her last pregnancy she had discovered a small lump in the left breast. Two months after her confinement she came under Mr. Nunn's observation. The tumour was at that time undefined. After two months the patient suffered from ptosis of the left eye, and ultimately from paralysis of the third nerve. The eye became exactly what has been said—paralysed in her lower extremities, frequently having suffered from severe neuralgic pains in the upper cervical and dorsal regions. Towards the end of her life the temperature in the axilla was 106°, the cancer of the breast having become of stone hardness. Mr. Nunn remarked upon the uncertainty of surgical practice in respect of cancer, which, he said, must remain uncertain so long as our knowledge of the disease was incomplete. The variety of forms in which cancer presented itself was some measure due to the modification of the disease by the peculiarity of the structure in which it was found, and by the situation and surroundings of the selected structure. These conclusions were reached in an unannounced woman, whose frame was undergoing involution; in the second case, the disease appeared in a woman in full reproductive activity. Assuming cancer to be a local disease, we were still unable to answer what rendered the cancer-germs stationary, living their life and undergoing retrograde changes without travelling to distant parts and there proliferating; and we were unable to tell what constituted the difference between cancer-germs content with a local career, and those of a propagandist order, or what conditions predisposed each of these opposite degrees of activity. Was non-contamination due to resistance of the parts or tissues exposed to contamination, or to some local change in the cancer destroying the vitality of the contamination? What share had inflammatory action, by softening the tissues and stimulating proliferation, in promoting diffusion? Assuming, on the other hand, that cancer was a blood-disease, could one justify the removal of a cancer by operation? A clinical study of cancer showed that, if the surgeon did not stop in with knife or with cautic, the disease itself, by inducing gauze or ulceration, produced a wound that very rarely healed; and that, therefore, the surgeon did in a clear and decisive manner, pro tem, what sooner or later the disease would more painfully and ineffectually attempt. Mr. Nunn asserted that he had seen no instance in which diffusion of cancer was really accelerated by operation.

Mr. C. Theodore Williams thought it noteworthy that in one of these cases the administration of cod-liver oil was followed by a great deposit of fat. Mr. Nunn said that he considered the "fat" due to dyscrasia, and not to the oil, although the latter was administered and taken for about two months.

Mr. Hulke read an account of a case of Esophageal Spasm in a child.

The Chairman asked if any dilatations of, or pouches in, the esophagus were diagnosed, and quoted a case in which two cases were found.

Mr. Hulke said that nothing of this sort was discovered, and that the history of the case militated against such an hypothesis.

As the usual hour of adjournment was close at hand, the reading of Dr. Theodore Williams's paper "On the treatment of Pyrexia in Phthisis by Cool Baths," was deferred until the next meeting.

Replies and Notices of Books.


[Second Notice.]

The second portion of Mr. Darwin's book, including Chapters VI. to XIV., which are chiefly devoted to the expression of the emotions in man, will probably be most eagerly read, and prove most interesting to the greater number of readers; and these chapters are, indeed, full of the results of close and long-continued observation. Mr. Darwin first considers the expression of suffering, and gives a plate representing six children crying, taken by the instantaneous photographic process. In adults, he says, the signs of severe pain are screams or groans, with writhing of the whole body and grinding of the teeth. To these succeed sweating, pallor, trembling, and faintness. Children who often cry from slight causes, scream, and whilst screaming their eyes are firmly closed, so that the skin round them is wrinkled, and the forehead contracted into a frown. These last actions, which are accomplished by the corrugators orbicularis palpebrarum and pyramidalis, Mr. Darwin thinks are protective, preventing the eyes from becoming too much gorged with blood. In addition, the levator and depressor anguli oris, with the common and special elevators of the upper lip, contract and stretch the mouth, according to the purpose of allowing the full volume of sound to issue. The evidence that the use of the orbicular muscles is to protect the eyes from being over-gorged with blood adduced by Mr. Darwin is, that these muscles are always brought into play when violent expiratory movements are made, as in shouting and laughing, but not when other muscles, as those of the limbs, are actively contracted. The contraction of the orbiculars during screaming is therefore a distinctly serviceable associated habit, and comes under Mr. Darwin's first principle. In after-life the habitual repression of the expression of the emotions, in the educated classes at least, becomes the full development of the self-controlling principle of witness; but most people must have experienced the remains of these associated actions in slight quivering of the lips, or contraction of the depressor anguli oris, in reading an affecting passage in a good writer aloud.

Then follows a very interesting discussion on weeping; the association of which with grief or mental depression is made out by the following ingenious train of reasoning:—

"Children when wanting food, or suffering in any way, cry out loudly, like the young of most other animals; partly as a call to their parents for aid, and partly from any great sense of discomfort. Sudden and violent sighing, gurgling, or sobbing, are signs of severe pain; but these are not attended with tears. But the child, when in some severe pain, will lead to the gorging of the bloodvessels of the eye; and this will have led, at first consciously and at last habitually, to the contraction of the muscles round the eyes in order to protect them. At the same time the spasmodic pressure on the surface of the eye, and the distension of the vessels within the eye, without necessarily entailing any conscious sensation, will have affected, through reflex action, the lacrimal gland. Finally, through the three principles of the nervous system—of association, which is so widely extended in its powers—and of certain actions being more under the control of the will and others—it will come to pass that suffering readily causes the secretion of tears, without being necessarily accompanied by any other action."
obliquely outwards and downwards, and the canine tooth of one side is exposed, is very remarkable as an expression of an emotion in man, since it does not occur in the monkeys, and Mr. Darwin thinks it shows that our anthropomorphous ancestors had large canines.

Perhaps one of the most interesting chapters is that on blushing, the limitation of which to the upper part of the body is cleverly explained. Mr. Darwin maintains that the fundamental element in the acquirement of the habit has been the direction of the attention to the personal appearance, and not to moral conduct. In support of this view, he observes that the slightest reference to the personal appearance, and even to the dress, of a shy person will make him blush; and this is particularly noticeable when the observation has been made by one of the opposite sex. Now, of all parts of the body the face is most regarded, from its being the chief seat of expression and the source of the voice. It is also the chief seat of beauty and of ugliness, and throughout the world is most ornamented. The face, therefore, during many generations has been subjected to much closer and more earnest self-attention than any other part of the body. But when attention is closely directed to any part of the body, there is, he thinks, a tendency to alterations of the ordinary and tonic contractions of the small arteries of that part. These vessels in consequence become at such times more or less relaxed, and are instantly filled with arterial blood; and this effect will be increased if frequent attention has been paid by many generations to the same part, owing to nerve force readily flowing along accustomed channels, and by the power of inheritance. Through the force of association the same effect will tend to follow whenever we think that others are considering or censoring our actions or character. Mr. Darwin then proceeds to give evidence derived from Sir Henry Holland, Sir Benjamin Brodie, Sir James Paget, and others, showing that the mind can influence the vaso-motor system. The association of this curious paralysis of the sympathetic with temporary confusion of the mind, though it must be familiar to all when once alluded to, has never before, we think, been noticed.

Altogether Mr. Darwin’s last work does not yield in interest to any that have preceded it, and from its more general interest will perhaps command, as it certainly deserves, a still wider circle of readers.

The Heart and its Diseases, with their Treatment. By J. Milner Fothergill, M.D., M.C.P. London: H. K. Lewis. 1872.

For the writing of a new book on diseases of the heart was a justifiable course, few men were better entitled to be the author than Dr. Fothergill. For seven or eight years at least he has been studying this branch of medicine: not in the spirit of a mere pathologist, but in that of a physiologist and physician. Very much has been done of late years, both at home and on the continent, to elucidate heart disease and all its bearings and relations. The progress of physiology, as well as of pathology, has had this effect. The mechanical and vital problems of the circulation are better understood than they were a few years ago, and the diagnosis and therapeutics of heart disease have correspondingly improved. Dr. Fothergill has not only kept himself en rapport with the work of other labourers, but he has himself, as our readers well know, worked in special and practical grooves of this subject. He is therefore entitled to add a new book to the goodly number of treatises which already exist. If we mistake not, the volume will be found a great help to practitioners, and a fair if not a faultless exposition of the present state of knowledge.

We shall briefly state the general plan of the book, and then indicate some points worthy of more special notice. The first and second chapters are devoted to an anatomical account of the heart, its mode of acting and resting, its innervation, its position, and the mode of examining it by percussion, palpation, auscultation, &c. Chapter III. treats of the objective symptoms of disease—palpitation, irregularity, intermittency, and of their value for purposes of diagnosis and prognosis. The contents of this chapter have, in the main, appeared in our columns. In the fourth chapter the subject is subdivided into heart disease. The fifth, sixth, seventh, eighth, ninth and eleventh chapters treat of the principal lesions of the heart, including hypertrophy, dilatation, endocardial and peri-cardial affections, and the various diseases of the muscular and connective tissue. Chapter X. is devoted exclusively to the general treatment of heart disease. Chapter XII. refers to nervous disorders of the heart, angina, nervous palpitation, irritable heart, &c. In the next chapter the great question of the relation of heart and kidney disease is considered. The fourteenth chapter treats of diseases of the great vessels near the heart—atheroma and aneurism; Chapter XV. of malformations of the heart. The sixteenth is a concluding chapter on various points in diagnosis and prognosis not definitely discussed in previous chapters.

It is difficult to go over such a large field as is represented in this outline without repetition, and without some tendency to theorise, and both of these faults are apparent from time to time. The greatest defect of the book is the want of literary care with which it is written, leading not only to frequent blemishes of style, but occasionally to considerable confusion as to the author’s meaning. The printer has been more careless still in doing his work. These faults are so obvious that we need not spend time in specifying them, but they should be carefully rectified in future editions.

The subjects of hypertrophy and dilatation, and the way in which they are combined in different cases, are discussed in detail. The real significance of hypertrophy as a conservative change, meant to compensate for some obstruction to the circulation or some other mechanical disadvantage of the heart, is never lost sight of, and will go far to remove the last vestiges of the notion that hypertrophy is a condition to be opposed and removed. In the chapter on the relation of kidney disease and hypertrophy of the left ventricle, the views of Dr. George Johnson are in the main adopted; according to which the left ventricle becomes enlarged as a consequence of thickening of the muscular wall of the arteries caused by the abnormal quality of the blood in kidney disease.

A characteristic feature in Dr. Fothergill’s view of the causes of heart and arterial disease is the importance attached to strain. We have been hitherto too much in the habit of attributing all these changes to certain undefinable tendencies to degeneration, to certain diatheses, especially the gouty, to alcohol, and the like. And no doubt these are very important factors. But over and above these is the influence of strain; and, if the author is right, this has much to do in the production of atheroma, of saccular regurgitation, and of hypertrophy of the walls of the heart. There will be little disposition to dispute the influence of strain in the causation of disease in the aortic valves, or of thickening of the left ventricle, especially in the light of the evidence adduced by Dr. Clifford Allbutt and other physicians; but it will not be so readily credited that atheroma of vessels is so produced. But the more the favourite situation of atheromatous spots—at points of most tension—is studied, the more considerable will the influence of strain appear. Strain has this further and great importance, that