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PREFACE.

IN this second edition I have enlarged the appendices

so as to meet the wants of advanced students. I have

also added a collection of upwards of one hundred

miscellaneous examples, which I think will add very

much to the utility of the book.

It should be observed that the two chapters headed

respectively Choice and Chance are simply arithmetic,

and ought not to be beyond the comprehension of the

ordinary reader who has never seen an algebraical sym
bol. But while expressly written for unscientific readers,

they have been found very helpful to the young mathe

matician, when he was about to read in his algebra the

hitherto difficult and embarrassing chapters on permu
tations and combinations, or on probability.

The appendices are addressed entirely to algebraical

students. In the first appendix the usual theorems

respecting permutations and combinations are esta

blished by new proofs, the same reasoning which

was pursued with as little technicality as possible

in the body of the work, being here expressed in

algebraical language.

In the second and third appendices, which are newly
added in this edition, a series of propositions are given
which are not usually found in text books of algebra.



VI PREFACE.

But I can see no reason why examples of such

simple propositions as the xiiith and xxvth should

be excluded from elementary treatises in which more

complex but essentially less important theorems

generally find place.

The classification of a variety of propositions under

the titles of Distribution and Derangement will con

tribute (it is hoped) to disentangle the confusion in

which all questions involving selection or arrange

ment are commonly massed together, and will facilitate

in some degree that precision of language and clear

ness of expression which ought always to be aimed at

in mathematics.

In the fourth appendix I have exhibited the seeming

paradox that a wager which is mathematically fair is

mathematically disadvantageous to both contracting

parties. And I have endeavoured to cast into a simple

and intelligible form the principles upon which the

difficulties of the celebrated Petersburg problem are

explained.

W. ALLEN WHITWOETH.

ST. JOHN S COLLEGE,

1st January, 1870.



PREFACE TO THE FIRST EDITION.

THE following pages are a reproduction of lectures on

Arithmetic, given in Queen s College, Liverpool, in the

Michaelmas Term, 1866. Many of the students to

whom the lectures were addressed were just entering

upon the study of algebra, and it seemed well, while

the greater part of their time was devoted to the some

what mechanical solution of examples necessary to

give them a practical facility in algebraical work, that

their logical faculties should be meanwhile exercised in

the thoughtful applications of the arithmetical art with

which they were already familiar.

I had already discovered, that the usual method of

treating questions of selection and arrangement was

capable of modification and so great simplification, that

the subject might be placed on a purely arithmetical

basis
;
and I deemed that nothing would better serve

to furnish the exercise which I desired for my classes,

and to elicit and encourage a habit of exact reasoning,
than to set before them, and establish as an application
of arithmetic, the principles upon which such questions
of &quot;choice and chance&quot; might be solved.

The success of my experiment has induced me to

publish the present work, in the hope that the expo
sitions already accepted by a limited audience may
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prove of service in a wider sphere, in conducing to a

more thoughtful study of arithmetic than is common
at present ; extending the perception and recognition

of the important truth, that arithmetic, or the art of

counting, demands no more science than good and

exact common sense.

In the first chapter I have set down and established

as arithmetical rules all the principles usually required

in estimating the choice which is open to us in making
a selection or arrangement out of a number of given

articles under given conditions. In the second chapter

I have explained how different degress of probability

are expressed arithmetically, and how the principles of

the preceding chapter are applied to the calculation of

chances. These two chapters will prove intelligible to

any one who understands the first principles of arith

metic, provided he will consider each step as he goes

on
;
not content with the mere statement of any rule,

but careful to follow the explanations given and to

recognise the reason of each successive principle.

For the sake of mathematical students I have added,

as an appendix, a new treatment of permutations and

combinations with algebraical symbols. In my expe
rience as a teacher I have found the proofs here set

forth more intelligible to younger students than those

given in the text books in common use.

LIVERPOOL, 1st February, 1867.



CONTENTS.

PAGE

Explanations xi.

CHAPTER I. CHOICE 1

Examples on Choice 02

CHAPTER II. CHANCE 00

Examples on Chance ... 138

APPENDIX I. Permutations and Combinations treated

Algebraically 142

APPENDIX II. Distributions 163

APPENDIX III. Derangements 185

APPENDIX IV. On the Disadvantage of Gambling ... 199

Miscellaneous Examples 231

Answers to the Examples -251



ERRATA.

Page 22, line 6. For
[24,

read 24.

Page 89, the 8th and following lines. Head &quot;there are ten which give

a result greater than 8. Hence the required chance is ^ or ~-

36 18

Page 103, line 8. For X read -+- .

At the head of pages 114, 118, 126. For CHOICE, read CHANCK.



EXPLANATIONS.

The sign
= is used to signify that the two expressions

between which it is placed are equal to one another, or represent

the same arithmetical value.

The sum of any given numbers is that which is obtained by

adding the given numbers together. The sign + (plus) is used

to denote that the number which follows it is added to that

which precedes. Thus

5 + 3 = 8,

or the sum of five and three is eight.

The difference of two given numbers is that which is obtained

by subtracting the smaller of them from the greater. The sign

(minus) is used to denote that the number which follows it

is subtracted from that which precedes. Thus

5-3=2,
or the difference of five and three is two.

The product of two given numbers is that which is obtained

by multiplying the given numbers together. The continued

product of three or more numbers is obtained by multiplying

any two of them together, and then multiplying the result by a

third , and so on until all the given numbers have been used
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The sign x is used to denote that the number which precedes

it is multiplied by that which follows. Thus

5x3 = 15; 5x3x2 = 30;

or the product of five and three is fifteen: the continued product

of five, three, and two, is thirty.

A full point (
. ) is often used instead of the sign x of multi

plication. Thus

5.4.3.2.1 = 120.

The quotient of two given numbers is that which is obtained

by dividing the former of them by the latter. The sign
-- is

used to denote that the number which precedes it is divided by
that which follows. Thus

15 -f- 5 = 3,

or the quotient of fifteen and five is three.

Instead of using the sign -f- , the quotient of the two numbers

is often expressed by writing the former above the latter in

the form of a fraction. Thus

15_ IK . K Q= 1O -7- O O .

5

The few other signs which are used in the body of the work

are explained wherever they are first introduced. But the

appendices, being addressed to mathematical readers, involve a

more technical notation, for the explanation of which the student

must be referred to treatises on algebra.



CHOICE AND CHANCE.

CHAPTEE I.

CHOICE.

WE have continually to make our choice among
different courses of action open to us, and upon the

discretion with which we make it, in little matters

and in great, depends our prosperity and our happiness.

Of this discretion a higher philosophy treats, and it is

not to be supposed that Arithmetic has anything to do

with it; but it is the province of Arithmetic, under

given circumstances, to measure the choice which we

have to exercise, or to determine precisely the number

of courses open to us.

Suppose, for instance, that a member is to be

returned to parliament for a certain borough, and

that four candidates present themselves. Arithmetic

has nothing to do with the manner in which we shall

exercise our privilege as a voter, which depends on our

B
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discretion in judging the qualifications of the different

candidates; but it belongs- to Arithmetic, as the science

of counting and calculation, to tell us that the number

of ways in which (if we vote at all) we can exercise our

choice, is four.

The operation is, indeed, in this case so simple

that we scarcely recognise its arithmetical character at

all; but if we pass on to a more complicated case,

we shall observe that some thought or calculation is

required to determine the number of courses open to

us : and thought about numbers is Arithmetic.

Suppose, then, that the borough has to return two

members instead of one. And still suppose that we

have the same four candidates, whom we will distin

guish by names, as A, B, C, D. If we try to note

down all the ways in which it is possible for us to

vote, we shall find them to be six in number 5 thus we

may vote for any of the following :

A and B, A and C, A and D,

C and D, B and D, B and C.

But we can hardly make this experiment without

perceiving that the resulting number, six, must in

some way depend arithmetically upon the number of

candidates and the number of members to be returned,

or without suspecting that on some of the principles

of arithmetic we ought to be able to arrive at that

result without the labour of noting all the possible

courses open to us, and then counting them up ;
a
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labour which we may observe would be very great

if eight or ten candidates offered themselves, instead

of four.

In the present chapter we shall establish and explain

the principles upon which such calculations are made

arithmetically. It will be found that they are very

simple in nature as well as few in number. In the

next chapter we shall apply the same principles to the

solution of problems in Probability, a subject of very

great interest, and some practical importance.

We found, by experiment or trial, that there were six

ways of voting for two out of four candidates. So we

may say that, out of any four given articles, six selec

tions of two articles may be made. But we call special

attention to the sense in which we use the words &quot;six

selections.&quot; We do not mean that a man can select

two articles, and having taken them can select two

more, and then two more, and so on till he has

made six selections altogether; for it is obvious that

the four articles would be exhausted by the second

selection, but when we speak of six selections being

possible, we mean that there are six different ways
of making one selection, just as among four candidates

there are six ways of selecting two to vote for.

This language may appear at first to be arbitrary and

unnecessary, but as we proceed with the subject we

shall find that it simplifies the expression of many
of our results.

In making the selection of two candidates out of
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four, in the case just considered, it was immaterial

which of the two selected ones we took first; the

selection of A first, and then B, was to every intent

and purpose the same thing as the selection of B first,

and then A.

But if we alter the question a little, and ask in how

many ways a society can select a president and vice-

president out of four candidates for office, the order

of selection &quot;becomes of importance. To elect A and

B as president and vice-president respectively, is not

the same thing as to elect B and A for those two

offices respectively. Hence there are twice as many

ways as before of making the election, viz,

A and B, A and C, A andZ&amp;gt;,

C and D, B and D, B and C,

B and A, C and A, D and A,

D and C, D and B, C and B.

So if four articles of any kind are given us, there will

be twelve ways of choosing two of them in a particular

order; or, as we may more briefly express it, out of

four given articles, twelve arrangements of two articles

can be made. But it must be observed that the

same remarks apply here, which we made on the use of

the phrase
&quot;

six selections&quot; on page 3.
* We do not

mean that twelve arrangements or six selections can

be successively made
;

but that if one arrangement

or one selection of two articles have to be made out

of the four given articles, we have the choice of twelve
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ways of making the arrangement, and of six ways of

making the selection.

We may give the following formal definitions of the

words selection and arrangement, in the sense in which

we have used them :

DEF. I. A selection (or combination) of any number

of articles, means a group of that number of articles

classed together, but not regarded as having any

particular order among themselves.

DEF. II. An arrangement (or permutation) of any

number of articles, means a group of that number

of articles, not only classed together, but regarded as

having a particular order among themselves.

Thus the six groups,

A B C, B C A, CAB,
AC B, BAG, C B A,

are all the same selection (or combination) of three

letters, but they are all different arrangements (or

permutations) of three letters.

So, out of the four letters A, B, C, D, we can make

four selections of three letters, viz.

BCD,
CD A,

D A B,

A B C;

but out of the same four letters we can make twenty-

four arrangements of three letters, viz.
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BCD, BDC, CDB,
CD A, CAD, DAC,
DAB, DBA, ABD,
ABC, ACB, BCA,

CBD, DBG, DCB,
DCA, A CD, ADC,
ADB, BDA, BAD,
BAG, CAB, CBA.

Having thus explained the language we shall have

to employ, we may now proceed to establish the

principles on which all calculations of choice must he

founded.

The great principle upon which we shall hase all

our reasoning throughout our work, may he stated as

follows :

If one thing can be clone in a given number of

different ways, and then another thing in another

given number of different ways, the number of different

ways in which both things can be done is obtained bi/

multiplying together the two given numbers.

We shall first illustrate this principle, and then

proceed to prove it.

Suppose we have a box containing five capital letters,

A, B, C, D, E, and three small letters, x, y, z.

ABODE
x y z

The number of ways in which we can select a capital

letter out of the box is five; the number of ways in
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which we can select a small letter is three ; therefore,

by the principle we have just stated, the numher of

different ways in which we can select a capital letter

and a small one is fifteen, which we find on trial

to be correct, all the possible selections being as

follows :

Ax, Bx, Cx, Dx, Ex,

Ay, By, Cy, Dij, Ey,

Az, Bz, Cz, Dz, Ez.

Again, suppose there are four paths to the top of

a mountain, the principle asserts that we have the

choice of sixteen ways of ascending and descending.

For there are

4 ways up,

4 ways down,
and 4 x 4 = 16.

We can verify this : for if P, Q, E, 8 be the names

of the four paths, we can make our choice among the

following sixteen plans, the first-mentioned path being

the way up, and the second the way down :

PandP, PandQ, Pand#, Pand,
QandP, &amp;lt;2and#, QandjR, Q and S,

EandP, EandQ, jRandE, #and,
8 and P, 8 and Q, 8 and E, 8 and S.

Or, if we had desired to ascertain what choice we

had of going up and down by different paths, we might
still have applied the principle, reasoning thus :
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There are four ways of going up, and when we are

at the top we have the choice of three ways of descend

ing (since we are not to come down by the same path

that brought us up). Hence the number of ways of

ascending and descending is 4 x 3, or twelve.

These twelve ways will be obtained from the sixteen

described in the former case, by omitting the four

ineligible ways,

P and P, Q and Q, E and R, S and 8.

The foregoing examples will suffice to illustrate the

meaning and application of our fundamental propo

sition. We will now give a formal proof of it. We
shall henceforth refer to it as Kule I.

RULE I.

If one thing can be done in a given number of

different ways, and ivhen it is done in any way another

thing can be done in another given number of different

ivays, then the number of different ways in which the

two things can be done is the product of the two given

numl

For let A, B, C, D, E, &c. represent the different

ways in which the first thing can be done (taking as

many letters as may be necessary to represent all the

different ways), and similarly let a, fc, c, d, &c. repre

sent the different ways of doing the second thing.

Then, if we form a table as below, having the letters
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A, B, C, D, E &c. at the head of the several columns,

and the letters a, b, c, d, &c. at the end of the several

horizontal rows, we may regard each square in the

table as representing the case in which the first thing

is done, in the way marked at the head of the column

in which the square is taken
;
and the second thing in

the way marked at the end of the row.
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thing is done in the way E, and the second in the way

c, and so on.

Now it will be readily seen that all the squares repre

sent different cases, and that every case is represented

by some square or other. Hence the number of possi

ble cases is the same as the number of squares. But

there are as many columns as there are ways of doing

the first thing, and each column contains as many

squares as there are ways of doing the second thing.

Therefore the number of squares is the product of the

number of ways of doing the two several things, and

therefore, this product expresses also the whole number

of possible cases, or the whole number of ways in which

the two events can be done.

This proves the rule.

Question. If a halfpenny and a penny be tossed,

in how many ways can they fall ?

Answer. The halfpenny can fall in two ways, and

the penny in two ways, and 2x2=4, therefore they can

fall in four ways.

The four ways, of course, are as follows :

(1) both heads.

(2) both tails.

(3) halfpenny head and penny tail.

(4) halfpenny tail and penny head.

Question. If two dice be thrown together, in how

many ways can they fall ?

Answer. The first can fall in six ways, and the
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second in six ways, and 6 x 6 = 36; therefore there are

thirty-six ways in which the two dice can fall.

The thirty-six ways may be represented as follows :

1 and 1,
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ways. Then there are five seats left, and therefore the

other person has the choice of five different ways of

seating himself. Hence there are 6 x 5, or 30 different

ways in which they can take their seats.

Question. In how many ways can we make a two-

lettered word out of an alphabet of twenty-six letters,

the two letters in the word being different ?

Answer. We can choose our first letter in twenty-

six ways, and when it is chosen we can choose the

second in twenty-five ways. Therefore we have the

choice of 26 x 25, or 650 ways.

Question. In how many ways can we select a

consonant and a vowel out of an alphabet of twenty

consonants and six vowels?

Answer. We can choose the consonant in twenty

ways, the vowel in six ways, both in one hundred and

twenty ways.

Question. In how many ways can we make a two-

lettered word, consisting of one consonant and one

vowel ?

Answer. By the last answer, we can choose our

two letters in one hundred and twenty ways, and

when we have chosen them we can arrange them in

two ways. Hence we can make the word in 120 x 2,

or 240 different ways\

Question. There are twelve ladies and ten gentle-
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men, of whom three ladies and two gentlemen are

sisters and brothers, the rest being unrelated : in how

many ways might a marriage be effected ?

Answer. If all were unrelated we might make the

match in 12 x 10, or 120 ways ;
but this will include

the 3x2, or 6 ways in which the selected lady and

gentlemen are sister and brother. Therefore the

number of eligible ways is 120 6, or 114.

EULE II.

If a series of things can be done successively in

given numbers of ways, the number of ways in which

all the things can be done is the continued product of

all the given numbers.

This rule is only an extension of the former one, and

needs not a separate proof. Its correctness will be

sufficiently evident from considering an example.a &quot;*

Suppose the first thing can be done in four ways, and

the second in three, then the first and second together

form an event or operation, which can happen (by Kule

I.) in 4 x 3, or 12 ways. Now suppose the third thing

can be done in five ways. Then, since the first and

second together can happen in twelve ways, and the

third in five ways, it follows from Rule I. that the first

and second and the third, can be done in 12 x 5, or 60

ways ; that is, all three can be done in 4 x 3 x 5 ways.

So if a fourth thing can be done in seven ways,
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then, since the first three can be done in sixty ways,

and the fourth in seven ways, the first three and the

fourth can be done (by Kule I.) in 60 x 7, or 420 ways;

that is, all four can be done in 4x3x5x7 ways.

And so on, however many things there may be.

The applications of this proposition are very numer

ous and very important ; the solution of almost every

question concerning permutations or combinations

depending upon it, as will presently be seen.

As an example, suppose I have six letters to be

delivered in different parts of the town, and two boys

offer their services to deliver them. To determine in

how many different ways I have the choice of sending

the letters we may reason as follows. The first letter

may be sent in either of two ways ; so may the second ;

so may the third, and so on. Hence the whole number

of ways is, by the rule, 2 x 2 x 2 x 2 x 2 x 2 or 64.

So, if there were three boys, the choice would lie

among 3x3x3x3x3x3 or 729 ways.

The question, in how many ways can six things be

divided between two boys, will be seen to be almost

identical with the question of the six notes sent by the

two boys. The only difference is, that among the 64

ways of sending the notes were included the two ways

in which either boy carried them all. Now six things

cannot be said to be divided among two boys if they

all are given to one. Hence these two ways must be
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rejected, and there will only be 62 ways of dividing six

things between two boys.

But, again, suppose we are asked in how many ways

can six things be divided into two parcels, the question

seems at first to be identical with the last. But, on

consideration, we observe that if a, b, c, d, e, f repre

sent the six things, one of the ways of dividing them

between the two boys would be to give

a, b, to the first boy,

c, d, e, /, to the second ;

and another different way would be to give

a, b, to the second boy,

c, d, e, f, to the first ;

but if the question be merely of dividing the six things

into two parcels, with no distinction between them,

corresponding to the two ways noted for the previous

question, we have now only the one way, viz., to put

a, b, into one parcel,

c, d, e, /, into the other.

Hence for every two ways of dividing the things between

two different boys, there is only one way of dividing

them into two indifferent parcels ; and, therefore, we

have the choice in this last case of only thirty-one ways.

The correctness of this result may be more clearly

understood by the following consideration. Suppose we

have six articles to divide between two boys. We may
resolve the operation into the two operations of (1)

dividing the articles into two parcels, and (2) when
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these parcels are made, giving them to the two boys.

Now we can form our two parcels in thirty-one ways,

and when the two parcels are made, we can give them,

one to each boy, in two ways; hence by Rule L, we

can make the parcels and dispense them in 31 X 2 or

62 ways. ,

Question. Twenty competitors run a race for three

prizes, in how many different ways is it possible that

the prizes may be given ?

Answer. The first prize can be given in twenty

ways ; when it is given, the second may be given in

nineteen ; then the third can be given in eighteen

ways. Hence the whole number of ways of giving the

three prizes is 20 x 19 x 18, or 6840.

Question. In how many ways can four letters be

put into four envelopes, one into each ?

Answer. For the first envelope we have the choice

of all the letters, or there are four ways of filling the

first envelope ; then there are three letters left, and

therefore three ways of filling the second envelope;

then there are two letters left, or two ways of filling

the third envelope ; so there is only one way of filling

the^last.
Hence there are 4 x 3 x 2 x 1, or 24 ways

of doing the whole.

Question. How many different sums may be formed

with a sovereign, a half-sovereign, a crown, a half-
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crown, a shilling, a sixpence, a penny, and a half

penny ?

Answer. Each coin may be either taken or left,

that is, it may be disposed of in two ways, and there

are eight coins. Hence (by Rule II.) all may be

disposed of in

2x2x2x2x2x2x2x2, or 256

ways. One of these ways would, however, consist in the

rejection of all the coins, which would not be a way of

taking any sum. Therefore the number of different

sums that can be made is 255.

Question. There are twenty candidates for an office,

and seven electors. In how many ways can the votes

be given ?

Answer. Each man can vote in twenty ways, and

there are seven men to vote. Therefore all the votes

can be given (by Rule II.) in

20 x 20 x 20 x 20 x 20 x 20 x 20 or 1280000000

different ways.

Question. In how many ways can the following

letters be divided between two persons :

a, a, a, a, b, b, b, c, c, d ?

Answer. Of the a, a, a, a, the first person can take

either none, or one, or two, or three, or four. That is,

the a, a, a, a can be divided in five different ways ; so

also the b, b, b can be divided in four ways ; the

c, c in three ways; and the d can be disposed of in
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two ways. Hence (by Rule II.) the whole division can

be made in

5 x 4 x 3 x 2, or 120

different ways, including, however, the ways in which

either person gets none and the other gets all. Exclud

ing these two ways, the number of eligible ways is 118.

Question. In the ordinary system of notation, how

many numbers are there which consist of five digits ?

Ansiver . The first digit may be any of the ten

except 0. We have, therefore, the choice of nine ways

of determining this digit. Each of the other four digits

may be any whatever, and therefore there are ten ways

of determining each of them. Hence, altogether (by

Rule II. ) the number can be formed in

9 x 10 x 10 x 10 x 10, or 90000

different ways.

Of course these are all the numbers from 10000 to

99999 inclusive.

Question. The cylinder of a letter-lock contains

four rings, each marked with twenty-six different

letters ; how many different attempts to open the lock

may be made by a person ignorant of the key-word ?

Answer. The first ring can be placed in twenty-

six different positions ; so may the second ; so may the

third; so may the fourth. Hence (by Rule II.) there

are

26 x 26 x 26 x 26, or 456976



DIFFERENT ORDERS OF ARRANGEMENT. 19

different positions possible, and one of these is the

right one. Hence it is possible to make 456975

unsuccessful trials.

RULE III.

The number of ways in which a given number of

things can be arranged is the continued product of the

given number, and all whole numbers less than it.

Thus, three things can be arranged in 3 x 2 x 1, or

6 ways; four things in 4 x 3 x 2 x 1, or 24 ways;

five things in 5 x 4 x 3 x 2 x 1, or 120 ways.

It will be sufficient to shew the reason of this rule

in a particular case. The reasoning will be of a suffi

ciently general character to apply to any other case.

Take for example the case of five things. We have

then a choice of five ways of filling the first place in

order. When that place is filled there remain four

things, and therefore we have a choice of four ways
of filling the second place. Then there are three

. things left, and we can fill the third place in three

ways. So we can fill the fourth place in two ways,

and the last place in only one way, since we must give

to it the one thing that is now left. Hence (by Rule

II.) all the places can be filled in 5x4x3x2x1
ways, or the whole set of five things can be arranged in

5x4x3x2x1 ways, which shews that Rule III.

is true in this case.
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By exactly similar reasoning, we can shew that the

rule is true in any other case. Hence we may accept

it universally.

It is usual to put the mark
|

round a number to

denote the continued product of that number and all

lesser numbers. Thus

|2 denotes 2 x 1, or 2
;

|3 denotes 3 x 2 x 1, or 6;

|4 denotes 4 x 3 x 2 x 1, or 24
;

|5 denotes 5x4x3x2x1, or 120
;

|6 denotes 6 x 5 x 4 x 3 x 2 x 1, or 720 ;

and so on.

A great number of questions will be seen, on a little

consideration, to be particular applications of Kule III.

Suppose, for instance, that we have to place six

statues in six niches, it seems, at first sight, that as

the statues and the niches can each of them separately

be taken in any order, we should have to consider the

order of both to determine what choice of arrangement

we have.

But, on consideration, it will be seen that even

though we take the niches in any stated order, yet any

possible result whatsoever may be attained by varying

the order of the statues. We may, in fact, regard the

niches as forming a row in fixed order, and we have

only to consider in how many different orders the six

statues may be taken so as to fill the six niches in

order. Consequently, the number of ways in which it
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is possible to arrange the six statues in the six niches

is the same as the number of orders in which the

six statues can themselves be taken, which by the

rule is |6,
or 720.

This explanation will be the better understood by

comparing the next two questions.

Question. In how many ways can twelve ladies

and twelve gentlemen form themselves into couples

for a dance?

Answer. 112. For the first gentleman can choose

a partner in twelve ways ; then the second has choice

of eleven
;

the third has choice of ten, and so on.

Therefore they can take partners altogether in

12.11.10.9.8.7.6.5.4.8.2.1, or |12

ways.

Question. There are twelve ladies and twelve

gentlemen in a ball-room ;
in how many ways can they

take their places for a contre-danse?

Answer. The couples can be formed in |12 ways,

(last question) and when formed, the couples can be

arranged in |12 different orders (Kule III.) There

fore the twelve ladies and twelve gentlemen can arrange

themselves in |12 X |12 different ways.

Or we may reason thus:

The ladies can take their places in |12 different

ways, ( by Rule III.) and so the gentlemen can take

theirs in |12 different ways. Therefore (by Rule I.)
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the ladies and gentlemen can arrange themselves in

|12 x
1

1-2 different ways, as before.

Question. In how many different orders can the

letters a, b, c, d, e, /he arranged so as to begin with

ab?
Answer

)ffi^.
For our only choice lies in the

arrangement of the remaining four letters, which can

be put in |4 or 24 different orders (by Kule III.)

Question. A shelf contains five volumes of Latin,

six of Greek, and eight of English. In how many

ways can the nineteen books be arranged, keeping all

the Latin together, all the Greek together, and all the

English together?

Answer. The .volumes of Latin can be arranged

among themselves (by Kule III.) in
[5 ways, the

volumes of Greek among themselves in |6 ways, and

the volumes of English among themselves in [8 ways.

Also, when each set is thus prepared, the three sets

can be placed on the shelf in |3
different orders.

Therefore, by Rule II., the number of ways in which

the whole can be done is

|5 X
[6

x |8 X 8, or 20901888000.

Question. In how many ways could the same books

be arranged indiscriminately on the shelf ?

Answer. |19, or 121645100408832000 ways.
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It often requires considerable thought to determine

what is meant by &quot;different ways&quot;
of forming a ring.

The next three questions suggest three meanings

which the words in several circumstances will bear.

It will be well to consider them, and compare them

carefully, that the distinctions among them may be

thoroughly recognised.

Question. A table being laid for six persons, in

how many ways can they take their places ?

Answer. By Eule III., the number of ways is

(6
or 720.

Question. In how many ways can six children form

themselves into a ring, to dance round a may-pole.

Answer. In this case we have not to assign the

six children to particular places absolutely, but only

to arrange them relatively to one another. We may,
in fact, make all possible arrangements, by placing the

first child, A, in any fixed position, and disposing the

others, B, C, D, E, F, in different ways with respect

to him. Thus there is no essential difference between

the three arrangements

D B EEC C A F D
* * *

F B D F AC
A E B
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but two different arrangements would be

D DEC C E
* *

F B B F
A A

And any other essentially different arrangement migbt

be obtained without disturbing A? since absolute posi

tion is not taken into account. Now the five children

B, C, D, E, F can be arranged, by Kule III., in |5

or 120 ways. This, therefore, is the whole number of

ways in which such a ring can be formed.

Question. In how many ways can six stones be

strung on an elastic band to form a bracelet ?

Answer. This question is not equivalent to the

preceding one, for if we examine the last two arrange

ments, which we marked down as examples of the

different ways in which the ring could be made, we

shall observe that though they would count as different

arrangements of children round a may-pole, they would

count as the same arrangement of stones in a bracelet,

presenting only opposite views of the same bracelet;

each being, in fact, the arrangement that would be

presented by turning the other completely over. So

the 120 arrangements which we could make according

to the last question, might be disposed into 60 pairs,

each pair presenting only opposite views of the same

ring, and not representing more than one essentially



SUCCESSIVE NUMBERS. 25

different arrangement. Hence the answer is in this

case only 60.

DEFINITION. Numbers are called successive when

they proceed in order, each one differing from the

preceding one by unity. The numbers are said to be

descending when they commence with the greatest and

continually decrease; they are said to be ascending

when they commence with the least and continually

increase; and such a series of numbers is said to

ascend or descend ( as the case may be ) from the first

number of the series.

Thus 17, 18, 19 are successive numbers ascending

from 17.

So, 17, 16, 15, 14 are successive numbers descending

from 17.

Again, if we speak of a series of five successive

numbers descending from 100, we shall mean the

numbers 100, 99, 98, 97, 96.

So if we speak of seven successive numbers ascend

ing from 3, the numbers

3, 4, 5, 6, 7, 8, 9.

will be meant.

Thus,
1

5 might be described as the continued

product of five successive numbers, ascending from

unity (or descending from 5) ; |7, as the continued

product of seven successive numbers ascending from

unity (or descending from 7), and so on.
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KULE IV.

Out of a given number of things,

the number of ways in zvhich an arrangement of two

things can be made is the product of the given number

and the next lesser number ;

the number of ways in which an arrangement of three

things can be made is the continued product of three

successive numbers descending from the given number;

the number of ways in which an arrangement of four

things can be made is the continued product of four

successive numbers descending from the given number ;

and so on.

The reason of this rule will he seen at once. For

suppose we have seventeen given things ; then, if we

wish to make an arrangement of two things, we have

the choice of seventeen things to place first, and then

there are sixteen things left, out of which we have to

choose one to place second, and complete our arrange

ment. Hence, hy Rule L, the numher of ways in which

we can make an arrangement of two things, is 17.16.

So if we wish to make an arrangement of three

things, we can place the first two in 17.16 ways,

and we then have fifteen things left, out of which to

choose one to come third, and complete our arrange

ment; therefore, by Rule L, the number of ways in

which we can make an arrangement of three things is

the product of 17.16 and 15, or 17.16.15 : and so on.
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Many questions which might be considered under

Kule II. may be answered more directly by this rule.

Thus

Question. How many three-lettered words could be

made out of an alphabet of twenty-six letters, not using

any letter more than once ?

Answer. 26.25.24 = 15600.

Question. How many four-lettered words ?

Answer.-^ 26.25.24.23 = 358800.

Question. How many eight-lettered words ?

Answer. 26.25.24.23.22.21.20.19 = 62990928000.

Question. Four flags are to be hoisted on one mast,

and there are twenty different flags to choose from :

what choice have we ?

Ansiver. By Kule IV. we have the choice of

20.19.18.17, or 116280
different ways.

The answer would evidently be the same if the flags

were to be hoisted on different masts, for so long as

there are four different positions to be occupied, the

operation consists in the arrangement in these posi

tions of four out of the twenty flags.

Question. An eight-oared boat has to be manned

out of a club consisting of fifty rowing members. In

how many ways can the crew be arranged ?
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Answer. We have simply to arrange eight men in

order out of fifty men. Therefore Rule IV. applies, and

the number of ways is

50.49.48.47.46.45.44.43, or 21646947168000.

RULE V.

The number of ivays in which twenty things can be

divided into two classes of twelve and eight respectively,

is

[20

(M.-B

and similarly for any other numbers.

Suppose that twenty persons have to take their

places in twelve front seats and eight back seats.

By Rule III. they can be arranged altogether in
[20

ways. But the operation of arranging them may be

resolved into the following three operations :

(1) The operation of dividing the twenty into

two classes of twelve and eight.

(2) The operation of arranging the class of

twelve in the twelve front seats.

(3) The operation of arranging the class of

eight in the eight back seats.

Hence, by Rule II., |20 is the product of the

number of ways in which these three several operations

can be performed. But by Rule III. the second can be

performed in |12 ways, and the third in |8 ways;
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therefore it follows that the first can he performed in

120

J12.J8

ways. This, therefore, expresses the number of ways
in which twenty things can- be divided into two classes,

of which the first shall contain twelve things, and the

second shall contain eight.

And it will be observed that our reasoning through

out is perfectly general, and would equally apply if,

instead of the number twenty, divided into the parts

twelve and eight, we had any other number, divided

into any two assigned parts whatever.

Hence we can write down on the same plan the

number of ways in which any given number of things

can be divided into two classes, with a given number

in each.

Question. Eight men are to take their places in an

eight-oared boat
;

but two of them can only row on

stroke side, and one of them only on bow side ; the

others can row on either side. In how many ways
can the men be arranged?

Ansiver. The operation of arranging the men may
be resolved into the following three simple and succes

sive operations, viz.,

(1) To divide the five men who can row on

either side into two parties of two and three,

to complete stroke side and bow side re

spectively.
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(2) To arrange stroke side when it is thus

completed ;
and

(3) To arrange bow side.

The five men who can row on either side can he

divided into two parties of two and three respectively,

in

ways, by Rule V. And when this is done, stroke side,

consisting of four men, can be arranged in
_

or

twenty-four different ways (Rule III.) ;
and likewise bow

side in twenty-four ways. Hence the whole arrange

ment can be made in 10 x 24 x 24, or 5760 ways.

RULE VI.

The number of ways in which twenty things can be

divided into three classes of five, seven, and eight,

respectively, is

120

and similarly for any other numbers.

For, by Rule V., the twenty things can be divided

into two classes of twelve and eight in

20

different ways, and, when this is done, the class of
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twelve can be divided into two classes of five and

seven in

|5.|7

ways. Hence, by Rule L, both these can be done in

|20 |12 |20
x or

J12.|8 |5.|7 5.|7.|8

different ways.

That is, twenty things can be divided into three

classes of five, seven and eight severally, in

go

|5.|7.|8

different ways; and since our reasoning is perfectly

general, a similar result may be written down when

the numbers are any other.

And it is easily seen that the reasoning may be

extended, in the same manner, to the case of more

than three classes.

Question. In how many ways can three boys divide

twelve oranges, each taking four?

Answer. By Rule VI. the number of different ways

in which twelve things can be divided into three classes

of four each, is

112

]A
or 34650.

4 .
1

4 . \4
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Question. In how many ways can they divide them,

so that the eldest gets five, the next four, and the

youngest three ?

Answer. By Kule VI. the numher of different

ways is

12
or 27720.

|8.J4.(6

Question. If there be fifteen apples all alike, twenty

pears all alike, and twenty-five oranges all alike, in

how many ways can sixty boys take one each ?

Answer. The boys have, in fact, to form themselves

into a party of fifteen for the apples, a party of twenty

for the pears, and a party of twenty-five for the oranges.

They can therefore do it by Kule VI. in

[60

|15.[20.J25
different ways.

Question. In how many ways can two sixes, three

fives, and an ace be thrown with six dice ?

Answer. The six dice have to be divided into three

sets, containing 2, 3, 1 severally, of which the first set

are to be placed with six upwards ; the second set with

Jive upwards; and the third set with ace upwards.

By Kule VI. it can be done in

|6

&quot;jsTjaTii

or 60

different ways.
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Question. In how many ways may fifty-two cards

be divided amongst four players, so that each may have

thirteen ?

Answer. By Rule VI.,

A possible error must be guarded against in the

application of Rules V. and VI.

Suppose we are given eight things, say the letters

A, B, C, D, E, F, a, H,

and are asked in how many ways it is possible to

divide them into two parcels of four each. If the

parcels are numbered No. 1 and No. 2, and are de

signed for different purposes, we may apply Rule V.,

and answer that the number of possible ways is

In this case, to put

(

A, B, C, D, into the first parcel,

E, F, a, H, into the second;

and to put

(A,
B, C) D, into the second parcel,

E, F, G, H, into the first,

will be counted as different ways of disposing of the

eight things. But if the parcels be perfectly indifferent
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if the eight things have simply to he disposed in two

equal heaps, with no distinction between the heaps

then the two ways just indicated of disposing of the

eight things will hecome identical ; each being merged

into the one way of putting

( A, B, C, D, into one parcel,

\ E, F, G-, H, into another.

In such a case as this, therefore, the Rule V. cannot

be applied without some modification ;
we should, in

fact, have to divide by 2 the result given by this rule.

So if there are twelve things to be divided into three

different parcels as, for instance, twelve oranges to

be divided among three different boys the Eule VI.

may be applied. But if the parcels are indifferent, and

we are simply asked in how many ways twelve things

can be divided into three equal parts, the rule would

want modification ;
we should, in fact, have to divide

our result by |3, the number of different orders in

which the three parcels can be arranged.

When different numbers of things have to be put

into the different parcels as in the case when twenty

things are to be divided into parcels of five, seven, and

eight no difficulty or doubt can arise, for the differ

ences of number are sufficient to distinguish the

different parcels, and to give an individuality to each ;

so that in such a case the Rule V. or VI. is always

applicable.
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It must be observed that there is some ambiguity

in the manner in which the words sort and class are

sometimes used, especially when we describe collections

of articles as of different sorts or of the same sort, or of

different classes or of the same class.

Thus, if letters have been spoken of as consonants

and vowels, we may describe the alphabet as containing

twenty letters of one sort, and six letters of the other

sort ; yet if we regard the individual character of each

letter, we shall speak of a printer s fount as containing

twenty-six different sorts of letters. Plainly, there are

either two classes or twenty-six classes, according to the

character adopted as the criterion of class.

For instance, we may describe the letters

a, a, a, x, x,

as three of one sort and two of another sort. But the

letters

a, e, i, x, z,

regarded as vowels and consonants, might also be des

cribed as three of one sort and two of another sort.

Suppose now we are asked in how many different

orders we can write down five different letters, of which

three are of one sort and two of another sort, the an

swer will depend entirely on the sense in which &quot;sort&quot;

is understood. If we suppose the letters to be such as

a
} a, a, x9 xt

where those of the same sort are absolutely identical
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with one another, having no personal individuality (so to

speak), the answer will be

JL.
H-12

(by Rule V.), since our only choice lies in dividing the

five places into two sets of three and two, for the

a, a, a, and x, x. But if the given letters be such as

a, e, i, x, z&amp;gt;

where the three, a, e, i, are of one sort as vowels, but

each has an individual character of its own, and the

two, x, z, are of one sort as consonants, but these also

like the vowels distinct in their identity, then the

answer becomes 5, by Eule in., since the five letters

are for the purposes of arrangement all different.

We shall avoid this ambiguity as much as possible,

by speaking of things as of one sort, when there is no

individual distinction amongst them, and of one class

when they are united by a common characteristic, but

capable, at the same time, of distinction one from

another.

KULE VII.

The number of orders in which twenty letters can be

arranged, of which four are of one sort (a, a, a, a,

supposeJ, Jive of another sort (b, b, b, b
} b, supposeJ,
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two of another sort
(c&amp;gt; c, suppose}, and the remaining

nine all different, is

|20

|4.|6.|2

and similarly for any other numbers.

For the operation of arranging the letters in order

may be resolved into the following :

(1) To divide the twenty places into four sets,

of four, five, two, nine, respectively.

(2) To place the a, a, a, a, in the set of four

places.

(3) To place the b, b, b, b, b, in the set of five

places.

(4) To place the c, c in the set of two places.

(5) To arrange the nine remaining letters in the

set of nine places.

Now by Rule VI., the operation (1) can be done in

|20

I4.J6.J2.I9

different ways.

The operation (2) can be done in only one way, since

the letters are all alike.

So the operations (3) (4) can be done in only one

way each.

And the operation (5) can be performed in |9 ways

by Rule III.
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Therefore by Rule II. the whole complex operation

can be performed in

120 120-L_- x
i

9 or -L___

ll-IMM?. I1-I6.-P

different ways.

And in the same way we can reason about any other

case. Hence in any case, to find the number of orders

in which a series of letters can be arranged which are

not all alike, we have only to write down the fraction,

having in the numerator the total number of the letters,

and in the denominator the number of letters of the

several sorts
; each number being enclosed in the

mark .

Question. In how many orders can we arrange the

letters of the word indivisibility ?

114
Answer. =- =14.13.12.11.10.9.8.7 = 121080960.

Question. In how many orders can we arrange the

letters of the word parallelepiped?

Answer.- &quot; =201801600.

Question. In how many orders can we arrange the

letters oT the word Hang oil en ?

Answer. 75600.
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BULE VIII.

Out of twenty things, a selection of twelve things can

be made in the same number of ways as a selection of

eight things (where 12 + 8 = 20^ ; and the number of

ways is

120

and similarly for other numbers of things.

For the selection of twelve (or eight) things out of

twenty, consists of the operation of dividing the twenty

things into two sets of twelve and eight, and rejecting

one of the sets. Therefore (hy the last rule), which

ever set be rejected, the operation can be performed in

|20

112.18

different ways.

Question. Out of one hundred things, in how many

ways can three things be selected ?

Answer. By Rule VIII.,

[100

|97.|3
;
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or striking out from the numerator and the denomi

nator all the successive factors from 1 to 97,

100 . 99 . 98

We observe that the numerator 100.99.98 expresses

(Kule V.) the number of ways in which an arrange

ment of three things might be made out of one

hundred things.

This suggests the following rule for the number of

ways of selecting any number of things out of a larger

number, which will often be found more convenient

than Kule VIII., although both of course lead to the

same result.

KULE IX.

Out of any given number of things,

the number of selections of two things may be

obtained from the number of arrangements of two

things, by dividing by |2 ;

the number of selections of three things may be

obtained from the number of arrangements of three

things, by dividing by |3 ;

the number of selections of four things may be

obtained from the number of arrangements of four

things, by dividing by |4;

and so on.
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It will be sufficient to shew the reason of this rule

in any particular case.

Suppose we have to make a selection of three things

out of a given number of things ; what is our choice in

this case, compared with our choice in making an

arrangement of three things.

The operation of making an arrangement of three

things may be resolved into the two operations following,

viz. :

(1) To make a selection of three things out of

the given things.

(2) To arrange in order the three selected

things.

Therefore, by Kule I., the number of ways of making
an arrangement of three things is equal to the number

of ways of making a selection of three things, multi

plied by the number of ways of arranging the three

selected things.

But by Eule III., three things can be arranged

in |3 different ways.

Hence, the number of arrangements of three things,

out of a greater number, is equal to the number of

selections multiplied by |3.

Or the number of selections of three things is equal

to the number of arrangements divided by |3.

And the same reasoning would apply if the number

of things to be selected were any other instead of 3.

Therefore the rule is true always.
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The student being in possession of the two rules

(VIII. and IX.) for writing down the number of ways

in which any number of things can be selected out of

a larger number, will, in any particular case, use the

rule which may seem the more convenient. It will be

observed that Rule VIII. gives the result in the more

concise form when the number of things to be selected

is a high number
;
but the fraction thus written down,

though more concisely expressed, is not in such low

terms as that which would be written down by Rule

IX. Consequently, when the actual numerical value

of the result is required, Rule IX. leaves the less

work to be done, in cancelling out common factors

from the numerator and the denominator. In many
cases, it is simplest to take advantage of the principle

of Rule VIII., that out of twenty things (suppose) the

number of ways in which seventeen things can be

selected is the same as the number of ways in which

20 17 or three things can be selected, and then

to apply Rule IX. For, comparing the different forms

of the result in this case, we observe that Rule VIII.

gives

|20

while Rule IX. gives

20.19.18.17.16.15.14.13.12.11.10.9.8.7.6.5.4

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17
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which might be simplified by dividing the numerator

and denominator by the factors

4.5.6.7.8.9.10.11.12.13.14.15.16.17

But if we recognise the teaching of Kule VIII.
,
that

the number of ways of selecting seventeen things is

the same as the number of ways of selecting three

things, and then apply Rule IX. to find the number of

ways of selecting three things, we can at once write

down the result in the simple form

20.19.18

Question. Out of a basket of twenty pears at three

a penny, how many ways are there of selecting six

pennyworth ?

Answer. By Rule VIII., we can select eighteen

out of twenty in as many ways as we can select two ;

and, by Rule IX., this can be done in

20.19- or 190
1.2

ways.

Question. In how many ways can the same choice

be exercised so as to include the largest pear ?

Answer. Taking the largest pear first, our only

choice now lies in selecting seventeen out of the
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remaining nineteeen, which can be done (Rules VIII.

and IX.) in

ways.

Question. In how many ways can the same choice

be exercised without taking the smallest pear ?

Answer. We have now to select eighteen pears out

of nineteen. Therefore (Rules VIII. and IX.) our

choice can be exercised in nineteen ways.

Question. In how many ways can the same choice

be exercised so as to include the largest, and not to

include the smallest pear ?

Answer. Taking the largest pear first, we have then

to choose seventeen more out of eighteen, which can be

done (Rules VIII. and IX.) in eighteen ways.

Question. Out of forty-two liberals and fifty con

servatives, what choice is there in selecting a committee

consisting of four liberals and four conservatives ?

Answer. The liberal committee-men can be chosen

(by Rule VIII.) in

42.41.40.39

1.2.3.4

different ways, and the conservative committee-men in

50.49.48.47

1.2.3.4
or 230300
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different ways. Hence (by Rule I.) the whole choice

can be exercised in

111930 x 230300, or 25777479000

different ways.

Question. A company of volunteers consists of a

captain, a lieutenant, an ensign, and eighty rank and

file. In how many ways can ten men be selected so as

to include the captain.

Answer. Since the captain is to be one of the ten,

the only choice lies in the selection of nine men out of

the remaining eighty-two, which can be done (Rule

VIII. or IX.) in

[82

J9.J73

82.81.80.79.78.77.76.75.74

T&quot;
different ways.

Question. In how many ways can ten men be

selected so as to include at least one officer ?

Answer. By Rule VIII. ten men can be selected

out of the whole company in

J88

[10.J73

ways altogether. But the number of different ways that

will include no officer will be the number of ways in
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which ten can be selected out of the eighty rank and

file, that is, (by Kule VIII.)

|80

110.^70

These must be subtracted from the whole number of

ways in which ten men might be selected, and the

remainder

|83 |80

[10
.

1

78
1

10 .

[70

will be the number of ways in which they may be

selected so as to include at least one officer.

Question. In how many ways can ten men be

selected so as to include exactly one officer?

Answer. The nine rank and file can be selected in

|80

IMZi

ways, and the one officer in three ways. Therefore the

ten can be selected in

3 x |80

different ways.

Question. There are fifteen candidates for admission

into a society which has two vacancies. There are
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seven electors, and each can either vote for two candi

dates, or plump for one. In how many ways can the

votes be given ?

Answer. Each voter can plump in fifteen ways,

and can vote for two candidates in

15.14
or 105

L.

ways (Eule IX). Therefore each elector can vote

altogether in 120 ways. And there are seven electors ;

therefore all the votes can be given (by Kule II.) in

120 x 120 x 120 x 120 x 120 x 120 x 120

or 358318080000000

different ways.

It will be well to notice particularly the points

which distinguish the next three examples.

In all of them we suppose twenty things of one

class and six things of another class set before us, the

individuals of each class being distinct ;
and in all of

them a selection has to be made of three things out of

each class. But while the first is a case of simple

selection, in the second each set of three things has

separately to be arranged in order, and in the third

the whole six selected things have to be together

arranged in order.

Question. Out of twenty men and six women, what

choice have we in selecting three men and three women ?
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Answer. The men can be selected in

20.19.18T^ or mo

different ways (Kule IX.), and the women in

6.5.4

is
or20

different ways. Therefore, we have the choice of

1140 X 20 or 22800

different ways of making our selection.

Question. Out of twenty men and six women, what

choice have we in filling up six different offices, three of

which must be filled by men, and the other three by

women ?

Answer. We can allot the first three offices to three

men in 20.19.18 or 6840 different ways (Kule IV.) ;

and we can allot the other three offices to three women

in 6.5.4 or 120 different ways. Therefore, we have

the choice of

6840 x 120 or 820800

different ways of making our arrangement.

Question. Out of twenty consonants and six vowels,

in how many ways can we make a word, consisting of

three different consonants, and three different vowels ?
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Answer. &quot;We can select three consonants in

20.19.18

different ways, and three vowels in

different ways. Therefore (by Rule L), the six letters

can be selected in

1140 x 20, or 22800

different ways, and when they are so selected, they can

be arranged (by Rule III.), in
[6

or 720 different

orders. Hence (by Rule I.), there are 22800 x 720 or

16416000 different ways of making the word.

Question. Out of the twenty-six letters of the

alphabet, in how many ways can we make a word

consisting of four different letters, one of which must

be always a ?

Answer. Since we are always to use a, we must

choose three letters out of the remaining twenty-five.

This can be done in

25.24.23

ways. Then the whole set of four letters can be

arranged in
[4

or 24 different orders. Hence we have

the choice of

2300 x 24, or 55200

different ways of making the word,

E
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The last answer might have been arrived at in

another way, as follows :

Without the limitation, we could make a word of

four different letters in 26.25.24.23 or 358800 different

ways. The question is how many of these will contain

a. Now if all the 358800 words were written down on

paper, since each is made of four letters, our paper

would contain 358800 x 4, or 1435200 letters. And

since no letter of the alphabet has been used with more

favour than any other, it follows that each would occur

1435200 -v- 26, or 55200 times. Therefore a must

occur 55200 times ;
and since no word contains a more

than once, 55200 words must contain a. That is, the

number of words formed of four different letters of

which a is one is 55200, as before.

Question. Out of the twenty-six letters of the

alphabet, in how many ways can we make a word

consisting of four different letters, two of which must

be a and b ?

Answer. We can choose the other two letters out

of the remaining twenty-four in

24.23

-TT or 276

ways, and then we can arrange the whole set of four

letters in |4 or 24 different orders. Hence we have

the choice of

276 x 24, or 6624

different ways of making the word.
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Question. Out of twenty consonants and six vowels,

in how many ways can we make a word consisting of

three different vowels and two different consonants, one

of the vowels being always a ?

Answer. We can choose the other two vowels in

ways, and the two consonants in

ways ;
hence our letters can be selected in 1900 ways,

and when they are selected the set of five can be

arranged in |5 or 120 ways. Hence the whole number

of ways of making the word is

1900 x 120, or 228000.

Question. There are ten different situations vacant,

of which four must be held by men, and three by

women ;
the remaining three may be held by either

men or women. If twenty male and six female candi

dates present themselves, in how many ways can we

fill up the situations ?

Answer. The men s situations can be filled up in

20.19.18.17 or 116280 different ways, and the women s

in 6.5.4 or 120 different ways. When this is done,

there are nineteen persons left, all of whom are

eligible for the other three situations. Hence these

three can be filled up in 19.18.17 or 5814 different
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ways. Therefore, the whole election can be made in

116280 X 120 x 5814, or 81126230400 different ways.

ARRANGEMENTS OUT OF A NUMBER OF THINGS NQT

ALL DIFFERENT.

We considered under Kule VII. the modifications

of the case of Rule III., when the things out of which

the arrangement is to be made are not all different.

The corresponding modifications of Rule IV. are too

intricate to be treated by a general rule in an ele

mentary treatise on Arithmetic; but each case, as it

.arises, may be resolved into cases to which the

preceding rules will apply. The manner of proceeding

will be sufficiently illustrated by the following questions.

Question. In how many ways can an arrangement

of four letters be made out of the letters of the words

choice and chance?
Answer. There are fifteen letters altogether, of

eight different sorts, viz., c, c, c, c ; li, h ; a, a; n, n ;

.e, e; o ; i; d. The different ways of selecting the

ifour letters may, therefore, be classified as follows :

(1) all four alike,

(2) three alike and one different,

(3) two alike and two others alike,

(4) two alike and the other two different,

(5) all four different.

Now, the selection (1) can be made in only one way
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(viz. by selecting c, c, c, c), and when this selection of

letters is made, they can be arranged in only one order ;

therefore (1) gives rise to only one arrangement.

The selection (2) can be made in seven ways, for

three letters alike can be selected in only one way (viz.

c, c, c), and one different one in seven ways (a, e, i, o,

h, n, d). And when this selection of letters is made,

they can be arranged in four ways (Kule VII.) ;

therefore (2) gives rise to 7 x 4, or 28 arrangements.

5.4
The selection (3) can be made in or 10 ways

(Eule IX.), since we have to select two out of the five

pairs, cc, hh, aa, nn, ee. And when this selection of

14

letters is made, they can be arranged in - or 6 ways
|2.|2

(Rule VII.) ;

therefore (3) gives rise to 10 x 6, or 60 arrangements.

The selection (4) can be made in 5 x 21, or 105

ways, for we can select one of the five pairs, cc, hh, aa,

nn, ee in five ways, and two out of the seven different

rj
n

sorts of letters that will then be left, in or 21
1 . 2t

ways, (Rule IX.) ; and when this selection of letters is

I*

made, they can be arranged in or 12 ways (Rule
|2

VII.) ;

therefore (4) gives rise to 105 x 12, or 1260 arrange

ments*
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The selection (5) of four different letters must be

made out of the eight, c, h, a, n, e, o, i, d, therefore

the number of arrangements which will come from such

a selection must be 8 . 7 . 6 . 5 or 1680.

Hence, the whole number of arrangements of four

letters out of the fifteen given letters is

1 + 28 + 60 + 1260 + 1680, or 3029.

Question. In how many ways can an arrangement

of three things be made out of fifteen things, of which

five are of one sort, four of another sort, three of

another sort, and the remaining three of another sort?

Answer. The three selected things may be either

(1) all three alike,

or (2) two alike and one different,

or (3) all different.

Now, the selection of all three alike can be made in

4 ways, since we can take one of the four different

sorts. And when this selection is made, the selected

things can be arranged in only one order;

therefore (1) gives rise to only four arrangements.

The selection of two alike and one different can be

made in 4 x 3, or 12 ways (Kule I.) ; for the two

alike can be of any of the four sorts, and the one

different of any one of the remaining three sorts. And

when this selection is made, the things selected can be

13

arranged in
^-,

or three ways (Kule VII.) ;

therefore (2) gives rise to 12 x 3, or 36 arrangements.
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And if all three selected things are to be different

we shall have 4.3.2, or 24 arrangements (Rule IV.).

Hence, the whole number of arrangements of three

things out of the fifteen given things is

4 + 36 + 24, or 64.

tion. In how many ways can an arrangement

of five things be made out of the fifteen things given in

the last question ?

Answer. The different ways of selecting five things

may be classified as follows :

(1) all five alike,

(2) four alike and one different,

(3) three alike and two others alike,

(4) three alike and two different,

(5) two alike, two others alike, and one different,

(6) two alike and three different.

Now by the application of Rules II., VII., IX., as

in the preceding questions, it will be easily seen that

the selection (1) can be made in one way, and leads

to one arrangement :

the selection (2) can be made in six ways, and leads

to 6 x 5 or 30 arrangements :

the selection (3) can be made in twelve ways, and

leads to 12 x 10 or 120 arrangements :

the selection (4) can be made in twelve ways, and

leads to 12 x 20 or 240 arrangements :

the selection (5) can be made in twelve ways, and

leads to 12 x 30 or 360 arrangements :
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the selection (6) can be made in four ways, and leads

to 4 x 60 or 240 arrangements.

Hence the whole number of different arrangements

is

1 + 30 + 120 + 240 + 360 + 240, or 991.

RULE X.

The whole number of ways in which a person can

select some or all (as many as he pleases} of a given

number of things, is one less than the continued product

of 2 repeated the given number of times.

For since he is at liberty to take none or all or as

many as he pleases of the different things, he can

dispose of each thing in two ways, for he can either

take it or leave it. Now suppose there are five things,

then he can act altogether in

2x2x2x2x2

different ways. But if he is not to reject all the

things, the number of courses open to him will be

one less than this, or

2x2x2x2x2-1.

And the same reasoning would apply if the number

of things were any other number instead of five.

Hence, the rule will be true always.
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Question. One of the stalls in a bazaar contains

twenty-seven articles exposed for sale. What choice

has a purchaser?

Answer. He may buy either one thing or more,

and there are twenty-seven things : therefore (by

Rule X.), the number of courses open to him is one

less than the continued product of twenty-seven tivos,

or 134217727.

Question. What is the greatest number of different

amounts that can be made up by selection from five

given weights ?

Answer. By Eule X., 2 x 2 x 2 x 2 x 2 - 1 or 31.

The different selections will not always produce

different sums. Hence, we cannot always make

thirty-one different sums. But under favourable cir

cumstances, as, for instance, when the weights are

lib., 21bs., 41bs., 81bs., 161bs., all the different

selections will produce different sums, and then the

number of different sums is thirty-one. Hence,

thirty-one is the greatest number of different weights

that can be made by a selection from five given

weights.

In the case of the five weights, lib., 21bs., 41bs.,

81bs., 161bs., the thirty-one different amounts that

can be weighed consist of every integral number of

pounds from one to thirty-one.

Thus, with single weights, we can weigh the
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following numbers of pounds, viz., 1, 2, 4, 8, 16;

and then we have

3-1+ 2, 7= 1 + 2+ 4, 15= 1 + 2 + 4+ 8,

5-1+ 4, 11= 1 + 2+ 8, 23-1 + 2 + 4 + 16,

6-2+ 4, 13-1 + 4+ 8, 27= 1 + 2 + 8 + 16,

9-1+ 8, 14=2 + 4+ 8, 29=1+4 + 8+16,

10=2+ 8, 19= 1 + 2 + 16, 30= 2 + 4 + 8 + 16,

12-4+ 8, 21-1 + 4 + 16,

17=1 + 16, 22-2 + 4 + 16, 31 = 1 + 2 + 4 + 8 + 16.

18= 2 + 16, 25 = 1 + 8 + 16,

20-4 + 16, 26=2 + 8 + 16,

24=8 + 16, 28=4 + 8 + 16,

It may be observed that, if we had a 321bs. weight,

by adding it to each of the sets already obtained, we

should get all the numbers from 33 to 63 inclusive;

hence all the weights

lib. 21bs. 41bs. 81bs. 161bs. 321bs.

would enable us to weigh any number of pounds from

1 to 63.

Then the addition of a 641bs. weight, would enable

us to weigh any number up to 127, and so on.

Question. What is the greatest number of different

amounts that can be weighed with five weights, when

each weight may be put into either scale ?

Answer. This is not a direct example of our rule,

but it may be solved on a like principle to that by

which the rule itself was established.
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Each weight can be disposed of in three ways, that

is, it can be placed either in the weight-pan, or in the

pan with the substance to be weighed, or it can be left

out altogether. Hence, all the weights can be disposed

in 3 x 3 x 3 x 3 x 3, or 243 ways (Kule II). But

one of these ways would consist in rejecting all the

weights ; this must be cast out, and then there remain

242 ways. But in the most favourable case, half of

these ways would consist in placing a less weight in

the weight-pan than in the other, and these must be

cast out. Hence there remain 121 different amounts

that can be weighed under the most favourable circum

stances with five weights, when it is permitted to place

weights in the pan with the substance to be weighed.

The weights lib., 31bs., 91bs., 271bs., Sllbs., will

afford an instance of the most favourable case. In this

instance, the 121 amounts that can be weighed consist of

every integral number of pounds from 1 to 121. Thus

2=3-1, 15 = 27 - 9 -
3,

4=3 + 1, 16 = 27 - 9 - 3 + 1,

5-9-3-1, 17 = 27 - 9 -
1,

6=9-3, 18 = 27 -
9,

7=9-3 + 1, 19 = 27 - 9 + 1,

8=9-1, 20 = 27 - 9 + 3 -
1,

10 = 9 + 1, 21 = 27 - 9 + 3,

11 = 9 + 3 -
1, 22 = 27 - 9 + 3 + 1,

12 = 9 + 3, 23 = 27 - 3 -
1,

13 = 9 + 3 + 1, 24 = 27 -
3,

14 = 27 - 9 - 3 -
1, &c.
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RULE XI.

The whole number of ways in which a person can

select some or all fas many as he pleases) out of a num

ber of things ivhich are not all different, is one less than

the continued product of the series of members formed

by increasing by unity the several numbers of things of

the several sorts.

Thus, suppose we have the letters

a, a, a, a, a,

b, b, b,

d,

viz., five of one sort, three of another, four of a third

sort, one of a fourth sort, and one of a fifth.

The numbers of letters in the several classes are

5, 3, 4, 1, 1, and these, severally increased hy unity,

give the new series of numbers 6, 4, 5, 2, 2. The rule

states that the whole number of ways in which a person

may take some or all (as many as he pleases) of the

given letters, is

6x4x5x2x2-1, or 479.

The reason of the rule will be seen from the following

considerations. Suppose the person were at liberty to

take none, or all, or as many as he pleased of the
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letters. He could then dispose of the five a, a, a, a, a

in six different ways, for he might take 5 or 4 or 3 or 2

or 1 or none of them. So he could dispose of the three

b, by b, in four ways, for he might take 3 or 2 or 1 or

none of them. Similarly he could dispose of the

c, c, c, c in five ways, and of the d in two ways, and of

the e in two ways. Hence he might act altogether, in

6x4x5x2x2

different ways (Rule II). But if he is not to reject all

the things, the numher of courses open to him will he

one less than this, or

6x4x5x2x2-1.

And the same reasoning would apply to any other

case. Hence we may accept the rule as true always.

Question. In how many ways can two booksellers

divide between them 200 copies of one book, 250 of

another, 150 of a third, and 100 of a fourth?

Ansiver. Either man can take any number of

books, but not either none or all. Therefore, the

number of ways is one less than that given by the

rule : i. e. } the division can be made in

201 x 251 x 151 x 101 - 2

different ways; or in

769428201-2, or 769428199

different ways.
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EXAMPLES ON CHOICE.

1. Having four seals and five sorts of sealing wax,

in how many ways can we seal a letter ?

2. There are five first-class carriages, eight second-

class, seven third-class and three luggage -vans. In

how many ways can a train be made consisting of one

of each ?

3. How many changes can be rung upon eight

bells? And in how many of these will an assigned

bell be rung last ?

4. Out of a class of twelve boys, in how many ways

can three boys be called up to say lessons ?

5. In how many ways can a set of twelve black

and twelve white draught-men be placed on the black

squares of a draught-board?

6. In how many ways can a set of chess-men be

placed on a chess-board?

7. In how many ways can we arrange the letters

of the word possessions ?

8. In how many ways can we arrange the letters

of the words choice and chance ?
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9. In how many ways can a triangle be formed,

having its angular points at three of the angular

points of a given hexagon?

10. There are three teetotums, having respectively

6, 8, 10 sides. In how many ways can they fall? and

in how many of these will two aces he turned up ?

11. A company of soldiers consists of three officers,

four sergeants and sixty privates. In how many ways

can a detachment be made consisting of an officer, two

sergeants and twenty privates? In how many of

these ways will the captain and the senior sergeant

appear?

12. In how many ways can four persons sit at a

round table, so that all shall not have the same

neighbours in any two arrangements?

13. In how many ways can seven persons sit as in

the last question ? And in how many of these will two

assigned persons be neighbours? And in how many
will an assigned person have the same two neighbours?

14. Out of a party of twelve ladies and fifteen

gentlemen, in how many ways can four gentlemen and

four ladies be selected for a dance?

15. Out of twenty consonants and six vowels, in

how many ways can a word be made, consisting of three
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different consonants and two different vowels, without

placing all the consonants together?

16. Out of twenty consonants and ten vowels, in

how many ways can a word he formed consisting of

three different vowels and three different consonants,

the vowels and consonants being placed alternately ?

17. In how many ways can the foregoing questions

he arranged, so that no question of combination shall

come before any question of permutation ?

18. A plaything consists of eighteen cubical blocks ;

on each side of five of them a head is painted, on each

side of seven a body, and on each side of six a pair of

legs. How many different figures can be made by

piecing them together ?

19. Having five pairs of gloves, in how many ways

can a person select a right-hand and a left-hand glove

which are not pairs ?

20. How many numbers less than 10,000 have a

five in their arithmetical expression, and how many of

them are divisible by five without remainder ?

21. In how many ways can a school of ninety boys

divide themselves, so that twenty-four play football,

twenty-two play cricket, thirty drill, four play racquets,

and ten take a walk ?
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22. From five apples, six pears, and three oranges,

in how many ways can a person take fruit ?

23. A man has* ten shares in the Great Western

Kailway Company, twelve in the North Western, seven

in the Great Northern, two in the Great Eastern, five

in the South Western. In how many ways can he sell

shares ?

24. How many different signals can be made with

a set of ten flags, using four at a time, (1) on a

single mast, and (2) on a three-masted ship ?



CHAPTEE II.

CHANCE.

&quot;There is very little chance of fine weather.&quot;

&quot;Is there much chance of his recovery?&quot;

&quot;There is no chance of finding it.&quot;

&quot; There is a great probability of war.&quot;

&quot;This is a more probable result than the other.&quot;

&quot;That is more likely to be mine than
yours.&quot;

&quot;There is less chance of her coming than of his.&quot;

These are expressions in common use amongst us ;

the very commonness of their use shows that people

in general have some idea of chance, and some

conception of different degrees of probability in the

occurrence of doubtful events. All understand what is

meant by much chance and little chance; they dis

tinguish events as very probable, probable, improbable,

or very improbable ;
but no attempt is made in common

conversation to measure with any accuracy the amount

of probability attaching to any given event/|
If a

Doctor is asked what chance there is of a patient s

recovery, he may answer that there is much chance or

little chance, but he cannot express with any precision

the exact magnitude of his hope or of his fear. Yet his
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expectation of the event has a certain magnitude. He

has a greater expectation of this patient s recovery than

he has of the recovery of another, whose symptoms are

more aggravated, and less expectation than in another

case where the constitution is stronger. His expecta

tion has a definite value, and if he were a sporting man,

he would be prepared to offer or take certain definite

odds on the event. But in common language, this

definite amount of expectation or probability cannot be

precisely expressed, because we have no recognised

standard with which to compare it, no recognised

amount of expectation or probability by which to

measure it.

In fact, in describing the magnitude of any expecta

tion which we entertain, we are in the same position

as if we had to describe the length of a room, or the

height of a tower, to a man who was not acquainted

with a foot or a yard, or any of our standards of

length. We could speak of the room as very long or

very short, we could speak of the tower as very high

or very low, but without some standard length recog

nised alike by ourselves and those whom we addressed,

we could not give an accurate answer to either of

the questions, How long is the room ? or How high is

the tower ?

So when we are asked what chance we think there

is of a fine afternoon, we may say that there is much

chance or little chance, or we may even go further,

and establish in our own minds a scale of expressions,
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distinguishing the different degrees of probability in

some such way as follows :

It is certain not to rain.

It is very unlikely to rain.

It is unlikely to rain.

It is as likely to rain as not.

It is likely to rain.

It is very likely to rain.

It is certain to rain.

but these expressions except the first, fourth, and last,

are vague and indefinite, nor can we ever be sure that

those with whom we are conversing attach exactly the

same idea to each expression that we do.

This vagueness is of little consequence in common

life, because in most cases it is impossible to make an

accurate estimate of a chance, and the expressions

are, perhaps, as accurate as the estimates themselves

which we wish to express. But there are other classes

of events concerning which it is possible to form

accurate estimates of their degree of probability or

likelihood of happening, and in these cases it is well

to have some more precise method of expressing

different degrees, than is afforded by the common

expressions which we have quoted.

We must observe at the outset, that we use the

words chance and probability as strictly synonymous.

In common language, it is usual to prefer the former

word when the expectation is small, and the latter
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when it is large. Thus we generally hear of
&quot;

little

chance,&quot; or of
&quot;

great probability,&quot; but not so often of

&quot;great chance,&quot; or &quot;little probability.&quot; This distinc

tion, however, is not universal, and we shall entirely

disregard it, using the two words chance and pro

bability in the same sense.

will be seen that probability always implies some

ignorance on the part of the person entertaining the

expectation, and the amount of probability attaching

to any event will depend upon the degree of this

ignorance. With omniscience, degrees of probability

are incompatible; for omniscience implies certainty, and

certainty precludes doubt, and degrees of probability

are the measures of doubt.

Hence, there is no such thing as the absolute pro

bability of an event, all probability being conditional on

our ignorance, and varying when that condition varies.

Thus the same event will be unequally probable td

different persons, whose knowledge of the circum

stances relating to the event is different. And to the

same person, the expectation of any event will be

affected by any accession of knowledge concerning the

event.

For instance, suppose we see a friend set out with

five other passengers in a ship whose crew number

thirty men : and suppose we presently hear that a

man fell overboard on the passage and was lost. So

long as our knowledge is confined to the fact that one



70 CHANCE.

individual only has been lost out of the thirty-six on

board, the probability that it is our friend is very

small. The odds against it would be said to be thirty-

five to one. But suppose our knowledge is augmented

by the news that the man who has been lost is a pas

senger ; though we still feel that it is equally likely to

be any of the other five passengers, yet our appre

hension that it is our friend becomes much greater

than it was before. The odds against it are now

described as five to one. Thus the probability that

our friend is lost is seen to be entirely conditional on

the respective degrees of our knowledge and ignorance ;

and so soon as our ignorance vanishes so soon as

we know all about the event, and become as far as

that event is concerned omniscient, then there no

longer remains a question of probability ;
the probability

is replaced by certainty.

This example will also illustrate the meaning of the

ratio of probabilities. Since each of the passengers

was equally likely to have been lost, it was evidently

always six times as likely that the man lost was some

passenger, as that it was our friend. So it was five

times as likely that it was a passenger, but not our

friend, as that it was our friend. Therefore, also, the

probability that it was a passenger, but not our friend,

was to the probability that it was a passenger in the

ratio of 5 to 6.

Let us suppose another case. A number of articles

are placed in a bag, and amongst them are three balls,
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alike in all respects, except that two of them are

coloured white and the third black : all the other articles

we will suppose to be coins, or anything distinguishable

without difficulty from balls.

We present this bag to a stranger, and we give him

leave to put in his hand in the dark, and to take out

any one article he likes. But before he does this, we

may consider what chance there is of his taking out a

ball, or what chance there is of his taking out the black

ball. Obviously we cannot form any accurate estimate

of this chance, because it must depend- upon the wants

or the taste of the stranger influencing his will, whether

he will prefer to take a ball or a coin, and being igno

rant of his will in the matter, we cannot say whether it

is likely or unlikely that he will select a ball.

But it is axiomatic, that if he draws a ball at all, it

is twice as likely to be a white ball as to be a black one,

or the respective chances of his drawing white or black

are in the ratio of 2 to 1, and these chances are respec

tively two-thirds and one-third of the chance that he

draws a ball at all.

We now proceed to show how the magnitude of a

chance may be definitely expressed. We have already

pointed out that the expressions used in common

language are wanting in definiteness and precision,

and we compared the expedients by which degrees of

probability are usually indicated to the attempts which

we should make to give an idea of the length of a room
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to a person unacquainted with the measures of a foot

and a yard.

Now we observe, that the difficulty in this latter case

ceases, so soon as the person with whom we are

speaking agrees with us in his conception of any

definite length whatever. If he can once recognise

what we mean by the length of a hand, for instance,

we can express to him with perfect accuracy the length

of the room as so many hands; or, if he have an

idea of what a mile is, we can precisely express the

length of the room as some certain fraction of a mile.

So, also, as soon as we have fixed upon any standard

amount of probability that can be recognised and

appreciated by all with whom we have to do, we shall

be able to express any other amount of probability

numerically by reference to that standard. The

numbers 2, 3 would express probabilities twice or

three times as great as the standard probability; and

the fractions
|-, J, would express probabilities half,

one-third, or two-thirds of the standard.

Now, it matters not how great or how small the

standard be, provided it be a probability which all

can recognise, and which all will alike appreciate.

This is, indeed, the one essential which it has to fulfil;

it must be such that all persons will make the same

estimate of it. And that which best satisfies this

condition, and, therefore, the most convenient standard

with which to compare other probabilities, is that
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supreme amount of probability which attaches to an

event which we know to be certain to happen. All

understand what certainty is : it is a standard which

all estimate alike. Certainty, therefore, shall be our

unit of probability; and other degrees of probability

shall be expressed as fractions of certainty.

But it may be asked, Is certainty a degree of

probability at all, or can smaller degrees of probability

be said to have any ratio to certainty? Yes. For

if we refer to the instance already cited of the six

passengers in the ship, we observe that the chance

of the lost man being a passenger is six times as

great as the chance of his being our friend. This

is the case however great our ignorance of the cir

cumstances of the event; and it will evidently remain

true until we attain to some knowledge which affects

our friend differently from his fellow-passengers. But

the news that the lost man was a passenger does not

affect one passenger more than another. Therefore,

after receiving this news, it will still hold good that the

chance of the lost man being a passenger is six times

as great as the chance of its being our friend. But

it is now certain that the lost man was a passenger;

therefore the probability that it was our friend is one-

sixth of certainty. Again in the instance of the balls

and coins in the bag, we have already noticed that the

chances of drawing white or black are respectively two-

thirds and one-third of the chance of drawing a ball

at all. And this is the case whatever this last chance
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may be. But suppose the man tells us that he is

drawing a ball, not a coin, then this last chance

becomes certainty ;
and therefore the chances of draw

ing white or black, become respectively two-thirds and

one-third of certainty. Thus it is seen that certainty,

while it is the supreme degree, is some degree of

probability, or is such that another degree of probability

can be compared to it and expressed as a fraction of it.

Of course, when we use unity to express certainty,

the probability of the lost passenger being our friend

will be expressed by the fraction
-g ,

and the chances of

the ball drawn being white or black, will be expressed

by the fractions ^ and -

3
.

After the explanations which we have already given,

the reader will have no difficulty in accepting the

following axiom.

AXIOM.

If an event can happen in a number of different

ways (of which only one can occurJ, the probability of

its happening at all is the sum of the several proba

bilities of its happening in the several ways.

For instance, let the event be the falling of a coin.

It can fall either head or tail, and only one of these

ways can occur. The probability that it falls at all

must be made up by addition of the probability that it

falls head and the probability that it falls tail.
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Again, let the event be that either A, B, or C should

win a race in which there are any number of com

petitors. The event can happen in three ways, viz., by

A winning, by B winning, or by C winning ; and only

one of these ways can occur. The probability that one

of the three should win is equal to the sum of the pro

babilities that A should win, that B should win, and

that C should win.

This is only saying that if a man would give 2 for

A s chance of the prize, 3 for B s chance, and 4 for

C s chance, he would give 2 + 3 + 4, or 9 for

the promise that he should have the prize if any one of

the three should win.

. 1

Again, if -^ be the chance of a shot aimed at a

target hitting the bull s eye, | the chance of its hitting

the first ring, and
^

the chance of its hitting the

outer ring, the chance that it hits one of these, i. e, the

chance of its hitting the target at all, is
-JQ-

+
g + 4,

31

RULE I.

The probability of an event not happening is obtained

by Subtracting from unity the probability that it will

happen.

For it is certain that it will either happen or not

happen, or the probability that it will either happen or
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not happen is unity; and only one of these two (the

happening and the not happening) can occur. There

fore, by the axiom, unity is the sum of the probabilities

of the event happening and not happening ;
or the

probability of its not happening is obtained by sub

tracting from unity the probability of its happening.

EXAMPLES. If the chance of an event happening
2 23

is 1= ,
the chance of its not happening is 1

-g ,
or

g
.

ri

If the chance of a plan succeeding is -^, the chance

of its failing is 1
-^-,

or
-^-.

q-l

If the chance of a shot hitting a target be ~
6̂ -,

the

9Q
chance of its missing is -^.

If the chance of A winning a race be g,
and the

chance of B winning it
-g,

the chance that neither

should win is ^T. For, by the axiom, the chance that

one of them should win is
g
+

-g ,
or -^ ;

and therefore,

by Rule I.,, the chance that this should not happen is

i JL 17
i 24 , or

24
.

DEFINITION I. Two probabilities which together

make up unity, are called complementary probabilities.

DEFINITION II. When it is said that the odds are

three to two against an event, it is meant that the
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chance of the event failing is to the chance of its hap

pening as three to two
;
and when it is said that the

odds are three to two in favour of an event, it is meant

that the chance of its happening is to the chance of its

failing as three to two ; and so for any other numbers.

RULE II.

If the odds be three to two against an event, the

chance of the event not happening is

_8_
3 + 2

and the chance of its happening is

2
.

3 + 2

and so for any other numbers ; the numerators of the

two fractions being the two given numbers, and their

common denominator the sum of the numbers.

For the two fractions satisfy the condition required

by Rule I., viz., that their sum should be unity, and

that required by the definition, viz., that their ratio

should be the same as the ratio expressing the given

odds. Similarly,

If the odds be three to two in favour of an event,

the chance of the event happening is

3

8 +~2
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and the chance of its not happening is

2

3 + 2

and so for any other numbers ; the numerators of the

two fractions being the two given numbers, and their

common denominator the sum of the numbers.

EXAMPLES. If the odds be ten to one against an

event, the chance of its happening is
-jj,

and the

chance of its failing is ^-.

If the odds be five to two in favour of the success

5

7&amp;gt;

of an experiment, the probability of success is -=

and the probability of failure is
|.

RULE III.

If an event can happen in jive ways, and fail in seven

ways, and if these twelve ways are all equally probable,

and only one of them can occur, the odds against the

event are seven to five, and the chances of its happening
and failing are respectively

5 7

and similarly for any other numbers.

For since the event must either happen or fail, one

of the twelve ways must occur ; therefore the sum of
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their several probabilities is unity. But all the twelve

ways are equally probable. Therefore the chance of the

occurrence of any particular one is
-j^-,

and the chance

of the occurrence of one of the five which cause the

event to happen is five times this, or -^. So the

chance of the occurrence of one of the seven which
17

cause the event to fail is -^

Suppose, for example, that a die has twelve faces, of

which five are coloured white and seven black. A

person throws the die, and is to receive a prize if it

fall white.

The odds are seven to five against his winning the

prize. The chance that he wins is -^ , and the chance
17

that he loses is jg.

For all the twelve faces are equally likely to turn up,

and one must turn up. Therefore the chance of any

particular face turning up is
-jg,

and the chance of a

white face turning up is five times this, or -^ .

Or we might put it thus : Since there are five white

and seven black faces, it is axiomatic that the chance of

a white face is to the chance of a black face as five to

seven. Now as soon as it is certain that the die is to

be thrown, it is certain that either a white or a black

face must turn up. The two chances must therefore
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now make up unity. But they still retain the ratio of

five to seven, therefore they become respectively

5 7

777 and IT?
And in the same way we might reason if the numbers

were any other.

Question. A party of twenty-three persons take

their seats at a round table
; shew that the odds are ten

to one against two specified persons sitting together.

Answer. Call the two specified persons A and B.

Then besides A s place (wherever it may be) there

are twenty-two places, of which two are adjacent to

J. s place and the other twenty not adjacent. And B
is equally likely to be in any of these twenty-two

places. Therefore (Kule III.), the odds are twenty to

two, or ten to one, against his taking a place next to A.

The last rule may be expressed in a somewhat

different form as follows :

RULE IV.

If there be a number of events of which one must

happen and all are equally likely, and if any one of

a ( smaller) number of these events will produce a

certain result which cannot otherwise happen, the

probability of this result is expressed by the ratio of

of this smaller number to the whole number of events.
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For instance ;
if a man has purchased five tickets in

a lottery, in which there are twelve tickets altogether

and only one prize, his chance of the prize would he

expressed by the ratio 5 : 12, or by the fraction &amp;gt; T
6
2-.

For convenience of reference we have given distinct

numbers to the two Rules III. and IV., although they

are only different statements of one and the same

principle. This will be immediately seen, by con

sidering the case of the lottery just instanced. We
might at once have said that there were twelve ways
of drawing a ticket, and five of these would cause the

man to win, while the other seven would cause him to

lose. Rule III. is therefore immediately applicable.

Question. The four letters a, e, m, n are placed in a

row at random : what is the chance of their standing in

such order as to form an English word ?

Answer. The four letters can stand in |4 or

twenty-four different orders (Choice, Rule III.) : all are

equally likely and one must occur. And four of these

will produce an English word

mane, mean, name, amen.

Hence by the rule, the required chance is -^ or -

6
.

Question. What is the chance of a year, which is

not leap year, having fifty-three Sundays ?

Answer. Such a year consists of fifty-two complete

weeks, and one day over. This odd day may be any of

G
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the seven days of the week, and there is nothing to

render one more likely than another. Only one of

them will produce the result that the year should

have fifty -three Sundays. Hence (Kule IV.), the

chance of the year having fifty-three Sundays is
^ .

Question. What is the chance that a leap year,

selected at random, will contain fifty-three Sundays?
Ausiver. Such a year consists of fifty-two complete

weeks, and two days over. These two days may be

Sunday and Monday,

Monday and Tuesday,

Tuesday and Wednesday,

Wednesday and Thursday,

Thursday and Friday,

Friday and Saturday,

Saturday and Sunday,

and all these seven are equally likely. Two of them

(the first and last) will produce the required result.

Hence (Rule IV.) the chance is
7

.

Question. What is the chance that a year which is

known not to be the last year in a century should be

leap year?

Answer. The year may be any of the remaining

ninety-nine of any century, and all these are equally

likely ;
but twenty-four of them are leap years. There

fore (Rule III.) the chance that the year in question is

, . 24 8
a leap year is or ^3

-
.
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Question. Three balls are to be drawn from an urn

which contains five black, three red, and two white

balls. What is the chance of drawing two black balls

and one red?

Ansiver. Since there are ten balls altogether, three

balls can be drawn in T~Z~, or 120 different ways,
1.2.3

all equally likely. Now, two black balls can be selected

in -
,
or ten ways, and one red in three ways, Hence,

1.2

two black balls and one red can be drawn in 10 x 3,

or 30 different ways. Thus we have 120 different

ways of drawing three balls, whereof 30 ways will

give two black and one red. Hence, when three balls

are drawn the chance that they should be two black and

one red is (by Kule IV.)

30 1

120
r ?

Question. If from a lottery of thirty tickets, marked

1, 2, 3, &c., four tickets be drawn, what is the chance

that those marked 1 and 2 are among them ?

Ansiver. Four tickets can be drawn out of thirty

30.29.28.27
m ways. Four tickets can be drawn, so

1.2.3.4

28 27
as to include those marked 1 and 2, in -

ways.
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Hence, when four are drawn, the chance that these two

are included is

28.27 30.29.28.27 3.4 _2_
1.2 1.2.3.4

~

29.30
~

145*

The odds are, therefore, 143 to 2 against the event.

Question. A has three shares in a lottery where

there are three prizes and six blanks. B has one

share in another, where there is but one prize and two

blanks. Shew that A has a better chance of winning

a prize than B, in the ratio of 16 to 7.

Answer. A will get a prize unless his three tickets

all prove blank. Now, three tickets can be selected

9.8.7
in

, or 84 ways; and they can be selected so as
A..ZI.O

%. K A

to be all blank in r
1
-^, or 20 ways. Hence the

1.2.3

20 5
chance that they should be all blank is or

; and,
84 21

therefore, the chance that this should not be so, or

5 16
that A gets at least one prize, is 1 -

, or . But
21 21

it is evident that the chance that B gets a prize is

1 7
(Rule IV.)

~- or . Therefore, A has a better chance
O 21

than B in the ratio of 16 to 7.

Question. If four cards be drawn from a pack,

what is the chance that there will be one of each suit ?
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- Answer. Four cards can be selected from the pack

52 51 50 49
in

- or 270725 ways (Choice, Rule IX.); but
1.2.3.4

four cards can be selected so as to be one of each suit

in only 13 x 13 x 13 x 13 or 28561 ways (Choice,

Rule II.). Hence the chance is

28561 1

270726

Question. If four cards be drawn from a pack,

what is the chance that they will be marked one, two,

three, four?

Answer. There are 4x4x4x4, or 256 ways

of drawing four cards thus marked, and 270725 ways

of drawing four cards altogether. Hence, the chance is

256

270725

or the odds are more than 1000 to 1 against it.

Question. In a bag there are five white and four

black balls. If they are drawn out one by one, what

is the chance that the first will be white, the second

black, and so on alternately?

Answer. There are nine balls, five of one sort, four

of another : they can, therefore, be arranged in

iff
&quot; &quot;&quot;

different orders (Choice, Rule VII.). The balls are
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equally likely to be drawn in any of these orders
;&amp;gt;

therefore, the chance that they should be drawn in

the particular order, white black white cc., is r~~ m

That this order of colour corresponds to only one of

the 126 arrangements is a direct consequence of our

having disregarded all individuality among balls of the

same colour when we calculated that number. (See

Choice, page 33.).

Question. In a bag are five red balls, seven white

balls, four green balls, and three black balls. If they

be drawn one by one, what is the chance that all the

red balls should be drawn first, then all the white ones,

then all the green ones, and then all the black ones ?

Answer, The nineteen balls can be arranged in

119

different orders (Choice, Rule VII.) All these are

equally likely, and therefore the chance of any par

ticular order is

This will be the chance required, for all individuality

among balls of the same colour has been disregarded ;

only one of the different arrangements will give the

order of colours prescribed in the question.

Question. Out of a bag containing 12 balls, 5 are

drawn and replaced, and afterwards 6 are drawn. Find



THROWS WITH TWO COMMON DICE. 87

the chance that exactly 3 balls were common to the

two drawings.

Answer. The second drawing could be made alto

gether in

112

!6&amp;gt;

OT924

ways. But it could be made so as to include exactly

3 of the balls contained in the first drawing, in

|5 J7

or 350
|3.|2

ways ;
for it must consist of a selection of 3 balls out

of the first 5, and a selection of 3 balls out of the

remaining 7 (Choice, Rules VIII. and II.). Hence, the

chance that the second drawing should contain exactly
350 25

3 balls common to the first, is -^ or -^.

As the respective probabilities of various throws,

with two common dice, are of practical interest, in their

bearing upon such games as Backgammon, it may be

well to discuss this case with some completeness.

It will be observed that as each die can fall in six

ways, the whole number of ways in which the two dice

can fall is 6 x 6 or 36. But these 36 different ways

are not practically different throws, since, for example,

it makes no difference in practice whether the first die

falls six and the second five, or the first five and the

second BIX. The number of practically different throws
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is, in fact, only 21, the 36 different ways of the dice

falling being made up of six unique ways

landl, 2 and 2, 3 and 3, 4 and 4, 5 and 5, 6 and 6,

and 30 other ways, consisting of 15 essentially different

throws, each repeated twice : thus

1 and 2, 1 and 3, 1 and 4, 1 and 5, 1 and 6,

2 and 1, 3 and 1, 4 and 1, 5 and 1, 6 and 1,

2 and 3, 2 and 4, 2 and 5, 2 and 6,

3 and 2, 4 and 2, 5 and 2, 6 and 2,

3 and 4, 3 and 5, 3 and 6,

4 and 3, 5 and 3, 6 and 3,

4 and 5, 4 and 6,

5 and 4, 6 and 4,

5 and 6.

6 and 5.

Since each die is equally likely to fall in all different

ways, the 36 different ways of the two dice falling are

all equally likely; and, therefore, when the dice are

thrown the probability of any particular way is
-^&amp;gt;

But it cannot be said that all throws are equally pro

bable, because six-Jive results practically in two ways

out of the 36 ways of the dice falling, whereas

six-six results in only one way. The correct state

ment is, that the probability of any assigned throw
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is
g6

if that assigned throw be doublets; but it is twice

as much or -^ if the assigned throw be not doublets.

Thus the chance of throwing six-three is ^, but the

chance of throwing three-three is
-^r.

Question. When two dice are thrown, what is the

chance that the throw will be greater than 8 ?

Ansiver. Out of the 36 ways in which the dice can

fall, there are six which give a result greater than 8,

viz. :

5 and 4, 5 and 6, 5 and 5, A

4 and 5, 6 and 5, 6 and 6.

Hence the required chance
is-g^~or

~
6

.

Question. What is the chance of throwing at least

one ace ?

Answer. Of the thirty-six ways in which the dice

can fall, eleven give an ace. Hence, the chance is
Q̂

.

Question. What is the chance of making a throw

which shall contain neither an ace nor a six?

Answer. Of the thirty- six ways, there are sixteen

which involve neither one nor six. Hence, the chance
. 16 4
IS

-gg
01

g.

This question, as well as the preceding one, may be

more conveniently solved by Rule VI.

Question. What are the odds against throwing

doublets ?
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Answer. Of the thirty-six ways in which the dice

can fall, six give doublets. Therefore, the chance for

doublets is -^ or
g,

and the chance against doublets

Q (Kule III.). Therefore, the odds are five to one

against doublets.

Or we might reason thus: However the first die

fall, the second die can fall in six ways, of which only

one way will give the same number as on the first die.

Hence, the odds are five to one against the second die

falling the same way as the first, or the odds are five to

one against doublets.

Question. In one throw with a pair of dice, what

is the chance that there is neither an ace nor doublets ?

Answer. The dice can fall in thirty-six ways, but in

order that there may be neither an ace nor doublets, the

first die must fall in one of five ways (viz. 2, 3, 4, 5, 6),

and the second, since it may be neither an ace nor the

same as the first, may fall in four ways. Hence, the

number of ways which will produce the required result,

is 5 x 4 or 20. And, therefore, the chance of this
,, . 20 5

result is
ijg-

or
^.

Question. What is the chance of throwing exactly

eleven ?

Answer. Out of the thirty-six ways, there are two

ways which produce eleven
; therefore, the chance

. 2 i
18 0r
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On the principle of the last answer, the reader will

have no difficulty in verifying the following statements :

In a single throw with two dice, the odds are

35 to 1 against throwing 2,

17 to 1 3,

11 to 1 4,

8 to 1 5,

6i- to 1 6,

5 to 1 7,

6i to 1 8,

8 to 1 9,

11 to 1 10,

17 to 1 11,

35 to 1 12.

Thus the most frequent throw will be seven.

In some cases the purpose of a throw is equally

answered, whether an assigned number appear on one

of the dice, or whether it be the numbers of the two

dice together make it. Let us consider, for example,

the chance of throwing five in this way.

The chance of making a throw so that one die shall

turn up Jive is
-^,

and the chance of making a throw

which shall amount to Jive is
-^r.

Therefore the chance

of throwing five in one of these ways is -^ + -gg-
or

-gg.

On this principle the following statements may be

easily verified.
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In a single throw with two dice, ivhen the player

is at liberty to count either the sum of the numbers

on the tivo dice, or the number on either die alone,

the odds are

25 to 11, against throwing 1,

24 to 12, or 2 to 1 2,

23 to 13, 3,

22 to 14, or 11 to 7 4,

21 to 15, or 7 to 5 5,

20 to 16, or 5 to 4 6,

5 to 1 7,

61 to 1 8,

8 to 1 9,

11 to 1 10,

17 to 1 11,

35 to 1 12.

Thus the number which there is the greatest chance

of making is six.

DEFINITION. If a person is to receive a prize on

condition of some event happening, the sum of money
for which his chance might equitably be sold before

hand is called his expectation from the event.

RULE V.

The expectation from any event is obtained by

multiplying the sum to be realised on the event hap

pening, by the chance that the event ivill happen.
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This rule may be illustrated as follows: Suppose a

person holds five tickets in a lottery, where the whole

numher of tickets is twelve
;
and suppose there be only

one prize, and let its value be one shilling.

The person in question gains the prize, if it happen

that one of his tickets be drawn. The chance of this

event is -^ ; therefore, according to the rule, the per

son s expectation is -^ of a shilling, or five-pence. And

the correctness of this result may be immediately seen ;

for we observe, that if the person had bought all the

twelve tickets he would have been certain of winning

a shilling, and, therefore, he might, equitably, have

given a shilling for the twelve tickets ; but all the

tickets are of equal value, and are equally valuable

whether the same man hold one or more. Hence, each

of them is worth a penny, and, therefore, the five in

question are worth five-pence (as long as it is unknown

which is drawn). Five-pence, therefore, is the sum

that might equitably have been given for the assigned

person s chance, and, therefore, by the definition this

is his expectation.

Question. A bag contains a 5 note, a ^610 note,

and six pieces of blank paper. What is the expectation

of a man who is allowed to draw out one piece of

paper ?
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Answer. Since there are eight pieces of paper the

probability of his drawing the 5 note is
g ; therefore,

his expectation from the chance of drawing this note

is
g-

of 5
}

or ^ of a pound. Similarly, his ex

pectation from the chance of drawing the ^610 note

is
g

of
&amp;lt;10, or

^
of a pound. Therefore, his whole

expectation is
g-

of a pound, or 1 17s. 6d.

Question. What is the expectation of drawing a

coin from a bag which contains one sovereign and seven

shillings ?

Anstver. The expectation from the chance of

drawing the sovereign is
g

of a sovereign, and the

expectation from the chance of drawing a shilling is
g

of a shilling. Hence, the whole expectation is 3s. 4Jd.

Question. A person is allowed to draw two coins

from a purse containing four sovereigns and four

shillings. What is the value of his expectation ?

n
rj

Ansiver. Two coins can be drawn in ~-
or 28

1.2

ways : of these --- or 6 ways will give two sovereigns,
1.2

4 x 4 or 16 ways will give a sovereign and a shilling,

and the other 6 ways will give two shillings.
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Therefore
f\

Chance of drawing 40 shillings
=

gg-,

Chance of drawing 21 shillings
=

||-,

Chance of drawing 2 shillings
=

-^.

Therefore the expectation is

6 60
from the first chance, x 40, or shillings ;

28 i

&quot;i ?

from the second chance, x 21, or 12 shillings ;

28

fi o

from the third chance, x 2, or
-

shillings.
2o i

nr\ o

Hence the whole expectation is + 12 + -, or 21

shillings ;
or one-fourth of the whole sum in the hag.

This result might have been inferred at once from

the consideration that, if all the eight coins had heen

drawn two and two, no drawing could be more likely to

exceed in sovereigns than in shillings : (the number of

sovereigns and shillings being the same). Hence the

expectation from each of the four drawings must be the

same
;
and therefore each must be one fourth of the

whole sum to be drawn.

EULE VI.

The chance of two independent events both hap

pening, is the product of the chances of their happening

severally.
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That is, if the chance of one event happening be
6

&amp;gt;

and the chance of another independent event happening
be

g-,
the chance that both events should happen is

5 7 35

6^
&amp;lt;

8
Or

48&quot;-

This may be proved as follows :

The chance of the first event is the same as the

chance of drawing white from a bag containing six

balls, of which five are white (Kule IV.)

The chance of the second event is the same as the

chance of drawing white from a bag containing eight

balls, of which seven are white.

Therefore the chance that both events should happen
is the same as the chance that both balls drawn should

be white.

But the first ball can be drawn in six ways, and the

second in eight ways. Therefore (Choice, Kule I.),

both can be drawn in 6 x 8, or 48 ways.

So the first can be white in five ways, and the second

can be white in seven ways. Therefore both can be

white in 5 x 7, or 35 ways.

That is, the two balls can be drawn in forty-eight

ways (all equally likely), and thirty-five of these ways

will give double-white. Hence (Eule IT.) the chance of

double-white is
-^r,

and therefore the chance of the two
or

given events both happening is -^.

And the same reasoning would apply if the numbers

were any others. Hence the rule is true always.
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EXAMPLE. Suppose it is estimated that the chance

that A can solve a certain problem is
g , and the chance

that B can solve it is -^ ;
let us consider what is the

chance of the problem being solved when they both try.

The problem will be solved, unless they both fail.

Now the chance that A fails is
3

: and the chance

that B fails is -^ .

Therefore the chance that both fail is177v f\v

3 12 36*

The chance that this should not be so, is

1
7

&amp;gt;r

29

86
a
86-

This is, therefore, the chance that the problem gets

solved.

In the case just considered, four results were possible,

viz. :

(1) That A and B should both succeed :

(2) ,, A should succeed and B fail :

(3) ,, A should fail and B succeed :

(4) A and B should botfh fail.

We may calculate the chance of these four events

separately. Thus we have

2 1
Chance of A s success = ~

,
of A & failure = 5 ;

o o

5 7
,, I&amp;gt; s success = r^, of Z&amp;gt; s failure = ^
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Therefore, by the rule

(1) Chance that A and B both succeed

= 2
x

5 ._ 10.
3 12 36

(2) Chance that A succeeds and B fails

= 2
x

7 ._ 14.
3 12 36

(3) Chance that A fails and B succeeds

= l
&amp;gt;

A - A .

3 12 36
*

(4) Chance that A and B both fail

1
x

7 = -7

3 12 36*

We observe that

10
+

14
+

*
+

7 = 36 =
36 36 36 36 36

&quot;

or the sum of the four probabilities is unity, as it ought
to be, since it is certain that one of the four results

must happen.

Further, we notice that the problem will be solved if

any of the first thr^e events out of (1), (2), (3) and (4)

occur. Hence the chance of the problem being solved,

might have been obtained by adding together the sep

arate probabilities of these three events. Thus

10 14 5 = 29

86 86 36 36

or the probability is
-^r , as before.
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It may be said that on an average

Ten persons will die in the next ten years :

out of every 62 whose present age is 30,

45 40,

35 50,

25 60.

We may apply such results as these to the solution

of questions affecting Insurances and Life Annuities.

Question. What are the odds against a person aged

thirty living till he is sixty ?

Answer. The chance that he dies between thirty

and forty is -^ ; that he lives to forty and dies between

forty and fifty is -^
x

;
that he lives to fifty and dies

between fifty and sixty is ||
x
||

x . Therefore the

chance that he dies between thirty and sixty is

10 52 10 52 35 10 149

62
+

62
*

45
+

62 45 35
C L

279

Hence the odds are 149 to 130, or about 8 to 7

against his living to be sixty.

Question. What are the odds against a person at

the age of forty living for thirty years?

Answer. Proceeding as in the last question, we find

the chance of his dying within thirty years to be

10 35 10 35 25 10
Qr _2_

45 45 35 45* 35 25 3
*
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Therefore the odds are two to one against his living

for thirty years.

Question. What is the probability that two persons,

A and B, aged respectively thirty and forty, will be

alive ten years hence ?

Answer. The chance of A dying in the next ten

years is -^ ,
and the chance of his living

-

. So the

chance of B dying within ten years is ^ ,
and the

chance of his living is
-jg

.

Therefore the chance that A and B will be both

alive is

52 85 182

62 45
r

279

Question. If it be eight to seven against a person

who is now thirty years old living till he is sixty, and

two to one against a person who is now forty living till

he is seventy ;
find the probability that one at least of

these persons will be alive thirty years hence.

Answer. One at least will be living unless both be

dead. The chance that the first be dead is y6 ,
and the

chance that the second be dead is
3

: therefore the

chance that both be dead is ^ x -_
, or .,- , and the

chance that this should not be so, or that one at least

16

4y
, ,. . -, 16 29
be alive is 1 -

,
or
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RULE VII.

If there be two events which are not independent, the

chance that they should both happen is the product of

the chance that the first should happen, and the chance

that when the first has happened the second should

happen also.

For instance, suppose we are asked what is the

probability of drawing first a consonant and then a

vowel, when two letters are drawn at random out of

an alphabet of twenty consonants and six vowels.

The second event is dependent on the first
;

for if a

consonant be drawn the first time, there are twenty-five

letters left, of which six are vowels, and the chance that

the second letter should be a vowel is -^; but if a

vowel be drawn the first time, there are twenty-five

letters left, of which five are vowels, and the chance

that the second letter should be a vowel is -^ .

According to the rule, however, we have to multiply

the chance of the first event, which is
-g, by the

chance of the second event happening when the first

has already happened, which is therefore -~
,
and thus

we obtain the result

20 6 12

26 25
Cl&amp;gt;

65*

The truth of this result may be seen in another way.

It is possible to select two letters in order, out of the

alphabet, in 26 x 25 ways (Choice, Rule IV.), and all
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these are equally likely. But we can select two letters

so that the first is a consonant and the second a vowel

in only 20 x 6 ways (Choice, Kule I). Hence when

two letters are drawn in order, the chance that the first

is a consonant and the second a vowel is (as before)

20 x 6 12
/yw

26 x 25 65*

Indeed it will appear that this rule follows directly

from the preceding one ; for, since we have only to find

the chance that both events should happen, we have not

to do with the second event at all, except in the case

when the first has happened. The probability of the

double event must therefore be the same as if the

chance of the second were always what it is when the

first has happened (since we are not concerned with the

case when the first has not happened). But if the

chance of the second event can be treated as if it were

always the same, without reference to the first event, it

is to all intents and purposes independent of the first,

and Eule VI. is therefore applicable.

Question. One purse contains five sovereigns and

four shillings ; another contains five sovereigns and

three shillings. One purse is taken at random and a

coin drawn out. What is the chance that it be a

sovereign ?

Answer. The chance that the first purse be selected

is
)
and if it be selected, the chance that the coin be
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a sovereign is
9

: hence the chance that the coin drawn

out be one of the sovereigns out of the first purse is

Similarly the chance that it be one of the sovereigns

out of the second purse is

1 5
5_

2 8 16

Hence the whole chance of drawing a sovereign is

5 5
or

85

18 16 144

Question. What is the expectation from the drawing

of the coin in the last question ?

Qt

Answer. The chance that it is a sovereign is :TTT,

and therefore the expectation from the chance of draw-

. . 85 f n 1700 ,.,,.

ing a sovereign is ^ of a pound, or -^ shillings.

If the coin drawn be not a sovereign, it must be a

shilling, therefore the chance of drawing a shilling

must be 1 - ^ ,
or ^ (Kule . I.) Hence the expecta

tion from the chance of drawing a shilling is ^ of a

shilling. Therefore the whole expectation from the

drawing is

1700 ,
j&amp;gt;9

1759

144
r
144

C
144

shillings, or 12s. 2T\d.
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Question. What would have been the chance of

drawing a sovereign if all the coins in the last case

had been in one bag, and what would have been the

expectation ?

Ansiver. There would have been ten sovereigns

and seven shillings in the bag; therefore, the chance

of drawing a sovereign would have been
^-,

and the

chance of drawing a shilling
-~

(Rule I.) The expec-

pectation would therefore have been

200 7 207

TT +
17

or
-ir

shillings, or 12s. 2T
2

Td.

The chance of drawing a sovereign is therefore in

this case a little less, and the whole expectation very

slightly less than in the former case.

Question. There are three parcels of books in

another room, and a particular book is in one of them.

The odds that it is in one particular parcel are three to

two ;
but if not in that parcel, it is equally likely to be

in either of the others. If I send for this parcel, giving

a description of it, and the odds that I get the one I

describe are two to one, what is my chance of getting

the book ?

Answer. The chance of getting the parcel described

is
|,

and the chance that the book is in it is
5 ;
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therefore, the chance of getting the book in the

described parcel is
g

x ^ or -^ .

The chance of getting a parcel not described is

-,
and the chance that the book is in it is ^ ;

therefore, the chance of getting the book in a parcel

not described is ^
x -

,
or -^ ...

Therefore, the, whole chance of getting the book at

all is
-jg-

+
-jg , or -^ ; or the odds are eight to seven

against getting it.

Question. In a purse are ten coins, of which nine

are shillings and one is a sovereign; in another are

ten coins, all of which are shillings. Nine coins are

taken out of the former purse and put into the latter,

and then nine coins are taken from the latter and

put into the former. A person may now take which

ever purse he pleases ; which should he select ?

Answer. Since each purse contains the same num
ber of coins, he ought to choose that which is the more

likely to contain the sovereign. Now the sovereign can

only be in the second bag, provided both the following

events have taken place, viz.

(1) That the sovereign was among the nine coins

taken out of the first bag and put into the

second.

(2) That it was not among the nine coins taken

out of the second bag and put into the first.
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Now the chance of (1) is
j^, and when (1) has hap

pened the chance of (2) is
||j-; therefore, the chance of

both happening is -^ x -^ , or -^ . This, therefore

is the chance that the sovereign is in the second bag,

and therefore (Eule I.) the chance that it is in the

first is 1 - or
-J-. Hence, the first bag ought to

be chosen in preference to the other.

EULE VIII.

The chance that a series of events should all happen
is the continued product of the chance that the first

should happen, the chance that (when it has happened}
then the second should happen, the chance that then the

third should happen, and so on.

This is a simple extension of the last rule. For

suppose there be four events, and let ^ be the chance

that the first should happen, and when the first has
o

happened, let
-g
be the chance that the second should

happen, and when these have happened, let
g

be the

chance that the third should happen, and when these

have happened, let
-g

be the chance that the fourth

should happen ; by Rule VII., the chance that the first

-JO o

and second should both happen is
2

x
4 ,

or
g

. We
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iay now treat this as a single event, and then, again

applying the same rule, we get |
x

|,
or

||-
as the

chance that the first, second, and third should all

happen. Treating this compound event as one event,

15

64
we can again apply the same rule, and obtain -j x

-g.

or
25(3

as the chance that all the four events should

happen. Thus the chance of all the events is

1351
2

X
4

X
8

X V
the continued product of all the given chances.

Question. There are three independent events whose231
several chances are 3 , g , ^ . What is the chance

that one of them at least will happen ?

Answer. One at least will happen, unless all fail.121 1
The chance of all failing is ^ X ^ x ~, or -^ .

d O A J.O

1 14
Hence the required chance is 1 -

,
or -

.

15 15

Question. There are three independent events

whose several chances are
3, ^, ^. What is the

chance that exactly one of them should happen ?

Answer. The chance that the first should happen

and the others fail is

__ __ __ __
&quot;3&quot;

x y x y or
so
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So the chance that the second should happen and the

others fail is

A x 1 x 1, or A.
5 3 2 30

And the chance that the third should happen and the

others fail is

1 x 1 x 1, or A.
2 3 5 30

Hence, the chance that one of these should occur

that is, that exactly one of the three events should

happen is432 9 3
- + - + , or , or .

30 30 30 30 10

Question. When six coins are tossed, what is the

chance that one, and only one, will turn up head ?

Answer. The chance that the first should turn up

head is
g,

and the chance that the others should turn

up tail is
2

for each of them. Therefore, the chance

that the first should turn up head and the rest tail is

JL X !x !x Ixlxl, orX
2 2 2 2 2 2 64

And there will be a similar chance that the second

should alone turn up head, or that the third should

alone turn up head, and so on.
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Hence, the whole chance of some one, and only one,

turning up head is

1_ + JL JL JL + JL + JL or~
64 64 64 64 64 64* 64*

Question. When six coins are tossed, what is the

chance that at least one will turn up head ?

Answer. The chance that all should turn up tail is

x x x x x JL
, or .

2 2 2 2 2 2 64

The chance that this should not he so, or that at least

one head should turn up, is (Kule II.)

1 63

Question. A person throws three dice, what are the

respective chances that they should fall all alike, only

two alike, or all different ?

Ansiver. The chance that the second should fall

the same as the first is
g,

and the chance that the

third should also fall the same is
g. Hence, the

chance that all three fall alike is

1 x A, or 1.
6: 6 36

The chance that the second should fall as the first,

and that the third should fall different, is155
x or

;

6 6 36
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and there is the same chance that the second and third

should be alike, and the first different ; or that the first

and third should he alike, and the second different.

Hence, the chance that some two should he alike, and

the others different, is

A + A + A, or I5
.

36 36 36 36

The chance that the second should be different from

the first is
g,

and the chance that the third should be

different from either is
g. Hence, the chance that all

three are different is

,
.

6 6 86

Therefore, the three chances required are
-^, -^r, -^

respectively, their sum being unity, since the dice must

certainly fall in some one of the three ways.

Question. A person throws three dice, and is to

receive six shillings if they all turn up alike, four

shillings if two only turn up alike, and three shillings

if all turn up different, what is his expectation ?

Answer. Referring to the last question, the chance

of all turning upjjjgffgsnt
is -^ ; his expectation from

this event is therefore -^ of six shillings, or two pence.

The chance of two only turning up alike is
gg-

or -^

and his expectation from this event is therefore
-jg-
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of four shillings, or twenty pence. The chance of all

turning up different is -^ or
&amp;lt;,,

and his expectation

from this event is therefore 9
of three shillings, or

twenty pence. Therefore his whole expectation is

2 + 20 + 20, or 42 pence, or three shillings and

sixpence.

We shall find the following notation very con

venient :

The symbol 3
2 means 3 x 3, or 9 :

5
2 means 5 x 5, or 25 :

5
3 means 5 x 5 x 5, or 125 :

2
4 means 2 x 2 x 2 x 2, or 16 :

2
5 means 2 x 2 x 2 x 2 x 2, or 32 :

and so on, whatever he the numbers ;
the small figure

above the line denoting the number of times the other

number is to be repeated, and the sign of multiplication

being understood before every repetition.2228aSo

and so on.

|

4 _8 X 888_81.-

4
X

4
X

4 4
&quot;

256

Question. A person goes on throwing a single die

until it turns up ace. What is the chance (1) that he

will have to make at least ten throws ; (2) that he will

have to make exactly ten throws ?
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Answer. (1) The chance that he fails at any
5

particular trial to throw an ace is -~- . The chance

that he should fail the first nine times (by Rule VIII.)

/5\
e

18
(

. This, therefore, is the probability that he

will have to throw at least ten times.

/5\
9

(2) Since ~ is the chance that he fails the

first nine times, and -^ the chance that he succeeds
D

/5V 1
the next time, therefore by Rule VII., Igj

x
^g&quot;

is the chance that he will have to throw exactly ten

times.

Question. A die is to be thrown once by each of

four persons, A, B, C, D, in order, and the first of

them who throws an ace is to receive a prize. Find

their respective chances, and the chance that the prize

will not be won at all.

Answer. Since A has the first throw, he wins if he

throws an ace
;
his chance is therefore

g.

So B wins provided A fails and he succeeds. The

chance of A failing is
^,

and of B succeeding is
6

.

Therefore J5 s chance of winning is

5 l A
6
X

6
r

36
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So C wins provided A and B both fail, and he

succeeds. The chance of A and B both failing is

6
x

g ,
or

-gg- ; and then the chance of C succeeding

is
g

. Therefore O s chance of winning is

25 1 j^
36

X
6

CT
216

So D wins provided A, B, and C all fail, and he

succeeds. The chance of A, B, and C all failing is

g
x x ^ ,

or
-g^g- j

a*id then the chance of D

succeeding is
6

. Therefore Z) s chance of winning is

125 1 125

216
X

6
&amp;gt;r

1296*

The prize is not won at all, provided all four fail to

throw an ace. The chance that this should be the

case is 5555 6256666 1296

Question. Two persons, A and B, throw alternately

with a single die, and he who first throws an ace is to

receive a prize of 1. What are their respective

expectations ?

Answer. The chance that the prize should be won

at the first throw, is
g

:

at the second throw, is x :
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at the third throw, is x

/5V 1
at the fourth throw, is I 1 x :

\6/ 6

/5V 1
at the fifth throw, is -5 x ~ :

\6/ 6

/5V 1
at the sixth throw, is [ 5 I x 5 :

\o/ b

and so on.

But the first, third, and fifth, &c., throws belong to

A, and the second, fourth, sixth, &c., belong to B.

Hence A 1

a chance of winning is

1 /5V 1 /5V 1
&c .

6 \6j 6 \6) 6

and jB s chance is

5 1 /5V 1 /5V 1 o

6-6 +
VBJ 6

+
lej 6

+ &C ;

that is, B s chance is equal to ^. s multiplied by |.

Hence -B s expectation is
g

of A &, or B s is to A a

in the ratio of five to six. But their expectations must
f*

together amount to 1. Hence A s expectation is ^y

of a pound, and JB s
-^-

of a pound.

Question. What is the chance that a person with

two dice will throw aces exactly four times in six trials ?
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Answer. The chance of throwing aces at any par

ticular trial is -^ ,
and the chance of failing is ^-

Hence the chance of succeeding at four assigned trials,

/ 1 Y /35\
2

and failing at the other two is ^ X ^ . But
\db/ \ow

aces will be thrown exactly four times if they be thrown

at any set of four trials which might be asssigned out

of the six trials, and if they fail at the remaining two.

And (Choice, Kule IX.) it is possible to assign four out

of six in
, or fifteen ways. Hence the chance

1.2.3.4

required is fifteen times the chance of succeeding in

four assigned trials, and failing at the other two.

Therefore it is

1 V x (
35 V x 15 or

6125
x x Lb or

36 J V 36 J 725594112

therefore the odds are more than 100,000 to 1 against

the event.

Question. If on an average nine ships out of ten

return safe to port, what is the chance that out of five

ships expected, at least three will arrive ?

Answer. The chance that any particular ship
Q

returns is ^. The chance that any particular set

/ 9 \
3

of three ships should all arrive is 1
.57? ) &quot;j

and the
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(1

^ 2

Therefore the chance that a particular set of three

/ 9 \ 3
/ 1 \

2
729

should alone arrive is , or ---.

And out of five ships a set of three can be selected in

1~2~S
or ^ ways. Hence the chance that some one

of these sets of three should alone arrive is

79,Q 79Q
I -^J *

*
1,1 I -*-J

___ y* TO f)1*
B

100000 10000

This is therefore the chance that exactly three ships

should arrive.

Similarly the chance that any particular set of

/9V 1 6561
four should alone arrive is 1 ^ x ^ ,

or -

and the chance that some one of the five possible sets

, ,, . 6561
, K 32805

of four should alone arrive is ^^^ x 5
,
or --

100000 100000

This is therefore the chance that exactly four ships

should arrive.

And the chance that all the five should - arrive is

9_\*
59049

16;
r
100000

But the chance that at least three should arrive is

the chance that either three exactly, or four exactly,

or five exactly should arrive : and is therefore the
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sum of the several chances of these exact numbers

arriving : that is, the required chance is

7290 32805 59049 99144 12393

100000 100000 100000
r
100000

&quot;

&quot;12500

*

Question. A and B play at a game which cannot be

drawn, and on an average A wins three games out of

five. What is the chance that A should win at least

three games out of the first five ?

Answer. The chance that A wins three assigned

/3\
3

/2\
2 108

games, and B the other two, is I -=
} {-} or ^77?.

\O/ w/ dl^O

But the three may be assigned in
j^g &amp;gt;

or 1 wavs

(Choice Rule IX.). Hence the chance that A should

win some three games and B the other two is

108 , 1080

3125 3125

Similarly the chance that A should win some four

games and B the other one is

162
x 5 or

81

3125 3125

And the chance that A should win all five games is

243

5J
r
3125
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Therefore the chance that A wins either three, or four,

or all out of the first five games is

1080 810 243 ._ 2133

3125
&quot;

3125 3125
&quot;

3l25

or the odds are rather more than two to one in J. s

favour.

EULE IX.

If a doubtful event can happen in a number of differ

ent ways, any accession of knowledge concerning the

event which changes the probability of its happening

will change, in the same ratio, the probability of any

particular way of its happening.

It follows from the axiom that the probability of the

event happening at all must be equal to the sum of the

probabilities of its happening in the several ways.

First, suppose for simplicity that all the ways are

equally likely. Let there be seven ways, and let the

chance of each one severally occurring be ^ : then the

chance of the event happening at all is seven times

this, or ~.
But suppose that our knowledge is increased by the

information that the event happens nine times out of

ten, or by such other information as brings our estimate

of its probability up to ^ instead of
-^,

thus increasing

the probability in the ratio of seven to nine.
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It is still true that there are only seven ways of the

event happening, all of which are equally likely : hence

the probability of the event happening in any particular

one of these ways is ^
of

-^,
or -^ , with our new in

formation. Hence our information concerning the

event, has increased the chance of its happening in an179
assigned way from -^ or -^ to

-^-,
that is, it has in

creased it in the ratio of seven to nine, the same ratio

in which the probability of the event itself was increased.

And the same argument would hold if the numbers

were any others, and therefore the rule is true, provided

all the ways of the event happening are equally probable.

Secondly, suppose the ways are not equally probable.

We may in this case regard them as groups of subsidiary

ways, which would be equally probable. Then, as we

have shewn, the chance of each one of these subsidiary

ways would be increased (or decreased) in the same

ratio as the chance of the event itself, and therefore the

sum of the chances of any group of these subsidiary

ways would be changed in the same ratio.

For instance, if the event could happen in any one

of three ways, whose respective chances were
g-, g, ^

or
-jj, -jg-, -jg ,

we might divide the first of these ways

into four subsidiary ways, the next into two ways, and

the other into three ways, and the chance of each of

these subsidiary ways would be ^ . If therefore, by

an accession of knowledge, the chance of the whole

event were diminished in the ratio of three to two, each
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subsidiary way of the event s happening would have a

diminished probability of
g

of ^, or
-yg-,

and the prob

abilities of the three given ways would become respec-423 211
tively, -jj, -jg, -jg- , or

^, g, g
: that is, they would be

diminished in the same ratio as the chance of the event

itself.

Thus we see that the rule is true always.

Question. A bag contains five balls, which are

known to be either all black or all white and both

these are equally probable. A white ball is dropped
into the bag, and then a ball is drawn out at random

and found to be white. What is now the chance that

the original balls were all white ?

Answer. The probabilities are here affected by the

observed event that a ball drawn out at random proved
to be white.

We will first calculate the probabilities before this

event was observed (which we will call a priori proba

bilities), and then consider how they are affected by
the accession of knowledge produced by the observation

of the event. (Probabilities modified by this knowledge

may be distinguished as a posteriori probabilities.)

The event might happen in two ways ; either by the

balls having been all white, and any one of them being

drawn, or by the five original balls having been black,

the new one alone white, and this one drawn.

The a priori probability that all are white is | ,
and

then the chance of drawing a white ball is 1 (or
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certainty). Hence the chance of the event happening

in this way is
2

x 1
, or ^

So the a priori probability that the first five were

black is ^ &amp;gt;

and then the chance of drawing a white

ball is | . Hence the chance of the event happening

in this way is
^

x
g &amp;gt;

or
&quot;^

Therefore the whole a priori chance of the event

happening is \ + ^-, or ^-.

But when the ball is drawn and observed to be white,

this knowledge immediately increases the chance from

^ to 1 (or certainty) : that is, it increases the chance

in the ratio of 7 to 12. Therefore, by Rule IX., the

chances of the event happening in the several ways

are increased in the same ratio.

Hence the a posteriori chance of the event having

happened in the first way is ^
x ~Y &amp;gt;

or
7

an&amp;lt;^ ^e

a posteriori chance of its having happened in the

second way is -^ x
-y- , or

^
. Or the chance of the

original balls having been all white is now
-^ ,

and the

chance of their having been all black is y.

Question. A penny is tossed ten times in suc

cession, and always falls head. Supposing that one

penny in every million that are coined has two

heads, what is the chance that the penny in question

has two heads?
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Answer. The penny has either two heads or a head

and a tail : and the respective chances of these two
. . I

-,
999999 T ,, n

cases a priori are ^^ and
1000000

. In the first

case the chance that head should fall ten times in

succession is unity; in the second case it is
(--) ,

or

jo^-.
Therefore we have a priori,

(1) the chance that there should be two heads,

and head should fall ten times is
-

100QOOO
:

(2) the chance that there should be head and

tail, and head should fall ten times is

and the chance that from one or
1024000000

*

other the same result should happen is

1 999999 1001023

1000000 1024000000 1024000000

But after our knowledge is augmented by the obser

vation of the fact that the penny falls head ten times

in succession, this latter chance becomes unity, that
., T ii- T j i 1024000000 TT /-n ,

is, it becomes multiplied by 1001093
- Hence (Rule

IX.) the chances (1) and (2) become multiplied in the

same ratio. Therefore we have a posteriori,

(1) the chance that there should be two heads,

and head should fall ten times is

1024000000 1024
lAniAOO 9

1000000 1001023 1001023
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(2) The chance that there should be head and

tail, and head should fall ten times is

999999 1024000000 999999

1024000000 1001023 1001023*

The required chance (after the observed event) is

consequently

1024 1
, or rather more than --7^ .

1001023
&quot;

1000

Question. A purse contains ten coins, each of

which is either a sovereign or a shilling : a coin is

drawn and found to be a sovereign, what is the chance

that this is the only sovereign ?

Answer. A priori, the coin drawn was equally

likely to be a sovereign or a shilling, therefore the

chance of its being a sovereign was
-^

.

A posteriori, the chance of its being a sovereign is

unity: or the chance is doubled by the observation of

the event. Therefore (Rule IX.) the chance of any

particular way in which a sovereign might be drawn

is also doubled.

Now the chance that there was only one sovereign

was a priori

10
or

1024

and in this case the chance of drawing a sovereign

would be -

.
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Hence the chance that there should be only one

sovereign, and that it should be drawn was a priori

jo_ x A J_
1024 10 1024*

And the a posteriori chance that a sovereign should

be drawn in this way is the double of this : i. e.,

or
5l2

w^cn is therefore the required chance.

Question. A purse contains ten coins, which are

either sovereigns or shillings, and all possible numbers

of each are equally likely : a coin is drawn and found to

be a sovereign, what is the chance that this is the only

sovereign ?

Answer. A priori, the coin drawn was equally

likely to be a sovereign or a shilling, therefore the

chance of its being a sovereign was ^

A posteriorly the chance of its being a sovereign is

unity : or the chance is doubled by the observation of

the event.

Therefore (Rule IX.) the chance of any particular

way in which a sovereign might be drawn is also

doubled.

Now, a priori, eleven cases were equally probable,

viz., that there should be

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 sovereigns.

10, 9, 8, 7/6, 5, 4, 3, 2, 1, shillings.

Therefore the chance of there being exactly one
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sovereign was ^-, and in this case the chance of drawing
i

a sovereign was -^ .

Hence the chance that there should be only one

sovereign, and that it should be drawn was, a priori,

ii
x

16
or no *

And the a posteriori chance that a sovereign should

be drawn in this way is the double of this, that is,

^ or
-gg-,

which is, therefore, the chance required.

Question. Keference is made to a year which con

tained fifty-three Sundays, and was not the last year of

a century. What are the odds against its being a leap-

year?

Answer. Of the ninety-nine years, excluding the

last in any century, twenty-four are leap-years. Hence,

before we consider the fact that the year in question

contained fifty-three Sundays, the a priori chance that
o

it was a leap-year is -^ ,
and that it was not a leap-

25

year -^ .

The chance that a leap-year has fifty-three Sundays

is
7 ,

and the chance that another year has fifty-three

Sundays is ~
.
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Hence the chance that the year in question should he

a leap-year, and have fifty-three Sundays, is

8 2 16

33
X

7
r
231

And-the chance that it should not he a leap-year, and

yet have fifty-three Sundays, is

25
x

*
or

25

33 7 231

Hence the whole a priori probability that the year

should have fifty-three Sundays, is

!. 2 41_
231 231 231

But a posteriori this chance becomes certainty, or the
231

probability gets multiplied by -^ . Hence also the

probability that the fifty-three Sundays resulted from a

leap-year is multiplied in the same ratio, and becomes

JL6^
231 16

231 41 41

and the chance that it is not a leap-year becomes

25
x ?31 or

25

231 41 41

Thus the odds are now 25 to 16 against the year

in question being a leap-year.

Question. A, B, C were entered for a race, and

their respective chances of winning were estimated at

IT IT Tf * ^u^ circumstances come to our knowledge
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in favour of A, which raise his chance to ^; what are

now the chances in favour of B and C respectively ?

Answer. A could lose in two ways, viz., either by

B winning or by C winning, and the respective chances

of his losing in these ways were a priori -^j
and

-yj-i

and the chance of his losing at all was -yp But after

our accession of knowledge the chance of his losing

at all becomes ^ *na^ ig
&amp;gt;

it becomes diminished in

the ratio of 18 : 11. Hence the chance of either way

in which he might lose is diminished in the same

ratio. Therefore the chance of B winning is now

11

18

and of C winning

5 11 5

n x
is

or
is-

These are therefore the required chances.

Question. One of a pack of fifty-two cards has

been removed; from the remainder of the pack two

cards are drawn and are found to be spades ; find

the chance that the missing card is a spade.

Answer. A priori, the chance of the missing card

being a spade is
^,

and the chance that then two cards

drawn at random should be both spades is rr^, or
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Hence the chance that the missing card should be a

spade, and two spades be drawn is

! x _132_ 1!
4 2550 850*

The chance of the missing card being not a spade is

o

, and the chance that then two spades should be

drawn is or &amp;lt;. Hence the chance that the

missing card should be not a spade, and two spades

be drawn, is

3
x

156
or -??-

4 2550 850

Therefore the chance that in one way or the other

two spades should be drawn is

11 39 50 1

850
&quot;

850 850 17*

But after the observation of the event this chance

becomes certainty, or becomes multiplied by 17.

Therefore the chance of either way from which the

result might occur is increased in the same ratio.

So the chance that the given card was a spade

becomes a posteriori,

* - -

Questions as to the credibility of the testimony of

witnesses will depend for their solution upon the last

rule, and may be answered in a manner similar to that
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of the questions just considered. In most questions of

this class, the testimony given, or the assertions made,

constitute a phenomenon which might have occurred

whether the event reported occurred or not, or in what

soever manner it occurred. We may first investigate

the a priori probabilities of such testimony being given,

on the several hypotheses possible with respect to the

occurrence of the event, and by summing them we may
deduce the a priori probability of the testimony being

given at all. If we then take into consideration the

fact that the testimony has been given, this accession

of knowledge raises the last probability into certainty,

and therefore increases it in a definite ratio, which can

be calculated. In the same ratio (by Rule IX.) must

the probabilities be increased of the several ways in

which the testimony may have been generated, or in

which the event in question may have happened. Thus

we obtain the a posteriori and final probability of any

assigned manner in which the event could possibly have

occurred. A few examples will fully illustrate this.

Question. A speaks truth three times out of four,

B four times out of five ; they agree in asserting that

from a bag containing nine balls, all of different colours,

a white ball has been drawn ; shew that the probability
96

that this is true is -^ .

Answer. We will consider those chances as a priori,

which are independent of the knowledge that A and B
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make the report in question, and those as a posteriori

which are subsequent to this knowledge.

The a priori chance that a white ball should be

drawn is ^ ,
and in this case the chance .that A and B

should both assert it, is ^ x -
;
hence the chance that

A and B should both truly assert a white ball to be

drawn, is a priori,134 1

9
:

4
:

5
r
l5

The a priori chance that a white ball should not be
Q

drawn is
g,

the chance that A should make a false

report is ^ ,
and that he should select the white ball

out of the eight which might be falsely asserted to have

come up is
g ;

hence in this case the chance that he

asserts that the white is drawn is ~

8
x ^ , and the

chance that B should make the same assertion is
g
x

g
I

therefore the chance that A and B should both falselj

assert a white ball to be drawn is

Ixixixlxi, !98485 1440

Consequently the a priori chance that they both assen

either truly or falsely that a white ball should b&amp;lt;

drawn is

JL +
1

.
97

15 1440
C

&quot;

1440



EXAMPLES OF TESTIMONY. 131

But a posteriori this chance becomes certainty, or it

becomes multiplied by -^ . Hence the chance of each

way in which they may make the assertion, is multi

plied in the same ratio. Therefore, a posteriori, the

chance that they make the assertion truly is

_!_
1440 96

.

15 97 97

and the chance that they make it falsely is

1
x 144? or 1

1440 97 97

Question. A gives a true report four times out of

five, B three times out of five, and C five times out of

seven. If B and C agree in reporting that an experi

ment failed which A reports to have succeeded, what is

the chance that the experiment succeeded ?

Ansiver. The chance that the given reports should

be made upon the experiment having succeeded is

tl 4 2 2 16
v v v or

2
&quot;

5
&quot;

5
*

1 350

The chance that the given reports should be made on

the experiment having failed is

1 1 8 5
. 16_

2 5 5 7
*

350*

The a priori chance that in one way or other the

given reports should be made is

I6 11 or *1
350 350 350
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But, a posteriori, this is certain, or the chance is
QCA

multiplied by -^ . Hence, also, the chance of each

way in which the reports could be made is multiplied
, 350
bv si-

Therefore, a posteriori, the chance that the experi

ment succeeded is

16^ 350 16

350
X

31
r
31

We will conclude this chapter with some illustrations

of the principles of probability, drawn from the game
of whist.

This game is played with a pack of fifty-two cards,

consisting of four suits of thirteen cards, marked differ

ently. The cards are all dealt out to four players,

of whom two and two are partners, so that each has

thirteen cards. One of the dealer s cards is turned

up, and the suit to which this card belongs is called

trumps. Four particular cards in this suit the ace,

king, queen, and knave are called honours.

It follows, from Rule IV., that the chance that the

turned up card is an honour is
-j^r,

and that it is not

an honour is ^-.Io

Question. What is the chance that each party in

the game should have two honours?

Answer. Besides the turned up card, there are

fifty-one cards, of which twenty-five belong to the
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dealer and his partner, and twenty-six to their ad

versaries.

First, Suppose the turned up card is an honour.

The chance of this is -^.
Then the chance that one

other honour should be among the twenty-five, and the

remaining two among the twenty-six, is

3
25 26 25.
51

*

50 49

therefore the chance that the turned up card should be

an honour, and the honours equally divided, is

o 25 26 25
4_

100

51 &quot;50 49 13
r
833*

Secondly, Suppose the turned up card is not an
Q

honour. The chance of this is -^ Then the chance

that two of the honours should be among the twenty-

five, and the remaining two among the twenty- six, is

4.3 25 24 26 25
.

1 . 2 51 50 49 48

therefore the chance that the turned up card should not

be an honour, and the honours be equally divided, is

6
25 24 26 25

_9^
225

51 50 49 48 13
r
833

Hence the whole chance that the honours should be

equally divided is

100 225 325

833
&quot;

833 833
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In the same manner we may write down almost at

sight the chances of the occurrence of other arrange

ments of the cards. We give a few examples :

1. If an honour turns up, the respective chances

that the dealer and his partner have between them

exactly one, two, three, or four honours, are respectively

26.25.24
3

25.26.25
3

25.24.26 25.24.23
.

. 51.50.49 51.50.49 51.50.49 51.50.49

312 975 936 276
or

2499 2499 2499 2499

the sum of these fractions being unity, for one of the

four cases must certainly occur.

2. If an honour does not turn up, the respective

chances that the dealer and his partner have none, or

exactly one, tivo, three, or four honours, are

26.25.24.23 , 25.26.25.24
6

25.24.26.25

51.50.49.48
: &quot;

51.50.49.48 51.50.49.48

25.24.23.26 25.24.23.22
4.

51.50.49.48 51.50.49.48

299 1300 1950 1196 253
.

4998 4998 4998 4998 4998

the sum of these fractions being unity, for one of the

five cases must certainly occur.
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3. Before it is known whether an honour will turn

up, the respective chances that the dealer and his

partner have between them none, or exactly one, two,

three, or four honours, are

207 1092 1950 1404
_845_ .

4998 4998 4998 4998 4998

the sum of the fractions being unity.

Hence, speaking approximately, we may expect that

on the average, for every one hundred times the cards

are dealt, the dealer and his partner will have four

honours seven times, and the other players four times.

The dealer and his partner will have three honours

twenty-eight times, and the other players twenty-two

times. And each party will have two honours the

remaining thirty-nine times.

4. The chance that each of the four players should

have one honour is

.., 4.12.13
3

|3.13
3

either _!= or L. ,

51.50.49.48 51.50.49

(which happen to be equal) according as the turned up
card is not, or is, an honour. Before the turned up
card be seen, the chance is

M2.1B
3

+ A L8 - 138
or

9633

13 51.50.49.48 13
&quot;

51.50.49 249900*
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5. If an honour turns up, the respective chances

that the dealer should hold exactly one, two, three, or

four honours are

39.38.37 3 12.39.38 3 12.11.39 12.11.10.

51.50.49 1
X
51.50.49 1

X
51.50.49 51.50.49

54834 53352 15444 1320
or

124950 124950 124950 124950*

The sum of these fractions is unity, it being certain

that the dealer has at least one honour.

6. If an honour does not turn up, the respective

chances that the dealer should hold none, or exactly

one, two, three, or four honours, are

39.38.37.36 , 12.39.38.37
6

12.11.39.38
&quot;

51.50.49.48
&quot;

51.50.49.48 51.50.49.48

4
12.11.10.39 12.11.10.9*

or

51.50.49.48 51.50.49.48

82251 109668 48906 8580 465

249900 249900 249900 249900 249900*

The sum of these fractions is unity, since one of the

five cases must certainly occur.

7. Before it is known whether an honour will turn

up, the respective chances that the dealer should hold
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none, or exactly one, or two, or three, or four honours

are

56943 109668 66690 15444 1155

249900 249900 249900 249900 249900

the sum of these fractions being unity.

8. If an honour turns up, the respective chances

that a player, who is not the dealer, should hold no

honour, or exactly one, or two, or three honours are

38.37.36
3

13.38.37
8

13.12.28 13.12.11.
51.50.49 5L5O49 5L5O49 51.50.49

50616 54834 17784 1716
or

124950 124950 124950 124950

the sum of these fractions being unity ; since the player

must certainly hold none, or one, or two, or three

honours.

9. If an honour does not turn up, the respective

chances that the player, who is not the dealer, should

hold none, or one, or two, or three, or four honours are

38.37.36.35 , 13.38.37.36
g

13.12.38.37

51.50.49.48
*

51.50.49.48 5T.50.49.48

4
13.12.11.38 13.12.11.10.
51.50.49.48 51.50.49.48

73815 109668 54834 10868 715
or

249900 249900 249900 249900 249900
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10. Before it is known whether an honour will

turn up, the respective chances that a player, who is

not the dealer, should hold none, or one, or two, or

three, or four honours are

82251 109668 48906
_8_580_ _495_

249900 249900 249900 249&amp;lt;TOO 249900

the sum of these fractions being unity.

EXAMPLES ON CHANCE.

1. If ten persons form a ring, what is the chance

that two assigned persons will be together ?

2. If ten persons stand in a line, what is the chance

that two assigned persons will stand together ?

3 If two letters are selected at random out of the

alphabet, what is the chance that both are vowels ?

4. Compare the chances of throwing four with one

die, eight with two dice, and twelve with three dice,

having two trials in each case.

5. A bag contains four red balls and two white.

Three times in succession a ball is drawn and replaced.

Find the chance that a red ball is drawn each time.

6. What is the probability of throwing not more

than eight in a single throw, with three dice ?
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7. A bag contains six black balls and one red. A

person is to draw them out in succession, and is to

receive a shilling for every ball he draws until he draws

the red one. What is his expectation ?

8. There are ten tickets, five of which are num

bered 1, 2, 3, 4, 5, and the other five are blank. What

is the probability of drawing a total of ten in three

trials, one ticket being drawn out and replaced at each

trial ?

9. What is the probability in the preceding question

if the tickets are not replaced ?

10. A person has ten coins, which he throws down

in succession. He is to receive one shilling if the first

falls head, two shillings more if the second also falls

head, four shillings more if the third also falls head,

and so on, the amount doubling each time
;
but as soon

as a coin falls tail, he ceases to receive anything. What

is the value of his expectation ?

11. A and B play at chess, and A wins on an

average two games out of three. Find the chance of A

winning four games out of the first six that are not

drawn.

12. A and B play at chess, and A wins on an

average five games out of nine. Find ^4 s chance of
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winning a majority (1) out of three games, (2) out of

nine games, (3) out of four games, drawn games not

being counted.

13. If the odds on every game between two players

are two to one in favour of the winner of the preceding

game, what is the chance that he who wins the first

game, shall win at least two out of the next three ?

14. A) B, C play at a game in which each has a

separate score, and the game is won by the player who

first scores two points. If the chances are respectively

2, 3, g,
that any point is scored by A, B, C, find the

respective chances of the three players winning the

game.

15. Assuming the results stated on page 99, what

are the odds against a person aged thirty living to be

seventy ?

16. What is the chance that three persons, aged

respectively 30, 40, and 50, will be all alive twenty

years hence, and what is the chance that at least two

of them will be alive ?

17. Four flies come into a room in which there are

four lumps of sugar, of different degrees of attractive

ness, proportional to the numbers 8, 9, 10, 12
; what is

the chance that the flies will all select different lumps ?
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18. Shew that the odds are eleven to three against

a month selected at random, containing portions of six

different weeks.

19. Reference is made to a month which contains

portions of six different weeks ;
what is the chance that

it contains thirty-one days ?

20. A living man is known to be between thirty and

fifty years old, and the odds are estimated at three to

two that he is over forty. If he now die, what do these

odds become ? (See page 99.)
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PERMUTATIONS AND COMBINATIONS TREATED
ALGEBRAICALLY.

DEFINITION I. A collection of r things in a par

ticular order is called a permutation or arrangement of

r things.

DEFINITION II. A collection of r things without

regard to order is called a combination or selection

of r things.

PEOPOSITION I.

If one operation can be performed in m ways, and

( when it lias been performed in any way) a second

operation can then be performed in n ways, there will

be mn ways of performing the two operations.

For if we confine our attention to the case in which

the former operation is performed in its first way, we

can associate with this way any of the n ways of per

forming the latter operation : and thus we shall have

n ways of performing the two operations, without re-



PERMUTATIONS AND COMBINATIONS. 143

cognising more than the first way of performing the

former one.

Then, if we consider the second way of performing

the former operation, we can associate with this way

any of the n ways of performing the latter operation :

and thus we shall have n ways of performing the two

operations, using only the second way of performing the

former one.

And so, corresponding to each of the m ways of

performing the former operation, we shall have n ways
of performing the two operations.

Hence, altogether we shall have m times n, or mn

ways of performing the two operations. Q. E. D.

PROPOSITION II.

If one operation can be performed in m ways, and

then a second can be performed in n ways, and then a

third in r ways, and then a fourth in s ways (and so

on), the, number of ways of performing all the opera

tions will be m x n x r x s x &c.

For by Prop. L, the first and second can be per

formed in mn ways.

Then if we treat these two as forming one complete

operation, and associate with it the third operation

(which can be performed in r ways), it follows again

from Prop. I., that both these can be performed in

mn x r different ways. That is, the first, second, and
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third of the original operations can be performed in

mnr ways.

Again if we treat these three as forming one complete

operation, and associate with it the fourth operation

(which can he performed in s ways), it follows again

from Prop. I. that both these can be performed in

mnr x s different ways. That is, the first, second,

third, and fourth operations can be performed in mnrs

ways, and so on. Q. E. D.

COROLLARY. If there be x operations which can be

performed successively in m ways each, then all can be

performed in mx
ways.

This follows from the proposition, by considering the

particular case in which m, n, r, s, &c., are all equal.

EXAMPLES. If there are p candidates for the office

of president, s candidates for that of secretary, and t

candidates for that of treasurer, the election of the

three officers can be made in pst different ways.

If a telegraph has m arms, and each arm is capable

of n different positions, including the position of rest,

the number of signals that can be made is nm -l.

If there be x things to be given to n persons, nx
will

represent the whole number of different ways in which

they may be given.
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PKOPOSITION III.

The number of different orders in which n different

things can be arranged is

n (n-l) (w-2) 3.2.1.

For having to arrange the n things, we may arrive

at any possible arrangement, by taking them one by

one, and placing them in the n places in order.

The first place may be filled up by any of the n

things : that is, it may be filled up in n different ways.

Then the second place may be filled up by any of

the n-l things that are left: that is, it may be filled

up in n-l different ways.

Then the third place may be filled up by any of the

w-2 things that are now left : that is, it may be filled

up in n- 2 different ways.

Similarly the fourth place may be filled up in n- 3

ways, the fifth in n4 ways, and so on ;
and ultimately

the last place may be filled up in only one way.

Hence (Prop. II.) the whole number of ways of

filling up all the places, or making the whole arrange

ment, is the continued product of all these numbers, or

n (n-l) (n-2) 3.2.1.

NOTE. The continued product of all integers from

1 to n is generally denoted by the symbol \n.
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COROLLARY. If n given things have to be devoted to

n given objects, one to each, the distribution can be

made in n ways.

EXAMPLES. The number of ways in which n persons

can stand in a row is |w. The number of ways in

which they can form a ring is \n
~

1. (See page 23.)

The number of ways in which m ladies and m gentle

men can form a ring, no two ladies being together,

is m, \m - 1.

PKOPOSITION IV.

Out of n different things, the number of ways in

which an arrangement of r things can be made is

n (n-l) (w-2) . . . to r factors,

or n (n-l) (n-%) . . . (n-r + 1).

For we have to fill up r different places in order with

some of the n given things. As in the last proposition,

the first place can be filled up in n ways, the second

in n-l ways, the third in ft-2 ways ;
and so on for all

the r places.

Hence the whole number of ways of filling up all

the r places, or making the required arrangement, is

n (n-l) (?i-2) ... to r factors.
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Or, observing that the

1st factor is n,

2nd n-1,
3rd n-2,
&c. &c.

rth ,, n-(r-l) or n-r + 1,

we may write the result,

n (w-1) (w-2) . . . (n-r + 1).

EXAMPLE. The number of times a company of mn
men can form a rectangular column, having m men in

front, so as to present a different front each time, is

mn (nut 1) (mn 2) .... (mn m -\- 1).

PROPOSITION V.

Out of n different things, when each may be repeated

as often as ive please, the number of ways in which an

arrangement of r things can be made is nr
.

For the first place can be filled up (as before) in n

ways, and when it is filled up the second place can also

be filled up in n ways (since we are not now precluded

from repeating the selection already made) ;
and so the

third can be filled up in n ways, and so on, for all the

r places.

Hence (Prop. II., Cor.) all the r places can be

filled up, or the whole arrangement can be made, in

nr
different ways.



148 APPENDIX.

EXAMPLE. In the ordinary scale of notation 10r - 1

different numbers can be made, each consisting of not

more than r figures.

PKOPOSITION VI.

The number of ways in ivhich x + y things can be

divided into two classes, so that one may contain x and

the other y things 9
is

\x + y

x
\y

For suppose N represents the number of ways in

which the division could be made
;
then the things in

the first class can be arranged in x different orders

(Prop. III.), and the things in the second class in
\y_

different orders, and therefore the whole set of x + y

things can be arranged in x places of one class, and y

places of another class, in N . x . \y different ways

(Prop. II.). But this must be the same as the number

of ways in which the whole set of x + y things can be

arranged into any x + y different places, which, by

Prop. III., is \x + y. Hence we have the equation

or N

=
\z_+_y,

\x
+ y
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That is, the number of ways in which the required

division can be made is

y

which was to be proved.

PKOPOSITION VII.

The number of ivays in which x + y + z things can

be divided into three classes, so that they may contain

x, y, and z things severally, is

\x + y + z

\x_ \y I*

For, by Prop. VI., the x + y + z things can be

divided into two classes, containing x and y + z

things in

ways ; and then the class of y + z things can be sub

divided into two classes, containing y and z things in

\y + *

Tif&quot;

Therefore the three classes of x, y, z things can be

made in

\x + y + z \y__^ \x + y + z
or

x y + z
\y

z
\x \y \z_

ways (Prop. I.), which was to be proved.
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COROLLARY. We might similarly extend the reason

ing if there were any more classes. Thus, the number

of ways in ivliich v + w + x + y + z things can be divided

into jive classes, containing respectively v, w, x, y, z

things, is

\v + w + x + y + z

\v w x \y \z

EXAMPLES. The number of different ways in which

2w boys can divide themselves into two equal parties, to

play a game, is

The number of ways in which mn things can be

divided into m parcels, of n things each, is

mn

PEOPOSITION VIII.

The number of different orders in which n things can

be arranged, whereof p are all alike (of one sort}, q

all alike (of another sort), r all alike (of another

sortj, and the rest all different is

IP \q
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For the operation of making this arrangement may

be resolved into the several operations following :

(1) to divide the n places which have to be

filled up into sets of p places, q places, r places, and

n-p-q-r places respectively:

(2) to place the p things all alike in the set of

p places, the q things all alike in the set of q places,

the r things all alike in the set of r places :

(3) to arrange the remaining n-p-q-r things

which are all different in the remaining set of n-p-q-r

places.

Now the operation (1) can be performed, by Prop.

VII., in

\n

\P \q
r \n-p-q-r

different ways : the operation (2) can be performed in

only one way: the operation (3), by Prop. III., in

\n-p-q-r ways.

Hence, (Prop. II.) the whole operation can be per

formed in

n-p-q- r
,
or 7

[

..

\p \q \r \npqr \p \q \r

different ways. Q. E. D.

COROLLARY. The same argument would apply if

the number of sets of things alike were any other than
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three. Thus, for instance, the number of orders in

which n things can be arranged) whereof p are alike,

q others alike, r others alike, s others alike, and t others

alike, is

\P | \r |s |*

EXAMPLE. If there be m copies of each of n

different volumes, the number of different orders in

which they can be arranged on one shelf is

PKOPOSITION IX.

Out of n different things, the number of different

ivays in which a selection of r tilings can be made, is

the same as the number of different ways in which a

selection of n-r things can be made, and is

r n-r

For either operation simply requires the n things to be

divided into two sets of r and nr things respectively,

whereof one set is to be taken and the other left.

Therefore (by the last proposition), whichever set be

rejected, the operation can be performed in

n

r n-r
different ways.
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The expression

\r n-r

may be written

n (n-1) (n-2) . ^ 3.2.1

r. (n-r) (n-r-1) . . . 3.2.1

or, dividing the numerator and denominator of the

fraction by all the successive integers from 1 to n-r,

n (n-1) (n-2) (n-r + 1)

This result might have been obtained quite inde

pendently, as follows :

Let x represent the number of ways of making a

selection of r things out of n things. The r things

thus selected might be arranged (Prop. III.) in \r

different orders. Therefore (Prop. I.) x x r is the

number of ways in which r things can be selected out

of n things, and arranged in order. But by Prop. IV.

this can be done in n (n-1) (n-2) (n-r + 1)

different ways. Therefore we have the equation

x x
|r
= n(n-l) (n-2) (n-r+1),

which gives us

n (n-1) (n-2) (n-r+1)
x = -

\r

the required expression.
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EXAMPLES. The number of ways in which a com

mittee of p liberals and q conservatives can be selected

out of m liberals and n conservatives, is

m
\P \m-p \q \n-q

If there be n-l sets containing 2&, 3&, 4a, . . (n-l)a

things respectively, the number of ways in which a

selection can be made, consisting of a things out of

each set, is

|8a \4a
x ---= x _~&quot; x &c. . . . x

la la a

\na

or

PROPOSITION X.

The ivhole number of ways in which a selection can

be made out of n different things is 2
n

1.

For each thing can be either taken or left ;
that is, it

can disposed of in two ways. Therefore (Prop. II.,

Cor.) all the things can be disposed of in 2
n

ways.

This, however, includes the case in which all the

things are rejected, which is inadmissible ; therefore

the whole number of admissible ways is 2
W- 1. Q. E. p.
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PROPOSITION XI.

The whole number of ways in which a selection

can be made out of p + q + r + &c., things, whereof

p are all alike (of one sortj, q all alike (of another

sortj, r all alike (of another sort), dc., is

(p + l)(q + 1) (r + 1) dc. - 1.

For, of the set of p things all alike, we may take

either or 1 or 2 or 3 or &c. or p, and reject all

the rest; that is, the p things can be disposed of in

p + 1 ways. Similarly, the q things can be disposed of

in q + 1 ways, the r things in r -f- 1 ways, and so on.

Hence (Kule II.) all the things can be disposed of in

(p + I) (q + 1) (r + 1) ways. This, how

ever, includes the case in which all the things are

rejected, which is inadmissible ; therefore the whole

number of admissible ways is

(P + 1) (q + 1) (r + 1) . . . . dc. - 1.

Q. E. D.

EXAMPLE. If there be m sorts of things and n

things of each sort, the number of ways in which a

selection can be made from them is (n + l)
m

1.

If there be m sorts of things, and one thing of the

first sort, two of the second, three of the third, and so

on, the number of ways in which a selection can be

made from them is w + 1 - 1.
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PEOPOSITION XII.

A NEW PROOF OF THE BINOMIAL THEOREM.

The Binomial Theorem was first published by Sir

Isaac Newton, who was Lucasian Professor of Mathe

matics at Cambridge from 1669 to 1702. It furnishes

a ready method of raising any given binomial ex

pression to any required power.

We proceed to consider a question of combinations,

and, from our results, to deduce a proof of the binomial

theorem, applicable to all cases in which the exponent

is a positive integer.

i. A painter has x + y colours, of which x

are dark and y are light colours. He has to paint n

croquet-balls (all of different sizes), each ball being one

colour, but as many balls as he pleases the same colour.

In how many ways can he paint the balls ?

Answer I. Since each ball can be painted with any

one of the x + y colours, and there are n balls, the

whole number of different ways in which the work can

be done is (by Prop. II., Cor.)

(x + y)\

Answer II. If he paint all the balls dark, each can

be painted in x different ways ; therefore the work can

be done in x
n
different ways.

If he paint one light and the rest dark, the selection

of the one to be light can be made in n ways; then the
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n 1 can be painted dark in xn
~ l

ways, and the one

light in y ways; therefore the work can be done in

n xn
~ l

y, or, as we will write it for the sake of

symmetry,

different ways.

If he paint two light and the rest dark, the selection

of the two to be light can be made in

n(n-~L)

1.2

ways (Prop. IX.), then the ?i-2 can be painted dark in

x
n ~ 2

ways, and the two light in y* ways : therefore the

work can be done in

n_ 2 o

ways.

If he paint three light and the rest dark, the selec

tion of the three to be light can be made in

n(-J)(n-2)
1.2.3

ways (Prop. IX.), then the n-3 can be painted dark in

x
n ~*

ways, and the three light in y
3

ways : therefore the

work can be done in

n- ,-..

1.2.3

ways.
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And so on; until finally we consider the case in which

all are light, in which case the work can be done in y
n

ways.

Hence the whole number of ways in which the work

can be done is the sum of the series

which will have n + 1 terms altogether.

The Binomial Theorem. The two answers to the

question just investigated must give the same result

numerically, or the two algebraical results must be

equal : therefore we have

/ \n n ,

n n-l ,
n (n ~^-} n-2 2

(x + y)
n = xn + - xn l

y +
V

12
xn 2

if

We are thus furnished with a formula by which we

can write down any power of a binomial expression,

as a series of terms, consisting of powers of the two

original terms. The statement of this formula is

called the Binomial Theorem.

EXAMPLES.

= a? -f Sofy + Sxy + y
3

.
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So, (a-Zb?

16 Z&amp;gt;

4
.

The theorem will hold equally if we have any two

fractions,
- and

T
-
suppose, instead of the numbers x

and 11. For

r\
n

(ps
+ qr\

n
(ps + qr)

n

9j \ qs ) (qs)
n

and since ps and qr are integers, we may apply the

theorem, and write

(ps + qr)
n =

(ps)
n + 1

+ &c. . . . + (qr)&quot;;

and therefore dividing by (qs)
n we have

P TY _ (P^&quot;
- nf v\&quot;

~
r n (n~ ]

_
1 ~T~ i \ _. /

ql^l\ql s^ 1.2

which shews that the expansion follows the same law

when any fractions are substituted for the terms x

and y.

EXAMPLES.

1 \

x
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_flY_ -,_4M 4.3/aV 4.3.2/W 4.3.2.1/aV

b)
~

l\b)
+

1.2\6y 1.2.3W 1A8.4\6/

*
4. ^Y-K + 3^y^u 8-2r^~To/ \ ct ~r-i\n I ttl T ct\ n

3/ 1-22; 1.2.3V3

It may here be observed that if x be a small fraction,

the powers #2

,
xz

, &c., will be smaller still, and will

rapidly become inconsiderable when the index is

increased. Hence, a few terms of the expansion

- n (n-1) (rc-2) ,

l 1.2.3

will give an approximately true value for (1 + x)
n
when

x is small compared with unity.

It is proved in treatises on algebra that the formula

of expansion

still holds when n is a fractional or negative index.

But in this case the series is interminable, and is only

of practical use when x is a proper fraction, when a

finite number of terms will give an approximate value.
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EXAMPLES.

To find the square root of \-x in ascending powers

of x.

We have

&c

- __ _ __ -*
2 1.2 V2y

&quot;

1.2.8W &quot;

1.2.8.4
&quot; c *

To find the square root of 2.

We have

98 100 _98 100/ 1 \

&quot;49&quot; 49*100 49 V 50/

Therefore,

50

But, as in the last example,

/1~T~:L_1 _ JL -1 fJLY- f Y_
V 50&quot; 100 L2UOOJ 1.2.8\10oJ

&quot;

- 1 - -01 - -00005 - -0000005 - -00000000625- &c.

= 9899494936

and therefore, multiplying by y
-v/2 = 1-414213562...

This is the readiest method of extracting the square

root of 2, when a very high degree of accuracy is

required. Very little labour would extend the result to

20 or 30 places of decimals. The binomial theorem
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may be similarly applied to find the square root of any

other number, or to find cube roots or any other roots.

Indeed when the fifth, seventh, or any higher root of

a number is required, this method is the only prac

ticable one, unless tables of logarithms are employed ;

and it has the advantage over the method by loga

rithms of bringing the result to any degree of accuracy

required.



APPENDIX II.

DISTKIBUTIONS.

Most of the questions of Permutations and Combina

tions which we have considered have involved the

division of a given series of things into two parts, one

part to he chosen, and the other rejected. The theorem

expressed arithmetically in Rule VI. (page 30), and

algebraically in Proposition VII. (page 149), is the

only one in which we have contemplated distribution

into more than two classes. But as the number of

things to be given to each class was in the terms of that

theorem assigned, the problem was reduced to a case of

successive selection, and was therefore classed with

other questions of combinations. But when the number

of elements to be distributed to each several class is

unassigned, and left to the exercise of a further choice,

the character of the problem is very much altered, and

the problem ranks among a large variety which we class

together as problems of Distribution.

Distribution is the separation of a series of elements

into a series of classes. The great variety that exists

among problems of distribution may be mostly traced

to five principal elements of distinction, which it will
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be well to consider in detail before enunciating the

propositions on which the solution of the problems will

depend.

I. The things to be distributed may be different or

indifferent. The number of ways of distributing five

gifts among three recipients, will greatly depend upon
whether the gifts are all alike or various. If they are

all alike (or, though unlike, yet indifferent as far as the

purposes of the problem are concerned), the only ques

tions will be (i.) whether we shall divide them into sets

of 2, 2, 1 or 3, 1, 1, and (ii.) how we shall assign the

three sets to the three individuals. If on the contrary

the five gifts are essentially different, as a, b, c, d, e, then

they may be divided into sets of 2, 2, 1 in 15 ways, and

into sets of 3, 1, 1 in 10 ways, and then we shall have

to assign the three sets which are in this case all

essentially different (because their component elements

are so), to the three individuals. In the first case, the

sets could be formed in 2 ways, and when formed in

either way they could be assigned in 3 ways, thus

giving a complete choice of 6 distributions. In the

second case, the sets could be formed in 25 ways, and

when formed in any way they could be assigned in 6

ways, thus giving a complete choice of 150 dis

tributions.

II. The classes into which the things are to be dis

tributed may be themselves different or indifferent. We
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here use the adjectives different or indifferent to qualify

the abstract classes regarded as ends or objects to which

the articles are to be devoted, without any reference to

a posteriori differences existing merely in differences of

distribution into the classes.

Where five gifts were to be distributed to three

recipients, the distinct personality of the three recipients

made the classes characteristically different, quite apart

from the consideration of the differences of the elements

which composed them. But if we had only to wrap up
five books in three different parcels, and no difference

of destination were assigned to the parcels, we should

speak of the parcels as indifferent. The problem would

be simply to divide the five things into three sets, with

out assigning to the sets any particular order. The

distribution could be made in 2 ways if the things

themselves were indifferent, and in 25 ways if they

were different.

III. The order of the things in the classes may be

different or indifferent, that is, the classes may contain

permutations or combinations. Of course this distinc

tion can only arise when the things themselves are

different, for we cannot recognise any order among
indifferent elements. We shall avoid confusion by dis

tinguishing arranged and unarranged classes respectively

as groups and parcels. If three men are to divide a

set of books amongst them, it is a case of division into

parcels, for it does not matter in what order or arrange-
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ment any particular man gets his books. But

if a series of flags are to be exhibited as a signal

on three masts, it is a case of division into groups,

for every different arrangement of the same flags

on any particular mast would constitute a different

signal.

IV. It may or may not be permissible to leave some

of the possible classes empty. It will entirely depend

upon the circumstances out of which the problem arises,

whether it shall be necessary to place at least one

element in every class, or whether some of them may
be left vacant ;

in fact, whether the number of classes

named in the problem is named as a limit not to be

transgressed, or as a condition to be exactly fulfilled.

If we are to distribute five gifts to three recipients, it

will probably be expected, and unless otherwise ex

pressly stated it will be implied, that no one goes away

empty. But if it be asked how many signals can be

displayed by the aid of five flags on a three-masted

ship, it will be necessary to include the signals which

could be given by placing all the flags on one mast, or

on two masts.

V. It may or may not be permissible to leave some

of the distributable things undistributed. This will be

illustrated by a comparison of the Propositions XXV.

and XXVI. below.
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Propositions XIII., XIV., XV., and XVI. apply to

the distribution of indifferent things.

The XVII. and following propositions embrace the

different cases which arise in the distribution of

different things.

The case in which the parcels are indifferent as well

as the things to be distributed into them, is reserved to

the last, as presenting peculiar difficulty. It will be

found treated of in Prop. XXVIII.

PROPOSITION XIII.

The number of ways in ivhich n indifferent things

can be distributed into r different parcels (blank lots

being inadmissible) is the number of combinations of

n 1 things taken r1 at a time.

For we may perform the operation by placing the n

things in a row, then placing r 1 points of partition

amongst them, and assigning the r parts thus created,

in order, to the r parcels in order.

Hence the number of ways is the number of ways

of placing r 1 points of partition in a selection

out of n~L intervals. Therefore it is the same as the

number of combinations of n 1 things taken r 1 at

a time. Q. E. D.

PROPOSITION XIV.

The number of ways in which n indifferent things
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can be distributed into r different parcels (blank lots

being admissible) is the number of combinations of

n-\-r 1 things taken r~L at a time.

For the distribution of n things, when blank lots are

admissible, is the same as the distribution of n + r

things when they are not admissible, since in the

latter case we have to place one thing in each of the r

parcels, and then to distribute the remainder as if

blank lots were admissible. Hence, writing n + r for

n in the result of Proposition XIII.
,
we obtain the

number required.

EXAMPLES. Twenty shots are to be fired; the work

. 19 . 18. 17
can be distributed among four guns m-^ ^ =- or

1 . -a . O

969 ways, without leaving any gun unemployed. Or,

neglecting this restriction, the work can be done in

23.22.21

1.2.3
or 1771 ways.

Again, five partners in a game require to score 36

to win. The number of ways in which they may share

this score (not all necessarily contributing), is

40.39.38.37
1.2.3.4

or 91390 different ways.

Again, in how many ways can five oranges be

distributed amongst seven boys? Evidently two or
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more of them will get none. The answer is 462, viz.,

11.10.9.8.7.6
1.2.3.4.5.6

PBOPOSITION XV.

The number of ways in which n indifferent things

can be distributed into r different parcels, no parcel to

contain less than q things, is the number of combina

tions of n l r(q l) things taken r at a time.

For if we first place q things in each of the r parcels

we shall have n qr things left, and it will only remain

to distribute them among the same r parcels according

to Proposition XIV., which shows that the number of

ways of making the distribution is the number of com

binations of n qr + r 1 things taken r at a time.

Q. E. D.

PKOPOSITION XVI.

The number of ways in which n indifferent things

can be distributed into r different parcels, no parcel to

contain less than q things, nor more than q+z 1

things is the coefficient of xn
~qr in the expansion of

I- of

For if we multiply together r factors, each repre

sented by
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we shall have in our result a term xn for every way in

which we can make up n by the addition of one index

q or q+ l or g+ 2 or &c., or q+z 1 from each of the

r factors. Hence we shall have xn as many times as

there are ways of distributing n into r parts, no part

less than q nor greater than q+zI. Therefore the

number of ways of so distributing n is the coefficient

of xn in the expansion of

or of xqr
(l+x+x*+...x

z-1

Y

which is the coefficient of x
n~qr in the expansion of

-xK

Q-E.D.

EXAMPLE. The number of ways in which four persons,

each throwing a single die once, can score 17 amongst

them is the coefficient of #17 4
in the expansion of

\l-x
Now

-&c.

And coefficient of x13 in the product

=
!J14.15.16-4.8.9.10+6.2.3.4J

= 104.
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PROPOSITION XVII.

The number of ways in which n different things can

be distributed into r different parcels is r
n

,
when blank

lots are admissible.

For each of the n different things can be assigned to

any one of the r parcels without thought of how the

others are disposed of. Hence the n things can be

(severally and) successively disposed of in r ways each,

and therefore (Choice, Rule II.) all can be disposed of in

r7* different ways. Q. E. D.

PROPOSITION XVIII.

When blank lots are not admissible) the number of

ways in which n different things can be distributed into

r different parcels is
[n_

times the coefficient of xn in the

expansion of (e
x
-l)

r
,

Let Nr denote the number of ways in which n things

can be distributed into r different parcels, blank lots

being inadmissible.

Then rNr-i will be the number of ways in which

the distribution might be made if one parcel were left

blank.

r (r 1)
So

-V~?| -ZVr-a will be the number of ways in which

the distribution might be made if two parcels were left

blank.

And so on,
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But we know that if any number of blank lots were

admissible, the distribution could be made in r
n
different

ways. Therefore

r
n =Nr +

|
AUi +

T

-^~- Nr., + &c. + rNlf

or, if we establish the convention that Np is always to

be replaced by Np) we may write

Similarly, (r-l)
n =

and so on.

Now multiply these equations in order by the coeffi

cients in the expansion of (1 x)
r
,
and add (having

regard to algebraical sign) ; then the first member of the

resulting equation will be

r
n
-^(r-l)

ra+ r(7
,

~
1)
(r-2)

n-&c. (tillit stops)
1 I. la

and the second member, since the sum of the coefficients

in the expansion of (1
-
x)

r
is zero, will be

{ (N+ 1) l}
r

or Nr or Nr . Therefore

Nr
= r

-_^(r-l)
n+

r

^^(r-2r-&c. till it stops.

that is, (Todhunter s Algebra, Art. 549.)

Nr
=

\n times the coefficient of xn in the expansion of

(e
x
-l)

r
. Q. E. D.

EXAMPLES. The number of ways in which five

different commissions can be executed by three mes

sengers is 3
5
or 243. But if no one of the messengers
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is to be unemployed, the number of ways will be [5

times the coefficient of x5
in the expansion of (e

x
I)

3
.

But

=^+F+?+-
Hence the number of ways will be _ x [5 or 150.

PKOPOSITION XIX.

The number of r-partitions of n different things, i. e.

the number of ways in which n different things can be

distributed into r indifferent parcels, ivith no blank lots,

is \n times the coefficient of x
n

in the expansion of

For every way of distributing the things into r indif

ferent parcels, must give rise to
\r ways of distributing

them when the parcels are different. Hence, if $r

denote the number of partitions, we have, by compa
rison with Prop. XVIII.,

=
\n times the coefficient of xn in the expansion of

(- iy

\r_
Q. E. D.
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EXAMPLE. To divide the letters a, b, c, d, e into

three parcels. The numher of ways will be
[5

times

the coefficient of x* in the expansion of (e
x

I)
3

-f-
[3 ;

that is (as in the last example), 5.4 x
^
= 25.

The twenty-five divisions are easily seen to be ten

such as abc, d, e, and fifteen such as ab, cd, e.

PKOPOSITION XX.

The total number of ways in which n different things

can be distributed into 1, 2, 3 ... or n indifferent parcels

/
is \n times the coefficient of x

n
in the expansion of .

t/

For with the notation, of preceding theorems, we have

$1 = I w times the coefficient of x
n
in

e
* ~~ 1

&amp;gt;

Li

f,= (*-!)

12

,= (-!) .

L5

and so on.

Therefore by addition

& + &+$.+ - (Ml it stops, i. e. ... JJ
is equal to \n times the coefficient of xn in the expan

sion of

e&amp;gt;-l (&amp;lt;?-!)* (e -iy~~ ~~ +
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this last series being carried to infinity if we please,

since the terms beyond the nttl do not involve xn} and

therefore the inclusion of them will not affect the

coefficient of x
n

.

But this series is the expansion of e
e ~

1, and the

coefficient of x
n
therein is the same as in the expansion

of e
eX ~*

or e
e
*

-f- e. Hence

&+,+.+ .+!.
is equal to \n times the coefficient of xn

in the expan

sion of J

e Q. E, D.

PROPOSITION XXI.

The number of ways in which n different things can

be arranged in r different groups (with no blank lots)

is

n I w 1

[
r

[r
1

For they can be arranged in one row in
\n ways, and

then the r l points of partition can be placed in a

\n- 1
selection of the n 1 intervals in L =-- ways.

\n-r\r-\

But the number of ways in which n things can be

arranged in r different groups must be the product of

these two numbers (Choice, Rule L), or

\n \nI
\n-r [r-1* Q. E. D.

N
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PROPOSITION XXII.

The number of ways in which n different things can

be arranged in r indifferent groups with no blank lots

is

\n\n-l

[r \nr [r
1

For it is plain that for any one arrangement in this

case we must have
[r arrangements when the groups

are not indifferent. Hence the result is p of that in

\r

Proposition XXI., or

lnln-1

\r \n
r \r \

Q. E. D.

PROPOSITION XXIII.

The total number of ivays in ivhich r different

arranged groups can be made out of m things all

different f
is the coefficient of xm

~T
in the expansion of

\m e
x

d-*)
blank groups being inadmissible.

For if we use n of the things at a time the groups

can be made (by Theorem XI.) in

?n n l

\mn \nr \r\
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ways. And n may have any value from r to 7??

inclusive. Hence the required number is

to m r + 1 terms k

which is equal to the coefficient of xm
~r

in the pro

duct of the two series

r r

|

?7i xm^ Imx-*-1

\m ,and ...+ ~ 1.=
1

L_
_|_ & c&amp;lt;j

\m r [m rl [m r 2

which are respectively the expansions of (\x)~
r
and

;

m e
x

. Hence the required number is the coefficient

of xm
~
T

in the expansion of

(l-x)
r

Q. E. D.

PROPOSITION XXIV.

The total number of ways in which r indiiferent

arranged groups can be made out of m tilings all

different is the coefficient of xm
~r

in the expansion of

[rn^e*

[r_(l-xY
blank lots being inadmissible.

This follows from the previous theorem, as Proposi
tion XXII. from Proposition XXI.



178 APPENDIX II.

PKOPOSITION XXV.

The number of ivays in which n different things can

be arranged in r different groups (blank groups being

admissible) is

[n+r-1

[r^T~
For they can be arranged in one row in

[n ways, and

then the r 1 points of partition can be placed in the

n+1 intervals (including the ends of the row) in

ways by Proposition XIV.

The number of ways required is the product of these

two numbers (Choice, Rule L), or

\n+r-l

Q. E. D.

PROPOSITION XXVI.

The total number of signals that can be made by

displaying arrangements out of m flags on a set of r

masts, where each mast will hold any number of flags,

is one less than the coefficient of x
m

in the expansion of

[m e
x

tt-*r
If we use all the r masts, the number of signals is
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(by Prop. XXIII.) the coefficient of xm
~
r

in the

expansion of

[m e
x

(!-)
\m e

xxr

K the coefficient of xm in expansion of L?__
a-*)

So, if we use r 1 given masts, the number of signals

I jft
X r1

is the coefficient of xm in the expansion of L
=

and the r1 masts can be selected in r ways, therefore

the number of signals

r I m e
x
x*~

l

the coefficient of xm in expansion of
^-.

b=._
r)

and so on for (r-2), (r 3), &c. masts. Hence, the

total number of signals, including the case when no

flag is hoisted is the coefficient of xm in the expan
sion of

or

or

to r+1 terms
}-,

Hence, excluding the case when no flag is hoisted,

the number of signals is one less than the coefficient

of x
m

in the expansion of

[m e
x

(l~x)
r

Q. E. D.
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PKOPOSITION XXVII.

To find the number of ways in which n indifferent

things can be distributed into r indifferent parcels (no

blank lotsj.

OB

To find the number of different r-partitions of n.

Let Pn,r denote the number of r-partitions of n, or

the number of ways of distributing n indifferent ele

ments into r indifferent parcels.

Suppose that in any distribution, x is the smallest

number found in any parcel. Then setting aside a

parcel which contains x, all the other parcels contain

not less than x, and therefore more than .7;-!. If we

place x 1 in each of these rl parcels, the distribution

can then be completed by distributing the remaining

n x (r !)(# l)or n 1 r(x 1) things among the

same r l parcels, and this can be done in Pn -i-r(X -\\ r-i

ways. In this way we shall obtain all the distributions,

by giving x successively all its possible values. But

since x is the smallest number found in any parcel, x

cannot be greater than the greatest integer in -.

Denote this integer by .. Then x must have all values

from 1 to this integer, and therefore

Pn,r
= -P-l r-l + Pr&amp;gt;-l-r, r-l + P*-i-*rt r-1 + - to - terms.



DISTRIBUTIONS. 181

Now it is plain that P
n&amp;gt;l

1 for all values of n.

n
Hence Pn,z=Pn-i,i+Pn-3,i+Pn-5,i+ ...to ~ terms

Again Pn3=Pn_

\n-l lw-4

... to 57 terms
d

l

n 7 In .

- + .- to L terms.
2

|

2

The summation will depend upon the form of n; thus,
2

If n= 6

12

n2-4
12

Therefore P
n&amp;gt;8

is always the integer nearest to =-5

whether in excess or defect.

This integer is conveniently denoted by the symbol

12

Again, Pn)
4=Pn-i,3+^-5.3+^-9 &amp;gt;3

+ ... to
Lj

terms

+ ... to -r, terms.
12 12 12
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The summation will depend upon the form of n : thus,

n3_|_3^2
If n= 12q then P

n&amp;gt;i

=
~^f~

w=12^+ l PM= jg-

^= 12^+ 2 PM~
r &quot;

144

144

P _^3+3rc^ 144

144

P^3-^ 2-*

144

144

144

144

144

Therefore PM is always the integer nearest to

when w is even, and the integer nearest to -

when n is odd : or, with the notation introduced above,
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n*+3n2
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144
when w is even :

144
when n is odd.

By a like process we may deduce successively Pn)5,

P
n&amp;gt;6 , &c., and thus we may find P

n&amp;gt;r

for any values of n

and r, although we cannot write down a general expres

sion for P
n&amp;gt;r

in any simple terms.

EXAMPLES. There are twelve 3-partitions of 12, viz.

11 10 147 237 336
129 156 246 345
138 228 255 444
There are fifteen 4-partitions of 12, viz.

1119
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To find the number of ^-partitions of 13.

We have P1W=P1M+PW
= 15+ 3

-18.

These eighteen partitions may be exhibited as follows

11119
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DERANGEMENTS

WHEN we place a series of elements in a particular

order we are said to arrange them. But if they have

been already arranged, or if they have a proper order

of their own, and we place them in other order, we are

said to derange them. Thus derangement implies a

previous arrangement in which each element had its

own proper place, either naturally belonging to it or

arbitrarily assigned to it.

The following Notation is useful :

It is proved, in treatises on algebra, that if e be the

base of Napierian logarithms then, whatever be the value

of x positive or negative,

e
x =l + x + f^-+*~+&c.

Lf L?

This series is continued to infinity, but by suffixing

an integer to e
n we obtain a symbol which conveniently

expresses the sum of the same series continued only as

far as the term in which that integer is the index of x.

Thus
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Let J denote the operation of changing any factorial

into the next inferior factorial, as \n into \n 1, or

\n 1 into [w 2. And let JJ or J2 indicate that the

operation is to be performed a second time upon the

result of the first, so that J2

operating on \n produces

\n 2, and so on.

Then J [n
=

\n
- 1

J2

[n
=

[n
- 2

J3

[n
= |n-3

Jr

[n
=

[n r

Thus we may write

[n.e
x=

[n + [n-La; +
n ~

1}
[n

= (1+
where it is understood that (l-\-xJ)

n
is to be expanded

by the law of the binomial theorem, and every term is

then to operate upon \n.

As a particular case we may write

1.^ = (l-J)\[n.
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PKOPOSITION XXVIII.

The number of derangements of a set of elements is

one less than the number ofpermutations of the elements.

For of all the permutations, one must give the proper

order of the elements, and all the rest must be derange

ments.

PKOPOSITION XXIX.

The number of icays in which a row. of n elements

may be so deranged that no element shall be in its

proper place is [n.e~
l
.

Let a, /3, y, .... x denote the n elements, and let N
represent the number of ways in which they can be

permuted when unrestricted by any condition.

Also let (A) express the condition that a is in its

proper place and (a) the condition that a is out of its

proper place. Let (B) and (b) denote the same conditions

with respect to |8 ;
and so on.

[With this notation N (ACdk) will stand for the words,
&quot; The number of permutations of the n things subject

to the conditions that a and y are in their proper places

and 8 and K not in their proper places&quot;}

Then we have

N =
[n

and N(A) = \n-l

But since every permutation must satisfy one and
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only one of the conditions expressed by (^4) and (a) it

follows that

N(A) + N(a) = N
therefore N(a) = [n \n 1

Now if we introduce the condition (B) our choice

will be the same as if /3 did not exist, and therefore the

same as if we had n 1 elements to deal with instead of

n elements. Hence writing n I for n we obtain from

the last equation

N(aB) = [n-l
-
[n-2

And by subtraction remembering that the conditions

(B) and (b) are complementary

N(ab) = [n
- 2 [n-l + [ro-2

Repeating our former operation, writing n 1 for n

on the introduction of the condition (C) we have

N(abC) ~ \n- 1 - 2[w-2 + |w-3

and by subtraction

A&quot;(a6c).
=

[w
- 8 [ro-1 + 3 [n-2

-
[w-8

Similarly

N (afccd)
=

[w
- 4 |n-l + 6 [ii-2

- 4 [ro-3 + \n-4
and so on, the coefficients following the same law as in

the Binomial theorem.

Hence finally,

N(abcd...k) = [n -n-
n(n-l)(n-2)

r

-^ 2 3
-

[n 6 +
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=M 1 ~i :T
+ lo~ [Q+ &C. to n + 1 terms.}

( \i Lg L J

=
[n.e~

1
. Q. E. D.

The student who is familiar with the use of symbols

of operation will arrange the foregoing proof briefly as

follows :

N=[n
N(A) = J[n

subtracting

N(a) = (l-J)[n
then N(aB)=J(l-J)[n
and subtracting

N(ab) = (l-

And so every introduction of a condition such as (A)

produces a factor of operation J, and every introduction

of a condition such as (a) produces a factor of operation

(1-J)
Hence N(abc...k) = (l-J)

n

[n
=

[n.e~\

ANOTHER PROOF OF PROPOSITION XXIX.

Let / denote the number of ways of deranging a set

of n elements so that no element may be in its proper

place.

Then the number of derangements so that exactly

r elements may be in their proper places will be
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since such derangements are obtained by first selecting

r elements to retain their proper places and then

deranging the remaining n r.

But all the \n permutations of the n elements must

be made up of those in which 0, 1, 2, &c., have their

proper places.

Hence

[ =/. +
&quot;

/ + -nlr /- + + n/, + 1

And, if we establish the convention that/
r
is always to

be replaced byfr we may write

[n= (/+!)&quot;

Similarly \n
- 1 = (/+ 1)&quot;

|n-a= (/+!)-
and so on.

Now multiply these equations in order by the coeffi

cients in the expansion of (1 x)
n
and add (having

regard to algebraical signs) and we obtain an equation

of which the first member is

n r n (n 1). r

[n + j \n
- I +

1.2
n 2 &c.

or [n \l - .

j
+ ,x ~&quot;

IQ + &c - to w + 1 terms. I

or
[w-e^&quot;

1

while the second member is , (/ + 1) 1
[

n
or f

n
which

by our convention represents jn

Therefore / =
[n.e^

1

Q. E. D.
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COROLLARY I. The number of ways in which n

elements can be deranged so that not any one of r

assigned elements may be in its proper place (the rest

being unrestricted) is

\n
-
[w 1 + \n

2 . . . [i
r

+ &c.
[2 ii(-!) |8(fi-l)(ft--.2)

to w+1 terms, r

This is established passim in the first proof of the

Proposition.

COROLLARY II. The number of derangements of

m-\-n elements so that m are displaced and n not

displaced is

COROLLARY III. If an arrangement of n elements

be re-arranged at random, the chance that no element

will be in its original position is e~*.

COROLLARY IV. If an arrangement of an infinite

number of elements be re-arranged at random the

chance that no element will be in its original position

is e
-1

or -.

EXAMPLE.- Suppose we have the four elements

o
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abed; the number of derangements, so that all may
be displaced, is by the proposition

1

2 6 24,

These nine derangements are as follows :

b d a c c a d b d c a b

bade c d b a d c b a

b c d a c d a b d a b c

If it be required to derange the same terms so that

two may remain in situ and two be displaced, the

number of derangements is, by Corollary II.

12J1 -1+|}=
6.

These six derangements are as follows :

a b d c a d c b a c b d

b a c d c b a d d b c a

PKOPOSITION XXX.

The number of ways of deranging a series of n terms

so that no term may be followed by the term which

originallyfollowed it is [n e n + \n 1 e~n-i

Let a, |8, y, . . .x represent the n terms. Then amongst

the \n arrangements of which the terms are capable

there will be \n 1 in which any assigned sequence

a/3 occurs : (for the arrangements will be obtained by

regarding a/3 as one term and then arranging it with

the remaining w-2 terms.) Similarly any two
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sequences which can consistently occur (as a/3, /3y, Or

a/3, yS)* will be found in [rc-2 different arrangements.

Any three consistent sequences will be found in

\n 8 different arrangements : and so on.

Hence there are [n arrangements altogether, among
which we should find

a/3 in \n 1 of them

/3y in \n-~L \n
- 2 more of them

yS in [n
1 2 [n

2 + [w
- 3 more

3 2
$e in [w

1 3 [w 2 + -. \n 3
|

w 4 more
-

JL ^ ~~ - &quot;

and so on for all the n 1 sequences. Therefore the

number of arrangements free from any of these

sequences is

. n(n l) r
~ w(ft l)(ft 2).- &c.

=
[n . e

71-1

or, adding and subtracting unity,

=
\n . e~

l + \n-l . e~
1^

Q. E. D.

The foregoing result may be written in very con

venient form by the use of the notation explained on

page 186. Thus

\n e~
l + [n-1 e^ = (l-J)

n

\n + (l-J^n-l
* Of course such sequences as a/3 ay could not consistently occur,

as a could not at the same time be followed by ft and y.
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or, since the operation (1 J)
n

is equivalent to the

operations (l-J)
n~l

(1-J)
- n-l - (l-J)

n~l

[n-l

Or we may establish the result in this form inde

pendently as follows.

PKOPOSITION XXXI (otherwise.)

The number of ways of deranging a series of n terms

so that no term may be followed by the term which

originally followed it, is (1 J&quot;)&quot;&quot;

1

\n

For there are \n arrangements of the n terms a, 0, y . . . *

and we should find

a/3 in J [n of them

/3y in (J-J
Z

) [n
or (1-J) J [n more of them

y& in (J-2J
2+J 3

) [n or (l-J)*J[n more:

and so on.

Hence the whole number of arrangements containing

at least one of the n 1 sequences a/3,/3y,y, ... IK is

and therefore the number of admissible arrangements is

(!-&amp;lt;/)&quot;-&amp;gt;

Q. E. D.
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COROLLARY. The number of derangements of a series

of n terms, free from any of r assigned sequences

(which might occur simultaneously in one arrangement)

is(l-J)
r

[n

EXAMPLE. Let us derange the series of four elements

abed so as to exclude the sequences ab be cd.

By the proposition the number of derangements is

[4
- 3 [3 + 3 [2

-
[1,

or 11.

And they are found on trial to be

acbd bdca cadb dbac

adcb lade chad dcba

Mac cbda dacb

PROPOSITION XXXII.

The number of ways of deranging the series of n

terms a, /3, y, . . . . *, *, so that none of the n sequences

/3, /3y, ... ix, xa may occur is

[n .

For, as before, there are [n arrangements of the n

terms, and

a/3 occurs in [n
- 1 of them,

|8y in [w
1 \n 2 more of them,

y& in [n
l - 2[w^2_ + fo 3 more,

and so on for all the n sequences, except that in the

case of the last one the final term [0 must be rejected
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since there cannot be any arrangements containing all

the n sequences.

Therefore the whole number of admissible arrange

ments is

[n n \n-l -{

-j

o~ [ft
-2 - &c. to n terms.

a result which may also be written

n(l-J)*~
l

\n-l

EXAMPLE. Let us derange the series of four elements

abed so as to exclude the sequences ab be cd da.

By the proposition the number of derangements is

f 1 1 _ 1)
L-

j II 12 [3 I

or ^ : an(^ *key are f und ^0 be

acbd bdca cadb dbac

adcb bade cbad dcba

PROPOSITION XXXIII.

If n terms be arranged in circular procession the

number of ways in which they can be deranged so that

no term may be followed by the term which originally

followed it, is

(1
1 ,

1 1 1)

-\n
~
n-l + [2 (w-2)

~
[3 (w-3)

&quot;* t
[j

For the whole number of arrangements of n things

in circular procession is \n 1 ; and the sequence
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a/3 occurs in |w-2 of them,

/3y in |n 2 -
[w 8 more,

y in [w
2 \n

3 + |n 4 more

and so on for all the n sequences, provided *we replace

|

-1 in the last term by unity. Hence the number of

arrangements free from any of these sequences is

|n-l -n [w-JJ +^7rV-3 - &c. to (w+1) terms.

Q. E. D.

If we establish the convention that J n

\n-~L
=

[
1 is

to be replaced by unity, the above series is seen to be

the algebraical expansion of (1- J)
n
\n l, in which

form the result is easily remembered.

EXAMPLES.

If n = 3, the number of derangements may be written

[2
-

8[1 + 3[0-1 = 1

or the only available derangement is the one in which

the order of the terms is reversed.

If n 5 we have

|4
- 5

[8 +10 [2
- 10

[1 + 5 [0
- 1 =8

If abode represent the original order the eight derange

ments may be exhibited as follows

acbed aebdc acedb aecbd adceb

adbec acebd aedcb
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If n = 6 the number of derangements is 36 : if n = 7

it is 229 : and if n = 11 it is 1214673. And always if

n be a prime number the number of derangements, with

2 added, is. a multiple of n.

In the foregoing propositions we have investigated

the number of ways of deranging groups of elements

subject to various laws. But as there can scarcely be a

limit to the variety of laws which might be proposed to

regulate the distribution in different cases, it would be

an endless task to undertake a strictly complete discus

sion of the subject, or to make our treatise exhaustive.

The cases which we have considered are those which

most obviously arise, and the methods which we have

applied to them will be easily adapted to a variety of

other cases, or will suggest other methods of still wider

applicability.
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ON THE DISADVANTAGE OF GAMBLING.

&quot;If (says Professor Rogers,) we are to understand

the very elements of political economy, we must get

rid of the impression, that if the contract be voluntary

and the service be mutual, one man s gain is another s

loss The real truth is exactly the reverse
; for

one man s gain in all acts of free exchange is another

man s
gain.*&quot;

A fair bargain is a mutual benefit to the

persons between whom it is made. If this were not so

all commerce would be immoral, for no man could seek

his own commercial profit without compassing the

injury of his neighbour and so violating the law of

civilised humanity.

But as a fair bargain is an advantage to both the

contracting parties, so, speaking generally, a fair wager
is a disadvantage to each party who enters into it. By
a fair wager, we mean one in which each party s stake

is equal to his mathematical expectation, calculated

according to the principles laid down in the chapter on

Chance : for instance, the wager is fair, if two men stake

* Manual of Political Economy, Oxford, 1868, p. 4.
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equal sums, and either is to take the whole stakes

according as a coin falls &quot;head&quot; or &quot;tail.&quot; It is a

common impression that such a wager as this, being

obviously of the same import to each contracting party,

can be neither an advantage nor a disadvantage to

either, and that consequently, any the slightest odds

must make it expedient for the party favoured by the

odds to enter into the wager. For instance, according

to this view, it must be decidedly expedient for any man

to stake a pound against a pound and a penny, (if he

can find any one foolish enough to give the odds of 241

to 240) that a coin will fall on an assigned side. Of

course a wager may be made on such unequal terms

that it may be decidedly expedient (from a selfish point

of view) for one party to enter into it, but it must then

be still more decidedly inexpedient for the other party.

We do not deny that a man who does not scruple to

take advantage of the ignorance or folly of another,

or to exert against his neighbour the intellectual

violence of superior knowledge or cunning,* may profit

ably enter into gambling speculations ; but we combat

the notion that there is a neutral advantage or dis

advantage in a fair wager, and that the contract to

play a game of pure chance for equal stakes, though it

be not expedient, cannot be branded as inexpedient,

and the delusion that, though no good be done, at least

* &quot; Thou wouldst not take, by force or stealth,

What is not lav/fully thy right ;

But in the race for power and wealth

No wrong is done by mental might !

&quot; Monsell.
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no harm is done. It is this notion which palliates

gambling. If it were only recognised that a fair wager

were disadvantageous to each contracting party, it would

be regarded as disreputable for one man to cast this

disadvantage on another, even though he were accepting

the like himself. But at present the evil motives

which may lead men to gamble are covered by a

reputable cloak, in the charitable hope that each

party may be entering into a contract not disadvan

tageous to the other.

Every prospect of receiving anything of value, how

ever doubtful the prospect be, we must regard as having

itself some value. If a man have a chance, however

small, of receiving 100, he will not relinquish his

title to it without receiving something in return. He

may take 75, or 50, or it may be 2 or 1 for his

chance, according to his estimate of the probability of

his getting the prize, but if he has any chance at all,

his prospect must be worth something. When a man

makes a wager, he is buying such a prospect as this.

He pays down a certain sum of money and receives in

return a doubtful prospect of a larger sum. Whether

his bargain be advantageous or disadvantageous will

depend upon whether the sum that he pays down is

worth to him less or more than the prospect which he

buys, and we can only decide this by considering

whether he would gain or lose in the long run, if he

repeated his operation on the same terms for a very

great number of times. It is our object to prove
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that if the sum which he pay be the mathematical

expectation of his prospect (and this is plainly the only

sum which he can fairly pay in justice to the other

contracting party), the bargain is disadvantageous to

him : in the long run he will lose by the repetition of

it.

For instance : if there be twenty tickets in a lottery

for a prize which is worth 1, the value of the expecta

tion of a man who holds one ticket is one shilling;

and it is plain that the organiser of the lottery cannot

without loss sell the tickets for less than one shilling

each : the fair price of a ticket is one shilling. But

according to our principle, it is inexpedient for a man

to give so much as one shilling for a ticket
; and though

the twenty tickets together are undoubtedly worth

twenty shillings, yet a single ticket is no more worth a

shilling than a single glove is, by itself, worth half the

price of a pair of gloves.

The twenty tickets in the hands of the original

holder were worth a pound, but when distributed to

twenty men (we say) they are not worth twenty shillings.

The establishment of the lottery to effect the distribu

tion was therefore inexpedient; the distribution itself

was on the whole disadvantageous.

But if the distribution of the tickets be disadvan

tageous, their collection must be in the same degree

advantageous. If therefore there exist in the nature of

things such chances as those represented by the tickets

of which we have spoken, it will be a beneficial and
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profitable act to collect those chances together. And

this is precisely what an Insurance Company does, when

it issues a policy undertaking to indemnify an owner

against accidents which may befal his property. The

man who insures his house against fire exchanges an

uncertain position for a certain one. The man who

buys a lottery ticket exchanges a certain position for an

uncertain one. Insurance is the reverse of gambling,

and is only wise in that gambling is foolish. The

consent of the civilised world to the proposition that

insurance is expedient is a tacit acknowledgment of

the truth of the cognate proposition that gambling is

inexpedient.

This will be seen more clearly by the consideration

of an example.

Suppose that out of every twenty ships which make a

particular voyage one is lost, and the remaining nine

teen come safely to port. And suppose there is one

ship making this voyage which with its cargo is worth

20,000. The value of the owner s expectation, ac

cording to our chapter on Chance, is just 19,000.

But, according to the hypothesis which we are illustrat

ing, it would be expedient for the owner to take a less

sum than this for his expectation, say 19,000 x.

He may in consequence prudently pay 1,000+2 to an

Insurance Company in return for a guarantee that his

20,000 shall be secured him in full. And the Insu

rance Company, collecting together a great number of

such risks, may profitably accept the bargain, their
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profit being entirely dependent on the fact that the

shipowner is ready to accept for his contingent pros

pect an uncontingent sum, which is less than his

mathematical expectation. For if the Insurance Com

pany were to insure all the ships, securing to each

owner his mathematical expectation, their own mathe

matical expectation of profit would be zero. They could

only hope that the premiums received would in the

long run balance the claims upon them, without

leaving any profit to remunerate them for their trouble.

Thus, the continued existence of Insurance Companies

commercially successful is a standing witness to the

fact, that a prudent man will commute a contingent

prospect of value for less than the sum measured by

his mathematical expectation.

But some one will object that mathematics must be

utterly at fault, if an expectation is always worth less

than the value which mathematics would assign to it.

Not so. But if the mathematical result seems to con

tradict the conclusions of experience, or to violate the

plain dicta of prudence, it is not that the mathematics

have failed, but that two different problems have been

confused. The mathematician solves one problem : the

speculator seizes the result, and expects it to answer to

another. It is not a true statement of the principle we

have been enforcing to say that an expectation is

always worth less than the value which mathematics

would assign to it. The price which a speculator may
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prudently give for a contingent prospect of value

depends always upon the amount of money he has to

speculate with. But that which is commonly called

the mathematical expectation of the contingency is the

price which a man of infinite means might prudently

pay for it. Therefore, the true statement of the case is

rather that an expectation is worth less to a man of

limited means, than the value which mathematics

assign to the like expectation to a man whose means

are unlimited.

The value of an expectation to any particular man, is

the stake which he may prudently lay down for the

sake of the expectation. That this depends upon the

man s means is evident, as soon as we consider an

extreme case. However foolish it may be for a man

who is possessed of thousands of pounds to make a bet

of 100, we are sensible that if the same bet were made

by a man who possessed nothing in the world but the

100 which he risked the folly would be very much

greater. Or, however advantageous it might be for the

rich man to stake 100 in a speculative venture, it

would scarcely be prudent for the poor man to do the

same, and to run a risk of absolute ruin.

But the reader will expect that we appeal not to his

sense of what is prudent, but that we rather shew him,

by close mathematical reasoning, how the value of an

expectation depends upon the means of the speculator.

The question whether a particular speculation is
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advantageous or disadvantageous to a particular man,

can only be tested by considering whether, if he repeat

the operation continually, he will in the end gain or

lose. But what is to be understood by repeating the

operation? If a boy, who has only a shilling, tosses

for sixpence, he is staking half his property. Sup

pose he wins, and so becomes the possessor of eighteen-

pence. If we now speak of his repeating the operation,

we may mean either of two things (1), that he is again

to stake sixpence ; or (2), that he is again to stake half

his property, which will now be ninepence. So also, if

he loses, there will be the like ambiguity as to whether

he is to repeat the operation by staking his remaining

sixpence, or only by staking threepence.

And so always, as soon as we take into consideration

the funds at the disposal of a speculator, the stake

which he lays down in any venture may be considered

either as an absolute amount, or as a certain fraction

of his entire fund. And by the repetition of his ven

ture, we may either understand that he stakes the same

sum again and again, or that he always stakes the same

fraction of the fund which he holds at the time of

making the venture.

But, whichever of these views we take, we are led

mathematically to the same conclusion, that a fair

wager is disadvantageous to a man whose means are

limited, because, if it be repeated indefinitely, he will

in the long run be the loser.
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First, Suppose that the same sum is repeatedly

staked, and for the sake of simplicity suppose the sum

to be gained the same as the sum staked, as in the case

of an even bet. The speculator repeatedly stakes (say)

a pound against a pound, so that every venture issues

in making him either a pound richer or a pound poorer,

each of these results being equally likely. If he con

tinue his operation a great number of times, the balance

of profit and loss will be continually varying. At one

time he may have gained a considerable number of

pounds, at another time he may find himself much

poorer than when he began. And if his means were

unlimited, he might go on gambling for ever; and

there would be no reason to expect him to leave off

a loser rather than a gainer. But his means being

limited, this equilibrium of chances is disturbed. He

has only (say) n pounds to begin with. The balance of

profit and loss may oscillate : now he may have gained

x pounds, and now he may have lost y pounds, and the

balance may again recoil ; but as soon as ever a loss of

n pounds is reached, there is no more hope of restitu

tion, for he has nothing more to venture. If his funds

had been unlimited, there would have been an equal

prospect of his leaving off richer or poorer, but the

limitation of his resources, being apt to put a sudden

termination on his operations at a time when the balance

is most against him, interferes with the equality of

chances, and occasions a presumption that he will leave

off the loser. If, indeed, he were gambling with another

p
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speculator whose means were also limited, we should

have to set against the prospect of the game abruptly

terminating against him the counter prospect of its

abruptly terminating in his favour by the exhaustion of

the other man s funds; but, in fact, no one is restricted

to gambling with one single opponent ; the speculator

deals with the public at large, with a world whose

resources are practically unlimited. There is a prospect

that his operations may terminate to his own disadvan

tage, through his having nothing more to stake ; but

there is no prospect that it will terminate to his

advantage through the exhaustion of the resources of

the world. Every one who gambles is carrying on an

unequal warfare : he is ranged with a restricted capital

against an adversary whose means are infinite.

We have said there is a chance of the man being

ruined who with limited means continues to stake a

pound against a pound in a fair wager. But if he

prolong his play indefinitely, the chance of his being

ruined is not distinguishable from certainty : it ap

proaches nearer to certainty than by any assignable

difference ;
and the chance that he should escape ruin

is less than any assignable chance. Thus :

PKOPOSITION XXXIII.

If a man with limited funds repeatedly stake a pound

against a pound, in a fair wager &amp;gt;

the chance of his

not being ultimately ruined is less than any assignable

chance.



THE DISADVANTAGE OF GAMBLING. 209

Suppose liis original funds are n pounds: and let

RT represent the chance of his being ultimately ruined

when he has x pounds in hand. At the same time

lRx will be the chance that he will escape ruin.

If at any time he have only one pound, the next

venture must either ruin him or double his fund : the

chance of either of these issues is one-half, and in the

former case his chance of ruin is R
Q
or unity, in the

latter case it is R
2
. Hence,

or
&quot;

2E, = 1 + -Ra

Similarly if at any time he have x pounds a single

venture must leave him with either x1 or #4-1 and

so we have

This being true for all values of x it follows that

l,R l}
R2t R3

.... are in arithmetical progression, and

if we write

B, = i-p
then Rn

= 1np
and if we take the case of any one else whose funds are

z pounds his chance of ruin is Rz 1zp, where p is

a constant quantity whatever be the value of z. But

however great a man s funds may be, his chance of ruin

can never be negative. Hence, however great a value

we assign to z
y
R

s can never be less than zero, and there

fore zp (which is 1 Rt) can never be greater than unity.
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Therefore p is not greater than *
,
and np not greater

than - however great z may be. But by choosing z

large enough while n is finite we may make less than

any assignable quantity, and therefore np which is

invariable and not greater than - must be less than any

assignable quantity. Therefore 1 - Rn is less than any

assignable quantity, and therefore the chance that the

man is ultimately ruined differs from certainty by less

than any assignable chance, and the chance that he

escapes ruin is less than any assignable chance.

Q. E. D.

The next proposition is not necessary to our present

argument, but is added here as illustrating this part of

the subject. It reduces to the case of the foregoing

proposition when /*
= 1.

PROPOSITION XXXIV.

If a man with limited funds (n) repeatedly stake a

pound against a pound in a wager in which the odds

on every venture are p : 1 in his favour, the chance that

he is ultimately ruined is -^.

Arguing as in the last proposition, and observing

that the chances of his losing or winning any venture are

1 I*

respectively
and -, we have

+
1+jM,
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or (!+/*) ^ = 1+1^

whence JR. - 72
2
= -

(1 -ft,)

jLfc

So
2
- R

3
= *

(1^-iy

and generally R^-R* = (R^-R^

Therefore by continued multiplication

frc-i
- Rx

=
-*=i (1-^)

Now give x successively all the values from 1 to n and

add, and we get

But Rn can be zero only when n is infinite, therefore

,.,.3
and consequently

i
-|

T&quot;&amp;gt;

-|
*

n
~ ~

[S

or

Q. E. D.
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To resume our argument : Proposition XXXIII.

shews that, on the strictest mathematical principles,

a man wfto continues to stake a constant sum in a

fair wager must expect to be ruined in the end.

Such a course of gambling unregulated by any con

sideration of the gambler s disposable fund, until the

absolute exhaustion of the fund places a peremptory
limit on his play is therefore manifestly inexpedient.

And if it be inexpedient in the long run, it cannot be

expedient even when carried to any limited extent.

For any limited extent of play which may be thought

to be expedient, must leave the gambler either poorer

or richer than he was at first. If it leave him poorer,

it cannot be expedient. If it leave him richer, the

same course of gambling which was expedient at first,

must be, a fortiori, expedient now ; and, therefore, it

cannot be expedient for him to stop. Hence, no play,

consisting of simple repetitions of the same venture,

which is proved to be inexpedient in the long run, can

be expedient when confined to any assignable extent.

But it may be said that a wise speculator will always

regulate his ventures by his means. If, when he

posesses a shilling, he stakes sixpence, the repetition

of the act is not to be sought for in a constant

staking of sixpence, but in a constant staking of half

his fund. And if he always keeps as much as he

stakes, it is plain that he can never be absolutely

ruined. The reasoning of Proposition XXXIII. will

not now apply. We must seek some other proof, if
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we would show that a course of gambling thus regulated

is in the end disadvantageous.

The proof is easily found. Let us suppose that the

man having n pounds begins as before by staking one

pound against one pound in an even wager. He stakes

one nth part of his fund, and he continues the operation

by staking every time not one pound but always one

nth part of the fund which he then possesses. Every

venture which issues in his favour increases his fund

by one nth part, or multiplies it by (l + H. Every

venture which turns out against him decreases his fund

by one nth part, or multiplies it by f 1 -
-J.

A

favourable and an unfavourable issue will therefore

together multiply his fund by

that is, the two operations will decrease his fund by

I )th part: and this will be the case whether the

\n*J
*

gain precede or follow the loss. Thus a gain and a loss

do not balance one another, but they leave a net loss.

And in any number of ventures in which there are the

same number of profitable and unprofitable issues,

there will be a resultant loss, greater as the number

of ventures is greater. Now the man cannot expect

in the long run to win oftener than he loses, and

therefore if he repeat his operations indefinitely he

must expect to lose in the end.
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For example, if he begin with 100 and always stake

one tenth of his fund, a single gain will raise his

fund to 110
; he will then stake 11, and if he lose

he will only have 99 left. Or if he had lost the first

venture he would have had 90 left : then he would

have staked 9, and if he had won he would then have

had 99 as before. In either order the gain and the

loss reduce 100 to 99, and ten gains and ten losses

in any order would reduce it to 90 8s. lljd.

PKOPOSITION XXXY.

There are m tickets in a lottery for one prize of value

A. To determine ivhat price may be paid for a ticket

by a man ivhose available fund is nA, so that by

repeating his operation an average number of gains may
balance an average number of losses.

&quot;

Kepeating his operation&quot; will here mean that when

the first venture is decided the man will purchase a

ticket in another lottery in which the prize is the nth

part of the amount of the fund which he then holds.

xA
Suppose

- - the sum which he may pay for a ticket.m
Then every unsuccessful venture multiplies his fund by

IT

1 and every successful venture multiplies it bymn
1 xH . But in the long run he will have m - 1
n mn

unsuccessful issues for one successful one. Therefore
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the average multiplier for m ventures will be

1+--- 1-
n mn } \ mn

This must be unity since the gains, on the average,

balance the losses. Therefore

1 T I X \-(
m~^

1+-- =(!---)n mn \ mnj
an equation to determine x.

If n be a large number (as is usually the case) we may
obtain an approximate solution. Thus

n mn mn

f\
m-l

or = - 1 + # + ~ -

Zmn
~v, 1

whence x 1

Consequently it is inexpedient for one to give more than

/ _m\\A

for the chance
( ]

of the prize (A).
\mj

COROLLABY. If he buy two tickets in the same

lottery his chance of a prize is . Hence writing ~

for m in the result of the proposition we obtain the

price he may pay for two tickets, viz.

/ m-2\2.4

\ Zmn ) m
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or he may pay for each of them

^m-avi
2mn Jm

So if he purchase r tickets, he may pay for each of them

m
or if he purchase all the m tickets, he may pay for each

its full representative value .

PKOPOSITION XXXVI.

There are a + b + c+ ...=m tickets in a lottery, and

there are a blanks, b prizes each worth /3, c prizes each

worth y, and so on. To determine ivhat price a man

whose available fund is n may prudently pay for a

ticket.

Let a) = b (B + cy + ... = the sum of the prizes,

and let l = bfi*+ cy*+ ...

Then the absolute value of a ticket is .m
Let be the price which the man in question ought

to pay for the ticket,

Then if we proceed as in the last question we find

the average multiplier for m ventures, viz.

mn n mn \ n mn

This must be equal to unity. Therefore
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mn n mn
+ ... -0.

from which equation x is to be found. If, as is usually

the case, the amount at stake is small compared with

the speculator s whole funds, n must be a very large

number
;

therefore we shall obtain an approximate

value of x, by neglecting the terms involving high

negative powers of n, in our equation.

Thus, expanding the logarithms, we have

2x-x2
&amp;gt;2

&c.2* m %n*

whence x==1

Consequently, the price which the man may prudently

pay for a ticket is

(
co. co

COROLLARY. The price which a man whose available

fund is n pounds may prudently pay for a share in a

speculation in which p^ will be his chance of winning

PI, pz
his chance of winning P

2 ,
and so on (where

be

This is derived immediately from the result of the

proposition, by writing

and - = S
m m



218 APPENDIX IV.

EXAMPLES. Having n shillings, what may one pru

dently pay to be entitled to a number of shillings equal

to the number turned up at a single throw of a die ?

Here

=4(1+4+ 9+ 16+25+36) =^D D

And the required number of shillings is approximately

7,

Again. If the throw be made with two dice, we

shall have (see page 91)

2(pP) = 7 2 (pP*) = 2023-^-36

And the required number of shillings will be approxi

mately

72n

It must be remembered that the results of the two

foregoing propositions and the corollary are only obtained

on the hypothesis that n is very large compared with

2(pP) and with S^P2
) -5-2(pP). This requires that

the man s original fund should be very large compared

not only with the amount which he stakes, but also

with the amount which he has a chance (though it may
be a very small chance) of winning.
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In all practical cases the former conditions will be

fulfilled, as no one would think of staking, in any single

venture, his whole property, or a sum bearing any

considerable ratio to his whole property. But cases will

be likely to arise in which the latter condition is not

satisfied, as when a man may purchase, for a sum com

paratively small compared with his means, a ticket in

a lottery in which there is a prize very many times

larger than his whole property. In this case, the

approximate results obtained above cannot be applied,

and we must have recourse to the original equation in

the form in which it was presented before we introduced

the approximations which are now inadmissible. We

may, however, still approximate, in virtue of the con

dition that the stake must be small compared with the

speculator s whole funds. Thus :

PEOPOSITION XXXVII.

To find an approximate formula for the sum which

a speculator may pay for any defined expectation,

without assuming that his funds are necessarily large

compared ivith the value of the prizes.

Let X (small compared with n, though not necessa

rily small compared with P) be the sum which a man

whose available fund is n may prudently pay for the

chances pv pz , p3
... of receiving prizes worth P

lf P^
P

8 ,
... respectively, as in the last corollary.
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Then the rigorous equation to determine X is

n n j \ n n \ n n

which may be written

p
1+

n \ n n
w&amp;gt; /.

J t

V 1

(-I--* Yp
fi

x VP8

ij \ w+pj v n+pj
or, since X is small compared with n,

jTp~
+ n+P +

&quot;j

P\P* f PV S

+ =-*} 1+^-5 1...-1
w / v /

whence X =-

This formula is equally applicable when there is a

possibility of not receiving any prize, as the failure to

receive a prize may be treated as the receiving of a prize

of zero value : i. e. one of the quantities P19
P

2 ,
P

3
...

will be in this case zero.

COROLLARY. In the case when there is a single

prize P, and the chance of gaining it is p, the formula

becomes

X
p +1-P

n + P n

n(B*P) I/, ,
-PV

n + (l-p)P\\ n I
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EXAMPLES. A man possessing a pound is offered a

ticket in a lottery, in which there are 99 blanks, and

one prize worth 100 pounds. What may he prudently

pay for the ticket ?

Here n=l P=100

x *0472 = 0519

Hence he can only afford to pay about a shilling for

the ticket.

Again. How much may a man with 10 pounds pay

for the same ticket ?
i

Here n = 10 P = 100 p = -

1100 /
100 /ITx &quot;

109 ( V J

1100

Hence he can afford to pay about 4s. lOJd. for the

ticket.

Again. How much may a man with 100 pounds pay

for the same ticket ?

Here rc=100 P=100

_ 20000 /
100 /yA &quot;

199 ( V *

= 20020 x -0069 = -693.
199

Hence he may pay nearly 14 shillings for the ticket.
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Again. Suppose the man has 1000 pounds. This

sum is large compared with the value of the prize.

Hence we may apply the simpler formula given in

Proposition XXXVI. (Cor.), which leads to the result

Hence he may pay 19 shillings for the ticket.

If we had applied to this last case the formula

of the present corollary we should have obtained the

slightly more correct result 9507, the difference between

the two results being nearly one-fifth of a farthing.

The formula of Proposition XXXVII. is applicable

in the case of the Petersburg problem, a problem of

some intrinsic interest, but chiefly of importance on

account of its having been repeatedly made the ground

of objections to the mathematical theory of probability.

This celebrated problem may be stated as follows :

THE PETERSBURG PROBLEM.

A coin is tossed again and again until a tail is

turned up. If the first throw give a head one is to

receive a florin, if the second also give a head one is to

receive two florins more, if in addition the third throw

give a head one is to receive four florins more, and so

on, doubling the sum received every time ; but as soon

as a tail is turned up the play stops and one receives

nothing further. The question is, what ought one to

give for the expectation ?
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The absolute value of the expectation is easily seen

to be infinite. Thus

The chance of winning the florin at the first throw

is j : the value of the expectation is therefore one

shilling.

The chance of winning the two florins at the second

throw is J : the value of the expectation is therefore

J of two florins, or one shilling.

The chance of winning the four florins at the third

throw is : the value of the expectation is therefore

J of four florins, or one shilling, and so on.

Hence the value of the expectation attaching to each

throw to which there is a possibility of the play

extending, is one shilling. But the play may possibly

extend to a number of throws larger than any assignable

number. Therefore the whole expectation is worth

a number of shillings larger than any assignable

number : that is, it is infinitely great.

Or we may analyse the expectation by considering

the various total sums which it is possible to receive,

and the chance of each being received. Thus

If a tail turn up the first time, nothing is received :

and the chance of this is
j-.

If a tail turn up the second time and not before, one

florin is received : and the chance of this is 5.

If a tail turn up the third time and not before, 1 + 2

florins are received : and the chance of this is .

And so on. Hence

Q
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J = chance of receiving

jp-=
1 = 2 - 1 florins.

|r
= 1 4- 2 = 22 -l florins.

gr* 14-2 + 4 = 2
3 -l florins.

and so on, ad infinitum.

Therefore the value of the whole expectation is (in

florins)

!_ J^
2

~&quot; W
Now the sum of this series to r terms* is

r-l fl\r+1

~o ^
1 o )

a ^ an infinite number of terms

it is infinity.

Hence the value of the mathematical expectation is

infinite, as we showed before.

But here a difficulty is raised. The mathematical

expectation has been found to be of infinite value, and

yet (it is objected) no one in his senses would give even

such a moderate sum as ^50 for the prospect defined in

the problem.

The fallacy of this objection has been pointed out

already. We have shown that the absolute value of
.
a

* It is to be observed that the sum of this series to r terms does

not exactly correspond with the expectation when the play is limited

to r throws, because when the play is thus limited the chance of

winning the whole number (2
r -

1) is not aF+T ^ut is
~fp

tne same

as the chance of winning 2r~l - 1 florins.
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mathematical expectation is not the price which a man

of limited means ought to pay for the prospect. It

expresses the value of the expectation to a man who is

able to repeat the venture indefinitely without the risk

of his operations being ever terminated by lack of

means. The speculator s fund, to begin with, must be

infinite in comparison with the stakes involved, before

he may venture to give the absolute value of the

mathematical expectation for any contingent prospect

which he may desire to purchase. In the Petersburg

problem the mathematical expectation is infinite : but

if one is to give an infinite sum for the venture one

must take care to hold funds infinite in comparison with

this infinity. In other words, the speculation on these

terms is only proper for one with respect to whose

funds the infinite stake is inconsiderable. The stake

which he lays down may be 00 , provided that his funds

are 00 x QO .

But to find the sum which a man of limited means

may pay for the expectation defined in our statement

of the problem we may apply the result of Proposition

XXXVII. Thus if m + 1 be the number of florins

which the man possesses, the formula to determine

the sum which he may pay may be written as

follows :

2(m + l)
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For example. If the speculator possess nine florins

we have ??i=8. The numerator is &quot;2137 ... and the

denominator 0966 .... Hence X = 2 212.

If he possess 33 florins we have ?7i=32. The nume

rator is now 0807... and the denominator 0278... .

Hence he may pay nearly three florins.

If he possess 1025 florins we have m=1024. The

numerator is now 00488 ... and the denominator

00097... . Hence he may pay ahout five florins for

the venture.

The result at which we have arrived is not to be

classed with the arbitrary methods which have been

again and again propounded to evade the difficulty of

the Petersburg problem and other problems of a similar

character. Formulae have often been proposed, which

have possessed the one virtue of presenting a finite

result in the case of this famous problem, but they have

often had no intelligible basis to rest upon, or, if they

have been established on sound principles, sufficient

care has not been taken to draw a distinguishing line

between the significance of the result obtained, and the

different result arrived at when the mathematical expec

tation is calculated.

We have not assigned any new value to the mathe

matical expectation ;
we have not substituted a new

expression for the old ; but we have deduced a separate

result, which without disturbing the mathematical ex

pectation h^s a definite meaning of its own. We
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have found not the fair price at which a contingent

prospect may be transferred from one man to another,

but the value which such a prospect has to a man in

given circumstances. We have simply determined the

terms at which a man may purchase a contingent pros

pect of advantage, so that by repeating the operation

each time on a scale proportionate to his funds at that

time he may be left neither richer nor poorer when

each issue of the venture shall have occurred its own

average number of times. By continuing the operation

indefinitely, the recurrences of each issue will tend to be

proportional to their respective probabilities, and, there

fore, the condition we have taken is equivalent to the

condition that in the long run the man may expect to

be neither richer nor poorer.

It would be a great mistake to suppose that the

price which one man may prudently give for a venture

is the price which the man with whom he is dealing

may prudently take for it, or that it is a fair price at

which to make the compact. The price which the man

may prudently give, is not even the price which the

same man may prudently take if he change sides with

his fellow gambler. The sum in consideration of which

a man possessed of n pounds may accept a position in

which p is the chance of his having to pay Pv pz
the

chance of his having to pay p.2 ,
and so on fwhere

2p= lJ must be obtained by changing the algebraical

signs of X, jP
1?
P

2
. . . in the formulae of Propositions

XXXVI. and XXXVII.
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Thus on the hypothesis of Proposition XXXVI.

(Cor.), we shall have

and in the more general case dealt with in Proposition

XXXVII. we shall have

/ PVi/ P\P&amp;gt;/ P\P*
1-fl--1 I--2 I--3

)
...

X= ^ n J \ nj\ n )

^^l

+
n-P,

+n^P
s

+

The historical notes which follow are mainly derived

from Mr. Todhunter s History of the Mathematical

Theory of Probability.

The volume of the Commentarii of the Petersburg

Academy for the years 1730 and 1731, was published in

1738. It contained a memoir by Daniel Bernoulli,

entitled, Specimen Theoriae novae de mensura sortis,

expounding a theory of moral expectation as distin

guished from mathematical expectation. The author

estimates that if a man s fund is increased by a small

increment, the value of the increment to that man

varies directly as the increment, and inversely as his

original fund. But while he assumes this as a mathe

matical measure of what he regards as a moral value,

Bernoulli does not attempt to give any proof of his

assumption : and rightly, for it is beyond the province

of mathematics to deal with such a subjective value as

he speaks of. Mathematics can only be applied to the

measure of such a quantity by some such arbitrary con-
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nection as that which he assumes. But that which he

takes to represent his moral expectation is substantially

identical with the quantity which we have heen inves

tigating, viz., the price to be paid for a venture, in

order that repetitions indefinitely multiplied may tend

to neutralise one another. Bernoulli draws from his

theory the inference which we have established at the

beginning of this Appendix, that even a fair chance is

disadvantageous. The Petersburg problem, as he deals

with it, is somewhat simpler than the modern variety

of it, which we have enunciated above. A is to receive

a florin if head falls the first time ;
two florins if it falls

the second time, and not before ; four florins if it falls

the third time, and not before, and so on. The mathe

matical expectation is infinite. For the moral expecta

tion, Bernoulli gives an equation equivalent to that

which we should write down in accordance with Pro

position XXXVII.

Daniel Bernoulli s memoir contains a letter addressed

to Nicolas Bernoulli, by Cramer, in which two methods

are suggested of explaining the paradox of the Peters

burg problem. One suggestion is, that all sums greater

than 224
are practically equal; the other (which is

equally arbitrary), that the pleasure derivable from a

sum of money varies as the square root of the sum.

On one of these suppositions the expectation in the

Petersburg problem, as enunciated by Bernoulli, would

be 13
; according to the other, it would be about 2 9.

D Alembert (in the year 1754) maintained that a

very small chance was to be regarded as absolutely
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zero. He does not suggest a limit to the smallness,

but he gives an example in which the chance is (J-)

100
.

In another place he suggests that, in the Petersburg

problem, we should take (/3 being a constant)

-. instead of ,

as the chance that the head will not appear before the

nth throw. From time to time he seems to have pro

posed a variety of arbitrary assumptions, for none of

which any better reason can be assigned than that they

lead to finite results.

Beguelin, in 1767, gave six different solutions of the

Petersburg problem, with different results.

In 1777, Buffon, the Naturalist, published his

Essai d Arithmetique Morale, in which he speaks against

gambling in language singularly resembling that which

we have employed in the earlier pages of this Appendix.
&quot; Je dis qu en general le jeu est un pacte mal-entendu,

un contrat desavantageux aux deux parties, dont 1 effet

est de rendre la perte toujours plus grande que le gain ;

et d oter au bien pour ajouter au mal.&quot; But, among
other arbitrary assumptions, this writer maintains that

any chance less than 10000 is to be considered abso

lutely zero.

Laplace, whose great work, the Theorie Analytique

des Probabilites, was published in 1812, has developed

many of Daniel Bernoulli s ideas on this subject.



MISCELLANEOUS EXAMPLES.

1. There are five routes to the top of a mountain, in how

many ways can a person go up and down ?

2. Out .of 20 knives and 24 forks, in how many ways
can a man choose a knife and fork ? And then, in how many

ways can another man take another knife and fork ?

3. In how many ways can the letters a b c d be arranged

without letting b and c come together ?

4. A has 7 different books, B has 9 different books, in

how many ways can one of A s books be exchanged for one

of B s ?

5. In the case of the last question, in how many ways

can two books be exchanged for two ?

6. Five men, A, B, C, D, E, are going to speak at a

meeting, in how many ways can they take their turns without

B speaking before A ?

7. In how many ways, so that A speaks immediately

before B ?
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8. Five ladies and three gentlemen are going to play at

croquet, in how many ways can they divide themselves into

sides of four each, so that the gentlemen may not be all on

one side ?

9. The number of ways of selecting n things out of 2?i + 2

is to the number of ways of selecting n things out of 2n 2

as 99 to 7. Find n.

10. One man has 4 books, another man has 6. In how

many ways can they exchange books, each keeping the

number he had at first ?

11. One man has 4 books, another has 6, and a third

has 3. In how many ways can they exchange books, each

keeping the number he had at first, but every one s set being

altered ?

12. Four digits are arranged at random so as to form a

number in the ordinary scale of notation. Two cyphers are

then associated with them, and they are re-arranged at random

so as again to form a number. Prove that the average value

of the first number is to the average value of the second as

101 to 6734.

13. A ferry-boat which can carry n people has to convey

m people across a river. It takes a full load every time

except the last : find the number of ways in which the work

can be done.

14. There are 2n guests at a dinner party ; supposing

that the host and hostess have fixed seats opposite to one
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another, and that there are two specified guests who must not

be placed next to one another, find the number of ways in

which the company can be placed.

15. Out of three consonants and two vowels, how many
words can be formed containing 2, 3, 4, or 5 letters, words

being excluded in which two consonants or two vowels come

together.

16. How many five-lettered words can be made out of 26

letters, repetitions being allowed, but no consecutive repeti

tions
(i. &amp;lt;?.,

no letter must follow itself in the same word).

17. A boat s crew consists of eight men, of whom two can

only row on the stroke side of the boat, and three only on the

bow side. In how many ways can the crew be arranged ?

18. There are m parcels, of which the first contains n

things ; the second 2n things ; the third 3n things ;
and so

on. Shew that the number of ways of taking n things out

of each parcel ia
\jnn

-f-
S\n \

m

19. How many different rectangular parallelepipeds can

be constructed, the length of each edge being an integral

number of inches not exceeding 10?

20. The number of ways of dividing 2 different things

into two equal parts, is to the number of ways of similarly

dividing 4n different things, as the continued product of the

first n odd numbers to the continued product of the n odd

numbers succeeding.
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21. In how many ways can the letters of the word

facetious be deranged without deranging the order of

the vowels ?

22. In how many ways can the letters of the word

abstemiously be deranged without deranging the

order of the vowels ?

23. In how many ways can the letters of the word

parallelism be deranged without deranging the order

of the vowels ?

24. How many solutions can be given to the following

problem ?
&quot; Find two numbers whose greatest common

measure shall be G and their least common multiple M
Graa bPcyd8 ; a, 6, c, d being prime numbers.&quot;

25. How many solutions can be given to the following

problem? &quot;Find two numbers of which G shall be a common

measure, and M (as in the last question) a common

multiple.&quot;

26. Prove that the number of ways in which p positive

signs and n negative signs may be placed in a row, so that no

two negative signs shall be together, is equal to the number

of combinations of p+ 1 things taken n together.

27. In the expansion of (^ + az + ... + a
p )

n where n is

an integer not greater than p, there are
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terms, in none of which any one of the quantities % az ...ap

occurs more than once as a factor; and the coefficient of

each of these terms is [n.

28. Out of 20 consecutive numbers, in how many ways

can two be selected whose sum shall be odd ?

29. Out of 30 consecutive integers, in how many ways can

three be selected whose sum shall be even ?

30. Out of 3n consecutive integers, in how many ways

can three be selected whose sum shall be divisible by 3 ?

81. If four straight lines be drawn in a plane and pro

duced indefinitely, how many points of intersection will there

generally be ?

82. If n straight lines be drawn in a plane, no two being

parallel and no three concurrent, how many points of inter

section will there be ?

33. If n straight lines be drawn in a plane, no two being

parallel, and no three concurrent except p which meet in one

point, and q which meet in another point, how many other

points of intersection will there be ?

34. A square is divided into 16 equal squares by vertical

and horizontal lines. In how many ways can 4 of these be

painted white, 4 black, 4 red, and 4 blue, without repeating

the same colour in the same vertical or horizontal row ?

35. Find the number of combinations that can be formed
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out of the letters of the following line (Soph. Philoct. 746) :

a7ra7T7ra7ra -TraTraTTTraTraTrTraTraTTTraTrai,

taking them (1) 5 together, and (2) 25 together.

86. In the case of the preceding question, if the number

of combinations r together is to the number r 1 together

as 9 : 10, find ?*, it being known that it lies between 17

and ^4.

37. The number of ways of selecting 4 things out of n

different things is one-sixth of the number of ways of select

ing 4 things out of 2n things which are two and two alike of

n sorts : find n.

38. If pq-\-r different things are to be divided as equally

as possible among p persons, in how many ways can it be

done ?
(
r &amp;lt; p )

39. In how many ways can a pack of cards be dealt to

four players, subject to the condition that each player shall

have three cards of each of three suits and four cards of the

remaining suit ?

40. Into how many parts is an infinite plane divided by

n straight lines, of which no three are concurrent ?

41. Into how many parts is infinite space divided by n

planes, of which no four meet in a point ?

42. In how many ways can three numbers in arithmetical

progression be selected from the series 1, 2, 3 ... 2, and in

how many ways from the series 1, 2, 3 ... ( 2?i-f 1
)
?
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43. If there be n straight lines in one plane, no three of

which meet in a point, the number of groups of n of their

points of intersection, in each of which no three points lie in

one of the straight lines, is % In 1.

44. 120 men are to be formed at random into a solid

rectangle of 12 men by 10; all sides are equally likely to be

in front. What is the chance that an assigned man is in

the front ?

45. If the letters of the alphabet are written down in a

ring so that no two vowels come together, what is the chance

that a is next to b ?

46. If the letters of the alphabet are written down in a

row so that no two vowels come together, what is the chance

that a is next to b ?

47. A, B, C have equal claims for a prize. A says to B,

let us two draw lots, let the loser withdraw and the winner

draw lots with C for the prize. Is this fair ?

48. Five men, A, B, C, D, E, speak at a meeting, and it

is known that A speaks before B, what is the chance that A

speaks immediately before B ?

49. if n things (a, /3, y, &c.) be arranged in a row, subject

to the condition that a comes before
/3,

what is the chance

that a comes next before /3
?
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50. Two numbers are chosen at random, find the chance

that their sum is even.

51. There are n counters marked with odd numbers, and

n more marked with even numbers
;

if two are drawn at

random shew that the odds are n to n 1 against the sum of

the numbers drawn being even.

52. The figures 142857 are arranged at random as the

period of a circulating decimal, which is then reduced to a

vulgar fraction in lowest terms. Shew that the odds are

119 : 1 against the denominator being 7.

53. There are ten counters in a bag marked with num

bers. A person is allowed to draw two of them. If the

sum of the numbers drawn is an odd number, he receives that

number of shillings ;
if it is an even number, he pays that

number of shillings. Is the value of his expectation greater

when the counters are numbered from to 9 or from 1 to 10 ?

54. If a head counts for one and a tail for two, shew that

Sn is the most likely number to throw when 2/? coins are

tossed. Also shew that the chance of throwing 3(n + l)

with 2(?i + 1) coins is less than the chance of throwing 3n

with 2rc coins in the ratio 2w + 1 : 2n + 2.

55. A bag contains 2 counters, of which half are marked

with odd numbers and half with even numbers, the sum

of all the numbers being S. A man is to draw two counters.

If the sum of the numbers drawn be an odd number, he is to

receive that number of shillings ;
if an even number, he is to
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pay that number of shillings. Shew that his expectation is

worth (in shillings)
S

56. If in the case of the last question there be ra+n

counters, of which m are marked with odd numbers, amount

ing to M, and n with even numbers amounting to N, the

man s expectation is worth

M+N-(m-n)(M-N)
|- (m+n) (ra-fn 1)

57. What are the odds against throwing 7 twice at least

in three throws with two dice ?

58. Two persons play for a stake, each throwing two

dice. They throw in turn, A commencing. A wins if he

throws 6, B if he throws 7 : the game ceasing as soon as

either event happens. Shew that A s chance is to J5 s as

80 to 31.

59. Four persons draw each a card from an ordinary pack.

Find the chance
(i)

that one card is of each suit :
(ii)

that

no two cards are of equal value :
(iii)

that one card is of each

suit and no two of equal value.

60. Each of four persons draws a card from an ordinary

pack. Find the chance that one card is of each suit, and

that in addition, on a second drawing, each person shall draw

a card of the same suit as before.

61. A bag contains %n(n+l) counters, one marked 1,

R
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two marked 4, three marked 9, &c. A person draws out a

counter at random, and is to receive as many shillings as the

number marked on it. Prove that the value of his expecta

tion varies as the square of the number of counters in the bag.

62. A and B throw for a certain stake, A having a die

whose faces are numbered 10, 13, 16, 20, 21, 25
; and B a

die whose faces are numbered 5, 10, 15, 20, 25, 30. The

highest throw to win, and equal throws to go for nothing.

Prove that the odds are 17 to 16 in favour of A.

63. A pack of cards consists of p suits of q cards each,

numbered from 1 up to q. A card is drawn and turned up :

and r other cards are drawn at random. Find the chance

that the card first drawn is the highest of its suit among all

the cards drawn.

64. A and B play for a stake which is to be won by

him who makes the highest score in 4 throws of a die.

After two throws, A has scored 12, and B 9. What is A s

chance of winning ?

65. A bag contains 6 shillings and 2 sovereigns. What

is the value of one s expectation if one is allowed to draw

till one draws a sovereign ?

66. There are m white balls and m black ones : in balls

are placed in one bag, and the remaining m in a second bag,

the number of white and black in each being unknown. If

one ball be drawn from each bag, find the chance that they

are of the same colour.
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67. In the last question, if m== 4, and a ball of the

same colour has been drawn from each, find the chance that

a second drawing will give balls of the same colour :
(
i
)

if

the balls drawn at first have been replaced, and (ii) if they

have not been replaced.

68. A player has reckoned his chance of success in a

game to be e, but he considers that there is an even chance

that he has made an error in his calculation affecting the

result by e (either in excess or defect). Shew that this

consideration does not affect his chance of success in a single

game, but increases his chance of winning a series of games.

69. Shew that in taking a handful of shot from a bag it

is more probable that an odd number will be drawn than an

p
even number.

70. A bag contains m white and n black balls, and from

it balls are drawn one by one till a white ball is drawn.

A bets B at each drawing, x to y, that a black ball is drawn.

Prove that the value of A s expectation at the beginning of

the drawing is
*_..

- x

71. Counters (n) marked with consecutive numbers are

placed in a bag, from which a number of counters (m) are to

be drawn at random. Shew that the expectation of the sum

of the numbers drawn is the arithmetic mean between the

greatest and least sums which can be indicated by the number

of counters (m) to be drawn.

72. A and B play a set of games, in which A*a chance
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of winning a single game is p, and B s chance q. Find

(i), the chance that A wins m out of the first w-j-w.

(ii), the chance that when A has won m games, m-\-n

have been played.

(iii), the chance that A wins m games before B wins

n games.

73. The face of a die, which should have been marked

ace, has been accidentally marked with one of the other five

numbers. A six is thrown twice in two throws. What is

the chance that the third throw will give a six ?

74. One of two bags contains 10 sovereigns, and the

other 10 shillings. One coin is taken out of each and placed

in the other. This is repeated 10 times. What is now the

expectation of each bag ?

75. A, B, C are candidates for an office, the election to

which is in the hands of 8m-\-^~L electors. 3m votes, together

with the casting vote if necessary, are promised to A, and %m

votes to B. In how many ways can the remaining votes be

given so that A may be successful ?

76. A writes to B requiring an answer within n days. It

is known that B will be at the address on some one of these

days, any one equally likely. It is a ^-days post between

A and B. If one in every q letters is lost in transit, find

the chance that A receives an answer in time.
(n&amp;gt;2p.)

77. What is the probability that a number, consisting of
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7 digits, the sum of which is 59, will be exactly divisible

by 11?

78. There are n vessels containing wine, and ?r vessels

containing water. Each vessel is known to hold a, a+1,

#+2, ..o or a-\-m 1 gallons. Find the chance that the

mixture formed from them all will contain just as much wine

as water.

79. A man has left his umbrella in one of three shops

which he visited in succession. He is in the habit of leaving

it, on an average, once in every four times that he goes to a

shop. Find the chance of his having left it in the first,

second, and third shops respectively.

80. If mn balls have been distributed into m bags, n into

each, what is the chance that two specified balls will be found

in the same bag ? And what does the chance become when

r bags have been examined and found not to contain either

ball?

81. One card out of a pack has been lost. From the

remainder of the pack, thirteen cards are drawn at random,

and are found to consist of two spades, three clubs, four

hearts, and four diamonds. What are the respective chances

that the missing card is a spade, a club, a heart, or a

diamond ?

82. A number of persons A, B, C, D ... play at a game,

their chances of winning any particular game being a, /3, y, 5 . . .

respectively. The match is won by A if he gains a games in
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succession ; by B if he gains b games in succession
; and so

on. The play continues till one of these events happens.

Shew that their chances of winning the match are propor

tional to

(1-K
, (l-0)ff, &c

l-a 1-/3
5

83. A goes to hall p times in q consecutive days and sees

B there r times. What is the most probable number of times

that 1B was in hall in the q days ?

Ex. Suppose p= 4 g = l r=8.

84. If Mr be the number of permutations of m things

taken r together, and Nr the number of permutations of n

things taken r together, prove that the number of permuta

tions of m-\-n things r together will be obtained by expand

ing (M-\-N)
r

,
and in the result replacing the indices by

suffixes.

85. Find the number of positive integral solutions of the

equation #+2/+z+ ... (p variables)
= m, the variables

being restricted to lie between I and n, both inclusive.

86. In how many ways can 26 different letters be made

into six words, each letter being used once and only once ?

87. A body of n members has to elect one member as a

representative of the body. If every member gives a vote,

in how many ways can the votes be given ?

88. In the case of the last question, how many different



MISCELLANEOUS EXAMPLES. 245

forms may the result of the poll assume, regarding only the

number of votes given to each member and not the names of

his supporters ?

89. In a company of sixty members, each member votes

for one of the members to fill an office. If the votes be

regarded as given at random, what is the chance that some

member shall get a majority of the whole number of votes ?

Also determine the chance of the same event on the hypo

thesis that every different result of the poll (considered as in

the last question) is equally likely to occur.

90. In how many ways can 3 sovereigns and 10 shillings

be put into 4 pockets ? (One or more may be left empty.)

91. In how many ways can 12 sovereigns be distributed

into five pockets, none being left empty ?

92. In how many ways can 20 books be arranged in a

bookcase containing five shelves, each shelf long enough to

contain all the books ?

93. In how many ways can a person wear five rings on

the fingers (not the thumb) of one hand ?

94. A debating society has to select one out of five sub

jects proposed. If thirty members vote, each for one subject,

in how many ways can the votes fall ?

95. In the last question, what is the chance that upwards

of twenty votes fall to some one subject ?
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96. A bag contains m counters marked with odd numbers,

and n counters marked with even numbers. If r counters be

drawn at random the chance that the sum of the numbers

drawn be odd is (1 + p), and that it be even i(l ju,),
where

/x,
is the coefficient of xr

in the expansion of

m+n

97. The number of ways in which r things may be distri

buted among n-\-p persons so that certain n of those persons

may have one at least is

98. Show that for n different things 1 (number of par

titions into 2 parts) + [2 (number of partitions into 8 parts)

. . . . [n 1 (number of partitions into n parts)
= 0.

99. Find the number of 5-partitions of 21.

100. Two examiners working simultaneously examine a

class of 12 boys, the one in classics the other in mathema

tics. The boys are examined individually for five minutes

each in each subject. In how many ways can a suitable

arrangement be made so that no boy may be wanted by both

examiners at once ?

101. If/n denote the number of derangements of n terms

in circular procession so that no term may follow the term

which it followed originally,
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102. A pack of n different cards is laid face downwards

on a table. A person names a certain card. That and all

the cards above it are shewn to him, and removed. He

names another ;
and the process is repeated until there are

no cards left. Find the chance that, in the course of the

operation, a card was named which was (at the time) at the

top of the pack.

103. Three different persons have each to name an

integer not greater than n. Find the chance that the

integers named will be such that every two are together

greater than the third.

104. A person names a group of three integers (not

necessarily different, but each one not greater than n).

Find the chance that the integers named will be such that

every two are together greater than the third.

105. If three numbers be named at random, they are

just as likely as not to be proportional to the sides of a

possible triangle.

106. A list is to be published in three classes. The odds

are m to 1 that the examiners will decide to arrange each

class in order of merit, but if they are not so arranged, the

names in each will be arranged in alphabetical order. The

list appears, and the names in each class are observed to be

in alphabetical order, the numbers in the several classes

being a, b, and c. What is the chance that the order in each

class is also the order of merit ?

107. How many different throws can be made with n
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dice, those throws being considered the same in which the

same set of numbers is turned up ?

108. Prove that the most likely throw in the last

question is one in which the numbers turned up are all

different, if n is not greater than 6. And find the most

likely throw when n is greater than 6.

109. There are 2&amp;gt;i letters, two and two alike of n

different sorts. Shew that the number of orders in which

they may be arranged, so that no two letters which are

alike may come together, is

110. From a bag containing m gold and n silver coins, a

coin is drawn at random, and then replaced ;
and this ope

ration is performed p times. Find the chance that all the

gold coins will be included in the coins thus drawn.

111. A train, consisting of p carriages, each of which will

hold q men, contains pq m men. What is the chance that

another man getting in, and being equally likely to take any

vacant place, will travel in the same carriage with a given

passenger.

112. If the chance of a trial succeeding is to its chance

of failing as m : n, the most likely e&quot;vent in (m-\-n)r trials

is mr successes and nr failures.

113. If n witnesses concur in reporting an event of which

they received information from another person, the chance
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that the report is true will be (p
n+l + g

n+l
)

-f- (p
n
+(f)

where p~\ q is the chance of the correctness of a report

made by any single person.

114. The reserved seats in a concert room are numbered

consecutively from 1 to m+ n -\- r. I send for m consecutive

tickets for one concert and n consecutive tickets for another

concert. What is the chance that I shall find no number

common to the two sets of tickets ?

115. Two persons are known to have passed over the

same route in opposite directions within a period of time

m-\-n-\-r, the one occupying time m, and the other time n
;

find the chance that they will have met.

116. If p= l q be the change of success at any trial,

what is the chance that in r-\-n trials there should be at

least r consecutive successes, (i)
when n&amp;lt;r and

(ii)
when

m is the greatest integer in n~-r.

117. If n numbers be selected at random, what are

the respective chances that their continued product in the

common scale of notation will end with the digits 0, 1, 2, 3,

4, 5, 6, 7, 8, 9 ?

118. There are n tickets in a bag numbered 1, 2, 3, ...n.

A man draws two tickets at once, and is to receive a number

of sovereigns equal to the product of the numbers drawn.

What is his expectation ?

119. What would be the expectation in the last question

if three tickets were drawn and their continued product

taken ?
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120. If a set of dominoes be made from double blank up
to double n, prove that the number of them whose pips are

n r is the same as the number whose pips are +r,
and the number is the coefficient of xn

~ r in the expansion of

(1 x #2+#3
)~~

1

;
and the total number of dominoes is

121. If from the dominoes in the last question a man

is to draw one at random, and to receive as many pounds

as there are pips on the domino drawn, what is his expec

tation worth ?

122. If p be a prime number whose reciprocal in the

decimal scale of notation is expressed by a recurring period

of p 1 digits, and if the digits of this period be rearranged

at random, the chance that the new period thus formed

will belong to a fraction whose denominator is p, will be

(? + l)
r~1

([^)
10

-T-
[p 2, where q is the quotient and r

the remainder when p is divided by 10.

123. A vessel is filled with three liquids whose specific

gravities in descending order of magnitude are 8lt S2 ,
S3 .

All volumes of the several liquids being equally likely,

prove that the chance of the specific gravity of the mixture

being greater than 8 is

-
-

according as 8 lies between S
l and 2 ,

or between S2 and SB .



ANSWEES TO THE EXAMPLES.

EXAMPLES ON CHOICE (pages 62-64).

1. 20. 2. 840 ways ; or, considering the arrangement,

20160 ways. 3. 40320, 5040. 4. 1320.

[32 ^ [64
5 *

[12 [12 [8

6t
[32 ([8)

2

([2)
6

7. 166320. 8.
[15

- 192. 9. 120. 10. 480, 22.

18.[60 8.|60
1L

[20 [40 [20 [40

12. 3. 13. 360,120,24. 14. 675675. 15. 1436400.

16. 9849600. 17. If there be m of one sort, and n of

the other, the number of ways is \m In. 18. 66 6 4
.

19. 20. 20. 3439,1271. 21.
[90

-T-
[24 [22 [30 [4 [10

22. 167. 23. 20591. 24. 5040, 75600.

EXAMPLES ON CHANCE (pages 138-141).

2 1
1.

q.
2. ~. 3. The alphabet containing 20 con-

o

sonants and 6 vowels, ^. 4. The chances are propor

tional to 14256 : 12060 : 10175. 5. JL 6.
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83 1
7. 3 shillings. 8. . 9. . 10. 10 shillings.

11? ^ 245753125 625 16

243 729 387419489 2187 27

iyi
7 17 11

lr
. -7 , 9nft

.- 130 16025
14

12 54 108
15 257to208 16

837 17577

17 19
5

20. 31 to 15.

MISCELLANEOUS EXAMPLES (pages 231-250).

1. 25. 2. 480, 437. 3. 12. 4. 63. 5. 756.

6. 60. 7. 24. 8. 30. 9. 5. 10. 209. 11. 59733.

13. Ifw=:gn+r, m-^n3r. 14.

15. 66. 16. 10156250. 17. 1728. 19. 220.

21. 3023. 22. 332629. 23. 277199. 24. 16.

25. in (w-1) where n = (a-f- 1) (/3 + 1) (y +1) (8 +1).

28. 100. 29. 2030. 30, H (3?i
2
-3?i+2). 31. 6.

32. *n(n-l). 33. in(-l)-^(p-l)-H(g--l).
34. 576. 35. 15, 12. 36. 19. 37. 6.

3a 39&amp;gt; - 4a

41. +l)(^-H+6). 42. i(w-l),wa. 44. .

1 2
45^ _

. 46. . 47. Their respective chances
10 21

*
I I I-

48 -

!
49 -

*
50

1-

53. The latter is better as 11 to 9. 57. 25 : 2.
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59

63

74
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108. If n lie between 6r and 6(r+l), the most likely throw

will be one in which each number appears either r or r-\-l

times.

(r+l)(r+2) mn+mr+nr

117. Chance of the final digit being is (10
n-8M -5n+4n

)

-i-10
n

. Chance of 5 is (5
n-4n

)-j-10
n

. Chancesof 1, 8, 7, 9,

are equal, each being 4
n~* 10

n
. Chances of 2, 4, 6, 8, are equal,

each being 4
n~1

(2
n
-l)-r-10

n
. 118. (n+ 1) (3n+ 2)

~ 12.

119. t?rc(?i+ l)
2
. 121. n pounds.
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