ART. XXII.-On the Origin, Growth, Substructure and Chronology of the Florida Reef; by Capt. E. B. Hunt, Corps of Engineers, U.S. A. (In a letter to Prof. A. D. Bache, Sup't. U. S. Coast Survey.)

New Haver, Cons., Nov, 18, 1862.

Sir: The examination of the Florida reef, keys and mainland by Prof. Agassiz, in 1850-51 (Coast Survey Rept., 1851, Appendix No. 10), marks an era in our knowledge of the singular geological problems there exhibited, and especially of their zoological phases. This exploration, made under Coast Survey auspices, was amply justified by the fact that the Florida reef is the great American danger to navigation. One of the best aids in avoiding reef risks is a clear insight into the structure of the reefs and keys, and this can result only from scientific researches, aided by the Coast Survey detailed hydrography, now well advanced. The millions of property wrecked on the reef are in great part sacrificed to a needless ignorance of hydrography, reef structure, currents, winds and even of lights and beacons. Reef pilots are not employed, and ship masters are so poorly supplied with precise knowledge, of the kind needed for ensuring safe navigation amid these dangers, that many wrecks result solely from their ignorance. During the five seasons (1857-62) in which I was charged with the construction of Fort Taylor at Key West, I had good opportunities for knowing the history of the wrecks, occurring at the average rate of about one a week. I am now of the opinion that the loss of property in wrecks, which wonld be preventable by such accurate knowledge as can be furnished to navigators when the Coast Survey shall have published the complete reef hydrography and its full scientific discussions of reef structure, tides, currents and winds, has regularly exceeded the annual expense of the entire survey. Many shipmasters are incorrigibly ignorant, and many wrecks have, to my knowledge, occurred by masters not knowing new lights, Which had been for many months conspicuously advertised in all the Custorn Houses and in commercial papers. Would shipping merchants insist on having none but intelligent captains, and then furnish them with the very best information concerning the reef neighborhood, a large portion of the wrecks would be prevented. I think the study of currents and especially of current variations, in and near the Florida channel, is now particularly needed for preventing wrecks in this region. The fluctuations of currents from their supposed normal type certainly cause numerous disasters. The lack of distinct ideas as to the relations between the reefs and the kers, and ignorance of the maniAm. Jocr. Sct--Second Series, Vol. XXXV, No. 104.-Marci, 1863.
fest signs of proximity to the reef, are the real causes of many disasters. The Coast Survey has done so much to disarm the reef of its terrors and to make known its true character, that, aside from my own connection with the Coast Survey organization, it seems appropriate for me to present to you some views on the origin, growth, substructure and chronology of the reef, which have resulted from my observations while at Fort Taylor, and which may prove a needful supplement to Prof. Agassiz's Report.

The grand curve of our Atlantic coast terminates in the remarkable crescent of keys and reefs which begins some miles north of Cape Florida and extends in a well defined curve some two hundred and forty statute miles to Tortugas Bank. At Cape Florida its axis is north and south. In moving down the reef, this direction revolves with the sun, until at Tortugas it bears about 5° north of west. This crescent consists of a line of keys and a parallel outer line of reefs, which are separated, on an average between five and six miles, by a navigable channel obstructed by coral heads. The reef terminates about opposite the Marquesas, some fifty miles east of Tortugas Bank. Between the line of keys and the mainland of Florida, is a body of shoal water, shaped much like a cornucopia, which embraces Key Biscayne Bay, Card's Sound, Barnes's Sound and the Bay of Florida. The line from Tortugas to Cape Roman, which may be taken as the mouth of this cornucopia, is one hundred and twenty miles long, the deepest water on it being twenty fathoms, and all within or east of it being still shoaler and characterized by singular evenness of bottom. The Straits of Florida, between the reef and the Cuban coast, are about a hundred miles wide, and the bottom slopes from the reef down to eight hundred fathoms just off the submerged cliffs of Cuba. The hundred fathom curve of the bottom is about seven miles out from Cape Florida, and from thence to Tortugas it gradually separates farther from the keys, being there over twenty miles out.

The well traced curve, along which this grand Florida Bank thrusts itself out into the deep waters of the Gulf, is strikingly significant of some continuous and regular agency in its production. The adjacent flow of the Gulf Stream would most naturally be assumed to govern in some way the production of this curve. It however runs in the wrong direction to serve this explanatory use, and it is in fact rarely found to run close in upon the reef. There is however an eddy counter-current intermitting in character and of variable rate, but on the whole a positive and prevailing current. ${ }^{1}$. At Cape Florida it is narrow and precarious; but it widens as it sweeps to the westward, occasionally becoming over ten miles wide at Key West,

[^0]and twenty miles bff Tortugas. It sometimes runs over two I nots, and is a great help to vessels bound west, when their mastirs know the reef well enough to venture so near. There is n uch need of more precise observations to make out the characteristics of this current, but its existence and its intermitting and sometimes powerful set are facts attested by all who know these waters thoroughly.

After careful consideration, I am led to ascribe the peculiar shaping and growth of the Florida Bank, including the keys, reefs and substructure, mainly to the sweep of this eddy coun-ter-current. Darwin, Dana and Agassiz have so fully stated the zoological and other ordinary elements of reef and key growth sthat I need only refer to their works for details. ${ }^{2}$ Special circumstances however so far modify the structure of the Florida reef that it is not fully embraced in the principles laid down by these writers. It is not an atoll, a fringing reef, or a barrier reef, in the accepted sense of these designations, but it is a reef r bank, shooting out independently by its end into the deep Gulf waters. Such at least is the view to which I have been led by simply considering the existing agencies as actually working.

The reef proper is the main field of coral growth. This growth is not in one compact mass, but in diversified coral heads, or detached masses. The bold slope of the reef towards the Gulf Stream, to the proper depth of growing coral, which here does not exceed a hundred feet, and the broad top-surface of the reef-section are teeming with solid corals and shells. The branching corals grow wherever the violence of the sea does not prohibit, and where moving sand does not forbid a secure foundation for coral colonies.

In general, wherever there are solid surfaces free from sand and mud, and washed by warm, moving salt water, the ova of the coral-polyps, diffused throughout the reef waters, attach themselves and grow, to the limit of their capacity. Thus the stones of the Fort Taylor breakwater and foundations, palmetto piles, iron bars lost overboard, \&c., have become coated with branching and solid corals, whose growth, between the date of immersion and that of diving up, gives a measure of coral increase. Throughout the sand-covered bottom between the reefs and keys, along the sand-faced South beach-slope towards the reef, and over the mud bottoms north of the keys, there are no living corals, except on such accidental bases as may occur and in the coral heads which have grown up on these bases. Thus coral masses are mainly produced where the action of storms are most

[^1]violent, and they are constantly giving way before the assaults of the waves and the corrosions of the numerous and active boring shells. A coral mass once broken loose undergoes active attrition and disintegration into calcareous sand of varying fineness. This sand, and the accompanying detritus of shells and echinoderins, which abound intermixed with the living coral, are by degrees borne on by the waves towards the south beaches of the keys, where some of the sand is thrown up on the slope of the beach ridge. Λ coral mass or shell once cast loose is killed, and is henceforth untiringly triturated by the waves, until it escapes their action, or is reduced to impalpable powder. Every agitation of the sand by the waves pulverizes it yet further, and brings it nearer to the consistency of the white mud which so largely prevails on the Bank towards its northern side. There is thus constant coral and shell growth and as constant disintegration in progress. All this action however takes place in the limited range of depth of less than 100 feet, within which only can the reef building corals grow. To account for the vast underlying mass, between this limit of depth and the deep original sea floor, is a problem hitherto unsolved and one which I hope to elucidate.

The tidal currents set strongly across the reef and through the channels between the keys, the flood running to the north and the ebb to the south side of the key crescent. When storms occur, the agitation of the waves extends to the bottom, over the shallower portions of the grand Bank, and stirs up the sand violently. This causes the water to take up and maintain in mechanical suspension such finely comminuted particles as have too little sinking force rapidly to reach the bottom again. The finer the particles the longer will they remain suspended, and the very coarse grains will hardly be lifted from the bottom. Between the coarsest and finest are grains of all intermediate sizes, and whether they will be suspended or not depends on the violence of the storm, and their interval of suspension varies with their size and the violence of the waves. It results that, in all storms of much violence, the water over the Florida Bank becomes white with the bottom deposits. In long, severe nortlers or gales, the water becomes almost milk-white across the whole Bank. This "white water" is a familiar appearance, and is one of the sure signs of proximity to the reef. As storms subside, the white sand and mud are gradually thrown down, and the water clears, after a day or two, to its peculiarly delicate transparency.

During the "white water" periods, the flood tidal currents set the white water over the north side of the Bank into the Bay of Florida, where, by reason of the greater depth, the process of deposition goes on; and thus the floor of this bay has become
covered with white mud, and has been brought up with a singular evenness to the prevailing depths. The portion of the Bink noth of the keys is mainly composed of this fine mind, and the north shores of the keys have long shallow mud slopes, some portions of which seem to be solidifying. The ebb tide carries the white water out towards the Gulf Stream, and it is recognized at times many miles ontside the reef. Abreast the Tortugas, it is sometimes encountered over thirty miles out. The eddy counter-current, setting perhaps two knots per hour, transports this white water and its sinspended detritns to the westward into deepening water, where it has opportunity to settle as it goes, and finally reaches buttom some miles west of its point of formation. Once on the bottom, in deep water, below the action of the waves, nothing can remove it. Thus we have, in actual operation, a perfect mechanism for triturating the coral and shell growths, and for transporting the comminuted products, by wave disturbance, tidal carrents and the eddy currents, to the deep Water farther west. These agencies being all unquestionably real and now active, I find no reason to doubt that they have been the secular causes at work extending the Florida Bank by its western extremity.

A careful examination of the bottome, as shown on the several Coast Survev charts of the reef, affords signal confirmation of this view. The indications of white mud, white sand, coral and broken shells, over all the south frontage of the reef, halfway tu Cuba, to the west around Tortiges and Tortugas Bank, and over the entire long slope by which the west end of the Florida Bank runs down into depths of one hundred fathoms, and of four hundred and sixty to the southwest, as also the bottorns over the Bay of Florida, and westward to the hundred fathom curve, are all consistently indicative that the material of the bottorm thus brought to light was originally organic, and has been worn down and transported to its present bed by some agencies like those I have described. The entire lack of any buttoms in the slightest degree tinctured with Mississippi mud is a perfect refutation of the view presented by Prof. Jos. LeConte, ${ }^{3}$ that the substructure of the reef, up to the depth where coral growth can begin, is a result of the deposition of Mississippi sediment carried across the Gulf by the Gulf current. I venture the assertion that these bottoms are inconsistent with any view which does not derive thern from the living coral, to the east of their present localities. Should it be said that these bottoms only indicate the mere surface character of the sea-bed, it may be replied that the great mass of the Bank substructure, shooting out to the west into the Gulf, and rising above the Gulf bottom on both sides, as is amply shown by the 10,20 and 100

[^2]fathom curves around the west end of the Bank, is unmistakeably a special formation subsequent to the general shaping of the Gulf bed. The actual causes now at work in producing coral and shell material, and in grinding and transporting it, must necessarily result in a building up from the bottom along the line of the eddy current to the westward.

Combine with this the fact that the most effective winds and waves, both of trade and hurricane origin, come in upon the reef from the S.E., and must therefore help to transport detritus to the westward and northwest. Moreover, the heavy waves which wear the front face of the reef must work some of the detritus down along the south slope, and must thus aid in forming the actual double slope in which the bottom expands towards the Cuban cliff coast. It is unlikely that the wave actions extend with appreciable effect below from fifty to a hundred feet, and detritus once placed below their extreme rang; becomes permanently fixed. It is to be observed that the very zone of coral growth is that of wave agitation, and that this must prevent the lodgment of sand and mud on the growing coral, as, after storms, the swell will always last here until the waters are cleared of white mud. This may perhaps be quite as effective a cause as increased pressure, in limiting the depth of coral growth to about the same range as that of wave actions.

A careful consideration of such facts as are now ascertained leads me to the supposition that the growth of the line of keys and the line of reefs is simultaneous by their western extremities. The reef now ends opposite the Marquesas, while the Quicksands, Rebecca and Isaac Shoals, the Tortugas keys and the Tortugas Bank indicate the extension of the line of keys beyond the line of reefs to the west. It is remarkable that the Tortugas keys are entirely without the solidification so prominent at Key West. Fort Jefferson, resting wholly on sand foundations, has settled in all its circuit, and in some portions it has gone down nearly a foot, showing that a deep sand bed has yielded thus much to compression.

In the sheltered waters among these keys, there is an active growth of branching corals, \&c., on sand foundations, which are torn up by storms and tossed on the beaches by the waves, to such an extent as to afford the vast mass of concrete materials used in the masonry of Fort Jefferson. There are however no extended rock masses, and the great vitality of the corals is shown in an active renewal of growth on dead coral sprigs. It is my impression that the mass of materials forming Tortugas keys and banks has been transported westward by the eddy current, and north and northwest by the south and southeast storms and hurricane waves, from the reef abreast and east of Marquesas. The shaping of the bottom indicates this, and it is
apparent that a westward extension of the reef must be slowly taking place. It would thus appear that the keys, at least in their substructure, are rather results of the waste from the present line of reefs than an original and anterior reef growth. Concurring with this process is the growth of coral as now at Tortugas, and in such heads or masses as can find foundation on the sand slopes of the keys.

The solidification of the keys must be a slow and later process, and, some thousands of years hence, the sand masses of the Tortugas may assume an oolitic structure like that now seen at Key West. The calcareous marl, wherever found, seems to be preparing for solidification, and in a single instance of hard marl, from the eastern portion of Key West, I observed what could easily be fancied to be the circles of incipient oolitic segregation. The crystallization of the contained salt soon broke up this appearance, and I never again obtained it, though the confirmation of such an observation of oolite $a b$ ovo would have great interest, in consideration of the vast masses of this rock in the earth's crust. That the finely comminuted white mud or marl solidifies into oolite, on Key West, is I think fully shown by the fossil traces of a peculiar vegetable scum which forms in the lagoons. This scum, as the lagoons dry up, forms a leathery sheet, which is by drying split into pieces, which roll up at the edges, sometimes with three or four turns. I have found these rolls fossilized and looking much like bones, but distinctly showing the spiral curling in the section. Most of the oolitic rock of Key West, on weathering its fractures, shows a series of thin parallel edges averaging perhaps a half inch apart, which being more resisting rise on the weathered fractures above the softer parts between. These harder layers seem very like fossil scum sheets, but they are found in stones much above the present ponds or lagoons Where it is hard to conceive that they are due to this origin.

Whether a calcareous sand-heap wholly above the water can solidify into an oolite is a question hard to answer; but it is only by such agency that I can explain the solid mound, of nearly a mile in diameter, which forms the west part of Key West and is wholly composed of oolite. The summit of this mound is about fifteen feet above high water, and is believed to be the highest point on the whole line of keys. The gale of 1846 raised the Water to within seven feet of the apex, and we can readily conceive that, before the reef barrier protected it, a hurricane might have carried up sand to over fifteen feet above ordinary high Water.
The oolite, as shown in the wells of Key West, becomes coarser grained and softer in descending. It is so open that the water level of the wells, even in the heart of the key, or half a mile from the sea, fluctuates with the tides, following them at intervals
varying according to position, but averaging, as nearly as I could ascertain, about three hours. The whole rocky mass of Key West is of this oolite, there being on the weathered surfaces and occasionally in the mass a yellowish-brown crust, hard enough to receive a polish and usually less than a quarter of an inch thick. The granite foundations of Fort Taylor, located in water of eleven feet, or less, were laid on rock which was dressed to -form beds, by the use of a diving bell. The submarine rock thus examined was much like the shore rock, except that the materials were coarser, rather less compact and more brecciated. Occasional shell and coral brecciated masses are found on shore, but such traces are quite rare. In removing the beach sand ridge which skirted the whole south shore, I found a limited stratum, about six inches thick and a few rods long, composed wholly of imperfectly comminuted pieces of small branching corals, averaging about un inch long and a third of an inch thick. Otherwise, this whole ridge, about ninety feet wide and from five to eight feet thick, above high water, was composed wholly of sand, much of which was somewhat blackened by vegetable loam from the ridge serub growth. It is observable that this calcareous sand is scarcely at all blown about by the winds. Once packed, it resists the blasts of northers and hurricanes so completely, that at a few feet from the reverse slope of the beach ridge, we find only marl and rock. It presents a marked contrast in this respect with siliceous beach sands, which may, as in Provincetown, Cape Cod, build up hills a hundred feet high, or be carried for miles into the interior. When dry and freshly turned up, it blows freely, but it seems never to be moved by winds from the place where the sea deposits it. It is obvious that the sea is washing away the rock along the south side of Key West, while the north mud slope is being augmented. Several hundred feet of the original south beach rock have probably been cut away.

I am indebted to Mr. Chas. Howe, now Collector at Key West, for some account of an artesian well, which in 1839-40 he sunk to a total depth of one hundred and thirty feet, on Indian Key, about eighty miles northeast of Key West. To the depth of fifteen feet, the rock was moderately soft and uniform. It then began to be unsound, the drill occasionally going down three or four feet at once. At forty-five feet, a gravel bed of about five feet was found, below which the rock became harder and continued very solid, with a few interruptions of unsoundness, to ninety-one feet, when another gravel bed of several feet was struck which gave much trouble. Below this the rock became exceedingly hard, and was "tinged with yellow specks." This continued to 130 feet, with several interruptions by "breaking through," the drill once going down five feet at one jump. The water injected
to clear the hole brought up pieces the size of pigeons' eggs, but unfortunately the specimens are now lost. I suppose, from Mr. Howe's verbal account, that all this rock was purely calcareous, and that the very hard variety, which was taken to be quartz, was a compact limestone, such as Dana frequently found in the Pacific coral formations. The unsoundness would seem to be due to the interrupted nature of coral beds, whether in situ or formed of coral boulders and sand.
In general, the actual structure of the reef seems to result mainly from three grand activities:-1st, the ceaseless and persistent growth of coral animals and shells on every appropriate site, within their proper range of depth, temperature and watersupply, which growth, by secretion, separates the carbonate of lime from the mass of the ocean and gulf water; 2d, the untiring action of the winds, tides and currents (aided by boring shells), in breaking up, triturating, transporting and depositing the calcareous products of the zoological processes; 3d, solidification by time, pressure, segregation and possibly by chemical transformation. It is a complex problem to trace the precise operation of these agencies, as now at work, and from the present to pass back over the past until that time when the Florida Bank did not exist, and when the shore from Cape Sable to Fort Dallas was the open ocean-front of South Florida. It seems however not too audacious to say that the agencies now at work present a general type of operation which requires but unlimited time to realize results no less than the formation, not only of the line of keys and reefs, but of the immense substructure which rises from the great original plane of the gulf bed. This plane along the Cuban coast was over eight hundred fathoins deep, and it could bardly have been less than three hundred fathoms under the present Tortugas group.
The evidence that South Florida and the base of the Bank have recently undergone neither elevation nor depression, to any considerable extent, is quite convincing. There is a remarkable coincidence of general level along the crescent of keys, and no reliable evidence of vertical movement is found on any of them. Prof. Tuomey fancied he saw evidence of elevation through several feet at Key Vaccas." Believing that he had mistaken boulders for masses in situ, I inquired of Assistant Hilgard, whose observations on the keys during his surveying labors have been extensive, and he replied that he has "never seen any coral beds raised in situ above the water. He paid some attention to the subject, and remembers those at Key Vaccas particularly, Where he satisfied himself by using a crowbar that they were boulders bedded in sand." Prof. Agassiz and Prof. LeConte

$$
\text { (This Journal, } 1851 \text {, vol. ji, p. } 390
$$

Aic. Jour. Sci.-Second Series, Vol. XXXV, No. 104-Marci, 186.
report the same impression. During the growth of two hundred and forty miles of keys there has been then no observable change of level. There is a dead fringing reef forming the Punta, or west angle of the entrance to Havana, which seems to have been elevated some six feet, and this is the only case of recent elevation in this vicinity with which I am acquainted.

Prof. Tuomey and Prof. Agassiz fully identify the formations at Fort Dallas with the rocks of the keys. The former reports the descent from the Glades along the Miami river to tide water at six ${ }^{\circ}$ to eight feet, and estimates the height of the ridge where cut by the Miami at twenty to thirty feet. Prof. Agassiz estimates the highest shore bluff in this vicinity as not above thirteen feet. The siliceous sand which caps the beach ridge around to Cape Sable was probably transported by the waves down the east coast. There seems ample reason to suppose that the crescent from Cape Sable, through the Mangrove swamp and Hunting Grounds to Fort Dallas, and thence north along the coast ridge, is an older reef curve, and that the Everglades and Lake Okeechobee were the interior flats, analogous to Key Biscayne Bay, Barnes Sound and the Bay of Florida.
The Everglades, which cover about four thousand square miles, have a substratum of coralline limestone of very rough and irregular surface, which is covered by sand, siliceous in part at least, and soft mud from three to ten feet deep, which covers all but a few points of the limestone and is overgrown with rank saw grass. The water overlying this mud is about three feet deep in dry seasons, and rises after rains from two to three feet. Lake Okeechobee is but a deeper extension of the Everglades, its depth averaging about twelve feet, and its area being nearly twelve hundred square miles The slight elevation of the Everglade region increases gradually to the north, and the Kissimee river, which empties into the north margin of Lake Okeechobee, has a southerly course of near a hundred miles, with a current of half a mile to three miles. There is thus a very gentle rise throughout the peninsula, and in the general slope sweeping the north margin of the Gulf and South Atlantic.

The existence of abundant fossil corals in the Tertiary limestone strata of two hundred to three hundred feet thick, spreading from the Mississippi river around to Cape Fear river in North Carolina, indicates an ancient coral origin.' Prof. Tuomey was led by these evidences to a special examination of the Florida Reef, from which he concluded that a continuous process of

[^3]coral growth through geologic ages may have produced this immense coral limestone area. He agrees with Mr. Conrad in calling the Tampa limestone Tertiary. In all this space of limestone strata, there is no point whose altitude approaches to equality with the depth of near a mile, found off the Cuban coast. The Whole view of this subject leaves a strong impression that no great changes of level have occurred during the period of formation, not only of the present crescent of reef and keys, and the Cape Sable and Fort Dallas crescent, but even in the more ancient coral period, which produced the North Peninsula and the coral limestones of the great Gulf and Atlantic slope.
Confirmatory evidence is found in the Babama, Salt key, Cuba and Yucatan reefs, which have attained great expansion with but slight evidence of disturbance. There are no indications of atoll formation by sinking; but Darwin (Appendix, p. 186) appeals only to elevation, and meets the fact of the singular coincidence of level over many disconnected banks of great area in the West Indies, by supposing that the elevated masses of the banks were uniformly washed away by the sea during their elevation. It is evident that the remarkable evenness of soundings over these banks is a measure of the depth to which the destroying action of the waves extends in their several localities. The enormous accumulations on the Florida side of the Gulf Stream make it quite rational to suppose that Salt Key Bank, for instance, may have resulted from a single nucleal peak, now worn awav by the sea, which has afforded a basis for the growth of a fringing reef and for a wasting action by the waves, whence an outward expansion may have resulted, which, in the course of ages, has accumulated the larger portion of the great truncated cone, now rising from near four hundred fathoms. To what extent the type of action which I have supposed instrumental in producing the Florida Bank may be applied in the explanation of other cases of coral reef, I am not qualified to decide. It can hardly be supposed that such acute and philosophieal minds as Darwin's and Dana's would fail to perceive and give proper weight to this familiar action of attrition, transportation, and deposition.' Dana is very explicit in stating it, and I mast there-

[^4]fore suppose, that a satisfactory explanation of the growth of the Pacific coral islands demands vertical movements unlike any exhibited in the West Indies.

If the views now presented are correct, the chronology of the reef becomes stupendous. The most rapid instance of coral growth which I found on the breakwater and foundations of Fort Taylor was a Meandrina of about six inches radius, which was produced within twelve years, or the rate was a half inch per annum. Numerous specimens derived from stones or piles whose dates of immersion were known, and whose surfaces were so rapidly coated by vegetation and corallines that we can safely assume the coral colonies to have been planted soon arter immersion, all indicate for the vicinity of Fort Taylor a general rate of growth less than the above. There is no obvious reason why this rate should not be identical with that on the reef proper, as the tidal currents supply ample moving water, and the temperature is much the same.

Bearing in mind that the living reef belt hardly averages a mile in width, and that this is much interrupted, while the shoal part of the Bank averages between fifteen and twenty miles broad, and that this is but a small part of the breadth of the base of this bank, on the original bottom, aside from the marl and sand contributed to the Bay of Florida, we are overwbelmed with the immense demand for time. We ought not to suppose less than three hundred fathoms of detritus built up on an average. Moreover, much of this calcareous material is likely to

[^5]have been more than once used by the coral animals, and some must have been swept into the ocean waters. Taking the living reef at one-twentieth the breadth of the total bank, the depth of the bank at three hundred fathoms, and the rate of growth at $\frac{1}{2}$ inch per annum, we find, aside from the other elements of protraction, 864,000 years as the time for building the bank, when considered in cross section. Considering the growth as being by the west end from Cape Florida to Tortugas Bank, a great increase of time is still demanded, so that we can hardly, on these data, diminish the chronology of the growth of the present Florida Bank even to a million years. A ppalling as this estimate of time for building appears, it seems impossible honestly to reduce it. If to this be added the time consumed in building the Cape Sable and Fort Dallas crescent, and again the inconceivable periods demanded in the growth of the main peninsula and the limestone strata of the grand slope of the Gulf and South Atlantic, the imagination is appalled, and can only rest on limitless infinities. We can indeed readily make an arithmetical approximation to this inconceivable total. The nature of coral reefs limits the growing portion to the outer reef line, and it is a liberal allowance if we suppose a zone of one mile broad regularly covered with growing surfaces. The solidified masses derived from this zone, wherever deposited, cannot possibly increase, in the whole, more rapidly than this zone can supply the materials. If we assume these masses at 250 feet thick on their northern margin in Alabama, and 1800 feet thick on the present southern boundary, we can safely assume an average thickness of 900 feet. The length of the general line of

[^6]
210 Mineral Localities in New Brunswick, Nova Scotia, \&c.

average cross section of the growing front cannot be less than 250 to 300 miles, or at the minimum a horizontal formation of 250 times the growing zone can be assumed. Taking the rate as before at 24 years to the foot, we shall have for the total time $24 \times 250 \times 900$, on the data as stated; or, we find the total period of $5,400,000$ years, as that required for the growth of the entire coral limestone formation of Florida. The rate of coral growth is nearly a rigid one, searcely subject to fluctuation in any supposable period of time, and the limitation of growth to an outer reef of narrow section is also a necessity of organic habits. If then it be a fact that all the limestone mass now considered is of coral origin, the time of coral growth cannot be reduced below the result given above. It is likely to be much greater, as all the elements have been assumed on the side of a minimum chronology, and no allowance is made for growth by the west end instead of by the front.

The derivation of the substructure of the bank from coral growth makes the seemingly formidable chronology deduced by Prof. Agassiz shrink into insignificance. But is this vastness of time really incredible? Does its shock to our ideas militate against its reality? It is not the method of true philosophy to belittle nature to our ideal standards, but it is rather our duty to seek facts without bias or preconception. Looking thus squarely at the facts of the reef, in the aspect I have regarded them, the ag. gregate of time given seems really and truly insufficient. There are vast possibilities of error in such estimates, but are we not quite as likely to err through our preconceptions of limited chronology as by boldly subrnitting to the guidance of estimation from actual bases !

Art. XXIII.-Catalogue of Mineral Iocalities in New Brunsucich, Nova Scotia, and Newfoundland; by O. C. Marsh, B.A., of the Sheffield Scientific School, Yale College.

The following list of mineral localities in New Brunswick, ${ }^{2}$ Nova Scotia, and Newfoundland, is the first covering all these regions that has been published. Although necessarily imperfect in many respects, it has been prepared with considerable care, and it is hoped that it may prove of some service to mineralogists who are not familiar with these interesting regions.
The lists of minerals occurring at many of the places mentioned in the Catalogue, especially those in the trap district of the Bay of Fundy, are copied from the writer's notes, which were

[^7]taken at the localities during several excursions to the Provinces, the first in 1854. Even these lists may, in some cases, be found incomplete; since the destructive tides of that region are constantly changing the outlines of the coast, and thus exhausting the old localities, while at the same time bringing to light others, equally rich in mineral treasures.

The notices of localities which the writer has not visited are derived from the best sources of information to which he bad acoess. A few were taken from the publications of Jackson and Alger, Dawson, and Jukes, which contain much that is valuable in regard to the mineralogy of these Provinces. ${ }^{2}$ The writer is also especially indebted to George F. Mathew, Esq., and Charles F. Hartt, Esq., of St. John, for important information in regard to localities, especially in New Brunswick, and to Prof. Forrest Shepherd, of New Haven, for notices of several new localities in Newfoundland.

There is probably no part of the world, except the trap district of India, which is richer in zeolites than the shores of the bay of Fundy; yet the minerals from that region have hitherto received but little attention in comparison with those from other similar sections, and hence no little confusion exists in regard to what species occur at the different localities. In the following lists of minerals from Nova Scotia, thomsonite, prehnite, and one or two other species are marked doubtful. The first is generally believed to be one of the most common minerals in that Province, yet on examining and analyzing specimens of the so-called thomsonite from many of its reputed localities, the writer found them to be invariably mesolite or natrolite,-most generally the former; and it is doubtful if this species has yet been discovered in that region. Prehnite, also, is stated to occur at two places on the bay of Fundy; ${ }^{3}$ yet an examination of specimens, so considered, which were collected by the discoverers of the localities, as well as a careful exploration of nearly all the places in that section at which this mineral might naturally be expected to occur, has led the writer to believe that prebnite has not hitherto been met with in Nova Scotia, and that its existence at any locality in that Province is extremely doubtful.
The entire group of zeolitic minerals from the bay of Fundy is well worthy of careful study. The writer has for several years been collecting materials for a full examination of the different species, and hopes at some future time to embody the results of his investigations in a Monograph on the subject.

[^8]The following catalogue is arranged according to the plan used in Dana's Mineralogy. Only localities which afford cabinet specimens are in general included. The names of those minerals which can be obtained in good specimens at the several localities are printed in italics. When the specimens are remarkably good, an exclamation mark (!) is added, or two of these marks (!!) if the specimens are quite unique.

NEW BRUNSWICK.

Albert Co. Grindstone Pornt aud Island.-Barytes, iron pyrites, lignite.
Hopewell-Gypsum (alabaster and selenite); Albert mines,-coal (albertite).
Pallet River-fifteen miles from mouth,-coal.
Shepody Mountain.-Alunite in clay, calcite, iron pyrites, manganite? psilomelane, pyrolusite.
Turtle Creek.-Coal.
CARLETON CO. Woodstock. - Copper pyrites (mined), hematite, limonite, wad.
CHARLOTTE CO. Beaver Harbor.-Chlorite, jasper.
Campobello-at Welchpool-Blende, copper pyrites, erubescite, gaJena, iron pyrites; at head of Harbor de Lute, gralena (4 inch vein); at Head Harbor, copperas, iron pyrites.
Deer Island-on west side.-Calcite (in amygdaloid), magnetite, quartz crystals.
Digdiguash River. - On west side of entrance, calcite! (in conglomerate), chalcedony; at Rolling Dam, graphite.
Grandmanan.-Between Northern Head and Dark Harbor, agate, amethyst, apophyllite, calcite, hematite, henlandite, jasper, magnetite, natrolite, stilbite, thomsonite?; at Whale Cove, calcite!, heulandite, laumontite, stilbite, semi-opal! ; at Fish Head, two miles east of Eel Brook, chlorite in quartz (abundant); at Rosses' Island, quartz crystals; at White Head, chlorite, quartz crystais.
L'Etang Island Harbor.-Chlorite, iron pyrites, marble, serpentine; at La Téte, copper pyrites, erubescite, galena.
Wagaguadavic River.- At entrance, azurite, copper pyrites in veins, malachite; one eighth of a mile east, galena.
New River.-At Mills, actinolite? (in porphyry).
Seely's Cove.-Hill, half a mile north, calcite, iron pyrites, magnetite, quartz crystals.
St. Stephen.-Four miles north of, graphite in slate, molybdenite in gneiss, quartz crystals; at Mill Farm, iron pyrites.
Wauwig Rrver.-Three miles up, at Cormick's Mills, pyrites in boulders, garnet, feldspar crystals, tourmaline; at Bartlett's Pond, quartz crystals.
GLOUCESTER CO. Bathurst.-Coal, malachite.
Téte-a-gouche River.-Eight miles from Bathurst, copper pyrites (mined), axyd of manganese! ! formerly mined.

kent CO. Buctouche River.-Coal.

Cocaigne River.-On branch three miles from bridge, coal.
Richibucto River.-Three miles above Ford's Mills, and at Big Brook, coal; at Bassk, iron pyrites; Liverpool, limonite.
Kouchibouguasis River.-Coal.
KINGS CO. Belleisle Bay.-On north shore, galena in limestone, hornstone, jasper; Bull Moose Hill, large bed of magnetite on farm of Northrup and Benson.
Clifton.-Chlorite, epidote, hematite, orthoclase in crystals, prehnite, quartz crystals.
Hammond River.-At Sherwood's, graphite in limestone.
Hampton.-At Darling's Lake, agate, carnelian, jasper.
Kingston.-On ridge south of village, chlorite, magnetite, magnetic pyrites.
Nerapis.-Near Hatfield's Mill, pyrites; near Mather's Inn, amethyst, feldspar, quartz crystals.
Quispamsis.-Copper pyrites, galena, iron pyrites, laumontite.
Sussex.-Near Cloat's Mills, on road to Belleisle, argentiferous galena; one mile north of Baxter's Inn, specular iron in crystals, limonite; on Capt. McCready's farm, east of Church, selenite! ! (erystals containing sand).
Upham.- Salt springs; four miles east of Titus' Mills, gypsum.
NORTHUMBERLAND CO. Borstown.-Coal; also at New Castle and Chatham.
QUEENS CO. Grand Lake.-At Long Point, barytes, copperas, and pyrites in fossil trees; Salmon River, on Crawford's farm, coal, copperas, pyrites, limonite; New Castle River, coal mines; Coal Creek, coal (formerly worked).
Long Reach.-Opposite VanWarts, chlorite.
Washedemoak River.-Two and a half miles from Long's Creek, coal; a few miles above mouth of W. River, on S.E. side of small cove, carnelian, chalcedony, hornstone, jasper, quartz crystals.
RESTIGOUCHE CO. Belledune Point.-Calcite! serpentine, verde antique marble.
Dalhousie.-Agate, carnelian.
Point LeNim.-Coal.
SAINT JOHN CO. Black River.-On coast, calcite, chlorite, copper pyrites, hematite! in crystals, pyroxene (green earth), quartz crystals.
$\mathrm{B}_{\text {RANDY }} \mathrm{Broon}^{\text {E-Epidote, hornblende, quartz crystals. }}$
Carleton:-Near Falls, calcite (red).
Chance Harbor.- Calcite (deep red) in quartz veins, chlorite in argillaceous and talcose slate.
Little Dipper Harbor.-On west side, in greenstone, amethyst, barytes, quartz crystals.
Moosepath. - Feldspar (red), hornblende, muscovite, black tourmaline.
Musquash.-On East side Harbor, copperas, graphite, pyrites; at Shannon's, chrysotile, serpentine; East side of Musquash, quartz crystals ! (in conglomerate).
Portland.-At the Falls, large bed of graphite (impure); at Fort Howe Hill, calcite (fine crystals in several forms), graphite; Crow's Nest, Am. Jocr. Sci.-Second Sehies, Vol. XXXV, No. 104.-March, 1863.
asbestus, calcite (fibrous), chrysotile, magnetite, serpentine, steatite; Lily Lake, white augite?, chrysotile, graphite, serpentine, steatite, tale; How's Road, two miles out, epidote (in syenite), steatite in limestone, tremolite; Drury's Cove, graphite, pyrites, pyrallolite? indurated talc.
Quaco.-At Light House Point, large bed of oxyd of manganese; west of Point, lignite; east of Quaco, at Fuller's Creek, graphite, iron pyrites; farther eastward, asbestus, chrysolite, black tourmaline.
Red Head.-Calcite (fibrous), red jasper.
Sheldon's Point.-Actinolite, asbestus, calcite, epidote, (pistacite and zoisite, malachite, specular iron.
Cape Spencer.-Asbestus, calcite, chlorite, specular iron (in crystals).
Ten Mile Cheek.-Cual (in slate and sandstone).
Westbeach.-At east end, on Evans' Farm, chlorite, tale, quartz crystals; half a mile west, chlorite, copper pyrites, magnesite (veii), magnetite.
Pornt Wole and Salmon River.-Asbestus, chlorite, chrysocolla, copper pýrites, erubescite, pyrites.
SUNBURY CO. Ormocto River.-Ten miles up north branch, coal.
Lincorn.-Bog iron ore (abundant), wad.
victoria co. Tabique River.- Agate, carnelian, jasper; at mouth, south side, galena; at mouth of Wapskanegan, gypsum, salt spring; three miles above, stalactites (abundant).
Quisabis River.- Blue phosphate of iron, in clay.
Westmoreland CO. Bellevue.-Iron pyrites.
Dorcestrer.-On Taylor's Farm, cannel coal, clay iron stone; on Ayres' Farm, asphaltum, petroleum spring.
Grand ance.-A patite, selenite (in large crystale).
Memramcoor.-Coal (albertite).
Shediac.-Four miles up Scadoue River, coal.
York CO. Nashwank River.-Coal; Jay Creek, coal.
Pokrock River.-Stibnite? tin pyrites, in granite, (rare); Harrey Settlement, wad.*

NOVA SCOTIA.

ANNAPOLIS CO. Chute's Cove.-Apophyllite, natrolite.
Gates' Mocntain.-Analcime, magnetite, mesolite! natrolite, stilbite, thomsonite? ${ }^{5}$
Hadley's Mountain.-Chlorophæite, heulandite.
Margaretville.-Epistilbite? ${ }^{6}$ laumontite, (colored green by copper), stilbite.
Martial's Cove.-Analcime! (inclosing native copper), chabazite, heulandite.

[^9]Moose River-Beds of magnetite.
Nictau River.-At the Falls, bed of hematite.
Paradise River.-Black tourmaline, smoky quartz !! (perfect crystals, more than one hundred pounds in weight, have been found in the soil).
Port George.-Faröelite, laumontite, mesolite, stilbite; east of Port George, on coast, apophyllite containing gy rolite.
Peter's Point.-West side of Stonock's Brook, apophyllite!, calcite, heulandite, laumontite! (abundant), native copper, stilbite.
St.Croix Cove.-Chabazite, heulandite.
Wilmot. - At the Spring, copperas.
COLCHESTER CO. Five Islands.-East River, barytes !, calcite, dolomite (ankerite), bematite, copper pyrites; Indian Point, malachite, magnetite, red copper, tetrahedrite; Pinnacle Islands, analcime, calcite, chabazite!, natrolite, siliceous sinter.
Londonderry.-On branch of Great Village River, barytes, ankerite, hematite, limonite, magnetite; Cook's Brook, ankerite, hematite; Martin's Brook, hematite, limonite; eastward of Great Village River, on high ground, henatite, limonite; at Folly River, below Falls, ankerite, iron pyrites; on high land, east of river, ankerite, hematite, limonite; on Archibald's land, ankerite, baryles, hematite.
Salmon River.-South branch of, coal, copper pyrites, hematite.
Shubenacadie River.-Anhydrite, calcite, barytes, hematite, oxyd of manganese; at the Canal, iron pyrites.
Stewiacke River.-Barytes (in limestone).

Cumberland Co. Cafe Chiegnecto.-Barytes.

Cape D'Or.-Analcime, apophyllite!! (large crystals, highly modified), chabazite, faröelite, laumontite, mesolite, malachite, natrolite, native copper, obsidian, red copper (rare), vivianite (rare); Horse-shoe Cove, east side of Cape D'Or, analcine, calcite, stilbite.
Isle Haute.-South side, analcime, apophyllite!!!, albin ?, calcite, heulandite!!, natrolite, mesolite, stilbite!
Jogarss.-Coal, hematite, limonite; malachite and tetrahedrite at Seaman's Brook.
Parrsborough.-Augite, amianthus, calcite, gypsum, hematite, iron pyrites, magnetite, quartz.
Partridge Island.-Analci apatite (re) apophyllie. (rare), amethyst. ąate, crystals), chabazite (acadiolite), chalcedony, cat's-eye (rare), gypsum, hematite, heulandite!, magnetite, stilbite!! (very abundant).
Clark's Head.-Analcime, auhydrite, chlorite, calcite, hematite, prehnite?, tremolite.
Swas's Crerk.-West side, near the Point, calcite, gypsum, heulandite, iron pyrites; east side, at Wasson's Bluff and vicinity, analcime! ! (oceasionally enclosing native copper and malachite), apophyllite! (rare), calcite, chabazite!! (white, wine-yellow, and red (accadiulite) in large and very perfect crystals), gypsum, heulandile! !, malachite, natrolite!, native copper, red copper (rare). siliceous sinter.

[^10]Two Islands.-Moss agate, analcime, calcite, chabazite, heulandite.
McKay's Head.-Analcime, calcite, heulandite, siliceous sinter!
Stronix Brook.-Laumontite.
DIGBY CO. Brier Island.-Native copper, in trap.
Digby Neck.-Sandy Cove and vicinity, agate, amethyst, calcite, chabazite, hematite! (in perfect crystals), laumontite (abundant), magnetite, stilbite, quartz crystals.
Gulliver's Hole.-Magnetite, stilbite!
Mink Cove.-Amethyst, chabazite! (crystals an inch in diameter), quartz crystals.
Nichol's Mountain.-South side, amethyst, magnetite! (in large and perfect crystals).
Trout Cove.-Six miles east of Sandy Cove, agate, chalcedony.
William's Brook.-Near source, chabazite (green), heulandite, stilbite, quartz crystals.
GUYSBORO' CO. Cape Canseav.-Andalusite, abundant in mica and clay slate.
Guysboro'.-Galena, hematite.
halifax CO. Gay's River.-Galena, in limestone.
Halifax. - Southwest of, garnet, staurotide, tourmaline.
Tangier.-Gold! (oceasionally crystalized) in quartz veins in clay slate, associated with auriferous pyrites, galena, hematite, mispickel, and magnetite. ${ }^{8}$ Gold has also been found in the same formation, accompanied by iron pyrites and mispickel, at Country Harbor, Fort Clarence, Isaac's Harbor, Indian Harbor, Laidlow's Farm, Lawrencetown, Sherbrooke, Salmon River, and Wine Cove.
hants CO. Cheverie.-Oxyd of manganese (in limestone).
Petite River.-Gypsum, oxyd of manganese.
Windsor.-Calcite, cryptomorphite (boronatrocalcite?), glauber salt, hayesine. The last three minerals are found in beds of gypsum.'
inverness Co. Mabon Harbor.-Fluor spar! (green).
KINGS CO. Black Rock.-Centrallassite, cerinite, cyanolite; ${ }^{10}$ a ferl miles east of Black Rock, prehnite?, stilbite!
Cape Blomidon.-On the coast between the Cape and Cape Split, the following minerals occur in many places: some of the best localities are nearly opposite Cape Sharp,-analcime!!, agate, amethyst!, apophyllite!, calcite, chalcedony, chabazite, gmelinite (ledererite), faröelite, hematite, keulandite!,' laumontite, magnetite, malachite, mesolite, native copper, (rare), natrolite!, psilomelane, stilbite!, thomsonite?, quartz.
Cornwallis. - At the Bridge, oxyd of manganese.
Hall's Harbor.-Analcime, heulandite, laumontite, stilbite.
North Mountains.-Amethyst, bloodstone (rare), ferruginous quartz, mesolite (in soil).
Long Pornt.-Five miles west of Black Rock, heulandite, laumontite!!, stilbite! !
Scot's Bar.-Agate, amethyst, chalcedony, mesolite, natrolite.
*This Journal, [2], xxxii, 395, 1861. This Journal, [2], xxiv, 230, and xxxii, 8.
${ }^{21}$ Ed. New Phil. Jour, x, 84.

Woonworth's Cove.-A few miles west of Scot's Bay, agate!, chalcedony! ', jasper.
LUNENBURG CO. Chester.-Gold River, gold in quartz, iron pyrites, mispickel.
$\mathrm{C}_{4 \mathrm{pe}}$ la Have.-Iron pyrites! $^{\text {Hen }}$
The "Ovens." - Gold, on the beach and in quartz veins, iron pyrites, mispickel!
Petite River. - Gold, in slate.
PICTOU CO. PICTou.-Jet, oxyd of manganese, limonite; at Roder's Hill, six miles west of Pictou, barytes; on Carribou River, gray copper and malachite in lignite; at Albion Mines, coal, limonite; East River, limonite.
QUEENS CO. Westrield.-Gold in quartz, iron pyrites, mispickel.
Five Rivers.-Near Big Fall, gold in quartz, pyrites, mispickel, limonite.
RICHMOND CO. Plaister Cove. - West of, barytes and calcite in sandstone; nearer the Cove, calcite, fluor spar (blue), chalybite.
SHELBURNE CO. Shelburne. - Near mouth of Harbor, garnets (in gneiss) ; near the town, rose quartz; at Jordan and Sable River, staurotide (abundant in clay and mica slates), schiller spar.
SYDNEY CO.-Hills east of Lochaber Lake, iron and copper pyrites, chalybite, hematite.
Morristown.-Epidote in trap, gypsum.
Yarmouth Co. Cream Pot. -Above Cranberry Hill, gold in quartz, pyrites.
Cat Rock.-Fouchu Point, asbestus, calcite.

NEWFOUNDLAND.

Antony's Island.-Iron pyrites, in large cubical crystals.
Cape Bonavista.-Copper pyrites, in quartz veins.
Catalina Harbor.-On the shore, iron pyrites! large and perfect crystals, in slate.
Chalky Hill.-Feldspar, in crystals.
Copper Island, one of the Wadham group.-Copper pyrites (abundant).
Codroy's Island.-Gypsum, granular and fibrous.
Great Codroy River.-On left bank, near mouth, gypsum, (abundant);
seven miles inland, bituminous coal.
Conception Bay.-On the shore south of Brigus, erubescite and gray copper, in trap.
Great White Bay.-Gold Cove, copper pyrites, in quartz veins.
$\mathrm{G}_{\text {RAND }}$ Pond. - Northeast of, bituminous coal, cannel coal. $^{\text {chen }}$
Hall's Bay.-In the bank of a river flowing into the bay, copper pyrites in quartz veins, traversing chlorite slate; at the head of the tide on the same river, shell marl, a bed twenty feet in thickness.
$H_{\text {Himer River. - Near mouth, marble (abundant), muscovite. }}$
$\mathrm{B}_{\text {AY }}$ of IsLands. - Southern shore, iron pyrites, in slate.
Lawn,-Argentiferous galena, horn silver, ruby silver, silver glance.
PLacentia Bay.-At La Manche, two miles eastward of Little Southern Harbor, galena! very pure and abundant, in a vein of pink calcite traversing metamorphic slate. This vein is now worked, and 1400 tons of galena have recently been taken from it. On the opposite side of

218 J. C. Watson on the Elements of the Orbit of a Comet.

the isthmus from Placentia Bar, barytes (flesh-colored), in a large vein, occasionally accompanied by copper pyrites.
Port au Port.-On the Isthmus, native copper, in trap.
St. George's Bay.-Galena in limestone; at Crabb's River, bituminous coal, (vein three feet in thickness), gypsum in bank of a brook, salt springs.
Shoal Bay.--South of St. Johns, copper pyrites.
Tor Bax.-Four miles from St. Johns, a chalybeate spring, noted for its medicinal properties.
Trinity Bay.-Western extremity, barytes (flesh-colored), a large vein.
Harbor Great St. Lawrence.-West side, fluor spar, galena.
Sheffield Labratory, Yale College, Sept. 10, 1862.
0

Art. XXIV.-On the Correction of the Elements of the Orbit of a Comet; by James C. Watson, M.A., Professor of Physics in the University of Michigan.

When a new comet has been discovered, its orbit may be determined approximately from three observations made immediately after its discovery. If the intervals between the observations are nearly equal, the method of Olbers may be applied, but if the intervals are considerably unequal, a nearer approximation may be made by the method of Legendre. When the approximate elements have been found, and it is required to find a system of parabolic elements which will best satisfy all the observations available, the following method will be found very convenient in practice, and will invariably give satisfactory results.
Let $t, t^{\prime}, t^{\prime \prime}$, be the times of observation, corrected for the time of aberration and reduced to the same meridian; $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}$, the geocentric longitudes, and $\beta, \beta^{\prime}, \beta^{\prime \prime}$, the geocentric latitudes of the comet at the date of the first, second and third observations respectively. The observations must be corrected for parallax and reduced to the mean equinox of a fixed epoch, which is usually taken at the beginning of the year. Let us also denote by $R, R^{\prime}, R^{\prime \prime}$, the distances of the earth from the sun, and by $\odot, \odot^{\prime}, \odot^{\prime \prime}$, the longitudes of the sun, for the dates of the obserrations respectively.

The coördinates of the first place of the earth, referred to the third, are:

$$
\begin{aligned}
& x=\mathrm{R}^{\prime \prime} \cos \odot^{\prime \prime}-\mathrm{R} \cos \odot \\
& y=\mathrm{R}^{\prime \prime} \sin \bigodot^{\prime \prime}-\mathrm{R} \sin \odot
\end{aligned}
$$

If we reprosent by g the chord of the earth's orbit between the places corresponding to the first and third observations, and by G the longitude of the first place of the earth as seen from the third, we shall have

$$
\begin{aligned}
& x=g \cos G \\
& y=g \sin G
\end{aligned}
$$

and consequently,

$$
\begin{align*}
& \mathrm{R}^{\prime \prime} \cos \left(\odot^{\prime \prime}-\odot\right)-\mathrm{R}=g \cos (\mathrm{G}-\odot) \\
& \mathrm{R}^{\prime \prime} \sin \left(\odot^{\prime \prime}-\odot\right) \tag{1}
\end{align*}
$$

J. C. Watson on the Elements of the Orbit of a Comet. 219

The coördinates of the first place of the comet referred to the third place of the earth are:

$$
\begin{aligned}
& x_{1}=\Delta \cos \beta \cos \lambda+g \cos G, \\
& y_{1}=\Delta \cos \beta \sin \lambda+g \sin G, \\
& z_{1}=\Delta \sin \beta,
\end{aligned}
$$

where Δ is the distance of the comet from the earth at the first observation.

Let us now put
and we shall have

$$
\begin{aligned}
& x_{1}=\mathrm{D} \cos \mathrm{~B} \cos \mathrm{~L}, \\
& y_{1}=\mathrm{D} \cos \mathrm{~B} \sin \mathrm{~L}, \\
& z_{1}=\mathrm{D} \sin \mathrm{~B},
\end{aligned}
$$

$$
\begin{align*}
D \cos B \cos (L-G) & =\Delta \cos \beta \cos (\lambda-G)+g, \\
D \cos B \sin (L-G) & =\Delta \cos \beta \sin (\lambda-G), \tag{2}\\
D \sin B & =\Delta \sin \beta .
\end{align*}
$$

If we represent by φ the angle at the third place of the earth between the first and third places of the comet, we obtain

$$
\cos \varphi=\cos \mathrm{B} \cos \beta^{\prime \prime} \cos \left(\lambda^{\prime \prime}-\mathrm{L}\right)+\sin \mathrm{B} \sin \beta^{\prime \prime} .
$$

Let us now put
and we shall have

$$
\begin{align*}
& n \sin n=\sin \beta^{\prime \prime} \\
& n \cos m=\cos \beta^{\prime \prime} \cos \left(\lambda^{\prime \prime}-\mathrm{L}\right), \tag{3}
\end{align*}
$$

$$
\begin{equation*}
\cos \varphi=n \cos (\mathrm{~B}-m) . \tag{4}
\end{equation*}
$$

Let x be the chord of the orbit of the comet between the first and third places, and we get
or

$$
\begin{align*}
& x^{2}=\mathrm{D}^{2}+\Delta^{\prime \prime \prime}-2 \mathrm{D} \Delta^{\prime \prime} \cos \varphi \\
& x^{2}=\left(\Delta^{\prime \prime}-\mathrm{D} \cos \varphi\right)^{2}+\mathrm{D}^{2} \sin ^{2} \varphi, \tag{5}
\end{align*}
$$

Where $\Delta^{\prime \prime}$ is the distance of the comet from the earth corresponding to the third observation.
If ψ and $\psi^{\prime \prime}$ represent the angles at the earth between the sun and comet at the first and third observations respectively, we shall have

$$
\begin{align*}
& \cos \psi=\cos \beta \cos (\lambda-\odot) \tag{6}\\
& \cos \psi^{\prime \prime}=\cos \beta^{\prime \prime} \cos \left(\lambda^{\prime \prime}-\odot^{\prime \prime}\right) .
\end{align*}
$$

Then, if we denote by r and $r^{\prime \prime}$ the distances of the comet from the sun, at the times t and $t^{\prime \prime}$, we obtain

$$
\begin{align*}
& r^{2}=(\Delta-R \cos \psi)^{2}+R^{2} \sin ^{2} \psi_{1} \\
& r^{\prime 2}=\left(\Delta^{\prime \prime}-R^{\prime \prime} \cos \psi^{\prime \prime}\right)^{2}+R^{\prime \prime 2} \sin ^{2} \psi^{\prime \prime} . \tag{7}
\end{align*}
$$

Let us now put

$$
\begin{array}{ll}
\mathrm{D} \sin \varphi=\mathrm{A}, & \mathrm{D} \cos \varphi=a, \\
\mathbf{R} \sin \psi=\mathbf{C}, & \mathbf{R} \cos \psi=c, \\
\mathbf{R}^{\prime \prime} \sin \psi^{\prime \prime}=\mathrm{C}^{\prime \prime}, & \mathbf{R}^{\prime \prime} \cos \psi^{\prime \prime}=c^{\prime \prime},
\end{array}
$$

and equations (5) and (i) become

$$
\begin{align*}
& x=\sqrt{\left(\overline{1}^{\prime \prime}-a\right)^{2}+\mathrm{A}^{2}}, \\
& r=\sqrt{(\Delta-c)^{2}+\mathrm{C}^{2}} \tag{8}\\
& r^{\prime \prime}=\sqrt{\left(\Delta^{\prime \prime}-c^{\prime \prime}\right)^{2}+\mathrm{C}^{\prime \prime 2}} .
\end{align*}
$$

These equations (8) together with Lambert's equation,

$$
\begin{equation*}
\left(r+r^{\prime \prime}+x\right)^{\frac{3}{2}}-\left(r+r^{\prime \prime}-x\right)^{\frac{3}{2}}=\mathrm{M}\left(t^{\prime \prime}-t\right) \tag{9}
\end{equation*}
$$

where \log. $M=9.0137327$, will enable us to determine $\Delta^{\prime \prime}$ by successive approximations, when the value of Δ is given.

We may therefore assume a value of Δ by means of the approximate elements of the orbit, and then find the value of $\Delta^{\prime \prime}$ for which the corresponding values of $r^{\prime \prime}$ and x will satisfy equation (9). It will be observed that the value of $\Delta^{\prime \prime}$ must be found by trial; and, if we assume also an approximate value of $\Delta^{\prime \prime}$, we may find $r^{\prime \prime}$ from the last of equations (8) and then determine x from equation (9). Then we obtain a second value of $\Delta^{\prime \prime}$ from the equation

$$
\Delta^{\prime \prime}=a+\sqrt{x^{2}-\mathrm{A}^{2}}
$$

With the value of $\Delta^{\prime \prime}$ thus obtained we recompute $r^{\prime \prime}$ and x as before, and in a similar manner find a still nearer approximation to $\Delta^{\prime \prime}$. A few trials will generally give the correct result.

When $\Delta^{\prime \prime}$ has thus been determined we find the heliocentric places of the comet by the following:

$$
\begin{align*}
\Delta \cos \beta \cos (\lambda-\odot)-\mathrm{R} & =r \cos b \cos (l-\odot), \\
\Delta \cos \beta \sin (\lambda-\odot) & =r \cos b \sin (l-\odot), \tag{10}\\
\Delta \sin \beta & =r \sin b, \\
\Delta^{\prime \prime} \cos \beta^{\prime \prime} \cos \left(\lambda^{\prime \prime}-\odot^{\prime \prime}\right)-\mathrm{R}^{\prime \prime} & =r^{\prime \prime} \cos b^{\prime \prime} \cos \left(l^{\prime \prime}-\odot^{\prime \prime}\right) \tag{11}\\
\Delta^{\prime \prime} \cos \beta^{\prime \prime} \sin \left(\lambda^{\prime \prime}-\odot^{\prime \prime}\right) & =r^{\prime \prime} \cos b^{\prime \prime} \sin \left(l^{\prime \prime}-\odot^{\prime \prime}\right), \\
\Delta^{\prime \prime} \sin \beta^{\prime \prime} & =r^{\prime \prime} \sin b^{\prime \prime},
\end{align*}
$$

where $b, b^{\prime \prime}$, and $l, l^{\prime \prime}$, are respectively the heliocentric latitudes and longitudes of the comet at the times t and $t^{\prime \prime}$. The values of r and $r^{\prime \prime}$ should agree with those obtained from equations (8).

The elements of the orbit are then found from the heliocentric places by means of the well known formulæ. For the node and inclination, we have

$$
\begin{align*}
& \operatorname{tang} i \sin \left(\frac{1}{2}\left(l+l^{\prime \prime}\right)-8\right)=\frac{ \pm \sin \left(b^{\prime \prime}+b\right)}{2 \cos \frac{1}{2}\left(l^{\prime \prime}-l\right)} \sec b \sec b^{\prime \prime}, \tag{12}\\
& \operatorname{tang} i \cos \left(\frac{1}{2}\left(l+l^{\prime \prime}\right)-8\right)=\frac{ \pm \sin \left(b^{\prime \prime}-b\right)}{2 \sin \frac{1}{2}\left(l^{\prime \prime}-l\right)} \sec b \sec b^{\prime \prime}
\end{align*}
$$

the upper sign being used when the motion is direct and the lower sign when the motion is retrograde, corresponding respectively to the cases where $l^{\prime \prime}>l$ and $l^{\prime \prime}<l$. In these equations, Ω denotes the longitude of the ascending node, and i the inclination of the plane of the orbit to the ecliptic.

The longitudes in the orbit are given by the equations:

$$
\begin{align*}
& \operatorname{tang}(\theta-\Omega)=\operatorname{tang}(l-\Omega) \sec i, \tag{18}\\
& \operatorname{tang}\left(\theta^{\prime \prime}-\Omega\right)=\operatorname{tang}\left(l^{\prime \prime}-\Omega\right) \sec i,
\end{align*}
$$

where θ and $\theta^{\prime \prime}$ are the longitudes in the orbit.
As a check on the accuracy of the computation we have

$$
x^{2}=\left\{r-r^{\prime \prime} \cos \left(\theta^{\prime \prime}-\theta\right)\right\}^{2}+r^{\prime \prime 2} \sin ^{2}\left(\theta^{\prime \prime}-\theta\right) .
$$

For the longitude and distance of the perihelion we put

$$
\operatorname{tang}\left(45^{\circ}+\omega\right)=\sqrt{2}_{\frac{1}{r}}^{\frac{11}{r}}
$$

and then we shall have

$$
\begin{align*}
\frac{1}{\sqrt{q}} \sin \mathrm{~F} & =\frac{\operatorname{tang} 2 \omega}{\sin \frac{1}{4}\left(\theta^{\prime \prime}-\theta\right) \sqrt[4]{r r^{\prime \prime}}} \tag{14}\\
\frac{1}{\sqrt{q}} \cos \mathrm{~F} & =\frac{\sec 2 \omega}{\cos \frac{1}{4}\left(\theta^{\prime \prime}-\theta\right) \sqrt[4]{r r^{\prime \prime}}}
\end{align*}
$$

where $2 \mathrm{~F}=\frac{1}{2}\left(\theta+\theta^{\prime \prime}\right)-\pi, q$ denoting the perihelion distance, and π the longitude of the perihelion.
Let v and $v^{\prime \prime}$ be the true anomalies at the times t and $t^{\prime \prime}$, and we have

$$
\begin{array}{lll}
v=\theta-\pi, & v^{\prime \prime}=\theta^{\prime \prime}-\pi, & \text { for direct motion, and } \\
v=\pi-\theta, & v^{\prime \prime}=\pi-\theta^{\prime \prime}, & \text { for retrogade motion. }
\end{array}
$$

Then for the time of perihelion passage T, we have

$$
\begin{equation*}
T=t \pm \frac{q^{\frac{3}{2}} \sqrt{ } 2}{75 k}\left(25 \operatorname{tang}^{3} \frac{1}{2} v+75 \text { tang } \frac{1}{2} v\right) \tag{15}
\end{equation*}
$$

which should agree with the value of T found by using the values of $\ell^{\prime \prime}, v^{\prime \prime}$, instead of t and v,

$$
\log \frac{\sqrt{ } 2}{75 k}=0.0398723
$$

The preceding formulx are all that are required for finding the elements of the orbit from two observations, when one of the geocentric distances is given. To solve the problem proposed, we assume, in the first place, an approximate value of Δ, and compute the elements of the orbit from the first and third observations, by means of these formulx. With the elements thus obtained we compute the place of the comet for the time t^{\prime}, and compare it with the corresponding observation, and if we denote the computed longitude and latitude by λ^{\prime}, and $\beta^{\prime}{ }_{0}$ respectively, we shall have

$$
\lambda^{\prime}+u^{\prime}=\lambda_{0}^{\prime}, \text { and } \beta^{\prime}+w^{\prime}=\beta^{\prime}{ }_{0}
$$

Where u^{\prime} and w^{\prime} are the differences between computation and observation. Next, assume a second value of the distance of the comet from the earth at the time t, which we represent by $\Delta+\delta \Delta$, and compute the corresponding system of elements, and we shall have as before

$$
\lambda^{\prime}+u^{\prime \prime}=\lambda_{0}^{\prime} \text {, and } \beta^{\prime}+w^{\prime \prime}=\xi^{\prime}{ }_{0}^{\prime}
$$

We also compute a third system of elements from $\Delta-\delta \Delta,(\delta \Delta$ being the same as before,) and denote the differences between computation and observation by u and w, then we shall have ${ }^{1}$

$$
u=f(\Delta-\delta \Delta), u^{\prime}=f(\Delta), u^{\prime \prime}=f(\Delta+\delta \Delta)
$$

[^11]and similarly for w, w^{\prime}, and $w^{\prime \prime}$. If these three numbers are exactly represented by the expression
$$
\alpha+\beta\left(\frac{x}{\delta \Delta}\right)+\gamma\left(\frac{x}{\delta \Delta}\right)^{2},
$$
where $\Delta+x$ is the general value of the argument;-since the values of u, , u^{\prime}, and $u^{\prime \prime}$ will be such that the third differences may be neglected, this formula may be assumed to express exactly any value of the function corresponding to a value of the argument not differing much from Δ, or between the limits $x=-\delta \Delta$ and $x=+\delta \Delta$.

To find the coefficients α, β, and γ, we have ${ }^{2}$

whence by comparison we find

$$
\alpha=f(\Delta) ; \beta=\frac{1}{2}\left\{f^{\prime}\left(\Delta-\frac{1}{2} \delta \Delta\right)+f^{\prime}\left(\Delta+\frac{1}{2} \delta \Delta\right)\right\} ; \text { and } \gamma=\frac{1}{2} f^{\prime \prime}(\Delta) .
$$

Now in order that the middle place may be exactly represented in longitude, we shall have

$$
\gamma\left(\frac{x}{\delta \Delta}\right)^{2}+\beta\left(\frac{x}{\delta \Delta}\right)+\alpha=0
$$

from which we find

$$
\begin{equation*}
\frac{x}{\delta \Delta}=-\frac{1}{2 \gamma}\left(\beta-\sqrt{\beta^{2}-4 \alpha \gamma}\right)=p \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
x-p . \delta \Delta=0 \tag{17}
\end{equation*}
$$

In the same manner, the condition that the middle place shall be exacly represented in latitude gives

$$
\begin{equation*}
x-p^{\prime} \cdot \delta \Delta=0 \tag{18}
\end{equation*}
$$

In order that the orbit shall exactiy represent the middle place, it requires that both conditions shall be satisfied simultaneously, but it will rarely, if ever, happen, that this can be effected, and we must therefore find the most probable value of x from the equations (17) and (18); viz, that for which the sum of the squares of the residuals shall be a minimum. Having thus determined the most probable value of x, we compute a final system of elements, with the geocentric distance $\Delta+x$ corresponding to the time t.

The application of these formulæ is not limited to the case of three observations. With an approximate value of Δ we may compute the elements from the extreme observations, and compare any number of intervening places, each of which will furnish two equations of condition for the determination of x. Should it be found that the residuals resulting from the final elements exceed the limits of the probable errors of the observations, the orbit cannot be a parabola, and it will be necessary to determine the excentricity.

Ann Arbor, Mich., December, 1862.

= The coefficient β should not be confounded with the latitude β previously used.

Art. XXV.-Geographical Notices. No. XIX.

PHYSICAL GEOGRAPHY OF THE REPORT ON THE MISSISSIPPI RIVER, BY HUMPHREYS AND ABBOT.

THE report of Captain Humphreys and Lieut. Abbot of the Corps of Topographical Engineers of the United States Army, on the "Physics and Hydraulics of the Mississippi River," has already been noticed in this Journal, in an article which gave a conspectus of the entire work. ${ }^{1}$ The universal interest now felt in everything which illustrates the Physical Geography of the United States, the importance of this elaborate survey of the most characteristic region of our country, and the difficulty of obtaining copies of so costly a volume lead us to refer again to some of the statements which are made by the authors.

The immediate occasion of this work, as the reader will remember, was an act of Congress directing a scientific survey of the Mississippi Delta, including such investigations as might tend to determine the most practicable plan for securing it from inundation, and the best modes of deepening the channels at the mouths of the river. The report, consequently, is chiefly devoted to the Physics and Hydraulics of the river, that is to say, to the laws of velocity and volume, and the possibility of so controlling the current, as to protect the regions adjacent to the delta from destructive floods, and so as to maintain the facilities of navigation in the channels near the gulf. But the topography and hydrography of the entire basin of the Mississippi, including all its various tributaries, are likewise elaborately discussed. It is to this portion of the report, the Physical Geography, that we now call attention. Our object will be to condense within a limited space, some of the geographical facts which the volume contains, so that those who cannot consult the work itself may turn here for such information. In doing this we shall confine ourselves, without comment, to the statements of the authors, generally employing their own language. We regret that the limit of this article compels us to omit some of the interesting details which their scientific zeal and thoroughness have brought together.

Regarding the true Mississippi river as beginning at the confluence of the Upper Mississippi and the Missouri, eight of its tributaries are so important as to be distinguished from all the rest. In the order of the magnitude of their basins, these are the Missouri, Ohio, Upper Mississippi, Arkansas, Red, White, Yazoo and St. Francis. They are described in the order of their geographical position, first the right bank and then the
left, beginning with the snuthernmost, as follows: Red, Arkansas, White, St. Francis, Missouri, Upper Mississippi, Ohio and Yazoo.

1. Red river Basin. ${ }^{2}$-Few regions so limited in area, say the authors, are so diversified in character as this basin. While it includes only 97,000 square miles, large tracts of rich alluvion, a range of primitive mountains, numerous lakes, a rolling prairie, and a salt-desert tract are found within its borders. Capt. Marcy, U.S. A., first explored the sources of Red river in 1852. The general course of the stream is thus delineated in his report.

The Red river rises in the eastern rim of the vast desert plain known as el Lleno Estacado at an elevation of about 2,500 feet above the sea. After flowing through a narrow ravine, some sixty miles in length, the river passes to the south of the Witchita Mts., the highest peak of which, Mt. Scott, is 1135 feet above its base. Beyond this, to the east, the river traverses "the cross timbers," an extensive belt of woodlands, which extend, between twenty and thirty miles in width, from the Arkansas river to the Brazos, some 400 miles. Still farther east, the celebrated Red river raft, an accumalation of drift logs, about thirteen miles long, obstructs the course of the stream. Below this, the river traverses a fertile and populous region, the character of which is well known.

The width of the Red river between its banks, cight miles below the point where it issues from the Llano Extacado, is 2700 feet; just below the mouth of the North fork, 2000 feet; about 50 miles helow the mouth of this tributary, 2100 feet; at the mouth of the Big Witchita, 600 feet; at Alexandria, 720 feet; at mouth of Black river, 785 feet; at mouth, 1800 feet. These numbers indicate the characteristic variation in width. While traversing the sandy desert, the river spreads out to a width greatly disproportionate to the depth; but when the more lertile and clayey soil is entered, it contracts to the normal dimen. sions corresponding to its discharge.

The depth of Red river varies inversely as its width, being only 6 or' 8 feet, even in floods, throughout the desert, while it is some 50 feet in the fertile region. In extreme low water, a depth of 3 fect may be depended upon below Alexandria, about 4 feet thence to the head of the ralt, and one foot thence to Fort Towson.

Steamers of 4 feet draught can ascend to Shreveport at any time except in extreme low water, but to Fort Towson or even Fulton, fur only about three months in the year, and they frequently only run in one direction during a single rise.

The river above the raft rises and falls more rapidly than the

[^12]Arkansas, and thus is less favorable to navigation. The raft also is a serious obstacle, as it requires the boats to leave the ehannel and pass through Jakes and bayous.
The ligh-water area of cross-section throughout the desert country is probably :bout 12,000 square feet, and in the cultivated region from 30,000 to 40,000 .
The range of the river is greatly affected by the raft. Thus at Fort Toivson it is some $4 \overline{5}$ feet, the maximum (January 27, 1843) being 51 feet; at Fulton it is 35 feet; at the head of the raft, 10 feet; at Shreveport, 25 fect; at Λ lexandria, 47 feet ; at the mouth, 45 feet. These numbers illustrate the effect of lakes in moderating floods.
.The only important tributary of the Red river is the Black river, formed by the junction of the Washita, (the Indian name for Black,) Little river, and Bayou Tensas. It is only 54 miles in length.
The following figures exhibit the high water slope of Red river.

Locality.	Distance month.	Elevation above an leyci.	$\begin{aligned} & \text { Full } \\ & \text { nuly } \\ & \text { noite } \end{aligned}$	Authority.
Sour	Miles.	Feet.	t.	
At Preston,	0	41	4.80	Captain Marcy.
At Fulton,	595	24	1*80	Railroad levels.
At head of raft,	405	207	$0 \cdot 20$	Mr. C. A. Fuller.
Mours of eport,	330	180	$0 \cdot 36$	Rnilroad leve
Mouth (hiyh water 1828),	80	58 54	0.41	Delta Survey.
Mouth (high water 1828), - -	00	54	0.14	Delta,

2. Arkansas and White River Basin.-This basin includes an area of $189,000 \mathrm{sq} . \mathrm{m}$., the western portion of which lies among the summits of the Rocky Mountains, the middle portion comprises the great sterile plain between the mountains and 97° west long., and the castern part, the rich alluvion of the Mississippi valley. Although diversified in climate and production, less than half this area is fitted to supply the wants of a civilized people.

Lieut. Pike, U. S. A., explored the sources of the Arkansas river in 1806. They lie among the Mts, west of the South Park, in lat. 39° and long. 106°, abont $10,000 \mathrm{ft}$. above sea level. Half this elevation is lost in the first 150 miles. The stream then traverses a sterile hilly region, the hills gradually diminishing in size, till they subside into the plain westward of Bent's Fort, near $104^{\circ} \mathrm{V}$. long. Maj. Emory's Report on Gen. Kearny's route in 18 ± 6 describes the river between Bent's Fort and Great Bend. It is seldom over 150 yards wide, and generally fordable. The bottom land a few feet above the water level varies from half a mile to two miles and is generally covered with good nutritious grass. Beyond Bent's Fort to the east, the 'big timber' is found, a thinly scattered growth of large cottonwoods.

Thence to Fort Smith, the river is described by Capt. Bell, who explored it in 1820. The bluffs here approach close to the river bed. Ravines become more abundant and like the river banks are well wooded. The water becomes slightly brackish from the saline springs near the right bank. Below the Cimmaron the river loses its pale clay hue and becomes reddish. Fort Gibson marks the head of navigation, beyond which the river, in the remaining 642 miles, traverses a fertile and settled region.
"The width of the Arkansas undergoes great variations. Near the mountains it does not exceed 150 feet. It gradually increases to about a mile, as it traverses the sandy desert. After entering the hilly and fertile region it varies from 1000 to 2000 feet.

The depth of the Arkansas also varies greatly in different parts of its course. Throughout the prairie region it averages about two or three feet, exclusive of shoals, but there are seasons when the water entirely disappears, being absorbed by the immense beds of sand in which its channel is formed. In the navigable part of the river the least depth found upon the bars in extreme low water, from the mouth to the Post of Arkansas, is from 2.5 to 3.0 feet; thence to Little Rock, two feet; thence to Fort Gibson, one foot.

The range of the river between low and high water is about 45 feet at Napoleon; 40 feet at South bend; 35 feet at Little Rock; 25 feet at Fort Smith; 10 feet at Fort Gibson, and still less at points above. These numbers do not represent the extreme ranges, although they are much greater than those that usually occur.

There are generally three annual rises in the Arkansas. As observed by Colonel Charles Thomas, U. S. Army, who served at Fort Gilson many years, they are as follows: One usually begins in February, owing to the winter rains, and lasts, on an average, about fifteen days. The next-the principal rise in the year-is occasioned by the melting snows in the mountains and the late spring or early summer rains. It occurs in May and June, and continues into July, and sometimes into August. The river generally keeps up, between these two rises, some one or two feet above its lowest stage. The last rise is in November, produced by the late autumn rains, and lasts from ten to twenty days.

Steamboats from three to four feet draught can almost always reach a point some 40 miles above Little Rock, and during the floods can reach as far as Fort Smith and Fort Gibson, with a fair prospect of being able to return. Both the Canadian and Arkansas have been navigated with small steamers as far up as the wants of the military service have required. Steamers of eight feet draught have reached Fort Smith, but their return during the same rise is not certain. The river is generally very low after the November rise. During the lowest stage it is difficult for boats of the lightest draught to reach Fort Smith.

The greatest flood of the Arkansas on record occurred in 1833. Authorities differ as to its relative height at Little Rock, but the evidence tends to the conclusion that it exceeded any subsequent flood by at least two feet."

The high water slope of the Arkansas is thus stated:

Locality.	Distance above	$\left\lvert\, \begin{aligned} & \text { Elevation } \\ & \text { above } \\ & \text { sea level. } \end{aligned}\right.$	$\begin{gathered} \text { Fall } \\ \text { peir } \\ \text { mile. } \end{gathered}$	Authority.
Source,	$\begin{aligned} & \text { Miles. } \\ & 1.514 \end{aligned}$	Feet. $10,000$	Fret. 0.00	
Mouth of Boiling-spring river,	1,364	4,880	34.13	Captain Fremont.
Mouth of Apishpa creek, -	1,323	${ }_{4}^{4,371}$	${ }_{20}^{12 \cdot 41}$	Captain ${ }_{\text {" }}$ Gunnison.
Near Fort Atkinson,	1,289	${ }_{3}^{3,672}$	$\underset{6}{20.56}$	"
Great bend, -	, 992	1,658	6.53	Major Emory.
Near Fort Gibson,	642	560	$3 \cdot 14$	
Near Fort Smith,	522	418	${ }_{0}^{1.18}$	Lieutenant Whipple.
Moar Little Rock,	250	253	0.61	Railroad levels.

The Arkansas has two noteworthy tributaries. The Canadian, which rises in the Raton pass, 6000 feet above sea level, after traversing in a course of 1000 m . the same barren region through which the Arkansas flows, empties into the latter midway between Forts Smith and Gibson. The White River drains the fertile region which crosses the Arkansas above Fort Gibson. Its sources are about 1200 feet above the Gulf.
3. St. Francis Basin.-This region, including an area of 10,500 $\mathrm{sq} . \mathrm{m}$., consists of the St . Francis bottom and its watershed.
"By the former is understood the belt of swamp lands and low ridges lying between the Mississippi river and the line of high hills which extends almost continuously from Cape Girardeau to Helena. Some small portions of this area do not drain into the St. Francis river, but, being similar in character, the entire region is properly designated by a general name.

A portion of the southern slope of the Ozark mountains constitutes the chief watershed of this region.

As the St. Francis bottom lands are the most northern of those regions which have been generally considered "vast reservoirs for the flood waters of the Mississippi," great efforts have been made to collect all possible information about their real character. Extended personal inquiries and measurements have been made in many different localitits. The surveys of the military road from Memphis to the St. Francis river, made by Dr. William Howard, U. S. civil engineer, in 1833 ; those of the Memphis and Little Rock railroad company, made in 1854 ; those of the Fulton and Little Rock railroad company, made in 1855 (?) ; and those of the route from St. Louis to Fulton, made in 1850, under the direction of the Bureau of Topographical Engineers, War Department, by Joshua Barney, C. E., have all been carefully studied. Much assistance bas also been derived from the admirable chapter upon the swamp lands of southeastern Missouri, contained in the report of Messrs. O'Sullivan and Morley, engineers of the St. Louis and Iron Mountain railroad company, and published with the second annual report of the board of directors of that road (St. Louis, 1854). Together with its accompanying maps, this work furnishes nearly all the general information which could be desired about the Missouri portion of these bottom lands.

Boundaries and areas.-The St. Francis bottom is bounded as follows: Starting at Cape Girardeau, on the Mississippi river, the line runs a little south of west to the northwest corner of T. 29, R. 11, east; thence southwest to the St. Francis river, near the northeast corner of T. 26, R. 7, east; thence south along the St. Francis river ${ }^{3}$ to the southeast corner of T. 22, R. 8, east ; thence southwest to the northeast corner of T. 14, R. 4, east; thence nearly south to the middle of T. 3, R. 3, east; thence to Helena, and thence, following the Mississippi river, to Cape Girardeau. Within these limits there are many isolated ridges entirely above overflow.

The limits of tho watershed of the St. Francis basin can be readily and exactly traced upon Hutawa's sectional map of Missouri, by following the divide which separates small streams running to and from the bottom lands. The Ozark slope constitutes fully two-thirds of the entire region.

The following table has been carefully computed in accordance with the above boundary, and is believed to be quite accurate :-

Watershed of St. Francis bottom lands, . 3,600
$\begin{array}{lll}\text { Ridges known to be above overflow in St. Francis bottom lands, } & 6, & 600 \\ \text { Lands liable to be submerged in }\end{array}$
Total area of St. Francis basin, . 10,500
Topography.-The northern watershed is a broken, hilly country, sloping very abruptly to the bottom lands. Its mean descent southward is about 1200 feet in 70 miles, or at a mean rate of about 17 feet per mile.

The swamp region is, in general character, a great plain sloping from north to south at a mean rate of about 0.7 of a foot per mile, judging by the fall of the Mississippi between Cape Girardean and Helen: ; and from east to west at a mean rate of about 0.5 of a foot per inile, judging by the levels of the Memphis and Little Rock railroad, which erossed the bottom near the middle line. This country is separated from the rolling praries west of it, which drain into White river, by a single narrow ridge averaging 300 feet in height."
4. Missouri Basin.-[The account of this basin having already been given in these pages, [2], xxxiii, p. 185, we omit it in this place.]
5. Upper Mississippi Basin.-Although the Upper Mississippi is neither the longest tributary, nor the greatest contributor of drainage, nor the branch most like in character to the great Mississippi, it bears its name and has thus always been an object of especial interest to geographers.
"The distinguishing characteristic of this portion of the Mississippi basin is the entire absence of mountains. Near the source of the river, the country is only some 1600 feet above the level of the sear, and is corered with swamps and lakes, divided by hills of sands and boulders be-

[^13]
Humphreys and Abbot's Report on the Mississippi River. 229

longing to the Drift epoch. The middle and southern portions of the basin consist of prairie land, and are rapidly becoming cultivated. The agricultural and mineral resources of this basin are great, the climate is salubrious, and the country must eventually sustain a large and wealthy population. Its total area is 169,000 square miles."

Lake Itasca, in which the Upper Mississippi rises, is described by Mr. Schoolcraft as a beautiful sheet of deep water, seven miles long and from one to three broad. Nicollet, in 1836, determined its gengraphical position and elevation to be $47^{\circ} 14^{\prime}$ N. lat., $95^{\circ} 02^{\prime} \mathrm{W}$. of Greenwich. The elevation of the lake, by barometrical observations, he places at 1575 feet above the ocean level.

The Mississippi passes through several lakes and by successive rapids and waterfalls to the Falls of St. Anthony where it falls in less than three quarters of a mile a distance of 65 feet. Two tables given in the report exhibit the most important facts respecting this region.

Low-water slope of Upper Mississippi.

[^14]The following table exbibits a correct list of the tributaries.

Name.			Remarks.	Name.		边
Source branch,	$\begin{aligned} & \text { Milas. } \\ & 1324 \end{aligned}$	$\overline{\text { Milos }}$	Itasca lake.	Crow river,		Mile
Turtle river,	1180	40	Cass lake.	Rum river,	690	150
Leech-lake river,	1109	50		Rice river,	683	
Mash-kudens river,	1055			St. Peter's river,	663	168
Swan river,	998		Rapids intervening.	St. Croix river, Vermilion river,	6	
Willow river,	9\%3			Cannon river,	611	82
Pine river,	863	140	'	Chippeway river,	581	165
Crow-wiog river,	8815			Embarras river,	$\begin{gathered} 562 \\ 580 \end{gathered}$	
Nokay river, Belle Prairie creek,	806 796			White river, Black and La	560	
Elk creek,	788			Crosse rivers,	516	88
Pike creek,	787			Root river,	511	
Swan river,	786			Upper Iowa river	489	
Two rivers,	777			Wisconsin river,	448	38
Spunk river,	773			Turkey river,	425	
Platte river, Little Rock creek,	760			Wabesipinnicon		20
Watab and Winne-				Rock river,	291	245
bago rivers,	757			Cedar river,	245	250
Lower Watab,				Skunk river,	$\begin{aligned} & 205 \\ & 165 \end{aligned}$	402
Sauk river, Nechoado river	752 744		Rapids 1 mile.	Des Moines river, Illinois river,	165	${ }_{397}$
Clear-water river	736			Missouri river,	0	
river,	705	100		Black		

6. Ohio Basin.-

"The Ohio river drains the northeast portion of the Mississippi basin -a fertile and populous region throughout nearly its whole extent. The southern tributaries rise in the Alleghany mountains, and flow northward through an undulating and beautiful country to the main stream. The northern tributaries have their source in the crest of the level plateall which lies immediately sonth of the great lakes, at an elevation varying from 500 to 1000 feet above their water surfaces, and flow southward through a fertile prairie and undulating country to the Ohic. The boundaries of the basin are indicated on plate I, and its claracter is so well known as to require no description here. Its total area is 214,000 square miles.

Ohio River. - The Ohio is formed by the junction of the Allegliany and Monongahela rivers. The former, which is the principal branch, rises in the mountains of Pennsylvania, the latter in those of Virginia. Throughout its whole length (975 miles) the river flows with a gentle current, uninterrupted by rapids except at the "falls of Ohio" near Lruisville, when it descends 26 feet in three miles. It traverses a beattiful valley and is constantly augmented by tributary streams.

The Ohio in low water is a succession of long pools and ripples, with a current alternately sluggish and rapid. The bars in the upper part of the river are mainly composed of gravel, and in the lower part, of shifting sand.

Humphreys and Abbot's Report on the Mississippi River. 231

Of the Alleghany branch, nothing need be said except that near its sources it flows between hills, through a very narrow strip of fertile bottom land, and with a more uniform slope than near the mouth, where it traverses a rocky and precipitous ravine, with a bed composed mainly of sandstone or gravel-bars. [Captain Hughes, Topl. Engrs., U. S. A.]

Of the Monongalhela branch, some curious facts stated by Dr. William Howard in 1833 merit attention. It rises in the Alleghany mountains and subordinate ranges in Virginia, and is formed by the junction of the East and West branches and Cheat river. The former streams head in Laurel ridge, and flow in rocky channels. The tributaries of Cheat fiver rise in the summit of the Alleghanies, and form mountain torrents until they unite in a river scarcely less wild than themselves. The Cheat forces its way through deep gorges with nearly perpendicular side slopes to the Monongahela, falling 2400 feet in the last 80 miles. Below the junction the river is gentle in character. It winds with a serpentine course, without islands, through a terraced valley. Its slope here is less than that of the Ohio. Thus the fall from the mouth of Cheat river to Brownsville (35 miles) is 44 feet, or 1.26 feet per mile, and from Brownsville to Pittsburg (55 miles) only 31 feet, or 0.56 of a foot per mile; while the corresponding fali of the Ohio near Pittsburg is about one foot per mile. The fall of the Monongahela, above the junction of Cheat river, averages about two feet per mile for over 100 miles. The anomaly in slope near the mouth of this river is less in high than in low water, the usual range at Brownsville being 15 or 20 feet more than that at littsburg. At low water the Monongahela is a succession of pools separated by bars composed of gravel and loose stones, not subject to sudden changes. Its water is quite free from sedimentery matter."

Lovo-vater slope of the Ohio, according to Ellet.

[^15]it is 45 feet; at Louisville, 42 feet on the falls and 64 feet below them; ${ }^{\text {; }}$ at Evansville, 40 feet; at Paducah, 51 feet; and at the mouth of the river, 51 feet. The usual range does not exceed 25 feet."
7. Yazoo Basin.-The Yazoo basin, having an area of 13,850 square miles, consists of the Yazoo bottom and its watershed. The Yazoo bottom is an alluvial tract, oval in shape, bordering on the Mississippi between Memphis and Vicksburg. It consists of 6800 square miles of lands liable to be submerged, 310 square miles of ridges and 6740 square miles of lands draining into the bottom. It is in general a vast densely timbered plain, sloping from the Mississippi toward the east at a mean rate of about 0.4 of a foot per mile. There are three classes of land in the Yazoo bottom, "high land," rarely overflowed, middle land, overflowed during the wet season, and the low "cypress swamps," parts of which always contain water.

The Yazoo river, from its proper source, Horn Lake, to the Mississippi, is about 500 miles long, and is navigable 240 miles to Greenwood, for boats drawing two or three feet. Indian mounds are found through the entire bottom.
8. Basins of Small Direct Tributaries.-Four of these will be noticed. Their total area is 32,400 square miles. This country is situated where the rain is greatest, and contributes more than is generally supposed to the discharge of the river.
"Maramec basin.-The northern slope of the eastern portion of the Ozark mountains drains into the Maranec river, a stream which enters the Mississippi a few miles below St. Louis. This basin is hilly in character, containing no lands liable to inundation. Its area, taken from Hutawa's sectional map of Missouri, is 5470 square miles. This estimate includes all the country between the Missouri and Cape Girardeau, on the right bank, which drains directly into the Mississippi.

Kaskaskia basin.-Under this head is included all the region draining into the Mississippi on the left bank, between the mouth of the Missouri and the mouth of the Ohio. It is named from its principal stream, although there are others of considerable size-the Big Muddy, for instance. The country is mainly prairie, but, upon the immediate bank of the Mississippi, a considerable area is liable to inundation in great floods. The "American botton," between the mouths of the Missouri and Kaskaskia rivers, contains the greater part of this swamp country, but there is another limited belt above Cairo. The area of the whole basin is about 9420 square miles.

The Kaskaskia river itself resembles the Illinois. It flows with a very crooked course through a heavily timbered alluvial bottom, liable to be overflowed to a depth of eight or ten feet in freshets. Its bed is almost dry in the summer, but when high the stream has a strong current.

[^16]
Humphreys and Abbot's Report on the Mississippi River. 233

Obion basin.-Between the Ohio river and the head of the Yazoo basin lies an extended tract of country, which, for want of a better name, has been designated the Obion basin. It is drained by four nearly parallel rivers: the Obion, the Forked-deer, the Hatchee, and the Wolf; the Hatchee alone being, properly speaking, a navigable stream. The area of the entire region is about 10,250 square miles.
-
This region is in the main an upland, hilly country, but, as shown on plate II, the Obion and Forked-deer rivers flow through somewhat extensive swamps near their mouths. It is generally believed that the great earthquake in 1811, which depressed so much country on the opposite bank, materially increased the area of these swamps.

The Hatchee river, before certain railroads were built, was an important avenue for transporting cotton from the interior to the Mississippi. It is navigable to Bolivar-some 150 miles-from four to six months in the year; its usual range between low and high water being about 15 feet at Bolivar and 30 feet at its mouth. Its average high water width is about 350 feet, and its high-water cross-section about 8000 square feet.

Big-Black basin.-The region draining into the Mississippi between the mouth of the Yazoo river and the alluvial lands below Baton Rouge is classed under this general head. It is drained by many streams, the two principal being the Big Black, which enters the Mississippi just above Grand Gulf, and the Homo Chitto, which enters below Ellis cliffs. Exceptirg a narrow strip along the immediate bank of the Mississippi, this whole basin is made up of a rolling, hilly country, entirely above any danger of inundation. Its area is about 7260 square miles."

Following this account of the various tributaries of the Mississippi, the authors proceed to discuss the river itself below the mouth of the Missouri. This is done in the second chapter of their volume, the contents of which have been given in the article already referred to (vol. xxxiii, p. 187). We hope to revert again to this portion of the report, and perbaps to other geographical discussions which the volume contains.
The figures which illustrate the character of the main river and also of the tributaries described in the present article, are summed up in the following tables, which will be of permanent value to all who are interested in the study of the great Mississippi valley. In conclusion, we desire to express our admiration of the thorough and comprehensive manner in which the investigations of Messrs. Humphreys and Abbot have been conducted. The work reflects the highest honor upon the fidelity, patience and science of the distinguished authors.

TABULAR VIEW OF THE MISSISSIPPI AND ITS TRIBUTARIES.

River.			$\begin{aligned} & \text { 首 } \\ & \text { 足 } \\ & \end{aligned}$				
Ohio river.	Miles.	Feet. low water	Feet.	Feet.	Feet.	Feet.	Sq. feet.
Coudersport,	1265	1649					
Olean point,	1225	1403	$6 \cdot 15$				
Warren,	1175	1187	$4 \cdot 32$				
Eranklin,	1105	900	$3 \cdot 24$				
Pittsburg,	975	699	2.00				
Wheeling,	889	620	0.92)	45	
Marietta,	800	571	0.55	1200			\} 50,000
Head Le Tart's shoals,	769	55.5	$0 \cdot 52$		\} 1.0		,
Mouth Great Kanawha,	714	522	0.60)
Portsmouth,	620	474	0.51				
Above falls	315	487	0.40 0.36) 20		
Below falls,	358	353	8.00			64	
Eransrille,	187	320	$0 \cdot 20$		\} $1: 5$	40	
Mouth Wabash,	130	297	$0 \cdot 25$	3000	¢ 15		150,000
Mouth,	0	275	$0 \cdot 17$,	$3 \cdot 0$	51	

Remairks.-Area of basin, 214,000 sq. m.-Downfall of rain, 415 in .-Annual discharge, $5,000,000,000,000 \mathrm{cu}$. ft. - Ratio between downfall and drainage, 0.24. - Mean discharge per second, 158,000 cu. ft.

Upper Mississippi.		low w					
Utinost source,	1330	1680					
Itasca lake,	1324	1575	17.50	15			50
Entrance to Lac Travers,	1234	14.56	$1 \cdot 3.3$	150			
Entrance to Lake Cass,	1189	1402	$1 \cdot 20$	175			1,400
Mouth Leech-lake river,	1109	13356	0:57				
Mouth Swan River,	1998	1290	${ }^{0} 0.73$	c 120			
Mouth Sandy-lake river,	960	12.53	$0 \cdot 95$	300		$20 \cdot 0$	
Mouth Pine river,	863	1176	0.79				
Mouth Crow-wing river, st. Paul,	815	1130 670	0.95 2.93	1200			
La Crosse,	514	639	0.22		2.0	14.0	
Prairie du Chien,	453	600	0.64			18.5	100,000
Head Rock Ist'd rapids,	310	50.5	0.66	5000		16.0	100,0
Foot Rock Isl'd rapids, Mouth Missouri,	29.3	483	$1 \cdot 47$		$2 \cdot 0$	35.0	

Remarke-Area of basin, $169,000 \mathrm{sq}$. m.-Downfall of rain, $35 \cdot 2 \mathrm{in}$.-Annual discharge, $3,300,000,000,000 \mathrm{cu}$. ft .-Ratio between downfill and drainage, $0 \% 4$.-Mean discharge per second, $105,000 \mathrm{cu}$. ft.

Missoneri river.		low water					
Source Madison fork,	2908	6800(\%)					
Three torks Missourl,	28.4	4319	29:52				
Mouth Sun river,	2889	3573	$5 \cdot 54$				
Foot of fills,	2670	2094	31.59				
At Fort Benton,	2644	24.5	454	1500		6	
At Fort Union,	1894	2188	$0 \cdot 88$; 1500			
At Fort Pierre,	1246	1475	$1 \cdot 10$	- 2500	1.0		
At Sioux City,	842	1065	1.01				
At mouth,	48 0	7.6	0.86 0.77	13000		20 35	75,000

Remarks.-Aren of basin, 518,000 sq. m.-Downfall of rain, 20.9 in .-Annual dis. charge, $3,780,000,000,000$ ctr. ft.-Ratio between downfall and drainage, $0 \cdot 15 .-$ Mean discharge per second, $120,000 \mathrm{cu} . \mathrm{ft}$.

TABLE-CONTINUFD.

River.				为			
Arkansas river.	Miles.	Feet. high wat	Feet.	Feet.	Feet.	Feet.	Sq. feet.
Source, Mouth Boiling spring r	1514	10000					
Mouth Apishpa creek,	1323	4381	12.41				
Near Fort's Fort,	${ }_{1095}^{1289}$	3672	22.56	5000			
Great bend,	${ }^{1095}$	1658	6.53	- 5000	$0 \cdot 0$) 6	30,000
Near Fort Gibson,	642	560	$3 \cdot 14$			10	
Near Fort Smith,	53,	418	${ }^{1.18}$	1500		5	70,000
Mouth,	20	162	0.36		2.0		

Remarks.-Area of basin (including White r.), $189,000 \mathrm{sq}$. m.-Downfall of rain (including White r.), $29 \cdot 3$ in.-Amnual discharge (including White r.), 2,000,000,$000,000 \mathrm{cu} . \mathrm{ft}$.-Ratio between downfall and drainage, $0 \cdot 15$. - Meau discharge per second (including White r .), $63,000 \mathrm{cu}$. ft .

Red river.		wa						
Source,	1200	2450		12000		8		
At Preston,	830	6 ± 1	$4 \cdot 80$	$)^{2000}$		40		12,000
At Fulton,	595	242	1.80) 10	35		
At head of raft,	405	207	$0 \cdot 20$			10		
At shreveport,	330	180	$0 \cdot 36$	800) 30	25		40,000
Mouth,	30 0	58	0.41 0.14		$\int 30$	45		

Remarks.-A rea of basin, $97,000 \mathrm{sg} . \mathrm{m}$.-Downfall of rain, $39 \cdot 0 \mathrm{in}$.- Annual discharge, $1,800,000,000,000 \mathrm{cu} . \mathrm{ft}$.- Ratio between downfall and drainage, $0 \% 20$.-Mean discharge per second, 57,000 cu. ft.

Remarks.-Area of basin, $13,850 \mathrm{sq} . \mathrm{m}$.-Downtall of rain, 46.3 in .-Annual discharge, $1,350,000,000,000$ cul. ft.-Ratio between downfall and drainage, $0 \cdot 00$.-Mean diselarge per second, $43,000 \mathrm{cu}$. ft.

St. Francis river.		high wat				
Source,	380	1150				
Head swamp region, Chalk bluffs,	275	330 280	7.81 1.00			9,400 2,300
M. and L. R. railroad,	55	209	0.42			21,000
Mouth,	,	200	$0 \cdot 16$		40	37,000

Remarks.-Aren of basin, $10,500 \mathrm{sq}$. m .-Downfall of rain, $41 \cdot 1 \mathrm{in}$.-Annual discharge, $990,000,000,000 \mathrm{cu}$. ft.-Ratio between downfall and drainage, $0 \cdot 90$. - Mean discharge per second, $31,000 \mathrm{cu}$. ft.

Main Missixxipp\%.		light wat					
St. Louis, Missouri,	1236	416.0			20	87.0	
Cairo.	1037	40300	$0 \cdot 497$			51.0	
Columbus,	10%	$310 \cdot 0$	$0 \cdot 5 \sim 1$	\} $44 \% 0$	3.0	47.0	191,000
Memphis,	87.	21.0	$0 \cdot 436$			$40 \cdot 0$	
Natchez,	647 375	149.0 66.0	$0: 8 \geq 0$ $0: 300$	$1{ }^{1} 4030$	60	51.0	199,000
Red-river landing,	316	45.5	0-2 2 限			443	
Baton Rouye,	24.5	3:3)	(1) $2 \cdot 20$:3000		$31 \cdot 1$	\} 200,000
Donaldsonville,	193	35.8	$0 \cdot 156$; 3		24:3	200,000
Fartolton,	121	$15 \cdot 3$	$0 \cdot 147$			14.4	
Head of Philip,	37	$5 \cdot 3$	0.119 0.115	-340		4.5	199,000
Gulf, passea,	17	0.0	0.171			00	

[^17]
RECENT EXPLORATIONS ENCOURAGED BY THE SMITHSONIAN INSTITUTION.

Those who have paid attention to the Reports of the Smithsonian Institution are aware that one method by which that establishment has contributed to the advancement of science has been the encouragement of expeditions in different parts of this continent, for the collection of specimens in natural history, and for the observation of physical phenomena. The report recently distributed, which covers the proceedings of the Institution for the year 1861, contains some interesting information respecting the progress of several explorations.

Explorations in the Peninsula of California, by Mr. John Xan-tus.-Mr. Xantus, having previously distinguished himself as a collector in natural history, by the researches which he made from the summer of 1857 to the autumn of 1858 , in the neigh. borhood of Fort Tejon,-was placed by the superintendent of the Coast Survey, Prof. Bache, in charge of a tidal station at Cape St. Lucas. He reached the cape in April, 1859, and since that time he has made, says Prof. Baird, "collections which vie in thoroughness with those of Fort Tejon, and exceed them in number of species, embracing as they do marine as well as fresh water and land forms." In another connection, we learn from Prof. Baird, the following noteworthy facts. Besides the addition of a larger number of new animals to our fauna than has been made by one person in any single region of North America before, Mr. Xantus has shown that the most interesting relationship exists between the land species of the Cape and those of the region of the Gila, Upper Rio Grandé, and the southern Rocky Mountains. On the other hand, very few of the characteristic species of the coast of Upper California occur at the Cape; while, as far as observed, the same may be said of the strictly Mexican types. The entire Peninsula thus proves to be as specially related to North America in its land fauna as is Florida, although the number of peculiar species is much greater.

The marine fauna of Cape St. Lucas proves to be quite Panamaic in its general features-much more so than that of the opposite coast of Mexico.
The whole of the collection made by Mr. Xantus had not arrived in Washington when the report for 1861 was closed, but sixty boxes, some of large size, had been received. It is known that he has collected about twenty new birds, as many reptiles, large numbers of fishes, crustaceans, and other groups in proportion. The collection of shells is much larger than any ever made on the west coast, with the exception of that made by Mr. Reigen, forming the basis of the report on Mazatlan
shells, by Mr. Carpenter, and is superior to any other in the extent of the species preserved entire in alcohol.
In addition to the thorough exploration of the region immediately round Cape St. Lucas and the mountains of the vicinity, Mr. Xantus pushed his examinations many leagues up the coast, both on the ocean and gulf side, and also to a number of the neighboring islands, Socorro, Tres Marias, etc. He also made a visit to Mazatlan, and secured a valuable collection of birds. Mr. Xantus has now returned to the east, and the new species which he discovered are in process of elaboration and will shortly be published. Partial reports have already been made by Mr. Xantus on the Birds; on the Reptiles by Mr. Cope; on the Fishes by Mr. Gill; on the Insects by Dr. Le Conte; on the Crustacea and Asteriadæ by Mr. Stimpson; on the Ophiuridæ by Mr. Lyman; on the Myriapoda by Mr. Wood; on the Bats by Dr. Allen; on the Plants by Dr. Gray. The conchology is in the hands of Mr. P. P. Carpenter.
It is proposed, when all these examinations are completed, to combine their results in one general memoir on the Natural History of the Cape, which will then be as well known, or even better known than the extremity of the corresponding peninsula of Florida.
We copy, from Prof. Baird's report for 1861, the following statements respecting the other recent explorations in which the Smithsonian Institution has been concerned.

[^18]Mr. Kennicott expected to renain at the Yukon until August, 1861, then to start for La Pierre House and Fort Good Hope, possibly to Fort Simpson, to spend some months, and endeavor by early spring to reach Fort Anderson, near the inouth of Anderson river, (a stream between the Mackenzie and Coppermine rivers.) and in the barren grounds close to the Arctic ocean. At Fort Anderson he expected to collect largely of the skins and eggs of birds, rare manmals, de., and to return to Fort Simpson in the autumn, (of 1862,) then to arrive at Fort Chipewyan, on Lake Athabasca, by the spring of 1863, so as to get back to the United States by the winter of the same year.

For a notice of the continued aid to Mr. Kennicott, rendered by the gentlemen of the Hudson's Bay Company, I have to refer to the next division of my report.

Exploration of the Hudson Bay territory by officers of the Hudson Bay Company.-The gentlemen of many of the Iludson Bay Company's posts have largely extended their important contributions to science, referred to in the preceding report. A large proportion of the principal stations have thus furnished collections of specimens and meteorological observations of the highest value, which, taken in connexion with what Mr. Kennicott is doing, bid fair to make the Arctic natural history and physical geography of America as well known as that of the United States.

Pre-eminent among these valued collaborators of the Institution is Mr. Bernard R. Russ, chief factor of the Mackenzie River district, and resident at Furt Simpson. Reference was made in former reports to his contributions in previous years; those sent in 1861 are in no way behind the others, embracing nuinbers of skins of birds and mammals, some of great variety, insects, \&e., besides very large series of specimens illnstrating the manners and customs of the Esquimaux and varions Indian tribes. Mr. Ross has also deposited some relics of Sir John Franslin, consisting of a gun used by him in his first expedition, and a sword belonging to the last one, and obtained from the Esquinaux. Mr. Russ is at present engagel in a series of investigations upon the tribes of the north, to be published whenever sufficiently complete, and illustrated by numerous photographic drawings.
In making up his transmissions to the Institution, Mr. Ross has had the co operation of nearly all the gentlemen resilent at the different posts in his district, their contributions being of great value. Among them may be mentioned Mr. James Lockhart, Mr. William Hardisty, Mr. J. S. Onion, Mr. John Reed, Mr. N. Taylor, Mr. C. P. Gaudet, Mr. James Flett, Mr. A. McKenzie, Mr. A. Beaulien, \&c.

Second in magnitude only to those of Mr. Ross are the contributions of Mr. Lawrence Clanke, Jr., of Fort Rae, on Slave lake, consisting of many mammals, nearly complete sets of the water fowl, and other birds of the north side of the lake, with the eggs of many of them, such as the blark-throated diver, the trumpeter swan, \&e.

Other contributions have been received from Mr. R. Campbell, of Athabasca; Mr. James McKenzie, of Moose Factory; Mr. (xladmon, of Rupert House; Mr. Janes Anderson, (a) of Mingan; Mr. Geerge Barnaton, of Lake Superior ; and Mr. Connolly, of Rigolette. Mr. McKenzie
furnished a large box of birds of Hudson Bay, while from Mr. Barnston were received several collections of skins, and eggs of birds, new and rare mammals, insects, fish, \&c., of Lake Superior.

It may be proper to state in this connexion that the labors of Mr. Kennicott have been facilitated to the highest degree by the liberality of the Hudson Bay Company, as exercised by the directors in London, the executive officers in Montreal, (especially Mr. Edward Hopkins,) and all the gentlemen of the Company, in particular by Governor Mactavish, of Fort Garry, and Mr. Ross. In fact, without this aid the expense of Mr. Kennicott's exploration would be far beyond what the Institution could afford, even with the assistance received from others. Wherever the rules of the company would admit, no charge has been made for transportation of Mr. Kennicott and his supplies and collections, and he has been entertained as a guest wherever he has gone. No charge also was made on the collection sent from Moose Factory to London by the company's ship, and in every possible way this time-honored company has shown itself friendly and co-operative in the highest degree to the scientific oljects of the Institution.
Nurthwest Boundary Survey, under Mr. Archibald Campbell. ${ }^{3}$-This experlition has finally completed its labors in the field and returned to Washington, bringing rich results in physical science, as well as important collections in natural history. These, with what were previously sent hither from time to time, are in progress of elaboration, and reports are in preparation to be presented to Congress when completed.
It is with deep regret that I have to announce the death at sea, on his homeward voyage in February last, of Dr. C. B. Kenserly, the surgeon and naturalist of the Buundary Survey. Counected with this expedition from is beginning, in 1857 , and, in conjunction with Mr. Gibbs, making the principal portion of its collections, his report on them would have been one of great value. For many years prior to 1857, however, he had been in intimate relations with ihe Institution as a collaborator, first while resident at his home, at White Post, Clark county, Virginia, then in 1853, as surgeon and naturalist to the Pacific Railroad Survey of Captain Whipple along the 3jth parallel, then in the same relatiouship to the Mexican Boundary Survey, under Colunel Einory, in 1855. No one of the gentlemen who have labored so zealously to extend a knowledge of the natural history of the west within the last ten or twelve years has been more successful than Dr. Kennerly. Many new species have been first described by himself or from his collections, while his contributions to the biography of American animals have been of the bighest interest.
REPORT OF THE SUPERINTENDENT OF THE U. S. COAST SURVEY FOR 1860.
The promise of a paper illustrating the recent progress of the U. S. Coast Survey, has led us to postpone any notice of the report of the Superintendent for 1860 , until it is almost time for us to expect the publication of the report for 1861. But as this

[^19]Journal reaches many who do not see the Superintendent's elaborate review of the operations of the survey, we here transcribe those paragraphs which exhibit the chief geographical results of the year in question. The importance of the survey has never been more apparent than it is at present. The wisdom, energy and science of the Superintendent are more and more evinced as the work of successive years is made known to the public.

General Statement of Progress.-The Atlantic triangulation, as the accompanying sketch (No.37) shows, is continuous along the coast of twelve States from Pasamaquoddy to the boundary of North and South Carolina, a stretch of more than twelve hundred miles, measured in the most general way. With an interval of some fifty-four miles, which is diminished every year by the party at work there, the triangulation is again continuous over the coast of South Carolina to Cumberland sound, on the coast of Georgia, two hundred and eighty miles. Then there is an interval of twenty-seven miles, which this season will fill up to the St. John's river, Florida; and the triangles are again continuous to Matanzas inlet, south of St. Augustine. Two parties are working, from Matanzas inlet south, and from Indian river inlet north, to fill up that interval, to which a third will next season be added, proceeding north from Cape Florida. Another season or two at most will fill up the whole space from Cape Florida to Cape Sable, and along the keys from Key Biscayne to Key West and the Marquesas. Charlotte harbor is triangulated, and the work exteads from Anclote key to Cedar keys, ninety miles; from Ocilla river, by St. Mark's and Apalachicola, to Cape San Blas, ninety-five miles; over St. Andrews's bay; includes East bay, Maria de Galvez, Escambia, and Pensacola bays; touches the entrance of Perdido bay ; extends from Mobile bay one hundred and fifty miles to Lake Pontchartrain, and over Chandeleur and part of Isle au Breton sound to the delta of the Mississippi, the greater part of which it now includes; over Isle Dernière and Caillou bay ; over Atchafalaya and Côte Blanche bays; and from East bay (Galveston) two hundred and fifteen miles, passing over Matagorda, Aransas, and Corpus Christi bays and their dependencies, to within one hundred and fifteen miles of the Rio Grande.

The progress on the western coast has not been less satisfactory, taking the newness of the survey there into consideration. It has included all the harbors of California and Oregon, and many of those of Washington Territory, especially those of Washington sound, Puget's sound, and Admiralty inlet, the straits of Haro and Rosario, and part of the Gulf of Georgia, in the northwest.
Having given, in my letter of last year, a statement of the progress of the astronomical and magnetic work, I need not repeat it here. The longitude problem has been steadily kept in view, and the occurrence of the total solar eclipse, the path of which crossed from the northwestern part of the United States, through Washington Territory and the British possessions, leaving the continent on the coast of Labrador, has been made available for the correction of longitudes and of the lunar tables by parties sent out for the purpose in connection with those of other departments of the government, and in correspondence with the great aso tronomical expeditions of Europe.

The number of geographical determinations published by the Coast Survey, exclusive of those made within the past year, is seven thousand one hundred and seventy-eight ; the magnetic variations given are upwards of two hundred; the tidal constants for harbors and coasts, one hundred and ten ; and the maps and charts of harbors, bays, inlets, sounds, shoals, \&c., drawn, engraved, and published, three hundred, exclusive of progress sketches and diagrams."

Maps and Charts.-"Within the past year, one hundred and eleven sheets have been worked on in the Drawing Division. Of this number, nine are finished charts, thirty-nine are coast maps and charts, twentyone finished maps of special localities, sixteen preliminary, and two of the number are comparative charts. These are exclusive of twenty-four sketches of various kinds. Fifty-six of the sheets referred to have been completed, and fifty-five are in progress. Of those completed, twelve are maps and charts of the first class, and an equal number charts of special localities. Eight of the number are preliminary charts and two comparative charts; and the remaining twenty are sketches, amongst which are included those showing the field progress.

In the Engraving Division, eight first class maps and new editions of two have been completed during the year, and twenty-four are in progress. Of this class twenty-two were commenced in previous years and twelve within the present year. In addition, seventeen plates have been engraved of second class charts and sketches, and five plates of that class are yet in hand. This gives a total of twenty-seven plates completed and twenty-nine in progress, or of fifty-six plates engraved or engraving within the year.
The complete list, giving the titles of these maps and charts, is appended to the report of the assistant in charge of the office, and a general list of all that have been engraved up to the present date also accompanies it, (Appendix No. 19). The complete list includes three hundred and eleven titles, of which sixty-eight are of first class or finished maps. The total given is exclusive of seventeen plates of progress sketches.

Developments and discoveries.-During the year, in twenty localities important developments and discoveries were made, including the determination of various reefs and ledges, investigation of channels and currents, \&c., with other like services to navigation.

Special Surveys.-Three special surveys, at the expense of local authorities, have been conducted during the year, viz: at Mobile, to ascertain the changes and condition of the bay; at Boston, for a like purpose; and on the peninsular of Cape Cod, to determine the feasibility of a canal connecting Buzzard's Bay and Cape Cod Bay.
Tidal Stations.-Six tidal stations have been maintained on the Atlantic coast, three on the Pacific, and two on the Gulf.
Measurements of heights.-In conjunction with the Smithsonian Institution, the Superintendent remarks, we have been engaged for some years in endeavoring to obtain all the data existing for heights in North America. During the past year a new circular has been issued to the engineers, presidents and superintendents of railroads, and to geologists, explorers, and other men of science, to obtain additional results, and with much success. To the entire number issued, two hundred and fifty re-
plies have been received. These furnish data for the height above tide of about thirteen thousand points, of which a large portion has been contributed by the explurations for routes for the l'acific railroad, and a considerable number by other surveys of the Government. The material received has oeen mapped by Mr. W. L. Nicholson, who is charged with the details of the work, so as to indicate whether the data were likely to suffice for the construction of contour lines of the surface of the continent, and to show where they would be deficient for that purpose. Sources of information bave been pointed out, of which we have not yet been fully able to avail ourselves, but the work has, in a general way, made good progress, and will be earnestly prosecuted."

Besides information on these various topics, the report contains an account of the expedition to Labrador, to observe the Solar Eclipse of July 18, Prof. Bache's Lecture on the Results of the Gulf Stream Explorations, a discussion of magnetic declination or variation, and the usual details respecting the apparatus and personnel of the establishment.

DESIDERATA IN EAST AFRICAN EXPLORATION.

The following Note was recently addressed to the Bombay Geographical Suciety, by a Committee of the Royal Geographical Society of London, in reply to certain inquiries.

[^20] sources to direct new travellers to that same district.

Proceeding northward, the itineraries of native traders supply enough information for the present rude wants of African geography, of the country between Quiloa and Nyassa; and we have received slight but definite knowledge of the same through Röscher's ill-fated expeditiou, followed up as it was to some degree by Baron von der Decken.

Taking yet another step, we arrive at the track of Burton and Speke, who have certainly left nothing of primary importance undescribed. The fourth and last section of known country is to the eastward of Mombas, whence Baron von der Decken (accompanied by the English geologist, Mr. Thornton) has lately travelled to Kilimanjaro, and where be still proposes to travel.
"Thus there is no urgent call for a new expedition that should leave the coast of Africa between the Zambesi and Mombas; but Eastern Africa is almost untouched between Mombas and the Red Sea. The field that here awaits new explorations is too vast to be exhausted by any single expedition. Three distinct undertakings may be specified.
"The first is to ascend the Juba, the Ozi, and other rivers, as far as they are navigable. They have all been visited by slavers, and opposition might be experienced on entering them, partly from that cause and
partly owing to hostilities between the Somauli and the Massai ; but no serious obstruction need be apprehended by a well equipped party, large enough to command respect.
"The second and mosi difficult would be a land exploration through the Somauli. Their language is an obstacle to a traveller from the side of Zanzibar, where interpreters cannot be engaged ; while the religious and the political fanaticism of their northern tribes is an equal bar to travellers from Aden, where a suitable expeditionary party might, perhaps, be collected. The most promising course would be to land at Mogadoxo, and to reside there some months, learning the language and acquiring a hold on the good will of the people, before attempting further progress.
"Additional interest is given to this exploration by the fact that Lieut.Colonel Rigby, 'U. B. M.'s Consul at Zanzibar, is firmly persuaded that some Englishmen are now in captivity among the Somaulis; for a report to that effect has been confirmed by different witnesses. He believes them to be a part of the erew or passengers of an East Indiaman, supposed to have been wrecked near the Mauritius in 1855, but whose cargo, or rather a number of iniscellaneuus effects resembling those known to have been carried ly her, are come into the possession of the Somaulis. An exploring party would find in this report an intelligible pretext for their presence in the land, and a stimulating object for their earlier movements.
"The last course would be to adopt Mombas as the head-quarters, and thence to pass into the interior by a route to the north of that travelled by Baron von der Decken. The country behind Mombas is a less unbealthy residence than other parts of the coast; and an expeditionary party might be organized there at leisure, with help from Zanzibar. The Rev. Mr. Krapf resides in its neighborhood; the natives are accustomed to Europeans; and the traders mostly speak Hindustani. It wonld be impossible, at the present time, to plan an exploration in Africa that would afford hope of a more interesting discovery than one leading from Mombas round the northern flank of Kenia, and thence onward toward Gondokoro."

> ArT. XXVI.- On the existence of a Mohawk-valley Glacier in the Glacial Epoch; by James D. Dana.

TIIE Mohawk river extends in a nearly east-and-west course (averaging about east-by-south,) across the centre of the State of New York, and connects with the Hudson river near Troy, eight miles above Albany. It commences its flow eastward at Rome, West of Oneida lake, the waters above this coming from the Black river country, on the north. The whole distance from Rome to Albany, in an air line, is about 100 miles; the descent to the Hudson is 425 feet-equivalent to $4 \frac{1}{4}$ feet to the mile. 78 feet of the descent, however, is at Cohoes falls, a mile from its
mouth, so that, for the rest of its course, the average descent is a little less than $3 \frac{1}{2}$ feet per mile.

The valley is a depression between the northern and southern plateaus of the State, and has its highest border on the souththe general height of the northern plateau being from 1000 to 1500 feet, and that of the southern plateau from 1500 to 2500 feet. It is not a synclinal valley; neither is it a valley of denudation, although, beyond doubt, greatly deepened and extended by the action of waters; but it is what the writer has styled a geoclinal valley, that is, one formed by the uplift of the crust of the earth on either side, (or else by the depression of the crust along its course,) without any conformity to its slopes in the dip of the enclosing rocks. ${ }^{1}$ These enclosing rocks of the Mohawk depression are in fact, on one side, partly (above a height of a few hundred feet) the folded and crystallized Azoic, and, on the other, the Palæozoic rocks which were uplifted at a much later period.

About midway between Albany and Rome, the valley-depression, taking only the part south of the Mohawk, measures, at an elevation of 1500 feet, ten or twelve miles in breadth. But just east of this in Schoharie county, it opens southward along the valley of the Schoharie creek, the principal southern tributary of the Mohawk. This Schoharie valley is bounded, on the west, by the northwestern prolongation of the Catskill Mountains, having here a height of 2000 to 2600 feet above the sea level; on the east, by a spur from the same mountains, called the Hellebark mountains, which increases in height southwardly from 1000 to 2000 feet, and at whose eastern foot, in Albany county, lie the Helderberg hills, 800 to 1200 feet high above the sea-level. The principal heights of the Catskills, between 3400 and 4000 feet in altitude, are situated to the south, not far from the junction of the two ridges. The range of the Catskills has a height, at the Mountain House, according to Guyot's measurements, of 2235 feet above the sea-level. The true watershed lies a little to the south and west of this, and is made by Guyot 1970 feet in elevation; and from it, flow waters northwestward to the Schoharie and eastward to the Hudson.

On the north side of the Mohawk, land 1500 feet in elevation is not met with except at very distant points from the river-as in the Black river region, towards Lake Ontario, which has this height, and in the Adirondack region, towards Lake Champlain, whose highest peak, Mt. Marcy, runs up to 5379 feet.

The Mohawk valley is continued westward in the depression of Oneida lake. The depression continues on farther west, just south of Lake Ontario. The Ridge road, as it is called, having

[^21]a height of 631 feet above the sea-level, separates this depression from that of the lake; but the ridge is regarded as only a former beach of the lake. ${ }^{2}$
The ridges of Schoharie county form the western boundary of the great Hudson valley depression in that latitude-the eastern making the boundary, if we reckon only to a height of 1000 to 1500 feet, but the western, through the larger part of Schoharie county, if to a height of 2000 feet.
The preceding facts are mentioned, partly in elucidation of the following observations on glacier-markings along the Mohawk valley, and partly to show what course investigation must take in order to complete our knowledge of the great glaciers of the region in the Drift epoch.
The subject of river-terraces, or stratified Post-tertiary deposits, on the Mohawk and its tributaries, is adso one of great interest in this connection, and merits a thorough examination. The deposits have some relation to the Drift, as they belong to the epoch immediately following-the Champlain epoch,-and consist in part, at least, of material that had been transported by the ice. They are of unusual extent on the East and West Canada creeks and other northern tributaries of the Mohawk.

The town of Cherry Valley is situated on the northern border of the southern of the New York plateaus. It is hence near the southern margin of the Mohawk valley, being about fifteen miles in a straight line from the river; at the same time, it is on one of the tributaries of the Susquehannah river, the general course of whose affluents is southward. Observations on the glacial scratches of this region have, therefore, a peculiar interest. The following are the results of important investigations on this subject, made by the Rev. William B. Dwight, as recently communicated to the writer. He states in his letter (dated Englewood, N. J., as follows.
"As far as I have observed the glacial seratches of the State of New York, they do not conform in their course so much to the particular courses of the valleys in which they may be found, as they do to the trend of the general system of valleys.
"At Cherry Valley, there are two distinct sets of scratches nearly at right angles to each other, and none between these two. Both of these sets appear in the valley itself. Neither, however,

[^22]Ay. Jocr. Sci.-SECOND SEries, Vou. XXXV, No. 104.-March, 1863.
exactly conforms to the present trend of the valley, as shown on the accompanying map. The line CY corresponds to the trend of the valley, and MK to that of the Mohawk vallev; and the two sets of lines, NS and WE, correspond to the direction of
 Cherry Valley; \mathbf{H}, Lemlity of Glacier scratches, half a mile below Cherry Valley; ${ }^{G}$, filunull rond to Fort Plain, north of Clierry Valley; \mathbf{L}, Oisego Jake, heall waters of surquelunuul of Ns, Course of hurth-ind-soulh system of scrutches ; WE, Course of east-and-west bysteul of scratclies; MK, Course of the Molawk Valley
the respective glacier courses. The direction of the former sets of these scratehes is about north-northeast and soulh-southwesh, varying to north-by-east and soulh-by-west, and that of the latter about east-by-north and west-by-south.
"The Onondaga limestone of the region is, in many places, (as between the village and Juidd's Falls) highly polished and deeply scratched, the scratches being mostly of the southerly system of courses. The same system is well exhibited on the side of the road leading to Fort Plain (at G), one and a half
miles north of Cherry Valley; and there is one long scratch in the cellar of the Cherry Valley Academy (D).
"Neither the scratches of the road-side, on the way to Fort Plain, nor that under the Academy, correspond with the general course of the valley, or even with its particular course at the locality of the scratches. They seem in every case to run somewhat into the hill-side.
"On the top of 'Burned Hill,' (B) on the west side of Cberry Valley, 400 feet above it, and 1800 feet above the sea-level, the rocky surface, here the Hamilton sandstone, wherever laid bare, over an area of several hundred acres, is more or less planed and scratched, and the scratches are of the easterly system, the course being east-by-north. Half a mile to a mile below Cherry Valley (F), there is another good locality of the east-by-morth scratches. These easterly scratches have no apparent connection with any valley in the region.
"A About a mile above Cobbles-kill Centre, a few miles east of Cherry Valley, on the Sharon road, there are scratches on the top of' a hill of Corniferous limestone, having a north-by-west and soulh-by-east course. They have no relation in direction to Cob-bles-kill valley, as they cross it nearly at right angles, and are evidently part of the same north-and-south system observed about Cherry Valley." [The Cobbles-kill flows eastward into the Schoharie, and not into the Susquehannah tributaries; but the place where these scratches occur is still near the summit of the plateau. All the above courses are compass-courses, requiring a correction of 6° for westerly variation.]
Mr. Dwight continues:-
"The best conclusions that I can gather from these facts is, that there are two systems of scratches in that part of the State, at right angles, nearly, to each other; that one system corresponds with the general direction of the great valleys running southerly, (those of the principal Susquehannah tributaries, thoogh the correspondence is only one of general courses,) and that the other syslem corresponds with the direction of the Mohawk valley, although, where I have observed it, there is no modern valley in the immediate vicinity to correspond to it."
These conclusions of Mr. Diwight appear to be altogether just. The east-und-uest courses are well explained by reference to the Mohawk valley; while the north. amd-sondh system conforms to the slope of the Susquehannah tributaries, though possibly connected with a grander movement reaching from the far north across the Mohawk valley.
The Mohawk vallev needs to be studied for a full elucidation of the subject. But there are some confirmatory facts stated by Tanuxern, who, as long ago as 1842 , announced essentially the same general conclusion, as the result of his observations. ${ }^{3}$

[^23]In Montgomery county, near Amsterdam (on the Mohawk), this able geologist noted scratches at various quarries and localities on the Trenton limestone, which were nearly east-and-west in direction,-agreeing thus, as he remarks, with the course of the Mohawk valley. Again, in the same county, near Sprakers, on the north side of the Nose, the scratches conform, as he states, to the valley of the Mohawk. North-and-south scratches occur in the vicinity of this valley according to Vanuxem; but, at the places observed by him, they conform to one, or another, of the minor tributaries. In Oneida county, between Utica and New Hartford, there are north-and-south scratches on the Oneida conglomerate, which conform to the Sauquoit valley; and on the west of the Oriskany creek, north of Hamilton College, the same system occurs, and corresponds with the Oriskany valley. Vanuxem concludes, from his observations, that the direction of the scratches corresponds with the direction of the valley in which they occur. ${ }^{4}$

The question, whether these drift-scratches and other phenomena are a result of glaciers, or icebergs, the writer has discussed in his Geological Manual, and need not take up here.

The absence of well characterized moraines from the most of the country will not be deemed remarkable by those who consider the length of time which has elapsed since the Glacial epoch ended, and the power of running water in wearing to powder loose stones of whatever hardness, and especially those derived from most sedimentary strata.

Again, moraines are always comparatively small where the glacier has no towering peaks or cliffs about its course, to afford avalanches of ice and stones. The glacier of the Mohawk, in order to make scratches about Cherry Valley, 1800 feet above the sea-level must have reached to a height of at least 2000 feet; and with this level, if the region had anything like its present configuration, it would have buried a large part of the southern plateau, while its northern border would have had no limit in New York State, except about the Adirondack Mountains, 70 or 75 miles distant.

- Mr. Vanuxem observes, in concluding his remarks on this subject, that the glaeier-origin of the scratches harmonizes with the fact that the scratched surfaces are found at no regular or defined elevations ; that the surfaces are too much worth, and extend over too great an extent of the same rock, to have been caused by icebergs, especially, as the lines are always straight ones, and the motion of icebergs is oscillatory and rotatory. The direction also of the scratches is in accordance with existing valleys, and hence local, agreeing with glaciers in both respects." He adds further, with his usual discrimination, "As matter of fact from actual observation, the glacier-theory will have preference of the two, especially, should the term local ice be substituted, being a more general expression:-glaciers having their origin near the line where perpetual snow ceases, whereas local ice embraces the same, as well as all bodies of solidified water, be the cause of the reduction of temperature what it may, whether permanent or transient, that has given rise to it." p. 24%.

On the Catskills, the glacier scratches reach to a height of at least 2235 feet-the elevation at the Mountain House, and this implies the existence of ice and snow to a height of at least 2600 feet; and if the snow had this height over the whole southern plateau, it would have almost completely buried it, with the exception of the higher Catskill summits. ${ }^{\text {. }}$
Without more extended observation, it is not possible to say whether the east-and-west, or the north-and-south, scratches of the Cherry Valley region are of earlier date. If the former, then, beyond question, the north-and-south are due to a Susquehannah glacier ; but if the latter, they may have resulted, as already intimated, from a great continental glacier spreading south ward from the remote north, of which the Mohawk glacier was a final portion that became partly outlined and independent only in the later part of the Glacial epoch. The fact of the greater average height of the southern plateau than the northern adds to the difficulties of arriving, at present, at sure conclusions; and the uncertainties, arising from our ignorance of the changes in the topography of the country through erosion, during the time which has since elapsed, still further enhance these difficulties. But, whatever the uncertainties, there is sufficient justness in the views of Vanuxem, Dwight and others, as to a frequent conformity between the direction of scratches and of the valleys, (the greater valleys,) to suggest the right method of investigation, and indicate the line in which a large part of the truth lies.
The facts gathered over much of New England appear to point directly to a Connecticut-valley glacier; and those between the Green Mountains and the Catskills, to a Hudson-valley glacier; and others, in the vicinity of Penobscot Bay, recently studied by Mr. De Laski, to a Penobscot-bay glacier, as this observer, after extensive research, has concluded. A Mohawkvalley glacier may, with little if any doubt, be added to the number already defined, and probably, also, a Susquehannah. valley glacier.

[^24]Art. XXVII.-On certain Changes in Wine; by J. Nicklès. ${ }^{1}$
Among the different substances contained in wine, one of the most characteristic and constant, in connection with alcohol and water, is the bitartrate of potassa. Since a wine will not be accepted as a natural product if lacks this salt, it is well known that the manuficturers are always careful to add the bitartrate of potassa to spurious wine. Nothing has ever changed this opinion, although numerous chemical researches have been made every year with the different wines produced in France. Natural wine always contains a proportion more or less appreciable of crean of tartar (bitartrate of potassa), if the wine has not undergone any change. Through recent investigations made at Lyons and at Montpellier it has been discovered that the bitartrate of potassa may be wanting in wines which have undergone decomposition, especially in such wine as has become bitter. Wine affected in this manner is known in France under the name of "changed wine" (vin tourné). It is very disagrecable to the taste, and gives by distillation volatile acids in much greater quantity than are furnished by normal wine.

It has also been remarked that "changed wine" contains more potassa than wine of the same province which has not been spoiled. But sugar and glycerine are not more abundant in such wine; on the contrary there appears lactic acid, which depends upon sugar for its production, and also another acid with the formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$, which is the formula for propionic acid, but which, as we shall see below, is here applicable to an isomeric acid.

It was at first thought that this volatile acid was derived from glycerine, which is normally contained in wine. But its nrigin is now explained, by a fact which we discovered in 1846 and published in a memoir inserted in the Comptes Renclus of the Academy of Sciences (vol. xxi, p. 285) entitled, "Sur un acide particulier produit par la fermeniation du lartre brut." This acid we call butyro-acelic acil because of the facility with which it may be transformed into acetic acid and into butyric acid, and also because it is possible to cffect the synthesis of this acid, as we have formerly shown in the Journal de Pharmacie et de Chimie, xxxiii, p. 351 . We shall refer to this synthesis below.

The production of an acid $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}$ from the butyric acid or from the acetic acid may be rendered intelligible by means of the following equation:

$$
\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}+\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}=\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{8}: \text { and } \frac{\mathrm{C}_{12} \mathrm{I}_{12} \mathrm{O}_{8}}{2}=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{4}\left({ }^{2}\right)
$$

[Acetic acid + butyric acid.]
[Butyro-acetic acid.]
${ }^{2}$ Communicated to this Journal by the author.

Although this acid may arise from fermentation of bitartrate of potassa, it has never, for a wonder, been found in wine which has lost its tartaric acid by means of adulteration. This fact confirms the observation, made long since in the practice of wine making, viz: that when the wine became changed in this manner, all the crude tartar which had settled at the bottom of the casks disappeared little by little, an observation which confirms this other fact demonstrated by chemistry, to wit, that "changed wine" contains more potassa than is found in normal wine. This is evidently due to bitartrate of potassa originally deposited in the bottom of the cask, which by redissolving and fermentation has furnished this excess of potassa now dissolved by the aid of the lactic acid and of the butyro-acetic acid produced during fermentation.

The "turning" of wine which is characterized by the designation changed wine (vin tourné), and which follows when the wine becomes bitter, consists essentially in a transformation of sugar into lactic acid, and tartaric acid into an acid containing the elements of acetic and butyric acids, that is to say of butyro-acetic acid. Under the influence of this change the metamorphism of tartaric acid takes place not only when it is free and in solution, but even when it is combined with potassa and is deposited at the bottom of the cask in the condition of an insoluble bitartrate.
${ }^{2}$ The notation of Gerhardt shows clearly the difference hetween the two acids
called propionic and butyroseetic. Take for example the salt of baryta, the crys-
talline furm of which is identical for the two acids (Rammelsberg, hrystallograph-
iveche Chemie, iii, p. 161).

[^25]Art. XXVIII.-Observations on the Sphagna of New Jersey, with Description of a New Species; by C. F. Austin, Curator of Dr. Torrey's Herbarium, Columbia College.

The region in New Jersey known as "The Pines" is literally a region of Sphagna. Nine of the ten species and most of the varieties noticed in this paper were collected there by the writer in October last, in the vicinity of Manchester in Ocean county, within the radius of less than half a mile,-the fruits of a few hours search. One of them, Sphagnum Sullivantianum, is new to science; another, S. molluscum, to the American Continent.

The bottoms of the ponds in this region are covered to a great extent (often to the exclusion of all other plants which usually grow in such places) with Sphagnum cuspidatum var. Torreyanum, S. macrophyllum, large forms of S. Pylosii and with S. Sullivantionum. They are entirely submerged (when at a depth of more than three or four feet), or have their tips just peeping from the surface of the water, and were all brought up together on the boat's oar in the pond at Manchester, from a depth of at least six feet.

The more or less inundated marshes on the borders of the ponds are filled with Sphagnum cuspidatum, running into the var. recurvum in the cedar swamps, where this variety abounds, and into the var. plumosum in shallow water,-and this appears to pass regularly into the var. Torreyanum in deep water. The forms of this species which run into the var. recurvum have a slender state of S. cymbifolium abundantly, and of S. molluscum sparingly, mixed with them. The common forms of S. acutifolium and S. cymbifolium form deep extensive turfs in the cran. berry bogs,-these places seeming to be made up of their remains.

In sandy, grassy bogs, forming matted masses, S. cyclophyllum and S. Pyloesii are abundant. S. rigidum, var. humile, occurs sparingly on the dry margins of the ponds.
Considering the limited time and space over which the search extended, and the number of species collected, it is reasonable to suppose that others may yet be found in the same locality. ${ }^{1}$

The following brief synopsis includes, I believe, all the Sphagna that have thus far been found in New Jersey. ${ }^{\text {. }}$

1. Sphagnum acutifolium Ehrh.-Fruits abundantly on the borders of sandy swamps, where it is of rather a low stature; the taller forms which grow in peat bogs appear to produce only male flowers; color below whitish; above, brownish tinged with red, often changing to bright

[^26]purple in drying. A cinerous-green, rather loosely spreading, sterile form is found in miry swamps.
2. Spr. Sullivantianum (sp. nov.) : Speciosum robustum submersum vel fluitans: caulis pedalis et ultra firmus simplex vel semel divisus, strato corticali triplici et quadruplici e cellulis hyalinis spirali-fibrillosis porosis formato; ramuli $3-5$-fasciculati, quorum 2-3 recurvo-patentes densi julaceo-foliosi basi attenuati, 1-3 deflexi cauli adpressi graciliores laxius foliosi, cellulis corticalibus spiraliter fibrillosis haud porosis in strato duplici dispositis: folia caulina obovato-quadrata toto margine fimbriata, cellulis sine poris et fibrillis; folia ramulorum patulorum inferiora parvula semicirculari-ovata, cætera multo majora, media orbiculata cochleariformiconcava, terminalia elongato-ovata laxiuscula, omnia arcte imbricantia angustissime marginata, basi unguiculata, dorso ad apicem cucullatam papilloso, toto ambitu (foliis terminalibus exceptis) eleganter fimbriata, rete inferne elongato-rhomboideum apicem versus rhombeum, cellulis hyalinis fibrillosis et poris majusculis instructis, cellulis chlorophyllosis ad concavam folii faciem positis inque sectione transversali triangularibus: fructus et tlores ignoti.-Manchester Pond, Ocean Co., New Jersey; collected October, 1862.

This fine species has the appearance of an overgrown state of $S p h$. cymbifolium, and possesses in a superlative degree most of the distinctive characters of that species, but is at once distinguished by its clavate branches with elegantly fringed leaves which are very abruplly contracted beloro into a claw-like base, and have the back at the apex conspicuously dark-colored, with cross-section as in S.acutifolium. The stem-leaves are also quite distinct, beng usually nearly quadrate, but little if any longer than broad, and copiously fringed.
3. Sph. cymbifolius, Dill.-Allt he specimens that I have examined, both from this country and Europe, have the stem-leaves reticulated on the border above,-the network often broad and extending slightly beyond the margin, frequently giving the leaf a strongly fringed appearance, -and have the lower branch-leaves slightly spinulose-toothed; spinulæ short, distant, erect-appressed, somewhat club-shaped, with the apex slighty recurved. The following are the forms that I have observed in New Jersey, precisely the same as are found in Europe:-
α. Densely cespitose, low or tall, mostly of a pale reddish-brown color; stems erect; branches short, thick, straightish, remote or crowded; the loosely imbricated or spreading leaves straight on the back. - (β. condensatum C. Müll. Synop. 1, p. 92.)-Peat bogs and borders of sandy swamps ; fruits occasionally; runs into
β. More robust, rather loosely cespitose, mostly of a pale glaucousgreen color; stems erectish; branches attenuated, recurved, the lower rather distant, the upper crowded; stem leaves with the cells usually destitute of pores and spiral fibres; branch-leaves slightly recurved above the middle. (α. pycnocludum C. Müll. Synoz). 1, p. 92).-Borders of smamps and in pastures. Very rave in fruit; runs into
γ. Loosely spreading and of a dark bluish-green color; stems zigzag; branches less crowded above,-the leaves acuininate, the upper half someWhat tubular and recurved-squarrulose. (γ. squarrulosum C. Müll. Synop. 1, p. 92).-Miry swamps partly inundated ; sterile.
Ahe Jocr. Sci.-Second Series, Vol. XXXV, No. 104.-Marce, 1863.
4. Spa. cyclophyllum, Sull. \& Lesqx.-Foliis perichætalibus ut creteris capsulam globosam includentibus.-Apparently a very distinct species; stem and branch-leaves much larger than in any other, often 2 lines or more broad by $2 \frac{1}{2}-3$ lines long, with a clasping-perfoliate, constricted, distinctly heart-shaped base.-Grassy bogs about Manchester. I have seen dwarf forms of this species from Quaker Bridge distributed as " S. sedoides Brid."
5. Sph. Pylesir, Brid.-Also apparently a very distinct species, and, with the preceding (with which it grows, forming thin strata), very distinct from S. sedoides.-Color blackish-green ; stems 6 inches long with few short recurved-spreading brauches. Runs into a large dusky-black form in the water with stems $1-2$ feet long.
6. Sph. rigidum, Schimp., var. humile. (S. humile Schimp.)-Stems low, 1 inch high, very compact; capsule nearly included.-Dry margin of the pond at Manchester.
7. Sph. subsecundum, Nees \& Hornsch.- Rather loosely cespitose, 3-5 inches high; color above, a beautiful golden-brown, below, whitish; branches in fuurs and fives, somewhat crowded, thickish towards the base, somewhat attenuated, more or less contorted and of unequal lengths; branch-leaves ovate, acuminate, unequally truncate and about 5 -toothed at the apex, varying from closely imbricated to spreading, mostly recurved, -some are much so, while others on the same branch are straight or even slightly incurved; cells of leaves larger than in any specimens that I lare seen from other localities,-with numerous small pores.-Meadows and pastures in springy places; sterile.-A form growing in sunken holes, in woods partly inundated, is of a pale green color; stems 6-8 inches long, with rather distant branches arranged in fives and sixes; perichæth lateral. At a casual glance it might be mistaken for either S. cymbifoliun or S. acutifolium, but particularly for S. cuspidatum ; but it is at once distinguished from the first, with which it grows, by its smaller size and acute branch-leaves; from the second by its thickish branches with the leaves irregularly imbricated and recurved; from the last it is very difficult to distinguish it when fresh, but in a dry state this is readily done, for it then has the leaves straight (not wavy) on the margin; male plant very different from the female, as foliows:

Compactly cespitose, $2-4$ inches high; color brownish-green tinged with yellow; branches very short and thick, ovate-lanceolate, very acute, nearly straight, the deflexed ones are closely appressed beyond, but not at, the tumid base; branch-leaves large, orbicular-orate, rounded at the 5-12 touthed apex, very compactly imbricated,-the cells mostly withont pores.-Very difficult to distinguish from small forms of Sph. cymbifolium, var. α, with which it grows. Bogs and wet meadows: Bergen C 0 .
8. Sph. molluscem, Bruch. - Was found mixed with small firms of Syh. cuspidatum from about Manchester, and detected by its elliptical, never cuspidate nor recurvel, branch-leaves, which are not wavy on the margin when dry; those towards the apex of the branches are smaller than the rest, but of the same outline (not narrowed as in most species). Resemiles S. tabulare Sull., but is a more slender plant, with cross-section of leaf as in S. cuspidatum.
9. Sph. cuspidatum, Ehrh.-Rather loosely cespitose; large and robust
or small and weak; color whitish and greenish; stems erect, or spreading, 5-8 inches long; branches thickish, none closely appressed; stem and perichrotal leaves not fibrillose; the latter crowded at the base of the lateral perichæth, often including the capsule; branch-leaves rather large, lanceolate acuminate, broadly margined.- Kuns into the var. plumosum. -In an inundated peat bog in Bergen Co., there occurs a slender palegreen form with loosely spreading and fibrillose perichætal-leaves, which seems to connect this and the var. plumosum with var. laxifolium.
Var. recurvum. (S. recurvum Beauv.).-Densely cespitose, robust; color pale straw-yellow; stems erect, 5 or 6 inches high; branches in fours and fives, the 2 spreading ones very uniformly recurved, the 2 or 3 deflexed ones closely appressed; branch-leaves smali, oblong-lanceolate, strongly recurved and conspicuously arranged in 5 straight ranks. Perichaeth terminal. Runs into the preceding or typical torm.-Cedar swamps about Manchester. -There is a deep green, loosely cespitose form in Bergen Co., which seems to connect this var. with the var. laxifolium.

Var. plumosem.-Larger than the preceding and much more attenuated in all its parts. Sometimes this variety is found scattered and creeping on the banks of the small streams in the cedar swamps, when it is much condensed, with short, very thick, contorted and much crowded branches, giving to the stems an obese appearance, suggestive of huge caterpillars. -Shallow water about Manchester.- Very rare in fruit; runs insensibly into

Var. Torreyanem. (S.Torreyanum Sull., in Memoirs Amer. Acad. Arts and Sciences, new series, iv, p. 174). -This fine variety (it appears to be nothing more) and the var. recurvum seem to represent the two extremes of this species, between which there are all manner of intermediate forms.-Deep water about Manchester.-Probably does not fruit except whell it occurs in water holes that are partially exsiccated during the late summer and early fall months.

Var. laxifolius. (S. laxifolium C. Müll. Synop. 1, p. 97).-Nearly as large as the last and resembling it except in color, which is deep green, stem and perichætal leaves fibrillose except the margins below, the latter lonsely spreading; commonly sterile, but I have a number of fine fruiting specimens from partially exsiccated water holes, in low sandy woods in Bergen C o., where this variety is common.
10. Spa. macrophynum, Bernhardi.--This species is often found floating free, and has much the appearance of the var. Torreyanum of the preceding one, and camnot be distinguished from then in the water except by its blackish stem and leaves. It is very apt to be mistaken for a decaying state of that plant; for, owing to the complete absence of the elastic spiral fibre in the utricles of the leaves, it has a characteristic dead appearance when removed from the water, and goes into a shapeless mans, - feels as if rotten, and resumes its former fine symmetrical outline but slowly, if again restored to its native element.-Abundant in the ponds in Ocean Co., where only the large sterile form was found.
New York, January, 1863.

Art. XXIX.-Foreign Correspondence.

1. On the Science of the Internutional Exhibition. In a letter from O.C. Marse, B. A., to Prof. Silliman, dated London, Nov. 25, 1862.

The International Exhibition, which has just closed, contained many objects of considerable scientific interest; and, in accordance with your request, I shall endeavor to give a short account of those which seemed most worthy of notice.

In every part of the Exhibition the practical application of the results of scientific research, rather than the results themselves, or the methods by which they had been accomplished, were especially selected for illustration. Hence, many of the classes, under which the various articles exhibited were arranged, contained few if any objects that need here be mentioned. In the present communication I shall notice briefly the principal points of Class I, which embraced Mining, Mineral products, and Metallurgy, and without doubt exhibited a fuiler and more instructive collection of these objects than has ever before been brought together.

Gold.-The most striking feature in this division, and perhaps in the Exhibition itself, was the immense quantity of native gold displayed. The British colonies of Australia, New Zealand, British Columbia, and Nova Scotia contributed most of this, yet nearly every part of the world sent its representative specimens, and the collection was interesting, as showing the great number of new gold-fields discovered within the last few years, and as indicating the almost universal distribution of this metal. Most of the gold exhibited possessed in itself nothing of peculiar interest, and the processes for its separation, which were shown theoretically and practically, are generally well known, There was, however, in the Zollverein department, a series of specimens (No. 733^{1}) from the arsenic works of Reichenstein, in Silesia, illustrating the extraction of gold by chlorine water, which seemed worthy of more attention than it received. The material used is auriferous mispickel, from which the arsenic is first separated by roasting. ${ }^{3}$

Silver.-The silver, exhibited in Class I, possessed few points worthy of mention, many of the most important mines not being represented, and others very inadequately. Some beautiful specimens of native silver were shown from the government mines of Kongsberg, Norway, and also from the Copper mines of Lake Superior; and a good collection of various ores from the W ashoe mines of California. Specimens of silver glance, horn-silver, and ruby silver, from a new locality in Newfoundiand, were also exhibited.

Platinum and the platinum-metals.-The display of platinum, and its associated metals, iridium, osmium, palladium, rhodium, and ruthenium, was a marked feature in this class. A case in the British department (No. 171), containing all of these metals in their natural state, most of their known compounds, and many illustrations of their practical application, was one of the most interesting oljects in the Exbibition, and

[^27]deserves particular notice. A single ingot of pure platinum, weighing 3200 ounces, Troy, was the most conspicuous olject in the case, and af forded a good illustration of the progress which this branch of metallurgy has recently made in consequence of the researches of Deville and others. The fusion of this mass of platinum was effected in an iron box, which was lined with small pieces of lime, and covered with a lid of similar construction. Two jets from compound blowpipes, using coal-gas and oxygen, were directed through the cover upon small pieces of platinum, introduced from time to time, and when the whole was completely fused, it was rapidly transferred to a mould. It is claimed that platinum apparatus, made from a solid ingot, will both be cheaper, and less liable to lose its firmness of structure on heating, than when manufactured in the usual manner, and the case contained a great variety of such articles. Among these was a large boiler for the concentration of sulphuric acid, an alembic for separating gold and silver by means of the same acid, and a pyrometer for indicaling the variations of heat in boilers. Each of these articles was said to possess, in design and construction, several points of superiority over any similar apparatus bitherto made. Other objects of interest were platinum tubes, soldered with the same metal, and a sheet of copper, plated with platinum, showing that the many difficulties attending the production of these articles have now been successfully overcome. The same case contained an ingot of pure iridium weighing $27 \frac{1}{2}$ ounces, and a fine display of the natural and artificial compounds of this metal, among which were specimens indicating that the ininute particles of the native alloy of iridium and osmium, formerly considered of little value, may be fused together, and thus used for pointing gold pens as advantageously as grains of larger size. Palladium, rhodium, and ruthenium were also represented by rich series of specimens, in quantities never before seen. Many other rare and interesting substances were exhibited in this case, among which may be mentioned various salts of uranium, boron and silicon, fused and crystallized, which Deville himself had prepared by the process that bears his name.
Aluminium.-Aluminium, also, was well represented in the Exhibition, and can no longer be regarded merely as a curiosity, since it is evidently taking a prominent place among the useful metals. In the British and French departments, its practical applications were illustrated by a great variety of interesting objects. Some of the more noticeable of these Were philosophical instrumente, for which this metal, from its lightness, strength, and difficulty of oxydization, seems so well adapted. Various alloys of aluminium, with copper, nickel, and other metals, were exhibited, and their usefulness illustrated in a great variety of ways. A series of aluminium tubes, in the French department, indicated that the difficult problem of soldering this metal has been successfully solved. According to the exhibitors, zine was the solder used, and the operation was performed in an atmosphere of hydrogen.
Mercury.-Mercury and its ores were well represented in various parts of the Exhibition, the specimens of cinnabar from Almaden in Spain, and from the New Almaden mines of California, being especially conspicuous. Lead, zine, cadmium, nickel, cobalt, arsenic, antimony, and many ores of these metals, were also fully represented, but the collections contained little
of especial interest. The display of tin, bismuth, and titanium was quite small, the only representations of the last metal being a few rutiles from the well known Georgia locality.

Copper.-Copper ores from nearly every part of the world were exhibited in this class; some of the most interesting specimens were very fine crystals of the native metal from Lake Superior, boulders of vitreous copper from a serpentine ("gabbro" of the Italians) dyke at Monte Catani in Val di Cecini near Volterra, in Italy, and a series of the Hungarian gray copper ores containing about ten per cent of mereury.

New Metals.-In the French department, the new alkali'metals, cæsium and rubidium, with some of their salts, were shown; and also the new metal thallium, ${ }^{3}$ the latest result of spentrum analysis. Manganese, obtained by a new process, was the most interesting object in Class I, of the Swiss department.

Iron and Steel.-Iron was naturally the most prominent object in an exhibition like the present, and no small part of the building was occupied by its various ores, illustrations of its Metallurgy and its applications. Although this collection was far superior in many respects to ally litherto made, the recent progress it indicated was rather, greater facilities for the production and application of this metal, than any new scientific information in regard to it. The chemistry of iron seems still to remain comparatively unknown. In the British department, some rolled plates for ships were fine illustrations of iron manufacture. The largest of these was 13 tons in weight; and the shattered fragments of those broken in the recent experiments of the English government were also exhibited. Dr. Percy, the distinguished metallurgist, who directed the experiments, states that an examination of the fractures thus made affords information in regard to the internal structure of iron, which other means of investigation have failed to detect, and that thus far the experiments indicate that the softest iron possible is most efficacious in resisting heavy shot. The exlibition contained many fine specimens of steel made by Bessemer's process, which seems likely to supercede many now in use. The display of cast steel by Krupp of Essen, I'russia, has never been equalled. One of his castings weighed 21 tons, and an examination indicated that its structure was uniform throughout.

Coul and artesian boring.-Different varieties of coal were shown in great profusion in Class I, but do not require comment. The great waste of this substance in the usual methods of mining is now attracting much attention, especially in England, and processes for rendering the small coal available for fuel were abundant in the exhibition. These were either inproved grates, or methods for uniting the fine particles of coal, by heat, or by some bituminous cement. The apparatus used in boring through strata, in searching for coal, or in making artesian wells, formed an instructive series in the French department. It was exhibited by Derousée, author of "Guide du Sondeur," one of the best works on the sulject.

Canadian collections : asterism in Mica.-Among other interesting objects in Class I, may be mentioned a collection of the economic minerals and crystalline rocks of Canada, sent by the directors of the Geological survey. The catalogue describing them is a work of much scientific
*shibited by Mr. Crookes also in the Englisk Department.
value. In this collection were specimens of a magnesian mica, or phlogopite, from South Burgess, which quite recently has been found to exhibit the rare property of asterism in a remarkable degree. This has led to a new examination of the subject, and now this hitherto obscure point in optical mineralogy can be readily and satisfactorily explained. The asterism of this mica was, I believe, first observed by H. Vogel, of Berlin, during a recent visit to the exhibition. On his return he investigated the subject in company with Prof. G. Rose, who had observed a similar appearance, although much less distinct, in some varieties of meteoric iron. Prof. Rose has just communicated the results of the investigation to the Royal Academy of Berlin, ${ }^{4}$ and the subject is of such general interest that the main points of his paper may not inappropriately be given in this connection.

If a thin plate of the mica from South Burgess be held between the eye and a light, there will be seen a large and distinct star, composed of six rays, and having the light as its central point. Between these rays, six others, smaller and much less distinct, may be observed. A similar star is seen by reflected light, but this is never so clearly defined. By holding the mica against the light, and examining it with a magnifying glass, a great number of minute prismatic crystals can be detected. Under the microscope these become perfectly distinct, and Vogel succeeded in photographing them when magnified 500 diameters. Most of the crystals are clongated, flattened prisms, having the broad lateral planes parallel with the lamine of the mica. Their resemblance to crystals of kyanite is quite marked, and it is very probable that they belong to that species. Tabular crystals, also, may be seen, which are apparently quite different from the prisms. The crystals, with few exceptions, have a definite position in the mica, most of the prisms being parallel to the sides of an equilateral triangle, thus making angles of 120° and 60°. A few, however, make with the former an angle of 150°; and occasionally one is seen which has a still different direction. The general position of the crystals is best seen when a low power of the microscope is used.

Since the minute crystals have this regular position in the mica, the asterism is casily explained. It is a mere "trellis-appearance" (Gittererscheinung) ; and the rays of the star stand at right angles to the axes of those prismatic crystals which make with each other angles of 120°, and hence proceed from the center of the star to the middle of the sides of the equilateral triangle, with the sides of which the crystals lie parallel. As there are a few crystals which make angles of 150° with the former, intermediate, and less distinct rays are also observed. If then, a great quantity of minute crystals, regularly arranged in a larger crystal, can produce asterism, as in this mica, it inust appear in other minerals also, where this is the case, and probably the cause of the asterism, wherever it has been observed, is the same as in the present instance.
In the same paper, Prof. Rose gave the results of his examination of the asterism in metenric iron, and referred to the previous investigations on this interesting subject.

London, Nov, 25, 1862.

[^28]2. Correspondence of Jerome Nicklès, dated at Nancy, France, Nov. 2, 1862.

Obituary.-Death has lately made great ravages in the scientific world in France. Among those who have deceased since the date of my last correspondence, should especially be mentioned De Sénarmont, ${ }^{1}$ who was at once a physicist, a mineralogist and a crystallographer; Count de Gasparin, distinguished as an agriculturist, after having sustained an important political position; and Jomard the archeologist and geographer and the last survivor of the "Institut d'Eyypt," that celebrated institution which was formed during the French revolution in connection with the Expedition to Egypt. The following particulars may be mentioned concerning these three savants.

Henri Hurran de Sénarmont, born at Broné (Eure et Loir) Sept. 6th, 1808, died suddenly July 4th, 1862, at the age nearly of 54 years. Of a distinguished family, he received a complete education, having entered the Polytechnic School in 1826 which be left to enter the School of Mines. In 1848 he was promoted to the rank of engineer in chief of mines, and in 1852 was elected a member of the Acadermy of Sciences, in the section of Mineralogy, in the place of Beudant. For many years he delivered the course of lectures on Mineralogy at the School of Mines. The works which he has published are numerous and varied, as is well known to the readers of this Journal, in which they have often been noticed.

We enumerate the following titles of his works, viz. "Modifications que la réflexion sur un miroir métallique imprine aux rayons de lumière polarisée." "Réflexion et double réfraction de la lumière par les cristaux doués de l'opacité mélallique." "Conductibilité des substances cristallines pour la chaleur." "Conductibilité des cristaux pour l'électricité de tension." "Formation des minéraux pur voie humide dans les gites métallifêres concrétionnés." "Formation par voie humide du corindon et du diaspore." "Propriélés optiques bi-réfringentes des corps isomorphes." "Propriétés et formes cristallines des Micas." "Production artificielle du polychroïsme dans les substances cristallisées." "Memoires sur la double réfraction." "Forme cristalline du Silicium." "Modes d'accroissement des cristaux et causes de variations des formes secondaires." ${ }^{\text {" }}$

He was also connected as joint author with a great number of reports to the Academy upon different questions of physics, mineralogy, and crystallography.

He determined a great number of crystalline forms, which have been published by Rammelsberg in his "Krystallographische Chemie," and has made known in France, by an excellent translation, the treatise of Prof. Miller on Crystallography.

De Sénarmont was highly appreciated by Biot, who aided him much in his career, and left to lim lis sympathy for young students and his aversion to public functions which do not belong to the domain of science ; withal he was exceedingly modest; elected in 1853 to the position of perpetual Secretary in the Academy of Sciences in place of Arago, he declined to accept it: $:^{2}$ and upon his death-bed be directed that no eulogy should be pronounced at his tomb. He left many uned-
${ }^{2}$ See this Journal. [2], xxxir, 304.
= This Journal, [2], xvii, 263.
iled works which it is proper to hope will soon be published. His last labors were the publication of the works of Fresnel by virtue of a commission with which he had been charged by the Minister of Public Instruction. He had collected with care the scattered materials and had written a great number of explanatory notes. He had not had time to complete this work so earnestly waited for by men of science, which however will be published ere long.
Adrian Etienne Pierre De Gasparin was born at Orange (Vaucluse), June 29th, 1783. His father was a celebrated member of the Convention, and was distinguished at the siege of Toulon. Bonaparte, the exile of St. Helena, remembered in his will this young commander of artillery, who was afterwards a general, bequeathing a sum of money to the children of this revolutionary hero. They had no need of it, however, as they possessed an ample Portune.
The savant whom we have just mentioned was at first a soldier. Wounded in 1806, in the campaign in Poland, he retired to his home, devoted himself to the study of the natural sciences, and became noted for lis interesting memoirs upun agriculture which obtained for him a distinguished position among cotemporary agriculturists. After the revolution of 1830, he was successively prefect, peer of France, Under Secretary of State, then Minister of the Interior (1836), and lastly Minister of Commerce and Agriculture. During his progress to power, he constructed roads in Corsica, reformed the discipline of prisons, and replaced the chain gang by portable cells. Returning to private life, in 1840, he resumed his agricultural studies. At this time he was elected a member of the Academy of Sciences, in the section of Agriculture, in place of Turpin. He devoted himself only to agriculture, and merited the title of successor of Olivier de Serres, whose descendant he was by reason of the marriage of one of his ancestors with the daughter of the founder of French agriculture.
Among his works should be mentioned especially his Traité d' Agriculture (6 vols . in 8 vo .), his memoirs upon the muliplication of races, upon the contagious diseases of sheep, upon the raising of merino slieep, on the culture of madder, and of the mulberry. IIe made extensive investigations in inoteorology, especially upon the distribution of rain, and pubiished valuabie experiments upon solar radiation. He died at Orange his native village, the 7th of September, 1862. French agriculturists have already commenced a subscription for the erection of a statuo to his memory.
Ed. Francois Jomard was born at Versailles, Nov. 22, 1777. He left the polytechnic school in 1704 and entered as geographical engineer in the school of surveying, (Erole de Géographie du Cadastre). At the age of 21 he joined the expedition to Egypt. At the commencement of the campaign he tonk part in forming a topographical plan of Alexandria, measured and drew the less known monuments under the direction of Monge, read upon this subject variuus memoirs at the Institute of Cairo, and coilected, in company with the sarants and artists chosen for this scientific mission, the materials which have been incorporated in demerous works. On his departure from Egypt, contrary winds having detained him in the Archipelago, he took the opportnity to explore the
Ais. Jour. Scr.-Second Series, Vol XXXV, No. 104--MAbce, 166s.

Ionian Isles. Having been engaged on the "Description de \boldsymbol{r} " Egypte," he afterwards became secretary of the commission appointed to publish the
labors of the Egyptian Institute, which was important chiefly by reason of the interest which it inspired for Napoleon, and because most of its members became distinguished men.

In 1826, after much effort, he succeeded in establishing the Egyptian school of Paris. Every year the Egyptian government sends to Paris a certain number of young men to pursue their studies. The Viceroy of Egypt, Saïd-Pacha, is a graduate of this school. In 1828 Jomard was appointed administrator of the Bibliotheque for the new department of geography and travels, and was at the same time charged with the organization of this service, an organization of great advantage to history, science, commerce and travels. The most of the works of Jomard relate to geography, of which they include all branches.

Publication of the works of Luvoisier.-It was in 1836 at the College of France, in the course of his celebrated lectures on chemical philosophy, that Dumas undertook, as he says, the solemn engagement of collecting and publishing the complete works of Lavoisier. Since that time he has never ceased to be occupied with this idea; searching for documents in the papers of the family of Lavoisier, in the collections of autographs of various amateurs, and in the registers of the laboratory of the founder of chemistry. Dumas has succeeded in producing a complete work, full of new documents, as we have already mentioned, in our coirespondence of the month of April, 1861, vol. xxxii, p. 99.

The funds for printing it have not been wanting: on the one hand the French booksellers could not do better than to undertake the pubiication of this work; on the other, the family of Lavoisier demanded the honor of publishing this monument to his memory; the city of Paris also claimed the same honor, and the Minister of Public Instruction, in the name of the state, claimed the right of paying this sacred debt of science to genius and misfortune. Consequently, the works of Lavoisier will be published at the expense of the government, but the family of the illustrious chemist add to the first volume a portrait of the philosopher.

The volume about to be published is the second: it contains 61 memoirs of Lavoisier composed during 22 years comprised between the dates of 1770 and 1792. "These are," says Mr. Dumas, "the memoirs characteristic of his work. After a careful examination I have resolved to arrange them in their chronological order giving to each its proper character and nomenclature, and to avoid adding, without the most absolute necessity, the least note to a text which in its admirable clearness had no need of annotation."
The note from which we cite these quotations was read lately by Du mas to the Paris Academy of Sciences. It is full of new and unpublished details in regard to the scientific life of Lavoisier, and a most interesting appreciation of his services. The reader will find it in the Comples Rendus for Sept. 29th, 1862, pp. 526-528. ${ }^{3}$

[^29]Ozone and Nitrous Acid.-Fixation of Nitrogen in Plants. ${ }^{4}$-For some time we have observed a certain change in the results of the labors of Schönbein. Where once he recognized only ozone he discovers now only nitrous acid or nitrite of ammonia. We are far from denying the importance, utility and scientific bearing of the researches of the learned chemist of Basle. But as one becomes somewhat acquainted with this subject it is evident that Schönbein has done instice tardily to those who have preceded him in this question. Of this: number is ' 1 '. Sterry Hunt, Who, as our readers will remember, lorg since sinowed that nitrite of ammonia may be formed by means of nitrogen and water (this Journal, [2], xxxii, 109), and thus led the way to a new theory of nitrification. This is what Boettger arrived at, who first aunounced that nitrite of ammonia is a constant product of all combustion in the air.
The important discoveries which Schönbein has since made, and which are explained in the Journal fur Prakt. Chemie, Ixxxvi, 129, and in the Journal de Pharmacie et de Chimie, xli and xlii, fully show that this point was entirely developed by T. Sterry Hunt, and became thus the occasion of objections which have been frequently made to the employment of paper saturated with starch and iodid of potassium (or ozonometric paper) for determining the presence of ozone in the air. Since by the sole fact of the evaporation of the water an appreciable quantity of nitrous acid or of nitrite of ammonia is produced, and since this product is increased when the water contains calcareous substances, it is evident that the coloration which is observed upon the ozonometric paper which has been exposed to moisture in contact with air does not indicate the presence of ozone, but only the greater or less energy with which the nitrite of ammonia is produced during the evaporation of the water which moistens the sensitive paper.
Another point of the highest importance which follows from these researches relates to vegetable physiology, viz., the assimilation of nitrogen by plants. This great question, which has been for some years so vigorously debated in France, and over the whole world of science, and Which experiments tend to resolve affirmatively, the last researches of Schönbein elucidate by a fact previously unnoticed. Nitrite of ammonia is formed simply by the evaporation of the moisture collected by the leaves of plants (Journal de Pharmacie et de Chimie, Oct. 1862, p. 340); it is also formed every time that a body is burned in the air (Boettger confirmed by Schönbein) ; in the same manner its production accompanies a great number of chemical reactions, when they take place in the presence of air.

We thus find more sources of AmONO_{3} than are necessary to explain the important fact, discovered by Boussingault, ${ }^{\text {b }}$ of the nitrifica-

[^30]tion of fallow land, to account for the origin of nitrogen in plants which have been raised out of contact with sources of ammonia. ${ }^{6}$

In a similar way we can explain the source of nitrogen in mycoderms, without supposing the intervention of a peculiar property of these cryptogams as was done recently by Jodin, a physiologist who obstrved that solutions containing sugar, tartaric acid, glycerine and phosphates, and free from nitrogenous compounds, organic or mineral, were yet able to produce rich mycodermic vegetables containing in the dry condition 4 to 6 per cent of nitrogen.

Euclosed in tubes hermetically sealed, in presence of an artificial at. mosphere of oxygen and nitrogen, we easily show, says Jodin, a very notable absorption of nitrogen, and this absorption continues, within certain limits, even when the liquid contains an appreciable proportion of ammonia or of an albuminoid substance, such as milk. The absorption is measured by the development of vegetation. This absorption of nitrogen is explained by the formation of nitrite of ammonia which, as Schönbein has shown, always takes place in these conditions. The mycodermic plants are able to facilitate it by reason of their avidity for the salts of ammonia, which they take up in proportion to their production, and constantly freeing the soil they maintain it in a condition to form new proportions of nitrites.

The process employed by Schönbein to detect the presence of nitrous acid consists, (as is well known,) in the use of a solution of stareh containing iodid of potassium, which he pours into the liquid to be examined, and to which he adds a little very dilute sulphuric acid. We may observe that this reaction serves quite as well to recognize the presence of ozone, chlorine, bromine, or iodine, as of aqua-regia, hypochlorous, or hypobromous acid: in fine, that, without wishing to throw any doubt upon the results obtained by Schönbein, we may still inquire whether it is proper to atribute to nitrous acid all the colored reactions produced in starch. For example, Schönbein admits that both the mortar of old walls and urine contain great quantities of nitrous acid (Journ. de Pharmacie et de Chimie, xli, 431), but it is sufficient that these substances contain chlorids, which is a constant fact-and frequently also nitrites. In presence of sulphuric acid, the alkaline chlorids give chlorohydric acid, which, with nitric acid, also set free, produces aqua-regia, the action of which upon iodid of potassium is well known.

Since this otjection was presented to Schönbein (who formally rejected it), he appears suddenly to bave taken it into consideration, for now he does not know whather the nitrous reaction produced by uriue is due to the nitrous acid which it contains as such, or whether the aquaregia is produced as we have just suggested.-(See Journ. de Pharmucie, for November, 1862.)

Electro-metallurgy. - A new kind of industrial Painting. -This new kind of painting, which is just now being applied to many monuments recently constructed in Paris, was invented ly the artizan who established in France the electro-metallurgy of copper, Mr. Oudry, who, by a very simple process, has succeeded by the aid of electricity in covering

- On these questions see also "Legons failes à la Société Chinnique de Paris en 1861," p. 138, de. Paris, chez Hachette.
statues and other ornaments in iron or brass with a thin layer of copper. One of his last works was che galvanic coppering of the monumental fountains in the Place de la Concorde. Three months sufficed him for covering 190,000 kilograms of iron with a layer of copper two millimetres in thickness, weighing nearly 16,000 kilograms. Persons who know that iron rapidly oxydizes in the presence of a layer of copper which covers it galvanoplastically would not anticipate very great durability for these works of art. They will have a different opinion when they know that the layer of galvanoplastic copper is nowhere in contact with the nucleus of iron, and that the two metallic surfaces are completely isolated from each other by a kind of varnish or glazing, which is applied with a brush and which dries very rapidly by reason of the benzine which it contains. The real novelty of the process consists in the applicatiou of this enamel and in the means employed for handling easily the huge pieces of metal on which the copper is to be deposited.
It is well known that the glazing is rendered a conductor by a layer of graphite. The piece to be coppered is plunged into the bath of the sulphate of copper and there acts as the negative metal; it is connected with the zinc pole or positive metal contained in porous vessels filled with acidulated water; these porous vessels are also placed in the bath. The whole as we see is an inversion of the pile of Daniell. Frequently also the porons vessels are replaced by bladders. The coppering of the two monumental fountains at tie Place de la Concorde required the employment of 5700 bladders.

When the layer of varnish is well applied there is no danger of the oxydation of the iron. It is thought that a greater diffeculty may arise from the unequal expansion of the two metals. The coefficient of dilation of cast iron is 0.00111 , while the coefficient for copper is 0.00171 . Althongh this danger is exaggerated, we should remember that the galranoplistic copper is very porous. The copper is also very friable and easily pulverized. It is with this copper, reduced to an impalpable powder, that Mr. Oudry has effected his new style of painting; the powdered copper is diffused in varnish prepared in benzine, which serves for a coating to the brass ur iron which it is proposed to cover with copper by this process.
As we see, the preparation of this color is not difficult, and it is prepared without very great expense. It is easily applied to wood, plaster, cenent, brass or iron, and also to the hulls of ships. It forms a perfect covering, dries rapidly, and takes an agreeable lustre susceptible of receiving, by means of chemical agents, the tone of bronze, bright or dark, verd-antique, or Florence green, which has never before been cominunicated to pure copper. Ornaments in brass or statues in plaster, when painted in this manner, lose none of their most delicate details, and they assume completely the appearance of objects in bronze. Even statues iu plaster appear to resist remarkably inclement conditions of the atmosphere. Oudry has recently mingled with his glazing colors having a basis of lead, zinc, or other substances commonly used for painting buildings, and he has learned that this substitution may be made with advantage. Painting with the glazing, which at Paris they call metallic painting because it contains a small quantity of porphyrized copper, dries
more rapidly than the old kind of paint, after the second day it ceases to emit any odor, and furthermore it presents a very fine grain and shines with vivid brightness. Since by reason of the discovery of nitro-benzine and aniline the price of benzine has considerably advanced, Oudry has commenced to use instead the mineral oil which Canada and Pennsylvania send to Europe in such great quantities. This new employment, if it becomes general, cannot fail to dethrone oil of turpentine and the drying oils.

By mixing the powder of galvanoplastic copper with certain fatty oils, Oudry obtained very beautiful greens of varied hues.

Oxygen Gas to counteract Gangrene.-In our last communication we referred to the satisfactory resulis obtained by the use of carbonic acid gas in the treatment of obstinate ulcers. In the Hospital Hotel Dieu at Paris, experiments have been made which induce the belief that it is possible to cure gangrenous limbs by exposing them to an atmosphere of oxygen. The following circumstances have led to these experiments. Quite recently a young physician, in a thesis submitted to the Faculty of Medicine, put forth this opinion that "Gangrene consisted essentially in the diminution or absence of the oxygen necessary to the integrity of the lije of a tissue." The author of this proposition, Maurice Raynaud, deduced it from chemical analyses of gangrenous parts.

Upon this conclusion, Dr. Laugier, Surgeon-in-chief at Hotel Dieu, bases the treatment under consideration. At the very time when he read the thesis of Dr. Raynaud, he had a case of spontaneous gangrene under his care at Hotel Dieu; the idea occurred to him to expose the gangrenous parts to an atmosphere of oxygen. The patient was 75 years of age; the disease was seated in one foot, one toe being already mortifed; the skin upon the small part of the foot was painful and altered in color, and the foot itself even in danger of destruction. The member was placed in a simple apparatus which was arranged to disengage oxygen continuously without requiring to be renewed. In a very little time, says Dr. Laugier, the gangrene was arrested, and the parts menaced returned to 8 healthy state. The eschar upon the toe disappeared little by little, a cicatrix formed and the disease was cured.

A second experiment was made in the same hospital upon another patient also 75 years of age. A rapid change took place in the condition of the ulcer which promptly advanced to a cure.

If these facts are confirmed in other cases of spontaneous gangrene, this observation will prove of great service to humanity, and a new proof of the advantage to physicians from the pursuit of cliemistry. The following fact, taken from the works of French physicians, shows that what is here claimed for chemistry may also be affirmed of natural history.

Treatment of Tubercular Leprosy, or the Red Disease of Cayenne.About 30 years ago, Dr. Guyon, residing in a tropical country, was a witness of the liveliest anxiety of a family in which the elder son, from ten to twelve years of age, became affected with tubercular leprosy developed spontaneously. A son and a daughter still remained to the parents. Dr. Guyon, having been requested to examine the young patients, recognized upon their little bodies indications of the dreaded disease. These indications consisted in rose-red spots upon the skin,
with insensibility. This was the red disease of Cayenne, the first stage, within the tropics, of tubercular leprosy. As he was reminded of this terrible disease, Guyon advised to remove the young patients from the influence of the climate, and to send them as soon as possible to France, basing his opinion upon a well known fact in natural history.

The Red Disease of Cayenne is said to be a product of the country: it ought therefore to happen with this disease as with plants of the same country, the seeds of which when transported to France do not develop, although some of them may germinate.
The afflicted family were in affluent circumstances, and their decision was soon formed, they settled their affairs and removed to France. This took place in 1826, and what was the result? Just what had been anticipated. The disease was not indeed healed, for the marks which already existed remained as they were; but its progress was arrested and the spots did not increase in extent. Becoming adults, the two young people were married, and both had children, of both sexes, without the occurrence of anything extraordinary in regard to the health of either.

Preservation of Wood.-It has long been known that wood may be preserved by carbonizing its surface, and in the country this method is generally adopted when piles or posts are planted in the earth, because that wood thus treated very completely resists the action of both air and water. At the commencement of the present century, Berthollet proposed to carbonize the interior of casks designed to contain portable water for the use of mariners, but he did not succeed in any prompt and sure method of effecting this carbonization in a uniform manner. Such a method has now been discovered and its application in government vessels is commenced.
The process of Mr. de Lapparent, consists in directing, against the surface of wooden structures to be preserved, a jet of inflammable gas Which burns the wood to the depth of about one fourth of a millimetre. The operation is performed in the interior as well as the exterior of casks after they are entirely set up and ready to be cased.
[The jet which is best adapted to this purpose is that known as Daniell's jet, the coal gas being in the exterior envelope, and, the air from a smith's bellows being blown through the interior pipe. I have repeated Mr. Lapparent's process with satisfaction, and have advised its adoption in the American iron clad Navy.-s.]
In localities where illuminating gas is not available Lapparent recommends to use the "water gas," obtained by passing a current of vapor of water over incandescent charcoal, which burns by depriving the water of oxygen and gives off hydrogen and oxyd of carbon, which in the absence of a gasometer are conducted directly to the point where the charring of the wood is to be performed.
An idea may be obtained of the ceonomy of this application from a consideration of the fact that war vessels require for repairs of water casks after five years' service $\frac{17}{2} \frac{7}{4}$ of the cost of their construction.
The Orleans railroad company have already applied this process to the preservation of railroad-ties. 20 kilometers of such ties have already been laid down, and we shall soon learn the results. Finally,
the government of Holland have made use of the same process for carbonizing timbers 5 or 6 metres in length, designed to be buried in the earth for strengthening the dykes, which in that country require continual repairs.

The Ceramic Arts of the London Exhitition.-For the following review we are indebted to Mr. Salvètat, director of the manufactory of Sèvres, and member of the Jury of the Exhibition. One general fact, he remarks, is presented by the Exhibition of 1862, and this fact is observed in the ceramic products as well as in very many others.

France, skillful in details, does not possess that happy talent for practical application which we observe in the Anglo-Saxon race, with their abundant resources, perfect workmanship, admirable fabrics, and industrial organization. But we find in England few of the novel ideas of which such a suggestive collection is crowded into the Ceramic Courts of the French.

In the French department, we find numerous exhibitors who, in different ways, are engaged in producing ornamental ceramic objects by the application of fine arts to manufactures, but they are deficient in cortain practical notions of technology so fully developed by English manuiacturers. Artistic taste has however increased in a surprising mauner in England since the Exhibition of 1851. Messrs. Minton, Copeland and Wedgewood, have shown with what rapidity change is possible in that country which some have represented as entirely destitute of artistic tendency.

Some improvements which French industry has introduced into the ceramic art are worthy of mention.

To the Imperial manufactory at Sèvres is due the development of processes by the aid of which objects are formed of an entire piece in colored porcelain mass decorated at a high temperature without repeated bakings.

The number of metallic oxyds which it is possible to introduce into the mass has, as a consequence, considerably increased, and substances have been added capable of correcting the excess vii fusibility of the clays thus colored. Again, it has been found that the action of the oxygen in flame and of the products of incomplete combustion modifies the shade of the clays, and produces with one and the same material very different colors. Thus, with the oxyd of chromium in a reducing atmosphere a blue shade is obtained, while with an oxydizing atmosphere a green color is produced, showing ruby red in the light. With the oxyd of uranium, in an oxydizing atmosphere, a pure yellow is brought out, and lues varying from reddish brown to black in the reducing atmosphere.

I would also call attention to the successful efforts made in the manufactory of Bordeaux to replace the old potter's wheel by mechanical means.
The art of brilliant gikding, whereby the cast leaves the mould with a metallic lustre without recourse to burnishing, has been largely developed at the hands of its discoverers, the Messrs. Dutertre. The discorery of other metallic lustres made by Messrs. Gillet and Brianchon; the application of chromo-lithography to the decoration of pottery; the einployment of a vacuum, or of compressed air, to obtain perfect impressions in moulds, are equally interesting results, honorable to French industry.
"The employment of chromo-lithography appeared, it is true, in the exhibitions of Spain and of the Zollverein. But it should be stated that at Seville it was introduced under a license from a French patent, and that in Germany the specimens exhibited showed the application of the art to be in a rudimentary condition."

Mr. Salvètat remarks also that the English exhibitors have produced a new ceramic composition which is a perfect imitation of ivory. The process of its manufacture has not been made known.

Billiography; Recent publications by Hachette \& Co., Paris.

Lerons de Chimie et de Physique Professées en 1861 à la Sociêté Chimique de Paris.-These lectures belong to the series which we noticed last year, and they have met with the same success, for the lecturers have treated only of subjects in which they have made extensive researches and important discoveries. The following are the subjects treated:
On the fusion of platinum and the production of high temperatures; by Mr . Debray (the associate of St. Claire Deville).
On the optical study of sound; by Mr. Lissajous.
On nitrification and uses of nitrates in vegetation; by Mr. Cloës.
On the luminous effects resulting from the action of light upon different bodies; by E . Beequerel.
On the organized corpuscles which exist in the atmosphere; being an examination of the doctrine of spontaneous generation; by Mr. Pasteur.
Entretiens Populaires à L^{\prime} Association Polytechnique; 2nd series, 1862 , in 12mo. This Tolume containu a series of lectures delivered by Babinet upon the physics of the
globe-globe.-Geoffroy St. Hilaire, upon acclimation.- Bouchardat, upon the abuse of ferof lined drinks.-Perdonnet, upon great inventions.-Homberg, upon the bleaching of linen.
Bréguet.-Mamuel de Télégraphie Ellectrique, 4th edition, 1 vol. in 12 mo , with figures, 1882. This volume is divided into four parts. The first contains the priuciples of Physies indispensable to the study of telegrraphy. The second, the arrangement of the apparatus most frequently employed. Thirli, the study of telegraph lines, aerial, subterranean and submarine. Foorth, applications of electricity connected with electric telegraphy, such as electric clocks and domestic annunciators.
Mr. Bréguet, who is a member of the Bureau of Longitude, has under his direction
all that relates to electric telegraplyy, and to accurate apparatus in. which electricity plays a part; his book has therefore an importance perfectly leyitimate.
Mayer et Pierson.-La Photographie considévée comme art et comme Industrie. 1 vol. in 1 2mo. Mayer and Pierson are the phototraphers who by their beautiful works have recently caused it to be decided that photography is an art, and that therefore it has in its sphere the same claim as the painter at his canvass and the seulptor at his statue. Their book does not give all the details of the photograph business, but it gives definite directions in regard to the manner of placing objects in such a manner as to make them appear to advantage. They also give interesting details of the early history of photography and its relation to Daguerre and Niepee, and finally they close with the history of the grand civil suit which resulted in giving aid to of art.
Aug. Dupeyrat.-Canal Maratime de Junction de Ie Ocean à la Mediterranie, a brochure In 8vo. - Here is the complete realization of an idea of the 17th century, to wit: to unite Bordeaux to the Mediterranean, so that ships of large tonnage may be relieved from the necessity of going around Spain by way of the Straits of Gibraltar. This Will is now important as following the cutting throurh of the isthmus of Suez, and Will thus serve to bind together the West and the Orient.
Ach, Fillias,- - Geogruaphie Phiysique et Ibolitique de l'Algerie. 1 rolume in 12 mo .- This Work, which gives important details of statisties, closes with a geographical and bistorical dietionary of all the loealities belonging to this French province.
Sedillot.-Histoire des Arabes, a volume 12 mo with one plate. The subject of Algeria is ably treated in this book, in which the author proves that the Arab race was much beiter fitted for the pursuit of mathematics, geography and astronomy than the Hindoos or the Chinese; he has taken lhis nation at its origin, and has studied it with care in the different phases of its existence.
Am. Jour. Scr.-Second Series, Vol. XXXV, No. 104-March, 1863.

Ladevi-Roche-Unité des Races Humaines, a brochure in 8vo. The author decides infavor of this unity, after a profound examination of the moral nature of man in connection with an examination of physical facts which have been demonstrated by different observers.

Ch. Musset.-Hetérogénie ou Génération Spontanée, in 4 to with plates. Mr. Musset is a great partisan of spontaneous generation, which he supports by observations which he has made with care in common with Joly of Toulouse.

By H. Bossange, Quai Voltaire, 25, Paris.

Achille Delesse. - Carte Agronomique des Environs de Paris, 1862.-For some time past they have undertaken, in France, to represent the vegetable world and its composition by special charts called Cartes Agronomiques. The chart which Delesse has made of the environs of Paris has a special interest because it makes known more completely the Parisian soil recently so deeply explored for the sake of the quarries of building stone which it contains. One peculiar feature of this soil is that the quarries are all in the valleys or upon the slopes of the hills, while the tops of the hills are sandy. The three elements of arable soil, the calcareous, the clayey, and the sandy, are largely represented in the soil of Paris, while the proportions vary considerably. These proportions are clearly shown in the chart of M. Delesse by the aid of well selected colors. [We acknowledge the reception of this brochure from the author. - Ede.].
Biguyer de Chancourtois.- Vis Telhurique.-This work consists of a natural classification of simple bodies as well as of organic mdicals, effected by means of a system of 'helicoid' and numerical classification. This classification which depends especially upon the physical properties of bodies, conduces, very frequently, to results which aceord with chemical observations. It was thus that the place of rubidium was marked upon the helix of M. de Chancourtois before that he knew the physical properties of this metal; so also the simple bodies which we have named semi-metals (Journal de Pharmacie, xl, p. 23) and which as we have seen form a class by themselves, appear in the table of \mathbf{M}. de Chancourtois under the name of intermediate bodies, results to which M. de Chancourtois has been led from considera. tions totally different from our own. The same considerations led him to double certain equivalents, such as $\mathrm{C}, \mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$, \&c., just as has been done in the notation of Gerhardt. These parallel coincidences are certainly not accidental, they reveal a fundamental law of which the "vis tellurique" appears to give the key.
A. Scheurer-Kestner.-Principes Etémentaires de ta Théorie Chinique des Types Appliquée aux Combinasions Oryaniques. - The leisure imposed by a political imprisonment has given to the author, a young chemist full of ardor, the idea of making for the chemical theory uppermost in his mind a sort of catechism for the use of persons who desire to become acquainted with this theory, deduced from the labors of Laurent and Gerhardt, of Dumas, Wurtz, Hoffman, Williamson, T. Sterry Hunt, \&c. This theory is explained with great clearness and supported by numeroas cxamples.
Boussingault.-Agronomie, Chimie Agricole et Physiologie, tome II.- This second volume is occupied for the most part with the great question of nitritication, and the assimilation of nitrogen ly I lants. All these questions are examined with the well known talent of Boussingault, and all lead invariably to this conclusion, that if plants derive nitrogen from the atmosphere it is not taken up in the form of nitrogen gas. Upon this sulject the author cites numerous observations made by Messrs. Lawes, Gilbert, and Pugh.
H. Laurent.-Theorie des séries. - The name of the author and the title of the work, lead one to suppose that he refers to the homologous series; this is an error. The work is devoted to mathematical analysis and the application of this theory to the calculus of transcendental expressions. It was at the polytechnic school, which be he has left, that M. H. Laturent composed this valuable work. Our readers will learb with pleasure that this young mathematician is the son of Auguste Laurent, the greut chemist, whose blogmphy we have given in this Journal, ([2], xvi, p. 103).
J. Nichles,-Therrie Physique dex (hleurs et des Sizveurs. A brochure in 8vo, 1862.The author has taken the idea of this work from what has been previonsly stated, (this Journal, [3], xxviil, 1). 427). This question, at once so interesting and so liftle studied, has in the new work been thoroughly examined upon theoretical considerations aud also experimentally.

3. Correspondence of T. Sterry Hunt, F.R.S. (In a letter to the Editors, dated Montreal, February 1, 1863.)

Gentlemen,- You have given, on page 113 of this volume, an abstract of Schönbein's and Büttger's important observations upon the formation of a nitrite with ammonia, at the expense of water and atmosplieric nitrogeln. May I beg of you, as an important part of the history of this subject, and especially as an explanation of the theory of the reaction, to reproduce from the L. E. and D. Philos. Magazine for January, 1863, the follnwing translation of a note On the nature of Nitrogen, and the theory of Nitrification, read by me before the French Academy of Sciences, on the 15 th of last September, and published in the Comptes Rendus of that date (p.460). My object is to claim for myself the new theory of nitrification, which Schönbein seeks to found upon his recent experiments, and which I published nearly two years since. It is in reality but a natural deduction from my view of the donble nature of mitrogen, as the nitryl of nitrous acid, which I have maintained since 1848.
I am not aware whether my announcement of the production of ozone from permanganic acid, a discovery which is claimed both by Schönbein and Böttger, is anterior to that of the last named chemist. My own notice of it, which appeared in this Journal for July 1861, (vol. xxxii, p. 109) was dated and sent to you in Jan. 1861. (Yoin are aware that the date of 1860 , there assigned to it, is a printer's error.) The observation however has not the inerit of great originality, for I was led to it by a remark in Gmelin's Handbook (Cavendish Soc. Ed., iv, p. 211) published in 1850, where Forchhammer's remark, that permanganic acid evolves "an electrical odor," is cited, with a suggestion that this may be due to ozone.
In two notes to my paper on petroleum (this vol., pp. 158 and 162), I have had occasion to call attention to my long since published views, on the equiralents of carbon, oxygen, etc., and on the constitution of gelatine and the allumincids. These, after many years, are being resuscitated, and, like my theory of chemical types, are making progress in the scientife world. In this connection I may be permitted to express my satisfaction that the Kantian doctrine of the interpenetration of matter, which Iset forward ten years since, as lying at the basis of a true chemical philosnphy, is finding an exponent in Mr. Charles Peirce, whose paper on The Chemical Theory of Interpenetration appears in the last number of your Journal. See, on this sutject, my paper On the Theory of Chemical Changes, which appeared in this Journal for March, 1853, (vol. xv. p. 226,) and was reproduced in the L. E. and D. Philos. Magazine, and in a German translation in the Chem. Centralblatt. See also my Thoughts on Solution, (wol, xix, p. 100), where, while still asserting interpenetration, I sar that Kant's definition of chemical union "involves a mechanical conception, and is therefore inadequate. That of Hegel, in which chemieal conbination is said to be an identification of the different, is howerer completely adequate. His process involves an identification not only of volumes, (interpenetration, mechanically considered.) but of the specific characters of the combining bodies." See this doctrine taught by Stallo, Philosophy of Nature, p. 87. See also my oljections to the Atomic hypothesis, in a note On Atomic Volumes, read before the

French Academy in 1855, (Comptes Rendus, xli, p. 77). The mechanical and material hypothesis, which belong to the infancy of the chemical and physical sciences, are gradually being repudiated, and these sciences themselves placed upon a philosophical basis. I shall be happy to believe that I have contributed to spread more just philosophical notions among modern chemists.
"In 1848 I suggested that free nitrogen is the nitryl of nitrous acid, NHO_{4}, $\mathrm{NH}_{3}-\mathrm{H}_{4} \mathrm{O}_{4}=\mathrm{NN}$, corresponding to the nitric nitryl, NNO_{2}, and to the phosphoric nitryl, PNO_{2} (American Journal of Science, [2], v, 408; vi, 172; viii, 375). It might then be supposed that, like these two bodies, nitrogen should under favorable conditions fix $\mathrm{H}_{4} \mathrm{O}_{4}$, and regenerate nitrous acid and ammonia. In A pril 1861, I published a note in 'The Canadian Journal' of Toronto, in which it was said that the spontaneous formation of these two bodies, by the combination of atmospheric nitrogen with water, would serve to explain the production of ammonia, so often remarked in the presence of air and reducing agents, and also the formation of nitrates in the experiments of Cloez, without the intervention of ammonia, and at the expense of air and water in presence of alkaline matters (Comptes Rendus, lxi, p. 135).
The simultaneous production of ozone and an acid of nitrogen by the electric spark, and during the slow oxydation of phosphorus, may be explained by the power of active oxygen to oxydize ammonia, thus setting free the acid of a small portion of regenerated nitrite of ammonia, and even, in accordance with the observations of Houzeau, carrying its oxydizing action so far as to acidify the nitrogen of the atom of ammonia. Certain of the reactions attributed to ozone would thus, as many chemists have already maintained, be due to a minute portion of nitrous acid, which is formed when active oxygen is brought in contact with moist atmospheric nitrogen. On the other hand, the hydrogen set free by reducing agents may, by destroying the acid of the regenerated nitrite of ammonia, set free the ammonia of the salt, and even form a second atom by the reduction of the acid (The Canadian Journal, March 1861). These views will also be found in a note written by me, and published in the American Journal of Science for July 1861 (page 109), and copied into the Philosophical Magazine for September 1861, and the 'Chemical News.' I found that a current of air, which had passed through a solution of permanganate of potash acidulated with sulphuric acid, acquired the odor and the reaction of ozone. This disappeared when the air was passed through a solution of potash, which at the end of a certain time appeared to contain a nitrite. This reaction, which seems to indicate the formation of nitrous acid, not by an electric or a catalytic action accompanying the production of ozone, but by the action of nascent oxygen upon atmospheric nitrogen in the presence of water, supports the above views, and, as I have remarked in the note in question, furnishes the key to a new theory of nitrification.

The formation of nitrite of ammonia, by the combination of the nitryl NN with $\mathrm{H}_{4} \mathrm{O}_{4}$, must necessarily be limited to very minute quantities by the instability of this ammoniacal salt, which, as is well known, decomposes readily into nitrogen and water. In order therefore to produce any considerable quantity of a nitrite by this reaction, there is required the presence of active oxygen or of a fixed base to separate the ammoria.
The recent experiments of Schönbein have furnished new evidences of the direct formation of a nitrite at the expense of the nitrogen of the atmosphere. According to hirm, when sheets of paper moistened with a feeble solution of an alkali or an alkaline carbonate are exposed to the air, especially in the presence of watery vapor, and at a temperature of 50° or $60^{\circ} \mathrm{C}$, the alkaline base soon fixes a sufficient quantity of nitrous acid to give the characteristic reactions. Appreciable traces of nitrite are, according to Schönbein, obtained in this way even without the intersention of an alkali. He more-
over found that distilled water, mixed with a little potash or sulphuric acid, and evaporated slowly at a temperature of $50^{\circ} \mathrm{C}$. in the open air, fixes in the one case a small portion of ammonia, and in the other a little nitrous acid. Traces of a nitrite are also formed in pure water under similar conditions. Schönbein explains all these results by the combination of nitrogen with the elements of water, producing at the same time ammonia and nitrous acid. As he has well remarked, this reaction serves to explain the absorption of nitrogen by vegetation, and, through the oxydation of nitrites, the formation of nitrates in nature. By these elegant experiments, he has confirmed in a remarkable manner my theory of nitrification, and of the double nature of free nitrogen. It is however evident that, since the publication of my note of March 1861, referred to above, we cannot say with Schönbein that the generation of nitrite of ammonia from nitrogen and water is "a most wonderful and wholly unexpected thing." (Letter from Schönbein to Faraday, Philosophical Magazine, June 1862, p. 467.) I cannot, however, admit with these gentlemen that the results of Schönbein are due to evaporation, except in so far as the coöperation of water and a slightly elevated temperature are necessary conditions of the reaction."

SCIENTIFIC INTELLIGENCE.

I. CHEMISTRY.

1. Gerrral Cbemistry.
2. Thallium:-Dumas read before the French Academy, on the 15th of December, an elaborate report on the memoir of Mr. Lamy upon Thallium. This report, read, as Abbé Mogrio says, "au milieu du plus profond silence," is so important and interesting that we print it in full, from the translation in the Chemical Neros of Jan. 10th.
At "Report on a Memoir of Mr. Lamy relating to Thallium; by Mr. Domas. ${ }^{1}$ At the origin of human societies, the arts of procuring fire at will, of cultirating corn, of extracting metals, were considered benefits so great that the inventors of these arts were ranked arnong the gods.
At the present day, the inetals are so numerous that the discovery of a new simple body of this class is less astonishing to ordinary men, although the scientific interest attaching to the discovery has not at all diminished. So far from that, in proportion as new metals are pointed out, the characters which appertain to them throw, by comparison, a strong light on the characters, similar or opposite, which are found in the older metals.
As soon as the bold and felicitous labors of Bunsen and Kirchhoff had shown, beyond doubt, that, in studying natural products by spectrum analysis, it was prossible to discover traces of metals which ordinary analysis was powerless to recognize, rubidium and cæsium were considered by all chemists as
only the only the two first terms of a long series of new elements. Every one understood that the residues of manufactures, in which, by the elimination of known and useful products, were concentrated the inappreciable traces of useless and unknown substances that the matter originally worked sometimes contained, offered a mine worth exploring.
It was, therefore, natural enough that Mr. Crookes in England, and Mr. Lamy in France, should submit to spectrum analysis the products of the combustion of iron pyrites, which for some years have played such an important part in replacing sulphur in the manufactare of sulphuric acid; and it is easy to understand, when one has seen it, that the beautiful green line, produced in the spectrum by the new body which forms the subject of this report, could not have escaped the observation of either the one or the other.

But, in our opinion, it is neither the process by which the new metal was recognized, nor the material which furnished it. that commends it to our notice. Spectrum analysis has completed its proofs, and manufacturing residues have long since been recognized as fruitful mines to explore. But thalliem is destined to mark an epoch in the history of chemistry by the astonishing contrast8 exhibited between its chemical characters and physical properties. It is no exaggeration to say, that, in regard to the classification generally accepted for the inetals, thallium offers an assemblage of contradictory properties which entitles it to the name of a metallic paradox-the ornithorhynchus of metals.
We shall not detain the attention of the Academy on the history of its discovery. No one disputes that Mr. Crookes first saw, on the 30th of March, 1861, the green line characteristic of thallium in certain seleninm residues; that he recognized it again in the products of a specimen of sulphur from Lipari, and in those of a pyrites from Spain; and that he described and named thallium as a new simple body.
Nor will any one dispute that Mr. Lamy was the first to isolate thallium, and establish, in the sequel, that it was not a metalloid analogous to selenium and tellurium, as Mr. Crookes, who had never obtained it free and pure, thouglt; but that it was, in fact, a true metal. Mr. Lamy announced his discovery to the Societe Imperiale of Lille on the 16 th of May, 1862, and on the 10 th of June he submitted to the jury of chemists in London, in the presence of Mr. Crookes, a beautiful ingot of thallium. If the latter gentleman considered that he had any rights to preserve, he should at once, as is usual in such cases, have taken the members of the jury to his laboratory, and exhibited his notes and his products, instead of silently listening to the communication of Mr. Lany, and depositing at the Royal Society, eight days afterwards, a note indicating that lie had long been aware of the metallic nature of thalliun, and was acquainted with the essential properties of the new body.
The historical point which engages us-for, in chemistry, the discovery of each new simple body has its legend or its history-is determined by two authentic dates; one of these is the 30th of March, 1861, on which day Mr. Crookes announces the existence of a new body which he believes to be nonmetallic, characterized by the brilliant green line: the other is the 16 th of May, 1862, the day on which Mr. Lamy makes knuwn the metal as a metal, and who alone possesses it.
It was in the sulphuric acid manufactory of our learned confrere, Kuhbmann, among the sediment of the leaden chambers fed by Belgian pyrites, that Lamy discovered thallium in tolerably large quantity, and in a form which made it easy to extract; for, by a little manipulation, it could be urought to the state of sulphate or chlorid, from which combination the metal itself can be easily separated by means of zinc, which takes its place, and precipitates it in crystals, in the same manner as lead.
The Academy will permit us to draw attention to the inportance which attaches, in cases of this kind, to positive characters, like those given by spectrum analysis. We shall see, as we proceed, that, beyond his certain conviction and natural penetration, a sure guide was necessary to Mr. Lany, to prevent him from going astray in the first steps of the study. In fact, if the green line had not been there to prove incessantly that he was not dealing with lead or a plumbiferous alloy, how many chemical reasons were there for thinking that such was the fact! This metal, which is separated like lead from solutions of its salts, by means of zinc, presents the appearance of lead. It has nearly the same color as lead; is scratched and cut like it. It makes a strenk on paper like that which lead produces; it has the same density, and and very nearly the same melting point. It possesses the same specific heat. Its sulutions are precipitated black by sulphuretted hydrogen, yellow by jodids and chromates, and white by chlorids, just as those of lead are. We do not then hesitate to assert, that, without the aid of spectrum analysis, this curious and important metal must have remained unrecognized; that, even with this
help, it was easy to be mistaken; and that Mr. Lamy has given proofs of great sagacity, when he places, without hesitation, a metal so much resembling lead in its essential properties beside the alkali metals, potassium and sodium, which it resembles so little.
Thallium is a perfect metal, endowed in the highest degree with a metallic lustre, as is seen on examining a freshly-cut surface, or on heating a bar strongly in hydrogen, and allowing it to cool in that gas. It is less blue than lead, less white than silver, and, in its color, more resembles tin or aluminium than any other metal. It softens at $100^{\circ} \mathrm{C}$., and, if kept for some time at that temperature, a crystalline structure beromes apparent in the ingot: this is shown by the appearance of a beautiful watering (moiré), produced when the metal is moistened with water, which cleanses the surface like acids.
Before the blowpipe, thallium exhibits some characteristic phenomena. It melts rapidly, and oxydizes, giving off odorless fumes, of a whitish color, but mixed with reddish or violet tones. It continues to give off the fumes a long time after the heating has ceased. When the principal globule has cooled, it is found to be surrounded with small globules of the volatilized metal. In a closed tube, it melts in the flame of a spirit-lamp, oxydizes rapidly, giving an oxyd which, when hot, calls to mind the appearance of rubies (metallic sulphids), and when cold more resembles litharge: this is a compound of the protnxyd of thallium with the silica of the glass. A globule of the metal, heated over a spirit-lamp in a bulb tube open at both ends, and inclined to facilitate the passage of air, soon melts, forming a layer of the ordinary brown fused oxyd, but, at the same time, giving off abundant fumes, which condense, a short distance from the bulb, as a reddish or violet amorphous powder. When a globule of the metal is placed on a cupel heated to redness, and then plunged into oxygen, the metal burns brilliantly, and oxydizes, the fused oxyd sinking into the cupel. This oxyd is either the peroxyd of thallium, or a mixture of the proto- and peroxyd of thallium.
Mr. Lamy has discovered that thallium forms two oxyds: the protoxyd, a strongly alkaline base, like soda and potash; and the peroxyd, which gives up oxygen when heated with strong acids, and may be converted into a chlorid, which, when heated, gives up a part of its chlorine. Chemists, however, will nntice that the protoxyd of thallium, which corresponds to potash, so far from having, like potash, a great affinity for water, loses its water readily when heated, or even when cold in a vacuum. There then remains the reddish anhydrous oxyd while the hydrated oxyd is yellowish white : the oxyd is hydrated or dehydrated with equal facility. It will be further remarked, that the peroxyd of thallium, in the experiments of Mr. Lamy, has given no sign of the formation of oxygenated water.
Thalliun burns in dry chlorine. It forms three chlorids, one of which corresponds to common salt, another to sesquichlorid of iron, while the third is a bichlorid corresponding to corrosive sublimate. The protochlorid is white, fusible, slightly soluble, and, when prepared in the moist way, is precipitated in large dense flocculi like chlorid of silver. Thallium can also form higher chlorids than the bichlorid, but their composition is not definite.
Only the proto-iodid and proto-bromid have been studied; they resemble the corresponding compounds of lead. Cyanid of thallium is suluble; but a crystalline precipitate of this salt is formed when concentrated solutiuns of cyinid of pothssium and of a salt of thallium are mixed.
The sulphid of thallium obtained by precipitation is brownish black; it resembles sulphid of lead. In whateser way ohtained, it easily oxydizes in the air, and is converted into the soluble and colorless sulphate.
Thallium is very slowly attacked by hydrochloric acid even when concentrated and boiling. It is, on the contrary, rapidly attacked by nitric and sulphuric acids. The latter, concentrated and hot, dissolves it with a rapidity which contrasts with the slowness with which the same acid attacks lead.
In relation to the action of acids, thallium presents a complete opposition of
characters to aluminium, the latter being quickly dissolved by hydrochloric acid, which does not attack the former, and resisting nitric acid, which easily dissolves thallium.

In the state of protoxyd, thallium forms soluble and crystallizable salts with carbonic, nitric, sulphuric, and phosphoric acids. The carbonate is a very characteristic salt.

The salts formed by the protoxyd of thallium with organic acids, which have been studied by Mr. Kuhlmann, Jun., are the oxalate, binoxalate, tartrate, paratartrate, malate, citrate, formiate, acetate, and some others of less importance. All these salts are soluble, and, according to Mr. La Prevostaye, some of them are isomorphous with the corresponding salts of potash.

Thallium, then, is a new metal well characterized. It is distinguished from all other reputed simple bodies by the beautiful green line it gives in the spectrum, and which corresponds to the line 1442 in the typical spectrum of Kirchhoff. From the examination of the solar spectrum, we may conclude that thallium does not exist in the solar atmosphere.

Thallium undoubtedly forms one of the family of alkaline metals, the number of which has been doubled by recent discoveries. At the beginning of this century, only two of these metals were known, potassium and sodium. Forty years ago lithium was added to the number; and within the last three years three others have been discovered, rubidium, cesium, and thallium, all three by spectrum analysis.

From this we may be allowed to hope that the number of these metals, and of metals in general, is destined, by the application of this new method of analysis, to receive a rapid and considerable extension.

Among alkaline metals, thallium occupies the opposite extremity of a scale of which lithium forms the first term, and the equivalent weights mark the different degrees. The weights are, in fact, as follows:-

On this point it has been remarked,-

1. That the equivalent of sodium is exactly the mean of the equivalents of potassium and lithium: $\frac{39+7}{2}=23$;
2. That by adding double the weight of sodium to the weight of potassium, we obtain the weight of rubidium: $46+39=85$;
3. That by adding twice the weight of sodium to twice the weight of potassium, we get nearly the weight of cresium: $46+78=124 ;^{2}$.
4. That by adding double the weight of sodium to four times that of potas. sium, we obtain nearly the equivalent of thallium: $47+15 j=202$.
These considerations are of a nature to attract the attention of chemists; and without attributing to them a value that the actual numbers would not justify, they show the interest which attaches to the careful comparison of the equivalents of bodies belonging to the same family.
The alkaline metals have this peculiarity, that to bring them under the law of Dulong and Petit-that is to say, to make their atomic heats equal the atomic heats of other metals,--it is necessary to halve their atomic weights. Thallium does not escape this rule. Its equivalent $=204$; but its specific

[^31]heat, as determined by M. Regnault (who appends a note on this subject to this report), being equal to 0.03355 , it is necessary to reduce the atomic weight to 102. In the same way as potash has for its atomic formula $\mathrm{K}_{2} \mathrm{O}$, the protoxyd of thallium would have for its formula $\mathrm{Tl}_{2} \mathrm{O}^{3}$
The atomic volume of thallium will be equal to 8.5 ; and if we do not compare it with the volumes of sodium and potassium, it is because these present extraordinary anomalies which have not yet received sufficient attention from chemists.
In conclusion, we may remark that the series of alkaline metals actually known contains a body which possesses so light an equivalent that it may be placed near to hydrogen-that is to say, lithium; and also a body, thallium, which has so heavy an equivalent that it may be ranked by the side of bismuth, a metal which possesses the highest of equivalents.
We see that the discovery of new bodies extends the circle of our knowledge, not only by the facts with which they enrich practical science, but especially on account of the prospects revealed by the study of them, the laws they lead us to ascertain, and that freer and more general aspect under which we are taught to regard the properties of individual substances, their analogies, differences, and classification, and even their nature and essence.
For these reasons, and taking into consideration the difficulties overcome by the author, and the clearness and importance of his results, we have the honor to propose to the Academy that his memoir form part of the 'Recueil des Savants Etrangers.' $"$
[In answer to the charges of a dishonorable character against Mr. Crookes contained in this Report, that gentleman replies as follows, giving also his grounds of priority. ${ }^{4}$ Mr. Crookes' temperate and manly defense, under the peculiarly aggravating character of the assault made upon him, is worthy of all praise, and he certainly appears to free himself completely from the unworthy motives and practices attributed to him.-Ens.]
"The discovery of the metal Thallium.-In another part of this Num. ber we print at length a translation of the report by Mr. Dumas on Mr. Lamy's latest observations on thallium. Our readers will hardly expect, interested as we are in this subject, that we should publish this report without comment. It will be seen that Mr. Dumas claims for Mr. Lamy the discovery of the metal thallium. Mr. Le Verrier had already made the same claim for Mr. Lamy in the journal La France for October 22, 1862 ; and, in reply to a letter of our own in answer to Mr. Le Verrier, published in the Cosmos for December 5, 1862, Mr. Lamy has since advanced the same claim for himself.

Now, as Mr. Lamy states (Cosmos, December 10, 1862, p. 681) that it is "priority of publication which constitutes priority of invention," We are induced to give a short résumé of dates in support of our own claim to the discovery-not only of the new element, but of its metallic character. Ouv readers will remember that it was in the Chemicar News for March 30, 1861, we first announced "The Existence of a Nero Element, probably of the Sulphur Group." The word probably is here of some importance, as showing the doubts we had at the time of the exact nature of the new body-doubts which were further indicated in

[^32]${ }^{4}$ Chemical News, No. 162, p. 13, Jan. 10, 1863.
Am. Jocr. Sct.-Second Series, Vol. Xxxv, No. 104,-March, 1863.
the title of our next paper-"Further Remarks on the supposed new Metalloid," in the Chemical News for May 18, 1861. Subsequent research soon proved to us that thallium was, in fact, a true metal, but the publication of this discovery was deferred.

Mr. Lamy's claim for priority of publication, and, consequently, priority of discovery, as advanced by himself, is founded on a communication made to the Société Imperiale des Sciences, de l'Agriculture, et des Arts, of Lille, on May 16, 1862. On May 1, 1862, however, the International Exhibition opened, and there, in a case, deposited some days before, and open to the inspection of the numerous scientific men of all countries who were present on the occasion, was displayed several grains of the new body, with the following label-'Thallium, a New Metallic Element, discovered by means of Spectrum Analysis.' Besides this there was a card, on which was written 'Chemical Reactions of Theallium, by which it is distinguished from every other known element. It appears to have the character of A HEAVY METAL, forming compounds which are volatile below a red heat. It is reduced from its acid solution by zinc in the form of a dense black powder, difficultly soluble in hydrockloric acid, readily soluble in nitric acid.' The above, we contend, was a publication in the widest sense of the word, and in this publication the metallic nature of thallium was distinctly asserted. The metal, it is true, was exhibited in powder, just as it was obtained by precipitation by means of zinc, but was none the less the pure metal. It was there for the jury of chemists to examine if they thought proper. It was not examined chemically by the jury; no one tested it; and yet Mr. Lamy, in his letter to the Cosmos, has the hardihood to assert, that Mr. Crookes contented himself with exhibiting to the public and the international jury of Class II, as thallium, some centigrammes of a black powder which was not thallinm.' We shall make no remark on this assertion of Mr. Lamy; but, as some of our readers may be inclined to ask why the metal was not exhibited in the form of a button, we shall be excused for going into some detail.

The source from which we extracted the metal, and the compounds exhibited, was sulphur from the Spanish pyrites mentioned in our paper of May 18, 1861. This sulphur contained no more than one or two grains of thallium in a pound. The metal and compounds we exhibited represented in all about twenty grains of the metal, and the difficulty of extracting this quantity from upwards of fifteen pounds weight of sulphur will be fully appreciated by all chemical readers, when we inform them that the whole of the sulphur had first to be dissolved in nitric acid. We may contrast this, in passing, with the source from which Mr. Lamy derived his metal, as described by Mr. Dunas,-namely, the residues of a sulphuric acid manufactory, 'which contained thallium in tolerably large quantity, and in a form which made it easy to extract.'

Ignorant, at the time, of any richer source of thallium, and having in previous fusions of the precipitated metal discovered that it was rapidly volatilized and lost by oxydation, as described by Mr. Dumas, it was hardly likely that we should risk the loss of the whole of our small specimen for the sake of exhibiting it in a button; it was, therefore, placed in the Exhibition in the form of powder as precipitated. We ${ }^{*}$
might refer to our laboratory note-book, which is open to inspection, to prove that we had obtained the metal and fused it in September, 1861 ; but as a note in a private book does not constitute a publication, we found no claim on this. Nor do we on the fact that Mr. Williams saw the metal in our laboratory in January, 1862, as mentioned by him in the Chemical News, v, p. 350. But it may be evidence that we were 'aware of the metallic nature of thallium, and acquainted with the essential properties of the new body,' to state, that early in April, 1862, we had the following labels printed by Silverlock (as can be proved by a reference to the books of that firm) for the metal and the salts at that time we had prepared :-

Thallium (Audдos)-Oxyd of Thallium-Sulphid of Thallium-Basic Chlorid of Thallium-Iodid of Thallium-Sulphate of ThalliumChlorid of Thallium-Nitrate of Thallium-Ferro-cyanid of Thallium -Cyanid of Thallium-Phosphate of Thallium-Carbonate of Thallium -Chromate of Thallium-Thallium, Sublimed-Oxalate of Thallium.
It is sufficient for us, however, that the metal, labeled and described as a metal, was in the International Exhibition, at its opening, on the lst of May, 1862, to prove priority of publication to Mr. Lamy's communication made at Lille, on the 16 th of May, 1862.
The fact, that the metal was in the Exhibition, rendered it quite unnecessary for us to do what Mr. Dumas says we should have done after seeing Mr. Lamy's specimen. Our metal and two products, the peroxyd and sulphid, had been in the Exhibition some time, with the descriptive cards we have quoted; and with regard to Mr. Dumas's insinuation, that we borrowed from Mr. Lamy some, if not all, of the materials for the paper read before the Royal Society a few days after we met that gentleman, it may suffice to say, that, as Mr. Lamy only spoke French, a language we ourselves speak but imperfectly, it was not possible that either of us could have profited much by the interview.

We have no wish to detract in the least from the great merit of Mr. Lamy's researches. We estimate as highly as any one the skill and industry with which he bas worked out the compounds of thallium. But it must not be supposed, as Mr. Lamy seems to suppose, that we ourselves remained idle during the fourteen months which had elapsed since we remarked the green line in the spectrum. With the limited means at our disposal, and amid other pressing occupations, we had, and bave since, been continually engaged in investigating the properties and compounds of the new metal ; and all we need say to Mr. Lamy is, that We heartily congratulate him on his successes, and envy him nothing but his opportunities."

2. Analytical Chemistry.

2. Alkalimetry.-In the Sheffield Laboratory of Yale College the following method of conducting nice alkalimetrical analyses is employed, which combines several of the most recent improvements in a manner that unites great convenience with the highest accuracy. The requisites are, besides the usual graduated apparatus, a standard acid, a standard alkali, an indicator of the point of neutralization, and pure carbonate of soda.

The standard acid. The use of crystallized oxalic acid, as suggested by Mohr, has come into general favor, and nothing can be more satisfactory when the acid is pure and of constant composilion. It is, however, difficult not only to procure a pure acid, but also to preserve it dry without loss of crystal-water. To dry the pulverized acid over oil-of-vitriol until it ceases to lose weight, as proposed by Erdmann, or to select uneffloresced crystals by help of a magnifier, is troublesome and likely to introduce error. We employ a dilute sulphuric acid, which may be mado of convenient strength for ordinary use, by diluting ten cubic centimeters of oil-of-vitriol with water to the volume of a liter.

The standard alkali is made from commercial caustic potash: this is dissolved in water and diluted until a given volume e. g. 5 c. c. neutralizes 4 to 5 c.c. of the standard acid, as is determined by a few rough trials.

The alkali-solution thus obtained is heated to boiling in a flask, and a little freshly-slaked lime is added to decompose any carbonate of potash. The boiling is continued a few minutes and, finally, the ley is poured upon a filter, and the filtrate is collected in the bottle from which it is to be used. Care should be taken to bring upon the filter some of the excess of lime that is suspended in the liquid, so that the latter may acquire no carbonic acid from the air. The clear liquid thus obtained is a pot-ash-lye containing lime in solution. If exposed to the air, the carbonic acid that is absorbed separates as carbonate of lime, leaving the liquid perfectly caustic.

It now remains to determine with the greatest accuracy, 1st, the volume of alkali which neutralizes a cubic centimeter of the acid and, 2 d , the amount of SO_{3} contained in a cubic centimeter of the latter.

As a means of recognizing the point of neutralization, tincture of cochineal possesses great advantages over solution of litmus. The knowledge of this fact is due to Luckow who has detailed its application in Jour. für Prakt. Chem., Ixxxiv, p. 424. Tincture of cochineal is prepared by digesting and frequently agitating three grams of pulverized cochineal in a mixture of 50 cubic centimeters of strong alcohol with $200 \mathrm{c} . \mathrm{c}$. of distilled water at ordinary temperatures for a day or two. The solution is decanted, or filtered through Swedish paper.

The tincture thus prepared has a deep ruby-red color. On gradually diluting with pure water (free from ainmonia), the color becomes orange and finally yellowish-orange, Alkalies and alkali-earths as well as their carbonates change the color to a carmine or violet-carmine. Solutions of strong acid and acid salts make it orange or yellowish-orange.
To determine the volumetric relation of the alkali and acid, a given volume of the latter, e. g. $20 \mathrm{c} . \mathrm{c}$., is measured off into a wide mouthed flask, ten drops of cochineal-tincture and about 150 c . c. of water are added-the alkali is now allowed to flow in from a burette, until the yellowish liquid in the flask, suddenly, and by a síngle drop, acquires a violet-carmine tinge.

In nicer determinations, it is important to bring the liquid each time to a given volume, by adding water after the neutralization is nenrly finished. For this purpose, two or more flasks of equal capacity are selected, and on the outside of each a strip of paper is gummed to indicate
the level of the proper amount of liquid, e. g. 200 c.c. The same amount of coloring matter being thus always diffused in the same volume of the same water, the errors of varying dilution and varying amount of ammonia (which is rarely absent from distilled water) are avoided. The contents of one flask, in which the neutralization bas been satisfactorily effected, may be kept as a standard of color for the succeeding trials, as the tint remains constant for hours, being unaffected by the absorption of carbonic acid. The greatest convenience and accuracy of measurement are attained by using burettes provided with Erdmann's swimmer (Jour. Prakl. Chem., Ixxi, p. 194).

When three or four accordant results have been obtained, the average is taken as expressing the relative strength of the acid and alkali.
To ascertain the absolute standard, weigh off in a small platinum crucible alout 0.8 grm . of pure carbonate of soda, ignite to dull redness, cool and weigh accurately: bring the crucible with its contents into one of the wide mouthed flasks and let flow from the burette a slight excess, e. g. 50 c. c., of standard acid. The solution of the carbonate of soda is facilitated by warming, and, finally, the contents of the flask are gently boiled for several minutes to expel carbonic acid. The solution is now allowed to become perfectly cold, then add ten drops of cochineal and lastly the standard alkali to neutralization, diluting to the proper volume.

To illustrate the accuracy of the process and the calculations employed, the following actual data may be useful. The normal acid was made by diluting $50 \mathrm{c} . \mathrm{c}$. of oil-of-vitriol to the volume of ten liters and had balf the strength above recommended. The alkali was from a stock on hand and more dilute than necessary.

Relation of acid to alkali.

It	$20 \mathrm{c.c}. \mathrm{SO}_{3}=32 \cdot 8 \mathrm{c.c} KO,$.
Exp. II,	20 c.e. $\mathrm{SO}_{3}=32.8$ c.c. KO , or
Exp. III,	40 c.c. $\mathrm{SO}_{3}=65 \cdot 7$ c. с. KO , or

We have accordingly:

$$
\begin{aligned}
1 \text { c. c. } \mathrm{SO}_{3}= & 1.64 \text { c. c. } \mathrm{KO} \text { and } 1 \text { c. c. } \mathrm{KO}=0.60976 \text { c. c. } \mathrm{SO}_{3} . \\
& \text { Absolute strength of acid and alkali. }
\end{aligned}
$$

Exp. I. 0.4177 grm . of carbonate of soda were treated with $44-2$ c. c. of SO_{3}. To neutralize the excess of the acid were required 3.8 c.c. KO, Which ${ }^{3^{\circ}}$ correspond to $2.32 \mathrm{c} . \mathrm{c} . \mathrm{SO}_{3}(3.8 \times 0.60976)$. Deducting this from the total amount of acid $(44.2-2.32)$ we have 41.88 c . c. of acid, equivalent to the carbonate of soda taken.
41.88 c . c. solution of $\mathrm{SO}_{3}=0.4197 \mathrm{grm} . \mathrm{NaO} \mathrm{CO} 2$.

Exp. II. $0.4126 \mathrm{grm} . \mathrm{NaO} \mathrm{Co} 2$ treated with $44 \mathrm{c} . \mathrm{c} . \mathrm{SO}_{3}$ required 4.28 c. c. KO. $\quad 4.28 \times 0.60976=2.61$ c. c. $\mathrm{SO}_{3} . \quad 44-2.61=41.39$ c. c. SO_{3}.
$41.39 \mathrm{c} . \mathrm{c}$. solution of $\mathrm{SO}_{3}=0.4126$ grms. NaO CO 2.
It is convenient to calculate how much acid corresponds to 53 decigrammes of carbonate of soda, since the relation of any other substance to the acid is then obtained by substituting its equivalent number for 53 (the equivalent of NaO CO 2), thus:

$$
\begin{array}{llll}
& \overbrace{0.4177: 0.53}^{\text {grms. } \mathrm{NnO} \mathrm{CO}_{2}} & :: & \overbrace{41 \cdot 88: 53 \cdot 14}^{\text {I. c. } \mathrm{SO}_{3}} \\
\text { II. } & 0.4126: 0.53 & :: & 41 \cdot 39: 53 \cdot 17
\end{array}
$$

Accordingly $0.53 \mathrm{grm} . \mathrm{NaO} \mathrm{CO} 2$ neutralize 53.155 c . c. SO_{3}.
If the solutions are employed for nitrogen estimations, we learn how much nitrogen corresponds to 1 c.c. of acid, by the following proportion,

$$
\overbrace{53.155: 1}^{\text {c. c. } \mathrm{SO}_{3}}:: \overbrace{0 \cdot 140: 0.0026338}^{\text {grm. N. }}
$$

We may then write on the label of the acid bottle the following data for calculation.

$$
\begin{aligned}
& 1 \text { с. с. } \mathrm{KO}=0.60976 \text { с. с. } \mathrm{SO}_{3} . \\
& 1 \text { c. c. } \mathrm{SO}_{3}=1.64 \quad \text { c. c. } \mathrm{KO} \\
& 1 \text { c. c. } \mathrm{SO}_{3}=0.0026338 \mathrm{grm} . \mathrm{N} .
\end{aligned}
$$

As an example of the determination of nitrogen by help of these solutions, the following analysis of hippuric acid made by Mr. Peter Collier in this Laboratory, may be adduced.
0.3923 grms. hippuric acid were burned with soda-lime and the ammoniacal products were collected in 20 c. c. of the standard acid contained in the usually employed bulb tube. When the combustion was complete, the contents of the bulbs were rinsed out into a flask, brought to the volume of $150 \mathrm{c} . \mathrm{c}$. and, after adding 10 drops of cochineal, the normal alkali was dropped in, until the change of color indicated nelltralization; 13.7 c . c. of KO were required, $=8.354$ с. c. $\mathrm{SO}_{3}(13.7 \mathrm{X}$ 0.60976) which deducted from 20 c.c. left $11.646 \mathrm{SO}_{3}$ as equivalent to the nitrogen of the hippuric acid. $11.646 \times 0.0026338=0.0306732$ $\mathrm{N} . \div 0.3923=7.818$ per cent. The calculated per centage is 7.82 .

The advantages of cochineal over litmus as an indicator, are as follows: 1. It possesses far greater sensibility. Luckow asserts that water which is tinged faintly orange by it, becomes distinctly red by the addition of एँס. Wण

When a little pulverized marbje is covered with the diluted tincture and allowed to stand for some time, the lower stratum of liquid acquires a carmine tinge and by shaking, the whole solution becomes red. Luckow consilers that in this case the carminic acid attacks the marble and forms a lime salt which causes the change of color. In this way the minutest traces of carbonates of alkali-earths may be detected in pulverized minerals, clays, \&c. Alkali-salts must of course be removed by washing with distilled water free from ammonia.

This extreme delicacy allows of the use of much more dilute solutions than can be employed with litmus.
2. According to Luckow, cochineal is quite indifferent to carbonic and sulphydric acids, carminic acid being stronger than these. This is practically true for solutions of considerable strength. Hence a normal alkali for technical analysis may be prepared by simply dissolving a weighed amount of carbonate of soda in a known volume of water, and from this a standard acid may be easily made. In the neutralization it is not needful to expel carbouic acid by boiling. The influence of the latter is howerer at once seen when a caustic and carbonated alkali are operated with side
by side. In case of the former, the point of neutralization (or rather of supersaturation,) is shown by a prompt and decisive change from a tint in which orange predominates, to one in which this disappears and violet is most marked. In presence of carbonic acid the change is so:newhat gradual, and though a red color is produced it is nodified by an orange tint, even in presence of a large excess of alkali. Hence, it is to be recommended, especially in nice investigations, to employ a caustic alkali. A trifle less of it will be found needfil to neutralize a given volune of acid, than is required of a carbonated solution, and no doubt will exist as to the point of saturation. Mr. Collier has made some experiments with a sulpharic acid containing 25 c. c. oil-of-vitriol to the liter and a solution of carbonate of soda and he found, when CO_{2} was expelled by boiling, that 10 c. c. $\mathrm{SO}_{3}=7 \cdot 66$ and $7 \cdot 67$ c. c. of $\mathrm{NaO} \mathrm{CO} 2 ;$ when CO_{2} was not expelled, $10^{\text {c. c. }} \mathrm{SO}_{3}=7.68$ and 7%. These results are as good as identical. In standarding the much weaker acid used for the nitrogen determination above mentioned, he obtained for it a value slightly too low when CO_{2} was not removed. $0.58 \mathrm{grm} . \mathrm{NaO} \mathrm{Co}_{2}$ required in this case but 53.05 c. c. SO_{3} instead of 53.155 as in the other instances. This is a very slight difference and not appreciable perhaps with ordinary burettes, but it is a constant and perceptible difference. What is of more importances is the uncertainty as to the point of neutralization.
This indifference towards carbonic acid is a great advantage in nice analyses, in that the time consumed for effecting neutralization is without influence on the result. When litmus is used and the point of neutralization is reached, a short exposure to the air suffices to redden the liquid again. If the operator is obliged to proceed slowly, he will require somewhat more alkali than when he operates rapidly; a portion of it being neutralized by atmospheric carbonic acid. With cochineal, the result is independent of the small amount of carbonic acid that can come from the air. The permanence of the color also allows several titritions to be compared directly together.
A third advantage of cochineal is, that its solution, prepared as above described, may be preserved indefinitely in closed vessels, without decolorization or alteration.
s. w. J.
3. On the solubility of Sulphate of Lime in chlorhydric acid.-In this Laboratory it has long been the custom to bring into solution for analytical purposes gyypum, so-called super.phosphate of lime and other substances containing much sulphate of lime, by treatment with hot dilute chlorlydric acid. The action is rapid, and the analysis may be carried on with more convenience than when decomposition is effected by carbonate of soda. The sulphate of lime is not taken up by very concentrated chlorhydric acid to nearly the same extent as when the acid is dilute, and therefore a saturated solution of the salt in the latter is copionsly precipitated by the addition of fuming chlorlydric acid as well as by that of water.
s. W. J.

3. Technical Chemistry.

4. Webster's process for producing Oxygen Gas.-J. Webster of Birmingham (Eugland), has taken out a patent for obtaining oxygen (and certain uther products,) from nitrate of soda and oxyd of zine, or peroxyd of iron, subjected to a low red heat in close retorts. The gaseous
products obtained are oxygen contaminated with variable quantities of nitrogen, and nitrous acid vapor, the latter of which is condensed by passing through water, while the residue in the retort consists of caustic soda and oxyd of zinc. Water completely separates these two, leaving the zinc-oxyd fit for a second operation. The soda solution serves for the manufacture of soap, while the mixed gases the process yields answer for the oxyhydrogen blowpipe and for various metallurgical purposes-or for increasing the brilliancy of coal gas, de. Messrs. Pepper and Campbell have carefully examined and reported on Webster's process. ${ }^{1}$ By the analysis of the former, the mixed gases consist of 59 vols. per cent of oxygen and 41 vols. per cent of nitrogen-while by Campbell's analysis the nitrogen was from 26.50 to 32.80 per cent of the whole. The process is conducted thus:-10 pounds of nitrate of soda (commercial) and 20 pounds of oxyd of zinc both previously dried, and warm, are roughly mixed and thrown into a red hot iron retort. The product, as soon as it will rekindle a taper, is conducted through a purifier-consisting of a 30 gallon stone-ware jar containing five pounds of water and tight moveable colander-like shelves, upon which are strown 48 pounds of residue, the product of previous operations, and consisting of zinc-oxyd, caustic soda and nitrate or nitrite of soda-this caput mortum stuff is moistened with fire pounds of water and carefully strewn on the shelves (in the manner of the hydrate of lime, in the common, dry-lime purifier for coal gas). The purifier thus furnished is closed by a lid of stoneware dropping into a 'water joint'-and is also connected with a capacious sheet iron gasholder. The product of gas from this charge was 33.69 to 32.968 cubic feet and the loss of weight in the process 5.5 pounds in the charge; the time occupied for the first charge was $2^{h} 5^{m}$, in second, $2^{h} 25^{m}$, the second charge being added without cooling the retort-the caput mortum by the structure of the retort being remored while it is hot, as in a continous operation. Campbell found the yield from 20 pounds of oxyd of zine and 30 pounds of nitrate of soda, in two operations, to be 157.85 and 159.03 cubic feet, and the time in working each charge of 50 pounds, $9 \frac{1}{2}$ hours. Campbell finds the proportion of nitrogen is diminished by using a moderate temperature and an increase of water in the purifier. This water becomes very acid from the NO_{3} and NO_{5} absorbed, these products resulting of course from the reacion of the materials.

The cost of oxygen by this process is less than from any other yet proposed as will appear from the following comparison, based on De. ville's and Debray's well known statements. ${ }^{\text {. }}$
1 cubic meter ($=35.317$ cubic feet), frs. s. d. English currency.

It is plain from this statement that, without considering its purity Webster's process is cheaper than any other: but Deville's method gives
${ }^{1}$ Chem. News, vi, pr. 218, 268, See also same Journal, vi, 287 and 259, vii, 84 , for addlitional information.
${ }^{3}$ This Journal, [2], $x \times x \mathrm{x}, 280,427$, and Ann. do Chim. et Phy., [3], $1 \mathrm{xxi}, 97$.
a pure gas. It is remarked however by Mr. Crookes ${ }^{3}$ that the mixed gas of Welster's process is as pure as can be used in the arts unless in the metallurgy of the platinum metals.
5. On the industrial applications of Cryolite.-This interesting mineral, which a few years since was only locked upon as a mineralogical rarity, has now become an important article in commerce. Aside from its use as a source of aluminum as suggested by Perey and H. Rose, we learn from receut articles in Dingler's Polytechnisches Journal, that it is now extensively employed in chemical works at Copenhagen and Harburg for the production of caustic soda and salts of alumina.
J. Thomsen (Ding. Jour., clxvi, 443) claims to have discovered in 1850 that cryolite could be decomposed by lime and lime salts, and after perferting his process he commenced the manufacture of soda in 1857, and in 1858 erected large works at Copenhagen which now use $40,000 \mathrm{cwt}$. of cryolite annually. The exploration of the cryolite deposit in Greenland has become so extended that another large manufactory has been erected at Harburg, and others are being put up at Prague, Selicie and Mannheim. It is estimated that these manufactories will consume from 120,000 to 150,000 ewt. (6000 to 7500 tons) of cryolite annually.
The following method is used for converting the cryolite into soda ash and alumina salts: the cryolite is first ground to a fine powder and then mixed with chalk or ground limestone, in the proportion of 100 parts of cryolite ($3 \mathrm{NaFl}+\mathrm{Al}_{2} \mathrm{Fl}_{3}$) to 127 parts of carbonate of lime, equal to one equivalent of cryolite to six equivalents carbonate of lime. This When heated yields six equivalents of fluorid of calcium, alunvinate of $80 d a 2 \mathrm{NaO}+\mathrm{Al}_{2} \mathrm{O}_{3}$, and free carbonic acid. An excess of chalk in tho mixture is found to be advantageous, as it renders the charge less fusible. The operation is conducted in a reverberatory furnace similar to those usually employed in alkali works. The compound of alumina and soda is dissolved in hot water and subsequently decomposed by carbonic acid, Which last is obtained from the furnace in which the cryolite is decomposed. The carbonate of soda solution is separated from the precipitated alumina and either crystallized, or evaporated to dryness and calcined; it affords a remarkably pure soda ash, leing, of course, free from chlorids and containing only traces of sulphites and sulphates, these last due to the small amount of sulphur contained in the coke. The greater portion of this sodia solution is however converted into caustic soda by means of lime; the commercial article of caustic soda made at Harburg contains about 75 per cent of soda. The precipitated alumina, produced by the decomposition with carbonic acid, is washed with water and subsequently disolved in sulphuric acid, yielding a sulphate of alumina entirely free from iron. (Schwarz, Dingler's Journal, clxvi, p. 283.) Cryolite is delivered at Harburg at two and a half Prussian thalers (about \$2) a cwt. No mention is made of the cconomic application of the large amount of the fluoril of calcium produced in the above operation-aside from its use for making fluohydric acid, it unquestionably can be advantageously applied as a flux in many metallurgical operations.
G. J. B.

$$
{ }^{3} \text { Chem. News, vi, } 221 .
$$

Ax. Jour. Scl.-Second Series, Vol. XXXV, No. 104,-March, 1863.

4. Photography.-

6. The action of light upon a sensitive plate.-At a recent session of the Photographic Society of Marseilles, one of the members stated his having failed to obtain a good development in some tannin plates which had been kept some twenty days after exposure in the camera, although some of the same lot of plates had developed good results, when the developinent took place within twenty-four hours of the exposure.-Mr. Vidal explains this phenomenon by a new theory of the action of the actinic rays upon a sensitized plate. He supposes that under the action of light a certain molecular change, of a transitory nature, takes place, but that, in accordance with a general physical law, there is a tendency to return to the anterior molecular condition, and that in the process of time a plate exposed in the camera would, by returning to its original molecular condition, lose all trace of its exposure, and be ready to receive an entirely new impression, the same as a plate which had not been exposed at all. Mr. Vidal concludes that the physical theory of the absorption of the actinic fluid by certain substances, such as the iodid of silver, is the one which best explains photographic reactions.

We have only to say, briefly, in regard to this theory, that we have no faith in it whatever; it is contrary to our photographic experience; which confirms the theory that the action of light upon the sensitized plate is a chemical and not a physical action. The loss of sensitiveness, or the lack of ability to develope well after keeping-can be readily and satisfactorily explained by referring it to causes familiar to all practical photographers.

II. METALLURGY.

1. On Aluminum Bronze.-Lieut.-Colonel Strange has communicated to the Royal Astronomical Society some interesting observations on the use of aluminum-bronze as a material for the construction of astronomical and other philosophical instruments. Col. Strange remarks that, "the qualities of most importance in instrument making are, (1) tensilestrength; (2) resistance to compression; (3) malleability; (4) transserse strength or rigidity; (5) expansive ratio; (6) founding qualities; (7) behavior under files, cutting tools, \&c.; (8) resistance to atmospheric influences; (9) fitness to receive graduation; (10) elasticity; (11) fitness for being made into tubes; (12) specific gravity."

Tensile strength. -The inean of experiments made by Mr. Anderson at the Royal Gun Factory, Woolwich, shows that the average breaking tensile strength of aluninum bronze is $73,185 \mathrm{lbs}$. per square inch, while that of gun-metal is $35,040 \mathrm{Jbs}$., the ratio being rather more than two to one in favor of the aluminum-bronze.

Resistance to compression.-Experiments made by Mr. Anderson show that no effect was perceptible until 9 tons 2 cwt. per square inch was ap. plied, when the specimen gave 006 of an inch; on removing the weight an elasticity of 001 was observed, giving the first permanent compression as 005 of an inch. The ultimate amount of compression applied was 59 tons 2 cwt .1 qr .4 lbs . ($132,416 \mathrm{lbs}$.), under which the specimen became too much distorted to permit of more weight being applied with any true result.

Malleability.-Mr. Anderson states that, "the qualities of this metal for forging-purposes would appear to be excellent; with the exception of the part heated to a red heat in the shade, all show that it is a good workable material under the hammer almost up to the melting point." Col. Strange adds, that there were specimens exhibited in the Industrial Exhibition at London which showed that the alloy could be drawn out under the hammer almost to a needle point.

Transverse strength, etc.-Messrs. Simms found by experiment that aluminum-bronze was 3 times more rigid than gun-metal, and upwards of 44 times more rigid than brass; and, in regard to its expansive ralio, they found this alloy less affected by change of temperature than either gun-metal or brass-a little less than gun-metal and much less than brass. Its founding qualities are such that it produces admirable castings of any size. It does not clog the file, and in the lathe and planingmachine the tool removes long elastic shavings, leaving a bright, smooth surface. It can be worked with much less difficulty than steel, and, notwithstanding its greater cost, the Messro. Simms think that screws made of it would in the end prove less expensive than steel. It tarnishes less readily than any metal usually employed for astronomical instruments. It is remarkably well fitted to receive graduation, as it takes a fine division which is pure and equable, surpassing any other cast metal in this respect. Col. Strange remarks teat in its elasticity it is said to surpass even steel, and it would therefore appear to be the most proper material for the suspension springs of clock pendulums. Regarding its fitness for being made into tubes, it can be soldered with either brass or silver solder; it can be rolled invo sheet metal, and it can be hammered and drawn. Gun-metal does not adinit of being rolled, so that hitherto the tubular portions of telescopes and other instruments have been made almost exclusively of yellow brass, an alloy very deficient in rigidity. The specific gravity of the alloy containing 90 copper and 10 aluminum is, according to Messrs. Bell, $7 \cdot 689$, very nearly that of wrought-iron.
Col. Strange adds, "it appears, from these experiments and from the concurrent testimony of those who have given it a fair trial, that the 10 per cent aluminum-bronze is far superior, not in one or some, but in every respect, to any metal hitherto used for the construction of philosophical apparatus, and that for such purposes it may be employed in the dimensions that would be proper in the case of cast steel. All parts Which would otherwise be made of steel may with perfect safety, and even with advantage, be made of the new alloy, particularly such parts as bolts, and fixing, tangent, and micrometer screws. Its lardness and comparative inoxydizability point it out as peculiarly adapted for pivots, axes, and bearings. If employed for receiving the graduation of circles, the necessity for inlaying another metal will be obviated, by which two advantages will be gained: the hammering which forms part of the operation of inlaying, and which, more or less, must cause unequal density and tension in the circle suljected to such treatment, will be dispensed with; and the effect of inequality of expansion, in the circle and the inlaid strip, will no longer be a cause of appreliension. With respect to the due visibility of divisions cut on this metal, opinions will perhaps differ I can only say that I should be well content to observe with them."

This alloy has been selected by Col. Strange as the most appropriate metal for the construction of the large theodolite for the use of the Trigonometrical Survey of India. The horizontal circle of this theodolite is three feet in cliameter, and the effect of using this alloy will be to keep the weight of the instrument within reasonable limits, notwilhstanding its possession of means and appliances not hitherto bestowed on such instruments. In the manufacture of the alloy, Col. Strange says that extremely pure copper must be used; electrotype copper is best, and Lake Superior copper stands next, giving an alloy of excellent quality. The ordinary coppers of commerce generally fail, owing, it is said, to the presence of iron, which appears to be specially prejudicial. Further, the alloy must be melted two or three times, as that obtained from the first inelting is excessively brittle. "Each successive melting, up to a certain point determined by the working, and particularly the forging properties of the. metal, improves its tenacity and strencth. It is probable that after sereral meltings there will remain in combination with the copper a somewhat smaller proportion of aluminum than 10 per cent. The present price of English-made 10 per cent aluminum-bronze is 6 shillings 6 pence per lb. This is four or five times that of gun-metal, but a much smaller quantity of the new alloy than of gun-metal will give the same strength; and when it is considered how small a ratio the cost of material bears to the cost of workmanship in refined apparatus, it will be found that even at the present price of the bew alloy its cost is not prohibitory, whilst the advantages attending its use promise to outweigh the increased expendi-ture."-L. E. and D. Phil. Mag., [2], xxiv, p. 508.
C. Tissier, Director of the Aluminum Works at Ronen, shows that one per cent of aluminum in copper makes the latter more fusible, giving it the property of filling the mould in casting, at the same time preventing it from rising in the mould. The action of chemical agents upon it is also weakened, and the copper gains in hardness and tenacity without losing its malleability, thus producing an alloy which has the malleability of brass, with the hardness of bronze.

In transverse strength, this alloy was found to be more than twice as rigid as either brass or copper. Tissier also finds that one part of aluminum, added to bronze consisting of 96 copper and 4 tin, gives an alloy of a fine color, of remarkable homogeneity, of great hardness and malleability. During casting, this alloy does not oxydize at all, and it is therefore free from the oxyd coating with which ordinary bronze castings are covered. The transverse strength of the castings of this alloy Tisssier finds to be two and a half times that of the original bronze, and that of the hammered alloy is four times as great as that of bronze. Ordinary cannon-bronze, 89 parts copper and 11 tin, has the same transverse strength as castings of the new alloy. In reference to the harduess, tenacity and malleability, it is equal in these respects to aluminum-bronze, made of 90 parts copper and 10 parts aluminum, and, as it is considerably cheaper, it can with advantage be substituted for this more expensive alloy.-Polytechnisches Journal, clxvi, p. 430.
2. Mineral and Metal producls of Great Britain and Ireland. - The following statistics are extracted from a paper on the Mines, Minerals and

Miners of the United Kingdom, read before the London Society of Arts by Mr. Robert Hunt, Keeper of the Mining Records.

Product for 1861.

Minerals.		Quantitr.	Value.
Iin,	tons,	11,640	£ 725,560
Copper,	"	231,487	1,427,215
Lead,	"	90,696	1,136,249
Silver,	"	29	1,471
Zine,	"	15,770	31,113
Pyrites,	"	125,135	79,715
Arsenic,	"	1,450	10,875
Nickel,	cwt,	16	24
Wolfram,	tons,	8	29
Antimony,	"	15	45
Manganese,	*	925	2,925
Gossan, ochre, \&c.,	"	3,016	3,016
Iron ore,	"	7,215,518	2,302,371
Coals (sold and used)	"	83,635,214	20,908,803
Other minerals,	"	2,222,602	880,114

Metals produced from British Minerals.

		Quantity.	Value.
Guld,	oz.,	2,784	$\pm 10,816$
Silver,	"	569,530	144,161
Tin,	tons,	7,450	910,762
Copper,	"	15,331	1,572,480
Lead,	*	65,643	1,445,255
Zinc,	"	4,415	79,101
Iron, Pig,	"	3,712,390	9,280,975
Total value, Estimated value of other metals, Coals,			£13,443,550
			250,500
			20,908,803
Total value of metals and coals,			34,602,853

There were worked, in 1861,3052 collieries, 167 copper mines, 148 tin mines, 390 lead mines and 29 zinc mines-number of iron mines not given. The whole employed an aggregate of 330,000 persons actnally engaged in mining operations, exclusive of quarries of all kinds. - Journal of the Society of Arts, xi, 94.
3. The Mining and Smelting Magazine, a monthly review of Practical Mining, Quarrying and Metallurgy, and record of the Mining and Metal Markets; edited by Henry Cerwen Salmon, F.G.S., F.C.S. Vol. I and II. London, 1862. ${ }^{\text {- }}$-Besides the objects mentioned in the title, this monthly contains original articles of great value on mining and

[^33]metallurgical subjects. Among its contributors are Warrington W. Smyth, Robert Hunt, H. W. Bristow, James Napier, J. A. Phillips, Professor Ansted, and others who are well known to both scientific and practical men. It also contains translations of valuable memoirs from the Annales des Mines and other foreign journals. It is well illustrated with maps and plans of mines, furnaces, etc. We trust that this magazine will meet with the success it deserves, as it fills a want that has long been felt by miners and metallurgists.

III. PHYSIOLOGICAL AND AGRICULTURAL CEEMISTRY.

1. On the Chemistry of Germination.-Dr. Max Scnulz has published (Jour.für Prakt. Chem., Ixxxvii, p. 129) an extended investigation on this subject. He directs attention to the insufficiency of elementary analysis, as employed by earlier experimenters, for determining the chemical changes that occur in germination, and substitutes for it Bunsen's gasometric methods. Various seeds, viz: those of Lepidium sativum, Lupinus albus, Vicia fuba, and Iberis amara, were made to germinate in pure water contained in sealed glass flasks. The chemical changes that took place were studied by analyzing the air of the flasks after a suitable interval. Schulz arrives at the following results, which he deems fully established in regard to what he terms the first stage of germination, or that period in which no cell-multiplication is observable, but during which the embryo merely bursts the integuments and extends itself with the radicle in a downward direction.
2. The first stage of germination is set up or made possible by the decomposition of albuminoid substances. 2. This decomposition is produced by the absorption of water and oxygen. 3. In its progress, nitrogen and carbonic acid and afterward hydrogen are set free. By several experiments made with crushed seeds, Schulz found that, in decay or putrefaction, nitrogen and carbonic acid were evolved, though less rapidly than in germination; but that free hydrogen did not appear. ${ }^{1}$ Schulz hence concludes that the evolution of hydrogen, in his experiments, truls belonged to the germinative process, and was not a result of accompanying decay. From the circumstance that seeds will not develope in sealed vessels of suitable dimensions, beyond, or but little beyond, the first stage, owing to the accumulation of carbonic acid, Schulz was not able to investigate fully what happens in the later periods of germination. In the few trials that partially succeeded, he obtained the same results as were manifested in the first stage, though the liberation of free hydrogen appeared to be less copious, relatively to that of the nitrogen and carbonic acid.
S. W. J.
${ }^{1}$ Dr. Pugh, President of the Ag. College of Penn., obtained a large amount of free hydrogen and but traces of nitrogen from decoraposing vegetable matters (wheat, barley, beans and turnips) when they were placed in water over mercury, atmospheric air being removed by communicating the vessel containing them with the Torricellian vacuum. (Laves, Githert and Pugh on the Sources of the Nitrogen of Vegetation. Phil. Trans. part 1I, 1861.)

It would thus appear to be experimentally established, that in the chemical process of decay, hydrogen is evolved only in the absence, and nitrogen only in the presence of an excess of free oxygen, whereas in the vital process of germination, hydrogen and nitrogen are both eliminated in presence of oxygen. Further, in tho
2. On the reduction of kinic acid to benzoic acid, and its conversion into hippuric acid in the animal organism.-According to Lautemann (Ann. Ch. u. Pharm., exxv, p. 9), when kinic acid is heated with a saturated aqueots solution of jodhydric acid in a sealed tube for two to three hours, at 115 to $120^{\circ} \mathrm{C}$, henzoic acid and iodine are obtained. The same conversion is effected by bringing into a retort two equivalents of iodine with one equivalent of phosphorus, and, after the two have united and the product is cold, adding to four equivalents of the crude iodid of phosphorus one equivalent of kinic acid dissolved in water to a syrupy solution. On warming gently, a vigorous reaction sets in, iodhydric acid escapes and water distils over. When the iodid of phosphorus has mostly disappeared, the contents of the retort on cooling solidify to a fat-like crystalline mass, from which ether extracts impure benzoic acid. The retort neck is also lined with crystals of this acid toward the close of the process.

$$
\stackrel{\text { Kinic acid. }}{\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{12}}=\stackrel{\text { Benzoic acid. }}{\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{4}}+6 \mathrm{HO}+2 \mathrm{O}
$$

The reaction may proceed according to either of the following equations.

$$
\begin{aligned}
& \text { 1. } \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{12}+8 \mathrm{HI}=\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{4}+8 \mathrm{HO}+8 \mathrm{I} \\
& \text { 2. } \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{12}+8 \mathrm{I}=\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{4}+6 \mathrm{HI}+2 \mathrm{I}
\end{aligned}
$$

Since kinic acid is thus converted so easily into benzoic acid, it occurred to Lautemann to examine whether it would undergo the same change in the aninal organism, and appear in the urine as hippuric acid. He found this to be actually the case, in trials upon himself and two other persons, 8 grms. of kinate of lime yielding in two experiments 2.2 and 2.7 grms. of hippuric acid, respectively. Kinic acid having been proved by Zwenger and Sievert to exist in considerable quantity in the whortleberry plant, it becomes probable that it may also occur in various grasses, and that it is the origin of the hippuric acid which is found in the urine of pastured animals.
s. W. J.
3. On the composition of the urine of oxen as related to their fodder.Henneberg, Stoumann and Rattenberg, (Ann. Ch. u. Pharm., exxiv, p. 200,) at the conclusion of an important paper chiefly occupied with an account of the method they employ for the determination of hippuric acid, urea and chlorid of sodium in urine, give the following resumé of results obtained with the urine of three oxen during seven months of 1860-61.

1. The urine had the maximum content of hippuric acid- $2 \cdot 1$ to $2 \cdot 7$ per cent-when the cattle fed chiefly on oat and wheat straw with a small addition of crushed beans. When leguminous forage (clover hay and bean straw) was exclusively supplied, the hippuric acid fell to 0.4 per cent and less. With meadow hay the percentage was intermediate, viz: 1.2 to $1 \cdot 4$ per cent.
2. The addition of considerable quantities of easily digestible food, e. g. bean-meal, starch, sugar and oil, to the proper fodder, had the effect to diminish the amount of hippuric acid, and increase that of urea.

[^34]3. The quantity of bicarbonates in the urine depends upon the amount of carbonates or salts of vegetable acids present in the food. The several materials used as rations in these experiments gave, by incineration in the muffle, ashes having the following quantities of carbonic aeid to 100 of dry substance.

In the urine, the greatest amount of carbonic acid- 1.6 to 1.8 per centwas observed after feeding with clover-hay. In urine excreted after the ingestion of wheat-straw and crushed beans, carbonic acid was totally wanting. The urine from cattle fed on wheat-straw had an acid reaction notwithstanding it was cestitute of carbonic acid, while in every other instance the reaction was alkaline. By adding to the day's ration of straw 75 grms. acetate of potash, the carbonic acid and the alkaline reaction reappeared.
8. W. J.
4. On some points in the composition of Soils. - It has been assumed by chemists that hydrated oxyd of iron and bydrated alumina as well as hydrated silica are usual ingredients of soils, though no direct proof of their presence has been furnished. Alexander Moller (Die landwirthschafllichen Versuchs-Slationen, iv, p. 227) has examined various soils for these substances by treating them with solution of a nentral or ammoniacal tartrate and with carbonate of soda. Müller finds that seignette salt when boiled with hydrated sesquioxyd of iron dissolves the latter, forming a dark-brown alkaline solution. The hydrated sesquioxyd does not lose its solubility by air-drying nor by drying at 212°, though, in the latter case, it dissolves with more difficulty. Hydrated alumina belares similarly, but appears to go into solution with less rapidity. Silicates of these oxyds are insoluble in the ammoniacal solution of tartrates which easily take up the hydrates.

The only soils which yield to this reagent noticeable quantilies of hydrated oxyd of iron (and hydrated manganeso manganic oxyd) are those which possess a perceptible ocher-yellow color. Red soils, and also those having a light color, yield little iron to a tartrate, compared to that which is removed from them by hydrochloric acid. The jellow soils thus contain hydrated sesquioxyd, the red, anhydrous sesquioxyd, and the lightcolored soils appear to contain a silicate of iron.

Hydrated alumina Müller scarcely found at all. He supposes that alumina exists in wearly all cases as a silicate.

By digesting the clayey soils of the vicinity of Stockholm directry with solution of carbonate of soda, or by treatment with chlorohydric acid, but very little silica is taken up. On the other hand, the residue that remains after acting on them with chlorolydric acid yields much silica; in some cases, even 15 per cent. It hence appears that in the soil the silica exists for the most part in a state of combination.

Note. -There can be little doubt that the hydrous silicates of the various bases occurring in the soil-or its zeolitic constituents as ther
may be termed, enact a series of most important functions. The researches of Daubrée on Metamorphism, Ann. des Mines, [5], xvi, also Smithsonian Report, 1861, have elucidated, in the most clear and striking manner, the conditions and results of the action of warm water on the anhydrous silicates, and have shown that crystallized zeolites may be produced from them by its influence. Way and Eichhorn (this Jour., xxvii, 71-85) have made it in the highest degree probable, that the absorbent power of soils for the alkalies is due to the action of amorphous zeolitic compounds; and it is hardly to be questioned, that the good (or bad) results of tillage and many of the hitherto inexplicable effects of manures, will be found to bear close relations to the processes of soil-metamorphism, in which silicates, water and carbonic acid play the chief parts.

IV. MINERALOGY AND GEOLOGY.

1. Manuel de Minéralogie par A. DesCloizealx, Maitre de conférence à l'Ecole Normale supérieure, etc. Tome premier, 572 pp., 8 vo. Paris, 1862. -This Manual of Mineralogy embodies the results of a very large amount of original research by the author. DesCloizeaux has for many years been engaged in studying the optical and crystallographic characters of mineral species, and by these means, especially the former, has thrown new light on doubtful species, distinguished many that have been confounded together, and referred others, supposed to be distinct, to their true places. Many of these results have already been mentioned briefly in former numbers of this Journal, ${ }^{1}$ and it is hardly necessary to enter into details in this place. Suffice it to say that the work is a source of original information on minerals, indispensable to all who are interested in having an accurate knowledge of species.

2. Report on the Geological and Mineralogical specimens collected by Mr. C. F. Hall in Frobisher Bay. ${ }^{3}$

To tab New Yobk Lyceum of Natural History:-
One of your committee, appointed to examine the collection of minerals and fossils made by Mr. Chas. F. Hall in his late Arctic Exploring Expedition, begs leave to report, that he found the collection of fossils small in number of individual specimens, and limited in the range of its species, but possessing great interest to the student of Arctic geology.
The specimens are as follows:-

Maclurea magna (Lesueur).	No. of specimens	7	
Casts of lower surface.	"	"	3
Endoceras proteiforme? (Hall).	$"$	$"$	1
Orthoceras (badly worn specimens).	"	$"$	3
Heliolites (new species).	"	"	2
Heliopora "6	"	"	1
Halysites catenulata (Fischer).	"	"	1
Receptaculites (new species).	"	"	1

This collection was made at the head of Frobisher Bay, lat. $63^{\circ} 45^{\prime} \mathrm{N}_{\text {n }}$

[^35]Ah. Jour. Sci-Second Series, Vol XXXV, No. 104-March, 1863.
and long. $70^{\circ} \mathrm{W}$. from Greenwich, at a point which, Mr. Hall says, is 'a mountain of fossils,' similar to the limestone bluff at Cincinnati, with which he is familiar. This limestone rests upon mica schist, specimens of which he also brought from the same locality. Whether the limestone was conformable to the schist or not, Mr. Hall did not determine. It is much to be regretted that this interesting point was not examined by him, as it is doubtful whether this locality may ever be visited by any future explorer.

The fossils, without doubt, are all Lower Silurian. The Maclurea magna would place the limestone containing it on the horizon of the Chazy limestone of New York. The Halysites catenulata has been found in Canada in the Trenton beds, but in New York not lower than the Niagara Limestone. The Endoceras proteiforme belongs to the Trenton limestone. The Receptaculites is unlike the several species of the Galena limestone of the West, or the R. occidentalis of Canada. Mr. Salter speaks of one found in the northern part of the American continent. This may be that species, or it may be a new one; which it was, we have no means of determining. The Orthocerata were but fragments, and so badly water-worn that the species could not be identified.

The specimens of corals were very perfect and beautiful, and unlike any figured by Prof. Hall in the Palrontology of New York. The Heliolites and Heliopora belong to the Niagara group, in New York, but in Canada they have been found in the Lower Silurian. For the identification of strata, corals are not always reliable. Whether these species are similar or identical with any in the Canadian collection, it was out of my power to determine. They are unlike any figured by Mr. I. W. Salter.
R. P. Stevens.

One of the committee, appointed to examine the mineral specimens brought from Frobisher Bay by Mr. Hall, reports that the specimens though quite numerous were mostly of the same general character. The rocks were nearly all mica schist; some of the specimens were taken from boulders, some from the ruins of houses, and had the mortar still attached, and some were from the rock in its natural position. There was nothing peculiar in the rock, it presenting the usual variations in composition. The other specimens were an argillaceous limestone determined by its fossils to be Lower Silurian; a single specimen of quartz, crystallized and presenting besides the usual six-sided termination another pyramid whose angle was much more obtuse; magnetic iron, some of which was found in situ and other specimens which were evidently boulders and had undergone for some time the action of salt water; a few pieces of iron pyrites, bituminous coal and nodules of flint or jasper.
[The part of this Report omitted gives reasons for believing the coal and siliceous nodules to have been brought from England by Frobisher, who, it is well known, took out large supplies and many miners, expecting to mine and smelt ores; some "blooms" of iron which Mr. Hall found may have been the result of their operations with the magnetic iron.-Eds.]

* * * This theory is supported by the traditions of the natives, who say that the coal was brought there by foreigners, ${ }^{2}$ as well as by the

[^36]entire absence of any indications of geological strata so high up in the series as the Carboniferous formation. The siliceous pebbles seem to have served as gravel for the mortar used in building the houses for carrying on the various objects for which the expedition was sent out. No trace of any mineral containing silver existed in the collections. The sands supposed by Mr. Hall to be those in which Frobisher found gold have not yet been assayed. A small bead detached from an ornament worn by the natives was found to be lead.

Thos. Egleston.
But little attention was paid to zoology, Mr. Hall not having the means at hand for the preservation of specimens. A single specimen of a mollusk, in a dried state, was sent to Wm. Stimpson, Esq., for examination. He writes as follows: "I find the specimen to be Cynthia pyriformis Rathke, an Ascidian mollusk, originally found on the coast of Norway." Only two species of birds were brought, viz: Colymbus torquatus Brunwich, and Plectrophanes nivalis Linn.
Of mammals, he obtained two Lemmings which were referred for determination to Prof. S. F. Baird of the Smithsonian Institution. He informs me that they agree best with Georychus helvolus Audubon, and he should so consider them for the present. Geo. N. Lawrence.
3. Note on a fossil Echinoderm from the Blue Limestone (Lower Silurian) of Cincinnati, Ohio; by J. D. Dana.-In vol. i, (1846) page 44 of the second series of this Journal, there is a paper on a fossil Echinoderm from the Blue Limestone of Cincinnati, by G. Graham, J. G. Antrony and U. P. James, illustrated by a figure from a drawing by the last-mentioued. In a recent letter from Mr. James, the writer learns that the specimen was discovered by him in March, 1846, and that it still remains in his possession and is the only one yet found. The species is referred in the article to the genus Asterias. In the writer's Manual of Geology, the figure is reproduced on page 221, and the provisional name annexed of Asterias Anthonii. From an examination of the drawing, Mr. E. Billings of Montreal, well versed in Silurian Echinoderms, concludes that it comes nearest to the genus Palasterina and may belong to it. Deriving the name from the true discoverer, the species will then be the Palasterina (?) Jamesii.
4. On a new Crustacean from the Potsdam Sandstone; by Prof. $J_{\text {AMes }} H_{\text {all, }}$ (Canadian Naturalist and Geologist, Dec. 1862, vii, p. 443.)-The Crustacean fossils here described and figured are the cephalic shields of a species supposed by Prof. Hall to approach in character the modern Limulus. They are from the Potsdam sandstone of Wisconsin. The shield is three times as broad as long, has a strong thickened border, rounded lateral angles, and small but quite prominent eyes. Other fraginents have been obtained in the region of the Upper Mississippi, and one is a straight spine, which may have been, Prof. Hall observes, the caudal spine of this species. It is suggested that the tracks, called Protichnites, found in the Potsdam sandstone of Canada by Logan, may lave been made by this species; and this is urged as the more probable, since, in 1857 , similar tracks were observed by E. Daniels, of the Geological Survey of Wisconsin, in the Potsdam sandstone of Black River.
5. Proceedings of the Portland Society of Natural History, vol. i, part 1. This volume of 100 octavo pages is the first publication, in
form, of the Portland Society of Natural History. It contains many papers of interest, a plate of coal plants of the Carboniferous age, and s valuable geological map of the northern portions of the state of Maine. If the future numbers of the Proceedings are equal to the first, their publications will contribute much to the progress of science.

Most of the papers in Part 1 appear to have been communicated by members of the Scientific Survey of Maine: and we understand that the first set of specimens collected by the authority of the state government will be deposited in the rooms of the society. The following are the titles of the most important papers in Part 1. A catalogue of the Flowering Plants of Maine, by G. L. Goodale, Botanist to the Maine Scientific Survey :Catalogue of the Mammals and Birds of Maine, compiled hy C. H. Hitchcock, State Geologist:-Notes upon the Geology of Maine, by C. H. Hitchcock:-Catalogue of the Reptiles and Amphibians of Maine, by B. F. Fogg, M.D.:-Fossils of the Potsdam Group of North America, by C. H. Hitchoock:-Grooved Boulders in Bethel, Maine, by N. T. True, M.D.:-Description of a new species of Carpolithes from the Miocene Tertiary of Vermont, by C. H. Hitchcock.
6. On the present condition of the Crater of Kilauea on the island of Hawaii; by Rev. Titus Coan.-The following facts on the present condition of the crater of Kilauea are taken from a letter addressed to Prof. C. S. Lyman by Rev. T. Coan, dated Hilo, Hawaii, Nov.13, 1862.
"Very great changes have taken place in Kilauea since your visit in 1846. ${ }^{1}$ The great dome, some two miles in circuit, which was raised over Haluemauma [the lake of lava situated in the south extremity of the crater of Kilauea,] has subsided, leaving a corresponding depression or crater. It is as if a great cauldron had been turned right side up and set for boiling. Near the center of this depression, there is an active lake about 600 feet in diameter. Sometimes this lake is sluggish, and aggin it boils and rages, tossing its fiery masses and throwing up its jets of melted lavas 20 to 50 feet high. Occasionally it overflows, or rends its rocky sides, and sends off streams to harden in other parts of the crater. Within the aforesaid basin or crater, and one-fourth of a mile from the active lake, a great mound has been recently raised, and on its summit a huge mass of lava is piled up, rising into pinnacles and turrets, of such form as to resemble, in the distance, a cathedral. This is called Pele's Temple.

All the central portion of the crater of Kilauea has been elevated by upheaving forces, and the circuit, once the "Black Ledge," has been raised by superincumbent deposits or overflowings proceeding from the southern portion of the crater. I think the central area is not more than 600 feet below the highest point in the outer wall of Kilauea. Near this central portion of the crater rests an irregular and broken ridge of immense masses of very compact basalt filled with grains of olivine or chrysolite." 7. Arsenid's of Copper from Lake Superior.-Scheerer gives in the Berg- und Hüttenmännisches Zeitung, xx, p. 152, an account of a specimen of a metallic mineral found as a boulder on the banks of the St. Louis River, near Superior City, Wisconsin. He found it to contain 86 pr. cto of copper and 14 pr.ct. arsenic. On the weathered surfaces it was black, while on the fresh fracture it was yellow, tarnishing and becoming black on exposure to the air. It was considered by several members of the

[^37]"Miners' Union" at Freiberg to be a furnace product, perhaps made by the Indians. Dr. Kenngott very properly classes this substance with whitneyite (Uebersicht, 1861, p. 114), and the mass is unquestionably a mixture of whitneyite and algodonite similar to that described by Dr. Genth (this Journal, [2], xxxiii, p. 191). A further notice of this boulder has been sent to Prof. Silliman, Jr., by Col. Chas. Whittlesey of Cleaveland, from which we extract the following facts. It was found on the bank of the St. Louis river at Rice's Point, one and a half miles from the west end of Lake Superior. It was about one foot in length, and weighed from 95 to 100 lbs .; on the fracture it was crystalline and contained small pieces of calc-spar. The fragment analyzed by Scheerer was sent to him by Col. Whittlesey through Mr. Boole, who was then a student in Freiberg. Col. Whittlesey considers that this boulder was transported to the St. Louis River, from some vein, by the northern drift. It had the usual worn aspect of the copper boulders of the Lake Superior region.
The writer is informed by Mr. C.F. Eschweiler, Superintendent of the Isle Royale Mine, that a vein of arsenids has recently been discovered on the property of the Columbia Mining Company at Houghton. The whitneyite is there found associated with native copper and domeykite.

G. J. B.

8. Catalog einer Sammlung vom 675 Modellen in Ahornholz, zur Erläuterung der Krystallformen der Mineralien, ausgegeben vom Rheinischen Mineralien-Comptoir des Dr. A. Krantz in Bonn. pp. 50, 8vo. Bonn, 1862. - This catalogue is a description of the collection of crystal models now made by Dr. Krantz. The models 1 to 78 illustrate the monometric system, 79 to 151 the dimetric system, 152 to 343 the hexagonal system, 344 to 506 the trimetric system, 507 to 645 the monoclinic system, and 646 to 675 the triclinic system. Among these are 81 models of twin crystals, illustrating twinning in 44 species. The Whole represent 222 mineral species. The catalogue contains under each number the name of the form or species, the crystallographic symbols of the planes, according to both Naumann and Miller's notations, and references to the figure corresponding to the model in Naumann, Miller, Rose, Dana, Dufrénoy and other prominent treatises of Mineralogy. The models are made with the greatest accuracy; many of them are copies from models furnished to Dr. Krantz by G. Rose and Hessenberg. They are made of maple, and have an average diameter of 5 centimetres (about 2 inches). They are sold in Bonn for 120 Prussian thalers.
G. J. B.

V. ZOOLOGY.

1. Contributions to Conchology, vol. ii.-A Monograph of the Order Pholadacea and other papers; by George W. Tryon, Jr. Dec. 31, 1862. -This volume of 127 pages is composed of articles printed originally in this Journal, and in the Proceedings of the Academy of Natural Sciences of Philadelphia. The first volume, containing a bibliography of American Conchology, was published independently in 1861. The seren articles in the present volume are, "On the Mollusca of Harper's Ferry, Virginia," (pp. 9-11), "A sketch of the history of Conchology in the United States," (13-32)," "Synopsis of the Recent Species of Gastro-

[^38]chcenida, a Family of Acephalous Mollusca," (33-62), "On the Classification and Synonymy of the recent species of Pholadidae," (63-93), "Notes on American fresh water Shells," (95-96), "Monograph of the family Teredoniucce" (97-126), and "Description of a new Genus and Species of Pholadidce," (126-127).

The Pholadacea, as will be seen from the above list, are divided into three families, first severally distinguished by Mr. Carpenter. These families may be natural, the Teredonidoe being most justly separated from the Pholadidce, with which they had been confounded until distingnished by Carpenter; but, to the number admitted by Mr. Tryon, would perhaps be properly added another, the Aspergillidoc of Gray; the presence of fringes or tentacles at the front of the mantle, and the consequent development of tubuli radiating from the edge of the anterior disk of the tube, conjoined with the modification of the other part, appear fully to justify that distinction. There would then be four allied families, Pholudidar, Teredonidae, Gastrocheenidoe and Aspergillidee or Brechitida. The propriety of the erection of this group of families into an "order," as has been proposed by some and adopted by Tryon, is extremely questionable.

The genera of the Pholadacea accepted by Mr. Tryon are numerous, but apparently not more so than are natural. A number, it is true, have been refused by many conchologists, chiefly on account of the burthen on the memory caused by the multiplication of generic names; but, as it is not quite evident what relation the powers of memory have to the existence of natural groups, scientific men will doubtless prefer to express in a seientific nomenclature the structural modifications that nature indicates.

The "description of a new genus and species of Pholadide" forms an Appendix to the monograph, and makes known an interesting addition to our Fauna, the Diplothyra Smithii of Tryon, from New York Bay; the genus indicated belongs to the subfamily Jouannetiince of Tryon, distinguished by the development of a callous plate closing the anterior ventral gap of the adult shell, and also, it might have been added, by the perfect union of the siphonal and anal tubes, and the fringed border of the common tube in the known animals. The bibliography of the monograph is exhaustive, almost every reference to any genus or species having been given. The author proposes to publish an illustrated descriptive monograph of the same Pholadacea at a future time, if furnished with requisite material-for which he appeals to collectors.
In the "Notes on American fresh water Shells," the subdivision of the genus Vivipara Montfort (properly Viviparus), into four subgeners, Vivipara, Tulotoma Hald., Melantho Bowd, and Haldemania Tryon, is proposed. This view will doubtless be accepted, although the distinguishing characters of Melantho are not given. The latter includes the ordinary Paludince of the Eastern States, and is distinguished ly the form of the shell, the sigmoidally sinuous outer lip, \&cc. A family Amnicolidse is also proposed for the reception of Amnicola, but is unaccempanied by a diagnosis. The distinction of that genus from the Tivipuridoe as well as Littorinidce and Rissoidee, is justifiable; it is indeed more nearly related to the Melanians but has no lateral jaws. The characters
of the family, as well as of the Viviparidoe, and the subdivisions of each, will be given in another place by the reviewer. The genus Amnicola is proposed to admit the new subgenus Pomatiopsis, based on A. lapidaria and other elongated species. The correctness of this distinction at least remains to be verified on the animal. ${ }^{2}$ Two more distinct types exist in the A. Cincinattensis G. \& H., and the globular A. depressa Tryon. The former, on account of its reflected circular lip, has been named by the reviewer Chilocyclus, while the latter, distinguished by its large, globose body-whorl, is called Somatogyrus.

The memoirs, brought together in this volume, are valuable contributions to science, and will doubtless obtain for the author the merited thanks of the scientific world. It were to be wished that more conchologists would imitate him in precision and knowledge of bibliography.
T. Gill.
2. Analytical Synopsis of the order of Squali, and Revision of the Nomenclature of the Genera; by Theodore Gill. pp. 42(-47). (Reprinted from Annals of New York Lyseum, vol, viii.) On the Classification of the Families and Genera of the Squali of California; by Theodore Grle. (Proc. Acad. Nat. Sci. Phila., Oct., 1862).-The two articles cited are devoted to the systematic revision of the families and genera of Sharks, which the author regards as constituting an order of Elasmobranchiate Fishes, distinct from the Rays; the ordinal name of Squali, previously used in a subordinal sense, has been retained. The "analytical synopsis" is divided into three chapters,-1st, "On the history of the order," in which a review of the principal classifications of the sharks is given, and their respective merits discussed; 2d, "On the relations of the order," in which the isolation of the Rhince (Squatince Dum.) as a distinct suborder, is urged, and the nearer affinity of that group to the order of Rays is contended for; the relation of the families sought to be ascertained, and the most striking peculiarities of the geographical distribution of the several types pointed out; and 3d, "Systematic Arrangement." In this portion of the synopsis, two analytical tables are first given, illustrating the principal or most apparent distinctions of the different families, sixteen of which are admitted; these are followed by similar analytical tables for the respective families, the dichotomous method being applied to facilitate the identification of the various genera. After the "synopsis" of each family, an enumeration of the subfamilies and genera is presented, in which the authorities, typical species, and synonyms of the gencric names are given. As a sequel to the whole, the latin diagnoses of fifteen new genera are offered; this, added to the number adopted from others, gives a total of fifty-eight represented in our present seas; to that number, six others are superadded in the supplementary article on the Californian sharks.
The classification adopted in the synopsis is said to be a "modification of that of Müller and Henle. The principal differences consist in the arrangement of the Scyllioids at another point in the series, and their distribution among three families, and in the union of the Müllerian families of the Carcharice, Tricenodontes, Galei, Scylliodontes and Mus-

[^39]teli in one, but after the exclusion, from the first, of the hammer-headed sharks, which appear to constitute a distinct family, Cestraciontoida, (the Zyguence of former American authors and not the Cestraciontes of Agassiz) recognized as such by most of the recent systematists." The terminology of the family names is also different from that adopted by the German naturalists, the terminal syllables oidce being employed; and the subdivision into subfamilies is likewise original. The principal changes in the nomenclature result from the revival of names proposed by Klein and Rafinesque. A still further modification is proposed in the article on Californian sharks, where the proposition is made to distinguish the genus Oxynotus of the synopsis (Centrina Cuv.) as the type of a special family, and the arrangement of the genera left in the Spinacoidos is considerably altered. In the same article, the family of Heterodontoids of the author (Cestraciontes Ag.) is made to include three genera, the Californian species (Cest. Francisci Grd.) being fully described as the type of one (Gyropleurodus), and a species illustrated in the Zool. ogy of the Venus being proposed as that of another named Tropidodus. The author is inclined to exclude many of the genera referred by Prof. Agassiz to the Cestraciontes, from that family, and has restricted it with reference chiefly to the living forms. One of the chief characters noticed, as distinguishing the family from all other existing types, is the form of the head, and the rapid declension of profile from the interorbital region.

In accordance with the classification proposed in the Synopsis, there are eight families of Squali represented along the eastern coast of the United States;-(Squali) Lamnoidoe, Odontaspidoidor, Alopecoida, Cestraciontoidce (Zygcence), Galeorhinoidce (Carcharioe), Spinacoide, Scymnoider, and (Rhine) Rhinoider, (Squatince). Along the western coast, only five are yet known to be represented; the Galeorhinoida, Heterodontoida, Notidanoida, Spinacoide, and Rhinoida.
3. On the mode of development of the marginal tentacles of the free Medusce of some Hydroids; by A. Agassiz. $14 \mathrm{pp} ., 8 \mathrm{vo}$. (From the Proc. Bost. Soc. Nat. Hist,, vol. ix, August.) On Alternate Generation in Annelids, and the Embryology of Autolytus cornutus; by A. Agassrz 26 pp., 8vo, with 3 plates. (From the Journ. Bost. Soc. N. H., vii, 392, 1862.) -These papers by A. Agassiz (son of Professor Agassiz) contain the results of careful research, bearing on facts of great zoologieal interest. The first relates to the order of succession in the development of the marginal tentacles of Medusæ. Designating each new intermediate series by t and a number, added as an index expressing the order in time of the several series, he makes out a formula for the order of arrangement, and also for the number of tentacles. Thus, in a young Tiaropsis, the formula for the number of tentacles is

$$
\Sigma t=4 \mathrm{~T}_{1}+4 t_{2}+16 t_{3}=24 t,
$$

or in other words, the sum of the number of tentacles equals 4 of the series first in the order of time, +4 of the second (or those next developed), +16 of the third. In two older stages of the Tiaropsis, the formulas are
and

$$
\Sigma t=4 \mathrm{~T}_{1}+4 t_{2}+16 t_{3}+8 t_{4}+8 t_{5}=40 t,
$$

We refer to the paper for other examples of these important results.

In the second paper above mentioned, the author has illustrated, by many excellent figures, the reproduction by fission of some Annelids, and further has sustained the riew, which has heretofore been questioned, that there is actual alternate generation in these species; showing that the individuals proceeding from the egg reproduce only by fission; and that from fission come males and females; and, from these males and females thus originating, reproduction by eggs again commences. A new American species of Autolytus also is described, and its development from the egg deseribed and illustrated.

VI. ASTRONOMY.

1. On the double star μ Herculis, (in a note to the Editors of this Journal, dated Cambridgeport, Feb. 20, 1863.) -In the summer of 1856 , I discovered that the companion of μ Herculis was a double star, but having no suitably mounted instrument for executing measures of either position or distance, I reported the case to Mr. Bond at Cambridge, and also to Mr. Dawes of England.

The latter has published the following measures, made soon after its discovery, in the Monthly Notices of the Royal Astronomical Society of London, vol. xvii, No. 9. $P=58^{\circ} .97 ; D=1^{1 / .85} \pm$.
In July, 1862, I found $\mathrm{P}=70^{\circ}$; the distance remaining about the same, or certainly not increased. Mr. Dawes calls them $10 \frac{1}{2}$ and 11 magnitudes. Considering the large distance and minuteness of the components, this change in the angle of position is very remarkable.

Another interesting object, at this time, is ζ Herculis; so nearly in conjunction, the past summer, that it could not be divided with a fine eight inch glass, in the best atmosphere, with a power of 1000 . A notable epoch in its history! Alvan Clark.
2. Alvan Clark receives the LaLande Prize.-The LaLande Prize of a gold medal, value 500 francs, has been awarded by the French Acadeny of Sciences in January last to Alvan Clark of Cambridgeport, for his discovery of the companion of Sirius (this Journal, xxxiii, p. 286). It will be noticed that the great $18 \frac{1}{2}$ inch objective with which Mr. Clark made this remarkable observation, has been purchased by the Chicago Astronomical Association.
3. The Astronomical Association of Chicago.-This new association have purehased the great $18 \frac{1}{2}$ incli object glass made by Alvan Claris of Cambridgeport. Mass., for the University of Mississippi under the order of President Barnard. The price paid was $\$ 11,18 \%$, the same sum Mississippi was to have paid for it. It will cost about an equal sum to mount it properly.

We congratulate the prosperous city of Illinois on the possession of this remarkable oljective, which already, while mounted only in a rude tube of wood, has won for its talented maker the LaLande medal.

The passession of such an instrument implies a well organized Obserratory, with all its appointments, for the endowment of which Chicago lacks neither the spirit nor the means.
Ak. Jour. Sct.-Second Sebues, Vol. XXXV, No. 104,-Marcer, 1868.
4. Shooting Stars of Dec. 10 th-13th, 1862.-Mr. Benjamin V. Marse writes from Philadelphia, that on the evening of the 10th of December, between $10 \frac{1}{2} \mathrm{~h}$ and 11^{h}, he noticed about half a dozen brilliant meteors. They radiated from the vicinity of Castor and Pollux. The next morning, during the half hour, 4^{h} to $4 \frac{1}{2}^{\mathrm{h}}$, they were not remarkable for number or brilliancy, but all radiated from the same vicinity.

On the morning of the 12th, Prof. Gummere and Mr. Battey saw at Haverford, Pa., 28 in $1 \frac{1}{4}$ hours, nearly all of which radiated from a point about midway between Castor and Pollux.

Mr. Marsh adds, "the report which Mr. George Wood made on the 11th Dec., 1861, (this Journal, xxxiii, p. 149,) would agree very well with this radiant, so that I think there is strong reason to conclude that from the 10th to the 12 th of December the meteors mostly belong to one group radiating from the vicinity of Castor and Pollux. Is it not probable that on most occasions the great body of those seen belong to a regular group reappearing annually, and that such groups, variously scattered through the year, and sometimes perhaps over-lapping, make up the mass of the meteors seen?"

VII. MISCELLANEOUS SCIENTIFIC INTELLIGENCE.

1. Scientific application of the Metric System of Weights and Meas-ures.-The establishment of the International Decimal Association in the year 1855, has at length resulted in the appointment of a Committee of inquiry by the British House of Commons, which after examiniing nto merous witnesses of great eminence, has presented to Parliament a report recommending the adoption, throughout the British Empire and for all purposes, of the Weights and Measures of the Metric System. This report, having been published by the Ilouse of Commons, with the eridence of 39 witnesses and an analytical index, forms a "blue book" of nearly 300 pages. Besides matters of the utmost importance in recgard to the improvement of education, the progress of domestic trade and of foreign commerce, and the advance of the general interests of humanity, it merits the attention of all who are engaged in scientific pursuits on account of its statements in regard to the progress of the Metric System among chemists, physiologists, and other philosophers. The witnesses, whose testimony relates to this subject, are, Thomas Grahan, F.R.S, Master of the Mint; Professor Miller, of Cambridge, one of the Commissioners appointed by the British Government to restore the lost standards of weights and measures; T. L. Donaldson, Professor of Arclitecture in University College, London, and a Juror of the International Exhibition; Dr. Bulley, Director of the Polytechnic School and Professur of Applied Chemistry at Zurich. The testimony of these gentlemen is to the following effect:-

Within the last ten years the Metric System has made great progres in the British Islands so that it is used almost exclusively in chenmien pursuits. It now forms a sort of common scientific language understood everywhere. Papers published in England with the national weights and measures are neglected on the continent, being so far mintelligible. Scieusific men gencrally look forward to the universal adoption of this system, being of opinion that no other can prevail. It begins to find a
place in elementary English books. It is used in papers read before the Royal Society. On the other hand, the English weights and measures are so complicated that it is impossible to use them, and some of them, such as the scruple and the drachm, are little known even by name. The grain has been decsmally divided for more than 30 years, and Mr. Oertling of London now makes delicate balances with grain weighte, which are commonly used by chemists and at the colleges. As far as scientific investigations are concerned, the old English method is entirely useless, In our scientific journals, weights are almost universally given in grams, and lengths in millimetres. In Switzeland, as well as in other continental nations, the Metric System is the only one in use for scientific purposes: without its adoption they cannot write on chemical or physical matters. In Alexandria the builders all use the metric form employed by the French and Italians, extreme difficulty and confusion being prodinced in architecture and engineering by the diversity of weights and measures. At the late International Exhibition in London the foreign jurors abandoned in despair the task of drawing parallels between the values of British and foreign goods.

The claims of science, to have the benefit of the Metric System, have likewise been represented at an interview, on the 18 th of November, with the Rt. Honorable Milner Gibson, M.P., President of the Board of Trade. On this occasion, Professor Owen of the British Museum showed the value of the system in the study of natural history. The majority of the facts in this science include the elements of weight and ineasure. But, besides the confinement to Britain of its own national weights and measures, which constitute a wall of separation between British and foreign science, innumerable mistakes arise from their variety, their intricacy, and their want of system. Uneertainty arises between aroirdupois and troy, and between divisious of the inch into tenths and twelfths, both of which are called "lines."
In the United States and the South American States, the employment of the Metrical System for scientific purposes is all but universal, and, in those institutions of learning where this system is employed by teachers, the results are always most satisfactory.
2. Pasteur has been chosen and confirmed a member of the French Academy, in the section of Mineralogy, in place of De Sénarmont, deceased. Des Cloizenux was his competitor (ex cequo), in the second rank Delesse, and in the third Hebert. The vote stood thus: 00 rotes, 31 requisite for a majority, the first ballot gave Pasteur 36, Des Cloizeauz 21, and Delesse 3.-Session of Dec. 8, 1862.

VIII. BOOK NOTICES

1. Storer's Dictionary of Solubilities of Chemical Substances. ${ }^{1}$-Mr. Storer here presents us the first installment of a work on which he has been long engaged with well known assiduity, and which is destined to connect his name inseparably with chemical literature. This part of the First Oullines takes us nearly to the close of the letter C, probably a near approach to one third the bulk of the entire work. The term

[^40]solubility is used by Mr. Storer in its most comprehensive sense, thns grouping by this character a wider range of phenomena than might at first appear germane to this single constant. Thus the plan includes, not only " the comportment of a substance towards water, alcohol, wood spirit, ether, oil of turpentine, benzine and analogous hydrocarbons, and the other nentral solvents;" but also in many cases observations on the action of acids and alkalies, as well as the influence of one salt on the solubility of another.

The alphabetical arrangement makes the work one of extreme convenience for reference, as it proceeds on no principle of selection, but gives the names of all substances, each in its proper place, with formulas of constitution, and in all important-we might almost say in all possiblecases, with references to original memoirs or authorities. The arrangement of substances is by the acids rather than by the bases. Thus the acetates, chlorhydrates, chlorids, carbonates, \&c., are made to embrace all the salts of these electronegative substances. It of course falls into the plan of this work to present full tables of solubilities of all the important substances of common use in the laboratory, as ammonia, chlorhydric acid, various chlorids, carbonic acid, carbonates, alcohol, acetic acid, the acetates, dc. \&c. The qualities of accuracy, fullness, convenience of reference and quotation of authorities will secure the use of this Dictionary of Solubilities, not only by all investigators, but no analytical student who has well mastered his Fresenius cau afford to be without it, while manufacturers and pharmaceutists will find it the most convenient vade mecum at their command.

Mr. Storer tells us in his preface that he was driven, after some six rears of labor, to the expedient of printing, in order to facilitate the completion of the projected work, owing to the great bulk and increasing complexity of the manuscript, with its innumerable interpolations. The present work is therefore, as its title indicates, in many points only a general outline requiring innumerable details to fill up each special feature. But taken as it stands it is a monument of amazing labor, erudition, and skillful authorship. Such "compilations" can be made only by the hand of a master. Mr. Storer has for some time been recognized as one of our most encyclopedic chemical scholars. The readers of this Journal need no other reference than to the very numerous contributions which have lately appeared from his pen in our pages, on a great variety of subjects. The article on coal oils, published in the modest form of a review of Dr. Antisell's book, has been very widely reproduced, and is highly complimented by Wagner in the Jahresbericht, while his papers on the alloys of copper and zine and on the impurities of zinc (the latter in company with Eliot) have become the authority on those subjects at home and abroad, being quoted by Kerl, Otto, Perey and others Storer has from the commencement of the Repertoire de Chemie been selected as the American Editor of that well known Journal.

We are assured of the early completion of the First Outlines, and wo cannot wish any author a longer life or more sustained and useful labos than is implied in the completion of the work in all its details accordiog to the original plan.
2. New American Cyclopedia, vols. XV and XVI.-This work, which has been nearly sis years in hand, is completed. Some of the articles in
yol, xv which are of most scientific interest are Steam and Steam engine, Steel, Sugar, Symbols, Telegraph, Telescope, Thermometer, Tides, Tobacco, dec. The most elaborate article in this volume is very naturally United States, which fills 122 pages, and contains a vast amount of valuable matter in a compact form.
In volume xvi we notice the following titles of scientific interest: Volcano, Warming and Ventilation, Weiglits and Measures, Walrus, Whale, Whent fly and Moth, Winds, Zeuglodon, Zinc, Zoology, and many more. A list of contributors, with the titles of their articles, is given in vol. xvi. Among them we find very many of our best authors in all departments. A inere cnumeration of the principal ones would exceed our present limits. One of the daily journals gives some statistics of this great literary enterprise, from which we borrow a few items: ${ }^{2}$

The present work of Messrs. G. Ripley and C. A. Dana is the first original general Cyclopedia completed in this country. Dr. Lieber's valuable translation of the German Conversations-Lexicon, made many years ago by that industrious and erudite scholar, with the assistance of a staff of writers, was long a standard work, but the rapid march of modern events has left it behind; and no attempt was ever made, we believe, (beyond the issue of one supplementary rolume, the xivth,) to bring up arrears in monthly supplements like those printed by Messrs. Brockhaus in Germany, as continuations of the last edition of the Conversations-Lexicon.
Since 1857, besides the two editors already named, a staff of twentyfive writers has been occupied upon the American Cyclopedia in a large office provided with an ample reference library in various languages, aided also by the Astor Library. Numerous gentlemen outside the regular corps have also contributed articles on subjects upon which they were specially conversant.
The labor of revising the articles as written, and again revising the proof sheets, employed not only the two editors, but in addition five or six other gentlemen, especially competent for this work, who verified dates and other figures, and so far as is possible to human handiwork, made each page perfect. Besides this, proofs of all the more important articles Were sent to the authors, or to experts, for verification and correction. The cost of the revision alone amounts to considerably over twenty thousand dollars.

The number of titles or subjects treated is about twenty-seven thousand in 13,804 pages, of 52 million "ems" printers measure, requiring, for 10,000 copies printed, over 12,600 reams of white paper. Before the rebellion, over 17,000 subscribers to the work were registered, of which about 5000 were in disloyal states.

Messis. Appleton, the enterprising publishers, have invested over four hundret and fifteen thousand dollars in this great literary venture, of Which $\$ 143,700$ went to contributors and for making the stereotype plates. The whole number of volumes printed is 227,550 .
Of the literary execution of the work we can speak with satisfaction. Its scientific articles are in general far from possessing the completeness and finish which are to be found in the elaborate treatises (for such they iu reality are) which are to be found in the Eucye. Britannica; but for the

[^41]purpose intended in their compilation, as a general and popular reference, they are quite sufficient in most cases, and often perfectly satisfactory. The work as a whole is full of information, accurate, and well arranged for reference. In any condition of affairs it would be a creditable production, but continned to a suceessful end amidst a great civil strife, it is peculiarly creditable to all concerned.

We understand that the design is to issue a supplementary volume which will bring the work up to the present times, to be followed hereafter by the issue of an annual volume, entitled

The American Annual Cyclopedia and Register' of Proyress and Events, the 1st volume of which, for 1861, has been on oar table for some months, and that for 1862 will be soon issued in a style identical with the American Cyclopedia.

obituary.

We have to record the death of several men of science since our last. 1. James Renwick, long Professor of Physics in Columbia College, New York, died in that city about the close of January, aged 78 years. Prof. Renwick's "treatise on the Steam Engine" was long an authority for engineers, and his Outlines of Natural Philosophy (2 vols. 8 ro, Pliiladelphia, 1832) was the earliest extended treatise on physics by an American. For many years Prof. Renwick had retired from active service, enjoying with dignity an ample fortune.
2. Melins C. Leavenworth.-Dr. Leavenworth died near New Orleans, La., in December, while acting as Surgeon to the 12th Connecticut regiment. He was among the oldest of American botanists, his first paper, "on four new plants from Alabama," having appeared in vol. rii, of the first series of this Journal, in 1824. Dr. Leavenworth has resided, since his retirement from the medical service of the Tnited States army, in Waterbury, Conn., until at the call for volunteers, well advanced in years and by no means firm in health, he went cheerfulls to offer his life a sacrifice for his country.
3. Dr. Asamel Clapp, a botanist and naturalist, died at an advanced age, Dec. 17, 1862, at his residence, New Albany, Indiana. He was well known to collectors in botany and geology. His chief publication is a Report to the American Medical Association on the plants of the United States useful in medicine.

IX. WORKS RECEIVED.

[^42]
Astronomy and Meteorology. -

Smithsonian Contributions to Knowledge.-Discussion of the Magnetic and Meteorological Observations made at the Girard College Observatory, Philadelphia, in 1841-1845. Part II. Investigation of the Solar Diurnal Variation in the Magnetic Declination, and its Annual Inequality ; by A. D. Bache, LL.D. Washiugton, June, 1862.

The same. Part III. Investigation of the Influence of the Moon on the Magnetic Declination; by A. D. Bache, LL.D. Washington, June, $186{ }^{2}$.
On Metcorology; by Prof. Josepi Lovering, of Harvard University. Continued from the American Almanac for 186:?
Contributions to Meteorology for the year 1861, from observations taken at Isle Jesus, Canada East; by Charles Suallwood, M.D, LL.D., Professor of Meteorology in the Lniversity of MeGill College, Montreal.
Intorno alla Corrispondenza che passa tra i Fenomeni Meteorologici e le variazioni d'intensita' del Magnetismo Terrestre; memoria del P. ANGELO SECCHI.
Sul Recenti Progressi della Meteorologia. Discorso letto alla Pontificia Accademia Tihernia; dal P. Angelo Secchi, d. C. d. G., Direttore dell'Osservatorio del Collegio Romano; il giorno \& Aprile 1861. Roma, 1861.

Report of the Regents of the University of the State of New York, on the longitudes of the Dudley Observatory, the Hamilton College Observatory, the City of Buffalo, the City of Syracuse. Albany, 1862.
Further researches on the Aurore Boreales, and the phenomena which attend them: by A. De la Rive. From the Phil. Mag. (Suppl.) for June 1862.
On the Lunar-Diurnal Variation of the Magnetic Declination, obtained from the Kew Photograms in the yariation of the Magnetic Declination, obtained from the
BINe, brse, R A, Treas. and V.P.R. S. From Proc. Roy. Suc., January 1861.
Standard Mean Right-ascensious and Circumpolar and Time Stars, prepared for the use of the C. S. Coast Survey; A. D. Bache, Supt. Washington, 1862 .
On the Physical Constitution of Comets; by Olinthus Gregory Downes, F.R.A.S. London, 1860.
Considerations on the phenomena attending the Fall of Meteorites on the Earth; by W. Haidinger, For. Mem. R.S.L. \& E., \&c. From the Philosophical Magazine for Vovember and December, 1861.
Das Meterreisen von Sarepta; von dem w. M. W. Haidivaer. Mit 2 Tafela. Akad. der Wissenschaften vorgelegt in der Sitzung am 24 Juli 186\%?
An attempt to account for the physical condition and the fall of Metcorites upon our Planet; by W. Hardinger, de. From Brit. Assoc. Report, 1861.
Chemistry and Agricultcre.-
A Manual of Chemistry, Deecriptive and Theoretical ; by William Odling, M.B., FRS, de. Part I. 8ro, pp. 380 . London : Longman, Green, Longman \& Roberts.
1861 .
On Maure and Magenta: a Lecture delivered in the theatre of the Royal Institution of Great Britain; by A. W. Hofmann, Ph.D., LL.D., F.R.S., President of the Chemical Society. London: W. Clowes de Sons. 1862 .

Preliminary Researches on Thallium; by Willian Crookes, Esq., F.C.S. 1862.
Remarks upon the Recent Determinations of the Atomic Weight of Antimony: by William P. Dexter. From the Proceed. Am. Acad. of Arts and Sciences for January 14, 1862 . Cambridge, $186 \mathrm{f}_{2}$.
Medico-legal contributions on Arsenic: containing Reports of a number of cases of Arenical Poisoning, together with an account of the methods employed in their Chemical Examination; 位Charles H. Porter, M.D., Professor of Chemistry and Medical Jurisprudence, Allbany Medical Colleqe, Albamy, N. Y. Albany, 186is.
Experimental Researches into a New Excretory Function of the Liver; consisting in the renoval of Cholesterine from the Blood, and its dsecharge from the body in the form of stereorine (the Seroline of Boudet); hy ArsTis FLint, Jr., M.D., Professor of Phyiolory and Microscopy in Bellevue Medical College, N. Y. Illustrated by three plates. From the American Journal of the Medical Sciences for October,
Sur les Relations d'Tsomorphisme qui existent entre les Métaux du groupe de

Roport on the Chemical Analysis of Grapes, submitted to Hon. Isaac Newton, Conmiosioner of Agriculture : hy Charles M. Wetherill, Ph.D., M.D., Chemist of the Department. Washington, 1 sfot.
First and Necond Reports of Pminfe T. Trson, State Agricultural Chemist, to the Hou-e of Delegates of Maryland. Annapolis, 1 siso, 186 .
Salt manufacture of the Sarinaw Valley, Michican; A. Wincerell.
The Salt Company of Onondaga. Syracu-e, 156 .
Report on the Brines of Onondagat; by C.A. Goessmann, Dr. Ph. Made to the Salt Company of Onondaga, December, isto.

Contributions to the knowledge of the nature of the Chinese Sugar cane (Sorghum saccharatum, W.). Albany, 1862. From Transactions N. Y. State Agricultural Society, 1861.

Circular from the Commissioner of Agriculture of the United States, on the Ag. ricultural, Mineral, and Manufacturing Condition and Resources of the United States. Washington, 1862.

Geology and Mineralogy. -

Ireal Views of the Primitive World, in its Geological and Palæontological phases; by Dr. F. Unger, of Vienna. Edited by Samuel Highley, F.G.S., F.C.s., de. Illustrated by 17 photographic plates. Loudon. 4to.

On the Mode of Formation of some of the River-valleys in the south of Ireland; by J. Beete Jukes, Esq., \&c. From the Quart. Journ. Geol. Soc. for Nov., 1862.

Geological Survey of Canada.-Descriptive Catalogue of a collection of the Economic Minerals of Canada, and of its Crystalline Rocks, sent to the London International Exhibition for 1862. Montreal : John Lovell.

Notice of some new and imperfectly known Fossils from the Primordial Zone (Potsdam Sandstone and Calciferous Sand Group) of Wisconsin and Missouri ; by B. F. Shumard, M.D. May, 1862. From the Trans. St. Louis Acad. Sci.

Description of new species of Fossils from the Devonian and Carboniferous Rocks of the Mississippi Valley; by Charles A. White, of Burlington, Iowa. From the Proc. Boston Soc. Nat. Hist., Feb. 1863.

Descriptions of Fossils from the Marshall and Huron Groups of Michigan; by Alexander Winchell. From the Proc. Philad. Acad. Nat. Sci., Sept., 1862.,

Notes on the Surface Geolory of the Basin of the Great Lakes; by Dr. J. S. Newberry. From the Proc. Bost. Soc. Nat. Hist., May, 1862.

Ueber cine neue kreisformige Verwachsung des Rutils; von Gustav Rose.
Défense des Colonies. I. Groupe Probatoire, comprenant la Colonie Haidinger, la Colonie Krejci et la Coulée Krejci. Par Joachim Barrande. Paris, 1801.

The same. II. Incompatibilité entre le Systême des Plis et la Réalité des faits Matériels. Par Joachim Barrande. 1862.

Observations upon some of the Brachiopoda, with reference to the genera Cryptonella, Centronella, Meristella, and allied forms; by James Hall. From the Trans. Albany Institute, Feb., 1863. pp. 23.

Zoology, Natcral History and Medicine.-
Annual Report of the Trustees of the Museum of Comparative Zoology, together with the Report of the Director. Boston, 1862.

Materials for a Monograph of the North American Orthoptera; by Samuer \mathbb{H}. Scudder. From Bonton Jour. Nat. Hist., Vol. vii, No. 3. Cambridge, 1862.

On the genus Colias in North America; by Samuel H. Scudder. From the Pro. ceed. Bost. Soc. Nat. Hist., Sept. 1862.

Smithsonian Miscellaneous Collections.-Synopsis of the Neuroptern of Vorth America, with a list of the South American species; prepared for the Smithsonian Institution by Hermann Hagen. Washington, July, 1861.

Description of a new genus (Trypanostoma) of the family Melanidx, and of forts. five new species. Description of T'en new species of Unionidx of the Lnited States. Description of two new species of Exotic Uniones and one Monocondylear. Description of a new genus (Goniobasis) of the family Melanidre, and eighty-two spe cies. Description of eleven new species of Melanidæ of the United States; by Isaac Lea, LL.D. Philadelphia, 1862.

Remarks on the number of Unionidæ. Descriptions of Fifteen new species of Uruguayan Unionidæ. Descriptions of Four new species of Unionidæ from Brazil and Buenos Ayres, and 22 other titles ; by Isaac Lea, LL.D. Philadelphia, 1862. De la Méthode Expérimentale dans l'étude du Phénomènes de la Vie; par M. Charles Matteucci.

Bulletin of the New York Academy of Medicine. Vol. II, Nos. 1-4. Subjects, Albumenuria-Yomiting in Pregnancy. New York: Baillière Bros. 1863. 8vo, pp. 64 The Institutes of Medicine. By Martin Paine, M.D., LL.D., \&c. 7th edition New York: Haper \& Brothers. 186\%. 8vo, pp. 1130.

Serials. -
Rules of the Litcrary and Philosophical Society of Manchester. 1861. Sro. Nos Proceedings of the Literary and Philosophical Society of Liverpool. $x v$ and $x v i$. $1860-61$ and $1861-62$.
Giornale dell' Ingernere-Architetto ed Agronomo. Anno ix. Num. 7° e 8°. Ludglio e Agosto 1861. Milano.

Boston Journal of Natural History, Vol. vii, No. 11. Boston, 1861 (published Dec. 186"). pp. 309-328.

Proceedings of the Academy of Natural Sclences of Philadelphia, Nos. $x_{1} x_{1}$ xiih, Oct., Nov., Dec., 1862.

AMERICAN

JOURNAL OF SCIENCE AND ARTS.

[SECONDSERIES.]

Art. XXX.-On American Devonian; (in a letter to the Editors from J. W. Dawson, Principal of McGill University).

Gentlemen:-In a communication from Professor Winchell, in your January number, I observe that some American geologists are inclined to refer certain rocks, hitherto regarded as Upper Devonian, to the Carboniferous period. Will you permit me to state some facts, derived from the study of fossil plants, which seem to me to militate against this view, at least in so far as Eastern America is concerned.

In my investigations of the Devonian flora of Eastern America, carried on for several years past, and the latest results of which are published in the number of the Journal of the Geological Society of London for November, 1862, I have described or identified sixty-nine species of land plants from Devonian beds; and of these only 10 or 12 are even probably Carboniferous species. Of thirteen species from the Chemung group of New York, ${ }^{1}$ kindly communicated to me by Prof. Hall, not one is known as Carboniferous. All are of Devonian forms, and the most abundant species are also found in the undoubtedly Devonian Gaspé sandstones, as well as at Perry in Maine, in both of which localities the flora is quite distinct from that of even the lowest Carboniferous beds, ("Sub-Carboniferous" of some authors). At St. John, New Brunswick, where, in beds which I believe to belong to the Upper Devonian, there is a more abundant flora than at the other places mentioned, a larger number,

[^43]but still only a small proportion of the species, are probably Carboniferous. In Pennsylvania, in so far as I can judge from the statements of Mr. Lesquereux and the figures given by Prof. Rogers, the flora of the "Vergent" and "Ponent" series appears to be of similar character with that of the Chemung of New York.
In Europe the observed facts are not dissimilar from those above stated. Goeppert enumerates fifty-five species as known to him in the Upper Devonian, and of these only six seem to be Lower Carboniferous. Of forty-six species from the Cypridina Shales of Thuringia, described by Unger, only four are Carboniferous. The scanty flora of the Devonian of Scotland and Ireland, described by several British authors, appears to be equally distinct from that of the Carboniferous rocks, while it closely resembles that of our American Upper Devonian. It is also to be observed that several generic and sub-generic forms of the Devonian are wanting in the richer flora of the overlying system.

In the Carboniferous system, while it is true that there are somewhat different assemblages of plants in the Lower, Middle, and Upper members; and that, within these, there are minor differences, arising probably from local causes affecting the distribution of species, and also from the greater or less amount of driftage, and the greater or less coarseness of the sediments, there is a grand unity of the fossil flora throughout. Even in the lowest Carboniferous beds, at least in Eastern America, the genera and most of the species are identical with those of the middle Coal Measures, separated from these lower beds by the Marine Limestones and the Millstone Grit. On the other band so soon as we descend to the Devonian, we find some new genera and a distinct assemblage of species.
The only apparently exceptional case known to me, and this may have some connection with the facts stated by Prof. Winchell, is that of certain beds at Akron and Richfield, Ohio, which have, I believe, been regarded as equivalent to the Upper Devonian of New York. In a small collection from these places, shown to me by Prof. Hall, I observed two species which I regard as identical with Lower Carboniferous forms, while the other species present, though some of them have a Devonian aspect, are not certainly identical with any of the New York or Gaspé species.

It may very probably be the case that, in the Palæozoic period, the range in time of marine forins exceeded that of terrestrial plant life; but it would surely be an anomaly to have a system of rocks including one flora and a part of another almost entirels distinct, and characteristic of another period. I do not however suppose that there is everywhere so great a gap between the floras of the Devonian and Carboniferous periods as that which

J. W. Dawson on the F'lora of the Devonian Period. 311

appears in Eastern America. Such gaps are usually local and bridged over somewhere. In the West there may be a transition, as would indeed seem probable from the Ohio plants mentioned above, in connection with the peculiarities of the physical geology; but in this case I should not suppose these beds of passage to be precisely equivalent in age to the Chernung group, but rather to be newer, and possibly wanting or represented by barren deposits in New York.
If such intermediate or passage beds exist in the West, and if their plants have not been already collected and studied by Dr. Newberry or Mr. Lesquereux, it would be very important that attention should be devoted to them, and that they should be carefully compared with the species of the two floras which they may be supposed to connect. I may add that, for this purpose, the most unpromising fragments, especially if capable of showing structure under the microscope, would be of some service; as the characters of the Devonian species have often to be gathered from remains which would scarcely be deemed worthy of the attention of collectors in the rich beds of the Coal Measures.
McGill University, Montreal, Feb. 24, 1863.

Art. XXXI.- On the Flora of the Devonian Period in Northeastern America; by J. W. Dawson, LL.D., F.R.S., Principal of McGill University, Montreal. ${ }^{\text {² }}$
[This paper by Prof. Dawson is the one alluded to in his previous communication. The 2d part containing descriptions of species is omitted.]

The existence of several species of land-plants in the Devonian rocks of New York and Pennsylvania was ascertained many years ago by the Geological Surveys of those States, and several of these plants have been described and figured in their Reports. ${ }^{2}$ In Canada, Sir W. E. Logan had ascertained, as early as 1843 , the presence of an abundant, though apparently monotonous and simple, flora in the Devonian strata of Gaspé; but it was not until 1859 that these plants were described by the author in the 'Proceedings' of this Society.'. More recently Messrs. Matthew and Hartt, two young geologists of St. John, New Brunswick, have found a rich and interesting flora in the semi-metamorphic beds in the vicinity of that city, in which a few fossil plants had previously been observed by Dr. Gesner, Dr.

[^44]Robb, and Mr. Bennett of St. John; but they had not been fig. ured or described. These plants were described in the Canadian Naturalist, ${ }^{4}$, together with some additional species, of the same age, found at Perry, in the State of Maine, and preserved in the collection of the Natural History Society of Port. land. The whole of the plants thus described, I summed up in the paper last mentioned as consisting of 21 species, belonging to 16 genera, exclusive of genera like Sternbergia and Lepidostrobus, which represent parts of plants only.

In the past summer I visited St. John; and, in company with Messrs. Matthew and Hartt, explored the localities of the plants previously discovered, and examined the large collections which had been formed by those gentlemen since the publication of my previous paper. The material thus obtained proving unexpectedly copious and interesting, I was desirous of having opplortunities of fuller comparison with the Devonian Flora of New York State; and, on application to Prof. Hall, that gentleman, with consent of the Regents of the University of New York, kindly placed in my hands the whole of his collections, embracing many new and remarkable forms. Prof. C. H. Hitchcock, State geologist of Maine, had in the meantime further explored the deposits at Perry, and has communicated to me three new species discovered by him. The whole of these collections, amounting in all to more than sixty species, constitute an addition to the Devonian Flora equal in importance to all the plants previously obtained from rocks of this age, and establish for some of the species a very extensive distribution both geologically and geographically; they allow, also, more satisfactory comparisons than were heretofore practicable to be instituted between the Deronian Flora and that of the Carboniferous period.
I shall first shortly notice the geological character of the localities, with lists of the fossils found in each, and shall then proceed to describe the new species.

I. Notices of the Localitibs of the Devonian Plants.

1. State of New York.-The geology of this State has been so fully illustrated by Prof. Hall and his colleagues, and the parallelism of its formations with those of Europe has been so extensively made known by Murchison and others, that it is only necessary for me to state that the fossils entrusted to me by Prof. Hall range from the Mareellus Shale to the Catskill group inclusive, and thus belong to the Middle and Upper Devonian of British geologists. The plants are distributed in the subdivisions of these groups as follows:-

Upper Devonian.

$$
\text { Catskill Group.' }{ }^{\text {b }}
$$

Aporoxylon.
Sigillaria Simplicitas Vanuxem. Lepidodendron Glaspianum Dawson. Psilophyton princeps Dawson.

Cyclopteris Jacksonii Dawson.
Rhachiopteris punctata, sp. nov.
-cyclopteroides, sp. nov.

Chemung Group.

Sigillaria Vanuxemii Gaeppert.
Syringodendron gracile, sp. nov.
Stigmaria exigua, sp. nov.
Lepidodendron Chemungense Hall. - corrugatum Davoon.

Lycopodites Vanuxemi, sp. nov.
Cyclopteris Halliana Gaeppert.
Psilophyton princeps Lawson.
Acanthophyton spinosum, sp. nov.
Rhachiopteris striata, sp. nov.

Middle Devonian.
 Hamilton Group.

Syringoxylon mirabile, sp. nov.
Dadoxylon Hallii, sp. nov.
Aporoxylon.
Sigillaria.
Didymophyllum reniforme, sp. nov.
Calamites Transitionis (?) Goppert.

- inormatus, sp. nov.

Lepidodendron Gaspianum Dawson. - corrugatum Dawson.

Psilophyton princeps Daroson. Cordaites Robbii (?) Dawson.
—, sp. nov.
-angustifolia Dawson.
Cyclopteris incerta, sp. nov.
Rhachiopteris striata, sp. nov.

- tenuistriata, sp. nov.
- pinnata, sp. nov.

2. Maine.-The only locality in this State that has hitherto afforded fossil plants is Perry, near Eastport, in the eastern part of the State. The plant-bearing rocks are grey sandstones, resembling those of Gaspé, and associated with red conglomerate and trappean or tufaceous rocks, which, according to the recent observations of Prof. C. H. Hitchcock, ${ }^{6}$ rest unconformably on shales or slates holding Upper Silurian fossils. ${ }^{7}$ I have little doubt that these beds at Perry are a continuation of part of the series observed at St. John, New Brunswick; and it is probable that they are Upper Devonian. The following species occur at this place : ${ }^{\text {B }}$ -

Lepidodendron Gaspianum Danson.
Lepidostrobus Richardsonii Dawson.
$\overline{\text { Pil globosus Drwson. }}$
Psilophyton princeps Dawson.
Leptophloeum rhombicum, sp. nov.

Megaphyton?
Aporoxylon?
Cyclopteris Jacksoni Dawson.
-Brownii, sp. nov.
Sphenopteris Hitcheockiana, sp. nov.
3. Canaula.-Devonian beds holding fossil plants occur in Eastern Canada, in Gaspé, and in Western Canada, at Kettle Point, Lake Huron. At the former place there is an extensive series of sandstones and shales, regarded by Sir W. E. Logan as representing the whole of the Devonian series, and containing

[^45]plants throughout, but more abundantly in its central portion.' At the latter a few plants have been found in shales of Upper Devonian age. The plants found at Gaspé were described in my former paper, and are-

Prototaxites Logani Dawson.
Lepidodendron Gaspianum Davoson.
Psilophyton princeps Dawson.

> Psilophyton robustius Dawoson. Selaginites formosus Dawson. Cordaites angustifolia Dawson.

The plants from Kettle Point, noticed with doubt in my former paper, I may now refer to the following species:-
Sagenaria Veltheimiana Goppert. I Calamites inornatus, sp. nov.
4. New Brunswick.- The rocks in the vicinity of the city of St. John, constituting a part of the coast metamorphic series of New Brunswick, have been described in the official reports of Dr. Gesner and Dr. Robb; ${ }^{10}$ and additional facts respecting their stratigraphical relations, ascertained by Mr. Matthew, were stated in my paper in the Canadiun Naturalist, already referred to. The new interest attached to these beds, in consequence of the discovery of their copious fossil flora, induced me to re-examine all the sections, in company with Mr . Matthew, during my late visit; and that gentleman has recently extended the limits of our observations eastward in the direction of Mispec. The results of these observations I shall state in some detail, as the precise age of the St. John series has not until now been determined.

The oldest rocks seen in the vicinity of St. John are the socalled syenites and altered slates in the ridges between the city and the Kennebeckasis River. These rocks are in great part gneissose, and are no doubt altered sediments. They are usually of greenish colors; and in places they contain bands of dark slate and reddish felsite, as well as of gray quartzite. In their upper part they alternate with white and graphitic crystalline limestone, which overlies them in thick beds at M'Closkeney's and Drury's Coves on the Kennebeckasis, and again on the St. John side of an anticlinal formed by the syenitic or gneissose rocks, at the suburb of Portland. These limestones are also well seen in a railway-cutting five miles to the eastward of St. John, ${ }^{11}$ and at Lily Lake. Near the Kennebeckasis, they are unconformably overlain by the Lower Carboniferous conglomerate, which is coarse and of a red color, and contains numerous frag. ments of the limestone.

[^46]At Portland, the crystalline limestone appears in a very thick bed, and constitutes the ridge on which stands Fort Howe. Its colors are white and grey, with dark graphitic laminæ; and it contains occasional bands of olive-colored shale. It dips at a very high angle to the southeast. Three beds of impure graphite appear in its upper portion. The highest is about a foot in thickness, and rests on a sort of underclay. The middle bed is thinner and less perfectly exposed. The lower bed, in which a shaft has been sunk, seems to be three or four feet in thickness. It is very earthy and pyritous. The great bed of limestone is seen to rest on flinty slate and syenitic gneiss, beneath which, however, there appears a minor bed of limestone. Above the great limestone are beds of a hard grey metamorphic rock, apparently an indurated volcanic ash, associated with some sandstone; and this is succeeded by the great series of gray, olive, and black shales and flags which underlie the city of St. John. These rocks are well exposed on both sides of Courtney Bay, in the city of St. John, and in Carlton. Though somewhat contorted, they have a general dip to the southeast, at angles of 50° to 70°. In some of the beds there are great numbers of Lingula, which have not as yet been identified with any described species. There are also trails of worms, and scratches which may have been produced by the feet of Crustaceans or the fins of fishes.
The comparatively coarse shales above described are succeeded by a thick band of black papyraceous shale, much contorted, and with a few thin seams of calcareous matter arranged in the concretionary forms known as 'cone-in-cone.' No fossils were found in them, but two thin seams of anthracitic coaly matter are stated to have been seen on their line of strike eastward of Courtney Bay. ${ }^{12}$
Overlying these beds, is a group of very different character. It consists of purplish-red and green grit and shale, with beds of red conglomerate and red sandstone. Interstratified with these feldsassive beds of a greenish rock, consisting of trappean and feldspathic fragments, imbedded in a shining reddish paste, or sometimes presenting the appearance of a compact trap or amygdaloid. This rock usually presents an appearance of greater alteration than the neighboring beds, and contains veins of epidote, quartz, and calc-spar. Its hard and massive character causes it to resist denudation, and to project above the surface in irregular masses. It has usually been regarded as a trap; I am disposed however, to consider it as more probably a tufaceous or volcanic ash rock, except in a few places, where it is either an amygdaloid trap or a mass of fragments of such material too
intimately connected to be separated from each other. It is evidently a stratified member of the series, though its beds are very unequal in hardness and texture, and probably also in thickness. This portion of the series is well exposed on the east side of Courtney Bay, in the southern part of the city of St. John, and in the direction of Carlton, where its tufaceous or trappean members constitute prominent elevations. It seems also to be this member of the series which, turning to the south, constitutes Cape Meogenes.

Reposing on the rocks last described, is the most interesting member of the series, consisting of hard buff and gray sandstones, with black and dark-gray shales. The sandstones contain numerous Coniferous trunks; and the shales, which are sometimes highly graphitic, abound in delicate vegetable remains, often in a very perfect state of preservation. These rocks appear on the east side of Courtney Bay, near Little River, at the extremity of the point of land on which the city of St. John stands, and in the ledges and cliffs on the shore westward of Carlton. In all these places they are quite conformable with the underlying rocks, though the dip gradually diminishes in ascending.

No rocks newer than the above are seen at Carlton or in the city of St. John; but near Little River a few beds of red shale and coarse sandstone seem to indicate the commencement of a new member of the series, the coast-section failing at this point. Mr . Matthew has, however, succeeded in finding a continuation of the section further inland, exhibiting first, in ascending order, gray sandstone and grit, with dark shale holding fossil plants, among which is Calamites Transitionis. This may perhaps be regarded as the top of the group last mentioned. Above it, and passing into it at their base, are reddish sandstones, grits, and conglomerates, alternating with green, greenish-gray, and red shale. Resting on these, is a thick-bedded, coarse, angular conglomerate, succeeded by evenly bedded shales, shaly sandstones. and grits, of dark-red and purplish colors. These are the highest beds seen, as beyond this place they are bent in a synclinal, and reappear with reversed dips.

Another most important observation of Mr. Matthew is that near Red Head the member of the St. John series last described is overlain unconformably by a conglomerate similar to that of the Kennebeckasis, and probably the Lower Carboniferous conglomerate. It dips to the northwest, or in the opposite direction from that of the underlying beds, at an angle of 30°; but Mr . Matthew regards the dip as due in part to false bedding.

The whole of the deposits above described may be summed up as follows, the thicknesses stated being from measurements
and estimates made by Mr. Matthew, and to be regarded as merely approximate. ${ }^{13}$

Carboniferous System.

Coarse red conglomerate, with pebbles of the underlying rocks, and constituting in this vicinity the base of the Carboniferous System.

Devonian System (or perhaps, in part, Upper Silurian).

1. Dark-red and greenish shales; flaggy sandstones and grits; coarse angular conglomerate,
2. Reddish conglomerate, with quartz pebbles; reddish, purple; and grey sandstones and grits; deepr-red, gray, and pale-green shales. A few fossil plants, -
3. Blackish and gray hard shale and arenaceous shale; buff and gray sandstone and flags. Many fossil plants; Crustaceans and Spirorbis,
4. Reddish conglomerate, with slaty paste and rounded pebbles; trappean or tufaceous rock; red, purplish, and green sandstones and shales. Thickness variable,
5. Black papyraceous shale, with layers of cone-in-cone concretions,
6. Hard, generally coarse and micaceous, gray shales and flags, of various shades of color, and with some reldish shale and tufaceous or trappean matter at the bottom. Lingulce, burrows, and trails of aniunals, - - - 3000 feet or more.
7. White and gray crystalline limestone, with bands of sliale and beds of graphite, - - \quad - 600 feet or more.
8. Gneissose and other metamorphic beds, with bands of quartzrock and slate. Thickness unknown.
The Devonian age of the upper members of this great series of beds I regard as established by their fossils, ${ }^{14}$ taken in connection with the unconformable superposition of the Lower Carboniferous conglomerate. The age of the lower members is less certain. They may either represent the Middle and Lower Devonian, or may be in part of Silurian age. Their only determinable fossil, the Lingula of the St. John shales, affords no decisive
[^47]
318 J. W. Dawson on the Flora of the Devonian Period, etc.

solution of this question, and the evidence of mineral character is not to be relied on in the case of beds so remote from those regions in which the Devonian rocks of America have been most minutely studied.

In mineral character, Nos. 1 and 2 of the above sectional list might very well represent the Old Red Sandstone, or Catskill group, of the New York geologists. Nos. 3 and 4 might be regarded as the analogues of the Chemung and Portage groups. No. 5 would represent the Genesee Slate; No. 6 the remainder of the Hamilton group; No. 7 the Corniferous Limestone; and No. 8 might be regarded as a metamorphosed equivalent of the Oriskany and Schoharie Sandstones. The entire want of the rich marine fauna of these formations is, however, a serious objection to this parallelism. If, on the other hand, we employ as our scale of comparison the development of the Devonian system in Gaspé, Nos. 1 and 2 will correspond very well with the upper member of the Gaspé series, and No. 3 with the rich plant-bearing beds of the middle of that series; but no mineral equivalent of the St. John shales and limestones occurs at Gaspé, unless we seek for it in the Upper Silurian.

The rocks of the St. John group extend along the coast as far as the frontier of Maine, and there can scarcely be any doubt that the plant-bearing beds at Perry represent some portion of the St. John series, most probably Nos. 2 and 3 of our sectional list. At Perry, the plant-beds rest on a trappean bed, which may be the equivalent of our No. 4, a member of the series much more constant in its occurrence than would be anticipated from its composition. According to Prof. Hitchcock, this last bed at Perry, rests unconformably on shales containing a Lingula, apparently not identical with that of St. John, and also other fossils of distinct Upper Silurian forms. The analogy of Perry, therefore, as well as of Gaspé, would point to an Upper Silurian age for the lower members of the St. John series, though at St. John they appear to be conformable with the overlying beds. On the other hand, the unconformability at Perry renders it possible that the lower members of the St. John series may be wanting there; and to assign a Silurian date to the lower beds at St. John would imply the entire absence of the copious and characteristic Lower Devonian marine fauna observed at Craspé and in Nova Scotia, as well as in Maine, though not in immediate connection with the Perry beds; while, if the whole series of St. John be Devonian, the absence of this fauna would be accounted for by the metamorphism of the lower beds.

In the present state of the evidence, it would be premature to decide this question, which may be settled either by the discovery of portions of the lower beds in a less altered state, or by tracing the St. John series into connection with the similar
deposits in Maine. In the meantime, therefore, we may be content to regard the upper members of the series as belonging to the later part of the Devonian Period, leaving the lower members to be regarded as Lower Devonian or possibly Upper Silurian.

The fossiliferous portion of the St. John series presents the richest local flora of the Devonian Period ever discovered. It far excels, in number of genera and species, the Lower Carboniferous flora as it exists in British America, and is comparable with that of the Middle Coal-measures, from which, bowever, it differs very remarkably in the relative development of different genera, as well as in the species representing those genera.

It is only just to observe, that the completeness of the following list is due to the industrious labors of an association of young gentlemen of St. John, who, under the guidance of Messrs. Matthew and Hartt, have diligently explored every accessible spot within some distance of the city, and have liberally placed their collections at my disposal for the purposes of this paper.

Dadoxylon Ouangondianum Dawson.
Sigillaria palpebra, sp. nov.
Stiymaria ticoides (var.) Brongn.
Calamites Transitionis Geeppert.
Astannæformis Brongn.
Asternphyllites acicularis, sp. nov.

- latifolia, sp. nov.
- scutigera, sp. nov.
- longifolia Brongn.
-parvula Davson.
Annularia acuminata, sp. nov.
Sphenophyllum antiquum Davson.
Pinnularia dispalans, sp. nov.
Lepidodendron Gaspianum Dawson.
Lycopodites Matthewi Dawson.
Psilophyton elegans, sp. nor.
Cord glabrum, sp. nov.
Cordaites Robbii Daroson.
Cyclopteris angia Dawoson.
Cyclopteris Jacksoni Daroson.

Cyclopteris obtusa Gceppert.

- varia, sp. nov.
- valida, sp. nov.

Neuropteris serrulata, sp. nov.

- polymorpha, sp. nov.

Sphenopteris Hoeninghausi Brongn.

- marginata, sp. nov.
- Harttii, sp. nov.
- Hitchenckiana, sp. nov.

Hymenophyllites Gersdorffi Goeppert.

- obtusilobus Gceppert.
- curtilobus, sp. nov.

Pecopteris (Alethopteris) discrepans, sp. nov.

- (—) ingens, sp. nov.

Trichomanites, sp . nor.
Cardiocarpum cornutum, sp. nov.
-obliquum, sp. nov.
Trigonocarpum racemosum, sp. nov.
(To be continued).

Art. XXXII.- On the nature and advantages of the Globe Lens for the Photographic Camera; by Coleman Sellers.

The Globe Lens for photographic cameras, patented by Messrs. Harrison and Schnitzer of New York, is now attracting so much attention and is the subject of such contradictory statements, that a brief notice of it by one who has tried it may not be uninteresting to the readers of this Journal. Photography, with the discovery of the use of collodion, seemed to leap into its present high position at one bound, at least so far as the chemistry of
the art is concerned. The negatives of to-day look like the negatives of the first experimenters, and the chemical process of their production is essentially the same. But with the optics of photography the case is different-here there has been a steady improvement. The wants of the portraitists have been met by the construction of new objectives suited to the style of pictures to be produced. In these instruments depth of field with free admission of a large volume of light was what was most sought for. Theory could not dictate what shape or combination of lenses would best produce this result, and patient experiments were resorted to. The requirements of landscape photography are quite different from those of portraiture. A portrait tube may be used to take views if it be provided with a stop or small opening to limit the amount of rays passing through it and thus to deepen the field, or increase the 'reach' of the instrument as it is technically called. This involves loss of light, and consequently diminishes the quickness of its working. We hear continually of rapid or instantaneous photography, and are often led to believe that the rapidity is to be ascribed to some wonderful sensibility of the chemicals used, but this is only partially true, and to the optician is due the most of the merit of instantaneous pictures. A portrait tube with its full opening will, in a sky-light room, produce a picture in perhaps ten or fifteen seconds. This same instrument, with the same opening and same chemicals, exposed to an extended view in bright sun light, could not be opened and shut quick enough; the immense volume of light reflected from so large an area of space being concentrated on the same sized plate as in the first case, would be too violent in its action, and from the nature of the instrument near and distant objects could not be brought into focus at the same time.

The human eye, when the head is at rest, takes in an angle of view of at least 70° or 80°, the whole of which is not seen clearly at once but can be examined in detail by the almost unconscious rolling motion of the eye in its socket-the actual in. cluded angle of clear vision at any one instant beirg only 1° or 2°. Hence a picture of a landscape, for instance, to fill the eye and seem a true representation of nature, should include an angle of at least 60°. Ordinary instruments, such as have heretofore been used, do not include an angle of more than one-half this amount and hence has originated the complaint that photographic views represent mere patches of scenery and not pictures. I remember once standing on a bridge-camera in hand-and looking up the romantic Wissahicon. The picture presented to my eve was very beautiful-the centre a waterfall framed in on both sides by wild and rugged rocks and spanned above by the arch of a railroad bridge crossing at the tops of the cliffs. The foreground was made up of a stony bed, where danced and foamed the rapid cur-
rent. I planted the camera and hoped soon to peel off from this charming view a cuticle (as Dr. Holmes says) which like plates of mica could be split and re-split for the collections of my friends. But on the ground glass I found nought but the tumbling water. No rocks, no bridge, no stony river bed-the poor camera in its empty head was incapable of taking in the whole of the charming picture. One of the dreams of the photographer has been of an instrument which should embrace a large angle and thus satisfy the wants of the eye; but, with the majority of the attempts in this direction came other evils, the greatest of which was distortion of the marginal lines. The aplanatic lens of Grubble is said to comprise an angle of 70°, but in a view before me of Trinity College, Dublin, taken with this lens, there is a curvature of the straight lines of the roof of more than one-eighth of an inch in its length. Mr. Sutton's panoramic lens, a sphere of glass filled with water, includes a very large angle, over 100°, on the base line, but the pictures are produced on curved plates, which require curved holders, baths, and printing frames, and, in the case of architectural pictures, the right lines are distorted, unless the picture be bent to the curvature of the plate upon which it was taken, and thas viewed near the centre of the curvature.
The Harrison and Schnitzer globe lens consists of two achromatic meniscus lenses placed with their concave sides together, and so made that their outer curved surfaces form part of a perfect sphere and the light is admitted through an aperture placed midway between the two lenses, i.e., in the exact centre of the external sphere. The annexed figure represents one of these instruments, A and B being the meniscus lenses, and C the centre opening through which the rays of light pass. The focus of such a lens one and three-quarter inches in diameter is two and one-half inches for distant objects, measuring from the surface of the back lens to the ground glass D. The circle of light produced is five
 inches in diameter, and from this may be cut the ordinary $3^{\prime \prime}$ square of a stereoscopic picture. The included angle of light in the five inch circle is 75°, and in a three inch square picture cut from it is contained just four times the area of any instrument I have ever tried, suited to similar work. The reraarkable property of this lens consists in its absolute correctness of reproduction. If it is used for copying purposes, the marginal lines are copied as straight as the originals, and, if
a copy be made the same size as the original, the photographic copy will, if laid upon the original, match it in every line. I have said that the globe of $2 \frac{1}{2}^{\prime \prime}$ focus will make a circle of light of $5^{\prime \prime}$ diameter. This is when a distant landscape is in focus. If it is used for copying, the circle of light increases in diameter as the object approaches the front lens and the ground glass recedes to focus, so that an instrument which will cover a given size plate for views will cover one of twice the size, when reproducing the size of the original. As the lenses increase in size and length of focus, the plates covered increase in size, and the amount of glass in the lenses bear a larger proportion to the brass work in which they are mounted, and hence the included angle of vision is increased, so that while in the $2 \frac{1}{2}$ inch globe the included angle is 75°, in a 12 inch globe (that is, one of $12^{\prime \prime}$ focus) the included angle is over 90°. It has been said that the light, being admitted through a round hole in a plane plate in the centre of the instrument, must be much more intense at the centre of the field than at the margin, and some writers have stated this fault to be one of great magnitude. Practice however does not show the evil to be so great as they represent, if it exists at all. By reference to the cut, it will be seen, that the dotted lines $x x$ representing a pencil of light of the diameter of the centre opening passing through the axis of the instrument, and $y y$ representing a pencil of light passing through the same opening obliquely, doubtless the area of the centre one will be the largest, but as it passes through much thicker glass than the rays $y y$, may not the ultimate effect of each be equalized? I do not pretend to any knowledge of the theory of optics, and must confine myself to facts. In the trial of many of these lenses, of different sizes, I have never found the evil to exist, and all the pictures I have made with the globe lens are remarkable for the even illumination of the field. At the last two meetings of the Photographic Society of Philadelphia, (February, 1863,) the merits of these lenses have been discussed-full credit for correctness of reproduction was accorded to them by all; but the quickness of working was questioned by one gentleman, who stated that in broad sunlight he had exposed an engraving for several minutes and had obtained an under-exposed negative, while all others present who had tried them were unhesitating in their assertions that they were remarkably quick workers when the size of aperture was taken into consideration. A few days ago I placed in bright sunlight an engraving from the London Art Journal, and copied it on a $6 \frac{1}{2} \times 8 \frac{1}{2}$ plate with the same size instrument as was used by the gentleman who questioned its quickness. An exposure of 205 seconds gave an impression which flashed up instantly under the developer, assuming great intensity in the light and showing unmistakable symptoms of over exposure, so that I can see no
reason why the same law should not hold good with these lenses as with others, viz. : that, with the same area of opening to admit light, the shorter the focus the quicker they will work. For interiors, the short focus and large angle of vision possessed by these instruments render them invaluable, and as they are provided with a revolving diaphragm plate in the centre (not shown in the cut) various sizes of aperture can be brought into position, just as the stops under the table of some compound microscopes are arranged, and thus the largest amount of light, consistent with sharpness, admitted.
In the English journals, when the accounts of this instrument were first published, it was denounced in no measured terms, as being constructed on erroneous principles, and the assertion has even been made that its very shape must give fearful distortion to marginal lines, but since it has been proved to be no failure, and its success is no longer an experiment, comes the unwilling acknowledgment: "The principle of its construction must insure correct marginal lines," and last of all comes the declaration that it is "old, very old." Everybody had been making them for years and there is no merit of invention due to the patentees! Granting that lenses may have been made with an external spherical focus, as is the Sutton case, it will be difficult to produce a lens, made previous to the invention of this now described, composed of two achromatic meniscus lenses combined as these are and producing a like result. The theory of operation and mode of construction of the globe lenses admit of their being readily made of various focal lengths, and thus, by the use of a series of instruments, the whole included angle can be made available on any size plate that may be desired; the six inch focus covering a $6 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ plate and the $12^{\prime \prime}$ focus lens covering $14^{\prime \prime} \times 18^{\prime \prime}$ each including the same angle. Oue great advantage of short-focus lenses, when there is no spherical distortion, is in the appearance of perspective produced. If, for instance, we would view a machine or statue to the best advantage, we stand at such a distance from it as will admit of our viewing the whole of it in the eye at once, and can then best judge of its proportion. If now a picture be made by an instrument of long focus, it will be so far away from the object to be depicted as to make, as it were, too nearly a plane or flat view of it, deficient in perspective effect. With the very shortest focus of this new lens (the $2 \frac{1}{2}$ " focus), this perspective effect may be too much exaggerated, but with all the other sizes it is not, and with the globe lens and with this only have been produced pictures which seem to me to convey a just idea of size and proportion. Some year or so ago, Messrs. E. and H. T. Anthony published a series of sterengraphs of Niagara, which seemed to me when I first saw them to bring to my mind all the wonders of the stupendous
cataract, and all to whom I have shown them seemed similarly impressed: it was not until recently that I learned that they were taken with the Harrison globe lens, thus furnishing another convincing argument in my mind of the value of the instrument. I cannot too strongly urge their adoption by photographers, and am proud of them as originating in America. The shortness of their focus adds much to their portability, as the camera is made smaller than usual, and amateur field photography with the globe lens and dry plates is a pleasure in place of a labor. Its advantages may be summed up in a few words. Short focus, clear definition, wide angle of included vision, absolute correctness of copy on a plane surface, and tolerably quick work. It takes the place entirely of the orthoscopic lens, giving absolute correctness to marginal lines, while the orthoscopic was only approximately correct. It fills all the requirements of a lens for landscape and architectural work, and is wanting only in the one thing of absolute instantaneity of action.
Philadelphia, March 10, 1863.
[We may add to Mr. Seller's notice of the 'Globe Lens' that this instrument has been found to reproduce military and other maps and plans with a minute fidelity heretofore unattained; and by their use our Army and Navy are furnished with photographic copies of manuscript maps and Coast-Survey plans, in which, as appears from the statements of the officers in charge, there is no sensible distortion of the right lines, even on very large plates.-EDs.]

Art. XXXIII.- On the Glacial origin of certain Lakes in Switzerland, the Black Forest, Great Britain, Sweden, North America, and elsewhere; by A. C. Ramsay, F.R.S., President of the Geological Society, \&c. (Communicated by the Author.) ${ }^{2}$

Erroneous theories of the transport of Alpine Blockis.-In the year 1859, in a series of papers by the members of the Alpine Club, I published a memoir in which I compared the old glaciers of North Wales with those of Switzerland; and in it, among other matters, I explained the glacial origin of certain rockbasins now holding lakes, on the watersheds and in the old gla-cier-valleys of both those countries; and in a later edition of the same memoir, published as a separate book, with additions, ${ }^{3}$ I extended these generalizations to many of the lakes in Sutherlandshire.

In the same work I also expressed an opinion that the blocks

[^48]of Monthey, in the valley of the Rhone, and the great erratic boulders that strew the southern flank of the Jura had been transported by icebergs derived from glaciers which descended in the Alpine valleys to the sea-level, during a period of submergence in which the low country that lies between the Jura and the Oberland was covered with erratic drift.

There was nothing new in this latter opinion, for it had previously been held by several distinguished geologists, both English and continental.

Since then I have twice revisited Switzerland, and have seen good reason to change my opinion respecting the cause of the transport of erratic blocks to Monthey and the Jura, and of débris not remodelled by rivers, \&ce., that lies scattered over the lowlands of Switzerland, or that borders, or lies in great mounds well out, in the plain of Piedmont and Lombardy. I am now convinced, for example, that the vast circling moraine of Ivrea, noticed by Studer in 1844, was shed from a glacier, 105 miles in length, that filled the valley of Aosta to a height of more than 2000 feet, and protruded far into the plain; while on the north a still greater glacier, long ago described by Charpentier, flowed from the valley of the Rhone right across the low country until its end abutted on the Jura. As there are still many persons in England who doubt these conclusions, it may not be beside the question to state the considerations that led me to reject the old theory.
Reasons for abandoning the older theories.-I first began to doubt the correctness of my earlier opinions in the summer of 1860 , While examining the country near Bonn, the banks of the Moselle, and the Eifel. Neither in the valleys nor on the wide table-lands on both sides of the Rhine and the Moselle is there any sign of glacial drift. Excepting alluvial débris in the valleys, the native rock is generally quite bare of transported detritus; and the only marks of glaciation lie low on the sides of the Moselle, where the floating down of the river-ice has frequently rounded, polished, and striated the rocky banks in the direction of the flow. Boulders, transported from further up the stream, also sometimes lie on the shores. But, in the absence of true drift, I considered that, had Switzerland been depressed at least 3000 feet, until its mountains were washed by a sea that floated transported blocks to the higher Jura, the tablelands of Rhenish Prussia and Westphalia would also possibly have been submerged, and more or less covered with glacial detritus. Further up the Rhine and in the Black Forest the same absence of marine drift prevails. There, looking eastward towards the Rhine, the mountains, chiefly of gneiss, are wonderfully scarred, telling the observer of the wasting effects of Am. Jour. Sct.-Second Series, Vot. XXXV, No. 105.-May, 1863.

326 A. C. Ramsay on the Glacial origin of certain Lakes

frost, ice, rain, and rivers, probably ever since the close of the Miocene period. In the valley of Oberweiler, between Mullheim and the watershed, I observed occasional heaps of morainelike detritus, in which by diligent searching I found a few stones marked with the familiar glacial scratchings.

In the interior towards Schonau and the Belchen, the rocks being generally soft and schistose, no very decided signs of old glaciers occur, and no part of the country shows symptoms of the presence of drift. Altogether, the country looks as if it had stood in the air for so great a period that, even if glaciers were once present, they had disappeared so long ago that all the more prominent signs of degradation are now due to rain and running water. But further in the interior it is altogether different; for the signs of old glacier-ice are plentiful enough, and for miles round the Feldberg, which rises 4982 Baden feet above the sea, the sides of the valleys to the very summits of the mountains are often strikingly moutonnées, though the rounded forms are generally roughened and frequently half ruined with age. On these, striations, though rare, may occasionally be discovered (running in the direction of the valleys), although the rapid rate at which the rock weathers is much against their preservation. Moraines also are not uncommon. At the foot of the Feldberg, on the east, there is a beautiful circular lake, called the Feldsee, surrounded by tall cliffs of gneiss and granite in the shape known in Scotland as a corrie-a form eminently characteristic of all glacier-countries past or present. The outer side of the lake is dammed up by a perfectly symmetrical moraine, curving across the valley, and formed of sand, gravel, and of granite and gneiss, often in large boulders. It is now covered with pine-trees. The lake is deep, and the moraine rises from 25 to 40 feet above the water. Outside the moraine lies a flat marsh, still retaining traces of having been a lake, once also dammed by a second and outer moraine, formed chiefly of large angular blocks of gneiss, piled irregularly on each other like the old moraine of Cwm Bochlwyd, above Llyn Ogwen in Caernarvonshire. Quantities of moraine-matter strew the valley for two or three miles further down to the little marshy lake at Waldbauer, which is also dammed up by moraine-rubbish, in one place rudely stratified, like some of the old moraine-heaps on the Jura and parts of the great moraine of Ivrea; or like the heaps of glacier-débris that often border the lakes, marshes, and flat peat-mosses, once lakes, that diversify the lowlands of Switzerland. At the upper end of the Alb Thal also, at the entrance of Menzenschwanden Alb, I saw four moraines curving across the valley, arranged concentrically one within another, like those at the end of the glacier of the Rhone; and for many miles in the Alb Valley, both above and below St. Blasien,
roches moutonnées stand like islands through the alluvium, while it is also plain that the sides of the mountains above have been to a great height smoothed by ice. Nowhere, however, down to Allbruck, where the river joins the Rhine, ${ }^{3}$ did I see any "drift;" and this village lying close on the north side of the Jura, it seemed impossible that the higher ground on the south side of that range, between the Lakes of Constance and Geneva, should have been submerged during any part of the Glacial period, while the country on the Rhine above Basel remained above the sea. I therefore saw that the theory that the Pierre a bot and its companion blocks had been floated from the Alps by marine icebergs was untenable; and a later examination of a portion of the Jura, partly under the able guidance of Professor Desor, fully convinced me that the ice that descended the great valley of the Rhone had covered much of the low country and abutted on the south-eastern flank of the Jura.

Old distribution of the Great Alpine Glaciers.-At that period, then, of extreme cold, when the glaciers of the Alps flowed right across the Miocene basin of Switzerland, a glacier of vast thickness, running from end to end of the upper valley of the Rhone, debouched upon the lowlands at what is now the eastern end of the Lake of Geneva, and, spreading in a great fan-shaped mass, extended to the south-west several miles down the Rhone below its present outflow from the lake, and north-east to the banks of the Aar, about half-way between Solothurn and Aarau. The length of this fan-shaped end of the glacier, from northeast to southwest, was about 130 miles, and its extreme breadth about 25 miles. Another great glacier descended in a direction opposite to the higher part of the Rhone glacier, through the upper valleys of the Rhine, and debouched upon a wide area that extends from Kaiserstubl on the Rhine, far to the northeast. In the center of this area lies the lake of Constance. Between these, which were the largest glaciers on the north watershed of the Swiss Alps, several smaller, but still enormous, glaciers flowed in a north-westerly direction from the mountains, -one down the Linth, through the area now occupied by the Lake of Zurich, another down the Upper Reuss, across the area in which lie the Lakes of Lucerne, Zug, and others, and a third down the valley of the Aar to Berne, through the country that now contains the Lakes of Brienz and Thun. According to this view (the result of the researches of the best Swiss geologists), the greater part of the Swiss Miocene area lay deep under ice, and 1 am inclined to think that the country between the great old glaciers of the Reuss, Aar, and Rhone was much more covered with ice than any map shows, the whole helping to

[^49]swell the prodigious glacier of the Rhone that abutted on the Jura.

Connection between Tarns and Glaciers.-In The Old Glaciers of North Wales I have shown that in all glacier-countries, whether whether past or present, there is an intimate connexion between tarns and glaciers. Some of these are dammed by old moraines, but the greater number lie in rocl-basins, formed by the grinding of glacier-ice as it passed across the country, whether in valleys, on rough table-lands, or on the watersheds of passes. These lakes and pools are of all sizes, from a few yards in width, lying amid the mammillations of the roches moutonnées, to several miles in diameter. Sometimes in the convolutions of the strata (conjoined with preglacial denudation subsequent to the contortion of the beds), softer parts of the country may have been scooped out, leaving a hollow surrounded by a frame-work of harder rock; but perhaps more generally they were formed by the greater thickness and weight, and consequently proportionally greater grinding pressure, of glacier-ice on particular areas, due to accidents to which it is now often difficult or impossible to find the clue. Trifling as this phenomenon at first sight may seem, I yet believe the manner of the formation of these lakes is of much importance to the right understanding of the glacial theory, whether taken in connection with the great extension of extinct glaciers in recognized glacier-regions, or, further, when viewed on a general continental scale; for the theory of the glacial origin of many rock-basins must, I feel convinced, be extended much beyond such mountain-districts as Switzerland, Wales, and the Highlands of Scotland, where they first attracted my attention. ${ }^{\text {. }}$
Origin of the Great Alpine Lakes, subject stated.-From the consideration of the origin of mountain-lakes and tarns, the question easily arises,-What are the causes that have operated in the formation of the great lakes of Switzerland, such as those of Geneva, Zurich, and Constance, and, south of the Alps, of Maggiore, Lugano, Como, and others? To answer this with precision, it will be necessary, first, to examine several other hypotheses that by some may be thought sufficient to account for them.

It is well known that after the close of the Miocene epoch the rocks of the Alps were much disturbed,- a circumstance

[^50]proved by the contortion of the Miocene strata, as for instance in the neighborhood of Lucerne, where, on the Rigi (and in other conglomeratic mountains on the same strike), the strata are considered by the best Swiss geologists to be repeatedly folded and fairly inverted, so that the basement-beds form the top of the mountain, instead of its bottom, thus, by reversal of dip, plunging under the Eocene and Cretaceous strata of the mountains further south. The whole, as shown by the rapid truncated folding and the escarpments of the hills, has since been much denuded, the denudation being of a kind and amount that, to effect it, proves the lapse of a long period of time. Witness the outliers of Miocene strata in the upland valleys of the Jura. Among these disturbed and denuded strata of Miocene and of older dates, the Lakes of Geneva, Thun, Brienz, Lucerne, Zurich, Constance, the Wallen See, and the great lakes of north Italy lie. A knowledge of the stratigraphical structure of the Alps, in my opinion, proves that these lakes do not lie among the strata in basins merely produced by disturbance of the rocks, but in hollows due to denuding agencies that operated long after the complicated foldings of the Miocene and other strata were produced.

First, none of these lakes lie in simple synclinal troughs. It is the rarest thing in nature to find an anticlinal or a synclinal curve from which some of the upper strata have not been removed by denudation. I never yet saw a synclinal curve of which it can be proved that the uppermost stratum in the basin is the highest layer of the formation that was originally deposited over the area before the curving and denudation of the country took place. The only approach to this may possibly be in the upper valleys of the Jura, where a part of the Miocene beds lie in basins separated by secondary anticlinally curved strata, the tops of the anticlinal bends having been removed by denudation; but these cases are surrounded with difficulties. The lake-hollows in the Alps are, however, encircled by rocks, the strikes, dips, and contortions of which often exhibit denudation on an immense scale; and in no case is it possible to affirm, here we have a synclinal hollow of which the original uppermost beds remain. If these beds have disappeared to a great extent, then it is evident that denudation has followed disturbance. The fragmentary state of the uppermost Miocene strata of the lowlands of Switzerland proves this denudation. Again, if it be argued that in the lake-areas these denudations have been produced by the waters of the lakes, it is replied that, though waves may form cliffs, neither running nor still water can scoop out deep trough-shaped hollows.

Secondly, the same kind of argument applies to areas of mere watery erosion by rivers. Running water may scoop out a
sloping valley or gorge, but (excepting little swallow-holes) it cannot form and deepen a profound hollow, so as to leave a rocky barrier all round: though it may fill with sediment one that had previously been formed.

Thirdly, neither do most of the Swiss lakes lie in lines of dislocation. For many reasons, I do not believe that any one of them among the high Alps or on their flanks can be proved to lie in lines of mere gaping fracture. Let us consider the nature of such fractures.

In any country where the strata are comparatively little disturbed and lie nearly horizontally, if it be faulted, there is no reason why the fractures should be open. In the Oolites, for example, in the south of England, where faults are numerous, and in the New Red Sandstone of the central counties, there is generally a simple displacement of the strata up or down, on one side or the other; or, if the disturbance go beyond this, it is that along the sloping line of fracture the beds on the downthrow side are turned up, and those on the opposite side bent down, by pressure and slipping combined. In more disturbed districts, like the Welsh Coal-measures, the same phenomena are observable: witness, for instance, the numerous sections from accurate observation, drawn on a true scale, by Sir Henry De la Beche, Sir William Logan, and others. Experience, both above ground and in mines, proves the same. Most lodes are in fractures, and many lie in lines of fault. In metamorphic, excessively contorted, and greatly fractured districts, like those of Devon, Cornwall, and Wales, the cracks, whether bearing metals or not, vary from mere threads to a few fathoms in width. They are always filled with quartz or other foreign substances, frequently harder than the surrounding matrix. I have often traced lodes on the surface, in Wales, by the hard matter filling the crack standing in relief above the surface of the softer enclosing rock. In limestone rocks the cracks are usually partly filled with crystallized carbonate of lime. Lines of fracture are not, therefore, for purposes of denudation, neces. sarily lines of weakness, unless it happen that on opposite sides of the fault hard and soft rocks come together, when of course the softer rocks will wear away more rapidly, and generally originate a straight valley.

Again, in an excessively contorted country, such as the Alps, it is, I believe, impossible, in consequence of that contortion, that there should be gaping fractures now exposed to view. Assuming for the sake of argument the sudden violent contortion of the strata of any great tract of country, we shall see that the contorted rocks now exposed at the surface, even if broken, would be most unlikely to gape.

The expression "elevation of mountains" conveys to the minds
of many persons the idea that the elevation has been produced by some force acting from below, along a line in the case of a chain, and on a point of greater or less extent when the mountains lie in a cluster, as a whole, more or less dome-shaped. Such forces would stretch the strata; and, when they could no longer stand the tension, cracks would ensue, and many lines of valley are assumed to lie in such fractures. But in Wales, the Highlands of Scotland, and more notably in the Alps, the strata now visible have been compressed and crumpled, not stretched, and they occupy a smaller horizontal space than they did previous to the formation of the chain.

Let us suppose a set of strata of (say) 14,000 to 20,000 feet in thickness, like the rocks of North Wales, and let these be spread out horizontally over thousands of square miles. Let these strata, from any cause, be compressed from the right and left so as to be contorted, and occupy a smaller horizontal area than they did before disturbance. Then, at a great depth, where the superincumbent strata pressed heavily on the lower beds, the latter would be crumpled up, cleavage would often supervene, and gaping fractures would be impossible; for, where mere fractures occurred, the walls of the cracks would be pressed more closely together. But nearer the surface, where there was less weight, and at it, where there was none, the beds would extend into larger curves than they did lower down; and where the limits of extensibility were passed, shattering might take place, and yawning chasms might ensue. In all violently contorted countries, however, as in the cleaved rocks of North Wales, for instance, the present surface shows those originally deep-seated contortions that since disturbance have been exposed by denudation; otherwise the rocks would not be cleaved. I therefore do not believe that in any country I have seen, such as Wales or Switzerland, there are any lakes now occupying yawning fractures, consequent in Switzerland on Post-cocene or Post-miocene disturbances. On the contrary, they lie in hollows of denudation, shortly to be explained, of later date than these disturbances.

Fourthly, again, it may be supposed that the great lakes lie each in an area of special subsidence; but, in reply to this, it is evident that among the unnumbered lakes of Switzerland and Italian Alps it would be easy to show a gradation in size, from the smallest tarn that lies in a rock-basin to the Lakes of Geneva and Constance. Neither do I see any reason why mere size should be considered the test of subsidence. Disallowing that test, we should require a great number of special subsidences, each in the form of a rock-basin, in contiguous areas. Between the Seidelhorn and Thun, for example, we should require one for the Todten See, several on the plateau on the north imme-
diately under the Seidelhorn, one for the lake at the Grimsel, another for the drained lake at the Kirchet, ${ }^{\circ}$ and another for the lakes of Brienz and Thun. In Sutherlandshire these areas of special subsidence would be required by the hundred, and in North America by the thousand.

Signor Gastaldi, in a masterly memoir on the composition of the Miocene conglomerates of Piedmont, ${ }^{7}$ considers with reason that the large angular blocks of these strata, many of them fartransported, and some of them foreign to the Alps and Apennines, have been deposited from ice-rafts; and thence he infers the existence of glaciers during a part of the Miocene epoch. But, admitting this, it is evident that the distribution of the Post-pliocene glaciers of the Alps must, in all details, have been quite different from those of Miocene age, in consequence of the great disturbance that the Alpine rocks underwent after the close of the Miocene epoch, and the subsequent formation of numerous new valleys of denudation. Traces of the long lapse of time between the Miocene and the later Glacial epoch are in other countries but imperfectly preserved in the subdivisions of the Crag, and of other minor formations of still later date. Of the finer gradations that unite these subdivisions, few traces have been described. For long before, and during all these Crag epochs and the ages between them, of which we have little trace, and during all the time that elapsed from the close of the Crag until the period of extreme cold came into action, the Alps stood above the sea, and suffering subaerial denudation, valleys were being formed and deepened. It is possible that, while the mild climates of the Lower Crag epochs endured, there may still have been glaciers in the higher Alps; but at whatever period the later glaciers commenced, those who allow the extreme slowness of geological change will admit that the period was immense that elapsed during the gradual increase of the glaciers, until, in an epoch of intensest cold, the ice abutted on the Jura in one direction, in another spread far beyond the present area of the Lake of Constance, and on the south invaded the plains of Lombardy and Piedmont. During all that time, weather and running water were at work modifying the form of the ground under review. But, as I have already explained, these two agents were incapable of scooping out deep hollows surrounded on all sides by rocks, and it therefore follows that the lakes first appeared after the decline of the glaciers left the surface of the country exposed approximately as we now see it,-unless we admit, what seems to me impossible, that fractures, formed at the close of the Miocene epoch, remained filled with water until

[^51]the great glaciers filled them with ice; or believe, with De Mortillet, that the valleys and lake-hollows were charged with waterborne alluvial or diluvial débris before the glaciers ploughed it out. ${ }^{\text {. }}$
Allowing the hypothesis of $D e$ Mortillet, the rock-basins must have been twice filled with water; but, according to my hypothesis, they did not exist as lakes till after the disappearance of the glaciers.
But the glacier map of ancient Switzerland shows that the areas now occupied by the great lakes, both north and south of the Alps, have all been covered with glaciers. No Tertiary deposit, of an age between the close of the Miocene and the commencement of the Glacial epoch, lies between the Alps and the Jura; and, had the hollows of the lakes existed prior to the great Glacial epoch, we ought, but for some powerful wasting agent, probably in these hollows, still to find some traces of fresh. water deposits, perhaps of the age of part of the Crag. No such relics exist.

The Great Lakes. Lake of Geneva.-The Lake of Geneva is about 45 miles in length by about 12 in breadth, and its delta, once part of the lake, between Villeneuve and Bex, is 12 miles long. The latter and a small part of the banks of the lake beyond the mouth of the river lie in the great Rhone valley, formed of older Tertiary and Secondary rocks. All the rest of the lake is surrounded by the low country formed of the various subdivisions of the Molasse and Nagelfluh. The lake is 1230 feet above the level of the sea, and 984 feet deep towards the eastern end, according to the sounding of De la Beche. ${ }^{\circ}$
Geneva itself stands on superficial débris; but the solid rock first appears in the river-bed below Geneva, at Vernier, at the level of 1197 feet above the sea-only 33 feet below the surface of the lake, or 951 feet above the deepest part of its bottom. Any one acquainted with the remainder of the physical geography of the country will therefore see that the water of the lake lies in a true rock-basin. The question thus arises, How was this basin formed?

1st. It does not lie in a simple synclinal basin; for, though the Lake of Geneva lies in the great synclinal hollow of the Miocene strata between the Alps and the Jura, it is evident by an inspection of the country that the flexures of that formation are of far greater antiquity than the lake. These flexures have

[^52]been denuded, and the lake runs in a great degree across their strike.

2 nd. For reasons already stated, it is, I believe, impossible to prove that the lake lies in an area of special subsidence, all the probabilities being against this hypothesis.

3rd. It is almost needless to say that the Lake of Geneva is too wide to lie in a mere line of fracture; and I know of no reason why the valley of the Rhone, where occupied by the delta, should be esteemed a line of fault or gaping fissure, any more than many other valleys in Switzerland, which many geologists will consider with me chiefly the result of the old and long-continued subaerial denudation of highly disturbed strata. I could enter on details to prove this point, but they belong rather to the rock-geology of Switzerland than to the matter in hand.

4th. Those who do not believe in the existence and excavating power of great and sudden cataclysmal floods will at once see that the area of the lake cannot be one of mere watery erosion; for not ordinary running water, and far less the still water of a deep lake, can scoop out a hollow nearly 1000 feet in depth.

Now, if the lake of Geneva do not lie in a synclinal trough, in an area of subsidence, in a line of fracture, or in an area of mere aqueous erosion, we have only one other great moulding agency left by which to modify the form of the ground, namely, that of ice.

When at its largest, the great glacier of the Rhone debouched upon the Miocene beds where the eastern end of the Lake of Geneva now lies. The boulders on the Jura, near Neuchâtel, prove that this glacier was about 2200 feet thick where it abutted on the mountains; and, where it first flowed out upon the plain at the mouth of the valley of the Rhone, the ice, according to Charpentier, must have been at least 2780 feet thick. ${ }^{10}$ Add to this the depth of the lake, 984 feet, and the total thickness of the ice must have been about 3764 feet at what is now the eastern part of the lake. I conceive, then, that this enormous mass of ice, pushing first northwest and then partly west, scooped out the hollow of the Lake of Geneva most deeply in its eastern part opposite Lausanne, where the thickness and weight of ice, and consequently its grinding power, were greatest. This weight, decreasing as it flowed towards the west, from the natural diminution of the glacier, possessed a diminishing eroding power, so that less matter was planed out in that direction, and thus a long rock-basin was formed, into which the waters of the Rhone and other streams flowed when the climate ameliorated and the glacier retired.
${ }^{10}$ The Lake of Geneva is 197 feet lower than the Lake of Neuchatel. The glacier first surmounted the hills between Lausanne and Vevay, and then flowed down the general slope northwards to the Jura.

Lake of Neuchâtel.-The basins of the lakes of Neuchâtel, Bienne, and Morat were, I consider, hollowed out in a similar mauner, differing in points of detail. Near the Lake of Neuchâtel, on the flank of the Jura, the fan-shaped end of the Rhone glacier attained its greatest height, swelled in size and pressed on as it was by others that descended from the north snowshed of the mountains between the Oldenhorn and the great snow-field above Grindelwald. According to estimates based on the highest ice-stranded boulders, the ice rose 2203 feet above the present surface of the lake. The lake is now 1427 feet above the sea, and 480 feet deep; and the Lake of Bienne is 1425 feet above the sea, and 231 feet in depth. The bottom of the Lake of Neuchâtel is thus 947 feet above the sea. Unless the gravel, therefore, on the banks of the Aar, immediately east of the latter, be over 480 feet deep, the hollow of the lake near its immediate bounds is a true rock-basin; for on the north, south, and west it is surrounded by solid Secondary and Miocene rocks. Even if the rock does not rise close to the surface in the river near the lake, still, at Solothurn, strata in place come close to the river-bank on both sides, the river being 1414 feet above the sea. Under any circumstances there must therefore be a long, deep trough between Solothurn and the rocks a little southwest of the Lake of Neuchâtel. How was this basin formed? When the glacier, debouching from the valley of the Rhone, spread out like a fan and pressed forward till it abutted on the Jura, its onward progress was stopped by that mountain; and direct further advance being hindered, the ice spread northeast and southwest, to the right and left, and being as a whole thickest and heaviest above the area where the lake now lies, a greater quantity of the Mincene strata on which it rested must have been ploughed out there than further on towards the northeast and southwest ends of the glacier, towards which the ice, gradually declining in thickness, exercised less grinding power. In this manner I believe the troughs were formed in which lie the three lakes near Neuchâtel; and when the ice finally retreated, the ordinary drainage of the country filled them with water, the cliffs on the southeastern side of the Lake of Neuchâtel and other changes of the form of the ground having since been produced or modified by watery erosion and the local deposition of silt and alluvial gravel.

The Lake of Thun.-The Lake of Thun is 1825 feet above the sea, and 776 feet deep. Its bottom is therefore 1049 feet above the sea. It is abnut 10 miles in length, $1 \frac{1}{2}$ broad, and its length chiefly cuts across the strike of rocks of Secondary and Miocene age. "The Lake of Brienz (about the same size) is more remarkable; for, while its level is 1850 feet ahove the sea, its depth is more than 2000 feet; so that its bottom is at least between 100
and 200 feet below the level of the sea. Before the formation of the alluvial plain between, these two lakes were probably united; and whether or not this was the case, it is evident, from its great depth, that the Lake of Brienz lies in a true rock-basin. Even if below Thun the rocks do not crop nearer than Solothurn, the Lake of Thun still lies in a rocky hollow more than 600 feet deep, both hollows having, I believe, been deepened by the great old glacier of the Aar, the ice of which was so thick, that above Brienz it overflowed into the valley of Sarnen by the Brunig, about 1460 feet above the Aar below Meyringen, and sent of a branch which scooped out the hollows of the Lakes of Lungern and of Sarnen on its course towards Alpnach on the Lake of Lucerne.
The Lake of Zug. -The Lake of Zug is about 9 miles long, from 1 to $2 \frac{1}{2}$ wide, 1361 feet above the sea, and 1279 feet deep; and its bottom is therefore only 82 feet above the sea. The whole is surrounded by Miocene strata, the strike of which the lake cuts across, and its great depth clearly shows that it lies in a rock-basin.
The Lake of Lucerne.-The Lake of the Four Cantons (Lucerne) ramifies among the mountains and extends its arms in various directions. In its lower part, the branches that run N.E. to Kussnach and S.W. towards Gestad lie partly in the strike of the Miocene and older strata; but for the most part it runs across the average strike of the Eocene and Secondary rocks, between banks, sometimes precipitous, that rise in noble cliffs sometimes more than 2000 feet above the water. Its height is 1428 feet above the sea, and its recorded depth 853 feet; but the shape of the banks and the round number of 800 French feet make it likely that it may contain deeper gulfs than have yet been plumbed. If not, then its bottom is 575 feet above the sea; and those acquainted with the shape of the ground by Lucerne will easily be convinced that the lake lies in an actual rock-basin. The steepness of the walls of this lake more resembles the sides of a rent than those of any of the basins yet described, and the re-entering angles of rock opposite curving bays have been cited as evidences of fracture, one side being supposed to fit into the other. But in most cliffy valleys of aqueous erosion there are necessarily such re-entering angles, from the common action of running water; and, in Switzerland, ere these valleys were filled with ice, they existed in some shape, and were drained by rivers that deepened them and gave them a general form preparatory to the flow of the ice that largely modified their outlines. I should no more consider the re-entering angles a sign of gaping fracture in these valleys than I would the bends of the Welsh valleys or of the tortuous Moselle. But even if at first sight one were inclined to believe the space between the oppo-
site cliffs between Brunnen and Flühlen to be an open fracture, if we take a moderate average slope for each side, say of 65°, and produce it below the water, we get a deptb, ere the lines meet, of between 7000 and 8000 feet-a very improbable depth for the original hollow of the lake. But it may be said that the fracture has been much widened by degradation, the line of the break merely giving a line of weakness, along which the surface-drainage might widen the valley. If, however, we only take an angle for the sides of the lake giving a moderate depth, the necessity for a fracture does not exist, and we recur to some process of mere erosion for the scooping of the hollow in which the water lies, that process having, I consider, been the long-continued grinding of the ice of the great glacier.

The Lake of Zurich. - The Lake of Zurich runs from N.W. to S.E., across the average strike of the Miocene strata, which are much disturbed towards its eastern end. It is bounded by high hills, much scarred by the weather, on which the different Miocene strata often stand out in successive horizontal steps. The linth Canal and the Wallen See lie in an eastern prolongation of this valley, which is still further extended to the valley of the Upper Rhine at Sargans. The lake is about 25 English miles in length, by $2 \frac{1}{4}$ wide in its broadest part. A great moraine partly dams it up at its outflow at Zurich; and a second forms the shallow at Rapperswyl, where the lake is crossed by a long wooden bridge. The general level of the water is 1341 feet above the sea, and only about 639 deep; and the bottom of the lake is therefore 702 feet above the sea. The limestone rocks at Baden, on the Limat, are 1226 feet above the sea; and the lake therefore lies in a true rock-basin, though it is probable that the old moraine at Zurich accounts for the retention of the water of the lake at its precise level. The long hollow was in old times entirely filled by the great glacier which descended from the mountains between the Todi and the Trinserhorn, through the valley of the Linth, to Baden.

The Wallen See.-The Wallen See lies in a deep valley, whose cliffy slopes of Secondary rocks rise from 2000 to 3000 feet, and in the Leistkamm 4500 feet above the surface of the lake. The lake itself is 1391 feet above the sea; and from the great steepness of its banks it may be inferred that it is exceedingly deep, but none of the authorities I have consulted give its soundings. A large branch from the great Rhine glacier joined that at the valley of Glarus and Zurich through this wide gorge, and ground out the hollow of the Wallen See.

The Lake of Constance.-The Lake of Constance, the largest sheet of water in Switzerland, is about 50 miles in length, by about 15 in breadth at its broadest part. It is entirely surrounded by Miocene strata, often considerably disturbed, and
forming great hills towards the S.E., which in a remarkable manner evince all the signs of long-continued erosion by running water, conveying the impression that chielly by that means all the deep valleys of the district have been worn since the close of the Miocene epoch. This lake lies 1298 feet above the sea; and, its depth being 912 feet, its bottom is only 386 feet above the sea. The falls of the Rhine are 1247 feet above the sea; and the lake therefore lies in an unmistakable rock-basin, the whole of which was once overflowed by the deep and broadspreading glacier of the Upper Rhine valleys which stretched far northward beyond the lake into Baden and Wurtemberg. Being of greatest thickness where it entered the region of the lake, by its enormous weight and grinding power it scooped out, in the soft rocks below, the wide hollow now filled with water.

The Italian Lakes.-If we now turn to the Italian side of the Alps, we shall find the same phenomena prevailing in the Lakes of Maggiore, Lugano, and Como, the only important lakes I have yet had an opportunity of seeing, south of the great chain. To each of these the same reasoning applies, modified only in detail ; and I shall therefore briefly pass them over.

The most westerly, the Lago Maggiore, lies in a winding valley, 40 miles long, excavated in gneissic and Jurassic rocks, which rise on either side in lofty mountains. 'I'he surface of the lake is 685 feet above the level of the sea, and near the Borromean Islands it has the enormous depth of 2625 feet; so that its bottom is 1940 feet lower than the sea-level. It must, therefore, be enclosed all round by rocks, unless we suppose the narrow passage at Arona, near its outlet, to be as deep as its deepest part, or that the alluvial deposits of the T'icino and the Po are more than 1940 feet deep-an assumption no one is likely to make,

Of all the Alpine lakes, that of Lugano is the most irregular in form, -in the language of Mr. Desor, stretching its arms like a great polyp among the mountains in all directions. ${ }^{11}$ Its surface is 938 feet above the jevel of the sea, and its depth 515 feet. Its bottom is therefore only 410 feet above the sea-level, and the shape of the surrounding ground renders it impossible to believe that it is not entirely surrounded by rocks.

The Lake of Como, the hollow of which has been scooped out generally in the same set of rocks as the other two lakes, is 700

[^53]feet above the sea, and 1929 feet deep; and its bottom is therefore 1229 feet below the level of the sea. On the borders of these lakes the rounded rocks and the well known glacierstranded boulders, high on the mountain-sides, attest that these deep valleys were filled to the brim by a vast system of glaciers that flowed southerly from the snow-shed that runs from the eastern side of Monte Rosa, by the Rheinwald-horn, to the top of the valley of the Adda,-a system of glaciers so large that, like that of Aosta and Ivrea, further west, they protruded their ends and deposited their moraines far south on the plains of Piedmont and Lombardy.

The glacier of Ivrea, when it escaped from the valley of the Doire, deposited a moraine at its side, east of the town of Ivrea, rising in mere débris 1500 feet above the plain, and spreading out eastward in a succession of fan-shaped ridges miles in width. The vastness of this mass gives a fair idea of the huge size of the glacier, and of the great length of time it must have endured; and just as this glacier hollowed out the little rock-basins in which lie the tarns that nestle among the large roches moutonnées between the town and the moraine, ${ }^{12}$ so, deep as the hollows of the great lakes of Maggiore and Como are, I believe they also were scooped out by the grinding power of long-enduring ice, where, under favorable circumstances, the glaciers were confined between the mountains, and therefore thicker than the glacier of Ivrea where it debouched on the plain. Diagrams illustrative of this subject should be drawn on a true scale; otherwise, height, depth, and steepness being exaggerated, the argument becomes vitiated. I have not the data for giving an actual outline of the bottom of the Lago Maggiore; but a line drawn from the upper end of the lake to the required depth near the Borromean Islands gives an angle only of about 3° in a distance of about 25 miles, and from thence to the lower end of the lake (12 or 13 miles) of about 5°. The depths of Maggiore and Como do not, in my opinion, militate against my view; for, if the theory be true, depth is a mere indicator of time and vertical pressure in a narrow space. It is interesting, and confirmatory of this view, that the deepest part of the Lago Maggiore is just at the point where the enormous glacier of the Val d'Ossola joined the great ice-stream that was formed by the united glacier-drainage of the valleys above Bellinzona and Locarno. Where these glaciers united, there the lake begins; and where the ice was on the largest scale near the Borromean Islands, there the lake is deepest.

Summary with regard to the Alpine Lakes.-And now, in reviewing the subject of the origin of the lakes of Switzerland and North Italy, I would remark-

[^54]1st. That each of the great lakes lies in an area once covered ' by a vast glacier. There is, therefore, a connexion between them which can scarcely be accidental.

2 nd . I think the theory of an area of special subsidence for each lake untenable, seeing no more proof for it in the case of the larger lakes than for the hundreds of tarns in perfect rock-basins common to all glacier-countries, present or past, and the connexion of which with diminished or vanished glaciers I proved originally in The Old Glaciers of North Wales. In the Alps there is a gradation in size between the small mountain-tarns and the larger lakes.

3rd. None of them lie in lines of gaping fracture. If old fractures ran in the lines of the lakes or of other valleys, and gave a tendency to lines of drainage, they are nevertheless, in the deep-seated strata, exposed to us as close fractures now, and the valleys are valleys of erosion and true denudation.

4th. They are none of them in simple synclinal basins, formed by the mere disturbance of the strata after the close of the Miocene epoch: nor,

5th, Do they lie in hollows of common watery erosion; for running water and the still water of deep lakes can neither of them excavate profound basin-shaped hollows. So deeply did Playfair, the exponent of the Huttonian theory, feel this truth, that he was fain to liken the Lake of Geneva to the petty pools on the New Red Marl of Cheshire, and to suppose that the hollow of the lake had been formed by the dissolution and escape of salts contained in the strata below.

6th. But one other agency remains-that of ice, which, from the vast size of the glaciers, we are certain must have exercised a powerful erosive agency. It required a solid body, grinding steadily and powerfully in direct and heavy contact with and across the rocks, to scoop out deep hollows, the situations of which might either be determined by unequal hardness of the rocks, by extra weight of ice in special places, or by accidental circumstances, the clue to which is lost, from our inability perfectly to reconstruct the original forms of the glaciers.

7 th. It thus follows that, valleys having existed giving a direction to the flow of the glaciers ere they protruded on the low country between the Alps and the Jura, these valleys and parts of the plain, by the weight and grinding power of ice in motion, were modified in form, part of that modification consisting in the excavation of the lake-basins under review.

In connexion with this point, it is worthy of remark that glaciers, many of them very large in the modern sense of the term, on the south side of the Vallais (excepting those of Mont Blanc), and the large glaciers on the south side of the Oberland, all drain into the Lake of Geneva; those on the north of the last-named
snow-field, also large glaciers, are drained through the Lakes of Breinz and Thun. These, among the largest existing glaciers of the Alps, are only the shrunken tributaries of the greater glaciers that in old times filled and scooped out the basins of the lakes. The rest of the lakes, as already stated, are in equally close connexion with the old snow-drainage of glacier-regions on the grandest scale,-all of them, excepting those of Neuchâtel, Bienne, and Morat, lying in the direct course of glaciers filling valleys that extend right into the heart of the mountains.

8th. Most of the lakes are broad or deep according to the size of the glaciers that flowed through the valleys in which they lie, this general result being modified according to the nature of the rock and the form of the ground over which the glacier passed. Thus, the long and broad Lake of Geneva, scooped in the Miocene lowlands, is 984 feet deep, and over its area once spread the broad glacier of the Rhone. Its great breadth and its depth evince the size of the glacier that overflowed its hollow. The lake of Constance, lying in the same strata, and equally large, is 935 feet deep, and was overspread by the equally magnificent glacier of the Upper Rhine. The Lakes of Maggiore and Como, deepest of all, lie in the narrow valleys of the harder Secondary rocks of the older Alps; and the bottom of the first is 1992 feet, and the latter 1043 feet, below the sea-level. Both of these lie within the bounds of that prodigious system of glaciers that descended from the east side of the Pennine Alps and the great ranges north and south of the Val Tellina, and shed their moraines in the plains of Piedmont and Lombardy. The depth of the lakes corresponds to the vast size and vertical pressure of the glaciers. The circumstance that these lakes are deeper than the level of the sea does not affect the question, for we know nothing about the absolute height of the land during the Glacial period.

The lakes of Thun and Brienz form part of one great hollow, more than 2000 feet deep in its eastern part, or nearly 300 feet below the level of the sea. They lie in the course of the ancient glacier of the Aar, the top of which, as roches moutonnées and striations show, rose to the very crests of the mountains between Meyringen and the Grimsel.

The Lake of the Four Cantons is imperfectly estimated at only 884 feet in depth ; but here we must also take into account the great height and steep inclines of the mountains at its sides. The Lake of Zug, 1311 feet deep, lies in the course of the same great glacier, the gathering-grounds of which were the slopes that bound the tributaries of the Lpper Reuss and the immense amphitheatre of the Urseren Thal, bounded by the Kroutlet, the Sustenhorn, the Galenstock, the St. Gochard, and the southern flanks of the Scheerhorn.

[^55]The lesser depths (660 feet) of the Lake of Zurich were hollowed by the smaller but still large glacier that descended the valley of the Linth.
This completes the evidence.
Lakes of the Northern Hemisphere generally.-I shall now make a few remarks on the bearing of this subject on the glacial question generally.
It is remarkable that in Europe and North America, going northward, lakes become so exceedingly numerous, that I have been led to suppose the existence of some intimate connexion between their numbers and the northern latitudes in which they occur.
Let any one examine the map of North America, and he will find that, from the Atlantic coast to the St. Lawrence, through New Hampshire, Vermont, the north of the state of New York, Maine, Nova Scotia, New Brunswick, Gaspé, and Newfoundland, the whole continent is strewn with lakes. North of the St. Lawrence and the great lakes, as far as the Arctic Ocean, the same sprinkling of unnumbered lakes over the entire face of the country is even more remarkable; and it is a curious circumstance that a large part of this vast area is so low and undulating, that some of its lakes drain two ways-towards the North Sea and the Gulf of Mexico, or towards the North Sea and the North Atlantic. This vast country, about as far south as lat. 40°, shows, almost universally, marked signs of the strongest glacial action, in the moutonnée forms, polish, and constantly recurring striation of the rocks. I have only seen a few of the above-mentioned lakes south of Lake Ontario; but I have closely questioned that able observer, Dr. Hector, who has examined the country north and west of the great American lakes, and he informs me that, though unable to account for it, he was struck with the circumstance that so many (he thought he might say all) of the smaller lakes are in rock-basins. I connect this circumstance with the universal glaciation of the country, still evinced on the grandest possible scale by every sign of ancient ice. These signs, I now believe, are far too universal and unvarying in their general directions to have been produced merely by floating ice, though in part of the glacial history of the continent floating ice has undoubtedly left large traces. But the lake-basins could only, I believe, have been scooped out by true continental glacier-ice, like that of Greenland; for the lakes are universal in all the ice-worn region. ${ }^{\text {. }}$

[^56]On the eastern side of the Atlantic, Wales, Cumberland, many parts of Ireland, the North Highlands, and some of the Western Isles are also dotted with unnumbered lakes and tarns. All of these are well-glaciated countries, both high and low; and for Wales and many parts of Scotland, I can answer that by far the greater proportion of these lakes lie in rock-basins of truly glacial origin. ${ }^{14}$

Loch Lomond and Loch Katrine, probably, like the greater lakes of Switzerland, are of the same kind, being merely large cases of glacier-erosion, though in the case of the former it may be that the alluvial deposits on the banks of the Leven prevent its being invaded by the tide. Its islands are mere roches moutonnées. ${ }^{\text {. }}$
In the lowlands of Scotland numerous examples of the same kind of rock-basins occur, some of them certain, others doubtful because of the surrounding drift, which indeed in some cases may be the sole cause of the retention of the water. Notable examples of both kinds occur in the lowlands of Fife and Kinross, and of true rock-basins in the Cleish and Ochil Hills, as for instance Loch Glow, Dow Loch, and the two Black Lochs, and more doubtfully Loch Lindores.

I have not yet had an opportunity of visiting the Scandinavian peninsula, which, geologists are aware, is through all its length and breadth, one of the most wonderfully glaciated countries in the world. On the west, descending from the great chain, striated roches moutonnées plunge right under the deep fiords; and on the east, in Sweden, all between the mountains and the Baltic, round the Gulfs of Bothnia and Finland, and up to the North Sea, the whole country is covered with a prodigious number of lakes, just like North America, the Lewes, and the North Highlands of Scotland. The intense glaciation which all of these countries have undergone, their similarity, and what I believe to be the intimate connexion of such crowded lakes with the movement of ice, induce me to believe that in Sweden also a great number of the lake-hollows must be true rock-basins

[^57]
344 A. C. Ramsay on the Glacial origin of certain Lakes

scooped out by the passage of glacier-ice into the Baltic area, Furthermore, as the glaciated sides and bottoms of the Norwe. gian fiords and of the saltwater lochs of Scotland seem to prove, each of these arms of the sea is merely the prolongation of a valley down which a glacier flowed, and was itself filled with a glacier; for the whole country was evidently, like the north of Greenland, moulded by ice. In parts of Scotland, some of these lochs being deeper in places than the neighboring open sea, I incline to attribute this depth to the grinding power of the ice that of old flowed down the valleys, when possibly the land may have been higher than at present. ${ }^{10}$ It may, however, only arise from unequal deposition of detritus. If the former view be admitted, raise the land so as to lay bare the surrounding ocean-bottom, and in some respects of levels and depth they become approximately the counterparts of the deeper narrow lakes of Switzerland and North Italy, glaciers bounded by mountains having flowed through both, and debouched upon the plains beyond.

The Glacial Theory.-Furthermore, considering the vast areas over which the phenomena described are common in North America and Europe, I believe that this theory of the origin of lake-rock-basins is an important point, in addition to previous knowledge, towards the solution of the glacial theory; for I do not see that these hollows can in any way be accounted for by the hypothesis that they were scooped by floating ice. ${ }^{18}$ An iceberg that could float over the margin of a deep hollow would not touch the deeper recesses of the bottom. I am therefore constrained to return, at least in part, to the theory many years ago strongly advocated by Agassiz, that, in the period of extremest cold of the Glacial epoch, great part of North America, the north of the Continent of Europe, great part of Britain, Ireland, and the Western Isles, ${ }^{18}$ were covered by sheets of true glacier-ice in motion, which moulded the whole surface of the country, and in favorable places scooped out depressions that subsequently became lakes.

This was effected by the great original glaciers (probably connected with the origin of the unstratified boulder-clay) referred to in my memoir on the glaciers of North Wales, ${ }^{10}$ but the mag. nitude of which I did not then sufficiently estimate. The cold,

[^58]however, continued during the depression of North Wales and other districts beneath the sea, when they received the stratified erratic drift; and glaciers not only did not cease at this time of depression, but were again enlarged during the emergence of North Wales and other countries, so as to plough the drift out of many valleys. These enlarged glaciers, however, bore no comparison in size to the great, original sheets of ice that converted the North of Europe and America into a country like North Greenland. The newer development of glaciers was strictly "local. Amelioration of climate had already far advanced, and probably the gigantic glaciers of Old Switzerland were shrinking into the mountain-vallevs.

Finally, if this be true, I find it difficult to believe that the change of climate that put an end to this could be brought about by mere changes of physical geography. ${ }^{20}$ The change is too large and too universal, having extended alike over the lowlands of the Northern and the Southern Hemispberes. The shrunken or vanished ice of mountain-ranges is indeed equally characteristic of the Himalaya, the Lebanon, the Alps, the Scandinavian chain, the great chains of North and South America, and of other minor ranges and clusters of mountains like those of Britain and Ireland, the Black Forest, and the Vosges.
[In the Philosophical Magazine for November last, Prof. Ramsay has published an article "On the Excavation of the Valleys of the Alps," called out by some discussion of his views, in which he concludes as follows:-EDs.]
"No better proof could be required that in great part the valleys of the Alps were approximately as deep before the glacial epoch as they are at present; and I believe, with the Italian geologists, that all that the glaciers as a whole effected was only slightly to deepen these valleys and materially to modify their general outlines, and, further (a theory I am alone responsible for), to deepen them in parts more considerably when, from various causes, the grinding power of the ice was unusually powerful, especially where, as in the lowlands of Switzerland, the Miocene strata are comparatively soft. But for details on this point I must refer to my memoir in the Journal of the Geological Society."

[^59]
Art. XXXIV.-Lucernaria the Cenotype of Acalephce ; by Prof. Henry James Clark, of Harvard University, Cambridge.

The present communication is a mere sketch of a most thorough and exhausting anatomy of Lucernaria, which I have illustrated by numerous plates, and which I propose to publish in an extended memoir, in connection with some considerations upon the general morphology and systematic relations of Acalephæ. I have been engaged during the whole of the past year upon the organical and histological anatomy of this animal, in order to determine what are its relations to Radiata in general, and to Acalephæ in particular. I have had abundant materials for study, inasmuch as this species of Lucernaria is a very common inhabitant of our shores, wherever the eel-grass, Zostera marina, grows. Almost invariably Lucernaria is to be found upon the Zostera, and very rarely upon any other plant. It may be obtained from the last of August, when it is most frequently met with in a young state, until the last of June, at which time the young ones of the autumn season have developed to full-grown animals. In an adult state it measures nearly an inch across the disc, exclusive of the tentacles, and about the same in height. It varies in color from green, which is the most common tint, to deep olive; from light yellow to reddish brown, or from light violet to the deepest purple. In form it is octagonal, and most frequently it so comports itself that the four sides opposite the bifarious genitalia are shorter than those alternating with them, but frequently the same individual reverses the order of things, and the latter become either as short, or even shorter, than the first. From this we infer that the specific differences, based upon the approximation of the bunches of tentacles, two and two, are entirely erroneous, as this obtains in all octagonal Lucernarians, in a greater or less degree. As these animals are very sensitive and irritable, they contract upon the least disturbance; and, as the muscular system is most highly developed in the region which lies about the four partitions of the dise, it is most natural that when the creature contracts it should draw the two halves of the genitalia and the bunches of tentacles together more closely here than at the alternate quarters; hence arises the frequently-observed quadrate outline of the disc. Again, in regard to another feature oftentimes employed to discriminate between different species or even groups, I would say that the absence of auricles alone, without other differences in the animal, does not indicate a specific difference from those individuals possessing them, but rather an accidental

[^60]atrophy of these organs; and that this fact is to be classed in the same category as the occasional development of one of the tentacles into a semiauricular body. I have always noticed that individuals in such a condition have an unnatural appearance; that they are not so lively as the others, and appear to be diseased. ${ }^{2}$ I believe this species to be identical with L. auricula ${ }^{2}$ of the English coast. The most characteristic figure that I know of, although unsatisfactory, is in Gosse's little book, The Aquarium. ${ }^{4}$
In order to contrast the structure of Lucernaria with that of the Steganopthalmatan Medusx, and, moreover, in order that I may not complicate matters, I will compare it, organ for organ and part for part, with one of our most common medusæ, Aurelia flavidula Agassiz. The aboral side, which corresponds to the so-called dorsal region of other Acalephæ, projects at the apex into a moderately long columnar body, usually called the peduncle of Lucernaria. With the exception of the four equidistant channels and the four muscular cords which alternate with them, the peduncle is a solid gelatiniform mass, covered by the outer wall. This gelatiniform substance also constitutes the bulk of the disc, filling the entire space between the outer wall and the inner or lining wall of the digestive cavity, and is directly continuous with that in the peduncle. In Aurelia, Cyanea, and other Acalephs, this substance appears like an amorphous gelatiniform or semicartilaginous mass, with a few irregular cells scattered here and there; ${ }^{\circ}$ but in Lucernaria it

[^61]has a highly organic structure. Extremely elongate, columnar, cell-like bodies extend in close proximity from the outer to the inner wall, so that, in a section of the thickness of the dise, it appears to be transversely striated. In the peduncle, as a transverse section reveals, these columnar cells are arranged about the axis in peculiar, regular groups; some columns pass from one channel to the next on either side; some diagonally across the axis from one channel to an opposite one, and others extend obliquely from the channel to the muscular cords which alternate with them. This arrangement reminds one of the methodical disposition of the great cells in the body of Pleurobrachia,"
from one to four or five jagged, caudate prolongations projecting in every direction. These are most numerous next the aboral side of the disc, and departing from that region, they become less frequent as we approach the oral side, at which place they are very much scattered. The other kind of bodies are very faint, nucleated, nodose fibres, and form a vast anastomosing net-work, which, like the darker caudate cells, pervades the whole of the gelatiniform mass of the body, from the aboral to the oral side. It resembles elastic tissue very closely. Next the aboral side these fibres trend mostly parallelwise with the outer wall, or at very oblique angles to it; but, passing inwardly, they gradually assume a direction tramsverse to this, and then, anastomosing less frequently, they become in appearance like slender parallel columns, based upon the double wall in which the chymiferous channels run. Between the latter and the outer wall of the oral side the fibrous bodies are excessively faint, and less frequent, but still continue the trend which they have on the aboral side of the double wall. The peculianities of these two kinds of bodies are fully described by Max Schultze, Ueber den Bau der Gallertscheibe der Medusen. Müll. Archiv., $185 \overline{6}, \mathrm{p} .311$, pl. xi, xii, from observations which he made upon Medusa (Aurelia) aurita, Rhizostoma Cuvierii and R. Aldrovandii; but in all of them he says the fibres run in every direction. "Sie laufen gestreckt in allen Richtungen, theilen sich häufig und verbinden sich unter einander unter allen möglichen Winkeln." Now in Medesa (Aurelia) aurita, which is very near, if not identical with our Aurelia, A. flavidela Ag., it is very probable that these fibres are arranged as in ours, and yet I cannut see how Schultze could have overlooked this arrangement. My observations were made upon perfectly fresh specimens, and without the help of any reagents. In our Lucernarian, and in fact in all the Lucernaria (see Jour. nal Boston Nat. Hist. Soc., March, 1863) the fibrous bodies do not anastomose, but trend in direct lines from the outer to the inner wall.
${ }^{6}$ At the time the investigation of the gelatiniform mass of Pleurobrachia rhodo. dactyla Ag. was made, I had not in my possession lenses of the proper definition and working distance to make out the histological elements with the requisite care that such excessively transparent bodies demand, and therefore, using inferior lenses, I fell into an error which I am only too glad to correct. Since that time I bave obtained one of Tolles' half-inch objectives with an exceedingly sharp definition and an extraordinary working distance; so that I have been enabled to work with perfect freedom upon the living animal, and without injuring its tissues in the least. What formerly I mistork to be the outlines of the walls of enormous cells are in reality elastic fibres. The mistaking the fibres for the profile of cell walls does not affect the arrangement in the least, as I formerly described it, and which I have since verified with ny new objectives. The elastic fibres assume various forms, according to the degree of expansion or contraction of the animal; sometimes they are perfectly straight and at others they are contracted either in a loose spiral, or retracted into a close coil. This is most easily observed in young specimens. In the joung of another ('tenophoran, viz., Bolina alata Ag., about $\frac{1}{3} \frac{1}{2}$ of an inch in diameter, at which size ity proportions, shape, the considerable depth of the tentacular sockets, and the length of its tentacles sender it remarkably like a Pleurobrachia, the elastic fibres are very few, but quite conspicuous, and have a peculiar mode of branching. Single fibres extend radiatingly from the corners of the stomach; when about half
as I have described them in Prof. Agassiz's third volume of his "Contributions to the Natural History of the United States." In the oral or lower side of the dise of Aurelia, the gelatiniform substance has the same structure as in the aboral side, while in Lucernaria, although it has all the regularity in the disposition of its components that obtains in the aboral side, yet it possesses a totally different nature, as I will describe hereafter in connection with the muscular system.

From the middle of the base of each of the four flat sides of the quadrate proboscis, a light streak, which has the deceptive appearance of a radiating canal, passes in a direct line nearly to the border of the dise; this is the line along which the oral and aboral floors of the dise unite, and form a solid partition, by which the digestive cavity is divided into four broad chambers, which communicate with one another at the inner or proximal ends, about the base of the proboscis, and also at the outer or distal ends through the narrow passage between the terminus of the partition and the edge of the disc. In the peduncle there are four equidistant broad tubes, which merge into one cavity at its base, and correspond in position to the four chambers of the digestive cavity. The grouped tentacles which occupy the eight corners of the disc are hollow, as, likewise, are the auricles, and communicate openly and directly with the digestive cavity. This is all that constitutes the chymiferous circulatory system of Lucernaria. In Aurelia we have radiating canals at the points corresponding to the partitions of Lucernaria, as well as in the intermediate sections.
In Aurelia, the genitalia are four single circular organs, one of each being placed opposite the flat side of the proboscis; Whereas in Lucernaria each genital is a double organ, the halves of which have a peculiar shape, and are situated respectively one on each side of the partition, and extend along the inner face of the oral floor of the dise from the base of the proboscis to the extreme limits of the corners of the dise, where they almost touch the bases of the tentacles. Across the proximal end of each partition, triple or quadruple rows of slender digitiform bodies extend each way for a considerable distance along the border of each half of a genital, thus forming the common

[^62]Am. Juur. Scr.-Slecond Series, Vul. XXXV, No. 10̌.-Max, 186.
appendages of the two, and clearly indicating their unity. Eaeh half of a genital has a peculiar form, which may be represented by an inequilateral triangle whose longest side extends nearly in a straight line from the inner end of the partition to the ten. tacles, and the two other sides, slightly curving outwardly and meeting at a very broad angle, form the rest of the outline. In the adult, the longest side of the triangle is to its height as two to one. This feature, alone, has a degree of speciality which raises these organs in rank above all others of their kind among Acalephr ; but when we examine their components, we find an unlooked-for structure, hitherto unknown among Acalephe. What appear, to the naked eye, to be eggs of enormous size, are really little pouches, which contain either numerous eggs or matrices of spermatic particles, according as the individual is male or female. Each pouch, or genital saccule, as it may be called, projects freely into the digestive cavity, and is attached by a very short and rather narrow neck to the inner wall of the oral floor of the disc. This constitutes another step in the specialization of these organs, but does not complete the process. At the base of each genital saccule, and on that side which faces toward the proboseis, there is a small aperture, which leads to the interior, where there is a considerable cavity. This cavity is formed by the lateral inversion of the single wall of the saccule upon itself, and the constriction of the wall about the entrance to the chamber. The eggs or spermatic material ${ }^{8}$ are enclosed in saccular folds of the wall of this chamber, into which they fall when mature, and pass thence outwardly through the lateral outlet at the base of the saccule. One may see at a glance that this is a type of the reproductive organs not to be found among the other Acalephre.

In Aurelia, the generative products, whether eggs or sperma. tozoa, lie immediately beneath the outer wall, and imbedded in the muscular layer which extends throughout the length and breadth of the oral face of the disc, as I have described it in the fourth volume of Professor Agassiz's "Contributions." Between

[^63]the muscular layer and the inner wall, which forms the immediate parietes of the digestive cavity, a thick layer of gelatiniform substance intervenes, and its presence naturally suggests the inquiry, how are the eggs or sperm to escape into the digestive cavity, as they are known to do? The spermatic particles I have observed frequently escaping directly through the outer wall into the ocean, and I have seen them, with the broadest end out, projecting like bundles of hairs from the cavity of the matrix through the apertures in the outer wall. When the reproductive material is fully ripe, the inner wall, with the gelatiniform laver, and the muscular layer as far as it includes the material in question, splits off from the outer wall along two lines corresponding to the two borders of the generative organ, and hangs loosely, in ribbons, in the digestive cavity. From the newlyformed raw face of these ribbons the eggs or spermatic particles escape into the main chamber of the dise. This I take to be the universal rule, and such the type of genitalia among all Steganophthalmata; a structure totally unlike that of Lucernaria, in which the inner wall alone is concerned in the highly complicated reproductive organs.
Passing now to the consideration of the muscular system, I will call your attention to the four white, slender columns which alternate with the four dark tubes which are imbedded in the gelatiniform substance of the peduncle. Sars was the first to indicate the true nature of these columns, and he rightly called them muscular cords. They extend from the base of the peduncle to the base of the proboscis, coursing along just beneath the outer wall, but still within the gelatiniform substance, until they reach the upper third of the peduncle, and then gradually approxinating the axial line, they meet the inner wall of the disc just below the base of the proboscis, and thence they pass along still beneath this wall, for a short distance, and, finally each one enters the oral side of the disc at the inner or axial end of the partition. At this point, each muscular column expands and forms a fan-shaped layer just beneath the outer wall, and extends laterally so as to occupy the whole space between the two halves of a genital. At the distal end, this layer diverges right and left of the partition into a broad muscular band which borders the dise, and, eventually, is distributed in ridges or cords beneath the outer wall of the tentacles and the auricles. At the inner end of the partition, the muscular layer also passes into the base of the proloscis, and forms a stratum immediately beneath the oater wall. At four equidistant points, alternating with the partitions and genitals, and opposite the four corners of the proboscis, there is a weaker muscular layer, which occupies the sarne relative position in regard to the onter walls as does the stronger system of museles first mentioned. On the one hand,
it passes into the marginal muscular band, and on the other it enters the corners of the proboscis, and forms a layer in common with the one extending from the partitions. By these alternating stronger and weaker divisions of the muscular layer, the disc is relieved of the sameness which prevails in the muscular system of the Steganophthalmata, and we have indubitable proots of a higher degree of specialization than in the latter order, where the unvarying repetition of similar divisions all around the dise unmistakably indicates inferiority. Moreover, in addition to this, we have a peculiar specialization of the gelatiniform layer, which is embraced by the outer and inner walls of this floor, or rather between the muscular layer and the inner wall; instead of repeating, as occurs in Aurelia, the peculiarities of the gelatiniform layer of the aboral floor, it has a totally different ap. pearance and consistency, and an almost unlinited degree of expansion and contraction. In the tentacles it occupies a very deep space between the outer wall, or rather the muscular layer, and the inner wall. In this latter respect, Lucernaria is again peculiar, since in addition to the muscular layer, which alone is present in the young, it develops this gelatiniform layer,- the musculo-gelatiniform layer as I propose to call it,-the like of which does not exist in the tentacles either of Steganophthal mata or Gymnophthalrnata. In the auricles, we have also a specialization peculiar to Lucernaria; for, in addition to the pigment eye-spot which is imbedded in the base of the oral face of these bodies, the auricles, which in the young cannot be distinguished from the tentacles, gradually thicken the outer wall as age advances, and peculiar, granuliferous, adhesive vesicles are developed between the cells. In the adult, their tentacular nature is almost, or altogether, obliterated, and the swollen outer wall, together with the enormous thickness of the musculo-gelatiniform layer, forms an oval mass, thickly studded with adhesive organs, by which they cling, in a most tenacious manner, to any body which they may touch. These organs, and the base of the peduncle, are the only means of adherence which Lucernaria possesses; although it is true that the tentacles are used, as in Aurelia, for prehension, they are, comparatively, very weak, and can only serve to retain the prey, and never effect the purpose for which the auricles are constructed.' In consideration of the very obvious office of an auricle, I would propose the name anchor for it.

[^64]Were the above-mentioned features in the organism of Lucernaria alone to be taken into account, there could be no hesitation in saying that this genus should be considered as the highest of the class of Acalephæ; because of its highly complicated and specialized gelatiniform mass; the high grade, and the peculiar and distinctive grouping of its muscular system; the definite and bilateral form of the genital organs, as well as their saccular subdivision; the two-fold nature and disposition of the prehensile organs, the tentacles and anchors: and, moreover, that it belongs to an order separate from either orders of Acalephæ, because of the typical elements of its genital saccules, which are altogether different from either the Steganophthalmic or Gymnophthalmic type of genitals; and also on account of the anchors, which have no parallel in all the class of Acalephæ. But there are parts of the Lucernarian organism which are of a lower grade than those of similar nature among the other Acalephæ. I refer, in the first place, to the hydra-like form of Lucernaria, and its comparatively stiff and lyydroidal tentacles, evidently indicating
aperture of the cell, and pressing closely against the imner face of the cell wall it forms a close coil which terminates at the end opposite the mouth of the introversion. When the coil of thread is ejected, which is accomplished iy sliding through the hollow axial shaft, which in its turn retroverts also, just as the finger of a glove is turned inside out, the whole aspect of the apparatus is changed. The oval cell is considerably diminished in size, and from its aperture the enormously enlarged hollow shaft projects in a straight line; the half of the shaft next the cell is cylindrical, and half as broad as the latter, with a slight expansion where it joins the mouth of the cell; the distal half abruptly expands into an oval form, half again broader than the cylindrical portion, and rapidly tapers into a smooth, trihedral,
twisted twisted thread. The oval part of the shaft is endowed with three equidistant spiral rows of setee, which number about a dozen in each row. The setae are comparatively large, and in length equal two thirds the broadest diameter of that part of the shaft from which they project. Each row makes but one turn ahout the shaft, and terminates as if in continuation of the angles of the trihedral thread. There is not the least trace of setre or projections of any kind upon the trihedral thread, but it continues, with a very gradual taper, perfectly smooth, to the blunt termination. The angles of the thread appear, at first glance, as if they might be spiral rows of setre, but a most careful and prolonged examination, with one of spencer's Tinch objectives, convinces me that they are truly the angles of a twisted trihedral filament. The extent of the thread is from twenty to twenty four times the length of the cell. The other kind of nettling cell is nuich more simple in structure, but yet more remarkable. The introverted shaft is very slender, in fact no layger than the rest of the thread; it does not project into the axis of the cylindrico-oval cell, but presses close to the side of the latter, and extends four-fifths of the way to its opposite end, and then bending abruptly upon itself, the thread passes with a long curved sweep nearly to the aperture of the cell, from whence it again returns, with another long sweep. which is repeated eight to ten times, until the inner face of the cell wall is lined by a close coil which winds lengthwise, instead of transversely as it does in the other kind first deseribed. When extended, the thread is frum twelve to fourteen times the length of the cell; it offers not the least sign of appendages of any kind, but is simply a smooth, round filament, of uniform thickness throughout, except at the end, where it tapers slightly and terminates in a blunt tip. The cell itself, when retroverted, is sensibly dininishhed in size, and narrows rapidly into the prolonged filamentary portion. It would seem to be perfectly incontestable that, as the cell diminishes in size with the expulsion of the thread, it forms the propelling power, and, by the contraction of its wall, forces its contents outward.
a typical affinity to the fixed hydroid generation of the Sarsiæ, - Bougainvilliæ, Steenstrupiæ, etc. The simple, almost unilocular chymiferous system is hardly more medusoidal, as regards the multiplicity of its subdivisions, than in some of the Tubularians, such as Tubularia and Corymorpha, which are described in Professor Agassiz's fourth volume of his "Contributions." In connection with the hydroid form of Lucernaria, I would also mention the total absence of a veil. This might, at first thought, appear to furnish an argument in favor of the high relations of this genus; but I think it is to be deemed as one of the signs of its inferior connections. However, let us look at the progress of velar development. In the ephyra state of all Steganophthalmata, the veil is at one time greatly in the preponderance, when compared with the size of the whole individual; but with growth it gradually becomes less conspicuous, and, finally, in some adult genera of this order, it remains as a mere trace of a veil, or, as in Cyanea and some Rhizostomidx, it is altogether obscured. Now, it is noteworthy that among the lowest of this order, such as Pelagia, we have a strong resemblance to the ephyra state, and the ephyroid, tongue-like veil is quite prominent; and in Chrysaora it is hardly less so; ascending the scale, we find it yet more inconspicuous in Λ urelia, and still more so in Cassiopeæ; and, finally, altogether absent in Cyanea, ${ }^{10}$ the highest, in my opinion, of all the Steganophthalmata. Now, one might suppose Lacernaria, in respect to the veil, to be in the same category with Cyanea, which has resorbed its veil; this, however, is not the case, for as I know, from the study of the younicer stages of Lucernaria, that it never passes through the veiled phase, it falls short in its development as regards this particular feature of Acalephan morphology. We must take into consideration, also, the eyes, which are found to be as low in point of structure as the merest pigment eye-spot of the Gymnophthalmata.

Thus, in balancing the value of the organisms of this animal, we are inevitably led to the conclusion, on the one hand, that Lucernaria does not stand as a totality above all other Acalephe, nor, on the other hand, does it, by any means, belong below them; and that much less does it affiliate exclusively with the ${ }^{10}$ The ephyra-like appearance of C'yanea is illusory; the lobes abrut the eyes, comprise uot only the original ocular lappets, but also a part of the tentacular margin: in fact one half of each margin on each side of an eye is continuuus with the ocular lappet adjacent. The tentacular margin being incurved toward the centre of the dise, the veil must be still farther inward, and very probably the margin of the muscular bands corresponds to it, the two merging into each other. The wide lacunar character of the radiating canals is not a feature of inferiority, ais might appear, but represents a continuation of the tendency,-as nay be seen in the progressive staged of growth of Aurelia,-to channel out the whole breadth of the dise, until it finally becomes a simple cavity. In Rhizustomat. Stemolphins and it is but a little beyond Aurelia in this respect.

Gymnophthalmata. The only relation that it possibly can be considered under is that of a correlation to both types of Acalephoe, -viz.: to the Gymnophthalmata, including the Siphonophoræ, and to the Steganophthalmata; yet not as a graduated connecting link, which would seem to show that the two orders pass into each other, but as an ordinal type, equivalent in value to either of the others, by reason of the peculiar and distinctive morphology of certain of its organs. On this account, Lucernaria is to be considered, and may bedesignated, as the coenotype (xouvòs, common) of the Acalephæ. In this respect, it holds such relations to the other two orders of Acalephæ as do the Crinoids to the other orders of Echinodermata; or the Annelidæ to the rest of the Articulata; or the Selachians to the true fishes and the reptiles; but, at the same time, containing organic features which separate each of them as a type from the others.
In order that no confusion may arise here, I would state most explicitly that I do not consider the Ctenophore as one of the orders of Acalephæ, but deem them to be a class by themselves, equal in value to either of the classes of Radiata, whether Polypi, Acalephæ, or Echinodermata, and standing next in rank to the Echinodermata. The division of the alimentary systens of Ctznophore into two portions, as anong Polypi, is sufficient to separate them from the Acalephæ, since the typical form of the corresponding system in the latter is a unity; moreover, the position and peculiar relations of the tentacles of Ctenophoras are hardly of less importance, in these considerations, as distinctive characters. I cannot conceive that the Ctenophore may be included in the same classific type with the Acalephre without doing violence to correlative ideas such as are expressed in the organism of the former; and much less can I admit that they have the most distant relation to the Polypi, excepting that, like the latter, they are Radiates. The same kind of arguments that have been used to show that Ctenophore and Polypi belong to one class might, with equal justice, be advanced to prove that the Acalephæ are Polypi. We must not mistake a similarity for an identity, any more than that the cry of a child would identify it with a cat, because their voices sound alike, and cannot always be distinguished the one from the other by any single faculty of our senses.
The following tabular view presents at a glance the relations of the Lucernarixe to the other orders of Acalephe, and at the same time indicates the position of the Ctenophorm among the other classes of Radiata.

Polyei.
Acalephes.
Ctenophore. Echinonfrmata.

Art. XXXV.-On the use of Prisms of F'lint Glass and Bisulphid of carbon for Spectral Analysis; by Prof. O. N. Rood.

Iv a letter to Prof. B. Silliman, Jr., which was published by him in the September No., 1862, of this Journal, I described a new form of bisulphid of carbon prism, provided with compound faces, which corrected the distortion usually attendant on such prisms. I ventured at that time to suggest that large prisms of this kind approached a degree of optical perfection not attainable by the best flint glass prisms yet produced. Some late experiments of Sigmund Merz, ${ }^{1}$ one of the successors of Fraunhofer, furnish a confirmation of my opinion, which I certainly did not expect to receive from that particular quarter. In my letter I mentioned the discovery of two new lines in the interior of the line D, which made in all three fine lines that were thus enclosed, one having previously been laid down by Kirchhoff. To effect this, three bisulphid of carbon prisms of 60°, with a flint glass prism of 45° were employed; the sum of the refracting angles was then 225°. Now Merz states that by the use of a number of glass prisms, the sum of their refracting angles being 270°, or 45° greater than that employed by me, he discovered a second line in the interior of D , but nothing more; the third line it appears was invisible. This second line observed by him I may remark, in my spectroscope was apparently as strong as that laid . down by Kirchhoff, so that it was a matter of some wonder that it had escaped resolution in his hands.

Merz then employed eleven glass prisms, the sum of their refracting angles being 480°; with these he discovered the third line I had previously seen, along with two additional quite fine lines. He therefore describes the line D to consist of: two quite broad lines, (those commonly known,) two of less breadth, and three fine lines.

When we consider that this optician had at his command the best flint glass prisms in the world, and observing telescopes that have hardly ever been surpassed, the argument to be drawn in favor of bisulphid of carbon prisms properly corrected, is I think a strong one; particularly when I mention that the telescopes used by me were the common cheap French article, variously amended to secure an approximation to achromatism.

Farther, according to the observations of Merz, a single large glass prism (43 lines) used with a large condensing telescope (34 lines in diameter), shows D resolved into five lines, demonstrating thus the value of size in the apparatus; this seems again to me an excellent reason for the use of bisulphid of carbon on the ground of its far greater cheapness.

Peace Dale, R. I., March 10th, 1863.

[^65]
Art. XXXVI.-On certain Appearances produced by Revolving Discs; by Prof. O. N. Rood.

Dove, some years ago, succeeded in producing a lustrous appearance, by the binocular combination of geometrical figures, executed in black and white, or in complementary colors, ${ }^{1}$ and later I showed that surfaces without drawings produced the same effect. ${ }^{2}$

In both these cases, two masses of light were continuously presented to the two eyes of the observer. It subsequently appeared to me of interest to examine the effects produced by a more or less rapid alternation of these impressions, and accordingly some experiments were made with this object in view.

A circular dise of white card-board, 9 inches in diameter, with half its surface painted of a dead black, was caused to rotate by clock work at varying rates, while the bright light from a window fell upon it. A stereoscope, from which the ground glass had been removed, was provided with a card-board in which were cut two square apertures, at such a distance asunder that their binocular union could be easily effected, and, while the disc Was at rest, the stereoscope was arranged so that through the right-hand aperture some of the white portion of the disc was seen, and through the left-hand aperture a part of the blackened surface. On communicating rotary motion to the disc, a more or less rapid alternation of black and white was the result.

It was found that with slow rates of rotation $\left(2 \frac{1}{1}^{\frac{3}{0}}\right.$ revolutions per sec.) the strength of the lustre was not impaired, and it was just as plainly perceptible with more rapid rates.

But when the dise was made to revolve so fast that its surface seemed covered by a uniform tint of grey, and the so-called flickering had ceased, no lustre in the proper sense of the term could be seen, the appearance being exactly that which is presented to a single eye under similar circumstances.

When a disc of this kind revolves at such a rate as to appear of a uniform tint, the duration of the impression produced on the eye by the white half lasts with undiminished force while the black half is passing before the same eye, so that while the right eye is being objectively impressed by the white surface, the left eye has retained a subjective impression of exactly the same nature and strength; both eyes are then really in effect impressed all the time in exactly the same way, and in consequence of this no lustre is perceptible. But when the rates of rotation are lower than that above indicated, a different binocular com-

[^66]bination takes place; here, while one eye has objective white light presented to it, the other retina is affected by a rapidly fading subjective impression, so that the two impressions are during most of the time of unequal intensity; the result is lustre.

In this connexion, a remark on the appearance of rotating discs with black and white sectors, when viewed by a single eye, may not be out of place. Let us take for the sake of convenience a dise with seven white and seven black equal sectors, and cause it to revolve by clock work. As long as the rate is quite slow, the figure remains undistorted, but as it is increased to $1_{1^{\frac{3}{0}}}$ revolutions per second there is a loss of definition, and directly the appearance becomes a little puzzling; with a higher rate, as for example $4 \frac{2}{T_{0}}$ per sec., the dise takes on a very remarkable appearance, described by some as flickering, by others as "glittering." To make a little examination of it undisturbed by its surroundings, I cut a circular aperture 2 inches in diameter in a large piece of card-board, and viewed through this with a single eye a portion of the revolving disc. The appearance presented I can describe in no other terms than by calling it lustrous, with rapid variations in the intensity of the light. In this case the strong objective light is seen through the weaker fading subjective impression, and the latter is of course at regular intervals perceived distinct by itself, so that the eye is in effect acted on by two masses of light of unequal intensity, and is also sensible of their separate presence.

A disc of this kind is remarkable in one other respect, viz: that with both eyes it is impossible exactly to locate its surface without reference to the edge or centre. The dise often seems to me to have a depth of some inches, the rapid shifting of the figure not allowing binocular vision to come fairly into action.

Finally, if the dise be made to rotate so rapidly that the surface appears quite uniform, an attentive examination shows that its surface presents an appearance not a little singular, so that if the experiment be properly made, the surface, taken by itself, cannot be located with any degree of precision, the marks ordinarily used are found to be abstracted, and nothing but a mass of light is seen. It much resembles a mass of luminous air, if the expression may be allowed.
To ascertain whether this aerial appearance depended in any degree on the rapid alternations of white and black, I colored a smaller disc grey, the same tint in strength with that produced by the sectors of the disc in revolution, and placing both on the same axis made them rotate together. One looked exactly like the other, and hence it is to be concluded, that this aerial appearance is caused solely by the disappearance of everything like markings or texture on the paper.

Peace Dale, R. L, March 10th, 1863.

ArT. XXXVII.-Abstract of Results of a Magnetic Survey of
Pennsylvania and parts of adjacent States in 1840 and 1841, with some additional results of 1843 and 1862, and a map; by A. D. Bache, LL.D., F,R.S., Mem. Corr. Acad. Sci. Paris, Mem. Nat. A. S., Superintendent U. S. Coast Survey.

INTRODCCTION.

In the years 1840 and 1841, I made a detailed magnetic survey of Pennsylvania and adjacent parts of New York, Ohio and Maryland, determining at a number of stations suitably selected, with regard to the course of the isomagnetic lines, the magnetic declination, dip and intensity; to these I added some dip and intensity observations in 1843, while on a tour through western New York and Canada.

The total number of declination stations is 16, and of dip and intensity stations 48 . On assuming the duties of Superintendent of the U.S. Coast Survey, in 1843, I could not find the necessary leisure to work up these observations, although Mr. J. Ruth and Mr. G. Davidson had commenced preparing, under my direction, a partial abstract, confined to dip and intensity observations and to relative results. In the spring of 1862 , I availed myself of the service of Charles A. Schott, Assistant in the U. S. Coast Survey, who reduced, under my direction, the observations, discussed the distribution of the three magnetic elements, presenting the latter results also graphically, and prepared this abstract for the press.

In the summer of $1862, \mathrm{Mr}$. Schott visited six of the stations previously occupied by me, and redetermined the magnetic elements. Three of these stations falling within the scope of the operations of the U.S. Coast Survey, were at the expense of the Coast Survey, the observations at the three Western stations were secured by the liberality of the Secretary of the Smithsonian Institution, who, at the same time, offered to publish the observations and results in the Smithsonian Contributions to Krowledye. The observations of 1862 greatly enhance the value of my older operations, and furnish the means of presenting results for two epochs, about 20 years apart, thus, not only giving the most modern values but also determining, by the known secular change of the three elements, any intermediate results.

The fruits of these labors, undertaken for this continent, at a comparatively carly period and comprising the three elements, and the whole conducted systematically, with instruments well constructed for the time, will no doubt afford adequate means of watching, hereafter, the secular changes of terrestrial magnetism within the geographical extent of this survey.

The declinations were determined with a new Gambey declinometer belonging to the Girard College: the astronomical observations were made with a sextant and vertical circle and chronometer. (Grant, No. 3861.) The dip was determined with a portable circle by Robinson, and the intensity with Lloyd needles by Robinson, and a magnetic bar and cylinder according to the method described by me in the American Phil. Trans., vol. v, 1837, in which the vibrations are made in a rarefied medium.

The full paper, with records, will shortly be printed in the Smithsonian Contributions to Knowledge.

Abstract of results of Declinations, observed in Pennsylvania and adjacent States in 1840-41.
These observations were made with a Gambey declinometer belonging to the Girard College.

One division (small) of the scale was found equal to $14^{\prime \prime} 54$, as determined in 1844 at Sandy Hook by Lieut. G. M. Bache. (See Coast Survey Records.) 1 large division $=60$ small divisions.

The observations were made with telescope direct, with slit to the right hand or E., and with telescope inverted with slit to the left or W. ; also with needle direct or hairs $u p$, and with needle inverted or hairs down. With needle north, W. readings are + , E. readings - ; with needle south, W. readings are -, E. readings + .

Recapitulation of Results for Magnetic Declination, 1840.

1. Harrisburg, Penn.,	July 25,	$3^{\circ} 12^{\prime} \cdot 5$
2. Huntingdon,	July 30,	52
3. Homewood, near Pittsburg,	Aug. 10,	08
4. Johnson's Tavern, near Brownsville,	, Aug. 17,	25^{2}
5. Irwin's Mill, near Mercersburg,	Aug. 24,	
6. Baltimore, Md.,	Aug. 27,	

Recapitulation of Results for Magnetic Declination, 1841.

	. Philadelphia, Penn.,	July 20 and Nov. 1,	$3^{\circ} 53^{\prime} \cdot 7 \mathrm{~W}$
	. Easton,	". 23 ,	$38 \cdot 0$
	. Williamsport,	" 28,	31.2
	. Curwinsville,	Aug. 1,	$145 \cdot 1$.
	. Mercer,	" 4,	0-51.2.
	Erie, "	" ${ }^{6} \quad 9$	$\begin{array}{lll}0 & 30.0 \\ 0 & 52.5\end{array}$
	. Dunkirk, N. Y.,	" 12,	$\begin{array}{lll}0 & 52.5 \\ 2 & 35.7\end{array}$
	Ellicottsville, " Bath,	$\begin{gathered} \text { " } 14, \\ \text { " } 19, \end{gathered}$	$\begin{array}{lll}2 & 35 \cdot \\ 3 & 31 & 4\end{array}$
	. Silver Lake, Penn.,	" 23,	430

Recapitulation of observed Latitudes, 1841.
Williamsport, Penn., $\quad 41^{\circ} 14^{\prime} \cdot 0$
Curwinsville, " $40 \quad 57 \quad 7$
Mercer, " $41 \quad 13.8$
Erie, " $42 \quad 07.5$

| Dunkirk, N. Y. | 42 | 29.3 |
| :--- | :--- | :--- | :--- |
| Ellicottsville, "" | 42 | $18 \cdot 1$ |
| Bath, | 42 | $20 \cdot 8$ |
| Silver Lake, Penn., | 41 | $56 \cdot 6$ |

Comparison of Declination for secular change. Results of 1840-41 and of 1862.

			$\begin{gathered} 1862 . \\ \text { (8choti.) } \end{gathered}$	Annual
Philadel phia, Girard College,	July \& Nov. 1841	$3053^{\prime} .7 \mathrm{~W}$	5000.0 W.	$3^{\prime \cdot} \cdot 2$
Harrisburg,	July, 1840	$312 \cdot 5$ "	$344 \cdot 5$ "	I 5
Williamsport,	"" 1841	$33 \mathrm{r} \cdot 2$ "	$425 \cdot 7$ "	$2 \cdot 6$
Johnson's Tav.near Brownsville,	Aug, 1840	- $25 \cdot 2$ "	$1 \quad 13 \cdot 6$ ،	$2 \cdot 2$
Erie,	" 1841	- 30 -0	133.0	3.0
Bath,	1841	$331 \cdot 4 \%$	$4 \quad 47 \cdot 9$	$3 \cdot 6$
			Mean,	$2 \cdot 7$

Harrisburg was occupied in July 1862, and all the other stations of 1862 in August.

	Longitude.			
	By Chronom.	From Lake Survey.	Previously adopted.	$\begin{aligned} & \text { Final } \\ & \text { adopted. } \end{aligned}$
Williamsport,	${ }^{\circ} \quad 01 \cdot 3$	-	${ }^{\circ}$	${ }^{\circ} \quad 10$
Curwinsville,	$78 \quad 36.6$		7835	7836
Erie. ${ }^{1}$	8 Ca 12.5	8005	8006	$80 \quad 06$
Dunkirk, ${ }^{2}$	79 27*0		7922	7923
Ellicottsville,	7846.6		78 42	7844
Silver Lake,	75 50.3		7605	$76 \quad 02$
Milford,	$7453 \cdot 1$		7450	7451.5

Distribution of the Magnetic Declination for the epoch 1842.0.
From the comparison of observations for secular change, we have:
From the preceding 6 stations the average annual increase $2^{\prime} 7$. At Toronto (between 1845 and 1855) $2^{\prime} 3$ (see vol. iii of the Toronto Observations).

General table of results referred to the common epoch $1842^{\circ} 0$.

N_{0}	Station.		Date.	Observed decl. W.	Re'd to epoch.	Declination 1842.0.
1	Harrisburg,	1840,	July 25	${ }_{3}^{\circ}{ }_{12}^{\prime} .5$	$+4^{\prime} 0$	$\bigcirc^{\circ} 165$
2	Huntingdon,	"	" 30	I $52 \cdot 3$	"	1 56.3
3	Near Pittsburg,	"	Aug. 10	- 08.0	${ }^{6}$	- 12.0
4	Near Brownsville,	"	" 17	- 25.2	"	- 29.2
5	Near Mercersburg,	"	" 24	- 54.4	"	- 58.4
6	Baltimore,	$*$	* 27	216.5	*	210.5
7	Philadelphia,	184t,	$\left\{\begin{array}{l}\text { July } 20\end{array}\right.$	353.7	+0.7	354.4
8	Easton,	"	Juv. 23	3 38.0	+1.3	3 39.3
9	Williamsport,	"	${ }^{1} 28$	$33 \mathrm{I} \cdot 2$	\%	332.5
10	Curwinsville,	"	Aug. I	145.1	"	1 46.4
11	Mercer,	"	" 4	-- 51.2	"	-0 49.9
12	Erie,	*	* 9	- 30.0	- ${ }^{16}$	- 31.3
13	Dunkirk,	\%	-12	- 52.5	6	- 53.8
14	Ellicottsville,	6	" 14	${ }_{2} 35.7$	"	237%
15	Bath,	"	" 19	3 31-4	"	$332 \cdot 7$
16	Silver Lake,	"	" 23	$430 \cdot 2$	"	43 F

No.	Station.	Latitude.	Long:tude.	$\begin{gathered} \text { Decl. W. } \\ 1842^{\circ} 0 . \end{gathered}$
1	Harrisburg,	$40^{\circ} 27$	$76^{\circ} 88$	$3^{\circ} \cdot 27$
2	Huntingdon,	4051	$78 \cdot 3$	191
3	Near Pittsburg,	40.47	79.99	0.20
4	Near Brownsville,	39.99	79.80	0.49
5	Near Mercersburg,	39.78	77.93	-0 07
6	Baltimore,	39.30	76.61	2.34
7	Philadelphia,	39.97	$75 \cdot 17$	3.89
8	Easton,	$40 \cdot 70$	75.25	365
9	Williamsport,	41.23	$77 \cdot 03$	3.54
10	Curwinsville,	$40 \cdot 96$	78.60	177
11	Mercer,	41.23	8027	-0.83
12	Erie,	$42 \cdot 13$	$80 \cdot 1 n$	0.52
13	Dunkirk,	42.49	79.38	- 9°
14	Ellicottsville,	$42 \cdot 30$	78.73	2.62 355
15	Bath,	$42 \cdot 35$	77.35	355
16	Silver Lake,	41.94	76.03	4.52
	Mean,	$40 \cdot 98$	$77^{\circ} 95$	2.08

The small extent of the survey, as well as the comparatively small number of observations, will not permit the introduction of curvature in the isogonic lines, they are therefore treated as straight lines. This assumption also serves for the recognition of any local disturbances as indicated by the differences of observed and computed values.

Let

$$
\mathrm{D}=+2^{\circ} \cdot 08+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}
$$

where

$$
\begin{array}{ll}
d \mathrm{~L}=\text { lat. } & -40^{\circ} \cdot 98 \\
d \mathrm{M}=\text { long. } & -77 \cdot 95
\end{array}
$$

The 16 conditional equations have been formed and values of x, y and D found from the normal equations are as follows:

$$
\begin{gathered}
x=+0.5102 \\
y=-1.206 \\
\mathrm{D}=+2^{0.08}+0.5102 d \mathrm{~L}-1.206 d \mathrm{M} \cos \mathrm{~L}
\end{gathered}
$$

A comparison of the observed and computed declinations shows the necessity of introducing a term involving $d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}$; this has been done, and the solution of the normal equations gives us the following expression.
$\mathrm{D}=+2^{\circ} \cdot 14+0.513 d \mathrm{~L}-1.231 d \mathrm{M} \cos \mathrm{L}-0.203 d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}$.
Comparison of observed and computed values.

Stations.	Obsarvad Declination	Computed Declination.	Observed - Computed.
Harrisburg,	$3^{\circ} 27$	+ +2.67	+36
Huntingdor,	$1 \cdot 94$	${ }^{1} 82$	+07
Near Pittsburg,	$0 \cdot 20$	0.13	+04
Near Brownsville,	0.49	- 16	$+20$
Near Mercersburg,	0.97	$1 \cdot 54$	-34
Baltimore,	2.34	$2 \cdot 21$	+08

Table continued.

Stations.	Observed Declination.	Computed	Observed - Coniputed
Philadelphia,	$3^{\circ} 8$	3.81	+05'
Easton,	3.65	446	-46
Williameport,	3.54	3.16	+23
Curwinsville,	1.77	1.51	+16
Mercer,	-0.83	$0 \cdot 04$	-52
Erie,	$\bigcirc \cdot 52$	$0 \cdot 44$	+05
Dunkirk,	- 09	1.29	-23
Ellicottsville,	2.62 3.55		
-	3.55 4.52	3.50 466	+03

The probable error of any single representation is $\pm 19^{\prime} 4$.
The curves of $0^{\circ}, 2^{\circ}, 4^{\circ}$, pass through the following positions:

| 0° | Lat. $41^{\circ} 00^{\prime}$ | Lat. $42^{\circ} 30^{\prime}$ | Lat. $39^{\circ} 30^{\prime}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Long. 80 | 15 | Long. $80 ~ 33$ | Long. 79 | 54 |
| 2° | Lat. $41^{\circ} 00^{\prime}$ | Lat. $42^{\circ} 30^{\prime}$ | Lat. $39^{\circ} 30^{\prime}$ | | |
| | Long. 7807 | Long. $78 \quad 46$ | Long. $77 \quad 05$ | | |
| 4° | Lat. 41° | 00^{\prime} | Lat. $42^{\circ} 30^{\prime}$ | Lat. $39^{\circ} 30^{\prime}$ | |
| | Long. 75 | 56 | Long. 76 | 59 | Long. $74 \quad 17$ |

These curves have been finally adopted.
Distribution of the Magnetic dip, and construction of the isoclinal lines, for 1842.
For the more convenient application of the usual analytical expression for the representation of the observed dips and for their interpolation, the stations have been divided into six groups, as follows:

No.	Group I.	Latitude.	Longitude.	Date.	Ohmerved dips.
1	Philadelphia, ${ }^{3}$	${ }_{39}^{0} 588.4$	${ }^{\circ} 515100$	Feb. 1842	7157
2	Doylestown,	4018	7510	July 184!	72 23-1
4	Erston,	4043	7515 7555	" 1841	7239°
5	Frenclitown,	4019 39	75 \%	PAug. 8840	7232.2 7140.2
6	Baltimore,	39178	$7636 \cdot 6$	" 1840	7133.9
7	Washington, ${ }^{4}$	3853.1	77 (10.2	Sep. 1841	71159
8	Harrisburg,	4016	7653	July 1840	7220.5
${ }_{10} 9$	Duncun's Island,	4025	7701	" 1840	$7235 \cdot 0$
	Near Mercersburg,	3947	7756	Aug. 1840	7147.3
	Mean,	3957.1	$7616 \cdot 8$	$1841^{\circ} 0$	72044

[^67]| No. | Group If. | Latitude. | Longitude. | Date. | Observed dip. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Armagh, | 4029 | 7004 | Aug. 1840 | ${ }_{7}{ }^{2} 18.7$ |
| 2 | Frostburgh, | 3941 | 7856 | "6 ${ }^{\text {c }}$ | $713 \mathrm{r} \cdot 3$ |
| 3 | Near Brownsville, | 3959.5 | 79 47.8 | " | 7153.5 |
| 4 | Near Pittsburg, | 4028 | 79595 | " ${ }^{6}$ | 7232.8 |
| 5 | Economy, | 4037 | 8016 | " \% | 72350 |
| 6 | W heeling, | 4008 | 8042 | " ${ }^{\text {\% }}$ | 7208.9 |
| 7 | Steubenville, | 4025 | 8039 | " 6 | 7238.8 |
| | Mean, | 40154 | 7954.9 | $1840 \cdot 6$ | 7213.2 |

No.	Group III.	Latitude.	Longitude.	Date.	Obeerved dip.
1	Warren,	4117	$8{ }^{\circ} \mathrm{5} 50$	Aug. 184!	${ }_{72}^{\circ} 5 q^{\prime} 9$
2	Mercer,	4t 138	80.16	"6 6	72572
	Ashtabula Landing,	4154	8047	" "	$7323 \cdot 5$
4	Erie,	42075	80.06	" "	73466
5	Dunkirk,	42293	7923	" 6	7417^{12}
6	Ellicottsville,	4218.1	7844	" "	7417.8
7	Berlin's Tavern,	4116	7936	" "	$7252 \cdot 8$
	Mean,	41480	79574	18416	$7330 \cdot 7$

No.	Group IV.	Latitude.	Longitude.	Date.	Observed d
1	Curwinsville,	40578	${ }_{7}{ }^{\circ} 366$	Aug. 184r	$7^{\circ} 4498$
2	Belvidere,	4213	7806		7409.5
3	Bath,	42208	7721	" "	7427.5
4	Owego,	4208	7617	" "	7413.9
5	Silver Lake,	4156.6	7602	"	75100
6	Wilkesbarre,	4114	7558	July "	73154.4
7	Williamsport,	41140 4055	7702	" "	72423
9	Bellefonte, Lewistown,	4055	7749 77 76	" 1840	72300
10	Huntingdon,	$4030 \cdot 5$	7802	6 "	72178
	Mean,	4124.5	7716.9	18414	73177

No	Group V.	ude.	Logitude.	Date.	Observed dip.
I	Niagara Falls,	¢ 8304	$\bigcirc{ }^{\circ} \mathrm{O} 5$	Aug. 1843	${ }^{\circ} 45^{51}$
2	Toronto $\mathrm{Ob}_{\text {, }}$,	4339.5	7921.5	Aug. ${ }^{\prime \prime}$	7511.4
3	Rochester,	4307	7739	" "	7443.
4	Geneva,	4253	7702	July "	$7433 \cdot 2$
5	Syracuse,	430.3	$76 \quad 0 \cdot 3$		74518
6	Oswego,	4326	7635	Aug.	7507
	Mean,	4312.1	$7738 \cdot 6$	1843	$7452 \cdot 9$

No.	Group VI.	Latitude.	Longitude.	Date.	Observed dip
1	Utica,	8305	${ }_{7} 514$.	1843	${ }_{74}{ }^{\circ} 50^{\prime} \cdot 3$
2	Schenectady,	4248	735	"	7454.8
3	Troy,	4243.7	73407	Aug. "	7447.9
4	West Point,	4123.4	73570	July "	7312.2
5	New York, ${ }^{\text {, }}$	40 46:I	7356.3	Dec. 1841	$7239 \cdot 6$
6	Milford,	419	7451.5	Aug. "6	73416
8	Bushkill,	4107	7502		$7238 \cdot 3$
8	Princeton,	$4020 \cdot 7$	7439.6	July 1843	
	Mean,	4141.6	7424.8	18429	734

- See Appendix No. 32, Const Survey Report of 1856. This station was added, owing to the numerous observations taken in this locality (at Lunatic Asplum). Dip in $1841^{\circ} 3,71^{\circ} 41^{\prime} 0$; in $1842.5,72^{\circ} 38^{\prime} 3$.

Recapitulation.

Na.	Group.	Latitude.	Longitude.	Date.	Observed dip.
10	I.	$3{ }^{\circ} \mathrm{O} 5751$	${ }_{7}^{\circ} 7 \times 16$	$1841^{\circ} 0$	720404
7	II.	4015.4	7954.9	$1840 \cdot 6$	$7213 \cdot 2$
7	III.	4148.0	7957.4	18416	73307
10	IV.	4124.5	7716.9	1841.4	73177
6	V.	$4312 \cdot 1$	7738.6	$1843 \cdot 6$	$7452 \cdot 9$
8	VL.	4141.6	$74.24 \cdot 8$	$1842 \cdot 9$	7347.8
	Mean,	$4123 \cdot 1$	77349	$\begin{gathered} 1841.85 \\ \text { (November) } \end{gathered}$	73178

(Number of observations $=48$.)
By comparing the differences in latitude and corresponding differences in dip, for each place, with the mean values of the group, their general accordance was ascertained. None of the differences was large enough to require an exclusion from the series. It need hardly be remarked, that a slight consideration shows that the dip depends almost exclusively upon the latitude, and the longitude factors will, therefore, necessarily be very small.

Metiod of discussion. - The interpolation formula, proposed by the Rev. H. Lloyd in 1838 (see the 8th Report of the British Association, vii, 91), will be used here in a slightly altered form, to allow for the convergence of the meridians.
Let $I=$ resulting dip or inclination.
$I_{0}=$ assumed dip for the epoch adopted (1842.0) and the mean latitude and longitude, i its correction.
$d \mathrm{~L}=$ difference of latitude, $d \mathrm{M}=$ difference of longitude. x, y, z, p, q, as well as i, are to be determined by application of the method of least squares, from the observations themselves.
$\mathrm{I}=\mathrm{I}_{0}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} \mathrm{~L}$ 。
Correction to epoch. -The mean epoch of the six groups is November 1841, for which we can substitute without material loss of accuracy January 1842 (or 1842.0). Comparing the observations made by Assistant Chas. A. Schott in July and August 1862, with the corresponding observations about the epoch 1842 , we have the following table of differences of results for an interval of nearly 20 years:

Locality.	Date.	Dip.	Date.	Dip.	$\begin{aligned} & \text { Ar. Annual } \\ & \text { Increase. } \end{aligned}$
Washington,	Sept. 1841	$\begin{array}{ll}0 \\ 71 & 150\end{array}$	Aug. 1862	- ${ }^{\circ} 1810$	+0.15
Harrisburg,	July 1840	72205	July "	7231.6	+o 50
Near Brownsville,	Aug. "	7153.5		7156.9	+0.35
Erie,	${ }^{\text {ci }}$ 184r	$7^{3} 46.6$	Aug. "	$7352 \cdot 2$	+0. 27
Bath,		$74 \quad 27.5$	" "	7426.2	-0.06
Williamsport,	July "	7254.4	" "	7251.0	-0.16
Philadelphia,	Feb. 1842	7157.1	" ${ }^{\prime}$	72058	+0.43
				Menn,	+0.18

Ay. Jour. Sci.-Second Series, Vol. XXXV, No. 105.-May, 1863.

Mean total change in 21 years $=3^{\prime} 8$.
The increase in the dip is, therefore, very slight, and if we consider that, according to Mr. Schott's investigation (Appendix, No. 32, Coast Survey for 1856), the dip near the Atlantic coast about the years 1841-1844 was at its minimum value and hence could not have changed sensibly for several years-we can, without sacrificing anything in the accuracy of our reduction, use our results as if all belonging to the mean epoch 1842.0 . No reduction to epoch has therefore been applied. It is probable that the present annual increase amounts to about 1^{\prime}. At Toronto, between 1844 and 1855 (see Toronto Observations, vol. iii), the annual increase was $0^{\prime} 8$. In the formula of interpolation, I retain the factor $\cos \mathrm{L}$, thus making it comparable with similar expressions for other localities where the introduction of $\cos L$ may be more important.

The value of the magnetic survey of Pennsylvania is increased from the fact that the isoclinal lines are presented for an epoch at which the dip was probably near its minimum value.

The conditional equations are of the form
$\mathrm{O}=\mathrm{I}_{o}-\mathrm{I}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} \mathrm{~L}$
Next, nine groups of five or six observations in each, were formed, arranged in regard to the geographical position and area with as much regularity as the nature of the case admits of.

Recapitulation of mean values of groups.

Group.	Latitude.	Longitude.	Dip.
1.	$40^{\circ} 40$	$75^{\circ} \mathrm{O}$. 72.47
II.	39.56	76.85	71×3
III.	40.22	80.06	$72 \cdot 10$
IV.	$4 \mathrm{r} \cdot 56$	$80 \cdot 32$	$73 \cdot 20$
V.	$40 \cdot 65$	78.02	72.54
VI.	42.75	$78 \cdot 9^{3}$	74.56
VII.	41.53	76.07	73.50
VIII.	42.96	76.95	7404
IX.	42.26	$74 \cdot 33$	74.31
Mean,	$41 \cdot 32$	$77 \cdot 39$	73.25

The trial of an equation of the form,

$$
\mathrm{I}=\mathrm{I}_{0}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{~L}
$$

and of the form,

$$
\mathrm{I}=\mathrm{I}_{0}+i+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L}+q d \mathrm{M}^{2} \cos ^{2} \mathrm{~L},
$$

showed that the extent of the survey is not sufficiently great to admit of the determination of curvature of the isoclinal lines, and finally the following expression was adopted:

$$
\mathrm{I}=73^{\circ} .25+0.912 d \mathrm{~L}-0.069 d \mathrm{M} \cos \mathrm{~L} .
$$

This equation represents the observations as follows:

Group.	$\begin{gathered} \text { Obrerved } \\ \text { Dip. } \end{gathered}$	$\begin{gathered} \text { Computed } \\ \text { Dip. } \end{gathered}$	$\begin{aligned} & \text { Dific, observed } \\ & \text { - computed. } \end{aligned}$
1.	$7{ }^{\circ} 47$	${ }^{2} \mathrm{O} \cdot 54$	\bigcirc
II.	71.73	71.68	+o.05
III	72.20	$72 \cdot 11$	+0.09
IV.	73.20	73.3r	-0.11
V.	72.54	$72 \cdot 6 \mathrm{x}$	-0.07
VI.	74.56	74.47	+0.09
VII.	73.50	73.51	-0.01
ViII.	74.74	74.76	-0.02
IX.	74.31	74.26	+o.05

The isoclinal lines of $71^{\circ}, 72^{\circ} 73^{\circ}, 74^{\circ}$ and 75° pass through the following positions:

71°,	Long. $77^{\circ} 00^{\prime}$		
	Lat. 3849		
72°,	Long. 7500	$78^{\circ} 00^{\prime}$	$81^{\circ} 00^{\prime}$
	Lat. 3949	3959	4010
73°,	Long. 7400	7800	8100
	Lat. 4050	4105	$41 \quad 15$
74°,	Long. 7400	7800	8100
	Lat. 4157	4211	4222
75°,	Long. 7500	7700	7900
	Lat. 4307	4313	4820

These lines have been finally adopted.
Comparison of the observed and computed dip.

	$\begin{aligned} & \text { Observed } \\ & \text { Dip. } \end{aligned}$	Computed Dip.	Diff observed - computed.
Group I.			-0
New York, Easton,	$72 \cdot 66$ $72 \cdot 65$	$72 \cdot 8$ $72 \cdot 80$	-0.27 -0.15
Princeton,*	$72 \cdot 64$	$72 \cdot 51$	+0.13
Doylestown,*	$72 \cdot 39$	$72 \cdot 44$	-0.05
Reading,* ${ }^{\text {, }}$	72.54	$72 \cdot 42$	+0.12
Philadelphia,	71.95	$72 \cdot 14$	-0.19
Group II.			
Frenchtown,* Baltimore,	71.67 71.57	71.75	-0.08 +0.12
Washington,	$71 \cdot 26$	$71 \cdot 06$	+0.20
Harrisburg,	$72 \cdot 34$	$72 \cdot 32$	+002
Near Mercersburg,	7179	71.88	-0009
Group III.			
Frostburgh,*	71.52	71.67	-0. 15
Near Brownsville,	71.89	71.91	-0.02
Wheeling,*	$72 \cdot 15$	71.99	+0.16
Steubenville,	$72 \cdot 56$	$72 \cdot 26$	+0.30
Near Pittsburg,	$72 \cdot 53$	$72 \cdot 24$	+0.29
Economy, ${ }^{*}$	72.58	74.46	+0.12

[^68]Table continued.

	Observed lip.	Compnted lip.	Diff. obeerved - compated.
Group IV. Berlin Tavern,*	72.88	$73^{\circ} \mathrm{O}$	-0.21
Mercer,	72.95	73.02	-0.07
Warren, ${ }^{\text {\% }}$	73.00	73.03	-0.03
Ashtabula,*	73.39	7360	-0.21
Erie,	73.78	73.85	-0.07
Group V.			
Duncan's Island,*	72.58	72.45	+0.13
Lewistown,*	72.50	$72 \cdot 57$	-0.07
Huntingdon,	$72 \cdot 30$	$72 \cdot 48$	-0.18
Armagh,*	$72 \cdot 31$	72.40	-0.09
Bellefonte,	$72 \cdot 70$	72.86	-0. 16
Curwinsville,	72.83	72.86	-003
Group VI.			
Belvidere,*	$74 \cdot 16$	74.03	+0.13
Ellicottsville,	$74 \cdot 30$	74.05	+0.25
Dunkirk,*	74:29	74.21	+0.08
Niagara Falls,*	74.85	74.76	+0.09
Toronto,	$75 \cdot 19$	$75 \cdot 28$	-009
Group VII. Bushkill,	-3.52	73.19	+0.33
Williamsport,	72.91	$73 \cdot 19$	-0.28
Wilkes barre,****	7317	$73 \cdot 24$	-0.07
Siiver Lake,	73.69	73.88	-0.19
Owego, ${ }^{\text {, }}$	74.23	$74 \cdot 05$	+0.18
Group VIII. Bath,			
Rochester,*	74.72	74.19 74.87	+0.27
Geneva,	7455	7469	-0.14
Syracuse,	7485	74.89	-0.04
Oswego,*	$75 \cdot 12$	75.21	-0.09
Group IX.			
West Point,*	73.20		
Milford,	73.79	$73 \cdot 38$	+0.41
Schenectady,	74.84	74.96	+0.14
Troy, ${ }^{*}$	74.80	74.72	+0.08

The probable error of any single observation is $\pm 0^{\circ} 12= \pm$ $7 \cdot 2$; the probable error of any observation with the regular dip needles and the Lloyd needles combined is $\pm 0^{\circ} \cdot 13$; with the latter needles alone, $\pm 0^{\circ} 11$. This shows that the irregularities in the observed dip are due to local attractions rather than to imperfections in the needles employed. It is proper therefore to assign equal weights to results by the direct and indirect method of observing.

If we apply Peirce's criterion for the rejection of observations differing too much from the regular value indicated by all other observations, we find the limit of rejection to be $\pm 0^{\circ} 46$ or $\pm 28^{\prime}$; the maximum difference in the preceding table is 25^{\prime}, hence $n 0$ observation is excluded.

[^69]Gen. Sabine's resulting isoclinal lines in his seventh contribution to terrestrial magnetism (Phil. Trans. Roy. Soc., Part III, 1846, p. 237) refer to an average period between 1840 and 1842, and correspond in their position very closely to those now pre-sented;-they are deduced from independent data.

Distribution of the Magnetic Horizontal Intensity, and construction of isodynamic lines for 1842.

If we group the observed intensities in the same manner as the dip, the mean epoch 1842.0 may likewise be assumed, and all observed intensities be reduced to that date.

Correction to epoch.-We have the following direct comparisons with Mr. Schott's observation of 1862.

cality.	Date.	x.	Date.	X_{1}.	x-x ${ }_{1}$	Annual
Washington,	Jan. 1843	$4 \cdot 320$	Aug. 186	$4 \cdot 255$	$0 \cdot 065$	$0 \cdot 0033$
Harrisburg,	July 1840	4078	Juiy "	4012	-.066	-. 0030
Near Brownsville,	Aug."	4.207	" "	${ }_{4}^{4} 138$	${ }^{-} \cdot 069$	- 0.003 x
Erie,	"184i	3.792 367	Aug. "	3.728 3.630	-	-0.0030
Williamsport,	July 1844	3.983		3.924	- 0.50	$0 \cdot 0028$
Philadelphia,	Jan. 1842	4.166	" "	4.088	\bigcirc	-0039
					Menn,	$0 \cdot 0030$

The average annual decrease in the value of X, between 1840 and 1862 , is, therefore, 0.0030 , or when expressed in parts of X , equal to 0.00076 . This result agrees tolerably well with that deduced by Mr. Schott in the Coast Survey Report of 1861, where 0.00110 was found.

Supposing the dip to increase at the rate of 1^{\prime} a year, and the total intensity to remain constant, the corresponding decrease of the horizontal intensity would amount to nearly the quantity found above, and we can not, therefore, as yet decide whether the total intensity remains stationary or is slightly changing. At Toronto (see Toronto Observations, vol. iii), the annual decrease of X between 1845 and 1852 inclusive was 0.0037 (in absolute measure), or 0.00105 when expressed in parts of X.
Formation of groups for the analytical expression of the distribution of the magnetic horizontal force, referred to the epoch $1842^{\circ} 0$.
At stations marked thus $*$, the horizontal force was determined by vibrations; at those not marked, by Lloyd's statical method.

```
\({ }^{2}\) From Coast Survey Report of 1861 (yet in manuscript),
            in \(1842 \cdot 5\), Capt. Lefroy, \(X=4 \cdot 347\)
                        " 1843.5, Dr. Lacke, \(=\underline{4.292}\) (mean of three results).
            Mean in \(1843^{\circ} 0, \quad=4.320\)
```


	Dat	X.	Correction to epoch.	$\mathrm{X}_{1842.0}$
Group I.				
Philadelphia,*	1842.0	4-166	$0 \cdot 000$	$4 \cdot 166$
Doylestown,	$184 \mathrm{t} \cdot 6$	$4 \cdot 189$	-0.001	4.188
Easton,	1841.6	$4 \cdot 121$	-0.001	4.120
Reading, ,	$1840 \cdot 6$	4000	-0.004	3.996
Frenchtown,	$1840 \cdot 6$	$4 \cdot 312$	-0.004	$4 \cdot 308$
Baltimore,*	$1840 \cdot 6$	$4 \cdot 265$	-0.004	4.261
Washington,	1843.0	$4 \cdot 320$	+0.003	4.323
Harrisburg,	$1840 \cdot 6$	4.078	-0.004	4.074 3.059
Duncan's Island, Near Mercersburg,*	$1840 \cdot 6$ $1840 \cdot 6$	3.963 4.188	-0.004 -0.004	$\begin{array}{r}4.959 \\ 4.184 \\ \hline\end{array}$
			Mean,	$4 \cdot 158$
Group II.				
Armagh,	$1840 \cdot 6$ $1840 \cdot 6$	4.038 4.298	-0.004 -0.004	4.034 4.294
Frostburg,	$1840 \cdot 6$ $1840 \cdot 6$	4.298 4.207	-0.004	4.203
Near Brownsville,*	$1840 \cdot 6$ $1840 \cdot 6$	$4 \cdot 049$	-0.004	4.045
Near Pittsburg, Economy,	$1840 \cdot 6$	4.008	-0.004	4.004
Wheeling,	$1840 \cdot 6$	4.053	-0.004	4.049
Steubenville,	1840.6	3.947	-0.004	3.943
			Mean,	4.082
Group III				
Warren,	1841.6 1841.6	3.978 4.000	-0.001	3.979
Mercer,**	1841.6 1841.6	4.000 3.838	-0.001	3.837
Erie,**	1841.6	$3 \cdot 792$	-0.001	3.791
Dunkirk,	1841.6	3.621	-0.001	$3 \cdot 620$
Ellicottsville,*	$184 \mathrm{r} \cdot 6$	$3 \cdot 726$	-0.001	
Berlin's Tavern,	1841.6	4.026	-0.001	
			Mean,	3.853
Group IV.				
Curwinsville,*	1841.6		-0.001	3.668
Belvidere, Bath,*	1841.6 184.6	3.669 3.677	-0.001	3.676
Bath,*	1841.6	3.677 3614	-0.001	3.613
Owego,	$184 \mathrm{r} \cdot 6$	3614 3.782	-0.001	3.781
Silver Lake,*	184I'7	3.782	-0.001	3.960
Wilkesbarre,	1841.6	3.961 3.983	-0.001	3.982
Williamsport,*	184.6	3.983	-0.001	4.068
Bellefonte,	1841.6	4.069 3.984		3.980
Lewistown,	$1840 \cdot 6$ $1840 \cdot 6$	3.984 4.109	-0.004 -0.004	4:105
Huntingdon,*			Mean,	3.883
Group V.				
Niagara Falls,*	18436	$3 \cdot 565$	+0.005	3.542
Toronto Ob.,*	18436	3.537 3.560	+0.005 +0.005	3.565
Rochester,	18436	3.560 3.635	+0.005 +0.005	3.640
Geneva,** ${ }_{\text {Syracuse,* }}$	18437 18436	3.556	+0.005	3.56r
Syracuse,* Oswego,	1843.6 1843.6	3.467	+0.005	3.472
			Mean,	3.558

Table continued.

	Date.	X	Correction to epoch.	$\mathrm{X}_{1842.0}$
Utica Group VI.	18 13.6	3.541	+0.005	3.546
Schenectady,*	${ }^{1} 843.6$	3502	+0.005	3.507
Troy,	1843.6	3.575	+0.005	3.580
West Point,	$1843 \cdot 6$	4.033	+0.005	4038
New York, ${ }^{10}$	1841.9	4014	0.000	4.014
Milford,**	18417	3.769	-0.001	$3 \cdot 768$
Bushkill,	1841.7	3.866	-0.001	3.865
Princeton,	1843.5	$4 \cdot 222$	+0.005	$4 \cdot 227$
			Mean,	3.818

Recapitulation.

Group.	No.	Latitude.	Longitude.	\mathbf{X}_{18420}.
I.	10	${ }^{\circ} \mathrm{O} 957^{\prime} \mathrm{I}$	$\begin{array}{lll} \\ 7 \\ 7 & 168\end{array}$	$4 \cdot \mathrm{5} 5$
II.	7	4015.4	7954.9	4082
III.	7	$4 \mathrm{x} 48 \cdot 0$	$7957^{\circ} 4$	3.853
IV.	10	4) 24.5	7716.9	3.883
V.	6	$4312 \cdot 1$	$7738 \cdot 6$	3.558
VI.	8	4141.6	7424.8	3.818
	Mean,	4123.1	7734.9	3.892

Let $\mathrm{X}=$ resulting horizontal force.
$\mathbf{X}_{0}=$ assumed mean horizontal force for 1842.0 at the mear latitude and mean longitude, χ its correction.
$d \mathrm{~L}=$ difference of latitude, $d \mathrm{M}=$ difference of longitude.
x, y, z, p, q and x to be determined from the observations.
$\mathrm{X}=\mathrm{X}_{0}+x+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{L}+z d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} \mathrm{~L}$.
Forming the conditional and normal equations, we find the expression
$\mathrm{X}=3.890-0.1787 d \mathrm{~L}+0.0085 d \mathrm{M} \cos \mathrm{L}+0.0161 d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}-$ $0.0017 d \mathrm{~L}^{2}+0.0027 d \mathrm{M}^{2} \cos ^{2} \mathrm{~L}$ 。
Where

$$
\begin{aligned}
& d \mathrm{~L}=\text { lat. }-41^{\circ} \cdot 38 \\
& d \mathrm{M}=\text { long. }-7 \% .58 .
\end{aligned}
$$

This formula is applied for determining the relative weights of the observations from vibrations and by deflections of the dipping needle; for this purpose, the horizontal force was computed by the formula, and the results compared with observation. From the differences, we find the probable error of an observation (and local irregularity) $= \pm 0.036$ for the bar and cylinder vibrations, and ± 0.062 for the Lloyd needle deflections and dip; the relative weights therefore become 754 for the former and 257 for the latter, or nearly as 3 to 1.

These weights have been adopted.

[^70]Nine groups of five or six observations in each, with weights, were then formed.

Recapitulation of mean (weighted) values of groups.

Group.	Latitude.	Lengitude.	x .
I	40.39	$7{ }^{7} \times 83$	4107
II.	39.68	77%	4199
III.	40.22	79\%99	$4 \cdot 103$
V.	40.68	-80.26	4.035
VI.	42.89	79.00	$3 \cdot 618$
VII.	41.56	76.27	3.858
V1II.	42.85	7717	${ }^{3.606}$
1 x .	42.17	74.37	3.665
Mean,	$41 \cdot 34$	77.45	3.900

$\mathrm{X}=\mathrm{X}_{0}+x+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{L}+x d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}+p d \mathrm{~L}^{2}+q d \mathrm{M}^{2} \cos ^{2} \mathrm{~L}$
$d \mathrm{~L}=1$ at. $-41^{\circ} 34$
$d \mathrm{M}=$ long. $-77 \cdot 45$.
Forming the conditional and normal equations we deduce: $\mathrm{X}=3.920-0.1936 d \mathrm{~L}+0.0146 d \mathrm{M} \cos \mathrm{L}+0.0203 d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}$ $-0.01587 d \mathrm{~L}^{2}-0.0005 \mathrm{~d}^{2} \cos ^{2} \mathrm{~L}$.
It is, however, preferable to shorten the formula and use instead the following:

$$
\mathrm{X}=3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos \mathrm{~L}+0.02 d \mathrm{~L} d \mathrm{M} \cos \mathrm{~L} .
$$

Comparison of observed and computed values.

Group.	X observed.	Computed. Observed	-computed
I.	4.107	4.095	+0.012
II.	4.199	4.227	-0.028
III.	4.103	4.100	+0.003
IV.	3.912	3.887	+0.025
V.	4.035	4.028	+0.007
VI.	3.618	3.651	-0.033
VII.	3.858	3.842	+0.016
VIII.	3.606	3.599	+0.007
IX.	3.665	3.670	-0.005

The next and last hypothesis,

$$
\mathrm{X}=3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos \mathrm{~L} \text {, }
$$

in which the isodynamic lines are treated as straight lines, presents perbaps the best and most simple expression of the irregular distribution of the horizontal force.

These lines are nearly parallel with the dip lines.
Comparison of observed and computed values on this hypothesis.

Group.	X observed.	X computed.	Observed -computed.
I.	$4 \cdot 107$	4057	+0050
II.	$4 \cdot 199$	$4 \cdot 216$	-0.017
III.	$4 \cdot 103$	$4 \cdot 143$	-0.040
IV.	3.912	3.876	+0.036
V.	4035	$4 \cdot 035$	0.000
VI.	$3 \cdot 618$	3.616	+0.002
VII.	3.858	3.846	+0.012
VIII.	3.606	3.605	+0.001
1X.	3-665	$3 \cdot 708$	-0.043

The difference between the lines of this and the previous hypothesis shows the large amount of local irregularity.
The lines of this hypothesis pass through the following positions:

$4 \cdot 2$	Long. $81^{\circ} \cdot 0$	Long. $77^{\circ} 5$	Long. $74^{\circ} \cdot 0$
	Lat. $3958{ }^{\prime}$	Lat. 3947^{\prime}	Lat. $3936{ }^{\prime}$
$4 \cdot 0$	Long. $81^{\circ} \cdot 0$	Long. $77{ }^{\circ} \cdot 5$	Long. $74^{\circ} \cdot 0$
	Lat. 4101^{\prime}	Lat. 4049^{\prime}	Lat. 4039^{\prime}
$3 \cdot 8$	Long. $81{ }^{\circ} 0$	Long. $77^{\circ} \cdot 5$	Long. $74^{\circ} \cdot 0$
	Lat. 4202^{\prime}	Lat. $4151{ }^{\prime}$	Lat. $414{ }^{\prime}$
$3 \cdot 6$	Long. $81^{\circ} \cdot 0$	Long. $77^{\circ} \cdot 5$	Long. $74^{\circ} \cdot 0$
	Lat. 4304^{\prime}	Lat. 4253^{\prime}	Lat. $4243{ }^{\prime}$

The observed and computed values of X by the previous and last hypothesis compare as follows:

Station.	X observed.	X by previous hypothesis.	Δ	X by last hypothesis.	Δ
Philadelphia,*	$4 \cdot 17$	419	-0.02	4.14	40.03
Doylestown,	419	411	+0.08	$4 \cdot 08$	$+0^{\circ} 11$
Easton,	$4 \cdot 12$	$4 \cdot 02$	+0.10	4.00	+0.12
Reading,	400	410	-0.10	408	-0.08
Frenchtown,	431	$4 \cdot 27$	+0.04	$4 \cdot 22$	+0.09
Baltimore, ${ }^{\text {* }}$	$4 \cdot 26$	432	-0.06	$4 \cdot 39$	-0.03
Washington,	$4 \cdot 32$	$4 \cdot 38$	-0.06	437	-0.05
Harrisburg,*	407	$4 \cdot 11$	-0.04	$4 \cdot 10$	-0.03
Duncan's Island,	3.96	$4 \cdot 08$	-0.12	$4 \cdot 07$	-0.11
Near Mercersburg,*	4.18	4.21	-0.03	$4 \cdot 20$	-0. 02
Armarh,	403	406	-0.03	408	-0.05
Frostburgh,	4.29	$4 \cdot 20$	+0.09	$4 \cdot 24$	+0.05
Near Brownsville,*	4.20	$4 \cdot 14$	+0.06	$4 \cdot 19$	+0.01
Near Pittsburg,**	4.05	4.06	-0.01	4.09	-0.04
Economy,	400	404	-0.04	4.07	-0.07
Wheeling,	$4 \cdot 05$	4.11	-0.06	$4 \cdot 17$	-0.12
Steubenville,	3.94	407	-0.13	$4 \cdot 11$	-0.17
Warren,	3.98	3.94	+0.04	$3 \cdot 95$	+0.03
Mercer,	400	3.94	+0.06	3.95	+0.05
Ashtabula,	$3 \cdot 84$	3.80	+0.04	$3 \cdot 83$	+0.01
Erie,*	$3 \cdot 79$	3.81	-0,02	377	+0.02
Dunkirk,	$3 \cdot 62$	$3 \cdot 70$	-0.08	$3 \cdot 70$	-0.08
Ellicottsville,*	372	$3 \cdot 75$	-0.03	$3 \cdot 73$	-0.01
Berlin's Tavern,	$4 \cdot 02$	$3 \cdot 93$	+0.09	3.94	+0.08
Curwinsvilles*	400	3.98	tooz	3.99	+0.01
Belvidere,	3.67	3.75	-0 08	3.74	-007
Bath, ${ }^{\text {Ow}}$	3.68	3.70	-0.02	$3 \cdot 70$	-002
Owego,	361	373	-0.12	3.74	-0.13
Silver Lake,*	$3 \cdot 78$	$3 \cdot 76$	+0.02	3.77	+rot
Wilkesbarre,	$3 \cdot 96$	$3 \cdot 93$	+o.03	3.91	+0.05
Williamsport,*	3.98	3.92	+0.06	3.92	+0.06
Bellefonte,	4.07	399	+0.08	399	+0.08
Lewistown,	$3 \cdot 98$	$4 \cdot 05$	-0.07	4.05	-0.07
Buntingdon. ${ }^{\text {W }}$	$4 \cdot 10$	4.06	+0.04	4.07	+0.03
Niagara Falls,*	3.57	3.62	-0 05	358	-001
Toronto,*	3.54	3.53	+o.01	3.47	+0.07
Rochester	3.56 3.64	3.57 3.5	-0.01	3.56	$0 \cdot 00$
Geneva,** Syracuse,*	3.64 3.56	3.59 3.53	+0.05 +0.03	3.60 3.56	+0.04
Oswego,	3.56 3.4	3.53 3.46	+0.03 +0.01	3.56 3.49	0.00 -0.02

AM. Jovr. Sci.-Second Neries, Vol. XXXV, No. 105.-May, 1803.
A. D. Bache on a Magnetic Survey of Pennsylvania, etc.

Table continued.

Stations.	$\underset{\text { observed. }}{\mathrm{X}}$	by previous "hypothesss.	\triangle	X by last hypothesis.	Δ
Utica,	3.55	3.49	+0.06	354	+0.01
Schenectady, ${ }^{\text {* }}$	3.51	$3 \cdot 51$	$0 \cdot 00$	3.58	-0.07
Troy,	3.58	3.52	-0.06	3.59	-0.01
West Point,	404	3.85	+0.19	3.86	+0.18
New York,*	4.01	4.01	$0 \cdot 00$	3.97	+0.04
Milford, ${ }^{\text {\% }}$	3.77	3.88	-0.11	3.88	-0.11
Bushkill,	3.86	3.92	-0.06	3.92	-0.c6
Princeton,	$4 \cdot 23$	4×7	+0.16	4.06	+0.17

For the last hypothesis (straight lines), we find the probable error of an observation and local irregularity from the bar and cylinder vibrations ± 0.029, and from the Lloyd needle deflection and $\operatorname{dip} \pm 0.062$. For the previous hypothesis, these quantities are respectively ± 0.030 and ± 0.059, showing but little gain in the representation of the observations by the additional term $d \mathrm{~L} d \mathrm{M} \cos \mathrm{L}$.

For the general representation, the probable errors are ± 0.050 and ± 0.051.

Representation of the total force.

From the expressions

$$
\begin{aligned}
\mathrm{X} & =3.900-0.1934 d \mathrm{~L}+0.0134 d \mathrm{M} \cos \mathrm{~L}, \\
\mathrm{I} & =73^{\circ} \cdot 25+0.912 d \mathrm{~L}-0.0690 d \mathrm{M} \cos \mathrm{~L},
\end{aligned}
$$

we have to deduce the total force $\varphi=\mathrm{X} \sec \mathrm{I}$.
In the expression for X ,

$$
d \mathrm{~L}=\text { lat. }-41^{\circ} \cdot 34 \text { and } d \mathrm{M}=\text { long. }-77^{\circ} \cdot 45
$$

in the expression for I,

$$
d \mathrm{~L}=\text { lat. }-41^{\circ} \cdot 32 \text { and } d \mathrm{M}=\text { long. }-77^{\circ} \cdot 39
$$

We have in

$$
\left.\begin{array}{l}
\text { Long. } 81^{\circ} .00 \mathrm{X}=4.200 \\
\text { Lat. } 39 \cdot 97 \mathrm{I}=71^{\circ} .828
\end{array}\right\} \varphi=13.47
$$

Assuming in the expression for the total force,

$$
\varphi=\varphi_{0}+f+x d \mathrm{~L}+y d \mathrm{M} \cos \mathrm{~L},
$$

$d \mathrm{~L}$ and $d \mathbf{M}$ as in the expression for X , we find:

$$
\varphi=13.55+0.0451 d \mathrm{~L}-0.00682 d \mathrm{M} \cos \mathrm{~L} .
$$

The lines of equal total force of $13.45,13.5,13.55$ and 13.6 pass through the following positions:
L. Lesquereux on the Coal Formations of North America.

$13 \cdot 45$	Long. $81{ }^{\circ}$	Long. $77^{\circ} 5$	
	Lat. $3931{ }^{\prime}$	Lat. 3907^{\prime}	
13.50	Long. $81{ }^{\circ}$	Long. $77^{\circ} \cdot 5$	Long. 74°
	Lat. $4037{ }^{\prime}$	Lat. 40 13'	Lat. 39 49'
$13 \cdot 55$	Long. $81{ }^{\circ}$	Long. $77^{\circ} \cdot 5$	Long. 74°
	Lat. 41 43'	Lat. 4119^{\prime}	Lat. 40 55'
$13 \cdot 60$	Long. $81{ }^{\circ}$	Long. $77^{\circ} \cdot 5$	Long. 74°
	Lat. 4249^{\prime}	Lat. 42 25	Lat. 42 01'

The observed and computed values of φ, at the stations where the bar and cylinder were employed, compare as follows:

Station.	$\overbrace{\text { observed. }}$	$\begin{array}{\|} \Phi \\ \text { computed. } \end{array}$	Observed - computed.
Philadelphia,	13.45	13.50	-0.05
Harrisburg,	13.44	13.50	-0.06
Huntingdon,	13.51	13.51	0.00
Homewood,	13.49	13.50	-0.01
Johnson's Tavern,	13.54	13.48	+0.06
Irwin's Mill,	13.40	13.48	-008
Baltimore,	13.49	13.46	+0.03
Williamsport,	13.55	13.55	000
Curwinsville,	13.55	13.53	+0.02
Mercer,	13.64	13.53	to. 11
Erie,	13.57	13.57	0.00
Ellicottsville,	13.77	13.59	+0'18
Bath,	13.72	1360	+0.12
Silver Lake,	13.47	J3.58	-0.11
Milford,	13.50	13.56	-0.06
Schenectady,	13.45	13.63	-0.18
Syracuse,	13.61	1363	-0.03
Geneva,	13.63	13.62	+o or
Niagara Falls,	13.64	13.62	+0.02
Toronto,	1384	13.65	+0.19

The probable error of any representation is ± 0.066.

Art. XXXVIII.-On some questions concerning the Coal Formations of North America; by Leo Lesquereux. (Continued from vol. xxxiii, p. 216.

Concluding Remarks on the Fossil Ferns.
The examination of the fossil ferns of the coal, as far as it has passed under review in the former papers, ${ }^{1}$ would apparently authorize the three following conclusions.

1st. That the family of the Ferns was represented, at the coal epoch, by species whose forms are casily referred to very few typical forms. For, if we consider only the figure of the leaves, viz., their contour and nervation, the only part generally preserved in the shales of the Coal Measures, all the species may

[^71]be comprised in the three sections formerly examined: the Neuropteridece, the Pecopteridece and the Sphenopteridece.

2 d . That, from the searcity of fructified specimens of fossil ferns in the Coal Measures, it would be supposed that most of the species were without fruit. If not, how can we account for the total destruction of the sporanges, either borne on peculiar stems, or attached to the lower surface of the leaves, as we find them in the species of our time?

3 d . That the scarcity of large stems that have been or might be referred to ferns would lead us to suppose that, during the formation of the coal, the fern trees were of rare occurrence, at least when compared with the great number of ferns, which, in opposition to arborescent species, can be called herbaceous or shrubby.

These three questions must be considered separately.
1st. If it is certain that characters taken from the form of the leaves and from their nervation are sufficient for a kind of general classification, applicable to the stratification of the Coal Measures, it is true also that this classification fails to give us a clear insight into the true relation and the affinity of our fossil species. To be exact and scientific, an analysis of the ferns must take into account the form and the position of the fructifications; and when these are absent or undiscernable, as is generally the case with the specimens found in the Coal Measures, we are not authorized to believe that all the species, referable by their nervation and the form of the leaves to a common type, are equally related to it, by more essential but unknown characters. Indeed, though the attempt at a classification of the fossil ferns of the coal, from their fructifications, has been till now an abortive effort, the little we know of these fructifications shows a far greater diversity of typical and generic forms than are indieated by the leaves and their nervation. The fruiting leaves of the Neuropterideer are known, from European specimens, only for the genus Odortopteris, which, as Mr. Brongniart has remarked, do not bear any relation to ferus of our time. Species of this genus have their spores enclosed in a kind of bladdery sporange, or between the surfaces of the leaflets, which, thus inflated, wrinkled and without any trace of nerves, entirely lose their original slape. American specimens of this species perfectly agree with the beautiful figures that Mr. Geeppert has given of it in his Genera. The peculiar shape of the fructifications of this genus is still more remarkable on the fruiting specimens of Odontopteris Britannica Gutb., a species which has not yet been found in our American Coal Measures. Its sporanges, placed along a strong rachis and on both sides of it, have the form of an oval-pointed nutlet and rather resemble a raceme of fruit, or rather a branch bearing buds of flowers, of a dicotyledonous

L. Lesquereux on the Coal Formations of North America. 377

species. Fine specimens of these supposed Anthotites have been published by Lindley and Hutton, from the Coal Measures of England, and by Dr. Newberry, from our own coal fields. I have found also some small specimens of these peculiar remains at Pomeroy, Ohio, and at Port Carbon, Penn. All these, either naked or bracteated nutlets, appear to be only branches of fruiting stems of some ferns of an unknown type.
The fructifications of the genus Neuropteris, which, by the form of the leaves and the nervation, is closely allied to Odontopteris, appear to have a far different character. These fructifications, I think, are not known from European specimens; but we have a few from the American Coal Measures, which can be reliably considered as the remains of fruiting parts of some species of this genus. Two of them represent reduced forms of the upper part of a penna of Neuropteris hirsuta Lsqx. The leaflets are longer and narrower ; the rachis and the medial nerve are flat and broad, and look rather like the branches and divisions of a panicle bearing sporanges. The veins are prominent, granulate, just as if a series of small fruit dots connected together had been placed either along them, or in the narrow space that separates them. If this appearance is real, these fructifications would bear a likeness of position to those of the Danaece of our time. But not of direction, indeed; for, in this species of our Coal Measures, the nervules are arched and dichotomous or forking like those of a true Neuropteris. Another remarkable specimen, preserved in a pebble of carbonate of iron, from Morris Co., Illinois, represents also a branch of a species of fructified Neuropteris. In this, the short, ovate, slightly pointed leaflets, about one inch long, and deeply cordate at the base, are attached to the rachis by a short pedicel. They are slightly convex or inflated in the middle, with a narrow margin apparently reflexed, but at the same time flattened all around. The scarcely visible reins are distant and apparently forked once, or the surface, generally quite smooth, is marked by irregular undulate cross-wrinkles, somewhat resembling those of the fructifications of an Odomtopteris. In this case, the spores appear to be placed in large flakes, covering, except a narrow border, the whole of the lower surface of the leaves, as is the case with the fruit-bearing leaves of some species of Osmunda of our time. Thus, in the same genus, there are apparently two far different types of fructifications.

A peculiar specimen of fruiting fern, belonging to the Cabinet of Amberst College, and labelled, Mansfield,? Mass., shows a pinnately divided frond or rather panicle, whose secondary rachis is pinnately subdivided into short branches, bearing numerous groups of fruit dots, placed four by four on each side of a common branchlet. They appear attached to it, each by a very slender pedicel; and, round as they are, with a depressed point

378 L. Lesquereux on the Coal Formations of North America.

in the middle, they look, at first sight, like the fruit dots placed on both sides of the medial nerve of a Pecopteris, whose derma or foliaceous tissue has been ertirely destroyed. As no trace of this tissue can be seen, as the pedicels do not resemble veins, but are curved in a peculiar way, and as the fruit dots are at some places scattered and not in regular order, this fossil raceme is more likely the fruit-bearing part of a species whose sterile frond is possibly known with other characters. If it is so, this species would have a relation to the genus Aneimia of the living ferns, and thus, it could not enter into any of the three general divisions mentioned above.
The same can be said of Staphylopteris stellata Lsqx., of the low coal of Arkansas. ${ }^{2}$ The figured specimen represents a smooth, main stem or branch, pinnately divided into short, thick, horizontal branchlets, each bearing at its extremity a group of four or five oval sporanges, attached to a common receptacle. This species has no affinity whatever with any other fossil remains of ferns, found in the Coal Measures, and thus it is without a place in our general classification.
From a number of fruiting branches of still undescribed fussil ferns, I will only briefly describe another remarkable species recently found at Mason Creek, Morris Co., Ill., by Mr. Even, who has sent, from the same locality, many interesting specimens, beautifully preserved in pebbles of carbonate of iron.s The specimen shows the upper part of a pinnately divided frond. The divisions are short, (one inch) and comparatively broad, (one-sixth of an inch) linear, obtuse, spreading, decurring in preserving the same breadth on a slender rachis, which, thus broadly winged, looks rather like the primary nerve of a secondary pinna. The veins, emerging in a broad angle from this common rachis, are straight, pretty thiek, ascending to the top of the divisions and pinuately branching. The distant simple veinlets, no more than three or four on each side, slightly arched, diverg. ing in a broad angle, bear at their extremity a group of six oval sporanges, placed just on the borders of the divisions. These sporanges, united by their margins around a common receptacle, appear, by this disposition, like small stars with round lobes. Cousidering only the form of the leaves, this species should be

[^72]
L. Lesquereux on the Coal Formations of North America. 379

placed in the genus Alethopteris. But it differs widely from it by its nervation and especially by its fructifications. These would bring this species near the genus Asterocarpus of Gœeppert, or the Heptocarpus of Braun, to which it has no affinity whatever by the leaves and the nervation. From examples like this, which, though few in number, are nevertheless every day multiplied by new discoveries, we cai: admit, I think, for the coal epoch, a far greater diversity of typical forms than could be supposed at first sight and from superficial researches.
2. What is said above is already an answer to the second question concerning the scarcity of fruiting specimens of ferns in the Coal Measures. This scarcity, like the paucity of typical forms in the fossil ferns, is rather casual than real. By careful researches at some places, where the remains of a species are found in abundance, one may generally succeed in finding traces of fructifications. They are especially preserved on specimens found as matrix of iron agglomerations, which have not been exposed to maceration in water for too long a time. This of course confirms the validity of the conclusions arrived at by Prof. Lindley and Prof. Gceppert from their experiments on the action of the maceration in destroying or preserving the forms of some species of plants. Most of the species of ferns of our time, under a protracted and continual immersion, have preserved well enough the forms of their leaves with evident traces of their nervation; but they have lost their fructifications. The sporanges bave been detached from their supports and destroyed.
It is moreover known that, nearly always, the fern leaves are attached to the shales by their lower surface. Thus, even when the fructifications are preserved, we cannot see them, or we have only an indistinct outline of their form, printed in relievo through the carbonized tissue of the leaves. This of course renders the study of the fossil fruiting ferns very difficult.
3. Is the sinall proportion of fossil remains of true arborescent ferns in the Coal Measures, compared with the great quantity of leaves and stalks or petioles of the same family, a proof that, contrary to the opinion generally admitted, the arborescent ferns were not a predominant character of the vegetation of the coal epoch? If we consider as remains of true arborescent ferns, only those whose bark is marked by large oval cicatrices, left at the base of the fronds, at the point of their parting from the main stem, in short those known under the family name of Caulopteridece or Protopteridere, it is certain that they are very scarce in the Coal Measures both of Europe and of America. In his Genera, Mr. Unger counts in the Protopterideee of the coal ten species only, distributed in five genera. And from these species, five are considered by Brongniart, Lindley and other authors as pertaining to Sigillaria or Lepidodendron. In his

Tablear des genres, Brongniart enumerates only six species of Caulopteridece; Geinitz in his Wersteinerungen von Sachsen, four species, three published by Brongniart as Sigilluria, and one, a Megaplyylum, by Artes; and Gceppert, in his Fossil Flora des Ue bergangsyebirges, has none. In my examination of the fosil plants of our Coal Measures, I have seen, from the roof shales of the coal, only three specimens of two different species found at Carbondale, ${ }^{4}$ and one found in Illinois. ${ }^{6}$ And from the sandstone of the Coal Measures, I have in my cabinet a single specimen from Ohio, and there is another of a different species in the Illinois State Cabinet." A few others, like Sigillaria Cistii Brgty from Wilkesbarre, Penn., Sigillaria discoidea Lsqx., from Summit Lehigh, Penn., Megaphytum prootuberans Lsqx., Megaphytum Wiv burianum Lsqx., and Lepidodendron radicans Lsqx., from Illinois; these three last figured and described in the Geological Report of that State, may still be referable to this group of plants.
If, on the contrary, we admit with most of the European authors, that the fossil trunks, generally comprised in the genus Psaromius, did belong to arborescent ferns, we have to come to quite a different conclusion, concerning the distribution of the vegetation of the ferns at the coal epoch; for these trunks are found in great abundance in some parts of the Coal Measures. But Prof. Brongniart, judging from their internal structure, con 0 siders Psaronius as a genus related to the Lepictodendra rathes than to the Protopteriilce or ferns. As the Psaronius species have their stems generally eneased in a thick coat of roots or rootlets, grown and petrified together, the surface of the stems and the cicatrices with which they were originally covered are scarcelry to be seen. Nevertheless, among the great quantity of specimens which I have examined in Southern Ohio, I have found a few, the smallest in size, whose uncovered stems evidently bear the long oval scars, the external character of the arborescent ferns.
Now, admitting the species of Psaronius as true arborescent ferns, the question of their distribution in the Coal Measures and of the place and importance which they occupied in the vegetation of the coal epoch is still unsolved. Where did they come from, all these trunks of the same genus; all with the same peculiar structure ; all horizontally broken in fragments varying from one inch to one foot in length, and thus scattered at some peculiar and isolated localities, where they appear as if they had been heaped by some wonderful and unaccountable agency? I do not know in our Coal Measures of another deposit of petrified trunks of fern trees except that of Shade river, Ohio. It begins at Athens and extends southward as far as Charleston, Va. At least, I have seen trunks of Psaronius seattered along

[^73]
L. Lesquereux on the Coal Formations of North America. 381

the banks of the Great Kanawha from its mouth to Charleston. The geological horizon of the strata with which they are connected is not satisfactorily determined; though it is certain that their place is not far above the top of the Mahoning Sandstone. They are apparently imbedded in a kind of soft sandstone, which at Shade river is separatel by a covered space of 10 feet from a bed of coal 10 inches thick, which I consider as the equivalent of Coal No. 5. I say apparently, because it is not certain that they were originally derived from this bed of soft sandstone or hard clay, exposed on the high water of Shade river, where they are seen in great quantity, heaped in all possible positions and directions, just as if they had been transported and deposited there by a strong eddy. Nevertheless, they do not bear any trace of erosion by water. The fracture is clean and often sharply marked all around their circumference. When they appear eroded, this erosion is evidently due to the process of maceration, at or before the time of petrification. As no remains of this genus are found in connection with the shales of the coal strata, I think that forests of these peculiar arborescent ferns did cover some dry, sandy places of the Coal Measures, in the vicinity of some hot springs perbaps, or under the influence of peculiar atmospheric action. There they may have lived around the marshes, and their prostrated stems have been petrified afterwards by a local influence. I believe that if we could satisfactorily explain the dispersion and the transformation into silex of the fossil woods of the Tertiary, whose specimens abound in some parts of Arkansas, Mississippi, \&c., this explanation would apply as well to the silicified trunks of the Coal Measures. In any case, and though we know but little about the distribution of the vegetation at the coal epoch, we are authorized to conclude, from the former remarks, that the species of ferns predominant in the marshes of the coal were especially shrubby or herbaceous species of small size, while those of the sandy or dry solid ground were especially arborescent.

Before leaving the Caulopteridece I have still a few words to say of the size of the cicatrices of their bark, compared with the diameter of their stems. These cicatrices, generally distant, placed on the stems in the spiral order two-fifths, are, when found in a good state of preservation, nearly oval or obovate and elongated at both ends, by a somewhat deep furrow. They bear in the middle the mark of a simple fascicle of vessels in the form of a horse-shoe, and the central sear is surrounded by an oval annulus. Of the two specimens formerly mentioned as having been found in the sandstone of our Coal Measures, and whose somewhat flattened stems have preserved their form as well as the cicatrices of the bark, the one, four inches in its greatest diameter, has the scars just one inch broad. In the second, three inches and a half
Am. Jour. Sct.-Second Series, Yol XXXV, No. 105.-Mat, 1868.

382

in diameter, the scars are not quite one inch broad. Now the largest and most remarkable specimen of a Caulopteris that I have ever seen and a notice of which has ever been published (Caulopteris insignis Lsqx.), shows a piece of bark with a single but entire cicatrice of just three inches in diameter. Admitting that the proportion of the cicatrices to the stem is, in this species, the same as in the former ones, this must have belonged to a trunk of fern of less than one foot in diameter. This agrees well with the size of the trunks of Psaronius of Shade river, whose diameter is mostly between four and eight inches, rarely reaching one foot.

The genus Megaphytum Art., should, according to Prof. Brongniart's opinion, be united with the genus Bothrodendron or Ulodendron and referred to Lepidodendron, as representing merely a modification of this last genus. Our American specimens do not authorize this conclusion. Megaphytum protuberans Lsqx., of the State Cabinet of Illinois, has the cicatrices closely placed above each other, oval, convex, with their top somewhat squarely cut at the point of junction. They bear, near the upper end, the scars of fascicles of vessels, in the form of a horse-shoe; just like the Caulopteridece, but without a marked annulus. These scars were evidently left at the base of large petioles or fronds, and are not cicatrices of leaves or of adventive buds as Mr. Brongniart supposes. It is even evident, from the forms of the cicatrices, which are a little flattened at their base and more elevated at the upper part, that the fronds which were originally attached to them were ascendent and closely appressed upon each other at their base. Moreover, this species has its surface deeply and irregularly striated and furrowed as if it had been covered by rootlets, just like the surface of a Psaronius. The cicatrices of Megaphytum Wilburianum Lsqx., still more nearly resemble those of a large Caulopteris. They are 4 inches broad, round, or square with rounded corners, flattened, with the scars of the vessels placed in the middle, and surrounded by an annulus. From this, it appears evident, that these remarkable stems did belong to a genus of the fern family, bearing tworanked or distichous fronds. Prof. Geinitz has already admitted the genus Megaphytum as intermediate between the Lycopodiacee and the ferns.

Calamitarice.

The species of this group of fossil plants have as common characters: the stems hollow, regularly striated, articulated, with articulations more or less distant, marked by a depressed or circular ring, or by an elevated margin, bearing whorls of leaves more or less united at their base. The five principal genera of fossil plants of the Coal Measures, which have been placed in
this group, Equisetites, Calamites, Asterophyllites, Sphenophyllum and Annularia, have between themselves no evident and acknowledged relation. Considering the first two of these genera as belonging to the family of the Equisetaceex, Mr. Brongniart has separated from it the last three, placing them with the dicotyledonous gymnospermous plants. The essential reason for this separation is, that species of Asterophyllites sometimes bear, in the axils of their leaves, small, flattened, oval, somewhat winged seeds, resembling those of the Yew, and, at the extremity of these branches, a kind of cone containing a pulverulent matter, which this great author considers as polien. An inflorescence of this kind resermbles that of the conifers. If we consider only the more evident characters, viz: the hollow, striated, articulated stems; the leaves more or less united at the base and placed like sheaths around the articulations, this separation appears inadmissible. It is for this reason that most of the European authors have put it aside. Nevertheless, it is evident, from good though small specimens found in our Coal Measures, that, at least, two species of Asterophyllites bear, in the axils of their leaves, those small oval or cordate-oval seeds, observed by Mr. Brongniart, and far different from the cones of the same genus which he considered as male flowers. It is certain also, that, from the examination of a great number of these cones, very common at some places in the shales, in connection with branches and large stems of Astirophyllites equisetiformis Ll., they contain nothing under their scales but a pulverulent matter, as Mr. Brongniart Las seen it. Possibly the flattened seeds, in the axils of the leaves of Asterophyllites, could be considered as a kind of tubercles; but I really believe they are true seeds and that all the species of the genus Cardiocarpum are referable, if not to the genus Asterophyllites, at least to plants related to it. At some places where Asterophyllites are abundant, these seeds are seen sometimes in plenty, varying in form from round or oval to cordiform, generally bearing a narrow wing, emarginated at the top, and even broadly winged, as shown by the beautiful specimens figured and described by Dr. Newberry.' They vary much in size, being generally as small as a pea, but sometimes as large as a walnut. If then, as is evident, these fruits belong to Asterophyllites, or to plants related to this genus, it is not possible to refer them to Equisetacte, and so the opinion of Mr. Brongniart is confirmed. But now, the fruits of the genus Culamites are still entirely unknown. A single specimen, figured in Sternberg's Flora, vol. ii, pl. 14, fig. 1, under the name of Vollmannia arborescens, apparently coming from a stem of Calamites, has the form of a long ear or cone, bearing whorls of narrow, linear, obtuse, somewhat open leaves, resembling the cones of Asterophyl-

[^74]lites and, as I believe, of the species Ast. lanceolata Lsqx., of the Pennsylvania Geological Report. The only difference is in the form of the leaves. In our American specimens they are linear, pointed, never obtuse as Mr. Sternberg figures and describes them. In my specimens of Asterophyllites lanceolata the ears are always attached to a curved, half an inch thick, articulated and striated pedicel, having just the same form as a small branch of Calamites approximatus Art. The form of the pedicel, curved upwards, shows that these cones were attached to the side of a large stem and not placed at the top of some branches, and thus explains the reason and the form of large cicatrices, irregularly placed above the articulations of stems of some species of Calamites. But species of this same genus have also smaller, round cicatrices regularly placed around their articulations. Though, according to Prof. Geinitz, these scars are left as the point of attachment of some roots, they may nevertheless be only the marks left by fruits like those of Asterophyllites. Thus the relation of both genera, a relation so striking, if we consider the other appreciable characters, would be complete. But, even if this affinity of forms was perfectly ascertained, the question concerning the true relative place of these plants would not be settled. For the internal structure of the Culamites, as far as it is known, removes them evidently from the Dicotyledonous and establishes their relation with the Equisetaceoe. It is one of those numerous dilemmas offered for a solution, to the patience and long researches of the Palæontologist.

American specimens do not add much to what was already known of the different genera of this group. I have not seen in our Coal Measures a single trace of an Equisetites. I did not even suppose that species of this genus could be found in the Coal Measures. The beautiful specimens figured and described by Geinitz do not leave any doubt on this question.

There is near Carbondale a forest of standing Calamites imbedded in a bank of compact, coarse, hard sandstone. Numerous fragments of their stems have been taken out from a tunnel cut in this sandstone. These fragments show nothing but the external surface of the stems. Fiven the coaly matter which sometimes covers it has disappeared. The species are Calamiles Suckowii Brgt., Calamites ornatus Brgt., which Mr. Geinitz considers as the same species; Calamites Cistii Brgt., and Calamites approximatus Art. The size of the stem varies from three to six inches, rarely attaining eight inches. A number of them appear to have been crushed upon themselves when still standing, for the bark, or rather the external surface, is often pushed and folded within the stem, all around the circumference. This, of course, proves that the stems of the Calamites were hollow cylin-

L. Lesquereux on the Coal Formations of North America.

ders, covered with a thin but strong bark. No remains at all of roots, of fruits, or of leaves, are found in this sandstone and in connection with the Calamites.

It is very difficult to establish the relation of the cones of Asterophyllites with the branches, to which they are rarely found attached, and thus to fix the true species. For this reason, I think it more convenient, though less scientific, to give different names to each of the parts of the plants, as long as they have not been found in evident connection. The roots and floating filaments, formerly known under the names of Hydatica prostrata Art., are now considered by Prof. Geinitz as the roots of Asterophyllites foliosa Lindl. They have been found attached to large stems apparently belonging to this species. The roof shales of the coal at Pomeroy, Ohio, are, in some places, covered with these radiculose filaments, and, though I have not seen them attached to the stem, the abundance of branches of Asterophyllites foliosa, found on the same shales, confirms the views of the celebrated German author. But Mr. Geinitz also refers the cones known as Asterophyllites tuberculata Ll. \& H., to the same species, and these cones are not found at Pomeroy. Per contra, they abound on the shales of the red ash coal at W. W. Woods and at the Salem vein of Port Carbon, near Pottsville, where Asterophyllites equisetiformis is plentiful, and where I have not found Asterophyllites foliosa or Hydatica. At W. W. Woods, with numerous remains of Calamites, the three species of cones named Asterophyllites tuberculata Ll. \& H., Asterophyllites aperta Lsqx., and Asterophyllites lanceolata Lisqx., are also in great quantity of fragments.

A beautiful species of Sphenophyllum, S. bifurcatum Lsqx., has been found in the coal inferior to the Millstone Grit of Arkansas. It may be the same species as the small specimen figured and described in the Pennsylvania Report as Sphenophllum trifoliatuin Lsqx. Difficult as it is to fix the specific characters of a Sphenophyllum, this species, from the great number of specimens examined, may be considered as a true one. It shows that the leaves of this genus are united at the base by a narrow margin. This union exists for the leaves of Asterophyllites and of Annularia; and thus their whorls of leaves are more of the nature of sheaths, deeply cut in laciniæ of various forms, than of true leaves.

Since the time (1854) when I delivered my report on the fossil plants of Pennsylvania, I have seen nothing in our fossil plants to change my opinion concerning the fructifications of the genus Annularia. I supposed then, and still suppose, that these fructifications were borne on the top of the leaves, Within the inflated and hollowed medial nerve, in a kind of funnel-like cavity, like the spores of some species of Hymeno.
phyllacea of our time. Prof. Geinitz, indeed, has published, in his magnificent work on the fossil plants of Saxony, as fructifications of Annularia, (pl. 18, figs. 8 and 9) a beautiful cylindrical long ear with an articulated and striated stem, bearing, at the articulations, whorls of short, linear, pointed leaves, and in their axils round sporanges or fruits. These fruits are undoubtedly of the same kind as those of the fragments described above, and, to my belief, belong to the genus Asterophyllites. Against my opinion, still is this fact: that nothing, among our recent ferns, would lead us to suppose that there ever lived species of ferns with whorled leaves. But we see, in the vegetation of the coal epoch, some peculiar features of a far more abnormal and unexplainable character. The question can be decided only by well preserved specimens. And though I have recently seen two specimens of Annularia sphenophylloides Ung., the one from Newport, R. I., the other from Illinois, whose appearance did perfectly agree with what I suppose to be the fruit-bearing leaves of Annularia, this appearance is not distinct enough to permit a positive assertion. If my supposition concerning the fructifcations of Annularia should be confirmed, this genus would appear as a link of transition between the Equisetacece and the Ferns, as the genus Sphenophyllum appears to be one between the Lycopodiacere and the Ferns.

Art. XXXIX.- On two Oceanic species of Protozoans related to the Sponges; by James D. Dana.

The Sphærozoum figured below (fig. $1 a$) was collected by the writer in the Pacific, near latitude $30^{\circ} \mathrm{N}$. and longitude 178° W., during a calm, on the 26th of May, 1841.

Figure $1 a$ represents the gelatinous globule of natural size.

The ocean's waters were filled with this species, and another represented in figure 2α. The minute dots covering the globule, one of which is magnified in figure $1 b$, were closely crowded, as shown in figure 1a. In this respect, the species differs widely
from the figure of a species by T. H. Huxley in the Annals and Magazine of Natural History, xliii, 433, pl. 16; and, as it hence appears to be distinct, the writer has named it Sphcerozoum orientale. About the dots, or ocelliform spots (zooids), the spicules (supposed to be siliceous) were very numerous and much branched as in fig. 1b. The general mass had an exceedingly faint bluish tinge; the centre circle of the ocelliform spots was of the same tint, while the ring around was of a very faint ochreous shade. The globules represented on the ocelliform spots in fig. $1 b$ were yellow.

The other species (fig. $2 a$) had the same general color, and similar ocelliform spots as to form, color and numbers, without the spicules. Figure $2 b$ represents one of the ocelliform spots; the dots in the surrounding mass correspond to minute yellow globules or cells. This species is included with the Sphærozoum under the genus Thalassicolla of Huxley. This name has been since restricted to Huxley's T. nucleata, and the name Collospherera applied to forms much like fig. 2 by Müller. The mass was less firm to the touch than that of the preceding. A fuller examination of this and the related species is required to decide whether the one here figured is new or not.

Both of the species had the power of motion by a movement like expansion and contraction, and also the power of sinking and rising at will in the water. No external opesing could be distinguished.

As the species are probably related to the sponges, as suggested by Huxley, they have considerable interest, and especially the Spherozoa, which, like most sponges, seem to have the power of secreting silica. The extent to which the ocean, over an area of many square leagues, was crowded with them, suggests that such floating sponges may have been, in past time, of geological importance as one of the sources of silica for the flint or hornstone and siliceous petrifactions of ancient limestones and other rocks.

These species received from the author but a partial study, as those of another class-oceanic Crustaceans-were engaging his attention at the time. The above figures and descriptions are from colored drawings made on the spot, and from the notes accompanying them.

Art. XL.-Key West Physical Notes.-1. Zodiacal Light. 2. At. mospheric Transparency. 3. Gulf Stream Cloud Bank. 4. Ray Bands. 5. Northers. 6. Hurricanes. 7. Ventilation. 8. Yellow Fever. 9. A Water Moonrise; by Major E. B. Hunt, Corps of Engineers, U. S. A.

Some observations on physical phenomena, incidentally made by me during my period of duty at Key West, (1857-62,) may not be devoid of interest, and their discussion may have some scientific value.

1. Zodiacal Light.-During the winter, and especially in February, the zodiacal light habitually attains at Key West a remarkable degree of distinctness. I have repeatedly traced it nearly to the zenith, but never reliably beyond. The main point to which I would draw attention, is the great amount of light proceeding from this source. I have over and over again observed a distinct shadow cast by the zodiacal light. Walking from it, I have seen my shadow moving before me on the white roadway, as if cast by moonlight, though without definite bound. aries. I have, by passing along close to a whitewashed wall, seen my shadow very positive in darkness, though obscure in outline. Waving my arm up and down within a few inches of the wall, a tolerably defined outline of shadow resulted. In all respects, the shadows are what should result from so diffused a light. It may be remarked that much the largest volume of light comes from the portion below 15° to 20° from the horizon. Sometimes Venus, by its brilliancy and position, rendered the observations doubtful ; but I have seen these shadows unmistakably when Venus was not visible, and so late as to exclude the idea of twilight refractions as their cause. I do not know if shadows by zodiacal light have before been noted, but other persons corroborated my impressions, leaving no doubt that real, but dimly outlined shadows, of readily observable darkness, are habitually produced by the winter zodiacal light. This gives a more correct idea of its great increase of brightness on nearing the tropics, than can be conveyed by general terms. It is indeed a singularly beautiful thing, to see this grand mass of mellow light, softly fading out into the clear sky, and quite obscuring the lustre of the Milky Way by its superior brightness. Where it intersects the Milky Way, I think the two are, at the brightest, about equal in glow, but from thence to the horizon the zodiacal light so increases in radiance as to seem almost a prolongation of twilight.
2. Atmospheric transparency. - There is a beauty in the sky at Key West, which can hardly fail to impress even casual observers. The stars shine out with a clear lustre and fullness of numbers,

Which almost exceeds the display on the brightest and coldest nights of a northern winter. It seems singular to find a climate so moistened by the Gulf Stream, still glorying in the starriest of nights. Association had made a lavish display of the starry hosts seem the peculiar prerogative of clear, cold, winter nights, and yet here they came forth, amid moisture-laden tropic airs, with a magnificence and profusion I had never seen excelled. It needed no long acquaintance with the equable climate, the nearly unvarying temperature and the steady trade winds, to see that the reason of this phenomenon is to be found in the prevalent tranquillity of the atmosphere, where it is so little influenced by contrasts of land and sea. These small keys scarcely vary the ocean conditions. I have known the thermometer at Boston pass through a longer range in one day, than in the whole year at Key West. The winds are mostly gentle and steady in direction. There are usually no conditions of great contrast and no irregular admixtures between upper and lower strata. The requisites for developing visible vapor are rarely prevalent, and I have only twice knowa positive fogs at Key West. However moist the air may be, if the atmosphere lacks the conditions of contrast and intermixture to make that moisture visible as vapor, the sky should seem habitually clear. Such is the obvious fact at Key West. With a climate never, even after the severest northers, below 45°, rarely down to 55°, and seldom rising to 90° in the shade, it is not to be expected that the admixture of contrasted currents should often cool to the dew point portions of this moist warm air. The equability of atmospheric conditions is thus the real reason of the rare beauty of the sky and the rich display of starry splendors, so attractive amid the soft and balmy airs of this locality, which lacks but one degree of being tropical. There is much in the quality of these nights to suggest that the astronomer would find his paradise here, but the summer mosquitoes, rain and yellow fever are rebutting facts. For winter observations, the conditions are truly admirable.
3. Gulf Stream Cloud Bank.-Among the striking local phenomena of Key West, is the formation, shortly before and after sunset, of a grand bank of clouds above the Gulf Stream, rising some 200 to 500 feet in prevailing height. In running along the Gulf Stream or its margins, this bank is habitually seen during the sunset hours, and a profuse atmospheric moisture is felt while sailing in the evening over the warm-water belt. Key West being about 12 miles north of the regular Gulf Stream waters, this cloud bank rises gradually along the southern horizon, stretching from E. to W. in massive and irregular fleeces, dark below and silver gilt above, under the rays of the setting sun. When the prevailing S.E. wind is brisk, this cloud bank
Ax. Jour. Scr.-Second Series, Vor. XXXV, No. 105.-May, 1883.
drifts northward and portions are often brought into the western horizon, where they are tinged with a rich red glow. The sunset scenery is in great part the result of this movement of Gulf Stream clouds, and a certain mannerism or monotony of sunset effects follows. There is much beauty of configuration and magnificence of coloring in these warm sunset clouds, but the lack of contrasting land masses detracts not a little from their variety and picturesque effects. The cloud battalions are habitually formed for these evening dress-parades, but during the morning and midday hours there is usually clear bright sunshine, occasionally mottled with a few lounging cloud-waifs which seem to drift idly and without purpose on the sea breeze. There is rarely any other marked coloration of clouds than red, orange and yellow, with simple white and dark, according to the light or shadow of the portions seen. The exclusive exhibit of warm colors in this tropical atmosphere and the glowing impression of perennial heat which the eye thus drinks in, naturally raise queries concerning the subtle affinity which couples literal warmth with warmth of color. What exquisite thermometry resides in the optic nerve, which perceptively tells us how the great source of heat has ruled the day and shall rule the morrow? It must be something more than chance which associates the heat rays of the spectrum with those primitive colors which the artist calls warm. The connection must be causal, and may be due to a positive perception of heat in the optic nerve itself. This causal impression grows into one's faith as he looks forth, evening after evening, on the fervent coloration of these Gulf Stream clouds, tropieal alike in origin and promise.

The cause of the evening cloud bank along the Gulf Stream is not hard to find. During the day the sun is constantly heating up the air above the water surface, thus adding to its capacity for holding moisture in invisible suspension. With the growing heat, the point of saturation rises. The warm Gulf Stream water, under the steady radiations, vaporizes rapidly along its surface, and contributes great daily increments to the invisible atmospheric waters. When the meridian is past, and the falling sun acts with decreasing force, the atmospheric temperature declines, until, as the sunset approaches, the water laden stratum over the Gulf Stream cools to the dew point, and the invisible vapor is bodied forth in cloud masses. The superior temperature of the Gulf Stream water, by augmenting the daily evaporation, brings the air above it to the point of saturation, while the surrounding cooler waters fail so to change the adjacent air as to reach this point when the sun declines. Along the whole course of the Gulf Stream, the principle of this daily scene-shifting applies.
The famous fogs of Newport are obvious consequences of the transfer, by a wind blowing in shore, of great masses of air,
heavily charged with invisible vapor from the Gulf Stream surface. As these air masses arrive over the littoral and Narragansett waters, still cold with the accumulated cooling of the winter, their temperature rapidly sinks until the dew point is reached, and a fog results. It is in spring and early summer that this fog mechanism is perfect; but as the Bay, shore and shore waters get heated up in the advancing season, the change of temperature by shoreward transfer grows less, until in the late summer and fall, when fogs are rare.
4. Ray-bunds.-The appearance familiarly known as "the sun drawing water" is very frequent at Key West. It is not uncommon to see the rays in the east, converging to the point opposite the sun, and as much below the horizon as the sun is above, which I will call the anti-sun. Sometimes the converging raybands in the east are nearly or quite as distinct as those in the west. The unusual frequency of these exbibitions is a result of the inshore drift of the Gulf Stream Cloud Bank. The raybeams, through the breaks in the cloud masses, are made visible by the diffused and tenuous vapor incident to the evening cooling.

The remarkable observation on ray-bands which I wish to note, I have had occasion to make several times, when a faint haze has rendered them distinct throughout their whole course from west to east. The result is that the W. and E. systems of convergent rays visibly run into each other, producing continuous arches of light across the entire sky. The portion of each band near the perpendicular to its length was seemingly much the broadest, and the band thence tapered towards the sun and anti-sun, according to the customary perspective. Here is a notable point of singularity. So long as the W. and E. systems of ray bands are seemingly distinct, they appear to the eye as truly rectilinear and convergent. When a ray band is distinguisbed entirely across from W. to E., it has the appearance of a grand arch, curved in its entire extent. This is an optical delusion, caused by the mental identification of the band with the sky-dome. The observer is really placed amid a system of strictly parallel solar beams of constant cross section. The portions nearest the eye seem broadest, by reason of the greater visual angle subtended at and near the perpendicular. So long as we see only the disjoined W. and E. systems of convergent bands, we see them correctly in space according to simple perspective laws, just as when we look at the rails in a long, straight reach of railway. When however we look on a continuous luminous band across the sky, no distinetness of mental or logical conviction can make that straight band or beam in atmospheric space seem anything but a grand arch, widest near the crown, and resting on the sun and anti-sun as piers. I think it
safe to say that no clearness of geometric conception can make the eye tell a different story.

Undoubtedly we entertain the habitual, perspective fallacy of a sky-dome, truly spheroidal, with the minor axis vertical. No force of conviction prevents our seeing this dome, day by day, and thus giving it a vital reality, utterly contrary to reason. From childhood, this beautiful, phantasmal sky seems ever bendiug over us, and with just as much reality as the houses and forests. When we say that this sky is blue, we really mean that somewhere, not many miles away, there is a blue crystalline sphere, under which we dwell, and in which the stars are set. However perfect may be our logical conviction that atmospheric air is a blue, transparent medium, which gives us the impression of a distant blue sky-dome, we always see that dome as a reality. When therefore we see a ray band stretching from sun to antisun, across the face of this apparent sky-dome, we see a curvature, under the despotism of a beautiful and perennial phantasm, which has grown with our growth, until it has for us as much perspective reality as the solid ground itself. Were we to see a straight wire or timber, supported above us from the earth, and running out of sight in each direction, we should never confuse it with any sky phantasms; nor do we in the simple case of seemingly divergent ray-bands, although we find it hard to recognize true parallelism in this apparent case of radiation from a centre which we fancy to be not very remote. I think the ray-band arch is an appearance admirably fitted to teach us how great may be the delusive power of ideas which we logieally repudiate but perceptively retain.
5. Northers.-The relaxation and enervation due to the warm and moist climate, which the Gulf Stream carries with it, is in the winter occasionally relieved by the dry, cool, exotic air of the "norther." The wind before a norther nearly always goes around by the south and west. The south wind is apt to blow one or two days with some steadiness, and I know no more debilitating and unnerving influence than the south wind at Key West. The traverse of the wind through the western quadrant is usually quite rapid. When it reaches the W. or W.N.W. point, a lull sets in, and the practiced eye looks in the N.N.W. for the rising of the "Norther Bank." A long, low, dark line shows itself above the horizon and rises with increasing rapidity, the dark mass preserving its upper margin sharply defined and horizontal. The front moves down magnificently upon us, and for a few moments, amid profound calm, we see its wild rush and hear its dull murmur. Suddenly it strikes us, and instantly all is uproar, noise, confusion, dust and darkness. Leaves and other light articles career madly, blinds are violently slammed, and it is all one can do to shut doors and windows to exclude the wild puffs of dust and leaves. Sometines, for a few moments
there will be a dash of rain, which however speedily gives way to clear, dry, cool air. Amid all the wild inaugural ceremonies of the norther, the cool, brisk air sweeps away languor and exhaustion, and raises an effervescence of spirits which is quite equal to enjoying the mad dance, with all its dust and darkness. In a few minutes the wild bumor passes, and the norther settles itself to work. Steadily it blows on from the N.N.W. or N. for a day or two, working around very slowly to the eastward. About the third day, its force is mamly spent and it shades out into a mild and delicious N.E. breeze. Still working slowly eastward, it settles at E.S.E. when the regular trades prevail for a season, until another excursion by the south preludes another circuit of the compass.

The norther of Key West is unmistakably a stratum of cold air, moving along the earth's surface from N. to S. with a flow as of a great air river. During the moments of admixture between the head of this current and the previous, warm, moist air, there is such a sudden cooling of portions of the latter, that it sends down sometimes a few dashes of rain drops, and forms the dark vaporous mass which shows in the distance as the "Norther Bank." When the current is fully established, there is no more admixture and hence no more rain, but instead a bright, clear sky and a flow of dry cool air, which braces the lungs, and brings out a crop of efflorescent crystals on the surfaces of the brick walls of Fort Taylor, making it seem suddenly gray with age. There are usually from five to ten regular northers during the winter half-year, the first coming in November and the last in March, though feeble imitations occur late and also during the winter. Last winter there was no thorough norther until March, and there is considerable irregularity about their numbers and occurrence, but, in all, the type is as above defined.
6. Hurricanes.-As the Key West winter has its northers, so the summer has its hurricane or hurricanes. I have witnessed but two; one quite severe and the other moderate. Mr. Redfield has so fully worked this ground, that it need only be remarked by me, that these two gales conformed to his theory of revolving storms. I here introduce two sets of barometer observations, taken at Key West during the August gale of 1861. The first was made by Mr. Charles Howe, the Collector, at the Custom House, as follows:

Date.	Barometer.		Wind.	Character of the Weather.
1861.	6 A. M.	2 P. ${ }^{\text {a }}$		
Aug. 14,	$30 \cdot 50$	$30 \cdot 46$	North.	Fresh.
15,	30.30	$30 \cdot 28$	N.E.	Very fresh at $11 \frac{1}{8} 0^{\prime} c$. P. M. Barometer 29.94 : at 1 n'c. A. m. wind shifted from
16,	$30 \cdot 06$	$30 \cdot 24$	South.	29. 9 : to S , and blew until $5 n^{\prime} \mathrm{c}$. when it
17.	$30 \cdot 40$	$30 \cdot 60$		commenced moderating and barometer commenced riaing.

"Note.-The thermometer during the past 3 days has ranged from 80° to 82°."

The second series was made at the Coast Survey and Smithsonian Magnetic Observatory on the Fort Taylor grounds.

Aug. 14th.	9 Р. м.	29.936	Aug. 16th.	2 р. м	$29 \cdot 796$
15th.	7 А. м.	$29 \cdot 788$		9	$29 \cdot 900$
"	2 р. м.	29.700	17 th.	7 А. м.	29.990
"	"	29.500	"	2 Р. M.	30.058
16th.	7 А.m.	$29 \cdot 504$	"	-	$30 \cdot 140$

A comparison of these records shows that one of these barometers has a large constant error, but the fluctuation is alike marked in both. The sudden shift from N. to S. was followed by a rapid rising of the waters in Key West Harbor, and in the gale of 1846 this heaping up on the south side of the Key amounted to about 7 feet.
7. Ventilation.-The close neighborhood of the Gulf Stream renders the air of Key West peculiarly warm and moist. This makes free ventilation and shade the chief essentials for all persunal comfort. A peculiar difficulty exists in the preservation of all kinds of perishable articles of food, the combination of warmth and moisture being the very condition for rapid decay. I think there can be but little doubt that, for many articles, the correct plan for preservation is, to seal them up in close, shaded chambers, in which the air is kept as dry as possible. An experiment which I made on the preservation of flour, in a room opening at top into the Fort Taylor bakery, and the air of which was thus kept artificially dry, indicated that flour could there be kept sweet at least twice as long as when stored in a very dry, wooden storehouse, which would usually be chosen as the very best storage. I have no doubt that the legitimate method of keeping powder magazines dry there, is by totally excluding all ventilation. A magazine free from leakage, once filled with dry powder, with the air once dry and then sealed hermetically, would remain utterly unchanged and the powder could not get any moisture to absorb, hence it must perforce keep dry. By the use of chlorid of calcium or other moisture absorbents, or by the induction of occasional changes of heated air, all moisture could be kept from approach to the powder. If we admit free ventilation, we furnish a constant supply of moisture for absorption. The effect of opening ventilators in the Fort Taylor magazines is sometimes actually to wet the floor and other surfaces on which the moist air blast is thrown. The interior of the magazine is enough cooler than the outer midday air to cause an active deposition of moisture; so that the nearly saturated noon and afternoon air is the worst of all in its effects. There seems to me but little doubt, that a careful study of pliys* ical principles, in their application to the preservation of supplies,
in store at Key West and other like positions, would reverse much of the existing practice, and would enable us to preserve for a long time the stores which are now so speedily ruined by moisture. The adoption of closed inner chambers, artificially dried, with an exterior ventilation, under the roof and within the outer walls, to keep down the temperature, would add enormously to the durability of perishable supplies, and to the dry storage of gunpowder or other moisture-absorbing stores. These views have unfortunately had but little chance of practical test, except in the instance of flour storage already cited. Their great importance in their application to such public stations as Key West, the salvation of which may turn on the preservation of flour and other perishable stores, would certainly justify a most careful experimental research under the strict guidance of scientific indications.
8. Yellow Fever.-I will venture here to introduce a singular and significant observation, concerning the characteristic disease of tropical shores. On two separate occasions, when there were cases of yellow fever in the U. S. Marine Hospital, which building I passed daily and saw almost habitually, 1 have seen a flock of buzzards, circling over and near the roof of the hospital by the hour together, and continuing this day after day. I have never seen them do this except when there were yellow fever cases in progress under the roof. So marked is this fact, as to have produced a common belief in town, that they only hover over the hospital when there is yellow fever there. I am quite persuaded that such is the fact, and can only interpret what I have mysclf seen as indicating that an odor is then thrown out on the air which the keen scent of the scavenger bird detects from afar. The material particles, whose diffusion is thus testified to, seem likely to afford the means of transporting the disease on the air, in a manner quite agreeing with the facts of its propagation. The hint, thus afforded by the keen-scented buzzards, may have value in assisting to comprehend the mode of conveying and diffusing this fatal malady, and the particles scented may indeed be the actual fomites so much talked of and so little understood, in discussing the controverted questions of contagion and communication.
9. A Wuter Mfonrise.-When becalmed in a beautiful evening between the Reef and the Key, the water being very tranquil, I saw the moon rise over the sea with some interesting appearances. The long reflection of the emergent disc on the water was well defined, and seemed to be a part of the moon itself. As the under semicircle of the dise began to rise above the water, there was an appearance of drawing in at the sides of the combined luminous figure. As this seeming contraction progressed, the outline showed a curved figure, like that made by water in
raising a cohering disc from its surface. There was no cusp point between the dise and the disc-reflection, but a seemingly distinct curve, concave outwards. As the disc rose above the water, this curve opened, and a broad connecting column seemed to bind the disc and its reflection, just like a coherent water column between the lifted disc and the level water surface. Instantly this seeming column parted as if broken, when the moon was seen to be distinctly above the water by about a fourth of its diameter, as nearly as I could estimate. The sudden shock of rupture appeared perfectly distinct, and the semblance of a material connection between the disc and reflection was perfect, both before and at the instant of visible separation. This observation has interest in its relation to the contact phenomena of eclipses.

Art. XLI.-Observations upon some of the Brachiopoda, with refo erence to the genera Cryptonella, Centronella, Meristella, and allied forms; by James Hall. Abstract of a paper read before the Albany Institute, February 3d, 1863.' (Communicated by the author.)

Is the study of the Palæozoic Brachiopoda, we are often forced to rely upon the general external form, and texture of the shell, for determination of the generic relations, until more extensive collections may furnish us with weathered specimens, or with crystalline or silicified ones, which, admitting of being cut, and macerated in acid, will enable us to ascertain the true interior characters.

In many instances, so nearly do very distinct genera approach each other in their external form, that reliance on this alone is very uncertain, and will surely lead to much confusion, if insisted upon as the means of generic determination.

For a long time, and until we began to learn something of interior structure, a large number of species, now known to belong to distinct genera, were embraced in the designations Terebratula and Atrypa. At a later period, when the genus Rhynchonella had been established in its application to many Palæozoic species, we find numerous species, which from external form had been referred to that genus, possessing characters incompatible with it.

One of the most common of these is Terebratula cuneata $=$ Rhynchonella cuneata $=$ Retzia cuneata, and which will probably

[^75]be found to differ from true Retzia, taking its place near Rhynchospira.

So long as we remain unacquainted with the interior of the shell, we are compelled to refer the species to some genus having similar external forms, though the fibrous or punctate texture may in many instances prove a valuable aid in these references.

Among the forms most difficult to determine, are the numerous smooth or finely striated terebratuloid shells, having either ovoid, elongate, sub-circular or transverse forms. Among the genera of one family which in recent times have been established and proposed to receive these, are Athyris (= Spirigera), Merista (= Camarium), Meristella and Charionella; while the subdivisions of the terebratuloid forms in another direction have given Terebratula proper, Terebratulina, Waldheimia, Terebratella, Centronella, Cryptonella, Rensselueria, etc.
The first four are of the athyroid type, and have internal spires, as in Spirifer. The shell in all these is fibrous, and we have therefore in the externcll shell the means of separation from those of the other type.

In all the latter group we find modifications of the internal appendage, called in Terebratula the loop; but in none of them do spires exist. Moreover, in all these the external shell is punctate; and we do not yet know a punctate shell, of the external character here indicated, which contains internal spires. ${ }^{2}$

The external characters, therefore, of the terebratuloid forms may be made useful in indicating the family relations of the species, and may prevent us from referring to the family of Spiriferidee those which belong to the family of Terebratulidu.

In the Thirteenth Report on the State Cabinet, published in 1860 , I proposed the name of Meristella for certain forms which I regarded as separable from Athyris and Dferista; and for the semi-plicated forms otherwise of similar character, I suggested the name Leiorhynchus. At the same time I described under Terebratula the following species: T. Linchloeni, T. rectirostra, T. Lens and T. planirostra; under each one, distinctly stating the shell structure to be punctate, which character at that time afforded me the principal means of distinguishing these from athyroid species of similar form, as Mcristella Hascinsi, Mr. Barrisi and M. Doris, which, with Atrypa scitula (4 th Dist. Report) $=$ Meristella scilula, have at a later peroid been placed by Mr. Billings among the typical forms of his Genus Chariemello.
Having ascertained some farther characters of these punctate Terabratuloid shells, I proposed in the Fourteenth Report on

[^76]AM. Jour Sci.-Second Skries, Vol XXXV, No. 105.-Mat, 1863.
the Sate Cabinet, ${ }^{3}$ page 102, the name Cryptonella, giving as one of the characters "shell structure finely punctate." I remarked in a concluding paragraph:
"The species of this genus are more elongate than Merista and Meristella, and those now known are less distinctly marked by mesial fold and sinus; while the beak is more attenuate, often a little flattened, and rarely so closely incurved as in the genera cited. The punctate structure of the shell is a distinguishing feature."
In the Fifteenth Report on the State Cabinet, I gave (at page 161 [133], pl. 3) some illustrations of the muscular imprints, dental lamellæ, etc., with figures of a single additional species from the Lower Helderberg group."

* Made to the Legislature April 10th, 1861, and published in July, 1861.
- In the Canadian Naturalist and Geologist for October, 1862, we find the following exposition of the relations of the genus Cryptonella:
"The genus Cryptonella, illustrated on pl. 3, p. 133, is precisely identical with Charionella, described by me in the Canadian Journal of March, 1861, p. 148, and illustrated in the May number, pp, 273,274. It includes the species described by Prof. Hall in the Thirteenth Report under the names of Meristella Haskinsi, M. Barrisi, M. Doris, Terebratula Linckleeni, T. rectirostra, T. Lens and T. planostria, [T. planirostra]. Besides these, the Atrypa scitula of the New York Reports, C. Circe, and apparently a number of European species belong to it. Cryptonella was first published in July or August, 1861, three or four months after the learned author became acquainted with its characters through the study of my papers."

The following is the description of the genus Charionella, copied from the Cano dian Journal (March, 1861), No. xxxif, p. 148:
Genus Charionella. "Since the foregoing article on Devonian fossils was written, I have ascertained the generic characters of the so-called Atrypa or Athyris scitula. It has internal spires with their apices directed outwards, as in Athyris and Spirigera, but the dorsal hinge-plate has its anterior margin and a large portion along the middle anchylosed to the bottom of the valve. In another congeneric species, the middle portion of the same plate is obsolete, there remaining only two small, thin, nearly vertical septa (socket plates), one on each side of the cavity of the umbo. The perforation in the beak of the ventral valve is bounded on the lower side by a deltidium of either one or two pieces, or by a portion of the slell. The mesial septum in the dorsal valve is either rudimentary or entirely absent.
"The several species of this group, at present known to me, resemble Athyris, but are not so convex, and are besides more elongate ovate, or approaching to Terebratula in general form. I shall give further details and some figures in the next number of the Journal.
"The genus is only proposed as a sub-genus, to be retained in case Athyris is divided."

In the Canadian Journal, No. xxxmit, p. 273, we have "Charionella Circe, n. sp." (referring to the illustrations). "The first figure exhibits a specimen with the dorwal valve partly removed, showing the internal spires. The other two figures are a vide and ventral view of another specimen."
"By treating partially silicified epecimens of this genus with acids, I have ascertained that the structure of the hinge plate differs from that of Spirigera in being either obsolete along the middle or anchylosed to the bottom of the valve. In Athyris (=Meristelli Hall) there is a well developed hinge plate, supported beneath by a strong mesial septum, which extends sometimes nearly to the front of the valve. In Charionella there is either no mesial septum, or one that is merely rudimentary. In one specimen there is a remarkable partition, which runs abliquely from near the beak to the margin near the front. It completely divides the internal cavity into two parts. This I believe to be not a mesial septum, but a

In September, 1862, Prof. A. Winchell, in his "Descriptions of fossils from the Marshall and Huron Groups, of Michigan," published a description of Centronella Julia, in which he describes the loop, which is proved not to be in accordance with that of Centronella as described and illustrated in the Canadian Naturalist and Geologist, vol. iv, April, 1859.
Through the kindness of Prof. Winchell, I have been put in possession of some specimens of this species, with parts of others illustrating the internal structure, together with drawings representing the loop.
An examination of the external characters shows that the shell has the form and texture of Cryptonella. "Both valves with reg. ular lens-like convexity, shell obsoletely striate concentrically, and having a minutely punctate structure." The form and other characters of the cast are like those of species referred by me to Cryptonella. In the ventral valve are two delicate, slightly curving dental lamellæ, which are shown in casts by a narrow slit on each side of the beak. "The casts exhibit on the ventral side a delicate impressed line extending from the beak to the middle, and on the right and left of this a fainter one; on the dorsal side, a median impression, with two fainter ones on the right and two on the left." These characters appertain to the casts of Cryptonella (see fig. 9), as shown in the ventral side of large individuals; having three defined, slightly impressed spaces, limited by narrow lines which extend to the middle of the skell, below which there are sometimes vascular impressions visible.
On the dorsal side, we have the median impressed line with two fainter ones on each side, which, in some conditions of preservation, are obscured by the muscular impression; and below these are frequently seen diverging vascular impressions.
The internal loop of Cryptonella Julia, illustrated from drawings of Prof. Winchell, is shown in figures 1 and 2, which are four times enlarged, and are thus described: "A delicate ribbonlike loop originates from the stout blunt crura on each side of the socket-valve, having its flat sides at first vertical; the two branches of the loop proceed at first in lines parallel or a little convergent, and then gradually diverge, widening as they proceed, and assuming an inclined position, until, approaching the front of the valve by a regular curvature, the lower edge has become anterior, giving the band an angle of 30° with the plane

[^77]of the shell: approaching the median line, the band rapidly widens, and the front margin is drawn forward in a long acumination, while the inner margin is regularly concave, except that near the median line it turns abruptly forward so as to meet that line at an acute angle. The loop thus forms an urceolate figure on its inner margin, and on the outer a somewhat oval one, truncated behind and attenuately acuminate before. In the median line where the two branches meet, both are suddenly deflected downwards, forming a double vertical plate, not quite reaching the ventral valve; the upper edge of which, when

3.

2.
4.

viewed from the side, is flatly roof-shaped, while the lower edge describes two convexities, the greater anterior, leaving a notch between them. The surfaces of the loop and median plate are covered with minute obliquely conical pustules, in some places seeming to become spinulous."

Fig. 1. Dorsal view of Cryptonella Julia, showing the loop and horizontal plate. -Fig. 2. Profile view showing one band of the loop with the vertical plate. From drawings, four times enlarged, by Prof. Winchell.-Fig. 3. Front view of the loop. - Figs. 4 and 5. Ventral and dorsal views of the cast of a more oblate form of C. Julia enlarged to correspond with figs. 1 and 2.-Figs. 6 and 7. Ventral and dorsal views of Cryptonella Meta, from the Schoharie grit.

Fig. 4 is given simply to show the dental lamellæ of the ventral valve; the delicate impressed line in the centre and a fainter one on each side, described by Prof. Winchell, are not shown in the figure. These marks, however, are shown in figs. 6 and 9 , and characterize the ventral valves or casts of this valve in all the known species of the genus.

In the Fifteenth Report on the State Cabinet, I gave the accompanying fig. 8 of the dorsal valve, and fig. 9 of the interior of a ventral valve. Figures 10 and 11 are dorsal and profile
views of Cryptonella eximia, from the Lower Helderberg group, the earliest species of the genus known to me.

Figs. 8 and 9. Dorsal and ventral views of Cryptonella (generic illustrations).Figs. 10 and 11. Dorsal and profile views of C. eximia.
The genus Cryptonella may be characterized as follows:
Genus Cryptonella Hall, 1861.-Shells terebratuliform, equilateral, inequivalve, elongate or transverse, ovoid or sublenticular in form, without median fold or sinus, or with these features very slightly developed towards the base of the shell. Ventral valve with the beak extended or incurved, and terminated by a circular foramen which is limited on the lower side by two small triangular deltidial pieces (these are sometimes not visible externally, and the lower side of the foramen is concealed by the umbo of the opposite valve). Shell-structure finely punctate; surface marked by fine concentric strix, which are sometimes obsolete. Valves articulating by teeth and sockets, the dental lamellie of the ventral valve extending in thin vertical plates into the cavity of the valve. The muscular impressions of the dorsal valve are strongly marked above, and extend, in two narrow, gradually widening impressions, more than halfway to the base. The ventral valve shows elongated muscular and vascular impressions below the rostral cavity.
In the dorsal valve, the hinge-plates, or bases of the crura, support a slender loop, the two limbs of which are flattened, with the faces vertical; and in its extension forward, the upper margins are inclined towards each other, and, gradually widening, become joined, and thence extending forward, form a single lanceolate plate, which may be more or less attenuate in front. These laminæ of the loop, after becoming thus conjoined and spreading laterally, are abruptly deflected in a vertical plate along the median line, extending into the cavity of the ventral valve, as shown in figure 2 , which,

Cryptonella. while looking upon the dorsal side of the loop, may sometimes
be seen projecting backwards between the bands of the loop, as well as extending in front, as shown in fig. 12.

In casts of the ventral valve, we find the marks of two thin dental lamellæ extending to a greater or less distance below the beak. Along the median line in the ventral cast, there is usually a narrow flattened space limited by a slender line; and on each side a less distinct narrow space, limited in the same manner. In the cast of the dorsal valve, there is a median impressed line, and two of less strength on each side of this.

The species of this genus, known to me, are the Cryptonella (Centronellu) Julia, and those described as Terebratula in the Thirteenth Report on the State C'abinet, and which in the Fourteenth Report were referred to Cryptonella, viz. Cryptonella (T.) rectirostra, C. (T.) Lens, C. (T.) planirostra; and C. eximia, of the Fifteenth Report as well as a new species from the Schoharie grit.
The Terebratula Linclelceni, which has the external characters of Cryptonella, and which I have referred to that genus, presents some slight differences in the muscular impressions, which, taken together with its rotund form, are suggestive of true Terebratula, to which genus it may possibly belong.

The species of the genus Centronella heretofore described have the ventral valve highly convex or subangular in the middle, with the dorsal valve flattened or concave in the middle, or with a median depression, and convex at the sides.

The character of the genus, as given in the descriptions and illustrations of Mr. Billings, are as follows.

Genus Centronella, Billings, ${ }^{\circ}$ 1859.-" Generic characters: Shells, having the general form of Terebratula. Dorsal valve with a loop consisting of two delicate ribbon-like lamellæ, which extend about one-half the length. These lamelle at first curve gently outwards, and then approach each other gradually, until at their lower extremities they meet at an acute angle ; then, becoming united, they are reflected backwards towards the beak in what appears to be a thin flat vertical plate. Near their origin, each bears upon the ventral side a single triangular crural process. Name, from the Greek $x \in \nu$ reov, a spur. This genus is intermediate between Terebratula and Waldheimia. In the

Fig. 13 (4). Interior of the dorsal valve, showing the loop.-Fig. 14 (5). Longitudinal section, showing the position of the loop in the interior.
former, the loop is short, not exceeding greatly one-third the length of the shell, and not reflected. In the latter, it extends

[^78]nearly to the front, and is reflected, but the laminæ are not united until after they are folded back."

In Centronella, as thus illustrated, we have a simple loop, or the two limbs becoming united at an acute angle at the point of greatest anterior extension, whence they recurve in a thin vertical plate which is not attached at either margin; approaching, in some respects, to Waldheimia.

This internal feature is accompanied, in the cast of C. Glansfagea, the typical form of the genus, by other differences which distinguish it from the casts of typical species of Cryptonella.

Fig. 15. Ventral view of cast of Centronella Glans-fagea.-Fig. 16. Dorsal view of cast of the same.-Fig. 17. Profile view of the same.

In the cast of a ventral valve of C. Glans-fagea, fig. 15, we have the filling of a deep rostral cavity; the dental lamellæ have been thick and strong, not extending as thin plates into the cavity of the shell as shown in several species of Cyyptonella, but having a thick blunt lower termination which leaves no space, or scarcely an appreciable one, to be filled between it and the shell. The spur, or filling of the rostral cavity, is striated; at its base in the centre, on the body of the cast, is a depression; and on each side are fainter striated impressions, indicating the points of muscular attachment.

The interior of the ventral valve of Centronella impressa' shows similar strong rounded and blunt dental lamellæ, with a deep rostral cavity and muscular markings, which would give a cast similar to that of C. Glans-fagea.

The cast of the dorsal valve of C. Glans-fagea presents a slightly concave surface, and on each side of the apex two large and deep cavities made by the bases of the crural processes; and between them is a narrow filling of stone. The centre is marked by a double muscular impression, the two parts separated by a narrow groove: above this, and at the base of the crura, are some points marked as if for muscular attachment (see b, fig. 16).

[^79]The interior of C. impressa presents a very strong double process below the beak of the dorsal valve, corresponding to those in C. Glans-fagea.

The external form of all the species heretofore referred to Centronella is a distinguishing feature, and, when proved to be accompanied by an internal apparatus so different from that of Cryptonella, will serve to separate them from all the allied forms.

As before remarked, it has been mainly upon modifications of this internal loop, or the apohysary system, that the separation of most of the genera in the family of Terebratulidoe has been made.

In Cryptonella, we observe considerable analogy with Rensseleria, where the slender bands of the loop expand and unite in

Fig. 18. Dorsal valve of Renselceria Suessana, showing the internal processes Fig. 19. Longitudinal section of the same, showing the relations of the parts. -Fig. 20. Interior of dorsal valve of R. ovoides. - Fig. 21. Longitudinal section of the sames. a broad plate, which is obtusely or acutely attenuate in front, and on the ventral side marked by a ridge along the line of junction; from which, at the posterior margin, proceeds a slen-
der process in the ventral cavity. We may readily conceive of this central longitudinal ridge or carina, along the cicatrix of the two parts, being produced into a thin vertical plate, projecting backwards in the line of the process from the base of the conjoined lamellæ in Rensselceria, when it would much resemble the median plate of Cryptonella (see figures 18, 19, 20 and 21.)

From the data bere given, it will be seen that the genus Cryptonella is nearly related to Centronella; differing in the external form of the typical species, and in some features of the cast.

Since the preceding observations were printed, I have received from Dr. Rominger a figure illustrating the interior of Centronella Glans-jagea, as observed by him (fig. 22). Admitting the identity of the species, this figure of the loop is quite different from that given by Mr. Billings for Centronella Glans-fagta; and shows essentially the same character as that of Ciyptonella. Should this internal structure prove to be the true structure of Centronella Glans-fagea. Centronella, the minor differences pointed out in the form of the shell and of the cast, between Centronella Glans-fagea and au-

Interior showing the loop, from a figure by Dr . C. Rominger. thentic Cryptonella, are scarcely sufficient to establish generic distinctions.

At a later date however, ${ }^{6}$ Mr. Billings has published Centronella Hecate, giving, in fig. $99 a$ " a specimen with the dorsal valve removed, showing the loop which is covered with minute crystals of silex." In this species, having all the external characters of a congener of C. Glans-fagea, no indication is given that any difference had been observed in the character of the loop, from that published in 1859.

Under these circumstances, I hesitate to unite, under a single generic term, these varieties of form with an internal structure so different from that observed in authentic Cryptonella, until a reëxamination of the original specimens of Mr. Billings shall confirm his first observations, or show them to correspond with the last named genus.

It is not probable, however, that materials for other genera, or for reference to existing genera, are yet exhausted, among the Terebratulidee of the Upper Silurian and Devonian rocks. While engaged in these investigations, Dr. C. Rominger has kindly sent me a fossil from the Hamilton shales, of Thunder Bay, Michigan, in which the terebratuloid loop is distinctly visible. The form of the shell is ovate, not very unlike Cryptonella, but more rotund; the lateral edges more incurved, and the space

[^80]Am. Jourr. Sci.-Second Series, Vol. XXXV, No. 105.-Mat, 1869.
below the beak of the ventral valve not so great, nor the deltidial plates so conspicuous as in species of that genus. On a critical examination of the interior, after cutting away the crystalline filling of the shell nearly to the loop, I am unable to find any difference between it and true Terebratula; and we have, so far as I know, for the first time the positive determination of this genus in our Devonian rocks. The position and proportions of the loop

Figures 23 and 23a, Illustrations of Terebratula Romingeri Winchell. are shown in fig. 23 , which is an outline of the shell from the dorsal side, twice enlarged. Fig. 23a is an enlargement of the loop, showing the crural processes.

At the same time, Dr. Rominger has also sent me specimens of Terebratula melonica of Barrande, one of which he has prepared so as to show in a very satisfactory manner the loop in its entire extent. The specimens correspond with those I have received from M. de Verneuil under the same name, and therefore we must regard them as authentic. The external form of T. melonica is not unlike some of the less gibbous of Cryptonella,

Fig. 24. Dorsal side of T. melonica, showing the crural processes directed down-wards.-Fig. 25. Ventral side of specimen, looking into the dorsal valves.-Fig. 26. Profile view of same, the figures twice enlarged.
and is much less gibbous than the usual forms of Waldheimia. The lamellæ are nearly parallel and near together, and the loop is extended four-fifths the entire length of the shell, when it is recurved, and, turning back, extends two-thirds of the distance to the beak of the dorsal valve; and the crural processes are farther from the base of the loop than is represented in the typical figures of Waldheimia, and are opposite the extremity of the recurved loop.

The above figures illustrate all that has been observed in this species.

Art. XLII.-Scientific Correspondence.

I. Letter on Companion to Sirius, Stellar Spectra and the Spectroscope,

 from Lewis M. Rutherftrd, dated 175 Second Avenue, New York, March 31, 1863.
Gentlemen:-

1. Companion to Sivius.-The position and distance of the companion of Sirius has been measured at my observatory, this season, with the following results. Seventy-nine measures of position, in all, have been made, on six different nights, of which the mean epoch is March 14, 1863 ; the mean position obtained is $81^{\circ} 21^{\prime} 45^{\prime \prime}$. Thirty-eight measures of distance have been made, the mean result of which is $9^{\prime \prime} .54$. Last year, the position resulting from a mean of forty-eight measures, on six nights, mean epoch March 28 , was $84^{\circ} 58^{\prime} 46^{\prime \prime}$, while twenty-cight measures of distance gave $10^{\prime \prime} \cdot 09$. From a comparison of these results, it appears that, while the change in distance, $0^{\prime \prime} .55$, is so small that its existence cannot be asserted with confidence, a marked change of position has takell place, amounting to $3^{\circ} 37^{\prime}$, a quantity so decided that the motion may be taken as fully established: at this rate of motion, assuming it to be circular and in a plane perpendieular to the line of sight, the little star would complete a revolution in about 100 years, or, I believe, twice as long as the period ascribed to the excentric motions in teclination of Sirits. I hoped to have been able to compare the direction and quantity of motion detected with the orbit attributed to the opaque body supposed to disturb the great star, but I have been unable to lay my hand upom the papers of Bessel and Peters upon this subject, in time for this letter. 1 still wonder that Clark's great little star has so long eseaped detection; it is a much less difficult object than Mimas, and never fails to show itself in my telescope on any moderately good night. I saw it distinctly in February, with a telescope of nine inches aperture and nine feet focus, made by Mr. Fitz, formerly owned by me, and now belonging to the Hon. Mr. Letsom, British Consul at Montevideo.
2. Stellar Spectra.-Since writing to you in I) ecember (p. 71 , this volume), I have mounted my astronomical spectroscope in a more firm and convenient manner; I have added a prism, by means of which the spectrum from a spirit lamp is constantly present in the field of view, during the observation of a star: I find this a most useful check, and by means of this comparison I have established the existence in the spectrum of Arcturus of the lines $\mathrm{D}, \mathrm{E}, b$, and G, and, almost with certainty, found that cach line in the spectrum of the star has its counterpart in the solar spectrum.
3. The Spectroscope. - I lave employed the bad weather, this winter, in the construction of a large spectroscope, telescopes 20 inches focus and 1.6 aperture; the prisms, of which I have so far used but six, are hollow cases of brass cast in one piece, with their fates carefully ground, upon which are cemented plates of glass, originally made for shades for artificial horizons, and cousequently nearly plain and parallel; I say nearly, for I have yet to find one square inch of plain and parallel glass; these prisms under certain conditions perform beautifully; the obstacles
to fine performance are two-fold. 1st. I find no specimen of bisulphid of carbon homogeneous in density : upon shaking or disturbing the position of the prism a violent agitation of the image occurs, and in examining it without the eye-piece, atter the mode adopted in detecting veins in an object-glass, the whole interior of the prism is seen full of waves and strix, presenting the appearance of alcohol and water not yet thoroughly mixed; this trouble is cured by time, from a quarter to a half hour being a sufficient rest. 2d. The brass frame is so much more affected by temperature than the glass plates that any great variation is destructive of good definition. This is, I fancy, the cause of the distortion of surface observed by Prof. Rood, rather than the warping effect of the glue. I propose to cure the evil by constructing the frame of solid glass; but, although it is a simple triangular block pierced with an oblong hole, I have not yet found a glass-maker adventurous enough to undertake its construction. I shall persevere, however, for I prefer this remedy to the ingenious plan, adopted by Prof. Rood, of applying additional plates of glass, the surfaces being separated by a thin film of fuid which will not communicate to the outer plate the distortions of the inner: the objections to this plan are that it is complex, the fluid is liable to exude or accumulate in greater thickness at the lower edge of the plates, and, above all, the difficulty of obtaining thin glass with true surfaces.
[The trouble mentioned by Mr. Rutherfurd is probably due to the high coefficient of expansion of CS_{2}, which renders it so sensitive to changes of temperature that simply handling the prisms will disturb the uniformity of density in the manner noticed by Mr. R. In a large spectroscope constructed by Mr. Alvan Clark of Cambridge or Prof. Cooke, from the plans of the last-named gentleman, eight CS_{2} prisms on iron frames are used, with Prof. Rood's plan of glass cover plates. These plates are polished with the greatest care, and give results quite satisfactory. Prof. Cooke has also succeeded in obtaining, from the New England Glass Works, glass triangular frames in one piece with an oval opening, from which Mr. Clark has prepared CS_{2} prisms, holding nearly a pint of liquid, and exposing faces of about five inches length by three high; two of these project a spectrum from Deleuil's electric lantern with great intensity, fourteen feet long, in which the inversion of the D line by vapor of sodium (mentioned on p .414 of this volume) is very effectively shown.-B. s., Jr.]
4. Analysis of the Sodium line D.-As I said above, my brass prisms under favorable conditions perform admirably; with six of them I am confident that I have seen the line I composed of nine (see figure) ; this diagram is rude, not founded upon measures, but merely a copy of a sketch made when I first saw the lines; the three on the right of Kirchhoff's central line are not difficult, being readily seen with three prisms of 60°, of bisulphid and one of 45°, of glass (it not being possible to use four of 60° on account of the interference of the telescopes). Of the three in the left compartment, the central one is the most difficult, and all require the best adjustment and light. ${ }^{1}$

[^81] diagram, having at one time used eleven prisms. - Ro

The line B is resolved into fourteen fine and close lines, with a beautiful and symmetrical band of finely doubled lines stretching towards A; I think it the most beautiful part of the spectrum. A broad band of fine and close lines adjoins A on the least refrangible side, somewhat resembling the neighborhood of B , and I am confident that A itself is composed of fine lines. In the potash spectrum, I have found some peculiarities which I have not seen mentioned: beginning at the least refrangible end we have the first line A boldly double; a little short of the place of the red lithium line is another pair not quite so wide as the first, which flash but for a moment; close upon the green side of the soda line is a group of four lines, three quite strong and one faint; further on in the green is another group of three lines, and finally the violet line β is double, about as widely separated as A . I have not yet measured the places of these lines, but will send you the results when obtained. The orange strontium column is beautifully resolved into close and fine lines.

I am very truly yours,
Lewis M. Rutherfírd.
II. On the origin of the nitrites, \&c., in a letter to the Editors from Prof. Geo. C. Schaeffer, dated Washington, D. C., March 18th, 1863.

Gentlemen: In the last number of your Journal, p. 271, there is a letter from T. Sterry Hunt, F.R.S., on the theory of nitrification depending upon the formation of nitrite of ammonia from water and atmospheric air. This letter requests, as "an important part of the history of this subject, and especially as an explanation of the theory of the reaction," the reproduction, from the "L. E. and D. Philos. Magazine, for January, 1863," of the "translation of a note On the nature of Nitrogen and the theory of Nitrification," read by Mr. H. "before the French Academy of Sciences, on the 15 th of last September."

Mr. Hunt also says, "My object is to claim for myself the new theory of nitrification, which Sehönbein seeks to found upon his recent experiments, and which I published nearly two years since."

As an humble worker in the cause of seience, I would also ask permission to contribute my mite to the history of this subject.

In the Annual Report of the Smithsonian Institution for the year 1861, there is (p. 305) a Report on Nitrification presented to the Smithsonian Institution in 1858 [1856] ${ }^{1}$ by Dr. B. F. Craig, in which the following passage occurs:
"Viewing the subject by the aid of such lights as science affords, the hypothesis which appears to be best in accordance with the facts known, concerning the combination of oxygen and nitrogen, is that propounded by Dr. G. C. Schaeffer, which is based upon that general chemical action by which various bodies assume the elements of water in such a way as to produce salts of ammonia. This action takes place very commonly

[^82]with those substances which are produced from ammoniacal salts by the separation of the elements of water, and may be effected under the influence either of acid or of alkalies, and sometimes by the action of water alone at a high temperature.
"Nitrous oxyd (NO) will generate the nitrate of ammonia by the assumption of the elements of water; for, by the action on it of water and potash at an elevated temperature, ammonia is evolved and nitrate of potash formed, showing that there has been a production of nitrate of ammonia, and a subsequent decomposition of it by the potash. [There are numerous substances which are formed from salts of ammonia by the separation of the elements of water, and which will regenerate the salts by reassuming them. They are known to chemists as amids, anhydrids or nitryls]. Supposing nitrogen to act in the same way, viz: to assimilate four equivalents of water, it will form nitrite of ammonia, which, by a well known tendency of the nitrites, will pass into the condition of a nitrate. [The action consists in the assumption of the water by two equivalents, of the nitrous oxyd in one case, and of the nitrogen in the other. In the case of nitrous oxyd it may be represented thus $\mathrm{N}_{2} \mathrm{O}_{2}+$ $\mathrm{H}_{4} \mathrm{O}_{4}=\mathrm{NO}_{6} \mathrm{NH}_{4}$; and in the case of nitrogen $\mathrm{N}_{2}+\mathrm{H}_{4} \mathrm{O}_{4}=\mathrm{NO}_{4}$ $\mathrm{NH}_{4}^{4}{ }_{4}$. If potash be present, the nitrite of potash will be produced by decomposition of the ammoniacal salt, and the ammonia set free may itself be nitrified. Without going into theoretical discussions, this hypothesis may be alluded to as one arrived at by legitimate analogies, and which it would be interesting and useful to test by experimental investigations."

The foregoing passage is exactly copied from the Report, with the exception of obvious typographical errors and the incorporation of the foot-notes enclosed in brackets.

As a further contribution to the history of the subject the following reference may be made: In the Proceedings of the American Association for the Advancement of Science, Fourth Meeting, held at New Haven, Conn., August, 1850, there will be found on page 206 a paper headed "On a new test for nitrates. By Prof. G. C. Schaeffer of Center Coll,", Ky., read with comments by T. S. Hunt, Canada Geological Commission." This notice contains in a few lines an erroneous statement of the test, and in several more lines a criticism upon it, to which are appended brief r^{-} plies of Mr. Hunt and Prof. Silliman, Jr., to this criticism. At page 403 however, there is a copy of the paper as sent before the time of meeting, and for the recovery of which, and its insertion, the writer is indebted to the kindnes of Mr. Hunt.

A few quotations from this paper must conclude this intrusion upon your patience.
"New test for the Nitrites and Nitrates, \&c.-Chemistry has hitherto furnished no distinctive test for the nitrites when presented in small quantities. From the supposed unfrequent occurrence of these salts, the want of such a test has never been felt.
"For several years, I have been engaged in a research which has led me to believe that the nitrites are of far more frequent occurrence than is commonly supposed, and that they have been mistaken for nitrates, as the usual process, with pure sulphuric acid and protosulphate of iron, mill
give the same reaction with both classes of salts." Among the difficulties encountered is named this one, "the nitrites are generally either destroyed or converted into nitrates with such readiness that it would be almost impossible to concentrate their solutions." After describing the care required in making this test, the following words are found: "With these precautions, I have found this test astonishingly delicate, in fact ranking with those for iron, iodine, \&cc. Using fused nitre, I have detected the presence of 1 pt . in $617,000 \mathrm{pts}$. of water; a bystander, wholly ignorant of the nature of the operation, pronouncing as to the color. Yet this salt contained about one-half its weight of undecomposed nitre."
Next follows a description of the conversion of this test into one for the nitrates, after which this remark is made: "In estimating the delicacy of this process, I had used pure rain-water, but before completing the experiments I was obliged to be absent for several days; on my return, I soon found that the water from the same cistern contained so much of nitrates and nitrites that it could no longer be used." "The interval had been marked by the occurrence of frequent and severe thunder showers."

It is very doubtful whether an earlier notice than this, of the presence of nitrites in rain-water, can be produced.

In spitg of its unfortunate position in the volume, it seems that the paper just quoted has been republished in this country, in England and on the continent, and, as the much valued Reports of the Smithsonian Institution are widely distributed, the verification of the quotations above cited can readily be made.

It is a matter of regret that the want of time and the absence of documentary evidence, soon to by supplied, prevents, at present, the continuation of my contributions to the history of this subject as connected with chemical science ; since the result, it is believed, would show another and an earlier origin for these views than any which has yet been assigned to them.

SCIENTIFIC INTELLIGENCE.

I. PHYSICS.

1. On the Fraunhofer lines visible in the Solar Spectrum.-Angström

 has comtnunicated an interesting paper on Fraunhofer's lines, from which we shall extract a few notices relating to particular points not specially mentioned in the more recently published memoir of Kirchhoff: The author begins by referring to a previous memoir of his own, in which he had endeavored to show that a body in a state of glowing heat emits just the same kinds of light and heat which it absorbs under the same circumstances. The conclusions there arrived at were as follows.The electrical speetrum is composed of two superposed spectra, the one belonging to the metal of the electrodes, the other to the gas through which the spark passes, the two spectra being distinguishable by the difference in appearance. Metallic compounds and metallic sulphids have in their luminous spectra the same lines as each of the bodies which the compound contains, and this affords a ready method of qualitative
analysis. In the same paper, the author remarked that Fraunhofer's lines were an inversion of the bright lines in the electrical spectrum, and that an explanation of the lines in the one system would probably furnish an explanation of those of the other, according to the principle laid down in that dissertation. In the present memoir, the author applies the general principle to the case of the sun's atmosphere, and distinctly states that, by determining coincidences between the dark lines in the sun's light and the bright lines in the electric spectra of different metals, we can determine what metals exist in the solar envelope. As Angström's memoir was read before the Royal Academy of Science at Stockbolm, Oct. 8, 1861, it appears that the priority of conception, at least, belongs to him, while Kirchhoff has the honor of being the first to demonstrate the truth by direct experiment. Kirchhoff's map of the spectrum extends only from D to a little beyond F ; the following statements will therefore interest the chemist. Between G and H there are fifteen strong iron lines, all having their counterparts in the solar spectrum. The two strongest of these lie at about one-fourth and three-fourths of the distance between H and G, and that nearest G is double and contains a calciunn line. The third of the lines marked b, reckoning towards F , is double, and belongs to both magnesium and iron. Calcium has three strong lines at the violet end of the spectrum, of which two correspond to the H lines, and the third in order forms with one of the iron lines the abovementioned strong double line. Calcium has also six lines coinciding with lines of the G group, three between G and F, and groups of fine lines at E and between E and G. Aluminum exhibits two strong lines between the two H lines of the solar spectrum and corresponding to two dark lines. Between H and G aluminum probably forms a continuous spectrum. The manganese spectrum exhibits a considerable number of lines. Between G and H two groups of manganese lines coincide with two similar groups of iron lines, and between G and F there are also thirteen manganese lines closely approaching those of iron, and certainly corresponding to dark lines in the solar spectrum. Strontium has two strong lines between H and G which appear to correspond to solar lines, but the strong blue strontium line between G and F has no corresponding line in the solar spectrum. The author assumes further that the line C belongs to hydrogen. An interesting discussion of the theory of thermometric heat concludes Angströn's memoir, which, it must be rememtbered, although first published in English in July, 1862, in reality proceded the important memoir of Kirchhoff.-L., E. and D. Phil. Mag., xxiv, 1, July, 1862.
W. G.
2. On the violet flame of many Chlorids.-Gladstone has observed that the majority of the lines in A. Mitscherlich's diagram of the flame of chlorid of copper (given by Miller in 1845) are common to a large number of chlorids if they are sufficiently heated. Thus, in the burning of old ship timber, which of course contains various alkaline and earthy chlorids, the light consists of three groups of lines, the first green and extending to b, the second bluish green and blue on either side of F, the third violet from midway between F and G to a little beyond G. These bands may be resolved by the spectroscope into groups of lines which are identical with the lines of chlorid of copper, as shown by 90^{-}
tual angular measurement. The yellow sodium light is wanting. The chlorids of copper, platinum, gold, mercury, nickel, cobalt, zine, iron, sorlium, pntassium, and barinm, all exhibit the characteristic violet light when sufficiently heated. The explanation of these phenomena is not apparent in the present state of our knowledge.-L. and E. Phil. Mag., xxiv, 417, Deermber, 1862.
w. ${ }^{\text {a. }}$
3. On the Solur S'pectrum.-Merz has communicated a few notes on the construction of the spectroscope and kindred subjects, which are worthy of attention. The anthor in the first place gives a resumé of the results of Framhofer with the spectra of fixed stars, and then quotes very briafly from a memoir of Prof. Donati of Florence, which we have not seen, and which describes the spectra of Sirius, Vega, Procyon, Regmlus, Fomalhaut, Castor, Atair, Capra, Arcturus, Pollux, Aldebaran, Rigel, and Anta:es. From these olservations, it appears probable, according to Merz, that iron plays the chief part in the atmos, h here of all these stars. The next notice refers to the use of very large prisms and telescopes for the ubservation of the spectrum. The author found that a flint glass prism of 60°, with a face 43 lines in breadth, placed in the corresponding section of a beam of parallel rays emerging from a condenser with an aperture of 34 lines, resolved the line D into five lines. A prism with a face of 19 lines resolved D into three lines. When eleven prisms were used, with an angle of about 480°, D was resolved into seven lines. The author expects that great adrantage will result from an increase in the size of the prisms and telescopes, and proposes to experinuent in that direction.-Poyg. Ann., cxvii, 654, Dec. 1862.
w. 0 .
[Compare Prof. Rood's article on Merz's results, p. 356 this volume.Eds.]
4. A new Spectroscope.-Litrrow has devised a new form of spectroscope, in which only one telescope is necessary, and in which four prisms are made to give the same dispersion as eight with the old arrangement. In this instrument the bundle of rays which diverge from the slit are rendered parallel in the usual manner by an achromatic lens placed at the opprsite end of the condensing telescope. The rays then traverse successively four or more flint glass prisms of 60°, then fall upon a mirror which reflects them back so that they again traverse the prisms and fall upon the lens of the condenser. This lens produces an image of the spectrum near the slit, where a prism is placed so as to throw the rays into a lateral ocular. The prisms are so connected that by turning a pinion the whole spectrum can be brought in succession into the field of view, each prism being constantly in the position of minimum deviation for each ray. The apparatus with four prisms costs in Vienna only 420 frannes, and gives, according to the inventor, many lines not seen in Kirchhoff's map. An apparatus involving a similar principle has also been described, though very obscurely, by Janssen. ${ }^{1}$ The adjustment of the prisms in Littrow's apparatus ought to be adopted in all spectroscopes in which more than one prism is employed.-Cosmos, xxi, 650 .

w. a.

${ }^{1}$ Comptes Rendus, June 23d, 1862.
Am. Jour. Sct.-Second Sehies, Vol. XXXV, No. 105.-Mat, 1863.
5. On the Spectra of the Alkaline Metals.-Wolf and Diacon have studied the spectra of the alkaline metals produced by very high temperatures, and have found that even the light of sodium is not monochromatic. The authors obtained their spectra by passing hydrogen through a slightly bent tube containing potassium, sodium, or a volatile chlorid, and heated to a convenient temperature. The hydrogen, on issuing from the tuoe, is mixed with oxygen and burned. Under these circumstances, many metallic chlorids give remarkably well defined and long-continuing spectra. Metallic sodium gives in this manner six welldefined lines between C and F , upon a faintly solored ground, which, however, is not continuous, but exhibits two sudden variations in intensity. Potassium gives a magnificent spectrum, in which eleven linesfor the most part already noticed by Debray and Grandeau-are observed. Chlorid of lithium gives four brilliant and characteristic lines. Finally, the chlorids of copper and zinc give very well defined spectra of great intensity.-Comptes Rendus, Iv, 334.
6. Contributions to spectral analysis.-Böтtaer has published a few notices relating to the spectral analysis, from which we extract what is new. Selenium gives, according to Böttger, between the yellow and the violet, a very large number of equidistant dark lines. Native selenid of mercury gives the same reaction. When coal-gas, before reaching a Bunsen's burner, is caused to pass through a wash-bottle containing a little chloroform, a flame is obtained which exhibits a beautiful green inner cone, the spectrum of which exhibits two dark blue lines at the extreme end of the violet, three very broad green lines between D and b, and a broad blue line between F and G. Chlorid of bismuth produces a great number of bright lines in the red and blue, which, however, last but an instant. Fluor spar gives, in addition to the calcium lines, a beautiful clear blue line, which, according to Böttger, is characteristic of fluorine. Böttger found this line in all the varieties of fluor spar as well as in chemically pure fluorid of calcium, but not in cryolite or fluorid of potassium. The spectrum of cyanogen-long since observed by Draper -is of extraordinary beauty.-Journal für Prakt. Chemie, 1xxxv, 392.
W. G.
7. On the spectrum of Sodium.-Fizeau has made the very noteworthy observation that metalic sodium in a state of active combustion gives a continuous spectrum in which the line D appears as a durk line. Potassium and magnesium do not give continuous spectra under the same circumstances, and Fizeau's observation at present stands entirely isolated, without even an attempt at explanation.- Comples Rendus, liv. W. G.
[Draper's experiments have shown that metals up to a white heat give continuous spectra. At a higher temperature each metal appears to give a discontinuous spectrum or one marked by brilliant lines with intervening dark spaces, as shown by Kirchhoff. Is it not possible that at a still higher temperature the spectra again become continuous, the temperatures at which this takes place being different for each substance? This theory explains the occurrence of more brilliant lines at very high than at lower temperatures, continuity being simply the limit finally reached. If we admit the correctness of this view, Fizeau's experiment may be explained very simply, since the intense light of the body of the flame
of burning sodium, which in itself gives a continuous spectrum, passing through the portion of the flame ignited at the edges in contact with the air and of lower temperature, or still more probably through vaporized metallie sodium which has escaped combustion, will reverse the brilliant line D , and thus give a dark line upon a continuous bright spectrum. If this explanation, upon further knowledge of the facts, should prove correct, it will not be necessary, with Kirchhoff, to suppose that the solid body of the sun is ignited or luminous. For the temperature of the photosphere may reasonably be supposed to be highest nearest the surface of the body of the sun, since there the condensation is greatest. Those layers or strata nearest the sun will then give continuous spectra, and the rays from there passing through the outer strata will give spectra containing Fraunhofer's lines, according to the principle laid down by Angström, Kirchhoff, and others. The temperature of burning sodium cannot be determined by calculation, so long as we are ignorant of the specific heat of the oxyd NaO in the form of vapor. We may assume that this specific heat under a constant pressure is not more than onehalf of that of water, and we shall obtain the temperature of combustion by dividing the heat of combustion by the specific heat. According to Favre and Silbermann, we have for the heat of combustion the number $319 \overline{5}$, which, divided by $0 \cdot 5$, gives for the temperature of combustion $6390^{\circ} \mathrm{C}$., which is less than that of hydrogen $\left(=8061^{\circ} \mathrm{C}\right.$.) burning also under a constant pressure. But if the specific heat of soda, NaO , in the form of vapor, be taken as one-fourth of that of water, we shall have for the temperature of combustion $12780^{\circ} \mathrm{C}$. It appears by no means improbable that the actual temperature is even higher than this.-w. a.]
8. On the indices of refraction of fuid homologous compounds.Landout has given a very interesting and valuable investigation of the coefficients and indices of refraction and dispersion of the aeids of the homologous series $\mathrm{C}_{2 n} \mathrm{H}_{2 n} \mathrm{O}_{4}$, of which formic acid is the first term. The author employed a Meyerstein's spectrometer, reading to 10 seconds of arc. The liquids were enclosed in hollow prisms, the refracting angles of which were carefully measured after each cleaning and remounting. The source of light employed was a Geissler's hydrogen tube placed immediately in front of the slit of the spectrometer. The passage of the discharge of a Ruhmkorft's coil gave the three brilliant hydrogen lines α, β, γ, observed and described by Plücker, and for which that physicist found the wave lengths $\lambda_{\alpha}=6.533, \lambda_{\beta}=4.843, \lambda_{\gamma}=4.339$. The position of these lines is fixed by the wave lengths of Fraunhofer's lines, which are as follows:

expressed in hundred-thousandths of a centimeter. The employment of the three hydrogen lines, α, β, γ, permits the observations to be made aif all times and with the greatest facility and accuracy. Landolt further determined the indices of each subsance for a series of temperatures, selecting $20^{\circ} \mathrm{C}$ as the normal temperature. The bulb of the thermometer was in each case plunged directly into the liquid; the prism and liquid were heated to $30^{\circ} \mathrm{C}$. and allowed to cool slowly, the observations being made from degree to degree. The method of measurement em-
ployed was that of least deviation. According to Cauchy, the connection between the wave length and corresponding index of refraction is expressed by the equation

$$
\mu=A+\frac{B}{\lambda_{2}},
$$

in which A is the coefficient of refraction, and B the coefficient of dispersion. If the indices μ_{α} and μ_{γ} be determined by direct measurement for a given substance, we have the two equations
from which we find

$$
\begin{aligned}
& \mu_{a}=\mathrm{A}+\frac{\mathrm{B}}{\lambda_{\alpha}^{2}} \\
& \mu_{\gamma}=\mathrm{A}+\frac{\mathrm{B}}{\lambda_{\gamma}^{2}},
\end{aligned}
$$

$$
\mathrm{B}=\frac{\mu_{\gamma}-\mu_{\alpha}}{\frac{1}{\lambda_{\gamma}^{2}}-\frac{1}{\lambda_{\alpha}^{2}}} \quad \mathrm{~A}=\mu_{\gamma}-\frac{\mathrm{B}}{\lambda_{\gamma}^{2}} .
$$

Thus for water the indices found were

$$
\begin{aligned}
& \mu_{\alpha}=1.33120 \\
& \mu_{\beta}=1.33723 \\
& \mu_{\gamma}=1.34050 .
\end{aligned}
$$

From μ_{α} and μ_{γ} and the wave lengths

$$
\begin{aligned}
& \lambda_{\alpha}=6.533 \\
& \lambda_{\gamma}=4.339
\end{aligned}
$$

we obtain for the constants A and B at $19^{\circ} \mathrm{C}$. the values

$$
\begin{aligned}
& A=1.32386 \\
& B=0.31328
\end{aligned}
$$

Calculating from these the value of μ_{β}, we find $\mu_{\beta}=1.33722$, which agrees very closely with the actual measurement, $1 \cdot 3: 3723$. For the line D the calculated index was $1 \cdot 33290$, the value found by direct measurement also $1 \cdot 33290$. The author gives the values of \mathbf{A} and B for each substance at each temperature measured. With these values he also calculates the indices of refraction of each substance at the normal temperature of 20°. C. for the seren Fraunhofer's lines B . . . H. The most interesting general results of Landolt's measurenents, which begin with formic and emil with oenanthylic acid, are as follows. The indices of refraction increase with the number of equivalents of carbon and hydrogen, but by no means uniformly. The indices for all the acids increase in about the same degree as the wave lengths diminish. The curves for the different acids are not equidistant, but, excepting in the case of formic acid, are nearly parallel. The coefficient A also increases irregularly with the carbon and hydrogen. The diminution in A for $1^{\circ} \mathrm{C}$. becomes less from acetic acid upward, but the differences are very small. The change in the case of formic acid is less than in any of the otbers. The coefficient B also increases with the increase of carbon and hydro. gen, except in the case of formic acid. Also the elongation of the spec-
trum, as measured by the difference $\mu_{\gamma}-\mu_{\alpha}$, increases with the degree of the acid in the series, excepting in the case of formic acid. The author promises a further discussion of the results of his measurements, as well as an examination of the indices of the homologous alcohols $\mathrm{C}_{2 n} \mathrm{H}_{2 n+2}$ $+\mathrm{O}_{2}$.-Pogg. Ann., exviii, 353.
W. G.

II. CHEMISTRY.

1. On the coloring matters derived from aniline.-Dr. Hofmann has published an elegant investigation of the colors derived from anilin, which places the chemical nature of these substances in a clear point of view. Hofmann finds that the red coloring matter, produced by the action of the chlorids of carbon, tin, mercury, and other metals, and of certain oxydizing agents upon anilin, is an organic base which lias the formula $\mathrm{C}_{40} \mathrm{II}_{19} \mathrm{~N}_{3}$. This lase he terms Rosanilin; in a pure state it is a perfectly colorless crystalline body, slightly soluble in water, and becoming red on exposure to the air. It dissolves in alcohol with a dark red color. The clange of color is not accompanied ly a change of weight. On distillation, the base yields anilin and a carbonaceous mass. The hyilrate is $\mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3}, 2 \mathrm{HO}$. The base is triacid, but forms three classes of salts :

$$
\begin{aligned}
& \mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot \mathrm{HCl} \\
& \mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \\
& \mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot 3 \mathrm{HCl} .
\end{aligned}
$$

The salts with one equivalent of acid are very stable; they exhibit for the most part a green metallic lustre like the wings of cantharides. They are red by transmitted light, and their solutions have a magnificent red color. The salts with three equivalents of acids are yellowish-brown, both in the mass and in solution. The chlorids $\mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3} \cdot \mathrm{HCl}$ and $\mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3} .3 \mathrm{HCl}$ unite with bichlorid of platinum to furm unerystallized salts; the triacid chlorid loses acid on heating to $100^{\circ} \mathrm{C}$., and becomes indigo-blue, which Hofmann attributes to the formation of an unstable intermediate chlorid. The author deseribes several crystallized salts of rosanilin ; the acetate $\mathrm{C}_{40} \mathrm{I}_{19} \mathrm{~N}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$ is the most heautiful. The action of nascent hydrugen converts rosinilin into leucanilin, $\mathrm{C}_{40} \mathrm{H}_{21} \mathrm{~N}_{3}$. which is colorless and crystalline, and forms salts containing three equivalents of acid. Oxydizing agents convert leucanilin into rosanilin, so that Hofmann compares the two bases to blue and white indigo.

Hofmann has further examined a beautiful yellow coloring matter which is furmed in the oxydation of anilin, and which he terms chrysanilin. This base exists in large quantity in the resinous substance which accompanies rosanilin in all the usual modes of preparation. The base in question appears to have been first preparel by Nicholson, and presents a fine yellow amorphous powder, which is scareely soluble in Water but very scluble in alcohol and ether. The formula of chrysunilin is $\mathrm{C}_{40} \mathrm{H}_{17} \mathrm{~N}_{3}$, and it rields two classes of well crystallized salts, being molacid and biacid. The most remarkable property of this base is the formation of a nitrate so insoluble that chrysanilin is the best known reagent for nitric acid. One gramme of nitrate of potash in one litre of water immediately gives a crystalline precipitate with a solution of chrys-
anilin. The formulas of the three bases described by Hofmana exbibit a remarkable connection-a sort of homology in which H_{2} is the constant difference. Thus we have

The conversion of chrysanilin into rosanilin and leucanilin appears possible, but has not yet been effected.

Dr. Hotmann has also examined the beautiful blue coloring matter obtained from crude chinolin by the action of the iodids of methyl, ethyl, \&c., and termed cyanin. The iodid of this base has the formula C_{60} $\mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{I}$. Another base homologous with this is found in the commercial cyanin. Its formula is $\mathrm{C}_{56} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{I}$, and it appears to be derived from pure chinolin, $\mathrm{C}_{18} \mathrm{H}_{7} \mathrm{~N}$, while the first mentioned base is derived from lepidin, $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{~N}$. The author distinguishes two phases in this reaction. In the first we have the equation

$$
\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{~N}+\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{I}=\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NI} ;
$$

in the second we have

$$
2 \mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NI}+\mathrm{KO}, \mathrm{HO}=\mathrm{C}_{60} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{I}+\mathrm{KI}+2 \mathrm{HO} .
$$

-Comptes Rendus, liv, 428, 1v, 817, 849.
W. G.

Analytical Chemistry.

2. On the Analysis of Borates and Fluoborates.-In solutions which contain only boric acid and alkalies, Marignac (Fresenius's Zeitschrift für Analytische Chemie, drittes Heft,) determines the former as follows: The solution is neutralized with chlorhydric acid and chlorid of magnesium, or better, chlorid of magnesium-ammonium is added in such quantity that to one part of boric acid at least two parts of magnesia are present. The liquid is now made ammoniacal and finally is evaporated to dryness in a weighed platinum vessel. Should the addition of ammonia cause a precipitate which does not readily vanish on warming, sal-ammoniac must be put in until the liquid becomes clear. During the evaporation, it is well to add a few drops of ammonia from time to time. When the mass is dry it is heated to redness, then treated with boiling water, the residue is collected on a filter and washed with hot water until the washings are not in the slightest affected by nitrate of silver.

This first residue contains together with excess of magnesia the larger part of the boric acid. A small amount of the latter always goes into solution. The filtrate and washings are treated with ammonia and again evaporated, ignited, and washed as before. The second filtrate and washings are once more treated in the same manner, when great accuracy is required.
The three residues are ignited together in an open crucible as strongly as possible and so long as to decompose the traces of chlorid of magnesium which they may contain. When they are weighed, it only remains to estimate the magnesia in them, to learn by difference the quantity of boric acid. This can be done either by dissolving in an acid and precipitating ammonia-magnesian phosphate or more rapidly by dissolving in a known volume of standard sulphuric acid at a boiling heat and determining the excess, with help of an alkali solution.

Should an insoluble, heavy, gray residue remain on treating with acid, it must be collected and its weight deducted from that of the borate of magnesia. It is platinum.

The subjoined example illustrates the method and demonstrates that alkali-chlorids in large excess liave no serious influence on its accuracy. 0.764 grm . of pure borax, containing 0.280 grm . of boric acid were dissolved with 2 grm . of chlorid of sodium and 3.2 grm . of crystallized chlorid of ammonium-magnesium were added.

First residue contained magnesia	$\left.\begin{array}{l} =0.5720 \\ =0.3053 \end{array}\right\}$	contained boric acid $=0.2667 \mathrm{grm}$.				
Second residue contained magnesia	$\begin{aligned} & =0.1040 \\ & =0.0947 \end{aligned}$	"		-	$=0.0093$	"
Third residue contained magnesi	$\begin{aligned} & =0.0645 \\ & =0.0625 \end{aligned}$	"	"		$=0.0020$	"
		tal			0.2780	

Other determinations gave results of equal accuracy. From insoluble compounds the boric acid is obtained in solution by fusing with thrice their weight of carbonate of soda and exhausting the mass with water. In case of silicates the alkaline solution is digested with chlorid of ammonium to precipitate silica.

When one operates with a fluo-borate the solution of the carbonate of soda fusion is,digested with sal-ammoniac to decompose a good share but not all the soda-carbonate, and therenpon is precipitated with a neutral or ammoniacal solution of chlorid of calcium. The precipitate of CaFl and CaO CO 2 is washed,-a matter easily accomplished-dried, gently ignited, treated with acetic acid, evaporated to dryness and the pure $\mathrm{Ca} F l$ collected, washed and weighed. The filtrate, after removing lime by carbonate and a few drops of oxalate of ammonia, may be treated as before described for the estimation of boric acid. From a mixture of 2.420 grm . of fluor-spar with 0.382 grm . of borax containing 0.190 grm. of fluorine and 0.140 grm . of boric acid, were obtained by this process (except that no fusion was made), $0 \cdot 1883 \mathrm{grm}$. of fluorine and 0.1362 grm . of boric acid. In the analysis of borofluorid of potassium a loss of fluorine equal to 1.5 to 1.8 per cent occurred which Marignac thinks might have been avoided by employing a caustic alkali in the fusion.
B. W. J.

Photography. -
3. Collodion.-We translate from La Moniteur de la Photographie for February 15th, 1863, the following letter addressed to the editor by A. Jeanrenaud. Mr. Jeanrenaud is a well-known skillful amateur photographer.
"Mi. Editor:-If you and several other gentlemen had not requested of me the formula for the collodion I use, I should perhaps never have determined to publish it. In general, each photographer has his own special processes, so that it may be said that there are as many formulas for collodion as there are operators; but, since you judge, from the results I have obtained, that it will be useful to make my formula known to your readers, I do it with the more pleasure, as I hope that those who shall take the pains to try it will have no reason to
regret it. This formula is less empirical than it seems, for it is the reo sult of a long series of researches and trials, concerning which it would be useless to dilate. Such as it is, it is good, and has given ne for several years very constant results; and, I may add, that unlike other collodions, time has upon it no other influence than to improve it, which has determined me always to have a supply a year old on hand.

Formula.

For one litre of cullodion		$=357$ fluid
Ether at 620.	800 grammes,	28.3 "
Alcuhol at 40°,	250	88
Very soluble gun cotton,	8 "	123 grains.
Iodil of cadmiun,	9 "	139

Upon complete, solution twenty-five drops of pure bromine are added. The color becomes very intense, for there is some iodine set free, and a consequent formation of bromid of cadminm. From this litre I extract 100 grammes-one tenth part of the whole quantity-which I place in a separate flask. Into this 100 grammes are dropped twelve or thirteen drops of highly concentrated liquid ammonia. A very thick goldenyellow precipitate is formed, so thick that it will not mingle with the supernatant liquid even by vigorously shaking the flask. It is not ensy to define with chemical exactness the constitntion of this precipitate; but what is certain is, that it suffices to add to it a few drops of crystallizable acetic acid to dissolve it and render the collodion perfectly limpid. This last operation with acetic acid is somewhat uncertain, as the quantity varies according to the quality of the alcolol and ammonia used. I now pour back into the first flask the 100 grammes upon which I have just operated, and let the whole stand for fifteen days before using it. During this time the collodion, however red it may be, changes gradually until it attains at last a pale straw-color, which tint it ought to keep. If the collodion is found to be insufficiently iodized (although the proportions above given ought to be guite sufficient), I ought to say that it would not be proper to add the iodid of cadminm directly, or the collodion will become cloudy and cannot be cleared by filtration. It is necessary to dissolve the iodid first in a small quantity of collodion separately, and mix afterwards. In conclusion, the collodion contains iodids, bromids and acetates. It may happen, and it does happen in fact, that it forms in the negative bath small crystals of acetate of silver; I have never had any reason to complain of this, on the contrary I think it is to the reaction which produces them that we must attribute the good qualities of this collodion."

> E. E.

III. METALLURGY.

1. Thallium in furnace products; by W. T. Roepper, (communicated in a letter to Prof. Geo. J. Brush). - In examining before the spectroscope some of the dust deposited by the tunnel-head flame on the boilers of the Bethlehem Iron Works, a sharp, bright green line flashed up midway between the green calcium and $\mathrm{Ba} \alpha$ line, which, judging from Crookes description, appeared to be the thallium line, a conjecture which Prof. Brush verified by comparison with some of Lamy's chlorid of thallium.

The line appeared at 90° on the scale of the instrument, sodium being at 60° and the red and violet potassium lines respectively at 7° and 226°. In addition to the above lines, the spectra of sodium, potassium, lithium and calcium are distinctly displayed by this dust. Thallium and the alkalies seem to exist in the dust, at least in part, as sulphates, which can be extracted by water. Similar dust from one of the other furnaces along the Lehigh gave the same results; hence it is not unlikely that thallium is a common product of the anthracite furnaces, and is perhaps derived from the pyrites accompanying the coal, though Crookes found the non-cupriferous pyrites to be almost free from this element. ${ }^{1}$

It is only the dust which remains lying on the boilers, or is deposited on the iron doors or shutters of the boiler-chamber, which gives the thallium reaction, while that which has fallen to the floor does not show it. The reason probably is, that it is volatilized by the higher heat of the flame, and escapes through the chimney as soon as it is removed from the comparatively lower temperature of the steam and the outer doors, which seem to act as condensers. I have not been able to detect it in the ashes of anthracite from a common stove, while they beautifully display the sodium, potassium and lithium lines.

Bethlehem, Pa., April 8, 1863.
2. Bessemer's process for the production of Iron and Steel.-This method for converting the purer varieties of pig-iron into steel and bariron is constantly increasing in favor among European ironmasters.

In a recent communication to the "Berggeist," Prof. Tunner states that thousands of ewt. of Bessemer-steel and iron are now annually produced in England and Sweden; that Bessemer-steel is already an article of commerce in Germany ; and that large works are also being erected for the employment of this method in France.

Whenever the proper raw-material is used, Bessemer's process gives steel which in all respects is fully equal to the best varieties of cast-steel; and iron of as good quality as the best forge-iron. The loss in converting pig-iron into steel, by this method, is 12 to 15 pr . ct., and in making bariron 18 to 22 pr . ct. In 5 to 10 minutes, 15 to 20 cwt . of fluid pig-iron are converted into steel or bar-iron with scarcely any cost for fuel, and without hand labor. The pressure of blast used is from $\frac{1}{2}$ to $1 \frac{1}{2}$ atmospheres, and the amount is 800 to 1200 cubic feet of cold air of the ordinary atmospheric density.

Only good charcoal-iron is adapted for conversion by this method, and the reason of the failure of the earlier experiments was the employment of improper and inferior raw-material. Swedish pig-iron is now always used in England for the production of the best sorts of steel and iron. In some of the new iron works attempts have been made to improve the quality of English pig-iron which has been carried to the point of conversion, by adding to it melted Swedish pig-iron; manganese compounds have also been used for the same purpose. But the separation of the

[^83]Ay. Jour. Scr.-Second Series, Vol XXXV, No. 105.-Mat, 1863.
deleterious substances associated with carbon in pig-iron still remains an unsolved problem. For the success of this method, a good quality of pigiron is therefore indispensable, and further a high temperature ; this last is attained by converting large quantities of iron in as single operation. In Sweden 15 cwt . for a charge is the minimum quantity used, and if 60 to 100 cwt . be employed the result would be still more favorable. In converting large quantities at one operation, the cost is proportionally diminished, and the product may also be made more uniform.

One great advantage of Bessemer's process is that so much larger quantities of material can be operated upon at one charge than in the ordinary methods of refining, and this quantity is not restricted within narrow limits as in puddling and hearth refining. Fur the production of the proper temperature, the relative amount of blast to the pig-iron operated upon should be carefully regulated. If too little, the process goes on slowly, and much heat is lost by radiation; on the other hand, if too much blast is used, there is also a loss from the heat carried off by the air which is forced through the iron before it has effected the desired decomposition. The pressure of the blast must, at all events, be greater than that of the column of iron in the furnace, in order that the bath of molten iron shall be thoroughly penetrated and the whole melted mass set in violent agitation. In Sweden the pressure of half an atmosphere has in most cases been found sufficient, while in England a pressure equal to $1 \frac{1}{2}$ atmospheres has been used.

Tunner places particular emphasis on the employment of a high pressure with hot blast. He says that if the blast were to be heated to $200-200^{\circ} \mathrm{C}$., or perhaps even to $500-600^{\circ} \mathrm{C}$., the conversion would unquestionably proceed with great regularity and completeness, and the difficulties in the manufacture of soft bar-iron and steel would be overcome. Further, it is to be borne in mind, that, in order to produce a given variety of steel or iron, the process of conversion must be interrupted whenever the refining has reached the desired point; this last is determined by observing the character of the gases and sparks which escape from the furnace, very much as is the case in hearth refining: practice is of course required to be able to determine this point with accuracy. The fracture of the metal serves as a control in sorting the different qualities. The cost for furnace repairs is much less than was at first anticipated, but the waste product in conversion (equal to $20-30 \mathrm{pr}$. ct. when the iron is made into bars) demands consideration, especially as no use has yet beén found for this more or less impure product. If, however, we take into consideration the length of time that has been necessary to bring the puddling process to its present perfection, while on the other hand Bessemer's process has accomplished so much in so short a time, we have every reason to hope that the day is not far distant when the still remaining difficulties in this process will be reduced to a minimum.-Polytechnisches Journal, clxvi, 447. [A wide field is open for the application of Bessemer's process in this country, where pure iron ores, fully equal in quality to those of Sweden and Norway, occur in such abundance.G. J. B.]

IV. AGRICULTURAL CHEMISTRY.

1. Atmospheric Nitrite of Ammonia and its Origin.-E. Bohlia describes (Ann. der Ch. u. Ph., cxxv, 21-33) the results of long study of this subject, made at the same time as, but independently of, the investigations of Böttger and Schönbein.
Barral found in the rain water collected at the Paris Observatory, during the year ending June, 185 Q , an average of 151.81 grms. of nitric acid and 41.82 grms. of ammonia per cubic metre. These results have not been received with confidence on account of the deficiencies of the methods at Barral's disposal for the estimation of nitric acid. Boussingault, Bineau, Lawes \& Gilbert, and Way found, on the contrary, in all atmospheric waters an excess of ammonia above that required to form nitrate with the nitric acid present, and hence it has been assumed that there exist both nitrate and bicarbonate of ammonia in the atmosphere. Bohlig gives as the result of his researches: 1st, that " normal atmospheric air and normal rain-water never contain bicarbonate of ammonia, but do contain nitrite of ammonia." 2d. "The nitrite of ammonia originates wherever ozone comes in contact with nitrogen, as well as in all cases of combustion in free air." The experiments on which the first of these conclusions is based are purely qualitative in character. According to Bohlig the most sensitive reagent for free ammonia and carbonate of ammonia is chlorid of mercury-a solution containing but
 If 40 cc . of water exempt from ammonia (such is the water of many springs, but distilled water rarely,) is mixed with 5 drops of a solution of corrosive sublimate (1 of salt to 30 of water) and the same quantity of a solution of the purest carbonate of potash (1 of salt to 50 of water), the whole remains perfectly clear for days together in closed vessels. If the solutions are much more concentrated, oxyd of mercury will separate. If water containing ammonia in combination with the stronger acids be tested with corrosive sublinate and carbonate of potash, the same reac-tion-turbidity from separation of amido-mercuric chlorid-takes place as happens with car nate of ammonia and sublimate alone, double decomposition occurring between the ammonia salt and carbonate of potash.

Bohlig found, testing the water of each considerable rain for a year, that in no case was any turbidity produced by sublimate aione, while sublimate and carbonate of potash together in all cases gave a turbidity or even a precipitate. Contrary to the statements of the textbjoks, Bollig also found that the first portions of the distillate from rain water were exempt from ammonia. Bohlig thus concludes that the ammonia or carbonate of ammonia found in any case in distilling rain Water must have come from admixture of carbonate of line with the water.

In opposition to these results we have the statement of Boussingault that the water of fogs, in most cases, has a distinct and in some a strong alkaline reaction, (Agronomie, ii, 227-8.) Besides it is not easy to understand how the methods employed by Boussingault and Way in the determination of nitric acid should not really have given the amount
of nitrous acid (calculated as nitric acid). The former first added carbonate of potash to a litre of the water, then slowly evaporated to a few cubic centimeters and finally estimated the oxydizing effect of the supposed nitric acid by indigo, in connection with strong chlorhydris acid. (Agronomie, ii, 299). Way made a pint of the water alkaline with lime, and boiled it down in a long-necked flask to a small bulk, filtered from carbonate of lime, and evaporated in another flask to dryness at a final heat of $350^{\circ} \mathrm{F}$. This residne was acted upon by iodid of silves and chlorhydric acid, and the liberated iodine was measured by sulphurous acid. (Jour. Roy. Ag. Soc. of England, 1856, xvii, 157.)

Bohlig, in the paper under notice, says, that rain water or a solution of nitrite of ammonia may be boiled a short time, and evaporated to onethird at a gentler heat, without loss of nitrite. The nitrites of lime and potash, in presence of excess of base, are supposed, on all hands, to be fixed at ordinary temperatures. We should expect then that a water containing nitrite of aminonia, when evaporated with carbonate of potash or lime water, would lose carbonate of ammonia, or free ammonia, while the nitrous acid would be completely retained in the residue.

According to Bohlig, nitrite of ammonia in dilute solution, though snffering no chemical change by concentrating to a certain degree, is completely decomposed by further evaporation at or near $212^{\circ} \mathrm{F}$. On the other hand, nitrate of ammonia may be boiled to dryness without loss. As, now, rain water always acquires a blue color after a longer or shorter time with acidulated iodid of potassium-starch-paste, while the residue of its evaporation to dryness does not give this reaction, Bohlig concludes that nitrite of ammonia is, while nitrate of ammonia is not, a normal ingredient of atmospheric waters.

From this result, it was warrantable to infer that the atmosphere itself contains no nitrate but only nitrite of ammonia. To examine the atmosphere more directly, Bohlig passed 20 cubic feet of air slowly through a small quantity of pure water. By the above mentioned tests he found no carbonate but some more fixed salt of ammonia, though he could not obtain any reaction for its acid. In imitation of rain, he now caused pure water to fall in a very slencler stream upon a long slip of purified paper which hung in the free air and conveyed the water drop by drop into a capsule placed beneath. The water which had thus exposed an enormous surface to the atmosphere contained both ammonia and nitrous acid in such quantity as readily admitted of detection, and the results of numerous trials in this way made in various conditions of the atmosphere, when the sky was clear and when cloudy, after thunder storms and after long gentle rains, were always qualitatively the same.
Bohlig does not admit that nitrite of ammonia is formed by the direct union of nitrogen and water in the act of evaporation, as Schönbein believes; but is of the opinion that this compound is simply collected by water from the atmosphere, where it previously existed.

This explanation he conceives to account for the following fact, riz: when spring water that is free from ammonia salts is distilled, the first portions that pass over always render very slightly turbid the mixture of mercuric chlorid and carbonate of potash. When the distillation becomes rapid, this reaction disappears, but recurs again if the fire be slackened
and then again urged. Here, the air, that occupies the helm of the still, yields, according to Bohlig, its nitrite of ammonia to the condensing vapors.

Our author says further that the statement of Schönbein, that water and nitrogen unite directly to form nitrite of ammonia, appears doubtful, because the evaporation-experiments of the latter were made with unlimited quantities of air, and no account was taken of the preëxistence in it of the nitrite. But the nitrite always occurs in the atmosphere, though in proportions that vary extraordinarily with meteorological conditions.

In the experiment just described, with the slip of paper, Bohlig often observed that the water evaporated to less than one-sixth its original bulk before giving any reaction for nitrous acid. This happened, for example, after a protracted rain. At other times, when the weather was fine, the water gave the reaction of nitrous acid after once flowing over the paper, even when its quantity was scarcely diminished by evaporation. Schönbein often failed to obtain nitrite, in his own experiments.

Further trials which militate against Schönbein's theory are the following: 50 cc. of pure water were distilled in a rapid stream of air (more than three cubic feet) made free from nitrite of ammonia by passing through oil of vitriol and a long potash tube. The temperature rose from 12° to $100^{\circ} \mathrm{C}$. After cooling, the distillate gave no reaction either for ammonia or nitrous acid. This experiment was repeated in the same manner, save that a less quantity of unwashed air was passed through it. Both the distillate and the residue in the retort gave most decided reactions for an ammonia salt, though nitrous acid was not detectable, from the inferior delicacy of the iodine starch test.

Five grms. of carbonate of potash, free from nitrous acid and ammonia, were allowed to deliquesce in the air. The liquid thus obtained gave very evident reactions for nitrite of ammonia. From this experiment we might conclude, using Schönbein's logic, that water in the act of condensation in presence of nitrogen unites with the latter.

Bohlig describes another highly interesting experiment. Hydrogen, illuminating gas, and alcohol, respectively, were burned in a tall bell-glass connected by its tubulure with several Woulfe's bottles containing pure water, and finally with an aspirator. The combustiole was thus consumed in a stream of common air. After several grammes of alcohol (or corresponding quantities of the gases mentioned) were burned, the water of the absorbing vessels was perceptibly acid in its reaction, and with the iodid-of-potassium-starch test struck at once a deep-blue color. Ammonia was present only in minute traces, most perceptibly in the water which condensed on the sides of the bell and collected in a capsule placed underneath. This result indicates that the small amount of nitrite of ammonia found in the acid liquid was not produced in the experiment by union of water-vapor and nitrogen, but was simply condensed from the atmosphere.

Bohlig promises further researches, in which the air that feeds the flame shall be first purified from nitrite of ammonia.

It is plain that this whole subject requires thorough experimental revision. The facts now in our possession are certainly not sufficient to
warrant the assumption that nitrite of ammonia is formed from nitrogen and water; while at the same time some of Schönbein's experiments are scarcely explainable on any other hypothesis.
s. W. J.
2. The Nitroyen Question.-Liebig, ${ }^{1}$ Nicklès, ${ }^{2}$ and others regard the theory of Schönbein with enthusiastic favor, since in their view it relieves the "nitrogen question" of agricultural chemistry of all en:barrassment, and demonstrates that the atmosphere is to plants a source as abundant as unfailing of combined or assimilable nitrogen.

We must emphatically dissent from any such conclusion, for two reasons: 1st. It is not proved that there is in the atmosphere more assimilable nitrogen than corresponds to what has already been determined, in a manner that we must at present regard as entirely trustworthy, by Way and Boussingault. Lawes and Giibert, at Rothamstead, England, collected all the waters of rain, snow, dew and fog that could be gathered during the years $1855-6$. Way analyzed these waters, and found in them, for $1855,7.11 \mathrm{lbs}$. of ammonia and 2.98 lbs . of nitric (nitrous?) acid, for $1856,9.53 \mathrm{lbs}$. of ammonia and 2.80 lbs . nitric acid-amounts corresponding to 6.63 and 8.31 lbs . of nitrogen, respectively, for an acre of surface. 2 d . It is not proved that any nitrogen is made assimilableconverted into nitrite-by the act of evaporation. Until solid facts have been accumulated to a considerable extent, especially until quantitatire investigations really demonstrate that combined nitrogen is much more abundant than appears from the researches of TVay and Boussingault, we are not warranted in making such positive deductions from the results of Schönbein, interesting and valuable as they are. s. w. J.

V. MINERALOGY AND GEOLOGY.

1. On the composition of Columbite.-II. Rose considers this mineral to be essentially a compound of hypocolumbic acid with protoxyd of iron and manganese. It is, however, difficult to deduce a rational composition from many of the analyses of the columbite from Bodenmais and Connecticut. The specimens from these localities vary exceedingly in their densities, their powder varies in color, and by careful observation it can be seen that they are more or less decomposed. The crystals are not unfrequently traversed by rifts and seams, and, on being broken, the fractured surfaces are often found coated with a thin layer of impure hypocolumbic acid, which last can be easily separated from the mineral. It would appear that columbite is partially decomposed by the action of water and the atmosphere, and that a portion of the iron and manganese is removed as carbonate; another portion of the iron is converted into the magnetic oxyd, which gives the pulverized mineral a black color, while the color of the powder of the undecompised mineral is cherryred. The specimens having the highest specifie gravity are those which are the most decomposed. The specimens of columbite from Greeuland and from the Ilmen Mountains retain their original properties: they lave a lower density than the specimens from Bodenmais and Connecticut, and their density is always ennstant ; their powder is cherry-red, neres black. It is only from the analysis of these unaltered specimeus that we

[^84]can arrive at a correct interpretation of the true composition of this mineral.

Nine analyses of the columbite from Bodenmais have been made in Rose's laboratory by Rose, Afdéef, Jacobson, Chandler, Warren and Finkener. The specimens examined showed the different densities 6.39, $6 \cdot 078,5.976,5.971,5 \cdot 860,5 \cdot 701$, and $5 \cdot 698$. Those with the highest densities had a black powder, while in the lighter specimens the powder was more of a chocolate-brown or cherry-red color. The oxygen ratios between the bases and the hypocolumbic acid in the analyses were: $1: 4 \cdot 07,1: 3 \cdot 95,1: 3 \cdot 7,1: 3 \cdot 87,1: 3 \cdot 56,1: 3 \cdot 53,1: 3 \cdot 4,1: 3 \cdot 34$, and 1:3.16.

The specimens of columbite from Connecticut showed less alteration than those from Bodenmais. Among them, however, were some specimens with a high specific gravity and having a black powder. Four analyses hy Rose, Schlieper, Chandler and Oesten, on specimens having the densities $6.048,5 \cdot 583,5 \cdot 708,5 \cdot 483$, showed the same peculiarities in regard to streak and powder as observed in the Bodemmais mineral. The oxygen ratios were $1: 3 \cdot 63,1: 3 \cdot 48,1: 3 \cdot 13$ and $1: 3 \cdot 1$. The specimens which contained the largest amount of hypocolumbic acid had the highest density, and had also a black powder.

Rose observes that the columbite occurring in the Greenland cryolite is unquestionably the purest yet found. The crystals have suffered no decomposition, and all the specimens have therefore the same specific gravity. Selected fragments gave this density as $5 \cdot 374$ to $5 \cdot 376$, in powder 5.4 ; the powder had a light cherry-red color. Two analyses by Oesten, and one by Finkener gave the oxygen ratio of bases to acid as $1: 3 \cdot 08,1: 3 \cdot 14$ and $1: 3 \cdot 11$. The columbite from the Ilmen Mts. is also extremely pure. Different specimens have the same specific gravity, $\mathrm{G}=5 \cdot 461-5 \cdot 447$. An analysis of this columbite by Oesten shows it to contain a small amount of oxyd of uranium ; this is not found in columbite from other localities. The Ural columbite does not contain any yttria or magnesia, as was formerly supposed. The relation of the oxygen of the bases to the acid is as $1: 3.06$.

From these analyses, Rose concludes that in the purer varieties of co-lumbite-those which have suffered no alteration or decomposition-the oxygen of the hypocolumbic acid is three times that of the oxygen of the protoxyd of iron and manganese, that is, the relation of oxygen of the acid to that of the bases is as $3: 1$. An analogous relation exists in wolfram, the ratio between the tungstic acid and the bases being 3:1, and the bases also consist of protoxyd of iron and manganese.-Jour. prakt. Chem., lxxxv, 438.
G. J. B.
2. Kischtimite, a new mineral.-T. Korovaefe describes, under the name Kischtim-Parisit, a new mineral from the gold-washings of the Borsowka river in the district of Kischtim in the Ural Mountains (Jour. prakt. Chem., lxxxv, 442). The mineral was not crystallized; color dark brownish-yellow, streak much lighter; fracture sub-eonchoidal; lustre between greasy and vitreous; friable, and in small pieces transparent. $\mathrm{G} .=4 \cdot 784$. IB.B., at a moderate temperature loses its lustre, becomes of a dull, opaque, opaline yellow color; at a high temperature it glows, and on cooling has a high lustre, and a brick-red color. In the closed tube
gives off water and becomes darker colored. Soluble in the fluxes: with borax in the outer flame gives a yellow glass, in the inner flame faint yellow, which on cooling becomes colorless; with salt of phosphorus gives the same reactions, except that both bearls are colorless on cooling. The powder moistened with sulphuric acid gives off fluohydrie acid. Dissolved in chlorhydric acid, with the evolution of carbonic acid, and traces of chlorine. The acid solution gave no precipitate with sulphydric acid gas; in the neutral solution sulphid of ammonium gave a colorless voluminous precipitate, insoluble in caustic potash, but soluble in excess of carbonate of ammonia, thus indicating the presence of the oxyds of the cerium metals. The filtrate from the sulphid of ammonium precipitate left no residue on evaporation and ignition, showing the absence of alkalies and alkaline earths. Three analyses gave:

	C	冝	La	Ce	Fl	0 (loss)
1.	17.19	2-20	37-46	26.78	6.12	
2.	$19 \cdot 65$		35.66	28.84	$5 \cdot 97$	
3.	19.30				$6 \cdot 96$	
Mean,	$17 \cdot 19$	$2 \cdot 20$	36.56	27.81	6.35	$0 \cdot 89$

From this, Korovaeff deduces the formula $6 \mathrm{LaO}+\left(\mathrm{E} e+\mathrm{Ce}_{2} \mathrm{Fl}_{3}+2 \mathrm{H}\right)$ or $3 \mathrm{LaC}+\mathrm{Ce}_{2}(\mathrm{Fl}, \mathrm{O})^{3}+\mathrm{H}$, which on calculation equals $\overline{\mathrm{C}} 17 \cdot 88$, 且 240 , $\mathrm{La} 37 \cdot 67$, Ce $2 \sigma^{\circ} \cdot 23$, F1 $7 \cdot 52,09 \cdot 60=100 \cdot 00$.

In physical characters, except crystallization, the mineral very closely approaches the parisite from Musso, described and analyzed by Bunsen. The Kischtim mineral, however, contains no lime, and on treatment with chlorhydric acid evolves chlorine, indicating the presence of sesquioxyd of cerium. Its specific gravity also differs materially from parisite, the latter being $4 \cdot 35$, while the Kischtim mineral is $4 \cdot 784$. We suggest the name Kischtimite as preferable to the double name Kischtim-Parisit for this new species.

> G. J. в.
3. Catalogue of the Miocene Shells of the Atlantic Slone; by. T. A. Conrad.- In the last number of the Proceedings of the Acudemy of Natural Sciences of Philadelphia (Dec., 1862, pp. 559-582), Mr. Conrad has given us a Catalogue which must prove an invaluable assistance, not only to palieontologists but to those students of recent zoology who make the shells of our coast a subject of study. The notices of our Miocene shells previously published, particularly those of Mr. Conrad himself, are so numerous and scattered, that to collect and index them, -a necessary preliminary to their investigation.-would be by far too extended a work for every one interested therein to undertake for himself. It is a subject for congratulation that this work is now done for all, by one so competent and so well acquainted with our Tertiary Faunæ as the distinguished author of the "Catalogue."

Mr. Conrad states that the Miocene of our Atlantic slope extends from New Jersey to South Carolina, and he includes in it the so-called "Pliocene" of the latter State. The newer Pliocene or Pleistocene of the coast rests immediately upon the Miocene, and there is no intermingling of extinct forms between these two formations. About 580 species of shells are found in the Miocene, the proportion of Conchifers to Gasteropods being $1: 1 \cdot 14$. Mr. C. thinks that the proportion of recent species generally acknowledged to occur in this formation should
be greatly reduced, and he rejects from the list no less than 18 which were formerly supposed to be identical with recent forms. He even doubts whether any of them are identical; those that possibly are so being only 30 in number, most of which he has not as yet had an opportunity of comparing with their recent analogues or co-species. The Natica heros and N. duplicata of our coast have fossil analogues so closely resembling them that he can find no essential difference between them. We would suggest that, in making these comparisons, specimens from the intermediate Pleistocene deposits should also be examined. If a few of the denizens of that ancient Miocene sea have really survived to the present epoch, we might expect them to have undergone some slight change during so great a lapse of time. A comparison with those examples which lived at an intermediate epoch would go far toward settling this question.

A few words on the nomenclature employed by Mr. Conrad will not be out of place here. He has followed the authors of "The Genera of Recent Mollusca" in restoring the "generic" names of Klein, and giving them the preference over the more recent, but well established names of authors whose works were, until very lately, universally accepted. Against this we must enter our protest. The generic nomenclature of the Mollusca is in a state of extreme confusion, and unless we can find some principle to guide us in selection among the older names of these groups of species, we can never reach a firm basis. The true principle seems to be sufficiently plain, and has, with few exceptions, been generally followed.

The system of nomenclature proposed by Linnæus, the convenience of which has been proved by an hundred years of usage, has become the law, and it follows that no names should be adopted as generic which were not given in accordance with this law, and by those who understood that they were naming genera, in the Linnæan sense. We would not, indeed, join those who consider that we cannot go behind a particular edition of the "Systema Nuturae," nor would we exclude from use the names proposed by all authors who were not strictly binomial in their specific nomenclature. An author may name a genus, and give its type, without describing any species whatever under it. But it is essential that an author should acknowledge genera as understood by Linnxus, and also that they are composed of species in the Linnxaan sense. But Klein, who was an avowed enemy of the Linnean school, made use of an entirely different system in his "Tentamen Methodi Ostracologicce." His "species" avowedly include several species of the Linnæan kind, each designated by a "phrase" according to the general usage among pre-Linnean authors. Witness, for instance, on p. 114 of his work above named, where we find,-"Genus I, Patellu integra. Species I, Striata. 1. Indica, major, striis planis," etc. 2. "Cypria, striis crassis," etc., and so on, including 22 species under the "species Striata," until we come to "Species II, Reticulutu seu cluthrata" with i species; "Species III, Virgala vel circinnala," with 4 species; "Species IV, Loevis" with 5, and so on. Klein's species in fact correspond more nearly with Linnæan genera. Again, very many of his generic names are composed of two words, and the most enthusiastic of his modern followers do not
AM. Jour. Sct.-Second Series, Vol. XXXV, No. 10J.-May. 1863.
claim priority for these, with the exception of H. and A. Adams, who take sometimes the first word of the binomial plerase for the generic name to be established! To this objection it is answered that wherever Klein's names are (accilentally) uninomial, they must be adopted. But if this method of settling the question be allowed, we shall have all writers who are affected with the prevailing rage for change, searching through every forgotten and almost extinct work at all relating to natural history, which has appeared since the invention of printing, seizing upon every case in which an author happened to designate a group of animals by a single name, and adding this to our already overburdened synonymy, to the suppression of the name last in vogue. And further, when we have got to the date of the invention of printing, there will be some who will insist that the distribution of a certain number of copies of a manuscript constitutes publication, and so go back to the still older names given by writers who flourished during and before the Middle Ages! Naturalists, averse to the more severe studies in the realm of nature herself, will become archæologists, and cheaply earn reputation by seeking for prior names to replace those which have become well known.

We have thus dwelt upon Klein's case because it is one of importance, not only as a type of many, but on account of the great number (about 170) of "generic" names which he proposed, a large number of which the authors of the Moerch and Adams sehool are now endeavoring to revive, and nearly all of which are liable to be pressed upon us with as much reason as the first lot has been.

But to drop the question of simple nomenclature, we may, in conclusion, express the lively satisfaction with which we have examined the generic distribution of our Miocene shells by the author of the "Catalogue." Numbers of species formerly huddled together in old generic groups are here separated and given their proper distinct place in the system, and the names proposed for the new genera are for the most part very appropriate. We are now enabled satisfactorily to compare our Miocene fauna with that of Europe, and with that of the actual epoch on our own coast.
w. s.
4. Geology of Vermont.-Announcement has been issued by A.D. Hager of I'roctorsville, V t., that the Genlogical Report of Vermont in quarto will hereafter be disposed of by him at six dollars a copy. The edition is nearly exhausted.

VI. BOTANY AND ZOOLOGY.

1. A new charucter in the Fruit of Ouks.-Note sur un Nowveau Caractère observè dans le Fruit des Chènes et sur la meilleure division à adopter pour le Genre Quercus, is the title of a short article contributed by Mr. Alph. DeCandulle to the Bibliotheque Universelle for October, 1862. It is well known to botanists that Mr. DeC'andolle has been assiduously engaged in the elaboration of the order Cupuliferce for the Prodromus, and has had before him the authentic types of almost every published species, and an amount of materials as to many of them which, so far as dried specimens may serve, leaves little to be asked. The present paper has a purely botanical interest, and, having been already reproduced in the Edinburgh Jownal of Science, need only be brietly
noticed here. The new character unexpectedly brought to light is that of the position in the acorn of the five atrophied ovules as respects the seed, or kernel, which results from the fertilization of the sixth ovule, the only one which ever matures. DeCandolle shows that the aborted ovules do not disappear as the fruit grows, but persist, just as they are well known to do in the Horse-chestnut and Buckeye, and that they may be found in the ripe acorn upon examination. It appears that the ovules in this genus are by no means always suspended from the summit of the cells, as generally thought, indeed, that they are ascending from the base or near it in the common European Oak, and persist there in the acorn ; while, however, they are found above the seed in four of the five natural sections under which DeCandolle arranges the species. But in the great section Lepidobalanus, which comprises all the Oaks of the northern parts of the world, except one of California, these ovules are situated sometimes at the base, rarely about the middle, and sometimes near the summit of the seed. Moreover, all the Daks which mature their fruit the first year bear their atrophied ovules at the base of the seed, or at least below its middle. Oaks of biennial maturation are divided in this respect, some having these ovules below, nthers above; but most of the North American species appear to be in the latter category.

This character of annual or biennial maturation, which DeCandolle thinks has been negleeted for half a century [surely not in this country, where it has been familiar, both popularly and scientifically, ever since the time of the elder Michaux], was taken up by the acute and excellent Gay in the Old World, who showed that two Cork Oaks had been confounded under the name of Quereus Suber, one with annual, the other with biennial maturation of the fruit. This character, being of easy application to herbarium specimens of any goodness, as well as obvious in the living tree, would naturally be much relied on in classification. But, as in the case of the two Cork Oaks, so in general, it is not coördinated with other important differences, and therefore it serves merely to distinguish related species, or to subdivide conveniently that portion of the Lepidobalanus group in which the ovules are inferior.

DeCandolle notices a peculiarity in the embryo of our Live Oak (Q. virens), viz.: that its cotyledons are perfectly united into one homogeneous substance, while nothing of the sort appears in its near relative Q. Ilex of the Old World. He wishes the germination of the Live Oak to be examined in this respect, apparently to deternine whether the mass consists of two united cotyledons of of a single cylindrical one. A priori, we could have little doubt; but we solicit fresh acorns of the coming season, or germinating ones the present year from some southern posts. A. Q_{0}
2. Speries, considered as to Variation, Geographical Distribution, and Succrssion.-Etude sur l'Espèce, à l'occasion d'une Revision de la Famille des Cupulifers, par M. Alph. DeC'andolle. - This is the title of a second paper by Mr. DeCandolle growing out of his study of the Oaks. It was published in the November number of the Bibliothèque Universelle, and separately issued as a pamphlet. A less inspiring task could hardly be assigned to a botanist than the systematic elaboration of the genus quercus and its allies. The vast materials assembled under DeCandolle's hands, while disheartening for their bulk, offered small hope o: novelty. The subject was both extremely trite and extremely difficult.

Happily it occurred to DeCandolle that an interest might be imparted to an onerous undertaking, and a work of necessity be curned to good account for science, by studying the Oaks in riew of the question of Species,

What this term Species means, or should mean, in natural history, what the limits of species, inter se or chronologically, or in geographical distribution, their modifications, actual or probable, their origin, and their destiny,-these are questions which surge up from time to time; and now and then in the progress of science they come to assume a new and hopeful interest. Botany and Zoology, Geology, and what our author, feeling the want of a new term, proposes to name Epiontology, ${ }^{1}$ all lead up to and converge into this class of questions, while recent theories shape and point the discussion. So we look with eager interest to see what light the study of Oaks, by a very carefu!, experienced, and conservative botanist, particularly conservant with the geographical relations of plants, may throw upon the subject.

The course of investigation in this instance does not differ from that ordinarily pursued by working botanists; nor, indeed, are the theoretical conelusions other than those to which a similar study of other orders might not have equally led. The Oaks afford a very good occasion for the diso cussion of questions which press upon our attention, and perhaps they offer peculiarly good materials on account of the number of fossil species,

Preconceived notions about species being laid aside, the specimens in hand were distributed, according to their olvious resemblances, into groups of apparently identical or nearly identical forms, which were sererally examined and compared. Where specimens were few, as from countries little explored, the work was easy, but the conclusions, as will be seen, of small value. The fewer the materials, the smaller the likelihood of forms intermediate between any two, and-what does not appear being treated upon the old law-maxim as non-existent-species are readily enough defined. Where, however, specimens abound, as in the case of the Oaks of Europe, of the Orient, and of the United States, of which the specimens amounted to hundreds, collected at different ages, in varied localities, by botanists of all sorts of views and predilections, - here alone were data fit to draw useful conclusions from. Here, as DeCandolle remarks, he had every advantage, being furnished with materials more complete than any one person could have procured from his own herborizations, more varied than if he had observed a hundred times over the same forms in the same district, and more impartial than if they had all been amassed by one person with his own ideas or predispositions. So that vast herbaria, into which contributions from every source have flowed for years, furnish the best possible data,-at least are far better than any practicable amount of personal herborization,- for the comparative study of related forms occurring over wide tracts of territory. But as the mate-
${ }^{1}$ A name which, at the close of his article, DeCandolle proposes for the study of the succession of organized beings, to comprehend, therefore, paleontology and all socluded under what is called gengraphical botany and zoology, -the whole forming a science parallel to geology, -the latter devoted to the history of unorgnuized bodies, the former, to that of organized beings, as respects nrigin, distribution, and succession. We are not satisfied with the word, notwithstanding the precedent of palcoontology; since ontology, the science of being, has an established meaning as referring to meatal existence,- i i. e., is a synonym or a department of inetaphysics.
rials increase, so do the difficulties. Forms, which appeared totally distinct, approach or blend through indermediate gradations; characters, stable in a linited number of instances or in a limited district, prove unstable occasionally, or when observed over a wider area; and the practieal question is forced upon the investigator,-what here is probably fixed and specific, and what is variant, pertaining to individual, variety or race?

In the examination of these rich materials, certain characters were found to vary upon the same branch, or upon the same tree, sometimes according to age or development, sometimes irrespective of such relations or of any assignable reasons. Such characters, of course, are not specific, althongh many of them are such as would have been expected to be constant in the same species, and are such as generally enter into specific definitions. Variations of this sort, DeCandolle, with his ustal painstaking, classifies and tabulates, and even expresses numerically their frequency in certain species. The results are brought well to view in a systematic enumeration, -
(1.) Of characters which fiequently vary upon the same branch: over a dozen such are mentioned.
(2.) Of those which sometimes vary upon the same branch: a smaller number of these are mentioned.
(3.) Those so rare that they might be called monstrosities.

Then he enumerates characters, ten in number, which he has never found to vary on the same branch, and which, therefore, may better claim to be employed as specific. But, as among them he includes the duration of the leaves, the size of the cupule, and the form and size of its scales, which are by no means wholly uniform in different trees of the same species, even these characters must be taken with allowance. In fact, haviig first brought together, as groups of the lowest order, those forms which varied upon the same stock, he next had to combine similarly Farious forms which, though not found associated upon the same branch, were thoroughly blended by interinediate degrees.

[^85]species are thus left as provisional; but in proceeding thus, the progress of the science will be more regular, and the synonymy less dependent upon the caprice or the theoretical opinions of each author."

This is safe and to a certain degree judicious, no doubt, as respects published species. Once admitted, they may stand until they are put down by evidence, direct or circumstantial. Surely a species may rightfully be condemned on good circumstantial evidence. But what course does DeCandolle pursue in the case-of every-day occurrence to most working botanists having to elaborate collections from countries not so well explored as Europe - when the forms in question, or one of the two, are as yet unnamed? Does he introduce as a new species every form which be cannot connect by ocular proof with a near relative, from which it differs only in particulars which he sees are inconstant in better known species of the same group? We suppose not. But if so, little improvement for the future upon the state of things revealed in the following parapraph can be expected.
"In the actual state of our knowledge, after having seen nearly all the original specimens, and in some species as many as 200 representatives from different localities, I estimate that, out of the 300 species of Cupulifere which will be enumerated in the Prodromus, two-thirds at least are provisional species. In general, when we consider what a multitude of species were described from a single specimen, or from the forms of a single locality, of a single country, or are badly described, it is difficult to believe that above one-third of the actual species in botanical works will remain unchanged."

Such being the results of the want of alequate knowledge, how is it likely to be when our knowledge is largely increased? The judgment of so practiced a botanist as DeCandolle is important in this regard, and it accords with that of other botanists of equal experience.
"They are mistaken," he pointedly asserts, "who repeat that the greater part of our species are clearly limited, and that the doubtful spocies are in a feeble minority. This seemed to be true, so long as a genus was imperfectly known, and its species were founded upon few specimens, that is to say, were provisional. Just as we come to know them better, intermediate forms flow in, and doubts as to specific limits augment."

DeCandol!e insists, indeed, in this connection, that the higher the rank of the groups, the more definite their limitation, or, in other terms, the fewer the ambiguous or doubtful forms; that genera are more strictly limited than species, tribes than genera, orders than tribes, dc. We are not convinced of this. Often where it has appeared to be so, advancing discovery has brought intermediate forms to light, porplexing to the systematist. "They are mistaken," we think more than one systematic botanist will say, "who repeat that the greater part of our natural orders and tribes are absoiutely limited," however we may agree that we will limit them. Provisional genera we suppose are proportionally hardly less common than provisional species ; and hundreds of genera are kept up on considerations of general propriety or general convenience, although well known to shade off into adjacent ones by complete gradations. Some what of this greater fixity of higher groups, therefore, is rather apparent than real. On the other hand, that varieties should be less definite than species, follows from the very terms employed. They are ranked as varieties, rather than species, just because of their less definiteness.

Singular as it may appear, we have heard it denied that spontaneous varieties occur. DeCandolle makes the important announcement that, in the Oak genus, the best known species are just those which present the greatest number of spontaneous varieties and sub-varieties. The maximum is found in Q. Robur, with twenty-eight varieties, all spontaneous. Of Q. Lusitanica eleven varieties are enumerated, of Q. Calliprinos ten, of Q. coccifera eight, \&cc. And he significantiy adds that "these very species which offer such numerous modifications are themselves ordinarily surrounded by other forms, provisionally called species, because of the absence of known transitions or variations, but to which some of these will probably have to be joined hereafter." The inference is natural, if not inevitable, that the difference between such species and such varieties is only one of degree, either as to amount of divergence, or of hereditary fixity, or as to the frequency or rarity, at the present time, of intermediate forms.

This brings us to the second section of DeCandolle's article, in which he passes on, from the observation of the present forms and affinities of Cupuliferous plants, to the consideration of their probable history and origin. Suffice it to say, that he frankly accepts the inferences derived from the whole course of observation, and even contemplates with satisfaction a probable historical connexion between congeneric species. He accepts and, by various considerations drawn from the geographical distribution of European Cupuliferce, fortifies the conclusion-long ago arrived at by Edward Forbes-that the present species, and even some of their varieties, date back to about the close of the Tertiary epoch, since which time they have been subject to frequent and great changes of habitation or limitation, but without appreciable change of specific form or character; that is, without profounder changes than theise within which a species at the present time is known to vary. Moreover, he is careful to state that he is far from concluding that the time of the appearance of a species in Europe at all indicates the time of its origin. Looking back still further into the Tertiary epoch, of which the regetable remains indicate many analogous, but few, if any, identical forms, he concludes, with Heer and others, that specific changes of form, as well as changes of station, are to be presumed. And finally, that "the theory of a succession of forms through the deviation of anterior forms is the most natural hypothesis, and the most accordant with the known facts in palæontology, geographical botany and zoology, of anatomical structure and classification: but direct proof of it is wanting, and moreover, if true, it must have taken place very slowly; so slowly indeed, that its effects are discernable only after a lapse of time far longer than our historic epuch."

In contemplating the present state of the species of Cupuliferce in Europe, DeCandolle comes to the conclusion that, while the Beech is increasing, and extending its limits southward and westward (at the expense of Coniferce and Birches), the Common Oak, to some extent, and the Turkey oak decidedly, are diminishing and retreating, and this wholly irrespective of man's agency. This is inferred of the Turkey Oak from the great gaps found in its present geographical area, which are otherwise inexplicable, and which he regards as plain indications of a partial extinction. Community of descent of all the individuals of species is of course implied in these and all similar reasonings.

An obvious result of such partial extinction is clearly enough brought to view. The European Oaks (like the American species) greatly tend to vary, - that is, they manifest an active disposition to produce new forms. Every form tends to become hereditary, and so to pass from the state of mere variation to that of race; and of these competing incipient races some only will survive. Quercus Robur offers a familiar illustration of the manner in which one form may in the course of time become separated into two or more distinct ones.

To Linnæus this Common Oak of Europe was all of one species. But of late years the greater number of European botanists have regarded it as including three species, Q. pedunculata, Q. sessilifora, and
Q. pubescens. DeCandolle looks with satisfaction to the independent conclusion which he reached from a long and patient study of the forms (and which Webb, Gay, Bentham and others had equally reached), that the view of Linnæus was correct, inasmuch as it goes to show that the idea and the practical application of the term species have remained unchanged during the century which has elapsed since the publication of the Species Plantarum. But the idea remaining unchanged, the facto might appear under a different aspect, and the conclusion be different, under a slight and very supposable change of circumstances. Of the twenty-eight spontaneous varieties of Q. Robur, which DeCandolle recognizes, all but six, he remarks, fall naturally under the three sub-species, pedunculata, sessiliflora, and pubescens, and are therefore forms grouped around these as centres; and, moreover, the few connecting forms are by no means the most common. Were these to die out, it is elear that the tbree forms which have already been so frequently taken for species, would be what the group of four or five provisionally admitted species which closely surround Q. Robur (see p. 435) now are. The best example of such a case, as having in all probability occurred, through geographical segregation and partial extinction, is that of the Cedar, thus separated into the Deodar, the Lebanon, and the Atlantic Cedars,-a case admirably worked out by Dr. Hooker two or three years ago. ${ }^{2}$

A special advantage of the Cupuliferce for determining the probable antiquity of existing species in Europe, DeCandolle finds in the size and character of their fruits. However it may be with other plants (and he comes to the conclusion generally that marine currents and all other means of distant transport have played only a very sinall part in the actual dispersion of species), the transport of acorns and chestnuts by natural causes across an arm of the sea in a condition to germinate, and much more the spontaneous establishment of a forest of Oaks or Chestnuts in this way, DeCandolle conceives to be fairly impossible in itself, and contrary to all experience. From such considerations, i. e., from the actual dispersion of the existing species, with occasional aid from Posttertiary deposits, it is thought to be shown that the principal Cupuliferes of the Old World attained their actual extension before the present separation of Sicily, Sardinia and Cursica, or of Britain, from the Europesn continent.

This view once adopted, and this course once entered upon, has to be pursued farther. Quercus Robur of Europe with its bevy of admitted
${ }^{2}$ Nat. Hist. Review, Jan., 1862. See this Journal, [2], zxxiv, 148.
derivatives, and its attending species only provisionally admitted to that rank, is very closely related to certain species of Eastern Asia, and of Oregon and California,-so closely that "a view of the specimens by no means forbids the idea that they have all originated from Q. Robur, or have originated, with the latter, from one or more preceding forms so like the present ones that a naturalist could hardly know whether to call them species or varieties." Moreover, there are fossil leaves from diluvian deposits in Italy, figured by Gaudin, which are hardly distinguishable from those of Q. Robur on the one hand, and from those of Q. Douglasii, \&c., of California, on the other. No such leaves are found in any Tertiary deposit in Europe; but such are found of that age, it appears, in Northwest America, where their remote descendants still flourish. So that the probable genealogy of Q. Robur, traceable in Europe up to the comineucement of the present epoch, looks eastward and far into the past on far distant shores.
Q. Ilex, the Evergreen Oak of Southern Europe and Northern Africa, reveals a similar archæology; but its presence in Algeria leads DeCandolle to regard it as a much more ancient denizen of Europe than Q. Robur; and a Tertiary Oak, Q. ilicoides, from a very old Miocene bed in Switzerland, is thought to be one of its ancestral forms. This high antiquity once established, it follows almost of course that the very nearly related species in Central Asia, in Japan, in California, and even our own Live Oak with its Mexican relatives, may probably enough be regarded as early offshoots from the same stock with Q. Ilex.

In brief,-not to continue these abstracts and remarks, and without reference to Darwin's particular theory (which DeCandolle at the close very fairly considers), -if existing species, or many of them, are as ancient as they are now generally thought to be, and were subject to the physical and geographical changes (among them the coming and the going of the Glacial epoch) which this antiquity implies; if in former times they were as liable to variation as they now are; and if the individuals of the same species may claim a common local origin, then we cannot wonder that "the theory of a succession of forms by deviations of anterior forms" should be regarded as "the most natural bypothesis," nor at the general advance made towards its acceptance in some form or other.

The question being, not, how plants and animals originated, but, how came the existing animals and plants to be just where they are and what they are? it is plain that naturalists interested in such inquiries are mostly looking for the answer in one direction. The general drift of opinion, or at least of expectation, is exemplified by this essay of DeCandolle; and the set and force of the current are seen by noticing how it carries along naturalists of widely different views and prepossessionssome faster and farther than others,-but all in one way. The tendency is, we may say, to extend the law of continuity, or something analogous to it, from inorganic to organic nature, and in the latter to connect the present with the past in some sort of material connection. The generalization inay indeed be expressed so as not to assert that the connection is genetic, as in Mr. Wallace's formula: "Every species has come into Am. Jour. Sci.-Second \$eries, Vol. XXXV, No. 105.-May, 1863.
existence coincident both in time and space with preëxisting closely allied species." Edward Forbes, who may be called the originator of this whole line of inquiry, long ago expressed a similar view. But the only material sequence we know, or can clearly conceive, in plants and animals, is that from parent to progeny; and, as DeCandolle implies, the origin of species and that of races can hardly be much unlike, nor governed by other than the same laws, whatever these may be.

The progress of opinion upon this subject in one generation is not badly represented by that of DeCandolle himself, who is by no means prone to adopt new views without much consideration. In an elementary treatise published in the year 1835, he adopted and, if we rightly remember, vigorously maintained, Schouw's idea of the double or multiple origin of species, at least of some species,-a view which has been carried out to its ultimate development only perhaps by Agassiz, in the denial of any necessary genetic connection among the individuals of the same species, or of any original localization more restricted than the area now occupied by the species. But in 1855, in his Géngraphie Botanique, the multiple hypothesis, although in principle not abandoned, is seen to lose its point, in view of the probable high antiquity of existing species. The actual vegetation of the world being now regarded as a continuation, through numerous geological, geographical, and more recently historical, changes, of anterior vegetations, the actual distribution of plants is seen to be a consequence of preceding conditions, and geological considerations, and these alone may be expected to explain all the facts, many of them so curious and extraordinary, of the actual geographical distribution of the species. In the present essay, not only the distribution but the origin of congeneric species is regarded as something derivative; whether derived by slow and very gradual changes in the course of ages, according to Darwin, or by a sudden, inexplicable change of their Tertiary ancestors, as conceived by Heer, DeCandolle hazards no opinion. It may, however, be inferred that he looks upon 'natural selection' (which he rather underrates) as a real, but insufficient, cause; while some curious remarks (pp. 57-58), upon the number of monstrosities annually produced, and the possibility of their enduring, may be regarded as favorable to Heer's view.

As an index to the progress of opinion in the direction referred to, it will be interesting to compare Sir Charles Lyell's well known chapters of 20 or 30 years ago, in which the permanence of species was ably maintained, with his treatment of the same subject in a work just issued in England, which, however, has not yet reached us.

A belief in the derivation of species may be maintained along with s conviction of great persistence of specific characters. This is the idea of the excellent Swiss vegetable palrontologist, Heer, who imagines a sudden change of specific type at certain periols, and perhaps is that of Pictet. Falconer adheres to somewhat similar views in his elaborate paper on Elephants, living and fossil, in the Nutural History Reviezo for January last. Noting that "there is clear evidence of the true Mammoth having existed in America long after the period of the northern drift, when the surface of the country had settled down into its present form" and also in Europe so late as to have been a cotemporary of the Irish Elk,
and on the other hand that it existed in England so far back as before the deposition of the boulder Clay; also that four well-defined species of fossil Elephant are known to have existed in Europe; that "a vast number of the remains of three of these species have been exhumed over a large area in Europe; and, even in the genlogical sense, an enormous interval of time has elapsed between the formation of the most ancient and the most recent of these deposits, quite sufficient to test the persistence of specific characters in an Elephant," he presents the question: "Do then the successive Elephants occurring in these strata show any signs of a passage from the older form into the newer ?"

To which the reply is: "If there is one fact which is impressed on the conviction of the observer with more force than any other, it is the persistence and uniformity of the characters of the molar teeth in the earliest known Mammoth aud his most modern successor Assuming the observation to be correct, what strong proof does it not afford of the persistence and constancy, throughout vast intervals of time, of the distinctive characters of those organs which are most concerned in the existence and habits of the species? If we cast a glance back on the iong vista of physical changes which our planet has undergone since the Neozoic Epoch, we can nowhere detect signs of a revolution more sudden and pronounced, or more important in its results, than the intercalation and sudden disappearance of the glacial period. Yet the 'dicyclotherian' Manmoth lived before it, and passed through the ordeal of ail the hard extremities it involved, bearing his organs of locomotion and digestion all but unchanged. Taking the group of four European fossil species above enumerated, do they show any signs in the successive deposits of a transition from the one form into the other? Here again the result of my observation, in so far as it has extended over the European area, is, that the specific characters of the molars are constant in each, within a moderate range of variation, and that we nowhere meet with intermediate forms." Dr. Falconer continues, (p. 80):
"The inferences which I draw from these facts are not opposed to one of the leading propositions of Darwin's theory. With him, I have no faith in the opinion that the Mammoth and other extinct Elephants made their appearance suddenly, after the type in which their fossil remains are presented to us. The most rational view seems to be, that they are in some shape the modified descendants of earlier progenitors. But if the asserted facts be correct, they seem clearly to indicate that the older elephants of Europe, such as \boldsymbol{E}. meridionalis and E. antiquus, were not the stocks from which the later species, \boldsymbol{E}. primigenius and \boldsymbol{E}. Africinus sprung, and that we nust look elsewhere for their origin. The nearest affinity, and that a very close one, of the European \boldsymbol{E}. meridionalis is with the Miocene E.planifrons of India; and of E. primigenius, with the existing India species.
"Another reflexion is equally strong in my mind,-that the means which have been adduced to explain the origin of the species by 'Natural Selection,' or a prucess of variation from external influences, are inadequate to account for the phenomena. The law of phyllotaxis, which governs the evolution of leaves around the axis of a plant, is as nearly constant in its manifestation as any of the physical laws connected with the material world. Each instance, however different from another, can be shown to be a term of some series of continued fractions. When this is coupled with the geometrical law governing the evolution of form, so manifest in some departments of the animal kingdom, e. g., the spiral shells of the Mollusca, it is difficult to believe that there is not, in
nature, a deeper-seated and innrate principle, to the operation of which Natural Selection is merely an adjunct. The whole range of the Mammalia, fossil and recent, cannot furnish a species which has had a wider geographical distribution, and passed through a longer term of time, and through more extreme changes of climatal conditions, than the Mammoth. If species are so unstable, and so susceptible of mutation through such influences, why does that extinct form stand out so signally a monument of stability? By his admirable researches and earnest writings, Darwin has, beyond all his cotemporaries, given an impulse to the philosophical investigation of the most backward and obscure branch of the biological sciences of his day; he has laid the foundations of a great edifice; but he need not be surprised, if, in the progress of erection, the superstructure is altered by his successors, like the Duomo of Milan from the Roman to a different style of architecture."

Entertaining ourselves the opinion that something more than natural selection is requisite to account for the orderly production and succession of species, we offer two incidental remarks upon the above extract.

First, we find in it,-in the phrase "Natural Selection, or a process of variation from external influences,"-an example of the very common confusion of two distinct things, viz., variation and natural selection. The former has never yet been shown to have its cause in "external influences," nor to occur at random. As we have elsewhere insisted, if not inexplicable, it has never been explained; all we can yet say is, that plants and animals are prone to vary, and that some conditions favor variation. Perhaps in this Dr. Falconer may yet find what he seeks: for "it is difficult to believe that there is not in [its] nature, a deeper-seated and innate principle, to the operation of which Natural Selection is merely an adjunct." The latter, which is the ensemble of the external influences, including the competition of the individuals themselves, picks out certain variations as they arise, but in no proper sense can be said to originate them.

Secondly, although we are not quite sure how Dr. Falconer intends to apply the law of phyllotaxis to illustrate his idea, we fancy that a pertinent illustration may be drawn from it, in this way. There are two species of phyllotaxis, perfectly distinct, and, we suppose, not mathematically reducible the one to the other,-viz. 1 , that of alternate leaves, with its varieties; and, 2, that of verticillate leaves, of which opposite leares present the simplest case. That, although generally constant, a change from one variety of alternate phyllotaxis to another should occur on the same axis, or on successive axes, is not surprising, the different sorts being terms of a regular series,-although indeed we have not the least idea as to how the change from the one to the other comes to pass. But it is interesting, and in this connection perhaps instructive, to remark that, while some dicotyledonous plants hold to the verticillate, i. e., oppositeleaved phyllotaxis throughout, a larger number-through the operation of some deep-seated and innate principle, which we cannot fathom,change abruptly into the other species at the second or third node, and change back again in the flower, or else effect a synthesis of the two species in a manner which is puzzling to understand. Here is a change from one fixed law to another, as unaccountable, if not as great, as from one specific form to another.

An elaborate paper on the vegetation of the Tertiary period in the southeast of France, by Count Gaston de Saporta, published in the Ann.

Sci. Nat. in 1862, vol. xvi, pp. 309-344,-which we have not space to analyze,-is wortby of attention from the general inquirer, on account of its analysis of the Tertiary flora into its separate types, Cretaceous, Austral, Tropical, and Boreal, each of which has its separate and different history, -and for the announcement that "the hiatus, which, in the idea of moist geologists, intervened between the close of the Cretaceous and the beginning of the Tertiary, appears to have had no existence, so far as concerns the vegetation; that in general it was not by means of a total overtlirow, followed by a complete new emission of species, that the flora has been renewed at each successive period; and that while the plants of Southern Europe inherited from the Cretaceous period more or less rapidly disappeared, as also the austral forms, and later the tropical types (except the Laurel, the Myrtle, and the Chamrerops humilis), the boreal types, coming later, survived all the others, and now compose, either in Europe, or in the north of Asia, or in North America, the basis of the actual arborescent vegetation. Especially "a very considerable number of forms nearly identical with Tertiary forms now exist in America, where they have found, more easily than in our [European] soil-less vast and less extended south-ward-refuge from ulterior revolutions." The extinction of species is attributed to two kinds of causes; the one material or physical, whether slow or rapid; the other inherent in the nature of organic beings, incessant, but slow, in a manner latent, but somehow assigning to the species, as to the individuals, a limited period of existence, and, in some equally mysterious but wholly natural way, connected with the development of organic types:-"By type meaning a collection of vegetable forms constructed upon the same plan of organization, of which they reproduce the essential lineaments with certain secondary modifications, and which appear to run back to a common point of departure."

In this community of types, no less than in the community of certain existing species, Saporta recognizes a prolonged material union between North America and Europe in former times. Most naturalists and geologists reason in the same way,-some more cautiously than others,-yet perhaps most of them seem not to pereeive how far such inferences imply the doctrine of the common origin of related species.

For obvious reasons such doctrines are likely to find more favor with botanists than with zoologists. But with both the advance in this direction is seen to have been rapid and great; yet to us not unexpected. We note, also, an evident disposition, notwithstanding some endeavors to the contrary, to allow derivative hypotheses to stand or fall upon their own merits,-to have indeed upon philosophical grounds certain presumptions in their favor,- and to be, perhaps, quite as capable of being turned to good account as to bad account in natural theology. ${ }^{3}$
${ }^{3}$ What the Rev. Principal Tulloch remarks in respect to the philosophy of miracles has a pertinent application here. We quote at second hand:
"The stoutest advocates of interference can mean nothing more than that the Supreme Will has so moved the hidden springs of nature that a new issue arises on given circumstances. The ordinary issue is supplanted by a higher issue. The essential facts before us are a certain set of phenomena, and a Higher Will moving them. How moving them? is a question for human definition; the answer to which does not and cannot affect the Divine meaning of the change. Yet when we reflect that this Higher Will is everywhere reason and wisdom, it seems a juster as well as a more comprehensive view to regard it as operating by subordination and evolution, rather than by interference or violation."

Among the leading naturalists, indeed, such views-taken in the widest sense-have one and, so far as we are now aware, only one thoroughgoing and thoroughly consistent opponent, viz. : Mr. Agassiz.

Most naturalists take into their very conception of a species, explicitly or by implication, the netion of a material connection resulting from the descent of the individuals composing it from a common stock, of local origin. Mr. Agassiz wholly eliminates community of descent from his idea of species, and even conceives a species to have been as numerous in individuals and as wide spread over space, or as segregated in discontinuous spaces, from the first as at a later period.

The station which it inhabits, therefore, is with other naturalists in no wise essential to the species, and may not have been the region of its origin. In Mr. Agassiz's view the habitat is supposed to mark the origin, and to be a part of the character of the species. The habitat is not merely the place where it is, but a part of what it is.

Most naturalists recognize varieties of species; and many, like DeCandolle, have come to conclude that varieties of the highest grade, or races, 80 far partake of the characteristics of species, and are so far governed by the samo laws, that it is often very difficult to draw a clear and certain distinction between the two. Mr. Agassiz will not allow that varieties or races exist in nature, apart from man's agency.

Most naturalists believe that the origin of species is supernatural, their dispersion or particular geographical area, natural, and their extinction, when they disappear, also the result of physical canses. In the view of Mr. Agassiz, if rightly understood, all three are equally independent of physical cause and effect, are equally supernatural.

In comparing preceding periods with the present and with each other, most naturalists and pairoontologists now appear to recognize a certain number of species as having survived from one epoch to the next, or even through more than one formation, especially from the Tertiary into the Pust-tertiary period, and from that to the present age. Mr. Agassiz is understood to believe in total extinctions and total new creations at each successive epoch, and even to recognize no existing species as ever cotemporary with extinct ones, except in the case of recent exterminations.

These peculiar views, if sustained, will effectually dispose of every form of derivative hypothesis.

Returning for a moment to DeCandolle's article, we are disposed to notice his criticism of Linnæus's 'definition' of the term species (Phil. Bot., No. 157): Species tot numeramus quot diversce formce in principio sunt create,-which he declares illogical, inapplicable, and the worst that has been propounded. "So, to determine if a form is specific, it is necessary to go back to its origin, which is impossible. A definition by a character which can never be verified is no definition at all."

Now, as Linnæus practically applied the idea of species with a sagacity which has never been surpassed, and rarely equalled, and indeed may bo said to have fixed its received meaning in natural history, it may well be inferred that in the phrase above-cited he did not so much undertake to frame a logical definition, as to set forth the idea which, in his opinion, lay at the foundation of species. On which basis A. L. Jussieu did conatruct a logical definition:-" nunc rectius definitur perennis individuorum
similium successio continuata generatione renascentium." The fundamental idea of species, we would still maintain, is that of a chain, of which genetically-connected individuals are the links. That, in the practical recoguition of species, the essential characteristic has to be inferred, is no great objection,-the general fact that like engenders like being an induction from a vast number of instances, and the only assumption being that of the uniformity of nature. The idea of gravitation, that of the atomic constitution of matter, and the like, equally have to be verified inferentially. If we still hold to the idea of Linnæus, and of Agassiz, that existing species were created independently, and essentially all at once at the beginning of the present era, we could not better the propositions of Linnæus and of Jussieu. If, on the other hand, the time has come in which we may accept, with DeCandolle, their successive origination, at the commencement of the present era or before, and even by derivation from other forms, then the 'in principio' of Linnæus will refer to that time, whenever it was, and his proposition be as sound and wise as ever.

In his Géographie Botanique (ii, 1068-107ヶ) DeCandolle discusses this subject at length, and in the same interest. Remarking that of the two great facts of species, viz: likeness among the individuals, and genealogical connection, zoologists have generally preferred the latter, ${ }^{4}$ while botanists have been divided in opinion, he pronounces for the former as the essential thing, in the following argumentative statement:
"Quant à moi, j’ai été conduit, dans ma definition de l'espèce, à mettre décidément la ressemblance au-dessus des caractères de succession. Ce n'est pas seulement à cause des circonstances propres au règne végétal, dont je m'occupe exclusivement; ce n'est pas non plus afin de sortir ma définition des théries et de la rendre le plus possible utile aux naturalistes descripteurs et nomenclateurs, c'est aussi par un motif philosophique. En toute chose il faut aller au fond des questions, quand on le pent. Or, pourquoi la reproduction est-elle possible, habituelle, féconde indefiniment, entre des êtres organisés que nous dirons de la même 'espèce? Parce qu'ils se ressemblent et uniquement à cause de cela. Lorsque deux especes ne peuvent, ou, s'il s'agit d'animaux supérieurs, ne peuvent et ne veulent se croiser, c'est qu'elles sont très differentes. Si l'on obtient des croisements, c'est que les individus sont analogues ; si ces croisements donnent des produits féconds, c'est que les individus êtaient plus analogues; si ces produits eux-mêmes sont féconds, c'est que la ressemblance était plus grande; s'ils sont fécond habituellement et indéfiniment, c'est que la ressemblance intérieure et extérieure étatt très grande. Ainsi le degré de ressemblance est le fond; la reproduction en est seulement la manifestation et la mesure, et il est logique de placer la cause au-dessus de l'effet."

We are not at all convinced. We still hold that genealogical connection, rather than mutual resemblance is the fundamental thing,-first on the ground of fact, and then from the philosophy of the case. Practically, no botanist can say what amount of dissimilarity is compatible with unity of species; in wild plants it is sometimes very great, in cultivated races, often enormoas. DeCandolle himself infurms us that the different variations which the same Oak tree exhibits are significant indications of a disposition to set up separate varieties, which becoming hereditary may

[^86]constitute a race; he evidently looks upon the extreme forms, say of Quercus Robur, as having thus originated; and on this ground, inferred from transitional forms, and not fom their mutual resemblance, as we suppose, he includes them in that species. This will be more apparent should the discovery of the transitions, which he leads us to expect, hereafter cause the four provisional species which attend Q. Robur to be merged in that species. It may rightly be replied that this conclusion would be arrived at from the likeness step by step in the series of furms; but the cause of the likeness here is obvious. And this brings in our ' motif philosophique.'

Not to insist that the likeness is after all the variable, not the constant, element,-to learn which is the essential thing, resemblance among the individuals or their genetic counection, we have only to ask which can be the cause of the other.

In hermaphrodite plants (the normal case), and even as the question is ingeniously put by DeCandolle in the above extract, the former surely cannot be the cause of the latter, though it may, in case of crossing, offer occasion. But, on the ground of the most fundamental of all things in the constitution of plants and animals, "the fact incapable of farther analysis, that individuals reproduce their like, that characteristics are inheritable," ${ }^{\prime \prime}$ the likeness is a direct natural consequence of the genetic succession,-and it is logical to place the cause above the effect.

We are equally disposed to combat a proposition of TeCandolle's about genera, elaborately argued in the Géographie Botanique, and incidentally re-affirmed in his present article, viz., that genera are more natural than species, and are more correctly distinguished by people in general, as is shown by vernacular names. But we have no space left in which to present some evidence to the contrary.

Here we must abruptly close our long exposition of a paper which, from the scientific position, ability, and impartiality of its author, is likely at this time to produce a marked impression. We would also direct attention to an earlier article in the same important periodical (viz: in the Bibl. Univ. for May, 1862), on the European Flora and the Configuration of Continents in the Tertiary Epoch, a most interesting abstract of, and commentary on, the introductory part of Heer's Flora Tertiaria Helvetice, as reëdited and translated into French by Gaudin, with additions by the author.
A. G.
3. Flora Capensis; by Dr. Harvey and Dr. Sonder; vol. ii, 1861-62. The second volume of this excellent work extends from the Leguminosa to the Loramthacece inclusive, that is, it concludes the Polypetalous orders. Almost half the volume is devoted to the Leguminosce, elaborated by Dr. Harvey, and much the greater part of the other half is occupied by the Bruniacece, by Dr. Sonder (who assigns no definite character to separate them from Hamamelidece), the Crassulacee, by Dr. Harvey, the Mesembryacea by Dr. Sonder (Mesembryanthemum counting 300 species, including 7 not sufficiently known), and the Umbelliferce, by Dr. Sonder. Montinia is transferred by Dr. Harvey from the Onagracea to the Saxifragacees. The close affinity of the latter order to Rosacece is recognized by placing it and its immediate allies next after Rosacece in the series.
A. G.
${ }^{5}$ See this Journal, vol. xxix, [2], March, 1860, p. 165, for the enunciation of this obvious principle.
4. Flora of Canada.-Flore Canadienne, ou Descriptions de toutes les Plantes des Forêts, Champs, Jardins et Eaux du Canada, \&c.-Par l'abbé L. Provancher, Curé de Portneuf. Quebec: Joseph Darveau, 1862. 2 vols, 8 vo. pp. 842 .-It is pleasant to find that Botany is attracting so much attention in Lower Canada as to call into existence a Canadian Flora in the French language; and it is much to the credit of the Abbé Provancher, for zeal and enterprize, that he should have produced such a work as this, in so good a form and so neatly printed. It is of course substantially a compilation; and the author is evidently a neophyte, of limited acquaintance with the plants around him; but he makes a fair beginning, in a work which may for the present very well serve the educational end in view. The critical Flora of Canada and the other Provinces is yet to be written, and will be of a different order.

The wood cuts, "over 400 in number," which illustrate the orders, and which here appear in such novel guise with their French environment, are every one taken from Gray's Botanical Text Book, except five of the Ferns from the Manual, - a preference which speaks more for the good taste of the Abbe than does the omission to mention the source.

A. ${ }^{\text {a }}$

5. The Tendrils of Virginia Creeper terminating in flat expansions or disks, by means of which this climber readily ascends smooth trunks and walls, appear to have attracted Mr. Des Moulin's attention, at Bordeaux, as a great curiosity. They are described at length by him in the Transactions of the Linncean Society of that city. Before publishing, however, he had become aware that this peculiarity was deseribed in the Manual of Botany of Northern States in 1856. We can give him earlier dates; i. e., Torrey \& Gray, Flora of N. America, i, 245 (1838); and the venerable Dr. Darlington's Flora Cestrica, 2d ed., p. 153 (1837). Probably there is still earlier mention of it; as the fact has been familiar to us from boyhood. These disks are figured in First Lessons in Botany, p. 38. We may add that on the same plant may often be seen these disk-bearing tendrils and others which act in the ordinary manner. Although we have never seen aërial rootlets also, to verify the character "caule radicando-scandente" in Michaux, yet these are mentioned by Dr. Darlington, who is generally very correct, and are not unlikely to appear under favorable conditions, as they do in the Southern Muscadine Grape.
A. G.
6. Vites Boreali-Americance, par. E. Durand, de l'Académie des Sciences Naturelles de Philadelphie, etc. Memoire précédé d'une Introduction par M. Сh. Des Moulins, etc.-In response to demands from the French Society for Acclimatisation, and from Mr. Des Moulins on the part of the naturalists and vine-growers of Bordeaux, the excellent Mr. Durand of Philadelphia, along with other practical information, communicated a condensed but very careful monograph of the North American species of Vitis. This monograph,-a most laudable attempt to illustrate an extremely difficult group of species,-is published in the Actes de la Société Linnéene de Bordeaux, vol. xxiv, issued at the close of the last year, greatly amplified in bulk by the garrulous introduction, intercalations and notes of its French editor. Seven pages of this introduction are devoted mainly to a criticism of the two words by which the present

Am. Jotr. Scl.-Second Series, Vol. XXXV, No. 105.-May, 1863.
writer distinguished the genus Ampelopsis, viz.: "disk none." The substance of the whole is, that Mr. Des Moulins admits that no disk is to be found in the flower of Ampelopsis, but thinks that he finds under the forming fruit sonething which, if it developed, would become a disk: then stating, in effect, that the disk in Ampelidece is nothing more than a development of the common receptacle of the flower (to which we have no present occasion to object), he insists that this disk equally exists "plus ou moins fort," in Ampelopsis where it is not developed at all. A reëxamination enables us to say that Mr. Sprague's figures in the Genera Am. Bor. Ill., ii, pl. 162 are correct, and that there is no disk at all developed in Ampelopsis. Such are the facts. If now it be argued that this genus should be united to Vitis in spite of this difference, we could not well object, knowing how variable the disk is in different species of Vitis (including Cissus), and that a Brazilian species of the latter is hardly distinguishable from our Virginia Creeper except in its strongly developed disk. Bentham and Hooker fil., we observe, have recently made this reduction; but still upon an unfounded bypothetical basis. They write: "Ampelopsis exhibet discum cum ovario omnino confluentem;" -a view which we can no more confirm by observation than we can that of Des Moulins; but it has the immense advantage of being stated in fewer words than the latter requires of pages.
7. Vegetable Productions of the Feejee Islands.-A "Blue Book," entitled "Correspondence relative to the Fiji Islands," May, 1862, gives a full and official account of the arrangement between the British Consul, Mr. Pritchard, and Ebenezer Thakombau, claiming to be king of the Fiji Islands, for the cession of the latter to the British crown, and of the appointment of Col. Smythe as a commission to visit these islands and to report whether the acquisition would be desirable,-whereupon the commissioner visited the islands, accompanied by Dr. B. Seemann, who was instructed to explore and report upon their vegetable productions and resources. Col. Smythe very sensibly reported that Thakombua, although perhaps the most influential of the independent chiefs, had no claim to the title of king of Fiji, and that it was inexpedient to accept his offer. What most interests us is the appendix, containing Dr. Seemann's elaborate Report on the Vegetable Productions and Resources of the Vitian or Fijian Islands. This treats, 1, of the climate, soil, and flora in general of these islands, and, 2, of the Colonial Produce, so-called, such as sugar, coffee, tamarinds and tobacco, which they may be expected to yield, as also certain oils and fats, farinas, and spices. 3. The staple food of the people. This "is the same all over Polynesia, being derived, with the total exclusion of all grain and pulse, from the yam, the taro, the banana, the plantain, the bread fruit, and the cocoa-nut; but the bulk of it is furnished in the different countries by only one of these plants. In the Hawaian group the taro takes the lead, whilst the cocoa-nut is looked upon as a delicacy, from which the women were formerly altogether cut off. In some of the smaller coral islands the inhabitants live alinost entirely upon cocoa-nuts. The Samoans place the bread-fruit at the head of the list. Again, the Fijians think more of the yam than of the others, though all grow in their islands in the greatest perfection, and in an endless number of varieties." Of edible fruits there is a long list, the bread-fruit
and bananas being the most important, and the account of the Ivi, (Inocarpus edulis), is the most interesting, now that its botanical relationship has been detected by Mr. Bentham. 4. Cannibal vegelables, the vegetables eaten with human flesh,-formerly an important part of Fijian dietetics, and not yet entirely obsolete,-form the subject of a separate section. Huıan flesh, it appears, is extremely difficult to digest, and, perhaps on this account, was eaten with the leaves of three vegetables which wero thought to assist the process, viz: of Trophis anthropophagorum and Solanum anthropophagorum of Seemann, and of Omalanthus pedicellatus, Benth., an Euphorbiaceous plant. 5. National Beverages. Like the other Polynesians, they prepare an intoxicating drink from the root of Piper methysticum. "In order to prepare the beverage, it is necessars to reduce the roots to minute particles, which, according to regular Polynesian usage, is done by chewing,-a task, in Fiji, devolving upon lads who have sound teeth, and who occupy a certain social rank towards the man for whom they perform the office.... Some Fijians make it a point to chew as great a quantity as possible in one mouthful; and there is a man of this sort at Veratra, famous all over the group, who is able within three hours' time to chew a single mouthful sufficient to intoxicate fifty persons." Although the Fijiaus drink the natural liquor of goung cocoa-nuts, they were not acquainted, nor were any Polynesians acquainted, with the art of extracting and fermenting toddy from the cocoa-nut palm. From which it is inferred, that, if the Polynesians are of Malayan origin, they must have left the cradle of their race before the extraction of toddy from the cocoa-nut tree, or even the tree itself, was known there. Indeed, this palm itself is thought to have made its way by the drifting of its fruits across the Pacific from east to west, through the Polynesian Islands, and to have reached Ceyiun within what may be called historical times. 6. Vegetable Poisons. Under this head is an interesting account of tho kau-karo (literally Itch-wood), the Oncocarpus Vitiensis A. Gray, which acts like the Poison Rhus of North America and of Japan, only with tenfold virulence. Indeed, a drop of the juice, falling upon the hand of one of Dr. Seemann's companions, "instantly produced a pain equal to that produced by contact with a red-hot poker." The Excoccaria Agallocha, known through the East, is equally virulent with its ally the Manchineel tree. The smoke of the burning wood is used by the Fijians to cure leprosy,-a terribly severe, but sometimes an effectual, remedy. 7. Medicinal Plants. None of real importance are brought to light. 8. Scents and Perfumes. These are used for scenting the cocoa-nut oil which the natives profusely apply to the hair and to the naked body. Besides that obtaine I from several flowers, from the fruit of Parinarium laurinum and of Eugeniu (Jambosa) neurocalyx A. Gray, and from the bark of a species of Cinnamomum, the most famous is that yielded by the Sandalwood of the islands, which, formerly abundant at Sandalwood Bay, is now almost annihilated. 9. Materials for Clothing. The tapa, made of the bark oi the Paper Mulberry, mainly furnished what scanty clothing was needell, until the introduction of cheap cotton cloth by traders. Successive sections discourse of Fibres used for cordage ; of Cotton, several sorts of which have been introduced and run wild in these islands, and the better sorts are now cultivated with success; of Timber, the most
important being a kind of kowrie-pine or Dammara, and Calophyllum inophyllum. The wood of the latter, abundant by the sea-side, is used for canoes and boats, while its seed yields an important oil, but the most valued wood is that of Afzelia bijuga A. Gr., which is almost indestructible. Palms, Sacred Groves, Ornamental Plants, dec., occupy the remaining sections.

Having submitted his economical report, Dr. Seemann is now turning his attention to the scientific botany of the Feejee Islands, where he mado a collection second in extent and interest only to that of the U. S. Exploring Expedition under Commodore Wilkes. The Flora Vitiensis which he has announced as in preparation, is to be a royal quarto volume of about 400 pages of letter press, and 100 colored plates by Mr. Fitch,-to be published by Lovell Reeve and Co. In form and extunt it will therefore equal his well known Botany of the Voyage of the Herald; and it can not fail to be interesting and important.

A Synopsis Plantarum Vitiensium, or List of the Fijian Plants at present known, has just been issued by Dr. Seemann, corrected up to date. We note that he has overlooked Mr. Sullivant's folio, of the Musci of Wilkes' Expedition, in which fitteen mosses not in his list are enumerated or described from these islands, and six of them are figured. The Lichenes by Mr. Tuckerman, the Algoe by Prof. Harvey and the late Prof. Bailey, and the few Fungi, by Messrs. Curtis and Berkeley, also published, but sparingly diffused, may also add something to the list.
A. G.
8. New Edition of Gray's Manual of the Botany of the Northern United States.-We copy the Advertisement to the revised edition, 1863. -"The additions and alterations of the Revised Edition of this work, now issued, are mainly the following:
"1. The addition of an entirely new part, entitled Garden Botany, an Introduction to a Knowledge of the Common Cultivated Plants: see pp. xxix-lxxxix. By this, the common exotics, no less than the wild plants, are made available for botanical classes, which will be a great convenience in many cases. Most of these cultivated plants are everywhere conimon, and generally at hand for botanical illustration; and it is desirable that they should be scientifically known and rightly named. And there is no great difficulty in studying them, if double flowers, and those which are otherwise in a monstrous or unnatural condition, be avoided, at least by beginners. It is obviously absurd and highly inconvenient to mix in the cultivated with the wild plants in such a work as this. But a separate account of the common exotics, annexed and subsidiary to the Botany of the Northern United States, especially in the School Edition, will doubtless be popular and useful. Directions for the use of the Garden Botruny will be found on p. xvii and p. xxix.
"2. The Analyticaf. Key, p. xvii, upon which the pupil so greatly depends, has been altogether revised, much simplified, adapted to the Garden Botany as well as to the Botany of the Northern States, and printed in a larger type.
"3. Numerous corrections in particulars have been made throughout the body of the work, whenever the required alterations could well be effected upon the stereotype plates. Many others, suggested by acute and obliging correspondents, or by my own observation, are necessarily deferred until the work can be recompgsed.
"4. The plants which have been newly detected within our limits, and one or two which were before accidentally omitted, are enumerated and characterized in the Addenda, p. xc.
"5. Eight plates have been added, crowded with figures, illustrating all the genera (66 in number) of Grasses. They are wholly original, having been drawn from nature and engraved by Mr. Sprague. They will be of great assistance in the study of this large, difficult, and important family.
"The flattering success which the Manual has met with stimulates the author's endeavors towards its continued improvement; -in regard to which he still solicits aid from his correspondeutts."
9. Botanical Necrology, 1862.-Of the three botanists of Holland who all died in the earlier weeks of the year 1862, viz.: Blume, Van den Bosch, and DeVriese, a brief record was made in this Journal for May last.

Prof. M. N. Blytt, of the University of Christiania, the most distinguished Norwegian botanist, died on the 26th of July last, aged 70 years. He had amassed vast materials for the illustration of Scandinavian botany, and had commenced the publication of his Norges Flora, the first volume of which appeared in 1861.

Wm. Borrer, Esq., of Henfield in Sussex, England, one of the venerable cotemporaries and botanical friends of Sir James E. Smith, and whose name has long been intimately associated with English botany, died on the 10th of $\stackrel{F}{\text { February, }} 1862$, in the 81 st year of his age.

Dr. James Townshend Mackay, the author of the Flora Hibernica, long the director of the Botanic Garden of Trinity College, Dublin, died five days later, viz: on the 15 th of February, at an age little less venerable than that attained by Mr. Borrer.

Dr. D. G. von Kieser, the late President of the Imperial German Society of Naturalists, and who has been Professor of Medicine at the University of Jena ever since 1812, died on the 11th of October, aged 83 years. He is to be honorably mentioned among the botanists, on account of two early essays on the anatomy and physiology of plants, one of which, in the year 1812, took the prize offered by the Haarlem Academy; and for his Elements of the Anatomy of Plants, the carliest German treatise of modern times, published in 1815.

Dr. Jouchim Steetz, of Hamburg, died on the 24th of March, 1862, in the 57 th year of his age. He was a medical practitioner, who devoted his leisure hours with assiduity and much success to systematic botany, and especially, in lis later years, to the Compositce.

Mr. John Twecdie, a Scotch gardener, who visited Buenos Ayres to make botanical collections on the LaPlata, the Parana, and the Uruguay, \&c., more than thirty years ago, and became so fond of the country that be made it his home, died at Santa Catalina, near Buenos Ayres, on the first of April, 1862, at the age of 87 . To him we are mainly indeloted for the original of the Terbenas which adorn our parterres, and for many other ornamental cultivated plants.

Turning now to our home circle, we have to record the honored names of four of the older cultivators of our science who have been removed from our thin ranks within the last few months:-

Benjamin D. Greene, Esq., of Boston, died on the 14th of October last, at the age of 69 years. He was born in 1793 , was graduated at Harvard University in the year 1812; he first pursued legal studies, partly in the then celebrated school at Litchfield, Connecticut, and was duly admitted to the Bar in Boston. He then took up the study of
medicine, and completed his medical course in the schools of Scotland and Paris, taking his medical degree at Edinburgh in the year 1821. The large advantages of such a training having been enjoyed, Mr. Greene did not engage in the practice of either profession. An ample inheritance, which rendered professional exertion unnecessary, conspiring with a remarkally quiet and contemplative disposition, and a refined taste, led him to devote his time to literary culture and to scientific pursuits. His fondness for botany, which early developed, was stimulated by personal intercourse with varions European botanists, and especially with his surviving fijend, the now venerable Sir Wm. Hooker, then Professor in the University of Glasgow, to whom he naturally became much attached, and by whom he was highly appreciated.

In botany, as in everything else, Mr. Greene sought to be silently useful. He never himself published any of his discoveries or observations. The few species to which his name is annexed were given to the world at second-hand. But his collections were extensive, his original observations numerous and accurate, and both were freely placed at the disposal of working botanists. He early saw that the great obstacles to the advantageons prosecution of botanical investigations in this country, and especially in New England, were the want of books and the want of authentic collections; and these desiderata he endeavored, so far as he could, to supply. He gathered a choice botanical library, he encouraged explorations, and he subscribed to all the large purchasable North American collections,-beginning with those of Drummond in the Southern United States and in the then Mexican province of Texas. These, being distributed under numbers, among the principal herbaria of the world, and named or referred to in monographs or other botanical works, were of prime importance as standards of comparison. Such collections and such books as Mr. Greene brought together were just the apparatus most needed at that time in this country; and now, when our wants are somewhat better supplied, we should not forget the essential service which they have rendered, nor the disinterested kindness with which their nost amiable and excellent owner always placed them at the disposal of those who could advantageously use them. Mr. Greene's botanical library and collections have been, by gift and by bequest, consigned to the Boston Society of Natural History, of which he was one of the founders and the first President,- and by which they will be preserved for the benefit of future New England botanists, by whom his memory should ever be gratefully cherished. The genus Greenea, established by Wight and Arnott upon two rare Rubiaceous shrubs of India, barely anticipated a similar dedication by his old friend Mr. Nuttall, of a curious Grass of Arkaneas and Texas, and will perpetuate his name in the annals of the science which he lovingly cultivated.

Dr. Asakel Clapp, of New Albany, Indiana, died on the 17th of December last, as has already been announced in the current volume of this Journal (p. 306). We are not informed of the particulars of his life, nor of his exact age, but we suppose he had nearly or quite reached his three-score years and ten. His only botanical publication is one of merit and importance, viz., A Synopsis or Systematic Catalogue of the Medicinal Plants of the Uniled Siates, which forms an 8 vo volume of

222 pages. It was presented to the American Medical Association in May, 1852, and published during that year, at Philadelphia. A rare plant of the order Compositce, which inhabits the southern borders of Texas, was dedicated to Dr. Clapp in the Botany of the Mexican Boundary Survey.

Dr. Melines C. Leavenworth, as already' announced in this Journal, died in the vicinity of New Orleans, in December last, while acting as Surgeon to the 12 th Connecticut regiment, at the age of probably above three score years. It is to be desired that some one acquainted with them would put upon record the incidents of his life. He was formerly and for many years a surgeon in the United States Army; from which, however, he retired about twenty years ago. While in the army, and at frontier posts in Arkansas, Louisiana, and Florida, he indulged his strong botanical tastes, and did useful service, by observing and collecting the plants within his reach, which he communicated to Dr. Torrey along with copious notes. These were the more important as his dried specimens were seldom neatly preserved. The pages of the Flora of North America, upon which his name so often occurs, testify to his zeal and success as a botanical explorer and pioneer. His ardent love of botany-fostered, we believe, by the late Dr. Tully-must have early developed; for as much as forty years ago he discovered "four new plants from Alabama," which he described in the seventh volume of this Journal, in 1824. Among the many rare plants which he detected, a very peculiar one-the Amphianthus pusillus of Torrey-which he found in the upper part of Georgia, is so very scaice and local that it has never been met with since. A pretty and strikingly marked Cruciferous genus, one species of which (if indeed distinct from the other) was discovered by Dr. Leavenworth, dedicated to him by Dr. Torrey, commemorates his botanical services;-which services, indeed, were continued to the last. For no sooner had he landed with his regiment upon our southern coast than he zealously began to collect the planta he met with, and to note their peculiarities. Although his scientific acquirements and insight were not great, his zeal and devotion to botany were thorough and genuine.
A. θ.

Dr. Charles Wilkins Short died at Lonisville, Ky., March 7, aged 69 years. A notice of his life will appear in our next issue.

Zoology-

10. Evidence as to Man's place in Nature; by Thomas Henry Huxlex, Fellow of the Royal Society. 160 pp. 8vo. London: Williams and Norgate. -The able zoologist, Prof. Huxley, discusses in the first chapter of his work, "The Natural History of the Man-like Apes," or the Orangs, Gibbons, Gorillas and Chimpanzees ; in the second. "the Relations of Man to the lower animals;" and in the third, the "Fossil remains of Man." The second topic is that towards which all the rest of the work points; and the conclusion of the whole is, that man belongs structurally to the same order with the Quadrumana, and constitutes among the Primates (as the order is called, after Linnæus), the family of Anthropini ; and further, that "if man be separated by no greater structural barrier from the brutes than they are from one another, then it seems to follow that if any process of physical causation can be discovered, by which the genera and families of ordinary animals have been
produced, that process of causation is amply sufficient to account for the origin of Man;" and, finally, that the theory of Mr. Darwin is "the only one that has any scientific existence," and is, probably, the true one, or at least, "if not precisely true, the hypothesis is as near an approximation to the truth as, for example, the Copernican hypothesis was to the true theory of the planetary motions" (p. 107).

The main argument of the work has been met by the writer in his article (this volume, p. 65), on the Classification of Mammals. It is there shown, that Man stands apart from all other Mammals, on the basis of a characteristic of profound zoological value. The characteristic referred to is this:-that, in Man, the fore-limbs are withdrawn completely from the locomotive serics, and transferred to the cephulic; and, thus, a very large anterior portion of the body is turned over to the service of the head, while the posterior or gastric portion is reduced to its minimum. This condition of extreme cephalization in the system is of the very highest significance, and places Man alone. Man's erect structure is a part of its expression. The nature of the feet in Man,-they being made simply for supporting the body, and not, as in the Quadrumana, for clinging or grasping-is a concomitant feature of his erectness; and such also is the position of the cerebellum wholly beneath the cerebrum, mentioned in Professor Owen's characteristics of Man. For the argument on the subject, we refer to the article mentioned.

The uses of the fore-limbs in man are, first, the inferior, depending on the demands of the appetite satisfied through the mouth (uses that are united to the locomotive in the Apes and some other quadrupeds); second, the superior, depending on the demands of Man's higher nature.

This higher nature, it may be added, we regard as a spiritual one, in which the brute has no share, and to the possession of which no devel-opment-process could elevate him. The raising of the fore-limbs from the ground, for esthetic, intellectual, and spiritual service, was in direct harmony with such a spiritual endowment. Man exlibits his exclusive possession of such an element, not merely in having the power of speech, but more fundamentally in being the only species capable of reaching towards a knowledge of himself, of nature, and of God;-the only one, therefore, capable of conscious obedience, or disobedience, of any moral law, and the only ore subject to degradation through the appetites and a moral nature. His power of indefinite progress, his thoughts and desires that look onward even beyond time, his recognition of spiritual existence and of a Divinity above, all evince a nature that partakes of the infinite and divine. Man is linked to the past through the system of life, of which he is the last, the completing, creation. But, unlike other speeies of that elosing system of the past (significantly the Zoic era of geological history), he, through his spiritual nature, is far mure intimately connected with the opening future.

Whatever the point of view, then, we see reason wholly to dissent from the sentiment with which Prof. Huxley concludes his chapter "on the relations of Man to the lower animals" (p.112): "Our reverence for the nobility of manhood will not be lessened by the knowledge, that Man is, in substance and in structure, one with the brutes; for he alone possesses the marvellous endowment of intelligible and rational speech, whereby, in the seeular period of his existence, he has slowly accumu-
lated and organized the experience which is almost wholly lost with the cessation of every individual life in other animals; so that now he stands raised upon it, as on a mountain top, far above the level of his humble fellows, and transfigured from his grosser nature by reflecting, here and there, a ray from the infinite source of truth." It is possible to conceive that a being with such mental endowments as Man possesses, and with even the throat of a gorilla, might originate an intelligible language; but it is incomprehensible how the gitt of speech could develop man's mental qualities in a brute, however long the time allowed. Moreover, it is a natural question, why there are not Manapes in the present age of the world, representing the various stages of transition, and filling up the hiatus, admitted to be large, if such a process of development is part of the general system of nature. We think this question a fair one, notwithstanding the reply which may be made, that the more developable individuals long since passed out of the Apestage, leaving behind only the unimprovable ones. The resemblances between the skeletons of Man and the Apes, and between ova generally, mentioned by Prof. Huxley, may, to the uninitiated in science, appear to make the transition by development feasible: yet they are of no weight, as argument, since the question is as to the fact whether, under nature's laws, such a transition has taken place as the gradual change of an Ape into a Man, or, whether Apes were made to be, and remain, Apes. In the Ape, the great muscle of the foot, the flexor longus pollicis, divides and sends a branch to three or more of the toes, while in Man, it passes to the great toe alone: Is it a fuct that this, and the many structural differences of the foot and other parts of the body, were brought about by gradual development in a progressive Ape?

Between the lowest and highest types of men, there are all possible intermediate shadings as to grades of intellect, size of brain, and form of features. The range of grades, thus passing into one another through small individual differences, is very wide among the several diverse tribes of negroes in Africa; it is very wide in the present population of Europe, and even in Britain alone. For these and other reasons, we may believe in the unity of origin of the human race. But wilh regard to Man and the Man-apes, no evidence has been pointed out, derived from Man, or the Apes, proving either the fact, or the probability, or the possibility, of a common origin. The direct evidence, on which the Darwinian hypothesis rests, comes from lower departments of life, and is acknowledged by its advocates to be exceedingly scanty and imperfect: they would say-and rightly-that facts have but just begun to be collected. But on this general subject, it is not our purpose now to enter.

The few discoveries of ancient skulls of inferior capacity, made recently in Europe, indicate the condition of some of the early tribes on that continent, or, at least, of some individuals in those tribes, and are of great archeeological interest. The skulls are not inferior to those of some of the lowest of living men; and Prof. Huxley remarks respecting them, that they do not seem to him "to take us appreciably nearer to the lower pithecoid form," that is, to that of the Man-apes.

Should similar discoveries be made all over the globe, proving a Am. Jour. Sct.-Second Series, Vol. xxxv, No. 105.-May, 1863.
former condition of the race much inferior to the present, such a phase in its history is one that would have been a necessary consequence of man's nature, however large his skull or brain when created. For, as Prof. Guyot has observed, a first race, very limited in language and knowledge, without arts, and possessing, in full force, man's natural selfishness, unbridled appetites, and evil propensities, would have entered at once upon a course of degradation; and, before many centuries had passed, the whole population, unless some part or all had been restrained or guided by superhuman agency, would have sunk to its lowest limit of moral and physical delasement. It is not too much to expect that the fact of a general physical debasement may be ultimately proved by the discoveries now in progress. J. D. D.
11. On the question whether Diatoms live on the sea-bottom at great depths; by Wm. Stimpson, M.D.-In a paper on the Diatomacer found in mud collected at great depths from the bottom of the sea off the coast of Kantschatka, in soundings made by the North Pacific Expedition under Com. Rodgers (see this Journal, [2], xxi, 284), the late lamented Professor Bailey made the following remark. "The perfect conditions of the organisms in these soundings, and the fact that some of them retain their soft parts, indicate that they were very recently in a living condition, but it does not follow that they were living when collected at such immense depths." My attention has recently been called to this subject by the perusal of an account of the recent discoreries of animal life in various forms at depths vastly greater than had been previously suspected; for instance, at 1400 fathoms by Torell, at 1000 and 1500 fathoms by Milne-Edwards, and at 3000 fathoms by Dr. Wallich. The question of the nature of the food of these abysmal animals is one of great interest, and I wish to place on record, in advance of the publication of the report of the expedition, the results of my examination of the specimens alluded to by Prof. Bailey, when they were freshly taken from the water.

In the sounding taken at the depth of 2700 fathoms, in lat. $56^{\circ} 46^{\prime} \mathrm{N}$., long. $168^{\circ} 18^{\prime}$ E., Lieut. Brooke used, for the armature of his lead, three quills, each about three inches in length, fastened together, and placed in such a position that when the lead struck the bottom the quills would be furced perpendicularly into it, and thus become filled with mud from a stratum a few inches below the general surface of the seabottom. The experiment was successful; the quills coming up compactly filled with mud of the usual character occurring at such depths in such latitudes. One of the quills having been submitted to me for microscopic examination, was carefully wiped and cut in two at the middle, in order to secure for examination a specimen, as nearly as possible free from any chance admisture from the water near the surface. In this specimen II found an abundance of diatoms, some of which, apparently Coscinodisci, appeared to me to be undoubtedly living, judging from their fresh appearance and the colors of their internal cell contents.

It is exceedingly doubtful whether sufficient light can penetrate to so great a depth to afford the stimulus which these vegetable organisms are suppose to require for their existence and multiplication. On the other hand, it is by no means certain that some amonnt of light does not so penetrate, and, if we deny the existence of vegetable life in theso
abysses, it will be difficult to account for the existence there of animals, which must, ultimately, derive their sustenance from the vegetable kingdom. The supply which they might obtain from the dead bodies of those organisms which die at the surface, and slowly sink through two or three miles of water to the bottom, seems totally insufficient, for Dr. Wallich has proved that the animals, starfishes for instance, not only exist at those depths, but exist in great numbers. We wonld call the attention of those who may have an opportunity of obtaining specimens of the bottom at great depths, to the great importance of a microscopic examination of these specimens as soon as taken from the sea. Fresh water should, of course, be used in spreading the mud upon the slide.
12. On the "genus Diplothyra."-Having received from Mr. Sanderson Smith, of New York, a fine series of the shell recently described by Mr. Tryon in the Proceedings of the Philadelphia Academy, as a new genus and species of Pholadidæ, "Diplothyra Smithii," I have satisfied myself that Mr. Tryon is wrong in considering the accessory valve as double, and that the shell in question is a true Martesia. It is, in fact, very closely allied to M. cuneiformis, which often presents an accessory valve of precisely the same character. Wm. Stimpson.
13. On Part II. of Prof. G. Jan's Prodromo della Iconografia Generale degli Ofidi; by E. D. Cope.-Among the constantly appearing contributions to Herpetology, few are more valuable than those upon the serpents, issued by Prof. G. Jan, director of the Museum at Milan. This value is however dependent rather upon the number of new forms made known, and the beautiful plates illustrating the work, than upon unusual merit in the diagnoses, or in recognition of cotemporary labors.

The second part, which has come to our liands through the kind attention of Prof. Jan, treats of the Calamarida. It is not our intention to discuss the classification of the suborder of the Asinea, ${ }^{1}$ but we will remark that we doubt whether any herpetologist can characterize with precision more than three subordinate groups-viz., Boida, Achrochordidee and Colubridec. ${ }^{3}$ The sublivisions of the last are so completely interwoven and gradually connected, that no author has yet presented us with characters by which we can isolate them in a natural manner. It has therefore seemed best that the term "family" should be restricted to the three groups here mentioned. It is true that among Colubridoe the types are as varied as are the relations of these "families," and it may be said that the simplicity of opbidian structure has deprived us of the means of defining groups, whose equivalents are elsewhere much more tangible. Admitting this to be the case,-how nearly equivalent are zoological groups anywhere, and how uniform is zoological rank? Until it can be shown that this rank is not to be expressed by the formula x^{n-1}, we are justifiel in retaining the varied divisions of Colubridce as subfamilies, and in calling Achrochordus the type of a family, though it exlibit but a little greater degree of differentiation than some of the former.

[^87]Prof. Jan adopts the name Calamarida, after Günther, and includes twenty-three genera. As the work is not intended to be a general ophiology, many genera as well as species are omitted. With great propriety he places here the Platypteryx and Stenognathus of Duméril, which are associated with Dipsas in the Erpétologre Générale. He adds to those previonsly known the genera Pseudorhabdium (near Calumaria), Adelphicus (near Rhabdosoma), and Elapotinus (near Elapomorphus), all with ungrooved teeth. He describes twenty-one species, which are new to herpetology. A few others, presumed to be new, have really been previously described, which is not a matter of surprise when we consider the scattered condition of herpetological literature.

Prof. Jan separates from Rhablosoma those Mexican species which possess two pairs of geneilal plates, which is probably a judicious change. If the Catostoma chalybeum of Wagler belongs to this group, that author's name will pertain to it rather than to Rhabdosoma, as has been urgel. ${ }^{8}$ In the work before us, however, it is referred to Elapoides of Boie, a genus with keeled scales. If Wagler's statement, "squama lxvissimæ," is correct of the chalyboum as it is of the semidoliatum (though Günther says "scales keeled" ${ }^{\text {" }}$), this reference can hardly be ac-cepted-still less that of Colobognathus of Peters, which is abundantly characterized by its deficient dentition and want of temporal plates.

The genus called Carphophis, which follows Elapoides, was first established under the name C'arphophiops in d'Orbigny's Dict. Univ. d'Hist. Nut., on the Coluber amoonus of Say. This species was called vermiformis, white the name amonus was retained for that since called Helence by Kennicott. Under the impression that the two represented distinct genera, the Helence was called Curphophis in the same work, and following on the same page. As the true application of the name vermiformis could not have been ascertained at the time of its publication, Carphophis must be retained, though erroneously characterized, and established upon a species different from the afterwards accepted type.

Prof. Jan is in error in identifying Virginia Harperti ${ }^{\circ}$ with the V. Valerice on p. 24. He also employs the name Conocephalus for the genus Haldea, which we have shown to be inapplicable." So Ninia is the older name for Streptophorus, and should be employed in its stead. Aspidura carinata (p.29) is tho Haplocercus Ceylonensis of Günther, published in 1858. Elupops Petersi is E. plumbeater ${ }^{7}$ of three years earlier date. In the genus Homulosoma we find Contia of Baird and Girard included. I have already alluded to the range of this genns over both continents; ${ }^{8}$ it embraces in the Old World the coronelloides and melanocephala of Prof. Jan's enumeration, with the Coronella modestg of Martin. Psilosoma Jan, will probably be accepted as a well established genus.

The grenus Elapomorphus has received many accessions, within a few years, through the labors of Dunéril, Günther, Reinhardt and Peters. As adopterl in the Prodromus, it embraces four or five distinct genera. I'rof. Duméril early ${ }^{\circ}$ alluded to the very peculiar dentition of his E. Ga-

[^88]bonensis, and he has since made it the type of a genus Miodon, which was anticipated by Urobelus of Reinhardt. The very anterior position of the grooved tooth, which has but three solid ones in front of it, suggests the yet undiscovered point of transition from Asinea to the Proteroglypha. Microsoma Jan, is an Elapid of the same region, possessing many of the peculiarities of Urobelus.

There are probably three, certainly two, genera of this group in South America besides Jan's Elapomojus; they are Apostolepis, Elapomorphus verus, and Phalotris, ${ }^{10}$ corresponding to the sections marked by asterisks in the table on p. 42.

Homulocranium was referred to Tantilla of Bd . \& Girard on the ground of priority of the latter in $1861 \dot{;}^{11}$ of this, Prof. Jan does not seem to be aware. He describes an H. Wagneri, said to have been brought from Florida, which probably roes not belong to the genus on account of its entire anal scutum. Elapolinus, described as new, and allied to Elapomorphus, is also near to Tuntilla as far as the characters given enable us to decide. The posterior superior maxillaries are not grooved; if other differences exist, we are not informed of them.

Uncler the head of Probletorhinidoe, Prof. Jan unites a number of genera of singular aspect, and undoubted affinity, which mostly inhabit Mexico and Southwestern United States. We have already recognized this group and published a table of the genera in the Philadelphia Proceedings for $1861,(p .302)$ and are much gratified at this confirmation of the view there expressed. We will now give an artificial synopsis of this group, with the additions and morifications which new material suggests. ${ }^{13}$ The African Ligonirostra (Temnorhynchus Smith, preoccupied in Coleoptera), must be placed near Prosymna Gray. Chilorhina De Fil. is Sympholis Cope, of prior date. Dr. Jan's demonstration of the position of Ficimia Gray is as interesting as unexpected; Amblymetopon of Günther has never been properly separated from it, if a difference exists. We will accept for the present Exnrhina Jan, but his Oxyrhina is Chionactis Cope (long ago characterized by Hallowell), and Achirhina is Toluca Kenn., also of prior date. Then there must be added Conopsis, and perhaps Brachyurophis of Günther, ${ }^{13}$ Sonora Baird \& Girard, and Gyalopium and Chilomeniscus of the writer.

I. Internasal plates wanting.

Rostral plate in contact with irontal, -
Rostral plate not in contact with frontal,
Loreal none, anal divided,
Loreal present,
Anal divided, nasal separate,
Anal entire, nasal confluent with first upper labial,
Dentition glyphodont,
Dentition isodont, muzzle shovel-like,
Stenorhina.
Chilomeniscus.

[^89]III. Internasals separate from nasals.
Two internasals.
Two prefrontals.
Nasal and frst superior labial confuent ; rostral recurved,
Nasal and labial separate.
No loreal, one nasal.
Dentition ylyphndont,
Dentition isodont,
Loreal present.
Two nasals,
One nasal,

We have, on a former occasion, ${ }^{24}$ alluded to the close connection of this group with the Coronellince, through Cemophora and allied forms; our author perceives exactly the same affinity, but renames the genus just mentioned, Stasioles. Ficimia and, as Günther remarks, Brachyurophis, are probally related to Rhinostoma; the latter is no donbt comected to the beautiful Heterodon semicinctus, by Dr. Peters' Simophis. Heterodon d' Orbignyi connects the red-ringed species with our northern type; thus we are led from Sonora semiannulata to Heterodon platyrhinus! Ours is indeed no "Ariadne's thread" if we are led to such results. But we have perhaps only lost the clue.

We have only to remark, regarding Prof. Jan's species of this group, that Chilorhina Villarsii is Sympholis lippiens, and that Stenorhina quinquelineata is not a variety of, but a very distinct species from, the ventralis-or Degenhardtii, as Jan agrees with Peters in calling it.

Thus it appears that Prof. Jan's work, like that of most others, is not free from oversights, many of which are not so excusab'e as some, which may have been occasioned by nearly simultaneous publications.
14. Note on the "Glass Coral" of Jopan, (in a letter to Prof. Silliman, Jr., from William Stimpson, dated Smithisonian Institution, Feb. 6, 1863.)
"The 'glass-coral' to which yon refer is the Hyalonema mirabilis of Gray, which is found in the seas of Japan, and is one of the most beautiful of marine objects. It forms the subject of an elaborate monograph by Brandt, illustrated by four folio plates. This author divides it, on insufficient grounds, into two genera and several species. We have a few specimens in the museum of the Smithsonian Institution. They consist of groups of silicious fibres resembling spun glass, closely wound together in a spiral manner so as to form cylinders of a foot or more in length and the thickness of the little finger. In the centre of the bundle, particularly toward the base, we find a fibrons substance somewhat resembling cotton or rather asbestos, which is composed of very fine fibres, silicious like the larger ones. The cylinders are encrusted by various marine growths, i. e. a Zoanthus, a sponge, and a sea weed;-and to one of them the egg of a sliark (Scyllium?) was attached by its tendrils. The Zoanthus is so uniformly found upon specimens, and encrusts them so regularly, that both Brandt and Gray do not hesitate to consider the glass-coral as the axis of a polyp related to the Gorgoniæ. Leuckart combats this idea and considers the polyp to be a parasite, while the

[^90]silicions fibres themselves belong to a sponge allied to the curious Euplectella figured by Prof. Owen in the Transactions of the Linncean Society, vol. xxii, pl. xxi. An examination of these flgures and the accompanying description will convince the most skeptical of the correctness of Leuckart's view. The cotton-like substance which I have mentioned abore as found in the centre of the cylindrical bundles may perhaps give some indications of the character of the sponge to which these curious spiculae belong, but the sponge usually seen encrusting the bundles is in all probability not the true one, as is supposed by some; and the Zoanthus, we cannot even consider as a parasite. For, in the Smithsonian specimens, to which my attention was first called by Mr. Verrill, we see abundant evidence that these so-called parasitic growths are the result of the ingenuity of the Japanese curiosity-mongers from Whom the specimens are obtained, of which ingenuity we have also instances in the "mermaids" and other artifacts brought from Japan. In the first place the unnatural grouping of the bundles, figured by Brandt and seen in one of the Smithsonian specimens, is effected by means of a guin resembling gum tragacanth. The group thits formed is inserted into a crevice of a fragment of coral so nicely as to have the appearance of growing attached. Some agglutinating substance is also used for the attachment of the zoanthoid polyp, the sponge, and the sea-weed, for upon scraping these off at various points, we found beneath each of them silken threads tied around the bundle of fibres for the purpose of keeping them together! The nicety with which this is done is wonderful, and the deception is perfect. We should judge that the Japanese must have considerable knowledge of the lower aninals, to be able to produce factitious congeries, so nearly agreeing with nature and so well calculated to deceive even practiced naturalists."
[The numerous auditories who have listened to the instructive and entertaining lectures of Dr. Macgowan upon Japan will be amused to learn that the curious glassy zoophyte which the Doctor exhibited turns out (quite unconsciously to the learned lecturer) to be another proof of the skill of that cunning people in manufacturing factitious objects in natural history so curiously as to deceive even skillful naturalists.

The genus Hyalonema and the species H. Sicboldi will be found described in Dana's Zoophytes, pp. 641, 642. The glassy fibres of H. mirabilis, when heated alone in a glass tube, decrepitate and fly into numerous minute spiculæ, splitting longitudinally, and emitting an animal odor without becoming colored. These fibres are pure silica. They do not gelatinize in hot chlorhydric acid, and no trace of lime could be detected in them by the spectroscope. They polarize light only very imperfectly, either in cross section or transversely. The rings of growth are beautifully seen in section, and as many as seventy can be counted arranged about a center which is excentric to the cylinder.-s.]
15. Prodromus of the History, Structure, and Physiology of the order Lucernarice; by Prof. Henry James Clark, of Marvard University, Cambrilge, Mass. (Journal of the Boston Society of Natural History, March, 1863, pp. 531-567). - In the earlier pages of this number of the Journal, (p. 346, article xxxiv,) it may be seen that the Lucernarians are
ranked as a distinct order of Acalephæ. The principal feature in the prodromus, to which we would bere call attention, is the division of the order Lucernarix into two families. The first family, Cleistocarpidce includes such Lucernarians as the genera Carduella, Depastrum, \&c.; and the second family, Eleutherocarpidce, embraces the earliest described Lucernarice, L. quadricornis, L. octoradiata, L. campanulata, de., which are divided into three genera. Out of the eleven species of the order, the author has collected himself, or obtained from other. sources, no less than eight, leaving only three, of which one is doubtful, to be added to his collection. The author's description, of the above-mentioned eight species, shows that he has studied them with the closest anatomical detail, and has drawn up the diagnoses as much from the internal as from the external characters; in fact we should say that the whole structure of these animals is epitomized in the prodromus. The geographical distribution of three of these species,-Manania auricula (Lucernaria auricula Fabricius), Haliclystus auricula (L. auricula Rathke, non Fabricius) and L. quadricornis,-is interesting, from the fact that they are common to the shores of Europe and America; and we are led to believe that more of the others, which are of the rarest sort, will be yet found to extend across the Atlantic. This view is in accordance with the opinions of most of the leading zoologists, both of this country and Europe, in regard to the other animals of the North Atlantic fauna. Of the rest of the eleven species comprised in the order, five are European and two are American. The latter two are entirely new to science.

VII. ASTRONOMY AND METEOROLOGY.

1. Re-discovery of Panopea, Asteroid (3).-Panopea was re-discovered by R. Luther at Bilk, Oct. 21, 1862. According to an observation of Oct. 28th, the error of Duner's ephemeris was - $8^{m} 13^{8}$ in A. R. and $-1^{\circ} 19^{\prime}$ in Dec.
2. Elements of Asteroid (30).-The following elements of Freya, Asteroid (76), have been computed by D'Arrest of Copenhagen.

$$
\begin{aligned}
& \text { Epoch } 1862, \text { Oct. } 24 \cdot 5 \text {, Greenwich m.t. } \\
& M=321^{\circ} 37^{\prime} 44^{\prime \prime \prime} 94 \\
& \pi=67 \\
& \hline 10 \\
& \hline
\end{aligned}
$$

3. Discovery of Asteroid (77).-On the 12th of November, 1862, new planet was discovered by Dr. C. H. F. Peters, at Hamilton College Observatory. It was near Feronia, and was between the 11 th and 12 th magnitudes.
4. Comet III, 1862.-This comet was discovered on the morning of Nov. 28, by Professor Respighi, at Bologna, and three days later by Dr. Brubns at Leipsic. The following elements bave been communicated by R. Eugelmann of Lejpsic.

\mathbf{T}	$=1862$, Dec． $28 \cdot 18262$
π	$=125^{\circ} 9^{\prime} 42^{\prime \prime \cdot} 6$
8	$=3554457 \cdot 9$
i	$=422252 \cdot 5$
$\log \cdot q$	$=9^{2} 904475$

Motion retrograde．
5．Comet I，1863．－This comet was discovered by Dr．Bruhns of Leipsic，on the morning of Dec．2d．The following elements have been computed by F．Tiejen of Berlin．

T	三	1883，Feb． 3.52928 Berlin m．t．
π	＝	$191^{\circ} 23^{\prime} 12^{\prime \prime \prime} 2$
Ω	＝	1165 a $28 \cdot 0$ Apparent equinox，
${ }^{\boldsymbol{i}}$	三	$85 \quad 2142 \cdot 8) \quad 1862$, Dec． $6 \cdot 0$ 。
$\log . q$	＝	$9 \cdot 9002165$
		Motion direct．

6．Star Shower in December，1565．－In a Sagenbuch der Lausitz by Karl Haupt，published in the Neues Lausitzisches Magazin（Görlitz， 1862），among Wunderzeichen am Hinmel，gathered from old Lusatian chronicles，is the following：
＂On the 3d of December，1565，there fell at Sorau fire from heaven like flakes of snow．＂－Magnus，（Joh．Lam．）Historische Beschreibung von Sorau．Leipz．，1710．4to．

7．Shooting Stars seen in England in 1862．The usual displays of shooting stars this year（1862），as seen near Manchester，have not been as well marked as usual ；that of August 10th－11th，perhaps less so than for the last few years，but the weather was not very favorable．That of Nov．9th－10th ${ }^{2}$ was not in the least marked，either as regards the numbers or radiant．But the more newly determined period for Dec． 10th－12th has been exceedingly well defined，and the radiant point， both for the last year and for the present one，perfectly referable to a part of the heavens halfway between β Aurigæ and α Geminorum．－ R．P．Greg in Phil．Mag．

8．Auroral arch of April 9th，1863．－On the evening of April 9th， there was noticed at New Ilaven some appearance of an auroral light between $7 \frac{1}{2}$ and 80^{\prime} clock．About $9 o^{\prime}$ clock，white columns rose both from the eastern and western horizon，and shot up towards the meridian， their tops inclining from a vertical direction about fifteen degrees towards the south．A line of shorter columns connected the two columns just mentioned，in such a manner as to form a tolerably regular arch，spanning the heavens，and passing exactly over the Dipper．This arch was evi－ dently formed of short streamers parallel to each other．Most of them were from 10° to 15° in length，and for some time presented the ap－ pearance of a row of comet＇s tails all parallel to each other．By $9 \frac{1}{2}$ o＇clock，the castern portion had very much faded，but the column in the west was intensely bright，and of a white color．It extended to Castor， and passed centrally over a star about midway between the two horns of the Bull．At 10 o＇clock，the column in the east had disappeared entirely， while that in the west had very much faded，but extended up nearly or quite to the meridian．During the entire evening，there was noticed a

[^91]very strong auroral glow above the northern horizon, with the usual dark segment beneath it.

The following notice of this aurora appeared in the Newburyport Daily Herald of April 10th, with the signature P., presumed to denote Dr. Henry C. Perkins.
"An auroral arch of intense brightness spanned the heavens last evening as the bell was ringing for 9 oclock, equalled only during our remembrance by that of Aug., 1827. Starting from a point just above the horizon, not far from due East, it enveloped the star in the right knee of Bootes, passed amid the stars in the Sickle, or the head and neck of Leo, thence enveloping Castor and Polinx, covering the space between the feet of the Twins, swerving thence a little to the northwest between the heads of Orion and Taurus, until it faded from view.

The arch was about 8° in width, remarkably well defined, though not so sharply so as that in 1827 . It gradually moved to the South at the rate of about 8° or 10° in 20 minutes, when it broke up into wisps of light strikingly resembling those seen in the tail of Donati's comet, and so beautifully and truly represented in Prof. Bond's drawing of that body.-p."
[Correspondents are requested to send in their obscrvations on this auroral arch, which was probably seen over sufficient area to furnish data for approximate estimates of its height.]

VIII. MISCELLANEOUS SCIENTIFIC INTELLIGENCE.

1. National Academy of Sciences.-Hon. Henry Wilson of Massachusetts, in the Senate of the United States, at the last session of Congress, brought forward and secured the unanimous passage of the following bill entitled,

[^92]"Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That Louis Agassiz, Massachusetts; J. H. Alexander, Maryland; S. Alexander, New Jersey; A. D. Bache, at large; F. A. P. Barnard, at large; J. G. Barnard, United States army, Massachusetts; W. H. C. Bartlett, United States Mil. Acad., Missouri; U. A. Boyden, Massachusetts; Alexis Cas-
well, Rhode Island; William Chauvenet, Missouri; J. H. C. Coffin, U'nited States Naval Academy, Maine; J. A. Dahlgren, United States nayy, Pennsylvania; J. D. Dana, Connecticut; Charles H. Davis, United Statea nary, Massachusetts; George Evgelmann, St. Louis, Missouri ; J. F. Frazer, Pennsylvania; Wolcott Gibbs, New York; J. M. Gilliss, United States Naval Observatory, Kentucky; A. A. Gould, Massachusetts; B. A. Gourd, Massachusetts: Asa Gray, Massachusetts; A. Guyot, New Jersey; James Hall, New York; Joseph Henry, at large; J. E. Hilgard, at large, Illinois; Edward Hitchcock, Massachusetts; J. S. Hubbard, United States naval observatory, Connecticut: A. A. Humpheys, L'nited States army, Pennsylvania; J. L. Leconte, United States army, Pemnslvania; J. Liedy, Pennsylvala: J. P. Lesley, Penusylvania; M. F. Longstreth, Penneylvania; D. II. Mahan, United States Military Academy, Virginia; J. S. Newbrrry, Ohio; H. A. Newton, Connecticut; Benamin Petrce, Massachusetts; John Rodgers, Luited States navy, Indlana; Farman Rogrrs, Pennsylvania; R. E. Rogers, Pennsylvania; W. B. Rogers, Massachusetts ; L. M. Rutuebfurd, New York; Jobeph Saxtun, at large; Bendamin Silhman, Conuecticut; Benjamin Silliman, Jr., Connecticut; Theodore Strona, New Jersey; Joun Tobrey, New York; J. G. Tottine, United States army, Connecticu:; Joseph Winlook, United States Nautical Almanac, Kentucky; Jeffries Wyman, Massachusetts; J. D. Whitney, California, their associates and successors duly chosen, are hereby incorporated, constituted, and declared to be a body corporate, by the name of the National Academy of sciences.
"Sec. 2. And be it further enacted, That the National Academy of Sciences shall consist of not more than fifty ordinary members, and the said corporation hereby constituted shall have power to make its own organization, including its constitution, by-lawh, and rules and regulations; to fill all racancies created by death, resig-
nation, or otherwise; to provide for the electlon of forelgn and domestic members, the division into classes, and all other matters needful or usual in such institution, and to report the same to Congress.
"Sec. 3. And be it further enacted, That the National Academy of Sciences shall hold an annual meeting at such place in the United States as may be designated, and the Acrademy shall, whenever called upon by any department of the goveriment, investigute, examine, experiment, and report upon any subject of scieace or art, the actual expense of such investigations, exaninations, experiments, and reports, to be paid from appropriations which may be made for the purpose, but the Academy shall receive no compensation whatever for any services to the goverament of the Lnited States."

Agreeably to an invitation from Mr. Wilson, a majority of the corporators named in this Act met on the 22 d of April, at $11 \mathrm{A.M}$. in the Chapel of the University of the city of New York, for the purpose of organiziug the National Academy of Sciences. The body was called to order, with a few appropriate remarks, by Mr. Wilson, who was present by the request of a large number of members. A temporary organization was secured by the choice of Joseph Henry of Washington and Alexis Caswell of Brown University as Chairman and Secretary, pro tempore. A committee of nine persons, of whom Prof. Caswell was chairnan, was appointed to prepare and report Rules for governing the Academy, agreeably to the powers vested in them by Section 2 d of the Act of Incorporation, adopted by Congress and approved by the President of the United States on the 4th of March, 1863.

Agreeably to the laws thus enacted (which lay over to January next for final consideration), the Academy is diviled into two classes, viz.: ${ }^{1}$

1st. The Class of Mathematics and Physics.
2d. The Class of Natural History.
The corporate members elect under which of these two classes and in which section of that class they will inscribe their names. The classes are subdivided thus:-
A. Class of Mathematics and Physics.-Sections: 1, Mathematics; 2, Physics; 3, Astronomy, Geography, and Geodesy ; 4, Mechanics; 5, Chemistry.
B. Class of Natural History.-Sections: 1, Mineralogy and Geology; 2, Zoology; 3, Botany ; 4, Anatomy and Physiology ; 5, Ethnology.

While cach member chooses his own position, he may also be elected an bonorary inember of any section by the members thereof, and the Academy retains the power of transferring a member from one Section to another.

There may be fifty foreign associates, who take no part in the business of the Academy, but have the privilege of attending its sessions, reading and communicating papers and of receiving a copy of the publications of the Academy.

The officers of the Academy are a President, a vice President, a Foreign Secretary, a home Secretary, and a Treasurer, all of whom are elected for a term of six jears.

There is also a chairman and secretary to each class elected annually at each January meeting. The officers of the Acaderny, and chairman of the classes, together with four members to be annually elected by the Academy, constitute a Council for the transaction of such business as is assigned to them by law or by the Academs.

[^93]The powers of the President, (or in case of his absence or disability, the Vice-President,) are, to preside at the meetings of the Academy, name (unless otherwise provided for by law) committees of members, referring business, experimental enquiries, investigations or preliminary inquiries required by the Government of the United States or its branches, to members specially conversant with the subject; and, with the Council, to direct the general business of the Academy. The duties of the other officers present nothing beyond what is usual in all similar organizations.

The Academy holds two stated meetings in each year, one in January and one in August. The January meetiug is to be held alwars in Washington on the 3d day of January, (or when that day is a Sunday, on the 4th), but the August meeting will be held at such place as the Academy at any previous meeting may designate, and on the 3 d Wednesday of the month. The scientific meetings of the Academy are to be open or public, the business meetings closed. Communications by persons not members of the Academy are to be presented and read by a member who makes himself responsible only for the general propriety of the paper and not for opinions expressed by the author.

Propositions for researches, experiments, observations, investigations or reports, shall originate with the Classes to which the subjects are appropriate, and then be submitted to the Academy for discussion, and approval or rejection, excepting propositions from the Government of the United States, or any of its branches, which shall be acted on by the President, who will in such case report, if necessary, at once to the Government, and also to the Academy at the next stated meeting. The judgment of the Academy is to be at all times at the disposition of the Government upon any matter of Science or Art within the limits of the subjects embraced by it. The President of the Academy is competent, in special cases, to call in the aid, upon committees, of experts, or men of remarkable attainments not members of the Academy.
'I'he Annual Report to be presented to both Houses of Congrese, is to be prepared by the President of the Academy, and before its presentation is to be submitted, first to the Council, and then to the Academy at the January meeting. The abstract of a memoir may however be sent by any member to the Home Secretary, to be printed and circulated among the members during the recess of the Acadeny.
These are the most important features of the organic law of the National Academy of Sciences. An election was held under the rules when the following officers were chosen almost unanimously:

when the followitg officers were chosen alinost unanimously:	
President,	Alexander Dallas Bacae,
Vice-President, James D. Dana,	New Haven, Conn.
Foreign Secretary, Louls Agasiz,	Cambridge, Mass.
Home Scretary, Wolcott Gibb,	New York.
Treasurer,	Faibman Rogers,

OFTICERS OF THE CLABSEE.
Chass A. Mathematics and Physics.

Chairman,
Secretary,

Chairman,

Secretary,
B. Peirce,
B. A. Goeld,

Class B. Natural History.
B. Silliman,
J. S. Newberry,

Cambridge, Mass.
Cambridge, "

New Haven, Ct.
Ohio.

After the completion of the organization, each member present, agreeably to the requirements of the organic law, took the oath of allegiance prescribed by the Senate of the United States for its own members, and in addition thereto took an oath faithfully to discharge the duties of a member of the National Academy of Sciences to the best of his ability.

Born in the midst of-a great political revolution, the National Acadeny of Sciences, created by the supreme law of the land, stands pledyed to the power which has called it into being, and to the world to discharge its duties with fidelity. The members of the Academy named in the Act had before them simply to accept or to decline the trust reposed in them, by no choice of theirs. So far as they have accepted their position, we feel justified in saying it is with a conviction that there were many not named on the list who might most properly have been there, and with the assurance that so far as any honor may attach to membership, it will be shared much more largely by those who shall hereafter be called by the suffirages of the Academy to fill such vacancies as must occur, than by the corporators who are named in the law.

The National Academy of Sciences does not take the place of, or necessarily interfere with, the American Association for the Advancement of Science, as many persons seem to have supposed.

IX. BOOK NOTICES.

1. The National Almanac and Annual Record for the year 1863. Philadelphia: G. W. Childs, 1863. 12mo. pp. 698. -This work succeeds the well known American Almanac so long issued at Boston, and which attained an enviable reputation as a reliable record of cosmical facts and the repository of a large amount of information, statistical, political, educational, scientific and general. Mr. Childs has taken up the task relinquished by Mr. Sawyer, and with a degree of fullness surpassing the original. The articles of scientific value in this volume are Meteorology, Tide tables for Cuast of U. S., Coast Survey, and Smithsonian Institution, which are excellent. In the same category should be mentioned a raluable paper on the changes in the relative position (in population and growth) of the several States from 1790 to 1860, by Prof. Wm. M. Gillespie, who has exhibited this subject graphically by the method so commen in tabulating scientific results by curves. With the active aid of Profs. Bache and İenry of Washington, Profs. Coppée and Gillespie, Dr. Pollock and others, the reliable character of the National Almanac is secured, while, as we are informed, the spirited editor retains the best talent, in all departments, before given to the American Almanac.
2. The Geological Evidences of the Antiquity of Man, with remarks on "theories of the origin of species by variation" by Sir Charles Lyell, F.R.S. pp. 520, 8vo. London. Peprinted by G. WV. Childs, Philadelphia.
3. Abbí Morgno's new Journal, called Ľes Mondes Revue Hebdomadaire des Sciences, et les applications aux arts et a l'industrie, appeared first on the 12th of February of this year, and has reached us regularly each week since. It replaces Cosmos, from which Abtie Moigno has withdrawn, for reasons of a personal nature growing out of his relations to the proprietor, which he fully sets forth in a Prologue of 6 or 7 pages.

Lies Mondes is an extremely lively Journal of 28 pages, with a supplement on pure Science of 16 pages each week. It aims to notice the progress of all science, pure and applied, whether French or foreign.

INDEX TO VOLUME XXXV.

A.

Academy of Sciences, National, organ ized, 452. see Proceedings.
Acetylene, Berthelot, 115.
Actæonidæ, F. B. Meek, 84
African explorations, desiderata in, 242.
Agassiz, A., development of tentacles of Medusæ, noticed, 300. alternate generation of Annelids, noticed, 301.
Agassiz, L., notice of Gill's Synopsis of Squali, etc., 299.
Agriculture, works on, received, 307.
Ayronomie, Chimie Agricole et Physiologie, Boussingautt, 270.
Algerie, Geographie Physique et Politique, A. Fillias, 269.
Alkalinetry, S. W. Johnson, 279.
Allen, O. D., and S. W. Johnson, equivalent and spectrum of cessium, 94.
Allison, E., antimony in N. Brunswick, 150.
Aluminum, 25%.
Aluminum-bronze, Strange, 286.
American Annual Cyclopedia, noticed, 306 . Cyclopedia, New, completed, 304.
Angatrom, lines in solar spectrum, 411.
Annelids, fission in, W. C. Vinor, 35.
Appearances produced by revolving disks, O. N. Rood, 357.

Archæopteryx lithographica, Wagner-von Meyer-Dana-Woodinard, 129.
Arkansas river basin, 225.
Arsenic in sulphuric acid, Bloxam, 116.
Asterism in miea, 259.
Asteroids, see Astronomy:
Astronomical Association of Chicago, 301. observations made at U. S. Naval Observatory, J. M. Gilliss, noticed, 146. observations with spectroscope, L.
M. Rutherfurd, 71.

Astronomy:-

Asteroids, 144, 148, 460.
Brilliancy of variable star Mira Ceti, S. Manterman, 150.
Cornet I, 186i3, 461.-III, 1862, 460.
Companion to Sirius, Ruherfurd, 407.
Correction of elemeats of a comet, J. C. Watson, 218.

Daphne, asteroid (41), rediscovered, 14
Double star, μ Herculis, A. Clark, 301.
Freya, asteroid (76), 146, 460 .
Galatea, asteroid (74), 145.
LaLande prize, 301.
Nebulæ, double, 109.
Nebule, researches on, A. Gautier, 101. variable brilliancy of, 10%.

Astronomy :-

Orion, nebula of, 102.
Pauopea, asteroid (70), rediscovered, 460.
Periodic meteors, A. C. Twining, 149.
Shooting stars of Dec. 1862, B. V.Marsh, 302. of Jan. 1863, S. Masterman, 149. of Nov. 1862, A. C. Tuoining, 146. seen in England in 1862, 461.
Star shower in 1565, 461.
Stellar spectra, 407.
Taurus, second nebula in, 110.
Water-moonrise, E. B. Hunt, 395.
Works on, received, 307.
Zodiacal light at Key West, Hunt, 388.
Atmospheric nitrite of ammonia, etc., E. Bohlig, 423.
transparency, ER. B. Hunt, 385.
Auroral arch, 461.
Austin, C. H., Sphagna of New Jersey, 252.
Australian heat, 49 .

B.

Bache, A. D., magnetic survey of Pennsylvania, etc., 359.
Bailey, L. W., antimony in N. Brunswick, 150.

Bulch, D. D., tellurbismuth from Ga., 99.
Bentham, G., and J. D. Hooker, Genera
Plantarum, reviewed, 134.
Berthelot, acetylene, 115.
Bessemer's process, Tunner, 421.
Bibliography, J. Nicklès, 269.
Big Black river basin, 2:33.
Bisulphid of carbon prisms for spectral analysis, O. N. Rood, 356; also see 408.
Bitumens and Pyroschists, chemical and
geological history of, T. S. Hunt, 15%.
Bloxam, arsenic in sulphuric acid, 116.
Blytt, M. W., death of, 449.
Bollig, E., atmospheric nitrite of ammonin, etc., 423.
Borates and fluoborates, analysis of, Marignac, 418.
Boron, compounds of, Frankland, 115.
Borrer, Wm., death of, 449.
Botanical necrology, 1862, 449.
collections in the Rocky Mountains, A. Ciray, 137.

Botany:-
Caricography, C. Dewey, 57.
Darlingtonia Californica, W. H. Breoor, A. (rray, 136.

Flora Vitiensis, announced, 448.
Flore Canadienne, L. Prmancher, 445.
Genera Plantarum, G. Bentham and Jo
D. Hooker, reviewed, 134.

Botany:-
Gray's Manual, new edition, 448.
New character in the fruit of Oaks, DeCandolle, 430.
Species, considered as to variation, distribution and succession, DeCandolle, 431.

Species Filicum, W. J. Hooker, 138.
Sphagna of N. Jersey, C. F. Austin, 252.
Synopsis Plantarum Vitiensium, 448.
Tendrils of Va. Creeper, A. Gray, 445.
Vegetable productions of the Fiji Isl ands, B. S'eemann, 446.
Vites Boreali-Americanæ, E. Durand, reviewed, 445.
Böttger, contrib. to spectral analysis, 414. formation of nitrite of ammonium by aid of heat, 114. preparation of ozone, 111.
Bonssingault, Agronomie, Chimie Agricole et Physiologie, noticed, 270 . nature of the gas evolved by leaves exposed to the light, 121.
Brachyura, classification of, Strahl-Stimpson, 139.
Bréguet, Manuel de Télégraphie Electrique, 269.
Brewer, Darlingtonia Californica, 136.
Brush, G. J., arsenids of copper, 296. galena with octahedral cleavage, 128. metallurgical abstracts, $118,286,420$. mineralogical abstracts, 426.

C.

Cæsium, equivalent and spectra, $S . W$. Johnson and O. D. Allen, 94.
California, peninsula of, explor'ns in, 236.
Canada, Flora of, L. Provancher, 445.
Descriptive Cataloguc of Economic Minerals and Crystalline Rocks of, notieed, 134. Report on Geology of, noticed, 134.
Canal Maratime de I'Ocean à la Mediterranie, A. Dupeyrat, 269.
Carboniferous and Perminn, species common to, J. W. Kirkiby, 133.
Caricooraphy, C. Dewey,57.
Carte Agronomique des Environs de Paris, A. Delesse, 270.

Catalogue of crystal models, Kirantz, 297.
Catskill and Chemung groups, identification of, A. Winchell, 61.
Ceramic arts of London Exhibition, Salvetat, 268.
Chancourtois, Biguyer de, Vis Tellurique, noticed, 270.
Chemical theory of interpenetration, C. S. Peirce, 78.

Chemistry:-
Acetylene, Berthelot, 115.
Action of light on sensitive plate, 286. Alkalimetry, \& W. Johnson, 279.
Allotropic oxygen, Schünbein, 111.
Analysis of borates, etc., Marignac, 418.
Arsenic in sulphuric acid, Bloxam, 116.
Behavior of magnesia salts toward carbonate of ammonia, Divers, 115.
Bitumens, history of, T. S. Hunt, 15%.
Cæsium, equivalent and speetrum, S. W. Johnson and O. D. Allen, 94.

Chemistry of germination, Schultz, 290.
Chlorids, violet flame of, Gladstone, 412.

Chemistry :-

Collodion of A. Jeanrenaud, 419.
Coloring matters from aniline, Hofmann, 417.
Composition of soils, A. Muller, 202.
Estimation of lime, Wicke, 116.
Formation of nitrite of ammonium by aid of heat, S'chönbein-Böttger, 113.
Fundamental properties of oxygen and hydrogen, Heldt, 112.
Industrial applications of cryolite, G.J. Brush, 285.
Nature of gas evolved by leaves exposed to the light, Boussingault, 121.
New mode of detecting peroxyd of hydrogen, Schönbein, 114.
New series of compounds containing boron, Frankland, 115.
Oxyethylene bases, Wurtz, 114.
Preparation of ozone, Schörbein, 111.
Quantitative determination of starch, Dragendorff, 116.
Reduction of kinie to benzoic acid, ete.,
in animal organisms, Lautemann, 291.
Sulphate of lime soluble in chlurhydric acids, S. W. Johnson, 283.
Thallium, Dumas-Crookes, 273.
Theory of nitrification reclaimed by T. S. Hunt, 271 .
and by G. C. Shaeffer, 409.
Urine of oxen in relation to food, Heno neburg, Stohmann, Rautenberg, 291.
Waterglass, J. M. Orduray, 185.
Wehster's process for oxygen, 283.
Works on chemistry, received, 307.
Clark, A., on μ Herculis, 301.
takes LaLande prize, 301.
Clark, H. J., Lucernaria the coenotype of Acalephe, 346.

Prodromus of the Lucernaria, noticed, 459.
Clapp, Asahel, obituary of, 306, 450.
Clasifification of Mammals, J. D. Dana, 65.
Coal Formation of N. America, L. Lesquereux, 3\%5.
Coast Survey Report, 239.
Comets, see Astronomy.
Connecticut-valley glacier, 249.
Conrad, T. A., Catalogue of Miocene shells of the Atlantic Slope, noticed, 428.
Contributions to Conchology, G. W. Tryon, Jr., 297.
Cookie, J. I., galena with octahedral cleavage, 127.
Cope, E.D. , review of Jan's Prodromo della feonografia Generale derli Ofidi, 455.
Copper, arsenids of, G. J. Brush, 296.
Coral, Glass, of Japan, W. Stimpson, 458.
Correspondence relative to Fiji Islands, noticed, 446 .
Crustacea, bigher, classification of, Strahl -Stimpson, 139.
Crustacean, new, from rotsdam sandstone of Wisconsin, J. Hall, 295.
Cryolite, industrial applications of, G. J. Brush, 285.
Cryptonella, Centronella, Meristella, etc., J. Hall, 396.

Crystals, catalogue of models of, \boldsymbol{A}. Krantz, noticed, 29%.
Cyclopedia, American Annual, 306.
New American, completed, 304.

D.

Dana, J. D., Classification of Mammals, 65. Mohawk-valley glacier, 243.
Note on Archæopteryx lithographica, 130.

Oceanic Protozoans allied to sponges, 386.

Palasterina (?) Jamesii, 295.
Review of 'Evidence as to Man's place in Nature, 451.
Dawson, J. W., American Devonian, 309.
Flora of American Devonian, 311.
De Canclolle, A^{\prime} ph., new character in fruit of Oaks, 430.

Species, as to variation, distribntion, and succession, 431.
DeCandolle, Augustin-Pyramus, biography of, reviewed, 1.
Delexse, A., Carte Agronomique des Environs de Paris, 1862, 270.
DesCloizeaux, A., Manuel de Mineralogie, noticed, 203.
DesMoulins, Vites Boreali-Amer., 445.
Devonian, American, J. W. Dawson, 309. Flura of, J. W. Dawson, 311.
Dewey, C., on Caricography, 57.
Diacon and Wolf, spectra of metals, 414.
Diatoms on bottom of deep seas, W. Stimupson, 454,
Dictionary of solubilities, F. H. Stover, 303.
Diplothyra, the genus, W. Stimpson, 455.
Divers, behavior of magnesia salts toward carbonate of ammonia, 115.
Dragendorff, amount of starch in various seeds, 123.
quantitative determination of starch, 116.

Dıpeyrat, A., Canal Maratime de l'Ocean à la Mediterrunie, 269.
Durand, E., Vites Boreall-Americanæ, 445.

E.

Eaton, D. C., review of W. J. Hooker's Species Filicum, 138.
Echinoderm, fossil, from Cinciunati, J. D. Dana, 295.
Emerson, E., photographic abstracts, 286, 419.

Entretiens Populaires à l'Association Polytechnique, noticed, 269.
Evidence as to Man's place in Nature, T. H. Huocley, reviewed, 4 上1.

Exploration of East Africa, desiderata in, 242.

Explorations encouraged by Smithsonian Institution, 236.

F.

Fiji Islands, vegetable productions of, B. Seemann, 446.
Fillias, A., Geographie Physique et Politique de l'Algerie, 269.
Fission in some Annelids, W. C. Minor, 35.
Fizear, sodium spectrum, 414.
Flame, violet, of chlorids, Gladstone, 412.
Flora Capensis, Harvey, and Sonder, 444. of Amer. Devonian, J. W. Dawson, 311.
Flora Vitiensis, announced, 448.
Tloral calendar, etc., S. P. Hildreth, 184.

Florida Reef, growth, chronology, etc/, E. B. Hunt, 197.

Frankland, boron compounds, 115.
Fraunhofer lines in solar spectrum, Angström, 411.
Frobisher Bay, Hall's collections at, 293.

G.

Galena with octahedral cleavage, Torrey-Cooke-Brush, 126.
Gasparin, A. E. P. de, obituary of, 261.
Gangrene counteracted by oxygen, Raynume, 266.
Gautier, A., recent researches relating to nebulæ, 101.
Generr Plantarum, etc., G. Bentham et J. D). Hooker, reviewed by A. Gray, 134.

Geographical Notices, D. C. Gilman, 223.
Geographie Physique et Politique de l'Algerie, A. Fillias, 269.
Geolorjeal Evidences of the antiquity of Man, C. Lyell, 465.
Reconmoissance of Indiana by D. D. Owen, R. Owen, 154.

Gerlogy:-

American Devonian, J. W. Danson, 309.
Archæopteryx lithographica, 129.
Bitumens and Pyroschists, history of, T. S', Ifunt, 15\%.

Carboniferous and Permian, species common to, J. W. Kirkby, 133.
Catskill and Chemung groups, identifcation of, A. Winchell, 61.
Coal formation of N. America, A. Winchell, 375.
Cryptonclla, Centronella, Meristella, ete., J. Hall, 396.
Feathered vertebrates in Jurassic, 129.
Flora of A nerican Devonian, J.W. Davson, 311 .
Frobisher Bay, C. F. Hall's collections at \boldsymbol{R}. P. Stevens and T. Elgleston, 293, Geology of Vermont, price raised, 430. Glacial scratches in Mohawk Valley, W. B. Dwight-J. D. Dana, 245.

Glacial origin of certain lakes, A. C. Ramisay, 324.
Kilauea, condition of, T. Coan, 296.
Mohawk-valley ghacier, J. D. Dana, 243. New Potsdam Crustacean, J. Hall, 295. Palasterina (?) Jamesil, J. D. Dana, 295, Report on (ieology of Canada, 134.
Species common to Carboniterous and Permian, J. W. Kirkby, 133.
Works on geology, received, 308.
Germination, chemistry of, 290.
Gibbs, W., chemical abstracts, $111,417$. New spectroscope, 110.
Note on sodium spectrum, 414.
Physical abstracts, 411.
Gill, T, notice of Tryon's Contributions to Conchology, 297.

Squali of California, noticed, 299.
Synopsis and nomenclature of the Squali, noticed, 209.
Gilman, D. C., Geographical Notices, 229.
Glacial origin of certain lakes, A. C. Ramsay, 324.
Glacier in Mohawk valley, J. D. Dana, 243.

- Gloudstone, violet flame of chlorids, 412.

Glass Coral of Japan, W. Stimpson, 458.
Globe lens for Photographic Camera, C. Sellers, 319.
Gray, A., Darlingtonia Californica, 137.
Hall and Harbour's botanical collec tions in the Rocky Mts., 137.
Manual of Botiny, new edition, 448.
on the gas evolved by leaves, 122 .
Review of DeCandolle on a new char. acter in fruit of Oaks, 430.
on study of Species, 431
Review of 'Genera Plantarum,' 134 .
'Vites Boreall-Americanæ,'445
Tendrils of Virginia Creeper, 445.
Greene, Beaj. D., obituary of, 449 .
Gulf Stream Cloud Bank, E. B. Hunt, 389.

H.

Hall and Harbour's botanical collections in the Rocky Mts., A. Gray, 137.
Hall, C. F. collections at Frobisher Bay reports on, R. P. Stevens, T. Egleston, G. N. Lavrence, 293.

Hall, J., Cryptonella, Centronella, 'Meristella, etc., 396.
New Potsdam Crustacean, 295.
Harvey and Sonder, Flora Capensis, 444.
Hayti, Indian Race of, J. A. Van Heuvel, 171.

Heat, Australian, 49.
Heldt, fundamental properties of oxygen and hydrogen, 112.
Henneberg, urine of oxen, 221.
Heteroyenic, ou Génération Spontanée, C. Musset, 270 .

Hildreth, S. P. P., xxxvth abstrmet of Meteorological Journal, for 1863, 181.
Floral calendar, etc., 184.
Histoire des Arabes, Sédillot, 269.
Hofmann, colors from aniline, 417.
Hooker, J. D. et G. Bentham, 'Genera Plantarum,' reviewed, 134.
Hudson-valley glacier, 249 .
Hudson Bay, explorations of, 237.
Humphreys and Abbott's Report on Mississippi River, $2 \% 3$.
Hunt, E^{\prime} B., Florida Reef, growth, chronology, etc., 197.
Physical Notes at Key West, 388.
Hunt, T. S., Bitumens and Pyroschists, 157. claims theory of nitrifcation, 271.
Hurricanes at Key West, E. B. Hunt, 393.
Huxley, T. H., Evideuce as to Man's place in Nature, reviewed, 451.
Hydrogen, properties of, Heldt, 112.

I.

Ice, solution of, on inland waters, B. F. Harrison, 49.
Indian Race of Hayti, J. A. Van Hewvel, 171.
Indiaua, Geological Reconnoissance, by D. D. Owen, R. Owen, noticed, 154 .

International Exhibition, Science of, O. C. Marsh, 250 .

Ceramic Arts of, Saluétat, 268.
Interpenetration, chemical theory of, C. S. Pirce, 78.
Inundations of the Nile, cause of, W. Ferrell, 63.

Iron, desulphuration of, in puddling, \boldsymbol{R}. Richter, 119.
and steel at English Exhibition, 258.

J.

Jackaon, C. T., Tellurbismuth from Georgia, 99.
Jain, G., Prodromo della Iconografia Generale degli Olidi, reviewed, 455.
Jeanrenaud, A., formula for collodion, 419. Johnson, S. W., alkalimetry. 297.
chemical abstracts, $115,123,290,418$, 423.

Nitrogen question, 426.
note on composition of solls, 292.
occurrence of silica in the higher plants, 124.
sulphate of lime soluble in chlorhydric acid, 283.
Johnsom, S.'W., and O. D. Allen, equivalent and spectrum of cessium, 94 .
Jomard, E. F., obituary of, 261.

K.

Kaskaskia river basin, 233.
Key West Physical Notes, E. B. Hunt, 388. Kilauea, present condition of, T. Coan, 296.
Kirkby, J. W., species common to Carboniferous and Permian, 133.
Kieser, D. G. von, death of, 449.
Krantz, A., catalogue of crystal models, noticed, 297.

I.

Ladevi-Roche, Unité des Races Humaines, 270.

Lakes. glacial origin, A. C. Ramsay, 32 .
Landolt, indices of refraction of tluid homologous compounds, 415 .
Laurent, IF., Theorie des Séries, 2 ro.
Lautermann, reduction of kinic to benzoie acid, etc., in animals, 291.
Lavoivier, publication of works of, 282.
Lea, Isaac, observations on genus Unio, etc., 143.
Leavenworth, Melines C., obituary of, 306, 451.

Legons de Chimie et de Physique Professées en 1861 à la Société Clemique de Paris, noticed, 269 .
Leprosy, treatment of, Gryon, 266.
Leptocelia concava, C. Rominger, 84.
Les Mondes, Revue Hebdomadaire des Sciences, Abbé Moigno, noticed, 465.
Lesquerercx, Lee, coal formation of North Ameriea, 375.
report on coal of Indiana, 150.
Lime, estimation of, Wicke, 116.
Littrow, spectroscope, 413.
Loomis, E, on Everett's method of reduc-
ing temperature observations, 31 .
Lucernaria the ceenotype of Acalephæ, \boldsymbol{E}. J. Clark, 346.

Lucernarie, Prodromus of, Clark, 459.

M.

Mackay, Jas. T., death of, 449.
Magnesia salts, behavior of, toward carbonate of ammonia, Divers, 115.
Magnetic Survey of Pennsylvania, etc., A. D. Bache, 359 .

Mammals, classification of, J. D. Dana, 65.
Manganese, amount of, in some irons, R. Rickter, 120.
Man's place in nature, T. H. Huxley, 451.
Manual of Botany of Northern States, A. Gray, revised edition, 448.
Manuel de Mineralogie, DesCloizeaux, 393.
Maramec river basin, 232.
Marignac, analysis of borates, etc., 418.
Marsh, B. V., meteors of Dec. 1862, 302.
Marsh, O. C., Catalogue of Mineral Localities in New Brunswick, etc., 210. science of International Ex'n, 256.
Mosterman, S., brilliancy of variable star Mira Ceti, 150.
meteors of Jan. 1863, 143.
Mathematics, works on, received, 306 .
Mayer and Pierson, La Photographie considerée, etc., 269.
Measures, metric system of, 302 .
Medicine, works on, received, 308.
Meek, F. B., Actronidæ, 84.
Memoires de Augustin-Pyramus DeCandolle, reviewed, A. Gray, 1.
Metallic painting, Oudres, 265.
Metallurgy:-
Amount of manganese in some irons, R. Tichter, 120.

Concentration of silver in lead, Reich, 119.

Crystallized silicon in pig iron, R. Richter, 118.
Desulphuration of iron in puddling, R. Richter, 119.
'Metallurgy,' J. Percy, noticed, 118.
Thallium in furnace products, W_{T} T. Rocpper, 420.
Meteorological observations made at U. S.
Naval Observatory, J. M. Gilliss, 146.
Meteorology:-
Abstract of Marietta Meteorological Journal, S. P. Hildreth, 181.
Aturospheric transparency, E. B. Hunt, 388.

Auroral arch, 461.
Gulf Stream cloud bank, E. B. Hunt, 389.
Hurricanes at Key West, E. B. Hunt, 393.
Northers at Key West, E. B. Hunt, 392.
Ray-bands, E. B. Hunt, 391.
Works on, received, 317.
Meteors, periodic, A C. Twining, 149.
Metric system, 302.
Merz, solar spectrum, 413.
Meyer, H. von, Jurassic feathered vertebrates, 129.
Meyn, peat-sandstone, 123.
Mineral and metal products of Great Britain and Ireland, 288. localities in N. Brunswick, Nova Scotia and Newfoundland, Marsh, 210.
Mineralogie, Manuel de, DesCloizeaux, 293.
Mineralogy, works on, received, 308.

Minerals:-

Antimony in New Brunswick, 150.
Arsenids of copper, 296.
Columbite, analysis of, H. Rose, 426.
Cryolite, 285.
Galena with octahedral cleavage, 126.
Kischtimite, 427.
Kischtim-Parisit, 427.
Tellurbismuth from Georgia, 99.

Mining and Smelting Magazine, 290.
Miocene shells of Âtlantic slope, T. A. Conrad, noticed, 428.
Mississippi basin, physical geography of, Humphreys and Abbott's report, 223.
Mississippi river and tributaries, tabular view of, 234.
Mohawk-valley glacier, J. D. Dana, 243.
Moonrise over water, E. B. Hunt, 395.
Mieller, A., composition of soils, 292.
Müsset, C, Hetérogenie, ou Génération Spontanée, 270.

N.

National Academy of Sciences, organized, 462.

Almanac, etc., 1868, 465.
Nebulæ, see Astronomy.
Nicklès, J., changes in wine, 250.
correspondence of, 260 .
Theorie Physique des Odeurs et des Saveurs, noticed, 270.
Nile inandations, causes of, W. Ferrel, 62.
Nitrification, 113, 263.
history of the theory of, 271, 409.
Nitrite of ammonia, atmospheric, E. Bohlig, 423.
formed under the influence of heat, Schönbein, 113.
Nitrogen question, S. W. Johnson, 426.
Northers at Key West, E. B. Hunt, 392.
Northwest Boundary Survey, 239.

0.

Oaks, new character in fruit, Alph. De-
Candolle, reviewed, 430.
Obion river basin, 233.
Obituary:-
M. N. Blytt, 449.

Wm. Borrer, 449.
Asahel Clapp, 306, 450.
A. E. P. de Gasparin, 261.

Benj. D. Greene, 449.
E. F. Jomard, 261.
D. G. von Kieser, 449.
M. C. Leavenworth, 306, 451.

Jas. T. Mackay, 449.
Theodore Parkman, 155.
Jas. A. Pearce, 155.
Jas. Renwick, 306.
H. H. de Senarmont, 260.

Chas. W. Short, 451.
Joachim Steetz, 449.
John Tweedie, 449.
Odeurs et Saveurs, Theorie Physique des, J. Nicklès, 270.

Ohio river basin, 230.
Ordway, J. M., waterglass, 185.
Oxyethylene bases, Wurtz, 114.
Oxygen, allotropic form, Schönbein, 111.
fundamental properties, Heldt, 112.
new process for, J. Webster, 283.
used to counteract gangrene, Raynaud, 266.
Owen, Richard, Geological Reconnoissance of Indiana, by D. D. Owen, noticed, 154.
Ozone, preparation of, Schönbein-Böttger, 111.
and nitrons acid, 268.

P.

Painting, metallic, Oudres, 264.
Palasterina (?) Jamesii, J. D. Dana, 295.
Paris, Carte Agronomique des Environs de, A. Delesse, 270.
Parkman, Theodore, obituary of, 155
Pasteur, member of French Academy, 303.
Pearce, Jas. A., obituary of, 155.
Peat-sandstone, Meyn, 123.
Peirce, C. S., chemical theory of interpenetration, 78.
Pennsylvania, magnetic survey of, A. D. Bache, 359.
Penobscot-bay glacier, 249.
Percy, J., 'Metallurgy,' noticed, 118.
Permian and Carboniferous, species common to, J. W. Kirkby, 133.
Philadelphia Acad. of Nat. Sci., proceedings of, 156 .
Photographie considerée comme art et comme industrie, Mayer et Pierson, 269.
Photography:-
Action of light on sensitive plate, Vidal, 286.

Formula for collodion, Jeanvenaud, 419 Globe lens for camera, C. Sellers, 319.
Physical Geography of Mississippi basin, Humphreys and Abbott's Report, 233.
Platinum and platinum metals, 256 .
Pleurodyctium problematicum, C. Rominger, 82.
Portland Soc. of Nat. Hist., proceedings of, 295.
Preservation of wood, Lapparent, 267.
Prisms of bisulphid of carbon for spectral analysis, O. N. Rood, 355 .
Proceedings received, 308.
Boston Soc. of Nat. Hist., 156.
Philadelphia Acad. of Nat. Sci., 156.
Portland Soc. of Nat. Hist., 295 .
Prodromo della Iconografia Generale degli Ofidi, G. Jan, reviewed, 455.
Prodromus of the History, Structure and Physiology of the Lucernariæ, H. J. Clark, noticed, 459.
Protozoans, oceanic, related to sponges, J. D. Dana, 386.

Provancher, L., Flore Canadienne, etc, noticed, 445.
Pyroschists, history of, T. S. Hunt, 157. analysis of, Whitney, 160.

Q.

Quetelet, A., Sur la Physique du Globe, reviewed, 15%

R.

Ramaay, A. C., glacial origin of lakes, 324.
Rautenberg, urine of oxen, 291.
Ray-bands, E. B. Hunt, 391.
Red Disease of Cayemne, 266.
Red river basin, 254.
Refraction of fluid homologous compounds, indices of, Landolt, 415.
Renwick, James, obituary of, 306.
Revolving disks, appearances produced by, O. N. Rood, 357 .

Reich, concentration of silver in lead, 119.
Richter, R, amount of manganese in some irons, 120.

Pichter, R, crystallized silicon in pig-iron, 118.

Desulphuration of iron in puddling, 119.

Roepper, W. T., thallium in furnace products, 420.
Rominger, C., Pleurodyctium problematicum, 82.
Leptocœelia concava, 84.
Rood, O. N., appearances produced by revolving disks, 357 .

Bisulphid of carbon prisms for spectral analysis, 356 .
Rutherfurd, L. M., Astronomical observations with spectroscope, 71.

Companion to Sirius, stellar spectra, and spectroscope, 407.

S.

St. Francis river basin, 227.
Schaeffer, G. C., origin of nitrites, 409.
Scheerer, arsenids of copper, 296.
Schewrer-Kestwer, A., Principes Elemen-
taire de la Theorie Chimique des Types
Appliquée aux Combinasions Organiques, noticed, 270.
Schönbein, allotropic form of oxygen, 111. peroxyd of bydrogen, 114.
formation of nitrite of ammonia, 113. preparation of ozone, 111.
Schuitz, Max., chemistry of germination, noticed, 290.
Science of International Exhibition, O. C. Marsh, 256.
Sédillot, Histoire des Arabes, noticed, 269.
Seemann, B., vegetable productions of Fiji Islands, noticed, 446.
Sellers, C., Globe lens for photographic camera, 319.
Senarmont, H. H. de, obituary, 280.
Sheffield Laboratory Contributions, 94 .
Shooting stars, see Astronomy.
silica, occurrence of, in the higher plants, S. W. Johnson, 124.
silicon, crystallized, in pig-iron, R. Richter, 118.
Silliman, B., Jr., note on Quetelet's Physique du Globe, 154.
book notices, 134, 146, 152, 303, 304, 306.

National Academy of Science, 462.
obituaries, $155,306$.
technical chemistry, 283.
spectroscope, 408.
Silver, concentration of, in dead, Reich, 119.
Sirius, companion to, L. M. Rutherfurd, 407.

Smithsonian Institution, explorations en: couraged by, 236.
Societies, see Proccedinge.
Sodium line D, analysis of, I. M. Rutherfurd, 407.
spectrum, F izeau-Gibbs, 414.
Soils, composition of, A. Müller, 292.
Solar spectrum, Merz, 413.
Solubilities, Dictionary of, F. H. Storer. 303.
Solution of ice on inland waters, B. F. Harrison, 49.
Sonder and Harvey, Flora Capensis, noticed, 444.
Species, study of, $A l p h$. DeCandolle, 431.

Spectra of alkaline metals, Wolf and Dia-1 con, 414.
stellar, L. M. Rutherfurd, 407.
Spectral analysis by prisms of flint glass and bisulphid of carbon, O, N. Rood, 356 . contríbutions to, Böttger, 414.
Spectroscope, new form, Littrow, 413.
L. M. Rutherfurd, 407 .
for astronomical observations, L. M. Rutherfurd, 71.
new form, W. Gibbs, 110.
Spectrum, solar, Merz, 413.
Fraunhofer lines in, Angström, 411.
Sphagna of New Jersey, C. F. Austin, 252.
Star-shower in 1565, 461.
Starch, amount of, in various seeds, Dragendor:ff, 123.
quantitative determination of, Dragendorff, 116.
Steetz, Joachim, death of, 449.
Stimpson, W., classification of Brachyura, etc., 139.

Diatoms on deep sea bottoms, 454. genus Diplothyra, 455.
review of Conrad's Catalogue of Miocene Shells, 428.
Stohman, urine of oxen, 291.
Storer, F. H., Dictionary of Solubilities, noticed, 303.
Strahl, classification of Brachyura, 139.
Sur la Physique du Globe, A. Quetelet, reviewed, 152.
Survey, Coast, report, 239.
of Hudson Bay territory, 237.
of Northwest Boundary, 239.
of peninsula of California, 236.
Susquehannah-valley glacier, 249.
Synopsis Plantarum Vitiensium, noticed, 448.

T.

Télégraphie Electrique, manuel de, Bre guet, noticed, 269.
Temperature, extreme, variation of, in temperate zone, W. Dennis, 44.
observations, method of reducing, J.
D. Everelt, 17.
remarks on Everett's article, E. Loomis, 31.
Tendrils of Virginia creeper, \&c., A. Gray, 445.

Thallium, Dumas-Crookes, 273.
in furnace products, W. T. Roepper, 420.

Theorie Physique des Odeurs et des Savears, J. Nicklès, noticed, 270.
des Series, Lanrent, noticed, 270.
Torrey, J., octahedral galena, 126.
Tryon, G. W., Jr., monograph of Pholadacea, \&sc., noticed, 297.
Tunner, Bessemer's process, 421.
Tweedle, John, death of, 449.
Twining, A. C., remarks on meteors, 149. shooting stars of Nov. 1862, 146.

U.

Unionidæ, obscrvations on, I. Lea, noticed, 143.
Unité des Races Humaines, Laderi-Roche, 270.
U. S. Naval Obserratory, observations made at, J. M. Gilliss, noticed, 146.

V.

Van Heuvel, J. A., Indian race of Hayti, 171. Ventilation at Key West, E. B. Hunt, 394.
Vermont, Geology of, price raised, 430.
Vertebrates, feathered, in Jurassic, A. Wagner-H. von Meyer, 129.
Vis Tellurique, Biguyer de Chancourtois, noticed, 270.
Vites Boreali-Americanæ, E. Durand-Ch. Des_Moulins, reviewed, 445.

W.

Wagner, A., Jurassic feathered reptiles, 129.

Waterglass, J. M. Ordway, 185.
Water moonrise, E. B. ITunt, 395.
Watson, J. C., corrections of elements of a comet, 218.
Webster, J., process for uxygen, 283.
Weights, metric system, 302.
White river basin, 225.
Wicke, estimation of lime, 116.
Wirichell, A., identification of Catskill and Chemung groups, 61.
Wine, changes in, J. Nicklès, 250.
Wolf and Diacon, spectra of metals, 414.
Wood, preservation of, 267.
Woodward, H., Archæopteryx lithographica, 132.
Wurtz, oxyethylene bases, 114.

Y.

Yazoo river basin, 238.
Yellow fever, E. B. Hunt, 395.

Z.

Zodiacal light at Key West, Hunt, 388.
ZOOLOGY:-
Classification of Brachyura, W. Stimpson, 139.
of mammals, J. D. Dana, 65.
Diatoms on deep sea-bottoms, W. Stimpson, 454.
Evidence as to Man's place in nature, T. H. Huxley, reviewed, 451.

Hall's collections at Frobisher Bay, G. N. Lawrence, 295.

Jan's Prodromus of the Ophidia, reviewed, 455.
Lucernaria the conotype of Acalephe, H. J. Clark, 346.

Observations on genus Unio, I. Lea, noticed, 143.
Oceanic Protozoans related to sponges, J. D. Dana, 386.

Works on, received, 308.

[^0]: ${ }^{1}$ See C. S. Rept, 1858, App. 32. This Journal, 1859, vol. Exvii, p. 206.

[^1]: a The structure and Distribution of Coral Reefs by Chas. Darwin, Naturalist of The Beagle Expedition (1830-36). On Coral Reefs and Islands, hy Jas. D. Dana, Geologist U.S Ex. (1838-42) 1853 , and in this Journal, 1851-2, vols, xi, xii, xiii and and Juae, 1862 Rept, C. S. Rept, 1851, App. No. 10, and Atlantic Mouthly, May

[^2]: ${ }^{3}$ This Journal, 1857, vol. xxiii, p. 46.

[^3]: ${ }^{5}$ Assistant F. H. Gerdes, U. S. Coast Survey, found the surface of the water in the Everglades to be 6 ft . $2 \frac{1}{2}$ inches above luw water-mark at Fort Dallas: see Coast Survey Report for 1849, p. 47.

 - There are corals in the Tertiary of the coast, but no continuous reef-ruck, we believe, warranting the above remark. The many muddy streams have been in the Way of the extensive formation of coral reefs on these coasts, even when, as io the Tertiary, the temperature of the ocean favored it.-Eds.

[^4]: It is certainly hardly to be sumposed, that Darwin or Dana should bave overlonked the effects of "attrition, transportation, and deposition"-causes acting alike Whether the material subjected to them be cural aad shells. or granite and samdetone. of Sana, in his Report on Coral Reefs and Islands, in fact, atirihutes the formation of the reuf-rock, or the great mass of the reaf. to the consolidation of the eoral debris made by the triturating waves and distributed hy the waves and currents. Ste pares 41, 42, 57, 62, 1115 to $109.115,121,149$. (or in this Journal, [2] xi. 366, 367 : xii, $32,36,380$ to 384 ; xiii, 85,40 ; xiv, 78. 79, 83.) where the effects of the frituratmer waves and distributing currents are particularly deseribed, even to the formation of coral mud in the shallow waters among the reefo.
 Speaking of tire effects of the currents anume the Feejee I-lands, he remarks, p. 42 (this Juurnal, [2] xi, 367): "When the materials from both sources, the shore and the reef. are mingled, the proportion will necessarily depend on the proximity to the mouths of streams, the breadth of the inner waters or chanrels, and the direc-

[^5]: tion and force of the currents. These tidal currents often have great strength, and are much modified and increased in force at certain places, or diminished in others, by the position of the reef with reference to the land. Sweeping on, they carry off the coral debris from some regions to others distant; and again they bear along only the shore detritus, and distribute it. It is thus seen that the same region may differ widely in its adjacent parts - may seemingly afford evidence in one place that there is no coral near, and in another no basaltuc land, although either is within a few rods, or even close along side. The extent of the land in proportion to the reef will have an obvious effect upon the character of the channel or layoon dipositions. When the island stands, like Bacon's isles (Feejees), as a mere point of rock in a wide sea enclosed by a distant barrier, the streams of the land are small, and their detritus quite limited in amount. In such a case, the reef and the growing patches scattered over the lagoon, are the sources of nearly all the material that is accumulated upon the bottom."

 Again, p. 57: "The reef-rock, wherever broken, shows a detritus origin," etc.
 Again, p. 121 (this Jourmal, xiii, 40), 一treating of the precautions necessary to determine correctly the rate of growth of reefs, he ubserves: "It is also necessary to examine into whatever has any bearing upon the marine or tidal currents of the region-their strength, velucity, direction, where they eddy, and where mot, whether they flow over reefs that may afford debris, or not. All the debris of one plantation may sometimes be swept away by currents to contribute to other patches, so that one will enlarge at the expense of others; or, currents may carry the detritus into the channels or deeper waters around a coral patch, and leave little to aid the plantation itself in its increase and consolidation."

 Again, when explaining the origin of the hard compact limestone, containing rarely a fossil, which coustitutes so large a proportion of the reef-rock, he sars:

[^6]: "An explanation of this peculiarity is obvious on the principle already discussedthe action of a triturating sea," etc.
 Mr. Dana even considers the question of the transportation of the detritus over the bottom of the adjuining oceann, a point so well illustrated by Captain Hunt. On page 154 (this Journal, xiv, 83), he remarks as follows: "It is an inquiry of some Imterest, whether, in an archipelago like the Paumotus, coral debris is not carried from the coral islands, and distributed over the bottom of the ocean; and whether limestones, thus originating, are not in process of formation. I venture no positive off some bisaltic subject, yet would express strong doubts. The fact that soundings off some basaltic islands, as we recede from the reef growing depths, lose more and more in the proportion of coral sand, till we finally reach a bottom of earth, like the material of the island, bears against the hyporthesis. This was found to be the case off Upolu, where the reefs are extensive." The doubts here expressed could not exist in a sea where the reefislands were swept by a marine current as strong as that passing the Florida Keys; and this is the special fact whirh gives originality and great interest to the researches above detailed by Captain Hunt, whether the idea that the formation of the reef consisted in a gradual elongation from the enstward, without subsidence-a view also of great interest, and original-be correet or not.
 It may be added here, that the possibility, not to say strong probability, of grent changes of level during and following the Post-tertiary, in the region of the Mexican
 Gulf, as well Gulf, as well as in the other transverse tropical seas of the globe, the Mediterrathe problem East Indian, is one among the many sources of doubt that complicate the problem of time counected with the Florida reef.-J. D. D.

[^7]: ${ }^{1}$ Many of the notices of localities referred to in this Province are given on the authority of Mr. Mathew, which is a sufficient guarantee for their general accuracy.

[^8]: ${ }^{2}$ Remarks on the Mineralogy and Geology of Nova Scotia, by Charles T. JackGenand Francis Alger; Memoirs of the American Academy, vol. i, 1833; Acadian Geology, by J. W. Dawson, F.G.S., Edinburgh, 1855 ; Geological Survey of Newfoundland, by J. B. Jukes, F.G.S., London, 1843.
 ${ }^{3}$ Near Black Rock, Kings Co., and at Clark's Head, Cumberland Co.

[^9]: - See note on Antimony (Stibnite) in New Brunswick in the preceding number of this Journal, p. 150.
 ${ }^{8}$ See Intruduction, page 211.
 - A mineral from this locality has been described as epiatilbite by Prof. Hom, of Kings College, Nova Scotia; but, in a recent communication to the writer, that gentleman expresses a doubt whether it may not prove to be heulandite on furtber examination. The crystalline form of the mineral could not be ascertained from the specimen analyzed.

[^10]: 'Specimens of the mineral, from this locality, which has for many years passed under the namie of albin, have recently been examined by the writer, and proved to be merely a variety of calcite. $\mathrm{o} . \mathrm{c} . \mathrm{m}$.

[^11]: ${ }^{1}$ The assumed values of $\Delta-\delta \Delta, \Delta$, and $\Delta+\delta \Delta$, should be so taken that the correct Value of assumed values of $\Delta-\delta \Delta, \Delta$, and $\Delta \Delta+\Delta \Delta$, , that for which the differences u and w are a minimum-shall be within the limits, that fur which the cifference $\Delta-\delta \Delta$ and $\Delta+\Delta \Delta$, which may alws he effected.
 Ak. Jour. Scl.-Second Series, Vol. XXXV, No. 104, -March, 1863.

[^12]: ${ }^{2}$ The river takes its name from the reddish color of the water, probably derived from the red gypsum over which it passes,

[^13]: * The St. Francis river, when in flood. loses some of its water in this vicinity by bayous connecting with-Black river, a tributary of White river of Arkansas.

[^14]: "These elevations refer to the low water of the Mississippi. The range between high and low water level is about 20 feet near Sandy-lake river; about 20 feet at St. Paul; about 10 feet (extreme, 14 feet) at La Crosse; about 12 feet (in $1858,18 \cdot 5$ feet) at Prairie du Chien; about 16 feet at Rock Island; about 20 feet at Hannibal, and about 35 feet at the mouth. These ranges are much less than those of the Ohio, and, excepting the Missouri, of the other tributaries of the Mississippi, where they pass through the cultivable region. Their small extent is due to the generally flat character of the basin, from which the drainage is consequently slow; the existence upon it of numberless lakes; the great width of the river ; the gradual change in season that takes place along its course; and the comparatively dry climate of the upper part of the basin."
 AM. Jour. Sci.-Second Series, VoL. XXXV, No. 104.-Marce, 1883.

[^15]: "It will be noticed that these elevations correspond to the low-water periorl. The range between extreme low and extreme high water seems to be about 45 feet throughout the entire river. Thus, at Wheeling,

[^16]: ${ }^{2}$ At a medium stage of water, a rise of one foot on the falls makes a rise of about three feet below them, until the water on the falls is about five feet deep. Subsequently, the rate of rise below is rather less than two feet.

[^17]: Remarks.-Drainage area, $1,244,000 \mathrm{sq}$. m.-Downfall of rain, $50^{\circ} 4 \mathrm{in}$.-Annual discharge (including 3 outlet bayous), $21,300,000,000,000 \mathrm{cl1}$. ft.-Ratio between
 downfall aud drainage, $0 \div 55$. - Mean discharge per secord, $675,000 \mathrm{cu}$. ft.

[^18]: "Exploration of the Hudson's Bay territory by Mr. Kennicott.-At the date of the last advices from Mr. Kennicott, when the Smithsonian Report for 1860 was presented, he was at Fort Resolution, on Slave lake, Where he had spent the preceding spring and summer, principally in collecting eggs of birds. He left Fort Resolution in August, 1860, and returned to Fort Simpson and proceeded immediately down the Mackenzie to Peels river. From Peels river he crossed the Rocky mountains to La Pierre's house, occupying four days in the transit, and arriving September 18th; left the next day for Fort Yukon, at the junction of Porcupine or Rat river and the Yukon or Pelly river, in about latitude 65° and longitude 146°. Fort Yukon, the terminus of his journey, was reached on the 28th of September, 1860.

 The latest advices now on file from Mr. Kennicott were written January 2, 1861, up to which time he had made some interesting collections; but these, of course, were limited by the season. He had great expectations of success during the following spring, (of 1861,) which have no doubt been abundantly realized.
 No collections were received from Mr. Kennicott in 1861, with the exception of a few specimens gathered in July and August, 1860, on Slave lake. Those made at the Yukon will, however, in all probability come to hand in October or November of 1862.
 Am. Jour. Sci--Srgond Series, Vol. XXXV, No. 104.-Marca, 1863.

[^19]: ${ }^{2}$ Compare Dr. Hayden's account of this survey, Geog. Notices, No. XVII, this Journal, [2], Xxxiv, 99.

[^20]: "Beginning at the south, we may look upon the Nyassa as entirely in the hands of Livingstone and other Zambesi travellers, such as Count Thurnheim. Livingstone, as we know, has established easy access to the southern end of the lake, and announced bis intention of exploring the whole of it at the earliest opportunity. It would be a waste of re-

[^21]: ${ }^{1}$ The word geoclinal is derived from the Greek $\gamma \eta$ earth and $x \lambda 1 v \omega I$ incline. The Conneeticut, Hudson, and Mississippi are other geoclinal valleys.

[^22]: ${ }^{2}$ The depression occinpied by the Mohawk is situated, like those of nearly all the Lakes of North America, and that also of the st. Lawrence, near the line of boundary between the Azoic and Paleozoic areas of the continent ; that is, between the areat that was comparatively stable dry land from the commencement of the silurian qe onward, and which reaches from Canada northwest to the Aretic and northeast to Labrador, and the area, stretching southward, southeastward and soothwest ward, from the A zoic, that was during the same time an area of progress and of unstablo
 turfice. burface.

[^23]: ${ }^{2}$ See New York Geological Report, Part III, comprising the Survey of the Third Geological District, by Lardner Vanuxem, 4to, 1842, p. $24 \overline{0}$.

[^24]: ${ }^{6}$ Ramsay states, in his observations on the drift-scratches of the Catskill region (Quart. Jour. Geol. Soc. Lond., Xv, 208), that while the striations on the ascent of the mountain from the east were "nearly north-and-south along the flanks of the escarpment, and not from west to east down the slope of the hill," and "very strong and frequent up to the plateau on which the Mountain House stands, 2850 [2235] feet above the sea," at this summit level, on the watershed, the scratches approximate to east-and-west. He says "on this plateau, numerous main grooves are seen, passing across the hill, and nearly at right angles to most of those observed during the ascent,-seemingly pointing to the fact that the icebergs [Mr. Ramsay adopting in bis reasoning the iceberg-theory] which striated the eastern flank of the mountains in a north-and-south direction, when the whole was nearly submerged, bere found a passage or strait through which they sometimes floated and grated the bottom, in a direction quite across that which they were forced to follow when passing along the great escarpment that now faces the Hudson." He states, also, that these main grooves are crossed "at various angles" by "minor striations." Mather, as mentioned in his Geological Report, made long since some similar observations on the Catakill scratches; but they were less complete than those by Ramsay.

[^25]: To obtain the butyro acetic acid, it is only necessary to pass a solution of acetate and butyrate into a returt containing hot and dilute sulphuric acid, and to condense in a convenient vessel the vapors which are disengaged. The condensed liquid contains an acid which being nentralized by baryta gives beautiful flat prisms formed of butyro acetite of barytn. These crystals have a greasy feel, and when palverized and thrown into water they aequire a gyratury motion similar to butyrate of baryta. In this cise the two acids, acetic and butyric, are evolved in the nascent state, and combines to form the butyro-acetic acid in question.

[^26]: S. subsecundum is common in other pertions of the State, and may be looked for in the same locality as well as all the American species not peculiar to high latitudes.
 ${ }^{2}$ Since writing the above, I learn from Mr. Sullivant that he has S. tabulare from Quaker Bridge, New Jersey.

[^27]: ${ }^{1}$ The numbers refer to the Official Catalogues of the various departments.
 : A series of the Reichenstein specimens illustrating Plattner's process was exhibited in the American Exhibition of 1853, No. 278, Class I.

[^28]: ${ }^{4}$ G. Rosp, Ueber den Asterismus der Krystalle, insbesondere des Glimmers und des Meteoreisens. Oct. 30, 1862. See also Phil. Mig., Jan. 1863.

[^29]: ${ }^{3}$ In the session of the Academy Nov. 10 th, Becquerel communicated a notice of a number of manuscripts of Lavoisier discovered in the public library of the city of Orleans by Lriselell, the Jibrarian; he enumerates and analyzes the chief of these documents, treating of political economy, of canals, of the junction of the Luire to

[^30]: the Eure and to the Seine, on savings' banks, nssurance, dic. He ends by the exclamation "Honneur au grand chimiste! homneur au grand citoyen!"
 Abte Mognio remarks in Cosmos (Nov. 14), 'it was mot difficult to see that this comnunication annoyed M. Dumas, who considered himself alone entitled to explure the rich mine of the inedited works of Lavoisier.'

 - An abstract of Schönbein's results has alrealy been given on p. 111-113 of this Polume. See also beyond, Hunt's note of reclamation on this discovery; nlso Prof. Hunt's correspondence. p. 271 (beyond).
 ${ }^{\text {B }}$ 'See his work entitited, "Agroniomic, Chimie Agricole et Physiologie". See also this Journal, [2], xix, p. 409.

[^31]: ${ }^{2}$ The new weight of cessium $(=133$) obtained by Johnson and Allen (this rol., p. 94) does not suppiort the combined numbers above given by Dumas. But if we add twice the weight of sodium to the weight of rubidium we have approximately the weight of cæsium : $46+85=131$. -Eds. A. J. S.

[^32]: ${ }^{2}$ Mr. Dumas persists in using the symbol " Tb, " which we bave already shown has been adopted for Thorinum.

[^33]: ${ }^{1}$ Published monthly, at one shilling sterling per number. Agents, Baillièro Brothers, 440 Broadway, New York

[^34]: vilal process of "vegetable respiration" if not free hydrogen yet carburetted hydrogen and carbonic oxyd, but no free nitrogen, are given off in conjunction with oxygen, Boussingnult (this Journal, xxxv, p. 122); while, as Pettenkofer and Voit have shown, (Ann. Chem. u. Pharm., ii, Sup. vol. 66), both carburetted hydrogen and free hydrogen are found in the products of animal respiration.
 s. W. J.

[^35]: ${ }^{1}$ [2], xx. 270, xxv, 396, xxix, 363, sxxi, 356, xxxiv, 203.
 ${ }^{2}$ Communicated to this Journal by the Lyceum.

[^36]: ${ }^{3}$ Everything that seems to them peculiar they refer to this source.

[^37]: ${ }^{2}$ See this Journal, [2], xxii, 75.

[^38]: ${ }^{2}$ See this Journal, [2], vol. xxiii, March, 1862.

[^39]: ${ }^{2}$ The A. lapidaria itself perhaps belongs to the Aciculidee, and consequently to 2 different family frum the other species.

[^40]: ${ }^{2}$ First Outlines of a Dictionary of the Solubilities of Chemical Substances. By Frank H. Storer, One volume in three parts. Part I, 8vo, pp. 23.. Cambridge: Sever \& Francis, 1863. B. Westermann \& Co., New York.

[^41]: ${ }^{2}$ New York Evening Post.

[^42]: Mathematics and Physics. -
 Report of the Thirty-First Meeting of the British Association for the Adrance ment of Science; held at Manchester in September, 1861. London: J. Murraj. 1862. $8 \mathrm{vo}, \mathrm{pp} .340$ and 320.

 An Elenentary Treatise on Plane and Spherieal Trigonometry, with their appliestion to Navigation, Surveying, Heights and Distances, Spherical Astronem!: ete.; by Bexjamin Peirce, LL D., de. Revised edition. Boston and Cambridge: James Munroe \& Co. 1861. 8vo, pp. 327.
 De la Théorie Mathématique de la Musique; par Alexandre-P. Prevost. Ge nève, 186%.
 On the Density of Steam; by W. J. Macevors Ranitine. C.E., LL.D., F.R.SS. Lond. and Edin. \&ec. From the Trans. Roy. Soe. Edinburgh, 185\%. 4to.
 Vis Inertix Victa, or Fallacies affecting Science: an Essay to increasing our knowledge of some physical laws, and a Review of certain Mathematical Princtiples of Natural Philosophy; by James Reddie. London, 1863.
 On Certain Forms of Interpolation; by W. P. G. Bartlett, A.M. Cambridge, 1862. Mem, Awer. Acad.

[^43]: ${ }^{2}$ Including the beds formerly incorrectly referred to the Catskill group.
 Ay. Jock. Sch.-Second Series, Vol. XXXV, No. 105.-May, 1863.

[^44]: ${ }_{2}^{1}$ Copied from the Quarterly Journal of the Geological Society, Nov., 1861.
 Pennsylvand Vanuxem, Reports on the Geology of New York; Rogers, Report on etansylvania.
 ${ }^{1}$ Quart. Jour. Geol. Soc. Lond., xv, 477.

[^45]: ${ }^{6}$ Now included in the Chemung.

 - Report on the Genlogical Survey of Maine, now in the press.
 ${ }^{7}$ See also notices by Dr. Jackson and Prof. Rngers in the Proceedings of the Boston Suciety of Natural History.
 ${ }^{8}$ A few additiunal species discovered last summer will shortly be described.

[^46]: - Roports of the Geological Survey of Canada; paper on the Devonian plants of Gaspé, Quart. Journ. Geol. Soc. Lond,, xv.
 ${ }^{10}$ Gesner's Second and Third Reports on the Geological Survey of New Brunswick; Robb, in Johnston's Report on the Agriculture of New Brunswick.
 ${ }^{21}$ At this place the limestone is penetrated by $\&$ thick vein of graphic granite, holding black tourmaline; and at Drury's cove, not far distant, it contains dykes of dark colored trap.

[^47]: ${ }^{13}$ In my paper in the Canadian Naturalist, I gave a sectional view of the general arrangement, as observed on a line of section from the Kennebeckasis River to the extremity of the peninsula on which St. John stands. The sections referred to in the text represent the same series, as seen on the east side of Courtney Bay, immediately to the east of St. John, with the continuation ascertained by Mr. Matthew towards the Mispec River.
 ${ }^{4}$ The scanty animal remains of the plant-beds No. 3 accord very well with the evidence of the fussil plants. They are a small Trilobite, apparently a Phillipsia, and three other Crustaceans, one of which is probably a Stylonurus, another a Eurypterus, and the third a Decapod not apparently referable to any described genus. These Crustaceans are now in the hands of Mr. Salter. (See his paper on these fossils, read before the Geological Society, May 21, 1862.) There is also a shell, ${ }^{\text {apparently a }}$ Loxonema, and a Spirorbia.
 A. Jour. Sct--Second Series, Yol. Xxxy, No. 105.-May, 1863.

[^48]: ${ }^{2}$ From the Quarterly Journal of the Geological Society for August, 1862.
 2 'The Old Glaciers of North Wales.' Longman \& Co.

[^49]: * Between Basel and the confluence of the Aar and the Rhine.

[^50]: ${ }^{4}$ Quart. Journ. Geol. Soc. Lond. 1851, viii, 371 ; and The Old Glaciers of North Wales.

 - It is not to be supposed that I attribute the origin of all rock-basins to glacial action. Many lie in the craters of extinct volcanos, some, no doubt, in areas of special subsidence, and others may be due to causes of which I know nothing. I now confine my remarks to certain lakes common in all highly glaciated regions such as I know.

[^51]: "See the "Old Glaciers of Switzerland and North Wales."
 ${ }^{7}$ "Sugli elementi che compongono i conglomerati Mioceni del Piemonte," Turin,
 1861.

[^52]: *See an admirable memnir by F . de Mortillet, "Des Anciens Glaciers du Versant Italien des Alpes." Milan, 1860. Though I had seen his map, I had not seen this memoir when I read my paper; and the passages in which it is mentioned have been added as these pages pass through the press. His theory leaves the difficulty of the first formations of the basins untouched, unless we believe (which I do not) that the Alpine valleys are lines of fracture.
 ${ }^{\circ}$ Edinburgh Philosophical Journal, 1820, ii, 107, and plate 2.
 Ay. Joer. Sci.-Second Skries, Vor. XXXV, No. 105.-May, 1863.

[^53]: ${ }^{11}$ See memoirs "De la Physionomie des Lacs Suisses" (extrait de la 'Rerue Suisse,' 1860) and "Quelques Considérations sur la Classification des Lacs, à propos des bassins du revers méridional des Alpes," by E. Desor. The opinions of Mr. Desor and my own do not agree on the question of the origin of the lake-basins on the Alpa. His views are well expounded in the above named memoirs. It was in conversation with my friend, in 1860, that I first proposed what I consider the true solution of the question, and to this conversation I presume he alludes in the latter memoir, p. 13.-"On a prétendu que les lacs étaient l'effet de l'affouillement des glaciers qui auraient labouré le sol sur lequel ils savancaient," tc.

[^54]: ${ }^{22}$ There are other well known lakes dammed up by the moraine of this great glacier.

[^55]: dre Jucib. Sch--Second Serres, Vol. XXXV, No. 105.-Mar, 1863.

[^56]: ${ }_{13}$ Since this memoir was written, I have conversed on the subject with Sir Wm. Logan, Director of the Geulogical Survey of Canada, who not only agrees in my views with respect to the origin of American lakes in general, but also believes that the great American lake-basins may have been scooped out by the same means. They are all true rock-basins, in areas occupied by comparatively soff rocks surrounded by harder strata. Given sufficient time, I see no difficulty in this

[^57]: view, to which I inclined while writing this paper, but refrained from stating it, considering that most readers would think it ton strong, and thus that in general opinion I might damage the whole theory. Sir William says that the arrangement of the strata proves that the great lakes in not lie in areas of special subsidence.
 ${ }^{14}$ See 'The Old Glaciers of North Wales.' When I published my account of these glaciers, I was too timid to include the Lakes of Llanberis, Liyn Og wen, Llyn Cwellyn, and some others of the larger lakes in this category. I now feel Lenvincell that they are true rock-basins, and alse that the shallower pools of Llyn Llegeirin, Llyn Felin-y-nant, and others in Anglesea had the same origin. The horizontal striations far up the side of Carnedd Dafydd, by Llyn Ogwen, were probably made by a glacier of immense thickness during the first great glacier-
 perion, preceding the depusition of the stratified drift.
 is When the lake was low, I have seen in Loch Lomond ice-striated surfaces of rnck just above the water, the striations running in the direction of the length of the lake.

[^58]: ${ }^{20}$ But this is not essential, unless the lochs are so deep that the ice must have been floated up before reaching the deeper parts.
 ${ }^{15}$ I do not in any way wish to deny that mueh of the glaciation of the lower countries that came within the limits of the Drift was effected by floating ice on a large scale, which must have both polished and striated the rocks along which it ground. I have, with other authors, described this in various memoirs. But the two sets of phenomena are distinct.
 ${ }^{18}$ The Lewes is covered by small lakes.
 .19 Quart. Journ. Geol. Soc. Lond., xviii, 371.

[^59]: ${ }^{20}$ It has been suggested to me by Dr. Sibson that the prodigious waste of the Alps by the gradual disintegration and diminution of the upper snow-fields, witnessed by the great moraines of North Italy and other phenomena, must have tended to lessen the glaciers. This is true, but, as he also believes, it is not of itself enough to account for the sbrinking of the ice into the higher valleys where it is now alone found.

[^60]: ${ }^{1}$ From the Proceedings of the Boston Suciety of Natural History, for March 10th, 1862; with additions and notes by the author.

[^61]: ${ }^{2}$ I have found such specimens most frequent at that time of the year which is the breeding eeason of our common shore-crab,-Cancer (Platycarcinus) irroraius, -when it comes up out of deeper water, and is most abundant and active. At first, only now and then, I found a Lucernarian with one or two auricles bitten off; but later it was common to find specimens with all the auricles nipped, and nothing but a small portion of their base or a mere scar, left to indicate their former presence. The moment a Lucernarian is touched by a crab it jerks its tufts of tentacles inward, but the reverted auricles are left exposed, and all the more prominent thy the act than usual, and a conspicuous morsel for the predaceous creature. As the season advances towards summer, the bunches of tentacles also disappear one after another, until it becomes quite common also to find individuals with two, three, or four bunches bitten off; and at the same time specimens become more and more rare, at the last of June, for instance, and finally, by the early part of July it is impossible, by the most diligent search, to find a single specimen. As this happens at the time when the Lucernarians are laying their eggs, it is clear that the destruction of the adult does not necessarily annihilate the race. During the next two months no Lucernarians are to be found, but in the last of August I have collected young ones, much less than io of an inch in diameter.
 ${ }^{3}$ Haliclystus auricula II. J. C.., Journal Boston Soc. Nat. Hist., March, 1863, page 559.
 "The original figure by Rathke, Müll. Zool. Danica, iv, 1806, pl. clii, although sufficiently correct for identification, can neither be called characteristic nor graceful as far as attitude is concerned.

 - In June, 1862, I made a careful study of the structure of the gelatiniform substance of Aurelia flavidula Ag. There are two kinds of fibro-cellular bodies which pervade the gelatiniform layer. One kind are irregular, dark, conspicuous cells, similar in appearance and size to those of the outer wall of the aboral side, with

[^62]: Way to the surface of the body, ench fibre forks two or three times, and then one prong goes to eacls of the two nearest longitudinal chymiferous tubes, and the third one extends to the base of the deep tentacular socket. This is the general arrangement at this age, alchongh necasionally one of the prongs of the fork is absent, or only partially developed. Sonetimes each prong forks again, at a narrow or wide angle. From the tentacular sockets fibres extend also to the surface midway between the mouth of the former and the adjacent longitudinal chymiferous tube. So few are all the fibres, however, that with a casual glance they might be mistaken for light, unimportant streaks here and there, instead of such methodically arranged bodies.

[^63]: ${ }^{7}$ In the family Cleistocarpidx, as I have recently characterized it (Journal Boston Nat. Hist. Soc., March, 1863), the genital halves are directly united to each other, so as to form a continuons organ across the proximal end of the partition; thus there can be no doubt that there are but four genitals in Lucernarie, and not eight. as described by varions authors.
 *The spermatic particles have an elongate cordate body, from the broad end of which an excessively long tail-like filament trails in broad curves as it swims; ab the pointed end are attached two exceedingly delicate filaments, which are in constant motion, bending and coiling, or stretching in every direction, as if they were the tactile organs of an Euglena or some other similar Infusorian. These psendoprobosces defy detection with ordinary objectives; in fact, to determine their presence with certainty requires very careful manipulation of such objectives as have the most accurate defining power, and which are to be obtained only from our best makers. The spermatic particles of our common Echinus, E' granulatus, also pos. sess a double pseudo-proboscis.

[^64]: - The nettling organs. or lasso-cells, which crowd the globular tips of the tentacles, are of $t w o$ kinds, and both are imbedded in the intercellular substance which fills the spaces between the columnar ceils of the outer wall. One kind consiots of an oval, thick-walled vesicle, about in tor of an inch long, or a little less, one end of which is introverted, and projects, in the form of a stout hollow shaft, along the axis of the cell about four-fifths of its length, and then, rather suddenly thinoing into a slender theread which also is holluw, it bends upon itvelf, returns nearly to the

[^65]: Ueber das Farben Spectrum von Sigmund Merz in München. Pogg. Anmalen, Band cxvii, stück 4. (Aus einer vom Hm . Verf. übersandten Abhandlong ein Kunst-und Gewerbeblatt d. polytechn. Vereins für d. Königr. Bayern, Oct. 186ュ.)

[^66]: ${ }^{1}$ Farbenlehre, pp. 171 and 1%.
 ${ }^{2}$ This Journal, May, 1861.
 AM. Jour. Scr.-Second Series, Vor. XXXV, No. 105.-May, 1803.

[^67]: ${ }^{3}$ The dip is the mean from groups of December 1840, October 1841, and August 1843.
 4 This station has been added to the discussion, as we have observations in 1840 and 1811; see Appendix No. 26, Coast Survey Report of 1858. Mean dip from tereral observers in $1841 \cdot 0,71^{\circ} 18^{\prime .3}$, and in $1842.5,71^{\circ} 13^{\circ .5}$. Mean, $71^{\circ} 15^{\circ} 9$ in 1841.8 .

[^68]: ${ }^{8}$ All stations where the dip has been found indirectly only, by means of the Lloyd needles, are marked with an asterisk,-27 in number. Total number of stations 48.

[^69]: 7 Maximum difference $=25^{\prime}$.

[^70]: ${ }^{10}$ At New York we have: 1841° b, Dr. Locke, 4.015 ; 1842.7, Dr. Locke, 4.008 ; $1842 \cdot 7$, Capt. Lefroy, 4.010 ; mean, 4.014 , for 1841.9 .

[^71]: ${ }^{1}$ Vol. xxxii, p. 193, Sept., 1861, and vol. xxxiii, p. 206, March, 1862.

[^72]: ${ }^{2}$ Geolngical Report uf the State Survey of Arkansas, ii, 309, pl, 2 fie. 2.

 - A deposit of the same nature, a bithk of clay iron ore with pebbles of carJonate of iron, is also found in Southern Ohio, northwest of Marietta. Nearly all the pebbles have as a matrix a piece of fern or of some other fossil plant. As the species are the same both in Whinois and in Ohio, I consider both these strata, from palsontological evidence, as having the same geological horizon. Their place, accurding to the sume evidence, is at or near the level of Coal No. 4. just below the base of the Mathoning sandstone. The most abundant species are Pecopteris unita Brgt., Neuropteris hirsuta Lsqx., Pecopteris arborescens Brgt., Pecopteris Miltoni Brgt., Kymenophyllites hirsuta Lsqx., Alethopteris Serlii Brgt., Asterophyllites, Sphenophyllum, Annularia and Neuropteris Loschii Brgt.

[^73]: - Penn. Geol. Rept. p. 869, pl. 13, figs. 1 and 2.
 : Ill. Geol. Rept. ined., pl. 13, fig. 1, under the name of Caulopteris innignis.
 - Caulopteris Worthenii, sp. nov., Ill. Geol. Rept. ined., pl. 14, fig. 1.

[^74]: ${ }^{7}$ Annals of Science, No. 13, (May 1, 1853), p. 152, No. 2.

[^75]: 1 From the Transactions of the Albany Institute, with sume verbal corrections and the introduction of subsequent observations by the author.

[^76]: ${ }^{2}$ The plicated forms of Retzia and Rhynchospira are of course not included in the designation abuve made. The Nucleospirre also approach the terebratuloid forms, bat these shells have an area on the ventral valve and a different hinge structure.

[^77]: temporary wall formed by disease of the animal, because both spires are crovoded into the smaller of the two cavities, the larger being empty."
 The genus Charionella, therefore, clearly belongs to the Spiriferidae, and the t typical species cited are, in part those originally placed by me under the genus M_{e-} ristella, in 1860 (Thirteenth Report on the State Cabinel, p. 84), and in part under Terebratula, fron the characters of which I proposed the genus Cryptonella in 1861. The former belong to the Spiriferide, and the latter to the Terebratulide.

[^78]: - Description and figures copied from the Canadian Naturalist and Geologist for April, 1859: the figures enlarged three diameters.

[^79]: - A very distinct species from C. Hecate (Billings) of the Oriskany Sandstone, Which differs mainly in size from Centronella (Rhynchonella?) alveata (Hall), Tenth Report on the State Cabinet, 1857.

[^80]: - Canadian Journal, May, 1861, p. 272.

[^81]: ${ }^{1}$ Since writing the above, I bave entirely confirmed the correctness of this

[^82]: ${ }^{2}$ Since this letter was written, the following note has been furnished by Dr, Craig:
 "The date appended to my paper on Nitrification, which "Was published in the
 Smithsonian Report for 1861 , is a misprint. The real date on the manuscript is
 1856. I did not correct the proof, a circumstance which will account for the occur-
 rence of this and a few other typographical errors.
 B. F. Crarg."

[^83]: ${ }^{1}$ Mr. Crookes has recently announced that he has found thallium in comparatively large qu:intities in the deposit from the flues of Mr. Spence's pyrites burners at Manchester.-Chem. News, vii, $150 .-$ - J. J. B.

[^84]: ${ }^{1}$ Chemistry applied to Agriculture, 7th edition.
 *This Journal, [2], XXXV, 263.

[^85]: "The lower groups (varieties or races) being thus constituted, I have given the rank of species to the groups n 'xt above these, which differ in other respects, i. e., either in characters which were not found united upon certain individuals, or in those which do not show transitions from one individual to another. For the Oaks of regions sufficiently known, the species thus formed rest upon satisfactory bases, of which the proof can be furnished. It is quite otherwise with those which are represented in our herbaria by single or few specimens. These are provisional species,-species which may hereafter fall to the rank of simple varieties. I have not been inclined to prejudge such questions; indeed, in th1s regard, I am not disposed to follow those authors whose tendency is, as they say, to reunite species. I never reunite them without proof in each particular case; while the botanists to whom I refer do so on the ground of analogous variations or transitions occurring in the same genus or in the same family. For example, resting on the fact that Quercus Iler, Q. coccifera, Q. aculifolia, \&cc., have the leaves sometimes entire and sometimes toothed upon the same branch, or present transitions from one tree to another, I might readily have united my Q. Tlapurahuensis to Q. Sartorii of Liebmann, since these two differ only in their entire or their toothed leaves. From the fact that the length of the peduncle varies in Q. Robur and many other Oaks, I might have combined Q. Seemannii Liebm., with Q. salicifolia Née. I have not admitted these inductions, but have demanded visible proof in each particular case. Many

[^86]: - Particularly citing Flourens: "La ressemblance n'est qu" une condition secondaire; la coudition essentielle est la descendance: ce n'est pas la reasemblance, c'est la succession des individus, qui fait l'espèce."

[^87]: ${ }^{2}$ Eurystomatous serpents with an unabbreviated os maxillare. The other suborders of the Ophidia, as accepted by the writer, are, on the one hand, the Proteroglypha and Salenoylypha, and on the other, Tortricina (Tortricidæ and Uropeltidar) and Scolecophidia (Typhlopidæ).

 * Formerly called subfamilies by the writer.

[^88]: - Monatsberichte Preuss. Acad. 1859, p. 275 ; Pr. A. N. S. Phila., 1860, p. 339.
 - Güntler, Proc. Z. S. Lond., 1860, June.
 ${ }^{5}$ Pr. A. N.S. Phil, 1862, p. 249.
 - Pr. A. N. S. Phil., 1860, p. 76.

 T Loc. cit., 1860, p. 566.
 *Loc. cit., 1862, p. 339.

 - Rev. Mag. Zool., 1856, p. 468.

[^89]: ${ }^{10}$ Pr. A. N. S. Phil., 1861, p. 524.
 ${ }^{38}$ L. c., p. 74.
 ${ }^{18}$ Farther accessions of material will probably suggest the union of some of the genera.
 ${ }^{13}$ Ann. Mag. Nat. Hist. 1863, p. 21.

[^90]: ${ }^{14}$ Proc. Acad. Phil., 1860, 241.

[^91]: ${ }^{2}$ This，it will be observed，is not the proper anniversary of the November shower． Am．Jour．Scr．－Second Suries，Vol．XXXV，No．105．－May，1868．

[^92]: "A Bill to incorporate the National Academy of Sriences.

[^93]: ${ }^{2}$ As these Rules are sulject to change prior to their final adoption in January, there is an obvious impropriety in publishing them in detail, at present, but so much of their provisions as concern the general organization of the Academy, and as are not likely to be materially altered, we give in this notice.-Ens.

