CHARLES DARWIN

Co

Descendance

de l'Homme

L'homme procède d'une forme inférieure. - Preuves tirées de sa conformation corporelle. -. Sélection naturelle. - Causes de son attitude verticale. Puissance mentale du singe. Instruments et armes employés par les animaux. - Le sens moral. - Origine de la sociabilité. - Qualités des animaux sociables. - Développemement des facultés intellectuelles et morales. - Antiquité de l'homme. Formation des races. L'homme descend du singe.

Schleicher frères

LA DESCENDANGE
 DE
 L'HOMME
 ET
 LA SÉLECTION SEXUELLE

?

LA DESCENDANCE

DE

L
 'H
 0M M E

ET

LA SÉLECTION SEXUELLE

PAR

Charles DARWIN, M. A., F. R. S., atc.

Traduit par EDMOND BARBIER
D'APRĖE LA SECONDE EDITYON ANGLAISR REVUE ET AZGMENFÉE PAR L'ムUTシUR

PREEFACE PAR CARL VOGT

ÉOition definitive
 Ornée de 38 planches hors texte

PARIS

LIBRAIRIE G. REINWALD

 SCHLEICHER FRĖRES, ÉDITEURS61, rue des saints-pitres, 61

PRÉFACE DE CH. DARWIN

A LA DEUXIĖME ÉDITION ANGLAISE

Depuis la publication de la première édition de cet ouvrage en 1871 , j'ai pu y faire des corrections importantes. Apsès l'épreuve du feu, par laquelle ce livre a passé, je me suis appliqué à profiter des critiques qui me semblaient avoir quelque fondement. Un grand nombre de correspondants m'ont également communiqué une foule si étonnante d'observations et de faits nouveaux, que je ne pouvais en signaler que les plus importants. La liste de ces nouvelles observations et des corrections les plus importantes qui sont entrées dans la présente édition se trouve ci-après. De nouveaux dessins faits d'après nature par M. T. W. Wood ont également remplacé quatre figures de la première édition et quelques nouvelles gravures y ont été ajoutées.

J'appelle l'attention du lecteur sur les observations qui m'ont été communiquées par M. le professeur Huxley. Ces observations se trouvent en Supplément à la fin de la première partie (page 220), et traitent des différences $d u$ cerveau de l'homme, comparéaux cerveaux des singes supérieurs. Ces observations ont d'autant plus d'à-propos que depuis quelques années diverses publications populaires ont grandement exagéré l'importance de cette question.

A cette occasion, je dois faire observer que mes critiques prétendent assez souvent que j'attribuais exclusivement à la sélection naturelle tous les changements de structure corporelle et de puissance mentale, qu'on appelle communément changements spontanés; j'ai cependant déjà coñstaté, dès la première édition de l'Origine des Espèces, qu'on
doit tenir grand compte de l'usage ou du non-usage héréditaires, aussi bien des parties du corps que des facultés mentales. Une autre part dans ces changements a été attribuée par moi aux modifications dans la manière de vivre. Encore faut-il admettre quelques cas de réversion oceasionnelle de structure, et tenir compte de ce que j'ai appelé "Croissance corrélative » voulant indiquer par là que différentes parties de l'organisation sont, d'une manière encore inexpliquée, dans une telle connexion, que si l'une de ces parties varie, l'autre varie encore davantage, et si ces changements ont été accumulés par l'hérédité, d'autres parties peuvent être modifiées également.

D'autres de mes critiques insinuent que, ne pouvant expliquer certains changements dans lhomme par la sd́lection naturelle, j'inventai la sélection sexuelle. Pountant, dans la première édition de l'Origine des Espéces, j’avais déjà donné une esquisse claire de ce principe, cn remarquant qu'il s'appliquait également à l'homme.

La sélection sexuelle a été traitée avec plus d’élendue dans le présent ouvrage, par la raison que l'occasion s'en présentait pour la première fois. J'ai été frappé de la ressemblance de la plupart des critiques à moitié favorables, de la sélection sexuelle, avec celles qu'avait rencontróes la sélection naturelle, prétendant, par exemple, que ces principes pouvaient bien expliquer quelques faits isolés, mais ne pouvaient certainement pas être employés avec l'extension que je leur ai donnée. Ma conviction sur le pouvoir de la sélection sexuelle n'a cependant pas été ébrenlée, quoiqu'il soit probable, et même certain, qu'avec le temps un certain nombre de mes conclusions pourront étre trouvées erronées, chose tout à fait explicable, puisqu'il s'agit d'un sujet traité pour la première fois. Lorsque les naturatistes se seront familiarisés avec lìdée de la sélection sexuelle, je crois qu'elle sera acceptée plus largement, comme elle a d'ailleurs été admise déjà par plusieurs des juges les plus autorisés.

Ch. Dartivin.

PRÉFAGE DE CARL VOGT

POUR LA PREMIERE EDITION

Mon ami, M. Reinwald, me demande une préface pour le nouveau livre de M. Darwin dont j'ai vu naître la première édition de la traduction française.
M. Darwin me fait l'honneur de citer, à la première page de son œuvre, une phrase prononcée dans un discours que j'avais adressé, en avril 1869 , à l'Institut national genevois.

Je ne crois pouvoir répondre mieux à la demande de mon éditeur et ami, qu'en mettant ici, et à la place d'une préface, la plus grande partie de ce discours qui a reçu une approbation si flatteuse de la part d'un maitre tel que M. Darwin :

Dans toutes les sciences naturelles, nous pouvons signaler une double tendance des efforts faits pour les pousser plus loin et pour leur faire porter les fruits que la société est en droit d'attendre d'elles. D'un côté, la recherche minutieuse, secondée par l'installa. fion d'expériences aussi dégagées que possible d'erreurs et de perturbations; de l'autre côté, le rattachement des résultats obtenus à certains principes généraux dont la portée devient d'autant plus grande qu'ils engagent à de nouvelles recherches dans des branches de la science en apparence entièrement étrangères à celle dont ils découlent en premier lieu. Enfin, au fond de ce mouvement qui domine dans les sciences et par conséquent aussi dans la société (car on ne peut plus nier aujourd'hui que ce soit les sciences qui marchent à la tête de Thumanité entière), au fond de ce mouvement, dis-je, s'aperçoit ce besoin d'affranchissement de la pensee, ce combat incessant contre l'autorité et la croyance transmise, héritée et autoritaire, qui, sous mille formes diverses, agite le monde et tient les esprits en éveil.

IV
Aussı voyez-vous ce courant de liberté, d'affranchissement et d'indépendance au tond de toutes les questions qui surgissent les unes à côté des autres danŝ le monde politique, religieux, social, littéraire et scientifique; - ici, vous le voyez paraitre comme tendance au self-government, là comme critique des textes dits sacrés; les uns cherchent à établir, pour les conditions d'existence de la société et des diverses classes qui la composent, des lois semblables à celles qui gouvernent le monde physique, tandis que les autres soumettent à l'épreuve des faits et des expériences les opinions et les assertions de leurs devanciers, pour les trouver, le plus souvent, contraires à ce qu'enseignent les recherches nouvelles. Partout se forment deux camps, l'un de résistance, l'autre d'attaque ; partout nous assistons à des luttes opiniâtres, mais dans lesquelles triomphera sans doute la raison humaine, dégagée de préjugés et d'erreurs implantées dans le cerveau par héritage et par l'enseignement pendant l'enfance. Ces luttes, toujours profitables à l'humanité, mettent en plein jour les liaisons qui existent entre les différentes branches des connaissances humaines; aucune ne saurait plus prétendre à un domaine absolu, et souvent les armes offensives et défensives doivent être cherchées dans un arsenal établi en apparence bien loin du camp dans lequel on s'est enrôlé primitivement. En mème temps, la somme de nos connaissances acquises s'accroit avec une telle rapidité, que l'organisation humaine la plus amplement douée ne suffit plus pour embrasser au complet, même une branche isolée. Aussi me permettrez-vous de restreindre mon sujet et de rechercher seulement, dans le petit domaine dont je me suis plus spécialement occupé, les manifestations de cette tendance générale que je viens de signaler.
Comment se manifeste dans l'étude des sciences biologiques s'occupant des êtres organisés et ayant vie, cet esprit d'indépendance, cette tendance à briser les liens qui empêchaient jusqu'ici le libre développement de ces sciences? D'une manière bien simple, messieurs. On ne croit plus à une force vitale particulière, dominant tous les autres phénomènes organiques et attirant dans son domaine inabordable tout ce qui ne cadre pas à première vue avec les faits connus dans les corps inorganiques; on ne part plus, comme d'un axiome élevé au-dessus de toute démonstration, de l'idée d'un principe immatériel de la vie qui n'est combiné avec le corps que temporairement et qui continue son existence même après la destruction de cet organisme par lequel seul il se manifeste; - non, on laisse absolument de côté ces questions et ces prétendus principes tirés d'un autre ordre d'idées, et on procède à l'analyse du corps organisé et de ses fonctions comme on procéderait à celle d'une machine très compliquée, mais dans laquelle il n'y a aucune force occulte, aucun effet sans cause démontrable ;on part, en un mot, du principe que force et matiere ne sont qu'un,
que tout, dans les corps organiques comme inorganiques, n'est que transformations et transpositions incessantes, compensation perpétuelle. Et en appliquant ce principe à l'étude des corps organisés, en s'affranchissant, en un mot, de toute idée préconçue et implantée, on arrive non seulement à des résultats et à des conclusions qui doivent rejaillir fortement sur d'autres domaines, on est même conduit à la conception d'expériences et d'observations qui auraient été impossibles, inimaginables dans une époque antérieure où toutes les pensées étaient dominées par l'idée d'une force vitale particulière. Dans ces temps-là, un mouvement était le résultat d'une volonté dictée par cette force vitale ; aujourd'hui il est devenu la conséquence nécessaire d'une irritation du système nerveux, et, pour le produiré, lorganisme ne dépense pas de la force vitale, mais une quantité partaitement déterminée et mesurable de chaleur, engendrée par la combustion d'une quantité aussi déterminée, de combustible que nous introduisons sous forme d'aliment. Le muscle, qui se contracte, n'est aujourd'hui qu'une machine, dont les effets de force sont déterminés aussi rigoureusement que ceux d'un câble de grue, et cette machine agit aussi longtemps qu'elle n'est pas dérangée, avec autant de précision qu'un câble inanimé. Aujourd'hui, nous détachons un muscle d'une grenouille vivante, nous le mettons dans les conditions nécessaires pour sa conservation, en empèchant sa dessiccation et sa décomposition, nous lui donnons, comme du charbon à une machine, de temps en temps le sang nécessaire pour remplacer la matière brûlée par l'oxygène de l'air, - et ce muscle isolé, sous cloche, séparé de l'organisme, non depuis des heures et des jours, mais même depuis des semaines, ce muscle travaille sur chaque irritation que nous lui transmettons par l'électricité aussi exactement qu'un spirale de montre dès qu'il est monté! Aujourd'hui, nous décapitons un animal, - nous le lais؛ ons mourir complètement, - mais, après cette mort, nous injectons dans la tête du sang d'un autre animal de la même espèce battu et chauffé au degré nécessaire, - et cette tête revit, rouvre ses yeux, et ses mouvements nous prouvent que son cerveau, organe de la pensée, fonctionne de nouveau et de la même manière comme avant la décapitation.

Je ne veux pas m'étendre ici sur les conséquences que l'on peut tirer de ces expériences. La physique inorganique nous prouve que chaleur et mouvement ne sont qu'une seule et même force, - que la chaleur peut être transformée en mouvement et vice versa; - la physique organique, car c'est ainsi qu'on peut appeler aujourd'hui cette branche de la biologie, nous démontre que les mêmes lois régissent l'organisme ; - nous mesurons le mouvement de la pensée, nous déterminons la vitesse, peu considérable du reste, avec laquelle elle se transmet, et nous apprécions la chaleur dégagée dans le cerveau par ce mouvement. Mais, je le répète, nous n'au-
rions pu arriver à ces expériences et à leurs résultats si frappants, si observateurs et expérimentateurs n'avaient travaillé, avant tout, à l'affranchissement de leur propre pensée, s'ils n'avaient rejeté davance, avant de les tenter, toute idée transmise par les autorités, pour s'en tenir aux faits seulement et aux lois qui en découlent. Lorsque Lavoisier prit la première fois la balance en main pour constater que le produit de la combustion était plus pesant que la substance brûlée, avant cette opération, et que la combustion était, par conséquent, une combinaison et non une destruction, il partait nécessairement du principe de l'indestructibilité de la matière et détruisait en même temps ce phlogiston, cette force occulte et indémontrable que l'on avait invoquée pour expliquer une foule de phénoménes du monde inorganique, absolument comme on invoque encore aujourd'hui cette foree vitale dont les retraites obscures sont forcées et éclairées tour à tour par le flambeau de l'investigation.
Si nous constatons ici, dans le domaine de la physiologie, l'heureux effet de l'affranchissement de la méthode investigatrice, nous en pouvons voir encore une manifestation brillante dans le domaine de la zoologie et de la botanique proprement dites. Je veux parler de la direction nouvelle imprimée à ces sciences ainsi qu'à l'anthropologie, par Darwin.

Que veut, en effet, cette direction nouvelle qui se base, comme toute innovation, sur des précédents, mais, il faut l'avouer aussi, sur des précédents en grande partie oubliés et négligés?

Avant tout, elle veut combattre des opinions transmises, autoritaires, dictées par un tout autre ordre d'idées, et acceptées, jusqu'ici, comme on accepte mille choses, sans en examiner le fond.
«Espèces sont, avait dit Linné, les types créés dès le commencement », et on avait accepté, tant bien que mal, cette définition qui suppose un créateur, un nombre considérable de types indépendants les uns des autres, et un renouvellement successif de l'ameublement organique de la terre, si j'ose m'exprimer ainsi, d'aprés un plan fixé d'avance dans les différentes époques de son histoire. - Cet axiome admis, il n'y avait plus, en réalité, à examiner les rapports des différents organismes entre eux, ni avec leurs prédécesseurs; - chaque espèce étant une création indépendante en elle-même, il était, au fond, bien indifférent si le loup ressemblait au chien ou à la baleine !

Or, si plusieurs prédécesseurs de Darwin avaient osé s'insurger partiellement contre tel ou tel point de cet axiome, leurs voix étaient réstées sans écho; - ces insurrections avortées n'avaient contribué, comme en politique, qu'à micux asseoir le gouvernement existant et à faire croire à son infaillibilité. Mais aujourd hui, goâce à Darwin, une révolution complète a ćté operée, et les par-
tisans du gouvernement déchu se trouvent à peu près dans la même situation que les chefs de mainte révolution; - ils ne peuvent en atcune façon revenir aux anciens errements, mais ils ne savent que mettre à la place. Personne, en Europe au moins, n'ose plits soutenir la créalion indépendante, el de loules piéces, des espèces; 一 mais on hésite, lorsqu'il s'agit de suivre une voie nouvelle dont on ne voit pas encore l'issue.
«Il faut accepter cette théorie, a dit un homme de grand sens, uniquement parce que nous n'avons rien de meilleur. Que pouvezvous mettre à sa place? »

Je l'ai dit, - la nouvelle direction imprimée aux sciences zoologiques par Darwin n'est pas tant remarquable en elle-même que comme manifestation de cet esprit libre qui tâche de s'affranchir de liens imposés et qui veut voler de son propre essor. Elle veut rattacher les innombrables formes dans lesquelles s'est manifestée la vie organique à cette circulation générale qui anime le monde entier; - pour traduire sa tendance par un mot emprunté à la physique, elle reut considérer les organismes comme des manifestations, enchainées entre elles, d'une seule et même force, et non pas comme des forces indépendantes. Si toutes nos sciences exactes sans exception sont fondées, depuis Lavoisier, sur le principe de la matière impérissable, les étonnantes découvertes de Mayer et de ses successeurs ont été engendrées par la conception de la force impérissable. Dans toutes les modifications de la forme, la quantité de force dépensée reste toujours la même; la force est mutable en sa qualité, mais non en sa quantité; elle est indestructible comme la matière ; - à chaque molécule, à chaque quantité appréciable de la matière est liée, d'une manière impérissable et éternelle, une quantité correspondante de force. Les manifestations extérieures de la force peuvent revêtir autant de formes différentes que la malière, - mais la quantité dépensée dans une opération ou mutation quelconque doit se retrouver dans une autre opération précédente ou suivante, et doit rester identiquement la même. dans toute la série des phénomènes qui se sont passés antérieurement ou qui doivent suivre dans le cours du temps.
N'oublions pas, messieurs, que ce principe, conçu par Mayer, il n'y a pas encore trente ans, nous a valu la détermination de l'équivalent en force de la chaleur, l'identification de la chaleur et du mouvement, enfin toutes ces découvertes et applications magnifiques qui se succèdent depuis quelques années avec une rapidité si étonnante. Ne faut-il pas croire que l'application de ce mème principe aux sciences organiques et deseriptives s'y montrera tout aussi féconde qu'elle s'est déjà montrée dans les sciences physiques?

Que voulons-nous en effet? Démontrer que les formes si innombrables de la nature organisée ne sont que des mutations d'un
fonds impérissable d'une quantité déterminée de matière et de force; - démontrer que chaque forme organique est le résultat nécessaire de toutes les manifestations organiques qui l'ont pré--édée, et la base nécessaire de toutes celles qui vont la suivre ; démontrer, par conséquent, que toutes les formes actuelles sont liées ensemble par les racines depuis lesquelles elles se sont élevées dans l'histoire de la terre, et dans les différentes périodes d'évolution que notre planète a parcourues; - démontrer, enfin, que les forces qui se manifestent dans l'apparition de ces formes sont toujours restées les mêmes, et qu'il n'y a pas de place, ni dans le monde inorganique, ni dans le monde organique, pour une force tierce indépendante de la matière, et pouvant façonner celle-ci suivant son gré ou son caprice.
Tel est, ce me semble, le véritable noyau de ce qu'on est convenu d'appeler le Darwinisme ; son essence intime ne peut se définir autrement, suivant mon avis. Il n'importe que les uns suivent cette direction, pour ainsi dire instinctivement, sans se rendre compte des derniers résultats auxquels elle doit nécessairement conduire, tandis que les autres voient clairement le but vers lequel ils tendent ; - limportant est que cette direction se trouve, comme on dit, dans l'air, qu'elle s'imprime par le milieu spirituel dans lequel vit l'homme scientifique à tous les travaux, et qu'elle s'assoie même à coté de l'adversaire pour corriger ses épreuves avant qu'elles ne passent à la publicité.
L'héritage et la transmission des caractères est dans le monde organique, ce qui, dans le monde inorganique, est la continuation de la force. Chaque être est donc le résultat nécessaire de tous les ancètres qui l'ont précédé, et, pour comprendre son organisation et la combinaison variée de ses organes, il faut tenir comple de toutes les modifications, de toutes les formes passées qui, par héritage, ont apporté leur contingent dans la nouvelle combinaison existante. Et de même que la force primitive se montre dans le monde physique et suivant les conditions extérieures, tantôt comme mouvement, tantòt comme chateur, lumière, électricité ou magnétisme, de même ces conditions extérieures influent sur le résultat de l'héritage et amènent des variations et des transformations qui se transmettent à leur tour aux formes ceonsécutives.
Une tache immense incombe donc aujourd'hui aux sciences naturelles. Dans les temps passés, l'étude des formes extérieures suffisait aux buts restreints de la science; plus tard il fallut ajouter l'étude de l'organisation intérieure autant dans les détails microscopiques que dans les arrangements saisissables à l'oeil nu; un pas de plus conduisait nécessairement, pour comprendre les analogies, les rapports et les différences dans la création actuelle (qu'on me passe le mot) vers l'embryogénie comparée, savoir la comparaison des différentes manières dont se construit et s'accomplit l'orga-
nisme depuis son germe jusqu'à sa fin ; enfin, il fallut avoir recours à la paléontologie, à l'étude des êtres fossiles qui ont précédé les formes actuelles, et cela dans le but de comprendre la parenté plus ou moins éloignée qui relie ces êtres entre eux. Aujourd'hui, il faut ajouter à tous ces éléments, éclairés d'un nouveau jour, l'étude des limites possibles des variations que peut présenter un type; - l'influence, éminemment variable des milieux ambiants sur les différents types, et construire ainsi pièce par pièce les organismes définitifs, mais variables, que nous avons devant les yeux.

Eh bien, messieurs, peut-on raisonnablement croire que l'homme seul ne soit pas soumis à ces grandes lois de la nature, - que lui seul parmï les êtres organisés, ait une origine fondamentalement différente de la leur, - que seul il n'ait ni formes parentes, ni prédécesseurs dans l'histoire de la terre, et que son existence ne se rattache à aucune autre? Vraiment, posée en ces termes, la question me, paraît résolue d'avance! Mais la conséquence qui découle nécessairement de ces prémisses, c'est qu'à l'anthropologie est dévolue la même tâche qu'à toutes les autres branches de l'histoire naturelle, qu'elle ne doit pas se contenter d'étudier l'homme en lui-même, et sous les différentes formes qu'il présente à la surface de la terre, mais qu'elle doit sonder ses origines, scruter son passé lointain, recueillir avec soin toutes les données que peuvent fournir ses fonctions, son organisation, son développement individuel, son histoire, dans le sens habituel du mot, mais en se rapportant à un passé bien antérieur, et qu'elle doit remonter ainsi, comme la science le fait pour toutes les autres formes organiques, l'arbre généalogique jusque vers les branches congénères, portées par les mêmes racines, mais développées d'une manière différente.
Les découvertes récentes ont ouvert un horizon immense aux études relatives à l'homme. Dans tous les pays nous remarquons une ardeur presque fiévreuse pour remonter aux origines de l'homme cachées dans les couches de la terre; de tous les côtés, on apporte les preuves d'une antiquité bien plus reculée du type homme, que les imaginations les plus exaltées n'auraient jamais pu supposer jadis. Chaque jour cette Europe tant fouillée par les générations passées ouvre son sein pour nous montrer des trésors nouveaux, ou pour nous donner, par des faits inaperçus jusqu'à présent, la clef d'une foule d'énigmes que nous ne savions résoudre. Nous assistons à cette époque où l'homme sauvage, montrant des infériorités très marquées dans son organisation corporelle, chassait dans les plaines du continent européen et de l'Angleterre le mammouth et le rhinocéros, le renne et le cheval sauvage; nous suivons cet homme dans sa civilisation ascendante où il devient nomade, pâtre, agriculteur, industriel, commerçant, trafiqueur et fondeur de métaux ; là oùl'histoire etlatradition nous font défaut, nous lisons les faits et gestes de cette antiquité préhisto-

E

ique dans les pierres et les bois! Et, tandis que les a curicux de a nature », comme s'appelaient, dans une académie célèbre, les javants scrutateurs, poursuivent ainsi, de couche en couche, les restes de l'activité humaine; d'autres, non moins curieux, s'attathent à son organisation en reprenant un à un tous les caractères ןusque dans leurs petits détails, en étudiant leur développement lans le cours de la vie depuis le premier germe jusqu'à la fin, ou jien en s'adressant aux races, à leurs particularités, pour y trouver les preuves d'une infériorité ou supériorité relatives, dont les oremières marquent les jalons de la route parcourue par le type homme lui-mème, tandis que les autres indiquent la voie que ce lype va suivre en s'élevant et en se modifiant. Lesfonctions de l'organe de la pensée étant intimement liées à son organisation et dépendant de celle-ci, l'étude des manifestations de l'esprit et de la plus importante de ces manifestations, de la langue articulée, n'occupe pas une petite place dans les objets que l'anthropologie doit embrasser.

Il faut avouer franchement, messieurs, que cette étude historique, ccomparative et génésique du type homme est encore dans l'enfance, et que tout ce qui a été fait jusqu'à présent n'est rien en comparaison de ce qui reste à faire. Est-il étonnant qu'il en soit ainsi, le principe dont découlent ces travaux n'ayant été introduit dans la science que depuis quelques années à peine?

Je n'ai rien à ajouter. M. Darwin prend l'homme tel qu'il se présente aujourd'hui, il examine ses qualités corporelles, morales et intellectuelles, et recherche les causes qui doivent avoir concouru à la formation de ses qualités si diverses et si compliquées. Il étudie les efféts qu'ont produits ces mêmes causes en agissant sur d'autres organismes et, trouvant des effets analogues produits chez l'homme, it conclut que des causes analogues ont été en jeu. La conclusion finale de ces recherches, conduites avec une sagacité rare et égalée seulement par une érudition hors ligne, est que l'homme, tel que nous le voyons aujourd hui, est le résultat d'une série de transformations accomplies pendantles dernières époques géalogiques.

Nul doute que ces conclusions trouveront beaucoup de contradicteurs. Ce n'est pas un mal, la vérité naît du choc des esprits.

C. Vogt.

INTRODUGTION

La nature du présent livre sera míeux comprise, par un court aperçu de la manière dont il a été écrit. J'ai pendant bien des années recueilli des notes sur l'origine et la descendance de l'homme, sans avoir aucune intention de faire quelque publication sur ce sujet; bien plus, pensant que je ne ferais ainsi qu'augmenter les préventions contre mes vues, j'avais plutôt résolu le contraire. Il me parut suffisant d'indiquer, dans la première édition de mon Origine des espèces, que l'ouvrage pourrait jeter quelque jour sur l'origine de Yhomme et son histoire; impliquant ainsi que l'homme doit être avec les autres êtres organisés compris dans toute conclusion générale relative à son mode d'apparition sur la terre. Actuellement le cas se présente sous un aspect tout diffévent. Lorsqu'un naturaliste comme C. Vogt, dans son discours présidentiel à l'Institut national genevois (1869), peut risquer d'avancer que a personne, en Europe du moins, n'ose plus soutenir la création indépendante et de toutes pièces des espèces, " il est évident qu'au moins un grand nombre de naturalistes doivent admettre que les espèces sont les descendants modifiés d'autré espèces ; ecla est surtout vrai pour ceux de la nouvelle etjeune génération. La plupart acceptent l'action de la sélection naturelle; bien que quelques-uns objectent, ee dontl'avenir aura en toute juslice à décider, que j'ai beaucoup trop haut évalué son importance. Mais il est encore bien des chefs plus
anciens et honorables de la science naturelle, qui sont malheureusement opposés à l'évolution, sous quelque forme qu'elle se présente.

Lés opinions actuellement adoptées par la plupart des naturalistes, qui, comme dans tous les cas de ce genre, seront ultérieurement suivies par d'autres, m'ont par conséquent engagé à rassembler mes notes, afin de m'assurer jusqu'à quel point les conclusions auxquelles mes autres travaux m'ont conduit, pouvaient s'appliquer à l'homme. C'était d'autant plus désirable que je n'avais jamais, de propos délibéré, appliqué mes vues à une espèce prise à part. Lorsque nous limitons notre attention à une forme donnée, nous sommes privés des arguments puissants que nous pouvons tirer de la nature des affinités qui unissent des groupes entiers d'organismes, - de leur distribution géographique dans les temps passés et présents, et de leur succession géologique. La conformation homologique, le développement embryonnaire, et les organes rudimentaires d'une espèce, qu'il s'agisse de l'homme ou d'un autre animal, points sur lesquels nous pouvons porter notre attention, restent à considérer ; mais tous ces grands ordres de faits apportent, il me semble, des preuves abondantes et concluantes en faveur du principe de l'évolution graduelle. Toutefois il faut toujours avoir présent à l'esprit le puissant appui que fournissent les autres arguments.

- L'unique objet de cet ouvrage est de considérer : premièrement, si l'homme, comme toute autre espèce, descend de quelque forme préexistante ; secondement, le mode de son développement; et, troisièmement, la valeur des différences existant entre ce qu'on appelle les races humaines. Comme je me bornerai à traiter ces points, il ne me sera pas nécessaire de décrire en détail ces différences entre les diverses races, - sujet énorme qui a déjà été amplement discuté dans beaucoup d'ouvrages de valeur. La haute antiquité de l'homme récemment démontrée par les travaux
d'une foule d'hommes éminents, Boucher de Perthes en tête, est l'indispensable base de l'intelligence de son origine. Je tiendrai par conséquent cette conclusion pour admise, et renverrai mes lecteurs pour ce sujet aux beaux traités de Sir C. Lyell, Sir J. Lubbock et autres. Je n'aurai pas non plus davantage à faire qu'à rappeler l'étendue des différences existant entre l'homme et les singes anthropomorphes, le professeur Huxley ayant, selon l'avis des juges les plus compétents, établi de la manière la plus concluante que, dans chaque caractère visible, l'homme diffère moins des singes supérieurs, que ceux-ci ne diffèrent des membres inférieurs du même ordre des Primates.

Le présent ouvrage ne renferme presque point de faits originaux sur l'homme; mais les conclusions auxquelles, après up aperçu en gros, je suis arrivé, m'ayant paru intéressantes, j'ai pensé qu'elles pourraient l'etre pour d'autres. On a souvent affirmé avec assurance que l'origine de l'homme ne pourrait jamais etre connue ; mais l'ignorance engendre plus souvent la confiance que ne fait le savoir, et ce ne sont que ceux qui savent peu, et non ceux qui savent beaucoup, qui affirment d'une manière aussi positive que la science ne pourra jamais résoudre tel ou tel problème. La conclusion que l'homme est, avec d'autres espèces, le co-descendant de quelque forme ancienne inférieure et éteinte, n'est en aucune façon nouvelle. Lamarck était, il y a longtemps, arrivé à cette conclusion, que plusieurs naturalistes éminents ont soutenue récemment; par exemple, Wallace, Huxley, Lyell, Vogt, Lubbock, Rolle ${ }^{1}$, ete., et

[^0]surtout Häckel. Ce dernier, outre son grand ouvrage intitulé Generelle Morphologie (1866), a récemment (1868, avec une seconde édition en 1870) publié sa Natürliche Schöpfungsgeschichte ${ }^{1}$, dans laquelle il discute complètement la généalogie de l'homme. Si cet ouvrage avait paru avant que mon essai eut été écrit, je ne l'aurais probablement jamais achevé. Je trouve que ce naturaliste dont les connaissances sont, sur beaucoup de points, bien plus complètes que les miennes, a confirmé presque toutes les conclusions auxquelles j'ai été conduit. Partout où j'ai extrait quelque fait ou opinion des ouvrages du professeur Häckel, je le cite dans le texte, laissant les autres affirmations telles qu'elles se trouvaient dans mon manuscrit, en renvoyant par note à ses ouvrages, pour la confirmation des points douteux ou intéressants.

Depuis bien des années, il m'a paru fort probable que la sélection sexuelle a joué un rôle important dans la différenciation des races humaines; et, dans mon Origine des Espèces ($1^{\text {ro }}$ édition), je me contentai de ne faire à cette croyance qu'une simple allusion; mais, lorsque j'en vins à l'appliquer à l'homme, je vis qu'il était indispensable de traiter le sujet dans tous ses détails ${ }^{2}$. Il en est résulté que la seconde partie du présent ouvrage, traitant de la sélection sexuelle, a pris relativement à la première un développement considérable, mais qui était inévitable.

J'avais l'intention d'ajouter ici un essai sur l'expression des diverses émotions chez lhomme et les animaux moins élevés, sujet sur lequel mon attention avait, il y a bien des années, été attirée par l'ouvrage remarquable de Sir C.

[^1]Bell. Cet anatomiste célèbre soutient que l'homme possède certains muscles uniquement destinés à exprimer ses émotions, opinion que je devais prendre en considération, comme évidemment opposée à l'idée que l'hoinme soit le descendant de quelque autre forme inférieure. Je désirais également vérifier jusqu'à quel point les émotions s'expriment de la même manière dans les différentes races humaines. Mais, en raison de la longueur de l'ouvrage actuel, j'ai dû renoneer à y introduire cet essai, qui est en partie achevé, et fera l'objet d'une publication séparée.

LA

DESCENDANGE DE LHOMIIE

ET LA SÉLEGTION

. DANS SES RAPPORTS AVEG LE SEXE

PREMIÈRE PARTIE

LA DESOENDANCE OU L'ORIGINE DE L'HOMME

CHAPITRE PREMIER

PREUVES A L'APPUI DE L'HYPOTHÈSE QUE L'HOMME DESCEND
D'UNE FORME INFÉRIEURE

Nature des preuves sur l'origine de l'homme. - Conformations homologues chez l'homme et les animaux inférieurs. - Points de similitude divers. - Développement. - Conformations rudimentaires, muscles, organes des sens, cheveux, os, organes reproducteurs, etc. -- Portée de ces trois ordres de faits sur l'origine de l'homme.

L'homme est-il le descendant modifié de quelque forme préexistante ? Pour résondre cette question, il convient d'abord de rechercher si la conformation corporelle et les facultés mentales de l'homme sont sujettes à des variations, si légères qu'elles soient; et, dans ce cas, si ces variations se transmettent à sa progéniture conformément aux lois qui prévalent chez les animaux inférieurs. Il convient de rechercher, en outre, si ces variations, autant que notre ignorance nous permet d'en juger, sont le résultat des mêmes causes, si elles sont réglées par les mêmes lois générales que chez les autres organismes, - par la corrélation, par les effets héréditaires de l'usage et du défaut d'usage, etc, ? L'homme est-il sujet aux mêmes difformités, résultant d'arrêts de développement, de duplication de parties, etc., et fait-il retour, par ses anomalies,
a quelque type antérieur et ancien de conformation? On doit naturellement aussi se demander si, comme tant d'autres animaux, l'homme a donné naissance à des variétés et à des sous-races, différant peu les unes des autres, ou à des races assez distinctes pour qu'on doive les classer comme des espèces douteuses? Comment ces races sont-elles distribuées à la surface de la terre, et, lorsqu'on les croise, comment réagissent-elles les unes sur les autres, tant dans la première génération que dans les suivantes? Et de même pour beaucoup d'autres points.
L'enquête aurait ensuite à élucider un problème important: l'homme tend-il à se multiplier assez rapidement pour qu'il en résulte une lutte ardente pour l'existence, et, par suite, la conservation des variations avantageuses du corps ou de l'esprit, et l'blimination de celles qui sont nuisibles? Les races ou les espèces humaines, quel que soit le terme qu'on préfère, empiètent-elles les unes sur les autres et se remplacent-elles de manière à ce que finalement il en disparaisse quelques-unes? Nous verrons que toutes ces questions, dont la plupart ne méritent pas la discussion, résolues qu'elles sont déjà, doivent, comme pour les animaux inférieurs, se résoudre par l'affirmative. Nous pouvons, d'ailleurs, laisser de coté pour le moment les considérations qui précèdent, et examiner d'abord jusqu'à quel point la conformation corporelle de l'homme offre des traces plus ou moins évidentes de sa descendance de quelque type inférieur. Nous étudierons, dans les chapitres suivants, les facultés mentales de l'homme, en les comparant à celles des animaux placés plus bas sur l'échelle.

Conformation corporelle de l'homme. - On sait que l'homme est construit sur le même type général, sur le mêmè modèle que les autres mammifères. Tous les os de son squelette sont comparables aux os correspondants d'un singe, d'une chauve-souris ou d'un phoque. Il en est de même de ses muscles, de ses nerfs, de ses vaisseaux sanguins et de ses viscères internes. Le cerveau, le plus important de tous les organes, suit la même loi, comme l'ont établi Huxley et d'autres anatomistes. Bischoff ${ }^{1}$, adversaire déclaré de cette doctrine, admet cependant que chaque fissure principale et chaque pli du cerveau humain ont leur analogue dans celui de lorang-outang; mais il ajoute que les deux cerveaux ne concordent

[^2]
[Chap. I]. CONFORMATION CORPORELLE DE L'HOMME

complètement à aucune période de leur développement: concordance è laquelle on ne doit d'ailleurs pas s'attendre, car autrement leurs facultés mentales seraient les mêmes. Vulpian ${ }^{2}$ faitla remarque suivante : «Les différences réelles qui existent entre l'encéphale de l'homme et celui des singes supérieurs sont bien minimes. Il ne faut pas se faire d'illusions à cet égard. L'homme est bien plus près des singes anthropomorphes par les caractères anatomiques de son cerveau que ceux-ci ne le sont non seulement des autres mammifères, mais même de certains quadrumanes, des guenons et des macaques. > Mais il serait superflu d'entrer ici dans plus de détails sur l'analogie qui existe entre la structure du cerveau et toutes les autres parties du corps de l'homme et la conformation des mammifères supérieurs.

Il peut, cependant, etre utile de spécifier quelques points, ne se rattachant ni directement ni évidemment à va conformation, mais qui témoignent clairement de cette analogie ou de cette parenté.

L'homme peut recevoir des animaux inférieurs et leur communiquer certaines maladies, comme la rage, la variole, la morve, la syphilis, le choléra, l'herpès, etc. ${ }^{3}$, fait qui prouve bien plus évidemment l'extrême similitude ${ }^{4}$ de leurs tissus et de leur sang, tant dans leur composition que dans leur structure élémentaire, que ne le pourrait faire une comparaison faite sous le meilleur mioroscope, ou l'analyse chimique la plus minutieuse. Les singes sont, sujets à un grand nombre de nos maladies non contagieuses; ainsi Rengger ${ }^{5}$, qui a observé pendant longtemps le Cebus Azaræ dans son pays natal, a démontré qu'il est sujet au catarrhe, avec ses symptomes ordinaires qui amènent la phtisie lorsqu'lls se répètent souvent. Ces singes souffrent aussi d'apoplexie, d'inflammation des entrailles et de la eataracte. La fièvre emporte souvent les jeunes au moment où ils perdent leurs dents de lait. Les remédes ont sur les singes les mêmes effets que sur nous. Plusieurs espèces de singes ont un goat prononcé pour le thé, le café et les liqueurs spi-

[^3]ritueuses; ils fument aussi le tabac avec plaisir, ainsi que je l'ai observé moi-méme ${ }^{6}$. Brehm assure que les habitants des parties nord-ouest de l'Afrique attrapent les mandrills en exposant à leur portée des vases contenant de la bière forte, avec laquelle ils s'énivrent. Il a observé quelques-uns de ces animaux en captivité dans le même état d'ivresse, ot fait un récit très divertissant de leur conduite et de leurs bizarres grimaces. Le matin suivant, ils étaient sombres et de mauvaise humeur, se tenaient la tête à deux mains et avaient une piteuse mine; ils se détournaient avec dégout lorsqu'on leur offrait de la bièke ou du vin, mais paraissaient être très friands du jus de citron ${ }^{7}$. Un singe américain, un Ateles, après s'être énivré d'eau-de-vie, ne voulut plus jamais en boire, se montrant en cela plus sage que bien des hommes. Ces faits peu importants prouvent combien les nerfs du goût sont semblables chez l'homme et chez les sipges, et combien leur système nerveux eutier est similairement affecté.
L'homme est infesté de parasites internes, dont l'action provoque parfois des effets funestes; il est tourmenté par des parasites externes, qui appartiennent aux mêmes genres ou aux mêmes familles que ceux qui attaquent d'autres mammifères, et, dans le cas de la gale, à la meme espèce ${ }^{8}$. L'homme est, comme d'autres animaux, mammifères, oiseaux, insectes même ${ }^{9}$, soumis à cette loi mystérieuse en vertu de laquelle certains phénomènes normaux, tels que la gestation, ainsi que la maturation et la durée de diverses maladies, suivent les phases de la lune. Les mêmes phénomènes se produisent chez lui et chez les animaux pour la cicatrisation des blessures, et les moignons qui subsistent après l'amputation des membres possèdent parfois, surtout pendant les premières phases de la période eembryonnaire, une certaine puissance de régénération, comme chez les animaux inférieurs ${ }^{10}$.
L'ensemble de la marche de l'importante fonction de la repro-

[^4]duction de l'espèce présente les plus grandes ressemblances chez tous les mammifères, depuis les premières assiduités du male ${ }^{11}$ jusqu'à la naissance et l'allaitement des jeunes. Les singes naissent dans un état presque aussi faible que nos propres enfants, et, dans certains genres, les jeunes diffèrent aussi complètement des adultes, par leur aspect, que le font nos enfants de leurs parents ${ }^{12}$. Quelques savants ont présenté, comme une distinction importante, le fait que, chez l'homme, le jeune individu n'atteint la maturité qu'à un âge beaucoup plus avancé que chez tous les autres animaux ; mais, si nous considérons les races bumaines habitant les contrées tropicales, la différence n'est pas bien considérable, car on admet que l'orang ne devientadulte qu'à dix ou quinze ans ${ }^{13}$. L'homme diffère de la femme par sa taille, par sa force corporelle, par sa villosité, etc., ainsi que par son intelligence, dans la mème proportion que les deux sexes chez la plupart des mammifères. Bref, il n'est pas possible d'exagérer l'étroite analogie qui existe entre l'homme et les animaux supérieurs, surtout les singes anthropomorphes, tant dans la conformation générale de la structure élémentaire des tissus que dans la composition chimique et la constitution.

Développement embryonnaire. - L'homme se développe d'un ovule ayant environ $0^{\mathrm{mm}}, 02$ de diamètre; cet ovule ne diffère en aucun point de celui des autres animaux à une période précoce; c'est à peine si l'on peut distinguer cet embryon lui-méme de celui d'autres membres du règne des vertébrés. A cette période, les artéres circulent dans des branches arquées, comme pour porter le sang dans des branchies qui n'existent pas dans les vertébrés supérieurs, bien que les fentes latérales du cou persistent et marquent leur ancienne position (fig. 1, f, g). Un peu plus tard, lorsque les extrémités se développent, ainsi que le remarque le célèbre de

[^5]Baêr, « les pattes des lézards et des mammifères, los ailes et les pattes des oiseaux, de même que les mains et les pieds de l'homme, dérivent de la même forme fondamentale ». C'est, dit le professeur Huxley ${ }^{14}$, \& dans les toutes dernières phases du développement, que le jeune êire humain présente des différences marquées avec le jeune singe, tandis que ce dernier s'éloigne autant du chien dans ses développements que l'homme lui-même peut s'en éloigner. On peut démontrer la vérité de cette assertion, tout extraordinaire qu'elle puisse paraitre. 》
Comme plusieurs de mes lecteurs peuvent n'avoir jamais vu le dessin d'un embryon, je donne ceux de l'homme et du chien (fig. 1, planche 1), tous deux à peu près" à la même phase précoce de leur développement, et je les emprunte à deux ouvrages dont l'exactitude est incontestable ${ }^{15}$.
Après les assertions de ces hautes autorités, il est inutile d'entrer dans de plus amples détails pour prouver la grande ressemblance qu'offre l'embryon humain avec celui des autres mammifères. J'ajouterai, cependant, que certains points de la conformation de l'embryon humain ressemblent aussi à certaines conformations d'animaux inférieurs à l'état adulte. Le cœur, par exemple, n'est d'abord qu'un simple vaisseau pulsateur; les déjections s'évacuent par un passage cloacal ; l'os coccyx fait saillie comme une véritable queuv, qui « s'étend beaucoup au delà des jambes rudimentaires ${ }^{16}$. Certaines glandes, désignées sous le nom de corps de Wolff, existant chez les embryons de tous les vertébrés à respiration aérienne, correspondent aux reins des poissons adultes et fonctionnent comme eux ${ }^{17}$. On peut même observer, à une période embryonnaire plus tardive, quelques ressemblances frappantes entre l'homme et les animaux inférieurs. Bischoff assure qu'à la fin du septième mois, les circonvolutions du cerveau d'un embryon humain en sont à peu près au même état de développement que

[^6]chez le babouin adulte ${ }^{18}$. Le professeur Owen fait remarquer ${ }^{19}$ «que le gros orteil, qui fournit le point d'appui dans la marche, aussi bien debout qu'à l'état de repos, constitue peut-etre la particularité la plus caractéristique de la structure humaine »; mais le professeur Wyman ${ }^{20}$ a démontré que, chez l'embryon ayant environ un pouce de longueur, e l'orteil est plus court que les autres doigts, et que, au lieu de leur etre parallèle, il forme un angle avec le côté du pied, correspondant ainsi par sa position avec l'état permanent de l'orteil cheẑ les quadrumanes \geqslant. Je termine par une citation de Huxley ${ }^{21}$, qui 'se demande : l'homme est-il engendré, se développe-t-il, vient-il au monde d'une façon autre que le chien, l'oiseau, la grenouille, ou le poisson? Puis il ajoute: «La réponse ne peut pas etre douteuse un seul instant; il est incontestable que le mode d'origine et les premières phases du développement humain sont identiques à ceux des animaux qui occupent les degrés immédiatement au-dessous de lui sur l'échelle, et qu'à ce point de vue il est beaucoup plus voisin des singes que ceux-ci ne le sont du chien.

Rudiments. - Nous traiterons ce sujet avec plus de développements, bien qu'il ne soit pas intrinsèquement beaucoup plus important que les deux précédents ${ }^{22}$. On rencontre chez tous les andmaux supérieurs quelques parties à l'état rudimentaire; l'homme ne fait point exception à cette règle. Il faut, d'ailleurs, distinguer, ce qui, dans quelques cas, n'est pas toujours facile, les organes rudimentaires de ceux qui ne sont qu'a l'etat naissant. Les premiers sont absolument inutiles, tels que les mamelles chez les quadrupèdes males, et chez les ruminants les incisives qui ne percent jamais la gencive; ou bien ils rendent seulement à leurs possesseurs actuels de si légers services que nous ne pouvons pas supposer qu'ils se soient développés dans les conditions où ils existent aujourd'hui. Les organes, dans ce dernier état, ne sont pas strictement rudimentaires, mais tendent à le devenir. Les organes naissants, d'autre part, bien qu'ils ne soient pas complè-

18. Die Grosshirnwindungen des Menschen, 1868, p. 95.

19. Anatomy of vertebrates, vol. II, p, 553.
20. Proceedings Soc. Nat. Hist., Boston, 1863, vol. IX, p. 185
21. Man's place in Nature, p. 65.
22. Javais déja écrit ce chapitre avant d'avoir lu un travail de grande valeur, auquel je suis redevable pour beaucoup de données, par G. Canestrini: "Caratteri rudimentali in ordine all" origine dell' uomo " (Annuario della Soc., d. nat., Modena, 1867, p. 81). Hæckel a admirablement discuté l'ensemble du sujet, sous le titre de Dystéologie, dans sa Generelle Morphologie et Schöpfungsgeschichte.
toment développés, rendent de grands services à leurs possessears et sont susceptibles d'un développement ultérieur. Les organes rudimentaires sont éminemment variables, fait qui se comprend, puisque, étant inutiles ou à peu près, ils ne sont plus soumis à l'action de la sélection naturelle. Ils disparaissent souvent entièrement ; mais, dans ce cas, its reparaissent quelquefois, par suite d'un effet de retour, fait qui mérite toute notre attention.
Les principales causes qui paraissent provoquer l'état rudimentaire des organes sont le défaut d'usage, surtout pendant l'état adulte, alors que, au contraire, l'organe devrait etre exercé, et l'hérédité à une période correspondante de la vie. L'expression \& défaut d'usage > ne s'applique pas seulement à l'action amoindrie des mascles, mais comprend une diminution de l'afflux sanguin vers un organe soumis à des alternatives de pression plus rares, ou devenant, à un titre quelconque, habituellement moins actif. On peut observer chez un sexe les rudiments de parties présentes normalement chez l'autre sexe; ces rudiments, ainsi que nous le verrons plus tard, résultent souvent de causes distinctes de celles que-nous venons d'indiquer. Dans quelques cas, la sélection naturelle intervient pour réduire les organes devenus nuisibles a une espèce, par suite de changements dans ses habitudes. Il est probableque la compensation et l'économie de croissance interviennent souvent à leur tour pour hater cette diminution de l'organe ; toutefois, on s'explique difficilement les derniers degrés de diminution qui s'observent après que le défaut d'usage a effectué tout ce qu'on peut raisonnablement lui attribuer, et que les résultats de l'économie de croissance ne sont plus que très insignifiants ${ }^{23}$. La suppression complète et finale d'une partie, déjà très réduite et devenue inutile, cas où ne peuvent entrer en jeu ni la compensation ni l'économie de croissance, peut se comprendre par l'hypothèse de la pangenèse et ne peut guère même s'expliquer autrement. Je n'ajouterai rien de plus sur ce point, ayant, dans mes ouvrages précédents ${ }^{24}$, discuté et développé avec amples détails tout ce qui a trait aux organes rudimentaires.
On a observé, sur de nombreux points du corps humain ${ }^{25}$, les rudiments de muscles divers; il en est qui, existant régulièrement

[^7]chez quelques animaux, se retrouvent parfois à un état très réduit chez l'homme. Chacun a remarqué l'aptitude que possèdent plusieurs animaux, le cheval surtout, à mouvoir certaines parties de la peau par la contraction du pannicule musculaire. On trouve des restes de ce muscle à l'état actif sur plusieurs points du corps humain; sur le front, par exemple, où il permet le relèvement des sourcils. Le platysma myoides, qui est bien développé sur le cou, appartient à ce système. Le professeurTurner, d'Édimbourg, m'apprend qu'il a parfois trouvé des fascicules musculaires dans cinq situations différentes : dans les axilles, près des omoplates, etc., qui doivent tous étre rattachés au système du pannicule. Il a ${ }^{2 \mathrm{~b}}$ aussi démontré que le muscle sternal (sternalis brutorum), qui n'est pas une extension de I'abdominal droit (rectus abdominalis), mais qui se relie intimement au pannicule, s'est rencontré dans une proportion d'environ 3 p. 100 chez plus de six cents cadavres; il ajoute que ce muscle fournit e un excellent exemple du fait que les conformations accidentelles et rudimentaires sont tout spécialement sujettes à présenter des variations dans les arrangements *
Quelques personnes ont la faculté de contracter les muscles superficiels du scalpe, qui sont dans un état partiellement rudimentaire et variable. M. A. de Candolle m'a communiqué une observation curieuse sur la persistance héréditaire de cette aptitude, existant à un degré inusité d'intensité. Il connait une famille dont un des membres, actuellement chef de la famille, pouvait, quand il était jeune, faire tomber, par la seule mobilité du scalpe, plusieurs gros livres posés sur sa tête, et qui avait gagné de nombreux paris en exécutant ce tour de force. Son père, son oncle, son grand-père et ses trois enfants possèdent à un égal degré cette mème aptitude. Cette famille se divisa en deux branches, il y a huit générations; le chef de celle dont nous venons de parler est donc cousir au septième degré du chef de l'autre branche. Ce cousin éloigné habitant une autre partie de la France, interrrogé au sujet de l'aptitude en question, prouva immédiatement qu'il la possède aussi. C'est là un excellent exemple de la transmission persistante d'une faculté absolument inutile que nous ont probablement léguée nos ancêtres à demi humains ; en effet, les singes possèdent la faculté, dont ils usent largement, de mouvoir le scalpe de haut en bas et vice versa ${ }^{27}$.

[^8]Les muscles servant à mouvoir l'ensemble de l'oreille externe, et les muscles ${ }^{\text {spéciaux qui déterminent les mouvements de ses }}$ diverses parties, appartenant tous au système panniculeux, existent, chez l'homme, à l'état rudimentaire. Ils offrent des variations dans leur développement, ou au moins dans leurs fonctions. J'ai eu l'occasion de voir un homme qui pouvait ramener ses oreilles en avant; d`autres qui pouvaient les redresser; d'autres enfin qui pouvaient les retirer en arrière ${ }^{28}$; d'après ce que m'a dit une de ces personnes, il est probable que la plupart des hommes, en stimulant l'oreille et en dirigeant leur attention de ce côté, parviendraient, à la suite d'essais répétés, à recouvrer quelque mobilité dans ces organes. La faculté de dresser les oreilles et de pouvoir les diriger vers les différents points de l'espace rend certainement de grands services à beaucoup d'animaux, qui sont ainsi renseignés sur le lieu du danger ; mais je n'ai jamais entendu dire qu'un homme ait possédé cette faculté, la seule qui put lui être utile. Toute la conque externe de l'oreille peut être considérée comme un rudiment, ainsi que les divers replis et proéminences (hélix et antihélix, tragus et antitragus, etc.) qui, chez les animaux, soutiennent et renforcent l'oreille, lorsqu'elle est redressée, sans en augmenter beaucoup le poids. Quelques auteurs, toutefois, supposent que le cartilage de la conque sert à transmettre les vibrations au nerf acoustique; mais M. Toynbee ${ }^{29}$, après avoir recueilli tout ce qu'on sait à ce sujet, conclut que la conque extérieure n'a pas d'usage déterminé. Les oreilles des chimpanzés et des orangs ressemblent singulièrementà celles de l'homme, et les muscles qui leur sont propres sont aussi très peu développés ${ }^{30}$. Les gardiens du Jardin zoologique de Londres m'ont assuré que ces animaux ne meuvent ni ne redressent jamais les oreilles; elles sont donc, en tant qu'il s'agit de la fonction, dans le même état rudimentaire que celles de l'homme. Nous ne pouvons dire pourquol ces animaux, ainsi quae les ancêtres de l'homme, ont perdu la faculté de dresser les oreilles. Il est possible, bien que cette explication ne me satisfasse pas complètement, que, peu exposés au danger, par suite de leurs habitudes d'existence dans les arbres et de leur grande force,

[^9] p. 97, sur le même sujet.
29. J. Toynbee, F. R. S., The Diseases of the Ear, 1860, p. 12. Un physiologiste distingue, le professeur Preyer, m'apprend qu'il a récemment fait des expériences sur la fonction de la conque de l'oreille et qu'il en est arrivé à peu près à la mème conclusion que celle que j'indique ici.
30. Prof. A. Macalister, Annals and Magaz. of Nat. Hist., vol. VII, 1871, p. 312 .
ils aient, pendant une longue période, peu remué les oreilles et perdu ainsi la faculté de le faire. Ce serait un cas parallèle à celui de ces grands oiseaux massifs, qui habitent les iles de l'océan, où ils ne sont pas exposés aux attaques des animaux carnassiers, et qui ont, par suite du défaut dusage, perdu le pouvoir de se servir de leurs ailes pour s'enfuir. La facilité avec laquelle Thomme et plusieurs espèces de singes remuent la tette dans le plan horizontal, ce qui leur permet de saisir les sons dans toutes les directions, compense en partie limpossibihité où its se trouvent de mouvoir les oreilles. On a affirmé que l'oreille de l'homme seul est pourvue d'un lobule ; mais on trouve un rudiment du lobule chez le gorille ${ }^{34}$, et le professeur Preyer m'apprend que le lobule fait assez souvent dëlaut chez le négre.
Un sculpteur éminent, M. Woolner, m'a signalé une petite particularité de l'oreille externe, particularité qu'il a souvent remarquée chez les deux sexes, et dont il croit avoir saisi la vraie signification. Son attention fut attirée sur ce point lorsqu'il iravaillait à sa statue de Puck, à laquelle il avait donné des oreilles pointues. Ceci le conduisit à examiner les oreilles de divers singes, et subséquemment à étudier de plus près r'oreille humaine. Cette particularité consiste en une petite pointe émoussée qui fait saillie sur le bord replić en dedans, ou l'hélix. Quand cette saillie existe, elle est déjà développúé lorsque l'enfant vient au monde ; d'après le professeur Ludwig Meyer, on l'observe plus fréquemment chez l'homme que chez la femme. Woolner m'a envoyé un dessin (fig. 2 planche 2), fait d'après un modèle exact d'un cas semblable. Cette proéminence fait non seulement saillie en dedans, mais, souvent aussi, un peu en dehors, de manière à être visible lorsqu'on regarde la tette directement en face, soit par devant, soit par derrière. Elle varie en grosseur et quelque peu en position, car elle se strouve tantôt un peu plus haut, tantot un peu plus bas; on l'observe parfois sur une oreille et pas sur l'autre. Cette conformation n'existe pas seulement chez l'homme, car j'en ai observé un cas chez un Ateles belzebuth au Jardin zoologique de Londres; le docteur E. Ray Lankester me signale un autre cas qu'il a observé sur un chimpanzé du Jardin zoologique de Hambourg.
L'hélix est évidemment formé par un repli intérieur du bord externe de l'oreille, et ce repli paratt provenir de ce que l'oreille extérieure, dans son entier, a été repoussée en arrière d'une manière permanente. Chez beaucoup de singes peu élevés dans l'ordre,

[^10]comme les cynocéphales et quelques espèces de macaques ${ }^{32}$, la partie supérieure de l'oreille se termine par une pointe peu accusée, sans que les bord soit aucunement replié en dedans; si, au contraire, le bord était replié, il en résulterait nécessairement une petite proéminence faisant saillie en dedans et probablement un peu en dehors du plan de l'oreille. C'est là, je crois, qu'il faut chercher, dans la plupart des cas, l'origine de ces proéminences. D'autre part, le professeur L. Meyer soutient, dans un excellent ${ }^{\text {e }}$ némoire, qu'il a récemment publié ${ }^{33}$, que l'on ne doit voir là qu'un cas de simple variabilit́, que les proéminences ne sont pas réelles, mais qu'elles sont dues à ce que le cartilage intérieur de chaque cotté ne s'est pas complètement développé. Je suis tout prêt à admettre que cette explication est acceptable dans bien des cas, dans ceux, par exemple, figurés par le professeur Meyer, où on remarque plusieurs petites proéminences qui rendent sinueux le bord entier de l'hélix. Grace à l'obligeance du docteur L. Down, j'ai pu étudier l'oreille d'un idiot microcéphale; j'ai observé sur cette oreille une proéminence située sur le côté extérieur de l'hélix et non pas sur le repli intérieur, de sorte que cette proéminence ne peut avoir aucun rapport avec une pointe antérieure de l'oreille. Néanmoins, je crois que, crans la plupart des cas, j'étais dans le vrai en regardant ces saillies comme le dernier vestige du bout de l'oreille autrefois redressée et pointue; je suis d'autant plus disposéa le le croire que ces saillies se présentent fréquemment et que leur position correspond généralement à celle du sommet d'une oreille pointue. Dans un cas, dont on m'a envoyé une photographie, la saillie est si considérable que, si l'on adopte l'hypothèse du professeur Meyer, c'est-à-dire si l'on suppose que l'oreille deviendrait parfaite grace à l'égal développement du cartilage dans toute l'étendue du bord, le repli aurait recouvert au moins un tiers de l'oreille entiere. On m'a communiqué deux autres cas, l'un dans l'Amérique du nord, l'autre en Angleterre; dans ces deux cas, le bord supérieur n'est pas replié intérieurement, mais il se termine en pointe, ce qui le fait ressembler étroitement à l'oreille pointue d'un quadrupède ordinaire. Dans un de ces cas, le père comparait absolument l'oreille de son jeune enfant à celle d'un singe, le Cynopithecus niger, dont j'ai donné le dessin dans un autre ouvrage ${ }^{24}$. Si , dans ces deux cas,

[^11]le bord s'était replié intérieurement de la façon normale, il se serait formé une saillie intérieure. Je puis ajouter que, dans deux autres cas, l'oreille conserve un aspect quelque peu pointu, "bien que le bord de la partie supérieure de l'oreille soit normalement repliéá l'intérieur, très faiblement, il est vrai, dans un des deux cas. La figure 3 (Planche 2), reproduction exacte d'une photographie qu'a bien voulu m'envoyer le docteur Nitsche, représente le foetus d'un orang. On peut voir combien l'oreille du foetus de l'orang diffère de celle du même animal à l'état adulte; on sait, en effet, que cette dernière ressemble beaucoup à celle de l'homme. Il est facile de comprendre que, si la pointe de l'oreille du fœetus venait à se replier intérieurement, il se produirait une saillie tournée vers l'intérieur, à moins que l'oreille ne subisse de grandes modifications dans le cours de son développement. En résumé, il me semble toujours probable que, dans certains cas, les saillies en question, chez l'homme et chez le singe, sont les vestiges d'un état antérieur.
La troisième paupière, ou membrane clignotante, est, avec ses muscles accessoires et d'autres conformations, particulièrement bien développée chez les oiseaux; elle a pour eux une importance fonctionnelle considérable, car, grâce à elle, ils peuvent recouvrir rapidement le globe de l'œil tout entier. On observe cette troisième paupière chez quelques reptiles, chez quelques amphibies et chez certains poissons, les requins par exemple. Elle est assez bien développée dans les deux divisions inférieures de la série des manmifères, les Monotrèmes et les Marsupiaux, ainsi que chez quelques mammifères plus élevés, comme le morse. Mais, chez l'homme, les quadrumanes et la plupart des autres mammifères, elle existe, ainsi que l'admettent tous les anatomistes, sous la forme d'un simple rudiment, dit le pli semi-lunaire ${ }^{35}$.

Le sens de l'odorat a, pour la plupart des mammifères, une très haute importance : il avertit les uns du danger, comme les ruminants; il permet à d'autres, comme les carnivores, de découvrir leur proie; à d'autres enfin, comme le sanglier, il sert à l'un et à l'autre usage. Mais l'odorat ne rend que très peu de services à l'homme, même aux races à peau de couleur, chez lesquelles il - $\mathrm{e}^{\text {st }}$ généralement plus développé que chez les races civilisées ${ }^{36}$. Il
35. Muller, Manuel de physiologie (trad. française), 1845, vol. II, p. 307. 0 wen, Anat. of Vertebrates, vol. III, p. 260. Id., On the Walrus (morse), Proc. Zool. Soc., nov. 1854. R. Knox, Great artists and anatomists, p. 106. Ce rudiment parait être quelque peu plus marqué chez les nègres et chez les Australiens ${ }^{\text {®que chez les Européens. C. Vogt, Eeçans sur l'homme (trad. fran- }}$ gaise), p. 167.
36. On connalt in descriotion que fait Humbeldt du merveilleux odorat que
ne les avertit pas du danger et ne les guide pas vers leur nourriture; il n'empêche pas les Esquimaux de dormir dans une atmosphère fétide, ni beaucoup de sauvages de manger de la viande à moitié pourrie. Un éminent naturaliste, chez lequel ce sens est très parfait et qưi a longuement étudié cette question, m'affirme que, chez les Européens, cette faculté comporte des états bien différents selon les individus. Ceux qui croient au principe de l'évolution graduelle n'admettent pas aisément que ce sens, tel qu'il existe aujourd'hui, ait été originellement acquis par l'homme dans son état actuel. Lhomme doit sans doute cette faculté affaiblie et rudimentaire à quelque ancêtre reculé, auquel elle était extrêmement utile et qui en faisait un fréquent usage. Le docteur Maudsley ${ }^{37}$ fait remarquer avec beaucoup de raison que le sens de l'odorat chez l'homme est \& remarquablement propre à lui rappeler vivement l'idée et l'image de scènes eì de lieux oubliés »; peut-être faut-il chercher l'explication de ces phénomènes dans le fait que les animaux qui possèdent ce même sens à un état très développé, comme les chiens et les chevaux, semblent compter beaucoup sur l'odorat pour raviver le souvenir de lieux od de personnes mu'ils ont connus autrefois.
L'homme diffère notablement par sa nudité de cous res autres primates. Quelques poils courts se rencontrent çà et là sur la plus grande partie du corps de l'homme, et un duvet plus fin sur le corps de la femme. Les différentes races humaines diffèrent considérablement à ce point de vue. Chez les individus appartenant à une même race, les poils varient beaucoup, non seulement par leur abondance, mais par leur position; ainsi, chez certains Européens, les épaules sont entièrement nues, tandis que, chez d'autres, elles porlent d'épaisses touffes de poils ${ }^{38}$. On ne peut guère douter que les poils ainsi éparpillés sur le corps ne soient les rudiments du

[^12]revêtement pileux uniforme des animaux. Le fait que les poils courts, fins, peu colorés, des membres eí des autres parties du corps se transforment parfois < en poils longs, serrés, grossiers et foncés, > lorsqu'ils sont soumis à une nutrition anormale grâce à leur situation dans la proximité de surfaces qui sont, depuis longtemps, le siège d'une inflammation, confirme cette hypothèse dans une certaine mesure ${ }^{39}$.

Sir James Paget a remarqué que plusieurs membres àune même famille ont souvent quelques poils des sourcils plus longs que les autres, particularité bien légère qui paraît, cependant, être héréditaire. On observe des poils analogues chez certains animaux; ainsi, on remarque, chez le chimpanzé et chez certaines espèces de macaques, quelques poils redressés, très longs, plantés droit audessus des yeux, et correspondant à nos sourcils; on a observé des poils semblables très longs dépassant les poils qui recouvrent les arcades sourcilières chez quelques babouins.

Le fin duvet laineux, dit lanugo, dont le fœotus humain est entièrement recouvert au sixième mois, présente un cas plus curieux. Au cinquième mois, ee duvet se développe sur les sourcils et sur la face, surtout autour de la bouche, où il est beaucoup plus long que sur la tête. Eschricht ${ }^{40}$ a observé une moustache de ce genre chez un foetus femelle, circonstance moins étonnante qu'elle ne le paraît d'abord, car tous les caractères extérieurs sont généralement identiques chez les deux sexes pendant les premières phases de la formation. La direction et l'arrangement des poils sur le fœetus sont les mêmes que chez l'adulte, mais ils sont sujets à une grande variabilité. La surface entière du foetus, y compris même le front et les oreilles, est ainsi couverte d'un épais revêtement de poils; mais, fait significatif, la paume des mains, ainsi que la plante des pieds, restent absolument nues, comme les surfaces inférieures des quatre membres chez la plupart des animaux inférieurs. Cette col̈ncidence ne peut guère être accidentelie, il est donc probable que le revêtement laineux de l'embryon représente le premior revettement de poils permanents chez les mammifères qui naissent velus. On a recueilli trois ou quatre observations authentiques relatives à des personnes qui, en naissant, avaient le corps et la face couverts de longs poils fins; cette étrange particularité semble être fortement héréditaire et se trouve en corrélation avec un état anormal de la dentition ${ }^{41}$. Le professeur Alex. Brandt a comparé

[^13]les poils de la face d'un homme agé de trente-cinq ans, atteint de cette particularité avec le lanugo d'un fcetus, et il a observé que 1a texture des poils et du lanugo était absolument semblable; il pense donc que l'on peut attribuer ce phénomène à un arrêt de développement du poil qui n'en continue pas moins de croitre. Un médecin, attaché à un hôpital pour les enfants, m'a affirmé que beaucoup <enfants délicats ont le dos couvert de longs poils soyeux: on peut, sans doute, expliquer ce cas de la même façon que le précédent.
11 semble que les molaires postérieures, ou dents de sagesse, tendent à devenir rudimentaires chez les races humaines les plus civilisées. Elles sont un peu plus petites que les autres molaires, fait que l'on a observé aussi pour les dents correspondantes chez le chimpanzé et chez l'orang; en outre, elles n'ont que deux racines distinctes. Elles ne percent pasla gencive avantla dix-septième année, et l'on m'a assuré qu'elles sont beaucoup plus sujettes à la carie et se perdent plutôt que les autfes dents, ce que nient, d'ailleurs, quelques dentistes éminents. Elles sont aussi, beaucoup plus que les autres dents, sujettes à varier, tant par leur structure que par l'époque de leur développement ${ }^{42}$. Chez les races mélaniennes, au contraire, les dents de sagesse présentent habituellement trois racines distinctes et sont généralement saines; en outre, elles different moins des autres molaires que chez les races caucasiennes ${ }^{43}$. Le professeur Schaaffhausen explique cette différence par le fait que, chez les races civilisées ${ }^{44}$, « la partie postérieure dentaire de la mâchoire est toujours raccourcie », particularité qu'on peut, je présume, attribuer avec assez de vraisemblance à ce que les hommes civilisés se nourrissent ordinairement d'aliments ramollis par la cuisson, et que, par conséquent, ils se servent moins de leurs mâchoires. M. Brace m'apprend que, aux Etats-Unis, l'usage d'enlever quelques molaires aux enfants se répand de plus en plus, la mâchoire ne devenant pas assez grande pour permettre le développement complet du nombre normal des dents ${ }^{45}$.

[^14]Je n'ai rencontré qu'un seul cas de rudiment dans le canal digestif, à savoir l'appendice vermiforme du cæcum. Le cæcum est une branche ou diverticulum de l'intestin, se terminant en un cul-de-sac, qui atteint une grande longueur chez beaucoup de mammiferes herbivores inférieurs. Chez le Koala (Phascolaretos), il est trois fois plus long que le corps entier ${ }^{46}$. Il s'étire parfois en une pointe allongée, d'autres fois il est étranglé par places. Il semble que, par suite d'un changement de régime ou d'habitudes, le cæcum se soit raccourci considérablement chez divers animaux; l'appendice vermiforme a persisté comme un rudiment de la partie réduite. Le fait qu'il est très petit et les preuves de sa variabilité chez l'homme, preuves qu'a recueillies le professeur Canestrini ${ }^{47}$, nous permettent de conclure que cet appendice est bien un rudiment. Parfois il fait défaut; dans d'autres cas, il est très développé. Sa cavité est quelquefois tout à fait fermée sur la moitié ou les deux tiers de sa longueur; sa partie terminale consiste alors en une expansion pleine et aplatie. Cet appendice est iung et enroulé chez l'orang; chez l'homme il part de l'extrémité du cæcum et a ordinairement de 10 à 12 centimètres de longueur, et seulement 8 ou 9 millimètres de diamètre. Il est non seulement inutile, mais il peut devenir aussi une cause de mort. Deux exemples récents de ce fait sont parvenus à ma connaissance. Ces accidents sont dus à l'introduction dans la cavité de petits corps durs, tels que des graines, qui, par leur présence, déterminent une inflammation ${ }^{18}$.
Quelques quadrumanes, les Lémurides et surtout les Carnivores aussi bien que beaucoup de Marsupiaux, ont, près de l'extrémité inférieure de l'humérus, une ouverture, le foramen supra-condyloide, au travers de laquelle passe le grand nerf de l'avant-bras et souvent son artère principale. Or l'humérus de l'homme porte ordinairemert des traces de ce passage, qui est même quelquefois assez bien développé; il est formé par une apophyse recourbée, complétée par un ligament. Le docteur Struthers ${ }^{49}$, qui s'est beau-
46. 0 wen, Anat. of Vertebrales, vol. III, pp. 416, 434, 441.
47. L. c., p. 94.
48. M. C. Martins, De l'Unité organique. Reuue des Deux-Mondes, 15 juin 1862 , p. 16; Hæckel, Generelle Morphologie, vol. II, p. 278, ont tous deux fait des remarques sur le fait singulier que cet organe rudimentaire cause quelquefois la mort.
49. Voir pour l'hérédité le docteur Struthers, the Lancet, 24 janvier 1863, p. 83 , et 15 férrier 1873. Le docteur Knox, Great artists and anatomists, p. 63, est, m'a-t-on dit, le premier anatomiste qui ait appelé l'attention sur cette conformation particulière chez l'homme. Docteur Gruber, Bulletin de l'Acad. imp. de Saint-Pétersbourg, 1867, p. 418.
cotup occupé de cette question, vient de démontrer que ce caractère est parfois héréditaire, car il l'a observé chez un individu et chez quatre de ses sept enfants. Lorsque ce passage existe, le nerf du bras le traverse toujours ; ce qui indique clairement qu'il est I'homologue et le rudiment de l'orifice supra-condyloide des animaux intérieurs. Le professeur Turner estime que ce cas s'observe sur environ 1 p. 100 des squelettes récents. Si le développement accidentel de cette conformation chez l'homme est, comme cela semble probable, du à un effet de retour, cette conformation nous reporte à un ancêtre extrêmement reculé, car elle n'existe pas chez les quadrumanes supérieurs.
Il existe une autre perforation de l'humérus, qu'on peut appeler l'intra-condyloide, qui s'observe chez divers genres d'anthropoídes et autres singes ${ }^{30}$, ainsi que chez beaucoup d'animaux inférieurs, et qui se présente quelquefois chez thomme. Fait très remarquable, ce passage paralt avoir existé beaurnup plus fréquemment autrefois qu'ả une époque plus récente. M. Busk ${ }^{51}$ a réuni les documents suivants à ce sujet : \& Le professeur Broca a remarqué cette perforation sur $41 / 2 \mathrm{p} .100$ des os du bras recueillis dans le cimetière du Sud à Paris; dans la grotte d'Orrony, dont le contenu paratt appartenir à la période du bronze, huit humérus sur trente-deux étaient perforés; mais il semble que cette proportion extraordinaire peut etre due à ce que la caverne avait sans doute servi de caveau de famille. M. Dupont a trouvé aussi dans les grottes de la vallée de la Lesse, appartenant à l'époque du renne, 30 p .100 d'os perforés; tandis que M. Leguay, dans une espèce de dolmen, à Argenteuil, en observa 25 p. 100 présentant la même particularité. Pru-ner-Bey a constaté le méme état chez 26 p. 100 d'os provenant de Vauréal. Le même auteur ajoute que cette condition est commune dans les squelettes des Guanckes. > Le fait que, dans ce cas, ainsi que dans plusieurs autres, la conformation des races anciennes se rapproche plus des animaux inférieurs que celle des races modernes, est fort intéressant. Cela vient probablement en grande partie de ce que les races ancienres, dans la longue ligne de descendance, se trouvent quelque peu plus rapprochées que les races modernes de leurs ancêtres primordiaux.

[^15]Bien que fonctionnellement nul comme queue, l'os coccyx de l'homme représente nettement cette partie des autres animaux vertébrés. Pendant la première période embryonnaire, cet os est libre et, comme nous l'avons vu, dépasse les extrémités postérieures. Dans certains cas rares et anormaux ${ }^{52}$, il constitue, même après la naissance, un petit rudiment externe de queue. L'os coccyx est court; il ne comprend ordinairement que quatre vertèbres enkylosées; elles restent à l'état rudimentaire, car elles ne présentent, a l'exception de celle de la base, que la partie centrale seule ${ }^{53}$. Elles possédent quelques petits muscles, dont l'un, à ce que m'apprend le professeur Turner, a été décrit par Theile, comme une répétition rudimentaire exacte de l'extenseur de la queue, muscle qui est si complètement développé chez beaucoup de mammifềres.
Chez l'homme, la moelle épinière ne s'étend pas au delà de la dernière vertébre dorsale ou de la première vertèbre lombaire, mais un corps filamenteux (flum terminale) se continue dans l'axe de la partie sacrée du canal vertébral et même le long de la face postérieure des os coccygiens. La partie supérieure de ce filament, d'après le professeur Turner, est, sans aucun doute, l'homologue de la moelle épınière, mais la partie inférieure semble se composer simplement de la pie-mère, soit la membrane vasculaire qui l'entoure. Même dans ce cas, on peut considérer que l'os coccyx posséde un vestige d'une conformation aussi importante que la moelle épinière, bien que n'étant plus contenu dans un canal osseux. Le fait suivant, que j'emprunte aussi au professeur Turner, prouve combien l'os coccyx correspond à la véritable queue des animaux inférieurs : Luschka a récemment découvert, à l'extrémité des os coccygiens, un corps enroulé très particulier, qui est continu avec l'artère sacrée médiane. Cette découverte a conduit Krause et Meyer à examiner la queue d'un singe (macaque) et celle d'un chat, et ils ont trouvé chez toutes deux, quoique pas à l'extrémité, un corps enroulé semblable.

Le système reproducteur offre diverses transformations rudimentaires, mais qui different par un point important des cas précédents. Il ne s'agit plus ici de vestiges de parties, qui n'appartien-

[^16]nent pas à l'espéce à l'état actif, mais d'une partie qui est toujours présente et active chez un sexe, tandis qu'elle est représentée chez l'autre par un simple rudiment. Néanmoins l'existence de rudiments de ce genre est aussi difficile à expliquer que les cas précédents, si l'on se place au point de vue de la création séparée de chaque espèce. J'aurai, plus loin, à revenir sur ces rudiments, et je prouverai que leur présence dépend généralement de l'hérédité seule, c'est-à-dire que certaines parties acquises par un sexe on été transportées partiellement à l'autre. Je me borne ici à indiquer quelques-uns de ces rudiments. On sait que tous les mammifères males, l'homme compris, ont des mamelles rudimentaires. Il est arrivé que, dans quelques cas, celles-ci se sont développées et ont fourni du lait en abondance. Leur identité essentielle chez les deux sexes est également prouvée par le gonflement occasionnel dont elles sont le siège pendant une attaque de rougeole. La vésicule prostatique (vesicula prostatica), qui a été observée chez beaucoup de mammifères males, est aujourd'hui universellement reconnue pour ètre l'homologue de l'utérus femelle, ainsi que le passage en rapport avec lui. Il est impossible de lire la description que fait Leuckart de cet organe, et l'argument qu'il tire, sans admettre la justesse de ses conclusions. Cela est surtout apparent chez les mammifères dont l'utérus se bifurque chez la femelle, car, chez les males de ces espèces, la même bifurcation s'observe dans la vésicule ${ }^{54}$. Je pourrais encore mentionner ici quelques autres conformations rudimentaires du système reproducteur ${ }^{55}$. . ,

On ne saurait se méprendre sur la portée des trois grandes classes de faits que nous venons d'indiquer, mais il serait superflu de récapituler ici toute la série des arguments déjà développés en détail dans mon Origine des espèces. Une construction homologue de lout le système, chez tous les membres d'une même classe, est compréhensible, si nous admettons qu'ils descendent d'un ancètre commun, outre leur adaptation subséquente à des conditions diverses. La similitude que l'on remarque entre la main de l'homme ou du singe, le pied du cheval, la palette du phoque, l'aile de la chauve-souris, etc., est absolument inexplicable par toute autre hypothèse ${ }^{56}$. Affirmer que ces parties ont toates élé formées sur

[^17]se place nécessairement à côté des fesses quand l'animal s'assied, et que la base de l'organe, quelle que puisse être, d'ailleurs, sa longueur, est exposée à de nombreux frottements \geqslant. Il est aujourd'hui démontré que les mutilations produisent parfois des effets héréditaires ${ }^{94}$; il n'est donc pas absolument improbable que, chez les singes à courte queue, la partie extérieure de cet appendice, exposée à un frottement et à des lésions continuelles, et désormais inutile au point de vue fonctionnel, soit, après de nombreuses générations, devenue rudimentaire ou qu'elle se soit déformée. La partie extérieure de la queue est déformée chez le Macacus brunneus ; elle est absolument atrophiée chez le M. ecaudatus et chez plusieurs singes supérieurs. Autant donc que nous pouvons en juger, la queue a disparu, chez l'homme et chez les singes anthropomorphes, par suite des frictions et des lésions auxquelles elle a été exposée pendant de longues périodes; en outre, la base enfouie dans le corps a diminué de volume et s'est modifiée pour se mettre en rapport avec la posture droite ou demi-droite.

J'ai cherché à démontrer que la sélection naturelle a, selon toute probabilité, amené directement, ou plus habituellement de ̉áaçon indirecte, la production des principaux caractères distinctifs de l'homme. Rappelons-nous que la sélection naturelle ne peut produire des modifications de structure ou de constitution qui ne rendent aucun service à un organisme pour l'adapter à son mode de vie, aux aliments qu'il consomme, ou passivement aux conditions dans lesquelles il se trouve placé. Il ne nous appartient pas, cependant, d'indiquer avec trop d'assurance quelles sont les modifications qui peuvent être avantageuses à chaque être ; car notre ignorance est si grande que nous ne saurions déterminer l'usage de nombreuses parties, et la nature des changements que peuvent subir le sang et les tissus pour adapter un organisme à un nouveau climat ou à une alimentation différente. Nous devons aussi tenir compte du principe de la corrélation qui relie les unes aux autres, comme Isidore Geoffroy l'a démontré au sujet de l'homme, bien des déviations étranges de structure. Indépendamment de la corrélation,

[^18]un changement dans une partie peut entrainer des modifications tout à fait inattendues dans d'autres parties, modifications dues à l'augmentation ou à la diminution d'usage de ces parties. Il faut aussi réfléchir avec soin à des phénomènes tels que la merveilleuse croissance des galles, provoquées chez les plantes par la piqûre d'un insecte ; ou tels que les changements remarquables cre couleur déterminés chez les perroquets quand on les nourrit avec certains poissons, ou qu'on leur inocule ${ }^{\text {l }}$ le poison de certains crapauds ${ }^{95}$; car ces phénomènes nous prouvent que les fluides du système, altérés dans un but spécial, peuvent provoquer d'autres changements. Nous devons nous rappeler surtout que des modifications acquises, qui ont continuellement rendu des services dans le passé, ont du probablement se fixer et devenir héréditaires.

On peut donc, avec certitude, attribuer aux résultats directs et indirects de la sélection naturelle une importance très grande, bien que non définie; mais, après avoir lu l'essai de Nägeli sur les plantes, et les observations faites par divers auteurs sur les animaux, plus particulièremênt celles récemment énoncées par le professeur Broca, j'admets maintenant que, dans les premières éditions de l'Origine des Espèces, j'ai probablement attribué un rôle trop considérable à l'action de la sélection naturelle ou à la persistance du plus apte. J'ai donc modifié la cinquième édition de cet ouvrage de manière à limiter mes remarques aux adaptations de structure; mais je suis convaincu, et les recherches faites pendant ces quelques dernières années fortifient chez moi cette conviction, qu'on découvrira l'utilité de beaucoup de conformations qui nous paraissent aujourd'hui inutiles, et qu'il faudra, par conséquent, les faire rentrer dans la sphère d'action de la sélection naturelle. Néanmoins je n'ai pas, autrefois, suffisamment appuyé sur l'existence de beaucoup de conformations qui, autant que nous en pouvons juger, paraissent n'étre ni avantageuses ni nuisibles; et c'est là, je crois, l'une des omissions les plus graves qu'on ait pu-relever, jusqu'à présent, dans mon ouvrage. Qu'il me soit permis de dire comme excuse que j'avais en vure deux objets distincts : le premier, de démontrer que l'espèce n'a pas été créée séparément, et le second, que la sélection naturelle a été l'agent modificateur principal, bien qu'elle ait été largement aidée par les effets héréditaires de l'habitude, et un peu par l'action directe des conditions ambiantes. Toutefois je n'ai pu m'affranchir suffisamment de l'influence de mon ancienne croyance, alors généralement admise, à la création
95. La Variation des Animaux, etc., vol. II, p. 297.
de chaque espèce dans un but spécial ; ce qui m'a conduit à supposer tacitement que chaque détail de conformation, les rudiments exceptés, devait avoir quelque utilité spéciale, bien que non reconnue. Avec cette idée dans l'esprit, on est naturellement eutrainé ¿̀ étendre trop loin l'action de la sélection naturelle dans le passé ou dans le présent. Quelques-uns de ceux qui admettent le principe de l'évolution, mais qui rejettent la sélection naturelle, paraissent oublier, en critiquant mōn ouvrage, que j'avais les deux objets précités en vue ; donc, si j'ai commis une erreur, soit, ce que je suis loin d'admettre, en attribuant une grande puissance a la sélection naturelle, soit, ce qui est probable en soi, en exagérant cette puissance, j'espère au moins avoir rendu quelque service en contribuant à renverser le dogme des créations distinctes.
Il est probable, je le comprends maintenant, que tous les etres organisés, l'homme compris, présentent beaucoup de particularités de structure qui n'ont pour cux aucune utilité dans le présent, non plus que dans le passé, et qui n'ont, par collséquent, aucune importance physiologique. Nous ignorons ce qui amène chez ies individus de chaque espèce d'innombrables petites différences, ?ar le retour ne fait que reculer le problème de quelques pas; mais chaque particularité doit avoir eu une cause efficiente propre. Si ces causes, quelles qu'elles puissent être, agissaient plus uniformément et plus énergiquement pendant une longue période (et il n'y a pas de raison pour que cela n'arrive pas), il en résulterait probablement, non plus une légère différence individuelle, mais une modification constante et bien prononcée, qui n'aurait, cependant, aucune importance physiologique. La sélection naturelle n'a certes pas contribué à conserver l'uniformité des modifications qui nie présentaient aucun avantage, bien qu'elle ait du éliminer toutes celles qui étaient nuisibles. L'uniformité des caractères résulterait néanmoins naturellement de l'uniformité présumée de leurs causes déterminantes, et aussi du libre entre-croisement d'un grand nombre d'individus. Le mème organisme pourrait de cette manière acquérir, pendant les périodes successives, des modifications successives, qui se transmettraient à peu près uniformément tant que les causes agissantes resteraient les mêmes, et tant que l'entrecroisement resterait libre. Quant aux causes ćéterminantes, nous ne pouvons que répéter ce que nous avons dit en parlant des prétendues variations spontanées, c'est qu'elles se rattachent plus étroitement à la constitution de l'organisme variable qu'à la nature des conditions auxquelles il a été soumis.

Résumé. - Nous avons vu dans ce chapitre que, de même que Chomme actuel est sujet, comme tout autre animal, à des différences individuelies multiformes ou à de légères variations, ses premiers ancêtres l'ont, sans aucun doute, également été; ces variations ont été, alors comme aujourd’hui, provoquées par les mêmes causes, et réglées par les mêmes lois générales et complexes. Comme tous les animaux tendent à se multiplier au delá de leurs moyens de subsistance, il a du en être de même des ancêtres de lhomme, ce qui a inévitablement conduit ces derniers à la lutte pour l'existence et à la sélection naturelle. Les effets héréditaires de l'augmentation d'usage de certaines parties ont dû, en outre, donner unê vigueur plus considérable à l'áction de la sélection naturelle; les deux phénomènes, en effet, réagissent constamment l'un sur l'autre. Il semble aussi, comme nous le verrons plus loin, que la sélection sexuelle a déterminé chez l'homme la formation de plusieurs caractères insignifiants. On doit attribuer á l'action uniformé présumée de ces influences inconnues, qui provoquent quelquefois, chez nes animaux domestiques, de brusques et profondes déviations de conformation, certaines autres módifications assez importantes peut-etre, qu'il est impossible d'expliquer par l'action des causes précédemment indiquées.
A en juger d'après les habitudes des sauvages et de la plupart des quadrumanes, les hommes primitifs, nos ancêtres simio-humains, vivaient probablement en société. Chez les animaux rigoureusement sociables, la sélection naturelle agit parfois sur lindividu, en conservant les variations qui sont utiles à la communauté. Une asseciation comprenant un grand nombre d'individus bien doués augmente rapidement et l'emporte sur les autres associations dont les membres sont moins bien douês, bien que chacun des individus qui composent la première n'acquiete peut-être aucune supérioxité sur les autres membres. Les insectes vivant en communauté ont acquis de cette façon pinsieurs conformations remarquables qui ne rendent que peu ou point de services à lindividu, telles que l'appareil collecteur du pollen, l'aiguillon de l'abeille ouvrière, ou les fortes machoires des fourmis soldats. Je ne sache pas que, chez les animaux sociables supérieurs, aucune conformation ait été modifiće exelusivement pour le bien de la communauté, bien que quelques-unes de cés conformations rendent à la communauté des services secondaires. Les ruminants males, par exemple, ont sans doute acquis des cornes et les babouins males de fortes canines pour lutter plus avantageusement avec leurs rivaux afin de s'emparer des femelles, mais ces armes n'eri servent
pas moins aussi à la défense du troupeau. Le cas est tout différent quand il s'agit de cerlaines facultés mentales, ainsi que nous le verrons dans lo cinquième chapitre; ces facultés, en effet, ont été principalement, ou mème exclusivement acquises pour l'avantage de la communauté, et les individus qui la composent en tirent, en même temps, un avantage indirect.
On a souvent objecté aux théories que nous venons d'exposer, que l'homme est une des créatures le plus hors d'état de pourvoir à ses besoins, le moins apte à se défendre, quill y ait dans le monde; et que cette incapacité de subvenir à ses besoins devait être plus grande encore pendant la période primitive, alors qu'il était moins bien développé. Le duc d'Argyll ${ }^{96}$, par exemple, insiste sur ce point, que «la conformation humaine s'est éloignét de celle ${ }^{\circ}$ de la brute, dans le sens d'un plus grand affaiblissement physique et d'une plus grande impuissance. C'est-à-dire qu'il s'est produit une divergence que, moins que tout autre, on peut attribuer à la simple sélection naturelle. Il invoque l'état nu du corps, l'ab. sence de grandes dents ou de griffes propres à la défense, le peu de force qu'a l'homme, sa faible rapidité à la course, l'insuffisance de son odorat. insuffisance telle qu'il ne peut se servir de ce sens, ni pour trouver ses aliments, ni pour éviter le danger: On pourrait encore ajouter à ces imperfections son inaptitude à grimper rapidement sur les arbres pour échapper à ses ennemis. Quand on voit les Fuégiens résister sans vêtements à leur affreux climat, on comprend que la perte des poils n'ait pas été très nuisible à l'homme primitif, surtout s'il habitait un pays chaud. Lorsque nous comparons l'homme sans défense aux singes qui, pour la plupart, possèdent de formidables canines, nous devons nous rappeler que ces dents n'atteignent leur développement complet que chez les males seuls, et leur servent principalement pour lutter avec leurs rivaux, les femelles qui en sont privées n'en subsistant pas moins.
Quant à la force et à la taille, nous. ne savons si l'homme descend de quelque petite espèce, comme le chimpanzé, ou d'une espèce aussi puissante que le gorille; nous ne saurions donc dire si l'homme est devenu plus grand et plus fort, ou plus petit et plus faible que ne l'étaient ses ancêtres. Toutefois nous devons songer qu'il est peu probable qưun animal de grande taille, fort et féroce, et pouvant, comme le gorille, se défendre contre tous ses ennemis, puisse devenir un animal sociable; or ce défaut de sociabilité aurait certainement entravé chez l'homme le développement de

96. Primeval Man, 1869, p. 8\%.

ses qualités mentales d'ordre élevé, telle que la sympathie et l'affection pour ses semblables. Il y aurait donc eu, sous ce rapport, un immense avantage pour l'homme à devoir son origine à un etre comparativement plus faible.
Le peu de force corporelle de l'homme, son peu de rapidité de locomotion, sa privation d'armes naturelles, etc., sont plus que compensés, premièrement, par ses facultés intellectuelles, qui lui ont permis, alors qu'il était à l'état barbare, de fabriquer des armes, des outils, etc.; et, secondement, par ses qualités sociales, qui l'ont conduit à aider ses semblables et à en être aidé en retour. Il n'y a pas au monde de pays qui abonde autant en bêtes féroces que l'Afrique méridionale; pas de pays où les privations soient plus grandes, la vie plus rude, que dans les régions arctiques, et cependant une des races les plus chétives, celle des Boschimans, se maintient dans l'Afrique australe, de même que les Esquimaux, qui sont presque des nains, dans les régions polaires. Les premiers ancêtres de l'homme étaient sans doute inférieurs, sous le rapport de l'intelligence et probablement des dispositions sociales, aux sauvages les plus infimes existant aujourd'hui ; mais on comprend parfaitement qu'ils puissent avoir existé et mème prospéré, si, tandis qu'ils perdaient peu à peu leur force brutale et leurs aptitudes animales, telles que celle de grimper sur les arbres, etc., ils avançaient en même temps en intelligence. D'ailleurs, en admettant même que les ancêtres de l'homme aient été plus dénués de ressources et de moyens de défense que les sauvages actuels, ils n'auraient été exposés à aucun danger particulier s'ils avaient habité quelque continent chaud, ou quelque grande ile, telle que l'Australie, la Nouvelle-Guinée, ou Bornéo qui est actuellement habité par l'orang. Sur une surface aussi considérable que celle d'une de ces îles, la concurrence entre les tribus aurait été suffisante pour élever l'homme, grace à la sélection naturelle, jointe aux effets héréditaires de l'habitude, à la haute position qu'il occupe actuellememt dans l'échelle de l'organisation.

CHAPITRE III

Comparaison des facultés mentales de l'homme AYEG GELLES DES ANIMAUX INFÉRIEURS

La différence entre la puissance mentale du singe le plus élevé et celle du sauvage le plus grossier esi immense - Communauté de certains instincts. - Emotions. - Curiosité. - mitation. - Attention. Mémoire. - Imagination. - Raison. - , élioration progressive. Instruments el armes employés par les ar maux. - Abstraction, conscience de soi. - Langage. - Sentíment d. la beauté. - Croyance en Dieu, aux agents spirituels, superstitions.

Nous avons vu, dans les deux derniers chapitres, que la conformation corporelle de l'homme prouve clairement qu'il descend d'un type inférieur; on peut objecter, il est vrai, que l'homme diffère si considérablement de tous les autres animaux par le développement de ses facultés mentales que cette conclusion doit être erronée. Il "n'y a aucun doute que, sous ce rapport, la différence ne soit immense, en admettant même que nous ne comparions au singe le* mieux organisé qu'un sauvage de l'ordre le plus infime, qui n'a point de mots pour indiquer un nombre dépassant quatre, qui ne sait employer aucun terme abstrait pour désigner les objets les plus communs ou pour exprimer les affections les plus chères ${ }^{1}$. La différence, sans doute, resterait encore immense si même on comparait le sauvage à un des singes supérieurs, amélioré, civilisé, amené par l'éducation à occuper, par rapport aux autres singes, la position que le chien occupe aujourd hui par rapport à ses ancêtres primordiaux, le loup ou le chacal. On range les Fuégiens parmiles barbares les plus grossiers; cependant, j'ai toujours été surpris, à bord du vaisseau le Beagle, de voir combien trois naturels de cette race, qui avaient vécu quelques années en Angleterre et parlaient un peu la langue de ce pays, nous ressemblaient au point de vue du caractère et de la plupart des facultés intellectuelles. Si aucun ètre organisé, l'homme excepté, n'avait possédé quelques facultés de cet ordre, ou que ces facultés eussent été chez ce dernier d'une nature toute différente de ce qu'elles sont chez les animaux inférieurs, jamais nous n'aurions pu nous convaincre que nos hautes facultés sont la résultante d'un développement graduel. Mais on peut facilement démontrer qu'il n'existe aucune différence fonda-

[^19]mentale de ce genre. It faut bien admettre aussi qu'il y a un intervalle infiniment plus considérable entre les facultés intellectuelles d'un poisson de l'ordre le plus inférieur, tel qu'une lamproie ou un amphioxus, et celles de l'un des singes les plus clevés, qu'entre les facultés intellectuelles de celui-ci et celles de l'homme; cet intervalle est, cependant, comblé par d'innombrables gradations.
'D'ailleurs, à ne considérer que l'homme, la distance n'est-elle pas immense au point de vue moral entre un sauvage, tel que celui dont parle l'ancien navigateur Byron, qui écrasa son enfant contre un rocher parče qu'll avait laissé tomber un panier plein d'oursins, et un Howard ou un Clarkson; au point de vue intellectuel, entre un sauvage qui n'emploie aucun terme abstrait, et un Newton ou un Shakespeare? Les gradations les plus délicates relient les différences de ce genre, qui existent entre les hommes les plus éminents des races les plus élevées et les sauvages les plus grossiers. Il est donc possible que ces facultés intellectuelles ou morales se développent et se confondent les unes avec les autres.

J'ai l'intention de démontrer dans ce chapitre qu'il n'existe aucure différence fondamentale entre l'homme et les mammifères les plus élevés, au point de vue des facultés intellectuelles. Je suis forcé de traiter brièvement ici les principaux côtés de ce sujet, dont chacun aurait pu faire l'objet d'un chapitre séparé. Aucune classification des facultés intellectuelles n'a encore été universellement adoptée; je disposerai donc mes remarques dans l'ordre qui convient le mieux au but que je me propose, en choisissant les faits qui m'ont le plus frappé, avec l'espoir quils produiront quelque effet sur l'esprit de mes lecteurs.
Certains faits prouvent que les faeultésintellectuelles des animaux placés très bas sur l'échelle sont plus élevées qu'on ne le croit ordinairement; je me réserve do signaler ces faits lorsque j'aborderai létude de la sellection sexuelle. Je me contenterai de citer ici quelques exemples de la variabilité des facultés chez les individus appartenant à une même espèce, ce qui conslitue pour nous un point important. Mais il serait superflu d'entrer dans de trop longs détails sur ce point, car mes recherches m'ont amené à reconnaître que tous ceux qui ont longuement étudié des animaux de bien des espéces, y compris les oiseaux, pensent unanimement que les individus diffèrent beaucoup au point de vue de leurs facultés intelectuelles. Il serait tout aussi inutile de reahereher comment ces facultés se sont, dans le principe, développées chez les formes inférieures, que de rechercher lorigine de la vie. Ce sont la pro-
blèmes réservés à une époque future encore bien éloignée, si toutefois l'homme parvient jamais à les résoudre.
L'homme possède les mêmes sens que les animaux, ses intuitions fondamentales doivent donc être les mêmes. L'homme et les animaux ont quelques instincts communs: l'amour de la vie, l'amour sexuel, l'amour de la mèré pour ses petits nouveau-nés, l'aptitude de ceux-ci pour téter, et ainsi de suite. L'homme, cependant, a peut-être moins d'instincts que n'en possèdent les animaux quii, dans la série, sont ses plus proches voisins. L'orang, dans les iles de la Sonde, et le chimpanzé, en Afrique, construisent des platesformes où ils se couchent pour dormir; les deux espèces ont une même habitude, on peut donc en conclure que c'est là un fait du à l'instinct, mais nous ne pouvons affirmer quill ne résulte pas de ce que ces deux espèces d'animaux ont éprouvé les mêmes besoins et possèdent les mémes facultés de raisonnement. Ces singes, ainsi que nous pouvons l'admettre, savent reconnaltre les nombreux fruits vénéneux des tropiques, faculté que l'homme ne possède pas; mais, comme les animaux domestiques, lorsqu'on les met en liberté au printemps, mangent souvent des herbes vénéneuses qu'ils évitent ensuite, nous ne pouvons pas non plus affirmer que les singes n'aient pas appris, par leur propre expérience ou par celle de leurs parents, à reconnaitre les fruits qu'ils doivent choisir. Il est toutefois certain, comme nous allons le voir, que les singes éprouvent une terreur instinctive à la vue des serpents et, probablement, d'autres animaux dangereux.
Le petit nombre et la simplicité comparative des instincts chez les animaux supérieurs contrastent remarquablement avec ceux des animaux inférieurs. Cuvier soutenait que l'instinct et l'intelligence sont en raison inverse; d'autres ont pensé que les facultés intellectuelles des animaux élevés ne sont que des instincts graduellement développés. Mäis Pouchet ${ }^{2}$ a démontré dans un mémoire intéressant qu'il n'existe réellement aucune raison inverse de ce genre. Les insectes qui possèdent les instincts les plus remarquables sont certainement les plus intelligents. Les membres les moins intelligents de la classe des vertébrés, à savoir les poissons et les amphibies, n'ont pas d'instincts compliqués ; et, parmi les mammifères, l'animal le plus remarquable par les siens, le castor, possede une grande intelligence, ainsi que l'admettent tous ceux qui ont lu l'excellent travail de M. Morgan ${ }^{3}$ sur cet animal.

[^20]M. Herbert Spencer ${ }^{4}$ soutient que les premières lueurs de 1 intelligence se sont développées par la multiplication et la coordination d'actions réflexes; or, bien que la plupart des instincts les plus simples se confondent avec les actions réflexes, au point qu'il est presque impossible de les distinguer les uns des autres, la succion, par exemple, chez les jeunes animaux, les instincts plus complexes paraissent, cependant, s'étre formés indépendamment de l'intelligence. Je suis toutefois très éloigné de vouloir nier que des actions instinctives puissent perdre leur caractère fixe et naturel, et être remplacées par d'autres accomplies par la libre volonté. D'autre part, certains actes d'intelligence, - tels, par exemple, que celui des oiseaux des iles de l'océan qui apprennent à éviter l'homme, peuvent, après avoir été pratiqués pendant plusieurs générations, se transformer en instincts héréditaires. On peut dire alors que ces actes ont un caractére d'infériorité, car ce n'est plus la raison ou l'expérience qui les fait accomplir. Mais la plupart des instincts plus complexes paraissent avoir été acquis d'une manière toute différente, par la sélection naturelle des variations d'actes instinctifs plus simples. Ces variations paraissent résulter des mêmes causes inconnues qui, occasionnant de légères variations ou des différences individuelles dans les autres parties du corps, agissent de même sur l'organisation cérébrale, et déterminent des changements que, dans notre ignorance, nous considérons comme spontanés. Je ne crois pas que nous puissions arriver à une autre conclusion sur l'origine des instincts les plus complexes, lorsque nous songeons à ceux des fourmis ou des abeilles ouvrières stériles, instincts d'autant plus remarquables que les individus qui les possêdent ne laissent point de descendants pour hériter des effets de l'expérience et des habitudes modifiées.

Bien qu'un degré élevé d'intelligence soit certainement compatible avec l'existence d'instincts complexes, comme nous le prouve l'exemple du castor et lies insectes dont nous venons de parler, et bien que les actions dépendant d'abord de la volonté puissent ensuite être accomplies grâce à l'habitude avec la rapidité et la sùreté d'une action réflexe, il n'est cependant pas improbable qu'il existe une certaine opposition entre le développement de l'intelligence et celui de l'instinct, car ce dernier implique certaines modifications héréditaires du cerveau. Nous savons bien peu de chose sur les fonctions du cerveau, mais nous pouvons concevoir que, à mesure que les facultés intellectuelles se développent davantage, les
4. The Principles of Psychology, 2• édit., 1870, pp. 418-443.
diverses parties du cerveau doivent être en rapports de communications plus complexes, et que, comme conséquence, chaque portion distincte doit tendre à devenir moins apte à répondre d'une manière ửfinie et héréditaire, c'est-à-dire instinctive, àdes sensations particulières. Il semble même y avoir certains rapports entre une faible intelligence et une forte tendance à la formation d'habitudes fixes, mais non pas héréditaires; car, comme me l'a fait remarquer un médecin très sagace, les personnes légèrement imbéciles tendent à se laisser guider en tout par la routine ou Thabitude, et on les rend d'autant plus heureuses qu'on encourage cette disposition.
J'ai cru devoir faire cette digression, parce que nous pouvons aisément estimer au-dessous de sa valeur l'activité mentale des animaux supérieurs et surtout de l'homme, lorsque nous comparons leurs actes, basés sur la mémoire d'événements passés, sur la prévoyance, la raison et l'imagination, avec d'autres actes tout à fait semblables accomplis instinctivement par des animaux inférieurs. Dans ce dernier cas, l'aptitude á accomplir ces actes a été acquise graduellement, grace à la variabilité des organes mentaux et à la sélection naturelle, sans que, dans chaque génération successive, l'animal en ait eu conscience et sans que l'intelligence y ait aucune part. Il n'y a pas à douter, ainsi que le soutient M. Wallace ${ }^{\text {b }}$, qu'une grande part du travail intellectuel effectué par l'homme ne soit due à l'imitation et non à la raison; mais il y a, entre les actes de l'homme et ceux des animaux, cette grande différence que l'homme ne peut pas, malgré sa faculté d'imitation, fabriquer d'emblée, par exemple, une hache en pierre ou une pirogue. Il faut qu'il apprenne à travailler; uin castor, au contraire, construit sa digue ou son canal, un oiseau fait son nid, une araignée tisse sa toile merveilleuse, presque aussi bien ou même tout aussi bien dès son premier essai que lorsqu'il est plus agé et plus expérimentê ${ }^{6}$.
Pour en revenir à notrè sujet immédiat: les animaux inférieurs, de même que l'homme, ressentent évidemment le plaisir et la douleur, le bonheur et le malheur. On ne saurait trouver une expression de bonheur plus évidente que celle que manifestent les petits chiens et les petits chats, les agneaux, etc., lorsque, comme nos enfants, ils jouent les uns avec les autres. Les insectes eux-mêmes jouent les uns avec les autres, ainsí que l'a démontré un excellent

[^21]observateur, P. Huber ${ }^{7}$, qui a vu des fourmis se poursurre et se mordiller, comme le font les petits chiens.

Le fait que les animaux sont aptes à ressentir les mêmes émotions que nous me parait assez prouvé pour que je n'aie pas à importuner mes lecteurs par de nombreux détails. La terreur agit sur eux comme sur nous, elle cause un tremblement des muscles, des palpitations du cœur, le relâchement des sphincters et le redressement des poils. La défiance, conséquence de la peur, caractérise éminemment la plupart des animaux sauvages. Il est, je crois, impossible de lire la description que fait sir E. Tennent de la conduite des éléphants femelles, dressées à attirer les éléphants sauvages, sans admettre qu'elles ont parfaitement l'intention de tromper ces derniers et qu'elles savent parfaitement ce qu'elles fönt. Le courage et la timidité sont extrêmement variables chez les individus d'une même espèce, comme on peut facilement l'observer chez nos chiens. Certains chiens et certains chevaux ont un mauvais cáaractère et boudent aisément, d'autres ont bon caractère; toutes ces qualités sont héréditaires. Chacun sait combien les animaux sont sujets aux colères furieuses, et combien ils le manifestent clairement. On a publié de nombreuses anecdotes, probablement vraies, sur les vengeances habiles et souvent longtemps différées de divers animaux. Rengger et $B_{r e h m}{ }^{8}$ affirment que les singes américains et africains qu'ils ont apprivoisés se vengeaient parfois. Sir Andrew Smith, zoologiste dont chacun admet l'exactitude absolue, m'a raconté le fait suivant dont il a été témoin oculaire : un officier, au cap de Bonne-Espérance, prenait plaisir à taquiner un babouin; un dimanche, l'animal le voyant s'approcher en grand uniforme, pour se rendre à la parade, se hâta de délayer de la terre et, quand il eut fait de la boue bien épaisse, il la jeta sur l'officier au moment oú celui-ci passait; depuis lors, le babouin prenait un air tromphant dès qu'il apercevait sa victime.

L'amitié du chien pour son maître est proverbiale ; et, comme le dit un vieil écrivain ${ }^{9}$: \& Le chien est le seul être sur cette terre qui vous aime plus qu'il ne s'aime lui-itême. *

On a vu un chien à l'agonie caresser encore son maitre. Chacun cohnait le fait de ce chien, qui, étant l'objet d'uné vivisection, léchait
7. Recherches sur les mours des fourmis, 1810, p. 173.
8. Tous les renseignements qui suivent, donnés sur l'autorité de ces deux naturalistes, sont empruntés à Rengger, Naturgeschichte der Saügethiere von Paraguay, 1830, pp. 41, 57 ; et à Brehm, Thierleben, vol. I, p. 10, 87.
9. Cité par le docteur Lauder Liudsay, Physiology of Mind in the lover animals (Journal of mental science), avril 1871, p. 38.
la main de celui qui faisait l'opération; cet homme, à moins d'avoir réalisé un immense progrès pour la science, à moins d'avoir un cœur de pierre, a du toute sa vie éprouver du remords de cette aventure.
Whewell ${ }^{10}$ se demande avec beaucoup de raison: CLorsqu'on lit les exemples touchants d'affection maternelle qu'on raconte si souvent sur les femmes de toutes nations et sur les femelles de tous les animaux, qui peut douter que le mobile de l'action ne soit le même dans les deux cas ? Nous voyons l'affection maternelle se manifester dans les détails les plus insignifiants. Ainsi, Rengger a vu un singe américain (un Cebus) chasser avec soin les mouches qui tourmentaient son petit; Duvaucel a vu un Hylobates qui lavait la figure de ses petits dans un ruisseau. Les guenons, lorsqu'elles perdent leurs petits, éprouvent un tel chagrin qu'elles en meurent, comme Brehm l'a remarqué dans le nord de l'Afrique. Les singes, tant males que femelles, adoptent toujours les singes orphelins et en prennent les plus grands soins. Un babouin femelle, remarquable par sabonté, adoptait non seulement lesjeunes singes d'autres espèces, mais encore volait des jeunes chiens et des jeunes chats, qu'elle emportait partout avec elle. Sa tendressetoutefois, n'allait pas jusqu'à partager ses aliments avec ses enfants d'adoption, fait qui étonna Brehm, car ses singes partageaient toujours très loyalement avec leurs propres petits. Un petit chat ayant égratigné sa mère adoptive, celle-ci, très étonnée du fait, et très intelligente, examina les pattes du chat ${ }^{11}$, et, sans autre forme de procès, enleva aussitôt les griffes avec ses dents. Un gardien du Jardin zoologique de Londres me signala une vieille femelle babouin ¿Cynocephalus chacma) qui ava 't adopté un singe Rhésus. Cependant, lorsqu'on introduisit dans sa cage deux jeunes singes, un Drill et un Mandrill, elle parut s'apercevoir que ces deux individus, quoique spécifiquement distincts, étaient plus voisins de son espèce; elle les adopta aussitôt et repoussa le Rhésus. Ce dernier, très contrarié de cette expulsion, cherchait toujours, comme un enfant mécontent, à attaquer les deux autres jeunes toutes les fois qu'il le pouvait sans danger, conduite qui excitait toute l'indignation de la vieille guenon. Brehm affirme que les singes défendent leur

[^22]maitre contre toute attaque, et prennent même le parti des chiens qu'ils affectionnent contre tous les autres chiens. Mais nous empiétons ici sur la sympathie et sur la fidélité, sujets auxquels j'aurai à ruvenir. Quelques-uns des singes de Brehm prenaient un grand plaisir à tracasser, par toutes sortes de moyens très ingénieux, un vieux chien qu'ils n'aimaient pas, ainsi que d'autres animaux.

De même que nous, les animaux supérieurs ressentent la plupart des émotions les plus complexes. Chacun sait combien le chien se montre jaloux de l'affection de son maitre, lorsque ce dernier caresse toute autre créature ; j'ai observé le même cas chez les singes. Ceci prouve que les animaux, non seulement aiment, mais aussi recherchent l'affection. Ils éprouvent très évidemment le sentiment de l'émulation. Ils aiment l'approbation et la louange; le chien, qui porte le panier de son maître, s'avance tout plein d'orgueil et manifeste un vif contentement. Il n'y a pas, je crois, à douter que le chien n'éprouve quelque honte, abstraction faite de toute crainte, et quelque chose qui ressemble beaucoup à l'humiliation, lorsiqu'il mendie trop souvent sa nourriture. Un gros chien n'a que du mépris pour le grognement d'un roquet, c'est ce qu'on peut appeler de la magnanimité. Plusieurs observateurs ont constaté que les singes n'aiment certainement pas qu'on se moque d'eux, et ils ressentent souvent des injures imaginaires. J'ai vu, au Jardin zoologique, un babouin qui se mettait toujours dans un état de rage furieuse lorsque le gardien sortait de sa poche une lettre ou un livre et se mettait à lire à haute voix; sa fureur était si violente que, dans une occasion dont j'ai été témoin, il se mordit la jambe jusqu'au sang. Les chiens possèdent ce qu'on pourrait appeler le sentiment de la plaisanterie, qui est absolument distinct du simple jeu. En effet, si l'on jette à un chien un baton ou un objet semblable, il se précipite dessus et le transporte à une certaine distance, puis il se couche auprès et attend que son maitre s'approche pour le reprendre; il se lève alors et s'enfuit un peu plus loin en triomphe pour recommencer le même manège, et il est évident qu'il est très heureux du tour qu'il vient de jouer.

Passons maintenant aux facultés et aux émotions plus intellectuelles, qui ont une plus grande importance en ce qu'elles constituent les bases du développement des aptitudes mentales plus élevées. Les animaux manifestent très évidemment qu'ils recherchent la gaieté ot redoutent l'ennui ; cela s'observe chez les chiens, et, d'après Rengger, chez les singes. Tous les animaux éprouvent de l'étonnement, et beaucoup font preuve de curiosite. Cette dernière

74

 La descendance de l'homme [Ire Partie].aptitude leur est quelquefois nuisible, comme, par exemple, lorsque le chasseur les distrait par des feintes et les attire vers lui en affectant des poses extraordinaires. Je l'ai observé pour le cerf; il en est de même pour le chamois, si méfiant cependant, et pour quelques espèces de canards sauvages. Brehm nous fait une description intéressante de la terreur instinctive que ses singes éprouvaient à la vue des serpents; cependant, leur curiosité était si grande qu'ils ne pouvaient s'empếcher de temps à autre de rassaSier, pour ainsi dire, leur horreur d'une manière des plus humaines, en soulevant le couvercle de la boite dans laquelle les serpents étaient renfermés. Très étonné de ce récit, je transportai un serpent empaillé et enroulé dans l'enclos des singes au Jardin zoologique, où il provoqua une grande effervescence; ce spectacle fut un des plus curieux dont j’aie jamais été témoin. Trois Cercopithèques élaient tout particulièrement alarmés; ils s'agitaient violemment dans leurs cages en poussant des cris aigus, signal de danger qui fut compris des autres singes. Quelques jeunes et un vieil Anubis ne firent aucune attention au serpent. Je plaçai alors le serpent empailé dans un des grands compartiments. Au bout de quelques instants, tous les singes formaient un grand cercle autour de l'ánimal, qu'ils regardāient fixement; ils présentaient alor's l'aspect le plus comique. Mais ils étaient surexcités au plus haut degré; un léger mouvement imprimé à une boule de bois, à demi-cachée sous la paille, et qui leur était familière comme leur servant de jouet habituel, les fit décamper aussitôt. Ces singes se comportaient tout différemment lorsqu'on introduisait dans leurs cages un poisson mort, une souris ${ }^{12}$, une tortue vivante, car, bien que ressentant d'abord une certaine frayeur, ils ne tardaient pas à s'en approcher pour les examiner et les manier. Je mis alors un serpent vivant dan's un sac de papier mal fermé que je déposai dans un des plus grands compartiments. Un des singes s'en approcha immédiatement, entr'ouvrit le sac avec précaution, y jeta un coup d'œil, et se sauva à l'instant. Je fus alors tèmoin de ce qu'a décrit Brehm, car tous les singes, les uns après les autres, la tête levée et tournée de côté, ne purent résister à la tentation de jeter un rapide regard dans le sac, au fond duquel le terrible animal restait immobile. Il semblerait presque que les singes ont quelques notions sur les affinités zoologiques, car ceux que Brehm a ćlevés têmoignaient d'une terreur instinctive ésange, quoique

[^23]non motítée, devant d'innocents lỉzards ou des grenouilles. On a observé aussi qu'un orang a ressenti une grande frayeur la premiè̀re fois qu'il a vu une tortue ${ }^{13}$.
La facuitté de l'imitation est puissante chez l'homme, et surtout, comme j'ai pu m'en assurer noi-mème, chez l'homme a a l'état sauvage. La tendance à limitation devient excessive dans certains etats morbides du cerveau; les personhés afteintes d'hémiplégie ou de ramollissement du cerveau, rêpétent inconsciemment, pendant les premières phases de là maladié, tous les mots qừils entendent, que ces mots appartiennent ou non à leur propre langage, ou imitent tous les gestes qu'ils voient faire auprès d'eux ${ }^{14}$. Desor ${ }^{15}$ fait remarquer qu'aucuh animal n'imite volontairement une action accomplie par l'homme jusqu'á ce que, remontant l'échelle, on arrive aux singes, dont on connait la tendance à être de comiques imitateurs. Les animaux, cependant, imitent quelquefois les actions des autres animaux qui les entourent: ainsi, deux loups appartenant à des espèces différentes, élevés par des chiens, avaient appris à aboyer, comme le fait parfois le chacal ${ }^{10}$, mais reste à savoir si on peut appeler cela une imitation volontaire. Les oiseaux imitent les chants de leurs parents et, parfois aussi, ceux d'autres oiseaux; chacun sait que les perroquets imitent tous les sons qu'ils entendent souvent. Dureau de la Malle ${ }^{17}$ cite le cas d'un chien, élevé par une chatte, qui avait appris à imiter l'action si connue du chat qui se lèche les pattes pour se nettoyer ensuite la face et les oreilles; le célèbre naturaliste Audouin a aussi observé ce fait, qui m'a, d'ailleurs, été confirmé de divers côtés. Un de mes correspondants mécrit, par exemple, qu'il a possédé pendant treize ans un chien qui n'avait pas êté nourri par une chatte, mais qui avait êté êlevé avec des petits chats et qui, ayant contracté lhabitude dont nous venons dè parler, la garda jusqu'a sa mort. Le chien de Dưreau dê la Malle avait aussi empruité aux jeunes chats l'habitude de jouer avec une balle en la roulant autour de ses pattes et en sautant dessus. Un correspondant m'affirme que sa chatte plongeait, pour les lécher ensuite, ses pattes dans une jarre pleine de lait, dont le goulot était trop étroit pour qu'elle put y fourrer la tete; un petit de cette chatte imita bien-
13. W.-C.-L. Martin, Nat. hist. of Mammalia, 1841, p. 405.
14. Docteur Bateman, On Aphasia, 1870, p. 110.
15. Cité par Vogt, Mémoires sur les Microcéphales, 1867, p. 168.
16. Darwin, Variations des Animaux et des Plantes à l'état domesiique, vol. I, p. 29 (Paris, Reinwald).
17. Annales des Sc. nat., 1to série, vol. XXII, p. 397.
t0t sa mère et garda jusqu'à sa mort l'habitude qu'il avait contractée.
On peut dire que les parents de beaucoup d'animaux, se fiant à cette tendance à l'imitation et surtout à leurs instinctś héréditaires, font, pour ainsi dire, l'éducation de leurs petits. Qui n'a vu une chatte apporter une souris vivante à ses petits? Dureau de la Malle, dans le mémoire que nous venons de citer, relate ses observations sur les faucons qui enseignent à leurs petits à avoir des mouvements rapides et à juger des distances en laissant tomber d'une grande hauteur des souris ou des hirondelles mortes jusqu'à ce qu'ils apprennent à les saisir, puis, qui continuent cette éducation en leur apportant des oiseaux vivants qu'ils lachent en l'air.
Il n'est presque pas de faculté qui soit plus importante pour le progrès intellectuel de l'homme, que celle de l'attention. Elle se manifeste clairement chez les animaux; lorsqu'un chat, par exemple, guette à coté d'un trou et se prépare à s'élancer sur sa proie. Les animaux sauvages ainsi occupés sont souvent absorbés au point qu'ils se laissent aisément, approcher. M. Bartlett m'a fourni une preuve curieuse de la variabilité de cette faculté chez les singes. Un homme, qui dresse les singes à jouer certains rôles, avait l'habitude d'acheter à la Société zoologique des singes d'espèce commune au prix de 12 s francs pièce, mais il en offrait le double si on lui permettait d'en garder trois ou quatre pendant quelques jours, pour faire son choix. On lui demanda comment il parvenait, en si peu de temps, à savöir si un singe quelconque pouvait devenir bon acteur; il répondit que cela dépendait entièrement de la puissance d'attention de l'animal. Si, pendant qu'il parlait à son singe, ou lui expliquait quelque chose, l'animal était facilement distrait par une mouche ou tout autre objet insignifiant, il fallait y renoncer. S'il essayait, par les punitions, de forcer un singe inattentif au travail, celui-ci se mettait à bouder. Il pouvait, au contraire, toujours dresser un singe qui lui pretait attention.

H est presque superflu de constater que les animaux sont doués d'une excellente mémoire portant sur les personnes et les lieux. Sir Andrew Smith affirme qu'un babouin, au cap de Bonne-Espérance, a poussé des cris de joie en le revoyant après une absence de neuf mois. J'ai eu un chien très sauvage et qui avait de l'aversion pour toute personne étrangère, dont j'ai mis la mémoire à l'épreuve après une absence de cinq ans et deux jours. Je me rendis près de l'écurie où il se trouvait, et l'appelai suivant mon ancienne habitude; le chien ne témoigna aucune joie, mais me suivit immédiatement en m'obéissant comme si je l'avais quitté depuis un quart
d'heure seulement. Une série d'anciennes associations, qui ávaient sommeillé pendant cinq ans, s'étaient donc instantanément éveillées dans son esprit. P. Huber ${ }^{18}$ a clairement démontré que les fourmis peuvent, après une séparation de quatre mois, reconnaltre leurs camarades appartenant à la même communauté. Les animaux ont certainement quelques moyens d'apprécier les intervalles do temps écoulés entre des événements qui se produisent.
Une des plus hautes prérogatives de l'homme est, sans contredit, l'imagination, faculté qui lui permet de grouper, en dehors de la volonté, des images et des idées anciennes, et de créer ainsi des résultats brillants et nouveaux. Ainsi que le fait remarquer Jean-Paul Richter ${ }^{19}$: < Si un poète doit réfléchir avant de savoir s'il fera dire oui ou non à un personnage, ce n'est qu'un imbécile. . Le rêve nous donne la meilleure notion de cette faculté; et comme le dit encore Jean-Paul: \& Le rêve est un art poétique involontaire., La valeur des produits de notre imagination dépend, cela va sans dire, du nombre, de la précision et de la lucidité de nos impressions; du jugement ou du goat avec lequel nous admettons 'et nous repoussons les combinaisons involontaires, et, jusqu'à un certain point, de l'aptitude que nous avons à les combiner volontairement. Comme les chiens, les chats, les chevaux et probablement tous les animaux supérieurs, même les oiseaux ${ }^{20}$, sont sujets au rêve, comme le prouvent ieurs mouvements et leurs cris pendant le sommeil, nous devons admettre qu'ils sont doués d'une certaine imagination. L'habitude qu'ont les chiens de hurler pendant la nuit, surtout quand il y a de la lune, d'une façon si remarquable et si mélancolique, doit être provoquée par quelque cause spéciale. Tous les chiens n'ont pas cette habitude. Houzeau ${ }^{24}$ affirme que les chiens ne regardent pas la lune, mais quelque point fixe près de l'horizon; il pense que leur imagination est troublée par les vagues apparences des objets environnants qui se transforment pour eux en images fantastiques. S'il en est ainsi, on pourrait presque dire que c'est de la superstition.
On est, je crois, d'accord pour admettre que la raison est la première de toutes les facultés de l'esprit humain. Peu de personnes contestent encore aux animaux une certaine aptitude au raisonnement. On les voit constamment s'arrêter, réfléchir et prendre un
18. Les Mours des fourmis, 1810, p. 150.
19. Gite dans Maudsley, Physiology and Pathology of Mind, 1868, pp. 19, 220.
20. Docteur Jerdon, Birds of India, vol. I, 1862, p. xxi. Houzeau affirme que les perroquets et les serins rèvent parfojs. Facullés mentales, vol. II, p. 136.
21. Facullés mentales des Animaux, 1872, vol. H, p. 181.
parti. Plus un naturaliste a étudié les habitudes d'un animal quelconque, plus il croit à la raison, et moins aux instincts spontanés de cet animal; c'est là un fait très significatif ${ }^{22}$. Nous rerrons, dans les chapitres suivants, que certains animaux placés très bas sur P'échelle font évidemment preuve de raison, bien qu'il soit, sans doute, souvent difficile de distinguer entre la raison et l'inslinct. Ainsi, dans son ouvrage la Mer polaire ouverte, le docteur Hayes fait remarquer, à plusieurs reprises, que les chiens qui remorquaient les traineaux, au lieu de continuer à se serrer en une masse compacte lorsqu'ils arrivaient sur une mince couche de glace, s'écartaient les uns des autres pour répartir leurs poids sur une surface plus grande. C'était souvent pour les voyageurs le seul avertissement, la seule indication que la glace devenait plus mince et plus dangereuse. Or, les chiens agissaient-ils ainsi par suite de leur expérience individuelle, ou suivaient-ils l'exemple des chiens plus àgés et plus expérimentés, ou obéissaient-ils à une habitưde héré ditaire, c'est-à-dire à un instinct? Cet instinct remonterait peutêtre à l'époque déjà ancienne où les naturels commencèrent à employer les chiens pour remorquer leurs traineaux, ou bien, les ${ }^{*}$ loups arctiques, souche du chien esquimau, peuvent avoir acquis. cet instinct, qui les portait à ne pas attaquer leur proie en masses trop serrées sur la glace mince.

C'est seulement en examinant les circonstances au milieu desquelles s'accomplissent les actions que nous pouvons juger s'il convient de les attribuer à l'instinct, à la raison, ou à une simple association d'idées; faisons remarquer en passant que cette dernière faculté se rattache étroitement à la raison. Le professeur Mőbius ${ }^{23}$ cite un exemple curieux : un brochet, séparé par une glace d'un autre compartiment d'un aquarium plein de poissons, se précipitait avec une telle violence contrefla glace pour attraper les autres poissons qu'il restait souvent étourdi du coup qu'il s'était porté. Ce manège dura pendant trois mois environ, puis le brochet, devenu prudent, cessa de se précipiter sur la glace. On enleva alors la glace qui formait la séparation; toutefois, l'idée d'un choc violent s'était si bien associée dans le faible esprit du brochet avec les efforts infructueux qu'il avait faits pour atteindre les poissons qui avaient été si longtemps ses voisins, qu'il ne les attaqua jamais, bien qu'il n'hésitât pas à se précipiter sur les poissons

[^24]nouveaux qu'on introduisait dans l'aquarium. Si un sauvage, qui n'a jamais vu une fenêtre fermée par une glace épaisse, venait à se précipiter sur cette glace et à rester étourdi sur le coup, Yidée de glace et de coup s'associeraient évidemment pendant longtemps dans son esprit; mais, au contraire du brochet, il réfléchirait probablement sur la nature de l'obstacle et se montrerait plein de prudence s'il se trouvait placé dans des circonstances analogues. Les singes, comme nous allons le voir tout à l'heure, s'abstiennent ordinairement de répéter une action qui leur a causé une première fois une impression pénible ou simplement désagréable. Or, si nous attribuons cette différence entre le singe et le brochet uniquement au fait que l'association des idées est beaucoup plus vive et beaucoup plus persistante chez l'un que chez l'autre, bien que le brochet ait souffert beaucoup plus, nous est-il possible de maintenir que quand il s'agit de l'homme, une différence analogue implique la possession d'un esprit fondamentalement différent?
Houzeau ${ }^{24}$ raconte que, tandis qu'il traversait une grande plaine du Texas, ses deux chiens souffraient beaucoup de la soif, et que, trente ou quarante fois pendant la journée, ils se précipitèrent dans les dépressions du sol pour y chercher de l'eau. Ces dépressions n'étaient pas des vallées, il n'y poussait aucun arbre, on n'y remarquait aucune différence de végétation, et on n'y pouvait sentir aucune humidité, car le sol y était absolument sec. Les chiens se conduisaient donc comme s'ils savaient qu'une dépression du sol leur offrait la meilleure chance de trouver de l'eau. Houzeau a observé le même fait chez d'autres animaux.
J'ai observé, et beaucoup de mes lecteurs ont observé sans doute, au Jardin zoologique, le moyen qu'emploie l'élóphant pour rapprocher un objet quill ne peut atteindre : il souffle violemment sur le sol avec sa trompe au delà de l'objet en question pour que le courant d'air réfléchi de tous cotés rapproche assez l'objet pour qu'il puisse le saisir. M. Westropp, ethnologiste bien connu, m'apprend qu'il a vu à Vienne un ours créer avec sa patte un courant artificiel pour ramener dans sa cage un morceau de pain qui flottait à l'extérieur des barreaux. On ne peut guère attribuer à l'instinct ou à une habitude héréditaire ces actes de léléphant ou de l'ours, car ils auraient peu d'utilité pour l'animal à l'état de nature. Or, quelle différence y a-t-il entre ces actes, qu'ils soient accomplis par le sauvage ou par un des animaux supérieurs?
Le sauvage et le chien ont souvent trouvé de l'eau dans les

[^25]dépressions du sol, et la corncidence de ces deux circonstances s'est associée dans leur esprit. Un homme civilisé ferait peut-être quelque raisonnement général à ce sujet; mais tout ce que nous savons sur les sauvages nous autorise à penser qu'ils ne feraient sans doute pas ce raisonnement et le chien ne le ferait certainement pas. Toutefois le sauvage, aussi bien que le chien, malgré de nombreux désappointements, continuerait ses recherches; et, chez tous deux, ces recherches semblent constituer également un acte de raison, qu'ils aient ou non conscience qu'ils agissent en vertu d'un raisonnement ${ }^{25}$. Les mêmes remarques s'appliquent à l'éléphant et à l'ours qui créent un courant artificiel dans l'air ou dans l'eau. Le sauvage, dans un cas semblable, s'inquiéterait fort peu de savoir en vertu de quelle loi s'effectuent les mouvements qu'il désire obtenir; cependant cet acte serait aussi certainement le résultat d'un raisonnement, grossier si l'on veut, que le sont les déductions les plus ardues d'un philosophe. Sans doute, on constaterait, entre le sauvage et l'animal supérieur, cette différence, que le premier remarquerait des circonstances et des conditions bien plus légères, et qu'il lui faudrait une expérience moins longue pour reconnaltre les rapports qui existent entre ces čirconstances; or c'est là un point qui a une grande importance. J'ai noté chaque jour les actions d'un de mes enfants, alors qu'il avait environ onze mois et qu'il ne pouvait pas encore parler; or j'ai été continuellement frappé de la promptitude plus grande avec laquelle toutes sortes d'objets et de sons s'associaient dans son esprit, comparativement avee ce qui se passait dans l'esprit des chiens les plus intelligents que j'ai connus. Mais les animaux supérieurs diffèrent exactement de la meme façon des animaux inférieurs, tels que le brochet, par cette faculté de l'association des idées, aussi bien que par la faculté d'observation et de déduction.
Les actions suivantes, accomplies après une courte expérience par les singes américains qui occupent un rang peu élevé dans leur ordre, prouvent évidemment l'intervention de la raison. Rengger, observateur très circonspect, raconte que les premières fois quill donna des ceufs à ses singes, ils les écrasèrent si maladroitement quills Laissèrent échapper une grande partie du contenu; bientot, ils imaginèrent de frapper doucement une des

[^26]oxtrémités de l'œuf contre un corps dur, puis d'enlever des fragments de la coquille à l'aide de leurs doigts. Après s'être coupés she fois seulement avec un instrument tranchant, ils n'osèrent plus y toucher, ou ne le manierent qu'avec les plus grandes précautions. On leur donnait souvent des morceaux de sucre enveloppés dans du papier; Fengger, ayant quelquefois substitué une guêpe vivante au sucre, ils avaient été piqués en déployant le papier trop vite, si bien qu'ensuite ils eurent soin de toujours porter le paquet à leur oreille pour s'assurer si quelque bruit se produisait à l'intérieur ${ }^{26}$.
Les cas suivants se rapportent des chiens. M. Colquhoun ${ }^{27}$ blessa à l'aile deux canards sauvages, qui tombèrent sur la rive opposée d'un ruisseau; son chien chercha à les rapporter tous les deux ensemble sans pouvoir y parvenir. L'animal qui, auparavant, n'avait jamais froissé une pièce de gibier, se décida à tuer un des oiseaux, apporta celui qui était encore vivant et retourna chercher le mort. Le colonel Hutchinson raconte que, sur deux perdrix atteintes d'un mème coup de feu, l'une fut tuée et l'autre blessée; cette dernière se sauva et fut rattrapée par le chien, qui, en revenant sur ses pas, rencontra l'oiseau mort : © Il s'arrêta, évidemment très embarrassé, et, après une ou deux tentatives, voyant qu'il ne pouvait pas relever la perdrix morte sans risquer de lâcher celle qui vivait encore, il tua résolûment cette dernière et les rapporta toutes les deux. C'était la première fois que ce chien avait volontairement détruit une pièce de gibier. > C'est là, sans contredit, une preuve de raison, bien qu'imparfaite, car le chien aurait pu rapporter d'abord l'oiseau blessé, puis retourner chercher l'oiseau mort, comme dans le cas précédent relatif aux deux canards sauvages. Je cite ces exemples parce qu'ils reposent sur deux témoignages indépendants l'un de l'autre, et parce que, dans les deux cas, les chiens, après mâre délibération, ont violé une habitude héréditaire chez eux, celle de ne pas tuer le gibier qu'ils ramassent; or, il faut que la faculté du raisonnement ait été chez eux bien puissante pour les amener à vancre une habitude fixe.
J'emprunte un dernier exemple à l'illustre Humboldt ${ }^{28}$. Les muletiers de l'Amérique du Sud disent: © Je ne vous donnerai pas

[^27]28. Personal Narrative, t. II, p. 104
la mule dont le pas est le plus agréable, mais la mas racional, celle qui raisonne le mieux; > et Humboldt ajoute: «Cette expression populaire, dictée par une longue expérience, démolit le système des machines animées, mieux peut-etre que ne le feraient tous les arguments de la philosophie spéculative. » Néanmoins quelques écrivains nient encore aujourd'hui que les animaux supérieurs possèdent un atome de raison; ils essaient de faire passer pour de simples contes à dormir debout les faits tels que ceux précédemment cités ${ }^{29}$.

Nous avons, je crois, démontré que l'homme et les animaux supérieurs, les primates surtout, ont quelques instincts communs. Tous possédent les mêmes sens, les mêmes intuitions, éprouvent les mêmes, sensations; ils ont des passions, des affections et des émotions semblables, même les plus compliquées, telles que la jalousie, la méfiance, l'émulation, la reconnaissance et la magnanimité, ils aiment à tromper et à se venger; ils redoutent le ridicule ; ils aiment la plaisanterie; ils ressentent l'étonnement et la curiosité; ils possèdent les mêmes facultés d'imitation, d'attention, de délibération, de choix, de mémoire, d'imagination, d'association des idées et de raisonvement, mais, bien entendu, à des degrés très différents. Les individus appartenant à une même espèce représentent toutes les phases intellectuelles, depuis l'imbécillité absolue jusqu'à la plus haute intelligence. Les animaux supérieurs sont meme sujets à la forie, quoique bien moins souvent que l'homme ${ }^{30}$.
Néanmoins beaucoup de savants soutiennent que les facultés mentales de l'homme constituent, entre lui et̂ les animaux, une infranchissable barrière. J'ai recueilli autrefois une vingtaine d'aphorismes de ce genre ; mais je ne crois pas qu'ils vaillent la peine d'être cités ici, car ils sont si différents et si nombreux qu'il est facile de comprendre la difficulté, sinon l'impossibilité d'une semblable démonstration. On a affirmé que l'homme seul est capable d'amélioration progressive; que seul il emploie des outils et con-

[^28]Science, juillet 1871 .
nait le feu; que seul il réduit les autres animaux en domesticité et a le sentiment de la propriété; qu'aucun autre animal n'a des idées abstraites, n'a conscience de soi, ne se comprend ou possède des idées générales; que l'homme seul possède le lanğage, a le sens du beau, est sujet au caprice, éprouve de la reconnaissance, est sensible au mystère, etc., croit en Dieu, ou est doué d'une conscience. Je hasarderai quelques remarques sur ceux de ces points qui sont les plus importants et les plus intéressants.
L'archevêque Sumner ${ }^{34}$ a autrefois soutenu que l'homme seul est susceptible d'amélioration progressive. Personne ne conteste que l'homme fait des progrès beaucoup plus grands, beaucoup plus rapides qu'aucun autre animal, ce qui résulte évidemment du langage et de la faculté qu'il a de transmettre à ses descendants les connaissances qu'il a acquises. En ce qui regarde l'animal, et d'abord l'individu, tous ceux qui ont quelque expérience en matière de chasse au piège savent que les jeunes animaux se font prendre bien plus aisément que les vieux ; l'ennemi qui poursuit un animal peut aussi s'approcher plus facilement des jeunes. Il est même impossible de prendre beaucoup d'animaux agés dans un même lieu et dans une même sorte de trappe, ou de les détruire au moyen d'une seule espèce de poison; il est, cependant, improbable que tous aient goûté au poison; il est impossible que tous aient été pris dans le même piège. C'est la capture ou l'empoisonnement de leurs semblables qui a do leur enseigner la prudence. Dans l'Amérique du Nord, où l'on chasse depuis longtemps les animaux à fourrure, tous les témoignages des observateurs s'accordent à leur reconnaitre une dose incroyable de sagacité, de prudence et de ruse; mais, dans ce pays, on a employé la trappe depuis assez longtemps pour que l'hérédité ait pu entrer en jeu. Quand on établit une ligne télégraphique dans un pays où il n'y en a jamais eu, beaucoup d'oiseaux se tuent en se heurtant contre les fils; mais, au bout de quelques années, les nombreux accidents de cette nature, dont ils sont chaque jour témoins, semblent leur apprendre à éviter ce danger ${ }^{32}$.
Si nous considérons plusieurs générations successives ou une race entière, on ne peut douter que les oiseaux et les autres animaux n'acquièrent et ne perdent à la fois et graduellement leur prudence vis- a -vis de l'homme ou de leurs autres ennemis ${ }^{33}$; si

[^29]cette prudence est en grande partie une habitude ou un instinct transmis par hérédité, elle résulte aussi en partie de l'expérience individuelle. Leroy ${ }^{34}$, excellent observateur, a constaté que là où on chasse beaucoup le renard, les jeunes prennent incontestablement beaucoup plus de précautions dès qu'ils quittent leur terrier que ne le font les vieux renards qui habitent des régions où on les dérange peu.
Nos chiens domestiques descendent des loups et des chacals ${ }^{35}$, et bien peut-etre qu'ils n'aient pas gagné en ruse, et pui: sent avoir perdu en circonspection et en prudence, ils ont, cependas it, acquis certaines qualités morales, telles que l'affection, la fidélits!, le bon caractère et probablement l'intelligence générale. Le rat commun a exterminé plusieurs autres espèces et s'est établi en conquérant en Europe, dans quelques parties de l'Amérique du Nord, à la Nouvelle-Zélande, et récemment à Formose, ainsi qu'en Chine. M. Swinhoe ${ }^{36}$, qui décrit ces deux dernières invasions, attribue la victoire du rat commun sur le grand Mus coninga à sa ruse plus développée, qualité qu'on peut attribuer à l'emploi et à l'exercice habituel de toutes ses facultés pour échapper à l'extirpation par l'homme, aiusi qu'au fait qu'il a successivement détruit tous les rats moins rusés et moins intelligents que lui. Il est possible, cependant, que le succès du rat commun dépende de ce qu'il était plus rusé que les autres espèces du même genre avant de s'étre trouvé en contact avec l'homme. Vouloir soutenir sans preuves directes que, dans le cours des áges, aucun animal n'a progressé en intelligence ou en d'autres facultés mentales, est supposer ce qui est en question dans l'évolution de l'espéce. Nous verrons plus loin que, d'après Lartet, certains mammifères existants, appartenant à plusieurs ordres, ont le cerveau plus développé que leurs anciens prototypes de l'époque tertiaire.
On a souvent affirmé qu'aucun animal ne se sert d'outils ; mais, à rétat de nature, le chimpanzé se sert d'une pierre pour briser un fruit indigène à coque dure ${ }^{37}$, ressemblant à une noix. Rengger ${ }^{38}$
raliste aulour du monde (Paris, Reinwald), 1845, p. 398 ; Orıgine des espèces,
p. 231.
34. Leltres philosophiques sur rintelligence des animaux, nouvelle édition, 1802, p. 86.
35. Voír les preuves à cet ogard dans la Variation des Animaux et des Plantes, etc., rol. I, chap. I.
36. Proceedings of Zoológical Society, 1864, p. 186.
37. Sarage et Wyman, Boston Journal of Nat. History, 1843-44, vol. IV, p. 383.
88. Saugethiere von Paraguay, 1880, pp. 51, 56.
enseigna facilement à un singe américain à ouvrir ainsi des noix de palme ; le singe se servit ensuite du même procédé pour ouvrir d'autres sortes de noix, ainsi que des boltes. 11 enlevait aussi la peau des fruits, quand elle était désagréable au goût. Un autre singe, auquel on avait appris à soulever le couvercle d'une grande caisse avec un baton, se servit ensuite d'un baton comme d'un levier pour remuer les corps pesants, et j'ai, moi-même, vu un jeune orang enfoncer un baton dans une crevasse, puis, le saisissant par l'autre bout, s'en servir comme d'un levier. On sait que, dans l'Inde, les éléphants apprivoisés brisent des branches d'arbres et s'en servent comme de chasse-mouches; on a observé un éléphant sauvage qui avait la même habitude ${ }^{39}$. J'ai vu un jeune orang femelle s'envelopper d'une couverture ou se couvrir de paille pour se protéger contre les coups quand elle redoutait d'etre fouettée. Les pierres et les bâtons servent d'outils dans les cas précités; les animaux les emploient également comme armes. Brehm to affirme, sur l'autorité du voyageur bien connu Schimper, qu'en Abyssinie, lorsque les babouins de l'espèce C. gelada descendent en troupe des montagnes pour piller les champs, ils rencontrent quelquefois des bandes d'une autre espèce (C. hamadryas) avec lesquelles ils se battent. Les geladas font rouler, sur le flanc de la montagne, de grosses pierres que les hamadryas cherchent à éviter, puis les adversaires se précipitent avec fureur les uns sur les autres en faisant un vacarme effroyable. Brehm, qui accompagnait le duc de Cobourg-Gotha, prit part à une attaque faite avec des armes à feu contre une troupe de babouins dans la passe de Mensa, en Abyssinie. Ceux-ci ripostèrent en faisant rouler sur les flancs de la montagne une telle quantité de pierres, dont quelquesunes avaient la grosseur d'une tete d'homme, que les assaillants durent battre vivement en retraite; la caravane ne put meme franchir la passe pendant quelques jours. Il faut remarquer que, dans cette circonstance, les singes agissaient de concert. M. Wallace ${ }^{4}$ a vu , dans trois occasions différentes, des orangs femelles, accompagnées de leurs petits, « arracher les branches et les fruits épineux de l'arbre Durian avec toute l'apparence de la fureur, et lancer une grêle de projectiles telle que nous ne pouvions approcher. $\boldsymbol{\text { s }}$ Le chimpanzé, comme j'ai pu le constater bien souvent, jette tout ce qui lui tombe sous la main à la tête de quiconque l'offense ; nous

[^30]avons vu qu'un babouin, au cap de Bonne-Espérance, avail niéne én de la boue dans ce but.
Un singe, au Jardin zoologique, dont les dents étaient faibles, avait pris thabitude de se servir d'une pierre pour casser les noisettes; un des gardiens m'a affirmé que cet animal, après s'en être servi, cachait la pierre dans la paille, et s'opposait à ce qu'aucun autre singe y touchảt. Il.y a là une idée de propriété, mais cette idée est commune à tout chien qui possède un os, et à la plupart des oiseaux qui construisent un nid.
Le duc d'Argyll ${ }^{12}$ fait remarquer que le fait de façonner un instrument dans un but déterminé est absolument particulier à l'homme, et considère que ce fait établit entre lui et les animaux une immense distinotion. La distinction est incontestablement importante, mais il me semble y avoir beaucoup de vraisemblance dans la suggestion faite par sir J. Lubbock ${ }^{43}$. II suppose que t'homme primitif a employé d'abord des silex pour un usage quelconque; en s'en servant, il les a, sans doute, accidentellement brisés, et il a alors tiré parti de leurs éclats tranchants. De là à les briser avec intention, puis à les façonner grossièrement, it n'y a qu'un pas. Ce dernier progrès, cependant, peut avoir nécessité une longue période, si nous en jugeons par l'immense laps de temps qui s'est écoulé, avant que les hommes de la période néolithique en soient arrivés à aiguiser et à polir leurs outils en pierre. En brisant les silex, ainsi que le fait remarquer sir J. Lubbock, des étincelles ont pu se produire, et, en les aiguisant, de la chaleur se dégager : \& d'où l'origine possible des deux méthodes ordinaires pour se procurer le feu. » La nature du feu devait, d'ailleurs, etre connue dans les nombreuses régions volcaniques où la lave coule parfois dans les forêts. Les singes anthropomorphes, guidés probablement par l'instinet, construisent pour leur usage des plates-formes temporaires; mais, comme beaucoup d'instincts sont largement controlés par la raison, les plus simples, tels que celui qui pousse à la construction d'une plate-forme, ont pu devenir un acte volontaire et conscient. On sait que l'orang se couvre la nuit avec des feuilles de Pandanus, et Brehm constate qu'un de ses babouins avait l'habitude de s'abriter de la chaleur du soleil en se couvrant la tete avec un paillasson. Les habitudes de ce genre représentent probablement les premiers pas vers quelques-uns des arts les plus simples, notamment l'architecture grossière et l'habillement,
tels qu'ils ont da se pratiquer chez les premiers ancêtres de
l'homme.
Abstraction, conceptions générales, consctence de soi, individualii:: mentale. - Jusqu'à quel point les animaux possèdent ils des traces de ces hautes facultés intellectuelles? C'est là une question qu'il est difficile, pour ne point dire impossible, de résoudre. Cette difficulté provient de ce qu'il nous est impossible de savoir ce qui se passe dans l'esprit de l'animal; en outre, on est loin d'être d'accord sur la signification exacte qu'il convient d'attribuer à ces divers termes. Si l'on en peut juger par divers articles publiés récemment, on semble s'appuyer surtout sur le fait que les animatix: ne possèdent pas la faculté de l'abstraction, c'est-à-dire qu'ils sont incapables de concevoir des idées générales. Mais, quand un chien aperçoit un autre chien à une grande distance, son attitude indique souvent qu'il conçoit que c'est un chien, car, quand il s'approche, cette attitude change du tout au tout s'il reconnait un ami. Un écrivain récent fait remarquer que, dans tous les cas, c'est une pure supposition que d'affirmer que l'acte mental n'a pas exactement la même nature chez l'animal et chez l'homme. Si l'un et l'autre rattachent ce qu'ils conçoivent, au moyen de feurs sens, à une conception mentale, tous deux agissent de la méme manière ${ }^{4}$. Quand je crie à mon chien de chasse, et j'en ai fait l'expérience bien des fois : *Hé, hé, où est-il? » il comprend immédiatement qu'il s'agit de chasser un animal quelconque; ordinairement il commence par jeter rapidement les yeux autour de lui, puis il s'élance dans le bosquet le plus voisin pour chercher la trace du gibier, puis enfin, ne trouvant rien, il regarde les arbres pout découvrir un écureuil. Or, ces divers actes n'indiquent-ils pas clairement que mes paroles ont éveillé dans son esprit l'idée générale ou la conception qu'il y a là, auprès de lui, un animal quelconque qu'il s'agit de découvrir et de poursuivre?
On peut évidemment admettre qu'aucun animal ne possède la conscience de lui-même si l'on implique par ce terme qu'il se demande d'où il vient et où il va, - qu'il raisonne sur la mort ou sur la vie, et ainsi de suite. Mais, sommes-nous bien sûrs qu'ua vieux chien, ayant une excellente mémoire et quelque imagination, comme le prouvent ses rêves, ne réfléchisse jamais à ses anciens plaisirs à la chasse ou aux déboires qu'il a éprouvés? Ce serait lò

[^31]une forme de conscience de soi. D'autre part, comme le fait remarquer Buachner ${ }^{45}$, comment la femme australienne, surmenée par le travail, qui n'emploie presque point de mots abstraits et ne compte que jusquà quatre, pourrait-elle exercer sa conscience ou réfléchir sur la nature de sa propre existence? On admet généralement que les animaux supérieurs possèdent les facultés de la mémoire, de l'attention, de l'association, et même une certaine dose d'imagination et de raison. Si ees facultés, qui varient beaucoup chez les différents animaux, sont susceptibles d'amélioration, il ne semble pas absolument impossible que des facultés plus complexes, telles que les formes supérieures de l'abstraction et de la conscience de soi, etc., aient résulté du développement et de la combinaison de ces facultés plus simples. On a objecté contre cette hypothèse qu'il est impossible de dire à quel degré de l'échelle les animaux deviennent susceptibles de voir se développer chez eux les facultés de l'abstraction, etc.; mais qui peut dire à quel âge ce phénomène se produit chez nos jeunes enfants? Nous pouvons constater tout au moins que, chez nos enfants, ces facultés se développent par des degrés imperceptibles.
Le fait que les animaux conservent leur individualité mentale est au-dessus de toute contestation. Si ma voix a évoqué, dans le cas de mon chien précédemment cité, toute une série d’anciennes associations, il faut bien admettre qu'il a conservé son individualité mentale, bien que chaque atome de son cerveau ait du se renouveler plus d'une fois pendant un intervalle de cinq ans. Ce chien aurait pu invoquer l'argument récemment avancé pour écraser tous les évolutionnistes, et dire : Je persiste, au milieu de toutes les dispositions mentales et de tous les changements matériels... La théorie que les atomes laissent à titre de legs les impressions qu'ils ont reçues aux autres atomes prenant la place qu'ils quittent, est contraire à l'affirmation de l'état conscient et est, par conséquent, fausse; or, comme cette théorie est nécessaire à l'évolution, cette dernière hypothèse est par conséquent fausse ${ }^{46}$. 2

Langage. - On pense avec raison que cette faculté est un des principaux caractères distinctifs qui séparent l'homme des animaux. Mais, ainsi que le fait remarquer un juge compétent, l'archevêque Whately : L'homme n'est pas le seul animal qui se serve du langage pour exprimer ce qui se passe dans son esprit, et qui

[^32]puisse comprendre plus ou moins ce que pense un autre individu ${ }^{47}$. , Le Cebus azaræ du Paraguay, lorsqu'il est excité, fait entendre au moins six cris distincts, qui provoquent; chez les autres singes de son espèce, des émotions analogues ${ }^{\text {48 }}$. Nous comprenons la signification des gestes et des mouvements de la face des singes; Rengger et d'autres observateurs déclarent que les singes comprennent en partie les nôtres. Le chien, depuis sa domestication, fait plus remarquable encore, a appris à aboyer dans quatre ou cinq tons distincts au moins ${ }^{19}$. Bien que l'aboiement soit un art nouveau, il n'est pas douteux que les espèces sauvages, ancêtres du chien, exprimaient leurs sentiments par des cris de nature diverse. Chez le chien domestique, on distingue facilement l'aboiement impatient, comme à la chasse; le cri de la colère et le grognement; le glapissement du désespoir, comme lorsque l'animal est enfermé; le hurlement pendant la nuit; l'aboiement joyeux, lors du départ pour la promenade, et le cri très distinct et trés suppliant par lequel le chien demande qu'on lui ouvre la porte ou la fenêtre. Houzeau ${ }^{50}$, qui s'est tout particulièrement occupé de ce sujet, affirme que la poule domeatique fait entendre au moins douze cris significatifs différents.
Le langage articulé est spécial à l'homme; mais, comme les animaux inférieurs, l'homme n'en exprime pas moins ses intentions par des gestes et par les mouvements des muscles de son visage ${ }^{51}$, par des cris inarticulés, ce qui est surtout vrai pour l'expression des sentiments les plus simples et les plus vifs, qui ont peu de rapports avec ce qu'il y a de plus élevé dans notre intelligence. Nos cris de douleur, de crainte, de surprise, de colère, joints aux gestes qui leur sont appropriés, le babillage de la mère avec son enfant chéri, sont plus expressifs que n'importe quelles paroles. Ce qui distingue l'homme des animaux inférieurs, ce n'est pas la faculté de comprendre les sons articulés, car, comme chacun le sait, les chiens comprennent bien des mots et bien des phrases. Sous ce rapport les chiens se trouvent dans le même état de développement que les enfants, agés de dix à douze mois, qui comprennent bien des mots et bien des phrases, mais qui ne peuvent pas encore prononcer un seul mot. Ce n'est pas
47. Cite dans Anthropological Review, 1864, p. 158.
48. Rengger, op. cit., p. 45.
10. Variation des Animaux, etc., vol. I, p. 29.
50. Pacultés mentales, etc., vol. Il, 1872, pp. 346-349.
51. Co sujet fait l'objet d'une discussion fort intéressante dans l'ouvrage de
I. 7.-B. Tylor, Researches into the Early History of Mankind, 1865, c. if a iv.
la faculté d'articuler, car le perroquet et d'autres oiseaux possèdent cette faculté. Ce n'est pas, enfin, la simple faculté de rattacher des sons définis à des idées définies, car il est évident que certains perroquets qui ont appris à parler appliquent sans se tromper le mot propre à certaines choses et rattachent les personnes aux événements ${ }^{52}$. Ce qui distingue l'homme des animaux inférieurs, c'est la faculté infiniment plus grande qu'il possède d'associer les sons les plus divers aux idées les plus différentes, et cette faculté dépend évidemment du développement extraordinaire de ses facultés mentales.

Un des fondateurs de la noble science de la philologie, Horne Tooke, remarque que le langage est un art, au même titre que l'art de fabriquer de la bière ou du pain; il me semble, toutefois, que l'écriture eut êté un terme de comparaison bien plus convenable. Le langage n'est certainement pas un instinct dans le sens propre du mot, car tout langage doit être appris. II diffère beaucoup, cependant, de tous les arts ordinaires en ce que l'homme a une tendance instinctive à parler, comme nous le prouve le babillage des jeunes enfants, tandis qu'aucun enfant n'a de tendance instinctive à brasser, à faire du pain ou à écrire. En outre, aucun philologue s'oserait soutenir aujourd'hui qu'un langage ait été inventé de toutes pièces; chacun d'eux s'est lentement et inconsciemment développé ${ }^{53}$. Les sons qué font entendre les oiseaux offrent, à plusieurs points de vue, la plus grande analogie avec le langage; en effet, tous les individus appartenant à une même espéce expriment leurs émotions par les mêmes cris instinctifs, et tous
52. J'ai reçu, à cet égard, plusieurs communioations trés détaillées. L'amiral sir J. Sulivan, que je connais pour un observateur très soigneux, m'assure qu'un perroquet, qui sst resté très longtemps dans la maison de son père, appelait par leur nom certains membres de la famille et certains visiteurs assidus. Il disait * bonjour n à quiconque venait déjeuner et « bonsoir » aur personnes qui quittaient le soir la chambre où il se trouvait ; il ne fit jamais aucune erreur à cet égard. Il ajoutait au bonjour qu'il adressait au pére de sir J. Sulivan, une courte d'étrange facon un chien plus après la mort de son maltre. Ce perroquet rabroua ouverte, ainsi qu'un autre perroquet qui pénétrá dans la chambre par la fenêtre sur la table de la cuisine. Voir qui, sorti de sa cage, alla manger des pommes vol. II, p. 309. Le docteur A. Moschkau m' les perroquets, Houzeau, Op. cit., disait en allemand " bonjour n et " bonsor apprend quill a connu un sansonnet quí Je pourrais ajouter beaucoup d'autres exemples. 53. Voir quelques excellentes exemples.

Oriental and linguistic studies, 1873, sur ce point par le professeur Whitney, communiquer avec. ses semblabs, 1873, p. 354 . Il fait observer que le désir de développement du-langage agit u est, chez l'homme, la force vitale qui dans le en ce qui concerne le but immédiat a conseiemment et inconsciemment; consciemment les autres conséquences de l'acte.
ceux qui peuvent chanter exercent instinctivement cette faculté; mais c'est le père ou le père nourricier qui leur apprend le véritable chant, et méme les notes d'appel. Ces chants et ces cris, ainsi que l'a prouvé Daines Barrington ${ }^{54}$, «ne sont pas plus innés chez les oiseaux que le langage ne l'est chez l'bomme. Les premiers essais de chant chez les oiseaux peuvent être comparés aux tentatives imparfaites que traduisent les premiers bégaiements de l'enfant». Les jeunes mâles continuent à s'exercer, ou, comme disent les éleveurs, à étudier pendant dix ou onze mois. Dans leurs premiers essais, on reconnaît à peine les rudiments du chant futur, mais, à mesure qu'ils arancent en âge, on voit où ils veulent en arriver, et ils finissent par chanter très dien. Les couvées qui ont appris le chant d'une espèce autre que la leur, comme les canaris qu'on élève dans le Tyrol, enseignent leur nouveau chant à leurs propres descendants. On peut comparer, comm le fait si ingénieusement remarquer Barrington, lé légères différences naturelles du chant chez une mâme espèce, habitant des régions diverses, «à des dialectes proviaciaux; "et les chants d'espèces alliées, mais distinctes, aux langages des différentes races humaines. J'ai tenu à donner les détails qui précèdent pour montrer qu'une tendance instinctive à acquérir un art n'est point un fait particulier, restreint à l'homme seul.

Quelle est l'origine du langage articulé ? Après avoir lu, d'une part, les ouvrages si intéressants de M. Hensleigh Wedgwood, du Rév. F. Farrar et du professeur Schleicher ${ }^{55}$, et, d'autre part, les célèbres leçons de Max Müller, je ne puis douter que le langage ne doive son origine à des imitations et à des modifications, accompagnées de signes et de gestes, de divers sons naturels, des cris d'autres animaux, et des cris instinctifs propres à l'homme luiméme. Nous verrons, lorsque nous nous occuperons de la sélection sexuelle, que les hommes primitifs, ou plutot quelque antique anoêtre de l'homme, s'est probablement beaucoup servi de sa voix, comme le font encore aujourd'hui certains gibbons, pour émettre de véritables cadences musicales, c'est-à-dire pour chanter. Nous pouvons conclure d'analogies très généralement répandues que

[^33]cotto facultés exerçait principalement aux époques où les sexes so recherchent, pour exprimer les diverses émotions de l'amour, de la jalousie, du triomphe, ou pour défier les rivaux. Il est donc probable que l'imitation des cris musicaux par des sons articulés ait pu engendrer des mots exprimant diverses émotions complexes. Nous devons ici appeler l'attention, car ce fait explique en grande partie ces imitations, sur la forte tendance qu'ont les formes les plus voisines de l'homme, les singes, les idiots microcéphales ${ }^{56}$, et les races barbares de l'humanité, à imiter tout ce qu'ils entendent. Les singes comprennent certainement une grande partie de ce que l'homme leur dit, et, à l'état de nature, poussent des cris différents pour signaler un danger à leurs camarades ${ }^{57}$; les poules sur terre et les faucons dans l'air poussent un cri particulier pour avertir d'un danger les animaux appartenant à la même espèce, et les chiens comprennent ces deux cris ${ }^{58}$; il ne semble donc pas impossible que quelque animal ressemblant au singe ait eu l'idée d'imiter le hurlement d'un animal féroce pour avertir ses semblables du genre de danger qui les menaçait. Il y aurait, dans un fait de cette nature, an premier pas vers la formation d'un langagc.'
A mesure que la voix s'est exercée davantage, les organes vocaux ont du se renforcer et se perfectionner en vertu du principe des effets héréditaires de l'usage; ce qui a dû réagir sur la faculté de la parole. Mais les rapports entre l'usage continu du langage et le développement du cerveau ont été, sans aucun doute, beaucoup plus importants. L'ancêtre primitif de l'homme, quel qu'il soit, devait posséder des facultés mentales beaucoup plus développées qu'elles ne le sont chez les singes existant aujourd'hui, avant même qu'aucune forme de langage, si-imparfaite qu'on la suppose, ait pu s'organiser. Mais nous pouvons admettre hardiment que l'usage continu et l'amélioration de cette faculté ont du réagir sur l'esprit, en lui permettant et en lui facilitant la réalisation d'une plus longue suite d'idées. On ne peut pas plus poursuivre une pensée prolongée et complexe sans l'aide des mots, parlés ou non, qu'on ne peut faire un long calcul sans l'emploi des chiffres ou de l'algèbre. Il semblerait aussi que le cours même des idées ordinaires nécessite quelque forme de langage, car on a observé que Laura

[^34]Bridgman, fille aveugle, sourde et muette, se servait do ses doigts quand elle rêvait ${ }^{59}$. Lne longue succession d'idées vives et se reliant les unes aux autres peut néanmoins traverser l'esprit sans le concours d'aucune, espèce de langage, fait que nous pouvons déduire des rêves prolongés qu'on observe chez les chiens. Nous avons vu aussi que les animaux peuvent raisonner dans une certaine mesure, ce qu'ils font évidemment sans l'aide d'aucun langage. Les affections curieuses du cerveau, qui atteignent particulièrement l'articulation et qui font perdre la mémoire des substantifs, tandis que celle des autres mots reste intacte ${ }^{60}$, prouvent évidemment les rapports intimes qui existent entre le cerveau et la faculté du langage, telle qu'elle est développée aujourd'hui chez l'homme. Il n'y a pas plus d'improbabilité à ce que les effets de l'usage continu des organes de la voix et de l'esprit soient devenus héréditaires, qu'il n'y en a à ce que la forme de l'écriture, qui dépend à la fois de la structure de la main et de la disposition de l'esprit, soit aussi héréditaire; or ii est certain ${ }^{\text {bt }}$ que la faculté d'écrire se transmet par hérédité.
Plusieurs savants, et principalement le professeur Max Maller ${ }^{68}$, ont soutenu dernièrement, en insistant beaucoup sur ce point, que l'usage du langage implique la faculté de la conception d'idées générales; or, comme on n'admet pas que les animaux possèdent cette faculté, il en résulte une barrière infranchissable entre eux et l'homme ${ }^{63}$. J'ai déjà essayé de démontrer que les animaux pos-
59. Pour des remarques sur ce sujet, voir doeteur Maudsley, Physiology and Pathology of Mind, 2• édition, 1868, p. 199.
60. On a enregistré beaucoup de cas de ce genre. Voir, par exemple, Inquiries concerning the intellectual Powers, par le docteur Abercrombie, 1838, p. 150. Voir aussi docteur Bateman, On Aphasia, 1870, pp. 27, 31, 53, 100.
61. Variation des Animaux, etc., vol. II, p. 6.
62. Lectures on M. Darwin's Philosophy of language, 1873.
63. Le jugement d'un philologue aussi distingué que le professeur Whitney aura beaucoup plus de poids sur ce point que tout ce que je pourrais dire. Le professeur fait remarquer, Oriental and linguistic studies, 1873, p. 297, en discutant les opinions de Bleek : "Bleek, se basant sur ce que le langage est un auxiliaire de la pensée presque indispensable à son développement, à la netteté, à la varieté et à la complexité des sensations qui déterminent la conscience, en conclut que la pensée est absolument impossible sans la parole, et il confond ainsi la faculté avec l'instrument. Il pourrait tout aussi bien soutenir que la main humaine est incapable d'agir sans le concours d'un outil. En partant d'une semblable doctrine, il lui est impossible de ne pas accepter les paradoxes les plus regrettables de Müler et de ne pas soutenir qu'un enfant (infans ne parlant pas) n'est pas un etre humain et qu'un sourd-muet n'acquiert la raison qua quand il a appris à se servir de ses doigts pour figurer le langage ! » Max Müller, Op. cit. a soin de souligner l'aphorisme suivant: "Il n'y a pas plus de pensée sans parole qu'il n'y a de parole sans pensée, „Quelle êtrange définition du terme, peasél
sèdent cette faculté au moins à l'état naissant et de façon très grossière. Quant aux enfants agés de dix à onze mois et aux sourds-muets, il me semble ircroyable qu'ils puissent rattacher certains sons à certaines idées générales aussi rapidement qu'ils le font, à moins que l'on admette que ces idées générales étaient đéjà formées dans leur esprit. On peut appliquer la même remarque aux animaux les plus intelligents, car, comme le fait observer M. Leslie Stephen ${ }^{04}$: *Un chien se fait une idée générale des chats et des moutons, et connait les mots correspondants tout aussi bien que peut les connaître un philosophe. La faculté de comprendre est, à un degré inférieur, il est vrai, une aussi bonne preuve de l'intelligence vocale, que peut l'étre la faculté de parler.
Il n'est as difficile de concevoir pourquoi les organes qui servent actuellement au langage, ont été plutôt que d'autres originellement perfectionnés dans ce but. Les fourmis communiquent facilement les unes avec les autres aw moyen de leurs antennes, ainsi que l'a prouvé Huber, qui consacre un chapitre entier à leur langage. Nous aurions pu nous servir de nos doigts comme instruments efficaces, car, avec de l'habitude, on peut transmettre à un sourd chaque mot d'un discours prononc ${ }^{\beta}$ en public; mais alors l'imposaibilité de nous servir de nos mains, pendant qu'elles auraient été occupées à exprimer nos pensées, eût constitué pour nous un inconvénient sérieux. Tous les mammifères supérieurs ont les organes vocaux construits sur le même plan général que les nôtres, et se servent de ces organes comme moyen de communiquer avec leurs congénères; il est donc extrêmement probable que, dès que les communications devinrent plus fréquentes et plus importantes, ces organes ont dû se développer dans la mesure des nouveaux besoins; c'est ce qui est arrivé, en effet, et ces progrès ont été principalement obtenus à l'aide de ces parties si admirablement ajustées, la langue et les lèvres ${ }^{65}$. Le fait que les singes supérieurs ne se servent pas de leurs organes vocaux pour parler, dépend, sans doute, de ce que leur intelligence n'a pas suffisamment progressé. Les singes possèdent, en somme, des organes qui, avec une longue pratique, auraient pu leur donner la parole, mais ils ne s'en sont jamais servis; nous trouvons, d'ailleurs, chez beaucoup d'oiseaux, un exemple analogue; ils possèdent tous les organes nécessaires au chant, et cependant ils ne chantent
64. Essays on Free-thinking, etc., 1873, p. 82.
65. Voir, por
65. Voir, pour quelques excellentes remarques sur ce point, docteur Maudsley,
Physiology and Pathology of Mind, 1868, p. 199.
jamais. Ainsi, les organes vocaux du rossignol et ceux du corbeau ont une construction analogue; le premier s'en sert pour momodular les chants les plus variés; le second ne fait jamais entendre qu'un simple croassement ${ }^{66}$. Mais pourquoi les singes n'ont-ils pas une intelligence aussi développée que celle de lhomme? C'est là une question à laquelle on ne peut répondre qu'en invoquant les causes générales; en effet, notre ignorance relativement aux phases successives du développement qu'a traversées chaque créature est si incomnlète, quàil serait déraisonnable de s'attendre à rien de défini.

Il est à remarquer, et c'est un fait extrêmement curieux, que les causes qui expliquent la formation des langues différentes expliquent aussi la formation des espèces distinctes; ces causes peuvent se résumer en un seul mot: le développement graduel; et les preuves à l'appui sont exactement les mêmes dans les deux cas ${ }^{67}$. Nous pouvons, toutefois, remonter plus près de l'origine de bien des mots que de celle des espèces, car nous pouvons saisir, pour ainsi dire, sur le fait la transformation de certains sons en mots, lesquels ne sont après tout que des imitations de ces sons. Nous rencontrons, dans des langues distinctes, des homologies frappantes dues à la communauté de descendance, et des analogies dues à un procédé semblable de formation. L'altération de certaines lettres ou de certains sons, produite par la modification d'autres lettres ou d'autres sons, rappelle la corrélation, la croissance. Dans les deux cas, languas et espèces, nous observons la réduplication des parties, les effets de l'usage longtemps continué, et ainsi de suite. La présence fréquente de rudiments, tant dans les largues que dans les espèces, est encore plus remarquable. Dans l'orthographe des mots, il reste souvent des lettres représentant les rudiments d'anciennes prononciations, Les langues, comme les êtres organisés, peuvent se classer en groupes subordonnés; on peut aussi les classer naturellement selon leur dérivation, ou artificiellement, d'après d'autres caractères. Les langues et les dialectes dominants
66. Maegillivray, History of British Birds, 1839, t. II, p. 29. Un excellent observateur, M. Blackwall, remarque que la pie apprend à prononcer des mots Ísolés et méme de courtes phrases plus promptement que tout autre oiseau anglais ; cependant il ajoute qu'après avoir fait de longues et minutieuses recherches sur ses habitudes, il n'a jamais trouvé que, à l'état de nature, cet oiseau manifestat aucune capacité inusitée pour l'imitation. (Researches in Zoologh, 1834, p. 158.)
67. Voy. l'intéressant parallelisme entre le développement des espèces et celui des langages, etabli par sir G. Lyell, The Geological Evidences of the Anliquity of Man, 1863, chap. xxul.
se répandent rapidement et amènent l'extinction d'autres langages. De même qu'une espèce, une langue une fois éteinte ne reparait jamais, ainsi que le fait remarquer sir C. Lyell. Le même langage ne surgit jamais en deux endroits différents; et des langues distinctes peuvent se croiser ou se fondre les unes avec les autres ${ }^{68}$. La variabilité existe dans toutes les langues, et des mots nouveaux s'introduisent constamment; mais, comme la mémoire est limitée, certains mots, comme des langues entières, disparaissent peu à peu : « On observe dans chaque langue, ainsi que Max Muller ${ }^{69}$ I'a fait si bien remarquer, une lutte incessante pour l'existence entre les mots et les formes grammaticales. Les formes les plus parfaites, les plus courtes et les plus faciles, tendent constamment à prendre le dessus et doivent leur succès à leur vertu propre. > On peut, je crois, à ces causes plus importantes de la persistance de certains mots, ajouter la simple nouveauté et la mode; car il y a dans l'esprit humain un amour prononcé pour de légers changements en toutes choses. Cette persistance, cette conservation de certains mots favorisés dans la lutte pour l'existence, est une sorte de sélection naturelle.
On a soutenu que la construction parfaitement régulière et étonnamment complexe des langues d'un grand nombre de nations barbares est une preuve, soit de l'origine divine de ces langues, soit de la haute intelligence et de l'antique civilisation de leurs fondateurs. «Nous observons fréquemment, dit à ce sujet F. von Schlegel, dans les langues qui paraissent représenter le degré le plus infime de la culture intellectuelle, une structure grammaticale admirablement élaborée. On peut appliquer cette remarque principalement au basque et au lapon, ainsi qu'à beaucoup de langues américaines ${ }^{70}$. , Mais il est certainement inexact de comparer un langage à in art, en ce sens qu'il aurait été élaboré et formé méthodiquement. Les philologues admettent aujourd'hui que les conjugaisons, les déclinaisons, etc., existaient à l'origine comme mots distincts, depuis réunis; or comme ce genre de mots exprime les rapports les plus clairs entre les objets et les personnes, il n'est pas étonnant qu'ils aient été employés par la plupart des races pendant les premiers ages. L'exemple suivant prouve combien il nous est facile de nous tromper sur ce qui constitue la perfection.

[^35]Un Crinolde se compose parfois de cent cinquante mille pièces ${ }^{71}$ d'écailles, toufes rangées avec une parfaite symétrie en lignes rayonnantes; mais lg naturaliste ne considère point un animal de ce genre comme plus parfait qu'un animal du type bilatéral, formé de parties moins nombreuses et qui ne sont semblables entre elles que sur les côtés opposés du corps. Il considère, avec raison, que la différenciation et la spécialisation des organes constituent la perfection. Il en est de même pour les langues; la plus symétrique et la plus compliquée ne doit pas etre mise au-dessus d'autres plus irrégulières, plus brèves, résultant de nombreux croisements, car ces dernières ont emprunté des mots expressifs et d'utiles formes de construction à diverses races conquérantes, conquises ou immigrantes.
Ces remarques, assurément incomplètes, m'amènent à conclure que la construction très complexe et très régulière d'un grand nombre de langues barbares ne prouve point qu'elles doivent leur origine à un acte spécial de création ${ }^{72}$. La faculté du langage articulé ne constitue pas non plus, comme nous l'avons vu, une objection insurmontable à l'hypothèse que l'homme descend d'une forme inférieure.

Sentiment du beau. - Ce sentiment est, assure-t-on, spécial à l'homme. Je m'occupe seulement ici du plaisir que l'on ressent à contempler certaines couleurs et certaines formes, ou à entendre certains sons, ce qui constitue certainement le sentiment du beau; toutefois ces sensations, chez l'homme civilisé, s'associent étroitement à des idées complexes. Quand nous voyons un oiseau mále étaler orgueilleusement, devant la femelle, ses plumes gracieuses ou ses splendides couleurs, tandis que d'autres oiseaux, moins bien partagés, ne se livrent à aucune démonstration semblable, il est impossible de ne pas admettre que les femelles admirent la beauté des males. Dans tous les pays, les femmes se parent de ces - plumes ; on ne saurait donc contester la beauté de ces ornements. Les oiseaux-mouches et certains autres oiseaux disposent avec beaucoup de goat des objets brillants pour orner leur nid et les endroits où ils se rassemblent; c'est évidemment là une preuve qu'ils doivent éprouver un certain plaisir à contempler ces objets. Toutefois, autant que nous en pouvons juger, le sentiment pour le beau, chez la grande majorité des animaux, se limite aux attrac-

[^36]tions du sexe opposé. Les douces mélodies que soupirent beaucoup d'oiseaux mâles pendant la saison des amours, sont certainement l'objet do l'admiration des femelles, fait dont nous fournirons plus loin la preuve. Si les femelles étaient incapables d'apprécier les splendides couleurs, les ornements et la voix des malles, toute la peine, tous les soins qu'ils prennent pour déployer leurs charmes devant elles, seraient inutiles, ce qu'il est impossible d'admettre. Il est, je crois, aussi difficile d'expliquer le plaisir que nous causent certaines couleurs et certains sons harmonieux que l'agrément que nous procurent certaines saveurs et certaines odeurs; mais l'habitude joue certainement un rôle considérable, car certaines sensations qui nous étaient d'abord désagréables finissent par devenir agréables, et les habitudes sont héréditaires. Helmholtz a expliqué dans une certaine mesure, en se basant sur les principes physiologiques, pourquoi certaines harmonies et certaines cadences nous sont agréables. En outre, certains bruits se reproduisant fréquemment à des intervalles irréguliers nous sont très désagréables, ainsi que l'admettra quiconque a entendu pendant la nuit sur un navire le battement irrégulier d'un cordage. Le même principe semble s'appliquer quand il s'agit du sens de la vae, car l'oeil préfère évidemment la symétrie ou les images qui se reproduisent régulièrement. Les sauvages les plus infimes adoptent comme ornements des dessins de cette espèce et la sélection sexuelle les a développés dans l'ornementation de quelqués animaux mâles. Quoi qu'il en soit, et que nous puissions expliquer ou non les sensations agréables causées ainsi à la vue ou à l'oule, il est certain que l'homme et beaucoup d'animaux inférieurs admirent les mêmes couleurs, les mêmes formes gracieuses et les mêmes sons.
Le sentiment du beau, en tant qu'il s'agit tout au moins de la beauté chez la femme, n'est pas absolu dans l'esprit humain, car il diffère beaucoup chez les différentes races, et il n'est même pas identique chez toutes les nations appartenant à une même race. A en juger par les ornements hideux et la musique non moins atroce qu'admirent la plupart des sauvages, on pourrait conclure que leurs facultés esthétiques sont à un état de développement inférieur à celui qu'elles ont atteint chez quelques animaux, les oiseaux par exemple. Il est évident qu'aucun animal ne serait capable d'admirer une belle nuit étoilée, un beau paysage ou une musique savante ; mais ces goûts relevés dépendent, il ne faut pas l'oublier, de l'éducation et de l'association d'idées complexes, et ne sont appréciés ni par les barbares, ni par les personnes dêpourvues d'éducation.

La plupart des facultés qui ont le plus contribué à l'avancement progressif de l'homme, telles que l'imagination, l'étonnement, la curiosité, le sentiment indéfini du beau, la tendance à limitation, l'amour du mouvement et de la nouveauté, ne pouvaient manquer d'entrainer l'humanité à des changements capricieux de coutumes et de modes. Je fais allusion à ce point, parce qu'un écrivain ${ }^{73}$ vient, assez étrangement, de désigner le caprice, < comme une des différences typiques les plus remarquables entre les sauvages et les animaux >. Or nous pouvons non seulement comprendre comment il se fait que l'homme soit capricieux, mais prouver, ce que nous ferons plus loin, que l'animal l'est aussi dans ses affections, dans ses aversions, dans le sentiment qu'il a du beau. En outre, it y a de bonnes raisons de supposer que l'animal aime la nouveauté pour elle-mème.

Croyance en Dieu. - Religion, - Rien ne prouve que l'homme ait êté primitivement doué de la croyance à l'existence d'un Dieu omnipotent. Nous possédons, au contraire, des preuves nombreuses que nous ont fournies, non pas des voyageurs de passage, mais des hommes ayant longtemps vécu avec les sauvages, d'où il résulte qu'il a existé et qưil existe encore un grand nombre de peuplades qui ne croient nià un ni à plusieurs dieux, et qui n'ont même pas, dans leur langue, de mot pour exprimer l'idée de la divinité ${ }^{74}$. Cette question est, cela va sans dire, distincte de zelle d'ordre plus élevé, de savoir s'il existe un Créateur maitre de l'univers, question à laquelle les plus hautes intelligences de tous les temps ont répondu affirmativement.
Toutefois, si nous entendons par le terme religion la croyance à des agents invisibles ou spirituels, le cas est tout différent, car cette croyance parait etre presque universelle chez les races les moins civilisées. Il n'est, d'ailleurs, pas difficile d'en comprendre lorigine. Dès que les facultés importantes de l'imagination, de l'étonnement et de la curiosité, outre quelque puissance de raisone nement, se sont partiellement développées, l'homme a da naturellement chercher à comprendre ce qui se passait autour de lui, et à spéculer vaguement sur sa propre existence. © L'homme, dit

[^37]M. M' Lennan ${ }^{7}$, est poussé, ne fut-ce que pour sa propre satisfaction, à inventer quelque explication des phénomènes de la vie; et, à en juger d'après son universalité, la première, la plus simple hypothèse qui se soit présentée à lui, semble avoir été ču'on peut attribuer les phénomènes naturels à la présence, dans les animaux, dans les plantes, dans les choses, dans les forces de la nature, d'esprits inspirant les actions, esprits semblables à celui dont l'homme se conçoit lui-même le possesseur. . Il est aussi très probable, ainsi le démontre M. Tylor, que la première notion des esprits ait pris son origine dans le rêve, car les sauvages n'établissent guère aucune distinction entre les impressions subjectives et les impressions objectives. Le sauvage, qui voit des figures en songe, pense que ces figures viennent de loin et qu'elles lui sont supérieures; ou bien encore que « l'âme du rêveur part en voyage, et revient avec le souvenir de ce qu'elle a vu^{76} \%. Mais il fallait que les facultés dont nous avons parlé, c'est-à-dire l'imagination, la curiosité, la raison, etc., eussent acquis, déjà, un degré considérable de développement dans l'esprit humain, pour que les rêves pussent amener l'homme à croire aux esprits; car, auparavant, ses reves ne devaient pas avoir plus d'influence sur son esprit que les rêves d'un chien n'en ont sur le sien.

Un petit fait, que j'ai eu occasion d'observer chez un chien qui m'appartenait, peut faire comprendre la tendance qu'ont les sauvages à s'imaginer que des essences spirituelles vivantes sont la cause déterminante de toute vie et de tout mouvement. Mon chien, animal assez âgé et très raisonnable, était couché sur le gazon un jour que le temps était très chaud et très lourd; à quelque distance
75. The Worship of Animals and Plants, dans Fortnightly Review, $1^{\circ r}$ oct. 1869, p. 422.
76. Tylor, Early History of Mankind, 1865, p. 6. Voir aussi les trois excellents chapitres sur le développement de la religion dansles Origines de la Civilisation (1870), de Lubbock. De même, M. Herbert Spencer, dans son ingénioux article dans la Fortnightly Review (mai I, 1870, p. 535), explique les premières phases des croyauces religieuses dans le monde, par le fait que l'homme est conduit par les réves, les ombres et autres causes, à so considérer comme ayant une double essence, corporelle ot spirituelle. Comme l'etre spirituel est supposé exister après la mort, ot avoir une puissance, on se le rend favorable par divers doas et cérémonies, et on invoque son secours. Il montre ensuite que les noms fons d'animaux ou autres objets qu'on donne aux premiers ancêtres ou l'ancetre réel sidéré comm de la tribu, et cet animal ou cet objet est alors naturellement conToutefois je ne puis m'éretat d'esprit, tenu pour sacré et adoré comme un dieu. etait regardé comme doué dout ce qui manifestait le pouvoir ou le mouvement tales analogues aux notres.
de lui se trouvait une ombrelle ouverte que la brise agitait de temps en temps: il n'eut certainement fait aucune attention à ces mouvements de l'ombrelle si quelqu'un eat été auprès. Or, chaque fois que l'ombrelle bougeait, si peu que ce fut, le chien se mettait à gronder et à aboyer avec fureur. Un raisonnement rapide, inconscient, devait dans ce moment traverser son esprit; il se disait, sans doute, que ce mouvement sans cause apparente, indiquait la présence de quelque agent étranger, et il aboyait pour chasser l'intrus qui n'avait aucun droit à pénétrer dans la propriété de son mattre.

Il n'y a qu'un pas, facile à franchir, de la croyance aux esprits à celle de l'existence d'un ou de plusieurs dieux. Les sauvages, en effet, attribuent naturellement aux esprits les memes passions, la même soif de vengeance, forme la plus simple de la justice, les mêmes affections que celles qu'ils éprouvent eux-mêmes. Les Fuégiens paraissent, sous ce rapport, se trouver dans un état intermédiaire, car lorsque, à bord du Beagle, le chirurgien tua quelques canards pour enrichir sa collection, Yorck Minster s'écria de la manière la plus solennelle : © Oh! M. Bynoe, beaucoup de pluie, beaucoup de neige, beaucoup de vent; >c'était évidemment la pour lui la punition qui devait nous atteindre, car nous avions gaspillé des aliments propres à la nourriture de l'homme. Ainsi il nous racontait que son frère ayant tué un < sauvage >, les orages avaient longtemps régné, et qu'il était tombé beaucoup de pluie et de neige. Et cependant les Fuégiens ne croyaient à rien que nous puissions appeler un Dieu, et ne pratiquaient aucune cérémonie religieuse; Jemmy Button soutenait résolument, avec un juste orgueil, qu'il n'y avait pas de diables dans son pays. Cette dernière assertion est d'autant plus remarquable, que les sauvages croient bien plus facilement aux mauvais esprits qu'aux bons.

Le sentiment de la dévotion religieuse est três complexe; il se compose d'amour, d'une soumission complète à un être mystérieux et supérieur, d'un vif sentiment de dépendance ${ }^{77}$, de crainte, de respect, de reconnaissance, d'espoir pour l'avenir, et peut-etre encore d'autres éléments. Aucun être ne saurait éprouver une émotion aussi complexe, à moins que ses facultés morales et intellectuelles n'aient acquis un développement assez considérable. Nous remarquons, néanmoins, quelque analogie, bien faible il est vrai, entre cet état d'esprit et l'amour profond qu'a le chien pour
77. Voir un article remarquable sur les Éléments psychiques de la religion, par M.-LL. Owen Pike, dans Anthropological Review, avril 1870, p. Exili.
son matre, amour auquel se joignent une soumission complète, un peu de crainte et peut-être d'autres sentiments. La conduite du chien, lorsqu'il retrouve son maitre après une absence, et, je puis l'ajouter, celle d'un singe vis-d-vis de son gardien qu'il adore, est très différente de celle que tiennent ces animaux vis-à-vis de leurs semblables. Dans ce dernier cas, les transports de joie paraissent être moins intenses, et toutes les actions manifestent plus d'égalité. Le professeur Braubach ${ }^{78}$ va jusqu'à soutenir que le chien regarde son maitre comme un dieu.

Les mêmes hautes facultés mentales qui ont tout d'abord poussé l'homme à croire à des esprits invisibles, puis qui l'ont conduit au fétichisme, au polythéisme, et enfin au monothéisme, devaient fatalement lui faire adopter des coutumes et des superstitions étranges * tant que sa raison est restée peu développée. Au nombre de ces coutumes et de ces superstitions, il y en a eu de terribles:- les sacrifices d'êtres humains immolés à un dieu sanguinaire; les innocents soumis aux épreuves du poison ou du feu: la sorcellerie, etc. Il est, cependant, utile de penser quelquefois à ces superstitions, car nous comprenons alors tout ce que nous devons aux progrès de la raison, à la science et à toutes nos connaissances accumulées. Ainsi que l'a si bien fait remarquer sir J. Lubbock ${ }^{79}$: * Nous n'exagérons pas en disant qu'une crainte, qu'une terreur constante de l'inconnu couvre la vie sauvage d'un nuage épaís et en empoisonne tous les plaisirs. » On peut comparer aux erreurs incidentes que l'on retrouve parfois dans l'instinct des animaux cet avortement misérable, ces conséquences indirectes de nos plus hautes facultés.
78. Religion, Moral, eto., der Darwin'schen Art-Lehre, 1869, p. 53. On affirme (Docteur W. Lauder Lindsay, Journal of mental Seience, 1871, p. 43) que Bacon et que le poète Burns partageaient la même opinion.
79. Prehisloric Times, 2' edit., p. 571. On trouvera dans cet ouvrage (p. 533) une excellente description de beaucoup de coutumes bizarres et capricieuses des sauvages.

CHAPITRE IV

domparaison des facultés mentales de l'homes avec gelles des animaux (suite).

Abstract

Le sens moral. .- Proposition fondamentale. - Les qualités des animaux sociables. - Origine de la sociabilite. - Lutte entre les instincts contraires. - L'homme, animal sociable. - Les instincts sociaux durables l'emportent sur d'autres instincts moins persistants, - Les sauvages n'estiment que les vertus sociales. - Les vertus personnelles s'acquièrent à une phase postérieure du développement. - Importance du jugement des membres d'une meme communaute sur la conduite. Transmission des tendances morales. - Résumé,

Je partage entièrement l'opinion des savants ${ }^{1}$ qui affirment que, de toutes les différences existant entre l'homme et les animaux, c'est le sens moral ou la conscience, qui est de beaucoup la plus importante. Le sens moral, ainsi que le fait remarquer Mackintosh ${ }^{2}$, - l'emporte à juste titre sur tout autre principe d'action humaine ; ; il se résume dans ce mot court, mais impérieux, le devoir, dont la signification est si élevée. C'est le plus noble attribut de l'homme, qui le pousse à risquer, sans hésitation, sa vie pour cellé d'un de ses semblables ; ou l'amène, après mûre délibération, à la sacrifier a quelque grande cause, sous la seule impulsion d'un profond sentiment de droit ou de devoir. Kant s'écrie : « Devoir ! pensée merveilleuse qui n'agis ni par l'insinuation, ni par la flatterie, ni par la menace, mais en te contentant de te présenter à l'ame dans ton austère simplicité; tu commandes ainsi le respect, sinon toujours l'obéissance ; devant toi tous les appétits restent muets, si rebelles qu'ils soient en secret; d'oú tires-tu ton origine ${ }^{3}$? ?
Bien des écrivains de grand mérite ont discuté cette immense question *; si je l'effleure ici, c'est qu'il m'est impossible do la passer sous silence, et que personne, autant que je le sache toutefois, ne l'a abordée exclusivement au point de vue de l'histoire naturelle. La recherche en elle-même offre, d'ailleurs, un vif intéret,

[^38]puisqu'elle nous permet de déterminer jusqu'à quel point l'étude des animaux inférieurs peut jeter quelque lumière sur une des plus hautes facultés psychiques de l'homme.
La proposition suivante me paralt avoir un haut degré de probabilité : un animal quelconque, doué d'instincts sociaux prononcés ${ }^{5}$, en comprenant, bien entendu, au nombre de ces instincts, l'affection des parents pour leurs enfants et celle des enfants pour leurs parents, acquerrait inévitablement́ un sens moral ou une conscience, aussitơt que ses facultés intellectuelles se seraient développées chez l'homme. Premièrement, en effet, les instincts sociaux poussent l'animal à trouver du plaisir dans la société de ses semblables, à éprouver une certaine sympathie pour eux, et à leur rendre divers services. Ces services peuvent avoir une nature définie et óvidemment instinctive; ou n'être qu'une disposition ou qu'un désir qui pousse à les aider d'une manière générale, comme cela arrive chez les animaux sociables supérieurs. Ces sentiments et ces services ne s'étendent nullement, d'ailleurs, à tous les individus appartenant à la même espèce, mais seulement à ceux qui font partie de la même association. Seconc'ement : une fois les facultés intellectuelles hautement développées, le cerveau de chaque individu est constamment rempli par l'image de toutes ses actions passées et par les motife qui l'ont poussé à agir comme il l'a fait; or il doit éprouver ce sentiment de regret qui résulte invariablement d'un instinct auquel il n'a pas été satisfait, ainsi que nous le verrons plus loin,
5. Sir B. Brodie, après avoir fait observer (Psychological Enquiries, 1854, p. 192) que l'homme est un animal sociable, pose une importante question : "Ceci ne devrait-il pas trancher la discussion sur l'existence du sens moral? " Des idées analogues ont dû venir à beaucoup de personnes, comme cela est arrivé, il y a longtemps, à Marc-Aurèle. M. J.-S. Mill, dans sen célèbre ouvrage, Utilitarianism (1864, p. 46), parle du sentiment social comme "d'un puissant sentiment naturel », et le considère comme " la base naturelle du sentiment de la moralité utilitaire n. Puis il ajoute : "Comme toutes les autres facultés acquises auxquelles j'ai déjà fait allusion, la faculté morale, si elle ne fait pas partie de notre nature, en est, pour ainsi dire une excroissance naturelle, susceptible, dans une certaine mesure, de surgir spontanément comme toutes les autres facultés. n Mais, contrairement à cette assertion, il fait aussi remarquer que "si, comme je le creis, les sentiments moraux ne sont pas innés, mais acquis, Ils n'en sont pas pour cela moins naturels *. Ce n'est pas sans hésitation que j'ose avoir un avis contraire à celui d'un penseur si profond, mais on ne peut guère contester que les sentiments sociaux sont instinctifs ou innés chez les animaur iuférieurs; pourquoi done ne le seraient-ils pas chez l'homme? M. Bain (the Emotions and t.i.e Will, 1865, p. 481) et d'autres croient que chaque individu acquiert le sens moral pendant le cours de sa vie. Ceci est au moins fort improbable étant donoée la théorie géaérale de l'bvolution. 11 me semble que M. Mill a commis une meutales.
chaque fois qu'il s'aperçoit que linstinct social actuel et persistant a cédé chez lui à quelque autre instinct, plus puissant sur le moment, mais qui n'est ni permanent par sa nature, ni susceptible de laisser une impression bien vive. Il est évident qu'un grand nombre de désirs instinctifs, tels que celui de la faim, nont, par leur nature même, qu'une courte durée; dès qu'ils sont satisfaits, le souvenir de ces instincts s'efface, car ils ne laissent qu'une trace légère. Troisièmement : dès le développement de la faculté du langage et, par conséquent, dès que les membres d'une même association peuvent clairement exprimer leurs désirs, l'opinion commune, sur le mode suivant lequel chaque membre doit concourir au bien public, devient naturellement le principal guide d'action. Mais il faut toujours se rappeler que, quelque poids qu'on attribue à l'opinion publique, le respect que nous avons pour l'approbation ou le blâme exprimé par nos semblables dépend de la sympathie, qui, comme nous le verrons, constitue une partie essentielte de l'instinct social et en est mème la base. En/in, lhabitude, chez l'individu, joue un rôle fort important dans la direction de la conduite de chaque membre d'une association ; car la sympathie et l'instinct social, comme tous les autres instincts, de mème que l'obéissance aux désirs et aux jugements de la communauté, se fortifient considérablement par l'habitude. Nous allons maintenant discuter ces diverses propositions subordonnées, et en traiter quelques-unes en détail.

Je dois faire remarquer d'abord que je n'entends pas affirmer qu'un animal rigoureusement sociable, en admettant que ses facultés intellectuelles devinssent aussi actives et aussi hautement développées que celles de l'homme, doive acquérir exactement le même sens moral que le nôtre. De même que divers animaux possèdent un certain sens du beau, bien qu'ils admirent des objets très différents, de même aussi ils pourraient avoir le sens du bien et du mal, et être conduits par ce sentiment à adopter des lignes de conduite très différentes. Si, par exemple, pour prendre un cas extrême, les hommes se reproduisaient dans des conditions identiques à celles des abeilles, il n'est pas douteux que nos femelles non mariées, de même que les abeilles ouvrières, considéreraient comme un devoir sacré de tuer leurs frères, et que les mères chercheraient à détruire leurs filles fécondes, sans que personne songeat à intervenir ${ }^{6}$. Néanmoins il me semble que, dans le cas que

[^39]nous supposons, l'abeille, ou tout autre animal sociable, acquerrait quelque sentiment du bien et du mal, c'est-à-dire une conscience. Chaque individu, en effet, aurait le sens intime qu'il possède certains instincts plus forts ou plus persistants, et d'autres qui le sont moins; il aurait, en conséquence, à lutter intérieurement pour se décider à suivre telle ou telle impulsion; il éprouverait un sentiment de satisfaction, de regret, ou même de remords, à mesure qu'il comparerait à sa conduite présente ses impressions passées qui se représenteraient incessamment à son esprit. Dans ce cas, un conseiller intérieur indiquerait à l'animal qu'il aurait mieux fait de suivre une impulsion plutst qu'une autre. Il comprendrait qu'il aurait dû suivre une direction plutot qu'une autre; que l'une était bonne et l'autre mauvaise; mais j'aurai à revenir sur ce point.

Sociabilité. - Plusieurs espèces d'animaux sont sociables; certaines espéces distinctes s'associent même les unes aux autres, quelques singes américains, par exemple, et les bandes unies de corneilles, de freux et d'étourneaux. L'homme manifeste le méme sentiment dans son affection pour le chien, affection que ce dernier lui rend avec usure. Chacun a remarqué combien les chevaux, les chiens, les moutons, etc., sont malheureux, Iorsqu'on les sépare de leurs compagnons; et combien les deux premières espèces surtout se témoignent d'affection lorsqu'on les réunit. Il est curieux de se demander quels sont les sentiments d'un chien qui se tient tranquille dans une chambre, pendant des heures, avee son maitre ou avec un membre de la famille, sans qu'on fasse la moindre attention à lui, tandis que, si on le laisse seul un instant, il se met à aboyer ou à hurler tristement. Nous bornerons nos remarques aux animaux sociables les plus élevés, à l'exclusion des insectes, bien que ces derniers s'entr'aident de bien des manières. Le service

[^40]que les animaux supérieurs se rendent le plus ordinairement les uns aux autres est de s'avertir réciproquement du danger au moyen de l'union des sens de tous. Les chasseurs savent, ainsi que le fait remarquer le docteur Jæger ${ }^{7}$, combien il est difficile d'approcher d'animaux réunis en troupeau. Je crois que ni les chevaux sauvages, ni les bestiaux, ne font entendre un signal de danger; mais l'attitude que prend le premier qui aperçoit l'ennemi avertit les autres. Les lapins frappent fortement le sol de leurs pattes postérieures comme signal d'un danger; les moutons et les chamois font de même, mais avec les pieds de devant, et lancent en même temps un coup de sifflet. Beaucoup d'oiseaux et quelques mammifères placent des sentinelles, qu'on dit être géuéralement des femelles chez les phoques ${ }^{8}$. Le chef d'une troupe de singes en est la sentinelle, et pousse des cris pour indiquer, soit le danger, soit la sécurité ${ }^{9}$. Les animaux sociables se rendent une foule de petits services réciproques, les chevaux se mordillent et les vaches se lèchent mutuellement sur les points où ils éprouvent quelque démangeaison; les singes se débarrassent les uns les autres de leurs parasites. Brehm assure que, lorsqu'une bande de Cercopithecus griseo-viridis a traversé une fougère épineuse, chaque singe s'étend à tour de rôle sur une branche, et est aussitôt visité par un de ses camarades, qui examine avec soin sa fourrure et en extrait toutes les épines.
Les animaux se rendent encore des services plus importants : ainsi les loups et quelques autres bêtes féroces chassent par bandes et s'aident mutuellement pour attaquer leurs victimes. Les pélicans pêchent de concert. Les hamadryas soulèvent les pierres pour chercher des insectes, etc., et, quand ils en rencontrent une trop grosse, ils se mettent autour en aussi grand nombre que possible pour la soulever, la retournent et se partagent le butin. Les animaux sociables se défendent réciproquement. Les bisons males, dans l'Amérique du Nord, placent, au moment du danger, les femelles et les jeunes au silieu du troupeau, et les entourent pour les défendre. Je citerai, dans un chapitre subséquent, l'exemple de deux jeunes taurtaux sauvages à Chillingham, qui se réunirent pour attaquer un vieux taureau, et de deux étalons cher-
7. Die Darwin'sche Theorie, p. 101.
8. M. R. Brown, Proceedings Zoolog. Soc., 1868, p. 409.
9. Brehm, Thierleben, vol. I, 1864, pp. 52, 79. Pour le cas des singes qui se débarrassent mutuellement des épines, p. 54, Le fait des hamadryas qui retournent les pierres est donné (p. 79) sur l'autorité d'Alvarez, aux observations duquel Brehm croit qu'on peut avoir conflance. Voy. p. 79 pour les cas de vieux babouins attaquant les chiens, et pour l'aigie, p. 56.
chant ensemble à en chasser un troisième loin d'un troupeau de juments. Brehm rencontra, en Abyssinie, une grande troupe de babouins qui traversaient une vallée; une partie avait déjà gravi la montagne opposée, les autres étaient encore dans la vallée. Ces derniers furent attaqués par des chiens; aussitot les vieux mâles se précipitèrent en bas des rochers, la bouche ouverte et poussant des cris si terribles que les chiens battirent en retraite. On encouragea ceux-ci à une nouvelle attaque, mais dans l'intervalle tous les babouins avaient remonté sur les hauteurs, à l'exception toutefois d'un jeune ayant six mois environ, qui, grimpé sur un bloc de rocher où il fut entouré, appelait à grands cris à son secours. Un des plus grands mâles, véritable héros, redescendit la montagne, se rendit lentement vers le jeune, le rassura et l'emmena triomphalement, - les chiens étaient trop étonnés pour l'attaquer. Je ne puis résister au désir de citer une autre scène qu'a observée le même naturaliste : un jeune cercopithèque, saisi par un aigle, s'accrocha à une branche et ne fut pas enlevé d'emblée; il se mit à crier au secours; les autres membres de la bande arrivèrent en poussant de giands cris, entourèrent l'aigle, et lui arrachèrent tant de plumes, qu'il lâcha sa proie et ne songea plus qu'à s'échapper. Brehm fait remarquer avec raison que désormais cet aigle ne se hasardera probablement plus à attaquer un singe faisant partie d'une troupe ${ }^{10}$.

Il est évident que les animaux associés ressentent des sentiments d'affection réciproque, qui n'existent pas chez les animaux adultes non sociables. Il est plus douteux qưils éprouvent de la sympathie pour les peines ou les plaisirs de leurs congénères, surtout pour les plaisirs. M. Buxton a pu, toutefois, constater, grâce à d'excellents moyens d'observation ${ }^{11}$, que ses perroquets, vivant en liberté dans le Nortolk, prevaient un intérêt considérable à un couple qui avait un nid; ils entouraient la femelle e en poussant d'effroyables cris pour l'acclamer, toutes les fois qu'elle quittait son nid». Il est souvent difficile de juger si les animaux éprouvent quelque sentiment de pitié pour les souffrances de leurs semblables. Qui peut dire ce que ressentent les vaches lorsqu'elles

[^41]entourent et fixent da regard une de leurŝ camarades morte ou mourante? Il est probable, cependant, que, comme le fait remarquer Houzeau, elles ne ressentent aucune pitié. L'absence de toute sympathie chez les animaux n'est quelquefois que trop certaine, car on les voit expulser du troupeau un animal blessé, ou le poursuivre et le persécuter jusqu'à la mort. L'est là le fait le plus horrible que relate. l'histoire naturelle, à moins que l'explication qu'on en a donnée soit la vraie, c'est-à-dire que leur instinct ou leur raison les pousse à expulser un compagnon blessé, de peur que les betes féroces, l'homme compris, ne soient tentés de suivre la troupe. Dans ce cas, leur conduite ne serait pas beaucoup plus coupable que celle des Indiens de l'Amérique du Nord qui laissent périr dans la plaine leurs camarades trop faibles pour les suivre, ou que celle des Fijiens qui enterrent vivants leurs parents agés ou malades ${ }^{12}$.
Beaucoup d'animaux, toutefois, font certainement preuve de sympathie réciproque dans des circonstances dangereuses ou mal^{-} heureuses. On observe cette sympathie même chez les oiseaux. Le capitaine Stansbury ${ }^{13}$ a rencontré, sur les bords d'un lac salé de l'Utah, un pélican vieux et complètement aveugle qui était fort gras, et qui devait etre nourri depuis longtemps par ses compagnons. M. Blyth m'informe qu'il a vu des corbeaux indiens nourrir deux ou trois de leurs compagnons aveugles, et j'ai eu connaissance d'un fait analogue observé chez un coq domestique. 'Nous pouvons, si bon nous semble, considérer ces actes comme instinctifs; mais les exemples sont trop rares pour qu'on puisse admettre le développement d'aucun instinct spécial ${ }^{44}$. J'ai moimême vu un chien qui ne passait jamais à coté d'un de ses grands amis, un chat malade dans un panier, sans le lécher en passant, le signe le plus certain d'un bon sentiment chez le chien.

Il faut bien appeler sympathie le sentiment qui porte le chien courageux à s'élancer sur qui frappe son mattre, ce qu'il n'hésite pas à faire. J'ai vu une personne simuler de frapper une dame ayant sur ses genoux un chien fort petit et très timide; on n'avait jamais fait cet essai. Le petit chien s'éloigna aussitot, mais, après

[^42]que tes coups eurent cesse, il vint lécher la figure de sa maftresse, et il était vraiment touchant de voir tous les efforts qu'il faisait pour la consoler. Brehm ${ }^{\text {is }}$ constate que, lorsqu'on poursuivait un babouin en captivité pour le punir, les autres cherchaient à le protéger. Ce devait étre la sympathie qui poussait, dans les exemples que nous venons de citer, les babouins et les cercopithéques à đelendre leurs jeunes camarades contre les chiens et contre l'aigle. Je me bornerai à citer un seul autre exemple de conduite sympathique et hérorque de la part d'un petit singe américain. Il y a quelques années, un gardien du Jardin zoologique me montra quelques blessures profondes, à peine cicatrisées, que lui avait raites au cou un babouin féroce, pendant qu'il était occupé à côté de lui. Un petit singe américain, grand ami du gardien, vivait dans le même compartiment, fet avait une peur horrible du babouin. Néanmoins, dès qu'il vit son ami le gardien en péril, il s'élança à son secours, et tourmenta tellement le babouin, par ses morsures et par ses cris, que l'homme, après avoir couru de grands dangers pour sa vie, put s'échapper.

Outre l'amour et la sympathie, les animaux possèdent d'autres qualités que chez l'homme nous regardons comme des qualités morales, et je suis d'accord avec Agassiz ${ }^{16}$ pour reconnaitre que le chien possède quelque chose qui ressemble beaucoup à la conscience.

Le chien a certainement un certain empire sur lui-même, et cette qualité ne paratt pas provenir entièrement de la crainte. Le chien, comme le fait remarquer Braubach ${ }^{17}$ s'abstient de voler des aliments en l'absence de son maltre. Depuis très longtemps, on regarde les chiens comme le type de la fidélité et de l'obéissance. L'éléphant est aussi très fidèle à son gardien qu'il regarde probablement comme le chef de la troupe. Le docteur Hooker m'a raconté qu'un éléphant sur lequel il voyageait dans l'Inde s'enfonça un jour si complêtement dans une tourbiêre qu'il lui fut impossible de se dégager et qu'on dut l'extraire le lendemain a grand renfort de cordes. Dans ces occasions les éléphants saisissent avec leur trompe tout ce qui est à leur portée, chose ou individu, et le placent sous leurs genoux pour éviter d'enfoncer davantage dans la boue, Aussi le cornac craignait-il que l'animal ne saisit le docteur Hooker pour le placer au-dessous de lui dans la

[^43]tourbiére. Quant au cornac lui-meme, il n'avait absolument rien a craindre: or, cet empire sur soi-méme, dans une circonstance si épouvantable pour un animal très pesant, est certainement une preuve étonnante de noble fidélité ${ }^{18}$.

Tous les animaux vivant en troupe, qui se dêfendent l'un l'autre, ou qui se réunissent pour attaquer leurs ennemis, doivent, dans une certaine mesure, avoir de la fidélité lés uns pour les autres; ceux qui suivent un chef doivent lui obéir jusqu'ả un certain point. Les babouins qui, en Abyssinie ${ }^{19}$, vont en troupe piller un jardin, suivent leur chef en silence. Si un jeune animal imprudent fait du bruit, les autres lui donhent une claque pour lui enseigner le silence et lobéissance. M. Galton ${ }^{20}$, qui a eu d'excellentes occasions d'étudier les bestiaux à demi sáuvages de l'Afriquée mêridionale, affirme quitls ne peuvent supporter même une séparation momentanée de leur troupeau. Ces bestiaux semblent avoir le' señtiment inné de lobéissance ; ils ne demandent qu'ả se lâisser guider par celui d'entre eux qui a assez de confiance en soi pour accepter la posilion de chef. Les hommes qui dressent ces animaux à la voiture choisissent avec soin pour en faire les chefs d'un attelage ceux qui, en s'éloighañt de leârs congénéres pour brouter, prouvent ainsi qu'ils ont une certaine dose de volonté. M. Galton ajoute que ces derniers sont rares et qu'ils ont, par conséquent, beaucoup de valeur ; d'ailleurs, ils sont vite éliminés, car les fions sont toujours à l'affrat pour saisir ceux quï s'écartent đu troupeau.

Quant à l'impulsion, qui conduit certains animaux à à s'associer et à s'entr'aider de diverses maniéres, nous pouvons conclure que, đàns la plupart des câs, ils sont poussês par les mêmes sentiments dé joie et de plaisir quê leur procure la satisfaction d'autres actions instinctives, ou par le sentiment de regref que Yinstinct non satisfait laisse toujours après lui. Nous pourrions citer, à cet égard, d'innombrablès exemples, et lès instincts acquié de nos animaux domestiques nous fournissent quelques-uns des plus. frappants : àinsi, un jeune chien de berger est heureux de conduire un troupeau de moutons, it conrt joyensement autour du troupeau maís sans harceter les moutons; un jeune chien, dressé à chasser le renard, aime á poursuivre cet animat, tandis que d'autres chiens, ainsi que j'en ai été témoin, semblent s'étonner du plaisir qu'il y prend. Quel immeñse bonheur intime ne doit pas ressentir

[^44]l'oiseau, pour qu'il consente, lui, si plein d'activité, à couver ses œufs pendant des journées entières! Les oiseaux migrateurs sont malheureux si on les empêche d'émigrer, et peut-être éprouventils de la joie à entreprendre leur long voyage; mais il est difficile de croire que l'oie décrite par Audubon, à laquelle on avait attaché les ailes et qui, le temps venu, n'en partit pas moins à pied pour faire son long voyage de plusieurs milliers de kilomètres, ait pu ressentir une joie quelconque en se mettant en route. Quelques instincts dérivent seulement de sentiments pénibles, tels que la crainte, qui conduit à la conservation de soi-même, ou qui met en garde contre certains ennemis. Je crois que personne ne peut analyser les sensations du plaisir ou de la peine. Il est toutefois probable que, dans beaucoup de cas, les instincts se perpétuent par la seule force de l'hérédité, sans le stimulant du plaisir ou de la peine. Un jeune chien d'arret, flairant le gibier pour la première fois, semble ne pas pouvoir s'empécher de tomber en arret. L'écureuil dans sa cage, qui cherche à enterrer les noisettes qu'il ne peut manger, n'est certainement pas poussé à cet acte par un sentiment de peine ou de plaisir. Il en résulte que l'opinion commune qui veut que l'homme n'accomplisse une action que sous l'influence d'un plaisir ou d'une peine, peut etre erronée. Bien qu'une habitude puisse devenir aveugle ou involontaire, abstraction faite de toute impression de plaisir ou de peine éprouvée sur le moment, il n'en est pas moins vrai que la surpression brusque et forcée de cette habitude entratne, en général, un vague sentiment de regret.
On a souvent affirmé que les animaux sont d'abord devenus sociables, et que, en conséquence, ils éprouvent du chagrin lorsqu'ils sont séparés les uns des autres, et ressentent de la joie lorsqu'ils sont réunis; mais il est bien plus probable que ces sensations se sont développées les premières, pour déterminer les animaux qui pouvaient tirer un parti avantageux de la vie en société à s'associer les uns aux autres; de méme que le sentiment de la faim et le plaisir de manger ont été acquis d'abord pour engager les animaux à se nourrir. Limpression de plaisir que procure la société est probablement une extension des affections de parenté ou des affections filiales; on peut attribuer cette extension principalement à la sélection naturelle, et peut-etre aussi, en partie, à l'habitude. Car, chez les animaux pour lesquels la vie sociale est avantageuse, les individus qui trouvent le plus de plaisir à étre réunis peuvent le mieux échapper à divers dangers, tandis que ceux qui s'inquiètent moins do leurs camarades et qui vivent solitaires, doivent périr en plus
grand nombre. Il est inutile de spéculer sur l'origine de l'affection des parents pour leurs enfants et de ceux-ci pour leurs parents; ces affections constituent évidemment la base des affections sociales; mais nous pouvons admettre qu'elles ont été, dans une grande mesure, produites par la sélection naturelle. On peut, presque certainement, en effet, attribuer à la sélection naturelle le sentiment extraordinaire et tout opposé de la haine entre les parents les plus proches; ainsi, par exemple, les abeilles ouvrières qui tuent leurs frères et les reines-abeilles qui détruisent leurs propres filles, car le désir de détruire leurs proches parents, au lieu de les aimer; constitue, dans ce cas, un avantage pour la communauté. On a observé chez certains animaux placés extremement bas sur l'échelle, chez les astéries ou les araignées, par exemple, l'existence de l'affection paternelle, ou de quelque sentiment analogue qui la remplace. Ce sentiment existe aussi parfois chez quelques membres seuls de tout un groupe d'animaux, comme chez les Forficula, ou perce-oreille.
Le sentiment si important de la sympathie est distinct de celui de l'amour. Quelque passionné que soit l'amour qu'une mère puisse ressentir pour son enfant endormi, on ne saurait pas dire qu'elle éprouve en ce moment de la sympathie pour lui. L'affection que l'homme a pour son chien, l'amour du chien pour son mattre, ne ressemblent en rien à de la sympathie. Adam Smith a affirmé autrefois, comme M. Bain l'a fait récemment, que la sympathie repose sur le vif souvenir que nous ont laissé d'anciens états de douleur ou de plaisir. Il en résulte que $<$ le spectacle d'une autre personne qui souffre de la faim, du froid, de la fatigue, nous rappelle le souvenir de ces sensations, qui nous sont douloureuses meme en pensée. > Il en résulte aussi que nous sommes disposés à soulager les souffrances d'autrui, pour adoucir dans une certaine mesure les sentiments pénibles que nous éprouvons. C'est le même motif qui nous dispose à participer aux plaisirs des autres ${ }^{21}$. Mais je ne crois pas que cette hypothèse explique comment il se fait qu'une personne, qui nous est chère, excite notre sympathie à un bien plus

[^45]haut degré qu'une personne qui nous est indifférente. Le spectacle seul de la souffrance, sans tenir compte de l'amour, suffirait pour évoquer dans notre esprit des souvenirs et des comparaisons vivaces. Il est possible peut-être d'expliquer ce phénomène en supposant que, chez tous les animaux, la sympathie ne s'exerce qưenvers les membres de la même communauté, c'est-à-dire envers les membres qui leur sont bien connus et qu'ils aiment plus ou moins, mais non pas envers tous les individus de la même espèce. On sait, d'ailleurs, et c'est là un fait à peu près analogue, que beaucoup d'animaux redoutent tout particulièrement certains ennemis. Les espèces non sociables, telles que les tigres et les'lions, ressentent sans aucun doute de la sympathie pour les souffrances de leurs petits, mais non pas pour celles d'autres animaux. Chez l'homme, l'egolsme, l'expérience et l'imitation ajoutent probablement, ainsi que le fait remarquer M. Bain, à la puissance de la sympathie ; car l'espoir d'un échange de bons procédés nous pousse à accomplir pour d'autres des actes de bienveillance sympathique ; on ne saurait mettre en doute, d'ailleurs, que les sentiments de sympathie se fortifient beaucoup par l'habitude. Quelle que soit la complexité des causes qui ont engendré ce sentiment, comme il est d'une utilité absolue à tous les animaux qui s'aident et se défendent mutuellement, la sélection naturelle a dû le développer beaucoup; en effet, les associations contenant le plus grand nombre de membres éprouvant de la sympathie, ont dû réussir et élever un plus grand nombre de descendants.

D'ailleurs, il est impossible, dans beaucoup de cas, de déterminer si certains instincts sociaux sont la conséquence de l'action de la sélection naturelle ou s'ils sont le résultat indirect d'autres instincts et d'autres facultés, tels que la sympathie, la raison, l'expérience et la tendance à l'imitation; ou bien encore, s'ils sont simplement le résultat de l'habitude longuement continuée. L'instinct remarquable qui pousse à poster des sentinelles pour avertir le troupeau du danger, ne peut guère être le résultat indirect d'aucune autre faculté; il faut donc qu'il ait été directement acquis. D'autre part, l'habitude qu'ont les males de quelques espèces sociables de défendre la communauté et de se réunir pour attaquer leurs ennemis ou leur proie, résulte peut-être de la sympathie mutuelle ; mais le courage, et, dans la plupart des cas, la force, ont dû être préalablement acquis, probablement par sélection naturelle.

Certaines habitudes et certains instincts sont beaucoup plus vife que d'autres, c'est-à-dire, il en est qui procurent plus de plaisis
s'ils sont satisfaits, et pıus de peine s'ils ne le sont pas ; ou, ce qui est probablement tout aussi important, il en est qui sont transmis héréditairement d'une manière plus persistante sans exciter aucun sentiment spécial de plaisir ou de peine. Nous comprenons nousmémes que certaines habitudes sont, beaucoup plus que d'autres, difficiles à guérir ou à changer. Aussi peut-on souvent observer chez les animaux, des luttes errtre des instincts divers, ou entre un instinet et quelque tendance habituelle; ainsi, lorsqu'un chien s'élance après un lièvre, est rappelé, s'arrête, hésite, reprend la poursuite ou revient honteux vers son maitre; ou bien encore la lutte entre l'amour maternel d'une chienne pour ses petits et son affection pour son maître, lorsqu'on la voit se dérober pour aller vers les premiers, en ayant l'air honteux de ne pas accompagner le second. Un des exemples les plus curieux que je connaisse d'un instinct en dominant un autre est celui de l'instinct de- Ia migration qui l'emporte sur l'instinct maternel. Le premier est étonnamment fort; un oiseau captif, lors de la saison du départ, se jette contre les barreaux de sa cage jusqu'à se dépouiller la poitrine de ses plumes et à se mettre en sang. Il fait bondir les jeunes saumons hors de l'eau douce, où ils pourraient, cependant, continuer á vivre, et leur fait ainsi commettre un suicide involontaire. Chacun connait la force de l'instinct maternel, qui pousse des oiseaux très timides à braver de grands dangers, bien qu'ils le fassent avec hésitation et contrairement aux inspirations de P'instinct de la conservation. Néanmoins, l'instinct de la migration est si puissant, qu'on voit en automne des hirondelles et des martinets abandonner fréquemment leurs jeunes et les laisser périr misérablement dans leurs nids ${ }^{22}$.

Nous pouvons concevoir qu'une impulsion instinctive, si elle est, de quelque taçon que ce soit, plus avantageuse à ure espèce qu'un instinct autre ou opposé, devienne la plus énergique grâce à l'action de la sélection naturelle; les inđividus, en effet, qui la possèdent au plus haut degré doivent persister en plus grand nombre.

[^46]Il y a lieu de douter, toutefois, qu'il en soit ainsi de l'intinct migrateur comparé à l'instinct maternel. La persistance et l'action soutenue du premier pendant tout le jour, à certaines époques de l'année, peuvent lui donner, pour un temps, une énergie prépondérante.

L'homme, animal sociable. - On admet généralemeut que l'homme est un être sociable. Il suffit pour le prouver de rappeler son aversion pour la solitude et son goût pour la société, outre celle de sa propre famille. La réclusion solitaire est, une des punitions les plus terribles qu'on puisse lui infliger. Quelques auteurs supposent que l'homme a vécu primitivementen familles isolées; mais actuellement, bien que des familles dans cette condition, ou réunies par deux ou trois, parcourent les solitudes de quelques pays sauvages, elles conservent toujours, autant que je puis le savoir, des rapports d'amitié avec d'autres familles habitant la même région. Ces familles se rassemblent quelquefois en conseil, et s'unissent pour la défense commune. On ne peut pas invoquer contre la sociabilité du sauvage l'argument que les tribus, habitant des districts voisins, sont presque toujours en guerre les unes avec les autres, car les instincts sociaux ne s'étendent jamais à tous les individus de la mème espèce. A en juger par l'analogie de la grande majorité des ${ }^{*}$ quadrumanes, il est probable que les animaux à forme de singe, ancêtres primitifs de l'homme, étaient également sociables; mais ceci n'a pas pour nous une bien grande importance. Bien que l'homme, tel qu'il existe actuellement, n'ait que peu d'instincts spéciaux, car il a perdu ceux que ses premiers ancêtres ont pu posséder, ce n'est pas une raison pour qu'il n'ait pas conservé, depuis une époque extrêmement reculée, quelque degré d'affection et de sympathie instinctive pour ses semblables. Nous avons même tous conscience que nous possédons des sentiments sympathiques de cette nature ${ }^{23}$; mais notre conscience ne nous dit pas s'ils sont instinctifs, si leur origine remonte à une époque très reculée comme chez les animaux inférieurs, ou si nous les avons acquis chacun en particulier, dans le cours de nos jeunes années. Comme l'homme est in animal sociable, il est probable qu'il reçoit héréditairement uns tendance à la fidélité envers ses semblables

[^47]et à l'obéissance envers le chef de la tribu, qualités communes à la plupart des animaux sociables. Il doit de même posséder quelque aptitude au commandement de soi-même. Il peut, par suite d'une tendance héréditaire, être disposé à défendre ses semblables avec le concours des autres et être prêt à leur venir en aide, à condition que cela ne soit pas trop contraire à son propre bien-être ou à ses désirs.

Quand il s'agit de porter secours aux membres de seur communauté, les animaux sociables, occupant le bas de l'échelle, obéissent presque exclusivement à des instincts spéciaux; les animaux plus élevés obéissent en grande partie aux mêmes instincts; mais l'affection et la sympathie réciproques, et évidemment aussi, la raison, dans une certaine mesure, contribuent à augmenter ces instiacts. Bien que l'homme, comme nous venons de le faire remarquer, n'ait pas d'instincts spéciaux qui lui indiquent comment il doit aider ses semblables, l'impulsion existe cependant chez lui et, grâce à ses hautes facultés intellectuelles, il se laisse naturellement guider sous ce rapport par la raison et par l'expérience. La sympathie qu'il posséde à l'état instinctif lui fait aussi apprécier hautement l'approbation de ses semblables; car, ainsi que l'a démontré M. Bain ${ }^{24}$, l'amour des louanges, le sentiment puissant de la gloire, et la crainte encore plus vive du mépris et de l'infamie, «sont la conséquence et l'œuvre immédiate de la sympathie. , Les désirs, l'approbation ou le blâme de ses semblables, exprimés par les gestes et par le langage, doivent donc exercer une influence considérable sur la conduite de l'homme. Ainsi les instincts sociaux, qui ont du etre acquis par l'homme alors qu'il était à un état très grossier, probablement même déjà par ses ancêtres simiens primitifs, donnent encore l'impulsion à la plupart de ses meilleures actions; mais les désirs et les jugements de ses semblables, et, malheureusement plus souvent encore ses propres désirs égolistes, ont une influence considérable sur ses actions. Toutefois, à mesure que les sentiments d'affection et de sympathie, et que la faculté de l'empire sur soi-même, se fortifient par l'habitude; à mesure que la puissance du faisonnement devient plus lucide et lui permet d'apprécier plus sainement la justice des jugements de ses semblables, il se sent poussé, indépendamment du plaisir ou de la peine qu'il en éprouve dans le moment, à adopter certaines règles de conduite. Il peut dire alors, ce que ne saurait faire le sauvage ou le barbare : «Je suis le juge suprême de ma

[^48]propre conduite », et, pour employer l'expression de Kant: \& Je ne veux́ point violer dans ma personne la dignité de l'humanité. *

Les instincts sociaux les plus durables l'emportent sur les instincts moins persistants. - Nous n'avons, toutefois, pas encore abordé le point fondamental sur lequel pivote toute la question du sens moral. Pourquoi l'homme comprend-il qu'il doit obéir à tel désir instinctif plutot qu'à tel autre? Pourquoi regrette-t-il amèrement d'avoir cédé à l'instinet énergique de la conservation, et de n'avoir pas risqué sa vie pour sauver celle de son semblable; ou pourquoi regrette-t-il d'avoir volé des aliments, pressé qu'il était par la faim?

Il est évident d'abord que, chez l'homme, les impulsions instinctives ont divers degrés d'énergie. Un sauvage n'hésite pas à risquer sa vie pour sauver un membre de la tribu à laquelle il appartient, mais il reste absolument passif et indifférent dès qu'il s'agit d'un étranger. Une mère jeune et timide, sollicitée par l'instinct maternel, se jette, sans la moindre hésitation, dans le plus grand danger pour sauver son enfant, mais non pas pour sauver le premier venu. Néanmoins, bien des hommes, bien des enfants même, qui n'avaient jamais risqué leur vie pour d'autres, mais chez lesquels le courage et la sympathie sont très développés, méprisant tout à coup l'instinct de la conservation, se plongent dans un torrent pour sauver leur semblable qui se noie. L'homme est, dans ce cas, poussé par ce même instinct que nous avons signalé plus haut à l'occasion de l'héroïque petit singe américain, qui attaqua le grand et redouté babouin pour sauver son gardien. De semblables actions paraissent être le simple résultat de la prépondérance des instincts sociaux ou maternels sur tous les autres; car elles s'accomplissent trop instantanément pour qu'il y ait réflexion, ou pour qu'elles soient dictées par un sentiment de plaisir ou de peine; et, cependant, si l'homme hésite à accomplir une action de cette nature, il éprouve un sentiment de regret. D'autre part, linstinct de la conservation est parfois assez énergique chez l'homme timide pour le faire hésiter et l'empêchẻr de courir aucun risque, même pour sauver son propre enfant.

Quelques philosophes, je le sais, soutiennent que des actes comme les précédents, accomplis sous l'influence de causes impulsives, échappent au domaine du sens moral et ne méritent pas le nom d'actes moraux. Ils réservent ce terme pour des actions faites de propos délibéré, à la suite d'une victoire remportée sur des désirs contraires, ou pour des actes inspirés par des motifs élevés.

Mais il est presque impossible de tracer une ngne de démarcation ${ }^{25}$. En tant qu'il s'agit de motifs élevés, on pourrait citer de nombreux exemples de sauvages, dépourvus de tout sentiment de bienveillance générale envers l'humanité et insensibles à toute idée religieuse, qui, faits prisonniers, ont bravement sacrifié leur vie ${ }^{26}$, plutôt que de trahir leurs compagnons; il est évident qu'on doit voir là un acte moral. Quant à la réflexion et à la victoire remportée sur les motifs contraires, ne voyons-nous pas des animaux hésiter entre des instincts opposés, au moment de venir au secours de leurs petits ou de leurs semblables en danger? Cependant, on ne qualifie pas de morales ces actions accomplies au profit d'autres individus. En outre, si nous répétons souvent un acte, nous finissons par l'accomplir sans hésitation, sans réflexion, et alors il ne se distingue plus d'un instinct; personne ne saurait prétendre, cependant, que cet acte cesse d'être moral. Nous sentons tous, au contraire, qu'un acte n'est parfait, n'est accompli de la matière la plus noble, qu'à condition qu'il soit exécuté impulsivement, sans réflexion et sens effort, exécuté, en un mot, comme il le serait par l'homme chez lequel les qualités requises sont innées. Celui qui, pour agir, est obligé de surmonter sa frayeur ou son défaut de sympathie, mérite, cependant, dans un sens, plus d'éloges que l'homme dont la tendance innée est de bien agir sans effort. Ne pouvant distinguer les motifs, nous appelons morales toutes les actions de cer. taine nature, lorsqu'elles sont accomplies par un étre moral. Un être moral est celui qui est capable de comparer ses actes ou ses motıfs passés ou futurs, et de les approuver ou de les désapprouver. Nous n'avons aucune raison pour supposer que les animaux inférieurs possèdent cette faculté; en conséquence, lorsqu'un chien de Cerre-Neuve se jette dans l'eau pour en retirer un enfant, lorsqu'un jinge brave le danger pour sauver son camarade, ou prend à sa charge un singe orphelin, nous n'appliquons pas le terme * moral * à sa conduite. Mais, dans le cas de l'homme, qui senl peut être considéré avec certitude comme un être moral, nous qualifions de * morales $>$ les actions d'une certaine nature, que ces actions soient

[^49]exécutées après réflexion, après une lutte contre des motifs contraires, par suite des effets d'habitudes acquises peu à peu, ou enfin d'une manière impulsive et par instinct.

Pour en revenir à notre sujet immédiat, bien que quelques instincts soient plus énergiques que d'autres et provoquent ainsi des actes correspondants, on ne saurait, cependant, affirmer que les instincts sociaux (y compris l'amour des louanges et la crainte du blâme) soient ordinairement plus énergiques chez l'homme ou soient devenus tels par habitude longtemps continuée, que les instincts, par exemple, de la conservation, de la faim, de la convoitise, de la vengeance, etc. Pourquoi l'homme regrette-t-il, alors mème qu'il pourrait tenter de bannir ce genre de regrets, d'avoir cédé à une impulsion naturelle plutôt qu'à une autre, et pourquoi sent-il, en outre, qu'il doit regretter sa conduite? Sous ce rapport, l'homme diffère profondément des animaux inférieurs; nous pouvons, cependant, je crois, expliquer assez clairement la raison de cette différence.
L'homme, en raison de l'activité de ses facultés mentales, ne saurait échapper à la réflexion; les impressions et les images du passé traversent sans cesse sa pensée avec une netteté absolue. Or, chez les animaux qui vivent en société d'une manière permanente, les instinctes sociaux sont toujours présents et persistants. Ces animaux sont toujours prêts, entrainés, si l'on veut, par l'habitude, à pousser le signal du danger pour défendre la communauté et à prêter aide et secours à leurs camarades; ils éprouvent à chaque instant pour ces derniers, sans y etre stimulés par aucune passion ni par aucun désir spécial, une certaine affection et quelque sympathie; ils ressentent du chagrin, s'ils en sont longtemps séparés, et ils sont toujours heureux de se trouver dans leur sociêté. Il en est de même pour nous. Alors même que nous sommes isolés, nous nous demandons bien souvent, et cela ne laisse pas de nous occasionner du plaisir ou de la peine, ce gue les autres pensent de nous; nous nous inquiétons de leur approbation ou de leur blame; or ces sentiments procèdent de la sympathie, élément fondarmental des instincts sociaux. L'homme qui ne posséderait pas de semblables sentiments, serait un monstre. Au contraire, le désir de satisfaire la faim, ou une passion comme la vengeance, est un sentiment passager de sa nature, et peut étre rassasié pour un temps. Il n'est même pas facile, peut-etre est-il impossible, d'évoquer dant- toute sa plénitude la sensation de la faim, par exemple, et, comme on l'a souvent remarqué, celle d'une souffrance quelle qu'elle soit. Nous ne ressentons l'instinct de la conservation qu'en présence du danger,
et plus d'un poltron s'est cru brave jusqu'à ce qu'il se soit trouvé en face de son ennemi. L'envie de la propriété d'autrui est peutêtre un des désirs les plus persistants ; mais, même daǹ ce cas, la satisfaction de la possession réelle est généralement une sensation plus faible que ne l'est celle du désir. Bien des voleurs, à condition qu'ils ne le soient pas par profession, se sont, après le succès de leur vol, étonnés de l'avoir commis ${ }^{27}$.
L'homme, ne pouvant s'opposer à ee que ses anciennes impressions traversent sans cesse son esprit, est contraint de comparer ses impressions plus faibles, la faim passée, la vengeance satisfaite, ou le danger évité aux dépens d'autres hommes, par exemple, avec ses instincts de sympathie et de bienveillance pour ses semblables, instincts qui sont toujours présents et, dans une certaine mesure, toujours actifs dans son esprit. Il comprend alors qu'un instinct plus fort a cédé à un autre qui lui semble maintenant relativement faible, et il éprouve inévitablement ce sentiment de regret auquel l'homme est sujet, comme tout autre animal, dès qu'il refuse d'obéir à un instinct.

Le cas de l'hirondelle, que nous avons cité plus haut, fournit un exemple d'ordre inverse, celui d'un instinct temporaire, mais très énergique dans le moment, qui l'emporte sur un autre instinct qui est habituellement prépondérant sur tous les autres. Lorsque la saison est arrivée, ces oiseaux paraissent tout le jour préoccupés du désir d'émigrer; leurs habitudes changent: ils s'agitent, deviennent bruyants et se rassemblent en troupe. Tant que l'oiseau femelle nourrit ou couve ses petits, l'instinct maternel est proba-

[^50]
122

blement plus fort que celui de la migration ; mais c'est l'instinct le plus tenace qui l'emporte, et, enfin, dans un moment où ses petits - ne sont pas sous ses yeux, eile prend son vol et les abandonne. Arrivé à la fin de son long voyage, l'instinct migrateur cessant d'agir, quel remords ne ressentirait pas l'oiseau, si, doué d'une grande activité mentale, il ne pouvait s'empêcher de voir repasser" constamment dans son esprit l'image de ses petits, qu'il a laissés dans le Nord périr de faim et de froid?

Au moment de l'action, l'homme est sans doute capable de suivre l'impulsion la plus puissante; or, bien que cette impulsion puisse le pousser aux actes les plus nobles, elle le porte le plus ordinairement à satisfaire ses propres désirs aux dépens de ses semblables. Mais, après cette satisfaction donnée à ses désirs, Iorsqu'il compare ses impressions passées et affaiblies avec ses instincts sociaux plus durables, le chatiment vient inévitablement. L'homme est alors en proie au repentir, au regret, au remords ou à la honte; toutefois, cette dernière sensation se rapporte presque exclusivement au jugement de ses semblables. Il prend, en conséquence, la résolution, plus ou moins ferme, d'en agir autrement à l'avenir. C'est là la conscience, qui se reporte en arriére, et nous sert de guide pour l'avenir.

La nature et l'énergie des sensations que nous appelons regret, honte, repentir ou remords, dépendent évidemment non seulement de l'énergie de l'instinct que nous avons violé, mais aussi de la puissance de la tentation, et plus encore, bien souvent, du cas que nous faisons du jugement de nos semblables. L'homme fait plus ou moins de cas du jugement de ses semblables, selon que son instinct de sympathie, inné ou acquis est plus ou moins vigoureux, et selon qu'il est plus ou moíns susceptible de comprendre les conséquences futures de ses actes. Un autre sentiment très important, mais non pas indispensable, vient s'ajouter à ceux que nous avons indiqués: c'est le respect pour un ou plusieurs dieux ou pour les esprits, ou la crainte que l'homme éprouve pour ces dieux; ce sentiment entre surtout en jeu quand il s'agit du remords. Plusieurs eritiques m'ont objecté que si on peut expliquer, par l'hypothése exposée dans ce chapitre, une certaine dose de regret ou de repentir, il est impossible d'y trouver l'explication du sentiment si puissảnt du remords. J'avoue ne pas saisir complètement la force de lobjection. Mes critiques ne définissent pas ce qu'ils entendent par le remords; or je crois que le remords est tout simplement le repentir poussé à l'extrême; en un mot, le remords semble avoir

[^51]avec la souffrance. Est-il done si étrange que, si une femme viole l'instinet si énergique et si généralement admiré de l'amour maternel, elle éprouve le chagrin le plus profond, le plus cuisant, dès que s'affaiblit l'impression de la cause qui l'a portée a cette désobéissance? Alors mème qu'une de nos actions n'est contraire à aucın instinct spécial, nous n'en éprouvohs pas moins un vif chagrin si nous savons que nos amis et nos égaux nous méprisent parce que nous l'avons commise. Qui pourrait nier qu'un homme qui, poussé par la crainte, a refusé de se battre en duel, n'éprouve un vif sentiment de honte? On affirme que bien des Hindous ont été remués jusqu'au fond de l'àme parce qu'ils avaient absorbé des aliments impurs. Voici un autre exemple de ce que l'on doit, je pense, appeler un remords. Le docteur Landor ${ }^{28}$, qui faisait fonction de magistrat dans une des provinces de l'Australie occidentale, raconte qu'un indigène employé dans sa ferme vint à perdre une de ses femmes par suite de maladie; il vint trouver le docteur Landor et lui dit \& qu'il partait en voyage; il allait visiter une tribu éloignée dans le but de tuer une femme afin de remplir un devoir sacré envers la femme qu'il avait perdue. Je lui répondis que, s'il commettait cet acte, je le mettrais en prison et l'y laisserais toute sa vie. En conséquence, il resta dans la ferme pendant quelques mois, mais il dépérissait chaque jour ; il se plaignait de ne pouvoir ni dormir, ni manger; l'esprit de sa femme le hantait perpétuellement parce qu'il n'avait pas pris une vie en échange de la sienne. Je restai inexorable et tâchai de lui faire comprendre que rien ne pourrait le sauver s'il commettait un meurtre. > Néanmoins, l'homme disparut pendant plus d'une année et revint en parfaite santé; sa seconde femme raconta alors au docteur Landor quiil s'était rendu dans une autre tribu et qu'il avait assassiné une femme, mais il fut impossible de le punir, car on ne put établir légalement la preuve de cet assassinat. Ainsi donc, la violation d'une règle tenue pour sacrée par la tribu excite les regrets ou les remords les plus cuisants, et, il faut le remarquer, cette règle ne touche aux instincts sociaux qu'en ce qu'elle est basée sur le jugement de la communauté. Nous ne saurions dire comment de si étranges superstitions ont pu se produire; nous ne saurions dire non plus comment il se fait que quelques crimes abominables, tels que l'inceste, excitent I'horreur des sauvages les plus infimes, bien que ce sentiment soit loin d'être universel. Il est même douteux que, chez quelques tribus, l'inceste excite une plus grande horreur
28. Insanity in relation to law, Outario, Etats-Uuis, 1871, p. 14.
que le ferait le mariage d'un homme avec une femme portant le même nom que lui, bien que cette femme ne soit sa parente à aucun degré. \& Violer cette loi est un crime pour lequel les Australiens professent la plus grande horreur, et leurs idées concordent absolument sur ce point avec celles de certaines tribus de l'Amérique septentrionale. Si l'on demande à un indigène de l'un ou l'autre de ces deux pays lequel est le plus grand crime, de tuer une jeune fille appartenant à une autre tribu, ou d'épouser une jeune fille de la même tribu que le mari, il répondra sans hésiter un instant de façon toute contraire à ce que nous ferions nous-mêmes ${ }^{29}$. » Nous pouvons donc rejeter l'hypothèse, soutenue dernièrement avec beaucoup d'insistance par plusieurs écrivains, que l'horreur pour l'inceste provient de ce que Dieu nous a donné un instinct spécial à cet égard. En résumé, on comprend facilement qu'un homme poussé par un sentiment aussi énergique que le remords, bien que ce remords résulte de causes semblables à celles indiquées ci-dessus, en arrive à pratiquer ce qu'on lui a dit être une expiation pour son crime, en arrive, par exemple, à se livrer lui-mème à la justice.
L'homme guidé par la conscience parvient, grâce une longue habitude, à acquérir assez d'empire sur lui-méme pour que ses passions et ses désirs finissent par céder aussitot et sans qu'il y ait lutte à ses sympathies et à ses instincts sociaux, y compris le cas qu'il fait du jugement de ses semblables. L'homme encore affamé ne songe plus à voler des aliments, celui dont la vengeance n'est pas encore satisfaite ne songe plus à l'assouvir. Il est possible, il est même probable, comme nous le verrons plus loin, que l'habitude de commander à soi-même soit héréditaire comme les autres habitudes. L'homme en arrive ainsi à comprendre, par habitude acquise ou héréditaire, qu'il est préférable d'obéir à ses instincts les plus persistants. Le terme impérieux devoir ne semble donc impliquer que la conscience de l'existence d'une règle de conduite, quelle qu'en soit l'origine. On soutenait autrefois que l'homme insulté devait se battre en duel. Nous disons même que les chiens d'arrêt doivent arrêter, et que les chiens rapporteurs doivant rapporter le gibier. S'ils n'agissent pas ainsi, ils ont tort et manquent à leur devoir.

Un désir ou un instinct peut pousser un homme à accomplir un acte contraire au bien d'autrui; si ce désir lui paraît encore, lorsqu'il se le rappelle, aussi vif ou plus vif que son instinct social, il

[^52]n'éprouve aucun regret d'y avoir cédé; mais il a conscience que, si sa conduite était connue de ses semblables, elle serait désapprouvée par eux, et il est peu d'hommes qui soient assez dépourvus de sympathie pour n'etre pas désagréablement affectés par cette idée. S'il n'éprouve pas de pareils sentiments de sympathie, si les désirs qui le poussent à de mauvaises actions sont très énergiques à de certains moments, si, enfin, quand il les examine froidement, ses désirs ne sont pas maitrisés par les instincts sociaux persistants, c'est alors un homme essentiellement méchant ${ }^{30}$; il n'est plus retenu que par la crainte du châtiment et la conviction qu'à la longue il vaut mieux, même dans son propre intérét, respecter le bien des autres que consulter uniquement son égoisme.
Il est évident que, avec une conscience souple, un homme peut satisfaire ses propres désirs, s'ils ne heurtent pas ses instincts sociaux, c'est-à-dire le bien-être des autres; mais, pour qu'il soit à l'abri de ses propres reproches ou au moins de toute anxiété, il est indispensable cư'il évite le blàme, raisonnable ou non, de ses semblables. Il ne faut pas non plus qu'il rompe avec les habitudes établies de sa vie, surtout si elles sont basées sur la raison, car alors il éprouverait sûrement certains regrets. Il faut également qu'il évite la réprobation du dieu ou des dieux auxquels, suivant ses connaissances ou ses superstitions, il peut croire ; mais, dans ce cas, la crainte d'une punition divine intervient fréquemment.

Les vertus strictement sociales estimées seules dans le principe. Cet aperçu de l'origine et de la nature du sens moral qui nous avertit de ce que nous devons faire, et de la conscience qui nous blàmé si nous lui désobéissons, concorde avec l'état ancien et peu développé de cette faculté dans l'humanité. Les vertus, dont la pratique est au moins généralement indispensable pour que des hommes grossiers puissent s'associer en tribus, sont celles qu'on reconnait encore pour les plus importantes. Mais elles sont presque toujours pratiquées exclusivement entre hommes de la même tribu; leur infraction, vis-à-vis d'hommes appartenant à d'autres tribus, ne constitue en aucune façon un crime. Aucune tribu ne pourrait subsister si l'assassinat, la trahison, le vol, etc., y étaient habituels; par conséquent, ces crimes sont « flétris d'une infamie êternelle ${ }^{31}$

[^53]dans les limites de la tribu \geqslant; mais au delà de ces limites ils n'excitent plus ces mêmes sentiments. Un Indien de l'Amérique du Nord est content de lui-même et considéré par les autres lorsqu'il a scalpé un individu appartenant à une autre tribu; un Dyak coupe la tete d'une personne qui no lui a rien fait, et la fait sécher pour s'en faire un trophée. L'infanticide a été pratiqué dans le monde entier ${ }^{32}$ sur la plus vaste échelle, sans soulever de reproches; car le meurtre des enfants, et surtout des femelles, a été regardé comme avantageux, ou au moins comme non nuisible, pour la tribu. Autrefois, le suicide n'était pas ordinairement considéré comme un crime ${ }^{33}$, mais plutôt comme un acte honorable, en raison du courage dont il était la preuve ; il est encore largement pratiequé chez quelques nations à demi civilisées, sans qu'il s'y attache aucune idée de honte, car une nation ne ressent pas la perte d'un seul individu. On raconte qu'un Thug indien regrettait vivement de n'avoir pas pu voler et étrangler autant de voyageurs que son père l'avait fait avant lui. Dans un état grossier de civilisation, voler les étrangers est même ordinairement considéré comme un acte honorable.
Bien que l'esclavage, dans l'antiquité ${ }^{34}$, ait eu sa raison d'être et ait été utile à certains égards, il n'en constitue pas moins un grand crime. Toutefois les peuples les plus civilisés ne le considéraient pas comme tel jusque tout récemment, ce qui résultait évidemment de ce que les esclaves appartenaient d'ordinaire à une race autre que celle de leurs maitres. Les barbares ne tenant aucun compte de l'opinion de leurs femmes les traitent habituellement comme des esclaves. La plupart des sauvages se montrent totalement indifférents aux souffrances des étrangers, et même se plaisent à en être témoins. On sait que, chez les Indiens du nord de l'Amérique, les femmes et les enfants aident à torturer les ennemis. Quelques sauvages prennent plaisir à pratiquer d'atroces cruautés sur les animaux *\%, et l'humanité eot pour eux une vertu

[^54]inconnue. Néanmoins les sentiments de sympathie et de bienveillance sont communs, surtout pendant la maladie, entre membres d'une même tribu; ils peuvent même s'étendre au delà. On connait le touchant récit que fait Mungo Park de la bonté qu'eurent pour lui les femmes nègres de l'intérieur. On pourrait citer bien des exemples de la noble fidélité des sauvages les uns envers les autres, mais pas envers les étrangers, et l'expérience commune justifie la maxime espagnole : «II ne faut jamais se fier à un Indien. » Il n'y a pas de fidélité sans loyauté ; cette vertu fondamentale n'est pas rare parmi les membres d'une même tribu ; ainsi, Mungo Park a entendu les femmes nègres enseigner à leurs enfants l'amour de la vérité. C'est là encore une de ces vertus qui s'enracinent si profondément dans l'esprit qu'elle est quelquefois pratiquée par les sauvages à l'égard des étrangers, même au prix d'un sacrifice; mais on considère rarement comme un crime de mentir à son ennemi, ainsi que le prouve trop clairement l'histoire de la diplomatie moderne. Dès qu'une tribu a un chef reconnu, la désobéis sance devient un crime et la soumission aveugle est regardée comme une vertu sacrée.

Aux époques barbares, aucun homme ne pouvait être utile ou fidèle à sa tribu s'il n'avait pas de courage, aussi cette qualité a-t-eile été universellement placée au rang le plus élevé; et bien que, dans les pays civilisés, un homme bon, mais timide, puisse être beaucoup plus utile à la communauté qu'un homme brave, on ne peut s'empêcher d'honorer instinctivement l'homme brave plus que le poltron, si bienveillant que soit ce dernier. D'autre part, on n'a jamais beaucoup estimé la prudence, vertu fort utile cependant mais qui n'influe guère sur le bien-etre d'autrui. L'homme ne peut pratiquer les vertus nécessaires au bien-etre de sa tribn, s'il n'es! prêt à tous les sacrifices, s'il n'a aucun empire sur lui-même et s'il n'est doué de patience : ces qualités ont donc été de tout temps trés hautement et très justement appréciées. Le sauvage américain se soumet volontairement, sans pousser un cri, aux tortures les plus atroces, pour prouver et pour augmenter sa force d'âme et son courage; nous ne pouvons, d'ailleurs, nous empêcher de l'admirer, de mème que nous admirons le fakire indien, qui, dans un but religieux insensé, se balance suspendu à un crochet planté dans ses chairs.

Les autres vertus individuelles qui n'affectent pas d'une manière apparente, bien qu'elles affeetent très réellement peut-etre, le bien-être de la tribu, n'ont jamais été appréciées par les sauvages, quoiqu'elles le soient actuellement et à juste titre par sations
civilisées. Chez les sauvages, la plus grande intempérance n'est pas un sujet de honte. Leur licence extrême, pour ne pas parler des orimes contre nature, est quelque chose d'effrayant ${ }^{36}$. Aussitot, cependant, que le mariage, polygame ou monogame, vient à se répandre, la jalousie détermine le développement de certaines vertus chez la femme; la chasteté, passant dans les mœurs, tend à s'étendre aux femmes non mariées. Nous pouvons juger, par ce qui se passe maintenant encore, combien elle s'est peu étendue au sexe mâle. La chasteté exige beaucoup d'empire sur soi; aussi a-t-clle été honorée, dès une époque très reculée, dans l'histoire morale de l'homme civilisé. En conséquence de ce fait, on a considéré, dès une haute antiquité, la pratique absurde du célibat comme une vertu ${ }^{37}$. L'horreur de l'indécence, qui nous parait si naturelle que nous sommes disposés à la croire innée, et qui constitue un aide essentiel à la chasteté, est une vertu essentiellement moderne, qui appartient exclusivement, ainsi que le fait observer sir G. Staunton ${ }^{38}$, à la vie civilisée. C'est ce que prouvent les anciens rites religieux de diverses nations, les dessins qui couvrent les murs de Pompéi et les coutumes de beaucoup de sauvages.

Nous venons donc de voir que les sauvages, et il en a probablement été de même pour les hommes primitifs, ne regardent les actions comme bonnes ou mauvaises qu'autant qu'elles affectent d'une manière apparente le bien-être de la tribu, - non celui de l'espèce, ni celui de l'homme considéré comme membre individuel de la tribu. Cette conclusion concorde avec l'hypothèse que le sens, dit moral, dérive primitivement des instincts sociaux, car tous deux se rapportent d'abord exclusivement à la communauté. Les causes principales du peu de moralité des sauvages, considérée à notre point de vue, sont, premièrement, la restriction de la sympathie à la même tribu; secondement, I'insuffisance du raisonnement, ce qui ne leur permet pas de comprendre la portée que peuvent aroir beaucoup de vertus, surtout les vertus individuelles, sur le bienêtre général de la tribu. Les sauvages, par exemple, ne peuvent se rendre compte des maux multiples qu'engendre le défaut de tempérance, de chasteté, etc. Troisièmement, un faible empire sur soimême, cette aptitude n'ayant pas été fortifiée par l'action longtemps continuée, peut-etre héréditaire, de l'habitude, de l'instruction et de la religion.

[^55]Je suis entré dans les détails précédents sur l'immoralité des sauvages ${ }^{39}$, parce que quelques auteurs ont récemment fait un grand éloge de leur nature morale, et ont attribué la plupart de leurs crimes à une bienveillance exagérée ${ }^{40}$. Ces auteurs tirent leurs arguments de ce que les sauvages possèdent souvent à un haut degré, ce dont on ne peut douter, les vertus qui sont utiles et meme nécessaires à l'existence d'une famille et d'une tribu.

Conclasions. - Les philosophes de l'école de la morale e dérivée ${ }^{41} \geqslant$ ont admis d'abord que la morale repose sur une forme de l'égoïsme; mais, plus récemment, ils ont mis en avant le < principe du plus grand bonheur \geqslant. Il serait toutefois plus correct de considérer ce dernier principe comme la sanction plutot que comme le motif de la conduite. Néanmoins tous les écrivains dont j'ai consulté les ouvrages pensent, à très peu d'exceptions près ${ }^{62}$, que chaque action procède d'un motif distinct, lequel doit être toujours relié à quelque plaisir ou à quelque peine. Mais il me semble que l'homme agit souvent par impulsion, c'est-à-dire en vertu de l'instinct ou d'une longue habitude, sans avoir conscience d'un plaisir, probablement de la même façon qu'une abeille ou une fourmi quand elle obéit aveuglément à ses instincts. Dans un moment de grand péril, dans un incendie par exemple, il est bien difficile de soutenir que l'homme qui, sans un instinct d'hésitation, essaye de sauver un de ses semblables, ressent un plaisir quel-

[^56]conque; il n'a certes pas non plus le temps de réfléchir sur le chagrin qu'il pourrait ressentir plus tard s'il n'avait pas fait tous ses efforts pour sauver son semblable. S'il réfléchit plus tard à sa propre conduite, il reconnait certainement qu'il y a en lui une force impulsive absolument indépendante de la recherche du plaisir ou du bonheur; or cette force semble être l'instinct social dont il est si profondément imprégné.
Quand il s'agit des animaux inférieurs, il semble beaucoup plus correct de dire que leurs instincts sociaux se sont développés en vue du bien général plutôt que du bonheur général de l'espèce. Le terme «bien général» peut se définir ainsi : le moyen qui permet d'élever, dans les conditions existantes, le plus grand nombre possible d'individus en pleine santé, en pleine vigueur, doués de facultés aussi parfaites que possible. Les instincts sociaux de l'homme, aussi bien que ceux des animaux inférieurs, ont, sans doute, traversé à peu près les mêmes phases de développement; il serait done, autant que possible, préférable d'employer dans les deux cas la méme défimition et de prendre, comme critérium de la morale, le bien général ou la prospérité de la communauté, plutôt que le bonheur général; mais cette définition nécessiterait peutétre quelques réserves à cause de la morale politique.
Lorsqu'un homme risque sa vie pour sauver celle d'un de ses semblables, il semble plus juste de dire qu'il agit pour le bien général que pour le bonheur de l'es̆pèce humaine. Le bien et le bonheur de l'individu colncident sans doute habituellement; une tribu heureuse et contente prospère davantage qu'une autre qui ne l'est pas. Nous avons vu que, même dans les premières périodes de l'histoire de lhomme, les désirs exprimés par la communauté ont dû naturellement influencer à un haut degré la conduite de chacun de ses membres, et, tous recherchant le bonheur, le principe du eplus Grand Bonheur» a dû devenir un guide et un but secondaire fort important; mais les instincts sociaux, y compris la sympathie qui nous pousse à faire grand cas de l'approbation ou du blâme d'autrui, ont toujours dû servir d'impulsion première *et de guide. Ainsi se trouve écarté le reprache de placer dansle vil principe de l'ǵgoïsme les bases de ce que notre nature a de plus noble; à moins, cependant, qu'on n'appelle égoïsme la satisfaction que tout animal éprouve lorsqu'il obét à ses propres instincts, et le regret qu'il ressent lorsqu'il en est empêché.

Les désirs et les jugements des membres de la même communauté, exprimés d'abord par le langage et ensuite par l'écriture, constituent, comme nous venons de le faire remarquer, un guide
de conduite secondaire, mais très important, qui vient en aide aux instincts sociaux, bien que parfois il soit en opposition avec eux. La loi de l'honneur, c'est-à-dire la loi de l'opinion de nos égasx et non de tous nos compatriotes, en est un excellent exemple. Toute infraction à cetteloi, cette infraction fût-elle reconnue comme rigoureusement conforme à la vraie morale, a causé à bien des hommes plus d'angoisses qu'un crime réel. Nous reconnaissons la méme influence dans celte cuisante sensation de honte que la plupart d'entre nous ont ressentie, mème après un long intervalle d'années, en nous rappelant quelque infraction accidentelle faite à une règle insignifiante mais établie de I'étiquette. Le jugement de la communauté se laisse généralement guider par quelque grossière expérience de ee qui, à la longue, est le plus utile à l'intérôt de tous les membres; mais l'ignorance et la faiblesse du raisonnement contribuent souvent à fausser le jugement de la masse. Il en résulte que des coutumes et des superstitions étranges, en opposition complète avec la prospérité et le véritable bonheur de lhumanité, sont devenues toutes-puissantes dans le monde entier. Nous en voyons des exemples dans l'horreur que ressent l'Hindou qui perd sa caste, et dans une foule d'autres cas. Il serait difficile de distinguer entre le remords éprouvé par l'Hindou qui a mangé des aliments impurs, et le remords quil lui causerait un vol; mais il est probable que le premier serait le plus poignant.
Nous ne connaissons pas l'origine de tant d'absurdes règles de conduite, de tant de croyances religieuses ridicules; nous ne savons pas comment il se fait qu'elles aient pu, dans toutes les parties du globe, s'implanter si profondément dans l'esprit de l'homme-; mais il est à remarquer qu'une croyance constamment inculquée pendant les premières années de la vie, alors que le cerveau est susceptible de vives impressions, parait acquérir presque la nature d'un ins tinct. Or la véritable essence d'un instinct est d'être suivi indépendamment de la raison. Nous ne pouvons pas non plus dire pourquoi quelques tribus sauvages estiment plus que d'autres eertaines vertus admirables, telles que l'amour de la vérité ${ }^{\text {t3 }}$; nous ne pouvons pas plus expliquer, d'ailleurs, pourquoi on retrouve des différences semblables méme parmi les nations eivilisées. Ce qui est certain, c'est que ces coutumes, ces superstitions étranges se sont solidement implantées dans l'esprit humain ; y a-t-il donc alors lieu de s'étonner que les vertus personnelles, basées qu'elles

[^57]sont sur la raison, nous paraissent maintenant si naturelles, que nous les regardions comme innées, bien que l'homme à l'état primitif n'en fit aucun cas?
Malgré de nombreuses causes de doute, l'homme peut d'ordinaire distinguer facilement entre les règles morales supérieures et les règles morales inférieures. Les premières, basées sur les instincts sociaux, ont trait à la prospérité des autres; elles s'appuient sur l'approbation de nos semblables et sur la raison. Les règles morales inférieures, bien que cette qualification ne soit pas absolument correcte lorsqu'elles exigent un sacrifice personnel, se rapportent principalement à l'individu lui-même, et doivent leur origine à l'opinion publique mûrie par l'expérience et par la civilisation, car elles sont inconnues aux tribus grossières.

A mesure que l'homme avance en civilisation et que les petites tribus se réunissent en communautés plus nombreuses, la simple raison indique à chaque individu qu'il doit étendre ses instincts sociaux et sa sympathie à tous les membres de la même nation, bien qu'ils ne lui soient pas personnellement connus. Ce point atteint, une barrière artificielle seule peut empécher ses sympathies de s'étendre à tous les hommes de toutes les nations et de toutes les races. L'expérience nous prouve, malheureusement, combien il faut de temps avant que nous considérions comme nos semblables les hommes qui diffèrent considérablement de nous par leur aspect extérieur et par leurs coutumes. La sympathie étendue en dehors des bornes de l'humanité, c'est-à-dire la compassion envers les animaux, paraît être une des dernières acquisitions morales. Elle est inconnue chez les sauvages, sauf pour leurs animaux favoris. Les abominables combats de gladiateurs montrent combien peu les anciens Romains en avaient le sentiment. Autant que j'ai pu en juger, l'idée d'humanité est inconnue à la plupart des Gauchos des Pampas. Cette qualité, une des plus nobles dont l'homme soit doué, semble provenir incidemment de ce que nos sympathies, devenant plus délicates à mesure qu'elles s'étendent davantage, finissent par s'appliquer à tous les êtres vivants. Cette vertu, une fois honorée et cultivée par quelques hommes, se répand chez les jeunes gens par l'instruction et par l'exemple, et finit par faire partie de l'opinion publique.

Nous atteignons le plus haut degré de culture morale auquel il soit possible d'arriver, quand nous reconnaissons que nous devons contrôler toutes nos pensées et « que nous ne regrettons plus, mème dans notre for intérieur, les errements qui nous ont rendu
le passé si agréable ${ }^{44}$. » Tout ce qui familiarise l'esprit avec une mauvaise action en rend l'accomplissement plus facile. Ainsi que l'a dit il y a fort longtemps Marc-Aurèle: «Telles sont tes pensées habituelles, tel sera aussi le caractère de ton esprit; car les pensées déteignent sur l'ame ${ }^{45}$. 》

Notre grand philosophe, Herbert Spencer, a récemment émis son opinion sur le sens moral. Il s'exprime en ces termes ${ }^{46}$: «Je crois que les expériences d'utilité organisées et consolidées à travers toutes les générations passées de la race humaine ont produit des modifications correspondantes qu'une transmission et une accumulation continuelles ont transformées chez nous en certaines facultés d'intuition morale, - en certaines émotions répondant à une conduite juste ou fausse et qui n'ont aucune base apparente dans les expériences d'utilité individuelle. » Il n'y a pas, ce me semble, la moindre improbabilité inhérente à ce que les tendances vertueuses soient plus ou moins complètement héréditaires; car, sans mentionner les habitudes et les caractères variés que se transmettent un grand nombre de nos animaux domestiques, je pourrais citer nombre de cas prouvant que le goût du vol et la tendance au mensonge paraissent exister dans des familles occupant une position très élevée; or, comme le vol est un crime fort rare chez les classes riches, il est difficile d'expliquer par coincidence accidentelle la manifestation de la même tendance chez deux ou trois membres d'une même famille. Si les mauvaises tendances sont transmissibles, il est probable qu'il en est de même des bonnes. Tous ceux qui ont souffert de maladies chroniques de l'estomac ou du foie savent que l'état du corps en affectant le cerveau exerce la plus grande influence sur les tendances morales. On sait aussi que l'un des premiers symptomes d'un dérangement des facultés mentales est la perversion ou la destruction du sens moral ${ }^{47}$; or, on sait que la folie est certainement souvent héréditaire. Le principe de la transmission des tendances morales peut seul nous permettre d'expliquer les différences qu'on croit exister, sous ce rapport, entre les diverses races de l'humanité.

Notre impulsion primordiale vers la vertu, impulsion provenant directement des instincts sociaux, recevrait un concours puissant de la transmission héréditaire, mème partielle, des tendances ver-

[^58]tueuses. Si nous admettons un instant que les tendances vertueuses sont héréditaires, il semble probable que, au moins dans les cas de chasteté, de tempérance, de compassion pour les animaux, etc., elles s'impriment d'abord dans l'organisation mentase par I'habitude, par l'instruction et par l'exemple soutenus pendant plusieurs générations dans une même famille; puis, d'une manière accessoire, par le fait que les individus doués de ces vertus ont le mieux réussi dans la lutte pour l'existence. Si j'éprouve quelque doute relativement à ce genre d'hérédité, c'est parce qu'il me faut admettre que des coutumes, des superstitions et des goûts insensés, lhorreur, par exemple, que professe l'Hindou pour des aliments impurs, doivent aussi se transmettre héréditairement en vertu du mème principe. Bien que ceci soit peut-etre tout aussi probable que l'acquisition héréditaire par les animaux du goat pour certains aliments, ou de la crainte pour certains ennemis, je ne possède aucune preuve tendant à démontrer la transmission des coutumes superstitieuses ou des habitudes ridicules.

En résumé, les instincts sociaux qui ont été sans doute acquis par l'homme, comme par les animaux, pour le bien de la communauté, ont đú, dès l'abord, le porter à aider ses semblables, développer en lui quelques sentiments de sympathie et l'obliger de compter avec l'approbation ou le blâme deses semblables. Des impulsions de cé genre ont dû de très bonne heure lui servir de règle grossière pour distinguer le bien et le mal. Puis, à mesure que les facultés intellectuelles de l'homme se sont développées; à mesure qu'il est devenu capable de comprendre toutes les conséquences de ses actions; qu'il a acquis assez de connaissances pour repousser des coutumes et des superstitions funestes; à mesure qu'il a songé davantage, non senlement au bien, mais aussi au bonheur de ses *semblables; à mesure que l'habitude résultant de l'instruction, de l'exemple et d'une expérience salutaire a développé ses sympathies au point qu'il les a étendues aux hommes de toutes les races, aux infirmes, aux idiots et aux autres membres inutiles de la société, et enfin aux animaux eux-mêmes, - le niveau de sa moralité s'est élevé de plus en plus. Les moralistes de l'école dérivative et quelques intuitionnistes admettent que le niveau de la moralité a commencé à s'élever dès une période fort ancienne de l'histoire de l'humanité ${ }^{48}$.
48. Un auteur, très capable de juger sainement cette question, s'exprime energiquement dans ce sens dans un article de la North British Review

De même qu'il y a quelquefois lutte entre les divers instincts des animaux inférieurs, il n'y a rien d'étonnant à ce qu'il puisse y avoir, chez l'homme, une lutte entre ses instincts sociaux et les vertus qui en dérivent, et ses impulsions ou ses désirs d'ordre inférieur; car, par moments, ceux-ci peuvent être les pius énergiques. Cela est d'autant moins étonnant, c•mme le fait remarquer M. Galton ${ }^{49}$, que l'homme est sorti depuis un temps relativement récent de la période de la barbarie. Après avoir cédé à certaines tentations, nous éprouvons un sentiment de mécontentement, de honte, de repentir ou de remords, sentiment analogue à celui que nous ressentons quand un instinct n'est pas satisfait; nous ne pouvons pas, en effet, empécher les impressions et les images du passé de se représenter continuellement à notre esprit; nous ne pouvons nous empécher de les comparer, dans cet état affaibli, avec les instincts sociaux toujours présents, ou avec des habitudes contractées dès la première jeunesse, héréditaires peut-être, fortifiées pendant toute la vie, et rendues ainsi presque aussi énergiques que des instincts. Si nous ne cédons pas à la tentation, c'est que l'instinct social ou quelque habitude l'emporte en ce moment en nous, ou parce que nous avons appris à comprendre que cet instinct nous paraîtra le plus fort quand nous le comparerons à l'impression affaiblie de la tentation et que nous savons que nous éprouverons un chagrin si nous avons violé cet instinct. Il n'y a pas lieu de craindre que les instincts sociaux s'affaiblissent chez les générations futures, et nous pouvons même admettre que les habitudes vertueuses croitront et se fixeront peut-être par i'hérédité. Dans ce cas, la lutte entre nos impulsions élevées et nos impulsions inférieures deviendra moins violente et la vertu triomphera.

Résumé des deux derniers chapitres: - On ne peut douter qu'il existe une immense différence entre l'intelligence de l'homme le plus sauvage et celle de l'animal le plus élevé. Si un singe anthropomorphe pouvait se juger d'une manière impartiale, il admettrait que, bien que capable de combiner un plan ingénieux pour piller un jardin, de se servir de pierres pour combattre ou pour casser des noix, l'idée de façonner une pierre pour en faire un outil serait

[^59]tout à fait en dehors de sa portée. Encore moins pourrait-il suivre un raisonnement métaphysique, résoudre un problème de mathématiques, réfléchir sur Dieu, ou admirer une scène imposante de la nature. Caelques singes, toutefois, déclareraient probablement qu'ils sont aptes à admirer, et qu'ils admirent la beauté de oscouleurs de la peau et de la fourrure de leurs compagnes. Ils admettraient que, bien quils soient à même de faire comprendre par des cris a d'autres singes quelques-unes de leurs perceptions ou quelquesuns de leurs besoins les plus simples, jamais la pensée d'exprimer des idées définies par des sons déterminés n'a traversé leur esprit. Ils pourraient affirmer qu'ils sont prêts à aider de bien des manières leurs camarades de la même troupe, à risquer leur vie pour eux, et à se charger des orphelins; mais ils seraient forcés de reconnaitre qu'ils ne comprennent même pas cet amour désintéressé pour toutes les créatures vivantes qui constitue le plus noble attribut de l'homme.

Néanmoins, si considérable qu'clle soit, la différence entre l'esprit de l'homme et celui des animaux les plus élevés n'est certainement qu'une différence de degré, et non d'espèce. Nous avons vu que des sentiments, des intuitions, des émotions et des facultés diverses, telles que l'amitié, la mémoire, l'attention, la curiosité, l'imitation, la raison, etc., dont l'homme s'enorgueillit, peuvent s'observer à un état naissant, ou même parfois à un état assez développé, chez les animaux inférieurs. Ils sont, en outre, susceptibles de quelques améliorations héréditaires, ainsi que nous le prouve la comparaison du chien domestique avec le loup et le chacal. Si l'on veut soutenir que certaines facultés, telles que la conscience, l'abstraction, etc., sont spéciales à l'homme, il se peut fort bien qu'elles soient les résultats accessoires d'autres facultés intellectuelles très développées, qui elles-mémes dérivent principalement de l'usage continu d'un langage arrivé à la perfection. A quel âge l'enfant nouveau-né acquiert-il la faculté de l'abstraction? A quel âge commence-t-il à avoir conscience de lui-même, et à réfléchir sur sa propre existence? Nous ne pouvons pas plus répondre à cette question que nous ne pouvons expliquer l'échelle organique ascendante. Le langage, ce produit moitié de l'art, moitié de l'instinct, porte encore l'empreinte de son évolution graduelle. La sublime croyance à un Dieu n'est pas universelle chez l'homme ; celle à des agents spirituels actifs résulte nat,arellement de ses autres facultés mentales. C'est le sens moral qui constitue peut-être la ligne de démarcation la plus nette entre l'homme et les autres animaux, mais je n'ai rien à ajouter sur ce
point, puisque j'ai essayé de prouver que les instincts sociaux, base fondamentale de la morale humaine ${ }^{50}$, - auxquels viennent s'adjoindre les facultés intellectuelles actives et les effets de l'habitude, conduisent naturellement à la règle : © Fais aux hommes ce que tu voudrgis qu'ils te fissent à toi-même ; principe sur lequel repose toute la morale.

Je ferai, dans le chapitre suivant, quelques remarques sur les causes probables qui ont amené le développement graduel des diverses facultés morales et mentales de l'homme et sur les différentes phases qu'elles ont traversées. On ne peut du moins contester que cette évolution soit possible, puisque, tous les jours, nous contemplons le développement de ces facultés chez l'enfant; puisqu'enfin nous pouvons établir une gradation parfaite entre l'état mental du plus complet idiot, qui est bien inférieur ả l'animal, et les facultés intellectuelles d'un Newton.

CHAPITRE V

GUR LE DÉVELOPPEMENT DES FACULTÉS INTELLEGTUELLES ET MORALES PENDANT LES TEMPS PRIMITIFS ET LES TEMPS CIVILISÉS

Développement des facultés intellectuelles par la sélection naturelle. Importance de limitation. - Facultés sociales et morales.- Leur développementdans les limites d'une même tribu. - Action de la sélection naturelle sur les nations civilisées. - Preuves de l'etat antérieur barbare des nations civilisées.

Les questions qui font l'objet de ce chapitre, questions que je ne pourrai traiter que d'une manière très incomplète et par fragments, offrent le plus haut intérêt. M. Wallace, dans un admirable mémoire déjà cité ${ }^{1}$, soutient que la sélection naturelle et les autres causes analogues n'ont dû exercer qu'une influence bien secondaire sur les modifications corporelles de l'homme, dès qu'il eut partiellement acquis les qualités intellectuelles et morales qui le distinguent des animaux inférieurs; ces facultés mentales, en effet, le mettent à même < d'adapter son corps, qui ne change pas, à l'univers, qui se modifie constamment *. L'homme sait admirablement conformer ses habitudesà de nouvelles conditions d'existence. Il invente des armes, des outils et divers engins, à l'aide desquels il
se défend et se procure ses aliments. Lorsqu'il va habiter un chimat plus froid, il se sert de vettements, se construit des abris, et fait du feu, qui, outre qu'il le réchauffe, lai sert aussi à faire cuire des aliments qu'il lui serait autrement impossible de digérer. Il rend de nombreux services à ses semblables et prévoit les évé. nements futurs. Il pratiquait déjà une certaine division du travail à une période très reculée.
La conformation corporelle des animaux doit, au contraire, se modifier profondément pour qu'ils puissent subsister dans des conditions très nouvelles. Il faut qu'ils deviennent plus forts, qu'ils s'arment de dents et de griffes plus efficaces pour se défendre contre de nouveaux ennemis, ou bien que leur taille diminue afin de pouvoir échapper plus facilement au danger d'être découverts. Lorsqu'ils vont habiter un climat plus froid, il faut, ou qu'ils revêtent une fourrure plus épaisse, ou que leur constitution se modifie, à défaut de quoi ils cessent d'exister.
Le cas est tout différent, ainsi que le constate avec raison M. Wallace, quand il s'agit des facultés intellectuelles et morales de I'homme. Ces facultés sont variables; en outre, nous avons toute raison de croire que les variations sont héréditaires. En conséquence, si ces facultés ont eu, autrefois, une grande importance pour l'homme primitif et ses ancêtres simio-humains, la sélection naturelle a da les développer et les perfectionner. On ne peut mettre en doute la haute importance des facultés intellectuelles, puisque c'est à elles que l'homme doit principalement sa position prééminente dans le monde. Il est facile de comprendre que, dans l'état primitif de la société, les individus les plus sagaces, ceux qui employaient les meilleures armes ou inventaient les meilleurs pièges, ceux qui, en un mot, savaient le mieux se dêfendre, devaient laisser la plus nombreuse descendance. Les tribus renfermant la plus grande quantité d'hommes ainsi doués devaient augmenter rapidement en nombre et supplanter d'autres tribus. Le nombre des habitants dépend d'abord des moyens de subsistance ; ceux-ci, à leur tour, dépendent en partie de la nature physique du pays, mais, à un bien plus haut degré, des arts qu'on y cultive. Lorsqu'une tribu augmente en nombre et devient conquérante, elle s'accroit souvent encore davantage par l'absorption d'autres tribus ${ }^{2}$. La taille et la force des membres d'une tribu exercent certainement une grande influence sur la réussite; or ces conditions dépendent beau-

[^60]coup de la navure et de l'abondance des aliments dont ils peuvent disposer. Les hommes de la période du bronze, en Europe, firent place à une race plus puissante, et, à en juger d'après les poignées des sabres, à main plus grande ${ }^{3}$; mais le succès de cette race résulte probablement beaucoup plus de sa supériorité dans les arts.

Tout ce que nous savons des sauvages, tout ce que nous enseigne l'étude de leurs traditions ou de leurs anciens monuments, car les habitants actuels ont complètement perdu le souvenir des faits qui se rattachent à ces traditions et à ces monuments, nous prouve que, dès les époques reculées, certaines tribus ont réussi à en supplanter d'autres. Oń a découvert dans toutes les régions civilisées du globe, sur les plaines inhabitées de l'Amérique et dans les iles isolées de l'océan Pacifique, des ruines de monuments élevés par des tribus éteintes ou oubliées. Aujourd'hui les nations civilisées remplacent partout les peuples barbares, sauf là oú le climat leur oppose une barrière infranchissable; elles réussissent surtout, quoique pas exclusivement, grâce à leurs arts, produits de leur intelligence. Il est donc très probable que la sélection naturelle a graduellement perfectionné les facultés intellectuelles de l'homme; conclusion qui suffit au but que nous nous proposons. Il serait, sans doute, très intéressant de retracer le développement de toutes les facultés, de les prendre l'une après l'autre à l'état où elles existent chez les animaux inférieurs et d'étudier les transformations successives par lesquelles elles ont passé pour en arriver à ce qu'elles sont chez l'homme civilisé; mais c'est là une tentative que ne me permettent ni mes connaissances ni le temps dont je puis disposer.

Dès que les ancêtres de l'homme sont devenus sociables, progrès qưi a dû probablement s'accomplir à une époque extrêmement reculée, des causes importantes, dont nous ne trouvons que des traces chez les animaux inférieurs, c'est-à-dire l'imitation, la raison et l'expérience, ont dû faciliter et modifier le développement des facultés intellectuelles de l'homme. Les singes, tout comme les sauvages les plus grossiers, sont très portés à l'imitation; en outre, nous avons déjà constaté que, au bout de quielque temps, on ne peut plus prendre un animal à la même place avec le même genre de piège, ce qui prouve que les animaux s'instruisent par l'expérience et savent imiter la prudence des autres. Or si, dans une tribu quelconque, un homme plus sagace que les autres vient

[^61]à inventer un piège ou une arme nouvelle, ou tout autre moyen d'attaque ou de défense, le plus simple intérêt. sans qu'il soit besoin d'un raisonnement bien développé, doit pousser les autres membres de la tribu à l'imiter, et tous profitent ainsi de la découverte. La pratique habituelle de chaque art nouveau doit aussi, dans une, certaine mesure, fortifier l'intelligence. Si la nouvelle invention est importante, la tribu augmente en nombre, se répand et supplante d'autres tribus. Une tribu, devenue ainsi plus nombreuse, peut toujours espérer voir nattre dans son sein d'autres membres supérieurs en sagacité et à l'esprit inventif. Ceux-ci transmettent à leurs enfants leur supériorité mentale; chaque jour donc, on peut compter qu'il naîtra un nombre plus considérable d'individus encore plus ingénieux ; en tout cas, les chances sont très certainement plus grandes dans une tribu nombreuse que dans une petite tribu. Dans le cas même où ces individus supérieurs ne laisseraient pas d'enfants, leurs parents restent dans la tribu. Or les éleveurs ${ }^{4}$ ont constaté qu'en se servant, comme reproducteurs, des membres de la famille d'un animal qui, abattu, était supérieur comme bête de boucherie, les produits obtenus présentent les caractères désirés.

Étudions maintenant les facultés sociales et morales. Les hommes primitifs, ou nos ancêtres simio-humains, n'ont pu devenir sociables qu'après avoir acquis les sentiments instinctifs qui poussent certains autres animaux à vivre en société; ils possédaient, sans aucun doute, ces mêmes dispositions générales. Ils devaient ressentir quelque chagrin lorsqu'ils étaient séparés de leurs camarades pour lesquels ils avaient de l'affection; ils devaient s'avertir mutuellement du danger et s'entr'aider en cas d'attaque ou de défense. Ces sentiments impliquent un certain degré de sympathie, de fidélité et de courage. Personne ne peut contester l'importance qu'ont, pour les animaux inférieurs, ces diverses qualités sociales; or il est probable que, de même que les animaux, les ancêtres de l'homme en sont redevables à la sélection naturelle jointe à l'habitude héréditaire. Lorsque deux tribus d'hommes primitifs, habitant un même pays, entraient en rivalité, il n'est pas douteux que, toutes autres circonstances étant égales, celle qui renfermait un plus grand nombre de membres courageux, sympathiques et fidèles, toujours prêts à s'avertir du danger, à s'entr'aider et à se défendre mutuellement, ait dû réussir plus complètement et l'emporter sur l'autre. La fidélité et le courage jouent, sans contredit,

[^62]un role important dans les guerres que se font continuellement les sauvages. La supériorité qu'ont les soldats disciplinés sur les hordes qui ne le sont pas résulte surtout de la confiance que chaque homme repose dans ses camarades. L'obéissance, comme l'a démontré M. Bagehot ${ }^{5}$, est une qualité importante entre toutes, car une forme de gouvernement, quelle qu'elle soit, vaut mieux que l'anarchie. La cohésion, sans laquelle rien n'est possible, fait défaut aux peuples égoistes et querelleurs. Une tribu possédant, à un haut degré, les qualités dont nous venons de parler doit s'étendre et l'emporter sur les autres ; mais, à en juger par l'histoire du passé, elle doit, dans la suite des temps, succomber à son tour devant quelque autre tribu encore mieux douée qu'elle. Les qualités sociales et morales tendent ainsi à progresser lentement et à se propager dans le monde.
Mais, on peut se demander comment un grand nombre d'individus, dans le sein d'une mème tribu, ont d'abord acquis ces qualités sociales et morales, et comment le niveau de la perfeotion s'est graduellement élevé? Il est fort douteux que les descendants des parents les plus sympathiques, les plus bienveillants et les plus fidèles à leurs compagnons, aient surpassé en nombre ceux des membres égoistes et perfides de la même tribu. L'individu prêt à sacrifier sa vie plutòt que de trahir les siens, comme maint sauvage en a donné l'exemple, ne laisse souvent pas d'enfants pour hériter de sa noble nature. Les hommes les plus braves, les plus ardents à s'exposer aux premiers rangs de la melée, et qui risquent volont_{1} ers leur vie pour leurs semblables, doivent même, en moyenne, succomber en plus grande quantité que les autres. Il semble donc presque impossible (il faut se rappeler que nous ne parlons pas ici d'une tribu victorieuse sur une autre tribu) que la sélection naturelle, c'est-à-dire la persistance du plu's apte, puisse augmenter le nombre des hommes doués de ces vertus, ou le degré de leur perfection.
Bien que les circonstances qui tendent à amener une augmentation constante des hommes éminemment doués dans une même tribu soient trop complexes pour que nous songions à les étudier ici, nous pouvons cependant indiquer quelques-unes des phases probablement parcourues. Et d'abord, à mesure qu'augmentent la raison et la próvoyance des membres de la tribu, chacun apprerd bientôt par expérience que, s'il aide ses semblables, ceux-ci l'aideront à leur tour. Ce mobile peu élevé pourrait déjà faire prendre
5. Voir une remarquable sésie d’articles sur la Physique et la Politique dans Fortnightly Review, nov. 1867, avril 1868, juillet 1869.
a l'individu l'habitude d'aider ses semblables. Or la pratique habituelle des actes bienveillants fortifie certainement le sentiment de la sympathie, laquelle imprime la première impulsion à la boune action. Eq atre, les habitudes observées pendant beaucoup de générations lendent probablement à devenir héréditaires.
Il est, d'ailleurs, une autre cause bien plus puissante encore pour stimuler le développement des vertus sociales, c'est l'approbation et le blâme de nos semblables. L'instinet de la sympathie, comme nous avons eu déjà l'occasion de le dire, nous pousse \&̀ approuver ou à blàmer les actions de nos semblables; il nous fait désirer les éloges et redouter le blâme; or la sélection naturelle a sans doute développé primitivement cet instinct, comme elle a développé tous les autres instincts sociaux. Il est, bien entendu, impossible de dire à quelle antique période du développement de l'espèce humaine la louange ou le blâme exprimé par leurs semblables a pu affecter ou entrainer les ancêtres de l'homme. Mais il parait que les chiens eux-mêmes sont sensibles à l'encouragement, à l'éloge ou au blâme. Les sauvages les plus grossiers comprennent le sentiment de la gloire, ce que, démontrent clairement l'importance qu'ils attachent à la conservation des trophées qui sont le fruit de leurs prouesses, leur extrême jactance et lẹs soins excessifs qu'ils prennent pour embellir et pour décorer leur personne; en effet, de pareilles habitudes seraient absurdes s'ils ne se souciaient pas de l'opinion de leurs semblables.

Les sauvages éprouvent certainement do la honte lorsqu'ils enfreignent quelques-unes de leurs coatumes, si ridicules qu'elles nous paraissent; ils éprouvent aussi des remords, comme le prouve l'exemple de cet Australien qui maigrissait à vue d'œil et qui ne pouvait plus prendre aucun repos, parce qu'il avait négllgé d'assassiner une autre femme pour apaiser l'esprit de la femme qu'il venait de perdre. Il serait, d'ailleurs, incroyable qu'un sauvage, capable de sacrifier sa vie plutôt que de trahir sa tribu, ou de venir se constituer prisonnier plutot que de manquer à sa parole ${ }^{6}$, n'éprouvât pas du remords au fond de l'âme, s'il a failli à un devoir qu'il considère comme sacré.

Nous pouvons donc conclure que lhomme primitif, dès une période très reculée, devait se laisser influencer par l'éloge ou par le blâme de ses semblables, Il est évident que les membres d'une même tribu devaient approuver la conduite qui leur paraissait favo-

[^63]rable au bien général et réprouver celle qui leur semblait contraire à la prospérité de tous. Faire du bien aux autres, - faire aux autres ce qu'on voudrait qu'ils vous fissent, - telle est la base fondamentale de la morale. 11 est donc difficile d'exagérer l'importance qroont dù avoir, méme à des époques très reculées, Pamour de la louange et la crainte du blâme. L'amour de la louange, le désir de la gloire, suffisent souvent à déterminer l'homme qu'un sentiment profond et instinctif n'entraîne pas à sacrifier sa vie pour le bien d'autrui ; or son exemple suffit pour exciter chez ses semblables le même désir de la gloire, et fortifient, par la pratique, le noble sentiment de l'admiration. L'individu peut ainsi rendre plus de services à sa tribu que s'il engendrait des enfants, quelques tendances qu'aient ces derniers à hériter de son noble caractère.
A mesure que se développent l'expérience et la raison, l'homme comprend mieux les conséquences les plus éloignées de ses actes. Il apprécie alors à leur juste valeur et il considère même comme sacrées les vertus personnelles, telles que la tempérance, la chasteté, etc., qui sont, comme nons l'avons vu, entièrement méconnues pendant les premières périodes. Il serait, d'ailleurs, inutile de répéter ce que j'ai dit à ce sujet dans le quatrième chapitre, En un mot, notre sens moral, ou notre conscience, se compose d'un sentiment essentiellement complexe, basé sur les instincts sociaux, encouragé et dirigé par l'approbation de nos semblables, réglé par la raison, par l'intérêt et dans des temps plus récents, par de profonds sentiments religieux, renforcés par l'instruction et par l'habitude.

Sans doute, un degré très élevé de moralité ne procure à chaque individu et à ses descendants que peu cu point d'avantages sur les autres membres de la même tribu, mais il n'en est pas moins vrail que le progrès du niveau moyen de la moralité et l'augmentation du nombre des individus bien doués sous ce rapport procuront cortainement à une tribu un avantage immense sur une autre tribu. Si une tribu renferme beaucoup de membres qui possèdent à un haut degré l'esprit de patriotisme, de fidélité, d'obéissance, de courage et de sympathie, qui sout toujours prets, par conséquent, à s'entraider et à se sacrifier au bien commun, elle doit évidemment l'emporter sur la plupart des autres tribus; or c'est là ce qui constitue lassélection naturelle. De tout temps et dans le monde entier, des tribus en ont supplanté d'autres; or, comme la morale est un des éléments de leur succès le nombre des hommes chez lesquels son niveau s'élève tend partout à augménter.
Il est toutefois très difficile dindiquer pourquoi une tribu quel-
conque plutót qu'une autre réussit à s'élever sur l'échelle de la civilisation. Beaucoup de sauvages sont restés ce qu'ils étaient au moment de leur découverte, il y a quelques siècles. Nous sommes disposés, ainsi que l'a fait remarquer M. Bagehot, à considérer le progrès comme la règle normale de la société humaine; mais l'histoire contredit cette hypothèse. Les anciens n'avaient pas plus l'idée du progrès que ne l'ont, de nos jours, les nations orientales. D'après une autre autorité, sir Henry Maine 7, « la plus grande partie de l'humanité n'a jamais manifesté le moindre désir de voir améliorer ses institutions civiles \%. Le progrès semble dépendre du concours d'un grand nombre de conditions favorables, beaucoup trop compliquées pour qu'on puisse les indiquer toutes. Toutefois on a souvent remarqué qu'un climat tempéré, qui favorise le développement de l'industrie et des arts divers, est une condition très favorable, indispensable même au progrès. Les Esquimaux, sous la pression de la dure nécessité, ont réussi à faire plusieurs inventions ingénieuses, mnis la rigueur excessive de lour climat a empêché tout progrès continu. Les habitudes nomades de l'homme, tant sur les vastes plaines que dans les forêts épaisses des régions tropicales ou le long des côtes maritimes, lui ont été, dans tous les cas, hautement préjudiciables. Ce fut en observant les barbares habitants de la Terre de feu que je compris combien la possession de quelques biens, une demeure fixe et l'union de plusieurs familles sous un même chef, sont les éléments nécessaires et indispensables à toute civilisation. Ces habitudes impliauent la culture du sol, et les premiers pas faits dans cette vose doivent probablement, comme je l'ai indiqué ailleurs ${ }^{8}$, résulter d'un accident: les graines d'un arbre fruitier, par exemple, tombant sur un tas de fumier et produisant une variété plus belle. Quoi qu'il en soit, il est encore impossible d'indiquer quels ont été les premiers pas des sauvages dans la voie de la civilisation.

La sélection naturelle considérée au point de vue de son action sur les nations civilisées. - Je ne me suis occupé jusqu'à présent que des progrès qu'a dû réaliser l'homme pour passer de sa condition primitive semi-humaine à un état analogue à celui des sauvages actuels. Je crois devoir ajouter ici quelques remarques relatives à l'action de la sélection naturelle sur les nations eivilisées.

[^64]M. W. R. Greg ${ }^{9}$, et artérieurement MM. Wallace et Galton ${ }^{10}$, ont admirablement discuté ce sujet; j'emprunterai donc la plupart de mes remarques à ces trois auteurs. Chez les sauvages, les individus faibles de corps ou d'esprit sont promptement éliminés, et les sur. vivants se font ordinairement remarquer par leur vigoureux état de santé. Quant à nous, hommes civilisés, nous faisons, au contraire, tous nos efforts pour arrêter la marche de l'élimination; nous construisons des hôpitaux pour les idiots, les infirmes et les malades; nous faisons des lois pour venir en aide aux indigents; nos médecins déploient toute leur science pour prolonger autant que possible la vie de chacun. On a raison de croire que la vaccine a préservé des milliers d'individus qui, faibles de constitution, auraient autrefois succombé à la variole. Les membres débiles des sociétés civilisées peuvent donc se reproduire indéfiniment. Or, quiconque s'est occupé de la reproduction des animaux domestiques sait, à n'en pas douter, combien cette perpétuation des êtres débiles doit être nuisible à la race humaine. On est tout surpris de voir combien le manque de soins, ou même des soins mal dirigés, amènent rapidement la dégénérescence d'une race domestique; en conséquence, à l'exception de l'homme lui-même, personne n'est assez ignorant ni assez maladroit pour permettre aux animaux débiles de reproduire.

Notre instinct de sympathie nous pousse à secourir les malheureux ; la compassion est un des produits accidentels de cet instinct que nous avons acquis dans le principe, au même titre que les autres instincts sociables dont il fait partie. La sympathie, d'ailleurs, pour les causes que nous avons déjà indiquées, tend toujours à devenir plus large et plus universelle. Nous ne saurions restreindre notre sympathie, en admettant même que l'inflexible raison nous en fit une loi, sans porter préjudice à la plus noble partie de notre nature. Le chirurgien doit se rendre inaccessible à tout sentiment de pitié au moment où il pratique une opération, parce qu'il sait qu'il agit pour le bien de son malade ; mais si, de

[^65]propos aélibére, il .avsigeait les faibles et les infirmes, il ne pourrait avoir en vue quun avantage éventuel, au prix d'un mal préjent :onsidérable et certain. Nous devons done subir, sans nous plaindre, les effets incontestablememt mauvais qui résultent de la persistance et de la propagation des êtres débiles, Il semble, toutefois, qu'il existe un frein à cette propagation, en ce sens que les membres malsains de la société se marient moins facilement que les membres sains. Ce frein pourrait avoir une efficacité réelle si les faibles de corps et d'esprit s'abstenaient du mariage; mais c'est là un état de choses qu'il est plus facile de désirer que de réaliser.
Dans tous les pays où existent des armées permanentes, la conseription enlève les plus beaux jeunes gens, qui sont exposés à mourir prématurément en cas de guerre, qui se laissent souvent entrainer au vice, et qui, en tout cas, ne peuvent se marier de bonne heure. Les hommes petits, faibles, à la constitution débile, restent, au contraire, chez eux, et ont, par conséquent, beaucoup plus de chances de se marier et de laìsser des enfants ${ }^{\text {t1 }}$,
Dans tous les pays civilisés, l'hòmme accumule des richesses et les transmet à ses enfants. Il en résulte que les riches, indépendamment de toute supériorité corporelle ou mentale, possèdent de grands avantages sur les enfants pauvres quand ils commencent la lutte pour l'existence. D'autre part, les enfants de parents qui meurent jeunes, et qui, par conséquent, ont, en règle générale, une mauvaise santé et peu de vigueur, héritent plus tot que les autres enfants; il est probable aussi qu'ils se marient plus tot et qu'ils laissent un plus grand nombre d'enfants qui héritent de leur faible constitution. Toutefois la transmission de la propriété est loin de constituer un mal absolu, car, sans l'accumulation des capitaux, les arts ne pourraient progresser; or c'est principalement par l'action des arts que les races civilisées ont étendu et étendent aujourd'hui partout leur domaine, et arrivent ainsi à supplanter les races inférieures. L'accumulation modérée de la fortune ne porte, en outre, aucune atteinte à la marehe de la sélection naturelle. Lorsqu'un homme pauvre devient modérément riche, ses enfants s'adonnent à des métiers et à des professions où la lutte est encore assez vive pour que les mieux doués au point de vue du corps et de l'esprit aient plus de chances de réussite. L'existence d'un groupe d'hommes instruits, qui ne sont pas obligés de gagner par le travail matériel leur pain quotidien, a une importance

[^66]qu'on ne saurait exagérer; car c'est à eux qu'incombe toute l'œuvre intcllectuelle supérieure, origine immédiate des progrès matériels de toute nature, sans parler d'autres avantages d'un ordre plus élevé. La fortune, lorsqu'elle est considérable, tend sans doute à transformer l'homme en un fainéant inutile, mais le nombre de ces fainéants n'est jamais bien grand; car, là aussi, l'élimination joue un certain rôle. Ne voyons-nous pas chaque jour, en effet, des riches insensés et prodigues dissiper tous leurs biens?
Le droit de primogéniture avec majorats est un mal plus immédiat, bien qu'il ait pu autrefois être très avantageux, en ce sens qu'il a eu pour résultat la création d'une classe dominante, et qué tout gouvernement vaut mieux que l'anarchie. Les fils aînés, qu'ils soient faibles de corps ou d'esprit, se marient ordinairement; tandis que les cadets, quelque supérieurs qu'ils soient à tous les points de vue, ne se marient pas aussi facilement. Les fils aînés, quel que soit leur peu de valeur, béritant d'un majorat, ne peuvent pas gaspiller leur fortune. Mais, ici encore, comme ailleurs, les relations de la vie civilisée sont si complexes qu'il existe quelques freins compensateurs. Les hommes riches par droit d'ainesse peuvent choisir, de génération en génération, les femmes les plus belles et les plus charmantes, et, ordinairement, ces femmes sont douées d'une bonne constitution physique et d'un esprit supérieur. Les conséquences fâcheuses, quelles qu'elles puissent être, de la conservation continue de la même ligne de descendance, sans aucune sélection, sont atténuées, en ce sens que les hommes de rang élevé cherchent toujours à accroitre leur fortune et leur pouvoir, et pour y parvenir, épousent des héritières. Mais les filles de parents n'ayant eu qu'un enfant sont elles-mêmes, ainsi que l'a prouvé M. Galton ${ }^{12}$, sujettes à la stérilité, ce qui, ayant pour effet d'interrompre continuellement la ligne directe des familles nobles, dirige la fortune dans quelques branches latérales. Cette nouvelle branche n'a malheureusement pas à faire preuve d'une supériorité quelconque avant de pouvoir hériter.
Bien que la civilisation s'oppose ainsi, de plusieurs façons, à la libre action de la sélection naturelle, elle favorise évidemment, par l'amélioration de l'alimentation et l'exemption de pénibles fatigues, un meilleur développement du corps. C'est ce qu'on peut conclure du fait que, partout où J'on a comparé les hommes civilisés aux sauvages, on a trouvé les premiers physiquement plus
forts ${ }^{\text {* }}$. L'homme civilisé parait supporter également bien la fatigue; beaucoup d'expéditions aventureuses en ont fourni la preuve. Le grand luxe même du riche ne peut lui être que peu préjudiciable, car la longévité, chez les deux sexes de notre aristocratie, est très peu inférieure à celle des vigoureuses classes de travailleurs ${ }^{14}$ de l'Angleterre.

Examinons maintenant les facultés intellectuelles. Si l'on divisait les membres de chaque classe sociale en deux groupes égaux, l'un comprenant ceux qui sont très intelligents, l'autre ceux qui le sont moins, li est très probable qu'on s'apercevrait bientot que les premiers réussissent mieux dans toutes leurs occupations, et élèvent un plus grand nombre d'enfants. Même dans les situations inférieures, l'adresse et le talent doivent procurer un avantage bien que, dans beaucoup de professions, cet avantage soit très minime par suite de la grande division du travail. Il existe donc, chez les nations civilisées, une certaine tendance à l'accroissement numérique et à l'élévation du niveau de ceux qui sont intellectuellement les plus capables. Je n'entends pas affirmer par là que d'autres circonstances, telles que la multiplication des insouciants et des imprévoyants ne puissent contre-balancer cette tendance; mais le talent doit aussi procurer quelques avantages à ces derniers.

On a soulevé de graves objections contre ces hypothèses; on a soutenu, en effet, que les hommes les plus éminents qui aient jamais vécu n'ont pas laissé de descendants. M. Galton ${ }^{15}$ dit à ce sujet: © Je regrette de ne pouvoir résoudre une question bien simple : les hommes et les femmes de génie sont-ils stériles, et jusqu'à quel point le sont-ils ? J'ai toutefois démontré que tel n'est point le cas pour les hommes éminents. 》Les grands lógislateurs, les fondateurs de religions bienfaisantes, les grands philosophes et les grands savants contribuent bien davantage par leurs œuvres aux progrès de l'humanité, qu'ils ne le feraiont en laissant après eux une nombreuse progéniture. Quant à la conformation physique, c'est la sélection des individus un peu mieux doués et l'élimination de ceux qui le sont un peu moins, et non la conservation d'anomalies rares et prononcées, qui détermine l'amélioration d'une espèce ${ }^{16}$. Il en est de même pour les facultés intellectuelles; les

[^67]hommes les plus capables, dans chaque rang de la société, réussissent mieux que ceux qui le sont moins, et, s'il n'y a pas d'autres obstacles, ils tendent, par conséquent, à augmenter en nombre. Lorsque, chez un peuple, le niveau intellectuel s'est élevé et que le nombre des hommes instruits a augmenté, on peut s'attendre, en vertu du principe de la déviation de la moyenne, ainsi que l'a démontré M. Galton, à voir apparaître, plus souvent qu'auparavant, des hommes au génie transcendant.

Quant aux qualités morales, il importe de constater qu'il se produit toujours, même chez les nations les plus civilisées, une certaine élimination des individus moins bien doués. On exécute les malfaiteurs ou on les emprisonne pendant de longues périodes, de façon qu'ils ne puissent transmettre facilement leurs vices. Les hypocondriaques et les aliénés sont enfermés ou se suicident. Les hommes querelleurs et emportés meurent fréquemment de mort violente; ceux qui sont trop remuants pour s'adonner à des occupations suivies, - et ce reste de barbarie est un grand obstacle à la civilisation ${ }^{17}$, - émigrent dans de nouveaux pays, où ils se transforment en utiles pionniers. L'intempérance entraîne des conséquences si désastreuses que, à l'âge de trente ans, par exemple, la probabilité de vie des intempérants n'est que de 13,8 années; tandis que pour le paysan anglais, au même àge, elle s'élève à 40,59 ans ${ }^{18}$. Les femmes ayant des mœurs dissolues ont peu d'enfants, les hommes dans le même cas se marient rarement; les uns et les autres sont épuisés par les maladies. Quand il s'agit des animaux domestiques, l'élimination des individus, d'ailleurs peu nombreux, qui sont évidemment inférieurs, n'en constitue pas moins un élément de succès fort important. Ceci est surtout vrai pour les caractères nuisibles qui tendent à réapparaitre par retour, tels que la couleur noire chez le mouton; dans l'humanité, il se peut que les mauvaises dispositions qui, à l'occasion et sans cause explicable, reparaissent dans les familles, soient peut-etre des cas de retour vers un état sauvage, dont nous ne sommes pas séparés par un nombre bien grand de générations. L'expression populaire qui nomme ces mauvais sujets les < moutons noirs ? de la famille semble basée sur cette hypothèse.

La sélection naturelle semble n'exercer qu'une influence bien se-
17. Hereditary, etc., p. 347.
18. E. Ray Lankester, Comparative Longevity, 1870, p. 115. Le tableau des intempérants est dressé d'après les Vital Statistics, de Neison. En ce qui concerne la débauche, voir docteur Farr, Influence of Marriage on mortality, Nat. Assoc. for the Promotion of Social Science, 1858.
condaire sur les nations civilisées, on tant qu'il ne s'agit que de la production d'un niveau de moralité plus élevé et d'un nombre plus considérable d'hommes bien doués; nous lui devons, toutefois, l'acquisition originelle des instincts sociaux. Je me suis, d'ailleurs, assez longuement étendu, en traitant des races inférieures, sur les causes qui déterminent les progrès de la morale, e'est-à-dire : l'approbation de nos semblables, - l'augmentation de nos sympathies par l'habitude, - l'exemple et l'imitation, - la raison, - l'expérience et même l'intérêt individuel, - l'instruction pendant la jeunesse, êt lés sentiments religieux, pour n'avoir pas à y revenir ici.
M. Greg et M. Galton ${ }^{19}$ ont vivement insisté sur un important obstacle qui s'oppose à l'augmentation du nombre des hommes supérieurs dans les sociêtés civilisées, à savoir que les pauvres et les insouciants, souvent dégradés par le vice, se marient invariablement de bonne heure, tandis que les gens prudents et économes se marient tard, afin de pouvoir convenablement s'entretenir eux et leurs enfants. Ceux qui se marient jeunes produisent, dans une période donnée, non seulement un plus grand nombre de générations, mais encore, ainsi que l'a établi le docteur Duncan ${ }^{20}$, beaucoup plus d'enfants. En outre, les enfants, nés de mères dans la fleur de l'age, sont plus gros et plus pesants, et, en conséquence, probablement plus vigoureux que ceux nés à d'autres périodes. Il en résulte que les membres insouciants, dégradés et souvent vicieux de la société, tendent à s'accroittre dans une proportion plus, rapide que ceux qui sont plus prudents et ordinairement plus sages Voici ce que dit à ce sujet M. Greg : «L'Irlandais, malpropre, sans ambition, insouciant, multiplie comme le lapin; l'Écossais, frugal, prévoyant, plein de respect pour lui-méme, ambitieux, moraliste, rigide, spiritualiste, sagace et très intelligent, passe ses plus belles années dans la lutte et dans le célibat, se marie tard et ne laisse que peu de descendants. Étant donné un pays primitivement peuplé de mille Saxons et de mille Celtes, - au bout d'une douzaine de générations, les cinq sixièmes de la population seront Celtes, mais le dernier sixième, composé de Saxons, possédera les cinq sixièmes des biens, du pouvoir et de l'intelligence. Dans l'éternelle lutte
19. Fraser's Magazine, sept. 1868, p. 353. Macmillan's Magazine, aout 1865, p. 318. - Le Rév. F. W. Farrar (Fraser's Mag., aoùt 1870, p. 26t), soutient
une opinion differente. une opinion différente.
Edinburg, vol. XXIV, p. éceondité dés femmes, dans Transactions Royal Soc - Edinburg, vol. Xxıv, p. 287, publié séparement dans Transactions sous le titre, Fecundity
Fertility and Sterility, 1871. Voir aussl it. Galtoh, 357, pour des observations sur le merme sujet.
pour l'existence, c'est la race inférieure et la moins favorisée qu ${ }^{i}$ aura prévalu, - et cela, non en vertu de ses bonnes qualités, mais en vertu de ses défauts.»

Cette tendance vers une marche rétrograde rencontre cependant quelques obstacles. Nous avons vu que l'intempérance entraine un chiffre élevé de mortalité, et que le dérèglement des mœurs nuit à la propagation. Les classes les plus pauvres s'entassent dans les villes, et le docteur Stark, se basant sur les statistiques de dix années en Écosse ${ }^{21}$, a pu démontrer qu'à tous les âges la mortalité est plus considérable dans les villes que dans les districts ruraux, \& et que, pendant les cinq premières années de la vie, le chiffre de la mortalité urbaine est presque exactement le double de celui des campagnes. ©es relevés comprenant le riche comme le pauvre, il n'est pas douteux qu'il faille un nombre double de haissances pour maintenir le chiffre des habitants pauvres des villes à la hauteur de celui des campagnes. Le mariage à un âge trop précoce est très nuisible aux femmes, car on a prouvé qu'en France, «il meurt dans l'année deux fois plus de femmes mariées au-dessous de vingt ans que des femmes célibataires. La mortalité des maris au-dessous de vingt ans est aussi considérable ${ }^{22}$, mais la cause de ce fait paraît douteuse. Enfin, si les hommes qui retardent prudemment le mariage jusqu'à ce qu'ils puissent élever convenablement leur famille, choisissaient, comme ils le font souvent, des emmes dans la fleur de l'agge, la proportion d'accroissement dans la classe élevée ne serait que légèrement diminuée.

Un ensemble énorme de documents statistiques, relevés en France en 1853 , ont permis de démontrer que, dans ce pays, les célibataires, compris entre vingt et quatre-vingts ans, sont sujets à une mortalité beaucoup plus considérable que les hommes mariés; par exemple, la proportion des célibataires mourant entre vingt et trente ans était annuellement de 11,3 sur 1.000 ; la mortalité n'étant chez les hommes mariés que de 6,5 sur 1.000^{23}. Lá même loi s'est appliquée en Écosse pendant les années 4863 et 4864 pour toute la population au-dessus de vingt ans. Ainsi, la mortalité des célibataires entre vingt et trente ans a été annuellement de 14,97 sur 1.000 , tandis qu'elle ne s'est trouvée chez les hommes mariés que de 7,24

[^68]sur 1.000 , soit moins de la moitié ${ }^{\mu}$. Le docteur Stark remarque à ce sujet : \& Le célibat est plus préjudiciable à la vie que les métiers les plus malsains, ou qu'une résidence dans une maison cu dans un district insalubre où on n'aurait jamais fait la moindre tentative d'assainissement., Il considère que la diminution de la mortalité est le résultat direct du «mariage et des habitudes domestiques plus régulières qui accompagnent cet état ». Il admet, toutefois, que les hommes 'intempérants, dissolus et criminels, qui vivent peu longtemps, ne se marient ordinairement pas; il faut également admettre que les hommes à constitution faible, à mauvaise santé, ou ayant une infirmité grave de corps ou d'esprit, ne cherchent guère à se marier ou n'y réussissent pas. Le docteur Stark parait conclure que le mariage est, en lui-même, une cause de longévité; cette conclusion résulte de ce que les hommes mariés àgés ont un avantage marqué sur les célibataires aussi agés; mais chacun a connu des jeunes gens à la constitution faible qui ne se sont pas maries, et qui ont pourtant atteint un âge avancé, quoiqu'ils soient toujours restés farbles et qu'ils aient eu, par conséquent, une moindre chance de vie. Une autre circonstance remarquable, qui parait venir à l'appui de la conclusion du docteur Stark, est que, en France, les veufs et les veuves, comparés aux gens mariés, subissent une mortalité considérable ; maisle docteur Farr attribue cette mortalité à la pauvreté, aux habitudes fâcheuses qui peuvent résulter de la rupture de la famille et au chagrin. En résumé, nous pouvons conclure, avec le docteur Farr, que la mortalité moindre des gens mariés, comparée à celle des célibataires, ce qui parait être une loi générale, «est principalement due à l'elimination constante des types imparfaits, à la sélection habile des plus beaux individus dans chaque génération successive ; > la sélection ne se rattachant qu'à l'état de mariage, et agissant sur toutes les qualités corporelles, intellectuelles et morales ${ }^{25}$. Nous pouvons donc en conclure que les hommes sains et valides, qui, par prudence, restent pour un temps célibataires, ne sont pas exposés à un taux de mortalité plus élevé.
Si les divers obstacles que nous venons de signaler dans les deux derniers paragraphes, et d'autres encore peut-etre inconnus,

[^69]n'empéchent pas les membres insouciants, vicieux et autrement inférieurs de la société d'augmenter dans une proportion plus rapide que les hommes supérieurs, la nâtion doit rétrograder, comme il y en a, d'ailleurs, tant d'exemples dans l'histoire du monde. Nous devons nous souvenir que le progrès n'est pas une règle invariable. Il est très difficile d'indiquer pourquoi une nation civilisée s'élève, devient plus puissante et s'étend davantage qu'une autre; ou pourquoi une même nation progresse davantage à une époque qu'à une autre. Nous devons nous borner à dire que le fait dépend d'un accroissement du chiffre de la population, du nombre des hommes doués de hautes facultés intellectuelles ou morales, aussi bien que de leur êtat de perfection. La conformation corporelle, en dehors du rapport inévitable entre la vigueur du corps et celle de l'esprit, parait n'avoir qu'une influence secondaire.
Chacun admet que les hautes aptitudes intellectuelles sont avantageuses à une nation; certains écrivains en ont conclu que les anciens Grecs, qui se sont, à quelques égards, élevés intellectuellement plus haut qu'aucune autre race ${ }^{26}$, auraient dû, si la puissance de la sélection naturelle est réelle, s'élever encore plus haut sur I'échelle, augmenter en nombre et peupler toute l'Europe. Cette assertion découle de la supposition tacite si souvent faite à propos des conformations corporelles, c'est-à-dire de la prétendue tendance innée au développement continu de l'esprit et du corps. Mais toute espéce d'évolution progressive dépend du concours d'un grand nombre de circonstances favorables. La sélection naturelle n'agit jamais que d'une façon expérimentale. Certains $i_{\text {individus, certaines races ont pu acquérir des avantages incontes- }}$ tables, et, cependant, périr faute de posséder certains autres caractères. Le manque de cohésion entre leurs nombreux petits Etats, le peu d'étevdue de leur pays entier, la pratique de l'esclavage ou leur excessive sensualité, ont pu faire rétrograder les Grecs, qui n'ont succombé qu'après * s'etre énervés et s'etre corrompus jusqu'à la moelle ${ }^{27}$). Les nations de l'Europe occidentale, qui actuellement dépassent si considérablement leurs ancêtres sauvages et se trouvent à la tête de la civilisation, ne doivent point leur supériorité à l'héritage direct des anciens Grecs, bien quils doivent beaucoup aux œuures écrites de ce peuple remarquable.

[^70]Qui peut dire positivement pourquoi la nation espagnole, si prépondérante autrefois, a été diştancée dans la course? Le réveil des nations européennes au sortir du moyen âge, constitue un problème encore plus embarrassant à résoudre. Pendant le moyen âge, ainsi que le fait remarquer M. Galton ${ }^{28}$, presque tous les hommes distingués, tous ceux qui se livraient à la culture de l'esprit, n'avaient d'autre refuge que l'Église, laquelle, exigeant le célibat, exerçait ainsi une influence funeste sur chaque génération successive. Pendant cette mème période, l'Inquisition recherchait, avec un soin extrême, pour les enfermer ou pour les brûler, les hommes les plus indépendants et les plus hardis. En Espagne, par exemple, les hommes constituant l'élite de la nation, - ceux qui doutaient et interrogeaient, car sans le doute il n'y a pas de progrès - furent éliminés pendant trois siècles à raison d'un millier par an. L'Église catholique a ainsi causé un mal incalculable, bien que ce mal ait été, sans doute, contre-balancé, jusqu'à un certain point, peut-être même dans une grande mesure, par certans autres avantages. L'Europe n'en a pas moins progressé avec une rapıdité incroyable.

La supériorité remarquable qu'ont eue, sur d'autres nations européennes, les Anglais comme colonisateurs, supériorité attestée par la comparaison des progrès réalisés par les Canadiens d'origine anglaise et ceux d'origine française, a été attribuée à leur «énergie persistante et à leur audace » ; mais qui peut dire comment les Anglais ont acquis cette énergie? Il y a certainement beaucoup de vrai dans l'hypothèse qui attribue à la sélection naturelle les merveilleux progrès des États-Unis, ainsi que le caractère de son peuple; les hommes les plus courageux, les plus énergiques et les plus entreprenants de toutes les parties de l'Europe ont, en effet, émigré pendant les dix ou douze dernières générations pour aller peupler ce grand pays et y ont prospéré ${ }^{29}$. Si on jette les yeux sur l'avenir, je ne crois pas que le Rév. M. Zincke émette une opinion exagérée lorsqu'il dit ${ }^{30}$: «Toutes les autres séries d'événements, - comme celles qui ont produit la culture intellectuelle en Grèce, et celles qui ont eu pour résultat la fondation de l'empire romain, - ne
28. Hereditary Gerius, pp. 357-359. Le Rev. F.-H. Farrar (Fraser's Mag., aoot 1870, p. 257) soutient une these contraire. Sir C. Lyell avait déjà (Prin ciples of Geology, vol. II, 1868, p. 489), dans un passage frappant, appelé l'attention sur l'influence fàcheuse qu'a exercée la Sainte lnquisition en abaissant, par sélection, le niveau général de l'intelligence en Europe.
29. M. Gallon, Macmillan's Magazine, aont 1865, p. 325. Voir aussi, On Darwinism and national Life; Nature, déc., 1869, p. 184.
30. Last Winter in the United States, 1868, p. 29.
paraissent avoir de but et de valeur que lorsqu'on les rattache, "ou plutot qu'on les regarde comme subsidiaires au... grand courant d'émigration anglo-saxon dirigé vers l'Ouest. » Quelque obscur que soit le problème du progrès de la civilisation, nous pourons au moins comprendre qu'une nâtion qui, pendant une longue période, produit le plus grand nombre d'hommes intelligents, énergiques, braves, patriotes et bienveillants, doit, en règle générale, l'emporter sur les nations moins bien favorisées.
La sélection naturelle résulte de la lutte pour l'existence, et celle-ci de la rapidité de la multiplication. Il est impossible de ne pas déplorer amèrement, - à part la question de savoir si c'est avee raison, - la rapidité avec laquelle l'homme tend à s'accroitre; cette augmentation rapide entraine, en effet, chez les tribus barbares la pratique de l'infanticide et beaucoup d'eutres maux, et, chez les nations civilisées, occasionne la pauvreté, le célibat, et le mariage tardif des gens prévoyants. L'homme subit les mêmes maux physiques que les autres animaux, il n'a donc aucun droit à l'immunité contre ceux qui résultent de la lutte pour l'existence. S'il n'avait pas été soumis à la sélection naturelle pendant les temps primitifs, l'homme n'aurait certainement jamais atteint le rang qu'il occupe atjourd'hui. Lorsque nous voyons, dans bien des parties du monde, des régions entières extremement fertiles, peuplées de quelques sauvages errants, alors qu'elles pourraient nourrir de nombreux ménages prọspères, nous sommes disposés à penser que la lutte pour l'existence n'a pas eté suffisamment rude pour forcer l'homme à atteindre son etat le plus ellevé. A en juger d'après tout ce que hous savons de l'homme et des animaux inférieurs, les facultés intellectuelles et morales ont toujours présenté une variabilité assez grandé pour qué la sélection naturelle put déterminer leur perfectionnement continu. Ce développement réclame sans doute le concours simultané de nombreuses circonstances favorables; mais on peut douter que les circonstances suffisent, si elles ne sont pas accompagnées d'une très rapide multiptication et de l'excessive rigueur de la lutte pour l'existence qui en est la conséquence. L'état de la population dans certàns pays, dans l'Amérique méridionale par exemple, semble méme prouver qu'un peuple qui a atteint à la civilisation, tel qué les Espagnols, est susceptible de se livrer à lindolence el de rétrograder, quand les conditions d'existence deviennent très faciles. Chez les nations très civilisées, la continuation du progrès dépend, dans une certaine mesure, de la sélection naturelle, car ces nations ne cherchent pas à se supplanter et à s'exterminer les unes les
autres, comme le font les tribus sauvages. Toutefois les membres les plus intelligents finissent par l'emporter dans le cours des temps sur les membres inférieurs de la même communauté, et laissent des descendants plus nombreux ; or c'est lá úne forme de la sélection naturelle. Une bonne éducation pendant la jeunesse, alors que l'esprit est très impressionnable, et un haut degré d'excellence, pratiqué par les hommes les plus distingués, incorporé dans les lois, les coutumes et les traditions de la nation et exigé par l'opinion publique, semblent constituer les causes les plus efficaces du progrès. Mais il faut toujours se rappeler que la puissance de l'opinion publique dépend du cas que nous faisons de l'approbation ou du blâme exprimé par nos semblables, ce qui dépend de notre sympathie que, l'on n'en peut guère douter, la sélection naturelle a primitivement développée, car elle constitue un des éléments les plus importants des instincts sociaux ${ }^{32}$.

Toutes les nations civilisées ont été autrefois barbares. - Sir J. Lubbock ${ }^{32}$, M. Tylor, M'Lennan et autres, ont traité cette question d'une façon si complète et si remarquable que je puis me borner ici à résumer leurs conclusions. Le duc d'Argyll ${ }^{33}$, et avant lùi l'archevêque Whately, ont cherché à démontrer que l'homme a paru sur la terre à l'état d'être civilisé, et que tous les sauvages ont depuis éprouvé une dégradation, mais leurs arguments me paraissent bien faibles comparativement à ceux que leur oppose la partie adverse. Bien des nations ont sans doute rétrogradé au point de vue de la civilisation; il se peut même que quelques-unes soient retombées dans une barbarie complète; cependant je n'en ai nulle part trouvé la preuve. Les Fuégiens, forcés probablement par d'autres hordes conquérantes à s'établir dans leur pays inhospitalier, peuvent, comme conséquence, s'y être un peu plus dégradés; mais il serait difficile de prouver qu'ils sont tombés beaucoup plus bas que les Botocudos, qui habitent les plus belles parties du Brésil.

Toutes les nations civilisées descendent de peuples barbares; c'est ce que prouvent, d'une part, les traces évidentes de leur ancienne condition inférieure qui existent encore dans leurs coutumes, leurs croyances, leur langage, etc.; et, d'autre part, le fait que les sauvages peuvent s'élever par eux-mêmes de quéques degrés sur l'échelle de la civilisation. Les preuves à l'appui de la première

[^71]
[Chap. V].

hypolhèse sont très curieuses, mais je ne puis les indiquer ici : je veux parler, par ixemple, de la numération, qui, ainsi que le prouve clairement M. Tylor, par les mots encore usités dans quelques pays, a pris son origine en comptant les doigts d'une main d'abord, puis de la seconde, et enfin ceux des pieds. Nous en trouvon's des traces dans notre propre système décimal, et dans les chiffres romains, qui, arrivés à V , signe que l'on est disposé à considérer comme l'image abrégée de la main humaine, passent à VI, ce qui indique sans doute l'emploi de l'autre main. De même lorsque nous employons les locutions dont la vingtaine est l'unité (score en anglais), « nous comptons d'après le système vigésimal, chaque vingtaine ainsi idéalement représentée, comptant pour $20,-$ e'est-a-dire un homme, comme dirait un Mexicain ou un Caraïbe ${ }^{34}$ *. D'après une grande école de philologues, école dont le nombre va croissant, chaque langage porte les marques de son évolution lente et graduelle. Il en est de même de l'écriture, car les lettres ne sont que des rudiments d'hiéroglyphes. On ne peut lire l'ouvrage de M. M'Lennan ${ }^{35}$ sans admettre que presque toutes les nations civilisées ont conservé quelques traces de certaines habitudes barbares, telles que le rapt des femmes par exemple. Peut-on citer une seule nation ancienne, se demande le même auteur, qui, dans le principe, ait pratiqué la monogamie? L'idée primitive de la justice, c'est-à-dire la loi du combat et les autres coutumes dont il subsiste encore des traces, était également très grossière. Un grand nombre de nos superstitions représentent les restes d'anciennes croyances religieuses erronées. La forme religieuse la plus élevée, - l'idée d'un Dieu abhorrant le péché et aimant la justice, était inconnue dans les temps primitifs.

Passons à un autre genre de preuves : sir J. Lubbock a démontré que quelques sauvages ont récemment réalisé certains progrès dans quelques-uns de leurs simples arts. L'exposé très curieux qu'il fait des armes, des outils employés et des arts pratiqués par les sauvages dans les diverses parties du monde, tend à prouver que presque toutes les découvertes ont été indépendantes, sauf peut-
34. Royal Institution of Great Britain, 15 mars 1867. Aussi, Researches into the Early History of Mankind, 1865.
35. Primitive Marriage, 1865. Voir aussi un article éridemment du même auteur, dans North British Review, juillet 1869. M.-L.-H. Morgan, A Conjectural solution of the origin class. system of Relationship; Proceed. American Acad. of Sciences, vol. VII, fér. 1868. Le professeur Schaaffhausen (Anthropological Review, oct. 1869, p. 373), fait des remarques sur les a traces de sacrifices humains qu'on trouve tant dans Homère que dans l'Aacien Testament. *
etre l'art de faire le feu ${ }^{36}$. Le boomerang australien est un exeellent exemple d'une découverte indépendante. Les Tahitiens, lors. qu'on les visita pour la première fois, étaient déjà, sous plusieurs rapports, plus avancés que les habitants de la plupart des autres iles Polynésiennes. Il n'y a pas de raisons pour croire 'que la haute culture des Péruviens et des Mexicains indigènes dût provenir d'une source étrangère ${ }^{37}$; ces peuples cultivaient, en effet, plusieurs plantes indigènes et avaient réduit en domesticité quelques animaux du pays. Un équipage venant d'un pays à demi civilisé, naufragé, sur les côtes de l'Amérique, n'aurait pas, si on en juge d'après le peu d'influence qu'exercent la plupart des missionnaires, produit d'effet marqué sur les indigènes, à moins que ceux-ci ne fussent déjà quelque peu civilisés. Si nous remontons à une période très reculée de l'histoire du monde, nous trouvons, pour nous servir des expressions si bien connues de sir J. Lubbock, une période paléolithique et une période néolithique; or personne nesaurait prétendre que l'art de polir les outıls grossiers en silex taillé ne soit une découverte indépendante. Dans toutes les parties de l'Europe jusqu'en Grèce, en Palestine, dans l'Inde, au Japon, dans la Nou-velle-Zélande et en Afrique, l'Égypte comprise, on a découvert de nombreux instruments en silex et les habitants actuels n'ont conservé aucune tradition à cet égard. Les Chinois et les anciens Juifs ont aussi employé autrefois ces instruments en silex. On peut donc en conclure que les habitants de ces nombreux pays qui comprennent presque tout le monde civilisé, ont été autrefois dans un état de barbarie. Croire que l'homme, primitivement civilisé, a ensuite éprouvé, dans tant de régions différentes, une dégradation complète, c'est se faire une pauvre opinion de la nature humaine. Combien n'est-elle pas plus vraie et plus consolante, cette opinion quiveut que le progrès ait été plus général que la rétrogradation; et qui enseigne que l'homme, parti d'un état inférieur, s'est avancé, à pas lents et interrompus, il est vrai, jusqu'au degré le plus élevé qu'il ait encore atteint en science, en morale et en religion!
36. Sir J. Lubbock, Prehistoric Times, 20 édit. 1869, chap. xł et xVI et passim. Voir aussi Tylor, Early Hislory of Mankind, chap. Ix.
37. Le docteur F. Müller a fait quelques excellentes remarques à ce sujet dans le Voyage de la Novara, partie Anthropologique, partie III, 1868, p. 127.

CHAPITRE VI

affinités et généalogie de l'homme

La position de l'homme dans la série animale. - Le système naturel est généalogique. - Les caractères d'adaptation ont peu de valeur. Divers points de ressemblance entre l'homme et les quadrumanes. Rang de l'homme dans le système naturel. - Patrie primitive et antiquité de l'homme. - Absence de chaînons fossiles. - États inférieurs de la généalogie de l'homme, déduits de ses affinités et de sa conformation. - État primitif androgyne des Vertébrés. - Conclusion.

Admettons que la différence entre l'homme et les animaux qui sont le plus voisins de lui, soit sous le rapport de la conformation corporelle, aussi grande que quelques naturalistes le soutiennent; admettons aussi, ce qui, d'ailleurs, est évident, que la différence qui sépare t'homme des animaux, sous le rapport des aptitudes mentales, soit immense ; il me semble, cependant, que les faits cités dans les chapitres précédents prouvent de la manière la plus évidente que thomme descend d'une forme inférieure, bien qu'on n'ait pas encore, jusqu'à présent, découvert les chainons intermédiaires.
L'homme est sujet à des variations nombreuses, légères et diverses, déterminées par les mêmes causes, réglées et transmises selon les mêmes lois générales que chez les animaux inférieurs. Il s'est multiplié si rapidement qu'il a été nécessairement soumis á la lutte pour l'existence, et, par conséquent, à l'action de la sélection naturelle. Il a engendré des races nombreuses, dont quelques-unes differrent assez les unes des autres pour que certains naturalistes les aient considérées comme des espèces distinctes. Le corps de l'homme est construit sur le même plan homologue que celui des autres mammifères. Il traverse les mêmes phases de développement embryogénique. Il conserve beaucoup de conformations rudimentaires et inutiles, qui, sans doute, ont eu autrefois leur utilité. Nous voyons quelquefois reparaitre chez lui des caractères qui, nous avons toute raison de le croire, ont existé chez ses premiers ancêtres. Si l'origine de l'homme avait été totalement différente de celle de tous les autres animaux, ces diverses manffestations ne seraient que de creuses déceptions, et une pareille hypothèse est inadmissible. Ces manifestations deviennent, au contraire, compréhensibles au moins dans une large mesure, si l'homme est,
avec d'autres mammifères, le codescendant de quelque type inlérieur. inconnu.

Quelques naturalistes, protondément frappés des aptitudes mentales de l'homme, ont partagé l'ensemble du monde organique en trois règnes: le règne Humain, le règne Animal et le règne Végétal, attribuant ainsi à l'homme un règne spécial ${ }^{1}$. Le naturaliste ne peut ni comparer ni classer les aptitudes mentales, mais il peut, ainsi que j'ai essayé de le faire, chercher à démontrer que, si les facultés mentales de l'homme diffèrent immensément en degré de celles des animaux qui lui sont inférieurs, elles n'en diffèrent pas quant à leur nature. Une différence en degré, si grande qu'elle soit, ne nous autorise pas à placer l'homme dans un règne à part ; c'est ce qu'on comprendra mieux peut-être, si on compare les facultés mentales de deux insectes, un coccus et une fourmi, par exemple, qui tous deux appartiennent incontestablement à la meme classe. La différence dans ce cas est plus grande, quoique d'un genre quelque peu différent, que celle qui existe entre l'homme et le mammifère le plus élevé. Le jeune coccus femelle s'attache par sa trompe à une plante dont il suce la sève sans jamais changer de place; la femelle y est fécondée, elle pond ses œufs, et telle est toute son histoire. Il faudrait, au contraire, un gros volume, ainsi que l'a démontré P. Huber, pour décrire les habitudes et les aptitudes mentales d'une fourmi ; je me contenterai de signaler ici',quelques points spéciaux. Il est certain que les fourmis se communiquent réciproquement certaines impressions, et s'associent pour exécuter un même travail, ou pour jouer ensemble. Elles reconnaissent leurs camarades après plusieurs mois d'absence et éprouvent de la sympathie les unes pour les autres. Elles construisent de vastes édifices, qu'ëlles maintiennent dans un parfait état de propreté, elles en ferment les portes le soir, et y placent des sentinelles. Elles font des routes, creusent des tunnels sous les rivières, ou les traversent au moyen de ponts temporaires qu'elles établissent en s'attachant les unes aux autres. Elles recueillent des aliments pour la tribu, et, lorsqu'on apporte au nid un objet trop gros pour y entrer, elles élargissent la porte, puis la reconstruisent д̀ nouveau. Elles emmagasinent des graines qu'elles empêchent de germer; si ces graines sont atteintes par l'humidité, elles les sortent du nid et les étendent au soleil pour les faire sécher. Elles élèvent des pucerons et d'autres insectes comme autant de vaches à

[^72]lait. Elles sortent en bandes régulièrement organisées pour combattre, et n'hésitent pas à sacrifier leur vie pour le bien commun. Elles émigrent d'après un plan préconçu. Elles capturent des esclaves. Eiles transportent les œufs de leurs pucerons, ainsi que leurs propres cufs et leurs cocons, dans les parties chaudes du nid, afin d'en faciliter l'éclosion. Nous pourrions ajouter encore une infinité de faits analogues ${ }^{2}$. En résumé, la différence entre les aptitudes mentales d'une fourmi et celles d'un coccus est immense; cependant personne n'a jamais songé à les placer dans des classes, encore bien moins dans des règnes distincts. Cet intervalle est, sans doute, comblé par les aptitudes mentales intermédiaires d'une foule d'autres insectes; ce qui n'est pas le cas entre l'homme et les singes supérieurs. Mais, nous avons toute raison de croire que les lacunes que présente la série ne sont que le résultat de l'extinction d'un grand nombre de formes intermédiaires.
Le professeur Owen, prenant pour base principale la conformation du cerveau, a divisé la série des mammifères en quatre sousclasses. Il en consacre une à l'homme et il place dans une autre les marsupiaux et les monotrèmes; de sorte qu'll établit une distinction aussi complète entre l'homme et les autres mammifères, qu'entre ceux-ci et les deux derniers groupes réunis. Aucun naturaliste capable de porter un jugement indépendant n'ayant, que je sache, admis cette manière de voir, nous ne nous en occuperons pas davantage.

Il est facile de cumprendre pourquoi une classification basée sur un seul caractère ou sur un seul organe, - fût-ce un organe aussi complexe et aussi important que le cerveau, - ou sur le grand développement des facultés mentales, doit presque certainement atre peu satisfaisante. On a appliqué ce système aux insectes hymé. noptères; mais, une fois classés ainsi d'après leurs habitudes ou leurs instincts, on a reconnu que cette classification était entièrement artificielle ${ }^{3}$. On peut, cela va sans dire, baser une classification sur un caractère quelconque: la taille, la couleur, l'élément habité; mais les naturalistes ont, depuis longtemps, acquis la conviction profonde qu'il doit exister un système naturel de classification. Ce système, on l'admet généralement aujourd'hui, doit

[^73]suivre autant que possible un arrangement généalogique, - e'est-à-dire que les coc̉escendants du même type doivent être réunis dans un groupe, séparé des codescendants de tout autre type ; mais, si les formes parentes ont eu des relations de parenté, il en est de même de leurs descendants, et les deux groupes doivent constituer un groupe plus' considérable. L'étendue des différences existant entre les divers groupes, - c'est-à-dire la somme des modifications que chacun d'eux aura éprouvées, - s'exprimera par des termes tels que genres, familles, ordres, et classes. Camme nous ne possédons aucun document sur les lignes de descendance, nous ne pouvons découvvir ces lignes qu'en observant les degrês de ressemblance qui existent entre les etres qu'il s'agit de classor. Dans ce but, un grand nombre de points de ressemblance ont une importance beaucoup plus considérable que toute similitude ou toute dissemblance prononcée, mais ne portant que sur un petit nombre de points. Si deux langages contiennent un grand nombre de mots et de formes de construction identique, on est d'accord pour reconnaitre qu'ils dérivent d'une source commune, quand bien mème ils pourraient différer beaucoup par quelques autres points. Mais, chez les etres organisés, les points de ressemblance ne doivent pas consister dans les seules adaptations à des habitudes de vie analogues; ainsi, par exemple, il se peut que toute la constitution de deux animaux se soit modifiée pour les approprier à vivre dans l'eau, sans que pour cela ils soient voisins l'un de l'autre dans le système naturel. Cette remarque nous aide à comprendre pourquoi les nombreuses ressemblances portant sur des conformations sans importance, sur des organes inutiles et rudimentaires, ou sur des parties non encore complètement développées et inactives au point de vue fonctionnel, sont de beaucoup les plus utiles pour la classification, parce que, n'étant pas dues à des adaptations récentes, elles révèlent ainsi les anciennes lignes de descendance, c'est-à-dire celles de la véritable affinité.
En outre, on s'explique aisément quil ne faudrait pas conclure dune modifioation importante affectant un seul caractère a la séparation absolue de deux organismes. La théorie de l'évolution nous enseigne, enveflet, qu'une partie qui diffère considérablement de la partie correspondante chez d'autres formes voisines, a do varier beaucoup, et que, tant que l'organisme reste soumis aux mêmes conditions, elle tend à varier encore dans la même direction; si ces nouvelles variations sont avantageuses, elles se conservent ef s'augmentent continuellement. Dans beaucoup de cas, le développement continu d'une partie, du bec d'un oiseau, par exemple, ou
des dents d'un mammifère, ne serait avantageux à l'espèce ni pour se procurer ses aliments, ni dans aucun autre but; mais, chez l'homme, nous ne voyons, en ce qui regarde les avantages qu'il peut en tirer, aucune limite définie à assigner au développement persistant du cerveau et des facultés mentales. Par conséquent, si l'on veut déterminer la position de l'homme dans le système naturel ou généalogique, l'extrème développement du cerveau ne doit pas l'emporter sur une foule de ressemblances portant sur des points d'importance moindre ou mème n'en ayant aucune.

La plupart des naturalistes qui ont pris en considération l'ensemble de la conformation humaine, les facultés mentales comprises, ont adopté les vues de Blumenbach et de Cuvier, et ont placé l'homme dans un ordre séparé sous le nom de Bimanes, et, par. conséquent, sur le même rang que les ordres des Quadrumanes, des Carnivores, etc. Beaucoup de naturalistes très distingués ont récemment repris l'hypothèse proposée d'abord par Linné, si remarquable par sa sagacité, et ont replacé, sous le nom de Primates, l'homme dans le même ordre que les Quadrumanes. Il faut reconnaître la justesse de cette hypothèse, si l'on songe, en premier lieu, aux remarques que nous venohs de faire sur le peu d'importance qu'a, relativement à la classification, l'énorme développement du cerveau chez l'homme, et si l'on se rappelle aussi que les différences fortement accusées existant entre le crâne de l'homme et celui des Quadrumanes (différences sur lesquelles Bischoff, Aeby et d'autres, ont récemment beaucoup insisté), sont le résultat très vraisemblable d'un développement différent du cerveau. En second lieu, nous ne devons point oublier que presque toutes les autres différences plus importantes qui existent entre l'homme et les Quadrumanes sont de nature éminemment adaptive, et se rattachent principalement à l'attitude verticale particulière à l'homme telles sont la structure de la main, du pied et du bassin, la courbure de la colonne vertébrale et la position de la tête. La famille des phoques offre un excellent exemple du peu d'importance qu'ont les caractères d'adaptation au point de vue de la classification. Ces animaux diffèrent de tous les autres carnivores, par la forme du corps et par la conformation des membres, beaucoup plus que l'homme ne diffère des singes supérieurs; cependant, dans tous les systèmes, depuis celui de Cuvier jusqu'au plus récent, celui de M. Flower ${ }^{4}$, les phoques occupent le rang d'une simple famille dans l'ordre des Carnivores. Si l'homme n'avait pas été son propre
elaşsificateur, il n'eut jamais songé à fonder un ordre séparé pour s'y placer.
Je n'essaierai certes pas, car ce serait dépasser les limites de cet ouvrage et celles de mes connaissances, de signaler les innombrables points de conformation par lesquels l'homme se rapproche des autres Primates. Notre éminent anatomiste et philosophe, le professeur Huxley, après une discussion approfondie du sujet ${ }^{5}$, conclut que, dans toutes les parties de son organisation, l'homme diffère moins des singes supérieurs que ceux-ci ne diffèrent des membres inférieurs de leur propre groupe. En conséquence, «il n'y a aucune raison pour placer l'homme dans un ordre distinct $»$.
J'ai signalé, au commencement de ce volume, divers faits qui prouvent que l'homme a une constitution absolument analogue à celle des mammifères supérieurs; cette analogie dépend sans doute de notre ressemblance intime avec eux, tant au point de vue de la structure élémentaire que de la composition chimique de notre corps. J'ai cité comme exemple notre aptitude aux mêmes maladies et aux attaques de parasites semblables; nos gounts communs pour les mêmes stimulants, les effets semblables qu'ils produisent, ainsi que ceux de diverses drogues, et d'autres faits de mème nature.

Les traités systématiques négligent souvent de prendre en considération certains points peu importants de ressemblance entre l'homme et les singes supérieurs; cependant ces points de ressemblance révèlent clairement, lorsqu'ils sont nombreux, nos rapports de parenté, je tiens donc à en signaler quelques-uns. La position relative des traits de la face est évidemment la même chez l'homme et chez les quadrumanes; les diverses émotions se traduisent par des mouvements presque identiques des muscles et de la peau, surtout au-dessus des sourcils et autour de la bouche. Il y a même quelques expressions qui sont presque analogues, telles que les sanglots de certaines espèces de singes et le bruit imitant le rire que font entendre d'autres espèces, actes pendant lesquels les coins de la bouche se retirent en arrière et les paupières inférieures se plissent. L'extérieur des oreilkes est singulièrement semblable. L'homme a un nez beaucoup plus proéminent que la plupart des singes; mais nous pouvons déjà apercevoir un commencement de courbure aquiline sur le nez du Gibbon Hoolock; cette courbure du même organe est ridiculement exagérée chez le Semnopilhecus nasica.

[^74]Beaucoup de singes ont le visage orné de barbe, de favoris ou de moustaches. Les cheveux atteignent une grande longueur chez quelques espèces de Semnopithèques ${ }^{6}$; chez le Bonnet chinois (Macacus radiatus), ils rayonnent d'un point du vertex avec une raie au milieu, absolument comme chez l'homme. On admet généralement que l'homme doit au front son aspect noble et intelligent; mais les poils touffus de la tête du Bonnet chinois se terminent brusquement au sommet du front, lequel est recouvert ${ }^{*}$ d'un poil si court et si fin, un véritable duvet, que, à une petite distance, à l'exception des sourcils, il parait ètre entièrement nu. On a atffrmé par erreur qu'aucun singe n'a de sourcils. Chez l'espèce dont nous venons de parle:, le degré de dénudation du front varie selon les individus; Eschricht constate ${ }^{7}$, d'ailleurs, que, chez nos enfants, la limite entre le scalpe chevelu et le front dénudé est parfois mal définie; ce qui semble constituer un cas insignifiant de retour vers un ancêtre dont le front n'était pas encore complètement dénudé.

On sait que, sur les bras de l'homme, les poils tendent à converger d'en haut et d'en bas en une pointe vers le coude. Cette disposition curieuse, si différente de celle que l'on observe chez la plupart des mammifères inférieurs, est commune au gorille, au chimpanzé, à l'orang, à quelques espèces d'hylobates, et même à quelques singes américains. Mais chez l'Hylobates agilis, le poil de l'avant-bras se dirige comme à l'ordinaire vers le poignet; chez le H. lar, le poil est presque transversal avec une très légère inclinaison vers l'avant-bras, de telle sorte que, chez cette dernière espèce, il se présente à l'état de transition. Il est très probable que, chez la plupart des mammifères, l'épaisseur du poil et la direction qu'il affecte sur le dos servent à faciliter l'écoulement de la pluie; les poils obliques des pattes de devant du chien servent sans doute à cet usage lorsqu'il dort enroulé sur lui-même. M. Wallace remarque que chez l'orang (dont il a soigneusement étudié les mours) la convergence des poils du bras vers le coude sert à l'écoulement de la pluie lorsque cet animal, suivant son habitude, replie, quand il pleut, ses bras en l'air, pour saisir une branche d'arbre ou simplement pour les poser sur sa tete. Livingstone affirme que le gorille, pendant une pluie battante, croise ses mains sur sa tête ${ }^{8}$. Si cette explication est exacte, comme cela semble

[^75]probable, l'arrangement des poils sur notre avant-bras serait une singulière preuve de notre ancien état; car on ne saurait admettre que nos poils aient aujourd'hui aucune utilité pour faciliter l'écoulement de la pluie, usage auquel ils ne se trouveraient, d'ailleurs, plus appropriés par leur direction, vu notre atlitude verticale actuelle.
Il serait, toutefois, téméraire de trop se fier au principe de l'adap̂tation relativement à la direction des poils chez l'homme ou chez ses premiers ancêtres. Il est, en effet, impossible d'étudier les figures d'Eschricht sur l'arrangement du poil chez les fetus humain, arrangement qui est le même que chez l'adulte, sans reconnaitre avec cet excellent observateur que d'autres causes et des plus complexes ont du intervenir. Les points de convergence paraissent avoir quelques rapports avec ces parties qui, dans le développement de l'embryon, se forment les dernières. Il semble aussi quil existe quelque rapport entre larrangement des poils sur les membres et le trajet des artères médullaires ${ }^{9}$.
Je ne prétends certes pas dire tque les ressemblances signalées ci-dessus entre l'homme et certains singes, ainsi que sur beaucoup d'autres points, - tels que la dénudation du front, les longues tresses sur la tete, etc., - résulfent nécessairement toutes d'une transmission héréditaire non interrompue des caracteres d'un ancêtre commun, ou d'un retour subséquent vers ces caractères. Il est plus probable qu'un grand nombre de ces ressemblances sont dues à une variation analogue, laquelle, ainsi que j'ai cherché à le dêmontrer ailleurs ${ }^{10}$, résulte du fait que des organismes codescendants ont une constitution semblable et subissent rinfluence de causes déterminant une méme variabilité. Quant à la direction analogue des poils de l'avant-bras chez l'homme et chez certains singes, on peut probablement l'attribuer à l'hérédité, car ce caractère est commun à la plupart des singes anthropomorphes; on ne saurait, cependant, rien affirmer à cet égard; car quelques singes amérìcains fort distincts présentent également ce caractêre.
Si, comme nous venons de le voir, l'homme n'a pas droit à former un ordre distinct, il pourrait peut-être réclamer un sous-ordre ou

[^76]une famille distincte. Dans son dernier burrage ${ }^{\text {H, }}$, le professeur Huxley divise les Primates en trois sous-ordres, qui sont : les Anthropidés, comprenant l'homine seul; les Simiadés, comprenant es singes de toute espéee, et lés Lémuridés, comprenant les divers ̧enres de lémures. Si lon se place au point dé vue des differehces portant sur celtains points importants de conformation, l'homme peut, sans aucun doute, prêtendre avee raison au rang de sôusordre ; rang encorte trop inférieur, si nous conisidêrons principalement ses facultes mentales. Ce rang serait, toutefois, trop élevé au point de vué généalogiqué, d'après lequel l'hommé ne devrait représenter qu'une famille, ou même seulement uhe sous-famille: Si nous nous figurons trois ligries de descendance procédant d'ulie source commune, il est parfaitement concevable que, après un laps de temps très prolongé, d'eux d'entre elles se soient assez peu modiflées pour se comporter commé espéces d'un même genre; tandis qué la troisiême peut s'être assez profondément modifiéé pour constituer une sous-famille, une famille, ou même un ordre distinct. Mais, même dans ce cas, il est presque certain que cetté troisième ligne conserverait encore, par hérédité, de nombreux traits de ressemblance avee les deux autres. Ici se présente donć la difficulté, actuellement insoluble, de savoir quelle portée nous devons attribuer dans nos classifications aux différences très marquées qui peuvent exister sur quelques points, - c'est-d-dire à la somme des modifications éprouvées; et quelle part il convient d'attribuer à une exacte ressemblance sur une foule de points insignifiants, comme indication des lignes de descendance ou de gẻhédlogie. La première alternative est la plus évidente, et peut-être la plus sûre, bien que la dernière paraisse êtré celle qui indique le plus correctement la veritable chassification naturelle.
Pour asseoir notre jugement sur ce point, relativement à thomme, jetons un coup d'oeil sur la classification des Simiadés. Presque tous les naturalistes s'accordent à diviser cette famille eii deux groupes : les Catafrhinins, ou singes de l'ancien mortde, qui tous, comme l'indique leur nom, sont caractérisés par la stricture particulière de leurs narines, et la présence de quatré prémolaires à chaque mâchoire; les Platyrrhinins, ou singes du nouveau monde, comprenant deux sous-groupes très distincts, tous caractérisés par des narines d'une conformation três différente, et la présence dé six prémolaires à chaque machoire. On pourrait encore ajoutef quelques autres légères différences. Or il est incontestable qué, par
11. An Introduction to the Glassification of Antmals, 1869, p. 99.
sa dentition, par la conformation de ses narines, et sous quelques autres rapports, l'homme appartient à la division de l'ancien monde ou groupe catarrhinin; et que, par aucun caractère, il ne ressemble de plus près aux platyrrhinins qu'aux catarrhinins, sauf sur quelques points peu importants et qui paraissent résulter d'adaptations. Il serait, par conséquent, contraire à toute probabilité de supposer que quelque ancienne espèce du nouveau monde ait, en variant, produit un être à l'aspect humain, qui aurait revêtu tous les caractères distinctifs de la division de l'ancien monde en perdant en même temps les siens propres. Il y a donc tout lieu de croire que l'homme est une branche de la souche simienne de l'ancien monde, et que, au point de vue généalogique, on doit le classer dans le groupe cata rrhinin ${ }^{12}$.
La plupart des naturalistes classent dans un sous-groupe distinct, dont ils excluent les autres singes de l'ancien monde, les singes anthropomorphes, à savoir le gorille, le chimpanzé, l'orang et 1'hylobates. Je sais que Gratiolet, se basant sur la conformation du cerveau, n'admet pas l'existence de ce sous-groupe, qui est certainement un groupe accidenté. En effet, comme le fait remarquer M. Saint-George-Mivart ${ }^{13}$, « l'orang est une des formes les plus particulières et les plus déviées qu'on trouve dans cet ordre ». Quelques naturalistes divisent encore les singes non anthropomorphes de l'ancien continent, en deux ou trois sous-groupes plus petits, dont le genre semnopithèque, avec son estomac tout boursouflé, constitue un des types. Les magnifiques découvertes de M. Gaudry dans l'Attique semblent prouver l'existence, pendant la période miocène, d'une forme reliant les Semnopithèques aux Macaques ; fait qui, si on le généralise, explique comment autrefois les autres groupes plus élevés se confondaient les uns avec les autres.
L'homme ressemble aux singes anthropomorphes, non seulement par tous les caractères qu'il possède en commun avec le groupe catarrhinin pris dans son ensemble, mais encore par d'autres traits particuliers, tels que l'absence de callosités et de queue, et l'aspect général; en conséquence, si l'on admet que ces singes forment un sous-groupe naturel, nous pouvons conclure que l'homme doit son
12. C'est presque la mème classificatlon que celle adoptée provisoirement par M. Saint-George-Mivart (Transact. Philos. Soc., 1867, p. 300), qui, après avoir séparé les Lémuriens, divise le reste des Primates en Hominidés et en Simiadés correspondant aux Catarrhinins ; et en Cébidés et en Hapalidés, - ces deux opinion ; voir Nature, 1871 13. Transact. Zoolog. Soc., vol. VI, 1867, p. 214.
origine à quelque ancien membre de ce sous-groupe. Il n'est guère probable, en effet, qu'un membre d'un des autres sous-groupes inférieurs ait, en vertu de la loi de la variation analogue, engendré un être à f'aspect humain, ressemblant sous tant de rapports aux singes anthropomorphes supérieurs. Il 'n'est pas douteux que, comparé à la plupart des types qui se rapprochent le plus de lui, l'homme n'ait éprouvé une somme extraordinaire de modifications, portant surtout sur l'énorme développement de son cerveau et résultant de son attitude verticale; nous ne devons pas, néanmoins, perdre de vue \& qu'il n'est qu'une des diverses formes exceptionnelles des Primates ${ }^{14}$ ».

Quiconque admet le principe de l'évolution doit admettre aussi qưe les deux principales divisions des Simiadés, les singes catarrhinins et les singes platyrrhinins avec leurs sous-groupes, descendent tous d'un ancêtre unique, séparé d'eux par de longues périodes. Les premiers descendants de cet ancêtre, avant de s'écarter considérablement les uns des autres, ont dû continuer à former un groupe unique naturel; toutefois quelques-unes des espèces, ou genre naissants, devaient déjà commencer à indiquer, par leur divergence, les caractères distinctifs futurs des groupes catarrhinin et platyrrhinin. En conséquence, les membres de cet ancien groupe, dont nous supposons l'existence, ne devaient pas présenter dans leur dentition ou dans la structure de leurs narines, l'uniformité qu'offrent actuellement le premier caractère chez les singes catarrhinins, et le second chez les singes platyrrhinins; ils devaient, sous ce rapport, ressembler au groupe voisin des Lémures, qui diffèrent beaucoup les uns des autres par la forme de leur museau ${ }^{15}$, et à un degré excessif par leur dentition.

Les singes catarrhinins et les singes platyrrhinins possèdent en commun une foule de caractères, comme le prouve le fait qu'ils appartiennent incontestablement à un seul et meme ordre. Ces nombreux caractères communs ne peuvent guère avoir été acquis indépendamment par une aussi grande quantité d'espèces distinctes; il convient donc d'attribuer ces caractères à l'hérédité. En outre, un naturaliste aurait, sans aucun doute, classé au nombre des singes une forme ancienne, qui aurait possédé beaucoup de caractères communs aux singes catarrhinins et aux singes platyrrhinins, et à d'autres singes intermédiaires, outre qu'elle aurait possédé quelques autres caractères distincts de ceux qu'on observe actuelle-
14. M. Saint-G.-Mivart, Transact. Philos. Soc., 1867, p. 410.
15. MM. Murie and Mivart sur les Lemuroidea, Transact. Zoolog. Soc., vol. VII,
ment chez chacun de ces groupes. Or comme au point do vue généalogique, l'homme appartient au groupe catarrhinin, ou groupe de l'ancien monde, nous devons cohclure, quelque atteinte que puisse en ressentir notre orgueil, que nos ancêtres primitifs auraient, à bon droit, porté le nom de singes ${ }^{16}$. Mais il he faudrait pas supposer que l'ancetre primitif de tout le groupe simien, y compris l'homme, ait été identique ou même ressemblât de prés à aucun singe existant.

Patrie et antiquité de thomme. - Nous sommes naturellement amenés à rechercher quelle a pu être là patrie primitive de lhomme, alors qué nos ancêtres se sont écartés du groupe catarrhinin. Le fait qu'ils faisaient partie de ce groupe prouve clairement qu'ils habitaient l'anclen monde, mais ni l'Australie, ni aucune ile océanique, ainsi que ñous pouvons le prouver par les lois de la distribution géographique. Dans toutes les grandes régions du globe, les mamimifëres vivants se rapprochent beaucoup des espèces éteintes de la metmé région. Il est donc probablé que l'Afrique a autrefois été habitée par dés singes disparus très voisins du gorille et du chimpanzé; of, comme ces deux espêces sont actuellement celles qui se tapprochent le plus de l'homme, il est probable que nos ancêtres primitifs ont vécu sur le continent africain plutót que partout ailleurs. Il est inutile, d'ailleurs, de discuter longuement cette question, car, pendant l'époque miocềne supérieure, un singe presque aussi grand que l'homme, voisin des Hylobates anthropomorphes, le Dryopithèque de Lartet ${ }^{17}$ a habité l'Europe; depuis cette époque reculée, la terre a certainement subi des révolutions nombreuses et considérables, et il s'est écoulé un temps plus que suffisant pour que les migrations aient pu s'effectuer sur la plus vaste échelle.
A quelque époque et en quelque endroit quee i'homme ait perdu ses poils, il est probable qu'il habitait alors un pays chaud, condition favorable à un régime frugivore qui, d'aprés les lois de l'analogie, devait étre le sien. Nous sommes loin de savoir combien il S'est écoulé de temps depuis que l'homfne a commencé à s'écarter dù groupe catarrhinin, mais cela peut remonter à une époque

[^77]aussi éloignée que la période éocène; les singes supérieurs, en effét, avaient déjà divergé des singes inférieurs dès la période miocène supérieure, comme le prouve l'existence du Dryopithèque. Nous ignorons également avec quelle rapidité des êtres, placés plus our moins haut sur l'échelle organique, peuvent se modifier quand les conditions sont favorables; nous savons, toutefois, que certaines espéces d'animaux ont conservéláa même forme pendant un laps de temps considérable. Ce qui se passe sous nos yeux chez nos animaux domestiques nous enseigne que, pendatit une mêmé période, quelques codescendants d'une méme espéce peuvent ne pas changer du tout, que d'autres changent un peu, qué d'autres enfin changent beaucoup. Il peut en avoir été ainsi de l'homme qui, comparé aux singes supérieurs, a éprouvé sous certains rapports des modifications importantes.
On a souvent opposé comme une grave objection à l'hypothèse que l'homme descend d'on type inférieur l'importante lacune qui interrompt la chaine organique entre l'homme et ses voisins les plus proches, sans qu'aucune espéce éteinte ou vivante vienne la combler. Mais cette objection n'a que bien peu de poids pour quiconque, puisant sa conviction dans des raisons générales, admet le principe de l'évolution. D'un bout à l'autre de la série, nous rencontrons sans cesse des lacunes, dont les unes sont considérables, tranchées et distinctes, tandis que dautres le sont moins à des degrés divers; ainsi, entre l'Orang et les espéces voisines, - entre le Tarsius et les autres Lémuriens, - entre l'éléphant, et, d'une manière encore bien plus frappante, entre l'Ornithorynque ou l'Échidné et les autres mammifêres. Mais toutes ces lacunes ne dépendent que du nombre des formes voisines qui se sont éteintes. Dans un avenir assez prochain, si nous comptons par siècles, les races humaines civilisées auront très certainément exterminé et remplacé les races sauvages dans le monde entier. fl est à peu près hors de doute que, à la même époque, ainsi que le fait remarquer le professeur Schaaffhausen ${ }^{18}$, les singes anthropomorphes aürōnt aussi disparu. La lacune sera donc beaucoup plus considérable encore, car il n'y aura plus de chaìnons intermédiaires entre la race humaine, qui, nous pouvons l'espérer, aura alor's surpassé en civilisation la race caucasienne, et quelque espèce de singe inférieur, tel que le Babouin, au lieu que, actuellement, la lacune n'existe qu'entre le Nègre ou l'Australien et le Gorille.
Quant à l'absence de restes fossiles pouvant relier l'homme à

[^78]ses ancêtres pseudo-simiens, il suffit, pour comprendre le peu de portée d'une semblable objection, de lire la discussion par laquelle sir C. Lyell ${ }^{19}$ établit combien a été lente et fortuite la découverte des restes fossiles de toutes les classes de vertébrés. Il ne faut pas oublier non plus que les régions les plus propres à fournir des restes rattachant l'homme à quelque forme pseudo-simienne éteinte n'ont pas été fouillées jusqu'à présent par les géologues.

Phases inférieures de la généalogie de l'homme. - Nous avons vu qua l'homme parait ne s'être écarté du groupe catarrhinin ou des Simiadés du vieux monde, qu'après que ceux-ci s'étaient déjả écartés de ceux du nouveau continent. Nous allons essayer maintenant de remonter aussi loin que possible les traces de la généalogie de l'homme en nous basant, d'abord, sur les affinités réciproques existant entre les diverses classes et les différents ordres et en nous aidant aussi quelque peu de l'époque relative de leur apparition successive sur la terre, en tant que cette époque a pu être déterminée. Les Lémuriens, voisins des Simiadés, leur sont inférieurs, et constituent une famille distincte des Primates, ou même un ordre distinct, suivant Hảckel. Ce groupe, extraordinairement diversifié et interrompu, comprend beaucoup de formes aberrantes, par suite des nombreuses extinctions qu'il a probablement subies. La plupart des survivants se trouvent dans des fles, soit à Madagascar, soit dans l'archipel Malais, où ils n'ont pas été soumis à une concurrence aussi rude que celle qu'ils auraient rencontrée sur des continents mieux pourvus d'habitants. Ce groupe présente également plusieurs gradations qui, ainsi que le fait remarquer Huxley ${ }^{20}$, conduisent, par une pente insensible, du plus haut sommet de la création animale à des êtres qui semblent n'être qu'à un pas dos mammifères placentaires les plus inférieurs, les plus petits et les moins intelligents ». Ces diverses considérations nous portent à penser que les Simiadés descendenl des ancêtres des Lémuriens existants, et que ceux-ci descendenl à leur tour de formes très inférieures de la série des mammifères

Beaucoup de caractères importants placent les Marsupiaux audessous des mammifères placentaires. Ils ont apparu à une époque géologique antérieure, et leur distribution était alors beaucour plus étendue qu'à présent. On admet donc généralement que les Placentaires dérivent des Implacentaires ou Marsupiaux, non pas

[^79]toutefois de formes identiques à celles qui existent aujourd'hui, mais de leurs ancêtres primitifs. Les Monotrèmes sont clairement voisins des Marsupiaux, et constituent une troisième division encore inférieure dans la grande série des mammifères. Ils ne sont représentés actuellement que par l'Ornithorynque et l'Échidné, deux formes qu'on peut, en toute certitude, considérer comme les restes d'un groupe beaucoup plus considérable autrefois, et qui se sont conservés en Australie grâce à un concours de circonstances favo. rables. Les Monotrèmes présentent un vif intérêt, en ce qu'ils se rattachent à la classe des reptiles par plusieurs points importants de leur conformation.
En cherchant à retracer la généalogie des mammifères et, par conséquent, celle de l'homme, l'obscurité devient de plus en plus profonde à mesure que nous descendons dans la série; toutefois, comme l'a fait remarquer un juge très compétent, M. Parker, nous avons tout lieu de croire qu'aucun oiseau ou qu'aucun reptile n'occupe une place dans la ligne directe de descendance.

Quiconque veut se rendre compte de ce que peut un esprit ingénieux, joint à une science profonde, doit consulter les ouvrages du professeur Hăckel ${ }^{21}$; je me bornerai ici à quelques remarques générales. Tous les évolutionnistes admettent que les cinq grandes classes de Vertébrés, à savoir les Mammifères, les Oiseaux, les Reptiles, les Amphibies et les Poissons, descendent d'un mème prototype, attendu qu'elles ont, surtout pendant l'état embryonnaire, un grand nombre de caractères communs. La classe des poissons, inférieure à toutes les autres au point de vue de son organisation, a aussi paru la première, ce qui nous autorise à conclure que tous les membres du règne des vertébrés dérivent de quel que animal pisciforme. L'hypothèse que des animaux aussi distincts les uns des autres qu'un singe, un éléphant, un oiseau-mouche, un serpent, une grenouille ou un poisson, etc., peuvent tous descendre des mêmes ancêtres, peut paraitre monstrueuse, nous le savons, à quiconque n'a pas suivi les récents progrès de l'histoire naturelle. Cette hypothèse implique, en effet, l'existence antérieure de chaì nons intermédiaires, reliant étroitement les unes aux autres toutes ces formes si complètement dissemblables aujourd'hui.
21. Des tables détaillées se trouvent dans sa Generelle Morphologie (t. II, p. cliil et p. 425), et d'autres, se rattachant plus spécialement à l'homme, dans sa Natürliche Schöpfungsgeschichte, 1868. Le professenr Huxley, analysant ce dernier ouvrage (Academy, 1869, p. 42), dit qu'il considère les lignes de descendance des Vertébrés comme admirablement discutées par Häckel, bien qu'il diffère sur quelques points. Il exprime aussi sa haute estime pour la valeur et la portée générale de l'ouvrage entier et l'esprit qui a présidé à sa rédaction.

Néanmoins il est certain qu'il a existé ou qu'il existe encore des groupes d'animaux, qui relient d'une manière plus ou moins intime les diverses grandes classes des vertébrés. Nous avons vu que l'Ornithorynque se rapproche des reptiles. D'un autre côté, le professeur Huxley a fait la remarquable découverte, confirmée par M. Cope et par d'autres savants, que, sous plusieurs rapports importants, les anciens Dinosauriens constituent un chainon intermédiare entre certains reptiles et certains oiseaux, \mp les autruches, par exemple (qui, elles-mèmes, sont évidemment un reste très répandu d'ungroupe plus considérable), et l'Archéoptérix, cet étrange orseau de l'époque secondaire, pourvu d'une queue allongée comme celle du lézard. En outre, suivant le professeur Owen ${ }^{22}$, les Ichthyosauriens, - grands lézards marins pourvus de nageoires, - ont de nombreuses affinités avec les poissons, ou plutôt, selon Huxley, avec les amphibies. Cette dernière classe (dont les grenouilles et les crapauds constituent la division la plus élevée), est évidemment voisine des paissons ganoïdes, Ces poissons, qui ont pullulé pendant les premières périodes géologiques, avaient un type hautement généralisé, c'est-à-dire qu'ils présentaient des affinités diverses avec d'autres groupes organiques. D'autre part, le Lépidosiren relie si étroitement les amphibies et les poissons, que les naturalistes ont longtemps débattu la question de savoir dans laquelle de ces deux classes ils devaient placer cet animal. Le Lépidosiren et quelques poissons ganoldes habitent les rivières, qui constituent de vrais ports de refuge, et jouent le même rôle, relativement aux grandes eaux de l'océan, que les îles à l'égard des continents; c'est ee qui les a préservés d'une extinction totale.

Enfin, un membre unique de la classe des poissons, classe si étendue et qui revêt des formes si diverses, l'Amphioxus, diffère tellement des autres animaux de cet ordre, qu'il devrait, suivant Häckel, constituer un classe distincte dans le règne des vertébrés. Ce poisson est remarquable par ses caractères négatifs; on peut à peine dire, en effet, qu'il possède un cerveau, une colonne vertébrale, un cœur, etc.; aussi les anciens naturalistes l'ayaient-ils rangé parmi les vers, Il y a bien des années, le professeur Goodsir reconnut des atfinités entre l'Amphioxus et les Ascidiens, formes marines invertébrées, hermaphrodites, attachées d'une façon permanente à un support, et qui paraissentà peine animalisées, car elles ne consistent qu'en un sac simple, ferme, ayant l'apparence du cuir, muni de deux petits orifices saillants. Les Ascidiens appar-

[^80]tiennent au Molluscoïda de Huxley, - une division inférieure du grand règne des Mollusques; cependant quelques naturalistes les ont récemment placés parmi lès vers. Leurs larves affectent un peu la forme des têtards ${ }^{23}$, elles peuvent nager en toute liberté. Quelques observations, récemment faites par Kovalevsky ${ }^{24}$, et contirmées depuis par le professeur Kupffer, tendent à prouver que les larves des Ascidiens se rattachent aux vertébrés, par leur mode de développement, par la position relative du système nerveux, et par la présence d'une conformation qui se rapproche tout à fait de la chorda dorsalis des animaux vertébrés. M. Kovalevsky m'écrit de Naples qu'il a poussé ses observations beaucoup plus loin, et si les résultats qu'il annonce sont confirmés, il aura fait une découverte du plus haut intérêt. Il semble donc, si nous nous en rapportons à l'embryologie, qui a toujours été le guide le plus sûr du classificateur, que nous avons découvert enfin la voie qui puurra hous conduire à la source dont descendent les vertébrés ${ }^{25}$. Nous serions aussi fondés à admettre que, à une épaque très ancienne, 11 existait un groupe d'animaux qui, ressemblant a beaucoup l'égards aux larves de nos Ascidiens actuels, se sont séparés en deux graudes branches, - dont l'une, suivant une marche rétrograde, aurait formé la classe actuelle des Ascidiens, tandis que l'autre se serait élevée jusqu'au sommet et au couronnement du règne aufmal, en produisant les vertébrés.

Nous avons jusqu'ici cherché à retracer à grands traits la généalogie des vertébrés en nous basant sur les affinités mutuelles. Voyons maintenant l'homme, tel qu'il existe. Je crois que nous pourrons en partie reconstituer pendant des périodes consécutives,
23. J'ai eu la satisfaction de voir, aux tles Falkland, en 1833, par conséquent quelques années avant d'autres naturalistes, la larve mobile d'une Ascidie composée, voisine mais génériquement distincte du Synoicum. La queue avait environ cinq fois la longueur de la tete, et se terminait par un filament très din. Elle était nettement séparée, telle que je l'ai esquissêe sous un microscope simple, par des parlitions opaques transversales qui représentent, à ce que je suppose, les grandes cellules figurées par Kowalevsky. A un état précoce de développement, la queue est enroulée autour de la tete de la larve.
24. Mémoires de l'Acad. des Sciences de Saint-Pétersbourg, t. x, n ${ }^{\circ}$ 15, 1866.

25 . Je dois ajouter que des auterités compétentes disputent cette conclusion. M. Giard par exemple, dans une série de mémoires publiés dans les Archives de Zoologie expérimentale, 1872. Toutefois ce naturaliste fait remarquer, p. 281: "L'organisation de la larve ascidienne, on dehors de toute hypothèse et de toate thérie, nous montre comment la nature peut produire la disposition fondamen tale du type vertébré (l'existence d'une corde dorsale) chę un "invertébré par la passage s'est fait en réalité. n
mais non dans leur véritable succession chronologique, la conformation de nos antiques ancêtres. Celte tâche est possible si nous étudions les rudiments que l'homme possède encore, si nous examinons les caractères qui, accidentellement, réapparaissent chez lui par retour, et si nous invoquons les principes de la morphologie et de l'embryologie. Les divers faits auxquels j'aurai à faire allusion ont été exposés dans les chapitres précédents.

Les premiers ancêtres de l'homme étaient sans doute couverts de poils, les deux sexes portaient la barbe; leurs oreilles étaient probablement pointues et mobiles; ils avaient une queue, desservie par des muscles propres. Leurs membres et leur corps étaient soumis à l'action de muscles nombreux, qui ne reparaissent aujourd'hui qu'accidentellement chez l'homme, mais qui sont encore normaux chez les quadrumanes. L'artère et le nerf de l'humérus passaient par l'ouverture supracondyloìde. A cette époque, ou pendant une période antérieure, l'intestin possédait un diverticulum ou cæcum plus grand que celli qui existe aujourd'hui. Le pied, à en juger par la condition du gros orteil chez le foetus, devait être alors préhensible, et nos ancêtres vivaient sans doute habituellement sur les arbres, dans quelque pays chaud, couvert de forêts. Les mâles avaient de fortes canines qui constituaient pour eux des armes formidables.

A une époque antérieure, l'utérus était double; les excrétions étaient expulsées par un cloaque, et l'œil était protégé par une troisième paupière ou membrane clignotante. En remontant plus haut encore, les ancêtres de l'homme menaient une vie aquatique: car la morphologie nous enseigne clairement que nos poumons ne sont qu'une vessie natatoire modifiée, qui servait autrefois de flotteur. Les fentes du cou de l'embryon humain indiquent la place où les branchies existaient alors. Les périodes lunaires de quelquesunes de nos fonctions périodiques semblent constituer une trace de notre patrie primitive, c'est-à-dire une côte lavée par les marées. Vers cette époque, les corps de Wolff (corpora Wolffiana) remplaçaient les reins. Le cœur n'existait qu'à l'état de simple vaisseau pulsatile; et la chorda dorsalis occupait la place de la colonne vertébrale. Ces premiers prédécesseurs de lhomme, entrevus ainsi dans les profondeurs ténébreuses du passé, devaient avoir une organisation aussi simple que l'est celle de l'Amphioxus, peutêtre même encore inférieure.

Un autre point mérite de plus amples détails. On sait depuis longtemps que, dans le règne des vertébrés, un sexe possède, ̀̀ l'état rudimentaire, diverses parties accessoires caractérisant lo
système reproducteur propre à l'autre sexe ; or on a récemment constaté que, à une période embryonnaire très précoce, les deux sexes possèdent de vraies glandes males et femelles. Il en résulte que quelque ancêtre extrêmement reculé du règne vertébré tout entier a dù être hermaphrodite ou androgyne ${ }^{26}$. Mais ici se présente une singulière difficulté. Les males de la classe des mammifères possèdent, dans leurs vésicules prostatiques, des rudiments d'un utérus avec le passage adjacent; ils portent aussi des traces de mamelles, et quelques marsupiaux mâles possèdent les rudiments d'une poche ${ }^{27}$. On pourrait citer encore d'autres faits analogues. Devons-nous donc supposer que quelque mammifère très ancien ait possédé des organes propres aux deux sexes, c'est-à-dire qu'il soit resté androgyne, après avoir acquis les caractères principaux de sa classe, et, par conséquent, après avoir divergé des classes inférieures du règne vertébré? Ceci semble très peu probable, car il nous faut descendrf jusqu'aux poissons, classe inférieure à toutes les autres, pour trouver des formes androgynes encore existantes ${ }^{28}$. On peui, en effet, expliquer, chez les mammifères mâles, la présence d'organes femelles accessoires à l'ètat de rudiments, et inversement la présence, chez les femelles, d'organes rudimentaires masculins, par le fait que ces organes ont été graduellement acquis par l'un des sexes, puis transmis à l'autre sexe dans un état plus ou moins imparfait. Lorsque nous étudierons la sélection sexuelle, nous rencontrerons des exemples très nombreux de ce genre de transmission, - par exemple, les éperons, les plumes et les couleurs brillantes, caractères acquis par les oiseaux

[^81]males dans un but de combat ou d'ornementation, et transmis aux femelles à un état imparfait ou rudimentaire.
La présence, chez les mammifères males, d'organes mammaires fonctionnellement imparfaits, constitue, à quelques égards, un fait tout particulièrement curieux. Les Monotrèmes possèdent la partie sécrétante propre de la glande lactigène avec ses orifices, mais sans mamelons; or, comme ces animaux se trouvent à la base même de la série des mammifères, il est probable que les ancêtres de la classe possédaient aussi des glandes lactigènes, mais sans mamelons. Le mode de développement de ces glandes semble confirmer cette opinion; le professeur Turner m'apprend, en effet, que, selon Kolliker et Langer, on peut distinguer aisément les glandes mammaires chez l'embryon avant que les mamelons deviennent appréciables; or, nous savons que le développement des parties qui se succèdent chez l'individu représente d'ordinaire le développement des êtres consécutifs de la même ligne de descendance. Les Marsupiaux diffèrent des Monotrèmes en ce qu'ils possèdent les mamelons; ces organes ont donc probablement été acquis par eux après les déviations qui les ont élevés au-dessus des Monotrèmes, et transmis ensuite aux mammifères placentaires ${ }^{29}$. Personne ne suppose que, après avoir à peu près atteint leur conformation actuelle, les Marsupiaux soient restés androgynes. Comment donc expliquer la présence de mamelles chez les mammifères mâles? Il est possible que les mamelles se soient d'abord développées chez la femelle, puis qu'elles aient été transmises aux mâles ; mais, ainsi que nous allons le démontrer, cette hypothèse est peu probable.

On peut supposer, c'est là une autre hypothèse, que longtemps après que les ancêtres de la classe entière des mammifères avaient cessé d'étre androgynes, les deux sexes produisaient du lait de façon à nourrir leurs petits; et que, chez les Marsupiaux, les deux sexes portaient leurs petits dans des poches marsupialer. Cette hypothèse ne parait pas absolument inadmissible, si on réfléchit que les poissons Syngnathes males reçoivent dans leurs poches abdominales les œufs qu'ils font éclore, et qu'ils nourrissent ensuite, à ce qu'on prétend ${ }^{30}$; - que certains autres poissons males
29. Le professeur Gegenbaur (Jenaische Zeitschrift, vol. VII, p. 212), a đémontré qu'il existe deux týpes distincts de mamelons chez les divers ordres de mamoniferes ; mais il est facile de comprodre comment ces deux types peuvent dériver des mamelons des Marsupiaux et ceux de ces dermers, de ceux des Monotrèmes. Voir aussi un mémoire par le docteur Max Huss sur les glandes mammajres, ibid., vol. viII, p. 176.
30. M. Loekwood (cite dans Quart. Journ. of Science, avril 1868, p. 269) croit
couvent les œufs dans leur bouche ou dans leurs cavités branchiales; - que certains crapauds mâles prennent les chapelets d'œufs aux femelles et les enroulent autour de leurs cuisses, où ils les conservent jusqu'à ce qǔe les tetards soient éclos; - que certains oiseaux mâles accomplissent tout le travail de l'incubatıon, et que les pigeons males, aussi bien que les femelles, nourrissent leur couvée avec une sécrétion de leur jabot. Mais je me suis surtout arrêté à celte hypothèse, parce que les glandes mammaires des mammifères males sont beaucoup plus développées que les rudiments des autres parties reproductrices accessoires qui, bien que spéciales à un sexe, se rencontrent chez l'autre. Les glandes mammaires et les mamelons, tels que ces organes existent chez les mammifères, ne sont pas, à proprement parler, rudimentaires; ils ne sont qu'incomplètement développés et fonctionnellement inactifs. Ils sont affectés sympathiquement par certaines maladies, de la même façon que chez la femelle. A la naissance et à l'age de puberté, ils sécrètent souvent quelques gouttes de lait. On a même observé des cas, chez l'homme et chez d'autres animaux, où ils se sont assez bien développés pour fournir une notable quantité de lait. Or, si l'on suppose que, pendant une période prolongée, les mammifères males ont aidé les femelles à nourrir leurs petits ${ }^{31}$, et qu'ensuite ils aient cessé de le faire, pour une raison quelconque, à la suite, par exemple, d'une diminution dans le nombre des petits, le non-usage de ces organes pendant l'âge mûr aurait entraîné leur inactivité, état qui, en vertu des deux principes bien connus de Y'hérédité, se serait probablement transmis aux mâles à l'époque correspondante de la maturité. Mais comme, à l'âge antéricur à la maturité, ces organos n'ont pas été encore affectés par l'hérédité, ils se trouvent également développés chez les jeunes des deux sexes.

Conclusion. - Von Baër a proposé la meilleure définition qu'on ait jamais faite de l'avancement ou du progrès sur l'échelle organique ; ce progrès, d'après lui, repose sur l'étendue de la différenciation et de la spécialisation des différentes parties du même être, ce à quoi je voudrais ceperdant ajouter, lorsqu'il est arrivé à la maturité. Or, à mesure que les organismes, grâce à la sélection

[^82]aturelle, s'adaptent lentement à différents modes d'existence, les parties doivent se différencier et se spécialiser de plus en plus pour remplir diverses fonctions, par suite des avantages qui résultent de la division du travail physiologique. Il semble souvent qu'une mème partie ait été d'abord modifiée dans un sens, puis longtemps après elle prend une autre direction tout à fait distincte; ce qui contribue à rendre toutes les parties de plus en plus complexes. En tout cas, chaque organisme conserve le type général de la conformation de l'ancêtre dont il est originairement issu. Les faits géologiques, d'accord avec cette hypothèse, tendent à prouver que, dans son ensemble, l'organisation a avancé dans le monde à pas lents et interrompus. Dans le règne des vertébrés, elle a atteint son point culminant chez l'homme. Il ne faudrait pas croire, cependant, que des groupes d'êtres organisés disparaissent aussitot qu'ils ont engendré d'autres groupes plus parfaits qu'eux, et qui sont destinés à les remplacer. Le fait qu'ils l'ont emporté sur leurs devanciers n'implique pas nécessairement qu'ils sont mieux adaptés pour s'emparer de toutes les places vacantes dans l'économie de la nature. Quelques formes anciennes semblent avoir survécu parce qu'elles ont habité des localités mieux protégées oû elles n'ont pas été exposées à une lutte très vive; ces formes nous permettent souvent de reconstituer nos généalogies, en nous donnant une idée plus exacte des anciennes populations disparues. Mais il faut se garder de considérer les membres actuellement existants d'un groupe d'organismes inférieurs comme les représentants exacts de leurs antiques prédécesseurs.

Quand on remonte le plus haut possible dans la généalogie du règne des vertébrés, on trouve que les premiers ancôtres de ce règne ont probablement consisté en un groupe d'animaux marins ${ }^{38}$

[^83]ressemblant aux larves des Ascidiens existants. Ces animaux ont produit probablement un groupe de poissons à l'organisation aussi inférieure que celle de l'Amphioxus; ce groupe a dû, à son tour, produire les Ganoïdes, et d'autres poissons comme le Lépidosiren, qui sont certainement peu inférieurs aux amphibies. Nous avons vu que les oiseaux et les reptiles ont été autrefois étroitement alliés; aujourd'hui les Monotrèmes rattachent faiblement les mammifères aux reptiles. Mais personne ne saurait dire actuellement par quelle ligne de descendance les trois classes les plus élevées et les plus voisines, mammifères, oiseaux et reptiles, dérivent de l'une des deux classes vertébrées inférieures, les amphibies et les poissons. On se représente aisément chez les mammifères les degrés qui ont conduit des Monotrèmes anciens aux anciens Marsupiaux, et de ceux-ci aux premiers ancêtres des mammifères placentaires. On arrive ainsi aux Lémuriens, qu'un faible intervalle seulement sépare des Simiadés. Les Simiadés se sont alors séparés en deux grandes branches, les singes du nouveau monde et ceux de l'ancien monde ; et c'est de ces derniers que, à une époque reculée, a procédé l'homme, la merveille et la gloire de l'univers.

Nous sommes ainsi arrivés à donner à l'homme une généalogie prodigieusement longue, mais, il faut le dire, de qualité peu élevée. Il semble que le monde, comme on en a souvent fait la remarque, se soit longuement préparé à l'avènement de l'homme, ce qui, dans un sens, est strictement vrai, car il descend d'une longue série d'ancêtres. Si un seul des anneaux de cette chaine n'avait pas existé, l'homme ne serait pas exactement ce qu'il est. A moins de fermer volontairement les yeux, nous sommes, dans l'état actuel de nos connaissances, à même de reconnaître assez exactement notre origine sans avoir à en éprouver aucune honte. L'orgauisme le plus humble est encore quelque chose de bien supérieur à la poussière inorganique que nous foulons aux pieds ; et quiconque se livre sans préjugés à l'étude d'un être vivant, si simple qu'il soit, ne peut qu'étre transporté d'enthousiasme en contemplant son admirable structure et ses propriétés merveilleuses.
bout de cinq et ceux de l'autruche au bout de sept semaines. Autant que nous en pouvons juger, une période une fois acquise avec la durée convenable ne serait pas sujette à changements; elle pourrait donc etre transmise telle quelle pendant un nombre quelconque de générations. Mais, si la fonction vient à changer, la période changerait aussi et la modification porterait sans doute sur toute une semaine. Cette conclusion serait curíuse si l'on pouvait en prouver la vérité ; car la pérıode de la gestation de chaque mammifère, l'éclosion des œufs de chaque oiseau, et une foule d'autres phénomènes vitaux, trahiraient encore la patrie primitive de ces animaux.

CHAPITRE VII

SUR LES RACRS HUMAINES

Nature et valeur des caractères spécifiques. - Applications aux races humaines. - Arguments favorables ou contraires au classement des races humaines comme espèces distinctes. - Sous-espèces. - Monogénistes et Polygénistes. - Convergence des caractères. - Nombreux points de ressemblances corporelles et mentales entre les races humaines les plus distinctes. - État de I'homme, lorsqu'il s'est d'abord répandu sur la terre. - Chaque race ne descend pas d'un couple unique. - Extinction des races. - Formation des races. - Effets du croisement. - Influence légère de l'action directe des conditions d'existence. - Influence légère ou nulle de la sélection naturelle. - Sélection sexuelle.

Je n'ai pas l'intention de décrire ici les diverses races humaines, pour employer l'expression dont on se sert d'habitude, mais de echercher quelles sont, au point de vue de la classification, la valeur et l'origine des différences que l'on observe chez elles. Lorsque les naturalistes vealent déterminer si deux ou plusieurs formes voisines constituent des espèces ou des variétés, ils se taissent pratiquement guider par les considérations suivantes: la somme des lifférences observées; leur portée sur un petit nombre ou sur un grand nombre de points de conformation; leur importance physioogique, mais plus spécialement leur persistance. Le naturaliste, en effet, s'inquiète d'abord de la constance des caracteres et lui attribue, à juste titre, une valeur considérable. Dès qu'on peut dénontrer d'une manière positive, ou seulement probable, que les ormes en question ont conservé des caractères distincts pendant une lengue période, c'est un argument de grand poids pour qu'on es considère comme des espèces. On regarde génératement une certaine stérilité, lors du premier croisement de deux formes, ou tors du croisement de leurs rejetons, comme un critérium décisif de leur distinction spécifique; lorsque ces deux formes persisrent dans une même région sans s'y mélanger, on s'empresse d'admettre ce fait comme une preuve suffisante, soit d'une certaine itérilité réciproque, soit, quand il s'agit d'animaux, d'une certaine 'épugnance à s'accoupler.
En dehors de ce défaut de mélange par croisement, l'absence zomplète, dans une région bien étudiée, de variétés reliant l'une, ¿ l'autre deux formes voisines, constitue probablement le critérium e e plus important de tous pour établir la distinetion spécifique; or
il y a dans ce fait autre chose qu'une simple persistance de caractères, attendu que deux formes peuvent, tout en variant énormé ment, ne pas produire de variétés intermédiaires. Souvent aussi, avec ou sans intention, on fait jotrer un role à la distribution géographique, c'est-à-dire qu'on regarde habituellement comme distinctes les formes appartenant à deux régions fort éloignées l'une de l'autre, où la plupart des autres espèces sont spécifiquement distinctes; mais, en réalité, il n'y a rien là qui puisse nous aider à distinguer les races géographiques' de celles qu'on appelle les véritables espèces.

Appliquons maintenant aux races humaines ces principes généralement admis, et pour cela étudions ces races au même point de vue que celui auquel se placerait un naturaliste à propos d'un animal quelconque. Quant à l'étendue des différences qui existent entre les races, nous avons à tenir compte de la finesse de discernement que nous avons acquise par l'habitude de nous observer nous-mêmes. Elphinstone ${ }^{1}$ a fait remarquer avec raison que tout Européen nouvellement débarqué dans l'Inde ne distingue pas d'abord les diverses races indigènes, qui ensuite finissent par lui paraitre tout à fait dissemblables; l'Hindou, de son coté, ne remarque pas non plus de différences entre les diverses nations européennes. Les races humaines, même les plus distinctes, ont des formes beaucoup plus semblables qu'on ne le supposerait au premier abord; il faut excepter certaines tribus nègres; mais certaines autres, comme me l'apprend le docteur Rohlfs et comme j'ai pu m'en assurer par moi-même, ressemblent aux peuples de souche caucasienne. C'est ce que démontrent les photographies de la collection anthropologique du Muséum de Paris, photographies faites d'après des individus appartenant à diverces races, et dont la plupart, comme l'ont remarqué beaucoup de personnes à qui je les ai montrées, pourraient passer pour des Européens. Toutefois, vus vivants, ces hommes sembleraient sans aucun doute très distincts, ce qui prouve que nous nous laissons beaucoup influencer par la couleur de la peau, la nuance des cheveux, de légères différences dans les traits, et l'expression du visage.

Il est certain, cependant, que les diverses races, comparées et mesurées avec soin, diffèrent considérablement les unes des autres par-la texture des cheveux, par les proportions relatives de toutes les parties du corps ${ }^{2}$, par le volume des poumons, par la forme et

1. History of India, 1841, vol. 1, p. 323. Le père Ripa fait exactement la meme remarque à propos des Chinois.
2. B.-A. Gould, Investigations in the Military and Anthropological Statistics
la capacité du crâne, et même par les circonvolutions du cerveau ${ }^{3}$. Ce serait, d'ailleurs, une tâche sans fin que de vouloir spécifier les nombreux points de différence qui existent dans la conformation. La constitution des diverses races, leur aptitude variable à s'acclimater et leur prédisposition à contracter certaines maladies constituent encore autant de points de différences. Au moral, les diverses races présentent des caractères également très distincts; ces différences se remarquent principalement quand il s'agit de l'émotion, mais elles existent aussi dans les facultés intellectuelles. Quiconque a eu l'occasion de faire des observations de ce genre a dû être frappé du contraste qui existe entre les indigènes taciturnes et sombres de l'Amérique du Sud, et les nègres légers et babillards. Un contraste analogue existe entre les Malais et les Papous ${ }^{4}$ qui vivent dans les mêmes conditions physiques et ne sont séparés que par un étroit bras de mer.

Examinons d'abord les arguments avancés en faveur de la classification des races humaines en espèces distinctes; nous aborderons ensuite ceux qui sont contraires à cette classification. Un naturalisie, qui n'aurait jamais vu ni Nègre, ni Hottentot, ni Australien, ni Mongol, et qui aurait à comparer ces différents types, s'apercevrait tout d'abord qu'ils diffèrent par une multitude de caractères, les uns faibles, les autres considérables. Après enquête, il reconnaîtrait qu'ils sont adaptés pour vivre sous des climats très dissemblables, et qu'ils diffèrent quelque peu au point de vue de la structure corporelle et des dispositions mentales. Si on lui affirmait alors qu'on peut lui faire venir des mêmes pays des milliers d'individus analogues, il déclarerait certainement qu'ils constituent des espèces aussi véritables que toutes celles auxquelles il a pris l'habitude de donner un nom spécifique. Il insisterait sur cette conclusion dès qu'il aurait acquis la preuve que toutes ces formes ont, pendant des siècles, conservé des caractères identiques, et que des nègres, absolument semblables à ceux qui existent aujourd'hui, habitaient le pays il y a au moins 4000 ans 5. Un excellent
of American Soldiers, 1869, pp. 298-358; cet ouvrage contient un grand nombre de mesures de blancs, de noirs et d'Indiens. Sur la Capacité des poumons, p. 471. Voir aussi les tables nombreuses données par le docteur Weisbach, d'après les observations faites par les docteurs Scherzer et Schwarz, dans le Voyage de la Novara : Partie anthropologique, 1867.
3. Voir, par exemple, la description du cerreau d'une femme Boschiman donnée par M. Marshall (Philos, Transactions, 1864, p. 519).
4. Wallace, The Malay Archipelago, vol. II, 1869, p. 178.
5. M. Pouchet (Pluralité des races humaines, 1864) fait remarquer, au sujet des figures des fameuses cearennes egyptiennes d'Abou-Simbel, que, malgré
toute sa bonne volonte, il n'a pu reconnaltre les representants
observateur, le docteur Lund ${ }^{6}$, lui apprendrait, en outre, que les crânes humains trouvés dans les cavernes du Brésil, mélangés aux débris d'un grand nombre de mammifères éteints, appartiennent précisément au même type que celui qui prévaut aujourd'hui sur le continent américain.

Puis, notre naturaliste, après avoir étudié la distribution géographique de l'espèce humaine, déclarerait, sans aucun doute, que des formes qui diffèrent non seulement d'aspect, mais qui sont adaptées les unes au pays les plus chauds, les autres aux pays les plus humides ou les plus secs, d'autres, enfin, aux régions arctiques doivent etre spécifiquement distinctes. Il pourrait, d'ailleurs, invoquer le fait que pas une seule espèce de quadrumanes, le groupe le plus voisin de l'homme, ne résiste à une basse température ou à un changement considérable de climat; et que les espèces qui se rapprochent le plus de l'homme n'ont jamais pu parvenir à l'âge adulte, même sous le climat tempéré de l'Europe. Un fait, signalé pour la première fois ${ }^{7}$ par Agassiz, ne laisserait pas que de I'impressionner beaucoup aussi, à savoir que les différentes races humaines sont distribuées à la surface de la terre dans les mêmes régions zoologiques qu'habitent les espèces et des genres de mammiféres incontestablement distincts. Cette remarque s'applique manifestement quand il s'agit de la race australienne, de la race mongolienne et de la race nègre; elle est moins vraie pour les Hottentots, mais elle est absolument fondée quand il s'agit des Papous et des Malais, qui sont séparés, ainsi que l'a établi M. Wallace, par ln même ligne que celle qui divise les grandes régions zoologiques malaisienne et australienne.

Les indigènes de l'Amérique s'étendent sur tout le continent, ce

[^84]qui paratt d'abord contraire à la règle que nous venons de mentionner, car la plupart des productions de la moitié septentrionale et de la moitié méridionale du continent différent considérablement; cependant, quelques animaux, l'Opossum, par exemple, habitent l'une et l'autre moitié du continent comme le faisaient autrefois quelques Edentés gigantesques. Les Esquimaux, comme les autres animaux arctiques, occupent l'ensemble des régions qui entourent le pole. Il faut observer que les mammifères qui habitent les diverses régions zoologiques ne diffêrent pas également les uns des autres; de sorte qu'on ne doit pas considérer comme une anomalie, que le nègre diffère plus, et que PAméricain diffëre moins des autres races humaines, que ne le font tes mammifères des mêmes continents de ceux des autres régions. Ajoutons que l'homme, dans le principe, ne parait avoir habité aucune ile océanique; il ressemble donc, sous ce rapport, aux autres membres de la classe à laquelle il appartient.
Quand il s'agit de déterminer si les variétés d'un même animal domestique constituent des espéces distinctes, c'est-à-dire si elles descendent d'espèces sauvages différentes, le naturaliste attache beaucoup de poids au fait de la spécificité distincte des parasites externes propres à ees variétés. Ce fait aurait une portée d'autant plus grande qu'il serait exceptionnel. M. Denny m'apprend, en effet, qu'une même espéce de poux vit en parasite sur les races les plus diverses de chiens, de volailles et de pigeons, en Angleterre. Or, M.A. Murray a étudié avec beaucoup de soin les poux recueitlis dans différents pays sur les diverses races humaines ${ }^{8}$; il a observé que ces poux diffèrent, non seulement au point de vue de la couleur, masis aussi de la conformation des griffes et des membres. Les différences sont restées constantes, quelque nombreux que fussent les individus recueillis. Le chirurgien d'un baleinier m'a affirmé que, lorsque les poux qui infestaient quelques indigènes des fles Sandwich qu'il avait à bord, s'egaraient sur le corps des matelots anglais, ils périssaient au bout de trois ou quatre jours. Ces poux étaient plus foncés et paraissaient appartenir à une espéce différente de ceux qui attaquent les indigènes de Chiloe dans l'Amérique du Sud, poux dont il m'a envoyé des spécimens. Ceux-ci sont plus grands et plus mous que les poux européens. M. Murray s'est procuré quatre espèces de poux d'Afrique, pris sur des nègres habitant la cote orientale et la cotte occidentale, des Hottentots et des Cafres; deux espèces d'Australie; deux de l'Amérique du Nord et deux de
l'Amérique du Sud. Ces derniers provenaient probablement d'indigènes habitant diverses régions. On considère ordinairement que, chez les insectes, les différences de structure, si insignifiantes qu'elles soient, ont une valeur spécifique, lorsqu'elles sont constantes; or, on pourrait invoquer avec quelque raison, à l'appui de la spécificité distincte des races humaines, le fait que des parasites qui paraissent spécifiquement distincts attaquent les diverses races.
Arrivé à ce point de ses recherches, notre naturaliste se demanderait si les croisements entre les diverses races humaines restent plus ou moins stériles. Il pourrait consulter un ouvrage d'un observateur sagace, d'un philosophe émnent, le professeur Broca ${ }^{9}$; il trouverait, à coté de preuves que les croisements entre certaines races sont très féconds, des preuves tout aussi concluantes qu'il en est autrement pour d'autres. Ainsi, on a affirmé que les femmes indigènes de l'Australie et de la Tasmanie produisent rarement des enfants avec les Européens; mais on a acquis la preuve que cette assertion n'a que peu de valeur. Les noirs purs mettent à mort les métis; on a pu lire récemment que la police ${ }^{10}$ a retrouvé les restes calcinés de onze jeunes métis assassinés par les indigènes. On a aussi prétendu que les ménages mulatres ont peu d'enfants; or, le docteur Bachman ${ }^{\text {11 }}$, de Charleston, affirme positivement, au contraire, qu'il a connu des familles mulâtres qui se sont mariées entre elles pendant plusieurs générations, sans cesser d'être en moyenne aussi fécondes que les familles noires ou les familles blanches pures. Sir C. Lyell m'informe qu'il a autrefois fait de nombreuses recherches à cet égard et qu'il a du adopter la même conclusion ${ }^{12}$.

9. Broca, Phèn. d'hybridité dans le genre Homo.

10. Yoir l'interessante lettre de M.-T.-A. Murray, dans Anthropolog. Revietw, avril 1868, p. LIII. Dans cette lettre, M. Murray reffute l'assertion du comte Strzelecki, qui prétend que les femmes australiennes qui ont eu des enfaats avec des hommes blancs devieunent ensuite stériles avec les hommes de leur propre race. M. de Quatrefages (Revue des Cours scientifiques, mars 1869, p. 239) a aussi recueilli des preuves nombreuses tendant à prouver que les croisements entre Australiens et Européens ne sont point stériles.
11. An Examination of prof. Agassiz's sketch of the Nat. Provinces of the Animal World, Gharleston, 1855, p. 44.
12. Le docteur Rohlfs m'écrit que les races du Sahara sont très fécondes ; ces races résultent d'un mélange d'Arabes, de Berbères et de nègres, appartenant a trois tribus D'un autre coté, M. Winwood Reade m'apprend que, bien qu'ils admirent beaucoup les blancs et les mulatres, les nègres de la Cotée d'Or ont pour principe que les mulatres ne doivent pas se marier les uns avee les autres, car il ne résulte de ces mariages qu'un petit nombre d'enfants maladifs. Cette croyance, comme le fait remarquer M. Reade, mérite toute notre attention, car les blancs ont habité la Cote d'Or depuis plus de quatre cents ans, et, par conséquent, les indigènes ont eu amplement le temps de juger par l'expérience.

Le reoensement fait aux États-Unis, en 18054, indique, d'après le docteur Bachman, 405.751 mulâtres, chiffre qui semble évidemment très faible ; toutefois, la position anormale des mulatres, le peu de considération dont ils jouissent, et le dérèglement des femmes tendent à expliquer leur petit nombre. En outre, les nègres absorbent incessamment les mulâtres, ce qui détermine nécessairement une diminution de ces derniers. Un auteur digne de foi ${ }^{13}$ affirme, il est vrai, que les mulatres vivent moins longtemps que les individus de race pure ; bien que cette observation n'ait aucun rapport avec la fécondité plus ou moins grande de la race, on pourrait peutêtre l'invoquer comme une preuve de la distinction spécifique des races parentes. On sait, en effet, que les hybrides animaux et végétaux sont sujets à une mort prématurée, lorsqu'ils descendent d'espèces très distinctes; mais on ne peut guère classer les parents des mulatres dans la catégorie des espèces très distinctes. L'exemple du mulet commun, si renarquable par sa longévité et par sa vigueur et, cependant, si stérile, prouve qu'il n'y a pas, chez les hybrides, de rapport absolu entre la diminution de la fécondité et la durée ordinaire de la vie. Nous pourrions citer beaucoup d'autres exemples analogues.

En admettant même qu'on arrivât plus tard à prouver que toutes les races humaines croisées restent parfaitement fécondes, celui qui voudrait, pour d'autres raisons, les considérer comme spécifiquement distinctes pourrait observer avec justesse que ni la fécondité ni la stérilité ne sont des critériums certains de la distinction spécifique. Nous savons, en effet, que les changements des conditions d'existence, ou les unions consanguines trop rapprochées, affectent profondément l'aptitude à la reproduction ; nous savons, en outre, que cette aptitude est soumise à des lois très complexes; celle, par exemple, de l'inégale fécondité des croisements réciproques entre les deux mêmes espèces. On rencontre, chez les formes qu'il faut incontestablement considérer comme des espèces, une gradation parfaite entre celles qui sont absolument stériles quand on les croise, celles qui sont presque fécondes et celles qui le sont tout à fait. Les degrés de la stérilité ne coĭncident pas exactement avec l'étendue des différences qui existent entre les parents au point de vue de la conformation externe ou des habitudes d'existence. On peut, sous beaucoup de rapports, comparer l'homme aux animaux réduits depuis longtemps en domesticité ; or, on peut aussi accu-

[^85]muler une grande masse de preuves en faveur de la doctrine de Pallas ${ }^{14}$, à savoir que la domestication tend à atténuer la stérilité qui accompague si généralement le croisement des espèces à l'état de nature. On peut, à juste titre, tirer de ces diverses considérations, la conclusion que la fécondité complète des différentes races humaines entre-croisées, alors même qu'elle serait prouvée, ne serait pas un motif absolu pour nous empêcher de regarder ces races comme des espèces distinctes.
Indépendamment de la fécondité, on a cru pouvoir trouver dans «es caractères des produits d'un croisement des preuves indiquant qu'il convient de considérer les formes parentes comme des espèces ou comme des variétés; mais une étude très attentive de ces faits m'a conduit à conclure qu'on ne saurait, en aucune façon, se fier à des règles générales de cette nature. Le croisement amène ordinairement la production d'une forme intermédiaire dąns laquelle se confondent les caractères des parents ; mais, dans certains cas, une partie des petits ressemblent étroitement à une des formes parentes, et les autres à l'autre forme. Ce phénornène se produit surtout quand les parents possèdent des caractères qui ont apparu à la
14. La Variation des animaux et plantes, etc., vol. II, p. 117. Je dois ici rappeler au lecteur que la stérilité des espèces croisées n'est pas une qualité spécialement acquise; mais que, comme l'inaptitude qu'ont certains arbres à être greflés les uns sur les autres, elle dépend de l'acquisition d'autres différences. La nature de ces différences est inconnue, mais elles se rattachent surtout au système reproducteur, et beaucoup moins à la structure externe ou à des différences ordinaires de la constitution. Un élément qui parait important pour la stérilité des espèces croisées résulte de ce que l'une ou toutes deux ont été depuis longtemps habituées à des conditions fixes; or, le changement dans les conditions exerçant une influence spéciale sur le système reproducteur, nous avons d'escellentes raisons pour croire que les conditions fluctuantes de la domestication tendent à éliminer cette sterilité si générale dans les croisements d'espèces à l'otat de nature. J'ai démontré ailleurs (Varlalion, etc., vol, II, p. 196 ; et Origine des especes, p. 281) que la sélection naturelle n'a pas déterminé la stérilité des espèces croisées; nous pouvons comprendre que, lorsque deux formes sont déjà devenues très stériles l'uue avec l'autre, il est à peine possible que leur stérilité puisse s'augmenter par la persistance et la conservation des individus de plus en plus stériles; car, dans ce cas, la progéniture ira en diminuant, et, finalement, il n'apparattra plus que des individus isolés et à de rares intervalles. Mais il y a encore un degré de plus hante stérilité. Gärtner et Kolreuter ont tous deux prouvé que, chez des genres de plantes comprenant de nombreuses espèces, on peut établir une série de celles qui, croisées, donnent de moins en moins de graines, jusqu'à d'autres qui n'en produisent jamais une seule, bien qu'elles soient affectées par le pollen de l'autre espèce, puisque le germe s'ende. Il est donc ici impossible que la sélection s'adresse aux individus les plus stériles qui ont déjà cessé de produire des graines, de sorte que l'apogée de la stérilité, lorsque le germe est seul affecté, ne peat résulter de la sélection. Cel apogée, et sans doute les autres degrés de la stérilite, sont les rêsultats fortuits de certaines differences inconnues dans la constitution du systeme reproducteur des
suite de brusques variations et que l'on peut presque qualifier de monstruosités ${ }^{15}$. Je fais allusion à ce phénomène parce que le docteur Rohlfs m'apprend qu'il a fréquemment observé en Afrique que les enfants des nègres croisés avec des individus appartenant à d'autres races sont complettement noirs ou complètement blancs et rarement tachetés. On sait, d'autre part, que les mulâtres, en Amérique, affectent ordinairement une forme intermédiaire entre les deux races parentes.

Il résulte de ces diverses considérations qu'un naturaliste pourrait se sentir suffisamment autorisé à regarder les races humaines comme des espèces distinctes, car il a pu constater chez elles beaucoup de différences de conformation et de constitution, dont quelques-unes ont une haute importance, différences qui sont restées presque constantes pendant de longues périodes. D'ailleurs, l'énorme extension du genre humain ne laisse pas que de constituer un argument sérieux, car cette extension serait une grande anomalie dans la elasse des mammifères, si le genre humain ne représentait qu'une seule espèce. En outre, la distribution de ces prétendues races humaines concorde avec celle d'autres espèces de mammifères incontestablement distinctes. Enfin, la fécondité mutuelle de toutes les races n'a pas été pleinement prouvée, et, le fût-elle, ce ne serait pas une preuve absolue de leur identité spécifique.

Examinons maintenant l'autre côté de la question. Notre naturaliste rechercherait sans aucun doute si, comme les espèces ordinaires, les formes humaines restent distinctes lorsqu'elles sont mélangées en grand nombre dans un même pays; il découvrirait immédiatement qu'il n'en est certes pas ainsi. Il pourrait voir, au Brésil, une immense population métis de nègres et de Portugais; à Chiloe et dans d'autres parties de l'Amérique du Sud, il trouverait une population entière consistant d'Indiens et d'Espagnols mélangés à divers degrés ${ }^{16}$. Dans plusieurs parties du même continent, il rencontrerait les croisements les plus complexes entre des nègres, des Indiens et des Européens; or, ces triples combinaisons fournissent, à en juger par le règne végétal, la preuve la plus rigoureuse de la fécondité mutuelle des formes parentes. Dans une ile du Paeifique, il trouverait une petite population,

[^86]mélange de Polynésiens et d'Anglais; dans l'archipel Fiji, une population de Polynésiens et de Négritois, croisés à tous les degrés. On pourrait citer beaucoup de cas analogues, dans l'Afrique australe, par exemple. Les races humaines ne sont donc pas assez distinctes pour habiter un même pays sans se mélanger; or, dans les cas ordinaires, l'absence de mélange fournit la preuve la plus évidente de la distinction spécifique.
Notre naturaliste serait également très surpris, lorsqu'il s'apercevrait que les caractères distinctifs de toutes les races humaines sont extremement variables. Ce fait frappe quiconque observe pour la première fois, au Brésil, les esclaves nègres amenés de toutes les parties de l'Afrique. On constate le même fait chez les Polynésiens et chez beaucoup d'autres races. Il serait difficile, pour ne pas dire impossible, d'indiquer un caractère quelconque qui reste constant. Dans les limites même d'une tribu, les sauvages sont loin de présenter des caractères aussi uniformes qu'on a bien voulu le dire. Les femmes hottentotes présentent certaines particularités plus développées qu'elles ne le sont chez aucune autre race, mais on sait que ces caractères ne sont pas constants. La couleur de la peau et le développement des cheveux offrent de nombreuses différences chez les tribus américaines; chez les nègres africains, la couleur varie aussi à un certain degré, et la forme des traits varie d'une manière frappante. La forme du crâne varie beaucoup chez quelques races ${ }^{17}$; il en est de même pour tous les autres caractères. Or, une dure et longue expérience a appris aux naturalistes combien il est téméraire de chercher à déterminer une espêce à l'aide de caractères inconstants.

Mais l'argument le plus puissant à opposer à la théorie qui veut considérer les races humaines comme des espèces distinctes, c'est qu'elles se confondent l'une avec l'autre, sans que, autant que nous en puissions juger, il y ait eu, dans beaucoup de čas, aucun entrecroisement. On a étudié l'homme avec plus de soin qu'aucun autre être organisé; cependant, les savants les plus éminents n'ont pu se mettre d'accord pour savoir s'il forme une seule espèce ou deux (Virey), trois (Jacquinot), quatre (Kant), cinq (Blumenbach), six (Buffon), sept (Huater), huit (Agassiz), onze (Pickering), quinze (Bory Saint-Vincent), seize (Desmoulins), vingt-deux (Morton), soixante (Grawfurd), ou soixante-trois, selon

[^87]Burke ${ }^{\text {18. }}$. Cette diversité de jugements ne prouve pas que les races humaines ne doivent pas être considérées comme des espèces, mais elle prouve que ces races se confondent les unes avec les autres de telle façon qu'il est presque impossible de découvrir des caracterres distinctifs évidents qui les séparent les unes des autres.
Un naturaliste qui a eu le malheur d'entreprendre la description d'un groupe d'organismes très variables (je parle par expérience) a rencontré des cas précisément analogues à celui de l'homme; s'il est prudent, il finit par réunir en une espèce unique toutes les formes qui se confondent les unes avec les autres, car il ne se reconnait pas le droit de donner des noms à des organismes qu'il ne peut pas définir. Certaines difficultés de cette nature se présentent dans l'ordre qui comprend l'homme, c'est-à-dire pour certains genres de singes, tandis que, chez d'autres genres, comme le Cercopithèque, la plupart des espèces se laissent déterminer avec certitude. Quelques naturalistes affirment que les diverses formes du genre américain Cebus constituent des espèceß, d'autres considèrent ces formes comme des races géographiques. Or, si, après avoir recueilli de nombreux Cebus dans toutes les parties de l'Amérique du Sud, on constatait que des formes qui, actuellement, paraissent spécifiquement distinctes, se confondent les unes avec les autres, on ne manquerait pas de les considérer comme de simples variétés ou de simples races; c'est ainsi qu'ont agi la plupart des naturalistes pour les races humaines. Il faut avouer, cependant, qu'il y a, tout au moins dans le règne végétal ${ }^{19}$, des formes que nous ne pouvons éviter de qualifier d'espèces, bien qu'elles soient reliées les unes aux autres, en dehors de tout entrecroisement, par d'innombrables gradations.
Quelques naturalistes ont récemment emploý to terme * sousespéce $>$ pour désigner des formes qui possèdent plusieurs caractères qui dénotent ordinairement les espéces véritables, sans mériter, cependant, un rang aussi élevé. Or, si, d'une part, les raisons importantes que nous avons énumérées ci-dessus paraissent justifier l'élévation des races humaines à la dignité d'espéces, nous rencontrons, d'autre part, d'insurmontables difficultés à définir ces races; il semble donc que, dans ce cas, on

[^88]pourrait recourir avec avantage à l'emploi du terme e sousespèce». Mais la longue habitude fera peut-etre toujours préférer le terme \& race >. Le choix des termes n'a, d'ailleurs, qu'une importance secondaire, bien qu'il soit à désirer, si faire se peut, que les mêmes termes servent à exprimer les mêmes degrés de différence. Il est malheureusement difficile de réaliser cet objectif, car, dans une même famille, les plus grands genres renferment généralement des formes très voisines entre lesquelles il n'est guère possible d'établir une distinction, tandis que les petits genres comprennent des formes parfaitement distinctes; toutes doivent, cependant, être qualifiées d'espèces. En outre, les espèces d'un même genre considérable n'ont pas entre elles un même degré de ressemblance; bien au contraire, dans la plupart des cas, on peut en grouper quelques-unes autour d'autres comme des satellites autour des planètes ${ }^{20}$.
Le genre humain se compose-t-il d'une ou de plusieurs espèces ? C'est là une question que les anthropologues ont vivement discutée pendant ces dernières années, et, faute de pouvoir se mettre d'accord, ils se sont divisés en deux écoles, les monogénistes et les polygénistes. Ceux qui n'admettent pas le principe de l'évolution doivent considérer les espèces, soit comme des créations séparées, soit comme des entités en quelque sorte distinctes; ils doivent, en conséquence, indiquer quelles sont les formes humaines quils considèrent comme des espèces, en se basant sur les règles qui ont fait ordinairement attribuer le rang d'espèces aux autres êtres organisés. Mais la tentative est inutile tant qu'on n'aura pas accepté généralement quelque définition du terme < espèce >, définition qui ne doit point renfermer d'élément indéterminé tel qu'un acte de création. C'est comme si on voulait, avant toute définition, décider qu'un certain groupe de maisons doit s'appeler village, ville ou cité. Les interminables discussions sur la question de savoir si on doit regarder comme des espèces ou comme des races géographiques les mammifères, les oiseaux, les insectes et les plantes si nombreux et si voisins, qui se représentent mutuellement dans l'Amérique du Nord et en Europe, nous offrent un exemple pratique de cette difficulté. Il en est de même pour les productions d'un grand nombre dilles situées à peu de distance des continents.
Les naturalistes, au contraire, qui admettent le principe de l'évolution, et la plupart des jeunes naturalistes partagent cette opinion,

20. Origine des especes, p. 60.

n'éprouvent aucune hésitation à reconnattre que toutes les races humaines descendent d'une souche primitive unique; cela posé, ils leur donnent, selon qu'ils le jugent à propos, le nom de races ou d'espèces distinctes, dans le but d'exprimer la somme de leurs différences ${ }^{25}$. Quand il s'agit de nos animaux domestiques, la question de savoir si les diverses races descendent d'une ou de plusieurs éspèces est quelque peu différente, Bien que toutes les races domestiques, ainsi que toutes les espèces naturelles appartenant au même genre, soient, sans aucun doute, issues de la méme souche primitive, il est encore utile de discuter si, par exemple, toutes les races domestiques du chien ont acquis les différences qui les séparent aujourd'hui les unes des autres depuis qu'une espèce unique quelconque a été primitivement domestiquée et élevée par l'homme, ou si elles doivent quelques-uns de leurs caractères à d'autres espèces distinctes, qui s'étaient déjà modifiées elles-mèmes à l'état de nature et qui leur auraient transmis ces caractères par hérédité. Cette question ne se présente pas pour le genre humain, car on ne saurait soutenir qu'il ait été domestiqué à une période particulière quelle qu'elle soit.
Lorsque, à une époque extrêmement reculée, les descendants d'un ancêtre commun ont revêtu des caractères distincts pour former les races humaines, les différences enire ces races devaient, être insignifiantes et peu nombreuses; en conséquence, ces races, au point de vue des caractères distinctifs, avaient moins de titres au rang d'espèces distinctes que les soi-disant races actuelles. Néanmoins, te terme «espèces est si arbitraire que quelques naturalistes auraient pu peut-être considérer ces anciennes races comme des espèces distinctes, si leurs différences, bien que très légères, avaient été plus constantes qu'elles ne le sont aujourd'hui, et si elles ne se confondaient pas les unes avec les autres.
Toutefois, il est possible, quoique fort peu probable, que les premiers ancêtres de l'homme aient, tout d'abord, revêtu des caractères assez distincts pour se ressembler beaucoup moins que ne le font les races existantes; puis, que plus tard, ainsi que le suggère Vogt, ces dissemblances se soient effacées par un effet de convergence ${ }^{22}$. Lorsque l'homme croise, pour obtenir un but déterminé, les descendants de deux espèces distinctes, il provoque quelquefois, au poiut de vue de l’aspect général, une convergence qui peut etre considérable. G'est ce qui arrive, ainsi que le démontre Von Na_{2}

[^89]thusius ${ }^{23}$, chez les races améliorées depores qui descendent de deux espèces distinctes; et d'une manière un peu moins sensible pour les ces améliorées de bétail. Un célèbre anatomiste, Gratiolet, affirme que les singes anthropomorphes ne forment pas un sousgroupe naturel; il affirme que l'Orang est un Gibbon ou un Semnopithèque très développé, le Chimpanzé un Macaque très développé et le Gorille un Mandrill très développé. Si nous admettons cette conclusion, qui repose presque exclusivement sur les caractères cérébraux, nous avons un exemple de convergence, au moins dans les caractères externes, car les singes anthropomorphes se ressemblent certainement par beaucoup plus de points qu'ils ne ressemblent aux autres singes. On peut considérer toutes les ressemblances analogues, comme celle de la baleine avec le poisson, comme des cas de convergence; mais ce terme n'a jamais été appliqué à des ressemblances superficielles et d'adaptation. Dans la plupart des cas, il serait fort téméraire d'attribuer à la convergence une similitude étroite de plusieurs points de conformation chez les descendants modifiés d'êtres très différents. Les forces moléculaires seules déterminent la forme d'un cristal; il n'y a donc rien d'étonnant à ce que des substances dissemblables puissent parfois revêtir une même forme; mais nous ne devons pas perdre de vue que la forme de chaque être organis(dépend d'une infinité de relations complexes, au nombre desquelles il faut compter des variations provoquées par des causes trop embrouillées pour qu'on puisse les saisir toutes; la nature des variations qui ont été conservées, et cette conservation dépend des conditions physiques ambiantes, et plus encore des organismes environnants avec lesquels chacun d'eux a pu se trouver en concurrence; enfin les caractêres héréditaires (élément si peu stable) transmis par d'innombrables ancetres, dont les formes ont été déterminées par des relations également complexes. Il semble donc inadmissible que les descendants modifiés de deux organismes, différantl'un de l'autre d'une manière sensible, puissent, plus tard, converger à tel point que l'ensemble de leur organisation approche de l'identité. Pour en revenir à lexemple que nous avons cité tout à l'heure, Von Nathusius constate que, chez les races convergentes de porcs, certains os du crâne ont conservé des caractéres qui permettent de prouver qu'elles descendent de deux souches primitives. Si les races humaines descendaient, comme le supposent quelques naturalistes, de deux ou

[^90]de plusieurs espèces distinctes, aussi dissemblables l'une de l'autre que l'Orang l'est du Gorille, il n'est pas douteux que l'on pourrait encore constater chez l'homme, tel qu'il existe aujourd'hui, des différences sensibles dans la conformation de certains os.
Les races humaines actuelles présentent à plusieurs égards de nombreuses différences; ainsi, par exemple, la couleur, les cheveux, la forme du crâne, les proportions du corps, etc., offrent d'infinies variations ; cependant, si on les considère au point de vue de l'ensemble de l'organisation, on trouve qu'elles se ressemblent de près par une multitude de points. Un grand nombre de ces points sont si insignifiants ou de nature si singulière qu'il est difficile de supposer quils aient été acquis d'une manière indépendante par des espèces ou par des races primitivement distinctes. La même remarque s'applique avec plus de force encore, quand is s'agit des nombreux points de ressemblance mentale qui existent entre les races humaines les plus distinctes. Les indigènes américains, les nègres et les Européens, ont des qualités intellectuelles aussi différentes que trois autres races quelconques qu'on pourrait nommer ; cependant, tandis que je vivais avec des Fuégiens, à bord du Beagle, j'observai chez ces derniers de nombreux petits traits de caractère, qui prouvaient combien leur esprit est semblable au nôtre ; je fis la même remarque relativement à un nègre pur sang avec lequel j'ai été autrefois très lié.
Quiconque lit avec soin les intéressants ouvrages de M. Tylor et de sir J. Lubbock ${ }^{24}$ ne peut manquer de remarquer la ressemblance qui existe entre les bommes appartenant à toutes les races, relativement aux gouts, aux caracterres et aux habitudes. C'est ce que prouve le plaisir quils prennent tous à danser, à exécuter une musique grossière, à se peindre, à se tatouer, ou à s'orner de toutes les façons ; c'est ce que prouve aussi le langage par gestes qu'ils comprennent tous, la similitude d'expression de leurs traits, les mêmes cris inarticulés, qu'excitent chez eux les mêmes émotions. Cette similitude, ou plutost cette identité, est frappante, si on l'oppose à la différence des cris et des expressions qu'on observe chez les espèces distinctes des singes. Il est facile de prouver que l'ancêtre commun de l'humanité n'a pas transmis à ses descendants l'art du tir avec l'arc et les flèches; cependant, les pointes de flèches en pierres, provenant des parties du globe les plus éloignées les unes des autres, et fabriquées aux époques les plus reculées,

[^91]sont presque identiques, comme l'ont démontré Westropp et Nilsson ${ }^{25}$. Ce fait ne peut s'expliquer que d'une seule façon, c'est-à-dire que les races diverses possèdent la même puissance inventive ou, autrement dit, des facultés mentales analogues. Les archéologues ont fait la même observation ${ }^{26}$ relativement à certains ornements très répandus, comme les zigzags, etc., et par rapport à certaines croyances et à certaines coutumes fort simples, telles que lusage denfouir les morts sous des constrictions mégalithiques. Dans l'Amérique du Sud ${ }^{27}$, comme dans tant d'autres parties du monde, l'homme a généralement choisi les sommets des hautes collines pour y élever des monceaux de pierres, soit pour rappeler quelque événement mémorable, soit pour honorer les morts.

Or, lorsque les naturalistes remarquent une grande similitude dans de nombreux petits détails portant sur les habitudes, les goûts et les caractères entre deux ou plusieurs races domestiques, oul entre des formes naturelles très voisines, ils voient dans ce fait une preuve que ces races descendent d'un ancêtre commun doué des mêmes qualités; en conséquence, ils les groupent toutes dans une même espèce. Le même argument peut s'appliquer aux races humaines avec plus de force encore.

Il est improbable que les nombreux points de ressemblance si insignifiants parfois qui existent entre les différentes races humaines et qui portent aussi bien sur la conformation du corps que sur les facultés mentales (je ne parle pas ici des coutumes semblables) aient tous été acquis d'une manière indépendante; ils doivent donc provenir par hérédité d'ancêtres qui possédaient ces caractères. Cela nous permet d'entrevoir quel était le premier état de l'homme avant qu'il se fut répandu graduellement dans toutes les parties du monde. Il est évident que l'homme alla peupler des régions largement séparées par la mer, avant que des divergences considérables de caractères se soient produites entre les diverses races, car autrement on rencontrerait quelquefois la même race sur des continents distincts, ce qui n'arrive jamais. Sir J. Lubbock, après avoir comparé les arts que pratiquent aujourd'hui les sauvages dans toutes les parties du monde, indique ceux que l'homme ne pouvait pas connaitre, lorsqu'il s'est pour la première fois éloigné de sa patrie originelle; car on ne peut admettre

[^92]qu'une fois acquises ces connaissances pussent s'oublier ${ }^{28}$. Il prouve ainsi que la lance, simple développement du couteau, et la massue, qui n'est qu'un long marteau, sont les seules armes que possèdent toutes les races \$. Il admet, en outre, que l'homme avait orobablement déjà découvert l'art de faire le feu, car cet art est commun à toutes les races existantes, et était pratiqué par les anciens habitants des cavernes de l'Europe. Peut-être l'homme connaissait-il aussi l'art de construire de grossières embarcations ou des radeaux ; mais, comme l'homme existait à une époque très reculée, alors que la terre, en bien des endroits, se trouvait à des niveaux très différents de ceux qu'elle occupe aujourd'hui, on peut supposer qu'il a pu occuper de vastes régions sans l'aide d'embarcations. Sir J. Lubbock fait remarquer, en outre, que probablement nos ancêtres les plus reculés ne savaient pas compter jusqu'à dix, car beaucoup de races actuelles ne savent pas compter au delà de quatre. Quoi qu'il en soit, dès cette antique période, les facultés intellectuelles et sociales de l'homme devaient être à peine inférieures à ce que sont aujourd'hui celles des sauvages les plus grossiers; autrement, l'homme primordial n'aurait pas si bien réussi dans la lutte pour l'existence, succès que prouve sa précoce et vaste diffusion.

Quelques philologues ont conclu des différences fondamentales qui existent entre certains langages, que, lorsque l'homme a commencé à se répandre sur la terre, il n'était pas encore doué de la parole; mais on peut supposer que des langages, bien moins parfaits que ceux actuellement en usage et complétés par des gestes, ont pu exister, sans, cependant, avoir laissé de traces sur les langues plus développées qui leur ont succédé. Il paraît douteux que, sans l'usage de que'que langage, si imparfait qu'il fût, l'intelligence de l'homme eût pu s'élever au niveau qu'implique sa position dominante à une époque très reculée.

Nos ancêtres méritaient-ils le nom d'hommes, alors qu'ils ne connaissaient que quelques arts très grossiers, et qu'ils ne possédaient quiun langage èxtrêmement imparfait? Cela dépend du sens que nous attribuons au mot homme. Dans une série de formes partant de quelque être à l'apparence simienne et arrivant graduellement à l'homme tel qu'il existe, il serait impossible de fixer le point défini auquel le terme < homme»devrait commencer à s'appliquer. Mais cette question a peu d'importance ; il est de même fort indifférent qu'on désigne sous le nom de \& races \geqslant les diverses

[^93]variétés humaines, ou qu'on emploie les expressions e espèces ou \& sous-espèces», bien que cette dernière désignation paraisse la plus convenable. Enfin, nous pouvons conclure que les principes de l'évolution une fois généralement acceptés, ce qui ne tardera plus bien longtemps, la discussion entre les monogénistes et les polygénistes aura vécu.
Il est encore une question qu'il ne faut pas laisser dans l'ombre: chaque sous-espèce ou race humaine descend-elle, comme on l'a quelquefois affirmé, d'un seul couple d'ancêtres? On peut, chez nos animaux domestiques, former aisément une nouvelle race au moyen d'une seule paire présentant quelque caractère particulier, ou même d'un individu unique qui possède ce caractère, en appariant avec soin sa descendance sujette à variation. Toutefois, la plupart de nos races d'animaux domestiques ne descendant pas d'un couple choisi à dessein, elles résultent de la conservation, inconsciente pour ainsi dire, d'un grand nombre d'individus qui ont varié, si légèrement que ce soit, d'une manière avantageuse ou désirable. Si, dans un pays quelconque, on préfère des chevaux forts et lourds, et, dans un autre, des chevaux légers et rapides, on peut être certain qu'il se formera, au bout de quelque temps, deux sous-races distinctes, sans qu'on ait trié ou fait reproduire des paires ou des individus particuliers dans les deux pays. Telle est évidemment l'origine de bien des races, et ce mode de formation ressemble beaucoup à celui des espèces naturelles. On sait aussi que les chevaux importés dans les iles Falkland, sont devenus, après quelques générations, plus petits et plus faibles, tandis que ceux qui ont fait retour à l'état sauvage dans les Pampas ont acquis une tête plus forte et plus commune; il est hors de doute que ces changements ne proviennent pas de ce qu'une paire quelconque a été exposée à certaines conditions, mais de ce que tous les individus ont été exposés à ces mêmes conditions, et peut-être aussi des effets du retour. Les nouvelles sous-races ne descendent, dans aucun de ces cas, d'une paire unique, mais d'un grand nombre dindividus qui ont varié à des degrés différents, mais d'une manière générale; or, nous pouvons conclure que les mêmes principes ont présidé à la formation des races humaines; les modifications qu'elles ont subies sont le résultat direct de l'exposition à des conditions différentes, ou le résultat indirect de quelque forme de sélection. Nous aurons à revenir bientot sur ce dernier point.

Extinction des races humaines. - L histoire enregistre l'extinction partielle ou complète de beaucoup de races et de sous-races
humaines. Humboldt a vu dans l'Amérique du Sud un perroquet, le seul être vivant qui parlât encore la langue d'une tribu éteinte. Les anciens monuments et les instruments en pierre qu'on trouve dans toutes les parties du monde et sur lesquels les habitants actuels n'ont conservé aucune tradition, témoignent d'une très grande extinction. Quelques petites tribus, restes de races antérieures, survivent encore dans quelques districts isolés et ordinairement montagneux. Les anciennes races qui peuplaient l'Europe étaient, d'après Schaaffhausen ${ }^{20}$, \&inférieures aux sauvages actuels les plus grossiers \geqslant, elles devaient donc différer, dans une certaine mesure, des races existantes. Les restes provenant des Eyzies, décrits par le professeur Broca ${ }^{30}$, paraissent malheureusement avoir appartenu à une familie unique; ils semblent provenir, cependant, d'une race qui présentait la combinaison la plus singulière de caractère bas et simiens avec d'autres caractères d'un ordre supérieur; cette race diffère « absolument de toute autre race ancienne ou moderne que nous connaissions \geqslant. Elle différait donc de la race quaternaire des cavernes de la Belgique.
L'homme peut résister longtemps à des conditions physiques qui paraissent extrêmement nuisibles à son existence ${ }^{31}$. Il a habité, pendant de longues périodes, les régions extrêmes du Nord, sans bois pour construire des embarcations ou pour fabriquer d'autres instruments, n'ayant que de la graisse comme combustible et de la neige fondue comme boisson. A l'extrémité méridionale de l'Amérique du Sud, les Fuégiens n'ont ni vetements, ni habitations méritant même le nom de huttes, pour se défendre contre les intempéries des saisons. Dans l'Afrique australe, les indigènes errent dans les plaines les plus arides, où abondent les bêtes dangereuses. L'homme supporte l'influence mortelle des Terai au pied de l'Himalaya, et résiste aux effluves pestilentielles des cotes de l'Afrique tropicale.
L'extinction est principalement le résultat de la concurrence qui existe entre les tribus et entre les races. Divers freins, comme nous l'avons indiqué dans un chapitre précédent, sont constamment en action pour limiter le nombre de chaque tribu sauvage: ce sont les famines périodiques, la vie errante des parents, cause de grande mortalité chez les enfants, la durée de l'allaitement, l'enlèvement des femmes, les guerres, les accidents, les maladies, les dérègle-

[^94]ments, l'infanticide surtout, et principalement un amoindrissement de fécondité. Si une de ces causes d'arrêt vient à s'amoindrir, même à un faible degré, la tribu ainsi favorisée tend à s'accroître; or, si, de deux tribus voisines, l'une devient plus nombreuse et plus puissante que l'autre, la guerre, les massacres, le cannibalisme, l'escla--vage et l'absorption mettent bientôt fin à toute concurrence qui peut exister entre elles. Lors même qu'une tribu plus faible ne disparaît pas, brusquement balayée, pour ainsi dire, par une autre, il suffit qu'elle commence à décroitre en nombre, pour continuer généralement à le faire jusqu'à son extinction complète ${ }^{32}$.

La lutte entre les nations civilisées et les peuples barbares est très courte, excepté, toutefois, là où un climat meurtrier vient en aide à la race indigène; mais, parmi les causes qui déterminent la victoire des nations civilisées, il en est qui sont très claires et d'autres fort obscures. Il est facile de comprendre que les défrichements et la mise en culture du sol doivent de toutes les façons porter un coup terrible aux sauvages, qui ne peuvent pas ou ne veulent pas changer leurs habitudes. Les nouvelles maladies et les vices nouveaux que contractent les sauvages au contact de l'homme civilisé constituent une cause puissante de destruction; il parait qu'une nouvelle maladie provoque une grande mortalité, qui dure jusqu'à ce que ceux qui sont le plus susceptibles à son action malfaisante soient graduellement éliminés ${ }^{33}$. Il en est peut-être de mème pour les effets nuisibles des liqueurs spiritueuses, ainsi que du goût invétéré que tant de sauvages ont pour ces produits. Il semble, en outre, si mystérieux que soit le fait, que le contact de peuples distincts et jusqu'alors séparés engendre certaines maladies ${ }^{34}$. M. Sproat a étudié avec beaucoup de soin la question de l'extinction dans l'ile de Vancouver: il affirme que le changement des habitudes, qui résulte toujours de l'arrivée des Européens, provoque un grand nombre d'indispositions. Il insiste aussi beaucoup sur une cause en apparence bien insignifiante : le nouveau genre de vie qui entoure les indigènes, les effare et les attriste; «ils perdent tous leurs motifs d'efforts, et n'en substituent point de nouveaux à la place ${ }^{35}$.

Le degré de civilisation constitue un élément très important pour

[^95]assurer le succés d'une des nations qui entrent en concurrence. L'Europe, il y a quelques siècles, redoutait les incursions des barbares de l'Orient; une pareille terreur serait aujourd'hui ridicule. Il est un fait plus curieux qu'a remarqué M. Bagehot, c'est que les sauvages ne disparaissaient pas devant les peuples de l'antiquité comme ils le tont actuellement devant les peuples modernes civilisés ; s'il en avait été ainsi, les vieux moralistes n'auraient pas manqué de méditer cette question, mais on ne trouve, dans aucun auteur de cette période, aucune remarque sur l'extinction des peuples barbares ${ }^{36}$.
Les causes d'extinction les plus énergiques semblent être, dans bien des cas, l'amoindrissement de la fécondité et l'état maladif des enfants; ces deux causes résultent du changement des conditions d'existence, bien que les nouvelles conditions n'aient en ellesmêmes rien de nuisible. M. H.-H. Howorth a bien voulu appeler mon attention sur ce poirt et me fournir de nombreux renseignements. Il convient de citer quelques exemples à cet égard.
Au moment de la colonisation de la Tasmanie, certains voyageurs estimaient à 7.000 , d'autres à 20.000 , le nombre des indigènes. En tout cas, et quel qu'ait pu etre le chiffre de la population, le nombre des indigènes diminua bientôt, en conséquence de luttes perpétuelles, soit avec les Anglais, soit les uns avec les autres. Aprés la fameuse chasse au sauvage à laquelle prirent part tous les colons, il ne restait plus que 120 Tasmaniens qui firent leur soumission entre les mains des autorités anglaises et à qui on voulut bien accorder la vie ${ }^{37}$. En 1832, on transporta ces 120 individus dans l'ile Flinders. Cette fle, située entre la Tasmanie et l'Australie, a 64 kilomètres de longueur sur une largeur qui varie entre 19 et 22 kilomètres; le climat est sain et les nouveaux habitants furent bien traités. Quoi qu'il en soit, leur santé reçut une rude atteinte. En 1834, on comptait (Bonwick, p. 250) 47 hommes adultes, 48 femmes adultes, et 16 enfants; en tout 111 individus; en 1835, ils n'étaient plus que 100. Comme ils continuaient à diminuer rapidement en nombre et quills étaient persuadés qu'ils ne mourraient pas si rapidement dans une autre localité, on les transporta, en 1847, dans la baie d'Oyster, située dans la partie méridionale de la Tasmanie. La peuplade se composait alors,

[^96]20 décembre 1847, de 14 hommes, 22 femmes et 10 enfants ${ }^{38}$. Ce changement de résidence n'amena aucun résultat. La maladie et la mort poursuivaient encore ces malheureux et, en 1864, il ne restait plus qu'un homme (qui mourut en 1869) et trois femmes adultes. La perte de la fécondité chez la femme est un fait encore plus remarquabiè que la tendance à la maladie et à la mort. A l'époque où il ne restait plus que 9 femmes à la baie d'Oyster, elles dirent à M. Bonwick (p. 386) que deux d'entres elles seulement avaient eu des enfants et, entre elles deux, elles n'avaient donné le jour qu'à trois enfants !

Le docteur Story cherche à approfondir les causes de cet état de choses; il fait remarquer que les efforts tentés pour civiliser les sauvages amènent invariablement leur mort. \& Si on les avait laissés errer à loisir comme ils en avaient l'habitude, ils auraient élevé plus d'enfants et on aurait constaté chez eux une mortalité moins grande. »M. Davis, qui a aussi étudié avec beaucoup de soin les habitudes des sauvages, fait de son côté les remarques suivantes: «Les naissances ont été fort restreintes et les décès nombreux. Cet état de choses a dû provenir en grande partie du changement apporté à leur mode de vie et à la nature de leur alimentation ; mais, plus encore, du premier changement de résidence qu'on leur a imposé et des regrets profonds qui ont da en étre la conséquence. » (Bonẃick, pp. 388, 390.)

On a observé des faits analogues dans deux parties très différentes de l'Australie. M. Gregory, le célèbre explorateur, a affirmé à M. Bonwick, que, dans la colonie de Queensland, en constate, mêmè dans les parties les plus récemment colonisées, une diminution des naissances chez les indigènes et qu'en conséquence le nombre de ces derniers décroîtra bientôt dans de vastes proportions». Douze indigènes sur treize, originaires de la baie du Requin, qui vinrent s'établir sur les bords du fleuve Murchison, moururent de la poitrine pendant les premiers trois mois ${ }^{39}$.
M. Fenton, dans un admirable rapport auquel, sauf une exception, j'emprunte tous les faits qui vont suivre, a étudié avec soin la progression et les causes de la diminution des Maories de la Nouvelle-Zélande ${ }^{40}$. Tous les observateurs, y compris les indigènes

[^97]eux-mémes, admettent que, depuis 1830, les Maories dıminuent en nombre et que cette diminution s'accentue chaque jour. Bien qu'on n'ait pu jusqu'à présent procéder au recensement exact des indigènes, le nombre des familles a été évalué avec soin par les personnes habitant plusieurs districts, et il semble qu'on puisse se fier à cette évaluation. Les chiffres obtenus prouvent que, pendant les quatorze années qui ont précédé 1858 , la diminution s'est élevée à 19,42 p. 100. Quelques tribus sur lesquelles ont porté les observations les plus parfaites habitaient des régions séparées par des centaines de kilomètres, les unes sur le bord de la mer, les autres bien loin dans l'intérieur des terres; les moyens de subsistance et les habitudes différaient donc dans une grande mesure (p. 28). En 1858, on évaluait le nombre total des Maories à 53.700 ; en 1872, après un autre intervalle de quatorze ans, on n'en trouve plus que 36.359 , soit une diminution de 32,29 p. 100^{41} I Après avoir démontré que les causes ordinairement invoquées, telles que les nouvelles maladies, le dérèglement des femmes, l'ivrognerie, les guerres, etc., ne sauraient suffire à expliquer cette diminution extraordinaire, M. Fenton, qui s'est livré à une étude approfondie du sujet, croit pouvoir l'attribuer à la stérilité des femmes, et à la mortalité extraordinaire des jeunes enfants (pp. 31, 34). Comme preuve à l'appui, il indique (p. 33) qu'on comptait, en 1844, un enfant pour 2,57 adultes, tandis qu'en 1853, on ne comptait plus qu'un entant pour 3,27 adultes. La mortalité des adultes est aussi considérable. M. Fenton invoque encore comme une autre cause de la diminution la disproportion numérique entre les hommes et les femmes; il naft, en effet, moins de filles que de garçons. Je reviendrai, dans un chapitre subséquent, sur cette dernière assertion qui dépend peut-ètre d'une raison entièrement différente. M. Fenton insiste avec un certain étonnement sur la diminution de la population dans la Nouvelle-Zélande et sur son augmentation en Irlande, deux pays dont le climat se ressemble beaucoup et dont les habitants ont à peu près aujourd'hui les mêmes habitudes. Les Maories eux-mêmes (p. 35) \& attribuent, dans une certaine mesure, leur diminution à l'introduction d'une nouvelle alimentation, à l'usage des vêtements, et aux changements d'habitudes qui en ont été la conséquence ; > nous verrons, en étudiant l'influence que le changement des conditions d'existence a sur la fécondité, qu'ils ont probablement raison. La diminution de la population a commencé entre 1830 et 1840 ; or, M. Fenton démontre (p. 40) qu'ils ont

[^98]découvert vers 1830 l'art de préparer les tiges du mals en les faisant longtemps séjourner dans l'eau et qu'ils s'adonnèrent beaucoup à cette préparation; ceci indique qu'un changement d'habitudes se produisait chez les indigènes, alors mème qu'il y avait très peu d'Européens à la Nouvelle-Zélande. Quand je visitaila Baie des Iles, en 1835 , le costume et le mode d'alimentation des indigènes s'étaient déjà considérablement modifiés; ils cultivaient des pommes de terre, du mairs, et quelques autres produits agricoles qu'ils échangeaient avec les Anglais contre du tabac et des produits manufacturés.

Il ressort de plusieurs notes publiées dans l'histoire de la vie de l'évêque Pattason ${ }^{42}$ que les indigènes des Nouvelles-Hébriles et de plusieurs archipels voisins succombèrent en grand nombre quand on les transporta à la Nouvelle-Zélande, à l'lle Norfolk et dans d'autres stations salubres pour les y élever comme missionnaires.

On sait que la population indigène des iles Sandwich diminue aussi rapidement que celle de la Nouvelle-Zélande. Les voyageurs les plus autorisés évaluaient à environ 300.000 habitants la population des iles Sandwich lors du premier voyage de Cook en 1779. D'après un recensement imparfait opéré en 1823, le nombre des indigènes s'élevait alors à 142.050 . En 1832, ó depuis à diverses périodes, on a procédéà un recensement officiel; je n'ai pu malheureusement me procurer que les renseignements suivants :

Il résulte de ces chiffres que, pendant un intervalle de quarante 12. C.-M. Younge, Life of J.-C. Patteson, 1854 ; voir surtout vol, I, p. 530.
ans, de 1832 à 1872, la population indigène a diminué de 68 p. 100 ! La plupart des savants ont attribué cette diminution à la mauvaise conduite des femmes, aux guerres meurtrières, au travail forcé imposé aux tribus vaincues, à de nouvelles maladies introduites par les Européens, lesquelles, dans quelques cas, ont provoqué de véritables épidémies. Sans doute, ces causes et d'autres faits analogues peuvent expliquer dans une certaine mesure le décroissement extraordinaire de population que l'on observe entre les années 1832 et 1836; mais nous croyons que la cause la plus puissante est l'amoindrissement de la fécondité des indigènes. Le docteur Ruschenberger, de la marine des États-Unis, qui a visité les iles Sandwich entre 1835 et 1837, affirme que, dans un district de l'ile Hawai, 25 hommes sur 1134 , et dans un autre district de la même file, 10 seulement sur 637 avaient 3 enfants; sur 80 femmes mariées, 39 seulement avaient eu des enfants; un rapport officiel remontant à cette époque n'indique que 1 demi-enfant pour chaque couple marié comme la moyenne des naissances dans l'ile entière. Cette moyenne est presque identique à celle des Tasmaniens à la crique d'Oyster. Jarver, qui a publié en 1843 une histoire des illes Sandwich, dit que \& les familles qui ont trois enfants sont exonérées de tout impot; on concède des terres et on accorde d'autres encouragements à celles qui ont quatre enfants ou davantage ». Ces dispositions extraordinaires du gouvernement suffiraient à prouver combien cette race est devenue peu féconde. Le révérend A. Bishop, dans un article publié par le Spectator d'Hawail en 1839, constate que beaucoup d'enfants mouraient alors en bas age et l'évêque Staley m'apprend qu'il en est toujours ainsi. On a attribué cette mortalité au peu de soin des femmes pour les enfants, mais je pense qu'il convient de l'attribuer surtout à une faiblesse innée de constitution chez les enfants, conséquence de l'amoindrissement de la fécondité chez les parents. On peut constater, en outre, une nouvelle ressemblance entre les indigènes des iles Sandwich et ceux de la Nouvelle-Zélande; nous faisons allusion au grand excès des garçons sur des filles; le recensement de 1872 indique, en effet, 31.650 mâles contre 25.257 femelles de tout âge, c'est-à-dire 125,36 malles pour 100 femelles, alors que, dans tous fes pays civilisés, le nombre des femmes excède celui des hommes. Sans aucun doute, la conduite dévergondée des femmes peut en partie expliquer l'amoindrissement de leur fécondité, mais la cause principale de cet amoindrissement est, sans contredit, le changement des habítudes d'existence, cause qui explique en même temps l'augmentation de la mortalité surtout chez les enfants. Cook visita les iles

Sandwich en 1779; Vancouver y débarqua en 1794, et elles reçurent ensuites les visites de nombreux baleiniers. Les missionnaires arrivèrent en 1819; le roi avait déjà aboli l'idolatrie et effectué d'autres réformes. Dès cette époque, il se produisit un changement rapide dans presque toutes les habitudes des indigènes, et on put bientôt les considérer à juste titre comme les plus civilisés de tous les Polynésiens. M. Coan, né dans les illes Sandwich, m'a fait remarquer avec raison que, dans le cours de cinquante ans, les indigènes ont été soumis à un plus grand changement des habitudes d'existence que les Anglais pendant une période de mille ans. L'évêque Staley affirme, il est vrai, que l'alimentation des classes pauvres n'a pas beaucoup changé, bien qu'on ait introduit dans les iles beaucoup d'espèces nouvelles de fruits, surtout la canne à sucre. Il faut ajouter que, désireux d'imiter les Européens, les indigènes changèrent presque immédiatement leur manière de se vêtir et s'adonnèrent généralement à l'usage des boissons alcooliques. Bien que ces changements ne paraissent pas avoir grande importance, je crois, si l'on en juge par ce qui se passe chez les animaux, qu'ils ont du tendre à amoindrir la fécondité des indigènes ${ }^{43}$.

Enfin, M. Macnamara ${ }^{44}$ constate que les habitants si dégradés des iles Andaman, dans la partie orientale du golfe du Bengale, sont très sensibles à un changement de climat; si on les enlève à leur patrie, on les condamne à une mort presque certaine, et cela indépendamment d'un changement d'alimentation ou de toute autre circonstance \%. Il affirme, en outre, que les habitants de la vallée du. Népaul qui est extrêmement chaude en été, ainsi que les habitants des régions montagneuses de l'Inde, souffrent de la fièvre et de la dysenterie quand ils descendent dans les plaines, et meurent certainement s'ils essayent d'y passer toute l'année.

Il résulte de ces remarques que la santé des races humaines les plus sauvages est profondément atteinte, quand on essaye de les

[^99]soumettre à de nouvelles conditions d'existence ou à de nouvelles habitudes, sans qu'il soit nécessaire de les transporter sous un nouveau climat. De simples changements d'habitude, bien qu'ils ne semblent avoir aucune importance, ont ce même effet qui, d'ordinaire, se produit chez les eufants. On a souvent affirmé, comme le fait remarquer M. Macnamara, que l'homme peut supporter avec impunité les plus grandes différences de climat et résister à des changements considérables des conditions d'existence, mais cette remarque est seulement vraie quand elle s'applique awx races civilisées. L'homme à l'état sauvage semble sous ce rapport presque aussi sensible que ses plus proches voisins, les singes anthropoides, qui n'ont jamais survécu longtemps quand on les a exilés de leur pays natal.

La diminution de la fécondité résultant du changement des conditions d'existence, comme nous venons de le voir chez les Tasmaniens, chez les Maories, chez les Hawalens, et probablement aussi chez les Australiens, présente encore plus d'intérêt que leur extrême susceptibilité à la maladie et à la mort; en effet, la moindre diminution de fécondité combinée à ces autres çuses tend à arrêter l'accroissement de la population et conduii tôt ou tard à l'extinction. On peut, dans quelques cas, expliquer la diminution re la fécondité par la mauvaise conduite des femmes, chez les Tahitiens, par exemple, mais M. Fenton a démontré que cette explication ne saurait suffire, quand il s'agit des Nouveaux-Zélandais ou des Tasmaniens.
M. Macnamara, dans le mémoire que nous avons cité plus haut, s'efforce de démontrer que les habitants des régions pestilentielles sont ordinairement peu féconds; mais cette remarque ne peut s'appliquer dans plusieurs cas que nous avons cités. Quelques savants ont suggéré que les habitants des iles deviennent peu féconđ九s et contractent de nombreuses maladies par suite de croisements consanguins très répétés; mais la perte de la fécondité, dans les cas que nous venons de citer, a coïncidé trop étroitement avec l'arrivée dos Européens pour que nous puissions admettre cette explication. D'ailleurs, dans l'état actuel de la science, nous s'avons aucune raison de croire que l'homme soit très sensible aux effets déplorables des unions consanguines, surtout dans des régions aussi étendues que la Nouvelle-Zélande et que l'archipel des Sandwich qui présentent de nombreuses différences de climat. On sait, au contraire, que les habitants actuels de l'ile Norfolk, de même que les Todas dans l'Inde et les habitants de quelques lles sur la cole occidentale de l'Écosse, sont presque tous cousins ou proches
parents, et rien ne prouve que la fécondité de ces tribus se soit amoindrie ${ }^{45}$.
L'exemple des animaux inférieurs nous fournit une explication bien plus probable. On peut démontrer que le changement des conditions d'existence influe à un point extraordinaire sur le système reproducteur, sans que nous puissions, d'ailleurs, indiquer les raisons de cette action; cette influence amene, selon les cas, des résultats avantageux ou nuisibles. J'ai cité à ce sujet un grand nombre de faits dans le chapitre xvin de la Variation des animaux et des plantes à l'élat domestique; je me bornerai donc à rappeler $i_{c i}$ quelques exemples et à renvoyer ceux que ce sujet peut intéresser à l'ouvrage que je viens d'indiquer. Des changements de condition très minimes ont powr effet d'augmenter la santé, la vigueur et la fécondité de la plupart des êtres organisés; d'autres changements, au contraire, ont pour effet de rendre stériles un grand nombre d'animaux. Un des exemples les plus connus est celui des éléphants apprivoisés qui ne reproduisent pas dans l'Inde, tandis qu'ils se reproduisent souvent à Ava où on permet aux femelles d'errer dans une certaine mesure dans les forêts et que l'on replace ainsi dans des conditions plus naturelles.

On a élevé en captivité, dans leur pays natal, divers singes américains males et femelles, et, cependant, ils se sont très rarement reproduits; cet exemple est plus important encore pour le sujet qui nous occupe à cause de la parenté de ces singes avec l'homme. Le moindre changement des conditions d'existence suffit parfois pour provoquer la stérilité chez un animal sauvage réduit en captivité, ce qui est d'autant plus étrange que nos animaux domestiques sont devenus plus féconds qu'ils ne l'étaient à l'état de nature, et que certains d'entre eux peuvent résister à dés changements extraordinaires des conditions sans qu'il en résulte une diminution de fécondité ${ }^{46}$. La captivité affecte, à ce point de vue, certains groupes d'animaux beaucoup plus que d'antres et ordinairement toutes les espèces faisant partie du groupe sont affectées de la même manière. Parfois aussi, une seule espèce d'un groupe devient stérile, tandis que les autres conservent leur fécondité; d'un autre côté, une seule espèce peut conserver sa fécondité, tandis que les

[^100]autres espèces deviennent stériles. Les mâles et les femelles de certaines espèces réduits en captivité ou privés d'une certaine dose de liberté dans leur pays natal ne s'accouplent jamais; d'autres, placés dans les mêmes conditions, s'accouplent souvent, mais sans jamais produire de petits; d'autres enfin ont des petits, mais en moins grand nombre qu'a l'état naturel. Il faut remarquer, en outre, et cette remarque s'applique tout particulièrement à l'homme, que les petits produits dans ces conditions sont ordinairement faibles, maladifs ou difformes et périssent de bonne heure.
Je suis disposé à croire que cette loi générale de l'influence des changements des conditions d'existence sur le système reproducteur qui s'applique à nos proches alliés, les quadrumanes, s'applique aussi à l'homme dans son état primitit. Il en résulte que, si on modifie soudainement les conditions d'existence des sauvages appartenant à quelque race que ce soit, ils deviennent de plus en plus stériles et leurs enfants maladifs périssent de bonne heure; de même qu'il arrive pour l'éléphant et le léopard dans l'Inde, pour beaucoup de singes en Amérique et pour une foule d'animaux de toute sorte, dès qu'on modifie les conditions naturelles de leur existence.
Ces remarques nous permettent de comprendre pourquoi les habitants indigènes des f̂les, qui, depuis longtemps, ont dûe être soumis à des conditions presque uniformes d'existence, sont évidemment sensibles au moindre changement apportéà ces conditions. Il est certain que les hommes appartenant aux races civilisées résistent infiniment mieux que les sauvages à des changements de toute sorte; sous ce rapport, les hommes civilisés ressemblent aux animaux domestiques, qui, bien que sensibles quelquefois à des changements de conditions, les chiens européens dans l'Inde, par exemple, sont rarement devenus stériles ${ }^{47}$. Cette immunité des races civilisées ot des animaux domestiques provient probablement de ce qu'ils ont subi de plus nombreuses variations des conditions d'existence et qu'ils s'y sont accoutumés dans une certaine mesure; de ce qu'ils ont, en outre, changé fréquemment de pays et que les sous-races se sont croisées. Il semble, d'ailleurs, qu'un croisement avec tes races civilisées prémunisse immédiatement une race aborigène contre les déplorables conséquences qui résultent d'un changement des conditions. Ainsi, les descendants croisés des Tahitiens et des Anglais établis à l'ille Pitcairn se multiplièrent si rapidement que lile fut bientot trop petite pour les contenir et, en consé-

[^101]quence, on les transporta en juin 1856 à l'ile Norfolk. La tribu se composait alors de 60 personnes mariées et de 134 enfants, soit en total, 194 personnes. Ils continuèrent à sé multiplier si rapidement à l'ile Norfolk que, en janvier 1868, elle comptait 300 habitants, bien que 16 personnes fussent retournées en 1859 à l'ile Pitcairn; on comptait à peu près autant d'hommes que de femmes.

Quel contraste étonnant avec les Tasmaniens! Le nombre des nabitants de l'ile Norfolk s'accrut, en douze ans et demi seulement, de 194 à 300 , tandis que, en quinze ans, le nombre des Tasmaniens décrut de 120 à 46 , et ce dernier nombre ne comprenait que 10 enfants ${ }^{48}$.

De même, dans l'intervalle qui s'est écoulé entre le recensement de 1866 et celui de 1872, le nombre des indigènes pur sang aux fles Sandwich diminua de 8,081 , tandis que le nombre des demicastes augmenta de 847; mais je ne saurais dire si ce dernier nombre comprend les enfants des demi-castes ou seulement les demi-castes de la première génération.

Les faits que je viens de citer se rapportent tous à des aborigènes qui ont été soumis à de nouvelles conditions d'existence, par suite de l'arrivée d'hommes civilisés. Il est probable, cependant, que, si les sauvages étaient forcés par toute autre cause, l'invasion d'une tribu conquérante par exemple, à déserter leurs demeures et à changer leurs habitudes, la mauvaise santé et la stérilité n'en résulteraient pas moins pour eux. Il est intéressant de constater que le principal obstacle à la domestication des animaux sauvages, ce qui implique pour eux la faculté de se reproduire dès qu'ils sont réduits en captivité, est le même qui empèche les sauvages placés en contact avec la civilisation de survivre pour former à leur tour une race civilisée, c'est-à-dire, la stérilité résultant du changement des conditions d'existence.

Enfin, bien que le décroissement graduel et l'extinction finale des races humaines constitue un problème très complexe, nous pouvons affirmer qu'il dépend de bien des causes différentes suivant les lieux et les époques. Ce problème est, en somme, analogue à celui que présente l'extinction de l'un des animaux les plus élevés, - le cheval fossile, par exemple, qui a disparu de l'Amérique du Sud, pour être, bientôt après, remplacé dans les mêmes régions par d'innombrables troupeaux de chevaux espagnols. Le Nouveau-

[^102]Zélandais semble avoir conscience de ce parallélisme, car il compare son sort futur à celui du rat indigène qui a été presque entièrement exterminé par lé rat européen. Si insoluble đu'il nous paraisse, surtout sí nous voulons pénétrer les causes précises et le mode d'action de l'extinction, ce problème n'a rien après tout qui doive nous étonner. En effet, l'accroissement de chaque espèce et de chaque race est constamment tenu en échec par divers freins, de sorte que, s'il s'en ajoute un nouveau, ou s'il survient une cause de destruction, si faible qu'elle soit, la race diminue certainement en nombre; or, l'amoindrissement numérique entraine tôt ou tard l'extinction, d'autant que les invasions des tribus conquérantes viennent, dans la plupart des cas, précipiter l'événement.

Formation des races humaines. - Le croisement de races distinctes a, dans quelques cas, amené la formation d'une race nou velle. Les Européens et les Hindous diffèrent considérablement au point de vue physique, et, cependant, ils appartiennent à la même souche aryenne et parlent un langage qui est fondamentalement le même, tandis que les Européens ressemblent beaucoup aux Juifs qui appartiennent à la souche sémitique et parlent un langage absolument différent. Broca ${ }^{49}$ explique ce fait singulier par les nombreux croisements que, pendant leurs immenses migrations, certaines branches aryennes ont contractés avec diverses tribus indigènes. Lorsque deux races qui se trourent en contact immédiat viennent à se croiser, il en résulte d'abord un mélange hétérogène; M. Hunter, par exemple, fait observer qu'on peut retrouver chez les Santalis ou tribus des collines de l'Inde des centaines de gradalions imperceptibles \& entre les tribus noires et trapues des montagnes et le Brahmane grand et olivâtre, intelligent, aux yeux calmes et à la tête haute, mais étroite »; de telle sorte que, dans les tribunaux, il est indispensable de demander aux témoins s'ils sont Santalis ou Hindous ${ }^{50}$.

Nous ne savons pas encore si une population hétérogène, telle que celles de certaines iles polynésiennes, provenant du croisement de deux races distinctes, dont il ne reste plus que peu ou point de membres purs, peut jamais devenir homogène. On parvient, chez les animaux domestiques, à fixer une race croisée et à la rendre uniforme en quelques générations, grâce à la sélection pratiquée

[^103]avec soin ${ }^{51}$; il y a donc tout lieu de croire que l'entre-croisement libre et prolongé d'un mélange hétérogène pendant un grand nombre de générations, doit suppléer à la sélection, et surmonter toute tendance au retour, de telle sorte qu'une race croisée finit par devenir homogène, bien qu'elle ne participe pas à un degré égal aux caractères dus deux races parentes.

De toutes les différences qui distinguent les races humaines, la couleur de la peau est une des plus apparentes et des plus accusées. On croyait autrefois pouvoir expliquer les différences de ce genre par un long séjour sous différents climats, mais Pallas a démontré, le premier, que cette opinion n'est pas fondée, et la plupart des anthropologues ${ }^{52}$ ont adopté ses opinions. On a surtout rejeté cette hypothèse parce que la distribution des diverses races colorées, dont la plupart habitent depuis très longtemps le même pays, ne corncide pas avec les différences correspondantes de climat. Certains autres faits qui ne manquent pas d'importance viennent à l'appui de la même conclusion; les familles hollandaises, par exemple, qui, d'après une excellente autorité ${ }^{53}$, n'ont pas éprouvé le moindre changement de couleur malgré une résidence de trois siècles dans l'Afrique australe. Les Bohémiens et les Juifs, habitant diverses parties du monde se ressemblent, étrangement, bien qu'on ait quelque peu exagéré l'uniformité de ces derniers ${ }^{54}$; c'est encore là un argument dans le même sens. On a supposé qu'une grande humidité ou une grande sécheresse de l'atmosphère exerçaient une intluence plus considérable que la chaleur seule sur la couleur de la peau; mais d’Orbigny, dans l'Amérique du Sud, et Livingstone, en Afrique, en sont arrivés à des conclusions directement contraires par rapport à l'humidité et à la sécheresse ; en conséquence, toute conclusion sur ce point est extrêmement douteuse ${ }^{55}$.

Divers faits, que j'ai cités ailleurs, prouvent que la couleur de la peau et celle des poils ont quelquefois une corrélation surprenante avec une immunité complête contre l'action de certains poisons végétaux, et les attaques de certains parasites. Cette remarque m'avait conduit à supposer que la coloration des nègres et des

[^104]autres races foncées provenait peut-être de ce que les individus les plus noirs avaient mieux résisté, pendant une longue série de générations, à l'action délétère des miasmes pestilentiels des pays qu'ils habitent.

J'appris ensuite que le docteur Wells ${ }^{56}$ avait déjà autrefois émis la même idée. On sait depuis longtemps ${ }^{57}$ que les nègres, et même les mulâtres, échappent presque complètement aux atteintes dê la fièvre jaune qui est si meurtrière dans l'Amérique tropicale. Ils résistent également dans une grande mesure aux terribles fièvres intermittentes qui règnent sur plus de 4.000 kilomètres le long des côtes d'Afrique, et qui entrainent la mort annuelle d'un cinquième des blancs nouvellement établis, et obligent un autre cinquième des colons à rentrer infirmes dans leur pays ${ }^{58}$. Cette immunité du nègre paraît étre en partie inhérente à la race et semble dépendre de quelque particularité inconnue de constitution; elle est aussi en partie le résultat de l'acclimatation. Pouchet ${ }^{59}$ constate que les régiments nègres recrutés dans le Soudan et prêtés par le vice-roi d'Égypte pour la guerre du Mexique, échappèrent à la fièvre jaune presque aussi bien que les négres importés depuis longtemps des diverses parties de l'Afrique, et accoutumés au climat des Indes occidentales. Beaucoup de nègres, après avoir résidé quelque temps sous un climat plus froid, deviennent, jusqu'à un certain point, sujets aux fièvres tropicales, ce qui prouve que l'acclimatation joue aussi un role considérable ${ }^{60}$. La nature du climat sous lequel les races blanches ont longtemps résidé exerce également quelque influence sur elles; pendant l'épouvantable épidémie de fièvre jaune de Demerara, en 1837, le docteur Blair constata, en effet, que la mortalité des immigrants était proportionnelle à la latitude du pays qu'ils avaient habité à l'origine. Pour le nègre, l'immunité, en tant qu'elle résulte de l'acclimatation, implique une longueur de temps immense: les indigènes de l'Amérique tropicale, qui résident depuis un temps immémorial dans ces rúgions, ne sont pas, en effet,

[^105]exempts de la fièvre jaune. Le Rév. B. Tristram affirme, en outre, que les habitants indigènes sont forcés pendant certaines saisons de quitter quelques districts de l'Afrique du Nord, bien que les nègres puissent continuer à y résider en toute sécurité.

On a affirméqu'il existe une certaine corrélation entre l'immunité du nègre pour quelques maladies et la couleur de sa peau; mais ce n'est là qu'une simple conjecture; cette immunité pourrait aussi bien résulter de quelque différence dans le sang, dans le système nerveux ou dans les autres tissus. Néanmoins, les faits que nous venons de citer, et le rapport qui existe certainement entre le teint et la tendance à la phtisie, sembleraient prouver que cette conjecture n'est pas sans quelques fondements. J'ai, par conséquent, cherché, mais avec peu de succès ${ }^{61}$,à constater ce qu'ıl pouvait en être. Feu le docteur Daniell, qui a longtemps habité la côte occidentale d'Afrique, m'a affirmé qu'il ne croyait à aucun rapport de cette nature. Bien que très blond, il a lui-même supporté admirablement le climat. Lorsqu'il arriva sur la côte, encore tout jeune, un vieux chef nègre expérimenté lui avait prédit, d'après son apparence, qu'il en serait ainsi. Le docteur Nicholson, d'Antigua, après avoir approfondi cette question, m'a écrit qu'il ne croyait pas que les Européens bruns échappassent mieux à la fièvre jaune que les blonds. M. J.-M. Harris ${ }^{62}$ nie complètement que les Européens à

[^106]cheveux breas supportent mieux que las autres un climat chaud; l'expérience lui a, au contraire, appris à choisir des hommes à cheveux rouges pour le service sur la coste d'Afrique. Autant qu'on peut en juger par ces quelques observations, on peut conclure, oe nous semble, que l'hypothèse, en vertu de laquelle la couleur des races noires résulte de ce que des individus de plus en plus foncés ont survécu en plus grand nombre au milieu des miasmes pestilentiels de leur pays, ne repose sur aucun fondement sérieux, bien qu'elle soit acceptée par plusieurs savants.

Le docteur Sharpe ${ }^{63}$ fait remarquer que le soleil des tropiques, qui brûle la peau des Européens au point d'amener des ampoules, n'a aucun effet sur la peau des nègres; il ajoute que ce n'est pas un effet de l'habitude, car il a vu des enfants de six ou huit mois exposés tout nus au soleil, sans qu'ils soient affectés en aucune façon. Un médecin m'a assuré que, il y a quelques années, ses mains se couvraient par places pendant l'été, mais non pas pendant l'hiver, de taches brunes ressemblant à des taches de rousseur, mais plus grandes. Ces parties tachetées n'étaient pas affectées par les rayons du soleil, alors que les parties blanches de la peau furent dans plusieurs occasions couvertes d’ampoules. Les animaux inférieurs sont aussi sujets à des différences constitutionnelles au point de vue de l'action du soleil sur les parties recouvertes de poils blancs et sur celles qui sont garnies de poils d'autres couleurs ${ }^{64}$. Je ne saurais dire si la défense de la peau coutre l'action des rayons du soleil a une importance suffisante pour que la sélection naturelle ait donné à l'homme une peau foncée. Si l'on admet cette hypothèse, il faut admettre aussi que les indigènes de I'Amérique tropicale ont habité ce pays bien moins longtemps que les nègres n'ont habité l'Afrique ou les Papous les parties méridionales de l'archipel Malais, de même que les Hindous à peau claire ont habité les parties centrales et méridionales de la péninsule beaucoup moins longtemps que les indigènes à peau plus foncée.

Bien que nos connaissances actuelles ne pous permettent pas

[^107]d'expliquer les différences de couleur chez les races humaines par un avantage quelconque qui résulterait pour eux de cette couleur, ou par l'action directe du climat, nous ne devons pas cependant, négliger complètement ce dernier agent, car il y a de bonnes raisons pour croire qu'on peut lui attribuer certains effets héréditaires ${ }^{65}$.

Nous avons vu dans le second chapitre que les conditions d'existence affectent directement le développement de la charpente du corps et produisent des résuitats transmissibles par hérédité. Ainsi, on admet généralement que les Européens établis aux États-Unis subissent des modifications physiques très légères, mais extraordinairement rapides. Le corps et les membres s'allongent. Le colonel Bernys m'apprend que ce fait a été démontré absolument de façon assez plaisante, d'ailleurs, pendant la dernière guerre : les Allemands nouvellement débarqués, incorporés dans l'armée, avaient reçu de l'intendance des vêtements faits à l'avance pour les soldats américains, et les Allemands avaient un aspect ridicule dans ces vêtements trop longs. On sait aussi, et les preuves abondent à cet égard, que, au bout de trois générations, les esclaves des États du Sud occupés aux travaux intérieurs de l'habitation présentent une apparence très différente de celle des esclaves occupés aux travaux des champs ${ }^{66}$.
Toutefois, si nous considérons les races humaines au point de vue de leur distribution dans le monde, nous devons conclure que les différences caractéristiques qu'elles présentent ne peuvent pas s'expliquer par l'action directe des diverses conditions d'existence, en admettant même que ces conditions aient été les mêmes pendant une énorme période. Les Esquimaux se nourrissent exclusivement de matières animales; ils se couvrent d'épaisses fourrures, et sont exposés à des froids intenses et à une obscurité prolongée; ils ne diffèrent, cependant, pas à un degré extrême des habitants de la Chine méridionale, qui ne se nourrissent que de matières végétales, et sont exposés presque nus à un climat très chaud. Les Fuégiens, qui ne portent aucun vêtement, n'ont pour se nourrir que les productions marines de leurs plages inhospitalières; les Botocudos du
65. Voir de Quatrefages (Revue des cours scient., 10 oct. 1868, p. 724), Sur les effets de la résidence en Abyssinie et en Arabie, et autres cas analogues. Le docteur Rolle (Der Mensch, seine Abstammung, etc., 1865, p. 99) constate, sur l'autorité de Khanikof, que la plupart des familles allemandes établies en Géorgie ont acquis, daus le cours de deux générations, des cheveux et des yeux noirs. M. D. Forbes m'informe que, suivant la position des vallées qu'habitent les Quichuas, dans les Andes, ils varient beaucoup de couleur.
66. Harlan, Medical Researches, p. 532. De Quatrefages a recueilli beaucoup de preuves à cet egard, Unité de l'Espèce humaine, 1861, p. 128.

Brésil errent dans les chaudes forêts de lintérieur, et se nourrissent principalement de produits végétaux; cependant, ces tribus se ressemblent au point que des Brésiliens ont pris pour des Botocudos les Fuégiens, qui étaient à bord du Beagle. En ôutre, les Botocudos, aussi bien que les autres habitants de l'Amérique tropicale, ne ressemblent en aucune façon aux nègres, qui occupent les côtes opposées de l'Atlantique; ils sont pourtant exposés à un climat presque semblable, et suivent à peu près le même genre de vie.

Les différences entre les races humaines ne peuvent pas non plus, sauf dans une très petite mesure, s'expliquer par les effets héréditaires résultant de l'augmentation ou du défaut d'usage des parties. Les hommes qui vivent toujours dans des embarcations ont, il est vrai, les jambes un peu rabougries; ceux qui babitent à une haute altitude ont la poitrine plus développée; et ceux qui emploient constamment certains organes des sens peuvent avoir les cavités qui les contiennent un peu augmentées, et leurs traits, par conséquent, un peu modifiés. La diminution de la grandeur des mâchoires par suite d'une diminution d'usage, le jeu habituel des divers muscles servant à exprimer les différentes émotions, et l'augmentation du volume du cerveau par suite d'une plus grande activité intellectuelle, sont, cependant, autant de points qui, dans leur ensemble, ont produit un effet considérable sur l'aspect général des peuples civilisés comparativement à celui des sauvages ${ }^{67}$. 11 est possible aussi que l'augmentation du corps, sans accroissement correspondant dans le volume du cerveau, ait produit chez quelques races (à en juger par les cas signalés chez les lapins) un crâne allongé du type dolichocéphale.
Enfin, la corrélation de développement, si peu connus que soient ses effets, a du certainement jouer un rôle actif; on sait, par exemple, qu'un puissant développement musculaire est accompagné d'une forte projection des arcades sourcilières. Il est certain qu'il existe un rapport intime entre la couleur de la peau et celle des cheveux, de même qu'entre la structure des cheveux et leur couleur chez les Mandans de l'Amérique du Nord ${ }^{68}$. Il existe également un rapport entre la couleur de la peau et l'odeur qu'elle émet.

[^108]Chez les moutons, le nombre des poils compris dans un espace déterminé et celui des pores excrétoires ont quelques rapports réciproques ${ }^{69}$. Si nous pouvons en juger par analogie avec nos animaux domestiques, il y a probablement beaucoup de modifications de structure qui, chez l'homme, se rattachent aussià la corrélation de croissance.
Il résulte des faits que nous venons d'exposer que les différences caractéristiques externes qui distinguent les races humaines ne peuvent s'expliquer d'une manière satisfaisante, ni par l'action directe des conditions d'existence, ni par les effets de l'usage continu des parties, ni par le principe de la corrélation. Nous sommes donc amenés à nous demander si l'action de la sélection naturelle n a pas suffi pour assurer la conservation des légères différences individuelles auxquelles l'homme est si éminemment sujet, et pour contribuer à leur augmentation, pendant une longue série de générations. On nous objectera, sans doute, que les variaticns avantageuses peuvent seules se conserver ainsi; or, autant que nous en pouvons juger (bien que nous puissions facilement nous tromper à cet égard), aucune des différences externes qui distinguent les races humaines ne rendent à l'homme aucun service direct ou spécial. Nous devons, cela va sans dire, excepter de jcette remarque les facultés intellectuelles, morales et sociales. La grande variabilité de tous les différents caractêres que nous avons passés en revue, indique également que ces caractères n'ont pas une grande importance, car, autrement, ils seraient depuis longtemps conservés et fixés, ou éliminés. Sous ce rapport, l'homme ressemble à ces tormes que les naturalistes ont désignées sous le nom de protéennes ou polymorphiques, formes qui sont restées extrêmement variables, ce qui parait tenir à ce que leurs variations ont une nature insignifiante et ont, par conséquent, échappé à l'action de la sélection naturelle.
Jusqu'icí, nous n'avons pas réussi à expliquer les différences qui existent entre les races humaines, mais il reste un agent important, la sélection sexuelle, qui parait avoir agi puissamment sur l'homme ainsi que sur beaucoup d'autres animaux. Je ne prétends pas affirmer que l'action de la sélection sexuelle suffise pour expliquer toutes les différences qu'on remarque entre les races. 11 reste un reliquat non expliqué; dans notre ignorance, nous devons nous borner à dire, au sujet de ce reliquat, que, puisquil nait constam-

[^109]ment des individus, ayant, par exemple, la tête un peu plus ronde ou un peu plus étroite, et le nez un peu plus long ou un peu plus court, ces légères différences pournaient devenir fixes et uniformes, si les agents inconnus qui les ont produites venaient à exercer une action plus constante, avec l'aide d'un entre-croisement longtemps continué Ce sont des modifications de ce genre qui constituent la classe provisoire, dont j'ai parlé dans le second chapitre, et auxquelles, faute d'un terme meilleur, on a donné le nom de variations spontanées. Je ne prétends pas non plus qu'on puisse indiquer avec une précision scientifique les effets de la sélection sexuelle, mais on peut démontrer qu'il serait inexplicable que l'homme n'ait pas été modifié par cette influence, qui a exercé une action si puissante sur d'innombrables animaux. On peut démontrer, en outre, que les différences entre les races humaines, portant sur la couleur, sur les cheveux, sur la forme des traits, etc., sont de nature telle qu'elles donnent probablement prise à la sélection sexuelle. Mais, pour traiter ce sujet d'une manière convenable, j'ai compris qu'il était nécessaire de passer tout le règne animal en revue; aussi je lui consacre la seconde partie de cet ouvrage. Je reviendrai alors à l'homme, et, après avoir essayé de prouver jusqu'à quel point l'action de la sélection sexuelle a contribué à le modifier, je terminerai mon ouvrage par un bref résumé des chapitres de cette premiêre partie.

[^110]La controverse relative à la nature et à l'étendue des différences de structure du cerveau chez l'homme et chez les singes, controverse qui a commencé il y a environ quinze ans, n'est pas encore terminée, bien que le point sur lequel portait la querelle soit aujourd'hui tout autre qu'il était d'abord. Dans le principe, on a affirmé et réaffirmé avec une insistance singulière que le cerveau de tous les singes, même des plus élevés, diffère de celui de l'homme, en ce qu'il ne possède pas certaines conformations importantes, telles que les lobes postérieurs des hémisphères cérébraux, y compris la corne postérieure du ventricule latéral et l'hippocampus minor que l'on trouve toujours dans ces lobes chez lhomme.

Or, la vérité est que ces trois structures sont aussi bien développées dans le cerveau du singe que dans celui de l'homme, si méme elles ne le sont pas mieux; en outre, il est prouvé aujourd'hui, autant qu'une proposition d'anatomie comparée peut l'étre, que le développement complet de ces parties est un caractere absolu de tous les Primates,
exception faite des Lémuriens. En effet, tous les anatomistes qui, pendant ces dernières années, se sont occupés particulièrement de la dispo sition des scissures et des circonvolutions si nombreuses et si complexes qui découpent la surface des hémisphères cérébraux chez l'homme et chez les singes les plus élevés, admettent aujourd'hui que ces conformations sont disposées d'après un méme plan chez l'homme et chez le? singes. Chaque scissure ou chaque circonvolution principale existant dans le cerveau d'un Chimpanzé, existe aussi dans le cerveau de l'homme de sorte que la-terminologie qui s'applique à l'un, s'applique aussi à l'autre. Sur ce point, il n'y a plus aucune différence d'opinion. Ily a quelques années, le professeur Bischoff a publié un mémoire ${ }^{70}$ sur les circonvolutions cérébrales de l'homme el des singes; or, comme le but que se proposait mon. savant collègue n'était certainement pas d'atténueı limportance des différences qui existent sous ce rapport entre l'homme et les singes, je suis heureux de lui emprunter un passage :
"On doit admettre, car c'est un fait bien connu de tous les anato-
" mistes, que les singes, et surtout l'Orang, le Chimpanzé et le Gorille,
"se rapprochent beaucoup de l'homme au point de vue de leur organi-
"sation, beaucoup plus même qu'ils ne se rapprochent d'aucun autre
" animal. Si l'on se place, pour étudier cette question, au point de vue de
" l'organisation seule, il est probable qu'on n'aurait jamais songé à
" discuter l'opinion de Linné qui plaçait l'homme simplement comme une
" espèce particulière à la tête des Mammifères et de ces singes. Les
" organes de l'homme et des singes dont nous venons de parler ont une
" telle affinité qu'il faut les recherches anatomiques les plus exactes pour
" démontrer les différences qui existent réellement entre eux. Il en est
" de mème du cerveau. Le cerveau de l'homme, celui de l'Orang, du
"Chimpanzé et du Gorille, en dépit des différences importantes qu'ils " présentent, se rapprochent beaucoup les uns des autres." (Loc. " cit., p. 101.)
Il n'y a donc plus à discuter la ressemblance qui existe entre les caractères principaux du cerveau de l'homme et de celui du singe; il n'y a plus à discuter non plus la similitude étonnante que I'on observe même dans les détails des dispositions des fissures et des circonvolutions des hémisphères cérébraux chez le Chimpanzé, l'Orang et l'Homme. On ne saurait admettre non plus qu'on puisse discuter sérieusement la nature et l'étendue des différences qui existent. entre le cerveau des singes les plus élevés et celui de l'homme. On admet que les hémisphères cérébraux de l'homme sont absolument et relativement plus grands que ceux de l'Orang et du Chimpanzé; que ses lobes frontaux sont moins excavés par l'enfoncement supérieur du toit des orbites; que les fissures et les circonvolutions du cerveau de l'homme sont, en règle générale, disposées avec moins de symétrie et présentent un plus grand nombre de plis secondaires. On admet, en outre, que, en règle générale, la fissure temporo-occipitale ou fissure perpendiculaire extérieure, qui constitue ordinairement un caractère si marqué du cerveau du singe, tend à disparaitre chez l'homme. Mais il est évident qu'aucune de ces différencer ne constitue une ligne de démarcation bien nette entre le
70. Die Grosshirn-Windungen des Menschen, Abhandlungen der K. Bayerıschen Akademie, vol. X, 1868.
cerveau de l'homme et celui du singe. Le professeur Turner ${ }^{71}$ fait les remarques suivantes relativement à la fissure perpendiculaire extérieure de Gratiolet dans le cerveau humain :
"Cette fissure, chez quelques cerveaux, constitue simplement un " affaissement du-bord de l'hémisphère, mais chez d'autres, elle s'étend "à une certaine flistance plus ou moins transversalement. Chez un " cerveau de femme que j'ai eu occasion d'observer, elle s'étendait sur " l'hémisphère droit à plus de 5 centimètres; chez un autre cerveau, elle "s'étendait aussi à la surfan' de l'hémisphère droit de 10 millimètres, "puis se prolongeait en des 'endant jusqu'au bord inférieur de la * surface extérieure de l'hémisph`'re. La définition imparfaite de cette " fissure, dans la majorité des r sveaux humains, comparativement à
" sa netteté remarquable dans le cerveau de la plupart des quadrumanes,
" provient de la présence chez l'homme de certaines circonvolutions
"superficielles bien tranchées qui passent par-dessus cette fissure et
" relient le lobe pariétal au lobe occipital. La fissure pariéto-occipitale
"extérieure est d'autant plus courte que la première de ces circonvo-
"lutions se rapproche davantage de la fissure longitudinale." (Loc.

* cit., p. 12.)

L'oblitération de la fissure perpendiculaire extérieure de Gratiolet n'est donc pas un caractère constant du cerveau humain. D'autre part, le développement complet de cette fissure n'est pas davantage un caractère constant du cerveau des singes anthropoïdes, car le professeur Rolleston, M. Marshall, M. Broca et le professeur Turner ont observé, à bien des reprises, chez le Chimpanzé, des oblitérations plus ou moins étendues de cette fissure par des circonvolutions. Le professeur Turner dit à la conclusion d'un mémoire qu'il consacre à ce sujet ${ }^{72}$;
«Les trois cerveaux de Chimpanzé, que nous venons de décrire, " prouvent que la régle générale que Gratiolet a essayé de tirer de

- l'absence complète de la première circonvolution et de l'effacement de
a la seconde, ce qui, d'après lui, constitue un caractère spécial du cer-
" reau de cet animal, ne s'applique certes pas toujours. Un seul de ces
« cerveaux, sous ce rapport, suit la loi émise par Gratiolet. Quant à la
" présence de la circonvolution supérieure qui relie les deux lobes, je
" suis disposé à penser qu'elle a existé dans un hémisphère au moins
" dans la majorité des cerveaux de cet animal, qui, jusqu'à présent, ont
"été décrits ou figurés. La position superficielle de la seconde circon-
" volution est évidemment moins fréquente, et, jusqu'ả présent, on ne
" l'a observée, je crois, que dans le cerveau A décrit dans ce mémoire.
* Ces trois cerveaux démontrent en même temps la disposition asymé-
* trique des eirconvolutions des deux hémisphères à laquelle d'autres
"observateurs ont déjà fait allusion dans ieurs descriptions." (pp. 8, 9.)
En admettant même que la présence de la fissure temporo-occipitale ou fissure perpendiculaire extérieure constitue un caractère distinctif entre les singes anthropoildes et l'homme, la structure du cerveau chez les singes platyrrhinins rendrait très douteuse la valeur de ce caractère. р. 12 .

72. Notes portant surtout sur la circonvolution du cerveau du Chimpanzé, Proceedings of the Royal Society of Edinburgh, 1865-66.

En effet, tandis que la fissure temporo-occipitale est une des fissures les plus constantes chez les singes catarrhinins ou singes de l'ancien monde, elle n'est jamais très développéé chez les singes du nouveau monde; elle fait completement défaut chez les petits platyrrhinins; elle est rudimentaire chez le Pithecia ${ }^{73}$, et elle est plus ou moing oblitérée par des circonvolutions chez l'Ateles.
Un caractère aussi variable dans les limites d'un meme groupe ne peut avoir une grande valeur taxinomique.
On sait, en outre, que le degré d'asymétrie des circonvolutions des deux cotés du cerveau humain est sujet à beauconp de variations individuelles, que chez les cerveaux bosjesmans, qui ont été examinés, les fissures et les circonvolutions des deux hémisphères sont beaucoup moins compliquées et beaucoup plus symétriques que dans le cerveau humain, tandis que, chez quelques Chimpanzés, la complexité et la symétrie des circonvolutions et des flssures devient remarquable. Tel est particulièrement le cas pour le cerveau d'un jeune Chimpanzé male figuré par M. Broca. (L'Ordre des Primates, p. 165, fig. 11.)
Quant à la question du volume absolu, il est établi que la différence qui existe entre le cerveau humain le plus grand et le cerveau le plus petit, à condition qu'ils soient sains tous deux, est plus considérable que la différence qui existe entre le cerveau humain le plus petit et le plus grand cerveau de Chimpanze bu d'Orang.
Il est, en outre, un point par lequel le cerveau de l'Orang ou celui du Chimpanzé, ressemble à celui de l'homme, mais par lequel il differe des singes inférieurs, c'est-גे-dire par la présence de deux corpora candicantia, le Cynomorpha n'en ayant qu'un.
En présence de ces faits, je n'hésite pas, en 1874, à répéter la proposition que j'ai énoncée en 1863, et à insister sur cette proposition ${ }^{14}$:
«Par conséquent, en tant qu'il s'agit de la structure cérébrale, il est " évident que l'homme differe moins du Chimpanzé ou de l'Orang que " ces derniers ne different des autres singes; il est évident aussi que la " différence qui existe entre le cerveau du Chimpanzé et celui de - 'l'homme, est presque insignifiante, comparativement à la différence "qui existe entre le cerveau du Chimpanzé et celui d'un Lémurien."
Dans le mémoire que j'ai déjà cité, le professeur Bischoff ne cherche pas à nier la seconde partie de cette proposition, mais il fait d'abord la remarque, bien inutile d'ailleurs, qu'il n'y a rien d'étonnant à ce que le cerveau d'un Orang differe beaucoup de celui d'un Lémurien; en second lieu, it ajoute : «Si nous comparons successivement le cerveau d'un « homme avec celui d'un Orang; puis le cerveau d'un Orang avec celui "d'un Chimpanzé; puis le cerveau de ce dernier avee celui d'un Gorille " et ainsi de suite avec celui d'un Hylobates, d'un Semnopithecus, d'un "Cynocephalus, d'un Cercopithecus, d'un Macacus, d'un Cebus, d'un Calli-
" thrix, d'un Lemur, d'un Stenops, d'un Hapale, nous n'observons pas une
" différence plus grande, ou même aussi grande dans le degré de déve-
" loppement des circonvolutions, que celle qui existe entre le cerveau
" d'un homme et celui d'un Orang ou d'un Chimpanzé. »

[^111]Je me permettrai de répondre que cette assertion, qu'elle soit fausse ou non, n'a rien à faire avec la proposition énoncée dans mon ouvrage sur la place de l'Homme dans la nature, proposition qui a trait, non pas au développement des circonvolutions seules, mais à a structure du cerveau tout entier. Si le professeur Bischoff avait pris la peine de lire avec soin la page 96 de l'ouvrage qu'il critique, il y aurait remarqué le passage suivant : "Il importe de constater un fait remarquable : c'est " que, bien qu'il existe, autant toutefois que nos connaissances actuelles " nous permettent d'en juger, une véritable rupture structurale dans la "série des formes des cerveaux simiens, cet hiatus ne se trouve pas " entre l'homme et les singes anthropoildes, mais entre les singes infe* rieurs et les singes les plus infimes, ou, en d'autres termes, entre les * singes de l'ancien et du nouveau monde et les Lémuriens. Chez tous * les Lémuriens qu'on a examinés jusqu'à présent, le cervelet est par-

* tiellement visible d'en haut, et le lobe postérieur, ainsi que la corne
a postérieure et l'hippocampus minor qu'il contient, sont plus ou moins
" rudimentaires. Au contraire, tous les marmousets, tous les singes
" américains, tous les singes de l'ancien monde, les babouins ou les
"singes anthropoïdes ont le cervelet entièrement caché par les lobes
« cérébraux postérieurs et possèdent une grande corne postérieure, ainsi
* qu'un hippocampus minor bien développé. s.

Cette assertion était l'expression absolument exacte de l'état de la science au moment où elle a été faite; il ne me semble pas, d'ailleurs, qu'il y ait lieu de la modifler à cause de la découverte subséquente du développement relativement faible des lobes postérieurs chez le singe siameng et chez le singe hurleur. Malgré la brièveté exceptionnelle des lobes postérieurs chez ces deux espèces, personne ne saurait soutenir que leur cerveau se rapproche le moins du monde de celui des Lémuriens. Or, si, au lieu de placer l'Hapale en dehors de sa situation naturelle, comme le professeur Bischoff le fait sans aucune raison, nous rétablissons comme suit la série des animaux qu'il a cités : Homo, Pithecus, Troglodytes, Hyiobates, Semnopithecus, Cynocephalus, Cercopithecus, Macacus, Cebus, Callithrix, Hapale, Lemur, Stenops, je me crois en droit d'affirmer que la grande rupture dans cette série se trouve entre l'Hapale et le Lemur et que cette rupture est beaucoup plus grande que celle qui existe entre deux autres termes quels qu'ils soient de cette série. Le professeur Bischoff ignore sans doute que, longtemps avant lui, Gratiolet avait suggéré la séparation des Lémuriens des autres Primates, tout justement à cause de la différence qui existe dans leurs caractères cérébraux, et que le professeur Flower avait fait les observations suivantes en décrivant le cerveau du Loris de Java ${ }^{75}$:

- Il est surtout remarquable que, dans le développement des lobes postérieurs du cerveau, on ne remarque chez les singes qui se rapprochent de la famille des Lémuriens sous d'autres rapports, c'est-à-dire chez les membres inférieurs, ou groupe platyrrhinin, aucune ressemblance avec le cerveau court et arrondi des Lémuriens. "

Les progrès considérables qu'ont fait faire ̀̀ la science, pendant les dernières dix années, les reeherches de tant de savants, justifient donc les faits que j'ai constatés en 1863 relativementà la structure du cerveau
adulte. On objecte toutefois que, en admettant la similitude du cerveau adulte de l'homme et des singes, ces organes n'en sont pas moins, en réalité, très différents parce que l'on observe des différences fondamentales dans le mode de leur développement. Personne plus que moi ne serait disposé à admettre la force de cet argument, si ces differences fondamentales de développement existaient réellement, ce que je nie complètement; je soutiens, au contraire, que l'on peut observer une concordance fondamentale dans le développement du cerveau chez l'homme et chez les singes.

Gratiolet a prétendu qu'il existe une différence fondamentale dans le développement du cerveau de l'Homme et de celui des singes et que cette différence consiste en ceci : que, chez les singes, les plis qui paraissent d'abord sont situés sur la région postérieure des hémisphères cérébraux, tandis que, dans le fætus humain, les plis paraissent d'abord sur les lobes frontaux ${ }^{76}$.
Cette assertion générale est basée sur deux observations, l'une d'un Gibbon tout prêt à naitre, chez lequel les circonvolutions postérieures étaient'« bien développées n, tandis que celles des lobes frontaux étaient à "peine indiquées» (loc. cit., p. 39), et l'autre d'un feetus humain à la vingt-deuxième ou la vingt-troisième semaine de gestation chez lequel Gratiolet remarque que linsula était découvert, mais où, néanmoins, * des incisures sèment le lobe antérieur, une scissure peu profonde indique la séparation du lobe occipital, très réduit d'ailleurs, dès cette époque. Le reste de la surface cérébrale est encore absolument lisse ${ }^{77}$."
On trouve dans la planche II, fig. 1, 2, 3 de l'ouvrage que nous venons d'indiquer trois vues de ce cerveau, représentant la partie supérieure, la partie latérale et la partie inférieure des hémisphères, mais non pas le coté intérieur. Il est à remarquer que la figure ne correspond pas à la description de Gratiolet en ce que la fissure (antéro-temporale) sur la moitié postérieure de la face de l'hémisphère est plus nettement indi-
76. "Chez tous les singes, les plis postérieurs se développent les premiers; les plis antérieurs se développent plus tard; aussi la vertébre occipitale et la pariétale sont-elles relativement très grandes chez le foetus. Lhomme présente une exception remarquable, quant à l'époque de l'apparition des plis frontaux qui sont les premiers indiqués ; mais le développement général du lobe frontal, envisagé seulement par rapport à son volume, suit les mêmes lois que dans les singes, n Gratiolet, Mémoires sur les plis cérébraux de lhomme et des Primates, p. 39, tab. IV, fig. 3.
77. Voici les termes mêmes dont s'est servi Gratiolet : " Dans le foetus dont il s'agit, les plis cérébraux postérieurs sont bien développés, tandis que les plis du lobe frontal sont à peine indiqués, „ Toutefois la figure (pl. 4, fig. 3) indique la fissure de Rolando et un des plis frontaux. Néanmoins, M. Alix, Nolice sur les travaux anthropologiques de Gratiolet (Mémoires de la Société d'Anthropologie de Paris, 1868, p. 32), s'exprime ainsi : " Gratiolet a eu entre les mains le cerveau d'un foetus de Gibbon, singe éminemment supérieur et tellement rapproché de l'orang, que des 'naturalistes très compétents l'ont rangé parmi les anthropoïdes. AI. Huxley, par exemple, n'hésite pas sur ce point. Eh bien ! c'est sur le cerveau-d'un foetus de gibbon que Gratiolet a vu les circonvolutions du lobe temporo-sphénoidal déjà développées, lorsqu'il n'existe pas incore de plis sur le lobe frontal. Il était done bien autorisé à dire que, chez' l'homme, les circonvolutions apparaissent d' α et ω, tandis que, chez les singes, elles se développent d' ω et α_{0}.
quée qu'aucune de celles qui se trouvent sur la moitié antérieure. En conséquence, si la figure a été correctement dessinée, elle ne justifle en aucune façon la conclusion de Gratiolet: " Il y a donc entre ces cerveaux (celui d'un Eallithrix et celui d'un Gibbon) et celui du foetus humain une différence fondamentale. Chez celui-ci, longtemps avant que les plis temporaux apparaissent, les plis frontaux essayent d'exister. .

D'ailleurs, depuis l'époque de Gratiolet, le développement des circonvolutions et des plis du cerveau a fait le sujet de nouvelles recherches auxquelles se sont livı és Schmidt, Bischoff, Pansch ${ }^{78}$, et plus particulièrement Ecker ${ }^{29}$, dont l'ouvrage est non seulement le plus récent, mais le plus complet à cet égard.
On peut résumer, comme suit, les travaux de ces savants :
1° Chez le fæetus humain la fissure sylvienne se forme dans le cours du troisième mois de la gestation utérine. Pendant ce mois et pendant le quatrième mois, les hémisphères cérébraux sont lisses et arrondis (à l'exception de la dépression sylvienne), et ils se projettent en arrière bien au delà du cervelet.
2° Les plis proprement dits commencent à apparaitre dans l'intervalle qui s'écoule entre la fin du quatrième mois et le commencement du sixième mois de la vie fæotale; mais Ecker a soin de faire remarquer que, non seulement l'époque, mais aussi l'ordre de leur apparition sont sujets à des variations individuelles considérables. En aucun cas, cependant, les plis frontaux ou temporaux ne paraissent les premiers.
Le premier à paraitre se trouve méme sur la surface intérieure de lhémisphère (d'où il résulte sans doutte qu'il a échappé à Gratiolet qui ne semble pas avoir examiné cette face dans le foetus qu'il possédait) et est, soit le pli perpendiculaire antérieur (occipito-pariétal), soit le pli calcarin, qui sont situés très près l'un de lautre et qui même se confondent l'un avec l'autre. En règle générale, le pli occipito-pariétal parait le premier.
3. Pendant la dernière partie de cette période, on voit paraitre un autre pli, le pli postéro-pariétal ou fissure de Rolando, qui est suivi pendant le cours du sixième mois par les autres plis principaux des lobes frontaux, pariétaux, temparaux et occipitaux. Toutefois, il n'est pas démontré qu'un de ces plis paraisse certainement avant l'autre; il est à remarquer, en outre, que, dans le cerveau ágé de six mois décrit et figuré par Ecker (loc. cit., pp. 212-213, pl. II. fig. 1, 2, 3, 4), le pli antérotemporal (scissure parallele), si caractéristique du cerveau du singe, est aussi bien, sinon mieux développé que la flssure de Rolando et est plus nettement indiqué que les plis frontaux.

Il me semble, si l'on envisage l'ensemble de ces faits, que l'ordre de l'apparition des plis et des circonvolutions dans le cerveau foetal humain concorde parfaitement avee la doctrine gènérale de l'évolution et avec l'hypothèse que l'Homme procède de quelque forme ressemblant au

[^112]singe, bien qu'on ne puisse douter que cette forme, sous bien des rap ports, était differente de tous les Primates actuellement vivants

Von Baer nous a enseigné, il y a cinquante an ${ }^{2}$, que, dans le cours de leur développement, les animaux alliés revétent d'abord, les caractères des groupes étendus auxquels ils appartiennent, puis revétent par degrés les caractères qui les renferment dans les limites d'une famille d'un genre et d'une espéce; il a prouvé en même temps qu'aucune phase du déveioppement d'un animal élevé n'est précisément semblable à la condition adutte d'un animal inférieur.

Il est parfaitement correct de dire qu'une grenouille passe par la condition de poisson; car, à une période dé son existence, le têtard a tous les caractères d'un poisson et, s'il ne se développait pas subséquemment, devrait etre classé parmi les poissons; mais il est égalemenı vrai que le têtard differre beaucoup de tous les poissons connus.

De même on peut dire que le cerveau d'un fœetus humain, pendant le cinquième mois de son existence, ressemble non seulement au cerveav d'un singe, mais à celui d'un marmouset ou singe arctopithécin; car ses hémisphères, avec leurs deux grandes cornes postérieures et sans aucun pli, si ce n'est le pli sylvien et le pli calcarin, présentent tous les caractères trouvés seulement dans le groupe des Primates arctopithécins. Mais il est également vrai, comme le fait remarquer Gratiolet, que, par sa fissure sylvienne largement ouverte, ce cerveau diffère de celui de tous les marmousets actuels. Sans doute, il ressemblerait beaucoup plus au cerveau d'un fæetus avancé de marmouset; mais nous ignorons complètement quel est le mode de développement du cerveau chez les marmousets. Dans le groupt Platyrrhinin proprement dit, la seule observation que je connaisse a été faite par Pansch qui a trouvé dans le cerveau du foetus d'un Cebus apella, outre la fissure sylvienne et la profonde scissure calcarine, seulement une fissure antéro-temporale (scis sure parallèle de Gratiolet) très peu profonde.

Or, ce fait rapproché de la circonstance que la fissure antéro-temporale est présente chez certains Platyrrhinins, tels que les saimiri, qu possèdent de simples traces de fissure sur la moitié antérieure de l'extérieur des hémisphères cérébraux, ou qui n'en possèdent pas du tout, vient évidemment à l'appui de l'hypothèse de Gratiolet en vertu de laquelle les plis postérieurs apparaissent avant les plis antérieurs dans le cerveau des Platyrrhinins.

Mais il ne s'ensuit en aucune façon que la règle qui s'applique aux Platyrrhinins s'applique aussi aux Catarrhinins. Nous n'avons aucun renseignement relativement au développement du cerveau chez les Cynomorphes; quant aux Anthropomorphes, nous ne possédons qu'une seule observation, celle faite sur le cerveau du Gibbon, quelque temps avant la naissance, dont nous avons déjà parlé. Nous ne possédons donc actuellementaucun témoignage qui permette de déclarer que les plis du cerveau d'un Chimpanzé ou d'un Orang ne paraissent pas dans le même ordre que les plis du cerveau de l'Homme.

Gratiole commence sa préface par l'aphorisme: "Il est dangereux dans les sciences de conclure trop vite. „ Je crains qu'il n'ait oublié cette excellente maxime au moment où, dans le corps de son ouvrage, il aborde la discussion des différences qui existent entre l'Homme et les singes. Sans aucun doute, l'éminent auteur d'un des travaux les plus
remarquables relativement au cerveau des Mammiféres aurait été lo premier à admettre l'insuffisance de ses données, s'ii avait vécu as-ez longtemps pour profiter des recherches nombreuses, faites de toutes parts. Il faut donc infiniment regretter que ses conclusions ąjent été employées par certaines personnes, inaptes à apprécier les bases sui lesquelles elle's reposent, comme des arguments en faveur de l'obscurantisme ${ }^{50}$.

En tout cas, que l'hypothèse de Gratiolet sur l'ordre relatif de l'apparition des plis temporaux et frontaux soit fondée ou non, il est impor tant de remarquer qu'un fait reste patent : avant l'apparition des plis temporaux ou frontaux, le cerveau du foetus humain présente des caractères qu'on trouve seulement dans le groupe inférieur des Primates (à l'exception des Lémurs); or, c'est exactement ce qui devait arriver si l'Homme procède des modifications graduelles de la meme forme que celle d'où sont sortis les autres Primates.
80. M. l'abbé Lecomte, par exemple, dans un torrible pamphlet, le Darwinisme et l'Origine de l'Homme, 1878.

DEUXIĖME PARTIE

LA gÉLEOTION BEXUELLE

CHAPITRE VIII

RINCIPES DE LA SÉLECTION SEXUELLE

Caractères sexuels secondaires. - Sélection sexuelle. - Son mode d'action. - Excédent des males. - Polygamie. - Le nialle ordinairement seul modiffé par la sélection sexuelle. - Ardeur du mâle. - Variabilité du mâle. - Choix exercé par la femelle. - La sélection sexuelle comparée à la sélection naturelle. - Hérédité aux périodes correspondantes de la vie, aux saisons correspondantes de l'année, et limitée par le sexe. - Rapports entre les diverses formes de l'hérédité. Causes pourlesquelles un des sexes et les jeunes ne sont pas modifiés par la sélection sexuelle. - Supplément sur les nombres proportionnels des males et des femelles dans le règne animal. - La proportion du nombre des individus males et femelles dans ses rapports avec la sélection naturelle.

Chez les animaux à sexes séparés, les mâles diffèrent nécessairement des femelles par leurs organes de reproduction, qui constituent les caractères sexuels primaires. Mais les sexes diffèrent souvent aussi par ce que Hunter a appelé les caractères sexuels secondaires, qui ne sont pas en rapport direct avec l'acte de la reproduction; le male, par exemple, possède certains organes de sens ou de locomotion, dont la femelle est dépourvue; ou bien, ils sont beaucoup plus développés chez lui pour lui permettre de la trouver et de l'atteindre; ou bien encore, le male est muni d'organes spéciaux de préhension, à l'aide desquels il peut facilement la maintenir. Ces derniers organes, très diversifiés, se confondent avec d'autres que, dans certains cas, on peuk, à peine distinguer de ceux qu'on considère ordinairement coinme les organes primaires; tels sont les appendices complexes qui occupent l'extrémité de l'abdomen des insectes males. A moins que nous ne restreignions le terme 《 primaire » aux glandes reproduc-
trices seules, il n'est presque pas possible d'établir une ligne de démarcation entre les organes sexuels primaires et les organes secondaires.
La femelle diffère souvent du male en ce qu'elle possède des organes destinés à l'alimentation ou à la protection de ses jeunes, tels que les glandes mammaires des Mammifères, et les poches abdominales des Marsupiaux. Dans quelques cas plus rares, le male possède des organes analogues qui font défaut chez la femelle, comme les réceptacles pour les œufs qu'on trouve chez certains poissons males, et ceux qui se développent temporairement chez certaines grenouilles mâles. La plupart des abeilles femelles ont un appareil particulier pour récolter et porter le pollen, et leur ovipositeur se transforme en un aiguillon pour la défense des larves et de la communauté. Nous pourrions encore citer de nombreux cas analogues, mais qui ne nous intéressent pas ici. Il existe, toutefois, d'autres différences qui n'ont aucune espèce de rapport avec les organes sexuels primaires, différences qui nous intéressent plus particulièrement, - telles que la plus grande taille, la force, les dispositions belliqueuses du male, ses armes offensives ou défensives, sa coloration fastueuse et ses divers ornements, la faculté de chanter, et autres caractères analogues.

Outre les différences sexuelles primaires et secondaires auxquelles nous venons de faire allusion, le mâle et la femelle diffèrent quelquefois par des conformations en rapport avec différentes habitudes d'existence, et n'ayant que des relations indirectes, ou n'en ayant même pas, avec la fonction reproductrice. Ainsi les femelles de certaines mouches (Culcidés et Tabanidés) sucent le sang, tandis que les males vivent sur les fleurs et ont la bouche privée de mandibules ${ }^{1}$. Certaines phalènes males ainsi que quelques crustacés mâles (Tanais) ont seuls la bouche imparfaite, fermée, et ne peuvent absorber aucune nourriture. Les mâles complémentaires de certains Cirripèdes vivent, comme les plantes épiphytiques, soit sur la femelle, soit sur la forme hermaphrodite, et sont dépourvus de bouche et de membres préhensiles. Dans ces cas, le male s'est modifié et a perdu certains organes importants que possédent les femelles. Dans d'autres cas, la femelle a subi ces modifications; ainsi, le lampyre femelle est dépourvu d'ailes; ces organes, d'ailleurs, font si bien défaut à beaucoup de phalènes femelles que quelques-unes ne quittent jamais le cocon. Un grand nombre de

[^113]crustacés parasites femelles ont perdu leurs pattes natatoires. Chez quelques charançons (Curculionidés) la trompe présente une grande différence en longueur chez le male et chez la femelle ${ }^{2}$; mais nous ne saurions dire quelle est la signification de ces différences ef d'autres analogues. Les différences de conformation entre les deux sexes, qui se rapportent à diverses habitudes d'existence, sont ordinairement limitées aux animaux inférieurs; chez quelques oiseaux, cependant, le bec du malle diffère de celui de la femelle. Le huia de la Nouvelle-Zélande présente à cet égard une différence extraordinaire; le docteur Buller ${ }^{3}$ affirme que le malle se sert de son bec puissant pour fouiller le bois mort, afin d'en extraire les insectes, tandis que la femelle fouille les parties les plus mclles avec son bec long, élastique et recourbé; de cette façon le mâle et la femelle s'entr'aident mutuellement. Dans la plupart des cas, les différences de conformation entre les deux sexes se rattachent plus ou moins directement à la propagation de l'espèce; ainsi, une femelle qui a à nourrir une multitude d'œuf's a besoin d'une nourriture plus abondante que le male, et, par conséquent, elle doit posséder des moyens spéciaux pour se la procurer. Un animal mâle qui ne vit que quelques heures peut, sans inconvénient, perdre, par défaut d'usage, les organes qui lui servent à se procurer des aliments, tout en conservant dans un état parfait ceux de la locomotion, qui lui servent à atteindre la femelle Celle-ci, au contraire, peut perdre sans danger les organes qui lui permettent le vol, la natation ou la marche, si elle acquiert gra duellement des habitudes qui lui rendent la locomotion inutile.

Nous n'avons toutefois à nous occuper ici que de la sélection sexuelle. Cette sélection dépend de l'avantage que certains individus ont sur d'autres de même sexe et de même espèce, sous le rapport exclusif de la reproduction. Lorsque la conformation diffëre chez les deux sexes par suite d'habitudes différentes, comme dans les cas mentionnés ci-dessus, il faut évidemmont attribuer les modifications subies à la sélection naturelle, et aussi à l'hérédité limitée à un seul et même sexe. Il en est de même pour les organes sexuels primaires, ainsi que pour ceux destinés à l'alimentation et à la protection des jeunes; car les individus capables de mieux engendrer et de mieux protéger leurs descendants doivent en laisser, cæteris paribus; un plus grand nombre qui héritent de leur supériorité, tandis que ceux qui les engendrent ou les nourrissent dans

[^114]3. Birds of New Zealand, 1872, p. 66.
de mauvaises conditions n'en laissent qu'un petit nombie pour hériter de leur faiblesse. Le mâle cherche ordinairement la femelle, les organes des sens et de la locomotion lui sont done indispensables; mais, si ces organes lui sont indispensables, ce qui est généralement le cas, pour accomplir d'autres actes de l'existence ils doivent leur développement à l'action de la sélection naturelle. Lorsque le mâle a joint la femelle, il luifaut quelquefois des organes préhensiles pour la retenir; ainsi, le docteur Wallace m'apprend que certaines phalènes malles ne peuvent pas s'unir avec les femelles, si leurs tarses ou pattes sont brisés. Beaucoup de crustacés océaniques mâles ont les pattes et les antennes extraordinairement modifiées pour pouvoir saisir la femelle; d'où nous pouvons conclure que, ces animaux étant exposés à être ballottés par les vagues de la pleine mer, les organes en question leur sont absolument nécessaires, pour qu'ils puissent propager leur espèce; dans ce cas, le développement de ces organes n'a été que le résultat de la sélection ordinaire ou sélection naturelle. Quelques animaux placés très bas sur l'échelle se sont modifiés dans le même but; ainsi, certains vers parasites mâles, qui ont atteint leur développement complet, ont la surface inférieure de lextrémité du corps transformée en une sorte de râpe; ils enroulent cette extrémité autour de la femelle et la maintiennent ainsi très fortement ${ }^{4}$.

Lorsque les deux sexes ont exactement les mêmes habitudes d'existence, et que le mâle a les organes des sens et de la locomotion plus développés qu'ils ne le sont chez la femelle, il se peut que ces sens perfectionnés lui soient indispensables pour trouver la femelle. Mais, dans la grande majorité des cas, ces organes perfectionnés ne servent qu'à procurer à un mâle une certaine supériorité sur les autres mâles, car les moins privilégiés, si le temps leur en était laissé, réussiraient tous à s'apparier avec des femelles sous tous les autres rapports, à en juger d'après la structure des femelles, ces organes seraient également bien adaptés aux habitudes ordinaires de l'existence. La sélection sexuelle a du évidem-

[^115]ment intervenir pour produire les organes auxquels nous taisons allusion, car les máles ont acquis la conformation qu'ils ont aujourd'huı, non pas parce qu'elle les met à mème de remporter la victoire dans la lutte pour l'existence, mais parce qu'elle leur procure un avantage sur les autres mâles, avantage qu'ils ont transmis à leur postérité mâle seule. C'est l'importance de cette distinction qui m'a conduit à donner à cette forme de sélection le nom de sélection sexuelle. En outre, si le service principal que les organes préhensiles rendent au mâle est d'empêcher que la femelle ne lui échappe avant l'arrivée d'autres mâles, ou lorsqu'il est assailli par eux, la sélection sexuelle a dû perfectionner ces organes en conséquence de la supériorité que certains malles ont acquis sur leurs rivaux. Mais il est impossible, dans la majorité des cas de cette nature, d'établir une ligne de démarcation entre les effets de la sélection naturelle et ceux de la sélection sexuelle. On pourrait remplir des chapitres de particularités sur les différences qui existent entre les sexes sous le rapport des organes sensitifs, locomoteurs et préhensiles. Cependant, comme ces conformations ne sont pas plus intéressantes que celles qui servent aux besoins ordinaires de la vie, je me propose d'en négliger la plus grande partie, me bornant à indiquer quelques exemples dans chaque classe.

La sélection sexuelle a dù provoquer le développement de beaucoup d'autres conformations et de beaucoup d'autres instincts; nous pourrions citer, par exemple, les armes offensives et dẻfensives que possèdent les malles pour combattre et pour repousser leurs rivaux; le courage et l'esprit belliqueux dont ils font preuve; les ornements de tous genres qu'ils aiment à étaler; les organes qui leur permettent de produire de la musique vocale ou instrumentale et les glandes qui répandent des odeurs plus ou moins suaves; en effet, toutes ces conformations servent seulement, pour la plupart, à attirer ou à captiver la femelle. Il est bien évident qu'il faut attribuer ces caractères à la sélection sexuelle et non à la sélection ordinaire, car des males désarmés, sans ornements, dépourvus d'attraits, n'en réussiraient par moins dans la lutte pour lexistence, et seraient aptes à engendrer une nombreuse postérité, s'ils ne se trouvaient en présence de males mieux doués. Le fait que les femelles, dépourvues de moyens de défenses et d'ornements, n'en survivent pas moins et reproduisent l'espèce, nous autorise à conclure que cette assertion est fondée. Nous consacrerons dans les chapitres suivants de longs détails aux caractères sexuels secondaires auxquels nous venons de faire allusion; en effet, ils présentent un vif intérêt sous plusieurs rapports, mais principalement
en ce qu'ils dépendent de la volonté, du choix, et de la rivalité des individus des deux sexes. Lorsque nous voyons deux males lutter pour la pnssession d'une femelle, ou plusieurs oiseaux malles étaler leur riche plumage, et se livrer aux gestes les plus grotesque \mathbf{s} devant une troupe de femelles assemblées, nous devons évidemment conclure que, bien que guidés par l'instinct, ils savent ce qu'ils font, et exercent d'une manière consciente leurs qualités corporelles et mentales.

De même que l'homme peut améliorer la race de ses coqs de combat par la sélection de ceux de ces oiseaux qui sont victorieux dans l'arène, de même les mâles les plus forts et les plus vigoureux, ou les mieux armés, ont prévalu à l'état de nature, ce qui a eu pour résultat l'amélioration de la race naturelle ou de l'espèce. Un faible degré de variabilité, s'il en résulte un avantage, si léger qu'il soit, dans des combats meurtriers souvent répétés, suffit à l'œuvre de la sélection sexuelle; or, il est certain que les caractères sexuels secondaires sont éminemment variables. De même que l'homme en se plaçant au point de vue exclusif qu'il se fait de la beauté, parvient à embellir ses coqs de basse-cour, ou pour parler plus strictement, arrive à modifier la beauté acquise par l'espèce parente, parvient à donner au Bantam Sebright, par exemple, un plumage nouveau et élégant, un port relevétout particulier, de même il semble que, à l'état de nature, les oiseaux femelles, en choisissant toujours les mâles les plus attrayants, ont développé la beauté ou les autres qualités de ces derniers. Ceci implique, sans doute, de la part de la femelle, un discernement et un goût qu'on est, au premier abord, disposé à lui refuser; mais j'espère démontrer plus loin, par un grand nombre de faits, que les femelles possèdent cette aptitude. Il convient d'ajouter que, en attribuant aux animaux inférieurs le sens du beau, nous ne supposons certes pas que ce sens soit comparable à celui de l'homme civilisé, doué qu'il est d'idées multiples et complexes; il serait donc plus juste de comparer le sens pour le beau que possèdent les animaux à celui que possèdent les sauvages, qui admirent les objets brillants ou curieux et aiment à s'en parer.

Notre ignorance sur bien des points fait qu'il nous reste encore quelque incertitude sur le mode précis d'action de la sélection sexuelle. Néanmoins, si les naturalistes, qui admettent déjả la mutabilité dès espèces, veulent bien lire les chapitres suivants, ils conviendront, je pense, avec moi, que la sélection sexuelle a joué un rôle important dans l'histoire du monde organique. Il est certain que, chez presque toutes les espèces d'animaux, il y a lutte entre
les males pour la possession de la femelle ; ce fait est si notoirement connu qu'il serait inutile de citer des exemples. Par conséquent, si l'on admet que les femelles ont une capacité mentale suifisante pour exercer un choix, elles sont à même de choisir le male qui leur convient. Il semble, d'ailleurs, que, dans un grand nombre de cas, les circonstances tendent à rendre la lutte entre les mâles extrêmement vive. Ainsi, chez les oiseaux migrateurs, les mâles arrivent ordinairement avant les femelles dans les localités où doit se faire la reproduction de l'espèce; il en résulte qu'un grand nombre de males sont tout prêts à se disputer les femelles. Les chasseurs assurent que le rossignol et la fauvette à tête noire malles arrivent toujours les premfers; M. Jenner Weir confirme le fait pour cette derniére espèce.
M. Swaysland, de Brighton, qui, pendant ces quarante dernières années, a eu l'habitude de capturer nos oiseaux migrateurs dès leur arrivée, m'écrit qu'il n'a jamais vu les femelles arriver avant lesmales. Il abattit, un printemps, trente-neuf males de hoche-queue (Budytes Raii) avant d'avoir vu une seule femelle. M. Gould, qui a disséqué de nombreux oiseaux, affirme que les bécasses mâles arrivent dans ce pays avant les femelles. On a observé le même fait aux Etats-Unis chez la plupart des oiseaux migrateurs ${ }^{5}$. La plupart des saumons mâles lorsqu'ils remontent nos rivières, sont prêts à la reproduction avant les femellesi-II en est de même, à ce qu'il semble, des grenouilles et des crapauds. Dans la vaste classe des insectes, les mâles sortent presque toujours les premiers de la chrysalide, de sorte qu'on les voit généralement fourmiller quelque temps avant que les femelles apparaissent ${ }^{6}$. La cause de cette différence dars la période d'arrivée ou de maturation des mâles et des femelles est évidente. Les malles, qui ont annuellement occupé les premiers un pays, ou qui, au printemps, sont les premiers prêts à se propager, ou les plus ardents à la reproduction de l'espèce, ont da laisser de plus nombreux descendants, qui tendent à hériter de leurs instincts et de leur constitution. Il faut se rappeler, en outre, qu'il serait impossible de changer beaucoup l'époque de la maturité sexuelle

5. J.-A. Allen, Mammals and Winter Birds of Florida ; Bull. Comp. Zoology,

 Harvard College, p. 268.6. Même chez les plantes à sexes séparés, les fleurs malles arrivent généraleinent à maturité avant les fleurs femelles. Beaucoup de plantes hermaphrodites, comme C.-K. Sprengel l'a démontré le premier, sont dichogames ; c'est-à-dire ne peuvent pas se féconder elles-mémes, leurs organes malles et femelles n'étant pas prêts ensemble. Dans ces plantes, le pollen arrive ordinairement à maturité avant le stigmate de la mème fleur, bien qu'il y ait quelques espèces spéciales où les organes femelles arrivent à maturité avant les organes males.
des femelles sans apporter en même temps de grands troubles dans la période de la production des jeunes, production qui doit être déterminée par les saisons de l'année. En somme, il n'est pas douteux que chez presque tous les animaux à sexes séparés, il y a une lutte périodique et constante entre les males pour la possession desfemelles.

Il y a, cependant, un point important qui mérite toute notre attention. Comment se fait-il que les males qui l'emportent sur les autres dans la lutte, ou ceux que préfèrent les femelles, laissent plus de descendants possédant comme eux une certaine supériorité, que les mâles vaincus et moins attrayants? Sans cette condition, la sélection sexuelle serait impuissante à perfectionner et à augmenter les caractères qui donnent à certains mâles un avantage sur d'autres. Lorsque les sexes existent en nombre absolument égal, les males les moins bien doués trouvent en définitive des femelles (sauf là où règne la polygamie), et laissent autant de descendants, aussi bien adaptés pour les besoins de l'existence que les mâles les mieux partagés. J'avais autrefois conclu de divers faits et de certaines considérations que, chez la plupart des animaux à caractères sexuels secondaires bien développés, le nombre des mâles excédait de beaucoup celui des femelles; mais il ne semble pas que cette hypothèse soit complètement exacte. Si les males étaient aux femelles comme deux est à un, ou comme trois est à deux, ou même dans une proportion un peu moindre, la question serait bien simple; car les males les plus attrayants ou les mieux armés laisseraient le plus grand nombre de descendants. Mais, après avoir étudié, autant que possible, les proportions numériques des sexes, je ne crois pas qu'on puisse ordinairement constater une grande disproportion numérique. Dans la plupart des cas, la sélection sexuelle parait avoir agi de la manière suivante.
Supposons une espèce quelconque, un oiseau, par exemple, et partageons en deux groupes égaux les femelles qui habitent un district; l'un comprend les femelles les plus vigoureuses et les mieux nourries; l'autre, celles qui le sont moins. Les premières, cela n'est pas douteux, seront prêtes à reproduire au printemps avant les autres ; c'est là, d'ailleurs, l'opinion de M. Jenner Weir, qui, pendant bien des années, s'est beaucoup occupé des habitudes des oiseaux. Les femelles les plus saines, les plus vigoureuses et les mieux nourries, réussiront aussi, cela est évident, à élever en moyenne le plus grand nombre de descendants ${ }^{7}$. Les males, ainsi

[^116]que nous l'avons vu, sont généralement prêts à reproduire avant les lemelles; les males les plus forts, et, chez quelques espèces, les ieux armés, chassent leurs rivaux plus faibles, et s'accouplent Her les femelles les plus vigoureuses et les plus saines, car cellessont les premières prêtes à reproduire ${ }^{8}$. Les couples ainsi constitués doivent certainement élever plus de jeunes que les femelles ea retard, qui, en supposant l'égalité numérique des sexes, sont forcées de s'unir aux malles vaincus et moins vigoureux; or, il y a là tout ce qu'il faut pour augmenter, dans le cours des générations successives, la taille, la force et le courage des males ou pour perfectionner leurs armes.

Il est, cependant, une foule de cas où les males qui remportent la victoire sur d'autres mâles n'arrivent à posséder les femelles que grâce au choix de ces dernières. La cour que se font les animaux n'est, en aucune façon, aussi brève et aussi simple qu'on pourrait le supposer. Les males les mieux ornés, les meilleurs chanteurs, ceux qui font les gambades les plus bouffonnes, excitent davantage les femelles qui préférent s'accoupler avec eux; mais il est très probable, comme on a eu d'ailleurs l'occasion de l'observer quelquefois, qu'elles préfèrent en même temps les males les plus vigoureux et les plus ardents. Les femelles les plus vigoureuses, qui sont les premières prêtes à reproduire, ont donc un grand choix de males, et, bien qu'elles ne choisissent pas toujours les plus robustes ou les mieux armés, elles s'adressent, en somme, à des mâles qui, possédant déjà ces qualités à un haut degré, sont, sous d'autres rapports, plus attrayants. Ces couples, formés précocement, ont, pour élever leur progéniture, de grands avantages du côté femelle aussi bien que du côté male. Cette cause, agissant pendant une longue série de générations, a, selon toute apparence, suffin non seulement à augmenter la force et le caractère belliqueux des males, mais aussi leurs divers ornements et leurs autres attraits.
premières couvées, que les olseaux qui en proviennent sont * plus petits, plus paurrement colorés que ceux éclos au commencement de la saison. Dans le cas où les parents font plusieurs couvées par an, les oiseaux qui proviennent de la première semblent, sous tous les rapports, plus parfaits et plus vigoureux ..
8. Hermann Müller adopte la même conelusion relativement aux abeilles femeltes, sui, chaque annêe, sortent les premières de la chrysalide. Voir à cet égard son remarquable mémoire: Anwendung den Darsoin'schen Lehre auf Bienen; Verh.d. V. ; Iahrg XXIX, p. 45.
9. J'ai reģu à cet égard, sur la volaille, des renseignements que je citeraí plus loin. Même chaz les oiseaux tels que les pigeons, qui s'apparient pour la vie, la femelle, à ce que m'apprend M. Jenner Weir, abandonne le male, s'il est blessé
ou s'il devient trop faible. ou s'il devient trop faible.

Dans le cas inverse et beaucoup plus rare oừ les males choisissent des femelles particulières, il est manifeste que les plus vigoureux, après avoir écarté leurs rivaux, doivent avoir le choix libre; or, il est à peu près certain qu'ils recherchent les femelles les plus vigoureuses et les plus attrayantes à la fois. Ces couples ont de grands avantages pour l'élève de leurs jeunes, surtout si le mâle est capable de défendre la femelle pendant l'époque du rut, comme cela se produit chez quelques animaux élevés, ou d'aider à l'entretien des jeunes. Les mêmes principes s'appliquent si les deux sexes préfè-rent-et choisissent réciproquement certains individus du sexe contraire, en supposant qu'ils exercent ce choix, non seulement parmi les sujets les plus attrayants, mais aussi parmi les plus vigoureux.

Proportion numérique des deux sexes. - J'ai fait remarquer que la sélection sexuelle serait chose fort simple à comprendre, si le nombre des mâles excédait de beaucoup celui des femelles. En conséquence, je cherchai à me procurer des renseignements aussi circonstanciés que possible sur la proportion numérique des individus des deux sexes chez un grand nombre d'animaux ; mais les matériaux sont très rares. Je me bornerai à donner ici un résumé fort succinct des résultats que j'ai obtenus; je réserve les détails pour une discussion ultérieure, afin de ne point interrompre le cours de mon argumentation. On ne peut vérifier les nombres proportionnels des sexes, au moment de la naissance, que chez les animaux domestiques; et encore n'a-t-on pas tenu des registres spéciaux dans ce but. Toutefois, j'ai pu recueillir, par des moyens indirects, un nombre considérable de données statistiques; il en résulte que, chez la plupart de nos animaux domestiques, les individus des deux sexes naissent en nombre à peu près égal. Ainsi, on a enregistré, pendant une période de vingt et un ans, 25.560 naissances de chevaux de course; la proportion des males aux femelles est comme 99,7 est à 100. Chez les lévriers, l'inégalité est plus grande que chez tout autre animal, car sur 6.878 naissances, réparties sur douze ans, les mâles étaient aux fẹmelles comme 110,1 est à 100. Il serait toutefois dangereux de conclure que cette proportion est la mème à l'état de nature qu'à l'état domestique, car des différences légères et inconnues suffisent pour affecter dans une certaine mesure les proportions numériques.des sexes. Prenons, par exemple, le genre humain: le nombre des mâles s'élève, au moment de la naissance, à 104,5 en Angleterre, à 108,9 en Russie, et chez les Juifs de Livourne, à 120 pour 100 du sexe féminin

J'aurai, d'ailleurs, à revenir sur le fait curieux de texcèdent des males au moment de la naissance dans un supplémentà ce chapitre. Je puis ajouter, toutefois, que, au cap de Bonne-Espérance, on a compté pendant plusieurs années de 91 à 99 garçons d'extraclion européenne pour 100 filles.
Ce n'est pas, d'ailleurs, seulement le nombre proportionnel des mâles et des femelles au moment de la naissance qui nous intéresse, mais aussi le nombre proportionnel à l'ăge adulte; il en résulte un autre élément de doute, car on sait très positivement qu'il meurt, avant ou pendant la parturition, puis dans les premières années de la vie, une quantité beaucoup plus grande d'enfants du sexe masculin que du sexe féminin. On constate le même fait pour les agneaux males, et probablement aussi, it est vrai, pour d'autres animaux. Les mâles de certaines espèces se livrent de terribles combats qui amènent souvent la mort de l'un des adversaires, ou ils se pourchassent avec un acharnement tel qu'ils finissent par s'épuiser complètement. En errant à la recherche des femelles, ils sont exposés à de nombreux dangers. Les poissons mâles de différentes espèces sont beaucoup plus petits que les femelles; on affirme qu'ils sont fréquemment dévorés par celles-ci, ou par d'autres poissons. Chez quelques espèces d'oiseaux, les femelles meurent, dit-on, plus tôt que les males ; elles courent aussi de plus grands dangers, exposées qu'elles sont sur le nid, pendant qu'elles couvent ou qu'elles soignent leurs petits. Les larves femelles des insectes, souvent plus grosses que les larves males, sont, par conséquent, plus sujettes à être dévorées ; dans quelques cas, les femelles adultes, moins actives, moins rapides dans leurs mouvements que les males, échappent moins facilement au danger. Chez les animaux à l'état de nature, nous ne pouvons donc, pour apprécier le nombre proportionuel des males et des femelles à l'age adulte, nous baser que sur une simple estimation, qui, à l'exception peutêtre des cas où l'inégalité est très marquée, ne doit inspirer que peu de confiance. Cependant, les faits que nous citerons dans le supplément qui termine ce chapitre semblent nous autoriser à conclure que, chez quelques mammifères, chez beaucoup d'oiseaux, chez quelques poissons et chez quelques insectes, le nombre des mâles excède de beaucoup celui des femelles.
Le nombre proportionnel des individus des deux sexes éprouve de légères fluctuations dans le cours des années; ainsi, chez les chevaux de course, pour 100 femelles néés, les mâles avaient varié d'une année à une autre dans le rapport de 107,1 à 92,6 , et chez les lévriers de 116,3 à 95,3 . Mais il est probable que ces fluctuation ${ }_{\mathbf{s}}$
auraient disparu si l'on avait dressé des tableaux plus complets, basés sur une région plus̃ étendue que l'Angleterre seule; ces dif férences ne suffiraient pas pour déterminer à l'état de nature l'intervention effective de la sélection sexuelle. Néanmoins, comme on en trouvera la preuve dans le supplément, le nombre proportion nel des mâles et des femelles parait éprouver, chez quelques ani maux sauvages, suivant les différentes saisons ou les diverses loca lités, des fluctuations suffisantes pour provoquer une action de ce genre. Il faut, en effet, remarquer que les mâles, vainqueurs des autres mâles ou recherchés par les femelles à cause de leur beauté acquièrent au bout d'un certain nombre d'années, ou dans cer taines localités, des avantages qu'ils doivent transmèttre à leurs petits et qui ne sont pas de nature à disparaitre. En admettant que, pendant les saisons suivantes, l'égalité en nombre des individus des deux sexes permette à chaque male de trouver une femelle, les males qui descendent de ces males plus vigoureux, plus recherchés par les femelles, supérieurs en un mot, ont au moins tout autant du chance de laisser des descendants que les males moins forts et moins beaux.

Polygamie. - La pratique de la polygamie amène les mêmes résultats que l'inégalité réelle du nombre des mâles et des femelles. En effet, si chaque male s'approprie deux ou plusieurs femelles, il en est beaucoup qui ne peuvent pas s'accoupler, et ce sont certainement les plus faibles ou les moins attrayants. Beaucoup de mammiferes et quelques oiseaux sont polygames, mais je n'ai pas trouvé de preuves de cette particularité chez les animaux appartenant aux classes inférieures. Les animaux inférieurs n'ont peutêtre pas des facultés intellectuelles assez développées pour les pousser à réunir et à entretenir un harem de femelles. Il paruit à peu près certain qu'il existe un rapport entre la polygamie et le développement des caractêres sexuels secondaires; ce qui vient à l'appui de l'hypothèse qu'une prépondérance numérique des males est éminemment favorable à l'action de la sélection sexuelle. Toutefois, beaucoup d'animaux, surtout les oiseaux strictement monogames, ont des caractères sexuels secondaires très marqués, tandis que quelques autres, qui sont polygames, ne sont pas dans le même cas.

Examinous rapidement au point de vue de la polygamie la classe des Mammiferes, nous passerons ensuite aux Oiseaux. Le Gorille parait etre polygame, et le male diffère considérablement de la femelle; il en est de même de quelques babouins vivant en sociétés
qui renferment deux fois autant de femelles adultes que de males. Dans l'Amérique du Sud, la couleur, la barbe et les organes vocaux du Mycetes caraya présentent des différences sexuelles marquées, et le mâle vit ordinairement avec deux ou trois femelles; le Cebus capucinus mâle diffère quelque peu de la femelle, et paraft être polygame ${ }^{10}$. On n'a que fort peu de renseignements à cet égard sur la plupart des autres singes; on sait, cependant, que certaines espèces sont strictement monogames. Les ruminants, essentiellement polygames, présentent, plus fréquemment qu'aucun autre groupe de mammifères, des différences sexuelles, non seulement par leury, armes, mais aussi par d'autres caractères. La plupart des cerfs, les bestiaux et les moutons sont polygames; il en est de même des antilopes, à l'exception de quelques espèces monogames. Sir Andrew Smith, qui a étudié les antilopes de l'Afrique méridionale, affirme que, dans des troupes d'environ une douzaine d'individus, on voit rarement plus d'un mâle adulte. L'Antilope saiga asiatique parait être le polygame le plus désordonné qui existe, car Pallas ${ }^{11}$ constate que le mâle expulse tous ses rivaux, et rassemble autour de lui un troupeau de cent têtes environ, composé de femelles et de jeunes;-la femelle ne porte pas de cornes et a des poils plus fins, mais ne diffère pas autrement du mâle. Le cheval sauvage, qui habite les íles Falkland et les États situés au nord-ouest de l'Amérique septentrionale, est polygame; mais, sauf sa taille plus grande et les proportions de son corps, il ne diffère que peu de la jument. Les crocs et quelques autres particularités du sanglier sauvage constituent des caractères sexuels bien accusés; cet animal mène en Europe et dans l'Inde une vie solitaire, à l'exception de la saison de l'accouplement, pendant laquelle, à ce qu'assure Sir W. Elliot, qui l'a beaucoup observé dans l'Inde, il vit dans ce pays avec plusieurs femelles; il est douteux qu'il en soit de même pour le sanglier d'Europe, bien que, cependant, on signale quelques faits à l'appui. L'éléphant indien adulte male passe une grande partie de son existence dans la solitude, comme le sanglier; mais le docteur Campbell affirme que, lorsqu'il est associé avec d'autres, *il est rare de rencontrer plus d'un male dans un troupeau entier de femelles $>$.
10. Sur le Gorille, voir Savage et Wyman, Boston Journ. of Nat. Hist., vol. Y, 1845-47, p. 423. Sur le Cynocéphale, Brehm, Illustr. Thierleben, vel. I, 1864, p. 77. Sur le Mycetes, Rengger, Naturg. Säugethiere von Paraguay, 1830, p. 14, 20. Sur le Cebus, Brehm, op. cit., p. 108.
11. Pallas, Spicilegia Zoolog. Fasc. XII, 1777, p. 29. Sir Andrew Smith, Illustrations of the Zoolog. of S. A/rica. 1849, p. 29, sur le Kobus. 0 wen, Anat. of Vertebrates, vol. III, 1868, p. 633, donne un tableau indiquant quelles sont les especes d'antilopes qui s'apparient et celles qui vivent on troupeaux.

Les plus grands males expulsent ou tuent les plus petits et les plus faibles. Le mâle diffère de la femelle par ses immenses défenses, sa grañde taille, sa force et la faculté qu'il possède de supporter plus longtemps la fatigue; la différence sous ces rapports est si considérable qu'on estime les mâles, une fois capturés, à 20 p. 100 au -dessus des femelles ${ }^{12}$. Les sexes ne diffèrent que peu ou point chez les autres pachydermes qui, autant que nous pouvons le savoir, ne sont pas polygames. Aucune espéce appartenant aux ordres des Cheiroptères, des Édentés, des Insectivores ou des Rongeurs, n'est polygame, autant, toutefois, que je puis le savoir; le rat commun fait peut-être exception à cette règle, car quelques chasseurs de rats affirment que les mâles vivent avec plusieurs femelles. Chez certains paresseux (Édentés), les deux sexes diffèrent au point de vue du caractère et de la couleur des touffes de poils qu'ils portent sur les épaules ${ }^{13}$. Pusieurs espèces de chauves-souris (Cheiroptères) présentent des différences sexuelles bien marquées; les mâles, en effet, possèdent des sacs et des glandes odorifères et affectent une couleur plus pale ${ }^{14}$. Chez les rongeurs, les sexes diffèrent rarement; en tout cas, les différences sont légères et portent seulementsur la couleur des poils.
Sir A. Smith m'apprend que, dans PAfrique australe, le lion vit quelquefois avec une seule femelle, mais généralement avec plusieurs; on en a découvert un avec cinq femelles; cet animal est donc polygame. C'est, autant que je puis le savoir, le seul animal polygame de tout le groupe des carnivores terrestres, et le seul offrant des caractêres sexuels bien accusés. Il n'en est pas de même chez les carnivores marins : en effet, beaucoup d'espèces de phoques prêsentent des diffêrences sexuelles extraordinaires, et sont essentiellement polygames. Ainsi, l'éléphant de mer (Macrochinus proboscideus) de l'Océan du Sud est toujours, d'après Péron, entouré de plusieurs femelles, et le lion de mer (Otaria jubata), de Forster, est, dit-on, accompagné par vingt ou trente femelles. L'ours de mer mâle, de Steller (Aretocepkalus ursinus), dans le Nord, se fait suivre d'un nombre de femelles encore plus considérable. Le doctear Gill ${ }^{15}$ a fait à cet égard une remarque très intéressante : < Chez les espèces monogames, ou celles qui vivent en petites sociétés, on

[^117]observe peu de différence de taille entre le mâle et la femelle; chez les espèces sociables, ou plutot chez celles où les mâles possèdent de véritables harems, les mâles sont beaucoup plus grande que les femelles.

En ce qui concerne les oiseaux, un grand nombre d'espèces, dont les sexes s'accusent par de grandes différences, sont certainement monogames. En Angleterre, par exemple, on observe des différences sexuelles très marquées chez le canard sauvage, qui ne s'accouple qu'avec une seule femelle, ainsi que ehez le merle commun et le bouvreuil, qu'on dit s'accoupler pour la vie. M. Wallace m'apprend qu'on observe le même fait chez les Cotingidés de l'Amérique méridionale et chez beaucoup d'autres espéces d'oiseaux. Je n'ai pas pu parvenir à découvrir si les espèces de plusieurs groupes sont polygames ou monogames. Lesson soutient que les oiseaux de paradis, si remarquables par leurs différences sexuelles, sont polygames, mais M. Wallace doute qu'il ait pu se procurer des preuves suffisantes. M. Salvin m'apprend qu'il a été conduit à admettre que les oiseaux-mouches sent polygames. Le Chera progne mâle, remarquable par ses plumes caudales, parait certainement étre polygame ${ }^{16}$. M. Jenner Weir et d'autres m'ont assuré qu'il n'est pas rare de voir trois sansonnets fréquenter le même nid; mais on n'a pas encore pu déterminer si c'est là un cas de polygamie ou de polyandrie.

Les Gallinacés présentent des différences sexuelles presque aussi fortement accusées que les oiseaux de paradis ou que les oiseauxmouches, et beaucoup d'espeees sont, comme on le sait, polygames; d'autres sont strictement monogames. Les malles diffèrent consiđérablement des femelles chez le paon et chez le faisan polygames; ils en diffèrent, au contraire, fort peu chez la pintade et chez la perdrix monogames. On pourrait citer d'autres faits à I'appui: ainsi, par exemple, dans la tríbu des Grouses (Lagopèdes), le capercailzie polygame et le faisan noir, polygame aussi, differrent considérablement des femelles; tandis que les males et les femelles, chez le grouse rouge et chez le ptarmigan monogames, diffêrent très peu. Parmi les Cursores, il n'y a qu'un petit nombre d'espèces qui présentent des différences sexuelles fortement accusées à l'exception des outardes, et on affirme que la grande outarde (Olis tarda)

[^118]est polygame. Chez les Grallatores, très peu d'espèces présentent des différences de cette nature; le combattant (Machetes pugnax) constitue, toutefois, une exception remarquable, et Montagu affirme qu'il est polygame. Il semble donc qu'il y ait souvent, chez les oiseaux, une relation assez étroite entre la polygamie et le développement de différences sexuelles marquées. M. Bartlett, des Zoological Gardens, qui a si longtemps étudié les oiseaux, me répondait, ce qui me frappa beaucoup, un jour que je lui demandais si le tragopan mâle (gallinacé) est polygame: «Je n'en sais rien, mais je serais disposé à le croire en raison de ses splendides couleurs.
Il faut remarquer que l'instinct qui pousse à s'accoupler avec une seule femelle se perd aisément à l'état de domesticité. Le canard sauvage est strictement monogame, le canard domestique est polygame au plus haut degré. Le Rév. W. D. Fox m'apprend que quelques canards sauvages à demi apprivoisés, conservés sur un grand étang du voisinage, faisaient des couvéeß extrêmement nombreuses, bien que le garde tuât les mâles de façon à n'en laisser qu'un pour sept ou huit femelles. La pintade est strictement monogame ; cependant, M. Fox a remarqué que ses oiseaux réussissent mieux lorsqu'il donne à un male deux ou trois poules. Les canaris, à l'état de nature, vont par couples; mais, en Angleterre, les éleveurs réussissent à donner quatre ou cinq femelles à un male. J'ai signalé ces cas, car ils tendent à prouver que les espèces, monogames à l'état de nature, paraissent sans difficulté pouvoir devenir polygames d'une façon temporaire ou permanente.

Nous avons trop peu de renseignements sur les habitudes des reptiles et des poissons pour pouvoir nous étendre sur leurs rapports sexuels. On affirme, toutefois, que l'épinoche (Gasterosteus) est polygame ${ }^{17}$; pendant la saison des amours, le male diffère considérablement de la femelle.

Résumons les moyens par lesquels, autant que nous en pouvons juger, la sélection sexuelle a déterminé le développement des caractères sexuels secondaires. Nous avons démontré que l'accouplement des males les plus robustes et les mioux armés, qui ont vaincu d'autres males, avec les femelles les plus vigoureuses et les mieux nourries, qui sont les premières prêtes à engendrer au printemps, produit le plus grand nombre de descendants vigoureux. Si ces femelles choisissent les males les plus attrayants et les plus forts, elles élèvent plus de petits que les femelles en retard qui
ont dû s'accoupler avec les males inférieurs aux précédents, sous le rapport de la force et de la beauté. Il en sera de même si les mâles les plus vigoureux choisissent les femelles les plus attrayantes et les mieux constituées, et cela sera d'autant plus vrai, si le mâle vient en aide à la femelle et contribue à l'alimentation des jeunes. Les couples les plus vigoureux peuvent donc élever un plus grand nombre de petits, et cet avantage suffit certainement pour rendre la sélection sexuelle efficace. Cependant une grande prépondérance du nombre des mâles sur celui des femelles serait beaucoup plus efficace encore; soit que cette prépondérance fat accidentelle et locale, ou permanente; soit qu'elle eût lieu dès la naissance, ou qu'elle fut le résultat subséquent de la plus grande destruction des femelles; soit enfin qu'elle futt la conséquence indirecte de la polygamie.

Les modifications sont généralement plus accusées chez le male que chez la femelle. - Lorsque les mâles diffërent des femelles au point de vue de l'apparence extérieure, c'est, à de rares exceptions près, - et cette remarque s'applique à tout le règne animal, - le mâle qui a subi le plus de modifications; en effet, la femelle continue ordinairement à ressembler davantage aux jeunes de l'espèce à laquelle elle appartient ou aux autres membres du même groupe. Presque tous les animaux mâles ont des passions plus vives que les femelles; ce qui paraît être la cause de ces différences. C'est pour cela que les mâles se battent, et déploient avec tant de soin leurs charmes devant les femelles; ceux qui l'emportent transmettent leur supériorité à leur postérité màle. Nous aurons à examiner plus loin comment il se fait que les malles ne transmettent pas leurs caractères à leur postérité des deux sexes. Il est notoire que, chez tous les mammifères, les mâles poursuivent les femelles avec ardeur. Il en est de même chez les oiseaux ; mais la plupart des oiseaux mâles cherchent moins à poursuivre la femelle qu'à la captiver ; pour y arriver, ils étalent leur plumage, se livrent à des gestes bizarres et modulent les chants les plus doux en sa présence. Chez les quelques poissons qu'on a observés, le malle paraft être aussi beaucoup plus ardent que la femelle ; il en est évidemment de mème chez les alligators et chez les batraciens. Kirby ${ }^{18}$ a fait remarquer avec justesse que, dans toute l'immense classe des insectes, \& le male recherche la femelle >. MM. Blackwall et C. Spence Bate, deux autorités sur le sujet, m'apprennent que les araignées et les

18. Kirby ot Spence, Introd. to Entomology, vol. III, 1826, p. 342.

crustacés males ont des habitudes plus actives et plus vagabondes que les femelles. Chez certaines espèces d'insectes et de crustacés, les organes des sens ou de la locomotion existent chez un sexe et font défaut chez l'autre, ou, ce qui est fréquent, sont plus développés chez un sexe que chez l'autre ; or, autant que j'ai pu le reconnaitre, le malle conserve ou possède presque toujours ces organes au plus haut degré de développement; ce qui prouve que, dans les relations sexuelles, le mále est le plus actif ${ }^{19}$.

La femelle, au contraire, est, à de rares exceptions près, beaucoup moins ardente que le mâle. Comme le célèbre Hunter ${ }^{20}$ I'a fait observer il y a bien longtemps, clle exige ordinairement \& qu'on lui fasse la cour \geqslant; elle est timide, et cherche pendant longtemps à échapper au mâle. Quiconque a étudié les mœurs des animaux a pu constater des exemples de ce genre. Divers faits que nous citerons plus loin, et les résultats qu'on peut attribuer à l'infervention de la sélection sexuelle, nous autorisent à conclare que la femelle, comparativement passive, n'en exerce pas moins un certain choix et accepte un mâle plutôt qu'un autre. Certaines apparences nous portent parfois à penser qu'elle accepte, non pas le mâle qu'elle préfère, mais celui qui lui déplaît le moins. L'exercice d'un certain choix de la part de la femelle paraít être une loi aussi générale que l'ardeur du male.

Ceci nous amène naturellement à rechercher pourquoi, dans tant de classes si distinctes, le mâle est devenu tellement plus ardent que la femelle, que ce soit lui qui la recherche toujours et qui joue le rôle le plus actif dans les préliminaires de l'accouplement. Il n'y aurait aucun avantage, il y aurait même une dépense inutile de force à ce que les mâles et les femelles se cherchassent mutuellement ; mais pourquoi le mâle joue-t-il presque toujours le rôle le plus actif? Les ovules doivent recevoir une certaine alimentation pendant un certain laps de temps après la fécondation; il faut donc que le pollen soit apporté aux organes femelles et placé sur le stigmate, soit par concours des insectes ou du vent, soit par les
19. D'après Westwood (Modern. Classif. of Insects, vol. II, p. 160), un insecte hyménoptère parasite constitue une exception à la règle, car le male n'a que

- des ailes rudimentaires et ne quitte jamals la cellule où il est né, tandis que la femelle a des aites bien développées. Audouin croit que les femelles sont fécondées par les mâles nés dans les mémes cellules qu'elles, mais il est probable que les femelles visitent d'autres cellules, évitant ainsi un croisement consanguin tron rapproché. Nous rencontrerosz plus loin, dans divers groupes, quelques cas exceptionnels où la femelle, au lieu du male, recherche l'accouplement.

20. Essays and Observations, 6dités par 0 wen, vol. 1, 1861, p. 194.
mouvements spontanés des étamines ; et, chez les algues, etc., par la locomotion des anthérozoïdes.

Chez les animaux d'organisation inférieure à sexes séparés qui sont fixés d'une manière permanente, l'élément mâle va invariablement trouver la femelle ; il est, d'ailleurs, facile d'expliquer la cause de ce fait : les ovules, en effet, en admettant même qu'ils se détacheraient avant d'être fécondés et qu'ils n'exigeraient aucune alimentation ou aucune protection subséquente, sont, par leurs dimensions relativement plus grandes, moins facilement transportables que l'élément mâle et, par le färt même qu'ils sont plus grands, existent en plus petite quantité. Beaucoup d'animaux inférieurs ont donc, sous ce rapport, beaucoup d'analogie avec les plantes ${ }^{21}$. Les animaux malles aquatiques fixés ayant été ainsi conduits à émettre leur élément fécondant, il est naturel que leurs descendants, qui se sont élevés sur l'échelle et qui ont acquis des organes de locomotion, aient conservé la même habitude et s'approchent aussi près que possible de la femelle, pour que l'élément fécondant ne soit pas exposé aux risques d'un long passage au travers de l'eau. Chez quelques animaux inférieurs, les femelles seules sont fixées, il faut donc que les males aillent les trouver. Quant aux formes dont les ancêtres possédaient primitivement la faculté de la locomotion, il est difficile de comprendre pourquoi les mâles ont acquis l'invariable habitude de rechercher: les femelles, au lieu que celles-ci recherchent les males. Mais, dans tous les cas, il a fallu, pour que les mâles devinssent des chercheurs efficaces qu'ils fussent doués de passions ardentes; or, le développement de ces passions découle naturellement du fait que les mâles plus ardents laissent plus de descendants que ceux qui le sont moins.

La grande ardeur du male a donc indirectement déterminé un développement beaucoup plus fréquent des caractères sexuels secondaires chez le malle que chez la femelle. L'étude des animaux domestiques m'a conduit à penser que le male est plus sujet à varier que la femelle, ce qui a dû singulièrement faciliter ce développement. Von Nathusius, dont l'expérience est si considérable, partage absolument la même opinion ${ }^{22}$. La comparaison des deux sexes chez l'espéce humaine fournit aussi des preuves nombreuses à l'appui de cette hypothèse. Au cours de l'expédition de la No-

[^119]22. Vortrage über Viehzucht, 1872, p. 63.
vara ${ }^{25}$, on a procédé à un nombre considérable de mesurages des diverses parties du corps chez différentes races, et, dans presque tous les cas, les hommes ont présenté une plus grandei somme de variations que les femmes ; je reviendrai d'ailleurs sur ce point dans un chapitre subséquent. M. J. Wood ${ }^{24}$, qui a étudié avec beaucoup de soin la variation des muscles chez l'espèce humaine, imprime en italiques la conclusion suivante : « Le plus grand nombre d'anomalies, dans chaque partie prise séparément, se trouve chez le sexe male, \geqslant Il avait déjà remarqué que «sur un ensemble de 102 sujets, les variétés de superfluités étaient moikié plus fréquentes chez les hommes que chez les femmes, ce qui contrastait fortement avec la plus grande fréquence des déficits précédemment décrits déjà chez ces dernières *. Le professeur Macalister remarque également ${ }^{25}$ que les variations des muscles \& sont probablement plus communes chez les mâles que chez les femelles *. Certains muscles, qui ne sont pas normalement présents dans l'espèce humaine, se développent aussi plus fréquemment chez le male que chez la femelle bien qu'on ait signalé des exceptions à cette règle. Le docteur Burt Wilder ${ }^{26}$ a enregistré 152 cas d'individus ayant des doigts supplémentaires; 86 ont été observés chez des hommes, et 39 , moins de la moitié, chez des femmes; dans les 27 autres cas, on n'a pas constaté le sexe. Il faut se rappeler, il est vrai, que les femmes cherchent plas que les hommes à dissimuler une difformité de ce genre. Le docteur L. Meyer affirme de son côté que la forme des oreilles est plus variable chez l'homme que chez la femme ${ }^{27}$. Enfin, la température du çorps varie davantage aussi chez l'homme que chez la femme ${ }^{28}$.

On ne saurait indiquer la cause de la plus grande variabilité générale du sexe male; on doit se borner à dire que les caractères sexuels secondaires sont extraordinairement variables et que ces caractères n'existent généralement que chez le mâle, ce qu'il est, d'ailleurs, fucile de comprendre dans une certaine mesure. L'intervention de la sélection naturelle et de la sélection sexuelle a rendu,

[^120]dans beaucoup de cas, les animaux mâles très différents des femelles; mais, indépendamment de la sélection, la différence de constitution qui existe entre les deux sexes tend à les faire varier d'une manière un peu différente. La femelle doit consacrer une grande quantité de matière organique à la formation des œufs; le malle, de son coté, dépense beaucoup de forces à lutter avec ses rivaux, à errer à la recherche de la femelle, à exercer ses organes vocaux, à répandre des sécrétions odoriférantes, etc., et cette dépense doit généralement se faire dans une courte période. La grande vigueur du mâle pendant la saison des amours semble souvent donner un certain éclat à ses couleurs, même quand il n'existe pas de différence bien marquée, sous ce rapport, entre lui et la femelle ${ }^{29}$ Chez l'homme, et si l'on descend l'échelle organique jusque chez es Lépidoptères, la température du corps est plus élevée chez le mâle que chez la femelle, ce qui se traduit chez l'homme par des pulsations plus lentes ${ }^{30}$. En résumé, les deux sexes dépensent probablement une quantité presque égale de matière et de force, bien que cette dépense s'effectue de manière différente et avec une rapidité différente.

Les causes que nous venons d'indiquer suffisent pour expliquer que la constitution des males et des femelles doive différer quelque peu, au moins pendant la saison des amours; or, bien qu'ils soient soumis exactement aux mèmes conditions, ils doivent tendre à varier d'une manière quelque peu différente. Si les variations ainsi déterminées ne sont avantageuses ni au mâle ni à la femelle, ni la sélection sexuelle, ni la sélection naturelle n'interviennent pour les accumuler et les accroître. Néanmoins, les caractères qui en résultent peuvent devenir permanents, si les causes existantes agissent d'une façon permanente; en outre, en vertu d'une forme fréquente de l'hérédité, ils peuvent être transmis au sexe seul chez lequel ils ont d'abord paru. Dans ce cas, les malles et les femelles en arrivent à présenter des différences de caractères, différences permanentes, tout en étant peu importantes. M. Allen a démontré, par exemple, que, chez un grand nombre d'oiseaux habitant les

[^121]parties septentrionales et les parties méridionales des États-Unis, les individus provenant des parties méridionales affectent des teintes plus foncées que ceux des parties septentrionales. Cette différence semble être le résultat direct des différences de température, de lumière, etc., qui existent entre les deux régions. Or, dans quelques cas, les deux sexes d'une même espèce semblent avoir été différemment affectés, Les couleurs de l Agelous phoeniceus mâle sont devenues bien plus brillantes dans le sud; chez le Cardinalis virginianus, ce sont les femelles qui ont subi une modification; les Quiscalus major femelles revêtent des teintes très variables, tandis que celles des males restent presque uniformes ${ }^{31}$.

On signale, chez diverses classes d'animaux, certains cas exceptionnels; c'est alors la femelle qui, au lieu du malle, a acquis des caractères sexuels secondaires bien tranchés, des couleurs plus brillantes, une taille plus élancée, une force plus grande et des goûts plus belliqueux. Chez les oiseaux, comme nous le verrons plus tard, il y a quelquefois eu transposition complète des caractères ordinaires propres à chaque sexe; les femelles, devenues plus ardentes, recherchent les mâles qui demeurent relativement passifs, mais qui choisissent probablement, à en juger par les résultats, les femelles les plus attrayantes. Certains oiseaux femelles sont ainsi devenus plus richement colorés, plus magnifiquement ornés, plus puissants et plus belliqueux que les males, caractères qui ne sont transmis qu'à la seule descendance femelle.

On pourrait supposer que, dans quelques cas, il s'est produit un double courant de sélection; les mâles auraient choisi les femelles les plus attrayantes, et, réciproquement, ces dernières auraient choisi les plus beaux males. Ces choix réciproques pourraient certainement déterminer la modification des deux sexes, mais ne tendraient pas à les rendre différents l'un de l'autre, à moins d'admettre que leur goât pour le beau ne différât; mais c'est là une supposition trop improbable chez les animaux, l'homme excepté, pour qu'il soit nécessaire de s'y arrêter. Toutefois, chez beaucoup d'animaux, les individus des deux sexes se ressemblent, et possèdent des ornements tels que l'analogie nous conduirait à les attribuer à l'intervention de la sélection sexuelle. Dans ces cas, on peut supposer d'une manière plus plausible qu'il y a eu un double courant ou un courant réciproque de sélection sexuelle; les femelles les plus vigoureuses et les plus précoces ont choisi les malles les plus beaux et les plus vigoureux, et ceux-ci, de leur côté, ont repoussé toutes les

[^122]femelles n'ayant pas des attraits suffisants. Mais, d'apres ce que nous savons des habitudes des animaux, il est difficile de soutenir cette théorie, car le mâle s'empresse ordinairement de s'accoupler avec une femelle quelle qu'elle soit. Il est beaucoup plus probable que les ornements communs aux deux sexes ont été acquis par I'un d'eux, généralement par le male, et ensuite transmis aux decendants des deux sexes. Si, cependant, les males d'une espèce quelconque ont, pendant une longue période, été beaucoup plus nombreux que les femelles, puis, qu'ensuite, durant une autre longue période, dans des conditions différentes, les femelles soient devenues à leur tour beaucoup plus nombreuses que les males, un double courant, bien que non simultané, de sélection sexuelle se serait facilement produit et aurait eu pour résultat la grande différenciation des deux sexes.
Nous verrons plus loin que, chez beaucoup d'animaux, aucun des sexes n'est ni brillamment coloré ni paré d'ornements spéciaux, bien que les individus des deux sexes, ou d'un seul, aient probablement acquis, grâce à la sélection sexuelle, des couleurs simples telles que le blanc ou le noir. L'absence de teintes brillantes ou d'autres ornements peut résulter de ce qu'il ne s'est jamais présenté de variations favorables à leur production, ou du fait que ces animaux préfèrent les couleurs simples, telles que le noir ou le blanc. La sélection naturelle a dû souvent intervenir pour produire des couleurs obscures comme moyen de sécurité, et il se peut que l'imminence du danger ait réagi contre la sélection sexuelle qui tendait à développer une coloration plus brillante. Mais il se peut aussi que, dans d'autres cas, les males aient lutté les uns contre les autres, pendant de longues périodes, pour s'emparer des femelles, sans qu'il se soit produit aucun résultat; à moins que les mâles les plus heureux aient mieux réussi que les mâles moins favorisés à laisser après eux un plus grand nombre de descendants qui héritent de leur supériorité; or, ceci, comme nous l'avons déjà démontré, dépend de nombreuses éventualités très complexes.
La sélection sexuelle agit d'une manière moins rigoureuse que la sélection naturelle. Celle-ci entraine la vie ou la mort, à tous les ages, des individus plus ou moins favorisés. Il est vrai que les combats entre mâles rivaux entrainent souvent la mort d'un des deux adversaires. Mais, en général, le male vaincu est simplement privé de femelle, ou en est réduit à se contenter d'une femelle plus tardive et moins vigoureuse, ou en trouve moins s'il est polygame; de sorte qu'il laisse des descendants moms nombreux et plus faibles ou qu'il n'en a pas du tout. Quand il s'agit des conformations
acquises grace à la sélection ordinaire ou sélection naturelle, il y a, dans la plupart des cas, tant que les conditions d'existence restent les mêmes, une limite à l'étendue des modifications avantageuses qui peuvent se produire dans un but déterminé, quand il s'agit, au contraire, des conformations destinées à assurer la victoire à un male, soit dans le combat, soit par les attraits qu'il peut présenter, il n'y a point de limite définie à l'étendue des modifications avantageuses; de sorte que, tant que des variations favorables surgissent, la sélection sexuelle continue son œuvre. Cette circonstance peut expliquer en partie la fréquence et l'étendue extraordinaire de la variabilité que présentent les caractêres sexuels secondaires. Néanmoins, la sélection naturelle doit s'opposer à ce que les males victorieux acquièrent des caractères qui leur deviendraient préjudiciables, soit parce qu'ils causeraient une trop grande déperdition de leurs forces vitales, soit parce qu'ils les exposeraient à de trop grands dangers. Toutefois, le développement de certaines conformations, - des bois, par axemple, chez certains cerfs, - a été poussé à un degré étonnant; dans quelques cas mème, à un degré tel que ces conformations doivent légèrement nuire au mâle, étant données les conditions générales de l'existence. Ce fait prouve que les males qui ont vaincu les autres males grâce à leur force ou à leurs charmes, ce qui leur a valu une descendance plus nombreuse, ont ainsi recueilli des avantages qui, dans le cours des temps, leur ont été plus profitables que ceux provenant d'une adaptation plus parfaite aux conditions d'existence. Nous verrons, en outre, ce qu'on n'eût jamais pu supposer, que l'aptitude à charmer une femelle a, dans quelque cas, plus d'importance que la victoire remportée sur d'autres males dans le combat.

LOIS DE L'HéRÉDITÉ

La connaissance des lois qui régissent l'hérédité, si imparfaite que soit encore cette connaissance, nous est indispensable pour bien comprendre comment la sélection a pu agir et comment elle a pu produire dans le cours des temps, chez beaucoup d'animaux de toutes classes, des résultats si considérables. Le terme « hérédité > comprend deux éléments distincts: la transmission des caractères et leur développement; on omet souvent de faire cette distinction, parce que ces deux éléments se confondent ordinairement en un seul. Mais cette distinction devient apparente, quand il s'agit des caractères qui se transmettent pendant les premières années de la vie, pour ne se développer qu'à l'état adulte ou pen-
dant la vieillesse. Elle devient plus apparente encore quand il s'agit des caractéres sexuels secondaires qui, transmis aux individus des deux sexes, ne se développent que chez un seul. Le croisement de deux espèces, possédant des caractères sexuels bien tranchés, fournit la preuve évidente de ces caractères chez les deux sexes; en effet, chaque espèce transmet les caractères propres au male et à la femelle à la progéniture métis de l'un et de l'autre sexe. Le même fait se produit également lorsque des caractères particuliers au mâle se développent accidentellement chez la femelle ágée ou malade, comme, par exemple, lorsque la poule commune acquiert la queue flottante, la collerette, la crête, les ergots, la voix et même l'humeur belliqueuse du coq. Inversement, on observe plus ou moins nettement le même fait chez les màles châtrés. En outre, indépendamment de la vieillesse ou de la maladie, certains caractères passent parfois du male à la femelle; ainsi chez certaines races de volaille, il se forme régulièrement des ergots chez des jeunes femelles parfaitement saines; mais ce n'est là, après tout, qu'un simple cas de développement, puisque, dans toutes les couvées, la femelle transmet chaque détail de la structure de l'ergot à ses descendants males. La femelle revêt parfois plus ou moins complètement des caractère propres au mâle qui se sont d'abord développés chez ce dernier, puis qui lui ont été transmis; nous citerons plus loin bien des exemples de cette nature. Le cas contraire, c'est-à-dire le développement chez le mâle des caractères propres à la femelle, est bien moins fréquent; il convient donc d'en citer un exemple frappant. Chez les abeilles, la femelle seule se sert de l'appareil collecteur de pollen afin de recueillir du pollen pour les larves; cependant, cet appareil, bien que complètement inutile, est partiellement développé chez les males de la plupart des espèces et on le rencontre à l'état parfait chez le Bombus et le Bourdon mâles ${ }^{32}$. Cet appareil n'existe chez aucun autre insecte hyménoptère, pas même chez la guêpe, bien qu'elle soit si voisine de l'abeille; nous n'avons donc aucune raison de supposer que les abeilles males recueillaient autrefois le pollen aussi bien que les femelles, bien que nous ayons quelque raison de croire que les mammifères males participaient à l'allattement des jeunes au même titre que les femelles. Enfin, dans tous les cas de retour, certains caractères se transmettent à travers deux, trois ou un plus grand nombre de générations, pour ne se développer ensuite que dans certaines conditions favorables inconnues. L'hy-

[^123]pothèse de la pangenèse, qu'on l'admette ou non comme fondée, jette une certaine lumière sur cette distinction importante entre la transmission et le développement. D'après cette hypothèse, chaque unité ou cellule du corps émet les gemmules ou atomes non développés, qui se transmettent aux descendants des deux sexes, et se multiplient en se divisant. Il se peut que ces atomes ne se développent pas pendant les premières années de la vie ou pendant plusieurs générations successives; leur transformation en unités ou cellules, semblables à celles dont elles dérivent, dépend de leur affinité et de leur union avec d'autres unités ou cellules, préalablement développées dans l'ordre normal de la croissance.

Hérédité aux périodes correspondantes de la vie. - Cette tendance est bien constatée. Si un animal acquiert un caractère nouveau pendant sa jeunesse, il reparait, en règle générale, chez les descendants de cet animal, dans les mêmes conditions d'âge et de durée, c'est-à-dire qu'il persiste pendant la vie entière ou qu'il a une nature essentiellement temporaire. Si, d'autre part, un caractère nouveau apparaît chez un individu à l'état adulte ou même à un âge avancé, il tend à reparaitre chez les descendants à la même période de la vie. On observe certainement des exceptions à cette règle; mais alors c'est le plus souvent dans le sens d'un avancement que d'un retard qu'a lieu l'apparition des caractères transmis. J'ai discuté cette question en détail dans un précédent ouvrage ${ }^{33}$, je me bornerai donc ici, pour rafraichir la mémoire du lecteur, à signaler deux ou trois exemples. Chez plusieurs races de volaille, les poussins, alors qu'ils sont couverts de leur duvet, les jeunes poulets, alors qu'ils portent leur premier plumage, ou le plumage de l'age adulte, differrent beaucoup les uns des autres, ainsi que de leur souche commune, le Gallus Bankiva; chaque race transmet fidèlement ses caractères à sa descendance à l'époque correspondante de la vie. Par exemple, les poulets de la race Hambourg pailletées couverts de durvet, ont quelques taches foncées sur la tête et sur le tronc, mais ne portent pas de raies longitudinales, comme beaucoup d'autres races; leur premier plumage véritable \& est admirablement barrés, c'est-à-dire que chaque plume porte de nombreuses barres transversales presque noires; mais les plumes de leur second plumage sont toutes pailletées d'une tache obscure arrondie ${ }^{34}$. Cette race a donc éprouvé des variations qui se sont

[^124]transmises à trois périodes distinctes de la vie. Le pigeon offre un exemple encore plus remarquable, en ce que l'espèce parente primitive n'éprouve avec l'âge aucun changement de plumage ; la poitrine seulement prend, à l'état adulte, des teintes plus irisées; il y a, cependant, des races qui n'acquièrentleurs couleurs caractéristiques qu'après deux, trois ou quatre mues, et ces modifications du plumage se transmettent régulièrement.

Hérédité à des saisons correspondantés de l'année. - On observe, chez les animaux à l'état de nature, d'innombrables exemples de caractères qui apparaissent périodiquement à différentes saisons. Ainsi, par exemple, les bois du cerf, et la fourrure des animaux arctiques, qui s'épaissit et blanchit pendant l'hiver. De nombreux oiseaux revêtent de brillantes couleurs et d'autres ornements pendant la saison des amours seulement.

Pallas constate ${ }^{35}$ qu'en Sibérie, le poil du bétail domestique et celui des chevaux devient périodiquement moins foncé pendant l'hiver ; j'ai moi-méme remarqué chez certains poneys, en Angleterre, des changements analogues bien tranchés dans la coloration de la robe, c'est-à-dire que celle-ci passe du brun rougeâtre au blanc absolu. Je ne saurais affirmer que cette tendance à revêtir un pelage de couleur différente à diverses époques de l'année est transmissible ; il est, cependant, très probable qu'il en est ainsi, car la couleur constitue un caractère fortement héréditaire chez le cheval. D'ailleurs, cette forme d'hérédité, avec sa limite de saison, n'est pas plus remarquable que celle qui est limitée par l'ăge et par le sexe.

Hérédité limitée par le sexe. - L'égale transmıssion des caractères aux deux sexes est la forme la plus commune de l'hérédité, au moins chez les animaux qui ne présentent pas de différences sexuelles très accusées, et encore l'observe-t-on même chez beaucoup de ces derniers. Mais il n'est pas rare que les caractères se transmettent exclusivement au sexe chez lequel ils ont d'abord apparu. J'ai cité, dans mon ouvrage sur la Variation è l'état domestique, d'amples documents sur ce point ; je me contenterai donc ici de quelques exemples. Il existe des races de moutons et

[^125]de chèrres, chez lesquelles la forme des cornes des males diffère beaucoup de la forme de celles des femelles; ces différences, acquises pendant la domestication, se transmettent régulièrement au même sexe Chez les chats tigrés, la femelle seule, en règle générale, revêt cette robe, les males affectant une nuance rouge de rouille. Chez la plupart des races gallines, les caractères propres à chaque sexe se transmettent seulement au même sexe. Cette forme de transmission est si générale que nous considérons comme une anomalie, chez certaines races, la transmission simultanée des variations aux individus des deux sexes. On connaft aussi certaines sous-races de volailles chez lesquelles les males peuvent à peine se distinguer les uns des autres, tandis que la couleur des femelles diffère considérablement. Chez le pigeon, les individus des deux sexes de l'espèce souche ne diffèrent par aucun caractêre extérieur; néanmoins, chez certaines races domestiques, le mâle est autrement coloré que la femelle ${ }^{36}$. Les caroncules du pigeon messager anglais et le jabot du grosse-gorge sont plus fortement développés chez le malle que chez la femelle, et, bien que ces caractères résultent d'une sélection longtemps continuée par I'homme, la différence entre les deux sexes est entièremerh due à la forme d'hérédité qui a prévalu; car, bien loin d'étre un résultat des intentions de l'éleveur, cette différence est plutot contraire à ses désirs.
La plupart de nos races domestiques se sont formées par l'accumulation de variations nombreuses et legères; or, comme quel-ques-uns des résultats successivement obtenus se sont transmis à un seul sexe, d'autres à tous les deux, nous trouvons, chez les différentes races d'une même espèoe, tous les degrés entre une grande dissemblance sexuelle et une similitude absolue. Nous avons déjà cité des exemples empruntés aux races de volailles et de pigeons ; des cas analogues se présentent fréquemment a l'état de nature. Il arrive parfois, chez les animaux a l l'etat domestique, mais je ne saurais affirmer que le fait soit vrai à l'état de nature, qu'un individu perde ses caractères spéciaux, et arrive ainsi à ressemblē̃, jusqu'à un certain point, aux individus du sexe contraire ; ainsi, par exemple, les mâles de quelques races de volailles ont perdu leurs plumes masculines. D'autre part, la domestication peut angmenter les différences entre les individus des deux sexes, comme chez le mouton mérinos, dont les brebís ont perdu leurs cornes.

[^126]De même encore, des caractères propres aux individus appartenant à un sexe peuvent apparaitre subitement chez les individus appartenant à l'autre sexe; chez les sous-races de volailles, par exemple, où, dans le jeune age, les poules portent des ergots; ou chez certaines sous-races polonaises, dont les femelles ont, selon toute apparence, primitivement acquis une crête, qu'elles ont ultérieurement transmise aux mâles. L'hypothèse de la pangenèse explique tous ces faits; ils résultent, en effet, de ce que les gemmules de certaines unités du corps, bien que présents chez les deux sexes, peuvent, sous l'influence de la domestication, devenir latents chez un sexe ou arriver à se développer.

Pourrait-on, au moyen de la sélection, assurer le développement chez un seul sexe d'un caractère d'abord développé chez les deux sexes? C'est là une question difficile que nous discuterons dans un chapitre subséquent. Mais il importe, cependant, de bien poser cette question, ce que nous allons faire par un exemple.

Si un éleveur remarquait que quelques-uns de ses pigeons (espèce où les caracterres se transmettent ordinairement à égal degré aux deux sexes) deviennent bleu pale, pourrait-il, par une sélection continue, créer une race chez laquelle les males seuls affecteraient cette nuance, tandis que les femelles ne changeraient pas de couleur? Je me bornerai à dire ici que, bien qu'il ne soit peut-être pas impossible d'obtenir ce résultat, ce serait cependant très difficile ; car le résultat naturel de la reproduction des males bleu pâle serait d'amener à cette couleur toute la descendance, les deux sexes compris. Toutefois, si des variations de la nuance désirée apparaissaient spontanément, et que ces variations fussent limitées dès l'abord dans leur développement au sexe mále, il n'y - aurait pas la moindre difficulté à produire une race comportant une différence de coloration chez les deux sexes, ce qui a été, d'ailleurs, effectué chez une race belşe, dont les males seuls sont rayés de noir. De même, si une variation vient à apparaitre chez un pigeon femelle, variation limitée d'abord à ce sexe dans son développement, il serait aisé de créer une race dont les femelles seules posséderaient un certain caractère ; mais, si la variation n'était pas ainsi originellement circouscrite, le problème serait très difficile, sinon impossible à résoudre ${ }^{37}$.

[^127]Sur les rapports entre l'époque du développement d'un caractère ef sa transmission à un sexe ou aux deux sexes. - Pourquoi certains caractères sont-ils héréditaires chez les deux sexes, et d'autres chez un seul, notamment chez celui où ils ont apparu en premier lieu? C'est ce que, dans la plupart des cas, nous ignorons entièrement. Nous ne pouvons même conjecturer pourquoi, chez certaines sous-races du pigeon, des stries noires, bien que transmises par la femelle, se développent chez le mâle seul, alors que tous les autres caractères sont également transmis aux deux sexes. Pourquoi encore, chez les chats, la robe tigrée ne sedéveloppe-t-elle, à de rares exceptions près, que chez la femelle seule? On a constaté que certains caractères, tels que l'absence d'un ou de plusieurs dolgts ou la présence de doigts additionnels, la dyschromatopsie, etc., peuvent se transmettre dans telle famille aux hommes seuls, et dans telle autre aux femmes seules, bien que, dans les deux cas, ils soient transmis aussi bien par le mème sexe que par le sexe opposé ${ }^{38}$. Malgré notre profonde ignorance, nous connaissons deux règles générales auxquelles il y a peu d'exceptions; les variations, qui apparaissent pour la première fois chez un individu de l'un ou de l'autre sexe à une époque tardive de la vie, tendent à ne se dévolopper que chez les individus appartenant au même sexe; les variations qui se produisent, pendant les premières années de la vio, chez un individu de l'un ou de l'autre sexe, tendent à se développer chez les individus des deux sexes. Je ne prétends, cependant, pas dire que l'âge soit la seule cause déterminante. Comme je n'ai pas encore discuté ce sujet, je dois, en raison de la portée considérable qu'il a sur la sélection sexuelle, entrer ici dans des détails longs et quelque peu compliqués.

On conçoit facilement qu'un caractère apparaissant à un ago précoce tende à se transmettre également aux deux sexes. En effet, la constitution des malles et des femelles ne diffère pas beaucoup, tant qu'ils n'ont pas acquis la faculté de se reproduire. Quand, au contraire, les individus des deux sexes sont assez âgés pour pouvoir se reproduire, et que leur constitution diffère beaucoup, les gemmules (si j'ose encore me servir du langage de la pangenèse) qu'émet chaque partie variable d'un individu possèdent probablement des affinités spéciales qui les portent à s'unir aux tissus d'un

[^128]Individu du même sexe, et à se développer chez lui plutot que chez un individu du sexe opposé.
Un fait général m'a conduit à penser qu'il existe une relation de ce genre; toutes les fois, en effet, et de quelque manière que le mâle adulte diffère de la femelle adulté, il diffère de la même façon des jeunes des deux sexes. Ce fait, comme je viens de le dire, est général; il se vérifie chez la plupart des mammifères, des oiseaux, des amphibies et des poissons, chez beaucoup de crustacés, d'araignées et chez quelques insectes, notamment chez certains orthoptères et chez certains libellules. Dans tous ces cas, les variations, grâce á l'accumulation desquelles le mâle a acquis les caractères masculins qui lui sont propres, ont dû survenir à une époque tardive de la vie, car, autrement, les jeunes mâles posséderaient des caractères identiques; or, conformément à notre règle, ces caractères ne se transmettent et ne se développent que chez les mâles adultes seuls. Quand, au contraire, le male adulte ressemble beaucoup aux jeunes des deux sexes (qui, sauf de rares exceptions, sont semblables), il ressemble ordinairement à la femelle adulte ; et, dans la plupart de ces cas, les variations qai ont déterminé les caracteres actuels des jeunes et des adultes se sont probablement produites, selon notre règle, pendant la jeunesse. Il y a, cependant, ici un doute à concevoir, attendu que les caractères se transmettent quelquefois aux descendants à un age moins avancé que celui où ils ont apparu en premier lieu chez les parents, de sorte que ceux-ci peuvent avoir varié étant adultes, et avoir transmis leurs caracteres à leurs jeunes petits. En outre, on observe beaucoup d'animaux chez lesquels les individus adultes des deux sexes, très semblables, ne ressemblent pas aux jeunes; dans ce cas, les caractères propres aux adultes doivent avoir été acquis tardivement dans la vie, et, néanmoins, contrairement en apparence à notre règle, ils se transmettent aux individus des deux sexes. Toutefois, il est possible et même probable que des variations successives de même nature se produisent quelquefois simultanément, sous l'influence de conditions analogues, chez les individus des deux sexes, à une période assez avancée de la vie; dans ce cas, les variations se transmettraient aux descendants des individus des deux sexesà un age avancé correspondant; ce qui, alors, ne constituerait pas une exception à la règle que nous avons établie, e'est-à-dire, que les variations qui se produisent à un àge avancé se transmettent exclusivement aux indiividus appartenant au même sexe que ceux chez lesquels ces variations ont apparu en premier lieu. Cette dernière règle parait être plus généralement exacte que la seconde, à savoir, que les varia-
tions qui surviennent chez les individus de l'un ou de l'autre sexe, à un age précoce, tendent à se transmettre aux individus des deux sexes. Il est évidemment impossible d'estimer, même approximativement, les cas où ces deux propositions se vérifient chez le règne animal : j'ai donc pensé qu'il vaut mieux étudier à fond quelques exemples frappants, et conclure d'après les résultats.
La famille des cerfs nous fournit un champ de recherches excellent. Chez toutes les espèces, une seule exceptée, les bois ne se développent que chez le male, bien qu'ils soient certainement transmis par la femelle, chez laquelle, d'ailleurs, ils se développent quelquefois anormalement. Chez le renne, au contraire, la femelle porte aussides bois; chez cette espèce, par conséquent, les bois doivent, d'après notre règle, apparaitre à un âge précoce, longtemps avant que les individus des deux sexes, arrivés à maturité, diffèrent beaucoup par leur constitution. Chez toutes les autres espèces de cerfs, les bois doivent, toujours en vertu de notre règle, apparaitre plus tardivement, carils ne se développent que chez les seuls individus appartenant au sexe où ils ont paru en premier lieu chez l'ancêtre de toute la famille. Or, chez sept espèces appartenant à des sections distinctes de la famille, et habitant des régions différentes, espèces chez lesquelles les cerfs males portent seuls des bois, je remarque que ceux-ci paraissent ì des périodes variant de neuf mois après la naissance chez le cherreuil, à dix, douze mois et même pluslongtemps chez les mâles des six autres plus grandes espècess ${ }^{39}$. Mais, chez le renne, le cas est tout différent, car le professeur Nilsson, qui a bien voulu, à ma demande, faire, en Laponie, des recherches spéciales à ce sujet, m'informe que les bois paraissent, chez les jeunes animaux des deux sexes, quatre ou cinq semaines après la naissance. Nous avons donc ici une conformation qui, se développant dès un age d'une précocité inusitée, et chez une seule espèce de la famille, se trouve etre commune aux deux sexes.
Chez plusieurs espèces d'antilopes les males seuls sont pourvus de cornes; toutefois, chez le plus grand nombre, les individus des deux sexes en portent. Quant à l'époque du développement,

[^129]M. Blyth a étudiê aux Zoological Gardens un jeune Coudou (Ant. strepsiceros), espèce où les mâles seuls sont armés, et un autre jeune d'une espèce très voisine, le Canna (Ant. oreas), chez laquelle les individus des deux sexes portent des cornes. Or, conformément à la loi que nous avons posée, le jeune Coudou, bien qu'il ait atteint l'àge de dix mois, avait des cornes très petites relativement aux dimensions qu'elles devaient prendre plus tard; tandis que, chez le jeune Canna mâle, qui n'avait que trois mois, les cornes étaient déjà beaucoup plus grandes que chez le Coudou. Il est à remarquer aussi que chez l'antilope furcifère (Ant. Americana) ${ }^{40}$, quelques femelles seules, environ une sur cinq, portent des cornes, et encore ces cornes restent-elkes presque rudimentaires, bien qu'elles atteignent parfois plus de 10 centimètres de longueur; cette espèce se trouve donc, au point de vue de la possession des cornes par les mâles seuls, dans un état intermédiaire; or, les cornes ne paraissent que cinq ou six mois après la naissance. En conséquence, si nous comparons la période de l'apparition des cornes chez l'antilope furcifère avec les quelques renseignements que nous avons à cet égard sur les autres espèces d'antilopes et avec les renseignements plus complets que nous possédons relativement aux cornes des cerfs, des boufs, etc., nous en arrivons à la conclusion que les cornes, chez cette espèce, paraissent à une époque intermédiaire, c'est-à-dire qu'elles ne paraissent pas de très bonne heure comme chez le bœuf et le mouton, ni très tard comme chez les espèces plus grandes de cerfs et d'antilopes. Chez les moutons, les chèvres et les bestiaux, où les cornes sont bien développées chez les individus des deux sexes, bien qu'elles n'atteignent pas toujours exactement la même grandeur, on peut les sentir ou même les voir au moment de la naissance ou peu après ${ }^{41}$. Toutefois, certaines races de moutons, les mérinos, par exemple, où les béliers sont seuls armés de cornes, semblent faire exception à notre règle; car, malgré ines recherches ${ }^{12}$, je n'ai pu prouver que, chez cette race,

40. Antilocapra Americana, 0wen, Anal. of Vertebrates, III, p. 627.

41. On m'a assuré que, dans le nord du pays de Galles, on peat toujours sentir les cornes des moutons à leur naissance; quelquefois méme, elles ont alors deux centimètres de longueur. Pour le bétail, Youatt (Cattle, 1834, p. 277) dit que la saillie de l'os frontal traverse la cuticule a la naissance, et que la substance cornée se forme rapidement sur elle.
-42. Je dois au professeur Victor Carus des renseignements qu'il a bien voulu demander aux plus hautes autorités sur le mouton mérinos de la Saxe. Sur la côte de la Guinée, il y a une race où, comme chez le mérinos, les béliers seuls ont des cornes ; M. Windwood Reade m'apprend que, dans un cas qu'il a observé, un jeune bélier, né le 10 férrier, ne poussa de cornes que le 6 mars suivant, de sorte que, conformément à la loi que nous avons posée, le développement des
ces organes se développent plus tardivement que chez les races ordinaires où les individus des deux sexes portent des cornes. Mais, chez les moutons domestiques, la présence ou l'absence des cornes n'est pas un caractère pärfaitement constant; certaines brebis mérinos portent, en effet, des petites cornes, tandis que certains béliers sont désarmés; en outre, on observe quelquefois, chez les races ordinaires, des brebis qui n'ont pas de cornes.
Le docteur W. Marshall a étudié récemment avec une attention toute particuliere les protubérances qui existent très souvent sur la tête des oiseaux ${ }^{48}$. Ces études lui ont permis de tirer les conclusions suivantes : quand les protubérances existent chez le mâle seul, elles se développent tardivement; quand, au contraire, elles sont communes aux deux sexes, elles se développent de très bonne heure. C'est là une confirmation éclatante des deux lois que j'ai formulées sur l'hérédité.
Chez la plupart des espèces de la splendide famille des faisans, les mâles diffèrent considérablement des femelles, et ne revêtent leurs ornements qu'à un age assez avancé. Il est, toutefois, un faisan (Crossoptilon auritum) qui présente une remarquable exception, en ce que les individus des deux sexes possedent les superbes plumes caudales, les larges touffes auriculaires et le velours cramoisi qui couvre la tete; j'apprends que tous ces caractères, con ${ }^{-}$ formément à notre loi, apparaissent de très bonne heure. Il existe, cependant, un caractère qui permet de distinguer le mâle de la femelle à l'état adulte : c'est la présence d'ergots, qui, selon notre règle, à ce que m'apprend M. Bartlett, ne commencent à se développer qu'à l'age de six mois, et même, à cet age, il est difficile de distinguer les deux sexes ${ }^{44}$. Presque toutes les parties du plumage chez le male et chez la femelle du paon different notablement; mais ils possèdent tous deux une élégante crête céphalique qui se développe de très bonne heure, longtemps avant les autres orne-

[^130]$\bar{m} e n t \bar{s}$ particuliers aux males, Le canard sauvage offre un cas analogue; en effet, le magnifique miroir vert des ailes, commun aux individus des deux sexes, mais un peu moins brillant et un peu plus petit chez la femelle, apparalt de très bonne heure, tandis que les plumes frisées de la queue et les autres ornements propres aux males ne se développent que plus tard ${ }^{5}$. On pourrait, outre les cas extrêmes d'étroite ressemblance sexuelle et de dissimilitude complète, que nous présentent le Crossoptilon et le Paon, signaler beaucoup de cas intermédiaires dans lesquels les caractères suivent dans ieur ordre de développement les deux lois que naus avons formulées.

La plupart des insectes sortent de la chrysalide à l'état parfait. L'époque du développement peut-elle donc dans ce cas déterminer la transmission des caractères à un sexe seul ou aux deux sexes? Prenons, par exemple, deux espèces de papillons : chez l'une, les mâles et les femelles diffèrent de couleur; chez l'autre, ils se ressemblent. Les écailles colorées se développent-elles au même áge relatif dans la chrysalide? Toutes les écailles se forment-elles simultanément sur les alles d'une même espèce de papillons, chez laquelle certaines marques colorées sont propres à un sexe, pendant que d'autres sont communes aux deux? Une différence de ce genre dans l'époque du développement n'est pas aussi improbable qu'elle peut d'abord le paraitre; car, chez les Orthopères, qui atteignent l'état parfait, non par une métamorphose unique, mais par une série de mues successives, les jeunes mâles de quelques espèces ressemblent d'abord aux femelles, et ne revètent leurs caractères masculins distinctifs que dans une de leurs dernières mues. Les mues successives de certains crustacés males présentent des cas strictement analogues.

Nous n'avons jusqu'ici considéré la transmission des caractères, relativement à l'époque de leur développement, que chez les espèces à l'état de nature; voyons ce qui se passe chez les animaux

[^131]domestiques; nous nous occuperons d'abord des monstruosités et des maladies. La présence de doigts additionnels et l'absence de certaiñes phalanges doivent être déterminées dès une époque embryonnairé précoce, - la tendance à l'hémorrhagie est au moins congénitalo, comme l'est probablement la dyschromatopsie; cependant, ces particularités et d'autres semblables ne se transmettent souvent qu'a un sexe; ce qui constitue une exception à la loi en vertu de laquelle les caractères qui se développent à un âge précoce tendent à se transmettre aux individus des deux sexes. Mais, comme nous l'avons déjà fait remarquer, cette loi ne parait pas etre aussi généralement vraie que l'autre proposition, à savoir que les caractères qui apparaissent à une période tardive de la vie se transmettent exclusivement aux individus appartenant au même sexe que ceux chez lesquels ces caractère sont paru d'abord. Le fait que des particularités anormales s'attachent à un sexe, longtemps avant que les fonctions sexuelles soient devenues actives, nous permet de conclure qu'il doit y avoir une différence de quelque nature entre les individus des deux sexes, même à un age très précoce. Quant aux maladies propres aux individus d'un seul sexe, nous ignorons trop absolument l'époque à laquelle elles peuvent surgir, pour qu'il nous soit permis d'en tirer aucune conclusion certaine. La goutte semble, toutefois, confirmer la loi que nous arons formulée; car elle résulte ordinairement d'excès faits longtemps après l'enfance et le père transmet cette maladie à ses fils bien plus souvent qu'à ses filles.
Les malles des diverses races domestiques de moutons, de chèvres et de bétail, diffèrent des femelles au point de vue de la forme et du développement des cornes, du front, de la crinière, du fanon, de ta queue, de la bosse sur les épaules, toutes particularités qui, conformément à la loi que nous avons posée, ne se développent complêtement qu'à un âge assez avancé. Les chiens ne differrent ordinairement pas des chiennes ; cependant, chez certaines races, et surtout chez le lévrier écossais, le mâle est plus grand et plus pesant que la femelle; en outre, comme nous le verrons dans un chapitre subséquent, la taille du màle continue à augmenter jusqu'à un âge très avancé; ce qui, en vertu de notre règle, explique quil transmet cette particularité à ses descendants males seuls. On n'observe, au contraire, la robe tigrée que chez les chatles; elle est déjà très apparente à la naissance, fait qui constitue une exception à notre règle. Les mâles seuls d'une certaine race ile pigeons portent des raies noires qui apparaissent déjà sur les oiseaux encore au nid; mais ces raies s'accentuent à chaque mue
successive; ce cas est donc en partie contraire, en partie favorable à la règle. Chez les pigeons Messagers et chez les Grosses-gorges le développement complet des caroncules et du jabot n'a lieu qu'un peu tard, et, conformément à nutre règle, ces caractères à l'état parfait ne se cransmettent qu'aux males. Les cas suivants rentrent peut-être dans la classe précédemment mentionnée où les individus des deux sexes, ayant varié de la même manière à une époque tardive de la vie, ont transmis à leurs descendants des deux sexes leurs caractères nouveaux à une période correspondante, et, par conséquent, ne font point exception à notre règle. Ainsi, Neumeister ${ }^{46}$ a décrit certaines sous-races de pigeons dont les malles et les femelles changent de couleur pendant deux ou trois mues, comme le fait le Culbutant-amande ; ces changements, néanmoins, bien que tardifs, sont communs aux individus des deux sexes. Une variété du Canari, dit le prix de Londres, présente un cas presque analogue.

L'hérédité de divers caractères par un sexe ou par les deux sexes chez les races de volailles parait généralement déterminée par l'époque où ces caractères se développent. Ainsi, quand la coloration du male adulte diffère beaucoup de celle de la femelle et de celle du male adulte de l'espèce souche, le mâle adulte, - ce que l'on peut constater chez de nombreuses races, - diffère aussi du jeune mâle, de sorte que les caractères nouvellement acquis doivent avoir apparu à un age assez avancé. D'autre part, quand les males et les femelles se ressemblent, les jeunes ont ordinairement une coloration analogue à celle de leurs parents; il est donc probable que cette coloration s'est produite pour la première fois à un áge précoce de la vie. Toutes les races noires et blanches, où les jeunes et les adultes des deux sexes se ressemblent, nous offrent des exemples de ce fait; on ne saurait, d'ailleurs, soutenir que le plumage blanc ou noir soit un caractère tellement particulier qu'il doive se transmettre aux individus des deux sexes, car, chez beaucoup d'espéces naturelles, les malles seuls sont noirs ou blancs, et les femelles très indifféremment colorées. Chez les sous-races de poules dites coucous, dont les plumes sont transversalement rayées de lignes foncées, les individus des deux sexes et les poulets sont colorés presque de la même manière. Le plumage tacheté des Bantam-Sebright est le même chez les individus des deux sexes, et chez les poulets le- olumes des ailes sont distinctement bien qu'im-

[^132]parfaitement tachetées de noir. Les Hambourgs pailletés constituent toutefois une exception partielle, car, bien que les individus des deux sexes ne soient pas absolument identiques, ils se ressemblent plus que les individus mâles et femelles de l'espèce souche primitive; cependant is n'acquièrent que tardivement leur plumage caractéristique, car les poulets sont distinctement rayés. Étudions maintenant d'autres caractères que la couleur : les mâles seuls de Yespèce souche sauvage et de la plupart des races domestiques portent une crête bien développée ; cette crête, cependant, atteint de très bonne heure une grande dimension chez les jeunes de la race espagnole, ee qui parait motiver sa grosseur démesurée chez les poules adultes. Chez les races de combat, l'instinct belliqueux se manifeste à un âge singulièrement précoce, ce dont on pourrait citer de curieux exemples; ce caractère se transmet, en outre, aux individus des deux sexes au point que, vu leur excessive disposition querelleuse, on est obligé d'exposer les poules dans des cages séparées. Chez les races polonaises, la protubérance osseuse du crane, qui supporte la crête, se développe partiellement avant même que le poulet soit éclos, et la crête commence à pousser, quoique faiblement d'abord ${ }^{47}$; chez cette race, la présence d'une forte protubérance osseuse et d'une crête énorme constituent des caractères communs aux deux sexes.

En resumé, les rapports que nous avons vu exister chez beaucoup d'espèces naturelles et chez un grand nombre de races domestiques, entre la période du développement des caractères et le mode de leur transmission, - le fait frappant, par exemple, de la croissance précoce des bois shez le renne, dont les mâles et les femelles portent des bois, comparée à l'apparition plus tardive des bois chez les autres espèces où le male seul en est pourvu, - nous autorisent à conelure qu'une des causes, mais non la seule, de la transmission de certains caracteres exclusivement aux individus appartenant à un sexe est que ces caractères se développent à un age avancé. Secondement, qu'une des causes, quoique moins efficace, de l'hérédité des caractères par les individus appartenant aux deux sexes, est le développement de ces caractères à un age précoce, alors que la constitution des males et des femelles diffère peu. Il semble, toutefois, qu'il doive exister quelque différence entre les

[^133]sexes, même à une période embryonnaire très précoce, car des caractères développés à cet âge s'attachent assez souvent à un seul sexe.

Résumé et conclusion. - La discussion qui précède, sur les diverses lois de l'hérédité, nous apprend que les caractères tendent souvent, ordinairement mème, à se développer chez le même sexe, au même âge, et périodiquement à la même saison de l'année, que ceux où ils ont apparu pour la première fois chez les parents. Mais des causes inconnues jettent une grande perturbation dans l'application de ces lois. Les progrès successifs qui tendent à modifier une espèce peuvent donc se transmetire de différentes manières; les uns sont transmis à l'un des sexes, les autres aux deux sexes, les uns aux descendants à un certain age, les autres à tous les âges. Les lois de l'hérédité présentent non seulement une complication extrême, mais il en est de même des causes qui provoquent et règlent la variabilité. Les variations ainsi provoquées se conservent et s'accumulent grâce à la sélection sexuelle, qui est en elle-même excessivement complexe, car elle dépend de l'ardeur, du courage, de la rivalité des mâles et, en outre, du discernement, du goût et de la volonté de la femelle. La sélection sexuelle est aussi, quand il s'agit de l'avantage général de l'espèce, dominée par la sélection naturelle. Il en résulte que le mode suivant lequel la sélection sexuelle affecte les individus de l'un ou de l'autre sexe ou des deux sexes, ne peut être compliqué au plus haut degré.
Lorsque les variations se produisent à un âge avancé chez un sexe et se transmettent au même sexe et au même âge, l'autre sexe et les jeunes n'éprouvent, bien entendu, aucune modification, Lorsqu'elles se transmettent aux individus des deux sexes et au même age, les jeunes seuls n'éprouvent aucune modification. Toutefois, des variations peuvent se produire à toutes les périodes de la vie chez les individus males ou femelles ou chez les deux à la fois et se transmettre aux individus des deux sexes à tous les äges; dans ce cas, tous les individus de l'espèce éprouvent des modifications semblables, Nous verrons dans les chapitres suivants que tous ces cas se présentent fréquemment dans la nature,

La sélection sexuelle ne saurait agir sur un animal avant qu'il ait atteint l'age où il peut se reproduire. Elle agit ordinairement sur le sexe malle et non sur le sexe femelle, en raison de la plus grande ardeur du premier. C'est ainsi que les males ont acquis des armes pour lutter avec leurs rivaux, se sont procuré des organes pour découvrir la femelle et la retenir, ou pour l'exciter
et la séduire. Quand le mâle diffère sous ces rapports de la femelle, nous avons vu qu'il est alors assez ordinaire que le mâle adulte diffère plus ou moins du jeune mâle; ce fait nous autorise à conclure que les variations successives, qui ont modifié le mâle adulte, ne se sont généralement pas produites beaucoup avant lage où l'animal est en état de se reprodure. Toutes les fois que des variations, en petit ou en grand nombre, se sont produites a un age précoce, les jeunes males participent plus ou moins aux caractères des males adultes. On peut observer des différences de cette nature entre les vieux et les jeunes mâles chez beaucoup d'espèces d'animaux.
Il est probable que les jeunes animaux males ont du souvent tendre à varier d'une manière qui, non seulement leur était inutile à un age précoce, mais qui pouvait même leur être nuisible, par exemple, l'acquisition de vives couleurs qui les aurait rendustrop apparents, ou l'acquisition de conformations telles quedes cornes, dont le développement aurait déterminé chez eux une grande déperdition de force vitale. La sélection naturelle a dû, presque certainement, se charger d'éliminer les variations de ce genre, dès qu'elles se sont produites chez les jeunes mâles. Chez les mâles adultes et expérimentés, au contraire, les avantages qui résultent de l'acquisition de semblables caractères pour la lutte avec les autres mâles doivent avoir souvent plus que compensé les quelques dangers dont ils pouvaient etre d'ailleurs la cause.
Si des variations analogues à celles qui donnent au mâle une supériorité sur ses rivaux, ou lui facilitent la recherehe ou la possession de la femelle, apparaissent chez cette dernière, la selection sexuelle ne saurait intervenir pour les conserver, car fles ne lui sont d'aucune utilité. Les variations de tous genres chez les animaux domestiques se perdent bientot par les croisements et. les morts accidentelles, si on ne les soumet pas à une sélection attentive; nous pourrions citer de nombreuses preuves à cet égard. Par conséquent, à l'état de nature, des variations semblables à celles que nous venons d'indiquer seraient très sujettes à disparaitre, si elles venaient à se produire chez les femelles et à être transmises exclusivement au même sexe; toutefois, si les femelles variaient et transmettaient à leurs descendants des leux sexes leurs caractères nouvellement acquis, la sélection sexuelle interviendrait pour conserver aux males ceux de ces caractères qui leur seraient avantageux, bien qu'ils n'aient aucune utilité pour les femelles elles-memes. Dans ce cas, les males et les femelles se modifieraient de la même manière. J'aurai plus loin à revenir sur
ces éventualités si complexes. Enfin, les femelles peuvent acquérir et ont certainement acquis par transmission des caractères appartenant au sexe male.
La sélection sexuelle a accumulé incessamment et a tiré grand parti, au point de vue de la reproduction de l'espèce, des variations qui se produisent à un age avancé et qui ne se transmettent qu'à un seul sexe; il parait donc inexplicable, à première vue, que la sélection naturelle n'ait pas accumulé plus fréquemment des variations semblables ayant trait aux habitudes ordinaires de la vie. S'il en avait été ainsi, les mâles et les femelles auraient souvent éprouvé des modifications différentes dans le but, par exemple, de capturer leur proie ou d'échapper au danger. Des différences de ce genre se présentent parfois, surtout chez les animaux inférieurs. Mais ceci implique que les malles et les femelles ont des habitudes différentes dans la lutte pour l'existence, ce qui est très rare chez les animaux supérieurs. Le cas est tout différent quand il s'agit des fonctions reproductrices, point sur lequel les deux sexes diffèrent nécessairement. En effet, les variations de structure qui se rapportent à ces fonctions sont souvent avantageuses à un sexe, et ces variations se transmettent à un sexe seulement parce qu'elles se sont produites à un âge avancé; or ces variations conservées et transmises par hérédité ont amené la formation des caractères sexuels secondaires.
J'édudierai, dans les chapitres suivants, les caractères sexuels secondaires chez les animaux de toutes les classes, en cherchant à appliquer, dans chaque cas, les principes que je viens d'exposer dans ce chapitre. Les classes inférieures ne nous retiendront pas longtemps, mais nous aurons à étudier longuement les animaux supérieurs, les oiseaux surtout. Il est inutile de rappeler que, pour des raisons déjà indiquées, je citerai peu d'exemples desinnombrables conformations qui servent au mâle à trouver la femelle et à la retenir lorsqu'il l'a runcontrée. Je discuterai, au contraire, avec tous les développements que comporte ce sujet, si intéressant à plusieurs points de vue, toutes les conformations et tous les instincts qui permettent à un mâle de vaincre les autres mâles, et qui le mettent à même de séduire ou d'exciter la femelle.

Supplément sur le nombre proportionnel des mâles et des femelles chez les animaux appartenant à diverses classes.

Personne n'a encore, autant toutefois que je puis le savoir, étudié quel est le nombre relatif des males et des femelles dans le
règne animal; je crois donc devoir résumer ici les documents, d'ailleurs très incomplets, que j'ai pu recueillir à ce sujet. Ils comprennent quelques statistiques, mais le nombre n'en est malheureusement pas grand. Je citerai d'abord, comme terme de comparaison, les faits relatifs à l'homme, parce que ce sont les seuls qui soient connus avec quelque certitude.

Homme. - En Angleterre, pendant une période de dix ans (1857 à 1866), il est né annuellement, en moyenne, 707.120 enfants vivants, dans la proportion de 104,5 garçons pour 100 filles. Mais, en 1857, la proportion des garçons nés en Angleterre a été comme 105,2, et en $186{ }^{\circ}$, comme 104 est à 100 filles. Considérons des districts séparés ; dans le Buckinghamshire (où en moyenne il naît annuellement 5.000 enfants), la proportion moyenne des naissances de garçons et de filles, pendant la période décennale ci-dessus indiquée, a été comme 102,8 est à 100 ; tandis que dans le nord du pays de Galles (où les naissances annuelles s'élèvent à 12.873), la proportion a été de 106,2 garçons pour 100 filles. Prenons un district plus restreint, le Rutlandshire (où la moyenne annuelle des naissances n'est que de 739), en 1864, il naquit 114,6 garçons, et en 1862, 97 garçons seulement, pour 100 filles; mais, même dans ce petit district, la moyenne des 7.385 naissances des dix ans donnait une proportion de 104,5 garçons, pour 100 filles, c'est-à-dire une proportion égale à celle de toute l'Angleterre ${ }^{48}$. Des causes incon ${ }^{-}$ nues modifient quelquefois les proportions ; ainsi, le professeur Faye constate e que, dans quelques parties de la Norvège, il s'est manifesté, pendant une période décennale, un déficit persistant de garçons, tandis que, dans d'autres parties, le fait contraire s'est présenté ». En France, la proportion des naissances mâles et femelles a été, pendant une période de quarante-quatre ans, comme 106,2 est à 100 ; mais, pendant cette période, il est arrivé, cinq fois dans un département et six foís dans un autre, que les naissances du sexe féminin ont excêdé les naissances du sexe masculin. En Russie, la proportion moyenne est fort élevée: comme 108,9 est à 100 ; et, à Philadelphie, aux États-Unis, comme 110,5 est à 100^{49}. La moyenne pour toute l'Europe, moyenne calculée par Bickes, d'après environ soixante-dix millions de naissances est 106 garçons

[^134]contre 100 filles. D'autre part, chez les enfants blances nés au cap de Bonne-Espérance, la moyenne est très peu élevée, car, pendant plusieurs années successives, on n'a compté que de 90 à 99 garçons contre 100 filles. Signalons un fait remarquable : chez les juifs, la proportion des naissances malles est relativement plus forte que chez les chrétiens ; ainsi, en Prusse, la proportion est comme 113, à Breslau, comme 114, en Livonie, comme 120 est à 100 . Chez les chrêtiens, dans ces mêmes pays, la moyenne ne s'élève pas audessus de la proportion habituelle : par exemple, en Livonie, elle est de 104 garçons pour 100 filles ${ }^{50}$. Le professeur Faye fait remarquer qu' \& on constaterait une prépondérance de mâles encore bien plus considérable, si la mort frappait également les individus des deux sexes, tant pendant la gestation qu'à la naissance. Mais le fait est que pour 100 enfants mort-nés du sexe féminin, nous troúvons dans plusieurs pays de 134,6 a a 144,9 mort-nés du sexe masculin. En outre, il meurt plus de garçons que de filles dans les quatre ou cinq premières années de la vie ; en Angleterre, par exemple, dans la première année, il meurt 126 garçons pour 100 filles, la proportion observée en France est encore plus défavorable ${ }^{51}$ \%. Le docteur Stockton-Hough explique en partie ces faits par le développement plus souvent défectueux des garçons que des filles. Nous avons déjà dit que l'homme est sujet à plus de variations que la femme; or ces variations, portant sur des organes importants, sont ordinaiment nuisibles. En outre, le corps de l'enfant malle, et surtout la tete, est plus gros que celui de la femelle, et c'est encore là une cause de la mort plus fréquente des garçons, car ils sont plus exposés à des accidents pendant l'accouchement. En conséquence, les males mort-nés sont plus nombreux, et un juge três compétent, le docteur Crichton Browne, croit que les onfants mâles souffrent fréquemment pendant plusieurs années après leur naissance. Cet oxcès de la ${ }^{52}$ mortalité des enfants malles au moment de la nais-
80. A l'égard des juifs, voy. M. Thury, la Lol de production des sexes, 1863, p. 28.
51. British and Foreign Medico-Chirurg. Review, avril 1867, p. 343. Le docteur Stark (Dixième rapport annuel des Naissances, Morts, etc., en Ecosse, 1867, p. xxviII) fait remarquer que " ces exemples suffisent pour prouver que, presque à chaque phase de l'existence, en Écosse, les males sont plus exposés à mourir et que la mortalité est plus élevée chez eux que chez les femelles. Toutefois, le fait que cette particularité se présente surtout pendant cette période enfantine de la vie où les vêtements, la nourriture et le traitement général des enfants des deux sexes sont les mêmes, semble prouver que la proportion plus élevée de la mortalité chez les màles est une particularité naturelle et constitutionnelle due au sexe seul. .
52. West Riding lunatic Asylum Reports, vol. I, 1871, p. 8. Sir J. Simpsou a prouvé que la tete de l'enfant male excède de 9 millimètres en circonférence et de
sance et pendant les premières années, les dangers plus grands que courent les hommes adultes, leur disposition à émigrer, expli_ quent que, dans tous les pays civilisés qui possèdent des documents statistiques, le nombre des femmes est considérablement supérieur à celui des hommes ${ }^{53}$.

Il semble tout d'abord très extrnordinaire que chez divers peuples, dans des conditions et sous des climats différents, à Naples, en Prusse, en Westphalie, en Hollande, en France, en Angleterre et aux États-Unis, l'excès des naissances males sur les naissances femelles est moins considérable quand les enfants sont illégitimes que quand ils sont légitimes ${ }^{54}$. Plusieurs savants ont cherché à expliquer ce fait de bien des façons différentes; les uns l'attribuent à ce que les mères sont ordinairement jeunes, les autres à ce que les enfants proviennent d'une première grossesse, etc. Mais nous avons vu que les garçons, ayant la tète plus grosse, souffrent plus que les filles pendant l'accouchement; en outre, comme les mères d'enfants illégitimes sont plus exposées que les autres femmes à des accouchements laborieux résultant de diverses causes, telles qu'une dissimulation de grossesse, un travail pénible, l'inquiétude, etc., les enfants males doivent souffrir proportionnellement. C'est probablement à ces causes qu'il faut attribuer la propertion moindre des enfants illégitimes mâles. Chez la plupart des animaux, la taille plus grande du male adulte provient de ce que les males les plus forts ont vaincu les plus faibles dans la lutte pour la possession des femelles, et c'est sans doute à cette calse qu'il faut attribuer la différence de grosseur des petits, au moins chez quelques animaux au moment de la naissance. Il en résulte que nous pourons attribuer, en partie au moins, à la sélection sexuelle le fait curieux que la mortalité est plus grande chez les garçons que chez les filles, surtout quand il s'agit d'enfants illégitimes.

Il en résulte de cet excès de la mortalité des enfants males, et aussi de ce que les hommes adultes sont exposés à plus de dangers et émigrent plus facilement, que, dans tous les pays anciennement habités, où l'on a conservé des documents statistiques, on observe que les femmes l'emportent considérablement parle nombre sur leshommes.

[^135]On a souvent supposé que l'áge relatif des parents détermine le sexe des enfants, et le professeur Leuckart ${ }^{55}$ a accumulé des documents qu'il considère comme suffisants pour prouver, en ce qui concerne l'homme et quelques animaux domestiques, que ce rapport d'age constitue un des facteurs importants dans le résultat. On a aussi regardé comme une cause effective l'époque de la fécondation relativement à l'état de la femelle, mais des observations récentes ne confirment pas cette manière de voir. D'après le docteur Stockton-Hough ${ }^{56}$, la saison de l'année, l'état de pauvreté ou de richesse des parents, la résidence à la campagne ou dans les villes, la présence d'immigrants, etc., sont toutes des causes qui exercent une influence sur la proportion des sexes. Pour l'homme encore, on a suppose que la polygamie détermine la naissance d'une plus grande proportion d'(nfants du sexe féminin ; mais le docteur J. Campbell ${ }^{57}$, après des recherches nombreuses faites dans les harems de Siam, a été amené à conclure que la proportion des naissances de garçons et de filles est la même que celle que donnent les unions monogames. Bien que peu d'animaux aient été rendus aussi polygames que notre cheval de course anglais, nous allons voir que ses descendants males et femelles sont presque en nombre exactement égal.
Je vais maintenant citer les faits que j'ai recueillis relativement - au nombre proportionnel des sexes chez diverses espèces d'animaux, puis je discuterai brièvement quel rôle a pu jouer la sélection pour amener le résultat.

Cheval. - Je dois à l'obligeance de M. Tegetmeier un relevé dressé, d'après le Calendrier des Courses, tes naissances de chevaux de courses pendant une période de vingt et une années, de 1847 à 1867 ; l'année 1849 seule est omise, aucun rapport n'ayant été publié. L.es naissances se sont élevées à $25.560{ }^{58}$; elles consistent en 12.763 mâles et 12.797 femelles, soit un rapport de 99,7 mâles pour 100 femelles. Ces chiffres étant assez considérables et portant sur toutes les parties de l'Angleterre, pendant une période de plusieurs années, nous pouvons en conclure que, chez le
55. Leuckart (dans Wagner, Handwörterbuch der Phys., 1853, Bd. IV, p. 774).
56. Social Science Assoc. of Philadelphia, 1874.
57. Anthropological Review, avril 1870, p. cVIII.
58. Pendant onze années, on a enregistré le nombre des juments qui sont restées slériles ou ont mis bas avant terme: il est digne d'attention de constater que ces animaux, très soignés et accouplés dans des conditions de consanguinité trop rapprochées, en sont arrivés au point que presque un tiers des juments n'unt point donné de poulains vivants. Ainsi, en 1866, il naquis 809 pouleins et 816 pouliches, et 743 juments ne produisirent rien. En 1867, 836 males et 902 femelles virent le jour, 794 juments restèrent steriles.
cheval domestique, au moins pour la race dite de course, les deux sexes sont produits en nombre presque égal. Les fluctuations que présente, dans les années successives, la proportion des sexes, sont très analogues a celles qui s'observent dans le genre humain, lorsqu'on ne considère qu'une surface peu étendue et peu peuplée: ainsi, en 1856, on a compté, pour 100 juments, 107,1 étalons, et en 1867 , seulement 92,6 . Dans les rapports présentés en tableaux, les proportions varient par cycles : ainsi le nombre des mâles a excédé celui des femelles pendant six années consécutives; et le nombre de celles-ci a excédé celui des mâles pendant deux périodes de quatré années chacune. Il se peut, toutefois, que ce soit là un fait accidentel, car je ne découvre rien de semblable dans la table décennale du Rapport relatif à la population humaine pour 1866.

Chiens. - On a publié pendant une période de douze ans, de 1857 à 1868, dans un journal, le Field, le relevé des naissances d'un grand nombre de lévriers dans toute l'Angleterre, et c'est encore à l'obligeance de M. Tegetmeier que j'en dois un relevé exact. On a enregistré 6.878 naissances, dont 3.605 males, et 3.273 femelles, soit un rapport de 110,1 malles pour 100 femelles. Les plus fortes fluctuations ont eu lieu en 1864, oư la proportion a été de 95,3 males pour 100 femelles; et en 1867, où elle s'éleva à 116,3 màles pour 100 femelles. La première moyenne, de 110,1 mâles pour 100 femelles, est probablement à peu près vraie pour le lévrier; mais il est quelque peu douteux qu'on puisse l'adopter pour les autres races domestiques. M. Cupples, après avoir questionné plusieurs grands éleveurs de chiers, a conclu que tous, sans exception, admettent que les femelles sont produites en excès; il attribue cette opinion à ce que, les femelles ayant moins de valeur, le désappointement des eleveurs, qui en est la conséquence, les a plus fortement impressionnés.

Mouton. - Les agriculteurs ne vêrifiant le sexe des moutons que plusieurs mois aprés la naissance, à l'époque oú l'on procêde à la castration des males, les relevés qui suivent ne donnent pas les proportions au moment de la naissance. En outre, plusieurs grands éleveurs d'Écosse, qui élèvent annuellement des milliers de moutons, sont fortement convaincus qu'il périt, dans les deux premières années de la vie, une plus grande proportion d'agneaux males que de femelles; la proportion des mâles serait done quelque peu plus forte au moment de la naissance qu'ả l'age de la castration. C'est là une coïncidence remarquable avec ce qui se passe chez l'homme, et les deux cas dépendent probablement de quelqué cause commune. J'ai reçu des relevés faits par plusieurs propriétaires anglais qui ont élevé des moutons de plaines, surtout des Leicester, pendant les seize dernières années : le nombre des naissances s'élève à un cotal de 8,965 dont 4.407 malles et 4.558 femelles; soit le rapport de 96,7 males pour 100 femelles. J'ai reçu sur des moutons chevio et a face noire produits en Ecosse, des relevés faits par six éleveurs dont deux très importants; ces relevés s'appliquent surtout aux années 18671869, bién que quelques-uns remontent jusqu'à 1862. Le nombre total enregistré se monte à 80.68 moutons, comprenant 25.071 males et

Abstract

25.614 femelles, soit une proportion de 97,9 males pour 100 femelles. Si nous réunissons les données des rapports anglais et des rapports écossais, le nombre total s'elève à 59.650 moutons, consistant en 29.478 mâles et 30.172 femelles, soit le rapport de 97,7 males pour 100 femelles. A l'age où l'on chatre les moutons, les femelles sont donc certainement en excès sur les males; mais il n'est pas certain que cela soit le cas au moment de la naissance ${ }^{50}$.

Bettall. - J'ai reçu des rapports de neuf personnes portant sur un nombre de 982 tetes de bétail, chiffre trop faible pour qu'on puisse en tirer aucune conclusion. Ge nombre total comportait 477 males et 505 femelles, soit une proportion de 94,4 males pour 100 femelles. Le Rév. W. D. Fox m'informe qu'en 1867, un seul veau sur 34, nés dans une ferme du Derbyshire était male. M. Harrisson Weir m'écrit que plusieurs éleveurs de porcs, auxquels il a demandé des renseignements à ce sujet, estiment que, chez cet animal, le rapport des naissances mâles, comparativement aux naissances femelles, est comme 7 est à 6 . M. Weir, ayant élevé pendant fort longtemps des lapins, a remarqué qu'il naissait un plus grand nombre de mâles que de femelles. Mais ce sont là des renseignements qui n'ont qu'une valeur très secondaire.
Je n'ai pu recueillir que bien peu de renseignements sur les mammifères à l'état de nature. Ceux qui concernent le rat cornmun sont contradictoires. M. R. Elliot, de Laighwood, m'informe qu'un preneur de rats lui a assuré qu'il avait toujours trouvé un excès de mâles, même dans les nids de petits. M. Elliot, ayant ensuite examiné lui-même quelques centaines de rats adultes, a constaté que le fait est exact. M. F. Buckland, qui a élevé une grande quantité de rats blancs, admet aussi que le nombre des mâles excède de beaucoup celui des femelles. On dit que chez les taupes, les mâles sont beaucoup plus nombreux que les femelles ${ }^{60}$; la chasse de ces animaux constituant une occupation speciale, on peut peut-être se fier à cette assertion. Décrivant une antilope de l'Afrique ${ }^{61}$ (Kobus ellipsiprymnus), Sir A. Smith remarque que, dans les troupeaux de cette espèce et d'autres espèces, le nombre des malles est petit comparativement à celui des femelles; les indigènes croient qu'ils naissent dans ces proportions, d'autres indigènes disent que les plus jeunes mâles sont expulsés des troupeaux, et Sir A. Smith ajoute que, bien qu'il n'ait jamais lui-même rencontré des bandes composées seulement de jeunes males, d'autres assurent qu'ils en ont vu. Il est probable que les jeunes males, une fois chassés du troupeau, doivent être exposés à devenir la proie des nombreux animaux féroces qui peuplent le pays.
59. Je dols a l'obligeanee de M. Cupples les documents relatifs à l'teosse, ains! que quelques-unes des données suivantes sur le bétail. M. R. Elliot, de Laighwood, a, le premier, attiré mon attention sur la mort prématurée des males, fait que M. Aitchison et d'autres ont confirmé depuis. C'est ce dernier, ainsi que M. Payan, qui ont bien voulu me communiquer les renseignements les plus circonstanciés sur les moutons.
60. Bell, History of British Quadrupeds, p. 100.
61. Illustrations of Zoology of S. Africa, 1849, pl. 89.

OISEAUX

Relativement aux volailles, je n'ai reçu qu'un mémolre de M. Stretch, qui, sur 1.001 poulets d'une race très soignée de cochinchinois qu'il a ćlevés pendant huit ans, a obtenu 487 mâles et 514 femelles, soit un rapport de 94,7 à 100 . Il est évident que, chez le pigeon domestique, les males sont produits en excès, ou qu'ils vivent plus longtemps; car ces oiseaux s'accouplent, et M. Tegetmeier m'apprend que les mâles isolés coùtent toujours moins cher que les femelles. Ordinairement, les deux oiseaux provenant des deux œufs pondus dans le méme nid consistent en un mâle et une femelle; cependant M. Harrisson Weir, qui a élevé beaucoup de pigeons, assure qu'il a souvent eu deux femelles; en outre, la femelle est généralement plus faible et plus, sujette à périr.
Pour les oiseaux à l'etat de nature, M. Gould et d'autres savants ${ }^{62}$ affirment que les mâles sont généralement plus nombreux que les femelles; car, chez beaucoup d'espèces, les jeunes mâles ressemblant aux femelles, celles-ci paraissent naturellement être plus nombreuses. M. Eaker, de Leadenhall, qui élève de grandes quantités de faisans provenant d'oufs pondus par des oiseaux sauvages, a informé M. Jenner Weir qu'il obtient générale ment quatre ou cinq màles pour une femelle. Un observateur expérimenté remarque ${ }^{63}$ qu'en Scandinavie les couvées des coqs de bruyère (T. urogallus et T. tetrix) contiennent plus de mâles que de fernelles; il ajoute que, chez le dal-ripa (espèce de lagopus, ou ptarmigan), il y a plus de mâles que de femelles sur les emplacements où ces oiseaux se réunissent pour se faire la cour; mais quelques observateurs expliquent cette circonstance par le fait que les carnassiers tuent plus de femelles. Il semble résulter clairement de divers faits signalés par Withe, de Selborne ${ }^{64}$, que les perdrix mades doivent se trouver en grand excès dans le sud de l'Angleterre; on m'a assuré qu'il en est de même en Écosse. M. Weir tient de négociants, qui reçoivent à certaines saisons de grands envois de combattants (Nachetes pugnax), que les malles sont de beaucoup les plus nombreux. Le méme naturaliste s'est adressé pour avoir quelques renseignements à des preneurs d'oiseaux vivants qui capturent annuellement un nombre étonnant de petites espèces pour le marché de Londres; un de ces vieux chasseurs, digne de toute confiance, lui a affirmé que chez les pinsons les males sont en grand exeès; il pense qu'il y a deux males pour une femelle, ou qu'ils se trouvent au moins dans le rapport de 5 à 3 . 65 ajoute que les malles sont de beaucoup les plus nombreux chez les merles, soit qu'on les prenne au piège ou au filet. Ces données parais-

[^136]sent exactes, car le même homme a signalé une égalité approximalive des sexes chez l'alouette, chez la linotte de montagne (Linaria monlana) et chez le chardonneret; il affirme, d'autre part, que, chez la linote commune, les femelles sont extrèmement prépondérantes, mais inégalement, suivant les différentes années; il s'est trouvé des époques oì le rapport était de quâtre femelles pour un male. Il faut cependant tenir compte de ce fait que la chasse aux oiseaux ne commençant qu'en septembre, quelques migrations partielles peuvent avoir eu lieu, et les troupes à cette période n'etre composées que de femelles. M. Salvin, qui a porté son attention sur les sexes des oiseaux-mouches de l'Amérique, est convaincu de la prépondérance des mâles chez la plupart des espèces; ainsi il s'est procuré, une année, 204 individus appartenant à dix espéces, et il a constaté qu'il y avait 166 mâles et 38 femelles. Chez deux autres espèces, les femelles étaient en excès, mais les proportions paraissent varier suivant les saisons et les localités, car les Campylopterus hemileucurus, qui, dans une occasion, présentaient un rapport de 5 mâles pour 2 femelles, présentèrent, dans une autre occasion, exactement le rapport inverse ${ }^{6 \epsilon}$. Comme confirmation de ce dernier point, j'ajouterai que M. Powys a remarqué, à Corfou et en Épire, que les pinsons des deux sexes font bande à part, "et que les femelles sont beaucoup plus nombreuses; " tandis qu'en Palestine M. Tristram remarqua a que les bandes de mâles paraissaient excéder considérablement en nombre celles des femelles ${ }^{67}$. "De même M. G. Taylor ${ }^{\text {es }}$ dit du Quiscalus major qu'en Floride il y a " peu de femelles proportionnellement aux males, tandis que, dans le Honduras, le rapport étant renversé, l'espèce y affecte un caractère polygame.

POISSONS

On ne peut, chez les poissons, déterminer les nombres proportionnels des sexes, qu'en les prenant à l'état adulte ou à peu près, et encore là se prêsente-t-il de nombreuses difficultés pour arriver à une conclusion exacte ${ }^{69}$. On peut facilement prendre des femelles stériles pour des males, ainsi que me l'a fait remarquer le docteur Günther, au sujet de la truite. Chez quelques espèces, on croit que les males meurent peu de temps après avoir fécondé les œufs. Chez un grand nombre d'espèces, les males sont beaucoup plus petits que les femelles, de sorte qu'un grand nombre peuvent échapper au filet dans lequel les femelles restent prises. M. Carbonnier ${ }^{72}$, qui a beaucoup étudié l'histoire du brochet (Esox lucius), constate qu'un grand nombre de males sont, vu leur peti-

[^137]tesse, dévorés par les grandes femelles; il croit que, chez presque tous les poissons, les males sont, pour cette mème cause, exposés à plus de dangers que les femelles. Néanmoins, dans les quelques cas où l'on a pu observer les nombres proportionnels réels, les males paraissaient être en excès. Ainsi M. R. Buist, le surveillant des experiences faites à Stormontfield, dit qu'en 1865, sur les 70 saumons envoyés d'abord pour fournir les œufs, plus de 60 étaient malles. En 1867, il attire encore rattention sur a l'énorme disproportion qui existe entre les males et les femelles. Au début nous avions dix males pour une femelle. "On se procura ensuite un nombre suffisant de femelles pour en avoir des ceufs. Il ajoute « que la grande quantité des males fait qu'ils sont constamment occupés à se battre et à s'entre-déchirer sur les bancs de frai ${ }^{\eta}$. » On peut probablement expliquer cette disproportion, sinon totalement, au moins en partie, par le fait que les poissons males remontent les rivières avant les femelles. M. F. Buckland fait remarquer, au sujet de la truite, * qu'il est curieux que les mâles l'emportent autant par le nombre sur les femelles. Il arrive invariablement que, dans le premier afflux du poisson au filet, on trouve, parmi les captifs, au moins sept ou huit males pour une femelle. Je ne puis m'expliquer ce fait : il faut en conclure que les mâles sont plus nombreux que les femelles, vu que celles-ci cherchent à éviter le danger plutot en se cachant que par la fuite. „Il ajoute ensuite qu'en fouillant les bancs avec soin, on y trouve suffisam. ment de femelles pour fournir les œeufs ${ }^{72}$. M. H. Lee m'apprend que, sur 212 truites prises dans le parc de lord Portsmouth, il y avait 150 males et 62 femelles,
Les mâles paraissent aussi être en excès chez les Cyprinidés, mais plusieurs membres de cette famille, la carpe, la tanche, la brême et le véron, paraissent régulièrement suivre l'usage, rare dans le règne animal, de la polyandrie; car la fomelle, pendant la ponte, est toujours assistée de deux mâles, un de chaque cotté, et, dans le cas de la brême, il y en a trois ou quatre. Le fait est si connu, qu'on recommande toujours de pourvoir un étang de deux tanches males pour une femelle, l ou au moins trois mâles pour deux femelles. Avec le véron, ainsi que le constate un excellent observateur, les males sont dix fois plus nombreux sur les champs de frai que les femelles: lorsqu'une de celles-ci pénètre parmi les malles, "elle est immédiatement serrée de près entre deux malles qui, après avoir conservé cette position pendant quelque temps, sont remplacés par deux autres ${ }^{23}$.

INSECTES

Les Lépidoptères seuls nous permettent de juger du nombre proportionnel des sexes chez les insectes, car ils ont été recueillis avec beau-

[^138]coup de soin par de nombreux et d'excellents observateurs; on s'est beaucoup occupé aussi de leurs transformations. J'avais espéré trouver des documents exacts chez quelques éleveurs de vers à soie; mais, après avoir écrit en France et en Italie, et avoir consulté divers traités, je suis fi reé de conclure qu'on n'a jamais tenu un relevé exact ou même approxir atif des sexes. L'opinion générale est que les individus des deux se les son! en nombre à peu près égal; mais le professeur Canestrini m ' ipprend qu'en Italie un grand nombre d'éleveurs sont convaincus que les femelles sont produites en excès. Le même naturaliste, toutefois, m'informe que, dans les deux éclosions annvelles du ver de l'Ailante (Bombyx cynthia), les mâles l'emportent de beaucoup dans la première, puis les deux sexes deviennent presque égaux, ou les femelles sont un peu en excès dans la seconde.
Plusieurs observateurs ont été vivement frappés de la prépondérance, en apparence énorme, des mâles chez les Lépidoptères à l'état de nature ${ }^{74}$. Ainsi M. Bates ${ }^{75}$, parlant des espèces qui, au nombre d'une centaine, habitent les régions de l'Amazone supérieur, dit que les males sont beaucoup plus nombreux que les femelles, et cela dans une proportion qui peut etre de 100 pour 1. Edwards, qui a beaucoup d'expérience à ce sujet, estime que, dans l'Amérique du Nord, le rapport des mâles aux femelles, dans le genre Papilio, est de 4 à 1 ; M. Walsh, qui m'a transmis ce renseignement, affirme que tel est le cas pour le P.turnus. Dans l'Afrique méridionale, M. R. Trimen a constaté que les mâles sont en excès chez dix-neuf espèces ${ }^{76}$; chez l'une de ces espèces, qui fourmille dans les localités ouvertes, il estime la proportion des males à cinquante pour une femelle. Il n'a pu, dans l'espace de sept années, récolter que cinq femelles d'une autre espèce dont les mâles sont abondants dans certaines localités. Dans l'lle de Bourbon, M. Maillard a constaté que les males d'une espèce de Papilio sont vingt fois plus nombreux que les femelles ${ }^{77}$. M. Trimen m'apprend qu'autant qu'il a pu le vérifier lui-méme ou le savoir par d'autres, il est rare que, chez les papillons, le nombre des femelles excède celui des males, mais trois espèces de YAfrique du Sud semblent faire exception à cette règle. M. Wallace ${ }^{78}$ dit que les femelles de l'Ornithoptera croesus, de l'archipel Malais, sont plus communes et plus faciles à prendre que les males, mais c'est d'ailleurs une espèce rare. J'ajouterai ici que, chez le genre de phalènes Hyperythra, d'après M. Guenée, on envoie, dans les collections venant de l'Inde, de quatre à cinq femelles pour un male.
Lorsque la question du nombre proportionnel du sexe des insectes fut posée devant la Société d'entomologie ${ }^{79}$, on admit généralement que soit à l'état adulte, soit à l'état de chrysalide, on prend plus de Lépi
74. Leuckart cite Meinecke (Wagner, Handuörterbuch der Phys., vol. IV, 1853, p. 775), qui affirme que chez les papillons les males sont trois ou quatre fois auss! nombreux que les femelles.
75. The Naturalist on the Amazons, vol. II, 1863, pp. 228, 347.
76. Trimen, Rhopalocera A/ricx Australis.
77. Cité daus Trimen, Trans. Ent. Soc., vol. V, part. IV, 1866, p. 330.
78. Transact. Linn. Society, vol. XXV, p. 37.
79. Proc. Entomolog. Soc., 17 fév. 1868.
doptères males que de femelles; mais plusieurs observateurs attribuèrent ce fait à ce que les femelles ont des habitudes plus retirées, et que les malles sortent plus tôt du cocon. On sait, en effet, que cette dernière circonstance se présente chez la plupart des Lépidoptères comme chez d'autres insectes 11 en résulte, selon la remarque nnat, que les mâles du Bombyx Yamamai domestique, au commencement, ainsi que les femelles à la fin de la saison, ne peuvent, ni les uns ni les autres, servir à la reproduction, faute d'individus du sexe opposé ${ }^{80}$. Je ne puis croire, cependant, que ces causes suffisent à expliquer le grand excès des mâles chez les papillons, qui sont très communs dans le pays qu'ils habitent. M. Stainton qui a, pendant plusieurs années, étudié avec soin les phalènes de petites dimensions, m'apprend que, lorsqu'il les recueillait à l'état de chrysalide, il croyait que les males étaient dix fois plus nombreux que les femelles; mais que, depuis qu'il s'est mis à les élever sur une grande échelle, en les prenant à l'état de chenille, il a pu se convaincre que les femelles sont certainement plus nombreuses. Plusieurs eutomologistes partagent cette opinion. M. Doubleday et quelques autres soutiennent un avis contraire, et affirment avoir élevé de l'ouf et de la chenille une plus grande proportion de males que de temelles.
Outre les habitudes plus actives des mâles, leur sortie plus précoce du cocon et leur séjour, dans quelques cas, dans des stations plus découvertes, on peut assigner d'autres causes à la différence apparente ou réelle qu'on constate dans les nombres proportionnels des sexes des Lépidoptères, lorsqu'on les prend à l'état parfait, ou qu'on les elève en les prenant à l'état d'oufs ou de chenilles. Beaucoup d'éleveurs italiens, à ce que m'apprend le professeur Canestrini, crofent que le ver à soie femelle est plus sujet que le mâle à la maladie et le docteur Staudinger assure que, lorsqu'on élève les Lépidoptères, il périt en cocons plus de femelles que de males. Chez beaucoup d'espèces, la chenille femelle est plus grosse que le male, et le collectionneur, choisissant naturellement les plus beaux individus, se trouve, sans intention, amené à recueillir un plus grand nombre de femelles. Trois collectionneurs m'ont assuré qu'ils agissent toujours ainsi; d'autre part, le docteur Wallace croit qu'ils recueillent tous les individus des espèces rares qu'ils rencontrent, les seules qui méritent la peine d'etre élevées. Entourés de chenilles, les oiseaux doivent probablement dévorer les pius grosses; le professeur Canestrini m'informe que plusieurs éleveurs, en Italie, croient, quoique sur des preuves insuffisantes, que les guêpes détruisent un plus grand nombre de chenilles femelles, que de males lors de la première éclosion du ver à soie de l'Ailante. Le docteur Wallace remarque, en outre, que les chenilles femelles, étant plus grosses que les mâles, exigent plus de temps pour leur évolution, consomment plus de nourriture et ont besoin de plus d'humidite ; elles sont donc ainsi exposées plus longtemps aux dangers que leur font courir les ichneumons, les oiseaux, etc., et doivent, en temps de disette, périr en plus grand nombre. Il semble donc tout à fait possible que, à l'état de nature, moins de chenilles femelles que de males parviennent à la maturité; or, pour la question spéciale qui nous occupe, nous n'avons à consi-

[^139]dérer yue le nombre des individus qui atteignent l'état adalte, e seul pendant lequel les deux sexes peuvent reproduire l'espèce.
Le rassen blement en nombre si extraordinaire autour d'une seule femelle de riâles de certaines phalènes, indique évidemment un grand excès d'individus de ce sexe, bien que ce fait puisse peut-etre tenir à l'émergence plus précoce des males du cocon. M. Stainton a constaté la présence fréquente de douze à vingt malles autour d'une femelle de Elachista rufocincrea. On sait que, si l'on expose dans une cage une Lasiocampa quercus ou une Saturnia carpini vierge, de grandes quantités de mâles viennent bientot se réunir autour d'elle; si on l'enferme dans une chambre, ils descendent méme par la cheminée pour la rejoindre. M. Doubleday estime de 50 à 100 le nombre des mâles de ces deux espèces attirés en un seul jour par une femelle captire. M. Trimen a exposé, dans l'tle de Wight, une boite dans laquelle il avait la veille renfermé une Lasiocampa femelle; cinq mâles se présentèrent bientot pour y pénétrer. M. Verreaux ayant, en Australie, mis dans sa pocbe une petite boite contenant la femelle d'un petit Bombyx, fut suivi d'une nuée de males, et environ deux cents entrèrent avec lui dans la maison ${ }^{81}$.
M. Doubleday a appelé mon attention sur une liste da Lépidoptères du docteur Staudinger ${ }^{82}$, portant les prix des males et des femelles de 300 espèces ou variétés bien accusées de papillons diurnes (Rhopalocera). Les prix des individus des deux sexes, pour les espèces très communes, sont les memes; mais ils differrent pour 114 des plus rares espèces; les mâles, dans tous les cas, sauf une exception, sont les moins chers. D'après la moyenne des prix de 113 espèces, le rapport du prix du male à celui de !a femelle est de 100 à 149, ce qui parati indiquer que les mâles doìvent inversement excéder les femelles dans la même proportion. Deux mille espèces ou variétés de papillons nocturnes (Heterocera) sont cataloguées; mais on a exclu celles dont les femelles sont aptères, en raison de la différence des habitudes des deux sexes; sur 2.000 espèces, 141 diffèrent de prix suivant le sexe; chez 130 les males sont meilleur marché, et chez 11 seulement les males plus chers que les femelles. Le rapport du prix moyen des malles de 130 espèces, comparé à celui des femelles, est de 100 à 143. M. Doubleday (et personne en Angleterre n'a plus d'expérience sur ce sujet) pense que, en ce qai concerne les papillons de ce catalogue tarifé, il n'y a rien dans les habitudes des espèces qui puisse expliquer les différences de prix des sexes, et qu'elle ne peut etre attribuée qu'à un excès dans le nombre des malles. Mais je dois ajouter que le docteur Staudinger lui-même m'a exprimé une opinion toute différente. Il pense que l'activité moindre des femelles et l'éclosion précoce des males explique pourquoi les collectionneurs prennent plus de males que de femelles, d'où le prix moindre des premiers. Quant aux individus élevés de l'état de chenille, le docteur Staudinger croit, comme nous l'avons dit plus haut, qu'il périt dans le cocon plus de femelles que de males. Il ajoute que, chez certaines espèces, un des sexes semble pendant certaines années prédominer sur l'autre.

Quant aux observations directes sur les sexes des Lépidoptères élevés

Donc, ces sept lots de cocons et d'œufs ont produit un excédent de mảles qui, pris dans leur ensemble, sont aux femelles dans le rapport de 122,7 à 100 . Mais ces chiffres sont à peine assez importants pour être bien dignes de confiance.

En résumé, les điverses preuves qui précèdent, inclinant toutes dans la même direction, m'autorisent à conclure que, chez la plupart des espèces de Lépidoptères, le nombre des mâles à l'état d'adultes excède généralement celui des femelles, quelles que puissent être, d'ailleurs, leurs proportions à la sortie de l'œuf.
Je n'ai pu recueillir que fort peu de renseignements dignes de foi sur les autres ordres d'insectes. Chez le cerf-volant (Lucanus cervus), les males paraissent beaucoup plus nombreux que les femelles; mais Cornelius a observé qu'en 1867, lors de l'apparition dans une partie de l'Allemagne d'un nombre inusité de ces coléoptères, les femelles étaient six fois plus abondantes que les mâles. Une espèce d'Élatérides passe pour avoir des males beaucoup plus nombreux que les femelles, "et on en trouve deux ou trois unis à une femelle ${ }^{86}$; n il semble donc y avoir polyandrie. Chez le Siagonium (Staphylinides), où les males sont pourvus de cornes, " les femelles sont de beaucoup les plus nombreuses». M. Janson a communiqué à la Société entomologique le fait que les

[^140]femelles du Tomicus villosus, qui vit d'écorce, constituent un vrai féau par leur abondance, tandis qu'on ne connatt presque pas les males, tant ils sont rares.
Dans d'autres ordres, par suite de causes inconnues, mais évidemment dans quelques cas, par suite d'une parthénogénèse, les mâles de certaines espèces sont d'une rareté excessive ou n'ont pas encore été découverts, comme chez plusieurs Cynipidés ${ }^{85}$, Chez tous les Cynipidés gallicoles que connait M. Walsh, les femelles sont quatre ou cinq fois plus nombreuses que les males; il en est de même, à ce qu'il m'apprend, chez les Cécidomyiées (Diptères) qui produisent des galles. Il est quelques espèces de Porte-scies (Tenthrédines) que M. F. Smith a élevées par centaines de larves de toutes grandeurs sans obtenir un seul male; d'autre part, Curtis ${ }^{86}$ a trouvé, chez une autre espèce (Athalia) qu'il a élevée, une proportion de malles égale à six fois celle des femelles, tandis qu'il en a été précisément l'inverse pour les insectes parfaits de la même espèce qu'il a recueillis dans les champs. Hermann Müller ${ }^{87}$ a étudié tout particulièrement les abeilles; il a recueilli un grand nombre d'individus appartenant à beaucoup d'espèces; il en a élevé d'autres; puis il a compté les individus appartenant à chaque sexe. Il a trouvé que, chez quelques espèces, le nombre des males excède de beaucoup celui des femelles; chez d'autres espèces, c'est tout le contraire; chez d'autres enfin, les individus des deux sexes sont ϵ n nombre à peu prèe égal. Mais, les males sortant presque toujours du cocon plus tôt que les femelles, les mâles sont pratiquement en excès au commercement de la saison. Müller a aussi observé que le nombre relatif des individus de certaines espèces diffère beaucoup dans diverses localités. Mais, comme Müller lui-meme me l'a fait observer, ces remarques ne doivent être acceptées qu'avec une grande réserve, car il se peut que les individus appartenant à un sexe échappent plus facilement que les autres aux observations. Ainsi son frère, Fritz Müller, a remarqué au Brésil que les deux sexes d'une même espèce d'abeille fréquentent quelquefois des espèces différentes de fleurs. Je ne sais presque rien sur le nombre relatif des sexes chez ies Orthoptères : Körte ${ }^{88}$ affirme cependant que, sur 500 sauterelles qu'il a examinées, les males étaient aux femelles dans la proportion de 5 à 6 . M. Walsh constate, à propos des Névroptères, que, chez beaucoup d'espèces du groupe Odonates, mais pas chez toutes, il y a un grand excédent de males; chaz le genre Hetærina, les mâles sont au moins quatre fois plus abondants que les femelles. Chez certaines espèces du genre Gomphus, les males sont également en excès tandis que, chez deux autres espèces, les femelles sont deux ou trois fois plus abondantes que les males. Chez quelques espèces européennes de Psocus, on peut recueillir des milliers de femelles sans trouver un seul male; les deux sexes sont communs chez d'autres espèces du méme genre ${ }^{89}$. En Angleterre, M. Mac Lachlan a capturé des centaines de
85. Walsh, American Entomologist, vol, 1, 1869, p. 103 ; F. Smith, Recora of Zoolog. Literature, 1867, p. 328.
86. Farm Insects, pp. 45-46.
87. Anwendung der Darwinschen Lehre; Verh, d, n. V. Jahrg, Xxiv.
88. Die Strich, Zug oder Wandercheushreeke, 1828, p. 20.
89. Obs. on N. American Neuroptera par H. Hagen at Walsh, Proc. Ent.

Soc. Philadelphia, oct. 1863, pp. 168, 223, 239.

Apatania muliebris sans avoir jamais vu un seul male; on n'a encore vu que quatre ou cinq mâles de Boreus hyemalis ${ }^{\text {yo }}$. Il n'y a, pour la plupart de ces espèces (les Tenthrédinées exceptées), pas de raison pour supposer une parthénogénèse chez les femelles; nous sommes donc encore très ignorants sur les causes de ces différences apparentes dans le nombre proportionnel des individus des deux sexes.

Les renseignements me font presque complètement défaut relativement aux autres classes. M. Blackwall, qui, pendant bien des années, s'est occupé des araignées, m'écrit que, en raison de leurs habitudes plus errantes, on voit plus souvent les araignées males, qui paraissent ainsi etre les plus nombreuses. C'est réellement le cas chez quelques espèces; mais il mentionne plusieurs espèces de six genres, où les femelles semblent etre bien plus nombreuses que les malles ${ }^{21}$. La petite taille des mâles, comparée à celle des femelles, et leur aspect très différent, peut, dans quelques cas, expliquer leur rareté dans les collections ${ }^{93}$.
Certains Crustacés inférieurs pouvant se propager asexuellement, on s'explique l'extrème rareté des mâles. Ainsi von Siebold ${ }^{93}$ a examiné avec soin 13.000 individus du genre Apus provenant de vingt et une localités diftérentes, et il n'a trouvé que 319 mâles. Fritz Müller a des raisons de croire que, chez quelques autres formes (les Tanais et les Cypris), le mâle vit moins longtemps que la femelle, ce qui, mème en cas d'égalité primitive dans le nombre des individus des deux sexes, expliquerait la rareté des mâles. D'autre part, sur les côtes du Brésil, le méme naturalista a toujours capturé infiniment plus de males que de femelles de Diastylides et de Cypridines; c'est ainsi qu'une espèce de ce dernier genre lui a fourni 37 mâles sur 63 individus pris le mème jour; mais il suggère que cette prépondérance peut être due à quelque différence inconnue dans les habitudes des deux sexes. Chez un crabe brésilien plus élevé, un Gelasimus, Fritz Müller a constaté que les mâles sont plus nombreux que les femelles. M. C. Spence Bate, qui a une longue expérience à cet égard, m'a affirmé que chez six crustacés communs de nos cotes de l'Angleterre dont il m'a indiqué les noms, les femelles sont, au contraire, plus nombreuses que les males.

Influence de la sélection naturelle sur la proportion des males et des femelles. - Nous avons raison de croire que, dans quelques cas, l'homme au moyen de la sélection a exercé une influence indirecte sur la faculté qu'il a de produire des enfants de l'un ou de l'autre sexe. Certaines femmes, pendant toute leur vie, engendrent plus d'enfants d'un sexe que de l'autre; la même loi s'applique à beaucoup d'animaux, aux vaches et aux chevaux par exemple; ainsi M. Wright

[^141]m'apprend qu'une de ses juments arabes, couverte sept fois par differents chevaux, a produit sept juments. Bien que j'aie fort peu de renseignements à cet égard, l'analogie me porte à conclure que la tendance à produire l'un ou l'autre sexe est héréditaire comme presque tous les autres caractères, la tendance à produire des Jumeaux par exemple. M. J. Downing, une excellente autorité, m'a communiqué certains faits qui semblent prouver que cette tendance existe certainernent chez certaines familles de bétail courtes cornes. Le colonel Marshall ${ }^{94}$, après avoir étudié avec soin les Todas, tribu montagnarde de l'Inde, a trouvé qu'il existe chez eux 112 males et 84 femelles de tout age, soit une proportion de 133,3 mâles pour 100 femelles. Les Todas, qui observent la polyandrie, tuaient autrefois les enfants femelles; mais ils ont abandonné cette pratique depuis un temps considérable. Chez les enfants nés pendant ces dernières années, les garçons sont plus nombreux que les filles. dans la proportion de 124 à 100 . Le colonel Marshall explique ingénieusement ce fait ainsi qu'il suit : < Supposons, par exemple, que trois familles représentent la moyenne de la tribu entière; supposons qu'une mère engendre six filles et pas de fils; la seconde mère engendre six fils seulement et la خroisième mère trois fils et filles. La première mère, pour se conformer aux usages de la tribu, détruit quatre filles et en conserve deux; la seconde conserve ses six fils; la troisième conserve ses trois fils, mais tue deux filles et n'en conserve qu'une. Les trois familles se composeront donc de neuf garçons et de trois filles pour perpétuer la race. Mais, tandis que les fils appartiennent à des familles chez lesquelles là tendance à produire des mâles est considérable, les filles appartiennent à des familles qui ont une tendance contraire. Les coutumes de la tribu tendront doric à augmenter cette tendance à chaque génération, de sorte que nous pourrons constater, comme nous le faisons aujourd'hui, que les familles élèvent habituellement plus de garçons que de filles. >
If est presque certain que la forme d'infanticide dont nous venons de parler doit amener ce résultat, si nous supposons que la tendance à produire un certain sexe soit héréditaire. Mais les chiffres que je viens de citer sont si faibles qu'on ne saurait en tirer aucune conclusion; j'ai donc cherché d'autres témoignages; je ne saurais dire si ceux que j'ai trouvés sont dignes de foi; il m'a semblée en tout cas qu'il était utile de citer les faits que j'ai recueillis.
Les Maories de la Nouvelle-Zélande ont longtemps pratiqué l'in-
94. The Todas, 1873, od. 100, 111, 194, 196.
fanticide; M. Fenton ${ }^{95}$ affirme qu'il a rencontré *des femmes quí ont détruit quatre, six et même sept enfants, la plupart des filles. Toutefois le témoignage universel de ceux qui sont à même de se former une opinion correcte prouve que cette coutume a cessé d'exister depuis bien des années, probablement depuis l'année 1835 ». Or, chez les Nouveaux-Zélandais comme chez les Todas, les naissances de garçons sont considérablement en excès. M. Fenton ajoute (p. 30) : \&Bien qu'on ne puisse fixer pertinemmert l'époque exacte du commencement de cette singulière condition de la disproportion des sexes, on peut affirmer que l'excès du sexe male sur le sexe femelle était en pleine opération pendant la période qui s'est écoulée entre 1830 et 1844, et s'est continuée avec beaucoup d'énergie jusqu'au temps actuel. 》J'emprunte les renseignements suivants à M. Fenton (p. 26), mais, comme les nombres ne sont pas considérables et que le recensement n'a pas été fait très exactement, on ne peut s'attendre à des résultats uniformes. Je dois rappeler tout d'abord, dans ce cas et dans les cas suivants, que l'état normal de la population, au moins dans tous les pays civilisés, comporte un excès de femmes à cause de la plus grande mortalité des enfants mâles pendant la jeunesse et des plus nombreux accidents auxquels sont exposés les hommes pendant toute la vie. En 1858, on estimait que la population indigène de la Nouvelle-Zélande se composait de 31.667 hommes et de 24.303 femmes de tout age, c'est-à-dire dans la proportion de 130,3 males pour 100 femmes. Mais, pendant cette même année et dans certaines régions limitées, on recensa les indigènes avec beaucoup de soin, et on trouva 753 hommes de tout âge contre 616 femmes, c'est-à dire dans la proportion de 122,2 males pour 100 femelles. Il est encore plus important pour nous de savoir que, pendant cette même année 1858 et dans cette mème région, les mâles non adultes s'élevaient au nombre de 178 , et les femelles non adultes au nombre de 142, c'est-à-dire dans la proportion de 125,3 mâles pour 100 temelles. Nous pouvons ajouter qu'en 1844, alors que l'infanticide des filles n'avait cessé que depuis peu de temps, les mâles non adultes dans une région s'élevaient au nombre de 281, et les femelles non adultes au nombre de 194, c'est-à-dire dans la proportion de 144,8 males pour 100 femelles. Aux iles Sandwich, le nombre des hommes excède celui des femmes. Autrefois l'infanticide était très en honneur, mais ne portait pas seulement sur les femelles, ainsi que le prouve M. Ellis ${ }^{96}$, 95. Aboriginal Inhabitants of New Zealand; Government report, 1859,
p. 36 . Narrative 96. Narrative of a tour through Hawaii; 1826; p. 298.
dont les assertions sont, d'ailleurs, coñfirmées par l'évêque Staley et par M. Coan. Toutefois, un autre écrivain digne de foi, M. Jarves, dont les observations ont porté sur tout l'archipel, s'exprime ainsi que suit ${ }^{97}$: «On rencontre un grand nombre de femmes qui avouent avoir tué de trois à six ou huit de leurs enfants; $\boldsymbol{>}$ et il ajoute : < On considérait les filles comme moins utiles que les garçons, et, par conséquent, on les mettait plus souvent \& mort. ? Cette assertion est probablement fondée, si l'on en juge par ce qui se passe dans d'autres parties du monde. La pratique de l'infanticide cessa vers 1819, alors que lidolâtrie fut abolie et que les missionnaires s'établirent dans l'archipel. Un recensement fait avec beaucoup de soin en 1839, des hommes et des femmes adultes et imposables dans l'tle de Kauai et dans un district d'Oahu (Jarves, p. 404) indique 4.723 hommes et 3.776 lemmes, c'est-à-dire dans la proportion de 125,08 hommes pour 100 femmes. A la même époque, le nombre des enfants mâles au-dessous de quatorze ans à Kauai et au-dessous de dix-huit ans à Oahu s'élevait à 1.797 et celui des enfants femelles du même age à 1.429 , ce qui donne une proportion de 125,75 mâles pour 100 femelles.
Un recensement de toutes les fles fait, en $1850{ }^{98}$, indique 36.272 hommes et 33.128 femmes de tout àge, soit dans la proportion de 109,49 mâles pour 100 femelles. Le nombre des garçons au-dessous de 17 ans s'élevait à 10.773 et celui des filles au-dessous du même âge à 9.593 , soit 112,3 mâles pour 100 femelles. D'après le recensement de 1872, la proportion des males de tout age, y compris les demi-castes, aux femelles est comme 125,36 est à 100 . Il importe de remarquer que tous ces recensements pour les tles Sandwich indiquent la proportion des hommes vivants aux femmes vivantes et non pas celle des naissances. Or, s'il fant en juger d'aprés les pays civilisés, la proportion des males aurait été beaucoup plus considérable si les chiffres avaient porté sur les naissances ${ }^{99}$.

[^142]Les faits qui précèdent nous autorisent presque à conclure que l'infanticide, pratiqué dans les conditions que nous venons d'expliquer, tend à amener la formation d'une ract produisant principalement des enfants mâles. Mais je suis loin de supposer que cette pratique, dans le cas de l'homme, ou quelque pratique analogue dans les cas des autres espèces, soit la seule cause déterminante d'un excès des males. Il se peut qu'une loi inconnue agisse pour amener ce résultat chez les races qui diminuent en nombre et qui sont déjà quelque peu stériles. Outre les diverses causes auxquelles * nous avons fait allusion, il se peut que la plus grande facilité des accouchements chez les sauvages et, par conséquent, les désavantages moins grands qui en résultent pour les enfants malles, tende à augmenter la proportion des males comparativement aux femelles. Rien ne semble, d'ailleurs, indiquer qu'il existe un rapport nécessaire entre la vie sauvage et un excès du sexe mâle, si nous pouvons juger toutefois d'après le caractère des quelques enfants des derniers Tasmaniens et des enfants croisés des Tahitiens qui habitent aujourd'hui l'ile Norfolk.
Les malles et les femelles de beaucoup d'animaux ont des habitudes quelque peu différentes et sont exposés à des dangers plus ou moins grands; il est donc probable que, dans bien des cas, les individus appartenant à un sexe encourent une destruction plus considérable que ceux appartenant à l'autre. Mais, autant toutefois que je peux considérer l'ensemble de ces causes complexes, une
que les indigènes pratiquent souvent l'avortement ». Si le docteur Coulter est bien renseigné à propos de l'infanticide, on ne peut citer ce cas à l'appui de l'hypothèse du colonel Marshall. Nous sommes disposés à crofre que la diminution rapide du nombre des indigènes convertis provient, comme dans les cas que nous avons précédemment cités, de ce que le changement des habitudes d'existence a diminué leur fécondité.
J'espérais que l'élevage des chiens me fournírait quelques renseignements sur la question qui nous occupe, car, à l'exception peut-etre des lévriers, on détrult ordinairement beaucoup plus de femelles que de malles comme cela arrive chez les Todas. M. Cupples m'affirme qu'en effet on détruit beaucoup de femelles chez le chien courant écossais. Malheureusement je n'ai pu me procurer des renseignements exacts sur la proportion des sexes chez aucune race à l'exception des lérriers, et, chez ces derniers, les naissances malles sont aux naissances femelles comme 110,1 est à 100 . Les renseignements que j'ai pris auprès de beaucoup d'eleveurs me permettent de conclure que les femelles sont, a heaucoup d'égards, plus estimées que les males; en outre, il est certain qu'ou ne détruit pas systématiquement plus de males que de femelles chez les races les plus estímées. En conséquence, je ne saurais dire s'il faut attribuer au principe que je cherche à êtablir l'excès des naissances mâles chez les lévriers. D'autre part, nous avons vu que, chez les chevaux, les bestiaux et les moutons, les petits de l'un ou de l'autre sexe ont trop de valeur pour qu'on les détruise; et, si l'on peut constater une différence chez ces races, il semble que les femelles soient légèrement en excès.
destruction considérable de l'un des sexes n'entrainerait pas la modification de l'espece au point de vue de la production de l'un ou de l'autre sexe. Quand il s'agit des animaux strictement sociables, tels que les abeilles ou les fourmis, qui produisent un nombre beaucoup plus considérablo de femelles fécondes et stériles que de mâles, et parmi lesquels cette prépondérance des femelles a une importance extrême, nous nous expliquons facilement que les sociétés qui contiennent des femelles ayant une forte tendance héréditaire à produire un nombre plus grand de femelles doivent réussir le micux; dans ce cas, la sélection naturelle doit agir de façon à développer cette tendance. On peut concevoir également que la sélection naturelle développe la production des mâles chez lés animaux qui vivent en troupeaux, comme les bisons de l'Amérique du Nord, et certains babouins, parce que les males se chargent de la défense du troupeau, et que le troupeau le mieux protégé doit avoir de plus nombreux descendants. Quand il s'agit de l'espéce humaine, on attribue en grande partie la destruction volontaire des filles à l'avantage qui résulte pour la tribu de contenir un plus grand nombre d'hommes.

Dans aucun cas, autant que nous en pouvons juger, la tendance héréditaire à produire les deux sexes en nombre égal ou à produire un sexe en excès, ne constituerait un avantage ou un désavantage direct pour les individus; un individu, par exemple, ayant une tendance à produire plus de mâles que de femelles ne réussirait pas mieux dans la lutte pour l'existence qu'un individu ayant une tendance contraire ; par conséquent, la sélection naturelle ne pourrait pas déterminer une tendance de cette nature. Néanmoins, il existe certains animaux, les poissons et les cirripèdes par exemple, chez lesquels deux ou plusieurs males semblent indispensables pour la fécondatiol de la femelle; en conséquence, les males existent en plus grand nombre, mais il est difficile d'expliquer quelle cause a amené cette prépondérance des males. J'étais, autrefois, disposé à croire que, quand la tendance à produire les deux sexes en nombre à peu près égal est avantageuse à l'espèce, cette tendance résulte de l'action de la sélection naturelle, mais de nouvelles recherches m'ont démontré que le probième est si complexe qu'il est plus sage de laisser à l'avenir le soin d'en présenter une solution.

CHAPITRE IX

LES GARACTÈRES SEXUELS SECONDAIRES DANS LE月 CLASSES
 INFÉRIEURES DU RĖGNE ANIMAL

Absence de caractères de ce genre dans les classes inférieures. - Couleurs brillantes. - Mollusques. - Annélides. - Chez les Crustacés, les caractères sexuels secondaires sont fortement développés, diriorphisme, couleur, caractères acquis seulement à l'état adulte. - Carac-
têres sexuels des Araignées, stridulation chez les males. - Myriapodes.

Il n'est pas rare que, dans les classes inférieures du règne animal, les deux sexes soient réunis sur le même individu, ce qui s'oppose, par conséquent, à tout développement des caractères sexuels secondaires. Souvent aussi, lorsque les sexes sont séparés, les males et les femelles, fixés d'une façon permanente à quelque support, ne peuvent ni se chercher, nì lutter pour se posséder I'un l'autre. Il est certain, d'ailleurs, que ces animaux ont des sens trop imparfaits et des facultés mentales trop infimes pour éprouver des sentiments de rivalité et pour apprécier leur beauté ou leurs autres attraits réciproques.

Aussi ne rencontre-t-on pas de vrais caractères sexuels secondaires, tels que ceux dont nous nous occupons ici, dans les classes ou sous-régnes, tels que les Protozoaires, les Colentérés, les Échinodermes, les Scolécidés. On peut en conclure, comme nous l'avons fait d'ailleurs, que chrez les animaux des classes plus élevées, les caractères de ce genre résultent de la sélection sexuelle, c'est-àdire de la volonté, des désirs, et du choix exercé par l'un ou par l'autre sexe. On observe cependant quelques exceptions; ainsi le docteur Baird m'apprend que chez certains Entozoaires, vers parasites internes, les males diffèrent légèrement des femelles au point de vue de la coloration, mais nous n'avons aucune raison pour supposer que l'action de la sélection sexuelle ait contribué à augmenter de semblables différences. Les dispositions qui permettent au mâle de retenir la femelle, et qui sont indispensables à la propagation de l'espéce, sont indépendantes de la sélection sexuelle et ont été acquises par la sélection ordinaire.

Beaucoup d'animaux inférieurs, tant hermaphrodites qu'à sexes séparés, affectent les teintes les plus brillantes ou sont nuancés et rayés d'une manière très élégante. G'est ce que l'on peut observer
shez de nombreux coraux et chez le anémones de mer (Actinix), chez quelques Méduses, quelques Porpites, etc., chez quelques Planaires, quelques Ascidies et chez de nombreux Oursins, etc.; mais les raisons déjà indiquées, c'est-à-dire l'union des deux sexes sur ur méme individu chez quelques-uns de ces animaux, la fixation les autres dans une situation permanente, et les facultés mentales ii inflimes de tous, nous autorisent à conclure que ces couleurs n'ont pas pour objet l'attraction sexuelle, et ne résultent pas de 'action de la sélection sexuelle. Il faut se rappeler que, dans aycun zas, nous n'avons le droit d'attribuer les couleurs brillantes à la ¿élection sexuelle, sauf, toutefois, lorsqu'un sexe est plus viyement zt plus remarquablement coloré que l'autre, et qu'il n'y a dans los rabitudes des males et des femelles aucune difference qui puisse expliquer cette diversité. Cette hypothèse acquiert un grand degré de probabilité quand nous voyons les individus les plus ornés, presque toujours les mâles, se pavaner et étaler leurs attraits devant l'autre sexe, car nous ne pouvons supposer que cette conduite soit inutile; or, si elle est avantageuse, elle amène inévitablement l'intervention de la sélection sexueile. Cette conclusion peut s'étendre également aux deux sexes lorsqu'ils ont une coloration semblable, si cette coloration est évidemment analogue à celle d'un sexe seul chez certaines autres espèces du même groupe,
Comment donc expliquerons-nous les couleurs éclatantes et souvent splendides qui décorent beaucoup d'animaux appartenant aux classes inférieures? Il semble fort douteux que ces couleurs servent habituellement de moyen de protection; mais nous sommes fort exposés à nous tromper sur les rapports qui peuvent exister entre les caractères de toute nature et la protection, ce qu'admettra quiconque a lu le remarquable mémoire de M . Wallace sur cette question. Il ne viendrait, par exemple, à lidée de personne que la parfaite transparence des méduses put leur rendre de grands services comme moyen de protection; mais, lorsque Häckel nous rappelle que, outre les méduses, une foule de mollusques flottants, de crustacés et même de petits poissons marins possèdent cette même structure transparente, souvent accompagnée de couleurs prismatiques, nous ne pouvons douter qu'elle ne leur permette d'échapper à l'attention des oiseaux aquatiques et d'autres ennemis.
M. Giard ${ }^{1}$ soutient que les couleurs brillantes de certaines éponges et do sertaines ascidies leur servent de moyen de protection. En outre, une brillante coloration rend service à beaucoup d'animaux
en ce qu'elle sert d'avertissement áleurs ennemis; elle leur apprend, en effet, que l'animal coloré a mauvais gout ou qu'il possède certains moyens spéciaux de défense. Nous nous réservons, d'ailleurs, de discuter plus complètement ce sujet.
Nous sommes si ignorants quand il s'agit des animaux inférieurs, que nous nous contentons d'attribuer leurs magnifiques couleurs, soit à la nature chimique, soit à la structuré élémentaire de leurs tissus, indépendamment de tout avantage que ces animaux peuvent en tirer. On peut à peine imaginer une couleur plus belle que celle du sang artériel, mais il n'y a aucune raison de supposer que cette couleur présente en elle-mêmè un avantage; car, bien qu'elle puisse ajouter à la beauté de la joue de la jeune fille, personne n'oserait prétendre qu'elle ait été acquise dans ce but. De méme, chez une foule d'animaux, surtout les plus infimes, la bile affecte une fort belle couleur; ainsi M. Hancok m'apprend que les Éolides (limaces de mer uues) doivent leur extrême beauté à ce que les glandes biliaires s'aperçoivent au travers des téguments transparents; mais cette beauté n'a probablement pour ces animaux aucune utilité. Tous les voyageurs font des descriptions enthousiastes de la magnificence des teintes que revêtent les feuilles d'automne dans une foret américaine; personne ne suppose, cependant, quili en résulte aucun avantage pour les arbres. Il y a la plus grande analogie, au point de vue de la composition chimique, entre les combinaisons organiques naturelles et les substances si nombreuses que les chimistes sont récemment parvenus à produire; or, ces durnières présentent parfois les couleurs les plus splendides, et il serait étrange que des substances semblablement colorées ne soient pas fréquemment produites, indépendamment de tout but utilitaire à atteindre, dans ce laboratoire si complexe que constitue l'orga. nisme vivant.

Le sous-régne des Mollusques. - Autant que mes recherches me permettent d'en juger, on ne rencontre jamais dans cette grande division du règne animal des caractères sexuels secondaires semblables à ceux dont nous nous occupons. On ne devait guère s'attendre, d'ailleurs, à les rencontrer dans les trois classes les plus infimes, les Ascidies, les Polyzoaires et les Brachiopodes (les Molluscoida de quelques savants), car la plupart de ces animaux sont fixés d'une façon permanente à quelque support, ou bien les deux sexes sont réunis chez lu même individu. Chez les Lamellibranches ou Bivalves, l'hermaphrodisme n'est pas rare. Dans la classe suivante plus élevée des Gastéropodes, ou coquilles marines univalves,
les sexes sont unis ou séparés. Mais, dans ce dernier cas, les males ne possèdent jamais d'organes spéciaux qui leur permettent soit de chercher, soit d'attirer les femelles ou de s'emparer d'elles, soit de combattre les uns avec les autres. La seule différence extérieure qui existe entre les malles et les femelles consiste, à ce que m'apprend M. Gwyn Jeffreys, en une légère modification de la forme de la coquille; celle de la Littorina littorea mâle, par exemple, est plus étroite et a unc spire plus allongée que celle de la femelle. Mais on peut supposer que des différences de cette nature se rattachent directement à l'acte de la reproduction ou au développement des œufs.

Les Gastéropodes, bien que susceptibles de locomotion, et pourvus d'yeux imparfaits, ne paraissent pas doués de facultés mentales assez développées pour que les individus appartenant au même sexe deviennent rivaux et combattent les uns avec les autres; ils n'ont donc aucun motif pour acquérir des caractères sexuels secondaires. Néanmoins, chez les Gastéropodes pulmonés, ou limaçons terrestres, une espèce de recherche précède l'accouplement; en effet, ces animaux, bien qu'hermaphrodites, sont, en vertu de leur conformation, forcés de s'unir deux à deux. Agassiz ${ }^{2}$ fait à cet égard les remarques suivantes : Quiconque a eu l'occasion d'observer les amours des limaçons ne saurait mettre en doute la séduction déployée dans les mouvements et les allures qui prépaparent le double embrassement de ces hermaphrodites.) Ces animaux paraissent aussi susceptiblesd'un certain attachement durable; un observateur attentif, M. Lonsdale, m'apprend qu'il avait placé un couple de colimaçons terrestres (Helix pomatia) dont l'un semblait maladif, dans un petit jardin mal approvisionné. L'individu fort et robuste disparut au bout de quelques jours : la trace glutineuse, qu'il avait laissée sur le mur permit de suivre ses traces jusque dans un jardin voisin bien approvisionné. M. Lonsdale crut qu'il avait abandonné son camarade malade; mais il revint après une absence de vingt-quatre heures, et communiqua probablement à son compagnon les résultats de son heureuse exploration, car tous deux partirent ensemble et, suivant le même chemin, disparurent de l'autre coté du mur.

Je ne crois pas que les caractères sexuels secondaires, de la nature de ceux que nous envisageons ici, existent dans la classe la plus élevée des Mollusques, celle des Céphalopodes, animaux à sexes séparés. C'est là un fait étonnant, car, chez ces animaux, les
2. De l'Espèce et de la Classif., etc., 1869, p. 106.
organes des sens ont acquis un haut degré de développement; les Céphalopodes sont, en outre, doués de facultés mentales considérables, comme le prouvent les intelligents efforts dont ils sont capables pour échapper à leurs ennemis ${ }^{3}$. On observe, toutefois, chez certains Céphalopodes un caractère sexuel extraordinaire: l'élément mâle se rassemble dans un des bras ou tentacules qui se détache ensuite du corps de l'animal, et va se fixer par ses ventouses, sur la femelle, où il conserve, pendant quelque temps, une vitalité indépendante. Ce bras détaché ressemble tellement à un animal séparé, que Cuvier l'a dácrit comme un ver parasite sous le nom de Hectocotyle. Mais cette conformation singulière constitue un caractère sexuel primaire plutôt que secondaire.
Bien que la sélection sexuelle ne paraisse jouer aucun rôle chez les Mollusques, beaucoup de coquilles univalves et bivalves, telles que les Volutes, les Cónes, les Pétoncles, présentent, cependant, des formes et des couleurs admirables. Les couleurs ne semblent pas, dans la plupart des cas, servir à protéger l'animal; il est probable que, comme chez les classes les plus infimes, elles résultent directement de la nature des tissus; les modèles et les formes des coquilles semblent dépendre de leur mode de croissance. La quantité de lumière parait exercer une certaine influence; car ainsi que l'a plusieurs fois constaté M. Gwyn Jeffreys, bien que les coquilles de certaines espèces vivant à de grandes profondeurs soient brillamment colorées, on remarque, cependant, que les surfaces inférieures et les parties recouvertes par le manteau le sont moins vivement que celles qui occupent les surfaces supérieures exposées à la Inmière ${ }^{4}$. Dans quelques cas, pour les coquilles, par exemple, qui vivent au milieu des coraux, ou des algues à teintes brillantes, des couleurs vives peuvent servir à les protéger ${ }^{5}$. Beaucoup de mollusques nudibranches ou limaces de mer affectent des couleurs aussi brillantes que les plus beaux coquillages, comme on peut s'en assurer en consultant le bel ouvrage de MM. Alder et Hancock; or il résulte des recherches de M. Hancock que ces colorations ne semblent pas servir habituellement de moyen protecteur. Il peut en etre ainsi pour certaines espèces, pour une surtout, qui

[^143]vit sur les feuilles vertes des algues et qui affecte elle-même uné teinte vert clair. Mais il y a beaucoup d'espèces à couleurs vives, blanches ou autrement très apparentes, qui ne cherchent point à se cacher; tandis que d'autres espèces, également très remarquables, habitent, ainsi que des espèces à l'aspect sombre, sous des pierres et dans des recoins obscurs. Il ne parait donc pas qu'il y ait, chez ces mollusques nudibranches, aucun rapport intime entre la couleur et la nature de l'habitat.

Ces limaces marines, dépourvues de coquilles, sont hermaphrodites, et, cependant, s'accouplent comme le font les limaçons terrestres; un grand nombre de ces derniers ont de très jolies coquilles. On s'explique facilement que deux hermaphrodites, mutuellement attirés par leur grande beauté, puissent s'unir et produire des descendants doués de la même qualité caractéristique. Mais le cas est très improbable chez des êtres ayant une organisation aussi inférieure. Il n'est pas non plus certain que les descendants des plus beaux couples d'hermaphrodites aient, sur les descendants des couples moins beaux, certains avantages qui leur perrettent d'augmenter en nombre, à moins qu'ils ne réunissent la vigueur à la beauté. On ne rencontre pas ici un grand nombre de mâles qui parviennent à la maturité avant l'autre sexe, de telle façon que les femelles vigoureuses puissent choisir les plus beaux. Si une coloration brillante procurait réellement à un animal hermaphrodite certains avantages en rapport avec les conditions générales de l'existence, les individus plus richement nuancés réussiraient mieux et augmenteraient en nombre, mais ce serait alors un cas de sélection naturelle et non de sélection sexuelle.

Sous-règne des Vers out Annelés : Classe Annelida (Vers marins). - Bien que les males et les femelles (lorsque les sexes sont séparés) présentent parfois des caractères assez différents pour qu'on les ait classés dans des genres et même dans des familles distinctes, les différences ne paraissent, cependant, pas être du genre de celles qu'on peut hardiment attribuer à la sélection sexuelle. Ces animaux revêtent parfois de brillantes couleurs, mais, comme les individus des deux sexes ne présentent aucune différence sous ce rapport, nous n'avons guère à nous en occuper. Les Némertiens eux-mêmes, qui ont une organisation si infime - peuvent se comparer à n'importe quel autre groupe de la
6. Voir son magnifique mémoire, Brilish Annelids, part. I, 1873, p. 3.
7. Voir M. Perrier, l'Origine de l'homme d'après Darwin; Rev. Scientifique, fév. $1873 ;$ p. 866.
série des invertébrés pour la beauté et la variété des couleurs ». Cependant le docteur Mac Intosh ${ }^{6}$ n'a pu découvrir quel genre de service ces couleurs rendent à l'animal. M. Quatrefager ${ }^{\text {? }}$ affirme que les annélides sédentaires prennent une teinte plus terme après la période de la reproduction, ce qu'il faut attribuer, je crois, à ce qu'ils sont moins vigoureux à cette épóque. Évidemment ces animaux sont, comme ceux des classes précédentes, placés trop bas sur l'échelle, pour que les individus de l'un ou de l'autre sexe puissent faire un choix réciproque, ou pour que ceux appartenant au même seze éprouvent des sentiments de rivalité assez énergiques pour les amener à lutter les uns avec les autres pour la possession d'une femelle.

Sous-règne des Arthropodes : Classe : Crustacés. - C'est dans cette classe que l'on peut observer pour la première fois des caraclères sexuels secondaires incontestables, souvent développés d'une manière remarquable. Malheureusement, on ne connait guère les habitudes des crustacés; on ne peut donc déterminer quels sont les usages de beaucoup de conformations particulières à un seul sexe. Chez les espèces parasites inférieures, les mâles, de petite taille, possèdent seuls des membres natatoires parfaits, des antennes et des organes des sens; les femelles sont privées de tous ces organes, et leur corps ne présente souvent qu'une simple masse difforme. Mais ces différences extraordinaires entre les mâles et les femelles se rattachent sans doute à des habitudes d'existence profondément différentes, et ne rentrent pas dans notre sujet. Chez divers crustacés appartenant à des familles différentes, les antennes antérieures sont pourvues de corps filiformes singuliers; on croit que ces corps remplissent les fonctions des organes de l'odorat; ils sont beaucoup plus abondants chez les maleis que chez les femelles. Il est presque certain que, sans aucun développement exceptionnel des organes olfactifs, les malles trouveraient tôt ou tard les femelles; l'augmentation du nombre des filaments olfactifs est donc probablement due á la sélection sexuelle; les mâles les mieux pourvus ont dû, en effet, le mieux réussir à trouver les femelles et à laisser des descendants. Fritz Müller a décrit une remarquable espèce dimorphe de Tanais; chez cette espèce, le sexe mâle est représenté par deux formes distinctes, qui ne se confondent jamais l'une avec l'autre. Le male d'une de ces formes porte un plus grand nombre de cils olfactifs; le mâle de l'autre est armé de pinces plus puissantes et plus allongées qui lui permettent de saisir et de contenir la femelle. Fritz Maller attribue ces différences entre les
deux formes mâles d'une même espèce à ce que le nombre des cils olfactifs a varié chez certains individus, tandis que la forme et la grosseur des pinces a varié chez d'autres; de sorte que, chez les premiers, les mieux appropriés à trouver la femelle, et, chez les seconds, les plus aptes à la contenir après l'avoir capturée, ont laissé plus de descendants à qui ils ont transmis leur supériorité respective ${ }^{8}$.
Chez quelques Crustacés inférieurs, la conformation de l'antenne antérieure droite du malle diffère considérablement de celle de l'antenne gauche; cette dernière se rapproche beaucoup des simples antennes effilés des femelles. L'antenne modifiée du male se renfle au milieu, fait un angle ou se transforme (fig. 4, pl. 2) en un organe prenant élégant et quelquefois étonnamment compliqué ${ }^{9}$. Sir J. Lubbock m'apprend que cet organe sert à mainitenir la femelle : une des deux pattes postérieures (b) du même côté du corps, convërtie en forceps, sert aussi à ce but. Chez une autre famille, les antennes inférieures ou postérieures présentent, chez les mâles seuls, 《 une forme bizarre en zigzag 》

Les pattes antérieures des crustacés supérieurs constituent une paire de pinces généralement plus grandes chez le mâle que chez la femelle à tel point que, selon M. C. Spence Bate, la valeur du crabe comestible mâle (Cancer pagurus) est cinq fois plus grande que celle de la femelle. Chez un grand nombre d'espèces, ces pinces affectent une grosseur inégale sur les côtés opposés du corps; la pince droite, d'après M. C. Spence Bate, est ordinairement, mais pas toujours, la plus grande. Cette inégalité est souvent aussi plus grande chez le mâle que chez la femelle. Les deux pinces (fig. 5 , pl. \& et fig. 6 et 7, pl. 3) ont souvent une structure différente, la plus petite ressemble alors à celle de la femelle. Nous ignorons quel avantage peut résulter de cette inégalité de grosseur entre les deux pinces; nous ne saurions non plus expliquer pourquoi cette inégalité est plus prononcée chez le mâle que chez la femelle, ni pourquoi, lorsque les deux pinces se ressemblent, toutes deux sont souvent beaucoup plus grandes chez le male que chez la femelle. Les pinces atteignent parfois une longueur et une grosseur telles qu'elles ne peuvent servir en aucune façon, comme le fait remarquer
8. Faits et arguments pour Darwin (trảd. anglaise). Voir la Discussion sur les cils olfactifs. Sars a décrit un cas à peu près analogue (reproduit dans Nature, 1870, p. 455) chez un Crustacé norvégien, le Pontoporeia affinis.
9. Sir J. Lubbock, Annals and Mag. of Nat. Hist., vol. XI, 1853, pl. I et X; vol. XII, 1853, pl. VII. Voir aussi Lubbock, dans Transact. Entom. Soc., vol. IV 1856-58, p. 8. Pour les antennes on zigzag, mentionnées plus bas, voir Fritz Müller op. c., 1869, p. 40.
M. Spence Bate, à porter les aliments à la bouche. Chez les males de certaınes crevettes d'eau douce (Palémons), la patte droite est plus longue que le corps entier ${ }^{10}$. Il est probable que la grandeur de cette patte armée de ses pinces peut faciliter au male la lutte avec ses rivaux, mais cela n'explique par leur inégalité sur les deux côtés du corps chez la femelle. D'après Milne Edwards ${ }^{11}$, le Gelasimus mâle et la femelle habitent le même trou ; ce fait a une certaine importance en ce qu'il prouve que ces animaux s'accouplent; le male obstrue l'entrée de la cavité avec une de ses pinces, qui est énormément développée; dans ce cas, la pince sert indirectement de moyen de défense. Cependant les pinces servent probablement surtout à saisir et à maintenir la femelle, fait qui, d'ailleurs, a été constaté dans quelques cas, chez le Gammarus par exemple. Le crabe ermite male (Pagurus) porte pendant des semaines la coquille habitée par la femelle ${ }^{12}$. Toutefois M. Spence Bate m'apprend que le crabe commun (Carcinus mænas) s'accouple aussitôt que la femelle a mué et perdu sa coque dure, elle se trouve alors dans un état de mollesse telle que les fortes pinces du male pourraient fortement l'endommager, s'il s'en servait pour la saisir; mais, comme le mâle s'en empare et l'emporte avant la mue, il peutalors la saisir impunément.
Fritz Müller constate que certaines espèces de Melita se distinguent des autres Amphipodes en ce que les femelles ont e les lamelles coxales de l'avant-dernière paire de pattes recourbées en apophyses crochues, que les mâles saisissent avec les pinces de la première paire de pattes \geqslant. Le développement de ces apophyses crochues provient probablement de ce que les femelles qui, pendant l'acte de la production, ont été le plus solidement maintenues, ont laissé un plus grand nombre de descendants. Fritz Müller décrit un autre Amphipode brésilien (Orchestia Darwinii, fig.8, pl. 3) qui présente un cas de dimorphisme analogue à celui du Tanais, caril. comprend deux formes males qui diffèrent par la conformation de leurs pinces ${ }^{13}$. Les pinces de l'une ou de l'autre forme suffisent certainement à maintenir la femelle, car elles servent actuellement à cet usage; il est donc probable qu'elles doivent leur origine à ce que certains males ont varié dans une direction et les autres dans

[^144]une autre; en même temps, les males de l'une et de l'autre forme ont dû retirer certains avantages spéciaux, mais presque égaux, de la conformation différente de ces organes.

On ne peut affirmer que les Crustacés mâles luttent les uns avec les autres pour la possession des femelles; mais cela est probable, car, chez la plupart des animaux, lorsque le mâle est plus grand que la femelle, il parait devoir son accroissement de taille à ce que ses ancêtres ont, pendant de nombreuses générations, lutté avec d'autres mâles. Chez presque tous les Crustacés, surtout chez les plus élevés ou les Brachyures, le mâle est plus grand que la femelle ; il faut excepter, cependant, les genres parasites chez lesquels les individus des deux sexes suivent des genres de vie différents, et aussi la plupart des Entomostracés. Les pinces de beaucoup de Crustacés constituent des armes bien adaptées pour la lutte. Un fils de M. Bate a vu un crabe (Portunus puber) lutter avec un Carcinus mænas; ce dernier fut bientôt renversé sur le dos et son adversaire lui arracha tous les membres du corps. Lorsque Fritz Müller plaçait, dans un réceptable en verre, plusieurs Gelasimus males du Brésil pourvus d'énormes pinces, ils se mutilaient et s'entre-tuaient. M. Bate introduisit un gros Carcinus mænas male dans un baquet habité par une femelle appariée avec un mâle plus petit, celui-ci fut bientôt dépossédé; M. Bate ajoute : « S'il y a eu combat, la victoire a été remportée sans que le sang ait coulé, car je n'ai point constaté de blessures. > Le même naturaliste ayant séparé de sa femelle un Gammarus marinus mâle (si commun sur nos cotes), les plaça séparément tous deux dans des réceptacles contenant beaucoup d'individus de la même espéce. La femelle ainsi divorcée se perdit au milieu des autres. Quelque temps après, M. Bate replaça

- le male dans le réceptacle où se trouvait sa femelle, il nagea d'abord çà et là, puis il s'élança dans la foule, et, sans aucun combat, il reconnut sa femelle et l'emporta. Ce fait prouve que chez les Amphipodes, ordre inférieur dans l'échelle des etres, les mâles et les femelles se reconnaissent, et éprouvent l'un pour l'autre un certain attachement.
Les facultés mentales des Crustacés sont probablement plus dé veloppées qu'on ne le pense ordinairement. Il suffit d'avoir cherché à capturer un de ces crabes du rivage, si nombreux sur les cotes tropicales, pour voir combien ils sont alertes et méfiants. Un gros crabe (Birgus latro), commun sur les iles de corail, dispose au fond d'un trou profond un lit épais de fibres détachés de la noix de coco. Il se nourrit du fruit tombé du cocotier ;il en arrache l'écorce fibre par fibre, et commence toujours ce travail par l'extrémité où se
trouvent placées les trois dépressions oculiformes. Il casse ensuite un de ces points moins durs en frappant dessus avec ses lourdes pinces frontales, puis il se retourne et extrait le contenu albumineux de la noix à l'aide de ses pinces postérieures effilées. Mais c'est là probablement un acte tout instinctif qui serait aussi bien accompli par un jeune animal que par un vieux. On ne saurait en dire autant du cas suivant. Un naturaliste digne de foi, M. Gardner ${ }^{14}$, observait un Gelasimus occupé à creuser son trou; il jeta vers le trou commencé quelques coquilles, dont une roula dans l'intérieur, et trois autres s'arrêtèrent à une petite distance du bord. Cinq minutes après, le crabe sortit la coquille qui était tombée dans l'intérieur et l'emporta à un pied de distance; voyant ensuite les trois coquilles qui se trouvaient tout près, et pensant évidemment qu'elles pourraient aussi rouler dans le trou, il les porta successivement au point où il avait placé la première. Il serait difficile, je crois, d'établir une distinction entre un acte de ce genre et celui qu'exécuterait un homme usant de sa raison.

Quant à la coloration souvent si différente chez les males et les femelles des animaux appartenant aux classes élevées, M. Spence Bate ne connalt pas d'exemples bien prononcés de coloration différente chez nos Crustacés d'Angleterre. Dans quelques cas, cependant, on constate de légères différences de nuance entre le mâle et la femelle, qui, selon M. Bate, peuvent s'expliquer par la différence des habitudes; le male, par exemple, est plus actif et est ainsi plus exposé à l'action de la lumière. Le docteur Power a tenté de distinguer, au moyen de la couleur, les sexes des espèces habitant l'lle Maurice, sans pouvoir y parvenir, sauf pour une espèce do Squille, probablement le S. stylifera; le male affecte une superbe teinte bleu verdátre, avec quelques appendices rouge cerise; tandis que la femelle est ombrée de brun et de gris avec quelques parties rouges beaucoup plus ternes que chez le mâle ${ }^{15}$. On peut, dans ce cas, soupçonner l'influence de la sélection sexuelle. Il semble résulter des expériences faites par M. Bert sur les Daphnia que les Crustacés inférieurs, placés dans un vase illuminé par un prisme, savent distinguer les couleurs. Les Saphirina males (un genre océanique des Entomostracés, inférieur par conséquent) sont pourvus de petits boucliers ou corps cellulaires, affectant de magnifiques couleurs changeantes; ces boucliers font défaut chez les fe-

[^145]melles, et dans une espéce chez les deux sexes ${ }^{16}$. Il serait toutefois téméraire de conclure que ces curieux organes ne servent qu'd attirer les femelles. La femelle d'une espèce brésilienno de Gelasimus a, d'après Fritz Müller, le corps entier d'un gris brun presque uniforme. La partie postérieure du céphalo-thorax est, chez le mâle, d'un blanc pur, et la partie antérieure d'un beau vert, passant au brui: sombre; ces couleurs sont sujettes à se modifier en quelques minutes; le blanc devient gris sale ou même noir, et le vert perd beaucoup de son éclat. Il y a évidemment beaucoup plus de males que de femelles. Il faut remarquer que les malles n'acquièrent leurs vires couleurs qu'à l'age adulte. Ils diffèrent aussi des femelles par $l_{\text {es plus }}$ grandes dimensions de leurs pinces. Chez quelques espèces du genre, probablement chez toutes, les sexes s'apparient et habitent le même trou. Ce sont aussi, comme nous l'avons vu, des animaux très intelligents. Il semble, d'après ces diverses considérations, que, chez cette espèce, le malle est devenu plus brillant afin d'attirer et de séduire la femelle.

Nous venons de constater que le Gelasimus male n'acquiert pas ses couleurs brillantes avant l'áge adulte, et, par conséquent, au moment où il est en état de reproduire. Ceci paraft étre, dans toute classe, la règle générale pour les nombreuses et remarquables différences de structure que présentent les individus des deux sexes. Nous verrons plus loin que la même loi prévaut dans l'ensemble du grand sous-règne des Vertébrés, et que, dans tous les cas, elle s'applique surtout aux caractères acquis par sélection sexuelle. Fritz Maller ${ }^{17}$ cite quelques exemples trappants de cette loi : ainsi, le malled'une crevettinesauteuse (Orchestia) n'acquiert qu'a l'age adulte la large pince qui termine la seconde paire de pattes, dont la con formation est très différente chez la femelle; tandis que, pendant le jeune age, ces organes se ressemblent chez les deux sexes

Classe: Arachnida (Araignées). - Les individus des deux sexer ne different ordinairement pas au point de vue de lacol oration; tou tefois les males sont souvent plus foncés que les femelles, comme on peut s'en assurer en consultant le bel ouvrage de M. Blackwall ${ }^{\text {is }}$ Chez quelques espèces, cependant, les sexes diffèrent beaucoup l'un de l'autre par la couleur; ainsi, le Sparassus smaragdulus femelle affecte une teinte vert peut intense, tandis que le male adulte a l'abdo men d'un beau jaune avec trois raies longitudinales rouge vif. Chez
16. Claus, Die freilebenden Copepode., 1868, p. 35.
17. Op. c., p. 79.
18. Hisiory of the Spiders of Great Britain, 1861-64, pp. 77, 88, 103.
quelques espèces de Thomisus, les deux sexes se ressemblent beaucoup; ils diffèrent beaucoup chez d'autres. Les autres genres présentent des cas analogues. Il est souvent difficile de dire lequel des deux sexes s'écarte le plus de la coloration ordinaire di genre auquel appartient l'espèce, mais M. Blackwall pense que, en règle générale, c'est le male; Canestrini ${ }^{19}$ fait remarquer que, dans certains genres, on distingue facilement les uns des autres les màles des différentes espèces, ce qu'il est très difficile de faire quand il s'agit des femelles. M. Blackwall m'apprend, en outre, que jeunes, les individus des deux sexes se ressemblent habituellement et subissent souvent tous deux, dans les mues successives qu'ils traversent avant d'arriver à maturité, de grands changements de coloration. Dans d'autres cas, le mâle paraît changer de couleur. Ainsi, le mâle du brillant Sparassus, dont nous venons de parler, ressemble d'abord à la femelle, et n'acquiert sa couleur particulière que lorsqu'il arrive à l'âge adulte. Les araignées ont des sens très développés et font preuve d'intelligence. Les femelles, comme on le sait, témoignent beaucoup d'affection pour leurs ceufs qu'elles transportent avec elles dans une enveloppe soyeuse. Les males mettent beaucoup d'ardeur à rechercher les femelles, et Canestrini et quelques autres observateurs affirment qu'ils luttent les uns contre les autres pour s'en emparer. Canestrini constate aussi qu'on a observé chez vingt espèces environ l'union entre les individus des deux sexes. Il affirme positivement que la femelle repousse les avances de certains males qui la courtisent, et finit, aprés de longues hésitations, par accepter celui qu'elle a choisi. Ces diverses considérations nous autorisent à conclure que les différences bien marquées de coloration que présentent les mâles et les femelles de certaines espèces résultent de la sélection sexuelle, bien que, dans ce cas, nous n'ayons pas la preuve la plus absolue, qui consiste, comme nous l'avons dit, dans l'étalage que le màle fait de ses ornements. L'extrême variabilité de couleur dont font preuve quelques espèces, le Theridion lineatum par exemple, semble prouver que les caractères sexuels des mâles ne sont pas encore bien fixés. Canestrini tire la même conclusion du fait que les males de certaines espèces présentent deux formes qui diffèrent l'une de l'autre par la grandeur des mâchoires; ceci nous rappelle les crustacés dimorphes dont nous avons parlé.

Le malle est d'ordinaire beaucoup plus petit que la femelle;

[^146]la différence de taille est souvent même extraordinaire ${ }^{20}$; il doit observer la plus grande prudence quand il fait la cour à la femelle, car celle-ci pousse parfois la réserve jusqu'à un point dangereux. De Geer observa un mâle qui, «au milieu de ses caresses préparatoires, fut saisi par l'objet de ses amours, enveloppé dans une toile et dévoré; spectacle qui, ajouta-t-il, le remplit d'horreur et d'indignation ${ }^{21}$. » Le révérend $0 . P$. Cambridge ${ }^{22}$ explique de la manière suivante l'extrême petitesse du male dans le genre Nephila: «M. Vinson décrit admirablement l'activité du petit mâle, activité qui lui permet d'échapper à la férocité de la femelle; tantôt il se dissimule derrière ses membres gigantesques, tantôt il lui grimpe sur le dos. Il est évident qu'à un tel jeu les mâles les plus petits ont plus de chance d'échapper, tandis que les plus gros sont facilement saisis et dévorés; il en résulte donc que la sélection a du agir de façon à diminuer de plus en plus la grasseur des mâles et à les réduire à la plus grande petitesse comparable avec l'exercice de leurs fonctions de males, c'est-à-dire à les rendre ce que nous les voyons aujourd'hui, une sorte de parasite de la femelle, trop petit pour attirer son attention, ou trop agile pour qu'elle puisse facilement le saisir. *

Westring a fait la découverte intéressante que les mâles de plusieurs espèces de Theridion ${ }^{23}$ ont la faculté de produire un son stridulent, tandis que les femelles sont tout à fait muettes. L'appareil consiste en un rebord dentelé situé à la base de l'abdomen, contre lequel frotte la partie postérieure durcie du thorax, confor'mation dont on ne trouve pas de traces chez les femelles. Il con vient de faire remarquer que plusieurs savants, y compris le célèbre Walckenaer, ont affirmé que la musique attire les araignées ${ }^{24}$. Les cas analogues chez les Orthoptères et chez les Homoptères, que nous décrirons dans le chapitre suivant, nous autorisent presque à conclure que, ainsi que le fait remarquer Westring, cette tridulation sert à appeler ou à exciter la femelle; dans l'échelle

[^147]ascendante du régne animal, c'est le premier cas que je connaisse de sons émis à cet effet ${ }^{25}$

Classe : Myriapoda. - Je n'ai trouvé dans aucun des deux ordres de cette classe, comprenant les millipèdes et les centipèdes, un exemple bien marqué de différences sexuelles du genre de celles dont nous nous occupons. Chez le Glomeris Iimbata, toutefois, et peut-être chez quelques autres espèces, la coloration du male diffère légèrement de celle de la femelle ; mais ce Glomeris est une espèce très variable. Chez les Diplopodes malles, les pattes attachées à l'un des segments antérieurs du corps ou au segment postérieur se modifient en crochets prenants qui servent à retenir la femelle. Chez quelques espèces de Julus, les tarses des mâles sont pourvus de ventouses membraneuses destinées au même usage. La conformation inverse, qui est beaucoup plus rare, ainsi que nous le verrons en traitant des insectes, s'observe chez le Lithobius ; c'est la femelle, dans ce cas, qui porte à l'extrémité du corps des aopendices prenants destinés à retenir le male ${ }^{26}$.

CHAPITRE X

CARACTERES BEXURLS BECONDAIRES CHEZ LES INSECTES

Conformations diversos des males servant à saisir les femelles. Différences entre les sexes, dont la signification est inconnue. Différence de taille entre les sexes. - Thysanoures. - Diptères. Hémiptères. - Homoptères, facultés musicales que possèdent les males seuls. - Orthoptères, diversité de structure des appareils musicaux chez les males; humeur belliqueuse, couleurs. - Névroptères, différences sexuelles de couleur. - Hyménoptères, caractère belliqueux, couleurs. - Coléoptères, couleurs; présence de grosses cornes, probablement comme ornementation ; cumbats ; organes stridulents ordinairement communs aux deux sexes.

Les organes locomoteurs et souvent les organes des sens diffèrent chez les mâles et les femelles appartenant à l'immense classe des insectes; ainsi, par exemple, les antennes pectinées et élégamment foliées que lon troure chez les mâles seals de beaucoup d'espèces. Chez un éphéméride, le Cléon, le male a de grands yeux

[^148]portés sur des piliers qui font entièrement défaut chez la femelle ${ }^{1}$. Les femelles de certains insectes, tels que les Mutillidées, sont dépourvues d'ocelles; elles sont également privées d'ailes. Mais nous nous occupons principalement ici des conformations qui permettent à un mâle de l'emporter sur son rival, soit dans le combat, soit au moyen de la séduction, par sa force, par ses attitudes belliqueuses, par ses ornements, ou par la musique qu'il peut faire entendre. Nous passerons donc rapidement sur les innombrablen dispositions qui permettent aux mâles de saisir la femelle. Outre les conformations complexes de l'extrémité de I'abdomen qu'on devrait peut-être considérer comme des organes sexuels primaires ${ }^{2}$, la nature, ainsi que le fait remarquer Mr. B. D. Walsh ${ }^{3}$, «ayant ımaginé une foule d'organes divers dans le but de permettre au mâle de saisir énergiquement la femelle », les mandibules ou mâchoires servent quelquefois à cet usage; ainsi le Coridalys cornutus mâle (névroptère voisin des Libellules, etc.) a d'immenses mâchoires recourbées beaucoup plus longues que celles de la femelle; ces mandibules lisses et pon dentelées lui permettent de la saisir sans lui faire aucun mal 4. Un lucane de l'Amérique du Nord (Lucanus claphus) emploie au mème usage ses mâchoires qui sont beaucoup plus grandes que celles de la femelle; mais il s'en sert probablement aussi pour se battre. Les mâchoires des mâles et des femelles d'une guêpe fouisseuse (Ammophila) se ressemblent beaucoup, mais elles servent à des usages très différents ; en effet, ainsi que l'observe le professeur Westwood, \& les malles extrêmement ar dents se servent de leurs mâchoires qui aftectent la forme d'une faucille pour saisir la femelle par le cou ${ }^{5}, \geqslant$ tandis que les femelles

[^149] Mutillidées, voir Westwood, Modern classif. of Insects, vol. II, p. 213.
2. Ces organes differrent souvent chez les màles d'espèces très voisines et fournissent d'excellents caractères spécifiques. Mais on a probablement exagéré leur importance fonctionnelle, comme me le fait remarquer M. R, Mac Lachlan. On a suggéré que de légères différences de ces organes suffiraient pour expécher l'entre-croisement de variétés b'en marquées ou d'espèces naissantes, et contribueraient ainsi à leur développement. Mais nous pouvons conclure que cette suggestion n'est pas fondée, car on a observé l'union d'un grand nombre d'espèces distinctes. (Bronn, Geschichte der Natur, vol. II, 1843, p. 164, et Westwood, Trans. Ent. Soc., vol. III, 1842, p. 195). M. Mac Lachlan m'appren I (Stett. Ent. Zeitung, 1867, p. 155) que plusieurs espèces de Phryganides, présentant des différences très prononcées de ce genre, enfermées ensemble par le docteur Aug. Meyer, se sont accouplées, et un des couples produisit des coufs féconds.
3. The Practical Entomologist, Philadelphia, vol. II, 1867, p. 88.
4. M. Walsh, id., p. 107.
5. Modern. Classif, etc. vol. II, 1840, pp. 205-206. M. Walsh, qui a appelé mon altention sur ce double usage des máchoires, me dit l'avoir observé fui-meme
utilisent ces mêmes organes pour fouiller dans le sable et construire leurs nids.

Les tarses des pattes antérieures, chez beaucoup de Coléoptères males, sont élargis ou pourvus de larges touffes de poils; chez diverses espèces aquatiques, ces tarses sont armés d'une ventouse plate et arrondie, de façon que le malle puisse adhérer au corps glissant de la femelle. Quelques Dytisques femelles présentent une conformation bien plus extraordinaire ; les élytres portent de profonds sillons, destinés à faciliter la tâche du mâle; il est évident que les touffes de poils qui garnissent les élytres de l'Acilius sulcatus et les aspérités que présentent celles des femelles de quelques autres Coléoptères aquatiques, les Hydroporus, servent au même usage ${ }^{6}$. Chez le Crabro cribrarius mâle (fig. 9, Pl.4), c'est le tibia qui s'élargit en une large plaque cornée, portant de petits points nembraneux qui lui donnent I'apparence d'un crible ${ }^{7}$. Chez le Penthe mâle (genre de Coléoptères), quelques segments au milieu de l'antenne, élargis et revêtus à leur surface inférieure de touffes de poils ressemblant exactement à celles qui se trouvent sur les tarses des Carabides, «servent évidemment au mème but». Chez les Libellules mâles, «les appendices de l'extrémité caudale se transforment en une variété presque infinie de curieux appareils qui leur permettent d'entourer et de saisir le cou de la femelles. Enfin, les pattes de beaucoup d'insectes mâles sont pourvues d'épines particulières, de nœuds ou d'éperons, ou la patte entière est recourbée ou épaissie ; mais ce n'est pas toujours là un caractère sexuel; quelquefois une paire ou les trois paires de pattes s'allongent et atteignent une longueur extraordinaire ${ }^{8}$.

Dans tous les ordres d'insectes, les mâles et les femelles de nombreuses espèces présentent des différences dont on ne comprend pas la signification. On peut citer, par exemple, un Coléoptère, mate (fig. 10, Pl. 4), dont la mandibule gauche s'élargit considérablement, ce qui déforme entièrement la bouche. Un autre Coléoptère Carabide, l'Eurygnathus ${ }^{9}$, présente un cas unique, s'il faut en
6. Nous avons là un cas curieux et inexplicable de dimorphisme, car quelques femelle de quatre espèces européennes de Dytisques et de certaines espèces d'Hydroporus ont les elytres lisses, et on n'a observé aucune gradation intermédiarre entre les élytres sillonnées ou rugueuses et celles qui sont lisses. Voir le docteur H. Schaum, cité dans le Zoologist, vol. V-VI, 1847-1848, p. 1896. Kirby et Spence, Introd. to Entom., vol. III. 1826, p. 305.
7. Westwood, Mod. Class. of Insects, vol. II, p. 193. Le fait relatif au Penthe et quelques autres sont empruntés à M. Walsh, Practical Entomologist, Philadelphia, vol. II, p. 88.
8. Kirby et Spence, Introduct., eto., vol. II, pp. 392-836.
9. Insecta Maderensia, 1854, p. 20.
croire M. Wollaston : la tete de la femelle est, à un aegre variable, beaucoup plus large que celle du male. On pourrait citer, chez les Lépidoptères, un nombre très grand d'irrégularités de ce genre. Une des plus extraordinaires est l'atrophie plus ou moins complete qui frappe les pattes antérieures de certains papillons males, dont es tibias et les tarses se trouvent réduits à de simples tubercules sudimentaires. La nervure et la forme des ailes diffèrent aussi chez (es deux sexes ${ }^{10}$, comme chez l'Aricoris epitus, que M. Butler m'a nontré au Muséum britannique. Certains papillons mâles de l'Amérique du Sud portent des touffes de poils sur les bord des ailes, et des excroissances cornées sur les disques de la paire postérieure ${ }^{11}$. M. Wonfor a prouvé que, chez plusieurs papillons d'Angleterre, les males seuls ont certaines parties recouvertes d'écailles particulières.
On a beaucoup discuté la question de savoir quel pouvait etre I'usage de la lumière brillante qu'émet la femelle du ver luisant. Les mâles, les larves et même les œufs émettent une faible lumière. Quelques savants ont supposé que la lumière émise par les femelles sert à effrayer leurs ennemis, d'autres à guider les mâles vers elles. M. Belt ${ }^{12}$ semble avoir, enfin, résolu le problème; il a constaté que les mammifères et les oiseaux qui se nourrissent d'insectes détestent tous les Lampyrides. Ce fait vient à l'appui de l'hypothèse de M. Bates qui affirme que beaucoup d'insectes cherchent à ressembler d'assez près aux Lampyrides pour être pris pour eux, afin d'échapper ainsi à la destruction. Il croit, en outre, que les espèces lumineuses retirent de grands avantages de ce que les insectivores les reconnaissaient immédiatement. Hest probable que la méme explication s'applique aux Elaters dont les deux sexes sont très lumineux. On ignore pourquoi les ailes du ver luisant femelle nese sont pas développées; dans son étetactuel, elleressemble beaucoup à une larve; or, comme beaucoup d'animaux font aux larves une chasse très active, il devient facile de comprendre qu'elle soit devenue beaucoup plus brillante et plus apparente que le male, et que les larves elles-mêmes aient acquis une certaine phosphorescence.

[^150]Différence de taille entre les individus des deux sexes. - Chez les insectes de tous genres, les malles sont ordinairement plus petits que les femelles, différence qui se remarque souvent même à l'état de larve. Les cocons mâles et les cocons femelles du ver à soie (Bombyx mori) présentent à cet égard une différence si considérable qu'en France on les sépare par un procédé particulier de pesage ${ }^{13}$. Dans les classes inférieures du règne animal, la grosseur plus grande des femelles paraît généralement résulter de ce qu'elles produisent une énorme quantité d'œufs, fait qui, jusqu'à un certain point, est encore vrai pour les insectes. Mais le docteur Wallace a suggéré une explication plus satisfaisante. Après avoir attentivement étudié le développement des chenilles du Bombyx cynthia et du B. Yamamai, et surtout celui de quelques chenilles rabougries provenant d'une seconde couvée et nourries artificiellement, M. Wallace a pu constater «que le temps requis pour la métamorphose de chaque individu est proportionnellement plus grand selon que sa taille est plus grande; c'est pour cette raison que le mâle, qui est plus petit et qui, par conséquent, atteint pius tôt la maturité, éclôt avant la femelle plus grande et plus pesante, car elle a à porter un grand nombre d'œufs ${ }^{14}$.» Or les insectes vivent très peu de temps et sont exposés à de nombreux dangers, il est donc évidemment avantageux pour les femelles de pouvoir être fécondées le plus tôt possible. Ce but est atteint si les mâles parviennent les premiers en grand nombre à l'état adulte et se trouvent prèts pour l'apparition des femelles, ce qui résulte naturellement, ainsi que le fait observer M. A. R. Wallace ${ }^{15}$, de l'action de la sélection naturelle. En effet, les mâles de petite taille, arrivés les premiers à maturité, procréent de nombreux descendants qui héritent de la petite taille de leurs parents mâles, tandis que les mâles plus grands parvenant plus tardivement à l'état adulte, doivent engendrer moins de descendants.

Il y a toutefois des exceptions à cette règle de l'infériorité de la taille des insectes mâles, exceptions qu'il est facile d'expliquer. La taille et la force procurent de sérieux avantages aux males qui luttent les uns avec les autres pour la possession des femelles; ils doivent donc, dans ce cas, être plus grands que ces dernières, et c'est, en effet, ce que l'on observe cheż les Lucanes. On connait, cependant, d'autres coléoptères mâles qui sont plus grands que les femelles, bien qu'on n'ait point observé de luttes entre les mâles,

[^151]
[Chap. X].

fait dont nous ne pouvons donner l'explication ; dans quelques autres cas, chez les Dynastes et les Megasoma par exemple, il importe peu que les males soient plus petits que les femelles et parviennent plus promptement qu'elles à l'état adulte, car ces insectes vivent assez longtemps pour avoir amplement le temps de s'accoupler. Les Libellules mâles sont parfois aussi un peu plus gros que les femelles, ils ne sont jamais plus petits ${ }^{16}$; M. Mac Lachlan assure qu'ils ne s'accouplent ordinairement avec les femelles qu'au nout d'une semaine ou même dune quinzaine, en un mot pas avant d'avoir revêtu leurs couleurs masculines propres. Les Hyménoptères à aiguillon présentent le cas le plus curieux et celui qui fait le mieux comprendre les rapports complexes et faciles à méconnaitre dont peut dépendre un caractère aussi insignifiant qu'une différence de taille entre les indevidus des deux sexes ; M. F. Smith m'apprend, en effet, que, dans la presque totalité de ce vaste groupe, les mâles, conformément à la règle générale, sont plus petits que les femelles et éclosent une semaine environ avant elles; mais, chez les mouches à miel, les Apis mellifica, les Anthidium manicatum et les Anthophora acervorum mâles, et parmi les Fossoyeurs, les Methoca ichneumonides males, sont plus grands que les femelles. Cc,tte anomalie s'explique par le fait que, chez ces espèces, l'accouplement n'est possible que pendant le vol ; les males doivent donc posséder beaucoup de force et une grande taille pour pouveir porter les femelles. La taille dans ce cas a augmenté malgré le rapport ordinaire qui existe entre la taille et la période du développement, car les males, quoique plus grands, éclosent avant les femelles plus petites.

Nous allons maintenant passer en revue les divers ordres, et étudier, chez chacun d'eux, les faits qui peuvent nous intéresser plus particulièrement. Nous consacrerons un chapitre spécial aux Lépidoptères diurnes et nocturnes.

Ordre, Thysanoures. - Les individus qui composent cet ordre présentent, pour leur classe, une organisation très inférieure. Ce sont de petits insectes aptères, à la couleur terne, à la tête laide et au corps presque difforme. Les individus des deux sexes se ressemblent; mais on acquiert, en les étudiant, la preuve intéressante que, même à un degré aussi bas de l'échelle animale, les mâles tont une cour assidue aux femelles. Sir J. Lubbock ${ }^{17}$ dit en décri
16. Pour ce renseignement ot les autres sur la grosseur des sexes, voyes Kirby et Spence, id., III, p. 300, et sur la durée de la vie des insectes, p. 344
17. Transact. Linnean Soc., vol. XXVI, 1868, p. 296.
vant le Smynthurus luteus : <Il est fort amusant de voir ces petites betes aqueter ensemble. Le mâle, beaucoup plus petit que la femelle, court autour d'elle, puis ils se placent en face l'un de l'autre, avancent et reculent comme deux agneaux qui jouent. La femelle feint ensuite de se sauver, le male la poursuit avec une apparence de colère et la devance pour lui faire face de nouveau; elle se détourne timidement, mais le mâle plus vif se détourne aussi et semble la fouetter avec ses antennes; enfin, après être restés face à face pendant quelques instants, ils se caressent avec leurs antennes, et paraissent, dès lors, être tout l'un à l'autre.

Ordre, Diptères (Mouches). - Les sexes diffèrent peu au point de vue de la couleur. D'après M. F. Walker, la plus grande différence s'observe chez le genre Bibio dont les males sont noirâtres ou noirs, et les femelles brun orangé obscur. Le genre Elaphomya, découvert par M. Wallace ${ }^{18}$ dans la Nouvelle-Guinée, est fort remarquable en ce que le male porte des cornes qui font défaut chez la femelle. Ces cornes partent de dessous les yeux, et ressemblent singulièrement à celles des cerfs, car elles sont ramifiées ou palmées. Chez une des espèces, elles sont aussi longues que le corps. Elles pourraient servir à la lutte, mais, comme elles ont, chez une espèce, une magrifique couleur rose, bordée de noir, avec une raie centrale plus pale, et que ces insectes ont, en somme, un aspect très élégant, il est plus probable que ces appendices constituent un ornement. Il est toutefois certain que certains Diptères males se battent, car le professeur Westwood ${ }^{19}$ a plusieurs fois observé des combats chez quelques espèces de Tipules. Les autres Diptères mâles semblent essayer de séduire les femelles par leur musique. M. Müller ${ }^{20}$ a observé pendant longtemps deux Eristalis mâles qui courtisaient une même femelle ; ils tournaient incessamment autour d'elle en faisant entendre un bourdonnement prolongé. Les cousins et les moustiques (Cullicidés) semblent aussi s'attirer l'un l'autre par leur bourdonnement. Le professeur Mayer a récemment constaté que les poils des antennes du mâle vibrent à l'égal d'un diapason aux sons émis par la femelle. Les poils les plus longs vibrent sympathiquement avec les notes graves et les poils courts avec les notes aiguês. Landais affirme aussi qu'il a, à maintes reprises, attiré à lui une foule de cousins en faisant entendre une note particulière. On

[^152]peut ajouter que les Diptères, dont le système nerveux est si développé, ont probablement des facultés mentales plus élevées que les autres insectes ${ }^{21}$.

Ordre, Hémiptères (Punaises des bois). - M. J. W. Douglas, qui s'est tout particulièrement occupé des espèces britanniques, a bien voulu m'indiquer leurs différences sexuelles. Les males de quelques espèces possèdent des ailes, les femelles sont aptères; les sexes different par la forme du corps, des élytres, des antennes et des tarses; mais nous ne nous arreterons pas à ces différences, dont nous ignorons tout à fait la signification. Les femelles sont généralement plus grandes et plus robustes que les mâles. Chez les espèces britanniques et, autant que M. Douglas a pu le constater, chez $l_{\text {es espèces exotiques, les sexes n'ont pas ordinairement des cou- }}$ leurs différentes; mais, chez six espèces anglaises, le malle est beaucoup plus foncé que la femelle; d'autre part, une coloration plus foncée de la femelle caractérise quatre autres espèces. Les individus des deux sexes, chez quelques espèces, sont élégamment colorés; comme ces insectes émettent une odeur très nauséabonde, il se peut que ces couleurs brillantes servent à indiquer aux animaux insectivores qu'ils ne sont pas bons à manger. Dans quelques cas, ces couleurs semblent les protéger directement : ainsi le professeur Hoffmann m'apprend qu'il avait la plus grande peine à distinguer une petite espèce rose et verte des bourgeons du tronc des tilleuls que fréquente cet insecte.
Quelques espèces de Réduvides font entendre un bruit stridulent; on assure que, chez le Pirates stridulus ${ }^{22}$, ce bruit est produit par le mouvement du cou dans la cavité prothoracique. D'après Westring, le Reduvius personatus fait entendre le même bruit; mais je n'ai aucune raison de supposer que ce soit là un caractère sexuel; toutefois, chez les insectes non sociables, on ne peut attribuer aux organes destinés à produire des sons qu'un seul usage, c'est-àdire l'appel sexuel.

Ordre, Homoptères. - Quiconque a erré dans une forêt tropicale doit avoir été frappé du vacarme que font les Cicadés mâles. Les femelles sont muettes, et, comme le dit le poète grec Xénarque, - heureuse la vie des cigales, car elles ont des épouses muettes.

[^153]Nous percevions distinctement, à bord du Beagle, qui avait jeté l'ancre à 500 mètres de la côte du Brésil, le bruit tait par ces insectes; le capitaine Hancock dit qu'on peut l'entendre à la distance d'un mille. Les Grecs conservaient autrefois ces insectes en cage pour jouir de leur chant, ce que font encore aujourd'hui les Chinois, de sorte qu'il parait être agréable à l'oreille de certains hommes ${ }^{23}$. Les Cicadés chantent ordinairement le jour, tandis que les Fulgorides chantent la nuit. Landois ${ }^{24}$ affirme que le bruit que ces insectes font entendre est produit par la vibration des lèvres des spiracules mises en mouvement par un courant d'air sortant de la trachée; mais récemment on a discuté cette opinion. Le docteur Powell ${ }^{25}$ paralt avoir démontré queleson est produit par la vibration d'une membrane mise en mouvement par un muscle spécial. On peut voir vibrer cette membrane chez l'insecte vivant; après la mort de l'insecte, on peut reproduire le son qu'il émet en agitant avec une épingle le muscle desséché et un peu durci. La femelle possède aussi tout cet appareil musical complexe, mais à un état de développement bien moindre que chez le male, et il ne sert jamais chez elle à produire un son.

A quoi sert cette musique? Le docteur Hartman ${ }^{26}$ fait au sujet de la Cicada septemdecim des États-Unis les remarques suivantes : - Les tambours se font maintenant entendre (les 6 et 7 juin 1851) dans toutes les directions. Je crois que cesont les appels des mâles. Me trouvant parmi des rejetons de châtaigniers atteignant à la hauteur de ma tête, et entouré de centaines de ces insectes, j'observai les femelles qui venaient tourner autour des mâles tambourinants. * Plus loin, il ajoute : © Un poirier nain de mon jardin a, pendant cette saison (åAt 1868), produit environ cinquante larves de Cic. pruinosa; j'ai plusieurs fois constaté que les femelles viennent s'abattre près d'un mâle dès qu'il pousse ses notes perçantes. * Fritz Müller m'écrit, du Brésil méridional, qu'il a souvent assisté à une lutte musi cale entre deux ou trois cigales mâles, doués d'une voix particulièrement forte et placés à des distances considérables les uns des autres. Dès que l'un a fini son chant, un second commence aussitot, et après lui un troisième, et ainsi de suite. La rivalité étant excessive entre les males, il est probable que les sons qu'ils font

[^154]entendre n'ont pas seulement pour objet d'appeler les femelles, mais que, celles-ci, tout comme les oiseaux femelles, se laissent attirer et charmer par le male dont la voix a le plus d'attraits.

Je n'ai pas trouvé chez les Homoptères d'exemple bien prononcé de différences dans l'ornementation des individus des deux sexes. M. Douglas m'apprend que chez trois espèces anglaises, le male est noir ou rayé de noir, tandis que la femelle revết une teinte uniforme pale ou sombre.

Ordre, Orthoplleres. - Dans les trois familles sauteuses appartenant à cet ordre, les Achétides ou grillons, les Locustides et les Acridides ou sauterelles, les mâles se font remarquer par leurs aptitudes musicales. La stridulation produite par quelques Locustides est si puissante qu'elle peut s'entendre la nuit à plus d'un kilomètre de distance ${ }^{87}$; il existe certaines espèces dont la stridulation ne déplait pas aux oreilles humaines, car les Indiens des Amazones les élèvent dans des cages d'osier. Tous res observateurs s'accordent à dire que ces sons servent à appeler ou à exciter les femelles muettes. Körte ${ }^{23}$ a observé un cas intéressant chez la sauterelle émigraute de Russie ; il s'agit d'un choix exercé par la femelle au profit d'un mâle. Le male de cette espèce (Pachytylas migratorius), accouplé avec une femelle, témoigne de sa colère ou de sa jalousie par des stridulations, lorsqu'un autre mâle approche. Le grillon domestique, surpris la nuit, so sert de sa voix pour avertir les autres ${ }^{* 9}$. Dans l'Amérique du Nord, le Katy-did (Platyphyllum concavum, un Locustide) monte, dit-on ${ }^{30}$, sur les branches supérieures d'un arbre, et commence, dans la soirée, «son babil bruyant; des notes rivales lui répondent, provenant d'arbres voisins, et font toute la nuit résonner les bosquets du Katy-did-she-did de ces insectes. $>$ M. Bates dit, à propos du grillon des champs (un Achétide) européen : © On a observé que le malle se place dans la soirée à l'orifice de son terrier, et se met à chanter jusqu'à ce qu'une femelle s'approche de lui. Alors, aux notes sonores succéde un ton plus doux, pendant que l'heureux musicien caresse avec ses antennes la femelle

[^155]quil a captivée ${ }^{31}$. , Le docteur Scudder a réussi, en frottant un tuyau de plume sur une lime, à se faire répondre par un de ces insectes ${ }^{32}$. Von Siebold a découvert dans les deux sexes un appareil auditif remarquable, situé sur les pattes antérieures ${ }^{83}$.
Les trois familles produisent les sons d'une manière différente. Chez les Achétides males, les deux élytres ont un même appareil musical, qui, chez le grillon des champs (Gryllus campestris, fig. 11, Pl. 4) consiste, d'après Landois ${ }^{34}$, en crêtes ou dents (st) transversales et tranchantes occupant, au nombre de 131 à 138, la surface inférieure d'une des nervures de l'élytre. Cette nervure dentelée est rapidement frottée contre une autre nervare (r) saillante, lisse et dure, qui se trouve sur la surface supérieure de l'aile opposée. Une des ailes est d'abord frottée sur l'autre, puis le mouvement se renverse. Les deux ailes se redressent un peu en même temps, ce qui augmente la sonorité. Chez quelques espèces, les élytres sont pourvues à leur base d'une plaque d'apparence talqueuse ${ }^{35}$. Je reproduis un dessin (fig. 12, Pl. 4) représentant les dents du côté inférieur de la nervure chez une autre espèce de grillon, le Gryllus domesticus. Le docteur Gruber ${ }^{36}$ a démontré que ces dents se sont développées grace à la sélection naturelle; elles constituent une transformation des petites écailles et des poils qui recouvrent les ailes et le corps de l'insecte ; j'ai été amené à adopter la même conclusion relativement à un appareil analogue chez les Coléoptères. Le docteur Gruber a démontré, en outre, que ce développement esí dû en partie au frottement d'une aile sur l'autre.

Chez les Locustides, la structure des élytres opposées diffère (fig. 13, Pl. 5) ; elles ne peuvent pas, comme chez la famille précédente, s'employer indifféremment dans un sens ou dans l'autre. L'aile gauche, qui agit comme l'archet du violon, recouvre l'aile droite qui joue le role de l'instrument. Une des nervures (a) de la surface inférieure de la première est finement dentelée, et vient frotter contre les nervures saillantes de la surface supérieure de l'aile opposée, ou de l'aile droite. Chez notre espèce indigène, Phasgonura viridissima, il m'a semblé que la nervure dentelée vient frotter contre le coin postérieur arrondi de l'aile opposée, dont le bord est épaissi, coloré en brun et très aigu. On remarque sur l'aile droite,

[^156]mais non sur ta gauche, une petite plaque transparente comme du talc, entourée de nervures, dite le spéculum. Chez l'Ephippiger vitium, membre de la même famille, on observe une curieuse modification subordonnée ; car les élytres ont des dimensions considérablement réduites; mais \& la partie postérieure du prothorax se relève et forme une sorte de dôme au-dessus des élytres, ce qui a probablement pour effet de contribuer à l'intensité du son ${ }^{37}$. \boldsymbol{Y}_{i}
On observe donc chez les Locustides, qui comprennent, je pense,
les exécutants les plus puissants de l'ordre, une différenciation et une spécialisation de l'appareil musical, plus grandes que chez les Achétides, où les deux élytres ont la même structure et remplissent la même fonction ${ }^{38}$. Toutefois Landois a trouvé chez un Locustide, le Decticus, une rangée courte et étroite de petites dents, simples rudiments, occupant la surface inférieure de l'elytre droite, qui est sous-jacente à l'autre et ne sert jamais comme archet. J'ai observé la même conformation rudimentaire sur la surface inférieure de l'elytre droite du Phasgonura viridissima. Nous pouvons done conclure avec certitude que les Locustides descendent d'une forme chez laquelle, comme chez les Achétides existants, les surfaces inférieures des deux élytres étaient pourvues de nervares dentelées, et pouvaient indifféremment servir d'archet; mais, shez les Locustides, les deux élytres se sont graduellement différenciées et perfectionnées, en vertu du principe de la division du travail, et l'une fonctionne exclusivement comme archet, et l'autre comme violon. Le docteur Gruber partage la même opinion; il a démontré que les dents rudimentaires se trouvent ordinairement à la surface infé. rieure de l'aile droite. Nous ignorons l'origine de l'appareil plus simple des Achétides, mais il est probable que les parties formant la base des élytres se recouvraient autrefois, et que le frottement des nervures provoquait un son discordant, qui rappelle celui que produisent actuellement les femelles au moyen de leurs élytres ${ }^{39}$. Un bruit de ce genre, accidentellement produit par les males, a donc pu, s'il leur a rendu le moindre service comme appel d'amour, se développer au moyen de la sélection sexuelle, par la conservation continue des variations propres à augmenter la dúreté des nervures.
Dans la troisième et dernière famille, celles des Acridides ou sauterelles, la stridulation est produite d'une manière très différente,

[^157]ef n'est pas, d'après le docteur Scudder, si aiguẽ que dans les familles précédentes. La surface interne du fémur (fig. 14, r, Pl.5) est pourvue d'une rangée longitudinale de petites dents élégantes, en forme de lancettes élastiques, au nombre de 85 à 93 , qui frottent sur les nervures saillantes des élytres, et font vibrer et résonner ces dernières ${ }^{40}$. Harris ${ }^{41}$ affirme que, lorsque le male veut émettre des sons, il exeplie d'abord l'extrémité de la patte postérieure, de manière à la loger dans une rainure de la surface inférieure de la cuisse, rainure destinée à la recevoir, puis il meut vigoureuement la jambe de haut en bas. Il ne fait pas marcher les deux instruments simultanément, mais l'un après l'autre, en alternant. * Chez beaucoup d'espèces, la base de l'abdomen présunte une grande excuvation qu'on croii devoir jouer le rôle de boite résonnante. Chez les Preumora, genre de l'Afrique méridionale appartenant à cette meme famille (fig. 15, Pl. 6), on observe une nouvelle et remarquable modification, qui consiste, chez les males, en une petite crête entaillée faisant obliquement saillie de chaque côté de l'abdomen; la partie postérieure des cuisses frotte contre cette saillie ${ }^{12}$. Comme le male est pourvu d'ailes, organes dont la femelle est privée, il est singulier que le frottement des cuisses ne s'exerce pas, comme d'hábitude, contre les élytres; mais cela provient peut-être de la petitesse inusit'é des pattes postérieures. Je n'ai pas pu examiner la surface interne des cuisses, qui, à en juger par analogie, doit être finement dentelée. Les espèces de Pneumora ont été plus profondément modifiées pour produire la stridulation qu'aucun autre insecte orthoptère; tout le corps du male, en effet, semble converti en un instrument do musique, car il est tout gonflé d'air, ce qui lui donne l'aspect d'une vessie transparente, et augmente la sonorité. M. Trimm m'apprend que, au Cap de Bonne-Espérance, ces insectes font, pendant la nuit, un bruit effrayant.
Les femelles, dans les trois familles dont nous venons de parler, sont presque toujours privées d'un appareil musical. Il est, toutefois, quelques exceptions à cette règle, car le docteur Gruber a démontré que les deux sexes de l'Ephippiger vitium sont pourvus de cet appareil, bien que les organes du male diffèrent dans une certaine mesure de ceux de la femelle. Nous ne pouvons donc supposer qu'ils aient été transmis du male à la femelle, comme l'ont été les caracteres sexuels secondaires chez tant d'autres animaux. Ils ont du se développer de façon indépendante chez les deux sexes, qui,

[^158]sans aucun doute, s'appellent réciproquement pendant la saison des amours. Chez la plupart des autres Locustes, sauf le Decticus d'après Landois, les femelles possèdent les rudiments des organes stridulents propres au mâle, qui les leur a probablement transmis. Landois a aussi trouvé des rudiments analogues à la surface inférieure des élytres des Achétides femelles, et sur les fémurs des Acridides femelles. Enfin, les Homoptères femelles possèdent un appareil musical, mais à l'état inerte. Nous rencontrerons, d'ailleurs, dans d'autres divisions du règne animal, de nombreux exemples de conformations propres au malle qui se trouvent à l'état rudimentaire chez la femellc.

- Landois a constaté un autre fait important : chez les Acridides femelles, les dents des fémurs, qui produisent la stridulation, demeurent, pendant toute la vie de l'insecte, dans le même état que celui qu'elles affectent lors de leur apparition chez les larves des individus des deux sexes. Chez les males, au contraire, elles acquièrent leur développement complet et leur conformation parfaite, lors de la dernière mue, lorsque l'insecte parvenu à l'état adulte est prêt à reproduire.
Les faits qui précèdent nous permettent de conclure que les Orthoptères mâles emploient des moyens très divers pour produire les sons, et que ces moyens diffèrent absolument de ceux qu'emploient les Homoptères pour arriver au même but ${ }^{43}$. Le règne animal nous offre, d'ailleurs, de nombreux exemples analogues; il semble que la nature utilise les changements multiples que subit dans le cours des temps l'ensemble de l'organisation, et à mesure que les parties varient les unes après les autres, qu'elle profite de ces variations différentes pour arriver à un même but général. La diversité des moyens employés pour produire les sons, chez les trois familles d'Orthoptères et chez les Homoptères, explique toute limportance qu'ont, pour les males, ces conformations qui leur servent à appeler et à séduire les femelles. Les modifications que les Orthoptères ont subies sous ce rapport n'ont rien qui doive nous surprendre, car nous savons maintenant, grâce à la remarquable décou verte du, docteur Scudder ${ }^{44}$, qu'il y a eu pour cela un temps plus que suffisant. Ce naturaliste a récemment trouvé, dans la formation devonienne du Nouveau-Brunswick, un insecte fossile pourvu \& du

[^159]tympan bien connu ou appareil de stridulation des Locustides males. » Bien que, à tous égards, cet insecte se rapproche des Névroptères, il paraitt relier, comme cela arrive si souvent chez les formes très anciennes, les deux ordres voisins des Névroptères et des Orthoptères.
J'ai peu de choses à ajouter sur les Orthoptères. Quelques espèces sont très belliqueuses : lorsque deux grillons mâles (Gryllus campestris) sont enfermés dans une même cage, la mort seule de l'un des deux adversaires met fin à la lutte. On dit que les Mantis manœuvrent leurs membres antérieurs, qui affectent la forme d'un sabre, comme les hussards manœuvrent leur arme. Les Chinois gardent ces insectes dans de petites cages de bambou, et les font se battre comme on fait battre des coqs de combat ${ }^{45}$. Certains Locustides exotiques affectent des couleurs magnifiques; les ailes postérieures sont teintées de rouge, de bleu et de noir ; mais les individus des deux sexes, dans l'ordre entier, different rarement au point de vue de la coloration, et il est doutoux qu'ils doivent ces teintes brillantes à la sélection sexuelle. Ces couleurs très brillantes peuvent être utiles à ces insectes comme moyen de sécurité. C'est, en effet, un avertissement pour leurs ennemis qu'ils sont désagréables au goât. Ainsi, on a observé ${ }^{16}$ que les oiseaux et les lézards refusaient invariablement de manger un criquet indien affectant des couleurs brillantes. On connait toutefois dans cet ordre quelques cas de colorations diverses provenant de différences sexuelles. Le male d'un criquet américain ${ }^{47}$ est blanc d'ivoire, tandis que la femelle varie du blanc presque pur au jaune verdatre. M. Walsh affirme que le male adulte du Spectrum femoratum (une Phasmide) « affecte une couleur brun jaunâtre chatoyante; la femelle adulte est brun opaque cendré sombre ; et les jeunes des deux sexes sont verts. > Enfin, je puis ajouter que le mâle d'une curieuse espèce de criquet ${ }^{48}$ est pourvu «d'un long appendice membraneux qui lui tombe sur la face comme un voile », mais on ignore absolument l'usage de cette conformation.

Ordre, Névroptères. - Nous n'avons guère ici à nous occuper que de la coloration. Les individus des deux sexes, chez les Éphé-

[^160]mérides, présentent souvent de légères différences aans les teintes obscures dont ils sont revetus ${ }^{49}$; mais il est peu probable que ces légères variations soient de nature à rendre les mâles plus attrayants aux yeux des femelles. Les Libellulides affectent des teintes métalliques splendides, vertes, blanches, jaunes et vermillon, et les sexes different souvent. Ainsi, comme le fait remarquer le professeur Westwood ${ }^{50}$, les males de certains Agrionides, \& sont beau blen à ailes noires, tandis que les femelles sont beau vert à ailes incolores ». Chez l'Agrion Ramburii ces couleurs se trouvent précisément renversées chez les deux sexes ${ }^{51}$. Chez les Hæterina, genre très répanda dans l'Amérique du Nord, les males seuls portent, à la base de chaque aile, une superbe tache carmin. Chez l'Anax junius mâle, la partie qui forme la base de l'abdomen est bleu outre-mer éclatant, et vert végétal chez la femelle. Chez le genre voisin, des Gomphus, et chez quelques autres, la coloration differe peu chez les individus des deux sexes. D'ailleurs on rencontre fréquemment des cas analogues dans tout le règne animal, c'est-à-dire que les individus des deux sexes appartenant à des formes très voisines présentent entre eux de grandes ou de légères différences, ou se ressemblent absolument. Bien qu'il y ait chez beaucoup de Libellulides une si grande différence de coloration entre les sexes, il est souvent difficile de dire lequel est le plus brillant; en outre, la coloration ordinaire des deux sexes peut etre précisément renversée comme nous venons de le voir chez une espèce d'Agrion. llest peu probable que, dans aucun cas, ces couleurs aient été acquises comme moyen de sécurité. Ainsi que me l'écrit M. Mac Lachlan, qui a beaucoup étudié cette famille, les Libellules, - les tyrans du monde des insectes, - sont moins sujets que tous autres à etre l'objet des attaques des oiseaux et d'autres ennemis. Il croit que leurs vives couleurs servent à l'attraction sexuelle. Il faut remarquer, à ce sujet, que quelques couleurs particulières semblent exercer une puissante attraction sur cerfaines Libellules. M. Patterson ${ }^{52}$ a observé que les espèces d'Agrionides, dont les males affectent la couleur bleue, viennent se poser en grand nombre sur le flotteur bleu d'une ligne de pêche, tandis que des couleurs blanches brillantes attirent tout particulièrement deux autres espèces.

[^161]Schelver a, le premier, observé un fait très intéressant; les malles de plusieurs genres appartenant à deux sous-familles ont, au moment où ils sortent de la chrysalide, exactement les memes couleurs que les lemelles, mais, au bout de quelque temps, leur corps prend une teinte remarquable bleu laiteux, due à l'exsudation d'une sorte d'huile, soluble dans l'éther et dans l'alcool. M. Mac Lachlan croit que ce changement de couleur n'a lieu chez le male de la Libellula depressa que quinze jours environ après la métamorphose, alors que les sexes sont prêts à s'accoupler.

Certaines espèces de Neurothernis, selon Brauer ${ }^{53}$, présentent un cas curieux de dimorphisme: quelques femelles, en effet, ont les ailes réticulées à la manière ordinaire, tandis que d'autres les ont - très richement réticulées comme chez les mâles des mêmes espèces \geqslant. Brauer explique le fait e par les principes de Darwin, en supposant que le réseau serré des nervures est un caractère sexuel secondaire chez les males, qui a été abruptement transmis à quelques femelles, au lieu de l'être à toutes ainsi que cela arrive ordinairement. \geqslant M. Mac Lachlan me signale un autre cas de dimorphisme qu'on rencontre chez plusieurs espèces d'Agrion; on trouve, en effet, un certain nombre d'individus, exclusivement des femelles, qui affectent une teinte orangée. C'est probablement là un cas de retour, car, chez les vraies Libellules, lorsque les sexes diffèrent au point de vue de la couleur, les femelles sont toujours orangées ou jaunes, de sorte que, si on suppose que l'Agrion descend de quelque forme primordiale revêtue des couleurs caractéristiques sexuelles des Libellules typiques, il ne serait pas étonnant qu'une tendance à varier dans cette direction persistat chez les femelles seules.

Bien que les Libellules soient des insectes grands, puissants et féroces, M. Mac Lachlan n'a pas observé de combats entre les males, sauf chez quelques petites espèces d'Agrion. Dans un autre groupe très distinct appartenant à cet ordre, les Termites ou fourmis blanches, on voit, à l'époque de l'essaimage, les individus des deux sexes courir de tous côtés, c le mâle poursuit la femelle, quelquefois deux mâles poursuivent une même femelle et se disputent avec ardeur le prix du combat ${ }^{54}$?.

L'Atropos pulsatorius fait, dit-on, avec ses machoires un bruit auquel répondent d'autres individus ${ }^{55}$.

[^162]Ordre, Hyménoptéres. - M. Fabre ${ }^{56}$ a observé avec le plus grand soin les habitudes du Cerceris, insecte qui ressemble à la guêpe: il fait remarquer \& que les males entrent fréquemment en lutte pour la possession d'une femelle, spectatrice indifférente du combat qui doit décider de la supériorité de l'un ou de l'autre ; quand le combat est terminé, elle s'envole tranquillement avec le vainqueur. *Westwood ${ }^{57}$ dit avoir vu des Tenthrédinées males \& qui, à la suite d'un combat, sont restés engagés par la mâchoire sans pouvoir se dégager. > M. Fabre a constaté que les Cerceris males cherchent à s'assurer la possession d'une femelle particulière; il est indispensable de rappeler à cet égard que les insectes appartenant à cet ordre ont la faculté de se reconnaître, après de longs intervalles de temps, et s'attachent profondément l'un à l'autre. Ainsi, Pierre Huber, dont on ne peut mettre l'exactitude en question, affirme que des fourmis, séparées pendant quatre mois de leur fourmilière, mises en présence de leurs anciennes compagnes, se reconnurent et se caressèrent mutuellement avec leurs antennes. Étrangères, elles se seraient battues. En outre, lorsque deux tribus se livrent bataille, il arrive que, dans la mêlée, des fourmis appartenant au même parti s'attaquent quelquefois, mais elles ne tardent pas à s'apercevoir de leur erreur et se consolent réciproquement ${ }^{58}$.

On constate fréquemment dans cet ordre de légères différences de coloration suivant le sexe, mais les différences considérables sont rares, sauf dans la famille des abeilles; cependant les males et les femelles de certains groupes affectent des couleurs si brillantes, - les Chrysis, par exemple, chez lesquels prédominent le vermillon et les verts métalliques, - que nous sommes tentés d'attribuer cette coloration à la sélection sexuelle. Les Ichneumonides males, d'après M. Walsh ${ }^{59}$, affectent presque toujours des couleurs plus claires queles femelles. Les Tenthrédinides mâles, au contraire, sont généralement plus foncés que les femelles. Chez les Siricidés, les sexes diffèrent fréquemment; ainsi le Sirex juvencus male est rayé d'orange, tandis que la femelle est pourpre foncé; mais il est difficile de dire lequel des deux sexes est le plus orné. Le Tremex columbæ femelle est beaucoup plus brillamment coloré que le mâle. M. F. Smith assure que les mâles de plusieurs espèces de fourmis sont noirs, tandis que les femelles sont couleur brique.

[^163]59. Proc. Entom. Soe. of Philadelphta, 1866, p. 238-239.

Dans la famille des abeilles, surtout chez les espèces solitaires, la coloration des individus des deux sexes diffère souvent. Les males sont généralement les plus brillants, et, chez les Bomhus et chez les Apathus, revêtent des teintes plus variées quêés femelles. L'Anthophora retusa malle est d'un beau brun fauve éclatant, tandis que la femelle est toute noire; chez plusieurs espèces de $X y l o c o p a$, les males sont jaune clair et les femelles noires. D'un autre côté, chez quelques espèces, chez l'Andræna fulva, par exemple, les femelles affectent des couleurs beaucoup plusbrillantes queles males. Il n'est guère possible d'attribuer ces différences de coloration à ce que les mâles sont dépourvus de moyens de défense et ont, par conséquent, besoin d'un moyen de protection, tandis que les femelles sont pourvues d'aiguillons. H. Müller ${ }^{60}$, qui a étudiế avec tant de soin les habitudes des abeilles, attribue en grande partie ces différences de couleurs à la sélection sexuelle. Il est certain que les abeilles reconnaissent les couleurs. Müller a constaté que les males recherchent avidement les femelles et luttent les uns avec les autres pour s'en emparer. Il attribue à ces combats la grandeur des mandibules du mâle qui, chez certaines espèces, sont plus áéveloppées que celles de la femelle. Dans quelques cas, les mâles sont beaucoup plus nombreux que les femelles, soit au commencement de la saison, soit à toutes les époques et dans tous les lieux, soit dans certaines localités seulement; dans d'autres cas, au contraire, les femelles sont plus nombreuses que les malles. Chez quelques espèces, les femelles semblent choisir les plus beaux males; chez d'autres, au contraire, les males choisissent les plus belles femelles. Il en résulte que, dans certains genres (Müller, p. 42), les males de diverses espèces diffèrent beaucoup au point de vue de l'aspect extérieur, tandis qu'il est presque impossible de distinguer les femelles; le contraire se présente dans d'autres genres. H. Moller croit (p. 82) que les couleurs obtenues par un sexe, gráce à la sélection sexuelle, ont souvent été transmises dans une certaine mesure à l'autre sexe, de même que l'appareil destiné à recueillir le pollen, appareil propre à la femelle, a été souvent transmis au male bien qu'il lui soit absolument inutile ${ }^{61}$.

[^164]Le Mutilfa Europæa fait entendre un bruit strident, et Goureau ${ }^{62}$ affirme que les deux sexes possèdent cette aptitude. Il attribue le son au frottement du troisième segment de l'abdomen contre le segment précédent; je me suis assuré, en effet, que ces surfaces portent des projections concentriques très fines, mais il en est de même du collier thoracique saillant sur lequel s'articule la tete, et qui, gratté avec la pointe d'une aiguille, émet le même son. Il est assez surprenant que les deux sexes aient la faculté de produire ces sons, car le mâle est ailé et la femelle aptère. On a constaté que les abeilles expriment certaines émotions telles que la colère, par le ton de leur bourdonnement. A. Muller (p. 80) affirme que les males de quelques espèces font entendre un bourdonnement particulier quand ils poursuivent les femelles.

Ordre, Coléoptères (Scarabées). - La couleur de nombreux Coléoptères ressemble à celle des surfaces sur lesquelles ils séjournent habituellement; cette coloration identique leur permet d'échapper à l'attention de leurs ennemis. D'autres espéces, le Scarabée diamant, par exemple, revêtent des couleurs splendides disposées souvent en bandes, en taches, en croix et en d'autres modèles élégants. Ces couleurs ne peuvent guère servir de moyen direct de protection, sauf pour quelques espèces qui fréquentent habituellement les fleurs ; mais elles peuvent servir d'avertissement, tout comme la phosphorescence du ver luisant. Les coléoptères males et femelles affectent ordinairement les memes couleurs, de sorte que nous ne pouvons affirmer que ces couleurs soient dues à la sélection sexuelle ; mais il est au moins possible que ces couleurs se soient développées chez un sexe, puis qu'elles aient été transmises à l'autre, ce qứ est probable dans les groupes qui possédent d'autres caractères sexuels secondaires bien tranchés. M. Waterhouse
plus attrayant pour la femelle, pondra des coufs qui produfront seulement des femelles; mais ces jeunes femelles produiront à leur tour des males lannée suivante, et il est au moins extraordinaire de prétendre que ces males n'hériteront pas des caractères de leur grand-père malle. Prenons un exemple aussi rapproché que possible chez les animaux ordinaires. Supposons une race de quadrupèdes ou d'oiseaux ordinairement blancs, et qu'une femelle appartenant à cette race s'unisse avec un male appartenant à une race noire; supposons enfin que les petits males et femelles provenant de ce croisement soient accouplés les uns avec les autres; osera-t-on pretendre que les defcendants n'auront pas acquis par hérédité de leur ancêtre mâle une tendance à la coloration noire? Sans doute, l'acquisition de nouveaux caractères par les abeilles ouvrières stériles constitue un eas bien plus difficile; mais j'ai essayé de démontrer, dans l'Origine des espèces, comment il se fait que ces individus sterrilez sont soumis à l'action de lá êtection naturelle.
62. Cité par Westwood, Modern Class,, ete., vol. II, p. 214.
affirme que les Coléoptères aveugles, incapables, par conséquent, d'apprécier leur beauté mutuelle, n'affectent jamais de vives couleurs, bien qu'ils aient souvent une carapace polie; mais on peut aussi attribuer leurs couleurs ternes au fait que les insectes aveugles n'habitent que les cavernes et autres endroits obscurs.

Quelques Longicornes, surtout certains Prionides, font, cependant, exception à cette règle générale de la coloration identique des colljoptères males et femelles. La plupart de ces insectes sont grands et admirablement colorés. Les Pyrodes ${ }^{63}$, comme j'ai pu m'en assurer dans la collection de M. Bates, sont généralement plus rouges mais moins brillants que les femelles, qui sont teintées d'un vert doré plus ou moins vif. Le male d'une autre espèce, au contraire, est vert doré, et la femelle est richement nuancée de pourpre et de rouge. Les mâles et les femelles du genre Esmeralda affectent des couleurs si complètement différentes, qu'on les a pris pour des espèces distincies : chez une espèce, les mâles et les femelles sont vert brillant, mais le mâle a le thorax rouge. En résumé, autant que j'ai pu en juger chez les Prionides, quand les males et les femelles affectent une coloration différente, les femelles sont toujours plus brillamment colorées que les mâles; ce qui ne concorde pas arec la règle générale relative à la coloration due à l'action de la sélection sexuelle.

Les grandes cornes, qui s'élèvent sur la tête, sur le thorax ou sur l'écusson des males, et qui, dans quelques autres cas, hérissent la surface inférieure du corps, constituent une distinction très remarquable entre les individus de sexe différent chez les coléoptères. Ces cornes, dans la grande famille des Lamellicornes, ressemblent à celles de divers mammifères, tels que le cerf, le rhinocéros, etc., et sont fort curieuses, tant par leurs dimensions que par les formes diverses qu'elles affectent. Au lieu de les décrire, je me borne à donner les figures des formes males et femelles choisies parmi les plus remarquables (fig. 16 à 20 , Pl. 6 et 7). Les femelles
63. Le Pyrodes pulcherrimus, espèce chez laquelle les sexes different notablement, a êté décrit par M. Bates daus Transact. Ent. Soc., 1869, p. 50. Je citerai les quelques autres cas que je connais d'une différence de coloration chez les coléoptères males et femelles. Kirby et Spence (Introd., etc., vol، III, p. 301) mentionnent une Cantharis, le Meloe, le Rhagium et le Leptura lestacea; le mâle de ce dernier est couleur brique à thorax noir, la femelle tout entière d'un rouge palte. Ces deux coléoptères appartiennent à la famille des Longicornes. MM. R. Trimen et Waterbouse jeune me signalent deux Lamellicornes, un Perilrichia et un Trichius, chez ce dernier, le malle est plus foncé que la femelle. Le Tillus elongatus mate est noir, et la femelle est, croit-on, toujours bleu foncé avec thorax rouge. L'Orsodacna aira malle est noir, d'après M. Walsh, la fomelle (0 . ruficollis) a le thorax roux.
portent ordinairement, sous forme de petites projections ou tubercules, les rudiments des cornes des males, mais certaines femelles n'en présentent aucune trace. D'autre part, les cornes ont acquis un développement presque aussi complet chez la femelle du Phanæus lancifer que chez le male; elles sont un peu moins développées chez les femelles de quelques autres espèces du même genre et chez les Corpis. M. Bates affirme que, dans les diverses subdivisions de la famille, les différences de conformation des cornes ne concordent pas avec les autres différences plus caractéristiques et plus importantes; ainsi, dans un même groupe du genre Onthophagus, certaines espèces ont une seule corne, tandis que d'autres ont deux cornes distinctes.
Dans presque tous les cas, on constate une excessive variabilité des cornes, de sorte qu'on peut établir une série graduée entre les màles les plus développés jusqu'à d'autres assez dégénérés pour qu'on puisse à peine les distinguer des femelles. M. Walsh ${ }^{64}$ a constaté que certains Phanæus carnifex mâles ont des cornes trois fois plus longues que celles d'autres males. M. Bates, après avoir examiné plus de cent Onthophagus rangifer mâles (fig. 20, Pl. 7), crut avoir enfin désouvert une espèce chez laquelle les cornes ne varient pas; mais des recherches ultérieures lui ont fait reconnaitre le contraire.
La grandeur extraordinaire des cornes, et la différence notable de leur conformation chez des formes très voisines, indiquent qu'elles doivent jouer un role important; mais leur variabilité excessive chez les mâles d'une même espèce permet de conclure que ce role ne doit pas avoir une nature définie. Les cornes ne présentent aucune trace de frottement; elles ne servent donc pas à exécuter un travail habituel. Quelques savants supposent ${ }^{\text {os }}$ que les males, beaucoup plus vagabonds que les femelles, ont besoin de cornes pour se défendre contre leurs ennemis; mais, dans bien des cas, les cornes ne paraissent nullement propres à cet usage, car elles ne sont point tranchantes. La supposition la plus naturelle est qu'elles serventaux males dans leurs combats; mais on n'a jamais observé un seul de ces combats, et, après avoir examiné attentivement de nombreuses espèces, M. Bates n’a pu découvrir ni mutilations ni fractures témoignant que ces organes ont servi à un pareil usage. Si les males avaient l'rabitude de lutter les uns avec les autres, la sélection sexuelle aurait probablement augmenté leur

64. Proc. Entom. Soc. of Philadephia, 1864, p. 228.
65. Kirby et Spence, o. c., vol, II, p. 300

taille, quı aurait alors dépassé celle de la femelle; or, M. Bates, après avoir comparé les males et les femelles de plus de cent espèces de Coprides, n'a pas constaté de différence marquée, sous ce rapport, chez les individus bien développés. D'ailleurs, chez le Lethrus qui appartient à la même grande division des Lamellicornes, les mâles se livrent de fréquents combats; or, le Lethrus mâle n'est pas armé de cornes, bien qu'il ait des mâchoires beaucoup plus grandes que celles de la femelle.
La supposition que les cornes ont été acquises à titre de simples ornements est celle qui concorde le mieux avec le fait que ces appendices ont pris de vastes proportions sans se développer d'une manière fixe, - fait que démontrent leur variabilité extrème chez une même espèce et leur diversité chez des espèces très voisines. Cette hypothèse peut, au premier abord, paraitre très invraisemblable; mais nous aurons plus loin l'occasion de constater que, chez beaucoup d'animaux placés à un rang bien plus élevé sur l'échelle, c'est-à-dire chez les poissons, chez les amphibies, chez les reptiles et chez les oiseaux, diverses sortes d'aigrettes, de protubérances, de cornes et de crêtes, ne doivent apparemment leur développement qu'à cette seule influence.

Les Onitis furcifer mâles (fig.21, Pl. 7), ainsi que les mâles de quelques autres espèces du genre, ont les cuisses antérieures pourvues de singulières projections; leur thorax porte, en outre, à la surface inférieure, une paire de cornes formant une grosse fourchette. Si l'on en juge par ce qui se passe chez d'autres insectes, ces appendices doivent servir au male à maintenir la femelle. On ne remarque, chez les males, aucune trace de cornes à la sarface supérieure du corps, maison aperçoit visiblement sur la tête des femelles le rudiment d'une corne unique (fig. 22, a, Pl. 8), et d'une crête sur le thorax (b). Il est évident que la légère crête thoracique de la femelle est le rudiment d'une saillie propre au sexe male, bien qu'elle fasse complètement défaut chez le mâle de cette espèce particulière; car le Bubas bison femelle (forme très voisine de l'Onitis) porte sur le thorax une légère crête semblable, placée dans la même situation qu'une forte projection qui existe chez le male. Il est évident que la petite pointe (a) qui existe sur la tete de l'Onitis furcifer femelle, ainsi que sur les femelles de deux ou trois espèces voisines, est le rudiment de la corne céphalique, commune aux males de beaucoup de Lamellicornes, par exemple chez le Phanæus (fig. 18, Pl. 7).
On supposait autrefois que les rudiments ont été créés pour compléter le plan de la nature. On ne saurait, dans ce cas, admettre cette hypothèse, inadmissible d'ailleurs, car cette famille présente
une inversion complète de l'état ordinaire des choses. Nous avons lieu de ponser queles mâles partaient originellement des cornes et qu'ils les ont transmises aux femelles à l'état rudimentaire, comme chez tant d'autres Lamellicornes. Nous ne saurions dire pourquoi les males ont subséquemment perdu leurs cornes; il se peut que cette perte résulte, en vertu du principe de la compensation, du développement ultérieur des appendices qui se trouvent sur la surface inférieure, disparition qui n'a pu s'effectuer chez la femelle où ces appendices font défaut; aussi cette dernière a-t-elle conservé des rudiments de cornes sur la face supérieure.
Tous les exemples cités jusqu'ici se rapportent aux Lamellicornes; quelques coléoptères mâles, appartenant à deux groupes très différents, les Curculionides et les Staphylins, portent aussi des cornes; - les premiers, à la surface inférieure du corps ${ }^{66}$, les seconds, à la surface supérieure de la tête et du thorax. Les cornes des males, comme chez les Lamellicornes, sont très variables chez les Staphylins appartenant à une même espèce. On observe un cas de dimorphisme chez le Siagonium, car on peut diviser les males en deux catégories, qui diffèrent beaucoup au point de vue de la grandeur du corps et du développement des cornes, sans qu'on trouve de gradations intermédiaires. Chez une autre espèce du genre Staphylin, le Bledius (fig. 23), on trouve, dans une même localité, des individus males chez lesquels, comme l'a constaté le professeur Westwood, « la corne centrale du thorax est très développée, tandis que celles de la tete restent rudimentaires, et d'autres chez lesquels la corne thoracique est beaucoup plus courte, tandis que les protubérances situées sur la tête sont très longues ${ }^{67}$. > C'est évidemment là un exemple de compensation de croissance, qui jette un grand jour sur la disparition des cornes supérieures chez les Onitis furcifer males.

Loi du combat. - Certains coléoptères males paraissent mal adaptés pour la lutte; ils ne s'en battent pas moins avec leurs semblables pour s'emparer des femelles. M. Wallace ${ }^{88}$ a vu deux Leptorhynchus angustatus mâles, une espèce de coléoptère linéaire, à trompe très allongée, « combattre pour la possession d'une femelle qui se tenait dans le voisinage occupée à creuser un trou. Empor-

[^165]tés par la coıère, ils se poussaient l'un l'autre, se saisissaient par la trompe et se portaient des coups terribles. Bientôt, le mâle le plus petit abandonna le champ de bataille et, prenant la fuite, s'avoua vaincu. »Parfois aussi les males sont bien conformés pour la lutte, armés qu'ils sont de grosses mandibules dentelées, beaucoup plus fortes que celles des femelles. Nous pouvons citer, par exemple, le cerf-volant (Lucanus cervus) commun ; les mâles sortent de la chrysalide une semaine environ avant les femelles, de sorte que plusieurs mâles se mettent souvent à la poursuite d'une même femelle. Ils se livrent alors de terribles combats. M. A. H. Davis ${ }^{69}$ enferma un jour dans une boite deux males avec une seule femelle; le plus grand mâle se précipita immédiatement sur le plus petit, et le pinça fortement jusqu'à ce qu'il eût renoncé à toutes prétentions. Un de mes amis, lorsqu'il était jeune, réunissait souvent des males pour les voir combattre ; il avait remarqué alors combien ils étaient plus hardis et plus féroces que les femelles, ce qui, comme on sait, est le cas chez les animaux supérieurs. Les mâles, s'ils pouvaient y parvenir, se saisissaient de son doigt, au lieu que les femelles ne cherchaient pas à le faire, bien qu'elles aient de plus grandes mâchoires. Chez beaucoup de Lucanes, comme chez le Leptorhynchus dont nous venons de parler, les malles sont plus grands et plus forts que les femelles. Le male et la femelle du Lethrus cephalotes (Lamellicornes) habitent le même trou; le mâle a les mandibules plus grandes que celles de la femelle. Si, pendant la saison dus amours, un étranger cherche à pénétrer dans le logis, le male l'attaque immédiatement; la femelle ne reste pas inactive; elle ferme l'ouverture du réduit, et encourage le mâle en le poussant continuellement par derrière. Le combat ne cesse que lorsque l'agresseur est tué ou s'éloigne ${ }^{70}$. Les Ateuchus cicatricosus, un autre Lamellicorne, males et femelles, s'apparient et paraissent être fort attachés l'un à l'autre ; le mâle oblige la femelle à rouler les boulettes de fumier dans lesquelles elle dépose ses œufs; si on lui enlève la femelle, il court de tous côtés en donnant lès signes de la plus vive agitation; si on enlève le mâle, la femelle cesse tout travail, et, d'après M. Brulerie ${ }^{71}$, reste immobile jusquà ce qu'elle meure.

Les dimensions et la structure des grandes mandibules des Lucanes mâles var゙.ent beaucoup ; sous ce rapport, elles ressemblent

[^166]aux cornes qui surmontent la tete et le thorax de beaucoup de Lamellicornes et de Staphylins males. On peut établir une série complète de gradations entre les males qui, à ce point de vue, sont le mieux et le plus mal pourvus. Les mandibules du cerf-volant commun, et probablement de beaucoup d'autres'espèces, servent à ces insectes d'armes réelles pour la lutte; il est douteux, cependant, qu'on puisse attribuer à cette cause leur grandeur démesurée. Nous avons vu que le Lucanus elaphus de l'Amérique du Nord s'en sert pour saisir la femelle. Leur élégance m'a aussi fait supposer qu'elles pouvaient constituer un ornement pour le mâle au mème titre que les cornes céphaliques et thoraciques des espèces dont nous avons parlé plus haut. Le Chiasognathus grantii mâle, du sud du Chili, -- coléoptère magnifique appartenant à la même famille, - a des mandibules énormément développées (fig. 24, P1.8); il est hardi et belliqueux, fait face du côté où on le menace, ouvre ses grandes mâchoires allongées, et fait entendre en méme temps un bruit très strident; mais ses mandibules ne sont pas assez puissantes pour causer une véritable douleur quand il pince le doigt.
La sélection sexuelle, qui implique la possession d'une puissance perceptive considérable et des passions trés vives, parait avoir joué un rôle plus important chez les Lamellicornes que chez aucune autre famille de coléoptères. Les males de quelques espèces possèdent des armes pour la lutte; d'autres vivent par couples et se témoignent une grande affection : beaucoup ont la faculté de produire des sons perçants lorsqu'on les excite; d'autres portent des cornes extraordinaires, qui servent probablement d'ornement; quelques-uns, qui ont des habitudes diurnes, affectent des couleurs très brillantes; enfin, la plupart des plus grands coléoptères ap_ partiennent à cetìe famille que Linné et Fabricius avaient placée à la tête de l'ordre des Coléoptères ${ }^{72}$.
Organes de stridulation. - On observe des organes de cette nature chez des coléoptères appartenant à de nombreuses familles très éloignées et très distinctes les unes des autres. Les sons qu'ils produisent sont perceptibles à quelques mètres de distance ${ }^{73}$, mais ne sont point comparables à ceux que font entendre les Orthoptères. La partie qu'on pourrait appeler la râpe consiste ordinairement en une surface étroite, légèrement saillante, traversée de lignes parallèles fines, au point de provoquer parfois des cou-
72. Westwood, o. c., vol. I, p. 184.
73. Wollaston, On certain musical Curculionide(Annals and Mag. of Nat. Hist., vol. VI, 1860, p. 14).
leurs irisées, et présentant, sous le microscope, un aspect des plus élégants. Dans quelques cas, chez le Typhæus, par exemple, on distingue parfaitement des proéminences écailleuses très petites qui recouvrent toute la surface environnante en lignes \& peu près parallèles; ces proéminences, en so redressant et en "se soudant, constituent les lignes saillantes ou cotes de la rape, qui sont à la fois plus proéminentes et plus unies. Une saillie dure, située sur quelque partie adjacente du corps, parfois spécialement modifiée dans ce but, sert de grattoir à la râpe. C'est tantot le grattoir qui se meut rapidement sur la râpe, tantôt, au contraire, la rape qui se meut sur le grattoir.
Ces organes occupent les positions les plus diverses. Chez les Né crophores, deux râpes parallèles (r. fig. $25, \mathrm{PI} .9$) sont placées sur la face dorsale du cinquième segment de l'abdomen, et chaque râpe, d'après Landois ${ }^{74}$, se compose de cent vingt-six à cent quarante petites lignes saillantes. C'est sur cette râpe que vient frotter une petite projection placée sur le bard postérieur de élytres. Chez beaucoup de Criocérides, chez le Clythra 4 punctata (Chrysomélide), ainsi que chez quelques Ténébrionides ${ }^{75}$, etc., la râpe est placée au sommet dorsal de l'abdomen, sur le pygidium ou sur le propygidium, et, comme dans les cas précédents, ce sont les élytres qui viennent la gratter. Chez l'Heterocerus, qui appartient à une autre famille, les râpes sont situées sur les côtés du premier segment abdominal, et ce sont des saillies que portent les fémurs qui font l'office de grattoirs ${ }^{75}$. Chez quelques Curculionides et chez quelques Carabides ${ }^{77}$, la disposition des parties est complètement intervertie; en effet, les râpes occupent la surface inférieure des élytres, près du sommet, ou le long des bords externes, ot let

[^167]bords des segments abdominaux servent de grattoirs. Chez le Pelobius Hermanni (Dytique), une saillie puissante, placée près du bord sutural des élytres et parallèlement à ce bord, porte des cotes transversales, épaisses dans la partie médiane, mais qui deviennent graduellement plus fines à chaque extrémité, surtout à l'extrémité supérieure : lorsqu'on tient l'insecte sous l'eau ou dans l'air, on lui fait produire un bruit strident en frottant contre cette râpe le bord extrême et corné de l'abdomen. Chez un grand nombre de Longicornes, ces organes occupent une position toute différente; la râpe est placée sur le mésothorax, qui frotte contre le prothorax. Landois a compté deux cent trente-huit saillies très fines sur la râpe du Cerambyx heros.

Beaucoup de Lamellicornes ont la faculté de produire des sons stridents au moyen d'organes dont la disposition varie considérablement. Quelques espèces font entendre des sons très puissants, au point que M. F. Smith ayant pris un Trox sabulosus, le gardechasse qui était avec lui crut qu'il avait capturé une souris; mais * je n'ai pas pu arriver à découvrir les organes stridulants chez ce coléoptère. Chez le Geotrupes et chez le Typhæus, une crête étroite (r, fig. 26, Pl. 9), qui traverse obliquement la cuisse de chaque patte postérieure, porte chez le G. ətercorarius 84 côtes sur lesquelles vient frotter une partie spéciale faisant saillie sur un des segments abdominaux. Chez le Copris lunaris, forme voisine, on remarque une râpe fine, très étroite, qui occupe le bord sutural de l'élytre, outre une seconde râpe courte qui est placée près du bord externe de la base de l'élytre; chez quelques autres Coprini, la râpe est, d'après Leconte ${ }^{78}$, placée sur la surface dorsale de l'abdomen. Chez l'Oryctes, elle est située sur le propygidium, et.chez quelques Dynastini, toujours d'après le meme entomologiste, sur la surface inférieure des élytres. Enfin, Westring affirme que chez l'Omaloplia brunnea la râpe est placée sur le prosternum, et le grattoir sur le méta-sternum, les parties occupant ainsi la surface inférieure du corps, au lieu de la surface supérieure comme chez les Longicornes.

Les organes destinés à la stridulation présentent donc, chez les différentes familles de coléoptères, une grande diversité quant à la position, mais se ressemblent beaucoup au point de vue de la structure. Dans une même famille quelques espèces possèdent ces organes, pendant que d'autres en sont dépourvues. Cette diversité

[^168]s'explique si on suppose qu'à l'origine certaines espéces ont pu produire un bruit strident en frottant l'une contre l'autre les parties dures de leur corps; or, si le bruit ainsi produit a constitué pour eux un avantage quelconque, les surfaces rugueuses ont dû graduellement se développer pour se transformer en organes stridents réguliers. Quelques Coléoptères font entendre, avec ou sans intention, un bourdonnement particulier au moindre de leurs mouvements, sans posséder pour cela aucun organe spécial. M. Wallace m'apprend que l'Euchirus longimanus (Lamellicorne dont les pattes antérieures sont singulièrement longues chez le male) «produit, au moindre mouvement, un bruit sourd, mais qui ressemble à un sifflement résultant de l'expansion et de la contraction de l'abdomen; en outre, lorsqu'on le saisit, il fait entendre une sorte de grincement en frottant ses pattes postérieures contre le bord des élytres. » Le sifflement est évidemment dư à une râpe étroite placée le long du bord sutural de chaque élytre; j'ai pu également obtenir le grincement en frottant la surface chagrinée du fémur contre le rebord granuleux de l'élytre correspondante; mais je n'ai pu découvrir de ràpe spéciale, bien qu'il eût été difficile qu'elle m'échappât chez un insecte aussi gros. Après avoir examiné le Cychrus et avoir lu les deux mémoires de Westring sur ce coléoptère, il semble bien douteux qu'il possède une véritable râpe, bien qu'il soit capable de faire entendre un certain bruit.
Je m'attendais, en raison de l'analogie qui existe entre les Orthoptères et les Homoptères, à trouver, suivant le sexe, une différence dans les organes stridents des coléoptères; mais Landois, qui a examiné plusieurs espèces avec beaucoup de soin, n'en a observé aucune; pas plus que Westring, ou M. G. R. Crotch dans la préparation des nombreux individus qu'il a eu l'obligeance de soumettre à mon examen. Il serait toutefois, vu la grande variabilité de ces organes, difficile de remarquer des différences sexuelles très légères. Ainsi, dans le premier couple de Necrophorus humator et de Pelobius, que j'ai examiné, la râpe était considérablement plus grande chez le male que chez la femelle; mais il n'en fut pas de même chez les individus subséquents. Chez le Geotrupes slercorarius, la râpe me parut être plus épaisse, plus opaque et plus proéminente chez trois males que dans le méme nombre de femelles; en conséquence, désireux de savoir si les sexes diffèrent par l'intensité de leur aptitude à la stridulation, mon fils, M. F. Darwin, recueillit 57 individus vivants qu'il divisa en deux lots, selon que, traités d'une même manière, ils laisaient plus ou moins de bruit. Il examina ensuite les sexes et trouva que, dans les deux lots, les

[Chap. X].

proportions des malles et des femelles étaient à peu près les mêmes. M. F. Smith a conservé vivants de nombreux Monoynchus pseudacori (Curculionides), et s'est assuré que les deux sexes produisent des sons stridents et à un degré d'intensité à peu prèspégal.

Il n'en est pas moins vrai que la faculté d'émettre des sons constitue un caractère sexuel chez certains coléoptères. M. Crotch a découvert que, chez deux espèces d'Héliopathes (Ténébrions), les mâles seuls possèdent des organes de ce genre. J'ai examiné cinq H. Gibbūs mâles; tous portaient une rape bien développée, partiellement divisée en deux, sur la surface dorsale du segment abdominal terminal; tandis que, chez le même nombre de femelles, il n'y avait pas même trace de râpe, la membrane du segment était transparente et beaucoup plus mince que celle du mâle. Le H. cribratostriatus mâle possède une râpe analogue, mais qui n'est pas partiellement divisée en deux parties; la femelle en est complètement dépourvue; le malle porte, en outre, sur les bords du sommet des élytres, de chaque coté de la suture, trois ou quatre saillies longitudinales courtes, traversées de côtes très fines, parallèles, qui ressemblent à celles de la râpe abdominale ; mais je n'ai pu déterminer si ces saillies servent de râpe indépendante ou de grattoir pour la râpe abdominale; la femelle n'offre aucune trace de cette dernière conformation.

Trois espèces du genre Oryctes (Lamellicornes) présentent un cas presque analogue. Chez les O. gryphus et nastcornis femelles, les côtes de la râpe du propygidium sont moins continues et moins distinctes que chez les mâles ; mais la différence principale consiste en ce que toute la surface supérieure de ce segment, examinée sous une inclinaison de lumière convenable, est recouverte de poils, qui n'existent pas chez les males ou ne sont représentés que par un très fin duvet. Il faut noter que, chez tous les coléoptères, la partie agissante de la râpe est dépourvue de poils. Chez l'O. senegalensis on constate une différence encore plus sensible entre les mâles et les femelles; le meilleur moyen de distinguer ces différences est de nettoyer le segment, puis de l'observer par transparence. Chez la femelle, toute la surface du segment est recouverte de petites saillies distinctes qui portent des piquants; tandis que, chez le mále, à mesure qu'on monte vers le sommet, ces saillies deviennent de plus en plus confluentes, régulières et nues ; de sorte que les trois quarts du segment sont couverts de saillies parallèles très fines qui font absolument défaut chez la femelle. Toutefois, chez ces trois espèces d'Oryctes, lorsqu'on meut alterna tivement en avant et en arrière l'abdomen ramolli d'un iudivid.i,
on peut déterminer un léger grincement ou un faible bruit strident.
On ne peut guère mettre en doute que, chez l'Héliopathes et chez l'Oryctes, le bruit strident que font entendre les males n'ait pour but l'appel et l'excitation des femelles : mais, chez la plupart des coléoptères, ce bruit sert, selon toute apparence, comme moyen d'appel mutuel pour les deux sexes. Les coléoptères font entendre le même bruit quand ils sont agités par diverses émotions, de même que les oiseaux se servent de leur voix pour beaucoup d'usages autres que celui de chanter devant leurs compagnes. Le grand Chiasognathus fait entendre son bruit strident lorsqu'il se défie ou qu'il est en colère; beaucoup d'individus d'espèces différentes agissent de même lorsqu'ils ont peur, alors qu'on les tient de façon qu'ils ne puissent s'échapper ; MM. Wollaston et Croteh, en frappant les troncs d'arbres creux dans les iles Canaries, ont pu y reconnaitre la présence de coléoptères du genre Acalles, par les bruits qu'ils faisaient entendre. Enfin, l'Atenchus male fait entendre ce mème bruit pour encourager sa femelle au travail, et par chagrin lorsqu'on la lui enlève ${ }^{79}$. Quelques naturalistes croient que les coléoptères font entendre ce bruit pour effrayer leurs ennemis; mais je ne peux croire qu'un son aussi léger puisse causer la moindre frayeur aux mammifères ét aux oiseaux capables de dévorer les grands coléoptères pourvus d'enveloppes coriaces et dures. Le fait que les Anobium tessellatum répondent à leur tic-tac réciproque, ou ainsi que je l'ai moi-même observé, répondent à des coups frappés artificiellement, confirme l'hypothèse que la stridulation sert d'appel sexuel. M. Doubleday a deux ou trois fois observé une femelle faisant son tic-tac ${ }^{80}$, et au bout d'une heure ou deux, il la trouva réunie à un male, et dans une autre occasion, entourée de plusieurs males. En résumé, il semble probable que, dans l'origine, beaucoup de coléoptères malles et femelles utilisaient, pour se trouver l'un l'autre, les légers bruits produits par le frottement des parties adjacentes de leur corps; or, comme les males ou les femelles qui faisaient le plus de bruit devaient le mieux réussir à s'accoupler, la sélection sexuelle a développé les rugosités des

[^169]diverses parties de leur corps et les a transformées graduellement en véritables organes propres à produire des bruits stridents.

CHAPITRE XI

INSECTES, BUITE. - ORDRE DES LÉPIDOPTERRES (PAPILLONS ET PHALĖNES)

Cour que se font les papillons. - Batailles. - Bourdonnements. - Couleurs communes aux mâles et aux femelles, ou plus brillantes chez les males. - Etemples. - Ces couleurs ne sont pas dues a l'action directe des conditions d'existence. - Couleurs protectrices. - Couleur des phalènes. - Leur étalage. - Perspicacité des Lépidoptères. - Variabilité. - Causes de la différence de coloration entre les males et les femelles. - Imitation, couleurs plus brillantes chez les papillons femelles que chez les mâles. - Vives couleurs des chenilles. - Résumé et conclusions sur les caractères secondaires sexuels des insectes. Comparaison des insectes avec les oiseaux.

La différence de coloration qui existe entré les males et les femelles d'une même espèce et entre les espèces distinctes d'un même genre de lépidoptères, est le point sur lequel doit particulièrement porter notreattention. Je compteconsacrerà l'étude de cette question la presque totalité de ce chapitre; mais je ferai d'abord quelqu, s remarques sur un ou deux autres points. On voit souvent plusieurs mâles poursuivre une même femelle et s'empresser autour d'elle. La cour que se font ces insectes parait etre une affaire de longue haleine, car j'ai fréquemment observé un ou plusieurs males pirouetter autour d'une femelle, et ai toujours du, pour cause de fatigue, renoncer à attendre le dénoument. M. A. G. Butler m'apprend aussi qu'il a plusieurs fois observé un male courtiser une femelle pendant plus d'un quart d'heure; la femelle refusa obstiné. ment de céder au male et finit par se poser sur le sol en repliant ses ailes de façon à échapper à ses obsessions.
Bien que faibles et délicats, les papillons ont des gouts belliqueux, et on a capturé un papillon Grand-Mars ${ }^{1}$ dont les bouts des ailes avaient été brisés dans un conflit avec un autre male. M. Collingwood a observé les nombreuses batailles que se livrent les papillons de Bornéo, et résume ainsi ses observations : \& Ils

[^170]tourbillonnent l'un autour de l'autre avec la plus grande rapidité et paraissent animés d'un extrême férocité. »
On connait un papillon, lAgeriona feronia, qui fait entendre un bruit semblable à celui d'une roue dentée tournant sur un cliquet, bruit qu'on peut percevoir à plusieurs métres de distance. Je n'ai remarqué ce bruit, à Rio de Janeiro, que lorsque deux individus se poursuivaient en suivant une course irrégulière, de sorte qu'il n'est probablement produit que pendant l'époque de l'accouplement ${ }^{2}$.

Quelques phalènes font aussi entendre des sons, le Thecophora fovea male, par exemple. Dans deux occasions, M. Buchanan White ${ }^{3}$ a entendu un Hylophila prasinana mâle-émettre un bruit rapide et perçant; il croit qu'il le produit comme les cicadés au moyen d'une membrane élastique pourvue d'un muscle. Guenée affirme que le Setina produit un son qui ressemble au tic-tac d'une montre, probablement à l'aide de deux grandes vésicules tympaniformes situées dans la région pectorale; il ajoute que ces vésicules sont beaucoup plus développées chez le mâle que chez la femelle. Il en résulte que les organes des lépidoptères, en tant qu'ils sont destinés à produire des sons, semblent avoir quelques rapports avec les fonctions sexuelles. Je n'ai pas fait allusion au bruit bien connu produit par le Sphinx tête de mort, car on l'entend ordinairtment au moment seulement où cette phalène sort du cocon.

Girard dit qu'une odeur musquée émise par deux espèces de Sphinx est particulière au mâle ${ }^{4}$; nous trouverons dans les classes supérieures d'animaux beaucoup d'exemples de mâles qui sont seuls odoriférants.
L'admiration qu'inspire l'extrême beauté d'un grand nombre de papillons et de quelques phalènes nous amène à nous demander comment cette beauté a été acquise. Les couleurs et les dessins si variés qui les décorent proviennent-ils simplement de l'action directe des conditions physiques auxquelles ils ont été exposés, sans qu'il en soit résulté pour eux quelque avantage ? Quelle cause inconnue a produit ces variations successives et a conduit à leur accumulation? La coloration des papillons constitue-t-elle un moyen de protection, ou n'a-t-elle pour objet que l'attraction sexuelle?

[^171]Pourquoi, en outre, les males et les femelles chez certaines espéces affectent-ils des couleurs si différentes, alors que chez certaines autres espèces ils se ressemblent absolument? Avant de tenter une réponse à ces questions nous avons un ensemble de faits à exposer.
Chez nos magnifiques papillons anglais, tels que l'amiral, le paon et la grande tortue (Vanessæ), les males et les femelles se ressemblent. Il en est de même chez les superbes Héliconides et chez les Danaldes des tropiques. Mais, chez certains autres groupes tropicaux et chez quelques espèces anglaises, telles que l'Apalura Iris (grand Mars) et l'Anthocaris cardamines (aurore), la coloration des males et des femelles diffère tantot dans une petite mesure, tantot à un point extrême. Aucun langage ne saurait décrire la splendeur de certaines espéces tropicales. Dans un même genre, on rencontre des espèces chez lesquelles les individus des deux sexes présentent des différences extraordinaires; chez d'autres, au contraire, males et femelles se ressemblent absolument. Ainsi, M. Bates, qui m'a communiqué la plupart des faits suivants et qui a bien voulu revoir ce chapitre, connait, dans l'Amérique méridionale, douze espèces du genre Epicalia dont les males et les femelles fréquentent les mêmes localités (ce qui n'est pas toujours le cas chez les Papillons), et, par conséquent, n'ont pas pu être affectés différemment par les conditions extérieures ${ }^{5}$. On compte parmi les plus brillants de tous les papillons les malles de neuf de ces espèces, et ils diffèrent si complètement des femelles beaucoup plus simples, qu'on classait autrefois ces dernières dans des genres distincts. Les femelles de ces reuf espéces affectent un même type général de coloration; elles ressemblent également aux mâles et aux femelles deplu_ sieurs genres voisins disséminés dans diverses parties du monde, ce qui nous autorise à conclure que ces neut espèces, et probablement toutes les autres du même genre, descendent d'une souche ancienne, qui probablement affectait à peu près la même coloration. La femelle de la dixième espèce affecte la même coloration générale, et le male lui ressemble; aussi est-il beaucoup moins brillant que les malles des espèces précédentes avec lesquels il fait un contraste frappant. Les femelles de la onzième et de la douzième espèces dévient du type de coloration habituelle à leur sexe, et revêtent des couleurs presque aussi brillantes que celles des males. Les males de ces deux espèces semblent donc avoir transmis leurs vives couleurs aux temelles; le mâle de la dixième espéce, au con
5. Bates, Proc. Entom. Soc. of Philadelphia, 1865, p. 206. M. Wallace, sur le Diadema (Trans. Entom. Soc. of London, 1869, p. 278),
traire, a conservé ou repris la coloration simple de la femelle et de la forme souche du genre; dans ces trois derniers cas, les males et les femelles en sont arrivés à se ressembler tout en suivant une veie différente pour atteindre cette ressemblance. Dans un genre voisin, Eubagis, les males et les femelles de quelques espèces affectent des couleurs simples et se ressemblent beaucoup; toutefois, dans le plus grand nombre des espèces de ce genre, les males revètent des teintes métalliques éclatantes très diverses, et diffèrent beaucoup des femelles. Ces dernières conservent dans tout le genre le même type général de coloration, aussi se ressem-blent-elles ordinairement plus qu'elles ne ressemblent \& leurs propres males.

Dans le genre Papilio, toutes les espèces du groupe Eたneas, remarquables pur leurs couleurs brillantes et fortement contrastées, offrent un exemple de la fréquente tendance à une gradation dans l'étendue des différences entre les sexes. Chez quelques espèces, chez le P. ascanius, par exemple, les males et les femelles se ressemblent ; chez d'autres espèces, les mâles sont tantôt un peu plus vivement colorés, tantôt infiniment plus éclatants que les femelles. Le genre Junoria, voisin des Vanesses, offre un cas parallèle, car, bien que, dans la plupart des espèces de ce genre, les mâles et les femelles se ressemblent et soient dépourvus de riches couleurs, on remarque quelques espèces, le J. cenone, par exemple, où le mâle est un peu plus vivement coloré que la femelle, et d'autres (le J : àndremiaja, par exemple) où il ressemble si peu à la femelle qu'on pourrait le classer dans uné espèce entièrement différente.
M. A. Butler m'a signalé au British Museum un autre exemple frappant. Les males et les femelles d'une espèce de Theclæ de l'Armérique tropicale se ressemblent presque complètement et affectent une étonnanté beauté ; mais, chez une autre espèce, dont le male affecte des couleurs aussi éclatantes, la femelle a tout le dessus du corps d'un brun sombre uniforme. Nos petits papillons indigènes bleus, appartenant au génre Lycæna, nous offrent, sur les diversités de colorations entre les sexes, des exemples presque aussi parfaits quoique moins extraordinaires. Les mâles et les femelles du Lycæna agestis ont las ailes brunes, bordées de petites taches ocellées de couleur orange; ils se eessemblent donc. Le L. rgon male a les ailes d'un beau bleu, bordées de noir, tandis que les ailes de la femelle sont brunes avec une bordure semblable, et ressemblent beaucoup à celles du L. agestis. Enfin, les L. arion males et femelles sont bleus et se ressemblent beaucoup; les bords des ailes sont toutefois un peu plus sombres"
chez la femelle, et les taches noires sont plus nettes : chez une espèce indienne qui affecte une coloration bleu brillant, les males et les femelles se ressemblent encore davantage.
Je suis entré dans ces quelques détails afin de prouver, en premier lieu, que, chez les papillons, lorsque les males et les femelles ne se ressemblent pas, le mâle est, en règle générale, le plus beau et s'écarte le plus du type ordinaire de la coloration du groupe auquel l'espèce appartient. Il en résulte que, dans la plupart des groupes, les femelles des direrses espèces se ressemblent beaucoup plus que ne le font les males. Toutefois, dans quelques cas exceptionnels, sur lesquels nous aurons à revenir, les femelles affectent des couleurs encore plus brillantes que le sont celles des males. En second lieu, les exemples que nous avons cités prouvent que, dans un même genre, on peut souvent observer, entre les males et les femelles, toute une série de gradations depuis une identité presque absolue de coloration jusqu'à une différence assez prononcée pour que, pendant longtemps, les entomologistes aient classé le male et la femelle daus des genres différents. En troisième lieu, il résulte des faits que nous avons cités que, lorsque le mâle et la femelle se ressemblent beaucoup, cela peut provenir de ce que le mâle a transmis ses couleurs à la femelle, ou de ce qu'il a conservé ou peut-etre recouvré les couleurs primitives du genre auquel l'espèce appartient. Il faut aussi remarquer que, dans les groupes où les sexes offrent une certaine différence de coloration, les femelles, jusqu'à un certain point, ressemblent ordinairement aux mâles, de sorte que lorsque ceux-ci atteignent à un degré extraordinaire de splendeur, les femelles présentent presque invariablement aussi un certain degré de beauté. Nous avons vu qu'il existe de nombreux cas de gradation dans l'étendue des différences observées entre les malles et les femelles; nous awons aussi fait remarquer qu'un même type général de coloration domine dans l'ensemble d'un même groupe; ces deux faits nous permettent de conclure que les causes, quelles qu'elles puissent être, qui ont déterminé chez quelques espèces la brillante coloration du male seul, et celle des males et des femelles à un degré plus ou moins égal chez d'autres espèces, ont été généralement les memes.

Les régions tropicales abondent en splendides papillons, aussi a-t-on souvent supposé que ces insectes doivent leur coloration à la température élevée et à l'humidité; mais M . Bates ${ }^{6}$ a comparé
6. The Naturalist on the Amazons, vol. 1, 1863, p. 19.
divers groupes d'insectes voisins, provenant des régions tempérées et des régions tropicales, et a prouvé qu'on ne pouvait admettre cette hypothèse. Ces preuves, d'ailleurs, deviennent concluantes quand on voit les males aux couleurs brillantes et les femelles si simples appartenant à une même espèce, habiter la méme région, se nourrir des mêmes aliments, et avoir exactement les mémes habitudes. Quand le mâle et la femelle se ressemblent, il est même bien difficile de supposer que des couleurs si brillantes, si élégamment disposées, ne soient qu'un résultat inutile de à nature des tissus et de l'action des conditions ambiantes.

Quand, chez les animaux de tontes espèces, la coloration a subi des modifications dans un but spécial, ces modifications, autant que nous en pouvons juger, ont eu pour objet, soit la protection des individus, soit l'attraction entre les individus de sexe opposé. Les surfaces supérieures des ailes des papillons de beaucoup d'espèces affectent des couleurs sombres, qui, selon toute probabilité, leur permettent d'éviter l'observation et, en conséquence, d'échapper au danger. Mais c'est pendant le repos que les papillons sont le plus exposés aux attaques de leurs ennemis, et la plupart des espèces, dans cet état, redressent leurs ailes verticalement sur le dos; les sur, faces inférieures des ailes sont alors seules visibles. Aussi cus dernières, dans beaucoup de-cas, sont-elles évidemment colorées de manière à imiter les nuances des surfaces sur lesquelles ces insectes se posent habituellement. Le docteur Rôssler est, je crois, le premier qui ait remarqué combien les ailes fermées de quelques Vanesses et d'autres papillons ressemblent à l'écorce des arbres. On pourrait citer une grande quantité de faits analogues très remarquables. M. Wallace ${ }^{7}$ notamment a cité un cas très intéressant; il a trait à un papillon commun dans l'Inde et à Sumatra (Kallima), qui disparaît comme par magie dès qu'il se pose sur un buisson; il cache, en effet, sa tête et ses antennes entre ses ailes fermées, et, dans cette position, la forme, la coloration et les dessins dont sont ornées les ailes de ces papillons ne permettent pas de les distinguer d'une feuille flétrie et de sa tige. Dans quelques autres cas, les surfaces inférieures des ailes revetues de brillantes couleurs n'en constituent pas moins un moyen de protection; ainsi, chez le Thecla rubi, les ailes closes sont couleur vert émeraude, ressemblant à celle des jeunes feuilles de la ronce sur laquelle le papillon se pose le plus souvent au prin-

[^172]temps. Il est aussi très remarquable que chez beaucoup d'espèces, dont les males et les femelles affectent des colorations très différentes à la surface supérieure des ailes, la surface inférieure soit absolument identique chez les deux sexes dès que la coloration de cette surface sert de moyen de protection ${ }^{8}$.

Bien que les nuances obscures des surfaces supérieures ou intérieures des ailes de beaucoup de papillons servent, sans aucun doute, à les dissimuler, nous ne pouvons cependant pas étendre cette hypothèse aux couleurs brillantes et éclatantes de nombreuses espèces, telles que plusieurs de nos Vanesses, nos papillons blancs des choux (Piéris) ou le grand Papilio à queue d'hirondelle, qui voltige dans les marais découverts, car ces brillantes couleurs rendent tous ces papillons visibles à tous les êtres vivants. Chez ces espéces, le mâle et la femelle se ressemblent; mais, chez le Gonepteryx rhamni, le male est jaune intense, et la femelle jaune beaucoup plus pale; chez l'Anthocharis cardamines, les males seuls ont la pointe des ailes colorée en orange vif. Dans ces cas, males et femelles sont également voyants, et on ne peut admettre qu'il y ait le moindre rapport entre leurs différences de coloration et une protection quelconque. Le professeur Weismann ${ }^{9}$ fait remarquer qu'une Lycæna femelle étend ses ailes brunes quand elle se pose sur le sol et qu'elle devient alors presque invisible; le male, au contraire, redresse ses ailes quand il se pose, comme s'il comprenait le danger que lui fait courir la brillante coloration bleue qui les recouvre; ceci prouve, en outre, que la couleur bleue ne peut servir comme moyen de protection. il est probable, toutefois, que les couleurs éclatantes de beaucoup d'espèces constituent pour elles un avantage indirect, en ce que leurs ennemis comprennent de suite que ces insectes ne sont pas bons à manger. Certaines espèces, en effet, ont acquis leur beauté en imitant d'autres belles espèces qui habitent la méme localité et jouissent d'une certaine immunité parce que d'une façon ou de l'autre, elles sont désagréables à leurs ennemis; il n'en reste pas moins à expliquer la beauté des espèces qui servent de type.
La femelle de notre papillon Aurore, dont nous avons déjà parlé, et celle d'une espèce américaine (Anth. genutia) nous indiquent probablement, ainsi que M. Walsh me l'a fait remarquer, quelle était la coloration primitive des espèces souches du genre; en effet, les mâles et les femelles de quatre ou cinq espèces très répandues,

[^173]ont une coloration à peu près semblable. Nous pouvons donc, comme dans plusieurs cas antérieurs, supposer que ce sont les males de l'Anth. cardamines et de l'Anth. genutia qui se sont écartés de la coloration ordinaire du genre dont ils font partie. Chez l'Anth. sara de Californie, les extrémités orangées des ailes se sont en partie développées chez la femelle; cette pointe, en effet, est rouge orangé, plus pale que chez le male, et un peu différente sous d'autres rapports. Chez l'Iphias glaucippe, forme indienne voisine, les extrémités des ailes des males et des femelles sont également de couleur orange. M. A. Butler m'a fait remarquer que la surface inférieure des ailes de cet Iphias ressemble étonnamment à une feuille de couleur claire ; chez notre espéce anglaise à pointes orangées, la surface inférieure des ailes ressemble à la fleur du persil sauvage, sur lequel cette espèce se pose pendant la nuit ${ }^{10}$. Les raisons qui nous portent à croire que les surfaces inférieures ont été ici colorées dans un but de protection, nous empêchent d'admettre que les ailes ont revetu des taches rouge orangé brillant dans le même but, surtout quand le male seul revêt ce caractère.

La plupart des phalènes restent immobiles, les ailes déployées, pendant la plus grande partie ou même pendant toute la durée du jour; la surface supérieure des ailes est souvent nuaacée et ombrée de la manière la plus extraordinaire pour que ces insectes, ainsi que le fait remarquer M. Wallace, échappent à l'attention de leurs ennemis. Chez la plupart des Bombycidés et des Noctuidés ${ }^{41}$, au repos, les ailes antérieures recouvrent et cachent les ailes postérieures; ces dernières pourraient done être brillamment colorées sans beaucoup d'inconvénients ; c'est, du reste, ce que l'on remarque chez beaucoup d'espèces des deux familles. Pendant le vol, les phalènes peuvent plus facilement échapper à leurs ennemis ; néanmoins, les ailes postérieures sont alors découvertes et leurs vives couleurs n'ont dú étre aequises qu'au prix de quelques risques. Mais voici un fait qui prouve avec quelle prudence on doit accepter des conclusions de ce genre. Le Triphæna commun à ailes inférieures jaunes prend souvent ses ébats dans la soirée ou même pendant le jour ; la couleur claire de ses ailes postérieures le rend alors très apparent. Il semblerait qu'il y ait là une source de danger; M. Jenner Weir croit, au contraire, que cette disposition est

[^174] un moyen efficace qui leur permet d'échapper au danger; les oiseaux, en effet, piquent ces surfaces mobiles et brillantes au lieu de saisir le corps de l'insecte. M. Weir, pour s'en assurer, introduisit dans une volière un vigoureux Triphæna pronuba, qui fut aussitôt pourchassé par un rouge-gorge; mais l'attention de l'oiseau se porta sur les ailes brillantes de l'insecte et l'oiseau ne parvint à le capturer qu'après une cinquantaine de tentatives inutiles; il n'avait réussi jusque-là qu'à arracher successivement des fragments des ailes. Il renouvela la même expérience en plein air avec un T. fimbria et une hirondelle; mais il est probable que, dans ce cas, la grosseur de la phalène a contribué à en faciliter la capture ${ }^{12}$. Ces expériences nous rappellent un fait constaté par M. Wallace ${ }^{13}$; le savant naturaliste a remarqué que, dans les forêts du Brésil et des iles de la Malaisie, un grand nombre de papillons communs et richement ornés ont un vol très lent, malgré la grandeur démesurée de leurs ailes; souvent, ajoute-t-il, «les ailes des papillons sont trouées et déchirées, comme s'ils avaient été saisis par des oiseaux auxquels ils ont pu échapper; si les ailes avaient été plus petites relativement au corps, il est probable que l'insecte aurait étéplus fréquemment frappé dans une partie vitale; l'augmentation de la surface des ailes constitue indirectement une condition avantageuse n.

Etalage. - Les brillantes couleurs des papillons et de quelques phalènes sont tout spécialement disposées pour que l'insecte puisse en faire montre. Les couleurs brillantes ne sont pas visibles la nuit; or, il n'est pas douteux que, prises dans leur ensemble, les phalènes sont bien moins ornées que les papillons qui sont tous diurnes. Tontefois les membres de certaines familles, telles que les Zygænides, divers Sphingides, les Uranides, quelques Arctiides et quelques Saturnides, voltigent pendant le jour ou le soir au crépuscule, et presque toutes ces espèces revêtent des couleurs beaucoup plus brillantes que les espèces rigoureusement nocturnes. On connait cependant quelques espèces à couleurs éclatantes ${ }^{14}$, qui appartiennent à cette catégorie nocturne, mais ce sont là des cas exceptionnels.

[^175]Nous avons d'autres preuves à l'appui. Ainsi que nous l'avons fait remarquer, les papillons au repos portent les ailes relevées; mais, pendant qu'ils se chauffent au soleil, ils les abaissent et les redressent allernativement, et exposent ainsi les deux surfaces aux regards; bien que la surface inférieure soit souven! lciatiée de couleurs sombres, comme moyen de protection, elle est, chez beaucoup d'espèces, aussi richement colorée que la surface supérieure, et parfois d'une manière toute différente. Chez quelques espèces tropicales, la surface inférieure des ailes est parfois plus brillante que la surface supérieure ${ }^{15}$. Chez l'Argynnis aglaia, la surface inférieure est seule décorée de disques argentés brillants. Toutefois, en règle générale, la surface supérieure de l'aile, qui est probablement la plus complètement exposée et la plus en évidence, affecte des couleurs plus éclatantes et plus variées que la surface inférieure. C'est donc cette dernière qui fournit d'ordinaire aux entomologistes le caractère le plus utile pour découvrir les affinités des diverses espèces. Fritz Müller m'apprend que trois espèces de Castania fréquentent les environs de la maison qu'il habite dans le sud du Brésil; chez deux de ces espèces les ailes postérieures affectent des couleurs sombres et sont toujours recouvertes par les ailes antérieures, quand le papillon est au repos; chez la troisième espèce, au contraire, les ailes postérieures noires sont admirablement tachetées de blanc et de rouge, et le papillon au repos a toujours soin de les étaler. Je pourrais citer d'autres cas analogues.

Or, si on envisage l'immense groupe des phalènes, qui, d'après M. Stainton, n'exposent pas ordinairement au regard la surface inférieure de leurs ailes, il est très rare que cette surface soit plus brillamment colorée que la surface supérieure. On peut cependant signaler quelques exceptions réelles ou apparentes à cette règle : l'Hypopyra, par exemple ${ }^{16}$. M. R. Trimen m'apprend que M. Guenée, dans son magnifique ouvrage, a représenté trois phalènes chez lesquelles la surface inférieure des ailes est de beaucoup la plus brillante. Chez le Gastrophora australien, notamment, la surface supéricure de l'aile antérieure affecte une teinte gris ocreux pale, tandis que la surface inférieure est ornée d'un magnifique ocelle bleu cobalt, situé au centre d'une tache noire, entourée de jaune orangé, et ensuite de blanc bleuatre. Mais on ne connait pas les

[^176]habitudes de ces trois phalènes, nous ne pouvons par conséquent entrer dans aucune explication sur leur coloration extraordinaire. M. Trimen me fait aussi remarquer que la surface inférieure des ailes, chez certaines autres Géométrides ${ }^{17}$ et chez certaines Noctuées quadrifides, est plus variée et plus brillante que la surface supérieure; mais quelques-unes de ces espèces ont l'habitude de eredresser complètement leurs ailes sur le dos, et de les tenir longtemps dans cette position $>$; elles exposent donc ainsi la surface inférieure aux regards. D'autres espèces ont l'habitude de soulever légèrement leurs ailes de temps à autre quand elles reposent sur le sol ou sur l'herbe. La vive coloration de la surface inférieure des ailes de certaines phalènes n'est donc pas une circonstance aussi anormale qu'elle le parait tout d'abord. Les Saturnides comptent quelques phalènes admirables, dont les ailes sont décorées d'élégants ocelles; M. F. W. Wood ${ }^{18}$ fait observer que quelques-uns des mouvements de ces phalènes se rapprochent de ceux des papillons; *par exemple, le léger mouvement d'oscillation de haut en bas qu'elles impriment à leurs ailes, comme pour les étaler, mouvement qu'on observe plus souvent chez les ¿épidoptères diurnes que chez les lépidoptères nocturnes. »

Il est singulier que, contrairement à ce qui se présente si fréquemment chez les papillons revêtus de vives couleurs, la coloration des males et des femelles soit identique chez nos phalènes indigènes et, autant que je puis le savoir, chez presque toutes les espèces étrangères pourvues de vives couleurs. Toutefois on assure que, chez une phalène américaine, le Saturnia Io, le male a les ailes antérieures jaune foncé, tacheté de rouge pourpre, tandis que les ailes de la femelle sont brun pourpre rayé de lignes grises ${ }^{19}$. En Angleterre, les phalènes qui diffèrent de couleur suivant le sexe sonttoutes brunes ou offrent diverses nuances jaune palle et même presque blanches. Chez plusieurs espèces, appartenant à des groupes qui généralement prennent leur vol dans l'après-midi, les males sont plus foncés que les femelles ${ }^{20}$. D'autre part, M. Stainton
17. Sur le genre Eráteina (Géomètre) de l'Amérique du Sud, Transact. Ent. Soc., nouv. série, vol. V, pl. XV et XVI.
18. Proc. Ent. Soc. of London, 6 juillet 1868, p. XxviI.
19. Harris, Trealise, etc., édité par Flint, 1862, p. 395.
20. Je remarque, par exemple, dans la collection de mon fils que les males sont plus foncés que les femelles chez les Lasiocampa quercus, les Odonestis polatoria, les Hypogymna dispar, les Dasychira pudibunda, et les Cycnia mendica. Chez cette dernière espèce, la différence de coloration entre les males et les femelles est fortement tranchée, et M. Wallace m'informe qu'il y a là, à sou avis, un cas d'imitation protectrice circonscrite à un sexe, comme nous l'expliauerons complêtement plus tard. La femelle blanche du Cycnia ressemble a
assure que, dans beaucoup de genres, les males ont les ailes postérieures plus blanches que celles de la femelle - l'Agrotis exclamafionis, par exemple. Chez l'Hepialus humuli la différence est encore plus tranchée; les malles sont blanes et les fermelles jaunes avec des taches foncées ${ }^{21}$. Il est probable que, dans ces cas, les males sont devenus plus brillants que les femelles pour que ces dernières les aperçoivent plus facilement dans le crépuscule.

Il est donc impossible d'admettre que les brillantes couleurs des papillons et de certaines phalènes aient ordinairement été acquises comme moyen de protection. Nous avons vu que les brillantes couleurs et que les dessins élégants qui ornent les ailes des lépidoptẻres sont disposés de telle sorte qu'il semble que ces insectes ne songent qu'à en faire étalage. J'incline done à penser queles femelles préfèrent généralement les males les plus brillants qui les séduisent davantage; car, dans toute autre hypothèse, nous ne voyons aucune raison qui puisse motiver une si magnifique ornementation. Nous savons que les fourmis et que certains lamellicornes sont susceptibles d'attachement réciproque, et que les premières reconnaissent leurs camarades après un intervalle de plusieurs mois. Il n'est donc pas impossible que les lépidoptères, qui occupent sur r'échelle animale une position à peu près égale à celle de ces insectes, possêdent des facultés mentales suffisantes pour admirer les belles couleurs. Ils reconnaissent certainement les fleurs à la couleur. Le Sphinx (oiseau-mouche) découvre à une grande distance un bouquet de fleurs placé au milieu d'un vert feuillage, et deux de mes amis m'ont assuré qu'ils ont vu à plusieurs reprises des phalènes s'approcher des fleurs peintes surles murs d'une chambre et essayer en vain d'y insérer leur trompe. D'après Fritz Maller, certánes espèces de papillons des parties méridionales du Brésil ont des préférences marquées pour certaines coukeurs; il a remarqué que ces papillons visitent très souvent les fleurs rouge brillant

[^177]de cinq ou six genres de plantes, mais qu'ils ne visitent jamais les fleurs blanches ou jaunes d'autres espéces des memes genres ou de genres différents cultivées dans le même jardin ; j’ai reçu plusieurs confirmations de ce fait. M. Doubleday affirme que le papillon blanc commun s'abat souvent sur un morceau de papier blanc gisant sur le sol, le prenant sans doute pour un de ses semblables. M. Collingwood ${ }^{22}$ a remarqué que, dans l'archipel Malais, où il est si difficile de capturer certains papillons, il suffit de piquer, bien en évidence sur une branche, un individu mort, pour arreter dans son vol êtourdi un insecte de la même espèce, et pour l'amener à portée du filet, surtout s'il appartient au sexe opposé.
La cour que se font les papillons est, comme nous l'avons déjà fait remarquer, une affaire de longue haleine, Les males se livrent quelquefois de furieux combats, et on en voit plusieurs poursuivre une méme femelle et s'empresser autour d'elle. Si donc les femelles n'ont pas de préférence pour tel ou tel male, l'accouplement n'est plus qu'une affaire de pur hasard, ce qui ne me paratt pas probable, Si, au contraire, les femelles choisissent habituellement ou même accidentellement les plus beaux males, les couleurs de ces derniers ont du devenir graduellement de plus en plus brillantes, et tendre à se transmettre soit aux individus de l'un et l'autre sexe, soit à un seul sexe, selon la loi d'hérédité qui a préralu. En outre, l'action de la sélection sexuelle aura été facilitée de beaucoup et devient plus intelligible, si on peut se fier aux conclusions qui résultent des preuves de différente nature que nous avons présentées dans le supplément au neuvième chapitre ; c'est-d̀-dire que le nombre des males à l'état de chrysalide, au moins chez un grand nombre de lépidoptères, excède de beaucoup celui des femelles. Il est cependant quelques faits qui ne concordent pas avec lopinion que les papillons femelles choisissent les plus beaux males; ainsi, plusieurs observateurs m'ont assuré qu'on rencontre souvent des femelles fratchement écloses accouplées avec des mates délabrés, fanés ou décolorés, mais c'est là une circonstance qui résulte presque nécessairement du fait que les males sortent du cocon plus tot que les femelles. Chez les lépidopt今rres de la famille des Bombycidés, les sexes s'accouplent aussitot après leur sortie de la chrysalide, car la condition rudimentaire de leur bouche s'oppese à ce qu'ils puissent se nourrir. Les femelles, comme plusieurs entomologistes me l'ont fait remarquer, restent dans un état voisin de la torpeur, et ne paraissent exercer aucun choix parmi les males,

C'est le cas du ver à soie ordinaire (Bombyx mori), comme me l'ont appris des éleveurs du continent et de l'Angleterre. Le docteur Wallace, qui a une longue expérience de l'elevage du B. cynthia, assure que les femelles ne font aucun choix et ne manifestent pas de préférences. Il a élevé environ 300 de ces insectes dans un méme local, et il a souvent constaté que les femelles les plus vigoureuses s'accouplent avec des males rabougris. Le contraire parait se présenter rarement; les mâles les plus vigoureux dédaignent les femelles faibles et s'adressent de préférence à celles qui sont douées de plus de vitalité. Néanmoins les bombycidés, bien qu'affectant des couleurs obscures, n'en sont pas moins beaux, grace a leurs teintes élégantes admirablement fondues.
Jusquà̀ présent je ne me suis occupé que des espèces dont les mâles sont plus brillamment colorés que les femelles, et j'ai attribué leur beauté au fait que les femelles, pendant de nombreuses générations, ont choisi les mâles les plus attrayants pour s'accoupler avec eux. Mais il arrive parfois, rarement il est vrai, que l'on rencontre des espèces chez lesquelles les femelles sont plus brillantes que les mâles; je crois, dans ce cas, que les males ont choisi les plus belles femelles et ce choix, exercé pendant de nombreuses générations, a contribué à augmenter leur beauté. Nous ne saurions dire pourquoi, dans les diveréa classes d'animaux, les mâles de quelques espèces ont choisi les plus belles femelles au lieu de se contenter de n'importe quelľ femelle, règle générale dans le règne animal; mais si, contrairement à ce qui arrive d'ordinaire chez les lépidoptères, les femelles étaient beaucoup plus nombreuses que les males, il en résulterait que ces derniers choisiraient évidemment les plus belles femelles. M. Butler m'a montré, au British muscum, plusieurs espèces de Callidryas où les femelles égalent, surpassent même le male en beauté; les femelles seules, en effet, ont les ailes bordées d'une frange cramoisie et orange tachetée de noir. Les mâles de ces espèces se ressemblent étroitement, ce qui prouve que, dans ce cas, les femelles ont subi des modifications; dans les cas, au contraire, où les males sont plus brillants, ils ont été modifiés, et les femelles se resserablent beaucoup.
On observe, en Angleterre, quelques cas analogues mais moins tranchés. Les femelles seules, chez deux espèces de Thécla, portent une tache pourpre ou orange sur leurs ailes antérieures. Les Hipparchia mâles et les femelles ne diffèrent pas beaucoup. Toutefois, le H. janira femelle porte une tache brune remarquable sur les ailes et les femelles de quelques autres espèces affectent des couleurs plus brillantes que les males. En outre, les femelles du

Colias edusa et du C. hyale portent des taches oranges ou jaunes sur le bord noir de l'aile, taches représentées chez les mâles par de petites bandes; le Pieris femelle porte sur les ailes antérieures des taches poires qui n'existent ordinairement pas chez le male. Presque toujours le papilon male supporte la femelle pendant l'accouplement, mais, chez les espèces que nous venons de citer, c'est la femelle qui supporte le mâle; de sorte que lo role que jouent les deux sexes est interverti, de même que leur beauté relative. Dans presque tout le règne animal, les malles jouent ordinairement le rôle le plus actif dans la cour que se font les animaux et la beauté des mâles semble avoir augmenté tout justement parce que les femelles choisissent les individus les plus attrayants; chez ces papillons, au contraire, les femelles jouent le ròle le plus actif, ce qui explique qu'elles sont devenues les plus belles. M. Meldola, à qui j'emprunte les faits qui précèdent, en arrive à la conclusion suivante: «Bien que je ne sois pas convaincu que l'action de la sélection sexuelle ait contribué à la production des couleurs des insectes, il est certain que ces faits viennent à l'appui de l'hypothèse de M. Darwin ${ }^{23}$. ,

La variabilité peut seule déterminer l'action de la sélection sexuelle; il convient donc d'ajouter quelques mots à ce sujet. La coloration n'offre aucune difficulté ; on pourrail, en effel, citer un nombre quelconque de lépidoptères très variables à ce point de vue. Un exemple suffira. M. Bates m'a montré toute une série de Papilio sesostris et P. childrenæ ; chez cette dernière espèce, l'étendue de la tache verte, magnifiquement émaillée, qui décore les ailes antérieures, la grandeur de la tache blanche ainsi que la bande écarlate des ailes postérieures varient beaucoup chez les males; de sorte qu'on peut constater une énorme différence entre les mâles qui sont le plus ornés et ceux qui le sont le moins. Le P, sesostris mâle, un superbe insecte, est cependant beaucoup moins beau que le P. childrenæ mâle. La grandeur de la tache verte sur les ailes antérieures et la présence accidentelle d'une petite bande écarlate sur les ailes postérieures, tache empruntée à ce qu'il semble à la femelle, car la femelle, chez cette espèce, ainsi que chez d'autres appartenant au même groupe des Eneas, porte une bande de cou-- leur, constituent auspi de légères variations chez le P. sesostris
23. Nature, 27 avril, 1871, p. 508. Donzel, Soc. Entom. de France, 1837, p. 77, sur le vol des papillons pendant l'accouplement. Voir aussi M. G. Fraser, Nature, 20 avril 1871, p. 489, sur les différences soxuelles de plusieurs papillons anglais.
male. Il n'existe donc que des différences insensibles entre les P. se sostris les plus brillants et les P. childrenæ qui le sont le moins; en outre, il est évident qu'en ce qui concerne la variasilité simple, il n'y aurait aucune difficulté à augmenter, a raide de la sêlection et d'une manièré permanente, la beauté de l'une ou de l'autre espèce. La variabilité, dans ce cas, ne porte que sur le sexe mâle, mais MM. Wallace et Bates ont dêmontré ${ }^{24}$ qu'il existe d'autres espèces chez lesquelles les femelles sont trés variables, tandis que les males restent presque constants. J'aurai, dans un chapitre futur, l'occasion de démontrer que les taches splendides en forme d'yeux ou ocèlles, qui décorent si fréquemment les ailes de beaucoup de lépidoptères, sont éminemment variables. Je puis ajouter que ces ocelles présentent une difficulté à l'hypothèse de la sélection sexuelle, car, bien qu'ils constituent pour nous un ornement, ils ne sont jamais presents chez un sexe et complétement absents chez l'autre; en outre, ils ne different jamais beaucoup chez les males et les femelles ${ }^{25}$. Il ést impossible, dans r'état actuel de la science, d'expliquer ce fait ; mais, si l'on vient plus tard à prouver que la formation d'un ocelle provient, par exemple, de quelques modifications dans les tissus des ailes se produisant à une période très précoce du développement, les lois de thérédité nous enseignent que ce changement se ta_usmet aux deux sexes, blen qu'il n'atteigne toute sa perfection que chez un sexe seul.

En résumé, malgré de sérieuses objections, on peut conclure que la plupart des lépidoptêres ornés de brillantes couleurs, doivent ces couleurs à la sélection sexuelle; il faut excepter certaines espèces qui semblent avoir acquis une coloration trés apparente comme moyen de protection ; nous en parlerons plus loin. L'ardeur* du male, et cela est vrai pour tout le règne animal, le porte généralement à accepter volontiers une femelle quelle qu'elle soit, c'est donc habituellement celle-ci qui exerce uh choix. En conséquence, si la sélection sexuelle a contribué, dans une mesure quelconque à la créatiou de ces ornements, les mâles, au cas de différences entre les deux sexes, doivent etre les plus richement colorés; or, c'est incontestablement la règle générale. Lorsque les mâles et les femelles se ressemblent et sont aussi brillants l'un que l'autre, les

[^178]caractères acquis par les mâles paraissent avoir été transmis aux femelles. Des cas de gradations insensibles, dans les limites memes -d'un seul genre, entre des différences extraordinaires de colorations chez le mâle et la femelle et une identité complète sous ce rapport nous conduisent à cette conclusion.
Mais ne peut-on expliquer autrement que par la sélection sexuelle ces différences de coloration?
On sait que les mâles et les femelles d'une même espèce de papillons fréquentent, dans certains cas ${ }^{26}$, des stations différentes; les premiers aiment à se baigner pour ainsi dire dans les rayons du soleil, les secondes affectionnent les forets les plus sombres. Il est donc possible que ces conditions d'existence si différentes aient exercé une action directe sur les males et les femelles; mais cela est peu probable ${ }^{27}$, car ils ne sont ainsi exposés à des conditions différentes que pendant leur état adulte dont la durée est très courte; les conditions de leur existence, à l'état de larve, étant pour tous deux les mêmes. M. Wallace attribue la différence qu'on observe entre les males et les femelles, non pas tant à une modification des mâles qu'à l'acquisition par les femelles, dans presque tous les cas, de couleurs ternes comme moyen de protection. Il me semble plus probable, au contraire, que, dans la majorité des cas, les males seuls ont acquis leurs vives couleurs grâce à la sélection sexuelle et que les femelles n'ont subi presque aucune modification. Ceci nous explique pourquoi les femelles d'espèces distinctes mais voisines se ressemblent beaucoup plus quene le font les males. Les femelles ont donc conservé, dans une certaine mesure, la coloration primitive de l'espèce parente du groupe auquel elles appartiennent. Toutefois elles n'en ont pas moins subi certaines modifications, car quelques-unes des variations successives, dont l'accumulation a embelli les mâles, doivent leur avoir éte transmises. J'admets cependant que les femelles seules de certaines espèces ont pu se modifier comme moyen de protection Les males et les femelles d'espèces voisines mais distinctes ont da, généralement aussi, se trouver exposés, pendant la lengue durée de leur existence à létat de larve, à des conditions différentes, qui ont pu les affecter; mais, chez les males, un léger changement de coloration provenant d'une semblable cause doit disparaitre le plus souvent sous les nuances brillantes déterminées par l'action de la

[^179]sélection sexuelle. J'aurai à discuter dans son ensemble, en traitant des oiseaux, la question de savoir si les différences de colora-

- tion qui existent entre les males et les femelles proviennent de ce que les malles ont été modifiés par la sélection sexuelle dans le but d'acquérir de nouveaux ornements, ou de ce que les femelles l'ont été par la sélection naturelle dans un but de protection; je me bornerai dėe cici à présenter quelques remarques.
Dans tous les cas où prévaut la forme la plus commune de l'hérédité égale chez les deux sexes, la sélection des males brillamment colozés tend à produire des femelles d'égale beauté; d'autre part, la sélection des femelles revetues de teintes sombres tend à la production de males revêtues aussi de teintes sombres. Les deux sélections appliquées simultanément tendent donc à se neutraliser; le résultat final dépend, en conséquence, des individus qui laissent le plus grand nombre de descendants, soit les femelles, parce qu'elles sont mieux protégées par des teintes obscures, soit les mâles, parce que leurs couleurs brillantes leur procurent un plus grand nombre de femelles.
M. Wallace, pour expliquer la fréquente transmission des caractères à un seul sexe, croit pouvoir affirmer que la sélection naturelle peut substituer à la forme lạ plus communede l'égale hêrédité par les deux sexes, l'hérédité portant sur un sexe seul; mais je ne peux découvrir aucun témoignage en faveur de cette hypothèse. Nous savons, d'après ce qui se passe chez les animaux réduits en domesticité, que des caractères nouveaux paraissent souvent qui, dès l'abord, sont transmis à un sexe seul. La sélection de semblables variations permettrait évidemment de donner des couleurs brillantés aux mâles seuls et, en même temps ou subséquemment, des couleurs sombres aux femelles seules. Il est probable que les femelles de certains papillons et de certaines phalènes ont de cette façon acquis, dans un but de protection, des couleurs sombres, bien differentes de celles des males.
Je suis d'ailleurs peu disposé à admettre, en l'absence de preuves directes, qu'une double sélection, dont chacune exige la transmission de nouveaux caractères à un sexe seul, ait pu se produire chez un grand nombre d'espèces, c'est-à-dire que les mâles soient devenus toujours plus brillants parce qu'ils l'emportent sur leurs rivaux, et les femelles toujours plus sombres parce qu'elles échappent à leurs ennemis. Le mâle du papillon jaune commun (Gonepte$r y x$), par exemple, est d'un jaune beaucoup plus intense que la femelle, bien que celle-ci soit presque aussi apparente; on ne peut donc guère admettre, dans ce cas, que la femelle ait revetu ses
couleurs claires comme moyen de protection; tandis qu'il est très probable que le male a acquis ses brillantes couleurs comme moyen d'attraction sexuelle. La femelle de l'Anthocharis cardamines, privée dee superbes taches orangées qui décorent les pointes des ailes du male, ressemble beaucoup, par conséquent, aux papillons blancs (Pieris) si communs dans nos jardins ; mais nous n'avons aucune preuve que cette ressemblance lui procure un avantage. Au contraire, comme elle ressemble aux males et aux femelles de plusieurs espèces du même genre répandues dans diverses parties du monde, il est plus probable qu'elle a simplement conservé dans une large mesure ses couleurs primitives.

En résumé, diverses considérations nous amènent à conclure que, chez le plus grand nombre de lépidoptères à couleurs éclatantes, c'est le male qui a été principalement modifié par la sélection sexuelle; l'étendue des différences qui existent entre les sexes dépend de la forme d'hérédité qui a prúvalu. Tant de lois et de conditions inconnues régissent l'hérédité, qu'elle nous paraît capricieuse à l'excès dans son action ${ }^{\mathbf{2 8}}$; il est, cependant, facile de comprendre comment il se fait que, chez des espèces très voisines, les males et les femelles diffèrent chez les unes à un degré étonnant, tandis que chez les autres, ils ont une coloration identique. L'ensemble de toutes les modifications successives constituant une variation se transmet nécessairement par l'entremise de la femelle; un nombre plus ou moins grand de ces modifications peut donc facilement se développer chez elle; c'est ce qui nous explique que dans un meme groupe, nous observons de nombreuses gradations entre des espèces chez lesquelles les males et les femelles présentent des différences considérables, et d'autres espéces chez lesquelles ils se ressemblent absolument. Ces gradations sont beaucoup trop communes pour qu'on puisse supposer que les femelles sont dans un état de transition, et en train de perdre leur éclat dans le but de se protéger, car nous avons toute raison de conclure qu'à un moment quelconque, la plupart des espèces sont dans un état fixe.

Imitation. - M. Bates, le premier, dans un remarquable mémoire ${ }^{20}$, a exposé et expliqué ce principe; il a ainsi jetê une grande lumière sur beaucoup de problèmes obscurs. On avait observé antérieurement que certains papillons de l'Amérique du

[^180]Sud, appartenant à des familles entièrement distinctes, avaient acquis toutes les raies et toutes les nuances des Héliconidés et leur ressemblaient si complêtement qu'un entomologiste expérimenté pouvait seul les distinguer les uns des autres. Les Héliconidés conservent la coloration qui leur est habituelle, tandis que les autres s'écartent de la coloration ordinaire des groupes auxquels ils appartiennent; il est donc évident que ces derniers sont les imitateurs. M. Bates observa, en outre, que les espèces imitatrices sont comparativement rares, tandis que les espéces imitées pullulent à l'excès; les deux formes se mellent ensemble. Le fait que les Héliconidés sont si nombreux comme individus et comme espèces, bien qu'ils soient très beaux et très apparents, l'amena à conclure que quelque sécrétion ou quelque odeur devait les protéger contre les attaques des oiseaux, hypothèse confirmée depuis par un ensemble considérable de preuves curieuses fournies surtout par M. Belt ${ }^{30}$. Ces considérations ont conduit M. Bates à penser que les papillons qui imitent l'espéce protégée, ont acquis, grâce à la variation et à la sélection naturelle, leur apparence actuelle si étonnamment trompeuse, dans le but de se confondre avec l'espèce protégée et d'échapper ainsi au danger. Nous n'essayons pas ici d'expliquer les couleurs brillantes des papillons imités, mais seulement celles des imitateurs. Nous nous bornons à attribuer les couleurs des premiers aux mêmes causes genérales que dans les cas antérieurement discutés dans ce chapitre. Depuis la publication du mémoire de M. Bates, M, Wallace dans les iles de la Malaisie, M. Trimen dans l'Afrique Australe et M. Riley aux États-Unis, ont observé des faits analogues et tout aussi surprenants ${ }^{31}$.

Quelques savants hésitent à croire que la sélection naturelle ait pu déterminer les premières variations qui ont permis une semblable imitation. Il est donc utile de faire remarquer que probablement ces imitations se sont produites il y a longtemps entre des formes dont la couleur n'était pas très dissemblable. Dans ce cas une variation même très légère a dû être avantageuse si elle tendait à rendre une des espèces plus semblable à l'autre; si, plus tard, la sélection sexuelle ou d'autres causes ont amené de profondes modifications chez l'espèce imitée, la forme imitatrice a du entrer fa-

[^181]cilement dans la meme voie, à condition que les modifications fussent graduelles, et elle a da finir ainsi par se modifier de telle façon qu'elle a acquis une apparence et une coloration toutes différentes de celles des autres membres du groupe auquel elle appartient. Il faut aussi se rappeler que beaucoup de Lépidopteres sont sujets à de brusques et considérables variations de couleur, Nous en avons cité quelques exemples dans ce chapitre ; mais il convient, à ce point de vue, de consulter les mémoires originaux de M. Bates et de M. Wallace.
Chez plusieurs espèces, les individus males et femelles se ressemblent et imitent les deux sexes d'une autre espèce. Mais, dans le mémoire auquel nous avons fait allusion, M, Trimen cite trois cas extraordinaires : les males de l'espèce imitée ont une coloration différente de celle des femelles, et les sexes de la forme imitatrice diffèrent de la même manière, On connalt aussi plusieurs cas aù les femelles seules imitent des espèces protégées et brillamment colorées, tandis que les males conservent la coloration propre à l'espèce à laquelle ils appartiennent. Il est évident, dans ce cas, que les variations successives qui ont permis à la femelle de se modifier ont été transmises à elle seule. Toutefois il est probable que certaines de ces nombreuses variations successives ont da etre transmises aux males et se seraient développées chez eux si ces mâles modifiés n'avaient pas été éliminés par le fait meme que ces variations les rendent moins attrayants ; il en résulte que les variations seules strictement limitées aux femelles ont été conservées, Un fait observé par M. Belt ${ }^{37}$ confirme ces remarques dans une certaine mesure. Il a remarqué, en effet, que certains leptalides males, qui imitent des espèces protégées, n'en conservent pas moins quelques-uns de leurs caracteres originaux, qu'ils ont soin, d'ailleurs, de cacher, Ainsi, chez les mâles, ₹ la moitié supérieure de l'aile inférieure est blanc pur, tandis que tout le reste des ailes est barré et tacheté de noir, de rouge et de jaune; comme celles des espèces quits imitent. Les femelles ne possèdent pas cette tache blanche que les males dissimulent ordinairement en la recouvrant avec l'aile supérieure ; cette tache leur est donc absolument inutile, ou tout au moins ne peut leun servir que quand ils courtisent les femelles, ils la leur montrant alors pour satisfaire la préférence qu'elles doivent certainement éprouver pour la couleur normale de l'ordre auquel appartiennent les leptalides s.

Couleurs brillantes des Chenilles. - La beauté de beaucoup de

[^182]papillons m'amena à réfléchir sur les splendides couleurs de certaines chenilles. Dans ce cas, la sélection sexuelle ne pouvait avoir joué aucun role ; il me parut donc téméraire d'attribuer la beauté de l'insecte parfait à cette influence, à moins de pouvoir expliquer de façon satisfaisante les vives couleurs de la larve. En premier lieu, on peut observer que les couleurs des chenilles n'ont aucun rapport intime avec celles de l'insecte parfait; secondement, que les brillantes couleurs des chenilles ne semblent pas pouvoir etre un moyen ordinaire de protection. A l'appui de cette remarque, M. Bates m'apprend que la chenille la plus apparente qu'il ait jamais vue (celle d'un Sphinx) vit sur les grandes feuilles vertes d'un arbre dans les immenses plaines de l'Amérique du Sud ; elle a 10 centimètres de longueur; elle est rayée transversalement de noir et de jaune, et elle a la tete, les pattes et la queue rouge vif. Aussi, attire-t-elle l'attention de quiconque passe à une distance de quelques mètres et doit-elle être remarquée par tous les oiseaux.
Je consultai M. Wallace, qui semble avoir un génie inné pour résoudre les difficultés. Après quelques réflexions, ii me répondit: - La plupart des chenilles ont besoin de protection, cela semble résulter du fait que quelques espèces sont armées d'aiguillons ou de poils dont le contact cause une inflammation ; que d'autres sont colorées en vert comme les feuilles qui servent à leur alimentation, et que d'autres, enfin, affectent la souleur des petites branches des arbres sur lesquelles elles vivent. > M. J. Mansel Weale me signale un autre cas de protection : une chenille de l'Afrique Australe, vivant sur le mimosa, fabrique pour l'habiter une gain \& qu'il est impossible de distinguer des épines avoisinantes. Ces diverses considérations ont porté M . Wallace à penser que les chenilles à belles couleurs sont protégées par leur goutt nauséabond; mais leur peau est extrêmement tendre et leurs intestins sortent aisément par la blessure, une légère piqûre faite par le bec d'un oiseau leur serait donc fatale. En conséquence, selon M. Wallace, « un mauvais goât serait insuffisant pour protéger la chenille, si quelque signe extérieur n'avertissait son ennemi qu'elle ne ferait qu'une détestable bouchée \geqslant. Dans ces circonstances, il est extrêmement avantageux pour la chenille que tous les oiseaux et que les autres animaux reconnaissent immédiatement qu'elle n'est pas bonne à manger. Telle pourrait etre l'utilité de ces vives couleurs, qui, acquises par variation, ont contribué à permettre la survivance des individus les plus facilement reconnaissables.
Cette bypothèse paratt, è première vue, très hardie ; cependant
les membres de la Société d'entomologie ${ }^{33}$ apportèrent diverses preuves \&̀ l'appui. M. J. Jenner Weir, notamment, qui élève un grand nombre d'oiseaux dans sa volière, a fait de nombreuses expériences à cet égard, et il n'a remarqué aucune exception à la règle suivante: les oiseaux dévorent avec avidité toutes les chenilles nocturnes à habitudes retirées et à peau lisse, qui sont vertes comme les feuilles, ou qui imitent les rameaux; ils repoussent, au contraire, toutes les espèces épineuses et velues, de même que quatre espèces aux couleurs voyantes. Lorsque les oiseaux rejettent une chenille, ils secouent la tete et se nettoient le bec, preuve évidente que le goût de cette chenille leur répugne ${ }^{\text {44. M. A. Butler }}$ a offertà des lézards et à des grenouilles, très friands de chenilles, des individus appartenant à trois espèces très brillantes; ils les rejetèrent immédiatement. Ces observations confirment l'hypothèse de M. Wallace, c'est-à-dire que certaines chenilles, en vue de leur propre sécurité, ont acquis des couleurs très apparentes, de facon à être facilement reconnues par leurs ennemis, de même que les droguistes vendent certains poisons dans des bouteilles colorées en vue de la sécurité publique. Toutefois nous ne pouvons pas à présent attribuer à ces causes l'élégante diversité que l'on remarque dans les couleurs de beaucoup de chenilles; mais une espèce qui, à une période antérieure, aurait acquis des raies ou des taches plus ou moins sombres, soit pour imiter les objets environnants, soit comme conséquence de l'action directe du climat, etc., ne prendrait certainement pas une couleur uniforme quand ces couleurs deviendraient plus brillantes; en effet, la sélection n'aurait à intervenir dans aucune direction définiu s'il s'agissait seulement de rendre une chenille plus brillante.

Résumé et conclusions sur les insectes. - Jetons un coup d'oeil en arrière sur les divers ordres d'insectes. Nous avons vu que les caractêres des malles et des femelles diffèrent souvent sans que nous puissions nous expliquer la signification de ces différences. Les organes des sens ou de la locomotion se sont modifiés de façon que les malles puissent découvrir rapidement les femelles et les atteindre; plus souvent encore, les males sont pourvus de divers ppareils qui leur permettent de maintenir la femelle lorsqu'elle

[^183]est en leur potroir. Toutefois ce né sont pas les differrences sexuelles de cette nature qui ont pour nous le plus grand intéret.

Presque tous les ordres comptent at nombre de leurs membres des mâles, appartenant même à des espèces faibles et délicates, qui sont très belliqueux; quelques-uns sont pourvus d'armes destinées à combattre leurs rivaux. La loi du combat n'est cependant pas aussi générale chez les insectes què chez les animaux supérieurs, aussi les males ne sont-ils pas souvent plus forts et plus grands que les femelles. Ils sont au contraire ordinairement plus petits, ce qui leur permet de se développer dans un laps de temps moins prolongé et de se trouver prêts en grand nombre lors de l'éclosion des femelles.
Dans deux familles d'Homopteres et dans trois familles d'Orthoptères, les males seuls possèdent à l'êtat actif des organes, qu'on peut qualifier de vocaux. Ces organes sont constamment en usage pendant la saison des amours, noh seulement pour appeler les femelles, mais probablement aussi pour les séduire. Quiconque admet l'action de la sellection doit admettre aussi qué la sélection sexuelle a amené lá production de ces appareils musicaux. Dans quatre autres ordres, les individus appartenant à un sexe, ou plus ordinairement les males et les femelles, sont pourfus d'organes aptes à produire divers sons qui, selon toute apparence, he sont que des notes d'appel. Alors même que les máles êt les femelles possedent ces organes, les individus aptes à faire le bruit le plus fort et le plus continu doivent trouver à s'accoupler avant ceux qui sont moins bruyants, de sorte que, dans ce cas aussi, la sélection sexuelle a da probablement déterminer la formation de ces organes. Il est instructif de songer á l'étonnante diversité dès moyens que possèdent, pour produire des sons, les males seuls ou les mâles et les femelles de six ordres au moins. Ces divers faits nous permettent de comprendre quelle influence a dù exercer la sélection sexuelle pour déterminer des modifications de conformation qui, chez les Homopteres, portent sur des parties importantes de l'organisation.

Les faits signalés dans le dernier chapitre nous autorisent è conclure que les cornês développées chez beaucoup de Lamellicornes måles et chez quẹ̛ques autres coléoptères mâles constituent de simples ornezients. La petitesse des insectes nous empêche, dans une certaine mesure, d'apprécier à sa juste valeur leur étonnante construction. Le Chalcosoma male (fig. 16, p. 325), avec sa cotte de mailles polie et bronzée, et ses grandes cornes complexes, amené aux dimensions d'un cheval ou seulement d'un chien, constituerait
certainement un des animaux les plus remarquables đú moñae.
La coloration des insectes est une question compliquée et obscure. Lorsque le male differere à peine de la femelle, et que ni l'un ni l'autre ne sont brillants colorés, on peut conclure que les mâles et les femelles ont varié d'une façon à peu pres analogue, et que les variations se sont transmises au meme sexe, sans quil en soit résulté ni avantage ni dommage pour lịndividu. Lorsqué te male affecte une brillante coloration et diffère considérablement de la femelle, comme chez quelques libellules et chez un grand nombre de papillons, il faut probablement attribuèr ses couleurs à la sếlection sexuelle; tandis que la femelle a conservé un type primitif ou très ancien de coloration, légèrement modifié par les influeñces que nous avons indiquées. Mais quelquefois la femelle setufe a acquis des couleurs ternes comme moyeh de protection, de même que parfois elle a acquis une riche coloration, de façon à imiter d'autres espèces favorisées habitant la mème localite. Lorsque les mâles et les femelles se ressemblent et affectent des teintes sombres, on peut affirmer que, dans une foule de cas, ils ont acquis des teintes de cette nature en vue de se soustraire au danger. Il en est de méme pour ceux qui revêtent de vives couleurs, lesquelles les font ressembler à des objets environnants, tels que des fleurs, ou a d'autres espèces protégées, ou qui les protégent indirectement en indiquant à leurs ennemis qu'ils nê sont pas agréables au goat. Dants beaucoup d'autres cas, où les mâles et les femelles se ressemblent et affectent d'éclatantes couleurs, surtout lorsque celles-ci sont disposées pour l'étalage, on peut concłure qu'elles ont été acquises par le male pour plaire à la femelle à laquelle elles ont ensuite été transmisas. Cette hypothèse devient évidente lorsqu'un mêmé type de coloration prévaut dans un groupe et que, chez quelquếs espèces, la coloration des males diffère beaucoup de celle dés femelles, tandis que chez d'autres espécés la coloration des máles et des femelles reste la méme; deux états extrêmes qui relient entre eux des gradations intermédiaires.
De mème que les males ont souvent transmis leurs couleurs brillantes aux femelles, de même aussi plusieurs lamellicorr s et d'autres coléoptères males leur ont transmis leurs cornés axtraordinaires. De même encore les organes vocaux ou instrumentaux propres aux Homoptères et aux Orthoptères mâles ont généralement été transmis aux femelles à l'état rudimentaire, quelquefois même à l'état presque parfát, bien qu ties ne puissent produire des sons. Il est aussi à remarquer, odr ce fait a une importance considérable pour la sélection sexuelle, que les organés
destinés à produire les sons stridents ne se développent complètement chez quelques Orthoptères males qu'à la dernière mue; et que, chez les libellules males, les couleurs ne s'épanouissent que quelque temps après qu'ils sont sortis de la chrysalide, et qu'ils sont prêts à reproduire.

La sélection sexuelle implique que les individus appartenant à un sexe recherchent et préfèrent les individus les plus beaux appartenant au sexe opposé. Or, chez les insectes, lorsque le male ne ressemble pas à la femelle, c'est, à de rares exceptions près, le mâle qui est le plus orné, et s'écarte le plus du type de l'espèce; en outre, les males cherchent les femelles avec plus d'ardeur; nous avons donc tout lieu de supposer que les femelles choisissent habituellement ou à l'occasion, les males les plus beaux, et que ce choix est la cause principale des brillants ornements de ces derniers. Les mâles possèdent des organes nombreux et singuliers, fortes mâchoires, coussins adhérents, épines, jambes allongées, etc., propres à saisir la femelle, ce qui nous autorise à conclure que l'accouplement présente certaines difficultés et nous autorise à croire que, dans presque tous les ordres, la femelle peut repousser le male et doit être partie consentante à l'accouplement. La perspicacité dont sont doués les insectes et l'affection dont ils sont susceptibles les uns pour les autres nous permettent de penser que la sélection sexuelle a joué chez eux un rôle considérable, mais nous n'en avons pas encore la preuve directe, et quelques faits semblent contraires à cette hypothèse. Néanmoins, lorsque nous voyons un grand nombre de males poursuivre une même femelle, nous ne pouvons admettre que l'accouplement soit abandonné au simple hasard, que la femelle n'exerce aucun choix et ne se laisse pas influencer par les somptueuses couleurs ou les autres ornements dont le male a seul l'apanage.

Si nous admettons que les Homoptères et les Orthoptères femelles apprécient les sons musicaux que font entendre les males, et que la sélection sexuelle a perfectionné les divers organes qui les produisent, il est très probable que d'autres insectes femelles apprécient aussi la beauté des formes et des couleurs, et que, par conséquent, les mâles ont acquis ces qualités pour leur plaire. Mais la coloration est chose si variable, et elle a subi de si nombreuses modifications afin de devenir un agent protecteur pour l'animal, qu'il est extrêmement difficile de déterminer quelle est la proportion des cas où la sélection sexuelle a pu jouer un role. Cela est surtout difficile chez les Orthoptères, les Hyménoptères et les Coléoptères, ordres chez lesquels les males et les femelles affectent à peu près la
même couleur, fait qui nous prive de la meilleure preuve que nous puissions invoquer. Toutefois, ainsi que nous l'avons déjà fait remarquer, nous observons parfois dans le groupe considérable des Lamellicornes, que quelques savants placent à la tete de l'ordre des Coléoptères, des preuves d'attachement mutuel entre les sexes; or, nous trouvons aussi chez quelques espèces de ce groupe des males pourvus d'armes pour la lutte sexuelle, d'autres munis de grandes et belles cornes ou d'organes propres à produire des sons stridents, d'autres enfin, ornés de splendides teintes métalliques. Il est done probable que tous ces caractères ont été acquis par le m今̂me moyen, c'est-d̀-dire par la sélection sexuelle. Les papillons nous offrent une preuve plus directe à cet égard; les males, en effet, s'efforcent parfois d'étaler leurs magnifiques 'couleurs; et il est difficile de croire qu'ils prendraient cette peine si l'étalage de leurs charmes ne les aidait pasà á séduire les femelles.

Lorsque nous étudierons les oiseaux, nous verrons qu'ils présentent une très grande analogie avec les insectes au point de vue des caractères sexuels secondaires. Ainsi, beaucoup d'oiseaux males sont belliqueux à l'excès, et pourvus d'armes spécialement destinées à la lutte avec leurs rivaux. Ils possèdent des organes propres à produire, lors de la période des amours, de la musique vocale et instrumentale. Ils sont souvent décorés de cretes, d'appendices, de caroncules, des plumes les plus diverses, et enrichis des plus belles couleurs, tout cela évidemment pour en faire parade. Nous aurons à constater que, comme chez les insectes, les males et les femelles de certains groupes sont également beaux, et également revêtus des ornements propres d'ordinaire au male. Dans d'autres groupes, les males et les femelles sont également simples et dépourvus de toute ornementation. Enfin, dans quelques cas anormaux, les femelles sont plus belles que les males.Nous aurons à remarquer fréquemment, dans un meme groupe dooiseaux, toutes les gradations depuis l'identité la plus absolue jusqu'à une différence extrême entre les males et les femelles. Dans ce dernier cas, nous verrons que, comme chez les insectes, les femelles conservent souvent des traces plus ou moins nettes ou des rudiments de caractères qui appartiennent habituellement aux males. Toutes ces analogies qui, à divers égards, se remarquent entre les oiseaux et les insectes sont méme singulièrement étroites; aussi, de quelque manière que l'on explique ces faits dans l'une des classes, cette explication s'applique probablement à l'autre, et, comme nous chercherons à le démontrer plus loin, cette explication peut, presque certainement, se résumer en un seul mot: la sélection sexuelle.

GHAPITRE XII

CARAGTERES SEXUELS SECONDAIRES DES POISSONS, DES AMPIIBIES ET DES REPTILES.

Porssons : Assiduitês des mâles, leurs combats.- Les ǐemelles sontordinairementplus grandes que les males. - Males, couleurs vives, ornements elautres caractêres etranges. - Couleurs et ornements qu'acquièrent les males pendant la sàison des amours. - Chez certaines espéces, les males et les femelles affectent également des couleurs brillantes, Couleurs protectrices. - On ne peut attribuer au besoin de protection les couleurs moins brillantes des femelles. - Certains poissons males construisent les nids, et prennent soin des ceufs et des jeunes.

- Amplitieres : Différences de conformation et de coloration entre lés males et les femelles, - Organes vocaux، u Reptiles: Chéloniens. - Crocodiles. - Serpents, couleurs protectrices dans quelques cás. - Batailles des lézards. - Ornements. - Étranges différences dè conformation entré lés mảles et les femelles. - Couleurs. - Différences sexuelles presque aussi considérables qué chez lés oieeaux.

Abordons maintenent le grand sous-régne des Vertébrés, en commençant par l'étude de la classe inférieure, celle des poissons. Les Plagióstomes (Requins, Raies) et les Chiméroides mâles possèdent divers orgahes quif leur permettent de retenir la femelle, orgahees analoguess à ceux que nous avons observés chez tant d'animaux inferíeurs. Outre ces organes, beaucoup de raies males portent sự la tête des touffes de forts piquants acérés, et plusieurs rangẻes đé ces mêmes piquants sur \& la surface externe supérieure des nageoires pectorales s. Ces piquants existent chez les malles de certaines espéces qui ont le reste du corps entierement lisse. Ils se développent de façon temporaire, pendant la saison des amours seulenent ; le docteur Günther affirme quils servent d'organes prenants, l'animal se repliant sur lui-meme de façon a foriner une éspéce de cercle. Il est à remarquer que, chez quelques espécés, tellés qué la Raia clavata, c'est la femeile et non le male qui a le dos parsemé de gros piquants recourbés en crochet ${ }^{1}$.
Les malles seuts du Mallotus villosus sont pourvus d'écailles tres rapprochées ressemblant un peu à une brosse, qui permettent à deux mâles de maintenir la femelle en se plaçant à ses côtés penđant qu'elle passe àvec une grande rapidité sur les bancs de sable où elle dépose ses œufs ${ }^{2}$. Le Monacanthus scopas, espèce très dis-

[^184]tincte, présente une conformation \&̀ peu pres anáogue. Le doctēur Günther m'apprend que ce poisson porte aux deux cotés de la queue une touffe de poils droits et résistants comme ceux d'un peigne, qui, chez un individu ayant 15 centimètres de long, atteignaient environ 4 centimètres de longueur; la femelle portè à la même place une touffe de soies que l'on pourrait comparer à celles d'une brosse à dents. Chez une autre espécé, le M. Peronii, le male est pourvù d'une brosse qui ressemble à celle de la femelle de l'espéce précédente, tandis que les cotès de la queue de la lemélle réstent lisses. Chez quelques autres espèces du mémé genre, la queue est un peu rugueuse chez lo male et parfaitement lisse chez la fémelle ; enfin, chez d'autres espéces, la queue chez les males et chéz les femelles est parfaitement lisse.

Beaucoup de poissons males se livrent des combats acharhés pour s'emnarer des femelles. Ainsi, on assure que l'Êpinoche malle (*)asterosteus leiurits) devient \& fou de joie > lorsque la femelle sort de sa cachette pour examiner le nid qu'il a construit à son intention. \& Il va et vient autour d'elle, retournè au dépót đés matériaux accumulés pour le nid, puis revient, et, si elle n'avance pas, il cherche à l'entrainer vers le nid en lá poussant avec son museaú, ou en la tirant par la queue ou par l'épine qu'elle porte sur le cote ${ }^{3}$. Les males ${ }^{4}$, polygames dit-on, sont trés hardis et très belliqueux, tandis que les femelles sont trés pacifiques. Les males se livrent quelquefois des combats acharnés ; ils s'attachent fortement l'un à l'autre pondant quelques instants, et se culbutent mutuellement, jusqu'à ce qu'ils aient épuisé leurs forces. o Les G. trachuris malles, pendant le combat, tournent l'un autour de l'autro, et cherchent à se mordre et a se transpercer au moyen de leurs epines latérales redressées. Le même observateur ajoute ${ }^{5}$: < La morsure de ces petits poissons cause une blessure très grave. Ils se servent aussi de leurs piquants latéraux avee tant d'efficacité, què j'ai vu un de ces poissons qui, ayant été pendant la lutte complètement éventré par son adversaire, tomba au fond et périt. Lorsqu'un G. trachurus est vaincu, son air hardi l'abandonne, ses vives couleurs disparaissent, et il va cacher sa honte parmi ses compagnons plus pacifiques, mais il reste pendant quelque teemps l'objet constant des persécutions du vainqueur. *

Le saumon male a un caractêre aussi belliqueux que le pe-
B. Articles do M. R. Warington, Ann. and Mag. of Nat. Hist., oct, 1853 el nov. 1855.
4. Noel Humphrieys, River Gardens, 1857.
5. Loudon, Mag. of Nat. Hist., Yol, M, 1830, p. 881.
tit épinoche, et, d'après le docteur Gonther, la truite male partage les mêmes dispositions. M. Shaw a observé deux saumons males qui ont lutté l'un contre l'autre pendant un jour entier; M. R. Buist, surintendant des pécheries, m'apprend qu'il a souvent observé, auprès du pont de Perth, les males chasser leurs rivaux pendant que les femelles frayaient. Les males \& so battent constamment, et se déchirent l'un l'autre sur les bancs de frai; ils se font assez de mal pour qu'un grand nombre périssent, et qu'on les voie s'approcher des bords de la rivière épuisés of presque mourants ${ }^{\circ},>$ M. Buist ajoute que le gardien de l'étang de reproduction de Stormontfield a trouvé, en juin 1868, dans la partie septentrionale de la Tyne, environ 300 saumons morts, tous males, à l'exception d'un seul; le gardien est persuadé qu'ils ont tous péri à la suite de luttes acharnées. Le saumon male prósente une conformation curieuse pendant la saison des amours : outre un léger changement de couleur, * la mâchoire inférieure s'allonge, et l'extrémité se transforme. en une espèce de crochet cartilagineux qui vient occsper, lorsque les máchoires sont fermées, une profonde cavité située entre les os intermaxillaires de la mâchoire supérieure ${ }^{7}$) (fig. 27 et 28, Pl. 9 et 10). Cette modification ne persiste que pendant la saison des amours chez le saumon européen; mais M.J.K. Lord ${ }^{8}$ assure que, chez le S.lycaodon du nord-ouest do l'Amérique, cette modification est permanente et nettement prononcée chez les males plus âgés qui ont déjà remonté les rivières. Les mâchoires de ces vieux mâles se transforment en de formidables crochets, et les dents deviennent de véritables crocs, ayant souvent près de deux centimètres de longueur. Chez le saumon d'Europe, selon M. Lloyd ${ }^{9}$, la conformation en crochet temporaire sert à fortifier et à protéger les mâchoires lorsque les mâles chargent l'un contre l'autre avec une impétueuse violence; mais les dents si considérablement développées du saumon mâle américain peuvent se comparer aux défenses de beaucoup de mammifères du mêmo sexe, et indiquent un but offensif plutot que défensif.
Le saumon n'est pas le seul poisson chez lequel les dents difforent selon le sexe. On observe les mémes différences chez beaucoup de raies. Chez la raie bouclée (Raia clavata), le male adulte a

[^185]des dents tranchantes et aigues, recourbées en arrière, tandis que celles de la femelle sont larges et aplaties, formant une sorte de pavage; de so-te que, dans ce cas, les dents, chez les males et les femelles d'une même espèce, présentent des différences plus considérables qu'elles ne le sont ordinairement chez dos genres distincts d'une même famille. Les dents du male ne deviennent aiguês que lorsqu'il est adulte; dans le jeune age elles sont plates comme celles de la femelle. Ainsi qu'il arrive souvent pour les caractères sexuels secondaires, les males et les femelles de quelques espèces de raies, la raie cendrée (R. batis) par exemple, ont, quand ils sont adultes, les dents acérées et pointues; ce caractère propre au male, et primitivement acquis par lui, paralt s'étre transmis aux descendants de l'un et l'autre sexe. Les males et les femelles de la R. maculata, possédent aussi des dents pointues, mais seulement quand ils sont complètement adultes; elles paraissent plus tot chez les males que chez les femelles. Nous aurons à observer des cas analogues chez les oiseaux; chez quelques espèces, en effet, le male aoquiert le plumage commun aux deux sexes adultes, à un age un peu plus précoce que la femelle. Il y a d'autres espèces de raies chez lesquelles les males, même agés, n'ont jamais do dents tranchantes, et où, par conséquent, les deux-sexes adultes, ont des dents larges et plates comme les jeunes et les femelles adultes des espèces précédemment indiquées ${ }^{10}$. Les raies sont des poissons hardis, forts et voraces; nous pourons donc supposer que les males ont besoin de leurs dents acérées pour lutter avec leurs rivaux; mais comme ils sont pourvus de nombreux organes modifiés et adaptés pour saisir la femelle, il est possible que leurs dents leur servent aussi a cet usage.

Quant à la taille, M. Carbonnier ${ }^{\text {t1 }}$ soutient que, chez presque toutes les espèces, la femelle est plus grande que le male : le docteur Guntherne connatt pas un seul cas où le male soit réellement plus grand que la femelle. Chez quelques Cyprinodontes, le male n'égale méme pas la moitié de la grosseur de la femelle. Les males de beaucoup d'espèces ont l'habitude de lutter les uns avec les autres; aussi est-il étonnant que, sous l'influence do la sélection sexuelle, ils ne soient pas devenus généralement plus grands et plus forts que les femelles. La petite taille des males constitue pour eux un grand désavantage; M. Carbonnier affirme, en effet,
10. Voir ce qu'a dit des Rales, Yarrel (o. ©., II, p. 416) avec une oxcellente figure, et p. 422, 432.
11. Cite dans The Farmer, 1868, p. 369.
qu'ils sont exposés à étre dévorés par leurs propres femelles lorsqu'elles sont carnassières, et sans doute par les femelles d'autres espèces. L'augmentation de la taille doit, sous quelques rapports, etre plus importante pour les femelles que ne le sont; pour les malles, la force et la taille afin de lutter les uns contre les autres; cette augmentation de taille permet peut-etre une production plus abondante d'œufs.
Le male seul, ehez beaucoup d'espèces, est orné de brillantes couleurs; ou tout au moins ces couleurs sont plus vives chez lui que chez la femelle, Quelquefois aussi le male est pourvu d'appendices qui ne paraissent pas lui etre plus utiles pour les besoins ordinaires de la vie, que les plumes de la queue ne le sont au paon. Le docteur Ganther a eu l'obligeance de me communiquer la plupart des faits suivants. On a tout lieu de croire que, chez beaucoup de poissons tropicaux, la couleur et la conformation different selon le sexe; d'ailleurs, on observe quelques exemples frappants de ces différences chez les poissans des mers britanniques. On a donné le nom de petil dragon pierre précieuse au Callionymus lyra male, \&̀ cause de ses couleurs qui ont l'éclat des pierrerries. Lorsqu'on le sort de l'eau, le corps est jaune de diverses nuances, rayé et tacheté de bleu vif sur la tette; les nageoires dorsales sont brun palle avec des bandes longitudinales foncées, les nageoires ventrale, caudale et anale sont noir bleuatre. Linné et après lui beaucoup de naturalistes ont considéré la femelle comme une espèce distincte; elle est brun rougeatre sale, avec la nageoire dorsale brune et les autres blanches. La grandeur proportionnelle de la tête et de la bouche, et la position des yeux ${ }^{12}$, different aussi chez le male et la femelle; mais l'allongement extraordinaire, chez le male (fig. 29, Pl. 11), de la nageoire dorsale, constitue évidemment la différence la plus caractéristique. M. W. Saville Kent, qui a étudié ces poissons en captivité, fait au sujet de cette nageoire les remarques suivantes: © Ce singulier appendice semble jouer le même role que les caroncules, les crêtes et les autres parties anormales des gallinacés mâles, c'est-à-dire qu'il sert uniquement à fasciner la femelle ${ }^{13},>$ La conformation et la coloration des jeunes mâles sont absolument identiques à celles des femelles adultes. Dans le genre Callionymus ${ }^{14}$ tout entier, le malle est en général plus brillamment tacheté que la femelle, et, chez plusieurs espèces, non

[^186]seulement la nageoire dorsale, mais aussi la nageoire anale prennent un développement excessif chez le mâle.

Le Coltu6 scorpius, ou scorpion de mer male, est plus élancé et plus petit, que la femelle. La couleur differe beaucoup aussi selon le sexe. Il est difficile, comme le fait remarquer M, Lloyd ${ }^{15}$, à quiconque n'a pas vu à l'époque du frai, alors qu'il revet ses teintes les plus éclatantes, ce poisson d'ordinairesi mal partagé, de se figurer le mélange de couleurs brillantes qui le transforment, entièrement ?, Les Labrus mixtus, mâles et femelles, sont splen dides, bien que la coloration diffère considérablement selon le sexe; le male est orangé rayé de bleu clair; la femelle rouge vif avé quelques taches noires sur le dos.

Dans la famille très distincte des Cyprinodontes - habitant les eaux douces des pays exotiques - les caractères du mâle et de la femelle different quelquefois beaucoup. Le Mollienesia petenensis ${ }^{15}$ mâle a la nageoire dorsale très développée et marquée d'une rangée de grandes taches arrondies, ocellées et brillamment colorées; chez la femelle, au contraire, cette même nageoire, plus petite, affecte une forme différente, et porte seulement des taches brunes irrégulièrement recourbées. Chez le male, le bord foncé de la base de la nageoire anale fait un peu saillie. Chez le mâle d'une forme voisine, le Xiphophorus Hellerii (fig. 30), le bord inférieur de la nageoire anale se développe en un long filament qui, à ce qu'assure le docteur Günther, est rayé de vives couleurs, Ce filament ne contient pas de muscles et ne parait avoir aucune utilité directe pour le poisson. La coloration et la structure des jeunes mâles ressemblent en tous points à celles des femelles adultes; nous avons déjà fait remarquer qu'on observe le même fait dans le genre Callionymus. On peut rigoureusement comparer les differences sexuelles de ce genre à celles qui se présentent si fréquém. ment chez les Gallinacés ${ }^{17}$.

Le Plecostomus barbatus ${ }^{18}$ (fig. 31, Pl. 11), male, poisson silurorde habitant les eaux douces de l'Amérique méridionale, a la bouche et l'inter-operculum frangés d'une barbe de poils roides, dont la femelle est presque complètement dépourvue, Ces poils ont une nature écailleuse. Chez une autre espèce du même genre, des
15. Game Birds of Sweden, etc., 1867, p. 466.
16. Je dois mes renseignements sur ces espèces au docteur Günther; voir aussi son travail sur les poissons de l'Amérique centrale, dans Trans. Zool. Soc., vol. VI, 1868, p. 485.
17. Docteur Günther Cat. of Brit. Fishes, etc., vol. III, 1861, p. 141.
18. Docteur Günther, Proc. of Zool. Soc, 1868. p. 232.
l'inter-operculum frangés d'une barbe de poils roides, dont la femelle est presque complètement dépourvue. Ces poils ont une nature écailleuse. Chez une autre espèce du mème genre, des tentacules mous et flexibles s'élèvent sur la partie frontale de la tête chez le male, et ne se trouvent pas chez la femelle. Ces tentacules, simples prolongements de la peau même, ne sont donc pas homologues aux poils rigides de l'espèce précédente; on ne peut guère douter cependant que leur usage, dont il est difficile de conjecturer la nature, ne soit d'ailleurs le méme chez les deux espéces. Il n'est guère probable que ces appendices constituent un ornement; d'un autre coté, nous ne pouvons supposer que des poils rigides et des filaments flexibles puissent etre utiles aux mâles seuls dans les conditions ordinaires de l'existence. Le Chimæra monstrosa, monstre absolument étrange, porte au sommet de la. tete un os crochu dirigé en avant, et dont l'extrémité arrondie est couverte de piquants acérés; on ignore absolument quel usage le mâle peut faire de cette couronne < qui fait défautchez la femelle ${ }^{19} \%$.
Les conformations dont nous venons de parler existent à l'état permanent chez le male devenu adulte ; mais, chez certains Blennies et dans un autre genre voisin ${ }^{20}$, une crête se développe sur la têto du male seulement pendant la saison du frai; en même temps le male revet de plus vives couleurs. Cette crête constitue évidemment un ornement sexuel temporaire, car la femelle n'en offre pas la moindre trace. Chez d'autres espèces du même genre, les deux sexes possèdent une crête ; mais il est au moins une espèce où elle ne se trouve ni chez le malle ni chez la femelle. Le professeur Agassiz affirme que beaucoup de Chromides males, le Geophagus male, par exemple, et surtout le Cichla ${ }^{\mathbf{2 1}}$, ont une protubérance très apparente sur le devant de la tette, protubérance qui n'existe ni chez les femelles ni chez les jeunes malles. M. Agassiz ajoute : - J'ai souvent observé ces poissons pendant la saison du frai, alors que la protubérance prend tout son développement; jeles ai observés aussi pendant d'autres saisons où elle disparalt complètement; on no distingue pas alors la moindre différence dans la forme de la tete des males et des femelles. Je n'ai jamais pu établir, avec certitude, que ces protubérances remplissent une fonction spéciale, et les Indiens des Amazones n'ont pu me donner aucun renseigne-

[^187]ment à cet égard. , Ces protubérances, par leur apparition périodique, rappellent les caroncules charnus qui ornent la tête de certains oiseaux ; il est cependant très douteux qu'on puisse les considérer comme des ornements.
Le professeur Agassiz et le docteur Ganther affirment que les poissons mâles, dont la coloration diffère d'une manière permanente de celle des femelles, deviennent souvent plus brillants pendant la saison du frai. Il en est de meme chez une foule de poissons dont les individus de sexe différent ont une coloration idenlique pendant toutes les autres périodes de l'année. On peut citer comme exemple la tanche, le gardon et la perche. A l'époque du frai, e le saumon male porte sur les joues des bandes orangées, qui lui donnent l'apparence d'un Labrus et son corps entier prend un ton orangé doré. Les femelles revêtent alors une coloration plus foncée ${ }^{22}$; aussi les appelle-t-on ordinairement poissons noirs \geqslant. On constate un changement analogue et même plus prononcé chez le Salmo eriox ; les mâles del'ombre (S. umbla) sont également, pendant la même saison, plus vivement colorés que les femelles ${ }^{23}$. Les couleurs du brochet des États-Unis (Esox reticulatus), surtout chez le male, deviennent pendant la saison du fidi excessivement intenses, brillantes et irisées ${ }^{24}$. L'épinoche mâle (Gasterosteus leiurus) nous en offre un exemple frappant entre tous. M. Warington ${ }^{25}$ affirme que ce poisson devient alors «magnifique au-delà de toute expression ». Le dos et les yeux de la femelle sont bruns, le ventre blanc. Les yeux du male, au contraire, «sont du vert le plus splendide, et doués d'un reflet méłallique comme les plumes vertes de certains oiseaux-mouches. La gorge et le ventre sont cramoisi éclatant, le dos gris cendré, et le poisson tout entier semble devenir diaphane et comme lumineux par suite d'une incandescence interne >. Après le frai, toutes ces couleurs changent; la gorge et l'abdomen prennent un ton rouge plus terne, le dos devient plus vert, et les tons phosphorescents disparaissent.
Nous avons déjà parlé des démonstrations amoureuses de l'épinoche male pour la femelle; depuis la publication de la première édition de cet ouvrage, on a constaté chez les poissons plusieurs exemples des assiduités du mâle auprés de la femelle. M. W. S. Kent assure que le Labrus mixtus male qui, comme nous l'avons vu , différe de la femelle au point de vue de la coloration, creuse

[^188]* un trou profond dans le sable du réservoir od il se trouve, puis essaie, par toutes sortes de démonstrations, de persuader à une femelle de la même espèce de venir partager ce trou avec lui; il va et vient de la femelle au nid qu'il a construit et tache évidemment de la décider à le suivre \geqslant. Le Cantharus lineatus male devient noir plombé pendant la saison des amours; il se retire alors à l'écart pour creuser un trou qui doit servir de nid. «Chaque male veille alors avec vigilance sur le trou qu'il a creusé, il attaque et chasse tous les autres males qui ont l'air de s'approcher. Sa conduite est toute différente envers les femelles qui, à ce moment, sont d'ordinaire pleines d'œufs. Il emploie tous les moyens en son pouvoir pour leur persuader de venir déposer dans son trou les myriades d'œufs dont elles sont chargées; s'il y réussit, il veille incessamment sur les œufs ${ }^{\mathbf{2 6}}$. 》
M. Carbonṇier, qui a étudié avec beaucoup d'attention un Macropus chinois en captivité, a décrit un cas encore plus frappant de la cour que les males font aux femelles et de l'étalage qu'ils font de leurs ornements ${ }^{27}$. Les malles affectent des couleurs beaucoup plus brillantes que les femelles. Pendant la saison des amours, ils luttent les uns contre les autres pour s'emparer des femelles; au moment où ils leur font la cour, ils étalent leurs nageoires, qui sont tachetées et ornées de raies brillamment colorées, absolument, dit M. Carbonnier, comme le paon étale sa queue. Ils nagent aussi autour des femelles avec une grañde vivacité, et somblent \& par l'étalage de leurs vives couleurs, chercher à attirer l'attention des femelles, lesquelles ne paraissent pas indifféreutes à ce manège; elles nagent avec une molle lenteur vers les malles et semblent se complaire dans leur voisinage \geqslant. Dès que le male s'est assuré la possession de la femelle, il fait un petit amas d'écume en chassant de s? bouche de I'air et des mucosités; puis il recueille dans sa bouche les ceufs fécondés pondus par la femelle, ce qui causa une certaine crainte à M. Carbonnier, qui crut qu'il allait les dévorer. Mais le male les dépose bientôt au sein de l'amas qu'il a fait, les veille avec soin, répare les parties de l'écume qui viennent à se détacher, et prend soin des jeunes quand ils éclosent. Je mentionne ces particularités parce que nous allons voir bientot que cortains poissons males couvent les œufs dans leur bouche. Or, ceux qui ne croient pas au princípe de l'évolution graduelle peuvent, à juste titre, demander quelle a pu être l'origine d'une sem-

26. Nature, mal 1873, p. 25.
27. Bull. de la Soc. d'acclimat. Paris, iblliat 1869 at janv. 1870.
blable habitude. Il est donc intéressant de savorr que certains poissons recueillent les œufs dans leur bouche pour les transporter; cela, en effet, explique en partie le fait dont nous venons de parler, car, s'il survient un délai avant qu'ils puissent déposer les coufs, ils peuvent finir par prendre l'habitude de les couver** dans leur bouche.

Pour en revenir à notre sujet plus immédiat, nous pouvons résumer la question en ces termes : les poissons femelles, autant que je puis toutefois le savoir, rie pondent jamais qu'en présence des males; d'autre part, les mâles ne fécondent jamais lés œufs qu'en présence des femelles. Les mâles luttent les uns contre les autres pour s'emparer des femelles. Les jeunes mâles de beaucoup d'espéces ressemblent aux femelles; mais revêtent, à l'age adulte; des couleurs beaucoup plus brillantes qu'ils conservent pendant toute leur existence. Les mâles d'autres espéces revetent des couleurs plus brillantes que les femelles, et se parent d'ornements nombreux seulement pendant la saison des amours. Les mâles courtisent assidument les femelles, et nous avons vu que, dans un cas tout au moins, ils ont soin d'étaler leur beauté devant elles. Or, est-il possible de croire qu'ils le font sans se proposer aucun but ? Ils n'en atteindraient évidemment aucun si la femelle n'exercait pas un choix, et si elle ne prenait pas le mâle qui lui platt ou qui l'excite davantage. Si on admet un choix de cette nature, les faits relatifs à l'ornementation des males s'expliquent facilement par le principe de la sélection sexuelle.
Il en résulte que certains poissons males ont acquis de brillantes couleurs grâce à la sélection sexuelle. Nous devons done rechercher si, dans cette hypothèse, on peut, en vertu de la loi de l'égale transmission des caractères aux deux sexes, étendre cette explication aux groupes où les males et les femelles sont brillants à un degré égal ou presque égal. Quand il s'agit d'un genre tel que celui des Labrus, qui comprend quelques-uns des poissons les plus splendides qui soient au monde, le Labrüs pavo, par exemple ${ }^{28}$, qu'avec une exagération pardonnable on décrit comme formé de lapis-lazuli, de rubis, de saphirs et d'améthystes, incrustés dans des écailles d'or poli, nous pouvons, très probablement, accepter cette hypothèse; car nous avons vu que, chez une espèce au moins, la coleration des males et des femelles diffère beaucoup. On peut considérer les vives colorations de certains poissons et de beaucoup d'animaux inférieurs comme la conséquence directe de
28. Bory de Salnt-Vincent, Dich. Glass. d'Hist. nat., vol. IX, 1826, p. 151.
la nature des tissus et des conditions ambiantes, sans qu'il soit besoin de faire intervenir aucune sélection. Le poisson doré (Cyprinus curatus), à en juger par analogie avec la variété dorée de la carpe commune, constitue peut-etre un exemple de ce fait, car il peut devoir ses vives couleurs à une variation brusque et unique, conséquence de conditions auxquelles il a été soumis en captivité. Il est plus probable cependant que, grace à la sélection artificielle, on a considérablement exagéré ces couleurs; cette espèce, en effet, a été cultivée avec beaucoup de soin en Chine dès une époque fort reculée ${ }^{z y}$. On ne peut guère admettre que, dans les conditions naturelles, des êtres aussi hautement organisés que les poissons, et qui ont des rapports si complexes avec tout ce qui les entoure, aient pu acquérir des couleurs aussi brillantes, sans qu'un tel change ment ait provoqué des inconvénients ou des avantages, et par conséquent sans l'intervention de la sélection naturelle.
Que devons-nous donc conclure relativement aux nombreux poissons dont les deux sexes sont magnifiquement colorés? M . Wallace ${ }^{30}$ soutient que les espèces qui fréquentent les récifs où abondent les coraux et les autres organismes aux couleurs éclatantes, ont acquis elles-mêmes ces brillantes couleurs, afin de passer inaperçues devant leurs ennemis; mais, si mes souvenirs sont fidèles, ces poissons n'en deviennent que plus apparents. Dans les eaux douces des régions tropicales, on ne rencontre ni coraux ni autres organismes brillamment colorés auxquels les poissons puissent ressembler; cependant beaucoup d'espèces qui habitent le fleuve des Amazones revetent de magnifiques couleurs, et un grand nombre de Cyprinides carnivores de l'Inde sont ornés «de lignes longitudinales brillantes affectant des teintes diverses ${ }^{31}$ ». M. M'Clelland, en décrivant ces poissons, va jusqu'à supposer que l'éclat particulier de leurs couleurs sert d'appat pour attirer les martins-pécheurs, lessternes et les autres oiseaux destinés à tenir en

[^189]échec l'aưgmentation du nombre de ces poissons; mais, aujourd'hui, peu de naturalistes seraient disposés à admettre qu'un animal ait revêtu de brillantes couleurs pour faciliter sa propre destruction. Il est possible que certains poissons soient devenus apparents pour avertir les oiseaux et les animaux carnivores (comme nous l'avons vu à propos des chenilles) qu'ils ne sont pas bons à manger ; mais les animaux piscivores ne rejettent, que je sache, aucun poisson d'eau douce tout au moins. En résumé, l'hypothèse la plus probable à l'égard des poissons dont les deux sexes affectent de vives couleurs, c'est que ces couleurs, acquises par les males comme ornements sexuels, ont été transmises à l'autre sexe à un degré à peu près égal.

Nous avons maintenant à considérer un autre point: lorsque la coloration ou les autres ornements du mâle diffërent sensiblement de ceux de la femelle, faut-il en conclure que le male seul a subi des modifications et que ces variations sont héréditaires dans sa descendance mâle seule; ou bien que la femelle a été spécialement modifiée dans le but de devenir peu apparente afin d'échapper plus facilement à ses ennemis, et que ces modifications se transmettent à sa descendance femelle seule? Il est évident que beaucoup de poissons ont acquis une certaine coloration dans le but d'assurer la sécurité de l'espèce, et on ne saurait jeter un regard sur la surface supérieure tachetée d'une plie, sans être frappé de sa ressemblance avec le lit de sable sur lequel elle vit. En outre, certains poissons, grâce à l'action de leur système nerveux, ont la faculté de changer de couleur dans un très court espace de temps, pour s'adapter aux couleurs des objets environnants ${ }^{32}$. Le docteur Gunther ${ }^{33}$ cite un des exemples les plus frappants d'un animal protégé par sa couleur et par sa forme, autant tovtefois qu'on peut en juger d'après des individus conservés ; il s'agit d'une certaine anguille de mer, pourvue de filaments rougeâtres, qu'on peut à peine distinguer des algues auxquelles elle se cramponne par la queue. Mais ce qui nous importe actuellement, c'est de savoir si les femelles seules se sont modifiées dans ce but. Si les individus appartenant à l'un et à l'autre sexe sont sujets à varier, on comprend facilement que la sélection naturelle ne puisse intervenir pour modifier l'un des sexes, afin d'assurer sa sécurité, qu'autant que les individus appartenant à ce sexe sont exposés plus longtemps au danger ou ont moins de pouvoir pour y échapper; or,
chez les poissons, les males et les femelles ne paraissent pas différer sous ce rapport. S'il y avait une différence, elle intéresserait surtout les males qui, généralement moins grands et plus actifs que les femelles, courent plus de dangers; cependant, lorsque les sexes diffèrent, presque toujours les males sont le plus richement colorés. Le male féconde les œufs immédiatement aprés la ponte, et lorsque cette opération dure plusieurs jours, comme chez le Saumon ${ }^{34}$, le male ne quitte pas la femelle. Dans la plupart des cas, les deux parents abandonnent les œufs après la fécondation, de sorte que, pendant l'acte de la ponte, les males et les femelles sont exposés aux même dangers, et tous deux jouent un role également important au point de vue de la production d'œufs féconds; en conséquence, les males et les femelles, plus ou moins brillamment colorés, étant également soumis aux mêmes chances de destruction ou de conservation, tous deux doivent exercer une influence égale sur la coloration de leurs descendants.
Certains poissons appartenant à diverses familles construisent des nids, et il en est qui prennent soin des petits après leur éclosion. Les Crenilabrus massa et C. melops, males et femelles, si brillamment colorés, travaillent ensemble à la construction de leurs nids quils forment d'algues marines, de coquilles, etc. ${ }^{35}$. Mais, chez certaines espèces, les males se chargent de toute la besogne, et, plus tard, prennent exclusivement soin des jeunes. C'est le cas des Gobies à couleurs ternes ${ }^{30}$, dont les males et les femelles ne paraissent pas différer au point de vue de la coloration, ainsi que des Épinoches (Gasterosteus) chez lesquels les males revetent pendant la saison du frai de si éclatantes couleurs. Le Gast. leiurus male à queue lisse remplit pendant longtemps, avec des soins et une vigilance exemplaires, les devoirs de nourrice; il ramène constamment avec douceur vers le nid les jeunes qui s'en éloignent trop. Il chasse courageusement tous les ennemis, y compris les femelles de son espèce, Ce serait même un soulagement pour le male que la femelle, après avoir déposé ses ceufs, fôt immédiatement dévorée par quelque ennemi, caril est incessamment obligé de la chasser hors du nid ${ }^{37}$.
Certains autres poissons males de Amérique du Sud et de Cey-
34. Yarrell, o. c., II, p, 11.
35. D'après les observations de M. Gerbe : voir Günther, Record of Zoolog, Llterature, 1865, p. 194.
36. Cuvier, Règne animal, vol. II, 1829, p. 242.
37. M. Warington, Description des habitudes du Gasterosteus leiurus dans Annals and Mag., etc., nov. 1856.
lan, appartenant à deux ordres distincts, ont l'habitude extraordinaire de couver dans leur bouche, ou dans leurs cavités branchiales, les œufs pondus par les femelles ${ }^{38}$. D'après M. Agassiz, les males des espèces de l'Amazone ayant la même habitude, «sont non seu* lement plus brillants que les femelles en tout temps, mais surtout pendant la saison du frai, > Les diverses espèces de Geophagus agissent de mème, et, dans ce genre, une protubérance marquée se déveroppe sur le sommet de la tete des males pendant la saison du frai. Le professeur Agassiz a obseryé chez les diverses espéces de Chromides, des différences sexuelles de couleur, «soit qu'ils pondent leurs ceufs parmi les plantes aquatiques, ou dans des trous, où ces œufs éclosent sans autres soins, soit qu'ils construisent dans la boue de la rivière des nids peu profonds, sur lesquels ils se pot sent, comme le Promotis. Il convient aussi de remarquer que ces espèces couveuses sont au nombre des plus brillantes dans leurs familles respectives; l'Hygrogonus, par exemple, est vert éclatant, avec de grands ocelles noirs, cerclés du rouge le plus brillant. ? On ignore si, chez toutes les espèces de Chromides, le male couve seul les œufs. Toutefois on ne saurait admettre que cette protection ou ce défaut de protection puisse avoir une influence quelconque sur les différences de couleurs entre les males et les femelles. En outre, il est évident que, dans tous les cas où les males se chargent exclusivement des soins \& donner aux nids et aux jeunes, la destruction des males brillamment colorés aurait beaucoup plus áinfluence sur le caractère de la race, que celle des femelles aussi brillamment colorées ; en effet, la mort du male, pendant la période d'incubation et d'élevage, entrafnerait la mort des petits. Cependant, dans beaucoup de cas de ce genre, les males sont beaucoup plus brillamment colorés que les femelles,

Chez la plupart des Lophobranches (Hippocampi, etc.), les males sont pourvus de sacs marsupiaux ou dépressions hémisphériques de l'abdomen, dans lesquels ils cowvent les oeufs pondus par la femelle. Les males font preuve du plus grand attachement pour les jeunes ${ }^{39}$. La coloration des Lophobranches males et femelles ne diffère pas ordinairement beaucoup, le docteur Gunther croit cependant que les Hipprcampes males sont un peu plus brillants que les femelles. Le genre Solenostoma offre toutefois un cas ex-

[^190]ceptionnel très curieux ${ }^{40}$, car la femelle est beaucoup plus brillamment colorée et tachetée que le male, et possède seule un sac marsupial pour l'incubation des œufs; le Solenostoma femelle diffère donc sous ce dernier rapport de tous les autres Lophobranches et de presque tous les autres poissons, en ce qu'eller. affecte des couleurs plus brillantes que le male. Il est peu probable que cette double inversion de caractere si remarquable chez la femelle soit une col̆ncidence accidentelle. Comme plusieurs poissons mâles qui s'occupent exclusivement des soins à donner aux œufs et aux jeunes sont plus brillamment colorés que les femelles, et qu'au contraire le Solenostoma femelle, chargée de ces fonctions, est plus belle que le male, on pourrait en conclure que les belles couleurs des individus appartenant au sexe le plus nécessaire aux besoins des jeunes, doivent, en quelque manière, servir à les protéger. Mais on ne saurait soutenir cette hypothèse, quand on considère la multitude de poissons dont les males sont, périodiquement ou d'une manière permanente, plus brillants que les femelles, sans que leur existence soit, plus que celle de ces dernières, importante pour la durée de l'espèce. Nous rencontrerons, en traitant des oiseaux, des cas analogues où les attributs usuels des deux sexes sont complêtement intervertis; nous donnerons alors ce qui nous semble etre l'explication la plus probable de ces exceptions, c'est-à-dire que, contrairement à la règle générale qui veut que, dans le règne animal, les femelles choisissent les males les plus attrayants, ce sont dans ces cas les males qui choisissent les femelles les plus séduisantes.

En résuné, chez la plupart des poissons, quand la couleur ou les autres caraetères d'ornementation diffèrent chez les males et les femelles, nous pouvons conclure que les males ont primitivement subi des variations; que ces variations sont devenues héréditaires chez le même sexe, et que, par suite de l'attraction qu'elles exercent sur les femelles, ces variations se sont accumulées à l'aide de la sélection sexuelle. Ces caractères ont été cependant dans bien des cas transmis partiellement ou totalement aux femelles. Dans d'autres cas encore, les deux sexes ont acquis une coloration semblable comme moyen de sécurité; mais il ne semble pas y avoir d'exemple que les couleurs ou que les autres caractères de la femelle seule se soient spécialement modifiés dans ce but.

Un dernier point reste à considérer : on a observé, dans diverses

[^191]parties du monde, des poissons produisant des sons particuliers, et on les a quelquefois qualifiés de musicaux. M. Dufossé, qui s'est particulièrement occupé de cette question, affirme que quelques poissons oroduisent volontairement des sons différents en employant plusieurs moyens, dont les principaux sont • la friction des os du pharynx, la vibratiou de certains muscles attachés à la vessie natatoire qui joue le role d'une table d'harmonie, la vibration des muscles propres à la vessie natatoire. Par ce dernier moyen le Trigla produit des sons très purs et très profonds qui couvrent presque l'octave. Mais le cas le plus intéressant pour nous est celui que présentent deux espèces d'Ophidium, chez lesquels les malles seuls sont pourvus d'un appareil propre à produire le son, appareil qui consiste en certains petits ossements mobiles pourvus de muscles en rapport avec la vessie natatoire ${ }^{41}$.

On dit que l'on peut entendre, à une profondeur de vingt brasses, le bruit, ressemblant à un battement de tambour, que font les ombrines des-mers d'Europe. Les pécheurs de la Rochelle assurent - que ce bruit est produit par les males pendant le frai, et qu'on peut, en l'imitant, les prendre sans amorce ${ }^{42} \geqslant$.
Cette observation, et plus particulièrement la conformation de l'ophidium, nous permet presque d'affirmer que dans la classe la plus infime des vertébrés, comme chez tant d'insectes et chez tant d'araignées, la sélection sexuelle a développé, dans quelques cas au moins, des appareils propres à produire des sons comme moyen de rapprocher les sexes.

AMPHIBIE

Urodeles. - Je vais m'occuper d'abord des amphibies à queue. La couleur et la conformation diffèrent souvent beaucoup chez les salamandres ou les tritons males et femelles. Pendant la saison des amours, on roit parfois des griffes prenantes se développer sur les pattes antérieures du malle de quelques espèces; pendant cette mêmesaison, le Triton palmipes male a les pattes postérieures pourvues d'une membrane natatoire, qui se résorbe presque complêtement pendant l'hiver; de telle sorte que les pattes du male ressem-
41. Comptes rendus, tom. XLVI, 1858, p. 353; tom. XLVII, 1858, p. 916; tom. LIV, 1862, p. 393. Quelques savants affirment que le bruit fait par les 0 m brines (Scizena aquila) ressemble plus a celui de la fiate ou de lorgue qu'à celui du tambour. Le docteur Zouteveen, dans la traduction hollandaise du présent ouvrage, a citó quelques renseignements nouveaux sur les sons émis par les poissons.
42. Rev. G. Kingsley, dans Nature, mai 1870, p. 40.
blent alors à celles de la femelle ${ }^{\text {t3 }}$. Cette conformation permet sans doute au malle de rechercher et de poursuivre activement la fomelle. Une créte élevée et profondément dentelée apparait sur le dos et sur la queue de nos tritons communs males (T. punctatus et T. cristatus), pendant la saison des amours, et se résorbe dans le courant de l'hiver. Cette crête, dépourvue de muscles, d'après M. Saint-Georges Mivart, ne peut faciliter la locomotion ; mais comme, pendant la saison des amours, elle se frange de vives couleurs, elle constitue évidemment un ornement masculin. Chez beaucoup d'espéces, le corps offre des tons heurtés quoique som. bres, qui deviennent plus vifs lors de la saison des amours. Le petit triton commun (T, punctatus) male, par exemple, \& a la partie supérieure gris brun et la partie inférieure jaune ; au printemps, la partie inférieure du corps affecte une riche teinte orange partout marquée de taches arrondies et foncées >. Le bord de la crete revet alors des nuances rouges ou violettes très brillantes, La femelle est ordinairement brun-jaunatre, avec des taches brunes disséminées; la partie inférieure du corps est souvent tout unie ${ }^{4}$. Les jeunes affectent une nuance sombre, Les œufs fécondés pendant Vacte de la ponte ne sont subséquemment l'objet d'aucune attention ni d'aucun soin de la part des parents. Nous pouvons donc en conclure que les males ont acquis, par sélection sexuelle, leurs vives couleurs et leurs ornements ; ces caractères ont ensuite êté transmis soit à la descendance male seule, soit aux deux sexes.

Anoures ou Batraciens. - Les couleurs servent évidenıment de moyen de protection à bien des grenouilles et à bien des crapauds, les teintes vertes si vives des rainettes, et les nuances pommelées de plusieurs espèces terrestres, par exemple. Le crapaud le plus remarquablement coloré que j'aie jamais vu, le Phryniscus nigricans ${ }^{\text {ts }}$, a toute la surface supérieure du corps noire comme de l'encre, avec le dessous des pieds et certaines parties de l'abdomen tachetés du plus brillant vermillon. On le rencontre ordinairement dans les plaines sablonneuses ou dans les immenses prairies de la Plata, exposé au soleil le plus ardent; il ne saurait donc manquer d'attirer les regards. Ces couleurs peuvent lui etre utiles en ce que les oiseaux de proie reconnaissent en lui une nourriture nauséabonde.

[^192]On trouve au Nicaragaa une petite grenoulle rouge et brene admirable; elle ne cherche pas à se cacher comme les autres espèces, mais sautille tout le jour sans avoir l'air de redouter aucun ennemi.' Dès que M. Belt ${ }^{16}$ eut constaté ces habitudes, il en conclut qu'elle ne devait pas etre bonne à manger. En effet, après bien des essais, il parvint à en faire avaler une à un jeune canard; mais celui-ci la rejeta immédiatement, et continua pendant longtemps à secouer la tete et à se gratter le bec comme s'il voulait se débarrasser d'un goat désagréable.
Les grenouilles et les crapauds, d'après le docteur Gänther, ne présentent aucun cas frappant de coloration sexuelle; cependant on peut souvent distinguer le male de la femelle, car le premier a des couleurs un peu plus intenses. Le docteur Gonther n'a pas non plus observé de différence sexuelle marquée dans la conformation externe de ces animaux, sauf les proéminences qui se développent pendant la saison des amours sur les pattes antérieures du male, et qui lui permettent de maintenir la femelle ${ }^{47}$. Il est surprenant que les grenouilles et les crapauds n'aient pas acquis de différences sexuelles plus prononcées, car, bien qu'ayant le sang froid, ils ont de vives passions. Le docteur Ganther a trouvé, à plusieurs reprises, des crapauds femelles mortes étouffées sous les embrassements de trois ou quatre males. Le professeur Hoffman de Giessen a vu, pendant la saison des amours, des grenouilles lutter des journées entières et avec tant de violence, que 1 une d'elles avait le corps tout déchiquetó.
Les grenouilles et les crapauds offrent cependant une différence sexuelle intéressante par rapport aux facultés musicales qui caractérisent les males, s'il nous est permis toutefois d'appliquer le terme musique aux sons discordants et criards que nous font entendre les grenouilles taureau males et cortaines autres espèces. Cependant certaines grenouilles émettent des sons agréables. Près de Rio de Janeiro, j'interrompais souvent ma promenade dans la soiréo pour écouter les petites rainettes (Hyla) qui, perchées sur des tiges au bord de l'eau, faisaient entendre une succession de notes harmonieuses et douces. C'est surtout pendant la saison des amours que les males font entendre leur voix, comme chacun a pu le remarquer à propos du coassement de notre grenouille commune ${ }^{*}$,

[^193]Aussi, et c'est une conséquence de ce fait, les organes vocaux des males sont-ils plus développés que ceux des femelles. Dans quelques genres les males seuls sont pourvus de bourses s'ouvrant dans le larynx ${ }^{49}$. Chez la grenouille verte (Rana esculenta), par exemple, " les males seuls possèdent des bourses qui forment, lorsqu'elles sont remplies d'air, pendant l'acte du coassement, de larges vessies globulaires qui font saillie de chaque coté de la tête, près des coins de la bouche \geqslant. Le coassement du male devient ainsi très puissant, tandis que celui de la femelle se réduit à un léger grognement ${ }^{\boldsymbol{\omega}}$. Les organes vocaux ont une structure toute différente chez les divers genres de la famille; on peut dans tous les cas attribuer leur développement à la sélection sexuelle.

REPTILRS.

Chéloniens. - On ne remarque chez les tortues aucune différence sexuelle bien tranchée. La queue du mâle, chez quelques espèces, devient plus longue que celle de la femelle. Chez d'autres espèces, le plastron, ou surface inférieure de la carapace du malle, présente une légère concavité si on le compare au dos de la femelle. Chez une espèce des États-Unis (Chrysemys picta), les pattes antérieures du male se terminent par des griffes deux fois plus longues que celles de la femelle; ces griffes servent pendant l'union des sexes ${ }^{E 1}$. Les mâles de l'immense tor tue des iles Galapagos (Testudo nigra) atteignent, dit-on, une taille plus considérable que les femelles: le mâle, lors de la saison des amours, mais à aucune autre époque, pousse des cris rauques ressemblant à des beuglements qu'on peut entendre ¿ plus de cent métres de distance; la femelle, au contraire, ne se sert jamais de sa voix ${ }^{58}$.

On assure qu'on peut entendre à une grande distance le bruit que font les Tesfudo elegans de l'Inde quand elles se précipitent l'une contre l'autre, lors des combats qu'elles se livrent ${ }^{53}$.

Crocodiles. - Les malles et les femelles ne diffèrent certainement pas au point de vue de la coloration; je ne saurais dire si les malles luttent les uns contre les autres, mais cela est probable, car il est des espèces qui se livrent à de prodigieuses parades en présence des femelles. Bartram ${ }^{54}$ prétend que l'alligator male cherche à
49. J. Bishop, Todd's Cyclop. of Anat. and Phys., vol. IV, p. 1503.
50. Bell, o. c., p. 112-114.
51. M. C. J. Maynard, The American Naturalist. Déc, 1869, p. 655.
52. Voir mon Journ. of Researches, etc., 1845, p. 38t.
53. Günther, Reptiles of Bristish India, 1864, p. 7.
54. Travels through Carolina, eto., 1791, p. 128.
captiver la femelle en poussant de véritables rugissements, et en fouettant avec sa queue l'eau qui rejaillit de tous cottés au milieu dela lagune ; gonflé à crever, la tête et la queue relevées, il pivote et tourne à la surface de l'eau, en affectant, pour ainsi dire; la pose d'un chef indien racontant ses hauts faits guerriers. > Pendant la saison des amours, les glandes sous-maxillaires du crocodile émettent une odeur musquěe qui se répand dans tous leurs repaires ${ }^{55}$.

Ophidiens. - Le docteur Günther affirme que les males atteignent une moins grande taille que les femelles, et ont généralement la queue plus longue et plus grêle qu'elles; mais il ne connait pas d'autre différence de conformation externe. Quant à la couleur, le docteur Günther arrive presque toujours à distinguer le mâle de la femelle par ses teintes plus prononcées; ainsi, la bande noire en zigzag sur le dos de la vipère anglaise mâle est plus nettement définie que chez la femelle. Les serpents à sonnettes de l'Amérique du Nord présentent des différences encore plus tranchées; le m^le, ainsi que me l'a fait remarquer le gardien des Zoological Gardens, diffère de la femelle par la nuance jaune plus foncée de tout son corps. Le Bucephalus capensis de l'Afrique australe présente une différence analogue, car les cótés de la femelle \& ne sont jamais aussi panachés de jaune que ceux du mâle ${ }^{56} \geqslant$. Le Dipsas cynodon mâle de l'Inde, au contraire, est brun noiràtre, avec le ventre en partie noir, tandis que la femelle est rougeatre ou jaune olive avec le ventre jaune uni ou marbré de noir. Chez le Tragopz dispar du même pays, le mâle affecte une teinte vert clair et la femelle des nuances bronzées ${ }^{57}$. Il est évident que les couleurs de quelques serpentsconstituent pour euxun moyen deprotection; lesteintes vertes, par exemple, des serpents qui habitent les arbres, et les divers tons pommelés des espèces qui habitent les endroits sabionneux ; mais il est douteux que chez beaucoup d'espèces, telles que le serpent commun d'Angleterre ou la vipère, la couleur contribue à les dissimuler; on peut en dire autant pour les nombreuses espèces exotiques qui affectent des couleurs brillantes avec la plus extrême élégance. Chez certaines espèces la coloration des jeunes diffère beaucoup de celle des adultes ${ }^{58}$.

Les glandes odorantes anales des serpents fonctionnent active-

[^194]ment penđant la saison des amours ${ }^{50}$; il en est de meme chez les lézards, et, comme nous l'avons vu, pour les glandes sous-maxilLaires des crocodiles. La plupart des animaux males se chargent de chercher les femelles; ces glandes odorantes servent donc probablement à exciter et à charmer ces dernières, plutot qu'à les attirer vers le male. Les serpents males, bien que si inertes en apparence, ont des passions très vives ; on peut, en effet, voir souvent plusieurs mâles se presser autour d'une seule femelle, quelquefois mème quand elle est morte. On n'a pas observé qu'ils luttent les uns contre les autres, pour s'assurer la possession des femelles. Les aptitudes intellectuelles des serpents sont plus développées qu'on ne serait disposé à le croire. Les serpents des Zoological Gardens apprennent bientot à ne plus mordre les barres de fer dont on se sert pour nettoyer leurs cages ; le docteur Keen, de Philadelphie, a remarqué que des serpents qu'il a élevés ont appris à éviter un nœud coulant après s'étre laissé prendre quatre ou cinq fois. Un excellent observateur, M. E. Layard ${ }^{60}$, a vu, à Ceylan, un Cobra passer la tete au travers d'un trou étroit, et avaler un crapaud. «Ne pouvant plus retirer sa tête par suite de cet obstacle, il dégorgea, avec regret, le précieux morceau qui commença à s'éloigner; c'en était plus que ne pouvait supporter la philosophie du serpent, aussi reprit-il le crapaud; mais, après de violents efforts pour se dégager, il fut encore une fois obligé d'abandonner sa proie; il avait du moins compris la leçon, et, saisissant le crapaud par une patte, ille fit passer par le trou et l'avala en triomphe.

Le gardien des Zoological Gardens m'assure que certains serpents, les crotales et les pythons par exemple, le reconnaissent au milieu d'autres personnes. Les cobras enfermés dans une même cage semblent éprouver un certain attachement les uns pour les autres ${ }^{61}$.

Il ne résulte cependant pas de ce que les serpents ont quelque aptitude à raisonner, ressentent de vives passions et sont susceptibles d'une certaine affection mutuelle, qu'ils aient également assez de gount pour admirer les vives couleurs des males, au point de provoquer l'ornementation de l'espèce par sélection sexuelle. Quoi qu'il en soit, il est très artficile d'expliquer autrement l'extreme beauté de certaines espèces, du serpent-corail, par exemple, de l'Amérique du Sud, rouge vif avec raies transversales noires et jaunes. Je me rappelle la surprise que me causa la béauté du premier serpent'
59. 0 wen, o. c., 1, 615,
60. Rambles in Ceylon, Ann. and. Mag. of Nat. Eltet.. go str., vol. XX, 1858, ค. 333.

1. Doctuar Giiatiour, op. cit., D. Bue,
de ce gênré que jó vis au Brésil traversér un sentler, M. Wallace, adoptant en cela l'opinion du docteur Gunther ${ }^{62}$ affirmé qu'on né rencontré de serpents colorés dé cette manière particulière que dans l'Amérique du Sud; il en existe quatre genres. L'un, PElaps, est venimeux ; un second, fort distinct, l'est aussi, croit-on ; les deux autres sont inoffensifs. Les espéces appartenant di ces divers genres habitent les mémes régions et se ressemblent si complètement \& qu'un naturaliste seul peut distinguer lés espêces inoffensives des espèces venimeuses ». Aussi, M. Wallace croit que les espèces inoffensives ont probablement acquis cette coloration comme moyen de sécurité, en vertu du principe d'initation, parce qu'elles doivent parattre dangereuses à leurs ennemís. 11 reste, it est vrai, à expliquer la belle coloration de l'Elaps venimeux, et il convient peut-Atre de l'attribuer á l'action de la sélection sexuelle.
Les serpents, outre le sifflement, produisent d'autres sons. Le terriblé Echis carinata porte sur les cottés des rangées obliques d'écailles ayant une structure particulière et les bords dentelés; quand ce serpent est excité, ces ócailles frottent les unes contre les autres, et il en résulte un singulier bruit prolongé ressemblant presque à un siffilement ${ }^{\text {e3 }}$. Nous possédens quelques renseignements pôsitifs sur le serpent à sonnettes. Le professeur Aughey ${ }^{64}$ a observé, dans deux occasions, un serpent à sonnettes enroulé, la tete levée, qui continua pendant une demi-heure à faire entendre le bruit quí lui a valu son nom, à de très courts intervalles; enfin il tit un autre serpent s'approcher et ils s'accouplèrent. Le professeur en conclut que l'un des buts du bruit produit par le serpent est de rapprocher les sexes, mais matheureusernent il ne put constater si c'était le male ou la femelle qui restait stationnaire et appelait l'autre. Il no faudrait pas conclure de ce fait que ce bruit ne soit pas avantageus au serpent à d'autres δ gards, comme un avertissement, par exem ple, aux animaux qui pourraient les attaquer ; je suis en outre assez disposé à croire que ce bruit leur sert aussià frapper leur proie de terreur au peint de la paralyser. Quelques autres serpents font aussi entendre un bruit distinct, qu'ils produisent en faisant rapide ment vibrer leur queue contre les tiges des plantes ; j'ai vu dan l'Amérique du Sud un trigonocéphale qui produisait ainsi ce bruit Lacertilia. - Les males de certaines espéces de lézards, et pro bablement meme de la plupart d'entre elles, se livient des combat* acharnés pour s'assurer la possession des femelles. L'Anelis cristo.
2. Westminster Review, July I, 1807, p. 88.
3. Docteur Anderson, Proc. Zoolog. Suc, 106'1, y. 100
4. The American Natsralis, 1032, 1. QU.
tellus qui habite les arbres de l'Amérique du Sud, est extrêmement belliqueux : \& Au printemps et au commencement de l'été, rdeux males adultes se rencontrent rarement sans se livrer bataille. Dès qu'ils s'aperçoivent, ils baissent et relèvent alternativement la tête trois ou fuatre fois de suite, en même temps qu'ils déploient la fraise ou la poche qu'ils ont sous la gorge; les yeux brillant de rage, ils agitent leur queue, pendant quelques secondes, comme pour ramasser leurs forces, puis ils s'élancent furieusement l'un sur l'autre, et, se roulent par terre en se tenant fortement par les dents. Le combat se termine d'ordinaire par l'ablation de la queue d'un des combattants, queue que le vainqueur dévore souvent. > Le male de cette espèce est beaucoup plus grand que la femelle ${ }^{65}$; c'est là, d'ailleurs, autant que le docteur Günther a pu s'en assurer, la règle générale chez tous les lézards. Le Cyrtodactylus rubidus mâle des fles Andaman possède seul des glandes anales; ces glandes, à en juger par analogie, servent probablement à émettre une odeur ${ }^{66}$.

On a souvent observé des différences assez marquées dans les caractères externos des mâles et des femelles. L'Anolis mâle, dont nous avons déjà parlé, porte sur le dos et la queue une crête qu'il peut dresser à volonté, mais dont il n'existe aucune trace chez la fomelle. Le Cophotis ceylanica femelle porte sur le dos une crête moins développée que celle du male; et le docteur Ginnther affirme qu'on peut constater le même fait chez les femelles de beaucoup d'Iguanes, de Caméléons et d’autres lézards. Cependant, chez quelques espèces, la crête est également développée chez le male et chez la femelle, chez l'Iguana tuberculata, par exemple. Dans le genre Sitana, les males seuls portent une large poche sous la gorge (fig. 33, Pl. 3) ; cette poche se replie comme un éventail; elle est colorée en bleu, en noir et en rouge; mais ces belles couleurs ne se manifestent que pendant la saison de l'accouplement. La femelle ne possède meme pas un rudiment de cet appendice. Chez l'Anolis crislatellus, d'après M. Austen, la poche du gosier, qui est rouge vif marbré de jaune, existe aussi chez la femelle, mais à l'état rudimentaire. Chez d'autres lézards, ces poches existent chez les mâles et les femelles. Ici, comme dans un si grand nombre de cas déjà cités, nous trouvons chez des espèces appartenant à un même groupe, un même caractère réservé aux mâles, ou plus développé chez les mâles que chez les femelles, ou également développé chez

[^195]les deux sexes. Les petits lézards du genre Draco qui planent dans l'air au moyen de parachutes soutenus par leurs cotes, et dont les couleurs si belles qu'elles sont défient toute description, portent sur la gorge des appendices charnus qui ressemblent aux barbes des Gallinacés. Ces parties se dressent lorsque l'animal est excité. Elles existent chez les mâles et les femelles, mais elles sont plus développées chez le mâle adulte, où l'appendice médian atteint souvent deux fois la longueur de la tête. La plupart des espèces ont également une crête basse courant le long du cou; cette crête se développe bien davantage chez les màles complètement adultes, que chez les femelles ou chez les jeunes mâles ${ }^{07}$.
On alfirme que les mâles et les temelles d'une espéce chinoisu vivent par couples pendant le printemps; *si l'on vient à prendre l'un, l'autre se laisse tomber sur le sol et se laisse prendre sans essayer de fuir; > effet probable du désespoir ${ }^{68}$.

On constate d'autres différences encore plus remarquables entre certains lézards mâles et femelles. Le Ceratophora aspera mâle porte à l'extrémité de son museau un appendice long comme la moitié de la tête. Cet appendice est cylindriquèe, couvert d'écailles, flexible, et semble pouvoir se redresser; il reste à l'état rudimentaire chez la femelle. Chez une seconde espèce du même genre, une écaille terminale forme une petite corne au sommet de l'appendice flexible; chez une troisième espèce (C. Stoddartii, fig. 34, Pl. 13), tout l'appendice se transforme en une corne, ordinairement blanche, mais qui prend une teinte rougeâtre lorsque l'animal est excité. Chez le malle adulte, cette corne a douze millimètres de longueur, mais elle reste extrêmement petite chez la femelle et chez les jeunes. Le docteur Gunther fait remarquer qu'on peut comparer ces appendices aux crêtes des gallinacés; ils ne servent, sans doute, que comme ornements.

Le genre Chamæleon présente le maximum des différences entre les males et les femelles. La partie supérieure du crâne du C. bifur cus mâle (fig. 35, Pl. 13), habitant Madagascar, se prolonge en deux projections osseuses fortes et considérables couvertes d'écailles comme le reste de la tête : modification importante de conformation dont la femelle n'a que des rudiments. Chez le Chamæleon Owenii (fig. 36, Pl. 14) de la cote occidentale d'Afrique, le male porte

[^196]sur le museau et sur le front trois cornes curieuses dont la femelle n'offre pas de traces. Ces cornes consistent en une excroissance osseuse recouverte d'un étui lisse faisant partie des téguments génóraux du corps, de sorte qu'elles sont identiques par leur structure à celles du taureau, de la chèvre, ou des autres ruminants portant des cornes à étui. Les trois cornes du Chamæleon Owenii ne ressemblent en aucune façon aux deux grands prolongements du crâne du C. bifurcus; cependant nous croyons pouvoir affirmer qu'elles remplissent le même but général dans l'économie des deux animaux. On est porté à supposer tout d'abord que ces cornes servent aux mâles dans leurs combats, et, comme ces animaux sont très belliqueux ${ }^{60}$, il est probable que cette opinion est fondée. M. C. W. Wood a vu deux C. pumilus se battre avec fureur sur une branche d'arbre; ils agitaient constammentla têteet cherchaient à se mordre, puis ils se reposaient quelques instants pour recommencer ensuite le combat.
La couleur diffère légèrement chez les mates et les femelles de plusieurs espéces de lézards; les teintes et les raies sont plus brillantes et plus distinctes chez les males que chez les femelles. On remarque toutparticulièrement cettedifférence chez le Cophotis, dont nous avons déjáa parlé, etchez l'Acanthodactylascapensis de l'Afrique australe. Chez un Cordytus habitant cette dernière région, le mâle affecte une teinte plus rouge ou plus verte que la femelle. Chez le Calotes nigrilabris de l'Inde, on constate une plus grandedifférence de couleur entre les deux sexes; les lèvres du malle sont noires, celles de la femelle sont vertes. Chez notre petit lézard vivipare commun, Zootoca vivipara, \& le coté inférieur du corps et la base de la queue sont, chez le mâle, couleur orange vif, tacheté de noir; ces mêmes parties sont vert grisâtre pâle sans taches chez la femelle ${ }^{70}$. . Les Sitana malles portent seuls une poche à la gorge, poche magnifiquement teintée de bleu, de noir et de rouge. Chez le Proctotretus tenuis du Chili le mâle seul est marqué de teches bleues, vertes, et rouge cuivre ${ }^{74}$. Dans bien des cas les males conservent les memes couleurs pendant toute l'année; parfois aussi ils deviennent beaucoup plus brillants pendant la saison des amours; je puis citer comme exemple le Calotes Maria qui, pendant cette saison a la tete rouge briltant, tandis que lo corps est vert ${ }^{72}$.

[^197]Chez beaucoup d'espèces les males et les femelles affectent la même coloration brillante, et il n'y a pas liea de supposer que cette coloration serve de moyen de protection. Sans doute; les teintes vertes de oẹux qui habitent les arbres et les fourrés cartribuent \&̀ les dissimuler. Je me rappelle aussi avoir vu dans le nơrd de la Pa tagonie un lézard (Proctotrelus multimaculatus) qui à la moindre alerte ferme les yeux et reste immobile aplati sur le sol; la couleur de sa peau se confond si bien avec le sable environnant qu'il est alors presque impossible de l'apercevoir. Toutefois, on peut supposer que les lézards males ont probablement acquis les couleurs brillantes qui les décorent, ainsi que leurs curieux appendices, pour séduire les femelles, et que ces couleurs ont été ensuite transmises soit aux males seuls soit aux deux cexes. Lax sélection sexuelle parait, d'ailleurs, avoir joué un rôle aussi important chez les reptiles que chez les oiseaux, et la coloration moins apparente des femelles, comparativement à celle des males, ne peut pas s'expliquer, comme M. Wallace le croit pour les oiseaux, dar les dangers que courent les femelles pendant l'incubation.

CHAPITRE XIII

CAnACTRRES SEXURLS SECONDAIRES DES OISEAUK

Différences sexuelles. - Loi du combat. - Armes spéciales. - Organes vocaux. - Musique instrumentale. - Démonstrations amoureuses et danses. - Ornements permanents ou temporaires. - Mues annuelles, simples et doubles. - Les males aiment à faire étalage de leurs ornements.

Les caractéres sexuels secondaires sont plus variés et plus remarquables chez les oiseaux que chez tous les autres animaux; ils n'occasionnent peut-être pas cependant plus de modifications de structure chez les uns que chez les autres. Je m'étendrai done très longuement sur ce sujet. Les viseaux malles possèdent parfois, rarement il est vrai, des armes particulières qui leur permettent de lutter les uns contre les autres. Ils charment les femelles par une 'musique vocale ou instrumentale extrêmement variée. Its sont ornés de toutes sortes de crêtes, de caroncules, de protubérances, de cornes, de sacs à air, de houppes, de plumeaux, et de longues plumes, qui s'élancent gracięusement de toutes les parties du corps. Le bec. les parties nues de la peau do la tete et les plumes présen-
tent souvent les couleurs les plus admirables. Les males font une cour assidue aux femelles; ils dansent, ou exécutent des mouvements binarres et fantastiques sur le sol ou dans l'air. Dans un cas au moins, le male émet une odeur musquée qui sert, sans doute, à séduire ou à exciter la femelle, car un excellent observateur, M. Ramsay ${ }^{1}$, dit en parlant du canard musqué australien (Biziura lobata) que e l'odeur que le male émet pendant l'été appartient en propre à ce sexe et persiste même toute l'année chez quelques individus; mais jamais, même pendant la saison des amours, je n'ai tué une seule fenselle sentant le musc ». Pendant la saison des amours cette odeur est si forte qu'on la sent bien longtemps avant de voir l'oiseau ${ }^{2}$. En résumé, les oiseaux paraissent être de tous les animaux, l'homme excepté, ceux qui ont le sentiment esthétique le plus développé, et ils ont, pour le beau, à peu près le même gout que nous. Il suffit pour le démontrer de rappeler le plaisir que nous avons à entendre leurs chants, et la joie qu'éprouvent les femmes civilisées, aussi bien que les femmes sauvages, à se couvrir la tête de plumes qui leur sont empruntées, et à porter des pierreries qui ne sont guère plus richement colorées que la peau nue et les caroncules de certains oiseaux, Chez l'homme civilisé, toutefois, le sens du beau constitue évidemment un sentiment beaucoup plus complexe, en rapport avec diverses idées intellectuelles.

Avant d'aborder l'étude des caractères qui doivent plus particulièrement nous occuper ici, il me faut signaler certaines distinctions entre les sexes, distinctions qui découlent évidemment de différences dans les habitudes d'existence, car les cas fréquents dans les classes inférieures deviennent rares dans les classes plus élevées. On a cru pendant longtemps que deux oiseaux-mouches du genre Eustephanus, habitant l'ile Juan-Fernandez, appartenaient à des espéces distinctes; mais on sait aujourd'hui, d'après Gould, que ce sont les mâles et les femelles de la même espèce qui différent légèrement par la forme du bec. Dans un autre genre d'oiseaux-mouches (Grypus), le bec du mâle est denteló sur le bord et crochu à son extrémité, différant ainsi beaucoup de celui de la femelle. Chez le Neomorpha de la Nouvelle-Zélande, on remarque une différence plus considérable encore dans la forme du bec, conséquence de l'alimentation différente du malle et de la femelle. On peut observer quelque chose d'analogue ehez le chardonneret (Carduelis elegans), M. J. Jenner Weir assure, en effet, que les chasseurs reconnaissent

[^198]les males à leur bec légèrement plus long. Les bandes de males se nourrissent ordinairement des graines du cardère (Dipsacus), qu'ils peuvent atteindre avec leur bec allongé, tandis que les femelles se nourrissent plus habituellement des graines de la bétoine, ou de Scrophularia. En prenant pour point de-départ une légère différence de cette nature, on peut admettre que la sélection naturelle finisse par produire des différences considérables dans le bec des males et des femelles. Il se peut toutefois que, dans les exemples que nous venons de citer, les males aient d'abord acquis ces bees modifiés comme instrument de combat et que ces modifications aient ensuite provoqué de légers changements dans leurs habitudes d'existence.

Loi du combat. - Presque tous les oiseaux males sont très belliqueux ; ils se servent pour se battre de leur bec, de leurs ailes et de leurs pattes. Nos rouges-gorges et nos moineaux communs se livrent chaque printemps des combats acharnés. Le plus petit de tous les oiseaux, l'oiseau-mouche, est un des plus querelleurs. M. Gosse ${ }^{3}$ décrit un combat auquel il a assisté : deux oiseauxmouches s'étaient saisis par leur bec, ils pirouettèrent sans se lâcher jusqu'à ce qu'enfin, épuisés, ils tombassent à terre. M. Montes de Onca, parlant d'un autre genre d'oiseaux-mouches, affirme qu'il est rare que deux males se rencontrent sans se livrer un furieux combat aérien: * en captivité ils se battent jusqu'a ce que l'un des adversaires ait la langue coupée ; cette blessure entraine rapidement la mort parce que le blessế ne peut plus manger ${ }^{4} \geqslant$. Les mâles de la poule d'eau commune (Gallinula chloropus) \& se disputent violemment les fenelles lors de la saison des amours; ils se redressent dans l'eau et se frappent avec leurs pattes \geqslant. On a ru deux de ces oiseaux lutter ainsi pendant une demi-heure ; puis l'un finit par saisir l'autre par la tette et il l'eut tué, si l'observateur n'était intervenu ; la femelle était tout le temps restée tranquille spectatrice du combat ${ }^{5}$. Les males d'une espèce voisine (Gallicrex cristatus) sont un tiers plus gros que les femelles ; ils sont si belliqueux pendant la saison de l'accouplement que, d'après M. Blyth, les indigènes du Bengale oriental les gardent pour les faire battre. On recherche dans l'Inde d'autres oiseaux lutteurs, les lulbuls (Pycnonotus hæmorrhous), par exemple, qui se battent avec beaucoup d'entrain ${ }^{6}$.

[^199]Le tringa (Macheles pugnax, fig. 37) oiseau polygame, est eélèbre pour son caractère belliqueux; au printemps, les malles, qui sont beaucoup plus grands que les femelles, se rassemblent chaque jour à un endroît spécial où les femelles se proposent de déposer leurs œufs. Les oiseleurs reconnaissent ces endroits à l'aspect du gazon, battu et presque enlevé par un piétinage prolongé. Ils imitent pour se battre les dispositions du coq de combat; ils se saisissent par le bec, et s frappent avec les ailes. La grande fraise de plumes qui entoure leur cou se hérisse, et d'après le colonel Montaigu, \& traîne jusqu'a terre pour protéger les parties les pl s délicates de leur corps $>$; c'est là le seul exemple que je connaisse, chez les oiseaux, d'une conformation servant de bouclier. Toutefois, les belles couleurs qui décorent les plumes de cette fraise permettent de penser qu'elle doit surtout servir d'ornement. Comme tous les oiseaux querelleurs, les tringas semblent toujours disposés à se battre; en captivité ils s'entre-tuent souvent. Montaigu a cependant observé queleurs dispositions belliqueuses augmententau printemps, lorsque les longues plumes de leur cou sont complétement développées, et qu'à cette époque le moindre mouvement d'un de ces oiseaux provoque une mêlée généraie ${ }^{7}$. Je me contenterai de citer deux exemples de ces dispositions belliqueuses chez les palmipèdes; dans la Guyane « lors des combats sanglants que se livrent, pendant la saison des amours, les canards musqués (Cairina moschata) mâles, la rivière est couverte de plumes jusqu'à une certaine distance des endroits où ont lieu ces batailles ${ }^{8}$. Des oiseaux qui paraissent d'ailleurs peu propres à la lutte se livrent de violents combats; airsi les pélicans mâles les plus forts chassent les plus faibles; ils les piquent avec leur énorme bec, et les frappent violemment avec leurs ailes. Les bécasses mâles se battent, en se tiraillant et en se poussant avec leur bec de la manière la plus curieuse. On croit que quelques rares espèces ne se battent jamais; un pic des Etats-Unis (Picus auratus), par exemple, d'après Audubon, bien que \& les femelles soient souvent accompagnées d'une demi-douzaine de joyeux prétendants ${ }^{9} \geqslant$.

Les males, chez beaucoup d'espéces sont plus grands que les femelles, ce qui résulte probablement des avantages qu'ont remportés, sur leurs rivaux les mâles les plus grands et les plus forts, pendant de nombreuses générations. La différence de taille entre
7. Maegillivray, Hist. of British Birds, vol. IV, 1852, p. 177-181.
8. Sir R. Schomburgk, Journ. of R. Geog. Soc., vol: XIII, 1843, p. 5x.
9. Ornithological Biography, vol. I, p. 191. Pour les pélicans et les bécasses, vol. III, p. 381, 477.
les deux sexes devient excessive chez quelques espéces australiennes; ainsi le canard musqué (Biziura) et le Cinclorhamphus cruralis malles sont à peu près deux fois plus gros que leurs femelles respectives ${ }^{10}$. 'Chez beaucoup d'autres espèces, les femelles sont plus grandes que les males; mais, comme nous l'avons déjà fait remarquer, l'explication souvent donnée, que cette différence de taille provient de ce que les femelles sont chargées de toute l'alimentation des jeunes, ne peut ici s'appliquer. Dans quelques cas, ainsi que nous le verrons plus loin, les femelles ont probablement acquis leur grande taille et lear grande force pour vaincre les autres femelles et s'emparer des males.

Beaucoup de gallinacés malles, surtout chez les espéces polygames, sont pourvus d'armes particulières pour combattre leurs rivaux; ce sont les ergots, dont les effets peuvent etre terribles. Un écrivain digne de foi ${ }^{11}$ raconte que, dans le Derbyshire, un milan ayant un jour attaqué une poule accompagnée de ses poulets, le coq, appartenant à une race de combat se précipita à son secours, et enfonça son ergot dans l'œil et dans le crâne de l'agresseur. Le coq eut bien de la peine à arracher son ergot du crâne du milan, et comme celui-ci, tué sur le coup n'avait pas lâché prise, les deux oiseaux étaient fortement liés l'un à l'autre; le coq finit par se dégager, il n'avait que peu de mal. On connait le courage invincible du coq de combat; un de mes amis m'a raconté une scène brutale dont il fut témoin il y a longtemps. Un coq ayant eu dans l'arène les deux pattes brisées à la suite d'un accident, son propriétaire paria que, si on pouvait les lui éclisser de manièro qu'il se tint debout, il continuerait le combat. Dès qu'on l'eut fait, le coq reprit la lutte avec un courage intrépide, et finit par recevoir un coup mortel. A Ceylan, une espèce voisine, le Gallus Stanleyi sauvage, livre les combats les plus furieux pour défendre son sérail; ces luttes ont le plus souvent pour résultat la mort de l'un des combattants ${ }^{12}$. Une perdrix indienne (Ortygornis gularis), dont le mâle est armé d'ergots forts et tranchants, est si belliqueuse * que la poitrine de presque tous ces oiseaux est couturée de cicatrices provenant de combats antérieurs ${ }^{13} \geqslant$.
La plupart des gallinacés males, même ceux qui n'ont pas d'ergots, se livrent des combats terribles à l'époque de l'accouplement. Les Tetrao urogallus et les T. tetrix, polygames tous deux, adop-
10. Gould, Handbook, etc., vol. I, p. 395, vol. II, p. 383.
11. Hewitt dans Poultry Book de Tegetmeier, 1866, p. 137.
12. Layard, Ann. and Mag. of $N a$ 2. Hisl., vol. XIV, 1854, p. 68.
13. Jerdon, Btrds of India, vol. III, p. 574.
tent des endroits réguliers où, pendant plusieurs semaines, ils se rassemblent pour se battre et déployer leurs charmes devant les femelles. M. W. Kowalevsky m'apprend qu'en Russie il a vu la neige tout ensanglantée aux endroits où les Telrao urogallus ont combattu; <les plumes des tétras noirs volent dans toutes les directions quand ils se livrent une grande bataille $>$. Brehm fait une description curieuse du Balz, nom qu'on donne en Allemagne aux danses et aux chants par lesquels les coqs de bruyère préludent à l'amour. L'oiseau pousse presque constamment les cris les plus étranges : © Il redresse sa queue et l'étale en éventail, il relève le cou et porte haut la tête, toutes ses plumes se hérissent et il déploie ses ailes; puis il saute dans différentes directions, quelquefois on cercle, et appuie si fortement contre terre la partie inférieure de son bec que les plumes du menton en sont arrachées. Pendant ces mouvements désordonnés, il bat des ailes, courant toujours dans un cercle restreint et sa vitesse augmentant avec son ardeur, il finit par tomber épuisé. * Les coqs de bruyère, moins cependant que le grand tétras, absorbés par ce spectacle, oublient tout ce qui se passe autour d'eux; aussi peut-लn tuer nombre d'oiseaux au même endroit, et même les prendré avec la main. Après avoir achevé cette bizarre comédie, les mâles commencent à se battre, et un même oiseau, pour prouver sa supériorité, visite quelquefois dans une même matinée plusieurs de ces lieux de rassemblement ou Balz, qui restent les mêmes pendant des années ${ }^{14}$.

Le paon, orné de sa queue magnifique, ressemble plutot à un élégant qu'à un guerrier; il livre cependant quelquefois de terribles combats; Rév. W. Darwin Fox m'apprend que deux paons, qui avaient commencé à se battre à une petite distance de Chester, étaient telloment excités, qu'ils avaient passé par-dessus toute la ville en continuant à lutter; ils finirent par se poser au sommet de la tour de Saint-Jean.

L'ergot chez les gallinacés est généralement simple; toutefois le Polyplectron (fig.51, Pl. 24) en porte deux ou un plus grand nombre a chaque patte, et on a vu un Ithaginis cruentus qui en avait cinq. Les mâles seuls possèdent, ordinairement, des ergots qui ne sont représentés chez les femelles que par de simples rudiments; mais les femelles du paon de Java (Pavo muticus), et d'après M. Blyth. celles divu petit faisan (Euplocamus erythropfithalmus), possèdent des ergots. Les Galloperdix males, ont ordinairement deux ergots,

[^200]et les femelles un seul à chaque patte ${ }^{15}$. On peut donc conclure avec certitude que l'ergot constitue un caractère masculin, bien qu'accidentellement il se transmette plus ou moins complètement aux femelles. Comme la plupart des autres caractères sexuels secondaires, les ergots sont très variables, tant par leur nombre que par leur développement chez une mếne espèce.

Plusieurs oiseaux portent des ergots aux ailes. Chez l'oie égyptienne (Chenalopex ægyptiacus), ils ne consistent qu'en protubérances obtuses, qui probablement nous représentent le point de départ du développement des vrais ergots chez les oiseaux voisins. Chez le Plectropterus gambensis, ils atteignent un développement beaucoup plus considérable chez les mâles que chez les femelles, et M. Bartlett affirme que les males s'en servent dans leurs combats. Dans ce cas, les ergots des ailes constitueraient donc des armes sexuelles; il est vrai que Livingstone assure que ces armes sont particulièrement destinées à la défense des jeunes. Le Palamedea (fig. 38, Pl. 15) porte à chaque aile une paire d'ergots qui constituent une arme assez formidable pour qu'un seul coup suffise à mettre en fuite un chien en le faisant hurler de douleur. Il ne parait pas toutefois que chez ces oiseaux, pas pius que chez quelques râles qui possèdent des armes semblables, ces ergots soient plus développés chez le mâle que chez la femelle ${ }^{16}$. Chez certains pluviers, au contraire, les ergots des ailes constituent un caractère sexuel. Aınsı, chez notre vanneau commun (Vanellus cristatus) mâle, le tubercule de l'épaule de l'aile devient plus saillant pendant la saison des amours, alors que les mâles luttent souvent les uns avec les autres. Chez quelques espèces de Lobivanellus, pendant la saison de l'accouplement, un tubercule semblable se développe assez pour constituer «un court ergot corné ». Les L. lobatus australiens males et femelles possèdent des éperons, mais ils sont beaucoup plus grands chez le mate que chezla femelle. Chez un oiseau voisin, l'Hoplopterus armatus, les ergots n'augmentent pas en volume pendant la saison des amours; mais on a vu, en Egypte, ces oiseaux se battre comme nos vanneaux, c'est-à-dire tourner brusquement en l'air et se frapper latéralement l'un l'autre, souvent avec un terrible résultat; ils se battent de la mime façon contre leurs autres ennemis ${ }^{17}$.
15. Jerdon, o. c., sur l'Ithaginis, vol. III, p. 523; sur le Galloperdix, p. 541
16. Pour l'oie égyptienne, Macgillivray, British Birds vol. IV, p. 639. Pour le Pleclroplerus, Livingstone, Travels, p. 254. Pour la Palamedea, Brehm, Vie des animaux, édition française. Voir aussi sur ces oiseaux Azara, Vogages dans l'Amér. mérid., vol. VI. 1809, p. 179, 253.
17. Voir, sur notre Vanneau huppé, M. R. Carr, Land and Water, 8 aout,

La saison des amours est aussi celle de la guerre ; cependant certains oiseaux males, tels que les coqs de combat, le tringa et même les jeunes dindons sauvages et les coqs de bruyère ${ }^{18}$, sont toujours prets à se battre quand ils se rencontrent. La présence de la femelle est la teterrima belli causa. Les Bengalais font battre les jolis petits bengalis males piquetés (Esirelda mandava) : ils placent trois petites cages auprès l'une de l'autre, celle du milieu contenant une femelle; au bout de quelque temps, on lache les deux males, entre lesquels un combat désespéré s'engage aussitot ${ }^{19}$. Quand un grand nombre de males se rassemblent en un point déterminé pour $\boldsymbol{s}^{\prime} y$ livrer de furieux combats, les coqs de bruyère, par exemple, les femelles ${ }^{20}$ assistent ordinairement au spectacle, et s'accouplent ensuite avec les vainqueurs. Mais, dans quelques cas, l'accouplement précède le combat au lieu de le suivre. Ainsi, Audubon ${ }^{21}$ affirme que chez l'engoulevent virginien (Caprimulgus Virginianus) « plusieurs males font une cour assidue à une seule femelle; dès que celle-ci a fait son choix, le mâle préféré se jette sur les autres et les expulse de son domaine \geqslant. Les males font ordinairement tous leurs efforts pour chasser on pour tuer leurs rivaux avant de s'accoupler; il ne parait pas, cependant que les femelles prérèrent invariablement le male vainqueur. M. W. Kowalevsky m'a affirmé que souvent le T. urogallus femelle se dérobe avec un jeune male, qui n'a pas osé se risquer dans l'arène contre les coqs plus âgés; on a fait la nême remarque pour les femelles du cerf écossais. Lorsque deux males seulement luttent en présence d'une même femelle, le vainqueur atteint, sans doute, généralement son but; mais parfois ces batailles sont causées par des malles errants qui chercherdé à troubler la paix d'un couple déjà uni ${ }^{22}$.

Chez les espèces même les plus belliqueuses, il n'est pas probable que l'accouplement dépende exclusivement de la force et du courage des malles; on effet, les malles sont généralement décorés de

[^201]divers ornements, sauvent plus brillants pendant la saison des amours, et ils les déploient avec persistance devant les femelles. Les mâles cherchent aussi à charmer et à captiver les femelles par des notes amoureuses, des chants et des gambades; la cour qu'ils leur font est, dans beaucoup de cas, une affaire de longue durée. Il n'est donc pas probable que les femelles restent indifférentes aux charmes du sexe opposé, et qu'elles soient invariablement obligées de céder aux males vainqueurs. On peut admettre qu'elles se laissent captiver, soit avant, soit après le combat, par certains males pour lesquels elles ressentent une préférence peut-être inconsciente. Unjexcellent observateur ${ }^{23}$ va jusqu'à croire que les Tetrao umbellus males \& font simplement semblant de se battre, et n'exécutent ces prétendues passes d'armes que pour faire valoir tous leurs avantages devant les femelles assemblées autour d'eux pour les admirer »; car, ajoute-t-il, « je n'ai jamais pu trouver un héros mutilé, et rarement plus d'une plume cassée \$. J'aurais à revenir sur ce point, mais je puis ajouter que les Tetrao cupido males des États-Unis se rassemblent une vingtaine dans un endroit déterminé; puis ils étalent leurs plumes en faisant retentir l'air de cris étranges. A la première réplique d'une femelle, les males commencent un combat furieux; les plus faibles cèdent, mais alors, d'après Audubon, tant vainqueurs que vaincus se mettent à la recherche de la femelle; celle-ci doit exercer un choix, ou la bataille recommence. On a fait la même remarque pour une espèce de stournelle des Êtat-Unis (Sturnella ludoviciana); les males angagent des luttes terribles, \& mais, à la vue d'une femelle, ils se précipitent tous follement à sa poursuite ${ }^{24}$.

Musique vocate et instrumentate. - Les oiseaux se servent de la voix pour exprimer les émotions les plus diverses, telles que la détresse, la crainte, la colère, le triomphe ou la joie. Ils s'en servent évidemment quelquefois pour exciter la terreur, comme le sifflement de quelques oiseaux en train de couver. Audubon ${ }^{25}$ raconte qu'un butor (Ardea nycticorax, Linn.) qu'il avait apprivoisé, avait l'habitude de se cacher a l'approche d'un chat, \& puis il s'élançait subitement hors de sa cachette en poussant des cris effroyables et paraissait se réjouir de la frayeur que manifestait le chat en prenant la fuite $>$. Le coq domestique prévient la poule
23. Land and Water, 25 jullet 1868, p. 14.
24. Audubon, o. c., sur le Tetrao cupido, vol. II, p. 492, of sur lo Starnus, vol. II, p. 219.
25. O. c., vol. V, p. 601.
par un gloussement lorsqu'il a rencontré un morceau friand; la poule agit de même avec ses poulets. La poule, après avoir pondu, «répète très souvent la même note, et termine sur la sixième au-dessus, en la soutenant plus longtemps ${ }^{26}$; c'est ainsi qu'elle exprime sa satisfation. Certains oiseaux sociables s'appellent mutuellement elv voletant d'arbre en arbre; tous ces gazouillements qui ser répondent servent à empêcher la bande de se séparer. Les oies et quelques oiseaux aquatiques, pendant leurs migrations nocturnes, répondent à des cris sonores poussés par l'avant-garde dans l'obscurité, par des cris semblables parłant de l'arrière-garde. Tous les oiseaux appartenant à une même espéce et parfois à des espéces voisines comprennent très bien certains cris servant de signaux d'alarme, ainsi que le chasseur le sait à ses dépens. Le coq domestique chante et l'oiseau-mouche gazouille, lorsqu'ils ont triomphé d'un rival. Cependant la plupart des oiseaux font entendre principalement leur véritable chant et divers cris; ce chant et ces cris servent alors à charmer la femelle ou tout simplement a l'appeler.
A quoi sert le chant des oiseaux ? C'est là une question qui a provoqué de nombreuses divergences d'opinion chez les naturalistes. Montagu, ornithologue passionné et observateur très soigneux et très attentif, affirme que, chez \& toutes les espèces d'oiseaux chanteurs et chez beaucoup d'autres, les males ne se donnent ordinairement pas la poine de se mettre a la recherche de la femelle; ils se contentent, art printemps, de se percher dans quelque lieu apparent, et là ils font entendre dans toute leur plénitude et dans tout leur charme leurs notes amoureuses, que la femelle connatt d'instinct; aussi vient-elle en cet endroit pour choisir son male ${ }^{* 7}$. »M. Jenner Weir assure que le rossignol agit certainement ainsi. Bechstein, qui a toute sa vie élevé des oiseaux, affirme de son coté que *le canari femelle choisit toujours le meilleur chanteur, et que, à l'état de nature, le pinson femelle choisit sur cent males celui dont les notes lui plaisent te plus ${ }^{28}$. $>$ It est, en outre, certain que les oiseaux se préoccupent des chants qu'ils entendent. M. Weir m'a signalé le cas d'un bouvreuil auquel on avait appris à siffler une valse allemande et qui l'exécutait à merveille, aussi coatait-il dix guinées. Lorsque cet oiseau fut introduit pour la première fois dans une volière

[^202]pleine d'autres olseaux captifs, et qu'il se mit à chanter, tous, c'est-à-dire une vingtaine de linottes et de canaris, se placèrent dans leurs cages du coté le plus rapproché de celui où était le nouveau venu et se mirent à l'écouter avec grande attention. Beaucoup de naturalistes sont disposés à croire que le chant des oiseaux constitue presque exclusivement * un résultat de leur rivalité et de leur émulation, et ne sert en aucune façon à captiver les femelles *. C'était l'opinion de Daines Barrington et de White de Selbourne, qui, tous deux, se sont spécialement occupés de ce sujet ${ }^{29}$. Barrington admet cependant que * la supériorité du chant donne aux oiseaux un ascendant prodigieux sur tous les autres, comme les chasseurs ont pu le remarquer bien souvent \geqslant.

Il est certain que le cbant constitue, entre les males, un puissant motit de rivalité. Les amateurs font lutter leurs oiseaux pour voir quels sont ceux qui chanteront le plus longtemps; M. Yarrel affirme qu'un oiseau de premier ordre chante parfois jusqu'à tomber épuisé, et, d'après Bechtein ${ }^{3 c}$, il en est qui périssent par suite de la rupture d'un vaisseau dans les poumons. M. Weir soutient que sou* vent les oiseaux males meurent subitement pendant la saison du chant. Quelle que puisse être d'ailleurs la cause de leur mort, il est certain que l'habitude du chant peut être absolument indépendante de l'amour, car on a observés ${ }^{31}$ un canari hybride stérile qui chantait en se regardant dans un miroir, puís qui, ensuite, se précipitait sur son image ; il attaquait aussi avec rage un canari femelle lorsqu'on les mettait dans la mème cage. Les preneurs d'oiseaux savent mettre à profit la jalousie qu'excite le chant chez les oiseaux; ils cachent un male bien en voix pendant qu'un oiseau empaillé et entouré de branchilles enduite de glu, esi exposé bien en vue. Un homme a pu ainsi attraper en un seul jour cinquante et, une fois même, jusqu'à soixante-dix pinsons males. L'aptitude et la disposition au chant diffèrent si considérablement chez les oiseaux, que, bien que le prix d'un pinson ne soit guère que de cinquante centimes, M. Weir a vu un oiseau dont le propriétaire demandait soixante-quinze francs; un oiseau véritablement bon chanteur continue à chanter pendant que le propriétaire de l'oiseau fait tourner la cage autour de sa tête, et c'est là l'épreuve qu'on lui fait subir pour s'assurer de son talent.

On peut facilement comprendre que les oiseaux chantent a la fois
29. Philos. Transaetions, 1773, p. 263. White, Nal. History of Selbourne, vol.1, 1825, p. 246.
30. Nalurg. d. Stubenuógel, 1840, p. 252.

3i. Hi. Buld, Zoulogist., 1813-14, p. 659.
par émulation et pour charmer les femelles; il est même tout naturel que ces deux causes concourent à un mêmébut, de méme que l'ornementation et la disposition belliqueuse. Quelques savants soutiennent cependant que le chant des males ne doit pas servir à captiver la femelle, parce que les femelles de certaines espèces, telles que les canaris, les rouges-gorges, les alouettes et les bouvreuils, surtout, commele fait remarquer Bechstein, quand elles sont privées de males, font entendre les accords les plus mélodieux. On peut, dans quelques-uns de ces cas, attribuer cette aptitude au chant à ce que les femelles ont été élevées en captivité et ont reçu une alimentation trop abondante ${ }^{32}$, ce qui tend à troubler toutes les fonctions usuelles en rapport avec la reproduction de l'espèce. Nous avons déjà cité beaucoup d'exemples du transport partiel des caractères masculins secondaires à la femelle, de sorte qu'il n'y a rien de surprenant à ce que les femelles de certaines espèces aient la faculté de chanter. On a prétendu aussi que le chant du male ne peut servir à captiver les temelles, parce que chez certaines espèces, le rouge-gorge, par exemple, le malle chante pendant l'automne ${ }^{33}$. Mais rien n'est plus commun que de voir les animaux prendre plaisir à pratiquer les instincts dont, à d'autres moments, ils se servent dans un but utile. Ne voyons-nous pas souvent les oiseaux qui volent facilement, planer et glisser dans l'air uniquement par plaisir? Le chat joue avec la souris dont il s'est empuré, et le cormoran avec le poisson qu'il a saisi. Le tisserin (Ploceus), élevé en captivité, s'amuse à tisser adroitement des brins d'herbes entre les barreaux de sa cage. Les oiseaux qui se battent ordinairement à l'époque des amours sont en général prêts à se battre en tout temps; on voit quelquefois les grands tétras mâles tenir leurs assemblées aux lieux habituels, pendant l'automne ${ }^{34}$. Il n'y a done rien d'étonnant à ce que les oiseaux mâles continuent à chanter pour leur propre plaisir en dehors de l'époque où ils courtisent les femelles.
Le chant est, jusqu'à un certain point, comme nous l'avons démontré dans un chapitre précédent, un art qui se perfectionne beaucoup par la pratique. On pent enseigner divers airs aux oiseaux; le moineau lui-même a pu apprendre à chanter comme une linotte. Les oiseaux retiennent le chant de leure parents nourriciers ${ }^{35}$, et

[^203]quelquefois celui de leurs voisins ${ }^{30}$. Tous les chanteurs communs appartiennent à l'ordre des Insessores, et leurs organes vocaux sont beaucoup plus compliqués que ceux de la plupart des autres oiseaux; il est cependant singulier qu'on trouve parmi les Insessores des oiseaux tels que les corneilles, les corbeaux et les pies, qui, bien que possédant l'appareil voulu ${ }^{37}$, ne chantent jamais et qui, naturellement, ne font pas entendre de modulations de quelque étendue. Hunter ${ }^{38}$ affirme que, chez les vrais chanteurs, les muscles du larynx sont plus puissants chez les males que chez les femelles, mais que, à cela près, on ne constate aucune différence entre les organes vocaux des deux sexes, bien que les males de la plupart des espèces chantent bien mieux et aveo plus de suite que les femelles.

Il est à remarquer que les vrais chanteurs sont tous des petits oiseaux, à l'exception, toutefois, du genre australien Menura. Le Menura Alberti, en effet, qui atteint à peu près la taille d'un dindon arrivé à la moitié de sa croissance, ne se contente pas d'imiter le chant des autres oiseaux; *il possède en propre un sifflement très varié et très beaz \geqslant. Les males-se rassemblent pour chanter dans des endroits choisis; là ils redressent et étalent leur queue comme les paons, tout en abaissant leurs ailes ${ }^{39}$. Il est aussi fort singulier que les oiseaux chanteurs revetent rarement de brillantes couleurs ou d'autres ornements. Le bouvreuil et le chardonneret exceptés, tous nos meilleurs chanteurs indigènes ont une coloration uniforme. Martins-pêcheurs, guêpiers, rolliers, huppes, pies, etc., n'émettent que des cris rauques, et les brillants oiseaux des tropiques ne sont presque jamais bons chanteurs ${ }^{40}$. Les vives couleurs et l'aptitude au chant ne vont pas ordinairement ensemble. Ces remarques nous autorisentà penserque, si le plumage n'est pas sujet à varier pour devenir plus éclatant, de brillantes couleurs peuvant constituer un danger pour l'espèce, d'autres moyens deviennent nécessaires pour captiver les femelles; la voix rendue mélodieuse pourrait être un de ces moyens.
Les organes vocaux, chez certains oiseaux, differént beaucoup chez les males et les femelles. Le Tetrao cupido (fig. 39, PI. 15) mâle
86. Dureau de la Malle cito l'oxemple curiéux (Ann. Sc. Nat., 8• sér., Zool., vol. X, p. 118) de quelques merles sauvages de son jardin à Paris qui avaient naturellement appris d'un oiseau captif un air républicain.
37. Bishop, dans Todd's Cyolop, of Anat. et Phys., val, IV, p. 1406.
98. Affirmé par Haarington, Philos. Transact., 1773, p. 262.
39. Gould, Handbook, ete., val. I, 1865, p. 308-310. Voir anssi T. W. Wood daus Student, avril 1870, p. 125.
40. Gould. Introd. to Trochilldse, 1801, p. 22.
possède, de chaque coté du cou, deux sacs nus de couleur orangée, qui se dilatent fortement pendant la saison des amours pour produire le singulier cri rauque que fait entendre cet oiseau et qui porte à une si grande distance. Audubon a démontré que cet appareil, qui rappelle les sacs à air placés de chaque coté de la bouche de certaines grenouilles males, exerce une influence immó. diate sur la production de ce cri; pour le prouver, il a crevé un des sacs chez un oiseau apprivoisé, et a constaté que le cri diminuait beaucoup en intensité, et n'était plus perceptible si on crevait les deux sacs. La femelle a au cou un espace « analogue mais plus petit, de peau dénudée, mais qui n'est pas susceptible de dilatation ${ }^{41}$). Le mâle d'une autre espèce de tétras (T. urophasianus) gonfle prodigieusement, pendant qu'il courtise la femelle, son cesophage jaune et dénudé, de telle sorte que cette partie égale au moins en grosseur la moitié de son corps » ; dans cet état, il fait entendre divers cris profonds et discordants. Les plumes du cou redressées, les ailes abaissées, et traînant à terre sa longue queue étalée en éventail, il prend alors une foule d'attitudes grotesques. L'œsophage de la femelle n'offre rien de remarquable ${ }^{42}$.
Il semble maintenant bien établi que la grande poche de la gorgo chez l'outarde male d'Europe (Otis tarda), et chez au moins quatre autres espèces, ne sert pas, comme on le supposait autrefois, ta contenir de l'eau, mais on rapport avec l'émission, pendant la saison des amours, d'un cri particulier ressemblant à ock ${ }^{43}$. L'oiseau prend les attitudes les plus extraordinaires pendant qu'il articule ce cri. Un oiseau de l'Amérique méridionale (Cephalopterus ornatus, fig. 40) ressemblant à une corneille a reçu le nom d'oiseau parasol. Ce nom lui vient d'une inmense touffe de plumes formées de tiges blanches nues surmontées de barbes d'un bleu foncé, qu'il peu redresser et transformer en une véritable ombrelle n'ayant pas moins de 15 centimètres de diamétre, qui recouvre la tête entière. Cet oiseau porte au cou un appendice long, mince, cylindrique,

[^204]charnu, revêtu de plumes bleues écailleuses et serrées. Cet appendice sert probablement en partie d'ornement, mais aussi de véritable table d'harmonie ; car M. Bates a constaté, chez les oiseaux pourvus de cet appendice, \& un développement inusité de la trachée et des organes vocaux 》. En outre, cet appendice se dilate lorsque l'oiseau émet sa note fluttée, singuilèrement profonde, puissanto et longtemps soutenue. La crête céphalique et l'appendice du cou n'existent chez la femelle qu'à l'état de rudiments ${ }^{4}$.
Les organes vocaux de certains palmipèdes et de certains échassiers sont fort compliqués, et different jusqu'ả un certain point chez les males et les femelles. Dans quelques cas, la trachée, enroulée comme un cor de chasse, est profondément enfouie dans le sternum. Chez le cygne sauvage (Cycnus ferus) elle est plus profondément enfouie chez le male adulte, que chez la femelle ou chez le jeune male. Chez le Merganser mâle, la portion élargie de la trachée est pourvue d'une paire additionnelle de muscles ${ }^{45}$. Toutefois, chez un canard, Anas punctata, la partie osseuse élargie est à peine plus développée chez le mâle que chez la femelle ${ }^{\text {t6 }}$. Mais il est difficile de comprendre la signification de ces différences entre les mâles et les femelles de beaucoup d'Anatidés, car le mâle n'est pas toujours le plus bruyant; ainsi, chez le canard commun, le mâle siffle, tandis que la femelle émet un fort couac ${ }^{47}$. Chez les males et les femelles d'une grue (Grus virgo) la trachée pénètre dans le sternum, mais présente * certaines modifications sexuelles *. Chez le mâle de la cigogne noire, on constate aussi une différence sexuelle bien marquée dans la longueur et la courbure des bronches ${ }^{18}$. Il résulte de ces faits que, dans ces cas, des conformations importantes ont été modifiées selon le sexe.

Les cris nombreux, les notes étranges que font entendre l_{S} oiseaux mâles pendant la saison des amours, servent-ils à charmer les femelles ou seulement à les attirer? C'est là une question assez difficile à résoudre. On peut supposer que le doux roucoulement de la tourterelle et de beaucoup de pigeons plait aux femelles. Lors-
44. Bates, The Naturalist on the Amazons, 1863, vol. II, p. 284. Wallace, Proc. Zool. Soc., 1856, p. 206. On a découvert récemm9nt une espèce nouvelle portant au cou un appendice encore plas grand (G. penduliger) 1bis., vol. I, p. 457.
45. Bishop, Todd' Cyclop. of Anat. et Phys., vol. IV, p. 1499.
46. Prof. Newton, Proc. Zool. Soc., 1871, p. 651.
47. Le bec en cuiller (Platalea) a la trachée contournée en forme de 8, et cependant cet oiseau (Jerdon, Birds of India, vol. III, p. 763) est muet; mais M. Blyth m'apprend que les circonvolutions ne sont pas toujours présentes, de telle sorte qu'elles tendent peut-etre actuellement vers l'atrophie.
48. Eléments d'Anat. comp., par R. Wagner (trad. angl.), 1845, p. 111. Pour le cygne, voir Yarrell, History of British Birds, 2* edit., 1845, vol. III, p. 193.
que la femelle du dindoń saturage fait enterdre son appel le matin, le malle y répond par une note bien différente du glouglou qu'i ${ }^{1}$ produit lorsque, les plumes redressées, les ailes bruissantes et les caroncules distendus, il se pavane devant elle ${ }^{49}$. Le spel du tétras noir sert certainement de eri d'appel pour la femelle, car on a vu quatre ou cinq femelles venir d'une grande distance pour répondre à ce cri poussé par un mâle captif; mais, comme cet oiseau continue à faire entendre son spel des heures entières pendant plusieurs jours, et, lorsqu'il s'agit du grand tétras, avec beaucoup de passion, hous sommes autorisés à penser qu'il veut ainsi captiver les femelles déjà présentes ${ }^{50}$. La voix dú corbeau commun se modifie pendant la saison des amours ; elle a donc quelque chose de sexuel ${ }^{51}$. Mais que dirons-nous des oris rauques de certaines espèces de perroquets, par exemple? ces oiseaux ont-ils pour la musique un aussi máuvais goût que celui dont ils font preuve pour la couleur, à en juger par les contrastes peu hărmonieux quii résultent du voisinage des teintes jaunes et bleu clair de leur plumage? Il est possible, il est vrai, qué la voix énergique de beaucoup d'oiseaux mâles proviennee, sans que ce résultat soit accompagné d'aucun avantage appréciáble, des effets héréditaires de l'usage continu de leurs organes vocaux, lorsqu'ils sont sous linfluence de fortes impressions d'amour, de jalousie ou de colère. Mais nous aurons occasion de revenir sur ce point lorsque hous nous occuperons des mammiféres.

Nous n'avons encore parlé que du chant; mais divers oiseaux mâles, pendant qu'ils courlisent les femelles, exécutent ce qu'on pourrait appeler de la musique instrumentale. Les paons et les oiseauxde paradisagitent et entre-choquent leurs plumes. Les dindons trainent leurs ailes contre le sol, et quelques tétras produlsent aussi un bourdonnement. Un autre tétras de l'Amérique du Nord, le Tetrao umbellus, produit un grand bruit en frappant rapidement ses ailes l'une contre l'autre au-dessus de son dos, selon M. R. Haymond, et non pas, comme Audubon le pensait, en les frappant contre ses côtés lorsque, la queue redressée, les fraises étendues, ع il étale sa beauté devant les femelles cachées dans le voisinage $>$; le bruit ainsi produit est comparé par les uns à un grondement éloigné du tonnerre, par d'autres à un rapide roulement de tambour. La femelle ne produit jamais ce bruit, \& mais

[^205]elle vole directement vers le lieu où le male semble ainsi l'appeler ?. Le Kalij-faisan male de l'Himalaya « produit souvent un singulier bruit avec ses ailes, bruit qui rappelle celui qu'on obtient en secouant une pièce de toile un peu roide \geqslant. Sur la côte occidentale de l'Afrique, les petits tisserins noirs (Ploceus ?) se rassemblent en troupe sur des buissons entourant une petite clairière, puis chantent et glissent dans l'air, en agitant leurs ailes de façon à produire *un bruit qui rappelle celui d'une crécelle d'enfant ». Hs se livrent l'un après l'autre pendant des heures à cette musique, mais seulement pendant la saison des amours. A la même époque, certains Caprimulgus mâles produisent un bruit des plus étränges avec leurs ailes. Les diverses espèces de pics frappent de leur bec une branche sonore, avec un mouvement vibratoire si rapide eque leur tete parait se trouver en deux endroits à la fois \geqslant. On peut l'entendre a une distance considérable, mais on ne saurait le décrire, et je suis certain que quiconque l'entendrait pour la première fois ne pourrait en conjecturer la cause. L'oiseau ne se livre guère à cet exercice que pendant la saison de l'accouplement, aussi a-t-on considéré ce bruit comme un chant d'amour; c'est peut-etre plus exactement un appel d'amour. On a observé que la femelle chassée de son nid, appelle ainsi son mâle, qui lui répond de la même manière, et accourt aussitot auprès d'elle. Enfin, la huppe (Upupa epops) male réunit les deux musiques, vocale et instrumentale, car, pendant la saison des amours, comme a pu I'observer M. Swinhoe, cet oiseau, après avoir aspiré de l'air, applique perpendiculairement le bout de son bec contre une pierre cu contre un tronc d'arbre, «puis l'air comprimé qu'il chasse par son bec tubulaire produit une note particulière \%. Le cri que fait entendre le male sans appuyer son bec est tout différent. L'oiseau ingurgite de l'air au méme instant, et l'œsophage qui se distend considérablement joue probablement le role de table d'harmonie, non seulement chez la huppe mais chez les pigeons ot d'autres oiseaux ${ }^{62}$.

Dans les cas précédents, des conformations déjà présentes et

[^206]indispensables pour d'autres usages servent à produire les sons que fait entendre l'oiseau; mais, dans les cas suivants, certaines plumes ont été spécialement modifiées dans le but déterminé de produire des sons. Le bruit ressemblant au roulement de tambour, à un belement, à un hennissement, au grondement 'du tonnerre, comme différents observateurs ont cherché à représenter le bruit que fait entendre la bécassine commune (Scolopax gallinago), surprend étrangement tous ceux qui ont pu l'entendre. Pendant la saison des amours, cet oiseau s'élève à * un millier de pieds de hauteur $>$, puis, après avoir exécuté pendant quelque temps des zigzags, il redescend jusqu'à terre en suivant une ligne courbe la queue étalée, les ailes frissonnantes, et avec une vitesse prodigieuse ; c'est seulement pendant cette descente rapide que se produit le son. Personne n'en avait pu trouver la cause; mais M. Meves remarqua que les plumes externes de chaque côté de la queue, affectent une conformation particulière (fig. 41, Pl. 17); la tige est roide et en forme de sabre, les barbes obliques atteignent une longueur inusitée et les barbes extérieures sont fortement reliées ensemble. Il s'aperçut qu'en soufflant sur ces plumes, ou en les agitant rapidement dans l'air après les avoir fixées à un long baton mince, ir pouvait reproduire exactement le bruit ressemblant à celui du tambour que fait entendre l'oiseau en volant. Ces plumes existent chez le male et la femelle, mais elles sont généralement plus grandes chez le male que chez la femeHe, et donnent une note plus profonde. Certaines espéces, comme par exemple le S. frenata (fig. 42, Pl. 17) et le J. Javensis (fig. 43, P1. 17) portent respectivement, le premier quatre, et le second huit plumes, sur les cótés de la queue, fortement modifiées. Les plumes des différentes espèces émettent des notes différentes, lorsqu'on les agite dans l'air et le Scolopax Wilsonii des États-Unis fait entendre un bruit perçant, lorsqu'il deseend rapidement à terre ${ }^{53}$.

Chez le Chamæpetes unicolor male (un grand gallinacé américain), la première rémige primaire est arquée vers son extrémitê et plus mince que chez la femelle. M. Salvin a observé qu'un oiseau voisin, le Penelope nigra male, fait entendre en descendant rapidement les ailes étendues, un bruit qui ressemble à oelui d'un arbre qui tombe ${ }^{54}$. Le male d'une outarde indienne (Sypheotides aurizus)

[^207]a seul des rémiges primaires fortement acuminées; le male d'une espèce voisine fait entendre un bourdonnement pendant qu'il courtise la femelle ${ }^{55}$. Dans un groupe d'oiseaux bien différents, celui des oiseaux-mouches, les males seuls de certaines espèces ont les tiges des rémiges primaires largement dilatées, ou les barbes brusquement coupées vers l'extrémité. Le male adulte du Selasphorus platycercus, par exemple, a la première rémige (fig. 44, Pl. 18) taillée de cette manière. En voltigeant de fleur en fleur, il fait entendre un bruit perçant, presque un sifflement ${ }^{\text {so }}$, mais d'après M. Salvin sans aucune intention de sa part.

Enfin, les rémiges secondaires chez plusieurs espèces d'un sousgenre de pipra ou de manakin, ont été, selon M. Sclater, modifiées chez les males d'une manière encore plus remarquable. Chez le P. deliciosa aux couleurs si vives, les trois premières rémiges secondaires ont de fortes tiges recourbées vers le corps; le changement est plus marqué dans la quatrième et dans la cinquième (fig. 45, $a, \mathrm{Pl} .18$) ; dans la sixième et dans la septième (b, c), la tige, épaissie à un degré extraordinaire, constitue une masse cornée solide. La forme des barbes est aussi considérablement modifiée, si on les compare aux plumes correspondantes (d, e, f) de la femelle. Les os même de l'aile, chez les males qui portent ces plumes singulières, sont, d'après M. Fraser, fort épaissis. Ces petits oiseaux font entendre un bruit extraordinaire, « la première note aiguê ressemblant assez au claquement d'un fouet ${ }^{57} \geqslant$.

La diversité des sons, tant vocaux qu'instrumentaux, que font entendre les males de beaucoup d'espèces pendant la saison des amours, ainsi que la diversité des moyens employés pour la production de ces sons, constituent des phénomènes très remarquables. Cette diversité même nous permet de comprendre quelle importance les sons produits doivent avoir au point de vue des rapports sexuels; nous avons déjà été conduits à la même conclusion à propos des insectes. Il est facile de se figurer les degrés par lesquels les notes d'un oiseau, qui servaient d'abord de simple moyen d'appel, ont da passer pour se transformer en un chant mélodieux. Il est peut-etre plus difficile d'expliquer les modifications des plumes qui servent à produire les sons rappolant le roulement du tambour, le grondement du tonnerre, etc. Mais nous avons vu que,

[^208]pendant qu'ils font leur cour, quelques oiseaux agitent, secouent, entre-choquent leurs plumes non modifiées; or, si les femelles ont été amenées à choisir les meilleurs exécutants, elles ont do, en conséquence, préférer les males pourvus des plumes les plus fortes et les plus épaisses, ou bien les plus amincies situées sur une partie quel conque du corps; peu à peu les plumes se sont donc modifiées et il n'est pas possible d'indiquer des limites à ces modifications. Il est probbable que les femelles s'inquiétaient peu de ces modifications de formes, modifications d'ailleurs légères et graduelles, pour ne faire attention qu'aux sons produits. Il est, en outre, un fait curieux, c'est que, dans une même classe d'animaux, des sons aussi différents que le tambourinage produit par la queue de la bécasse, le martelage résultant du coup du bec du pic, le cri rauque de certains oiseaux aquatiques ressemblant aux appels de la trompette, le roucoulement de la tourterelle et le chant du rossignol, soient tors également agréables aux femelles des différentes espèces. Mais nous ne devons pas plus juger des gouts des espèces distinctes d'après un type unique que d'aprés les goats humains. Nous ne devons pas oublier quels bruits discordants, coups de tam-tam et notes perçantes des roseaux, ravissent les oreilles des sauvages. Sir S. Baker ${ }^{\text {58 }}$ fait remarquer que * de même que l'Arabe préfére la viande crue et le foie à peine tiré des entrailles de l'animal et fumant encore, de même il préfère ausai sa musique grossière et discordante à toute autre musique $>$.

Parades d'amours et danses, - Nous avons déjà fait incidemment remarquer les singuliers gestes amoureux que font divers oiseaux ; nous n'aurons donc ici que peu de chose à ajouter à ce que nous avons dit. Dans l'Amérique du Nord, un grand nombre d'individus d'une espèce de tétras (T. phasaniellus) se rassemblent tous les matins, pendant la saison des amours, dans un endroit choisi, bien uni; ils se mettent alors à courir dans un cercle de quinze à vingt pieds de diamètre, de telle sorte qu'ils finissent par détruire le gazon de la piste. Au cours de ces danses de perdrix, comme les chasseurs les appellent, les oiseaux pronnent les attitudes les plus baroques, tournant les uns à droite, les autres à gauche. Audubon dit que les mâles d'un héron (Ardea herodiqs) précèdent les femelles, posés avec une grande dignité sur leurs longues pattes, et défiant leurs rivaux. Le même naturaliste affirme à propos d'un de ces vautours dégoûtants, vivant de charognes (Catharles jota), « quє
59. The Nile Tributaries of Abyssinia, 1867, p. 203.
les gesticulations et les parades auxquelles se livrent les males au commencement de la saison des amours sont des plus comiques >. Certains oiseaux, le tisserin africain noir, par exemple, exécutent leurs tours et leurs gesticulations tout en volant. Au printemps, notre fauvette grise (Sylvia cinerea) s'élève souvent à quelques mètres de hauteur au-dessus d'un buisson, \& voltige d'une manière saccadée et fantastique, tout en chantant, puis retombe sur son perchoir». Woff affirme que le male de la grande outarde anglaise prend, quand il courtise la femelle, des attitudes indescriptibles et bizarres. Dans les mêmes circonstances, une outarde indienne voisine (Otis bengalensis) \& s'élève verticalement dans l'air par un battement précipité des ailes, redresse sa crête et gonfle les plumes de son cou et de sa poitrine, puis se laisse retomber à terre ». L'oiseau répète cette manœuvre plusieurs fois de suite, tout en faisant entendre un chant particulier. Les femelles qui se trouvent dans le voisinage obéissent à cette sommation gymnastique, et, quand elles approchent, le male abaisse ses ailes et étale sa queue comme le fait le dindon ${ }^{59}$.

Mais le cas le plus curieux est celui que présentent trois genres voisins d'oiseaux australiens, les fameux oiseaux à berceau, - sans doute les codescendants d'une ancienne espèce qui avait acquis l'étrange instinct de construire des abris pour s'y livrer à des parades d'amour. Ces oiseaux construisent sur le sol, dans le seul but de s'y faire la cour, car leurs nids sont établis sur les arbres, des berceaux (fig. 46, Pl. 49), qui, comme nous le verrons plus loin, sont richement décorés avec des plumes, des coquillages, des os et des feuilles. Les mâles et les femelles travaillent à la construction de ces berceaux, mais le mâle est le principal ouvrier. Cet instinct est si prononcé chez eux qu'ils le conservent en captivité, et M. Strange a décrit ${ }^{60}$ les habitudes de quelques oiseaux de ce genre, dits satins, qu'il a élevés en volière dans la Nouvelle-Galles du Sud. - Par moments, le mâle poursuit la femelle dans toute la volière, puis, il se rend au berceau, y prend une belle plume ou une grande feuille, articuie une note curieuse, redresse tontes ses plumes, court autour du berceau, et paraît excité au point que les yeux lui sortent presque de la tete; il ouvre une aile, puis l'autre, en faisant
59. Pour le Tetrao phasianellus, Richardson, Fauna Bor. Americ., p. 361 ; et pour d'autres détails, Cap. Blakiston, Ibis, 1863, p. 125. Pour le Cathartes et 1'Ardea, Audubon, Orn. Biograph., vol. II, p. 51 et vol. III, p. 89. Sur la fauvetie grise, Macgillivray, Hist. Brit. Birds, vol. II, 854. Sur l'outarde indienne, Jerdon, Birds of India, vol. III, p. 618.
60. Gould, Handbook to the Birds of Australia, vol. 1, 444, 449, 445. Le berceau de l'oiseau satin est toujours visible aux Zoological Gardens.
entendre une note profonde et aiguê, et, comme le coq domestique, semble picorer à terre, jusqu'à ce que la femelle s'approche doucement de lui. > Le capitaine Stokes a décrit les habitudes et les * habitations de plaisance > d'une autre grande espèce ; < les males et les femelles s'amusent à voler de cóté et d'autre, prennent un coquillaçe tantôt d'un coté du berceau, tantot de l'autre, et le portent dehors dans leur bec, puis le rapportent ». Ces curieuses constructions, qui ne servent que de salles de réunion où les oiseaux s'amusent et se font la cour, doivent leur couter beaucoup de travail. Le berceau de l'espèce à poitrine fauve, par exemple, a près de quatre pieds de long, quarante-cinq centimètres de haut ; il est, en outre, supporté par une solide plate-forme composée de batons.

Ornementation. - Je discuterai d'abord les cas où l'ornementation est le partage exclusif des mâles, les femelles ne possédant que peu ou point d'ornements: je m'occuperai ensuite de ceux où les deux sexes sont également ornés, et enfin j'aborderai les cas beaucoup plus rares où la femelle est un peu plus brillamment colorée que le male. Le sauvage ct l'homme civilisé portent presque toujours sur la tête les ornements artificiels dont-ils se parent; de même aussi les oiseaux portent sur la tête la plupart de leurs ornements naturels ${ }^{01}$. On peut observer une étonnante diversité dans les ornements dont nous avons déjà parlé au commencement de ce chapitre. Les huppes qui couvrent le devant ou le derriere de la tete des oiseaux se composent de plumes qui affectent les formes les plus diverses ; parfois ces huppes se redressent ou s'étalent, de manière à présenter complètement aux regards les splendides couleurs qui les décorent. D'autres fois, ce sont d'élégantes houppes auriculaires (voy. fig. 39, Pl. 16). Parfois aussi un duvet velouté recouvre la tête, chez le faisan, par exemple ; quelquefois, au contraire, la tete est dénudée et revêt d'admirables colorations. La gorge aussi est quelquefois ornée d'une barbe ou de caroncules. Les appendice's de ce genre affectant d'ordinaire de brillantes couleurs, servent sans doute d'ornements, bien que nous ne soyons guère disposés à les considérer comme tels ; en effet, pendant que les undles courtisent la femelle, ces apperdices se gonflent et acquièrent des tons encore plus vifs, chez le dindon male, par exemple. Les appendices charnus qui ornent la tete du faisan tragopan male (Ceriornis Temminckii) se dilatent pendant la saison des amours, de façon à former un large

[^209]médaillon sur la gorge et deux cornes situées de chaque coté de la splendide huppe qu'il porte sur la tete; ces appendices revetent alors le bleu le plus intense qu'il m'ait été donné de voir ${ }^{62}$. Le Calao africain (Bucorax abyssinicus) gonfle la caroncule écarlate en forme de vessie qu'il porte au cou, ce qui, < joint à ses ailes tratnantes età sa queue étalée, lui donne un grand air ${ }^{62} \geqslant$. L'iris meme de l'œil affecte parfois une coloration plus vive chez le mâle que chez la femelle; il en est fréquemment de même pour le bec, chez notre merle commun, par exemple. Le bec entier et le grand casque du Buceros corrugatus malle sont plus vivement colorés que ceux de la femelle ; \& le bec du mâle porte, en outre, des rainures obliques sur la mandibule inféricure ${ }^{64} \geqslant$.

La tete, bien souvent encore, porte des appendices charnus, des filaments ou des protubérances solides. Quand ces ornements ne sont pas communs aux mâles et aux femelles, le male seul en est pourvu. Le docteur W. Marshall ${ }^{65}$ a décrit en détail les protubérances solides; il a démontré qu'elles se composent d'os poreux revetus de peau ou de tissu dermique. Les os du front, chez les mammifères, supportent toujours des cornes véritables; chez les oiseaux, au contraire, divers os se sont modifiés pour servir de support. On peut observer, chez les espèces d'ux même groupe, des protubérances pourvues d'un noyau osseux, et d'autres où il n'y a pas trace d'un noyau de cette nature; on peut établir en outre une série de gradations reliant ces deux points extrémes. Il en résulte, comme le fait remarquer le docteur Marshall avec beaucoup de justesse, que les variations les plus diverses ont aidé au développement de ces appendices par sélection sexuelle.

On observe souvent chez les males de longues plumes qui surgissent de presque toutes les parties du corps, et qui constituent évidemment des ornements. Quelquefois les plumes qui garnissent la gorge et la poitrine forment des colliers et des fraises splendides. Les plumes de la queue ou rectrices s'allongent fréquemment, comme nous le voyons chez le paon et chez le faisan Argus. Chez le paon, les os de la queue se sont même modifiés pour supporter ces lourdes rectrices ${ }^{66}$. Le corps du faisan Argus n'est pas plus gros que celui d'une poule, et cependant mesuré de l'extrémité du

[^210]becà celle de la queue, il n'a pas moins de 1 m. 60 de longueur ${ }^{67}$, et les belles rémiges secondaires si magnifiquement ocellées atteignent près de trois pieds de longueur. Chez un petit engoulevent africain (Cosmetornis vexillarius), l'une des rémiges primaires atteint, pendant la saison des amours, une longueur de 66 centimètres, alors que le corps de l'oiseau n'a que 25 centimètres de longueur. Chez un autre genre très voisin, les tiges des longues plumes caudales restent nues, sauf à l'extrémité, où elles portent une houppe en forme de disque ${ }^{68}$. Chez un autre genre d'engoulevent, les rectrices atteignent un développement encore plus prodigieux. En règle générale, les rectrices sont plus allongées que les rémiges, car un trop grand allongement de ces dernières constitue un obstacle au vol. Nous pouvons donc observer le même type de décoration acquis par des oiseaux mâles très voisins les uns des autres, bien que ce soit par le développement de plumes entièrement différentes.

Il est un fait curieux à remarquer : les plumes d'oiseaux appartenant à des groupes distincts se sont modifiées d'une manière spéciale presque analogue. Ainsi, chez an des engoulevents dont nous venons de parler, les rémiges ont la tige dénudée et se terminent par une houppe en forme de disque, ou en forme de cuiller ou de raquette. On remarque des plumes de ce genre dans ha queue du momot (Eumomota superciltaris), d'un martin-pecheur, d'un pinson, d'un oiseau-mouche, d'un perroquet, de plusieurs drongos indiens (Dicrurus et Edolius, chez l'un desquels les disques sont verticaux), et dans la queue de certains oiseaux de paradis. Chez ces derniers, des plumes semblables magnifiquement ocellées or nent la tete, ce qu'on observe aussi chez certains gallinacés. Chez une outarde indienne (Spheotides auritus), les plumes qui forment les houppes auriculaires et qui ont environ dix centimétres de lon gueur se terminent aussi par des disques ${ }^{69}$. M. Salvin ${ }^{70}$ a démontré, ce qui constitue un fait très singulier, que les momots don nent à leurs rectrices la forme d'une raquette en rongeant les barbes de la plume ; il a démontré, en outre, que cette mutilation continue a produit, dans une certaine mesure, des effets héréditaires. Les barbes des plumes, chez des oiseaux très distincts, sont filamenteuses ou barbelées; c'est ce qu'on observe chez quelques hérons, chez des ibis, des oiseaux de paradis et des gallinacés

[^211]Dans d'autres cas, les barbes disparaissent, les tiges restent nues d'une extrémité à l'autre ; des plumes de ce genre dans la queue du Paradisea apoda atteignent une longueur de 86 centimètres ${ }^{71}$; chez le P. Papuana (fig. 47, Pl. 20) elles sont beaucoup plus courtes et beaucoup plus minces. Des plumes plus petites ainsi dénudées prennent l'aspect de soies, sur la poitrine du dindon, par exemple. On sait que toute mode fugitive en toilette devient l'objet de l'admiration humaine ; de meme, chez les oiseaux, la femelle parait apprécier un changement, si minime qu'il soit, dans la structure ou dans la coloration des plumes du male. Nous venons de voir que les plumes se sont modifiées d'une manière analogue, dans des groupes très distincts ; cela provient sans doute de ce que les plumes, ayant toutes la même conformation et le même mode de développement, tendent par conséquent à varier de la même manière. Nous remarquons souvent une tendance à la variabilité analogue dans le plumage de nos races domestiques appartenant à des espèces distinctes. Ainsi des huppes céphaliques ont apparu chez diverses espèces. Chez une variété đ̉a dindon maintenant éteinte, la huppe consistait en tiges nues terminées par des houppes de duvet, et ressemblaient jusqu'd un certain point aux plumes en raquettes que nous venons de décrire. Chez certaines races de pigeons et de volailles, les plumes sont duveteuses, avec quelque tendance à ce que les tiges se dénudent. Chez l'oie de Sébastopol, les plumes scapulaires sont très allongées, frisées, et même contournées en spirale avec les bords duveteux ${ }^{7 ?}$.

A peine est-il besoin de parler de la couleur, car chacun sait combien les nuances des oiseaux sont belles et harmonieusement combinées. Les couleurs sont souvent métalliques et irisées. Des taches circulaires sont quelquefois entourées d'une ou plusieurs zones de nuances et de tons différents; l'ombre qui en résulte les convertit ainsi en ocelles.
Il n'est pas non plus nécessaire d'insister sur les différences étonnantes qui existent entre les males et les femelles. Le paon commun nous en offre un exemple frappant. Les oiseaux de para dis femelles affectent une couleur obscure, et sont dépourvus de tout ornement, tandis que les males revetent des ornements si riches et si variés, que quiconque ne les a pas étudiés peut à peine s'en faire une idée.

Lorsque le Paradisea apoda redresse et fait vibrer les longues

[^212]pi ps jaune doré qui décorent ses ailes, on croirait voir une sorte de hade hau centre duquel la tête e figure un petit soleil d'émeraude dont lest lesx plumes forment les rayons ${ }^{73}$). Une autre uspèce, également mnt nifique, a la tête chauve < d'un riche bleu cobalt, et ornée en outre utrenlusieurs bandes de plumes noires veloutées ${ }^{74}$.

Les oiseaux-moucnou(fig. 48 et 49, Pl. 21 et 22) males sont presque aussi beaux que les ois or de paradis; quiconque a feuilleté les beaux volumes de M. Gou.Goou visité sa riche collection, ne peut le contester. Ces oiseaux affecafnt une diversité d'ornements très remarquable. Presque toutes les lerties du plumage ont été le siège de modifications, qui, comme ime l'a indiqué M. Gould, ont été poussées à un point extrême chez queiques espèces appartenant à presque tous les sous-groupes. Ces cas prés prêent une singulière analogie avec ceux que nous présentent les racesacee nous élevons pour l'ornementation, nos races de luxe, en un mol.mon caractère a primitivement varié chez certains individus, et certainstaintres caractères chez d'autres individus de la même espèce; l'homhons'est emparé de ces variations et les a poussées à un point extrextr comme la queue du pigeon-paon, le capuchon du jacobin, le beco bec et les caroncules du messager, etc. Il existe toutefois une différence dans un de ces cas; le résultat a été obtenu gráce à la sélection opérée par l'homme, tandis que, dans l'autre, celui des oiseaux-mouches, des oiseaux de paradis,etc., le résultat provient de la sélection que les femelles exercent en choisissant les plus beaux males.

Je ne citerai plus qu'un oiseau, remarquable par l'extrême contraste de coloration qui existe entre les malles et les femelles; c'est le fameux oiseau-cloche, Chasmorhynchus niveus, de l'Amérique du Sud, dont, à une distance de près de quatre kilomètres, on peut distinguer la note qui étonne tous eeux qui l'entendent pour la première tois. Le male est blanc pur, la femelle vert obscur; la première de ces couleurs est assez rare chez les espèces terrestres de taille moyenne et à habitudes inoffensives, Le mâle, s'il faut en croire la description de Waterton, porte sur ia base du bec un tube contourné en spirale, long de près de huit centimètres. Ce tube, noir, comme le jais, est couvert de petites plumes duveteuses; il peut se remplir d'air par communication avec lo palais, et pend sur le coté lorsqu'il n'est pas insuffé. Ce genre renferme quatre espèces; les mâles de ces quatre espèces sont très différents les uns

[^213]74. Wallace, Malay Archivelago, 1869, vol. II. D. 405.
des autres, tandis que les temelles, dont la description a fait loobjet d'un mémoire intéressant de M. Sclater, se ressemblent beaucoup; c'est là un excellent exemple de la règle générale que nous avons posée, à savoir que, dans un meme 'groupe, les males different beaucoup plus les uns des autres que ne le font les femelles. Chez une seconde espèce, lo C.nudicollis, le male est également blanc de neige, à l'exception d'un large espace de peau nue sur la gorge et autour des yeux, peau qui, à l'époque des amours, prend une belle teinte verte. Chez une troisième espèce (C. tricarunculatus), le male n'a de blanc que la tête et le cou, le reste du corps est brun noisette; le male de cette espèce porte trois appendices filamenteux, longs comme la moitié de son corps, - dont l'un part de la base du bec, et les deux autres des coins de la bouche ${ }^{75}$.
Les males adultes de certaines espèces conservent toute leur vie leur plumage coloré et les autres ornements qui les décorent; chez d'autres espèces, ces ornements se renouvellent périodiquement pendant l'été et pendant la saison des amours. A cette „époque, le bec et la peaư nue de la tête changent souvent de couleur, comme chez quelques hérons, quelques ibis, quelques mouettes, un des oiseaux (Chasmorhynchus) mentionnés plus haut, etc. Chez l'ibis blanc les joues, la peau dilatable de la gorge et les parties qui entourent la base du bec, deviennent cramoisies ${ }^{76}$. Chez un rale, le Gallicrex cristatus, une grosse caroncule rouge se développe sur i. ' te du male à la même époque. Il en est de même d'une mince crêtucrernée qui se forme sur le bec d'un pélican, le P. erylirorhynchuncinar, après la saison des amours, ces crêtes cornées tombent commamis bois de la tete des cerfs, et on a trouvé la rive d'une tle, dans un lacn lala Nevada, couverte de ces curieuses dépouilles ${ }^{77}$.
Les modificatiozatide couleur du plumage suivant les saisons proviennent, premièreniènt, d'une double mue annuelle; secondement, d'un changement rent de couleur qui affecte les plumes ellesmêmes; troisièmement, de cde ve les bords de couleur plus terne de la plume tombent périodiqueiquet; ou de ces trois causes plus ou moins combinées. La chute des ides's de la plume peut se comparer à celle de la chute du duvet det 'èes jeunes oiseaux; car, dans la plupart des cas, le duvet surmonte antermmet des premières vraies plumes ${ }^{78}$.

[^214]Quant aux oiseaux qui subissent annuellement une double mue, on peut en citer certains, comme les bécasses, les glaréoles et les courlis, chez lesquels les males et les femelles se rassemblent et ne changent de couleur à aucune époque. Je né saurais dire si le plumage d'hiver est plus épais et plus chaud que celui do l'été, ce qui semblerait, lorsqu'il n'y a pas de changement de couleur, la cause la plus probable d'une double mue. Secondement, il y a des oiseaux, quelques espèces de Totanus et quelques autres échassiers par exemple, chez lesquels les males ot les femelles se ressemblent, mais qui ont un plumage d'été et un plumage d'hiver un peu différents. La différence de coloration est, d'ailleurs, ordinairement si insignifiante, qu'elle peut à peine constituer un avantage pour ces oiseaux; on peut l'attribuer, peut-etre, a l'action directe des conditions différentes auxquelles les individus sont exposés pendant les deux saisons. Troisièmement, il y a beaucoup d'autres espéces chez lesquelles les inales et les femelles se ressemblent, mais qui revetent un plumage d'été et un plumage d'hiver très différents. Quatrièmement, on connalt de nombreuses espèces chez lesquelles la coloration du mate diffère beaucoup de celle de la femelle; or, la femelle, bien que muant deux fois, conserve la même coloration pendant toute l'année, tandis que les males subissent sous ce rapport des modifications quelquefois tres considérables, quelques outardes, par exemple. Cinquièmement, enfin, il est certaines espêces où le male et la femelle différent l'un de l'autre tant par leur plumage d'étê que par celui d'hiver, mais le male subit, an retour de chaque saison, une modification plus considérable que là femelle, - cas dont le tringa (Machetes pugnax) présente un frappant exemple.
Quant à la cause ou au but des différences de coloration entre le plumage d'été et celui d'hiver, elles peuvent, dans quelques cas, comme chez le ptarmigani ${ }^{79}$, servir pendant les deux saisons de moyen protecteur. Lorsque la différence est légère, on peut, comme nous l'avons déjà fait remarquer, l'attribuer peut-etre à l'aetion directe des conditions d'existence. Mais il est évident que, chez beaucoup d'oiseaux, le plumage d'été est ornemental, même lorsque les deux sexes se ressemblent. Nous pouvons conclure que tel est le cas pour beaucoup de hérons, etc., qui ne revetent leur

[^215]admirable plumage नu® pendant la saison des amours. En outre, ces aigrettes, ces huppes, etc., bien qu'elles existent chez les deur sexes, prennent parfois un développement plus considérable chez le male que chez la femelle, et ressenfblent aux ofnements de meme nature qui, chez d'mutres oiseaux, sont l'apanage des males seuls. On sait aussi que la captivité, on affectant le système reproducteur dess oiseaux mâles; arrête fréquemment le développement des caractéres sexuels secondaires, sans exercer d'influence imtnédiate sur leurs autres caractéres; or; d'après M. Bartlett, hait ou neuf Tringa canuius ont conservé pendant toute l'annees, aux Zoological Gardens, leur plumage d'hivé dépourvo d'ornements, fait qui nous permet de conclure que, bien que commuti aux deux sexes, le plumage d'été participe à la nature du plumage exclusivement masculin de beaucoup d'autres oiseaux ${ }^{\text {bo }}$.

La considération des fuits précédents, et, plus spécialement le fait que certains oiseaux de l'un et de l'autre sexe, he subissent aubune modification de couleur au cours de leurs mues annuelles, ou changent si peu que la modification ne peut guère leur etre avantageuse, qu'en outre les femelles d'autres espéces muent deux fois et conservent néanmoins touté l'année les mêthes couleurs, nous permet de conclure que l'habitude de muer deux fois pendant l'année n'a pas été acquise en vue d'assurer un caractêre ornemental au plumage du male pendant la saison des amours ; mais quela double mue, acquise primitivement dans un but distinct, est subs. 'uemment, dans certains cas, devenue l'occasion de revetir un fllumge nuptial.

II a aft surprenant, au premier abord, que, chez des espéces frès oisines, quelques oiseaux subissent uhe doubie mue annuelle régulière, et que d'autres n'en subissent qu'une setule. Le ptarmigan, par exemple, mue deux ou même trois fois l'an, et le tétras noir une seule fois. Quelques magnifques Nectariniées de l'Inde, et quelques sous-genres d'Anthtis; obscurément colorés, muent deux fois, tandis que d'autres ne muent qu'une fois par an ${ }^{81}$. Mais les gradations que présente la mue chez diversés espêces hous permettent d'expliquer comment des espèces ou des groupes d'es-

[^216]pdees peuvent avoir primitivement acquis la double mue annuelle, ou la reperdre après l'avoir possédée. La mue printanière, chez certaines outardes et chez certains pluviers, est loin d'étre complète, et se borne au remplacement de quelque» plumes; d'autres ne subissent qu'un changement de couleur. Il y a aussi des raisons pour croire que chez certaines outardes, et chez certains oiseaux, comme les rales, qui subissent une double mue, quelques vieux males conservent pendant toute l'année leur plumage nuptial. Quelques plumes très modifiées peuvent, au printemps, s'ajouter au plumage, comme cela a lieu pour les rectrices en forme de disque de a certains drongos (Bhringa) dans l'Inde, et les plumes allongées qui ornent le dos, le cou et la crête de quelques hérons. En suivant une progression de cette nature, la mue printanière se compléterait de plus en plus, et finirait par devenir double. Quelques oiseaux de paradis conservent leurs plumes nuptiales pendant toute l'année et ne subissent, par conséquent, qu'une seule mue; d'autres les perdent immédiatement après la saison des amours et subissent, en conséquence, une double mue; d'autres enfin les perdent à cette époque la première année seulement et ne les perdent pnis les années suivantes, de telle sorte que ces dernières espèces constituent pour ainsi dire un chaînon intermédiaire au point de vue de la mue.

Il existe une grande différence dans le laps de temps pendant lequel se conservent les deux plumages annuels, l'un pouvant durer toute l'année, et l'autre disparaître entièrement. Ainsi, le Machetes pugnax ne garde sa fraise au printemps que pendant deux mois au plus. Le Chera progne mâle acquiert, à Natal, son beau plumage et ses longues rectrices en décembre ou on janvier et les perd en mars; il ne les garde donc qu'environ trois mois. La plupart des espèces soumises à une double mue conservent leurs plumes décoratives pendant six mois environ. Le Gallus bankiva sauvage male conserve cependant les soies qu'il porte au cou pendant neuf ou dix mois, et, lorsqu'elles tombent, les plumes noires sousjacentes du cou deviennent visibles. Mais, chez le descendant domestique de cette espèce, les soies du cou sont immédiatement remplacées par de nouvelles, de sorte qu'ici nous voyons que pour une partie du plumage, une double mue s'est, sous l'influence de la domestication, transformée en une mue simple ${ }^{82}$.

[^217]On sait que le canard commun (Anas boschas) perd, après la saison des arnours, son plumage masculin pendant une période de trois mois, période pendant laquelle il revet le plumage de la femelle. Le Pilet mâle (Anas acuta) perd son plumage pendant une période de six semaines ou deux mois seulement, et Montagu remarque \& que cette double mue, dans un espace de temps aussi court, constitue un tait extraordinaire, qui semble mettre en déraut tout raisonnement humain». Mais quiconque croit à la modification graduelle de l'espèce ne sera nullement surpris d'observer toutes ces gradations. Si le pilet mâle revètait son nouveau plumage dans un laps de temps encore plus court, les nouvelles plumes propres au malle se mélangeraient presque nécessairement avec les anciennes, et toutes deux avec quelques plumes propres à la femelle. Or, c'est ce qui semble se présenter chez le mâle d'un oiseau qui n'est pas très éloigné de l'Anas acuta, le Harle huppé (Merganser serrator) dont les mâles * subissent, dit-on, un changement do plumage qui les fait, dans une certaine mesure, ressembler à la temelle ». Si la marche du phénomène s'accélérait un peu, la double mue se perdrait complètement ${ }^{83}$.
Quelques oiseaux mâles, comme nous l'avons déjà dit, affectent, du printemps, des couleurs plus vives, ce qui provient non d'une mue printanière, mais soit d'une modification réelle de la couleur des plumes, soit de la chute des bords obscurs de ces dernières. Les modifications de couleurs ainsi produites peuvent persister plus ou moins longtemps. Le plumage entier du Pelecanus onocrotalus est, au printemps, teinté d'une nuance rose magnifique, outre des taches jaune citron sur la poitrine; mais, comme le fait remarquer M. Sclater, \approx ces teintes durent peu et disparaissent ordinairement six semaines ou deux mois après leur apparition \geqslant. Certains pinsons perdent au printemps les bords de leurs plumes, et revetent des couleurs plus vives, tandis que d'autres n'éprouvent aucune modification de ce genre. Ainsi le Fringilla tristis des États-Unis (ainsi que beaucoup d'autres espéces américaines) ne revêt ses vives couleurs que lorsque l'hiver est passé; tandis que notre chardonneret, qui représente exactement cet oiseau par ses habitudes,

Ia Vidua, Ibis, vol. III, 1861, p. 133. Sur les Drongos pies-grièches, Jerbon, ib., vol. I, p. 435. Sur la mue printanière de l'Herodias bubulcus, M. S. S. Allen dans Ibis, 1863, p. 33. Sur le Gallus Bankiva, Blyth dans Ann. and Mag. of Nat. Hist., vol. I, 1848, p. 455 : voir aussi ma Varialion des animaux, ete., vol. I, 250 (trad. franç.).
83. Macgillivray (o. c., vol. V, p. 34, 70 et 223) sur la mue des Anatides, avec citations de Waterton et de Montagu. Voir aussi Yarrell, Hist. of Bril. Birds, vol. III, p. 243.
et le tarin, qui le représente de plus près encore par sa conformation, ne subissent aucune modification annuelle analogue. Mais une diférence de ce genre dans le plumage d'espèces voisines n'a rien d'étonnant, car chez la linotte commune, qui appartient à la meme tamille, la coloration cramoisie du front et de la poitrine n'apparaissent en Angleterre que pendant l'été, tandis qu'à Madère ces couleurs persistent pendant toute l'année ${ }^{84}$.

Les oiseaux males aiment à étaler leur plumage. - Les mâles étalent, avec soin, leurs ornements de tous genres, que ces ornements soient chez eux permanents ou temporaires; ils lewr servent évidemment à exciter, à attirer et à captiver les femelles. Toutefois les males déploient quelquefois leurs ornements sans se trouver en présence de femelles, comme le font les grouses dans leurs réunions; on a pu aussi remarquer que le paon aime à étaler sa queue splendide à condition qu'il ait un spectateur quelconque, et, comme j'ai souvent pu l'observer, fait parade de ses beaux atours devant des pouies, et mème devant des porcs ${ }^{85}$. Tous les naturalistes qui ont étudié avec soin les habitudes des oiseaux, soit à l'état sauvage, soit en captivité, sont unanimes à reconnaltre que les males sont enehantés de montrer leurs ornements. Audubon a remarqué que le mâle cherche de diverses manières à captiver la femelle. M. Gould, après avoir décrit quelques ornements particuliers à un oiseau-mouche mâle, ajoute qu'il a soin de les exposer à son plus grand avantage devant la femelle. Le docteur Jerdon ${ }^{86}$ insiste sur l'attraction et la fascination qu'exerce sur la femelle le beau plumage du male; M. Bartlett, des Zoological Gardens, s'exprime non moins catégoriquement à cet égard.
Ce doit etre un peau spectacle, dans les forets de IInde, « que de tomber brusquement sur vingt ou trente paons, dont les mâles êtalent leurs queues splendides, et se pavanent orgueilleusement devant les femelles charmées s. Le dindon sauvage redresse son brillant plumage, étale sa queue élégamment zonée et ses rémiges barrées, et, au total, avec les caroncules bleus et cramoisis qui garnissent sa gorge, il doit faire un effet superbe, bien que grotesque à nos yeux. Nous avons déjà cité des faits analogues à propos
84. Sur le pelican, Sclater, Proc. Zool. Soc., 1868, p. 265. Sur les pinsons Américains, Audubon, Orn. Biog., vol. I, p. 174, 221, ot Jerdon, Birds of India, vol, 11, p. 383. Sur la Fringilla cannabina de Madere, B. Yernon Harcourt, Ibis, vol. V, 1863, p. 250.
85. Rev, B. S. Dixon, Ornemental Poultry, 1848, p. 8.
86. Birds of India, Introduction, vol. I, p. xxiv; sur le paon, vol. III, p. 507. Gould, Introd, to the Trochilidee, 1851, p. 15 et 111.
de divers tétras (grouse). Passons donc à un autre ordre d'oiseaux. Le Rupicala crocea male (fig. $50, \mathrm{Pl}, 23$) est un des plus beaux oiseaux qu'il y ait au monde, son plumage affecte une teinte jaune orangé splendide, et quelques-unes de ses plumes sont curieusement tronquées et barbelées. La femelle, vert brunatre, nuancé de rouge, a une crête beaucoup plus petite. Sir R. Schomburgk a décrit les moyens qu'ils emploient pour courtiser les femelles; il 2 pu, en effet, observer une de leurs réunions où se trouvaient dix mâles et deux femelles. L'espace qu'ils occupaient avait quatre à cinq pieds de diamètre, ils avaient arraché l'herbe avec soin, uni et égalisé le terrain comme auraient pu le faire des mains humaines, Un mâle * était en train de cabrioler évidemment à la grande satisfaction des autres. Tantôt il étendait les ailes, relevait la tête ou étalait sa quque en éventail, tantôt il se pavanait en sautillant jusqu'à ce qu'il tombat épuisé de fatigue ; il jetait alors un certain cri, et était immédiatement remplacé par un autre. Trois d'entre eux entrèrent successivement en scène, et se retirèrent ensuite pour se reposer \%. Les Indiens, pour se procurer leurs peaux, attendent que les oiseaux soient très occupés par le spectacle auquel ils assistent ; ils peuvent alors, à l'aide de leurs flèches empoisonnées, tuer l'un après l'autre cinq ou six males ${ }^{87}$. Une douzaine au moins d'oiseaux de panadis males, au plumage complet, se rassemblent sur un arbre pour donner un bal, comme disent les indigènes; ils se mettent à voleter de ci de là, élèvent leurs ailes, redressent leurs plumes si élégantes, et les font vibrer de telle façon, dit M. Wallace, qu'on croirait l'arbre entier rempli de plumes flottantes, Ils sont alors si absorbés qu'un archer habile peut abattre presque toute la bande, Ces oiseaux, gardés en captivité dans l'archipel Malais, entretiennent avec soin la propreté de leurs plumes; ils les étalent souvent pour les examiner et pour enlever la moindre trace de poussière, Un observateur, qui en a gardé plusieurs couples vivants, affirme que les parades auxquelles se livre le male ont pour but de charmer la femelle ${ }^{88}$.

Le faisan doré et le faisan Amhurst, quand ils courtisent les femelles, ne se contentent pas d'étendre et de relever leur magnifique fraise, mais, comme je l'ai observé moi-mème, ils la tournent obliquement vers la femelle, de quelque cóté qu'elle se trouve, évidemment pour en déployer devant elle une large sur*

[^218]face ${ }^{59}$. M. Bartlett a observé un polyplectron male (fig. 51, Pl. 24) faisant sacour à une femelle, et m'a montré un individu empaillé placé dans la position qu'il prend dans cette circonstance. Les rectrices et les rémiges de cet oiseau sont ornées de superbes ocelles, semblables à ceux de la queue du paon. Or, lorsque ce dernier se pavane, il étale et redresse sa queue transversalement, car il se place en face de la fertelle et exhibe en même temps sa gorge et sa poitrine si richement colorées en bleu. Mais le polyplectron a la poitrine sombre, et les ocelles ne sont point circonscrits aux rectrices; en conséquence, il ne se pose pas en face de la femelle, mais il redresse et étale ses rectrices un peu obliquement, en ayant soin d'abaisser l'aile du même còté et de relever l'aile opposée. Dans cette position, il expose à la vue de la femelle, qui l'admire, toute la surface de son corps parsemée d'ocelles. De quelque côté qu'elle se retourne, les ailes étendues et la queue inclinée suivent le mouvement et restent ainsi à portée de sa vue. Le faisan tragopan mâle agit d'une manière à peu près semblable, car il redresse le. plumes du corps, mais non pas l'aile, du côté opposé à celui où se trouve la femelle, plumes que sans cela elle n'apercerrait pas, de sorte que toutes ses plumes élégamment tachetées sont en même temps exposées à ses regards.
La conduite du faisan Argus est encore plus étonnante. Les rémiges secondaires si énormément développées du mâle, qui seul en est pourvu, sont ornées d'une rangée de vingt à vingt-trois ocelles, ayant tous plus d'un pouce de diamètre. Les plumes sont, en outbe, élégamment décorées de raies obliques foncées et de séries de taches, rappelant une combinaison de la fourrure du tigre et de celle du léopard. Le mâle cache ces splendides ornements jusqu'à ce qu'il se trouve en présence de la femelle; alors, il redresse sa queue et déploie les plumes de ses ailes de façon à leur faire prendre l'apparence d'un grañd éventail ou d'un grand bouclier circulaire et presque vertical qu'il porte en avant de son corps. Il dissimule sa tete et son cou derrière ce bouclier; mais, afin de pouvoir surveiller la femelle devant laquelle il exhibe ses ornements, il passe quelquefois la tête, ainsi qu'a pu l'observer M. Bartlett, entre deux des longues rémiges ; l'oiseau, dans ce cas, présente une appareuce grotesque. Ce doit être là, d'ailleurs, une habitude du faisan Argus à l'état sauvage, car M. Bartlett et son fils, en examinant des peaux en parfait état de conservation qui leur

[^219]avaient été envoyées de l'Orient, ont remarqué, entre deux des plumes, un endroit usé évidemment par le passage fréquent de la tette de l'oiseau. M. Wood pense que le mâle peut aussi surveiller la femelle en regardant de côté sur le bord de l'éventail.

Les ocelles qui décorent les rémiges du faisan Argus sont ombrês avec ure telle perfection, que, comme le fait remarquer le duc d'Argyll ${ }^{90}$, ils représentent absolument une boule qu'on aurait posée dans un alvéole. J'éprouvai toutefois un grand désappointement quand j'examinai l'individu empaillé qui se trouve au British Museum ; on l'a monté les ailes déployées mais abaissées; les ocelles me paraissent plats et meme concaves. Mais M. Gould me fit aussitot comprendre la cause de mon désappointement; il lui suffisait pour cela de placer ces plumes dans la position que leur donne l'oiseau quand il les étale devant la femelle. Or, dès que les rémiges se trouvent dans la position verticale et que la lumière les frappe par en haut, l'effet complet des ombres se produit, et chaque ocelle (fig. 52, Pl. 25) prend l'aspect d'une boule dans une cavité. Tous les artistes à qui on a montré ces plumes ont admiré la perfection avec laquelle elles sont ombrées. Une question vient tout naturellement à l'esprit: comment la sélection sexuelle a-t-elle pu déterminer la formation de ces ornements si artistiques? Nous nous réservons de répondre à cette question dans le chapitre suivant, après avoir discuté le principe de la gradation.

Les remarques précédentes sappliquent aux rémiges secondaires du faisan Argus, mais les rémiges primaires, qui ont une coloration uniforme chez la plupart des gallinacés, ne sont pas, chez cet oiseau, moins merveilleuses. EHes affectent une teinte brune douce et sont parsemées de nombreuses taches foncées, dont chacune consiste en deux ou trois points noirs entourés d'une zone foncée. Mais l'ornement principal de ces rémiges consiste en un seul espace parallèle à la tige bleue foncée, dont le contour figure une seconde plume parfaite contenue dans la plume véritable. Cette portion intérieure affecte une couleur chatain plus clair, et est parsemée de petits points blancs. J'ai montré ces plumes à bien des personnes et plusieurs les ont préférées même aux plumes à ocelles, et ont déclaré qu'elles ressemblaient plutôt à une œuvre d'art qu'à une œuvre de la nature. Or, dans toutes les circonstances ordinaires, ces plumes sont entièrement cachées, mais elles s'étalent complètement, en même temps que les rémiges secondaires, de façon à former un grand éventail.
90. The Reign of Law, 1867, p. 208.

L'exemple du faisan Argus male est éminemment intéressant, en ce qu'il nous fournit une excellente preuve que la beauté la plus exquise peut servir à captiver la femelle, mais à rien autre chose ; en effet, les rémiges primaires ne sont jamais visibles, et les ocelles apparaissent dans toute leur perfection, seulement alors que le malle prend l'attitude qu'il adopte toujouts, quand il courtise la femelie. Le faisan Argus n'affecte pas de brillantes couleurs, de sorte que ses succès auprés de l'autre sexe paraissent dépendre de la grandeur de ses plumes et de la perfection de leurs élégants dessins. On objectera, sans doute, qu'il est absolument incroyable qu'un oiseau femelle puisse apprécior la finesse des ombres et l'élégance du dessin, mais nous n'hésitons pas à avouer qu'elle puisse posséder ce degré de gout presque humain. Quiconque croit pouvoir évaluer avec certitude le degré de discernement et de goût des animaux inférieurs peut nier, chez le faisan Argus femelle, l'appréciation de beautés aussi délicates : mais alors il faut admettre que les attitudes extraordinaires que prend le male, lorsqu'il courtise la femelle, et qui sont les seules pendant lesquelles la beauté merveilleuse de son plumage s'étale complètement aux regards, n'ont aucune espéce de but. Or c'est là une conclusion qui, pour moi tout au moins, est inadmissible.

Alors que tant de faisans et de gallinacés voisins étalent avec le plus grand soin leur beau plumage aux regards des femelles, M. Bartlett me signale un fait très remarquable: deux faisans affectant des couleurs ternes, le Crossoptilon auritum et le Phasianus Wallichii n'agissent pas ainsi ; ces oiseaux paraissent donc comprendre 'qu'il est insutile de faire parade de beautés qu'ils ne possèdent pas. M. Bartlett n'a jamais vu de combats entre les males de l'une ou l'autre de ces deux espéces qu'il a eu d'excellentes occasions d'observer, surtout la première. M. Jenner Weir pense aussi que tous les oiseaux males à plumage riche et fortement caractérisé sont plus querelleurs que ceux à couleurs sombres faisant partie des mêmes groupes. Le chardonneret, par exemple, est beaucoup plus belliqueux que la linotte, et le merle que la grive. Les oiseaux qui subissent un changement périodique de plumage deviennent également plus belliqueux à l'époque pendant laquelle ils sont le plus richement ornés. Sans doute, on a observé des luttes terribles entre les màles de quelques oiseaux à coloration obscure, mais ir semble que, lorsque la sélection sexuelle a exercé un forte influence et a déterminé, chez les males d'une espèce quelconque, une riche coloration, elle a aussi développé chez eux une tendance prononcée do un caractère belliqueux. Nous
aurons à signaler des cas presque analogues chez les mammifères. D'autre part, il est rare que l'aptitude au chant et la beauté du

- plumage se trouvent réunis sur les mâles de la même espèce; mais, dans ce cas, l'avantage résultant de ces deux perfections aurait été identiquement le même: le suceès auprès de la femelle. Il faut néanmoins reconnaitre que, chez les mâles de quelques oiseaux aux vives couleurs, les plumes ont subi des modifications spéciales qui les adaptent à la production d'une certaine musique instrumentale, bien que, si nous consultons notre gont tout au moins, nous he puissions pas comparer la beauté de cette musique à celle de la musique vocale de beaucoup d'oiseaux chanteurs.

Passons maintenant aux oiseaux mâles qui, sans etre ornés à aucun degré considérable, exhibent néanmoins, lorsqu'ils courtisent les fermelles, les charmes qu'ils possèdent. Ces cas, plus curieux que les précédents, sous certains rapports, ont été peu remarqués jusqu'ici. M. Jenner Weir, qui a longtemps élevé des oiseaux de bien des genres; y compris tous les Fringillidés et tous les Embérizidés d'Angleterre, a bien voule me communiquer les faits suivants choisis parmi un ensemble considérable de notes précieuses. Le bouvreuil se présente de face à la femelle, et gonfle sa poitrine de maniêre à lui faire voir à la fois plus de plumes cramoisies qu'elle ne pourrait en apercevoir dans toute autre position. En même temps, il abaisse sa queue noire et la tourne de côté el d’úutre d'une manière comique. Le pinson mâle se place aussi devant la femelle pour lui montrer sa gorge rouge et sa tête bleue; il atend en même temps légèrement les ailes, ce qui laisse aperceevoir les belles lignes blanches des épaules. La linotte commune distend sa poitrine rosée, étale légèrement ses ailes et sa queue brunes, de manière à en tirer le meilleur parti en montrant leurs bordures blaaches. Il faut cependant faire toutes résarves avant de conclure que ces oiseaux n'étalent leurs ailes que pour les faire admirer, car certains oiseaux dont les ailes n'ont aucune beauté agissent de mème. Le coq domestique, par exemple, n'étend jamais que l'aile opposée à la femelle et la fait traîner jusqu'à terre. Le chardonneret male se comporte autrement que tous les autres pinsons ; il a des ailes superbes, les épaules sont noires, et les rémiges foncées tachetées de blanc et bordées de jaune d'or. Lorsqu'il courtise la femelle, il balance son corps de drnite à gauche et réciproquement, et tourne rapidement ses ailes légèrement ouvertes d'abord d'un coté, puis de l'autre, et produit ainsi un effet lumineux à reflet doré. M. Weir affirme qu'aucun ąutre oiseau du même groupe ne se comporte de cette façon pendant qu'il cour-
tise la femelle, pas même le tarın male, espèce très voisine ; ce dernier, il est vrai, n'ajouterait rien à sa beauté en prenant cette attitude.
La plupart des bruants anglais sont des oiseaux à couleur terne et uniforme, mais les plumes qui ornent la tete du bruant des roseaux (Emberiza schoeniculus) male, revêtent, au printemps, une belle coloration noire par la disparition de leurs pointes plus pales; ces plumes se redressent pendant que l'oiseau courtise la femelle. M. Weir a êlevé deux espèces d'Amadina d'Australie; l'A. castanotis est une petite espèce à coloration très insiguifiante; la queue affecte une teinte foncée, le croupion est blanc, et les plumes supérieures de la queue noir de jais; chacune de ces dernieres porte trois grandes taches blanches, ovales et très apparentes ${ }^{91}$. Le male, lorsqu'il courtise la femelle, étale un peu et fait vibrer d'une manière toute particulière ces plumes en parties colorées de la queue. L'Amadina Lathami male se comporte d'une manière très differente; il exhibe devant la femelle sa poitrine richement tachetée et lui fait voir en même temps les plumes supérieures écarlates de son croupion et de sa queue. Je peux ajouter ici, d'après M. Jerdon, que le Bulbul indien (Pycnonotus hæmorrhous) a des plumes sous-caudales écarlates, dont les belles couleurs, pourraiton croire, n'apparaitraient jamais \& si l'oiseau excité ne les étalait latéralement de manière a les rendre visibles même d'en haut $\boldsymbol{>}^{92}$. On peut apercevoir, sans que l'oiseau se donne aucune peine, les plumes sous-caudales cramoisies de quelques autres espèces, celles du Picus major, par exemple. Le pigeon commun a des plumes irisées sur la poitrine, et chacun sait que le mâle gonfle sa gorge lorsqu'il courtise la femelle et exhibe ainsi ses plumes de la manière la plus avantageuse. Un des magnifiques pigeons à ailes bronzées d'Australie (Ocyphaps lophotes) se comporte différemment, selon M. Weir; le mâle, quand il se tient devant la femelle, baisse la tête presque jusqu'à terre, étale et redresse perpendiculairement sa queue et étend à moitié ses ailes. Il soulève et abaisse ensuite alternativement son corps de façon que les plumes métalliques irisées apparaissent toutes à la fois et resplendissent au soleil.
Nous avons maintenant cité un assez grand nombre de faits pour prouver avec quel soin et avec quelle adresse les oiseaux males étalent leurs divers charmes. Ils ont, quand ils nettoient leurs

[^220]slumes, de tréquentes occasions pour les admirer et pour étudier :omment ils peuvent le mieux faire valoir leur beauté. Mais, comme ous les males d'une même espèce se comportent d'une même manière, il semble que des actes, peut-etre intentionnels dans le principe, ont fini par devenir instinctifs. S'il en est ainsi, nous ne devons pas accuser les oiseaux de vanité consciente; cependant, lorsque nous voyons un paon se pavaner, la queue étalée et frissonnante, il semble qu'on ait devant les yeux le véritable emblème de l'orgueil et de la vanité.

Les divers ornements que possèdent les mâles ont certainement pour eux une extrême importance, car, dans certains cas, ils les ont acquis aux dépens de grands obstacles apportés à leur aptitude au vol et à la locomotion rapide. Le Cosmetornis africain, chez lequel une des rémiges primaires acquiert une longueur considérable pendant la saison des amours, est ainsi très gêné dans son vol, remarquable par sa rapidité en tout autre temps. La grandeur encombrante des rémiges secondaires du faisan Argus mâle empéche, dit-on, « presque complètement l'oiseau de voler ». Les magnifiques plumes des oiseaux de paradis les embarrassent lorsque le vent est fort. Les longues plumes caudales des Vidua mâles de l'Afrique australe rendent leur vel très lourd; mais, aussitot que ces plumes ont disparu, ils volent aussi bien que les femelles. Les oiseaux couvent toujours lorsque la nourriture est abondante, les obstacles apportés à leur locomotion n'ont donc pas probablement de grande inconvénients en tant qu'il s'agit de la recherche des aliments, mais il est certain qu'ils doivent être beaucoup plus exposés aux atteintes des oiseaux de proic. Nous ne pouvons non plus douter que la queue du paon et les longues rémiges du faisan Argus ne doivent exposer ces oiseaux à devenir plus facilement la proie des chats tigres. Les vives couleurs de beaucoup d'oiseaux malles doivent aussi les rendre plus apparents pour leurs ennemis. C'est là, ainsi que le remarque M. Gould, la cause probable de la défiance assez générale de ces oiseaux, qui, ayant peut-être conscience du danger auquel leur beauté les expose, sont plus difficiles à découvrir ou à approcher que les femelles sombres et relativement plus apprivoisées, ou que les jeunes males qui n'ont pas encore revêtu leur riche plumage ${ }^{\text {03 }}$.

[^221]Il est, d'ailleurs, un fait plus curieux encore ; certains ornements genent de façon extraordinaire des oiseaux males pourvus d'armes pour la lutte et qui, à l'état sauvage, sont assez belliqueux pour s'entre-tuer souvent. Les éleveurs de coqs de combat taillent les caroncules et coupent les crêtes de leurs oiseaux ; c'est ce qu'en termes du métier on appelle les armer en guerre. Un coq qui n'a pas été ainsi préparé, dit M. Tegetmeier, « a de grands désavantages, car la crête et les caroncules offrent une prise facile au bec de son adversaire, et comme le coq frappe toujours là où il tient, lorsqừil est parvenu à saisir son adversaire, celui-ci est bientôt en son pouvoir. En admettant même que l'oiseau ne soit pas tué, un coq qui n'a pas été taillé de la maniére indiquée est exposé certainement à perdre beaucoup plus de sang que celui quil l'a été ${ }^{94}>$. Lorsque les jeunes dindons se battent, ils se saisissent toujours par les caroncules, et je pense que les vieux oiseaux se battent de la même manière. On peut objecter que les crêtes et les caroncules ne sont pas des ornements et ne peuvent avoir pour les oiseaux aucune utilité de cette nature ; mais cependant, même à nos yeux, la beauté du coq espagnol au plumage noir brillant est fort rehaussée par sa face blanche et sa crête cramoisie; et quiconque a eu l'occasion de voir un faisan tragopan male distendre ses magnifiques caroncules bleus, pendant qu'il courtise la femelle, ne peut douter un instant qu'ils ne servent à embellir l'oiseau. Les faits que nous venons de citer prouvent que les plumes et les autres ornements du male doivent avoir pour lui une haute importance; ils prouvent, en outre, que, dans certains cas, la beauté est même plus essentielle pour lui que la victoire dans le combat.

CHAPITRE XIV

oiseaux (suite)

Chofix exercé par la femelle. - Durée de la cour qué se font les oiseaux. - Oiseaux non accouplés. - Facultés mentales et goat pour le beau. - La femelle manifeste sa préférence ou son aversion pour certains malés. - Variabilité des oiseaux. - Les variations sont parfois brusques. - Lois des variations. - Formation d'ocelles. - Gradations de caractères. - Exemples fournis par le Paon, le faisan Argus et l'Urosticte.

Lorsque les malles et les femelles présentent quelques différences au point de vue de la beauté, de l'aptitude à chanter, ou de la

[^222]production de ce que j'ai qualifié de musique instrumentale, le male, presque toujours, l'emporte sur la femelle. Ces qualités, ainsi que nous venons de le démontrer, ont évidemment pour lui une grande importance. Quand elles sont temporaires seulement, elles n'apparaissent que peu de temps avant l'époque de l'accouplement. Le mâle seul se donne beaucoup de peine pour exhiber ses attraits variés, et exécute de grotesques gambades sur le sol ou dans l'air, en présence de la femelle. Le male s'efforce de chasser ses rivaux, ou, s'il le peut, de les tuer. Nous pouvons donc en conclure que le mâle se propose de décider la femelle à s'accoupler aveo lui, et, pour atteindre ce but, il cherche à l'exciter et à la captiver en employant bien des façons différentes; c'est lá, d'ailleurs, l'opinion de tous ceux qui ont étưdié avec soin les mœurs des oiseaux. Mais il reste à élucider une question qui, relativement à la sélection sexuelle, a une importance considérable: tous les males de la même espèce ont-ils le poavoir de séduire et d'attirer également la femelle? Celle-ci, au contraire, exerce-t-elle un choix, et préfère-t-elle certains males à certains autres? Un nombre considérable de preuves directes et indirectes permet de répondre affirmativement à cette dernière question. 11 est évidemment très difficile de déterminer quelles sont les qualités qui décident du choix exercé par les femelles; mais, ici encore, des preuves directes et indirectes nous permettent d'affirmer que les ornements du male jouent un grand role, bien qu'il n'y ait pas à douter que sa vigueur, son courage et ses autres qualités mentales n'aient aussi beaucoup d'influence. Commençons par les preuves indirectes.

Durée de la cour que se font les oiseaux. - Certains oiseaux des deux sexes se rassemblent chaque jour dans un lieu déterminé pendant une période plus ou moins longue; cela dépend probablement, en partie, de ce que la cour que les males font aux femelles dure plus ou moins longtemps, et aussi de la répétition de l'accouplement. Ainsi, en Allemagné et en Scandinavie, lés réunions (leks ou balzen) du petit tétras se continuent depuis le milieu de mars jusque dans le courant de mai. Quarante ou cinquante individus et même davantage assistent à ces réunions, et il n'est pas rare que ces oiseaux fréquentent la même localité penđant bien des années successives. Les réunions du grand tétras commencent vers la fin de mars pour se prolonger jusqu'au milieu et même jusqu'à la fin de mai. Dans l'Amérique du Nord, les assemblées du Tetrao phasianellus, désignées sous le nom de <danses des perdrix », durent un mois et plus. D'autres espèces de tétras tant dans l'Amérique
du Nord que dans la Sibérie orientale ${ }^{1}$, ont à peu près les mêmes habitudes. Lns oiseleurs reconnaissent les localités où les tringa se rassemblent à l'aspect du sol piétiné de telle façon que l'herbe cesse d'y croltre, ce qui prouve aussi que le même endroit est fréquenté pendant longtemps. Les Indiens de la Guyane connaissent fort bien les arènes dépouillées où ils savent trouver les beaux coqs de roches; les indigènes de la Nouvelle-Guinée connaissent aussi les arbres sur lesquels se rassemblent à la fois dix ou vingt oiseaux de paradis au grand plumage. On n'affirme pas expressément que, dans ce dernier cas, les femelles se réunissent sur les mêmes arbres, mais les chasseurs, si on ne les interroge pas sur ce point, ne songent probablement pas à signaler leur présence, les peaux des femelles n'ayant aucune valeur pour eux. Des tisserins (Ploceus) africains se rassemblent par petites bandes lors de la saison des amours et se livrent, pendant des heures, aux évolutions les plus gracieuses. De nombreuses bécasses solitaires (Scolopax major) se réunissent au crépuscule dans un marais, et fréquentent pendant plusieurs années de suite la même localité; on peut les voir courir en tous sens « comme autant de gros rats, ébouriffant leurs plumes, battant des ailes, et poussant les cris les plus étranges ${ }^{2}$ 》.
Quelques-uns des oiseaux dont nous venons de parler, notamment le tétras à queue fourchue, le grand tétras, le lagopède faisan, le tringa, la bécasse solitaire et probablement quelques autres, sont, dit-on, polygames. On serait disposé à croire que, chez les oiseaux pratiquant la polygamie, les mâles les plus forts n'auraient qu'à expulser les plus faibles, pour s'emparer aussitot de nombreuses femelles; mais, s'il est nécessaire, en outre, que le malle plaise à la femelle et la captive, on s'explique facilement que le mâle courtise longtemps la femelle et que tant d'individus des deux sexes se róunissent dans une mème localité. Certaines espèces strictement monogames tiennent également des assemblées nuptiales; c'est ce que paraît faire, en Scandinavie, une espéce de ptarmigan, et ces assemblúes se prolongent du milieu de mars jus-

1. Nordmann décrit (Ball. Soc. Imp. des Nat. Moscou, 1861, t. XXXIV, p. 264) les lieux de danse du Tetrao urogallö̈des dans le pays d'Amour. 11 estime le nombre des mâles rassemblés ì cent environ, les femelles restent cachées dans les buissons environnants et ne sont pas comprises dans ce total. Les cris que poussent ces oiseaux different beaucoup de ceux du T. arogallus, le grand coq de Bruyère.
2. Voir, sur les réunions de tétras, Brehm, Thierleben, vol. iv, p. 350 , L. Lloyd, Game Birds of Sweden, 1867, p. 19, 78; Richardson, Fauna Bor. Ame ricana, Birds, p. 362. Sur le Paradisea, Wallace, Ann. and Mag. of Nat. Hist. vol. XX, 1857, p. 412. Sur la Bécasse, Lloyd, ib., p. 221.
qu'au milieu de mai. En Australie, l'oiseau lyre (Menura superba) construit des petits monticules arrondis, et le M. Alberti creuse des trous peu profonds, où on assure que les deux sexes se ras semblent. Les assemblées du M. superba comportent quelquefois un grand nombre d'individus; dans un mémoire récemment publié ${ }^{3}$, un voyageur raconte qu'ayant entendu dans unt vallée située audessous de lui un bruit indescriptible, il s'avança et vit à son grand étonnement environ cent cinquante magnifiques coqs-lyres rangés en ordre de bataille, et se livrant un furieux combat. Les berceaux des Chasmorhynchus constitueat un lieu de réunion pour les deux sexes pendant la saison des amours; \& les males s'y róunissent, et combattent pour s'assurer la possession des femelles, qui, assemblées dans le même lieu, rivalisent de coquetterie avec les males. Chez deux genres de ces oiseaux, le même berceau sert pendant bien des années ${ }^{4} \geqslant$.

Le Rev. W. Darwin Fox affirme que la pie commune (Corvus pica) avait l'habitude, dans la forêt Delamere, de se rassembler pour célébrer le \& grand mariage des pies ». Ces oiseaux étaient si nombreux, il y a quelques annécos, qu'un garde-chasse tua dix-neut mâles dans une matinée; un autre abattit d'un seul coup de fusil sept oiseaux perchés ensemble. Alors que les pies habitaient en aussi grand nombre la forêt de Delamere, elles avaient l'habitude de ze réunir, au commencement du printemps, sur des points particuliers, où on les voyait en bandes, caqueter ensemble, se battre quelquefois, et voler d'arbre en arbre en faisant un grand tumulte. Ces assemblées paraissaient avoir pour les pies une grande importance. La réunion durait quelque temps, puis elles se séparaient, ot s'il faut en croire M. Fox et les autres observateurs, elles s'accouplaient pour le reste de la saison. Il est évident qu'il ne peut pas y avoir de grands rassemblements dans une localité où une espèce quelconque u'est pas très abondante, il est donc très possible qu'une espèce ait des habitudes différentes suivant le pays qu'elle habite Je ne connais, par exemple, qu'un seul cas d'une assemblée régulière du tétras noir en Écosse, cas que m'a signalé M. Wedderburn bien que ces assemblées soient si communes en Allemagne et er Scandinavie que, dans les langues de ces pays, elles ont reçu de: noms spéciaux.

Oiseaux non accouplés, - Les faits que nous venons de citer nou:

[^223]autorisent è conclure que, chez des groupes très différents, la cour que les oiseaux males font aux femelles ne laisse pas que d'etre souvent une affaire longue, délicate et embarrassanto. On a même des raisons de croire, si improbable que cela paraisse tout d'abord, que certains males et certaines femelles appartenant à la même espèce, habitant la méme localité, ne se conviennent pas toujours, et par conséquent ne s'accouplent pas, On a cité bien des exemples de couples ohez lesquels le male ou la femelle a été promptement remplacé par un autre, quand l'un des deux a été tué. Ce fait a été plus fréquemment observé chez la pie que chez tout autre oiseau, probablement parce que cet oiseau est très apparent et que son nid se remarque facilement. Le célebre Jenner raconte que, dans le Wiltshire, on tua sept jours de suite un des oiseaux d'un couple mais sans résultat, \& car l'oiseau restant remplaçait aussitot son compagnon' disparu, et le dernier couple se chargea d'élever les petits ». Un nouveau compagnon se trouve généralement le lendemain, mais M. Thompson cite un cas où il fut remplacé dans la soirée du mème jour. Si un des oiseaux parents vient à etre tué mème après l'éclosion des œufs, it est souvent remplacé; le fait s'est passé après un intervalle de deux jours dans un cas observé récemment par un garde-chasse de sir $\mathcal{J} \cdot$ Lubbock ${ }^{5}, 0$ n peut supposer tout d'abord, et cette supposition est la plus probable, que les pies males sont beaucoup plus nombreuses que les femelles, et que, dans ces cas et beaucoup d'autres analogues, les males seuls ont été tués, ce qui arrive assez souvent. En effet, les gardes de la forêt de Delamere ont affirmé à M. Fox que les pies et les corbeaux qu'ils abattaient en grand nombre dans le voisinage des nids, étaient tous males, ce qui s'explique par le fait que les males, obligés d'aller et venir pour se procurer des aliments pour les femelles en train de couver, sont exposés à de plus grands dangers, Macgillivray, cependant, assure, d'après un excellent observateur, que troies pies femelles ont été successivivement tuées sur le méme nid; dans un autre cas six pies fermelles ontété aussi tuées successivement alors qu'elles couvaient les mêmes ceufs; il est vrai que, s'il faut en croire M. Fox, le male se charge de couver lorsque la femelle vient à etre tuée.
Le garde de sir J. Lubbock a tué, à plusieurs reprises, sans ponvoir préciser le nombre de fois, un des deux membres d'un couple de geais (Garrulus glandarius), et a toujours trouvé l'oiseau survivant

[^224]accouplé de nouveau au bout de très peu de temps. Le Rév. W. D. Fox, M, F. Bond, et d'autres, après avoir tué un des deux corbeaux (Corvus Corone) d'un couple, ont observé que le survivant trouvait très prompternent à s'accoupler de nouveau. Ces oiseaux sont communs et on peut s'expliquer qu'ils trouvent un nouveau compagnon avec une facilité relative; mais M. Thompson constate qu'en Irlande, chez une espèce rare de faucon (Falco peregrinus), «si un

- mâle ou une femelle vient à être tué pendant la saison de l'accouplement (ce qui arrivẹ assez souvent), l'individu qui a disparu est remplacé au bout de peu de jours, de sorte que le produit du nid est assuré ». M. Jenner Weir a constaté le même fait chez des faucons de la même espèce à Beachy Head, Le même observateur affirme que trois crécerelles mâles (Falco tinnunculus) furent suecessivement tués pendent qu'ils s'occupaient du même nid, deux avaient le plumage adulte, et un celui de l'année précédente. M. Birkheck tient d'un garde-chasse digne de foi que, en Écosse, chez l'aigle doré (Aquila chrysaelos), espèce fort rare, tout individu d'un couple tué est bientòt remplacé. On a aussi observé que, chez le hibou blanc (Strix flammea), le survivant trouve promptement un nouveau compagnon.

Wite de Selborne, qui cite le cas du hibou, ajoute qu'un homme avait l'habitude de tuer les perdrix mâles pensant que les batailles qu'ils se livraient dérangeaient les femelles après l'accouplement ; mais bien que cet homme eut rendu une même femelle plusieurs fois veuve, elle ne tardait pas à s'accoupler de nouveau. Le même naturaliste ordonna de tuer des moineaux qui s'étaient emparés de nids d'hirondelles et les en avaient ainsi expulsées, mais il s'aperçut bientôt que, si on ne tuait pas en même temps les deux individus formant le couple, le survivant, « fût-ce le male ou la femelle, se procurait immédiatement un nouveau compagnon, et cela plusieurs fois de suite $>$.

Le pinson, le rossignol et la rubiette des murailles (Phoenioura ruficilla), pourraient nous fournir au besoin des exemples analogues. Un observateur a constaté que la rubiette des murailles était assez rare dans la localité qu'il habitait et que, cependant, la femelle, occupée à couver ses œufs qu'elle ne pouvait quitter, parvenait en très peu de temps à faire savoir qu'olle était veuve. M. Jenner Weir me signale un cas analogue ; à Blackheath, il n'entend jamais les notes du bouvreuil sauvage, et n'aperçoit jamais cet oiseau; cependant, lorsqu'un de ses males captifs vient à mourir, il voit généralement arriver, au bout de quelques jours, un male sauvage qui vient se percher dans le voisinage de la femelle veuve dont la note
d'appel est loin d'Atre forte. Je me contenterai de citer encore un autre fait que je tiens du même observateur: un des membres d'un couple de sansonnets (Starnus Vulgaris) ayant été tué dans la matinée, fut remplacé dans l'après-midi; l'un des deux ayant encore été abattu, le couple se compléta de nouveau avant la nuit ; l'oiseau, quel qu'ait été son sexe, s'était ainsi consolé de son triple veuvage dans le courant de la méne journée. M. Engleheart a tué pendant plusieurs années un des membres d'un couple d'étourneaux qui faisait son nid dans un trou d'une maison à Blackheath, mais le mort était toujours immédiatement remplacé. D'après des notes prises pendant une saison, il constata qu'il avait tué trente-cinq oiseaux des deux sexes, appartenant au même nid, mais sans tenir un compte exact de la proportion des sexes; néanmoins, malgré cette véritable boucherie, il se trouva un couple pour élever une couvée ${ }^{6}$.
Ces faits méritent certainement toute notre attention. Comment se fait-il que tant d'oiseaux se trouvent prêts à remplacer immédiatement un individu disparu? Il sumble au premier abord qu'il soit fort embarrassant de répondre à cette question, surtout quand il s'agit des pies, des geais, des corbeaux, des perdrix et de quelques autres oiseaux qu'on ne rencontre jamais seuls au printemps. Cependant, des oiseaux appartenant au même sexe, bien que non accouplés, cela va sans dire, vivent quelquefois par couples ou par petites bandes, comme cela se voit chez les perdrix et chez les pigeons. Les oiseaux vivent aussi quelquefois par groupes de trois, ce qui a été observé chez les sansonnets, chez les corbeaux, chez les perroquets et chez les perdrix. On a observé deux perdrix femelles vivant avec un seul mâle, et deux malles avec une seule femelle. Il est probable que les unions de ce genre doivent se rompre facilement. On peut quelquefois entendre certains oiseaux males chanter leur chant d'amour longtemps après l'époque ordinaire, ce qui prouve qu'ils ont perdu leur compagne, ou qu'ils n'en ont jamais eu. La mort par accident ou par maladie d'un des membres du couple laisse l'autre seul et libre, et il y a raison de croire que, pendant la saison de la reproduction, les femelles sont plus spécialement sujettes à une mort prématurée. En outre, des oiseaux dont le nid a été détruit, des couples stériles ou des individus en

[^225]retard, doivent pouvoir se quitter facilement, et seraient probablement heureux de prendre la part qu'ils peuvent aux plaisirs et aux devoir's attachés à l'élève des petits, en admettant même qu'ils ne leur appartiennent pas ${ }^{7}$. C'est par des éventualit's de ce genre que, selon toute probabilité, on peut expliquer la plupart des cas que nous venons de signaler ${ }^{8}$. Il est néanmoins singulier que, dans une mème localité, au plus fort de la saison de la reproduction, il y ait autant de males et de femelles toujours prêts à compléter un couple déparerlé. Pourquoi ces oiseaux de rechange ne s'accou-plent-ils pas immédiatement les uns avec les autres? N'aurionsnous pas quelque raison de supposer, avec M. Jenner Weir, que malgré la cour longue et quelque peu pénible que se font les oiseaux, certains mâles et certaines femelles ne réussissent pas à se plaire en temps opportun et ne s'accouplent par conséquent pas? Cette supposition paraltra un peu moins improbable quand nous aurons vu quelles antipathies et quelles préférences les femelles manifestent quelquefois pour certains males.

Facultés mentales des oiseaux et leur goant pour le beau. - Avant de pousser plus loin la discussion de cette question : les femelles choisissent-elles les mâles les plus attrayants, ou acceptent-ulles le premier venu? il convient d'étudier brièvement les aptitudes mentales des oiseaux. On pense ordinairement, et peut-être justement, que les oiseaux possèdent des aptitudes au raisonnement très incomplètes; on pourrait cependant citer certains fails ${ }^{9}$ qui semble-
7. White (Nat. Hist. of Selborne, 1825, vol. I, p. 140), sur l'existence au commencement de la saison de petites couvées de perdrix males, ce dont on m'a communiqué d'autres exemples. Sur le retard des organes générateurs chez quelques oiseaux, voir Jenner, Phil. Trans., 1824. Quant aux oiseaux vivant par groupes de trois, M. Jenner Weir m'a fourni lez cas de l'étourneau et des perroquets; M. Fox, ceux des perdrix. Sur les corbeaux, voir Field, 1868, p. 415. Consulter sur les oiseaux males chantant après l'époque voulue, Rev. L. Jenyns, Observ. in Nat. Hisf., 1846, p. 87.
8. Le cas suivant (Times, août 6,1868) a été cité par le Rev. F. O. Morris sur l'autorité du Rev. 0. W. Forester : "Le garde a trouvé cette année un nid de faucons contonant cinq petite. Il en enteva quatre qu'it tua, et en laissa un aulquel il coupa les ailes pour servir d'amorce afin de détruire les vieux. Il les tua tous deux le lendemain pendant qu'ils apportaient de la nourriture au jeune, et le garde crut que tout était fini. Le lendemain, il revint vers le aid et y trouva deux autres faucons charitables qui étaient venus au secours de forphelin; if les tua également. Revenant plus tard il retrousa encore deux autres individus remplissant les memes fontions que les premiers; il les tira tous les deux, et en abattit an; l'autre, bien qu'atteint, ne put être retrouvé. Il n'en revint plus pour entreprendre cette inutile tantative. .
9. Le prof. Newton a bieu voult me slgaaler le passage suivant de M. Adam (Travels of A naluralist, 1870, p. 278): "Au lieu de douner a une sittelle japomaise la noir assez tondre de l'if, sa nourriture ordinaire, je lei donnai des noi-
raient autoriser une conclusion contraire. Des facultés inférieures de raisonnement sont toutefois, ainsi que nous le voyons dans l'humanité,compatibles avec de tortes affiections, une perception subtile et le goat porrr le beau, et c'est de ces dernières qualités qu'il est question ici. On a souvent affirmé que les perroquets ont l'un pour l'autre un attachement si vif que, lorsque l'un vient à mourir, l'autre souffre pendant longtemps; toutefois M. Jenner Weir pense qu'on a beaucoup exagéré la puissance de l'affection chez la plupart des oiseaux. Néanmoins, on a remarqué que, à létat sauvage, quand un des membres d'un couple a été tué, le survivant fait entendre, pendant plusieurs jours, une sorte d'appel plaintif; M. SaintJohn ${ }^{10}$ cite divers faits qui prouvent l'attachement réciproque des oiseaux accouples. M. Benett ${ }^{11}$ raconte qu'il a pu observer en Chine le fait suivant: On avait volé un canard mandarin male, et la femelle restait inconsolable sans qu'un autre mâle de la même espèce la courtisat assidûment et déploya tous ses charmes devant elle. Au bout de trois semaines on retrouva le canard volé et le couple se reconnut immédiatement en donnant toutes les marques de la joie la plus vive. Nous avons cependant ru que des sansonnets peuvent, trois fois dans la même journée, se consoler de la perte de leur compagnon. Les pigeons ont une mémoire locale assez parfaite pour retrouver leur ancien domicile après neuf mois d'absence; pourtant M. Harrisson Weir affirme que si on sépare quelques semaines pendant l'hiver un couple de ces oiseaux, qui reste naturellement apparié pour la vie, et qu'on les associe respectivement avec un autre male et une autre femelle, les oiseaux séparés ne se reconnaissent que rarement, pour ne pas dire jamais, lorsqu'on les remet ensemble.
Les oiseaux font quelquefois preuve de sentiments de bienveillance; ilsnourrissent les jeunes abandonnés, même quand ils appartiennent à une espèce différente; mais peut-être faut-il considérer ceci comme le fait d'un instinct aveugle. Noas avons déjà vu qu'ils nourrissent des oiseaux adultes de leur espèce devenus aveugles. M. Baxton a observé un perroquet qui prenait soin d'un oiseau estropié appartenant à une autre espèce, nettoyait son plumage, et le défendait cuntre les attaques des autres perroquets qui erraient
settes dures. V'oiseau it de nombreux efferts sans pozivoir les briser; enfin ill les déposa l'une après l'autre dans un vase plein d'eau, évidemment avec la pensée qu'après avoir trempé quelque temps elles deviendraient plus molles; c'est la unie preuve intéressante do Y'intelligence da cos oiseaux, *
10. A Tour in Sutherlandshirs, 1840, p. 18E.
11. Wanderings in New South Wales, vol, 4, 188s, p, Ce,
librement dans son jardin. Il est encore plus curieux de voir que ces oiseaux manifestent évidemment de la sympathie pour les plaisirs de leurs semblables. On a pu, en effet, observer l'intérêt extraordinaire que prenaient les autres individus de la même espèce à la construction d'un nid que construisait sur un acacia un couple de-cacatoès. Ces perroquets paraissaient doués aussi d'une grande curiosité, et possédaient évidemmenî « des notions de propriété et de possession ${ }^{12} »$. Ils ont aussi une mémoire fidèle, car on a vu, aux Zoological Gardens, des perroquets reconnaitre leurs anciens maitres après une absence de plusieurs mois.

Les oiseaux ont une grande puissance d'observation. Chaque oiseau apparié reconnaît, bien entenảu, son compagnon. Audubon affirme qu'aux États-Unis un certain nombre de Mimus polyglottus restent toute l'année dans la Louisiane, tandis que les autres émigrent vers les États de l'Est; ces derniers sont à leur retour immédiatement reconnus et attaqués par ceux restés dans le midi. Les oiseaux en captivité reconnaissent les différentes personnes qui les approchent, ainsi que le prouve la vive antipathie ou l'affection permanente que, sans cause apparente, ils témoignent à certains individus. On m'a communiqué de nombreux exemples de ce fait observés chez les geais, chez les perdrix, chez les canaris et surtout chez les bouvreuils. M. Hussev a décrit de quelle façon extraordi-. naire une perdrix apprivoisée reconnaissait tout le monde ; ses sympathies et ses antipathies étaient fort vives. Elle paraissait \& affectienner les couleurs claires, et elle remarquait immédiatement une robe ou un chapeau porté pour la première fois ${ }^{13}$. M. Hewitt a décrit les mœurs de quelques canards (descendant depuis peu de parents sauvages) qui, en apercevant un chien ou un chat étranger, se précipitaient dans l'eau et faisaient les plus grands efforts pour s'échapper, tandis qu'ils se couchaient au soleil à côté des chiens et des chats de la maison, qu'ils reconnaissaient parfaitement. Ils s'éloignaient toujours d'un étranger et même de la femme qui les soignait, si elle faisait un trop grand changement dans sa toilette. Audubon raconte qu'il a élevé et apprivoisé un dindon sauvage, qui se sauvait toujours quand il apercevait un chien étranger; l'oiseau s'échappa dans les bois; quelques jours après, Audubon, le prenant pour un dindon sauvage, le fit poursuivre par son chien; mais, à son grand étonzement, l'oiseau ne se sauva pas, et le chien,

[^226]Fayant rejoint, ne l'attaqua pas, car tous deux s'étaient mutuellement reconnus comme de vieux amis ${ }^{14}$.
M. Jenner Weir est convaincu que les oiseaux font tout particulièrement attention aux couleurs des autres oiseaux, quelquefois par jalousiv, quelquefois parce qu'ils croient reconnaitre un parent. Ainsi, il introduisit dans sa voliere un bruant des roseaux (Emberiza schœoniculus), qui venait de revetir les plumes noires de sa tete ; aucun des oiseaux ne fit attention au nouveau venu, excepté un bouvreuil, qui a aussi la tête noire. Ce bouvreuil, d'ailleurs très paisible, ne s'était jamais querellé avec aucun de ses compagnons, y compris un autre bruant de la même espèce, mais qui n'avait pas encore revêtu les plumes noires de sa tête; toutefois, il maltraita tellement le dernier venu, qu'il fallut l'enlever. Le Spiza cyanea affecle, pendant la saison de l'accouplement, une brillante couleur bleue; un oiseau de cette espèce, très paisible d'ordinaire, se jeta cependant sur un S. ciris, qui a la tête bleue et le scalpa complètement. M. Weir fut aussi obligé de retirer de sa volière un rougegorge, qui altaquait avec furie tous les oiseaux portant du rouge dans leur plumage, mais ceux-là seulement; il tua, en effet, un bec-croisé, à poitrail rouge, et blessa grièvement un chardonneret. D'autre part, il a observé que, lorsque certains oiseanx cont introduits pour la première fois dans la volière, ils se dirigent vers les espèces dont la couleur ressemble le plus à la leur, et s'établissent à lears cotés.

Les oiseaux malles prennent beaucoup de peine pour étaler devant les femelles leur beau plumage et leurs autres ornements; on peut en conclure que les femelles savent apprécier la beauté de leurs prétendants. Mais il est évidemment très difficile de déterminer preuves en main quelle est leur aptitude à cet égard. On a souvent observé que les oiseaux, placés devant un miroir, s'examinent avec une profonde attention, que certains observateurs attribuent à la jalousie, car l'oiseau peut se croire en face d'un rival, que d'autres, au contraire, attribuent à une sorte d'admiration intime. Dans d'autres cas, il est difficile de déterminer quel sentiment l'emporte : la simple curiosité ou l'admiration. Lord Lilford ${ }^{15}$ croit pouvoir affirmer que les objets brillants éveillent si puissamment la curiosité du tringa que, dans les iles loniennes, « sans se préoccuper des coups de fusil, il se précipite sur un mouchoil à

[^227]vives conleurs $\%$. Un petit minoir, qu'on fait tourner et briller au soleil, exerce une telle altraction sur l'alouette commune qu'elle vient se laire prendre en nombre considérable. Est-ce l'admiration ou la curiosité qui pousse la pie, le corbeau ou quelques autres oiseaux à voler et à cacher des objets brillants, tels que l'argenterie et les bijoux.
M. Gould assure que certains oiseaux-mouches décorent avec un goût exquis l'extérieur de leurs nids ; < ils y attachent instinctivement de beaux morceaux de lichen, les plus grandes pièces au milieu et les plus petites sur la partie attachée à la branche. Çà et là une jolie plume est entrelacée ou fixée à l'extérieur; la tige est toujours placée de façon que la plume dépasse la surface *. Les trois genres d'oiseaux australiens qui construisent les berceaux de verdure dont nous avons déjá parlé, nous fournissent d'ailleürs une preuve excellente du gout des oiseaux pour le beau. Ces constructions (voy. fig. 46, Pl. 19), où les individus des deux sexes se réunissent pour se livrer à des gambades bizarres, affectent des formes différentes; mais ce qui nous intéresse particulièrement, c'est que les différentes espèces décorent ces berceaux de diverses manières. L'espèce dite satin affectionne les objets à couleurs gaies, tels que les plumes bleues des perruches, les os et les coquillages blancs, qu'elle introduit entre les rameaux ou dispose à l'entrée avec beaucoup de goât. M. Gould a trouvé dans un de ces berceaux un tomahawk en pierre bien travaillée et un fragment d'étoffe de coton bleue, provenant évidemment d'un camp d'indigènes. Les oiseaux dérangent constamment ces objets, et pour les disposer de façon différente les transportent çà et là. L'espèce dite tachetée « tapisse magnifiquement son berceau avec des grandes herbes disposées de manière que leurs sommets se rencontrent et forment les groupes les plus variés ». Ces oiseaux se servent de pierres rondes pour maintenir les tiges herbacées à leur place, et faire des allées conduisant au berceau. Ils vont souvent chercher les pierres et les coquillages à de grandes distances. L'oiseau régent, décrit par M. Ramsay, orne son berceau, qui est très court, avec des coquillages terrestres blancs appartenant à cinq ou six espèces, et avec des «baies de diverses couleurs bleues, rouges et noires, qui, lorsqu'elles sont fraiches, lui donnent un aspect charmant. Ils y ajoutent quelques feuilles fraîchement cueillies et de jeunes pousses roses, le tout indiquant beaucoup de goût pour le beau. » Aussi M. Gould a-t-il pu dire avec beaucoup de raison : «Ces salles de réunion si richement décorées constituent évidemment les plus merveilleux axemples encore connus de l'architecture des oiseaux. *

D'un autre coté, nous pouvons conclure que le gont pour le beau chez les oiseaux diffère certainement selon les espèces ${ }^{16}$.
Préférence des femelles pour certains males. - Après ces quelques remarques préliminaires sur le discernement et le goat des oiseaux, je me propose de citer tous les faits que j'ai pu recueillir relativement aux préfépences dont certains males sont lobjet de la part des femelles. On a prouvé que des oiseaux appartenant à des espèces distinctes s'accouplent quelquefois à l'état sauvage et produisent des hybrides. On pourrait citer beaucoup d'exemples de ce fait; ainsi, Macgillivray raconte qu'un merle male et une grive femelle se sont amourachés l'un de l'autre et ont produit des descendants ${ }^{\text {t7 }}$. On a observé en Angleterre, il y a quelques années, dix-huit cas d'hybrides entre le tétras noir et le faisan ${ }^{18}$; mais la plupart de ces cas peuvent s'expliquer peut-etre par le fait que des oiseaux solitaires n'avaient pas trouvé à s'accoupler avec un individu de leur propre espèce. M. Jenner Weir croit que chez d'autres espèces les hybrides résultent parfois de rapports accidentels entre des oiseaux construisant leur nid l'un auprés de l'autre. Mais cette explication ne peut s'appliquer aux cas si nombreux et si connus d'oiseaux apprivoisés ou domestiques, appartenant à des espèces différentes, qui se sont épris absolument les uns des autres, bien qu'entourés d'individus de leur propre espèce. Waterton ${ }^{49}$, par exemple, raconte qu'une femelle appartenant à une bande composée de yingt-trois oies du Canada s'accoupla avec une bernache mâle, bien qu'il fat seul de son espèce dans la bande et très différent sous le rapport de l'apparence et de la taille; ce couple engendra des produits hybrides. Us canard siffleur male (Mareca penelope), vivant avec des femelles de son espèce, s'accoupla avec une sarcelle (Querqueaula acuta). Lloyd a observé un cas d'attachement remarquable entre un Tadorna vulpanser et un canard commun. Nous pourrions citer bien d'autres exemples; le rév. E. S. Dixon fait, d'ailleurs, remarquer que * ceux qui ont eu l'occasion d'élever ensemble beaucoup d'oies d'espèces différentes savent bien quels attachements singuliers peuvent se former, et combien elles sont

[^228]sujettes à s'accoupler et à produire des jeunes avec des individus d'une race (espèce) différente de la leur, plutôt qu'avec la leur propre $>$.

Le rév. W. D. Fox a élevé en même temps une paire d'oies de Chine (Anser cygmoildés) et un male de la race commune avec trois femelles. Les deux lots restèrant sépar'és jusqu'à ce que le mâle chinois eût déterminé une des oies communes à vivre avec lui. En outre, les œufs pondas par les oies de l'espèce commune étant venus à éclore, quatre petits seuls se trouvèrent purs, les dix-huit autres étaient hybrides; le mâle chinois avait donc eu des charmes tels, qu'il l'emporta facilement auprès des femelles sur le mâle appartenant a l'espèce ordinaire. Voici un dernier cas ; M. Hewitt raconte qu'une cane sauvage élevée en captivité, « ayan't déjà reproduit pendant deux saisons avec un propre male de son espèce, le congédia aussitot que j'eus introduit dans le même étang une sarcelle mâle. Ce fut évidemment un cas d'amour subit, car la cane vint nager d'une manière caressante autour du nouveau venu qui était évidemment alarmé et peu disposé à recevoir ses avances. Dès ce moment, la cane oublia son ancien compagnon. L'hiver passa, et le printemps suivant la sarcelle mâle parut avoir cédé aux attentions et aux seıns dout il avait été entouré, car ils s'accouplèrent et produisirent sept ou huit petits ».

Quels ont pu être, dans ces divers eas, en dehors de la pure nouveauté, les charmes qui ont exercé leur action, c'est ce qu'il serait impossible d'indiquer. La couleur, cependant, joue quelquefois un certain rôle, car, d'après Bechstein, le meilleur moyen pour obtenir des hybrides du Fringilla spinus (tarin) avec le canari, est de mettre ensemble des oiseaux ayant la même teinte. M. Jenner Weir ntroduisit dans sa volière contenant des linottes, des chardonnerets, des tarins, des verdiers et d'autres oiseaux males, un canari femelle pour voir lequel elle choisirait ; elle n'eut pas un moment d'hésitation et s'approcha immédiatement du verdier. Ils s'accouplèrent et produisirent des hybrides.

La préférence qu'une femelle peut montrer pour un male plutot que pour un autre, n'attire pas autant l'attention quand il s'agit d'individus appartenant à la même espèce. Ces cas s'observent principalement chez les oiseaux domestiques ou captifs ; mais ces oiseaux ont souvent leurs instincts viciés dans une grande mesure par un excès d'alimentation. Les pigeons et surtout les races gallines me fourniraient, sur ce dernier point, de nombreux exemples que je ne puis détailler ici. On peut expliquer par certaines perturbations des instincts quelques-unes des unions hybrides dont nous
avons parlé plus haut, bien que, dans la plupart des cas que nous avons cités, les oiseaux fussent à demi libres sur de vastes étangs, et il n'y a aucune raison pour admettre qu'ils aient été artificiellement stimulés par un excès d'alimentation.
Quant aux viseaux à l'état sauvage, la première supposition qui se présente à l'esprit est que, la saison arrivée, la femelle accepte le premier mâle qu'elle rencontre; mais, comme elle est presque invariablement poursuivie par un nombre plus ou moins considérable de males, elle a tout au moins l'occasion d'exercer un choix. Audubon, - nous ne devons pas oublier qu'il a passé sa vie à parcourir les forêts des États-Unis pour observer les oiseaux, - affirme positivement que la femelle choisit son male. Ainsi, il assure que le pic femelle est suivie d'une demi-douzaine de prétendants qui ne cessent d'exécuter devant elle les gambades les plus bizarres jusqu'à ce que l'un d'eux devienne l'objet d'une préférence marquée. La femelle de l'étourneau à ailes rouges (Agelæus phoniceus) est également poursuivie par plusieurs males, jusqu'à ce que, fatiguée, elle se pose, reçoit leur hommage et fait son choix \geqslant. Il raconte encore que plusieurs engoulevents males plongent dans l'air avec une rapidité étonnante, se retournent brusquement et produisent ainsi un bruit singulier ; « mais, aussitot que la femelle a fait son choix, les autres males disparaissent *. Certains vautours (Cathartes aurea) des États-Unıs se réunissent par bandes de huit à dia mâles et femelles sur des troncs d'arbres tombés, \& ils se font évidemment la cour, > et, après bien des caresses, chaque malle s'envole avec une compagne. Audubon a également observé les bandes sauvages d'oies du Canada (Anser Canadensis), et nous a laissé une excellente description de leurs gambades amoureuses; il constate que les oiseaux précédemment accouplés * se courtisent de nouveau dès le mois de janvier, pendant que les autres continuent tous les jours à se disputer pendant des heures, jusqu'à ce que tous semblent satisfaits de leur choix; dès que ce choix est fait, la bande reste réunie ; mais chaque couple fait en quelque sorte bande à part. J'ai observé aussi que les préliminaires de l'accouplem 3 nt sont d'autant moins longs que les oiseaux sont plus âgés. Les célibataires des deux sexes, soit par regret, soit pour ne pas etre dérangés par le bruit, s'éloignent et vont se poser à quelque distance des autres ${ }^{20} \geqslant$. On pourrait emprunter au même observateur bien des remarques analogues sur d'autres oiseaux.
20. Audubon, Ornilh. Blog., vol. I, p. 191, 349, vol. II, p. 42, 275, vol. III, p. 2.

Passons maintenant aux oiseaux domestiques et captifs ; je résumerai d'abord les quelques renseignements que j'ai pu me procurer sur l'attitude des oiseaux appartenant aux races gallines pendant qu'ils se font la cour. J'ai reçu à ce sujet de longues lettres de M. Hewitt et de M. Tegetmeier, ainsi qu'un mémoire de feu M. Brent, tous assez connus par leurs ouvrages pour que personne ne puisse contester leur qualité d'observateurs consciencieux et expérimentés. Ils ne croient pas que les femelles préfèrent certains mâles à cause de la beauté de leur plumage; mais il faut tenir compte de l'état artificiel dans lequel ils ont longtemps vécu. M. Tegetmeier est convaincu que la femelle accueille anssi volontiers un coq de combat défiguré par l'ablation de ses caroncules, qu'un male pourvu de tous ses ornements naturels. M. Brent admet toutefois que la beauté du male contribue probablement à exciter la femelle, et l'adhésion de cette dernière est nécessaire. M. Hewitt est convaincu que l'accouplement n'est en aucune façon une affaire de hasard, car la femelle prófêre presque invariablement le male le plus vigoureux, le plus hardi et le plus fougueux; il est donc inutile, remarqua-t-il « d'essayer une reproduction vraie si un coq de combat en ben état de santé et de constitution se trouve dans la localité, car toutes les poules, en quittant le perchoir, iront au coq de combat, en admettant même que ce dernier ne chasse pas lus males appartenant à la même variété que les femelles $>$.

Dans les circonstances ordinaires, les coqs et les poules semblent arriver à s'entendre au moyen de certains gestes que m'a décrits M. Brent. Les poules évitent souvent les attentions empressées des jeunes males. Les vieilles poules et celles qui ont des dispositions belliqueuses n'aiment pas les males étrangers, et ne cèdent que lorsqu'elles y sont obligêes a force de coups. Ferguson constate, cependant, qu'un coq Shanghal ${ }^{21}$ parvint, à force d'attentions, à subjuguer une vieille poule quereneuse.

Il y a des raisons de croire que les pigeons des deux sexes préfèrent s'accoupler avec des oiseaux appartenant à la même race; le pigeon de colombier manifeste uae vive aversion pour les races très améliorées ${ }^{22}$. M. Harisson Weir croit pouvoir affirmer, d'après les remarques faites par un observateur attentif, qui élève des pigeons bleus, que ceux-ci chassent tous l6s Individus appartenant aux autres variétés colorées, telles que les variétés blanches, rouges et jannes; un autre éleveur a observé qu'une femelle brune
21. Rare and Prize Poultry, 1854, p. 27.
22. Variation des Animaux, etc., vol, II, p. 110 (trad, françalse).
de la race des messagers a refusé bien des fois de s'accoupler avec un male noir, mais elle a accepté immédiatement un male ayant la mème couleur qu'elle. M. Tegetmeier a possédé un pigeon à cravate femelle bleu qui a obstinément refusé de s'accoupler avec deux mâles appartenant à la même race, bien qu'on les ait laissés avec elle pendant des semaines; elle consentit au contraire ì s'ac. coupler avec le premier dragon bleu qui s'offrit. Comme cette femelle avait une grande valeur, on l'enferma de nouveau avec un mâle bleu très pale, et elle finit par s'accoupler avec lui, mais seulement après plusieurs semaines. Toutefois, la couleur seule parait généraiement n'avoir quo peu d'influence sur l'accouplement des pigeons. M. Tegetmeier voulut bien, à ma demande, teindre quel-ques-uns de ces oiseaux avec du magenta, et les autres n'y firent presque aucune attention.
Les pigeons femelles éprouvent à loccasion, sans cause apparente, une antipathie profonde pour certains males. Ainsi MM. Boitard et Corbié, dont l'expérience s'est étendue sur quarante-cinq ans d'observations, disent: ©Quand une femelle éprouve de l'antipathie pour un mâle avec lequel on veut l'accoupler, malgré tous les feux de l'amour, malgré l'alpiste et le chènevis dont on la nour. rit pour augmenter son ardeur, malgré un emprisonnement de six mois et même d'un an, elle refuse constamment ses caresses; les avances empressées, les agaceries, les tournoiements, les tendres roucoulements, rien ne peut lui plaire ni l'émouvoir ; gonflée, boudeuse, blottie dans un coin de sa prison, elle n'en sort que pour

- boire et manger, ou pour repousser avec une espèce de rage des caresses devenues trop pressantes ${ }^{33}$. > D'autre part, M. Harrisson Weir a pu constater par lui-même un fait que d'autres éleveurs lui avaient signalé, c'est-à-dire qu'un pigeon femelle s'éprend parfois très vivement d'un mâle, et abandonne pour lui son ancien compagnon. Riedel ${ }^{\text {u4, }}$, autre observateur expérimenté, assure que certaines femelles ont une conduite fort déréglée et préférent n'importe quel étranger à leur propre male. Certains males amoureux, que nos éleveurs anglais appellent des \& oiseaux galants », ont un tel succès dans toutes leurs entreprises galantes que, d'après M . Weir, on est obligé de les enfermer à cause du dommage qu'ils causent.
Aux États-Unis, les dindons sauvages, d'après Audubon, e viennent quelquefois visiter les femelles réduites en domesticité, ces

[^229]dernières lez accueillent ordinairement avec beaucoup de plaisir. Ces femelles paraissent donc préférer les mâles sauvages à leurs propres mâles ${ }^{25}$.

Voici un cas plus curieux. Sir R. Heron observa avec soin, pendant un grand nombre d'années, les habitudes des paons qu'il a élevés en grandes quantités, il a pu constater a que les femelles manifestent fréquemment une préférence marquée pour un paon spécial. Elles étaient si amoureuses d'un vieux male pie, qu'une année où il etait captif mais en vue, elles étaient constamment rassemblées contre le treillis formant la cloison de sa prison, et ne voulurent pas permettre à un paonà ailes noires de les approcher. Ce mâle pie, mis en liberté en automne, devint l'objet des attentions de la plus vieille paonne, qui réussit à le captiver. L'année suivante on l'enfernaa dans une écurie et alors toutes les paonnes se tournèrent vers son rival ${ }^{26} \geqslant$; ce dernier était un paon à ailes noires soit, à nos yeux, une variété beaucoup plus belle que la forme ordinaire.

Lichtenstein, bon observateur et qui a eu au cap de Bonne-Espérance d'excellentes occasions d'élude, a affirmé à Rudolphi que la Chera progne femelle répudie le mêle lorsqu'il a perdu les longues plumes caudales dont il est orné pendant la saison des amours. Je suppose que cette obsorvation a été faite sur des oiseaux en captivité ${ }^{27}$. Volci un autre cas analogue; le docteur Jeager ${ }^{28}$, directeur du jardin zoologique de Vienne, constate qu'un faisan argenté male, après avoir triomphé de tous les autres males et etre deveny le préféré des femelles, perdit son magnifique plumage. Il fut aussitot remplacé par un rival qui devint le chel de la bande.
M. Boardmen, bien connu aux États-Unis comme éleveur de toutes sortes d'espèces d'oiseaux, signale un fait qui prouve quel rolle important joue la couleur au point de vue de l'accouplement des oiseaux. Il n a jamais vu, en effet, un oiseau albinos accouplé avec un autre oiseau, bien qu'il ait eu souvent l'occasion d'observer des oiseaux albinos appartenant à plusieurs espèces ${ }^{29}$. Il est difficile de soutenir que les oiseaux albinos sont incapables de se reproduire à l'état sauvage, car on peut les élever facilement on
25. Ornithological Biography, vol. I, p. 13.
26. Proc. Zool. Soc., 1835, p. 54. M. Sclater considère le paon noir comme une espèce distincte qui a etté nommée Pavo nigripennis; je crois cependant qu'il constitue une simple varieté.
27. Rudolphi, Beiträge zur Anthropologie, 1812, p. 184.
28. Die Darwin'sche Theorie, und ihre Stellung zu Morat and Rellyion, 1869, p. 59.
29. A. Lelth Adams, Field and forest rambles, 1878, p. 79.
captivité. Il semble done qu'on doit attribuer uniquement à leur couleur le fait que les oiseaux normalement colorés ne veulent pas s'accoupler avec eux.
La femelle non seulement fait un choix, mais, dans certains cas, elle courtise le male et se bat même pour s'assurer sa possession. Sir R. Heron assure que, chez le paon, c'est toujours la femelle qui fait les premières avances et, d'après Audubon, quelque chose d'analogue se passe chez les femelles agées du dindon sauvage. Les femnlles du grand tétras voltigent autour du male pendant quili parade dans les endroits où ces oiseaux se rassemblent, et font tout ce qu'elles peuvent pour attirer son attention ${ }^{30}$. Nous avons ru une cane sauvage apprivoisée séduire, après de longues avances, une sarcelle male d'abord mal disposée en sa faveur. M. Bartlett croit que le Lophophorus, comme tant d'autres gallinacés, est naturellement polygame, mais on ne saurait placer deux femelles et un male dans une même cage, car elles se battent constamment. Le cas suivant de rivalité est d'autant plus singulier qu'il concerne le bouvreuil, qui s'accouple ordinairement pour la vie. M. J. Weir introduisit dans sa volière, une femelle assez laide et ayant des couleurs fort ternes; celle-ci attaqua avec une telle rage une autre femolle accouplée qui s'y trouvait, qu'il fallut retirer cette dernière. La nouvelle femelle fit la cour au mâle et réussit enfin à s'apparier avec lui; mais elle en fut plus tard justement punie, car, ayant perdu son caractère belliqueux, M. Weir remit dans la volière la première femelle, vers laquelle le male revint immédiatement en abandonnant sa nouvelle compagne.
Le male est assez ardent d'ordinaire pour accepter n'importe quelle femelle, et, autant que nous en pourons juger, il ne manifeste aucune préférence; mais, comme nous le verrons plus loin, cette règle souffre des exceptions dans quelques groupes. Je ne connais, chez les oiseaux domestiques, qu'un seul cas où les mâles témoignent d'une préférence pour certaines temelles; le coq domestique, en effet, d'après M. Hewitt, préfère les poules jeunes aux veilles. D'autre part, le même observateur est convaincu que dans les croisements hybrides faits entre le faisan male et les poules ordinaires, Ie farsan préfère toujours les femelles plus agées. Il ne paralt en aucune façon s'inquiéter de leur couleur, mais il se montre très capricieux dans ses affections ${ }^{31}$. Il témoigne, sans

[^230]cause explicable, à l'égard de *certaines poules l'aversion la plus complète et aucun soin de la part de l'éleveur ne peut surmonter cette aversion. Certaines poules, au dire de M. Hewitt, semblent ne provoquer aucun désir chez les males, même de leur propre espèce, de telle sorte qu'on peut les laisser avec plusieurs coqs pendant toute une saison sans que sur quarante ou cinquante ceufs il y en ait un seul de fécond. D'autre part, seion M. Ekström, on a remarqué, au sujet du canard à longue queue (Harelda glacialis), *que certaines femelles sont beaucoup plus courtisées que les autres; et il n'est pas rare de voir ane femelle entourée de six ou huit males ». Je ne sais si cette affirmation est bien fondée; en tout cas, les chasseurs indigènes tuent ces femelles et les empaillent pour attirer les males ${ }^{32}$.
Les femelles, avons-nous dit, manifestent parfois, souvent mème, une préférence pour certains mâles particuliers. La démonstration directe de cette proposition est sinon impossible, du moins très difficile, et nous ne pouvons guère affirmer qu'elles exercent un choix qu'en invoquant une analogle. Si un habitant d'une autre plauète venait à contempler une troupe de jeunes paysans s'empressant à une loire autour d'une jolie fille pour la courtiser et se disputer ses faveurs tout comme le font les oiseaux dans leurs assemblées, it pourrait conclure qu'elle a la facultó d'exercer un choix rien qu'en voyant l'ardeur des concurrents à lui plaire et à se faire valoir à ses yeux. Or, pour les oiseaux, les preuves sont les suivantes : ils ont une assez grande puissance d'observation et ne paraissent pas dépourvus de quelque goût pour le beau au point de vue de la couleur et du son. Il est certain que les femelles manifestent, par suite de causes inconnues, des antipathies ou des préférences fort vives pour certains males. Lorsque la coloration ou l'ornementation des sexes diffère, les males sont, à de rares exceptions près, les plus ornés, soil d'une manière permanente, soit pendant la saison des amours seulement. Ils prennent soin d'étaler leurs ornements divers, de faire entendre leur voix, et se livrent à des gambades étranges en présence des femelles. Les males bien armés qui, à ce qu'on pourrait penser, devraient compter uniquément sur les résultats de la lutte pour s'assurer le triomphe, sont la plupart du temps très richement ornés; ils n'ont mème acquis ces ornements qu'aux dépens d'une partie de lear force; dans dautres cas, ils ne les ont acquis qu'au prix d'une augmentation des risques qu'ils peuvent courir de la part des
32. Citt daus Lloyd, o. c., p. 345.
oiseaux de proie et de certains autres animaux. Chez beaucoup d'espéces, un grand nombre d'individus des deux sexes se rassemblent sur un même point, et s'y livrent aux assiduités d'une cour prolong β. Il y a même des raisons de croire que, dans le même pays, les males et les femelles ne réussissent pas toujours à se plaire mutuellement et à s'accoupler.
Que devons-nous donc conclure de ces faits et de ces observations? Le mâle étale-t-il ses charmes avec autant de pompe, défie-t-il ses rivaux avec tant d'ardeur, sans aucun motif, sans chercher à atteindre un but? Ne sommes-nous pas autorisés à croire que la femelle exerce un choix et qu'elle accepte les caresses du male qui lui convient le plus? Il n'ost pas probable qu'elle délibère d'une façon consciente ; mais le mâle le plus beau, celui qui a la voix la plus mélodieuse, ou le plus empressé réussit le mieux à l'exciter et à la captiver. Il n'est pas nécessaire non plus de supposer que la femelle analyse chaque raie ou chaque tache colorée du plumage du male; que la paonne, par exemple, admire chacun des détails de la magnifique queue du paon; elle n'est probablement frappée que de l'effet général. Cependant, lorsque nous voyons avec quel soin le faisan Argus male étale ses élégantes rémiges primaires, redresse ses plumes ocellées pour les mettre dans la position où elles produisent leur maximum d'effet, ou encore, comme le chardonneret male, déploie alternativement ses ailes pailletées d'or, pouvons-nous affirmer que la femelle ne soit pas à même de juger tous les détails de ces magnifiques ornements? Nous ne pouvons, comme nous l'avons dit, penser qu'il y a choix, que par analogie avec ce que nous ressentons nous-mêmes; or, les facultés mentales des oiseaux ne different pas fondamentalement des nôtres. Ces diverses considérations nous permettent de conclure que l'accouplement des oiseaux n'est pas abandonné au hasard seul ; mais que, au contraire, les males qui, par leurs charmes divers, sont les plus aptes à plaire aux femelles et à les séduire, sont, dans les conditions ordinaires, les plus facilerment acceptés. Ceci admis, il n'est pas difficile de comprendre comment les oiseaux males ont peu à peu acquis leurs divers ornements. Tous les animaux offrent des différences individuelles; et, de même que l'homme peut modifier ses oiseaux domestiques en choisissant les individus qui lui semblent les plus beaux, de même la préférence habituelle ou même accidentelle qu'éprourunt les femelles pour les mates les plus attrayants doit certainement provoquer chez eux des modifications qui, avec le temps, peuvent s'augmenter dans toute la mesure compatible avec l'existence de l'espèce.

Variabilité des oiseaux, et surtout de leurs caracteres sexuels secondaires. - La variabilité et l'hérédité sont les bases sur lesquelles s'appuie la sélection pour effectuer son œuvre. Il est certain que les oiseaux domestiques ont beaucoup varié et que leurs variations sont héréditaires. On admet généralement ${ }^{33}$, aujourd'hui, que les oiseaux ont parfois été modifiés de façcn à former des races distinctes. Il y a deux sortes de variations : celles que, dans notre ignorance, nous appelons spontanées; celles qui ont des rapports directs avec les conditions ambiantes, de sorte que tous ou presque tous les individus de la même espèce subissent des modifications analogues. M. J. A. Allen ${ }^{34}$ a récemment observé ces dernières variations avec beaucoup de soin; il a démontré qu'aux États-Unis beaucoup d'espèces d'oiseaux affectent des couleurs plus vives à mesure que leur habitat est situé plus au sud, et des couleurs plus claires à mesure qu'ils pénètrent davantage vers l'ouest dans les plaines arides de l'intérieur. Les deux sexes semblent ordinairement affectés de la même manière; mais parfois un sexe l'est plus que l'autre. Cette modification de coloration n'est pas incompatible avec l'hypothèse qui veut que les couleurs des oiseaux soient principalement dues à l'accumulation de variations successives, grace à la sélection sexuelle; car, alors même que les sexes ont acquis des différences considérables, l'influence du climat pourrait se traduire par un effet égal sur les deux sexes, ou par un effet plus considérable sur un sexe quo sur l'autre, grace à certaines dispositions constitutionnelles.
33. D'après le docteur Blasius (Ibis, vol. II, 1860, p. 297), il y a 425 espéces incontestables d'oiseaux qui se reproduisent en Europe, outre 60 formes qu'on regarde souvent comme des espèces aistinctes. Blasius croit que 10 de ces dernières sont seules douteuses, les 50 autres devant être réunies à leurs voísines les plus proches; mais cela prouve qu'il doit y avoir chez quelques-uns de nos oiseaux d'Europe une variabilité considérable, Les naturalistes ne soat pas plus d'accord sur le fait de savoir sí plusieurs viseaux de l'Amérique du Nord doivent etre considérés comme spécifiquement distincts des espèces européennes qui leur correspondent.
34. Mammals and Birds of East Florida, et Ornithological Reconnaissance of Kansas, etc. Malgré l'influence du climat sur les couleurs des oiseaux, il est difficile d'expliquer les teintes ternes ou foneées de presque toutes les espèces habitant certains paye, les tles Galapagos, par exemple, situées sous r'Équateur, les plaines tempérées de la Patagonie et, à ce qu'il paralt, l'Égypte (Hatshorne, American Naturalist, 1873, p. 747). Ces pays sont débcisés et offrent, par conséquent, peu d'abris aux oiseaux; mals il est douteux qu'on puisse expliquer par un dêfaut de protection l'absence d'espèces brillammênt colorées, ear, dans les Pampas également déboisés, mais couverts, il est rrai, wégazon, et où les ofseaux sont tout aussi exposés au danger, on constate la présence de nombreuses espèces brillamment colorées. Je me suís souvent demandé si les teintes ternes prédominantes du paysage dans les pays dont ii s'agit n'aurafent pas infú sur le goat des olseaux en matiore de coulour.

Tous les naturalistes sont d'accord aujourd'hui pour admettre que les différences individuelles entre les membres d'une méme espèce surgissent à l'état sauvage. Les variations soudaines et fortement prononcées sont assez rares; il est douteux. d'ailleurs, que ces variations, en admettant méme qu'elles soient avantageuses, soient souvent conservées par la sélection et transmises aux générations futures ${ }^{35}$. Néanmoins, il peut être utile de signaler les quelques cas que j'ai pu recueillir qui (à l'exclusion de l'albinisme et du niélanisme simple) se rapportent à la coloration. On sait que M. Gou d admet l'existence de quelques variétés seulement, car il attribue un caractère spécifique aux différences si légères qu'elles soient; cependant il admet que, près de Bogota ${ }^{36}$, certains oiseauxmouches appartenant au genre Cynanthus constituent deux ou trois races ou variétés qui diffèrent uniquement par la couleur de la queue, - les unes ont toutes les plumes bleues, tandis que les autres ont les huit plumes centrales colorées d'un beau vert à leur extrémité ». - Il ne semble pas que, dans ce cas ou dans les cas suivants, on ait observé des degrés intermédiaires. Chez une espèce de perroquets australiens, les males seuls ont, les uns, les cuisses * écarlates, les autres, les cuisses d'un vert herhacé \%. Chez une autre espèce du même pays, la raie qui traverse les plumes des ailes est jaune vif chez quelques individus, et teintée de rouge chez quelques autres ${ }^{37}$. Aux États-Unis, quelques males du tanazre écarlate (Tanagra rubra) portent « une magnifique raie transversale rouge brillant sur les plus petites plumes des ailes ${ }^{38}$; mais cette variété est assez rare, il faudrait donc des circonstances exceptionnellement favorables pour que la sélection sexuelle en assurât la conservation. Au Bengale, le busard à miel (Pernis cristata) porte
35. Origine des Espèces, 1880, p. 110. J'avais toujours reconnu que les déviations de conformation, rares et fortement accusées, méritant la qualification de monstruosités, ne pouvaient que rarement être conservées par la sélection naturelle, et que même la conservation de variations avantageuses à un haut degré était jusqu'à un certain point chanceuse. J'avais aussi pleinement apprécié l'importance des différences purement individuelles, ce qui m'avalt conduit à insister si fortement sur l'action de cette forme iuconsciente de la sélection humaine, qui résulte de la conservation des individus les plus estimés de chaque race, sans aucune intention de sa part d'en modifier les caractères. Mais ce n'est qu'après lecture d'un article remarquable, de la North Brilish Review (mars, 1867, p. 289 et suivantes), Revue qui m'a rendu plus de services qu'aucune autre, que j’ai compris combien les chances sont contraires à la conservation des variations, tant faibles que fortement accusées, qui ne se manifestent que chez les individus isolés.
36. Introd. to Trochilidæ, p. 102.
37. Gould, Handbook to Birds of Australia, vol. II, 0. 32, 68.
38. Audubon, Orn. Biog., vol. IV, 1838, p. 389.
quelquefois sur la teto une huppe rudimentaire; on aurait pu négliger une différence aussi légère, si cette même espèce ne possédait, dans la partie méridionale de l'Inde, * une huppe occipitale bien prononcée, formée de plusieurs plumes graduées ${ }^{39} \geqslant$.
Le cas suivant présente, à quelques égards, un plus vif intéret. On trouve, dans les iles Feroê seulement, une variété pie du corbeau ayant la tete, la poitrine, l'abdomen et quelques parties des plumes, des ailes et de la queue blancs; cette variété n'est pas très rare, car Graba, pendant sa visite, en a vu huit à dix individus vivants. Bien que les caractères de cette variété ne soient pas absolument constants, plusieurs ornithologistes distingués en ont fait une espèce distincte. Brünnich remarqua que les autres corbeaux de lile poursuivent ces oiseaux pies en poussant de grands cris, et les attaquent avec furie; ce fut là le principal motif qui le décida à les considérer comme spécifiquement distincts; on sait maintenant que c'est une erreur ${ }^{40}$. Cet exemple rappelle un cas analogue que nous venons de citer : les oiseaux albinos ne s'accouplent pas, parce qu'ils sont repoussés par leurs congénères.

On trouve, dans diverses parties des mers du Nord, une variét' remarquable du guillemot commun (Uria troile); cette variét6, au dire de Graba, se rencontre aux tles Feroed dans la proportion de un sur cinq de ces oiseaux. Son principal caractère ${ }^{41}$ consiste en un anneau blanc pur, qui entoure l'œil, une ligne blanche, étroite et arquée, longue d'environ 4 a ntimètres, prolonge la partie postérieure de cet anneau. Ce caractère remarquable a conduit quelques ornithologistes à classer cet oiseau comme ane espèce distincte sous le nom d'Uria lacrymans; mais il est reconnu anjourd'hui que c'est une simple variété. Cette variété s'accouple souvent avec l'espèce commune, et cependant or n'a jamais vu de formes intermé diaires; ce qui d'ailleurs n'a rien d'étonnant, car les variations qui apparaissent subitement, comme je l'ai démontré ailleurs ${ }^{23}$, so transmeitent sans altération, ou ne se transmettent pas du tout. Nous voyons ainsi que deux formes distinctes d'une méme espéce peuvent coexister dans une même localité, et il n'est pas douteux que, si l'une eat eu sur l'autre un avantage de quelque importance, elle se fut promptement multipliée à l'exclusion de l'autre. Si, par exemple, les corbeaux pies mâles, au lieu d'être persécutés et

[^231]chasses par les autres, eussent eu des attraits particuliers pour les femelles noires ordinaires, comme le paon pie dont nous avons parlé plus haut, leur nombre aurait augmenté rapidemant. C'eut été là un cas de sélection sexuelle.
Quant aux légères différences individuelles qui, à un degré plus ou moins grand, sont communes à tous les membres d'une méme espèce, nous avons toute raison de croire qu'elles constituent l'élément le plus important pour l'œeuvre de la sélection. Les caractêres sexuels secondaires sont éminemment sujets à varier, tant chez les animaux à l'état sauvage que chez ceux réduits à l'état domestique ${ }^{\text {t3 }}$. On pourrait presque affirmer aussi, comme nous l'avons ru dans le huitième chapitre, que les variations surgissent plus fréquemment chez les mâles que chez les femelles. Toutes ces conditions viennent puissamment à l'aide de la sélection sexuelle. J'espère démontrer, dans le chapitre suivant, que la transmission des caractères ainsı acquis à un des sexes ou à tous les deux dépend exclusivement, dans la plupart des cas, de la forme d'hérédité qui prévaut dans les groupes en question.
Il est quelquefois difficile de déterminer si certaines différences légères entre les mâles et les iemelles proviennent uniquement d'une variation avec hérédité limitée à un sexe seul, sans le concours de la sélection sexuelle, ou si ces différences ont été augmentées par lintervention de cette dernière cause. Je ne m'occupe pas ici des nombreux cas où le mâle affecte de magnifiques couleurs oú d'autres ornements, qui n'exístent chez la femelle que dans de très minimes proportions, car, dans ces cas, on se trouve presque certainement en présence de caractêres primitivement acquis par le mâle, et transmis dans une plus ou moins grande mesure à la femelle. Mais que penser relativement à certains oiseaux chez lesquels, par exemple, les yeux diffèrent légèrement de couleur selon le sexe ${ }^{44}$? Dans quelques cas, la différence est très prononcée; ainsi, chez les cigognes du genre Xenorhynchus, les yeux de male sont couleur noisebte noiratre, tandis que ceux des femelles affectent une teinte jaune gomme-gutte; chez beaucoup de calaos ($B a$ ceros), d’après M. Blyth ${ }^{45}$, les males ont les yeux rouge cramoisi, etles femelies les ont blancs. Chez le Buceros bicornis, le bord posterieur du casque et une raie surla crefle du bec sont noirs chez le
43. Voir, sur ces points, Variation des Animaux, eic., vol. 1, p. 269; et vol. H1 p. 78-80.
44. Exemples des iris de Podica et Gellicrex dans Ibis, vol. I, 1860, p. 208; 10 rol. V, 1868, p. 428.
45. Jerdob, o. c., vol. I, p. 243-248.
male, mais non pas chez la femelle. Devons-nous attribuer a l'intervention de la sélection sexuelle la conservation ou l'augmentation de ces taches noires et de la couleur cramoisie des yeux chez les mâles? Ceci est fort douteux, car M. Bartlett m'a fait voir, aux Zoological Gardens, que lintérieur de la bouche de ce Buceros est noir chez le malle, et couleur chair chez la femelle; br, il n'y a rien là qui soit de nature à affecter ni la beauté, ni l'apparence extérieure de ces oiseaux. Au Chili ${ }^{46}$, j'ai observé que, chez le Condor âgé d'un an environ, l'iris est brun foncé, mais qu'á l'âge adulte il devient brun jaunatre chez le male, et rouge vif chez la femelle. Le mâle possède aussi une petite crête charnue longitudinale de couleur plombée. Chez beaucoup de gallinacés, la crête constitue un fort bel ornement, et pendant que l'oiseau fait sa cour elle revêt des teintes fort vives; mais que penser de la crête sombre et incólore du Condor, qui n'a, à nos yeux, rien de décoratif? On peut se faire la même question relativement à divers autres caractères comme, par exemple, la protubérance qui occupe la base du bec de l'oie chinoise (Anser cygnoïdes), protubérance beaucoup plus développée chez le male que chez la femelle? Il nous est impossible, dans l'état de la science, de répondre à ces questions; en tout cas, on ne saurait affirmer que ces protubérances et ces divers appendices charnus n'exercent aucun attrait sur la femelle, car il ne faut pas oublier que certaines races sauvages humaines considèrent comme des ornements beaucoup de difformités hideuses telles que de proforides balafres pratiquées sur la figure avec la chair relevée en saillie, la cloison nasale traversée par des os ou des baguettes, des trous pratiqués dañs les oreilles et dans les lèvres de façon à les étendre autant que possible.

La sélection sexuelle a-t-elle ou non contribué à la conservation et au développement de ces différences insignifiantes? C'est ce que nous ne saurions affirmer positivement. En tout cas, elles n'en obéissent pas moins aux lois de la variation. En vertu du principe de la corrélation du développement, le plumage varie souvent d'une façon analogue sur différentes parties du corps, ou même surle corps entier. Nous trouvons la preuve de ce fait chez certaines races de gallinacés. Chez toutes les races, les plumes qui recouvrent le cou et les reins des males sont allengées et affectent la forme de soies; or, lorsque les deux sexes acquièrent une huppe, ce qui constitue un caractère nouveau dans le genre, les plumes qui ornent la tête du mâle prennent la forme de soies, évidemment

[^232]en vertu du principe de la corrélation, tandis que celles qui décorent la tête de la femelle conservent la forme ordinaire. La couleur des plumes de la huppe du malle correspond souvent aussi avec celle des soies du cou et des reins, comme on peut le voir en comparant ces piumes chez les poules polonaises pailietées d'or ou d'argent, et chez les races Houdan et Crèvecour. On constate, chez quelques espèces sauvages, la même corrélation entre la couleur de ces mêmes plumes, par exemple chez les splendides mâles du faisan Amherst et du faisan doré.

La structure de chaque plume amène généralement la disposition symétrique d'un changement de coloration; les diverses races de gallinacés dont le plumage est tacheté ou pailleté nous en offrent des exemples; et, grâce à la corrélation, les plumes du corps entier se^{-}modifient souvent de la même manière. Nous pouvons donc, sans grande peine, produire des races dont les plumes sont aussi symétriquement tachetées et colorées que celles des espèces sauvages. Chez les volailles au plumage tacheté et pailleté, les bords colorés des plumes sont nettement définis; mais j'ai obtenu un métis par le croisement d'un coq espagnol noir à reflet vert, et d'une poule de combat blanche, chez lequel toutes les plumes affectaient une teinte vert noirâtre, sauf leuis extrémités qui étaient blanc jaunâtre ; mais, entre ces extrémités blanchâtres et la base noire de la plume, chacune d'elles portait une zone symétrique courbe affectant une teinte brun foncé. Dans certains cas, la tige de la plume détermine la distribution des teintes; ainsi, chez un métis provenant du même coq espagnol noir, et d'une poule polonaise pailletée d'argent, la tige et un étroit espace de chaque coté affectaient une teinte noir verdatre ; puis venait une zone régulière brun foncé, bordée de blanc brunâtre. Les plumes, dans ce cas, deviennent symétriquement ombrées,'comme celles qui donnent tant d'élégance au plumage d'un grand nombre d'espèces sauvages. J'ai aussi remarqué une variété du pigeon ordinaire chez laquelle les barres des ailes étaient disposées en zones symétriques affectant trois nuances brillantes, au lieu d'étre simplement noires sur un fond bleu ardoisé, comme chez l'espèce parente.

On peut observer, dans plusieurs groupes considérables d'oiseaux, que, bien que le plımage de chaque espèce affecte des couleurs différentes, toutes les espèces, cependant, sonservent certaines taches, certaines marques ou certaines raies. Un cas analogue se présente chez les races de pigeons, car habituellement toutes les races conservent les deux raies des ailes, bien que ces rajes soient tantot rouges, jaunes, blanches, noires ou bleues, alors
que le reste du plumage affecte une nuance différente. Voici un cas plus curieux encore de la conservation de certaines taches, mais colorées d'une manière à peu près exactement inverse de ce qu'elles sont naturellement; le pigeon primitif a la queue bleue, mais les moitiés terminales des barbes externes des deux rectrices extérieures sont blanches; or, il existe une sous-variété chez laquelle la queue est blanche au lieu d'etre bleue, mais chez laquelle les barbes des plumes colorées en blanc chez l'espèce parente affectent au contraire la couleur noire ${ }^{17}$.

Finrmation et variabilité des ocelles ou taches oculiformes sur le plumage des oiseaux. - Les ocelles qui décorent les plumes de divers oiseaux, la fourrure de quelques mammifères, les écailles des reptiles et des poissons, la peau des amphibies, les ailes des lépidoptères et d'autres insectes constituent, sans contredit, le plus magnifique de tous les ornements; ils méritent donc une mention spéciale. Un ocelle consiste en une tache placée au centre d'un anneau affectani une autre couleur, comme la pupille dans l'iris, mais le point central est souvent entouré de zones concentriques additionnelles. Chacun connait, par exemple, les ocelles qui se trouvent sur les plumes de la queue du paon, ainsi que sur les ailes du papilion paon (Vanessa). M. Trimen a décrit une phalène de l'Afrique mérıdionale (Gynanisa Isis), voisine de notre grand paon, chez laquelle un ocelle magnifique occupe presque la totalité de la surface de chaque aile postérieure ; cet ocelle consiste en un centre noir, renfermant une tache en forme de croissant, demi-transparente, entourée de zones successivement jaune ocre, noire, jaune ocre, rose, blanche, rose, brune et blanchatre. Nous ne connaissons pas les causes qui ont présidé à la formation et au développement de ces ornements si complexes et si magnifiques, mais nous pouvons affirmer, tout au moins, que chez les insectes, ces causes ont du être très simples; car, ainsi que le fait remarquer M. Trimen, «il n'y a pas de caractère qui soit aussi instable chez les Lépidoptères que les ocelles, tant au point de vue du nombre que de la grandeur. M. Wallace, qui le premier a attiré mon attention sur ce point, m'a fait voir une série d'individus de notre papillon commun (Hipparchia Janira) présentant de nombreuses gradations, depuis un simple point noir jusqu'à un ocelle élégamment ombré. Chez un papillon de l'Afrique du Sud (Cylla Leda, Linn.) appartenant à la méme famille, les ocelles sont encore plus variables. Chez quelques

[^233]individus (A, fig. 53. Pl. 26), la surface externe des ailes porte de larges taches noires dans lesquelles on observe çà et là des taches blanches irrégulières; de cet état on peut établir une gradation complète conduisant à un ocelle assez parfait (A^{1}), qui provient de la contraction das taches noires irrégulières. Chez d'autres individus on peut suivre une série graduée partant de petits points blancs entourés d'une ligne noire (B) à peine visible, et finissant par des ocelles grands et parfaitement symétriques $\left(\mathrm{B}^{1}\right)^{48}$. Dans les cas comme ceux-ci le développement d'un ocelle parfait n'exige pas une série prolongée de variations et de sélections.
Il semble résulter de la comparaison des espèces voisines chez les oiseaux et chez beaucoup d'autres animaux, que les taches circulaires proviennent souvent d'un fractionnement et d'une contraction des raies. Chez le faisan Tragopan, les magnifiques taches blanches du male ${ }^{49}$ sont représentées chez la femelle, par des raies indécises de même couleur ; on peut observer quelque chose d'analogue chez les deux sexes du faisan Argus. Quoi qu'il en soit, toutes les apparences favorisent l'hypothèse que, d'une part, une tache foncée résulte souvent de la condensation, sur un point central, de la matière colorante répandue sur la zone environnante, laquelledevient ainsi plus claire. D'autre part, qu'une tache blanche résulte souvent de la dissémination autour d'un point central de la substance colorante qui, en s'y répandant, constitue une zone ambiante plus foncée. Dans les deux cas, il se forme un ocelle. La matière colorante parait exister en quantité à peu près constante, mais elle est susceptible de se distribuer dans des directions tant centripètes que centrifuges. Les plumes de la pintade présentent un excellent exemple de taches blanches entourées de zones plus foncées; or, partout où les taches blanches sont grandes et rapprochées, les zones toncées qui les environnent deviennent confluentes. On peut voir, sur une même rémige du faisan Argus, des taches foncées entourées d'une zone palle, et des taches blanches entourées d'une zone foncée. La formation d'un ocelle, dans son état le plus élémentaire, parait donc être un phénomène très simple. Mais je ne saurais prétendre indiquer quelles ont été les différentes phases dc la formation des ocelles plus compliqués, entourés de plusieurs zones successives de couleur différente. Cependant, les plumes

[^234]49. Jerdon, Birds of India, vol. U, p. 517.
zonées des métis produits par volailles diversement coloriés, et la variabilité prodigieuse des ocelles chez les Lépidoptères, nous autorisent à conclure que la formation de ces magnifiques ornements ne peut guère être bien compliquée, mais qu'elle résulte probablement de quelques modifications légères et graduelles de la nature des tissus.

Gradation des caractères sexuels secondaires. - Les cas de gradation ont une grande importance ; ils prouvent, en effet, que l'acquisition d'ornements très compliqués peut, tout au moins, être amenée par des phases successives. Pour déterminer les phases successives qui ont procuré à un oiseau ses vives couleurs ou ses autres ornements, il faudrait pouvoir étudier la longue lignée de ses ancêtres les plus reculés, ce qui est évidemment impossible. Cependant nous pouvons, en règle générale, trouver un fil conducteur en comparant toutes les espèces d'un même groupe, lorsque ce groupe est considérable ; il est probable en effet que certaines de ces espèces ont dú conserver, au moins en partie, quelques traces de leurs caractères antérieurs. Je préfère ici, au lieu d'entrer dans d'innombrables détails sur divers groupes qui présentent des cas frappants de gradation, étudier un ou deux exemples très caractéristiques, comme celui du paon, pour voir si nous pouvons ainsi jeter quelque lumière sur les différentes phases qu'a da traverser le plumage de cet oiseau pour acquérir le degré d'élégance et de splendeur que nous lui connaissons. Le paon est surtout remarquable par la longueur extraordinaire qu'atteignentles plumes rec* trices de la queue, la queue par elle-même a'étant pas très développée. Les barbes qui occupent la prerque totalité de la longueur de ces plumes sont séparées ou nou composées; mais on peut observer le même fait dans las pl mes de beaucoup d'espèces et chez quelques variétés du coq et du pigeon domestiques. Les barbes se réunissent vers l'extrémité de la tige pour former le disque ovale ou ocelle qui constitue certainement un des ornements les plus beaux que nous connaissiens. Cet ocelle se compose d'un centre dentelé, irisé, bleu intense, entouré d'une zone vert brillant, bordée d'une large zone brun cuivré, que circonscrivent à leur tour cinq autres zones étroites de nuances irisées un peu différentes. Le disque présente un caractère qui, malgrés son peu d'importance, mérite d'etre signalé; les barbes étant, sur une portion des zones concentriques, plus ou moins dépourvues de barbilles, une partie du disque se trouve ainsi entourée d'une zone presque transparente qui lui donne un aspect admirable. J'ai décrit ail-
leurs ${ }^{50}$ une variation tout à fait analogue des barbes d'une sous variété du coq de combat, chez lesquelles les pointes, douées d'un lustre métallique, e sont séparées de la partie inférie ure de la plume par une zone de forme symétrique et transparente constituée par la partie nue des barbes. > Le bord inférieur ou la base du centre bleu foncé de l'ocelle est profondément dentelés sur la ligne de la tige. Les zones environnantes montrent également, comme on peut le voir dans le dessin (fig. 54. P1. 26), des traces d'indentation ou d'interruption. Cos indentations sont communes aux paons indiens et japonais (Pavo cristatus et P. muticus), et elles m'ont paru mériter une attention particulière, car elles sont probablement en rapport avec le développement de l'ocelle, mais sans que j'aie pu, pendant longtemps, m'expliquer leur signification.

Si on admet le principe de l'évolution graduelle, on peut affirmer qu'il a du exister autrefois un grand nombre d'espèces qui ont présenté toutes les phases successives entre les couvertures caudales allongées du paon et celles plus courtes des autres oiseaux ; et aussi entre les superbes ocelles du premier et ceux plus simples ou les taches colorées des seconds; et de même pour tous les autres caractères du paon. Voyons donc chez les gallinacés voisins, si nous trouvons des gradations encore existantes. Lus espèces et les sous-espèces de Polyplectron habitent des pays voisins de la patrie du paon, et ils ressemblent assez à cet oiseau pour qu'on les ait appelés faisans-paons. M. Bartlett soutient aussi qu'ils ressemblent au paon par la voix et par quelques-unes de leurs habitudes. Pendant le printemps, ainsi que nous l'avons dit précédemment, les males se paranent devant les femelles rela ivement beaucoup plus simples; ils redressent et étalent les plumes de leurs ailes et de leur queue, ornées de nombreux ocelles. Le lecteur peut recourir à la figure représentant le polyplectron (fig. 51. Pl. 24). Chez le P. Napoleonis, les ocelles ne se trouvent que sur la queue, le dos est d'un bleu métallique brillant, points qui rapprochent cette espèce du paon de Java. Le P. Hardwickii possède une huppe singulière assez semblable à celle du même paon. Les ocelles des ailes et de la queue des diverses espèces de polyplectron sont circulaires ou ovales, et consistent en un magnifique disque irisé, bleu verdatre ou pourpre verdatre, avec un bord noir. Chez le P. chinquis, ce bord se nuance de brun avec un liseré couleur de café au lait, de sorte que l'ocelle est ici entouré de zones concentriques affectant des tons différents quoique peu brillants. La longueur inusitée
50. Variation, etc., rol. I, p. 270.
des couvertures caudales est un autre caractère remarquable du genre polyplectron ; car, chez quelques espèces, elles atteignent la moitié, et, chez d'autres, les deux tiers de la longueur des vraies rectrices. Les tectrices caudales sont ornées d'ocelles comme chez le paon. Ainsí, les diverses espèces de polyplectron se rapprochent évidemment du paon, par l'allongement de leurs tectrices, par le zonage de leurs ocelles et pa: quelques autres caractères.
Malgré ce rapprochement, j'avais presque renoncé à mes recherches après avoir examiné la première espèce de polyplectron que j'ai eue à ma disposition; car je trouvai non seulement queles véritables rectrices, qui sont simples chez le paoñ, étaient ornées d'ocelles qui, sur toutes les plumes, différaient fondamentalement de ceux du paon, en ce qu'il y en avait deux sur la même plume ($\mathrm{fig} .55 . \mathrm{Pl} .27$), un de chaque côté de la tige. Cette remarque m'amena à conclure que les ancétres primitifs du paon n'avaient pu, à aucun degré, ressembler au polyplectron. Mais, en continuant mes recherches, je remarquai que, chez quelques espèces, les deux ocelles sont fort rapprochés; rue, sur les rectrices du P. Hardwickii, par exemple, les deux ocelioe se touchaient, et enfin que, sur les tectrices de la queue de la mème espèce ainsi que sur celle du P. Malaccense (fig. 56. Pl. 27), ils se confondaient. La soudure, n'intéressant que la portion centrale, provoque des dentelures aux bords supérieurs e^{\wedge}, inférieurs de l'ocelle, qui se traduisent également sur les zones colorées environnantes. Chaque tectrice caudale porte ainsi un ocelle unique, mais dont la double origine est encore nettement accusée. Ces ocelles confluents diffèrent de ceux du paon qui sont uniques, en ce quills ont une échancrure à chaque extrémité, au $l_{\text {ieu de n'en présenter qu'une à l'extrémité inférieure ou à la base. }}^{\text {a }}$. Il est d'ailleurs facile d'expliquer cette différence ; chez quelques espèces de polyplectrons les deux ocelles ovales de la même plume sont parallèles ; chez une autre (P. chiquis), ils convergent vers une des extrémités; or, la soudure partielle de deux ocelles convergents doit évidemment produire une dentelure plus profonde à l'extrémité divergente qu'à l'extrémité convergente. Il est manifeste aussi que, si la convergence était très prononcée et la fusion complète, l'échancrure tendrait à disparaitre complètement à l'extrémité convergente.

Chez les deux espèces de paons, les rectrices sont entièrement dépourvues d'ocelles, ce qui provient sans doute de ce qu'elles se trouvent cachées par les longues tectrices caudales qui les recouvrent. Elles diffèrent très notablement, sous ce rapport, des olumes rectrices des polyplectrons, lesquelles, chez la plupart des
espèces, sont ornées d'ocelles plus grands que ceux des plumes qui les recouvrent. J'ai donc été amené à examiner avec soin les plumes caudales des diverses espèces de polyplectrons afin de m'assurer si, chez quelqu'une d'entre elles, les ocelles présentent quelque tendance à disparailre, ce que, à ma grande satisfaction, je réussis à constater. Les rectrices centrales du P. Napoleonis ont les deux ocelles complètement développés de chaque coté de la tige ; mais l'ocelle interne devient de moins en moins apparent sur les rectrices placées de chaque coté, et il n'en subsiste plus qu'une trace rudimentaire ou une ombre sur le bord interne de la plume extérieure. Chez le P. Malaccense, les ocelles des tectrices caudales sont soudés comme nous l'avons vu; ces plumes ont une longueur extraordinaire, elles atteignent en effet les deux tiers de la longueur des rectrices; de telle sorte que, sous ces deux rapports, elles ressemblent aux couvertures caudales du paon. Or, chez le P. Malaccense, les deux rectrices centrales sont seules ornées de deux ocelles à couleur vive, ces taches ont complètement disparu des cotés internes de toutes les autres. Par conséquent, la structure et l'ornementation des plumes caudales de cette espèce de polyplectron, tant les tectrices que celles qui les couvrent, se rapprochent beaucoup de la structure et de l'ornementation des plumes correspondantes du paon.

Il est donc inutile d'insister davantage, car le principe de la gradation explique les degrés successifs qu'a da parcourir la queue du paon pour en arriver à être ce qu'elle est aujourd'hui. On peut se représenter un ancêtre du paon dans un état presque exactement intermédiaire entre le paon actuel, avec ses tectrices si prodigieusement allongées, ornées d'ocelles uniques, et un gallinacé ordinaire à tectrices courtes, simplement tachetées. Cet oiseau devait posséder des tectrices, susceptibles de se redresser et de se déployer, ornées de deux ocelles partiellement confluents, assez longues pour recouvrir à peu près les tectrices elles-mêmes, qui avaient déjà en partie perdu leurs ocelles, c'est-à-dire un oiseau voisin du polyplectron. Les échancrures du disque central et des zones qui entourent l'ocelle chez les deux espèces de paons, me paraissent militer fortement en faveur de cette hypothèse, car cette particularité serait autrement inexplicable. Les polyplectrons males sont incontestablement de très beaux oiseaux, mais à quelque distance on ne saurait les comparer au paon. Les ancêtres femelles de cet oiseau doivent, pendant une longue période, avoir apprécié cette supériorité; car, par la préférence continue pour lesplus beaux males, elles ont inconsciemment contribué à rendre le paon le plus splendide des oiseaux.

Le Faisan Argus. - Les ocelles qui ornent les rémiges du faisan Argus nous offrent un autre champ excellent pour nos recherches. Ces ocelles, admirablement ombrés, ressemblent absolument à des boules posées sur une coupe, et diffèrent par là des ocelles ordinaires. Personne, je pense, ne songerait à attribuer au simple hasard ces ombres délicates fondues d'une façon si exquise et qu'ont si vivement admirées tous les artistes, à un concours fortuit d'atomes de matière colorante. Il semble vraiment qu'en affirmant que ces ornements résultent de la sélection de variations successives, dont pas une n'était primititvement destinée à produire l'illusion d'une boule dans une cavité, on veuille se moquer du lecteur, tout comme si l'on soutenait qu'une madone de Raphaêl est le résultat de la sélection de barbouillages exécutés fortuitement par une longue série de jeunes peintres, dont pas un ne comptait d'abord dessiner une figure humaine. Pour découvrir comment ces ocelles se sont développés, nous ne pouvons interroger ni une longue lignée d'ancetres, ni des formes voisines, qui n'existent plus aujourd'hui. Mais heureusement les diverses plumes de l'aile suffisent pour nous fournir l'explication du problème, car elles nous prouvent, jusqu'à l'évidence, qu'une gradation est au moins possible entre une simple tache et un ocelle produisant l'effet absolu d'une boule placée dans une cavité.
Les rémiges portant les ocelles sont couvertes de raies (fig. 57. P1. 27) ou de rangées de taches fonḉes (fig. 59. Pl. 28); chacune de ces bandes ou de ces rangées de taches se dirige obliquement du bord extérieur de la tige vers un ocelle. Les taches sont généralement allongées transversalement à la rangée dont elles font partie. Elles se réunissent souvent, soit dans le sens de la rangée,--- elles forment alors une bande longitudinale - soit latéralement, e'est-àdire avec les taches des rangées voisines, et constituent alors des bandes transversales. Une tache se divise quelquefois en taches plus petites qui conservent leur situation propre.
Il convient d'abord de décrire un ocelle complet figurant parfaitement une boule dans une cavité. Cet ocelle consiste en un anneau circulaire noir intense, entourant un espace ombré de façon à produire exactement l'apparence d'une sphère. La figure que nous donnons ici a été admirablement dessinée et gravée par M. Ford, mais une gravure sur bois ne saurait rendre l'ombrage parfait et délicat de l'original. L'anneau est presque toujours rompu (fig. 57. Pl. 27) sur un point de sa moitié supérieure, un peuà droite et au-dessus de la partie blanche (point éclairé) de la sphère qu'il entoure; quelquefois aussi il est un peu rompu vers sa base a
droite. Ces légères ruptures ont une signification importante. L'anneau est toujours très épaissi et les bords en sont mal définis vers l'angle gauche supérieur, lorsque la plume est vue debout, dans la position où elle est dessinée ici. Sous cette partie épaissie, il y a, à la surface de fa sphère, une marque oblique d'un blanc presque pur qui passe graduellement par différentes nuances de gris plombé pale, puis jaunâtres, puis brunatres et qui deviennent insensiblement toujours plus foncées vers la partie inférieure. C'est cette gradation de teintes qui produit cet effet si parfait d'une lumiere éclairant une surface convexe. Si on examine une de ces sphères, on remarque que sa partie inférieure a une teinte plus brune et se trouve indistinctement séparée par une ligne courbe oblique de la partie supérieure qui est plus jaune et d'une nuance plus plombée; cette ligne oblique fait un angle droit avec l'axe le plus long de la tache bianche (qui représente la partie éclairée), et même avec toute la portion ombrée, mais ces différences de teintes, dont notre figure sur bois ne peut, cela va sans dire, donner aucune idée, n'altèrent en aucune façon la perfection de l'ombre de la sphère. Il faut surtout observer que chaque ocelle est en rapport évident avec une raie ou une série de taches foncées, car les deux se rencontrent indifféremment sur la même plume. Ainsi, dans la figure 57, la raie A se dirige vers l'ocelle a; B vers l'ocelle b; la raie C est interrompue dans sa partie supérieure, et se dirige vers l'ocelle suivant qui n'est pas représenté dans la figure; 'il en est de même des bandes D, E et F. Enfin les divers ocelles sont séparés les uns des autres par une surface claire portant des taches noires irrégulières.

Je vais maintenant décrire l'autre extrême de la série, c'est-à-dire la première trace d'un ocelle. La courte rémige secondaire la plus rapprochée du corps, porte, comme les autres plumes (fig. 58. Pl. 28), des séries obliques et longitudinales de taches un peu irrégulières très foncées. La tache inférieure ou la plus rapprochée de la tige, dans les cinq rangées les plus basses (celle de la base exceptée), est un peu plus grande que les autres taches de la même série, et un peu plus allongée dans le sens transversal. Elle diffère aussi des autres taches en ce qu'elle porte à la partie supérieure une bordure de couleur fauve ambrée. Mais cette tache n'a rien de plus remarquable que celles qu'on voit sur les plumages d'une foule d'oiseaux, elle pourrait donc aisément passer inaperçue. La tache suivante, en montant dans chaque rangée, ne diffère, en aucune façon, de celles qui, dans la même ligne, sont placées au-dessus d'elle. Les grandes taches occupent exactement la même position relative, sur cette
plume que celle occupée par les ocelles parfaits sur les rémiges plus allongées.

En examinant les deux ou trois rémiges secondaires suivantes, on peut observer une gradation insensible entre une des taches que nous venons de décrire, jointe à celle qui la suit dans la meme rangée, et il en résulte un ornement curieux qu'on ne peut appeler un ocelle, et que, faute d'un meilleur terme, je nommerai un * ornement elliptique *. Ces ornements sont représentés dans la figure ci-jointe (fig. 59. Pl. 28). Nous y voyons plusieurs rangées obliques, A, B, C, D, etc., de taches foncées ayant le caractère habituel. Chaque rangée de taches descend vers un des ornements elliptiques et se rattache à lui, exactement comme chaque raie de la figure 57 est en rapport avec un des ocelles à boule. Examinons une rangée, B, par exemple (fig. 59) : la tache inférieure (b) est plus épaisse et beaucoup plus longue que les taches supérieures; son extrémité gauche se termine en pointe et se recourbe vers le haut. Un espace assez large de teintes richement ombrées, commençant par une étroite zone brune, passant à l'orange et ensuite à une teinte plombée, très claire, à l'extrémité amincie qui côtoie la tige, succède brusquement au cot té supérieur de cette tache noire, qui correspond sous tous les rapports avec la grande tache ombrée décrite ci-dessus (fig. 58); elle est toutefois plus développée et a des couleurs plus vives. A droitg et au-dessus de ce point (b, fig. 59), avec sa partie éclairée, se trouve une marque noire (c) longue et étroite, faisant partie de la même rangée, un peu arquée en dessous, du coté tourné vers b, pour lui faire face. Cette tache noire est quelquefois brisée en deux parties et bordée d'une raie étroite affectant une teinte fauve. A gauche et au-dessus de c, dans la meme direction oblique, mais toujours plus ou moins distincte, se trouve une autre tache noire (d). Cette tache affecte ordinairement une forme triangulaire ou irrégulière; celle qui est indiquée dans l'esquisse est exceptionnellement étroite, allongée et régulière. Elle paratt consister en un prolongement latéral et interrompu de la tache (c), ainsi que semblent l'indiquer les prolongements analogues qu'on remarque sur les taches supérieures suivantes; mais je n'en suis pas certain. Ces trois taches, b, c et d, avec les parties éclairées intermédiaires, constituent ce que nous appelons un ornement elliptique. Ces ornements occupent une ligne parallèle à le tige etleur position correspond évidemment avec celle des ocelfes sphériques. Malheureusement ur dessin ne saurait faire comprendre l'élégance de leur aspect, car on no peut reproduire les teintes orangées et plombées qui contrastent si heureusement avec les laches noires.

La transition entre un de ces ornements elliptiques et un ocelle à sphère est si insensible, qu'il est presque impossible de déterminer quand il faut substituer cette dernière désignation à la première. La transformation de l'ornement elliptique s'effectue par l'allongement et par la plus grande courbure dans des directions opposées de la tache noire inférieure (b, fig.59), et surtout de la tache supériéure (c), jointe à la contraction de la tache étroite et irrégulière (d) qui, se soudant toutes les trois ensemble, finissent par former un anneau elliptique peu régulier. Cet anneau devient de plus en plus régulier, prend la forme circulaire et augmente en même temps en diamètre. La figure 60 représente, grandeur naturelle, un ocelle qui n'est pas encore absolument parfait. La partie inférieure de l'anneau noir est beaucoup plus recourbée que la tache inférieure de l'ornement elliptique (b, fig. 59). La partie supérieure de l'anneau se compose de deux ou trois parties séparées, et on n'aperçoit qu'une trace de l'épaississement de la partie qui constitue la tache noire au-dessus de la partie claire. Cette partie claire n'est pas encore non plus très concentrée et la surface est plus brillamment colorée qu'elle ne l'est dans l'ocelle parfait. Les traces de la jonction des trois taches allongées peuvent encore s'apercevoir dans un grand nombre des ocelles les plus parfaits. La tache irrégulièrement triangulaire ou étroite ($d, f i g .59$) forme évidemment, par sa contraction et par son égalisation, la partie épaissie de l'anneau qui se trouve au-dessus de la partie blanche de l'ocelle complet. La partie inférieure de l'anneau est toujours un pera plus épaisse que les autres (fig. 57), ce qui résulte de ce que la tache noire inférieure de l'ornement elliptique ($b, f i g$. b9) était, dans l'origine, plus épaisse que la tache supérieure (c). On peut suivre toutes les phases successives des modifications et des soudures; on peut en conclure que l'anneau noir qui entoure la sphère de l'ocelle est incontestablement formé par l'union et par la modification des trois taches noires b, c, d, de l'ornement elliptique. Les taches noires irrégulières et disposêes en zigzag qui sont placées entre les ocelles successifs (fig. 57) sont dues évidemment à l'interruption des quelques taches semblables, mais plus régulières, qui se trouvent dans les intervalles des ornements elliptiques.

On peut Ágalement se rendre un compte exact des phases successives que traversent les teintes ombrées pour arriver à produire chez les ocelles l'effet d'une boule dans une cavité. Les zones étroites, brunes, oranges et plombées, qui bordent la tache noire inférieure de l'ornement elliptique, revêtent peu à peu des teintes plus douces et se fondent lés unes dans les autres; la portion déjà
peu colorée de la partie supérieure gauche devient de plus en plus claire, au point de paratre presque blanche. Mais, méme dans l'ocelle en boule le plus parfait, on peut apercevoir (ainsi que nous l'avons indiqué plus haut), une légère différence dans les leintes, mais pas dans les ombres, entre la partie supérieure et la partie inférieure de la boule; cette ligne de séparation est oblique et suit la même direction que les tons plus clairs des ornements elliptiques. Ainsi chaque petit détail de la forme et de la coloration de l'ocelle à boule peut s'expliquer par des modifications graduelles apportées aux ornements elliptiques ; on peut expliquer également le développement de ces derniers, en vertu de degrés tout aussi successifs commençant par l'union de deux laches presque simples, la tache inférieure (fig. 58) étant bordée è son extrémité supérieure d'une teinte ombrée de fauve.
Les extrémités des longues plumes secondaires qui portent les ocelles complets représentant une boule dans une cavité, sont le siège d'une ornementation particulière (fig. 61. Pl. 29). Les raies longitudinales obliques cessent brusquement dans le haut et deviennent confuses; au-dessus de cette limite, toute l'extrémité supérieure de la plume (a) est couverte de points blancs entourés par de petits anneaux noirs serres sur un fond obscur. La raie oblique appartenant à l'ocelle supérieur (b) n'est même plus représentée que par une courte tache noire, irrégulière, dont la base est comme d'ordinaire transversale et arquée. La séparation brusque de cette raie nous permet de comprendre pourquoi la partie épaisse de l'anneau manque dans l'ocelle supérieur ; car, comme nous l'avons constaté, cette partie épaissie est évidemment formée par un prolongement de la tache qui la suit au-dessus dans la même raie. Par suite de T'absence de la partie supérieure et épaissie de l'anneau, une portion du sommet de l'ocelle supérieur paralt avoir été obliquement enlevée, bien qu'il soit complet sous tous les autres rapports. Si l'on admettait que le plumage du faisan Argus a été créé tel qu'il existe aujourd'hui, on serait fort embarrassé d'expliquer l'état imparfait de l'ocelle supérieur, Je dois ajouter que les ocelles de la rémige secondaire la plus éloignée du corps sont plus petits et moins parfaits que ceux des autres rémiges et présentent, comme locelle que nous venons de décríe, une interruption de la partie supérieure de l'anneau noir externe. It semble que les taches, sur cette plume, montrent une tendance moindre à se réunir pour former des bandes; elles sont, au contraire, souvent divisées en taches plus petites, qui constituent deux ou trois rangées se dirigeant vers chaque ocelle.
M. T. W. Wood ${ }^{51}$ a observé le premier un autre point très curieux qui mérite d'être signalé. Dans une photographie que m'a donnée M. Ward et qui représente un faisan Argus au moment où il déploie ses plumes, on remarque que, sur les plumes disposées perpendiculairement, les taches blanches des ocelles représentantla lumière réfléchie par une surface convexe se trouvent à l'extrémité supérieure, c'est-à-dire dirigée de bas en haut; l'oiseau, en effet, posé sur le sol en déployant ses plumes, est naturellement éclairé par en haut. Mais là vient le point curieux dont nous avons parlé: les plumes extérieures gardent une position presque horizontale et leurs ocelles devraient paraitre aussi illuminés par en haut et par conséquent les taches blanches devraient être placées sur le coté supérieur des ocelles, et, quelque incroyable quecela puisse parattre, c'est en effet la position qu'elles occupent. Il en résulte que les ocelles sur les diverses plumes, bien qu'occupant. des positions très différentes par rapport à la lumière, paraissent tous illuminés par en haut comme si un véritable artiste avait été chargé de disposer leurs ombres. Néanmoins, ils ne sont pas éclairés du point exacte ment convenable, car les taches blanches des ocelles situés sur les plumes qui restent presque horizontales, sont placées un peu trop à l'extrémité, c'est-à-dire qu'elles ne se trouvent pas tout à fait assez sur le côté. Nous n'avons d'ailleurs aucun droit de chercher la perfection absolue dans une partie que la sélection sexuelle a transfor mée en ornement, pas plus que dans une partie que la sélection naturelle a modifiée pour un usage constant, et nous pourrions citer, par exemple, l'œil humain. Nous savons, en effet, que Helmholtz, la plus haute autorité en Europe, a dit, à propos de cet or ane extraordinaire, que si un opticien lui avait vendu un instrument fabriqué avec si peu de soin, il n'aurait pas hésité à le lui laisser pour compte ${ }^{52}$.

Il résulte des observations que nous venons de faire, qu'on peut établir une série parfaite entre les taches simples et un admirable or nement représentant l'étonnant ocelle en forme de boule. M. Gould, qui a eu l'obligeance de me donner quelques-unes de ces plumes, reconnalt avec moi que la gradation est complète. Il est évident que les différentes phases de développement qu'on observe sur les plumes d'un oiseau n'indiquent pas nécessairement les divors états par lesquels ont du passer les ancêtres éteints de l'espèce ; mais elles nous fournissent probablement l'explication des états actuels,
52. Popular lectures on scientific subiects, 1873, p. 219, 227, 269, 390.
et, tout au moins, la preuve évidente de la possibilité d'une gradation. On sait avec quel soin le faisan Argus male étale ses plumes aux regards de la femelle; on sait aussi que la femelle témoigne une préférence pour les malles les plus attravants. Nous avons cité bien des faits pour le prouver; on ne peut donc contester, si on admet la sélection sexue'le, qu'une simple tache foncée, ombrée de quelques teintes, ne puisse, par le rapprochement et par la modification des taches voisines, grace à une augmentation de couleur, se transformer en ce que nous avons appelé des ornements elliptiques. Toutes les personnes qui ont vu ces ornements les ont trouvés très élégants, plusieurs même les regardent comme plus beaux que les ocelles complets. L'action continue de la sélection sexuelle a da provoquer l'allongement des rémiges secondaires et l'augmentation en diamètre des ornements elliptiques; la coloration de ces ornements a da, en conséquence, perdre une certaine partie de son éclat; alors, pour remplacer ce défaut de coloration, l'ornementation s'est reportée sur la beauté du dessin et sur le jeu des ombres et de la lumière; ces embellissements successifs ont abouti au développement des merveilleux ocelles que nous venons de décrire. C'est ainsi, - et il me semble qu'il n'y a pas d'autre explication possible, - que nous pouvons expliquer l'état actuel et l'origine des ornements qui couvrent les rémiges du faisan Argus.

La lumière que jette sur ce sujet le principe de la gradation ; ce que nous savons des lois de la variation; les modifications qu'ont éprouvées un grand nombre de nos oiseaux domestiques; et enfin les caractères (sur lesquels nous aurons à revenir) du plumage des oiseaux avant qu'ils aient atteint l'age adulte, - nous permettent quelquefois d'indiquer, avec une certaine certitude, les phases successives qu'ont dù traverser les mâles pour acquérir leur riche plumage et leurs divers ornements, bien que, dans beaucoup de cas, nous soyons encore, à cet égard, plongés dans une obscurité profonde. M. Gould, il y a déjả longtemps, m'a signalé un oiseaumouche, l'Urosíticte benjamini, dont le male et la femelle présentent des différences remarquables. Le male, outre une collerette magnifique, a les plumes de la queue vert noiratre, sauf les quatre plumes centrales, dont l'extrémité est blanche. Chez la femelle, comme chez la plupart des espèces voisines, les trois plumes caudales extérieures de chaque cotés se trouvent dans le même cas; de sorte que chez le male les quatre plumes caudales centrales, et chez la femelle les six plumes caudales externes, sont ornées d'extrémités blanches. On observe, sans doute, chez beaucoup d'espèces d'oi-
seaux-mouches, des différences considérables entre les males et les femelle3 au point de vue de la coloration de la queue; toutefois, M. Gould ne connait pas une seule espèce, en denors de l'Urosticte, chez laquelle les quatre plumes caudâles centrales du male se terminent en blanc, et c'est là ce qui rend cet exemple si curieux.
Le duc d'Argyll ${ }^{\text {b3 }}$ discute vivement ce cas; il ne fait pas mention de la sélection sexuelle et se demande: © Comment peut-on, au moyen de la sélection naturelle, expliquer des variétés spécifiques de cette nature ? > Il répond: «La sélection naturelle ne peut donner aucune explication », ce que je lui accorde pleinement. Mais en est-il de même de la sélection sexuelle? Les plumes caudales des oiseaux-mouches diffèrent les unes des autres de tant de façons différentes, qu'on peut se demander pourquoi les quatre plumes centrales n'auraient pas varié chez cette espèce seule de façon à acquérir des pointes blanches? Les variations ont pu être graduelles; elles ont pu être quelque peu soudaines, comme dans le cas précédemment indiqué des oiseaux-mouches de Bogota, chez lesquels quelques individus seulement ont les «rectrices centrales vert éclatant à leur extrémité >. J'ai remarqué, chez la femelle de l'Urosticte, des extrémités blanches très petites et presque rudimentaires sur les deux rectrices externes faisant partie des quatre plumes centrales; ce qui indique une lègère modification dans le plumage dé cette espèce. Si l'on admet que la quantité de blanc puisse varier dans les rectrices centrales du mâle, il n'y a rien d'étonnant à ce que de telles variations aient été soumises à l'action de la sélection sexuelle. Les extrémités blanches, ainsi que les petites huppes auriculaires de mème couleur, ajoutent certainement à la beauté du male, le duc d'Argyll l'admet lui-même; or, le blanc est évidemment apprécié par d'autres oiseaux, car le Chasmorynchus mâle affecte une blancheur de neige. N'oublions pas le fait signalé par sir R. Heron : ses paons femelles, auxquelles il avait interdit l'accès du mâle pie, refusèrent de s'accoupler avec aucun autre male et restèrent toute la saison sans produire. Il n'est pas étonnant non plus que les variations des rectrices de l'Urostiete aient été l'objet d'une sélection ayant spécialement pour but une ornementation quelconque, car le genre qui le suit dans la meme famille a reçu le nom de Metallura, en conséquence de la splendeur qu'ont atteinte chez lui ces mêmes plumes. Nous avons en outre la preuve que les oiseaux-mouches font tous leurs efforts pour étaler leurs rectrices
53. The Reign of Law, 1867, p. 247.
à leur plus grand avantage. M. Belt ${ }^{54}$, après avoir décrit la magnificence du Florisuga mellivora, ajoute : «J'ai vu la femelle posée sur une branche pendant que deux mâles étalaient leurs charmes devant elle. L'un s'élançait en l'air comme une fusée, puis épandait soudain sa queue blanche comme la neige, descendail lentement devant elra, en ayant soin de se tourner graduellement pour qu'elle put admirer la partie antérieure et la partie postérieure de son corps..... sa queue blanche éployée couvrait plus d'espace que tout le corps de l'oiseau, et constituait évidemment pour lui le grand attrait du spectacle. Tandis que l'un descendait, l'autre s'élançait dans l'air et redescendait lentement à son tour. Le spectacle se termine ordinairement par un combat entre les deux mâles, mais je ne saurais dire si la fomelle choisit le plus beau ou le plus fort. » Après avoir décrit le plumage particulier de l'Urosticte, M. Gould ajoute: - Je crois fermement que l'ornement et la variété sont le seul but de cette particularité ${ }^{55} \ldots$ » Ceci admis, nous pouvons comprendre que les malles, parés de la manière la plus élégante et la plus nouvelle, l'ont emporté, non dans la lutte ordinaire pour l'existence, mais dans leur rivalité avec les autres mâles, et ont du, par conséquent, laisser une descendance plus nombreuse pour hériter de leur beauté nouvellement acquise

CHAPITRE XV

giskaux (suite)

Discusston sur la question de savoir pourquoi, chez quelques espèces, les males seuls ont des couleurs éclatantes, alors que les deux sezes en possèdent chez d'autres espèces. - Sur l'hérédité limitée par le sexe, appliquée à diverses conformations et au plumage richement coloró. - Rapports de la nidification avec la couleur. - Perte pendant l'hiver du plumage nuptial.

Nous avons à examiner, dans ce chapitre, pourquoi, chez beaucoup d'espèces d'oiseaux, la femelle n'a pas acquis les mâmes ornoments que le male ; et pourquoi, chez beaucoup d'autres, les deux sexes sont également ou presque égatement ornés? Dans le chapitre suivant nous étudierons les quelques cas où la femelle est plus brillamment colorée que le male.
54. The Naturalist in Nicaragua, 1874, p. 118.
55. Introd, to the Trochilidæ, 1861, p. 110.

Je me suis borné à indiquer, dans l'Origine des espèces ${ }^{\text {1, }}$, que la longue queue du paon et que la couleur noire si apparente du grand tétras male, seraient l'une incommode, l'autre dangereuse pour les femelles pendant la période de l'incubation ; j'en ai tiré la conséquence que la sélection naturelle était intervenue pour s'opposer à la transmission de ces caractères de la descendance malle à la descendance femelle. Je crois encore que cette cause a agi dans quelques cas assez rares d'ailleurs ; mais, après avoir morement réfléchi à tous les faits que j'ai pu rassembler, je suis maintenant disposé a croire que, lorsque les males et les femelles different, c'est que la transmission des variations successives a été, dès le principe, limitée au sexe chez lequel ces variations se sont produites d'abord. Depuis la publication de mes observations, M. Wallace ${ }^{2}$ a discuté dans plusieurs mémoires d'un haut intérêt la question de la coloration sexuelle. M. Wallace admet que, dans presque tous les cas, les variations successives ont tendu d'abord à se transmettre également aux deux sexes, mais que la sélection naturelle a soustrait la femelle au danger qu'elle aurait couru pendant l'incubation si elle avait revêtu les couleurs éclatantes du male.
Cette hypothèse nécessite une laborieuse discussion sur un point difficile à élucider: la sélection naturelle peut-elle subséquemment limiter ì un sexe seul la transmission d'un caractère, d'aboŕd héréditaire chez les deux sexes? Ainsi que nous l'avons démontré dans lo chapitre préliminaire sur la sélection sexuelle, les caractères développés chez un seul sexe existent toujours à l'état latent chez l'autre. Un exemple imaginaire peut nous aider à comprendre quelles difficultés présente cette question. Supposons qu'un éleveur désire créer une race de pigeons dont les mâles seuls auraient une coloration bleu clair, tandis que les femelles conserveraient leur ancienne teinte ardoisée. Les caractères de toute espèce se transmettent d'ordinaire chez le pigeon également aux deux sexes; l'bleveur devra donc chercher à convertir cette forme d'hérédité en une transmission limitée sexuellement. Tout ce qu'il pourra faire sera de choisir dans chaque génération successive un pigeon male bleu aussi clair que possible; s'i' procède ainsi pendant fort longtemps et que la variation bleu clair soit fortement héréditaire et se présente souvent, le résultat naturel obtenu sera de donner à toute la rece une couleur bleue plus claire. Mais l'éleveur qui tient à conserve la couleur ardoisée des femelles sera obligé d'accoupler,

[^235]génération après génération, ses males bleu clair avec des femehes à coloration ardoisée. Il en résulterait la production, soit d'une race métis' couleur pie, soit, probablement, la perte rapide et compléte de la couleur bleu pâle, car la teinte ardoisée primitive se transmettrait sans aucun doute avec une force prépondérante Supposons toutefois que, dans chaque génération successive, on obtienne quelques mâles bleu clair et quelques femelles ardoisées, et qu'on les a ccouple toujours ensemble; les femelles ardoisées auraiont alors beaucoup de sang bleu dans les veines, si j'ose me servir de cette expression, car leurs pères, leurs grands-péres, etc., auraient tous été des oiseaux bleus. Dans ces conditions, il est concevable (bien que je ne connaisse pas de faits positifs qui rendent la chose probable) que les femelles ardoisées puissent acquérir une tendance latente à la coloration claire, assez forte pour ne pas la détruire chez leurs descendants mâles, tandis que leurs desdendants femelles continueraient à hériter de la teinte ardoisée. S'il en était ainsi, on pourrait atteindre le but désiré, c'est-d̀-dire créer une race dont les deux sexels différeraient d'une manière permanente au point de vue de la couleur.

L'exemple suivant fera mieux comprendre l'importance extreme, ou plutot la nécessité, que le caractère cherché dans la supposition qui précède, à savoir la coloration bleu clair, soit présent chez la femelle à l'état latent afin que la descendance ne s'altère pas. La queue du faisan Soemmerring mâle a 940 millimêtres de longueur, celle de la femelle n'a que 20 centimètres; la queue du faisan commun mâle a environ 50 centimètres de longueur, et celle de la femelle 304 millimètres. Or, si on croisait un faisan Sommerring femelle, à courte queue, avec un male de l'espèce commune, le descendant male hybride aurait, sans aucun doute, une queue beaucoup plus longue qu'un descendant pur du faisan commun. Si la femelle du faisan commun, au contraire, avec sa queue beaucoup plus longue que celle de la femelle de l'espèce Scemmerring se croisait avec un male de cette dernière espèce, l'hybride male produit aurait une queue beaucoup plus courte qu'un descendant pur du faisan Soemmerring ${ }^{3}$.
Notre éleveur, pour donner aux males de sa race nouvelle une teinte bleu clair bien déterminée, sans modifier les femelles, aurait à opérer sur les males une sélection continưe pendant denombreuses
3. Temminck (planches colorí́es, vol. V, 1838, p. 487-88) dit que la queue du Phasianus Scemmerringii femelle n'a que quinze centimètres de longueur: c'est i M. Sclater que je dois les mesures que j'ai précédemment indiquées. Voir, sur le faisan commun, Macgillivray, Hist. Brit. Birds, I, 118-121.
génơrations; chaque degré de nuance claire devant etre fixé chez les males et rendu latent chez les femelles. Ce serait une tache difficile, qui n'a jamais été tentée, mais qui pourrait réussir. L'obstacle principal serait la perte précoce et complête de la nuance bleu clair, résultant de la nécessité de croisements répétés avec la femelle ardoisée ; car celle-ci n'offrirait dans le commencement aucune tendance latente a produire des descendants bleu clair.
D'autre part, si de légères variations tendant à effectuer le caractere de leur coloration venaient à surgir chez certains males, et que ces variations fussent dès le principe limitées dans leur transmission au sexe male, la production de la race cherchée deviendrait facile, car il suffirait simplement de choisir ces males et de les accoupler avec des femelles ordinaires. Un cas analogue s'est présenté, car il existe en Belgique ${ }^{4}$ certaines races de pigeons chez lesquelles les màles seuls portent des raies noires. M. Tegetmeier ${ }^{5}$ a récemment đêmontré que les dragons produisent assez fréquemment des petits argentés, presque toujours des femelles; il a élevé dix de ces femelles argentées. Il est très rare, au contraire, qu'il y ait un male argenté. De sorte qu'il n'y aurait rien de plus facile que de produire une race de pigeons aragons dont les males seraient bleus et les femelles argentées. Cette tendance est si forte que, quand M. Tegetmeier parvint enfin à se procurer un mate argenté, il l'accoupla avec une femelle de la même couleur, espérant produire une race dont les deux sexes seraient argentés; toutefois il fut désappointé, car le jeune male revêtit la couleur bleue de son grand-père et la jeune femelle seule fut argentée. Sans doute on pourrait, avec beaucoup de patience, vaincre cette tendance au retour chez les mâles provenant d'un couple argenté, et se procurer une race chez laqquelle les deux sexes affecteraient la même couleur; d'ailleurs, M. Esquilant a obtenu ce résultat pour les pigeons Turbits argentes.
Chez les gallinacés, des variations de couleur limitées au sexe mâle dans leur transmission se présentent assez fréquemment. Mais, alors méme que cette forme d'hérédité prévaut, il peut arriver que quelques-uns des caractères successivement atteints dans le cours de la variation se transmettent a la femelle ; celle-ci, dans ce cas, ressemblerait un peu au male, ce qu'on peut observer chez quelques races gallines. Ou bien encore, presque tous les degrés successivement parcourus se transmettent inégalement aux deux

[^236]sexes; la femelle ressemble alors davantage au male. Il est probable que cette transmission inégale est cause que le pigeon grossegorge male a le jabot un peu plus gros, et le pigeon-messager mâle des caroncules plus développées que ces parties ne le sont chez leurs femelles respectives ; car les éleveurs n'nnt pas soumis à la sélection un sexe plutôt que l'autre, et n'ont jamais eu le désir que ces caractères fussent plus prononcés chez le male que chez la femelle ; c'est cependant ce qui est arrivé chez ces deux races.

Il faudrait suivre le même procédé et surmonter les mêmes difficultés pour arriver à créer une race où les femelles seules présenteraient une nouvelle couleur.

Enfin, l'éleveur pourrait vouloir créer une race chez laquelle les deux sexes différeraient l'un da l'autre, et tous deux de l'espèce parente. Dans ce cas la difficulté serait extrême, à moins que les variations successives ne fussent dès l'abord sexuellement limitées des deux cotés. Les races galinnes nous fournissent un exemple de ce fait; ainsi, les deux sexes de la race pointillée de Hambourg diffèrent beaucoup l'un de l'autre, outre qu'ils diffèrent considérablement aussi des deux sexes de l'espèce originelle, le gallus bankiva; une sélection continue pe. met actuellement de conserver chez chacun d'eux le nouveau type parfait, ce qui serait impossible si la transmission de leurs caractères distinctifs ne se trouvait pas limitée. La race espagnole offre un exemple plus curieux encore ; le maleporte une énorme crête, mais il paralt que quelques-unes des variations successives, dont elle représente l'accumulation totale, ont été transmises aux femelles qui sont pourvues d'une crête beaucoup plus considérable que celle de la poule de l'espèce parente. Or la crete de la femelle diffère de celle du mâle en ce qu'elle est sujette à s'incliner; le fantaisie des éleveurs ayant récemment exigé qu'il en fât désormais ainsi, on a promptement obtenu ce résultàt. Cette inclinaison particulière de la crête doit etre sexuellement limitée dans sa transmission, car, autrement, elle serait un obstacle a ce que celle du mâle restat parfaitement droite, ce qui, pour les éleveurs, constitue la suprême élégance du coq espagnol. D'autre part, il faut que la rectitude de la crete chez le mâle soit aussi un caractère limité à ce sexe, car autrement il s'opposerait à ce qu'elle s'inclinat chez la poule.

Les exumples précédents nous prouvent que, en admettant qu'on puisse disposer d'un temps presque infini, il serait extremement difficile, peut-être même impossible, de transformer, au moyen de la sélection, une forme de transmission en une autre. Par conséquent, sans preuves absolues dans chaque cas, je serais peu disposé
à admettre que ce changement ait été réalisê chez les espèces naturelles. D'autre part, à l'aide de variations successives, dont la transmission serait limitée dès le principe par le sexe, on amènerait facilement un oiseau malle à différer complètement de la femelle au point de vue de la couleur ou de tout autre caractere ; la femelle, au contraire, resterait intacte ou ne subirait que quelques modifications insignifiantes, ou enfin se modifierait spécialement en vue de sa propre protection.

Les vives couleurs sont utiles aux males constamment rivaux; elles deviennent donc l'objet d'une sélection, qu'elles se transmettent ou non exclusivement au même sexe. Il est, par conséquent, tout naturel que les femelles participent souvent, dans une mesure plus ou moins grande, à l'éclat des males; c'est ce qu'on peut observer chez une foule d'espèces. Si toutes les variations successives se transmettaient également aux deux sexes, on ne pourrait pas distinguer les femelles des males; c'est aussi ce qu'on observe chez beaucoup d'oiseaux. Toutefois, si les couleurs sombres avaient une grande importance pour la sécurité de la femelle pendant l'incubation, comme chez plusieurs espèces terrestres, les femelles exposées à des variations qui tendraient à augmenter ieur éclat, ou qui seraient trop aptes à recevoir du malle, par hérédité, des couleurs beaucoup plus brillantes, disparaitraient tot ou tard. Une modification de la forme de l'hérédité devrait donc éliminer, chez les mâles, la tendance à transmettre indéfiniment leur propre éclat à leur descendance femelle: ce qui, comme le prouvent les exemples que nous venons de citer, est extrêmement difficile. Il est donc probable que la destruction longtemps continuée des femelles plus brillamment colorées, en supposant l'existence d'une égale transmis̈ssion des caractères, amènerait l'amoindrissement ou l'annulation des teintes brillantes chez les mâles, par suite de leurs croisements perpétuels avec des femelles plus sombres. Il serait superflu de chercher à déduire tous les autres résultats possibles; mais je crois devoir rappeler au lecteur que, si des variations tendant à un plus grand éclat et limitées sexuellement se présentaientohoz les femelles en admettant même que ces variations ne leur fussent pas nuisibles, et ne fussent par conséquent pas éliminées, la sélection cependant n'interviendrait pas pour perpétuer ces variations, car le male accepte ordinairement la première femelle venue, sans s'inquiéter de choisir la plus attrayante. Par conséquent, ces variations tendraient à disparaitre et n'auraient pas beaucoup d'influence sur le caractère de la race; ceci contribue à expliquer pourquoi les femelles ont généralement des couleurs moins brillantes que les males.

Nous avons, dans le huitième chapitre, cité de nombreux exemples auxquels nous aurions pu en ajouter beaucoup d'autres, relativement à des variations survenant à divers ages et héréditaires à l'áge correspondant. Nous avons aussi démontré que, les variations qui surgissent à une époque tardive de la vie se transmettent ordinairement aux individus appartenant au meme sexe que ceux chez lesquels ces variations ont primitivement apparu; les variations à un age précoce sont, au contraire, transmissibles aux deux sexes, sanś cependant qu'on puisse ainsi expliquer tous les cas de transmission limitée sexuellement. Nous avons démontré, en outre, que si un oiseau male venait à varier dans le sens d'un plus grand éclat pendant sa jeunesse, cette variation ne constituerait pour lui aucun avantage avant qu'il ait atteint l'age de puberté, et qu'il ait à lutter avec les autres malles ses rivaux. Mais, quand il s'agit d'oiseaux vivant sur le sol, et qui ont ordinairement besoin de la protection que leur assurent les couleurs sombres, des teintes brillantes constitueraient un darger bien plus grand pour les jeunes inexpérimentés que pour les malles adultes. En conséquence, les mâles qui varieraient de façon à revêtir des couleurs brillantes pendant la première jeunesse, courraient le risque d'étre détruits en nombre considérable, et la sélection naturelle se chargerait de les éliminer; les males, au contraire, qui varieraient dans le meme sens, mais au moment de la maturité, pourraient survivre, bien que toujours exposés à quelques dangers additionnels, et, favorisés par la sélection sexuelle, ils tendraient à propager leur type. Il existe souvent un rapport entre la périoced de la variation et la forme de la transmission; il en résulte donc que, si les jeuner males brillants étaient éliminés et les males adultes brillants préférés par les femelles, les mâles seuls pourraient acquérir des couleurs éclatantes et les transmettre exclusivement à leurs descendants mâles. Je ne prétends toutefois pas affirmer que l'influence de l'age sur la forme de la transmission soit la seule cause de la grande différence d'éclat qui existe entre les mâles et les femelles chez beaucoup d'oiseaux.

Il est intéressant de déterminer, quand on se trouve en présence d'une espèce où les males et les femelles diffèrent au point de vue de la couleur, si la sélection sexuelle a modifié les mâles seuls, sans que ce mode d'action ait produit beaucoup d'effet sur les femelles, our zi la sélection naturelle a spécialement modifié les femelles dans un but de sécurité individuelle. Je discuterai donc cette question plus longuement peut-etre que ne le comporte sa valeur intrinsèque; cetto discussion nous permettra d'ailleurs d'examiner quelques points collatéraux curieux.

Avant d'aborder le sujet de la coloration, plus particulièrement au point de vue des conclusions de M. Wallace, il peut être utile de discuter au méme point de vue quelques autres diférences entre les sexes. On a constaté autrefois en Allemagne ${ }^{6}$ l'existence d'une race de volailles dont les poules étaient munies d'ergots; ces poules étaient bonnes pondeuses, mais elles bouleversaient tellement leurs nids avec ces appendices, qu'on était obligé de leur interdire l'incubation de leurs propres œeufs. J'en conclus tout d'abord que la sélection naturelle a arrêté le développement des ergots chez les femelles des gallinacés sauvages, en conséquence des dommages qu'ils faisaient subir au nid. Cela me paraissait d'autant plus probable, que les ergots des ailes, qui ne peuvent nuire pendant l'incubation, sont souvent aussi bien développés chez la femelle que chez le male, quoiqu'ils soient généralement un peu plus forts chez ce dernier. Lorsque le male porte des ergots aux pattes, la femelle en présente presque toujours des traces rudimentaires qui peuvent quelquefois ne consister qu'en une simple écaille, comme chez les espèces de Gallus. On pourrait conclure de ces faits que les femelles ont été primitivement armées d'ergots bien développés, et qu'elles les unt ultérieurement perdus par défaut d'usage ou par suite de l'intervention de la sélection naturelle. Mais, si on admet cette hypothèse, ii devient nécessaire de l'appliquer à une foule d'autres cas, et elle implique que les ancêtres femelles des espèces actuellement armées d'ergots étaient autrefois embarrassés d'un appendice nuisible.

Les femelles de quelques genres et de quelques espèces, comme le Galloperdix, l'Acomus et la paon de Java (P. muticus), possèdent, comme les mâles, des ergots bien développés. Devons-nous conclure de là que, contrairement à leurs alliés les plus proches, les femelles appartenant à ces espèces construisant des nids d'un genre différent et de nature telle qu'ils ne puissent etre endommagés par les ergots, de telle sorte que la suppression de ceux-ci soit devenue inutile? Ou devons-nous supposer que ces femelles ont spécialement besoin d'ergots pour se défendre? Il me semble plus probable que la présence ou l'absence d'ergots chez les femelles résulte de ce que différentes lois d'hérédité ont prévalu, indépendamment de l'intervention de la sélection naturelle. Chez les nombreuses femelles où les ergots existent à l l'état rudimentaire, nous devons conclure que quelques-unes seulement des variations successivas, qui ont amené leur développement chez les malles, se

[^237]sont produites à un age peu avancé, et ont, en conséquence, été transmises aux femelles. Dans les autres cas beaucoup plus rares où les femelles possèdent des ergots bien développés, nous pouvons conclure que toutes les variations successives leur ont été transmises, et qu'elles ont graduellement acquis I'habitude héréditaire de ne pas endommager leurs nids.

Les organes vocaux et les plumes diversement modifiées dans le but de produire des sons, ainsi que l'instinct de s'en servir, diffèrent souvent chez les deux sexes, mais quelquefois aussi ils sont semblables. Peut-on expliquer ces différences par le fait que les males ont acquis ces organes et ces instincts, tandis que les femelles n'en ont pas hérité à cause des dangers auxquels elle se seraient exposées en attirant sur elles l'attention des animaux féroces et des oiseaux de proie? Ceci me parait peu probable, si nous songeons à la foule d'oiseaux qui, pendant le printemps ${ }^{7}$, font avec impunité retentir l'air de leurs voix joyeuses et bruyantes. On pourrait conclure avec plus de certitude que les organes vocaux et instrumentaux n'ont d'utilité spéciale que pour les mâles pendant la saison des amours, et que, par conséquent, la sélection sexuelle et l'usage continu les ont đéveloppés chez ce sexe seul, - la transmission des variations successives et des effets de l'usage se trouvant, dans ce cas, plus ou moins limitée dès le principe à la seule descendance male.

On pourrait signaler de nombreux cas analogues; ainsi, les plumes de la tête, généralement plus longues chez le mâle que chez la femelle, ou qui sont quelquefois égales chez les deux sexes, ou qui font absolument défaut chez les femelles, - ces divers états se rencontrent parfois dans un même groupe d'oiseaux. Il serait difficile, pour expliquer une différence de cette nature entre les males et les femelles, d'invoquer le principe d'un avantage résultant pour la femelle de la possession d'une crête plus petite que celle du male et de soutenir qu'en conséquence la sélection naturelle a déterminé chez elle la réduction ou la suppression complète de la crète. Mais examinons un autre càs : la longueur de la queue. L'allongement que présente cet appendice chez le paon male eût non seulement gêné la femelle pendant t'incubation et lorsqu'elle accompagne ses petits, mais eût encore constitué un danger pour elle. Il n'y a donc

[^238]pas, à priori, la moindre improbabilité que la sélection naturelle soit intervenue pour arrêter chez elle le développement de sa queue. Mais plusieurs faisans femelles, qui, dans leurs nids ouverts, courent au moins autant de dangers que la paonne, ont une queue qui atteint ure longueur considérable. Les femelles aussi bien que les mâles du Menura superba ont une longue queue ; elles construisent un nid à dome, ce qui est une anomalie pour un aussi grand oiseau. Les naturalistes se sont demandé avec étonnement comment la Ménura femelle pouvait couver avec sa queue ; mais on sait maintenant ${ }^{8}$ \& qu'elle pénêtre dans son nid la tête la première, puisqu'elle se retourne en relevant quelquefois sa queue sur son dos, mais le plus souvent en la courbant sur le coté. Aussi avec le temps la queue devient tout à fait oblique et le degré d'obliquité indique assez approximativement le temps pendant lequel l'oiseau a couvé. o Les deux sexes d'un martin-pêcheur australien (Tanysiptera sylvia) ont les rectrices médianes très allongées; la femelle fait son nid dans un trou : aussi, ces plumes, d'après M. R. B. Sharpe, sont-elles toutes froissées pendant l'incubation.

Dans ces deux cas, la grande longueur des rectrices doit, dans une certaine mesure, gèner la femelle ; chez les deux espèces, il est vrai, elles sont, chez la femelle, un peu plus courtes que chez le mâle ; on pourrait done en conclure que l'intervention de la sélection naturelle a empêché leur complet développement. Mais, si le développement de la queue de la paonne n'avait été arrêté qu'au moment où sa longueur devenait encombrante ou dangereuse, elle serait bien plus allongée qu'elle ne l'est réellement, car elle est loin d'avoir, relativement à la grosseur du corps de l'oiseau, la longueur qu'elle atteint chez beaucoup de faisanes, et elle n'est pas plus longue que celle de la dinde. En outre, il faut se rappeler que, si l'on admet que le développement de la queue de la paonne devenue dangereusement longue, a été arrêté par rintervention de la sélection naturelle, il faut admettre aussi que la même cause aurait constamment réagi sur sa descendance male et empêché le paon d'acquérir l'ornement splendide qu'il possède actuellement. Nous pouvons donc conclure que la longueur de la queue du paon et son peu de développement chez la femelle proviennent de ce que les variations qui ont amené le développement de cet appendice chez le mâle ont été, dès l'origine, transmises à la seule descendance male.

Nous sommes amenés à conclure de façon à peu près analogue,

[^239]quand il s'agit de la longueur de la queue chez les diverses espèces de faisans. Chez une d'elles (Crossoptilon auritum), la queue atteint la méme longueur chez les deux sexes, soit quarante ou quarantedeux centimètres; chez le faisan commun, elle atteint une longueur de cinquante' centimètres chez le male et de trente centimètres chez la femelle ; chez le faisan de Scemmerring, elle a quatre-vingt-deux centimètres chez le mâle, et vingt centimètres seulement chez la femelle ; enfin, chez le faisan Reeve, elle atteint quelquefois 1 m .80 chez le mâle, et quarante centimêtres chez la femelle. Ainsi, chez ces différentes espèces, la queue de la femelle varie beaucoup en longueur, indépendamment de celle du male; or, il me semble que ces différences peuvent s'expliquer, avec beaucoup plus de probabilité, par les lois de l'hérédité, c'est-à-dire par le fait que, dès l'origine, les variations successives ont été plus ou moins étroite${ }^{\text {ton }}$ ment limitées dans leur transmission au sexe mâle, que par l'action de la sélection naturelle, qui serait intervenue parce qu'une longue queue aurait été plus ou moins nuisible aux femelles des diverses espèces.

Nous pouvons maintenant aborder l'examen des arguments de M. Wallace relativement à la coloration sexuelle des oiseaux. M. Wallace croit que les brillantes couleurs des mâles, originellement acquises grâce à l'intervention de la sélection sexuelle, se seraient transmises dans tous ou dans presque tous les cas aux femelles, si la sélection naturelle n'était intervenue pour s'opposer à cette transmission. Je dois rappeler au lecteur que nous avons déià signalé divers faits contraires à cette hypothêse, en étudiant les repules, les amphibies, les poissons et les lépidoptères. M. Wallace fait reposer sa théorie principalement, mais non pas exclusivement, comme nous le verrons dans le prochain chapitre, sur le fait suivant ${ }^{9}$: lorsque les deux sexes affectent des couleurs très vives et très voyantes, le nid est conformé de façon à dissimuler l'oiseau pendant l'incubation ; au contraire, lorsqu'il existe un constraste marqué entre les mâles et les femelles, c'est-à-dire que le mâle est brillant et que la femelle est de couleur terne, le nid est ouvert et permet de voir la couveuse. Cette coincidence confirme certainement, dans une certaine mesure, l'hypothèse en vertu de laquelle les femelles qui couvent à découvert ont été spécialement módifiées en vue de leur sécurité. Mais nous allons voir tout à l'heure qu'on peut invoquer une autre explication beaucoup plus

[^240]probable, c'est-à-dire que les femelles voyantes ont acquis l'instinct de construire des nids à dorme beaucoup plus souvent que les femelles affectant des teintes sombres. M. Wallace admet que, comme on pouvait s'y attendre, ces deux règles souffrent quelques exceptions ; mais ces exceptions sont-elles assez nombreuses pour infirmer sérieusement les règles? Telle est la question.
Tout d'abord le duc d'Argyll fait remarquer avec beaucoup de raison qu'un.ennemi ${ }^{10}$, surtout quand cet ennemi est un animal carnassier qui hante les arbres, doit apercevoir plus facilement un grand nid surmonté d'un dôme qu'un nid plus petit et découvert. Nous ne devons pas oublier non plus que, chez beaucoup d'oiseaux qui construisent des nids ouverts, les males comme les femelles couvent les œufs à tour de role et contribuent à la nourriture des jeunes; le Pyranga æsliva ${ }^{11}$ par exemple, un des oiseaux les plus splendides des États-Unis; le mâle est couleur vermillon et la femelle d'un vert clair légèrement brunâtre. Or, si les couleurs vives avaient constitué un grand danger pour les oiseaux posés sur un nid découvert, les males auraient eu, dans ces cas, beaucoup à souffrir. Il pourrait se faire cependant qu'il fut d'une importance telle pour le male d'être brillamment orné afin de pouvoir vaincre ses rivaux que cette circonstance fut plus que suffisante pour compenser le danger additionnel auquel l'expose sa plus grande beauté.
M. Wallace admet que les dicrurus, les orioles et les pittidés femelles, bien que colorées d'une manière voyante, construisent des nids découverts; mais il insiste sur ce fait que les oiseaux du premier groupe sont très belliqueux at capables de se défendre; que ceux du second groupe prennent grand soin de dissimuler leurs nids ouverts, mais ceci n'est pas toujours exact ${ }^{12}$; enfin, que, chez ceux du troisième groupe, les couleurs vives des femelles se trouvent à la partie inférieure de leur corps. Outre ces cas, on doit signaler la grande famille des pigeons, souvent colorés très brillamment et presque toujours d'une manière très voyante, et qui sont, on le sait, très exposés aux attaques des oiseaux de proie; or, les pigeons constituent une exception sérieuse à la règle car ils construisent presque toujours des nids ouverts et exposés. En outre, les oiseaux-mouches appartenant à toutes les espèces construisent des nids découverts, bien que, chez quelques-unes des espèces les

[^241]plus splendides, les males et les femelles soient semblables, et que, dans la grande majorité des cas, quoique moins brillantes que les mâles, les femelles n'en sont pas moins très vivement colorées. On ne saurait non plus prétendre que tous les oiseaux-mouches femelles affectant de vives couleurs échappent à la vue de leurs ennemis parce qu'elles ont des teintes vertes, car il y en a plusieurs qui ont la partie supérieure du plumage rouge, bleu et d'autres couleurs ${ }^{13}$.
M. Wallace fait observer avec beaucoup de raison que la construction des nids dans des cavités ou sous forme de dóme offre aux oiseaux, outre l'avantage de les cacher aux regards, plusieurs autres commodités, telles qu'un abri contre la pluie ou contre le froid, et, dans les pays tropicaux, une protection contre les rayons du soleil ${ }^{14}$; en conséquence, on ne peut guère objecter à l'hypothèse qu'il soutient que beaucoup d'espèces où les individus des deux sexes ne portent que des teintes obscures construisent des nids cachés ${ }^{15}$. Les calaos femelles (Buceros) de l'Inde et de l'Afrique se protègent avec le plus grand soin pendant l'incubation, car elles cimentent avec leurs excréments l'ouverture extérieure de la cavité où la femelle repose sur seo coufs, en n'y ménageant qu'un petit urifice par lequel le mâle dai passe des aliments; elle reste donc captive pendant toute la durée de l'incubation ${ }^{16}$; et, cependant, les calaos femelles n'affectent pas des couleurs plus voyantes que beaucoup d'autres oiseaux de la même taille dont les nids sont à découvert. On peut faire à M . Wallace une objection plus sérieuse, qu'il admet d'ailleurs lui-même: dans quelques groupes où les males affectent des couleurs brillantes et les femelles des teintes sombres, ces dernières couvent cependant dans des nids à dome ; ainsi, par exemple, les grallines d'Australie, les superbes malurides du mème pays, les nectarinées et plusieurs móliphagides australiens ${ }^{47}$.

[^242]Si nous considérons les oiseaux de l'Angleterre, nous voyons qu'il n'existe aucune relation intime et générale entre les couleurs de la femelle et le genre de nid qu'elle construit. Il y en a environ une quarantaine (à part les grandes espèces capables de se défendre) qui nick nt dans les cavités des terrasses, des rochers, des arbres, ou qui construisent des nids à dome. Si nous prenons comme types du ciegré d'apparence qui n'expose pas trop la temelle quand elle couve, les couleurs des femelles du chardonneret, du bouvreuil ou du merle, sur les quarante oiseaux dont nous avons parlé, il n'y en a que douze à peine qu'on puisse considérer comme apparents à un degré dangereux, les vingt-huit autres le sont peu ${ }^{18}$. Il n'existe pas non plus de rapport intime entre une différence bien marquée de couleur, entre les males et les femelles et le genre de nid construit. Ainsi le moineau ordinaire male (Passer domesticus) diffère beaucoup de la femelle; le moineau mâle des arbres (P. montanus) en diffère à peine, ot cependant tous deux construisent des nids bien cachés. ¿es deux sexes du gobe mouche commun (Muscicapa griseola) peuvent à peine se distinguer l'un de l'autre, tandis que ceux du M. luctuos α diffèrent beaucoup; or tous deux font leur nid dans des trous ou le dissimulent avec soin. La femelle du merle (Turdus meru'a) diffère beaucoup, celle du merle à plastron (T. torquatus) moins, et la femelle de la grive commune (T. musicus) presque pas de leurs males respectifs, et toutes construisent des nids ouverts. D'autre part, le merle d'eau (Cinclus aquaticus), qui se rapproche de ces espèces, construit un nid à dome, les sexes différant à peu près autant que dans le T. torquatus. Le grouse noir et le grouse rouge (Tetrao tetrix et T. scoticus) construisent des nids ouverts sur des points également bien cachés, mais les sexes diffèrent beaucoup chez une espèce et très peu chez l'autre.

Malgré les considérations qui précèdent, la lecture du savant

[^243]mémoire de M. Wallace entraine la conviction que, si on considère l'ensemble des oiseaux du monde, la grande majorité des espèces dont les femelles affectent des couleurs brillantes, et dans ce cas les males sont, à peu d'exceptions près, également brillants, construisent des nids cachés pour plus de sécurité. M. Wallace cite ${ }^{19}$ une longue liste des groupes où cette règle s'applique; il nuus suffira de citer ici les groupes suivants qui nous sont les plus familiers; les martins-pêcheurs, les toucans, les trogons, les capitonides, les musophages, les pies et les perroquets. M. Wallace croit que les males de ces divers groupes ont graduellement acquis leurs vives couleurs grâce à l'intervention de la sélection sexuelle et les ont transmises aux femelles; la sélection naturelle ne les a pas éliminées chez ces dernières, par suite de la sécurité que leur assurait déjà le mode de nidification. En vertu de cette théorie, les femelles avaient, avant de revêiir de vives couleurs, adopté un mode particulier pour la construction de leur nid. Il me semble plus probable que, dans la plupart des cas, les femelles, à mesure qu'elles devenaient plus brillantes en revetant graduellement les belles couleurs du male, ont du peu à peu modifier leurs instincts (en supposant qu'elles aient primitivement construits des nids ouverts) et chercher à se protéger davantage en recouvrant leurs nids au moyen d'un coome ou en les dissimulant avec soin. Quiconque a lu attentivement, par exemple, les remarques que fait Audubon sur les différences que présentent les nids d'une même espèce, selon que cette espèce habite le nord ou le sud des ÉtatsUnis ${ }^{20}$, ne peut éprouver aucune difficulté à admettre que les oiseaux ont pu être facilement amenés à modifier la construction de leurs nids, soit par un changement de leurs habitudes dans le sens rigoureux du mot, soit par la sélection naturelle des prétendues variations spontanées de l'instinct.

Cette hypothèse sur les rapports qui existent entre la coloration brillante des oiseaux femelles et le mode de nidification, se trouve confirmée par certains cas analogues qu'on observe dans le désert du Sahara. Là, comme dans la plupart des déserts, la coloration des oiseaux et de beaucoup d'autres animaux s'adapte admirablement aux teintes de la surface environnante. On remarque cependant, d'après le Rev. Tristram, quelques curieuses exceptions à la règle; ainsi le Monticola cyanea male affecte une vive coloration bleue, et

[^244]la femelle au plumage pommelé de brun et de blanc, est presque aussi remarquable que lui; les males et les femelles de deux espèces. de Dromolæa sont noir brillant. La coloratiou de ces trois espèces d'oiseaux ne constitue assurément pas une protection; ils survivent cependant parce qu'ils ont l'habitude, en présence du moindre danger, de se réfugier dans des trous ou dans des crevasses de rochers.
Quant aux groupes d'oiseaux dont nous venons de parler, groupes chez lesquels les femelles affectent de brillantes couleurs et construisent des nids cachés, il n'est pas nécessaire de supposer que l'instinct nidificateur de chaque espèce distincte ait été spécialement modifié ; il suffit d'admettre que les premiers ancêtres de chaque groupe ont été peu à peu conduits à construire des nids cachés ou abrités par un dôme, et ont ensuite transmis cet instinct à leurs descendants modifiés en même temps qu'ils leur transmettaient leurs vives couleurs. Cette conclusion, autant toutefois quion peut s'y fier, présente un vif intérêt, car elle tend à prouver que la sélection sexuelle, jointe à une hérédité śgale ou presque égale chez les deux sexes, a indirectement déterminé le mode de nidification de groupes entiers d'oiseaux. ${ }^{4}$
Chez les groupes mêmes où, d'après M. Wallace, la sélection naturelle n'a pas eliminé les vives couleurs des femelles, parce qu'elles étaient protégées pendant l'incubation, on remarque souvent des différences légères entre les mâles et les femelles, et il arrive parfois que ces différences prennent une importance considérable. Ce fait est significatif, car nous ne pouvons attribuer ces différences de couleur qu'au principe en vertu duquel quelquesunes des variations des males ont été, dès l'abord, limitées dans leur transmission à ce sexe ; car on ne pourrait affirmer que ces différences, surtout lorsqu'elles sont légères, puissent constituer une protection pour les femelles. Ainsi toutes les espéces da groupe splendide des trogons construisent leurs nids dans des trous ; or, si nous examinons, dans l'ouvrage de M. Gould ${ }^{21}$, les figures représentant les individus des deux sexes des vingt-cinq espèces de ce groupe, nous verrons que, sauf une exception, la coloration chez les deux sexes diffère quelquefois un peu, quelquefois beaucoup, et que les males sont toujours plus brillants que les femelles, bien que ces dernières soient déjà fort belles. Toutes les espèces de martins-pécheurs construisent leurs nids dans des trous, et, chez la plupart des espèces, les males et les femelles sont égale-

[^245]ment beaux, ce qui s'accorde avec la règle de M. Wallace; mais chez quelques espèces d'Australie, les couleurs des femelles sont un peu moins vives que celles des malles, et, chez une espèce à magnifiques couleurs, les mâles diffèrent des femelles au pcint qu'on les a d'abord regardés comme spécifiquement distincts ${ }^{22}$. M. R. B. Sharp, qui a étudié ce groupe avec une attention toute particulière, m'a montré quelques espèces américaines (Ceryle) chez lesquelles la poitrine du mâle est rayée de noir. Chez les Carcineutes, la différence entre les sexes est remarquable ; le mâle a la surface supérieure du corps bleu terne rayé de noir, la surface inférieure en partie couleur fauve, il porte en outre beaucoup de rouge sur la tête; la femelle a la surface supérieure du corps brun rougeâtre rayé de noir, et la surface inférieure blanche avec des marques noires. Nous devons signaler la coloration de trois espéces de Dacelo, car elle nous offre la preuve qua le même type de coloration sexuelle caractérise souvent des formes voisines ; chez ces espèces, le male ne diffère de la femelle que par sa queue bleu terne, rayée de noir, tandis que celle de la femelle est brune avec des barres noiratres ; de sorte que, dans ce cas, la couleur de la queue diffère chez les mâles et les femelles de la même manière que la surface supérieure entière du corps chez les Carcineutés.

On peut observer des cas analogues chez les perroquets, qui construisent également leurs nids dans des trous; les males et les femelles de la plupart des espèces affectent des couleurs très brillantes, et il est impossible de les distinguer l'un de l'autre; mais chez un certain nombre d'espèces les mâles affectent des tons plus vifs que les femelles et sont même autrement colorés qu'elles. Ainsi, outre d'autres différences très fortement accusées, toute la partie intérieure du corps de l'Aprosmictus scapulatus male est écarlate, tandis que la gorge et le poitrail de la femelle sont verts, teintés!de rouge; chezl'Euphema splendida, on observe une différence analogue: la face et les rémiges tectrices de la femelle sont, en outre, bleu plus clair que chez le male ${ }^{23}$. Dans la famille des mésanges (Parinæ), qui construisent des nids eachés, la femelle de notre espèce bleue commune (Parus cæruleus) est «beaucoup moins vivement colorée que le male, $>$ et on observe une différence encore plus considérable chez la superbe mésange jaune de l'Inde ${ }^{\boldsymbol{\mu}}$.

[^246]Dans le groupe des pics ${ }^{25}$, les individus des deux sexes se ressemblent généralement beaucoup ; mais, chez le Megapicus validus, toutes les parties de la tête, du cou et du poitrail, qui sont cramoisies chez le male, sont brun pale chez la femelle. La tete des males chez plusieurs pics affecte une teinte écarlate brillant, tandis que celle de la femerle reste terne ; cette différence m'a conduit à penser que cette couleur si voyante devait constituer un grand danger pour la femelle quand elle mettait la tete hors du trou renfermant, son nid, et qu'en conséquence, conformément à l'opinion de M. Wallace, elle avait été éliminée chez elle. Les observations de Malherbe sur l'Indopicus carlotla confirment cette opinion ; selon lui, les jeunes femelles ont, comme les jeunes males, des parties écarlates sur la tête, mais cette couleur disparaft chez la femelle adulte, tandis qu'elle augmente chez le male à mesure qu'il vieillit. Les considérations suivantes rendent cependant cette explication très douteuse : le male prend une grande part à l'incubation ${ }^{26}$, il serait donc, dans ce cas, aussi exposé au danger que la femelle; les individus des deux sexes, chez beaucoup d'espèces, ont la tête colorée également d'un vif écarlate : chez d'autres, la différence de nuance entre les males et les femelles est tellement insensible, qu'il n'en peut résulter aucune différence appréciable quant au danger couru; et enfin la coloration de la tête chez les individus des deux sexes diffère souvent un peu sous d'autres rapports.
Les exemples que nous avons cités relativement aux différences légères et graduelles de coloration que l'on observe entre les males et les femelles de groupes chez lesquels, en règle générale, les sexes se ressemblent, se rapportent tous à des espèces qui construisent des nids cachés ou recouverts d'un dome. On peut toutefois observer des gradations semblables dans des groupes où, d'ordinaire, les sexes se ressemblent, mais qui construisent des nids ouverts. De même que j'ai cité ci-dessus les perroquets australiens, je peux signaler, sans entrer dans aucun détail, les pigeons australiens ${ }^{\mathbf{2 7}}$. Il faut noter avee soin que, dans tous ces cas, les légères différences que présente le plumage des males et des femelies affectent la méme nature générale que celles qui sont accidentellement plus tranchées. Les martins-pécheurs chez lesquels la queue seule, ou toute la surface supérieure du plumage, diffère de la même manière chez les individus des deux sexes, nous offrent un excellent

[^247]exemple de ce fait. On observe des cas semblables chez les perroquets et chez les pigeons. Les différences entre la coloration du mâle et de la femelle d'une même espèce affectent aussi la même nature générale cye les différences de couleur existant antre les espèces distinctós du même groupe. En effet, lorsque dans un groupe, où les sexes se ressemblent ordinairement, le male diffère beaucoup de la femelle, son type de coloration n'est pas ertièrement nouveau. Nous pouvons donc en conclure que, dans un même groupe, les couleurs spéciales des individus des deux sexes, quand elles sont semblables, ainsi que celles du mâle, quand il diffère peu ou beaucoup de la femelle, ont été, dans la plupart des cas, déterminées par une même cause générale: la sélection sexuelle.

Ainsi que nous l'avons déjà fait remarquer, il n'est guère probable que de légères différences de coloration entre les individus des deux sexes puissent avoir aucune utilité comme moyen de sécurité pour la femelle. Admettons to atefois qu'elles en aient une, on pourrait les regarder alors cormme des cas de transition; mais nous n'avons aucune raison de croire qu'un grand nombre d'espèces soient, à un moment quelconque, en voie de changement. Nous ne pouvons donc guère admettre que les nombreuses femelles qui, au point de vue de la coloration, diffèrent très peu du male, soient actuellement toutes en voie de devenir plus sombres pour s'assurer une plus grande sécurité. Si nous considérons même des différences sexuelles un peu plus prononcées, est-il probable, par exemple, que la lente action de la sélection naturelle ait agi sur la tete du pinson femelle, du poitrail écarlate du bouvreuil femelle, sur la coloration verte du verdier femelle, sur la huppe du roitelet huppé femelle, afin de rendre ces parties moins brillaztes pour assurer à loiseau une plus grande sécurité? Je ne puis le croire, et je l'admets encore moins pour les légères différences existant entre les males et les femelles des oiseaux qui construisent des nids cachés. D'autre part, les différences de coloration entre les individus des deux sexes, qu'elles soient grandes ou petites, peuvent s'expliquer dans une large mesure, par le principe que des variations successives, provoquées chez les mâles par la sélection sexuelle, ont été, dès l'origine, plus ou moins limitées dans leur transmission aux femelles. Quiconque a étudié les lois de l'hérédité, ne doit pas s'étonner de voir le degré de limitation différer dans les diverses espèces d'un même groupe, car ces lois prt une complexité telle que, dans notre ignorance, elles nous paraissent capricieuses dans leurs manifestations ${ }^{28}$.
28. Voir les remarques daus mon ouvrage de la Variation des Animaux, etc.,

Autant que j'ai pu m'en assurer, il existe très peu de groupes d'oiseaux, contenant un nombre considérable d'espèces, chez lesquels les individus males et femelles de toutes les espèces affectent des couleurs brillantes et se ressemblent absolument; cependant M. Sclater affirme que les musophages semblent être dans ce cas. Je ne crois pas non plus qu'il existe aucun groupe considérable chez lequel les males et les femelles de toutes les espèces diffèrent beaucoup au point de vue de la coloration : M. Wallace affirme que Contingidés de l'Amérique du Sud en offrent un des meilleurs exemples; cependant, chez quelques espèces où le male a la gorgo rouge vif, celle de la femelle présente aussi un peu de rouge, et les femelles des autres espèces portent des traces du vert et des autres couleurs particulières aux males. Néanmoins nous trouvons dans divers groupes un rapprochement vers une similitude ou une dissemblance sexuelle presque absolue, ce qui est un peu étonnant d'après ce que nous venons de dire sur la nature variáble de l'hérédité. Mais il n'y a rien de surprenant à ce que les mêmes lois puissent largement prévaloir chez des animaux voisins. La volaille domestique a produit de nombreuses races et sous-races, où le plumage des individus mâles et femelles diffère si généralement, qu'on a regardé comme un fait remarquable les cas où, chez certaines sous-races, il est semblable chez les deux sexes. D'autre part le pigeon domestique a aussi produit un nombre très considérable de races et de sous-races, mais chez lesquelles, à de rares exceptions près, les deux sexes sont identiquement semblables. En conséquence, si on venait à réduire à l'état domestique et à faire varier d'autres espèces de Gallus et de Colomba, il ne serait pas téméraire de prédire que les mêmes règles générales de similitude et de dissemblance sexuelles, dépendant de la forme de la transmission, se représenteraient dans les deux cas. De même, une forme quelconque de transmission a généralement prévalu à l'état de nature dans les mémes groupes, bien qu'on rencontre des exceptions bien marquées à cette règle. Dans une même famille, ou dans un même genre, les individus des deux sexes peuvent se ressembler absolument ou être différents sous le rapport de la couleur. Nous avons déjà cité des exemples se rapportant aux mêmes genres, tels que les moineaux, les gobe-mouches, les grives et les tétras. Dans la famille des faisans, les males et les femelles de presque toutes les espèces sont étonnamment dissemblables, mais if se, ressemblent absolument chez le Crossopliton auritum. Chez deux espèces de Chloëphaga, un genre d'oies, les males ne peuvent se distinguer des femelles que par leur taille ; tandis que, chez deux autres, les
individus des deux sexes sont assez dissemblables pour etre facilement pris pour des espèces distinctes ${ }^{29}$.

Les lois de-I'hérédité peuvent séules expliquer les cas suivants, dans lesquels la femelle acquiert, à un âge avancé, certains caractères qai sont propres au mâle, et arrive ultérieurement à lai ressemblê d'une manière plus ou moins complète, Ici, on ne peut guère admettre qu'une nécessité de protection ait joué un role. Le plumage des femelles de l'Oriolus melanocephalus et de quelques espèces voisines, arrivées à l'âge de la reproduction, différe beaucoup, d'après M. Blyth, de celui des mâles adultes; mais ces différences, après la seconde et la troisième mue, se réduisent à une légère teinte verdatre du bec. Chez les butors nains (Ardetta), d'après la même autorité, «le mâle revêt sa livrée đéfinitive à la première mue, la femelle à la troisième ou à la quatrième seulement; elle a, dans l'intervalle, un plumage intermédiaire qu'elle échange ultérieurement pour le plumage du male. \$Ainsi encore le Falco peregrinus femelle revêt son plumage bleu plus lentement que le male. M. Swinhoe assure que chez une espêce de Drongo (Dicrurus macrocerrus) le male, au sortir du nid, perd son plumage brun moelleux et devient d'un noir verdatre uniformément lustré ; tandis que la femelle conserve pendant longtemps encore les taches et les stries blanches de ses plumes axillaires et ne revêt complêtement La couleur noire et uniforme du mâle qu'au bout de trois ans. Le même observateur fait remarquer que la spatule (Platdlea) femelle de la Chine ressemble, au printemps de sa seconde année, au malle de la première, et qu'elle paraît ne revêtir qu'au troisième prin̄ temps le plumage adulte que le malle possède déjà à un âge beaucoup plus précoce. La femelle du Bombycilla carolinensis differre três peu du male, mais les appendices qui ornent ses rémiges et qui ressemblent à des boules de cire à cacheter rouge ${ }^{30}$ ne se développent pas aussi précocement que chez le male. La partiè sưpérieure du bec d'un perroquet indien male (Patæornisjduanictis) est, dès sa première jeunesse, rouge corail ; mais, chez là femeile, ainsi que M. Blyth l'a observé chez des oiseaux sauvages et en captivité, elle est d'abord noire, et ne devient rouge qu'au bout d'un an, áge auquel les males et les femelles se ressemblent sous tous les rapports. Chez le dindon sauvage, les individus des deux sexes finissent par porter une touffe de soies sur la poitrine, qui, chez
29. Ibis, vol. VI, 1864, p. 122.
30. Quasd le malle courtise la femelle, il fait vibrer ces ornements et les étale avec soln sur ses ailes déployées. Voir à ce sujet A. Leith Adams, Field and forest Ratnbles, 1873, p. 153.
tes mâles agés de deux ans, a déjà une longueur d'environ dix centimètres, et se voit à peine chez la femelle; mais elle se développe chez cette dernière et atteint dix ou douze centimètres de longueur, lorsqu'elle entre dans sa quatriême année ${ }^{31}$.
11 nẹ faut pas confondre ces cas avec ceux où des femelles malades ou vieillies revêtent des caractères masculins, ou avec ceux où des femelles, parfaitement fécondes d'ailleurs, acquièrent pendant leur jeunesse, par variation ou par quelque cause inconnue, les caractères propres au male ${ }^{32}$. Mais tous ces cas ont ceci de commun quils dépendent, dans l'hypothèse de la pangenèse, de gemmules dérivées de toutes les parties du male, gemmules présentes, bien qu'à l'état latent, chez la femelle, et qui ne se développent chez elle que par suite de quelque léger changement apporté aux affinités électives de ses tissus constituants.

Ajoutons quelques mots sur les rapports qui existent entre la saison de l'année et les modifications de plumage. Les raisons que nous avons déjà indiquées nous permettent de conclure que les plumes élégantes, les pennes longues et pendantes, les huppes et les aigrettes des hérons et de beaucoup d'autres oiseaux, qui se développent et se conservent seulement pendant l'été, ne servent exclusivement qu'à des usages décoratifs ut nuptiaux, bien que communs aux deux sexes. La femelle devient ainsi, pendant la période de l'incubation, plus voyante qu'elle ne l'est pendant l'hiver; mais des oiseaux comme les hérons sont à même de se défendre. Toutefois, comme ces plumes deviennent probablement gênantes et certainement inutiles pendant l'hiver, il est possible que la sélection naturelle ait provoqué une mue bisannuelle dans le but de débarrasser ces oiseaux d'ornements incommodes pendant la mauvaise saison. Mais cette hypothèse ne peut s'étendre aux nombreux échassiers chez lesquels les plumages d'êté et d'hiver diffèrent très peu au point de vue de la coloration. Chez les espèces sans défense, espèces chez lesquelles les individus des deux sexes, ou les

[^248]males seuls, deviennent très brillants pendant la saison des amours, - ou lorsque les mâles acquièrent à cette occasion des rectrices ou des rémiges de nature, par leur longueur, à empêcher ou à retarder leur voı, comme chez les Cosmetornis et chez les Vidua, il parait, au premier abord, très probable que la seconde mue a été acquise dans le but spécial de dépouiller ces ornements. Nous devons toutefois rappeler que beaucoup d'oiseaux, tels que les oiseaux de paradis, le faisan argus et le paon, ne dépouillent pas leurs plumes ornementales pendant l'hiver; or, il n'est guère possible d'admettre qu'il y ait dans la constitution de ces oiseaux, au moins chez les gallinacés, quelque chose qui rende une double mue impossible, car le ptarmigan en subit trois pendant l'année ${ }^{23}$. Nous devons donc considérer comme douteuse la question de savoir si les espèces nombreuses qui perdent en muant leurs plumes d'ornement et leurs belles couleurs, pendant l'hiver, ont acquis cette habitude en raison de l'incommodité ou du danger qui aurait pu autrement en résulter pour elles.

Je conclus, par conséquent, que l'habitude de la mue bisannuelle a été d'abord acquise, dans la plupart des cas ou dans tous, dans un but déterminé, peut-être pour revêtir une toison d'hiver plus chaude; et que les variations survenant pendant l'été, accumulées par la sélection sexuelle, ont été transmises à la descendance à la même époque de l'année. Les individus des deux sexes ou les mâles seuls ont hérité de ces variations, suivant la forme de l'hérédité prépondérante chez chaque espèce particulière. Cette hypothèse me semble très probable; il est difficile de croire en effet que les espèces aient primitivement eu une tendance à conserver pendant l'hiver leur brillant plumage, et que la sélection naturelle soit intervenue pour les en débarrasser à cause des dangers et des inconvénients que pourrait amener la conservation de ce plumage.
J'ai cherché à démontrer dans ce chapitre qu'on ne peut guère se fier aux arguments avancés en faveur de la théorie qui veut que les armes, les couleurs éclatantes et les ornements de divers genres, appartiennent actuellement aux males seuls, parce que la sélection naturelle est intervenue pour convertir une tendance à l'égale transmission des caractères au deux sexes, en une tendance à la transmission limitée au sexe male seul. Il est douteux aussi que la coloration de beaucoup d'oiseaux femelles soit due à la conservation comme moyen de sécurité, de variations limitées, dès
83. Gould, Birds of Great Britain.
l'abord, dans leur transmission aux individus de ce sexe. Je crois qu'il convient, cependant, de renvoyer toute discussion ultérieure sur ce sujet, jusqu'à ce que j'aie traité, dans le chapitre suivant, des différences qui existent entre le plumage des jeunes oiseaux et celui des oiseaux adultes.

CHAPITRE XVI

oiseaux (fin).

Rapports entre le plumage des jeunes et les caracteres qu'il affecte chez les individus adultes des deux sexes. - Six classes de cas. - Différences sexuelles entre les mallé d'espècés très voisinés ou représéntatives, - Acquisition des caractères du mâle par la femelle. - Plumage des jeunes dans ses rapports avec le plumage d'été et le plumage d'hiver des adultes. - Augmentation de la beauté des oiseaux. Colorations protectrices. - Oiseaux colorés d'une manière très apparente. - Les oiseaux aiment la nouveauté. - Résumé des quatre chapitres sur les oiseaux

Nous avons maintenant à considérer la transmission des caractères, limitée par Page, dans ses rapports avec la sélection sexuelle. Nous ne discuterons ici ni le bien fondé ni l'importance du principe de l'hérédité aux áges corespondants; c'est un sujet sur lequel nous avons déjà assez insisté. Avant d'exposer les diverses règles assez compliquées, ou les catégories dans lesquelles, autant que je le comprends, on peut faire rentrer toutes les différences qui existent entre le plumage des jeunes et celui des adultes, je crois devoir faire quelques remarques préliminaires.

Lorsque, chez des animaux, quels qu'ils soient, les jeunes affectent une coloration différenté de celle des adultes, sans qu'elle ait pour eux, autant que nous en pouvons juger, aucune utilité spéciale, on peut généralement attribuer cette coloration, de même que diverses conformations embryonnaires, à ce que le jeüne animal a conservé lé caractère d'un ancêtre primitif. Cette hypothése, il est yrai, n'acquiert un grand degré de probabilité que dans le cas où les jeune a appartenant à plusieurs espèces se ressemblent beaucoup et ressemblent également aux ádultes appartenant à d'autres espéces du meme groupe; on peut conclure en effet de l'existence de ces derniers qu'un pareil état était autrefois possible. Les jeunes lions et les jeunes pumas portent des raies ou des rangées de taches faiblement indiquées, et les membres de beaucoup d'espèces
voisines, jeunes ou adultes, présentent des marques semblables; en conséquence, un naturaliste qui croit á l'évolution graduelle des espèces peut admettre sans la moindre hésitation que l'ancêtre du lion et du puma était un animal rayé, les jeunes ayant, comme les petits chats noirs, conservé la trace des raies qui ont absolument dispartu chez les adultes. Chez beaucoup d'espèces de cerfs les adultes n'ont aucune tache, tandis que les jeunes sont couverts de taches blanches; le même fait se présente également chez les adultes de certaines espéces. Dans toute la famille des porcs (Snidés) et chez quelques autres animaux qui en sont assez éloignés, tels que le tapir, les jeunes sont marqués de bandes longitudinales foncées; mais nous nous trourons là en présence d'un caractère qui doit, selon toute apparence, provenir de quelque ancétre éteint, et qui ne se conserve plus que chez les jeunes. Dans tous les cas que nous venons de citer la coloration des adultes s'est modifiée dans le cours des temps, les jeuhes ont cependant peu changé, et cela en vertu du principe de l'hérédité aux âges correspondants.

Ce même principe s'applique à beaucoup d'oiseaux appartenant a divers groupes: les jeunes se ressemblent beaucoup, tout en différant considérablement de leurs parents adultes respectifs. Les jeunes, chez presque tous les gallinacés et chez certaines espèces ayant avec eux une parenté éloignée, comme les autruches, portent des stries longitudinales alors qu'ils sont encore couverts de duvet; mais ce caractère rappelle un état de choses assez reculé pour que nous n'ayons pas à nous en occuper. Les jeunes becs croisés (Loxia) ont d'abord le bec droit comme les autres pinsons, et leur jeune plumage strié ressemble à celui de la linotte adulte et du tarin femelle, ainsi qu'à celuí des jeunes chardonnerets, des verdiers et de quelques autres espéces voisines. Les jeunes de plusieurs espèces de bruants (Emberiza) se ressemblent beaucoup, et ressemblent aussi aux adultes de l'espèce commune (E. miliaria). Dans presque tout le groupe des grives, les jeunes ont la poitrine tachetée, - caractère que beaucoup d'espèces conservent pendant toute leur vie, - tandis que d'autres, comme le Turdus migratorius, le perdent entièrement. Plusieurs grives ont les plumes du dos pommelées avant la premiére mue, caractère permanent chez certaines espèces orientales. Les jeunes de beaucoup d'espèces de pies-grièchća Lanius), de quelques pics et d'un pigeon indien (Chalcophaps indicus), portent à la surface inférieure du corps des stries transversales, marques qu'on retrouve chez certaines espèces et chez quelques genres voisins à l'état adulte. Chez quelques coucous indiens alliés très brillants (Chrysococcyx), on ne peut distin-
guer les jeunes les uns des autres, bien-que les espèces adultes different considérablement entre elles au point de vue de la coloration. Les jeunes d'une oie indienne (Sarkidiornis melanonotus) ressemblent de près, au point de vue du plumage, aux individus adultes d'un genre voisin, celui des Dendrocygna ${ }^{2}$. Nous citerons plus loin quelques faits analogues relatifs à certains hérons. Les jeunes tétras noirs (Tetrao tetrix) ressemblent aux individus jeunes et adultes d'autres espèces, au groupe rouge (T. scoticus) par exemple. Enfin, M. Blyth, qui s'est beaucoup occupé de cette question, a fait remarquer, avec beaucoup de justesse, que les affinités naturelles de beaucoup d'espèces se manifestent très clairement dans leur jeune plumage; or, comme les affinités vraies de tous les êtres organisés dépendent de leur descendance d'un ancêtre commun, cette remarque vient confirmer l'hypothèse que le plumage du jeune âge nous indique approximativement l'état ancien de l'espèce.
Un grand nombre de jeunes oiseaux de divers ordres nous fournissent ainsi l'occasion d'entrevoir, pour ainsi dire, le plumage de leurs ancêtres reculés, mais il en est seaucoup d'autres, dont la coloration brillante ou terne ressemble beaucoup à celle de leurs parents. Dans ce cas, les jeunes des diverses espèces ne peuvent ni se ressembler plus que ne le font les parents, ni offrir de fortes ressemblances avec des formes voisines adultes. Ils nous fournissent donc très peu de renseignements sur le plumage de leurs ancêtres; cependant, lorsque les jeunes et les adultes affectent, dans un groupe entier d'espèces, une coloration semblable, on est autorisé à conclure que cette coloration était aussi celle de leurs ancetres.
Nous pouvons maintenant examiner les catégories dans lesquelles on peut grouper les différences et les ressemblances qui existent entre le plumage des jeunes oiscaux et celui des adultes, entre celui des individus des deux sexes ou celui d'un sexe seul. Cuvier est le premier qui ait formulé des règles à cet égard; mais il convient, par suite des progrès de nos connaissances, de leur faire subir quelques modifications et quelques amplifications. C'est, autant que l'extrême complication du sujet peut le permettre, ce que j'ai cherchéa à faire d'après des documents puisés à des sources diverses ;

1. Pour les grives, laniers et pics, voir Blyth, dans Charlesworth, Mag. of Nat. Hist., vol. I, 1837, p. 304 ; et dans une note de sa traduction du Regne antmal de Cuvier, p. 159. Je donne d'après M. Blyth le cas du Loxia. Voir Audubon, sur les grives, Ornith. Biogr., vol. II, p. 195. Sur les Chrysococcyx et Chatcophaps, Blyth cite dans Jerdon, Birds of India, vol. III, p. 485. Sur io Sarkidiornis, Blyth, 1bis, 1867, p. 176.
mais un travail complet à cet égard, fait par un ornithologiste compétent, serait très nécesaire. Pour vérifier jusqu'à quel point chaque règle peut s'appliquer, j'ai relevé en tableau les faits cités dans quatre grands ouvrages : Macgillivray sur les oiseaux d'Angleterre; Audubon sur ceux de l'Amérique de Nord; Jerdon sur ceux de l'Inde, et Gould sur ceux de l'Australie. Il est indispensable de faire remarquer que, premièrement, les différentes catégories tendent à se confondre l'une avec l'autre; et secondement, que, lorsqu'on dit que les jeunes ressemblent à leurs parents, on n'entend pas par là une similitude absolue, car les couleurs des jeunes sont presque toujours moins vives, les plumes sont plus douces et affectent souvent une forme différente.

Ralges ou catégoriks

I. Lorsque le male adulte est plus beau ou plus brillant que la femelle adulte, le premier plumage des jeunes des deux sexes ressemble beaucoup à celui de la femelle adulte, comme chez la volaille commune et chez le paon; et, s'ils ont quelque ressemblance avec le male, ce qui arrive parfois, les jeunes ressemblent beaucoup plus à la femelle adulte qu'au malle adulte.
II. Lorsque la femelle adulte est plus brillante que le male adulte, cas rare, mais qui cependant se présente quelquefois, les: jeures des deux sexes ressemblent au male adulte.
III. Lorsque le male adulte ressemble à la femelle adulte, les jeunes des deux sexes ont un premier plumage spécial qui leur est propre, comme chez le rouge-gorge.
IV. Lorsque le male adulte ressemble à la femelle adulte, le promier plumage des jeunes des deux sexes ressemble à celui des adulles; le martin-pêcheur, beaucoup de perroquets. le corbeau, les becs-fins, par exemple.
V. Lorsque les adultes des deux sexes ont un plumage distinct pour l'hiver et un autre pour l'été, que le plumage du male diffère ou non de celui de la femelle, les jeunes ressemblent aux adultes des deux sexes dans leur costume d'hiver, et beaucoup plus rarement dans leur costume d'été; ou ils ressemblent aux femelles seules ; ou ils peuvent avoir un caractère intermédiaire; ou bien encore, ils peuvent différer considérablement des adultes dans leurs deux plumages de saison.
VI. Dans quelques cas fort rares, le premier plumage áes jeunes diffère suivant le sexe; les jeunes mâles ressemblent plus ou moins
étroitement aux males adultes, les jeunes femelles ressemblent, de leur coté, plus ou moing étroitement aux femelles adultes.

Catégorie I. - Dans cette catégorie, les jeunes des deux sexes ressemblent plu® ou moins étroitement à la femelle adulte, tandis que le mâle adulke diffère souvent de celle-ci de la manière la plus tranchée. Nous pourrions citer d'innombrables exemples à l'appui, exemples tirés de tous les ordres; il suffira de rappeler le faisan commun, le canard et le moineau. Les cas de cette classe se confondent souvent avec les autres. Ainsi, les individus adultes des deux sexes diffèrent parfois si peu les uns des autres et les jeunes différent si peu des adultes, qu'on se prend à douter si ces cas doivent rentrer dans la présente classe ou se placer dans la troisième ou dans la quatrième. Parfois aussi, les jeunes des deux sexes, au lieu d'être tout à fait semblables, diffèrent légèrement les uns des autres, comme dans la sixième classe. Les cas de transition sont toutefois peu nombreux, tout au moins ne sont-ils pas ausisi prononcés que ceux qui appartiennent rigoureusement à la présente catégorie.
La force de la présente loi se manifeste admirablement dans les groupes où, en règle générale, les individus adultes des deux sexes et les jeunes sont tous pareils; car, lorsque dans ces groupes le male diffère de la femelle, comme chez certains perroquets, chez les martins-pécheurs, chez les pigeons, etc., les jeunes des deux sexes ressemblent à la femelle adulte ${ }^{2}$. Le même fait se présente encore plus évident dans certains cas anormaux ; ainsi, le male d'un oiseau-mouche, Heliothrix auriculata, diffère notablement de la femellé par une splendide collerette et par de belles huppes auriculaires ; mais la femelle est remarquable par sa queue beaucoup plus longue que celle du mâle; or, les jeunes des deux sexes ressemblent, sous tous les rapports (la poitrine tachetée de bronze exceptée), y compris la longueur de la queue, à la femelle adulte; il en résuite une circonstance inusitée ${ }^{3}$: à mesure que le male
2. Voir par exemple ce que dit Gould (Handb, of the Birds of Australia, I, p. 138) du Cyanalcyon (un martin-pécheur) dont le male jeune, bien que ressemblant à la femelle adulte, est moins brillant qu'elle. Chez quelques espèces de Dacelo, les males ont la queue bleue, et les femelles la queue brune; of Mr. R. B. Sharp m'apprend que la queue du jeune D. Gaudichaudi est d'abord brune. M. Gould (o. c., II, p. 14, 20, 37) déerit les sexes et les jeunes de certains eacatois poirs et du roi Lory, chez lesquels la méme règle s'observe. Jerdon aussi (Birds of India, I, 260) l'a constalée chez le Palæornis rosa, où les jeunes ressemblent plus à la femelle qu'au male. Sur les deux seses et les leunes de la Cotumba passerina, voir Audubon (Ornith. Biogr., II, p. 475).
son introd. to Trochilide, 1861, p. 120 .
approche de l'age adulte, sa queue se raccourcit. Le plumage du grand harle male (Mergus merganser) est plus brill imment coloré que celui de la femelle, et ses rémiges scapulaires et secondaires sont plus longues que chez cette dernière ; mais, contrairement à tout ce qui existe à ma connaissance chez d'autres oiseaux, la huppe du mâle adulte, quoique plus large que celle de la femelle, est beaucoup plus courte, car elle n'a guère que 3 centimètres de longueur, alors que celle de la femelle en a sept ou huit. Les jeunes des deux sexes ressemblent, sous tous les rapports, à la femelle adulte, de sorte que leurs huppes sont réellement plus longues, mais plus étroites que chez le male adulte ${ }^{4}$.

Lorsque les jeunes et les femelles se ressemblent étroitement et diffèrent tous deux du mâle, il est tout naturel de conclure que le male seul a été modifié. Dans des cas anormaux même de l'Heliothrix et du Mergus, il est probable que les males et les femelles adultes de la première espèce étaient primitivement pourvus d'une queue allongée, et ceux de la seconde, d'une huppe également grande, caractères que quelque cause inconnue a fait partiellement perdre aux males adultes, et qu'ils transmettent, dans leur état amoindri, à leur descendance mâle seule, lorsqu'elle atteint l'agge adulte correspondant. M. Blyth ${ }^{5}$ cite quelques faits remarquables relatifs aux espèces alliées qui se représentent les unes les autres dans des pays différents ; ces faits viennent à l'appui de l'hypothèse que, dans la catégorie qui nous occupe, le male seul a été modifié quand il s'agit toutefois des différences qu'on observe entre lui, la femelle et les jeunes. En effet, les males adultes de plusieurs de ces espèces représentatives ont éprouvé quelques modifications, ce qui permet de distinguer l'un de l'autre les males appartenant à deux de ces espèces, tandis que les femelles of les jeunes restent absolument somblables; il est donc évident que ces derniers n'ont subi aucune modification. On peut observer ces faits chez quelques traquets indiens (Thamnobia), chez quelques Nectarinidés (Nectarinia), chez les pies-grièches (Tephrodornis), chez certains martinspêcheurs (Tanysiptera), chez les faisans Kallij (Gallophasis) et chez les perdrix des arbres (Arboricola).
Les oiseaux qui revètent un plumage distinct pendant l'été et pendant l'hiver à peu près semblable chez les males et les femelles
4. Macgillivray, Hist. Brit. Birds, V, p. 207-214.
5. Voir son remarquable travail dans Journal of the Asiatic Soo. of Bengal, XIX, 1850, D. 223: Jerdon, Birds of India, I, Introduction, p. xxix. Quant au Tanysiplera, M. Blyth tient du prof. Schlegel qu'on peut y distinguer plusieurs races, simplement en comparant les males adultes.
nous fournissent un exemple analogue ; on peut facilement, en effet, distinguer les unes des autres certaines espèces très voisines, alors qu'elles portent leur plumage nuptial ou plumage d'été, mais il est impossible de les reconnaitre quand elles revêtent laur plumage d'hiver, ou qu'elles portent leur premier plumage. On pourrait citer comme exemple quelques hoche-queues indiennes (Motacilla) très voisines. M. Swinhoe ${ }^{6}$ affirme que trois espèces de Ardeola, genre de hérons, qui se représentent sur des continents séparés, sont * complètement différentes * lorsqu'elles portent leurs plumes d'été, mais qu'il est presque impossible de les distinguer en hiver. Le premier plumage des jeunes de ces trois espèces ressemble beaucoup à celui que les adultes revêtent pendant l'hiver. Le cas est d'autant plus intéressant qu'il existe deux autres espèces d' Ardeola chez lesquelles les individus des deux sexes conservent, hiver comme été, un plumage à peu près semblable à celui que les trois espèces précédentes portent pendant l'hiver et le jeune âge; or ce plumage, commun à plusieurs espèces distinctes à différents ages et pendant différentes saisons, nous indique probablement quelle était la coloration de l'ancêtre du genre. Dans tous ces cas' le plumage nuptial, probablement acquis dans l'origine par les males pendant la saison des amours, et transmis à la saison correspondante aux adultes des deux sexes, est celui qui a subi des modifications, tandis quis le plumage d'hiver et celui du jeune age n'en ont subi aucune.

On se demandera, naturellement, comment il se fait que, dans ces derniers cas, le plumage d'hiver des deux sexes, et dans les cas précédents celui des femelles adultes, ainsi que le premier plumage des jeunes, n'aient subi aucune modification? Les espèces représentatives habitant des pays différents ont du presque toujours être exposées à des conditions un peu différentes; mais nous ne pouvons guère attribuer la modification du plumage des malles seuls à l'action de ces conditions, puisqu'elles n'ont en aucune façon affecté celui des jeunes et des femelles, bien que tous deux y fussent également exposés. La différence étonnante qui existe entre les males et les femelles de beaucoup d'oiseaux est peut-Atre, de tous les faits de la nature, celui qui nous démontre le plus clairement combien peu a d'importance l'action directe des conditions d'existence comparativement à ce que peut effecter l'accumulation indéfinie de variations mises en jeu par la sélection; car les

[^249]males et les femelles ont absorbé les memes aliments et subi les unfluences du mème climat. Néanmoins il n'y a là rien qui nous empéche de croire que, dans le cours du temps, de nouvelles conditions d'existence ne puissent produire un certain effet direct soit sur les individus des deux sexes, soit sur ceux d'un seul sexe, en conséquence do quelques particularités constitutionnelles; nous voyons seulement que ces effets restent, comme importance, subordonnés aux résultats accumulés de la sélection. Cependant, lorsqu'une espèce émigre dans un pays nouveau, fait qui doit précéder la formation des espèces représentatives, le changement des conditions auxquelles cette espèce aura presque toujours da etre exposée doit déterminer chez elle, comme on peut en juger par de nombreuses analogies, une certaine variabilité flottante. Dans ce cas, la sélection sexuelle, qui dépend d'un élément éminemment susceptible de changement - le gount et l'admiration de la femelle - doit avoir accumulé de nouvelles teintes de coloration et d'autres différences. Or la sélection sexuelle est toujours à l'œuvre ; il serait donc fort surprenant, à en juger par lea résultats que produit chez les animaux domestiques la sélection non intentionnelle de l'homme, que des animaux qui habitent des régions séparées, et qui ne peuvent, par conséquent, jamais se croiser ot mélanger ainsi des caractères nouvellement acquis, ne fussent pas, au bout d'un laps de temps suffisant, différemment modifiés. Ces remarques s'appliquent également au plumage d'été ou plumage de la saison des amours, que ce plumage soit limité aux males ou commun aux deux sexes.

Bien que les femelles et les jeunes des espèces très voisines ou représentatives dont nous venons de parler diffèrent à peine les uns des autres, de sorte qu'on ne peut reconnaitre facilement que les mâles, cependant les femelles de la plupart des espèces d'un meme genre doivent différer les unes des autres dans une certaine mesure. Toutefois il est rare que ces différences soient aussi prononcées que chez les màles. La famille entière des gallinacés nous en fournit la preuve absolue : les femelles, par exemple, du faisan com mun et du faisan du Japon, surtout celles du faisan doré et du faisan Amherst, - du faisan argenté et de la volaille sauvage, - se ressemblent beaucoup au point de vue de la coloration, tandis que les males différent à un degré extraordinaire. On observe le même fait chez les femelles de la plupart des Cotingidés, des Fringillidés el de beaucoup d'autres familles. On ne peut douter que, en règle gé nérale, les fomelles ont été moins modifiées que les males. Quelqué espèces cependant prósentent une exception singulière et inexpli cable ; ainsi les femelles du Paradisea apoda et du P. papuana diffé-
rent plus l'une de l'autre que ne le font leurs males respectifs ? ; la femelle de cẹtle dernière espèce a la surface inférieure du corps blanc pur, tandis qu'elle est brun foncé chez la femelle du P. apoda. Ainsi encore, le professeur Newton affirme que les males de deux espèces d'Oxynolur (pie-grièche), qui se représentent dans l'ile Maurice et dans lîlc Bourbon ${ }^{8}$, different peu au point de vue de la couleur, tandis que les femelles different beaucoup. La femelle de l'espèce de l'ile Bourbon paraît avoir conservé, en partie au moins, une apparence de plumage non arrivé à maturité; car, à première vue, on pourrait la prendre \& pour un jeune individu de l'espéce de l'ile Maurice». Ces différences sont comparables à celles qui surgissent en dehors de toute sélection humaine, et qui restent inexplicables chez certaines sous-races du coq de combat, où les femelles sont très différentes, tandis qu'on peut à peine distinguer les mâles les uns des autres ${ }^{9}$.
Je considère que la sélection sexuelle a joué un rôle très important pour amener ces différences entre les malles d'espèces voisines; comment donc expliquer les différences qui existent entre les femelles ? Nous n'avons pas à nous occuper des espèces qui appartiennent à des genres distincts, car l'adaptation à des habitudes d'existence différentes et certaines autres influences ont dû jouer un grand rôle, Quant aux différences qu'on observe entre les femelles d'un même genre, l'étude des divers groupes importants me porte à concluse que l'agent principal de la production de ces différences a été le transfert à la femelle, à un degré plus ou moins prononcé, des caractères que la sélection sexuelle a développés chez les males. Chez les divers pinsons de l'Angleterre, les deux sexes diffèrent, peu ou beaucoup, et, si nous comparons les femelles des verdiers, des pinsons, des chardonnerets, des bouvreuils, des becs-croisés, des moineaux, etc., nous remarquerons qu'elles different les unes des autres, surtout par les caractères qui les fon ${ }_{t}$ partiellement ressembler à leurs malesurespectifs; or on peut, avec confiance, attribuer la coloration des males à la sélection sexuelle. Chez beaucoup d'espèces de gallinacés, les males diffèrent des femelles à un degré extrême, chez le paon, chez le faisan, et chez les volailles par exemple; tandis que, chez d'autres espéces, le male a transmis à la femelle tout ou partie de ses caractères. Les femelles des diverses espèces de Polyplectron laissent entrevoir obs-
7. Wallace, the Malay Archipelago, vol. H, 1869, p. 394.
8. Ces ospeces sont décrites avec figures on couleur, par M. F. Pollen, $\mathrm{lb}_{\mathrm{l}} \mathrm{b}$, 1886, p. 275.
9. Varialion, ole., vol. 1, p. 280. curément, surtout sur la queue, les magnifiques ocelles du male. La perdrix femelle ne diffère du male que par la grandeur moindre de la marque rouge du poitrail ; la dinde sauvage ne diffère d id dindon que parce que ses couleurs sont plus ternes. Chez la pintade, les deux sexes sont identiques. Il est probable que le male de cette dernière espèce doit son plumage uniforme, quoique singulièrement tacheté, à la sélection sexuelle, puis qu'il l'ait transmis aux femelles, car ce plumage n'est pas essentiellement différent de celui qui caractérise les males seuls chez les faisans tragopans, bien que ce dernier soit bien plus magnifiquement tacheté.
Il faut remarquer que, dans certains cas, le transfert des caractères du male à la femelle s'est effectué à une époque évidemment très reculée, depuis laquelle le male a subi de grandes modifications, sans transmettre à la femelle aucun des caractères qu'il a ultérieurement acquis. La femelle et les jeunes du tétras noir (Tetrao tetrix), par exemple, ressemblent d'assez près aux malles et aux femelles ainsi qu'aux jeunes du tétras rouge (T. colicus); hous pouvons, par conséquent, conclure que le tétras noir descend de quelque espèce ancienne dont les males et les femelles affectaient une coloration presque analogue à celle de l'espèce rouge. Les individus des deux sexes chez cette dernière espèce sont beaucoup plus distinctement barrés pendant la saison des amours qu'à toute autre époque, et le male diffère légèrement de la femelle par la plus grande intensité de ses teintes rouges et brunes ${ }^{10}$; nous pouvons done conclure que son plumage a été, au moins dans une certaine mesure, modifié par la sélection sexuelle. S'il en est ainsi, nous pouvons également conclure que le plumage presque analogue du tétras noir femélle a été développé de la même manière à quelque antique période. Mais, depuis lors, le tétras noir male a acquis son beau plumage noir avec ses rectrices frisées et disposées en fourchette; caractères qui n'ont pas été transmis à la femelle, à l'exception d'une faible trace de la fourchette recourbée qu'on aperçoit suv sa queue.
Les faits que nous venons de relater nous autorisent à conclure que le plumage des femelles d'espèces distinctes, quoique voisines, s'est souvent plus ou moins modifié, grâce à la transmission, à des degrés divers, de caractères acquis anciennement, récemment méme par les males, sous l'influence de la-sélection sexuelle. Mais il importe de remarquer que les couleurs brillantes ont été beaucoup plus rarement transmises que les autres teintes. Par exemple, le Cyanecula suecica male a la gorge rouge et la poitrine d'un

[^250]bleu mágnifique, ornée en outre d'une tache rouge à peu près triangulaire; or des taches ayant approximativement la même forme ont été transmises aux femelles; toutefois le point central est fauve au lieu d'étre rouge, et est entouré de plumes pommelées au lieu d'être bleues. Les gallinacés offrent de nombreux exemples analogues; car aucune des espèces, telles que les perdrix, les cailles, les pintades, etc., chez lesquelles la transmission des couleurs du plumage du mâle à la femelle s'est largement effectuéc, n'offre une coloration brillante. Les faisans nous offrent un excellent exemple de ce fait; les faisans mâles, en effet, sont généralement beaucoup plus brillants que les femelles; il existe cependant deux espèces, le Crossoptilon auritum et le Phasianus Wallichii, chez lesquelles les mâles et les femelles se ressemblent beaucoup et affectent des couleurs sombres. Nous sommes même autorisés à croire que, si une partie quelconque du plumage des mâles chez ces deux espèces de faisans eat revêtu de brillantes couleurs, ces couleurs n'auraient pas été transmises aux femelles. Ces faits viennent fortement à l'appui de l'hypothèse de M. Wallace, c'est-à-dire que la sélection naturelle s'est opposée à la transmission des couleurs brillantes du mâle à la femelle chez les oiseaux qui courent de sérieux daugers pendant lincubation. N'oublions pas toutefois, qu'une autre explication, déjà donnée, est possible ; à savoir, que les malles qui ont varié et qui sont devenus brillants, alors qu'ils étaient jeunes et inexpérimentés, ont dú courir de grands dangers et être en général détruits; en admettant, au contraire, que les males plus âgés et plus prudents aient varié de la même manière, non seulement ils auraient pu survivre, mais aussi se trouver en possession de grands avantages au point de vue de leur rivalité avec les autres males. Or les variations qui se produisent à un âge un peu tardif de la vie tendent à se transférer exclusivement au méme sexe, de sorte que, dans ce cas, les teintes extrèmement vives n'auraient pas été transmises aux femelles. Au contraire, des ornements d'un genre moins brillant, comme ceux que possèdent les faisans dont nous venons de parler, n'auraient pas été de nature bien dangereuse, et, s'ils ont apparu pendant la jeunesse, ils ont du se transmettre aux deux sexes.

Outre les effets de la transmission partielle des caractères males aux femelles, on peut attribuer certaines différences qu'on remarque entre les femelles d'espéces très voisines à l'action définie ou directe des conditions d'existence ${ }^{11}$. Les vives couleurs acquises par

[^251]les males, grace à l'action de la sélection sexuelle, ont pu, chez eux, dissimuler toute influence de cette nature, mais il n'en est pas ainsi chez les femelles. Chacune des différences innombrables dans le plumage de nos oiseaux domestiques est, cela va sans dire, le résultat de quelque cause définie; or, dans des conditions naturelles et plus uniformes, il est certain qu'une nuance quelconque, en supposant qu'elle ne soit en aucune façon nuisible, aurait finı tot ou tard par prévaloir. Le libre entre-croisement de nombreux individus appartenant à la même espèce tendrait ultérieurement à rendre uniforme toute modification de couleur ainsi produite.

Il est certain que les couleurs des mâles et des femelles chez beaucoup d'oiseaux se sont modifiées en vue de leur sécurité ; il est possible même que, chez quelques espèces, les femelles seules aient éprouvé des modifications propres à atteindre ce but. Bien que, comme nous l'avons démontré dans le chapitre précédent, la conversion d'une forme d'hérédité en une autre au moyen de la sélection soit une chose très difficile sinon impossible, il n'y aurait pas la moindre difficulté à adapter les couleurs de la femelle, indépendamment de celles du male, aux objets environnants, en accumulant des variations dont la transmission aurait été, dès le principe, limitée à la femelle. Si ces variations n'étaient pas ainsi limitées, les teintes vives du malle seraient altérées ou détruites. Mais il est jusqu'à présent douteux que les femelles seules d'un grand nombre d'espèces aient été ainsi modifiées. Je voudrais pouvoir suivre M. Wallace jusqu'au bout, et admettre avec lui qu'il en est ainsi, car ce système permettrait d'écarter bien des difficultés. Toutes les variations inutiles à la sécurité de la femelle disparaîtraient aussitôt au lieu de se perdre graduellement par défaut de sélection, ou par libre entre-croisement, ou par élimination, parce qu'elles sont nuisibles aux males si elles lui sont transmises. Le plumage de la femelle conserverait ainsi un caractère constant. Ce serait aussi un grand avantage que de pouvoir admettre que les teintes sombres de beaucoup d'oiseaux males et femelles ont été acquises et conservées comme moyen de sécurité - comme, par exemple, chez la fauvette des bois (Accenlor modularis) et chez le roitelet (Troglodyles vulgaris), - chez lesquels on ne trouve pas de Ireuves suffisantes de l'action de la sélection sexuelle. Il faut cependant se garder de conclure que des couleurs, qui nous paraissent sombres, n'ont aucun attrait pour les femelles de quelques espèces, et nous rappeler les cas tels que celui du moineau domestique, dont le male, sans avoir aucune teinte vive, diffère beaucoup de la femelle. Personne de conteste que plusieurs gallinacés vivant en plein champ
n'aient acquis, au moins en partie, leurs couleurs actuelles comme moyen de sécurité. Nous savons avec quelle facilité ils se cachent bien, grâce à cette circonstance; nous savons combien les ptarmigans ont à souffrir des attaques des oiseaux de proie au moment où ils changent leur plumage d'hiver contre celui d'été, tous deux protectéurs. Mais pouvons-nous croire que les différences fort légères dans les nuances et les taches qui existent, par exemple, entre les grouses femelles noires et les grouses femelles rouges, puissent servir de moyen de protection ? Les perdrix, avec leurs couleurs actuelles, sont-elles plus à l'abri que si elles ressemblaient aux cailles? Les légères différences que l'on observe entre les femelles du faisan commun et celles des faisans dorés et du Japon, servent-elles de protection, ou leurs plumages n'auraient-ils pas pu être impunément intervertis? M. Wallace, après avoir étudié les mcurs et les habitudes de certains gallinacés en Orient, admet l'utilité et l'avantage de légères différences de cette nature. Quant à moi, je me borne à dire que je ne suis pas convaincu.
J'étais autrefois disposé à attribuer une grande importance au principe de la protection, pour expliquer les couleurs plus sombres des oiseaux femelles; je pensaie donc que les mâles et les femelles, ainsi que les jeunes, avaient dans le principe été également pourvus de couleurs brillantes, mais que subséquemment le danger que ces couleurs faisaient courir aux femelles pendant l'incubation, et aux jeunes dépourvus d'expérience, avait déterminé l'assombrissement de leur plumage comme moyen de sécurité. Mais aucune preuve ne vient à l'appui de cette hypothèse, et je considère qu'elle est peu probable; car nous exposons ainsi en imagination, pendant les temps passés, les femelles et les jeunes à des dangers contre lesquels il a fallu subséquemment protéger leurs descendants modifiés. Il faudrait aussi supposer que la sélection a graduellement pourvu les femelles et les jeunes de taches et de nuances à peu près identiques, et a opéré la transmission de celles-ci au sexe et à l'époque de la vie correspondants. En supposant aussi que les femelles et les jeunes aient, à chaque phase de la modification, participé à une tendance à être aussi brillamment colorés que les males, il serait fort étrange que les femelles n'aient jamais acquis leur sombre plumage sans que les jeunes aient éprouvé le même changement. En effet, autant que je puis le savoir, il n'existe aucune espèce où la femelle porte des couleurs sombres et où les jeunes en affectent de brillantes. Les jeunes de quelques pics font, cependant, exception à cette règle, car ils ont «toute la partio súpérieure de la tete teintée en rouge $>$, teinte qui ensuite diminue
et se transforme en une simple ligne rouge circulaire chez les adultes des deux sexes, ou qui disparait entièrement chez les femelles adultes ${ }^{12}$.

En résumé, quand il s'agit de la catégorie qui nous occupe, I'hypothèse la plus probable parait être que les variations successives en éclat ou celles relatives à d'autres caractères d'ornementation, qui ont surgi chez les mâles à un âge assez tardif de la vie, ont été seules conservées; et que, pour ce motif, toutes ou la plupart n'ont été transmises qu'à la descendance mâle adulte. Toute variation en éclat surgissant chez les femelles et chez les jeunes, n'ayant aucune utilité poŭr eux, aurait échappé à la sélection, et de plus aurait été éliminée par cette dernière si elle était dangereuse. Aussi les femelles et les jeunes n'ont pas du se modifier, ou, ce qui a été plus fréquent, n'ont été que partiellement modifiés par la transmission de quelques variations successives des máles. Les conditions d'existence auxquelles les deux sexes out été exposés ont peut-être exercé sur eux ane certaine action directe, et c'est surtout chez les femelles, qui n'ont pas subi beaucoup d'autres modifications, que leur effet s'est fait le mieux sentir. Le libre entre-croisement des individus a du rendre ces changements uniformes comme tous les autres d'ailleurs. Dans quelques cas, surtout chez les oiseaux vivant sur le sol, les temelles et les jeunes peuvent, indépendamment des mâles, avoir été modifiés dans un but de sécurité, et avoir subi un assombrissement semblable de leur plumage.

Catégorie II. Lorsque la femelle adulte est plus brillante que le male adulie, le premier plumage des jeunes des deux sexes ressemble au plumage du mále. - Cette catégorie comprend des cas absolument contraires à ceux de la classe précédente, car les femelles portent ici des couleurs plus vives et plus apparentes que celles des mâles; or, les jeunes, autant qu'on les connait, ressemblent aux males adultes, au lieu de ressembler aux femelles adultes. Mais la différence entre les sexes n'est jamais, à beaucoup près, aussi grande que celle qu'on rencontre dans la première catégórie, et les cas sont relativement rares. M. Wallace, qui a, le premier, attiré l'attention sur le singulier rapport qui existe entre la coloration terne des males et le fait qu'ils remplissent les devoirs de l'incubation, insiste fortement sur ce point ${ }^{13}$, car il le considère comme une preuve irrécusable que les couleurs ternes servent à protéger
12. Audubou, o. c., vol. I, p. 193. Macgillivray, o. c., vol. III, p. 85. Voir auss le cas de I'Indopicus carlotta, cité précédemment.
13. Westminster Review, July 1867 ; et A. Murray, Journal of Travel, 1868, p. 83
l'oiseau pendant l'époque de la nidification. Une autre opinion me parait plus probable, et les cas étant curieux et peu nombreux, je vais brièvement signaler tout ce que j'ai pu recueillir sur cette question.
Dans une section du genre Turnix, oiseau ressemblant d d la caille, la femelle est invariablement plus grosse que le male (elle est presque deux fois aussi grosse que le male chez une espèce australienne), fait qui n'est pas usuel chez les gallinacés. Dans la plupart des espèces, la femelle affecte des couleurs plus distinctes et plus vives que le male ${ }^{14}$, mais il en est quelques-unes où les deux sexes se ressemblent. Chez le Turnis taigoor de l'Inde, s le male ne porte pas les taches noires sur la gorge et sur le cou, et tout son plumage est d'une nuance plus claire et moins prononcée que celui de la femelle \mathbf{y}. Celle-ci parait etre plus criarde que le male et est certainement beaucoup plus belliqueuse que lui : aussi les indigènes se servent-ils, pour les faire se battre, des femelles et non des males. De même que les chasseurs d'oiseaux en Angleterre exposent des males près de leurs trappes pour en attirer d'autres en excitant leur rivalité, de méme dans l'Inde on emploie la femelle du turnix. Ainsi exposées, les femelles commencent bientot à faire entendre e un bruit très sonore qui ressemble au bruit du rouet, bruit qui s'entend de fort loin, et amène rapidement sur les lieux, pour se battre avec l'oiseau captif, les femelles qui se trouvent à portée ». On peut ainsi, dans un seul jour, prendre de douze à vingt oiseaux, toutes femelles pretes à pondre. Les indigenes assurent qu'après avoir pondu, les femelles se réunissent en bandes et laissent aux males le soin de couver leurs œufs. Il n'y a pas de raison pour douter de cette assertion, que confirment quelques observations faites en Chine par M. Swinhoe ${ }^{16}$. M. Blyth croit que les jeunes des doux sexes ressemblent au male adulte.
Les femelles des trois espèces de bécasses peintes (Rhynchraa) $(f i g .62)$ \& ne sont pas seulement plus grandes, mais aussi beaucoup plus brillamment colorées que les mâles ${ }^{16}$ 3. Chez tous les autres oiseaux où la trachée différe de conformation dans les deux sexes, elle est plus développés et plus compliquée chez le male que chez la femelle ; mais, chez le Rhynchra australis, elle est simple chez le

[^252]mâle tandis que, chez la femelle, elle décrit quatre circonvolutions distinctes avant d'entrer dans les poumons ${ }^{17}$. La femelle de cette espèce a donc acquis un caractère éminemment masculin. M. Blyth a vérifié, en disséquant un grand nombre d'individus, que la trachée n'est enroulée ni chez les males ni chez les femelles de la R. bengalensis, ospèce qui ressemble tellement à la R. austrális, qu'on ne peut guère distinguer cette dernière que par un seul caractère: la moindre longueur de ses doigts. Ce fait est encore un exemple frappant de la loi que les caractères sexuels secondaires differrent souvent beaucoup chez les formes très voisines, bien qu'il soit fort rare de trouver ces différences chez le sexe femelle. Le premier plumage des jeunes des deux sexes de la R. bengalensis ressemble, dit-on, à celui du mâle adulte ${ }^{18}$. Il y a aussi des raisons de croire que le mâle se charge de l'incubation, car avant la fin de l'été, M. Swinhoe ${ }^{19}$ a trouvé les femelles associées en bandes comme les femelles du turnix.

Les femelles du Phalaropus fultcarius et du P. hyperboreus sont plus grandes que les mâles, et leur plumage d'été e est plus brillamment orné que celui des mâles \geqslant, sans que la différence entre les couleurs des sexes soit bien remarquable; seul le P.fulicarius malle, d'après le professeur Steenstrup, accomplit les devoirs de l'incubation, ce que prouve d'ailleurs l'état de ses plumes pectorales peudant la couvée. La femelle du pluvier (Eudromias morinellus) est plus grande que le male, et les teintes rouges et noires du dessous du corps, le croissant blanc sur la poitrine, et les raies placées au-dessus des yeux sont plus prononcées chez elle que chez le mâle. Le malle prend au moins une part à l'incubation, mais la femelle s'occupe également de la couvée ${ }^{20}$. Je n'ai pu découvrir si, dans ces espèces, les jeunes ressemblent davantage aux mâles adultes qu'aux femelles adultes; la comparaison est très difficile à cause de la double mue.

Passons maintenant à l'ordre des Autruches. On prendrait facilement le Casoar commun male (Casuarius galeatus) pour la femelle,
17. Gould, Handbook of Birds of Australia, vol. II, p. 275.
18. The Indian Field, sept. 1858, p. 3.
19. Ibis, 1866, p. 298.
20. Pour ces diverses assertions, voir Gould, Birds of Great Brilain. Le professeur Newton m'informe que ses propres observations, autant que celles d'autrui, l'ont convaincu que les males des espèces nommées ci-dessus prennent tout ou partie de la charge des soins que nécessite l'incubation, et qu'ils témoignent beaucoup plus de dévouement que les femelles lorsque les jeunes sont en danger. Il en est de meme du Limosa lapponica et de quelques autres échassiers, dont les femelles sont plus arandes. of ont des couleurs nlus viver aue les mâles,
en raison de sa moindre taille et de la coloration moins intense des appendices et de la peau dénudée de sa tête. M. Bartlett affirme qu'aux Zoological gardens, le male couve les œeuff et prend soin des jeunes ${ }^{21}$. D'après M. T. W, Wood ${ }^{22}$, la fëmelle manifeste pendant la saison des amours les dispositions les plus belliqueuses; ses barbes deviennent alors plus grandes et revètent une couleur plus éclatante. De mème, la femelle d'un Émeu (Dromæus irroratus) est beaucoup plus grande que le male ; mais, à part une légère huppe céphalique, elle ne se distingue pas autrement par son plumage. Lorsqu'elle est irritée ou autrement excitée, elle parait pouvoir plus facilement que le male redresser, comme le dindon, les plumes de son cou et de son poitrail. Elle est ordinairement la plus courageuse et la plus belliqueuse. Elle émet un boum guttural et profond, qui résonne comme un petit gong, surtout pendant la nuit. Le male a le corps plus frêle ; il est plus docile ; il n'a d'autre voix qu'un sifflement contenu ou un croassement lorsqu'il est en colère». Non seulement il se charge de tous les soins inhérents à l'incubation, mais il doit protéger les petits contre leur mère, «car dès qu'elle les aperçoit, elle s'agite avec violence et semble faire tous ses efforts pour les détruire, malgré la résistance du père. Il est imprudent de remettre les parents ensemble pendant plusieurs mois après la couvée, car il en résulte de violeñtes querelles dont la femelle sort en général victorieuse ${ }^{23} \geqslant$. Cet Émeu nous office donc l'exemple d'un renversement complet, non seulement des instincts de la parenté et de l'incubation, mais encore des qualités morales habituelles des deux sexes; les femelles sont sauvages, querelleuses et bruyantes, les mâles doux et tranquilles. Le cas est touł différent chez l'autruche d'Afrique, car le malle, un peu plus grand que la femelle, a des plumes plus élégantes, avec des couleurs plus fortement accentuées; néanmoins c'est lui qui se charge de tous les soins de l'incubation ${ }^{24}$.
21. Les indigènes de Geram (Wallace, Malay, Archipelago, vol. II, p. 150) assurent que le male et la femelle se posent alternativement sur le nid; mais M. Bartlett croit qu'il faut expliquer cette assertion par le fait que la femelle se rend au nid pour y pondre ses muts.
22. The Student, Avril, 1870, p. 124.
23. Voir l'excellente description des mouurs de cet oiseau en captivité, par A. W. Bennett, Land and Water, Mai 1868, p. 233.
24. M. Selater, sur l'incubation des Struthiones, Proc. Zoot. Socr, June 01863. In en est de metme du Rhea Darwinit; le capitaine Musters (At home with the rapide queana, 1871, p. 128) dit que le male est plus grand, plus fort et plus dant il se charge seul de veiller sur teintes un peu plus fonnees qu'elle; cepenle mâle de l'espece commune de Rhea.

Je signalerai encore les quelques autres cas parvenus à ma connaissance, dans lesquels la femelle est plus brillamment colorée que le mâle, bien que nous n'ayons aucun renseignement sur le mode d'incubation. J'ai été très surpris, en disséquant de nombreux Milvago leucurius des iles Falkland, de trouver que Ies individus aux teintes le plus accusées, et au bec et aux pattes de couleur orange, étaient des femelles adultes; tandis que ceux à plumage plus terne et à pattes plus grises étaient des mâles ou des jeunes. La Climaeteris ergthrops, femelle d'Australie, diffère du male en ce qu'elle est ornée de magnifiques taches «rougeatres, rayonnant sur la gorge, tandis que cette partie est très simple chez le mâle ». Enfin, chez un engoulevent (Eurostopode) australien, \& les femelles sont toujours plus grosses et plus vivement colorées que les mâles, qui, d'autre part, portent sur leurs rémiges primaires deux taches blanches plus marquées que chez les femelles ${ }^{25} \%$.

Les cas de coloration plus intense chez les femelles que chez les males, et ceux où le premier plumage des jeunes adultes ressemble à celui des malles adultes au lieu de ressembler à celui des femelles adultes, comme dans la première catégorie, ne sont donc pas nombreux, bien qu'ils se rencontrent dans des ordres variés. L'étendue des différences entre les sexes est ainsi incomparablement moindre que celle qu'on peut observer dans la première catégorie; de telle sorte que, quelle que puisse avoir été la cause de cette différence, elle a dû agir chez les femelles de lâ seconde classe avec moins d'énergie ou de persistance que chez les males de la première. M. Wallace explique cet amoindrissement de la coloration chez les males, par le besoin d'un moyen de sécurité pendant la période de l'incubation; mais il ne semble pas que les différences entre les sexes, dans les exemples que nous venons de citer, soient assez prononcées pour justifier suffisamment cette opinion. Dans quelques-uns des cas, les teintes brillantes de
25. Sur le Milvago, voir Zootogy of the Vogage of the Beagle, Birds, p. 16, 1841. Pour le Climacteris et lEurostopodas, voir Gould, Handbook of the Birds of Australia, vol. I, p. 602 et 97. La Tardona variegata de la Nouvelle-Zêlande offre un cas tout a fait anormal : la tete de la femelle est blanc pur, et son dos plus rouge que celui du male; la tette de celui-ci a une riche teinte bronze foncé, et son dos est revétu de plumes de couleur ardoisée, finement striées, de sorte qu'on peut le considéror comme le plus beau des deux. Il est plus grand et plus belliqueux que la femelle, et ne couve pas les ceufs. Sous tous ces rapports, l'espèce rentre done dans notre première classe de cas ; mais M. Sclater (Proc. Zool. Soc., 1866, p. 150), à son grand etonnement, a vu que les jeunes des deux sexes, agés de trois mois environ, ressemblaient aux males adultes par leur tete et leur cou de couleur foncée, au lieu de ressembler aux femelles adultes; ce qui semblerait, dans ce cas, indiquer que les femelles se sont modifiées, tandis que les males et les jeunes ont conservé un état autérieur de plumago.
la femelle sont restreintes à la surface inférieure du corps; aussı les mâles, s'ils eussent porté ces mêmes couleurs, n'auraient couru aucun danger plus considérable pendant qu'ils couvent les œufs. Il faut aussi remarquer que non seulement les males sont, à un faible degré, moins brillamment colorés que les femelles, mais qu'ils ont aussi une taille moindre et qu'ils sont moins forts: Ils ont de plus, non seulement acquis l'instinct maternel do l'incubation, mais ils sont encore moins belliqueux et moins criards que les femelles, et, dans un cas, ont des organes vocaux plus simples. Il s'est donc effectué ici, entre les deux sexes, une tiansposition presque complète des instincts, des mœurs, du caractère, de la couleur, de la taille, et de quelques points de la conformation.

Or, si nous pouvions supposer que, dans la classe dont nous nous occupons, les males ont perdu quelque peu de cette ardeur qui est habituelle à leur sexe, de telle sorte qu'ils ne cherchent plus les femelles avec autant d'empressement; ou, si nous pouvions admettre que les femelles sont devenues beaucoup plus nombreuses que les mâles, - cas constaté pour une espèce indienne de turnix, - car on rencontre beaucoup plus ordinairement des femelles que des males ${ }^{26}, \geqslant-$ il n'est pas improbable qu'elles aient été ainsi amenées à rechercher les mâles, au lieu d'etre courtisées par eux. Ce fait se présente d'ailleurs, dans une certaine mesure, chez quelques espèces; chez les paon.ses, chez les dindes sauvages et chez quelques tétras, par exemple. Si nous en jugeons par les mœurs de la plupart des oiseaux mảles, la taille plus considérable, la force et le caractère extraordinairement belliqueux des Émeus et des turnix femelles doivent signifier qu'elles cherchent à se débarrasser de leurs rivales pour s'assurer la possession des malles. Cette hypothèse explique tous les faits, car les males se laissent probablement séduire par les femelles, qui ont, par leur coloration plus vive, par leurs autres ornements, et par leurs facultés vocales, plus d'attraits pour eux. La sélection sexuelle, entrant alors en jeu, tendrait constamment à augmenter ces attraits chez les femelles, tandis que les mâles et les jeunes subiraient peu, ou pas, de modifications.
Catégorie III. Lorsque le male adulte ressemble à la femelle adulte les jeunes des deux sexes ont un premier plumage qui leur est propre. - Dans cette classe, les deux sexes adultes se ressemblent et diffèrent des jeunes. On peut observer ce fait chez beaucoup d'oiseaux divers. Le rouge-gorge male se distingue à peine de la femelle; mais les jeunes, avec leur plumage pommelé olive obscur

[^253][Chap, XVI]. rapports entre le plumage des deux sexes b09
et brun, ressemblent très peu à leurs parents. Le male et la femelle du maznifique ibis écarlate se ressemblent, tandis que les petits sont uruns; et la couleur écarlate, bien que oommune aux deux sexes, est apparemment un caractère sexuel, car elle ne se dóveloppe qu'imparfaitement chez les oiseaux en captivité, comme cela arrive fréquemment aussi aux mâles d'autres espèces très brillamment colorés. Chez beaucoup d'espèces de hérons, les jeunes diffèrent beaucoup des adultes, dont le plumage d'été, bien que commun aux deux sexes, a un caractère nuptial évident. Les jeunes cygnes sont ardoisés, tandis que les adultes sont blanc pur. Il y a une foule d'autres cas qu'il serait superflu d'énumérer ici. Ces différences entre les jeunes et les adultes dépendent, selon toute apparence, comme dans les deux autres classes, de ce que les jeunes ont conservé un état de plumage antérieur et ancien que les adultes des deux sexes ont échangé contre un nouveau. Lorsque les adultes affectent de vives couleurs, nous pouvons conclure, des remarques faites au sujet de l'ibis écarlate et de beaucoup de hérons, ainsi que de l'analogie avec les espèces de la première classe, que les males presque adultes ont acquis ces couleurs sous l'influence de la sélection sexuelle, mais que, contrairement à ce qui arrive dans les deux premières classes, la transmission, bien que limitée au même âge, ne l'a pas été au même sexe. Il en résulle par conséquent que, une fois adultes, les deux sexes se ressemblent et diffèrent des jeunes.

Classe IV. Lorsque le male adulte ressemble à la femelle adulte, les jeunes des deux sexes dans leur premier plunage leur ressemblent aussi. - Les jeunes et les adultes des deux sexes, qu'ils soient colorés brillamment ou non, se ressemblent dans cette classe; cas qui est, à ce que je crois, beaucoup plus commun que le cas précédent. En Angleterre, nous en trouvons des exemples chez le martinpécheur, chez quelques pics, chez le geai, chez la pie, chez le corbeau, et chez un grand nombre de petits oiseaux à couleur terne, comme les fauvettes et les roitelets. Mais la similitude du plumage entre les jeunes et les adultes n'est jamais absolument compléte et passe graduellement à une dissemblance. Ainsi les jeunes de quelques membres de la famille des martins-pêcheurs sont, non seulement moins brillamment colorés que les adultes, mais ont beaucoup de plumes dont la surface inférieure est bordée de brun ${ }^{27}$, vestige probable d'un ancien état de plumage. Il arrive souvent que dans un même groupe d'oiseaux et souvent aussi dans un mème genre,
97. Jordon (o. c., vol. 1, p. 222, 228) ; Gould, Handbook, etc., vol. I, p. 124, 130.
le genre australien des perruches (Plathycercus) par exemple, les jeunes de quelques espèces ressemblent beaucoup à leurs parents des deux sexes qui se ressemblent aussi, tandis que ceux d'autres espèces diffèrent considérablement de leurs parents d'ailheurs semblables 28. Les deux sexes et les jeunes du geai commun se ressemblent beaucoup, mais chez le geai du Canada (Prisoreus canadensis), la différence entre les jeunes et leurs parents est assez grande pour qu'on les ait autrefois décrits comme des espéces distinctes ${ }^{29}$.
Avant de continuer, je dois faire observer que les faits compris dans la présente classe et dans les deux suivantes sont si complexes et que les conclusions à en tirer sont si douteuses que j'invite le lecteur qui n'éprouve pas un intérêt tout spécial pour ce sujet à ne pas lire les remarques suivantes.

Les couleurs brillantes ou voyantes, qui caractérisent beaucoup d'oiseaux de la présente classe, ne peuvent que rarement ou même jamais avoir pour eux la moindre utilité au point de vue de la protection; elles ont done probablement été produites chez les males par la sélection sexuelle, puis ensuite transmises aux femelles et aux jeunes. Il est toutefois possible que les males aient choisi les femelles les plus attrayantes ; si ces dernières ont transmis leurs caractères à leurs descendants des deux sexes, il a dû̀ en rêsulter les mêmes conséquences que celles qu'entrainent la sélection par les femelles des malles les plus séduisants. Mais il y a queloues preuves que cette éventualité, si eile s'est jamais présentée, a du etre fort rare dans les groupes d'oiseaux où les sexes sont ordinairement semblables; car, en admettantque quelques variations successives, en quelque petit nombre que ce soit, n'aient pas êté transmises aux deux sexes, les femelles auraient un peu excédé les màles en beauté. G'est précisément le contraire qui arrive dans la naturc; car dans presque tous les groupes considérables dans lesquels les sexes se ressemblent d'une manière générale, il se trouve quelques espèces où les mâles ont une coloration légèrement plus vive que celle des femelles. Il est possible encure que les femelles aient fait choix des plas beaux males, et que ceux-ci aient réciproquement choisi les plus belles femelles; mais it est douteux que cette double marche de sélection ait pu se réaliser, par suite de lardeur plus grande dont fait preuve l'un des sexes; il est d'ailleurs douteux aussi qu'elle eut pu etre plus efficace qu'une sélection unilatérale seule. L'opinion la plus probable est donc que, dans la classe dont nous nous occupons, la sélection sexuelle, en ce qui se rattache aux caractères dornementation, a conformément à la règle générale dans le règue animal, exercés son action sur les males, lesquels ont transmis leurs couleurs graduellement acquises, soit également, soit presque également à leur descendance des deux sexes.

Un autre point encore plus douteux est celui de sayoir si les variations successives ont surgi d'abord chez Ies males au moment où ils

[^254]
[Chap. XVI]. rapports entre le plumage des deux sexes 511

atteignaient l'age adulte, ou pendant leur jeune age; mais, en tout cas, la sélection sexuelle ne peut avoir agi sur le male que lorsqu'il a eu à lutter contre des rivaux pour s'assurer la possession de la femelle; or, dans les deux cas, les caractères ainsi acquis ont été transmis aux deux sexes et à tout age. Mais, acquis par les màles à l'état adulte, et d'abord transmis aux adultes seulement, ces caractères ont pu, à une époque ultérieure, etre transmis aussi aux jeunes individus. On sait, en effet, que, lorsque la loi d'hérédité aux áges correspondants fait défaut, le jeune hérite souvent de certains caracteres à un âge plus précoce que celui auquel ils ont d'abord surgi chez les parents ${ }^{20}$. On a observé des cas de ce genre chez des oiseaux à l'état de nature. M. Blyth, par exemple, a vu des Lanius rufus et des Colymbus glacialis qui, pendant leur jeunesse, avait très anormalement revetu le plumage adulte de leurs parents ${ }^{31}$. Les jeunes du eygne commun (Gygnas olor) ne dépouillent leurs plumes foncées et ne deviennent blancs qu'à dix-huit mois ou deux ans; or le docteur Forel a décrit le cas de trois jeunes oiseaux vigoureux, qui, sur une couvée de quatre, étaient blanc pur en naissant. Ces jeunes cygnes n'étaient pas des albinos, car la couleur du bec et des pattes de ces oiseaux se rapprochait beaucoup de celle des memes parties chez les adultes ${ }^{32}$.
Pour expliquer et rendre compréhensibles les trois modes précités qui, dans la classe qui nous occupe, ont pu amener une ressemblance entre les deux sexes et les jeunes, je citerai l'exemple curieux du genre Passer ${ }^{33}$. Chez le moineau domestique (\boldsymbol{P}. domesticus), le male diffère beaucoup de la femelle et des jeunes. La femelle et les jeunes se ressemblent, et ressemblent égalementbeaucoup aux deux sexes et auxjeunes du moineau de Palestine (P. brachydactilus) et de quelques espèces voisines. Nous pouvons done admettre que la femelle et les jeunes du moineau domestique représentent approximativement le plumage de l'ancêtre du genre. Or, chez le P. montanus, les deux sexes et les jeunes ressemblent beaucoup au moineau domestique male; ils ont done tous été modifiés de la méme manière, et s'écartent tous de la coloration typique de leur ancétré primitif. Cecipeut provenir de ce qu'un ancetre male du P. montanu a varié; premièrementalors qu'il était presque adulte; ou secondement alors qu'il était tout jeune, et qu'il a, dans Yun et l'autre cas, transmis son plumage modiffé aux femelles et aux jeunes; ou, troisièmement, il peut avoir varié à l'état adulte et transmis son plumage aux deux sexes adulles; et, la loi de l'hérédité aux ages correspondants a'intervenant pas, l'avoir, à quelque époque subséquente, transmis aux jeunes oiseaux.
Il est impossible de déterminer quel est celui de ces trois modes qui a pu prévaloir généralement dans la classe qui nous occupe. L'hypothèse la plus probable peut-etre est celle qui admet que les males ont varié
30. Variation, etc., vol. II, p. 84.
31. Charlesworth, Mag. of Nat. Hist., vol. 1, 1837, p. 305-306.
32. Bulletin de la Soc. vaudoise des se. nat., vol. X, 1869, p. 132; les jeunes du cygne polonais, Cygnus inmutabilis de Yarrell, sont toujours blancs; mais on croit que cette espèce, à ce que me dit M. Sclater, n'est qu'une variéte du eygre domestique (C. olor).
33. Je dols à M. Blyth les renseignements sur ce genre. Le maineaa de Pales$f_{\text {ine }}$ appartient au sous-genre Petronia.
dans leur jeunesse et transmis leurs variations à leurs descendants des deux sexes. J'ajouterai ici que j'ai tenté, avec peu de succès d'ailleurs, d'apprécier, en consultant divers ouvrages, jusqu'à quel point la période de la variation a pu déterminer chez les oiseaux en général fa transmission des caractères à un des sexes ou aux deux. Les deux règles auxquelles nous avons souvent fait allusion (à savoir que les variations survenant à une époque tardive ne se transmettent qu'au méme sexe, tandis que celles survenant à un age précoce se transmettent aux deux sexes) paraissent vraies pour la première ${ }^{34}$, pour la seconde et pour la quatrième classe de cas: mais elles sont en défaut dans la troisième, souvent dans la cinquième ${ }^{25}$ et la sixième classe. Elles s'appliquent pourtant, autant que je puis en juger, à une majorité considérable des espèces, et nous ne devons pas oublier à cet égard la généralisation frappante que le docteur W. Marshall a faite relativement aux protubérances qui apparaissent sur la tete des oiseaux. Quoi qu'il en soit, nous pouvons conclure des faits cités dans le huitième chapitre, que l'époque de la variation constitue un élément important dans la détermination de la forme de transmission.
Il est difficile de décider quelle est la mesure qui doit nous servir a apprécier, chez les oiseaux, la précocité ou le retard de l'époque de la variation; est-ce l'age par rapport à la durée de la vie, ou l'age par rapport à l'aptitude de la reproduction, ou l'age par rapport au nombre de mues que l'espèce a à subir? Les mues des oiseaux, méme dans une seule famille, different quelquefois deaucoup sans cause apparente. Il est certains oiseaux qui muent de si bonne heure, que presque toutes les plumes du corps tombent avant que les premières rémiges se soient complètement développées, ce que nous ne pouvons admettre comme l'état primordial des choses. Lorsque l'époque de la mue a été accêlérée, l'age auquel les couleurs du plumage adulte se développent pour la première fois nous parait à tort plus précoce qu'il ne l'est réellement. En effet, certains éleveurs d'oiseaux ont l'habitude d'arracher quilques plumes du poitrail des bouvreuils, ou des plumes de la tete et du cou aux jeunes faisans dorés encore au nid afin de connaitre leur sexe; car chez les males, ces plumes enlevées sont immédiatement remplacées par d'autres plumes colorées ${ }^{23}$. Comme la durée exacte de la vie n'est connue que pour peu d'oiseaux, nous ne pouvons tirer aucune conclusion certaine de cette donnée. Quant à l'époque où se produit l'aptitude à la reproduction, il est un fait remarquable, c'est que divers oiseaux peuvent reproduire, pendant qu'ils portent encore leur plumage de jeunesse ${ }^{87}$.
34. Par exemple, les malles du Tanagra æstiva et du Fringilla cyanea exigent trois ans, et celui du Fringilla ciris, quatre ans pour complêter leur beau plumage. (Audubon, Ornith. Biogr., vol. 1. p. 233, 280, 378.) Le Canard arlequin prend trois ans. (Ib., vol. III, p. 614). Selon M. J. Jenner Weir, le Faisan doré mile peut déà se distinguer de la femelle à l'age de trois mois, mais il n'atteint sa complète splendeur que vers la fin de septembre de l'année suivante.
35. Ainsi l'ibis tantalus et le Grus Americanus exigont quatre ans, le Flamant plusieurs années, et P'Ardea Ludoviciana deux ans pour acquérir leur plumage parfait (Audubon, o. c., vol. III, p. 133, 139, 211).
36. M: Blyth, dans Charleswarth's Mag, of. Nat. Hist. vol. I, 1837, p. 300.

37. J'ai remargué les cas suivants dans l'Ornithological Biagraphy, d'Audubun.

[Chap. XVI]. rapports entre le plumage des deux sexes

Ce fait que les oiseaux se reproduisent, alors qu'ils portent encore leur jeune plumage, semble contraire á la théorie que la sélection sexuelle ait joué un roleaussi important que celuique je luinttribue, c'est-à-dire qu elle a procuré aux males des couleurs d'ornementation, des panaches, etc., ornements que, en vertu d'une égale transmission, elle a procurés aussi aux femelles de beaucoup d'espèces. L'objection aurait une certaine portée si les mâles plus jeunes et moins ornés réussissaient, aussi bien que les máles plus agés et plus beaux, à captiver les femelles et à propager leur espèce. Mais nous n'avons aucune raison pour supposer qu'il en soit ainsi. Audubon parle de la reproduction des males de l'Ibis tantalus avant l'gge adulte comme d'un fait fort rare; M. Swinhoe en dit autant des males non adultes de l'Oriolus ${ }^{38}$. Si les jeunes d'une espèce quelconque portant leur plumage primitif réussissaient mieux que les adultes à trouver des compagnes, le plumage adulte se perdrait probablement bientot, car les males qui conserveraient le plus longtemps leur jeune plumage prévaudraient, ce qui tendrait à modifier ultérieurement les caractères de l'espèce ${ }^{39}$. Si , au contraire, les jeunes males ne parvenaient pas à se procurer des femelles, l'habitude d'une reproduction précoce disparaftrait tôt ou tard complètement, comme superflue et comme entrainant à une perte de force.
Le plumage de certains oiseaux va croissanien beauté pendant plusieurs années après qu'ils ont atteint l'état adulte ; c'estle cas de la queue du paon, et des aigrettes et des plumets de quelques hérons, 1'Ardea Ludoviciana par exemple ${ }^{10}$; mais on peut hésiter à attribuer le développement con tinu de ces plumes à la sélection de variations successives avantageuses (bien que, chez les oiseaux de paradis, ce soit l'hypothèse la plus pro-

Le gobe-mouche américain (Muscicapa rulicilla, vol. I, p. 203). L'Ibis tantalus

 met quatre ans pour arriver à maturation complète, mais s'apparie quelquefois dans le cours de la seconde année (vcl. III, p. 133). Le Grus Americanus prend p. 211) temps et reproduit avant d'avoir revêtu son plumage parfait (vol. III, voir apparis Ardea crrulea adultes sont bleus et les jeanes blancs, et ou peut adultes (vol. IV, p. 58) ; mais M, blancs pommelés et des oiseaux bleus évidemment dimorphes, car on M. Blyth m'apprend que certaius hérons sont blancs, les autres colorés. on peut voir des individus du mème age les uns plumage complet qu'au bout canard arlequin (Anas histrionica) ne revèt son dès la seconde année (vol. IIL, vol. III, p. 210) reproduit égatement ave a tete blanche (Falco leucocephalus d'Oriolus (selon MM. Blyth et Swinhoe, avant detre adulte. Quelques especes 38. Voir la note précédente,39. D'autres animaux fisi
tuellement, ou occasionnellemt partio de classes fort distinctes sent, ou habiaequis leurs caracteres adult capables de reproduire avant qu'tls aient On conoait plusieurs Amphibiemplets. C'est le cas dea jeunes saumons males. encore leur conformation lareus qui se sont reproduits alors qu'ils avaient 1869) que les mâles de plusieurse. Fritz Müller a prouvé (für Darwin, etc., fort jeunes; et je conclus que c'est la uo amphipodes se complètent sexuellement qu'ils n'ont pas encore acquis leurs appen de reproduction prématurée, parce ces faits sont intéressants aul plus haut ppendices préhensiles complets. Tous qui peut provoquer de krandes modifiet point en ce qu'ils portent sur un moyen 40. Jerdon Rirds of India, vol que les oiseaux de paradis males, plus pieur sur le Paon. Le Dr Marshall pense supériorité sur les jerines ; voir Archives vieux et plus brillants, out unè certaine o. c., vol. II, p. 139, sur l'Ardea.
bable) ou simplement à un fait de eroissance prolongée. La plupart des poissons continuent à augmenter de taille tant qu'ils sont en bonne sant et qu'ils ont à leur disposition une quantité suffisante de nourriture; et il se peut qu'une loi semblable régisse la croissance des plumes des oiseaux.
Classe V. Lorsque les adultes des deux sexes ont an plumage pendant Thiver et un autre pendant l'èle, que le male differre ou non de la femelle, les jeunes ressemblent aux adultes des deux seas dans leur tenue d'hiver, ou beaucoup plus rarement dans leur tenue d'été, ou ressemblent aux femelles seules; ou ils peuwent présenter un caractère intermédiaire; ou enfin ils peuvent differer considérablement des adultes, soit que ces derniers portent leur plumage d'hiver ou celui d'éé, - Les cas que présente cette classe sont fort complexes, ce qui n'est pas étonnant, car ils dépendent de l'hérédité limitée plus ou moins par trois causes différentes, c'est-à-dire le sexe, l'age, et l'époque de l'année. Dans quelques cas, des individus de la méme espèce passent par au moins cinq états distincts de plumage. Chez les espèces où les males ne diffèrent de la femelle que pendant l'été, ou ce qui est plus rare, pendant les deux saisons ${ }^{41}$, les jeunes ressemblent en général aux femelles, - comme chez le prétendu chardonneret de l'Amérique du Nord, et selon toute apparence, chez le magnifique Maluri d'Australie ${ }^{\text {t2 }}$. Chez les espèces où les sexes se ressemblent êté et hiver, les jeunes peuvent premièrement ressembler aux adultes dans leur tenue d'hiver; secondement, ce qui est beaucoup plus rare, ils peuvent ressembler aux adultes dans leur tenue d'été; troisièmement, ils peuvent affecter un état intermédiaire entre ges deux êtats: et, quatrièmement ils peuvent différer beaucoup des aduttes en toute saison. Le Buphus coromandus de l'Inde nous fournit u. exemple du premier de ces quatre cas: les jeunes el les adultes des deux sexes sont blancs pendant l'hiver et les adultes revétent, pendant l'été, une teinte buffle dorée. Chez l'Anastomus oscitans de l'Inde, nous observons un cas semblable avee renversement des couleurs; car les jeunes et les adultes des deux sexes sont gris et noirs pendant l'hiver et les aduites deviennent blancs pendant l'été ${ }^{43}$. Comme exemple du second cas, les jeunes pingouins (Alca torda, Linn.), dans le premier état de leur plumage, sont colorés comme les adultes le sont en été; et les jeunes du moineau à couronne blanche de I'Amérique du Nord (Fringilla leucophrys) portent, dès qu'ils sont emplumés, d'élégantes raies blanches sur la tete, qu'ils perdent ainsi que les adultes pendant lhiver ${ }^{\text {4. }}$. Quant au troisième cas, celuì où les jeunes ont un plumage intermédiaire entre celui d'hiver et celui d'été chez les adultes, Yarrell ${ }^{45}$ assure qu'on peut l'observer chez beaucoup d'Échassiers. Enfin, pour le dernier cas, où les jeunes diffè-
40. Pour des exemples, voir Macgillivray, Hist. Brit. Birds, vol. IV ; sur le Tringa, etc., p. 229, 271; sur te Machetes, p. 172; sur le Charadrius hiticula, p. 118 ; sur le Charadrius pluvialis, p. 94.
41. Sur le Chardonneret de l'Amérique du Nord, Fringilla trislis, Audubon, Orn. Biogr., vol. I, p. 172. Pour le Maluri, Gould, Handbook, etc., vol. I, p. 318.
42. Je dois à M-Blyth les renseignements sur le Buphus ; Jerdon, o. c., vol. III, p. 749. Sur l'Anastomus, Blyth, 1bis, 1867, p. 173.
43. Sur PAlca, Maegillivray, o. c., vol. V, p.347. Sur Ia Fringilla leucophrys, Audubon, o. e., vol. H, p. 89. J'aurai plus tard à rappeler le féa que les jeunes (de oertalns herrons et de cerraines ajgrettes sont blancs.
44. History of Beftish Bleds, vol. 1, 1889, p. 159.

[Chap. XVI]. rapports entre le plumage des deux sexes 516

rent considérablement des adultes des deux sexes, soit que ces derniers portent leur plumage d'été, soit quils portent leur plumage d'hiver, on observe le fait chez quelques hérons de l'Amérique du Nord et de l'Inde, les jeunes seals étant blancs.

Je me bornerai a faire quelques remarques sur ces cas si complexes. Lorsque les jeunes ressemblent à la femelle dans sa tenue d'été, ou aux adultes des deux sexes dans leur tenue d'hiver, ils ne different de ceux groupés dans les classes I et IH qu'en ce que les caractères originelle. ment acquis par les mâles pendant la saison des amours, ont été limités dans leur transmission à la saison correspondante. Lorsque les adultes ont deux plumages distincts, un pour l'été et l'autre pour l'hiver, et que le plumage des jeunes diffère de l'un et de l'autre, le cas est plus difficile à comprendre. Nous pouvons admettre comme probable que les jeunes ont conservé un ancien état de plumage; nous pouvons expliquer par l'influence de la sélection sexuelle le plumage d'été, ou plumage nuptial des adultes, mais comment expliquer leur plumage d'hiver distinct? S'il nous était possible d'admettre que, dans tous les cas, ce plumage constitue une protection, son acquisition serait un fait assez simple, mais je ne vois pas de bonnes raisons sur lesquelles baser cette supposition. On peut soutenir que les conditrons vitales si différentes entre l'été et l'hiver ont agi directement sur le plumage ; cela peut, en effet, avoir produit quelque résultat, mais je ne crois pas qu'on pusse voir dans ces conditions la cause de différences aussi considérables que celles que nous observons quelquefois entre les deux plumages. L'explication la plus probable est celle d'une conservation chez les aduHtes, pendant l'hiver, d'un ancien type de plumage, partiellement modifié par une transmission de quelques caractères propres au plumage d'été. En résumé, tous les cas que présente la classe qui nous occupe dépendent, sclon toute apparence, de caractères acquis par les mâles adultes, caractères diversement limités dans leur transmission suivant l'áge, la saison ou le sexe; mais il serait inutile et oiseux d'essayer de suivre plus loin des rapports aussi complexes:

Classe VI. Les jeuzes diffèrent entre eux suivant le sexe par leur premier plumage, les jeunes mates ressemblant de plus ou moins près aux males adultes, et les jeunes femelles ressemblant de plus ou moins près aux fenvelles adultes. - Les cas de cette classe, bien que se présentant dans des groupes divers, ne sont pas nombreux; et cependant, il nous seemble tout naturel que les jeanes dussent d'abord, jusqu'à un certain point, ressembler aux adultes du mème sexe, pour arriver enfin à leur ressembler tout à fait. Le male adulte de la fauvette à tete noire (Sylvia atricapilla) a la tete noire; la tete est brun rouge chez la femelle; et M. Blyth m'apprend qu'on peut même distinguer par ce caractère les jeunes des deux sexes eneore dans le nid. On a constaté un nombre inusité de cas analogues dans la famille des merles; le merle commun male (Turdus merula) peut se distinguer de la femelle méme dans le nid. Les deux sexes de l'oisean moqueur (T. polygtoftus Linn.) different fort peu l'un de l'autre; cependant on peut facilement distinguer, dès un age très précoce, les males eit les femelles, en ce que les premiers offrent plus de blanc ${ }^{40}$. Les males d'une espece habitant les forets (Orocetes erythro-
gastra) et du merle bleu (Petrocincla cyanea) ont une grande partie de leur plumage d'un beau bleu, tandis que les femelles sont brunes; et les males des deux espèces encore dans le nid ont les rémiges et les rectrices principales bordées de bleu, tandis que celles de la femelle sont bordées de brun ${ }^{47 \text {. De sorte que ces mémes plumes qui chez le jeune }}$ merle noir, prennent leur caractère adulte et deviennent noires après les autres, revêtent dès la naissance dans ces deux espèces le méme caractère adulte et deviennent bleues avant les autres. Ce qu'on peut dire de plus probable sur ces cas, est que les malles, différant en cela de ceux de la première classe, ont transmis leurs couleurs à leur descendance male à un age plus précoce que celui auquel ils les ont euxmémes acquises; car, s'ils avaient varié très jeunes, ils auraient probablement transmis tous leurs caractères à leurs descendants des deux sezes ${ }^{4}$.

Chez l'Aithurus polytmus (oiseau-mouche), le male est magnifiquement coloré noir et vert, et porte deux rectrices qui sont énormément allongees; la femelle a une queue ordinaire et des couleurs peu apparentes; or, au lieu de ressembler à la femelle adulte, conformément à la règle habituelle, les jeunes males commencent dès leur naissance à revêtir les couleurs propres à leur sexe et leurs rectrices ne tardent pas à s'allonger. Je dois ces renseignements à M. Gould, qui m'a communiqué le cas encore plus frappant que voici, cas qui n'a pas encore été publié. Deux oi-seaux-mouches appartenant au genre Eustephanus, habitent la petite ile de Juan-Fernandez; tous deux sont magnifiques de coloration et ont toujours été considérés comme spécifiquement distincts. Mais on s'est récemment assuré que l'un, d'une couleur brun marron fort riche, avec la téte rouge dorée, est le mâle, tandis que ıautre, qui est élégamment panaché de vert et de blanc et a la tête d'un vert métallique, est la fernelle. Or, tout d'abord, les jeunes présentent, jusqu'à un certain point, avec les adultes du sexe correspondant, une ressemblance qui augmente peu à peu et finit par devenir complète.

Si nous considérons ce dernier cas, en nous guidant comme nous l'avons fait jusqu'à présent sur le plumage des jeunes, il semblerait que les deux sexes se sont embellis d'une façon indépendante, et non par transmission partielle de la beauté de l'un des sexes à l'autre. Le male a, selon toute apparence, acquis ses vives couleurs par l'influence de la sélection sexuelle, comme le paon ou le faisan dans notre première classe de cas; et la femelle, comme celle du Rhynchæa ou du Turnix dans la seconde classe. Mais il est fort difficile de comprendre comment ce résultat a pu se produire en même temps chez les deux sexes de la même espèce. Comme nous l'avons vu dans le huitième chapitre, M. Sal-
47. M. C. A. Wright, Ibis., vol. VI, 1864, p. 65. Jerdon, Birds of India, vol. I, p. 515. Voir aussi sur le Merle, Blyth dans Charlesworth, Mag. of. Nat. Hist., vol. I, 1837, p. 113.
48. On peut ajouter les cas suivants: les jeunes males du Tanagra rubra peuvent se distinguer des jeunes femelles (Audubon, o. c., vol. IV, p. 392) ; il ea est de mème des jeunes d'une Sitelle bleve Dendrophila frontalis de l'Inde (Jerdon, Birds of India, vol. 1, p. 389). M. Blyth m'apprend aussi que les sexes du Traquet (Saxicola rubicola) pecivent se distinguer de trés bonue heure. M. Salvin (Proc. Zool. Soc., 1870, p. 206), cito le eas d'un oiseau-mouche analogne à celui de T'Euslephants.

Abstract

vin constateque, chez certains oiseaux-motwhes, le nombre desmates excede de beaucoup celui des femelles, tandis que dans d'autres espèces habitant le même pays, ce sont les femelles qui sont en nombre plus considérable que les males. Or nous pourrions supposer que, pendant une longue période antérieure, les males des espèces de líle Juan Fernandez ont de beaucoup excédé les femelles, et que, pendant une autre longue période, ce sont les femelles qui ont été plus abondantes que les males; nous pourrions, dans ce cas, comprendre comment il se fait que les males à un moment, et les femelles à un autre, aient pu s'embellir par la sélection des individus les plus vivement colorés de chaque sexe ; les individus des deux sexes auraient, en outre, transmis leurs caractères à leurs jeunes, à un age un peu plus précoce qu’à l'ordinaire. Je n'ai nullement la prétention de soutenir que cette explication soit la vraie, mals le cas était trop remarquable pour n'etre pas signalé.

Les nombreux exemples que nous avons cités, dans chacune des six classes, nous autorisent à conclure qu'il existe d'intimes rapports entre le plumage des jeunes et celui des adultes, tant d'un sexe que des deux sexes. Le principe qu'un sexe - qui, dans la grande majorité des cas, est le male - a d'abord acquis par variation et par sélection sexuelle de vives couleurs et divers autres ornements, puis les a transmis de diverses manières, d'après les lois connues de l'hérédité, permèt d'expliquer ces rapports. Nous ne saurions dire pourçuoi des variations ont surgi à différents ages, même chez les espèces d'un même groupe; mais l'age auquel les variations ont apparu en premier lieu parait avoir eu une influence prépondérante sur la forme de la transmission qui a prévalu.

Le principe de l'hérédité aux áges correspondants, le fait que les variations de couleur, qui apparaissent chez les males très jeunes, ne sont pas soumises à l'influence de la sélection, mais sont, au contraire, éliminées comme dangereuses, tandis que des variations semblables surgissant à l'age adulte, se conservent, amènent l'absence complète, ou à peu près, de modifications dansle plumage des jeunes. Cette absence de modifications nous permet d'entrevoir quelle a dû être la color ion des ancêtres de nos espèces actuelles. Dans cinq de $n \rho s$ six \ldots egories, les adultes males et femelles d'un nombre considérable d'espéces affectent des couleurs brillantes, au moins pendant la saigon des amours, tandis que les jeunes sent invariablement mojas colorés et sont même souvent tout à fait obscurs; je n'ai, on effet, pu trouver un seul cas où les jeunes d'espèces à couleurs sombres, offrent une coloration plus vive que celles de leurs parents; je n'ai pu découvrir non plus un seul exemple de jeunes, apparteriant à des espèces brillamment colorées, qui portent des couleurs plus brillantes que celles de leurs parents. Toutefois,
dans la quatrième classe, où jeunes et adultes se ressemblent, il y a beaucoup d'espéces (mais non pas toutes certainement) qui sont brillamment colorées; or, comme ces espèces constituent des groupes eatiers, on pourrait en conclure que les ancêtres primitifs de ces espèces devaient porter des couleurs également lerillantes. A cette exception près, et considérant les oiseaux dans leur ensemble, il nous semble que leur beauté a da fort s'augmenter; leur plumage devait être primitivement dans les mêmes conditions que le plumage das jeunes aujourd'hui.

De la coloration du plumage dans ses rapports avec la protection. Je ne peux, on l'a vu, admettre avec M. Wallace que, dans la plupart des cas, les couleurs ternes, quand elles sont limitées aux femelles, aient été spécialement aequises dans un but de sécurité. Toutefois, on ne peut douter que, chez beaucoup d'oiseaux, les deux sexes n'aient subi des modifications de couleur pour échapper aux regards de leurs ennemis; ou, dans quelques cas, pour s'approcher de leur proie sans être aperçus; ainsi le hibou, dont le plumage s'est modifié de telle sorte que son vol ne produit plus aucun bruit. M. Wallace ${ }^{49}$ remarque que e c'est seulement sous les tropiques, au milieu de forêts qui ne se dépouillent jamais de leur feuillage, que nous rencontrons des groupes entiers d'oiseaux dont le vert constitue la couleur prinerpale: > Quiconque a eu l'occasion de l'observer doit reconnaitre combien il est difficile de distinguer des perroquets sur un arbre couvert de feuilles. Nous devons nous rappeler cependant que beaucoup d'entre eux sont ornés de teintes écarlates, bleues et orangées qui ne doivent guère être protectrices. Les pics sont des oiseaux qui vivent sur les arbres; mais, à côté des espèces vertes, il y a des espèces noires et des espèces noires et blanches, et toutes ces espèces sont évidemment exposées aux mêmes dangers. Il est donc probable que les oiseaux vivant sur les arbres ont acquis leurs couleurs voyantes, grace à l'influence de la sélection sexuelle, mais que les teintes vertes ont e. .ir les autres nuances, en vertu de la sélection naturelle, un ava se comme moyen de sécurité.

Quant aux oiseaux qui vivent sur le sol, personne ne contestera que les teintes de leur plumage n'imitent parfaitement la couleur de la terre. Combien n'est-il pas difficile d'apercevoir une perdrix, une bécasse, un coq de bruyère, certains pluviers, alonettes et engoulevents, lorsqu'ilsse blottissent sur le sol! Les animaux qui

[^255]habitent les déseris offrent les exemples les plus frappants en ce genre : la surface nue du sol ne leur donne aucun abri et la sécurité de tous les petits quadrupèdes, de tous les reptiles et de tous les oiseaux dépend de leur couleur. Ainsi que le remarque M. Tristram ${ }^{50}$ au sujet des habitants du Sahara, tous sont protégés par leur \& couleur sable ou isabelle *. D'après ce que j'avais vu dans les déserts de l'Amérique du Sud, et observé pour la plupart des oiseaux de l'Angleterre qui vivent sur le sol, il me semblait que les deux sexes avaient, en général, la même coloration. M'étant adressé à M. Tristram pour les oiseaux du Sahara, il a bien voulu me donner les informations que je transcris ici. Il y a vingt-six espèces appartenant à quinze genres qui ont un plumage dont la couleur les protège évidemment; et cette coloration spéciale est d'autant plus frappante que, pour la plupart de ces oiseaux, elle est différente de celle de leurs congénères. Dans treize espèces sur les vingt-six, les deux sexes ont la même teinte; mais comme elles appartiennent à des geares où l'identité de coloration est de règle ordinaire, on ne peut rien en conclure sur les couleurs protectrices dans les deux sexes des oiseaux du désert. Sur les treize autres espèces, il en est trois qui appartiennent à des genres dont les sexes diffèrent habituellement entre eux, mais qui se ressemblent au désert. Dans les dix espèces restantes, le male differre de la femelle, mais la différence n'existe que dans cette partie du plumage, qui se trouve cachée, lorsque l'oiseau se blottit sur le sol; la tête et le dos ayant d'ailleurs la même teinte de sable dans les deux sexes. Dans ces dix espéces, par conséquent, il y a eu action exercée par la sélection naturelle sur le plumage supérieur des deux sexes, pour le rendre semblable dans un but de sécurité; tandis que le plumage inférieur des mâles seuls a été modifié et orné par la sélection sexuelle. Comme, dans le cas actuel, les deux sexes sont également bien protégés, nous voyons clairement que la sélection naturelle n'a pas empèché les femelles d'hériter des couleurs de leurs parents mâles; nous devons donc, comme nous l'avons déjà expliqué, recourir icià la loi de la transmission sexuellement limitée.

Dans toutes les parties du monde, les deux sexes des oiseaux à bec mou, surtout ceux qui fréquentent les roseaux et les carex, portent des couleurs sombres. Il n'est pas douteux que si elles eussent été brillantes, ces oiseaux auraient été plus exposés à la vue de leurs ennemis; mais, autant que je puis en juger, il me parait
50. Ibis, 1859, vol. 1, p. 429 et suivantes. Toutefois le docteur Rohlfs me falt remarquer qu'à en juger par lez obserrations qu'il a pu faire dans le Sahara, cette assertion est trop péremptoire.
douteux que leurs teintes obscures aient été acquises en vue de leur sécurité. Il l'est encore davantage qu'elles l'aient été dans un but d'ornementation. Nous devons toutefois nous rappeler que les oiseaux males, bien que de couleur terne, diffèrent souvent beaucoup de leurs femelles, ainsi le moineau commun, ce qui ferait croire que ces couleurs sont bien un produit de la sélection sexuelle et ont été acquises comme couleurs attrayantes. Un grand nombre d'oiseaux à bec mou sont chanteurs; or, nous avons vu que les meilleurs chanteurs sont rarement ornés de belles couleurs. Il semblerait, en règle générale, que les femelles choisissent les males, soit à cause de leur belle voix, soit pour leurs vives couleurs, mais s'inquiètent peu de la réunion de ces deux charmes. Quelques espèces, évidemment colorées dans un but de sécurité, comme la bécasse, le coq de bruyère, l'engoulevent, sont également tachetées et ombrées avec une extrême élégance. Nous pouvons conclure que, dans ces cas, la sélection naturelle et la sélection sexuelle ont toutes deux agi pour assurer la protection et l'ornementation. On peut douter qu'il existe un oiseau qui n'ait pas quelque attrait spécial pour charmer l'aulre sexe. Lorsque les deux sexes sont assez pauvres d'apparence pour exclure toute probabilité d'action de la sélection sexuelle, et qu'il n'existe aucune preuve d'utilité protectrice, il vaut mieux avouer qu'on ignore la cause de cette pauvreté d'extérieur, ou, ce qui revient à peu près au même, l'attribuer à l'action directe des conditions d'existence.

Chez beaucoup d'oiseaux, les deux sexes sont colorés d'une manière très apparente mais peu brillante, comme les nombreuses espèces qui sont noires, blanches ou pies; or, ces colorations sont probablement le résultat de l'action de la sélection sexuelle. Chez le merle commun, chez le grand tétras, chez le tétras noir, chez la macreuse noire (Oidemia) et même chez un oiseau du paradis (Lophorina atra), les males seuls sont noirs, tandis que les femelles sont brunes ou pommelées, et il n'est guère douteux que, dans ces cas, la couleur noire ne soit le résultat de la sélection sexuelle. Il est donc jusqu'à un certain point probable que la coloration noire complète ou partielle des deux sexes, chez des oiseaux comme les corbeaux, quelques cacatoès, quelques cigognes, quelques cygnes, et beaucoup d'oiseaux de mer, est également le résultat de la sélection sexuelle, avec égale transmission aux deux sexes, car la couleur noire ne peut, dans aucun cas, servir à la sécuritc. Chez plusicur's oistaux où le male seul est noir, et chez d'autres où les deux sexes le sont, le bec et la peau qui recouvre ia tête revêtent une coloration intense, et le contrastequi en résulte ajoute beaucoup

[CHAP. XVI]. RAPPORTS ENTRE LE PLUMAGE DES DEUX SEXES 521

à leur beauté; nous en voyons des exemples dans le bec jaune brillant du merle male, dans la peau écarlate qui recourre les yeux du tétras noir et du grand tétras, dans le bec diversement et vivement coloré de la macreuse noire (Oidemia), les becs rouges des choucas (Corvus graculus Linn.), des cygnes et des cigognes' à plumage noir. Ceci m'a conduit à penser qu'il n'y aurait rien d'impossible à ce que les toucans puissent devoir à la sélection sexuelle les énormes dimensions de leur bec, dans le but d'exhiber les raies colorées si variées et si éclatantes qui ornent cet organe ${ }^{51}$. La peau nue qui se trouve à la base du bec et autour des yeux, est souvent aussi très brillamment colorée et M. Gould dit, en parlant d'une espèce ${ }^{52}$, que les couleurs du bec \& sont incontestablement à leur point le plus brillant et le plus beau pendant la saison des amours.) Il n'y a pas plus d'improbabilité à ce que les toucans se soient embarrassés d'énormes becs, que leur structure rend d'ailleurs aussi légers que possible, pour un motif qui nous parait à tort insignifiant, à savoir, l'étalage de belles couleurs, qu'il n'y en a à ce que les faisans argus et quelques autres oiseaux mâles aient acquis de longues pennes qui les encombrent au point de gêner leur vol.

De même que chez diverses espèces les mâles seuls sont noirs, tandis que les femelles sont de couleur terne, de même aussi, dans quelques cas, les males seuls sont partiellement ou entièrement blancs, comme chez plusieurs Chasmorynchus de l'Amérique du Sud, chez l'oie antarctique (Bernicla antarctica), chez le faisan argenté, etc., tandis que les femelles restent sombres ou obscurément pommelées. Par conséquent, en vertu du même principe, il est probable que les deux sexes de beaucoup d'oiseaux, tels que les cacatoès blancs, plusieurs hérons avec leurs splendides aigrettes, certains ibis, certains goêlands, certains sternes, etc., ont acquis par sélection sexuelle leur plumage plus ou moins blanc. Ce plu. mage blanc n'apparait quelquefois qu'à l'état adulte. C'est également le cas chez certaines oies d'Écasse, chez certains oiseaux des

[^256]tropiques, etc., et chez I'Anser hyperboreus. Cetto dernière espèce se reproduit sur les terrains arides, non couverts de neige, puis émigre vers le Midi pendant l'hiver ; il n'y a donc pas de raison de supposer que son plumage blanc lui serve de protection. Dans le cas de l'Anastomus oscitans, auquel nous avons précédemment fait allusion, nous trouvons la preuve que le plumage blanc a un caractère nuptial, car il ne se développe qu'en été; les jeunes et les adultes, dans leur terme d'hiver, sont gris et noirs. Chez beaucoup de mouettes (Larus), la tete et le cou deviennent blanc pur pendant l'été, tandis qu'ils sont gris ou pommelés pendint l'hiver et chez les jeunes, D'autre part, chez les mouettes plus petites (Gavia), et chez quelques hirondelles de mer (Sterna), c'est précisément le contraire; pendant la première année pour les jeunes, et pendant l'hiver pour les adultes, la tete est d'un blanc pur ou d'une teinte beaucoup plus pale que pendant la saison des amours. Ces derniers cas offrent un autre exemple de la maniére capricieuse suivant laquelle la sélection sexuelle paralt avoir fréquemment exercé son action ${ }^{53}$.

La plus grande fréquence d'un plumage blanc chez les oiseaux aquatiques que chez les oiseaux terrestres provient probablement de leur grande taille et de leur puissance de vol, ce qui leur permet de se défendre aisément contre les oiseaux de proie ou de leur échapper; ils sont d'ailleurs peu exposés aux attaques. La sélection sexuelle n'a done pas été troublée ou réglée par des besoins de sécuritó. Il est hors de doute que, chez des oiseaux qui planent librement au-dessus de l'Océan, les males et les femelles se rencontreront plus facilement, si leur plumage blane ou noir intense les rend très apparents; ces colorations semblent done remplir le meme but que les notes d'appel de beaucoup d'oiseaux terrestres ${ }^{54}$. Un oiseau blane ou noir qui s'abat sur une carcasse flottant sur la mer ou échouée sur le rivage, sera vu à une grande distance et attirera d'autres oiseaux de la même espèce ou d'autres espèces ; mais il en résulterait un désavantage pour les premiers arrivés, les individus les plus blancs ou les plus noirs n'ayant pu prendre plus de nourriture que les individus moins brillants. La sélection naturelle n'a donc pu graduellement produire les couleurs voyantes dans ce but.

[^257]
[Ghap. XVI]. rapports entre le plumage des deux sexes 533

La sélection sexuelle dépendant des caprices du goat, il est facile de comprendre qu'il peut exister dans un meme groupe d'oiseaux, ayant presque les mêmes habitudes, des espèces blanches ou à peu près, et des espèces noires ou approchant, - par exemple chez les cacatoès, chez les cigognes, les ibis, les cygnes, les sternes et les pétrels. On rencontre quelquefois dans les mêmes groupes des oiseaux pies; par exemple le cygne à cou noir, certains sternes, et la pie commune. Il suffit de parcourir une collection de spécimens ou une série de figures coloriées, pour conelure que les contrastes prononcés de couleur plaisent aux oiseaux; car les sexes diffèrent fréquemment entre eux en ce que le male a des parties pales d'un blanc plus pur et des parties colorées de diverses manières, encore plus foncées de teinte que la femelle.

Il semble méme que la simple nouveauté, le changement pour le changement, ait quelquefois eu de l'attrait pour les oiseaux femelles, de même que les changements de la mode ont de l'attrait pour nous. Ainsi, des perroquets mâles à peine plus beaux que les femelles, à notre avis, ne diffèrent de celles-ci que par un collier rose, au lieu du collier étroit vert émeraude éclatant » ou par un collier noir remplaçant \& le demi-collier jaune antérieur», ou encore par les teintes roses de la tête qui se sont substituées au bleu de prune ${ }^{55}$. Tant d'oiseaux males sont pourvus, à titre d'ornement principal, de rectrices ou d'aigrettes allongées, que la queue écourtée que nous avons décrite chez un oiseau-mouche et l'aigrette diminuée du male du grand Harle semblent pouvoir se comparer aux nombreux changements que la mode apporte sans cesse à nos costumes, changements que nous ne nous lassons pas d'admirer.

Quelques membres de la famille des hérons nous offrent un cas encore plus curierux d'une nouvelle coloration qui, selon toute apparence, n'a été appréciée que pour sa ncuveauté. Les jeunes de l'Ardea asha sont blancs, les adultes de couleur ardoisée et foncée; et non seulement les jeunes, mais les adultes d'une espèce voisine (Buphus coromandus), sont blancs dans leur plumage d'hiver, et teinte chamois doré pendant la saison des amours. Il est difficile de croire que les jeunes de ces deux espéces, ainsi que de quelques membres de la même famille ${ }^{50}$, aient revêtu spécialement un blanc pur, et soient ainsi devenus très voyants pour leurs ennemis; ou que
55. Jur le genre Palæornis, Jerdon, Birds of India, 1, p. 258-260.
56. Lés jeunes des Ardea rufescens et des A. cærulea des Etats-Unis sont également blancs, les aduttes étant colorés selon leurs noms spécifiques. Audubon (o, c., III, p. 416 ; IV, p. 58) paratt satisfait a la pensée que ce changement remarquable dans le plumage déconcertera, grandement les systématistes.
les adultes d'une des deux espèces aient été spécialement rendus blancs pendant l'hiver dans un pays qui n'est jamais couvert de neige. D'autre part, nous avons lieu de croire que beaucoup d'oiseaux ont acquis la couleur blanche comme ornement sexuel. Nous pouvons donc conclure qu'un ancêtre reculé de l'Ardea asha et qu'un ancêtre du Buphus ont revetu un plumage blanc pendant la saison des amours, et qu'ils l'ont ensuite transmis à leurs jeunes; de sorte que les jeunes et les adultes devinrent blancs comme certains hérons à aigrette; cette couleur blancho a été ensuite conservée par les jeunes, tandis que les adultes l'échangeaient pour des teintes plus prononcées. Mais si nous pouvions remonter plus en arrière encore dans le passé, jusqu'aux ancêtres plus anciens de ces deux espèces, nous verrions probablement que les adultes avaient une coloration foncée. Je conclus qu'il en serait ainsi par l'analogie avec d'autres oiseaux qui ont des couleurs sombres lorsqu'ils sont jeunes et deviennent blancs une fois adultes; ce qui le prouve plus particulièrement, d'ailleurs, c'est l'exemple de l'Ardea gularis, dont les couleurs sont l'inverse de celles de l'A. asha, car les jeunes de cette espèce portent des couleurs sombres, parce qu'ils ont conservé un ancien état de plumage, et les adultes sont blancs. Il parait donc que, dans leur état adulte, les ancêtres des Ardea asha, des Buphus et de quelques formes voisines, ont éprouvé, dans le cours d'une longue ligne de descendance, les changements de couleur suivants : d'abord une teinte sombre, puis blane pur, et, enfin, par un autre changement de mode (sije puis m'exprimer ainsi), leurs teintes actuelles ardoisées, rougeâtres, ou chamois doré. On ne peut comprendre ces changements successifs qu'en admettant le principe que les oiseaux ont admiré la nouveauté pour elle-même.

Plusieurs savants ont repoussé toute la théorie de la sélection sexuelle en se basant sur ce que chez les animaux, de même que chez les sauvages, le goût de la femelle pour certaines couleurs et pour certains ornements ne peut pas persister pendant de nombreuses générations; que les femelles doivent admirer tantot une couleur, tuntôt une autre, et qu'en conséquence aucun effet permanent ne pourrait se produire. Nous admettons parfaitement que le goût est apte à changer mais non pas d'une façon absolument arbitraire. Ler fout, nous en voyons la preuve chez l'espèce humaine, dépend beaucoup de l'habitude; nous pouvons admettre qu'il en est de même chez les oiseaux et chez les autres animaux. Méme quand il s'agit de nos costumes, le même caractère général persiste très longtemps et les changements sont presque toujours gradués. Nous citerons dans un chapitre subséquent, des faits nom-
[Chap. XVI]. rapports entre le plumage des deux sexes 525
breux qui prouvent évidemment que les sauvages de bien des races ôt admiré, pendant de longues générations, les mêmes cicatrices sur la peau, les mêmes periorations hideuses des lèvres, des narines ou des oreilles, etc., et ces difformités présentent quelque analogie avec les ornements naturels de divers as.imaux. Toutefois ces modes ne persistent pas toujours chez les sauvages, comme semblent le prouver les différences au point de vue des ornements qu'on observe entre les tribus alliées habitant le même continent. En outre, les éleveurs d'animaux ont certainement admiré pendant bien des générations et admirent encore les mêmes races; ils recherchent avec soin de légères modifications qu'ils considèrent comme un perfectionnement, mais ils repoussent tout changement considérable qui se présente soudainement. Nous n'avons aucune raison de supposer que les oiseaux à l'état de nature admireraient un mode de coloration entièrement nouveau, en admettant même que de grandes et soudaines variations surgissent fréquemment, ce qui est loin d'être le cas. Nous savons que les pigeons de colombier ne s'associent pas volon'iers avec les pigeons de diverses couleurs ; nous savons aussi que les oiseaux albinos ne trouvent pas à s'accoupler, et que les corbeaux noirs des iles Féroé chassent impitoyablement les corbeaux-pies qui habitent les mêmes iles. Mais cette haine pour un changement soudain n'cmpeche certainement pas les oiseaux d'apprécier des modifications légères, tout comme le fait l'homme. En conséquence, quand il s'agit du goût qui dépend de bien des causes, mais surtout de l'habitude et aussi de l'amour de la nouveauté, il semble probable que les animaux ont admiré pendant une longue période le même style général d'ornementation et d'autres attractions, et cependant qu'ils apprécient de légères modifications dans les couleurs, les formes ou la musique.

Résumé des quatre chapitres sur les Oiseaux. - La plupart des oiseaux males sont très batailleurs pendant la saison des amours, et il en est qui ne sont armés que dans le but spécial de se battre avec leurs rivaux. Mais la réussite des plus belliqueux et des mieux armés ne dépend que rarement de leur triomphe sur leurs rivaux ; il leur faut, en outre, des moyens spéciaux pour charmer les femelles. C'est, chez les uns, la faculté de chanter ou d'émettre des cris étranges, ou d'exécuter une sorte de musique instrumentale : aussi les males different-ils des femelles par leurs organes vocaux ou par la conformation de certaines plumes. La diversité singulière des moyens propres à produire des sons diffé-
rents nous montre l'importance que doit avoir ce moyen quand il s'agit de séduire les femelles. Beaucoup d'oiseaux cherchent à attirer l'attention des femelles en se livrant à des danses et à des bouffonneries, soit sur le sol, soit dans ies airs, quelquefois sur des emplacements préparés. Mais les moyens les plus communs consistent en ornements de diverses sortes, teintes éclatantes, crêtes et appendices, plumes magnifiques fort longues, huppes, etc. Dans quelques cas, la simple nouveauté parait aveir exercé un attrait. Les ornements que pertent les mâles semblent avoir pour eux une haute importance, car ils les ont souvent acquis au prix d'une augmentation de danger du coté de l'ennemi, et mème d'une perte de puissance dans lá lette contre leurs rivaux. Les mâles de beaucoup d'espéces ne revétent leur costume brillant qu'à l'áge adulte, ou seulement pendant la saison des amours; les couleurs prennent alors une plus grande intensité. Certains appendices décoratifs s'agrandissent, deviennent turgescents et très colorés pendant qu'ils font leur cour. Les mâles étalent leurs charmes devant les femelles avec un soin raisonné et de manière à produire le mèilleur effet. La cour que les males font aux femelles est quelquefois une affaire de longue baleitie, et an grand nombre de males et de femelles se rassemblent en un lieu désigné pour se courtiser. Supposer que les femelles n'apprécient pas la beauté des males serait admettre que les belles décorations de ces derniers et l'élalage pompeux qu'ils en font sont inutiles; ce qui n'est pas croyable. Les oiseaux ont une grande finesse de discernement, et il est des cas qui prouvent qu'ils ont du goot pour le beau. Les femelles manifestent d'ailleurs, parfois, une préférence ou une antipathie marquée pour certains individus males.
Si on admet qué les femelles sont inconsciemment excitées par les plus beaux mâles et les préfèrent, il faut admettre aussi que la sélection sexuelle doit tendre, lentement mais sûrement, à rendre les males totjours plus attrayants. Du fait que, dans presque tous les genres, où les sexes ne sont pas semblables quant à l'extérieur, les máles different beaucoup plus entre eux que les femelles, on peat conclure que le sexe mâle a été le plus modifié ; c'est ce que proavent certaines espèces représentatives trés voisines, chez lesquelles les femelles se ressemblent toutes, tandis que les males sont fort différents. Les oiseaux à P'état de nature présentent des différences individuelles qui suffiraient amplement à l'ouvre de la séleetion sexuelle ; mais nous avons vu qu'ils sont parfois l'objet de variationsplus prononcées revenantsi fréquemment, qu'elles seraient aussitor fixées si ellee servaient à nóduire les femelles. Les lois de
la variation auront déterminé la nature des changements primitifs et largement influencé le résultat final. Les gradations qu'on observe entre les males d'espèces voisines indiquent la nature des échelons franchis, et expliquent d'une manière fort intéressante certains caracteres, tels que les ocelles dentelés des plumes caudales du paon, et surtout les ocelles si étonnamment ombrées des rémiges du faisan Argus. Il est évident que ce n'est pas comme moyen de sécurité que beaucoup d'oiseaux máles ont acquis de vives couleurs, des huppes, des plumes allongées, etc. C'est là méme quelquefois pour eux une cause de danger. Nous pouvons etre sûrs que ces ornements ne proviennent pas de l'action directe et définie des conditions de la vie, puisque les femelles, dans ces mêmes conditions, diffèrent souvent des males à un degré extrême. Bien qu'il soit probable que des conditions modifiées, agissant pendant une longue période, alent dû prodaire quelque effet défini sur les deux sexes, leur résultat le plus important aura été une tendance croissante vers une variabilité flottante ou vers une augmentation des différences individuelles, ce qui aura fourni à la sélection sexuelle un excellent champ d'action.

Les lois de l'hérédité, en dehors de la sélection, paraissent avoir déterminé si les organes acquis par les males soit à titre d'ornements, soit pour produire des sons, soit pour se battre, ont été transmis aux males senls ou aux deux sexes, d'une manière permanente, ou périodiquement pendant certaines saisons de l'année. On ignore, dans ka plupart des cas, pourquoi divers caractères ont été tantot transmis d'une maniére, tantot d'une autre; mais l'époque de la variabilité paraift souvent avoir été la cause déterminante de ces phénomènes. Lorsque les deux sexes ont hérité de tous les caractères commuas, ils se ressemblent nécessairement; mais, comme les variations successives peuvent se transmettro différemment, on peut observer tous les degrés possibles, méme dans un genre donné, depuis une identité des plus complêtes jusqu'à la dissemblance la plus grande entre les sexes. Chez beaucoup d'espèces voisines, ayant à peu prés les memes habitudes, les mâles sont arrivés à différer les uns des autres surtout par l'action de la sélection sexuelle; tandis que les femelles en sont venues à différer les unes des autres principalement parce qu'elles participent à un degré plus ou moins grand aux caractères acquis par les males De plus, les effets définis des conditions d'existence ne seront pas masqués chez les femelles, comme ils le sont chez les males, par les couleur's tranchées et par les autres ornements que la sélection sexuelle accumule chez eux. Les indívidus des deux sexes, quelque
modifiés qu'ils soient par ces conditions extérieures, resteront presque uniformes à chaque période successive par le libre entrecroisement d'un grand nombre d'individus.

Chez les espèces où les sexes diffèrent de couleur, il est possible qu'il y ait eu d'abord tendance à la transmission égale aux deux sexes des variations successives, mais que les dangers auxquels les femelles auraient été exposées pendant l'incubation, si elles avaient revêtu les brillan. ‘‘ couleurs des malles, en ont empêché le développement chez elles. Ma autant que je puis le voir, il serait très difficile de convertir une dos formes de transmission en une autre, au moyen de la sélection natureile. D'un autre côté, il n'y aurait aucune difficulté à donner à une femelle des couleurs ternes, le mâle restant ce qu'il est, par la sélection de variations successives qui, dès le principe, ne se seraient transmises qu'au même sexe. Jusqu'à présent, il est encore douteux que les femelles de beaucoup d'espèces aient été ainsi modifiées. Lorsque, en vertu de la loi d'égale transmission des caractères aux deux sexes, les femelles ont revêtu des couleurs aussi vives que les mâles, leurs instincts ont souvent du se modifier et les pousser à se construire des nids couverts ou cachés.

Dans un petit nombre de cas curieux, les caractères et les habitudes des deux sexes ont subi une transposition complête: les femelles sont, en effet, plus grandes, plus fortes, plus criardes et plus richement colorées que les males. Elles sont aussi devenues assez querelleuses pour se battre les unes avec les autres, afin de s'emparer tles mâles, comme les mâles des espèces les plus belliqueuses pour s'assurer la possession des femelles. Si, comme cela parait probable, elles chassent ordinairement les femelles rivales et attirent les males par l'étalage de leurs vives couleurs ou de leurs autres charmes, nous pouvons comprendre comment elles sont devenues peu à peu, grâce à la sélection sexuelle et à la transmission limitée au sexe, plus belles que les mâles, - ceux-ci ne s'étant que peu ou pas modifiés.

Toutes les fois que prévaut la loi d'hérédité à l'âge correspondant, mais non celle de la transmission sexuellement limitée, et que les parents varient à une époque tardive de leur vie, - fait constant chez nos races gallines et qui se manifeste aussi chez d'autres oiseaux, - les jeunes ne subissent aucune modification, tandis que les adultes des deux sexes éprouvent de grands changements. Si ces deux lois de l'hérédité prévalent, et que l'un ou l'autre sexe varie tardivement, ce sexe seul se modifie; l'autre sexe et les jeunes restent intacts. Lorsque des variations brillantes ou affectant tout
autre caractère voyant surgissent à une époque précoce de la vie, ce qui arrive souvent, la sélection sexuelle ne peut agir sur elles que lorsque les jeunes se trouvent en état de reproduire; il s'ensuit que la sélection naturelle pourra les éliminer, si elles sont dangereuses pour les jeunes. On comprend ainsi comment les variations qui surgissent tardivement ont été si souvent conservées pour l'ornementation des males; les femelles et les jeunes n'éprouvent aucune modification, et restent par conséquent semblables entre eux. Les degrés et la nature des ressemblances entre les parents et les jeunes deviennent d'une complexité extrême, dans les espèces qui revêtent un plumage distinct pour l'été et pour l'hiver, car les mules ressemblent alors aux femelles ou en diffèrent, soit dans les deux saisons, soit dans une seule: les caractères acquis par les males se doivent transmettre, mais avec des modifications que déterminent l'âge du père et de la mère, le sexe du jeune et la saison.
Les jeunes d'un grand nombre d'espèces n'ayant subi que peu de modification dans la couleur et les autres ornements, nous pouvons nous faire quel que idée du plumage de leurs ancêtres reculés; et en conclure que la beauté de nos espèces existantes, si nous envisageons la classe dans son ersemble, a considérablement augmenté. Beaucoup d'oiseaux, surtout ceux qui vivent sur le sol, revêtent sans aucun do ite des couleurs sombres comme moyen de se protéger. La partie du plumage exposée à la vue s'est parfois ainsi colorée chez les deux sexes, tandis que la sélection sexuelle a orné de différentes façons le plumage de la partie inférieure du corps des mâles seuls. Enfin, les faits signalés dans ces quatre chapitres nous permettent de conclure que les variations et la sélection sexuelle ont généralement produit chez les mâles les armes de bataille, les organes producteurs de sons, les ornements divers, les couleurs víves et frappantes, et que ces caractères se sont transmis de différeates manières, conformément aux diverses lois de l'hérédité, - les femelles et les jeunes n'ayant été comparativement que peu modifiés ${ }^{57}$.

[^258]
CHAPITRE XVII

CARACTÉRRS SEXUELS SECONDAIRES CHEZ LES MAMMIFÈRFS

La loi de combat. - Armes particulieres limitées aux males. - Cause de leur absence chez la femelle. -Armes communes aux deux sexes, mais primitivement acquises par le male. - Autres usages de ces armes. Leur haute importance. - Taille plus grande du mâle. - Moyens de défense. - Sur lés préférences manifestées par l'un et par l'autre sexe dans l'accouplement des mammifères.

Chez les Mammifères, le mâle paratt obtenir la femelle bien plus par le combat que par l'étalage de ses charmes. Les animaux les plus timides, dépourvus de toute arme propre à la lutte, se livrent des combats furieux pendant la saison des amours. On a vu deux lièvres se battre jusqu'à ce que l'un des deux restât sur la place; les taupes mâles se battent souvent aussi quelquefois avec de terribles résultats. Les écureuils males se tivrent des assauts fréquents, et se blessent parfois mutuellement d'une façon sérieuse; les castors males luttent entre eux avec un tel acharnement, qu'on trouve à peine une peau de ces aninaux sans cicatrices ${ }^{1} \geqslant$. J'ai observé le même fait sur la peau des guanacos en Patagonie, et un jour quelques-uns de ces animaux étaient si absorbés par leur combat, qu'ils passèrent à côté de moi sans paraître éprouver aucune frayeur. Livingstone constate que les malles d'un grand nombre d'animaux de l'A frique méridionale portent presque tous les marques de blessures reçues dans leurs combats.
La loi du combat prévaut aussi bien chez les mammiféres aquatiques que chez lez mammifères terrestres. Il est notoire que les phoques se battent avec acharnement, avec leurs dents et avec leurs griffes, pendant la saison des amours ; eux aussi fort souvent ont la peau couverte de cicatrices. Les cachalots mâles sont également fort jaloux pendant cette saison, et, dans leurs luttes, sils engagent mutuellement leurs mâchoires, se retournent et se tordent en tous sens » : la déformation fréquente de leurs mâchoires inférieures provient de ces combats ${ }^{2}$.
(I) Voy. le récit de Waterton (Zoologist, I, p. 211, 1843) sur un combat entre deux lièvres. Sur les taupes, Bell, Hist. of Brit. Quadrupeds, $1^{\text {ro }}$ édit., p. 100. Sur les Ecureuils, Audubun et Bachman, Viviparous Quadrupeds of N. America, p. 269, 1816. Sur les castors, M. A. H. Greeu, Journ. of Linn. Soc. Zoolog., vo!. X, p. 362, 1869.
2. Sur les combats de phoques, Capt. C. Abbott, Proc. Zool. Soc., p. 191, 1868; M. R. Brown, ib., p. 436, 1868; L. Lloyd, dans Game Birds of Sweden, p. 412, 1867, et Pennant ; sur le Cachalot, M. J.-H. Thompson, Proc. Zool. Soc., p. 246, 1867.

On sait que tous les animaux males dont certains organes constituent des armes propres à la lutte se livrent des batailles terribles. On a souvent décrit le courage et les combats désespérés des cerfs; on a trouvé dans diverses parties du monde quelgues squelettes de ces animaux, inextricablement engagés par les cornes, ce qui indique comment avait misérablement péri ensemble le vainqueur et le vaincu ${ }^{3}$. Il n'y a pas d'animal au monde qui soit plus dangereux que l'éléphant en rut. Lord Tankerville m'a raconté les luttes que se livrent les taureaux sauvages de Chillingham-Park, descendants dégénérés en taille, mais non en courage, du gigantesque Bos primígenius. Plusieurs taureaux, en 1861, se disputaient la suprématie: on observa que les deux plus jeunes avaient attaqué ensemble et de concert le yieux chef du troupeau, l'avaient renversé et mis hors de combat, et les gardiens pensèrent qu'il devait être dans quelque bois voisin blessé, sans doute, mortellement. Mais, quelques jours plus tard, un, des jeunes taureaux s'étant approché seul du bois, le chef, qui ne cherchait que l'occasion de prendre sa revanche, en sortit, et, en quelques instants, tua son adversaire. Il rejoignit ensuite tranquillement le troupeau, sur lequel il régna sans contestation pendant fort longtemps. L'amiral sir B. J. Sullivan m'a dit que lorsqu'il résidait aux illes Falkland, il y avait importé un jeune étalon anglais, qui vivait avec huit juments sur les collines voisines de Port William. Deux étalons sauvages, ayant chacun une petite troupe de juments, se trouvaient sur ces collines ; *il est certain que ces étalons ne se seraient jamais rencontrés sans se battre. Tous deux avaient, chacun de son côté, essayé d'attaquer le cheval anglais et d'emmener ses juments, mais sans réussir. Un jour, ils arrivèrent ensemble pour l'attaquer. Le capitan à la garde duquel les chevaux étaient confiés se rendit aussitôt sur les lieux et trouva un des étalons aux prises avec l'anglais, tandis que l'autre cherchait à emmener les femelles, et il avait déjà réussi à en détourner quatre. Le capitan arrangea l'affaire en chassant toute la bande dans un corral, car les étalons sauvages ne voulaient pas abandonner les juments $>$.

Les animaux mâles déjà pourvus de dents capables de couper ou de déchirer pour les usages ordinaires de la vie, comme les carnivores, les insectivores et les rongeurs, sont rarement munis
3. Voy. Scrope (Art of Deer-stalking, p. 17), sur l'entrelacement des cornes chez le Cervus Elaphus. Richardson, dans Fauna Bor. Americuna, p. 252, 1829 raconte qu'on a trouvé des corues de wapitis, d'elans et de rennes inextricablement engagées. Sir A. Smith a trouvé au cap de Bouue-Espérance les squelettes de deux gnous ainsi altachés ensemble.
đarmes spécialement adaptées en vue de la lutte avec leurs rivaux. Il en est autrement chez les malles de beaucoup d'autres animaux. C'est ce que prouvent los cornes des cerfs et de certaines espéces d'antilopes dont les femelles sont désarmées. Chez beaucoup d'animaux, les canines de la mâchoire supéricure ou de la mâchoire inférieure, ou même des deux mâchoires, sont beaucoup plus grandes chez les malles que chez les femelles, ou manquent chez ces dernières, à un rudiment caché près. Certaines antilopes, le cerf musqué, le chameau, le cheval, le sanglier, divers singes, les phoques et le morse offrent des exemples de ces différents cas. Les défenses font quelquefois entièrement défaut chez les morses femelles ${ }^{4}$. Chez l'éléphant indien mâle et chez le dugong malle ${ }^{5}$, les incisives supérieures constituent des armes offensives. Chez le narval mâle, une seule des dents supérieures se développe et forme la pièce bien connue sous le nom de corne, qui est tordue en spirale et attelnt quelquefois de neuf à dix pieds de longueur. On croit que les males se servent de cette arme pour se battre, car \& on trouve rarement de ces cornes qui ne soient pas cassées, et on en renfontre parfois dont la partie fendue contient encore la pointe de la corne d'un ennemi ${ }^{6} »$. La dent du côté opposé de la tête consiste, chez le mâle, en un rudiment d'environ dix pouces de longue'r, qui reste enfoui dans la mâchoire. Quelquefois cenendant, mais le fait est assez rare, on trouve des narvals màles, chez lesquels les deux dents sont également bien développées. Chez les femelles, ces deux dents restent toujours rudimentaires. Le cachalot mâle a la tête plus grande que la femelle, ce qui semble prouver que, chez ces animaux, la tête joue un role dans les combats aquatiques. Enfin, l'ornithorhynque male adulte est pourvu d'un appareil remarquable, consistant en un ergot placé sur la partie antérieure de la jambe, ergot qui ressemble beaucoup au crochet des serpents venimeux; Harting affirme que la sécrétion de la glande ne constitue pas un poison; on observe sur la jambe de la femelle une dépression qui semble destinée à recevoir cet ergot ${ }^{7}$.

[^259]Loxsque les males sont pourvus d'armes dont les femelles sont privées, il ne peut guère y avoir de doute qu'elles servent aux combats auxquels ils se livrent entre eux, et que ces armes ont été acquises par sélection sexuelle et transmises au sexe male seul. Il n'est. pas probable, au moins dans la plupart des cas, que ces armes aient été refusées aux femelles, comme pouvant leur être inutiles ou en quelque sorte nuisibles. Comme, au contraire, les males se servent souvent de ces armes pour des buts divers, mais surtout pour se défendre contre leurs ennemis, il est étonnant qu'elles soient si peu développées ou même absentes chez tant d'animaux femelles. Il est certain que le développement de gros bois avec leurs ramificatious chez la femelle du cerf, au retour de chaque printemps, et celui d'énormes défenses chez les éléphants femelles, en admettant qu'elles ne leur fussent d'aucune utilité, auraient occasionné une grande déperdition de force vitale. Par conséquent, la sélection naturelle a dù tendre à les éliminer chez les femelles, mais à condition que les variations successives tendant à cette élimination aient été transmises au sexe femelle seul, car autrement les armes des mâles auraient été trés affectées et il en serait évidemment résulté un préjudice plus considérable pour l'espèce. En résumé, et les faits que nous allons citer confirment cette hypothèse, il parait probable qu'il faut attribuer à la sorte d'hérédité qui a prévalu, les différences que l'on observe chez les deux sexes au point de vue des armes qu'ils possèdent.

Le renne étant la seule espèce, dans toute la famille des cerfs, dont la femelle ait des cornes, un peu plus petites, il est vrai, un peu plus minces et un peu moins ramifiées que celles du male, on pourrait en conclure que ces cornes ont quelque utilité. On a cependant la preuve du contraire. La femelle conserve ses bois depuis le moment où ils sont complètement développés, c'est-à-dire en septembre, jusqu'en avril ou mai, époque où elle met bas.M. Crotch a bien voulu faire pour moi des recherches sérieuses en Norwège; il paraît que les femelles, à cette époque, se cachent pendant une quinzaine de jours environ pour mettre bas, puis reparaissent ordinairement privées de leurs cornes. D'autre part, M. H. Zecks affirme que dans la Nouvelle-Écosse les femelles gardent plus longtemps leurs cornes. Le male, au contraire, dépouille ses bois beaucoup plus tot, vers la fin de novembre. Or, comme les deux sexes ont les mémes exigences et les mémes habitudes, et que le mâle

Zanteveen cile Harting dans la traduction hollandaise de cet euvrage, vol. II. 1. 292.
perd ses bois pendant l'hiver, ces annexes ne doivent avoir aucune utilité pour la femelle dans cette saison, où justement elle les porte. Il n'est pas probable que ce soit quelque antique ancetre de la famille des cerl's qui lui ait transmis ses bois : le fait que les males de tant d'espèces, dans toutes les parties du globe, possèdent seuls des bois, nous permet de conclure que c'était là un caractère primitif du groupe ${ }^{8}$
Les bois se développent chez le renne à un áge très précoce, sans que nous en connaissions la cause. Quoi qu'il en soit, l'effet produit parait avoir été le transfert des cornes aux deux sexes; les cornes sont toujours transmises par la femelle et celle-ci conserve une aptitude latente à leur développement, comme nous le prouvent les cas de femelles vieilles ou malades ${ }^{0}$. En outre, les femelles de quelques autres espèces de cerfs possèdent normalement, ou de façon occasionnelle, des rudiments de bois; ainsi la femelle du Cervulus moschalus a < des touffes rétiformes se terminant par un bouton au lieu de cornes»; et \& dans la plupart des spécimens du Wapiti femelle (Cervus Canadensis), une protubérance osseuse aiguẽ remplace la corne ${ }^{40}$. Ces diverses considérations nous permettent de conclure que la possession de bois bien développés par la femelle du renne provient de ce que les males les ont d'abord acquis comme armes pour combattre les autres males; et que leur transmission aux deux sexes a été la conséquence de leur développement, sans cause connue, à un âge très précoce chez le sexe male.

Passons aux ruminants à cornes creuses. On peut établir, chez les Antilopes, une série graduée commençant par les espèces dont les femelles sont entièrement privées de cornes, - passant par celles qui les ont si petites qu'elles sont presque rudimentaires, comme chez l'Antilocapra Americana, espèce chez laquelle une femelle seulement sur quatre ou cinq possède des cornes ${ }^{11}$; - celles

[^260]où ces appendices se développent largement, biein qu'elles restent plus pelites et plus grêles que chez le mate et qu'elles affectent quelquefois une forme différente ${ }^{12}$; et se terminant par les espèces où les deux sexes ont des cornes de grandeur égale. De mème que chez le renne, il y a, chez les antilopes, rapport entre la période du développement des cornes et leur transmission à un seul des deux sexes ou à tous les deux; il est, par conséquent, probable que leur présence ou leur absence chez les femelles de quelques espèces, et que l'état de perfection relative qu'elles atteignent chez les femelles d'autres espèces, doivent dépendre, non de ce qu'elles servent à un usage spécial, mais simplement de la forme d'hérédité qui a prévalu. Le fait que, dans un genre restreint, les deux sexes de quelques espèces et les males seuls d’autres espèces sont pourvus de cornes, confirme cette opinion. Bien que les femelles de l'Antilope bezoartica soient normalement privées de cornes, M. Blyth en a rencontré 'rois qui en portaient et chez lesquelles rien n'indiquait un age a vancé ou une maladie.
Dans toutes les espèces sauvages de chèvres et de moutons, les cornes sont plus grandes chez le malle que chez la femelle, et manquent quelquefois complètement chez celle-ci ${ }^{13}$. Dans plusieurs races domestiques de ces animaux, les mâles seuls ont des cornes. Dans quelques races comme celles du nord du pays de Galles, où les deux sexes sont régulièrement armés de cornes, elles font souvent défaut chez les brebis. Un témoin digne de foi qui a inspecté tout exprès un troupeau de ces mouions à l'époque de la mise bas, a constaté que, chez les agneaux, à leur naissance, les cornes sont plus complètement développées chez le male que chez la femelle. M. J. Peel a croisé ses moutons lank dont les malles et les femelles portent toujours des cornes avec des races Leicester et Shropshire dépourvues de cornes; il a obtenu une race chez laquelle les males n'avaient plus que de petites cornes, tandis que les femelles en étaient complètement dépourvues. Ces divers faits indiquent que chez les moutons, les cornes constituent un caractère beaucoup moins fixe chez la femelle que chez le male, et nous autorisent à conclure que les cornes ont une origine masculine.
Chez le bouf musqué adelte (Ovibos moschatus), les cornes du male sont plus grandes que celles de la femelle chez laquelle les

[^261]bases ne se touchent pas. ${ }^{14} \mathrm{M}$. Blyth constate, relativement au bétail ordinaire, que < chez la plupart des sauvages de l'espèce bovine, les cornes sont plus longues et plus épaisses chez le taureau que chez la vache ; et que chez la vache Banteng (Bos sondaicus), les cornes sont remarquablement petites et fort inciin es arrière. Dans les races domestiques, tant chez les types à borses que chez les types sans bosses, les cornes sont courtes et épaisses chez le taureau, plus longues et plus effilées chez la vache et chez le boeuf; et chez le buffle indien, elles sont plus courtes et plus épaisses chez le male, plus greles et plus allongées chez la femelle. Chez le gaour (B. gaurus) sauvage, les cornes sont à la fois plus longues et plus épaisses chez le taureau que chez la vache ${ }^{15} \boldsymbol{\geqslant}$. Le docteur Forsyth Major m'apprend qu'on a trouvé dans le Val d'Arno un crâne fossile qu'on croit être celui d'un Bos etruscus femelle; ce crane est dépourvu de cornes. Je puis ajouter icique, chez le Rhinoceros simus, les cornes de la femelle sont généralement plus longues mais moins fortes que celles du male ; et, chez quelques autres espèces de rhinocéros, on assure qu'elles sont plus courtes chez la femelle ${ }^{16}$. Ces divers faits nous autorisent à conclure que les cornes de tous genres, même lorsqu'elles sont également développées chez les deux sexes, ont été primitivement acquises par les màles pour lutter avec les autres mâles, puis transmises plus ou moins complètement aux femelles.

Nous devons ajouter que.ques mots sur les effets de la castration, car ils jettent une vive lumière sur ce point. Les bois ne repoussent jamais chez les cerfs, qui ont été châtrés; il faut en excepter toutefois le renne male, chez lequel il pousse après cette opération. Ce fait, aussi bien que la présence des bois chez les males et les femelles, semble indiquer au premier abord que les bois chez cette espèce ne constituent pas un caractère sexuel ${ }^{17}$.
Mzis, comme il se développe à un age très précoce avant que la constitution du male diffère de celle de la femelle, il n'est pas.surprenant que la castration n'exerce aucune influence sur ces ornements, en admettant même quils aient été primitivement acquis par le male. Chez les moutons, les mâles et les femelles portent normalement des cornes ; on m'assure que chez les moutons Welch la
14. Richardson, Fauna Bor. Americana, p. 278.
15. Land and. Water, 1867, p. 346.
16. Sir Aud. Smith, Zool. of S. Africa, pl. XIX. Owen, Anat. of Vert., III, . 124.
17. Telle est, en effet, la conclusion de Seidlitz, Die Darwinsche Thcorie, 1871, p. 47.
castration a pour effet de réduire beaucoup la grandeur des cornes du male, mais que le degré de cette diminution dépend de l'age de l'animal sur lequel on pratique cette opération; nous avons vu qu'il en est de même chez d'autres animaux. Les boucs mérinos ont de grandes vornes, tandis que les brebis en sont ordinairement dépourvues; chez cette race la castration semble produire un effet un peu plus considérable que sur la race précédente, car, si on l'accomplit à un âge très précoce, les cornes ne se développent presque pas ${ }^{18}$.
M. Winwood Reade a observé sur la cote de Guinée une race de moutons dont les femelles ne portent jamais de cornes, et elles disparaissent complètement chez les boucs après la castration. Cette opération exerce une profonde influence sur les cornes des males de l'espèce bovine, car, au lieu de rester courtes et épaisses, elles deviennent plus longues que celles des vaches. L'antilope bezorlica offre un cas à peu près analogue : les mâles sont pourvus de cornes longues et contournées en spirales qui, presque parallèles, se dirigent en arrière; les femelles portent parfois des cornes, mais elles affectent une forme toute différente, car elles ne sont pas contournées en spirales, elles s'écartent beaucoup l'une de l'autre et font un coude pour se diriger en avant. Or, M. Blyth a observé le fait remarquable que, chez le mâle châtré, les cornes affectent la forme particulière qu'elles ont chez la femelle, tout en étant plus longues et plus épaisses. Si on en peut juger par analogie, les cornes dela femelle, dans ces deux derniers cas, nous représentent la condition de ces armes, chez un ancêtre reculé de chaque espèce. Mais on ne peut expliquer que la castration produit un retour vers cette ancienne condition. Toutefois il semole probable que, de meme qu'un croisement entre deux espèces ou deux races distinctes provoque chez le jeune un trouble constitutionnel qui amène souvent la réapparition de caractères depuis longtemps perdus ${ }^{* 2}$, de même le trouble apporté par la castration dans la constitution de l'individu produit un effet analogue.
Les défenses des éléphants de toutes les espèces et de toutes les races diffèrent, selon le sexe, à peu près comme les cornes des ruminants. Dans l'Inde et à Malacca, les males seuls sont pourvus.

[^262]de défenses bien développées. Quélques naturalistes considèrent réléphiant de Ceylản commé uné race à part, đ̛autres comme une espéce distincte; or, on n'y trouve pas \& un individu sur cent qui ait des défenses et le peetit nómbre dè ceeux qui en ont sont exclusivement mâles ${ }^{20}$ \%. L'éléphant d'Afrique forme certainement un genre distinct; là femellé a dés défénses bien développées, quoique un peu moins grandes qué celles du mále.
Ces différencés đånš lés défensés des diverses races et des diverses espèces d'éléphants, - la grande variabilité des bois du cerf, et surfout déux du reñe sauvage, - la présence accidentelle de corries chéz la femelle de l'Antilope bezoartica et leur absence fréquentè chež tà fémèlle de l'Añtilocapra americana, - la présence de deux défenses chè quelques narvals males; l'absence complété de défenses cheż quelques morses femelles, - sont autant d'exèmples dè lă vàriabilité extrême des caractères sexuels secondaires et de leür excèssive tendance à différer dans des formes très v̌oisines.
Bien que lés đéfenses ef les cornes paraissent dans tous les cas s'être primitivement développées comme armes sexuelles, elles servent souvent å d'autres usages. L'éléphant attaque le tigre avec ses défenses et, d'après Brüce, entaille les troncs d'arbres, de façon à les feriverser facilement; il s'en sert encore pour extraire la mioelle fárinetise des palmiers ; en Áfrique, il emploie souvent une de ses défenses, toujours là même, à sonder le terrain et à s'assurer si le sol peut supporter son poids. Le taureau commun défend le troupeau avec ses cornes ; et, d'après Lloyd, l'élan de Suède tue roide un loup d'un coup de ses grandes cornes. On pourrait citer une foule de faits semblables. Le capitaine Hutton ${ }^{31}$ a observé chez la chềre sauvage de l'Himalaya (Capra zegagrus) comme on l'a d'ailleurs observé également chez l'ibex, l'un des usages secondaires les plus curieux des cornes d'un animal quelconque: si un thate tơmbe accidentellement d'une certaine hauteur, il penche la tete de manière que ses cornes massives touchént d'abord le sol, ce qui amortit le choc. Les cornes de la femelle étant beaucoup plus petites, elle hè peut s'eh servir pour cet usage, mais ses habitudes plits tranquilles rendent pour elle moins nécessaire l'emploi de cette etrange sorte de bouclier.
Chaque animal male se sert de sés armes à sa manière particulière. Le bélier commun fait une charge, et heurte l'obstacle de la base de

[^263]ses cornes avec une force telle, que j'ai vu un homme fort renversé comme un enfant. Les chèvres et certaines espèces de moutons, comme l'Ovis cycloceros de l'Afghanistan ${ }^{22}$, se dressent sur leurs pattes de derrière, et, non seulement \& donnent le, coup de tete, mais encore baissent la tête, puis la relèvent brusquement de façon à se servir de leurs cornes comme d'un sabre ; ces cornes, en forme de cimeterre, sont d'ailleurs fort tranchantes, à cause des cotes qui garnissent leur face antérieure. Un jour, un Ovis cycloceros attaqua un gros bélier domestique connu comme solide champion; il en eut raison par la seule nouveauté de sa manière de combattre, qui consistait à toujours serrer de près son adversaire, à le frapper de la tete sur la face et le nez, et à éviter toute riposte par un bond rapide >. Dans le Pembrokeshire, un bouc, chef de troupeau, après plusieurs générations, ét resté à l'état sauvage, très connu pour avoir tué en combat singulier plusieurs autres males, avait des cornes énormes, dont les pointes étaient écartées de 39 pouces ($0^{m}, 99$). Le taureau commun perce, comme on sait, son adversaire de ses cornes, puis le lance en l'air; le buffle italien ne se sert jamais de ses cornes, mais, après un effroyable coup de son front convexe, il plie les genoux pour écraser son ennemi renversé, instinct que n'a pas le taureau ${ }^{23}$. Aussi un chien qui saisit un buffle par le nez est-il aussitôt écrasé. Mais le buffle italien est réduit depuis longtemps à l'état domestique, et il n'est pas certain que ses ancêtres sauvages aient eu des cornes affectant la meme forme. M. Bartlett m'apprend qu'une femelle de buffle du Cap (Bubalus caffer), introduite dans un enclos avec un taureau de la même espèce, l'attaqua, et fut violemment repoussée. Mais M. Bartlett resta convaincu que, si le táureau n'avait montré une grande magnanimité, il aurait pu aisément la tuer par un seul coup latéral de ses immenses cornes. La girafe se sert d'une façon sìngulière de ses cornes cosrtes et velues, qui sont un peu plus longues chez le male que chez la femellé; grâce à son long cou, elle peut lancer la tête d'un coté ou de l'autre avec une telle force, que j'ai vu une planche dure profondément entailiée par un seul coup.

On se demande commenit les antilopes peuvent se servir de leurs cornes si singulièrement conformées; ainsi lo spring-bock (Ant Fuchore) a des cornes droites, un peu courtes, dont les pointes aiguēs se regardent, recourbées qu'elles sont en dedans, presque à angle
22. M. Blyth, Land and Water, March, 1867 , p. 134 ; sur l'autorité du Cip. Hutton autres. Pour los chèvres sauvages du Pembrokeshire, Field, 1869, p. 150.
23. M. E. M. Bailly, sur l'uage dos cornes, Ann. Sciences Nal., $1^{\text {re }}$ serle, II, 7. $869,182 \%$,
droit. M. Bartlett pense qu'elles doivent faire de terribles blessures sur les deux côtés de la face d'un antagoniste. Les cornes légèrement recourbées de l'Oryx leucoryx (fig. 63, Pl.31), sont dirigées en arrière et assez longues pour que leurs pointes dépassent le milieu du dos, en suivant une ligne qui lui est presque parallèle. Elles semblent ainsi bien mal conditionnées pour la lutte; mais M. Bartlett m'informe que, lorsque deux de ces animaux se préparent au combat, ils s'agenouillent et baissent la tête entre les jambes de devant, attitude dans laquelle les cornes sont parallèles au sol et presque à ras de terre, avec les pointes dirigées en avant et un peu relevées. Les combattants s'approchent ensuite peu à peu; chacun d'eux cherche à introduire les pointes de ses cornes sous le corps de son adversaire, et celui qui y parvient se redresse comme mu par un ressort et relève en même temps la tête; il peut ainsi blesser gravement et même transpercer son antagoniste. Les deux animaux s'agenouillent toujours de manière à se mettre autant que possible à l'abri de cette manœuvre. On a signalé un cas où une de ces antilopes s'est servie avec succès de ses cornes, même contre un lion; cependant la posture que l'animal doit prendre, la tête entre les pattes de devant, pour que la pointe des cornes vise l'ennemi, est extrêmement désavantageuse en cas d'attaque par un autre animal. Il n'est donc pas probable que les cornes se soient modifiées de façon à acquérir leur longueur et leur direction actuelles, comme moyen de protection contre les animaux féroces. On peut supposer que quelque ancien ancêtre mâle de l'Oryx, ayant acquis des cornes d'une longueur modérée, dirigées un peu en arrière, aura été forcé, dans ses batailles avec ses rivaux mâles, de baisser la tête de coté ou en avant, comme le font encore plusieurs cerfs ; plus tard il se sera agenouillé accidentellement, puis ensuite habituellement. Les males à cornes plus longues ayant grand avantage sur les individus à cornes plus courtes, il est à peu près certain que la sélection sexuelle aura graduellement augmenté la longueur de ces cornes jusqu'à ce qu'elles aient atteint la dimension et la direction extraordinaires qu'elles ont aujourd'hui.

Chez les cerfs de plusieurs espèces, la ramification des bois présente une difficulté assez sérieuse ; car il est certain qu'une seule pointe droite ferait une blessure bien plus grave que plusieurs pointes divergentes. Dans lë musée de Sir Philip Egerton, on voit une corne de cerf commun (Cervus elaphus) de 30 pouces de long et ne comptant pas moins de quinze branches. On consierve encore à Moritzburg une paire d'andouillers d'un cerf de même espèce, tué en 1699 par Frédéric $\mathrm{I}^{\text {or } ; ~ l ' u n ~ p o r t e ~ t r e n t e-t r o i s ~ b r a n c h e s, ~ l ' a u t r e ~}$
vingt-sept, ce qui fait au total soixante branches. Richardson décrit une paire de bois de renne sauvage présentant vingt-neuf pointes ${ }^{24}$. La façon dont les cornes se ramifient, ou plutôtla remarque de ce fait que les cerfs se battent à l'occasion en se frappant avec leurs pieds de devant ${ }^{25}$, avait conduit M. Bailly à la conclusion que leurs cornes leur étaient plus nuisibles qu'utiles. Mais cet auteur a oublié les combats que se livrent les mâles rivaux. Très embarrassé sur l'usage des ramures ou les avantages qu'elles peuvent offrir, je m'adressai à M. Mc Neill de Colinsay, qui a longtemps étudié les mœurs du cerf commun : d'après ses remarques, les ramures n'ont jamais servi au combat, mais les andouillers frontaux qui s'inclinent vers le bas protègent très efficäcement le front, et constituent par leurs pointes des armes précieuses pour l'attaque. Sir Philip Egerton m'apprend aussi que le cerf commun et le daim, lorsqu'ils se battent, se jettent brusquement l'un sur l'autre, fixent réciproquement leurs cornes contre le corps de leur antagoniste, et luttent violemment. Lorsque l'un d'eux est forcé de céder et fuir, l'autre cherche à percer son adversaire vaincu de ses andouillers frontaux. Il semble donc que les branches supérieures servent principalement ou exclusivement à pousser et à parer. Cependant, chez quelques espèces, les branches supérieures servent d'armes offensives, comme le prouve ce qui arriva à un homme attaqué par un cerf Wapiti (Cerous Canadensis) dans le parc de Judge Caton, à Ottawa; plusieurs hommes tentèrent delui portersecours; \&l'animal, sans jamais lever la tête, tenait sa face contre le sol, ayant le nez presque entre les pattes de devant, sauf quand il inclinait la tete de côté pour observer, et préparer un nouveau bond. > Dans cette position, les extrémités des cornes étaient dirigées contre se's adversaires. \& En tournant la tête, il devait nécessairement la relever un peu, parce que les andouillers étaient si longs que l'animal ne pouvait tourner la tête sans les lever d'un côté, pendant que de l'autre ils touchaient le sol. > Le cerf, de cette manière, fit peu à peu reculer les libérateurs à une distance de 150 à 200 pieds, et l'homme attaqué fut tué ${ }^{20}$.
24. Owen, sur les cornes du cerf comnun, British Fossil Mammals, p. 478, 1846. Sur les bois du renne, Richardson, Fauna Bor Americana, p. 240, 1829. Je dois au prof. Victor Carus les renseigaements pour le cerf de Moritzburg.
25. J. D. Caton (Ottava Ac. of Nat. Science, 9 mai 1868) dit que les cerfs Américains se battent avec leurs membres antérieurs a après que la question de supériorité n été une fois constatée et reconnue dans le troupeau s. Bailly, sur l'usage des cornes. Ann. Sc. Nal., II, p. 371, 1824.
26. Voir le récit fort intéressant dans l'Appendice du mémoire de M. J. D. Caton, cité précédemment.

Les cornes du cerf sont des armes terribles, mais une pointe unique aurait été plus dangereuse qu'un andouiller ramifié, et J. Caton, qui a longtemps observé cet animal, est complètement de cet avis. Les cornes branchues, d'ailleurs importantes comme moyen de défense contre les cerfs rivaux, remplissent fort imparfaitement ce but de défense, parce qu'elles sont très sujettes à s'enchevêtrer. J'ai donç pensé qu'elles pouvaient en partie servir d'ornement. Tout le monde admettra que les andouillers des cerfs, ainsi que les cornes elégantes de certaines antilopes, cornes affectant la forme d'une lyre et présentant une double courbure extrêmement gracieuse ($\mathrm{fg} .64, P l .31$), sont un ornement, même à nos yeux. Si donc les cornes, comme les accoutrements superbes des chevaliers d'autrefois, ajoutent à la noble apparence des cerfs et des antilopes, elles ont peut-être été partiellement modifiées dans un but d'orementation, tout en restant des armes de combat; je n'ai aucune preuve à l'appui de cette supposition.

De récentes publications nous annoncent que dans un district des États-Unis, les cornes d'une espèce de cerf seraient en voie de modification sous la double action de la sélection sexuelle et de la sélection naturelle. Un écrivain dit, dans un excellent journal américain ${ }^{27}$, qu'il a chassé pendant ces vingt et une dernières années dans les Adirondacks, où abonde le Cervus Virginianus. Il entendit, pour la première fois parler, il y a quatorze ans, de males à cornes pointues. Ces cerfs deviennent chaque année plus communs; il en a tué un, il y a cinq ans, un second ensuite, et maintenant cela est très fréquent. * La corne pointue diffère beaucoup de l'andouiller ordinaire du C. Virginianus. Elle consiste en une seule pièce, plus grêle que l'andouiller, atteignant à peine la moitié de la longueur de ce dernier, se projetant au-devant du front, et se terminant par une pointe aigué. Elle donne à son possesseur un avantage considérable sur le male ordinaire ; il peut courir plus rapidement au travers des bois touffus et des broussailles (tout chasseur sait que les daims femelles et les males d'un an courent beaucoup plus vite que les gros males armés de leurs lourds andouillers), et la corne pointue est une arme plus efficace que l'andouiller commun. Gràce à ces avantages, les daims à corne pointue gagnent sur les autres, et pourront avec le temps les remplacer entièrement dans tes Adirondacks. Il est certain que le premier daim à corne pointue n'était qu'un caprice de la nature, mais ces cornes ayant été avantageuses à l'animal, il les a transmises à

[^264]ses descendants. Ceux-ci, doués du même avantage, ont propagé cette particularité qui a toujours été s'étendant, et les cerfs à corne pointue finiront peu à peu par chasser les cerfs à andouillers hors de la région qu'ils occupent. > Un critique discute ces conclusions et"demande avec neaucoup de justesse comment il se fait que les bois branchus de la forme parente se sont jamais développés, puisque les simples cornes offrent aujourd'hui tant d'avantage. La seule réponse que je puisse faire est qu'un nouveau mode d'attaque avec de nouvelles armes peut constituer un grand avantage, comme le prouve l'exemple de l'Ovis cycloceros qui a pu ainsi vaincre un bouc domestique que sa force et son courage avaient rendu fameux. Bien que les bois d'un cerf soient bien adaptés pour ces combats avec les cerfs ses rivaux, et bien que ce puisse être un avantage pour l'espèce à cornes simples d'acquérir les bois biens développés, si elle n'avait qu'à lutter avec des animaux armés de la même façon, il ne s'en srit pas cependant, que les bois soient une arme excellente pour vaincre un ennemi différemment armé. Il est presque certain en effet, si nous revenons pour un instant à l'Oryx leucoryx, que la victoire appartiendrait à une antilope pourvue de cornes courtes, qui par conséquent n'aurait pas à s'agenouiller, mais en même temps il serait avantageux à un oryx d'avoir des cornes encore plus longues s'il n'avait à lutter qu'avec des rivaux appartenant à son espèce.

Les mammifères màles pourvus de crocs, de même que les animaux pourvus de cornes se serveat de diverses manières de leurs armes terribles. Le sanglier frappe de côté et de bas en haut; le cerf musqué porte ses coups de haut en bas et fait des blessures sérieuses ${ }^{28}$. Le morse, malgié son cou si court et la pesanteur de son corps, «peut frapper avec la même dextérité de haut en bas, de bas en haut, ou de côté ${ }^{29} \geqslant$. L'éléphant indien, ainsi que je le tiens de feu le docteur Falconer, combat différemment suivant la position de la courbure de ses défenses. Lorsqu'elles sont dirigées en avant et de bas en haut, il lance le tigre à une grande distance, jusqu'à 30 pieds, dit-on; lorsqu'elles sont courtes et tournées de haut en has, il cherche à clouer subitement l'ennemi sur le sol, circonstance dangereuse, car celui qui le monte peut être lancé par la secousse tiors du hoodah ${ }^{30}$.

Bien peu de mammifères mâles possèdent deux sortes distinctes
28. Pallas, ${ }^{2}$ picilegia Zoologica, fasc. xIII, p. 18, 1779,
29. Lamon', Seasons with the Sea-Horses, p. 141, 1861.
30. Voy borse (Phil. Trans., p. 212, 1799), sur la manière dont la variétó Mooknah de l'éléphant à courtes défenses allaque les autres.
d'armes adaptées spécialement à la lutte avec leurs rivaux Le cert muntjac (Ceroulus) mâle présente toutefois une exception, car il est muni de cornes et de dents canines faisant saillie en dehors. Mais une forme d'armes a souvent, dans le cours des temps, été rempiacée par une autre, et nous en avons la preuve par ce qui suit. Chez les Ruminants, il y a ordinairement rapport inverse entre le développeme at des cornes et celui des canines même de grosseur moyenne. Ainsi le chameau, le guanaco, le chevrotain et le cerf musqué, n'ont pas de cornes, mais des canines bien formées, « toujours plus petitos chez les femelles que chez les mâles ». Les Camélides ont à la mâchoire supérieure, outre les vraies canines, une paire d'incisives de la même forme ${ }^{31}$. Les cerfs et les antilopes males ont des cornes, et rarement des canines; et celles-ci, lorsqu'elles existent, sont toujours fort petites, ce qui peut faire douter de leur utilité dans les combats. Chez les jeunes males de l'Antilope montana, ces canines n'existent qu'à l'état rudimentaire; elles disparaissent lorsqu'il vieillit et font deffaut à tout age chez les femelles; toutefois on a accidentellement observé les rudiments de ces dents ${ }^{32}$ chez les femelles de quelques autres antilopes et de quelques autres cerfs. Les étaions ont de petites canines qui sont absentes ou rudimentaires chez la jument, mais ils ne s'en servent pas dans leurs combats; ils ne mordent qu'avec les incisives, et n'ouvrent pas la bouche aussi largement que les chameaux et les guanacos. Lorsque le màle adulte possède des canines dans un étal où elles ne peuvent servir, et qu'elles font détaut ou ne sont que rudimentaires chez la femelle, on en peut conclure que l'ancêtre male de l'espèce était armé de véritables canines qui ont été partiellement transmises aux femelles. La disparition ou la diminution de grandeur de ces dents chez les males paratt être la conséquence d'un changement dans leur manière de combattre, changement causé souvent (ce qui n'est pas le cas du cheval) par le développement de nouvelles armes.
Les défenses et les cornes ont évidemment une haute importance pour leurs possesseurs, car leur développement consomne una grande quantité de matière organique. Ule seule défense de

[^265]l'éléphant asiafique, - une défense de l'espèce velue éteinte - et une défense de l'éléphant africain, pèsent, me dit-on, 150, 160 et 180 livres; quelques auteurs ont même signalé des poids plus considérables ${ }^{33}$. Les bois des cerfs qui se renouvellent périodiquement, doivent enlever bien davantage à la constitution de l'animal; les cornes de l'élan, par exemple, pésent de 50 à 60 livres, et celles de l'élan jrlandais éteint atteignent jusqu'à 60 et 70 livres, - ie crâne de ce dernier n'ayant, en moyenne, qu'un poids de cinq livres et quart. Les cornes des moutons ne se renouvellent pas d'une manière périodique, et cependant beaucotrp d'agriculteurs considèrent leur développement comme entrainant une perte sensible pour l'éleveur. Les cerfs, qui ont à échapper aux betes féroces, sont surchargés d'un poids additionnel qui doit gener leur course et les retarder considérablenient dans les localités boisées. L'élan, par exemple, avec ses bois dont les extrémités sont distantes l'une de l'autre de cinq pieds et demi, évite avec adresse de briser ou de toucher la moindre branche sèche quand il chemine tranquillement; mais il ne peut faire de même s'il fuit devant une bande de loups. * Pendant sa course, il tient le nez en l'air pour que les cornes soient horizontalement dirigées en arrière, afin qu'il puisse voir distinctement le terrain ${ }^{34},>$ Les pointes des bois du grand élan irlandais étaient à 8 pieds l'une de l'autre. Tant que le velours recouvre les bois, ce qui dure environ douze semaines pour le cerf ordinaire, ces bois sont fort sensibles aux coups : en Allemagne, les mâles, pendant ce temps, changent jusqu'a un certain point leurs habitudes; ils évitent les forèts touffues et habitent lesjeunes bois et les halliers bas ${ }^{35}$. Ces faits nous rappellent que les oiseaux males ont acquis des plumes décoratives par un vol ralenti, et d'autres décorations au prix d'une perte de force dans leurs luttes avec les mâles rivaux.

Chez les quadrupèdes, lorsque les sexes diffèrent par la taille, ce qui arrive souvent, les males sont, presque toujours, les plus grands et les plus forts. M. Gould affirme que ce fait est absolu chez les Marsupiaux australiens, dont les malles semblent continuer leur croissance jusqu'à un âge fort tardif. Le cas le plus extraordinaire est celui d'un phoque (Callorhinus ursinus), dont la femelle

[^266]adulte pèse moins de un sixième du poids du mate adelte ${ }^{36}$. Le docteur Gill fait remarquer que, chez les phoques males polygames qui se livrent des combats furieux, les sexes diffèrent beaucoup au point de vue de la taille; on n'observe pas ces diflérences chez les espéces monogames. On peut faire les mêmes remarques chez les baleines relativement au rapport qui existe entre le caractère belliqueux des males et leur taille considérable comparativement à celle de la femelle. Les baleines communes males ne se livrent pas de combats at ils ne sont pas plus grands que les femelles; d'autre part, les males de la baleine franche combattent souvent les uns avec les autres et ils sont deux fois aussi gros que les femelles. La plus grande force du mâle se manifeste toujours, ainsi que Hunter l'a depuis longtemps remarqué ${ }^{37}$, dans les parties du corps qui jouent un role dans les luttes entre males, - le cou massif du taureau, par exemple. Les mammifères males sont plus courageux ot plus belliqueux que -les femelles. Sans doute ces caracteres sont dus en partie à la sélection sexuelle mise en jeu par les victoires remportées par les mâles les plus forts et les plus courageux, et en partie aux effets héréditaires de l'usage. Il est probable que les modifications successives de force, de taille et de courage (dues à ce qu'on appelle la variabilité spontanée ou aux effets de l'usage) et, dont l'accumulation a donné aux mammifères males ces qualités caractéristiques, ont apparu un peu tardivement dans la vie et ont, par conséquent, été limitées dans une grande mesure, dans leur transmission, au même sexe.

A ce point de vue, j'étais très désireux d'obtenir des renseignements sur le lévrier courant écossais, dont les sexes diffèrent quant à la taille beaucoup plus que ceux d'aucune autre race (excepté peut-etre) les limiers ou d'aucune espèce canine sauvage que je connaisse. Je m'adressai en conséquence à M. Cupples, éleveur fort connu de ces chiens, qui, à ma demande, en a pesé et mesuré un grand nombre et a recueilli avec beaucoup d'obligeance les faits suivants, en s'adressant de divers côtés. Les chiens males supérieurs, mesurés à l'épaule, ont vingt-huit pouces, hauteur minimum, mais plus ordinairement trente-trois et même trente-quatre pouces; ils varient en poids entre 80 et 420 livres, ou meme davantage. Les

[^267]femelles varient en hauteur de vingt-trois à vingt-sept ou vingthuit pouces; et, en poids, de 50 à 70 ou 80 livres ${ }^{38}$. M. Cupples conclut à une moyenne assez exacte de 95 à 100 livres pour le mâle, et de 70 livres pour la femelle; mais certaines raisons font supposer qu'autrefois les deux sexes étaient plus pesants. M. Cupples a pesé des petits àgés d'une quinzaine de jours: dans une portée, le poids moyen de quatre mâles a dépassé de six onces et demie celui de deux femelles; une autre portée a donné moins d'une once pour l'excès de la moyenne du poids de quatre mâles sur une femelle; les mêmes males, à trois semaines, excédaient de sept onces et demie le poids de la femelle, et à six semaines de quatorze onces environ. M. Wright, de Yeldersley House, dit dans une lettre adressée à M. Cupples : «J'ai pris des notes sur la taille et sur le poids des chiens d'un grand nombre de portées, et, d'après mes, expériences, les deux sexes, en règle générale, diffèrent très peu jusqu'à l'age de cinq ou six mois; les males commencent alors à augmenter, et dépassent les chiennes en grosseur et en poids. A sa naissance et pendant quelques semaines, une chienne peut accidentellement etre plus grosse qu'aucun des males, mais ceux-ci finissent invariablement par la dépasser. \$M. Mc Neill, de Colinsay, conclut que < les males n'atteignent leur croissance complète qu'à deux ans révolus, mais que les femelles y arrivent plus tot. * D'après les remarques de M . Cupples, les males augmentent en taille jusqu'à l'age d'un an à dix-huit mois of en poids de dix-huit mois à deux ans; tandis que les femelles cessent de croitre en taille de neuf à quatorze ou quinze mois, et en poids de douze à dix-huit mois. Ces divers documents montrent clairement que la différence complète de taille entre le malle et la femelle du lévrier écossais, n'est acquise qu'un peu tardivement dans la vie. Les males s'emploient presque seuls à la course, car, les femelles, dit M, Mc Neill, n'ont ni assez de vigueur ni assez de poids paur forcer un cerf adulte. M. Cupples a prouvé, d'après des noms relevés dans de vieilles légendes, qu'à une époque fort ancienne, les males étaient déjà les plus réputés, les chiennes n'étant mentionnées que comme mères de chiens célébres. En conséquence, pendant un grand nombre de générations, ce sont donc les males quyi ont été principalement éprouvés pour la force, pour la taille, pour la vitesse et
38. Richardson, Menual on the Dog., p. 59. M. Mo Neill a donne des renseignements précieux sur le lévrier d'Ecosse, et a le premier attiré l'attention sur l'inégalité de taille entre les deux sexes dans Arl of Deer Stalking, de Scrope. J'espère que M. Cupples persistera dans son intention de publier un travail complet sur cette race célèbre et sur son histeire.
pour le courage, les meilleurs ayant eté choisis pour la reproduction. Commeles mâles n'atteignentleurs dimensions complètes qu'un peu tardivement, ils ont da tendre à transmettre leurs caractères à leurs descendants males seulement, conformément à la loi que nous avons souvent indiquée; ce qui tend à expliquer l'inégalitó des tailles entre les deux sexes du lévrier d'Écosse.
Quelques quadrupèdes males possèdent des organes ou des parties qui se dévelopıient uniquement pour qu'ils puissent se défendre contre les attaques d'autres males. Quelques cerfs, comme nous l'avons vu, se servent principalement ou exclusivement, pour leur défense, des branches supérieures de leurs bois; et l'antilope Oryx, d'après M. Bartlett, se défend fort habituellement à l'aide de ses longues cornes un peu recourbées, et qu'elle utilise également pour *Tattaque. Le même observateur remarque que les rhinocéros, quand ils se battent, parent les coups latéraux avec leurs cornes, qui heurtent fortement l'une contre l'autre comme ley crocs des sangliers. Les sangliers sauvages se livrent des combats terribles, mais il y a rarement, dit Brehm, résultat mortel; les coups portent réciproquement sur les crocs eux-mêmes, ou sur cette couche cartilagineuse de la peau qui recouvre les épaules, et que les chasseurs allemands appellent le bouclier. Nous avons là une partie spécialement modifiée en vue de la défense. Chez les sangliers dans la force de láge ($\mathrm{fig} .55, \mathrm{Pl} .31$), les crocs de la mâachoire inférieure servent à l'attaque; mais Brehm constate que, dans la vieillesse, les crocs se recourbent si fortement en dedans et en haut, au-dessus du groin, qu'ils ne peuvent plus servir à cet usage. Ils continuent cependant à être utiles, et même d'une manière plus efficace, comme moyens de défense. En compensation de la perte des crocs inférieurs comme armes offensives, ceux de la mâchoire supérieure, qui font toujours un peu saillie latéralement, augmentent si considérablement de longueur avec l'âge, et se recourbent si bien de bas en haut qu'ils peuvent servir d'armes offensives. Néanmoins, un vieux solitaire n'est pas si dangereux pour l'homme qu'un sanglier de six ou sept ans ${ }^{39}$.
Chez le Babiroussa male adulte des Célébes (fig. 66, PI. 32), les crocs inférieurs constituent, comme ceux du sanglier européen lorsqu'il est dans la force de l'age, des armes formidables; mais les défenses supérieures sont si allongées, et la pointe en est tellement enroulée en dedans (elle vient même quelquefois toucher le front), qu'elles sont tout à fait inutiles comme moyen d'attaque. Ces
39. Brehm, Thierleben, म, p. 729, 732.
défenses ressemblent beaucoup plus à des cornes qu'à des dents, et sont visiblement impropres à rendre les services de ces dernières, qu'on a autrefois supposé que l'animal reposait sa tête en les accrochant à une branche d'arbre. Elles peuvent néanmoins, grâce à leur forme convexe bien prononcée, servir de garde contre les coups, lorsque la tête est un peu inclinée de côté; ces cornes sont en effet « généralement brisées chez les vieux individus, comme si elles avaient servi au combat ${ }^{40} \geqslant$. Nous trouvons donc là un cas curieux, celui des crocs supérieurs de Babiroussa acquérant régulièrement dans la force de l'age une disposition qui, en apparence, ne les approprie qu'à la défense seule; tandis que, chez le sanglier européen, ce sont les crocs inférieurs opposés qui prennent, à un moindre degré, et seulement chez les individus très agés, une forme à peu près analogue, et ne peuvent servir de même qu'à la défense.

Chez le Phacochoerus Ethiopicus (fig. 67, Pl. 32), les crocs de la máchoire supérieure du malle se recourbent de bas en haut, quand il est dans la force de l'age, et ces crocs, très pointus, constituent des armes offensives formidables. Les crocs de la machoire inférieure sont plus tranchants, mais il ne semble pas possible, en raison de leur peu de longneur, quils puissent servir à l'attaque. Ils doivent toutefois fortifier ceux de la màchoire supérieure, car ils sont disposés de manière à s'appliquer exactement contre leur base. Ni les uns ni les autres ne paraissend avoir été spécialement modifiés en vue de parer les coups, et pourtant, sans aucun doute, ils sont, jusqu'à un certain point, armes défensives. Le Phacochoerus n'est pas dépourvu d'autres dispositions protectrices spéciales; il a, de chaque coté de la face, sous les yeux, un bourrelet rigide quoique flexible, cartilagineux et oblong (fig.67, Pl. 32), faisant une saillie de deux ou trois pouces; ces bourrelets, à ce qu'il nous a paru, à M. Bartlett et à moi en voyant l'animal vivant, se relèveraient, s'ils étaient pris en dessous par les crocs d'un antagoniste et protégeraient ainsi très complêtement les yeux un peu saillants. J'ajouterai, sur l'autorité de M. Bartlett, que, lorsque ces animaux se battent, ils se placent toujours directement en face l'un de l'autre.

Enfin le Potomochoerus peniceilatus africain a, de chaque côté de la face, sous les yeux, une protubérance cartilagineuse qui correspond au bourrelet flexible du Phacochoerus; et, sur la máchoire supérieure, au-dessus des narines, deux protubérances osseuses. Un sanglier de cette espèce ayant récemment pénétré dans la cage
40. Voy. Wallace, the Malay Archipelago, vol. I, p. 435, 1869.
du Phacocnoerus aux Zoological Gardens, les deux animaux se baltirent toule la nuit, et on les trouva le matin très épuisés, mais sans blessure sérieuse. Fait significatif et qui prouve que les excroissances et les protubérances que nous venons de décrire servent bien de moyen de défense; ces partiesétaientensanglantées lacérées et déchirées d’une façon extraordinaire.

Bien que des membres mâles de la famille porcine soient pourvus d'armes offensives et, comme nous venons de le voir, d'armes défensives, ces armes semblent avoir été acquises à une époque géologique comparativement récente. Le docteur Forsyth Majorénumère ${ }^{\text {A1 }}$ plusieurs espèces miocènes chez aucune desquelles les défenses ne paraissent avoir été très développées chez le mâle; le professeur Rutimeyer a constaté le même fait avec un certain étonnement.
La crinière du lion constituc pour cet animal une excellente défense contre le seul danger auquel il soit exposé, l'attaque de lions rivaux; car, ainsi que me l'apprend Sir A. Smith, les males se livrent des combats terribles, et un jeune lion n'ose pas approcher d'un vieux. En 1857, à Bromwich, un tigre ayant pénétré dans la cage d'un lion, il s'ensuivit une lutte effroyable : * le lion, grace à sa crinière, n'eut le cou et la tête que peu endommagés; mais le tigre ayant enfin réussi à lui ouvrir le ventre, le lion expira au bout de quelques minutes ${ }^{42}$. $>$ La large collerette qui entoure la gorge et le menton du lynx du Canada (Felis canadensis), est plus longue chez le mâle que chez la femelle, mais je ne sais pas si elle peut lui servir comme moyen de défense. On sait que les phoques mâles se livrent des combats acharnés, et les mâles de certaines espèces (Otaria jubata) ${ }^{43}$ ont de fortes crinières, qui sont fort réduites ou qui n'existent pas chez les femelles. Le babouin mâle du cap de Bonne-Espérance (Cynocephalus porcarius) a une crinière plus longue et des dents canines plus fortes que la femelle; or, cette crinière doit servir de moyen de défense : j'avais demandé aux gardiens des Zoological Gardens, sans dire pourquoi, s'il y avait des singes ayant l'habitude de s'attaquer spécialement par la nuque : ce n'était le cas pour aucun, le babouin en question excepté. Ehrenberg compare la crinière de l'Hamadryas malle adulte à celle d'un jeune lion, mais elle fait presque entièrement défaut chez les jeunes des deux sexes et chez la femelle.

[^268]Je croyais que l’énorme crinière laineuse du bison américain, qui touche presque le sol et qui est beaucoup plus développée chez le mâle que chez la femelle, devait servir à protéger l'animal dans ses terribles combats : un chasseur expérimenté a dit à Judge Caton qu'il n'avait jamais rien observé qui confirmât cette opinion. L'étalon a une crinière beaucoup plus longue et beaucoup plus fournie que la jument; or, les renseignements que m'ont fournis deux grands éleveurs et dresseurs, m'ont prouvé \& que les étalons cherchent invariablement à se saisir par le cou ». Il ne résulte cependant pas de ce qui précède que la crinière se soit, dans lorigine, développée comme meyen de défense; ceci n'est probable que pour quelques animaux, et ainsi le lion. M. Me Neill m'apprend que les longs poils que porte au cou le cerf (Cervus elephas) constituent pour lui une véritable protection : c'est à la gorge que les chiens cherchent ordinairement à le saisir; il n'est cependant pas probable que ces poils se soient spécialement développés dans ce but, car les jeunes et les femelles partageraient ce moyen de défense.

Sur la préférence ou le choix dans laccouplement dont font preuve les mammifères des deux sexes. - Avant de décrire, ce que nous ferons dans le chapitre suivant, les différences qui existent entre les sexes dans la voix, l'odeur émise et lornementation, il est convenable d'examiner ici si les sexes exercent quelque choix dans leurs unions. La femelle a-t-elle des préférences pour un male particulier, avant ou après que les mâles se sont battus pour établir leur supériorité; le mate, lorsqu'il n'est pas polygame, choisit-il une femelle particulière? D'après l'impression générale des éleveurs, le male accepterait n'importe quelle femelle; ce fait, en raison de l'ardeur dont les males font preuve, doit être vrai dans la plupart des cas. Mais il est beaucoup plus douteux, en règle générale, que les femelles acceptent indifféremment le premier male venu. Nous avons résumé dans le quatorzième chapitre, à propos des Oiseaux, un nombre considérable de preuves directes et indirectes établissant que la femelle choisit son mâle; or, il serait étrange que les femelles des mammifères, plus haut placées dans l'échelle de lorganisation des etres, et douées plus heureusement sous le rapport de linstinct, n'exerçassent pas fort souvent un choix quelconque. La femelle au moins peut, dans la plupart des cas, échapper au male qui la recherche, si ce male lui déplatt; et, quand elle est poursuivie par plusieurs males à la fois, comme cela arrive constamment, profiter de l'occasion que lui offrent les combats auxquels ils se livrent entre eux, pour s'enfuir et s'accoupler
avec quelque autre male. Sir Philip Egerton m'apprend qu'on a souvent observé en Ecosse que la femelle du cerf commun ${ }^{44}$ agit ainsi.

Il est difficile de savoir si, à l'état de nature, les mammifères. femelles exercent un choix avant l'accouplement. Voici, cependant, quelques détails fort curieux sur les habitudes que, dans ces circonstances, le Capt.-Bryant a eu ample oc casion d'observer clez un phoque, le Callorhinus ursinus ${ }^{45}$: * En arrivant à l'ile où elles veulent, dit-il, s'accoupler, un grand nombre de femelles paraissent vouloir retrouver un malle particulier; elles grimpent sur les rochers extérieurs pour voir au loin; puis, faisant un appel, elles écoutent comme si elles s'attendaient à entendre une voix familière. Elles changent de place, elles recommencent... Dès qu'une femelle atteint le rivage, le malle le plus voisin va à sa rencontre en faisant enten dre un bruil analogue à celui du gloussement de la poule eutourée de ses poussins. Il la salue et la flatte jusqu'à ce qu'il parvienne à se mettre entre elle et l'eau, de manière à l'empêcher de s'échapper. Alors il change de ton, et, avec un rude grognement, il la chasse vers son harem. Ceci continue jusqu'à ce que la rangée inférieure des harems soit presque remplie. Les males placés plus haut choisissent le moment où leurs voisins plus heureux ne sont pas sur leurs gardes, pour leur dérober quelques femelles. Ils les saisissent dans leur bouche, et les 'soulèvent au-dessus des autres femelles; puis les portant comme les chattes portent leurs petits, ils les placent dans leur propre harem. Ceux qui sont encore plus haut font de même jusqu'à ce que tout l'espace soit occupé. Souvent deux males se disputent la possession d'une même femelle, et tous deux la saisissant en même temps, la coupent en deux ou la déchirent horriblement avec leurs dents. Lorsque l'espace destiné à ses femelles est rempli, le vieux male en fait le tour pour inspecter sa famille; il gronde celles qui dérangent les autres, et expulse violemment les intrus. Cette surveillance est active et incessante.»
Nous savons si peu de chose sur la façon dont les animaux se courtisent à l'état de nature, que j'ai cherché à découvrir jusqu'à quel point nos quadrupèdes domestiques manifestent quelque choix dans leurs unions. Les chiens sont les animaux les plus favorables

[^269]à ce genre d'observations, parce qu'on s'en occupe avec beaucoup d'atkention et qu'on les comprend bien. Beaucoup d'éleveurs ont sur ce point une opinion bien arrêtée. Voici les emarques de M. Mayhew : * Les femelles sont capables de ressentir de l'affection, et les tendres souvenirs ont autant de puissancesur elles que chez des animaux supérieurs. Les chiennes ne sont pas toujours prudentes dans leur choix, et se donnent souventà des roquets de basse extraction. Élevées avec un compagnon d'aspect vulgaire, il peut survenir entre eux attachement profond que le temps ne peut détruire. La passion, car c'en est réellement une, prend un caractère véritablement romanesque. > M. Mayhew, qui s'est surtout occupé des petites races, est convaincu que les femelles préfèrent beaucoup les males ayant une grande taille ${ }^{46}$. Le célébre vétérinaire Blaine ${ }^{47}$ raconte qu'une chienne de race inférieure, qui lui appartenait, s'était attachée à un épagneul, et une chienne d'arrêt à un chien sans race, au point qu'aucune des deux ne voulut s'accoupler avec un chien de sa propre race avant que plusieurs semaines se fussent écoulées. Deux exemples semblables très authentiques m'ont été communiqués au sujet d'une chienne de chasse et d'une épagneule qui toutes deux s'étaient éprises de chiens terriers.
M. Cupples me garantit l'exactitude du cas suivant, bien plus remarquable encore : une chienne terrier de valeur et d'une rare intelligence, s'était attachée à un chie de chasse appartenant á un voisin, au point qu'il fallait l'entrainer de force pourl'en séparer. Après en avoir été séparée définitivement, et bien qu’ayant souvent du lait dans ses mamelles, elle ne voulut jamais aucun autre chien et, au grand regret de son propriétaire, ne porta jamais plus. M. Cupples a aussi constaté qu'une chienne lévrier, actuellement (1868) chez lui, a porté trois fois, ayant chaque fois manifesté une préférence marquée pour le plus grand et le plus beau, mais non le plus empressé, de quatre chiens de méme race et à la fleur de l'age, avec lesquels elle vivait. M. Cupples a observé que la chienne choisit ordinairement le chien avec lequel elle est associée et qu'elle connait; sa sauvagerie et sa timidité la disposent à repousser d'abord un chien étranger. Le male, au contraire, parait plutot préférer les femelles étrangères. Il est fort rare qu'un chien refuse une femelle quelconque; cependant M. Wright, de Yeldersley House, grand éleveur de chiens, m'apprend qu'il a observé quel-

[^270]ques exemples de ce fait; il cite le cas d'un de ses lévriers de chasse écossais, qui refusa toujours de s'occuper d'une chienne dogue avec laquelle on voulait l'accoupler : on fut obligé de recourir à un autre lévrier. Il serait inutile de multiplier les exemples; j'ajouterai seulement que M. Barr, qui a élevé un grand nombre de limiers, a constaté qu'à chaque instant, certains individus particuliers de sexes opposés témoignent d'une préférence très décidée les uns pour les autres. Enfin, M. Cupples, après s'être occupé de ce sujet pendant une nouvelle année, m'a dernièrement écrit: - J'ai vu se confirmer complètement mon affirmation précédente, à savoir que les chiens témoignent, lorsqu'il s'agit de l'accouplement, des préférences marquées les uns pour les autres, et se laissent souvent influencer par la taille, par la robe brillante et par le caractère individuel, ainsi que par le degré de familiarité antérieure qui a existé entre eux. »
En ce qui concerne les chevaux, M. Blenkiron, le plus grand éleveur de chevaux de courses qui soit au monde, m'apprend que les étalons sont souvent capricieux dans leur choix; ils repoussent une jument, sans cause apparente, en veulent une autre : il faut avoir recours à divers artifices pour les accoupler comme on le désire. On dut tromper le célèbre Monarque, pour l'accoupler avec la jument mère de Gladiateur. On comprend à peu près la raison qui rend si difficile dans leur choix les étalons de course. M. Blenkiron n'a jamais vu de jument refuser un cheval; mais le cas s'est présenté dans l'écurie de M. Wright, et il a fallu tromper la jument. Prosper Lucas conclut ${ }^{\text {48 }}$, sur l'assertion de plusieurs savants français, que \& certains étalons s'éprennent d'une jument et négligent toutes les autres \%. Il cite, en s'appuyant de l'autorité de Baêlen, des faits analogues sur les taureaux. M. H. Reaks affirme qu'un fameux taureau courles cornes qui appartenait à son père refusa toujours de saillir une vache noire. Hoffberg, décrivant le renne domestique de la Laponie, dit: \& Fœmina majores et fortiores mares præ cæeteris admittunt, ad eos confugiunt, ajuniribus agitatæ, qui hos in fugam conjiciunt ${ }^{49}$. Un individu, éleveur de porcs, a constaté que les truies refusent souvent un verrat, et en acceptent immēdiatement un autre.
Ces faits ne permettent pas de douter que la plupart de nos quadrupèdes domestiques manifestent fréquemment de vives antipáthies et des préférences individuelles, qui s'observent plus ordi-

[^271]nairement chez les femelles que chez les mâles. Puisqu'il en est ainsi, il est peu probable qu'à l'état de nature les unions des mammifères soient abandonnées au hasard seul. Il est à croire ${ }_{1}$ ue les femelles sont attirées ou séduites par des malles qui possèdent certains caractères à un plus haut degré; mais nous ne pouvons que rarement, sinon jamais, indiquer avec certitude quels sont ces caractères.

CHAPITRE XVIII

CARACTĖRES SEXUELS SECONDAIRES DES MAMMIFBRES (SUITE)

Voix. - Particularités sexrelles remarquables chez les phoques. Odeur. - Développement du poil. - Coloration des poils et de la peau. Cas anormal de la femelle plus ornée que le male. - Colorations et ornements dus à la sélection sexuelle. - Couleurs acquises à titre de protection. - Couleurs, souvent dues à la sélection sexuelle, quoique communes aux deux sexes. - Sur la disparition des taches et des raies chez les quadrupèdes adultes. - Couleurs et ornements des Quadrumanes. - Résumé.

Les quadrupèdes se servent de leur voix pour satisfaire à des besoins divers; ils's'en servent pour s'indiquer mutuellement le danger; ils s'en servent pour s'appeler entre eux : la mère, pour retrouver ses petits égarés, les petits, pour réclamer la protection de leur mère; ce sont là des faits sur lesquels nous n'avons pas besoin d'insister ici. Nous n'avons à nous occuper que de la différence entre la voix des deux sexes, entre celle du lion-et celle de la lionne, entre celle du taureau et celle de la vache, par exemple. Presque tous les animaux males se servent de leur voix pendant la saison du rut beaucoup plus qu'à toute autre époque; il y en a, comme la girate et le porc-épic ${ }^{1}$, qu'on dit absolument muets en ${ }_{\text {- }}$ dehors de cette saison. La gorge (c'est-à-dire le larynx et les corps thyroldes) ${ }^{2}$ grossissant périodiquement au commencement de la saison du rut chez les cerfs, on pourrait en conclure que leur voix, alors puissante, a pour eux une haute importance, mais cela est douteux. Il résulte des informations que m'ont données deux observateurs expérimentés, M. Mc Neill et Sir P. Egerton, que les jeunes cerfs au-dessous de trois ans ne mugissent pas; les autres ne commencent à le faire qu'au moment de la saison des amours,

1. Owen, Anat. of Vertebrates, III, p. 585.
2. Ib., p. 595.
d'abord accidentellement et avec modération, pendant qu'ıs errent sans relàche à la recherche des femelles. Ils préludent à leurs combats par des mugissements forts et prolongés, mais rostent silencieux pendant la lutte elle-même. Tous les animaux qui se servent habituellement de leur voix, émettent divers bruits sous l'influence d'une émotion, ainsi lorsqu'ils sont irrités ou se préparent à la bataille : c'est peut-être le résultat d'une excitation nerveuse déterminant la contraction spasmodique des musclins; de meme l'homme grince des dents et ferme les poings dans un vif état d'irritation ou de souffrance. Les cerfs se provoquent sans doute au combat mortel en beuglant; mais les cerfs à la voix la plus forte, à moins d'ĉtre en même temps les plus puissants, les mieux armés et les plus courageux, n'auraient aucun avantage sur leurs concurrents à voix plus faible.

Le rugissement du lion a peut-être quelque utilité réelle en ce qu'il frappe ses adversaires de terreur; car lorsqu'il est irrité, il hérisse sa crinière, et cherche instinctivement à paraitre aussi terrible que possible. Mais on ne peut guère supposer que le bramement du cerf, en admettant même quelque utilité de ce genre, ait assez d'importance pour avoir déterminé l’élargissement périodique de la gorge. Quelques auteurs ont pensé que le bramement servait d'appel pour les femelles; mais les observateurs expérimentés cités plus haut m'ont affirmé que les femelles ne recherchent point les mâles, bien que ceux-ci soient ardents à la poursuite des femelles, ce qui ne nous surprend pas, d'après ce que nous savons des autres quadrupèdes mâles. La voix de la femelle, d'autre part, lui amène promptement deux ou trois cerfs ${ }^{3}$, ce que savent bien les chasseurs qui, dans les pays sauvages, imitent son cri. Si la voix du mâle exerçait quelque influence sur la femelle, on pourrait expliquer l'élargissement périodique de ses organes vocaux par l'intervention de la sélection sexuelle, jointe à l'hérédité limitée " au mème sexe et à la même saison de l'année; mais rien ne nous le fait supposer, et il ne nous semble pas que la voix puissante du cerf mâle pendant la saison des amours, ait pour lui une utilité spéciale, soit pour la cour qu'il fait aux femelles, soit pour ses combats, soit pour tout autre objet. Mais l'usage fréquent de la voix, dans l'emportement de l'amour, de la jalousie et de la colère, usage continué pendant de nombreuses générations, n'a-t-il pas, à la longue, déterminé sur les organes vocaux du cerf, comme chez

[^272]d'autres an i- taux males, un effet héréditaire? Dans l'état actuel de nos connaissances, c'est l'explication la plus probable.

Le gorille mâle a une voix effrayante; il possède à l'état adulte un sac laryngien, qu'on trouve aussi chez l'orang male ${ }^{4}$. Les gibbons comptent parmi les singes les plus bruyants, et l'espéce de Sumatra (Hylobates syndaclylus) est aussi pourvue d'un sac laryngien; mais M. Blyth, qui a eu l'occasion d'étudier la nature et les mőurs des individus de cette espèce, ne croit pas que le mâle soit plus bruyant que la femelle. Ces singes se servent donc probablement de leur voix pour s'appeler, comme font quelques quadrupèdes, le castor par exemple s. Un autre gibbon, le H. agilis, est fort remarquable en ce qu'il possède la faculté d'émettre la série complète et correcte d'une octave de notes musicales ${ }^{6}$, faculté à laquelle on peut raisonnablementattribuer une séduction sexuelle, mais j'aurai à revenir sur ce sujet dans le chapitre suivant. Les organes vocaux du Mycetes caraya d'Amérique sont, chez le mâle, plus grands d'un tiers que chez la fennelle, et d'une puissance étonnante. Lorsque le temps est chaud, ces singes font retentir matin et soir les forèts du bruit étourdissant de leur voix. Les males commencent le concert, les femelles s'y joignent quelquefois avec leur voix moins sonore, et ce concert se prolonge pendant des heures. Un excellent observateur, Rengger ${ }^{7}$, n'a pu reconnaitre la causet de tant de bruit; il croit que ces singes, comme beaucoup d'oiseaux, se délectent à l'audition de leur propre musique, et cherchent à se surpasser les uns les autres. Ont-ils acquis leur voix puissante pour éclipser leurs rivaux et séduire les femelles, - ou leurs organes vocaux se sont-ils augmentés et fortifiés par les effets héréditaires d'un usage longtemps continué sans avantage spécial obtenu, - c'est ce que je ne prétends point décider; mais la première opinion parait la plus probable, au moins pour l'Hylobates agilis.

Je mentionnerai ici deux particularités sexuelles fort curieuses, qui se rencontrent chez les phoques, parce que quelques auteurs ont supposé qu'elles doivent affecter la voix. Le nez du phoque à trompe (Macrorhinus proboscideus) mâle, agé de trois ans, s'allonge beaucoup pendant la saison des amours; cette trompe peut alors se redresser, et atteint souvent une longueur d'un pied. La femelle
4. 0 wen, o. c., vol. III, p. 600.
5. M. Green, Journal of Linn. Soc., X. Zoology, 1869, p. $36 z$.
6. C. L. Martin, General Introd. to Nal. Hisl. of Mamm. Animals, 1841, p. 431.
7. Naturg. der Sáugeth. vo- Paraguay, 1830, p. 15, 21.
ne présente jamais de disposition de ce genre, et sa voix est différente. Celle du malle consiste en un bruit rauque, gargouillant, qui s'entend à une grande distance, et on croit que la trompe tend à l'augmente ${ }^{-}$. Lesson compare l'érection de cette trompe au gonflement dont les caroncules des gallinacés mâles sont le siège quand ils courtisent les femelles. Dans une autre espèce voisine, le phoque à capuchon (Cystophora cristala), la tête est couverte d'une sorte de chaperon ou de vessie, qui, intérieurement supportée par la cloison du nez, se prolonge en arrière et s'èlève en une crête de sept pouces de hauteur. Le capuchon est revêtu de poils courts, il est musculeux, et peut se gonfler de manière à dépasser la grosseur de la tete! Lors du rut, les mâles se battent sur la glace comme des enragés en poussant des rugissements si forts \& qu'on les entend à quatre milles de distance \geqslant. Lorsqu'ils sont attaqués, ils rugissent également, et gonflent leur vessie toutes les fois qu'on les irrite. Quelques naturalistes croient que cette conformation extraordinaire, à laquelle on a assigné encore divers autres usages, sert principalement à augmenter la puissance de leur voix. M. R. Brown pense qu'elle sert de protection contre les accidents de tous genres. Cette manière de voir me semble peu fondée, car M. Lamont, qui a tué plus de 600 de ces animaux, affirme que le capuchon ou la vessie reste à l'état rudimentaire chez les femelles et n'est pas développé chez les mâles encore jeunes ${ }^{8}$.

Odeur. - Chez quelques animaux, tels que la célèbre mouffette d'Amérique, l'odeur infecte qu'ils émettent parait constituer exclusivement un moyen de défense. Chez les Musaraignes (Sorex), les deux sexes possèdent des glandes abdominales odorantes, et, à voir comme les oiseaux et bettes de proie rejettent leurs cadavres, il n'y a aucun doute que cette odeur ne leur soit un moyen de protection; cependant ces glandes grossissent chez les mâles pendant la saison des amours. Chez beaucoup d'autres quadrupèdes, les glandes ont les mémes dimensions chez les deux sexes ${ }^{9}$, mais leur
8. Voy. sur l'Eléphant marin (Phoca proboscidea) un article de Lesson, Dict. Class. Hist. Nat., XIII, p. 418. Sur le Cystophora ou Stemmatopus Docteur Dekay, Ann. of Lyceum of Nat. Hist. New-York, vol. I, p. 94, 1824. Peunant a aussi recueilli de la bouche des pécheurs de phoques des renseignements sur cet animal. La description la plus complète est celle de M. Brown, Proc. Zool. Soc., 1868, p. 435.
9. Pour le castoreum du castor, voir l'intéressant ouvrage de L. H. Morgan, The American Beaver, 1868, p. 300. Pallas (Spic. Zoolog., fasc. vi11, p. 23, 1779) a discute avec soin les glandes odorantes des maimmiferes. Owen (Anat. of Vertebrates, II, p. 634) donne aussi une description de ces glandes, compre.
usage est inconnu. Chez d'autres encore, elles sont, ou réservées aux mâles, ou plus développées chez eux que chez les femelles, et augmentent presque toujours d'activité pendant la saison du rut. A cette époque, les glandes qui occupent les côtés de la face del'éléphant mâle grossissent et émettent une sécrétion exhalant une forte odeur de musc. Les males et plus rarement les femelles de plusieurs espèces de chauves-souris portent des glandes externes sur plusieurs parties du corps; on croit que ces glandes sont odoriférantes.
L'odeur rance du bouc est bien connue, et celle de certains cerfs males est singulièrement forte et persistante. Sur les rives de la Plata j'ai pu sentir l'air tout imprégné de l'odeur du Cervus cam pestris male, à la distance d'un demi-mille sous le vent d'un troupeau; et un foulard dans lequel j'avais remporté une peau à domicile, a conservé pendant un an et sept mois, bien qu'il servit beaucoup et fût souvent lavé, les traces de cette odeur qui s'en exhalait quand on le déployait. Cet animal n'émet pas une forte odeur avant l'àge d'un an, il n'en a jamais si on le chattre jeune ${ }^{10}$. Outre l'odeur générale qui, pendant la saison des amours, paraît imprégner le corps entier de certains ruminants, le Bos Moschetus par exemple, beaucoup de cerfs, d'antilopes, de moutons et de chèvres sont pourvus de glandes odoriférantes placées sur divers points du corps et plus spécialement sur la face. On range dans cette catégorie les larmiers ou cavités sous-orbitaires. Ces glandes sécrètent une matière fétide, semi-liquide, quelquefois en. assez grande abondance pour enduire la tace entière, ce que j'ai observé chez une antilope. Elles sont « ordinairement plus grosses chez les mâles que chez les femelles, et la castration empéche leur développement ${ }^{11}$ *. Elles font complètement défaut, d'après Desmarest, chez la femelle de l'Antilope subgulturosa. Il ne peut donc y avoir de doute que les glandes odorantes ne soient en rapport intime avec les fonctions reproductrices. Elles sont quelquefois présentes et quelquefois absentes chez des formes voisines. Chez le cerf musqué (Moschus moschiferus) mâle adulte, un espace dénudé autour de la queue est enduit d'un liquide odorant, tandis que chez la femelle adulte et chez le mâle au-dessous de deux ans, cet espace est couvert de poils et n'émet aucune odeur. Le sac do
nant celles de l'éléphant et de la musaraigne (p. 763). Sur les Chauves-Souris M. Dobson, Proc. Zool. Soc., 1878, p. 241.
10. Rengger, Naturg. d. Säugeth, etc., p. 355, 1830. Cet observateur donn quelques détails curieux sur l'odeur émise.
11. Owen, o. c., III, p. 632. Docteur Murie, observations sur leurs glandes Proc. Zool. Soc., p. 340, 1870. Desmarest, sur l'Antilope subautturosa; Mam malogie, p. 455, 1820.
muse proprement dit est, par sa situation, nẹcessairement limité au mâle, et constitue un organe odorant supprémentaire. La substance que sécrète cette dernière glande offre ceci de singulier que, d'aprés Pallas, elle ne change jamais de consistance et n'augmente pas en quantité à l'époque du rut; ce naturaliste, tout en admettant que sa présence se rattache à l'acte reproducteur, n'explique son usage que d'une manière conjecturale et peu satisfaisante ${ }^{12}$.
Dans la plupart des cas, il est probable que, dans la saison du rut, lorsque le male seul émet une forte odeur, celle-ci doit servirà exciter et à attirer la femelle. Notre goût ne nous constitue pas juge compétent sur ce point, car on sait que les rats sont alléchés par l'odeur de certaines huiles essentielles, et les chats par la valériane substances qui, pour nous, ne sont rien moins qu'agréables; les chiens, bien qu'ils ne mangent pas les charognes, aiment à les sentir et à se rouler dessus. Les raisons que nous avons données en discutant la voix du cerf, doiyent aussi nous faire repousser lidée que lodeur des màles sert à attirer de loin les femelles. Un usage actif et continu n'a pu ici entrer en jeu, comme dans le cas des organes vocaux. L'odeur émise doit avoir une grande importance pour le malle, d'autant plus que, dans quelques cas, il s'est développé des glandes considérables et complexes, pourvues de muscles qui permettent de retrousser le sac, d'en ouvrir et d'en fermer l'orifice. La sélection sexuelle explique le développement de ces organes, si l'on admet que les males les plus odorants sont ceux qui réussissent le mieux auprès des femelles et ceux qui produisent par conséquent plus de descendants, héritiers de leurs odeurs et de leurs glandes graduellement perfectionnées.

Développement du poil. - Nous avons vu que les quadrupèdes

 males ont souvent le poil du cou et des épaules beaucoup plus développé qu'il ne l'est chez les femelles, et nous pourrions citer grand nombre d'autres exemples. Bien que cette disposition soit quelquefois utile ali mâle, comme moyen de défense dans ses batailles, il est fort douteux que le poil se soit toujours spécialement développé dans ce but. Ainsi, lorsque ces poils ne forment qu'une crête mince, sur la ligne médiane du dos, ils ne peuvent servir de protection, et le dos n'est pas d'ailleurs un point exposé; néanmoins, ces crêtes ne se trouvent guère que chez les males, et quand elles existent dans les deux sexes, elles sont toujours beau-[^273]coup- moins dévelop pées chez les femelles. Deux espèces d'antilopes, les Tragelaphus scriptus ${ }^{13}$ (fig. 70, Pl. 34) et les Portax picta, en offrent des exemples. Les crêtes de certains cerfs et du bouc sauvage se redressent lorsque ces animaux sont irrités ou effrayés ${ }^{14}$; mais on ne peut supposer qu'elles aient été acquises dans le but d'effrayer leurs ennemis. Une des antilopes précitées, le Portax picta, porte sur la gorge une touffe bien marquée de poils noirs, touffe beaucoup plus grande chez le mâle que chez la femelle. Chez un individu de la famille des moutons, l'Ammotragus tragelaphus de l'Afrique du Nord, les membres antérieurs se trouvent presque cachés par une croissance extraordinaire de poils partant du cou et de la moitié supérieure des membres; mais M. Bartlett ne croit pas que ce manteau ait aucune utilité pour le mâle, chez lequel il est beaucoup plus développé que chez la femelle.
Beaucoup de quadrupèdes malles d'espèces diverses diffèrent des femelles en ce qu'ils ont plus de poils, ou des poils d'un caractère différent, sur certaines parties de la face. Le taureau seul porte des poils frisés sur le front ${ }^{15}$. Chez trois sous-genres très voisins de la famille des chèvres, les males seuls ont une barbe, quelquefois très grande; chez deux autres sous-genres elle existe chez les deux sexes, mais disparait chez quelques-unes des races domestiques de la chèvre commune; chez l'Hemitrcgus, aucun des deux sexes n'a de barbe. Chez le Bouquetin, la barbe ne se développe pas en été, et elle est assez courte dans les autres saisons pour qu'on puisse l'appeler rudimentaire ${ }^{16}$. Chez quelques singes, la barbe est restreinte au mâle, comme chez l'orang, où elle est beaucoup plus développée chez lui que chez la femelle, comme chez les Mycetes caraya et les Pithecia satanas (fig. 68, Pl. 33). Il en est de mème des favoris de quelques espèces de macaques ${ }^{17}$ et, comme nous l'avons vu, des crinières de quelques babouins. Mais chez la plupart des singes les diverses touffes de poils de la face et de la tête sont identiques chez les deux sexes.
Les divers membres males de la famille bovine (Bovidæ) et de certaines antilopes ont un fanon, ou fort repli de la peau du cou, qui est beaucoup moins développé chez les femelles.
Or, que devons-nous conclure relativement à des differences
13. Docteur Gray, Gleanızgs from Mewagerte at Knowsley, pl. XXVIC.
14. Judge Caton, sur le Wapiti; Transact. Ottawa Acad. Nat. Sciences, p. 36-10, 1868. Blyth, Land and Water, sur le Capra ægagrus, p. 37, 1867.
15. Hunter's Essays and Observalions, edited by Owen, 1861, vol. I, p. 236.
16. Docterr Gray, Cal. of Mammalia in Brit. Mus., III, p. 144, 1852.
17. Nongser, 0. c., p. 14. Desmasest, Nammalogie, p. 66.
sexuelles de ce genre? Personne ne prétendra que la barbe de certains boucs, le fanen du taureau, ou les crêtes de poils qui garInissent la ligne du dos de certaines antilopes males, aient une utiité directe ou babituelle pour eux. Il est possible que l'énorme barbe du Pithecia male, ou celle de lorang mâle, puisse servir à leur protéger le cou lorsqu'ils se battent, car les gardiens des Zoological Gardens m'assurent que beaucoup de singes essayent de se blesser à la gorge; mais il n'est pas probable que la barbe se soit développée pour un autre usage que les favoris, les moustaches et les diverses touffes de poils; or, ils ne sont pas utiles au point de vue de la protection. Devons-nous aitribuer à une variabilité provenant du simple hasard tous ces appendices de la péau, et les poils qui se trouvent chez les mâles? On ne peut nier que cela soit possible; car, chez beaucoup de quadrupèdes dornestiques, certains caractères qui ne paraissent pas provenir d'un retour vers une forme parente sauvage, ont apparu chez les mâles et les ont seuls affectés, ou au moins se sont développés beaucoup plus chez eux que chez les femelles - par exemple, la bosse đu zébu mâle de línde, la queue ohez les béliers de la race à queue grasse, la forte courbure du front des mâles dans plusieurs races de moutons, et enfin la crinière, les longs poils sur les jambes de derrière et le fanon, qui caractérisent le bouc seul de la race de Berbura ${ }^{18}$. La crinière, chez le belier d'une race alricaine, constitue un veritable caractère sexuel secondaire, car, d'après M. Winwood Reade, elle ne se développe pas chez les mảles ayant subi la castration. J'ai đémontré dans mon ouvrage sur la Variation, que nous devons être fort prudents avant de conclure qu'un caractère quelconque, même chez les animanx domestiques de peuples à demi civilisés, n'est pas le résultat d'une sélection faite par l'homme et augmentée par lui; mais il est peu probable que tel soit le cas dans les exemples que nous venons de citer, car ces caractères se présentent uniquement chez les males ou sont plus đéveloppés chez eux que chez les femelles. Si nous savions d'une manière certaine que le bélier africain, àvec sacrinière, descend de la même souche primitive que les autres races de moutons, ou le bouc de Berbura, avec sa criniére, son fanon, etc., de la même souche que les autres races de chèvres, et que ces caractères n'ont pas subil laction de la sélection artificielle, nous dirions qu'ils sont dus à une simple variabilité, jointe á l'hérédité limitée à l'un des sexes.

[^274]: Il paraît done raisonnable d'appliquer la meme explicatioǹ aux nombreux caractéres analogues que présentent les animaux à l'état de nature; cependant je ne puis croire qu'elle soit applicable dans beaucoup de cas, tels que le développement extraordinaire des poils sur la gorge et sur les membres antérieurs de l'Ammotragus male, ou de l'énorme barbe du Pithecia mâle. Les études naturelles qu'il m'a été donné de faire m'autorísent à penser que les parties ou les organes très développés ont été acquis à une période quelconque dans un but spécial. Chez les antilopes, cul le mâle adulte est plus fortement coloré que la femelle, et chez les singes où les poil du visage sont disposés de la façon la plưs êlégante et affectert plusieurs couleurs, il sémble probable que les cretes et touffes de poils ont été acquises dans un but d'ornementation, opinion que partagent quelques naturalistes. Si cette opinion est fondée, on ne peut douter que ces ornements ne soient dus à lintervention de la sélection sexuelle, ou au moins qu'ils fiaient étê modifiés par elle; maís cette explication peut-elle s'appliquer à d'autres mammifères? C'est lả un point au moins douteux.

Couleur au poil et de ta peau nue. - J'indiquerai d'abora briêvement tous les cas de coloration differente entre quadrupédes males et femelles, qui sont venus à ma connaissance. D'aprée M. Gould, les sexes ne différent que rarement sous ce rapport chez les Marsupiaux; mais le grand kangourou rouge fait une exception remarquable, « un bléu tendre chez la femelle étant la teinte dominante des parties qui sont rouges chez le male ${ }^{19}$. La femelle du Didelphis opossum, de Cayenne, est un peu plas rouge que le mâle. Le docteur Gray dit, au sujet đes Rongeurs : < Les écureils africains, şirtout ceux des régions tropicales, ont une fourrure de couleur plus claire et plus brillante à certaines saisons de l'année, et celle des mảles revêt généralement des teintes plus vives que celle des femelles ${ }^{20}$. » Le docteur Gray m'apprend qu'il a cité les écureuils africains, parce que la différence est plus apparente chez eux, en raison de la vivacité extraordinaire de leurs couleurs. La femelle du Mus minulus, de Russie, a des tons plus pales et plus laids que le mâle. Chez beaucoup de Chauves-souris, la fourrure du male est plus claire et plus brillante que celle de la femelle ${ }^{\text {s. }}$.

[^275]M. Dobson fait aussi remarquer par rapport à ces animaux : «Les différences provenant en partie ou en totalité de la possession par le màle d'une fourrure affectant des teintes beaucoup plus brillantes ou remarquables par différentes taches ou par la plus grande longueur de certaines parties se rencontrent seulement chez les chauves-souris frugivores qui ont le sens de la vue bien dévelonpé. \geqslant Cette dernière remarque mérite toute notre attention, car elle porte sur la question de savoir si les couleurs brillantes sont avantageuses pour les aniniaux males en ce qu'elles constituent de simples ornements. On sait aujourd'hui, comme l'a constaté le docteur Gray, que les males d'un certain genre de paresseux « ont des ornements différents de ceux des femelles, c'est-à-dire qu'ils portent entre les épaules une touffe de poils courts et doux ordinairement de couleur orange et chez une espèce d'une couleur blanche. Les femelles ne possèdent pas cette touffe. ?

Les carnivores et les insectivores terrestres ne présentent que peu de différences sexuelles, et leurs couleurs sont presque toujours les mêmes dans les deux sexes. L'ocelot (Felis pardalis) fait toutefois exception, car les couleurs de la femelle, sont « moins apparentes, le fauve étant plus terne, le blanc moins pur, les raies ayant moins de largeur et les taches présentant un plus petit diamètre ${ }^{22}$. . Les sexes de l'espèce voisine, F. mifis, diffèrent aussi, mais à un degré moindre, les tons généraux de femelle étant plus pâles et les taches moins noires. Les carnivores marins, ou phoques, au contraire, diffèrent considérablement par la couleur, et offrent, comme nous l'avons déjà vu, d'autres différences sexuelles remarquables. Ainsi, l'Olaria nigrescens mâle de l'hémisphère méridional présente sur la surface supérieure de son corps de riches teintes brunes, tandis que la femelle, qui revét beaucoup plus tôt sa coloration, est en dessus gris foncé, et les jeunes des deux sexes couleur chocolat intense. Le Phoca groenlandica mâle est gris fauve et porte sur le dos une tache foncée qui affecte la forme curieuse d'une selle; la femelle, plus petite, offre un aspect tout différent, car elle est \& blanc sale ou couleur jaune paille, avec une teinte fauve sur le dos »; les jeunes sont d'abord blanc pur, et dans cet état peuvent à peine se distinguer de la neige et des blocs de glace; la couleur de leur robe leur sert ainsi de moyen de protection ${ }^{23}$. ,
1869. M. Dobson, sur les caractères sexuels des Chiroptères, Proc. Zool. Soc., 1873, p. 241. Docteur Gray, sur les Paresseux, Ibid, 1871, p. 436.
22. Desmarest, o. c., p. 220, 1820. Sur le Felis mitis, Rengger, o. c., p. 194. 23. Docteur Murie, sur l'Otaria, Proc. Nool. Soc., p. 108, 1869. M. R. Brown, sur le Ph. groenlandica, ibid., p. 417, 1868. Voy, aussi sur la couleur des phoques, Desmarest, Mammalogie, p. 243, 249.

Les différences sexuelles de coloration sont plus fréquentes chez les ruminants que dans les autres ordres. Elles sont générales chez les antilopes à cornes tordues; ainsi le nilghau male (Portax picta) est gris bleu bien plus foncé que la femelle; il porte, en outre, beaucoup plus distinctes, la taehe carrée blanche de la gorge, les taches également blanches des fanons, et les taches noires des oreilles. Nous avons vu que, chez cette espèce, les crêtes et les touffes de poils sont également plus développées chez le mâle que chez la femelle sans cornes. Le mâle, m'apprend M. Blyth, revêt périodi quement des teintes plus foncées pendant la saison des amours, sans cependant que son poit se renouvelle. On ne peut distinguer le sexe des jeunes avant l'âge d'un an, et si on chatre le mâle avant cette époque il ne change jamais de couleur. L'importance de ce dernier fait, comme preuve absolue de la coloration sexuelle, devient évidente lorsque nous apprenons ${ }^{24}$ que, chez le cerf de Virginie, ni le pelage d'été, qui est roux, ni celui d'hiver, qui est bleu, ne sont affectés par la castration. Dans toutes les espèces trés ornées du Tragelaphus, ou dans presque toutes, les mâles sont plus foncés que les femelles sans cornes, et leurs touffes de poils sont plus développées. Chez cette magnifique antilope, l'Oreas derbianus, le corps est plus rouge, tout le cou beaucoup plus noir, et la bande blanche qui sépare ces deux couleurs beaucoup plus large chez le mâle que chez la femelle. Chez l'Élan du Cap (Oreas canna) le mâle est légèrement plus foncé que la femelle ${ }^{25}$.

Chez une antilope indienne (A. Bezoartica), appartenant à une autre tribu de ce groupe, le mâle est très foncé, presque noir; la femelle sans cornes est fauve. On observe chez cette espèce, m'apprenđ M. Blyth, une série de faits exactement semblables à ceux du Portax picla, à savoir, un changement périodique dans la coloration du male, pendant la saison des amours. La castration a les memes effets sur ce changement, et le pelage des jeunes des deux sexes est identique. Chez l'Antilope niger, le male est noir, la femelle et les jeunes sont de couleur brune; chez l'A. sing-sing, la coloration du male est beaucoup plus vive que celle de la femelle sans cornes, et son poitrail et son abdomen sont plus noirs; chez l'A. caama male, les lignes et les taches des divers points du corps
24. J. Caton, Trans. Ottawa Ac. Nat. Sc., p. 4, 1868.
25. Docteur Gray, Cat. Mamm. in Brit. Mus., vol. III, p. 134-42, 1852; et dans Gleanings from the Menagerie of Knowsloy, où se trouve un magnifique dessin de l'Oreas derbianus; voy. le texte relatif au Tragelaphus. Pour l'Oreas canna, And. Smith, Zool. of S. Africa, pl. XLI et XLII. Ces antilopes sont nombreuses dans les jardins de la Zoological Society.
sont norres, elles sont brunes chez la femelle; chez le gnou zébré (A. gorgon). les couleurs du mâle sont presque les mêmes que celles de la femelle, elles sont seulement plus intenses, et plus brillantes ${ }^{26}$. . Je pourrais citer d'autres exemples analogues.
Le taureau Banteng (Bos sondaicus), de l'archipel Malais, est presque noir avec les jambes et les fesses blanches; la vache est couleur fauve clair, comme le sont les jeunes males jusqu'à trois ans, age où ils chạngent rapidement de couleur. Le taureau châtré revêt la coloration de la femelle. On remarque, comparées à leurs males respectifs, un ton plus pâle chez la chèvre Kemas, et une teinte plus uniforme chez la femelle du Capra ægagrus. Les différences sexuelles de coloration sont rares chez les cerfs, Judge Caton m'apprend cependant que chez les mâles du cerf Wapiti (Cervus Canadensis), le cou, le ventre et les membres sont plus foncés que chez les femelles, mais que ces nuances disparaissent peu à peu pendant l'biver. Je mentionnerai ici que Judge Caton possède dans son pare trois races du cerf de la Virginie, qui présentent dans leur coloration de légères différences, différences portant presque exclusivement sur le pelage bleu de 'l'hiver ou celui de la saison des amours; ce cas peut donc être comparé à ceux déjà cités dans un chapitre précédent, et relatifs à des espéces voisines ou représentatives d'oiseaux qui ne diffèrent entre eux que par leur plumage nuptial ${ }^{27}$. Les femelles du Cervus paludosus de P'Amérique du Sud, et les jeunes des deux sexes, n'ont pas sur le poitrail et sur les naseaux les raies noires et la ligne brun noiratre qui caractérisent les mâles adultes ${ }^{28}$. Enfin le cerf axis male adulte, si magnifiquement coloré et tacheté, est, à ce que m'apprend M, Blyth, beaucoup plus foncéque la femelle; il n'arrive jamais à cette nuance lorsqu'il a subi la castration.
Le dernier ordre que nous ayons à considérer est celui des Primates. Le Lemur macaco male est noir de jais ; la femelle est jaune rougeatre, mais de nuance très variable ${ }^{\text {² }}$. Parmi les quadrumanes
26. Sur 1'Ant. niger, Proc, Zool. Soc., 1850, p. 133, Sur une espèce voisine présentant une semblable difference sexuelle de couleur, Sir S. Baker, The Albert Nyanza, II, p. 327, 1896. Pour 1'A. sing-sing, Gray, Cat. Brit. Mus., p. 100. Desmarest, Mammalogie, p. 468, sur l'A. caama. Andrew Smith, Zool. of S. Africa, sur le gnow,
27. Ottawa Acad. of Sciences, p. 3, S. Mai 1868.
28. S. Müller, sur le Banteng, Zool. d. Indischen Archipel., 1839, p 44, tah. XXXY. Raffles, cité par M. Blyth, dans Land and Water, p. 476, 1867. Sur les chèvres, Gray, Cat. Brit, Mus., p. 146. Desmarest, Mammalogie, p. 582. Sur le Cervus paludosus, Rengger, o. e, p. 345.
29. Selater, Proc. Zool. Soc.,I, 1866. MM. Pollen et Yan Dam ont vérifí́ le ménie fait. Voir aussi le docteur Gray, Annals and Mag. of Nat. Hist., Mai 1871, p. 340.
du nouveau monde, les femelles el les jeunes du Miceles caraya sont - jaune grisâtre et semblables; les jeunes mâles deviennent brun rougeâtre pendant la seconde année, et noirs pendant la troisième, à lexception du poitrail, qui finit toutefois par devenir entièrement noir pendant la quatrième ou la cinquième année. Il y a aussi une différence marquée entre les couleurs des sexes chez les Mycetes seniculus et chez les Cebus capucinus; les jeunes de la première, et, à ce que je crois, ceux de la seconde espèce, ressemblent aux femelles. Chez le Pithecia leucocephala, les jeunes ressemblent à la femelle, qui est noir brunatre en dessus, et en dessous d'une teinte rouille claire; les males adultes sont noirs. Le collier de poils qui entoure le visage de l'Ateles marginatus est jaunâtre chez le mâle et blanc chez la femelle. Dans l'ancien monde, les Hylobates hoocolk males sont toujours noirs, une raie blanche sur les sourcils exceptée; les femelles varient d'un brun blanchâtre à une teinte foncée mêlée de noir, mais nesont jamais entièrement noires ${ }^{30}$. Chez le beau Cercopithecus diana, la tête du male adulte est noir intense, celle de la femelle est gris foncé; chez le premier, le pelage entre les deux cuisses est d'une élégante couleur fauve, plus pâle chez la dernière. Chez le magnifique et curieux singe à moustaches (Cercopithecus cephus), il n'y a différence pour la couleur du pelage des deux sexes que dans la queue, qui est châtain chez les mâles et grise chez les femelles; mais je tiens de M. Bartlett que toutes les nuances bien prononcées chez le malle adulte, restent pour les femelles ce qu'elles étaient dens le jeune àge. D'après les figures coloriées exécutées par Salomon Müller, le Semnopithecus chrysomelas male est presque noir, la femelle est brun pale. Chez les Cercopithecus cynosuras et griseo-viridis, les organes génitaux du mâle sont vert ou bleu briliant et contrastent d'une manière frappante avec la peau nue de la partie postérieure du corps, qui est rouge vif.
Enfin, dans la famille des Babouins, le Cynocephalus hamadryas male adulte differe non seulement de la femelle par son énorme crinière, mais aussi un peu par la couleur du poil et des callosités nues. Chez le drille (Cynocephalus leucophcous), les femelles et les jeunes sont plus pales et ont moins de vert dans leur coloration que les males adultes. Aucun autre membre de la classe entière des mammiféres ne présente de coloration aussi extraordinaire que le mandrill male adulte (Cynocephalus mormon (fig. 69, P1. 34). Son visage, à
30. Sur le Mycetes : Rengger, o. c., p. 14; Brehm, Illustrirtes Thierleben, vol. I, p. 96, 107. Sur l'Ateles, Desmarest, Mammalogie, p. 75. Sur l'Hylobates, Blyth, Land and Water, p. 135, 1867. Sur le Semnopithecus, S. Müller, Zoog. Isd. Archip., tab. X.
l'ăge adulte, est d'un beau bleu, tandis que la crête et l'extrémité du nez sont d'un rouge des plus vifs. D'après quelques auteurs, son visage serait aussi marqué de stries blanchatres, et ombré par places en noir; mais ces couleurs paraissent variables. Il porte sur le front une touffe de poils, et une barbe jaune au menton. «Toutes les parties supérieures des cuisses et le grand espace nu des fesses sont également colorés du rouge le plus vif, avec un mélange de bleu qui ne manque réellement pas d'élégance ${ }^{31}$. , Lorsque l'animal est excité, toutes les parties nues revêtent une teinte beaucoup plus vive; plusieurs auteurs ont employé les expressions les plus fortes pour donner une idée de l'éclat de ces couleurs, qu'ils comparent au plumage des oiseaux les plus resplendissants. Une autre particularité des plus remarquables distingue le mandrill: quand les grosses dents canines ont acquis tout leur développement, d'énormes protubérances osseuses se forment sur chaque joue, lesquelles protubérances sont profondément sillonnées dans le sens de la longueur, et la peau nue qui les recouvre très vivement colorée, comme nous venons de le dire (fig. 69, Pl. 34). Ces protubérances sont à peine appréciables chez les femelles adultes et chez les jeunes des deux sexes qui ont les parties nues bien moins brillantes en couleur, et le visage presque noir, teinté de bleu. Chez la femelle adulte cependant à certains intervalles réguliers, le nez se nuance de rouge.

Dans tous les cas signalés jusqu'ici, c'est le male qui est plus vivement ou plus brillamment coloré, et qui diffère à un plus haut degré des jeunes des deux sexes. Mais de même que chez quelques oiseaux se présentent des cas de coloration inverse dans les deux sexes, de même chez le Rhesus (Macacus rhesus), la femelle a une large surface de peau nue autour de la queue, surface d'un rouge carmin vif, qui devient périodiquement plus éclatant encore, à ce que m'ont assuré les gardiens des Zoological Gardens; son visage aussi est rouge, mais patle. Chez le male aduite, au contraire, et chez les jeunes des deux sexes, ainsi que j'ai pu le constater, on n'observe pas la moindre trace de rouge, ni sur la peau nue de l'extrémité postérieure du corps, ni sur le visage. Il paraît cependant, d'après quelques documents publiés, qu'accidentellement ou pendant certaines saisons, le mâle peut présenter quelques traces

[^276]de cette couleur. Bien que moins orné que la femelle, il ne s'en conforme pas moins à la règle commune, d'après laquelle le mâle l'emporte sur la femelle par sa plus forte taille, des canines plus grandes, des favoris plus développés, et des âcades sourcilières plus proéminentes.

J'ai maintenant indiqué tous les cas qui me sont connus de différences de couleur entre les sexes des mammifêres. Dans quelques cas, les différences peuvent provenir de variations lim tées à un sexe et transmises à ce sexe sans aucun résultat avantageux, et, par conséquent, sans intervention de la sélection. Nous avons des exemples de ce genre chez nos animaux domestiques, certains chats mâles par exemple, qui sont d'un rouge de rouille, tandis que les femelles sont tigrées. Des cas analogues s'observent dans la nature; M. Bartlett a vu beaucoup de variétés noires du jaguar, du léopard, du phalanger et du wombat, et il est certain que la plupart, sinon tous, étaient mâles. D'autre part, les individus des deux sexes, chez les loups, les renards et les écureuils américains, naissent quelquefois noirs. Il est donc tout à fait possible que, chez quelques mammifères, une différence de coloration entre les sexes, surtout lorsqu'elle est congénitale, soit simplement le résultat, sans aucune sélection, d'une ou plusieurs variations, dès l'abord limitées sexuellement dans leur transmission. Toutefois on ne peut guère admettre que les couleurs si diverses, si vives et si tranchées de certains mammifères, telles que celles des singes et des anti. lopes mentionnés plus haut, puissent s'expliquer ainsi. Ces couleurs n'apparaissent pas chez le mâle dès sa naissance, mais seulement lorsqu'il a atteint l'état adulte ou qu'il en approche; et, contrairement aux variations habituelles, elles ne se produisent pas lorsque le raale a été́ châtré. En somme, la conclusion la plus probable, c'est que les couleurs fortement accusées et les autres ornements des quadrupedes males, leur procurent un avantage dans leur lutte avec d'autres mâles, et sont, par conséquent, le résultat de la sélection sexuelle. Le fait que les différences de coloration entre les sexes se rencontrent presque exclusivement, comme le prouvent les détails précités, dans les groupes et les sous-groupes de mammifères présentant d'autres caractêres sexuels secondaires distincts, également le produit de l'action de la sélection sexuelle, augmente beaucoup la probabilité de cette opinion.
Les quadrupèdes font évidemment attention à la couleur. Sir S. Baker a obset vé à de nombreuses reprises que l'éléphant africain et le rhinocéros attaquant avec une fureur toute spéciale les
chevaux blancs ou gris. J'ai prouvé ailleurs ${ }^{32}$ que les chevaux à demi-sauvages paraissent s'accoupler de préférence avec ceux de la même couleur; et que des troupeaux de daims de colorations différentes, bien que vivant ensemble, sont longtemps restés distincts. Un fait plus significatif, c'est qu'une femelle de zèbre qui avait absolument refusé de saccoupler avec un âne, le reçut très volontiers, comme le remarque John Hunter, dès qu'il fut peint à la manière du zèbre. Dans ce fait fort curieux \& nous observons un instinct excité par la simple couleur, dont l'effet a été assez puissant pour l'emporter sur tous les autres moyens. Mais le male n'en exigeait pas autant; le fait que la femelle était un animal ayant de l'analogie avec lui, suffisait pour éveiller ses passions ${ }^{33}$. »

Nous avons vu, dans un des premiers chapitres de cet ouvrage, que les facultés mentales des animaux supérieurs ne diffèrent pas en nature, bien qu'elles diffèrent énormément en degré, des facultés correspondantes de l'homme, surtout de celles des races inférieures et barbares; et il semblerait même que le goût de ces dernières pour le beau est peu différent de celui des Quadrumanes. De même que le nègre africain taille la chair de son visage de façon à produire des \& crêtes ou des cicatrices parallèles faisant fortement saillie au-dessus de la surface normale, affreuses difformités qu'il considère comme constituant un grand attrait personnel ${ }^{34}, \gg$ de même que les nègres aussi bier que les sauvages de beaucoup de parties du monde peignent sur leur visage des bandes rouges, bleues, blanches ou noires, - de même aussi le mandrill africain mâle semble avoir acquis son visage profondément sillonné et fastueusement coloré, pour devenir plus attrayant pour la femelle. Il peut, sans doute, nous sembler grotesque que la partie postérieure du corps ne soit colorée encore plus vivement que le visage dans un but d'ornementation, mais cela n'est pas plus étrange que les décorations spéciales dont la queue de tant d'oiseaux forme le siège.

Il ne semble pas que les mammifères males se donnent la moindre peine pour étaler leurs charmes devant les femelles; les oiseaux males au contraire s'ingénient de toutes les façons pour y arriver, et c'est là un des plus forts arguments en faveur de l'hypothèse que les femelles admirent les ornements etles couleurs étalés devant elles et se laissent séduire par ce spectacle. On observe toutefois un parallélisme frappant entre les mammifères et les

[^277]oiseaux au point de vue des caractères sexuels secondaires; les uns et les autres sont en effet pourvus d'armes pour combattre les males leurs rivaux, d'appendices et de couleurs diverses constituant des ornements. Dans les deux classes, lorsque le malle differe de la femelle, les jeunes des deux sexes se ressemblent presque toujours, et, dans la majorité des cas, ressemblent aux femelles adultes. Dans les deux classes, le mâle revêt les caractères prcitios à son sexe au moment de parvenir à l'âge adurte, et la castrucion l'empéche de jamais acquérir ces caractères, ou les lui fait perdre plus tard. Dans les deux classes, le changement de couleur dépend quelquefois de la saison, et les teintes des parties nues augmentent parfois d'intensité pendant la saison des amours. Dans les deux classes, le mâle affecte toujours des couleurs plus vives et plus brillantes que la femelle, et il est orpé de plus grandes touffes de poils ou de plumes, ou d'autres appendices. On remarque cependant dans les deux classes quelques cas exceptionnels; la femelle est plus ornée que le male. Chez beaucoup de mammifères et au moins dans le cas d'un oiseau, le male émet une odeur plus forte que la femelle. Dans les deux classes la voix du male est plus puissante que celle de la femelle. Ce parallélisme nous conduit à admettre qu'une même cause, quelle qu'elle puisse etre, agit de la même manière sur les mammifères et sur les oiseaux; or, il me semble qu'en ce qui concerne les caractères d'ornementation, on peut, avec certitude, aitribuer le résultat obtenu à une préférence longtemps soutenue de la part d'individus d'un sexe pour certains individus du sexe opposé, combinée avec le fait qu'ils auront ainsi réussià laisser un plus grand nombre de descendants pour hériter de leurs attraits d'ordre supérieur.

Transmission agale aux deux sexes des caractères dornementation. - Chez beaucoup d'oiseaux, J'analogie conduit à penser que les ornements ont été primitivement acquis par les mâles, puis transmis également, ou à peu près, aux deux sexes : recherchons maintenant jusqu'à quel point cette remarque peut s'appliquer aux mammifères. Dans un nomkre considérable d'espèces, et surtout chez les plus petifes, les deux sexes ont, en dehors de toute intervention de la sélection sexuelle, acquis une coloration toute protectrice; mais, autant que j'en puis juger, ce fait est surtout fréquent, et frappant dans les classes inférieures. Audubon nous dit
qu'il a souvent confondu le rat musqué ${ }^{35}$, arrêté sur les bords d'un ruisseau boueux, avec une motte de terre, tellement la ressemblance est complète. Le lièvre dans son gite est un exemple bien connu de l'animal dissimulé par sa couleur; cependant l'espèce voisine, le lapin, n'est pas dans le mème cas, car la queue blanche et redressée de cet animal, quand it se dirige ver's son terrier, le rend très visible au chasseur et surtout aux carnasciers qui le poursuivent. On n'a jamais mis en doute, que les quadrupèdes habitant les régions couvertes de neige, ne soient devenus blancs pour se protéger contre leurs ennemis, ou pour s'approcher plus facilement de leur proie. Dans les contrées où la neige ne séjourne pas longtemps sur le sol, un pelage blanc serait nuisible; aussi les espèces de cette couleur sont extrêmement rares dans les parties chaudes du globe. Un grand nombre de mammifères des zones tempérées, qui ne revêtent pas pendant l'hiver un pelage blanc, deviennent plus pales pendant cette saison; ce qui, selon toute apparence, est le résultat direct des conditions auxquelles ils ont été longtemps exposés. Pallas ${ }^{36}$ assure qu'en Sibérie un changement de cette nature se produit chez le loup, chez deux espèces de mustela, chez le cheval domestique, chez l'hémione, chez la vache domestique, chez deux espèces d'antilope, chez le cerf musqué, le chevreuil, l'élan et le renne. Le chevreuil, par exemple, a une robe rouge pendant l'été, et, pendant l'hiver, d'un blanc grisâtre, qui doit le protéger dans ses courses au travers des taillis sans feuilles, saupoudrés de neige et de givre. Que ces animaux se répandent peu à peu dans des régions toujours couvertes de neige, et la sélection naturelle rendra probablement leur pelage d'hiver de plus en plus blanc jusqu'a ce qu'il devienne aussi blanc que la neige elle-méme. M. Reeks m'a cité un curieux exemple d'un animal qui tire profit de ses conleurs particulières. Il a élevé, dans un grand verger entouré de murs, cinquante ou soixante lapins blancs et pie; il avait en même temps chez lui des chats affectant la même couleur. Ces chats, comme je l'ai souvent remarqué, sont très apparents pendant le jour, mais ils avaient l'habitude de chasser pendant la nuit, de se tenir alors à l'entrée des terrier's, les lapins ne pouvaient pas les distinguer de leurs compagnons pie. Il en résulta qu'au bout de dix-huit mois presque tous ces lapins pie avaient été détruits, et on a la preưve qu'ils avaient été détruits par les chats. La coloration rend à un autre animal, le Putois, des services dont on

[^278]trouve l'équivalent dans quelques autres classes. Aucun animal n'attaque volontairement une de ces créatures, à cause de l'odeur épouvantable qu'elle émet quand on l'irrite; mais, pendant le crépuscule, il est difficile de reconnaitre le Putois et les bêtes de proie pourraient se laisser aller à l'attaquer. M. Belt ${ }^{37}$ croit que pour cette raison le Putois est pourvu d'une grande queue blanche qui sert d'avertissement à tous les animaux.
Nous devons admettre que beaucoup de mammifères ont revelu leurs nuances actuelles comme moyen de protection; il y a cependant une foule d'espèces dont les couleurs sont trop brillantes et trop singulièrement disposées pour que nous puissions leur attribuer cet usage. Prenons pour exemple certaines antilopes: la tache blanche carrée du poitrail, les taches de même couleur sur les fesses, et les taches noires arrondies sur les oreilles, sont toutes beaucoup plus distinctes chez le mâle du Porlax picla que chez la femelle; -. les couleurs sont plus vives, les étroites lignes blanches du flanc et la large bande blanche de l'épaule sont plus tranchées chez le mâle de l'Oreas Derbyanus que chez la femelle; une différence semblable existe entre les sexes du Tragelaphus scriptus (fig. 70, Pl. 34), si curieusement orné: -- nous en conclurons que des différences de cette nature ne rendent aucun service à l'un ou l'autre sexe relativement aux habitudes quotidiennes de l'existence. Il est beaucoup plus probable que ces divers ornements ont eté primitivement acquis par la sélection sexuelle, augmentés par le même moyen et partiellement transférés aux femelles. Cette hypothese admise, on peut penser que les couleurs également singulières, et les taches de beaucoup d'autres antilopes, bien que communes aux deux sexes, ont dû être produites et transmises de la même manière. Les deux sexes, par exemple, du Coudou (Strepsiceros Kudu) (fig. 64, Pl. 31), portent sur leurs flancs postérieurs d'étroites lignes verticales blanches, et une élégante tache blanche angulaire sur le front. Dans le genre Damalis, les deux sexes son bizarrement colorés; chez le Damalis pygarga, le dos et le cou sont rouge pourpré, virant au noir sur les flancs, et brusquement séparés de l'abdomen blanc et d'un large espace blanc sur les fesses; la tête est encore plus étrange, car un large masque blane oblong, entouré d'un bord noir étroit, couvre la face jusqu'à la hauteur des yeux (fig. 71, Pl. 35); le front porte trois bandes blanches et les oreilles sont tachetées de blanc. Les faons de cette espèce sont d'un brun jaunâtre pâle uniforme. Chez le Damatis albifrons, la coloration de
la tette diffère en ce qu'une unique raie blanche remplace les trois raies dont nous venons de parler, et que les oreilles sont presque entièrement blanches ${ }^{38}$. Après avoir étudié de mon mieux les différences existant entre les mâles et les femelles de toutes les classes, je dois conclure que la sélection sexuelle a produit chez beaucoup d'antilopes ces arrangements bizarres des couleurs qui, bien que communs aujourd'hui aux deux sexes, ont dû intervenir d'abord chez le male.

On doit peut-être étendre la même conclusion au tigre, l'un des plus beaux animaux qui existent, et dont les marchands de betes féroces eux-mêmes ne peuvent distinguer le sexe parla coloration. M. Wallace croit ${ }^{39}$ que la robe rayée du tigre « ressemble assez aux tiges verticales du bambou, pour contribuer beaacoup à le dissimuler aux regards de la proie qui s'approche de lui». Mais cette explication ne me paraît pas satisfaisante. Le fait que chez deux espèces de Felis des taches et des couleurs analogues sont un peu plus vives chez le mâle que chez la femelle, nous autorise peut-être à penser que la beauté du tigre est due à la sélection sexuelle. Le zèbre est admirablement rayé, et des raies, dans les plaines découvertes de l'Afrique méridionale, ne peuvent constituer aucune protection. Burchell ${ }^{40}$, décrivant un troupeau de ces animaux, dit : - Leurs côtes luisantes étincelant au soleil et leur manteau brillant, si régulièrement rayé, offrent un tableau d'une beauté que ne pourrait probablement surpasser aucun autre quadrupède. > Nous n'arons pas de preures que la sélection sexuelle ait jouéici un rolle, car les sexes sont, dans tous les groupes des Équidés, identiques par la couleur. Néanmoins, si on attribue les raies verticales blanches et foncées des flanes de diverses antilopes à la sélection sexuelle, on sera probablement porté à penser de mêrne pour le Tigre royal et le Zèbre magnifique.
Nous avons vu, dans un chapitre précédent, que si les jeunes de classe quelconque, ayant les mêmes habitudes de vie que leurs parents, présentent une coloration différente, c'est qu'ils ont hérité de quelque ancêtre éloigné et éteint. Dans la famille des Porcidés et dans le genre Tapir, les jeunes portent des raies longitudinales, et diffèrent ainsi de toutes les espèces adultes de ces deux groupes. Dans beaucoup d'espèces de cerfs, les faons sont tachetés d'élégants points blancs, dont les parents n'offrent aucune trace. On
39. Westminster Review, lor Juillet 1867, p. 5 .
40. Travels in South Africa, vol. I,
40. Travels in South Africa, vol, 11, 1824, p. 815.
peut établi, depuis l'Axis, dont les deux sexes sont, en toutes saisons et à tout àge, magnifiquement tachetés (le mâle étant plus fortement coforé que la femelle), - une série passant par tous les degrés jusqu'à des espèces chez lesquelles ni adultes ni jeunes n'ont aucune tache. Voici quelques termes de cette série : le Cerf Mantchourien (Cerous Manlchuricus) est tacheté toute l'année; mais, ainsi que je l'ai observé aux Zoological Gardens, les taches sont moins distinctes l'hiver, alors que le pelage devient plus foncé et que les cornes acquièrent leur entier développement. Chez le Cert cochon (Hyelaphus porcinus), les taches, très apparentes pendant l'été, alors que la robe est brun rougeâtre, disparaissent entièrement l'hiver, cette robe revêtant une teinte brune ${ }^{11}$. Les jeunes des deux espèces sont tachetés. Chez le Cerl de Virginie, les jeunes sont également tachetés, et Judge Caton m'informe qu'environ cinq pour cent des adultes qu'il possède dans son parc, portent temporairement sur chaque flanc, à l'époque où la robe rouge va étre remplacée par la robe plus bleuâtre de l'hiver, une ligne de $t^{\text {aches en nombre toujours égal, bien que très variables quant á la }}$ netteté. De cet état à l'absence complète de taches chez les adultes pendant toutes les saisons, et, enfin. comme cela arrive chez certaines espèces, à leur absence, à tous les ages, il n'y a qu'une très faible distance. L'existence de cette série parfaite, et surtoúc le fait du tachetage des faons d'rn aussi grand nombre d'espèces, nous permettent de conclure que les individus actuels de la famitle des cerfs descendent de quelque espèce ancienne qui, comme l'Axis, était tachetée à tout age et en toute saison. Un ancêtre, encore plus ancien, a probablement dû reszembler jusqu'à un certain point au Hyomoschus qquaticus, car cet animal est tacheté, et les mâles, qui ne portent pas de cornes, ont de grandes canines saillantes dont quelques vrais cerfs ont encore conservé les rudiments. L'Hyomoschus aquaticus offre aussi un de ces cas intéressants d'une forme rattachant deux groupes : il est, par certains earactères ostéologiques, intermédiaire entre les pachydermes et les ruminants, qu'on croyait autrefois tout à fait distincts ${ }^{12}$.
Ici se présente une difficulté curieuse. Si nous admettons que les taches et les raies de couleur aient été acquises dans un but d'or-

[^279]nementation, comment se fait-il que tant de cerfs actuels, descendant d'un animal primitivement tacheté, et toutes les espèces de porcs et de tapirs, descendant d'un animal primitivement rayé, aient perdu à l'état adulte leurs ornements d'autrefois? Je ne puis répondre à cette question d'une manière satisfaisante. Il est à peu près certain que les taches et les raies ont disparu chez les ancêtres de nos espèces actuelles, alors quils étaient à l'état adulte ou à pou près, de sorte qu'elles ont été conservées par les jeunes, et, en vertu de la loi d'hérédité, aux âges correspondants, transmises aux jeunes de toutes les gérérations suivantes. Il peut avoir été très avantageux au lion et au puma, qui fréquentent habituellement des lieux découverts, d'avoir perdu leurs raies, et d'être ainsi devenus moins apparents pour leur proie; or, si les variations successives qui ont amené leur résultat se sont produites à une époque tardive de la vie, les jeunes ont conservé les raies, ce qui, nous le savons, est en effet arrivé. En ce qui concerne les cerfs, les porcs et les tapirs, Fritz Müller m'a fait remarquer que la disparition des taches et des raies, provoquée par la sélection naturelle, a dû rendre ces animaux moins facilement visibles à leurs ennemis, protection devenue d'autant plus nécessaire, aue les carnassiers ont augmenté en taille et en nombre pendant ies périodes tertiaires. Cette explication peut être la vraie, mais il est assez étrange que les jeunes n'aient pas été également protégés, et plus encore que les adultes de quelques espèces aient conservé partiellement leurs taches cu toutes leurs taches pendant une partie de l'année. Nous savons, sans pouvoir en expliquer la cause, que, quand l'âne domestique varie et devient brun rougeatre, gris ou noir, les raies de l'épaule et même celle de l'épine dorsale disparaissent ordinairement. Peu de chevaux, les chevaux isabelle exceptés, portent des raies sur le colps, et cependant nous avons du bonnes raisons pour croire que le cheval primitif portait des raies sur les jambes et sur la ligne dorsale, et probablement aussi sur les épaules ${ }^{43}$. La disparition des taches et des raies chez nos porcs, chez nos cerfs et chez nos tapirs adultes, peut donc provenir d'un changement dans la couleur générale de leur pelage, mais il nous est impossible de déterminer si ce changement est i'œuvre de la álection sexuelle ou de la sélection naturelle, s'il est du à l'action directe des conditions vitales, ou à quelque autre cause inconnue. Une observation faite par M. Sclater prouve notre ignorance des lois qui règlent l'apparition ou ladisparition des raies; les espèces d'Asinus
43. La Varialion, ole., vol. I, p. 65-68.
qui habitent le continent asiatique ne portent pas de raies, et n'ont même pas la bande en croix sur l'épaule; tandis que les espèces qui habitent l'Afrique sont nettement rayées, à l'exception de l'A. tæniopus, qui n'a que la bande en croix sur l'épaule et quelques traces de barres sur les jambes; or cette espèce habite la région à peu près intermédiaire entre la haute Egypte et l'Abyssinie ${ }^{44}$.

Quadrumanes. - Avant de conclure, il est bon d'ajouter quelques

 remarques à propos des caractères d'ornementation chez les singes. Dans la plupart des espèces les sexes se ressemblent par la couleur; mais les mâles, comme nous l'avons vu, diffèrent des femelles par la couleur des parties nues de la peau, le développement de la barbe, des favoris et de la crinière. Beaucoup d'espèces sont colorées d'une manière si belle et si extraordinaire, et sont pourvues de touffes de poils si curieuses et si élégantes, que nous ne pouvons nous empêcher de considérer ces caractères commedes ornements. Les figures 72 à 76 (Pl. 35 et 36) indiquent l'arrangement des poils sur le visage et sur la tête de quelques espèces. Il n'est pas à croire que ces touffes de poils et les couleurs si tranchées de la fourrure et de la peau, puissent être le résultat de simples variations sans le concours de la sélection; il est probable que ces caractères puissent avoir une utilité usuelle pour ces animaux. Hs sont donc probablement dus à l'action de la sélection sexuelle, quoique transmis également ou presque également aux deux sexes. Chez beaucoup de Quadrumanes, nous trouvons d'autres preuves de l'action de la sélection sexuelle, la plus grande taille et la plus grande force des mâles, par exemple, et le développement plus complet des dents canines chez les mâles que chez les femelles.Quelques exemples suffiront pour faire comprendre les dispositions étranges que présentent la coloration des deux sexes dans quelques espèces, et la beauté de cette coloration chez d'autres. Le Cercopithecus petaurista (fig. 77, Pl. 37) a le visage noir, la barbe et les favoris blancs, et sur le nez une tache blanche arrondie bien distincte et couverte de courts poils blancs, ce qui donne a l'animal un aspect presque comique. Le Semnopithecus frontatus a aussi le visage noiratre avec une longue barbe noire, et, sur le front, une grande tache nue d'une couleur blanc bleuâtre. Le Macacus lasiotus a le visage couleur chair sale, avec une triche rouge bien définie sur chaque joue. L'aspect du Cercocebus æthiops est grotesque avec son

[^280]visage noir, ses favoris et son collier blancs, sa tete couleur marron, et une grande tache blanche au-dessus de chaque sourcil. Chez beaucoup d'espèces, la barbe, les favoris et les louffes de poils qui entourent le visage ont des couleurs fort différentes du reste de la tête, et elles sont toujours alors d'une teinte plus claire ${ }^{45}$, soit tout à fait blanches, soit jaune brillant, soit rougeatres. Le Brachyurues calvus de l'Amérique du Sud a le visage entier d'une nuance écarlate brillante, mais cette coloration n'apparait pas avant la maturité du male ${ }^{\text {is. }}$.
La couleur de la peau nue du visage diffère étonnamment suivant les espèces. Elle est souvent brune ou de couleur chair, avec des taches parfaitement blanches; mais, souvent aussi, noire comme la peau du nègre le plusfoncé. Chez le Brachyurus, le visage est d'un écarlate plus brillant que la joue de la plus rougissante Caucasienne; ou plus jaune parfois que chez aucun Mongolien, et dans plusieurs espèces il est bleu, passant au violet ou au gris. Dans toutes les espèces que connait M. Bartlett, espèces chez lesquelles les adultes des deux sexes ont le visage fortement coloré, les teintes sont ternes ou font défaut pendant la première jeunesse. On observe le même fait chez le Mandrill et chez le Rhésus, chez lesquels le visage et la partie postérieure du corps ne sont vivement colorés que chez un seul sexe. Dans ces derniers cas, nous avons toute raison de croire que ces colorations sont dues à l'action de la sélection sexuelle; or, nous sommes naturellement conduits à étendre la même explication aux espèces précédentes, bien que les deux sexes, lorsqu'ils sont adultes, aient le visage coloré de la même manière.
Les singes sont loin d'être beaux, mais quelques espèces se font remarquer par leur élégant aspect et leurs brillantes couleurs. Le Semnopithecus nemæus, quoique très singulièrement coloré, est, dit-on, fort joli; son visage teinté d'orange est entouré de longs favoris d'une blancheur lustrée, avec une ligne rouge marron sur les sourcils; le pelage du dos est d'un gris délicat; une tache carrée d'un blanc pur marque les reins, la queue et l'avant-bras; un collier marron surmonte la poitrine; les cuisses sont noires et les jambes rouge marron. Je citerai encore deux autres singes remarquables par leur beauté, et je les choisis parce qu'ils offrent de légères différences sexuelles de couleur, ce qui permet de supposer

[^281]que les deux sexes doiventà la sélection sexuelle leur élégance. C'est d'abord le Cercopilhecus cephus, au pelage pommelé, verdatre, avec la gorge blanche; l'extrémité de la queue, chez le mâle, est marron; mais le visage est la partie la plus ornée : peau gris bleuâtre, ombrée de noir sous les yeux; lèvre supérieure d'un bleu délicat, et bordée à la partie inférieure d'une mince moustache noire; favoris orangés, noirs à la partie supérieure et s'éteudant en bande jusqu'aux oreilles, et celles-ci revêtues de poils blanchatres. J'ai souvent entendu admirer par les visiteurs des Zoological Gardens la beauté d'un autre singe, appelé avec raison Cercopithecus Diana (fig. 78, Pl. 38); son pelage a une teinte générale grise; la poitrine et la face interne des membres antérieurs sont blanches, un grand espace triangulaire bien défini, d'une riche teinte marron, occupe la partie postérieure du dos; les cotés intérieurs des cuisses et l'abdomen sont, chez le mâle, d'une délicate nuance fauve, et le sommet de la tête est noir, le visage et les oreilles, d'un noir intense, contrastent très finement avec une crête blanche transversale audessus des sourcils, et une longue barbe à pointe blanche dont la base est nuire ${ }^{47}$.
La beauté des couleurs de ces singes, et de beaucoup d'autres, la singularité de l'arrangement des teintes, et plus encore les dispositions si diverses et si élégantes des crêtes et des touffes de poils sur la tête, me donnent la conviction que ces caractères ont été acquis exclusivement dans un but d'ornementation par l'intervention de la sélection sexuelle.

Résumé. - La loi du combat pour s'assurer la possession de la femelle paratt prévaloir dans toute Ia grande classe des mammifères. Lả plupart des naturalistes admettront avec moi que la taille, la force et le courage plus grands dix male, son caractère belliqueux, ses armes offensives spéciales, et ses moyens particuliers de défense, ont tous été acquis ou modifiés par cette forme de sélection que j’appelle la sélection sexuelle.
Ceci ne dépend d'aucune supériorité dans la lutte générale pour P'existence, mais de ce fait que certains individus d'un sexe, généralement ceux du sexe male, ont réussi à lemporter sur leurs rivaux et à laisser une descendance plus nombreuse pour hériter de leurs avantages.
Il est un autre genre de luttes, d'une nature plus pacifque, dans

[^282]lesquelles les males cherchent à attirer et à séduire les femelles par divers charmes. Ceci peut se faire par les Gôzurs cy'émettent les mâles pendant la saison des amours, les glandes odorantes ayant été acquises par sélection sexuelle. Il est douteux qu'on en puisse dire autant de la voix, car les organes vocaux des males, fortifiés peut-être par l'usage pendant l'état adulte, sour les puissantes influences de l'amour, de la jalousie ou de la colère, ont dû êtro transmis au même sexe. Diverses crêtes, diverses touffes et divers revêtements de poils, qu'ils soient propres aux males, ou simplement plus développés chez eux que chez les femelles, semblent étre, dans la plupart des cas, des caractères d'ornementation, ot cependant ils servent quelquefois de défense contre les males rivaux. On a même des raisons de supposer que les andouillers ramifiés des cerfs et les cornes élégantes de quelques antilopes, bien que servant aussi d'armes offensives, et défensives, ont été en partie modifiées dans un but d'ornementation.

Lorsque le male differre de la femelle par sa coloration, il offre, en général, des tons plus foncés et contrastant plus fortement entre eux. Nous ne rencontrons pas dans cette classe ces magnifiques couleurs rouges, bleues, jaunes et vertes, si communes aux olseaur mâles et à beaucoup d'autres animaux; les parties nues de certains quadrumanes, souvent bizarrement placées, présentent cependant parfois, chez quelques espéces, les couleurs les plus vives. Les couleurs du male peuvent être dues à une simple variation, sans le concours de la sélection; mais, lorsque les couleurs sont diverses et fortement tranchées, lorsqu'elles ne se développent qu'à l'état adulte et que la castration les fait disparaitre, nous pouvons en tirer la conclusion qu'elles sont dues à l'action de la sélection sexielle, qu'elles ont pour objet l'ornementation, et qu'elles se sont transmises, exclusivement ou à peu près, au même sexe. Lorsque les deux sexes ont une coloration identique, lorsque les couleurs sont très vives et bizarrement disposées sans qu'elles semblent répondre à aucun besoin de protection, et, surtout, lorsqu'elles sont accompagnées d'autres ornements, l'analogie nous conduit à la même conclusion, c'est-à-dire à penser qu'elles sont dues à l'action de la sélection sexuelle, quoique transmises aux deux sexes. Il résulte de l'examen des divers cas cités dans les deux derniers chapitres que, én règle générale, les couleurs diverses et tranchées, qu'elles soient restreintes aux malles on communes aux deux sexes, sont associées dans les mêmes groupes et dans les mêmes sousgroupes avec d'autres caractères sexuels secondaires, servant à la lutte ou à l'ornementation.

La loi d'égale transmission des caractères aux deux sexes, en ce qui a trait à la couleur et aux autres caractères décoratifs, a prévalu d'une manière beaucoup plus étendue chez les Mammifères que chez les Oiseaux; mais, en ce qui concerne les armes, telles que les cornes, les défenses et les crocs, elles ont été transmises plus souvent, soit plus exclusivement, soit plus complètement, aux males qu'aux femelles. C'est là un fait étonnant, car les mâles se servent en général de leurs armes pour se défendre contre des ennemis de tous genres, et elles auraient pu rendre le même service aux femelles. Autant que nous en pouvons juger, leur absence, chez ce dernier sexe, ne peut s'expliquer que par la forme d'hérédité qui a prévalu. Enfin, chez les quadrupèdes, les luttes pacifiques ou sanglantes entre individus du même sexe, ont, à de rares exceptions près, été limitées aux mâles; de sorte que la sélection sexuelle a modifié les mâles beaucoup plus généralement que les femelles, en leur donnant soit des armes pour se combattre entre eux, soit des charmes pour séduire l'autre sexe.

CHAPITRE XIX

GARAGTERES GEXUELS SECONDAIRES CHEZ L'HOMME

Différences entre l'homme et la femme. - Causes de ces différences et de certains caractères communs aux deux sexes. - Loi de combat. Différences dans la puissance intellectuelle de la voix. - Influence qu'a la beauté sur les mariages humains. - Attention qu'ont les sauvages pour les ornements. - Leurs idées sur ía beauté de la femme.

- Tendance à exagérer chaque particularité naturelle.

Les différences entre les sexes sont, dans l'espèce humaine, plus grandes que chez la plupart des Quadrumanes, mais moindres que chez quelques-uns, le Mandrill par exemple. L'homme est en moyenne beaucoup plus grand, plus lourd et plus fort que la femme, il a les épaules plus carrées et les muscles plus prononcés. Par suite des rapports qui existent entre le développement musculaire et la saillie des sourcils ${ }^{1}$, l'arcade sourcilière est plus fortement accusée en général chez l'homme que chez la femme. Il a le corps et surtout le visage plus velu, et sa voix a une intonation différente et plus puissante. On assure que, dans certains tribus, le teint des femmes diffère légèrement de celui des hommes; Schweinfurth dit à propos d'une négresse appartenant à la tribu de Monbuttoas qui

[^283]habite l'intérieur de l'Afrique, à quelques degrés au nord de l'équateur : Sa peau, comme celle de toutes les femmes de cette tribu est plus claire que celle de son mari; on pourrait comparer cette teinte à celle du café à moitié grillé ${ }^{2}$. . Les femmes de cette tribu travaillent aux champs et vont tout à fait nues; il n'est donc pas probable que la couleur de leur peau diffère de celle de la peau des hommes par suite d'une exposition moindre aux intempéries. Chez les Européens les femmes sont peut-être plus brillamment colorées, ainsi qu'on peut le voir lorsque les deux sexes ont été également exposés aux mêmes intempéries.
Lhomme est plus courageux, plus belliqueux et plus énergique que la femme, et il a le génie plus inventif. Le cerveau de l'homme est, absolument parlant, plus grand que celui de la femme; mais est-il plus grand relativement aux dimensions plus considérables de son corps ? c'est lả ùn point sur lequel on n'a pas, je crois, de données très certaines. La femme a le visage plus arrondi; les màchoires et la base du crâne plus petites; les contours du corps plus ronds, plus saillants sur certaines parties, et le bassin plus large ${ }^{3}$. Mais ce dernier caractère constitue plutôt un caractère sexuel primaire qu'un casacterre sexuel secondaire. La femme atteint la maturité à un age plus précoce que I'homme.
Les caractères distinctifs du sexe masculin ne se développent complètement chez l'homme, comme chez les animaux de toutes classes, qu'au moment où il devient adulte; ces caractères n'apparaissent jamais non plus après la castration. La barbe, par exemple, est un caractère sexuel secondaire, et les enfants mâles n'ont pas de barbe, bien que, dès le jeune âge, ils aient une chevelure abondante. C'est probablement à l'apparîtion un peu tardive dans la vie des variations successives qui donnent à l'homme ses caractères masculins, qu'il faut attribuer leur transmission au sexe mâle seul. Les enfants des deux sexes se ressemblent beaucoup, comme les jeunes de tant d'autres animaux chez lesquels les adultes diffèrent considérablement; ils ressemblent également beaucoup plus à la femme adulte qu'à l'homme adulte. Toutefois la femme acquiert ultérieurement certains caractères distinctifs, et par la conformation de son crâne elle occupe, dit-on, une position intermédiaire entre l'homme et l'enfant ${ }^{4}$. De même encore que nous avons vu les jeunes

[^284]d'espèces voisines, quoique distinctes, différer entre eux beaucoup moins que ne le font les adultes, de meme las enfants des diverses races humaines different entre eux moins̀ que les adultes. Quelques auteurs soutiennent même qu'on ne peut distinguer dans le crane de l'enfant leor différences de race ${ }^{5}$. Quant à la couleur, le nègre nou-veau-né est d'un brun rougeatre qui passe bientot au gris ardoisé; la coloration noire est complète à l'âge d'un an dans le Soudan ; en Égypte elle ne l'est qu'au bout de trois ans. Les yeux du nègre sont d'abord bleus, et les cheveux, plus chatains que noirs, ne sont frisés qu'à leurs extrémités. Les enfants autraliens sont, a leur naissance, d'un brun jaunâtre, qui ne devient foncé qu'à un age plus avancé. Ceux des Guaranys, dans le Paraguay, sont d'abord jaune blanchatre, mais ils acquierent au bout de quelques semaines la nuance brune jaunâtre de leurs parents. On a fait des observations semblables dans d'autres parties de l'Amérique ${ }^{\text {a }}$.
J'ai mentionné ces diffếrences entre les deux sexes de l'espóce humaine, parce qu'elles sont singulièrement les memes que chez les quadrumanes. Chez ces animaux, la femelle morit an age plus précoce que le mále, c'est du moins le cas chez le Cebus Azare ${ }^{7}$. Dans la plupart des espèces, les mâles sont plus grands et beaucoup plus forts que les femelles, cas dont le Gorille offre un exemple bien connu. Certains singes males. qui ressemblent sous co rapport à l'espèce humaine, diffèrent même de leurs femelles par un caractère aussi insignifiant que peut l'être la proéminence plus prononcée de l'arcade sourcilière ${ }^{8}$. Chez le Gorille et chez quelques autres singes, le crâne de l'adulte male est pourvu d'une crete sagittale fortement accusée, qui fait défaut chez la femelle : et Ecker a trouvé, entre les deux sexes des Australiens, les traces d'une différence semblable ${ }^{2}$. Lorsque chez les singes il y a une différence dans la voix, c'est celle du mate qui est la plus puissante. Nous avons vu que certains singes mâles ont une barbe bien développée, qui fait entièrement défaut, ou n'est que fort peu développée chez

[^285]les femelles. Il n'y a aucun exemple de barbe, de favoris ou de moustaches qui soient plus développés chez un singe femelle que chez le mâle. Il y a même un parallélisme singulier, entre l'homme et les quadrumanes, jusque dans la couleur de la barbe; car lorsque, ce qui arrive souvent, la barbe de l'homme diffère de sa chevelure par la teinte, elle est invariablement d'un ton plus clair, et souvent rougeâtre. J'ai bien souvent observé ce fait en Angleterre, mais deux personnes m'ont dernièrement écrit qu'elles font exception à la règle. L'une d'elles explique le fait par l'énorme différence qui existait dans la couleur des cheveux du côté paternel et du côté maternel de sa famille. Ces deux messieurs connaissaient depuis longtemps cette particularité (on accusait souvent l'un d'eux de teindre sa barbe), ce qui les avait conduits à observer d'autres hommes, et cette étude les convainquit que cette exception est extrèmement rare. Le docteur Hooker qui a bien voulu, à ma demande, porter son attention sur ce point, n'a pas rencontré une seule exception à la règle en Russie. M. J. Scott, du jardin botanique, a eu l'obligeance d'observer à Calcutta, ainsi que dans d'autres parties de l'Inde, les nombreuses races d'hommes qu'on peut y voir, à savoir : deux races dans le Sikhim, les Bhotheas, les Hindous, les Birmans et les Chinois. Bien que la plupart de ces races n'aient que fort peu de poils sur le visage, il a toujours trouvé que, lorsqu'il y avait une différence quelconque de couleur entre les cheveux et la barbe, cette dernière était invariablement d'une teinte plus claire. Or, comme nous l'avons déjà constaté, la barbe, chez les singes, diffère fréquemment d'une manière frappante des poils de la tête par sa couleur; or, dans ces cas, elle offre invariablement une teinte plus claire; elle est souvent d'un blanc pur, quelquefois jaunâtre ou rougeâtre ${ }^{10}$.

Quant au degré de villosité générale du corps, elle est moins forte chez les femmes, dans toutes les races, et, chez quelques quadrumanes, la face inférieure du corps de la femelle est moins velue que celle du male ${ }^{11}$. Enfin les singes mâles, comme l'homme,

[^286]sont plus hardis et plus féroces que les femelles; ils conduisent la bande, et se portent en avant dans le danger. Nous voyons, par ce qui précède, combien est complet le parallélisme entre les différences sexuelles de l'espèce humaine et celles des quadrumanes. Toutefois, chez certaines espèces de quadrumanes tellés, par exemple, que les Babouins, le Gorille et l'Orang, il existe entre les sexes des différences beaucoup plus importantes que dans l'espèce humaine, principalement dans la grosseur des dents canines, dans le développement et la coloration du poil, et surtout dans la coloration des parties de la peau qui restent nues.
Les caractères sexuels secondaires de l'homme sont tous très variables, même dans les limites d'une même race, et ils diffèrent beaucoup d'une race à l'autre: ces deux règles se vérifient très généralement dans tout le règne animal. Dans les excellentes observations faites à bord de la Novara ${ }^{12}$, on a trouvé que la taille des Australiens males n'excède en hauteur celle des femmes que de 0 m . 065 , tandis que chez les Javanais l'ex̆cès moyen est de 0 m .218 ; de sorte que, dans cette dernière race, la différence de grandeur entre les deux sexes est plus de trois fois plus forte que chez les Australiens. De nombreux mesurages, faits avec soin, sur diverses races, relativement à la taille, à la grosseur du cou, à l'ampleur de la poitrine, à la longueur de la colonne vertébrale et des bras, ont prouvé que les hommes diffèrent beaucoup plus les uns des autres que les femmes entre elles. Ce fait indique que le male surtout s'est modifié, en ce qui touche ces caractères, depuis que les races ont divergé de leur origine primordiale et commune.
Le développement de la barbe et la villosité du corps peuvent varier d'une manière remarquable chez des hommes appartenant à des races distinctes, et même à des familles différentes de la même race. Nous pouvons même observer ce fait chez nous, Européens. Dans l'ile de Saint-Kilda, d'après Martin ${ }^{13}$, la barbe, qui est toujours très faible, ne pousse pas chez les hommes avant lage de trente ans et au-dessus. Dans le continent européo-asiatique, la barbe existe jusqu'» ce qu'on ait dépassé l'Inde; encore est-elle souvent absente chez les indigènes de Ceylan, comme l'avait déjà

[^287]remarqué Noodore ${ }^{\text {ts }}$ dans l'antiquité. Au-delà de l'Inde la barbe disparait, chez les Siamois, chez les Malais, chez les Kalmuks, chez les Chinois et chez les Japonais, par exemple; cependant les Arnos ${ }^{15}$, qui habitent les iles septentrionales de l'archipel du Japon, sont les hommes les plus poilus qu'il y ait sur la terre. La barbe est claire ou absente chez les nègres et ils n'ont pas de favoris; chez les deux sexes, le corps est presque completement privé de fin duvet ${ }^{16}$. D'autre part, les Papous de l'archipel Malais, qui sont presque aussi roirs que les négres, ont la barbe bien développée ${ }^{17}$. Les habitants de l'archipel Fidji dans l'océan Pacifique ont de grandes barbes touffues, tandis que ceux des archidels peu éloignés de Tonga et de Samoa sont imberbes; mais ils appartiennent d des races distinctes. Dans le groupe d'Ellice, tous les habitants appartiennent à la même race; cependant, dans une seule tle, celle de Nunemaya, < les hommes ont des barbes magnifiques; tandis que dans les autres iles ils ne possèdent généralement, on fait de barbe, qu'une douzaine de poils épars ${ }^{18}$. ,
On peut dire que tous les hommes du grand continent américain sont imberbes ; mais dans presque toutes les tribus quelques poils courts apparaissent parfois sur le visage, surtout dans un age avancé. Catlin estime que, dans les tribus de l'Amérique du Nord, dix-huit hommes sur vingt sont complètement privés de barbe; mais on rencontre de temps en temps des individus qui, ayant négligé d'arracher les poils à l'áge de puberté, ont une barbe molle, longue d'un ou deux pouces. Les Guaranys du Paraguay different de toutes les tribus environnantes en ce quils ont une petite barbe, et même quelques poils sur le corps; mais ils n'ont pas de favoris ${ }^{19}$. M. D. Forbes, qui a particulièrement étudié cette question, m’apprend que les Aymaras et les Quichuas des Cordillères sont remarquablement imberbes; quelques poils égarés apparaissont

[^288]parfois à leur menton lorsqu'ils sont vieux. Les hommes de ces deux tribus ont fort peu de poil sur les diverses parties du corps où il croit abendamment chez les Européens, et les femmes n'en ont point. Cependant les, cheveux atteignent une longueur extraordinaire chez les deux sexes, ils tombent souvent jusqu'à terre ; c'est également le cas de quelques tribus de l'Amérique du Nord. Les sexes des ${ }^{*}$ indigènes américains ne diffèrent pas entre eux par la quantité des cheveux et par la forme générale du corps, autant que le font la plupart des autres races humaines ${ }^{\mathbf{2 0}}$. Ce fait est analogue à ce qu'on observe chez quelques singes; ainsi les sexes du Chimpanzé sont moins différents que chez le Gorille et l'Orang ${ }^{21}$.

Nous avons vu dans les chapitres précédents que, chez les Mammifères, chez les Oiseaux, chez les Poissons, chez les Insectes, etc., un grand nombre de caractères, primitivement acquis par un sexe seul au moyen de la sélection sexuelle, comme nous avons toute raison de le croire, ont été transférés aux deux sexes. Cette même forme de transmission a évidemment prévalu à un haut degré chez l'espèce humaine; nous éviterons donc une répétition inutile en discutant l'origine des caractères spéciaux au sexe mâle, en même temps que de ceux qui sont communs aux deux sexes.

Loi du combaf. - Chez les nations barbares, les Australiens, par exemple, les femmes sont un prétexte coutinuel de guerre entre les individus de la même tribu et ceux des tribus différentes. Il en était sans doute ainsi dans l'antiquité : © Nam fuit ante Hetenam mulier teterrima belli causa. > Chez les Indiens de l'Amérique du Nord, la lutte est réduite à l'état de système. Un excellent observateur, Hearne ${ }^{22}$, dit : « Parmi ces peuples, il a toujours été d'usage, chez les hommes, de lutter pour s'assurer la possession de la femme à laquelle ils sont attachés; et, naturellement, c'est l'individu le plus fort qui emporte le prix. Un homme faible, à moins qu'il ne soit bon chasseur et fort aimé dans la tribu, conserve rarement une femme qu'un homme plus fort croit digne de son attention. Cette coutume prévaut dans toutes les tribus, et développe un

[^289]grand esprit d'émulation chez les jeunes gens; qui, dès leur enfance, profitent de toutes les occasions pour éprouver leur force et leur adresse à la lutte. , .
Azara dit que les Guanas de l'Amérique du Sud ne se marient que rarement avant vingt ans ou plus, n'êtant pas jusqu'à cet age en état de vaincre leurs rivaux.
Nous pourrions citer encore d'autres faits semblables, mais, les preuves nous manquassent-elles, nous serions piresque sûrs, d'après ranalogie avec les Quadrumanes supérieurs ${ }^{23}$, que la loi du combat a prévalu chez l'homme pendant les premières phases de son développement. L'apparition accidentelle, aujourd'hui encore, de dents canines qui dépassent les autres, et les traces d'un intervalle pour la réception des canines opposées, est, selon toute probabilité, un cas de retour vers un état antérieur, alors que les ancêtres de l'homme étaient pourvus de ces défenses, comme le sont tant de Quadrumanes males actuels. Nous avons fait remarquer, dans un chapirre précédent, que l'homme, à mesury qu'il se redressait, et commençait à se servir de ses bras et de ses mains, ou pour combattre avec des bâtons et des pierres, ou pour les autres usages de la vie, devait employer de moins en moins ses màchoires et ses dents. Les mâchoires avec leurs muscles et les dents se seront alors réduites par défaut d'usage, en vertu des principes encore peu compris de la corrélation et de l'économie de croissance; car partout nous voyons que les parties qui ne servent plus subissent une réduction de grosseur. Une cause de ce genre aurait eu pour résultat définitif de faire disparaître l'inégalité primitive entre les mâchoires et les dents des deux sexes chez la race humaine. Ce cas est presque identique à celui de beaucoup de ruminants males, chez lesquels les canines se sont réduites à de simples rudiments, ou ont disparu, en conséquence évidemment du développement des cornes. La différence prodigieuse étant, entre les crânes des deux sexes chez le Gorille et chez l'Orang, en rapports étroits àvec le développement énorme des dents canines chez les mâles, nous pouvons en conclure que la diminution des mâchoires et des dents chez les ancêtres primitifs mâles de l'homme a déterminé dans son aspect un changement favorable des plus frappants.
On ne peut guère douter que la plus grande taille et la plus grande force de l'homme, quand on le compare à la femme, ses épaules plus larges, ses muscles plus développés, ses contours plus angu-

[^290]leux, son plus grand courage et ses dispositions belliqueuses, ne proviennent principalement par héritage de quelque ancêtre male qui, comme les singes anthromorphes actuels, "possédaic ces caractères. Ces caractères ont du se conserver et même s'augmenter pendant les longues périodes où l'homme était encore plongé - dans un état de barbarie profonde; car les individus les plus forts et les plus handis ont da le mieux réussir, soit dans la lutte générale pour l'existence, soit pour la possession des femelles, et ont dû aussi laisser le plus grand nombre de descendants. Il n'est pas probable que la plus grande foren de l'homme ait pour origine les effets héréditaires des travaux plus pénibles, auxquels il a do se livrer pour assurer sa subsistance et celle de sa famille; car, chez tous les peuples barbares, les femmes sont forcées de travailler au moins aussi laborieusement que les hommes. Chez les peuples civilisés le combat pour s'assurer la possession des femmes n'existe plus depuis longtemps, mais les hommes ont, en général, à se livrer à un travail plus pénible que les femmes pour subvenir à leur subsistance réciproque, et cette circonstance contribue à leur conserver leur force supérieuro.

Différence dans les facultés intellectuelles des deux sexes. - Il est probable que la sélection sexuelle a joué un rôle important dans les différences de cette nature qui se remarquent entre l'homme et la femme. Je sais que quelques auteurs doutent qu'ily ait aucune différence inhérente; mais l'analogie avec les animaux inférieurs, qui présentent d'autres caractères sexuels secondaires, rend cette proposition tout au moins probable. Personne ne contestera que le caractère du taureau ne diffère de celui de la vache, le caractère du sanglier sauvage de celui de la truie, le caractère de létalon de celui de la jument; et comme le savent fort bien les gardiens de ménageries, le caractère des grands singes mâles de celui des femelles. La femme semble différer de l'homme dans ses facultés mentales, surtout par une tendresse plus grande et un égoľsme moindre, et ceci se vérifie même chez les sauvages comme le prouve un passage bien connu des voyages de Mungo Parck, et les récits de beaucoup d'autres voyageurs. La femme déploie à un éminent degré sa tendresse à l'égard de ses enfantsı par suite de ses instincts maternels; il est vraisemblable qu'elle paísse l'étendre jusqu'à ses semblables. L'homme est l'égal d'autres hommes, il ne redoute point la rivalité, mais elle le conduit à l'ambition, et celleci à l'égorsme. Ces facultés semblent faire partie de son malheureux héritage naturel. On admet généralement que chez la femme les
facultés d'intuition, de perception rapide, et peut être d'imitation, sont plus fortement développées que chez l'homme; mais quel-ques-unes au moins de ces facultés caractérisent les races inférieures; elles ont, par conséquent, pu exister à unéts de civilisation inférieure,

Ce qui établit la đistinction principale dans la puissance intellectuelle des deux sexes, c'est que l'homme atteint, dans tout ce qu'il entreprend, un point auquel la femme ne peut arriver, quelle que soit, d'ailleurs, la nature de l'entreprise, qu'elle exige ou une pensée profonde, la raison, l'imagination, ou simplement l'emploi des sens et des mains. Quo l'on dresse deux listes des hommes et des femmes qui se sont le plus distingués dans la poésie, la peinture, la sculpture, la musique, y compris la composition et l'exécution - l'histoire, la science, et la philosophie : les deux listes d'une demi-douzaine de noms pour chaque art ou science, ne supporteront pas la comparaison. Nous pouvens ainsi déduire de la loi de la déviation des moyennes, si bien expliquée par M. Galton dans son livre sur le Génie héréditaire, que si les hommes ont une supériorité décidée sur les femnies en beaucoup de points, la moyenne de la puissance mentale chez l'homme doit excéder celle de la femme.

Les ancêtres semi-humains mâles de l'homme et les sauvages, ont, pendant bien des générations, Iutté les uns contre les autres pour la possession des femelles. Mais les seules conditions de force et de taille corporelles n'auraient pas suffi pour vaincre, si elles n'avaient été unies au courage, à la persévérance, et à une détermination énergique. Chez les animaux sociables, les jeunes mâles ont plus d'un combat à livrer pour s'assurer la possession d'une femelle, et ce n'est qu'ă force de luttes nouvelles, que les mâles plus vieux peutent conserver les leurs. L'homme a dû encore défendre ses femmes et ses enfants contre des ennemis de tous genres, et chasser pour subvenir à leur subsistance et à la sienne propre. Mais, pour éviter l'ennemi, pour l'attaquer avec avantage, pour capturer des animaux sauvages, pour inventer et façonner des armes, il faut le concours des facultes mentales supérieures, c'est-à-dire l'observation, la raison, l'invention ou Pimagination. Ces diverses facultés auront donc été mises ainsi continuellement à l'épreuve, et auront fait l'objet d'une sélection pendant l'áge de la virilité, période durant laquelle elles auront été d'ailleurs fortifiées par l'usage. En conséquence, conformément au principe souvent cité, elles ont du être transmises à Päge correspondant de la virilité, et surtout à la descendance malle.

Or, si deux hommes, ou un homme et une femme, doués do qualités mentales également parfaites, se font concurrence, e'est celui qui a le plus d'énergie, de persévérance et de courage qui atteindra au plus haut point et qui remportera la victoire, quel que soit d'ailleurs l'objet de la lutte ${ }^{24}$. On peut même dire que celui-là a du génie - car une haute autorité a déclaré que le génie c'est la patience ; et la patience dans ce sens signifie une persévérance inflexible et indomptable. Cette définition du génie est peut-être incomplète ; car, sans les facultés les plus élevées de l'imagination et de la raison, on ne peut arriver à des succès importants dans bien des entreprises. Ces dernières facultés ont été, comme les premières, développées chez l'homme, en partie par l'action de la sélection sexuelle, - c'est-à-dire par la concurrence avec des mâles rivaux, - et en partie par l'action de la sélection naturelle, c'est-àdire la réussite dans la lutte génórale pour l'existence; or, comme dans les deux cas, cette lutte a lieu dans l'áge adulte, les caractères acquis ont dú se transmettre plus complètement à la descendance mâle qu'à la descendance femelle. Deux faits confirment l'opinion que quelques-unes de nos facultés mentales ont été modifiées ou renforcées par la sélection sexuelle: Ie premier, que ces facultés subissent, comme on l'admet généralement, un changement considérable à l'age de la puberté ${ }^{25}$; le second, que les eunuques demeurent toute leur vie, à ce point de vue, dans un état inférieur. L'homme a fini ainsi par devenir supérieur à la femme. Il est vraiment heureux que la loi de l'égale transmission des caractères aux deux sexes ait généralement prévalu dans toute la classe des mammifères ; autrement, il est probable que l'homme serait devenu aussi supérieur à la femme par ses facultés mentales que le paon par son plumage décoratif relativement à celui de la femelle.
Il faut se rappeler que la tendance qu'ont les caractères acquis à une époque tardive de la vie par l'un ou l'autre sexe, à se transmettre au même sexe et au même age, et celle qu'ont les caractères acquis de bonne heure à se transmettre aux deux sexes, sont des règles qui, quoique générales, ne se vérifient pas toujours. Si elles se vérifiaient toujours (mais ici je m'eloigne des limites que je me suis imposées), nous pourrions conclure que les effets héréditaires

[^291]de léducation première des garçons et des filles se transmettraient également aux deux sexes; de sorte que la présente inégalité de puissance mentale entre les sexes ne pourrait ni être effacée par un cours d'é ucation précoce analogue, ni avoir été causée par une différence dans l'éducation première. Pour rendre la femme égale à l'homme, il faudrait qu'elle fât dressée, au moment où elle devient adulte, à l'énergie et à la persévérance, que sa raison et son imagination fussent exercées au plus haut degré, elle transmettrait probablement alors ces qualités à tous ses descendants, surtout à ses filles adultes. La classe entière des femmes ne pourrait s'améliorer en suivant ce plan qu'à une seule condition, c'est que, pendant de nombreuses générations, les femmes qui posséderaient au plus haut degré les vertus dont nous venons de parler, produisissent une plus nombreuse descendance queles autres femmes. Ainsi que nous l'avons déjà fait remarquer à l'occasion de la force corporelle, bien que les hommes ne se battent plus pour s'assurer la possession des femmes, et que cette forme de sélection ait disparu, ils ont généralement à soutenir, pendant l'age mûr, une lutte terrible pour subvenir à leurs propres besoins et à ceux de leur famille, ce qui tend à maintenir et même à augmenter leurs facultés mentales, et, comme conséquence, l'inégalité actuelle qui se remarque entre les sexes ${ }^{26}$

Voix et facultés musicales. - La puissance de la voix et le développement des organes vocaux constituent, chez quelques espèces de Quadrumanes, une grande différence entre lesde ux sexes adultes; cette différence existe aussi dans l'espèce humaine et semble provenir, par héritage, des premiers ancêtres. Les cordes vocales de l'homme sont plus longues d'un tiers que celles de la femme, ou des jeunes garçons, et la castration produit sur lui les mêmes effets que sur les animaux inférieurs, car elle «arrête l'accroissement qui rend la thyroide saillante, etc., et accompagne l'allongement des cordes vocales ${ }^{27}$. Quant à la cause de cette différence entre les sexes, je n'ai rien à ajouter aux remarques faites dans le dernier chapitre sur les effets probables de l'usage iongtemps continué des

[^292]organes vocaux par les mâles, sous l'influence de l'amour, de la colère et de la jalousie. D'après Sir Duncan Gibb ${ }^{28}$, la voix varie dans les différentes races humaines; chez les Tartares, chez les Chinois, etc., on dit que la voix de l'homme ne diffère pas de celle de, la femme autant que dans la plupart des autres races.

Il ne faut pas entièrement omettre de parler de l'aptitude et du goût pour le chant et pour la musique, bien que ce ne soit pas, chez l'homme, un caractère sexuel. Les sons qu'émettent les animaux de toute espèce ont des usages nombreux mais il est presque certain que les organes vocaux ont servi d'abord, en se perfectionnant toujours, à la propagation de l'espèce. Les insectes et quelques araignées sont les seuls animaux inférieurs qui produisent volontairement des sons, et cela au moyen d'organes de stridulation admirablement disposés, souvent limités, aux mâles seuls. Les sons ainsi produits consistent, à ce que je crois, dans tous les cas, en une répétition rythmique de la même note ${ }^{29}$; note quelquefois agréable même à l'oreille humaine. L'usage principal de ces sons et, dans certains cas, leur usage exclusif paraît être d'appeler ou de séduire la femelle.
Les sons que produisent les poissons sont, dans quelques cas, l'apanage des males seuls pendant la saison des amours. Tous les vertébrés à respiration aérienne possèdent nécessairement un appareil pour l'inspiration et l'expiration de l'air, appareil pourvu d'un tube qui peut se fermer à son extrémité. Aussi au moment d'une vive excitation, alors que les muscles se contractent violemment, les membres primordiaux de cette classe ont dû certainement faire eñtendre des sons incohérents; or, si ces sons ont rendu un service quelconque à ces animaux, ils ont dù facilement se modifier et s'augmenter par la conservation de variations convenablement adaptées. Les amphibies sont les vertébrés aériens les plus inférieurs; or, un grand nombre d'entre eux, les crapauds et les grenouilles par exemple, ont des organes vocaux, qui sont constamment en activité pendant la saison des amours, et qui sont souvent beaucoup plus développés chez le mâle que chez la femelle. Le male de la tortue seul émet un bruit, et les alligators males rugissent et beuglent pendant la saison des amours. Chacun sait dans quelle mesure les oiseaux se servent de leurs organes vocaux comme moyen de faire leur cour aux femelles; quelques espèces

[^293]pratiquent également ce qu'on pourrait appeler de la musique instrumentale.
Dans la classe des Mammifères, dont nous nous occupons ici plus particulièrement, les males de presque toutes les espèces se servent de leur voix pendant la saison des amours beaucoup plus qu'à toute autre époque; il y en a même quelques-uns qui, en toute autre saison, sont absolument muets. Les deux sexes, dans d'autres espèces, ou les femelles seules, emploient leur voix comme appel d'amour. Si l'on considère tous ces faits, si l'on considère que, chez quelques mammifères, les organes vocaux sont beaucoup plus développés chez le mâle que chez la femelle, soit d'une maniére permanente, soit temporairement pendant la saison des amours; si l'on considère que, dans la plupart des classes inférieures, les sons produits par les màles servent non seulement à appeler, mais à séduire les femelles, c'est la preuve complète que les mammifères mâles emploient leurs organes vocaux pour charmer les femelles. Le Micetes caraya d'Amérique fait peut etre exception, comme aussi l'un des singes les plus voisins de l'homme, l'Hylobates agilis. Ce Gibbon a une voix extrêmement puissante, mais harmonieuse. M. Waterhouse ${ }^{30}$ dit au sujet de cette voix : «Il m'a semblé qu'en montant et en descendant la gamme, les intervalles étaient régulièz rement d'un demi-ton, et je suis certain que la note la plus élevée était l'octave exacte de la plus basse. Les notes sont harmonieuses, et je ne doute pas qu'un bon violoniste ne puisse reproduire la composition du gibbon, et en donner une idée exacte, sauf en ce qui concerne l'intensité. » M. Waterkouse en donne la notation. Le professeur Owen, qui est aussi un musicien, confirme ce qui précède, et fait remarquer, à tort il est vrai, «qu'on peut dire de ce gibbon qu'il est le seul des mammifères qui chante $\boldsymbol{>}$. Il parait très surexcité après l'exécution de son chant. On n'a malheureusement jamais observé avec soin ses habitudes à l'état de nature; mais à en juger d'apres l'analogie avec tous les autres animaux, on peut supposer qu'il fait surtout entendre ses notes musicales pendant la saison des amours.
Ce gibbon n'est pas la seule espèce du genre qui ait la faculté de chanter, car mon fils, Francis Darwin, a entendu aux Jardins Zoologiques, un H. leucisous chanter une cadence de trois notes en observant les intervalles musicaux. Il est plus surprenant encore que certains rongeurs émettent des sons musicaux. On a souvent
30. Donne dans W. C.. L. Martin, General Introd. to Nat. Hist. of Mamm. Animats, p. 432, 1841; Owen, Anatomy of Vertebrates, II, p. 600.
cité, on a souvent exposé des souris chantantes, mars la plupart du temps, on a soupçonné quelquetour de passe-passe. Toutefois nous possédons enfin une description faite par un observalaur bien connu, le rév. S. Lockwod ${ }^{3}$, relativement aux Cacultés musicales d'une espèce américaine, J’Hesperomys cognalus, appartenant à un genre distinct de celui auquel appartient la souris anglaise. Ce petit animal vivait en captivité et répétait souvent ses chansons. Dans l'une des deux principales qu'il aimait à chanter, e il faisait parfois durer la dernière mesure pendant le temps qu'en auraient duré deux ou trois; parfois aussi il allait de do dièze et ré à do naturel et ré, et faisait pendant quelque temps une trille sur ces deux notes, puis terminait par un mouvement vif sur do dièze et ré. Il observait admirablement les demi-tons, et les faisait sentir à une bonne oreille». M. Lockwood a noté ces chants, et il ajoute que bien que cette petite souris \& n'ait pas d'oreille pour la mesure, elle en a pour rester dans le ton de $s i$ (deux bémols) et_strictement dans le ton majeur... Sa voix claire et douce baisse d'une octave avec toute la précision possible, puis en terminant, elle remonte à sa trille de do dièze à ré., »

Un critique s'est demandé comment il pouvait se faire que la sélection ait adapté les oreilles de l'homme, et il aurait dô ajouter d'autres animaux, de façon à distinguer les notes musicales. Mais cette question indique quelque confusion du sujet; un bruit est la sensation que nous causent plusieurs simples vibrations aériennes ayant diverses périodes, dont chacune s'entre-croise si fréquemment qu'on n'en peut percevoir l'existence séparée. Un bruit ne diffêre d'une note musicale que par le défaut de continuité des vibrations et par leur manque d'harmonie inter se. En conséquence, pour que l'oreille soit capable de distinguer les bruits, et chacun admet l'importance de cette faculté your tous les animaux, il faut qu'elle soit sensible aux notes musicales. Nous avons la preuve que cetle faculté existe chez les animaux placés très bas sur l'échelle : ainsi, des crustacés possèdent des poils auditifs ayant différentes longueurs, et qu'on a vus vibrer quand on emploie certaines notes musicales ${ }^{32}$. Comme nous l'avons dit dans un précéđent chapitre, on a fait des observations semblables sur les poils qui couvrent les cousins. Des observateurs attentifs ont positivement affirmé que la musique attire les araignées. On sait aussi que certains chiens se mettent à hurler quand ils entendent certains sons ${ }^{33}$. Les

[^294]32. Heimholtz, Theorie phys. de la Musique, p. 187, 1868.
33. Plusieurs faits ont êté pabliês sur ce sujet. M. Peach m'êrit qu'il a souvent
phoques semblent apprécier la musique; les anciens connaissaient leur amour pour la musique; et les chasseurs de notre époque tirent avantage de ces dispositions.
Par conséquent on ne se trouve en présence d'aucune difficulté spéciale, qu'il s'agisse de l'homme ou de tout autre animal, en tant que l'on s'occupe seulemen 1 de la simple perception des notes musicales. Helmholtz a expliqué, d'après les principes physiologiques, pourquoi les accords sont agréables à l'oreille humaine, les désaccords désagréables; peu importe d'ailleurs, car l'harmonie est une invention récente. La mélodie seule doit nous occuper, et ici encore, selon Helmholtz, il est facile de comprendre pourquoi nous employons les notes de notre échelle musicale. L'oreille décompose tous les sons pour retrouver les simples vibrations, bien que nous n'ayons pas conscience du cette analyse. Dans un accord musical, la note la plus basse est généralement prédominante, et les autres, qui sont moins marquées, sont l'octave, la douzième, etc., toutes harmoniques de la note fondamentale prédominante; chacune des notes de notre gamme a cette même propriété. Il semble donc évident que si un animal désirait toujours chanter le même aır, il se guiderait en essayant tour à tour ces notes qui font partie de plusieurs accords, c'est-à-dire qu'il choisirait pour son air des notes qui appartiennent à notre gamme.

Si l'on demandait en outre pourquoi les sons disposés dans un certain ordre et suivant un certain rhythme procurent un sentiment de plaisir à l'homme et à d'autres animaux, nous ne pourrions répondre qu'en invoquant leplaisir que font ressentir certaines odeurs et certaines saveurs. Le fait que beaucoup d'insectes, d'araignées, de poissons, d'amphibies et d'oiseaux font entendre ces sons pendant la saison des amours, nous autorise à conclure qu'ils évoquent un certain sentiment de plaisir chez les animaux; en effet, il faudrait croire, ce qui est impossible, que les efforts persévérants du mâle et les organes complexes qu'il possède souvent pour produire ces sons, sont absolument inutiles, si l'on admettait que les femelles sont capables de les apprécier et se laissent exciter et séduire par eux ${ }^{54}$.

On admet que, chez l'homme, le chant est la base ou l'origine de la musique instrumentale. L'aptitude à produire des notes musicales, la jouissance qu'elles procurent, n'étant d'aucune utilité di-

[^295]recte dans les habitudes ordinaires de la vie, nous pouvons ranger ces facultés parmi les plus mystérieuses dont l'homme soit doué. Elles sont présentes, bien qu'à un degré fort inférieur, chez les hommes de toutes les races, mème les plus sauvages; mais le goût des diverses races est si différent, que les sauvages n'éprouvent aucun plaisir à entendre notre musique, et que la leur nous parait horrible et sans signification. Le docteur Seemann fait quelques remarques intéressantes à ce sujet ${ }^{35}$, «il met en doute que même parmi les nations de l'Europe occidentale, si intimement liées par les rapports continuels qu'elles ont ensemble, la musique de l'une soit interprétée de la même manière par une autre. En allant vers l'Est, nous remarquons certainement un langage musical différent. Les chants joycux et les accompagnements de danses ne sont plus, comme chez nous, dans le ton majeur, mais toujours dans le ton mineur. » Que les ancettres semi-humains de l'homme aient ou non possédé, comme le gibbon cité plus haut, la capacité de produire et d'apprécier les notes musicales, nous avons toute raison de croire que l'homne a possédé ces facultés à une époque fort reculée. M. Lartet a décrit deux flutes faites avec des os et des cornes de rennes; on les a trouvées dans les cavernes au milieu d'instruments en silex et de restes d'animaux éteints. Le chant et la danse sont aussi des arts très anciens, et sont aujourd'hui pratiqués par presque tous les sauvages, même les plus grossiers. La poésie, qu'on peut considérer commé la fille du chant, est également si ancienne, que beaucoup de personnes sont étonnées qu'elle ait pris naissance pendant les périodes reculées sur lesquelles nous n'avons aucun document historique.
Les facultés musicales qui ne font entièrement défaut dans aucune race, sont susceptibles d'un prompt et immense développement, ce que nous prouvent les Hottentots et les nègres, qui deviennent aisément d'excellents musiciens, bien que, dans leur pays natal, ils n'exécutent rien que nous puissions appeler musique. Toutefois, Schweinfurth a écouté avec plaisir quelques simples mélodies du centre de l'Afrique. Mais il n'y a rien d'anormal à ce que les facultés musicales restent à l'état latent chez l'homme; quelques espèces d'oiseaux, qui naturellement ne chantent jamais, apprennent à émettre des sons sans grande difficulté; ainsi un moineau a appris le chant d'une linotte. Ces deux espèces, étant voisines et appartenant à l'ordre des Insessores, qui renferme presque tous les oi-

[^296]seaux chanteurs du globe, il est possible, probable même qu'un ancêtre du moineau a été chanteur. Un fait beaucoup plus remarquable encore est que les perroquets, qui font partie d'un groupe distinct de celui des Insessores, et qui ont des organes vocaux d'une conformation toute différente, peuvent apprendre non seulement à parler mais à siffler des airs imaginés par thomme, ce qui suppose une certaine aptitude musicale. Néanmoins, il serait téméraire d'affirmer que les perroquets descendent de quelque ancetre chanteur. On pourrait, d'ailleurs, indiquer bien des cas analogues d'organes et d'instinct primitivement adaptés à un usage, qui ont été, par la suite, utilisés dans un but tout différent ${ }^{\text {s6 }}$. L'aptitude à un haut développement musical que possèdent les races sauvages humaines, peut donc être due, soit à ce que leurs ancétres semi-humains ont pratiqué quelque forme grossière de musique, soit simplement à ce qu'ils ont acquis dans quelque but distinct des organes vocaux appropriés. Mais, dans ce dernier cas, nous devons admettre qu'ils possédaient déjà comme dans le cas précité des perroquets, et comme cela paraft être le cas chez beaucoup d'animaux, quelque sentiment de la mélodie.
La musique excite en nous diverses émotions, mais non par elle-même, les émotions terribles de l'horreur, de la crainte, de la colère, etc. Elle éveille les sentiments plus doux de la tendresse et de l'amour, qui passent volontiers au dévouement. \& On peut au moyen de la musique, disent les annales chinoises, faire descendre le ciel sur la terre. »Elle éveille aussi en nous les sentiments du triomphe et de l'ardeur glorieuse de la guerre. Ces impressions puissantes et mélangées peuvent bien produire le sens de la sublimité. Selon la remarque du docteur Seemann, nous pouvons résumer et concentrer dans une seule notè de musique plus de sentiment que dans les pages d'écriture. II est probable que les oiseaux éprouvent des émotions analogues, mais plus faibles et moins complexes, lorsque le mâle luttant avec d'autres mâles fait entendre tous ses chants pour séduire la femelle. L'amour est de beaucoup le theme le plus ordinaire de nos propres chants. Ainsi que le

[^297]remarque Herbert Spencer, \& la musique réveille des sentiments dont nous n'aurions pas conçu la possibilité, et dont nous ne connaissons pas la signification; ou, comme le dit Richter, \& elle nous parle de choses que nous n'avons pas vues et que nous ne verrons ¡amais ${ }^{37}$. »Réciproquement, lorsqu'un orateur éprouve ou exprime de vives émotions, il emploie instinctivement un rhythme et des cadences musicales, et nous faisons de même dans le 'angage ordinaire. Un nègre sous le coup d'une vive émotion se met à chanter, - un autre lui répond en chantant aussi, et tous les assistants, touchés pour ainsi dire par une onde musicale, finissent par imiter les deux interlocuteurs \geqslant. Les singes sể servent aussi de tons différents pour exprimer leurs fortes impressions, - la colère et l'impatience par des tons bas, - la crainte et la douleur par des tons algus ${ }^{38}$. Les sensations et les idées que la musique ou les cadences d'un discours passionné peuvent évoquer en nous, paraissent, par leur étendue vague et par leur profondeur, comme des retours vers les émotions et les pensées d'une époque depuis longtemps disparue.
Tous ces faits relatifs à la musique deviennent jusqu'à un certain point compréhensibles, si nous pouvons admettre que les tons musicaux et le rhythme étaient employés par les ancêtres semihumains de l'homme, pendant la saison des amours, alors que tous les animaux sont entrainés par l'amour et aussi par la jalousie, la rivalité ou le triomphe. Dans ce cas, d'après le principe profond des associations héréditaires, les sons musicaux pourraient réveiller en nous, d'une manière vague et indéterminée, les fortes émotions d'un âge reculé. Nous avons raison de supposer que le langage articulé est une des dernières et certainement une des plus sublimes aequisitions de l'homme; or, comme le pouvoir instinctif

[^298]de produire des notes et des rhythmes musicaux existe dans des classes très inférieures de la série animale, il serait absolument contraire au principe de l'évolution d'admettre que la faculté musicale de l'homme a pour origine les diverses modulations employées dans le discours de la passion. Nous devons supposer que les rhythmes et les cadences de l'art oratoire proviennent au contraire de facultés musicales précédemment développées ${ }^{39}$. Ceci nous explique que la musique, la danse, le chant et la poésie sont des arts anciens. Nous pouvons mème aller plus loin et, comme nous l'avons déjà fait remarquer dans un chapitre précédent, affirmer que la faculté d'émettre des notes musicales a servi de base au développement du langage ${ }^{10}$. Certains quadrumanes malles ont les organes vocaux bien plus développés que les femelles, et le gibbon, un des singes anthropomorphes, peut employer toute une octave des notes musicales et presque chanter; il n'y a donc rien d'improbable à soutenir que les ancêtres de l'homme, mâles ou fomelles, ou tous deux, avant d'avoir acquis la facuité d'exprimer leurs tendres sentiments en langage articulé, aient cherché à se charmer l'un l'autre au moyen de notes musicales et d'un rhythme. Nous savons si peu de chose sur l'usage que les quadrumanes font de leur voix pendant la saison des amours, que nous n'avons presque aucun moyen de juger si l'habitude de chanter a été acquise en premier lieu par les ancêtres males de l'humanité ou bien par les ancêtres femelles. Les femelles sont généralement pourvues de voix plus douces que les hommes, et, autant que ce fait peut nous servir de guide, il nous autorise à penser qu'elles ont été les premières à acquérir des facultés musicales pour attirer l'autre sexe ${ }^{11}$. Mais, si cela est arrivé, il doit y avoir fort longtemps, et bien avant que les ancêtres de l'homme fussent devenus assez humains pour apprécier et ne traiter leurs femmes que comme des esclaves utiles. Lorsque l'orateur passionné, le barde ou le musicien, par ses ions variés et ses oadences, éveille chez ses auditeurs les émotions les plus vives, il ne se doute pas qu'il emploie les moyens dont se servaient, à une époque extrêmement reculée, ses

[^299]ancêtres semi-humains pour exciter leurs passions ardentes, pendant leurs rivalités et leurs assiduités réciproques.

Influences de la beauté sur les mariages humains. - Chez les nations civilisées, l'apparence extérieure de la femme exerce une infiuence considérable, mais non exclusive, sur le choix que l'homme fait d'une compagne; mais nous pouvons laisser de côté cette partie de la question, car, comme nous nous occupons surtout des temps primitifs, notre seul moyen de juger est d'étudier les habitudes des nations demi-civilisées et même des peuples sauvages actuels. Si nous pouvons établir que, dans des races différentes, les hommes préfèrent des femmes qui possèdent certains caractères, ou, inversement, que les femmes préfèrent certains hommes, nous aurons alors à rechercher si un tel choix, continué pendant de nombreuses générations, a dû exercer quelque effet sensible sur la race, soit sur un sexe, soit sur les deux ; cette dernière circonstance dépendant de la forme héréditaire prédominante.

Il est utile d'abord de prouver avec quelques détails que les sauvages apportent une grande attention à l'extérieur personnel ${ }^{12}$. Il est notoire qu'ils ont la passion de l'ornementation, et un philosophe anglais va jusqu'à soutenir que les vêtements ont été imaginés d'abord pour servir d'ornements et non pour se procurer de la chaleur. Ainsi que le fait remarquer le professeur Waitz, \& si pauvre et si misérable que soit un homme, il trouve du plaisir à se parer». Les Indiens de l'Amérique du iSud, qui vont tout nus, attachent une importance considérable à la décoration de leur corps, comme le prouve l'exemple «d'un homme de haute taille qui gagne avec peine par un travail de quinze jours de quoi payer le chica nécessaire pour ie peindre le corps en rouge ${ }^{43} \geqslant$. Les anciens barbares, qui vivaient en Europe à l'époque du renne, rapportaient dans leurs cavernes tous les objets brillants ou singuliers qu'ils trou-

[^300]vaient Aujourd'bui les sauvages se parent partout de plumes, de colliers, de bracelets, de boucles d'oreilles, etc., etc. Ils se peignent de la manière la plus diverse. © Si l'on avait examiné, > remarque Humboldt. * les nations peintes avec la même attention que les nations vêtues, on aurait vu que limagination la plus fertile et le caprice le plus changeant ont aussi bien créé des modes de peinture que des modes de vetements.

- Dans une partie de l'Afrique, les sauvages se peignent les paupières en noir, dans une autre ils se teignent ies ongles en jaune ou en pourpre. Dans beaucoup de localités les cheveux sont teints de diverses cóuleurs. Dans quelques pays, les dents sont colorées en noir, en rouge, en bleu, eic., et dans l'archipel Malais on considère comme une honie d'avoir les dents blanches comme un chien. On ne saurait nommer un seul grand pays compris entre les régions polaires au nord, et la Nouvelle-Zélande au midi, où les indigènes ne se tatouent pas. Cet usage a été pratiqué par les anciens Juifs et les Bretons d'autrefois. En Afrique, quelques indigènes se tatovent, mais beaucoup plus fréquemment ils se couvrent de protubérances en frottant de sel des incisions faites sur diverses parties du corps; les habitants du Kordofan et du Darfour considèrent que cela constitue de < grands attraits personnels ». Dans les pays arabes il n'y a pas de beauté parfaite stant que les joues ou les tempes a'ont pas été balafrées ${ }^{44} \pi$. Comme le remarque Humboldt, dans l'Amérique du Sud, « une mère serait taxée de coupable indifférence envers ses enfants, si elle n'employait pas des moyens artificiels pour donner au mollet la forme qui est à la mode dans le pays ». Dans l'ancien, comme dans le nouveau monde, on modifiait autrefois, pendant l'enfance, la forme du crâne de la manière la plus extraordinaire, et il existe encore des endroits où ces déformations sont considérées comme une beauté. Ainsi les sauvages de la Colombie ${ }^{15}$ regardent une tête très aplatie comme sune condition essentielle de la beauté $>$.

Les cheveux reçoivent des soins tout particuliers dans divers pays; là, on les laisse croître de toute leur longueur jusqu'à atteindre le sol; ailleurs, on les ramène en \& une touffe compacte et frisée, ce qui est l'orgueil et la gloire du Papou ${ }^{46} \geqslant$. Dans l'Afrique du Nord, un homme a besoin d'une période de huit ou dix ans pour parachever sa coiffure. D'autres peuples se rasent la tete; il y a

[^301]des parties de l'Amérique du Sud et de l'Afrique où ils s'arrachent même les cils et les sourcils. Les indigènes du Nil supérieur s'arrachent les quatre incisives, en disant qu'ils ne veulent pas ressembler à des brutes. Plus au Sud, les Batokas se cassent deux incisives supéricures, ce qui, selon la remarque de Livingstone ${ }^{47}$, donne au visage un aspect hideur. par suite de l'accroissement de la mâchoire inférieure; mais ils considèrent la présence des incisives comme une chose forte laide, et crient en voyant les Européens : «Regardez les grosses dents! Le grand chef Sebituani a en vain essayé de changer cette mode. Dans diverses parties de l'Afrique et de l'archipel Malais, les indigènes liment leurs dents incisives, et y pratiquent des dentelures semblables à celles d'une scie, ou les percent de trous, dans lesquels ils sertissent des boutons.

Le visage, qui chez nous est la partie la plus admirée pour sa beauté, devient chez les sauvages le siége principal des mutilations, Dans toutes les régions du globe, la cloison, et plus rarement les ailes du nez, sont perforées de trous dans lesquels on insère des anneaux, des baguettes, des plumes et d'autres ornements. Partout les oreilles sont percées et semblablement ornées. Les Botocudos et les Lenguas de l'Amérique du Sud agrandissent graduellement le trou afin que le bord inférieur de l'oreille vienne toucher l'épaule. Dans l'Amérique du Nord, dans l'Amérique du Sud et en Afrique, on perce la lèvre supérieure ou la lèvre inférieure; chez les Botocudos l'ouverture de la lèvre inférieure est assez grande pour recevoir un disque en bois de quatre pouces de diamètre. Mantegazza fait un curieux récit de la honte qu'éprouva un indigène de l'Amérique du Sud, et du ridicule dont il fut couvert, pour avoir vendu son tembeta, grosse pièce de bois colorée - qui occupait le trou de sa lèvre. Dans l'Afrique centrale, les femmes se percent la lèrre inférieure et y portent un morceau de cristal, auquel les mouvements de la langue communiquent une agitation frétillante, qui, pendant la conversation, est d'un comique indescriptible ». Le chef de Latooka a dit à Sir S. Baker ${ }^{\text {ts }}$ que sa femme serait \& bien plus jolie si elle voulait enlever ses quatre incisives inférieures, et porter dans la lèvre correspondante un cristal à longue pointe ». Plus au midi, chez les Makalolo, c'est la lèvre supérieure qui est perforée, pour recevoir un gros anneau en métal et en bambou, qui s'appelle un felélé. . Ceci détermina chez une
47. Travels, atc., p. 533.
48. The Alberl N'ganza, val. I, p. 217, 1866.
femme une projection de la lèvre qui dépassait de deux pouces l'extrémité du nez; et la contraction des muscles, lorsque cette femme souriait, relevait sa lèvre jusqu'au-dessus des yeux. » On demanda au vénérable chef Chinsurdi pourquoi les femmes portaient de pareils objets. Évidemment étonné d'une question aussi absurde, il répondit: «Pour la beautél Ce sont les seules belles choses que les femmes possèdent; les hommes ōnt des barbes, les femmes point. Quel genre de personnes seraient-elles sans le pelélé? Elles ne seraient pas du tout des femmes, avec une bouche comm I'homme, mais sans barbe ${ }^{49}$.
Il n'est pas une partie du corps qui ait échappé aux modifications artificielles. Ces opérations doivent causer do très grandes souffrances, car beaucoup réclament plusieurs années pour être complètes; il faut donc que l'idée de leur nécessité soit impérative. Les motifs en sont divers : les hommes se peignent le corps pour paraitre terribles dans les combats; certaines mutilations se rattachent à des rites religieux; d'autres indiquent l'age de puberté, le rang de l'homme, ou bien servent à distinguer les tribus. Chez les sauvages, les mêmes modes se perpétuent pendant de longues périodes ${ }^{50}$; par conséquent, des mutilations, faites à l'origine dans un but quelconque, prennent de la valeur comme marques distinctives. Mais le besoin de se parer, la vanité et l'admiration d'autrui en paraissent être les motifs lou plus ordinaires. Les missionnaires de la Nouvelle-Zélande m'ont dit, au sujet du tatouage, qu'ayant cherché à persuader à quelques jeunes filles de renoncer à cette pratique, elles avaient répondu: \& Il faut que nous ayons quelques lignes sur les lèvres, car autrement nous serions trop laides en devenant vieilles. s Quant aux hommes de la Nouvelle-Zélande, un juge compétent ${ }^{51}$ dit que $<$ la grande ambition des jeunes gens est d'avoir une figure bien tatouée, tant pour plaire aux femmes qưepour se mettre en évidence à la guerre. ? Une étoile tatouée sur le front et une tache sur le menton sont, dans une partie de l'Afrique, considérées par les femmes comme des attraits irrésistibles ${ }^{58}$. Dans la plupart des contrées du monde, mais non dans toutes, les hommes sont plus ornés que les femmes, et souvent d'une manière

[^302]différente ; quelquefois, mais cela est räre, les femmes ne le sont presque pas du tout. Les sauvages obligent les femmes à faire la plus grande partie de l'ouvrage, et ne leur permettent pas de manger les aliments de meilleure qualité; il est donc tout naturel qu'avec son égoïsme caractéristique, l'homme leur défende de porter les plus beaux ornements. Enfin, fait remarquable que prouvent les citations précédentes, les mêmes modes de modifications dans la forme de la tête, l'ornementation de la chevelure, la peinture et le -tatouage du corps, le percement du nez, des lèvres ou des oreilles, l'enlèvement et le limage des dents, etc., prédominent encore, comme elles l'ont fait depuis longtemps, dans les parties les plus différentes du globe. Il est fort improbable que ces pratiques, auxquelles tant de nations distinctes se livrent, soient dues à une tradition provenant d'une source commune. Elles indiquent plutot, de même que les habitudes universelles de la danse, des mascarades et de l'exécution grossière des images, une similitude étroite de l'esprit de l'homme, à quelque race qu'il appartienne.

Après ces remarques préliminaires sur l'admiration que les sauvages éprouvent pour divers ornements, et même pour des déformations qui nous paraissent hideuses, voyons jusqu'à quel point les hommes se laissent attirer par l'aspect de leurs femmes, et quelles idées ils se font sur leur beauté. On a affirmé que les sauvages sont tout à fait indifférents à la beauté de leurs femmes et qu'ils ne les regardent que comme des esclaves; il importe donc de faire remarquer que cette conclusion ne s'accorde nullement avec le soin que les femmes prennent à s'embellir, non plus qu'avec leur vanité. Burchell ${ }^{53}$ cite l'amusant exemple d'une femme boschimane qui employait assez de graisse, d'ocre rouge et de poudre brillante «pour ruiner un mari qui n'aurait pas été très riche». Elle manifestait aussi «beaucoup de vanité, et la ceriitude très évidente de sa supériorité ». M. Winwood Reade m'apprend que, sur la cote occidentale d'Afrique, les nègres discutent souvent sur la beauté des femmes. Quelques observateurs compétents attribuent la fréquence ordinaire de l'infanticide au désir qu'ont les femmes de conserver leur beauté ${ }^{54}$. Dans plusieurs pays les femmes portent des charmes et emploient des philtres pour s'assurer l'affection des hommes; et M. Brown iadique quatre plantes qu'em-

[^303]ploient à cet usage les femmes du nord-ouest de l'Amérique ${ }^{55}$. Hearne ${ }^{55}$, qui a vécu longtemps avec les Indiens de l'Amérique, et qui êtait un excellent observateur, dit en parlant des femmes : < Demandez à un Indien du Nord ce qu'est la beauté, il répondra. un visage large et plat, de petits yeux, des pommettes saillantes, trois ou quatre lignes noires assez larges au travers de chaque joue, un front bas, un gros menton élargi, un nez massif en crochet, une peau bronzée, et des seins pendant jusqu'à la ceinture. »Pallas, qui a visité les parties septentrionales de l'Empire chinois, dit: - On prétére les femmes qui ont le type mandćhou, c'est-à-dire un visage large, de fortes pommettes, le nez très élargi et d'énormes oreilles ${ }^{57}$; s et Vogt fait la remarque que l'obliquité des yeux qui est particulière aux Chinois et aux Japonais, est exagérée dans leurs peintures, surtout lorsqu'il s'agit de faire ressortir la beauté et la splendeur de leur race aux yeux des barbares à cheveux rouges. On sait, ainsi que Huc en a fait plusieurs fois la remarque, que les Chinois de l'intérieur trouvent que les Européens sont hideux avec leur peau blanche et leur nez saillant. D'après nos idées, le nez est loin d'être trop saillant chez les habitants de Ceylan; cependant, \& au septième siècle, les Chirois, habitués aux nez aplatis des races mongoles, furent si étonnés de la proéminence du nez des Cingalais, que Tsang lés a décrits comme ayant le bec d'un oiseau avec le corps d'un homee ». -

Finlayson, après avoir minutiésément décrit les habitants de la Cochinchine, remarque qu'ils se caractérisent par leur tête et leur visage arrondis, et ajoute : <La rondeur de toute la figure est plus frappante chez les femmes, dont la beauté est estimée d'autant plus que cette forme est plus prononcée. > Les Siamois ont de petits nez avec des narines divergentes, une large bouche, des lèvres un peu épaisses, un très grand visage, à pommettes très saillantes et très larges. Il n'est donc pas étonnant que <la beauté telle que nous la concevons leur soit étrangère. En conséquence ils considèrent leurs femmes comme beaucoup plus belles que les Européennes ${ }^{58}$).

On sait que les femmes hottentotes ont souvent la partie postérieure du corps trés développée, et sont stéatopyges; - particu

[^304]larité que les hommes, d'après Sir Andrew Smith ${ }^{59}$, admirent beaucoup. Il en a vu une, regardée comme une beauté, dont les fesses étaient si énormément développées, qu'une fois assise sur un terrain horizontal, elle ne pouvait plus se relever, et devait, pour le faire, ramper jusqu'à ce qu'elle rencontrat une pente. Le même caractère se retrouve chez quelques femmes de diverses tribus nègres; et, selon Burton, les hommes de Somal * choisissent leurs femmes en lés rängeant en ligne, et prenant celle quía tergo a là plus forte saillie. Rieñ ne peut parattre plus détestable à un négre qué la forme opposée ${ }^{60}$. n

En ce qui coñcerné la couleur, les négres avaient coutume de railler Mungo Park sur lá blancheur de sa peau et la proéminence de son nez, deux conformations qui leur paraissaient \& laides et peù naturelles ». Quant à lui, il ioua le reflet brillant de leur peau et la gracieuse dépression de leur nez, ce qu'ils prirent pour une flatterie ; ils lui donnèrent pourtant de la nourriture. Les Maures africains fronçaient les sourcils et paraissaient frissonner à la vue de sa peau blanche. Sur la côte orientale d'Áfrique, lorsque les enfants nègres virent Burton, ils s'écrièrent : Voyez lhomme blanc, ne ressemble-t-il pas à un singe blanc? \# Sur la cóte occidentale, m'a dit Winwood Reade, les négres admirent une peau très noire beaucoup plus qu'une peau à teinte plus claire. Le même voyageur dit qu'on peut attribuer leur horreur de la couleur blanche en partiè à ce qu'íls supposent que c'est la couleur des démons et des esprits, et en partie à ce qu'ils croient que la couleur blanche de la peau est un signe de mauvaise santé.
Les Bañyal sont des négres qui habitent la partie la plus méridionale du continent; * mais un grand nombre d'entre eux sont d'une couleur café au lait claire, qui est considérée, dans tout le pays, ecomme fort belle. > Il existe donc là un autre type de goût. Chez les Cafres, qui diffèrent beaucoup des nègres, \& les tribus de la baie Delagoa exceptées, la peau n'est pas habituellement noire, la couleur dóminante est un mélange de noir et de rouge, et la nuance la plus commune celle du chocolat. Les tons foncés, les plus répandus, sont naturellement les plus estimés; et un Cafre

[^305]croirait qu'on lui fait injure si on lui disait qu'il est de couleur claire, ou qu'il ressemble à un blanc. On m'a parlé d'un infortuné qui était si peu foncé, qu'aucune temme ne voulait l'épouser. 》 Un des titres du roi du Zoulou est \& Toi qui es noir ${ }^{61} \geqslant$. M. Galton, en me parlant des indigènes de l'Afrique méridionale, me fit remarquer que leurs idée sur la beauté sont fort différentes des notres; il a vu dans une tribu deux jeunes filles minces, sveltes et jolies que les indigènes n'admiraient point du tout.

Dans d'autres parties du globe, à Java, d'après madame Pfeiffer, une femme jaune, et non blanche, est considérée comme une beauté. Un Cochinchinois « parlait dédaigneusement de la femme de l'ambassadeur anglais à cause de ses dents blanches semblables à celle d'un chien, et de son teint rose comme celui des fleurs des pommes de terre ». Nous avons vu que les Chinois n'aiment pas notre peau blanche, et que les tribus américaines du Nord admirent une < peau basanée >. Dans l'Amérique du Sud, les Yura-caras, qui habitent les pentes boisées et humidos des Cordillères orientales, sont remarquablement pales de couleur, ce que leur nom exprime dans leur langue; néanmoins ils considèrent les femmes européennes comme très inférieures aux leurs ${ }^{62}$.

Chez plusieurs tribus de l'Amérique du Nord, les cheveux atteignent une longueur remarquable et Batlin cite, comme une preuve curieuse de l'importance qu'on attache à ce fait, l'élection du chef des Crows. Il fut choisi parce que c'était l'homme de la tribu qui avait les cheveux les plus longs ; ces cheveux mesuraient 3 m .225 de longueur. Les Aymaras et les Quichuas de l'Amérique du Sud ont également les cheveux très longs, et je tiens de M. D. Forbes qu'ils les considèrent comme ane telle marque de beauté, que la punition la plus grave qu'on puisse leur infliger est de les leur couper. Dans les deux moitiés du continent les indigènes augmentent la longueur apparente de leur chevelure en y entrelaçant des matières fibreuses. Bien que les cheveux soient ainsi estimés, les Indiens du nord de l'Amérique regardent comme <très vulgaires > les poils du visage, et ils les arrachent avec grand soin. Cette pratique règne dans tout le continent américain, de l'lle Vancouver au nord, à la Terre-de-Feu au midi. Lorsque York Minster, un Fué-

[^306]gien à bord du Beagle, fut ramené dans son pays, les indigènes lui conseillèrent d'arracher les quelques poils qu'il avait sur le visage. Ils menacèrent aussi un jeune missionnaire, qui resta quelque temps chez eux, de le déshabiller et de lui enlever tous les poils du visage et du corps, bien qu'il ne fut pourtant pas un homme très velu. Cette mode est poussée à un tel point chez les Indiens du Paraguay, qu'ils s'arrachent les poils des sourcils et les cils, pour ne pas ressembler, disent-ils, à des chevaux ${ }^{63}$.

Il est remarquable que, dans le monde entier, les races qui sont complètement privées de barbe n'aiment pas les poils sur le visage et sur le corps, et se donnent la peine de les arracher. Les Kalmouks n'ont pas de barbe, et, comme les Américains, s'enlèvent tous les poils épars; il en est de même chez les Polynésiens, chez quelques Malais et chez les Siamois. M. Veitch constate que les dames japonaises, * nous reprochent nos favoris, les regardant comme fort laids; elles voulaient nous les faire enlever pour ressembler aux Japonais ». Les Nouveaux-Zélandais ont la barbe courte et frisée; ils s'arrachent avec soin les poils du visage, et ont pour dicton: « Il n'y a pas de femme pour un homme velu, > mais la mode paraît avoir changé, peut-être à cause de la présence des Européens, et on m'affirme que les Maories admirent aujourd'hui la barbe ${ }^{64}$.

Les races, au contraire, qui possèdent de la barbe, l'admirent et l'estiment beaucoup. Chaque partie du corps, d'après les lois des Anglo-Saxons, avait une valeur reconnue; \& la perte de la barbe était estimée à vingt shellings, tandis qne la fracture d'une cuisse n'était fixée qu'à douze ${ }^{65}$. *

En Orient, les hommes jurent solennellement par leur barbe. Nous avons vu que Chinsurdi, chef des Makalolos en Afrique, regardait la barbe comme un grand ornement. Chezles Fidjiens, dans le Pacifique, «la barbe est abondante et touffue, et ils en sont très fiers * <tandis que les habitants des archipels voisins de Tonga et de Samoa n'ont pas de barbe et détestent un menton velu. » Dans une seule fle du groupe Ellice, les hommes ont de fortes et grosses barbes dont ils sont très fiers ${ }^{\text {ses}}$.

[^307]Nous voyons donc combien l'ídéal du beau diffère dans les diwerses races humaines. Dans toute nation assez avancée pour façonner les effigies de ses dieux ou de ses législateurs déifiés, les sculpteurs se sont sans doute efforcés d'exprimer leur idéal le plus élevé du beau et du grand ${ }^{67}$. A ce point de vue, il est utile de comparer le Jupiter ou l'Apollon des Grecs aux statues égyptiennes ou assyriennes, et celles-ci aux affreux bas-reliefs des monuments en ruines de l'Amérique centrale.
Je n'ai rencontré que peu d'assertions contraires à cette conclusion. M, Winwood Reade, cependant, qui a eu de nombreuses occasions d'observer, non seulement les nègres de la côte occidentale d'Afrique, mais aussi ceux de l'intérieur, qui n'ont jamais été en relations avec les Européens, est convaincu que leurs idées sur la beauté sont, en somme, les mêmes que les notres. Le docteur Rohlfs affirme qu'il en est de même chez les Bornous et dans les pays habités par les Pullo. M. Reade s'est, à plusieurs reprises trouvé d'accord avec les négres sur l'appréciation de la beauté des jeunes filles indigènes, et leurs idées sur lá beauté des femmes européennes correspondait souvent à la nôtre. Ils admirent les longs cheveux et emploient des moyens artificiels pour en augmenter, en apparence, l'abondance ; ils admirent aussi la barbe, bien qu'ils n'en aient que fort peu. M. Reade est resté dans le doute sur le genre de nez qui est le plus apprécié. Une jeune fille ayant déclaré qu'elle ne voulait \& pas épouser un homme parce qu'il n'avait pas de nez, > il semble en résulter qu'un nez très aplati n'est pas admiré. Il faut toutefois se rappeler que les types à nez déprimés très larges et à mâchoires saillantes des nègres de la côte occidentale, sont exceptionnels parmi les habitants de l'Afrique. Malgré les assertions qui précèdent, M. Reade admet que les négres « n'aiment pas la couleur de notre peau; ils ont une grande aversion pour les yeux bleus et ils trouvent notre nez trop long et nos lèvres trop minces \geqslant. Il ne pense pas que les nègres préfèrent jamais, «par les seuls motifs d'admiration physique, la plus belle Européenne à une négresse d'une belle venue ${ }^{68} \geqslant$.
67. Ch. Comte fait quelques remarques sur ce sujet dans son Traité de Législation, p. 136, 3• edit., 1837.
68. a The Afrieain Sketch book», vol. II, 1873, p. 253, 394, 521. "Les Fuéglens, me dit un missionnaire qui a longtemps résidé chez eux, regardent les femmes européennes comme fort belles n; mais, d'après ce que j'ai vu du jugement d'autres indigènes américains, il me semble que cela doit être erroné, à moins qu'il ne s'agisse de quelques Fuégiens qui, ayant vécu pendant quelque temps avee des Européens, doivent fes considérer comme des êtres supérieurs. J'ajouterai qu'un observateur expérimenté, le cap. Burton, croit qu'une femme

Un grand nombre de faits démontrent la vérité dư principe déjà énoncé par Humboldt ${ }^{69}$, que l'homme admire et cherche souvent à exagérer les caractères quelconques qui lui ont été départis par la nature. L'usage des races imberbes d'extirper toute trace de poils sur le visage et généralement sur tout le corps en est-un exemple. Beaucoup de peuples anciens et modernes ont fortement modifié la forme du crâne, et il est assez probable qu'ils ont, surtout dans l'Amérique du Nord et du Sud, pratiqué cet usage pour exagérer quelque particularité naturelle et recherchée. Beaucoup d'Indiens américains admirent une tête assez aplatie pour nous paraître semblablé à celle d'un idiot. Les indigènes de la côte nord-ouest compriment la tête pour lui donner la forme d'un cône pointu. En outre, ils ramènent constamment leurs cheveux pour en former un nœud au sommet de la tête, dans le but, comme le fait remarquer le docteur Wilson, e d'accroitre l'élévation apparente de la forme conoïde, qu'ils affectionnent \geqslant. Les habitants d'Arakhan admirent - un front large et lisse, et, pour le produire, attachent une lame de plomb sur la tête des enfants nouveau-nés ». D'autre part, \& un occiput large et bien arrondi est considéré comme une grande beauté chez les indigènes des lles Fidji ${ }^{70} \geqslant$.

Il en est du nez comme du crâne. A l'époque d'Attila, les Huns avaient l'habitude d'aplatir, au moyen de bandages, le nez de leurs enfants * afin d'exagérer une conformation naturelle *. A Tahiti, la qualification de nez long est une insulte, et, en vue de la beauté, les Tahitiens compriment le nez et le front de leurs enfants. Il en est de même chez les Malais de Sumatra, chez les Hottentots, chez certains nègres et chez les naturels du Brésil ${ }^{71}$. Les Chinois ont naturellement les pieds fort petits ${ }^{72}$, et on sait que les femmes des classes élevées déforment leurs pieds pour en réduire encore les dimensions. Enfin Humboldt croit que les Indiens de l'Amérique

[^308]aiment à se colorer le corps avec un vernis rouge pour exagérer leur teinte naturelle, comme les femmes européennes ont souvent cherché à augmenter leurs couleurs déjá vives par l'emploi de cosmétiques rouges et blancs. Je doute pourtant que telle ait été l'intention de beaucoup de peuples barbares en se couvrant de peintures.
Nous pouvons observer exactement le même principe et les mêmes tendances vers le désir de tout exagérer à l'extrême dans nos propres modes, qui manifestent ainsi le même esprit d'émulation. Mais les modes des sauvages sont bien plus permanentes que les nòtres, ce qui devient nécessaire lorsqu'elles ont artificiellement modifié le corps. Les femmes arabes du Nil supérieur mettent environ trois jours à se coiffer; elles n'imitent jamais les femmes d'autres tribus, e mais rivalisent entre elles pour la perfection de leur propre coiffure \#. Le docteur Wilson, parlant des cranes comprimés de diverses races américaines, ajoute: \& De tels usages sont de ceux qu'on peut le moins déraciner; ils survivent longtemps au choc des révolutions qui chargent les dynasties, et des particularités nationales d'une bien autre importance ${ }^{\text {1/3 }}$. , Ce même principe joue un grand rôle dans l'art de la sélection et nous fait comprendre, ainsi que je l'ai expliqué ailleurs ${ }^{74}$, le développement étonnant de toutes les races d'animaux et de plantes qu'on élève dans un but unique de fantaisie ct de luxe. Les amateurs désirent toujours que chaque caractère soit quelque peu exagéré; ils ne font aucun cas d'un type moyen: ils ne cherchent pas non plus un changement brusque et très prononcé dans le caractère de leurs races; ils n'admirent que ce qu'ils sont habitués à contempler, tout en désirant ardemment voir toujours chaque trait caractéristique se développer de plus en plus.
Les facultés perceptives de l'homme et des animaux sont certainement constituées de manière que les couleurs brillantes et certaines formes, aussi bien que les sons rhythmiques et harmonieux, leur procurent du plaisir et soient considérées comme choses belles; mais nous ne savons pas pourquoi il en est ainsi, il n'existe dans l'esprit de l'homme aucun type universel de beauté en ce qui concerne le corps humain. Il est toutefois possible, mais je n'ai aucune preuve, que certains gouts puissent, avec le temps, etre transmis par hérédité. Dans ce cas chaque race posséderait son type idéal inné de beauté. On a soutenu ${ }^{75}$ que la laideur consiste

[^309]en un rapprochement vers la conformation des animaux inférieurs, ce qui est sans doute vrai pour les nations civilisées, où lintelligence est hautement appréciée; mais cette explication ne peut évidemment pas s'appliquer à toutes les formes de la laideur. Dans chaque race, l'homme préfère ce qu'il a l'habitude de voir il n'admet pas de grands changements; mais il aime la variété, et apprécie tout trait caractéristique nettement tranché sans être trop exagéré ${ }^{76}$. Les hommes accoutumés à une figure ovale, à des traits réguliers et droits, et aux couleurs vives, admirent, comme nous Européens, ces points, lorsqu'ils sont bien développés. D'autre part, les hommes habitués à un visage large, à pommettes saillantes, au nez déprimé, et à la peau noire, admirent ces caractères lorsqu'ils sont fortement acrusés. Les caractères de toute espèce peuvent sans doute facilement dépasser les limites exigées pour la beauté. Une beauté parfaite, impliquant des modifications particulieres d'un grand nombre de caractères, sera donc dans toute race un prodige. Comme l'a dit, il y a longtemps, le grand anatomiste Bichat, si tous les êtres étaient coulés dans le même moule, la beauté n'existerait plus. Si toutes nos femmes devenaient aussi belles que la Vénus de Médicis, nous serions pendant quelque temps sous le charme, mais nous désirerions bientot de la variété, et, dès qu'elle serait réalisée, nous voudrions voir certains caractères s'exagérer un peu au delà du type commun.

CHAPITRE XX

CARAGTĖRES SEXUGLS BECONDAIRES CHEZ L'HOMME (SUITE)

Sur les effets de la sélection continue des femmes d'après un type de beauté différent pour chaque race. - Causes qui, chez les nations civilisées et chez les sauvages, interviennent dans la sélection sexuelle. - Conditions favorables à celle-ci pendant les temps primitifs. - Mode d'action de la sélection sexuelle dans l'espèce humaine. - Sur la possibilité qu'ont les femmes de choisir leurs maris dans les tribus sauvages. - Absence de poils sur le corps, et le développement de la barbe. - Couleur de la peau. - Résumé.

Nous venons de voir, dans le chapitre précédent, que toutes les races barbares apprécient hautement les ornements, les vêtements et l'apparence extérieure, et que les hommes apprécient la beauté des femmes en se plaçant à des points de vue très différents.

[^310]Nous avons manntenant à rechercher si cette préférence pour les femmes que les hommes, dans chaque race, considèrent comme les plus attrayantes, ot la sélection continue qui en a été la conséquence, pendant de nombreuses générations, ont modifié les caractères des femmes seules, ou ceux des deux sexes. La règle générale chez les mammifères parait etre l'égale hérédité des caractères de tous genres par les malles et par les femelles; nous sommes donc autorisés à penser que, dans l'espèce humaine, tous les caractères acquis par les femmes en vertu de l'action de la sélection sexuelle, ont du ordinairement se transmettre aux descendants des deux sexes. Si ce principe a amené des modifications; il est presque certain que les diverses races ont dù se modifier d'une façon différente, car chacune a son type propre de beauté.

Dans l'espèce humaine, surtout chez les sauvages, de nombreuses causes viennent s'immiscer dans les effets de la sélection sexuelle, en ce qui concerne l'ensemble du corps. Chez les peuples civilisés, les charmes intellectuels des femmes, leur fortune et surtout leur position sociale exercent une influence considérable sur l'esprit des hommes; car ceux-ci choisissent rarement une compagne dans un rang de beaucoup inférieur à celui qu'ils occupent eux-mêmes. Les hommes qui réussissent à épouser les femmes les plus belles, n'ont pas une meilleure chance que ceux qui ont une femme moins belle, de laisser une longue lignée de descendants, à l'exception du petit nombre de ceux qui lèguent leur fortune selon la primogéniture. Quant à la forme contraire de la sélection, celle des hommes les plus beaux par les femmes, bien que, dans les pays civilisés, celles-ci aient le choix libre ou à peu près, ce qui n'est pas le cas chez les races sauvages, ce choix est cependant considérablement influencé par la position sociale et par la fortune de l'homme ; or, le succès de ce dernier dans la vie dépend beaucoup de ses facultés intellectuelles et de son énergie, ou des fruits que ces mêmes facultés ont produits chez ses aieux. Il est inutile d'invoquer une excuse pour traiter ce sujet avec quelques détails ; comme le fait si bien remarquer le philosophe allemand Schopenhauer, \& le but de toutes les intrigues d'amour, que ce résultat soit comique ou tragique, a réellement plus d'importance que tous les desseins que peut se proposer l'homme. En effet, il ne s'agit de rien moins que de la composition de la génération suivante... il ne s'agit pas ici du bonheur ou du malheur d'un individu, mais c'est te bonheur ou le malheur de la race humaine qui est en jeu ${ }^{1}$. 。

[^311]Il y a toutefois des raisons de croire que la sélection sexuelle a produit quelques résultats au point de vue de la modification de la forme du corps, chez certaines nations civilisées ou à demi civilisées. Beaucoup de personnes ont la conviction, qui me parait juste, que les membres de notre aristocratie, en comprenant sous ce terme toutes les familles opulentes chez lesquelles la primogéniture a longtemps prévalu, sont devenus plus beaux suivant le type européen admis, que les membres des classes moyennes, par le fait qu'ils ont, pendant de nombreuses générations, choisi dans toutes les classes les femmes les plus belles pour les épouser; les classes moyennes, cependant, se trouvent placées đans des conđitions également favorables pour un parfait développement du corps. Cook fait la remarque que la supériorité de l'apparence personnelle * qu'on observe chez les nobles de toutes les autres fles dn Pacifique se retrouve dans les iles Sandwich » ce qui peut principalement provenir d'une meilleure nourriture et d'un genre de vie moins rude.

L'ancien voyageur Chardin, décrivant les Persans, dit que \& leur sang s'est considérablement amélioré par suite de fréquents mélanges avec les Géorgiens et les Circassiens, deux peuples qui l'emportent sur tous ceux de l'univers par leur beauté personnelle. Il y a en Perse peu d'hommes d'un rang élevé quì ne soient nés d'une mère géorgienne ou circassienne. » Il ajoute qu'ils héritent de la beauté de leurs mères, et non de leurs ancêtres; car, sans le mélange en question, les Persans de distinction, qui descendent des Tartares, sont fort laids ${ }^{2}$. Voici un cas plus curieux : les prêtresses atiachées au temple de Vénus Erycina à San Giuliano, en Sicile, étaient choisies dans toute la Grèce entre les plus belles femmes; n'étant pas assujetties aux mêmes obligations que les vestales, il en est résulté, suivant de Quatrefages ${ }^{3}$, qu'aujourd'hui encore les femmes de San Giuliano sont célèbres comme les plus belles de l'ile et recherchées comme modèles par les artistes. Les preuves cependant sont évidemment douteuses dans les deux cas que nous venons de citer.

Le cas suivant, bien qu'ayant trait à des sauvages, mérite d'être rapporté comme très curieux. M. Winwood Reade m'apprend que les Jollots, tribu nègre de la côte occidentale d'Afrique, « sont remarquables par leur beauté *. Un des amis de M. W. Reade ayant
2. Ces citations sont prises dans Lawrence (Lecfures on Physiology, etc., p. 393,1822), qui attribue la beauté des classes supérleures, en Angleterre, au fait que les hommes ont longtemps choisi les femmes les ples belles.
3. Anthropologie, Rev. des Cours scientifiques, p. 721. Oct. 1868.
demanaé à l'un de ces nègres : «Comment se fait-il que vous ayez tous si bonne façon, non seulement vos hommes, mais aussi vos femmes § > Le Jollol répondit : «C'est facile à comprendre : nous avons toujours eu l'habitude de vendre nos esclaves les plus laides. \rightarrow Il est inutile d'ajouter que, chez tous les sauvages, les femmes esclaves servent de concubines. Que ce nègre ait, à tort ou à raison, attribué la belle apparence des hommes de sa tribu à une élimination longtemps continuée des femmes laides, n'est pas si étonnant que cela peut paraitre tout d'abord, car j'ai prouvé ailleurs ${ }^{4}$ que les nègres apprécient pleinement l'importance de la sélection dans l'élevage de leurs animaux domestiques, fait pour lequel je pourrais emprunter à M. Reade de nouvelles preuves.

Sur les causes qui empéchent et limitent l'action de la sélection sexuelle chez les sauvages. - Les causes principales sont : premièrement, la promiscuité ; secondement, l'infanticide, surtout du sexe féminin; troisièmement, les fiançailles précoces; enfin, le peu de cas qu'on fait des femmes, qui sont considérées comme de simples esclaves. Ces quatre points méritent d'étre examinés avec quelques détails.

Si l'accouplement de l'homme ou de tout autre animal est une simple affaire de hasard, sans que l'un des deux sexes fasse un choix, il est évident que la sélection sexuelle ne peut intervenir ; la réussite plus complète de certains individus ne produira aucun effet sur la descendance. On assure qu'il existe des tribus qui pratiquent ce que Sir J. Lubbock appelle des mariages en commun ; c'est-à-dire que tous les hommes et toutes les femmes de la tribu sont réciproquement maris et femmes vis-à-vis les uns des autres. Le déréglement est très grand chez les sauvages, et pourtant de nouvelles preuves seraient nécessaires avant d'admettre cette promiscuité absolue dans les relations des deux sexes. Néanmoins, tous les auteurs qui out étudié de près le sujet ${ }^{5}$, et dont les appréciations ont
4. De la Variation, ets., vol. I, p. 219 (trad. franç., 1868).
5. Sir J. Lubbock, Origin of Civilization, chap. III, p. 60. Lennan, dans son excellent ouvrage : Primitive Marr, p. 60-67, 1870, M. Mc des unions des sexes comme ayant ette dans Marriage, p. 163, 1865, parle transitoires, et à certains degrés ete dans les temps anciens fort relâchées, J. Lubbock ont recueilii beaucoup de preuyes de promiscuité. M. Mc Lennan et Sir M. L. H. Morgan, Aans son intéressant ós du dérèglement des sauvages actuels. par la parenté (Proc. American Acad mémoire sur le système de classification que, dans les temps primitifs, Acad. of Sciences, VII, p. 475, 1868), conclut ses formes, etaient absolument, polygamie, ainsi que le mariage sous toutes Bachofen partage également inconnus. Il parait, d'après Sir J. Lubbock, que prépondérante.
plus de valeur que les miennes, croient que le mariage en commun (cette expression s'entend de deux ou trois façons différentes), que ce mariage en commun donc, y compris même le mariage entre frères et sours, a da étre la forme primitive et universelle dans le monde entier.

Feu A. Sinith, qui a beaucoup royagé dans l'Afrique australe et qui a longuement étudié les mœurs des sauvages en Afrique et autre part, m'a affirmé qu'il n'existe aucune race chez laquelle la femme soit considérée comme la propriété de la communauté. Je crois que son jugement a été largement influencé par la signification qu'il donne au terme mariage. Dans toutela discussion suivante, j'attribue à ce terme le sens qu'implique le mot monogame, attribué par un naturaliste aux animaux, c'est-à-dire, que le male est accepté par une seule femelle, ou choisit une seule femelle et vit avec elle, soit seulement pendant l'élevage des jeunes, soit pendant toute l'année, s'assurant cette possession par la loi de la force ; ou le mot polygame, c'cst-à-dire que le mâle vit avec plusieurs femelles. Nous n'avons à nous occuper ici que de cette seule espèce de mariage, car elle suffit pour évoquer l'action de la sélection naturelle. La plupart des écrivains que j'ai cités plus haut attribuent au contraire au terme mariage l'idée d'un droit reconnu et protégé par la tribu.

Les preuves indirectes qui viennent à l'appui de l'hypothèse du nariage en commun sont très fortes, et reposent surtout sur les termes exprimant les rapports de parenté employés par les membres d'une même tribu; ces termes impliquent parenté avec la tribu seule, et non avec des paren's distincts. Ce sujet est trop étendu et trop compliqué pour que je puisse même en donner ici un aperçu; je me bornerai donc à présenter quelques observations. Il est évident que, dans le cas des mariages en commun, ou de ceux où le lien conjugal est très relâché, la parenté de l'enfant vis-à-vis de son père reste inconnue. Mais il est presque impossible que la parenté de l'enfant avec sa mère puisse jamais avoir été ignorée complètement, d'autant plus que, dans la plupart des tribus sauvages, les femmes nourrissent très longtemps leurs enfants ; aussi, dans beaucoup de cas, les lignes de descendance ne se tracent que par la mère seule, à l'exclusion du père. Cependant, dans d'autres cas, les termes employés expriment une parenté avec la tribu seule, à l'exclusion même de la mère. L'aide et la protection réciproques si nécessaires pour les individus d'une même tribu sauvage, exposée à toutes sortes de dangers, ont pu donner une plus grande force, une importance beaucoup plus grande, à l'union
à la parente entre ces différents individus qu'à l'union même entre la mère et l'enfant: de là sans doute ces termes de parenté qui expriment les rapports do chacun avec la tribu. M. Morgan ne trouve cette explication nullement suffisante.
D'après cet auteur, on peut grouper les termes exprimant, dans toutes les parties du monde, les rapports de parenté, en deux classes : I'une classificatoire, l'autre descriptive ; c'est cette dernière que nous employons. Le système classificateur conduit à la conclưsion que les mariages en commun, ou de formes très relâchées, étaient à l'origine universels. Mais, il n'en résulte pas la nécessité de croire à des rapports de promiscuité absolue, et je suis heureux de voir que Sir J. Lubbock partage cette opinion. Dans le cas d'unions rigoureuses, en vue de la naissance de l'enfant, mais temporaires, à la manière de grand nombre d'animaux inférieurs, il a pu s'introduire dans les termes exprimant la parenté presque autant de confusion que si l'on admet la promiscuité absolue. En ce qui concerne la sélection sexuelle, il suffit que le choix soit exercé avant l'union des parents, et il importe peu que les unions durent toute la vie ou une seule saison.
Outre les preuves tirées des termes de parenté, d'autres raisons viennent indiquer que le mariage en commun a eu autrefois la prépondérance. Sir J. Lubbeck ${ }^{\circ}$ explique l'habitude étrange et si répandue de Yexogamie, - c'est-à-dire que les hommes d'une tribu prennent toujours leurs femmes dans une autre tribu, en supposant que le communisme a été la forme primitive du mariage. L'homme, selon Sir J. Lubbock, ne pouvait avoir de femme à Iui seul à moins de l'enlever à une tribu voisine et hostile; elle devenait naturellement alors sa propriété particulière. Le rapt des femmes a pu naître ainsi, et devenir ultérieurement une habitude nous permet aussi, d'après Sir J. Lubbock, de comprendre < la nécessité d'une expiation pour le mariage, lequel était une infraction aux règles de la tribu, puisque, selon les idées anciennes, un homme n'avait aucun droit à s'approprier ce quí appartenait à la tribu entière. Sir J. Lubbock ajoute un ensemble de faits des plus curieux; prouvant que, dans les temps anciens, on honorait hautel'on ne comprend, qu'en admettent, ce que, comme il l'explique, l'on ne comprend, qu'en admettant que la promiscuité a été une

[^312]coutume primitive, et par conséquent une coutume respectée depuis longtemps par la tribu?
Bien que le mode de développement du lien conjugal soit un sujet obscur, comme semble le prouver la divergence, sur divers points, des opinions des trois auteurs qui ont étudié ce sujet avec le plus de soin, MM. Morgan, Mc Lennan et Sir J. Lubbock, il parait cependant résulter de diverses séries de preuves que l'habitude du mariage ne s'est développée que graduellement, et qué la promiscuité était autrefois très commune dans le monde ${ }^{8}$. Néanmoins, à en juger par l'analogie avee les animaux, et surtout avec ceux qui, dans la série, sont les plus voisins de l'homme, je ne puis croire que la promiscuité absolue ait prévalu à une époque extrêmement reculée peu avant que l'homme ait atteint son rang actuel dans l'échelle zoologique. L'homme, comme j'ai cherché à le démontrer, descend certainement de quelque être simien. Autant que les habitudes des Quadrumanes nous sont connues, les males de quelques espèces sont monogames, mais ne vivent avec les femelles qu'une partie de l'année, ce qui parait être le cas de l'Orang. D'autres espèces, plusieurs singes indiens et américains, par exemple, sont strictement monogames et vivent l'année entière avec leur femelle. D'autres sont polygames comme le Gorille et plusieurs espèces américaines, et chaque famille vit à part. Même dans ce cas, les familles qui habitent le même district ont probablement quelques rapports sociaux; on rencontre quelquefois, par exemple, de grandes troupes de Chimpanzés. D'autres espèces sont polygames, et plusieurs males, ayant chacun leurs femelles, vivent associés en tribus; c'est le cas de plusieurs espèces de Babouins ${ }^{\circ}$. Nous pouvons même conclure de ce que nous savons de la jalousie de tous les mammifères mâtes, qui sont presque tous armés de façon à pouvoir lưtter avec leurs rivaux, qu'à l'état de nature la promiscuité est chose extrêmement imprebable. Il se peut que Yaccouplement ne se fasse pas pour la vie entière, mais seulement pour le temps d'une portée; cependant si les mâles les plus forts et les plus capables de protéger ou d'assister leurs femelles et leurs

[^313]petits, choisissent les femelles les plus attrayantes, ceci suffit pour déterminer l'action de la sélection sexuelle.
Par conséquent, si nous remontons assez haut dans le cours des temps, et à en juger par les habitudes sociales de l'homme actuel, l'opinion la plus probable est que l'homme primitif a originellement vécu en petites communautés, chaque mâle avec une seule femme, et, s'il était puissant et fort, avec plusieurs femmes qu'il devait défendre avec jalousie contre tout autre homme. Ou bien, l'homme n'était pas un animal sociable et il peut avoir vécu seul avec plusieurs femmes, comme le Gorille, au sujet duquel les indigènes s'accordent à dire * qu'on ne voit jamais qu'un malle adulte dans la bande, et que lorsqu'un jeune male s'est développé, il y a lutte pour le pouvoir; le plus fort, après avoir tué ou chassé les autres, se met à la tête de la communauté 10%. Les jeunes màles, ainsi expulsés et errants, réussissent à la fin à trouver une compagne, ce qui évite ainsi des entre-croisements trop rapprochés dans les limites de la même famille.
Bien que les sauvages soient actuellement très licencieux et que la promiscuité ait pu autrefois régner sur une vaste échelle, il existe cependant chez quelques tribus certaines formes de mariage, mais de nature bien plus relâchée que chez les nations civilisées. La polygamie est presque toujours habituelle chez les chefs de tribu. Il y a, néanmoins, des peuples qui sont*strictement monogames, bien qu'ils occupent le bas de l'échelle. C'est le cas des Veddahs de Ceylan, chez lesquels, d'après Sir J. Lubbock ${ }^{11}$, on dit «que la mort seule peut séparer le mari de la femme \geqslant. Un chef Kandyan, intelligent et polygame bien entendu, «était fort scandalisé à la pensée qu'on pùt vivre avec une seule femme, et qu'on ne s'en séparât qu'á la mort. C'est vouloir. disait-il, ressembler aux singes Quanderous. \#Je ne prétends nullement faire des conjectures sur le point de savoir si les sauvages qui, actuellement, pratiquert le mariage sous une forme quelconque, soit polygame, soit monogame, ont conservé cette habitude depuis les temps primitifs, ou s'ils y sont revenus après avoir passé par une phase de promiscuité.

Infanticide. - L'intanticide est encore très répandu dans le monde, et nous avons des raisons de croire qu'il a été bien plus largement pratiqué dans les temps anciens ${ }^{12}$. Les sauvages ont

[^314]beaucoup de difficulté à s'entretenir, eux et leurs entants; ils trouvent donc teès simple de tuer ces derniers. Quelques tribus de l'Amérique du Sud avaient détruit tant d'enfants des deux sexes, dit Azara, qu'elles étaient sur le point de s'éteindre. Dans les fles Polynésiennes, il y a des femmes qui ont tué quatre, cinq et même jusqu'à dix de leurs enfants. Ellis n'a pu rencontrer une seule femme qui n'en ait tué au moins un. Partout oú l'infanticide se pratique, la lutte pour l'existence devient d'autant moins rigoureuse, et tous les membres de la tribu ont une chance également bonne d'élever quelques enfants qui survivent. Dans la plupart des cas, on détruit un plus grand nombre d'enfants du sexe iéminin que du sexe masculin; ces derniers ont évidemment plus de valeur pour la tribu; car, une fois adultes, ils peuvent concourir à sa défense, et pourvoir eux-mêmes à leur entretien. Mais plusieurs observateurs, et les femmes sauvages elles-mêmes, mentionnent, comme autres motifs de l'infanticide, la peine que les mères ont à élever les enfants, la perte de beauté qui en résulte pour elles, la plus grande valeur des enfants et le sort meilleur qui les attend s'ils sont en petit nombre. En Australie, où linfanticide des filles est encore fréquent, Sir G. Grey estime que le nombre des femmes et des hommes indigènes est dans le rapport de un à trois; d'autres disent de deux à trois. Dans un village situé sur la frontière orientale de l'Inde, le colonel Macculloch n'a pas trouvé un seul enfant du sexe féminin ${ }^{13}$.

La coutume de l'infanticide des filles, diminuant le nombre des femmes dans une tribu, a dû naturellement faire naître l'usage d'enlever celles des tribus voisines. Toutefois, Sir J. Lubbock, comme nous l'avons vu, attribue surtout cet usage à l'existence antérieure de la promiscuité, qui poussait les hommes à s'emparer des femmes d'autres tribus afin qu'elles fussent de fait leur propriété exclusive. On peut encore indiquer d'autres causes, ainsi le cas où la communauté était fort peu nombreuse, le manque des femmes à marier. De nombreuses coutumes, des cérémonies curieuses qui se sont conservées, et don M. Mc Lennan fait un intéressant résumé, prouvent clairement que l'habitude d'enlever les femmes a été autrefois très répandue, même chez les ancêtres des peuples civilisés. Dans notre cérémonie moderne du mariage, la présence du « garçon d'honneur » semble rappeler le souvenir du complice et principal

[^315]compagnon du fiancé, alors que celui-ci cherchait à capturer une femme. Or, aussi longtemps que les hommes employèrent la ruse et la violence pour se procurer des femmes, il est peu probable qu'ils aient pris la peine de choisir les plus attrayantes ; ils,ont du se contenter de celles qu'ils pouvaient enlever. Mais dés que s'est établi l'usage de se procurer des femmes dans une autre tribu par voie d'échange, par le trafic, ce qui a encore lieu dans bien des endroits, ce sont les femmes les plus attrayantes qui ont da de préférence être achetées. Le croisement continuel entre les tribus résultant nécessairement de tout commerce de ce genre aura eu pour conséquence de provoquer et de maintenir une certaine uniformité de caractère chez tous les peuples habitant le même pays, fait qui doit avoir beaucoup diminué l'action de la sélection sexuelle au point de vue de la différenciation des tribus.

La disette de femmes, conséquence de l'infanticide dont les enfants de ce sexe sont l'objet, entraine à une autre coutume, la polyandrie, qui est encore répandue dans bien des parties du globe, et qui, selon M. Mc Lennan, a universellement prévalu autrefois: conclusion que mettent en doute M. Morgaen et Sir J. Lubbock ${ }^{14}$. Lorsqué deux ou plusieurs hommes sont obligés d'épouser la même femme, il est certain que toutes les femmes de la tribu sont mariées, et que les hommes ne peuvent pas choisir les femmes les plus attrayaztes. Mais il n'est pas douteux que, dans ces circonstances, les femmes de leur côté n'exercent quelque choix, et préfèrent les hommes qui leur plaisent le plus. Azara nous dit, par exemple, avec quelle ténacité marchande une femme Guana, pour avoir toutes sortes de privileges, avant d'accepter un ou plusieurs maris; aussi les hommes prennent-ils pour cette rason un soin tout spécial de leur apparence personnelle ${ }^{15}$. Chez les Todas de l'Inde qui pratiquent aussi la polyandrie, les femmes ont le droit d'accepter ou de refuser qui leur plait. Les hommes très laids pourraient, dans ce cas, ne jamais obtenir de femme, ou n'en obtenir qu'à une époque fort tardive de la vie; quant aux plus beaux hommes, quoique réussissant mieux à se procurer une femme, ils n'auraient pas, à ce qu'il nous semble, plus de chance de laisser un plus grand nombre de descendants pour hériter de leur beauté, que les maris moins beaux de ces mémes femmes.

[^316]Fiançailles précoces et esclavage des femmes. - Chez beaucoup de peuples sauvages, il est d'usage de fiancer les femmes lorsqu'elles sont en bas age, ce qui empêche, des deux côtés, toute préférence motivée sur l'apparence personnelle ; mais cela n'empêche pas les femmes plus attrayantes d'etre par la suite enlevées à leurs maris par d'autres hommes plus forts, ce qui arrive souvent en Australie, en Amérique, et dans d'autres parties du globe. L'usage presque exclusif que font de la femme la plupart des sauvages, comme esclave ou comme bête de somme, aurait jusqu'à un certain point les mémes conséquences, quant à la sélection sexuelle. Toutefois, les hommes doivent toujours choisir les plus belles femmes esclaves d'après leur idée de la beauté.

Nous voyons ainsi qu'il règne chez les sauvages plusieurs coutumes qui peuvent considérablement diminuer ou même arrêter complètement l'action de la sélection sexuelle. D'autre part, les conditions de la vie des sauvages et quelques-unes de leurs habitudes sont favorables à la sélection naturelle, qui entre toujours en jeu avec la sélection sexuelle. Ils souffrent souvent de lamines rigoureuses ; ils n'augmentent pas leurs aliments par des moyens artificiels; ils s'abstiennent rarement du mariage ${ }^{16}$ et se marient ordinairement jeunes. Ils sont, par conséquent, souvent soumis à des luttes très rigoureuses pour l'existence, luttes auxquelles ne peuvent résister et survivre que les individus les plus favorisés.

A une époque très reculée, avant que l'homme eat atteint sur réchelle des êtres la position qu'il occupe aujourd'hui, les conditions de son existence devaient étre très différentes de ce qu'elles sont à présent. A en juger par analogie avec les animaux inférieurs, il vivait avec une seule femme ou pratiquait la polygamie. Les mâles les plus capables et les plus puissants devaient mieux réussir à obtenir les femelles les plus belles. Ils devaient mieux réussir aussi dans la lutte générale pour l'existence et dans la délense de leurs femelles et de leurs petits, contre leurs ennemis de tout genre. A cette époque primitive, les ancêtres de l'homme ne devaient pas diriger leurs regards vers des éventualités éloignées, car leurs facultés intellectuelles étaient encore bien imparfaites; ils ne devaient donc pas prévoir que rélevage de tous leurs enfants, et surtout des enfants femelles, rendrait plus difficile pour la tribu la lutte

[^317]pour l'existence. Ils devaient écouter beaucoup plus leurs instincts et beaucoup moins leurs raisons que les sauvages actuels. Ils n ont pas dû, à cette époque, perdre l'un des instincts les plus quissanls, commun à tous les animaux inférieurs, celui de l'amour pour leurs petits, et l'idée d'infanticide peut être écartée. Il ne devait donc y avoir aucune rareté artificielle de femmes, et, comme conséquence, pas de polyandrie; car la rareté des femmes est la seule cause assez puissante pour contrebalancer les instincts de jalousie que l'on rencontre chez presque tous les animaux, et le désir que chaque male éprouve de posséder une femelle pour lui seul. La polyandrie me paraît mener directement à la promiscuité complète ou au mariage en commun; toutefois les meilleures autorités à ce sujet croient que la promiscuité a précédé la polyandrie. A cette époque primitive il ne devait pas y avoir de fiançailles prématurées, car cette coutume implique une certaine prévoyance. Les deux sexes, si les hommes le permettaient aux femmes, devaient choisir leur compagnon, sans avoir égard aux charmes de l'esprit, à la fortune, à la position sociale, mais en s'occupant presque uniquement de l'apparence extérieure. Tous les adultes devaient s'accoupler ou se marier, tous les enfants devaient autant que possible s'élever; de sorte que la lutte pour l'existence devait devenir périodiquement très rigoureuse. Dans ces temps primitifs toutes les conditions favorables à l'action de la sélection sexuelle devaient donc exister dans une proportion beaucoup plus grande que plus tard, alors que les aptitudes intellectuelles de l'homme avaient progressé, et que les instincts avaient diminué. Par conséquent, quelle qu'ait pu être l'influence de la sélection sexuelle pour produire les différences qui existent entre les diverses races humaines et entre l'homme et les quadrumanes supérieurs, cette influence, à une époque fort reculée, a dû être beaucoup plus puissante qu'elle ne l'est aujourd'hui.

Mode d'action de la sélection sexiselle sur l'espèce humaine. - Chez l'homme primitif placé dans les conditions favorables que nous venons d'indiquer, et chez les sauvages qui, de nos jours, contractent un lien nuptial quelconque (lien sujet à diverses modifications selon que les pratiques de l'infanticide des enfants du sexe féminin, des fiançailles prématurées existent plus ou moins, etc.), la sélection sexuelle a du probablement agir de la manière suivante : les hommes les plus forts et les plus vigoureux, - ceux qui pouvaiten le mieux défendre leur famille et subvenir par la chasse à ses besoins, \sim ceux qui avaient les meilleures armes et ceux qui possédaient le plus de biens, teils que chiens ou autres animaux, ont du
parvenir à élever en moyenne un plus grand nombre d'enfants que les individus plus pauvres et plus faibles des mêmes tribus. Sans doute aussi ces hommes ont dû pouvoir généralement choisir les femmes les plus attrayantes. Actuellement, dans presque toutes les tribus du globe, les cheís parviennent à posséder plus d'une femme. Jusqu'à ces derniers iemps, me dit M. Mantell, toute jeune fille de la Nouvelle-Zélande, jolie ou promettent de l'étre, était lapu, c'est-à-dire réservée à quelque chef. D'après M. C. Hamilton ${ }^{17}$, chez les Cafres, \& les chefs ont généralement le choix des femmes à plusieurs lieues à la ronde, et ils font tous leurs efforts pour établir ou pour confirmer leur privilège ». Nous avons vu que chaque race a son propre idéal de beauté, et nous savons qu'il est naturel chez l'homme d'admirer chaque trait caractéristique de ses animaux domestiques, de son costume, de ses ornements, et de son apparence personnelle, lorsqu'il dépasse un peu la moyenne habituelle. En conséquence, si on admet les propositions précédentes, qui ne paraissent pas douteuses, il serait inexplicable que la sélection des femmes les plus belles par les hommes les plus forts de chaque tribu, qui réussiraient en moyenne à élever un plus grand nombre d'enfants, ne modifiât pas, jusqu'à un certain point et à la suite de nombreuses générations, le caractère de la tribu.
Lorsqu'on introduit une race étrangère d'animaux domestiques dans un pays nouveau, ou qu'on entoure la race indigène de soins prolongés et soutenus, qu'il s'agisse, d'ailleurs, d'une race utile ou d'une race de luxe, on remarque, lorsque les termes de comparaison existent, qu'elle a éprouvé plus ou moins de changements après un certain nombre de générations. Ces changements résultent d'une sélection inconsciente poursuivie pendant uns longue série d'années, c'est-à-dire de la conservation des individus les plus beaux, sans que l'éleveur ait désiré ou attendu un pareil résultat Ou encore, si les deux éleveurs attentifs élèvent pendant de longues années des animaux appartenant à une même famille sans les comparer à un étalon commun ou sans les comparer les uns aux autres, ils s'aperçoivent, à leur grande surprise, que ces animaux, après un certain laps de temps, sont devenus un peu différents ${ }^{18}$. Chaque éleveur, comme le dit si bien Nathusius, imprime à ses animaux le caractère de son esprit, de son gout et de son jugement. Quelle raison pourrait-on done invoquer pour soutenir que la selection des femmes les plus admirées, par les hommes capables d'élever dans

[^318]chaque tribu le plus grand nombre d'enfants, sélection continuce pendant longtemps, n'aurait pas des résultats analogues? Ce serait une sélection inconsciente, car elle produirait un effet inattendu, indépendant de toute intention de la part des hommes qui auraient manifesté une préférence pour certaines femmes.

Supposons que les individus d'une tribu dans laquelle existe une forme de mariage quelconque, se répandent sur un continent inoccupé : ils ne tarderont pas à se fractionner en hordes distinetes, séparées de diverses façons, et surtout par les guerres continuelles que se livrent foutes les nations barbares. Ces hordes, dont les habitudes se modifieront selon les conditions dans lesquelles elles se trouveront placées, finiront tot ou tard par différer quelque peu entre elles. Chaque tribu isolée se constituerait alors un idéal de beauté un peu différent ${ }^{19}$; puis, par le fait que les hommes les plus forts et les plus influents finiront par manifester des préférences pour certaines femmes, la sélection inconsciente entrerait en jeu. Ainsi les différences entre les tribus, d'abord fort légères, s'augmenteront graduellement et inévitablement.

A l'état de nature, la loi du combat a amené, chez les animaux, le développement de bien des caractères propres aux mâles, tels que la taille, la force, les armes particulières, le courage et les dispositions belliqueuses. Cette même cause a sans doute produit des modifications chez les ancetres semi-humains de l'homme, ainsi que chez leurs voisins les Quadrumanes; or, comme les sauvages se battent encore pour s'assurer la possession de leurs femmes, un mode semblable de sélection a probablement continué, à un degré plus ou moins prononcé, jusqu'à nos jours. La préférence de la femelle pour les mâles les plus attrayants a amené, chez les animaux inférieurs, le développement d'autres caractères propres aux mâles, ainsi les couleurs vives et les ornements divers. On remarque toutefois quelques cas exceptionnels, car ce sont alors les mâles qui choisissent au lieu d'etre l'objet d'un choix; dans ces cas, les femelles sont plus brillamment décorées que les males, - et leurs caractères décoratifs se transmettent exclusivement ou principalement à leur descendance femelie. Nous avons décrit un cas de ce genre relatif au singe Rhesus, dans l'ordre auquel appartient l'homme.

L'homme a plus de puissance corporelle et intellectuelle que la

[^319]femme; à létat sauvage, il la tient en outre dans un assajettissement beaucoup plus complet que ne le fontles mâles de tous les autres animaux à l'égard de leurs femelles; il n'est donc pas surprenant qu'il se soit emparé du pouvoir de choisir. Partout les femmes comprennent ce que peut leur beauté, et, lorsqu'elles en ont les moyens, elles aiment plus que les hommes à se parer dornements de toute nature. Elles empruntent aux oiseaux males les plumes que la nature leur a données pour fasciner leurs femelles. Comme elles ont été pendant longtemps l'objet d'un choix à cause de leur beauté, il n'est pas étonnant que quelques-unes de leurs variations successives aient été limitées à un sexe đans leur transmission, et qu'elles passent plus directement aux filles qu'aux garçons. Les femmes sont donc devenues, ainsi qu’on l'ađmet généralement, plus belles que les hommes. Toutefois elles transmettent la plupart de leurs caractères, la beauté comprise, à leur progéniture des deux sexes; de sorte que la préférence continue que les hommes de chaque race ont pour les femmes les plus attrayantes, d'après leur idéal, tend à modifier de la même manière tous les individus des deux sexes.
Quant à l'autre forme de sélection sexuelle (la plus commune chez les animaux inférieurs), celle où les femelles exercent leur choix, et n'acceptent que les mâles qui les séduisent, nous avons lieu de croire qu'elle a autrefois agi sur les ancêtres de I'homme. Il est probable que l'homme doit héréditairement sa barbe, et quelques autres caractères, à un antique aieul qui avait acquis sa parure de cette manière. Cette forme de sélection peut, d'ailleurs, avoir agi accidentellement plus tard, car chez les tribus très barbares, les femmes ont plus de pouvoir qu'on ne s'y attendrait, pour cheisir, rejeter, ou séduire leurs amoureux, ou pour changer ensuite de mari. Ce point ayant quelque importance, je donnerai les détails que j'ai pu recueillir.

Hearne raconte qu'une femme d'une des tribus de l'Amérique arctique avait quitté plusieurs fois son mari pour rejoindre un homme qu'elle aimait; Azara nous apprend que chez les Charruas de l'Amérique du Sud, le divorce est entièrement libre. Chez les Abipones, l'homme qui choisit une femme en débat le prix avec les parents; mais *il arrive souvent que la jeune fille annule les transactions intervenues entre son père et son futur, et repousse obstinément le mariage \%. Elle se sauve, se eache, ot échappe ainsi à son prétendant. Le capitaine Musters, qui a vécu chez les Patagons, affirme que chez eux le mariage est toujours une affaire d'inclination: \&Si les parents, dit-il, arrangent un mariage contraire aux
volontés de la jeune fille, elle refuse et on ne la force jamais. > Dans les iles Fidji, I'homme qui veut se marier s'empare de la femme qu'il a choisie, soit de force réellement, soit en simulant la violence; mais, < arrivée au domicile de son ravisseur, la femme, si elle ne consent pas au mariage, se sauve et va se rêfugier chez quelqu'un qui puisse la protéger; si, au contraire, elle est satisfaite, l'affaire est désormais réglée ». A la Terre-de-Feu, le jeune homme commence par rendre quelques services aux parents pour obtenir leur consentement, après quoi il cherche à enlever la fille; mais, si celle-ci ne consent pas, \&elle se cache dans les bois jusqu'à ce que son admirateur se lasse de la chercher et abandonne la poursuite, ce qui pourtant est rare. » Chez les Kalmucks, il y a course régulière entré la fiancée et le fiancé, la première partant avec une certaine avance; et Clarke dit: \& On m'a assuré qu'il n’y a pas d'exemple qu'une fille ait été rattrapée, à moins qu'elle n'aime l'homme qui la poursuit. > Il y a course semblable chez les tribus sauvages de l'archıpel Malais, et il résulte du récit qu'en fait M. Bourien, comme le remarque Sir J. Lubbock, eque le prix de la course n'appartient pas au coureur le plus rapide, ni le prix du combat au lutteur le plus fort, mais tout simplement au jeune homme qui a la bonne fortune de plaire à celle qu'il a choisie pour fiancée \geqslant. Les Koraks, qui habitent le nord-est de l'Asie, observent une coutume analogue.
En Afrique, les Cafres achètent leurs femmes, et les filles sont cruellement battues par leur père si elles refusent d'accepter un mari qu'il a choisi; cependant, il parait résulter de plusieurs faits signalés par le Rév. Shooter, qu'elles peuvent encore faire un choix. Ainsi des hommes très laids, quoique riches, n'ont pu se procurer de femmes. Les filles, avant de consentir aux fiançailles, obligent les hommes à se montrer d'abord par devant, puis par derrière, et à < exhiber leurs allures ». Elles font souvent des propositions à un homme et se sauvent avec leur amant. M. Leslie, qui connait bien les Cafres, confirme ces observations et il ajoute: \&C'est une erreur de supposer qu'un père puisse vendre sa fille comme il vendrait une vache. » Chez les Boschimans, dans l'Afrique méridionale, * lorsqu'une fille est devenue femme sans avoir été fiancée, ce qui arrive rarement, son prétendant doit obtenir son consentement et celui des parents ${ }^{20} \%$. M. Winwood Reade, qui a étudié les

[^320]habitudes des nègres de l'Afrique occidentale, mapprend que, kau moins dans les tribus les plus intelligentes, les femmes n'ont pas de peine à obtenir les maris qu'elles désirent, Eien qu'on considère comme peu digne de la femme de demander à th nomme de l'épouser. Elles sont très capables d'éprouver de l'amour, de former des attachements tendres, passionnés et fidèles. * Je pourrais citer d'autres exemples.

Nous voyons donc que, chez les sauvages, les femmes ne sont pas, en ce qui concerne le mariage, dans une position aussi abjecte qu'on l'a souvent supposé. Elles peuvent séduire les hommes qu'elles prférent, et cuelquefois rejeter, avant ou après le mariage, ceux qui leur déplaisent. La préférence de la part des femmes, agissant résolument dans une direction donnée, affecterait par la suite le caractère de la tribu, car les femmes choisiraient non seulement les pluas beaux hommes selon leur idéal, mais encore les plus capables de lee défendre et de les soutenir. Des couples bien doués doivent en général produire plus de descendants que ceux qui le sont moins. Le múme résultat serait évidemment encore plus prononcé s'il y avait choix réciproque, c'est-à-dire si les hommes les plus forts et les plus attrayants, en choisissant les femmes les plus séduisantes, étrient eux-mêmes prétérés par celles-ci. Ces deux formes de sélection semblent avoir dominé, simultanément ou non, chez l'espèce humaine, surtout dans les premières périodes de sa longue histoire.
Nous allons actuellement étudier, avec un peu plus de détails, quelques-uns des caractères qui distinguent les diverses races humaines entre elles, et qui les séparent des animaux inférieurs, à savoir l'absence plus ou moins complète de toison sur le corps, et la coloration de la peau. Nous ne parlerons pas de la grande diversité dans la forme des traits et du crâne entre les différentes races, car nous avons vu, dans le chapitre précédent, combien l'idéal de la beauté peut varier sur ces points. Ces caractères, absence de toison plus ou moins complète sur le corps et coloration de la peau ont subi l'action de la sélection sexuelle, mais nous n'avons aucun moyen de juger si elle a principalement agi par l'entremise du male ou par celle de la temelle. Nous avons déjà discuté les facultés musicales de l'homme.
ture and Beagle, II, p. 182, 1839. Sur les Kalmucks, Mc-Lennan, Primit, marriage, p. 32, 1865, Sur les Malais, Lubbock, o. c., p. 76. Le Rev. J. Shooter On the Kafirs of Natal, p. 52-60, 1857, M. D. Leslie, Kafir Character and Customs, 1871, p. 4. Sur les Boschimans, Burchell, Trav. in S. Africa, II, p. 59, 1824. Sur les Koraks par Mc-Lennan, cités par M. Wake in Anthropologia, octobre 1873, p. 75.

Absence de toison sur le corps et son développement sur le visage et sur la tête. - La présence du duvet ou lanugo sur le foetus humain, et des poils rudimentaires qui, à l'àge d'adulte, sont disséminés sur le corps, hous permet de conclure que thomme descend de quelque animal velu et qui restait tel pendant toute sa vie. La perte de la toison est un inconvénient réel pour l'homme, même sous un climat chaud, car il se trouve exposé à des refroidissements brusques, surtout par les temps humides. Ainsi que le remarque M. Wallace, les indigènes de tous les pays sont heureux de pouvoir protéger leur dos et leurs épaules nues avec quelques légers vêtements. Personne ne suppose que la nudité de la peau ait un avantage direct pour l'homme, ce n'est donc pas l'action de la sélection naturelle qui a pu lui faire perdre ses poils ${ }^{21}$. Nous avons vu dans un chapitre précédent, qu'il n'est pas à croire que la perte de la toison puisse être due à l'action directe des conditions auxquelles l'homme a été longtemps exposé, ni qu'elle soit le résultat d'un développement corrélatif.

L'absence de poils sur le corps est, jusqu'à un certain point, un caractère sexuel secondaire; car, dans toutes les parties du monde, les femmes sont moins velues que les hommes. Nous pouvons done raisonnablement supposer que ce caractère est le résultat de la sélection sexuelle. Nous savons que le visage de plusieurs espèces de singes, ainsi que de larges surfaces à l'extrémité du corps chez d'autres espèces, sont dépourvus de poils; ce que nous pouvons, en toute sécurité, attribuer à la sélection sexuelle, car ces surfaces sont non seulement vivement colorées, mais quelquefois, comme chez le Mandrill mâle et chez le Rhesus femelle, le sont beaucoup plus brillamment chez un sexe que chez l'autre, surtout pendant la saison des amours. Lorsque ces animaux approchenł de l'áge adulte, les surfaces nues, dit M. Barlett, augmentent d'étendue relativement à la grosseur du corps. Le poil, dans ce cas, parait avoir disparu, non en vue de la nudité, mais pour permettre un déploiement plus complet de la couleur de la peau. De même, ehez beaucoup d'oiseaux, la tête et le cou ont été privés de leurs plumes, par

[^321]l'action de la sélection sexuelle, pour que les couleurs de la peau apparaissent plus brillantes.
La femme a le corps moins velu que l'homme, et ce caractère est commun à teutes les races, nous pouvons en conclure que aos ancêtres senh-humains du sexe féminin ont les premières perdu leurs poils, et que ee fait doit remonter à une époque très reculée, avant que les diverses races aient divergé de la souche commune. A mesure que nos ancêtres femelles ont peu à peu acquis ce caractére de nudité, elles doivent l'avoir transmis à un degré à peu près égal à leurs enfants des deux sexes; de sorte que cette transmission n'a êté limitée ni par l'agge ni par le sexe, comme il arrive pour une foule d'ornements chez les mammiferes et chez les oiseaux. Il n'y a rien de surprenant à ce que la perte d'une partie des poils ait été considérée comme une beauté par les ancêtres simiens de Yhomme : nous avons vu, chez des animaux de toutes espèces, que des caractères étranges étaient considérés comme ornements, et qu'ils ont été par conséquent modifiés par l'action de la sélection sexuelle. If n'est pas non plus surprenant qu'un caractère quelque peu nuisible, ait pu s'acquérir ainsi : nous savons qu'il en est de même porr les plumes de certains oiseaux, et pour les bois de certains cerfs.
Nous avons vu dans un chapitre précédent que les femelles de certains singes anthropomorphes ont la surface inférieure du corps un peu moins velue que les màles; or, ce fait nous présente peutêtre les premières phases d'un commencement de dénudation. Quant à l'achèvement de la dénudation par Yinterventiou de la sélection sexuelle, il n'y a qu'à se rappeler le proverbe de la Nou-velle-Zélande : « Il n'y a pas de femmes pour un homme velu. * Tous ceux qui ont vu les photographies de la famille siamoise velue, reconnaitront que l'extrềme développement du poil est comiquement hideux. Aessi le roi de Siam eut-il à payer un nomme pour qu'il consentit à épouser la première femme velue de la famille, laquelle transmit ce caractère à ses enfants des deux sexes ${ }^{28}$.

Quelques races sont beaucoup plus velues que d'autres, surtout les hommes ; ainsi les Européens; mais il n'est pas à supposer que ces races aient conservé leur état primordial plus complètement que les races nues des Kalmucks ou des Américains. Il est probable que le développement đu poil, chez les premiers, est đúà une réversion partielle, les caractères qui ont été longtemps héréditaires étant toujours aptes à reparaitre. Nous avons va que les idiots sont souvent trés velus, et que souveat aussi ils affectent d'autres

22. La Variation, etto, II.

caractêres qui les rapprochent de la brute. Il ne parait pas qu'un climat froid ait exercé quelque influence sur cette réapparition,sauf peut-être chez les nègres, depuis plusieurs générations, aux ÉtatsUnis ${ }^{23}$, et chez les Arnos qui habitent les fles septentrionales de l'archipel du Japon. Mais les lois de l'hérédité sont si complexes que nous pouvons bien rarement nous rendre compte de leur action. Si la plus grande villosité de certaines races est le résultat d'une réversion non limitée par quelque forme de sélection, la variabilité considérable de ce caractère, même dans les limites d'une même race, cesse d'étre remarquable ${ }^{24}$.
En ce qui concerne la barbe, les Quadrumanes, nos meilleurs guides, nous fournissent des cas de barbes également bien développées chez les deux sexes de beaucoup d'espèces; chez d'autres pourtant elles sont ou circonscrites aux mâles seuls, ou plus développées chez eux que chez les femelles. Ce fait, ainsi que le singulier arrangement et les vives couleurs des cheveux d'un grand nombre de singes, donnent à penser que les males ont d'abord acquis leurs barbes par sélection sexuelle et comme ornement, et qu'ils les ont ordinairement transmises à un degré égal ou presque égal à leurs descendants des deux sexes. Nous savons par Eschricht ${ }^{25}$ que le fretus humain des deux sexes porte beaucoup de poils sur le visage, surtout autour de la bouche, ce qui indique que nous descendons d'ancêtres chez lesquels les deux sexes étaient barbus. Il parait donc à première vue probable que, tandis que l'homme a conservé sa barbe depuis une période fort éloignée, la femme l'a

[^322]perdue lorsque son corps s'est presque entièrement dépouillé de ses poils. La couleur même de la barbe dans l'espèce humaine parait provenir par héritage de quelque ancêtre simien ; car, lorsqu'il y a une différence de teinte entre les cheveux et la barbe, cette dernière est, chez tous les singes et chez l'homme, de nuance plus claire.
Chez les Quadrumanes, alors que le male a une barbe plus forte que celle de la femelle, elle ne se dêveloppe qu'à l'age mûr; et les dernières phases du développement peuvent avoir été exclusivement transmises à l'humanité. Contrairement à cette hypothèse, on peut invoquer la grande variabilité de la barbe chez des races différentes, et, meme dans les limites d'une seule race, ceci indique en effet l'influence d'un retour, car les caractères depuis longtemps per'̛̉us sont très aptes à varier quand ils réapparaissent.
Quoi qu'il on soit, il ne faut pas méconnaltre le role que la sélection sexuelle peut avoir joué, même dans des temps plus récenis; car nous savons que, chez les sauvages, les races sans barbe se donnent une peine infinie pour arracher, comme quelque chose d'odienx, les poils qu'ils peuvent avoir sur le visage; tandis que les bommes des racos barbues sont tout fiers de leurs barbes. Les femmes partagent sans doute ces sentiments, et, par conséquent, la sélection sexuelle ne peut manquer d'avoir produit quelques effets dans cues temps plus récents ${ }^{26}$. Il est possible aussi que l'hab:tude d'arracher les poils, habitude continuée pendant de longues générations, ait produit un effet héréditaire. Le docteur BrownSéquard a démontré que, si on fait subir certaines opérations à divers animaux, leurs descendants sont affectós de certaines manières. On pourrait citer des faits nombreux relatifs aux effets héréditaires de cortaines mutilations. Toutefois M. Salvin a dernièrement reconnu un fait qui a une portée beaucoup plus directe sur la question qui nous occupe ; il a démontré en effet que les Matmots ont l'habitude de ronger les barbes des deux plumes centrales de leur queue; or les barbes de ces plumes sont naturellement un peu plus courtes que celles des autres plumes ${ }^{27}$. Quoi qu'il en soit, il est probable que chez l'homme l'habituae d'épiler la face et le corps n'a pas da surgir jusqu'à ce que les poils aient êté déjà réduits dans une certaine mesure.
11 est difficile de s'expliquer comment se sont développés les
26. Sur les rectrices du Momotus. Proc. Zool. Soc., 1873, p. 429.
27. M. Sproat (Scenes and Studies of Savage Life, p. 25, 1868). Quelques ethnologistes distingués, entre autres M. Gosse, de Genève, sont disposés à croire que les modifications artificielles du crane tendent à devenir héréditaires.
longs cheveux de notre tete. Eschricht ${ }^{28}$ assure qu'au cinquième mois le foetus humain a les poils du visage plus longs que ceux de la tête ; ce qui implique que nos ancêtres semi-humains n'avaien pas de longs cheveux, lesquels par conséquent seraient une ac quisition postérieure. Les différences que présentent, dans leurlon gueur, les cheveux des diverses races, nous conduisent à la même conclusion : les cheveux ne forment, chez les nègres, qu'un simple matelas frisé ; chez nous, ils sont déjà fort longs; et, chez les indigènes américains, il n'est pas rare qu'ils tombent jusqu'au sol Quelques espèces de Semnopithèques ont la tête couverte de poils de longueur modérée, qui leur servent d'ornement, et qui ont probablement été acquis par sélection sexuelle. On peut étendre la même manière de voir à l'espèce humaine, car les longues tresses sont admirées aujourd'hui, comme elles l'étaient déjà autrefois; les œuvres de presque tous les poètes en font foi. Saint Paul dit : « Si une femme a de longs cheveux, e'est une gloire pour elle ; » et nous avons vu précédemment que, dans l'Amérique du Nord, un chef avait uniquement da son élection à la longueur de ses cheveux.

Coloration de la peau. - Nous n'avons aucune preuve que, dans l'espèce humaine, la coloration de la peau provienne absolument de modifications dues à la sélection sexuelle ; car hommes et femmes ne diffèrent pas sous ce rapport, ou ne diffèrent que peu et d'une manière douteuse. D'autre part, beaucoup de faits déjà cités nous enseignent que, dans toutes les races, les hommes considèrent la coloration de la peau comme un étément de grande beauté; c'est donc là un caractère qui, par sa nature même, tombe sous Yaction de la sélection, et nous avons prouvé par de nombreux exem. ples que, sous ce rapport, ce caractere a profondément modifié les animaux inférieurs. La supposition que la coloration noir jæ्宀 s du nègre est due à l'intervention de la sélection sexuelle, peut à première vue paraftre monstrueuse, mais catte opinion se confirme par une foule d'analogies; en outre, les nègres, nous le savons, admírent beaucoup leur couleur noire. Lorsque, chez les mammiféres, la coloration diffère chez les deux sexes, le male est souvent plus noir ou plus foncé que la femelle, et la fransmission, aux deux sexes ou à un seul, de telle ou telle nuance dépend uniquement de Ia forme de l'hérédité. La ressemblance qu'offre avec un nègre en míniature le Pithecia safunas avec sá peau noire comme du jais, ses gros yeux blancs, et sa chevelure séparée en deux par une raie au milieu de la tete, est des plus comiques.
28. Ueber die Riehtang, ate., p. 40.

Le couleur du visage varie beaucoup plus chez les diverses espèces ; singes que dans les races humaines; et nous avons toute raison de croire que les teintes rouges, bleues, orange, blanches ou noires de la peau des singes, mème lorsqu'elles sont communes aux deux sexes, ainsi que les vives couleurs de leur pelage, et les touffes de poils qui ornent leur tete, sont toutes dues à l'intervention de la sélection sexuelle. On sait que l'ordre du développement pendant la croissance indique ordinairement l'ordre dans lequel les caractères d'une espèce se sont développés et se sont modifiés dans le cours des générations antérieures; on sait aussi que les enfants nouveau-nés des races les plus distinetes diffèrent bien moins en couleur que les adultes, bien que leur corps soit complètement dépourvu de poils; nous trouvons donc là une légère indication que les teintes des différentes races ont été acquises postériearement à la disparition du poil, ce qui, comme nous l'avons déjá constaté, a do se produire à une époque très reculée de l'existence de l'homme.

Résumé. - Nous pouvons conclure que la plus grande taille, la force, le courage, le caractère belliqueux et même lénergie de Thomme, sont des qualités, qui, comparées, à ce qu'elles sont cheze la femme, ont été acquises pendant l'époque primitive, et qui se sont ensuite augmentées, surtout par les combats que se sont livrés les mâles pour s'assurer la possession des femelles. La vigueur intellectuelle et la puissance d'invention plus grandes de l'homme, sont probablement dues à la sélection naturelle, combinée aux effets héréditaires de Y'habitude; car ce sont les hommes les plus capables qui ont do le mieux réussir à se défendre, eux, leurs femmes et leurs enfants, et à subvenir à leurs propres besoins et à ceux de leur famille. Autant que l'excessive complication du sujet nous permet d'en juger, il semble que nos ancetres demisimiens males ont acquis leur barbe comme un ornement pour attirer ef pour séduire les femmes, et ont transmis cet ornement à leur descendance mâle seute. Il est probable que les femmes ont les premières perdu leur toison, perte qui a constitué pour elles un ornement sexuel, mais qu'elles ont transmis ce caractère presque également aux deux sexes. Il n'est pas improbable que, par les mêmes moyens et dans le même but, les femmes aient été modifiées sous d'autres rapports, qu'elles aient ainsi aequis des veix plus douces, et soient devenues plus belles que lhomme.
11 faut particulièrement remarquer que, dans l'espèce humaine, outes les conditions ont été beaucoup plus favorables à l'action d

Ia sélection sexuelle à l'époque très primitive où l'homme venait de s'élever au rang humain, qu'elles ne l'ont été plus tard. Nous sommes, en effet, autorisés à penser qu'alors il devait se laisser conduire par ses passions instinctives plutôt que par la prévoyance ou par la raison. Chaque male devait garder avec jalousie sa femme ou ses femmes. Il ne devait ni pratiquer l'infanticide, ni considérer uniquement ses femmes comme des esclaves utiles, ni leur être fiancé pendant son enfance. Ces faits nous permettent de conclure que les différences entre les races humaines, dues à l'action de la sélection sexuelle, se sont produites surtout à une époque fort reculée. Cette conclusion jette quelque lumière sur le fait remarquable qu'à l'époque la plus ancienne sur laquelle nous possédions des documents, les races humaines diftéraient entre elles presque autant ou même tout autant qu'elles le font aujourd'hui.

Les idées émises ici sur le rôle que la sélection sexuelle a joué dans l'histoire de l'homme, manquent de précision scientifique. Celui qui n'admet pas son action chez les animaux inférieurs, ne tiendra évidemment aucun compte de ce que renferment nos derniers chapitres sur l'homme. Nous ne pouvons pas dire positivement que tel caractère, et non tel autre, ait été ainsi modifié ; toutefois nous avons prouvé que les races humaines diffèrent entre elles, et diffèrent avec leurs voisins les plus rapprochés parmi les animaux, par des caractères qui n'ont aucune utilité pour ces races dans le cours ordinaire de la vie, ce qui rend extrêmement probable que la sélection sexuelle a modifié ces caractères. Nous avons vu que, chez les sauvages les plus grossiers, chaque tribu admire ses propres qualités caractéristiques, - la forme de la tête et du visage, la saillie des pommettes, la proéminence ou la dépression du nez, la couleur de la peau, la longueur des cheveux, l'absence de poils sur le visage et sur le corps, ou la présence d'une grande barbe, etc. Ces caractères et d'autres semblables ne peuvent donc manquer d'avoir été lentement et graduellement exagérés chez les hommes les plus forts et les plus actifs de la tribu. Ces hommes, en effet, auront réussi à élever le nombre le plus considérable d'enfants, en choisissant pour compagnes, pendant de longues générations, les femmes chez lesquelles ces caractères étaient le plus prononcés, et qui leur semblaient par conséquent Ies plus attrayantes. Je conclus donc que, de toutes les causes qui ont déterminé les différences d'aspect extérieur existant entre les races humaines, et, jusqu'à un certain point, entre l'homme et les animaux qui lui sont inférieurs, la sélection sexuelle a été la plus active et la plus efficace.

CHAPITRE XXI

Conclusion principale : l'homme descend de quelque type inférieur. Mode de développement. - Généalogie de l'homme. - Facultes rutellectuelles et morales. - Sélection sexuelle. - Remarques finalits.

Il suffira d'un court résumé pour rappeler au lecteur les points les plus saillants qui ont fait le sujet de cet ouvrage. J'y ai émis beaucoup d'idées d'un ordre spéculatif. On finira sans doute, par reconnaitre que quelques-unes sont inexactes; mais, dans chaque cas, j'ai indiqué les raisons qui m'ont conduit à préférer une opinion à une autre. Il m'a semblé qu'il était utile de rechercher jusqu'à quel point le principe de l'évolution pouvait jeter quelque lumière sur quelques-uns des problèmes les plus complexes que présente l'histoire naturelle de l'homme. Les faits inexacts sont très nuisibles aux progrès de la science, car ils persistent souvent fort longtemps; mais les opinions erronées, quand elles reposent sur certaines preuves, ne font guère de mal, car chacun s'empresse heureusement d'en démontrer la fausseté : or, la discussion, en fermant une route qui conduit à l'erreur, ouvre souvent en méme temps le chemin de la vérité.

La conclusion capitale à laquelle nous arrivons dans cet ouvrage, conclusion que soutiennent actuellement beaucoup de naturalistęs compétents, est que l'homme descend d'une forme moins parfaitement organisée que lui. Les bases sur lesquelles repose cette conclusion sont inébranlables, car la similitude étroite qui existe entre l'homme et les animaux inférieurs pendant le développement embryonnaire, ainsi que dans d'innombrables points de structure et de constitution, points tantot importants, tantồ insignifiants; - les rudiments que l'homme conserve, et les réversions anormales auxquelles il est accidentellement sujets, - sont des faits qu'on ne peut plus contester. Ces faits, connus depuis longtemps, ne nous ont rien enseigné, jusqu'à une époque toute récente, relativement à l'origine da l'homme. Aujourd'hui, éclairés par nos connaissances sur l'ensemble du monde organique, nous ne pouvons plus nous méprendre sur leur signifieation. Le grand principe de l'évolution ressort clairement de la comparaison de ces groupes de faits avec d'autres, tels que res affinités mutuelles des membres d'un méme groupe, leur distribution géographique dans les temps passés et présents, et leur succession géologique. Il serait incroyable que de tous ces faits réunis sortit
un enseignement faux. Le sauvage croit que les phénomènes de la nature n'ont aucun rapport les uns avec les autres; mais celui qu ne se contente pas de cette explication ne peut croise plus long temps que l'homme soit le produit d'un acte sépraré de création. Il est force d'admettre que l'étroite ressemblance qui existe entre l'embryon humain et celui d'un chien, par exemple; - que la conformation de son crâne, de ses membres et de toute sa charpente, sur le même plan que celle des autres mammifères, quels que puissent étre les usages de ses différentes parties; - que la réapparition accidentelle de diverses structures, comme celle de plusieurs muscles distincts que l'homme ne possède pas normalement, mais qui sont communs à tous les Quadrumanes; - qu'une foule d'autres faits analogues, - que tout enfin mène de la manière la plus claire a la conclusion que l'homme descend, ainsi que d'autres mammifères, d'un ancêtre commun.

Nous avons vu qu'il se présente constamment chez l'homme des différences individuelles dans toutes les parties de son corps et dans ses facultés mentales. Ces différences ou variations paraissent être provoquées par les mêmes causes générales, et obéir aux mêmes lois que chez les animaux inférieurs. Dans les deux cas, les lois de l'hérédité sont semblables. L'homme tend à augmenter en nombre plus rapidement que ne s'accroissent ses moyens de subsistance; il est par conséquent exposé quelquefois à une lutte rigoureuse pour l'existence; en conséquence la sélection naturelle a da agir sur tout ce qui est de son domaine. Une succession de variations trés prononcées et de nature identique n'est en aucunefaçon nécessaire pour cela, car de légères fluctuations différentes dans l'individù suffisent à l'oeuvre de la sélection naturelle; ce n'est pas d'ailleurs que nous ayons raison de supposer que, chez une même espèce toutes les parties de l'organisme tendent à varier au méme degré. Nous pouvons être certains que les effets héréditaires de l'usage ou du défaut d'usage longtemps continués ont agi puissamment dans le même sens que la sélection naturelle. Des modifications autrefois importantes, bien qu'ayant perdu aujourd'hui leur utilité spéciale, setransmettentlongtemps parhéritage.Lorsqu'une partie se modifie, d'autres changent en vertu de la corrélation, fait que prouvent un grand nombre de cas curieux de monstruosités corrélatives. On peut attribuer quelque effet à l'action directe et définie des conditions ambiantes, telles que l'abondance de la nourriture, la chaleur, et l'humidité; et enfin, bien des caractères n'ayant qu'une faible importance physiologique, aussi bien que d'autres qui en ont au contraire une très grande, proviennent de l'action de la sélection sexuelle.

Sans doute l'homme, comme tous les autres animaux, présente des conformations qui, autant que notre peu de connaissances nous permettent d'en juger, ne lui sont plus utiles actuellement; et ne lui ont été utiles, dans une période antépieure, ni au point de vue des conditions générales de la vie, ni au point de vue tes rapports entre les sexes. Aucune forme de sélection, pas plus que les effets héréditaires dé l'usage et du défaut d'usage des parties, ne peut expliquer les conformations de cette nature. Nous savons, toutefois, qu'un grand nombre de particularités bizarres et très prononcées de conformation, apparaissent quelquefois chez nos animaux domestiques, et deviendraient probablement communes à tous les individus de l'espèce, si les causes inconnues qui les provoquent agissaient d'une manière plus uniforme. Nous pouvons espérer que, par la suite, nous arriverons à comprendre, par l'étude des monstruosités, quelques-unes des causes de ces modifications accidentelles ; les travaux des expérimentateurs, tels que ceux de M. Camille Dareste, sont pleins de promesses pour l'avenir. Tout ce que nous pouvons dire, c'est que la cause de chaque variation légère. et de chaque monstruosité dépend plus, dans la plupart des cas, de la nature ou de la constitution de l'organisme que des conditions ambiantes ; des conditions nouvelles et modifiées jouent cependant un role important dans les changements organiques de tous genres.
L'homme s'est donc élevé à son état actuel par les moyens que nous venons d'indiquer, et d'autres peut-etre qui sont encore à décourrir. Mais depuis qu'il a atteint le rang d'être humain, il s'est divisé en races distinctes, auxquelles il serait peut-être plus sage d'appliquer le terme de sous-espèces. Quelques-unes d'entre elles, le Nègre et l'Européen par exemple, sont assez distinctes pour que, mises sans autres renseignements sous les yeux d'un naturaliste, il doive les considérer comme de bonnes et véritables espéces. Néanmoins, toutes les races se ressemblent par tant de détails de conformation et par tant de particularités mentales, qu'on ne peut les expliquer que comme provenant par hérédité d'un ancêtre commun ; or, cet ancêtre doué de ces caractères méritait probablement qualiffcation d'homme.

Il ne faut pas supposer qu'on puisse faire remonter jusqu'à un seul couple quelconque d'ancetres la divergence de chaque race d'avec les autres races, et celle de toutes les races d'une souche commune. Au contraire, à chaque phase de la série des modifications, tous les individus les mieux adaptés de quelque façon que ce soit à supporter les conditions d'existence qui les entourent, quoi-
qu'à des degrés différents, doivent avoir survécu en nombre plus grand que ceux qui l'étaient moins. La marche aura été analogue à celle que nous suivons, lorsque, parmi nos animaux domestiques, nous ne choisissons pas avec intention des individus particuliers pour les faire se reproduire, mais que nous n'affectons cependant à cet emploi que les individus supérieurs, en laissant de côté les individus inférieurs. Nous modifions ainsi lentement mais sûrement la souche de nos animaux, et nous en formons une nouvelle d'une manière inconsciente. Aussi, aucun couple quelconque n'aura été plus atteint que les autres couples habitant le même pays par les modifications effectuées en dehors de toute sélection, et dues à la nature de l'organisme et à l'influence qu'exercent sur lui les conditions extérieures et les changements dans les habitudes, parce que tous les couples se trouvent continuellement mélangés par le fait du libre entre-croisement.

Si nous considérons la conformation embryologique de l'homme, - les analogies qu'il présente avec les animaux inférieurs, les rudiments qu'il conserve, - et les réversions auxquelles il est sujet, nous serons à même de reconstruire en partie, par l'imagination, l'état primitif de nos ancêtres, et de leur assigner approximativement la place qu'ils doivent occuper dans la série zoologique. Nous apprenons ainsi que l'homme descend d'un mammifère velu, pourvu d'une queue et d'oreilles pointues, qui probablement vivait sur les arbres, et habitait l'ancien monde. Un naturaliste qui aurait examiné la conformation de cet être l'aurait classé parmi les Quadrumanes, aussi sarement que l'ancetre commun et encore plus ancien des singes de l'ancien et du nouveau monde. Les Quadrumanes et tous les mammiféres supérieurs descendent probablement d'un Marsupial ancien, descendantlui-même, au travers d'une longue ligne de formes diverses, de quelque être pareil à un reptile ou à un amphibie, qui descendait à son tour d'un animal semblable à un poisson. Dans l'obscurité du passé, nous entrevoyons que i'ancêtre de tous les vertébrés a dú être un animal aquatique, pourvu de branchies, ayant les deux sexes réunis sur le même individu, et les organes les plus essentiels du corps (tels que le cerveau et le cceur) imparfaitement ou même non développés. Cet anfimal paraît avoir ressemblé, plus qu'à toute autre forme connue, aux larves de nos Ascidies marines actuelles.

Il y a sans doute une difficulté à vaincre avant d'adopter pleinement la conclusion à laquelle nous sommes ainsi conduits sur l'origine de l'homme, c'est la hauteur du niveau intellectuel et moral
auquel £'est élevé l'homme. Mais quiconque admet le princıpe général de l'évolution, doit reconnaître que, chez les animaux supérieurs, les facultés mentales sont, à un degré très inférieur, de même nature que celles de l'espèce humaine et susceptibles de développement. L'intervalle qui sépare les facultés intellectuelles de r'un des singes supérieurs de celles du poisson, ou les facultés intellectuelles d'une fourmi de celles d'un insecte parasite, est immense. Le développement de ces facultés chez les animaux n'offre pas de difficulté spéciala; car, chez nos animaux domestiques, elles sont certainement variables, et ces variations sont héréditaires. II est incontestable que la haute importance de ces facultés pour les animaux à l'état de nature constitue une condition favorable pour que la sélection naturelle puisse les perfectionner. La même conclusion peut s'appliquer à l'homme; l'intelligence a dû avoir pour lui, mème à une époque fort reculée, une très grande importance, en lui permettant de se servir d'un langage, d'inventer et de fabriquer des armes, des outils, des pièges, etc. Ces moyens, venant s'ajouter à ses habitudes sociables, l'ont mis à même, il y a bien longtemps, de s'assurer la domination sur tous les autres animaux.
Le développement intellectuel a dû faire un pas immense en avant quand, après un progrès antérieur déjà considérable, le langage, moitié art, moitié instinct, a commencé à se former; car l'usage continu du langage agissant sur le cerveau avec des effets héréditaires, ces effets ont du à leur tour pousser au perfectionnement du langage. La grosseur du cerveau de l'homme, relativement aux dimensions de son corps et comparé à celui des animaux inférieurs, provient surtout, sans doute, comme le fait remarquer avec justesse M. Chauncey Wright ${ }^{1}$, de l'emploi précoce de quelque simple forme de langage; - cette machine merveilleuse qui attache des noms à tous les objets, à toutes les qualités, et qui suscite des pensées que ne saurait produire la simple impression des sens, pensées qui, d'ailleurs, ne pourraient se développer sans le langage, en admettant que les sens les aient provoquées. Les aptitudes intellectuelles les plus élevées de l'homme, comme le raisonnement, l'abstraction, la conscience de soi, etc., sont la conséquence de l'amélioration continue des autres facultés mentales.

Le développement des qualités morales est un problème plus intéressant et plus difficile. Leur base se trouve dans les instincts sociaux, expression qui comprend les liens de la famille. Ces ins-

[^323]tincts ont une nature fort complexe, et, chez les animaux inférieurs, ils déterminent des tendances spéciales vers oertains actes définis; mais les plus importants de ces instincts sont pour nous l'amour et le sentiment spécial de la sympathie. Les animaux doués d'instincts sociaux se plaisent dans la société les uns des autres, slavertissent du danger, et se défendent ou s'entr'aident d'une foule de manières. Ces instincts ne s'étendent pas à tous les individus de l'espèce, mais seulement à ceux de la même tribu. Comme ils sont fort avantageux à l'espèce, il est probable qu'ils ont été acquis par sélection naturelle.

Un etre moral est celui qui peut se rappeler ses actions passées et apprécier leurs motifs, qui peut approuver les unes et désapprouver les autres. Le fait que l'homme est l'etre unique auquel on puisse avec certitude reconnaitre cette faculté, constitue la plus grande de toutes les distinctions qu'on puisse faire entre lui et les animaux. J'ai cherché à prouver dans le quatrième chapitre, que le sens moral résulte premièrement, de la nature des instincts sociaux toujours présents et persistants; secondement, de l'influence qu'ont surlui l'approbation et'le blâme de ses semblables; troisièmement, de l'immense développement de ses facultés mentales et de la vivacité avec laquelle les événements passés viennent se retracer à lui, et par ces derniers points il diffère complètement des autres animaux. Cette disposition d'esprit entraîne l'homme à regarder malgré lu: en arrière et en avant, et à comparer les impressions des événements et des actes passés. Aussi, lorsqu'un désir, lorsqu'une passion temporaire l'emporte sur ses instincts sociaux, il réfléchit, il compare les impressions maintenant affaiblies de ces impulsions passées, avec l'instinot social toujours présent, et il éprouve alors ce sentiment de mécontentement que laissent après eux tous les instincts auxquels on n'a pas obéi. Il prend en conséquence la résolution d'agir différemment à l'avenir, - c'est là ce qui constitue la conscience. Tout instinct qui est constamment le plus fort ou l_{e} plus persistant, éveille un sentiment que nous exprimons en disant qu'il faut lui obéir. Un chien d'arrêt, s'il était capable de réfléchir sur sa conduite passée, pourrait se dire: J'aurais dû (c'est ce que nous disons de lui) tomber en arret devant ce lièvre, au lieu de céder à la tentation momentanée de lui donner la chasse.

Le désir d'aider lesmembres de leur communauté d'une manière générale, mais, plus ordinairement, le désir de réaliser certains actes définis, entraîne les animaux sociables. L'homme obéit à ce même désir général d'aí̛er ses semblables, mais il n'a que peu ou point d'instincts spéciaux. Il diffèré aussi des animaux inférieurs,
en ce qu'il peut exprimer ses désirs par des paroles qui deviennent l'intermédiaire entre l'aide requise et accordée. Le motif qui le porte á secourir ses semblables se trouve aussi fort modifié chez l'homme ; ce n'est plus seulement une impulsion instinctive aveugle, c'est une impulsion que vient fortement influencer la louange ou le blâme de ses semblables. L'appréciation de la louange et du blame, ainsi que leur dispensation, repose sur la sympathie, sentiment qui, ainsi que nous l'avons vu, est un des éléments les plus importants des instincts sociaux. La sympathie, bien qu'acquise comme instinct, se fortifie aussi beaucoup par l'exercice et par I'habitude. Comme tous les hommes désirent leur propre bonheur, ils accordent louange ou blâme aux actions et à leurs motifs, suivant que ces actions mènent à ce résultat; et, comme le bonheur est une partie essentielle du bien général, le principe du plusgrand bonheur sert indirectement de type assez exact du bien et du mal. A mesure que la faculté du raisonnement se développe et que l'ex. périence s'acquiert, on discerne quels sont les effets les plus éloignés de certaines lignes de conduite sur le caractère de l'individu, et sur le bien général; et alors les vertus personnelles entrent dans le domaine de l'opinion publique qui les loue, alors qu'elle blâme les vices contraires. Cependant, chez les nations moins civilisées, la raison est souvent sujette à errer, et à faire entrer dans le même domaine des coutumes mauvaises et des superstitions absurdes, dont l'accomplissement est regardé par conséquent comme une haute vertu et dont linfraction constitue un crime.

On pense généralement, et avec raison, que les facultés morales ont plus de valeur que les facultés intellectuelles. Mais ne perdons pas de vue que l'activité de l'esprit à rappeler nettement des impressions passées, est une des bases fondamentales, bien que secondaire, de la conscience. Ce fait constitue l'argument le plus puissant qu'on puisse invoquer pour démontrer la nécessité de développer et de stimuler, de toutes les manières possibles, les facultés intellectuelles de chaque être humain. Sans doute, un homme à lesprit engourdi peut avoir une conscience sensible et accomplir de bonnes actions, si ses affections et ses sympathies sociales sont bien développées. Mais tout ce qui pourra rendre l'imagination de l'homme plus active, tout ce qui pourra contribuer à fortifier chez lui l'habitude de se rappeler les impressions passées et de les comparer les unes aux autres, tendra à donner plus de sensibilité à sa conscience, et à compenser, jusqu'à un certain point, des affections et des sympathies sociales assez faibles.

La nature morale de lhomme atteint le niveau le plus élevé
auquel elle soit encore arrivée, non seulement par les progrès de la raison et, par conséquent, d'une juste opinion publique, mais encore et surtout par la nature plus sensible des sympathies et leur plus grande diffusion par l'habitude, par l'exemple, par l'instruction et par la réflexion. Il n'est pas improbable que les tendances vertueuses puissent par une longue pratique devenir héréditaires. Chez les races les plus civilisées, la conviction de l'existencē d'une divinité omnisciente a exercé une puissante influence sur le progrès de la morale. Lhomme finit par ne plus se laisser guider uniquement par la louange ou par le blâme de ses semblables, bien que peu échappent à cette influence ; mais il trouve sa règle de conduite la plus sûre dans ses convictions habituelles, controlées par la raison. Sa conscience devient alors son juge et son conseiller suprême. Néanmoins les bases ou l'origine du sens moral reposent dans les instincts sociaux, y compris la sympathie, instincts que la sélection naturelle a sans doute primitivement développés chez l'homme, comme chez les animaux inférieurs.

On a souvent affirmé que la croyance en Dieu est non seulement la plus grande, mais la plus complète de toutes les distinctions à établir entre l'homme et les animaux. Il est toutefois impossible de soutenir, nous l'avons vu, que cette croyance soit innée ou instinetive chez l'homme. D'autre part la croyance à des agents spirituels pénétrant partout, parait être universelle, et provient, selon toute apparence, des progrès importants faits par les facultés du raisonnement, surtout de ceux de l'imagination, de la curiosité et de l'étonnement. Je n'ignore pas que beaucoup de personnes ont invoqué, comme argument en faveur de l'existence de Dieu, la croyance en Dieu supposée instinctive. Mais c'est là un argument téméraire, car il nous obligerait à croire à l'existence d'une foule d'esprits cruels et malfaisants, un peu plus puissants que l'homme, puisque cette croyance est encore bien plus généralement répandue que celle d'une divìnité bienfaisante. L'idée d'un Créateur universel et bienveillant de l'univers ne paralt surgir dans l'esprit de l'homme, que lorsqu'il s'est élevé à un haut degré par une culture de longue durée.
Celui qui admet que l'homme tire son origine de quelque forme d'organisation inférieure, se demandera naturellement quelle sera la portée de ce fait sur la croyance à limmortalité de l'âme. Ainsi que le démontre Sir J. Lubbock, les races barbares de l'Yumanité n'ont aucune croyance définie de ce genre, mais, comme nous venons de le voir, les arguments tirés des croyances primitives des
sauvages n'ont que peu ou point de valeur. Peu de personnes s'inquiètent de l'impossibilité où l'on se trouve de déterminer à quel instant précis du développement, depuis le premier vestige qui parait sur la vésicule germinative, jusqu'à l'enfant avant ou après la naissance, l'homme devient immortel. Il n'y a pas de raison pour s'inquiéter davantage de ce qu'on ne puisse pas déterminer cette même période dans l'échelle organique pendant sa marche graduellement ascendante ${ }^{2}$.
Je n'ignore pas que beaucoup de gens repousseront comme hautement irréligieuses les conclusions auxquelles nous en arrivons dans cet ourrage; mais ceux qui soutiendront cette thèse sont tenus de démontrer en quoi il est plus irréligieux d'expliquer l'origine de l'homme comme espèce distincte, descendant d'une forme inférieure, en vertu des lois de la variation et de la sélection naturelle, que d'expliquer par les lois de la reproduction ordinaire la formation et la naissance de l'individu. La naissance de l'espèce, comme celle de l'individu, constitue, à titre égal, des parties de cette vaste suite de phénomènes que notre esprit se refuse à considérer comme le résultat d'un aveugle hasard. La raison se révolte contre une pareille conclusion : que nous puissions croire ou non que chaque légère variation de conformation, - que l'appariage de chaque couple, - que la dispersion de chaque graine, - et que les autres phénomènes analogues, aient tous été décrétés dans quelque but spécial.
La sélection sexuelle a pris une place considérable dans cet ouvrage, parce que, ainsi que j'ai cherché à le démontrer, elle a joué un rolle important dans l'histoire du monde organique. Je n'ignore pas combien il reste encore de points douteux, mais j'ai essayé de donner une vue loyale de l'ensemble. La sélection sexuelle parait n'avoir exercé aucun effet surles divisions inférieures, du règne animal ; en effet, les etres qui composent ces divisions, restent souvent fixés pour la vie à la mème place : ou les deux sexes se trouvent réunis chez le même individu, ou, ce qui est plus important, leurs facultés perceptives et intellectuelles ne sont pas assez développées pour leur permettre soit des sentiments d'amour et de jalousie, soit l'exercice d'un choix. Mais lorsque nous en arrivons aux Arthropodes et aux Vertébrés, même dans les classes les plus inférieures de ces deux grands sous-règnes, nous voyons que la sélection sexuelle a produit de grands effets.

[^324]Dans les divenses grandes classes du règne animal, Mammifêres, Oiseaux, Reptiles, Poissons, Insectes, et même Crustacés, les différences entre les sexes suivent presque exactement les mêmes règles. Les màles recherchent presque toujours les femelles, et seuls sont pourvuśd'armes spéciales pour combattre leurs rivaux. Ils sont généralement plus grands et plus forts que les femelles, et doués des qualités courageuses et belliquenses nécessaires. Ils sont pourvus, soit exclusivement, soit à un plus haut degré que les femelles, d'organes propres à produire une musique vocale ou instrumentale, ainsi que de glandes odorantes. Ils sont ornés d'appendices infiniment diversifiés et de colorations vives et apparentes, disposées souvent avec une grande ellégance, tandis que les femelles restent sans ornementation. Lorsque les sexes diffèrent de structure, c'est le male qui possède des organes de sens spéciaux pour découvrir la femelle, des organes de locomotion pour la joindre, et souvent des organes de préhension pour la retenir. Ces diverses conformations destinées à charmer les femelles et à s'en assurer la possession, ne se développent souvent chez le male que pendant. une période de l'année, la saison des amours. Dans bien des cas, ces conformations ont été transmises à un degré plus ou moins prononcé aux femelles, chez. lesquelles pourtant elles ne représentent alors que de simples rudiments. La castration les fait disparaltre chez les mâles. En général, elles ne sont pas développées chez les jeunes malles, et n'apparaissent que peu de temps avant l'age où ils sont en état de se reproduire. Aussi, dans la plupart des cas. les jeunes des deux soxes se ressemblent-ils, et la femelle ressemble-t-elle toute sa vie à sa progéniture. On rencontre, dans presque toutes les grandes classes, quelques cas anormaux dans lesquels on remarque une transposition presque complète des caractéres particuliers aux deux sexes, les femelles revêtant alors des caractères qui appartiennent proprement aux males. On comprend cette uniformité étonnante des lois quirèglent les différences entre les sexes, dans tant de classes fort éloignées les unes des autres, si l'on admet, dans toutes les divisions supérieures du règne animal, l'action d'une cause commune : la sélection sexuelle.
La sélection sexuelle dépend du succès qu'ont, en ce qui est relatic à la propagation de. l'espèce, certains individus sur d'autres individus du même sexe, tandis que la sélection naturelle dépend du succès des deux sexes, à tout age, relativement aux conditions générales de la vie. La lutte sexuelle est do deux sortes : elle a lieu entre individus du meme sexe, ordinairement le sexe mascu-
lin, dans le but ae chasser ou de tuer leurs rivaux, les femelles demeurant passives; ou bien la lutte a également lieu entre individus de méme sexe, pour séduire et attirer les femelles; généralement les femelles ne restent point passives et choisissent les mâles qui ont pour elles le plus d'attrait. Cette dernière sorte de sélection est analogue à celle que l'homme exerce sur ses animaux domestiques, d'une manière réelle quoique inconsciente, alors qu'il choisit pendant longtemps les individus qui lui plaisent le plus ou qui ont le plus d'utilité pour lui, sans aucune intention de modifier la race.

Les lois de l'hérédité déterminent quels sont les caractères acquis par sélection sexuelle dans chaque sexe, qui seront transmis au même sexe ou aux deux sexes, ainsi que lage auquel ils doivent se développer. Il semble que les variations qui se produisent tardivement pendant la vie de l'animal, sont ordinairement transmises à un seul et même sexe. La variabilité est la base indispensable de l'action de la sélection, et en est entiérement indépendante. Il en résulte que des variations d'une même nature générale ont été accumulées par la sélection sexuelle dans le but de servir à la propagation de l'espèce, et accumulées aussi par la sélection naturelle par rapport aux conditions de l'existence. Il n'y a done que l'analogie qui nous permette de distinguer les caractères secondaires sexuels des caractères spécifiques ordinaires, lorsqu'ils ont été également transmis aux deux sexes. Les modifications résultant de l'action de la séfection sexuelle sont quelquefois si prononcées, qu'on a fort souvent classé les deux sexes dans des espèces et même dans des genres distincts. Ces différences doivent certainement avoir une haute importance, et nous savons que, dans certains cas, elles n'ont pu être acquises qu'au prix non seulement d'inconvénients, mais de dangers réels.
La croyance à la puissance de la sélection sexuelle repose surtout sur les considérations suivantes. Les caractères que nous pouvons supposer avec le plus de raison produits par elle sont limités à un seul sexe; ce qui suffit pour rendre probable qu'ils ont quelques rapports avec lacte reproducteur. Ces caractères, dans une foule de cas, ne se développent completement qu'à Pétat adulte, souvent pendant une saison seulement, laquelle est toujours la saison des amours. Les malles (sauf quelques exceptions) sont les plus empressés auprès des femelles, ils sont mieux armés, et plus séduisants sous divers rapports. Il faut observer que les males déploient feurs attraits avec le plus grand soin en présence des femelles, et qu'ils ne le font que rarement ou jamais en dehors de la
saison des amours. On ne peut supposer que tout cet étalage se fasse sans but. Enfin, nous trouvons chez quelques quadrupèdes et chez différents oiseaux les preuves certaines que les individus d'un sexe peuvent éprouver une forte antipathie ou une forte préférence pour certains individus de l'autre sexe.
D'après ces faits, et en n'oubliant pas les résultats marqués que donne la sélection inconsciente exercée par l'homme, il me paraît presque certain que si les individus d'un sexe préféraient, pendant une longue série de générations, s'accoupler avec certains individus de l'autre sexe, doués d'un caractère partieulier, leurs descendants se modifieraient lentement, mais sûrement, de la même manière. Je n'ai pas cherché à dissimuler que, excepté les cas où les males sont plus nombreux que les femelles, et ceux où prévaut la polygamie, nous ne pouvons affirmer comment les mates les plus séduisants réussissent à laisser plus de descendants pour hériter de leurs avantages d'ornementation ou autres moyens de séduction que les máles moins bien doués sous ce rapport; maisj'ai démontré que cela devait probablement résulter de ce que les femelles, surtout les plus vigoureuses comme étant les premières prêtes à reproduire, - préfèrent non seulement les mâles les plus attrayants, mais en mème temps les vainqueurs les plus vigoureux.
Bien que nous ayons la preuve positive que les oiseaux apprécient les objets beaux et brillants, comme les oiseaux d'Australie qui construisent des berceaux, et qu'ils apprécient le chant, j'admets cependant qu'il est étonnant que les femelles de beaucoup d'oiseaux et de quelques mammifères soient douées d'assez de goût pour produire ce que la sélection sexuelle parait avoir effectué. Le fait est encore plus surprenant quand il s'agit de reptiles, de poissons et d'insectes. Mais nous ne savons que fort peu de chose sur l'intelligence des animaux inférieurs. On ne peut supposer, par exemple, que les oiseaux de paradis ou les paons male se donnent, sans aucun but, tant de peine pour redresser, étaler et agiter leurs belles plumes en présence des femelles. Nous devons nous rappeler le fait cité dans un précédent chapitre, d'après une excellente autorité, de plusieurs paonnes qui, séparées d'un male préféré par elles, restèrent veuves pendant toute une saison, plutôt que de s'accoupler avec un autre male.

Je ne connais cependant en histoire naturelle aucun fait plus étennant que celui de l'aptitude qu'a la femelle du faisan Argus d'apprécier les teintes délicates des ornements en ocelles et les dessins élégants des rémiges des mâles. Quiconque admet que les Argus ont été créés tels qu'ils sont aujourd'hui, doit admettre aussi
que les grandes plumes qui empêchent leur vol, et qui sont, en même temps que les rémiges primaires, étalées par le mâle, d'une façon tout à fait particulière à cette espèce et seulement lorsqu'il fait sa cour, lui ont été données à titre d'ornement. Il doit admettre également que la femelle a été créée avec l'aptitude d'apprécier ce genre de décoration. Je ne diffère que par la conviction que le faisan Argus mâle a graduellement acquis sa beauté, parce que, pendant de nombreuses générations, les femelles ont préféré les individus les plus ornés: la capacité esthétique des femelles a donc progressé par l'exercice ou par l'habitude, de même que notre goût s'améliore peu à peu. Grâce au fait heureux que quelques plumes du mâle n'ont pas été modifiées, nous pouvons voir distinctement comment de simples taches peu ombrées d'une nuance fauve d'un côté, peuvent s'être développées par degrés, de façon à devenir de merveilleux ornements ocellaires figurant une sphère dans une cavité. Tout porte à croire qu'elles se sont réellement développées de cette manière.

Quiconque admet le principe de l'évolution, et éprouve cependant quelque difficulté à croire que les femelles des mammifères, des oiseaux, des reptiles et des poissons aient pu atteindre au niveau de goût que suppose la beauté des mâles, goût qui en général s'accorde avec le nôtre, doit se rappeler que, dans chaque membre de la série des vertébrés, les cellules nerveuses du cerveau sont des rejetons directs de celles que possédait l'ancêtre commun du groupe entier: le cerveau et les facultés menta les peuvent par courir un cours de développement analogue dans des conditions semblables, et remplir, par conséquent, à peu près les mêmes fonctions.

Le lecteur qui aura pris la peine d'étudier les divers chapitres consacrés à la sélection sexuelle, pourra juger de la suffisance des preuves que j'ai apportées à l'appui des conclusions déduites. S'il accepte ces conclusions, il peut sans crainte, je le crois, les appliquer à l'espèce humaine. Mais il serait inutile de répéter ici ce que j’ai déjà dit sur la façon dont la sélection sexuelle a agi sur les deux sexes, pour provoquer les différences corporelles et intellectuelles qui existent entre l'homme et la femme, pour provoquer aussi les caractères différents qui distinguent les diverses races et l'organisation qui les écarte de leurs ancêtres anciens et inférieurs.

L'admission du principe de la sélection sexuelle conduit à la conclusion remarquable que le système nerveux règle non seulement la plupart des fonctions actuelles du corps, mais a indirectement influencé le développement progressif de diverses conformations
corporelles et de certaines qualités mentales. Le courage, le carac. têre belliqueux, la persévérance, la force et la grandeur du corps, les armes de tous genres, les organes musicaux, vocaux et instrumentaux, les couleurs vives, les raies, les marques et les appendices décoratifs ont tous été acquis indirectement par l'un ou l'autre sexe, sous linfluence de l'amour ou de la jalousie, par l'appréciation du beau dans le son, dans la couleur ou dans la forme, et par l'exercice d'un choix, facultés de l'esprit qui dépendent évidemment du développement du système nerveux.

L'homme étudie avec la plus scrupuleuse attention le caractère et la généalogie de ses chevaux, de son bétail et de ses chiens avant de les accoupler; précaution qu'il ne prend que rarement'ou jamais peut-etre, quand il s'agit de son propre mariage. Il est poussé au mariage à peu près par les mêmes motifs que ceux qui agissent chez les animaux inférieurs lorsqu'ils ont le choix libre, et pourtant il leur est très supérieur par sa haute appréciation des charmes de l'esprit et de la vertu. D'autre part, il est fortement sollicité par la fortune ou par le rang. La sélection lui permettrait cependant de faire quelque chose de favorable non seulement pour la constitution physique de ses enfants, mais pour leurs qualités intellectuelles et morales. Les deux sexes devraient sinterdire le mariage lorsqu'ils se trouvent dans un état trop marqué d'infériorité de corps ou d'esprit; mais, exprimer de pareilles espérances, c'est exprimer une utopie, car ces espérances ne se réaliseront même pas en partie, tant que les lois de l'hérédité ne seront pas complètement connues. Tous ceux qui peuvent contribuer à amener cet état de choses rendent service à l'humanité. Lorsqu'on aura mieux compris les principes de la reproduction et de l'hérédité, nous n'entendrons plus des législateurs ignorants repousser avec dédain un plan destiné à vérifier, par une méthode facile, si les mariages consanguins sont oui ou non nuisibles a l l'homme.
L'amélioration du bien-etre de l'humanité est un probléme des plus complexes. Tous ceux qui ne peuvent éviter une abjecte pauvreté pour leurs enfants devraient éviter de se marier, car la pattvreté est non seulement un grand mal, mais elle tend д̀ s'accroître en entrafnant à linsouciance dans le mariage. D'autre part, comme I'a fait remarquer M. Galton, si les gens prudents évitent le mariage, pendant que les insouciants se marient, les individus inférieurs de la société tendent à supplanter les individus supśrieurs. Comme tous les autres animaux, Yhomme est certainement arrivé à son haut degré de développement actuel par Ia lutte pour l'exis-
tence qui est la conséquence de sa multiplication rapide ; et, pour arriver plus haut encore, il faut quill continue à etre soumis à une lutte rigoureuse. Autrement is tomberait dans un état d'indolence, où les mieux doués ne réussiraient pas mieux dans le combat de la vie que les moins bien doués. Il ne faut donc employer aucun moyen pour diminuer de beaucoup la proportion naturelle dans laquelle s'augmente l'espèce humaine, bien que cette augmentation entraîne de nombreuses souffrances. Il devrait y avoir concurrence ouverte pour tous les hommes, et on devrait faire disparaitre toutes les lois et toutes les coutumes qui empéchent les plus capables de réussir et d'élever le plus grand nombre d'enfants. Si importante que la lutte pour l'existence aitété́ et soit encore, d'autres influences plus importantes sont intervenues en ce qui concerne la partie la plus élevée de la nature humaine. Les qualités morales progressent en effet directement ou indirectement, bien plus par les effets de lhabitude, par le raisonnement, par l'instruction, par la religion, etc., que par l'action de la sélection nakurelle, bien qu'on puisse avee certitude attribuer à l'action de cette dernière les instincts sociaux, qui sont la base du développement du sens moral.

Je regrette de penser que la conclusion principale à laquelle nous a conduit cet ouvrage, à savoir que l'homme descend de quelque forme d'une organisation inférieure, sera fort désagréable à beaucoup de personnes. Il n'y a cependant pas lieu de douter que nous descendons de bazbares. Je n'oublierai jamais l'etonnement que j'ai ressenti en voyant pour la première fois une troupe de Fuégiens sur une rive sauvage et aride, car aussitot la pensée me traversa l'esprit que tels étaient nos ancetres. Ces hommes absolument nus, barbouillés de peinture, avec des cheveux longs et emmelés, la bouche écumante, avaient une expression sauvage, effrayée et méfiante. Ils ne possédaient presque aucun art, et vìvaient comme des betes sauvages de ce quils pouvaient attraper; privés de toute organisation sociale, ils étaient sans merci pour tout ce qui ne faisait pas partie de leur petite tribu. Quiconque a vu un sauvage dans son pays natal n'éprouvera aucune honte à reconnaítre que le sang de quelque etre inférieur coule dans ses veines. J'aimerais autant pour ma part descendre du petit singe hérolque qui brava un terrible ennemi pour sauver son gardien, ou de ce vieux babouin qui emporta triomphalement son jeune camarade après l'avoir arraché à une meute de chiens étonnés, - que d'us sauvage qui se plaft à torturer ses ennemis, offre des sacrifioes sanglants, pratique l'infanticide sans remords, traite ses femmes comme
des esclaves, ignore toute décence, et reste le jouet des superstitions les plus grossières.
On peut excuser l'homme d'éprouver quelque fierté de ce qu'il s'est élevé, quoique ce ne soit pas par ses propres efforts, au sommet véritable de l'échelle organique; et le fait qu'il s'y est ainsi élevé, au lieu d'y avoir été placé primitivement, peut lui faire espérer uné destinée encore plus haute dans un avenir éloigné. Mais nous n'avons à nous occuper iei ni d'espérances, ni de craintes, mais seulement de la vérité, dans les limites où notre raison nous permet de la découvrir. J'ai accumulé les preuves aussi bien que j'ai pu. Or il me semble que nous devons reconnaitre que l'homme, malgré toutes ses nobles qualités, la sympathie qu'il éprouve pour les plus grossiers de ses semblables, la bienveillance qu'il étend aux derniers des êtres vivants; malgré l'intelligence divine qui lui a permis de pénétrer lee mouvements et la constitution du système solaire, - malgré toutes ces facultés d'un ordre si éminent, - nous devons reconnaitre, dis-je, que l'homme conserve encore dans son organisation corporelle le cachet indélébile de son origine inféricure.

NOTE SUPPLÉMENTAIRE

SUR LA SÉLECTION SEXUELLE DANS SES RAPPORTS
 AVEC LES SINGES

(Publiée dans Nature, Londres, le 2 novembre 1876, page 18.1

Aucun point ne m'a plus intéressé et je puis ajouter ne m'a plus embarrassé dans la discussion de la sélection sexuelle, quand j'écrivais la Descendance de l'homme, que les couleurs brillantes qui décorent les extrémités postérieures et les parties adjacentes du corps de certains singes. Ces parties sont plus brillamment colorées chez un sexe que chez l'autre, et deviennent plus brillantes encore pendant la saison des amours; je me crus donc autorisé à conclure que les singes avaient acquis ces couleurs comme moyen d'attraction sexuelle. Je comprenais parfaitement qu'en adoptant cette conclusion je m'exposais à un certain ridicule, bien qu'en fait il n'y nit .ien de plus surprenantà ce qu'un singe fasse étalage de son derriére , uage brillant qu'un paon de sa queue magnifique. Toutefois, à rote époque, je n'avais pas la preuve directe que les singes fissent étálage de cette partie de leur corps pendant qu'ils courtisent la femelle ; or, quand il s'agit des oiseaux, cet étalage constitue la meilleure preuve que les ornements des males leur rendent service pour attirer ou pour exciter la femelle. J'ai lu dernièrement un article de Joh. von Fischer, de Gotha, publié dans Der Zoologische Garten, avril 1876, sur l'attitude des singes au cours de diverses émotions; cet article mérite l'attention de quiconque s'intéresse à ce sujet, et prouve que l'auteur est un observateur habile et consciencieux. Von Fischer décrit l'atlitude dun jeune mandrill mále placé pour la première fois devant un miroir, et il ajoute qu'au bout de quelques minutes il se retourna et présenta au miroir son derrière rouge. En conséquence, j'écrivis à M. Fischer pour lui demander ce qu'il pensait de cet acte étrange, et il a bien voulu me répondre deux longues lettres pleines de détails nouveaux et très curieux. Il me dit que cet acte l'étonna tout d'abord, et qu'en conséquence il observa avec soin l'attitude de plusieurs individus appartenant à d'autres espèces de singes qu'il élève chez lui. Non seulement le mandrill (Cynocephalus mormon), mais le drill (C. leucophoeus) et trois autres espèces de babouins (C. hamadryas, sphinx et babouin), le Cynopithecus niger; le Macacus -rhesus et le Menestrinus tournent vers lui, quand ils sont de bonne humeur, cette partie de leur corps qui, chez toutes ces espèces, affecte des couleurs plus ou moins brillantes, et la tournent aussi vers.
d'autres personnes quand ils veulent leur faire un bon accueil. Il s'est efforcé, et il a consacré cinq ans à cet apprivoisement avant d'y parvenir, de fair perdre à un Macačus rhesus cette habitude indécente. Ces singes, présentés à un nouveau singe, mais souvent aussi à un de leurs vieux compagnons, agissent tout particulièrement de cette façon, et, après cette exhibition, se mettent a jouer ensemble. Le jeune mandrill cessa spontanément au bout de quelque temps de présenter le derrière à son maitre. Mais il continua de le présenter aux étrangers et aux singes qu'il ne connaissait pas. Un jeune Cynopithecus niger ne se présenta qu'une fois ainsi à son maitre, mais fréquemment aux étrangers. M. Fischer conclut de ces faits que les singes qui se sont conduits de cette façon devant un miroir, c'est-ג̀-dire le mandrill, le drill, le Cynopithecus niger, le Macacus rhesus et le Macacus menestrinus, ont pensé que leur image dans le miroir était un nouveau singe. Le mandrill et le drill, dont le derrière est particulièrement ornementé, l'exhibent dès la plus tendre jeunesse, plus fréquemment et avec plus d'ostentation que les autres espèces. puis vient le Cynocephalus hamadryas, et ensuite les autres espèces, Loutefois les individus appartenant à une même espèce varient sous ce rapport, et les singes très timides ne font jamais étalage de cette partie de leur corps. Il faut noter avec soin que von Fischer a constaté que les espéces dont le derrière n'est pas coloré, n'attirent jamais l'attention sur cette partie de leur corps; cette remarque s'applique au Macacus cynomolgus et au Cercocebus radialus (très proches voisins du M. rhesus) à trois espèces de Cercopithèques et à plusieurs singes américains. L'habitude d'accueillir un vieil ami ou une nouvelle connaissance en lui présentant son derrière, nous semble sans doute fort étrange; toutefois, elle n'est certainement pas plus extraordinaire que quelques habitudes analogues des sauvages, qui, dans la meme occasion, se frottent réciproquement le ventre avec la main ou se frottent le nez l'un contre l'autre; L'habiṭude chez le mandrill et chez le drill parait instinctive ou héréditaire, car on l'observe chez de très jeunes animaux; mais, comme tant d'autres instincts, elle a cété modifiée par l'observation, car von Fischer affirme que ces singes se donnent la plus grande peine pour que l'exhi bition ne laisse rien à désirer, et, slil se trouve deux observateurs en présence, ils s'adressent de préférence à celui qui semble les examiner avec le plus d'attention.

Quant à lorigine de cette habitude, von Fischer fait remarquer que ces singes aiment à ce qu'on caresse les parties nues de leur derrière, et qu'ils font alors entendre des grognements de plaisir. Souvent aussi ils présentent cette partie de leur corps aux autres singes, pour que leurs camarades enlèvent toutes les poussières qui pourraient s'y trauver, et les épines qui pourraient s'y etre fixées. Mais, chez-les singes adultes, l'habitude dont nous parlons semble, dans une certaine mesure, en rapport avec les sentiments sexuels; von Fischer, en effet, a surveillé un Cynopithecus niger femelle et qui, durant plusieurs jours, "umdrehte und dem Männchen mit gurgelnden Tönen die stark geröthete Sitzfläche zeigte, was ich früher nie an diesem Thier bemerkt hatte. Beim Anblick diescs Gegenstandes erregte sieh das Männehen sichtlich, denn es polterte heflig an den Stäben, ebenfalls gurgelnde Laute ausstossend ». Comme tous les singes qui ont le derrière plus on moins brillamment coloré habitent, selon von Fiecher, des endroits rocheux et découverts, il croit
que ces couleurs servent à rendre un sexe plus voyant que l'autre; mais les singes étant des animaux très sociables, je n'aurais pas cru qu'il fut nécessaire que les sexes pussent se reconnaitre à une grande distance. Il me semble plus probable que les brillantes couleurs qui se trouvent soit sur la face, soit sur le derrière, ou, comme chez le mandrill, sur ces deux parties du corps, constituent un ornement sexuel et une beauté. Quoi qu'il en soit, comme nous savons aujourd'hui que les singes ont l'habitude de présenter leur derrière à d'autres singes, il cesse d'etre surprenant que cette partie de leur corps ait acquis une décoration plus ou moins brillante. Le fait que, autant qu'on le sait du moins jusqu'à présent, les singes ainsi décorés sont les seuls qui agissent de cette façon, nous porte à nous demander si cette habitude a été acquise par quetque cause indépendante, et si les parties en question ont reçu une coloration comme ornement sexuel; ou si la coloration et l'habitude de présenter le derrière ont été acquises d'abord par variation et par séleca tion sexuelle, et si l'habitude s'est conservée ensuite comme un signe de plaisir et de bon accueil, grâce à l'hérédité. Ce dernier principe se manifeste dans bien des occasions : ainsi, on admet que le chant des oiseaux constitue principalement une attraction pendant la saison des amours, et que les leks ou grandes assemblées du tétras norr ont un rapport intime avec la cour que se font ces oiseaux; mais quelques oiseaux, le rouge-gorge, par exemple, ont conservé l'habitude de chanter quand ils se sentent heureux, et le tétras noir a conservé l'habitude de se réunir pendant d'autres saisons de l'année.
Je demande la permission d'ajouter quelques mots sur un autre point relatif à la sélection sexuelle. On a objecté que cette forme de sélection en ce qui concerne au moins les ornements du male, implique que toutes les femelles, dans une même région, doivent posséder et exercer exactement les memes gouts. Toutefois il faut se rappeler en premier lieu que, bien que l'étendue des variations d'une espèce puisse être considérable, elle n'est certes pas infinie. J'ai cité à cet égard un excellent exemple relatif au pigeon : on connait au moins cent variétés de pigeons différant beaucoup au point de vue de la coloration, et au moins une vingtaine de variétés de poules différant de la même façon; mais, chez ces đeux espèces, la gamme des couleurs est extrêmement distincte. En conséquence, les femelles des espèces naturelles n'ont pas un choix illimité, En second lieu, je crois qu'aucun partisan du principe de la sélection sexuelle ne suppose que les femelles choisissent des points particuliers de beauté chez les males; elles sont simplement excitées ou attirées à un plus haut degré par un male que par un autre, et cette séduction semble souvent dépendre, surtout chez les oiseaux, de la coloration brillante. L'homme lui-meme, sauf peut-etre l'artiste, n'analyse pas chez la femme qu'il admire les légères différences de traits qui constituent sa beauté. Le mandrill mâte a non seulement le derrière, mais la face brilIamment colorée et marquée de traits obliques, une barbe jaune et d'autres ornements. Les phénomènes que présente la variation des animaux à l'état domestique nous qutorisent à penser que les divers ornements du mandrill ont été graduellement acquis tantot par la rariation d'un individu dans un sens, tantot par la variation d'un autre individu dans un autre sens. Les males les plus beaux ou les plus attrayants aux yeux des femelles ont du s'accoupler plus souvent, et laisser war consé-
quent, plus de descendants que les autres males. Les descendants de ces plus beaux males, bien que croisés de toutes les façons, ont dù hériter des caractères de leur père, et transmettre à leurs propres descendants une forte tendance à varier de la même façon. En conséquence, le corps tout entier des males habitant une même région doit tendre à se modifier presque uniformément, par suite des effets d'un croisement continu, mais cela très lentement; tous enfin doivent tendre à devenir plus attrayants pour les femelles. C'est en somme le mème procédé que celui auquel j'ai donné le nom de sélection inconsciente par l'homme, et dont j'ai cité plusieurs exemples qu'il est bon peut-être de rappeler. Les habitants d'un pays aiment un cheval ou un chien léger et rapide; les habitants d'un autre pays recherchent au contraire un cheval lourd et puissant; dans aucun des deux pays on ne procède au choix d'animaux individuels ayant un corps plus lourd ou plus léger : toutefois, après un laps considérable de temps, il se trouve que les animaux dont nous venons de parler ont été modifiés pre\&que uniformément, ainsi que le désirent les habitants, et qu'on arrive à une sorte d'extrême dans chaque pays. Dans deux régions absolument distinctos habitées par une même espèce dont les individus, depuis des siècles, n'ont pu se croiser et où, en outre, les variations n'auront pas été identiquement les mêmes, la sélection sexuelle pourrait faire différer les mâles. L'hypothèse que les femelles placées dans des milieux différents, environnées par d'autres objets, pourraient acquérir des goûts différents relativement à la forme, aux sons et à la couleur, ne me parait pas tout à fait imaginaire. Quoi qu'il en soit, j'ai cité dans le présent ouvrage des exemples d'oiseaux très voisins habitant des régions distinctes chez lesquelles les jeunes ne peuvent se distinguer des femelles, tandis que les mâles adultes en diffèrent considérablement, et, en toute probabilité, on peut attribuer ce résultat a l l'action de la sélection sexuelle.

Fig. 1. - La figure supérieure représente un embryon humain, d'après Ecker; la figure inférieure, celui d'un chien, d'après Bischoft.
a, cerveau antérieur, hémisphères cérébraux, etc.
ठ, cerveau médian, corps quadrijumeaux.
c. cerveau postérieur, cervelet, moelle allongée.
a, œil.
e, oreille.

1, premier arc viscéral.
g, second are viscéral.
H, colonne vertébrale et muscles en voie de développement.
i, extrémités antérieures.
K , extrémités postérieures.
L, queue ou os du coccyx.

Fig. 2. - Oreille humaine, modelée et dessinéeł: par M. Woolner.
a, saillie.|

FIG. 4. - Labidocera
Darwinii (d'après Lubboek).
a, partie de l'antennebantérieure droite du male, formant un organe prenant.
b, paire postérieure des pattes thoraciques chez le male.
c, le même chezla femelle.

Fig. 3. - Fcetus d'orang. Copie exacte d'une photographie indiquantla forme de l'oreille a cet age précoce.

Fig. 5. - Partie antérieure du corps d'une Callianassa (d'après Milne Edwards) indiquant l'inégalité et la difference de structure entre les pinces du coté droit et du coté gauche chez le male.
(N.-B. - L'artiste a, par erreur, renversé le dessin el a re présenté la pince gauchécomme la plus grosse.)

Fig. 9. - Crabro cribrarius.
Fig. sup., male ; fig. inf., femelle.

Fig. 11. - Grillus campestris (d'après Landois).
La figure de droite représente la surface inférieure de la nervure de I'aile, très grossie; st représente les dents.

La figure de gauche représente la surface supérieure de la nervure lisse saillante r, sur laquelle viennent frotter les denls transversales st.

Fig. 10. - Taphroderes distortus (gros.) Fig. supér., mâle; fig. inf., femelle.

Fig. 12. - Dents de la nervure chez le Gritlus domesticus (d'après Landois).

Planche 5.

Fig. 13. - Chloroccelus Tanana (d'après Bates). - a, b, lobes des élytres opposées.

Fig. 14. - Patte postérieure du Stenobothrus pratorum; r, rangée de dents.
Figure inférieure, les dents formant cette rangée, très grossies (d'après Landois)

Fig. 15.-Pneumora*(d'après des spécimens aumbitish"Museum). Figure de gauche, mâle;"figure de droite femelle.

Fig. 16 - Chalcosoma Atlas.
Figure de gauche, mále (réduite); figure de droite, femello (gr, natur.)

Fig. 17. - Copris iridis.
Figure de gauche, mâle ; figure de droite, femelle.

Fig 20. - Onthophagus rangifer (grossi).

Fig، 21. - Onitis furcifer, male, vu en dessous.

Planche 8.

Fig. 22. - Figure de gauche, Onitis furcifer, male, vu de côté.
Figure de droite, femelle. - a, rudiment de corde céphalique. $-b$, trace de corne ou crête thoracique.

Fig. 23. - Bledius taurus, grossi.
Figure de gauche, mâle; figure de droite, femelle.

Fig. 24. - Chiasognatus grantii, réduit.
Figure supérieure, mâle; figure inférieure, femelle.

Fig. 25. - Necrophorus (Landois)
r les deux râpes. - La figure de gauche représente une partie de la râpe considérablement grossie

8

Fig. 26. - Patte postérieure du Geotrupes stercoarius (Landois).
r, râpe ; c, coxal; f, fénưr; t, tibia ; tr, tarse.

Fig. 27. - Tète de saumon commun (Salmo Salar).

Planche 10.

Fig. 28. - Tête de saumon temelle.

Fig. 29. - Callionymus lyna ; fig. sup., male ; fig. Inf., femelle. N.-B. - La figure inférieure est plus réduite que.la figure supérieure.
2

Planche 11.

Fig. 30. - Xiphophorus Hellerii; fig. "sup., 'mâle; fig. infér., femelle.

IG. 31. - Plecostomus barbatus, tete de male.

Planche 12.

X ZFig. 31 bis. - Plecostomus barbalus, tete derfemelle.

Fig. 32. - Triton cristalus (demi-grandeur naturelle, d'après Bell, British Reptiles); fig. sup., məle, pendant la saison des amours ; fig. inf., femelle.

Fig. 33. - Silana minor. Mâle avec la poche de la gorge dilatée (Günther, Reptiles of India).

Fig. 34. - Celophora Stoddartii; fig. sup., male ; fig. inf., femelle.

Fig. 35. - Chamceleon bifurcus ; fig. sup., male ; fig. inf., femelle.

Planche 14

Fig. 36. - Chameleon Owenii; fig. Hsup., male; fig. inf. femelle.

Planche 15.

Fig. 38. - Palamedeal cornuta, (d'après ${ }^{\text {s }}$ Brehm, éd, francaise montrant les deux ergots de larle et le filament sur la tête).

Planche 16.

Planche 17.

Fig. 41. - Plume cai waterne de Scolopax gallinago.

Fig. 42. - Plume caudale ex me de Scolopax irenata.

Fic. 43. - Plume caudale externe de Scolopac javensis.

Planche 18.

Fig. 44. - Rémige primaire d'un oiseau-mouche, le Selasphorus platycercus (d'après une esquisse de M. Salvin).
Fig. sup., mâle; fig. inf., plume [correspondante chez la femelle.

Fig. 45. - Rémiges secondaires de Pipra deliciosa (d'après M. Sclater).
Les trois plumes supérieures, a, b, c, appartiennent au mále; les trois plumes inférieures, d, e, f, sont les plumes correspondantes chez la femelle.
a et d, cinquième rémige secondaire du mâle et de la femelle, face supéricure, b et e, sixieme rémige secondaire, face supérieure. - e el 1 , septiéme rémige secondaire, face inférieure.

Fig. 47. - Paradirea papuana (T,-W. Wood).

Planche 21.

Fig. 48. - Lophornis ornatus, mâle et femelle (d'après Brehm, édition française).

Planche 22.

Fig. 49. - Spatura Underwoodi, màle et femelle (d'après Brehm, édition française).

Planche 24 .

Fig. 51. - Polyplectron chinquis, mâle (T.-W. Wood).

Planche 25.

Fig. 52. - Faisan Argus étalant son plumage (M. T. Wood).

Planche 26.

B

A

B^{\prime}

Fig. 53. - Cylla Leda, Linn., dessin de M. Trimen, indiquant l'extrème étendue de la variation des ocelles.

A, papillon de Maurice, surface supérieure de l'aile antérieure.
\mathbf{A}^{\prime}, papillon de Natal, id.

B, papillon de Java, surface supérieure de l'aile postérieure.
B^{\prime}, papillon de Maurice, id.

Fig. 54. - Plume de 'paon, deux tiers environ ${ }^{\text {ºnde }}$ de grandeur naturelle, blanche par M. Ford. La zone transparente est représentée par la zone blanche extérieure limitée à l'extrémité supérieure du disque ${ }_{a}$

Fig. 55. - Partie d'une tectrice caudale du Polyplectron chinquis, avec les deux ocelles (grandeur naturelle).

Fig. 56. - Partie d'une tectrice caudale du Polyplectron malaccense avec les deux ocelles partiellement confluents (grandeur naturelle).

Fig. 57. - Partie d'une rémige secondaire du faisan Argus, montrant deux ocelles complets, $a, b,-\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, E, F, sont des rangées foncées obliques se dirigeant chacune vers un ocelle.
(Une grande partie de la barbe de la plume a étê coupée, surtout à gauche de la tige.)

Fig. 58. - Base de la rémige secondaire la plus rapprochée du corps.

Fig. 59. - Portion d'une rémige secondaire montrant les ornements elliptiques. - La figure de droite n'est qu'un croquis indiquant les lettres de renvoi.

A, B, C., etc. Rangées de taches se dirigeant vers les ornements elliptiques et les formant.
b. Tache inférieure de la rangée B.
c. Tache suivante de la mème rangée. d. Prolongement interrompu de la tache c_de la rangée B.

Fig. 60. - Cette figure représente, grandeur naturelle, un ocelle qui n'est pas encore absolument parfait.

Fig. 61. - Partie du sommet d'une des rémiges secondaires portant des ocelles complets.

Planche 30.

Fig. 63. - Oryx leucoryx male (ménagerie de Knowsley;.

Fig. 65. - Tête de sanglier sauvage ordinaire dans la fleur de l'age (d'après Brehm).

Fig. 64. - Strepsiceros Kudu (And. Smith, Zoology of South Africa).

Fig. 66. - Crâne de Babiroussa (Wallace, Malay Archipelago.

Fig. 67. - Phacocoerus Athiopicus.
(Ce dessin représente la tête d'une femelle : elle peut servir quelquefois à indiquer, sur une échelle réduite, les caractères du male.)
Fig. 68. - Pithecia Saţ̣nas, male (d'après Brehm, édition française).

Planche 34.

Fig. 70. - Tragelaphus scriptus, male (ménagerie de Knowsley).

Fig. 71. - Damalis pygarga, mále (ménagerie de knowsley).

Planche 36.

Fig. 73. - Semnopithecus comatus.

FIG. 75. - Ateles maginatus.

Fig. 74. - Cebus capucinus.

Fig. 76. - Cebus vellerosus.

Planche 37.

Fig. 77. - Cercopithecus petaurisla (daprès Brehm, édition française).

Fig. 78. - Cercopilhecus Diana (d'après Brehm, édition française).

TABLE DES MATIERES

PREMİERE PARTIE

LA DESCENDANCE OU L'ORIGINE DE L'HOMME

Abstract

Pages. III Préface de Carl Vogt

\section*{Introduction}

1 descend d'une forme inférieure dere pren lap

Nature des preuves sur l'origine de l'homme. - Conformation homologue chez l'homme et les animaux inférieurs. - Points de similitude divers. - Développement. - Conformations rudimentaires, muscles, organes des sens, cheveux, os, organes reproducteurs, etc. - Portée de ces trois ordres de faits sur l'origine de l'homme. Chapitre II. - Sur le mode de développement de lhomme de quelque type inférieur.

Variabilité du corps et de l'esprit chez l'homme. - Hérédité. Causes de la variabilité. - Similitude des lois de la variation chez l'homme et chez les animaux inférieurs. - Action directe des conditions d'existence. - Effets de l'augmentation ou de la diminution d'usage des parties. - Arrêts de développement. - Retour ou atavisme. - Variation corrélative. - Taux d'accroissement. - Obstacles à l'accroissement. Sélection naturelle. - L'homme, animal prédominant dans le monde. Importance de sa conformation corporelle. - Causes qui ont déterminé son attitude verticale. - Changements consécutifs dans sa structure. Diminution de la grosseur des dents canines. - Accroissement et altération de la forme du crâne. - Nudité. - Absence de la queue. Absence d'armes défensives.

Chapitre III. - Comparaison des facultés mentales de l'homme avec celles des animaux inférieurs.

La différence entre la puissance mentale du singe le plus élevé et celle du sauvage le plus grossier est' immense. - Communauté de certains instincts. - Emotions. - Curiosité. - Imitation. - Attention. Mémoire. - Imagination. - Raison. - Amélioration progressive. - Instruments et armes employés par les animaux. - Abstraction, conscience de soi. - Langage. - Sentiment de la beauté. - Croyance en Dieu, aux agents spirituels, superstitions.
Chapitre IV. - Comparaison dez facultés mentales de l'homme
avec celles des animaux (suite) 103 maux sociables. - Origine de la sociabilité. - Lutte entre les instincts contraires. - L'homme, animal sociable. - Les instincts sociaux durables l'emportent sur d'autres instincts moins persistants. - Les sauvages n'estiment que les vertus sociales. - Les vertus personnelles s'acquièrent à une phase postérieure du développement. - Importance du jugement des membres d'une méme communauté sur la conduite. Transmission des tendances morales. - Résumé.

Chapitre V. - Sur le développement des facultés intellectuelles et morales pendant les temps primitifs et les temps civilisés. . . 137

Dévelóppement des facultés intellectuelles par la sélection naturelle. - Importance de l'imitation. - Facultés sociales et morales. - Leu: développement dans les limites dune même tribu. - Action de la sêlection naturelle sur tes nations civilisées. - Preuves de l'état antéricur barbare des nations civilisées.
Chapitre VI. - Affinités et généalogie dê l'homme.
La position de l'homme dans la série animale. - Le système naturel est gé néalogique. - Les caractères d'adaptation ont peu de valeur. - Dirers points de ressemblance entre l'homme et les quadrumanes. - Rang de l'homme dans le système naturel. - Patrie primitive et antiquité de Thomme. - Absence de chainons fossiles. - Etats inférieurs de la généalogie de l'homme, déduits de ses affinités et de sa conformation. - Etat primitif androgyne des vertébrés. - Conclusions.
Chapitre VII. - Sur les races humaines.
Nature et valeur des caractères spécifiques. - Application aux races humaines. - Arguments favorables ou contraires au classement des races humaines comıne espècos distinctes. - Sous-espèces. - Monogénistes el polygénistes. - Convergence des caractères. - Nombreux points de ressemblances corporelles el mentales entre les races humaines les plus distinctes. - Etat de l'homme, lorsqu'il s'est d'abord répando sur la terre. - Chaque race ne descend pas d'un couple unique. - Extinction des races. - Formation des races. - Effets du crolsement. - Influence légère de l'action directe des conditions d'existence. - Influence légère ou nulle de la sélection naturelle. - Sélection sexuelle.

DEUXIĖME PARTIE

LA SELEGTION SEXUELLE

Chapitre VIII. - Principes de la sellection sexuelle

Caractères sexuels secondaires. - Sélection sexuelle. - Son mode d'action. - Excédent des mâtes. - Polygamle. - Le mâle ordinairement seul modifié par la sélection sexuelle. - Ardeur du mảle. - Variabilité du mâle. - Choix exercé par la femelle. - La sêlection sexuelle comparée à la sélection naturelle. - Hérédité aux périodes correspondantes de la vie, aux saisons correspondantes de l'année, et limilée par le sexe. Rapports etitre les diverses formes de l'hérédité. - Causes pour lesquelles un des sexes et les jeunes ne sont pas modifiés par la sélection sexuelle. - Supplément sur les nombres proportionnels des mâles et des femelles dans le règne animal. - La proportion du nombre des individus malles et femelles dars ses rapports a vec la sélection naturelle.
Chapitre IX, - Les caractères sexuels secondaires dans les classes inférieures du règne animal

[^325]Chapitre X. - Caractères sexuels secondaires choz les insectes jut
Conformations diverses des mâles servant à saisir les femelles. - Différences entre les sexes, dont la signification est inconnue. - Différence de taille entre les sexes. - Thysanoures. - Diptêres. - Hémiptères. Homoptères, facultés musicales que possèdent les mâles seuis. - Orthoptères, diversité de structure des apparells musicaux chez les mâles; bumeur belliqueuse, couleurs. - Névroptères, différences sexuelles de couleur. - Hyménoptères, caractère belliqueux, couleurs. - Coléoptères, couleurs : présence de grosses cornes, probablement comme ornementation ; combats ; organes stridulents ordinairement communs aux deux sexes.
Chapitre XI. - Insectes (suite). - Ordre des Lépidoptères (papillons et phalenes).
Cour que sefont les papillons. Datailles. - Bourdonnements. Couleurs communes aux males et aux femelles, ou plus brillantes chez les males. - Exemples. - Ces couleurs ne sont pas dues à l'action directe des conditions d'existence. - Couleurs protectrices. - Couleur des phalènes. - Leur étalage. - Perspicacité des Lépidoptères. - Variabilité. - Causes de la différence de coloration entre los máles et les femelles. - Imitation, couleurs plus brillantes chez les papillons feinelles que chez les mâles. - Vives couleurs des chenilles. - Résumé et conclusions sur les caractères secondaires sexuels des insectes. - Comparaison des insectes avec les oiseaux.
Chapitre XII. - Caractères sexuels secondaires des poissons, des amphibies et des reptiles

Poissons: Assiduités des mâles, leurs combats. - Les femelles sont ordinairement plus grandes que les males. - Mảles, couleurs vives, ornemerts et autres caractères étranges. - Couleurs et ornements qu'acquièrent les males pendant la saison des amours. - Chez certaines especes, les mâles et les femelles affectent également des couleurs brillantes. Couleurs protectrices. - On ne peut attribuer au besoin de protection les couleurs moins brillantes des femelles. - Cerkains poissons males construisent les nids, et prennent soin des ceufs et des jeunes. - Ampur-
\rightarrow bies : Différenses de conformation et de coloration entre les mâles et les femelles. - Organes vocaux. - Reptiles: Chéloniens. - Crocodiles. Serpents, couleurs protectrices dans quelques cas. - Batailles des lézards. - Ornements. - Etranges différences de conformation entre les mâles et les femelles. - Couleurs. - Différences sexuelles presque aussi considérables que chez les oiseaux.

Chapitre XIII. - Caractères sexuels secondaires des oiseaux

Différences sexuelles. - Loi du combat. - Armes spéciales. - Organes vocaux. - Musique instrumentale. - Démonstrations amoureuses et danses. - Ornements permanents ou temporaires. - Mues annuelles simples et doubles. - Les males aiment 会faire étalage de leurs ornements.
Chapitae XIV. - Oiseaux (suite).
Choix exercé par la femelle. - Durée de la cour que so font les oiseaux. - Oiseaux nca accouplés. - Facultés mentales et goot pour le beau. La femelle menifeste sa préférence ou son aversion pour certains males. - Variabilite des oiseaur. - Les variations sont parfois brusques. - Lois des variations. - Formation d'ocelles. - Gradations de caracteres. Exemples fournis par le Paon, le faisan Argus et lUrosticte.
Chapitre XV. - Oiseaux (suite)
Discussion sur la question de savoir pourquoi, chez quelques espèces, les mâles seuls ont des couleurs éclatantes, alors que les deux sexes en possèdent chez d'autres espèces. - Sur l'hérédité limitée par le sexe, appliquée à diverses conformations et au plumage richement coloré. Rapports de la nidification aveo la couleur. - Perte pendant l'hiver du plumage nuptial.
Pagn
Chapitre XVI. - Oiseaux (fin) 490 490Rapports entre le plumage des jeunes et les caractères qu'll affecte chez les individus adultes des deux sexes. - Six classes de cas. - Différences sexuelles entre les males d'espèces très voisines ou représentatives. - Acquisition des caractères du male par la femelle. - Plumage des jeunes dans ses rapports avec le plumage d'été et le plumage d'hiver des adultes, - Augmentation de la beauté des oiseaux. - Coloration protectrice. - Oiseaux colorés d'une manière très apparente. - Les oiseaux aiment la nouveauté. - Résumé des quatre chapitres sur les oiseaux.
Chapitre XVII. - Caractères sexuels secondaires chez les mammi- feres530
La loi du combat. - Armes particulières limitées aux males. - Cause de leur absence chez la femelle. - Armes communes aux deux sexes, mais primitivement acquises par le male. - Autres usages de ces armes. - Leur haute importance. - Taille plus grande du malle. - Moyens de défense. - Sur les préférences manifestées par l'un et l'autre sexe dans l'accouplement des mammiferes.
Chapitre XVIII. - Caractêres sexuels secondaires des mammifêres (suite).555
Voix. - Particularités sexuelles remarquables chez les phoques. Odeur. - Développement du poil. - Coloration des poils et de la peau. - Cas anormal de la femelle plus ornée que le male. - Colorations et ornements dus à la sélection sexuelle. - Couleurs acquises à titre de protection. - Couleurs, souvent dues à la sélection sexuelle, quoique pommune aux deux sexes. - Sur la disparition des taches et des rales chez les quadrupèdes adultes. - Couleurs et ornements des quadrumanes. - Résumé.

> Chapitre XIX. - Caractères sexuels secondaires chez l'homme.
> Différences entre l'homme et la femme. - Causes de ces différences et de certains caractères communs aux deux sexes. - Loi de combat. Différences dans la puissance intellectuelle et la voix. - Influence qu'a la beauté sur les mariages humains. - Attention qu'ont les sauvages pour les ornements. - Leurs idées sur la beauté de la femme. - Tendance à exagérer chaque particularité naturelle.
Chapitre XX. - Caractères sexuels secondaire chez l'homme. 613
Sur les effets de la sélection continue des femmes d'après un type de beauté différent pour chaque race, - Causes qui, chez les nations civillsées et chez les sauvages, interviennent dans la sélection sexuelle. - Conditions favorables à celle-ci pendant les temps primitifs. - Mode d'action de la sélection sexuelle dans l'espèce humaine. - Sur la possibilité qu'ont les femmes de choisir leurs maris dans les tribus sauvages. Absence de poils sur te corps, et le développement de la barbe. - Résumé.
Chapitre XXI. - Conclusion principale: l'homme descend de quelque type inférieur. - Mode de développement. - Généalogie de l'homme. - Facultés intellectuelles et morales. - Sélection sexuelle. - Remarques finales.637

Fin de la table def matièreg

Imprimerie do Poissy - Lejax fils et Lbmoro.

Librairie C. REINWALD. - SCHLEICHER Frères, Éditeurs 61, RUE DES SATNTS-PERES, 61 . - PARTS ($6{ }^{6}$)

Encyclopédie d'enseignement populaire supérieur

Nous avons essayé de réunir dans ces quelques petits volnmés zes faits actuellement acquis par la science; mais pensant que l'esprit crificue est seul susceptible de remédier au danger de la vulgarisation, nous ayōas voulu donner une tenue scientitique à ces ouvrages. Ils ne contiendumh aucune affirmation qui ne soit basée sur les faits. Les auteurs s'astreindront à donnex peu d'mportance à leurs hypothèses personnellis, contentant de réunir et de classer les faits scientifiquement expliqués. Des références biographiques nombreuses permettront au lecteur d'aller facilement aux sources de la documentation, d'en faire lui-mème l'étude et la eritique.

Cette Encyclopédie comprendra quinze volumés publiés dans l'ordre suivant :
I. L'Évolution des mondes
II. Histoive de la Terre;
III. Origine et évolution de la vie;
IV. Évolution des étres vivants;
V. Les Facteurs de Lévolution des êtres;

VL. Origine et évolution de lhomme;
VII. La pensée.
VIII. Histoire des civilisations.
IX. Les religions.
X. Le droit et la morale;
XI. Les organisations sociales.
XII. Les systèmes économiques;
XIII. Evolution de la technologie et de l'art.
XIV. Les facteurs de l'évolution sociale.
XV. L'Homme et le monde.

Ges ouvrages seront publiés dans le format in- 8 et abondamment illustrés.

En vente:

ÉVOLUTION DES MONDES

suive De

LHISTOIRE DES PROGRËS DE L'ASTRONOMIE
 par M. I. NERGAL

Le soleil. - Les comètes. - La voie lactée. - Mouvement des étoiles. - Étoiles temporaires. - Nébuleuses. - Transformation des mondes. Application aux étoiles de la doctriné de l'évolution. - Transformation de la force et de la matière. - Thérie de Kant, de Laplace, de Faye. - Historique des principaux progres de l'Astronomie.

1 vol. in- 8 ayec figures et 2 planches hors texte.

[^0]: 1. Je n'ai pas besoin de donner les titres des ouvrages si connus des auteurs premièrement cités; mais ceux des deux derniers étant moins connus, les voici: Sechs Vorlesungen über die Darwinsche Theorie, 2te Auflage, 1868, von Doctor L. Büchner (traduit en français par A. Jaequot sous le titre de Conférences sur la théorie Darwinienne. Paris, 1869). - Der Mensch, im Lichte der Darwins'schen Lehre, 1865, von Doctor F. Rolle. Sans pouvoir référer à tous les auteurs qui ont traité le même côté dé la question, j'indiquerai encore G. Ganestrini, Annuario della soc. d. nat. Modena, 1867, travail curieux sur les caractères rudimentaires, et feur portée sur'l'origine de l'homme. Le docteur Barrago Franceseo a publié,
[^1]: en 1869, un autre ouvrage dont le titre italien est: l'Homme, fait à l'image de Dieu, fut aussi fait à limage du singe.

 1. Traduit en franẹais par le docteur C. Letourneau, sous le titre : Histoire de la Création naturelle. 2° édition, Paris, C. Reinwald.
 2. Le professeur Häckel est le seul auteur qui, depuis la publication de l'Origine des espèces, ait, dans ses différents ouvrages, discuté avec beaucoup de talent le sujet de la sélection sexuelle, et en ait compris toute
 limportance.
[^2]: 1. Grosshirnwindungen des Menscheh, 1868, p. 96. Les conclusions de cet autcur, ainsi que celles de Gratiolel et d'Aeby, relativement au cerveau ont été discutées par le professetr Huxley dans l'Appendice, auquel nous avons fait allusion dans la préface de cette nourolle edition.
[^3]: 2. Leçons sur la physiologie, 1866, p. 890, citées par M. Dally: POrdre des primates et le transformisme, 1868, \%. 29.
 3. Le docteur W. Lauder Lindsay a traité longuement ce sujet, Journal of Mental Science, juillet 1871 ; Edinburgh Velerinary Review, juillet 1858.
 4. Un écrivain (British quarlerly Review, $1^{\circ r}$ octobre 1871, p. 472) a critiqué en termes très sévères et très violents l'allusion contenue dans cette phrase ; mais, comme je n'emploie pas le terme identité, je ne crois pas faire erreur. Il me parait y avoir une grande analogie entre une même maladie contagieuse ou épidémique produisant un même résultat, ou un résultat presque analogue, chez deux animaux distincts ef l'essai de deux fluides distincts par un même réantif chimique.
 5. Nafurgeschichte der Säugethiere von Paraguay, 1830, p. $\delta 0$.
[^4]: 6. Certains animaux, placés beaucoup plus bas sur l'échelle, partagent parfois les mèmes goûts. M. A. Nicolas m'apprend qu'il a élevé à Queensland (Australie) trois individus de la variété Phaseolarctus cinereas, et que tous trois acquirent bientot un goùt pronopcé pour le rhum et le tabac.
 7. Brehm, Thierieben, B. I, 1864, pp. 75, 86. Sur l'Ateles, p. 105. Pour d'autres assertions analogues, pp. 25, 107.
 8. Docteur W. Lauder Lindsay, Edinburgh Veterinary Review, juillet 1858, p. 13 .
 9. Relativement aux insectes, docteur Laycok: On a general Law of Vital Periodicily (British Associalion), 1842. Le docteur Mac Culloch (Silliman's Norlh Americ. Journ. of science, vol. XVII p. 305) a vu un chien souffrant if une fievre tlerce. Jaurai à revenir sur ce point.
 10. J'aı iuliqué les preuves à cet égard dans la Variation des Animaux et des Plantes à i'élat domestique, vol. II, p. 14 (Paris, Reinwald).
[^5]: 11. " Mares e diversis generibus Quadrumanorum sine dubio dignoscunt feminas humanas a maribus. Primum, credo, odoratu, posteà aspectu. M. Youatt, qui diu in Hortis Zoologicis (Bestiariis) medicus animalium erat, vir in rebus observandis cautus et sagax, hoc mihi certissime probavit, et curatores ejusdem loci et alii e ministris confirmaverunt. Sir Andrew Smith et Brehm notabant idem in Cynocephalo. Illustrissimus Cuvier etiam narrat multa de hace re, quà ut opinor, nihil turpius potest indicari inter omnia hominibus et Quadrumanis communia. Narrat enim Cinocephalum quemdam in furorem incidere aspectu feminarum aliquarum, sed nequaquam accendi tanto furore ab omnibus. Semper eligebat juniores, et diguouscebat in turbà, et advocabat voce gestûque. »
 12. Cette remarque a été faite pour les Cynocéphales et pour les singes anthropomorphes par Geoffroy Saint-Hilaire et F. Cuvier (Hist. nat. des mammifères, t. I, 1824).
 13. Huxley, Man's place in Nature, 1863, p.
[^6]: 14. Man's place in Nature, 1863, p. 67.
 15. L'embryon humain (fig. supérieure) est tiré d'Reker; Ieones Phys., 1859, tabl. XXX, fig. 2; cet embryon avait 10 lignes de longueur, par conséquent la figure est très agrandiè. L'embryon du chien est emprunté à Bischoff ; Entwicklungsgeschichle des Hunde-Eies, 1845, tabl. XI, fig. 42, B. La figure est grossie citq fois et dessinée d'après un embryon âgé de 25 jours. Les viscères internes ainsi que les appendices utérias, ont été omis dans les deux cas. C'est le professcur Buxley qui m'a indiqué ces figures ; c'est d'ailleurs en lisant son ouvrage, Man's place in Nature, quà j'ai eu l'idée de les reproduire. Hzckel a donné des dessins analogues dans son ouvrage Schöpfungsgeschichte.
 16. Prof. Wyman, dans Proc. of American Acad. of scienees, vol. IV, 1860, p. 17 .
 17. Owen, Analomy of vertebrates, vol. I, p. 533.
[^7]: 23. Quelques excellentes critiques sur ce sujet ont été faites par MM. Murie et Mivart. (Trans. Zool. Soc., vol. VII, p. 92.)
 24. Variation des animaux et des plantes, etc., vol. II, pp. 335 et $\mathbf{4 2 3}$ i6dit. française). Voir, aussi, Origine des espèces, p. 474.
 25. M. Richard (Annales des sciencesece, p. 474.

 Werit et figure des rudes des sciences nat., 30 sér., Zoologie, 1852, t. XVIII, p. 18)
 qu'll dit être quelquefois infe ce qu'il appelle le muscle pédieux de la reain,

[^8]: fait ordinairement défaut dans la main, maís apparaft de temps on temps sous une forme plus ou moins rudimentaire.
 26. Prof. W. Turuer, Proc. Royal Soc. Edinburgh, 1866-67, p. 65.
 27. L'Expression des Emotions, p. 144 (Paris, Reinwald)

[^9]: 28. Ganestrini elte Hyrn, Annuario della Soc. dei naturalisti, Modena, 1867,
[^10]: 31. M. Saint-George Mivart, Elementary Anatomy, 1873, p. 896.
[^11]: 32. Voir les remarques et les dessins des oreilles de Lémuroìdes dans 10 memoire de MM, Marie et Mivart, Trans. Zoolog. Soc., 1869, vol. VII, pp. 6 et 90.
 33. Ueber das Darwin'sche Spilzohr, Archiv für Path., Anat. und Phys.,
 34. L'Expression des Emotions, p. 136 (Paris, Reinwald).
[^12]: possèdent les indigènes de l'Amérique méridionale; ces assertions ont été confirmées par d'autres voyageurs. M. Houzeau (Efudes sur les facultés mentales, etc., vol. I, 1872, p. 91) affirme que de nombreuses expériences l'ont conduit à la conclusion que les nègres et les Indiens peuvent reconnaitre les personnes à leur odeur dans l'obscurité la plus complète. Le docteur W. Ogle a fait de curieuses observations sur les rapports qui existent entre la faculté d'odorat et la matière colorante de la membrane muqueuse du nez, ainsi que de la peau du corps. C'est ce qui me permet de dire que les races colorées ont l'odorat plas développé que les raves blanches. Voir son mémoire, Medico-chirurgical Transactions, Londres, 1870, vol, LIII, p. 276.
 37. The Physiology and Pathology of Mind, 2° édit., 1868, p. 134.
 38. Esebricht, Ueber die Riehtung der Haare am menschliehen Muller's Archiv für Anat. und Phys., 1837,17 J'ansolichen Körper, ce curieux travail,

[^13]: 39. riger, Lectares on Surgieal Pathology, 1853, 1. I, p. 71.
 40. Eschricht, L. c., pp. 40, 47.
 41. Voir : la Vartation des Animaux et des Plantes à Ťétat domestique, vol. I,
[^14]: p. 327. Le professeur Alex. Brandt a signalé récemment un autre cas analogue, observé chez un Russe et chez son fils.
 42. Docteur Webb, Teeth in Man and the Anlropoyd Apes, cité par le docteur C. Carter Blake, Anthropological Review, juillet 1867, p. 299.
 43. 0 wen, Anat. of vertebrates, vol. III, pp. 320, 321, 325.
 44. On the primitive form of the skull, traduit dans Anthrop. Review, oct. 1868, p. 426.
 45. Le professeur Mantegazza m'écrit de Florence qu'il a étudié récemment les dernières molaires chez les différentes races d'hommes; il en arrive à la mème eoncluston que celle donnée dans le texte, c'est-à-dire que chez les races civilisées ees dents sont en train de s'atrophler ou d'etre eliminées.

[^15]: 50. M. Saint-Georges Mivart, Trans. Philos. Soc., 1867 , p. 310.
 51. On the caves of Gibraltar (Transact. internat. Congress of Prehisi Arch., 3e session, 1869, p. 159). Le professeur Wyman à récemment démontré (Fourth annual Report, Peabody Museum, 1871, p. 20) que cette perforation existe chez 31 p. 100 de certains restes humaius provenant des antiques tertres de l'ouest des Etats-Uhis et de la Fluride. On la rencoutre frequemiment chez les
 négres.
[^16]: b2. M. de Quatrefages a recueilli les preuves sur ce sujet. Revue des cours scientifiques, 1867-68, p. 625. Fleischmann a exhibé, en 1840, un foetus humain ayant une queue libre, laquelle, ce qui n'est pas toujours le cas, comprenait des corps vertébraux : cette queue a été examinée et décrite par plusieurs des anatomistes présents à la réunion des naturalistes à Erlangen: voir Marshall, Niederlandischen Archiv für Zoologie, décembre 1871.
 53. Owen, On the Nalure of limbs, 1849, p. 114.

[^17]: 84. Leuckart, Todd Cyclop. of Anat., 1849-52, t. IV, p. 1415. Cet organe n'a chez l'homme que de trois à six lignes de longueur, mais, comme tant d'autres parties rudimentaires, il varie par son développement et ses autres caractères.
 85. Owen, Anat. of Verlebrates, t. III, pp. 675, 676, 706.
 86. Le professeur Bianconi essaie, dans un ouvrage publié récemment ề illustré de magnifiques gravures (la Théorie darwinienne et la création dite indépendante, 1874) de démontrer que l'on peut expliquer complètement, par les
[^18]: 94. Je fais allusion aux observations du docteur Brown-Séquard sur les effets héréditaires d'une opération qui provoque l'épilepsie chez les cochons d'Inde et à des recherches plus récentes sur les effets héréditaires causés par la section du nerf sympathique dans le cou. J'aurai occasion de parler plus loin des observa tions de M. Salvin sur les effets héréditaires produits chez certains oiseaux qu détruisent les barbes des plumes de leur queue. Voir aussi, sur ce sujet, Variation des Animaux et des Plantes, vol. I, chap. XII.
[^19]: 1. Voir les preuves sur ces poinis dans Lubbock, Prehisforic Times, p. 354, etc.
[^20]: 2. L'Instinct chez les Insectes (Revue des Deux-Mondes, février 1870, p. 690).
 3. The American Beaver and his Works, 1868.
[^21]: 5. Contributions to the Theory of Natural Selection, 1870, p. 212.
 6. Pour les preaves sur ce point, voir le très intéressant ouvrage Traherne Moggride, Harvesting ants and trap-doors spiders, 1873 , de M. J
[^22]: 10. Bridgevater Treatise, p. 263.
 11. Un critique (Quarterly Review, juillet 1871, p. 72), dans le but de discr6ditor mon ourrage, nie, sans preures à l'appui, la possibilité de cet acte décrit par Brehm. J'ai donc résolu de m'assurer s'il était possible de l'accomplir, et j'ai trouvé que jo pouvais facilement saisir avec mes dents les petites griffes aiguës d'ur chat age de cinq somaipes.
[^23]: 12. Voir l'Expression des Emotions, p. 155, pour l'attitude des singes dans
[^24]: 22. L'ourrage de M. L.-H. Morgan, sur le Castor américain, 1868, fournit un excellent exemple de cette remarque; cependant, ie ne puis m'empecher de trouver quil accorde trop peu de valeur à l'énergie de línstinct. 23. Die Bevegungen der peu valeur a 1 tenergie de l'ingtinct.
[^25]: 24. Facultés mentales des Animaux, 1872, vol. II, p. 265 ,
[^26]: 25. Le professeur Huxley a abalysé avec une admírable clarté les différentes phases intellectuelles que traverse un homme aussi bien qu'un chien pour en arriver à une conclusion dans un cas analogze à celuí indiqué dans le texte. Volr, a a matet, foo article : M. Darwin's critics, dans Contemporary Review, nov. 1871, p. 462, et dans Critiques and Essays, 1873, p. 279.
[^27]: 26. M. Belt, dans son très intéressant ouvrage The Naturalist in Nicaragua, 1874, p. 119, décrit aussi diverses actions d'un Cebus apprivoisé; ces actions démontrent, je crois, que cet animal possédait, dans une certaine mesure, la faculté du raisonnement.
 27. The Moor and the Loch, p. 45. - Col. Hutchinson, Dog Breaking, 1850, p. 46.
[^28]: 29. Je suis heureux de voir qu'un penseur aussi distingué que M. Leslie Stephen (Darwinism and Divinity, Essays on Free-thinking, 1873, p. 80), parlant de la préteudue barrière infranchissable qui existe entre l'homme et les animaux infén rieurs, s'exprime en ces termes: "Il nous semble, en vérité, que la ligne de démrareation qu'on a voulu établir ne repose sur aucune base plus solide qu'un grand nombre de distinctions métaphysiques; on suppose, en effet, que dès que l'on peut donner à deux choses deux noms différents, ces deux choses doivent avoir de natures essentiellement diflerentes. Il est difficile de comprendre que quiqu'ont ces aniedé ou vu un ééphant puisse avoir le moindre doute sur la faculté 80. Docteur W. We déduire des raisonnements, n
[^29]: 31. Gité par sir C. Lyell, Anliquily of Man, p. 497.
 32. Voir, pour d'autres détails, Houzeau, les Facultés mentales, etc., vol, II, 1872, p. 147.
 33. Voir, pour les viseaux dans les lles de l'Océan, Darwin, Voyage d'un natu-
[^30]: 39. The Indian Field, 4 mars 1871.
 40. Thierleben, vol. I, pp. 79, 82.
 41. The Malay Archipelago, vol. I, 1859, D. 2.
[^31]: 44. M. Hookham, dans une lettre adressée au professeur Max Maller, Birmingham News, mai 1873.
[^32]: 45. Conférences sur la Théorie darwinienne (trad. franç.), 1869, p. 132.
 46. Le rév. docteur J.-M' Cann, Antidatenne (trad. franç.), 1869, p. 132.
[^33]: 54. Hon. Daines Barrington, Philosophical Transactions, 1773, p. 262. Voir aussi Dureau de la hialle, Arnales des sciences naturelles, III - série, Zoologie, t. X, p. 119.
 55. H. Wedgwood, On the origith of language, 1866 ; rév. F. W. Farrar, Chaplers on language, 1865. Ces ouvrages offrent le plus grand intéret. Albert Lemoine, De la Physiologie et de la Parole, 1865, p. 190. Le docteur Bikkers a traduit en anglais l'ourrage qu'a publié sur ce sujet le professeur Aug. Schleicher, sous lo titre de Darwinism tested by the science of Language, 1869.
[^34]: 66. Vogt, Mémoires sur les Microcéphales, 1867, p. 169. En ce qui concerne les sauvages, j'ai signalé quelques faits dans mon Voyage d'un naturaliste autour du monde (Paris, Reinwald), p. 206.
 67. On trouvera de nombreuses preuves à cet égard dans les deux ouvrages as sourent cités de Brehm et de Reagger.
 68. Voir Houzeau, Op. cit., vol, II, D. 348.
[^35]: 68. Volr, à ce sujet, les remarques contenues dans in article intéressant du riv. P.-W. Farrar, intitulé Philosophy and Darwinism, publié dans le numéro du 21 mars 1870, p. 528, du journal Nalure.
 69. Nature, 6 janvier 1870, p. 257.
 70. Clts par C.-S. Wake, Chapters on Man, 1868, p. 101.
[^36]: 71. Buckiand, Bridgewater Treatise, p. 411.
 72. Voir quelques excellentes remarques sur la simplification des langages, par sir J. Lubbock, Origin de la civilisation, p. 278.
[^37]: 73. The Spectator, 4 déc. 1869, p. 1430.
 74. Voir sur ce sujet un excellent article du rév. F.-W. Farrar, dans Anthropological Review, aodt 1864 , p. CCxvi1. Pour d'autres faits, voir sir J. Lubbock, Prehistoric Times, 2° éd., 1869, p. 564 , et surtout les chapitres sur la religion dans son Origin of Civilisation, 1870
[^38]: 1. Voir par exemple, sur ce sujet, de Quatrefages, Unitt de lespèce humaine, 1861, p. 21, etc.
 2. Dissertation on Ethical Philosophy, 1837, p. 231.
 3. J.-W. Semple, Metaphysics of Ethics. Edimbourg, 1836, p. 136.
 4. Dans son ouvrage, Mental and moral science, 1868, pp. 543, 725, M. Bain cite une liste de vingt-six auteurs anglais qui ont traité ce sujet; a ces noms bien connus j'ajouterai celui de M. Bain lui-mème et ceux de MM. Lecky, Shadworth Hodgson, et sir J. Lubbock, pour n'en citer que quelques-uns.
[^39]: 6. M. H. Sidgwick, qui a discuté ce sujet de façon très remarquable (Academy, 15 juin 1872, p. 231), fait remarquer "qu une abeille très intelligente essaierait,
[^40]: nous pouvons en ettre assures, de trouver une solution plus douce à la question de la population. :Toutefois, a en juger par les coutumes do la plupart des lauvages, Thomme résout le problème par le meurtre des enfants femelles, par la polyandrie et par la communauté des femmes; on est en droft de douter que ces methodes solent beaucoup plus douces. Miss Cobbe, en discutant le méme soutient (Darwinism in Morals, The ological Review, avril 1872, pp. 188-191), par là, je suppose, que do entend aux individus; mais it accomplissement d'un devoir social deviendrait nuisible admettre, que l'abeille a acquis ces qu'elle oublie, ce qu'elle doit cependant la communauté. Miss Cobbe va jusqu'à dire parce qu'ils sont avantageux pour la théorie de la morale ene jusqu'à dire que, si on admettait généralement théorie sonnerait en meme Chez l'bumanité il li faut espérer que la funèbre de la destruction de fa vertu repose pas sur des bases ausei fragiles. usei fragiles.

[^41]: 10. M. Belt raconte que dans une forêt du Nicaragua il entendit un ateles crier pendant deux heures de suite ; il finit par s'approcher et vit un aigle perché sur une branche tout auprès du singe. Loiseau semblait hésiter à attaquer le singe tant que celui-ci le regardait bien en face. M. Belt, qui a étudié avec tant de soin les habitudes des singes de ce pays, croit pouvoir affirmer qu'ils ront toujours par groupes de deux ou trois pour se defendre contre les aigles. The Naturalist i_{n} Nicaragua, 1874, p. 118.
 11. Annals and Mag. of Nat. History, nov, 1868, p. 382.
[^42]: 12. Sir J. Lubbock, Prehistoric Times, 2^{*} édit., p. 446.
 13. Cité par M. L.-H. Morgan, The American Beaver, 1868, p. 272. Le capiteine Stansbury raconte qu'un très jeune pêlican, emporté par un fort courant, fut guidé et encouragé dans ses efforts pour atteindre la rive par une demi-douzaine de vieux oiseaux.
 14. Comme le dit M. Bain : « Un secours effectif port' à un etre souffrant emane d'un sentiment de pure sympathie. „(Mental and Moral science, 1868, D. 245.1
[^43]: 25. Thierleben, 1, p. 85 .
 26. De tesprce et de la Classe, 1869, p. 97 ,
 27. Die Darwin'sche Art-Lehre, 1869, p. 54.
[^44]: 18. Voir aussi Hooker, Himalagan Journals, voI. II, 1854, p. 883.
 19. Brehm, Thierleben, I, p. 76.
 20. Voir sou très intéressant mémoire, Gregariousness in Cattle and in Mans

 - Macmillan Magazine, fév. 1871, p. 858.

[^45]: 21. Voir le premier et excellent chapitre de la Thforie des sentiments moraux, d'Adam Smith. Voir aussi Mental and Moral science, de M. Bain, pp. 244, 275 et 282 . M. Bain affirme, "que la sympathie est directement une source de plaisir pour celui qui sympathise ;" et il explique cette réciprocité. In remarque «que la personne qui a reçu le bienfait, ou d'autres à sa place, peuvent reconnattre le sacrifice par leur sympathie et leurs bons offices. Mais si, comme cèla paralt etre le cas, la sympathie n'est qu'un instinct, son exercice serait la cause d'un plaisir direct, de la même manière, ainsi que nous l'avons déjà vu, que l'exercice de tout autre instinct.
[^46]: 22. Le Rêy. L. Jenyns (White's Nat. Hist. of Selborne, 1853, p. 204) assure que ce fait a été observé pour la première fois par l'illustre Jenner (Philos. Transaetions, 1824), et a été confirmé depuis par plusieurs naturalistes, surtout par M. Blaekwall. Ce dernier a examiné, tard en automne, et pendant deux ans, trente-six nids; il en trouva douze contebant des jeunes oiseaux morts; einq, des œufs sur le point d'éclore, et trois, des cufs qui en étaient encore bien loin. Les oiseaux, encore trop jeunes pour pouvoir entreprendre un long voyage, restent en arrière. Blackwall, Researches in Zoology, 183t, pp. 108, 118. Voir aussi Leroy, Letlres phillosophiques, 1802, p 217. Gould, Introduction to the Birds of Great Britain, 1823, p. 5. M. Adams, Popular Science Review, juillet 1873, p. 283, a observé, au Canada, des faits analogues.
[^47]: 23. Hume remarque (An Enquiry concerning the principles of Morals, 1751, p. 132): " Il faut confesser que le bonheur et la misère d'autrui ne sont pas des spectacles qui nous soient indifférents; mais que la vue du premier... nous communique une joie secrète ; l'apparence du dernier... jette une tristesse mélancolique sur limagination. .
[^48]: 24. Mental and Moral Science, 1868, p. 254,
[^49]: 25. Je fais allusion ici à la distinction qu'on a établie entre ce qu'on a appelé ta morale matérielle et la morale raisoñnée. Je suis heureux de voir que le pro fesseur Huxley (Critiques and Addresses, 1873, p. 287) partage à cet égard les mêmes opinions que moi. M. Leslie Stephen (Essays on Free-thinking and Plain speaking, 1873, p. 83) fait remarquer que « la distinction métaphysique que l'or cherche à établir entre la morale matérielle et la morale raisonnée est auss absurde que les autres distinctions analogues. "
 26. J'ai iadiqué (Vogage d'un naturaliste, etc., p. 103) un cas analogue, celu de trois Patagons qui préferèrent se laisser fusiller l'un après l'autre, plutot que de trahir leurs compagnons.
[^50]: 27. L'inimitié ou la haine semble êre aussi un inetinct très persistant, plus énergique même qu'aucun autre. On a défini l'envie, la haine qu'on ressent pour un autre à cause dé ses succès ou d'une suprématio quelconque qu'il exerce; Bacon dit (Essay IX) : "L'envie est la plus importune et la plus continue de toutes les affections. "Les chiens sont très portés à hair les hommes et les chicns qu'ils ne connaissent pas, surtout s'ils vivent dans to voisinage et appartiennent à une autre famille, à une autre tribu ou à un autre clan. Ce sentiment semble donc être inné et est certainement très persistant. Il paratt être, en un mot, lo complément et l'inverse du vrai instinct social. Les sauvages éprourent un sentiment analogue. On comprend donc facilement que le saurage puisse appliquer ce sentiment à un membre de la même tribu au cas où ce dernier lui a causé quelque préjudice et est devenu son ennemi. Il n'est guère probable, d'ailleurs, que la conscience primitive ait reproché à l'homme d'avoir attaqué son ennemi, elle lui aurait plutot reproché peut-etre de ne s'etre pas vengé. Faire le bien pour le mal, aimer son ennemi, constitue un développement de fa morale qüe nos instincts sociaux seuls ne nous auraient probablement jamais fait atteindre. Il faut, pour que ces principes admirables aient pris naissance et qu'ils soient devenus assez puissants pour yue nous leurs obéissions, que les instincts sociaux et la sympathie aient été très cultivés outre la raison, l'instruction, l'amour ou la crainte de Dieu.
[^51]: avec le repentir le meme rapport que la rage avec la colère, l'agonie

[^52]: 29. E.-B. Tylor, Contemporary Review, avril 1873, p. 707.
[^53]: 30. Le docteur Prosper Despine cite (Psychologie naturelle, 1868, t. I, p. 243; t. II, p. 169), beaucoup d'exemples curieux tendant à prouver que les plus grands criminels paraissent avoir été entièrement dépourvus de conscience.
 31. Voir un excellent article dans North British Review, 1867, p. 395 ; voir aussi M. W. Bagehot, On the importance of obedience and coherence to primilue maz, dans Fortnightly Review, 1867, p. 529, et 1868, p. 457, ete.
[^54]: 32. L'expose le plus complet que je connaisse est celui du docteur Gerland, Ueber das Aussterben der Naturvölker, 1868 ; mads j'aurai à revenir sur l'infanticide dans un chapitre subséquent.
 33. Voir la discussion fort interessante sur le suicide, dans Lecky, History of European Morals, vol. 1, 1869, p. 223. M. Winwood Reade affirme que les nègres de l'Afrique occidentale commettent souvent le suicide. On sait combien le suicide était fréquent chez les misérables indigènes de l'Amérique méridionale après laconquête espagnole. Pour la Nouvelle-Zélande, voir le Voyage de la Novara pour les lles Aléoutiennes, voir Houzeau, les Facultés mentales, vol. II, p. 136.
 34. Bagehot, Physics and Politios, 1872, p. 72.
 35. Voir l'élude de M. Hamillon sur les Cafres, Anthropological Review, 1870
[^55]: 36. M. MLennan a cité beaucoup de faits de ce genre dans Primitive Marriage, 1875, p. 176.
 37. Lecky. History of European Morals, 1869, 1, p, 109
 38. Embarsy to China, II, p. 348.
[^56]: 39. Voir sur ce point les preuves nombreuses contenues dans sir J. Lubbock, Origin of Civilisation, 1870 , chap. V1I.
 40. Lecky, par exemple, Hist. of Europ. Morals, vol. I, p. 124.
 41. Terme employé dass un excellent article, Westminster Review, oot. 1869, p. 498. Pour le prinolpe du plas Grand Bonheur, voir J.-S. Mill, Utilitarianism, p. 17.
 42. Mill reconnait (System of Logic, vol. II, p. 422) de la façon la plus absolue que l'habitude peut pousser à une action, sans qu'il y ait aucune anticipation de plaisir. De son còté, M. H. Sidgwick, dans son article sur le plaisir et le désir (Contemporary Review, avril 1872, p. 671), s'exprime en ces termes : a En un mot, contrairement à l'hypothèse en vertu de laquelle nos impulsions actives conscientes sont toujours dirigées vers la production de sonsations agréables on nous-mèmes, je suis disposé à soutenir que nous éprouvons souvent des impulsions conscientes, généreuses, dirigées vers quelque chose qui n'est certainement pas le plaisir; que, dans bien des cas, l'impulsion est si peu compatible avec notre égolsme que les deux sentiments ne peuvent pas facilement coexister au moment où nous sommes conscients, " Le sentiment, je suis mème tenté de le croire, que nos impulsions ne procèdent pas toujours de l'attente d'un plaisir Immédiat ou futur a été une des principales causes qui ont fait adopter l'hypothèse intuitive de la morale et rejeter l'hypothèse utilitaire ou du phis grand bonheur. Quant à cetto derniàro bypothèse, on a sans doute souvent confondu entre la sarction et le motif de la conduite, mais ces deux termes se confondent réellement dans une certaine mesure.
[^57]: 43. M, Wallace cite d'excellents exemples dans Scientific opinion, 25 sept. 1869 ainsi que dans Contributions to the theory of natural Setection, 1870, p. 853
[^58]: 44. Tennyson, Idyls of the King, p. 244.
 45. The Thoughts of the emperor M. Aurelius Antoninus, trad, anglaise 20 édit., 1869 , p. 112. M. Aurelius est né 121 ans après J.-O.
 46. Lettre à M. Mill, dans Mental and Moral Science, de BaIn, 1868, p. 722.
 47. Maudsley, Body and Mind, 1870, p. 60.
[^59]: juillet 1869, p. E31. M. Lecky (Hist. of Morals, vol. I, p. 143) paralt, jusqu'à un certain point, partager la meme opiniou.
 49. Voir son ouvrace remarquable, Hereditary Genius, 1869, p. 349. Le duc d'Argyll (Primeval Man, 1869, p. 188) fait quelques exceilentes remarques sur la lutte entre le bien et le mal daus la nature de l'homme.

[^60]: 2. Les individus ou les tribus qui sont absorbés dans une autre tribu prétendent à la longue, ainsi que l'a fait remarquer M. Maine (Ancient Law, 1861, p. 131), qu'ils sont les co-descendants des meèmes ancetres.
[^61]: 3. Morlot, Soc. vaudoise des Sc. naturelles, 1860, p. 294.
[^62]: 4. J'al donné des exemples dans la Variation, etc., II, p. 208.
[^63]: 6. M. Wallace cite plusiours exemples: Contributions to the Theory of Natural Selection, 1870, p. 354 .
[^64]: 7. Ancient Law, 1861, p. 22. Pour les remarques de M. Bagehot, Fortnightly Review, avril 1868, p. 452.
 8. La Variation des animaux, etc., vol. I, P. 329.
[^65]: 9. Fraser's Magazine, sept. 1868, p. 353. Cet article paraft avoir frappé beaucoup de personnes, et a donné lieu à deux mémoires remarquables et à une réplique dans le Spectator, 3 et 17 oct. 1868. Il a étłł aussi discuté dans le Quarterly Journ. of S'cience, 1869, p. 152, et par M. Lawson Tait, dans le Dublin Quarterly Journal of Medical Science, févr. 1869 ; et par M. E. Ray Lankester, dans sa Comparative Longevity, 1870, p. 128. Des opinions semblables ont été émises dans l'Australasian, 13 juil. 1867. J'ai emprunté des arguments à plusieurs de ces auteurs.
 10. Pour M. Wallace, voir Anthropological Review, déjà cité; M. Galton, Macmillan's Magazine, aut 1865 , p. 318, ot son grand ourrage, Hereditary
 Genius, 1870. Genius, 1870.
[^66]: 11. Le professeur H. Fick a fait d'excellentes remarques à ce sujet et d'autres points analogues, Einfluss der Naturwlssenschaft auf das Recht, juin 1872.
[^67]: 13. Quatrefages, Revue des cours scientifiques, 1867-68, p. 659.
 14. Voir les ciaquième et sixième colonnes dressées d'après des autorités compétentes, dans le tableau donné par M. E. R. Lankester, dans sa Comparative Longevity, 1870, p. 115.
 15. Hereditary Genius, $\rho .330$.
 16. Origine des espèces, p. 96.
[^68]: 21. Dixième Rapporl annuel des naissances, morts, etc., en Écosse, 1867, p. xxix.
 22. Cés citations sont empruntées à notre plus haute autorité sur ces questions, le travail du docteur Farr, sur l'ínftuence du mariage sur la morlatité du peuple francais, lu devant la National Association for the Promotion of Social Science, 1858.
 23. Docteur Farr, ibid. Les citations suivantes sont toutes tirées du méme travail.
[^69]: 24. J'ai pris la moyenne des moyennes quinquennales données dans le Dixième rapport annuel des naissances, décès, etc., en Écosse, pour 1867. La citation du docteur Stark est tirée d'un article du Daily News, du 17 oct. 1868, que le docteur Farr considère comme très complet.
 25. Le docteur Duncan (Fecundity, Fertility, etc., 1871, p. 334) fait remarquer à cet égard: "A chaque age les celibataires les plus sains et les plus beaux se marient, et seuls les gens maladifs ou malheureux restent célibataires. ,
[^70]: 26. Voir à cet égard le raisonnement ingénieux et original de M. Galton Heredilary Genius, pp. 340-342.
 27. M. Greg, Fraser's Magazine, sept. 1868, p. 357.
[^71]: 31. Broca, les Sélrctions, Revue d'anlhropologie, 1872.
 32. On the Origin of Civilisation, Proc. Ethnological Soc., 26 nov. 1867.
 33. Primeval Man, 1869.
[^72]: 1. Isid. Geoffroy Saint-Hilaire donne le détail de la pasition que les divers naturalistes ont assignée à l'homme dans leurs classifications: Histoire nat. générale, 1859, pp. 170-189.
[^73]: 2. M. Belt a cité (Naturalist in Nicaragua, 1874) les faits les plus intéressants qui aient jamais peut-être été publiés sur les fourmis. Voir l'intéressant ouvrage de M. Moggridge, Harvesting Ants, ete., 1873. Voir aussi l'excellent article de Georges Pouchet, l'Instinct chez les insectes (Revue des Deux Mondes, fêvr. 1870
 p. 682). p. 682).
 3. Westwood, Modern Classif. of Insects, vol, II, 1840, p. 87.
[^74]: 5. Evidence as to Man's Place in Nature, 1863, p. 70.
[^75]: 6. Isid. Geoffroy, Hist. Nat. gén., t. II, 1859, p. 217.
 7. Ueber die Richtung der Haare, etc., Müller's Archiv für Anat, und Physiolog., 1837, p. 51.
 8. Cité par Reade, The African Sketch Book, vol. I, 1873, p. 152.
[^76]: 9. Sur les poils des Hylobates, voir Nat. Hisf. of Mammals; pat G. L. Martin, 1841, p. 415. Isid. Ceoffroy, sur les singes américains et autres, Hisl. Nat. gén., vol. Il. 1859, pp. 216, 243. Eschricht, ibid., pp. 46, 55, 61. Owen, Anat. o/ Vertebrates, vol. III, p. 619. Wallace, Contributions to the theory of Natural selection, 1870 , p. 344.
 10. Origine des espèces, 1872, p. 174. La Variation des animaux et des plantes à l'ćtat domestique, vol. 11, p. 370 (Paris, Reinwald).
[^77]: 16. Häckel est arrivé à la même conclusiou. Voir, Ueber die Entstehung der Menschengeschlechts, dans Virchow, Sammliang. gemeith. wissen. Vorträge, 1868, p. 61. Aussi, Nalürliche Schöpfungsgeschichte, 1868, où il explique on detail ses vues sur la genéalogie de t'hatrime.
 17 Docteuf G. Forsyth Major, Sur les singes fossiles troiuvés en Italie, Soc. ital. des Sciences nat., vol, XY, 1872.
[^78]: 18. Anthropoloqical Review, avril 1867, p. 236.
[^79]: 19. Elements of Geology, 1865, pp. 583-585. Antiquily of Man, 1863, p. 145
 20.
[^80]: 22. Paleontology, 1860, p. 199.
[^81]: 26. C'est la conclusion d'une des plus grandes autorités en anatomie comparée, le professeur Gegenbaur (Grundzüge der vergleich. Anat., 1870, p. 876), et elle résulte prícipalement de l'étude des amphibies; mais, d'aprés les recherches de Waldeyer (citées dans Journ. of Anat. and Phys., 1869, p. 161), les organes sexuels, même ceux des vertébrés supérieurs, seraient hermaphrodites dans leurs premiéres phases. Quelques savants ont déjà, depuis longtemps, émis la méme opinion qui, jusque tout récemment ne reposait pas sur une base suffisamment solide.
 27. Le Thynacilus male en offre le meilleur exemple. Owen, Anat. of Vertebrates, vol. III, p. 771.
 28. On a observé que plusieurs espèces de Serranus, aussi bien que quelques autres-poissons, sont hermaphrodites, soit de façon normale et symétrique ou de façon anormale et unilatérale. Le docteur Zouteveen m'a indiqué quelques mémoires relatifs à cette question et surtout un mémoire du professeur Halbertsma, Transac. of the Dutch Acad. of Sciences, vol. XVI. Le docteur Günther n'accepte pas ce fait qui, cependant, a été signalé par un trop grand nombre de bons observateurs pour qu'on puisse plus longtemps le metire en question. Le docteur M. Lessona m'écrit qu'il a vérifié les observations faites par Cavplini sur le Serranus. Le professeur Ercolani a récemment démontré (Acad. delle Scienze, Bologna, 28 déc. 1871) que les anguilles sont androgynes.
[^82]: d'après ce qu'il a observé sur le développement de l'Hippocampe, que les parois de la poche abdominale du mâle fournissent en quelque manière de la nourriture. Voir, sur les poissons mâles couvant les crufs dans leur bouche, le travail intéressant du professeur Wyman (Proc. Boston Soc. of Nat. Hist., 15 septembre 1857). Le professeur Turner, dans Journ. of Anat, and Phys., lor nov. 1866, £. 78. Le docteur Günther a également décrit des cas semblables.
 31. MóC. Royer a suggézó une hypothése semblable, Origine del'homme, etc., 1870.

[^83]: 32. Les marées doivent affecter considérablement tous les amımaux habitant le bord immédiat de la mer; en effet, les animaux vivant à peu près à la hauteur moyenne des plus hautes marées passent tous les quinze jours par un cycle complet de changements dans la hauteur de la marée. En conséquence, leur alimentation subit chaque semaine des modifications importantes. Les fonctions vitales des animaux vivant dans ces conditions pendant d'innombrables générations doivent nécessairement s'adapter à des périodes régulières de sept jours. Or, fait mystérieux, chez les vertébrés supérieurs et actuellement terrestres, pour ne pas mentionner d'autres classes, plusieurs phénomènes normaux et anormaux ont des périodes d'une ou plusieurs semaines, ce qu'il est facile de comprendre, si on admet que les vertébrés descendent d'un animal allié aux Ascidiens actuels habitant le bord de ia mer. Oz pourrait citer bien des exemples de ces phénomènes périodiques, tels, par ezemple, que la durée de la gestation chez les mammiféres, la duree de certaines fièvres, etc. L'éclosion des oufs fournit aussi un excellent exemple, car, d'après M. Bartiett (Land and Water, 7 janv. 1871), les geufs des pigeons eclosent au bout de deux semaines; ceux de la poule au bout de trois semaines ; ceux du canard au bout de quatre semaines, celix de l'oie au
[^84]: quinze nations que quelques savants prétendent distinguer. On ne constate même pas, pour les races les plus accusées, cette unanimité qu'on était en droit d'attendre d'après ce qui a été écrit à ce sujet. Ainsi MM. Nott et Gliddon (Types of Mankind, p. 148) assurent que Rameses II, ou le Grand, a de superbes traits européens, tandis que Knox, autre partisan convaincu de la distinction spécifique des races humaines (Races of Man, 1850, p. 201), parlant du jeune Membon (le meme personnage que Rameses II, comme me l'apprend M. Birch), insiste, de la manière la plus positive, sur l'identité de ses traits avec ceux des Juifs d'Anvers. J'ai examiné au British Museum, avec deux personnes attachées à l'établissement et juges des plus compétents, la statue d'Aménophis III, et nous tombâmes d'accord qu'il avait un type nègre des plus prononcés; MM. Nott et Gliddon (op. cit., 146, fig. 53) le considèrent, au contraire, comme un «hybride, mais sans aucun mélange nègre n.
 6. Cité par Nott et Gliddon (op. cit., p. 439). Ils ajoutent des preuves a l'appui, mais C. Vogt pense que le sujet réclame de nouvelles recherches.
 7. Diversity of Origin of the Human Races, dans Christian Examiner Juillet 1850.

[^85]: 13. B.-A. Gould, Military and Anthropol. Statistics of American Soldiers,
[^86]: 15. La Variation des animaux, eto., vol. II, p. 99,
 16. M. de Quatrefages (Anthropolog. Review, jany, 1869, p. 22) a publié quelsont upé race frés croes sur les succés et l'énergie des Paulistas du Brésil, qui ques autres races.
[^87]: 17. Chez les indígènes de l'Amérique et de l'Australie, par exemple. Le professear Huxley (Transact. Internat. Congress of Prehist. Arch., 1868, p. 105) a signalé que les eranes de beaucoup d'Allemands du Sud et de Suisses sunt " aussi courts et aussi larges que ceux des Tartares ", ota.
[^88]: 18. Ce sujet est fort bien discuté dans Waitz (Introduction à l'Anthropologie). J'ai emprunté quelques-uns de ces renseignements à H. Tuttle, Origin and Antiquity of Physical Man, Boston, 1866, p. 35.
 19. Plusieurs cas frappants ont etté décrits par le professeur Nägeli dans ses Botanische Miltheilungen, vol. II, 1866, p. 294-369. Le professeur Asa Gray a fait des remarques analogues sur quelques formes intermédiaires chez les Compostes de l'Amérique du Nord.
[^89]: 21. Professeur Huxley, Fortnigthly Review, 1885, p. 275.
 22. Lecons sur iHomme. o, 498.
[^90]: 23. Die Racen des Schweines, 1860, p. 16, Korstudien fäp Geschichte, ete. Schweineschädel, 1864, p. 104. Pour le bétaí, voir M. de Quatrefages, Unilé de l'espèce humaine, 1861, p. 119.
[^91]: 24. Tylor, Early History of Mankind, 1865. Pour preuves relatives au langaze dar kestes, voir Lubbock, Prehistoric Times, p. 54, 20 edit., 1869.
[^92]: 25. H.-M, Westropp, On analagous forms of implements ; Memoirs of Anihrop. Soc. Nilson, The primitive inhabitants of Scandinavia.
 26. Westropp, On Cromlechs, ete., Journal of Ethnological Soc., cite dans Scientific Opinion, p. 3, juin 1869.
 27. Joul 1, of Researches; Voyage of the Beagle, p. 46.
[^93]: 28. Prehistoric Times, 1869, p. 571.
[^94]: 29. Traduit dans Anthropological Review, oct. 1868, 431.
 30. Transact. Internat. Congress of Prehistoric Arch., 1868, pp. 172-175. Broca, Anthropological Review, oct. 1868, p. 410.
 31. Docteur Gerland, Ueber das Aussterben der Naturvölker, p. 82, 1868,
[^95]: 32. Gerland (of. c., p. 12) cite des faits a l'appui.
 33. Sir H. Holland fait quelques remarques à ce sujet dans Medical Notes and Reflexions, 1839, p. 390.
 34. Dans mon Journa of Researches; Voyage of the Beagle, p. 435, j'ai enregistré plusieurs faits à cet égard; voir aussi Gerland (op. c., p. 8). Popppig dit que a le souffle de la civilisation est un poison pour les sauvages n.
 35. Sproat, Scenes and studies of savage Life, 1868, p. 284.
[^96]: 88. Bagehot, Physics and Polltics; Fortnightly Review, 105 avril 1868, p. 455.

 Tas J'emprunte tous ces details a l'ourrage de J. Bonwrick, The last of the

[^97]: 38. Ces chiffres sont empruntés au rapport du gouverneur de la Tasmanie, sir W. Den'son, Varieties of Vice-Regal Life, 1870, rol. I, p. 67.
 39. Bonwick, Daily Life of the Tasmasians, 1870, p. 90 ; The last of the Tasmanians, 1870, p. 386.
 40. Observations on the Aboriginal inhabitants of New Zealand; publí6 par ordre du gouvernement, 1859.-
[^98]: 41. Alex. Kennedy, New Zealand, 1873, p. 47.
[^99]: 43. J'ai emprunté les divers faits cités dans ce paragraphe aux ouvrages suivants: Jarves, History of the Hawäian Islands, 1843, pp. 400-407. Cheever, Life in the Sandwich Islands, 1851, p. 277. Bonwick, Last of the Tasmanians 1870, p. 378, cite Ruschenberger. Sir L. Belcher, Voyage round the world, 1843, vol. I, p. 272. M. Coan et le docteur Youmans de New.York ont bien voulu me communiquer les recensements que j'ai cités. Dans la plupart des cas, j'ai comparé les chiffres du docteur Youmans avec ceux indiqués dans les divers ouvrages que je viens de citer. Je ne me suis pas servi du recensement de 1850 , les chiffres ne me paraissant pas exacts.
 44. The Indian Medical Gazelte, $1^{* *}$ nop. 1871, p. 240.
[^100]: 45. Sur les rapports étroits de parenté entre les habitants des fles Norfolk, voir sir W. Denison, Varieties of Vice Regal Life, vol. I, 1870, p. 410. Pour les Todas, voir l'ouvrage du colonel Marshall, 1873, p. 110. Pour les lles situées sur la cote occidentale de l'Écosse, docteur Mitchell, Edinburgh Medical Journal. mars à juin 1863.
 46. Voir la Variation des animaux, etc., vol. II. (Paris, Reinwald.)
[^101]: 47. La Variation des animaux, etc., vol. II, p. 16
[^102]: 48. Voir, pour les détails, Lady Belcher : The Mufineers of the Bounty, 1870; Pitcairn Island, publié par ordre de la Chambre des communes, 29 mai 1863. J'emprunte les renseignements suivants sur les habitants des lles Sandwich à M. Coan et à la Honolulu Gazette.
[^103]: 49. Sur PAnthropologie (trad. dans Anthropological Review, janv. 1868, p. 38).
 50. The Annals of Rural Bengal, 1868, p. 134.
[^104]: 51. La Variation, etc., vol. II, p. 182.
 52. Pallas, Act. Acad. Saint-Petersbourg, 1780, part. II, p.69. Il futsuivi par Rudolphi, dans son Beiträge zur Anthropologie, 1812. On trouve un excellent résumd des preuves dans l'ourrage de Godron, de l'Espèce, 1859, vol. II, p. 246, etc.
 53. Sir Andrew Smith, cité par Knox, Races of Man, 1850, p. 473.
 54. De Quatrefages, Revue des Cours scientifiques, 17 oct. 1868, p. 731.
 55. Livingstone, Travels and Researches in S. Africa, 1857, pp. 829, 388. D'Orbigny, cité par Godron, de l'Espèce, vol. II, p. 266.
[^105]: 56. Voir son travail, lu a la Société royale en 1813, et publié en 1818 dans ses Essais. J'ai donné le résumé des idées du docteur Wells dans l'Esquisse historique de l'Origine des especes. Jai cité, Varialion des Animaux, etc., vol. I pp. 240, 357, divers cas de corrélation entre la couleur et certaines particularités constitutionnelles.
 57. Nott et Gliddon, Types of Mankind (p. 68).
 58. Dans une communication lue à la Société de statistique par le major Tullocb et publiée dans ${ }^{\prime}$ 'Athenceum, 1840 , p. 353.
 59. La Pluralite des races humaines, 1864.
 60. De Quatretages, Unité de l'espèce humaine, 1861, p. 205. Waitz, Introd to Anthropology, 1863 (trad, anglaise, I, p. 12t). Livingstone signale des cas
[^106]: 61. Au printemps de 1862 , j'avaís obtenu du Directeur général du département médical de l'armée la permission de remettre un questionnaire aux chirurgiens des divers régiments en service dans les colonies, mais aucun ne m'est revenu. Voici les remarques que portaient ce questionnaire : "Divers cas bien constatés chez nos animaux domestiques établissent qu'il existe un rapport entre la coloration des appendices dermiques et la constitution ; il est, en outre, notoire qu'il existe quelques rapports entre la couleur des races humaines et le climat qu'elles habitent; les questions suivantes sont donc dignes d'ètre prises en considération. Y a-t-il chez les Européens quelque rapport entre la couleur des cheveux, et leur aptitude à contracter les maladies des pays tropicaux? Les chirurgiens des régiments stationnés dans des régions tropicales insalubres pourraient s'assurer d'abord, comme terme de comparaison, du nombre des hommes bruns ou blonds ou de teinte intermédiaire et douteuse. En même temps, on constaterait quelle est la couleur des cheveux des hommes qui ont eu la fièvre jaune ou la dysenterie; dès que ces tableaux comprendraient quelques milliers d'individus, il serait aisé de constater s'il existe quelque rapport entre la couleur des cheveux et une disposition à contraster les maladies tropicales. On ne découvrirait peut-être aucun rapport de ce genre, mais il est bon de s'en assurer. Si yn obtenait un résultat positif, il aurait quelque utilité pratique en indiquant le choix à faire dans les hommes destinés à un service particulier. Théoriquement, le résultat aurait un haut intérêt, car il indiquerait comment une race d'hommes, habitant dès une époque reculée un climat tropical malsain, aurait pu acquérir une couleur de plus en plus foncée par la conservation des individus à cheveux ou au teint brun ou noir peodant une longue succession de générations."
 62. Anthropological Review, janv. 1866, p. 21. Le docteur Sharpe dit auosi pa
[^107]: rapport aux Indes (Man a special creation, 1873, p. 118) que quelques médecins ont remarqué que « les Européens à cheveux blonds et à teint clair sont moins exposes aux maladies des climats tropicaux que les personnes à cheveux bruns et à teint foncé ; cette remarque, je crois, est basée sur les faits. " D'autre part, M. Heddle, de la Sierra Leone «qui a vu mourir auprès de dui une si grande quantité de commis n, tués par le climat de la côte occidentale d'Afrique (W. Reade, African Sketch book, vol. II, p. 522) a une opinion toute contraire que partage le capitaine Burton.
 63. Man a special creation, 1873, p. 119.
 64. Variation des plantes et des animaux, etc., vol. II, pp. 336. 337 (Paris,
 Relnwald). Relnwald).

[^108]: 67. Professeur Schaafthausen, traduit dans Anthropological Review, oct. 1868 p. 429 .
 68. M. Catlin (North American Indians, 30 édit., 1842, vol. I, p. 4.9) constate que, dans toute la tribu des Mandans, il y a euviron un individu sur dic ou douze de tout age et des denx sexes, qui a des cheveux gris argente héréditaires. Ces cheveux sont gros et aussi durs que les poils de la crinière d'un cheval, tandis que ceux qui sont autrement colorés sont fins ef doux.
[^109]: 69. Sur Yodeur de la peau, voir Godron, De l'Espèce, vol. II, p. 217. Sur les pores de la peau, doctour Wilckens, Die Aufgaben der landwirth, Zootechnick, 1869, p. 7.
[^110]: Notes sur les ressemblanges et les différences de la structure et du développement du gerveau chez l'homme et chez les singes, par le professeur Huxley F. R. S.

[^111]: 73. Flower, On the Anatomy of Pithecia monacus, Proceedings of the Zoological Society, 1862.
 74. Man's place in Nature, p. 102.
[^112]: 78. Veber die typische Anordnung der Furchen und Windungen auf den Grosshirn-Hemisphären des Menschen und der Affen (Archio. für Anthropologie, vol. III, 1868).
 79. Zur Entwickelungs Geschichte der Furcken und Windungen des Gros-shirn-Hemisphären im Foolus des Menschen 'Arch. für Anthropologie, vol. III,
[^113]: 1. Westwood, Modern. Classif. of Insects, wvol. II, 1840, p. 541. Je dois à Fritz Müller le fait relatif au Tanais.
[^114]: 2. Kirby et Spence, Introd. to Entomology, vol. III, 1826, p. 309.
[^115]: 4. M. Perrier, Revue scientifique, 15 mars 1873 , p. 865 , invoque ce cas qu'il considère comme portant un coup fatal à l'hypothèse de la sélection sexuelle, car il suppose que j'attribue à cette cause toutes les différences eatreles sexes. je dois en conclure que cet éminent naturaliste, comme tant d'autres savants français, ne s'est pas donné la peine d'étudier et de comprendre les premiers principes de la sélection sexuelle. Un naturaliste anglais insiste sur to fait que les erochets dont sont pourvus certains animaux mates ne peuvent devoir leur développement à un choix exercé par la femelle ! Il me fallait lire cette remarque pour supposer que quiconque a lu ce chapitre s'imagine que j'aie jamais prétendu que le choix de la femelle avait une influence quelconque sur le développement des organes prêhen-
 siles du mâle.
[^116]: 7. Je puis invoquer l'opinion d'un savant ornithologiste sur le caractère des petits. M. J.-A. Allen, Mammais and Winter Birds of Florida, p. 229, dit, en parlant des couvées tardives, produites après la destruction accidentelle des
[^117]: 12. D. Campbell, Proc. Zoolog. Soc., 1869, p. 138, Voir aussi un mémofre interessant du lieutenant Johnstone, Proc. Asiafic. Soc. of Bengal, mai 1868.
 13. Docteur Gray, Annals and Mag. of Nat. Hist., 1871, p. 302,
 14. Yoir un excellent mémoire du doctour Dobson, Proc. Zoolog.
 15. The Eared Seals ; American Naturalist, vol. IV, janv, 1871.
[^118]: 16. The 1 bis, vol. III, 1861, p. 198, sur le Chera Progne, Voir aussi, sur le Vidua axillaris, ibid., vol. II, 1868, p. 211. Sur la polygamie du Grand Coq de bruyère et de la grande Outarde, voir L. Lloyd, Game Birds of Sweden, 1867, pp. 19 et 182. Montagu et Selby affirment que le Grouse noir est polygame et que le Grouse rouge est monogame.
[^119]: 21. Le professeur Sachs (Lehrbuch der Botanik, 1870, p. 633), en pariant des cellules reproductrices malles et femelles, remarque que " l'upe se comporte actiyement,.. tandis que l'autre paratt passive pendant la réunion n.
[^120]: 23. Reise der Novara; Anthropol. Theil, 1867, pp. 216-269. Le docteur Woisbach a calculé les résultats d'après les mesurages faits par les docteurs Scherzer et Schwarz. Voir sur la grande variabilité des animaux domestiques males, la Variation, etc., vol. II, p. 79 (Paris, Reinwald).
 24. Proceedings Royal Soc., vol. XVI, juil. 1868, pp. 519 et 54.
 25. Proc. Roy. Irish Academy, vol. X, 1868, p. 123.
 26. Massachusett's Medic. Soc., vol. II, no 3, 1868, p. 9.
 27. Archiv. für Path. Anat. und Phys., 1871, p. 488.
 28. Les conclusions du docteur J. Stockton Hough sur la température de l'Homme ont êté récemment publiées dans Pop. Science Review, 1or janv. 1874, p. 97.
[^121]: 29. Le professeur Mantegazza est disposé à croire (Lettera a Carlo Darwin, Archivio per l'Anthropologia, 1871, p. 306) que les brillantes couleurs communes à tant d'animaux males résultent de la présence chez eux du fluide spermatique. Je ne crois pas que cette opinion soit fondée, car beaucoup d'oiseaux ualles, les jeunes faisans, par exemple, revêtent leurs brillantes couleurs pendant l'automne de leur première année.
 30. Voir, pour l'espèce humaine, le docteur J. Stockton Hough, dont les conclusions ont été publiées par la Pop. Science Review, 1874, p. 27. Voir, sur les Lépidoptères, les observations de Girard, Zoological Record, 1869, p. 847.
[^122]: 81. Mammals and Birds of Florida, pp. 234, 280, 295.
[^123]: 32. H. Müller, Anwendung der Darwin'schen Lehre, sto., p. 19.
[^124]: 83. Varlation, etc., vol. II, p. 79. L'hypothèse provisoire de la pangenèse, à laquelie je fais allusion, est expliquée dans l'avant-dernier chapltre.
 84. Ces faits sont donnés dans le Poultry Book, 1868, p. 158, de Tegetmeier
[^125]: sur l'autorité d'un grand éleveur, M. Teebay. Voir, pour les caractères des volailles de diverses races et des races do pigeons, la Varlation, etc., vol, I pp. 169, 264; vol, II, p. 82.
 33. Novx species Quadrupedum e Glirium ordine, 1778, p. 7. Sur ha traces mission de la couleur chez le cheval, Variation, eto, rol, I, p. 21. Voir vol. I, p. 76, pour la discussion générale sur l'hérédité limitée par le soze.

[^126]: 36. Le docteur Chapuis, le Pigeon voyageur belge, 1865, p. 87. Boitard et Corbié, les Pigeons de volière, etc., 1824, p. 173. Voir aussi pour des différences analogues chez diverses races à Modene, Borizzi, Le ariazont dei colombl
 domesticl, 1873
[^127]: 37. Depuis la publication de la première ódition de cet ouvrage, M. Tegetmeier, l'éminent eleveur, a publié dans le Field (sept. 1872) les remakques suivantes que j'afryues avec une vise satisfaction. ${ }^{\text {Après aroir decrit chez les pigeogs quelgues }}$ cas curieux de la transmission de la couneur par un sexte seul, et là formation d'une sous-race possédant oe caractère, il ainute : « Par una singulière cornci-
[^128]: dence, M. Darwin a suggéré la possibilité qu'il y aarait à modifier les couleurs sexuelles des oiseaux a l'aide de la sélection artificielle. Alors que M. Darwin faisait celte suggestion, il ignoraít les faits que je yiens de relater: il est done très remarquable qa'il ait indiqué le vrai moyen à employer.
 38. Variation des animouxe, etc,, vol. II, p. 76.

[^129]: 39. Je dois à l'obligeance de M. Cupples les renseiguements qu'il s'est procuré sur le cherreuil et suff le cerf d'Écosse auprès de M. Robertson, le garde forestier si expérimenté du marquis de Breadalbane. M. Eyton et d'autres m'ont fourni des informations sur le daim. Pour le Cervus alces, de l'Amérique du Nord, voir Land and Water, 1868, pp. 221 et 254 ; et pour les C. Virginianus et strongyloceros du même continent, voir J.-D. Caton, Ottawa Acar. of Nat. Science 1868, D. 13. Pour le Cerous Eldi du Pégou, voir le lieutenant Beavan. Proc Zool. Soc., 1867, p. 762.
[^130]: cornes eut lieu a une époque plas tardive que chez le mouton gallois, od les deux sexes ont des cornes.
 43. Ueber die knöchernen Schädelhöcker der Vögel; Niederlandischen Archiv für Zoologie, vol. I. part. 2, 1872.
 44. Chez le paon commun (Pavo cristatus), le male seul est armé d'éperons, tandis que chez le paon de Java (P. muficus), les deux sexes, cas fort inusité, on sont pourvus. Je me crus donc autorisé à conclure que, chez cette dernière espêce, ces appendicer doivent se développer plus tot que chez le paon commun; mais M. Hegt, d'Amsterdam, m'apprend qu'il n'a remarqué aucune différence dans le développement des ergots sur de jeunes oiseaux de l'année précédente, appartenant aux deux espèces, et examinés le 25 avril 1869. Les ergots, toutefois, ne consistaient encore qu'en de légers tubercules. Je pense que j'aurais êté informé si quelque différence de développement eût été ultérieurement observée.

[^131]: 45. Chez quelques autres espèces de la famille des Canards, le spéculum diffère davantage chez les deux sexes; mais je n'ai pas pu décourrir si son développement complet a lieu plus tard chez les males de ces espèces que chez ceux de l'espèce commune, comme cela devrait etre selon notre règle. Un cas de ce genre se présente toutefois chez le Mergus cucullatus voisin, où les deux sexes different notablement par leur plumage général, et à un degré considérable par le spéculum, qui est pur chez le mâle, et gris blanchatre chez la femelle. Les jeunes males ressemblent, sous tous les rapports, aux femelles, et ont un spéculum gris blanchàtre, mais qui devient blanc avant l'age où le malle adulte acquiert les autres diffé, rinces plus prononcées de son plumage. (Audubon, Ornithological Biography, vol. III, 1835, pp. 249-250.)
[^132]: 46. Das Ganze der Taubenzucht, 1837, pp. 21, 24. Pour les pigeons rayés, voir D. Chapuis, le Pigeon voyageur belge, 1865, p. 87.
[^133]: 47. Pour les details complets sur tous les points qui concernent les diverses races de volaille, voir la Variation, etc., vol. I, pp. 266, 272. Quant aux animaux supérieurs, les differences sexuelles produites par la domestication sont aterites dans le même ouvrage, dans le chapitre relatif à chacun d'eux.
[^134]: 48. Twenty-ninth annual Reporl of the Regisirar general for 1866. Ge rapport contient (p. XII) une table décennale spéciale.
 49. Extrait des recherches du professeur Faye sur la Norvège et la Russie, dans British and Foreign Medico Chirurg. Revlew. pp. 342, 345, avril 1867. Pour la France, I'Annuaire de 1867, p. 213. Pour Philadelphie, voir le docteur Stock-ton-Hough, Social scienee Assoc. 1874. Pour le cap de Bome-Espérance, voir Quételet, cité dans la tradaction hollandaise de cet ouvrage, vol. I, p. 407.
[^135]: 3 millimètres en diamètre celle de l'enfant femelle. Quetelet a démontré que la femme est plus petite que l'homme au moment de la naissance. Voir docteur Duncan, Fecundity, Ferlility and Sterility, 1871, p. 382.
 53. Azara affirme, Voyage dans l'Am. mérid., vol. II, 1809, pp. 60, 179, que chez les Guaranys du Paraguay les femmes sont aux hommes dans la proportion de 14 à 13.
 54. Babbage, Edinburgh J. of Science, 1829, vol. pp. 88, 90. Voir aussi Report of Registrar general pour 1866, p. xv.

[^136]: 62. Brenm, Illust. Thierleben, vol. IV, p. 990, en arrive à la même conclusion.
 63. Sur l'autorité de L. Lloyd, Game Birds of Sweden, 1867, pp. 13, 132.
 64. Nat. Hist. of Selborne, lett. xxix, édit. de 1825, vol. 1, p. 139.

 65 M . Jenner Weir obtint des renseiguements semblables a la suite do son enquête de l'année suivante pour montrer le nombre des pinsons astrapés, deux chasseurs avaient fait, en 1869, un pari à qui erl prendrait le plus; l'un des deux en prit, en un jour, 62 , et l'autre, 40 du sexe male Le plas grand nombre qu'on alt p the en un jour fut 70.

[^137]: 66. Ibis, vol. II, p. 260, cité dans Gould's Trechilidæe, 1861, p. 58. J'ai emprunté les proportions ci-dessus à un tableau dressé par M. Salvin.
 67. Ibis, 1860, p. 137 et 1867, p. 369.
 68. $\mathrm{lbis}, 1862$, p. 137.
 69. Leuckart assure d'après Bloch (Wagner, Handvörierbuch der Phys., v. Iv, 1853, p. 775) que ches les polssons les msles sont deux fois plus nombreux qui les femelles.
 70. Gité dans le Farmer, 18, mars 1869, p. 869.
[^138]: 71. The Stormontfeld Piscicultural Experiments, 1866, p. 23. The Field, 29 juin 1867.
 72, Land and Water, 1868, p. 41.
 72. Yarrell, Hist., British Fishes, vol. I, 1826, p. 307 ; sur le Cyprinus carpio, p. 231; sur le Tinca vulgaris, p. 331 ; sur l'Abramis brama, p. 336. Voir pour le Leuciscus phoxinus. London, Mag, of Nat. Hist., vol. V, 1832, p. 682.
[^139]: 80. Cité par D. Wallace dans Proc. Ent. Soc., 3• série, vol. V, 1867, p. 487.
[^140]: 83. Ce naturaliste a eu l'obligeance de m'envoyer quelques résultats d'années précédentes dans lesquelles les femelles paraissent prédominer; mais, la plupart des chiffres n'etant que des évaluations, je n'ai pu les relever en tableaux.
 84. Günther, Record of Zoological Literalure, 1867, p. 260, sur l'Excès des Lucanes femelles, id., p. 250 ; sur les Males de Lucanus en Angleterre, Westwod Mod. Class. of Insects. vol. 1s p. 187, sur le Siagonium, ibid., p. 172.
[^141]: 90. Proc. Ent. Soc. London, 17, fév. 1868.
 91. Uns autre grande autorité sur la matière, le professeur Thorell, d'Upsala (On European Spiders, 1869-70, part. I, p. 285), parle des araignées femelles comme genéralement plus communes que les males.
 92. Voir sur ce sujet, M. P. Cambridge, cité dans Quarterly Journal of Science, 1868 , p. 429.
 93. Beiträge zur Parthenogenesis, p. 174.
[^142]: 97. History of the Sandwich Islands, 1843, p. 98.
 98. Rev. H. T. Cheever, Life in the Sandwich Islands, 1851, p. 277.
 99. Le docteur Coulter en déerivant (Journal R. Geographical Soe., vol. \boldsymbol{V}_{4} 1835, p. 67) L'Etat de la Californie vers l'année 1830, affirme que presque tous les indigènes convertis par les missionnaires espagnols ont péri ou sont sur le point de périr, bien qu'ils rec̣oivent de bons traitements, qu'ils ne soienध pas chassés de leur pays-natal et qu'on ne leur permette pas l'usage des spiritueux. Le docteur Coulter attribue en grande partie cette mortalité au fait que les bommes sont beaucoup plus nombreux que les fermmes; mais il ne dit pas sí cet exces des hommes provient du manque de filles ou de ce que plus de filles meurent pendant la jeunesse. Si l'on en juge par analogie, cette dernière alternative est très peu probable. Hajoute que a Noffuptietdo proproment dit nest pas commun, mals
[^143]: 3. Voir mon Journal of Researches, 1845, p. 7.
 4. Dans mes Geological Observations on Volcanic Islands, 1844, p. 53, j’al cité un exemple curieux de l'influence de la lumière sur la couleur d'une incrustation frondescente, déposée par le ressac sur les roches cótières de l'Ascension et formée par la solution de coquilles marines. (Trad. fr. p. 56. Reinwald, éd.) 5. Le doctour Morse a dernièrement discuté ce sujet dans un mémoire sur la, coloration adaptative des mollusques, Proc. Boston Soc. of Nat. Hist., vol, XIV
 avril 1871.
[^144]: 10. C. Spence Bate, Proc. Zoolog. Soc., 1868, p. 363, et sur 1 l nomenclature du geure, p. 585 . Je dois à l'colligeance de M. Spence Bate presque tous les renseignements précités sur les pinces des Crustacés supérieurs.
 11. Hist. nat. des Crustacés, vol. II, 1857 7, p. 50 .
 12. Pritz Müller, op. c., pp. 25-28.
[^145]: 14. Travels in the Interior o, Brazil, 1846, p. 111. J'ai donné, dans mon Journal de recherches, p. 463, une description des habitudes des Birgos.
 15. M. Ch. Praser, Proc. Zoolog. Soc., 1899, p. 3. C'est ì M. Bate que je dois lo fait observé par le docteur Power.
[^146]: 19. Cet auteur a récemment publié un mémoire remarquable sur les Caralteri sessuali secondarii degli Arachnidi, dans les Atti della Soc. Veneto-Trentina di Sc. Nat. Padova, vol. 1, fasc. 3, 1873.
[^147]: 20. Aug. Vinson (Aranéides des tles de la Réunion, pl. VI, fig. 1 et 2) donne un excellent exemple de la petitesse du mâle de l'Epeira nigra. Chez cette espéce, le mảle est testacé, et la femelle noire, avec les pattes rayées de rouge. On a aussi signalé des cas encore plus frappants d'inégalité des sexes (Quurlerly Journ, of Science, 1868, p. 429), mais je nai pas vu les mémoires originaus.
 21. Kirby et Spence, Introduclion to Entomology, vol. I, 1818, p. 280.
 22. Proc. Zool. Soc., 1871, p. 621.
 23. Theridion (Asagena Sund.) serratipes 4,punctatum ef gutlalum. Voir Westring, dans Kroyer, Nuturhist. Tidskrift, vol. IV, 1842-1843, p. 349, et vol. II, 1846-1849, p. 342. Voir, pour les autres espèces, Araneæ Suecicæ, p. 184
 24. Le docteur H. Van Zouteveen a recueilli plusieurs cas analogues.
[^148]: 25. Hitgendorf a récemment appelé l'attention sur une structure analogue chez certains crustacés supérieurs, Zoological Record, 1869, p. 603.
 26. Walckenaer et P. Gervais, Hist, nat. des insectes : Aptères, tome IV, 1847, pp. 17, 19, 68.
[^149]: 1. Sir J. Lubbock, Transabt. Linnean Soc,, vol. XXV, 1866, p. 484. Pour les
[^150]: 10. E. Doubleday, Ann. et Mag. of Naí. Hist., vol. I, 1848, p. 379. Je puis ajouter que chez certains Hyménoptères les ailes diffèrent selon les sexes au point de vue de la nervure (Shuckard, Fossorial Hymenoptera, 1857, pp. 39-43).
 11. H. W. Bates, Journ. of Proc. Linn. Soc., vol. VI, 1862, p. 74. Les observations de M. Wonfor sont citées dans Popular Science Review, 1868, p. 343
 12. The Naturalist in Nicaragua, 1876, pp. 316-320. Sur la phosphorescence dos ceufs, voir Annals and Magaz. of Nat. Hist., 1871, p. 372.
[^151]: 13. Robinet, Vers à soie, 1848, p. 207.
 14. Transact. Ent. Soc., 3• série, vol. V, p. 486.
 15. Journ. of Proc. Entom. Soc., 4 fev. 1867, p. Lxx.
[^152]: 18. The Málay Archipelago, vol. II, 1869, p. 313.
 19. Modern Classif., etc., vol. II, 1840, p. 526.
 20. Anwendung, etc., Verh. d. n. Jahrg. XXIX, p. 80. Mayer, American naturalist, 1874, p. 236.
[^153]: 21. B. T. Lowne, On Anatomy of the Blow-Fly, Musca Vomitoria, 1870, p. 14. Il assure (p . 33) que * les mouches capturées font entendre une note plaintive particulière, et que ce bruit provoque la fuite des autres mouches m .
 22. Westwood, Modern. Class., etc., vol, II, p. 473.
[^154]: 23. Détails ompruntés à Westwood. id., vol. II, p. 422. Voir aussi, sur les Fulgorides, Kirby et Spence, Introd., etc., vol. II, p. 401.
 24. Zeitschrift far wissenschaft. Zool., vol. XVI, 1867, pp. 152-158.
 25. Transact. New Zealand Institute, vol. V, 1873, p. 286.
 26. M. Walsh m'a procuré cet extrait d'un Journal of the doings of Cieada septemdecim, par le docteur Hartman.
[^155]: 27. L. Guilding, Trans. Linn. Soc., vol. XV, p. 154.
 28. J'emprunte cette assertion a Koppen, Ueber die Heuschrecken in Stdrussland, 1866, p. 32, car j'ai inutilement essayé de me procurer l'ourrage de Körte.
 29. Gilbert White, Nat. Hist. of Selborne, vol. II, 1825, p. 262.
 30. Harris, Insects of New England, 1842, p. 128.
 31. The Naturalist on the Amazons, vol. I, 1863, p. 252. M. Bates discute d'une manière intéressante les gradations des appareils musicaux chez les trois familles. Westwood, Modern. Class., vol. II, pp. 445 et 453.
[^156]: 32. Proc. Boston Soc. of Nat. Hist.. vol. XI, avrih 1868.
 33. Nouveau Manuel d'anat. comp. (trad. française), t. I, 1850, p. 567.
 34. Zeitschrift für wissenschaft. Zool., vol. XVII, 1867, p. 117.
 35. Westwood, o. c., vol. I, p. 440.
 36. Ueber der Tonapparal der Locustiden, ein Beitrag zum Darwinismus; Zeits. ch. für Wissensch. Zool. vol. XXII, 1872, p. 100.
[^157]: 37. Westwood, o. c., vol. I, p. 453.
 38. Landois, Zeitsch., etc., vol, XVII, 1867, pp. 121-122.
 39. M. Walsh a remarqué que, lorsque la femelle du Platyphyllum concavun est capturée, elle prodult un faible bruit on choquant onsemble ses élytres.
[^158]: 40. Landois, id., p. 113.
 41. Insects of New England, 1842, p. 183
 42. Westwood, L. c., vol. I, P. 462.
[^159]: 43. Landoís. a récemment découvert chez certains Orthoptères des structures rudimentaires, qui ressemblent beaucoup aux organes destinés à produire des sons chez les Homoptères; c'est la un fait surprenant. Voir Zeitsch. fur wissenisch. Zopl., vol. XXI, part. 3, 1871, 叉. 348.
 44. Transact. Ent. Soc., 3• série, vol. II (Journ. of Proceedings, p. 117).
[^160]: 45. Westwood, l. c., vol. I, p. 427 ; pour les criquets, p. 445.
 46. M. Ch. Horne, Proc. Ent. Soc., p. xH, mai 3, 1869.
 47. L'OEcanthus nivalis; Harris, Insects of New England,

 Carus affirme que les deux sexes de l'olp of New England, 1842, p. 124. Victor de la mè̀me maniêre.
 48. Plalyblemnus, Westwood, l. 0., vol. 1, p. 447.

[^161]: 49. B. D. Walsh, Pseudo-neuroptera of Illinois (Proc. Bnt. Soc. of Philadelohia, 1862).
 50. Modern Class., etc., vol. II, p. 37.
 51. Walsh, l. c., p. 381. J'ai emprunté à ce naturaliste les faits relatifs aux Hetrerina, aux Anax et aux Gomphus.
 52. Transact. Ent. Soc., vol. I, 1826, p. Lexxi,
[^162]: 63. Veir un extrait dans le Zoological Record, 1867, p. 480.
 64. Kirby 'et Spenco, Introd. ta Pint., vol. IF, 1818, p. 85.
 65. Hourtáu, tés Facultés mentales, etc., vol. I, D. 104.
[^163]: 56. The writings of Fabre dans Nat. Hist. Review, 1862, p. 128.
 57. Journ. of Proc. Entom. Soc., 7 sept. 1863, p. 169.
 58. P. Huber, Rercherches sur les mœurs des fourmis, 1810, p. 150, 16%.
[^164]: 60. Anwendung der Darwinschen Lehre auf Bienen. (Verh. d. n. Jahrg. xxix.) 61. M. Perrier, dans son article De la sélection naturelle, d'après Darwin (Revue Scientifique, fêv. 1873, p. 868), fait observer, sans avoir évidemment beaucoup réliéchi à ce sujet, que les males des abeilles sociables sont produits par des coufs non fécondés, et que, par conséquent, ils ne peurent pas transmettre de nouveaux caractères à lẹur progenitude male. C'est là, tout au moins, une objection extraordinaire. Une abeille femelle, fécandée par un mâle qui possede quelques caractêres propres à facilitêr l'union des sexes ou à le rendre
[^165]: 66. Kirby et Spence, o. c., vol. III, p. 323.
 67. Mod. Class, etc., vol. I, p. 172. On trouve sur ta même page une description du Siagonium. J'ai remarqué au Bristish Museum un Siagonium male dans un étal intermédiaire; le dimorphisme n'est donc pas absolu.
 68. The Malay Archipelaao. vol. II, 1869, p. 976. Riley, Sixth Report on Insec/s of Missouri, 1874, p. 115.
[^166]: 69. Entomolog. Magazine, vol. I, 1833, p. 82. Voir, sur des luttes de cetto nature, Kirby et Speuce, o. c., vol. III, p. 314, et Westwood, o. c., vol. I, p. 187.
 70. Cité d'aprés Fischer, Dicl. Class. d'hist. nat., tom. X, p. 324.
 71. Ann. Soc. Entom. de France, 1866.
[^167]: 74. Zeitschrift für wiss. Zool., vol. XVII, 1867, p. 127.
 75. M. G.-R. Crotch m'a rendu grand service en m'envoyant de nombreus individus préparés de divers coléoptères appartenant à ces trois familles et a d'autres, ainsi que des renseignements précieux de tous genres. Il croit que la faculté d'émettre un son strident n'avait pas encore êté observée chez le Clythra. Je dois aussi des remerctments a M. E.-W. Janson pour divers renseignements. J'ajouterai que mon fils, M. F. Darwin, a découvert que le Dermestes murinus produit des sons stridents, sans pouroir trouver l'appareil producteur. Le dooteur Chapman a récemment décrit le Scolytus comme insecte stridulant (Entomologist's Monthly Magazine, vol, VI, p. 130).
 76. Schiödte, trad. dans Annals and Mag. of. Nat. Hist., vol. XX, 1867, p. 37 77. Westring a décrit (Kroyer, Naturhist. Tidskrift, B. II, p. 334, 1848-1849) chez les Carabides les Elap ces deux familles et dans d'autres. J'ai examiné m'a envoyés M. Crotch. Chez le Ble uliginosus et les Blethisa multipunctata que transversales du bord sillonne Blethisa, autant que j'ai pu en juger, les saillies pour faire frotter les rapes sur les elytres.
[^168]: 78. 4. Walsh, de I'Illinois, a eu l'obligeance de m'envoyer des extralts de Introduction to Entomology, do Leconte, p. 101, 143.
[^169]: 79. M. P. de la Brolerie, clté par A. Murray, Journal of Travel, vol. II, 1868, p. 135 .
 80. M. Doubleday assure que l'insecte prodult ce bruit en s'elevant autant que possible sur ses pattes et en frappant cinq ou six fois de suite son thorax wissene corps sur lequel il est assis. Voir sur ce fait Landois, Zeitsch. für tion, ete., vol. IIog., vol. XVII, p. 131. Olivier, cite par Kirby et Spence, Introducfort en frappant son 395), dit que le Pimelia striata femelle produit un son assez obéissant à son appel, arrive, eoutre une substance dure, "et que le male,
[^170]: 1. Apatura Iris (Entomologist's Weeli'
 les papillons de Bornéo, G. Collingwood, infelligencer, 1859, p. 139). Vair, pour C. Collingwood, $+i$ mibles of a Naturalisi, 1868, p. 183.
[^171]: 2. Journal of Researches, 1845, p. 33. M. Doubleday (Proc. Entom. Soc., 3 mars 1845, p. 123) a découvert a la base des ailes antérieures un sac membraneux spécial qui joue probablement un role dans la production de ce bruit. Pour le Thecophora, voir Zoological Record 1869, p. 401. Pour les observations de M. Buchanan White, voir The Scoltish Nataralist, juillet 1872, p. 214.
 3. The Scoltish Naturalist, juilleb 1872 0. 213.
 4. Zoological Record, 1869, 0. 34y.
[^172]: 7. Westminster Review, juillet 1867, p. 10. M. Wallace a donné une figure du Faliina dans Hardwicke Science Gossip, 1867, p. 196.
[^173]: 8. M. G. Fraser, Nature, avril 1871, p. 489.
 9. Einfluss der Isolirung auf die Arlbildung, 1879, p. 88.
[^174]: 10. Voir les intéressantes obseryations de M. T.-W. Wood (The Student, sept. 1868, p. 81.)
 11. M. Wallace, dans Hardwicke, eto., sept. 1867, P. 199.
[^175]: 12. M. Weir, Transact. Ent. Soc., 1869, p. 23.
 13. Westminster Review, juillet 1867, p. 16.
 14. Le Lithosia, par exemple; mais le professeur Westwood (Modern Class., eto., vol. II, p. 390) parait surpris du cas. Sur les couleurs relatives des Lépidopteres diurnes et nocturnes, voir ibid., p. 333 et 392 , et Harris, Treatise on the Insects of New England, 1842, p. 315.
[^176]: 15. On peut voir des différences de ce genre entre la surface supérieure et la surface inférieure des ai.es de plusieurs espèces de papillons dans les belles Lin. So vol, XXV, Waliace, sur les Papilionides de l'archipel Malais, dans Trans. 16. Proc. Ent. Soc., mars 1868.
[^177]: l'espèce commune Spilosoma menthrasti, chex laquelle les males et les femelles sont blancs. M. Stainton a vu cette phalène rejetée avec dégoût par une couvée th jeunes dindons qui étaient d'ailleurs friands d'autres espèces; si la Cycnia se trouve donc babituellement confondue par les oiseaux avec la Spilosoma, elle échappe à la destruction, sa couleur blanche constituant pour elle un grand avantage.
 21. Il est a remarquer que, dans les lles Shetland, le male de cetto phalène, au lieu de différer de la femelle, lui ressemble souvent étroitement. Voir a cet égard M. Mac-Lachlan, Transact. Ent. Soc., vol. II, 1866, p. 459. M. G. Fraser, Nalure, avril 1871, p. 489, suggère qu'a l'époque de l'année où l'Hepialus humuli paralt dans ces lles septentrionales, les males n'ont pas besoin de devenir blancs pour que les femelles puissent les aderceroir pendant la nuit, qui n'est plus
 qu'un crépuscule.

[^178]: 24. Wallace, sur les Papilionides de l'archipel Malais (Trans. Linn. Soc., vol. XXV, 1865, p. 8, 36), cite un cas frappant d'une variété rare rigoureusement intermédiaire entre deux autres variétés femelles hien tranchées. Voir M. Bates, Proc. Entom. Soc., 19 nov. 1866, p. xL.
 25. M. Bates a bien voulu soumettre cette question a la Société d'Éntomolo gie, et j'ai reçu des réponses concluantes de plusieurs entomologistes.
[^179]: 26. H.-W. Bates, Naturalist on the Amazons, vol. II, 1863, p. 228. A.-R. Warlace, Trans. Linn. Soc., vol. XXV, 1865, p. 10.
 27. Sur l'ensemble de la question, volr la Variation des Animaux, etc., vol. II chap. XxIII (Paris, Reinwald).
[^180]: 28. La Varialion, etc., vol. II, chap. XII (Paris, Reinwald).
 29. Trans. Linn. Soc., vol, XXIII, 1862, p. 495.
[^181]: 80. Proc. Ent. Soc., Dêo. 1866, p. XLY,
 81. Wallace, Trans. Linn. Soc., vol. XXV, 1865, p. 1; Transact. Ent. Soc., vol. IV, 3e série, 1867, p. 301. Trimen, Linn. Transact., vol. XXVI, 1869, p. 497. Riley, Third annual repart on the noxious insects of Missouri, 1871, p. 163-168. On ne saurait exagérer l'importance de ce dernier mémoire, où M. Riley discute toutes les objections bleveos contro la theorio do M. Bates.
[^182]: 32. The Naturglist in Nicaragua, 1874, pi, 385,
[^183]: 33. Proc. Entom. Soc., 3 déc. 1866, p. xlv, et 4 mars 1867, p. LCXX.
 34. M. J. Jenner Weir, sur les insectes et les oiseaux Insectivores, Transaet. Entom. Soc., 1869, p. 21. M. Butler, id., p. 27. M. Riley a cité des faits analogues dans le Third annual report on the noxious insects of Missouri,1871, p. 148. Le docteur Wallace et M. H. d'Orville, Zoological Report, 1869, p. 349, citent quelques cas opposes.
[^184]: 1. Yarrell, Hist. of Brtlish Fishes, vol, II, 1886, p, 417, 425, 436. Le docteur Gunther m'apprend que chex la R. Glavata les femelles portent seules des piquants.
 2. The american nafowulist, avril 1871, p. 119.
[^185]: 6. The Field., 29 juin 1867. Pour l'assertion do M. Shaw, Edinb. Review, 1843. Un autre observateur (Scrope, Days of Salmon Fishing, p. 60) fait remarquer que le inale, comme le cerf, eloigne s'il peut tous les autres.
 \%. Yarrell's, Hist. of Brit. Fishes, vol. II, 1836, p. 10.
 7. The Naturalist in Vancouver,s Island, vol. I, 1866, p. 54.
 8. Scandinavian adventures, rol. I, 1854, p. 100, 104. p. 54.
[^186]: 12. Tiré de Yarrel (o. e L p. 261 et 266).
 13. Nature, juillet 1873, pi $\$ 4$.
 14. Ducteur Gunther, Catalogue Acanth. Fishes in Brll. Museum, 1881, p. 188-151.
[^187]: 19. F. Buckland, Land and Water, 1868, p. 377, avee figure. Nous pourrions citer une foule d'autres exemples de conformations particulieres aux mâles dont rusage est inconnu.
 20. Docteur Günther, Catalogue, etc., vol. III, p. 221 et 240.
 21. Prof. and Mmo Agasils, Journey in Brazil, 1868, p. 290.
[^188]: 22. Yarrell, $0 . c .$, vol. II, p. 10, 12, 55.
 23. W. Thompson, Ann. and Mag. of Nat. Hist., vol. VI, 1841, p. 410
 24. The American Agriculturist, 1868, p. 100.
 25. Annals and Magaz., etc., oct. 1852.
[^189]: 29. A la suite de quelques remarques sur ce sujet, que j'ai faites dans mon ouvrage sur la Variation des animaux, etc., M. W. Mayers (Chinese Notes and Queries, Aug. 1868, p. 123) a fait quelques recherches dans d'anciennes encyclopédies chinoises. Il a trouvé que certains poissons dorés ont été élevés en captivité peesdant la dynastie Sung, qui commença l'année 960 de notre ère. Ces poissons abondaient dès 1129. Il est dit dans un autre endroit qu'il a êté produit à Hangchow dès 1548 une variété dite poisson feu, vu l'intensité de sa couleur rouge. Il est universellement admiré, et il n'y a pas de maison où on ne le cultive, chacun essayant d'obtenir une couleur plus vive comme source de bénêficer
 30. Westminster Review, Juillet 1867, p. 7.
 31. Indtan Cyprinide, par M. J. M. Clelland, Asiatic Researehes, v. XIX, part. II, 1899, p. 250.
[^190]: 38. Prof. Wyman, Proc. Boston Soc. of Nat. Hist., sept. 15, 1857. - W. Turner, Journ. of Anat. and Phys., nov. 1866, p. 78. Le docteur Günther a aussi décrit d'autres cas.
 39. Yarrell, o. c., vol. II, p. 329, 838.
[^191]: 40. Le docteur Günther, depuis qu'il a publié la description de cette espéce dans Fishes of Zanzibar, du col. Playfair, 1866, p. 137, a examiné à nouveau ces individus, et m'a donné les informations que je viens de relater.
[^192]: 43. Bell, Hist. of Brit. Reptiles, 2. Edit., 1849, p. 156-159.
 44. Bell, ibid., p. 146, 151.
 45. Zoology of the Vogage of Beagle, 1843. M. Bell, ibid., p. 18.
[^193]: 46. The Nafuralist in Nicaragua, 1874, p. 321.
 47. Le mâle seul du Bufo sikimmensis (docteur Anderson, Proc. Zoolog, Soc., 1871, p. 204) porte sur le thorax deux callosités ressemblant à des plaques, et sur les doigts certaines rugosités qui servent peut-Atre au même but que les prôminences dont nous venons de parler.
 48. Bell. Hist. of Brit. Rept., 1849, p. 98.
[^194]: 55. Owen, Anat. (f Vert., vol. I, 1866, p. 615.
 56. Sir And. Smith., Zoolog. of. S. Africa: Reptilia, 1849, pl. X.
 57. Docteur A. Günther, Reptiles of Brit. India, Hay Sociely, 1864, p.304, 308.
 58. Dooteur Stoliczka, Journ. of asiatic Sac. of Bengal, vol. XXXIX 1870, p. 205, 811 .
[^195]: 65. M. N, L. Austen a conservé ees animaux vivants pendant fort longtemps. Land and Water, July, 1867, p. 9.
 66. Stoliczka, Journ. of Asiatic Soc. of Bengal, vol. XXXIV, 1870, p. 166.
[^196]: 67. Toutes ces citations et toutes ces assertions relatives au Cophofis, au Sitana et au Draco, ainsi que les faits suivants sur le Ceratophora, sont empruntees au bel ourrage du dooteur G(inther, Reptiles of Bristish India; Ray Society; 1864, p. $122,180,135$.
 68. M. Swinhoe, Proc. Zoelog. Soc., 1870. p. 240.
[^197]: 69. Docteur Bucheltz, Monatsbericht K. Preuss. Akad., janv. 1874, p. 78.
 70. Bell, o. c., p. 40.
 71. Sur le Proctotretus voir Zoology of the Voyage of the Beagle, Reptiles, by M. Bell, p. 8. Pour les lízards do l'Afrique méridionale, voir Zool. of S. Africa: Reptiles, by sir Andrew Smith, pl. 25 and 30. Pourr le Calotes indien, voir Reptiles of Britioh Indla, by doctaur Günther, p. 143.
 72. Gouther, Proc. Zoolog. Soc., 1870, D. 778, arec une Agure colorice.
[^198]: 1. This, vol. 111 (uouvelle serics), 1867, p. 424.
 2. Goth, Ilandbook tho the Birds of Australia, 1805, vul. II, p. 383.
[^199]: 3. Cite par Gould, Introd. to the Trochilide, 1861, p. 20.
 4. Gould, id., p. 52.
 5. W. Thompron, Nat. Hist. of Ireland: Birds, vol. II, 1850, p. 827.
 6. Jerdov, Birds of India, 1863, vol. II, p. 96.
[^200]: 14. Brehm, Illust. Thierleben; 1867, vol. IV, p. 351. Quelques-uues des asser tions qui précèdunt sont ampruntées à L. Lloyd, Game Birds of Sweden, etc., 1867 b. 79 .
[^201]: 1868, p. 46. Pour le Lobivanellus, voir Jerdon (o. e.), vol. III, p. 647, et Gould, Handb. Birds of Australia, vol. II, p. 220. Pour l'Holopterus, volr M. Allen, Ibis, rol. V, 1863, p. 156
 18. Audubon, Orn. Brog., vol. I, 4-13, vol. II, 492.
 19. Blyth. Land and Water, 1867, p. 212.
 20. Richardson, sur Teirao umbellus, voir Fauna Bor. Amer. Birds,1831, p. 343.
 L. Lloyd, Game orras of Sweden, 1867, p. 22, 79, sur le grand coq de bruyère et le tetras noir. Brehm (Thierleben, etc., vol. IV, p. 352) affirme toutefois qu'er Allemagne les femelles n'assistent pas en général aux assemblées des têtras noirs, mais c'est une exception à la règle ordinaire: il est possible que ler femelles soient cachées dans les buissons environnants, comme le font ces olseaux en Scandinavie, et d'autres espèces daus l'Amérique du Nord.
 21. O. c., vol. II, p. 275.
 22. Brehm, O. c., vol. IV, p. 990,1867; Audubon, o. c., vol. II, p. 498.

[^202]: 26. Hon. Daines Barrington, Philos, Trans., 1773, p. 252.
 27. Ornilhological Dictionary, 1833, p. 475.,
 28. Nalurgesch, d. Stubenvögel, 1810, p. 4. M. Harrison Weir m'écrit également: - "On m'informe que les meilleurs chanteurs mAles trouvent les premiers une compagne lorsqu'ils sont êlevés dans une même volière. n
[^203]: 32. D. Barrington, Phil Trans., 1773, p. 262, Bechstein, Stubenvögel, 1840, p. 4.
 33. O'ertégalement le eas pour lo merie d'eau, M. Hepburn, dans Zoologist, 1845-46, p. 1068.
 34. L. Lloyd, Game Birds, ete., 1867, p. 25,
 35. Barrington, o. c., p. 264. Bechstein, 0, c, p. ठ.
[^204]: 41. Sportsmann and Naturalist in Canada, by Myjor W. Ross King, 1866, p. 144-146. M. T. W. Wood fait dans Student (avril 1870, p. 116) un récit excellent de I'attitude et des habitudes de l'oiseau pendant qu'il fait sa cour. 11 dit que les touff is des oreilles ou les plumes du cou se redressent de façon à se rencontrer au sommet de la tate.
 42. Richardson, Fanna Bor. Americ.; Birds, 1831, p. 359.Audubon, o. C., vol. IV
 43. p. 507.
 44. Ce sujet a récemment êté traitế dans les travanx suivants: - Prof A. Newton, 1 bis, 1862, p. 104; docteur Cullen, id., 1865, p. 145; M. Flower Proc. of Zoolog. Soc., 1865, p. 747, etdocteur Murie, Rrac. Zool. Soc., 1868, p. 471 Daus ce dernier se trouve un excellent dessin de l'outarde australienne male au moment oú elle étale ses charmes avec le sac distendu.
[^205]: 49. C. L. Bonaparte, cité dans Naturalist Library Birds; vol. XIV, p. 126.
 50. L. Lloyd, Game Birds of Sweden, etc., 1867, p. 22, 81.
 51. Jenner, Philos. Transactions, 1824, p. 20 ,
[^206]: 52. Pour les faits qui précèdent, voir, sur les Oiseaux de Paradis, Brehm, Thierleben, vol. III, p. 325. Sur la grouse, Richardson, Fauna Bor. Americ. Birds, p. 343 et B59; Major W. Ross King, The Sportsman in Canada, 1866, p. 156; M. Haymond dans Geol. Survey of Indiana par le prof. Cox; Audubon, American Ornitholog. Biograph., vol. 1, p. 216. Sur le faisan Kaljj, Jerdon, Birds of India, vol. III, p. 533. Sur les tisserins, Livingstone, Expedilion to Zambery, 1865, p. 425. Sur les pics, Macgillivray, Hist. of Bril. Birds, vol. III, 1440, p. 84, 88,89 et 95. Sur le Upupa, Swinhoe, Proc. Zool. Soc., 23 juin 1863 et 1871 , p. 348. Sur les engoulevents, Audubon, o. c., vol. II, p. 255, et American naturalist, 1878 , p. 672. L'engoulevent d'Angleterre fait également entendre au printemps un bruit curieux pendant son vol rapide.
[^207]: 63. M. Meve, Proc. Zool. Soc., 1868, p. 199. Sur les habitudes de la bécassíne, Macgillivray, Hist. Brit. Birds, vol. IV, p. 371. Pour la bécasse américaine, Cap. Blakivston, $I b i s, 1863$, vol. V, p. 131.
 64. M. Salvin, Proc. Zool. Soc., 131
 ornithologiste distingué les dessins., 1867, p. 160. Je dois à l'obligeance de cet mit!ons.
[^208]: 55. Jerdon, Birds of India, vol. III, p. 613, 621.
 56. Gould, Introduction to the Trochilida, 1861, p. 49. Salvin, Proo. Zool. Soc., 1867, p. 160.
 57. Sclater, Proc. Zool. Soc., 1860, p. 90. Ibis, vol. IV, 1862, p. 175. Salvin, Ibis, 1860, p. 37 .
[^209]: 61. Voir les ramarques sur ce sujet dans Feeling of Beauty among animals. by J. Shaw. Athenæum, nov, 1866, p. 681.
[^210]: 62. Murie, Procced. Zoolog. Soc., 1872, p. 630.
 63. M. Monteiro, Ibis, 1862, vol. IV, p. 339.
 64. Land and Water, 1868, p. 217.
 65. Ueber die Schädelhöcher, Niederländisches Archiv fur Zoologie, vol. I part. II.
 66. D. W. Maraball, Ueber den Vogelschwany, ibid.
[^211]: 67. Jardine, Naturalist Library Birds, vol. XIV, p. 166.
 68. Sclater, Ibis, 1864, vol. VI, p. 114. Livingstone, Expedition to the Zam besy, 1865, p. 66.
 69. Jerdon, Birds of India, vol. III, p. 620.
 70. Proc. Zoolog. Soc., 1873, D. 462.
[^212]: 71. Wallace, Ann. and Mag. of Nat. Hist., 1857; vol. XX, p. 416 et dans Malay Archipelago, 1869, vaf. II, p. 890.
 72, Variation des animaux et plantes, olo., vel. 1, p. $807,881$.
[^213]: 73. Cité d'après M. de Lafresnaye dans Annals et Mag. of Nat. Hist., vol. XIlt 1854, p. 157 ; voir aussi le récit plus complet de M. Wallace dans le vol. XX 1857, p. 412, et dans Malay Archipelago.
[^214]: 75. Sclater, Intellectual Observer, janv. 1867, Waterton, WandWai.as, p. 118. Voír le travail de M. Salvin dans Ibis, 1865, p. 90.
 76. Land and Water, 1867. p. 394.
 77. M. D. G. Elliot, Proc. Zool. Soc., 1869, p. 589.
 78. Pterylography, edité par P. L: Sclater, Roy. Society, 1867, p. 14. 14.
[^215]: 79. Le plumage d'ete brun pommelé du ptarmigan a une aussi grande importance pour lui, comme moyen protecteur, que le plumage blanc de l'hiver'; on sait qu'en Scandinavie, au printemps, apres la disparition de la neige, cet oiseau se cache de peur des oiseaux de proie tant qu'il n'a pas revetu sa tenue d'eté : voir Willelm von Wright dans Lloyd, Game Birds of Sweden, 1867, p. 125.
[^216]: 80. Sur les précédentes remarques relatives aù muês; voir, pour les bécasses, etc., Macgillivray, Hist. Brit. Birds, vol. IV, p. 371; sur les Glaréolées, les courlis et les outardes, Jerdon, Birds of India, vol. III, p. 615, 630, 683 ; sur 1 e ,Totanus, $i b .$, p. 700 ; sur les plumes du Héron, ib., p. 738 ; Macgillivray, vol. IV, 1p. 435 et 444 , et M. Stafford Allen; Ibis, vol. V, 1863, p. 33.
 81. Sur la mue du ptarmigan, voir Gould, Birds of Gredt Brifain; sur les Nee farinées, ferdon, Birds of India, vol. I, p. 359, 365,369 ; sur la mue de l'Anthus, Blyth, Ibis, 1867, p. 32.
[^217]: 82. Pour les mues partielles et la conservation du plumage des males, voir, sur les outardes et les pluviers, Jerdon, Birds of India, vol. III, p. 617,637, 709, 711 ; Blyth, Land and Water, 1867, p. 84. Voir sur la mue du Paradisea, un intéressant article du docteur W. Marshall, Archives Néerlandajses, yol. VI, 1871. Sur
[^218]: 87. Journal of R. Geog. Soc.; vol. X, 1840, p. 236.
 88. Ann. and Mag. of Nat. Hist., vol. Xll, 1854, p. 157. Wallace, ib., vol, XX, 1857, p. 412 et Malay Arehipelago, vol 11, 1869, p. 252. Le docteur Bennett, cité par Brehm, Thierleben, vol. III, p. 826.
[^219]: 89. M. T. W. Wood fait (Student, avril 1870, p. 115) une description complète de ce mode de déploiement qu'il appelle unilatéral exécuté par le faisan doré et par le faisan japonais, Ph, versicolor.
[^220]: 91. Pour la description de ces oiseaux, voir Gould, Handbook to the Birds of Auslralia, vot. I, 1865, p. 417
 92. Birds of India, vol. II, 96.
[^221]: 93. Sur le Cosmetornis, voir Livingstone, Expedition to the Zambesi, 1865, p. 66. Sur le faisan Argus, Jardine, Nat. Hist. Library, Birds, vol. XIV, p. 167. Sur les oiseaux de paradis, Lesson, cité par Brehm, Thierleben, vol. HI, p. 325. Sur le Vidua, Barrow, Travels in Africa, vol. I, p. 243, et Ibis, vol. III, 1861, p. 133. M. Gould, sur la sauvagerie des oiseaux males, Handbook to Birds of Australin. vnl. H. 1865, n. 210, 457.
[^222]: 94. Tegetmeier, The Poultry Book, 1866, p. 189.
[^223]: B. Cité par T. W. Wood, dans le Student, avril 1870, p. 125.
 4. Gould, Handb. to Birds of Australia, vol. I, p. 300, 308, 448, 451. Sur 1 Partmigan, voir Lloyd, ib., p. 129.

[^224]: 5. Sur les pies, Jeqner, Phil. Trans, 1824, p. 21 ; Macgillivray, Hisf Arif. Birds., vol, I, p. 670 ; Thompson, Anh, and Mag. of Nat, Hial., vol, VM, 1848,
 p. 194,
[^225]: 6. Sur le faucon, Thompson, Nat. Hist. of Ireland, Birds, vol. I, 1849, p. 39. Sur les hiboux, les moineaux et les perdrix, White, Nat. Hist. of Selborne 1825, vol, 1. p. 189. Sur le Phœenicura. London, Mag. of Nat. Hist., vol. VIl 1834, p. 245, Brehm (Thierleben, vol. IV, p. 391) fait aussi allusion à des oiseaux trois fois accouplés le mème iour.
[^226]: 12. Acclimatization of Parrots, p. C. Buxton, M. P., Annals and Mag. of Nat. Hist., nov. 1868, p. 381.
 13. The Zoologist, 1847-18, p. 1602.
[^227]: 14. Hewitt, sur los canards sauvages, Journ. of Horticulture, janv. 13, 1863, p. 39. Audubon, sur le disdon sauvage, Ornithol. Biography, vol. 1, p. 1t; sur le mognueur, ib., vol. 1, p. 110.
 15. The lbis, vol. $\mathrm{H}, 1800$, p. 314 .
[^228]: 16. Sur les nides décorés des olseaux-mouchos, Gould, Introd. to the trochilidse, 1861, p. 19. Sur les oiseaux a berceau, Gould, Handbook to Birds of Ausiralia, vol, I, 1865, p. 444-461; M. Ramsay, 1bis, 1867, p. 456.
 17. Hist. of Brit. Birds, vol. II, p. 92.
 18. Zoologist, 1853-54, p. 3946 ,
 19. Waterton, Essays on Nat. Hist., 2• sér., p. 42, 117. Pour les assertions suirnntes, voir sur le siffleur, London, Mag. of Nat. Hist., vol. IX, p. 616 ; Lloyd,
 Scandinauian Scandinavian Adventures, vol. I, 1854, p. 452 ; Dixon, Ornemental and Domeslic Poultry, p. 137 ; Hewitt, Journ. of Horticulture, 1863, p. 40 ; Bechstein, Stu-
 benvögel, 1840, p. 230 -
[^229]: 23. Boitard et Corbí́, les Pigeons, 1824, p. 12. Prosper Lucas (Traite de l'Hérédité nat., vol. II, 1850, p. 296) a observé des faits analogues chez les pigeons.
 24. Die Taubenzucht, 1824, p. 86.
[^230]: 30. Pour les paons, voir sir R. Heron, Proc. Zool. Soc., 1835, p. 54, et le rév. E. S. Dixol, Ornamental Poultry, 1848, p. 8. Pour le dindon, Audubon, o. c., p. 4. Pour le grand tétras, Lleyd, Game Birds of Steden, 1867, p. 23.
 31. M. Hewitt, cité dans Tegetmeier, Poultry Book, 1866, p. 165.
[^231]: 39. Jerdon, Birds of India, vol. 1, p. 108. Blyth, Land and Water, 1868, p. 381 .
 40. Graba, Tageoach einer Preise gach Faros, 1830, p. 51-54. Meegillivray,

 41. Graha; o. o., p. 54; Macgilitiray, o. c., val. V, p. 3 .
 42. Variation des animaux, ste., vol. II, p. 90 (trad. frangaise).
[^232]: 46. Zoology of the Voyage of H. M. S. Beagle, 1841, p. 6.
[^233]: 47. Bechstein, Nalurgesch. Deutschland's, vol. IV, 1795, p. 31, sur une sousvariété du pigeon Monck.
[^234]: 48. Ce dessin sur bois a été gravé d'après un magnifique dessin que M. Trimen a eu l'obligeance d'exécnter pour moi; il faut lire la description des étonnantes variations que peuvent offrir les ailes de ce papillon dans leur coloration et dans leur forme, et que contient son Rhopalocera Africse Australis, p. 186.
[^235]: 1. Quatrième édition, 1865, p. 241.
 2. Westminster Review, juillet 1867. Journal of Travel, vol. 1, 1868, p. 73.
[^236]: 4. Docteur Chapuis, le Pigeon voyageur belge, 1865, p. 87.
 S. The Field, sept. 1873 .
[^237]: 6. Bechstofn, Nafurg. Deutschlands, vol. II, 1793, p. 839.
[^238]: 7. Daines Barrington pense, cepeudant, qu'il est probable (Fhilos. Tre sacfions, 1773, p. 174) que peu d'oiseaux femelles chantent parce que ce talent aurait été dangereux pour elles pendant l'incubation. It ajoute que la même cause peut expliquer l'infériorité daus laquelle se trouve le plumage de la femelle comparé à celui du méde.
[^239]: 8. M. Ramsay, Proc. Zool. Soc., 1868, p. 80.
[^240]: 9. Journal of Travel, vol. I, 1868, p. 78.
[^241]: 10. Jourral of Travel, vol. I, 1868, p. 281.
 11. Audubon, Ornith. Biography, vol. I, p. 233
 12. Jerdon, Birds of India, vol. II, p. 108; Gould, Handbook of Birds of
[^242]: 13. Comme exemples, l'Eupetomena macroura femelle a la tete et la queue d'un bleu fones, avec les reins rougeatres; la femelle du Lampornis porphyrurus est d'un vert noirâtre en dessus, avec les cottés de la gorge écarlates; l'Eulampis jugularis femelle a le sommet de la tete et du dos verts, avec les reins et la queue cramoisis. On pourrait encore citer beaucoup d'exemples de femelles, très apparentes par leur coloration; toir le magnifique ouvrage de M. Gould sur cette famille.
 14. Au Guatemala, M. Salvin (Ibis), 1864, p. 375, a remarqué que les oiseauxmouches quittaient beaucoup moins volontlers leur nid pendant un temps très chaud, sous kn soleil ardent, que pendant un temps frais, nuageux ou pluvieux.
 15. J'indiquerai, comme exemples d'oiseaux de couleurs sombres construisant des nids dissimulés, les espèces appartenant à huit genres australiens décrites, par Gould, dans Handbook of Birds of Ausiralia, vol. I, p. 340, 362, 365, 383, 387, 389, 391, 414.
 16. M. G. Hernes, Proc. Zool. Soc., 1869, p. 243.
 17. Voir sur la nidification et les couleurs de ces dernideres espdees, Gould, Handbook, etc., p. 504, 527.
[^243]: 18. J'ai consulté sur ce sujet l'ourrage de Macgillivray, British Birds, et bien qu'on puisse, dans quelques cas, elever des doutes sur les rapports existant entre le degré de la dissimulation du nid et celuí de l'apparence de la fenzelle cependant : s oiseaux suivants, pondant tous leurs coufs dans des cavités ou dans des nides couverts, ne peuvent guère passer pour apparents d'après le type précité : ce sont, deux espêces de Passer; le Sturnus dont la femelle est considérablement moins brillante que le male; le Cincle ; le Motacilla boarula (?) ; P'Erythacus (?) ; le Fruticola, deux espèces; le Saxicola; le Ruticilhu, deux espèces ; le Syluia, trois espèces; Ie Parus, trois espèces ; le Mecistara; l'Anorthura; le Certhia; le Sitta, le Yunx, le Muscicapa, deux espèces; l'Hirundo, trois espèess et le Cypselus. Les femelles des douze oiseaux suivants peuvent etre aussi considérées comme apparentes : Pastor, Motacilla alba, Parus major et P. cerruleus ; Upupa, Picus, quatre espéces de Coracias, Alcedo et Merops.
[^244]: 19. Journal of Travel, vol. I, p. 78.
 20. Voy. des faits nombreux dans l'Ornithol. Biography. Voir aussl a yelques observations curieuses sur les nids des oiseaux italiens, par Eug. Bettoni, dans Atil della Societd ilaliana, vol. XI, 1869, p. 487.
[^245]: 21. Monograph of Trogonidx, 10* edition,
[^246]: 22. A savoir le Cyanaloyon, Gould, Handbook, etc., vol. I, p. 130, 133, 136.
 23. On peut suivre chez les perroquets d'Austrálie tous les degrés de différences entre les sexes. Gould, o. c., vol. II, p. 14-102.
 24. Maggillivray, Brit. Birds, vol, II, p. 433 ; Jerdon, Birds of India, vol. II, p. 282 .
[^247]: 25. Tous les faits suivants sont empruntés à la belle Monographie des Picidées, 1861, de M. Malherbe.
 26. Audubon, Ornilh. Biogr., vol. II, p. 75. Voir l'Ibis, vol. I, p. 268.
 27. Gould, Handb. Birds of Australia, vol. II, p. 109-149.
[^248]: 31. Sur YArdelta, traduction anglaise de M. Blyth, du Règne animal, de Cuvier, p. 159, note. Sur le Faucon pelerin, M. Blyth dans Charlesworht Mag. of Nat. Hist., vol. 1, 1837, p. 304. Sur le Dicrurus, Ibis, p. 44, 1863. Sur le Platalea, Ibis, vol. VI, 1864, p. 366. Sur le Bombycilla, Audubon, Ornith. Biogr., vol. I, p. 229. Sur le Palæornis, Jerdon, Birds of India, vol. I, p. 263. Sur le Dindon sauvage, Audubon, o. c., vol. I, p. 15. Judge-Gaton m'apprend que la femelle acquiert rarement une houppe dans I'llinois. M. R.-F. Sharp a cité, Proc. zool. Soc., 1872, p. 496, des faits analogues relatifs à la femelle du Petrocossyphur.
 32. M. Blyth (traduction du Règne animal de Cuvier, en anglais, p. 158) rapporte divers exemples chez les Lanius, Ruticilla, Linaria. Audubon cite aussi un cas semblable (Ornith. Biogr., vol, Y, p. 519) relatif a un Pirangua estiva.
[^249]: 6. Swinh
 7. Swinhoe, Ib ls, July 1863 , p. 131 ; et un article antérienr contenant un extrait d'une note de M. Blyth, dans Ibis, January 1861, p. 89.
[^250]: 10. Maogillivray, Hist. Brit. Birds, vol, 1, p. 172-174.
[^251]: 11. Voir, sur ce sujet, le chap. Xxill de la Variation des Animaux, eto.
[^252]: 14. Pour les espèces ausiralionnes, voir Gould (Handbook, etc., vol. II, p. 178, 180, 186, 188). On voit au British Museum des spécimens du Pedicnemus forqualǔ australien, présentant des différences sexuelles semblables.
 15. Jerdon, Birds of India, vol. III, p. 596. Swinhoe, Ibis, 1865, p, 542; 1866,
 131, 405.
 16. Jerdon, Birds of India, vol. HI, p. 677.
[^253]: 26. Jerdon, Birds of India, vol. III, p. 698.
[^254]: 28. Gould, ib., vol. H1, p. 37, 46, 56.
 29. Audubon. Ornith. Biogr., vol. II, p. 65.
[^255]: 49. Westminster Review, July 1867, p. 5.
[^256]: 51. On n'a point encore truuvé d'explication satisfaisante de l'immense grosseur et encore moins des vives couleurs du bee du toucan. M. Bates (the Naturalist on the Amazons, II, p. 341, 1863) constate que ces oiseaux se servent de leur bee pour atteindre les fruits placés aux dernières extrémités des branches; et aussi, comme l'ont signalé d'autres observateurs, pour prendre les coufs et les jeunes dans les nids des autres. Mais, d'après M. Bates, on ne peut guère considérer re bec comme un instrument bien conformé pour les usages auxquels il sert. Li-grande masse du bec résultant de ses trois dimensions n'est pas compréhensible si l'on ne veut voir eu lui qu'un organe a saisir les objets. M. Belt (the Naluralist in Nicaragua, p. 197) croit que le bec sert dedéfense principale. ment à la femelle quand eile couve.
 52. Ramphastos carinatus ; Gould, Monogr. of Ramphastidx.
[^257]: 53. Sur le Larus, le Gavia, le Sterna, voir Macgilivray, Hist. Brit. Birds, V, p. 515, 584, 626, Sur 1'Anser hyperboreus, Audubon, o. c., IV, p. 562. Sur I'Anastomie, Blyth, Ibis, p. $173,1867$.
 $54,0 n$ peut remarquer que, chez les vautours qui errent dans les grandes etendues des plus hautes régions de l'atmosphère, comme les oiseaux marins sur l'Océan, il y a trois ou quatre espèce blanches en totalité ou en partie, et que beaucoup d'autres sont noires. Ce fait conflirme la conjecture que ces couleurs voyantes facilitent la rencontre des sexes pendant la saison des amours.
[^258]: 57. Je dois a M. Sclater toute ma reconnaissance pour l'obligeance avec laquelle il a bien voulu revoir ces quatre chapitres sur les Oiseaux et les deux suivants sur les Mammiféres, et m'éviter ainsi toute erreur sur les noms spécifiques, ou linsertion de faits que ce naturaliste distingué aurait pu reconnaitre comme erronés. Mais il va sans dire qu'il n'est nullement responsable de l'inexactitude des assertions que j'ai empruntées à diverses autorités.
[^259]: 4. M. Lamont (Deasons with the Sea-Horses, p. 143, 1861) dit qu'une bonne défense d'un morse mile pèse quatre livres, et est plus longue que celle de la femelle qui en pèse environ trois. Les màtes se livrent de furieux combats. Sur l'absence occasionnelle des défenses chez la femelle, voir R. Brouw, Proc. Zool. Soc., 1868, p. 429.
 5. Owen, Anal. of Verl., III, p. 283.
 6. M. R. Brown, Proc. Zool Soc., p. 553, 1869. Voir prof. Turner, Journal Anut. and Phys., 1872, p. 76, sur la nature homogene de ces défenses, M. J. W: Clarke parle de deux défenses développées chez les mâtes, Proc. Zool, Soc., 1871, p. 42.
 7. Owen sur le cachalot et l'ornithorhynque, o. c., III, p. 638, 641. Le docteur
[^260]: 8. Sur la structare et sữ la chute des bois du renne, Hoffberg, Ameenitates Acad., IV, p. 149, 1788 ; Richardson, Fauna, etc.; p. 241, sur l'espéce ou variété américaine ; et Major W. Ross King, the Sportsman in Canada, p. 80, 1866.
 9. Isid. Geoffroy Saint-Hilaire, Essais de zoologie générale, p. 513, 1841. D'autres caracteres mascurfis, outre les cornes, peuvent se tránsférer semblablement à la femelle; aijsi M. Boner (Chamois Hunting in the Mountains of Bavaria, 1860, 2. éd., p. 363) dit en parlant d'uue vieille temelle de chamois "qu'elle avait non seulement la tête très masculise d'apparence, mais, sur le dos, une crête de longs poifs qu'on be tronve habituellement que chez les males. "
 10. Sur le Cervubus, docteur Gray, Catalogue of the Mammalia in the British Museum, III, p. 220. Sur le Cervus Canadensis ou le Wapiti, voir J. D. Catos, Ottawa Acad. of Nat. Sclences, P. 9, mai 1868.
 11. Je dois ce renseignement au docteur Canfield. Voir aussi son mémoire, Proc. Zoolog. Soc., 1866, p. 105.
[^261]: 12. Les cornes de l'Ant. Fuchore femelles ressemblent, par exemple, à celles d'une espèce distincte, I'Anl. Dorcas, var. Corine ; voy. Desmarest, Mammalogie, p. 455 .
 13. Gray, Cataiogue Mamm. Brit. Mus., part. III, p. 160, 1852.
[^262]: 18. Le prof., Victor Carus a blen voulu prendre en Saxe, à ma demande, des renseignements sur ce point. H. von Mathusius (Viehzucht, 1872, p. 64) assure que les cornes des moutons chatrés à un age précoce disparaissent complètement ou restent à l'état de simples rudiments ; mais je ne saurais dire s'il fait allusion anx races ordinaires ou à la race mérinos.
 19. J'ai cité plusieurs expériences, et d'autres témoignages prouvent que tel est le cas. Voir la Variation, vol. II (Paris, Reinwald).
[^263]: 20. Sir J. Emerson Tennent, Ceylan, II, p. 274, 1859. Pour Malacea, Journ. of Indian Archipelago, р. 357.
 21. Calcutta, Journal of Nat. Hist., II, D. 526, 1848.
[^264]: 27. The American Naturalist, Déc. 1869, p. 552.
[^265]: 31. Owen, Anat. of Vert., III, p. 349.
 32. Rüppel dans Proc. Zool. Soc., Jan. 1836, p. 3, sur les canines chez les cerfs et chez les antilopes, suivi d'une note de M. Martin sur un cerf américain femelle. Falconer (Palxontol. Memoirs and Notes, I, 576,1868) sur les dents d'une biche adulte. Chez les vieux cerfs musqués males 'Pallas, Spic. Zool., fasc. xiII, p. 18, 1779), les canises atteignent quelquefois trois pouces de longueur, tandis que chez les femelles agees on n'en trouve que des rudiments dépassant la gencive d'un demi-pouce a peine.
[^266]: 33. Emerson Tennent, Ceylan, vol. II, p. 275, 1859; 0wen, British Fossil Mammals, p. 245, 1846.
 34. Richardson, Fauna Bor. Americana, sur l'êlan, Alces palmala, p. 236, 237 ; et sur I'extension des cornes, Land and Water, p. 143, 1869. Voy. Owen, Brit. Foss. Mammals, p. 447, 455, sur l'elan irlandais.
 35. For'est Creatures, par C. Boner, p. 60, 1861.
[^267]: 36. Voy. le mémoire intéressant de M. J. A. Allen, dans Bull. Mus. Comp. Zool. of Cambridge, United-States, vol. II, n${ }^{\circ} 1$, p. 82 . Un observateur soigneux, le Cap. Bryant, a vérifté les poids, Le docteur Gill, The Americain naluralist. Janv. 1871 ; le prof. Shaler, sur la taille relative des baleines males et femelles, Americain naluralist, jaav. 1873.
 37. Animal Economy, p. 45.
[^268]: 11. Atli della Soc. Italiana di Sc. Nat., 1873, vol. XV, fase. IV.
 12. The Times, Nov. 10, 1857. Sur le lynx du Canada, voy. Audubon et Bachman, Quadrupeds of N. America, p. 189, 1846.
 13. Docteur Murie sur'I'Otaria, Proc. Zoot. Soc., p. 109, 1869. M. J. A. Allen, dans le travail cité ci-dessus (p. 75), doute que la garniture de poils, plus longue sur le cou chez le mâle que chez la femelle, mérite d'être appelée une crinière.
[^269]: 44. Dans son excellente description des mæurs du cerf commun en Allemagne, M. Boner (Forest Creatures, p. 81, 1861) dit : "Pendant que le cerf défend ses droits contre un intrus, un autre envalit le sanctuaire du harem, et enlève trophée sur trophée. © La mème chose a lieu chez les phoques. J. A. Allen, o. c., 45. J. A. Allen, Bull. Mus. Comp. Zool. Cambridge, U. S., vol. II, 1, 99.
[^270]: 46. Dogs; their management, par E. Mayhew, M. R. C. V. S., 2• edit., D. 187192, 1864.
 47. Cité par Alex. Walker, On Intermarriage, p. 276, 1838. Voy. aussi page 244
[^271]: 48. Traité de thérédité naturelle,"vol, II, p. 296, 1850
 49. Amcenitates Acad., vol. p. 168, 1788.
[^272]: 3. Major W. Ross King (The sportsman in Canada, 1866, p. 53, 131), sur les morurs de l'Élau et du Renne sauvage.
[^273]: Hist, Pallas, Spicilegia Zoolog., fasc. xII, p. 24, 1799; Desmoulins, Dict. class.

[^274]: 18. Voy. les chapitres concernant ces animaux dans mes Variations, ete., vol. I. Dans le vol. II, p. 73, aussí le chap. xx sur le selection pratiquéo par les peuples à demi cirllistes. Pour la chênre Berbura, docteur Gray, Gatal., etc., p. 157.
[^275]: 19. Osphranter Rufus, Gould, Mammals of Australia, II, 1863. Sur le Didelphis, Desmarest, Mammalogie, p. 256.
 20. Ann. and Mag. of Nat. Hist., p. 325. Nov. 1867. Sur lo Mus minufus, Desmarest, o. c., p. 304.
 21. J. A. Allen, Bull. Mus, Comp, Zool. of Cambridge. United States, p. 207,
[^276]: 31. Gervais, Hist. Nat. des Mammifères, p. 103, 1854 : il donne des figures vier, Hist. nat. des Mamest, Mammal., p. 80. Geoffroy Saint-Hilaire et F. Cu-
[^277]: 32. Varialion, etc., vol. II, 111 (trad. française), 1869.
 33. Sir S. Baker, The Nile tribularies of Abse par Owen, vol. I, p. 194, 1861.
 34. Sir S. Baker, The Nile tributapies of Abyssinia, 1867.
[^278]: 36. Novæ Species Quadrup. e Glirium ordine, 1778, p. 7. L'animal que j'ai
 appelé chevreuil est le Capreolus Sibiricus subecaudatus de Pallas.
[^279]: 41. Docteur Gray, Gleaninge, etc., p. 64. M. Blyth (Land and Water, 1869, p. 42), parlant du Cerf cocrion de Geylan, dit qu'll est, dans la saison ou il renouvelle ses cornes, beaucoup plus brillamment tacheté de blanc que l'espèce ordinaire.
 42. Falconer et Cautley, Proe. Geolog. Soci, 1843; et Falconer, Pal. Mehoire, vol. I, p. 196.
[^280]: 44. Proc. Zool. Soc., 1862, p. 164. Docteur Hartmann, Ann. d. Landw.,
[^281]: 45. J'af observé ce fait aux Zoological Gardens et on peut en voir de nombreux exemples dans les planches coloriees de Geoffroy Saint-Hilaire et de F. Cavier, Hist, nat. des Mammiföres, t. I, 1824.
 46. Bates, The Naturalist on the Amazons, vol II, 1863, p. 310.
[^282]: 47. J'al vu la plepart des singes ci-dessus décrits aux Zoological Gardens. La description du Semnopilhecus nemœeus est empruntee à W. C. Martin, Nat. Hist. of Mammalia, 1841, p. 460 ; voir aussí les pages 475 , 623.
[^283]: 1. Schaffhausen, traduit dans Anthrop. Review, p. 419, 420, 427, Oct. 1868.
[^284]: 2. The Heart of Africa, vol. I, p. 5, 44.
 3. Ecker, trad. dans Anthrop. Review, p. 851-356, Oct. 1868. Welcker a étudi6 avec soin la comparaison de la forme du crAne chez l'homme et chez la femme.
 4. Ecker et Welcker, o. c., p. 352, 355. Vogt, Leçons sçr l'homme, p. 98 (trad, (rançaizo).
[^285]: 5. Schaaffhausen, Anthrop. Review, p. 429.
 6. Pruner-Bey, sur les enfants nègres, cité par Vogt, Leçons sur l'homme (trad. française, 1865). Pour plus de détails cités par Winterbottom es Camper, voir aussi Lawrence, Lectures on Physiology, etc., p. 451, 1822. Pour les enfants des Guaranys, Rengger, Saugethiere, etc., p. 3. Godron, De l'espèce, II, p. 253, 1859. Sur les Australiens, Waitz, Introd, to Anthropology (trad, anglaise, p. 99, 1863).
 7. Rengger, o. c., p. 49, 1830.
 8. Comme chex le Macacus cynomolgus (Desmarest, Mammalogie, p. 65) of 1'Hylobates agilis (Geoffroy Saint-Hilaire ot F. Guvier, Hist. nal, des Mamm., I,
 p. 2, 1824).
 9. Anthropological Review, p. 353, Oct. 1868.
[^286]: 10. M. Blyth m'informe qu'il ne connatt qu'un seul cas où la barbe, les favoris, etc., d'un singe soient devenus blancs daas la vieillesse, coinme cela est si commun ches nous. Cela est cependant arrivé à un vieux macacus cynomolgus captif, qui portait des moustaches remarquablement longues et semblabies à celles d'un homme. Ce vieux singe ressemblait, en somme, comiquement à un des monarques régnant alors en Europe; aussi lui avait-on donné son nom. Les cheveux grisonnent à peine chez certaines races humaines; ainsi M. D. Forbes m'apprend, par exemple, qu'il n'a jamais vu un seul cas de cheveux blancs chez les Aymaras et chez les Quichuas de l'Amérique du Sud.
 11. C'est le cas pour les femelles de plusieurs espèces de Hylobates; Geof-
[^287]: froy Saint-Hilaire et Fn Cuvier, Hist. nat. des Mamm., t. I, volr sur H. lar., Penny Encycl., II, p. 149, 150.
 12. Les résultats ont étó calculés par le docteur Weisbach d'après les mesurages faits par les docteurs K. Scherzer et Schwarz, Reise der Novara Anthropol, Theil, p. 216, 231, 234, 236, 239, 269, 1867.
 13. Voyage d Saint-Kilda (3• edit., 1753, p. 37).

[^288]: 14. Sir J. E. Tennent, Ceylan, II, p. 107, 1859.
 15. Quatrefages, Revue des Cours scienlifiques, p. 630, 1860. Vogt, Leçons sur l'homme, p. 164 (trad. française).
 16. Sur la barbe des nögres, Vogt, o. c., p, 164; Waitz, Introd. to Anthropology (trad. anglaise, I, p. 96, 1863). Il est à remarquer qu'aux Etats-Unis Investiyations in Military and Anthropological statistics of American soldiers, p. 569, 1869), les nègres purs ainsi que leur progéniture métis paraissen avoir le corps presque aussi velı que les Européens.
 17. Wallace, The Malay Archipelago, II, p. 178, 1869,
 18. Docteur J. Barnard Davis, sur les races océaniques; Antrop. Review, p. 185, 191, Avril 1870
 19. Catlin, North American Indians, 3• édit., II, p. 227, 1842. Sur les Guara-
 nys, Azara, Vogage dans l'Amér. mérid., II, P. 58, 1809; Rengger, Sưuge-
 thiere, etc., p.
[^289]: 20. Le professeur et madame Agassiz (Journey in Brazil, p. 530) ont remarqué moins de différences entre les sexes des indiens américains, qu'entre ceux des nègres et des races plus élevées. Voir aussi Rengger, o. c., sur les Guaranys, p. 3.
 21. Rütimeyer, Die Grenzen der Thierwelt (Considérations sur la loi de Darшin), etc., 1868, p. 64.
 22. A Journey from Prince of Wates fort, in-8. Edition de Dublin, 1796, 104. Sir J. Lubbock (Origin of Civilisation, p. 69, 1870) cite d'autres exemples semblables dans l'Amérique du Nord. Pour les Guanas de PAmérique du Sud, voir Azara, o. c., II, p. 94.
[^290]: 23. Sur les combats des Gorilles màles, docteur Savage, Boston Journal of Nat. Hist., V, p. 423, 1847; sur Presbytis entellus, voir Indian Field, p. 146 ,
 24.
[^291]: 24. J. Stuart Mill (The Subjection of Women, p. 122, 1869) remarque * que les choses dans lesquelles l'homme excelle le plus sur la femme sont celles qui exigent le travail le plus laborieux et la langue érude de pensés isolees. \# Qu'est-ce que eela, sinon de l'energie et de la persévérance?
 25. Maudsley, Mind and body, p. 31.
[^292]: 26. Il y a une observation de Vogt qui a trait à ce sujet : "C'est que la différence qui existe entre les deux sexes, relativement à la capacité crânienne, augmente arec la perfection de la race, de sorte que l'Européen s'élève plus au-dessus de l'Européenne, que le règre au-dessus de la négresse.. Welcker a trouvé la confirmation de cette proposition émise par Huschke, dans les mesures qu'il a relevées sur les crânes allemands et nègres.n (Leçons sur l'Homme, p. 99, trad. française). Mais Vögt adruet que ce point exige encore des observations.
 27. 0 wen, Anat. of Vertebrales, III, p. 603.
[^293]: 28. Journ. of Anthrop. SOoc., p. LVII et LXVI, Avril 1869.
 29. Docteur Scudder, Notes on Stridulation, dans Proc. Boston Soc. of Nat.
[^294]: 31. The American Naturalist, 1871, p. 761.
[^295]: remarqué qu'un de ses vieux chiens hurlait quand la flûte donnait le si bémol, mals à cette uote seulement. Je puis ajouter qu'un autre chien gémissait quand il entendait une note fausse dans un concerto.
 34. M. R. Brown, Proc. Zool. Soc., p. 410, 1868.

[^296]: 35. Journal of Antrop. Soc., p. clv, Oct. 1870. Voir les derniers chapitres de Prehistoric Times de Sir J. Lubbock, 2e édit. 1869, qui contient une description remarquable des habitudes des sauvages.
[^297]: 36. Depuis l'impression de ce chapitre j'ai lu un article remarquable de M. Chauncey Wright (North American Review, p. 293, Oct. 1870), qui, discutant le sujet en question, remarque : « Il y a beaucoup de conséquences des lois floales ou des uniformités de la nature par lesquelles l'acquisition d'une puissance utile amènera avec elle beaucoup d'avantages ainsi que d'inconvénients actuels ou possibles qui la limitent, et que le principe d'utilité n'aura pas compris dans son action. a Ce pripcipe a une portée considérable, ainsi que j'ai cherché à le démontrer dans l'un des premiers chapitres de cet ourrage sur l'acquisition qu'a faite l'homme de quelques-unes do ses facultés mentales.
[^298]: 37. Voir lintéressante discussion sur l'Origine et la fonction de la musique, par M. Herbert Spencer, dans ses Essays, p. 359, 1858, dans laquelle l'auteur arrive à une supposition exactement contraire à la mienne. Il conclut, comme autrefois Diderot, que les cadences employées dans un langage ému fournissent la base d'après laquelle la musique s'est développée, tandis que je conclus que les notes musicales et le rythme ont été en premier lieu acquis par les ancêtres males ou femelles de l'espèce humaine pour charmer-le sexe opposb. Des tons musicaux, s'associant ainsi fixément à quelques-uns des seatiments passionnés les plus énergiques que l'animal puisse ressentir, sont donc émis instinctivement ou par association, lorsque le langage a de fortes émotions a exprimer. Pas plus que moi, M. Spencer ne peut expliquer, d'une façon satisfaisante, pourquoi les notes bautes ou basses servent à exprimer certaines émotions, tant chez l'homme que chez les animaus inférieurs. M. Spencer ajoute une discussion intéressante sur les rapports entre la poésie, le récitatif of le chant.
 38. Rengger, o. c., 49.
[^299]: 39. Winwood Reade, The Martyrdom of man, 1872, p. 441, et Africain Sketch Book, 1873, vol. II, p. 313.
 40. Je trouve dans Lord Monboddo, Origin of Langage, vol. I (1774), p. 469, que le docteur Blacklock pensait également que le premier langage de l'homme avait été la musique, et qu'avant que nos idées fussent exprimées par des sons articulés, elles l'avaient été par des sons inarticulés graves ou aigus selon la circonstance.
 41. Voy. une discussion intéressante sur ce sujet dans Häckel, Generelle Morphologie, vol. II, p. 246, 1866.
[^300]: 42. Le professeur Mantegazza, voyageur italien, donne une description excellente de la manière dont, dans toutes les parties du globe, les sauvages so décorent, dans "Rio de la Plata, Viaggj e Studj, 1867, p. 525-545, " et c'est à cet ouvrage que nous avons emprunté les documents suivants, lorsque nous n'indiquons pas une autre origine. Voy. Waitz, Introd. to Anthropology, vol. I, p. 275, 1863 (trad. anglaise). Laurence, Lectures on Physiology, 1822, entre dans de grands détails. Depuis que j’ai écrit ce chapitre, Sir J. Lubbock a publie sounC -igin of Civilisation, 1870, contenant un intéressant chapitre sur le présent sujet; je iui ai emprunté quelques faits (p. 42,48) sur l'habitude qu'ont les sauvages de teindre leurs cheveux et leurs dents et de percer celles-ci.
 43. Humboldt, Personal Narralive (trad. angl.), IV, p. 515; sur limagination déployée dans la peinture du corps, p. 522 ; sur les modifications dans la forme du mollet, p. 466.
[^301]: 44. The Nile Tributaries, 1867; The Albert N'yanza, vol. I, p. 218, 1866
 45. Cité par Pricharã, Phys. Hist. of Mankind, 4e éd., vol. I, p. 321, 1851 46. Sur les Papous, Wallaee, Malay Archipelago, vol. II, p. 445. Sur la coiffure des Africains, Sir S. Baker, The Albert N'yanza, vol. I, p. 210.
[^302]: 49. Livingstone, British Association, 1860; rapport dorné dans l'Athenæum, July 1860 , p. 29.
 50. Sir S. Backer (o. c., I, 210), parlant des indigènes de l'Afrique centrale, dit que chaque tribu a sa mode distincte et invariable pour l'arrangement des cheveux. Voir, sur l'invariabilité du tatouage des Indiens de l'Amazone, Agassiz, Journey in Brazil, p. 318, 1868).
 51. Rev. R. Taylor, New Zealand and its Inhabitants, p. 152, 1855.
 52. Mantegazza, Viaggj e Studj, p. 642.
[^303]: 63. Travels in S. Africa, vol. I, p. 414, 18シi.
 64. Voir Gerland, Ueber das Aussterben der Naturvölker, p. 51, 53, 55, 1868; Azara, Voyage, etc., II, p. 116.
[^304]: 55. Sur les Productions végétales employées par les Indiens de l'Amérique du Nord- Ouest, Pharmaceutical Journal, X.
 56. A Journey from Prince of Wales Fort, p. 89, 1796.
 57. Gité par Prichard, Phys. Hist. of Mankind, 3 e éd., IV, p. 519, 1844. Vogt, Leçons sur l'homtme, p. 166 (trad. française). L'opinion des Chinois sur les Cingalais, E. Tennent, Ceylan, 1I, p. 107, 1859.
[^305]: 58. Prichard, emprunté à Crawfurd et Finlayson; Phys. Hist. of Mankind, IV, p. 534,535 .
 59. "Idem Ilastrissimus viator dixit mihi præcinctorium vel tabulam feminæ, quod nobis teterrimum est, quondam permagno æstimari ab hominibus in hae gente. Nunc res mutata est, et censent talem conformationem minime optandam esse."
 60. Anthrop. Review, p. 237, Nov. 1864. Waits, Introd. to Anthropology, vol. 4, p. 105, 1863 (trad. anglaise).
[^306]: 61. Mungo Park, Travels in Africa, p. 53, 131, 1816. L'assertion de Burton est citée par Schaaffhausen, Archiv für Anthropolog., 1866, p. 163. Sur les Banyai, Livingstone, Travels, p. 64. Sur les Cafres, le Rev. J. Shooter, The Kafirs and the Zulu country, vol. I, 1857.
 62. Pour les Javanais et les Cochinchinois, Waitz, o. c., voi. 5. p. 305. Sur les Yura-caras, A. d'Orbigny cité par Prichard dans Phys. Hist., etc., V, p. 476, 3. édit.
[^307]: 63. North American Indians, par G. Gatlin, vol. I, p. 49; II, p. 227, $3 \cdot$ édit., 1842. Sur les naturels de l'tle Vancouver, voy. Sproat, Scenes and Sfudies of Savage life, p. 25, 1868. Sur les Indiens du Paraguay, Azara, Voyages, etc., vol. II, p. 105.
 64. Sur les Siamois, Prichard, o. c., IV, p. 533. Japonais, Veitch, dans Gardner's Chronicle, p. 1104, 1860. Nouveaux-Zélandais, Mantegazza, Viaggi, etc., p. 526,1867 . Pour les autres nations voir les références dans Lawrence, Lectures on Physiology, etc., p. 272, 1822.
 65. Lubbock, Origin., etc., p. 321, 1870.
 66. Le docteur Barnard Davis cite Prichard et d'autres pour ce qui est relatif aux Polynésiens, dans Anthrop. Review, p. 185, 191, 1870.
[^308]: que nous considérons comme belle est admirfe dans lo monde ontier. Anthrop. Review, p. 245, March, 1864.
 69. Personal Narrative, IV, p. 518 (trad. ang.). Mantegaxza, Viaggj e Studj, 1867, insiste fortement sur ce même principe.
 70. Sur les crâues des tribus américaines, Nott et Gliddon, Types of Mankind, p. 440, 1854; Prichard, o. c., I, p. 321 ; sur les naturels d'Arakhan, ib., IV. p. 537; Wilson, Physical Elinnology, Smithsonian Inst., p. 288, 1863; sur les Fidjiens, p. 290, sir J.-Lubbock (Prehistoric Times, 20. é., p. 506, 1869) donne un excellent résumé sur ce sujet.
 71. Sur les Huns, Godron, De l'Espèce, vol, II, p. 300, 1859. Sur les Tartiens, Waitz, Anthropologie, vol. I, p. 305 (tr. angl.); Marsden cité dans Prichard, o. c., V, p. 67; Lawrence, o. c., p. 337.
 72. Ce fait a eté vérifé dans Ie royage de la Novara; partie anthropologique: docteur Weisbach, p. 265, 1867.

[^309]: 73. Smithsonian Institution, p. 289, 1863. Sur les modes des femmes arabes,

 Sir S. Baker, The Nile Tributaries, p. 121, $\mathbf{3} 867$.
 74. La Variation des Animaux et des Plantes,
 75. Schaalfhausen, Archiu für et des Plantes, etc., vol. I, p. 214; vol.II, p. 240. Anthropologie, p. 164, 1866.

[^310]: 76. M. Bain a recueilli (Mental and Moral Science, p. 304-314, 1868) environ une douzaine de théories plus ou moins différentes sur l'idée de beauté; mais aucune n'est identique avec celle donnée ici.
[^311]: 1. "Schopenhauer and Darwinism " in Journal of Anthrop. Janvier 1871,
[^312]: 6. Discours a l'Association Britan
 of the lower races of Man, p. 20, 1870, On the Soctat and rellsious Conditions
[^313]: 7. Origin of Civilization, p. 86, 1870. Voir les ouvrages précités sur la parenté rattachée au sexe féminin, ou à la tribu seutement.
 8. M. C. Staniland Wake se prononce vivement (Anthropologia, March, 1874, p. 197) contre les opinions de ces trois écrivains relativement à l'existence antérieure d'une promiscuité presque absolue; il pense que ron peot expliquer autrement le système classifieateire de parenté.
 9. Brehm (Illustr. Thierleben, 1, p. 77) dit que le Cynocephatus hamadryas vit en grandes troupes contenant deux fois autant de fermelles que de males adultes. Voy. Reng\&er, sur les especes polygames améríaines, et Owen (Anat. of Vert., 以I, p. 746), sur les espèces monogames du pays.
[^314]: 10. Docteur Savage, Boston Journ. Nat. Hist., V, p. 423, 1845-47.
 11. Prehistorie Times, 1869, p. 424 .
 12. M. Mc Lennan, Primutive Marriage, 1865. Voy. surtout, sur l'exogamie et
 l'infanticide, p. 130, 138, 165.
[^315]: 13. Docteur Gerland (Ueber das Aussterben der Naturvölker, 1868) a recueilli beaucoup de renseignements sur l'infanticide; voy. les p. 27, 51, 54. Azara (Voyages, etc., II, p. 94, 116) entre dans les détails sur ses causes. Voy. aussi Mc Lennan (o. c., p. 139) pour des cas dans l'Inde.
[^316]: 14. Mc Lennan, Primitive Marriage, p. 208; Sir J. Lubboek, Origin, ote., p. 100. Voy. aussi M. Morgan (o. c.) sur la prépondérance qu'a eue autrofois 1a polyandrie.
 15. Voyages, etc., H, p. 92-95. Colonel Marshall, \& Amongst the Todos ${ }^{212}$.
[^317]: 16. Burchell (Travels in S. Africa, II, p. 58, 1824) dit que chez les peuples sauvages de l'Afrique du Sud, le célibat ne s'observe jamais, ni chez les hommes ni chez les femmes. Azara (o.c., II, p. 21, 1809) fait précisément la mème remarque à propos des Indiens sauvages de PAmérique méridionale.
[^318]: 17. Anthrop. Review, p. xvi, Janv. 1870.
 18. De la Variation, ete., II.
[^319]: 19. Un auteur ingénieux conclut, après avoir comparé les tableaux de Raphaël, ceux de Rubens, et ceux des artistes français modernes, que lidée de la beauté n'est pas absolument la même dans toute rBurope : volr les Vies de Haydn et de Mozart, par M. Bombet.
[^320]: 20. Azara, Voyages, etc., II, p. 23. Dobrizhoffer, An Account of the Abipones, II, P. 207, 1822 ; Capitaine Musters, in " Proc. R. Geograph. soc. ", vol. XV, p. 47 ,
 WHliams, Sur les habitants des zation, p. 79, 1870. Sur les Fuégtens, Fidji, cité par Lubbock, Origin of Civili-
[^321]: 21. Contributions to the Theory of Natural Selection. M. Wallace croit, p. 350, "que quelque pouvoir intelligent a guidé ou détecminé le développement de l'homme ", et considère l'absence de poils sur la peau comme résultant de ce fait. Le Rếv. T. Stebbing, dans un commentaire sur cette opinion (Transactions of Devonshire Assoc. For Science, 1870), fait la remarque que, si M. Wallace * avait appliqué son talent ordinaire a la question de la nudité de la peau humaine, il aurait pu entrevoir la possibilité de lintervention de la selection par lá beauté supérieuré qui en résuite, ou par lavantage que procure une plus grande propreté. »
[^322]: 23. Invetigations into Military and Anthropologieal Statisties of American soldiers, B. A. Gould, p. 568, 1869. - Un grand nombre d'observations faites avec soin sur la pilosité de 2.129 soldats noirs et de couleur pendant le bain, donuent co résultat, "qu'au premier coup d'ceil il y a fort peu de différence, si meme il y en a une, entre les races noires et les races blanches suus ce rapport. " Il est cependant certain que, dans leur pays natal de l'Afrique, beaucoup plus chaud, les negres ont le corps remarquablement glabre. In faut d'ailleurs ration, Ce mélange constitue purs et les mulatres sont compris dans cette énumtprincipe dont j'ai ailleurs démontréreonstance fàcheuse, en ce que, d'après le ment sujettes a faire retour au caractere pén races croisées seraient éminemoriginels demi-simiens.
 24. Je pourrais à peive citer une opinion exprimée dans cet ourrage, qui ait rencontré autant de défaveur que la présente explication sur la perte des poils chez l'homme, grace à laction de la sélection sexuelle; mais ancun des arguments qu'ou m'oppose ne me semble avoir beaucoup de poids si l'on réfiéchit aux faits qui lendent i prouver que le nudité de la peau est, jusqu'a un certain point, un caractêre sexuel secondaire chez thomme et chez quelques-uns des quadru25. Ueber die Rel, Die Fortschritte des Darwinism, 1874, p. 80. Archiv für Anat. und Phys., p. 40, 1837. menschlichen Körper, dans Müller's
[^323]: 1. Limits of Natural Selection, dans North Americtis Review Ott. 1870 n. 295.
[^324]: 2. Le Rếv. J. A. Picton discute ce sujet dans son livre intitule New Theories and Old Faith, 1870.
[^325]: Absence de caractéres de ce genre dans les classes inférieures. - Couleurs brillantes. - Mollusques. - Annélides. - Chez los Crustacés, les caractères sexuels secondaires sont fortement développés, dimorphisme, couleur, caractères acquis seulement à l'état adulte. - Caracteres sexuelı des araignées, stridulation chez les males. - Myriapodes.

