y3 = oo , - & = & = &; for then c2 = £ (a2 + 62)

Hence if we only allow /3 to range from 0 to \, /3 = 0 corresponds with
ellipsoids of revolution, to which spheroidal harmonic analysis is applicable;
and /3 = -J corresponds with this new class for which the corresponding analysis
has not yet been worked out.

We shall see below that the solid harmonic for this case where /3 = ^ will
be of the form B (v) B (/x) E (<£), where B and E satisfy the equations

cos 2d> ̂  - sin 2d> ~+»"<>•+1) E cos 2d> - s2E = 0d(f>2 r d<f> r
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1901] RANGE OF THE PARAMETER /3. 191

I am not clear whether or not it would be advisable to proceed ab initio
from these equations, but at any rate I shall show hereafter how the B- and
E-functions may be determined from the analysis of the present paper with
any degree of accuracy desirable.

If it were proposed to use the functions corresponding to /3 = •£ as a basis
for the development of general ellipsoidal harmonics, we should have to
assume

a2 = fc'V2, 62 = k'Uv'z - 1), c2 = k'2 (V2 - r^
2—

\ 1 — 1 7

or else a2 = A/2£"2, 62= &'2(£'2+1), c 2 = k'* ( V 2 +
1 - 7 7

The developments would then proceed by powers of 77.

In order to discover what is the greatest value of 77 which must be used
so as to comprise all ellipsoids, when we proceed from both bases of develop-
ment, a comparison must be made between this assumption and the previous
one. Suppose in fact that

b* = kUv*-l) = k'H?* + l)

—17.

Then 6 2 - a2 = ~ | = k'*; c2 - 62 = *• =
l £

1 - 7 7

and therefore ^ - ^ , or 77 = ™ / |

When 77 and /3 are both equally great, they must each equal the positive

root of /3 = ~ . This root is \/5 — 2 or '236. Thus the greatest values

will be
_ _ J _ _ 1

P~ V ~ V5"+2 ~ 4-236

In this case 77s = /32 = Jg very nearly, whereas when /3 = £, /32 = £. Thus
if the developments were to stop with /32 we should double the accuracy of
the result. However, I do not at present propose to carry out the process
suggested.
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192 THE DIFFERENTIAL EQUATIONS. [10, §3

We now put u2 =

§ 3. The Differential Equations.

1 - /3 cos 2(j>
« 2

2 = M 3
2 =

. 1 + / 8

1-ft

= - k2, & = 0

and find from the formulae of § 1,

1-/3 1 + 1_±0
1-ft

••(1)

a? ^

F2~~r+ft^ i-ft
fj=-("2-l)O2-l)si

22
 a 2l-/3cos2ft

la i 1 _i_ A?

It will be observed that ?/ is independent of ft, and that it has the same
form as in spheroidal harmonic analysis when ft vanishes. Since /A2 is less

1 4- R
than 1 and v2 greater than z ^ , x and y are real.

In all the earlier portion of this paper I always write y? — 1 and not
1 — /xa, so as to maintain perfect symmetry with respect to v and fi.

We now have

,2 = Id* (v* - x
2 = &2 (V - 1), C,2 = k*v*

_ 2
- ft cos

1- /3

Let us denote the differential operators involved in our equations, thus:—

( I _ / ? ) * 4 4 L
v ' ku2 du2

D = _ j _ i . (i _ a\h ^iM^ A
3 ' V &« d

Then

~

•(2)
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1901] THE DIFFERENTIAL EQUATIONS. 193

d kT>*^-T- , A2B2C2

R P d

Hence our differential equations are

a similar equation with suffix 2, and

Let us replace /c2 by another constant such that

so that* *»=_»(t+l)

A;2 1-/3

In this formula s is a constant integer and a a constant to be determined.

Our equations are now

[D1»-»(t + i ) [ y ( i - j 8 ) -

a similar equation for fi V (3)

and [D3
2 - i (i + 1) /3 cos 2̂ > + s2 - o-] U3 = 0

Laplace's equation is

c o s 2 ^

] 1 U 2 U 3 = O (4)

Laplace's operator V2 is equal to the differential operator in (4), divided by

It is well known that in spheroidal harmonic analysis there are two kinds
of functions of v and /x which satisfy the differential equation, and they are
usually denoted P;s, Q/. The Q-functions of the variable /J, have no signifi-
cance, so that virtually there are P- and Q-functions of v, but only P-functions
of fx. The like is true in the present case, however, with the additional
complication that each of the functions may assume one of two alternative
forms. I adopt a parallel notation and write for Uj and U2 either T$£, © / ,
or P/, Q/, as the case may be. Since v and /t enter in the first two equations

* The quantity which is here denoted by a was written as /3cr in the original paper.

D. III. 13
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194 THE DIFFERENTIAL EQUATIONS. [10, § 4

in exactly the same way, we need only consider one of them, and we may
usually write simply (for example) ^ / where the full notation would be
31/ (v or fi). In the early part of the investigation I shall only refer to
the P-functions, and the Q-functions will be considered later.

In spheroidal harmonic analysis the third function is a cosine or sine of
s<£. So here also we find functions of two kinds associated with cosines and
sines, which I shall denote (£/, §bf, Cj8, S/, the variable <£ being understood.

Throughout the greater part of this paper the functions will be of degree
denoted by i, and it seems useless to print the subscript i hundreds of times.
I shall accordingly drop the subscript i except where it shall be necessary or
advisable to retain it; for example, ^jjs will be the abridged notation for

The operators involved in the differential equations (3) will occur so
frequently that an abridged notation seems justifiable. I therefore write

tys — Di2 — i (i 4-1) [v2 (1 — /S) — 1] — s2 + a- ~\

Xs = D3
2 - i (i + 1) yS c'os 2<f> + s2 - a

where D, = (l - & (v2-\±%)-(v> - 1 ) * ^

D3 = (1 — /3 cos

The equations are then

•vK dQs or Ps) = L
y (5)

Xs (®s or S s or Cs or Ss) = 0

§ 4. The Forms of the Functions.

It is well known that the function Uj. is a linear function of ux of degree i
made up in one of the eight following ways :—

1. When i is even, a linear function of u^ of degree \i.

2, 3, 4. When i is odd, a linear function of u^ of degree \ (i — 1), multi-
plied by Ax, or B n or G1.

5, 6, 7. When i is even, a linear function of uj' of degree \ (i — 2),
multiplied by Bjd, or -CiAj, or A ^ .

8. When i is odd, a linear function of u? of degree \ (i — 3), multiplied
by A ^ A -

These eight classes might be conveniently specified by the initials 0, A, B
C, BC, CA, AB, ABC, but it is better to rearrange them according as they
are associated with the evenness or oddness of i and s, and with the cosine or
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1901] CLASSIFICATION OF THE FUNCTIONS. 195

sine functions. This new grouping may be defined by a shorthand notation
involving the initials E, 0 and C or S, which shall denote successively the
evenness or oddness of i and s, and cosine or sine.

We shall see below that this arrangement is as follows:—

O or EEC; i even, s even, cosine.

AB or EES; i even, s even, sine.

A or OOC; i odd, s odd, cosine.

B or OOS; i odd, s odd, sine.

C or OEC; i odd, s even, cosine.

ABC or OES; i odd, s even, sine.

CA or EOC; i even, s odd, cosine.

CB or EOS ; i even, s odd, sine.

Since the several functions are linear in u2, they are in the new notation
functions of v' or fi2, or of x>2 — 1 and fi2 — 1.

Hence 3$s (z>) and P8 (v) involve linear functions of v2 — 1 of various
degrees multiplied by various factors; and the same is true of the func-
tions of (i.

In the case of the third root the linear function of powers of cos 2<£ may
be replaced by a series of cosines of even multiples of <f>. Further, in forming
the QD, j&, C, S functions we may regard A3 as being cos <f>, B3 as sin <p, and

C3 as (1 — /3 cos 2(/>)2, since this only amounts to dropping constant factors
which may be deemed to be included in the, as yet, undetermined coefficients
of the several series.

I will now consider in detail the forms of the several P-functions of v
(those for fi following by symmetry), and at the same time indicate more
precisely the nature of the notation adopted.

In the following series, indicated by 2, the variable t is supposed to
proceed from the lower to the upper limit by 2 at a time. The reader will be
able to perceive the manner of the formation of the functions when he bears
in mind that

Type O or EEC; $ s = S«((v* - 1 )**
o

Type AB or EES; Ps = 2 * O2 - 1)*{t ~1} (ẑ 2 - £ f ) *

Type A or OOC; Ps = So, (*>2 - 1 ) * {t~l) (v2 - ££)*

13—2
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196 THE FORMS OF THE FUNCTIONS. [10, § 4

Type B or OOS; $ ( = 2 * (v2 - 1)4'
1

TypeCorOEC; 3Bs = 'katv(vi-lf(-t~^
I

Type ABC or OES ; Ps = 2o,y (V -1 )* ( ' ~2) ("2 - i=f)2

3

Type CA or EOC; Ps= 2aji/(i»>- 1)4 (*"2) (^-ir j j)*
2

Type CB or EOS; ffi*=2«t>'(»'il-l)*^"15

2

j>2 — j-^g j , and that, each
form being repeated twice, there are two forms of function of each kind.
Moreover, a cosine and a sine function are always associated with different
kinds. It is obvious that the ^-functions are expressible in terms of the
ordinary P-functions of spherical harmonic analysis, and that if we take out
the factor ( 1^~ j the P-functions are similarly expressible. This factor

\ v — 1 /
will occur so frequently that I write

and as elsewhere commonly put il to denote £1 (v).

We assume then the following forms for the functions:—

For EEC, OEC, OOS, EOS

For EES, OES, OOC, EOC (6)

In these series n proceeds by intervals of one at a time, beginning from
a lower limit of unity. In both forms the upper limit of the first 2 is \s or
^ (s — 1) according as s is even or odd; and the upper limit of the second 2
is •£• (i — s) or ^(i — s — 1) according as i and s agree or do not agree in
evenness or in oddness.

The factor fl contains (j/2 — 1)^ in the denominator, but Ps does not
become infinite when v = ± 1, because when s is not zero Ps is divisible by
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1901] THE FORMS OF THE FUNCTIONS. 197

(v2— I)31 and we shall see that q\ is zero*. When s is zero there is no function
of the P type.

It may be noted that the limits of the series are such that neither q nor
q' can ever have a negative suffix.

We shall ultimately make qs and q's equal to unity, and this will be
justifiable because there must be one arbitrary constant.

We have now to consider the forms of the cosine and sine functions.
They may be derived at once from the preceding results, for we have only to

read (v2 — 1)3'as cos t<f> where t is even; (^ - I f as sin <p, (v2 — Jrl)^ as

cos </>, and v as (1 — /3 cos

The factor (1 — @ cos 2<£)5 will occur frequently, and I write

<£(<£) = ( 1 - / 3 cos 2<£)i

and as elsewhere I commonly write <t> to denote 3> (<f>).

The following are the results:—

Type O or EEC; <£s = Xyt cos t<f>
o

Type AB or EES ; S s = kyt sin ty
2

It is clear that we may equally well regard the lower limit in the latter
as zero.

Type A, or OOC; each term is of type

cos (t — 1 ) <f> cos <f> o r cos (t — 2) <f> + cos t<f>

i
Hence CD" = 2 yt cos tj>

l

Type B, or OOS; since we now have cos (t — 1) </> sin <p,

& s = 2 T t sin t(j>
I

T y p e C . o r O E C ; Cs = # 2 Y«COS(<- 1 )0

Type ABC, or OES; each term is of type * cos (t — 1) <j> sin j> cos <£, which
gives [sin (t + 1) <f> — sin (t - 3) <£] <E>. Hence

* This also follows from the fact that the series for P! begins with (2a2 (P2 -1) in the case of
EES, and with ila^ (K2- 1) in the case of OES. Thus in the former case there is no term i)au

and in the latter no term iia\v.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.013
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.013
https://www.cambridge.org/core


198 THE FORMS OF THE FUNCTIONS. [10, § 5

It is clear that we may equally well regard the lower limit as unity.

Type CA, or EOC ; each term is of type <J> cos (t — 2) <£ cos $. Hence

Type CB, or EOS ; each term is of type <J> cos (t — 2)<f> sin <p. Hence

2

When i and s agree as to evenness or oddness we have the forms inde
pendent of 4>, when they differ in this respect the factor <E> occurs.

Therefore (in alternative form) for EEC, EES, OOC, OOS

S _ j C 0 S A, V On j C 0 S /
s " [sin Fs-m | s - n V

and for OEC, OES, EOC, EOS

(7)
In these series n proceeds by intervals of one at a time, beginning with

unity. In both forms the upper limit of the first 2 is ^s or ^ (s — 1) according
as s is even or odd. In the first form the upper limit of the second £ is
^ (i — s), and in the second form it is %(i — s — l).

We shall ultimately put ps and ps, which may be regarded as arbitrary
constants, equal to unity.

| 5. Preparation for determination of the Functions.

In order to determine the coefficients q, q', p, p' and a, we have to substi-
tute these assumed forms in the differential equations.

Where the functions involve VL and <5 as factors, the forms already given
for the differential equations are perhaps the most convenient, but in the
other cases a reduction seems desirable.

By considering the forms of Dj and D3 in (3) it is easy to show that

^ - ^ ...(8)
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1901] SUBSTITUTION IN THE DIFFERENTIAL EQUATIONS. 199

By making /3 vanish we reduce these operators to the forms appro-
priate to spheroidal harmonic analysis. By making /3 infinite we obtain
the differential equations specified in § 2 as appropriate to ellipsoids of
the class c2 = £ (a2 + 62).

It is now necessary to perform the operation yfrs on typical terms P( and
(cos fcos

fiP* and y, on typical terms \ . td> and <3> -I . td>.A JL (sin r (sin r

(a) To find

The form (8) for \frs is here convenient.

It is clear that

because P* is the solution of the differential equation found by erasing the
term — s2P* from each side.

Again we have from the same differential equation

It may be noted in passing that this is equally true when the subject of
operation is Q', the function of the other form.

Therefore

Hence

We have now to eliminate v —r— and - — 7 r ' .
dv v2 — 1

It is known that P = —U-, f-f-Y (v2 - IV

and F = ( , 2 - 1 ) ^ (

The differential equation satisfied by P' involves t in the form t2. Hence

(i/2 — 1)~2* I j p c a n on]y differ from P( by a constant factor. In order to

find that factor suppose v to be infinitely large;

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.013
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.013
https://www.cambridge.org/core


200 SUBSTITUTION IN THE DIFFERENTIAL EQUATIONS. [10, § 5

and F=Ai '

•"» « =
2Hl'i + tl

o* I ^ I

Therefore the factor is . - ~ j , and
z — t!

It will be convenient to pause here and obtain the corresponding formulae
for the Q-functions. Various writers have adopted various conventions as to
the factors involved in these functions. I write

dvfee

and Q* = (i>2 —

As in the case of P( we may change the sign of t, if we introduce a con-
stant factor, and this may be found by making v infinitely great. In that
case it is easy to show that

„_ 2i(i\y 1

By performing f^-j and I j -1 on Q it follows that the constant factor

is the same as before, and that the alternative forms for Q* are exactly the
same as for P*.

Hence the transformations which follow for the P-functions are equally
applicable to the Q-functions.

If we differentiate Pf in its two forms we find

dv W W K 2 - 1

And

tv__Ft i+t\ i-t+ll P ' - 1

v* - 1 i -1! ' i +1 - 1! (V - 1)*

I now write

[i, t\ ={i + t)(i-t+\) = i(i + l)-t(t- 1 )

It is clear that

{i, -t}= [i, t + l j , and [i, Oj = {i, 1} = i (i + 1)
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1901] SUBSTITUTION IN THE DIFFERENTIAL EQUATIONS.

,T . i + tli-t + V.
Now since •; ; —

t — t\i + t — 1\

two forms of -.—, we havedv
dP*

201

= {i, t}, by taking the sum and difference of the

(f - 1)2

i — t\ji — t\It is easy to verify, by means of the relationship P~* = -—-j P', that these

equations are true when t is negative. They are also true when t = 0, although
the second equation then becomes nugatory.

Multiply the first of (10) by v and the second by

them a second time.

Then since

, and apply

2t(t +
- 2 -

_1

™ _

i, t] \i, t — 1} pj_21
4 - 1 J

These equations are always true although for t = ± 1 and 0 they become
nugatory.

Then

~2pd£+* £={F=*[F+2+{i> t] {i> *~1] F~2] - » ( * +
Hence

s (F) = - - 2 *, t - .. .(12)

(/3) To find ^(D,?1).

It is now best to use -v̂ s in the form (5), where Dj is defined by (2).

Now D l (flPO = (^ - 1) (1 - 0) - 20] ^ +

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.013
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.013
https://www.cambridge.org/core


202 SUBSTITUTION IN THE DIFFERENTIAL EQUATIONS. [10, § 5

and

D,2 (flF) = („• - 1) 0. j[(.2 - 1 ) (1 - /3) - 2/3] ~ ~

The latter terms of -tys contribute

Therefore

= fi ](^2-l)[(i/2-l)(l -/3)-2/3]^TV

-1)F

- s2F +£»(» + l) I* + <rF - 2/9F -

But ( l ,-i) |^»_2l,^+t-( t- + i)P+_*_p«

and we find on reduction that

On substituting for —=— and ——- P ' their values, we have
° dv v2 — 1

(flF) = -1130. ^ i ^ i F + *±^ F+2 - 21 F

(7) TofinaXs^.
/(cos

s i n

In this case the most convenient form for •%„ is that in (9), and we easily
find

(cos , ,\ , - r 2 (s2 — f) (cos , ,. , , (cos
\ ty = i / 3 K '\ td>+{i, t + 1 .

* s V ( s i n r / " ' ' I /^ ( s i n r • ' - " • " ' ( S i n

(sin ^ ' J (sin
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1901] DETERMINATION OF THE COEFFICIENTS. 203

(8) T

I now use the form ^g as defined in (5), where D3 is given in (2), so that

D3 = ( l - ^ C o s 2 # ^ = * A .

We have

and

The latter terms of ^ contribute

a) j C 0 S ty - * # (t + 1) [ ( C 0 S (« + 2) <f> + j C 0 S (« - 2)
[sin r i v |_(sin ^ [sinv

Therefore

* {sin * ] — 1 * [" 2 ^2 - f> {sin
- ,« - 1J j ^ (< - 2) * ] .. .(15)

§ 6. Determination of the Coefficients in the Functions.

In this section I use successively the four results (12) (13) (14) (15)
obtained in the last section under the headings (a), (/3), (7), (8).

(a) $* = qs¥° + 2£»?MBF-»> + 2/S>+2n P
s+2»

The limits of the first 2 are 1 to Js or £(s— 1), and of the second
1 to -fa(i— s) or ^(i — s — 1).

2
Applying the operation \jrs to ffi and equating - - y]rs ($") to zero, we

have

S8n (s - n) p™ qs_m P8"2" - %8n (s + n) £»-• qs+m Ps+»

+ qs \v
s+3 - 2 I P« + {t, s} {», * - 1} Ps-21

- 2 ^ 2 - 2 I P s - M + (t, s - 2n} {i, s - 2n - 1} P»-̂ »

+!m Ps+2»+2 - 2 ^ Ps+2» + }t, s + 2«} [i, s + 2n - 1} p s + ^ 1 = 0
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204 DETERMINATION OF THE COEFFICIENTS. [10, § 6

The coefficients of the P's must vanish separately. This gives from the
coefficients of P8"211 and P8+2" the following:—

2 [in (s - n) - <r] qg_m + ff2gs_2n_2 + {i, s - 2n +2} [i, s-2n + 1} qs_m+2 = 0

- 2 [4m (s + n) + a] qs+2n + gs+2n_2 + /32 [i, s + 2n+2} {i, s + 2n + 1} qg+m+2 = 0

These equations may be written in the form

2qs-m _ - {i, s - 2n + 2} ft, s - 2n + 1}

Is-™ . , ( l g )

in (s + n) + a — j/32 (t, s + 2n + 2 ( ft, s + 2w

Whence by continued application, the continued fractions

•-•an _ — ft, s — 2n + 2} [i, s — 2n + 1} \(3? ft, s — 2n] [i, s — 2n — 1}
in{s — n) — a— i(n + l)(s — n-l) — <T—...

i, s - 2ra - 2r + 2} {t, s - 2ra - 2r + 1}

4 (m + r) (s — n — r) + \j3i ( — ^ ^

[t, s + 2w + 2} ft, s + 2n + 1}

- j/32 ft, s+2n + 2r} \i, s + 2n+2r-

i(n+r)(s+n + r) - ^/32 {t, s+ 2n + 2r + 2) {t, s + 2n + 2r + lj

(16)

We must now consider what I may call the middle of the series, which
corresponds with n = 0. In this case each of the S's contributes one term
and the ^s term gives another. The result is

- 2aqs + /32gs_2 + fi*qs+i ft, s + 2} {i, s + 1} = 0

or

Since 2qs_2/qs and 2gs+2/gs are expressible as continued fractions, we have
an equation for a, if the continued fractions terminate.

We shall now consider those terminations.

First, suppose that s is even, corresponding to types EEC, OEC.

The first continued fraction depends only on the first S. The condition
to be satisfied is
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1901] DETERMINATION OB' THE COEFFICIENTS. 205

h (*2) 2 (s2 - 4) M(5~4)g2P2 + •••

2 | P + {i, 0} {», -1} P

+ /8* ^ 52 [ p - 2 | P + {», 2} {», 1}

+ /8*('-4>g4 f p + 2 | P + {», 4} {t, 3} P~| + ... =0

Since {i, 0} }i, — 1J P~2 = P2, we have, by equating to zero the coefficients
of P and P2, results which may be written

2g._-{t,2}{t, 1} 2g2 - {t, 4} {t, 3}

Hence the ^'s disappear from the first continued fraction, which terminates
with

In this last term the |y32 which prevails elsewhere is replaced by ^/32.

Observe that when s = 2 the first continued fraction is replaced by a
simple fraction, so that the equation for cr becomes

Secondly, suppose that s is odd, corresponding to the types OOS, EOS.

The condition to be satisfied is now

- 2 | P + {t, 1} {», 0} P - ]

" 3) ?s [P5 - 2 | P3 + {%, 3} {», 2}

- 2 | p + {i, 5 )K4]P ' l + . . . = 0

Now {{, 1} {t, 0} P-1 = i (i + 1) * ^-i-! P"1 = i (i + 1) P , and if we equate to

zero the coefficients of P1 and P3 we obtain results which may be written

2£, = - {t, 3} {%, 2}

q3 s 2 - l - o - + £/3t0' + l )

2qs - \i, 5} {%, 4|

?' «« _ 9 - a + i/32 (^
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206 DETERMINATION OF THE COEFFICIENTS. [10, § 6

Thus the g's again disappear, and the first continued fraction ends with

Observe that when s — 3, the continued fraction reduces to a simple
fraction, and the equation for <r becomes

3} {%, 2}
+ A/32 {i, 5} [i, 4) ( - ^

The case of s = 1 must be considered separately.

We have next to consider the termination of the second fraction, which
depends only on the second 2.

First, when i and s are either both even or both odd, the types are EEC
and OOS, and the limits are \ (i — s) to 1. The condition to be satisfied is

- 2 (£-«») £*(*- ' - ^ P * - 2 [(t - 2 ) 2 -

(* ~s) ft IV+2 - 2 1

- 2 | P * - + {t, t - 2} {», t - 3}

*'-«- 4) ? ._4 fpi-2 _ 2 | p-4 + {tf ,- _ 4} {it i-5} F-«l + ... = 0

Now Pi+2 is zero, and equating the coefficients of Pl and Pl~2 to zero we
obtain results which may be written

2qi= 1

9*-* (i - 2). - s* + a - -J/8" {%, i] [i, i - 1}

Hence this continued fraction ends with

i2 - s2 + o-

Secondly, when i and s differ as to evenness or oddness, the types are
OEC and EOS, and the limits are £ (i — s - 1) to 1. The same investigation
applies again when i is changed into % — 1.

Hence the continued fraction ends with

The cases of s = 0, s = 1 must be considered by themselves.
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1901] DETERMINATION OF THE COEFFICIENTS. 207

When s = 0, the types are EEC and OEG. The " middle " of the series
is now also an end, and the condition is

- 8. ... + g, I" F - 2 ! P + {t, 0} {t, - 1} P"21

+ /32g4 |~P - 2 | P* + {i, 4} {t, 3} P2j + ... = 0

Writing P2 for {i, 0} {i, — 1} P~2 and equating the coefficients of P and P2

to zero, we have

Therefore , T - . ^ 2 K 1} R 2} & {i, 3} {i, 4} - j £ » {i, 5} {», 6}Iheretore o-_ 4

1/02 U ,'1 f," ,' 11

ending with ———,2 for

and with —~—,.' , a
 ? for OEC

Next when s = 1 the types are OOS, EOS; the " middle " is again an end,
and the condition is

- 8 . 1 . 2 g , P » - 8 . 2 . 3 / 8 j . P - . . . + ? i r p - 2 | P + {tJl}{t>0}-

- 2 | p + {{, 5} {*, 4} P»l + . . . = 0

Writing i(i + 1) P1 for {i, 1J [i, 0} P - 1 and equating to zero the coefficients
of P1 and P3, we have

Therefore

" - * 0 » ( » + l ) - 4 - 1 - 2 + ff_ 4 . 2 . 3
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208 DETERMINATION OF THE COEFFICIENTS. [10, § 6

ending with 4 • ' for OOS
^2 + o•

and with — -—~—,. ' ' for EOS
(i- If + a

(/3) We have next to consider the other form of P-function for types
EES, OES, OOC, EOC, namely,

where 12= , :
\ V* - 1

Let us write g's±2« — (* + 2n) gs±2M. The ^'s are not now the actual
coefficients of any P-function, but we shall see that they are determinable
by almost the same relationships as those already found, and therefore the
notation is convenient.

We now have

3>_2 7 l 0 - 2?i) Ps"» + X^qs+m (s + 2n)
2

Applying the operation -̂ r, to Ps and equating — —-̂  \{rs (P
s) to zero,

we have

28w (s - n) (s - 2n) gs_mPs-2"28« (s + n) (s + 2w) ?s+2nP
s+2)1

+ qs \{s + 2) Ps+2 - 2 1 sPs + {», s} {i, 8-1} (a-2) Ps-2 j

\(s -2n + 2) Fs-™+* - 2 | (s - 2«) P8"2"

+ {t, s - 2w} {i, s - 2n - 1} (s - 2re - 2)

Us + 2n + 2) P*+»+2 _ 2 ^ (s + 2n) P8+»

+ {i, « + 2«} {i, s + 2n - 1 j (s + 2n - 2) P«+»-2 = o

This is the same equation as before, if we replace tVl by Pf. As we may
equate coefficients of iP* to zero (instead of coefficients of P'), we obtain the
same equations for the q's as before.

A certain change must, however, be noted with respect to the beginning
of the first series, which determines the end of the first continued fraction.

We previously wrote

P2 for {», 0J [i, -1} P-2 and i (i + 1) P1 for {%, 1} {i, 0} P"1
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1901] DETERMINATION OF THE COEFFICIENTS. 209

But the corresponding terms will now be

{ t , 0 } { t , - l } ( - 2 ) P ^ and [i, 1} {%, 0} ( - 1) P -

and these are equal to — (2P2) and — (1 . P1).

Hence it follows that when s is even (EES, OES)

2 g a _ -{ t ,2} fc l} 2q2_-im{i, 3}
q0 s1— a ' q4 s2 — 4 — o-

The qa term has disappeared from the latter of these, and thus the
continued fraction is independent of q0. This is connect, since whatever value
(short of infinity) qa may have q0', being equal to 0q0, vanishes. Hence the
continued fraction is docked of one term and ends with

s2 — 4 — fl-

i t is important to note the deficiency of one term in the fraction, since it

indicates that when s = 2 the first continued fraction entirely disappears.

When ,5 = 0 there is no function of the P form, so the question of inter-
pretation docs not arise.

When s is odd (OOC, EOC) the only change is that i(i + 1) enters with
the opposite sign, so that the first fraction ends with

When .9=1, we have a + -J-/3* (i + 1) equal to the same fraction as before.

When the q's are determined we have qt' — tqt. But it is desired that in
the case (a) q,. should be unity, and that in the case (/3) q/ should be unity.
This condition will be satisfied in the present case if we determine all the ̂ 's,
put qs equal to unity, and finally take

_s±2n
s±m s *s±m

Thus in both (a) and (/3) we put qH equal to unity, and in (/3) determine
the q"s by the above equation.

(7) We now have to consider the cosine and sine functions.

For EEC, EES, OOC, OOS

(E>* (cos _, (cos „ n (cos .
5 s (sin Ism [sm

The first S has limits As or ^ (s - 1) to 1, the second £(1 - s) to 1.

p. in. 14
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210 DETERMINATION OF THE COEFFICIENTS. [10, § 6

Apply the operation Xs a n d equate — -j Xs f < „ s j to zero ; then

IfriQ (fA

£ 8 m (s - n) ^-'ps-.n i (« -2n)<f> + 28m (« + « ) y S ^ j w \ ."(s + 2n)
I s m j

- 2n + 1} j^°n
S (s - 2n + 2) <j> + 2 1 j ^ (,s - 2n) ^

i, s+2n + l\ iC0S (s + 2n + 2) 0 + 2 £ {C0S (« + 2m)

+ [i, s + 2m) \ (s + 2n - 2) 4> \= 01 J (sin J

If we equate to zero the coefficients of •! . (s + 2n) d>, we find
^ (sinv ~ / r

^S+2""2 4??, (« + n) + a + i/32 {», s + 2n + 2}

These will, as before, lead to continued fractions, and by elimination of
the p's to an equation for o\ The equation will agree with our former
result, for it can of course make no difference from which equation we deter-
mine a*. I t follows then by comparison with the previous result (16) that

Ps—in 1_ Qs—2n

Ps-zn+2 {i, S - 2n + 1 j

Hence when the q's are found, the p's follow at once.

(8) For OEC, OES, EOC, EOS

{si°n
where <t> = (1 - /9 cos 2^>)*.

The limits of the first 2 are £s or £(s — 1) to 1, of the second
to 1.

* I have of course verified that this is so.
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1901] THE EQUATION FOR FINDING a. 211

Proceeding exactly as before we find

HU-^ \i,s-2n + l}

n+> 4n (s - n) - a - A/32 {t, s - 2n]

+m - \i, s + 2n\

By comparison with (16) we see that

P 8—271 J- Qs—271

{i, s-2n + 2] qg-m+2

/* s+zn—i Qs+m—2

Therefore when the g's are found, the p"s follow at once.

We may now summarise oiir results, as follows:—

In the general case where s is neither 0 nor 1, a- is the root which nearly
vanishes of the equation

+ 4 : i ( s + l ) + o-- 44.2(s+2) + o-- . . .

The continued fractions terminate variously for the various types of
function. The end of the first continued fraction is as follows:—

For EEC —-—~—'—^—I • and when s = 2 this is the whole fraction.
s2 - a

For EES - L y ' * -—'-; and when s = 2 the fraction disappears.

For OOC sr~^ ^'3Ri'(i^l)' a n d w h e n * = 3 t h i s is t h c w h o l e fraction.

For OOS -—i ' la-Y^ T \ j a n d w n e n s = 3 this is the whole fraction.

For OEC -—£—i-?_--M '._ J ; and when s = 2 this is the whole fraction.

— J-/32 li 31 \i 4}
For OES ——-—.— •-- ; and when s = 2 the fraction disappears.

s — 4 — a

For EOC ~ 7 ^ 't;—' '!' .' ; and when s = 3 this is the whole fraction.

For EOS ~* ^ ' ' .' ) ; and when s = 3 this is the whole fraction.

14—2
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212 THE EQUATION FOR FINDING a. [10, § 6

For the first four of these types, viz., EEC, EES, OOC, OOS, the second
continued fraction ends with

—4 .* '—~A-? ' ; and when s = i the second fraction disappears.
% — s ~t~ o~

For the last four, viz., OEC, OES, EOC, EOS, it ends with

; and when s — i — 1 the second fraction disappears*.
{i-iy-s' + a-

When s = 0, the equation becomes

-B2 \i 1} \i 2} i/32 \i 3} \i 4]

ending when i is even (EEC) with
1/P2 (,' »') )„' „' "I 1

and when i is odd (OEC) with

i-lf

When s = 1 the equation has two forms, which may, however, be written
together. If the upper sign refers to cosines (OOC, EOC) and the lower to
sines (OOS, EOS), the equations are:—

<r + W ; + l)
a ± T£» (»+1) - x i T l T ^ - 4T2:3 +

ending when i is even (EOC, EOS) with

and when i is odd (OOC, OOS) with

It might appear at first sight that a difficulty will arise in the interpre-
tation of these results when i is small, for the numbers in the denominators
of the fractions increase, and yet it is possible that the number at the end
should be smaller than that at the beginning; thus apparently the fraction
ends before it begins. But this difficulty does not really arise, because in
such cases the numerator will always be found to vanish, and thus the whole
fraction disappears. For example, in the last case specified, if s = 1, i — 2 the
denominators, according to the formula, begin with 8 + a and end with 0 + a;
but the fraction has for numerator {2, 2} {2, 3}, which vanishes.

* [There was a mis-statement about the two cases, s = i or i - I, in the original paper.]
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1901] ON THE ROOTS OF THE EQUATION FOR a. 213

Reviewing these statements we see that, without attributing to { any
specific value, there are sixteen cases in which one of the two continued
fractions disappears, and sixteen other cases in which one of them is reduced
to a simple fraction.

[In order to distinguish the values of a corresponding to any harmonic
we may append to that symbol the affixes s, i as in the case of harmonic
functions, and write it as af. It will not however be necessary to adopt a
distinctive symbol to distinguish between the cosine and sine functions, not
because that distinction is immaterial, but because the two kinds of functions
may be considered apart.

Suppose in the first instance that we are considering the cosine functions
of even rank, so that the types are EEC, OEC. The equation for of is, as
above,—

Put <yf = x — (s + 2)'1 + s" = x — 4 (s +1). The successive denominators of
the first continued fraction are 4m (s — n) — ay9, and of the second 4n (s + n) + ay*,
with n—1, 2, 3 &c. On effecting the transformation these become re-
spectively 4>(n + l)(s — n+l) — x and 4i(n—l)(s+n + l) + x. Hence the
equation becomes

x-4<(s+ 1) =

-y3>{i,8}{i,8-l} $p{i,8-2}[i,8-3} J£2 {t, s - 4} {i, s - 5}
4.2s-x- 4 . 3 ( s - l ) - « - ~ 4 . 4 ( s - 2 ) - * - . . .

\&{i, a + l}{t, g + 2} i/32 {i, s + 3) {i, s + 4} \& {%, s + 4} [i, s + 5}
4~

Denote the first of these continued fractions by A, and that portion of
the second continued fraction, which is found by omitting its first term, by
B; then this equation may be written

whence [*• - 4 ( s + 1 ) - A] [x + B] = i /S 2 [i, s + l}{i,s + 2 \ (a)

Now from the general formula the equation for oys'+2 is

Therefore

[o-/+2 -4,(8+1)-A] [o-/+2 + B] = i-/32 ft, s + 1} {», s + 2} (b)

On comparing (a) and (b) we see that x = af+2. Hence it follows that two
of the roots of the s equation for a are of and at

s+2 - (s + 2)- + s2. Extending
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214 THE ROOTS OF THE EQUATION FOR a. [10, § 6

the same argument from the s + 2 equation to the s + 4 equation, and thence
to the s + 6 equation and so on, we see that the required roots of all these
successive equations may be determined from the s equation and may be
written

<rf, <r/+2 - (s + 2)2 + s2, o-is+4 - (s + 4)2 + s\ o-/+(i - (s + 6)2 + s2

If we have begun this operation with the equation for s = 0, we see that all
the roots of the equation for s = 0 are

"it Oi — £i , O£ — t , Ui — U , . . .

When i is even the largest even value of s is i, and when i is odd it is i — 1.
It follows that when i is even the equation for o- for s = 0 is of order ^i+ 1,
and when i is odd it is of order | ( t + 1), and in both cases all the roots are
real. The roots are approximately 0, — 2s, — 4s ... — i'1 or — (i — I)2 and the
corrections to these roots are respectively o-i; <ri\ af ....

Hence we can find all the values of a from the equation for s = 0 corre-
sponding to cosine functions of even rank.

There is nothing in this argument, excepting in the last stage, which
compels us to apply it only to cosine functions of even rank. It is equally
applicable to all the others, let us consider therefore the sine functions of even
rank EES, OES. These are distinguished from the cosine functions by the
fact that there is no function corresponding to s = 0, but they begin with
s = 2. Hence we see that the roots of the equation, corresponding to s = 2,

j/38 {%, 3} {%, 4} jff \i, 5} \i, 6}
a 4 . 1 . 3 + V - 4 . 2 . 4 + < r - . . .

are of, a* - 42 + 2a, of - 62 + 22, of - 82 + 22

When i is even there are \i such roots, and when i is odd \ (i — 1). This
equation is of one degree lower order than the corresponding equation
for the cosine-harmonics. These cosine and sine functions of even rank
together account for \i + 1 + \i, or i+1 functions when i is even; and for
l(i+ 1) + \{i— 1) or i functions when i is odd.

The remaining functions may be considered all together, and we sou that
the roots of the equation corresponding to s = 1, namely

are at\ o f - 2 3 + l 3 , a? - 42 + I2, af - 6a + I2 ...

The succession ends with af~x — (i — 2)2 + I2 when i is even, and with
<Jil — (i — 1)2+ I2 when i is odd.

When i is even the number of these roots is ^i, when i is odd it is
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1901] THE VARIOUS EQUATIONS FOR THE er's. 215

If we take the upper sign of /3 on the left the equation corresponds to
the cosine functions EOC, OOC; with the lower sign to the sine functions
EOS, OOS. There are thus two equations of the same algebraic form and
one is derived from the other by changing the sign of /3. Together they
account for i functions when i is even and for i +1 functions when i is odd.

Thus we see that in order to find all the cr's corresponding to the 2i + 1
functions of order i, it is necessary to solve four equations.

The following schedule gives a list of the four equations:—

„——

Type of
Function

EEC
EES
EOC
EOS

even

Order of
equation

\i+\
\ i
i ;

\ i

I O(

Type of
Function

OEC
OES
OOC
OOS

w

Order of
equation

i-(i-l)

•i(t'+l)

Specification of equation
to be solved

s = 0, cosine function
s = 2, sine function
« = 1, cosine function
s — l, sine function

For harmonics of the third order there are one quadratic, and three equations
of the first degree, and of the latter two have the same algebraic form.
Hence all the harmonics of the third order are determinable algebraically.

For harmonics of the fourth order, there are one cubic and three quadratics,
and all these harmonics but three are determinable algebraically.

I shall determine the expressions for the harmonics of the third order in
Paper 12, and shall derive the values of a in the way indicated. At the same
time the corresponding equations for a for the harmonics of the fourth order
will be found and solved, so far as is possible.]

When a has been determined we find the q's by the formulas—

2</»_2» _ - {i, s - 2« + 2} \i, s - 2n + 1} ^ 8 2 {i, s - 2n\ [i, s - 2n - 1}
(/s_2,j+2 4/t ( s — M) — cr — 4 (n + 1) (s — n — 1) — <r — ...

2f/,+2n = 1 j§l_lhJ_+_2m+_2}_{i, s + 2n + 1}
q*+m-i 4« (s + n) + <r- 4 (n + 1) (s + n + 1)i + a - ...

The terminations of the continued fractions are as specified above in the
equation for a.

By forming continued products of ratios of successive q's, we can find all
the q's as multiples of qs, and qs = 1.

In the cases EEC, OEC, OOS, EOS, these are the required coefficients
for $ \

S ~\~ ^fi

In the cases EES, OES, OOC, EOC we put q's±m = --ri— qs±m> and thus
s

find the coefficients for P*.
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216 THE COEFFICIENTS IN THE FUNCTIONS. [10, § 7

The coefficients for (£,, <£ in EEC, EES, OOG, OOS are determined by

The coefficients for C, S in OEC, OES, EOC, EOS are determined by

P s—<}n -*- tys—in

p's-m+2 ~ ~{i, s - 2n + 2} (/s_2,l+2

P S+2H—2

It follows that if we put qs = 1 and ps — 1

*> ( ) »( ) {̂  s _ 2 w + 1} ^ s ~2n + 3} ... {i, s - 1}

2» = ( - )" {i, s + In - 1} {i, s + In - 3} ... {i, s + 1}

p s-m = ( - )" {^717^+2 '} {», « - 2n + 4} ... {», s} qs~2n

p's+2n = ( - )" K s + 2«} {«', s + 2n - 2} . . . {t, s + 2} gs+2n

When s = 0, ^ / ^ is equal to that which would be given by the general

formula for ^s--m when we put in it n= 1, s = 0. Hence it follows that the
3+g's for s = 0 have double the values given by the general formula.

If we change the sign of s, the two continued fractions in the equation for
a are simply interchanged. Hence a is unchanged when s changes sign.
Also, since {i, t] is equal to [— i — 1, t}, a- is unchanged when — i — 1 is written
for i. A consideration of the forms of the q's and p's shows that gr_s+2j;P~s+2*

f — c I

is equal to .-—^gs_2*Ps~2*, and therefore

p.s ~ Ips .rt I r —t—1

§ 7. Rigorous determination of the Functions of the second order.

If a numerical value be attributed to /3 it is obviously possible to obtain
the rigorous expressions for the several functions. Thus, if /3 were |- we
could determine the harmonics of the ellipsoids of the class c2 = \ (a2 + W).
In order to show how our formulag lead to the required result I will determine
the five functions corresponding to i = 2. The case of i — 3 will be considered
in Paper 12.
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1901] THE FUNCTIONS OF THE SECOND ORDER. 217

When s = 0 the equation for determining a is

ff = J^{2, 1}{2)2}= 12^
4 + <r 4 + o-

It appears from § 6 that the two roots of this equation are a for s = 0,
and a - 22 for s = 2.

Therefore for s = 0, a = - 2 + 2 (1 + 3/82)i, or writing ii2 = 1 + 3/32 for
brevity, a = 2 (ii - 1), and for s = 2, a = - 2 (B - 1).

Again when s = 1, the equation for <r is <r + |/3i (i + 1) = 0 with the upper-
sign for the type EEC, and the lower for the type EES. Since in the present
case i — 2, o-= + 3/3. Now for 8 = 0, we have on putting 3o = l, and re-
membering that the value of q2 is twice that given by the general formula,

1 B -1

Therefore ^ 9 = P, + B-~ l P,/ (17)

where P2 = §*/> - 1, P2
2 = 3 (v2 - 1)

The coefficient of the cosine function is given by

Therefore ©2 = 1 - B-^ cos 2<f> (18)

s = 1, cosine ; EOC type.

Here <r = — 3/3. But the continued fraction is not required.

P.^nfo'P,'], and 3l' = l
/

Therefore P-V^ff P - ^ ^ H ) ' (19>

Clearly G,1 = cos <f> (1 - 0 cos 2$)% (20)

s = 1, sine; EOS type.

Here a = 3/3. But the continued fraction is not required.

Putting <// = 1,
^ = 5 / ^ = ^ = 3^ (^ -1 )* (21)

S,1 = sin 4,(1 -/3cos2c£)i (22)

a = 2, cosine; EEC type.

Here a = 2 (1 - E).

Putting <72 = 1,
, { 2 , 2 H 2 , l j _ - 2 ( £ - L )

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.013
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.013
https://www.cambridge.org/core


218 THE FUNCTIONS OF THE SECOND ORDER. [10, § 8

Therefore ffl,' = ~ 2 {B — ) Pa -f P./ (23)

where P2 = §i>2 - |

Then po = - -,~- ^ q0 = -^q0

B-l
and QL.f = a—f-cos2$ (24)

op

s = 2, sine ; EES type.

Both fractions disappear and a vanishes, but is not needed for determining
the functions. Noting that q,,' = 0, and q2' = 1,

Ss2
2 = sin 2<p (^o)

We can write down the functions of /x by symmetry, and the products
of the three functions give rigorously the five solid harmonic solutions of
Laplace's equation of the second degree.

§ 8. Approximate Form of the Functions.

It is clear that the first approximation to a is zero, and that the second
approximation, in the general case, is

s - 1 + TO s~+1

If this expression were inserted in ^~2 we should obtain qs±2 correct to

/32. But since the next approximation would only introduce /34, it follows
that qs±2 would be correct to /33 inclusive. Now qs±2 enters in the functions
with a factor /3, and therefore this approximation would give results correct
to /S4 inclusive. Since the similar operation could be applied with equal ease
in all the cases in which the continued fractions assume special forms, it
follows that this degree of accuracy is very easily attainable. However, the
forms of the coefficients would be rather complicated, and it would render the
subsequent algebra so tedious that I do not propose at present to carry the
approximation beyond ft2.

It now suffices to put a =• 0 in the denominators of all the continued
fractions, whereby the coefficients are determined, except in the cases of
s = 1, s = 3, where we put a = ± \i (i +1).
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1901] APPROXIMATE FORM OF THE FUNCTIONS. 219

In the general case we have

S's+2

i8~4 128 ( s - 1 ) 0 - 2 ) ' ls+i

, _s-2 , _s+2
s s

, _s-4 , _s + 4
I S-4 — — (U-i> '1 8+4 — — - ?S+4

o o

ft, s] - \i, * + ]
(27)

i, s} {i, s - 2} _ [i, s+1) {i, s + 3}
- l ) ~ ( s - 2 ) ' ps+i ~ 128 ( s+ l)(s+~2)

- l } , _ - {*, s + 2}
- l ) ' ^ " ^ " " S C a + l )

- l j }-t, 6--3} , = {i, s + 2] }i, s + 4]
(s-l)O-2)' ^ s + 4 128(s+lj(s+~2)

When s = 0, we double the results given by the general formula and find

<fc = l , </4 = -fs-tf- B ^ ~ i I*. ! } . ^ = TJH K !} {*» 31]
There are no J- (28)

q:, q,', and p.J = - \ {i, 2\, p , ' = T>B- {i, 2j {i, 4jJ

When A-= 1,

with upper sign for cosines (EOC, OOC) and lower sign for sines (OOS,
EOS).

<lr, = 1 2 8 "2~3 = Tea for a11 c a s e s

But for 008 , EOS we use the ^ form, and for EOC, OOC the P form;
j r iL l i t *' + 2 o A' + 4

and for the latter = 3, = 5.
s n

Therefore for OOS, EOS (sines)

and for EOC, OOC (cosines) 1 (29)

For OOC, OOS, with upper sign for cosine and lower sign for sine,

p, = - TV [i, 2J [1 ± JB-/3i (t + 1)], Ps = rLg {t, 2J {», 4} (29)
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220 APPROXIMATE FORM OF THE FUNCTIONS. [10, § 8

For EOC, EOS, with upper sign for cosine and lower sign for sine,

ps' = - J6- It, 3} [1 ± jzfii (i + 1)], Ps' = jl-g [i, 3} {i, 5} (29)

When s = 2 the coefficients may be derived from the general formula.

When s = 3

the upper sign applying to cosines (OOC, EOC) the lower to sines (OOS,
EOS);

But for OOS, EOS the $ form applies, and for OOC, EOC the P form
applies.

- 2 , s + 2 r, s + 4
Also with s = 3, — 7

"~ 3
s " s " s

Therefore for OOS, EOS

qx = - TV {*, 2} {i, 3} [1 - && (i + 1)], q5 = gV, q7 = ^V«

For OOC, EOC

For OOC, OOS, with upper sign for cosine and lower for sine,

> = TV {i 3} = - A
i 6!

For EOC, EOS, with upper sign for cosine and lower for sine.

Pl' = ^ {i, 2} [1 + J6-^ (i + 1)], pt' = - Ht- {t, 5},

...(30)

It will save much trouble to note that if we were to admit negative
suffixes to the q's, the general formula would give us the term /S^-iP"1,
where

{*, 3} {i, 2} {i, 1} {%, 0}
q~* 1 2 8 . 2 . 1

Thus this term is - ^ - @H (i + 1) . [i, 3} {i, 2} P1. But this is exactly that

part of the term in (30) which arises from ySf/iP1, bu t which is not included
in the general formula.

Similarly the general formula gives for q'_lt p_lt p'_T those parts of the
terms arising from g/, px, p{ which are not included in the general formula.

I t follows tha t in much of the subsequent work we need not devote
special consideration to the case of s = 3.
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1901] RELATIONSHIP BETWEEN CERTAIN FUNCTIONS. 221

§ 9. Factors of Transformation between the two forms of P-function
and of G- or 8-fwnction.

The rigorous expressions ^ s and Ps always differ from one another, but
approximately they are the same up to a certain power of /3, provided that
s is greater than a certain quantity.

fl)2_kti\i , 2j3 a
Since 12 = ( * 3) = ( 1 + -j—^——^ •=-) , it is legitimate to develop

\ v - \ l V (v2 - 1) (1 -/3)J b

O in powers of ~L/(v3 — 1) up to a certain power, say t, provided that it is to
be multiplied by a function involving at least (i>2 —1)* as a factor; for this
condition insures that there shall be no infinite terms wheni/= + l. At
present, I limit the development to /32, so that

/3 + ff A/32

v*-i < y - i ) 2

Therefore
p = (1 _

It is obvious on inspection that we cannot rely on this development if
s is less than 4.

If then s is equal to, or greater than 4, this value of Ps, when properly
developed, to the adopted order of approximation can only differ from ^ s by
a constant factor, say C/ or shortly Cs; so that

$ S = OPS (31)

and we have to determine the constant C*.

We might develop the above expression for Ps completely and compare it
with ffi, but this is unnecessary since the comparison of a single term
suffices.

I now write 2 / = ••—2—- (32)
s — x

or shortly 2. This notation is introduced because this function occurs very
frequently hereafter.

We have seen in (11) (slightly modified) that

l>2 — 1 [S ( .9+1) S (S — 1)

We may write this

where ^ ^ A — i <* + D, 7,=
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222

Then

FACTORS OF TRANSFORMATION.

+ /3S («SPS+2 + /3SPS + 7S P*-2)

+ 7 s ( a s _ 2 P s

[10, § 9

Therefore the coefficient of Ps is asy,+2 + (/3S)
2 + as^2ys, or

1(1 (s + l)2(.9+2) y s(s-lf(s-2)

I now introduce a further abridgement and write

' i — ^ i " • (32)

or shortly T.

Then, after reduction, I find

Accordingly the coefficient of Ps in Ps is

1 + ^ 3 ( 2 + l) + £/32(2 + l ) -TV/32[-22s2 + 22 + 42 + 3 + T]

But g'g_2 =

2)

', , 9 - 1} , s + 2 , ,

Y) - ?Vw = 8 r ( 7 ^ Y } ' a n d t h e las t t e r m m

the above expression will be found to be equal to +i/32(25 — 1). Thus the
coefficient of Ps in the development of Ps is

but the same coefficient in ^jjs is unity.

Therefore

1
p /32 (i2s2 + 22 + 42 + 3 - T)

d* = l - i / 3 ( 2 + l) + TV/32 ( - 22s2 + 322 + 42 + 1 + T)

4 v = 1 + /3 (2 + 1) + |/32 (2V + 322 + 82 + 5 - T)
i )

j = 1 - ,8 (2 + 1) + i/3* ( - 23s2 + 522 + 82 + 3 + T)

...(33)

The squares of this constant and of its reciprocal are given because they will
be needed at a later stage.

We next consider the cosine and sine functions.

C S=c
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1901] FACTORS OF TRANSFORMATION. 223

As far as /32

O = (l - £ cos 20)^ = l - | / 3 cos 20 - Ty32 (1 + cos

Therefore

= t 1 " i / 3 c o s 2</> - TV/32 (1 + COS 40) ] |°™ .90

2 )

(S + 4 ) *

This expression, when developed, must lead to (3/s or jfes multiplied by a
constant factor.

Then D,:
K or Ds may be found by considering only the coefficient of -I . s<f>.

Hence

— = 1 — TV/32 — -/32p's-2

But »'»_, = 1!~—J , »'s+2 =

and p's_2 + p's+2 =

Therefore i = 1 - TV/32 (2 + 3)]
} (35)

The reciprocals may clearly be written down at once.

There are no factors by which ^jj3, !$-, ̂ P1 can be converted into P3, P2, P1;
but this is not true of the cosine and sine functions.

In the case of s = 3, it will bo found that the general formula holds good
for the factor whereby Q£3, S3 are convertible into C3, S3.

When s = 2,

° ' = [1 - |/3 cos 20 - ^ (1 + cos 40)] j ^ 8 20 + /3p0' (1 -1/3 cos 20) j j

+ ppl (1 - W cos 20) |°°n
S 40 + /3=K j ^ 60

Then

C2 = [1 - (A + &«' + ip/) /32] cos 20 + ...
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224

But
and

FACTORS OF TRANSFORMATION.

>„' = -J- [i, 1J, ft = — -jij {i, 4}, p,' = TJgg [i, 4

[10, § 9

Therefore the factors are
1

1

= — TJ1^ (2 — 5), where 2 = ^,—_- = T̂ i (i -

.(36)

It is easy to verify that the other coefficients of (&2 and &2 are in fact
reproduced.

The notation adopted here and below for distinguishing the cosine and
sine factor's is perhaps rather clumsy, but I have not thought it worth while
to take distinctive symbols for the factors in these cases, because they will
not be of frequent occurrence.

When s = 1,

= [1 - £ 0 cos 2<j> - cos
cos
sin

cos ,
sin'

s in

This must be equal to =— \ _ : .

Now, with upper sign for cosine and lower for sine,

p3' = - TV [i, 3) [1 ± &/3i (i + 1)], p,' = T i H [i, 3) {t, 5}

Substituting for p3' its values, we find with the upper sign

~ (cos) = 1-1/3- -\p> (ps' + i ) = 1 - i/3 + uV/82 [»(»+ !) - 1 0 ] )

And with the lower sign J- (37)

^ (sin) = 1+1/3-1/32 (p3' + .i) = l + 1 ^ + _i_/32 [i (i + 1) - 10]

It follows that
IV (cos) = 1 +1/3 - SL/32 [>' (i + 1) - 14] 1

D/ (sin) = 1 - 1/3 - J ^ [i (» + 1) - 14]

r b ( c o s ) ] " = 1" ̂ 8 ]

V (cos)]2 = 1 + 1/3 - J^/32 [i (i +-1) —16]

^ - , (sin) = 1 + A/3 + TTV/32 ft (t + 1) — 8]

V1 (sin)]2 = 1 _ 1/3 _ Jg/32 [{ (i + i ) _ 16]

.(37)
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1901] THE FUNCTIONS OF THE SECOND KIND. 225

We cannot in the present case use X? as an abridged notation, because it
is infinite as involving s2 — 1 in the denominator.

It is easy to verify that the other coefficients of (£} and S 1 are, in fact
reproduced in the transformation.

Lastly when ,9 = 0, we have only cosine functions. As before

C = 1 -1 /3 cos 2</> - ^ / 3 2 (1 + cos 4<£) + /3p2' (1 - -|/S cos 2</>) cos 2c/>

i cos 4</>

GD 1

This must be equal to ==r-, and therefore =r- = 1 — T
1g/32 —

Now £>,' = -${», 2}, K = Tk{*.2}{i,4}

Hence ~ = 1 + TV/32 [i(i + 1) - 3 ] (38)
bince in this case Zi =

- 1 '

l = l - T V / 3 2 [ S i + 3] (38)
•L't

Thus the general formula again holds good.

It is easy to verify that the other coefficients of (£, are in fact reproduced.

The principal use of the transforming factors, determined in this section,
is that it will enable us to avoid some tedious analysis hereafter.

§ 10. The Functions of the Second Kind.

[I found in subsequent investigations that the amount of accuracy
attainable by developing these functions of the second kind was disappointing;
nevertheless I proceed to show how approximate forms may be obtained for
them.]

The second continued fraction of § 6 terminates because

{{, s + 2n+ 2\ {i, s + 2n + 1} = 0

when n = \ (i — s) or \ (i — s — 1), since one of the two factors then assumes
the form {i, i+1}.

Hence it follows that the equation for determining a- is the same as
before; but we cannot on that account assume that the q coefficients vanish
when their suffixes are greater than i.

In considering the P-functions it was immaterial whether or not we
regarded them as vanishing, because P( vanishes if t is greater than i.

D. III. 15
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226 THE FUNCTIONS OB' THE SECOND KIND. [10, § 10

But the Q-functions do not vanish in this case, and therefore we must
postulate the existence of q's with suffix greater than i.

In fact, whilst we have as before, when i and s are both odd or both even,

2g< ^ 1
5i_2 i2 — S2 + a

we also have

9i (i + 2)2 - s2 + o- - \@? [i, i + 4} [i, i + 3}

and similarly a fraction for ^ ^ , and so forth.

It follows therefore that while the q's with suffixes less or equal to i
depend on finite continued fractions, those with suffixes greater than i depend
on infinite continued fractions.

It thus appears that while the first series in the expression for ® / or for
Q/ has limits 1 to | s or -J (s — 1), as before, the limits of the second series are
1 to oo.

Thus we have found an expansion for this class of functions in powers
of 0.

In the limited case in which the coefficients have been actually evaluated,
namely, where the development is only carried as far as the squares of y3, we
have

1 1
?s+2 8 (s + 1) ' qs+i ~8 (s + 1) ' qs+i ~ 128 (s + 1) (s + 2)

These coefficients do not vanish when s + 2 or s + 4 are greater than i, and
this confirms the conclusion already arrived at.

In spherical harmonic analysis there is no occasion to consider the value
of Q/ when s is greater than i, and the values are therefore not familiar.
I will therefore nowr determine them.

It is known* that

i _ . __*

i + 4!

* Bryan, Camb. Phil. Soc. Proc, Vol. vi., 1888, p. 293.
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1901] THE FUNCTIONS OF THE SECOND KIND.

Therefore differentiating

227

».JL + . 1

2\ r!

And

= (_)«

But

therefore
2Hl

v, 2*+1.t + l!i;

[2t + 4

' + 6

3) (v
2 - 1)]

8 ) (v2"

(39)

These are all the functions which can be needed for the expression as far
as /32 of (0=1/ or of Q / when s is less or equal to i. If s is equal to i, we shall
have terms /32gs+4Qs+4 or O,fi2q's+iQ

s+i, and these are the furthest.

But it is well known that there is another expression for these functions
of the second kind.

The differential equation is

- ^ (•&• = <)

where © / may be interpreted as meaning also Q/.

Let us assume that © s = ^ * I V(£i/

is a solution, where ®s , 3J3S may be interpreted as meaning also Qs, Ps.
15—2
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228 THE FUNCTIONS EXPRESSED AS INTEGRALS. [10, § 10

Then since ffi is a solution of the differential equation, we have

(*» - If |~2V ^ + W° ~ 1 + 2v (v*-

(2V * + ̂ g ) + 2*»#"v] = 0

This is easily reducible to

dv ;

whence V = r r , where (£/ is a constant.

Hence

/ = E/P r
J v

dv
.(40)

The general solution of the differential equation must be

and we have already found both ffi and <$bs. Hence the two (Q=ts's must be
different expressions for the same thing, for the form of ® s as a series
negatives the hypothesis that it involves ^ s in the form y ^ 8 + 72®

s.

Having then two forms of (J&s or of Qs, it remains to evaluate the
coefficients (£/, E/, which are involved in the equations (40). In order to do
this it will suffice to consider the case where v is very great, so that

As far as concerns the first term in the series

, a 2?;! v* [ i-sl i-s\
* L1 + ̂ + ^¥i\i-ii

i — s + 4! a z — s —

It will be observed that if s is equal to i or i — 1 the terms in ^ s in
and qs+4 disappear; and if s is equal to i - 2 or i - 3 that in qs+t disappears.
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1901] FACTORS OF TRANSFORMATION BETWEEN THE TWO FORMS. 229

This agrees, as it should do, with the vanishing of Ps+2 and Ps+4 when the
order is greater than the degree.

If we write ffi = avl and (51s = - ^ , the first of our equations (40) becomes,

when v is very large,

a " vi+l '2i + l

Therefore (J£s = (2i +1) iy, and since the a, 7 in the case of the Ps, Qs

only differ from these in the accenting of the q's we have

Es = the same with accented q'e.

Effecting the multiplication of the series

£
i-sl i + s+2 !

+

— s! i + s — 4 ! i — s!
+ ? + ?

4! i — s\i+ s — 2 !

i-s\i + s + 2! i-sl i+s + 2!
+

s-2l

Es = the same with accented ^'s.

If we substitute for the <f's their values, the coefficient of /3 inside [ ] in
the expression for (J£s is

s+ 1 J
In the expression for Es the first pair of these terms are multiplied by

s-2 A , . s+ 2
, and the second pair by .

s s
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230 FACTORS OF TRANSFORMATION BETWEEN THE TWO FORMS. [10, § 10

The coefficient of /92 in the expression for (&s is

1 2 8 1 (s-l)(s-2)

(i - s + 1) (i -s + 2)(i-s + 3) (i-s + 4)

(i+s +1)(i + s + 2) (i + s + 3)(i + s + 4)

(7-T)2

2 (x_+s - 1) (i + s) (i + s + 1) (i + s + 2)

In the expression for Es the first pair of these terms are multiplied by
g ^ _ 5 + 4 is 2\2

; the second pair by ; the first of the third pair by I I , and the

( s + 2\2 s2 4; and the last pair by .
s j r J s2

The reduction of terms such as these will occur frequently hereafter, and
I will therefore say a word on the most convenient way of carrying it out.
I t is obvious that the coefficient of /3 may be arranged in the form

The coefficient A is equal to the coefficient of i2 in the original expression,
and if we put i = 0 we have B 4-C, and with i = — l, - B + C. Hence
A, B, C may be easily determined.

Again the coefficient of /32 may be arranged in the form

Ai2 (i + I)2 + B (2i + 1) i(i + 1) + Ci(i+1) + D (2i + 1) + E

This may be written

It is easy to pick out the coefficients of i*, is, i'2, and we thus obtain
A, B, C. Then putting i successively equal to 0 and - 1 we have D + E and
- D + E.
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1901] FACTORS OF TRANSFORMATION BETWEEN THE TWO FORMS. 231

In order to express the results succinctly I use as before the notation

— 2 1 ' l — 2/1

and I usually omit the superscript and subscript s and i.

Proceeding in this way I find

i' — s ! l

+ i4* [- s2 (22 + 22 - 1 ) + 3 (22 - 22 + 2) + 2T]}

+ sW l>2 (322 - 22 + 1) - (22 - 262 - 42) - 2T]}/

These results may be verified, for if we multiply 0&s by T^T- , as given in (33),

we ought to find E*; and this is so.

The formulae apparently fail when s = 0, 1, 2, 3; but when s = 3 they
still hold good because, as remarked above, the general formula for s = 3 gives
correct results when properly interpreted. Thus it only remains to consider
s = 0, 1,2.

When s = 2 the coefficients of /3 remain as in (41). In the coefficients
of /32

qs-i = 0, qs_2 = — 1 [i, 2} {i, 1], qs+i = ^—^ , qs+i = -.

1 2 8

q s-i = 0, q's_z = 0, q g+2 = ^-~g , q s+4 = 1 2 8 . 4

In the expression for (Q? the coefficient of /32 inside the bracket is

[3 ( t - 2) ( t - 3 ) ( i - 4 ) ( i - 5 ) + 3(* + 3)(t + 4)(t + 5) (t + 6)

- 24 (i + 1) (i + 2) (i + 3) (i + 4) - 24 (i - 3) (i - 2) (i - 1 ) i] (42)

Effecting the reduction and writing 2 for %i(i + 1), we find

<&t = * + 4 j {1 - i / 3 (2 - 1 ) + 5|ff/S
2 (1922 - 1302 + 80)} (43)

% —
The coefficient of /32 for E2 may be got from (42) thus:—Multiply the

first and second terms by 3, erase the third, fifth, and sixth terms, and
multiply the fourth term by 4.

Effecting the reduction we find

(2 + 3) + df6£2 (2 5- a + 1 8 6 S + 368)1 • • -
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232 FACTORS OF TRANSFORMATION BETWEEN THE TWO FORMS. [10, § 10

Observe that there is no factor by which ffi can be converted into P2, so
that this case cannot be verified like the general one.

When s = 1 we have

2's_4 = 0, q's-2 = 0, q's+2 = fV [1 + ^ i (i + 1)], q's+i = ^

The terms in /3gs+2 and /3q's+2 now contribute to the terms in /32.

For (JB1 the term in ft inside the bracket is

The term in /32, of which the first portion is carried over from the term
in ft, is

- vh* (» +1) [(*' - 1) (» - 2) + (t + 2) (i + 3)]

+ 2T3 K* - *) (* - 2 ) (* - 3 ) (» - 4) + (* + 2 ) ({ + 3>

This is equal to - 7 ^ [i2 (i + If - mi (i + 1) -180]

As we cannot now use the abridged notation with £.»\ which is infinite,
I write

Thus <&? = - Vtyj [1 + iP (j + 4) - T^/S2 (j2 - 56j - 180)]} ( 4 5 )

For Ej1 the coefficient of yS is three times as great as before, and the
coefficient of /32 is

Tfgt (i + 1) [i (t +1) + 4] + 1 2 8 ^ 2 3 [5 (i - 1) (t - 2) (* - 3 ) (» - 4)

+ 5 (t + 2) (i + 3) (» + 4) (t + 5) + 27 (t - 1) (t - 2) (* + 2) (i + 3)]
• On effecting the reduction I find

Ei1 = - ^ 1 1 C 1 + ^ 0' + 4) + y i ^ 3 (55j2 + 376j + 1044)] .. .(46)

When s = 0 we have only ®f to determine. Here

gv_4 = &_2 = 0, 3g+a = i, qs+4=ih

The term in /3 is £ [i (i - 1) + (i + 1) (i + 2)] = | (j + !)

That in /32 is
^ [t (t - 1) (t - 2) (t - 3) + (* + l)(i + 2) (*+ 3)(* + 4)

+ 8f (»-1) (t +1) (»+ 2)] = J¥ (5j2 + 14j + 12)
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1901] FACTORS OF TRANSFORMATION BETWEEN THE TWO FORMS. 233

Therefore
>j2+14/ + 12) 1
J J ' I (47)

since 2» = — i (i + 1) = —j

Collecting results from (41), (43), (44), (45), (46), and (47),

' [-s2(22 + 22 - 1) + 3 (22 - 22 + 2) + 2T]}

1 - i/S (2 - 1) + ¥iff/3
2 [1922 - 1302 + 80]}

E/ =(-)

hl) + sV/32(5/2 + 14J + 1 2)

• 22 + 1) - (22 - 262 - 42) - 2T]}

+ 3) + -^fi? [2522 + 1862 + 368]}

+- 4) + 7̂ gy82 (55/a + 376j +1044)}

where

PART II.

APPLICATION OF ELLIPSOIDAL HARMONIC ANALYSIS.

| 11. The Potential of an harmonic deformation of an Ellipsoid.

A solid harmonic, or solution of Laplace's equation, is the product of two
P-functions of v and of /u. respectively, and of a cosine or sine function of cf>.
A surface harmonic is a P-function of fi multiplied by a cosine or sine
function of <f>.

We found

(v) = Ps (i,) + 2/3"?s_MPs-2» (V) + 2/6»gs+SMP+» (v)

(v2 — 1)^' / d \i+t

where P* (v) =--̂ .-—.-,— f -j- I (v2 — IV; and a similar formula held for Ps (v).
2 ' . i! Vay/

Hitherto we have supposed P' (/a) to have exactly the same form as P* (v).
But since /A is less than unity this introduces an imaginary factor when t is
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234 THE THREE ORTHOGONAL ARCS AT ANY POINT. [10, § 11

odd, and makes the succession of P's alternately positive and negative when
t is even. As this is practically inconvenient I now define

and then retaining the former meaning for the q coefficients, we give the

following definition—

P GO + 2 (-)»/8»?Mf.P~» (/*) + 2 (-Tf3

with a similar formula for Ps GO-

Thus we need only remark tha t in the functions of /A the qs corresponding
to odd powers of /3 enter with the opposite sign from tha t which holds in the
functions of v, and the whole of our preceding results are t rue with this
definition of P ' (fi).

If i^ defines the ellipsoid to which the surface harmonic applies, we

require the expression for the perpendicular p on the tangent plane at

v0, (*•, <}>, and tha t for an element of area of the surface of the ellipsoid at the

same point.

By the usual formula

k2 _ a? y2 z2

(49)

Let dn, dm, df be the three elements of the orthogonal arcs corresponding
to variations of v, fi, <f> respectively.

Then by the formula at the end of § 1,

dn \ 2 IVQ — fjL i \VQ — — I ^ B /

Y
.(50)

Therefore f̂ -) =i"0 --^iLa ^ H ^ ) (50)
VM^)/ 1 - /3 cos 2 0 v -
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1901] THE POTENTIAL OF A LAYER OF SURFACE DENSITY. 235

and

d _ p d
dn k2' vodvo

(50)

Two functions, written in alternative form,

4«v
are solutions of Laplace's equation, and together form a function V continuous
at the surface of the ellipsoid v = i'o. Reading the upper line we have a
function always finite inside the ellipsoid, and reading the lower line one
always finite outside. Hence V is the potential of a layer of surface density
on the ellipsoid v0, and by Poisson's equation that density is equal to

1 \~dV . , ., . d V .. . . '
- (outside) — -y— (inside)

Let the surface density, which it is our object to find, be

a surface harmonic multiplied by the perpendicular on to the tangent plane
and by a quantity p.

mu d p dThen since -y- = 4r —r-
dn kr vadva

But (v0) f
<•*> -

Differentiating this logarithmically we find

p = x, a constant

Hence surface density pijjJi* (/*) ©/ (</>). p, where p is constant, gives rise to
potential

(51)
The same investigation holds good with S / (</)), or with P, Q, C, S in

place of the corresponding letters above.
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236 EQUATION TO A DEFORMATION OF THE ELLIPSOID. [10, § 12

Imagine that the surface of a homogeneous ellipsoid of density p, defined
by v0, receives a normal displacement Sn, such that

8n = p. e#,'0*) ©/(</.)

Then the equivalent surface density is p. epj^f (fi) (£>f (<£), and we can at
once write down the expressions for the internal and external potentials by
means of (51).

If x0, y0, z0 be the co-ordinates of a point on the surface, it is clear that
the co-ordinates of the corresponding point on the deformed surface are

z = .

Hence the equation to the deformed surface is

a? w2 z 1

or since —-. ^^- + , „ , . — ^ + -ŷ—„ = 1

k1

it may be written (v2 - v0
2) - = 2 e $ / (ft) <&* (<f>)

If we subst i tute for — its value from (49), this may be wri t ten in the form

This is the equation in elliptic co-ordinates to the deformed surface, but
in actual computation the form involving rectangular co-ordinates might
perhaps be more convenient.

| 12. The Potential of a homogeneous solid Ellipsoid.

It is well known that the potential of a solid ellipsoid externally is equal
to that of a "focaloid" shell of the same mass coincident with its external
surface.

If p be the density of the shell denned by v0 and v0 + Si/, we have

fTrfcy [ (v* + 2i>0S// - i±|)* (i/0» + 2v0Sv - 1 ) * (v<? + 2^Si/)*
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1901] THE EXTERNAL POTENTIAL OF A SOLID ELLIPSOID. 237

Therefore , '*&, ( - 1 ^ + - ^ + 1 ) = p

or p'PtSv = *———£?- Y+l (53)

If Bn be the thickness of the shell at the point where p is the perpendicular
on the tangent plane,

Bn = vo8v. —
P

If we multiply both sides of (53) by —, we see that the surface density

of the focaloid shell is

pv 2 (j, 2 _ 1 ) (v 2 _ l+S\ 7,2

F O A wn2 . 1 + 8 /r\2

If therefore we can express — in the form of surface harmonics, it will be

easy to write down the external potential of the ellipsoid by means of the
formula (51).

Before doing this I will, however, take one other step.

It is easy to see that

Q4 ±i_j.l±S-*( * 2 + 5 y , _ 2 - 5 \
6v° "i-/3+i-^~dvI/° 3(i-p))\Vt sa-zS)/1 {bq>)

where for brevity 5 = (1 + 3/32)2.

Now on referring to § 7, (17) and (23), we see that

where P2 (v) = ̂ ~h P2
2 (i») = 3 (i/2 - 1)

If then we put ^ 2 (y) = zv* + 7

. . . ., . 5 - 1 + 3/3 - 5 + 1-/3
it is clear that a = -̂5 , 7 = -̂5

, 3 (5 -1 - /3 ) , - 5 + 1 + 3/3
a = Q ' V = «

and
5-2 r/_ -5-2

a 3(1- /3) ' a' 3(1-/3)

It is obvious then that our expression (54) is equal to
,

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.013
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:07, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.013
https://www.cambridge.org/core


238 POTENTIAL OF A SOLID ELLIPSOID. [10, § 12

Then since -, = , —-^, we have the surface density of the focaloid

given by

3 (1 + fi) PPIW ~ 1) ("o2 - irf) (k\

w h e r e = + +
f j , , (v* - i±|)2 ^ W - I)2 &2iV

But since - ^ t + ^ . , + - ^ - , = 1 (55)

H<+^-0m-+^ry <56)

With the object of writing this function in surface harmonics, and besides
to enable us to express a rotation potential in similar form, we have to reduce
*2, y2, z°- in the required manner.

I now drop the suffix zero, since we are not concerned with any particular
ellipsoid.

Referring again to § 7, (18) and (24), we have

« 2 (ft = 1 - B ~ - cos 2$, <SV (<£) = B~/3
1 + cos 20

T , , , , 2(1-5) u B-1+/3
If then we put e = v — ' , g = --—~

we may write GC2 (0) = e cos2 <j) + %, ©2
2 (</>) = 6' cos2 (j> + £'

Let us assume, if possible,

or

(^2 — frf) cos2 0 = F(afi* + 7) (e cos2 ̂  + £) + C? (a'/x2 + 7') (e cos2 (/> + £') + H

From which it follows that

Fa^+ 6ra'£' = 0, FyZ + Gy %'+ H = 0

Fae + Get'e = I, Fye + Gy e = - ^ |

These equations give
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1901] POTENTIAL OF A SOLID ELLIPSOID. 239

and the condition

Now ?? - L + A ^ 8 7 6' _
«'?'" 1-/3

e _ - 1 - 3/3 + B e' _ - 1 - 3/3 - 5

r i ^ s ' r~ 1+0
Since these values satisfy the condition amongst the coefficients, the assumed
form for x2 is justifiable.

I find then

F = l + B £ - 2 / 3 _ l + 5 £ + 2/3
45 - 3 ( 1 / 3 ) ' 32 5 ' 3 ( 1 - / 3 ) ' 45 - 3 (1-/3)' 3(1

Whence

3^2 1 + 5 5 - 2 / 3

(57)

This is the required expression for «2 in surface harmonics.

Next assume

F ( > - l ) = F l ^ 2 ( / a ) ®2 (<#)) + G^*{fl) ®*(<i>) + H

If we put ©2 (̂ >) = 6! sin2 <f> + &, ©2
2 (<j>) = e/ sin2 </> + f,'

, 2 ( 5 - 1 ) ,. - 5 + 1 + ^
we have e, = - ^ - g — ' , £i = ^

, _ 2 5-1+3/3

and

(fi2 — 1) sin2 <f> = Fx (a/j? + 7) (ej sin2 cf> + ^i) + G1 (a'/x2 + 7') (e/ sin2 <f> + i

Whence Fx, Glt H1 have the same forms as before, and the condition to be
satisfied by the coefficients is

I t will be found that the condition is satisfied, and that

Fl = " 6 5 " ' Gl = T 2 5 ' Hi = ~i
Hence

:*) + ! (58)
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240 POTENTIAL OF A SOLID ELLIPSOID. [10, § 12

It follows from (55) that

3*2 1 + 5 /5 -2 /3 \ e 1 + 5 / 5 + 2/3

(59)
Whence

( 6 0 )

3a;2
This is needed to express the rotation potential |G>2 (y2 + z2). If we add -vj-

to this we have

This expression will be needed hereafter.

Returning now to the formation of the expression for k2/p*, I find

y *(*-i) (*-

On considering the forms of the functions ^jj2 (v), ^ 2
2 (i/), it is found that this

result may be written thus :

- i ± | ) ' 3 ( 1 - / 8 )

25 " " " ^ ( v ) + 2 5
i ) , 3^f^/x)

+25 P2

Therefore, writing ^po (/*) Cf/0 (̂ >) for unity, the surface density of the focaloid
shell, for which v=v0, is

By means of (51), we now at once write down the external potential of
the ellipsoid. It is

~ J
(63)

Mof
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1901] THE INTERNAL POTENTIAL OF AN ELLIPSOID. 241

In this expression Mo denotes the mass of the ellipsoid, and the (SB's are
merely coefficients determined approximately in § 10.

In order to find the potential internally, let

r2 = »2 + if + z*

and, as suggested by the form of (61), let

12B-~1-I3 l . ^ ^ w * 1 ^ ' ^ ' 3(1-/3)
Then r0

2 is a solution of Laplace's equation throughout the interior of the
ellipsoid, and at the surface, where v = v0, it is equal to a? + y1 + z2.

Now consider the function

The whole of it, excepting the term in r2, is a solution of Laplace's equation
for space inside the ellipsoid, and the term in r2 gives V2V = — 4m p. Also
at the surface, where v = v0, this expression agrees with (63). Hence we
have found the potential of the ellipsoid internally.

The potential at an internal point does not lend itself to expression in
elliptic co-ordinates, but it may be given another form which is perhaps more
convenient.

In our present notation the well-known formula is
X V )

Since $0(*) = l, P , 1 ( " ) = ( ^ - 1 i ^ ) * W(") = (v2-lA Pi(") = ,̂ the
integrals may be expressed in terms of the Q-functions, and we have (omitting
the divisors ($ and E for brevity)

v _ 3 M_o f@,(i>,) _tf Qi1 (vd _ f ©i1 _(".) _^_ffi.

In this we may substitute the expressions for *2, y\ z* found above.

It may be worth noting that

Q.Hi') ffi.1^) %{v) = 1
P,1 (,) + ^ ' („) + ^ , (V) y {v, _ 1}i ^2 _ i+_^i

Also
P:1 (v) Q,1 (-') + ^ (i;) ®^ (v) + ̂  (v) ©x (v) + ̂ 0 (i;) ®0 (v) = 0

D. III. 16
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242 PEEL1MINAKY TO INTEGRATION OF A SQUARED HARMONIC. [10, § 13

This last follows from the fact that if a, b, c are the axes of the ellipsoid,

and if M* denotes the function -pon (proportional to our ®0 (i/0)), P̂
Jo &M\J

is a homogeneous function of degree — 1 in a, b, c, and therefore

da db do

§ 13. Preparation for the Integration of the square of a surface
harmonic over the Ellipsoid.

If it is intended to express any function in harmonics, it is necessary to
know the integrals over the surface of the ellipsoid of the squares of surface
harmonics multiplied by the perpendicular on the tangent plane.

The surface harmonic has one of the eight forms

or
or

and the P-functions are expressible in terms of the P's where

I shall in this portion of the investigation frequently write /A = sin 0, and
shall omit the fi or 0 or <f> in the P-, C-, S-functions. Also I may very
generally omit the subscript i, as elsewhere.

If da denotes the element of surface of the ellipsoid, and

so that |7rM is the volume of the ellipsoid, we have, by (50) of § 11,

pda _ M (1-/8)4 (cos2 0 + j4 | - ^YTf)

d0d<j) n — /3 cc

Then
r
p (V

J

da = M (1 - £)* / ^l^llzl l=i (Yff d0d<f>

where the limits of 6 are ^TT to — ^ir, and of <f> are 2TT to 0.

It will be legitimate to develop pda in powers of sec2 0 up to any given
power, provided (V/)2 involves as a factor such a power of cos2 0 that the
whole function to be integrated does not become infinite at the poles where

I shall at present limit the developments to the square of /3.
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1901] PRELIMINARY TO INTEGRATION OF A SQUARED HARMONIC. 243

We know that Ps is of the same form as ^ s , but with the additional
factor

V cos3 e
Suppose then that

n0+/3na + /32n2 = (#>)« or

j

and let 7 = 1 — cos 2<j>

Then we put fl-g^ + ̂  + gV. + flll, +>II
( i ± | i 0 f

Now suppose that K'\ a function independent of 6, denotes one of the
four

(<2>)2 or (&sf or (O)2 or (Ss)3

(1 - @ cos

Then in the cases involving ^-functions and P-functions respectively, we
have in alternative form—

W da = M (1 -

If it be supposed that the development in powers of sec2 0 is justifiable

= n 0 cos g + /3 [ n ° c
(

o
7

s ~ x ) + n t cos 0 j

cos
cos

And î 2 has a similar form, save that 7 + 1 replaces 7 — 1, and 7 — \ replaces

f-T-
It is clear that unless II0 is divisible by cos3 0 and IIj by cos 6, \Fid0 and

\F2d0 will have infinite elements at the poles, and the development is not

legitimate.

COSS 0 (P^~s

Since Ps =—.- -• -j- (fi3 — 1)':, it follows that the power of cos 0 by which

Ps is divisible increases as s increases.
Let us consider the case of s = 2.

16—2
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244 INTEGRATION OF A SQUARED HAKMONIC; GENERAL CASE. [10, § 14

Then n o + ^U, + /32II2 = [P* - £ ? 0 P - /3g4P
4 + /32g6P<<]2

+ /32 [2?6P2P6 + (^P)2 + (f/4P
4)2 + 2q<t

(or the same with accented q's for the other case).

From this it is clear that Il0 is divisible by cos4 6 and IIj by cos2 6, and
the method of development is legitimate when s = 2, but it is not so when
s = 0 and s= 1.

The investigation then separates into the general case, and the cases
s = 0 , s = l .

§ 14. Integration in the general case.

We have

$ • = P" - /32s_2P*-2 - /3&+2P
s+2 4 /32gs_4P

s"* + /32

and

- 2/3 (gs_2PPs-2 + ?S+2P
SP*+2) + 2/3* ( ? M P P

r / cos2 9 \^~|2
Also Ps [i+p . I has the same form with accented q'a, so that it

1_ \i—^ / J

will be merely necessary to accent the ^'s to obtain the second case.

We have then

n 0 = (P8)2.. n , = - 2 (qs-2 Ps Ps"2 + qs+2 Ps Ps+2)

n 2 = 2 ( 5 S _ 4 P S P*- ' + ?S

Then since cos 6dd = dp,

- 2/3 j ^ g g +

psp«+2\
>+3r r ^ ^

+ (?S+2P+2)2 + 2gs_2?s+2p-2P'+2] dp (66)
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1901] INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. 245

And jF.2d9 has the same form, but with accented q's, and with 7 + 1 replacing

7 — 1, and 7 — £ replacing f — 7.

It is now necessary to evaluate the several definite integrals involved in
this expression.

It is well known that

It is easy to see that it is possible to express Ps+2* in the form

P {+* = A P . S + B p s ._2 + Cps._t + _ _ _

where A, B, C ... do not involve /J..

The value of A may be found by considering only the highest power of
on each side of the identity.

Now p.«+2* = v- f 4 - - - Mr)

= /_ $*+i 2*.!.

Therefore A = (
" v ' » _ s _ 2 & !

Then, since the integral of the product of two P's of different orders
vanishes, we have

i — ? 1 f+1

p p +
We will next consider da, where k is not zero.

J 1 — fj?

The differential equation gives

Multiply the first of these by Ps and the second by P*+2fc and subtract, and
we have
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246 INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. [10, § 14

Therefore *
r+i p«p*+2i T dps jp«+afc"l

4>k(s + k) ~— du = (1 - M2) Ps+2* ~ - Ps ^ . -- , between limits + 1
J _i 1 — fi~ [_ a/x a//, J

= 0

Again since by (11)

it follows that I -,-- — -- dp — 0, unless k = 0 or 1
J — i ( 1 — A1')

/p«\2 (^PS)2 psps+2
It remains to find the integrals of ^——n, —^——^-, and —: jr2.

We have seen in (11) (transformed to accord with our present definition
of Ps) that

J- 1 P" + iZL.
l-fj?~4s(s-- n x " ' '2 ' " 1 ' "

Hence

J(T= W" =

!/£4 s ( s - l ) M _ . . 2

PsPs+2
 7 i r(Ps+2)2

 7 , ri(» + i ) . i r P 8 P s + 2
7

The first of these involves integrals already determined; on introducing
1 % I s 1them on the right and reducing we find the result to be - . -.-•-
s i - s\

The first and last terms of the second integral vanish, and the integral is

clearly I \ ---- . 4-1 - . ,.
• r 2 ( _ s 2 - l J s t - s !

The second and third terms of the third integral vanish, and the whole is
1 i+s+21

I owe this method of finding these last two integrals to Mr Hobson.
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1901] INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. 247

Collecting results we have

+i
= 0

6 O .

..(67)

r+i p.sps+2 i

L ( T 3 ^ ) ^ = 4s7s+-T
i + s+ 21

(s + l ) ( s + 2 ) i - s - 2 !

p»p»-2 ^

1 /is)s ^ ~ 4s (s —!

Then by means of (66) and (67)

„ „ / 2 i + s - 2 ! 2
+ 2/3 ^ s _ 2 2 — j - ^ - ^ + gs+2 27

s!

2/32

27Ti

Therefore

2 i + sl
(i + s)(i + s — 1)

+ s - 2 !

(i - s) (i - s - 1)

(i + s) (i + s - 1) (i + s - 2) (i + s - 3)

gs+4 (i - s ) ( i - s - 1 ) ( i - s - 2) (i - s - 3)

(i
(i - s + 1) (i - s + 2) (i + s) (i + s - 1)

+ /S2(qs+2f (i + s + 1)(i + s + 2)(i -s)(i-s- 1)

i — s ! s2 —
...(68)
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248 INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. [10, § 14

Also \F.2dd has a similar form with accented q's, 7 + 1 for 7 — 1, and 7 — \

for f - 7 .

When we substitute for 7 its value 1 — cos 20, and write as before

the last term in lF1dd becomes

+ 1)-cos 20 [1-4/3 (2-1)]} (68)
S I — Sl

Also the last term in jF2dd becomes

+ /3 J V+ I] I2 CX + -«$ & + 9^ ~ cos 2c^ t1 + i^ ( 2 + 3)D • • -(68)
But it will appear later that we only need the parts of these terms which

involve cos 20 developed as far as the first power of B; hence in both cases
we may write the latter term inside { } simply as — cos 20.

Our general formulae for the q coefficients apply for all values of s down to
s = 3, inclusive, although the result for s = 3 needs proper interpretation.
Hence the present result applies down to s = 3, inclusive.

I have just re-defined 2, and I remind the reader that-

T = s 2 - 4

Then if in (68) we introduce for the <?'s their values, we find that the
coefficient of the term in B is

The coefficient of the term in /32 is

\{i - s + 1) (i - s + 2) (i - s + 3) (i - s + 4)

(i + s) (i + s- 1) (i-s + 1) (i-s + 2)

(i+_s + IK* + s + 2) (i - s) (i - s - 1)

_ o (i-s+1)(i~s + 2)_(*
(s2 - i y
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1901] INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. 249

If this be reduced by a process similar to that employed in § 10, we find

s i —

We know that Ps is derivable from ffi by multiplication by 1/Cf, and we
have found in (33), § 9,

U 8S + 5 + s
2 £ 2 - T]

Hence multiplying (69) by p we have

+ s2 (3S2 - 2t + 1) - 2T]} + $ 1 \ + *.-; [\B (X + 1) -cos 20} ...(70)

I have also obtained this result by direct development. It may be thought
surprising that the last term is now the same in both formulas, notwith-
standing the difference in the earlier stages, but if the reader will go through
the analysis he will see how this has been brought about. The formulae (69)
and (70) also hold true when s = 3 (as I have verified), notwithstanding the
fact that P3 is not to be derived from ^)s by a factor.

The next step is the integration with respect to <f>.
We have

fcos „ [ fcos , . (cos
{sin ** + * [P^ {sin (° 2)* + P ^ j s in (*

+ P [P~ {I" (* ~ 4) * + *»* {sTn
Therefore

] / a «i = 4 i 2 c o s 2 s 0 + Z3 [(Ps-z + j9s+2) cos 2 0 ± JOS_2 cos 2 (s - 1 ) 0

+ | ) s + 2 cos 2 (s + 1) 0] + /32 [ i (_ps_2)
2 + 1 (pg+2)2 + (ps_4 + ps+4

iPs+i) COS 4 0 + Pe-tPs+v COS 2s0 + (ps_4 + J (p«_2)
2) COS 2 (s - 2) 0

(C-8)2 or (S-s)2

Also , ' -- * r have the same forms with accented p's.1 - /8 cos 20 ^

Accordingly, with unaccented p's, we have to multiply this expression by

(1 — /3cos 20) ~ s, and with accented p's we multiply by (1 —/Scos 20)^, and
we shall then have the functions denoted above by K2.

The function K2 has to be multiplied by a function of the form A+B/3cos20,
and integrated from 0 = 27T to 0. It follows that the only terms in K2 which
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250 INTEGRATION OF A SQUARED HARMONIC; GENERAL CASE. [10, § 14

will not vanish are those independent of 0 and those in cos 20; moreover,
the latter terms are only required as far as the first power of /3.

Now (1 - £ cos 20) ~ i = 1 + |/3 cos 20 + &$* (1 + cos 40)

(1- /3 cos 20)* = 1 - 1 / 3 cos 20 - TV/32 (1 + cos 40)

Then omitting terms which will vanish on integration

,1 a ,i* {
(1 — /3 cos 20)5

+ /3 (pg_2 + #,+3 + {) cos 20
(C/ or S ^ = {1 + + (^,s+2)2 _ ^ _ ^ ^ ^ ^ _ ]}

-2 — | ) cos 20

However, the latter formula is not needed except for verification, because

it will be derivable from the former by multiplication by ,y>-s\2 •

Now if we substitute for the p's their values as given in (27), § 8, we find

(©/ or £/)2 , „

(1-/3 cos 20)2

And multiplying by or 1 - A/32 (2 + 3), or developing directly

(Q.s n r Q-s^2

/".—a TT^i == 2 I1 + -hP- [S2 - 6 + s- (22 - 22 + 1)] + i/3 (2 + 1) cos 20
(l-/3cos20)-

These represent the K2 of our integrals.

Then
f p fa \f^ AT = M (1 - /3)i f fe - ( « ^ *>L
J ^ V ^ (<*// JJ (1-/3 cos 20)*

2irM(l- /8)* i + s!
{ 1 ^ (

+ 3V/33 [322 - 6S + 6 - s2 (22 + 22 - 1) + 2T]}
x (1 + s\P [S2 + 4S + 6 + s2 (22 - 22 +1)]}

+ i7rM (1 -fi} [p I j±±J(2 + 1) - ̂  \ t^\ (2 + 1)]

+ TV/32 [222 - 2 + 6 - s2 (22 - 1) + T]}

]}

(71)
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1901] INTEGRATION OF A SQUARED HARMONIC WHEN S = 2. 251

The following results may be obtained either by direct development, or

by multiplication by either or both the factors Tp-Jv a n d 7rw\2 * ^ e former

converts ĵj into P, the latter © or S into C or S.

+ Ty32 [222 + 2 -- 6 - s2 (22 - 1) + T]}

SP{PiS{ff)d<T= {1+4)8(2 + 2)

4/8(2+2)
2 [92 + 4 + s°- (222 - 22 + 1) - T]}

(71)

§ 15. Integration in the case of 8 = 2.

Although the development in powers of sec2 6 is still legitimate in this
case, yet the formulae found in the last section fail because T contains s2 - 4
in the denominator. Moreover since ^ a is not convertible into P2 by a factor
each case must be considered separately.

We now have </g_4 = 0, gf's_4 = 0, and therefore from (68)

qtf (i + 3) (i + 4) (i - 2) (t - 3) + 2mi |

\F,2d6 is equal to the same with accented g's, and the last term equal to

We now have

q0 = — £ {i, 1} {i, 2}, q4 = ^L, g6 = y J ^ , associated with a cosine function.

q0' — 0 > ?/ = t t ' ?«' = ?T5' associated with a sine function.

It is well to note that these values are given by the general formula,
because this consideration shows that much of the previous reductions is still
applicable.
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252 INTEGRATION OF A SQUARED HARMONIC WHEN S = 2. [10, § 1 5

Effecting the reductions I find

JF.dd = ^ \ +1 ; {1 -1 /3(2-1) + i ^ [^S» - Af-2 + 20

+ 2 (2* + 1) (32 - 1)]} + i/3 ̂ | l {i/S (2 + 1) - cos 20)

{12TV\ f = Y \ 8 0 ) 1

+ | /3^f- | 11/3(52 + 1)-cos 20}

This integral will be associated with CD;2 and C;2, and in the present case
Jt(t + l).
In the same way

{1

(V + 3) + ^ L ^ (2522 + 1862 + 368)}

+ 1/3 -.—=-' {- |/3 (2 - 3) - cos 20}

This will be associated with &/ and S/.

Now turning to the cosine and sine functions, we find that they must
be treated apart, but the integral involving Cj2 may be derived from that

[ 1 I2

~- (cos) ; and similarly Si2 from &f by the factor
W J

. These factors were evaluated in (36), § 9.
We now have ps._t — 0, p's_4 = 0 ; also for the sine function ps_2 = p0 = 0.

Then
(®i2)2 = i + i cos 40 + /3 [(2^0 + p4) cos 20 + p, cos 60]

+ /32 [(PoT + i (prf + (P« + Pop*) cos 40 + poPi cos 40
+ (Pe + \ (PiY) COS 80]

(Si2)2 = |- - £ cos 40 + /3 [|>4 cos 20 - p4 cos 60]

+ £2 [J (P4)2 + p6 cos 40 - (p0 + I (p4)
2) cos 80]

Then as far as material

j {1 +

( 1 - / 3 cos 20)^
+ /3(p4 + 2p0 + | ) cos 20

&(1 — /3 cos 20)-
^ = I {i + £» [(;,4)2 + ip4 + ^]} + ^ (p4 + J) cos 20
-
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1901] INTEGRATION OF A SQUARED HARMONIC WHEN S = 2. 253

Now p0 = -J [i, 2j, p4 = — ^ {t, 3}, whence

C (IT .2̂ 2

i = i {1 + «rV32(19S2 - 82 + 22)} + tf (52 + 1) cos 2</>
(1 — /3 cos 2c£)2

(W x = i | i + ^ ( S . _ 8 S + 18)} - i/3 (2 - 3) cos 2<£
(1 - / 5 cos 2</>)2

We now multiply these by iF-^dO and lF2d6 respectively, and the last

terms disappear as before. I remark that the disappearance of the terms
which do not involve the factor l/(2i + l) affords an excellent test of the
correctness of the laborious reductions throughout all this part of the work.

Then we have

(1922 - 1302 + 80)] [1 + J¥/3
2 (19S2 - 82 + 22)]

(72)

r i i2

If we multiply this by =r-2(cos) or 1 - ^g/32 (52 + 7), we obtain the
result when Cj2 replaces <&i; the only change is that the last term inside
} } now becomes + 2ig-/32(9522 - 1782 - 40).

Again

p (P/ 5,2)2 da = ̂  *.±|-j(1 - /3)i [1 + i/3(2 + 3)

+ ^ / 3 2 (2522 + 1862 + 368)] [1 + ^ (22 - 82 +18)]

j

2 ) + ^ ^ ( 2 9 S 2 + 9 0 S + 2 1 6 ) ]

(72)

If we multiply this by =̂ 1 (sin) or 1 + yV^2 (^ + *>), we obtain the result

when Sj2 replaces S»2; the only change is that the last term inside { } now
becomes + ^f f /3

2 (2922 + 1062 + 136).

This terminates the integrals, which can be completely determined by this
method of developing in powers of sec2 6.
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254 PORTION OF THE INTEGRATION WHEN 8 = 1. [10, § 16

§ 16. Portion of the Integration in the case of s = l.

The preceding method may be used for finding the four integrals

There will then remain four integrals of the type I p (^i1)2 (Pi1)2 da to

evaluate.

The first pair of our integrals are clearly to be treated by putting II0 = 0,

qs-2 = 2-i = 0, gs_4 = q_3 = 0, and then determining I F1 dO. The condition for

the second pair only differs in the accentuation of the q's which vanish, and

in the use of I F2d6.

The vanishing of II0 makes

F, = fiUi cos B + p ( P ' f r - 1 ) + H2cos 0
COS v

F2 = ysn, cos e + p (U*(v + V+n2 cos e
\ COS v

In the first of these

n , = - 2g3P
1 P3, n2 = 2q6P

1 p + (qsy

and in the second the form is the same with accented ^'s.

Also since n da = 0, we have ^ = 0.
J1 — /i2 J cos 6

Hence

JF.dd = - 2/3?3 j W d/i + 2/32 J [ ? 6 FF + \ (q3f (P)2] d/t

^ f-1![2/8?3{i-1}(i- 2 ) + 2 / 3 1 * ( i - 1 } { i - 2){i ~S)(i~ 4 )

and I F2d6 is the same with accented q's.

It is only necessary to pursue the cases i p (&i
1)'1 Fxda and jp(<E>^yFada,

since the other pair of integrals may be determined by means of multiplication
by the appropriate factors, determined in § 9.
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1901] PORTION OF THE INTEGRATION WHEN S = 1. 255

Now for ^P/ Sj1, associated with Flt

1* = Iff t 1

and for Pi1 <BV, associated with F2,

?.'• = T3B [1 + T

Therefore

JF.de = 2 J ~ J ± l | {4/3(t - l)(i - 2) + Tjg^tiCt - 1)(* - 2)(» - 3)(i -4)

+ J(* + 2)(t + 3)(t-l)(i-2)-(i-l)(t-2)t(t + l)]}

SFid0 = 27TI CTi{f/3(*"1)(l'" 2 ) + T * * 8 W ~ 1 ) ( i ~ 2 ) ( i ~ 3)<* -4>

In the present case we cannot use 2 as an abridgement, since it is infinite;
I therefore now write

Effecting the reductions we have

,d0= 2 7 ^ Y •-^1U/3L?- 2(2» + 1)+ 4] + Tfc/S't- b ' 2 + ¥ i + 30-16(2i +1)]}

+ Tis/32 [ W + i I s i + m - 1 6 (2 i + 1) 0" + 6)]}
The former of these is associated with <£, the latter with GC.

In the cosine and sine functions we have

^«_2 = p_! = 0, p8_4 = p-3 = 0,
and

(S»J)> = ^ - J cos 20 + /3 (^3 cos 2<f> -p3 cos 40)

+ £2 [i (p3)
2 + Ps cos 40 - (p, + i (i)3)

2) cos 60]

(©i1)2 = i + i cos 20 + /3 (p3 cos 20 + p3 cos 40)

+ -S2 [i (j»3)
2 + i36 cos 40 + (p, + | (p3f) cos 60]

As far as material, we then have

(1-/3 cos 20)*
~ 7 7 i = i {1 - i/8 + /S2 UP*)* + fa +

= i (1 - i/8 + p [(p3)
2 + 4p. + M {1 - (1 - 2/3̂ 3 - i^) cos 20}

cos 20^ ^ — J L = 4 {1
(1- /8 cos 20)*

cos 20}
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256 PORTION OF THE INTEGRATION WHEN S = 1. [10, § 16

Now both for sines and cosines, to the order necessary for our present
purpose, p3 = — jtf {i, 2). Therefore, introducing j for i (i + 1),

7 o(1- /3 cos

Observe that (Fjdfl and IF2d6 do not involve cos20, and are of the first

order in /3. Hence, as far as material for the present portion of the work,

(1- /3 cos 20)^ (1 - yS cos

Also, to the first order, from (37)

f 1 I 2 F 1 1'
:pr- (sin) = 1 + A/3, ^c- (cos) = 1 —

Therefore as far as necessary

(1- /3 cos 20)*

Hence

+ T*8/32 [- ii2 + W + 30-16 (2t +1)]}

{ ^ ( i + 4 ) - ™F (j*

For Si1 we have only to replace the factor 1 — \fi by 1 + £/3, and find

jp (s»')2 [(fflf ~ (Pi1)2]d<r = 9 ^ y ^ y i U/9 0' + 4) - T^s/3
2 (j2 - 32j - 84)}

+ T T M ^ | - | ( - | / 3 - - 1 - / 3 2 ) (74)

Again, omitting intermediate steps,

cos2

^ 2 (55/ + 304j + 756)}

CTJ UP + B/32 (2j + 7)] (74)
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1901] PORTION OF THE INTEGRATION WHEN S = 0. 257

CTl ^(-? + 4) +

(74)

§ 17. Portion of the Integration in the case of s = 0.

We are to find p iK l' [($i)2 - (P;)'2] d<r, leaving two integrals of the

type I p (QLif (Pi)2 da to be determined subsequently.

It is only necessary to consider ©;, since the other case is deterrainable

from it by multiplication to T^TT ,̂ as found in (38) of § 9.

Following the procedure of the case where s = 1, we have

F}dd = - 2/3q2jPP2C^ + 2pj[qtP?* + 1 (q2f (PJ] dp

^ i (»' - 1) + 2/9»?4i (i - 1) (t - 2) (t - 3)

Then since g2 = \, g4 = T ^ ,

^ 1 - (2t + 1)] + A/82 [5j2 + 14j + 12 - 4 (2i + 1) (j + 3)]]

Now (®02 = 1 + 2/3p2 cos 20 + /32 [(2p4 + i
and as far as material

j £ [Jp2 i (p) T
3«] + /8 (4 + 2iJ2) cos 20

(1- /3 cos 20)2

= {1 + A/32 (j2 - 4j + 6)} {1 -1/3 (j - 1) cos 20).. .(75)

since p2 = — \i (i + 1) = — ij.
At present we only require this to the first power of /3, and since I F^fl

does not contain cos 20, the expression (75) as far as at present needed is
simply unity.

Again, by (38) of §9,

therefore by multiplication

( ] , f - 6)} }1 - W (i - 1) cos 20} (76)—- 1 = {1
(1-/8 cos 20)*

D. m. 17
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258 PREPARATION FOR INTEGRATION WHEN S = 1 AND 0. [10, § 18

This is also unity to the order at present needed.
Hence

P {[®$ [Q&r - (Pi)2] do- = ̂  M (1 - £)* {̂ 3 [j + 1 - (2* + 1)]

+A/92 [5j2 +14; + 12-4 (2t + l)(j + 3)]}

= ^ li/8 (j + 1) + ̂  (5? - 2j - 4)}
2( j - l )} (77)

§ 18. Preparation for the Integrations when s = 1 anc£ 0.

We have now to evaluate the three integrals

and from these to determine three others when S, C replace S, (£.
We have

( ( | ) J | (i _ ^ cos

n2 0) da

It is the second factor which alone involves dp, and as I shall now first
integrate with respect to <f>, the first factor may be dropped for the moment,
and the second factor multiplied by the squares of the cosine or sine
functions. Since the integration is from (p = 2TT to 0, those terms which
vanish on integration may be dropped.

For brevity write j = i (i + 1)

Then we have seen in (73) and (75) that

—
( 1 - / 8 cos 2<f>)2

_ 4 ) ] c o s

yy*>.— = | ( i + 1 ^ + pi) {i + [] _ ip ( j_4) ] C 0 8
(1-/3 cos 20)*

//'IT* \o

;' — 1) cos 20}
(1- /3 cos 20)2
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1901] PREPARATION FOR INTEGRATION WHEN S = 1 AND 0.

Therefore

- y3 cos

259

+ 20)1

(78)
Now pick out the parts of pda and of these integrals (78) which are

independent of 0, and write

= TTM {1 - {0 + ̂ p (j» - 12; + 388)}

)

'2 - 12j + 68)}

H =

= 2TTM {1 - f/3 + aV/32 (;a - 4g + 34)}
Also write / = | (1 + ^/Sj + f/3)

flf=i (1+4/3?+ 4)8)

•(79)

.(80)

' 2 _ 1 - / 3

* - 1 + /3
,so that «'2

Lastly, in accordance with the usual notation for elliptic integrals, write

A2 = 1 -
1 + /8'

.(80)

Then we have

M f= G f (cos2 6» + /3<7). A . (P / ) 2

• ' - 4 -

N = H

.(81)

The next step is to express the squares of the P's in a series of powers of
cos2 6.

17—2
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260 PREPARATION FOR INTEGRATION WHEN S = 1 AND 0. [10, § 18

\l+s
When P<» (/i) = O2 -1)*, ^ i s known that

P{ | > / + (1-/*•)*(! -/2)icos</.]=Pi(/t.)Pi(/)+2T * ~4!,P<*0*) P*1 0OcosS4
J fr T O J

By putting /i = /i 'we see that 2 ——' ( P / (/A))2 is the coefficient of cos s</
2- ~r S I

in the expansion of Pj [1 — (1 - yu,2) 2 sin2 <̂̂ >]. By Taylor's theorem this last
is equal to

r f
Now

- ; '• Fl + terms involving powers of a2 — 1]
2rr ! i — r!

: ST", ~,. when /* = 1

Also

r*
2r!

2 M \ 2 r - t f U !

On putting r — t = s, we see that the coefficient of cos s<f> in sin2r \<$> is

(-Y 2r!

Hence we have*

% -\- s I

Now suppose

M2 — 9 "* /_V+ S 2r!

Then clearly
2r! i + r I i + ll

.(82)

/2»-2 v / 2!rr-l!(»-!)2r + i r i - r ! * i - l !

_ ,_y 2r! i + r !
a ^ - ( . - ) 22 r ( r!)4 i -r!

* Mr Hobson kindly gave me this proof when I had shown him the series which I believed to
hold true.
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1901] EVALUATION OF CERTAIN INTEGRALS. 261

Therefore

r=l
P = 2 73,_2 / (cosw 0 + fig cos2*-2 0) A

N »•=• p " " cos2»-+2 0 + ph cos2t- 6»

t± r^0 J
dd

.(83)

The evaluation of these integrals depends on two integrals only, namely,
/"cos2" 0 f
I --£— a0 and /cos2" 0. Add, and these will be considered in the next section.

§ 19. Evaluation of the Integrals I—-̂ — d0 and lcosm0Ad0.

I will denote these integrals D and E respectively, and I propose to find
their values in series proceeding by powers of K'2.

The usual notation is adopted where II (%) is such a function that it is
equal to xll (x — 1); accordingly when # is a positive integer IT (x) — x!.

Since «2 is less than unity

A o r\

and since cos2" 0 sin* 0d0 = TT
w + r!

or, with the usual notation for hypergeometric series,

This series is of no service, since it proceeds by powers of «2, which in our
case is nearly unity. It is required then to transform the series into one
proceeding by powers of K'2.

It is known that, if /c2 + K'2 = 1,

* I have to thank Mr Hobson for giving me this formula, and for showing me the procedure
whereby it can be made effective.
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262 EVALUATION OF CERTAIN INTEGRALS. [10, § 19

If we apply this theorem with a—b = %, c = n+l, the first F becomes
F(^, \, 1 — n, K'1), whose nth and all subsequent terms involve zero factors in
the denominators. Also the coefficient of the second F involves II (— n — 1),
which has an infinite factor. Hence the formula leads to an indeterminate
result. Let us therefore put c = n+l + e,- and proceed to the limit when
6 = 0.

We have then

= L m u t - * g s ^ { [ u - ( - - l + 4 ) ] 2 ->F(i, i , 1 - n - e,

+ £) F {n + 1 + e> n + 1 + e, n

Now n (e) = i + en' (0), n (- i + «o = n (- *) (i + e ^ [ l |

Therefore, when e is very small,

= 1 + e (IT (0) + 1 1 - 1

1 * ^

Hence for the coefficient of the first series we have
II (n - 1 + e) II (n + e)

n(«-i)n(B)(1

But n ( - i ) = 7ri, n'(0)

J
Therefore

2«! n (ra - 1 + e) II (w + e)

Proved by differentiating the known formula II {x- 1) II (z - i ) = II (2x- 1). ( - ~ , and

putting £ = i.
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1901] EVALUATION OF CERTAIN INTEGRALS. 263

This is true from n = <x> to 1, but in the case of n = 0 we have

so that in that case TT .—r . = - + 2 log 4
[11 (—2 + < 0J 6

Now consider the coefficient of the second series.

We have Km+* = ic'm(1 + 2e logc tc')

and since II (— x) II (x - 1) = 7T

Therefore the coefficient of the second series is

and
2'-"

D

+ | + e, n + | + e, n + 1 + e, «'2)

The case of n = 0 is an exception, for the coefficient of the first F has the

part inside [ ] replaced by - (1 + 2e log 4).

It remains to consider these two F series.

f 22- (1 - n'- e) (2 - n - e) ... (r - n - e). r !

"v1 / y [ 1 . 3 . . . ( 2 r - l ) P ^
7 ^ ' 2* (n -1 + e) (n - 2 + e)... (n - r + e) r!

When r < n
1

When r > n, put r = n + s, and

1
(n- 1 +e)(n- 2 + e) ... (1 + e) e (1 - e) ... (s - e)

_JL_ i fl — e 2 - ei~ -1
~ w — 1! s !' e [_ i < I ^ 1 m J
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264 EVALUATION OF CERTAIN INTEGRALS. [10, § 19

Also when r = n + s

2ir.r\ 2in(n\y 23»(ra + lj(ra + 2) ... (w + s )

Thus

«2 I
1 (/

It follows that we may write the first term of D as follows:—

x- l - e S j + -
6 \ 1 « W

22" n ! n - 1 ! ^ x ( - ) r [1 . 3 . . . (2r - I ) ] 3 ,.a.

" 2w! '""" ^ 22r(n-l)...(n-r).rlK '

,(

X 2 , - •

The first of these terms becomes infinite when e = 0.

Turning to the second F we have

F(n + i+e , n + ̂  + e, n + l + e, «'2)

3 + 2e) ...
22S (n + 1 + e) (n + 2 + e) ... (n + s + e). s !

_ - [ (2 W + l ) (2n + 3)...(2» + 2 a - l ) ]» , -±- x ^ , ,ffi
o 2

Thus the second term of D is

J^l ) 2 V F(n + I n + ̂  n + 1,

U s -1 _ 2 j+21og* ' K'24

The first term of this becomes infinite when e = 0, but it is equal and
opposite to the infinite term in the first part of D, and they annihilate one
another.
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1901] EVALUATION OF CERTAIN INTEGRALS. 265

Hence

= 2» n ! n - 1! •£ (-)' [1 -3^(2r - l)f ,2r

2n! o 22t-(ti-l)...(w-r)r!

V ; 22»(w!)2 V

On examining the case of «, = 0 we find that this formula also embraces
o

it, provided we interpret 2 as meaning zero.

The coefficient in the last term admits of some simplification, for
»+.•>• 1 s i n+s 1 f n+s 1 t = n 1

2 i + 2 i _ 4 2 _ J _ = - 2 2 + 2 —=

We thus conclude that D or

^ cos2"^ 7/,

2 » n ! n - l ! [ " I2 ,_ P . 3s

2«T ~ 2T(n^T)T! * 24 ( n , - l ) ( r a - 2 ) 2 !" "' W m s

+ <-)» 2 n ^ j j . ' - [ (s log ̂  - S i -

The second integral E may be found as follows:—

E» = fcos2" 6 M6 = [cos2'* 6> |>'2 + (1 - «'3) COS2 6>] ^

= «'2D) l+(l-«'2)Dn + 1 (85)
From this I find E or

0cos2

-in
« ! w - l ! y 1 ^ ^ j ( 2 r ^ l ) ( 2 r H L l ) _ ,2

2n + l! 2m + l! o 22M>-1)(«- 2) ..."(w-r)."^ + 1! *
(-)" 2n! >mg (2w + 1) (2w + 3)2... (2w + 2s - 3)2 (2w + 2s - 1 )

r 4 «+»i i -n »+s-i i 2 1
x 2 log -,+ r + S ; - 4 2 b 7 ^ T - b-Ti—, «'|_ ° « i t i * i 2i — 1 2ft + 2s — 1J
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266 USE OF THE PRECEDING INTEGRALS. [10, § 20

M - l

This is applicable also to the case of n — 0, provided that £ is interpreted
o

as zero. In the particular case in hand I find, however, that it is shorter not
to use this general formula, but to carry out the transformation (85) in the
particular cases where the result is needed.

§ 20. Reduction of preceding integrals; disappearance of
logarithmic terms.

In the application of the integrals of the last section, we are to put
-i a

K,'2 = 1 — , and only to develop as far as ffK

Then to the proposed order «'2 = 2/3 (1 - /3), *'* = 4/32.

Also 2 log 4 = log ^ + log (1 + ff) = log | + /3 - \ff-

It will now facilitate future developments to adopt an abridged notation.
I write then

. . . 2m n ! n - 1!

^(B)=a — a n —
and observe t ha t / ( n+ 1) = ^ J - j f(n), and / ( l ) = 2,/(2) = | .

Since K'2 is of the first order in /3, only the first series in the I) integral
(84) enters when n is greater than 2. In that case

/3 - /32 9/32

This result may be obtained very shortly without reference to the general
formula; for when n is greater than 2

J _ (cos2 0 + 2/8 + 2/32)*

cos2 ^ 2 cos4

The integral of an odd power of cos 6 is easily determined, and it will be
found that the result (86) is obtained. It is, however, clear that if n is not
greater than 2 the development in powers of sec2 0 is not legitimate.
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1901] USE OF THE PRECEDING INTEGRALS. 267

When n is not greater than 2 the formula (84) of the last section is
necessary, and we find

~d6 = |/8« log f +/(2) [1 - i/8 - UP]

We have now to find the second integral E, and this may be done more
easily than by reference to the general formula of the last section.

We have

fcosm0r) J dO

,sm0

It will be observed that even when n is 2 the general formula (86) gives
the D integral as far as the first power of /3. Hence in finding E we may
use that general formula except when n — 0, 1.

Then since/(n.) = —» / ( » + 1), when n is greater than 1,

E =/(» + 1) [(1 - 2/3 + 2/30 (l - £
8n(n-l)

But when n= 1,

E = (1 - 2/3 + 2/32) • W l o g | - 2^ (1 - /3). (3 (1 + f/3) l o g |

+ / (2) [(1 - 2/3 + 2/8*) (1 - i/8 - f^2) + 3/8 (1 - /8) (1+1/8)]

= - i ) 8 i l o g | + / ( 2 ) [ l + 1/8 + ^/8"] (89)

And when n = 0,

E = - (1 - 2/3 + 2/32) /3 (1 + f/3) log | + 2/3 (1 -fi) (1 + i/8) l o g |

+/(1) [(1 - 2/3 + 2^) (1 + 113 + If/30 - 2/8 (1 - 0) . t\/3
2]

| (90)

I now wish to show that, in the use to which these integrals are to be
put, the logarithmic terms disappear.
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268 DISAPPEARANCE OF LOGARITHMIC TERMS. [10, § 20

The following is a table of these integrals collected from (87), (89), (90),
in as far only as they involve logarithms:—

A

cos4*?

A/8") log | ,

8

- i £ ) l o g |

Then the formulae (83) for L, M, N, in so far only as is at present
material, are

^ = J | j ! (cos4 6 + /3/cos2 6) + g /3/W cW

M r
Q = J [Y« A (COS2 6» + /3g) + y2 A/3(/ cos2 ff] d6

H = f IH (-cos2 0 + Ph) + ̂  (cos4 ̂  + ̂  cos2 6/) + f ^ cos" ^ 1 d e

On using the integrals and only retaining squares of ft, we find

I = {/3a0 [- (1 + |/3) + h (1 + i/3)] + /32a2 (f - A)} log |

But by definition of/ and g in (80) and of the a's in (82), to the order
zero of small quantities,

Thus the logarithmic terms entirely disappear, and henceforth may be
dropped.

Thus, as far as material, we have the following table of integrals:—

[cos2 6»A d(9 =

8

(91)
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1901] INTEGRALS OF SQUARED HARMONICS WHEN S = 1 AND 0. 269

Before using these for the determination of L, M, N, it is well to obtain
one other result.

We have seen in (82) that

2r 6

Therefore

f+1 i + s I i 2r I

2 i + s!
But this integral is equal to =-.—= '; therefore

2r ' 2
^r-s\ 2i +

Putting s = 1 and 0, and comparing with the values of a2,., y ^ , in (82),
we have

§ 21. Integrals of the squares of harmonics when s = 1 and s = 0.

In (83) we have

4 f ^ (cos-+2 (9 + /3/cos- 0) d6

Therefore, noting that / ( r ) = _ /(»* + 1), and using the integrals (91),

2r + l

+ 7o/(2) [1 - */S - fi/32 + 1/8(1+ f/3)/ ]

Substituting for / (which the reader must not confuse with the functional/
i

in use here) its value (80), the term of order zero is 2 72r_2/(r+ 1). By (92)
. , . . , . 2 t + 1!
this is equal to ^ -y. -.—— .

The term of the first order in j3 is

2r 4r
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270 INTEGRALS OF SQUARED HARMONICS WHEN ,9 = 1 AND 0. [10, § 21

which may be reduced to the form

^Ar +1) + i/3S72r_2/(r)
1

2/3 i + 1! *
and is equal to ^.^ ^_ ^ + £/3272,._2/(r)

The term of the second order in B is

)J+ t)

This may be reduced to the form

j + 12) ky2r-
1

of which the first term is |/32. -^~.—=- -—=-!.

Therefore

p = (1 + 8 +1/32) 2
 2 ^-™j +1/3 [1 + &8 ( i + 12)] i72r_2./

Now 72r-a/ (>") = ( - ) " J, T] , " ^ j"

T T^! i - r !"" TT2^ 2!273
= 1-^(1 + 1,-1,2,1)

It is known that
n(c-l)n(c-a-6-l)* /aQ,
iKca-iyir^W) (93)

Then since II (— i) contains an infinite factor

therefore tytMf(r) = X^[ (93)

Also 7a = # . * ± l !

Hence J = ̂ - ^ ( 1 +0 + ^ ) + ^ t ± l | ( l +f/3)

Introducing the value of F as defined in (79), we have L or

&WY da = ̂  t ± l | [ l - f/3 + ̂ ^ ( j » - 12j + 68)]

I have again to thank Mr Hobson for this formula, which is due to Gauss.
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1901] INTEGRALS OF SQUARED HARMONICS WHEN S = 1 AND 0. 271

We have in (74) obtained jp (S*1)2 [($J)2 - (P^)2] da, and if it be added

to our last result we see that the term which does not involve the factor
1/(2* + 1) is annihilated, and

jp (^S,1)2 da = | ^ l ± j j [1 + 4/8 (j - 2) + ̂  (j2 - 26j + 48)] .. .(94)

Now from (37) the square of the factor for converting S1 into S1 is

Therefore

fp (WS>f da = ~ ~ . \±±* [1 +1/3(j + 2) + ̂  (;2 + 10j - 96)]...(94)

These are two of the required integrals.

Next we have from (83)

gr = 2 |72r_2(cos2r 6 + fig cos21-2 6) AdO

2r +1
Noting as before that f(r) = —^—f(r+ 1)> an(i using the integrals (91),

+ 7o/(2) [1 + A/3

Substituting for ^ its value from (80), I find the term of order zero to be

7 / ( ) 2 ^ ^

The term of the first order is

(f + h)

This may be reduced to the form - j3%y2r_2f(r + 1) + f/3S72)-,/(r);
I I

which by (92) and (93) becomes - ~^~j ^ | | + f / 3 ^ y j .

The term of the second order is

2

This is reducible to

V^2 ( j - 4) £7 2,-2/(r)
I
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272 INTEGRALS OF SQUARED HARMONICS WHEN .5 = 1 AND 0. [10, § 21

which becomes

Therefore
M
G 2i + l i - l !

Introducing for G its value (79), we find M or

f f / tx~ — sin2 #\ 2~i
But in (74) we have Jp (CD/)2 (P,1)2 - [Pi1 \/ ^"e^g—) d<T- I f t h i s b e

added to the result just found the term which has not 1/(2*+ 1) as a factor
is annihilated, and

Now from (37) the square of the factor for converting (£} into C1 is

Therefore

i7r 2TTM i 4-1'

i p (P^ C/)2 da = 2 - ^ T ^ [1 +1/3 ( j + 2) + -a-i^2 (29f + 74; + 48)]

(95)
These last two complete the solution for s = 1.

Next we have from (83)

S = S f— (cosw+2 0 + 0h cos2-- 6) dO

Proceeding as before,

+ a2/(2) [1 - A/3 - fi/32 + f£A (1 + |/S)]

+ Oo/Xl) [1 + f/3 + *§£•] + a,y8A ( - f^/32)

Substituting for A its value (80), we find that the term of order zero is
. . 2

+ 1), and by (92) this is equal to ^p—=-.
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1901] INTEGRAL OP SQUARED HARMONIC WHEN S = 0. 273

The term of the first order is
1 Or 4- 11

^ + - ^ J + t/3«2 + 3/So.
which may be written in the form

i 2/3
/32a2r/(V + 1) + /3a0, and is equal to ~--+ /3

0 ^ & "T* J-

The term of the second order is

2r + 1 . .

which is equal to

f/8" Ja»-^3l] + 1/33 0" + 3) iaB./(

Now * ^ r f ) = ^ r + 1)~ * / W + * 7=1 /
Hence the term may be written

i/32 i r 2 , / ( r + 1) + i/8» S ' o ^ — ^ / ( r + 1) + J-/3*jS«2r/(r)
2 1 ^ 2

B . fi , , v 1 i + r!

And

In the preceding formula the sum of this last function had limits i—\ to
1, but as we now see that it vanishes when r = i, the upper limit may be
changed to i.

It follows that the terms of the second order are

o

+ i/32 S |^- ^ ^ ^ ; ^ + ±y + (r ,)2 (r ^ J ^17] + ¥ ^ i ^ ^Tjy2 {_ r t

The term in a2 in this expression will be found to be — |a2. That in a0

will be found to be ^-a0. Then since a^=-\j, a o = l , these terms are
together A/32(5j+ll).

D. III. 18
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274 INTEGRAL OF SQUARED HARMONIC WHEN S — 0. [10, § 21

The whole may then be written

#PSa*/(r + 1) + W U + 1) 2 ̂ f+Tl ^

Now

2 Iz
2 1 2 . 3

= F(i + l, -i, 2, 1 ) - 1 = - :

2 ! 2 ! 3 ! 3 !

- i
2

l r t ( t - + i ) ( - i

»("»'+i) L 2!1.
i (i +1) (t + 2) (-1 - 1) (- lKzl±l) , 1

+ "311.2.3 J

= l _ i
j

The last result follows from the fact that in accordance with (93) the sum
of the hypergeometric series has an infinite factor in the denominator, and
vanishes.

* 2
Then since by (92) 2a 2 r / ( r +1) = ^-.—^, the terms of the second order

o 2A + 1
are found to be

Hence, collecting terms,

Substituting for H its value (79), we have N or

But we have already found in (77) the value of jp (<&if [ (^)2 - (P*)2] da,
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1901] INTEGRAL OF SQUARED HARMONIC WHEN S = 0. 275

and on adding it to the last result the term independent of 1/(2* +1) dis-
appears, and we have

in 4TTM

-if * * 2l + 1

The square of the factor whereby ©» is converted into C; was found in
(38), namely,

Hence

"" P OftCO'da = l 7 ^ [1 + i/3j + J?/3
2(7j« - %- 24)] • • -(96)

_
These are the last of the required integrals.

§ 22. Table of Integrals of squares of harmonics*.

In this section the results obtained in (71), (72), (94), (95), and (96) are
collected.

* After having completed the evaluation of all these integrals, I found that they may be
evaluated very shortly by means of the factors ffi and E of (48), § 10.

I find that for all values of s (writing the eight forms in a single formula),

°r (C")2 AT- iTM ,1 S\i P* x iconst Dart of {€* OT ° ' °r *<" °r

or (S& d<T-zi+i(1"« • | E / X | o o n s t - p a r t of ^ I ^ ^ j *
I leave the reader to verify that this is so.

Unfortunately I have hitherto been unable to prove the truth of this except by the laborious
method in the text. I do not therefore know whether the result remains true for higher degrees
of approximation, although I suspect it does so. If it should be true, it would be very easy to
compute the integrals when higher powers of /3 are included.

It may be worth mentioning that the variables are separable in the integrals. Thus, when
Pi8 Cj8 denotes any one of the eight forms,

- V(W: r ^ d e /MTT/S^ A*
The (p integrals present no difficulty, but with regard to the others we are met by the impos-

sibility of expanding in powers of sec2 0 for the lower orders. It would be a great step in the

right direction, if it could be proved that all the terms which do not involve the factor —r—r

necessarily vanish.

18—2
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276 INTEGRALS OF THE SQUARES OF HARMONICS. [10, § 22

It may be well to remind the reader that M = k3v (v2 — 1)5 (i/2 — jzp)

s2-4

3 = »(* + 1)
First when s > 2.

Types If-vpvq Ip (^Pi* (/•<•) j »*« (^) ) ^°"

; - « » ( 2 2 - :

2 ) + ^ [ 1 1 2 + 1 0 + s2 (222 - 22 + 1) - T]}

Vtyj {1 + 4/S (2 + 2) + J ^ [92 + 4 + «»(22^ - 22 + 1) - T]]

Secondly, when s = 2, 2 = -J-i (i + 1).

Type EEC Jp flfr

Type OEC (jp [ffi (/*)

H : 2"!

Type EES Ao [ P,-2 (/a) S,2 (0)]2 da

= ^ T J t^-2 I (1 + i/S (2 + 2) + ^ p (2922 + 902 + 216)}

Type OES jp [P/ (p) S,-" (0)]2 do-

?22 + 1062 + 136)}
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1901] INTEGRALS OF THE SQUARES OF HARMONICS. 277

Thirdly, when s = 1, % is infinite and we must use j = i(i + 1).

Type OOS jp [ ^ 0*) &> (tf>)]2 da

Type EOS jp [ ^ O) S*1 (<£)]2 da

9 _ T V f „• i l l

j 2 + lOj - 96)}

TypeOOC Jp[P? (ji) <&?{4>)Jda

= M + l t - - l l [ 1 + *0(3j' + 1 0 ) + ¥ k / 3 2 { 2 9 j 2 + 1 3 4 j ' + 8 8 4 ) 5

Type EOC \p [Pi1 (fi) (V ((/>)]2 do-

Lastly, when s = 0; 2 = — i (i +1) = —j. There are only two types—

Type EEC jp flft (,») «D4 (0)]« da = ^ [1 + tfj + && (7j> - 10j)]

Type OEC jp flft (M) C, (</»)? dcr = ^ - [1 + tfj + &(* (7j« - 2j - 24)]

PART III.

SUMMARY.

The symmetrical form in which Lame presented the three functions
whose product is a solid ellipsoidal harmonic is such as to render purely
analytical investigations both elegant and convenient. But it seemed to me
that facility for computation might be gained by the surrender of symmetry,
and I have acted on this idea in the preceding paper.

Spheroidal analysis has been successfully employed where the ellipsoid is
one of revolution, and it therefore seemed advisable to make that method the
point of departure for the treatment of ellipsoids with three unequal axes.
In spheroidal harmonics we start with a fundamental prolate ellipsoid of
revolution, with imaginary semi-axes k nj— 1, k *J— 1, 0. The position of a
point is then denned by three co-ordinates; the first of these, v, is such that
its reciprocal is the eccentricity of a meridional section of an ellipsoid confocal
with the fundamental ellipsoid and passing through the point. Since that
eccentricity diminishes as we recede from the origin, v plays the part of a
reciprocal to the radius vector. The second co-ordinate, /J,, is the cosine of
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278 SUMMARY. [10, SUM.

the auxiliary angle in the meridional ellipse measured from the axis of
symmetry. It therefore plays the part of sine of latitude. The third co-
ordinate is simply the longitude <$>. The three co-ordinates may then be
described as the radial, latitudinal, and longitudinal co-ordinates. The para-
meter k defines the absolute scale on which the figure is drawn.

It is equally possible to start with a fundamental oblate ellipsoid with
real axes k, k, 0. We should then take the first co-ordinate, f, as such that
£2 = _ j,2. All that follows would then be equally applicable; but, in order
not to complicate the statement by continual reference to alternative forms,
I shall adhere to the first form as a standard.

In this paper a closely parallel notation is adopted for the ellipsoid of
three unequal axes. The squares of semi-axes of the fundamental ellipsoid
are taken to be — P j ^ | , - &2, 0, and the three co-ordinates are still v, /x, <£.
Although their geometrical meanings are now by no means so simple, they
may still be described as radial, latitudinal, and longitudinal co-ordinates.
As before, we might equally well start with a fundamental ellipsoid whose
squares of semi-axes are k* j-j™ , &, 0, and replace v2 by £2, where ^ = — i>2.
All possible ellipsoids are comprised in either of these types by making
/3 vary from zero to infinity. But it is shown in § 2 that, by a proper choice
of type, all possible ellipsoids are comprised in a range of /S from zero to one-
third. When /3 is zero we have the spheroids for which harmonic analysis
already exists; and when /3 = ^ the ellipsoid is such that the mean axis is
the square root of mean square of the extreme axes. The harmonic analysis
for this class of ellipsoid has not been yet worked out, but the method of this
paper would render it possible to do so. We may then regard /3 as essentially
less than $, and may conveniently make developments in powers of/3.

In spheroidal analysis, for space internal to an ellipsoid v0, two of the
three functions are the same P-functions that occur in spherical analysis;
one P being a function of v, the other of /A. The third function is a cosine or
sine of a multiple of the longitude <f). In external space the P-function of v
is replaced by a Q-function, being a solution of the differential equation of
the second kind.

The like is true in ellipsoidal analysis, and we have P- and Q-functions of
v for internal and external space, a P-function of p, and a cosine- or sine-
function of <j). I will now for a time set aside the Q-functions and consider
them later.

There are eight cases to consider (§ 4); these are determined by the
evenness or oddness of the degree i and of the order s of the harmonic, and
by the alternative of whether they correspond with a cosine- or sine-function
of </>. I indicate these eight types by the initials E, 0, C, or S—for example,
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1901] SUMMARY. 2*79

EOS means the type in which i is even, s is odd, and that there is association
with a sine-function.

It appears that the new P-functions fall into two forms. The first form,
which I write Iffif, is found to be expressible in a finite series in terms of the
P/±2*, where the P's are the ordinary functions of spherical analysis. The
terms in this series are arranged in powers of /3, so that the coefficient of
P/±2* has /3* as part of its coefficient. The second form, which I write Pf, is

/ V2 -— 1 / 1 — U2

such that / -j-^ Pis(v) or Ij^a Pj8 (/"-) is expressible by a series of

the same kind as that for ^ 8 . Amongst the eight types four involve
^-functions and four P-functions; and if for given s a -^/-function is
associated with a cosine-function, the corresponding Pf is associated with
a sine-function, and vice versa.

Lastly, a ^-function of v is always associated with a ^-function of fi;
and the like is true of the P's.

Again, the cosine- and sine-functions fall into two forms. In the first
form s and { are either both even or both odd, and the function, which I write
©is or £ / , is expressed by a series of terms consisting of a coefficient multi-
plied by /3* cos or sin (s + 2k) cj>. In the second form s and i differ as to
evenness and oddness, and the function, written Cf or Sf, is expressed by a

similar series multiplied by (1 —/3cos 2<£)̂ .

The combination of the two forms of P-function with the four forms of
cosine- and sine-function gives the eight types of solid harmonic.

Corresponding to the two forms of P-function there are two forms of
/ v2 — 1

Q-function, such that (Si/ and Q/ / --+& a r e expansible in a series of

ordinary Q-functions; but whereas the series for ^f}/ and Pf are terminable,
because P,-8 vanishes when s is greater than i, this is not the case with the
Q-functions. In fact the series for the Q-functions begins with Q$ or Q/,
and the order of the Q's increases by two at a time up to s when we have the
principal or central term; it then goes on increasing up to s = i or i — 1, and
on to infinity. [Unfortunately it appears that the approximation to these
functions is found not to be very close, unless /3 is very small.]

In spherical and spheroidal analysis the differential equation satisfied by
P/ involves the integer s, whereby the order is specified. So here also the
differential equations, satisfied by ^ / or P/ and by Qt>f, J&/, or C/, S/, involve
a constant, but it is no longer an integer. It seemed convenient to assume
s2 — a as the form for this constant, where s is the known integer specifying
the order of harmonic, and a remains to be determined from the differential
equations.
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280 SUMMARY. [10, SUM.

When the assumed forms for the P-function and for the cosine- and sine-
functions are substituted in the differential equations, it is found (§ 6) that,
in order to satisfy the equations, <r must be equal to the difference between
two finite-continued fractions, each of which involves a. We thus have an
equation for a, and the required root is that which vanishes when /3 vanishes.

For the harmonics of degrees 0, 1, 2, 3, and for all orders, [and for certain
harmonics of the 4th order], a may be found rigorously in algebraic form, but
for higher degrees the equation can only be solved approximately, unless /3
should have a definite numerical value.

When a has been determined, either rigorously or approximately, the
successive coefficients of the series are determinable in such a way that the
ratio of each coefficient to the preceding one is expressed by a continued
fraction, which is, in fact, a portion of one of the two fractions involved in the
equation for <r.

Throughout the rest of the paper the greater part of the work is carried
out with approximate forms, and, although it would be easy to attain to
greater accuracy, I have thought it sufficient, in the first instance, to stop at
/32. With this limitation the coefficients of the series assume simple forms
(§ 8), and we have thus definite, if approximate, expressions for all the
functions which can occur in ellipsoidal analysis.

In rigorous expressions, -JjJ,-8 and P/ are essentially different from one
another, but in approximate forms, when s is greater than a certain integer
dependent on the degree of approximation, the two are the same thing in
different shapes, except as to a constant factor. I have, therefore, in § 9
determined up to squares of /3 the factors whereby P/ is convertible into T$f,
and C;K or Sf into <2V or &;s. With the degree of approximation adopted
there is no factor for converting the P's when 5 = 3, 2, 1. Similarly, down to
s = 3 inclusive, the same factor serves for converting Cf into ©/ and S;s

into S,;s. But for s = 2, 1,0 one form is needed for changing C into (&, and
another for changing S into <S. It may be well to note that there is no sine-
function when s is zero.

The use of these factors does much to facilitate the laborious reductions
involved in the whole investigation.

It is well known that the Q-functions are expressible in terms of the
P-functions by means of a definite integral. Hence (Ht/ and Q/ must have a
second form, which can only differ from the other by a constant factor. The
factors connecting the two forms are determined in § 10.

The second part of the paper is devoted to applications of the harmonic
method. In § 11 the perpendicular from the centre on to the tangent plane
to an ellipsoid v0, and the area of an element of surface of the ellipsoid, are
found in terms of the co-ordinates /*, <f>, and the constant v0.
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1901] SUMMARY. 281

I t is easy to form a function, continuous at t he surface v0, which shall be
a solid harmonic both for external and for internal space. Poisson's equation
then enables us to determine the surface density of which this continuous
function is the potential , and i t is found to be a surface harmonic of /J,, <f>

multiplied by the perpendicular on to the tangent plane. This application
of Poisson's equation involves the use of the Q-function in its integral form.
Accordingly, if the serial form for the Q-function is adopted as a standard,
the expression for the potential of a layer of surface density involves the use
of the factor for conversion between the two forms of Q-function.

This result may obviously be employed to determine the potential of an
harmonic deformation of a solid ellipsoid.

The potential of the solid ellipsoid itself may be found by the consideration
tha t i t is externally equal to tha t of a focaloid shell of the same mass. I t
appears tha t in order to express the equivalent surface density in surface
harmonics, i t is only necessary to express the reciprocal of the square of the
perpendicular on the tangent plane in tha t form. This result is a t ta ined by
expressing a;2, y'-, z* in surface harmonics. When this is done, an application
of the preceding theorem enables us to write down the external potential of
the solid ellipsoid a t once. In § 12 the external potential of the solid ellipsoid
is expressed rigorously in terms of solid harmonics of degrees zero and 2.

Since a;2, y*, z* have been found in surface harmonics, we can also write
down a rotation-potential about any one of the three axes in the same form.

The internal potential of a solid ellipsoid does not lend itself well to
elliptic co-ordinates, bu t expressions for i t are given in § 12,

If it be desired to express any arbitrary function of /x, </> in surface har-
monics, it is necessary to know the integrals, over the surface of the ellipsoid
of the squares of the several surface harmonics, each multiplied by the per-
pendicular on to the tangent plane. The rest of the paper is devoted to the
evaluation of these integrals. No a t t empt is made to carry the developments
beyond /32, al though the methods employed would render it possible to do so.

When s is greater than unity, it appears tha t i t is legi t imate to develop
the function to be integrated in powers of 1/(1 — yf) \ and when this is done,
the integration, al though laborious, does not present any great difficulty.

But when s is ei ther 1 or 0, the method of development breaks down,
because i t would give rise to infinite elements in the integrals at the poles
where /x2 is unity. However, portions of the integrals in these cases can still
be found by the former method of development. As to the residues which
cannot be so treated, i t appears tha t they depend on integrals of the forms

pr>v?n fid ftcos uao

%„{!-*?sin26f
where /e2 is nearly equal to unity.

I
co8»»0(l-K»sinl0)*d0
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282 TABLE OF P AND Q FUNCTIONS. [10, APP. 1

Development of the square-roots in powers of K2 is useless on account of
the slow convergence, and it is required to find series which proceed by
powers of K'2, where K'2 — 1 — K2.

By a somewhat difficult investigation, in respect to which I owe my
special thanks to Mr Hobson, the needed series are found (§ 19).

It appears that portions of the two integrals involve logarithms which
become infinite when K vanishes. Since, in the application of these integrals,
the vanishing of K implies the vanishing of #, we appear to be met by a
difficulty. It is known that in spheroidal analysis no such terms appear, and
we may feel confident that they cannot really exist in ellipsoidal analysis. In
§ 20 it is proved that the logarithmic terms do as a fact disappear. The
residues of the integrals in the cases s= 1, 0 are thus found, and added to the
previous portions to form the complete results.

The second part of the paper ends (§ 22) with a list of the integrals of the
squares of the surface harmonics for all values of s, as far as the squares of /3.

Finally, an appendix below contains a table of all the functions as far as
i = 5, s = 5. It is probable that for the higher values of s the results would
only be applicable when /S is very small.

APPENDIX 1.

Table of the P- and Q-Functions.

• - ° < E E C ) { *

< 0 E C )

< 0 0 C )

(oos) I ! :
<EEC>
<E00)
(E0S)
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1901] TABLE OF P AND Q FUNCTIONS. 283

(EEC)

< E E S )

; - 3 ( 0 E C )

( 0 0 C )

( O o S )

(OEC, ( J J . -

<oos)

< E O C >

< E O S )

( E E S )

(IBS)
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284 TABLE OF P AND Q FUNCTIONS. [10, APP. 1

( 0 0 C )

( o o s )

( 0 E S )

(OOS)

/ 2 _ 1\SS / /I \ l+s

Note that in this table P,-8 denotes or^i ( J ~ ) ("2 ~" 1)*> a n d fl is

If the variable is /x, and if accordingly the factor (i/2 — i p s in P / is replaced

by (1 — /"•"), the signs of all the terms which have j3 as coefficient must be
changed, i l has still the same meaning, but must be written in the form
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1901] TABLE OF COSINE AND SINE FUNCTIONS. 285

i = 0 (EEC)

i = 1 (OEC)

(OOC)
(OOS)

i = 2 (EEC)

i = 3

i = 4

i = 5 (OEC)

(OES)

Table of the Cosine and Sine Functions.

cos

> = 1 - f/9 cos

(EOC) JC,1

(EOS) (S,1

(EEC)

••<&

sin

(EES) |£ ,

(OEC) C

(OOC)
(OOS)

(OEC) (Cs2

(OES)

(OOC)
(OOS)

fcos
_ + < . Zm
0 (sin r

: -1/3 cos 20]

(cos
I sin

Sr

^ sm

s/

(EEC)

(EOC)
(EOS)

(EEC)
(EES)

(EOC) f C/
(EOS)

(EEC)
(EES)

i = 1 — 5/3 cos 20 + ff/32 cos 40

(cos cos

s in (sm

C6 = * [1 - 7/3 cos 20 + f|/3s cos 40]

(OOC) m _ fcos
(OOS) (S,1 [sin

(OEC) f C«

[sin s in

I
(sm
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286 SYMMETRY OF THE FUNCTIONS. [10, APP. 2

(OOS) ( £ / ~ ^ v " s ^ j s i n ^ j s m r TOH jsin

(OEC) f CV _ r f 1 (cos fcos

(OES) [ S5
4 ~ L1 1° l s i n l s i n

(OOS)

Note that in this table

$ = (1-/9 cos

A table of P(i>) and Q(i>) up t o i = 5 , s = 5 is contained in Professor
Bryan's paper (Proc. Gamb. Phil. Soc, vol. vi., 1888, p. 297). The functions,
there tabulated as Tn

s (v) and Un
s (v), in the notation here adopted would be

Pn*(v) (with the factor (v*-l)is) and ( - y l ^
1
l.Qn(v).
1 -\- S!

The formula for Q,f(v), where s is greater than i, is given in § 10 above.

APPENDIX 2.

On the Symmetry of the Cosine and Sine-functions with the ^-functions.

In writing this paper I failed to notice that the symmetry between the
P-functions and the cosine and sine-functions is not destroyed, but is only
masked, in the approximate expressions for the harmonic functions.

For example, we have

therefore, in consequence of the symmetry which subsists, we ought to find

Now

= - 15 ̂ — M 7' $ (1 - cos
(1-/8)*

Whence
(1 -|.

C3(rf>)=
( 1 -
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1901] SYMMETRY OF THE FUNCTIONS. 287

This only differs by a constant factor from the expression which arises
from the approximate formulae.

It would be possible then to have only one type of function, viz. !$ or P,
and to express all the cosine and sine-functions by means of the appropriate
one of them. This would be found to be equivalent to expressing the latter
functions in terms of powers of sin <f>. For the purposes of practical appli-
cation I do not think this would be so convenient as the use of cosines
and sines of multiples of <f>, and the advantage of using only one type of
function would not compensate for the loss of convenience in the result.
Accordingly I do not think it worth while to undertake the very laborious
task of revising all the analysis from this point of view.
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11.

ON THE PEAR-SHAPED FIGURE OF EQUILIBRIUM OF A

ROTATING MASS OF LIQUID.

[Philosophical Transactions of the Royal Society, Vol. 198, A (1901),
pp. 301—331.]

INTRODUCTION.

THIS is the sequel to a previous paper on " Ellipsoidal Harmonic Analysis "
[Paper 10]. I here make use of the methods of that paper, and for brevity
shall refer to it as " Harmonics."

The sections 1 to 4 are preparatory, and might have been included in
" Harmonics," but seem more appropriate here. Section 5 is an independent
investigation of so much of M. Poincare's celebrated memoir on rotating
liquid* as relates to the immediate object in view.

It is not necessary to say more here, since I give a short summary in the
last section.

§ 1. The Harmonics of the Third Degree.

[In "Harmonics" § 6, p. 211, it is shown how a corresponding to each
harmonic may be found independently of all the other harmonics, but it is
further shown in an addition made for the present volume how all the values
may be found from only four equations. In this paper as originally published
each value was found independently, but I shall now find the required values
more shortly.

In the case of third harmonics the equation for determining <r for s = 0
(cosine functions), is

= i£MMU3, 2} = 6Q#
a 4 .12 + o- " 4+o-

* Ada Matkeviatica, Vol. vn., 1885.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.014
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.014
https://www.cambridge.org/core


1901] THE HARMONICS OF THE THIRD DEGREE. 289

The solutions of this quadratic are

Now we know (p. 213, " Harmonics ") that the roots are cr3 and <ra* — 22.

If therefore we write (Btf = 1 +15/32

For 5 = 0, type OEC, a-=-2(l-B1)

s = 2, type OEG, a = 2(1 -£,)

The equation for a for the sine function, when s = 2, is a = 0.

Thus for 5 = 2, type OES, a = 0

The equation for <r for the cosine function, when s= 1, is

The solutions of this quadratic are

_ 4 - 3 / 8 ± 4 V [ l - f / 8 ( l - y 8 ) ]

We know that the roots are er̂  and o-3
3 — 32 + I2.

If therefore we write (B2f = 1 - §/3 (1 - /3)

For s = l, type OOC, a = - 4 - 3/8 + 452

s = 3, type OOC, <r= 4 - 3 ( 8 - 4 5 3

For the corresponding sine functions the equation has the same algebraic
form, but the sign of /3 is changed, and if we write

(53)2= l + f/3(l + /3)

For s = 1, type OOS, <r = - 4 + 3/3 + 453

s = 3, type OOS, o- = 4 + 3/3 - 453

We thus have the values of a corresponding to the seven functions of the
third order.]

s = 0; type OEC, and $ 3 (y) = q0P3 (v) + /3^P3
2 (v), with q0 = 1.

We have a = 2(^-1)

where (£1)2 = 1 + 15/32

Also — = -j = JT-TTJ =-. , w i th q0 — 1
50 4+<r 2 ( ^ + 1) "

Then since P3 (v) = %i? - f v, P3
2= 15i/ ( K 2 - 1 )

wefind ^3( , ) = ^ ( i J 1 _ i + 5 ^ ) I , ( v
2 - g ^ A J ) (1)

s = 1; type OOC, and

P.1 (̂ ) = J ~ ^ Y [q*Pi ("} + /393'P33 (//)]> with ?1'= X

D. III. 19
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290 THE HARMONICS OF THE THIRD DEGREE. [11, § 1

We have o- = 4 (B2 - 1 - §£)

where (B,f = 1 - §£ (1 - £)

Also

22?=J— = A/n \ _ , and ^ = 3 ^ , with 5 l ' = l
j , 8 + cr 4 (£2 + 1 - f/3)' j / ?!* ""

Then since P3
J <» = f (5i/2 - 1) (i>2 - 1)*, P3

3 (*) = 15 (V - 1 ) <>2 - 1)*, we
find

s = 1, type OOS and ^ 3 ' (r) = ^ P , 1 (v) +/3qsPs
s (v), with ?1 = 1.

We have o-= 4 (5, - 1 +1/8)

where (-B3)
8 = 1 + f/3 (1 + /3)

On substitution we find

}^3^^) (3)

* = 2 ; type OEC, ^ 3
2 (v) = /3q0Ps (v) + g2P3

2 0) , with q2 = 1.

We have a = - 2 (B1 - 1)

Also ^^-{3^13^1^-4(^-1)^

With the known values of P 3 and of P3
2, we find

A comparison with (1) for s = 0 shows that the last factors in each only
differ in the sign of Bx.

v2 - ^
s = 2; type OES, P3

2 (v) = J -^f. P* (*).

We have a = 0, and P3
2 (v) = 15J» (V - 1),

P,»(V) = 1 5 I » ( I ^ - 1 ) * ^ - ^ ± | ) (5)

s = 3; typeOOC,

We have o- = 4 (1 - f £ -
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1901] THE HARMONICS OF THE THIRD DEGREE. 291

and ^; = SL, with 3 /= 1
$3 «?3

Whence on substitution

~ 5 (1 - /3 )

s = 3; OOS, p3
3 (i>) = /3qiPj (*) + ?3-P3

3 (y), with ? , = 1.

We have <r = 4 (1 + f/9 - £,)

Whence on substitution

i(8tf±|^) (7)
The forms of the corresponding functions of fi are the same, except that

(1 — /A2)2 and f - — ^ — yu,2 j replace the corresponding factors.

I have not determined the cosine- and sine-functions, because they may
be written down at once from the results already obtained. The three roots

of the fundamental cubic are i>2, /A2, and —~—3—~. Hence we have only

to replace i>2 by this last function in the seven formulae (1)—(7) in order to
obtain functions proportional to the seven cosine- and sine-functions. If the
definition of the latter functions is to agree with that given in " Harmonics,"
the factors must be determined appropriately, but the question as to the
value of the factor will not arise here.

§ 2. Change of Notation.

I t will be convenient, with a view to future work, to change the notation,
and I desire to adopt a notation which shall not only agree in the main with
that used in " Harmonics," but shall also facilitate reference to a previous
paper on Jacobi's ellipsoid [Paper 8, p. 119].

I write *a = r ~ i ' /C '2=1~A;2

I have in general written the current co-ordinates v, fju, <f>, and the ellipsoid
of reference v0, so that the squares of the semi-axes are

19—2
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292 NOTATION. [11, § 2

I now propose to write as the squares of three semi-axes of the ellipsoid of
reference

c2 cos2 7, c2 (1 - K2 sin2 7), c2

Comparing these two we see that

k = cic sin 7, and v0 = — - —
K sin 7

For the current co-ordinates I retain <p and write

v = —:—.-, a = sin 6
K sin Y

The three roots of the fundamental cubic are therefore

The rectangular co-ordinates x, y, z are now expressible as follows:

x = ° 8 m 7 . cos ylr (1 - K2 sin2 6)% cos d>

(8)

z = ̂ ^ 7 • sin
sin i|r

™ • «2 , f , , c2sin27
These give ——r + z. r^Tf + z = ~^^"7

cos2 y}r 1 — /r sin8 y sin2 i|r
At the surface ^ = 7, and we have

cos2 7 1 — K2 sin2 7

In the formulae for the third harmonics, in every case but one, and in two
out of the five harmonics of the second degree, there occurs a factor of the
form (ya — constant); in each such case I write that constant in the form <f/«2,
and g'2 = 1 — q2. Thus q will have a different value for each harmonic.

It has been already remarked that for most purposes it is immaterial by
what constants the several functions are multiplied. Although it would be
easy to determine the constant in each case so as to make the function agree
with its value as defined in " Harmonics," yet I shall not take that course,
and shall omit factors as being in most cases redundant.

For the sake of completeness I will give the first and second harmonics in
the new notation, as well as the third.

Since the harmonics of the first degree are expressed by
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1901] VALUES OF THE HARMONICS OF THE FIRST AND SECOND DEGREES. 293

it is clear that in the new notation
T / 1 2 * 2 f

' sin f'

) = sin 0,

sin •

P,1 (fi) = (1 - «2 sin2 ffft,

C ^ 1 (</>) = c o s <£,

I = cos 6

i = sin <f>

It appears from § 12 of " Harmonics " that

where

(9)

5-2 , and & = 1 + 3/S2

a 3 (1 - /3 ) ' a' 3(1-/8)
In accordance with the notation suggested above, let

?_ 2+B
«2 3(1-/8)

1 — K2

Then substituting ^ -2 for /3, we find

and for both cases

Hence (V) and ffi (v) =

and ^ ' ( / * ) = - ( l - | si

and = 1 - ~ cos2

.(10)

22 g ,
where K2 = q* -—^, and g2 = 1 [1 + K2 + (1 - KV 2 )*] , with upper sign for the

1 — Zq-

first and the lower sign for the second.

It appears from (19) and (20), § 7, of " Harmonics " that

P2' (fi) = sin 6 (1 - K2 sin3

C , 1 ((/)) = COS </> ( 1 - « ' 2 COS2

and from (21) and (22) that

.(11)

= sin )̂ (1 - «'2 cos2

.(12)
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294 VALUES OF THE HARMONICS OF THE THIRD DEGREE. [11, § 2

Lastly, from (25) and (26)

.(13)

. , _ c o s yfr (1 — K? sin2

P2
2 (ft) = cos 6 (1 - K2 sin2 df-

<S2
2 (<b) — sin <h cos d>

Turning to the harmonics of the third degree, we found that in the two
cases where the type is OEC,

4 + 5 ,
»/) and

If we put

we find

and

K? 5(1-/3)

K* = g2

Therefore, with the above alternative form for q2,

/ \ J i n , / s 1 — <? sin2 |̂r
(v) and ^(p) ^^r^

f ,0») and f 3
2 0*) = - sin 6 (l - "-sin2 6

C W and C3
2 (0) = (l ~ ^ cos20^ (1 -«'2cos20)*

Again in the two cases where the type is OOC we found

(14)

Putting

we find

and

£ 3- /3+ 25,
«2 5 (1 - /3)

Therefore, with the above alternative form for <f,

i-> i / cos ^ ( l — o2sin2 ylr)
Pa (v) and P3

3 (v) = T . 3 —

Ps1 (ft) and P3
3 (ft) = - (1 - «2 sin2 6f (l - -3 sin2 ......(15)

and € 3
3 (</>) = cos 0 ( 1 - -,- cos2
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1901] VALUES OF THE HARMONICS IN NEW NOTATION.

In the two cases where the type is OOS we found

33-1 (v) and 39 3 (v) = I v2 —'

295

5 (1 - yS)

Putting

we find

and

«2 5(1-/3) '
22 = £ (2 + *2 + (4 - «V2

l - 2 g 2

Therefore, with the above alternative form for q2,

*?(v) and *.MJ1=*™^\=***1!)
sin3

Is1 (fi) and 3j}3
3 (/j.) = - cos 6 ( 1 - - sin21

and = sin
K,'2

—. cos2

(16)

The seventh of these harmonics, which is of type OES, stands by itself.
We had

This gives in the new notation

P 21 x _ cos i/r (1 - K? sin2

3 (z/) ~ li^T
P./ (M) = sin 0 cos 0 (1 - K2 sin2 0)

S3
2 (̂ >) = sin </> cos >̂ (1 - A:'2 COS2

.(17)

The formulas (9) to (17) give the fifteen sets of three functions constituting
the fifteen harmonic functions of the first three degrees. It would be easy,
although somewhat tedious, to find the coefficient by which each function is
to be multiplied so that its definition might agree with that of the previous
paper*.

* [Although tlie fourth harmonies are not required in this paper I may mention that I have
obtained the values of a in the same way with the following results.

The equation corresponding to i = i, s — 0, where the type is EEC, may be written

<r3 + 20(r8 + (64 - 208/32) <r - 288002 _ 0

The roots of this are ait <r4
2 - 22, <r4* - 42.

If we write <r=x- -2/, the cubic equation becomes

x* - s p (1 + 3/32) + ±ff- (1 - 9/32) = 0

If a be the smallest angle such that
35 I - 9 8 2

cos 3a =
13f (l + 3/32)S
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296 SOLID HARMONICS IN RECTANGULAR COORDINATES. [11, § 3

§ 3. Expressions for the Solid Harmonics in Rectangular
Coordinates.

The three roots of the original cubic equation were v2, /A2, ~-—^—- , and

in the new notation the three roots of

a? y' z* „ „ . , 1 . „ . l-/e'2cos2<£
, -,, , + - i ^ j - + - i = c2«2sm2y are T ^ T T , sin20, *

ft)2—1/«2 <a2 — 1 &)2 /rsin2-^ /r

Hence it follows that we have the identity

+ / +
ft)2— I/*2

ft)2—

( 1 / K 2 — a)2) ( 1 — <u2) i
o2

Put t ing ft)2 = - 2 ,

the three roots of the equation in x are - p cos a, p cos (a =F 60°), where

By adding y~ to each of these roots we get the roots of the equation in a, and by proper
choice of these roots we obtain the values of 0-4, o-4

2, a£, corresponding to the three cosine
harmonics ^J4», with s = 0, 2, 4.

However when p = h which as we have seen applies to the class of ellipsoids denned by
c2 = J (a2 + t2), the cubic is soluble algebraically, and x = 0 or ± 1

Whence for s = 0, <r = | ( 2 ^13 - 5)

for s=2 , <r= - f

fors = 4, <r = t ( 7

For the sine harmonics of even rank we proceed from the equation for the case of s = 2. The
equation is

<r2+12<r = 28/33

and its two roots are a$, a£ — 42 4 22. Hence we find for sine harmonics P48, with s = 2, 4,

o-44= 6

For the cosine harmonics of odd rank we proceed from the equation for s = 1; it is

o-2 + (8 + lOo-) = - 80/3 + 6302

The roots are 0-4! and <r4
3-32 + l2. Hence we find for cosine harmonics P4

8, with s = l , 3,

<r4i= - 4 - 5/3 + 4

By changing the sign of /?, we have for the sine harmonics ^J4
8, with s = l , 3,
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1901] SOLID HARMONICS IN RECTANGULAR COORDINATES. 297

This expression, together with those for x, y, z in (8), enables us to write
down the results at once. As before, I drop the several factors as being
redundant for most purposes.

From (9)

#, 00 tfiOOC, (*) = *, P,100 P.100 ©i1 (*) = *, l / W t W ^ ' W ^
(18)

From (10)

*) and ^ O O ^

= q2x2 + 4zr~2 V* - q'**? + C2q2q'* sin2 7 (19)

where g2 = £ [1 + K2 + (1 - K"K'2)^ ], and K2 = g2 ^ ~' ^g]
J. — ^g

so that -f-^-a = 1 - 27s

K2 — g2

From (11), (12), and (13)

P,1 (v) P,10*) CV (^) = ^ , Hfc (v) ̂  0*) S,1 (0) = 3/5, P2
2 („) P./ 0*) S2

2 (^) = xy
(20)

From (14)
$ 3 00 $3 0*) Cs (</>) and f / W W 0*) Cs2 (</>)

= xr (q*x> + J ^ - 2 y2 - 2'
2*2 + cYq* s in2

7) (21)

where j» = | [1 + «2 + (1 - \«2 + «*)*], and «2 = g« | ^ |

so that -J-^— = 3 - 4o2

Kr—q2

From (15)

P3' (z/) P,' (/i) ©3 ' (</.) and P / (v) P,» 0*) ©3
3 (</.)

K

where

sin2<y) (22)

= \ (1 + 2«2 T (1 - «8 + 4«4)*), and «2 = g2 ̂ -

/72rt2

so that -i-i— = 1 - 4o2

K2 — g2 z

F rom (16)

W*.^) and P/

~T^-2y
2 - q'2z* + c2q*q'2sin27) (23)

where g2 = ^(2 + K2 + ( 4 - K2/,;'2)*) and K- = g2 j~ ~ fg]

so that Jgl=i ( i_2g2)
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298 THE Q-FUNCTIONS EXPRESSED IN ELLIPTIC INTEGRALS. [11, § 4

Lastly, from (17),
P3

200P3
2(/*)S32(</>) = ^ (24)

It is easy to verify that each of these expressions satisfies Laplace's
equation.

§ 4. The Expression for the Q-functions in Elliptic Integrals.

In this paper I drop the factors <& and E which were found to be necessary
when the Q-functions were expressed in series.

We make the following definition:—

and a similar formula holds for P/ Q/.

It is clear that H$£ may be multiplied by any constant factor without
changing the result; hence we may use the forms which have been found in

S3 z> 6-
The notation must now be changed.

We have v = —; and v0 = —-.— . Therefore, when -<lr is adopted as
K sin yfr K sin <y

variable, the limits are 7 to 0, and the sign of the whole is changed.
, cos -Jr j ,

d ^ d *

and („ - I)* U - mf = "

Therefore I =— Y = K I —
J ,0 (j,2 _ ! ) * (^ _ 1±|)5 J 0 (1 - K? sin

sin2

( ) ^ | ) ( sin2 y]ry

In accordance with the usage in elliptic integrals, I write

A2 = 1 - K2 sin2 y{r

under the integral sign, or 1 — «2 sin2 7 outside the integral.

I shall also for brevity write

Aia = 1 - q" sin2 yjr

under the integral, or 1 — q> sin2 7 outside the integral.

We have then

I apply this formula successively to the several functions, as given in (9)
to (17), and introduce the abridged notation just defined, but I do not
reiterate the special meanings to be attached to the symbol q in each case.
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1901] THE Q-FUNCTIONS EXPRESSED IN ELLIPTIC INTEGRALS. 299

Since :jj)o (p) = 1, we have (dropping the now unnecessary suffix 0 to v),

P,1 (v) Q,1 (v) = K cot2 7 P ^ ^ df
Jo &

and

0 COS2i/rA3

and

if POS2 rvA 4 ft

P.. <„) Q,i (») and P.. <„) Q.. („) = ^ ^ L j o

sin6 \fr
7 Jo cos2^Aj4 A

A; COS2 7A2 fy sin6

,. . .(25)

P3
2 (v) Q..a (v) =

7 sin" 7 Jo cos2

All these integrals are expressible in terms of the elliptic integrals

It will, however, be found that in fact the coefficient of IT vanishes in
every case.

The cases of % = 0 and i = 1 are very simple, and we have

A(
sin27\/c

P,1 Q/ = K cot2 7 ( ^ A tan 7 - 42
\fC K

sin2 7

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.014
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.014
https://www.cambridge.org/core


300 THE Q-FUNCTIONS EXPRESSED IN ELLIPTIC INTEGRALS. [11, § 4

It is possible by direct differentiation to verify the following results,
although the verification will be found pretty tedious.

i n 4 t ( 2 - 3 g
2 ) g

2 - « 2 ( l - 2 g 2 ) n , 2 g * - l F_ 1 F

A^A r 2gy<V-« 3 ) + 22
4

2'2 2gV2<>2-o2)

A sin i|r cos

f sin4 if/- 1 1 — 9<c3 1

JC0S2i|rA Y K* K^K* K2 T

r sir
Jcos2

These are all the integrals needed for the harmonics of the second degree.
In the case of the first we have

Thus the coefficient of II vanishes and the results are

0 0 ^ ( " ) a n d WW®> W = s ^
(1 — 2^2) A sin 7 cos

sin

«2 tan y (2 - ( 1 + Q sin2

E+
In the first of these

«2+(l-«2«'3)*] and «2=

The following integrals may also be verified by differentiation:

2g
2g'2 + /c2 (3 - 4g

2)
22n6«'2

A,4 A

A sin
2?

2o'2 («

4 < f - l
T 2 4 ' 4

Atani / r _ A sin ^ cos -^ . 7

«'2o'4 2«'< («2 o2) A'2 V ;
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1901] THE Q-FUNCTIONS EXPRESSED IN ELLIPTIC INTEGRALS. 301

fsi"6 * fa =
 K* <\ ~ 2?) - f (4 ~ 5?) n • W ~ «2 (1 ~ 2<?2) „

J A^A3 r 2qiq'* (K* - q2)2 Zic'q'q''(K* - q2)

2q3qf3 + K3K'3 „ _ sini^cos-^r _ Asini|rcos\^ .
^ V Y J V ^ ~" «'2 O2 - 52)2 A ~ 2i'2 («* - <f? ^i

2 - * i p 2 (1 - ^2«/2) sin yr cos ̂  A tan ty
b ^ i 4 + ^ V ^ A ~ + ~ ^ r ^ ( 2 9 )

Now in (26) we have to put

and in (28) «. = g . 4 ^

Introducing these values, and taking the integrals between the limits 7
and 0, we find:

39 ffl, and 392 < ® 2 - ^# t « B , and 4^3 © 3 - i 6

g/2 - 1) A sin 7 cos 7]

V V i ( }

and
7 ( 2q'q *

_ 7 g 2 _ (i _ 5 g 3 _ \ A tan 7j

and 4p <B I F+

1 — 5g2 + Qqi - q2 (2 - ll^2^'2) sin2 y\ sin 7 cos 7)

/ l + « 2 - ( l + « 4 ) s i n 2
7 \ tan 7]

i ~^7* )~^r\ (33)

In (30) g. = 3

In (31) ?
2 = i

In (32)

[The expi'essions for the functions of the second kind will be generalised
so as to be applicable to any order and rank in § 19 of Paper 12, p. 369.]

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.014
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.014
https://www.cambridge.org/core


302 THE BIFURCATION OF JACOBl's ELLIPSOID. [11, § 5

| 5. Bifurcation of Jacobi's Ellipsoid.

If a mass of liquid be rotating like a rigid body about an axis, x, with
uniform angular velocity OJ, the determination of the figure of equilibrium
may be treated as a statical problem, if the mass be subjected to a potential

The energy lost in the concentration of a body from a condition of infinite
dispersion is equal to the potential of the body in its final configuration at
the position of each molecule, multiplied by the mass of the molecule and
summed throughout the body. In the proposed system, as rendered a
statical one, it is necessary to add ô>2 (y1 + z2) to the gravitation potential
before making the summation. If A denotes the moment of inertia of the
body about x, this latter portion of the sum is | 4 M 2 , and is therefore the
kinetic energy of the system.

If dmu dm2 denote any pair of molecules and D12 the distance between
them, and E the energy lost, we have

If the system had been considered as a dynamical one, the expression for
the energy of the system, say U, would have resembled that for E, but the
former of these terms would have presented itself with a negative sign.

It is clear that the variation of \Aay>, when the moment of momentum is
kept constant, is equal and opposite to the variation of the same function
when the angular velocity is kept constant.

The condition for a figure of equilibrium is that U shall be stationary for
constant moment of momentum, or E stationary for constant &>, in both cases
subject to the condition of constancy of volume. The variations in question
lead to identical results, and I shall proceed from the variation of E.

If * - p t
 du

 L .
J o (u + a2)5 (u + 62)5 (u + c2)*

the internal potential of an ellipsoid of mass M and semi-axes a, b, c is

Hence 1 —,=; = %M T H -,—V ... \
2 J Dn Jo L a da J

a da o do c c j

I
dm

Now if A, B, G denote the principal moments of inertia of the ellipsoid
about x, y, z,

j B-A) = \Ma?jx2dm =

and similar formulae hold for the two other axes.
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1901] THE BIFURCATION OF JACOBl's ELLIPSOID. 303

Therefore

But since M* is a homogeneous function of degree — 1 in a, b, c, the sum
of the three differential terms is equal to — M*. Hence this expression is
equal to rfoM'V.

Since %A o>2 = -&M (&2 + c2) »2

we have E = T
3 îW2 >P + -517" »2 |

If # be varied, whilst abc and w are constant, it is stationary if

V 26 \ ,, / d ¥ L 2c A j ,
r + ?nnr ft) 00 + - ^ h r j ? ft) OC = 0
!> 3M J \dc SM J

8a 8b 8c .
a b c ~~

Eliminating 8a, 8b, 8c we have the well-known conditions for Jacobi's
ellipsoid

2»262
 = dW

1JM~ ~a da

2» 2 c2

-s-jrr = a - i c-5- V (34)
3if da dc ' v y

62 \ da d6 / c2 \ da

If we add together the first two of these, and avail ourselves of the
property that >P is homogeneous of degree — 1, we easily prove that the
stationary value of E is

E = o—1da J

Since the potential of the ellipsoid must satisfy Poisson's equation

ada bdb cdc abc

A IQA fi J_ 7i _L o ^= —. "Vl/

da db dc

By means of these and two out of the three equations (34), we may
eliminate the differentials of M*, and writing p for the density find

^a6c (-. + i + -,) - 6
- (35)
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304 THE BIFURCATION OF JACOBl's ELLIPSOID. [11, § 5

I do not happen to have seen this form for the angular velocity of Jacobi's
ellipsoid in any book.

It is easy also to show that the stationary value of E may be written

We may now express the potential, say V, of the system entirely in terms

of ^ and a -p- , forda

2«2

4 [ da \a2 b2

We thus verify that V is constant over the surface of the ellipsoid.

Let g denote the value of gravity at the surface. Then if dn be an
dV

element of the outward normal, g = — -j— . Since

dx _ px dy _ py dz _pz , 1 _ x2 y2 z2

fa,="a~2' An = t2' dli'V' rep~2~ai + Fi + ci

, „ dW (x2 y2 z2\ M d-V
we have 9 = — iMa-j-p[—, + Ti +-.) = — %— a-T-

a i dar \a o4 cv p da
Now change the notation and write

Then ^ " ' dv

2 / 1 + /9W" dv

Now

and (,0) ̂  (n) = ^ (.o)]2 f "
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1901] THE BIFURCATION OF JACOBl'S ELLIPSOID. 305

so that ¥ = | $ 0 (

(36)

3Mand g = '— p,i („„) Q,i („„) ^

We may note in passing that the condition for a Jacobian ellipsoid (the last
equation of (34)) is reducible [as shown in (22) of Paper 8, p. 123] to the form

KA2 p-sin4^ fvtan2->|r
. , — ~ - d-Jr = K cot2 7 —T-^-d^ir

smVo A3 r rj0 A Y

On examining the series of functions given in (25), we see that it may be
written

This agrees with M. Poincar^'s equation (1) on p. 341 of his memoir.

We will now suppose that the body, instead of being an ellipsoid, is an
ellipsoidal harmonic deformation of an ellipsoid, which is itself a figure of
equilibrium for rotation w.

The addition to E will consist of three parts; first that due to the
mutual energy of the layer of deformation; secondly that due to the ellipsoid
and the layer; thirdly that due to the change in the moment of inertia.

If a subscript I denotes integration throughout the space occupied by the
layer, U the potential of the ellipsoid, and dv an element of volume,

I I M 2 Jl Jl

If £ denotes the thickness of the layer standing on the element da, the

first of these terms is A

The value of U + |«o2 (y2 + z2) throughout the layer is equal to V0 — g%',
where Fo is the constant value of U + \a? (y2 + z2) over the surface of the
ellipsoid, and £' is the distance measured along the normal to the element
d^'dcr of volume.

Hence

I Updv+^(O2\ {y2 + z2) pdv = 11 p (Fo — gt,') d^'do-

Since Vo is constant and the total mass of the layer is zero, this is equal

to -\

It follows that

D. in. 20
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306 THE BIFURCATION OF JACOBl'S ELLIPSOID. [11, § 5

The axes of the ellipsoid have been chosen so as to make our original
E stationary, and the further condition to be satisfied is that SE shall be
stationary.

Let us suppose that £ =peffi (/*) <£/ (<j>)

which expression shall be deemed to include any one of the other types of
harmonic.

Then it is shown in (51) of " Harmonics " that the potential of this layer
at the surface of the ellipsoid is

Since the mass of an element is pep^f (/x) (SV (<f>) da, we have

With the value of g found in (36)

ip fg? da = ^e> P,1 („,) Q/ (vjjfflf (ji) ©<•

Hence

In order that the new figure may be one of equilibrium, this expression
must be stationary for variations of e. It follows that we must either have
e = 0, which leads back to Jacobi's ellipsoid, or else

This last condition is what M. Poincare calls the vanishing of a coefficient
of stability *. It shows that if v0 and /3 satisfy not only the condition for the
Jacobian ellipsoid, namely, P2

J (v0) (S^1 (y0) = P^ (p0) Qx' (v9), but also this
equation, we have arrived at a figure which belongs at the same time to two
series, and there is a bifurcation at this point. The form of the figure is
found by attributing to e any arbitrary but small value.

* Ada Math., Vol. vn., 1885, p. 321. The factors J and l/2n + l (or l/(2i + l), if i is the
degree of the harmonic) Which occur in hia form of the condition are included in my functions.
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1901] PROPERTIES OF THE COEFFICIENTS OF STABILITY. 307

§ 6. The Properties of the Successive Coefficients of Stability.

Corresponding to each harmonic deformation of the ellipsoid, there is a
coefficient of stability of one of the two forms

ffiM&fM P/ (Vq) Qf (VO)
P I K O Q I H O P ^ W Q I ' W

These coefficients may be written Wiis or K/ according to an easily
intelligible notation. The Jacobian ellipsoid is denned by v0, and the question
arises as to the possibility of the vanishing of the several IBt's as v0 gradually
diminishes from infinity, that is to say, as the ellipsoid lengthens.

An harmonic of the first order merely denotes a shift of the centre of
inertia along one of the three axes; one of the second order denotes a change
of ellipticity of the ellipsoid. Since we must keep the centre of inertia at
the origin, and since the ellipticity is determined by the consideration that
the ellipsoid is a Jacobian, these harmonics need not be considered,'and we
may begin with those of the third order.

I shall not attempt to follow M. Poincare in his masterly discussion of the
properties of the coefficients of stability*, but will merely restate in my own
notation the principal conclusions at which he has arrived.

1st. The equation

Px
] (v) QJ (v) - f f (v) ̂  0 ) or P/ (v) Q,' (v) = 0, (t > 2)

is not satisfied by any value of v between 1 and infinity, if T$£ or Pf is

divisible by (pa — -= j . It appears from the forms of the functions as

given in § 4 of " Harmonics" that the P functions are so divisible. These
functions appertain to the types EES, OOC, OES, EOC, and therefore the
ellipsoid cannot bifurcate into deformations of these types.

2nd. The equation has no solution if Hjjif is divisible by (v2— 1)*. We
again see from § 4 of " Harmonics " that T$i is so divisible if it is of the types
OOS, EOS. Hence the ellipsoid cannot bifurcate into these types. The
only types remaining are EEC, OEC.

3rd. The equation has no solution if any of the roots of 1$i (v) = 0 lie
outside the limits + 1 to - 1 . The only ^ / of the types EEC, OEC which
has all its roots inside the limits + 1 to - 1 is the zonal harmonic for which
s = 0.

Hence the ellipsoid can only bifurcate into a zonal harmonic.

* Sections 10 and 12 of his memoir. I have to thank him for saving me from making a
serious mistake in this portion of my work.

20—2
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308 PROPERTIES OP THE COEFFICIENTS OF STABILITY. [11, § 6

4th. The equation

P i i Q l
i - ^ < a * = o (»>2)

must have a solution between 1 and infinity for all values of i.

It follows from these four propositions that the Jacobian ellipsoid is stable
for all deformations except the zonal ones, and that as it lengthens it must at
successive stages bifurcate into each and all the zonal deformations.

5th. As the ellipsoid lengthens, the first coefficient of stability to vanish
is that of the third zonal harmonic. This stage is the end of the stability of
the Jacobian ellipsoids, and there is almost certainly exchange of stability
with the pear-shaped figure defined by this harmonic*.

6th. It has not been rigorously proved that there is only one solution of
the equation Wii = 0 even in the case where i = 3, but M. Poincare believes
that this is almost certainly the case.

7th. The functions

) |
or V x or I — or

) \

have always the same sign as v increases from v0 to infinity, provided that s
and t are both greater than zero, and i greater than 2.

The seventh of the preceding propositions renders it easy to determine
the relative magnitudes of all the Hit's belonging to a single degree i.

In what follows I may take the symbols 1$, (01 as including also P, Q.

Now m/ > = < w
as, $ / (*„) ffi* (O - W W m (vo) < = > 0

If we express the dR's in terms of integrals this becomes

f
The seventh proposition shows that when s and t are greater than zero,

and i is greater than 2, all the elements of the integral have the same sign.
Hence the question is whether

Ww i/w
Therefore we have to arrange all the W--~°; in descending order of

magnitude, and shall thereby obtain the non-zonal 3Et's in ascending order.

* [See Paper 12.]
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1901] PROPERTIES OF THE COEFFICIENTS OF STABILITY. 309

I wish first to show that these coefficients may to a great extent be sorted
by considering the inequality

W< = >W <» 1.2,3...,.-;<-!, 2, 3...,,')
Suppose, if possible, that whereas, for the ellipsoids defined by /3, v, v0,

Then there must be some value of $ for which

for all values of v greater than v0.

It is almost obvious that there is no one value of /3 which renders this
equation possible; but consider for example the case of s = 2, t = 0.

Now

^ (v) = - ^oPa (i>) + P3
2 00, $ 3 (i») = P3 (V) + /3?2P3

2 (i;)

If we substitute this in the equation we find

P8
2(OPaO') = P320')F3 0'o)

This can only be satisfied by v = vB, and hence the hypothesis is negatived.
Similarly the assumption of other values of s and t leads to an impossibility.

Thus we may consider the P functions in place of the ^ functions.

Consider the inequality

If the inequality is determined for any value of v, it is determined for all
values. Now when v is very large

Hence our inequality becomes

(t--s)Pi
s(l'o)> = <P/+1(''o)

This inequality is of the same kind for all values of v0. Now P/ (i/0)
involves the factor (v<?-l)& and P/+1 (i/0) involves (J / 0

2 - l )^ ( s + 1). Putting
therefore i>0

2 = l + e, the left-hand side involves e^s and the right es(*+1). It
follows that unless s is equal to i the left-hand side is greater than the right;
but s is necessarily equal to i — 1 at greatest.

Therefore *<•<*) > ^ W
ineretore p / (j>) > p / + 1 ( ^
Hence K's with smaller s are less than those with greater s.
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310 PROPERTIES OF THE COEFFICIENTS OF STABILITY. [11, § 6

It remains to discriminate between the two sorts of P-functions which
occur in ellipsoidal harmonic analysis; that is to say we must determine

.

Since the /3 of "Harmonics" is equal to K'2/(2 - K'2) in the present notation,
when /3 and K are small, we have by the formulae of that paper

ffl (v) = P / („) + i « ' 2
? m P / + 2 (v) + i * " ? M P < " (v)+...

When v is very great and K very small ^i = Pf, so it suffices to determine
the inequality

$/«>> = <P/(zv>

and this may be considered for any value of v0 greater than unity. By taking
v0 very large and K very small the inequality becomes

or 1 > = < K

But K < 1, hence the first sign holds true and

whence U / < K/

Thus it follows that for order i

m < IV < 1H/ < IV. • • < W < Ki*

The order of magnitude of these coefficients is therefore completely determined.

As confirmatory of the correctness of this result it may be mentioned that
I find that when y = 69° 50' and K = sin 73° 56',

Its1 = -1765, Ki = -2990, ms
2 = '4467, K3

2 = -4550, Its3 = -5719, K3
3 = -5876

When 7 = 75° and K = sin 81° 4' (another Jacobian ellipsoid) the numbers
run -130, -224, -460, -465, -604, -614.

We see that for the harmonics of higher order the ellipsoid is more stable
than it was and for those of lower order less stable.
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1901] THE CRITICAL JACOBIAN ELLIPSOID. 311

§ 7. The critical Jacobian Ellipsoid.

From a number of preliminary calculations I saw reason to believe that
the critical ellipsoid would be found within the region comprised between
y = 69° 48' and 69° 50', and sin-1

 K = 73° 52' and 73° 56'.
If we write

/(y, sin- K) = 4 U + ***LV^V) _ (2F - E) -
«2V l - « 2 s m 2

7 ; * ( l * 8 i n y )
where the amplitudes of E and F are <y and their moduli K, the existence of
the Jacobian ellipsoid is determined by

f(y, sin-1«) = 0*
The coefficient of stability is

K , ^ , ) i fl.fr.) ®.fro)
«,(7 , sin « ) - ! P i l ( V o ) Q i l ( l , o )

The formulae for computing 1&3 are given in § 4.
The values of E and F are from Legendre's tables.

Now I find
/ (69 r 48', 73° 52') = + -000191; /(69° 50', 73° 52') = + -001319
/(69° 48', 73° 56') = - -001186; /(69° 50', 73° 56') = - -000031

B 3 (69° 48', 73° 52') = + -001058; B 3 (69° 50', 73° 52') = - -000885
1ft, (69° 48', 73° 56') = + -000655; 1ft, (69° 50', 73° 56') = - -000765

By interpolation we get the following results:—
The Jacobian ellipsoid is given by

(7 - 69° 48') - -59642 (sin- * - 73° 52') + "33091 = 0

The vanishing of the coefficient of stability is given by

(7 - 69° 48') + -041625 (sin'1 K - 73° 52') - 1-0890 = 0

In these equations the minute of arc is the unit.

Solving them I find
7 = 69°48'-997 = 69°49'-0

sin-1
 K = 73° 54'-225 = 73° 54'-2

With these values I find that the three axes a, b, c, where abc = a3 are
- = -650659a

- = -814975
a

- = 1-885827
a

The last place of decimals in these is certainly doubtful.

* See [Paper 8, equation (16), p. 122] where the formula is reduced to a form convenient for
computation.
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312 THE CRITICAL JACOBIAN ELLIPSOID. [11, § 7

The formula for a>2 is given in (35).

Now

Then since a = c cos 7, b = cA,

W2 2FA cot 7 - fi

l+A^'+sec'y
J I ^ 2 _ 5

In this formula, F, 7, A must correspond with values interpolated amongst
those used in obtaining the solution.

From this I find
0)2 =-1419990 = -14200

In the paper on the Jacobian ellipsoid referred to above the moment of
momentum is tabulated by means of /u,, where the moment of momentum is

(J7T/3)'2 a6/i. The formula for p is given in (31) [p. 127] of that paper, and,
modified to suit the present notation, is

For the critical ellipsoid I find p = -389570.

A table of the numerical values for a number of Jacobian ellipsoids is
given on p. 130, but I now give as a supplement to that table the various
data for the critical Jacobian ellipsoid as follows:—

The critical Jacobian Ellipsoid.
7=69° 49', sin-1K = 73° 54', oos-'A=64° 24', a/a = -65066, 6/a=-81498, c/a = 1-88583,

-14200, n = -38957

In order to determine the question as to whether or not it is possible that
Wi3 = 0 should have another solution than that found in this section, I have
computed the value of this coefficient for the Jacobian ellipsoid 7=75°,
« = sin81°4'-4, and find it to be — 6-627. From the manner in which the
numbers in the computation present themselves, it is obvious that for more
elongated ellipsoids H£3 will always remain negative, and will become
numerically greater. I have therefore not thought it necessary to seek for
an algebraic proof that there is no second root of the equation.

Very long Jacobian ellipsoids tend to become figures of revolution, and
the coefficients of stability tend to assume the forms
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1901] THE PEAR-SHAPED FIGURE. 313

The forms of these functions are well known, and I think that fair approxi-
mations to the incidences of the successive figures of bifurcation might be
derived from the vanishing of this expression.

For example

P,1 (v) Qx1 (v) = i [P - (v2 - 1) log ( J ± l ) J

P*(") Q4(v) = eV [(35^-30^+3)log(^~J -$P(21^ - 11)(35^- ZOv2 + 3)1

I have not, however, attempted to solve the equation found by equating these
two expressions to one another.

Even when i = 3 and 7 = 69° 49' (the critical Jacobian) this rough approxi-
mation makes the coefficient of stability very small, but it is to be admitted
that P^Qj1 and P3Q3 differ very sensibly from PS(v) Q^iy) and $ 8 (i>) 4&3 (")>
although in such a way that the errors compensate one another.

§ 8. The pear-shaped Figure of Equilibrium.

By (21) the normal displacement 8n for the third zonal harmonic deforma-
tion may be written

z [q'2z2 - q2x2 - (3 - 4,q2) y2 - tffq'- sin2 7]

c2#'2 (1 - f sin2 7) («2/cos4 7 + f/A" + z2)^

subject to the condition

The expression has been arranged so that when x = y = 0, z = c, we have
Sn = e. Hence +• e and — e are the normal displacements at the stalk and
blunt end of the pear respectively.

In the section y = 0, this may be written

z(z2-c2q2)
c2 (c2 - z2 sin2 y)i

» _ecos7

The nodal points are given by - = + q = + '758056.
G

In the section x = 0, since K2 = q2 -—-—^, it may be written

The nodal points are given by - = + - = ± '788986.
C K
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314 THE PEAR-SHAPED FIGURE. [11, § 8

The section z = 0 is obviously another nodal line for all sections.

By means of these formulas it is easy to compute the normal displacements
from the surface of the critical Jacobian.

Pear-shaped figure of equilibrium.

0A =-65066, OB = -81498, 0 0 = 1-88583; ^ - = -14200, -— = -75806, 7-= = -78899.
2xp U\j UO

The figure above showing the three sections x = 0, y = 0, z = 0, is drawn
from these formulas, the dotted line being the critical Jacobian and the firm
line the pear. The scale of the normal displacements is, of course, arbitrary.

Comparison with M. Poincare's sketch shows that the figure is considerably
longer than he supposed.

In this first approximation the positions of the nodal lines are independent
of the magnitude of e, and they lie so near the ends that it is impossible to
construct an exaggerated figure, for if we do so the blunt end acquires a
dimple, which is absurd. It might have been hoped that such an exaggeration
would afford us some idea of the mode of development of the pear.

M. Schwarzschild has remarked* that it is not absolutely certain that the
principle of exchange of stability holds with reference to this figure, and that
we cannot feel absolutely certain that the pear is stable unless we can prove
that the moment of momentum is greater than in the critical Jacobian.

1 Die Poincare'sche Theorie des Gleiohgewichts," Annalen der K. Sternwarte, Munchen,
Bd. in.
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1901] THE PEAR-SHAPED FIGURE. 315

With reference to this objection, M. Poincare writes to me as follows:—

"Faisons croltre le moment de rotation, que j'appellerai M. Deux hypo-
theses sont possibles.

"Ou bien pour M < Mo (the moment of momentum of the Jacobian), nous
aurons une seule figure, stable, a savoir l'ellipsoide de Jacobi, et pour M > Mo

trois figures, une instable, l'ellipsoide, et deux stables (d'ailleurs egales entre
elles), les deux figures pyriformes.

"Ou bien pour M <H0, nous aurons trois figures d'^quilibre, deux pyri-
formes instables, une stable, l'ellipsoide, et pour M > Mo une seule figure
instable, l'ellipso'ide—auquel cas la masse fluide devrait se dissoudre par un
cataclysme subit.

"II y a done a verifier si pour les figures pyriformes, M > ou < Mo."

It seems very improbable that the latter can be the case; but this opinion
is not a proof*.

Since to2 is stationary for the initial pear, a small change in the angular
velocity will certainly produce a great change in the figure of the pear. If
this investigation has, in fact, its counterpart in the genesis of satellites and
planets, it seems clear that the birth of a new body, although not cataclysmal,
is rapid.

§ 9. Summary.

It is possible by the methods explained in my previous paper on "Harmonics"
to form rigorous expressions for the ellipsoidal harmonics of the third degree.
Accordingly in § 1 I proceed to form those functions. In § 2 the notation is
changed with a view to convenience in subsequent work, and for the sake of
completeness the harmonics of the first and second degrees are also given.
In § 3 the corresponding solid harmonics are expressed in rectangular co-
ordinates x, y, z. In § 4 I find the Q-functions, the harmonic functions, of the
second kind, and express the results in terms of the elliptic integrals E and
F. It appears that both the P- and Q-functions of the third degree of
harmonics occur in three pairs which have the same algebraic forms, and that
in each pair one of them only differs from the other in the value of a certain
parameter. There is, lastly, a seventh function which stands by itself; this
last corresponds to the solid harmonic xyz.

In § 5 the equations for Jacobi's ellipsoid are determined by the con-
sideration that the energy must be stationary, and the superficial value of
gravity is found in terms of the appropriate P- and Q-functions. I then
proceed to find the additional terms in the energy when the mass of fluid is

* [It is denied by M. Liapounoff as will be seen in Paper 12.]
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316 SUMMARY. [11, § 9

subject to an ellipsoidal harmonic deformation. This section is a paraphrase
of M. Poincare's work, but the notation and manner of presentation are some-
what different. The additional terms in the energy are shown to involve a
certain coefficient, which is called by M. Poincare a coefficient of stability.
It is clear that when any coefficient vanishes we are at a point of bifurcation,
and the particular Jacobian ellipsoid for which it vanishes is also a member
of another series of figures of equilibrium.

In § 6 the principal properties of these coefficients, as established by
M. Poincare, are enumerated. He has shown that the ellipsoid can bifurcate
only into figures denned by zonal harmonics; that it must do so for all
degrees, and that the first bifurcation occurs with the third zonal harmonic.
The order of magnitude of the coefficients of the several orders and of the
same degree is determined. A numerical result seems to indicate that as
the ellipsoid lengthens, it becomes more stable as regards deformations of the
third degree and of higher orders, and less stable as regards the lower orders
of the same degree.

In § 7 the numerical solution of the vanishing of the coefficient corre-
sponding to the third zonal harmonic is found, and it is shown that the
critical ellipsoid has its three axes proportional to -65066, '81498, T88583,
and that the square of the angular velocity is given by (02/2irp = -14200.
The nature of the formula for the third zonal coefficient of stability seems to
show that it can only vanish once—a point which it appears that M. Poincare
found himself unable to prove rigorously.

A suggestion is made for the approximate determination of the bifurca-
tions into the successive zonal deformations, but no numerical results are
given.

In § 8 the nature of the pear-shaped figure is determined numerically,
and the reader may refer to the figure above, where it is delineated. It
will be seen to be longer than was shown in M. Poincare's conjectural
sketch.

If, as M. Poincar6 suggests, the bifurcation into the pear-shaped body
leads onward stably and continuously to a planet attended by a satellite,
the bifurcation into the fourth zonal harmonic probably leads unstably to a
planet with a satellite on each side, that into the fifth to a planet with two
satellites on one side and one on the other, and so on.

The pear-shaped bodies are almost certainly stable, but a rigorous and
conclusive proof is wanting until the angular velocity and moment of
momentum corresponding to a given pear are determined. Further approxi-
mation [which is carried out in Paper 12], is required to determine the
stability.
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12.

THE STABILITY OF THE PEAR-SHAPED FIGURE OF

EQUILIBRIUM OF A ROTATING MASS OF LIQUID.

[Philosophical Transactions of the Royal Society, Vol. 200, A (1902), pp. 251—
314, with which is incorporated " Further consideration of the stability
&c," ibid. Vol. 208, A (1908), pp. 1—19, and "Note on the stability of
Jacobi's ellipsoid," Proceedings of the Royal Society, Vol. 82, A (1909),
pp. 188—9.]
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318 INTRODUCTION. [12

INTRODUCTION.

BY aid of the methods of a paper on " Ellipsoidal Harmonic Analysis "
[Paper 10] I here resume the subject of the immediately preceding paper
[Paper 11]. These papers will be referred to hereafter by the abridged titles
of " Harmonics " and " The Pear-shaped Figure."

At the end of the latter of these it was stated that the stability of the
figure could not be proved definitely without approximation of a higher order
of accuracy. After some correspondence with M. Poincare during the course
of my work, I made an attempt to carry out this further approximation, but
found that the expression for a certain portion of the energy entirely foiled
me. Meanwhile he had turned his attention to the subject, and he has
shown {Phil. Trans., A, Vol. 198, pp. 333—373) by a method of the greatest
ingenuity and skill how the problem may be solved. He has not, however,
pursued the arduous task of converting his analytical results into numbers,
so that he left the question as to the stability of the pear still unanswered.

M. Poincare was so kind as to allow me to detain his manuscript on its
way to the Royal Society for two or three days, and I devoted that time
almost entirely to understanding the method of his attack on the key of the
position—namely, the method of double layers, expounded in my own
language in § 9 below. Being thus furnished with the means, I was able
to resume my attempt under favourable conditions, and this paper is the
result.

The substance of the analysis of this paper is, of course, essentially the
same as his, but the arrangement and notation are so different that the two
present but little superficial resemblance. This difference arises partly from
the fact that I desired to use my own notation for the ellipsoidal harmonics,
and partly because during the time that I was working at the analysis his
paper was still unprinted and therefore inaccessible to me. But it is, perhaps,
well that the two investigations of so complicated a subject should be nearly
independent of one another.

It is rather unfortunate that I did not feel myself sufficiently expert in
the use of the methods of Weierstrass and Schwarz to evaluate the elliptic
integrals after the methods suggested by M. Poincare, but every exertion has
been taken to insure correctness in the arithmetical results, on which the
proof of stability depends. My choice of antiquated methods of computation
leaves the way open for some one else to verify the conclusions by wholly
independent and more elegant calculations. It is highly desirable that such
a verification should be made.
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1902] EXPLANATION OF THE METHOD. 319

As the body of this paper will hardly be studied by any one unless they
should be actually working at the subject, I give a summary at the end.
Even the mathematician who desires to study the subject in detail may find
it advantageous to read the summary before looking at the analytical
investigation.

PART I.

ANALYTICAL INVESTIGATION.

§ 1. Method of Procedure.

The pear-shaped figure is a deformation of the critical Jacobian ellipsoid,
and to the first order of small quantities it is expressed by the third zonal
harmonic with respect to the longest axis of the ellipsoid. In the higher
approximation a number of other harmonic terms will arise, and the coefficients
of these new terms will be of the second order of small quantities. The mass
of an harmonic inequality vanishes only to the first order, and it can no
longer be assumed that the centre of inertia of the pear coincides with the
centre of the ellipsoid.

In order to define the pear, I describe an ellipsoid similar to and concentric
with the original critical Jacobian; this new ellipsoid is taken to be sufficiently
large to enclose the whole of the pear. It is clearly itself a critical Jacobian,
and I adopt it as the ellipsoid of reference, and call it J. I call the region
between J and the pear R. The pear may then be defined by density + p
throughout J, and density — p throughout R.

If k is the parameter which defines J, its axes are expressed in the
notation of " Harmonics " by kv0, k (v0

2 —l)^,k (z/0
2 — ^rl)5; or in the notation

of the "Pear-shaped Figure" by kjsin/3, & cos/3/sin/3, Acos'y/sin/S, where
sin y8 = K sin y.

Now let Si" denote any surface harmonic, so that Sf is the same thing as
[|i '(/i) or P/(/x)] x [(Bis(4>) or Cf (<£)]. The third zonal harmonic deforma-
tion will then be eS3 or e^3 (/u) C3 (</>), where e is of the first order of small
quantities. On account of the symmetry of the figure, the new terms cannot
involve the sine functions S or S, and moreover, the rank s must necessarily
be even.

Suppose that the new terms are expressed by 2/?Sj8 for all values of i
from 1 to infinity, and with s equal to 0, 2, 4 ... i or i — 1. Then all the/ ' s
are of order e2, excepting f3 which is zero.
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320 EXPLANATION OF THE METHOD. [ I 2 ; § 1

[The ellipsoidal coordinates of the point x, y, z are v, /J,, <f>. I propose to
retain ft and </> as two of the coordinates, but to replace v by a new coordinate
T such that

where p0 is the perpendicular from the origin on to the tangent plane to the
ellipsoid v0 at the point v0, fi, <f>.

The equation
x2 y2 z2 _

where c is a constant, represents an ellipsoid similar to and concentric
with J.

Suppose that from the point x, y, z or v, p, <f> we draw the curve defined
by fi — const., <£ = const, and follow it until we reach J at the point x0, ya, z0.

Then we have

X2 = * 0 2 — 3 _ -, / 2 = *02 1 — 72 , „ T 7 - J

and similarly

Substituting these values of a;, y, 0 in the equation to the ellipsoid similar
to J we have

J I n / t i ~( \ • 7 *> *)

- ! 2 c

whence 1 — 2T = 1 — 2c

Hence T = c, a constant, defines an interior ellipsoid similar to and con-
centric with J.]

The equation to the pear may now be written

The only condition which is imposed on c is that it shall be great enough
to make T always positive.

In order to solve our problem it is necessary to determine the energy
lost in the process of concentration from a condition of infinite dispersion
into the final configuration. This involves the use of the formula for the
gravity of J, inclusive of rotation. It is well known that this formula is
simple for the inside of J and more complicated for the outside. Since the
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1902] EXPLANATION OF THE METHOD. 321

whole region R lies inside J there is no necessity in the present case to use
the more complicated formula.

The final expression for the lost energy cannot involve the size of J, the
exterior ellipsoid of reference, and therefore the arbitrary constant c must
ultimately disappear. It is therefore legitimate to make c zero from the
beginning.

It is clear that we might with equal justice have discussed the problem
by means of an ellipsoid which should lie entirely inside the pear, the region
between the pear and the ellipsoid would then have been filled with positive
density, and the formula for external gravity would have been needed. The
same argument as before would then have justified our putting the constant
c equal to zero.

We thus arrive at the same conclusion as does M. Poincare, namely, that
it is immaterial whether the formula for external or internal gravity be used.

I now revert to my first hypothesis of the enveloping ellipsoid, but put c
equal to zero from the first. In order, however, to afford clearness to our
conceptions, I shall continue to discuss the problem as though c were not
zero and as though J enclosed the whole pear. With this explanation, we
may write the equation to the pear in the form

(2)

§ 2. The Lost Energy of the System.

If the negative density in R is transported along tubes formed by a
family of orthogonal curves and deposited as surface density on J, we may
refer to such a condensation as — G. I do not suppose the condensation
actually effected, but imagine the surface of J to be coated with equal and
opposite condensations + G and — G.

The system of masses forming the pear may then be considered as being
as follows:—

Density + p throughout J, say + J.

Negative condensation on J, say — C

Positive condensation + G on J and negative volume density — p through-
out R. This last forms a double system of zero mass, say D, and D—C— R.

Let Vj, Vr be the potentials of + J and + R, and Vj-T the potential of
the pear.

An element of volume being written dv, let I dv, I dv, I dv, denote
J j J r J j—r

integrations throughout J, R and the pear respectively.
D. III. 21
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322 THE LOST ENERGY OF THE SYSTEM. [12, § 2

Let d be the distance along the z axis from the centre of the ellipsoid as
origin to the centre of inertia of the pear; let a> be the angular velocity of
the critical Jacobian about the axis x, so that co2/2irp = '14200; and let
a)2 + Sea1 be the square of the angular velocity of the pear. Lastly, let M be
the mass of the pear.

Then the lost energy E is given by

j V i ^ ^ f [y (
j-r J j—r

Md2Now I zpdv = Md, so that I ( - 2zd + d2) pdv = -
J j-r J j—r

Again, since

Vj_r =Vj-Vr, f = f - f , \ Vrpdv = f Vjpdv
Jj-r Jj Jr Jj Jr

we have ^ I Vj-rpdv = \ \ Vjpdv — I Vjpdv + \ I Vrpdv
J j—r J j J r J r

Also

\ (to2 + S&>2) I \y2 + (z- d)2] pdv = ia>2 I (y2 + z2) pdv - i&>2 | (y2 + z2) pdv
Jj-r Jj Jr

+ iSw2 f (y2 + z2) pdv - i (»2 + Sw2) Md2

Jj-r
Hence

f f fE=\\ [Vj + <"2(y2 + z2)]pdv- j [Vj + \a>2(y2 + z2)]pdv + \ \ Vrpdv
J j J r J r

+ JSo,2 [ (y2 + z*) pdv - i («2 + So,2) Md1

Jj-r
As the several terms will be considered separately, it will be convenient

to have an abridged notation to specify them. I may denote the lost energy
of J, inclusive of rotation, by \JJ\ the mutual lost energy of J (inclusive
of rotation) and of the region R, considered as filled with positive density,
by JR; the lost energy of the region R by \RR.

The moment of inertia of the pear is A, and it is equal to Aj — Ar, the
moment of inertia of J less that of R.

Then

E = ^JJ-JR + %RR + \(Aj- Ar) Sa,2 - | (ft>2 + So,-) Md2

where %JJ=\\ [V} + a>2(y2 + z2)] pdv

JR = f [V} + JM2 (y2 + z2)] pdv
J r

Aj = f (f + ?) pdv, Ar=( (f + z2) pdv
J j J r

and %RR = ( VrPdv
J r
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1902] THE EXPRESSION FOR THE ELEMENT OB' VOLUME. 323

If \DD denotes the lost energy of the double system described above, we
clearly have

\RR = ±(C-R)(C-R)+CR- \GG = \DD + GR- \CG

We require to evaluate E to the fourth order; now d is at least of the
second order and d? of the fourth order; hence d2. S&j2 is at least of the fifth
order and negligible.

Hence, finally, to the required degree of approximation

E = ^JJ-JR + GR - \CG+ \BD + \ (Aj - Ar) So2 - %MdW...(3)

It will appear below that d is not even of the second order, so that the
last term will, in fact, entirely disappear, although we cannot see at the
present stage that this will be so.

§ 3. Expression for the Element of Volume.

The parameter /3 of " Harmonics " is connected with K of the " Pear-shaped
Figure " by the equations

1 — R 1 — <A i /2 9R </2 9/3
1 — P „ n 1 — IC K Zip K Lp ,
1 J . O " * ' ' 3 ~ i 4 . ^ 2 ~ 1 i v 2 ' 1 _ / Q « - 2 ' 1 4 . / Q "

There will, I think, be no confusion if I also use ft in a second sense,
defining it by the equations

sin /3 = K sin 7, cos2 /3 = 1 — K2 sin2 7

It has already been remarked above that the squares of the semi-axes of
J are

In ii fV T n / n -« \ * ^ C O S /_> -,

„,, „ r . ,, . , , cos yS cos 7
Ihe mass of J is then iirpk? ' „ , .6 r sm3 /3

I now take the mass M of the pear to be

, , . , ,cos /Scos 7
6 r sin3/3

Thus k0 is a constant which specifies the volume of liquid in the pear, and
the mass of J is M (k/koy.

I t will be convenient to introduce certain new symbols, namely,

A2 = 1 - «2 sin2 d, P = 1 - «'2 cos2 $

Ax
2 = 1 - /t2 sin2 7 sin2 6, T? = cos2 7 + K'2 sin2 7 cos2 </>

= cos2 ft + K2 sin2 7 cos2 0, = cos2 /3 - K'2 sin2 7 sin2 $

where sin 8 is the yx of " Harmonics."

I t will be observed that 1^ is the same function of -*;'2sin2(£ that A1

is of K2 cos2 6.

21 — 2
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324 THE EXPRESSION FOR THE ELEMENT OF VOLUME. [12, § 3

The roots of the fundamental cubic were v2, fi2, and -=—- , and in
1 ~ p

,, , ,. ,, . . , . l-«'2cos2rf> P
the new notation they are v2, sin2 a, - or — .

Since v0
2 = ——^, we now have

sin2 ft
-IV

"° ^ " s i n 2 ^ -° 1-ft sin2 ft
The expression for p0, the perpendicular from the centre on to the tangent

plane at 0, <p, is given in (49) of " Harmonics," namely,

P<? _ "o2("«2~ *) (y»2~I^|) _ cos2 ft cos2 7 1
l& / 9 9\ / 9 1-/3 COS 2<f>\ cii-t2 /3 A 2 T ^ 2 \ /
AT (i^n — / i ) (I 'o — } SlU. P til l i

Also by (50) of " Harmonics " the element of surface da of the ellipsoid is
given by

1 - ft cos 20 2

/ I - f f cos 2(f>\i / ! + /8 _
V 1- /3 7 V l ^ 8

Passing to the new notation this may be written

poda _ SM i k\* 1 - K2 sin2 ^ - K'2 COS2 (/> _ 3if / ^ \ 3 A^IV / I 1
47T/3

The new independent variable T is to replace v; it was defined in (1) by

and in accordance with (2) the equation to the surface of the pear is

For brevity I now write
_ 2T COS2 /3 cos2 7

so that

1 - y S sin2/3

1 - ft cos 20 1 - «2 sin2 0 - K'2 COS2

T ,

sin2 yS VIV A,2/
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1902] THE EXPRESSION FOR THE ELEMENT OF VOLUME. 325

Therefore

(i

A,21? V A,
sin fl cos fl cos 7 ' (1 - Tj)* (1 - TX sec2

If we write

G = i (1 + sec2 fl + sec2 7)

H = f ( l + sec4 /3 + sec4 7) + \ (sec2 fl + sec2 7 + sec2 fl sec2 7)

this expression, when expanded as far as T^, becomes

A^iy T / I 1 \ f _1_ / I 1 \ "1

sin /3 cos fl cos 7 [_ Tl U ? + IV ~ / Tl 1 A,«IV + U12 + I ? / ~ J

The arcs of the three orthogonal curves were denoted dn, dm, df in
" Harmonics," where dn was the outward normal. The element of volume
dv is dndmdf, and the limits of integration are 0 t o r ; but if we take the
limits as being T to 0, dv must be taken as being — dndmdf.

The equations (50) of " Harmonics " give

B u t

and therefore

( ^ _ ^ ) i C o s d

s2 8 c

- 7 - , cos/3 cos 7 A ^ r , / ! 1 \ [ ( ± . L -
sin33 sin2 7 Ar V^2 AV [ J W T2

7
drdedcf> sin3/3 sin2 7

On comparing this with the expression for poda, we see that

Another form, which will be more generally useful, is found by substituting
for Tj its value; it is

dv
drdddcj)

_ 2 cos4 flops'7 L ^ ^ L_^ 4. n
*T sin2 7 L Vri6Ai4 IV/VJ

_ 3M^ fk\3 fA,2 - IV cos2 8 cos2 7 ["_1_ _ JL_ _ ^ /_1_ _ J_ \ l
~ 4>irp \kj \ sin2 7 sin2

7 [r,4 Aj4 VI? A//J

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.015
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.015
https://www.cambridge.org/core


326 THE EXPRESSION FOR THE ELEMENT OF VOLUME. [12, § 3

In order to express this more succinctly let

•K AF sin2 7

6 cos2 j3 cos2 <
7T sin2 y Y> A^/ I AF
6cos^cos4

7r / 1 1
7T sin2

 7 [_ ^IYA,4 IV A

_H(_1 2_Y1J_
llYA^ r^AxVj AF

Other forms of these functions are as follows :-
. 6 K2cos20 + K'2sin2ft

ir AF

= ^ cos2 /8 cos2 7 («2 cos2 ^ + K'2 sin2 </,) T^ 2 + i - f _ fll ^ ^ p

= - cos4 /3 cos4 7 («2 cos2 6 + *'2 sin2

We note that

f 1 oil- 1 \ - Tf\ 1
L~ I V A ?

 + ^ Vr,2 +.A,2/ MJ ATATVTJ

...(6)

M I k
d6d(j>

.(6)

Then
dv M ( k\3

dTdvdcf) p \kj x

The surface T = constant is an ellipsoid similar to J with squares of semi-
axes reduced in the proportion 1 — 2T to unity. Therefore the volume enclosed
between the two ellipsoids is

But taking the limits of 6 and cj> as \ir to 0, so that we integrate through
one octant and multiply the result by 8, we have another expression for the
same thing, namely,

jdv = - ( | Y J J [<&r - W - friT3] d0d4>

Therefore equating coefficients of powers of T in the two expressions,

riw fibrin f i r r fl™
&ddd} = 3, Vdddd> = L Ild6d<i> = % ...(7)

Jo Jo Jo Jo

rh^ ri

Jo Jo

The first of these will be of use hereafter, and all three afford formulae of
verification in the numerical work.
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1902] DEFINITION OF SYMBOLS FOR CERTAIN INTEGRALS. 327

§ 4. Determination of k; Definition of Symbols for Integrals.

CO

The pear being defined by T = — eS3 — S /?$ / , with all t he / ' s of order e2,
I

excepting f3 which is zero, we have at the surface of the pear to the fourth
order

In all the integrations which follow, and especially in the present instance
in the determination of the volume of the region R, it is important to note
that <J>, "9, ft are even functions of the angular co-ordinates, and that there-
fore the integral of any odd function of those co-ordinates multiplied by any
of these functions will vanish. When the odd functions are omitted we may
integrate throughout the octant denned by the limits \ir to 0 for 6 and <p,
and multiply the result by 8.

Then, only retaining terms as far as T3, we may in finding the volume R
take

T = — "SffSf, i only even

T2 = e°- (83y + 2tef^83Sis, i only odd

T3 = 0

To the cubes of small quantities we have, therefore,

J r P W JO JO

The first term vanishes because Sf is a surface harmonic and <&d8d(}> is pro-
portional to padcr.

Thus we are left with

M

P \Ko' Jo

I now introduce symbols for certain integrals, and in order to bring all
the definitions together I also define several others which will only occur
later.

An fa
Let <£/= ®(Sisyd0d<b

Jo Jo

f M /kI dv = -- ( £
J r P \Ko

Jo Jo

pf =

.(8)
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328 DETERMINATION OF THE VOLUME AND MASS OF R. [12, § 4

All these integrals vanish unless i is even. For immediate use I also
introduce

fa fa
JO JO

The yfr integrals vanish unless i is odd, but it will appear later that they
are not actually required.

I further write

Jo JO ' J0 J0

6co83/3cos3ysm^fafa[f 1 1
TT sin^y

fa fa
Jo Jo

- 3 G ddd<j>\- . . .(8)

6 (-JT fa
= — cos3 y3 cos3 7 sin 8 \ (K2 COS2 6 + K.'2 sin2 <

7T Jo Jo
r. / i I N 3G 1
I*(ATIV + A7i\J -S?ivJ

With this notation we have at once to cubes of small quantities,

(9)

But before using this I will obtain another integral to the fourth order.
It is

f rpdv = M(£)'( 7 n{^[e°(S3y
J r \nV Jo JO

Omitting terms which vanish, amongst which are integrals of the type
, we have

f rpdv - 1 ¥ ( | 4} (10)

Returning now to the determination of the mass of + R, and observing
that the mass of the pear is equal to that of J — R, we have

M = M

Therefore = 1 +

A term e4S of the fourth order has been introduced, but it will appear
that it is unnecessary to evaluate it.
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1902] THE ENERGIES \JJ AND JR. 329

There will be frequent occasion to express k? in terms of kf. Now

But this will only be needed explicitly as far as e'2, and to that order

It is, however, necessary to determine 1(7-) — f ( j ) to the fourth order.
\K0J \K0/

Now f

f (|) = t {1 -

Hence to the fourth order

It will be observed that the yjr integrals and S have both disappeared.

§ 5. The Energies \JJ and JR.

If ttj, bu d are the semi-axes of a Jacobian ellipsoid of mass Mx and
angular velocity «, its lost energy, inclusive of rotation, is

where ^ is the usual auxiliary function.

The equations to be satisfied by the ellipsoid afford expressions for <u26,2

and <u2Ci2 in terms of differentials of SP. If these expressions are added to-
gether, to2 may be eliminated, and the expression becomes

In reverting to the notation adopted here, I remark that ^ / , © / will be
used to denote those functions when the variable is v0, and the variable will
only be inserted explicitly when it has any other value.

In the present case ifj, the mass of the Jacobian ellipsoid, is M(k/ko)
s, and

it was shown in the " Pear-shaped Figure " that

Hence ^JJ^JL^j [ft,©,-P^], (12)
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330 THE ENERGIES \JJ AND JR. [12, § 5

It was shown in the same paper that the internal potential of the Jacobian
inclusive of rotation, is

Therefore in the present case

Vj + |a>2 (f + z>) = | ^ [j-j m,(So - p Pi1 Qil sin2 0 (*2 see8
 7 + f sec2 /3 +

But the equation to an inequality on the ellipsoid denned by T is in our new
notation

sin2 /3 (a2 sec2 y + y* sec2 /3 + 22) = A;2 (1 - 2T)
therefore

Let us divide this potential into two parts, say U', U", of which the first
is constant and the second a constant multiplied by T. Also let (JR)', (JR)"
be the two corresponding portions of the energy JR.

In order to find (JR)' we have simply to multiply V by the mass of R
considered as consisting of positive density. The volume of R is the excess
of the volume of J above that of the pear; hence the mass of R is

*[(SH-
Therefore (JR)' = f ~ (r-Y - (TTY ($o©o - P^ Qi1)

Subtracting this from \JJ as given in(12),
.M2 f / & y fk\5~\

But the la t ter factor was found in (11) as equal to T
9^ — ^e4 (<r2)

2. The
term ^V o n ^y contributes a constant to t he whole energy and may therefore
be dropped.

Accordingly

,n (13)

For the other portion (JR)" we have

Then by means of (10)

)"=( U"pdv = S~(~)3 P.'Q,1 f rpdv
J r • "-o V^o/ J r

Mi il. \ 5

1 ^ ( f j P1
1Q1

1{e2^+2(//)^/ + 4Se2//a,/-2e^4) ...(14)
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1902] THE SURFACE DENSITY OF CONDENSATION. 331

In the terms of the fourth order we may put (kjk^f equal to unity.
Therefore combining (13) and (14)

5

e2P,1 Q,'c

+1 f2 ii*1 [- ( f »<&» - P^Q,1) (<r2)2+ep^Q^J

i* - P1
1Q1

1S(//)2</.4 (15)

| 6. Surface Density of Condensation G; Energy GR.

The region R being filled with positive volume density p, is concentrated
along orthogonal tubes on to J, and there gives surface density 8.

To the first order, by (5),

dv , P. n cos2 yS cos2 7 / 1

Integrating with respect to T from the pear to J, we have as far as
squares of small quantities

eS3 + 2 / /

It is now necessary to express 8/p0 in surface harmonics. The first two
terms are already in the required form; for the remainder let

" , „ , cos2 0 cos2
 7 / 1 1 « \ ,«v ,

Multiplying both sides by Sis<&d0d<j) and integrating, we have

VW = cos2 0 cos2 7 fj - ^ (± + ^-

Therefore r/f = <u//0/, and vanishes unless i is even.

When i = 0, v>) = ^-°; and since by (7) <£0 = 3, and »„ = [/"•*• (Styded<f> = <r2,

we have 9;0 = ^cr2.

Hence we have

8 = -PoP [eSs + ̂ V 2 + 2 [f ^ + ff) s

This is expressed in surface harmonics, the middle term being of order
zero.
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332 THE ENERGY GR. [12, § 6

By (51) of " Harmonics " the internal potential of S is

Vc = - 3 -r ( r-Y | # 3 (v) © 3 (v0) Ss + ^ e V 2 ^ 0 © 0

+ ^ ( ^ ITs +/** ) ¥»* (V

We have 43«s I1") = 4pi s j ~ = iP» ~ T :—5~~

But before proceeding to use this I will introduce a new abridgment, and let

(16)

Then T$f (v) <&i« (p0) = g l / - T

and
= ~ 3 f (I) f

M(k\2 cos2/
07- r T. ykj sin

In order to find the energy GR we multiply Ve by the element of mass

pdv =

and integrate throughout R.

Now

Vrpdv „ iW2

T.

+ ̂
!^+/is)a/^/SV

Let us integrate these three lines separately.

First integral
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1902] THE ENERGY GR. 333

Second integral

x {e2 (Ss)
2 + 22ef*838*} d0d<f>

M2 fk\5 (
In \ hi I ] 3 **^

Third integral

x {e2 (/S3)
2 + 2-ZeffSsSi«} dd df

=f C S) Is ( ^ )
All the terms, excepting the first of the first integral, are of the fourth

order, and in them we may put (kjk0)
5 equal to unity.

Therefore

a,) »/ + (23/ + 2233) pf] + 2S (/i
s)2a/</»i4.. .(17)

§ 7. TAe Energy \GG; Result for \JJ- JR + GR -

From the last section it appears that the potential of G at the surface,
where T = 0, is

V°= ~ 3 ¥„ ( I
For the mass of an element of the surface density we have

ddd<f>

These are to be multiplied together and half the product is to be inte-

grated. Then bearing in mind that I j<i>ddd^> = 3, we have
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334 EXPRESSION FOR \JJ- JR+CR- \CC. [12, § 8

In the terms of the fourth order we put (k/koy equal to unity; thus

ftf&f + X

Combining this with (17)

CR - ±CC = | f ( | J *"&,& + f ~

We are in a position to collect together all the results obtained up to
this point. Now \JJ — JR, as given in (15), contains Pi'Qi1, ^o®<>; the
latter of these is what is now written ^ 0 , and since the ellipsoid is critical

Collecting terms we find that the terms of the second order disappear,
and that

a, ') </>/}... (i9)

The reader will recognise that the last term involves the coefficient of
stability for the deformation 8f. It is important to note that if Sf is of odd
order there is no term with coefficient e2ff.

§ 8. The Term

In the Jacobian ellipsoid

In the present notation this is

3M \ sin2/3 I k

Hence

I now make the following definition

8X = sin 6 (1 - K'2 COS2

so that z = kSi
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1902] THEORY OF DOUBLE LAYERS. 335

Then Md = I zpdv = I zpdv — I zpdv = — I zpdv
J j—r J j J r J r

= -M (jj k

= M

Therefore to the required order

^ (20)

We again note that this term in the energy does not introduce any term
with a coefficient e'/i- Hence thus far the whole energy for harmonic
deformations of odd order is of the form Le4 + M (//)2,

§ 9. Double Layers.

It remains to determine the value of ^BD in the energy, and for this
purpose we must consider double layers, according to the ingenious method
devised by M. Poincare.

Let a closed surface S be intersected at every point by a member of a
family of curves, and let a be the angle between the curve and the outward
normal at any point. At every point of 8 measure along the curve an
infinitesimal arc T, and let T be a function of the two co-ordinates which
determine position on 8. The extremities of these arcs define a second
surface >S", and every element of area do- of S has its corresponding element
da' on S'. Suppose that 8 is coated with surface density 8, and that 8' is
coated with surface density — S', where Sda = 8'dcr'. The system SS' may
then be called a double layer, and its total mass is zero. We are to discuss
the potential of such a system.

Let U (+) and U (—) be the external and internal potentials of density 8
on S, and Uo their common value at a point P of S. At P take a system of
rectangular axes, n being along the outward normal, and s and t mutually at
right angles in the tangent plane.

In the neighbourhood of P

dU, , dU, -. dU, ,
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336 THEORY OF DOUBLE LAYERS. [12, § 9

In the first of these n is necessarily positive, in the second negative.

Now ~(+)=d^(-) = ̂ ; and the like holds for the differentials with
ds v ' ds x ' ds

respect to t.

Also by Poisson's equation

dU ,
dn ^ '

dU
dn

Let P P ' be one of the family of curves whereby the double layer is
denned, and let P' lie on 8', so that PP' is T. By the definition of a the
normal elevation of S' above 8 is T COS a.

Let w, »' be the potentials of the double layer at P and at P'.

The potential of 8' at P ' differs infinitely little in magnitude, but is of
the opposite sign from that of S at P ; it is therefore — Uo. The point P '
lies on the positive side of S at a point whose co-ordinates may be taken to be

n = T cos a, s = T sin a, t = 0

Therefore the potential of S at P ' is

TT dU, .
U0 + T cos a -=— (+) + T sin a ,

an ds

™ , , dU, , . dU
1 nereiore v = T COS a T— (+) + T sin a —j—

dn ds

Again the potential of S at P is Uo, and since P lies on the negative side
of 8' and has co-ordinates relatively to the n, s, t axes at P ' given by

n = - T cos a, s = — T sin a, £ = 0

since further the density on 8' is negative, we have

dU, , . dU
V = TCOSa—^ (—) + T s m a - r -

ara as
Therefore

v — v' = T cos a I -i— (—) — ~-^r- (+ ) I = 47TT6' COS a

The differential with respect to n of the potential of S falls abruptly by
4>TTB as we cross <S normally from the negative to the positive side; and the
differential of the potential of 8' rises abruptly by the same amount as we
pass on across S'. I t follows that dvjdn on the inside of $ is continuous with
its value on the outside of 8'.

The surface 8 to which this theorem is to be applied is a slightly deformed
ellipsoid, and the curves are the intersection of the two quadrics confocal with
the ellipsoid which is deformed. The curves start normally to the ellipsoid,
and where they meet S the angle a will be proportional to the deformation
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1902] THEORY OF DOUBLE LAYERS. 337

whereby S is derived from the ellipsoid. It follows that cos a will only differ
from unity by a term proportional to the square of the deformation, and as it
is only necessary to retain terms of the order of the first power of the defor-
mation, we may treat cos a as unity.

We thus have the result v — v'~ 4>TTT8

Suppose the curve PP' produced both ways, and that Mo, M^ are two
points on it, either both on the same side or on opposite sides of the double
layer.

Let MoM, be equal to £ let f be measured in the same direction as n, and
let f be a small quantity whose first power is to be retained in the results.

Let v0, vx be the potentials of the double layer at Mo and Mx respectively.

When £ does not cut the layer we have

and when it does cut the layer

In the application which I shall make of this result the surface 8' will
actually be inside S. Then v0 will denote the potential at any point not
lying in the infinitely small space between S and S', and 0, is the potential
at a point more towards the inside of the ellipsoid by a distance £; 8 is the
surface density on the external surface S and r is measured inwards. If then
we still choose to measure n outwards, as I shall do, our formula becomes

v0 — v, — t -=- = 47TT8 or 0
an

according as £ does or does not cut the double layer.

It may be well to remark that v being proportional to T8, £dv/dn is small
compared with 4TTTS. It is also important to notice that the term 4TTT8 is
independent of the form of the surface, and that dvjdn will be the same to
the first order of small quantities for a slightly deformed ellipsoid as for the
ellipsoid itself.

We have now to apply these results to our problem.

The position of a point in the region R may be defined by the distance
measured inwards from J along one of the curves orthogonal to J. The
surface of the pear as defined in this way is given by e, a function of 8 and (f>.
Any point on a curve may then be defined by se, where s is a proper fraction.
If s is the same at every point the surface s is a deformed ellipsoid; s = 1
gives the pear and s = 0 the ellipsoid / .

If da is an element of area of J, the corresponding element on the surface
s will be (1 —\es) da. The value of X will be determined hereafter, and it is

D. in. 22
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338 THEORY OF DOUBLE LAYERS. [12, § 9

only necessary to remark that it is positive because the areas must decrease
as we travel inwards.

Let s and s + ds be two adjacent surfaces; then the mass of negative
density enclosed between them in the tube of which (1 — Xes) da- and
{1 — \e(s+ ds)} da- are the ends is — pe(l — ~h.es) dads. If this element
of mass be regarded as surface density on s, that surface density is clearly
— peds. If the same element of mass were carried along the orthogonal tube
and deposited as surface density on J, that surface density would be
— pe (1 — Xes). The sum for all values of s of all such transportals would
constitute the condensation — G already considered.

The double system D consists of the volume density — p in R, and the
positive condensation + C on J, the total mass being zero.

Let z, a proper fraction, define a surface between J and the pear. Consider
one of the orthogonal curves, and let Vo be the potential of D at the point P
where the curve leaves J and Vz the potential at the point Q where it cuts z.
Then I require to find Fo— Vz.

Since s denotes a surface intermediate between J and the pear,

-f ( Vo — Vz) ds is the excess of the potential at P above that of Q of surface

density — peds on s and surface density + pe (1 — Xes) ds on J. Such a system
is a double layer, but there is a finite distance between the two surfaces, and

the form of -y- (Vo — Vz) will clearly be different according as z is greater or

less than s.

The arc es may be equally divided by a large number of surfaces, and we
may take t to define any one of them. Now we may clothe each intermediate
surface t with equal and opposite surface densities + pe [1 - \e (s — t)] dt.

The density +pe[l—Xe(s-t)]dt on t, together with -pe[l-\e(s-t-dt)]dt
on t + dt, constitute an infinitesimal double layer; and since the positive
density on each t surface may be coupled with the negative density on the
next interior surface, the finite double layer may be built up from a number

d2

of infinitesimal double layers. Hence -j—r (Fo — Vz) dtdt is the excess of the

potential at P above that at Q of an infinitesimal double layer of thickness
edt, and with surface density pe [1 - Xe (s — t)] dt on its exterior surface.

We may now apply the result vo — v1 — ^-j- = 4nrSr or 0, according as f does

or does not cut the double layer, and it is clear that

^ f l - M . - « ) ] or 0

according as z is greater or less than t.
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1902] THEORY OF DOUBLE LAYEES. 339

In the next place, we must integrate this from t = s to t = 0, and the result
will have two forms.

First, suppose z > s; then for all the values of t, z > t, and the first
alternative holds good. Therefore

Secondly, suppose z < s; then from t = s to t = z, z <t and the second
alternative holds, while from t = z to t = 0, z >t and the first holds. Therefore

We have now to integrate again from s = 1 to s = 0.

From s = 1 to s = z, z< s and the second form is applicable ; from s = z to
= 0, £ > s and the first form applies.

Therefore

- Vz - ez y~ = 47T/362 [> - \e (as - i«2)] ds + ^Trpe2 [s - i\es2

(1 - *") - ^ 2 (1 - z)] + ^

{20 - Z"

Finally, we have to multiply — %(VO—VZ) by an element of negative mass
at the point denned by z and integrate throughout R. The physical meaning
of this integral will be considered subsequently.

We have already seen that such an element of mass is given by

— pdv = — pe (1 — A.e.s) dcrdz

and the limits of integration are z = 1 to z = 0.

Therefore

\\(V0-Vz)pdv

- \ez){2z - z* - \e (z - z2 + ys)}dzd(T + %p I e2z(l -\ez) -j-dzdtr

dV
In this expression we neglect terms of the order e5 and note that e3z2 -j—

is of that order.

Thus

( Vo - Vz) p dv = 7r/32jTe3 [2z -z2-\e(z + z2~ fz3)] dzda

-r-dzda(z = l to 0)

(1 - Xe) d<7 + Jp Je2 ^ do-

the integrals being taken all over the surface of the ellipsoid.
22—2
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340 THE ENERGY OF THE SYSTEM D. [12, § 9

We must now consider the meaning of the integral £/(F0— Vz)pdv.

Let P be a point on / and Q a point in R on the same orthogonal curve.

Let — U be the potential at Q of the density — p throughout R, and - Uo

its value at P.

Let 8 be the surface density of the positive concentration on J, W its
potential at Q, and Wo its value at P.

The lost energy of the double system consisting of — p throughout R, and
8 on J is

This is equal to l j(U- W)pdv- £ f(U0- W0)8da

Consider the triple integral 111 ( Ua — W0)pdv. Here dv = e (1 — Xes) da ds;

also Uo — Wo is not a function of s, and the limits of s are 1 to zero. Therefore

ffj(Vo- W0)pdv=fJ(U<)- Wo) \f1e(l-\es)pds~} do-

But I e(l — Xes) pds is equal to 8 the surface density of concentration.

Therefore

o - Wo] 8d<r =fff( Uo - Wt) p dv

We may now revert to the Gaussian notation with single integral sign,
and we see that tha lost energy of the system is

if[(W0-U0)-(W-U)]Pdv

But W — U is the potential of the double system at Q, and is there-
fore Vz; and Wo - Uo is the potential of the double system at P, and is
therefore Fo.

Accordingly the lost energy

= $trp*f(e>-\ei)d<7 + lp feeder (21)
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1902] DETERMINATION OF e AND X. 341

§ 10. Determination of e and \ .

e is the arc of the orthogonal curve from J to the pear.

The arc of outward normal is connected with p and our variable T by the
equation

— dn = vdv =^-dr
P P

It follows that

€=pc,j—dT, integrated from J to the pear

By (50) of " Harmonics," with the notation of § 3 of this paper

s i n / 3

V ^ ( ^ _ 1 ) i ^ 2 _ l ± | ) i cos/3cos7(l-T1)4(l-TIsec2
y8)i(l-T1sec27)i

Therefore;

Po =

A^IY IA2 + IY '

Integrating this from J to the pear

i ...(22)

We have, moreover, by the formula before integration

Also to the order zero — n==por.
Since - n is what was denoted in § 9 by es, the element of volume is

— (1 + Xn) dndcr, and this is equal to

cos2 8 cos2 7 / 1 1 ~
p0 [1 - X^or] | 1 - T

T-i C. COS2 8 COS2 7 / 1 1 art\l I 7 J

or po | l -T-{\ j» ( )+—^L__Jl(_+w-Q_2G!)MArrfT

But by (5) the element of volume is

cos2 7 / 2 2 _^\1 , ,

Equating coefficients of T in the two expressions we find
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342 PORTION OF THE ENERGY \DD. [12, § 11

§ 11. The Energy %Trp2je*(l -\e)d<r.

From (22) and (23) we have

j } + ± - 20

So that

e
3 (1 _ xe) = - p

Again from (6)

Therefore
^ \kj cos ^ c o s 7 s in

When this is integrated we may put (kjko)
s equal to unity. In the

integral the first term vanishes, and the second term gives

M2 sin2/3 v „.„ „
5 l n cos/3 cos 7 " JlRl

In the third term we substitute for <I> its value and have

3 I / 2 cos3/? cos3 7 sin £ 4

nlc7~'" sin27 e

which is equal to

M2 6 cos3 ff cos3 7 sin /3 fa fc [

fo f i" 1 / I _ 1'

M'2By the definition (8) this is equal to — $-j- e4o-4.

Hence the required term in the energy is

J
 K | cos

^ _ i
cos 7 J
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1902] REMAINDER OF THE ENERGY ^DD. 343

dVC dV
12. The Energy lPe2~j-da.

It is first necessary to determine dV/dn.

Suppose that the ellipsoid J is coated with surface density 8, and that a
second surface is drawn inside J at an infinitesimal distance T, and coated
with negative surface density — h", so that the two form a double layer. Then
TS being a function of the two angular co-ordinates on the ellipsoid may be
expanded in surface harmonics; suppose then that

Consider the two functions

t = X4nh{(pt*-l)i(v0*-\-+-^*^-^1&f(v)8f, for external space

Vt= HfrM-^^Sf, for internal space
dv0

Since these functions are solid harmonics, the matter of which Ve and F»
are the potentials is entirely confined to the surface of the ellipsoid, and
since they are not continuous with one another, the ellipsoid must be a double
layer.

h

and therefore

Hence at the surface of the ellipsoid

Ve - V{ = lAirhi'Si" = 4TTTS

But this is the law found in § 9 for the change of potential in crossing a
double layer, and hence Ve, Fi are the external and internal potentials of the
double layer TS.

„. d _p d
dn k2 vdv

" lfi) l d» dv l "A 'dn~ dn~ dn ~ , k*v0
 {v° fi

This result will hold good to the first order of small quantities if the
surface be a slightly deformed ellipsoid, such as was the surface denned by t
in §9.

In the elementary double layer t the density was pe [1 — \e (s — t)] dt, and
the thickness was edt, so that the thickness multiplied by the density was
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344 REMAINDER OF THE ENERGY \DB. [12, § 12

pe2[l — \e(s — t)]dtdt. Since, however, we only need this to the first order,
we may take it as pe^dtdt. It will now be convenient to change the meaning
of hf to some extent, and to write

= %hf8f
0

Thus for the elementary double layer we have

o
dV

It follows that in applying the formula (25) to determine -j— for the

double system D, we may say that

dsdt dn~o &• vo ( ' V" 1 -BJ l dv0 dv0
 l

Since the right-hand side does not contain t, we have only to consider the
integral

I I dsdt=I sds= ^
JoJo Jo

Thus, for the system D,

i(l±|)Vf?^* (26)
dn o k2v0

 v

This result may also be obtained as follows:—To the first order we may
concentrate the negative density in the region R on a surface bisecting that
region. We may then consider the positive concentration G on J, and the
negative concentration on the bisecting surface as an infinitesimal double
layer of thickness ^e. We have seen that the surface density + C is
— ppe83, and that e = —peS3 (in both cases to the first order only). Thus
the density S of + G is pe, and the thickness r of our layer is Je; the product
therefore TS is |pe2.

00

Hence T8 = ^pe" = ^p1 hfSf, and thus we arrive at the same result as
o

before.

I now introduce an abridged notation analogous to that used previously,
and write

dv0 dv0

We then have by (26)

CO

where 6
2 = 2 hf S*

o
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1902] REMAINDER OF THE ENERGY %DD. 345

By (22) to the first order

Multiplying by <&8is and integrating, we have

pf = ?/p/

Hence e2 = ^ S £ - £/ , and therefore hf = 4 ^ - , §5-
sin /9 0 </>/ sin /S <£/

Substituting in (26)

N o w

and e* •— = S — Wa I A V̂ ; Wfo? 11A7-. o,*
.0 pi

Since on integration the terms involving products of unlike harmonics
will disappear, we have, as far as material,

Now \ppodo- = ^M (^Y

Since the term which is being determined is of the fourth order in e, we
may put k/k0 = 1, and we have

(27)
0 Pi

Since ^0(i;) = l, T-^O(« ' ) = O and U0 = 0, the term in 2 corresponding
CAV

to i = 0 vanishes.
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346 THE MOMENT OF INERTIA OF THE PEAR. [12, § 13

§ 13. Terms in the Energy Depending on the Moment of Inertia.

We have to determine Ar, the moment of inertia of the region R con-
sidered as filled with positive density.

In order to obtain this result, we must express y2 4- z2 in terms of surface
harmonics. This was done in § 12 of " Harmonics," but as a different definition
of S2 and $2

2 was adopted there from that which I shall use here, it is easier
to proceed ab initio.

Let D 2 = 1 - K V 2

and (90)
2 = £ (1 + K2 - •#). (g2)

2 = ^ (1 + K2 + D)

For both the suffixes 0 and 2, we have q2 + q'2 = 1, and

In accordance with equation (10) of " The Pear-shaped Figure " I define
the harmonics as follows:—

S2 = (K2 sin2 6 - g0
2) (g0'

2 - K'2 COS2 <j>)

S! 2 _ _ /JJ.2 Q I T I ^ ft ct <^\ (n ^ w ^ prm^ (n i

N o w y2 = k2 (v2 - 1) cos2 0 s in2 <f>, z* = k2v2 sin2 0 (1 - K'2 COS2 <f>)

and v2 = — j - i , where Tj =

Thus

sin2 /3

+ (cos2
 B-K'2- K^n) sin2 0 cos2 ^

Let us assume, as we know to be justifiable,

= - [A50
2g0'

2 + B ^ V 2 - C] + [A^o'2 + Bq2'
2] K* sin2 8

+ [Aqa
2 + Bq2

2] «'2 cos2 cf> - [A + B] «2«'2 sin2 0 cos2 <p

If we equate the coefficients of sin2 8 and cos2 0 in these two expressions,
we have

9o g/ / , g0 + Bg2 ^

The solution of these equations may be written

A
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1902] THE MOMENT OF INERTIA OF THE PEAR. 347

Q Q
The simplest way of finding C is to put sin2 6 = ~ , cos2 <f> = -,-, so that

fC tC

2 = £2
2 = 0; we thus find

C = £ ( l +cos3/3)-fT1

Now for brevity write

L = sinB ^ cos2/3\ j f _ sin/3 ^ cos2/3\

4X»g'o
2 cos /3 cos 7 V B+ K'1) ' 4<Dqj> cos p" cos 7 V D — K2)

We then have

COS /3 COS 7 7i „ _ COS ^ COS 7 „
A ~ Z sin /8~ 2%' 2 ' ^ ^ ^ sin 8 Msin p £L>q0 - sin j

Hence, substituting for TX its value,

sin3 8 v 3 sin2

cos2 0 cos2 7 / 1 /S2 _ 1 *S2
2
 4 i )

Therefore

W 1 sin3

_ 4 T ™j°°*v ( L ^-MVSf) - 2T
sin3 /S vj(L^-MVSf)- 2 T ^
sin3 /S v 3 sin

cos2 j8 cos2 7 / J ^ <f>£2 _ J _ J ^ ^ 2
 4

1 sur
When we integrate throughout the region R the limits of T are

-eSs-t/i
sSis to zero.

Accordingly

i? i?r,T + iD A7T.
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348 TERMS IN THE ENERGY DUE TO MOMENT OF INERTIA. [12, § 14

The moment of inertia of the ellipsoid J is

Aj~"M{kJ "15^8""^*° L T ^ S " e 3 sin20
., . . . , if2 3sin3/3 3Jf2 1 sirif/3

Also il«0
2 = -7- . -. 77 = "si— • S • n

k0 iirp cos p cos 7 2k0 zirp cos /3 cos 7
Lastly, to the required order we may put (k/koy equal to unity in the

expression for Ar.
Then

10 cos p cos y +

^{^$ )} ...(28)
This completes the expression for the lost energy E of the system, which

may now be collected from (19), (20), (24), (27), and (28).

§ 14. The Lost Energy of the System; Solution of the Problem.

If the several contributions to the energy be examined, it will be seen
that if i, the order of harmonics in ffSi, is odd, there is no term with
coefficient e2// in E; this follows from the fact that the a> and p integrals
vanish for the odd harmonics. Hence, as far as concerns the odd harmonics,
E involves ff only in the form (ft*)*- The condition that the pear shall be a
level surface is that E shall be stationary for variations of the/ ' s and of e.
It follows that when i is odd / / is zero. We may therefore drop all the odd
harmonics, inclusive of/1, and it is clear that the term — \Md2<n"' in E (given
in (20)) vanishes to our order of approximation.

For the sake of brevity, I adopt a single symbol for each of the coefficients
of the several kinds of terms in E. Therefore let

2

21V = 2 ^ w + 08, + 2

C{ = {%-&{)#

(l + cos2/3)sin/3
10 cos yS cos 7

b = Lmi -
4D cos ,S cos 7

, where ^ / = $/<&/,
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1902] THE WHOLE LOST ENEEGY OF THE SYSTEM. 349

With this notation

E == f ~ | AO0 + ZZBffft - S Cf {fif +1- (a + be" + t/, -
Ko ( 2 2

Let us now make E stationary for variations of e aixdff.

First, by the variation of any ff excepting/2 andy*2
2, we have

On eliminating all these / 8 , we have

By the variations of/,,/2, and e2, we have

4 <-V / *7T/J

But from the first two of these equations

b = 0

Therefore

When Sco2 has been found, / a n d / 2 are determined from

(31)
J2 C2

2 4nrp

A consideration of these formulae shows that it is immaterial what
definition is adopted for any one of the harmonics, provided, of course, that
the same definition is maintained throughout.

In order to evaluate Ao, we must eliminate 3B/.

Since ^vtiS== 39

and ®
dv0 cos p cos 7
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350 ANALYTICAL SOLUTION OF THE PROBLEM. [12, § 15

Hence

cos p cos i

If for brevity we denote this last expression by [i, s], we have

A = &3 [1 (<r2)
2 + 2&] - i<r4 + 1 [t, s]

.(32)

We have now the complete analytical expressions necessary for the
solution of the problem.

PART II.

NUMERICAL CALCULATION.

§ 15. The Determination of Certain Integrals*.

The integrals co;8, pi, </>»• depend on certain others, namely

" shr* 0 cos2"
d6

\ .(34)

However we shall see that the integral 22>A^ may easily be made to
depend on °Af ,̂ and therefore we shall only consider this latter form for the
present.

Since A^ = 1 — «2 sin2 7 sin2 9 = cos2 /3 + sin2 /S cos2 0, where sin /3 = K sin 7

and r\2 = cos2 7 + «'2 sin2 7 cos2 $ = cos2 0 - K'2 sin2 7 sin2 <f>

we have °A^ = cosec2 & °A -̂_2
2 - cot2 yS °A^-2

cos2/3 ,
K'2 sin2 7 '

1 .(35)

* [This section has been rewritten, and in order to retain the old numbering of the equations
some few numbers are missing.]
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1902] NUMERICAL DETERMINATION OF CERTAIN INTEGRALS. 351

I now write F=\ ^ - , E=\ Add
Jo A' Jo

o

o

It will be found from Legendre's tables that for 7 = 69° 49''0,
K = sin 73° 54''2

log ̂ =-4317642, log# = -0355145

log F' = -2047610, log# ' = -1875655 I (36)

=-2117987, logE(y) = 9-9856045 J

, , ,, . , ,, , , . K* sin 0 cos 0d6 ,. , L cos2"-2 6 sin2 0
It we use the fact that dA = -̂  , and integrate r

by parts we find

__ / \ 0 A In—2 i ' ^A^'
All — X \ K 1 Lit — IK ,

.(37)
i 9 i isi — r'z\ 9 « _ ^ «̂ 2

Now write

G = J (1 + sec2 /3 + sec3 7), H' = \ (sec2 /? + sec2 7 + sec2 /3 sec2 7)

The values of /3 and 7 are 64° 23'-7l2, 69° 49''0; whence log G = -8679015,
logK'= 1-4678555. Also we require log H = 1-7182664 (see § 3, p. 323).

By differentiation it may be proved that

. „ . . d Asin<?cos0 In cos3 /3 cos2 7 2 (2n - 1) (? cos2 ̂  cos2 7
s m ^ s l n 2 7 ^ - AT = A ^ A ~ ~ AfA

2 (2n - 2) # ' cos2 /3 cos2 7 _ 2w-3
+ Af'^A Ap 4 A

Whence by integration

°AL+2 =
 2~~~ G°Kn - 2 ^ H'°A°n_2 +

 2nfS sec2 /3 sec2 7 " A ^ .. .(38)

On writing tan 7 V — 1 for sin 7, we find that exactly the same formula
holds good for the fl's.

To apply this to the determination of °A ,̂ fig, we note that

£l\= F'-sitfyE' (39)

Also °AI = ±E-^F, ai-^E'-^F' (40)
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352 FORMULAE FOR THE D. INTEGRALS. [12, § 15

From the formulae given in Cayley's Elliptic Integrals it appears that

•A» = F + S*n>y [FE (7) - EF (7)] )
cos B cos 7 " W / J

\ (41)

Now °A°0 = F, °A% is given in (40), and °Af for n = 2, 3, 4 ... are then
given successively by (37).

Again °Al is given by (41), and the successive "A2,™ are given by the
general formula (35).

Again (38) and (39) give

°A» = G °A° - \ sec2 8 sec2 7 (cos2 7 F + sin2 yE)

°A° = f G °A° - H' °A» + { sec2 8 sec2 7 ^

and by successive applications of the formula (35), we find the successive
values of °Af, °Af.

The O integrals may apparently be derived by a similar set of formulae,
but since at each step we divide by K'\ a small quantity, all accuracy is
rapidly dissipated. Although we may safely derive one series of fl integrals
from a preceding one, we cannot so derive a succession of series, and it
becomes necessary to find new formulae.

In order to determine the fi integrals, consider the group of integrals

f^sin2^
" 2m — r 2 m

 a9
Jo J-i

cos 7 tan (i cos 7 „ ,
- ^ ^ - , a = 3 3 ^ , we find

1 rK + ry-'
os2"1-17 J 0 (1+£2)TO2m cos 8 cos2"1-17 J 0

whence, by some easy integrations,

2 2 cos B cos 7

W\ = -j ^ (sec2 /3 + sec2 7)
4 cos /3 cos 7

Q

TT2 = ^7; ~ (sec4 8 + sec4 7 + f sec2 ̂ 8 sec2 7)
6 16 cos 8 cos 7 v 3

On expanding 1/F in powers of K'2 we see that

O2» _ W2n 1 I ..'2 WiH-2 I , ' ( W 2 « + t
Ai2m — K' 2m + 2 * ' ' 2 m ' % £ 2m

When m = 0 the W integrals are easily determined.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.015
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.015
https://www.cambridge.org/core


1902] FORMULA FOR THE fi INTEGRALS. 353

The relationship between successive W integrals is clearly

W2m _ C 0 S P W2H.-2 ^ W2TC-2

W 2m ~ K* sin2 7 W 2m K'"- sin2 7 2m"2

I now write for brevity
# = cos/3, y = cos 7, s = sin 7, ^ = 1 ^ - , °" = ^ ^

f 1 3 5 C2i 1) ~l2

It appears that if we write y2i = ' ' " ' —^-— KH we may put

1 . 3 . 5 . . . ( 2 m - l ) f 1 1.2
" *" 1 + 7 +

3)7 6

2.4.6. . .2n~ I 1 + rTfl7 s + (n + 1 7 ^ + 2) 7 i

1.2.3
l ) (n+2) («+3)

2.4. . .2n

1. 2 a4 1. 2.3 a6
+ (n + 1) (» + 2)74 + '''

H_2c«_ 4.
l)(n + 2)7 4

By considering in detail the cases where n = 0, I find

i^ = l, a, = 1

By some rather tedious analysis, by considering the manner in which
each il is derivable from the preceding ones, it may be proved that

1 - X 2i X.2

D. in. 23
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354 FORMULA FOR THE II INTEGRALS. [12, § 15

,rr 4(l-<r)2 1.3...(2

1 f/1
C2i=r^2xL(

By successive applications, starting from the values for n = 0, I find

Ft = l, F, = <x, Ft=$a(l+a), ^ , = ^ | « r ( l + ir + K )

and generally

w _l_.3. . . (2n-3) f 2» -4 (2n-6) (2n-8) 4

*I B ~ 2 .4 ... (2«^2) a Y + 2 ^ 3 ff + (2n - 3) (2n - 5) ff

(2ra-8)(2rt-10)(2«.-12)
+ "(2n - 3) (2m - 5) (2m - 7) ° '""

2n-6 3 (_2n_-8)(2rc-10) 5 (2m - 10) (2m- 12) (2n - 14) ?

2a-"3 ff (2n^3) (2w"-T) ^ + ~~(2n^W){2n^W){2n - 7) ° + ""

a0 = 1, a2 = 1 + \, a4 = 1 + X + |X2

and generally

I have not obtained the general law for the G's, H's, b's, and c's. When
the suffixes of the G's and H's are greater than 10 or 12 it is easiest to go
back to the difference equation with numerical values. For the earlier
values we have

ff ̂

1 ^ ( 1 - ^ + 1 ,
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1902] APPROXIMATE B'ORMULiE FOR THE A INTEGRALS. 355

5a a

c0 = 1 - |X + iX3, c2 = 1 + X - 2X2 + |X:i, c4 = 1 + X + 0 . X2 - 2X3 + X4

By means of these formulae I then computed a table of the "A2.™, f l ^
integrals corresponding to the critical Jacobian for which 7 = 69° 49'"0,
K = sin 73° 54'-2.

A little consideration will show that if °A?im, °A^m, °A^m &c. be a series of
the integrals, and that if we form a table of differences, changing the sign of
the odd differences we shall find the series of integrals corresponding to
^Alfn. This fact may be stated analytically as follows:—

/ \r \ r 0 A 2p-2r 2r A 2p~2r
\~) ** ii2m ~ iv2m

I accordingly tabulate the natural numbers of the °A2m integrals, and
form a table of differences. I t seems unnecessary to reproduce these tables
of differences, but I will just show how they run in the case of one of the
series. We have

°Al= -9505345

°A4= -6559354

°A«= -5285432

3A|!= 1-7519561
2A§= -2945991
2A*= -1273922

4A»= 1-4573570
4A^= -1672069 6A!! = 1-2901501

&c. &c.

The tables of differences of the other series of functions A2, A4, A6 are to
be formed in exactly the same way.

Before giving the table of results I may remark that it was proved in my
paper on Ellipsoidal Harmonics (Paper 10, p. 265, equation 84) that

n I n — 1 I f
— 9sn- l ' 1

2nl |
! +

I2 32

(\

2 4 (w- l ) (w-2)2!

— &c. (n + 1) terms

L 1

n (2/1-1)

(n + 1) (2n + 1)

23—2

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.015
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.015
https://www.cambridge.org/core


356 TABLE OF A INTEGRALS. [12, § 15

JL,J_
1 . 1 1 . 2

where L = log,, —..
K

The Ao series of functions was computed also from this formula.

After the earlier values have been computed, it appears that the second
portion of the formula becomes negligible. If then we substitute for the
factorials the approximate formula

1 1 139
51840w3

we find

128w2 210.3a.wV

The calculation of "Af from this formula agrees within unity in the
seventh place of decimals with that derived from the rigorous formula.

h8nJ
Even the formula 1 - only differs by 2 in

the fifth place of decimals from the correct result.

I have found other approximate formulae for the other series of functions,
but as no use is made of them they will not be given here.

The following is the table of results, and it may be noted that the Ae, D,s
series of functions are not required for any higher values than those
tabulated.

Table of the A functions (natural numbers) f.

n

0
2
4
6
8
10
12
14
16
18
20
22

°Ao
n

2-7024906
•9505345
•6559354
•5285432
•4543269
•4044492
•3680175
•3399181
•3173978
•2988272
•2831734
•2697454

°A2"

8-034600
1-4779482
•8294118
•6160958
•5084364
•4419004
•3958484
•3616261
•3349328
•3133708

«A4
n

30-53878
2-866414
1-1590804
•7537022
•5844941
•4909693
•4306317
•3878603
•3556021
•3295135

°A6»

132-38251
7-149917
1-8826818
•9929042
•6987687
•5582507
•4755180
•4203234

* See Boole's Calc. Fin. Biff., Chapter V.
t [In the original paper these functions were found by differencing certain other functions, and

the results were not so accurate as I had thought they were. There was rather a bad mistake in
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1902] TABLE OF 12 INTEGRALS.

Table of logarithms of the £1 functions.

357

n

0
2
4
6
8

10
12
14
16
18
20
22

log fi0"

•2047610
9-8993673
9-7729862
9-6930884
9-6346685
9-5886267
9-5506357
9-5182995
9-4901531
9-4652355
9-4428427
9-4226147

logfi2"

1-0302912
•7715375
•6613000
•5897701
•5365117
•4939849
•4585472
•4281522
•4015325
•3778480
•3565096

log fi4"

1-8667641
1 -6492558
1-5528790
1-4886134
1-4398970
1-4005014
1-3673618
1-3387296
1-3135070
1-2909612
1-2705764

logSV

2-7138142
2-5319084
2-4473549
2-3893880
2-3446714
2-3080689
2-2769972
2-2499642

§ 16. The Integrals <r2, o-4, £4*.

In accordance with equation (14) p. 294 of the " Pear-shaped Figure " the
third zonal harmonic is denned by

where

and

= sin 0 O2 sin2 6 - q*)

= <y2 - K'2 COS2 c/>) V(l - *'2 cos2

The numerical values for the critical Jacobian are

K2 = -9231276, £2=-5746736

It may be observed that if $ 3 (/u.) = / ( K 2 COS2 6), C3 (cf>) = K/(- K'2 sin2 <f>);

that is to say the form of function is the same, but we have chosen C3 (0) so
that it involves the additional factor K.

We require the squares of both these functions.

Now 3P3 O) = O2 -f-K? cos2 6) ^(1 - cos2 6)

and if we write

a = («2-g2)2, /3 = 2«2 O2 - q*) + («2 - g2)2, 7 = «4 + 2«2 (/c2 - g2), a = «"

[$s (/^)]2 = a - /3 cos2 ^ + 7 cos4 0-8 cos6 ^

On account of the symmetry of the forms of ^p3 and C3, if we put

a'=a/c2, /3'=/3«2.-

we have [C3 = o' + /3' sin2 ^ + 7' sin4 sin6

differencing the functions which gave the Oe functions, and this affected the values from n = 10
onwards, but as the Q functions as tabulated were not actually used in the computations the
mistake did not affect the result.]

* [This section has been rewritten.]
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358 FORMULA FOR <72. [12, § 16

The numerical values of these coefficients are as follows:—

log a = 9'0843568, log a' = 9-0496186

log 0 = 9-8835606, log /3'= 8-7693310

log 7 = -1748006, log y =7-9810796

log S = 9-9305236, log 8' = 6-6573112

It may be noted that a — ft + y — 8 = 0.

Before passing on we must give another form of (3$SY; it is

[ $ 8 (/")? = K sin6 0-F3 sin4 6 cos2 6 + F4 sin2 6 cos4 6

where Fo = («2 - q>f, F2 = 2K2 (K2 - g2), i^ = g4

The logarithms of these are as follows:—

log Fh = 9-0843568

log F2 = 9-6026093

log-F4 = 9-5188031

Now by (8) and (6) p. 328 we have

where

¥ = £ cos2 0 cos2
 7 (K2 COS2 5 + «'2 sin2 <£) ^ ^ + j ^ - -

Let
/ (AJ.) = a °AL - /3 »A1M + 7 °AL - S »A«m •

* TOT* 7? = 1 2

L + 7' 14. + S' «i» •

Then clearly

^ cos2 0 cos2
 7 {«

In order to find o-4 and f4, fif3 must be raised to the fourth power.

From (8) and (6)

where

Ii = I cos4 0 cos4 7 («2 cos2 ^ + «'2 sin2 ^) [ - ^ + (? ( j ^ l + j ^

r/A/J Ar
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1902] FORMULAE FOR <T4 AND £,. 359

If then we put for n = 2, 3

/ (A°J = a2 "A", - 2a/3 °AL + (2a7 + P) °AL - (2a8 + 2/3-y) °A°re

+ (208 + 7*) °AL -

/(Afm) = same coefficients with °A|M, °A^, ..., °A£

/(fl»m) = same in form as/(A°J but with a!, ft, y', 8', and ft's

/(HI,) = ssime in form as/(A^) but with a', /3', y', 8', and il's

We have

Again from (8) we have

i = - cos3 fi cos3 7 sin /S (/c2 cos2 8 + K'2 sin2 d>) § ( T-TP! + ATTI
T J J I VAj 1 ! i^i 1 i ,

Thus with the same functions as for £4 we have

, = - cos8 0 cos3 7 sin /3 {«2 [f/(A2)/(O°c) + f/(A|)/(f!2) - 3G/(Af)/(fl»)]
7T

The computations gave

<ra = -0136760, f4 = -000092343, cr4 = -000176218

These have to be used in a formula which also involves ^3 . Now ^ 3

denotes ^P3©3, or what should be the same thing Pi'Qi1. The formulae in
the " Pear-shaped Figure " with 7 = 69° 49'-0, K = sin 73° 54'-2 give

P^Q,1 = -351697, ^ 3 © 3 = -351663

These functions, which should be identical, differ by about one ten-
thousandth part of either of them. I think if I had taken 7 = 69° 48'-997,
K = sin 73° 54'-225 (the actual numerical solution for the critical Jacobian,
p. 311) this small discrepancy would have been removed. However, the
difference is quite unimportant, and as &3 generally means P/Q/, I take
the former value and put log &3 = 9-5461687.

With this value I find the required result, namely

& ] - ^ = - - 0 0 0 5 0 0 5 1 (43)*

* The discrepancy between this and my computation, in the paper as presented originally,
is 4 in the seventh place of decimals.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.015
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.015
https://www.cambridge.org/core


360 RIGOROUS EXPRESSIONS FOR HARMONIC FUNCTIONS. [12, § 17

§ 17. The Rigorous Expressions for the several Harmonic Functions
required.

In order to obtain the remaining integrals it now becomes necessary to
evaluate a number of the harmonic functions.

Rigorous forms have been found in Papers 10 and 11 for all the harmonics
of orders up to the third inclusive. For harmonics of the fourth order
rigorous algebraic forms may be obtained in all cases except when s = 0, 2, 4,
but these are exactly the cases to be considered in this investigation. We
have, then, to show how these functions of higher orders may be evaluated
rigorously for an ellipsoid of known ellipticity.

The only case required is that in which both i and s are even, and
although all the forms might be evaluated by processes similar to those
indicated below, I shall confine myself to this case.

We have seen in " Harmonics " that if ft denotes (1 - K2)/(1 4- «2) of this
paper, and fi denotes sin 0,

(?) = P / 00 - fiqt ?

- fiq^Pr1 (/*) + Fqs-tPr4 (/*)-.- + (-)** ft

It is well known that

and

. S i

(j -s)(i-8-l)(i-8- 2) (i-s- 3) i_s_i(1_ 2)2_

Hence we may clearly write 3JJ,-* in the form

3JJ/ (/*) =/0 sin* 0 - / 2 sin*"2 0cos2 0 + / 4 sin*"4 0cos4 0- ...

Since when s is not zero P / ( l ) = 0, and when s is zero P;(l) = l, it

follows that /0 = ( - )^ ft'q0- For the zonal harmonics (s = 0) this gives
/o = 1. The determination of the other/'s depends on that of the <?'s, which
we shall consider later.

Another form of p / (/i) will be useful, viz.:

39/(fi) = a — b cos20 + ccos4 0 — dcos6 0 + e cos80— ...
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1902] RIGOROUS EXPRESSIONS FOR HARMONIC FUNCTIONS. 361

It is obvious that

•

•^4 +2 l r 22 .2! ^°

,v_ f , ^ 4 /• , (»-2)(»-4) , t (»-2) ( t -4)
<* — /o + 2 f ] / 4 i 22 2 ! 23 3 !

&c. &c. &c.

Thus, when t h e / ' s are computed it is easy to obtain the a, b, c, d, &c.

We know that © / (</>) (the cosine function of <£) is the same function of
— K'2 sin2 tf> that 3J?.* (/a) is of K2 COS2 0, except as regards a constant factor.

Hence it follows that

i&f (<f>) = \ a + b ̂ j sin2 <f> + c -- sin4 $ + d ™ sin6 ̂  + ...

where X is a constant factor.

Now I desire to define 3jjjs (/A) and CD/ (#) exactly as in " Harmonics."

This definition has already been adopted as regards 3JJ/ (/A), but it remains
to adjust the constant X so as to attain the same end as regards ©/($) .

When i and s are even, © / ($) was defined thus:

(HV (<£) = cos s<£ + /3ps+2 cos (s + 2) </> + /32pg+4 cos (s + 4) <£ + ...

2 cos (s - 2) <£ + /S>g_4 cos (s - 4) <£
Since

s m * = 2 ^ ^ ~ ^^F^iTK^iy!c o s *
2r!

it follows that the term independent of cf> in ©i ((/>) is

1,«'2 1.3 K'4 1 . 3 . 5 , K ' 6

+ 6 + + ^

The term in cos 2$ in (£/ ((/>) is

l . K ' ! 1.3 2 «'4 1 . 3 . 6
6 + C +

The term in cos 40 in © / (0) is

f l . 3 1.2 «'4 1 .3 .5 2 . 3 ,*'<> 1 . 3 . 5 . 7 3 .4 «'8

and so forth.
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362 RIGOROUS EXPRESSIONS FOR HARMONIC FUNCTIONS. [12, § 17

In accordance with the definition to be adopted, these terms in the three
cases s = 0, 2, 4 respectively are: 1, cos 2<f>, cos 4<£. Hence A. must be chosen
so as to fulfil that condition.

Pursuing only the case of CCj (<p) (where s = 0) in detail, we have

J. 17 *

If, then, ©j (<£) = a' + Vsin2<£ + c' sin4 <f>+ ...

we must have a' = Xa, b' = Xb~ , c' = Xc — , &c.

Thus when/0,/2,/4, &c, are found, it is easy to compute a, b, c, &c, and
a', b', c', &c.

Our formulae tend to involve the differences between large numbers, and
this defect becomes more pronounced as the order of harmonics increases.
The fault is mitigated by using the forms

(£,{ (<£) = a' + b' sin2 <£ + c' sin4 <j) + ...

In the case of a lower harmonic, however, such as the fourth, we may just
as well use the form for ^ involving a, b, c, &c, and powers of cos2 0.

We must now show how to complete the evaluation of the f's for the
zonal harmonics.

It appears, from p. 212 of "Harmonics," that, when i is even, we have to
solve the equation

_ ^8° {i, 1} [i, 2} $0? {i, 3} {i, 4}

4 .1 2 + a- - 4 . 22 + c

ending with

———.'„ . where \i, j \ =

We are to take that root which vanishes when /3 vanishes.

Although the equation for a is of order \i + 1 or ^(i +1), yet at least for
such an ellipsoid as we have to deal with, it is very easy to solve it by
successive rapid approximations.

It is clear that we may write the equation in the form

An analytical approximation is found by neglecting the continued
fraction in the second term on the left, and we then obtain

a = - 2 +2 V[l+i/32<>'-1)*(» +!)(» + 2)]
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1902] RIGOROUS EXPRESSIONS FOR HARMONIC FUNCTIONS. 363

If this value of cr is used in computing the first term of the continued
fraction, and if the quadratic is solved again, we obtain a closer approximation.
We then use the second approximation and include one more term in the
continued fraction, and proceed until a no longer changes.

It is shown on p. 215 of " Harmonics " that

gi= 1 {P {», 3} ft, 4}
q0 4 . 1 2 + < 7 - 4 . 2 2 + < 7 - . . .

{i, 5} {i, 6}
q2 4 . 2 2 + t r - 4 . 3 2 + o - - . . [

??• = 1 iff \i, 7} {i, 8}

It may be remarked that the factor 2 occurs in each of these equations on
the left, excepting in the first one; also we are to take q0 = 1.

In the course of the successive approximations for the determination of a,
each of these fractions is naturally evaluated. Therefore it is only necessary
to extract certain numerical values already found in the course of solving the
equation for <r.

As a verification, which shows whether the equation has been correctly
solved, we have

g t _ ^ K l ) ( » , 2 }

It is now obvious that we are able to find all the q's in terms of q0, which

is unity. We then multiply each q by its appropriate power of /3 or ^ - ,

that is to say, we form ffgw for r — 1, 2, ..., \i, and introduce the results
into the formula for ^»(/i).

A closely analogous method enables us to find all the other types of
function for an ellipsoid of known ellipticities, but, except for certain har-
monics of the fourth order, it is not possible to obtain rigorous analytical
solutions. Approximate analytical forms are given in " Harmonics," and the
approximation may be carried further if desired.

The following tables give the coefficients in the several functions for the
critical Jacobian ellipsoid with which we are dealing:—
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364 TABLE OF COEFFICIENTS. [12, §17

i s

*2 0
*2 2

4 0
4 2
4 4

6 0
+6 2
f(i 4

8 0

10 0

a

0-603374
-0-039203

1-000000
1-769147
0-083965

1-000000
8-4
3-78

1-00000

1-00000

b

0-923128
0-923128

5-442161
-36-154264
- 7-984389

12-45814
-121-8
-33831

23-29297

38-29978

c

4-892138
- 44-93584
95-562431

29-55340
- 439-425
3680-303

103-90805

274-94458

d

18-53561
-320-513
4482-844

155-9554

721-88640

e

74-7977

789-90216

/

306-12784

i s

*2 0
*2 2
4 0
4 2
4 4
6 0
+6 2
t6 4
8 0
10 0

a'

0-603374
-0-039203

0-806905
1-065020
1-013640

0-62544
1-1408
1-0305

0-440664

0-289818

6'

0-076872
0-076872

0-365661
-1-812415
- 8-026680

0-64882
- 1-5349
-7-704

0-854891

0-924288

c'

0-027371
-0-187586
8-000000

0-12816
-0-4404
6-944

0-317488

0-552512

d'

0-00669
-0-0264
0-704

0-396793

0-120795

e'

0-001585

0-011006

/'

0-000355

As it is desirable to use the other form of ^ in the higher zonal har-
monics, I give the coefficients/0)/2,/4, &c, in these cases. It will be noticed
how much smaller are the numbers involved.

Coefficients of Terras in when expressed in Sines and Cosines.

i

6
8
10

s

0
0
0

1
1
1

/o

•ooooo
•ooooo
•ooooo

9
19
33

h

•45814
•29797
•29978

7
40
131

u

•63713
•01416
•74546

/a

0-44035
14-03323

116-85134
0
22

h

•45235
•76398 0-46728

* The seoond harmonics are here defined by

T$i*{fi) = Ki-q*-Kioa^B, (&2>{<p) = K'*-qZ + K'z sin2,/. (s = 0, 2)

with gg
2 = J [1 + K2

 T ^/(l - K V 2 ) ] , with the upper sign for s = 0 and the lower for « = 2. In the case
of i = 4, s = 2, I had in the original paper inadvertently changed the sign of ^ 4

2 , | | e
2 , and at the

same time of (K42, ds 2 without, of course, introducing any error.
t These functions are only given in their approximate forms.
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1902] THE CO, p , <f> INTEGRALS. 3 6 5

§ 18. The Integrals wf, p», <£*.

When i and s are both even, any harmonic Sf is given by

where we may write the two factors in the forms

•Pi8 (fj.) = a-bcos2 0 + ccos4 0 - ...

(£j( (<f>) = a' + b' sin2 $ + c' sin4 <j> + . . .

Each series is, of course, terminable, the number of terms in each being

i» +1.
For the determination of the a>, p integrals Sf must be multiplied

by (Ssy.

Now we have seen that the squares of the two factors of $3, which is
$ 3 (/0 C3 (0), are given by

[$» 0 0 ? = a - /3 cos2 0 + 7 cos4 (9 - S cos6 0

[C3 (<£)]2 = a' + /3' sin2 <f> + y' sin4 <f> + 8' sin6 0

We have also seen that for all the harmonics there are alternative forms
for ^ i O ) and ^ 3 00, v iz-

^ » 0 0 =/o sin* 0 - / a sin*-2 0 cos2 <? + / 4 sin*-4 0 cos4 6» - ...

[|}3 (yw,)]2 = ^ sin6 0-F2 sin4 6> cos2 0 + i^ sin2 0 cos4 0

From (8) and (6) we have

where

, _ 6 K2 cos2 0 + /c'2 sin2 <f>
v AT

It can be seen without actually writing out the intermediate steps of
analysis how the several integrals will occur. I write the coefficients as
follows:—

l0 = aa, l2 = aft + ba, l4 = wy+b/3+ ca, 16= aS + by + c/3 + di, &c.

mo = a'a', m2 = a'ff + b'a, m^a'y'+b'p+c'a', m^a'B'+b'y'+c'/3'+d'a, &c.

In the alternative form for the integrals with respect to 0, I write

£»=/.*'., La=ftF,+ftF0, X4=/0^4+/2Jf2+/4^0) Lt=ftFt+f<Fa+f.Ft> &c
Next let

f(A\n) = lo°A°n - l,o AU + Z2»AL - l«Aln +... (n = 1, 2)
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366 FORMULAE FOR THE O) AND p INTEGRALS. [12, § 18

or an alternative form of the same function is

f(Al) = L^A^ - Z2
i+4AL + L^Al - ... (n = 1, 2)

Let / ( A D = £0°AL - l,°AU + h°AL -... (n = 1, 2)
or an alternative form of the same function is

/(A1J = JV+°AL - X2
i+4AL + L™AU - ... (n = 1, 2)

Let f(n°n) = mon°n + m2nin + minin+... (»=1,2)

) = m0W2n + m2ni + mintn + ... (n = 1, 2)
Then

f = I cos2 /3 cos2
 7 {*« [/(A|)/(X1») +/(AS)/(nj) - G/(Ai)/(«S)]

I have used the rigorous formulae for the harmonics in the cases of the
zonal harmonics (s equal to zero), because they contribute by far the most
important terms, also for the sectorial harmonics i = 2, s = 2 and % = 4, s = 2,
and s = 4. But for the sixth harmonics, where s = 2 and 4,1 have used the
approximate formulae of " Harmonics " with the parameter /3 equal to "039973 ;
the values of a, b, c &c, a', b', c' &c. were given above for all these cases.

It may be well to remark that p0 is needed (but not a>0), and in this case
a = a' = 1, and b, c &c, b', c' &c. are all zero.

It seems useless to go in detail through the tedious operations involved
in carrying out the processes in the several cases.

Approximate formulae are given for the <f>£ integrals in § 22 p. 276 of " Har-

monies." The lpod<r of that paper is the same as |TTA;3 . l\<£>ddd(f>

of the present one, and the factor there written M is h? cos /3 cos 7/sin3 /?.
Hence it follows that

4>f = ^ j j(ffi<&i«ypda of " Harmonics."

In order to apply this to the harmonics of the second order, it must be
borne in mind that a different definition of £ / (s = 0, 2) is being used here.

If [cf>2], [</>2
2] be the values which would be found from " Harmonics"

without making this adaptation, and if <£2, <£2
2 are the required values, we

may put
iPO) [^O)J ©,(</») = y [

or K2 sin2 d-q?= xa (sin2 0 + - \ q^ - «'2 cos2 $ = -ye (cos2 <f> + - )

where a, e, <y, £ are the coefficients specified in § 12 p. 237 of " Harmonics."
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1902] FORMULA FOR THE (j[> INTEGRAL. 367

Then the two definitions will agree if we take x = /c2/<x, y — — «'2/e,
although 7/a and £/e will not be rigorously equal to — g0

2 and — q0'* respectively.
Hence it follows that

« 4 ' 4 «4/e'4
a n d similarly $.? = [</>2

2] - ^

In the table below I have given the approximate values of the <f> integrals
derived in this way in all the several cases, but I have not thought it ex-
pedient to trust to the approximation throughout. The approximate values
for 02 and <f>2

2 have been corrected, as just explained, so as to agree with the
present definitions of the functions.

The <f> integrals may be determined rigorously in two ways.

First we may find them by our table of integrals as follows:—

From (6) and (8) it appears that

<£/ = £ jj(K* cos2 0 + «'2 sin2 0 ) ^ j ? d0d<f>

In this case we have seen that Sf = ffi ( » 0V (</>), where

ffi (/x) = a-bcos20 + c cos4 0 - dcos6 6 + ...

or as an alternative

3P/ O ) = / 0 sin* d -f.; sin*-2 0 cos2 0 + / 4 sin*"4 0 cos4 (9 - ...

Also <&i (</)) = a' + b' sin2 <f> + c' sin4 0 + d' sin6 <£ + ...

Writing

X0=a2, ^=2ab, Xi=2ac + If, X6 = 2ad + 26c, &c.

or Z0=/0
2 , X 2 = 2 / / 2 , Z4 = 2 / / 4 + / 2

2 , &c.

/A0 = a.'2, /̂ a = 2a'6', /t4 = 2a'c + b'2, &c,
we have

IW (M)]2 = >-O - X2 COS2 0 + X4 cos4 0 - ...

or = Lo sin
21' 0 - X2 sin

2*"2 0 cos2 0 + L4 sin2*'4 0 cos4 0 - ...

[<2V (<£)]2 = fJ-o + /H sin2 ^ + ^ sin4 0 + ...

The results here, as elsewhere, have a tendency to present themselves as
the difference between large numbers, and the object of the second alternative
form is to obviate this difficulty in a measure.

For the fourth zonal harmonic it is immaterial which form is used, for the
sixth zonal the second form is the better one, and for the eighth zonal it is
necessary, and for the tenth zonal the use of logarithms of more than seven
places would become necessary.

Let us write

/(AJJ) = VA» - VA? + VAJ - ...
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3 6 8 TABLE OF THE CO, p, (f> INTEGRALS.

or as an alternative form of the same function

or alternatively

Also

[12, § 18

/(A?) = Z0
2iA° - L*-°

/(AJ) = VAJ - VAJ + \?A° - ...

/(A*) = L*A\ -

We then have

7T

The use of these formulae as far as the 10th harmonic necessitates the
extension of our tables of the series 0 as far as °Af, °ilf.

The second alternative process is that given in the next succeeding
Paper, No. 13.

It is necessary to evaluate the functions there denoted [2n, 2m] from a
sequence equation. The labour of obtaining these functions in an analytical
form is practically prohibitive for harmonics higher than the third, but it is
easy to evaluate them numerically for the particular ellipsoid with which we
are concerned.

The results again present themselves as the differences between large
numbers, but by the exercise of great care in computation with seven-figured
logarithms it is possible to get a fairly good result as far as the eighth order.

I have computed these integrals by both the methods explained with
good agreement of results.

The following table gives the results of the computations which have now
been explained.

i s

0 0
2 0
2 2
4 0
4 2
4 4
6 0
6 2
6 4
8 0

10 0

Table

log 0)̂  +10

7-6714241
( - ) 5-6818162

8-0332932
( - ) 8-25158

8-30779
7-96786

( - ) 8-72778
9-10094
7-78437

( - ) 7-9838

of logarithms (

log p* +10

7-6310567
7-0286816

( - ) 5-0264000
7-3558076

( - ) 7-32157
7-37092
7-32449

( - ) 7-94094
8-13161
6-96857
6-6024

if mf, pf, <f>is.

l o g <Pt'

9-0051748-10
7-0397377-10
9-6886735-10
1-72739
3-81610
9-69177-10

—

9-75611-10
9-8473-10

Approx. log <£/
from formula in
" Harmonics "

9-00518-10
7-03981-10
9-68861-10
1-72729
3-81612
9-69303-10
2-20562
5-29999
9-76872-10
9-87800-10

Note that a>io is negative while pio remains positive.
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1902] THE HARMONIC FUNCTIONS OF THE SECOND KIND. 369

The calculation of the integrals for i = 8 and i = 10 was very laborious,
and as the results tend to present themselves as the differences between large
numbers, it was difficult to obtain accuracy with logarithms of only seven
places of decimals. The integrals cf> were much the most troublesome, and
indeed I do not claim close accuracy for <j>a. As it appeared to be impossible
to compute cf>h) to nearer than ten per cent, by the formula, I computed the
several constituent integrals for the tenth harmonic by quadratures and
combined them to form <f>w. The results derived from the approximate
formulse of " Harmonics " are given for the sake of comparison. They clearly
give somewhat too large values for the higher harmonics.

I believe <u10 and pw to be nearly correct. If allowance be made for the
difference of definition adopted in this paper from that used in " Harmonics "
as regards the second zonal harmonic, it will be found that <u2, &>4, «„, &>8, cow,
when set out graphically, fall into an evenly flowing curve.

The corresponding test for the p'a is not quite so convincing, but there
is nothing which implies a mistake. The values p0, p2, p4, p6 fall well into
line, and so also do p4, p6, pB, pw, but there is a gentle elevation in the
neighbourhood of ps. In consequence of this test I recomputed the whole
again independently, after it had been recomputed and verified once, and
special attention was devoted to «6 and pe.

§ 19. TJw Rigorous Expression for the Harmonics of the second kind,
and the integrals &*, 23/.

The integral gt/ denotes $ / (v0) <&/ (>„), and 23/ denotes ®/O0) ~ $/(*„).

Thus Mf is, in fact, the harmonic function of the second kind. 25/ is clearly
determinable from iH/.

In the original paper St/ was found by quadrature, which was not, perhaps,
a very satisfactory method, and the defect will now be made good by finding
these integrals in terms of the F and E elliptic integrals. It appears that
my former results were sufficiently near to the truth for practical purposes.

The functions T$i{v) or Pi" (v) are of eight types, determined by the
oddness or evenness of i and s, and the association with a cosine or sine
function of </>. In " Harmonics " the types are indicated by combinations in
groups of three of the four letters E, 0, C, S—denoting Even, Odd, Cosine,
Sine; for example, OES means i odd, s even, associated with a sine function.

All the roots of the equation T$f (v) or P/ (v) = 0 are real, and when the
form of the function has been determined by the method of § 17 the equation
may be solved. Hence these functions are expressible as the products of a
number of factors; and it is to be noted that it is not necessary to adopt the

D. in. 24
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370 THE HARMONIC FUNCTIONS OF THE SECOND KIND. [12, § 19

same definition as in " Harmonics," because the function may be multiplied
by any constant factor, without affecting the result.

For brevity, let

II (K V - qx-) = O2 v"~ - q?) (V v2 - qi) ... («a v1 - qn*)
l

The alternative notation will be needed, in which we write

v= } , , A ^ l - ^ s i n ^ , A = l K s i n t
«2 sm 2 yfr

At the surface of the ellipsoid v = v0, ^ = 7» an(i w e shall, as before, write
sin jS = K sin 7. At the surface of the ellipsoid we have then

v = cosec /S, A/ = 1 - 5 / sin2 7, A2 = cos2 /3

In this notation

sin2" y}r
A consideration of the eight types of harmonics shows that they may be

written as follows :—
Type.

EEC,

EES, fn+() ( ) ( ) ( q) / /

OOC, l t ( %h
O6S, rf ^

1 1

OEC, $Ii+1(z>) = «» ft ( « V - ?!C
2) = cosec2"+i ffl (A,,2)

1

OES,

EOC, ( ^
1

EOS, ^ m 2 (v) = «y («a V3 _ «=)i n (/eV - ^2) = cosec»+2

Using P̂ and ®, generically for any one of these and for the corresponding
function of the other kind, we have

Or, changing the variable of integration to \Jr,
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1902] THE HARMONIC FUNCTIONS OF THE SECOND KIND. 371

To effect the integration the reciprocal of the square of {̂J must be
expressed in partial fractions. Inspection of the eight forms of functions
shows that

i i i 1 1 i r * B*
K2"3 - «2 9 ' H?^ - 1 A

with appropriate values of/, CJT, A, ̂ 4^, Bx to be given hereafter.

In every case but that of OES some or all of/ g, h are infinite.

In terms of ->jr

Tsin4^ Bxsin2

This has to be divided by A and integrated, and the result will be
expressible in terms of the elliptic integrals

Accordingly we require certain integrals, which are given on pp. 299, 300,
of the " Pear-shaped Figure," but in somewhat different forms. Here and
elsewhere K'2 denotes 1 — /c2, and qx''

2 denotes 1 — qx\

The integrals needed are as follows:—a

s: sin2 yfr 1 1 P M sin 7 cos 7 \
^ = F(7) + E (7 ) -^^ F

'y t a n 2 ^ .7.,. _ _ ! W / .A ^ *?n7 cos .(44)

sin 7 cos 7 cos ft

The last two of our integrals will occur in the form

and the coefficient of II (7, A )̂ in this expression is

1 / 1 _ ^ 1 2 / > \

24—2
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372 THE HARMONIC FUNCTIONS OF THE SECOND KIND. [12, § 19

[I shall now prove that this coefficient vanishes, and at the same time
evaluate Bx. For the sake of brevity the suffix *• will temporarily be
omitted from the symbols q, A, B.

We have seen that the reciprocal of [^]a is expressible in partial fractions;
and writing p = v1, we have

_ (ICO _ o n + z (KO af
~A A ( K P y> + Jj\Kp (i>

where L need not be determined.
If we write/(p) for the left-hand side of this equation, it is clear that

1 -
A '

Now -f log/(p) = 2 ( ^ -
dp 6J yHJ Wp-q3 ^

_

When p = q*//c2, this expression assumes the form 02 -r 02. Accordingly
we differentiate the numerator and denominator each twice, and putting
p = q'JK?, we find

where 1$, 1$" denote the first and second differentials of ^ with p — q"/ic'2.

Hence B = - | L
« IP

The equation (3) of "Harmonics" (p. 193) is satisfied by 'ffl(v). Now if
we replace the independent variable v by p (equal to v2) and substitute
(1 — /c2)/(l + «2) for /3, that equation may be written as follows:—•

[ P - ^ Z ] ¥-*(«•-»>
On substituting for p the value q2/ic2, which is one of the roots of i}P = 0,

we find

Therefore, on reintroducing the suffix x,
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1902] EXPRESSION IN TERMS OF ELLIPTIC INTEGRALS. 373

It follows that the II (7, A )̂ integrals disappear, and we may use this
value of Bx in the other terms*.]

The coefficient of F (7) in this same combination of integrals is

29." Lff-" ****
In this we may substitute for Bx its value, and thus find

fy sin2 7 , , 1 „ . ,
^ A ^ = W ^ T ) F <*>

1
 E M +

2>'H2 2) V / ;

7 cos 7 cos

This expression together with (44) give all the required integrals, and it
only remains to tabulate / , g, h, A x for the several types of function.

For the sake of brevity I write

Gx = (q£ - q?J (qx
2 - q,J ... (qj - qn

2)2 (x = l,2...n)

the factor which would vanish being in each case omitted.

When there is only one q, Cx is to be interpreted as unity.

Table of Values of/, g, h, and Ax.

Type

EEC

EES

OOC 2)

OOS

OEC

OES

order of
harmonic

•2n

rank of
harmonic

EOC

EOS

2-/J + 2

, / •

00

u
c '2jJ ( K2 — q '2\2

1

00

11
2 I I ( K 2 — (/a;2)2

1

00

1

OC

»
2 n (K2 — ( / 2 ) 2

I

a

00

»

i

n
TVq^
1

00

CO

n

1

1

00

h

00

00

00

00

n
Tlq^
1

)*

1

ti

-Uq^
1

— K 2 ! ! ^ 4

1

Ax

Gx

qj2 (K^ ~ <7a;2) Gx

— qx'
2Gx

— ( K 2 — ^ x
2 ) Cx

qx
2Gx

2 / 2 2

qxVi^-qx2) x

~qxhx2Cx

* This proof is adapted from Heine's Kugelfunctionen, Vol. i., Part n., Chapter 3, § 100, 62.
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374 THE 23 INTEGRALS. [12, § 19

We have generally 23 = TJJ- N ~r- 3P ("<>)• Hence by logarithmic differ-

entiation of the expressions for the several types of H$ we find results given

in the following table:—

Table of the 23 Integrals.

Type

EEC

EES

000

oos

OEG

OES

EOC

EOS

order of harmonic

In

2m+ 2

2K+ 1

rank of harmonic

%t

33i8H-2 sin ^ 3 1 /

2* i 4-1 sec2 /3 + J sec- 7 + 21 /A/

2n+2

In the case of the zonal harmonics (s = 0), qx\>c is always less than unity;
for harmonics of rank 2 one of the qxJK is greater than unity and the rest are
less; for rank 4 two of them are greater than unity and the rest less.

For the zonal harmonics there is some gain in simplicity by putting

sin2 8X = ^ . We then take the equation

$2»(/*) = a - b cos2 6 + c cos4 6- ... = 0
and find all the n roots, say 0,, 02... 0n.

If we solve the corresponding equation Tffiln (ft) = 0 for the tesseral harmonic
of rank 2, we find one root for cos2 8 to be negative. If this root corresponds

to 0i, we must put cos 2 8 1 =l - ^ \ , so that q? = K2[1 + (-cos20^]. Similarly
fC

for the harmonics of rank 4, two roots correspond with imaginary angles, and
so forth.
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1902] THE a INTEGRALS. 375

Subject to this explanation we may now regard the roots as defined by

Since Ax
z = 1 — qx

2 sin27, we have Aa;2=l — «2sin27 sin2 0x = 1 — sin2/3sin2^,
and ^ O ) - c o s e c 2 " 7 A i 2 A 2

2 ... An
2.

If we write

Dx = (sin2 ^ - sin2 0,)2 (sin2 0* - sin2 02)
2 ... (sin2 0X - sin2 6n)

2 (n-l factors)

our former Gx may be written in the form Kin~4 Dx, and the several co-
efficients in the expression for £t;' may be expressed as trigonometrical
functions—some of which may, however, be hyperbolic.

We thus have

1 » Yn F ("HA

« * ? ( 1 **?** w [ f J
E(7)

3

s sin2 6X cos2 0X (1 - K2 sin2 #„)

K2 sin 7 cos 7 cos /3
! Dx cos2 0X (1 - /c2 sin2 0X) (1 - sin2 /3 sin2 0X)\

This formula agrees with the result given for lit/ (s = 0, 2) in § 4, p. 300, of
" The Pear-shaped Figure," although the formula is there expressed in terms
of q2, and l/(/c2 - q2) is replaced by its equivalent (1 — 2q2)/q2q'2.

In the case of the even zonal harmonics of order i, all the 0's are real
angles, and it facilitates the solution of the equation for 0 to note that, with
rough approximation (improving as the order of harmonic increases),

ft _ 7 r a _ ^ 7 r a _ ^ 7 r a _ ( * ' — l ) w

The following numerical values apply to the critical Jacobian ellipsoid:—

For the fourth harmonic 01 = 20° 15', 02 = 61° 11 ' ; the rough approximation
gives 22° 30' and 67° 30'.

For the sixth 01 = 14° l'-9, 0.2 = 42° 12'-2, 03 = 71° 8'-6; the rough approxi-
mation being 15°, 45°, 75°.

For the eighth 0^10° 4<3'-l, 02 = 32° ll ' -8, 03= 53° 51'-2, 0 4 =76°21 '8 ;
the approximation being 11° 45', 34° 15', 56° 45', 79° 15'.

For the tenth ^ = 8° 40', 6>2=26°1', 03 = 43° 26', 04 = 61° 3', 0B = 79° 28';
the approximation being 9°, 27°, 45°, 63°, 81°.

The values of the several ill's found by the quadratures used in this
paper in its original form were in every case too small; the correct values
are given in the table below. I find that for i?l4 quadratures gave too small
a value by a ^Jjyth part; for ^ 6 by a yj^th part; for iH8 by an ^ t h part.
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376 TABLE OF THE gt AND 33 INTEGRALS. [12, § 20

The method which I have given above fails for the tenth zonal harmonic,
unless we use logarithms of more than seven places ; and it is not worth
while to undertake so heavy a piece of computation. I conclude by extra-
polation that for iH10 quadrature (carried out on exactly the same plan as in
all the other cases, but not reproduced here) gives too small a result by a
T\fth part of itself. I therefore augment in this case the result of the quad-
ratures and find iitlo = O"1164O; this enables us also to compute J3]0.

The following table gives the results of the whole computation:—

Table of Logarithms of gt/ and 33/ Integrals.

i

2
2
3
4
4
4
6
6
6
8

10

s

0
2
0
0
2
4
0
2
4
0
0

log 3 ^ +10

9-6931231
9-3330037
9-54617
9-4332383
9-24250
9-04753
9-2701270
9-14462
9-00632
9-15835
9-06595

log B /

•0929494
•4066504
•20462
•2657402
•39502
•43121
•3263106
•39512
•42458
•35745
•36897

§ 20. Synthesis of Numerical results; Stability of the Pear.

In the following tables and remarks some of the results which occur in the
course of the work are collected together.

i

C
M

 
C

M

4
4
4

C
D

 
C

D
 

C
D

8

10

s

0
2

0
2
4

0
2
4

0

0

(1)

ft-*

-•141617
•136410
•080529
•176913
•241787
•16543
•2122
•2502

•2077
•235

(2)
log (a3 - a/) 0/

=iogcy

-8-1562893-10
6-1745839-10

8-5946258-10
•97515

319953

8-91050-10
1-5323
4-6983

9-07354-10

9-21888-10

(3)

•0029766
- -000024745

•0050195
-•0057115

•0053573

•0039673
- -01829

•03081

•001936

- -000653

(4)

"•"'' 2 cos p cos 7

- -0012020
- -000012702

- -0025529
•0023591

- -0026433

- -0023753
•00982

- -01524

- -001047
- -000450

(3) + (4)

IV

•001.776
- -00001204

•0024666
- -0033524

•0027140

•0015920
- -00847

•01557

•000889

-•001103
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1902] STABILITY OF THE PEAR FOR ELLIPSOIDAL DEFORMATIONS. 377

For all harmonics higher than those of the second degree i33 — ^t/ is the
coefficient of stability. Since in all these cases the expression is positive,
the ellipsoid is stable for all such deformations.

If U + S U be the energy functions for the pear, whose variations for
constant moment of momentum are considered by M. Poincare, we have in
our notation

It is easy to show from our analysis that for the deformation f.2S«

and that the corresponding expression with &2 in place of C2 holds good for
the deformation /2

2$2
2.

Forestalling the results obtained below, it may be stated that for/2$2

Q M2

and for/,-*/ BU = ^=-{fff {'00015 + -00002}

Thus in both cases BU is positive, and this shows that the Jacobian
ellipsoid is also stable for the ellipsoidal deformations. The fact that BE (the
variation of my function of energy for constant angular velocity) is negative
for the deformation S2, illustrates the truth of M. Poincare's remark (Ada
Math., VII. p. 365) : " Si au contraire la rotation de la masse fluide etait deter-
minee par celle d'un axe rigide (comme dans les experiences de Plateau par
exemple), tout deplacement produirait une resistance passive et l'ellipso'ide de
Jacobi serait toujours instable."

I have written in (32)

The following table then gives further stages in the work:—
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378 NUMERICAL RESULTS. [12, § 20

(1)

•000138868
•000000717
•000092542
•000001908
•000000012
•000031204
•000003422
•000000014
•000012905
- -000001030

Sum of column (1) + (2)

Numerator

(2)

- -000219736
•000000970
•000154732
•000001190

•ooooooooo
•000031146
•000002107

•ooooooooo
•000006671
•000007358

(1) + (2)

- -000080868
•000001687
•000247274
•000003098
•000000012
•000062350
•000005529
•000000014
•000019576
•000006328

-000265000
-000500513

- -000235513

-•12382
- -08056

•06273
- -000355

•0000017
•019564

- -000229
•0000003
•007505

- -00667

Note that except in the case of tho harmonics of the second order fi
s = ^

The next step is to find

L = sin/3
1 - - T

cos2/3
M =

sin/3
4</2

2 cos /3 cos 7 1 +
COS-*/

D-,4g'o
2 cos /3 cos 7

where D2 = 1 - K2K'3.

The numerical values are

logD = 9-9840165, log L = -6454565, log M = -9591963

From these we obtain C= L<f>2, ti = M(f>2
2; whence

B.

cl
: = - -0553908

_.^L&= -0008037

b= -0316007

Denominator = - -0229864

In accordance with (32) the Numerator divided by the Denominator is
i, and I thus find

log
4<Trpe

= (-) 8-01054

It was found in § 7 of the " Pear-shaped Figure " that the angular velocity

of the critical Jacobian was given by ̂ — = "1419990. Accordingly the square

of the angular velocity of the pear being to2 4- Sco2, we have

co2 + Sf»2 = w2 [1 - -1443066e2]
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1902] UNCOMI'UTED RESIDUE OF THE SERIES. 379

From the formula (31), I then find
/2 = -195979e2, ft = -6O3177e2

Bs

The other ff are equal to -^h e2> anc^ a r e gi v e n in the preceding table.
From (28) and the definitions of a, t>, C, & it appears that the moment of
inertia of the pear is

With log a = 9-8559759,1 find

The angular velocity of the pear is

V(»2 + S&>2) = w [1 - -072153e2]

Multiplying these last two expressions together, we have the moment of
momentum of the pear; it is

¥ ^ [ 1 + -085633̂ ]

It follows that, while the angular velocity of the pear is less than that of
the critical Jacobian, the moment of momentum is greater. This result
would afford a rigorous proof of the stability of the pear if the numbers were
based on a complete solution of the problem. But as we have not determined
an infinite series of harmonic terms, it becomes necessary to consider how
the result might differ if the hitherto uncomputed terms were added.

If e denotes the hitherto uncomputed portion of the infinite series
X {[i, s] + {BffjCi}, and if A denotes the addition to be made on that
account to any of the results as already computed, we have

/So2\ _ _ e e 2 _ ,
\i^) ~ W^Mi a n tf) ~ -0229864 x -141999

Whence A [V(«2 + S«2)] = i«A ~ = to[l + 306-367ge2]

; = ~ A 1 ^ - = - 10«32S7ee2

C2 47T/3

A f2 — — A
A / 2 ~ C^A

Then
A {Aj - Ar) = l^f- \- A/2 - ^ AfA = 1 ^ 1 [- 846-302 + 40-349]v J ' 2npk0 [_a J a J J 2-rrpkv J

0/1/23

^r [- 805-953] ee2
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380 STABILITY OF THE PEAR INFERRED. [12, § 21

Therefore V(«2 + S«2) = w [1 - -072153e2 + 306-367ee2]

Aj - A,. = - [1 + -157786e2 - 805-953ee2]
£7rph

By multiplication we find that the moment of momentum is

3^f25(B [1 + -085633e2 - 499-586ee2]

TJie coefficient of e2 will be positive, and the pear stable, provided that

499'586e < -085633

or e < -0001714

The eighth zonal harmonic gave a contribution of '00001958 and the
tenth of -00000633. These are respectively l/8'7 and 1/27 of the critical total
"00017. The pear is then stable unless the residue of the apparently highly
convergent series shall amount to more than 27 times the contribution of
the last term computed. M. Liapounoff, as explained in the Summary below,
claims in effect to prove that this is the case, but to me it seems incredible.
I look for the discrepancy between our conclusions in some other direction.

§ 21. Second Approximation to the Form of the Pear.

Extracting the numerical values of the f's, from our results, we find that
the inequality of the critical Jacobian ellipsoid is

eSs + e2 [-19598 S2 + -60318 &2 + -06273 St - -000355 S4
2 + -00000017 Sf

+ -01956 Ss - -000229 S<? + -0000003 S6
4 - ? Sf + -0075 Ss - -0067 810]

In order to give this expression a clear meaning, it is well to define the
several S's.

Ss = («2 sin3 6 - q2 sin 6) (q'2 - K'2 COS2 <j>) V( l - «'2 cos2 <f>)

where «2 = -923128, q'2 = "574647

*'s = -076872, q'2 = -425353

For the other harmonics we have

Si* -(a-b cos2 d + c cos4 d-d cos6 6+...)(a' + b' sin2 <f>+c sin" j> + a" sin6 £ + . . . )

where the values of a, b, &c, a', b', &c. are as given in a table on p. 364.

The surface of the pear is determined by measuring a certain length
along the arc of curves orthogonal to the surface of the ellipsoid. By equa-
tion (22) it appears that that length measured in the direction of the positive
normal is

Po [eS3 + S//S, + ̂  «^°p (A + ̂  - 2G
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1902] SECOND APPROXIMATION TO THE FORM OF THE PEAR. 381

In order to construct a figure it will be convenient to adopt as unit of
length c, the greatest axis of the ellipsoid which is deformed. We know that

c = — — „ , b = k cot 8, a = --—?r > 8 0 that b = c cos 8, a = c cos 7, and the masssin 8 sm/3

of the ellipsoid is |7rpc3 cos 8 cos 7. But since the mass of the pear is

%irpko
s — . 8 where ko

s = F (1 + eV2), it follows that it is

f Trpc3 cos 8 cos 7 (1 + -0136760e2)

Hence the mass of the pear is a little greater than that of the ellipsoid whose
deformations we shall draw, and the protuberances above the surface slightly
exceed in volume the depressions below it.

We have

_ c cos 8 cos 7 _ c cos 8 cos 7

Air i (l-sin2
ySsin26')i(cos27-|-K'2sin27COs2^

and the expression for the orthogonal arc, measured from the ellipsoid to the
pear, is therefore

1 1
V c / | 2 ( l - s i n 2 / 3 s in 2 0 ) 2 (cos2 7 + «'2 sin2 0 cos2 </>)

- i (1 + sec2 8 + sec2
 7)1 + If* I

It appears to me that it will afford a sufficient idea of the corrected form
of surface if I draw two principal sections, namely, first, a section through the
axis of rotation and the longest axis of the ellipsoid, and, secondly, a section
at right angles to the axis of rotation. I t is not worth while to consider
the third section drawn through the axis of rotation and the mean axis of the
ellipsoid, since it will hardly differ sensibly from the uppermost figure shown
in the " Pear-shaped Figure," p. 314.

For the sake of brevity I will call the first and second sections the
meridian and the equator.

The three ellipsoidal co-ordinates v, 6, <f> of any point are connected with
oc, y, z by the relationships

x = c sin 7 . («V - Xf (1 - K2 sin2 0)* cos </>

y = c sin 7 . K (v2 — I)2 cos a sin <fr

z =c s in7 . KV sin 0(1— K'2 COS2 (j>)^

The equation to the surface of the ellipsoid is v — —:— = -- --_ .1 r KSU17 sm/3

The equation to the meridian plane in rectangular co-ordinates is simply
y — 0, that to the equator is x = 0.
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382 SECOND APPROXIMATION TO THE FORM OF THE PEAR. [12, § 21

In ellipsoidal co-ordinates the equation to the equator is simply 0 = \ir,
but the equation to the meridian is peculiar, for it is in part represented by
6 = \TV and in part by 0 = 0.

The curve 0 = \ir, <f> = 0, which defines the limit between the two regions
where the equation to the plane has different forms, is clearly the hyperbola

In the region from z=<x> and * small down to this hyperbola the equation
is 0 = ^7r; and between the origin and the hyperbola it is 0 = 0.

If we follow the arc of the ellipse from the extremity of the c axis we
begin with 0 = \ir, 0 = \ir, and 0 remains constant whilst 0 falls to zero.
Then 0 maintains a constant zero value whilst 6 falls from \TV to zero.

On the side of the origin where z is negative, 0 is of course negative and
undergoes parallel changes.

The hyperbola 0 = \ir, 0 = 0 cuts the ellipsoid so near to the extremities
of the c axis that an adequate idea of the deformation may be derived from
the two extreme values of 0, namely, \tr and 0. I have also thought it
sufficient to compute the deformations for 0 = 0, 30°, 60°, 90°. We thus
obtain the following scheme of values of 0, 0, together with the corresponding
rectangular co-ordinates (with c taken as unity), at which to compute the
deformation:—

Equator (,r = 0).

. = 90°; z = \, y = 0
» = 90°; z= -866,1/= -216
» = 90°; z = -5, y = -374
. = 90°; z=0, y = -432

It did not seem to be worth while to compute the deformations due to
the eighth zonal harmonic, since it would be quite impossible to show them
on a drawing of any reasonable scale.

In order to exhibit the magnitudes of the contributions of the harmonics
of the several orders, I give the normal departures Sn at the points z=±l,

0=
0 =
0 =
0 =
0 =

90°,
90°,
60°,
30°,

o,

Meridian (

0 = 90°
0= 0;
0= 0;
0= 0;
0= 0:

z =
z =
z =
z =

y=0).

1,
•961,
•832,
•480,

o

x =

% =
X =

# =

x =

o
•096
•191
•303
•345

0 =
0 =
0 =
0 =

90°,
60°,
30°,

0,
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1902] NUMERICAL RESULTS. 383

T e r m of first o r d e r . . .

Terms of second order pro-
portional to e2

± " 1 4 8 2 2 7 e

•080440

•076544
•000596
•000000
•028139
•001657
•000001

•187377
-•011876

•010986

•000890

- - 0 1 1 8 7 6

• 1 7 5 5 0 1 e 2

The following are then the results for the normal departures at the several
points whose rectangular co-ordinates are specified *:—

Meridian (g = 0).

z=±l, x = 0, 8w= ±1482e + -l723e2

z=± -961, x = -096, Bn = ± -0932e + -0858e2

z = + -832, x = -191, Sn=± -0189e + 'OlOSe2

z = ± -480, x = -303, Sn = + -0223e - -0033e2

0 = 0, x= -345, Bn = +-0046ea

Equator (^=0).

z=±l, y = 0, Sn = ± -1482e + -I723e2

z=± -866,i /= -216, Sw, = ±-0300e +-1265e2

z = + -5, y = -374, Bn = + -0354e - -0220e2

^ = 0, y = -432, SM= --0095e2

In order to draw a figure I take e = \. Throughout most of the arc of
the ellipsoid the approximation is probably good, but at the vertices, which
are just the points of most interest, it is pretty clear that we are using a
somewhat extreme value for e. The results are:—

* [Down to this point I have corrected the numerical values in consequence of my revision of
the computations. But as, even at the two extremities of the axis, the corrections are far too
small to be allowed for in a diagram, I have permitted the original computations to stand in the
following table and in the figures by which the results are illustrated.]
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384 FIGURE OF THE PEAR ILLUSTRATED. [12, § 21

z =
z =
z =
z =
z =
z =
z =

1,
•96,
•83,
•48,

0,
- -48,
- -83,

Meridian (*/=••(

x =
x =
X =

X =

X =

X =

X =

o,
•096,
•19,
•30,
•345,
•30,
•19,

8M = + 117
Bn = + -068
Bn = + -012
Bn = --Oil
Bn = + -001
B?i = + -010
Bn = - -007

z =
z =
z =
z =

z =

1

0
—
—
- 1

•866

•5 ,

•5,

•866

Equator (x=0).

y= -216,
y = -374,
y= -432,
2/= -374,

, y= -216,
2/ = 0,

S« =
Bn =
8w =
8n =
Bn =
Bn =
Sn =

+ •117
+ •047
-•014
-•002
+ •003
+ •017
- • 0 3 1

z = - -96, ai= -096, 8?i = - -025
z=~l, x = 0, Sn = - -031

KB.—For z=± -866, 8w is m 6o<A
cases positive.

These numbers are set out graphically in the annexed figure. It will be
noticed that whereas the protuberance at the positive end of the z axis is

Axis

O

A

C 0 C

Second approximation to Pear-shaped Figure. Upper section " equatorial," lower " meridional."

great, the deficiency at the negative end is almost filled up. We may
describe the general effect by saying that the Jacobian ellipsoid is very little
changed, excepting at one end of its longest axis, where it shoots forth a
protuberance.

SUMMARY.

If a mass of liquid be rotating like a rigid body with uniform angular
velocity, the determination of the figure of equilibrium may be treated as a
statical problem, if the mass be subjected to a rotation potential.

The energy, say W, lost in the concentration of a body from a condition of
infinite dispersion is equal to the potential of the body in its final configuration
at the position of each molecule, multiplied by the mass of the molecule and
summed throughout the body. In the system, as rendered statical, it is
necessary to add the rotation potential to the gravitation potential before
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1902] SUMMARY; CONDITION FOR STABILITY. 385

effecting the summation. That portion, say T, of the whole lost energy
which arises from the rotation potential is simply the same thing as the
kinetic energy of the mass, when the system is regarded as a dynamical one.
If we replace W -\- T by E to denote the whole lost energy of the statical
system, the condition that the surface shall be in equilibrium is that the
variations of E for constant angular velocity shall be stationary. E must
then be a maximum or a minimum, or a maximum for some variations and a
minimum for others.

It might appear at first sight that the condition for the secular stability
of the figure is that E should be a maximum for all variations, and this is so
if certain constraints are introduced; but in the absence of such constraints
the figure may be stable although E is a minimax.

It has been shown by M. Poincare that the stability must be determined
from the variations, subject to constancy of angular momentum, of the total
energy of the system, both kinetic and potential. The two portions of the total
energy, say U, are again W and T; but whereas E involves the losb energy
W of the system under the action of the gravitation potential, U involves the
potential energy which is equal to — W. Thus U is equal to — W + T.

The variation of U with constant angular momentum leads to results for
the determination of the figure identical with those found from the variation
of E with constant angular velocity. But there is this important difference,
that to insure secular stability U must be an absolute minimum. It appears,
in fact, that, in the case of the pear-shaped figure, while E is actually a
maximum for all the deformations but one, it is a minimum for that one,
which consists of an ellipsoidal strain of the critical Jacobian ellipsoid from
which the pear-shaped figures bifurcate (§ 20).

But M. Poincare has adduced another consideration which enables us to
determine the stability of the pear by means of the function E, without a
direct proof that U is a minimum for all variations. For he has shown that
if for given angular momentum slightly less than that of the critical Jacobian
ellipsoid, the only possible figure is the Jacobian, and if for slightly greater
angular momentum there are two figures (namely, the Jacobian and the
pear*), then exchange of stability between the two series must occur at the
bifurcation. If, on the other hand, the smaller momentum corresponds with
the two figures and the larger with only one, one of the two coalescent series
must be stable and the other unstable. Now it has been proved that the
less elongated Jacobian ellipsoids are stable, so that if the first alternative
holds the stability must pass from the Jacobian series to the pear series; and
if the second alternative holds the pear series must be unstable throughout.
The question of stability is then completely determined by means of the

* For the sake of simplicity we may speak of a single pear, instead of two similar pears in
azimuths 180° apart.

D. in. 25
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386 CONSTITUENT PARTS OF THE ENERGY. [12, SUM.

angular momentum of the pear; if it is greater than that of the critical
Jacobian the pear is stable, and, if less, unstable.

It suffices then to determine the figure by means of the variations of E
with constant angular velocity, and afterwards to evaluate the angular
momentum.

It was proved by M. Poincare, and repeated by me in my previous paper,
that the first approximation to the pear-shaped figure is given by the third
zonal harmonic inequality of the critical Jacobian ellipsoid—zonal with
respect to its longest axis. In proceeding to the higher approximation I
suppose that the amplitude of the third zonal harmonic is measured by a
parameter e, which is to be regarded as a quantity of the first order. We
must now also suppose the ellipsoid to be deformed by all and any other
harmonics, but with amplitudes of order e2. In the first approximation the
lost energy W is proportional to e2, but it now becomes necessary to determine
W as far as the order e4. A change in the sign of e means that the figure of
equilibrium is rotated in azimuth through 180°. Such a rotation cannot
affect the value of the energy, and it thus becomes obvious that the odd
powers of e must be absent from the expression for W. We have further to
find the moment of inertia of the body as far as the terms of order e2, and
thence to find the kinetic energy T. The function E is equal to W+ T.

In order to attain the requisite degree of accuracy, it is convenient to
regard the pear as being built up in an artificial manner. I construct an
ellipsoid similar to and concentric with the critical Jacobian, and therefore
itself possessing the same character. The size of this new Jacobian, which I
call J, is undefined, and is subject only to the condition that it shall be large
enough to enclose the whole pear. The regions between J and the pear
being called R, I suppose the pear to consist of positive density throughout
J and negative density throughout R (§ 1).

The lost energy of the pear consists of that of J with itself, say ^JJ; of
J with R, which is filled with negative density, say — JR; and of R with
itself, say \RR. This last contribution to the energy must be broken into
several portions. It was the evaluation of \RR which baffled me, until
M. Poincare's solution came to my help.

If we imagine the ellipsoid J to be intersected by a family of orthogonal
quadrics, and if we suppose for the moment that the region R is filled with
positive density, we may further imagine the matter lying inside any
orthogonal tube to be transported along the tube, and to be deposited on the
surface of J in the form of a condensation of positive surface density + G.
The mass of + C is equal to that of + R, but it is differently arranged. In
the actual system R is filled with negative volume density, and we may clearly
add to this two equal and opposite surface densities + C and - 0 on J.
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1902] CONSTITUENT PARTS OF THE ENERGY. 387

Thus the matter lying in the region R may be regarded as consisting of
negative surface density — G on J, together with a double system, namely
negative volume density — R in conjunction with equal and opposite surface
density + G. This double system, say D, is therefore G — R. The lost
energy ^RR may be considered as consisting of three parts; first the energy
of — G with itself, say \GG; secondly that of D with itself, say \DB; thirdly
that of — G with D. This third item is obviously equal to — (7(7 + CR, and
therefore ^RR is equal to - \GG+ CR + %DD.

It follows that the gravitational lost energy of the pear may be written
symbolically in the form

\JJ -JR + CR- %GC + %DD

In this discussion no attention has as yet been paid to the rotation, but
fortunately it happens that the introduction of this consideration actually
simplifies the problem, for if we suppose \JJ and JR to mean the lost
energies of J with itself and with R on the supposition that the mass is
rotating with the angular velocity of the critical Jacobian, the formulae
become much more tractable than would have been the case otherwise.

The inclusion of part of the angular velocity in this portion of the function
E, only leaves outstanding the excess of the kinetic energy of the pear above
the kinetic energy, which it would have if it rotated with the angular velocity
of the critical Jacobian. If to denotes the latter angular velocity, and

(o>2 + Sw2)2 the actual angular velocity of the pear ; if Aj be the moment of
inertia of J, and Ar that of R considered as filled with positive density, we
have

E = $JJ-JR + CR- \GG + %DD + \{A} - Ar) S«2

In this statement I have omitted a term which arises from the displace-
ment of the centre of inertia from the centre of the ellipsoid; it is duly
considered in the paper, but is shown to vanish to the requisite order of
approximation (§§ 2, 14).

The co-ordinates of points are determined by reference to the ellipsoid J,
which envelopes the whole pear, and the formula for the internal gravitation
of J, inclusive of the rotation u>, is of a simple character. The size of J is
indeterminate, and therefore the formulae must involve an arbitrary constant
expressive of the size of J. But the final result E cannot in any way depend
on the size of the ellipsoid which is chosen as a basis for measurement, and
therefore this arbitrary constant must ultimately disappear. Hence it is
justifiable to treat it as zero from the beginning. It appears then that we
are justified in using the formula for internal gravity throughout the investi-
gation. If the artifice of the enveloping ellipsoid had not been adopted, it
would have been necessary to take note of the fact that the pear is in part
protuberant above and in part depressed below the ellipsoid of reference.

25—2
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388 THE USE OF A DOUBLE SYSTEM OF ZERO MASS. [12, SUM.

M. Poincare did follow this last plan, and then proceeded to prove the
justifiability of using the formula for internal gravity throughout. The
argument adduced above seems, however, sufficient to prove the point.

Although the constant expressive of the size of J is put equal to
zero—which means that the pear is really partly protuberant above the
ellipsoid—I have found that a considerable amount of mental convenience
results from always discussing the subject as though the constant were not zero,
so that the ellipsoid envelopes the pear, and I shall continue to do so here.

When an ellipsoid is deformed by an harmonic inequality, the volume of
the deformed body is only equal to that of the ellipsoid to the first order of
small quantities. In the case of the pear, all the inequalities, excepting the
third zonal one, are of the second order, and as far as concerns them the
volumes of J and of the pear are the same. But it is otherwise as regards
the third zonal harmonic term, and the first task is to find the volume of such
an inequality as far as e2. When this is done we can express the volume of
J in terms of that of the pear, which is, of course, a constant (§§ 3, 4).

By aid of ellipsoidal harmonic analysis we may now express the first
four terms of E in terms of the mass of the pear, and of certain definite
integrals which depend on the shape of the critical Jacobian ellipsoid
(§§ 5, 6, 7).

The energy \DD presents much more difficulty, and it is especially in
this that M. Poincare's insight and skill have been shown. The system D
consists of a layer of negative volume density, coated on its outer surface
with a layer of surface density of equal and opposite mass.

Two surfaces, infinitely near to one another, coated with equal and opposite
surface densities, form together a magnetic layer or a layer of doublets. The
change of potential in crossing such a layer is 4nr times the magnetic moment
at the point of crossing, and is independent of the form of surface. To find
the difference between the potential at two points at a finite distance apart,
one being on one side and the other on the other side of the layer, we have
to add to the preceding difference a term equal to the force on either side of
the magnetic layer multiplied by the distance between the two points. This
additional term is small compared with that involving the magnetic moment,
provided that the distance is small. If the magnetic layer coincided with the
surface of an ellipsoid the force in question would be exactly calculable, and
if it lies on the surface of a slightly deformed ellipsoid the force remains
unchanged by the deformation as a first approximation.

Thus it follows that it is possible to calculate the difference of potential
at two points lying on a curve orthogonal to an ellipsoid, when one point is
on one side and the other on the other side of a magnetic layer residing on
a deformation of the ellipsoid. Further, if the two points lie on the same
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1902] THE ENERGY OF THE DOUBLE SYSTEM. 389

side of the magnetic layer the term dependent on magnetic moment (which
would represent the crossing of the layer) disappears, and only the term
dependent on the force remains.

Two equal and opposite layers of matter at a finite distance apart may be
built up from an infinite number of magnetic layers interposed between the
two surfaces. Hence by the integration of the result for a magnetic layer we
may find the change of potential in passing from any one point to any other
lying on the same orthogonal curve in the neighbourhood of a finite double
layer.

Again, the system D, consisting of — R and + C, may be built up by an
infinite number of finite double layers. Hence by a second integration we
may find the difference between the potential of D at any point inside R and
the point lying on J where the orthogonal curve through the first point cuts
the surface of J.

Finally, it may be proved that the lost energy ^DD is equal to half the
difference of potentials just determined multiplied by the density and inte-
grated throughout the region R. The required expression for this portion of
the energy is found to consist of two parts, of which one depends on magnetic
moment and the other on the force (§ 9). The reduction of this part of the
energy to calculable forms is not very simple; it is carried out in §§ 11, 12.

The calculation of the moment of inertia of the pear is comparatively
easy, since it only involves those harmonic inequalities of J which are
expressible by harmonics of the second degree (§ 13). On multiplying the
moment of inertia by 8̂e»2, we obtain the last contribution to the expression
for E.

The energy function cannot involve e2, since the vanishing of the
coefficient of that term is the condition whence the critical Jacobian was
determined. If f denotes the coefficient of any harmonic inequality other
than the third zonal one, the part of E independent of Sw2 is found to contain
terms in e2, e2/ and (/)2. The coefficient of 8«u2 consists of a constant term, a
term in e2 and terms in /2 and f£, where these fa denote the coefficients of
the second zonal and sectorial harmonics. This last part does not contain the
coefficient of any harmonic of odd degree, and in the first part the coefficient
of the term in e2/ for all such harmonics is found to vanish.

The condition for the figure of equilibrium is that the variations of E for
variations of e2 and of each / shall vanish. On differentiating E with respect
to the f of any harmonic of odd degree and equating the result to zero, we
see that that f must vanish. Hence it follows that the pear cannot involve
any odd harmonic excepting the third zonal one. Again, the symmetry of
the figure negatives the existence of any even functions involving sine-
functions of the quasi-longitude measured from the prime meridian (as I may
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390 NUMERICAL RESULTS INDICATING STABILITY. [12, SUM.

call it) of symmetry through the axis of rotation. The same consideration
negatives the existence of even functions involving cosine functions of odd
rank. Accordingly the only functions to be considered are the even ones of
even rank, involving the cosine functions of the longitude.

The equation to zero of the variations of E for all the fa, excepting
f2, f2", gives at once all those fa in terms of e2. The equations to zero of the
variations for e2,/2,/2

2 give three equations for the determination of 8&>2,/2,/2
2

as multiples of e2. We thus have the means of finding the angular velocity
and all the / ' s in terms of the parameter e, which measures the amount of
departure of the pear from the critical Jacobian ellipsoid (§ 14).

It seems unnecessary to give here any explanation of the methods
adopted for reducing the analytical results to numbers, and it may suffice to
say that the task proved to be a very laborious one.

The harmonic terms included in the computation were those of degree 2
and ranks 0 and 2, of degree 4 and ranks 0, 2, 4, of degree 6 and ranks 0, 2,4,
and of degrees 8 and 10 and rank 0. The sectorial harmonic of degree 6 was
omitted because its contribution would certainly prove negligible, and all the
tesseral harmonics of degrees 8 and 10 for the same reason.

The expression for Sa>2 is found in the form of a fraction, of which the
denominator is determinate and the numerator consists of the sum of an
infinite series. Eleven terms of this series were computed, namely, a constant
term and the contribution of the ten harmonic terms specified above. I
found, in fact, that it would only change the numerator by about one-
twentieth part of itself, if all the harmonics excepting the zonal ones of
degrees 2, 4, 6, 8, 10 had been dropped.

The result shows that the square of the angular velocity of the pear is
less than that of the critical Jacobian ellipsoid in about the proportion of
1 — fe2 to 1. On the other hand the angular momentum of the pear is
greater than that of the ellipsoid in about the proportion of 1 + T^e2 to 1. If
this last result were based on a rigorous summation of the infinite series, it
would, in accordance with the principle explained above, absolutely prove
the stability of the pear. The inclusion of the uncomputed residue of the
series would undoubtedly tend in the direction of reducing the coefficient
given in round numbers as -^, and if it were to reduce it to a negative
quantity, we should conclude that the pear was unstable after all.

The contribution of the eighth zonal harmonic to the series above referred
to was about '00002, and that of the tenth about -000006, and I find that if
the contribution of the uncomputed residue should amount to "00017, the
apparent stability of the pear would just be reversed. The pear is then
stable unless the residue of the series shall amount to 27 times the contribu-
tion of the last computed term.
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1902] CONSIDERATION OF LIAPOUNOFF's VIEWS. 391

Since the convergency of the series is obviously rapid, it seemed incredible
to me that the inclusion of the uncomputed residue could materially alter,
much less reverse our result. I regarded it then as proved, but by something
short of an absolute algebraic argument, that the pear-shaped figure is stable.

[However in Vol. xvn. No. 3 (1905), of the Memoirs of the Imperial
Academy of 8t Petersburg, M. Liapounoff has published an abstract of his
work on figures of equilibrium of rotating liquid under the title "Sur un Pro-
bleme de Tchebychef." In this paper he has explained how he has obtained
a rigorous solution for the figure and stability of the pear-shaped figure, and
he has pronounced it to be unstable.

The stability or instability depends, in fact, on the sign of a certain
function which M. Liapounoff calls A, and which is the same as that which I
denote Ao + 2 (B/)2/Cis, where Ao is equal to gj3 [£ (V2)

2 + 2fJ - £<r4 + 2 [i, »].
M. Liapounoff tells us that, after having seen my conclusion he repeated

all his computations and confirmed his former result. He attributes the
disagreement between us to the fact that I have only computed portion of an
infinite series, and have only used approximate forms for the elliptic integrals
in the several terms. He believes that the inclusion of the neglected residue
of the infinite series would lead to an opposite conclusion.

In my computation the function iH3 [̂  (<r2)
2 + 2£"4] — J<r4 is decisively

negative, and being numerically greater than 2 {(B/)2/C;s + [i, s]}, which is
positive, the sum of the two is negative. As indicated above, the inclusion of
the neglected residue undoubtedly tends to make this whole function positive,
but after making the revision (incorporated in the present edition of my
paper) I still feel unconvinced that the neglected residue can amount to the
total needed to invert the sign.

It may be worth mentioning that in revising my work I notice that
&s[£(ff2)2 + 2fi] — ĉr4 owes its negative sign to the term — Jo-4. This term
arises from the energy of the double layer, called ^DD. It comes from the
portion of the term §7rp2Je8(l — \e)dcr, which gives rise to a term in e4 with
a negative sign. This term involves under the integral sign the factor

l + -r--J — 30, all the other factors being positive. If we attribute to 0

and to $ various values between $ir and zero, we see that in part of the
range the factor is positive and in other parts negative. A general inspection
does not suffice to determine whether the positive portion outweighs the
negative, as in fact it does. Therefore, in order to feel abundantly sure that
no gross mistake had been made, I computed by quadratures the eight con-
stituent integrals involved in the final result, and confirmed the correctness
of the value found by the rigorous evaluation.

The analysis of the investigation has of course been carefully re-examined
throughout, and I have, besides, applied the same method to the investigation
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392 SECOND APPROXIMATION TO THE FORM OF THE PEAR. [12, SUM.

of Maclaurin's spheroid, where the solution can be verified by the known
exact result*.

As a further check, the formulse of the present paper have been examined
on the hypothesis that the ellipsoid of reference reduces to a sphere. The
several terms correctly reproduce the analogous terms in the paper on
Maclaurin's spheroid, but in effecting the comparison it is necessary to note
that the variable T of this paper reduces to £ (1 — r2/a?), whereas in the paper
on Maclaurin's spheroid the corresponding variable T denotes ^ (1 — r3ja3),
where r is radius vector and a the radius of the sphere.

Dissent from so distinguished a mathematician as M. Liapounoff is not to
be undertaken lightly, and I have, as explained, taken especial pains to ensure
correctness. Having made my revision, and completed the computations as
set forth here, I feel a conviction that the source of our disagreement will be
found in some matter of principle, and not in the neglected residue of this
series. I can now only express a hope that some one else will take up the
question, and I will proceed to discuss the subject further as though my
results had not been subjected to this criticism.]

The numbers obtained in the course of the determination of the stability
afford the means of giving a second approximation to the form of the pear.
The result is shown graphically in the figure of § 21, where the largest value
of e is adopted which seemed to secure a fair degree of approximation in the
result. I originally called the figure "pear-shaped," because M. Poincare's
conjectural sketch in the Ada Mathematica was very like a pear. In the
first approximation, shown in my former paper, the resemblance to a pear was
not striking, and it needs some imagination to recognise the pear shape in
the second approximation shown here; but a distinctive name is so con-
venient that we may as well continue to call it by that name.

The effects of the new terms now added are almost entirely concentrated
at the two ends. All these terms, excepting a very small one arising from
the second sectorial harmonic, tend to augment the protuberance at the
stalk and to fill up the depression at the blunt end. It is true that there is
a small term, arising from the square of the third zonal harmonic, which
diminishes the protuberance and increases the depression, but this cannot be
regarded as a new term, since it only represents the effect of the fundamental
harmonic carried to the second order of small quantities.

The new zonal harmonics furnish by far the most important contributions.
The second zonal harmonic denotes that the ellipsoid most nearly resembling
the pear is longer and less broad than the Jacobian. The largest contribu-
tion of all is that due to the fourth zonal harmonic, and this may be regarded
as the octave of the second zonal term. The ratio of the contribution of the

* [Paper 14.]
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1902] CONJECTURAL SKETCH OF FURTHER DEVELOPMENT. 393

sixth zonal harmonic to the fourth is about \; of the eighth to the sixth,
and of the tenth to the eighth about £.

The general effect is that the protuberance at the stalk of the pear is
much increased, and the depression at the other end nearly filled up. Over
the greater part of the whole surface the depressions and protuberances are
less conspicuous than they were. The nodal lines where the surface of the
pear cuts that of the ellipsoid are entirely shifted from their former positions.
It did not seem worth while to attempt to specify their new positions,
because the choice of the ellipsoid to which we refer influences the result so
largely. The ellipsoid on which these figures are constructed is that which is
called J in this summary. Its volume is a little less than that of the pear,
so that the protuberances are a little greater in volume than the depressions.

I think it is hardly too much to say, that in a well-developed " pear " the
Jacobian ellipsoid has nearly regained its primitive figure, but that it is
subject to a small tidal distortion due to the attraction of a protuberance
which it shoots forth at one end. I venture to give here a conjectural sketch
of a further stage of the development.

0
Conjectural Sketch.

If we look at this figure and at those drawn by Mr Jeans in his striking
investigation of the parallel changes in the shape of an infinite rotating
cylinder (Phil. Trans. Roy. Soc, Vol. 200, A (1902), p. 67), we can hardly fail
to be reminded of some such phenomenon as the protrusion of a filament
of protoplasm from a mass of living matter.

Notwithstanding the caveat which M. Poincare enters as to the dangers of
applying these results to heterogeneous masses and to cosmogony, I cannot
restrain myself from joining him in seeing in this almost life-like process a
counterpart to at least one form of the birth of double stars, planets, and
satellites *.

* [Sedvide Paper 15.]
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APPENDIX.

NOTE ON THE STABILITY OF JACOBI'S ELLIPSOID.

(An abstract is contained in Proceedings of Royal Society, Vol. 82, A (1909),
pp. 188—9.)

[It is known that Maclaurin's spheroid of rotating liquid becomes unstable
when its eccentricity reaches the value sin 54° 21' 27". This is a form of
bifurcation, and for increasing momentum the stability passes over to Jacobi's
ellipsoids. The discussion of this problem by the method of the preceding
paper is valuable, because we are able to see that the method gives correct
results, even when only a small number of terms in the infinite series are
computed. Moreover we are able to compare in detail the series which gives
the result in this case with that found previously. Although it is impossible
in this way to prove my conclusion, as against M. Liapounoff's contention, yet
I think it tends to indicate that I am right.

In this problem we use spheroidal harmonic analysis applicable to an
ellipsoid of revolution of eccentricity sin S, where 8 — 54° 21' 27". The deter-
mination of the gravitational energy of the deformed spheroid follows exactly
the lines of the old work, and the required result may be written down by
transliteration.

The ellipsoidal coordinate v is replaced by f V- 1, « becomes 1,

sin y — sin /3 = V(~ 1) tan S, and cos y = cos /3 = sec 8

Also Aj2 or 1 — sin2 y sin2 6 becomes 1 + tan2 8 sin2 6, and I will now use A2

to denote 1 + tan2 8 sin2 0; the old A becomes cos 6, and Y becomes unity.

There is no need for the black-letter notation for iH/, 23/, but it may be
retained, <&{ denoting P/ (£,) Q/ (£,), and 23/ being Q/ (f0) dP{ (?0)/df,.

The deformed spheroid is given by

T = - eS2* - tffSf

where Si' = P / (fi) cos scf>

The condition for the limiting stability of Maclaurin's spheroid is

<&i=a,
and the solution of this is 8 = 54° 21' 27".

Thus wherever in the old analysis iJ3 or jH,1 occur we must replace them
by a,'or &.

In translating the old work \f— 1 will occur frequently, but these imaginary
signs take care of themselves, and we need pay no attention to them.
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1909] TRANSFORMATION OF PREVIOUS FORMULAE. 395

Thus the old result for the gravitational energy holds good except in two
respects; first that the suffix and the affix 2 replace the suffix 3, and the
suffix 1 replaces the suffix and affix 1, and secondly that the coefficient
sin2 /3/cos (3 cos 7 becomes sin2 8.

Thus we have for the gravitational energy

where Ao = & [A (<r2)
2 + 2£4] - $<r« + I [i, s]

2

/ ) 2 _ t 33/

(132
2 - i sin2 8) P /

The integrals involved in these formulae may be derived by translation
from the old results.

The formulas for the rotational term in the energy is however quite
different, since the rotation takes place round the z axis.

I find that
TL/fn JJ o

- r ~ \$ tan S + ^e2 (p0 sin2 B-p.2 sin2 8 - w2 tan S) - £/2</>3 tan S}

It appears that all the f's vanish except those for which i is even and s
is zero or 4, and all the / ' s except/2 may be eliminated.

The equations for finding /2 and S&>2 become

. _ £2 S o 2
 t <f>.2 t a n S

+ 2 {~f I e* + ^rp-i I (P.- P«) sin2 S - ^tan S- g^,2 tan 8 = 0

Before stating the numerical results I will give the values of the several
integrals.

If as already stated we write A2 = 1 + tan2 8 sin2 6 = 1 + /J? tan2 S

«< = ^ sec2 8 £ ( i - ^ i ) (1 - M2)2 [Pi

^ = 27 cosec 28 f \- (1 - /x2)2 [P4 <»]2

= W sin 8 sec« 8 £ ( ^ -
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396 PROOF OF THE STABILITY OF JACOBl'S ELLIPSOID. [12, APP.

The integral <r2 is the same as w0. The integrals &>j4, pt only differ from
cot, pi in having the coefficient outside the integral sign half as large, and
P / (fj,) of course replaces P» (/*). The integrals of, pf vanish unless s = 0 or 4.

T xi J 3 J d 3 i + 4!
Lastly (pi = .-.—T , d>;4 = -r-^—— - — j -

J r 2t + 1 ^ 2 (2i + 1) i — 4!
I only carried the computation as far as the eighth harmonics, and

found that

/ 2 = - 8-4346e2, / 4 = 3-4700e2, / 6 = - riO67e3, / 8 = -3358e2

/4
4 =-076910e2, /6

4 = --0019225e2, /8
4 =-00013722e2

The coefficients of the sectorial harmonics are very small, but as they are
to be multiplied by Pj4(/x), which involves a large numerical coefficient, these
terms are quite as important as the zonal terms.

I find that
4<vp

= - 2-3146e2

The angular velocity, say &>0, of the critical Maclaurin's spheroid is given
by ft)0

2/47r/9 = -09356, and since to2 = &)0
2 + 5&)2, we have

&) = &)„ (1-12-370e2)

The moment of inertia is found to be

G = ~M) tan 8(1+ 47l24e2)

Hence
3M2

' tan g (1 + 34-754e2)
10-7rpk0

Hence the angular velocity of the Jacobian ellipsoid is less, and the
angular momentum greater than in the case of the critical Maclaurin spheroid.
This shows, as in the case of the pear-shaped figure, that the Jacobian
ellipsoid is stable.

In order to test the correctness of the results I have calculated the axes
of the ellipsoids given by this analysis, corresponding to 7 = 55°, 57°, 60° (see
Paper 8, p. 130). Even for so long an ellipsoid as the last the result is very
nearly exact, for I find

a
b
c

Computed axes

1-3747
1-0584

•6873

Correct axes

1-3831
1 -0454

•6916

Error as fraction
of correct value

+ 1/165
-1/80
+ 1/161

The chief point of interest is, however, to consider the series which is
analogous with that found in investigating the pear-shaped figure.
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1909] THE SERIES COMPARED WITH THE PREVIOUS ONE. 397

For Jacobi's ellipsoid there are two series proceeding pari passu, viz. the
zonal and fourth tesseral series. For these I find the following results:—

I

2
4
6
8

Zonal

(Bi)2/

37
1

harmonics

Ct + [i, 0]

•2393
•0077
•1554
•0170

Ratio
to

of each term
the next

37

g

i

4
6
8

Fourth tesseral
harmonics

WH/C/+0, 4]

3-3307
•3352
•0253

Ratio
to

of each term
the next

10
13

In the case of the pear-shaped figure the corresponding numbers are
extremely small fractions, but this is without any signification since it merely
depends on the definitions which have been adopted for the harmonic
functions. Here we need only consider the zonal terms, since the sectorial
terms are clearly insignificant. We had:—

i

2
4
6
8

10

(BiflCi + ii, 0]

- -000080868
•000247274
•000062350
•000019576
•000006328

Ratio of each term
to the next

3-9
3-2
3-1

M. Liapounoff contends that if I had taken more terms into account, the
conclusion as to the stability of the pear-shaped figure would have been
reversed, because the series is so slowly convergent. It would seem, however,
as if the uncomputed residue of this series should be about '000003. It is
true that the series is less convergent than those which arise in the case of
Jacobi's ellipsoid, but I cannot think that it can converge so slowly as to
justify M. Liapounoff. It seems to me then that the present investigation
should lead us to look with suspicion on an argument which would show that
my former conclusion was incorrect.]
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13.

ON THE INTEGRALS OF THE SQUARES OF ELLIPSOIDAL

SURFACE HARMONIC FUNCTIONS.

[Philosophical Transactions of the Royal Society, Vol. 203, A (1903),
pp. 111—137.]

THIS paper forms a sequel to the three preceding papers in the present
volume. I shall refer to them as " Harmonics," " The Pear-shaped Figure,"
and " Stability."

In " Harmonics," the functions being expressed approximately, approximate
formulas are found for the integrals over the surface of the ellipsoid of the
squares of all the surface harmonics. These integrals are of course required
whenever it is proposed to make practical use of this method of analysis, and
the evaluation of them is therefore an absolutely essential step towards any
applications.

The analysis used in the determination of some of these integrals was
very complicated, and is probably susceptible of improvement. Such improve-
ment might perhaps be obtained by the methods of the present paper, but I
do not care to spend a great deal of time on an attempt merely to improve
the analysis.

In " Harmonics" the symmetry which really subsists between the three
factors of the solid harmonic functions was sacrificed with the object of
obtaining convenient approximate forms, and I do not think it would have
been possible to obtain such satisfactory results without this sacrifice. But
this course had the disadvantage of rendering it difficult to evaluate the
integrals of the squares of the surface harmonics.

All the harmonic functions up to the third order inclusive are susceptible
of rigorous algebraic expression; and indeed the same is true of some but
not of all the functions of the fourth order. Accordingly in these cases
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1903] NOTATION. 399

rigorous expressions for the integrals should also be obtainable, and the
object of the present paper is to complete the preceding investigation in
this respect.

It will be well to begin by a restatement of the notation. That used in
" Harmonics" was convenient for the approximate and asymmetrical ex-
pressions involved, but the notation used in the two later papers seems
preferable where the formulae are rigorous and symmetrical.

In " Harmonics " the squares of the semi-axes of the ellipsoid were

The rectangular coordinates were connected with the ellipsoidal co-
ordinates v, fj., $ by

«2 1 - / 3 / „ l + /9w , l + / 3 \

¥ - - IT/3 r - T^P-J r - T-/3)cos *

z2_ 2 2l-/3cos2</>

The three roots of the cubic

y2 z3

a? + u 62 + u

were Ul = tv\ «, = *•/*•, «, = A « ^ = ^ ~ ^

Lastly v ranges from oo to 0, fi between + 1, <fr from 0 to 2TT.

In the two later papers I put

«r2 — " *'2— 1 — u-2 v — ,, _ qin ft
1 + /3 * sin 7

and for convenience I introduced an auxiliary constant /3 (easily distinguish-
able from the /3 of the previous notation) defined by sin /3 = *• sin 7.

The squares of the semi-axes of the ellipsoid were then

a _ fcscos3^ ,a_A^cos2^ „_ _ ^ _
a ~ sin2/3 ' ~ Hn^fiT ' C"~sm\e

The rectangular coordinates became

g = ~ ^ J (l _ K* sin2 0) cos2 ̂  fj = C ^ | cos2 0 sin2 *
& 2 2 /H 2 /3 r

Ti - -^^rh sin2 0 (\ — K.'2 cos2

&2 sm2 $ y
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400 SEPARATION OF THE VARIABLES. [13

The roots of the cubic were
la la

= A" sin" 0, ( 1 ' 2 2 £ )sin p /c

This is the notation which will be used in the present paper.

If da be an element of surface of the ellipsoid, and p the central perpen-
dicular on to the tangent plane, it appears from the formula on p. 326 of
"Stability" that

p da k3 cos /3 cos 7 K2 cos2 6 + K'2 sin2 <f>
d6d<fi = sln^/S " AT

where A2 = 1 - «2 sin2 6, P = 1 - K'2 cos2 0.

In the previous papers I have expressed the two factors of which a surface
harmonic consists by ^ / O ) or P / (M) , and ©/'(</>)> 0 / (0 ) , &/(</>) or Sf((f>),
one of the two P-functions being multiplied by one of the four cosine or sine
functions.

Taking a pair of typical cases, the integrals to be evaluated are

i^ifpda and

As it will be convenient to use an abridged notation, I will write these
integrals If (cos) and If (sin), according to an easily intelligible notation.

These functions involve integrals of even functions, and therefore we may
integrate through one octant of space, the limits of 6 and (p being \ir to 0,
and multiply the result by 8.

It is clear then that

* " ^ ^ dej W

f
Jo &

Similar expressions are applicable to all the other forms of function, but
we may proceed with this form as a type of all the others.

This formula shows that the variables are separable, and since we might
substitute \TT — i|r for <£ without changing the result, the </> integrals are of
the same type as the 6 integrals.

It has been stated above that two of the roots of the cubic equation are
proportional to /c2sin2# and (1 — «'2 cos2 (/>). By the nature of the harmonic
functions it follows that if [^/ (/J,)J is proportional to a certain function of
K2 sin2 6, [Gt/ (</>)]2 is proportional to the same function of (1 — K'2 COS2 <p).

It follows that if ($ / ) 2 = F (K2 - K2 sin2 6) = F («2 cos2 6),

(<&is)2 = OLF{K2-1+ K'2 COS2 cf>) = aF ( - tc'2 sin2 </>)

where a is a constant, which for the present we may regard as being unity.
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1903] DEPENDENCE OB' THE REQUIRED INTEGRALS ON CERTAIN OTHERS. 401

If then

[$<»(/a)]2 = Ao + AlK* cos2 9 + A^ cos4 6 + A3K
e cos6 6 + ...

we must have

[(21/(<f>)]2 =A0- AlK'2sin20 + J 2 « ' 4 sin4 </>- y!3«:'6sin6 </> + . . .

Accordingly if there is a term An \/c2n+2 cos™+2 61 -r- in f«2 cos2 0 ( ^ / ) 2 ---

and a term {-)mAm I.ic'2m sin2m <£ -?- in |(©fs)2 - ^ , then there must be a term

Am JK™ cos2m 6» ^ in J (P / ) 2 ™ , and a term ( - ) M n [«'2«+2 sinOT+2 0 ^ . It

follows that the coefficient of (—)mAnAm in / / (cos) -= °°S f^~ is

sin p

L'im si

_ (_)»-m+i L2m cos2m ^ ^ L'sn+a sin2n+2 ^ *

For the sake of brevity I call this function [2n + 2, 2m], and we may
state that one term in the required expression is (—)mAnAm [2M + 2, 2m],
where [ ] indicates the above function of the four integrals. I t follows that
T . . . &k? COS yS COS 7
I/(COS)-T- ---T-o

sin3 p

s in

cos2"+2 6> ~ L'im sin2

•(1)

A 2 [2, 0] - A,A, [2, 2] + AaAa [2, 4] - ...

+ AjAol^, 0 ] - Af [4, 2] + AXA2 [4, 4 ] - ...

+ 4 , 4 , [6, 0] - A,Ai [6, 2] + A? [6, 4] - ...

Since

[2ra, 2m] = he2" cos2re 61 — IK'21" sin2™ </> *

f . . d6 [ , . d(f>_(_)» - j «™ S in»^ x J« " s i n " ^

it is clear that [2n, 2m] = - (-)»-» [2m, 2»]

Hence if n and m differ by an odd number [2n, 2m] = [2m, 2w], and if
they differ by an even number [2n, 2m] = — [2m, 2n]. Also [2n, 2n] = 0.

Let us write

{2n} = I /cm cos2"6-j- , \2n}' = I Kin sin2" $ -^ *

so that [2n, 2m] = {2n} {2m}' - (-)»-"«{2n}' {2m}

We must now evaluate these functions,

D. m. 26

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.016
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:09, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.016
https://www.cambridge.org/core


402 DETERMINATION OF THE CONSTITUENT INTEGRALS. [13

Since A3 = 1 — K2 sin2 8, we have by differentiation

= i {(2n - 1) K2 cos2?l 6-{2n- 2) («2 - «'a) cos2"-2 0-(2n- 3) K'2 COS2"-4 0}

Integrating between ^ir and 0 and multiplying by /cm~2 we have

and by symmetry

Multiplying the first of these by {2m}' and the second by - (-)n~m {2m}
and adding together we have

[2ra, 2m] = g — | («2 - «'2) [2n - 2, 2m] + |£—? «2«:'2 [2» - 4, 2m]

By successive applications of this formula we may reduce any function
[2n, 2m] until it depends on [2, 0], but the result becomes very complicated
after a few successive reductions.

o i
Then [2,0] = {2}{0}'-(-)M2}'{0}

= EF' + F F - F F

But it is well known that this combination of the complete elliptic
integrals with moduli K. and K is ^w*.

Hence [2, 0] = \TT.

It seems unnecessary to reproduce the simple algebra involved in the
successive reductions, and I therefore merely give the results, as follows;—

-[0, 4] = [4,0]-f (««-«*) . i * -[2,6] = [6, 2] =

[4,6] = [6,4] = i * V . \n [6,8] = [8, 6] = * « V . *«•

- [4,8] = [8,4] = J ^ (K2 - K'2) K V".-|,r

* See for example Durege's Thcorie der ElUptischen Functionen, p. 293.
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1903] FORMULA FOR THE REQUIRED INTEGRALS. 403

These are the only functions of this kind which are needed for the evaluations
of integrals in this paper.

When these functions are introduced into (1) and the terms re-arranged,
I find :—

sin3,8

2 . 4 ) - 3 W 2 ] AtA, - g - | _ ^ ( 4 . 6 ) - 5 W 2 ] K V M

> 8) ~ 7 2 « 2 « ' 2 ] « 4 « ' M ^ - YYI

n [ 7 . 9 ( 1 - *V2) - 3] H*K'*A, A,- . . .

f 3 f 7 9 < ' ) ^O.A4- (2)

In this result a good many terms are added which are not deducible from
the table of functions given above, but every term as stated here has actually
been computed. The laws governing the succession of terms in the first six
lines seem clear, but I do not claim that the proof of the laws is rigorous.
I do not perceive how each series is derived from those preceding it, and I
have no idea how the series beginning with A0At would go on. With sufficient
patience it would no doubt be possible to determine the general law of the
series, but I do not propose to make the attempt at present, since we have
more than enough for the immediate object in view.

This result (2) is, of course, equally applicable to the integrals of the type
If (sin).

In order to effect the required integrations we must define the functions,
and I take the definitions (with a few very slight changes) from § 2 of " The
Pear-shaped Figure." In order to use the preceding analysis it is necessary
that the square of the P-function and the square of the cosine or sine function
should be the same functions of K2 COS2 6 and of — «'2 sin2 </>. But as in the
definitions to be used this symmetry does not hold good, a difficulty arises,
which may, however, be easily overcome. If the P-function be multiplied by
any factor f, and the cosine or sine function by any factor g, the integral will
be multiplied by f'2g2. I therefore introduce such factors / and g as will
render the residual factors of the squares of the P and cosine or sine-functions
symmetrical in the proper manner.

26—2
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404 HARMONICS OF ORDERS ZERO AND UNITY. [13

It seems desirable to show how the results found here accord with the
approximate integrals as found on pp. 276—7, § 22, of " Harmonics." In this

connection I remark that . , _—- , when written in the notation of
sin3/3

"Harmonics," is &v(v1 — 1$(v> — — ^ J , a factor which I denoted in that

paper by M.

It does not seem necessary to give full details of the analysis in the
several cases, since it is sometimes tedious, and it merely involves the
substitution in the formula of the values of AQ, Ax, A2, &c.

We will now take the several harmonics successively.

HARMONIC OF THE ORDER ZERO.

This harmonic is simply unity, so that At)=l and all other A'a vanish.
The formula is

, , . 4 r f cos /3 cos 7
/ . ( C O B ) - s^0-^ (3)

This is obviously right since the integral is jpda, of which this is the
known value.

HARMONICS OF THE FIRST ORDER.

Here we have all the A'a zero excepting Ao and Ax, and when the functions
have the proper symmetrical forms, we have from (2),

(1) The Zonal Harmonic.

I define this thus :—

$, ft*) = sin 0 =/(*»-«" cos« 0)*
= (1 - K'2 COS2 cj>)i = g (K* + K'* sin2 * f

where f=-,g = l.

On squaring ^ (/j,), it is clear that

Whence I find Ix (cos) = i ^ | |
3 sin3 /3
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1903] HARMONICS OF ORDER UNITY. 405

Since with definition (4) /y«:2 = 1,

,. 47T&3cos /S cos 7 ,_.
7 ( C O S ) = ^ (5>

In " Harmonics " this harmonic is defined by

$!(/*) = A 0*)=/*; 0 , ( ^ = ^(1- /8 cos 20) (6)

Now we must take for y and g values such as to bring the two definitions
into accord. This is the case if

Hence Ix (cos) = |TTM (1 + /3) (7)

agreeing with the result on p. 277 of " Harmonics " for the case i = 1, s = 0,
type OEC.

(2) The Sectorial Cosine Harmonic.

I define this thus :—

where/=1, <7 = —.

K

By symmetry with the last result

£ coa 7 _ 47rfc3cos/3cos7

In " Harmonics " I defined the functions thus :—

If we take _/= f z—^ I , ^K' = 1, the two definitions agree, and we have

^ | (11)

This agrees with the result on p. 277 of " Harmonics " with i = 1, s — 1,
type OOC.
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406 HARMONICS OF FIRST AND SECOND ORDERS. [13

(3) The Sectorial Sine Harmonic.

I define this thus:—

^ (ji) = cos 6 = / « cos 0
(12)

J&!1 (<£) = sin cj) = g \J— 1 . K sin <f>)
, , 1 1

where/--. 0 - ^ ^ j .

On squaring S^1 we find Ao = 0, A1 — 1, and

x _ 47rfr cos £ cosy _ 4 r f cos 0 cos 7
A ( s i n ) - 3 s i n 3 / 3 ( / 9 K K ) - - 3 g i n 3 / g (Id)

In " Harmonics " the definitions were the same, and therefore

/1
1(sin) = |7rM (14)

This agrees with the result on p. 277 of "Harmonics" with i=l, s=l,
type OOS.

HARMONICS OF THE SECOND ORDER.

In these the only coefficients are Ao, Alt A2, and (2) becomes

cos\ _ 47r^cos^ cos 7 2 ,4 2

+ f («2 - «'2) ^40 J , - T \ («2 - «'2) ^ K ' M , 4 2 + ^ (4 - 9«V2

witli s = 0, 1, 2.

(1) cmd (4) TAe Zonal and Sectorial Cosine Harmonics.

These are defined thus:—

.(1 5)
) = 2'2-K'2cos2(£, (s = 0, 2)J

where q* = ^ [1 + *2 + (1 — K 2 « ' 2 ) - ] , with upper sign for s = 0 and lower for
s = 2 ; and g'2 = 1 - g2.

Writing t2 = K2 - ql = g'2 - «'2 = \ [«2 - «'2 + (1 - «2/c'2)*]

(15)
= 0, 2)J

where / = 1 , ^ = 1« I t may be noted that i2 is a symmetrical function in
K2 and - K'\

Squaring ^ / we find
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1903] HARMONICS OF THE SECOND ORDER. 407

After reduction I find, for s = 0, 2,

It (cos) = ^ ^ p y [* - ! ( * . - *'2) * + A ( 4 -19K2K'2) i4

( K 2 - K ' 2 ) « 2 K' 2 ) ! 2 + 1 K 4 K ' 4 ]

Now

3£2 = K2 - K'2 ± (1 - K V 2 ) *

9^ = 2 - 5*V2 + 2 (K2 - K'2) (1 - «V2)£

27^ = (4 - 7*V2) (K2 - «'2) + (4 - 13K2 «'2) (1 - K V 2 ) *

81*8 = 8 - 40K3K'2 + 41K4«'4 ± 4 (2 - 5K2K'2) («2 - K'2) (1 - K2K'2)*

Whence on substitution, w i t h / 2 # 2 = l ,

. | ; [(i _ «v*)2 ± ( i + w « * ) («* - «2) (i - «2*2)*]

(16)

The upper sign being taken for the zonal (s = 0), the lower for the
sectorial harmonic (s = 2).

If these expressions be developed in powers of K as far as three terms of
the series, I find, on reintroducing the factor/2<72,

(17)

. . 4 ^ ^ cos /3 cos 7 , .
(cos) = 5^g— • i* C1"

(18)

In " Harmonics " I made the following definitions

$ 2 {n) = P 2 (p) - |/3P2
2 (/*) = 1 - | (1 +1/3) cos2

©2(<^)= l-f/8cos2(/> = l - f / 3 + f/3sin24

In order to make the two forms of definition agree we must take

ji' = i, ^ = i-|/8

Thus /V = ̂ (l-3/8 + i^)

Now on development

(8 = (§)4 (1 - OK'2 + SfK'4) = (§)4 (1 - 10/3 + if J-/32)

Whence / y = (f )4 (1 + 7/3 + -s
?
7-/32)

Introducing this I find

(20)
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408 HARMONICS OF THE SECOND ORDER. [13

agreeing with the result on p. 276 of "Harmonics" with i = 2, s = 0,
type EEC.

Again in " Harmonics "

%2 (fi) = 3/3P2 (ji) + Pi {p) = 3/3 + 3 (1 -1/8) cos* 0 '

In order to make the two definitions agree we must take

/K2 = - 3 (1 - f/3), gic'2 = 2

or /"= - 3 (1 + hB - B2), a =

(21)

So that/2<f = 22.32 [t^-\ (1 + /9-£/32).

Introducing this in (18) we have

(22)

agreeing with the result on p. 276 of "Harmonics" with i = 2, s = 2,
type EEC.

(2) The Cosine Tesseral Harmonic.

This is defined thus:—

i i i i

= cos <j}(l- K'2 COS2 <f>y = g (K2 + «'2 sin2 <pf (tc'2 - K'2 sin2 $)? J

, , 1 1
where /=- ,5r=- / .

ft AC

Squaring P,1 we find

On substituting in the formula, I find, on putting f'1giiclic'1 = \ and re-
ducing,

T., . 47rP cos/3 cos 7 1 ,_..
/„•(«»)=—5^-^.3 (24)

In " Harmonics " the definitions were

cos <£ = (!+ /3)*cos <̂> ( l - J ^ B COS2

In order to make the two definitions agree we must take
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1903] HARMONICS OF THE SECOND ORDER. 409

so that / y «V2 = 32 v ' = 33(1 4- 3/3 + 4/32). On multiplying (24) by

this factor, we have
/2

1(cos) = f 7 r M . 3 ( l + 3 / 3 + 4/32) (26)

agreeing with the result on p. 276 of "Harmonics" with i = 2, 8=1,
type EOC.

(3) The Tesseral Sine Harmonic.

This is defined thus :—

^V (JJ.) = sin 0 cos 0 =/K COS 0 («2 - K2 COS2 6)^ 1

S,1 (<£) = sin <j, (1 - A:'2 cos2 <f>)i = g V - 1. «' sin >̂ (K2 + «'2 sin2 ^)*J

where / = I , g, = - ^ .

Squaring ^p2
x we find

whence, on putting —/ 2 ^ 2 « 4 A: ' 2 = 1,

•{S > 5sin3/3 "3 ^ '

In " Harmonics " the definitions were

^P2
J (yu.) = Pa1

 (/A) = 3 sin 0 cos 0 -i

A
S2

a (0) = sin 4> (1 - /S cos 2(f>f = (1 + y8)2 sin )̂ f 1 - ^ cos2 <

Therefore, to make the two definitions agree, we must take

Therefore -/2C?2A:4/«:'2 = 3 2 ( 1 + / 3 ) , and on multiplying (28) by this factor
we have

/2
1(sin) = f7 rM.3( l+ /3 ) (30)

agreeing with the result on p. 276 of " Harmonics" with i = 2, s = l,
type EOS.

(5) The Sectorial Sine Harmonic.

This is denned thus :—

= s i n <f> cos

If in the last integral we had written \tr — 0 for <£, and \-K — § for 0, and
K for K, ^a1 would have become S2

2, and S2
r would have become P2

2. There-
fore the result (28) gives what is needed by merely interchanging K and «'.
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410 HAEMONICS OF THE SECOND AND THIRD ORDEBS. [13

r™ <• r o / • \ 47T&3 c o s /3 COS 7 1
Therefore /3

2(sin) = . , „ '-.^ (32)
o sm p o

For the purpose of comparison I must put

pa» (jt) = / « cos 6 («'2 + K* cos2 8)i, £2
2 (0) = g V - 1.«' sin 0 (*'2 - «'2 sin2 0)*

(31)

and ItW-^^^i-tf-f**) (33)

In " Harmonics " the definition was

S2
2 (</>) = sin 20 = 2 sin (fi cos cf>

In order to make the two definitions agree we must take

i O\ v

Thus -f2g-2K*K'4 = 22.32 j ^ - | ; introducing this in (33) we have

agreeing with the result on p. 276 of " Harmonics" with i = 2, s = 2,
type EES.

T H E HARMONICS OF THE THIRD ORDER.

In these the only coefficients are Ao, Alt A2, A3, and (2) becomes

/cos\ 4 r f c o s / 3 c o s 7 [ 2 x . . i A * + IK!IK'*A*-1H*K''>A'
UinJ ~ sur3^ ^ "~5 5 7

+ 2 («2 - «'2) [ J 4 O 4 , - rhK?K*A1A, + 3%«*«'M,^J

+ A (4 - 9«2«'2) 4 » ^ 2 - T^6 ( 1 2 - 25«2«'2) K V M

(«2 - «'2) ( 4 - 5 K 2 / 2 ) A, As} (« = 0, 1, 2, 3)

(1) a«d (4) The Zonal and Second Tesseral Cosine Harmonics.

These are defined thus:—

1$.? (fi) = sin 6 («2 sin2 0 - q*)
(36)

C/ (c/>) = (q1* - «'2 cos2 </>) (1 - «'2 COS2 0 , (s = 0, 2)J
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1903] HARMONICS OF THE THIRD ORDER. 411

where 52 = $[1 4 K2 4 (1 — \K2 + K^], with the upper sign for s = 0 and the
lower for s = 2. Writing

t* = K
2 - q* = q'2 - K'2

= i [3K2 - 2 4 (4 - 7 K2 + 4K4)*] = i [1 - 3K'2 ± (1 - K'2 + 4K'4 )*]

$3« (/Lt) =f(f- K2 cos2 6>) (K2 - K2 cos2 61)*
•(37)

C / (<£) =g(t2 + K'2 sin2 0) (K2 4 K'2 sin2

w h e r e / = - , ^ = 1.

Squaring ^P3
S we find

After some rather tedious reductions I find (for s — 0, 2)

U (cos) = ^ i ° n
S

3 ^ C 0 S f y *2 {^8 - A (1 - 3*») f + & (4 - 25«'2 4 33«'«) ^

4 T ^ (2 - 5*'2) «2«'2*2 4 &***}/•?

Now writing D = (1 - K'2 + 4>K'4)%,

5« 2 =1-3« ' 2 ±Z»

52^ = 2 - 7K'* 4 13«'4 ± 2 ( 1 - 3K'2) D

5ste = 4 - 21K'2 4 48«'4 - 63/c'6 4 (4 - 19«'2 4 31/c'4) D

54^ = 8 - 56«'2 4 177K'4 - 314K'8 4 313«'e 4 (8 - 52K'2 4 136/c'4 - 156K'6) D

On substituting these in the above expression, and noting that K2f2g2 will
be unity with the definition adopted, I find

73
2(cos) = the same with the sign of D changed

(38)

If these expressions be developed in powers of v', and if the factor K2f2g2

be reintroduced, I find

h (cos) = *^K^°^ W (1 - 2K- + fK4). KTf

= f TTM (I)4 (1 - 4/3 + a£/3'). K2/2^2

^(cos) = * ^ ^ . jig*'«(1 - . - 4 H ^ ) • * / Y

= -f TTM . s - p K'4 ( 1 - 2 / 3 4 ^/S2) . K 2 / 2 ^ 2

In " Harmonics " I defined

^ 3 0*) = 1\ 0*) - i W (/*) = sin tf [f sin2 ^ (1 4 f/3) - f (1 4 f/8)].. .(39)
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412 HARMONICS OF THE THIRD ORDER. [13

In order that our previous definition may agree with this we must have

Now ?
2 = i [4 - 2K'2 - V(l - «"2 + 4K'4)] = f [1 - V 2 - f K'4]

= f [ l - / 3 - | / 3 2 ]

whence/* = f(l + |/3 + 5/32), and this value of/* satisfies the second equation.

In " Harmonics " I defined

C3 (0) = (1 - /3 cos 20)2 (1 - 1/3 cos 20)

2/3 \
= (1 + 0)* (1 + 4/8 - 5/3 cos2 0) ^1 - y ^ g cos2 0j

In order that the previous definition may agree with this we must have

gq'* = (1 + /3)*(1 + f/3) = 1 + 3/3 + f/32

But g'2 = 1 - ?
2 = | (1 + f/3 + f £2)

and thence g = f (1 + f/3 - ^7-^2)

This value of £f will be found to give the correct value for gK12.

Then fgK = (|)2 (1 + 5/3 + ^/3>)

and / ^ / c 2 = (|)" (1 + 10/3 + if*/32)

Introducing this into the value of I3 (cos), we find

/3(cos) = *.7rM(l+6/3 + 15/32) (41)

agreeing with the result on p. 276 of " Harmonics" for i = 3, s = 0,
type OEC.

Again in " Harmonics " I defined

$,'(/*) = 15/8P,0*) + P,»(A*) = 15 sin ^[1 - f /8 - ( l - f /8)sin26\...(42)

To make the former definition agree with this we must take

/*?» = - 1 5 (1 -10 ) , /«3 = - 15 ( l - | / 3 )

In the present case

q2 = i [4 - 2«'2 + ^(1 - K'2 + 4K'4)] = 1 - i«'2 + f K'4 + T\K'6

= 1 - /3 + 1 / 3 2 - 1 / 3 3

Omitting the term in /33 we find, with this value of q2,

fie = — 15 (1 — ^/3 — 3/32), and that the second equation is satisfied.

Again I defined

C3
2 (0) = (40 + cos 20) (1 - /3 cos 20)*

= (1 + /8)* (2 cos2 0 - 1 +10) ( l - j M g cos2 0) .. .(43)
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1903] HARMONICS OF THE THIRD ORDER. 413

Hence to secure agreement we must take

gq'2 = - (1 - f

Now q'2 = 1 - q2 = ft (1 - § /3 + §/32), and therefore

The second equation is satisfied.

We have then
/"2«2,,2 '4 O2 Q2 O H I Q\ / I O _ 2 3/Q2\ O2 92 C2 / I A 0
/ y K K = = ^ . o . 0 I JL - j - p i ( J. — £5 — ~i~P ) — ^ • *̂  • " \ — yi ' p — -

Introducing this into the value of /3
2 (cos), we find

I2 (cos) = |TTM . 3 . 4 . 5 (1 - 2/3 + 3/S2) (44)

agreeing with the result on p. 276 of " Harmonics " for i = 3, s = 2, type OEC.

(2) and (6) j^'rsi Tesseral Cosine Harmonic and Sectorial Cosine Harmonic.

These are defined thus:—

P3« (p) = (K
2 sin2 0 - q2) (1 - K2 sin2 0)^

(45)
,«(0) = cos0(?'2 - «'2cos2<f>), (s=l, 3)J

where g2 = | [1 + 2«2 + (1 — K- + 4«4)2], with upper sign for s = 1 and lower
sign for s = 3, and g'2 = 1 — q2.

Writing P = K'2 - q'\

P/(M) = / ( i ' 2 + «2 cos26) (K2 + K2 cos2 0$ ~\

© / (̂ >) = g (t'2 - «'2 sin2 </>) («'2 - A:'2 sin2 cj>)i)

where /= — I, g = ,.
fC

It is clear that [P3
S (/A) ® / ( ^ ) ] 2 (s = 1, 3) has the same form as

[^J/ (/i) C3
s(^))]2(s = 0, 2) when in the latter we interchange 0 with ^TT — tf>,

and « with «'. The interchange of the variables of integration clearly makes
no difference in the result, and therefore we need only interchange K and K',
and replace t by t'.

In the present instance

p = K'2 - q'2 = q2 - K2 = \ [1 - 3«2 + (1 - «2 + 4«4)i]

This shows that i'2 is the same function of K2 that 42 was of «'2, but that
/31 (cos) is analogous with 73

2 (cos), and J3
3 (cos) with I3 (cos). Thus we may

at once write down the results by interchanging K and K throughout.
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414 HARMONICS OF THE THIRD ORDER. [13

Let D' = (1 - K2 + 4K4)*

Then putting tc'if2g2 = 1, we have by symmetry with (38)

* ( c o s ) = 4 - ^ p ' . % jy [(i - «•+M i>' - (i - K ) a - «• - f̂

/3
:i (cos) = the same with the sign of D' changed

(47)

If these expressions be developed in powers of «' I find, on reintroducing
the factor « ' 2 / Y ,

, , 4 r f cos /S cos 7 27 , ,
3 ^COS) = f s ln 1 ^ ' 3~75^ ~ ** ^ s * ^ * -^ ̂

cos /3 cos y 1 , ,
^in^8— ' 275 * ( ^*

= fTTM . g l ( r ^ ) (1 - 3/3 + W ) «VV

In " Harmonics " I defined

(A*) = ^ - i - ^ - J [-P.10*)-&8(1 + f/3)iV0*)]

(48)
But we have denned it above by

p,i (M) = / ( l - «= sin2 6>)i («2 sin2 0 - 9
2)

Therefore flc* = ^(l±Pj (i+tf + ftp)

)
Now ?2 = i (1 -1« ' 2 - i

Whence / = J^ (1 + -

This value also satisfies the expression for /K2.

Again I defined

<2V (<£) = cos <f> -1/3 (1 +1/3) cos 3</>

= cos0 [1 + V-/3 + | | / 3 2 - |/3 (1 + f/3)cos2 <̂>] (49)

But we have defined it above by

CDs1 = gK' cos </> (/c'2 cos2 >̂ - q'2)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.016
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:09, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.016
https://www.cambridge.org/core


1903] HARMONICS OF THE THIRD ORDER. 415

Therefore

§f/32),
With the above value for q2 we have 5'2 = $(1 + s/^+ ii@2); whence

Therefore / y *'2 = ^ [1 +

and I find /31 (cos) = |TTM'. 6 (1 + ^3-/S + -2T
s/-/32) (50)

agreeing with the result on p. 276 of "Harmonics" with i=3, s = l ,
type OOC.

In " Harmonics " I defined

/1±I_M2\ |
P33 ̂ )=yY~t-J [Jy8 (i + ffi P*1 (/*) + ps3 0*)]

x

= 1 5 ^ 1 - \=L4>sin2 eY L1 + S/3 + s\^ - s in2 0 (1 + f/8 - M/32)] • • -(51)

But P3
3 (/*) = / ( l - K2 sin2 0)£ (K2 sin2 6> - g3)

Therefore

Now q2 = 1 — ~/c'2 + — K'* + - ^ K ' 6 . . .

Therefore q2 = 1 - f/3 + f-̂ /32

and / = - 1 5 ( l + - y - / 3 + | | / 3 2 )

This also gives the correct value to fa2.

Again CC3
3 (<f>) = f/3 (1 + f/3) cos (p + cos 30

= cos 0 [4 cos2 0 - 3 (1 - &8 - ;g\/32)] (52)

But CD/ (0) = #*' cos 0 («'2 cos2 0 - q'2)

Therefore gic = —^, and gic . q'2 — 3 (1 — A/3 — A/32)

If we eliminate gic, these equations give the correct value for q'2.
art

Then / 5 / * ' = - -

Therefore / ^ V ' 2 = ? ' ' ^ - 5 - (1 + -L4/3 + ^ f ^ )

Hence we find

/3
3(cos) = ^TTM.360(1 + | / 3 + H/32) (53)

agreeing with the result on p. 276 of " Harmonics" with i = 3, s = 3,
type 0 0 0 .
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416 HARMONICS OF THE THIRD ORDER. [13

(3) and (7) First Tesseral Sine Harmonic and Sectorial Sine Harmonic.

These are defined thus :—

$3
S O ) = cos 6 O2 sin2 6 - g2)

), ( s = l , 3)J

where g2 = \ [2 + «2 + (4 - «Va)^], with the upper sign for s = 1, the lower for
s = 3, and g'2 = 1 - g2.

Writing t2 = K2 - <f

$s« (/i) = / « cos 0 (V - K2 cos2 6>)

where f=\, g = j

(55)
. sin <£ (<2 + K'2 sin2 ^ )J

Squaring ^ 3
S we find

Ao = 0, Ax = t4, A2 = - 2t\ A3=l

On substitution in the formula for harmonics of the third order I find

If we write D = (1 - | « V 2 ) i

| *2 = 1 - 2*'2 ± D

| | i4 = 2 - Af/cV2 + 2 (1 - 2«'3) D

2 «• = 4 - -V«2«'2 - J|-«'6 ± (4 - -4
¥
9-/cV2) D

|*«» = 8 - 34K'2 + -8
T°5V

4 - ^ , , ' 6 + SMIL's ± (8 _ 25«'2 + 51«'4 - 34/c'6)

On substitution I find, on putting —/2^2K2/C'2 = 1,

. , . . . 4 r f cos/3 cos 7 23
 r o

/ s ( s m ) = 7sin^/3 • 3T54 [ 8

+ («2 - A:'2) (8 + 3/c2«'2) (1 - i«V 2 ) i ] [ • • -(

/3
3 (sin) = the same with the sign of the square root reversed I

Developing these expressions in powers of K''2, reintroducing the factor
2^2«2/c'2, and reverting to the notation of " Harmonics," I find
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1903] HARMONICS OF THE THIRD ORDER. 417

S^COS7 1 / - ^ V V

j n 3 a 2T5 *• ""¥ + ^ « '*•""•' 9 K K

= $TTM ~ «'4 (1 - 0 + W/S2) (~/V «2*'2)
In " Harmonics " I defined

f/ 0*) = p,*0*) - Tv/3 (l - f/3) P3
3 (/*)

= JJ- cos 5 [sin2 0 (1 + $0 - ftp) - i (1 +10 - M/32)] (57)

To make our former definition agree with this we must take

Hence /« = J^ (1 + JJ./3 + |f/32).

It will be found that <f = ^ (1 - f0 + T%/32), and that / « . 52 has the above
form.

Again I defined

Ss1 (0) = sin 4> -1(3 (1 -1/3) sin 3^.

= sin0[l -%5-/S + ff/Q2 + f/S(1 -|y8)sin2 0] (58)

To make our former definition agree with this we must take

gKW- I.** = $0(1-10)

It will be found that P = f (1 - Js
7-/3 + J^1-/32)-

Whence ^«' V- 1 = | ( 1 + \$- ||/92). a n d g/c'\/-l.K/2 has the correct
form.

Therefore fgKK' V- 1 = ^ ? (1 + ^ + W/32)

Whence /31 (sin) - ^TTM 6 (1 + f/9 - -^/32) (59)

agreeing with the result on p. 276 of " Harmonics" with i = 3, s = 1
type OOS.

In " Harmonics " I defined

W (?) = W (i -1/8) ^a10*) + A3 (A*)

= 15 cos 6 [- (1 - ¥/8 + M/32) sin2 0 + 1 - §0 + ^/32] .. .(60)

D. in. 27
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418 HARMONICS OF THE THIRD ORDER. [13

In order that this may agree with our former definition we must take

fK. K2 = - 15 (1 - J#/3 + ff/32), /K . f = - 15 (1 -1 /3

Whence fK = - 15 (1 +1/3 - |A/32).

I t will be found that

so that / /e . <f has the correct form.

Again I defined

S*i (<t>) = 1 / 3 ( 1 - fyS) sin j> + sin 3</>

= 3 sin 0 [ 1 + J 0 - & £ » - * sin1*]

In order to make our former definition agree with this we must take

gK' V - 1 • i2 = 3 (1 + i/3 - ^/32), <7«' V - 1 • «'2 = - 4

4
Therefore gic' *J— 1 = — ^ .

I t will be found that t* = - |K'2 (1 + 4/3 - S\/S2), so that gr/e' V~ 1 •
the correct form.

Then fgKK' V - 1 = - ^ - ( 1 + ^ 8 - M/32)

and

Whence I* (sin) = fTTM . 360 [1 - f / 3 + |f/32] (62)

agreeing with the result on p. 276 of " Harmonics " with i = 3, s — 3,
type OOS.

(5) T/ie Second Tesseral Sine Harmonic.

This is defined thus:—

P3
2 (fi) = sin 6 cos 0(1 - K2 sin2 Of =/«cos 6>(«2- /c2cos20)i(«'2+/c2cos20)*

S3
2(*) = sin*cos*(l- /e ' 2cos2</))4=^V-l-sm*(«2 + «;'2sin2*)2(«:'2-A:'2sm2*)2

(63)
, , 1 1

w h e r e / = - , g = V - 1 '

Squaring P8
2 we have
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1903] HARMONICS OF THE THIRD ORDER. 419

Therefore

/,(C0S) , 4 r f c o s m o s 7 c_ WK,6 + HK2_Ky ^_
sin (o

- ^ («2 - *'2)2
 K V 4 - ^ (*2 - «'2)2 « V 4

Reducing this expression and putting —/ 2 # 2 KV 4 = 1, we have

J

In " Harmonics " I defined

To make our former definition agree with this we must take

*-«(i±f)4

Again I defined

S3
2(0) = (1 — /3 cos 2<f))i sin 2j> = 2 (1 + /3)5( 1 — ^—^pCos2^) sin <p cos <f>

(66)
To make the former definition agree with this we must take

Therefore

'K'2 V - 1 = 2 . 3 . 5
(1 - £)*

and -fgW/c'4 = 22. 3 2 . 52 -,_/ = 22. 32 . 521

Hence in the notation of " Harmonics "

(67)

agreeing with the result on p. 276 of " Harmonics" with i = 3, s = 2,
type OES.

It may be convenient, as furnishing a kind of index to the foregoing
investigation, to state that the 1 + 3 + 5 + 7 integrals for the harmonics of
orders 0,1, 2, 3 are given in equations 3, 5, 9, 13, 16, 24, 28, 32, 38, 47, 56, 64,
corresponding to the definitions contained in 4, 8, 12, 15, 23, 27, 31, 36, 45,
54, 63.

27—2
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420 MR HOBSON'S METHOD. [13

The definitions of the harmonic functions as given in my paper on
Harmonic Analysis are repeated in 6, 10, 19, 21, 25, 29, 34, 39, 40, 42, 43,
48, 49, 51, 52, 57, 58, 60, 61, 65, 66. Corresponding to these latter definitions
the approximate integrals are given in 7,11,14, 20, 22, 26, 30, 35, 41, 44, 50,
53, 59, 62, 67; and the results confirm the correctness of the general
approximate formulae for the integrals given in § 22 of the paper on Harmonic
Analysis.

It must be obvious that the method exhibited here may be applied to
higher harmonics with whatever degree of accuracy is desired; but it is also
clear that the labour of evaluating the integrals increases very much as they
rise in order. It is probable that the approximate results of the previous
paper will suffice for most practical applications.

POSTSCRIPT.

Mr Hobson has shown me how these integrals may be evaluated by a
simpler method of analysis, without the intervention of elliptic integrals. As
an example of the method he suggests I take the integral I2 (cos) evaluated
above.

The solid ellipsoidal harmonics are given, except as regards a factor, in
§ 3 of " The Pear-Shaped Figure."

In (19) of that paper we find

8, = %,(*)$2(M)©2(4>) = A \_?<# + (1 - 29s) f - q"

where A is the factor to be evaluated so as to agree with the definitions

The ellipsoid over which we desire to integrate is defined by v = l/(« sin 7),
and the extremity of the c axis is defined by p = sin 6 — 1, cj> = \-K.

Hence at this point

8a = (cosec2 7 - q*) (K2 - g2) q'2

But at the extremity of the c axis

k
0 0

Therefore

(cosec2
7- f)(*> -5

2) g* = frA ( - ^ t ^ + ££}=-A ?£(cosec2y - 5=)
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1903] MR HOBSON'S METHOD. 421

Therefore A = - ^ - ^ " ^ , and
k2

~

us assumeLet

Then when x, y, z is on the ellipsoid we have

-. k cos 7 „ , k cos /3 ,, k „
= at= —=—L £, y = OTI= —. 17. 2 = cf = —i— C

/csmy J «sin 7 «sin7

Thus we may regard f, rj, % as the coordinates of a point on a sphere of
unit radius, or as direction cosines, if it is more convenient to do so. On
substituting for ,x, y, z their values in terms of f, 17, £ we find

#2 = (cosec2 7 - f) (V - tf) [- ?2p - (1 - 2?) v2 + ? 'T]

On performing the same operation to the points on the boundary of an
element da of surface of the ellipsoid, we find

, , 7 I? cos 8 cos 7 ,
pda = abcdo) = . „ _- dmr sin3 p

where da> is an element of the surface of the sphere of unit radius, or an
element of solid angle.

Since on the surface of the ellipsoid, ^ 2 (v) = cosec2 7 — q2, it follows that

Hence

/ 2 (cos) = — " f1i"^
LJ

It is easy to prove that

f f f
l^ida)= i^dw = l^dm =£7

J J •/

Therefore

l - 2 g 2 ) - :

5 sin3 8 ' AK
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422 MR HOBSON'S METHOD. [13

On substituting for q2 its value, viz., ^ [1 + /c2 — (1 — K2K'2)^], and effecting
reductions we arrive at the result given in (16) above.

It is obvious that this process is considerably simpler and more elegant
from the point of view of theory, but to carry these operations through for
all the integrals given above would entail a good deal of algebra. I think
indeed that the work might not be very much less than what I have already
done.

Mr Hobson has further remarked that all the integrations may be avoided
by the following theorem:—

If Fn (£, r), f) be a solid spherical harmonic function of £, r], £ of degree n,

Considering, however, how simple are the integrals involved in his first
method, it may be doubted whether this would save trouble.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.016
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:09, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.016
https://www.cambridge.org/core


14.

THE APPROXIMATE DETERMINATION OF THE FORM
OF MACLAURIN'S SPHEROID.

[Transactions of the American Mathematical Society, iv. (1903), pp. 113—133,
with which is incorporated a paper entitled "Further Note on Mac-
laurin's spheroid," ibid., ix. (1908), pp. 34—38.]

PREFACE.

SPHERICAL harmonics render the approximate determination of the figure
of a rotating mass of liquid a very simple problem. If p be the density, e the
elliptieity, and a> the angular velocity of the spheroid, the solution is

CO O

This result is only correct as far as the first power of the elliptieity, but
M. Poincare has recently shown* how harmonic analysis may be so used as to
give results which shall be correct as far as squares of small quantities; and
I have myself used his method for the determination of the stability of the
pear-shaped figure of equilibrium +.

Both these papers involved the use of ellipsoidal harmonic analysis, and
it would be rather tiresome for a reader to extract the method from the
complex analysis in which it is embedded. It therefore seems worth while
to treat the well-worn subject of Maclaurin's spheroid as an example of the
method in question. It will appear below that it would have been possible
to obtain a more accurate result than that stated above, even if the rigorous
solution of the problem had been beyond the powers of the mathematician.

My own personal reason for undertaking this task was that I desired
a sort of collateral verification of the very complicated analysis needed in the
case of my previous investigation.

* Philosophical Transactions of the Royal Society, Vol. 198, A (1902), pp. 333—373.
t [Paper 12.]
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424 EQUATION TO THE SPHEROID. [14, § 1

§ 1. Method of defining the spheroid.

Let a sphere S be described concentrically with the spheroid, and let it be
sufficiently large to enclose the whole of the spheroid. I call R the region
between the sphere S and the spheroid; and suppose the density of the liquid
in S to be + p, and that in R to be — p.

If Sf denotes any surface spherical harmonic of colatitude 6 and longitude
(j>, it is usual to define the corresponding deformation of a sphere of radius a
by the equation r = a (1 + e8f). But in the present investigation it will be
found that there is a great saving of labour by denning it by the equation

r3 = a3 (1 + 3eSis)

The two forms give identical results as far as the first power of the
ellipticity e, but not so when we are to consider the squares of small
quantities *.

In general I define $ / by one of the two alternative forms P / (/JL) • S(f>,
sm

where p. = cos 9. But in the case of the second zonal harmonic (s = 0, i = 2)
it is convenient to write

The fourth zonal harmonic will occur explicitly below, and in accordance with
the general definition to be adopted we have

The angular velocity is to be denoted by a, and the colatitude 6 or cos"1 fi is
measured from the axis of rotation.

We must now assume a general form for the equation to the spheroid,
and shall subsequently determine the several ellipticities so that the surface
may be a figure of equilibrium.

The radius of S being denoted by a, we may write the equation to the
surface of the spheroid in the form

r3 = a3 [1 - 3c + 3eS2 + 3/& + SiffSf]

In this expression e is the ellipticity corresponding to the second zonal
harmonic, and it represents that term which exists alone in the ordinary
approximate solution. Then I suppose that f and f£ are quantities of the
order e2, and that there are ff corresponding to all possible harmonics
excepting the second and fourth zonal ones. Thus all the / / are of order e2,
excepting f2 and /4 which are zero. Lastly c is an arbitrary constant, and is

* [In order that the procedure might be as closely parallel as possible with that adopted in
Paper 12, I have also carried out the investigation when the form of the spheroid is defined by
ri = a?(\ + 1eSf). If the ellipsoid of Paper 12 be reduced to the sphere, it will be found that the
dependent variable T becomes equal to (a.2 - ?-2)/2a2, or r2 = a2 (l-2r).]
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1903] CHANGE OF VARIABLE. 425

only subject to the condition that it is greater than the greatest positive
value of eS2+/8i + 'S./fSf. This condition ensures that *S shall envelope the
whole spheroid.

It is now convenient to replace the radius vector r by a new variable r,
denned by

Thus the equation to the spheroid may be written

r = c-eS2-/Si-l,ffSi
s

The problem will be solved by making the energy of the system stationary.
It will therefore be necessary to determine the energy lost in the concentration
of the spheroid from a condition of infinite dispersion. This will involve the
use of the formula for the gravity of 8, and since the whole region R is inside
8, we only require the formula for internal gravity.

If we were to continue the developments from this point all the formulae
would involve the constant c. But since it is merely needed for defining a
sphere of reference of arbitrary size, it cannot finally appear in the formula
for the energy. It is useless to encumber the analysis by the introduction
of a constant which must disappear in the end, and it is legitimate and much
shorter to treat c as zero from the first. It is however easier to maintain a
clear conception of the processes if we continue to discuss the problem as
though c were not zero, and as if 8 enveloped the whole spheroid. With this
explanation we may write the equation to the spheroid in the form

T=-eSa-f8i-%ff8S (2)

§ 2. The lost energy of the system.

If the negative density in R were transported along conical tubes
emanating from the centre of 8, it might be deposited as surface density on
S; I refer to such a condensation as — G. I do not, however, suppose the
condensation actually effected, but I imagine the surface of 8 to be coated
with equal and opposite condensations + C and — G.

The system of masses forming the spheroid may then be considered as
being as follows:

Density + p throughout 8, say + S.

Negative condensation on 8, say — G.

Positive condensation on S and negative volume density — p throughout
R. This last forms a double system of zero mass, say D, and B = C — R.
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42() THE LOST ENERGY OF THE SYSTEM. [14, § 3

The lost energy of the system clearly involves the lost energy of each of
these three with itself, and the mutual lost energy of the three taken two
and two together. Thus the lost energy may be written symbolically

$88 + \CG + \DD- SG + SD - CD

Since D is G — R, the last three terms are equivalent to

_ SC + (8 - G) (G - R) = - 8R + GR - GG

Thus the gravitational lost energy is

$88 -SR + GR- ICC + \BB

The lost energy of the system, as rendered statical by the imposition of a
rotation potential, is clearly $C<o2, where C is the moment of inertia of the
spheroid about the axis of rotation.

If Gs denotes the moment of inertia of the sphere S, and Cr the moment
of inertia of the region R considered as being filled with positive density + p,
we clearly have

G = Gs — Gr

Thus if E denotes the lost energy of the system as rendered statical by the
imposition of a rotation potential

^(Cs-Cr) (3)

§ 3. The energy ±88 - 8R + GR- \GG.

It is in the first place necessary to obtain certain preliminary analytical
and numerical results.

If we write da for dfidcp, it is clear that an element dv of volume is
given by

dv = asdrda = -.— drda-
4

where M is the mass of the sphere 8; for we may obviate the negative sign
of dv by taking the limits of T from T to zero.

When we integrate throughout the region R the limits of T are

- eS, -fS4 - Iff Si* to zero

I now define certain integrals, viz.:

2 8f da, 0-4 = -:— I (S2)
4 da

It is well known that
/"+!

^ !
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1903] PORTION OF THE LOST ENERGY. 427

COS
and since in every case, excepting that of $2, $/ = Pf (/A) . sj>, we have

sin

. , _ 3
9i 2i + 1 (i - s)!

Since 82 = — §P2 (/*), the value of $2 is derivable from the same general
formula. Hence we have

& = 3, ^ = T*j, > = | (4)

Since $/ involves either cos s<p or sin s<j>, « / vanishes unless s = 0; hence
we need only consider o .̂

The function ($2)
2 may be expanded in terms of zonal harmonics. Assume

then

Multiplying both sides by ZSijiir, and integrating throughout angular
space, we find

co^mfy, and ^

But, by actual substitution,

mi p ft)n 4 (Wo 4 CO4 8

Therefore :r = TS> ; r = ~ o T ' AT=QK

<p0 **o <p2 z i >̂4 do
and all the higher OJ'S vanish.

It will be noticed that wo= >̂2, hence we have a>o/$o = g-̂>2- Also

4 16 8

Next we have

3

whence °"4 = 3»~yT ^

It is now necessary to determine the volume of the region it!; it is

a?j(dTda = - a3 j[eS2 +fS, + 2//&s] da- = 0

From this it follows that the mass of S is equal to that of the spheroid,
and therefore M is the mass of the spheroid. It is this result which makes
the choice of T as independent variable so convenient.

We are now in a position to determine the several contributions to the
lost energy.
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428 PORTION OF THE LOST ENERGY. [14, § 3

The lost energy of the sphere, denoted by $S8, is known to be SM2/5a.
This is a constant and may be omitted as being of no further interest. The
internal potential of S is given by

F = §7rp (3a2 - r2)

But r3 = a3 (1 - 3T), and r2 = a2 (1 - 2T - T2 - f T3 ...). Therefore as far as the
cubes of small quantities,

Since the volume of R is zero the first term of V contributes nothing to the
lost energy SR, and the second term of V will give the whole. Therefore to
the fourth order

SR = M ^ \\{T + AT2 + fr3) drda
4:TrpaJJx 2 3 /

Stf + 2%ff{8t8{

8. - 2e2/? (8af8{ + -Je4 (S2y] dc
M2

Thus on rearranging the terms we have
M2

188- SR= — [-&& + &»,-&*< + &/»<-tp<f>t-p,(ftyw] ...(5)

We have next to consider the terms depending on the condensation G.
Since dv/dr = a3 da the amount of matter in the region R, if filled with
density + p, which stands on an element of unit area is

pafdr = -Pa (eS2

This expression gives the surface density of the condensation + C, and it is
expressed in surface harmonics.

Now by the usual formula of spherical harmonic analysis the internal
potential of surface density paeSf is

Anrpe J±^s= SMe r*
2i +1 a*"2 l (2i + 1)0,0? l

As far as the first power of T,
r* = a1 (1 - ir)

but in the case i = 2, as far as squares of small quantities,

r2 = a2 (1 - 2T - T2)

Hence it follows that the internal potential, say Vc, of the condensation + G
is given by

[ ( ^ = ^ ) ] (6)
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1903] PORTION OF THE LOST ENERGY. 429

On multiplying this by ZMdrdo-l^-rr and integrating throughout R we shall
obtain the lost energy GR.

Thus

~ 4TT

- r (§eS2 + f/S4 + 2 2 ^ / / ^ ' ) - i^aS,] drda

Therefore

In order to find \CG we have only to deal with surface density. Then
the value of Fc at the surface is given by (6) with T = 0; therefore

An element of mass of the surface density + G is

Multiplying these two together and integrating, we find

And subtracting this from (7)

GR - iGC
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430 THE LOST ENERGY OF THE DOUBLE LAYER. [14, §§ 4, 5

Again adding this to (5) we have

M2

-SR + GR- ^GG = - -

It remains to determine the value of the term \DD, and for this end we must
apply the theory of double layers, according to the ingenious method devised
by M. Poincar6.

| 4. Double layers*.

[For the discussion of such a system I refer the reader to § 9, p. 335 of
Paper 12.

The result given in equation (21), p. 340 is as follows:—]

f(e° - Xe<) da + \p Je* ̂  da

§ 5. The energy \I)D.

The element of surface of the sphere is written da- in § 4, but in order to
accord with the notation used elsewhere we must now write it a?da.

The first term in i^DD is

f7T/32 He3 - Xe4) da

and when the notation for the element of surface is changed we may write it

In this expression e is the length measured along a radius from the sphere
S to the spheroid. We have denoted the outward normal by n, and therefore
to the second order of small quantities,

— dn = — dr = a (1 + 2T) dr

The distance measured inward from the sphere to the point defined by T
in the region R is, to the first order of small quantities, — n = ar. Again

e = - jdn = a f(l + 2T) dr

(10)

* [In the paper as originally printed the investigation of the double layer was reproduced.]
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1903] THE LOST ENERGY OF THE DOUBLE LAYER. 431

Since — n is what was denoted es in the general investigation referred to in
§ 4 (see p. 338), we have

dv = — a? (1 + Xn) dnda

= a3 (1 - \ar) (1 + 2T) drda-

= as [1 + (2 - Xa) T] drda

But since dv = aPdrda, we have X = 2/a.

Therefore

e3 = - a? [e3 (#2)
3

Xe4=2a3e4(S2)4

Whence

e» - \6< = - a3 [e3 (

This must be multiplied by ^Mp/a and integrated throughout angular
space. Thus this contribution to the energy becomes

r4-fe2/(u4] (11)

The second term 1P I e2 T— da
C2dV
62 T— d

J aniP

in \DD remains for consideration.

In order to evaluate dV/dn it suffices to imagine the volume density — p
in the region _B concentrated on a surface bisecting the space between S and
the spheroid. We may then treat the system D as an infinitesimal double
layer of thickness ^e and with density + G or — pa (e$2 +/S4 + 2///S/) on its
outer surface. In the present instance it suffices to consider only the leading
terms in the density and thickness. Hence by (10) the product denoted TB
in the general investigation becomes

/ •_ 1 < ? V „ . x 2 a f j , „ Oh r. , « 4 o

L <P2 94

We thus have TS expanded in surface harmonics.

Now consider two functions

Ve = %Ai —r^ Si", for space external to S

(i + 1) r*
Vi = — z,Ai -—TTJ— Sf, for internal space

They are solid harmonics and as such satisfy Laplace's equation throughout
space. Hence they are the external and internal potentials of a distribution
of matter on S, but since they are not continuous, while their differentials
are continuous, that matter constitutes a double layer.
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432 THE LOST ENERGY OF THE DOUBLE LAYER. [14, § 6

At the surface r = a,

But this must be equal to AnrrB. Hence

+ ±8, +1
Therefore

A

Now
dV_
dn

> 2 > 1 ,

dVe

dr dr

= -%i(i.

,Mae.,-

-a)

a"

. ^ ; At = $Mat?.l)%

Then since

„ Me2 Fn 0)<i rv nn <*>! n I
2 a2 LB 9s 94 J

we have (on writing a2dcr for the da of the general investigation referred to
in § 4)

Adding (9), (11) and (12), we have for the whole gravitational lost
energy

§ 6. Moment of inertia.

Since a>' is of order e, the moment of inertia must be determined to the
cubes of small quantities.

We have, to the square of T,

qjf
= rasina 6 = ~=— (I + 82){1 -IT- T2)

The region R is to be considered as rilled with density + p, and the
element of mass is 3MdTda/4nr.
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1903] THE ENERGY OF ROTATION. 433

Hence the moment of inertia of the region R is

S,] [eSt +fSt + ZflSf

+ 2efSA + 2lefigS2Sis - ^ (S2f] da

2f + e* (8,Y + 2ef(8ty 84

+ 2lefi (S2y Sf + %tf (S.2f - Y (^)3 - ¥' (^)4] da

The moment of inertia of 8 is iMa*. Therefore

Then

O=(7S-C,. = ^ [ |

Whence
A/" 2 fi>2

a 47r/j 5 " 3

§ 7. Solution of the problem.

Introducing the numerical values of the several integrals we have from
(13) and (14)

E-^ Ml = _ 1 - e* - ~^— e3 - -— e4 + 1Q4 #f- 1 /•> - V l u l /.S)^.s

w2 [3 2 _4 , _8 8
5 e 3 7 e 33 5 1 e b 7 *

The conditions for a figure of equilibrium are

f U , § =0, § = 0
with to2 constant.

The last of these gives at once / / = 0. Neglecting all terms in E of
higher orders than the second, the equation dE/de = 0 gives as a first
approximation

&i2 4

IP

Then the equation - ^ = 0 gives

_8_ _
5 . 7 e ~

D. in. 28
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434 SOLUTION OF THE PROBLEM. [14, § 7

Therefore, by means of the first approximation for a>,

f=\* (15)

Substituting this value off in the expression for E we have

On equating -3- to zero we find3 -

20 404 1 4 r . 8 176

It follows from (15) that the equation to the surface of equilibrium is

r3 = a3[l+3e/S2 +
 J^e2>S4] (18)

It remains to verify that the solution given by (17) and (18) is correct.

The equation to an ellipsoid of revolution, whose equatorial and polar radii
are ax and aj (1 — ej, is

r ~ cos2 6
+ sm2 6

If we determine r3 by developing this expression as far as e^, it appears that
the equation to the ellipsoid may be written in the form

r3 = af (1 - *)[1 + 3 (e, + &ei> + &e*)S2 + y# (1 + T\e) S,-§%e?S6]

Since the volume of this ellipsoid is f -rra^ (1 — ex) and that of our spheroid of
equilibrium was f TTO3 it follows that

a3 = a^ (1 — ej)

If then we write

the equation to the ellipsoid of revolution becomes

r3 = a3 [1 + 3e£2 + ±f-e* (1 + 7«7e) 8t

and this is the form determined above in (18), but only as far as squares of e.

If the eccentricity of the ellipsoid be denoted sin 7, we have

cos 7 = 1 — ex
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1903] VERIFICATION. 435

whence

cos 7 sin* 7 = 2* (1 - f * + K ) = ^ (l - y e +

cos 7 sin4 7 = 4e:
2 (1 - 2e,) = 4e2 (1 - -\»-e)

cos 7 sin6 7 =

Now it is known that the rigorous solution for the angular velocity of
Maclaurin's ellipsoid may be written in the form

(2n- l ) ! s in 2 r e 7
7 (2» + 1) (2n + 3) [(» - 1) !]2 22"-3

Taking the first three terms

ft>2 2 . 3 . , 5

4TTO = IT5 S 1 7 C°S 7 + 5~7 S 7 C 0 S 7 + 22 3~~7 S 1 7 C°S 7

This agrees with (1*7), and the solution is found to be correct as far as
cubes of small quantities, thus verifying the previous work.

28—2
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15.

ON THE FIGURE AND STABILITY OF A
LIQUID SATELLITE.

[Philosophical Transactions of the Royal Society, Vol. 206, A (1906),
pp. 161—248.]
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1906] ROCHE'S INVESTIGATION. 437

PREFACE.

MORE than half a century ago I^douard Roche wrote his celebrated paper
on the form assumed by a liquid satellite when revolving, without relative
motion, about a solid planet *. In consequence of the singular modesty of
Roche's style, and also because the publication was made at Montpellier, this
paper seems to have remained almost unnoticed for many years, but it has
ultimately attained its due position as a classical memoir.

The laborious computations necessary for obtaining numerical results
were carried out, partly at least, by graphical methods. Verification of the
calculations, which as far as I know have never been repeated, forms part of
the work of the present paper. The distance from a spherical planet which
has been called "Roche's limit" is expressed by the number of planetary
radii in the radius vector of the nearest possible infinitesimal liquid satellite,
of the same density as the planet, revolving so as always to present the same
aspect to the planet. Our moon, if it were homogeneous, would have the
form of one of Roche's ellipsoids; but its present radius vector is of course
far greater than the limit. Roche assigned to the limit in question the
numerical value 2-44; in the present paper I show that the true value is
2"455, and the closeness of the agreement with the previously accepted value
affords a remarkable testimony to the accuracy with which he must have
drawn his figures.

He made no attempt to obtain numerical solutions except in the case
of the infinitely small satellite. In this case the figure is rigorously ellip-
soidal, but for a finite satellite this is no longer the case; nor do his equations
afford the means of determining exactly the ellipsoid which most nearly
represents the truth. These deficiencies are made good below, and we find
that even in the extreme case of two equal masses in limiting stability the
ellipsoid is a much closer approximation to accuracy than might have been
expected.

It is natural that Roche, writing as he did half a century ago, should not
have been in a position to discuss the stability of his solutions with complete-
ness, and although he did much in that direction he necessarily left a good
deal unsettled.

In 1887 I attempted the discussion of some of the problems to which this
paper is devoted, by means of spherical harmonic analysis f. Poincare's

* "La figure d'une masse fluide soumise a l'attraction d'un point eloign£," Acad. des Sci. de
Montpellier, Vol. i., 1847-50, p. 243.

t [Paper 9, p. 135.]
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438 REFERENCES TO PREVIOUS PAPERS. [15

celebrated memoir on figures of equilibrium* was published just when my
work was finished, and I kept my paper back for a year in order to apply to
my solutions the principles of stability enounced by him. The attempt is
given in an appendix (p. 180) to my paper, but unfortunately I failed to
understand his work completely, and my investigation, as it stood, was
erroneous from the fact that one term in the energy was omitted. The
erroneous portion of the Appendix is not reprinted in this volume.

The analysis of the present paper is carried out by means of ellipsoidal
harmonic analysis. In the course of the work it becomes necessary to refer
to previous papers by myself, all republished in this volume, namely,
Papers 10, 11, 12, 13. These papers are hereafter referred to by the
abridged titles " Harmonics," " The Pear-Shaped Figure," " Stability," and
" Integrals."

The analysis involved in the investigation is unfortunately long and
complicated, but the subject itself is not an easy one, and the complication
was perhaps unavoidable.

The principal inducement to attack this problem was the hope that it
might throw further light on the form of the pear-shaped figure in an
advanced stage of development when it might be supposed to consist of two
bulbs of liquid joined by a very thin neck. The arguments adduced below
seem to show that such a figure must be unstable.

M. Liapounoff has recently published a paper in which he states that he
is able to prove the instability of the pear-shaped figure even when only
infinitesimally furrowed f. In view of my previous work on the stability of
this figure, and from other considerations it seems very difficult to accept the
correctness of this result.

At the end a summary is given of the conclusions arrived at, and this
last subject is discussed amongst others.

* "Sur l'equilibre d'une masse fluide animee d'un mouvement de rotation," Ada Math., 7:
3, 4 (1885), pp. 259—380.

t " Sur un problSme de Tchebychef," Acad. Imp. ties Sd. de St. Petersbourg, Vol. xvn., No. 3,
(1905).
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1906] TWO PROBLEMS TO BE SOLVED. 439

PART I. ANALYSIS.

§ 1. The Stability of Liquid Satellites.

This paper deals with two problems concerning liquid satellites which
possess so much resemblance that I did not for some time perceive that
there is an essential difference between them. One of these is the determi-
nation of the figures and of the secular stability of two masses of liquid
revolving about one another in a circular orbit without relative motion of
their parts. We may refer to this as the problem of " the figures of equi-
librium "; the other may be called " Eoche's problem," and it differs only
from the former in that one of the two masses of liquid is replaced by a
particle or by a rigid sphere. However, in the numerical solutions found
hereafter, Roche's problem is slightly modified, for the rigid sphere is replaced
by a rigid ellipsoid of exactly the same form as that assumed by the other
mass of liquid in the problem of the figures of equilibrium. Thus, with this
modification, the two problems become identical as regards the shape of the
figures; but, as we shall see, they differ widely as to the conditions of secular
stability. This difference arises from the fact that in the one case there are
two bodies which may be subject to tidal friction, and in the other there is
only one.

If in either problem there is no solution when the angular momentum
has less than a certain critical value, if for that value there is one solution
and for greater values there are two, then the principle of Poincare shows
that the single solution is the starting point of a pair of which one has one
fewer degrees of instability than the other. If, then, one of the two solutions
is continuous with a solution which is clearly stable, it follows that the
determination of minimum angular momentum will give us the limiting
stability of that solution; and this is the point of greatest interest in all
such problems.

Our two problems differ in the value of the angular momentum of which
the minimum has to be found. For, if in Roche's problem the second body
is a particle, it has only orbital momentum; if the second body is a sphere,
it must be deemed to have no rotation; and, finally, in the modified form of
the problem, the rotational momentum of the rigid body must be omitted
from the angular momentum, which has to be a minimum for limiting
stability.

It will be useful to make a rough preliminary investigation of the regions
in which we shall have to look for cases of limiting stability in the two
problems. For this purpose I consider the case of two spheres as the analogue
of the problem of the figure of equilibrium, and the case of a sphere and a
particle as the analogue of Roche's problem.
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440 TWO SPHERICAL MASSES IN ORBITAL MOTION. [15, § 1

Let p be density, and let the mass of the whole system be fwpa3; let the
masses of the two spheres be |Trpa3X/(l + X) and %irpa?/(l + X), or for Roche's
problem let the latter be the mass of the particle.

Let r be the distance from the centre of one sphere to that of the other,
or to the particle, as the case may be; and ea the orbital angular velocity.

In both cases we have <a2r3 = §7rpa3

The centre of inertia of the two masses is distant r/(l + X) and Xr/(1 + X)
from their respective centres, and we easily find the orbital momentum to be

In both problems the rotational momentum of the first sphere is

In the first problem the rotational momentum of the second sphere is

1

and in the second problem it is nil.

If, then, we write Lt for the total angular momentum of the two spheres,
and L2 for that of the sphere and particle, we have

1 + X5/3 X?-2

5 ( 1 +X)5'3 (1 + \)2a2

i_ \ • / \ / j

On substituting for m its value in terms of r, these expressions become

To determine the minima of these functions, we differentiate with respect
to r, and equate to zero.

Then, if r1; r2 denote the two solutions, we find

( l

Whence Minimum A = ($*•/,)*a'. 4 ( j h l ^ } ± ± L

Minimum i 2 = (fayi* a». 4 (Tf^)
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1906] RADII VECTORES OF MINIMUM ANGULAR MOMENTUM. 441

—r3 + 1) . Thus as A,
A, ' /

rises from 0 to oo this ratio falls from infinity to unity.

All the possible cases of the first problem are comprised between X = 0
and X = 1. When X = 0, r\ = oo ; and when X = 1,

r-±=J(i£.W) = 1-738
a

Thus, in the problem of the figures of equilibrium, if one of the two
masses is large compared with the other, the two must be far apart to secure
secular stability. This is exactly what is to be expected from the theory of
tidal friction, for limiting stability is reached when there is coalescence of the
two solutions which correspond to the cases where each body always presents
the same face to the other*.

The result when the two masses are equal becomes more easily intelligible
when it is expressed in terms of the radius of either of them. That radius is
a/21/3, so that when A, = 1

r = l '738a=219l( | - J )

Thus, in the latter case, limiting stability is reached when the two
spheres are nearly in contact with one another, for if r were equal to twice
the radius of either they would be touching.

When the two bodies are far apart, the solution may be obtained by
spherical harmonic analysis, and has comparatively little interest. But when
the bodies are equal or nearly equal in mass, limiting stability for the figure
of equilibrium would seem, from this preliminary investigation, to occur when
they are quite close together. Accordingly, in finding numerical solutions
hereafter, I have devoted more attention to this case than to any other.

Turning now to the solution of the analogue of Roche's problem, we see
that when X = 0, r2 = 0. This would mean that a very small liquid satellite
could be brought quite up to its planet without becoming unstable. But we
shall see that, when the satellite is no longer constrainedly a sphere, instability
first occurs through the variations in the shape of the satellite. This
preliminary solution does not, therefore, throw much light on the matter,
excepting as indicating that we must consider the cases where the satellite
is as near to the planet as possible.

Next, when X = 1, we have

* See Roy. Soc. Proc, Vol. xxix., 1879, p. 168 [Paper 5, Vol. n., p. 195], or Appendix G (I)
to Thomson and Tait's Natural Philosophy.
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442 THE STABILITY OF FIGURES OF EQUILIBRIUM. [15, § 2

Thus, when the two masses are equal, their distance apart is only about
1^ radii of either, and they will overlap. Here again it would seem as if
stability would persist up to contact, but, as before, instability first sets in
through variations in the shape of the satellite.

Finally, when X is large, r2 also becomes large. This case is the same in
principle as that considered in the problem of the figures of equilibrium, for
it means that if a large liquid body (formerly called the satellite) be attended
by a small rigid body (formerly called the planet), secular stability will be
attained when the small rigid body has been repelled by tidal friction to a
great distance from the large liquid body. As this case may be adequately
treated by spherical harmonic analysis, it need not detain us, and we see
that the most interesting cases of Roche's problem are those where X lies
between 0 and 1.

| 2. Figures of Equilibrium of a Rotating Mass of Liquid and
their Stability.

A mass of liquid, consisting of either one or more portions, is rotating,
without relative motion of its parts, about an axis through its centre of inertia
with angular velocity eo. We choose as an arbitrary standard figure one
which does not differ very widely from a figure of equilibrium, and we suppose
that any departure from the standard figure may be defined by two para-
meters e and / , which may be called ellipticities. It is unnecessary to
introduce more than two ellipticities, because the result for any number
becomes obvious from the case of two. We also assume a definite angular
velocity for the standard configuration.

Let V(e,f) denote the gravitational energy lost in the concentration of
the system from a condition of infinite dispersion into the configuration
denoted by e, f.

Let I(e,f), a>(e,f) denote the moment of inertia and angular velocity
about the axis of rotation in the same configuration.

The initial values of these quantities are those for which e =f= 0, and
are P(0, 0), 7(0, 0), &>(0, 0). These all refer to the arbitrary standard
configuration; they are therefore constants, and I shall write them V, I, a>
for brevity.

Let ellipticities e,/be imparted to the system, and let the angular velocity
be so changed that the angular momentum remains constant.

Then I(e,f)co(e,f) = I (0, 0) co (0, 0) = Iw

The kinetic energy of the system is half the square of the angular
momentum divided by the moment of inertia; and since the angular
momentum is constant it is equal to \(IwfjI{e,f).
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1906] VARIATION OF THE ENERGY. 443

Thus the whole energy of the system, both kinetic and potential, is
equal to

If F(e , / ) = V+SV, I(e,f) = I + 81, the expression for the energy as far
as squares of small quantities is

The first two terms may be omitted as being constant and of no interest,
and the energy with the sign changed, so that it is the lost energy of the
system, becomes

Since a> is constant, we may write this

On developing this by Taylor's theorem, it becomes

The condition for a figure of equilibrium is that the first differentials of
the energy with respect to the ellipticities shall vanish. If, therefore, e0,f0

denote the equilibrium ellipticities, the equations for finding them are

3 . 32 . , 32\,T. . ^ . ^ f ^ i ^ p j i = 0

Multiplying the first of these by e and the second by /, and adding them
together, we find

de 9/y °9e2 "J '^^-e JJ°3-fa\{ a

3/\2 . , ,.373/

U ) + (e/o+eo/) 9̂  Tf
On substituting this in the expression for the lost energy, it becomes

- I j \e (e - 2e0) (^ j + 2 (./- ef. - ej) ^ ^ + / ( / - 2/0) ^
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444 THE CONDITION FOR SECULAR STABILITY. [15, § 2

Now let Be, Bf be the excesses of e and / above their equilibrium values
0o./o, so that e = eo + Be,f=f(, + Bf. Then on substitution in the expression
for the lost energy it becomes

i {(Bef - e?} ~ + {BeBf- eof} - / o 2 } wo
' \{(Bey - *•} f / Y + 2 {&8/- e0f0] f % +
1_ \oej oe oj (

Since eo,fo are constants, the portion of this involving e0,/o explicitly is
constant, and may be dropped.

Thus the variable part of the lost energy may be written

1 . I' 9 2 / 2 3 /

a/2
2

i[df
This is a quadratic function of the departures of the ellipticities from

their equilibrium values, and the form is obvious which the result would
have if there were any number of ellipticities.

Since the condition for secular stability is that the energy shall be a
minimum, the lost energy must be a maximum, and therefore this quadratic
function of Be, Bf, &c, must always be negative in order that the system may
possess secular stability.

If F is a quadratic function of n variables, w1, x2, ws, &c, so that

F'=

"T* I ^ ^ 2 3 ^ 2 ^ 3 ' • • •

"I 0^33 &3 I • • •

it is known that the condition that F shall always be negative for all values
of the variables is that the series of functions

Oil i dm,

a12, •(2)

shall be alternatively negative and positive.

Since we might equally well begin with any one of the variables, it follows
that an, aw, a33... must all be negative; also a12

2— a-ad^, a>ii— aua33,
«232— «22«33 ••• must all be negative if F is always to be negative.

Now, suppose that F is the function of lost energy for a system with n +1
degrees of freedom, but that a constraint destroys one of the degrees. If the
system has secular stability, the n determinants must have their appropriate
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1906] TWO SPHERICAL MASSES JOINED BY A NECK. 445

signs, and when the constraint is removed, the new additional determinant
must have its proper sign in order to secure secular stability. It follows that
stability can never be restored by the removal of a constraint if the system
was unstable when the constraint existed; but stability may be destroyed by
the removal of a constraint.

§ 3. On the Possibility of joining Two Masses of Liquid
by a thin Neck.

This whole investigation was undertaken principally in the hope that it
might lead to an approximation to the form of the pear-shaped figure of
equilibrium of a rotating mass of liquid at the stage when it should
resemble an hour-glass with a thin neck. It seemed probable that such
an approximation might be obtained in the following manner:—

Two masses of liquid are revolving in an orbit about one another without
relative motion of their parts, so that they form a figure of equilibrium.
Imagine them to be joined by a pipe without weight, through which liquid
may flow from one part to the other. A flow of liquid will in general take
place between the two parts, but there should be some definite partition of
masses, corresponding to a given distance apart, at which flow will cease.
At this stage we should have an approximation to the hour-glass figure of
equilibrium.

In this section a special case of this problem is considered, in which the
detached masses, to be joined by a pipe, are constrained to be spheres.

If the notation of § 1 be adopted, it is clear that the system is defined by
the two parameters r and X. In accordance with the notation of § 2 we
denote the lost energy of the system by V and the moment of inertia by /.
It is easily shown that

For brevity write F - ^ , 0-+

and let F', G', F", 0" denote their first and second differentials with respect
to X.

The equations for determining the configuration of equilibrium are
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446 THE RADIUS VECTOR WHEN THERE IS EQUILIBRIUM. [15, § 3

The first of these gives at once

For determining the form of the second we have

If we differentiate these with respect to X, substitute in the second equation
of equilibrium and give to w2 its value in terms of r2, we find that the
result is

Now

F' = l - x x 2 ' 3 - ir__ l + x1'3 +

•(3)

(1+X)3>

Hence the equation for determining r for a given value of X is

as i + x1'3 + X2'3 a
r3 ~ ^ (1 + X)1/3 (1 + X1'3) r + =

This cubic has three real roots of which one is negative and has no
physical meaning; the second gives so small a value to r that the smaller
sphere is either wholly or partially inside the larger one. The third root is
the one required.

In order to present the result in an easily intelligible form it may be well
to express it also in terms of the radius of the larger of the two spheres, say
ax, where

1 l + X

The following is a table of solutions for various values of X:—

\l/3

o-o
o-i
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
1-0

r/a

1-304
1-323
1-368
1-426
1-486
1-543
1-590
1-625
1-649
1-662
1-666

r/a!

1-304
1-323
1-371
1-438
1-517
1-604
1-697
1-793
1-893
1-995
2-099

0-304
0-223
0-171
0-138
0-117
0-104
0-097
0-093
0-093
0-095
0-099

The solution is exhibited in fig. 1, the larger sphere being kept of
constant size and the successive smaller circles representing the smaller
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1906] ILLUSTRATION OF THE SOLUTIONS. 447

sphere. Many of the circles pass nearly through one point, and it has not
been possible to complete them without producing confusion.

The fourth column of the table gives the excess of r above the sum of the
two radii of the spheres, and it shows what interval of space is unoccupied
by matter. It is remarkable how nearly constant that interval is throughout
a large range in the values of X.

FIG. 1. Solutions for two spheres of liquid joined by a weightless pipe, for successive
values of X1''3.

In the case where the two bodies are no longer spheres, the equation
corresponding to the cubic (3) becomes very complicated. It is therefore
desirable to discover whether in any given solution of the figure of equilibrium
the two detached masses are too far apart to admit of their being joined by a
weightless pipe, or whether they are too near. This may be discovered in
the following way:—

Let r0 be the solution of /(a/r0) = 0, where

J \ r ) r 3 i
1 + X1'3 + X2'3

(1 + X)1'3 (1 + X1' .(4)

There is only one solution of / = 0 between r equal to infinity and the
case when the two spheres touch. Hence we can determine on which side of
r0 any given value of r lies by merely considering whether / changes from
positive to negative or from negative to positive as r increases through the
value r0.

Now if —h S f - j be any neighbouring value of - , we have approximately
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448 DISCUSSION OF THE STABILITY OF THE TWO SPHERES. [15, § 3

If we express a2/r0
2 in terms of ro/a by means of the equation for r0, this

may be written

' 'v a, 1 + XV>

a3

where as before a^ = -—-
1 -f- X

Now the fourth column of the table shows that 1 + X,1'3 — r/ax is negative,

(a\- J i s

(a\ /a\

- is positive, and vice versa. But if S I - is negative, r isrj r \r)
greater than r0 and the two masses are too far apart to admit of junction,
and vice versa.

Therefore if for a given solution for detached masses / (a/r) is positive, the
masses are too far apart to admit of junction by a weightless pipe, and if it
is negative they are too near.

When in the general case we form a function / (a/r), such that when the
ellipticities of the two masses are annulled, it reduces to the above function,
its sign will afford the criterion as to whether the masses are too far or too
near to admit of junction by a thin neck of liquid. I return to this subject
below in § 13.

The solution of the problem when the two masses are constrainedly
spheres is so curious that it seems worth while to consider its stability.
This may be done by the method of § 2.

The system depends on two parameters r and X, and the stability will
depend on three functions, which are denned as follows:—

d'q

These functions correspond to an, au, aw of (2) in § 2, and we see that for
secular stability {r, r\ and {X, X] must be negative, and

must be positive.
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1906] DISCUSSION OF THE STABILITY OF THE TWO SPHERES. 449

Without giving the details of the several differentiations, I may state

tha t if we write

a2

so tha t H is essentially positive, we find

H

H F _

a3 , r F' a „ nb rom the equation —+ ̂ -jri - + o = 0

we find, after some reductions,

7*2 / T^\ T2 d

a \ a / Oi

On substituting for JF", G' their values in terms of X, I find that this
expression reduces to

X1'3 (1 + X)4 a2

an essentially positive quanti ty.

On substi tution in A I find

F

(5)
The factors outside [ ] are essentially positive and do not affect the sign

of A, and it is clear that A can only be positive if § G — Fr2/a? is positive. But
A must be positive for secular stability; hence stability can only be secured
by § G — Fr^/a? being positive, and it is not necessarily so secured. But if this
function is positive, so also is {r, r), and if this last is positive the system is
unstable. Hence stability is always impossible. As a fact, in all the solutions
given above {?•, r] is positive, and we should have to move the spheres much
further apart to make it negative, and therefore on this ground alone the
system is always unstable. But A is sometimes positive and sometimes
negative and vanishes for a certain value of X. As the vanishing of A puzzled
me a good deal, I propose to examine the matter further.

Before doing so, however, I will show that the instability of the system
may be concluded from other considerations.

D. m. 29
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450 DISCUSSION OF THE STABILITY OF THE TWO SPHERES. [15, § 3

It was proved in § 1 that two spheres, unconnected by a pipe, are in
limiting stability when their distance apart is given by

This is the condition that [r, r} should vanish.

When X is zero the two spheres in limiting stability are infinitely far
apart, and when X is unity they are as near as possible, and r = l-738a.

Now the table of solutions in the case where the two are connected by a
pipe shows that they are furthest apart when X is unity, and that then
r = l-666a.

The removal of the constraint of one degree of freedom may destroy
stability, but cannot create it. Hence, when two spheres revolve about one
another, the opening of a channel of communication between them may
destroy stability, but cannot create it. When two equal spheres revolve
about one another at such a distance that they could be connected by a pipe
and yet remain in equilibrium, their distance is T666; but they are then
unstable, because 1*666 is less than 1"738. The opening of a pipe between
them, being the removal of a constraint, cannot make the motion stable.
A fortiori the like is true when the two spheres are unequal in mass.

Hence the system of equilibrium of two spheres joined by a pipe is
unstable in all cases.

I will now consider the meaning of the vanishing of A.

Having evaluated the angular momentum of the system correspondmg
to the several solutions tabulated above, I found it had a minimum when
X1/3 = 0"254. Such a solution is a critical one and is the starting point of two
solutions of which one must have one fewer degrees of instability than the
other. The vanishing of A must have the same meaning, but it remains to
be proved that minimum angular momentum is secured by the vanishing
of A.

The angular momentum is Ia>, and is therefore proportional to /u,, where

On equating -~ to zero so as to find its minimum, we have

Is F' r
Now since _ + i + 5___7_ = 0

dr - ir (1 - X1'3)2 X-1'3 (1 + X)-
we have -=- = —«—- *dX l
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1906] DISCUSSION OF THE STABILITY OF THE TWO SPHERES. 451

On substituting this value in the equation dfx./d\ = 0, I find that the
result may be written

r

The first term of this is the same as the first term inside the bracket in
the expression for A in (5). On comparing the two second terms together
we see that A — 0 is the condition for minimum angular momentum, if

that is to say, if 2 ^ (§<?'\ + *") + *" ~2 + %&' = 0

orif L **
r3 * G r

But this last is true, being the equation (3) determining the figure of
equilibrium; hence A = 0 gives minimum angular momentum.

Since two liquid spheres cannot be joined stably by a pipe, it seems very
improbable that two tidal ellipsoids could be so. joined as to become stable.
Indeed, if the distortion of the surfaces of the two masses into ellipsoidal
forms may be regarded as due to the removal of constraints whereby they
were previously maintained in a spherical form, stability is impossible.

The question as to whether or not there is an unstable figure with a thin
neck will be considered later, for the present we are only concerned with the
conclusion that there is no stable figure of this kind.

Mr Jeans has treated an analogous problem in his paper on the equilibrium
of rotating liquid cylinders*, and has concluded that the cylinder will divide
stably into two portions. The analogy is so close between his problem and
the three-dimensional case, that it might have been expected that the analogy
would subsist throughout; nevertheless, if we are both correct there must be
a divergence between them at some point.

§ 4. Notation.

As the solution given below is effected by means of ellipsoidal harmonic
analysis, it is well to state the notation employed. It is that used in four
previous papers to which references are given in the Preface.

In " Harmonics " the squares of the semi-axes of the ellipsoid were

Phil. Trans. Roy. Soc, Series A, Vol. 200, pp. 67—104.

29—2
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452 RECAPITULATION OF THE NOTATION USED. [15, § 4

The rectangular co-ordinates were connected with ellipsoidal co-ordinates
v, fi, <j) b y

a? 1 - B I . 1 +
if 1+B\ 1 - p7 V 1-/3

z* _ , 1 - / 3 c o s 2<f>
I>-Vfl " 1 + /8

The three roots of the cubic

a;2 V2 a2 .,
a 2 + M 62 + M c2 + u

were u1 = k2v2, M2 = A;2/i2 M = P ~ f ^ °

Lastly v ranges from oo to 0, /A between + 1, <f> from 0 to 2TT.

In the two later papers, I put

I n 1
2 _ P /2 T 2 oiT1 f)

and for convenience I introduced an auxiliary constant /3 (easily distinguish-
able from the /3 of the previous notation) defined by sin ft = K sin 7.

The squares of the semi-axes of the ellipsoid were then

kr cos <y , K cos p k
sin p sm p sin p

The rectangular co-ordinates became

;̂2 sin2

- *'2 cos2

cos2

K2 sin2/S

The roots of the cubic were

k2 k2

Ul=sm*~/3' Ms = ^ sin2 61, M3 = - ( 1 - « ' 2 c o s 2 ^ ) )

The notation employed for the harmonic functions is that denned in
" Harmonics,"
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1906] HARMONIC EXPRESSION FOR A PARTICLE ON AN ELLIPSOID. 453

§ 5. The Determination of Gravity on Roches Ellipsoid.

In Roche's problem a mass of liquid, which assumes approximately the
form of an ellipsoid, revolves in a circular orbit about a distant centre of
force without any relative motion. In the present section it is proposed to
evaluate gravity on the surface of this ellipsoid. I intend to solve the
problems of the present paper by means of the principles of energy, and for
that purpose it is necessary to determine the law of gravity.

Suppose that the ellipsoid of reference, defined by v0, is deformed by a
normal displacement defined by the function pf (/u,, <f>), where p is the perpen-
dicular from the centre on to the tangent plane at /J,, <f>. This deformation
must be expressible by a series of ellipsoidal harmonic functions, and therefore
we may assume

The typical term written down must be deemed to include sine-functions
as well as cosine-functions, and all those types which I have denoted by
P, C, S in " Harmonics."

On multiplying each side of our equation by any harmonic function, and
integrating over the surface of the ellipsoid, an element of which surface is
denoted by da, we find in the usual way

Suppose that f(/n, (f>) is zero everywhere except over a small area 8a
situated at the point fi, cp', and that it is there equal to a constant c; also let
p' be the value of p at this area Sa.

Then the mass of the inequality is

where p is the density of the solid ellipsoid which is deformed.

Next let us suppose that the mass of the inequality is unity, so that

op p 8a = 1
Then we have

( f )j/8« = * W 0*')

Hence ef=
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454 THE POTENTIAL OP AN EXTERNAL PARTICLE. [15, § 5

I now write M for the mass of the ellipsoid, and shall subsequently make
X M

it equal to f 7rpas , while the mass of the distant particle will be — or
„ 1
1+X'

Since I ppda = SM, and 3JJ0 (fi) ©0 (<f>) = 1, we have e0 = ̂ -v>.

Thus an inequality representing a particle of unit mass at //, $' on the
surface of the ellipsoid is expressed in ellipsoidal harmonics by

By the formula (51) of " Harmonics," the external potential at the point
v, fi, <j> of the inequality is

But if R is the distance between the point v0, fi, <£' on the ellipsoid and
the external point v, fi, <£, this potential is 1/R.

If we imagine a particle of mass MjX situated at v, ji, <£, the above
expression multiplied by MjX is the potential of the particle at the point
v0, fi, <f>' on the ellipsoid.

We have no need for the general expression for the potential of a particle
situated anywhere in space at the surface of the ellipsoid, because it is only
necessary to consider the case where the particle lies on the prolongation of
the longest axis of the ellipsoid. In this case

where r is the distance of the particle from the centre of the ellipsoid.

But it is now no longer necessary to retain the accents to /jf, <$>', since they
are only the co-ordinates of a point on the ellipsoid.

Thus the potential of MjX, lying on the longest axis of the ellipsoid at a
distance r from the centre, at the point v0, fi, cf> on the ellipsoid, is

M 39 (V\ak (r\ A- 3M2 v ® / Wk) 3 # (1) <&' (JTT) 3J?/ („„) ffr OQ <SV(*)

For the types of functions denoted in " Harmonics" EES, OOS, OES,
EOS, 3J/ (1) = 0, and for EOC, OOC, ©/ (£TT) = 0. The only types for which
3JJ/ (1) ©/ (\TT) does not vanish are EEC, OEC; that is to say, cosine-functions
of even rank. Accordingly the functions left are 3JJ/CC/ for i and s even, and
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1906] THE PARTICLE LYING ON THE LONGEST AXIS Of THE ELLIPSOID. 455

ft8 Of for i odd and s even; we may however continue to allow GD/ to stand
for both types.

For brevity write

Thence, since ft(i/0) = 1, the potential may be written

~x {©„ Q + I 2 - ^ <&/ g ) ft«(l) ©^vr) ft* (*,) ft;* 0*) <flV (
for all even values of 5.

It must be observed that ft* and fi£f« occur as squares in ©/'; they also
occur twice in the numerator in the forms ft*(l)fts(/i) and (£;* (^rr) <&f (̂ >).

Again ^ / (H is of dimensions - 1 in ^ / , and therefore <&/ (r) W^o) is

of zero dimensions. From these considerations it follows that l^f (/x.) and
QLf (<p) may be multiplied by any factors without changing the result, and
further that ^}f (v) may differ in its mode of definition from ^jj/ (M) without
producing any change.

The higher harmonics will be considered later, and for the present it is
only necessary to consider the terms denned by i = 1, s = 0 and i = 2, s — 0
and 2.

The following are the definitions of the several functions, in accordance
with "Integrals":—

where q,1 = J [1 + /c2 + D] and D2 = 1 - KV2, with upper sign for s = 0, and
lower for s = 2.

Hence

Then from " Integrals," equations (5) and (6),

©!=1, © / = —[D4 + (1+^K2* ' 2 )(1 — 2/c'2)D] (s = 0, 2)

Thus as far as the second order of harmonics the potential of M/X at
v0, f i , <f> i s

U {©o Q + 3©! Q ft (v0) ft (/*) C, (̂ >)

+ A («2 _ go2) g;2 ©2 (I) ^2 (".) f, (/*) ®, (*)

A (« - ?3) ?2 ®2 g ) ft2 (i/.) ft2
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456 EXPRESSION FOR THE POTENTIAL. [15, § 5

We must now express the several solid harmonics involved in this expression
in terms of x, y, z co-ordinates of a point on the surface of the ellipsoid.

We have ^ x (v0) ^ (/x) Ci (<£) = V/J. VO — K'2 COS2 (f>) = T

By the definition of ellipsoidal co-ordinates the three values of a>a which
satisfy the equation

Hence we have the following identity

x2 y2 z* , 2 _ , a (v0
2 - w2) (fj,2 - co2) (1-K'2 cos2 $ - ft>2K2)

- 1/K
2j (CO2-

Putting o)2 = % (A- = 0, 2) we find

1 r2 1 ,.2 I

5 = 0,2)

Hence the potential of J//X is

1 (/c2 - q2) — y ?2
2^'4 («2 - 5-2

For the object immediately in view we only need the terms involving
x, y, z, and may therefore drop the first and last terms.

The expressions for qs
2 and for ?&./ in terms of /c2 have beea given above;

by means of these I find that

g o
/ 2 ( ^ - g o

2 ) = 9g,» g / 2 Q 2 -g2 3 )^ 9go
2

(note the interchange in the suffixes of the ^'s).

A common factor ^ 5 - ^ | maybe taken from all the coefficients of x2, y\ z2,
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1906] EXPRESSION FOR THE POTENTIAL. 457

and since q<?qi = \K? this common factor is equal to 15/4Z). Hence the terms
in x2, y2, z2 inside { } become

+ m i [~ *• (I) «•" <*"" «•'>+«•" © «•'" <""" «••>]

On substituting for the several coefficients their values in terms of K,
I find that the potential of M/X may be written in the following form :—

It may be observed that this satisfies Laplace's equation, as it should do.

It remains to obtain approximate expressions for the (Si's.

The expression for these functions is given by

(a/ (v) = 1 / (

We require these when v, which will be put equal to rfk, is large; thus we
must develop in powers of 1/v.

Now

_ 1 r 1 + K2 3 + 2/C2 + 3K4 5 + SK2 + 3K4 + OK"

Since ^0 (v) = l, we have by integration

r\ _ k f 1 + K2 h2 3 + 2K2 + 3K4 kA 5 + Sic2 + 3«4 + 5«6 ks 1
k) ~ r [ + ~G*r • r2 + ' ' ~4O?~~" ' r* + 112^ " r»+ ' ' ' J

There is no immediate need for this term, since it has been omitted above,
but it will occur again hereafter.

Since ^ (v) = v, we have

frfi , 3 ( 1 + * * ) ^I1 +
k) = r2
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458 DEVELOPMENT OF THE Q-FUNGTIONS. [15, | 5

Lastly, since ^2
S (") = v* — <2s7«2> we have

so that

If we integrate this, multiply it by ĵJ2
s(z/) and write r/k for v, we find,

On substituting for gs its value, I find

^ W ' r ' L l^2 r2 168/c4

Whence

5 r®2+®2
2i = ~ 11 + ^ ; - ~ + ^

168«4

5

Substituting these values in (6) we have for the potential of Mj\ at the
surface of the ellipsoid, as far as concerning terms involving *, y, z,

M̂  ( /vt\ ? T 2 Z™1 F ^l (^ 4- *-2\ i^2 »̂ ( ^ 4- 9 JV2 4- w 4 \ Z"4

J J M 1U^ i 1 I I ^ ^ ^ ' ' 1

_ _ / &3[ 3(l + 3/t2)fc2

2^2"?-3[ 14 2 r2+r2+ 56K4

z ¥ I 3(1+^2) ^

l ) ^ I
r4'"]

^ + 56K4

If the system be rendered statical by the imposition of a rotation potential,
we must add to the above such a potential, and that of the ellipsoid itself.

The expression for the internal potential of an ellipsoid v0 is given in (65)
of "Harmonics"; it is

SM f@0(iy) _ ^ Qx1 Ov) _ f @!] fa) _ zl <&! (v0)}
2k I f 0 (Wo) i ' P ]

I will now introduce an abridged notation which was used in some of my
previous papers, as follows :—
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1906] EXPRESSION FOR THE POTENTIAL OF AN EXTERNAL PARTICLE. 459

Then, since

Pi1 0o) = VOo2 - I/*2), W <>O) = V("o2 - 1), f i W = v0

we may, on omitting the term independent of x, y, z, write this potential in
the form

2k

The rotation with angular velocity co takes place about an axis parallel to
x through the centre of inertia of the system, which consists of two masses
M and Mj\ distant r from one another. Hence the rotation potential is

* (1 + X) i f )fcj + 2 (1 + \ >

(12)

The last term, being independent of w, y, z, has no present interest. Them
collecting results from (10), (11), and (12), the whole potential, as far as
material, is

k*r \ z_

" : ^ l 1 + 14«2 r2 + 56«;4

, K 1 ) P T 3(3« + l)/<;
3X r3 L 14K 3 r2—1)1 3X r3 L 14K3 r2 56«4 r4

to 2vl ¥ V 3 (1
l ~ 3X r3 L ' 7

l ]
V t 3X r3 L ' 7> r2 + 56K4 r 4 ' ' ' J 3M v

The condition that the figure of equilibrium should be the ellipsoid of
reference is that this potential when equated to a constant should reproduce
the equation to the ellipsoid. The coefficient of z must therefore vanish, and
the three coefficients written inside { } must be equal to one another. These
conditions give the angular velocity and equations for determining the figure,
but as the subject will be reconsidered from a different point of view here-
after, I do not pursue the investigation here.

At present it need only be noted that the coefficient of z vanishes, and
that the three coefficients are equal to one another. It is clear then that
the potential U of the system, as rendered statical, may be written

_31/j ( j ^ - V ^ ) ^ ! 3_(3_+«)̂
2k I ] + 3X r3 |_ 14K2 r i + 56K4

f a? y"
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460 THE VALUE OF GRAVITY ON ROCHE'S ELLIPSOID. [15, § 5

Now gravity g at the surface of the ellipsoid is — dU/dn, where n is the
outward normal to the ellipsoid.

f px dU py dU pz dU
H e n c e g = — , 2 , 2 v > 2N >T~ + T,2~/—i L

1 a;2 . y

and in our alternative notation

0
 K2

Therefore

l+ 11
~" r4 + "• Jj "

As already remarked, we shall put lf=|7rpa3^—-; also, since the three

axes of the ellipsoid are k cos 7 cosec /3, k cos /3 cosec /3, A; cosec /3, we have

Ic3 cos /3 cos 7 Xa3

sins/3 = 1 + X

„ &" cos2 7 _ a3 cos 7 tan ft
1Ce 3 X 3 i 2 ^ ~ T a T T 3 "

and the coefficient of the series in the expression for g does not become
infinite when X vanishes; however, it is perhaps more convenient to leave it
in the form as written above.

This expression for gravity is the result required, but it is to be noted
that it is determined on the hypothesis that the distant body is a particle or
sphere instead of being an ellipsoid.

The development ceases with terms of the seventh order, and the harmonic
terms of third and higher orders have been neglected. Now the harmonic
deformation of Roche's ellipsoid of the third order of harmonics is of order
A /̂r4 in inverse powers of r. This deformation is treated as surface density.
If we were to proceed to closer approximation, we should have to take account
of the square of the thickness of the layer; such terms would be of order Ifi/r*.
Since, then, we are avowedly neglecting terms of this order, it is no use to
carry the development higher than terms of the seventh order.
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1906] THE GRAVITATIONAL LOST ENERGY OF THE SYSTEM. 461

§ 6. Form of the Expression for the Gravitational Lost Energy
of the System.

The system consists of two ellipsoids, say e and E, with their longest
axes co-linear, and each of them is distorted by deformations expressible by
ellipsoidal harmonics of orders higher than the second. To the order of
approximation to be adopted these deformations may be replaced by layers of
surface density, which may be denoted by I and L respectively.

The lost energy of the system may be represented symbolically by

Let s, S denote two spheres of masses equal to e and E and concentric
with them respectively.

Then the whole may be written

F= \ee + \EE + eE+ \ll + \LL + (e + S)l + (E + s) L

+ (e-s)L + (E-S)l + lL

In the term 81 I divide 8 into two parts, namely Slt which is to contain
all the terms in the potential of 8 at the surface of e excepting terms
expressible by ellipsoidal harmonics of the second order with respect to the
ellipsoid e; and S2, which is to contain the omitted terms of the second order.
Similarly, the term sL is to be divided into sxL and s2L.

Take the centre of e as origin of co-ordinates x, y, z with the z axis
passing through the centre of E, the y axis coincident with the mean axis of
e and the * axis coincident with the least axis of e.

Since I is expressible by harmonics higher than the second order, and
since y2 + z2 is expressible by harmonics of orders 0 and 2, it follows that the
moment of inertia of the layer I about the axis is zero. If therefore w is the
angular velocity of the system, a contribution to the lost energy of the system
which may be written symbolically [̂ a>2 (y2 + z'*)~\ I is zero.

It follows therefore that we may write

(e + 8) I = [e+ S,+ W(y2 + ^)] l + Sil
Similarly, if the ellipsoid E be referred to a parallel co-ordinate system

X, Y, Z through its centre, and such that

oo = X, y=Y, z = Z + r

so that r is the distance between the two origins, we have

(E + s) L = [E + s2 +1«2 (F2 + £2)] L + SlL

The problem is already so complicated that it will be convenient to omit
certain small terms in the expression for the lost energy, which it would be
very troublesome to evaluate.
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462 THE MUTUAL ENERGY OF TWO ELLIPSOIDS. [15, § 1

The term (e — s) L represents the mutual energy of the departure from
sphericity of e with the layer of surface density L on E. This term is clearly
very small and will be omitted. Similarly (E — 8)1 will be neglected. It
will appear from the results below that these terms are at least of the seventh
order in powers of 1/r. A fortiori IL, which is at least of the eighth order,
will be omitted.

The whole expression for V will now be divided into several portions.

Let (eE\ be that portion of eE in which each ellipsoid may be replaced
by a particle; it is, in fact, the product of the masses of e and E divided
by r.

Let (eE\ be the rest of eE.

Let (vv) denote that portion of V in which the larger body E may be
replaced by a sphere; then

(vv) = \ee + \ll + [e + S2 + fa" (y2 + z2)] l + SJ

Similarly, let

Then V = (eE), + (eE\ + (vv) + (VV) + neglected terms.

For Roche's problem, when the second body is a particle, V reduces to
(eE\ + (vv), but in the modified form of the problem which I ana going to
solve the whole expression is required.

The evaluation of (eE) is so complicated that I devote a special section
to it.

§ 7. The Mutual Energy of Two Ellipsoids*.

The semi-axes of the ellipsoid of mass e are to be denoted a, b, c, and the
corresponding notation for the other ellipsoid is E, A, B, C. The distance
between the centres of e and E is r; the axes c of e and 0 of E are in the
same straight line, while a, A and b, B are respectively parallel. For brevity
I imagine the densities of the ellipsoids to be unity.

If the external potential of e be U, and if d£l be an element of volume or
of mass of E, the lost energy to be evaluated is

(eE)~fllUdil

integrated throughout the ellipsoid E.

* The results of this section were arrived at originally by a longer method. I have to thank
one of the referees for showing me the following procedure.
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1906] THE MUTUAL ENERGY OF TWO ELLIPSOIDS. 463

Let us suppose provisionally that the co-ordinates of the centres of e and E
are x, y, z and X, Y, Z, and let f, i), £ be the co-ordinates of the element dQ,;
the axes being respectively parallel to a, b, c or A, B, G with arbitrary
origin.

If K2 = (£ - xf +(v~ yf + (f - *T> it is well known that the potential TJ
of e at the point f, tj, f is given by

rr A 3 / 8» y 3 \ 1

1 . . . . 32

Since -= satisfies Laplace's equation, we may eliminate ^ , and observing
32 92 92 32

that zr~,• , ir—n are the same as ^r- , 7r-o respectively, we have
ox? oy2 of2 drf

52 52 CM 32 32
2 " j } a 4 2 f2 *\ (* lfi\

It follows therefore that

«2 8 ^r ( ,
o (2« + 1) (2n + 3) 2n! V«2 8^ 3^ / R

Since the operator is independent of f, T;, f, we have
00 f_V* ^ / I 32 a2\»» /V7O

^J4; - e \ (2» + 1) (2« + 3) 2» 1* U2 3*2 ^ i i2

But J-jT- is the potential of the ellipsoid E at the centre of the ellipsoid

e, and by an exactly parallel transformation

82 . I X IK ( X
n + 3) 2w ! V \VL* dx* * 3yV p

where p2 = (a; - Z)2 + (2/ - Yf + (z - Z)\

Since our co-ordinate axes have a perfectly arbitrary origin, we may at
once put X= 0, F=0 , Z = r, z=Q, and after effecting the several differenti-
ations put x = 0, y = 0.

It follows that, on putting x = 0, y = 0, after differentiation and writing

(—)™ 3 / 1 32 3 2 \™
kW { + )

(eE) = eEZ

x i (-)'3 ^ f
0 (2t + 1) (2t + 3) 2t! ^
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464 THE MUTUAL ENERGY OF TWO ELLIPSOIDS. [15, § 7

1
== -
K2

1 92 9s 1 92 92

If we denote the operator — —̂, + ;— by d2, and the operator == - »-- + ;r—1 «2 da;2 9jr ^ r K2 9#2 cy2

by D2, we have

". 3^577
On effecting the several differentiations, and putting x — 0, ?/ = 0, we find

+ +* + ic"2 + 3 J

and the remaining functions may be found by appropriate changes of small
and large letters.

If now we again use p to denote the density of the spheroids, and revert
to the notation employed elsewhere, namely,

we find

^ + K̂  + 3)J

T / 5 1 2 2 1
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1906] THE MUTUAL ENERGY OF TWO ELLIPSOIDS. 465

The first term in this expression is that which was called above (eE)lt and
the rest constitutes (eE)2.

If the body E were a sphere, the only portions of (14) which would remain
would be the parts of the expression independent of /^.

With the object of effecting certain differentiations hereafter, it is desirable
that the formula for (eE) should be expressed in terms of the semi-axes a, b, c
and A, B, C.

In accordance with the notation used elsewhere, we have

&C0S7 , kcos8 k , . _. .
a = —.—~ , o = ——yr-, c = —.—-pz, where sin p = K sin 7

sin/3 sin/3 sin/3

. K cos F n K cos B K . . #A = ~—TZ-, B = -±—fj-, C=-^~, where sinB= KsinT*
sin B sin B sin B

The result of the translation into this other notation is as follows:—

(eE) = {frcptff — ^ 11 + — L [2c2 - a2 - 62 + same in A, B, C]

8
+ oi K 7 ^ [ 3 (a 4 + &4) + 8c<1 - 8 ° 2 (« ' + fe2) + 2a2&2 + s a m e i n A> B> °]

- 5C2 (a2 + 62) - 5c2 (A2 + &) + 5C2c2]

Q1 17 7 [16c6 - 5 (a6 + 66) - 24c4 (a2 + 62) + 18c2 (a4 + V)

- 3a2&2 (a2 + 62) + 12a262c2 + same in A, B, C]

+ - 9 [ - 4 4 (5a2 + ¥- 6ca) - 5 4 (a2 + 562 - 6c2)

- 8C4 (a2 + 62 - 2c2) + 4.B2 C2 (a2 + 362 - 4c2)

+ 4CM2 (3a2 + 62 - 4c2) - 2J . 2 # (a2 + 62 + 2c2)

+ same with small and large letters interchanged]

(15)

* The fact that capital /3 is nearly the same as B must be pardoned; it cannot, I think, cause
any confusion.

D. III. 30
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466 OTHER TERMS IN THE LOST ENERGY. [15, § 8

§ 8. Remaining Terms in the Expression for the Lost Energy.

If e be the mass of an ellipsoid of semi-axes a, b, c, the lost energy of its
concentration is

where ^ = I
Jo

r~ du
0 (u + a2)1'2 (u + 62)1/2 (u + c2)1'2

In the present case e = f 7r/)a3 = -
1 + A.

a n d • " ' dv

where v0
K sin 7 sin /3

Ihus i{ee) = •fV(l7I"Pa) 7i K\iT ( "J

By symmetry \(EE) = T
3^ (|7rpa3)2^ \\s^ (•'•'O

where ^ = '-

and No = ^ = ^—3
K sin T sin B

The lost energy (ISJ is the potential of a particle S, equal in mass to E
placed at the centre of E, with the omission of terms of the second order of
harmonics, multiplied by the density of the layer I and integrated over the
surface of e. This is the same as the potential of the layer I, with the
omission of harmonic terms of the second order (and there are none such) at
the centre of E multiplied by the mass of E.

A typical term in the surface density representing the layer I is, say,

The external potential corresponding to such a term, at the point v, //., <f>,
is by (51) of " Harmonics,"

The co-ordinates of the centre of E are v = -r, /* = 1, 4> = if"> a n ( i

mass of ^ is firpa?l(~L + X).
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1906] OTHER TERMS IN THE LOST ENERGY. 467

Hence the contribution to (ZSj) corresponding to this term is

| A (rjk) ft* (v0) ffi (1) <& (**r)

Now ^P/ (1) (£,{ (|7r) vanishes for all harmonics except cosine-harmonics of
even rank. Therefore

i odd

the summation being for all values of i greater than 2, and for all even
values of s.

The lost energy (Ls^ is expressible by the similar function for the other
ellipsoid, but I have not adopted a specific notation for the ellipsoidal har-
monics for the ellipsoid E, and therefore cannot write down the result.

The lost energy [e + S2 +1»2 (y2 + z2)] I is the potential of the ellipsoid e,
together with the potential of S in as far as it involves harmonics of the
second order, and a rotation potential, multiplied by the density of the layer
I, and integrated over the surface of e. That is to say it is the potential of
gravity on the ellipsoid e integrated throughout ^ e layer I, which it is not
permissible to regard as surface density.

If the thickness of the layer be £, and if d£ be a slice of that part of the
layer which is erected normally on an element da of the surface e, then
pd£da is an element of mass of the layer. The potential of gravity is — gK-
Hence the lost energy is

-pjj
Accordingly the lost energy is equal and opposite to the work done in raising
the layer, considered as surface density, through half its thickness, against
gravity.

We may take as a typical term

and we have shown in (13) that

1A i ^ cos27 l~i 3 (3 + «8) k* 5 (5 + 2«2 + **) k*
f +3\r»oo8»/8 [ 14K2 r 2 + 56«* r*-l + X f +3\r»oo8»/8 [ 14K2

It should be noted that this expression for gravity takes no account of the
change in the ellipticity of e which is due to the fact that E is an ellipsoid
and not a sphere. The error introduced thus is however outside the limits of
accuracy which have been adopted.

Accordingly this portion of the lost energy is

- ~ f Tr^a3
 r ^ (//)* {A,1 + series} j[ljk (ji) ©/ (tf>)]2pda

30—2
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468 FINAL EXPRESSION FOE THE LOST ENERGY. [15, § 9

Now in § 5 we defined

Hence
0, >2 ( f$\

[e + 82 + K (f + s2)] l = -fk {frpBff ( F ^ y 2 2 ̂  {V + series] ©/
(19)

the summation being For all harmonics.

In determining the lost energy ^(11) we may treat the layer as surface
density. A typical term in the surface density is ppff^f (M) <2V (<£), and the
surface value of its potential is

| (frrpa?) Y ^ /

Then, since &/

a typical term of | (M) is

Thus *(«) = J (^a») ' ( T ^2^ i a i ' ^ (20)

the summation being made for all harmonics.

The value of | (LL) may be written down by symmetry.

§ 9. Final Expression for the Lost Energy of the System.

We have V = (eE\ + (vv) + (VV) + (eE)2

The several parts are to be collected from (14) or (15), (16), (17), (18),
(19), (20), and we have

' (1 + X)2 r

(vv) = (iwPB?y p -A_^ j&X* + 1 2 / / 4BU (r/k) Tjfc (vt) f t>
(i > 2, s even)

14K2 r2

56K4 r4

(FF) = symmetrical expression with 1/X in place of X,

— j (all harmonics) !•

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.018
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.018
https://www.cambridge.org/core


1906] EXPRESSION OF THE MOMENT OF INERTIA. 469

K2 + 2 + 3

9 T/bW 5 + x + 2 2

2^577?

§ 10. Determination of the Forms of the Ellipsoids.

We have obtained in the last section the expression for V, the lost energy
of the system.

The harmonic deformations of the ellipsoids being of orders higher than
the second do not enter into the moment of inertia to the order of approxi-
mation adopted. Hence the moment of inertia about the axis of rotation,
which passes through the centre of inertia of the system, and is parallel to
the a and A axes of the ellipsoids, is given by

....(22)

If/ denotes any one of the parameters by which the system is defined,
the condition that the figures shall be in equilibrium is

The parameters defining the system may be taken as r, the distance
between the two centres, cos 7, cos /3 for the smaller ellipsoid and cos F,
cos B for the larger one. Besides these we have the coefficients / / , Ff of the
harmonic inequalities of order i and rank s on the two ellipsoids.

For convenience write

a = cos 7, fa = cos /3

These letters are chosen on account of the association of cos 7, cos ft with
the semi-axes a, b of the smaller ellipsoid e. It is unnecessary to adopt a
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470 DETERMINATION OF THE RADIUS VECTOR. [15, § 10

corresponding notation for the ellipsoid E, because, when the problem is
solved as regards e, it affords the solution for E by symmetry.

Since k3 cos /3 cos y cosec3 /3 = \a3/(l + X)

k I \ \>/3(l-b2)1/2
wehave a=lrrx) -w?^

Hence

a_ k cos7 _ / X V'3 a* b _ k cos/3 _ / X V's b^s

a~as in /3 \1 + X/ b1'3' a ~ a sin/3 ~ U + X' a1'3

c k
a asin/3 \l+\) (at)1'3

Therefore
da _ da db „ db _ da db _ dc _
a a b & a b e

Therefore

These enable us to differentiate, with respect to a, b, functions expressed
in terms of a, b, c; the parameters r, f£ always occur explicitly.

The equation of condition for the parameter r is

9r J 9r

On differentiating (22) we have

9/ 3 W r

In order to differentiate V we must take separately its several portions as
defined in (21).

Now

(*' > 2, S even)

1 + 5(3+«2)<t — % \J±1—* Z j
r4 2i + 1 sin2 /3 |_

ill harmonics) [

14K2 r2

5 (5 + 2«2 + K*

— =-(VV)= symmetrical expression for larger ellipsoid,
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1906] CORRECTION TO KEPLER'S LAW OF PERIODIC TIMES. 471

The sum of these last four expressions is equal to —dV/dr, and therefore
equal to

Now let a)V = f Tr/aa3 ( 1 + 0

so that f represents the correction to Kepler's law of periodic times on
account of the ellipticities of the two bodies. Then we have

i8 (1) ©/ (i^r) r* £ ® / g ) (t > 2, s even)

.. .(24)

When (ffit/(r"/&) is developed in powers of 1/r, its first term is one in

r-(i+D. hence r 2 ^ - © / begins with r~\ Now fi will be determined from

terms in the potential of the ellipsoid E of the ith order of harmonics, and
will therefore involve r~ii+1). Therefore in the series contained in the last
term but one of f each term is of order r~(2i+1). Since the lowest value of i
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472 THE ELLIPTICITY FOR THE HIGHER ORDERS OF HARMONICS. [15, § 10

is 3, the term of lowest order in this series is one in r~7, and as I shall not
attempt to evaluate f beyond r~6 the whole of this series is negligible.

Again, since (//)2 is of order r~2i~2, and since r~2 occurs as a factor, each
term is of order r~M'~4. Thus the lowest term is of order r~w and is
negligible *.

It follows that the only sensible part of £ arises from the portion of V
denoted (eE\, and the last two terms of (24) may be erased.

We next consider the parameter / / , and, since / does not involve it, the
equation reduces to d Vjdff = 0; or, since V only contains ff in the part
denoted (vv), it becomes 9 (vv)/dfis = 0.

This gives, for i > 2, s even

14 2 r2A T i ,
% 1 SXr3 sin2 /3 |_ 14/c2 r2

Since this formula contains X in the denominator, it would appear at first
sight as if / / became infinite when X = 0. But this is not so, because when
© / (rjk) is developed the first term of the series is one in (&/r)l+1; now

k" = — - a3 sin3 ft sec /3 sec y, and therefore the formula for / / involves the
1 •+- A,

/ x yi+i>/a i / x y*-2)'3 i
factor -z . - o r , — - I . ̂  . We see then that ff vanishes

\i + \) x \ i + x; i + x Jl

both when X = 0 and X = oo .
This factor is a maximum when X = \(i — 2). Therefore we should expect,

cceteris paribus, the third harmonics to be most important when X = J, the
fourth when X =§ , the fifth when X= 1, and the higher harmonics when X is
greater than unity. This prevision is partially fulfilled by the numerical
results given below, but it was not to be expected that it should be exactly
so, because the other conditions are not exactly the same in the solutions for
various values of X.

The formula shows, as stated above, tha t / / is of order r^"1. The series
in the denominator affects the result but slightly and might be omitted,
except, perhaps, in the case of the third zonal harmonic. For all harmonics
other than cosine-harmonics of even rank f£ is zero.

It is now possible to eliminate// from (vv) by substituting for it its value.
These terms in (vv) become, in this way, equal to

(
(1 + X)2 { 2k\ " ^ W - A , 1 -series]

* It is proper to remark that the terms retained in f are really of higher orders than they
appear to be. I recur to the neglected portions of f hereafter in § 23.
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1906] PREPARATION FOR THE DETERMINATION OF THE ELLIPSOID. 473

When i = 3, this term is of order r~s, and is negligible; hence we need no
longer pay any attention to the inequalities on the ellipsoid. However, the
formula (25) is important as rendering it possible to evaluate the inequalities.

Since for all inequalities, excepting cosine-harmonics of even rank,// only
occurs in the energy function as a square, it is in these cases a principal
coordinate, and (iH/ — A^ — series) is a coefficient of stability.

But the like is not true for the cosine-harmonics of even rank, because,
when we consider, for example, the harmonics of the third order, we see that
d'V/df/dr is of the fifth order and d2V/dffda, d2V/df3

sdb(s = 0, 2) are of the
fourth order.

It is clear that the inequalities on the ellipsoid E are determinable by
symmetrical formulae.

We must now turn to the equations of equilibrium for the parameters a
and b. Since differentiation with respect to these parameters is effected
most conveniently by means of the formulas (23), the portion V called (eE)2

should be written in the form (15). After effecting the differentiations it is,
however, best to revert to the notation involving k, K, J, K^, K, T; but as an
exception to the general rule as to notation, it is most convenient to retain
the differentials of k2 (1 + l/«2) and of ba + c2 in the forms involving a, b, c.
As the algebraic processes involved are rather long, I simply give the results,
as follows:—

~(&2 + c2) = 2(2&*-c2) (i)'

(^ ) (ii)

(ii)'

The remaining results are expressed in terms of k, K, 7, &c.

** (4 + 43a : r ** (4 + 4 + 31 = / - ^ [-3 (3 + /c2) + (6 + K 2 - 3<)sin2
7] (iii)

da \K4 K2 J K4 sin2 7

3b ~ same = , . [- 3 (3«2 + 1) + (6K4 + «2 - 3) sin2 7] (iii)'
dv K* sin8 7

K6 sin2 7
+ (10 + 3K2 + OK4 - 5K6) sin2 7] .. .(iv)

K" sin2 7
+ (10K6 + 3«4 + OK2 - 5) sin2 7] .. .(iv)

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.018
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.018
https://www.cambridge.org/core


474 PREPARATION FOR THE DETERMINATION OF THE ELLIPSOID. [15, § 10

- K 2 ( l + 3K2)sin2
7]...(v)

d
same =

-(K2+3)sin2
7]. . .(v) '

K 1 0 0 1
— I U Yi I ° . _ . Z , A i l i R
^7a ^ - I ,,2 K-4 + KM + ,,2 K-2 + XT2 + ^2 + °

+ same with small and large interchanged

[ ~ ( 5 + 2 K 2 + K 4 ) ( 3 ~ 2 s i n 2

_. d
3D -;r same

at)

7
 [

- K2 {3 (1 + K2) - (2 + K 2 - 5«4)sin2
7}] ...(vi)

S i n 27 - (1 + 2K2 + 5K>) (3 - 2«2sin2
 7)]

4.+ «2-5)sin2
 7

- K2 {3 (5«2 + 1) - (10/e4 + «2 - 1) sin2
 7 } ] . . .(vi)'

On picking out the numerical coefficients of the several terms in (eE\ as
given in (14) or (15), we see that

, 3 M , 3 0) , ! (iv) , 9 (vi)
2 3 5 7 r 6 ' 1 " 2 2 5 2 r 6 + 24.3.7r r 24 .5.7r '

3b ^r(eE\= (ii)' (in)' (v)' (iv)' (vi)'

Jc2 ifc2

Observe that „ . „ = . „ n = c2, and write
K2 sm2

 7 sm2 /3

_ ^ _ K 2 s i n 2
7 3 «2sin2

7 5 «2sin2
7 r 9 «2sin2

7. . '

" = (in)' (v)' (iv)' (vi)'
(27)

Then we have

3a ~ (eE% = (fTrpa3)2 prr^i i *3 (̂ 2 - 2a2- 2c2) + ^ .

"•...(28)

3b ^ - (e^), = ( t^a 3 ) 2 TT-^TVI I A (a 2 - 262- 2c2) +. - ^ . <
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1906] PREPARATION FOR THE DETERMINATION OF THE ELLIPSOID. 475

The terms in V denoted (eE\ and (VV) do not contain a, b, c, and their
differentials with respect to a, b are zero; also, after omission of the terms in
fi, (vv) is reduced to

Hence

Now

Since \jr is homogeneous of degree — 1 in a, b, c, the sum of these three is
equal to — 1, so that

A,1+&!1 + a,=
Therefore

3a I (vv) = - ^ | |
v / I ( 2 9 )

On adding together (28) and (29), we find

3a £ = (W-J ̂  [ ~ S (3V - Pt) + ̂  (* - ™ -

By means of (i) and (i)' we find the differentials of the moment of inertia
/ ; they are

3 a S ^3

Then, since £«2 = |7rpa3. ^5 (1 + f),

f^a g = - ( f ^ a 3 ) 2 ^ ^ , . ^ (1 + X) (1 + 0 (&«

K b ~ • ^ (1 + X) (1 +
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476 DETERMINATION OF THE ELLIPSOID. [15, § 10

Now the equations for equilibrium, for the parameters a and b, are

da 2 da db db
Therefore

- 3X (3A!1 - ±kf) + ^ [62 - 2a2 - 2c2 + TC2 - (1 + X) (1 + £) (&2 + c2)] = 01

- 3X ( 3 ^ - P V ) + ̂  l>* - 2&2 + 2cS + °-°2 + (1 + X) (1 + ?) (262 - c2)] = Oj

(30)

Subtracting the second of these from the first and dividing by 9X, we
have

Since we may write 3A/ - p i | r in the form - (&11 - A/) - (% - Aj1), the
first of (30) in combination with (31) gives

A [a. + 2c2 + c2 (1 + X) (1 + £) - ic2
 (2T 4- a ) ] . . .(32)

Referring to the values of T and cr in (27), I find

+ A ^ C4 (1 + « - (5 + 6«2 + 5«4) sin2
 7 ]

7 - «'2 sin2
 7 ( 1 + 3K2)]

[4K'2 (1 + K2) cos2 7 - K'2 sin2 7 (1 + 2 K2 + 5K4)]

K*Ki) c o s 2 T ~ *'2 s i n 2 7 (1 + «2 + K2 + 5K2K2)]

1 (2T + o) = A A [7 + 5«2 - (3 + «2) sin2 7]

+ 55 -Tl t 1 1 + 6«2 + 7*4 - ( 5 + 2*2 + «4) s i n 2 7]

[11 + 6K2 + 7K4 - (5 + 2K2 + K') sin2 7]

! - (5 + K2 + K2 + /c2K2) sin27]

(33)
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1906] COMPARISON WITH ROCHE'S FORMULAE. 477

In all the cases which we shall have to consider the first of these
expressions is small compared with the second, because K is nearly equal
to unity and K small, and because cos2 7 is also rather small.

Now let e = - I (T - o-) + £ (1+ \) cos2 B)
* V I (S3 bis)

Then, since a = c cos 7, b = c cos 8, the equations (31) and (32) become

(71K 1 A 1 A/0 / x cos2 P +e)

Eliminating kcf/SXr3, we have

- A,1) (cos2 7 + X cos2 /3 + e) = (&!1 - A^) (3 + \ + cos2 y + v)» -(35)

This is the equation to be satisfied by the axes of the ellipsoid. If we
treat e and 7? as zero, it is the same as that found by Roche*.

* The form of this equation is so unlike Eoche's, that it may be worth while to prove the
identity of the two.

Eoehe writes his equations in the form

st(t-s) /~°° udu _ » ( ! - « ) /"°° udu _(

/ J "i~ J u) R
_t(l-t) r°° udu

U) R~ "i+\~ J Q (1 + «) (1 + tu)

where R2—(l + u) (1 + su) {1 + tu), and s is the square of the ratio of the least to the greatest axis,
and t the square of the ratio of the least to the mean axis.

T , ,. a2 ,. a2 cos27
In my notation s = —9 = oosJ y, t=13 = =~J c2 62 cos 2 ^

sin2 'v
If we write us + 1 = . - , and change the independent variable from M to ii, we find

sin2^ * T

T, . , » . . . , 2cos3fl [y sin2i«'(sin27-sin
Eoche's first integral = -^^ ~ I *-i—-^8 sin6 7 cos3 7 J 0 A3

p" sin
^ 0

, 2 cos 8 fy sin2 \1/ (sin2 7 - sin2 \p) , . ,
„ second „ =^-r "— I ^—5-t— ^ dii v. (A)

Bin6 7 cos 7 ' n n o 8 •'•A '

„ third „ = . 7 " ° ^ ~ " r v , ; . , r / ^
sin6 7 cos 7 _/ cos2^ A3

where A2= 1 - K2 sin2 ^.

_, « . . . *<(*-<) cos* 7 sin2 8
The coefficients are ^ '-—-- —

s (1 - s) _ sin2 7 cos2 7 I ,r>\
s + 3 + X ~ 3 + X + cos27 I

t(l-t) _ K'2 sin2 7 cos2 7
~ cos2£ (cos27 + X cos2"

Then Eoche's equations are equivalent to

1st of (A) x 1st of (B) = 2nd of (A) x 2nd of (B) = 3rd of (A) x 3rd of (B).
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478 EXPRESSION IN TERMS OF ELLIPTIC INTEGRALS. [15, § 10

It is possible to express this equation in terms of elliptic integrals and to
use Legendre's tables for finding the solution, but the method is very tedious,
and after finding a few solutions in that way I abandoned it. It may, how-
ever, be worth while to mention that

sitf 7 [_ «
F cos2

/8-2«:/2 _~
- + ^ E2 2 J

s2/3-*'2

w h e r e F

When the forms of the ellipsoids have been determined, the radius vector
becomes determinable from either of the equations (34).

The conditions that the internal potential of an ellipsoid satisfies Poisson's
equation and that ty is homogeneous in a, b, c of degree — 1, give the two
following equations:—

a? ¥ c2 abc

A,1 + a,1

But the two equations are not independent, and I will only pursue the consideration of the
form involving the 2nd and 3rd of (A) and (B).

N o w sins j , (sin2 y - sin* fl __ sin* j , ^
cos2 f A Acos2 f A A A

sin2 \p (sin2 y - sina if/) cos2 (3 sin2 \p cos2 y tan2 ̂ i
cos2 f A3 = "K72 A1 Y* A~

and I have proved in (25) of the " Pear-shaped figure, &c." that

Therefore Roche's second integral is equal to —r-=——— fSi -A,1), and his third integrale K sin3 7 cos y v ' e

is equal to 2 C O s 3 ^

Using these transformations of the second and third of (A), and dropping redundant factors,
we get

(cos2 7 + \ cos2 0) (&i - A^) = (3 + X + cos2 7) (&11 - Aj')

This agrees with the result in the text when e and J; are neglected.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.018
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.018
https://www.cambridge.org/core


1906] EXPRESSION FOR THE RADIUS VECTOR. 479

Our two equations for 1/r3 may be written

A,1 - & 1 + ^ - 3 (a2 + 62 \ + c2e) = 0

These four equations afford a determinant by which A ,̂ g^1, ^ may be
eliminated. On reduction we find

1/ct2

On putting a = ccos7, b = ccos/3, and noting that yfr = —.— and that

—— c3 cos 7 cos /3 = a3,1 find that
A.

[ fi ~\
2F cot 7 cos /3 - j - — —ol+sec2

7+sec2 /3 | %a3

r 3 " " 3 — i

* It is by no means obvious how this formula is consistent with results which we know by
other means to be true. In the case when X=oo we have a liquid planet rotating with the same
angular velocity as an infinitely small satellite revolving in a circular orbit in its equator.

Let us first consider the value off. In the present case the semi-axes A, B, C pertain to the
infinitely small satellite, and are therefore negligible compared with terms in a, b, c. Since the
axis denoted by c is that coincident with the satellite's radius vector, and since the equatorial
plane of the planet must have a circular section, we have c = b.

But since 6=ccos/3, it follows that /3=0 or K sin 7 = 0. Now 7 does not vanish for a = c cos 7,
and a is the polar semi-radius of the planet; therefore K=0.

If we consider the formula (24) for f, expressing, however, the several terms in the form of (15),
we see that for \ = 00

whence f = ̂ s i n * 7 + ̂  ^ 7 + ̂  sin«7 (a)

The factor of correction to Kepler's law of periodic times for a small satellite revolving about
an oblate planet, whose equatorial radius is c and whose eccentricity of figure is sin 7, is 1 + f,
where f is expressed by the above series (a).

Now considering the formula (33 bis), we see that for \ = oo and /S = 0

The meaning of 5 in (36) will be found in the first line of p. 480, and we have

3 (v + eSecZj) ~1 p.. f", 3
1 + X|

] J
3 + tan2 7J ~ 3 + tan^ 7
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480 COMPARISON OF THE FORMULAE WITH OTHER KNOWN RESULTS. [15, § 11

where g - _ L L + 6 3 (g +
W h e r e 6 ~ 1 + |^ +

However, this is not practically the most convenient form from which to
compute the distance between the two ellipsoids.

§ 11. Solution of the Equations.

In all the ellipsoids of which we shall have to find the axes, it happens
that K'2 tan2 7 is fairly small compared with unity. Hence it is possible to
expand A in powers of that quantity.

When K=0, the elliptic integral F is equal to 7; thus (36) becomes

6
3 + tan2

From this we easily obtain

This is the well-known formula for the angular velocity of Maclaurin's ellipsoid.

It should be remarked that (35) is identically satisfied by \ = oo , K = 0, for when we use the
above values of e and TJ, the equation becomes divisible by 1 + f.

Since f is a symmetrical function of a, b, c and A, B, C, it follows that f is the same in form
for \ and for 1/X. Therefore when we consider the case of X = 0, the formula (a) gives the required
result, but c and 7 refer to the large body which is throughout most of this paper indicated by
capital letters.

Thus for X = 0, f=A J BkT + rt ( J sin*r)2 + * (^ sin2rY...

_ , a2 sin2 T 9 a4 / sin2 r \ 2 , »e / sin2 V
~ T ¥ r2 oos2/3r + " 7* VcosWfJ + *

In the case of X = 0, k vanishes; f^ also vanishes and so also does the angle B. Hence we have

e=fcos2/3, ri = }

With these values, equation (35) becomes

(<&! - Ati) [cos2 7 + (X + f) cos2 (3] = (Si1 - A,») [3 + (X + f) + cos2 7]

Hence f plays the part of an augmentation to X.

With X=0 the equation assumes the form

(Si-A1i)(cos27+fcos2(3) = (&i1-A1i)(3 + M-cos2 7) (6)

It follows therefore that an infinitesimal satellite revolving about an oblate planet, whose
rotation is the same as the revolution of the satellite, is very nearly identical in form with a
small but finite satellite whose mass is a fraction of a spherical planet expressed by f. This
curious conclusion follows from the fact that if we take equation (35) and put e and t\ zero
(which corresponds to a spherical planet and small satellite), we get exactly the equation (6) just
found, only with X in place of f.
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1906] EXPRESSION FOR THE INTEGRALS IN SERIES. 481

We have A2 = 1 - «2 sin2 7 = cos2 7 (1 + K'2 tan2 7)

and i = — [1 - ~ A;'2 tan2 7 + ™ «'4 tan4 7 - . . .]
A cos 7 L 2 ' 2 . 4 ' J

l [1 - L ' 2 tan2 7 + 1 4 *'4 tan4 7 - ...]2 ' 2 4 '
= [1 -L

A3 cos3 7 2

Now from (25) of the "Pear-shaped Figure,"

K H sin2 7 « oos2 7 f* tan2 7 , «», « cos2 /3 p sin2 7

When the A's under the integral signs are expanded, all the terms of the
series involve integrals of one of two types. If we write

„ 1 . 1 + sin 7
ft = l o g , 'g,

sm 7 ° cos 7

the types are

fy

Jo
s in 2 " <y f 1 2n — 1

^ ^ i - t 2 1 1 2

L
f 1 2n 1

s r r ^7 = sin 7 -_ tan211"2 7 - -^ jr̂ — -.-. tan2""4 7 + ...
cos2""17 ' ' L 2 M - 2 ' (2n-2)(2f t -4) '

(2n - 1) (2» - 3) - 5 (2K - 1) ... 3
+ ( ~ } ( 2 « - 2 ) ( 2 « - 4 ) . . . 2 t a n 7 + ( } r 2 « - 2 ) . . . 2 (

sin2"^ f 1 1
7 d y = sin 7 tan» 7

f 1
-dy = sin 7 ^ - t an» 7 - i5—-̂ 5
^ |_2w ' 2w(2cos»+i 7 »/ - •»" / ^ """ ' 2n (2/i - 2)

As it is not quite obvious what interpretation is to be put on these
formulae for the smaller values of n, I may mention that when n = 0, 1, 2 re-
spectively, the first integral is sin 7 ; sin 7 (ft — 1); sin 7 \_\ tan2 7 — | ( O — 1)],
and the second is sin 7X2; sin 7 [£ tan2 7 — ^ (ft — 1)]; sin 7 [^ tan4 7
— ^ _ tan2 7 + - 5 - (ft — 1)]. For larger values of n the interpretation is
obvious.

If we use these integrals and write

'2 '2 '4 '6 "1 "\

(37)

D. in. 31
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482 SOLUTION OF THE EQUATIONS. [15, § 11

we find

o-0 = £ [2 tan2
7 + 3 - (3 + SHI2Y) D,]

o-! = 33
5 [ | tan4 7 - f tan2 7 - 5-f (5 + sin2 7) H]

»«= TM? tiltan6 7 - 1 ^n4 7 + -V°- tan2 7 + 7 - (7 + sin2 7) 12]

*» = TOW [f!tan8 7 - i t t t a n 6 7 + f I t a n 4 7 - 4 tan2 7 - 9 + (9 + sin2 7) fl]

= TVB5 [A tan4 7 - 1 tan2 7 - 7 + (7 - sin2 7) fl]

j tan67 - ^ tan4 7 + 2 tan27 + 9 - (9 - sin2 7) O]

tan8 7 - TV5 tan6 7 + f tan4 7 - f tan2 7 - 11

+ ( l l - s i n 2 7 ) f t ] (38)

It would not be difficult to find the general expressions for these functions,
but it does not seem worth while to do so.

The equation (35) for determining the form of the ellipsoid involves the
factor cos2 7 + X cos2 /3 + e; if we write

\ sin2 7
(1 + X) cos2 7 + 6

this factor may be written in the form [(1 + X) cos2 7 + e] [1 + MK'2]. Hence
the equation (35) may be written

[T0 - TW* + T2«'4 - rs«'6...] [(1 + X) cos2 7 + e] [1 + Jf«'2]

= K'2 [a0- axK'2 + <T2K'4- a3/c'e...] [3 + X + cos27+17]

If now we put

T o O"i Ti O"2 T 2 CTj CT3 T 3 a1 (72
Vo = — , VJL = , U2 = Vl3 V3 = U2 Ki

<T0 Co To CT0 T o O"0 O"0 T o O"0 <70

y ^ ^/2 _t_ -̂ y '̂4

we have — ' , 2 , " ' = v0 [1 + v i « ' 3 - y2«'4 + u 3 « ' 6 - • • •]
O"0 — O"j /C -f- O~2 fC • • •

Hence our equation may be written

Whence on writing

_ 3 + X + cos2 7 + 7)
~ (1 + X) cos2 7 + e

we have ^ J + (MVl - v,) K'> - (Mv2 - Vs) K'^
L/v0 — M — Vj v 7
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1906] SOLUTION OF THE EQUATIONS. 483

The determination of L for given value of 7 involves t ha t of 17 and e, and
these can only be found from an approximate preliminary solution of the
whole problem. But when L is known approximately, the solution of (39)
is very simple, for we first neglect the terms in «'4 and K'6 on the r ight-hand
side, and so determine a first approximation to K . As a fact I have not
included the term in K'6 in my computations, because i t would not make so
much as 1' difference in the value of cos~' «'.

For Roche's problem when e and 77 are neglected the solution is very short,
bu t when these terms are included the computation is laborious.

We now tu rn to the determination of the radius vector.

We have ^ - A^ = ^ k (3 + X + cos2 7 + J?)

„,. „ &2 , &*cos 7 cos /3 Xa3 ,

bince c2 = —;TT. and ^TTS = -. ^ > w e have
sin2 /3 sin3 /3 1 + X

lc& 1 K sin 7 a3

3Xr3 = 3 ( I T T ) cos /3 cos 7 " r3

Therefore

-KV~rarzzr- ^ (3 + x + cos2 7 + v)

Whence $ = 3 (1 + X) CO1^J Tl^±p^Z^r (40)
r3 v ' sm2 7 3 + \ + cos2 y + y

Thus a table of values of T0, T1( T2, T3 enables us to compute r for a given
value of 7, when K has been found.

In the following tables the v's and T'S were computed for the even degrees
of 7 and interpolated for the odd degrees. These functions are found as the
differences between large numbers, and therefore great care would be required
to determine them with a very high degree of accuracy. The differences of
the tabulated numbers do not run with perfect smoothness, showing that
there are residual errors of one or two units in the last place of decimals.
The accuracy is however amply sufficient for the end in view, and it would
have been wasteful to spend more time over the computations.

31—2
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484 TABLE OF AUXILIARY FUNCTIONS.

Table of Auxiliary Functions.

[15, § 12

7

O

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61
62
63

Log i>0

9-94493
9-94085
9-93661
9-93222
9-92764
9-92285
9-91786
9-91269
9-90731
9-90167

9-89578
9-88965
9-88327
9-87665
9-86974
9-86257
9-85509
9-84729
9-83915
9-83069

9-82187
9-81263
9-80300
9-79298
9-78252
9-77159
9-76016
9-74819
9-73565
9-72252

9-70874
9-69426
9-67910
9-66319

0-14279
0-15461
0-16722
0-18065
0-19493
0-21006
0-22613
0-24327
0-26150
0-28091

0-30160
0-32368
0-34724
0-37244
0-39937
0-42823
0-45917
0-49239
0-52812
0-56656

0-60804
0-65278
0-70121
0-75372
0-81075
0-87288
0-94064
1-01471
1-09590
1-18517

1-28362
1-39268
1-51349
1-6480

Logui

9-15470
9-18925
9-22329
9-25684
9-28988
9-32234
9-35436
9-38608
9-41747
9-44857

9-47943
9-51011
9-54063
9-57105
9-60138
9-63168
9-66197
9-69231
9-72274
9-75325

9-78393
9-81477
9-84585
9-87721
9-90889
9-94095
9-97342
•00634
•03977
•07378

•10844
•14385
•17998
•21696

L o g i>2

7-9576
8-0264
8-0941
8-1607
8-2263
8-2906
8-3541
8-4173
8-4800
8-5418

8-6031
8-6646
8-7259
8-7869
8-8476
8-9081
8-9685
9-0290
9-0896
9-1505

9-2117
9-2733
9-3353
9-3976
9-4606
9-5245
9-5893
9-6550
9-7216
9-7893

9-8582
9-9287
•0006
•0743

L o g i/3

7-15
7-25
7-36
7-47
7-58
7-67
7-76
7-87
7-97
8-06

8-14
8-23
8-32
8-42
8-51
8-60
8-69
8-79
8-87
8-96

9-05
9-15
9-24
9-33
9-43
9-52
9-62
9-72
9-82
9-92

•02
•13
•24
•36

TO

0-010592
0-012124
0-013824
0-015702
0-017774
0-020052
0-022554
0-025294
0-028290
0-031559

0-035121
0-038994
0-043203
0-047768
0-052713
0-058064
0-063847
0-070093
0-076830
0-084093

0-091916
0-100336
0-109394
0-119134
0-129601
0-140845
0-152919
0-165883
0-179801
0-194740

0-210779
0-227997
0-246485
0-266343

Logn

6-85440
6-94587
7-03507
7-12194
7-20666
7-28937
7-37022
7-44939
7-52697
7-60306

7-67777
7-75120
7-82342
7-89452
7-96459
8-03371
8-10195
8-16939
8-23608
8-30210

8-36752
8-43241
8-49682
8-56082
8-62447
8-68785
8-75103
8-81407
8-87703
8-93999

9-00303
9-06626
9-12966
9-19331

LogT2

5-9805
6-1063
6-2288
6-3478
6-4639
6-5780
6-6899
6-7994
6-9069
7-0127

7-1167
7-2192
7 -3202
7-4200
7-5186
7-6162
7-7128
7-8087
7-9036
7-9981

8-0920
8-1855
8-2786
8-3716
8-4643
8-5570
8-6500
8-7431
8-8367
8-9306

9-0252
9-1206
9-2168
9-3140

Logr3

5-222
5-378
5-533
5-685
5-834
5-979
6-122
6-262
6-400
6-536

6-669
6-802
6-932
7-061
7-189
7-316
7-442
7-567
7-691
7-814

7-938
8-061
8-183
8-306
8-429
8-552
8-676
8-801
8-926
9-052

9-179
9-308
9-439
9-572

§ 12. Determination of the Form of the Second Ellipsoid.

The parameters V and K determine the form of the second ellipsoid in
the same way that 7 and K determine the first. It is obvious that a/r is
determinable in two ways, and therefore any given value of 7 must correspond
to a certain definite value of T. The fitting together of the two solutions
can only be effected with accuracy by interpolation, but it would be so
enormously laborious to find by mere conjecture the region in which to begin
calculating with assumed values of T, that an approximate solution of the
problem becomes a practical necessity.
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1906] THE FORM OF THE SECOND ELLIPSOID. 485

After various trials I find that on neglecting e and 17 and writing

_ sin2 y
X ~ 7 (3 + X + cos2 7)

the solution for K may be written approximately in the form

"" = ( sT^+SrJ [ 1 ~(9 ~7x) x ~(in + 228X "
- ^ ( 7 8 7 5 + 28185X + 42333X2 - 3773X3) x

3 . . .] (41)

If e were added to the numerator of the factor outside the bracket, and rj
to the denominator, this formula would give nearly as good results as the
more accurate method of the last section.

Also I find

a3 f (1 + X) cos/3 cos 7 sin2 7
[1 + § (5 + X) x + i (3055 + 1718X + 175V)

r3 3 + X+cos27

+ 5 ^ - Y Y (3533389 + 3222607X, + 1021479A2 + 60025X3) x* +...].. .(42)

In order to obtain the desired approximation, it is necessary to express
a3/?'3 by a series which can be inverted; but this is not possible in the form
just given, because cos/3 depends on K and therefore involves %. I find then
by means of the above series for K'* that

cos/3 cos 7 = 1 - 1 ( 7 + \)x +1(69 - 106X - 7X2) x2

+ T
7
ff (253 + 753X - 1901V - 49X3) X

3 •••

On introducing this in the above formula for a3/?-3, I find

1 (157712+ 261395X+97656X2 + 1568X'
22.3.11

1 a3

On writing « = t \ . j - ^ -

and inverting the series we find

X = a + (2 - X) a2 + (117 + 59X + 2X2) a3

+ o r 4 - n (306872+ 269975X + 5739X2+908X3) a4 (43)

This series expresses a function of 7 in series proceeding by powers of
a3/r3, and a similar series must also connect a function of T with the radius
vector, so as to determine the figure of the second ellipsoid appropriately.
This second series may be written down by symmetry.

Since X must now be replaced by 1/X, the function corresponding to a is
X a3 Xsin2T

\ ^ or Xa, and the function corresponding to x is fp~ + C 0 S 2 r)X + T]"
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486 TWO ELLIPSOIDS JOINED BY A PIPE. [15, § 13

If then we write X = H r / o —=r- ^
7 [(3 + cos2 T) X + 1]

the symmetrical series for the other ellipsoid is

X = a + (2\ - 1) a8 + (117\2 + 59X + 2) a3

+ 5 r 4 - n (306872X3 + 269975X.2 + 5739X3 + 908) a4...
Z . o . 1 1

Now a is easily computed for the first ellipsoid, and then X is computed
by the series. Thus we have

We obtain in this way a fairly accurate value of T corresponding to the
value of 7 which determines the first ellipsoid. We can then compute K'
by the method of the last section. We may thus obtain a good idea of the
values of T and K with which it is necessary to work in order to obtain the
final solution.

§ 13. The Equilibrium of Two Ellipsoids joined by a Weightless Pipe.

In § 3 the problem is considered of the equilibrium of two masses of
liquid, each constrainedly spherical, when joined by a pipe without weight.
It was shown that the condition determining the ratio of the masses for
given radius vector is expressed by a certain equation which was written
/(a/r) = 0. Further, it was proved that if/(a/V) is positive the two spheres
of liquid are too far apart to admit of junction, and if it is negative they are
too near. Finally we found that all these solutions were unstable.

The solutions for the two spheres showed them to be always very close
together, and as all the solutions for two ellipsoids, when they are in limiting
stability, made them much further apart than were the two spheres, it
seemed somewhat improbable that two ellipsoids could be similarly joined
by a pipe, and certain that they would be unstable if such junction were
possible. Nevertheless, it seemed conceivable that the additional terms,
which must appear in/(a/r) when the constraint to spherical form is removed,
might alter the conditions so that the junction of ellipsoids by a pipe should
become possible. It thus became expedient to solve a problem analogous to
that of § 3 when the two masses of liquid are ellipsoidal.

The conditions of equilibrium of two ellipsoids unjoined by a pipe are
given in § 10, and the additional condition corresponding to junction by a
pipe is
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1906] TWO ELLIPSOIDS JOINED BY A PIPE. 487

In the present investigation I shall neglect the higher ellipticities, denoted
fis and Ff, and terms of higher order than those in 1/r6.

With this degree of approximation we have

where {eE\ is given in (14) (with omission of terms in 1/r7).

Al I 2 P° dv

A 1 S 0 * = k) „ (^_ 1)^(^-1/^)1/2

and M* has a symmetrical form in i^ and K.

a3

We have besides »2 = $77-/3 — (1 + f), where % is given in (24); and / is

given in (22).

The differentiation with respect to X and the subsequent re-arrangement
of the equation are rather tedious, and I will not give the details of the
operations. It may however be well to note that k, ^ are functions of X,
and that

d\ 3X(1+X)r > d\ 3(1+X)

- J = 0, where

* ( 1 + X)1/3 (1 + X1/3) r 2 ( 1 + X)"3 (1 - X2's)

"(I + x / ( 1 - X*/3) [ IF 3 {48-20X-(19-15X) COS2
7-(9~25X)COS^}

/72

{20 - 48X- (15 - 19X) cos2 T - (25 - 9X) cos2B}

f288 - i m - ( 2 6 0 - 1 4 0 ^ ) cos27- (204- 196X) cos2/3
obOr5

+ (87 - 63X) cos4 7 + (59 - 91X) cos4 /3
+ (30 - 70X) cos213 cos2 7]

| ^{H2-288 \ - (140-260X)cos 2 r - (196-204x)cos 2 B

+ (63 - 87X) cos4 T + (91 - 59X) cos4 B
+ (70 - 30X) cos2 B cos2 Y)

Oci-,2/72

^ ! {40 (! - x ) - <18 - 2 2 X ) c o s 2 7 - ( 2 2 - 1 8 ^ ) c o s 2 r

- (14 - 26X) cos2 0 - (26 - 14X) cos2 B

+ 15 (1 - X) (cos2 7 cos2 T + cos2 /3 cos2 B)

+ (7 - 3X) cos27cos2 B + (3 - 7X) cos2 rcos2/3}l (44)
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488 TWO ELLIPSOIDS JOINED BY A PIPE. [15, § 13

In this expression c and G are respectively the longest semi-axes of the
two ellipsoids, which are pointed at one another.

We may derive yjr and M* from Legendre's tables of elliptic integrals for

1 , 7), V = srA-^ F(K,T)
26 sin F

T csmy

or we may expand the integrals in powers of K'2 tan2 7 and obtain the approxi-
mate formula

tan* 7 ( 1 + &** ...) - 4«'6 tan8 y (1 + ...)]•• .(45)

where fl = —— log1- . The formula for M* is of course symmetrical.
sin 7 ° cos 7

It should be noted that when the two ellipsoids reduce to spheres, we
have

. . - „ _ „ , - - ( 1 + X ) W, - - ( 1 + xy/a'

2==2(1L+X)^ Y = - ( l + X ) ^

„, ,/a\ Q l + X^ + X/ a _ a3

This is the form obtained in the solution of the restricted problem of § 3.

We conclude that itf(a./r), as expressed in (44), with values derived from
any solution of the problem of the equilibrium of two ellipsoids unconnected
by a pipe, is positive, the two figures are too far apart to admit of junction,
and vice versa. I have in fact always found it positive, although always
diminishing as r diminishes, so that junction would seem to be always im-
possible, at least so long as the approximation retains any validity. This
might indicate that there is no figure of equilibrium shaped like an hour-
glass with a thin neck. However, I return to this subject in discussing
numerical solutions, and in the summary of results.

In the case where the two masses are equal, X= 1, and the above formula
for /(a/r) fails by becoming indeterminate. As this is a case of especial
interest, it must be considered.

Since the two shapes are now exactly alike, we may take K, 7, /3, k to
define either of them.

27 a
When \ = 1, the first term of /(a/r) becomes — -

•̂  4

3f a (1 + X1'3

4. 2 ' r
The second term becomes

2(1 + X)'/3 (1 - Vs) ~ 2"(l +X)"3(1 + X1/3) ~ 4T21/3
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1906] TWO ELLIPSOIDS JOINED BY A PIPE. 489

All the terms in 1/r3 are of one of the two forms

or

Now,

C2 = (cos /8 cos 7)2 '3 (1 + A,)2/8' (cos B cos T)2/3 (1 + X)2'3

In the limit /3 = B, 7 = F, and X = 1; and we find that the first of these
forms becomes \F&, and the second -fC?c2.

Again, of the terms in 1/r5, those in c4 and Ci are of one of the two forms

o r

In the limit the first of these reduces to — ^Fc*, and the second to — \Gci.

The last term in 1/r5 has a common factor 1 — X, when 7 = T, /3 = B, and

1 - X _ 1 + X1'3 4- X2's _ 3
(1 +X)'/3(1-X2/3) ~ (1 + X)1'3 (1 + X1'3) ~ 2 . 21'3

By means of these transformations we find for X = 1

( - 272 + 300 cos27 + 356 cos2 /3 - 123 cos 4 7 - 151 cos4/?

- 110 cos2 /3 cos2 7) ...(46)

If we put /3 = 7 = 0, and note that c becomes a/2I/3, this expression reduces
as before to the correct form.

§ 14. Ellipsoidal Harmonic Deformations of the Third Order.

The two ellipsoids whose forms have been determined are subject to
further deformation by harmonic inequalities. The expression for the
ellipticity/i8 corresponding to all the cosine-harmonic functions for i greater
than 2 and s even is given in (25), viz.:—

»)l*(l)<!lV(W

f
I shall begin by considering the ellipticities fd and f£ corresponding to

i = 3 and s = 0, 2.

I define $ / (1;) = v (K*v - q% (s = 0, 2) (48)

where q2 = •§ [1 + «2 + \J(\ — \H? + «4)], with upper sign for s = 0 and lower for
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490

Then

HARMONIC TERMS OF THE THIRD ORDER.

dv

[15, § 14

Since v is always greater than unity, the function under the integral sign
may be expanded in powers of 1/v, as in (7), (8), (9) of § 5, and the integration
may then be effected. In this way I find

1 [l . (

|
| ) ^

8.9.11/eV
In all the cases we have to consider K2 is nearly unity and «'2 is small.

Then, since q2 = 1 [4 — 2K'2 + V(l — «'2 + 4«'4)], and since the function under
the square root may be expanded in powers of K'2, we may obtain approximate
expressions for q2 in the two cases s = 0, s = 2.

When s = 0, we have

When s = 2, g2 = 1 - ^*'2 + |K'4 + TV'6. . .

If we substitute these values for q2 in (49), and express the functions of
therein in terms of K'2, we obtain the following results:—•

©=
Shorter forms may be given to these by making the expansions run in

powers of l//cr2; we then have

(50)

l i

It will however suffice for our purposes to take

.(51)
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1906] HARMONIC TERMS OF THE THIRD ORDER. 491

The next task is to determine the product ^ 3
S (v0) ^ / (1) C3

S

(s = 0, 2).

The form of the ellipsoid is determined by v0, where v0 = —=— = —— .̂
K sm 7 sin p

If we write Aj2 = 1 — q* sin2 y, with the definition of f̂M given above in
(48), we have

^ V ( 5 2 )K sm3 7

It will be remembered that q has a different value according as s = 0 or 2.

I now make the following definitions,

$,» 0*) = fi (*>2 - q% C/ (0) = (g/2 - «'2 cos2 </>) V(l - *'2 cos2 4>)

so that $3
S (1) C/ (fr) = g'2 («2 - ?

2) (53)

It is easy to show that rigorously

q'* («2 - f) = ̂  [1 - «'2 - «'4 ± (1 - i«'2) V(l - *'2 + 4«'4)] (« = 0, 2)

Whence approximately, with the upper sign for s = 0,

g'2(«2-?
2) = ^ ( l - « ' 2 + ^ ' 4 + 0/c'6...) (54)

With the lower sign for s = 2,

?'2(«2-52) = - i * ' 4 ( l + 0« ' 2 - 1 a r ^ . . . ) (55)

The three last expressions (53), (54), (55), give the two values of
$/(l)C/(i7r).

We now turn to the functions ©3
S. The general definition of § 5 was

where M was the mass of the ellipsoid. Hence in the cases under con-
sideration

These integrals are evaluated in (38) p. 411 of my paper on " Integrals ";
whence I find

where D = + V(l — «'2 + 4K'4), with upper sign for s = 0 and lower for s = 2.

It will, however, suffice if we use the development of D in powers of K'-.
The result is, in fact, given in the equations next below (38) in " Integrals,"
and they are

TIT. — {IV n —OV'ZJ- AS.*'* "\ ^

(56)
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492 HARMONIC TERMS OF THE THIRD ORDER.

From (53), (54), (55), and (56) we now find

I77} = 25. 1
1 ~ * ^ + ^ 4 " ' = ^ (1 + K2- iic'* •

ATT) , 1 + 0 « ' 2 - T V ' 4 . . .

Thus from (51), (52), (57), we find

7 ^

25A,2

12Xsin* /

(CA!

r4

14/
'2 3 '4\ _ | 1

[15, § 15

(57)

icr*
(58)

By (47) fi is equal to the above expressions divided by

a , A 1 ^ c o s 2
7 r 3 ( 3 + «*)&» 1

^ 3 ' 3Xr3sin2/3[. 14/c2 r 2 ' " J

I t therefore remains to determine ^3
S and Aj1*.

By § 4 of " The Pear-shaped Figure " (p. 299 and (30) p. 301) we have

, KA/ [7g
/2 - 1 2g

/4 + 5g/2 - 1 (4g
/2 - 1) A sin y cos 7 1

^3 sin6
7L2/«:25''g'2 2« 2

g
4

g ' 4 2g
4c/4 A,2 J

where g
2 = | [1 + K2 + (1 - \ic2 + K4)1'2]

with the upper sign for s = 0, and the lower for s = 2.

§ 15. T/te Values of © / / o r Higher Harmonic Terms.

For higher harmonic terms it is necessary to adopt the approximate forms
of the functions investigated in " Harmonics." The development is there
carried out in powers of a parameter /3, which I will now write /3() to avoid

1 — K2

confusion; this parameter is equal to = , or to ^/c'2 + %/c'4... of the present
X ~\~ IC

paper.

* [By a strange oversight I failed to remember that I had evaluated these integrals rigorously,
and proceeded to an approximate treatment. The rigorous results are now introduced.]
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1906] THE HIGHER HARMONIC TERMS. 493

The functions are here defined by

^W | / ( / dv

but in the notation of § 10 of " Harmonics " this would be called (31/ (v)/(Bis.
Thus, if [(&/ (v)] denotes that function as defined in " Harmonics," we have

We have for the approximate expression for

The investigation on p. 228 of " Harmonics " shows that the leading term
of [ © / 0)] is

s!

2i + ll vi+l I 2 i + sl ^ol/s+a i + s\
. „„ i + s - 4 !

This has to be divided by (Sf, the formula for which is given in § 10 of
" Harmonics," and we thus obtain the leading term of (01/ (v).

For the second term it will suffice if we take /30 as zero, so that it is only

necessary to consider Qf (v), which is equal to (v2 — 1)^ -j— Qi(v).
0JV

Since Q.(V)- *^L Hi - + "+1L _ ^ .
toince «»W ~ 2» + 1 ! [i»i+1 + 2 . 1 ! i! (2»+3) ̂ +3 + '

by differentiation, and by expansion of (V2— l)^s in powers of 1/v2 we obtain

Accordingly, in order to find the second term to the degree of approxi-
mation adopted, it is merely necessary to multiply the leading term by

O' + 2)Q; + l) + sa

2 (2i + 3) v2

In order to find the leading term explicitly we have to insert for the <?'s
their values, and after some tedious reductions I find

( r \ Oi j | 7* of //•*+!

k) = -ZT+rf'^I t1 + i ^ ( 2 + 2i> + ̂ /3o2[- 2T + 2*(s° + 3)

+ 2S(6*- 1 + W) + 2t(3i + 1)-S
2]} x j l + ft+f(^3)

)
 + *' J } (61)

where 2 = •-——,-', T = — j - -
s2 — 1 s2 — 4
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494 THE HIGHER HARMONIC TERMS. [15, § 16

This formula fails for the cases of s = 0 and s = 2, and these cases have to

be treated apart. Following a parallel procedure I find

I)= 27TTT £*{ 1 + i A (1 + 2i) + *W[2922 + (1Ui + 298) 2

o8 i (* - 1) ( ^ - 3» - 6)}

The values for t less than 3 are not required, and when % =• 3 these
formulas are found to agree mutatis mutandis with those of the last section.

It is pretty clear from general considerations that the higher inequalities
corresponding to harmonics other than the zonal ones must be very small.
I have, in fact, computed the third tesseral harmonic inequality (i = 3, s = 2),
and find that it is so very minute compared with the third zonal inequality
(i = 3, * = 0) as to be negligible. Accordingly it appeared to be a waste of
time to develop formulae for any other than zonal inequalities for values of i
greater than 3. Thus of the formulae just determined the only one of which
actual use is made is (63).

§ 16. The Fourth Zonal Harmonic Inequality.

In developing the expressions for the higher harmonic inequalities it
seems to be most convenient to retain the parameter /30, which is equal to
1 — K?

z , instead of developing in powers of /c'2 as heretofore.
l. ~t~ fc

On putting i = 4 in (63), we find

With the notation of "Harmonics" we have

ftW = ^4 (V) + |/30 P/ (V) + jfaftP

® 4 ( 0 ) = 1 - 5/30 cos 2<j> + ff/30
2 cos 4</>

Accordingly $ 4 (1) = P 4 (1) = 1

Again, from § 22 of "Harmonics" for type EEC, i = 4>, s = 0, we have

/2 [1 +10/8, +
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1906] THE FOURTH ZONAL HARMONIC INEQUALITY. 495

But ^4 is this integral multiplied by 9 and divided by 3 times the volume
of the ellipsoid.

Therefore ®4 = 1 + 10 /30 + *§*&«

In this formula the coefficients of the powers of /30 increase with great
rapidity, and the approximation may not be very satisfactory; nevertheless
it is the best attainable without an enormous increase of labour.

Combining our several results

(64)
I t remains to find ^ 4 (v0), and the denominator in the expression for ft

which involves £t4 — Aj1.

We have &. = $« (*.) <fi4 (»o)

Inside the integral sign I write v — —~— and change the independent
KSini|r

variable to yfr; I also put sin % = K sin \jr. At the surface of the ellipsoid we

have i/r = y, % = /3, and since v0 = —: = -—- these are the values to be
K sin j sin p

used in ^J4 (y0) outside the integral sign.

Then we have
dv

Since

P* (v) = JJt (,/2 - 1) [7 (J;2 - 1) + 6] = ->̂  (6 cot2
 x + 7 cot4

P4
4 (v) = 105 (v

2 - 1 ) 2 = 105 cot4
 x

since further

$4 (V) = Pi(v) + ^ 0 P4
2 („) + j i ^ PI (v)

we find 3P4 (v) = 1 + a cot2 % + & cot4 %

where a = 5 (1 + f/30) ..(65)

It must be noted further that when v = v0 at the surface of the ellipsoid,

I t follows then that ^ 4 (i/0) = 1 + a cot2 /3 + 6 cot4 /3 ; and from (64)
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496 THE FOURTH ZONAL HARMONIC INEQUALITY. [15, § 16

I t remains to consider the evaluation of iH4, which now assumes the
form

0* I v / I + a cot2 /3 + b cot8 /3\2 •
&4 = K I ., -r- r—-~- sec

' \1 + a cot- x + b c o t X>
. o

I t is possible [as shown in the paper on "Stability," § 19, p. 369] to split the
subject of integration into partial fractions, and thus obtain an accurate value
as was done in the case of iH3, but it does not seem worth while to undertake
so heavy a task, because a sufficiently exact value may be obtained by
quadratures.

The method was employed in that paper [as originally presented], and
may be explained very shortly.

I divide 7 into 10 or 12 equal parts—say 10 for brevity—and let & = •&

I then compute eleven equidistant values of the subject of integration,
say M0, «!,.. . u10, corresponding to yjr = 0, 2B, SB,... 10B. As a fact it is un-
necessary to compute the first four of these, because they are practically
zero.

The equidistant values increase so rapidly that they are very inappropriate
for the application of the rules of numerical quadratures. Accordingly I take
an empirical and integrable function, say v, such that vu — u12 and vn = nu,
and apply the rules of quadrature only to the differences un — vn. The result

fv
is a correction to the integral I vd\lr.

Jo

The empirical function which satisfies these conditions is

v = u10e
 d U9

When i|r = 7 = 108, v = um; and when yfr = 98, v = uloe "U9 = «9.

Then T loge (wlo/«9)

In the cases we have to treat e~ °g«l!*io/l*9) j s a n extremely small fraction,

so that practically I t>cWr= —-.—^—-7—.; and this is the function to be
^ J Jo r 101oge(>10/w9)'

corrected by the result of quadrature.

For the quadratures we have

*'l0 = «10, «9=«9, Vs = U10(—), V7=U10 I— , &C.

Thus the equidistant values of the function to be integrated (arranged
backwards) are

0, 0, M8 — u101 -
\«10.
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1906] THE FIFTH ZONAL HARMONIC INEQUALITY. 497

The first two are zero, the next three or four are sensible, and the rest are
insensible; thus the quadrature is very short. The correction is found to be
very small, and we might perhaps have been content with the empirical
integral without material loss of accuracy.

§ 17. The Fifth Zonal Harmonic Inequality.

This is treated exactly in the same way as the fourth, and I will only give
the results.

We have

xi

C5 (v) = V(l - /So cos 2j>). [1 - 7/30 cos 2</> + ff/30
2 cos

Whence

-13A + 4 W V(i + A

Then ^ 5 (i/0) = cosec /8 (1 + a cot2 /3 + b cot2 /3)

where a = 7 (1 + Jj5-/30)

Finally
fcosec /3 (1 + a cot2 /3 +L

which is to be evaluated by quadratures as was proposed for the fourth
harmonic.

§ 18. Moment of Momentum and Limiting Stability.

The moment of momentum of the system is la, but when we are deter-
mining the configuration of minimum moment of momentum, which is a
figure of bifurcation and gives us the configuration of limiting stability, the
conditions are different according as whether we are treating the problem of
the figures of equilibrium where both masses are liquid, or Roche's problem
in which the ellipsoid denoted by capital letters is rigid.

Accordingly I write

D. HI. 32
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498 METHOD OF DETERMINING LIMITING STABILITY. [15, § 19

and for determining the angular momentum of the figures of equilibrium
I take the whole expression for /, but for Roche's problem omit the last
term.

a3

Since to2 = |TT/3 — (1 + £), I compute for Roche's problem

a2 ^ ( l + \ ) 2 a 2

and for the figures of equilibrium

The moment of momentum is given by

It will be observed that /*i and fi2 are expressible by numbers for any
given solution of the problem.

Suppose now that we have a succession of solutions for equidistant values
of 7 differing but little from one another. Then if the solutions lie close to
the region of limiting stability, we shall find that one of them corresponds to
minimum moment of momentum, either of /J^ or of yu2> as the case may be.
Such a solution is a figure of bifurcation, and of the two coalescent solutions
one has one more degree of instability than the other. If one of the two is
continuous with a stable solution, and if, moreover, in the passage to the
undoubtedly stable solution it passes through no other point of bifurcation,
one of our two solutions is secularly stable and the other unstable.

Now, two liquid masses revolving about one another orbitally at an
infinite distance are undoubtedly stable, and such a case is also continuous
with one of our solutions. Further, Schwarzschild has proved that Roche's
ellipsoid has no point of bifurcation from first to last, and as this is true of
one such ellipsoid, it is true of two*. Hence we conclude that the minima
of /ij and fx2 will afford figures of limiting stability.

§ 19. Approximate Solution of the Problem.

It is clear that spherical harmonic analysis is applicable to the case when
the two liquid masses are widely distant. When they are so much deformed
by their interaction that that method becomes inapplicable, good results may
be obtained from the formulae of the last sections by means of development
in powers of sin y, and it is this plan which is especially considered in the
present section.

It appears from § 1 that when one of the masses is small compared with
the other (X small), the configuration of limiting stability for the problem of

* Schwarzschild, "Die Poincarisehe Theorie des Gleichgewichts," Neue Annalen der k.
Sternwarte Milnchen, Band in., 1896.
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1906] APPROXIMATE SOLUTION OF THE PROBLEM. 499

figures of equilibrium occurs when the two masses are very far apart. As X
increases, that configuration corresponds with diminishing radius vector. It
seemed then probable that at least some of the solutions might be found by
means of these series, and if this were so it might, in many cases, prove un-
necessary to follow the same laborious procedure as in finding the limiting
stability of Eoche's ellipsoid. This view was found to be correct, and I there-
fore think it well to record the methods by which the developments may be
obtained, without however giving the full details of the very laborious analysis.

When the masses are far apart, the terms denoted e and 77 in the equation
for K'2 and in that for a3/?*3 are small, and they must be neglected in the
developments.

Writing for brevity g = sin 7, we may prove that
1 . l + s i n 7 « g2n

U, = - lOg., L = Z~ r

sin 7 ° cos 7 0 "n + 1

tan8 7 = - 1 + 2 gm, tan4 7 = 1 + £ (n - 1) g™

Hence the developments maybe obtained of the functions <T0, <T1, <r2...
T , , T , , T , . . . , and thence of v0, vu v2... in series proceeding by powers of g2;
and thence we may find K'2 in that form.

The result as far as g4 is
30 „ 12(11 + 26X) ,

'4 + xL1 1(1+\)" 72(1 + X)2

I have also found the term in g", but shall make no use of it.

With this value of «'2 or of K2, which is 1 - «'2, we develop the expression
for a?/rs in the same manner. The result is: —

<$ — H A . - » . • * I * ~ T

By inversion we have
«._„•„• 5(4 + X)a3 25 (5 + X) (4 + X) a6

° 22.7(1+X)2 r6

125 (69 + 2X) (2 + X) (4_+_X) â
2». 7"a"(l + X)» r9

„. A;3 cos B cos 7 X ,
Since J~—r- = Y—T ad

sm3 p 1 + X

k2 I X \2'3
it follows that

sin2£ \1+\J (cos ̂  cos 7)2'3

32—2
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500 APPROXIMATE SOLUTION OF THE PROBLEM. [15, § 19

The semi-axes of the ellipsoid are given by

c2 &2 / X
a2 a2sin2/3 \ 1 + X / (cos

a? c2 „ 62 c2 „_
0 0 * 2/3

But cos2 7 = 1 — g2, cos2 /3 = 1 — «2^2, and therefore

-1/3

Setting apart the factor [\/(l + X)]2/3, which is common to all, these three
are all expressible in the form, say

F=l+ (a0 + a1«
2)5r2 + (60 + h*? + b2K

4)g* + (c0 + Cj«2 + c2/c
4 + c3K

e)ge + ...
where the a0, alt b0, blt &c, have different numerical values according to
whichever of the three functions we are treating.

Now the above formula for K'2 enables us to write

where the forms of Ao, Bo, O0 are obvious.

Hence we have

F= 1 + (a0 + a^o)^2 + (&„ + aiB0 + b

In this way I find the following expressions for the semi-axes in series
proceeding by powers of g1 or sin2 7 :—

X Y*/«r, 7 + X „ 524 + 223X+14X 2 „
I J. ~\~ — — O 4- ftI 3 (4 + X) * 17('Axl,\a &i? ^ O2 7̂ / / I I -V

o . 7 (4 + A

120926 + 86748X + 19428X2 + 686X3 •-]
X \2/T-i 5 + 2X 2 _ 6 4 + 8X + 7X2

 4

1+Xj |_ 3 (4 + X) ^ ~ 32 .7(4 + X)25f

1" _
L

11122 + 2460X - 1851X2 + 196X3

34.72(4 + X)3

2 - X 2 _ 187 + 110X-14X2
 4

5' 7( 9

28492 + 36723X + 14160X2 - 686X3

34.72(4 + X)3 f-
(66)
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1906] APPROXIMATE SOLUTION OF THE PROBLEM. 501

It is easy to verify that the product of the three series is unity, as should
be the case.

The next step is to substitute for g2, gi, gs... their values in terms of a3/?-3

and its powers. In this way I find

5(7 + X)as 25(419 + 187X + llX2)a6 ^
6 (1 + X) r3"+ 22.32.7 (1 + X)2 r«

125 (99848 + 74769X + 16503X2 + 488X3) a9

+ 23.34.72(1+X)3 r9

5(5 + 2X)a? 25(11 + 37X-X2)a6

a2 U+xy |

6 ( 1 + X ) r 3 ^ 22.32.7(1+X)2 r6

_ 125(23992+ 17895X + 1587X2+l78X3)a9

23.34.72 (1 + X)3 r9""

5 ( 2 - X ) a ? _ 25(157 + 119X-11X2)a«
6(1 + X)r3 22.32.7(1 + X)2 r6

125 (19114 + 23673X + 11577X2 - 488X3) a9

23.34.72(1+X)3 r9'

(67)

By writing 1/X for X we obtain the formulae for the axes of the other
ellipsoid.

The numerical coefficients increase rather rapidly so that the series are
useless unless a/r is small, and accordingly this method fails to give any
result for Roche's ellipsoid in limiting stability; it is, however, useful for the
problem of figures of equilibrium, as already stated.

If we had relied on spherical harmonic analysis, we should only have
obtained the terms in a3/r3.

In order to obtain the expression for the angular momentum, which has
to be a minimum for limiting stability, we must evaluate f. Now, from (24)
and (15), we have

3 ' " " " '" 'iA,B,G)

s a m e i n

C2) (a2 + 62 + c2) - 5C2 (a2

By means of the above series for a2, 62, c2, and of their analogues for
A\ JS2, C2, I find

„ ,a6 a8 a10-
~ + n —
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502 APPROXIMATE SOLUTION OF THE PROBLEM. [15, § 19

where

* • (

m =_ 5 _
X2'3 (82 + 3 8 \ + X2) + 82X2 + 38X + 1

it • (1 +
_ ,9 f l X4'3(33 + IPX, + X2) + 33X2 + IPX + 1 ,

n~m (1+X)10'3" j i (1 + X)10/3

Now we have to evaluate the moment of momentum given above in
§ 18, viz.,

62, c2, B2, G2, have their values attributed to them, we find

+ X)
where

2
5X

a\s/2

")
a8 a9

+ U
a a a

S 1 + ^ ". + U ~. • •'

T = 2 . 3 2 . 7 ( 1 + X f

u= 2, 34 7 ! ( i + v r [X2/3 (40367 + 25548X+

+ ^ (4P367X3 + 25548X2 + 2463X + 488)1

In § 1, where the same problem is treated for two spheres, we had I, m, n,
S, T, U, all zero.

In order to find the minimum moment of momentum for a given value of
X, I compute I, m, n, R, S, T, U, and assuming several equidistant values of r
compute values of /x2 (1 + X)2/X. When the coefficients are computed we
very easily find the value of r corresponding to the minimum.

Wrhen that value of r is found, we are in a position to compute the axes
of the two ellipsoids.

For values of X less than \ the results found in this way would be satis-
factory, and for X = \ they are, I think, adequate. Even for the case of X = 1
the result is not very remote from the truth, for whereas the correct result
for the minimum of angular momentum is r/a = 2"638, the result derived
from this approximate method is r / a = 2 ' 5 1 . But it would have been
impossible to foresee that the result would be as good as it is.
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1906] INFINITESIMAL SATELLITE IN LIMITING STABILITY. 503

PART II. NUMERICAL SOLUTIONS.

§ 20. Roche's Infinitesimal Ellipsoidal Satellite in Limiting Stability.

We require to find the form of an infinitesimal satellite (so that X = 0)
revolving in a circular orbit about a spherical planet. When this problem is
solved we shall be able to see how far the solution will be affected when we
allow the spherical planet to become oblate under the influence of a rotation
of the same speed as that of the revolution of the infinitesimal satellite.
This last is what I have called the modified form of Roche's problem.

The planet being spherical and X being zero, the small terms %, e, t)
vanish, so that our solution becomes rigorous.

The angular momentum of the planet's axial rotation is to be omitted,
and the satellite being infinitesimal the momentum of its axial rotation is
zero. Thus the moment of momentum of the system varies as the square
root of the satellite's radius vector, and minimum momentum coincides with
minimum radius vector.

The solution of the problem has been obtained in two ways: first by
Legendre's tables of elliptic integrals, and secondly by means of the auxiliary
tables given above. In the first method, I knew with fair approximation by
various preliminary computations the values of K and 7 which lay near to the
required solution. Now there is a certain function of K, 7, say/(sin"1 K, 7),
which vanishes when the ellipsoid is a figure of equilibrium; accordingly
I computed by means of Legendre's tables the following eight values of
/"(sin"1 K, 7) for integral degrees of sin"1 K and 7:—

/(77°, 57°) = + 0-0000878, /(77°, 58°) = - 0-0000624
/(78°, 59°) = + 0-0000724, /(78°, 60°) = - 0-0000785
/(79°, 61°) = + 0-0000562, /(79°, 62°) = - 0-0000939
/(80°, 63°) = + 0-0000408, /(80°, 64°) = - 0-0001046

(probably the last significant figure in each of these is inaccurate).

Interpolating from these we find four values satisfying/(sin"17, K)=0,
namely:—

With these

By formuke

/(77°, 57°-5846) =
/(79°, 61°-3744) =

solutions I find
sin"1

 K

77°
78°
79°
80°

of interpolation the
sin-1

0,
0,

/(78°, 59 -4798) = 0
/(80°, 63°-2806) = 0

r/a
2-467860
2-458191
2-455446
2-460289

minimum of r occurs when
K == 78°-8756
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504 INFINITESIMAL SATELLITE IN LIMITING STABILITY. [15, § 20

Then by a second interpolation this value of K corresponds with 7 = 61O-1383,
and the minimum value of r is 2-45539. We may take then 7 = 61° 8''3,
K = sin 78° 52'-5, whence /3 = 59° 14'-5. Since cos 7 = 0-4827, cos # = 0-5114,
the three axes of the ellipsoid are proportional to 10000, 5114, 4827; Roche
gave the ratios 1000, 496, 469, and the radius vector as 2-44, in place of
2-45539.

Turning now to the second solution, I solved the problem by means of
the auxiliary tables in two ways, namely, for 7=60°, 61°, 62° and also for
7 = 57°, 59°, 61°, 63°.

They led to virtually identical results, viz., that the minimum of r is
2-45521, corresponding to 7 = 61° 8'-4, sin-1 K = 78° 52'-0.

Finally the solution for Roche's limit and for the ratio of the axes of the
ellipsoid in limiting stability may be taken to be as follows:—

7 sin"1* cos 7 cos/3 r/a
61° 8J' 78° 52' 0-4827 0'5114 2-4553

with uncertainty of unity in the last place of decimals in r and of half a
minute of arc in sin"1 K.

We must next consider the modified form of Roche's problem, in which
the large body or planet yields to centrifugal force and becomes an oblate
ellipsoid of revolution. The approximate formulae of § 19 show that when
X = 00 or when X = 0,

Hence in this case

The solution of the modified problem can only differ slightly from that
just found when the planet is spherical, and therefore we may compute
f with sufficient accuracy by means of the values of a/r already found.
I accordingly computed f for 7 = 60°, 61°, 62°, and found that in each case
£" was very nearly equal to 0'0088.

Now it is proved in the footnote to § 10 that, when X = 0 and when the
planet yields to centrifugal force, e = •»? = £'; as the value of £ is found with
good approximation, it is easy to compute r for these three values of 7. I
thus find that in the modified problem, minimum radius vector, and therefore
limiting stability, occurs when r=2'457, 7 = 61° 12', * = sin 78°50', /3= 59°l7';
the axes of the large body are determined by the approximate formulae of

§ 10 to be - = - = 1-0304, - = 0-9418.0 a a a
It appears then that the yielding of the planet to centrifugal force makes

very little difference, as was to be expected.

These results are included in the table given below of results for solutions
of the modified problem of Roche with finite values of X.
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1906] THE LIMITING STABILITY OF FINITE SATELLITES. 505

§ 21. Roche's Ellipsoidal Satellite, of finite mass, in limiting stability,
the planet being also ellipsoidal.

This is the problem which I describe as the " modified " problem of Roche.
It seemed unnecessary to carry out the computations for the smaller values
of X, since they are sufficiently represented by the case of the infinitesimal
satellite where X is zero. I therefore begin with the case of X = 0'4 and pass
on to X = 0-5, 0-6, 0-7, 0-8, 0-9, 1-0.

It seems well to describe the process followed in one case as a type of all.
It was, in general, possible either by extrapolation from neighbouring values
of X, or by mere guessing, to begin with some values of f, e, rj and their co-
relative functions E, H for the larger body, which were somewhere near the
truth. With these we could compute r, K, T, K with fair approximation;
thence values of £, e, i\, E, H could be calculated with close accuracy and the
computation could be repeated. It was, of course, a matter of conjecture as
to what initial values of y would be found to embrace the region of minimum
angular momentum.

I will now describe the process for X = 04. Passing over the preliminary
stages in which fairly good values were found, we begin with the following
conjectural values:—

y 46° 48° 50°

s in - 1 * 68°24'-8 69° 32'-0 70° 41'-3

r 33° 13'-9 34° 18' 8 35° 18'-5

s in - iR 50" 52'-0 51° 3CM 52° 7''5

logr 0-40245 0-39594 0-39060

whence I compute

r
sin^K

7
sin"1

 K

logr

32°

50° 12'-0

43° 50'-9

67° 15'-0

0-41071

34°

51° 18'8

47° 24'-4

69° ll'-8

0-39775

36°

52°34'-9

51° 34'-l

71° 37'-0

0-38726

f 0-056259 0-064863 0-074219 £ 0-047883 0-062231 0-082010

€ 0-045435 0-048102 0'050256 E 0'140179 0-174168 0-218540

7) 0-32004 0-36426 0-40838 H 0-40539 0-52564 0-69272

By means of these and the auxiliary tables I find
sin"1* 68° 24'-6 69° 31'-8 70° 4O'-5 sin-^K 50° ll'-8 51° 18'-8 52° 33'-8

logr 0-40240 0-39591 0-39046 logr 0-41068 0-39768 0-38693

The computed values are so very close to the conjectural ones, in so far
as they have been as yet computed, that we might be content, but in order
to illustrate the process when the conjectures are less satisfactory, I proceed
to the next stage.

By far the greater part of the discrepancy between assumed and computed
values (which in some cases was considerable) arises from error in the
assumed values of r. Now assuming K and K to be correct, it is very easy
to correct the results for a changed value of r.
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506 THE LIMITING STABILITY OF FINITE SATELLITES. [15, § 21

In this case I find
corrected f 0-056274 0-064873 0-074271 corrected f 0-047890 0-062253 0-082137

„ <r 0-04545 0-04811 0-05030 „ E 0-14020 0-17423 0-21889

„ t) 0-32012 0-36431 040867 „ H 0-40546 0'52583 0-69385

Recomputing
sin"1 K unchanged sin"1 K unchanged

corrected logr 0-40240 0-39591 0-39047 corrected logr 0-41069 0-39768 0-38695

By means of these we find two formulae of interpolation, namely:—

- = 2-4884 - 0-0342 fc^ + 0-0032a \ 2 / \ 2

- = 2-4985 - 0-0685 (I-^-°) + 0-0075 fc^-a V 2 J V 2
These two expressions may be equated to one another, and therefore we

have the means of finding simultaneous values of 7 and F, and thence by
another formula of interpolation of K and K. Hence I obtain

y 46° 48° 50° T 32° 34° 36°

r 33° 13'-4 34° 17'-9 35° 17'-4 y 43° 47;>4 47° 25'-4 51° 34'-4

s in- x K 50° 52'-2 51° 29'-5 52° 6'-3 sin"1 K 67° 12'-1 69° 12'-3 71° 35'-6

Comparison with the initial values shows that the conjectures were very
good.

It now remains to compute the moment of momentum, and as we are
dealing with Roche's problem the rotational momentum of the larger ellipsoid
is not required. It follows that the values of F and K are not used, and
since they are only required for finding the shape of the larger ellipsoid, there
was no necessity for a high degree of accuracy in them. The moment of
momentum is represented by the quantity ^ of § 18. I find then

7 46° 48° 50°

Pi 0-348640 0-348300 0-348519

By formulae of interpolation the minimum value occurs when 7 = 48° 12/-9

and K = sin 69° 39'1. The corresponding values are - = 2'4848, F = 34° 25'-6,

K = sin 51° 33'"5. The last step is to compute the axes of the two ellipsoids
from the values of K, 7, K, F.

Of course the numbers set out above make no claim to absolute accuracy,
but the results tabulated below are, I believe, substantially correct.

The unit of length employed is the radius of a sphere whose mass is equal
to the mass of the whole system. If it were preferred to express the results
in terms of the mean radius of the larger body, all linear results would have
to be multiplied by (1 + Xfl3.

We may now collect the results in a tabular form, as follows:—
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SOLUTIONS FOR ROCHE'S ELLIPSOID IN LIMITING STABILITY.

The unit of length is the radius of a sphere whose mass is equal to the sum of the masses, i.e.,

abc + ABC = 1, and abc
ABC

= X.

0

0-4

0-5

0-6

0-7

0-8

0-9

1-0

7

61° 12'

48° 13'

46° 40'

45° 5'

43° 38'

42° 26'

41° 25'

40° 15'

sin"1
 K

78° 50'

69° 39'

68° 12'

66° 43'

65° 20'

64° 4'

62° 58'

61° 43'

a

0-482-r oo

0-562

0-597

0-627

0-652

0-673

0-691

0-708

b

0-511 + Qo

0-603

0-642

0-674

0-701

0-725

0-744

0-762

c

1-0 H-cc

0-843

0-870

0-888

0-901

0-912

0-921

0-927

r

—

34° 25'

35° 59'

37° 14'

38° 9'

38° 57'

39° 40'

40° 15'

sin-1 K

—

51° 34'

54° 30'

56° 41'

58° 18'

59° 39'

60° 47'

61° 43'

A

0-942

0-815

0-792

0-772

0-753

0-737

0-722

0-708

B

1-030

0-886

0-860

0-836

0-815

0-796

0-778

0-762

C

1-030

0-988

0-979

0-969

0-958

0-947

0-937

0-927

r

2-457

2-485*

2-484

2-490

2-497

2-502

2-508

2-514

* The values r = 2-485 for X.=0'4 and r=2-484 for X=0-5 represent 2-4848 and 2-4844 respectively; it is probable that the last significant figure
in the former is a little too large and in the latter too small, and that it might have been more correct to invert the 2-485 and 2-484 in the table.
I give the result, however, of the computation.
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508 FIGURES ILLUSTRATING THE RESULTS. [15, § 21

The cases X = 0-4, 0-7, 1-0 are illustrated by figs. 2, 3, 4. The meaning of
the dotted lines near the vertices of the smaller ellipsoid will be explained in
the next section.

The distance r — (c + 0) is the interval between the vertices of the two
ellipsoids; the following are the values, using, however, more places of
decimals than are tabulated above:—

X

0

0-4

0-5

0-6

r-(c + G)
1-030

0-653

0-635

0-633

\

0-7

0-8

0-9

1-0

r-(c+C)
0-638

0-643

0-650

0-660

It is remarkable how very nearly constant the intervening space remains
throughout a large range in the values of X.

*=603

« 6 = 603

Fio. 2. Roche's ellipsoid in limiting stability, when \ = 0-4.

«S= 813

*8=-815

FIG. 3. Roche's ellipsoid in limiting stability, when X=0-7.
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1906] HARMONIC DEFORMATIONS OF THE ELLIPSOIDS.

« 4=762 «fi=-76J

509

x*=76J fl=762

Fio. 4. Roche's ellipsoids in limiting stability for equal masses.

§ 22. Harmonic Deformations of the Ellipsoids.

When X is infinitely small, so that the liquid satellite is infinitely small,
the harmonic deformations are evanescent, and the same is true when X is
infinitely great. We saw in § 14 that there was reason to suppose that
Roche's ellipsoid in limiting equilibrium might be more markedly deformed
for values of X midway between zero and unity than for the latter value.
I therefore determined the harmonic deformations in the three cases
X = 04, 07, 1-0.

The formulae for the ellipticities/3,/3
2,/4,/6 are given in §§ 14, 16, 17 and

their values may be found for the ellipsoids in limiting stability tabulated in
the last section. It appears that in every case the amount of deformation is
small, and therefore it was sufficient to compute the normal deformation at
the two extremities of the c semi-axis, that is to say, at the points nearest to
and most remote from the other ellipsoid. At these points the normal
displacement outwards may be denoted Sc, with numbers affixed thereto so
as to indicate to which harmonic it is due.

The results may be given in a tabular form, but it may be well to remark
that the ellipticities corresponding to the tesseral harmonics of the fourth
and fifth orders, viz./,2, /4

4,/6
2, /6

4 were not computed, because their effects
would be quite negligible. The following are the computed values of the
ellipticities*:—

X

A

A
A

0-4

0-325

-0-113
0-004
o-ooi

0-7

0-261
-0-126

0-007
0-002

1-0
0-214

-0-089
0-006
0-003

* [A mistake has been corrected in the column X=0-4, and certain small corrections have
been made in the other columns ]
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510 HARMONIC DEFORMATIONS OF THE ELLIPSOIDS. [15, § 22

The values of the ellipticities afford us no idea of the amount of the
normal correction, and I therefore proceed to tabulate the values of 8c, the
prolongations of the c semi axis.

Towards larger ellipsoid
x 0-4 0-7 l-o

8cs 0-0389 00316 0-0254

8c3
2 0-0004 0-0008 0-0010

8o4 0-0078 0-0089 0-0091

8ci 0-0024 0-0038 0-0063

Total 8c

c

c + 8c

8c
c

X

0C3

5e4

8c6

0-0495

0-8433

0-8928

1/17

Away from

0-4

-0-0389

-0-0004
+0-0078

-0-0024

0-0451

0-9006

0-9457

1/20

larger ellipsoid
0-7

-0-0316

-0-0008
+0-0089

-0-0038

0-0418

0-9270

0-9688

1/23

1-0

-0-0254

-o-ooio
+0-0091

-0-0063

Total 8c -0-0339 -0-0273 -0-0236
c 0-8433 0-9006 0-9270

c + 8c 0-8094 0-8766 0-9104

— 1/25 1/33 1/39

The last line in each division of this table has been given in order to
show the relative importance of the total correction. It is clear that the
ellipsoid remains a substantially correct solution.

These corrections to the semi-major axes are indicated by dotted lines at
the extremities of the longest axis of the smaller mass in figs. 2 and 3, and of
both masses in fig. 4.

We have in the last section tabulated r — (c + G), the distance between
the two vertices. Now, although I have not calculated the deformations of
the larger ellipsoid, it is pretty clear that they must bear to those of the
smaller one approximately the ratio of X to unity. Accepting this conjecture,
we have for the SO of the larger ellipsoid towards the smaller one the
following values:—

x 0-4 0-7 l-O

8C 0-020 0-034 0-042
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1906] CERTAIN VERIFICATIONS. 511

The distance between the two surfaces of liquid is clearly

Thus we have
\

r-(c+C)
S0+8C

r-(G+8c+C+8C)

0-4

0-653
0-070

0-583

0-7

0-638

0-079
0-559

1-0

0-660
0-084

0-576

§ 23. Certain Tests and Verifications.

In order to test how nearly the solution for as/r3 by series in (40) of § 11
would agree with the solution (36) of § 10 in terms of the F elliptic integral,
I computed for X = 0-7 the value of r/a in the two ways for three values of 7,
and found the following results:—

7
r/a by series

r/a by elliptic integrals

The agreement seems to be as close as could be expected when five-figured
logarithms are used.

Certain terms in f, as expressed in (24) of § 10, were neglected on the
ground that they are of higher order than those retained. But it appears
from the approximate solution in § 19 that the coefficients of the terms
retained are themselves small, so that we are really only retaining terms
of the same order as others which are neglected.

The most important of the neglected terms in f is

42°
2-5355

2-5359

44°
2-4888

2-4881

46°

2-4500

2-4495

and this is a term of the seventh order. It seems, therefore, well to compute
this in one case, and see how large a proportion it bears to the whole value.

Since ®

Using this value and the other approximate values given in § 14, where
f3 is determined, I find that the neglected term is

*• cos2
7 / 3(3 + **) ft* \

3 A l 3^sin*/H 14^~r2"7
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512 TWO MASSES OF LIQUID IN LIMITING STABILITY. [15, § 24

The numerical value of this, for the case of Roche's ellipsoid in limiting
stability when \ = 0"7, is found to be + 00016. Now, the value of f, as
computed from the terms retained, was found to be 0-0677. Thus the
neglected term is about one 42nd of the whole. The neglect then seems
fairly justified.

I thought it worth while to discover how far the modification of Roche's
problem, whereby the larger body is ellipsoidal, affects the result. I find
that whereas it makes but little difference in the solution for any single
assumed value of y, it does make a sensible difference in the incidence of the
minimum of angular momentum, and therefore of limiting stability. Thus,
when X = 0'5, I found in one of my preliminary solutions for Roche's modified
problem that limiting stability occurs when r/a = 2*49 (the more correct
value is 2"484), but when the larger body is a sphere it occurs when
r/& = 235. Thus we see that ellipticity in the larger body induces instability
at a greater distance than if it were spherical. This might have been con-
jectured from general considerations.

| 24. Figures of Equilibrium of Two Masses in Limiting Stability.

In this case both masses are liquid. We saw in § 2 that when one of the
masses is infinitely small, stability only exists when the two are infinitely far
apart. When X is less than 0'5 we may obtain fair results from the approxi-
mate investigation of § 19, but for greater values of X it is necessary to
employ the laborious method adopted in determining Roche's ellipsoid.

When X = 0-5 I obtain the following approximate results for the two
figures:—

r = 2-574

a = 0-62, ^=0-81

6 = 0-66, 5=0-87

c = 0-81, 0 = 0-95

It is probable that the value of r derived in this way is too small.

For X = 0*4,1 found r = 2-59, but did not calculate the axes.

The only other case in which the problem has been solved is for equal
masses, when X = 1. The two ellipsoids are exactly alike, and I find limiting
stability occurs for the following values:—

y = 36° 18', K = sin 59° 33', r = 2-638

a = 0-723, 6 = 0-771, c = 0-897

and r - 2c = 0-844
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1906] UNSTABLE FIGURES OF EQUILIBRIUM.

This is illustrated in fig. 5.

513

FIG. 5. Two equal masses of liquid in limiting stability.

§ 25. Unstable Figures of Equilibrium of Two Masses.

When X = 0 the figure of minimum radius vector, when the larger body
is rigid, is also that of minimum angular momentum, but for larger values of
A. there is an ellipsoid considerably nearer to the larger body than that
which possesses limiting stability. I have only determined the ellipsoid of
minimum radius vector in two cases, viz., when \ = 0-8 and TO.

When X = 0'8 I find minimum radius vector to be r — 2*36, whereas
limiting stability occurs for r = 2'50. When X = 08, r = 2"36, the ellipsoids
are determined by the following data:—

7 =54° 20',

whence

K = sin 71° 51',

a = 0-619,

b = 0-675,

c = 1-063,

T = 46° 10',

A = 0-705

5 = 0-774

0 = 1-018

K = sin 64° 20'

When X = 1, the minimum radius vector occurs when 7 is about 54° and
is then equal to 2-343, whereas limiting stability occurs when r = 2-514.
I have not computed the axes, since it suffices to learn that there is an
ellipsoidal solution when the two masses are considerably nearer than is
consistent with stability.

As 7 increases, the ellipsoids get longer and longer, and it is interesting
to inquire whether they increase in length with such rapidity that, notwith-
standing the increase of r, the interval between the two vertices continues to
decrease, or whether the increase of r annuls the simultaneous increase of c.

The following table of values, computed with fair but not extreme
accuracy, affords the answer to this question.

D. in. 33
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514 THE SPACE BETWEEN THE TWO APICES DIMINISHES. [15, § 26

7

44°

46°

48°

50°

52°

54°

56°

58°

V

2-429

2-396

2-370

2-354

2-345

2-343

2-350

2-367

c

0-962

0-983

1-007

1-034

1-064

1-097

1-134

1-176

r-2c
0-506

0-430

0-356

0-286

0-217

0-149

0-082

0-015

Differences

- 7 6

- 7 4

- 7 0

- 6 9

- 6 8

-67

- 6 7

The differences of r —2c hardly diminish at all, and it is clear that the
next entry would be negative, or in other words the two figures would
overlap.

These results are obtained on the supposition that our approximation is
adequate, but the small terms %, e, rj, which are really infinite series, show
signs of bad convergence as <y increases. I think it probable that when we
get to these extreme cases the convergence breaks down. It appears, how-
ever, j ustifiable to argue from these results that the unstable body continually
elongates until its end coalesces with the other elongated body. I have no
doubt but that the same holds true when the masses are unequal, and that
we should always find r — (c + G) diminishing until the two meet. The
poorness of the approximation of course would prevent us from making good
drawings when coalescence is approaching.

§ 26. On the Possibility of Joining the Two Masses by a
Weightless Pipe.

This subject is considered in § 13, and it is there shown that if a certain
function written /(a/r), for a given solution of the figures of equilibrium of
two detached masses of liquid, is positive, the two masses are too far apart to
admit of equilibrium when joined by a pipe without weight—and conversely.

Now I have computed / (a/r) in a number of cases of Roche's ellipsoids
in limiting stable equilibrium, and have found it always to be decisively
positive.

The corresponding function for two spheres is given in (3) of § 3, and its
first term is +a8/r3. When we compute it for two ellipsoids, we find the
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1906] THE POSSIBILITY OF THE JUNCTURE OF THE TWO MASSES. 515

corresponding term to have become negative, and the additional terms, which
are given in (44), § 13, are also negative. Hence / (a / r ) is decidedly less for
two ellipsoids than it is for two spheres of the same masses with the same
radius vector. Thus the deformation of the two bodies tends in the direction
of making it possible to join them by a pipe without weight, but it seems
certain that in the cases of the Roche's ellipsoids in limiting stability such
junction remains impossible.

I also computed /(a/r) for the much elongated ellipsoids which are
roughly computed in the last section and finally overlap, and always found
/(a / r ) to be positive, as far as the approximate formula went. The additional
terms tend, however, more and more to causey (a/r) to vanish, and the approxi-
mation becomes very imperfect. Now I believe, although I cannot prove it
rigorously, that if we could obtain a more exact evaluation of the forms of
these elongated ellipsoids, and if further a more exact value of /(a/r) were
calculable, we should find /(a/r) vanishing near the stage when the com-
putations would show the two ellipsoids to overlap. It therefore seems
probable that there is a figure of equilibrium consisting of two elongated
masses joined by a narrow neck. These ellipsoids are very unstable when
detached, and, according to the principles of § 2, it seems inconceivable that
junction by a neck of fluid could render them stable.

PART III. SUMMARY.

Since the foregoing investigation may be read by mathematicians, while
astronomers and physicists will perhaps wish to learn the nature of the
conclusions arrived at, I shall devote this part of the paper to a general
discussion of the subject, without reference to the mathematical processes
used.

Two problems are solved here simultaneously; for the analysis required
for their solutions is almost identical, although the principles involved are
very distinct.

We conceive that there are two detached masses of liquid in space which
revolve about one another in a circular orbit without relative motion—just
as the moon revolves about the earth; the determination of the shapes
assumed by each mass, when in equilibrium, is common to both our problems.
It is in the conditions which determine secular stability that the problem
divides itself into two.

One cause of instability in the system resides in the effect on each body
of the reaction on it of the frictionally resisted tides raised by it in the other.
If now the larger of the two masses were rigid, while still possessing the
same shape which it would have had if formed of liquid, the only effect on

33—2
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516 TIDAL FRICTION AS A CAUSE OF INSTABILITY. [15, SUM.

the orbital stability of the system would be due to the friction of the
tides of the smaller mass generated by the attraction of the larger one.
Investigation shows that in this case, as the two masses are brought nearer
and nearer together, instability would not supervene from tidal friction until
the two masses were almost in contact; but it is clear that the deformation
of the figure of the liquid mass presents another possible cause of instability.
In fact, instability, as due to the deformation of figure, will set in when the
masses are still at a considerable distance apart. It amounts to exactly the
same whether we consider the larger mass to be rigid, of whether we treat it
as liquid and agree to disregard the instability which arises from the friction
of the tides raised in it by the smaller body. Accordingly we may describe
the stability just considered as " partial," whilst full secular stability of both
bodies will depend on the tidal friction of the larger mass also.

The determination of the figure and partial stability of a liquid satellite
(i.e., apart from the effects of the tidal friction of the planet) is the problem
of Roche. He, however, virtually regarded the planet as constrainedly a
sphere, whilst in general I have treated it as an ellipsoid with the form of
equilibrium.

It has already been remarked that, as the radius vector of the satellite
diminishes, partial instability first supervenes from the deformation of the
smaller body. It therefore hardly seems worth while to consider the partial
stability of a system in which the liquid satellite (hitherto described as the
smaller body) is greater than the planet. We may merely remark that in
this case the problem comes to differ very little from that involved in the
determination of the full secular stability of two liquid masses; for if we
consider the case of a large liquid mass (the satellite) attended by a small
body (the planet), it clearly makes very little difference in the result whether
or not the tidal friction of the small body is included amongst the causes of
instability.

This being so, I have not thought it worth while to continue the solutions
of Roche's problem (modified by allowing the planet to be deformed) to the
cases in which the satellite is larger than the planet. The ratio of the
masses of satellite to planet is denoted above by X, and the field examined by
means of numerical solutions extends from \ = 0 to \ = 1 , while the part
omitted extends from X = 1 to X = oo.

Tidal friction is a slowly acting cause of instability, and from the point of
view of cosmical evolution the partial stability of Roche's ellipsoids is of even
greater interest than the full secular stability of the system.

The limiting stability of Roche's liquid satellite is determined by the
consideration that the angular momentum of the system, exclusive of the
rotational momentum of the planet, shall be a minimum. This exclusion of

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511703492.018
Downloaded from https://www.cambridge.org/core. National University of Singapore (NUS), on 08 Jul 2019 at 11:17:08, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511703492.018
https://www.cambridge.org/core


1906] LIMITING STABILITY DETERMINED FROM MINIMUM MOMENTUM. 517

a portion of the momentum of the whole system corresponds with the fact
that we are to disregard the tidal friction of the planet as a cause of instability.
If all possible cases of the liquid satellite be arranged in order of the corre-
sponding (partial) angular momentum of the system, it is clear that for given
momentum there will in general be two forms of satellite; but when the
momentum is a minimum the two series coalesce. If then we proceed in
order of increasing momentum, the configuration of minimum is the starting
point of two series of figures; it is a figure of bifurcation, and one of the two
series has one fewer degrees of instability than the other.

One of the two series is continuous with the case of a liquid satellite
revolving orbitally at an infinite distance from its planet, and this is a stable
configuration. Moreover, M. Schwarzschild has shown* that the whole series
of Eoche's ellipsoids does not pass through any other form of bifurcation.
Hence we conclude that of the two series which start from the configuration
of minimum momentum, one is stable and the other unstable.

The unstable series of solutions is continuous with a quasi-ellipsoidal
satellite, infinitely elongated along the radius vector of the orbit, and the
radius vector itself is infinite. Since two portions of matter cannot occupy
the same space, the infinite elongation of the satellite would be physically
impossible, unless the order of infinity of the radius vector were greater than
that of the longest axis of the satellite. Now it appears from the numerical
results of § 25 that this is not the case, and that the satellite becomes more
rapidly elongated than the radius vector increases. Hence if the solution of
the problem were exact we should reach a stage at which the two masses of
liquid would overlap. I shall endeavour hereafter to consider the inter-
pretation which should be put on this result.

A series of solutions for Roche's ellipsoid in limiting stability is tabulated
in § 21, and the table gives the radius vector and the three semi-axes of each
body. The unit of length adopted is the radius of a sphere whose volume is
equal to the sum of the volumes of the two masses. Three of these solutions
are illustrated in figs. 2, 3, 4. The section shown is that passing through the
axis of rotation and the two centres, but the places are marked which the
extremities of the mean axes would reach if the section had been taken at
right angles to the axis of rotation.

The table of § 21 shows that the radius vector at which instability sets in
only changes from 2-457 to 2-514, whilst X, the ratio of the mass of the
satellite to that of the planet, changes from zero to unity. The distance
between the vertices of the two ellipsoids also remains wonderfully nearly
constant throughout a wide range of change in the value of X.; for when
A, = 0-4 it is 0-653, and when A. = 1 it is 0-660, only falling to 0"633 at its
minimum.

* See reference in § 18 above.
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518 THE SOLUTION OF ROCHE'S PROBLEM. [15, SUM.

Thus far I have been speaking of the modified problem of Roche in which
the planet assumes the appropriate figure of equilibrium, but I have also
obtained the solution of Roche's problem for an infinitely small satellite and
a spherical planet. As stated in the Preface, the radius vector of limiting
stability, which has been called " Roche's limit," is found to be 2'4553, and
the axes of the critical ellipsoid are proportional to the numbers 10000, 5114,
4827. These may be compared with the 2'44 and 1000, 496, 469 determined
by Roche himself. When we consider the methods which he employed, we
must be struck with the closeness to accuracy to which he attained.

For the infinitely small satellite the modification of Roche's problem
hardly introduces any sensible change in the results, but for satellites of
finite mass stability will continue to subsist for a slightly smaller radius
vector for the spherical than for the ellipsoidal planet. In other words, the
ellipticity of the planet induces instability earlier than would be otherwise
the case.

Roche did not attempt to investigate how closely his equations were
capable of giving the ellipsoid most nearly representative of the truth, nor
did he estimate how far the ellipsoid is an accurate solution. These points
are considered above, and it was the desirability of making the investigation
with a closer degree of accuracy which occasioned many of the difficulties
encountered.

For the infinitely small satellite the ellipsoidal solution is exact, and with
a spherical planet, but not for an ellipsoidal one, Roche's equations give that
ellipsoid exactly. In this case, however, the change introduced by the
modification of Roche's problem is quite unimportant.

For finite satellites Roche's equations require sensible modification, and
the solution of the modified problem is different from that of the unmodified
one, although not to an important extent. But the ellipsoid derived from the
corrected equations is deformed by an infinite series of ellipsoidal harmonic
deformations, beginning with terms of the third order. Of these, the only
ones which have any sensible effect are those which may be described as zonal
with respect to the satellite's radius vector.

By far the most important of these is the third zonal harmonic, whereby
the satellite assumes a somewhat pear-shaped figure, being sharpened
towards the stalk end of the pear pointing towards the planet, and bluntened
at the other end. In consequence of this deformation the shape is slightly
flattened between the stalk and the middle.

The fifth and successive odd zonal harmonics accentuate the sharpening
of the stalk and the bluntening of the remote end. The fourth, sixth, and
successive even harmonics also accentuate the protrusion of the stalk, but
tend to fill up the deficiency at the remote end.
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1906] THE DEPARTURE FROM THE TRUE ELLIPSOIDAL FORM. 519

The general effect must be very like what results from the second
approximation to the pear-shaped figure of equilibrium*, for I found that
the ellipsoidal form was but slightly changed over the greater part of the
periphery, whilst a protrusion occurred at one end—in this present case
pointing towards the planet.

In figs. 2, 3, 4, the protrusions at one end and the bluntening at the
other, as computed from the third, fourth, and fifth harmonics, are indicated
by dotted lines. It appears from these figures that, at least up to the point
when instability sets in, the ellipsoid remains surprisingly near to the correct
solution.

For an infinitely small satellite minimum radius vector also gives
minimum angular momentum, so that the closest possible satellite is also
in a state of limiting stability. But this is not the case for finite satellites,
and there exists an unstable ellipsoidal satellite with smaller radius vector
than is consistent with stability. Thus for a satellite of four-fifths of the
mass of the planet the minimum radius vector is 2'36, whilst stability ceases
at a distance of 2*50. Again, for equal masses stability ceases at 2-514, whilst
the possibility of an ellipsoidal solution extends to 2343.

If we follow the forms of the more and more elongated satellites, when
the radius vector has begun to increase again, we find explicitly in the case
of equal masses, and with practical certainty for all ratios of masses, that
the distance between the two vertices continues to diminish and finally
becomes negative. At this stage the two masses overlap, a conclusion which
is, of course, physically impossible. But the calculation is based on the
assumed adequacy of the approximations, and it is certain that the harmonic
deformations of the ellipsoids increase rapidly, so that each body puts out a
protrusion towards the other. The two masses of liquid must therefore
really meet before we reach the stage of overlapping ellipsoids. As far as
can be seen, the approximation has become very imperfect—perhaps
evanescent—before the two ellipsoids cross. It will be best to continue the
discussion of the meaning of this result after we have considered the true
secular stability of the two masses of liquid.

If a satellite, being a particle, revolves about a rotating planet, whose
tides are subject to friction, there are, for given angular momentum, two
configurations (if any) in which the planet always presents the same face to
the satellite. In one of these, which is unstable, the satellite is close to the
planet; in the other, which is stable, it is remotef. If the angular
momentum of the system be diminished, the radius vector of the stable
configuration diminishes and that of the unstable one increases until the

* See " Stability," referred to in the Preface. [Paper 12, p. 317.]
t See Roy. Soc. Proc, No. 197, 1879, or Appendix G (6) to Vol. n. of Thomson and Tait's

Natural Philosophy. [Paper 5, Vol. n., p. 195.]
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520 TIDAL FRICTION AS THE PRIMARY CAUSE OF INSTABILITY. [15, SUM.

two coalesce. For yet smaller angular momentum there is no configuration
possible in which the planet shall always present the same face to the
satellite. We see then that amongst all possible configurations in which
the planet presents the same face to the satellite, that one is in limiting
stability, in which the two solutions coalesce with minimum angular
momentum.

A rotating liquid planet will continue to repel its satellite so long as it
has any rotational momentum to transfer to the orbital momentum of the
satellite. Hence an infinitesimal satellite will be repelled to infinity, and
the configuration of limiting stability for an infinitesimal satellite attending
a planet, which always presents the same face to it, is one with infinite
radius vector.

Very nearly the same conditions hold good when both planet and satellite
are subject to frictional tides. In § 2 it is proved that when each body is
constrainedly spherical, the radius vector of limiting stability is infinite when
the ratio of the masses is infinitely small. The radius vector decreases with
great rapidity as the ratio of the masses increases, and when the masses are
equal, the radius vector of limiting stability is 1*738 times the radius of a
sphere whose mass is equal to the sum of the masses, or is 2"19 times the
radius of either of the two spheres. Thus, when the ratio of the masses falls
from zero to unity (and this embraces all possible cases), limiting stability
occurs with a radius vector which falls from infinity until the two spheres
are only just clear of one another.

When we pass from the case of the two spheres to that of two masses,
each of which is a figure of equilibrium under the attraction of itself and its
companion, and subject to centrifugal force, the calculation becomes
exceedingly complicated. Since the radius vector of limiting stability in
every case must be greater than that of Roche's ellipsoid in limiting stability,
and since in the latter case instability sets in through the deformation of the
smaller body, it follows that in every case of true limiting secular stability of
the system, instability supervenes through tidal friction.

When the ratio of the masses is small, we have seen that limiting
stability occurs when the two masses are far apart. In this case the de-
formations of figure are small, and could easily be computed by spherical
harmonic analysis.

For finite values of the ratio of masses, when spherical harmonic analysis
would fail, a fair degree of exactness in the result may be obtained from the
approximate formula of § 19. There would be no serious error from this
formula when the ratio of masses is less than a half, but for greater values
of the ratio it seems necessary to have recourse to the laborious processes
employed in determining Roche's ellipsoids. I thought, then, that it might
suffice to compute the configuration of true secular limiting stability in the
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1906] THE INSTABILITY OF TWO SPHERES JOINED BY A PIPE. 521

case of equal masses. It is illustrated in fig. 5, and we see that the radius
vector is 2'638. We found that for a pair of equal spheres, instability only
set in when the radius vector, measured in the same unit, was T738. Thus
the deformations of the two masses forbid them to approach as near to one
another as if they were spheres. It should be noted that instability in this
case must arise from tidal friction, because Roche's ellipsoid in limiting
stability was found to have a radius vector of 2-514.

When Poincare' announced that there is a figure of equilibrium bearing
some resemblance to a pear, he also conjectured that the constriction between
the stalk and the middle of the pear might become developed until it became
a thin neck of liquid joining two bulbs, and that yet further the neck might
break and the two masses become detached. References to my own papers
on this pear-shaped figure and its stability are given above in the preface,
and the present investigation was undertaken in the hope that a revision of
Roche's work would throw some light on the figure when the constriction has
developed into a thin neck of liquid.

As a preliminary to greater exactness, I have in § 3 considered the motion
of two masses of liquid, each constrainedly spherical, and joined to one
another by a weightless pipe. Through such a pipe liquid can pass from
one sphere to the other, and it will continue to do so until, for given radius
vector, the spheres bear some definite ratio to one another; or, to state the
matter otherwise, two spherical masses of given ratio, revolving in a circular
orbit without relative motion, can be started with some definite radius vector
so that liquid will not flow from one to the other.

In this system the ratio of the masses and the radius vector are the only
parameters, and I find that the condition of equilibrium is a cubic equation
in the radius vector with coefficients which are functions of the ratio of the
masses. The cubic has three real roots of which only one has a physical
meaning, and the solution is illustrated graphically in fig. 1. The single
circle on the right is the larger sphere, and it is maintained of constant size
for convenience of illustration. The smaller circles on the left represent the
solutions for various ratios of masses, which are the cubes of the numbers
written on the successive circles.

The solution of this problem seems to me very curious, but it does not
possess much physical interest, since it is proved in § 3 that all the solutions
are unstable.

The distance between the two masses is much smaller than is the case
with any of Roche's ellipsoids, even with minimum radius vector, and
accordingly it did not seem probable that the parallel problem, when the
two masses are liquid and deformed, would possess any solution at all; never-
theless, it was worth while to pursue the investigation to the end.
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522 THE JUNCTION OF TWO ELLIPSOIDS BY A PIPE. [15, SUM.

When the masses are ellipsoidal and are joined by a weightless pipe, the
solution would become very complicated, but the question may be attacked
indirectly. When the masses are spherical there is a certain function of the
radius vector and of the ratio of the masses which must vanish when a
channel of communication is opened between them. If this function be
computed for two given spherical masses with given radius vector, we find
that it is negative if the two masses are too close together to admit of
junction by a pipe without disturbance of their relative masses, and that it is
positive if they are too far apart.

When the figures of equilibrium of two detached masses of liquid are
determined, it is possible to form the corresponding function, but part of it
consists of an infinite series of which it is only practically possible to give
the first few terms. Now I have computed this function in a number of
cases of Roche's ellipsoids, and have found that the few terms of the infinite
series are small, that the series is apparently rapidly convergent, and that
the function is decisively positive. We may conclude then that in none
of the cases, for which numerical results have been given, is it even
approximately possible to make a junction between the masses; and even
if we could do so, the system would be unstable, because removal of a
constraint may destroy but cannot impart stability. To find any possible
solution we must consider cases where the two masses are much closer
together.

I think, however, that there must be a figure of the kind sought, for the
following reasons: If the function referred to above be formed for given
radius vector and ratio of masses, we find that its value is very much less
than if the two masses are spherical. Thus the tendency of liquid to flow
from the larger to the smaller mass (when they are too far apart) is much
less than if the two masses were spherical. Every increase of ellipticity in
the ellipsoids tends to diminish the function, and the series tends to become
less convergent; and besides I have made no attempt to evaluate the terms
in the function which correspond to the harmonic inequalities of the
ellipsoids, and these would tend to diminish the function still further.

It was remarked above that two much elongated ellipsoids seem to
coalesce finally, but that the approximations were not satisfactory. I find,
however, that even to the end the function, as far as it could be computed,
was still positive although much diminished. It appears to me then probable
that if we could obtain a more complete expression for the function, we
should find that it vanishes before the two ellipsoids overlap. There is then
some reason to believe in the existence of a figure of equilibrium consisting
of two quasi-ellipsoids joined by a narrow neck; but such a figure must be
unstable.
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1906] THE INVESTIGATION OF JEANS AND OF LIAPOUNOFF. 523

I have, in fig. 6, made a highly conjectural drawing of such a figure
where the two bulbs are equal. The data are derived from the compu-
tations for the much elongated ellipsoids just before they are found to
overlap.

Fia. 6. Conjectural drawing of unstable figure of two equal masses of liquid just in contact.

Mr Jeans has considered the equilibrium and stability of infinite rotating
cylinders of liquid. This is the two-dimensional analogue of the three-
dimensional problem*. He finds solutions perfectly analogous to Maclaurin's
and Jacobi's ellipsoids and to the pear-shaped figure. In consequence of the
greater simplicity of the conditions, he is able to follow the development of
the cylinder of pear-shaped section until the neck joining the two parts has
become quite thin. His analysis, besides, points to the rupture of the neck,
although the method fails to afford the actual shapes and dimensions in this
last stage of development.

He is able to prove conclusively that the cylinder of pear-shaped section
is stable, and it is important in connection with our present investigation to
note that he finds no evidence of any break in the stability of that cylinder
up to its division into two parts.

The stability of Maclaurin's and of the shorter Jacobian ellipsoids is, of
course, well established, and I imagined that the pear-shaped figure with
incipient furrowing was also proved to be stable. But M. Liapounoff now
statesf that he is able to prove the pear-shaped figure to be unstable from
the beginning, and he attributes the discrepancy between our conclusions
to the fact that my result depended on the supposed rapid convergency of
an infinite series, of which only a few terms were computed. The terms
computed diminish rapidly, and it seemed to me evident that the rapid
diminution must continue, so that I feel unable to accept the hypothesis
that the sum of the neglected terms could possibly amount to the very
considerable total which would be necessary to reverse my conclusion. I am,
therefore, still of opinion that the pear-shaped figure is stable at the

* " On the Equilibrium of Eotating Liquid Cylinders," Phil. Trans., A, Vol. 200, pp. 67-—104.
t See reference in Preface.
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524 THE BEARING OF THE INVESTIGATION ON COSMOGONY. [15, SUM.

beginning; and this view receives a powerful confirmation from Mr Jeans's
researches. The final decision must await the publication of M. Liapounoff's
investigation.

But there is another difficulty raised by the present paper. I had fully
expected to find an approximation to a stable figure consisting of two bulbs
joined by a thin neck, but while my work indicates the existence of such a
figure, it seems to me, at present, conclusive against its stability. The
weightless pipe joining two bulbs of fluid is clearly only a crude repre-
sentative of a neck of fluid, but I find it hard to imagine that it is so
very imperfect that the reality should be stable, while the representation
is unstable. My present investigation shows that two quasi-ellipsoids just
detached from one another do not possess secular stability. The vertices
of such bodies would be blunt points nearly in contact; the introduction
of a short pipe without weight between these blunt points would differ
exceedingly little from two sharp points actually in contact. Is it possible
that the difference would produce all the change from great instability
even to limiting stability ? The opening of a channel between the two
masses is the removal of a constraint; the system does not possess true
secular stability when the channel is closed, and we should have to believe
that the removal of a constraint induces stability; and this is, I think,
impossible.

If, then, Mr Jeans is right in believing in the stable transition from the
single cylinder to two revolving about one another, and if I am correct now,
the two problems must part company at some undetermined stage.
M. Liapounoff will no doubt contend that it is at the beginning of the pear-
shaped series, but for the present I should disagree with such an opinion.

I have no suggestion to make as to the stage at which the pear-shaped
figure may become unstable, or as to the figure which must be coalescent
with it when instability supervenes. These points must await the elucidation
which they will no doubt receive from future investigations.

One question remains: If my present conclusions are correct, do they
entirely destroy the applicability of this group of ideas to the explanation
of the birth of satellites or of double stars ? I think not, for we see how a
tendency to fission arises, and it is not impossible that a period of turbulence
may naturally supervene in the process of separation. Finally, as Mr Jeans
points out, heterogeneity of density introduces new and important differences
in the conditions.
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Humboldt, A. von, mean height of continents,
28

Illustration, of Jacobi's ellipsoid, 131; of
figures; of equilibrium of rotating liquid, 161,
173; of pear-shaped figure, 314; of the same
to higher approximation, 384; conjectural,
of the same far developed, 393; of two
spheres joined by weightless pipe, 447; of
Eoche's ellipsoids, 508; of two masses of
liquid in limiting stability, 513 ; conjectural,
of confluent liquid masses, 523

Integrals of squares of ellipsoidal harmonics,
275, 398; Hqbson on, 420

Ivory, on Jacobi's ellipsoid, 119

Jacobi's ellipsoidal figure of equilibrium, 119;
list of authorities on, 119 ; table of solu-
tions, 130; bifurcation of, 302; critical form
of, 311; proof of stability by means of
spheroidal harmonic analysis, 395

Jeans, J. H., Form and stability of a rotating
cylinder, 393, 524

Jupiter, Diameter, internal density and pro-
cessional constant of, 59; observed ellipticity
of, 61

K
Eaibara, E., on Jacobi's ellipsoid, 119, 130
Kaiser, values of Jupiter's diameters, 60;

ellipticity of Mars, 65
Kelvin, Lord, Geological changes and the

earth's rotation, 2, 9, 10, 42; on Jacobi's
ellipsoid, 119; on transitional form of
Jacobi's ellipsoid, 177; and Preface

Kriiger, S., on Jacobi's ellipsoid, 119

Lame's functions, see Ellipsoidal harmonics
Land, Estimate of mean height of, 28
Laplace, An oversight in the Mecanique Celeste,

57 et seq.; precessional constant of Jupiter,
59 ; of Saturn, 64

Lassell, Ellipticity of Saturn, 63
Liapounoff, A. M., on the instability of the

pear-shaped figure, 315, 391, 397, 523 and
Preface

Liouville, Equations of motion of a body
changing its shape, 3 ; on Jacobi's ellipsoid,
119

Lipschitz, on Jacobi's ellipsoid, 119
Lyell, Sir C, on shift of isothermal layer

through deposition and denudation, 38

M
Maclaurin's spheroid, Determination of, to

higher order by spherical harmonic analysis,
420

Magnetic (or double) layer, Theory of potential
of, 335

Main, Observations of ellipticity of Jupiter, 61;
of Saturn, 63 ; of Mars, 65

Mallet, on depth of earthquake shocks, 36
Meyer, C. O., on Jacobi's ellipsoid, 119

N
Nebular hypothesis, Bearing of Poincare's

theories on, 179
Nolan, J., Criticism of theory of tidal friction, 172
Nutation, Eulerian, of plastic planet, 9
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o
Obliquity of ecliptic, Secular changes of, through

geological influence, 15 et seq.; suggested
explanation of, in case of planets, 51

Oceans, Form of, to produce maximum shift of
principal axes of inertia, 22

Boche, E., Hypothesis as to internal density of
earth, 97, 112; limiting distance of infini-
tesimal satellite, 171; his problem as to figure
and stability of liquid satellite, with table of
contents, 436; his form of equations for
form of satellite, 477

Padova, on Jacobi's ellipsoid, 119
Pear-shaped figure, Speculation by Lord Kelvin

as to some such figure, 177; 288; illustration
of, 314; stability of, with taWe of contents,
315, 523; illustration of the second ap-
proximation, 384

Pendulum, Ellipticity of earth derived by, 114
Plana, Theory of figure of earth, 61, 65 ; on

Jacobi's ellipsoid, 119
Planets, Internal densities and ellipticities of,

57 et seq.
Plastioity of solid matter, 14
Poincare\ H., on bifurcation of Jacobi's ellip-

soid, 119, 125; on figures of equilibrium,
135, 177, 178; on principles of stability,
180; on the pear-shaped figure, 187, 288,
521; on the successive coefficients of stability
of Jacobi's ellipsoid, 307; criterion of stability
of the pear-shaped figure, 315; on deter-
mination of the same to higher order, 318;
method of determining stability, 385; ̂ and
Preface

Pole, Movements of, as due to geological
changes, 1 et seq.

Pontecoulaut, M. G. de, on Jacobi's ellipsoid,
119

Potential of ellipsoid, expressed in elliptic in-
tegrals, 121; in ellipsoidal harmonics, 236

Precessional constant, of Jupiter, 59; of
Saturn, 64; of earth, 108; value of earth's
ellipticity derived from, 114

R
Badau's equation of internal ellipticity of

earth, extension of, 88
Biemann, on Jacobi's ellipsoid, 119

Satellites, of Jupiter, 60; of Saturn, 63; of
Mars, 66 ; figure and stability of liquid, with
table of contents, 436

Saturn, Internal density, ellipticity and pre-
cessional constant of, 62

Schmidt, Observation of ellipticity of Jupiter, 61
Schwarzschild, K., on principles of stability,

314; on Boche's ellipsoid, 498, 517
Secchi, observation of ellipticity of Jupiter, 61
Spherical harmonics, applied to determination

of figures of planet and satellite, 135; use of
to squares of small quantities, 420

Spheroidal harmonics applied to finding Jacobi's
ellipsoid from Maclaurin's, 394

Stability, Coefficients of, for Jacobi's ellipsoid,
305-7; of pear-shaped figure, with table of
contents, 317 ; of Jacobi's ellipsoid deter-
mined by spheroidal harmonics, 394; and
figure of a liquid satellite, with table of
contents, 436; of Boche's ellipsoid, Schwarz-
schild on, 314, 498, 517

Subsidence and elevation, Probable areas of, 25
Sun, Botation period of, 67

T
Thomson, and Thomson and Tait, see Kelvin
Time, Haughton on geological, 47
Tisserand, on internal ellipticity of earth, 118
Tresca, on flow of solid matter, 11

W
Wallace, A. B., on depth of Pacific ocean, 27
Wiechert, E., Theory of the figure of the

earth, 79, 102
Winnecke, Ellipticity of Mars, 65
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