

CHARLES DARWIN'S MARGINALIA

I dedicate this book to
David Kohn who sighted the fish in the first place;
Peter Gautrey who kept the nets in perfect repair, while
Nick Gill struggled to land what turned out to be a whole shoal.
M.A.D.G.

CHARLES DARWIN'S MARGINALIA Volume I

Mario A. Di Gregorio with the assistance of
N.W. Gill

© 1990 Mario A. Di Gregorio All rights reserved

Library of Congress Cataloging-in-Publication Data

Darwin, Charles, 1809-1882.
[Selections. 1990]
Charles Darwin's marginalia / [edited by] Mario A. Di Gregorio with the assistance of N.W. Gill.
p. cm. - (Garland reference library of the humanities; vol.
783)

Includes bibliographical references.
Contents: v. 1. Books.
ISBN 0-8240-6639-1 (v. 1: alk. paper)

1. Darwin, Charles, 1809-1882-Quotations. 2. Marginalia. I. Di

Gregorio, Mario A. II. Gill, N.W. (Nicholas W.) III. Title.
IV. Series.

QH365.A1 1990
575'.0092-dc20

Laudata sii, Diversità
delle creature, sirena del mondo! Talor non elessi perché parvemi che eleggendo io t^{\prime} escludessi,
o Diversità, meraviglia
sempiterna . . .
GABRIELE D'ANNUNZIO
LAUS VITAE'

acknowledgments

In the first place I should like to thank wholeheartedly the three people to whom this volume is dedicated, and without whom it would have been impossible. David Kohn conceived the original project - though no-one anticipated the gigantic proportions to which it would grow. Nick Gill, my valued friend and collaborator, has worked as research assistant, general editor and 'typesetter', performing technical feats that baffle me utterly. Peter Gautrey, recently retired from the Manuscripts Room of Cambridge University Library, was always a superb source of warm and knowledgeable support: to this true gentleman, generations of Darwin scholars are deeply grateful.

It is also a pleasure to record our debt to the staff of the Darwin Correspondence project, especially Ann Secord, Janet Browne, Marsha Richmond and Stephen Pocock, who continually sustained us with encouragement and much valued advice and experience. Frederick Burkhardt kindly allowed me to take from the first volume of the Correspondence the list of books Darwin had with him on board the Beagle.

In the early stages my research was funded by the British Academy and later by the Royal Society, for whose support I am duly grateful. The work took us to Down House, where we greatly appreciated the homely efficiency of Philip Titheradge. It is also a pleasure to thank the staff of the University Library, particularly Janice Fairholm of the West Room, and Arthur Owen for granting special privileges of access to the manuscripts.

Last but not least, I should like to record our enormous debt to all the staff, temporary and permanent, of the Manuscripts Room, superintended by our friend Godfrey Waller, and graced by the ever-helpful Jayne Ringrose, and Margaret Pamplin, who found it in her heart to laugh benevolently when my assistant, who shall briefly be nameless, tipped an entire trolley of priceless books and pamphlets across the floor. "Were they in alphabetical order?"

M.A.D.G.
Cambridge
December 1989

contents

Prologue and introduction ix-xxxvii

Part one: catalogue and transcription
table of titles xli-lxi
text
1-895

Part two: index and conceptual concordance
lxiii ff

Epilogue
prologue and introduction

Some time ago David Kohn had the idea that it would be beneficial to have some kind of outline catalogue to Charles Darwin's marginal annotations. A long story and a number of years later, something rather more complex at last sees the light of day. Like all good stories, ours grew in the telling, and this volume is now intended as the first of three which will provide a complete transcription of the marginalia and a classified map of the whole corpus of annotations. The 'long story' by which the original germ has become a projected multi-volume set has involved the gradual addition of new layers, during which the bare catalogue became first a partial transcription and then a complete one, hence now entitled 'Catalogue and transcription'. By a parallel process, what started as a brief conceptual record of the principal content of the annotations in each book eventually gave birth to the huge document which forms Part two of this volume. We felt that the term 'conceptual concordance' would designate our purposes in Part two readily enough; further explanation is given on p. xviii. Finally, however, we concluded that our readers might be unnerved at the thought of a text of this density not having an 'index', and so the hybrid title 'Index and conceptual concordance' was eventually fixed.

The process has thus in essence been a continuous amplification of an at first very narrowly defined objective - almost echoing CD's request:
"Clean well the pencil marks.- Keep Book Clean. Write smallish on one side, number your pages." (see p. 227 g)
We can fairly claim to have done a little better than that, given the latter-day wonders of camera-ready copy.

CD's instructions here were in fact originally issued to one of his amanuenses, probably Mr Norman, a shadowy figure for whom we came to feel a considerable sympathy. The ground level of our work has been just about as pedestrian as his, in copying everything out to provide the 'Catalogue and transcription' which forms Part one of this volume. At least in Part two, and more especially here in this Introduction, we have the luxury of spreading our wings a little into the realms of interpretation; such joys were not to be for the hapless amanuensis. "Mr Norman end here" (390c), CD instructs whenever the interesting bits seem about to begin.

Having established the foundations of our role, we headed off towards finding our material. The principal locations of Darwin's annotations are the margins around the text of the books, separate sheets or 'slips' of paper, and the front and back inside covers of the books. These different locations, we believe, constitute different layers of annotation emanating in the main from different occasions on which CD paid attention to a book. The 'slips' are now mainly found stuck or pinned inside the back cover - though we believe that is not where they spent the prime of their working lives. The quality and the colour of the paper used for these slips vary, again probably implying different bouts of attention. We have seen fit to distinguish three broad types: smooth blue paper; rougher yellow-mottled grey-blue paper; and the rest (mainly nondescript white or greyish paper). We report the material from these various locations in the following order: notes and/or slips inside the front cover; notes and/or slips inside the back cover; slips attached anywhere else in the body of the book; marginal marks and comments in the body of the book.

As to our presentation of the material transcribed in Part one, we have provided a 'Key to symbols used in Part one' on the sheet at the front of the book. The key is hopefully self-explanatory; the only further detail which needs mentioning is that each column in Part one is numbered, and is referred to as if it were a page.

So much for our code-marks; CD however has some of his own. The capital letters "Q" (for "quote") and "NQ" (sometimes apparently for "not quote", sometimes for "note quote") are frequent. There are also other much more occasional letters, such as " H " (for heredity or inheritance), " S " (for selection), and "D" (usually dichogamy). But others are less fathomable: e.g. brown or reddish pencil crosses: "X means used for 1st volume", he says at a certain point (122c) - but does this apply generally? As with the mysterious coloured ticks (or are they 'V's or 'L's?) which pop up here and there, and the 'O's in the margin in some plant books, we have not thought it part of our job as transcribers to decode these marks, and are indeed thankful to be able to hand such puzzles over to the wider company of Darwinists. It is worthwhile, however, to draw attention to the way these marks run through the craggy mass like thin veins of special little crystals, presumably meaning something.

Our fitful involvement over the years in the production of this material, at computer terminals and in libraries, both in Cambridge and at Down House, has included many hours spent in the U.L. archives themselves - a privilege which facilitated our work immensely, despite the curious effects of the changeless bookstack weather. The project has also survived a double bomb scare, a fire beneath the computer centre which put the tapes out of action for many a long week ('on a shelf gathering dust' becomes in these latter days 'on a tape gathering smoke particles'), and the near-arrest of the assistant author in a certain College library where he was mistaken for the key to a missing case (cf fn 12). CD's remark to the intrepid Wallace felt at times distinctly pertinent:
"I am astonished you ever returned alive" (842a)
"(from now I shall skip largely)" (812d)
Here we find CD instructing himself to pay only cursory attention to the remainder of the book in question (Vaucher's Histoire physiologique des plantes d'Europe). What, more generally, has our reading of his marginalia revealed to us about his procedures in reading the scientific books he owned? Given how systematic CD seems to have been, it is not difficult to build a general picture.

CD acquires a book and begins reading. It does not take him long to make his judgment about the quality and usefulness of the book. If, as was quite frequently the case, the verdict was broadly dismissive, he would usually persist, but less intensively and only in the hope of encountering a handful of useful pieces of data: hence the large skipping, or comments to the effect "only skimmed". During this basic reading, intensive or otherwise, the margin is scored and peppered with comments. At the end of the reading, he would now list out the locations of his more important comments and margin-scores on an inside cover (usually the back cover), occasionally adding brief mnemonic notes.

The book will now probably lie fallow - maybe even for a number of years - until the lucky moment arrives for it to participate in the process of data-collection for a CD publication. At this stage, the list of locations is re-examined, and a new, shorter list made on a separate sheet of paper of the most important locations, now with details in the form of long-hand notes about the information to be gleaned at those locations. "I will cease extracting", he says at a certain point (668f), reinforcing our growing impression of him as a kind of intellectual dentist. We have the strong feeling that he hardly ever reread the book itself - a feeling underlined by his exceedingly rare self-instruction to "Read second time" (545c), which would scarcely make sense if he usually did this anyway. However many years later he returned to the book, he was confident that he had already 'extracted' everything of value.

The separate slips containing the vital gems at this point reach the prime of their working lives: we imagine those relevant to the publication in progress now collected in a heap (or in CD's systematic case, no doubt a pile) on the writing table, being finally reviewed. It is at this stage, we presume, that the code-letters "Q" or "NQ" are entered on the slips and/or at the original locations in the text against the items he has decided to use. The set of slips, together with CD's own notes and drafts, combine for a while into 'Portfolios of working notes' for the writing of the publication in question. Once the publication has been pieced together, "slips all put in proper places" (572 h) - i.e. stuck for any future reference usually inside the back cover of the now fully-harvested book. A slip may take part in this 'cycle' a number of times - its important underlying content, as we shall see later, being the broad theoretical themes invoked by the data recorded on it.

There are of course exceptions to this general procedure - though not, we feel, all that many; and only two are worth noting specifically. The first concerns books that CD read early in his career, where one is likely to encounter inside-cover comments not referred to page-numbers in the text of the book, making recovery of the original data extremely tiresome. The other, more significant exception is the occasional set of slips stuck into the text of a book - these were quite possibly part of the initial thorough reading, and are there to facilitate understanding of the text, especially anything requiring calculation.

It is for the wider company of Darwinists to embellish this basic picture of CD's reading habits. Our brief outline here is but the prelude to analysis of his interaction with his scientific library.

We found one annotation particularly evocative as a metaphor of the contents of the marginalia as a whole:
"I suspect reefs of diff strata in diff parts" (536h)
Apart from reminding us of CD's early involvement in geology, this remark suggests a summary of our hypothesis about CD's main mode of 'processing' scientific reading matter: the margins, end-notes and the slips of various different paper types constitute physically discrete strata or layers, corresponding more or less closely to different bouts of attention. Insofar as these bouts imply an accumulation across different 'layers' of time, the metaphor of geological deposition seems quite reasonable.

In fact the 'layers' concept begins to unlock the inner nature of CD's mode of working with sources: and indeed, we should ideally look upon the whole great corpus of marks and comments not piecemeal, but as a single complex laminate - fused layers not only of time and attention, as we have seen, but also of types of response to the source-material, and also layers of themes reflecting CD's lifelong theoretical preoccupations.

(ii) CD's responses

It is CD's extraordinary single-mindedness, already apparent in his hyper-methodical reading habits, which is reflected in our perception of the marginalia as constituting essentially a single structure. Furthermore, CD had his theory pretty well framed before all but a handful of the books represented in this volume were seriously read. In the main therefore he was not reading to theorise. There are, rather, some half-dozen 'layers of response' we detect in the marginalia.

i) "Many valuable facts referred to proper places" (159c)

CD's principal layer of response' to a text, constituting the great bulk of the annotations, was in fact data collection, or 'extracting', to revive the CD term we encountered earlier. At first sight, the sheer detail, quantity and range of these 'extractions' might suggest vicarious activity, but that is absolutely not the case. On the contrary, the whole process was strongly purposive - namely, to assemble a vast store of sometimes tiny points of information in order to illustrate and support the Great Theory. This résumé is, as $C D$ might himself have remarked:
"good but too hasty.-" (578f)
We qualify this résumé to some extent in pointing to the existence of several 'layers of response'; nonetheless we believe the reader will see that 'our man in the margins' appears more relentless, dismissive and self-regarding than his modulated public persona would imply. In a sense this is hardly surprising - anyone's personal notes are likely to have a greater curtness to them than their finished texts. Nonetheless two impressions may merit an airing here.

CD often judged a book on the sole criterion of its relevance to some aspect of his Grand Enterprise: "After p. 109 not one word for me" (675 d) he pouts, almost; "This only
useful for ancient History of Dogs . . . I doubt whether any use" ($843 \mathrm{e}-\mathrm{g}$). There are other not infrequent remarks to the effect that books failing to minister to his need for data are eo ipso pointless - his dismissive sign "O/", meaning "Nothing for me", being tellingly close to the copy-editor's symbol for "delete" (which his sign can also mean when he waxes subeditorial, of which more anon). "Erase from memory" might be the late-twentieth-century translation.

The undercurrent of predation here is notable in itself; but the manner of it - i.e. its near-total absorption in pinning the already-formed Weltanschauung down to fact - leads to the first of our two impressions: that, from quite early on, CD's mind was no longer really 'open' at the level of high theory (however flexible he remained in respect of subvenient principles).

Our second impression is also connected with fixation. As giants of nineteenth-century creativity, two figures in particular make excellent subjects of comparison - Charles Darwin and Richard Wagner.
"What can I have said" (794c), CD might have been prompted to wonder . . .
We shall develop this line more fully later. The Darwin-Wagner similarity of relevance immediately is the power of their obsession with their work. Anything that crossed their paths was to be assessed for its usefulness in the construction of their creative monuments. This is reflected in Wagner's notorious personal exploitation of everyone he encountered. In Darwin's case everything tended eventually to be pressed into the service of the Theory. Thus the parts of his correspondents' letters not dealing with science were crossed out so that they would not distract from his rereading of the relevant parts. Furthermore, when he wanted to study infant behaviour, he began by watching the behaviour of his own son William, whose development, to cite Janet Browne in Kohn 1985, ${ }^{1}$ he followed "as if it were [that of] a barnacle or a primrose". He even had ladies who obligingly made their children cry so he could watch the infants' reactions. These points tend to amplify our view of Darwin's public persona as a certain modulation of the 'inner man'.

ii) "quite opposed to my views!" (111g)

Connected with the enterprise of data-extraction, and accounting for a large minority of annotations, the second layer of response' we detect is CD's evaluation of an author and his work. These reactions are usually very forthright, again not infrequently selfregarding: "excellent summary of Whole; approves of what I have said" (239b); sometimes rather patronising: "Most interesting indeed quite amusing" (393g); or "Good Boy" (242b); and occasionally downright rude: "If I want to show what rubbish has been written a translation of this will do.-" (485d). There is plenty of generous praise - "all marked wonderful book" (857a) - but on balance negative criticism outweighs the positive variety.
"Unreadably dull" (738b) represents a quite noticeable type of reaction. CD certainly responded to a degree of entertainment - "2d part funny passage" (217d) - and disliked being bored by an author. CD himself is quite often entertaining in his reaction to an author and his work; naturally we will allow the reader to stumble across these little gems. Our own warped sense of humour detects a tendency towards poisonous wit, especially in putting an author down: "ass prevails - one here", he notes on Lucas' Hérédité naturelle (521a), along with a number of other remarks which sound scarcely straight-faced, despite the seriousness with which he took the book as a whole.

However, let us en passant charitably suppose that CD's reference to Haeckel as "Hack" (358d) owes more to abbreviation than to denigration .
iii) "World simple" (541a)
$C D$ is evidently more forceful in his marginalia than in his published works, which are the province of what we might call 'Selection with a human face'. He appears aware of this as deliberate: "I must express things diffuse and with a most wearisome pretence to formulas" (516 g), he moans, contemplating the requisites of public style. He has to be so to speak 'the Very Model of a Modern Major Scientist' - but in his inmost self he is perhaps convinced that the world is simple, and is quite impatient of all this deference to 'ifs-and-buts'-ism, disclaimers in face of irritatingly incomplete evidence, and openers to the effect 'it is therefore by no means inconceivable that'. CD himself might have thought this comment
"too strong" (425b) -
and it may indeed seem strong in description of someone who after all spent a lifetime reading and writing in meticulous and cautious detail. However, a further example may strengthen the impression; and one basic consideration may help dispel the paradox.

The example is the extraordinary tone of CD's final dismissal of the thrust of "Bronn's criticisms for New Edit of Origin" (181a-182c) - for example "As I cannot justify my opinions in any one single case, so I need not in any.- is as true as it is severe- Though I can in no single instance . . . explain changes yet the structures \&c led me to conclusion. - " ($182 \mathrm{~b}-\mathrm{c}$). And that's that.

The consideration is that CD's 'diffuse and wearisome' complaint (and indeed this last quotation) implies that he had seen more fully and more definitively than he felt able to show. Other evidence for this takes us in the first place back to the Notebooks, ${ }^{2}$ and specifically to that point where CD, in some apparent haste perhaps propelled by elation, sets down the finally formulated concepts underlying natural selection. He had held the workings of the living universe in his head with a sense of clarity and comprehensiveness hitherto probably given to no-one. He had struggled with the issues for a long while, but now he knew, and knew that he knew: he had the Key.

One probable lasting consequence of these hard-won certitudes of insight was that CD may never have felt in need of an elaborated methodology or philosophy of science, confident enough in his seemingly natural instinct for the relationships between solid evidence, creative intuition, the need for 'wearisome formulas' of ever wider explanatory power and for physically plausible models of the world. That something like this is the case is evident in the marginalia from the near-absence of our third 'layer of response': comment at the level of high theory.

Most of CD's comments at this level are really quite perfunctory, even when he is assessing work he took most seriously, or work by earlier evolutionists. It is as if from the security of his vantage point he would see others working (like Candolle?) on areas too specific to enable an appreciation of the Grand Process: "he has not the Key" (145b) or attempting (like Chambers or Lamarck?) to scale the heights with an insufficient database and an insufficient respect for physically feasible mechanisms: "It is doubtful whether Lamarck has done more good by awakening subject, or harm by writing so much with so few facts" (477a). CD by contrast had the overview well before he came to the bulk of his reading, in which he was forcing himself by the systematic procedures we outlined before to acquire and retain the detail. He had no great need by this stage to rehearse his case in defence against the theories of others. Even his comments on the higher principles relating to his own theories are in the main quite cursory and matter-of-fact. "The Natural System," he comments during his reading of Herbert (probably during the 1840s), "seeks to know relationship \& does not attempt date of separation" (376e), implying that the notion of descent with modification was already to be taken for
granted, and that any troublesome Grand Concepts found upon the lurk had merely to be pushed into line, or reduced to a purely 'operative' status no longer in control of the debate: "It is succession, not resemblance which makes 'a species'"; and within any one such line of succession "Comes to what I said, amount of difference deserving a name" (630 b ; cf 317f). The conceptual pragmatism here sounds almost off-hand. But we should resist seeing it as a kind of opportunistic abdication of the old problems; it is, rather, the considered solution to them. Furthermore, this attitude is applied consistently, in his understanding of scientific method, his whole defence of his theory (see Variation, vol. 1, p. 9), his tiffs with Huxley over experimental proof of natural selection, and so forth. Further thoughts around these issues are to be found in Di Gregorio (1981); it can now be added that CD's remarks in the marginalia, and the fewness of them, clarify that his largely unargued philosophical position may owe more to feel, instinct and 'having the Key' than to intellectual decision at a philosophical level. Here the marginalia are the crucial bridge between the raw insights of the Notebooks and his considered but inextensively supported comments on method and theory made many years later.

Such, then, is our third 'layer of response', almost missing. In fact, of course, in a different sense it is there the whole time: it resides, as we shall see, in the thick weave of topics and themes underpinning the whole corpus of annotations, and is thus imprinted - "diffuse" indeed, and sometimes even "wearisome" - on every comment. However, the thinness of the layer of explicit 'remarks on high theory' may come as a disappointment to those who turn to the marginalia of a Great Thinker expecting them continuously to overflow with Great Thinks.

iv) "must be a misprint" (295d)

CD may have found formulae tedious, but he was by no means averse to a bit of genteel pendantry now and then. He not infrequently trips a (living) author up on spelling or other detail; more significantly on misquotation of himself. Sometimes these minutiae are noted down alongside more substantial comments which look like scraps of drafts of letters to the authors in question: "Allow me to point out that you have unintentionally misrepresented me . . ." (223g); "I am glad of your somewhat changed views . . ." (838c); "eheu! date wrong" (537 h). Our fourth thin but distinct layer is thus a combination of CD waxing subeditorial, and a scattering of footnote fodder for future volumes of the Correspondence ${ }^{4}$. . .

v) "What I do not understand" (471f)

Here we find CD alluding to a fifth 'layer of response', requiring little comment as such - a relatively thick vein consisting of translation and/or close paraphrase of the original text, especially prevalent in German books, but not unknown in Italian or even French books either. In the case of German, this may in part have to do with the tribulations of the Gothic script adding themselves to the trials of the language. But in any event, the consequence for the reader is that the number and density of annotations in a book are no clear guide to the importance either of the book or of the marginalia it contains. Hence our annotation of the title page of Part one, taken from CD's annotation of Candolle: "Upon the whole nothing can be inferred from this list" - a light-hearted motto, but intended as a serious caveat. Indeed, any comparison of the entries for Candolle and Gärtner, the latter taking more space, will quickly show that the former is of far greater importance.
vi) Mention of Gärtner brings us to Darwin's Joke, and thus to our sixth layer, 'general wit and merriment'. It is pleasing to note that CD left a few examples of the art of being serious without being solemn - such as the doubles entendres attending the 'cross foxes' of p. 705h, the 'high fish' of p. 155a, and the 'boring sponge' of p. 673d - and that he also shows the tendency of the highly creative mind to put things to itself in a radically offbeat way, as with the comment about the 'man cut in twain' (see p. xxix). However, we will spoil the reader's fun of further discovery only in respect of the aforesaid Joke. It is to the effect that Gärtner, despite the name, was probably not much cop as a Gardener. It is actually more important than its flippancy might lead one to suppose: in the first place, it demonstrates that CD was good enough at German to invent a bilingual pun, and thereby lays to rest the myth of his alleged ineptitude at that language. Furthermore, CD liked his Joke. This we know because he chose to share it with the future mildew of the margins not just once, but twice ($374 \mathrm{c}, 277 \mathrm{a}-\mathrm{b}$). 'It is therefore by no means inconceivable' (to coin a phrase) that this implies a simultaneous reading of the books in question. CD was sporadically given to dating his comments; following through the more, and less, serious cross-references may thus eventually enable the making of a workable historical map of the whole of his interaction with his scientific sources. As CD himself remarked, albeit in a rather different context:
"light will be thrown on the origin . . . The meaning of this cd hardly be misunderstood, but I can see is not the period of going into details." ($358 \mathrm{f}-\mathrm{g}$)
vii) Nor indeed of going from the marginalia to CD's private life. Our last layer another almost absent stratum - consists of very rare and insubstantial glimpses (always assuming, of course, that his rapturous "Flora!" of p. 839c does not address a mistress hitherto hidden from history). There are one or two mentions of (genuine) relations, and the occasional name of a pet or other animal. Most of these references analyse details of behaviour - reinforcing our earlier implication that $C D$ was often unable to resist surveying even the domestic scene with the professional eye of a proto-ethologist.

(iii) CD's themes

We meanwhile must now pass back to surveying the world at large. Having provided a brief description of the strata visible in the mass of the marginalia, we need now to look more closely at our first layer, the 'data-processing' to put it crudely, that forms the bulk of the annotations. It is time to investigate its own internal stratification - the layers of themes and topics - and hopefully in so doing to discover what CD might have termed the
"whole key to theory" (164h).
The major layers we are considering here are the great themes and subthemes that $C D$ pursued (or that pursued him) throughout his career. They function like the 'Leitmotive' of a Wagner opera, or, to echo Sloan's not dissimilar analogy:
a complex keyboard instrument with several keyboards and registers, these registers each able to act sometimes in solo, other times contrapuntally, and at times in synchronous harmony. ${ }^{1}$
A Wagnerian 'Leitmotiv' has a comparable flexibility; the 'Leitmotive' interwoven are the
constitutive matter of the whole composition, and they are repeated and evoked whenever logically necessary. None of them is ever forgotten or allowed to drop out. Similarly in Darwin's case:

Some themes and registers form dominant melody lines at various times . . . Other themes function more as a basso continuo, often submerged but nevertheless present if one looks closely enough. (Sloan again.)

This procedure enables continuous integration of detail into the whole, and enables detail constantly to refer to the big serious themes - for example the 'Leitmotiv' of the Dragon in Wagner, or that of comparing wild and domesticated animals in Darwin. It is this which makes the exceptional range of research of a figure like Darwin mentally manageable. It also explains the many repetitions and (in)direct references to other parts of their work that both Wagner and Darwin introduce.

We believe we have captured the essence of this continuous state of inter-reference in the structure of the 'index and conceptual concordance' which forms Part two of this volume. The classification headings used in Part two reflect the themes and topics we detected in the marginalia. There is a relatively straightforward list of names of animals (under the category 'fauna', 'fa' in our code), plants (under 'flora', ' fl '), places (under 'geography', 'gr'), populations (under 'humankind', ' h '), and geological epochs (under 'time', 'ti'); and the document is rounded off with a list of people and works cited. ${ }^{5}$

Interwoven however with these name registers is a classified conceptual index, whose categories were as far as possible inducted cautiously from the annotations themselves, in order to reveal Darwin's 'Leitmotive'. Work on transcribing the annotations in each book was accompanied by noting down the range of themes and topics in play. A brief cipher was developed for each of these topics, and these are recorded for each annotated book immediately beneath its title in Part one. The conceptual index was then prepared by taking each individual annotation and noting down the topics in play there, subcategorising as necessary within the broad categories previously developed, and adding a few new categories relating to CD's other 'layers of response'. The full list of the ciphers denoting these categories and subcategories is recorded on the sheet at the back of the book.

The 'concordance'-like aspect came in when we decided to enter each annotation into the index as a string of topic-ciphers, cross-referenced under each cipher in the string. Thus a statement involving the four ciphers A, B, C and D appears in the document four times, as $A-B-C-D, B-A-C-D, C-A-B-D$, and $D-A-B-C$. In this way Part two claims to have preserved intact the entire network of CD's thought.

The resulting document is rather large and very fine-grained. The structure of the entries under each topic-heading is as follows:

```
A [by itself][pp.] 12 . . 
and [in combination] 3456...
infra:
ABCD5
ACE36
ADFGH4
(etc).
```

This arrangement means that those wishing to do battle with the interplay in its full intensity can work from what one could call the 'infra'-structure . . . Those preferring to take their concepts so to speak lying down and one at a time can work with the same references as collected at the head of each entry.

The reader will no doubt be glad that we resisted the temptation to present the whole of Part two in the form of an irregularly branching tree. We did however fall for the idea of using coral- and tree-like diagrams to punctuate our presentation of the way our analysis of topics-in-play breaks the corpus of annotations down into their elementary strands, the 'Leitmotive' of the Darwinian revolution. Thus those wishing to study the logical interactions of the 'Leitmotive' as it were medium rare might do worse than start from these 'clustergrams'.

For our part, let us begin our presentation of these interactions at CD's own beginning:

"Diversity of organisms first condition of nature" (582a)

Variation ('v' in our code) just is, basic, unargued: "N.B When many pistils, then number variable [when many of any organs apt to be variable; Why. Hairs \&c \&c vertebrae of serpents" (253d-e). As we shall see further below, this emphasis on the reality of variation is essential to an understanding of the profound change in perspective away from Platonic notions that the 'Darwinian revolution' is all about. Real variation for CD plays something like the role played for Newton by the distribution of matter - the variable density of the universe, to make the analogy sharper.

All characteristics of organisms are subject to variation, the behaviour of animals and plants ('beh', 'mhp'), not just their physical structure: "Great diversity of instincts of Bees of same genus: variable in species also" (74e); "has seen axial twisting vary in same plant" (592c). Variation, as this last extract implies, distinguishes every organism at least minutely from its nearest relatives, and thus the primacy of variation brings the notion of the 'individual' ('in') to the fore: "as individuals differ in some respect . . . several must be experimented on.-" (267 g). If, as Mayr claims, Darwin introduced "population thinking", then what matters for him is "variable populations consisting of uniquely different individuals". 6

Variation occurs both in nature and under domestication, as the first two chapters of the Origin readily remind us; thus annotations on variation need to be related to those comparing the variations of wild with domesticated animals ('wd'): "tame cows more milk than wild: organs adapt themselves" (84 g); or wild with cultivated plants ('wdc'): "old cultivated kinds tend to vary loose the hereditary quality of goodness" (595h).

This last extract pushes us onwards to take note of reproduction ('fg', for fertilisation and generation), and heredity or inheritance ('he'). If variation is Darwin's 'matter', then heredity, the passing of characters from parent to offspring which holds the chains of beings together, is perhaps his equivalent of Newton's gravity, the unexplained agency holding the chains of objects together. As we shall see below in mentioning pangenesis, Darwin never quite managed to make variation and heredity cohere conceptually rather as it was beyond the Newtonian mind to conceive of matter and gravity as coessential. In remarks which seem to show the shutters partly closing on the fully 'open' mind, he insists: "Contrast of adaptation and inheritance" (359f); or again: "Inheritance cannot be cause of variation has nothing to do with it" (514c) - an annotation which effectively sweeps all before it.

In this and the following diagrams we attempt to display some fraction of the densely woven threads of themes and topics constituting the bulk of the marginalia. The key to the topic-ciphers is to be found on the sheet at the back of the book. The diagrams summarise the text immediately preceding them.
"If all species varied equally all wd be in confusion" (430f)
But they don't: variation is itself variable. In the first place, this means that all is not in confusion - groupings of organisms are discernable, which we call varieties, races, species and higher groupings ('var', ' vc^{\prime} ', 'sp', 'sph'); and this will refer us eventually to definition and classification, or systematics ('sy'). We have observed CD's pragmatism in these matters already; he pauses to praise Lamarck's scepticism: "good remark how arbitrary the distinction race and species is" (477 h).

In the second place, the variability of variation has its own correlates, and brings into consideration the size of genera ('nos') and their wide geographical ranges ('gdw'): "but this is the very point that we are considering that large Families are wide rangers \& most convertible [but that it is only a few which are wide rangers; the others changed into species] . . ." ($115 \mathrm{~d}-\mathrm{e}$). The whole time, we perceive in the background the fundamental questions of modification and speciation.

diagram 2

"Malthus and Franklin saw the law of increase in animals \& Plants clearly" (562h)
The other basic condition of nature, again implied by reproduction, is 'increase' - our category 'no' for 'number' includes increase and decrease, and in its subdivisions wider concepts such as the 'amount of life'. Increase can be discerned directly in special cases like naturalisation ('gdn'), where introduced organisms ('gdi') at first increase swiftly: "Europe/U. States 716 in 26 years 600 miles of Lat. Many other good facts of rapidity/-" (124d); "Dr D. Owen says newly introduced Plants, first overrun the country \& then become scarcer (Ask A. Gray)" ($545 \mathrm{e}-\mathrm{f}$).

The finitude of any natural context means that there are checks on increase, principally struggle between organisms for relatively scarce resources such as food and space. The basic process of nature is thus increase checked by struggle ('oos'): "ie as far as food \& climate (\& enemies preoccupation by other species) ie conditions allow species \& genera to range, so they will range . . ." (703e); "Beasts of prey destroyed others increase immensely, \& drive others from habitation" (703f); "Every one of such species wd
cover ground if no other species present: if rarity here is step to exclusion, then the greater importance of other organic beings is shown" (109d).

The relationships of organism to organism ('oo') are not all directly antagonistic; and these complexities constitute perhaps the central focus of Darwin's world-model. Without a clear understanding of the place of the relationships between organisms in the model, one cannot understand either the notion of selection or the Darwinian conception of evolution. CD likes Hooker's "Good remarks on strife of Plants" (404d); and ponders Haeckel's "good criticism on my theory of struggle for existence - says ought to be confined to struggle between organisms for same end -all other cases are dependance misseltoe depends on apple" ($356 \mathrm{~b}-\mathrm{c}$). CD also painstakingly wrote notes concerning the symbiotic relationships between insects and pollen.

In the competition for resources, death and destruction do not only visit themselves upon the old; indeed, the fate of the variably vigorous young (' y ') (including eggs 'fge', seeds 'fgs', etc.) is in an evolutionary sense more significant, because dead young do not mature to reproduce, and thus their variations cease to be inherited. "<Young monkeys and humans> Cutting teeth die from fever accompanying" (700a-b). Killing ('ook'), predation ('oopr'), and food (' fd^{\prime} ') are also of the greatest significance: "Several Pigeons killed by Hawks are white or yellow vars" (430a). External agencies other than disease ('pat', for pathology) complete the picture - the direct action of conditions ('cc'), interwoven with the indirect action of conditions on food ('fd'): "Many wild Pigs die in Hard winters \& in very dry summers" (39b, 40f) - some from harsh weather as such, but most from hunger.

These agencies act most tellingly on variations between closely allied individuals and/or species ('spc'), because these are the most near competitors for the same resources: "closely allied species exterminate each other" (629c).

diagram 3
"selection wd act on a trifle" (448c)
The 'mere trifle' of the margins became the 'trifling characters' of chapter 4 of the Origin, which are on the contrary of the highest significance, as CD was fully aware in his comment, and in his collection of many details concerning variation in the colour, size and reproductive power of animals and plants ('tmp'). Natural selection' ('sl'), the heart of Darwin's vision, invites comparison with the effects and contexts of human selective intervention ('br', 'ooh'), and thus refers us back to the comparison of wild and domesticated productions: "such selection cd never apply to wild animals, as every parent must be adapted to same conditions" (509e-f).

One especially notable set of variations in not-so-trifling physical characters comprises sex differences ('sxd') and secondary sexual characters ('sxch'), leading to the topic of sexual selection ('ss'), and thence to the topics of breeding ('behb') and other social/sexual behaviour ('behs'). "Huia with Beaks different in 2 sexes \& aid each other SS" (99b); "Sexual S. use of barb of fishes as exciting organs." "It is clear that characters sometimes go with sex - as sometimes polydactylism \&c - Pouting \& Wattle, \& so if useful to one sex can be selected \& returned <does he mean 'retained'?>" ($520 \mathrm{c}-\mathrm{d}$). This last point, with its passing mention of deformity, reminds us that some naturally occurring sexual characters, developed in the struggle between members of one sex for the attention or possession of members of the other, invite comparison with artificially produced 'monsters' ('mn'): "a breed of <silkworms of $>$ which females had much finer \& not so monstrous wings as in the South" ($690 \mathrm{~g}-\mathrm{h}$).

diagram 4
"I fancy not in time" (237f)
$A u$ contraire, time is of the essence. Selective pressures act on an organism all its life invoking our category of 'organic time and age' ('ta'): "Curious case of quick deterioration by neglect in Glamorgan Cattle showing some selection always going on" (885f). However as an evolutionary process, selection acts slowly over historical and geological time ('ti') - "Slow geological change important because domestication shows slowness" (88f-g) struggle leading in the case of the less well adapted parts of populations to rarity and
extinction ('ex'), especially again amongst closely-allied forms. "Perhaps a decrease or unfavourable conditions might destroy the intermediate vars . . ." (483c). Selection thus leads to divergence ('dv'); distinctions between populations, sharpened by extinction of intermediates ('ig') as against increase of those organisms in favourable stations ('gds'), permit us to speak of varieties, races, species, etc. This is the meaning of 'adaptation' (' ad^{\prime}) and 'descent with modification' ('ds', 'ts'). "So Porcupine \& Echidna Orchis \& Asclepias Explanation same, in some degree similar constitution acted on same causes, but in latter case selection comes into play very importantly - Both, however, derived from modified pair" ($516 \mathrm{~g}-\mathrm{h}$).

The existence of 'stations' is independently demonstrated by the observation that broadly speaking a particular spot can support a greater amount of life ('noa') the higher the number of species ('nos') involved. "Much life causes much decay makes strata \&c \&c \& many stations. for different times of year will have species all times of year. good. . . There wd not be many species without stations; yes, how many species can be introduced . . . Creations not easy work thus also shown.-" (110d-f).

It is worthwhile pointing out that $C D$ uses 'creations' here to mean 'natural formations' and does not mean to implicate the Almighty. But equally it is worth pointing out that the facts about naturalised introductions often outstripping endemic and indigenous forms ('gde') (because they are able to colonise untenanted stations) is an important argument against those Creationists ('cr') who maintain that God necessarily made each form perfectly fitted for its circumstances, "because there were localities fitted for simplest animals as well as the most complex. therefore some remained simple, if not created. The incidental good that one race performs to others proves adaptation in Universe." (533g).

diagram 5

"It is important to observe no selection cd aid Horse in Falkland . . ."

Circumstances favouring selection include high numbers of individuals or species in any sizeable area ('gr') (because of competition); or isolation ('is') (because any variation in isolation is subject to changes specific to the location) ". . . or Horses in Paraguay except
strength of constitution \& breeding at diff time of year; but that cd be effected only if a little earlier or later was more favourable" ($244 \mathrm{f}-\mathrm{g}$). "In this case <isolation> we have fewness of number, sudden change (in organism \& external conditions), but on other hand not many to select from.- especially changing island.-" (88 g).

Crossing also aids selection: it tends to add 'vigour' and fertility ('phyfl', for plant physiology, and ' f '), whilst inbreeding ('bri') tends to reduce it: "The converse of the law ill effects of breeding in \& in holds in Plants.- namely crosses being more fertile -" ($836 \mathrm{c}-\mathrm{d}$). The subject of crossing takes us also to those of reproduction and transmission ('het'): "one might fancy that in Ass crossed with Horse there is a greater potency of race, \& that this potency is transmitted more by male in this case than in others. Niata cow transmits with more force than Bull - Pouter cock \& Hen equally" (515d-e); also to the existence of sexes ('sx'), the symbiotic relationships between the habits of plants and animals, and so forth, which together account for a very sizeable number of annotations. "Nectar is sought eagerly by various insects . . . The real object . . . is to ensure occasional cross . . . Think of number of Insects which feed chief on Nectar!" (472e-h, part of an extended comment of considerable range and detail).
"It may be that lower plants have survived owing to having this advantage of separated sexes." (378h) - sex thus being a topic of capital importance in CD's work. It was related by him to variation in his pre-selection theory of evolution (see Kohn 1980). ${ }^{7}$ It then remains connected with his lifelong preoccupation with generation (see Hodge in Kohn 1985), and continually surfaces in his mature reflections.

diagram 6
Annotations on crossing and its related concepts are frequently interwoven with those on hybrids ('hy') and the complex subject of relative fertility and sterility, distinguishing the possible mismatch between fully competent organs and instincts in an attempted cross from the possible inheritance by a hybrid of incompetent organs or instincts, or impaired vigour. "In Hybrids crossed with either parent, \& thus assuming fertility \& the ancestral form, yet fertility variable in such individuals . . . My point that plants often sterile \& yet
not unhealthy not touched on.-" (275g-h) "Q for instinct Migratory \& Home Thrushes can be distinguished - probably do not cross" (45d); "Certain that Hybrid Canaries \& Goldfinches \& Siskins will breed inter se [but first young are weak]" (45c).

"Much intermediate variability" (632d)
Many annotations concern intermediate forms and gradations ('ig'). Again, as with variation, we are talking of gradations in behaviour as well as in structures - often interwoven: "on the exactly intermediate manner in which apes walk on Hands - good it might have been asked how cd there have been transition between hand \& foot?" (97 h).

The theory of gradual speciation by descent with modifications subject to selective pressure should in principle be able to show change ('ch') and transition over geological time, and grades of affinity ('af') between 'types' of organisms ('tma'). Embarrassingly, it is often unable to do so. This refers us back to extinction, and the fact that the record left by geological time is not perfect ('ir' for imperfection of record), so that the fossil remains ('fo') will never be able to reveal the whole story: "It is evident thus very few exceptions at whatever stage a genus or Family commences it is continued till it becomes extinct. This being capable of in fact strongest fact I turn against Imperfection of Record. Perhaps only shows no enormously long blank intervals" ($673 \mathrm{~g}-\mathrm{h}$). "How isolated would the elephant be without fossils . . . Mastodon older than Elephas \& intermediate in structure of teeth" ($649 \mathrm{~h}-650 \mathrm{e}$).

An important subtheme here is the 'succession of types' and their distribution ('gd'): "the succession of the genera . . . would be like showing connection in Geographical Range. so in space \& time.- [I did not think of this, till beginning Gasteropods: easy to see to it in other orders] In Fish the law had better be tested by Families" (669 g -670b). Another important subtheme in the study of the record is the relationship between shells ('sh'), deposition during subsidence ('se') (partly explaining the imperfection of the record) and thence to to the importance of geology generally ('geo'). It was probably geology that during the Beagle voyage had alerted CD to questions of distribution, through which he was able to connect geology with his early training in zoology (see

Sloan in Kohn 1985). ${ }^{1}$ His own experience here was vital background to his reading of L . von Buch and the works of J.D. Hooker.

diagram 8
"This is case of animal being smaller northwards" (307d)
The topic of geographical distribution, both as a fact ('gd') and as a process ('gdd'), accounts for a large and very important set of annotations. The distribution of the representatives of common or widely-ranging forms ('spr', 'gdc', 'gdw') displays networks of affinities and reveals the results of geologically ancient community and subsequent transmutation. "Though we cannot explain same species common to Australia \& Fuegoe yet the generic connection is in harmony" (391h); "It has always been my greatest fear that there has been so much modification since Glacial that it would upset view.- Some few genera may formerly have been mundane \& Tropical \& not now so.-" (398b-c). Distribution therefore refers us again to geological time and changes in conditions ('cc') and geographical features - a striking example is afforded in the comparison of glacial-period distribution and that of present-day mountain-tops.

By way of the subtheme of migration (' mg^{\prime}) and its near-opposite isolation ('is'), we are led to consider annotations on the manifold means of dispersion of forms ('gdd'): direct or indirect pressure from conditions; the action of wind and weather ('ccw') on seeds; the movement of animals and their capacity to carry seeds; sea-currents, icebergs ('ccs'), etc.
diagram 9

"Unknown cause prevents man cut in twain from reproducing . . ." (659h)
Halve a worm, and two may leave the scene of the accident; halve a higher animal, and the result is more likely to be two remnants of a very dead original - what does this imply about the principles governing growth and repair? It used to be said that Darwin did not know enough about physiology ('phy') and morphology ('tms') and was therefore left out of the mainstream of nineteenth-century biology (see E.S. Russell in his otherwise fundamental Form and function ${ }^{8}$). However, the marginalia do not bear this out. He seems to have been especially interested in many aspects of plant physiology ('phyfl'), since they bear on problems related to adaptation: "Movements become so firmly associated with certain external influences such as light \& gravity that the latter suffices to cause the same process of growth or movement" (242e). A considerable number of annotations on physiology concern Helmholtz's consideration of the imperfection of the eye, directly relevant to CD's view of adaptations as non-perfect. Furthermore, there are a great number of annotations in Johannes Müller's Elements of physiology: "Plants going to sleep without the stimulus of darkness strongly analogous to a voluntary action from a diffused nervous system" (615a); "in playing a tune are the fingers connected with brain? or cerebellum" ($615 \mathrm{f}-\mathrm{g}$).

Physiology leads back to heredity through the hypothesis of pangenesis and the gemmules ('pan'), whose existence CD postulated. This ill-fated hypothesis developed from CD's interest in the 'gemmules', stimulated in studying Flustra under the guidance of Robert Grant at Edinburgh (see Sloan and Hodge in Kohn 1985). ${ }^{1}$ He retained this interest throughout his life; it surfaced particularly in Variation, and relates in the marginalia to pathology: "on same part attracting same substances, as in Tumours (Pangenesis)" (613h-a); embryology and growth ('em'): "Pangenesis on embryonic limb grafted \& developing itself" (225f); cell theory ('ct') and physiology generally: "many gemmules may pass into cells - it certainly appeared in intestines \& liver that fat passes into \& out of cells" (822h); and monstrosity: "Double monsters Pang" (614a).

diagram 10
"intimate parallelism between the embryonic, zoological \& teratological series" (313b)
Embryological resemblance reveals community of descent. Rudiments ('rd') do so also, by implying one-time use falling into disuse ('ud') through adaptive pressures. "Objects there might <be> 100,000 creations as well as one: I agree <but> then these would not have borne signs of common descent in homologies \& embryology \& rudimentary
organs." ($181 \mathrm{~g}-\mathrm{h}$). Morphological resemblances and homologies ('hom') demonstrate the affinities of organisms within their 'types': "Tissues of all Vertebrates homologous" (623d).

The concept of descent with modification therefore provides the ground-rules for that holy grail the 'Natural System' - although CD is too cautious to suppose that he could put much flesh on that particular skeleton: "I will not specify any genealogies - much too little known at present" (164a). Although in the Origin Darwin avoided arguing directly against what Russell called 'transcendental morphology' (1916, pp. 103-12), the marginalia throw light on his rejection of Richard Owen's Platonic concept of the 'archetype': "I look at Owen's Archetypus as more than ideal, as a real representation as far as the most consummate skill \& loftiest generalizations can represent the present forms of Vertebrata.- I follow him that there is a created archetype, the parent of its class" (655c; italics ours). This annotation focuses Darwin's philosophical emancipation from the Platonic eidos:

According to [this] there are a number of fixed, unchangeable 'ideas' underlying the concept of variability, with the eidos (idea) being the only thing that is fixed and real, while the observed variability has no more reality than the shadows of an object on a cave wall . . . any commitment to an unchanging eidos precludes belief in descent with modifications. (Mayr, 1964, p. xix). ${ }^{9}$
For Darwin, the 'type' is simply the ancestor of evolving, living forms, and the emphasis is on variety, i.e. the diversity of life, rather than its unity as with Owen.

diagram 11
"How like my Book all this will be" (683e)
we catch Darwin musing quietly. The categories and subcategories of the index were, as we said before, inducted from our attempts to classify the annotations themselves. In our overview here of the principal categories and some of their logical interconnections, we have succeeded, as Darwinists and other conversants will have discerned, in recapitulating the ground-plan of the Origin (with some input from Variation) - i.e. in effect the ground-plan of the Big Species Book 'Natural Selection' ${ }^{10}$ Our categories are, it
would therefore seem, CD's own to a very large extent. "This book is one long argument", CD says (Origin, p. 492): our argument was that CD's whole career is one long argument - and it is therefore useful corroboration that there are very few of our categories still left out in the cold, indicating that CD's reading, whether for 'Natural Selection' or not, did indeed continuously revolve around the same 'Leitmotive'. This, as CD himself might have remarked, is our
"Key-note of Book" (424c)
One senses further confirmation of this in a slightly curious way from those annotations in which CD collects material for particular chapters or volumes of his own publications: they all look exactly the same. He says, as it might be, 'use in ch. 5' - but ch. 5 of what? These notes, in not differentiating one book from another, suggest that the manner in which CD wrote coheres very closely with the manner in which he read - like a practised vintner sampling continually and laying down the selected vintages to support main courses concocted maybe years later. It is as if he experienced his publications as interim extracts from a single, endless conversation with nature.

Those of our index categories not much mentioned in the above overview in fact fall happily into just three groupings: a) reflecting CD's interest in geology and related topics; b) reflecting the reading which surfaced in Descent and Expression; and c) reflecting our own attempt to report CD's critical, reflective and other 'asides'. Our last diagram thus completes the analysis:
A)

B)

C)

diagram 12 a.b.c

Mention just now of Descent and Expression provides a cue for us to add a few necessary words about the marginalia concerning humankind. Although there are many annotations around this topic, it cannot be said that $C D$ was primarily interested in ethnology or anthropology as such. Their relevance is very frequently to other matters, principally variation and sex (indeed the greater part of Descent is about sexual selection). Humankind is just another test-case for the great Theory: "I am beginning to conclude that it is more difficult to account for small variations of man where there is no adaptation than great differences, where adaptation. Consider cases of Rabbits, mere law of growth . . . Nothing is more odd than similarity of Fuegians and Brazilians. Why puma shd range continent invaried and Monkeys differ in every province . . . I may contrast Man with Monkeys, for on my theory, the Monkeys have varied" (604a-c). Another example is provided by Mackintosh's Ethical philosophy; here CD relates conscience to habit, both in man and animals. The moral sense is seen from the viewpoint of what we would call 'animal behaviour' - for example the love of parents for their children is related to adaptation and selection. Such an attitude might be of considerable interest to sociobiologists.

It is instructive to see how CD used the great interplay of themes even in his so-called minor books. In Contrivances (1862) CD started with a specific problem, that of pollination. Consideration of this quickly leads to adaptation, and the vast theme of the relationship of organism to organism (insects and orchids). In the background lurk individual variation and the action of selection, within the framework of evolutionary transmutation, the major theoretical problem in play.

The case of worms is even more interesting: one might marvel that someone whose thought had encompassed the most broad-ranging and revolutionary theory in the history of his science should end on such an apparent low - Vegetable mould (1881). But even here the 'Leitmotive' are fully functioning. CD began observing the action of worms in 1827, 54 years prior to his publication, and continued working on them throughout his life (see Gould's revealing foreword to the 1985 Chicago reprint). The book is based on the relationship of organism to organism (worms and leaves), and touches on individual variation in behaviour. Last but not least, the action of the worm totally alters the face of the earth through small continuous changes (gradualism): we see the result of the process but scarcely the process itself taking place (geological history), on analogy with an annotation made many years earlier: "The glacier is a stream, though one does not see the streaming" (630d).

(iv) influence of particular authors ${ }^{11}$

a) $C D$ as part of the British tradition

Darwin's theory was an ecological one. The views of both Wallace and Darwin sprang from the established natural science tradition, rather than the relatively new laboratory biology. The still-flourishing tradition had its roots in the works of Ray and Willughby and reached its height immediately before and during Darwin's youth - such authors as Kirby, Spence, Fleming, Strickland, Henslow, Blyth, Bicheno, Westwood, Jenyns and Roscoe were familiar to and influential upon the young Darwin. Darwin's approach focuses on instincts (like Fleming and Blyth) and the relationship of organism to organism (like Fleming, Westwood and Strickland), and therefore tends to be an
ecological theory in the manner of Strickland. ${ }^{12}$ In Ray's Wisdom of God Darwin discerned the ecological approach he made his own in the Origin; in Ray we find annotations concerning behaviour, adaptation, sex, morphology and the relationship of organism to organism.

The relationship between instinct and acquisition by habit is the main topic to be found in Kirby and Spence's Entomology; here Darwin focused on the problem of neuter insects which surfaces in the Origin: "one may suppose that originally many queens were ordinarily thus reared and a few workers and the instinct is thus retained" ($454 \mathrm{~g}-\mathrm{h}$). Much is to be found on reason in animals as related to instinct, along with annotations on the struggle for existence, selection, speciation, and distribution.

Fleming's Philosophy of zoology also prompted CD to analyse instinct: "it is strange according to my theory that habit which results often of intellectual processes . . . is related to instinct, which analogy of plants leads one to believe to exist, independently of intellect" (232b-c); and "The individual who by long intellectual study acquires a habit, \& can perform action almost instinctively, does, that in his life time, which successive generations do in acquiring true instinct:- instinct is a habit of generations,- each step in each generation, being intellectual" (231h-232a) - where CD seems to leave a loophole for backdoor Lamarckism.

Our emphasis on the influence of British natural science requires a mention of Darwin's reaction to Natural Theology, and especially its central tenet of perfect adaptation. CD read and annotated Brougham's Dissertation on natural theology; but here the annotations mainly concern animal behaviour and pigeon-breeding. It is in Henslow's Botany that he distances himself definitively from 'perfect adaptation': "People constantly speak about every organism being perfectly adapted to circumstances, if so how can there be a rare species breeding power being efficient (food not sufficiently abundant is answer" (369d).

It is clear from the quality of annotation that Lyell was of paramount importance to Darwin's development; in fact Lyell is the most heavily annotated author. Other British authors who had a significant impact on Darwin include Blyth, Yarrell, Blackwall, Newman, Newport, Jenyns, Westwood and of course Henslow; and he had a lot of time for books on pigeon-breeding, whether British or continental.

b) CD and continental traditions

By observing the manner of annotation, we may deduce that $C D$ was confident with French, less so but still conversant with German, and occasionally read some Italian and Spanish.

Only a few annotations are found in Cuvier's Anatomie comparée, and all of them concern morphology. There are a few more in Le Règne animal, concerning behaviour, sex, speciation, morphology and variation. Darwin also possessed The theory of the earth in English. Mentions of Cuvier are often marked in other people's books; but to judge by the degree and quality of annotation Isidore Geoffroy St Hilaire was much more important to him than Cuvier, though it seems something of a 'love-hate' relationship: "Believed in change of species . . . 'Modificateurs ambiants' sur l'organisme'. Yes this is his belief . . . Introduce in Preface" (301h-302a); however: "Remarks on small isld having small mammals . . . forgets Java \& Sumatra! I contradict his statements flat" (302d).

CD annotated Milne-Edwards' Histoire des crustacées, accusing him in effect of creationism: "How explains this, except by single creations" (581e). On the same page there is an important annotation concerning isolation: "Without regard to anything else make a Barrier and you will have different species on opposite sides" (581f). Other Milne-

Edwards marginalia, mainly on issues connected with classification, are found in Introduction à la zoologie générale: "Law of 'economy of nature' 'sober in innovations' has not recourse to any new creation of organ" (582a-b); "on value of characters in classification" (582g); and "Best way of putting superiority.- though each perfectly (?) (Can young be said to be perfectly?) adapted to conditions" (583a).

As far as Lamarck is concerned, his Histoire naturelle des animaux sans vertèbres bears very few annotations. More are found in the Philosophie zoologique. Darwin's relationship with Lamarck is very complex, and one should not take the disparaging remarks we partly quoted before as Darwin's only view - ". . . so few facts . . . very poor and useless book" (477a/478a). Basically Darwin charged Lamarck with failure to understand extinction and geographical distribution: "Therefore every fossil species direct father of existing analogies and no extinction except through man!- [Hence cause of innumerable errors in Lamarck]" (478g-h); "Does not pursue this into Geographical Distribution" (480c); but echoes our remark above: "The case of acquired hereditary instincts shows that instincts can be acquired" (478d).

Other important French-language authors are C.L. Bonaparte, especially on the connection between distribution and the struggle for existence; and F. Huber on insect instinct in Nouvelles observations sur les abeilles.

The annotations in German-language books are in the main much closer to translation/paraphrase. Gärtner, Kölreuter, Ehrenberg, Haeckel and others are well represented in his library. Gärtner's Kenntnis der Befruchtung is very heavily annotated on variation, fertility, hybrids, and the relation of organism to organism, very often interrelated. Many annotations concern contabescence and refer to Kölreuter: "most important compare Kölreuter experiments and Gaertner's" (253b). Some markings concern dichogamy as seen by Sprengel and Delpino.

Darwin read and annotated Haeckel's Schöpfungsgeschichte, liking its stance enough to mark out passages "good - for the beginning of my Book" (358d); interestingly, there is no annotational evidence that $C D$ thought Haeckel had gone over the top with his 'phylogenies' - rather CD appears keen to play the same game, despite his public caution about 'specifying genealogies': "I shd prefer supposing that both classes descended from forms more intermediate than Dinosaurs \& Solenhofen Birds" (359d-e). Incidentally, Haeckel kept sending copies of his publications to CD, who did not pay many of them much attention. Very often in their inscriptions to Darwin in their books German scientists, including Haeckel himself, wrote 'Sir' or 'Professor', not being able to believe that someone as distinguished as Darwin would not be one or the other - or both.

It is interesting too that there is no annotational evidence that Darwin read von Baer's Entwickelungsgeschichte, which is not even in his list of 'Books to read' (see Vorzimmer ${ }^{13}$). But he certainly read Huxley's translation of the fundamental fifth Scholium. Other German-language authors of some importance to CD include Nägeli, Nathusius and Rütimeyer.

The marginalia suggest that two authors who had an enormous impact on CD were Alphonse de Candolle and Alexander Humboldt.
"I must read some Book on geograph distrib of insects or of one great class" ($683 \mathrm{e}-\mathrm{f}$), CD instructed himself reading Prichard; it seems that that book turned out to be Candolle's Géographie botanique, probably the most densely annotated work in the whole library, which seems to have been the catalyst for much thinking around distribution, the struggle for existence, isolation, and consequently selection. The annotations in Candolle are difficult, and this is because Candolle is perhaps the only major work in whose
company CD is for a while noticeably confused and uncertain at a (quasi)-theoretical level; "A species might abound in some spot and yet be rare over all England, but is this so?" (109 g); "Here isolation clearly comes into play; but this does not account for smaller range of plants within Cape District." ($118 \mathrm{~g}-\mathrm{h}$); "As far as I can see (which is very little) isolation of area seems to have little to do with confinement of species!! In this family" (118h); "I never shd look at it under this light; yet perhaps agree with Herbert's views. When there only few species, we must suppose either others extinct, or then few only are yet introduced" (119f); "This bears on few species inhabiting 2 areas, where there are many species - does it not come to this, that widely extended species break into varieties and these become species with confined ranges.- anyhow this shows how complicated a question it is" (120b).

By volume 2 he is beginning to recover his usual slightly declamatory poise: "England formerly connected, hence most plants which could live in England wd have immigrated. If any species had been introduced by Birds within the last century, \& was not mentioned by old Books, ${ }^{14}$ it wd have been thought to have been overlooked.-" (134h-135a); "The more I reflect the more I come to conclusion that antiquity of man one of the most important elements in history of variation.-" (139b).

Finally CD succeeds in 'trumping' Candolle by reference to his own higher-theoretical insights: "He always leaves out struggle with other species.-" (142d); "He looks at extinction as due all to Deluges \&c!!" (143h). Candolle has approached the 'right' problems, but lacks the focal concept in the understanding of speciation: without the idea of selection it is impossible to make sense of variation, extinction, isolation, distribution and the struggle for existence as forming a single complex nexus. Thus, as we quoted before: "(always this) he has not the Key.-" (145b).

Humboldt, especially in the Personal narrative, got CD thinking about distribution and the relation of organism to organism in the context of isolation, extinction and the breeding of wild and domesticated animals: "Camels abundant in Fortaventura and vegetation different from . . . other Islands - NB Numerous wild asses formerly in Fortaventura" (416f). If Humboldt's almost ecstatic tone excited CD, it seems to have been towards envisioning a raw elementalism incompatible with Humboldt's Panglossian optimism, his falsely a priori harmonious world where adaptations are basically perfect. On the contrary, the raw elementalism is hardly even hidden below the surface: "to show how animals prey on each other - what a 'positive' check . . . Think of death only in Terrestrial Vertebrates . . . Smaller Carnivora - Hawks - what hourly carnage in the magnificent calm picture of Tropical forests . . . Probably two or three hundred thousand Jaguars in S. America What Slaughter! Daily - \& as many Pumas" ($418 \mathrm{f}-\mathrm{g}$).

Thus we end our selection from the marginalia on a rather bloodthirsty note . . .

The basic objective of publishing this 'marginal' material is to contribute to the reconstruction of Charles Darwin's place in his historical and scientific context, and so to facilitate a clear understanding of his importance for modern science. A principal bonus of these volumes will be an enormous increase in the accessibility of CD's primary, unmodulated thinking.

As such the Marginalia are expected to be of interest not only to Darwin scholars, but also to historians of ideas, to biologists, psychologists, naturalists and evolutionists alike. The marginalia show Darwin not only 'alone', but also as part of his historical and social milieu, and as a major protagonist at a vital stage in the development of science. In showing us the material Darwin chose to use or discard, and in recording his assessments of other authors, the marginalia reveal more candidly than any other source the nature of the influences upon his thought, and the methods he used in the formulation and application of his theory.

CD himself was well aware of the potential future importance of the annotations he was making in his personal library. For example, he makes certain, in a letter written to his wife Emma, to prescribe that in the event of his death 'some competent person' should receive 'all my Books on Natural History, which are either scored or have references at the end to pages, begging him carefully to look over \& consider such passages, as actually bearing or by possibility bearing' on the subject of the sketch of his species theory, which he had just finished (5 July 1844), when the question of its publication in book form should arise. ${ }^{15}$

We make no claim to have taken up that challenge as laid down by the Master himself; but it is at least pleasing to feel that he would not have found our exposure of his 'private' scribblings unduly intrusive.

notes

1. Kohn, D. (ed.) The Darwinian heritage Princeton 1985 (chapters quoted:
Browne, J., 'Darwin and the expression of the emotions' Hodge, M.J.S., Darwin as a lifelong generation theorist' Sloan, P.R., 'Darwin's invertebrate program 1826-36: preconditions for transformism').
2. Barrett, P.H., Gautrey, P.J., Herbert, S., Kohn, D., Smith, S., Charles Darwin's notebooks 1836-1844 (Cambridge 1987); see Notebook D (especially Inside Front Cover) and Notebook E (especially p. 58).
3. Di Gregorio, M.A. Order or process of nature: Huxley's and Darwin's different approaches to natural sciences Hist. Phil. Life Sci. 3 (1981): 217-42.
4. Burkhardt, F. and Smith, S. (eds) The correspondence of Charles Darwin (Cambridge 1985-).
5. The University Computer has occasionally had ideas of its own - curious rather than disruptive, fortunately - on where to put items in its sorting of the name registers: the ghost in the machine had to leave its mark somewhere, one supposes. The ghost is clearly no fan of Darwinism, to judge by the capricious appearance of the gooseberry among the place names. This is a genuine accident; we only wish we had thought of it ourselves, in its implication that we do after all materialise under bushes of that ilk, rather than by the agencies of evolution.
6. Mayr, E. The growth of biological thought Cambridge, Mass. 1982.
7. Kohn, D. Theories to work by: rejected theories, reproduction and Darwin's path to natural selection Studies in the history of biology 4 (1980): 67-170.
8. Russell, E.S. Form and function London 1916.
9. Mayr, E. 'Introduction' On the origin of species (facsimile of first edition) Cambridge, Mass. 1964.
10. Stauffer, R.C. (ed.) Charles Darwin's Natural Selection Cambridge 1975.
11. Parts of this introduction, especially this section, are based on a full reworking of Di Gregorio, M.A. Unveiling Darwin's roots Archives of natural history 13 (1987): 313-24.
12. Di Gregorio, M.A. Hugh Edwin Strickland (1811-53) on affinities and analogies: or, the case of the missing key Ideas and production 7 (1987): 35-50.
13. Vorzimmer, P.J. The Darwin reading notebooks 1838-1860 J. Hist. Biol. 10 (1977): 107-53.
14. "old Books": CD had a lively interest in such sources as the Bible, 'classical writers', books on ancient Egypt, and so forth, for information on the antiquity of varieties.
15. Burkhardt, F. and Smith, S. (eds) The correspondence of Charles Darwin vol. 3 (Cambridge 1987), pp. 43-5.

PART ONE

CATALOGUE AND TRANSCRIPTION

"Upon the whole nothing can be inferred from this list" (134a)

table of titles

"You may shorten name" (342a)
Thank you.
Full details of author, title, publication and current location are recorded with each entry in the text. These details also record if the book bears CD's autograph, or was inscribed by whomever gave it to CD; if it was in CD's possession before and/or during the Beagle voyage; and if the book contains uncut pages.

Abercrombie Inquiries concerning the intellectual powers 1838

Abernethy Physiological lectures 1822

Acébla Les Impiétés 1878

Acharius Lichens 1803

Adams Field and forest ramblers 1873

Agassiz, Alexandre Harvard College catalogue - Echini 1872-74

Agassiz, A. Harvard College catalogue - Acalephae 1865

Agassiz, A. North American starfishes 1877

Agassiz, A. Zoology of Challenger voyage - Echinoidea 1882

Agassiz, A., \& Pourtalès Harvard College catalogue - Echini, crinoids and corals 1874

Agassiz, Elizabeth and Alexandre Seaside studies 1871

Agassiz, Louis Humboldt centennial address 1869

Agassiz, L. Bibliographia zoologia et geologiae 1848-54

Agassiz, L. Natural history of U.S. - Classification n.d. 9

Agassiz, L. De l'espèce 1869

Agassiz, L. Lake Superior 1850

Agassiz, L. Methods of study in natural history 1863

Agassiz, L. Nomenclatoris zoologici 1848 14

Agassiz, L. Florida reefs 1880
Agassiz, L., \& Gould, A.A. Principles of zoology - comparative physiology 1848
Alder \& Hancock British nudibranchiate Mollusca 1845-55
Allen, Grant The colour sense 1879
Allen, G. Der Farbensinn 1880
Allen, G. Physiological aesthetics 1877
Allen, Joel North American pinnipeds 1880
Allman Fresh water Polyzoa 1856
Allman Gymnoblastic or tubularian hydroids 1871-72
Allen, George James Hydroida 1877
Altum \& Landois Zoologie 1872
Anderson Yunan expedition 1871
Angelin Iconographia crinoideorum 1878
Archiac Géologie 1834-1845 1847
Argyll Primeval man 1869
Argyll The reign of law 1867
Aristotle On the parts of animals 1882
Arnott Elements of physics $1833-18$
Askenasy Kritik der Darwin'schen Lehre 1872
Aubuisson Basalts of Saxony 1814
Aubuisson Traité de géognosie 1819
Audubon Ornithological biography 1831-39 21
Audubon \& Bachman Viviparous quadrupeds 1846
Aveling The student's Darwin 188124
Ayrault De l'industrie mulassière 1867
Azara Quadrupèdes de Paraguay 1801
Azara Voyages dans l'Amérique méridionale 1809
B, J.P. Spiritual evolution $1879 \quad 27$
Babington British botany 1851
Baerenbach Teleologie 1878
Baerenbach Naturgeschichte des Weibes 1877
28
Baere Naturgeschichte des Weibes 1877 29
Baerenbach Anthropologischen Philosophie 1879
Bagehot Physics and politics 1872
Baildon The spirit of nature 1880
Bain The emotions and the will 1865
Bain The emotions and the will 3rd edn 1875
Bain The senses and the intellect 1864
Baird British Entomostraca 187531

Baker Botanical geography 1875 32

Balfour Elasmobranch fishes 1878
Balfour Comparative embryology 1880
Ball India 1880
Barclay Life and organization 1822

Barrago L'Uomo 1869
Barrande Acéphalés 1881
Barrande Brachiopodes 1879
Barrande Céphalopodes 1877
Barrande Defense de colonies 1870
Barrande Distribution des céphalopodes 1870
Barrande Trilobites 187134

Barton Geography of plants 1827
Bary Die Mycetozen 1864
Bastian The beginnings of life 1872
Bastian The brain 1880
Bastian Evolution 1874
Bastian Origin of lowest organisms 1871
Bate Amphipodous Crustacea 1862
Bateman Aphasia 1870
Bates River Amazons 1863
Baxter Statistics medical and anthropological 1875
Beale Structure and growth of the tissues 1865
Bechstein Naturgeschichte Deutschlands 1793-95, 1801-05 38
Bechstein Naturgeschichte der Stubenvögel 1840
Beechey Pacific voyage 183244

Bell, Charles Expression 1844
Bell, C. The hand 187449

Bell, John \& Charles Human body 1826
Belt Nicaragua 1874
Beneden Vers intestinaux including Bronn Essay on distribution 1861
Bentham British flora 1858 two copies $\quad 51$
Bentham \& Hooker, J.D. Genera plantarum 1862-83
Berjeau Dogs 1863
Berkenhout Botanical lexicon 1764
Bernard Animaux et végétaux 1879
Bernard Tissus vivants 1866
Bernhardi Pflanzenart 183454

Berzelius The blowpipe 1822 57

Beudant Minéralogie 1830
Bevan The honeybee 1827
Bevington Key-notes 1879
Bianconi La Teoria darwiniana 1875 58
Bianconi La théorie darwinienne 1875

- Bible 1838

Bigg Spinal curvature 1882
Billing Scientific materialism 1879
Binney Terrestrial air-breathing molluscs of U.S. 1878
Blackley Catarrhus aestivus 1873
Blackley Hay fever 2nd edn 1880
Blackwall Spiders 1861-64
$\begin{array}{ll}\text { Blackwall Zoology } 1834 & 60 \\ \text { Blackwell General science } 1869 & 61\end{array}$
Blackwell General science 1869
Blainville Actiniologie 1834
Blumenbach Anthropological treatises 1865
Blyth Cranes 1881
Boitard Entomologie 1828
Boitard \& Corbié Pigeons domestiques 1824
Bolingbroke Political tracts 1748 64
Bolingbroke Upon parties 1739
Bolingbroke Patriotism 1749
Bonaparte Pigeons 1855
Bonaparte Birds of Europe and North America 1838
Bondi L'Uomo 1873
Boner Transylvania 1865
Bonnal Une agonie 1877
Bonnet Insectologie 1780
Bonnet L'Usage des feuilles 1754 two copies
Boott Carex 1858-60
Borrelli Vita e natura 1879
Bosquet Crustacés fossiles de Limbourg 1854
Bosquet Entomostracés fossiles de France et Belgique 1852
Bosquet Cirripedes 1857

Bostock Physiology 1824
Boudin Traité de géographie médicale 1857
Boué Autobiographie 1879
Bourbon del Monte L'Homme 1877
Bowdler Poems and essays 1819
$\begin{array}{ll}\text { Bowerbank British Spongiadae 1864-72 } & 68\end{array}$
Boyer French dictionary 1816
Boyer Royal dictionary 1819
Brace Dangerous classes of New York 1872
Brace Races of the Old World 1863
Bradley Husbandry and gardening 1724
Brady Copepoda 1878-8069

Bree Species not transmutable 1860
Brehm Illustriertes Thierleben 1864-67
Brehm Tierleben 2nd edn 1876-78
Brent The canary n.d.
Brent The pigeon book n.d.
Briggs Flora of Plymouth 1880
Briosi Embrioni vegetali 1882
British Association Third meeting, report 1834
British Association Eleventh meeting, report 1842

- British aviary n.d.72

British Museum Marine Polyzoa 1852-54
British Museum Mammalia 1843 73
British Museum British Hymenoptera 1855 74
$\begin{array}{ll}\text { British Museum Coleopterous insects of Madeira } 1857 & 75\end{array}$
Broca Hybridity in Homo 1864
$\begin{array}{ll}\text { Bronn Handbuch einer Geschichte der Natur } 1841 & 76\end{array}$
Bronn Morphologische Studien 1858 90
Bronn Entwickelungs-Gesetze 1858 91
Brookes Insects 1763
Brookes Waters 1763
Brougham Natural theology 1839
Broun New Zealand Coleoptera 1880 94
Brown Botanical works 1866-68
Browne West Riding lunatic asylum reports 1871-75
Bruguières Encyclopédie méthodique 1789-92
Brunton The Bible and science 1881
Brunton Digitalis 1868
Brunton Pharmacology 1880
Buch Îles Canaries 1836
Buch Norway and Lapland $1813 \quad 96$
Büchner Aus Natur 1862
Büchner La Théorie darwinienne 1869
Büchner Die Darwin'sche theorie 1876
Büchner Liebe und Liebes-Leben 1879
Büchner Vererbung 1882
Büchner Man 1872
Büchner Mind in animals 1880
Büchner Sechs Vorlesungen 1868
Büchner Sechs Vorlesungen 2nd edn 1872
Büchner Stellung des Menschen 1870
Büchner Stellung des Menschen 1870
Bucke Man's moral nature 1879
Buckley Natural science 1876
Buckton British aphides 1876-83
Buller Birds of New Zealand 1873
Burbidge Cultivated plants 1877
$\begin{array}{ll}\text { Burchell Southern African travels } 1822 \\ \text { B } & 100\end{array}$
Burgess Blushing 1839
Burke The sublime and beautiful $1823 \quad 102$
Burmeister Rankenfüsser 1834
Burmeister Histoire de la création 1870
Burmeister Trilobites 1846
$\begin{array}{ll}\text { Busch Schopenhauer } 1878 & 104 \\ \text { Busch Schopenhauer } & 1877\end{array}$
Busch Schopenhauer - Beitrag 1877
Busch Naturgeschichte der Kunst 1877
Butler Evolution 1879
Butler Geography 1818
Bütschli Infusorien 1876

Cabot Immature Odonata 1872-81
Camerano La Scelta sessuale 1880
Candolle, Alphonse de Géographie botanique raisonnée 1855
Candolle, A. de Géographie botanique raisonnée vol. 2
Candolle, A. de Histoire des sciences 1873
Candolle, A. de La Phytographie 1880
Candolle, Augustine Pyramus de Mémoires 1862
Candolle, A.P. de Prodromus 1824-25
Candolle, A.P. de Botanique 1819
Candolle, A. de \& A.P. de Monographia phanerogamarum 1878-81
Canestrini Origine dell'uomo 1870
Canestrini La Teoria dell'evoluzione 1877
Canestrini La Teoria di Darwin 1880
Carlier Darwinism 1872
Carneri Gefühl 1876
Carpenter Foraminifera 1862
Carpenter The microscope 1868
Carpenter Comparative physiology 1854
Carpenter Mental physiology 1874
Carpenter Researches on the Foraminifera 1855
Carrière Production et fixation des variétés 1865
Carus Geschichte der Biologie 1872
Carus \& Engelmann Bibliotheca zoolica 1861
Carus \& Gerstaecker Handbuch der Zoologie 1875
Caspari Urgeschichte der Menschheit 1873

- Catalogue of the Geological Society library 1846
- Catalogue of the British Museum Chiroptera 1878
- Catalogue of the Royal Society library 1839

Caton Norway 1875
Caton Antelope and deer 1877
Cattaneo Darwinismo 1880
Chambers Ancient sea margins 1848
Chambers Vestiges 1847
$\begin{array}{ll}\text { Chapman, Henry Evolution } 1873 & 165\end{array}$
Chapman, John Neuralgia 1873
Chapuis Le Pigeon voyageur belge 1865
Charpentier Glaciers et terrain erratique du Rhône 1841
Chaumont State medicine 1875
Child Physiological subjects 1868
Child Physiological subjects 2nd edn 1869
Children Memoir 1853
Chun Ctenophorae 1880
Clarcke Systematic botany and zoology 1870
Clark Lucernariae 1878
Clark Mind in nature 1865
Clarke Cattle 1880
Claus Zoologie 1871
Claus Genealogische Grundlage des Crustaceen-Systems 1876
Cleland Evolution 1881
Coan Patagonia 1880
Cognetti de Martis Evoluzione economica 1881
Cohn Die Pflanze 1882
Colin Physiologie des animaux domestiques 1854-56
Collett Zoologi: Fiske 1880
Collingwood China Sea 1868
Columbus Selected letters 1847
Comstock Cotton insects 1879
Comstock Report, U.S. Dept. Agriculture 18791880

- Congrès internationale d'anthropologie, Bologna 1873

Conta Théorie du fatalisme 1877

- Conversations on vegetable physiology 1829

Conybeare \& Phillips Geology of England and Wales 1822
Cook \& King Voyage to the Pacific Ocean 1784
Cooke Mycographia 1879
Cotta Geologie der Gegenwart 1866
Cotta Geology and history 1865
Cotta Granit und Quader-Sandstein 1838
Cox What am I? 1873
Crawfurd Indian islands 1856
Crawfurd Malay grammar and dictionary 1852 172
Croll Climate and time 1875 173
Crookes Psychic force 1872
Cunningham Strait of Magellan 1871
Curtis The botanical magazine 1793
Cuvier Essay on the theory of the earth 1827
Cuvier Leçons d'anatomie comparée 1799-1805 174
Cuvier Le règne animal 1829 175

- Cyclopaedia of anatomy and physiology 1859 176
Dallas Animal kingdom n.d. 178
Dana Crustacea 1853
Dana Corals and coral islands 1872 179
Dana Geology 1863 180
Dandolo Silk-worms 1825
Danielssen \& Koren Zoologi: Gephyrea 1881
Dareste Monstruosités 1877
Darwin, Charles translations of his works various
Darwin, C. Zoology of the Beagle voyage 1840-42 182
Darwin, Erasmus The botanic garden 1791 183
Darwin, E. The botanic garden part 2 vol. 21789 184
Darwin, E. Phytologia 1800
Darwin, E. Temple of nature 1803 185
Darwin, E. Zoonomia 1794-96
Darwin, Robert Waring Ocular spectra 1786 187
Darwin, R.W. Principia botanica 1810
Daubeny Volcanos 1826
Daubrée Roches cristallines 1860 188
Dawkins Cave hunting 1874
Dawson, James Australian aborigines 1881
Dawson, John Fossil plants of Canada 1871
Defrance Tableau des corps organisés fossiles 1824
De la Beche Theoretical geology 1834
De la Beche Annals of Mines selection 1824 189
Delage Crustacés édriophthalmes marins 1881 190
Delamer (Dixon) Pigeons and rabbits 1854Delgado Terreno siluriano no baixo alemtejo 1876
Delpino Dicogamia 1868-74 191
Denton Is Darwin right? 1881 192
- Descriptive and illustrated catalogue of Mammalia and Aves 1845
Desmarest Mammalogie 1820
Devay Mariages consanguins 1862 194
- Dictionary of chemistry (Ure) 1823 195
- Dictionary of chemistry (Watts) 1871-72
- English dictionary 1770 196
- Spanish-English dictionary 1831
- Dictionnaire classique d'histoire naturelle 1822-31
- Dictionnaire raisonnée des termes usités dans les sciences naturelles 1834 197
- Dictionnaire des sciences naturelles: Planches 1830 198
Dillwyn Recent shells 1817
Dippel Das Microskop 1872 199
Dixie Across Patagonia 1880
Dixon, Edmund Dovecote and aviary 1851
Dixon, E. Ornamental and domestic poultry 1848 201
Dixon, Frederick Tertiary and cretaceous Sussex 1850 203
Dobell Vestiges of disease 1861
Dodel Ulotrix zonata 1876
Dodel Die neuere Schöpfungsgeschichte 1875
Doherty Philosophie organique 1881 204
Dohrn Pantopoda 1881
Dohrn Arthropoden 1870
Dolfuss Géologie transformiste 1874
- Domestic medicine 1872
Donders The eye 1864
Donn Hortus Cantabrigiensis 1823
Donnegan Greek-English lexicon 1837
Douglas \& Scott The British Hemiptera 1865
Downing Fruits of America 1845 205
Dowson Erasmus Darwin 1861 208
Drayson The last glacial epoch 1873

Dreher Der Darwinismus 1877
Drouët Mollusques marins des Açores 1858
Drysdale Protoplasmic theory 1874
Dub Lehre Darwin's 1870
Du Bois-Reymond Johannes Müller 1860
Duchenne Physiologie humaine 1862
Dufrénoy \& Elie de Beaumont Description géologique de la France 1836210
Duhamel du Monceau Traité des arbres 1755
Dumont Haeckel 1873
Duncan, Andrew Dispensatory 1826
Duncan, James Fecundity 1871
Duncan, John Analogies of organized beings 1831
Dupont L'Homme 1871
Du Prel der Kampf ums Dasein 1874
Du Prel Planetenbewohner 1880
Du Prel Psychologie der Lyrik 1880
Durand Physiologie philosophique 1866
Durand Les Origines animales de l'homme 1871
Dutrochet Histoire anatomique et physiologique 1837
Duval Histoire du pêcher 1850
Duval Histoire du poirier 1849
Duval Histoire du pommier 1852
Eaton Breeding pigeons 1852
Eaton Breeding pigeons including Moore Columbarinus 1858
Ecker Anatomie des Frosches 1864-82
Edgeworth Pollen 1877
Ehrenberg Mikrogeologische Studien 1873
Ehrenberg Das kleinste Leben im Weltmeer 1844
Eichwald Geognostisch-palaeontologische Bemerkungen 1871220
Eimer Maureidechse 1881
Élie de Beaumont Géologie pratique 1848
Emery Fierasfer 1880

- Encyclopaedie der Naturwissenschaften 1879-82

Engelmann Bibliotheca historico-naturalis 1846

- Enten, Schwanen und Gänsezucht 1828

Ercolani Nouve ricerche sulla Placenta 1880
Ercolani Unita della placenta 1877
Erichsen Surgery 1869
Ernest Dictionary, Graecium lexicon 1816
Errera Fécondation des fleurs 1878
Eschricht, Reinhardt \& Lilljeborg Cetacea 1866
Eschwege Gebirgskunde Brasiliens 1832
Espinas Sociétés animales $1877 \quad 223$
Euripides Hecuba $1836 \quad 224$
Eyton Osteologia avium 1867
Farbre Souvenirs entomologiques $1879 \quad 225$
Faivre Variabilité 1868
Falconer Palaeontological memoirs 1868 226
Falconer Teak forests of Tenasserim 1852
Farrar Language 1865

- Farrier and naturalist 1828-30
- Fauna und Flora des Golfes von Neapel 1880-81 227

Fayrer Bengal tiger 1875
Fenwick Medical diagnosis 1871
Ferguson Rare and prize poultry 1854
Ferrière Darwinisme 1872 two copies 229
Ferris Origin of species 1871
Fichte Die Seelenfortdauer 1867
Fiske Darwinism 1879
Fiske Cosmic philosophy 1874
Fitton Geology in England 1833
Fitzgerald Australian orchids 1877
Fitzroy \& King Adventure and Beagle voyages 1839230
Fleming History of British animals 1828 231
Fleming Philosophy of zoology 1822
Flourens Examen du livre de M. Darwin 1864
Flourens Longévité humaine 1855
Flourens Instinct et intelligence $1845 \quad 235$
Flower Osteology and dentition of vertebrated animals 1879236
Flower Osteology of the Mammalia 1870
Flügel German-English dictionary 1838
Focke Die Pflanzen-Mischlinge 1881
Fol Fécondation et hénogenie 1879
Follen Life of Charles Follen 1844
Forbes Asteridae offprint237
Forbes Naked eyed Medusae 1848
Forel Fourmis de la Suisse 1874
Forster, Johann Observations 1778 240
Forster, Thomas British birds 1817
Foster \& Balfour Embryology 1874
Foster \& Langley Physiology 1876 241
Fournier Phanérogames 1863
Francisque-Michel Haras 1860
Frank Pflanzenphysiologie 1868
Frank Pflanzentheilen 1870 242
Freke Orisin of species 1861 244
Fremont Expedition to the Rocky Mountains 1845
Frey Histology and histochemistry of man 1874 245
Frohschammer Das Christenthum 1868
Gallesio Traité du citrus 1811 246
Galton The art of travel 1855 248
Galton English man of science 1874
Galton Tropical South Africa 1853
Garrod, Alfred Baring Materia medica 1869
Garrod, Alfred Henry Collected papers 1881
Gärtner Befruchtung der vollkommeneren Gewächse 1844
Gärtner Bastarderzeugung im Pflanzenreich 1849 256
Gastaldi Lake habitations 1865 298
Gaudry Animaux fossiles du Mont Lébéron 1873
Gaussoin Navassa 1866
Gee Auscultation adn percussion 1870
Gegenbaur Comparative anatomy 1878
Gegenbaur Vergleichende Anatomie 1870299
Gegenbaur Anatomie compare,e 1874
Gegenbaur Wirbelthiere 1864-72
Geiger Entwickelungsgeschichte der Menschheit 1871
Geikie The great Ice Age 1877
Geikie Prehistoric Europe 1881 300
Gentry Birds of eastern Pennsylvania 1876
Geoffroy St Hilaire, Étienne Philosophie zoologique 1830
Geoffroy St Hilaire, Isidore Zoologie qénérale 1841 301
Geoffroy St Hilaire, I. Anomalies de l'organisation 1832-37 306
Geoffroy St Hilaire, 1. Règnes organiques 1854-62 316
Geoffroy St Hilaire, I. Vie d'Étienne Geoffroy 1847 320
Gérard Des Orchidées 1879 321
Gerland Das Aussterben 1868
Gervais Les trois règnes de la nature 1854-55 325
Giraud-Teulon La famille 1874 327
Girton Pigeon-fancier n.d.
Glen Poor Law Statutes 1857 328
Gloger Das Abändern der Vögel 1833
Godman The Azores 1870 330
Godron De l'espèce 1859 331
Gonne Das Gleichgewicht 1882 335
Gooch Diseases peculiar to women 1859
Goodsir, John \& Harry Anatomical and pathological observations 1845

- Gooseberry growers' register 1862
Gosse Alabama 1859
Gosse Jamaica 1851
Götz Hunde-galerie 1853 336
Gould, Benjamin Military and anthropological statistics 1869
Gould, John Handbook to the birds of Australia 1865 337
Gould, J. Introduction to the birds of Australia 1848 341
Gould, J. Introduction to the birds of Great Britain 1873 342
Gould, J. Trochilidae 1861
Gould, William English ants 1747 344
Graba Reise nach Färó 1830
Graduate from Cambridge Darwinian theory 1867 345

Grant Comparative anatomy 1835
Gratiolet Expression 1865
Graves Naturalist's companion 1824
Gray, Asa How plants behave 1872
Gray, A. Darwiniana 1876
Gray, A. Botany and vegetable physiology 1857
Gray, A. Botany of northern U.S. 1856
Gray, A. Natural science and religion 1880
Gray, George Birds of China 1871
Gray, Henry Anatomy 1869
Gray, John Synopsis reptilium 1831
Green Bacton in Norfolk 1842
Greene Coelenterata 1861
Greenwell British barrows including Rolleston Skulls 1877
Greg Christendom 1863
Greg Enigmas of life 1872
Grobben Dekapoden 1878
Grove Correlation of physical forces 1862
Günther Ceratoden 1871
Günther Land-tortoises 1877
Günther Fishes 1880
Günther Reptiles of British India 1869
Guthrie Mr Spencer's formula of evolution 1879
Guy Forensic medicine 1861
Haast Geology of Canterbury and Westland, New Zealand 1879353
Haberlandt Schutzeinrichtungen 1877 two copies
Haberlandt Vergleichende Anatomie 1881
Haeckel Anthropogenie 1874
Haeckel Anthropogenie 3rd edn 1877
Haeckel Arabische Korallen 1875
Haeckel Siphonophoren 1869
Haeckel Evolution of man 1879
Haeckel Freedom in science 1879
Haeckel Freie Wissenschaft 1878
Haeckel Generelle Morphologie 1866
Haeckel Gesammelte Vorträge 1879
Haeckel History of creation 1876
Haeckel Die Kalkschwämme 1872
Haeckel Natürliche Schöpfungsgeschichte 1868
Haeckel Natürliche Schöpfungsgeschichte 2nd, 3rd, 4th, 5th, 7th edns 1870-79 360
Haeckel Les preuves du transformisme 1879
Haeckel Das Protistenreich 1878
Haeckel Die Radiolarien 1862
Haeckel Gastraea-Theorie 1877
Haeckel System der Medusen 1879-80
Hagen Insect deformities 1876
Hahn Meteorite 1880
Hahn Die Urzelle 1879
Hall Index to new general atlas 1831
Hall New general atlas 1829
Hallez Turbellariés 1879
Hancock Brachiopoda 1857
Hansen Adventivbildungen bei den Pflanzen 1881
Harris, George The arts 1869
Harris, Thaddeus Entomological correspondence 1869
Harris, T. Insects injurious to vegetation 1862
Harris, T. Insects of New England 1842
Hartmann Wahrheit und Irrthum im Darwinismus 1875 two copies 362
Hartung Lanzerote und Fuertaventura 1857
Harvey Nereis australis 1849
Harvey Sea-side book 1849
Hasse Elasmobrnchier 1879
Haughton Physical geography 1880
Hawkins, Benjamin Human and animal frame 1860
Hawkins, Richard South Sea voyage 1847
Head Journeys across the Pampas 1826
Heckel Du mouvement végétal 1875
Hedericus Graecium lexicon 1816
Heer Fossil flora of North Greenland 1869

Heer Flora fossilis artica 1875
Heer Flora fossilis Helvetiae 1876-77
Heer Miocene Flora und Fauna Spitzbergens 1870
Heer Le Monde primitif de la Suisse 1872
Heer Pays tertiaire 1861
Heer Klima des Tertiärländes 1860
Héliu La Loi unique 1878
Heller Darwin und das Darwinismus 1869
Helmholtz Popular lectures 1873
Henfrey Botanical and physiological memoirs 1853
Henfrey Physiological botany 1847
Henfrey (ed.) Reports and papers on botany 1849
Henle Anatomie des Menschen 1858
Henry Experimental chemistry 1823
Henslow Botany 1837
Henslow Botanical dictionary n.d. 371
Herbert Amaryllidaceae 1837 372 372
Hermann, Ludimar Human physiology 1875376
Hermann, H.C. Italian alp-bee 1860
Hermann, L. Handbuch der Physiologie 1881
Herschel, J.F.W. Scientific enquiry 1849
Herschel, J.F.W. Natural philosophy 1831
Herschel, J.F.W. Astronomy 1833
Herschel, Mrs John Caroline Herschel 1876
Hertwig Zahnsystem der Amphibien 1874
Hervey-Saint-Denis Agriculture et horticulture des Chinois 1850
Hewson Works 1846378

Heyworth Man 1866
Hibberd The fern garden 1872
Higginson Out-door papers 1871
Hildebrand Geschlechter-Vertheilung bei den Pflanzen 1867
Hildebrand Verbreitungsmittel der Pflanzen 1873
Hildebrant Verbreitung der Coniferen 1861
Hinds Regions of vegetation 1843
Hitchcock Geology of Massachussets 1841381
Hochstetter Reise der Novara 1866
Hodge What is Darwinism? 1874382

Hodgson Theory of practice 1870
Hoek Zoology of Challenger voyage 1881
Hoek Embryologie von Balanus 1876
Hoernes \& Auinger Gasteropoden 1879-82
Hofacker Eigenschaften 1828
Hoffmann, Hermann Zur Speciesfrage 1875384
Hoffmann, L. Thier-Psychologie 1881385
Hofmann Liebig 1876
Hofmeister Pflanzenzelle 1867
Hofmesiter Cryptogamia 1862
Hogg Experimental and natural philosophy 1861
Hölder Schädelformen 1876
Holland Chapters on mental physiology 1852
Holland Chapters on mental physiology 2nd edn 1858
Holland Scientific and other subjects 1862
Holland Medical notes and reflections 1839
Holland Medical notes and reflections 3rd edn 1855
Holland Recollections 1868 388
Holub South Africa 1881
Holub \& Pelzen Ormithologie Südafrikas 1882
Hooke Micrographia 1667
Hooker, Joseph Botany 1876
Hooker, J. Flora antarctica 1844-47
Hooker, J. Himalayan journals 1854392
Hooker, J. Introductory essay, flora of New Zealand 1853
Hooker, J. Geological survey of Great Britain n.d.
Hooker, J. Flora of Australia 1859
Hooker, J. Introductory essay, flora of New Zealand reprint 398
Hooker, J. \& Ball Marocco and the Great Atlas 1878
Hooker, J. \& Thomson Flora Indica 1855
Hooker, William Dawson Norway 1838
Hooker, William Jackson British flora 1838

Hooker, W.J. \& Arnott British flora 1855
Hooker, W.J. et al. Supplement to Smith E Sowerby 1831-65
Hope Coleopterist's manual 1837
Hopkins Geology and terretrial magnetism 1844
Horner Alluvial Egypt 1858
Houghton Natural history of the ancients n.d.
House of Commons Wild birds' protection 1873
Hovelacque Notre ancêtre 1878
Howorth Mongols 1876
Hromada Vorsokratische Naturphilosophie 1879
Huber, François Abeilles 1814
Huber, Pierre Fourmis indigènes $1810 \quad 412$
Huber, Johannes Die Lehre Darwin's 1871413

Hubrecht Nervensystem 1882
Huc Journey through Tartary, Thibet and China 1852

- Hühner und Pfauenzucht 1827

Humboldt Cosmos 1846415

Humboldt Essai géognostique 1826
Humboldt Fragmens de géologie 1831
Humboldt Travels to the New Continent various edns 1819-29
Humboldt Kingdom of New Spain 1811
Humphrey Limbs of vertebrates 1860
Hunt Light 1854
Hunter Essays including Owen Introductory lectures 1861
Hunter Vegetation 1860
Hunter Human teeth 1778
Huot Atlas complet 1837
Hussey British mycology 1849 422
Hutchinson Dog breeding 1850
Huth Marriage of near kin 1875
Hutton Chronology of creation 1850
Huxley American addresses 1877423

Huxley Crayfish 1880
Huxley Critiques and addresses 1873
Huxley Man's place in nature 1863
Huxley Hume 1879424

Huxley Classification 1869
Huxley Phenomena of organic nature $1862 \quad 425$
Huxley Lay sermons 1870
Huxley Comparative anatomy 1864
Huxley Anatomy of invertebrates 1877
Huxley Anatomy of vertebrates 1871426
Huxley Oceanic Hydrozoa 1858
Huxley Phenomena of organic nature 1863
Huxley Physiography 1877
Huxley Science and culture 1881
Huxley \& Martin Elementary biology 1875
Hyatt Tertiary species of Planorbis 1880
Ingersoll The oyster industry 1881427
L'Institut Sciences mathémathiques 1837, 1840

- International horticultural exhibition 1866428

Irmisch Beiträge zur Biologie 1853
Jaeger Die Darwin'sche Theorie 1869429
Jaeger Die Darwin'sche Theorie n.d.
Jaeger Contra Wigand 1874
Jaeger Zoologie 1871-78
Jaeger Seuchenfestigkeit 1878 two copies
Jaeger Zoologische Briefe 1876
James Du Darwinisme 1877
Jameson Manual of mineralogy 1821
Jameson Treatise on minerals 1816
Jarrold Anthropologia 1808
Jeffreys \& Carpenter The Valorous expedition 1876
Jenyns Memoir of Henslow 1862
Jenyns Meteorology 1858
Jenyns Natural history 1846
Jevons Logic 1881
Johnson, Samuel English dictionary 1826
Johnson, Samuel W. How crops grow 1869

Johnston Botany of the eastern borders 1853
Jones Bermuda 1859

- Journal of a horticultural tour 1817

Jouvencel Genèse selon la science 1859
Juan \& Ulloa Voyage to South America 1806 444
Judd Volcanoes 1881
Jukes Geological survey of Newfoundland 1843
Jukes Student's manual of geology 1857
Jukes Student's manual of geology 2nd edn 1862445

Jukes et al. Record of the School of Mines 1853
Kaspary Natural laws 1876
Kater \& Lardner Mechanics 1830
Keir Sketch of the life 1859
Kerner Alpenpflanzen 1864
Kerner Flowers 1878
Key \& Retzius Anatomie des Nervensystems 1875-76
Kidd The canary n.d.

- Das Kind 1876 447

Kirby Monographia apium Angliae 1802
Kirby \& Spence Entomology various edns 1818-26
Kirchhof Landwirtschaft 1835 457
Klein Lymphatic system 1873
Klein et al. Physiological laboratory handbook 1873
Kobell Mineralogie 1838
Kohlrausch Physik 1877
Kölliker Alcyonarien 1870
Kölreuter Geschlecht der Pflanzen 1761-66
Koninck \& Le Hon Crinoides du terrain carbonifere 1854
Körner Theirseele und Menschengeist 1872
Kowalewsky Anthracotherium 1873
Krusenstern Reise in das Petschora-Land 1846
Kuhl Descendenzlehre 1879
Kühne Anpassungsgesetz 1878
Kühne Protoplasma und Contractilität 1864
Kuntze Speciesbeschreibung und Rubus 1879
Kuntze Um die Erde 1881
Kurr Bedeutung der Nektarien 1833
Kurtz Dionaea muscipula $1876 \quad 475$
Labillardière Voyage de la Perouse 1791476
Lacepède Cétacées 1809
Laing Darwinism refuted 1871
Lamarck Animaux sans vertèbres 1816-17
Lamarck Animaux sans vertebres 2nd edn 1835-45
Lamarck Philosophie zoologique 1809477
Lamarck Philosophie zoologique new edn 1873480
Lambert L'Immortalité 1865
Lambert Monde moral 1862
Lambertye Le Fraisier 1864
Lamont Sea-horses 1861
Lamouroux Polypiers 1821
Lanciano L'Universo 1872
Lanessan La Lutte pour l'existence 1881
Lanessan Du protoplasma végétal 1876
Lankester Degeneration 1880
Lankester Comparative longevity $1870 \quad 482$
Lardner Cabinet cyclopedia - history 1830
Latham Man 1851
Latreille Fourmis 1802 - 484
Laugel Problemes de la nature 1864
Laugel Science et philosophie 1863
Lavater Physionomie 1820
Lawrence, John The horse 1829 485
Lawrence, William Lectures on man 1822
Lawson Lists of seeds and plants 1851486
Lawson Treatise on grasses 1851487
Le Brun Conference 1701
Le Couteur Wheat n.d.
Le Couteur Wheat 2nd edn 1872
Lecoq Fécondation des végétaux et hybridation 1845 495
Lecoq Fécondation 2nd edn 1862 496
Lees Acoustics, light and heat 1877 497
Le Hon L'Homme fossile 1867
Leidy Fauna of Nebraska 1853
Leidy Fauna of Western Territories 1873 498
Leighton Lichen-flora 1872
Le Maout \& Decaisne Botanique 1868
Lemoine, Albert Physionomie et parole 1865
Lemoine, Victor Oiseaux fossiles de Reims 1878 499
Lepelletier Physiognomie 1864
Lesson Mammalogie 1827
Lesson Ornithologie 1828
Letourneau Physiologie des passions 1868 500Lewes History of philosophy 1867
Lewes Physical basis of mind 1877
Lewes Physiology of common life 1860
Leybold Pampas Argentinas 1873
Liebig Organic chemistry 1840
Lindemuth Bastarderzeugung 1878501
Lindley Natural system of botany 1836
Lindley First principles of botany 1830
Lindley School botany 1856
Link Urwelt und Alterthum 1821
Linnaeus Philosophia botanica 1783502
Linnaeus Systema naturae 1789-96
Linnaeus Systema vegetabilium 1797
Lippert Religionen 1881
Lisle Husbandry 1757
Locard Variations malacologiques 1881
Locke Human understanding 1726
Loiseleur-deslongchamps Céréales 1842
Lombardini Cammelli 1841504
Loudon (ed.) Encyclopedia of plants 1841
Lovén Échinoüdes 1875506
Low Domesticated animals 1845
Lowne Blow-fly 1870510
Lowne Teratological series 1872
Lowne Philosophy of evolution 1873
Lubbock Reproduction in Daphnia 1857 511
Lubbock Addresses 1879
Lubbock Ants, bees and wasps 1882
Lubbock Collembola and Thysanura 1873
Lubbock Civilisation 1870
Lubbock Metamorphoses of insects 1874512
Lubbock Ova of insects 1858
Lubbock Prehistoric times 1865
Lubbock Prehistoric times 2nd edn 1869 513
Lubbock Scientific lectures 1879
Lucae Fuchs-Affe und Faulthier 1882
Lucae Quadrupeden 1881
Lucas Hérédité naturelle 1847
Luerssen Botanik 1879-82 523
Lunze Hundezucht 1877
Lyell, Charles Elements of geology 1838
Lyell, C. Elements of geology 6th edn 1865 524
Lyell, C. Antiquity of man 1863 525
Lyell, C. Antiquity of man 3rd edn 1863 527
Lyell, C. Antiquity of man 4th edn 1873
Lyell, C. Manual of elementary geology 1851
Lyell, C. Manual of elementary geology 4th edn 1852 528
Lyell, C. Manual of elementary geology 5th edn 1855Lyell, C. Principles of geology 1830-33
530
Lyell, C. Principles of geology 5th edn 1837 531
Lyell, C. Principles of geology 6th edn 1840
539
539
Lyell, C. Principles of geology 7th edn 1847 543
Lyell, C. Principles of geology 9th edn 1853Lyell, C. Principles of geology 10th edn 1867-68 two copiesLyell, C. Principles of geology 11th edn 1872544

Lyell, C. Second visit to U.S. 1849
Lyell, C. Student's elements of geology 1871
Lyell, C. Student's elements of geology 2nd edn 1874
Lyell, C. Supplement to 5th edn of Manual 1857
Lyell, C. Supplement 2nd edn 1857
Lyell, C. Travels in North America 1845
Lyell, James Fancy pigeons 1881549

Lyman Ophiuridae and Astrophytidae 1875
Lyman Supplement to Ophiuridae 1871
Lyon Homo versus Darwin n.d.
McAlpine Botanical atlas 1882
McAlpine Zoological atlas 1881
Macaulay et al. Vivisection 1881
McClelland Indian Cyprinidae 1839
MacCulloch Classification of rocks 1821
McClintock Sir John Franklin 1859551

Macgillivray British birds 1837-52
Macgillivray Deeside and Braemar 1855
McIntosh British Annelids 1873-74
Mackintosh Ethical philosophy 1837
Mackintosh History of England 1830 1876559
Maclaren For and against Darwinism 1876
Maclaren Natural theology 1878
Maclaren Chemical difficulties of evolution 1877
MacLeay Horae entomologicae 1819
McLennan Primitive marriage 1865
McLennan Ancient history 1876
Macquart Facultés intérieurs 1850
Magnus Najas 1870562

Mallery Gestures and signals of N. American Indians 1880
Mallery Sign language among N. American Indians 1880
Mallery Sign language among American Indians 1881
Malm Fauna 1877
Malthus Population 1826 two copies of vol. 2
Mantegazza Fisiologia del piacere 1870
Mantegazza Fisionomia e mimica 1881
Mantegazza Rio de la Plata e Tenerife 1867
Mantegazza Studii antropologici $1877 \quad 565$
Mantegazza Il terzo molare 1878
Marchand Voyage autour du monde 1792
Marshall, William Minutes of agriculture 1778
Marshall, W. Board of agriculture reports 1808
Marshall, William E. Phrenologist amongst the Todas 1873
Marsham Coleoptera britannica 1802567
Martin The dog 1845
Martin The horse 1845 568
Martin-Saint-Ange Cirripèdes 1835
Marx Das Kapital $1873 \quad 570$
Masaryk Selbstmord 1881
Maskelyne Nautical tables 1802
Masters Vegetable teratology $1869 \quad 571$
Matthes Wirbelthiere 1861
Matthew On naval timber 1831
Maudsley Body and mind 1870
Maudsley Body and mind 2nd edn 1873 272
Maudsley Physiology and pathology of mind 1868
Maudsley Physiology of mind 1876
Mawe Travels in Brazil 1825
Maxwell Matter and motion 1882
Mazaroz Genèse des sociétés modernes 1877
Medlicott \& Blandford Geology of India 1879
Meehan Flowers and ferns of U.S. 1878
Meetkerke Guests of flowers 1881
Meitzen Bhawani 1872
Melia Origin of man 1872
Mengozzi Filosofia della medicina 1869
Merriam Birds of Connecticut 1877
Metzger Die Getreidearten 1841
Meyen Reise um die Erde including Erichson \& Burmeister Insekten 1834

Meyen Pflanzen-Physiologie 1837-39
Meyen Geography of plants 1846
Meyer Naturgeschichte der Hausthiere 1792
$\begin{array}{ll}\text { Michell Earthquakes } 1760 & 578 \\ \text { Miers Trazels to Chile } 1826 & \end{array}$
Miers Travels to Chile 1826
Miller, Hugh Footprints of the creator 1849
Miller, Philip Gardener's dictionary 1748
Miller, William Inorganic chemistry 1864
Milligan A. Corn. Celsi 1826
Milne-Edwards Crustacées 1834-40
$\begin{array}{ll}\text { Milne-Edwards Zoologie générale } 1851 & 581\end{array}$
Mitchell Rattlesnake venom 1861
Mivart Skeleton of primates 1867
Mivart Genesis of species 1871
Mivart Genesis of species 2nd edn $1871 \quad 588$
Mivart Elementary anatomy $1873 \quad 589$
Mivart Man and apes 1873
Moggridge Ants and spiders 1873
Mohl, Hugo Vegetable cell 1852
Mohl, H. Bau und Winden der Pflanzen 1827
Mohl, Jules Études orientales 1879-80 594
Mojsvár Dolomit-Riffe 1878
Mojsvár Gebirge um Hallstatt 1873-75
Mojsvár Geologische Übersichtskarte n.d.
Mojsvár Daonella und Halobia 1874
Moleschott Circulation de la vie 1866
Moleschott Kreislauf des Lebens 1877
Moleschott \& Fubini Sull' influenza della luce 1879
Moniez Cestodes 1881
Mons Arbres fruitiers 1835-36
$\begin{array}{ll}\text { Moore \& More Cybele Hibernica } 1866 & 598 \\ \text { Moore, Frederic Indian lepidopterous insects } 1879\end{array}$
Moore, Frederic Indian lepidopterous insects 1879
Moore, George The first man 1866
Moore, Thomas Poetical works 1847
Moquin-Tandon Tératologie végétale 1841
Morgan American beaver 1868602

Morgan Consanguinity 1871
Morren Congres de botanique horticole 1877
Morren Physiologie végétale 1871
Morris British fossils 1854
Morton Types of mankind 1854
Moseley Notes by a naturalist $1879 \quad 607$
Moseley Oregon 1878
Moseley Peripatus capensis 1874
Mosso Kreislauf des Blutes 1881
Moubray Treatise on breeding 1834
Müller, Ferdinand von Fragmenta phytographiae australiae 1869-71 608
Müller, Freidrich Allgemeine Ethnographie 1873
Müller, Friedrich Reise der Novara 1868
Müller, Fritz For Darwin 1869 609
Müller, Fritz Für Darwin 1864
Müller, Hermann Alpenblumen 1881
Müller, H. Befruchtung der Blumen 1873610

Müller, H. Wechselbeziehungen zwischen Blumen und Insekten 1879

Müller, Johannes Elements of physiology 1838-42 613

Müller, J. Seeigellarven n.d. 621

Muir Supernatural religion 1874
Murchison Silurian system 1839
Murchison Silurian system reviewed 1841 622
Murphy Habit and intelligence 1869
Murphy Habit and intelligence 2nd edn 1879 623
Murray, Andrew Distribution of mammals 1866 two copies 624Murray, Lindley English grammar 1831Nägeli Botanische Mittheilungen 1866
625
Nägeli Die niederen Pilze 1877 630Nägeli \& Cramer Pflanzenphysiologie 1855

Nash Oregon 1878
Nathusius Schweineschädeln 1864
Nathusius Geschichte und Zucht der Hausthiere 1864

Nathusius Viehzucht und Rassenkenntnis 1872-80

- Natural history - plates 1824-26

Naturalist's library Ornithology n.d.

- Natural science, creeds and scripture 1870
- Natuurkundige Verhandeligen including Fritz Sonnenflecken 1878

Naudin Hybridité dans les végétaux 1862
Netter De l'intuition 1879
Neumayr \& Paul Slavonien 1875
Neumayr Fauna des untersten Lias 1879
Neumeister Taubenzucht 1837
Newberry Dinichytes 1875
Newton Zoology 1874
Nicholson Ophiology 1874
Niemeyer Medicine 1871
Nilsson Primitive inhabitants of Scandinavia 1868
Nitzch Pterylography 1867
Nogueira A raça negra 1880
Noiré Ursprung der Sprache 1877
Noiré Die Welt 1874
Noiré Das Werkzeug 1880
Nordenskiöld Voyage of the Vega 1881
Nusbaum Embryologie de Mysis n.d.
Odart Ampélographie 1849

$$
643
$$

Officier du roi Voyage à l'isle de France 1773
Ogle Harveian oration 1881
Oken Physiophilosophy 1847

- Our blood relations 1872

O'Neill Refutation of Darwinism 1880
Ontario Province Report on agriculture 1873
Oppert Languages 1879
Ord Colloids 1879
Ordinaire Volcans 1802
Ormathwaite Astronomy and geology compared 1872
Orton Andes and Amazon 1870
Orton Andes and Amazon 3rd edn 1876645

Osborne Horsebreeder's handbook 1881
Otley English lakes 1830
Ovington Voyage to Suratt 1696
Owen, David Wisconsin, Iowa and Minnesota 1852
Owen, John (ie Butler) The fair haven 1873
Owen, Richard Anatomy of vertebrates 1866-68
Owen, R. Mylodon 1842
648
Owen, R. British fossil mammals 1846
Owen, R. Invertebrates $1855 \quad 652$
Owen, R. Limbs $1849 \quad 655$
Owen, R. Palaeontology $1860 \quad 656$
Owen, R. Palaeontology 2nd edn 1861
Owen, R. Parthenogenesis 1849 two copies
Packard Insects 1868
Packard Insects injurious to trees 1881
Page Man 1867
Page Man 1867
Paget Surgical pathology 1853
$\begin{array}{ll}\text { Paget Surgical pathology 3rd edn } 1870 & 661 \\ \text { Paley }\end{array}$
Paley Christianity 1822
Palm Winden der Pflanzen 1827 662
$\begin{array}{ll}\text { Paolucci Uccelli } 1878 \text { two copies } & 663 \\ \text { Paris Medical }\end{array}$
Paris Medical chemistry 1825
Paris Pharmacologia 1825
Parker Shoulder and sternum in vertebrates 1868
Parkes Practical hygiene 1873
Parkinson Fossil organic remains 1822
Pauchon Rôle de lumierre dans génération 1880
Pennant Quadrupeds 1769
Pernety Îles Malouines 1763-64
Perrier Colonies animales 1881
Persoon Synopsis plantarum 1805-07
Pettigrew Physiology of circulation 1873
Pettigrew Physiology of wings 1871
Philippi Catalogus plantarum 1881

Phillips, John Geology of Oxford 1871
Phillips, J. Life on earth 1860
Phillips, J. Treatise on geology 1839
$\begin{array}{ll}\text { Phillips, J. Vesuvius } 1869 & 666\end{array}$
Phillips, William Mineralogy 1823
Phillips, W. Mineralogy 4th edn 1837
Pickering $R \cdots$ s of man including Hall Analytical synopsis 1850
Pictet Paléontc?ogie 1844-45 668
Pictet Paléontologie 2nd edn 1853-57 670
Piderit Mimik und rhysiognomik 1867
Pistor Taubenzucht $1831 \quad 677$
Planck Seele und Geist 1871678
Planck Darwinismus 1872

- Plans of lakes and rivers between Huron and Ottawa 1857

Playfair Huttonian theory 1802
Pompper Säugethiere, Vögel und Amphibien 1841
Porcher Du Fuchsia 1844
Posnett Ethics, jurisprudence and political economy 1882
Pouchet Human race 1864
Pourtalès Deep-sea corals 1871
Powell Indian languages 1880 two copies
Pozzi Du crane 1879
Preyer Blausäure 1870
Preyer Blutkrystalle 1871
Preyer Naturwissenschaft 1880
Preyer Seele des Kindes 1882
Price Old Price's remains 1863-64
Prichard Physical history of mankind 1836
Prichard History of mankind 3rd \& 4th edns 1841-51 683

- Principles of organic life $1868 \quad 686$

Proctor, Richard Science 1879
Proctor, Robert Journey across the Cordillera $1825 \quad 687$

- Psychological enquiries 1854
- Public libraries in the U.S. 1876

Pugin Edifices and buildings 1841
Pulteney Linnaeus 1805
Pusey Permanence and evolution 1882
Putsche Taubenkatechismus 1830
Puvis Dégénération et extinction 1837
Quadri Teoria Darwiniana 1869
Quatrefages Charles Darwin 1870
Quatrefages Maladies du ver à soie 1859
Quatrefages Annelés 1865691

Quatrefages Métamorphoses 1862
Quatrefages Nouvelles recherches sur ver à soie 1860
Quatrefages Physiologie comparée 1855
Quatrefages Souvenirs 1854
Quatrefages Unité de l'espèce humaine 1861
Quetelet L'Homme 1835 694

- Rabbit book n.d.

Radcliffe Nerve and muscle 1871
Radenhausen Osiris 1874-76
Ram Philosophy of war 1878
Rames La Création 1869
Ramsay Rock specimens 1858
Ramsay Physical geology and geography 1863
Ramsay Physical geology and geography 3rd edn 1872696
Ramsay Physical geology and geography 5th edn 1878
Rang Mollusques 1829
Ranke Physiologie des Menschen 1875
Ray Correspondence 1848
Ray Wisdom of god 1692
Ray Memorials 1846
Reade, Thomas Chemical denudation 1879
Reade, Winwood African sketch-book 1873
Reade, W. Martyrdom of man 1872
Rée Moralische Empfindungen 1877
Reeve Mollusks 1863
Reichenau Vögel 1880

Reinke Vegetabilische Substanzen 1879
Rendu Intelligence des bêtes 1863
Rengger Säugethiere von Paraguay 1830
Retzius Anatomische Untersuchungen 1873703
Retzius Finska Kranier 1878
Retzius Wirbelthiere 1881
Reynier Économie publique et rurale 1818 704 7
Rialle Mythologie 1878
Ribeiro Noticia 1878
Ribot Hérédité psychologique 1882
Ribot Heredity 1875
Richard Analyse du fruit 1808
Richardson, John Pigs 1847
Richardson, J. Fauna Boreali-Americana 1829-36 705
Richardson, J. \& Gray, J.E. Zoology of voyage of Erebus and Terror 1844-48 708
Richardson, Samuel Sir Charles Grandison 1781
Riedel Taubenzucht 1824
Riedel Feinde der Tauben $1824 \quad 710$
Riley, Charles Missouri insects 1871-77
Riley, C. Cotton worm 1880712

Riley, C. Locust plague 1877
Riley, James Loss of the Commerce 1817
Ritchie Creation 1874
Robinet Vers à soie 1848

* Rolle Darwins Lehre n.d. 713

Rolleston Animal life 1870
Rolph Biologische Probleme 1882714

Romanes Theism 1878
Romanes \& Ewart Echinodermata 1881
Rosenbuch Physiographie der Gesteine 1877
Ross Graft theory of disease 1872
Rossi Darwinisme 1870
Roux Kampf der Theile 1881
Royal Commission on live animal experimentation 1876
Royal Society Catalogue of papers 1879
Royer Homme et sociétés 1870716
Rudolphi Anthropologie und Naturgeschichte 1812

Rütimeyer Fossile Pferde 1863 718

Rütimeyer Fauna der Schweiz 1861
Rütimeyer Grenzen der Thierwelt 1868 726
Rütimeyer Rinder der Tertiär-Epoche 1878
Sabatier Coeur et circulation des vertébrés 18737727
Sachs Geschichte der Botanik 1875
Sachs Lehrbuch der Botanik 1870
Sachs Lehrbuch der Botanik 3rd edn 1873
Sachs Traité de botanique $1874 \quad 728$
Sageret Cucurbitacées $1826 \quad 730$

Sageret Pomologie 1830	731

St Bartholomew's hospital Reports 1875
St Clair Darwinism and creation 1873
Saint-Hilaire, Auguste Leçons de botanique 1841
Saint-Hilaire, A. Rio de S. Francisco 1847-48 738
St John Highlands 1878
St John Sutherlandshire 1849
Salter The chrysanthemum 1865
Salter \& Woodward Fossil crustacea 1865 739
Samouelle Entomologist's compendium 1819
Saporta Monde des plantes 1879
Saporta \& Marion Évolution du règne végétal 1881
Saporta \& Marion Végétaux fossiles de Meximieux 1876
Saporta \& Marion Flore de Gelinden 1878
Sarmiento Viage al estrecho de Magellanes 1878
Saussure La question du lac 1880
Savage Religion of evolution 1876
Schacht The microscope 1855
Scherzer Im tropischen America 1864
Scherzer Smyrne 1873
Schiff Physiologie de digestion 1868
Schlegel Physiognomy of serpents $1843 \quad 743$

Schmidt, Oscar Descendezlehre 1873
Schmidt, O. Descent 1875
Schmidt, O. Descent and Darwinism n.d.
Schmidt, Rudolf Die Darwin'sche Theorien 1876746
Schneider Der thierische Wille 1880
Schouw The earth including Kobell Animal kingdom 1852
Schübeler Die Pflanzenwelt Norwegens 1873-75
Schufeldt Tetraonidae 1881
Schultze Kant und Darwin 1875
Schultze Sprache des Kindes 1880
Schulz Photographs n.d.
Schwann Manifestation 1879
Scientific layman New truth and old faith 1880
Scoresby Arctic regions 1820
Scott, John Poppy gardeners 1876
Scott, J. Opium husbandry 1877
Scott, J. Culture of opium poppy 1874
Scott, J. Culture of opium poppy 1878
Scott, W.R. The deaf and dumb 1870
Scrope Volcanos 1862
Scudder, John Specific diagnosis 1874
Scudder, Samuel Butteflies 1881
Scudder, S. Names for butterflies 1875
Sedgwick Discourse 1850
Sedgwick Geology of the Lake District 1853752
Sedgwick Cowgill chapel 1870
Seeley Index to fossil remains 1869
Seeley Ornithosauria 1870
Seemann Flora vitiensis 1865
Seguenza Cirripedi terziarii 1874-76
Seidlitz Descendenztheorie 1876
Seidlitz Darwin'sche Theorie 1871
Seidlitz Darwin'sche Theorie 1871 second copy 753
Seidlitz Darwin'sche Theorie 2nd edn 1875
Semper Arbeiten aus Würzburg 1876
Semper Natural conditions 1881
Semper Natürliche Existenzbedingungen 1880
Semper Palau-Inseln 1873
Settegast Thierzucht 1868
Seward Dr Duncan 1804
Shaftesbury Man 1749
Sharpe Man 1873
Shuckard Indigenous fossorial Hymenoptera 1837
Sidgwick Methods of ethics 1874
Sidgwick Methods of ethics - supplement 1877
Siebold Parthenogenesis der Arthropoden 1871
Siebold Parthenogenesis in moths and bees 1857
Siebold \& Stannius Anatomie comparée 1850757
Siegwart Menschengeschlecht 1873758
Skertchly The universe 1878

- Sketch of philosophy 1868

Smellie Natural history 1790
Smith, Alexander Morals 1835759
Smith, Andrew Zoology of S. Africa 1849
Smith, Charles Hamilton Dogs 1839-40 760
Smith, C.H. Horses 1841764
Smith, C.H. Human species 1852766
Smith, James English flora 1824-28
Smith, J. Grammar of botany 1821
Smith, J. Introduction to botany 1819
Smith, Toulmin Ventriculidae 1858
Snell Schöpfung des Menschen 1863
Sole Positivismo 1881
Sole Sensazione 1882
Solis y Rivadeneyra Mexico $1790 \quad 768$
Solms-Laubach Corallina 1881
Somerville Physical sciences 1834
Somerville Molecular and microscopic science 1869
Soret Pictet 1872
Sowerby et al. British poisonous plants 1861
Spencer Classification of sciences 1871
Spencer Data of ethics 1879
Spencer Descriptive sociology 1873
Spencer Education 1861
Spencer Essays, 2nd series 1863
Spencer First principles 1860-62769
Spencer First principle 2nd edn 186
Spencer Philosophie 1875
Spencer Principles of biology 1864-67
Spencer Principles of psychology 1855 773
Spencer Principles of psychology 2nd edn 1870-72
Spencer Principles of sociology 1874-77
Spencer Study of sociology 1877
Spencer Study of sociology 1877 774
Spengel Darwinismus 1874
Spix \& Martius Travels in Brazil 1824
Sprengel Entdecktes Geheimnis der Natur 1793
Stainton Butterflies and moths 1857 785
Stebbing Essays on Darwinism 1871
Steenstrup Alternation of generations 1845
Steenstrup Hectocotyldannebsen 1856 786
Steenstrup \& Lütken Coprepoder 1861 787
Stephens British Coleoptera 1839
Stephens British insects 1829
Sterne (ie Krause) Werden und Vergehen 1876 788
Sterne Werden und Vergehen 2nd edn 1880
Steudel Nomenclator botanicus 1841
Stewart Philosophical essays 1818 789
Stonehenge (ie Walsh) The dog 1867
Strasburger Cellules 1876
Strasburger Zelltheilung 1876
Strasburger Zelltheilung 3rd edn 1880 790
Strauss Der alte und der neue Glaube 1872
Stricker Handbuch der Lehre 1868-72
Strzelecki New South Wales 1845
Sturm Raçen 1825 791
Sully Sensation and intuition 1874 two copies 794

- Supernatural in nature 1878
- Survival 1877
Swainson Geography and classification of animals 1835
Swainson Birds 1836-37 795
Swammerdam The book of nature 1758 796
Swank Iron and steel statistics 1881
Swinhoe North China campaign 1861 797
Syme Werner's colours 1821
Tasso Gerusalemme 1821 798
Tayler Christianity 1868
Taylor, John Flowers 1878
Taylor, Richard (ed.) Scientific memoirs 1837
Teale Dangers of health 1878
Tegetmeier Poultry book 1856-57
Tegetmeier Poultry book 1866-67 800
Tegetmeier Profitable poultry 1854 803
Tegetmeier Pheasants 1873 804
Thomas Acrididae 1873
Thompson, J. Ready reckoner 1805
Thompson, William Ireland 1849-51
Thomson Flower garden 1871806
Thorell Études scorpiologiques 1877
Thorell European spiders 1869-70
Thorell Synonyms of spiders 1870-73
Thornton Linnaeus' system n.d.
- Thoughts on mental functions n.d.
Tieghem Traité de botanique n.d.
Tietze Devonische Schichten 1870
Timiriazeff Essay on Darwin 1865808
Tornae Chemi 1880

Trémaux Homme 1865 two copies
Treub Orchidées 1879
Trimen \& Thiselton-Dyer Flora of Middlesex 1869
Tschudi Nature in the Alps 1856
Tucker Light of nature 1831
Tuke Influence of the mind 1872
Turton British fauna 1807
Tuttle Physical man 1866
Twining Science 1870
Tylor Anthropology 1881
Tylor Primitive culture 1871
Tylor Early history of mankind 1865
Tylor Early history 2nd edn 1870
Tyndall British Association address 1874
Tyndall Imagination in science 1870
Tyndall Glaciers 1858
U.S. Entomological Commission Rocky Mt. locust 1880

Vacek Österreichische Mastodonten 1877
Vasseur Terrains tertiaires de France 1881
Vaucher Plantes d'Europe 1841

Veith Haussäugethiere 1856	815
15	

Verity Changes in nervous system $1839 \quad 816$
Verlot Plantes d'ornement 1865
Viardot Libre examen various edns 1871-81 . 819
Vincent 1875 Yearbook 1876
Virchow Cellular pathology 1860
$\begin{array}{ll}\text { Virchow Niederer Menschenrassen } 1875 & 823\end{array}$
Virchow \& Holzendorff Vorträge n.d.
Vöchting Rhipsalideen 1873
Vöchting Melastomeen 1875
Vöchting Organbildung 1878
Vogt Lectures on man 1864
Vogt Lettres physiologiques 1875
Vogt Microcéphales including Quatrefages' Review 1867
Vogt Aufgänge der Organismen 1870
Volz Kulturgeschichte 1852
Vries Ranken van Sicyos $1880 \quad 829$
Vulpian \& Carville Appareil vaso-moteur 1875
Wagner, Moritz Darwinian theory 1873 830
Wagner, Rudolf Vertebrates 1845
Wagner, R. Zoologisch-anthropologische Untersuchungen 1861831
Waitz Anthropology 1863
$\begin{array}{ll}\text { Wake Man } 1868 \text { two copies } & 832\end{array}$
Waldner Deutschlands Faune 1879-80
Walker, Alexander Intermarriage 1838
Walker, Francis Monographia Chalciditum 1839836
Walker, John and Charles Atlas of British Isles 1837
Wallace Natural selection 1870
Wallace Natural selection 2nd edn 1871
Wallace Geographical distribution 1876
Wallace Island life 1880
Wallace Malay archipelago 1869
Wallace Supernatural 1866
Wallace Tropical nature 1878
Wallich Eminent men 1870842

Waltershausen Klimate 1865
Walther, Alfred \& Molendo Die Laubmoose Oberfrankens 1868
Walther, Friedrich Der Hund n.d.
Walther, F. Das Rindvieh 1817 844

- Wanderings at Kew n.d. 845

Ward Investments 1852
Warington Creation 1870
Waterhouse Mammalia 1845-48
Waterhouse Marsupialia 1841
Waterton Natural history 1838
Watson, H.C. Cybele britannica 1847-60
Watson, H.C. Compendium of Cybele britannica 1868-70 850
$\begin{array}{ll}\text { Watson, H.C. Distribution of British plants } 1843 \\ \text { Watson, Thomas Physic } 1857 & 852\end{array}$
Watson, Thomas Physic 1857

Webb Dogs 1876
Weber Taubenfreund 1850
Weddell Bolivie 1853
Wedgwood Language 1866
Wedgwood Language 1866
Wedgwood Understanding 1848
Wedgwood English etymology 1872
Weinland Meteoriten 1882
Weinland Meteoriten 1882
Weisbach Reise der Novara 1867
Weismann Daphnoiden 1879
Weismann Descendenz-Theorie I 1875 855 85
Weismann Descendenz-Theorie II 1876
Weismann Descent 1880-82 857
Weismann Isolirung 1872
Weismann Berechtigung der Darwin'schen Theorie 1868 860
Wells Two essays $1818 \quad 861$
Westwood Classification of insects 1839-40
Whewell Inductive sciences 1837886
White Selborne $1825 \quad 868$
White Selborne new edn $1843 \quad 870$
Whitney Gravels of Sierra Nevada 1879
Whitney Language 1875
Whitney Oriental and linguistic studies 1873
Wichura Bastardbefruchtung 1865
Wiesner Bewegunsvermögen der Pflanzen 18818873
Wiesner Wissenschaftliche Botanik 1881-89 874
Wiesner Heliotropische Erscheinungen 1878-80
Wigand Darwinismus 1874-77
Wilckens Form und Leben der Hausthiere 1878
Wilckens Naturgeschichte der Hausthiere 1880
Wilckens Rinderassen 1876
Williamson Recent Foraminifera 1857
Williamson Microscopical objects 1847
Wilson, John British farming 1862
Wilson, Owen British Lepidoptera 1877
Winkler Poissons fossiles n.d.
Winkler Tortues fossiles 1869
Wollaston Insecta Maderensia 1854
Wollaston Variation $1856 \quad 876$
Wolstein Paaren und Verpaaren 1836
Woodward Shells 1851-56
Wright Darwinism 1871882
Wright Philosophical discussions 1877
Wundt Physiologische Psychologie 1880
Wundt Physiologie humaine 1872
Würtenberger Ammoniten 1880 two copies
Yarrell British fishes 1836 883
Yarrell British birds 1839
Youatt Cattle 1834 885
Youatt The dog 1845 888
Youatt The pig $1860 \quad 889$
Youatt Sheep 1837 890 88
Young Natural philosophy 18078895
Zerffi Development of art 1876
Ziegler Atomicité et zoicité 1874
Zuckerkandl Reise der Novara 1875

* The annotations in Rolle were reconstructed from Martin and Uschmann Friedrich Rolle 1827-87, ein Vorkämpfer neuen biologischen Denkens in Deutschland Leipzig 1969. CD's copy of Rolle seems to have disappeared.

ABERCROMBIE, John Inquiries concerning the intellectual powers and the investigation of truth 8th edn; London; John Murray; 1838 [CUL]
beh, che, fg, h, he, pat, phy, sx, t, ta, ts, y
NB1 Origin of shame \& blushing, fear \& anger mixed??
NB2 It requires much attention to observe in self an habitual action.
Nothing for Species Book
vi $25 m, 26 m$ viii $14-16 m$ 2 $21-22 m / 21 u$ "organs 1 mind" $/ 22 u$ "external 1 brain" 7 wt/wt It is clearly common to animals, the dogs $\%$ does not doubt, that the smell of a partridge shows partridge there. $\mathrm{XX} \mid$? $3-6 \mathrm{~m} / \mathrm{w} \mathrm{X}$ is it with animals? Yes. V. p. 8 wb XX His master taking a gun, is to the dog a law of nature that he is going out shooting.- he learns this by his own experience.- he learns instinctively, that $* \mid ? 8$ wt What is cause of difference.- if dogs sees take up hat, it is long before he knows this means to go out of doors.- Association \& Causation united somehow. $7-11 m / w$ This applies to animals wb as simple animals must also have causation the conviction of truth may be owing to * simple causes followed by uniform effects, only affecting such beings. 9 $4-6 m 101-4 m 1224-27 m 134-5 m, 8-13 w$ Hope love joy sorrow $8-11 m / w$ sublime terrible pleasure of imagination 14 19-29m/w do not understand $w b$ is fear active or passive emotion? $224-6 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "wills", wb How far can these be simplefied? $262-5 m$ $278-11 \mathrm{~m} / \mathrm{w}$ functions of the nervous system, as gravitation of matter. $17-23 \mathrm{~m} / 22 x, 19-20 \mathrm{~m} /$ w $1 / 2$ instincts $w b$ \& by these laws, such as of gravity, of crystalline arrangement of particles 28 1-10m/1".../1-10m, wb By Materialism, I mean, merely the intimate connection of kind of thought, with form of brain.- like, kind of attraction with nature of element 29 wt Here organ produces life! - \& life \& thought intimately related 3-19m, 19$22 w$?will my theory apply here? $27 w$ z Generation! 28u "functions", wb Elective Affinity is a thing not analogol's to others qualities of bodies, yet is supposed property of $\&$ matter, so would I say thought was from analogy of organs.- $301-20 \mathrm{~m}, 21-26 \mathrm{~m}$ $31 w t / 1-9 w \times$ From the myriads of animals that have existed We may assume thought as function of matter, \& then say, to what function of matter, shall we compare the phenomena of attraction? - This assumption is as justifiable as the other we only know thought, as a phenomenon attendant on
structure, \& we only know elective attraction, as function of matter. $18 x / w \times$ But why should not matter have such function, as plain facts indicate, as well as they have attraction 32 wt What a poor argument, liver continues to secrete bile, \& testes same vivifying semen! $1-3 m, 5-10 \mathrm{~m} /!$? 33 wt a Then animals immortal.- $w t$ xa. As the elective affinity of a salt changes, when its elements unite in composition, so may mind.- $2 u$ "thing mental" $/ 2-4 m / w$ xa $9-29 m$, $13-29 m / 22 x / w b$ good $341-25 m$, $w b$ it is sufficient to point out close relation of kind of thought \& structure of brain $359-13 \mathrm{~m} 39 \mathrm{wt} /$ $1-11 w$ But some of these impressions may be hereditary.- but they are habitual impressions \& therefore * about which there is no consciousness, otherwise, mind could act, without having had perception. \& why not? would not simple mind feel lust?-7-9ml $x, 23-29 \mathrm{~m} / 25 \mathrm{w}$ emotions? $408-14 \mathrm{~m}, 15-17 \mathrm{~m} /$ $16 u, 17-21 m 42 w t$ whether dog first time smells partridge knows there is something there. $3-7 \mathrm{~m} /$? $5418-29 m$, wb p. 59 On other hand by attention perception becomes more perfect, \& likewise willing does - $551-29 m$, $28-29 m 5614-17 m / 1-25 w$ ought this not to be expressed as willing becomes uncon-scious.- as perception becomes uncon-scious,- so do impressions, \& hence ideas, \& actions consequent on these ideas. $-w b$ a person whistles - \& tricks are wholly unconscious actions.- great effort of attention to perceive them these acts are only unconscious in the steps 57 wt An action becomes habitual if repeated without at same time, without much attention at first as taking off cover to tea-chest. 66 3-21m, 3$4 m, 9-11 m 67 \mathrm{zt}, 21-23 m, w b$ is Conscience effect of certain lines of action, useful on the large scale having been done on the less scale $80 \quad 3 u$ "marvellous", 4-8m/5u "miraculous" 92 18-20m 93 1-9m, 12-26m 94 1-4m $9728-29 m 98$ wt X is not an indistinct idea seldom repeated, because unsatisfactory? 2-3m, 11-12X 99 wt like manner we learnt to repeat at school - 1 think by same association. $1-16 \mathrm{~m} / 8 \mathrm{X}, 17 \mathrm{u}$ "attention"/w repetition? 101 wt Conception of a view or is a perfect instance of association of many impressions 4-11m, 28x/ u "reverie", 11-29w X As far as the mind is concerned nearly like sleep. the relations of ideas just past not quite so broken - body different state $w b$ argument for mind working always during sleep $w b$ habit must be associated will.- $10419 u$ "of emotion"|18-24w Does thinking of vexing thing, bring other

ABERCROMBIE
disagreeable thoughts? 105 18-29m 109 24$28 m / x$, wb Scarcely ever a new thought arises from this process - only old associations 110 11-13m, 19-29m/29w imbecility of age? $1111-4 m, 23-29 m / x / w t \times$ I know from experience * memory of many unconnected facts is far most easy to me by such local associations. 114 11-14m/?/14u "are little acquainted" $115-16 \mathrm{w}$ what difference? 116 wt A dog. when he has had good hunt after any animal in a spot in a hedge recollects it, \& always go there with pleasure \& eagerness $w b$ Horse sweating, when he hears hunting horn in stable. Euphrates if he guessed he was going to race by little water being given him mad with eagerness all night. 117 wt Horses wonderful local memory $20-24 m 122$ 2-3m 132 19-24m 134 17-19m 143 wt 3 These cases like Miss Cogans, \& serve to show that affections of brain will recall facts in $\%$ an individual life after long periods.- $1-8 m, w b 3$ These may be adduced as nearly as wonderful a priori as instincts - an habitual action being repeated would be more to my purpose.144 14-24m 147 17-29m (Prichard) 148 1-3m 149 1-6m 150 3-8m, 19-29m 151 9-13m/x, 26$29 m, w b$ Exactly like my Father's case of Archdeacon Corbet $15211-15 m 1543-7 m$, $22-27 \mathrm{~m} /$? , wb Animals minds are influenced by age, like that of man $15513-16 m / 14 u$ "Dr. Beattie", wb X What has he written? 156 5$10 \mathrm{~m}, 18-26 \mathrm{~m} 157$ 11-15m, 19-28m 158 10$13 \mathrm{~m} /[\ldots] / \mathrm{w}$ (1)(a) $14-16 \mathrm{~m} /[\ldots] / \mathrm{w}$ (2) $w b$ (a) Does not a bird when it builds its nest, use abstraction respecting place, \& softness \& elasticity of materials, which are not constant in kind, but only in quality.- $1591-5 m, 10-$ $13 \mathrm{~m} / 11 w$ (a) $w b$ animals have ideas of colour.- mad horse (?Cline) dread of scarlet. of any kind.- - Smells. do - 161 19-29m 162 wt Peacock has idea of beauty?- $3-8 \mathrm{~m} /[\mathrm{I} .$.$] ,$ $w b$ Animals sometimes suffer from abstraction. Thus the Casarca which bores through walls, has an abstract idea of vertical surface of hard earth as the requisite, \& does not combine, such conditions as imply a cliff of earth $163 \mathrm{wb} / 7-$ $24 w$ When cat pounces \& runs after feather, it knows it is not mouse, but does it not use imagination or picture to itself it is. $-\mathrm{X} \rightarrow$ quote Madam Necker. on playing of children- 164 20-22m, wb What are the feelings of a dog, when he bays the moon? 165 wt When two Male birds are rivalling each other in singing is it not a work of imagination? 167 wt is not imagination, abstraction of several different parts of
several ideas \& their unions, instead of as in pure abstraction of same qualities (as colour \&c) * several ideas? 23-24m/? 168 27-28m/? $1721-6 m / w$ common to animals $10-13 \mathrm{~m} 173$ $1-29 m / 4-18 w$ very Poor $17426-28 m 175 w t$ If because such combination is observed in an animal, it is called instincts.- there is an end of argument. 1-6m $176 \quad 8-14 w$ Yet imagination must be always checked by reason - otherwise dreaming $9-17 m$, $21 u$ "Reasoning"/22u "reason", 26-27u "Discursive Faculty", wb 1 suspect the Paper in Zoological Journal will be worth study.- 177 $3-7 m 179$ wt Perhaps mathematical reasoning does not.- each step there does not require the memory \& knowledge of all contingencies,- it is merely to find the step, \& then to pursue the deep train.- $4-6 \mathrm{~m} / \mathrm{w}$ requires properly arranged memory XX 181 12-13m $18512-13 m *$, 24-29m $18717 w$ All Poor 17-23w But yet must be thought over with regard to Transmutation of species theory 191 wt Would not simple association of ideas lead to this expectation, which would be believed in till contradicted (which it is not) by experience.- $13-19 m / 14 x$, $21-$ $22 \mathrm{~m} / \rightarrow / \mathrm{wb}$ Surely all this may be resolved into simple fact we trust our memory, until taught to contrary. 199 wt A man may wish to jump from a bridge to save another, but absolutely will not let him.- Makes the muscles fall, \& heart sink - 4-12m 202 across whole page.w See following Pages \& Copy all this $\ddagger w / w t$ H believed - pretty world we should be in!- But it could not be believed excepting by intellectual people - if I believed it - it would make no difference in my life. for I feel more virtue more happiness - Believers would a will only marry good women \& pay detail attention to education \& so put their children in way of being happy. wt it is yet right to punish criminals for public good. wt * All this delusion of free will, would necessarily follow from mere feeling power of action.- wt View no more unreasonable, than that there should be sick \& therefore unhappy. men $w t *$ What humility this view teaches $i w$ * A man $\&$ hearing bible by chance becomes good. this is effect of accident with this state of desire (neither by themselves sufficient) effect of birth \& other accidents: May be congratulated, but deserves no credit $w b \diamond P$ For wickedness is no more a man's fault than bodily disease!! (animals do persecute the sick as if were their fault). If this doctrine were. H $2037 u$ "consideration"/wt Yes but what determines his consideration?- his own previous
conduct - \& what has determined that? \& so on - Hereditary character \& education - \& chance (indepdt of his will) circumstances. $3-8 w$ Changes of character possible from change of organization $11 u$ "desires" "conduct" $/ w$ What has given these desires \& conduct $13 a$ "agent" but not desired 4-27w When opposed desires are absolutely equal which is possibility. May free-will then decide.- but it must be decided by habit or wish \& these all originate as before 15-27w Then why does not act of insanity give shame?? wb According to all this ones disgust at villain $*$ is nothing more than disgust at some one under foul disease, \& pity accompanies both. Pity ought to banish disgust.- $\mathrm{P} \rightarrow 204$ 29"... 205 1-4m/4...", 15$17 \mathrm{~m} / " . . . " 206$ 9-12m, 16-20m, wb A man may put himself in the way of above accidents. but desire to do so arises as before; \& knowledge that the effect will be good, arises as before. education \& mental disposition.- wb. One feels how many actions, not determined by will, passion When the motive power feeble \& complicated \& opposed we may free will (or chance $2094-5 m / 27-28 m$ (Stewart) $210 w t$! presume these first truths are something quite distinct from instinctive knowledge. or passion - as fear of death.- sexual desire pleasure of affection or charity $-1-5 \mathrm{~m} /{ }^{\prime \prime} . .$. "/ w How many of them do animals possess? 212 10-15m $213^{-9 w}$ The following pages very poor 217 14-17m 218 8-17c/12u "required"/11-14w so much the better! Feehunting doctor $w b$ in short that your hypothesis shall be real cause with respect one item at least in group of facts - if it be only possible cause. hypothesis of very poor kind. V. M. le Comte 219 18-20w to 256. wretchedly poor - as far as originality goes 221 3-6m 233 wt Main difficulty of judging probabilities multiplied into probabilities. \& the alternatives omitted.- present always, except in mathematical reasoning $1-20 \mathrm{~m} / \mathrm{w}$ again the chance of several independent proofs from probability tending to one end, if not true $2411-5 m 2518-12 m, 10-12 \mathrm{~m} / \mathrm{z} / \mathrm{w}$ yes 257 wt X| In insanity, there is belief, though opposed by many of the senses - in dreaming, mainly passive belief from absence of evidence of senses $29 \mathrm{~m} / \mathrm{X}, 26-$ $29 w$ drunkeness more * closely allied than dreaming 258 wt no, a vivid thought neither pleasant nor painful but merely vivid cannot be dismissed even by strongest will,- is insanity an unhealthy vividness of thought. $7-8 m / u$ "is linsanity", $9-19 w$ they ought not
to be classed together, * the reality of the thought or absence of doubt in one case being owing to the weakness absence of contending impressions, \& in insanity opposed to many present impressions. $17 \mathrm{~m} /$ $\rightarrow / w b$ In Spectral illusions, what is history of kind of impssn $259 w t$ (a) There is some sophistry here: insane man has perfect consciousness - somnabulism has not.- $2-$ $5 m / w$ a $7-16 m, 12-17 m$, 21-23w 5th Drunkeness Nitrous oxide 260 21-22m, wb It would be worth while to write down every dream 275 wt \& double consciousness \& likewise many which from repetition have ceased to be objects of conscious memory namely all habitual movements $8-17 \mathrm{~m} / 12 x /$ 17? 287 16-19m, 23-28m 289 1-8m, 10-19m, $w b$ I have a distinct recollection of solving some geological puzzles in my sleep - what it was I forget, which I am surprised at for I have so clear an indistinct notion. $29119 u$ "dream"/w ? dream - wb Mem: my father's cases of quick oblivion - 311 wt like the memory after apolexy in some cases "Clubs are trumps" \& V. ante 1-5m 312 24$29 m$ (A. Comte) 313 18-20m * $3141-4 m / 2 u$ "pleasure"|?, 8-19w No account is here taken of the consciousness of people, that they are insane $3155 a$ "is not corrected" can not be corrected in the one case, dreaming, $6 a$ "would." , \& in the other case, is so vivid, that external world is almost wholly neglected. 10a "state" partially $10 a$ "will." ; insane people do to certain extent vary, \& forget the insane train ideas. $15 u$ "higher states" "mania" $/ w$. My father considers the two as wholly different. 27a "some impression has" any impression is $28 a$ "of the mind" by the mind $/ w b$ the thinking machinery acting with unequal \& praeternatural force $28 a$ "and" accordingly $316 \quad 2 a$ "are calculated immediately to" though often rightly perceived (as in D Ashe \& in case of man eating porridge) do not immediately 318 14-15m 320 wt Surely as in passion from fatigue, (or fear from sickness) from long habit some object must be fixed on \& it scarcely signifies what it is. $2-4 m, 26-28 m, w b$ just as passion of the above kind is generally most unreasonable 321 11-14m 330 wt low spirits is to melancholia : : passion to mania - frame of mind in the state \& any idea fixed on.- 4$7 m / 7 u$ "occasional cause", $12 a$ "constitutional peculiarities" diseased state of brain. 349 19$21 m 355$ 26-29m 356 2-12m, 13-26m 357 12$13 m 3631-5 m 375 w t$ if an idea was called up, with this degree of vividness, like a concepcion - no one would doubt it was a

ABERCROMBIE
concepcion $8-11 \mathrm{~m} / \mathrm{w}$ how completely ungoverned $3791 \mathrm{~m} / \mathrm{w}$ All trash 431 11-15m 433 2-12m

ABERNETHY, John Physiological lectures, exhibiting a general view of Mr Hunter's Physiology, and of his researches in comparative anatomy 2nd edn; London; Longman, Hurst Rees, Orme \& Brown; 1822 [CUL; ED; 352pp]
$13615 u$ "trowel"/w a mistake
in same binding:
Introductory lectures in the year 1814 [publ $1821 \& 1823]$
The Hunterian oration for the year 1819
part of the Introductory lecture for the year 1815 [publ 1819]

ACÉBLA, Alexandre Les Impiétés Paris; A. Ghio; 1878 [Down] 80

ACHARIUS, Erik Methodus qua omnes detectos Lichens 2 vols.; Stockholm; F.D.D. Ulrich; 1803 [Down, ED]

ADAMS, Andrew Leith Field and forest ramblers London; Henry S. King \& Co.; 1873 [CUL, I by author]
ad, beh, fg, gd, mg, oo, ss, tm, v
NB 660, p69.
Sexual Selection Birds good- p76 * Q
Rein-deer Horns - 89*
139
S. Selection - Birds Wax-wings - $153 \bullet$ Q 167, 182, 190, 192
SB \propto p.60. Two differently coloured vars. of sable with fur of qualities live in different kinds of wood, \& colours apparently of service to them in each case; but both vars. highly variable
p.69. Racoons first expelled \& now returning in numbers to cultivated trails.
p. 139 Dung of Bears almost made up of seeds - Dispersion.
p183 Birds common to America and Europe \& vice versâ- depends on winds. during periods of migration
p190 several sp. of duck which occasionally nest in trees

60 15-23m, 30-35m 61 33-36 $\rightarrow 62$ 11-18m 69 12-20m 76 26-35m 77 6-8m, 9-11m $897-9 m$, $12-14 m, 26-27 \mathrm{~m}, 31-33 \mathrm{~m} 13933-35 \mathrm{~m} 153$ 29$32 m, 32 \rightarrow 1541-5 m 16726-35 m$ (Baird) 168 2-16m 182 26-35m 183 1-10m, 27-35m, 35 \rightarrow 184 1-3m, 14-29m 185 27-31m 190 10-20m 192 20-27m

AGASSIZ, Alexandre Illustrated catalogue of the Museum at Harvard College - Revision of the Echini 4 Parts and Plates; Cambridge, Mass.; 1872-1874 [Down] \wp

AGASSIZ, Alexandre Illustrated catalogue of the Museum of Comparative Zoology at Harvard College, No. 2, Acalephae Cambridge, Mass.; Sever \& Francis; 1865 [Down, I]

AGASSIZ, Alexandre North American Starfishes Cambridge, Mass.; 1877 [Down, I]

AGASSIZ, Alexandre The zoology of the voyage of H.M.S. Challenger, Part 9, Report on the Echinoidea Longmans \& Co.; 1882 [Down, I] \wp

AGASSIZ, Alexandre and POURTALÈS, L.F. Illustrated catalogue of the Museum of Comparative Zoology at Harvard College: Echini, Crinoids and corals Cambridge, Mass.; 1874 [Down] \wp

AGASSIZ, Elizabeth and Alexandre Seaside studies in natural history: marine animals of Massachussets Bay: Radiates Boston; James R. Osgood \& Co.; 1871 [Down, I]
NB PediallariaeO p105 no 105 18-26m, 18$22 m, 27 \rightarrow 106$ 1-3m, 6-12m, 10u "certain lines", 12-16m 111 1-5m, 4-5m

AGASSIZ, Louis Address delivered on the centennial anniversary of the birth of Alexander von Humboldt Boston; Boston Society of Natural History; 1869 [Down]

AGASSIZ, Louis Bibliographia zoologiae et geologiae, corrected and edited by Hugh Strickland 4 vols.; London; The Ray Society; 1848-54 [Down]
gd, or
vol. 1 NB Brehm origin of Cat Isis 1829 VI. p.639, Brehm do on Pigeon Columba Isis 182811 p136
3 29-31m $1211 m 15736-37 m$ (Audouin and Milne-Edwards) $41428 m 4163 m$
vol. $217512 x, 16 x, 20 x, 22 x, 23 x, 26 m, 26 w$ P $29 m, 29 w \mathrm{P} 33 m 1761 m, 1 w \mathrm{P} 25 w \mathrm{P} 26 m$, 30 m 272 "Dufour. $2 " m \quad 27311 m \quad 276$ "Dufour.62" m
vol. 3 NB1 E. Lankester on animals of Sulp. Springs
NB2 Karsten Nova Acta omitted. Vol XXI
p. 643 - important paper on Distrib of Indian Archipelago
p185 - On the Loves of Ants \& Aphides 106 4-6m 153 3-4w Reisen omitted 177 "Hamilton. 1 "u "Proc.|II"/w p545 "3"u "Proc.IIII", "6"u "Journ.II", "8"u "Geol.|V"| wb Last Paper.
vol 4 NB p. 419 Temminck on Indian Archipelago-
62 "126" $m 186$ "Richardson. 1 " u "1823", " 6 " m, "13"m 187 "19/20/21" m, "27" m, "30" m, "31" m, "Richardson \& Swainson.1"u "1831", "Richardson, Swainson E Kirby.1"u "1829। Quadrupeds" 419 " 20 "m 532 "Waterhouse.25/ $33 / 34 " m \quad 533 \quad " 58 " m \quad 534 \quad " 85 " m \quad 550$
"Westwood. 22 " $m 551$ " $48 / 49$ " $m 552$ " 76 " $m 553$ "86/95/103" m 554 "111/117/118/121/122/125" m 555 "135/153" $m 590$ "Yarrell. 23 " m 591 " 40 " m

AGASSIZ, Louis Contributions to the natural history of the United States of North America vol. 1, part 1: Essay on classification n.d. [CUL, I]
af, cc, ch, co, em, fo, gd, geo, in, is, mn, no, 00 , or, rd, sp, t, ta, ti, tm, v

SB \quad I β, ∞
 Agassiz on Classification

p. 5 My valuation of Groups

10 Agassiz explanation of Rudiments
15 Ambylopsis very remote affinities. p. 15 Proteus affinities of
24 Admits the Vertebrata p. 31 probably arose with other types. Well may he say what changes ($p .24$) has 30 years produced. \Leftrightarrow in date of appearance of groups 30 Isolated Fam. of Fishes.- p.42. do Freshwater abnormals
37 Admits that conditions do not explain distribution
38 No class exist without having some cosmopolitan genera
39 On creation of number of individuals
41 Quotes Waterhouse of representation of all orders by Marsupials in Australia
44 curious tables of relation of Scincus with no relation to geograph. Distribution
49 Aquatic Animals bigger than terrestrial
53 Same species have lived for 30,000 years or 200,000 years as inferred from coral-reefs.
58 Chelonians much individual variability
61 On Lungs of spiders not really two kinds. 74. Possible explanation of the strange Mollusc within Synapta
82 On Classification of Fishes
100 \& 113 \& 115 On Embryological \& geological Succession 107 to 111 Classificatory rank \& Geolog. Succession.102 Lund on succession of Types.

117 On combinations of characters in old Forms
124 Parasites belong to all orders (no Strepsiptera)
〈line across page〉
162 the sentences from Linnaeus about genera
166 idea of sp . proceeding from single pair almost given up by all naturalists!
172 On the development of parts in order of importance: I suspect * importance applies solely to being important for classification; if so simple case as might be expected.
225 on degrees of resemblance of embryos
3 9-10u "peculiarities Istructure", $12-13 \mathrm{~m} / \mathrm{w}$ Geograph Distribution? $421-25 m$ 5 2-8w । believe species genera \& classes all equally good or false, as one pleases to call it 9$12 w$ Botanists far better authority than Zoologists. 10 11-15m 15 11-12m, 4-26m/25u "Proteus anguinus"|26u "North|Japan" 17 27$31 \mathrm{~m} 2320-21 \mathrm{~m} / \mathrm{w}$ Agassiz himself 23-25m 24 4-7m/!, 36-38m $2913-16 m / 14 a$ "Classes" in 4 great kingdoms 16-18m 30.a $33-34 m / 34 u$ "Labyrinthici", wb How large a group 30.b $30 u$ "Goniodonts", 31-34m/31u "Chaca"/wb What? Abnormal? Amblyopsis is so 31 1- $4 \mathrm{~m} /$ $!, 5 u$ "Radiata" $/ w$ * Planaria 37 1-6m 38 19$22 m / ? * / u$ "class", $22-24 m / 23 u$ "majority" 39 32-34m/! 40 15-19m $4112-24 m / 21 u \bullet / w$ no 42 19-25m/20u "Labyrinthici"/22u "Cestraciontes" 43 17-19m 43.a 17-19m $443 a / 2-13 w$ but is this a natural arrangement? May there not be parallel differences in different countries; those in same countries being really allied.-45 $26-31 m 468-12 m 4913-15 m$ 53 25-26m $54 \quad 8-10 m$ 57.b $32-34 m$ (T.W. Harris) 58 13-15m/13-14u "seenlidentical" 60 9-10m, 18-20!!/19u "tolerable precision" $6135-$ $36 \mathrm{~m} / \mathrm{m} 65 \mathrm{zb} 66$ 6-11z 67.a 31-36m 74.b 16$31 m$ (J. Müller, De Bosset, Gegenbaur) 75 13$14 m$ 82.a $28-38 m 852-6 m 891-2 m 944-8 m$ 100 1-13m, 24-28m 102.a 29-33m (Lund)/31u "1841" 104 22-25m 107 25-26m 108 22-25m 109 6-13m, 22-29m 110 9-16m, 30-31m/31u "Seel26" 111 29-35m 113 34-36m 114 12$15 m, 27-29 m 1154-9 m, 15-17 m, 20 m, 27-$ 29m, $30-34 m /$ "..." $/ 31-32 u \quad$ "verylground" 117 10-14m/14u "Ichthyosauri"/?/w Mere analogy $22-23 m, 25 c / w \notin 119 \quad 19-21 m$ (J. Müller) 120 1-7m 121 wt All rubbish 3-4m/w oldest 12-14w !!Eocene Monkey 32-35m 124 7-10m/w Strepsiptera $14030-36 m 1484-10 m$ 151 13-18m (Cuvier) 162 1-6m (Linnaeus) 163 27-30m 165 6-10m 166 4-9m, 33-36m 167 19$24 m, \quad 25-26 m, \quad 28-30 m \quad 169 \quad 13-18 m / w$ Assumes that these points are not variable

AGASSIZ, NAT. HIST. U.S.
$17031-34 m /!$, wb All this discussion merely shows that no talent can really plainly define principles of Classification 171 6-8!/6u "suborders", $12 u$ "sub-families", $15-16 \mathrm{~m} / \mathrm{u}$ "subgenera", 20-21u "largel subdivisions", 23-26m/ !, 33-34m, 38m 172 3-5!, 13-17m, 31-35m 173 $26-27 \mathrm{~m} / \mathrm{w}$ - $17422-24 m 1759-11 \mathrm{~m}, 14-15 \mathrm{w}$ but the teeth are in gums $15-17 \mathrm{~m} 189$ 23$26 \mathrm{~m} / 25 u$ "successively llimited" 1943 m 195 $31-32 m, 37-38 m 22126-29 m 225$ 6-7m, 1112m, 15-16m 225.a 24-26m (Huxley, von Baer, Baden-Powell) 225.b 27-31m (Huxley, Cuvier, von Baer) 228 26-32m

AGASSIZ, Louis De l'espèce et de la classification en zoologie trans. F. Vogeli; Paris; Germer Baillière; 1869 [CUL]
beh, v
NB $97 \diamond$ Animals have conscience and soul Man

- 106 Love making of Snails

380 varieties See \&े
97 27-37m 99 11-15m (Ehrenberg, I. Geoffroy)
100 1-9m 106 13-20m/13-17[...] 380 3-11m
AGASSIZ, Louis Lake Superior: its character, vegetation, and animals, compared with those of other similar regions Boston; Gould, Kendall \& Lincoln; 1850 [CUL, I]
$a d, b r, c c, c i, d v, e m, f o, g d, g e o, h l, i g, m n$, no, or, sl, sp, sy, t, ti, tm, v, y
NB p. 406 Scratches
SB1 p.13; p.34; 36; p.141; p.142; p.150; p.154; p.186; p. 192 to 200; p.239; p.240; p.241; p.246; p.252; 255 to 377; 398

SB2 \square R
1.

33 Gar-pike-Ganoid of F.W. in N. America
34 Another rather ancient Fish in F.W.
36 on lowness. because like Embryo.
150 On analogy of recent of N. America \& Miocene of Europe
175 List of F.W. Plants of Lake Superior; I doubt whether any use
187. 193 On ant. \& post. extremities of the Bat, being alike at early age - so in Birds 195 on relation of embryology to geolog succession.
198 on order in Cephalopods - Nautilus simplest
239 - On entomology of *L. Superior - No. American forms.- a common Fauna with Europe \& N. Asia - species different but most close (Mem. Kirby thought same) admit identity in Arctic, \& most close analogies in L. Superior.

240 on greater range of aquatic Beetles
247 F. Water animals under similar latitudes are uniform as vegetation
2.
*252 On embryonic forms fish not deserving a separate class.
255 Ganoids \&c in F.W.
257 on impossibility of making groups of equal value
260 Reptilian character of Ganoid, "enbodying prospective view of another class"
265 on Families intermediate in character \& in space or position.
285. Excellent case of Percopsis of Chalk, which combined characters, which soon diverged, intermediate between Ctenoids \& Cycloids.
289. Hardly one Family in which some species are not both Marine \& F.W.
292 - case of variability in a Perch, good as for Agassiz
*317. Esox boreus is made distinct by Agassiz
327. Account for uniformity of Salmonidae by uniformity of conditions
352 Range of Cyprinoids p363
374 Are F.W. Fish of N. America distinct〈over) 3.
375. On F.W. Fish being analogous with those of Europe \& Asia
377 On shoals created as shoals
13 38-40m 33 15-16m, 31-34m 34 4-8m, 16$22 w$ Percopsis p. 285 20-23m, 29-32m 3624 $27 \mathrm{~m}, 31-33 \mathrm{~m}, ~ w b$ * an entomostracous animal is lower than cirripedes $14136-42 m$ 142 15u "anylliving", $16 u$ "guidance 1 man", 17-20m/!/18u "thelover" 143 18-24m 150 1$6 \mathrm{~m} /!/$? $154 . \mathrm{a} 16 \mathrm{~m}$ 155.a $3 \mathrm{~m}, 7 \mathrm{~m}, 9 \mathrm{~m}, 11 \mathrm{~m}$, $13 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}$ 156.a $15 \mathrm{~m}, 28 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m}$ 157.a $3 m, 5 m, 24 m, 25 m, 27 m, 35 m$ 158.a $13 m$, $25 m, 29 m, 35 m, 36 m$ 151.a $4 m, 7 m, 8 m, 12 m$, $15 m, 16 m, 20 m, 22 m, 29 m, 32 m, 34 m$ 162.a $3 \mathrm{~m}, 6 \mathrm{~m}, 8 \mathrm{~m}, 10 \mathrm{~m}, 13 \mathrm{~m}, 16 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 37 \mathrm{~m}$ 163.a $8 m, 11 m, 19 m$ 164.a $9 m, 25 m$ 165.a $10 m$, $31 \mathrm{~m}, 33 \mathrm{~m} 166 . \mathrm{a} 11 \mathrm{~m}, 13 \mathrm{~m}, 18 \mathrm{~m}, 20 \mathrm{~m}, 24 \mathrm{~m}$, $27 \mathrm{~m}, 37 \mathrm{~m}, 38 \mathrm{~m}$ 167.a $3 \mathrm{~m}, 5 \mathrm{~m}, 11 \mathrm{~m}, 14 \mathrm{~m}, 20 \mathrm{~m}$, $22 m, 25 m, 29 m, 30 m, 31 m, 33 m, 37 m$ 175.a $4 m, 5 m, 7 m, 8 m, 14 m, 15 m, 16 m, 18 m, 20 m$, $22 \mathrm{~m}, 24 \mathrm{~m}, 25 \mathrm{~m}, 31 \mathrm{~m}, 33 \mathrm{~m} 176 . \mathrm{a} 8 \mathrm{~m}, 9 \mathrm{~m}, 10 \mathrm{~m}$, $17 \mathrm{~m}, 18 \mathrm{~m}, 23 \mathrm{~m}, 27 \mathrm{~m}, 31 \mathrm{~m}, 34 \mathrm{~m}, 38 \mathrm{~m}$ 177.a $9 m, 11 m 1865-9 m, 24-27 m 1878-11 m, 34-$ $39 m 192$ 25-34m $19325-28 m, 35-41 m / \rightarrow 194$ 8-18m, 27-29m/28u "equally|fin", 34-37m 195 29-37m 197 2-6m, 14-21m 198 11-26m 199 6$8 m, 10-13 m, 31-36 m 2397-14 m / 7-8 w$ see to Plants $10-12 w$ very singular $14-15 w$ Europe
first cold 14-19m, $23 u$ "many genera", $24 u$ "Europe 1 Asia", $25 \mathrm{~m} / \rightarrow$, 34-35 \rightarrow 239* 3-7m, $11-16 \mathrm{~m}, 16-20 \mathrm{~m} / 19 u$ "analogous species", 24$27 \mathrm{~m} / 25 u$ "equivalent species", $27-31 \mathrm{~m} / \mathrm{w}$ Subgenera $33 u$ "Arctic circle", 35-36u "Wel points" 240 11-15m, 19-22m, 28-31m 240* 3237 m 246 18-23m/! 247 26-27!!, 27-28m $2497-$ $8 m 252$ wt X It comes to this that arrested development ought not to weigh with difference of full development; I doubt truth $9-18 \mathrm{~m} /$?/X $25522-27 \mathrm{~m} /$?/23u "ten 1 species", 29-32m, 34-37m 257 6-13m, 13-15m 258 1$6 m 259$ 14-21m $26020-22 m, 29-31 \mathrm{~m} /$ "..." 261 13-17m, 17-19m, 28-30m 262 1-7m 263 32$35 m 2641-4 m 265$ 17-19m, 20-21m/w New Law $15-28 m, 32-36 m$, wb insects wd illustrate this or Plants. Mem. Hooker these are a wandering species is often aberrant 266 1113 m 284 10w F.W. $2854 a$ "never" with this exception 6-9m/8u "chalk", 10-12m, 14-15m, $19-21 m / w$ I wonder whether this agrees with Müllers classification, as seen in Owen Lectures XX 24-26m/25u "Ctenoids and Cycloids", wb XX if Fish properly classed, whether so related to geologi. formations. 289 22-25m, 24-31m/24-28w opposed 30-33m 292 15-20m, 26-35m/30-35m 293 30-33m 294 19-23m 295 7-11m (Richardson) 297 24-29m 318 2-6m, 9-11m 327 27-30m/? 328 20-24m $3292-10 m, 7-21 m, 23-25 m, 27-29 m$, $w b$ The fact of existence proves some advantage in the two types else one wd outbreed the other.- $34831-34 m 35222 w$ Yes Sir J Richardson 24-28m, 25X, 29-32m/29-30u/30$33 w$ p. 353353 15-16m $36336-37 m 3747-$ $12 m, 19-22 m 37516-17 m, 16-20 m, 20-21 m$, $23-25 m, 27-30 m, w b I$ think Behring St. must have been land before Glacial epoch 376 12$15 m, 21-23 m, 33-37 m 377$ 16-22m/17-18!!!!, 25-28m/w Andrew Smith wb argumentum ad absurdum $3984-9 m / w$ i.e. W. of Lake Superior $31-37 m 406$ 19"... $\uparrow, 23 u$ "eastern"/w N $24 u$ "western"/w S 29-34m/"..." 408 wt Why scratches all N. \& S. or near it - for any current temporary or permanent from S. wd not tend to scratch.-

AGASSIZ, Louis Methods of study in natural history Boston; Ticknor and Fields; 1863 [Down, I]
af, tm
NB p. 105 Snakes and certain Lizards compared \& Lizards and Salamanders Excellent cases of Analogy of Form

105 23-29m 106 9-13m 107 13-16m

AGASSIZ, Louis Nomenclatoris zoologici index universalis Soloduri; Jent \& Gassmann; 1848 [CUL]

AGASSIZ, Louis Reports on the Florida reefs Cambridge, Mass.; 1880 [Down, I by Alexandre Agassiz]

AGASSIZ, Louis and GOULD, Augustus Addison Principles of zoology: part 1, Comparative physiology Boston; Gould, Kendall \& Lincoln; 1848 [CUL]
beh, cc, em, gd, hl, sx, sy, t
SB1 p.5; p.31; 123; 156; 165; 170; 179; 192 SB2- β
Gould \& Agassiz
5. On Highness \& Lowness.
31. Blind Cavern fishes \& Crabs

123 Speaks "if order of formation is in relation to importance" - I infer he think so 106 Male toads carry eggs on Back
157 Admits difference in C. of Good H \& S. America, \& admits some higher law
165 Arctic Regions not one bright bird or Fish with varied hue proof of action of external conditions.-
179 Rivers of U. States some fish in common, some distinct.
$521-26 \mathrm{~m} / 22 u$ "perfect | proportion", 30-34m 31 21-27m 106 19-22m $1232-6 m, 8-21 m / 9 w$ (a) $30-34 m, w b$ (a) There is nothing to show this in previous chapter 156 14-21m $1575-12 m$ 165 4-5m/5u "fishl hues" 170 25-26m, 28-29m 179 25-27m 192 3-10m

ALDER, Joshua and HANCOCK, Albany A monograph of the British Nudibranchiate Mollusca parts 1-7; London; The Ray Society; 1845-55 [CUL]
em, hl, sh

Part 7

SB
p. 25 Larvae in operculated shell 26 .
$34 *$ It is sign of lowness an animal undergoing its metamorphosis in a free state - some mollusca undergo a free metamorphosis \& in some it is in egg state.-
25 29-32m 26 13-18m 34 27-31m
\wp
ALLEN, Grant The colour sense: its origin and development London; Trübner; 1879 [CUL] ad, beh, cc, cs, fg, hy, oo, phy, ss, t, v

NB1 why shd the exercise of certain gustatory nerves by sugar * give grt

ALLEN, COLOUR SENSE
pleasure \& the exercise say of the tactile nerve of the tongue give little or no pleasure NB2 Hybrid - Error This is mere cross fertilisation in Aphys p39 * 39?
Wiesner - coloured scales of tip of short to moderate height
73 Saaf-maal
131134 ?
like Hook.bug new 186
xi $8 m, 10 m$ xii $3 m 4 w t / 1-17 w$ Fritz Muller years ago maintained that surrounding coloured flowers influenced s.s of Butterflies Self Galapagos 12-18m 39 19-21m*, 1920? ४, 23-24?, $26 u$ "essentially" $4013-17 m 41$ $16 w$? Lilies $16 u$ "monocotyledons", $28 w$ Pinks $28 u 45$ 29-35w Hazel and Pl crimson female flowers 48 3-4m 73 25-28m (Lubbock, Fritz Müller) 131 5-20w I believe specially acquired $18-29 m \quad 143 \quad 26-32 m, 26-28 w$ ValerianO cats 152 5-23w my Copridae magnificent do the splendid Curculid live on flowers 186 1-35m (Wallace) 190 13-14w Peacock!?

ALLEN, Grant Der Farbensinn introduction by Ernst Krause; Leipzig; Ernst Günther; 1880 [Down] \wp

ALLEN, Grant Physiological aesthetics London; Henry S. King \& Co.; 1877 [Down]
beh, phy, t
NB 194; 159 appreciation of colour
vii $1-21 m$ viii $1-4 m 2014-28 m$ (Bain) 21 111 m 22 12-16m, 28-29m 23 1-29m 24 1-29m 25 1-29m 26 1-29m 27 1-28m $3617-27 m 37$ $1-4 m 398-9 w$ association omitted $10-13 \mathrm{~m} /$?, $11-12 m, 19-29 m 401-23 m 4223-29 m 431-$ $29 m 441-29 m / 19 u$ "nerves Icalibre"/ w Why? 46 23-29m 47 1-9m, 19-23m 48 11-21m 49 $19-24 m 675-26 m 681-29 m 691-29 m 701-$ $29 m 71$ 1-18m 72 18-29m 73 1-20m 74 1-29m 75 1-3m, 20-29m 76 1-4m 79 25-29m 81 15$28 \mathrm{~m} 821-27 \mathrm{~m} 87$ 12-29m 90 3-29m 91 1-29m 92 1-13m 99 1-23m 100 1-16m 105 13-28m. 106 1-20m * 108 14-19m 109 26-29m 111 6$28 m 1121-28 m 11322-29 m 1191-11 m$, 19$27 m 1201-16 m 12319-29 m 1241-15 m 125$ 4-29m 126 1-23m 128 7-13m 150 1-29m 151 1-27m 152 1-28m 153 1-29m 154 1-29m 157 $1-26 m 1593-17 m 16118-28 m 163 \quad 23-29 m$ 164 1-29m $1651-13 m, 25-27 m 16827-28 m$ 169 1-9m 194 12-18m

Allen, Joel Asaph History of North American pinnipeds Washington; Government printing office; 1880 [Down]

ALLMAN, George James A monograph of the fresh-water Polyzoa London; The Ray Society; 1856 [Down] \wp

ALLMAN, George James A monograph of the gymnoblastic or tubularian hydroids 2 vols.; London; The Ray Society; 1871-72 [Down]
vol. 1 NB O/
105 37-38m
vol. 2 NB 201 like Galls
201 10-17m
ALLEN, George James A report on the Hydroida Cambridge, Mass.; University Press; 1877 [Down, I by A. Agassiz] \wp

ALTUM, Bernard and LANDOIS, Hermann Zoologie 2nd edn; Freiburg im Breisgau; Herder'sche Verlagshandlung; 1872 [Down]

ANDERSON, John A report on the expedition to Western Yunan viâ Bhamô Calcutta; Office of the Superintendent of Government printing; 1871 [Down, I] \wp

ANGELIN, Nils Peter Iconographia crinoideorum Holmiae; Samson \& Wallin; 1878 [Down] \wp

ARCHIAC, Étienne Jules Adolphe d' Histoire des progrès de la géologie de 1834 à 1845 vol 1 (1847) Paris; Soc. Géol. France [CUL]
fg, geo, phy
NB Possibility that 0
X 287 seeds
p. 287 Blocks actually transported from Terres de L. Philipe \& Graham Land - Self on Mould/223

222 7u "terre végétale", 7-10m, 10...", 15-19m/ 16-17u↔, 21-29m 223 介1u "vol|1837" 224 6$7 и \hookleftarrow \multimap \leftrightarrow 287$ 10-20m/w seeds

ARGYLL, (Campbell, George Douglas) Duke of Primeval man London; Strachan \& Co.; 1869 [CUL]
beh, ds, $h, h l$, is, t, ta, tm
NB p60; 66; 70; 100; 130; 162; 165; 172 to $174 ; 178$ to end; Only Man all used I doubt whether low intellectual state \& high moral state would ever concur.-

- If one of the Lower animals cd reason \& he heard that man was ashamed of being a co \langle descendant \rangle O with him he might laugh with scorn \& ask what of $*$ practices \rightarrow
- X Degradation of Man In Partricide Polyandry * Bloody sacrifice Superstitions causing life to be miserable, \& abject fear justice by administering poison \& other fatal schemes - Despotic government (\& abject obedience) with right of life \& death)

60 14-15z 70 10-16m 100 1-5m 130 12-16m 131 10-13m/11-12u "acquire|knowledge"/10$16 w$ No an old Rat does all but transmit, \& perhaps this How transmit by example? 132 wt ie state in which we now see savages 1$3 m 136$ wt I must rest my conclusion on descent \& not on traces of savagedom.- wt Say animal nature - not necessarily like present Barbarians, 1-4m 139 3-7m 145 10a "use" the fashioning $11 u$ "fashioned I purpose"| w over $1473-7 a / c / m / u / w / x \notin 1484-6 m 1569-$ $13 m 1621 a$ "weaker" or smaller $1636-7 w$ But not the least civilized $1656-12 \mathrm{~m} 172$ 10-14m (Darwin) $1731-7 \mathrm{~m} 17414-17 \mathrm{~m} 17513-17 \mathrm{~m}$, $w b \&$ for Isids. man obeys usual law of no mammals, in Isid except by boat building races $1784-6 m 1801-5 m, 8-11 m, 8-13 w$ No India N. Africa Syria China New Zealand 181 11-13m 182 13-17m 185 2-5m (Lubbock) 188 13-17m 189 9-14m 190 9-13m (M. Müller) 194 4-8m 199 2-10m (Lubbock), 11-17m

ARGYLL, (Campbell, George Douglas) Duke of The reign of law London; Alexander Strachan; 1867 [CUL, S]
beh, he, sx, t, tm
NB1 187; 196; 198 sexual; 203 Argus Pheasant; 206 Narwhal Sexual; Humming Bird tails 246 do; 253; 324, 326 inherited mind; 256 Correlation of Growth
NB2 8; 14; 30; 84; 89; 102; 133; 178
〈also attached: p. 590 of The Saturday Review, 15 November 1862); ∞ To be returned
$1014 m 138 m 149-12 m 3019 m 8417 m / w$ see p. 285102 3-5m 133 7-14m/? $1364 z 142$ 7-8m 171 10-13m 177 6-9m 187 10-11w Wryneck Creeper 196 4-15m 198 5-15m/wt/ $1-13 w$ But there is no such thing as beauty, except to eyes of some living creatures 199 24m 200 8-13m 203 5-12m/8u "a sphere" 206 9-16m 212 19-20z, $23 m 217$ 3- $7 m 221$ 19$24 m 228$ 19-23m $2324-7 m 246$ 6-24m/24u "central feathers" $2475 u$ "whichlthe", 7c/w \pm, $8 u$ "Tuftslof", $9 u$ "greens Iviolets", $12-14 m$, 16-19m 251 20-22m 253 7-14m 268 10-13m/w no no 279 17-22m 285 15-16m/w See p. 84

ARISTOTLE On the parts of animals tr. W. Ogle; London; Kegan Paul, Trench \& Co.; 1882 [Down]

ARNOTT, Neil Elements of physics or natural philosophy 2 vols.; London; Longman, Rees, Orme, Brown and Green; 1833 [Down] geo, ve
vol. $127922-28 m, 22-29 w$ Volcanoes offer certainly some counterbalance to the effect of running water though perhaps not one equal to it.-
vol. 2, 5 12-15m $1021 m, 30-32 m 111-4 m$, 9$18 m, 20-25 m 1916-24 m 2322-24 m 2411-$ $13 m 2522-30 m 283-10 m 2921 m 3421-29 m$ 135 28-29m 198 30-33m 199 1-5m 266 13$16 m$

ASKENASY, Eugen Beiträge zur Kritik der
Darwin'schen Lehre Leipzig; Wilhelm
Engelmann; 1872 [CUL]
cs, fg, gd, in, sx, v, t
NB p. 54
I have only skimmed this Book - too difficult
Supports Nageli on everything
$411 m 7$ wt Argues against quite undirected variation 1-33w I admit not even individual variation in all directions, as in case of colour of rose - no marked variations is no evidence against some variation in many ways.- $821 \mathrm{~m} 279 m 3611 m 539 m 541-15 w$ Yes if strong tendency to vary $12-16 \mathrm{~m}, 13-$ $26 w$ Plants in distant localities remain the same but they cross within same locality 26$32 m, w b$ variation supervenes only by sexual generation $551-26 m, 2-24 w$ This all in fact explicable $6625 m$

AUBUISSON de Voisins, Jean François d' An account of the basalts of Saxony, with observations on the origin of basalt in general trans. P. Neill; Edinburgh; A. Constable \& Co; 1814 [CUL, pre-B]
mi
NB p180 Lead volatilised into vesicular cavities of Basalt when used as the wallstones of a furnace
97 18c/w $\notin 1801-12 m 2758-13 z$
AUBUISSON de Voisins, Jean François d' Traité de géognosie 2 vols; Strasbourg \& Paris; Levrault; 1819 [CUL] S: C. Darwin HMS Beagle
co, to, geo, mi, se, sh, t , ve
vol 1 NF C Darwin
Saussure voyages dans les Alpes Study works of Cordier \& Dolimen
Strength of salt water diminished on sea coast - Cocos p43

AUBUISSON，GÉOGNOSIE
The Sandstone craters of Galapagos allied to Salses．（salt \＆mud）but differs in size \＆ some other respects．－p．189．－
Saussure says laminae \＆strata of Slates same p291
Cleavage p． 297
Proofs from Orbicular structure of movement in particles of Felspar \＆Hornblende p． 308 Globular porphyry p． 311
Empty concret．Ferrug．Balls．Chiloe 318
22 （markings signed RF） 28 〈some marks signed
 $1 m 77 \Uparrow 9-5 m 86 \Uparrow 4-1 m 189$ fm $291 \Uparrow 10-3 m$ 297 介 $15-1 m 298$ โm 308 介17－4m $3113-10 m$ $318 \Uparrow 12-1 m / w b$ The spots C．of Good Hope 442 table．w $46^{\circ}-47^{\circ}$ lat wbec 443 さwec
vol 2 NF1 Mal Hydrate of iron
N．B．I see the only way of describing Porphyrys \＆Greenstones，is by describing each base．\＆each crystal
Beyond secondary rocks，no page marks without reference；excepting the Volcanic rocks \＆Mineral Veins
Voyage Mineralogique en Hongroi et Pais Bearn
Brongniart Traite de Mineralogie
Breislac Voyage physique en Campania
NF2 Ch．Darwin
Secondary formations
Coal form： 276 Conglomerates
Porph．base to Conglomerate 309 Maclure N．America
Angular concretions of Limestone 346 K ． George Sound
Cellular limestone rauchwak 345 angular cavities Coquimbo
Stinkstone connected with 390 gypsum beds Andes
Seashells in salt bed 395
Part of tree silicified 452 part Carbon \vee
Hydrate of Iron C of Good Hope 456
do 476
Gold watering 479 Valparaiso
Alluvial salt form 483－485
$514-19 m / x / w b \times$ This is remarkable if all rocks are metamorphised $61-7 m$ ，$\uparrow 13-10 \mathrm{~m} / \mathrm{x}$ 7 17－19m $8 \quad 2-5 m / w$ Maldonado Portillo V．p． 15 16－20m，wb X Analogous to sedimentary beds where quartz sand is alone found pure or lime in masses：What would result from calc．Sandstone？Would calc be removed by Volcanic agency？ $152-$ $8 m / x 25 \Uparrow 4-2 m / w$ C of G Hope $\uparrow 1 x 43 \Uparrow 12-$ $8 m \leftarrow / X, \pi 5-1 m 44 \quad 13-20 \mathrm{~m} / x$ ，wb it is remarkable no tin in such rocks in Cordilleras．－from Cornwall Tin miners at

Copiapò 47 1－10m／x 48 4－5？ 49 5－10m，介7－ $1 m 50 \Uparrow 10-1 m$ ，wb two cases． $666 x, 7-12 m /$ w Very abundant 72 介10－2m／x 73 1－4m 75 $\Uparrow 16-1 m / x 79$ wt Not in ChonosO grand form $1-3 m 80$ 介15－4m／x／13u＂quelquefois＂ 83 6－ $12 m / w$ ChonosO No $8515-24 m 95 \Uparrow 11-1 m / x /$ w turn over $w b$ Therefore materials must be separated by some process：\＆not layers of siliceous sandstone \＆less pure layers．－ 96 1－10m，15－20m $100 \Uparrow 15-1 m / x / w b$ Falkland Isld．－ 101 10－20m／18－20m／x 102 1－5m 104 $\Uparrow 10-4 m / x$ ，wb Mention in T del Fuego the Lydian balls from Laguna $108 \uparrow 12-1 m / x 109$ $1-10 \mathrm{~m} / \mathrm{w}$ Maldonado $114 \Uparrow 10-3 \mathrm{~m} / x 125 \Uparrow 7-$ $3 m 132 \Uparrow 8-6 m / x 1332-5 m, 8-15 m 1511-8 m /$ w T．del Fuego $154 \Uparrow 15-3 m / w$ Andes $1551-$ $15 m 157 \Uparrow 15-1 m / x / w$ False C．Horn 158 1－7m $1894-8 m / x / x, w b$ Therefore subsequent action purified it．－ $211 \mathrm{Im} / x, w b \times$ Ponsonby Sound 212 1－15m 223 1－10m，介3－1m 224 1－ $3 m 228$ 介15－1m 230 14u＂druses＂ 236 6－16m／ 12－16m 276 介 $20-1 m 309$ 6－11m，$\uparrow 8-1 m$ ，$w b$ Turn over 310 介5－1m 311 1－ $6 \mathrm{~m}, 15-20 \mathrm{~m} 312$ 1－11m／6－11m 345 wt Cavities owing to dissolved angular fragments Mem the Coquimbo limestone shows facility or small difference causing redissolution $\uparrow 15-10 \mathrm{~m} / \mathrm{x}$ 346 13－22m 347 1－8m 389 介 $6-3 m 390$ 1－12m／ $3-6 m / 5-8 m 3921-10 m 395 w t$ it is clear from fineness of sediment that salt beds true deposits，not Subsided salines $12-20 \mathrm{~m} 452$介12－2m 456 介10－1m 457 fm 476 fm 479 介12－ $1 m 4836-20 \mathrm{~m} 48411-15 \mathrm{~m} / \mathrm{m}$ ，$\uparrow 5-2 \mathrm{~m} / \mathrm{m} / \mathrm{w} / \mathrm{wb}$ Mem：How universal this character．Copiapo． Galapagos．Patagonea How far is dryness a general characteristic 485 wt NB At Iquique， the fresh water shows that Nit．Soda is not beneath the surface． $1-6 \mathrm{~m}, 12-16 \mathrm{~m}, \uparrow 15-1 \mathrm{~m}$ ， $w b$ The formation of salt is more probable if the Carb of Soda effervesces．\＆that may as well as Nitrate of Potash． 520 ＂L＇olivine＂．m ，介4－1m 523 nos $1-9 m / w$ Ascension $7 u$＂globules＂ 526 ＂L＇argile＂．m／w CauquenesO 528 介4－ $1 m / w$ Galapagos $\uparrow 4-1 m / x 529 \quad 1-20 m / w t$ These Greystones some of the commonest Volcanic rocks $4-7 \mathrm{~m} \mathrm{~m}_{\mathrm{o}} / \mathrm{m}$ 530凶 $1-5 \mathrm{~m} / \mathrm{w}$ Ascension 531 10－15m＊o $x \otimes_{0} / m / x / w \star_{0}$ Ascen－ sion 532 5－10m／x／w A 533 wt In Galapagos \＆Ascension，in Basalts，or at least dark Trachytes 6－12m／x 534 9－15m／xes， $9-15 m / x /$ $w{ }^{*}$ Ascension $\uparrow 12-1 \mathrm{~m} / \mathrm{z} \mathrm{cm}_{0} / \mathrm{w}$ A 535 wtas Ascension 1－2m／A，9－18m／mes／we 4 Ana－ lyses in Beudant $77 \times \pi 5-1 \mathrm{~m} / \mathrm{mas}$ ，wbero Felspar 64 May be taken as percentage of Silica Hornblende 44 Augite $505364-8 \mathrm{~m} / \mathrm{w}_{0}$ therefore diff．comp． 537 wt（a）Mem The trachyte below wells，decidedly prismatic or irregularly columnar $1-4 m, 11-22 m / 14-17 \mathrm{~m} / \mathrm{w}$
（a）$\Uparrow 3-1 m, w b$ Ascension！Phonolite．My felsp．this state $538 w t$ The basal hills of oldest series，allied to base of Phonolite cones，St Jago 1－4m 539 1－4m，5－8mea，7－ $11 \mathrm{~m} / \mathrm{w}$ At SSt Jago，not slaty from force of pebbles neither decomposes 13－14＊／u ＂habituellement＂，$\uparrow 11-1 m, w b$＊Therefore Ascension not Phonolite $5402-8 m / m \omega_{0} / w{ }_{0}$ Characteristic of St Helena 6－12w Phonolite same relation to Trachyte as basalt to basaltic lava $\uparrow 12-5 m, \Uparrow 2-1 m ~ 542 \Uparrow 10-1 \mathrm{~m} / \mathrm{w} \mathrm{m}_{\mathrm{s}}$ Ascension $545 \Uparrow 10-1 m 548 \Uparrow 10-1 m / \Uparrow 6-2 m *_{s}$ ， $w b$ Mem Ascension 549 wt I think from these descriptions the Galapagos trachytes，must be very singular rocks．$\uparrow 15-5 m / x 550 \Uparrow 12-9 m$ 552 4－6m／4u＂phonolites＂／5u＂porphyre siénitique＂，11－19mas 560 15－20m／w Steam cause of vesicles $5627-15 \mathrm{~m} / 13-15 \mathrm{~m} / x 563$ $\Uparrow 11-10 m 5641-4 m / w t$ Does－say that Sapphire are found at the Galapagos？－ 565 $1-7 m 5683-8 m 5691-4 m, 6-11 m / 8-11 m / x / w$ Van Diemen＇s land $\uparrow 4-1 m / w$ C．de Verde 573 1－8m 574 15－17！ 575 17－21m 578 3－10m $580 \pi 6-2 m / w$ T．del Fuego $581 w t$ Wackes being often amygdaloid \＆therefore porous explains greater decomposition $\uparrow 11-8 \mathrm{~m} 582$ $1-2 m 590 \Uparrow 17-1 m / m$ ，$\uparrow 17-13 w$ Coral Paper介13－10w Coral B Paper wb If trachy，where eruption happen，is generally missing，there is less chance of alternations than if subsiding；agrees with facts in Pacific 591 1－ $15 \mathrm{~m} / \mathrm{w}$ Is this true？ $593 \Uparrow 10-1 \mathrm{~m}$ ，wbes Dolomieu in Voyage to Lipari Isid talks much about effects of Vapour．says deposits crust of oxide of iron or outside fragments． 595 $\Uparrow 8-5 z 596 \Uparrow 15-10 m 6051-5 m / x 6081-6 m / w$ St Jago 609 1－6m／w Copiapo $w b$ NB The existence of sea shells on several of the sandstone craters at Galapagos，argument for mud eruptions． 616 \＄17－5m 627 介12－1m 636 1－10m $6373-17 \mathrm{~m} / 13-17 \mathrm{~m} 645 \AA 8-1 m 647$ $\Uparrow 15-3 m 648 \Uparrow 13-5 m, \Uparrow 4-1 m$ 649 1－5m，介13－ $6 m, \Uparrow 4-1 m 651 \mathrm{fm} / w$ Mem：YaquitoO Gold Mines $\uparrow 7-6$ ！

AUDUBON，John James Ornithological biography 5 vols；Edinburgh；Adam Black； 1831－39［CUL，B］
beh，br，ch，mg，sp，sx，ta，tm，y
vol．1， 4 35－37m 535－38m 1336 －38m 14 32－ $37 m 1516-17 m, 18-20 m, 21 m, 22-29 m 343 u$ ＂colours｜duller＂ 110 11－18m 113 14－16m 139 12－14m 174 29－32m $17527 u$＂al yellow＂， $34 u$ ＂fine yellow＂， $35 u$＂brownish－olive＂ 193 22－ $25 m, 27-31 m / 30-31 u$＂equally 1 sexes＂， $36-38 m$ ， $39 u$＂when line＂ 203 4－9m $21627 u$＂sides 1 domestic＂，33－36m 221 4－10m，19－21m，26－
$27 m, 30-32 m 222$ 18－21m，37－38m 223 11－ 14m，16－18m 229 14－17m 233 wt Male all vermilion $2 u$＂male them＂，8－12m，15－18m 234 31u＂whole｜vermilion＂ $2352 u$＂light brownish－ green＂ 254 19－20m 257 3－4u＂Head｜blue＂，15－ 16m 280 15－22m 327 27－33m 352 8－11m 377 32－33m 378 $7 u, 8-10 m / 8 u$＂brightest I green＂$/ 9 u$ ＂three years＂，11－13m，14－16m 379 21u ＂general｜blue＂ 380 2u＊ 389 20－23m 393 $16 u \leftrightarrow, 21-22 m 39419-22 m 39616-17 m 486$ 16－20m
vol． 2 NB 407 Expression Owl puffing out feathers
SB Vol．2．－Audubon
p10；22； 51
55 Jay－attend whether young like old in other jays
75， 79 woodpeckers alternately incubating
87 sexes very different \＆young not like female
89，92；143；153；170；About sexes of Birds 195 all Thrushes spotted on breast How in Blackbird
198；202；326；364；407；420；450； 475
－493， 497 T．cupido
509；529；538； 545
561 do not get mature plumage soon
$103-5 \mathrm{~m} / 3 u$＂all \mid resembles＂， $5 u$＂Young 1 acquiring＂ 13 7－9m 22 19－20m 51 23－26m／26u ＂they lin＂｜ $27 u$＂second＂$/ 26 w$ sexes alike 554 $7 m, 14-15 m / w$ sexes nearly alike $7524 u$ ＂both｜incubating＂ 79 20u＂differs from＂，26－ 27m／26－27u＂differ 1 distribution＂ 87 4－5／10／ $11 \mathrm{~m} / \mathrm{u}$ 〈colourings）， $14-15 \mathrm{w}$ nest in Hole 15／16／ $17 u$（colourings） $899-17 m / 10-12 w$ both sexes change $926-10 \mathrm{~m} 14311-13 \mathrm{~m} / \mathrm{w}$ sexes dif－ ferent \＆young differ 144 5／13－14／15u〈colourings〉，20－23m 152 21－23m $1705-8 m$ ， 19－24m $195 \quad 19 u \quad$＂female \mid paler＂$/ w$ this common to other species $23-28 \mathrm{~m} / 23-24 w$ How are Blackbirds？ $1988-10 \mathrm{~m} 199$ 20－21u ＂female leye＂ 202 23－27m／24－25w Sexes dif－ fer $2751-5 m, 1-7 m 3268-10 m 327$ 24－25u ＂general 1 with＂，27－32m，29－30u＂general black＂$/ 30 u$＂and a broad＂，31u＂yellowish＂，33m 364 1－3m 407 19－22m $42034-36 m 45016 u$ ＂young lorange＂，18－21m／21u $47435 u$＂light vinaceous＂，36u＂hind｜part＂ $4751 u$＂neck। blue＂，8－9u＂lower｜red＂， $16-21 \mathrm{~m} / 18 u$＂are＂， 21－22m 493 1－4m／4u＂globular lof＂，35－37m $49721-24 m / 23 u$＂bird Ithe＂ $124 u$＂air 1 bladder＂， $26 u$＂muffled＂， $27 u$＂refils 1 receptacles＂，31－ $36 m$ ， $38 u$＂than a mile＂ $4984 u$＂autumn much＂ $50918 u$＂graduated I male＂／18－20w so with long－tailed Flycatcher 529 9－14m 538 10－ $13 \mathrm{~m} 54512 u\langle$ colourings $\rangle, 13-24 \mathrm{~m} / 14 \mathrm{u} / 16 \mathrm{u} / 21 u /$ $23 u\langle$ colourings〉 560 25－29m 561 32－34m

AUDUBON
vol． 3 SB Vol 3 Audubon
p133－Young Birds occasionally breeding 4 years arriving at full characters yet sexes alike
p139； 141 do
$174{ }^{\circ} \circ$ changes in Beak \＆legs of lbis during Breeding season
210；213；250；258；412，416，419；552；614， 616
All about sexual Plumage
2 24－35m／＂．．．＂ $30-32 c \notin / 34 c \notin 13318-21 m$ ，21u ＂arel brown＂，22u＂covered＂，26－27m 139 29－ $33 m, 33-36 m 14122 m, 30-33 \mathrm{~m} / 30 u$＂at first＂／ $31 u$＂begin＂ 174 29－34m 210 36－38m／38u ＂sometimes \mid dress＂ 211 1－2m，2－5m，16－18m 213 18－20m 250 11u＂alsol speculum＂， $28 u$ ＂speculum greyish＂，32－34m 258 11－14m 412 $18-26 m$（Bonaparte） $41610-15 \mathrm{~m} / \mathrm{w}$ change from 15 w change later $4195-7 \mathrm{~m}, 18-20 \mathrm{~m}$＊ 552 1－4m 614 7－10m 616 12－13m
vol．4， $181-2 m 2220-23 m 5811-16 m 6625-$ $28 m$ ，32－34m 109 32－34m 114 25－27m，28－ $29 w$ no speculum 117116 4－6u＂outer margin＂，31／34／35u〈colourings〉 117 3－4m 275 29－34m 278 14－19m 294 35－37m 330 9－13m 389 1－3m 392 11－12u＂generall black＂，28－30m 424 32－36m 466 33－37m 470 22－27m $5073 u$ ＂destitutel for＂$/ 2-6 \mathrm{~m} / \mathrm{w}$ I was doubtful on this head 518 21－25m 564 21－24m 566 3－6m 599 $6-8 u \leftrightarrow, 19-22 m / 20-21 u$＂Thelbronzed＂，22u ＂rump greyish－brown＂ $6111 m, 4-5 u \leftrightarrow / 2-6 m / w$ yet plumage acquired slowly
vol． 5 NB 456 Parasitic Cow－Bird
602 Migration
－ 601 Noise to cause alarm Q
SB Vol． 5 Audubon
p．11；63；176；183； 210 Jay； 308
Only about Plumage of Sexes
519 Tanagra aestivalis female almost as red as male

10 31－35u土 11 15u＂upper｜tinged＂，16u＂loral space＂ $18 u$＂light greenish－yellow＂， $30-33 \mathrm{~m} / 30 \mathrm{u}$ ＂loral＂／31u＂black＂ 63 33－37m $1764 u$＂tints duller＂$/ 4-7 m / w$ other cases $1832 u$＂part 1 forehead＂，30－31u＂bright Iextent＂ 210 10－19m 308 10－11u＂broad leyes＂， $12 u$＂in a rather＂， $13 u$＂is 1 pale＂， $14 u$＂parts yellowish－green＂， $24-$ $32 m 45424-33 m 5191-2 m 601$ 12－16m／Q 602 1－6m

AUDUBON，John James and BACHMAN， John The viviparous quadrupeds of North America New York；J．J．Audubon； 1846 ［CUL］
ad，beh，br，ex，gd，ig，mg，no，00，rd，sp， tm，v

SB1 Dß 34；38；40；59；62；67；77；131；143； 146；191；193；216；218；220；221；252；266；
268；272；304；358； 265 var in Teeth
－ 365 Sheep Q
SB2 ${ }^{2} \beta$
Audubon＇s Quadrupeds
34．Florida Rat great diversities in Habits \＆ Instincts in different districts
38 Squirrel，curious manner of avoiding a fall，spreading itself out 40 subject to many animals of prey
59 on terror caused by Rattle－snake－ 62 on do
77 gradation in teeth falling out in one genus，permanent \＆small in another． Rudiments
131．graduated form in Squirrel \＆in Habits 143 good discussion of parallelism in diff．
Lat．of Europe \＆N．American animals
191．Black Rat became rare in N．Am．as in Europe 193
216 Flying Squirrel with additional small Bone， 218 Habits of， 220
269．Squirrels fighting at rutting season（a little lively animal）
272 On Migration of Squirrels
304．On a Mouse becoming domestic \＆ inhabiting Houses．
358．Pigeon which used to breed in communities now by persecution seldom 2 nests in same tree．－
title page＊ 18464 5－7u＂markingl numerous＂ 34 4－12m，25－27m／26u＂hollows＂， 29－30m／29u＂clefts＂，34－38m 38 17－21m 40 26－37m 59 2－7m 62 9－15m 67 6－10m 76 29－ $34 m 771-5 m 10931-33 m 13116-21 m 136$ 32u＂beneath｜ruff＂ 137 1－3m 143 21－40m 146 12－21m 147 4－6m $19123-27 \mathrm{~m} 1931-7 \mathrm{~m} 216$ 30－32m 218 21－25m，29－31m 220 1－5m 221 19u＊＂threelyoung＂， $25 \mathrm{~m}, 25-29 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{u}$ ＂than｜young＂ 252 19－25m 265 24－29m 266 15－20m 268 介9－3m 269 3－5m 272 4－13m 304 6－14m 358 22－27m 365 8－19m／11－12Q

AVELING，Edward The student＇s Darwin London；Freethought Publishing Company； 1881 ［Down，I］

AYRAULT，Eugène De l＇industrie mulassière en Poitou Niort；L．Clouzot； 1867 ［CUL，I］ cs，f

NB 178 \＆ 180 \} \propto Different fertility of ass \＆Horse when reciprocally crossed．
$17824-30 m, 30 m 1791-2 m, 4-6 m 18016-18 m$ $1992 m, 4 m, 11 m, 19 m, 24 m 2005 m, 6 m, 11 m$

AZARA, Félix d' Essais sur l'histoire naturelle des quadrupèdes de la province du Paraguay 2 vols; Paris; Charles Pougens; 1801 [CUL, pre-B, B?]
beh, br, cc, ds, gd, no, 00, sx, ta, ti, tm, wd, y
vol. 1 NB p3 Tapir striped when young p136 Puma curls tip of tail when young to spring \& purs like a Cat, when scratched.(Copied)
3 3-6m 136 9-13m/10u "extrémitél queue"/11$12 w$ purr
vol. 2 SB1 $\square \Re$
p209; 296,298; 306; 319; 332; 339; 349; 359; 363; 364; 368; 371; 376-1783-1796
\leftrightarrow References for my 1 st Vol. copied out SB2 1β
296 Date of introduction \& increase of Horses in La Plata p298
332 Wild Cattle Horses in Falklands removing snow
339 on Cardoon \& Cattle destroying entire pasture
349 Mares which produce mules get old sooner
359 increase of Cattle in Falklands \& dates given Θ - Introduced from La Plata
$\Leftrightarrow 360$ periods at which * Heifers conceive later in hotter country \underline{Q}
368 Cattle killed by flies

- On natural rate of increase of Cattle in the Estancias
372 Rudiment of Horns in Cattle. descended from Hornless Bull.-
$2097-11 \mathrm{~m} / \mathrm{w}$ so with all sexual charact 296 $9 u$ "1535", $18 u$ "1580", 19-20u "trouvèrent 1 Chevaux", wb Mule Zain-clairs 298 14-15m/u "dix lindividus", 16-17m 3058 m , 15 m 306 17$22 m / 19 u$ "zain" $\mid x / w$ set 24-26Q wb M Dictionary says what it is Dunn? V. p350 Mules are Zain-clairs 307 5-6Q/6-8m/7u "quatrel Chevaux", 9-10m 308 20-26m 313 21Q 318 18-21m 319 1-3m, 6-14m 324 1-8m/ 5-6Q 332 3-5m 333 6Q 7-10m/9u "leur sabot est" $\mid 10 u$ "poils", $11 u$ "point|blancs", $12 u$ "tous", $13 \mathrm{~m} / \mathrm{u}$ "beaucoup 1 courts", $21 u$ "Cette reproduit", $24-25 m, 26 m 3341-2 m, 18 u$ "dans 1 corne", $24 u \leftrightarrow 335$ 20-26m/24u "Cabril (chevreau)" 339 7-10m/10u "anéanti le pâturage" 349 24-26m $3517 u$ "zain-clairs" 352 $9-10 m$, $13-14 m / 13 u$ " 1546 " 355 9- $11 \mathrm{~m} / 10 u$ "1552" 358 3-4m, 20-21m 359 7-11m, 19$21 m / 20 u$ " 1760 ", $21 u$ "six mille", $22 w$ no $w b$ 800 - in 15 years - increased to about 6000 $\rightarrow 3607-11 m / 9-10 Q 3611-3 m / 1 u$ "sombre ou rougeâtre"/Q 9-13m 363 8-10m 364 5-9m 368

1-6m, 9-12m $3718-17 m / 10-14 w$ Horns go with Males $16-18 \mathrm{~m} 3728-10 \mathrm{~m}, 10-11 \mathrm{Q}$ \& $12-$ $16 m 37310-13 m 37622-25 m / 1-26 \mathrm{w}$ see life when in S. Amer. see date of Cattle at M. Video p355. Cattle let lose in 1552377 wb He visited La Plata 1783-1796.-

AZARA, Félix d' Voyages dans l'Amérique méridionale 4 vols and atlas; Paris; Denton; 1809 [CUL, pre-B]
beh, ex, 00, sp, ti, tm, ws, y
vol. 1 SB Azara Vol I
p. 100 - struggle for Existence.
p. 165 - Wasps nests - 215 - worms in navels of Beasts
247 - Young Tapirs striped
375 Horses
381 «wild Dog Q
386 on some species \& others rare of same group.-
376 White Horses swim best
100 3-7m 101 17-26m, 19-27m/22u "une। rampant" 102 1-4m 146 26-27m/26u "tendre | rôtir" 147 17x 165 17-23m (Latreille) 215 25-27m 216 2-8m 247 2-4m 373 2$7 m 3765-14 m 38114-17 m$ (Buffon), 19-20Q 386 19-27m
vol. 2 So Ch. Darwin
NB O June 1860 Much about Indians
11 6-16m 21 20-24m 22 15-18m/x, 19w see
$231-5 m / x / 4 w$ HearnO $2519-22 m 58 \Uparrow 4$ $1 m$, wb Guanys ${ }^{*}$ Guaranys $601-3 m 649 m$ 92 22-27m 93 14-16m, 21u "deslaccouchent", 26-27m 94 16-18m, 21-22Q 23-27m 95 2-5m, $17 u$ "guanás" $10512-18 \mathrm{~m} / 14 u$ "sourcils 1 poil"| 13-15w Other Indians do the same 115 10$15 m 1161-2 m, 11-13 m / 12 u$ "déformélvieillir" 179 11-19m/14-16w more men killed
vol. 3 NB p8
I have not read the rest. except Intro-duction.-
p33 Caracara makes * Vulture disgorge prey Lestris take advantage of natural instinct to disgorge
$825-29 m$ (Buffon) 33 19-25m/20-22u \leftrightarrow
vol. 4 NB p10. Habits of Woodpeckers
327 Habits of Musk Duck
328 Measures of do
I have not read all this Book.-
$320-21 m / 21 u$ "parcourent|grimpant", $22 u$
"dominicainlguêpes", 23-24m 253 wt Philomachus cayanus 327 19-24m 328 26$29 m$
B., J.P. An essay on spiritual evolution London; Trübner \& Co.; 1879 [Down]
BABINGTON, Charles Cardale Manual of British botany London; John Van Voorst; 1851 [CUL]
fg, gd, $00, \mathrm{sp}, \mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB1 Tragopogon porrifolius (p. 188)
seeds of ray \& centre very different
Verbascum 5 stamens differ in length \& structure - in Veronica only 2 stam - in other Scrophs, $4 \&$ of unequal lengths Penstemon
NB2 \oplus p. 31 Subularia
p. 120 var.; p. 301

Abstract
120 Similar vars in allied genera
301 Pinus mughus in Scotch Bogs a var. exterminated by present vars?
viiia $30 w$ p. 65 viiib $17 w$ p148 xi $w t$ This seems all quite artificial $12 w$ xiii $19 u \leftrightarrow$, $21 w \leftrightarrow$ xiv $3 u \leftrightarrow, 5 w$ Corolliflorae $20 u \leftrightarrow \mathbf{x v}$ $24 u \leftrightarrow 428 u$ "in|fields" $526 u$ "floating", $26 w$ Nor $33 m 728 w$ Nor $826-27 m, 34 w$ Nor 9 $26 m 1219 w$ Nor $1314 w$ Nor 27-28m 1414 $15 w$ I. of W. $24 w$ Nor $27 m 1531 w$ Nor $312 m$, $13 u \otimes_{0}$ "often Imargins", $16 w$ I. of W. $324 w$? I. of W. $331 w$ I. of W. $8 w$ Nor 34 $43 u$ "spur" $351 u$ "thel short", $9 u$ "spur 1 straight", 18-19u "spurlend", $34 u$ "cor.I cordate" $364 w$ Nor $5 u$ "blunt \mid roundedly", $22 u$ "cor.Iblunt", $34 u$ "spur|calycine" $373 w$ Nor 4-5u* "spur I calycine", 27w Hart $3824 w$ Nor $437 w$ Nor $4410 w$ Nor $4534 w$ Nor 42$43 w$ White Nor $43 u$ "l. |hairy", $44 u$ "calyx | lanceolate" $461 u$ "elongated lerect", $6 u$ "st. 1 calyces", $6 w$ Nor $8-9 u \leftrightarrow, 14 w$ Nor $27 w$ Nor? $5027 w$ Nor 51 1w Nor 20w Nor 54 41w Hartf? $5512 w$ Nor $567 w$ I. of W. $5722 w$ Hartf $32 w$ Hartf 39w Hartf 58 15w Hartf 61 $29 w$ Nor $628 w$ Nor 15w Nor 31w Nor $641 w$ I. of W. $6612 w$ Nor $703 w$ Nor, Hartf 18-20w Hartf Down, $37 w$ Nor $7127 w$ Nor 72 17w Nor $733 \mathrm{~m}, 40 \mathrm{w}$ I. of W. $7411 \mathrm{~m} 77 \mathrm{~m}, 18 \mathrm{~m}, 28 \mathrm{~m}$ $7937 m 8035 w$ Down $829-13 w$ Down I. of W. $23 w$ Down 29-33w Isle of Wight $8738 w$ Nor $8834 w$ Nor 90 12w Nor 40w Nor $916 w$ Nor 92 19w Mr Norman omit 106 29w Nor $36 w$ Nor 107 8-9w Mr Norman omit 112 12w Norfolk 113 32w Nor 114 7w I.W $32 w$ Hartfield 116 10-13w Hartf. I. of W. $12028-$ $32 m, 32 w$ I. of W $36-39 m, 41 w$ I. of. W $1212-$ $6 \mathrm{~m}, 2-6 \mathrm{w}$ similar vars in allied genera 128 17w Nor 143 32-33w Down everywhere 144 $27-29 w$ Down everywhere $32-34 w$ orchis Bank $1453-7 w$ Below Stonfield Field 12-14w Down everywhere 33-35w Down everywhere 147 33w Norfolk 151 14w Nor 29w Nor 152
$12 w$ Nor $35 w$ Nor 153 42w Nor $15417 w$ Nor $35 w$ Nor $1555 w$ I of W. $28 w$ I of. W $35 w$ I of. W $15622 w$ l. of. W? $157 \mathrm{zb} 158 \mathrm{zb} 15925 m$, $29 m, 33 m 1603 m 16632 w$ I. of W. 16720 w I of W 181 10w I of W. 182 16-24m $18322 w$ I of. W $1889-10 w$ I of. W. $28 w$ | of. W. 192 $25 w$ Mr Norman omit 203 33w Hartf. 206 28$29 w$ Hartf 213 8-11w Nor. I of. W $29 w$ Nor $21532 w$ Nor $21730 w$ Hartf $2215 w$ I. of W. 222 11w Nor $35 w$ Nor 223 10-17w I think my plants clearly this species $40 \mathrm{~m} / \mathrm{w}$ Nor 224 16w Nor 225 21w Nor 231 26w Nor 232 38w I.W 233 12-15w I of Wight 234 29w Nor 235 1w Nor 236 3-4w Hartf 30w Nor 41w Nor 237 $38 w$ Hartf 238 11-12w I of W. 40w Nor 239 $5 w$ Nor $12 w$ Nor, $24 w$ Hartfield $24020 w$ Nor $24137 w$ Nor $24434-35 w 2$ vars $2451 m$, 6$7 m, 37-38 w 3246$ 4-5m, $23 w$ Nor 248 22-27c, $31 w$ Nor, $38 w$ Hartf $2497 w$ Nor $38 w$ I of W 250 40w Nor? 251 5w Nor, 27w Nor 39w Nor 252 25w Hartf 253 18-22c 255 29w Hartf 256 $4 w$ Nor $28 w$ Nor $2595 w$ Nor $38 w$ Nor 260 1w Nor $8 w$ Nor $18 w$ Nor 275 33w Nor 277 22w Nor $2839 w$ I of W. $28529-33 m, 24-25 w$ I of W. 286 14w Nor 288 26w Mr Norman omit $30126-30 m 30222 w$ Nor $3037 w$ Nor 306 37w Nor 307 6w Nor 308 15w Nor $44 w$ Nor $3107 w$ Nor $9 w$ Down 12w Hartf $16 w$ Nor 18w Down 25w Nor $3129 w$ Nor $28-31 w$ Hartf I. of W. $40 w$ (Var. of dat) $31314 w$ (var of d) $26 w$ I of W $3223 w$ Nor $3284 w$ Hartf $33522 w$ Nor $33612 w$ Nor 353 31w Mr Norman omit 356 $18 w$ var $35812 m, 25 m 36017-18 w$ omit 365 $40-41 w$? var $36633-34 w$ var $36924 w$ var $34 w$ var 372 10u "flowered a ", $10 u$ "Glumes nearly", 24a/w 1-flowered $37313 u$ "Fl.I hairs", 26-27u "1land", $28 u$ "2lof", $39 u$ "1flowered" $3744 u$ "2| fl." 375 11-12m, 21w water $3774 u$ "onel flower" $37826 m 379$ 21$22 m, 39 m 380$ 17-18m, 20-23w Down Ch Lane 381 31-34w Honeygrove Jul 53382 22$23 m, 30-32$? 385 24-25m 386 9-10w Hayes 16-19w Larch wood 41-42m 387 21-22m, 40$41 \mathrm{~m} 3887 \mathrm{~m}, 13-14 \mathrm{~m}, 24-25 \mathrm{w}$ Hartfield $32-$ $33 w$ orchis Bank $3893 w$ Down 10w =Molica $11 w$ Hayes $39 w$ Down $39042 w$ Honeygrove $39133 w$ passim 39-40w passim $3925-7 w$ Larch wood, $14 w$ wall $44 m 39438-39 m 395$ $1 m, 11-12 m, 38 m 396$ 31-32w Honeygrove $33-34 m 3978-9 m, 24 m, 30 \mathrm{~m}, 38 \mathrm{~m} 398$ 31$32 \mathrm{~m}, 42 \mathrm{~m} 39940 \mathrm{~m} 40013-14$?, 21 m 4016 m , 15m 402 17-18w Beckenham 18-19m, 30-31w Hartfield $w b \mathrm{Mr}$ Norman end here 403 wt Mr Norman end here

BAERENBACH, Friedrich von Gedanken über die Teleolgie in der Natur Berlin; Theobald Grieben; 1878 [Down]

BAERENBACH, Friedrich von Das Problem einer Naturgeschichte des Weibes Jena; Hermann Duft; 1877 [CUL, I]
NB Skimmed \wp

BAERENBACH, Friedrich von Prolegomena zu einer anthropologischen Philosophie Leipzig; J.A. Barth; 1879 [Down, I] \wp

BAGEHOT, Walter Physics and politics London; Henry S. King \& Co.; 1872 [Down, I, S]

57 6-28m
BAILDON, Henry Bellyse The spirit of nature London; J. \& A. Churchill; 1880 [Down, I]

BAIN, Alexander The emotions and the will London; Longmans, Green \& Co.; 1865 [CUL]
beh, h, sl

SB

Bain Emotions \& Will
p.5.6 to under qu.
p.111; 119

127, 129 Expression
176
Laughter 247
Moral sense
254 Moral sense
Quo 267 481-good to quote
269 - social instinct apparently denied by Bain
B. seems to think moral sense acquired during life-time - seems to give too deep a feeling for this wd never resist Hunger, Revenge or lust.-
277; 279; 283; 289; 290; 308
p 270 Mohamedan * woman covering her face

- 283 imitation of external government !!! 284 obedience (Monkeys slapping their children)
viii $8-10 m, 9 u$ "Feeling 1 misery", 32-33m, $32 u$ "Will" ix $17-20 m \times 26 m$ xi $13 m$ xii $6 m$ xiii $20-21 \mathrm{~m}$ xiv 33 m xv 23 m xxv $30 \mathrm{~m} 523-26 \mathrm{~m} 6$ wt The love of a mother for her child is a strong emotion, but this is hardly shown by any action or expression, but ready to lead, if her child requires assistance, to energetic or heroic actions. $2-37 w$ a mother may be feeling the warmest love for her child, \& yet how is it exhibited? When poets \& speak of
green-eyed jealousy they must find it impossible to give \& actions \& plain characters. Perhaps Bain calls love a Sensation \& not emotion.- \rightarrow No p. 37 9$13 m, 26 u$ "secondarily automatic" 7 31-33m 8 12-15m 9 12-13m, 34-35m, 36-37m 37 17$21 m 5415-30 m, 29 m 555-15 m, 5-9 w$ to make appearance dredful 56 28-31m 58 28$34 m 65$ 19-22m 67 32-37m/w/wb Dog when going to fight; Birds erect plumage; Lynx sets up its back \& spits $7319-27 m 11132-$ $37 \mathrm{~m} 11932-37 \mathrm{~m} / \rightarrow 1206-9 \mathrm{~m}, 11-12 \mathrm{~m}, 14$ $17 m 127$ 25-28m 128 21-24m 129 26-28m 176 $34-37 \mathrm{~m} 2477-29 \mathrm{~m}, 35-37 \mathrm{~m} / \rightarrow 24810-13 \mathrm{~m}$ $2497-12 m, 13-14 m, 32-33 \rightarrow 2506-10 m 254$ 26-29m 255 1-2m, 5-11m 267 1-5m 268 26$29 m 269$ 4-6m, 8-9!, $8 u$ "rational appreciation", 22-28m, 29-30 $\rightarrow 2707-11 m, 30-$ 34m, 36-38m 271 7-11m 277 10-14m, 10-11w But what the importance 279 12-14m, 13u "tolpig" $28310-18 m, 20-23 m, 22 u$ "performancel social", 26-29m,36-37 $\rightarrow 2841$ 1$4 m, 15-17 m, 25-30 m 2853-5!, 4-7 m 2875-$ $11 m 28927-30 m, 37-38 \rightarrow 29012-18 m 3081-$ $14 w$ so the associated state is advantageous 4-7m, 10-14m, 12u "the blood", 34-35m 309 7-13! 481 18-22m

BAIN, Alexander The emotions and the will 3rd edn; London; Longmans, Green \& Co.; 1875 [Down, card from author]

NB 86
xiii $7 m$ xvi $13 m$ xvii $18 w\langle n o t C D\rangle 8632-39 m$ 305 3-5m, 3-4u "initial I generally", $30 u$ "play 1 accord" 309 15-20m, 16u "central brain", $17 u$ "discharge", $17 u$ "solitary streams" 31323 m , $23 u$ "spontaneous workings", $30 u$ "two", $32 u$ "Emotional", 33u "Volition" 314 2-6m, $5 u$ "selection", $16 u$ "why then", $17 u$ "doctrine of", $18 u$ "commencement", $25-28 \mathrm{~m}, 25 u$ "two views", $30 u$ "think it", $31 \mathrm{~m}, 31 u$ "primordial source" 315 23-25m, 23u "accidentallyl pleasure"

BAIN, Alexander The senses and the intellect London; Longman, Green, Longman, Roberts and Green; 1864 [CUL]
beh, h, phy, t

SB

p 12 Intellect \& size of Brain
50 can this bear on sobbing
52 Expression
96 do - theory of -
121 Expression of Man pain; \& such movements wd get mingled with true expression of distinct emotions

BAIN，SENSES
152．effect of imagination on the body admirable 1
225 Muscles of eyebrows
264 Expression
274 a child twisting tongue about in writing， perhaps connected with idea of speaking．－
277 V 279 Expression； 288 do；292－297 do it is expectation of pleasure when（a dog wags tail before food given him \＆while eating in quiet）－so when scratched
332 association
411 The mind is never intently concentrated on a merely pleasant idea
626 expression
Bain the Senses \＆intellect
50 28－32m 52 37－40m 53 27－30m，27－29w explains frowning $9629-41 \mathrm{~m}, 31-34{ }^{\prime \prime} .$. ＂／c／uॄ 121 19－32m，36－37 \rightarrow 122 2－6m，10－13m，27－ $30 m 15233-36 m 1539-11 m, 10-11 w 169$ odours $2258-18 m 26412-14 m, 34-37 \mathrm{~m} 274$介4－1m 277 36－39m 278 ＂sighing＂，12－ $14 m, 15-19 m, 34-36 m \quad 279 \quad 14-16 m$ ， $16 u$ ＂excitement \mid trembling＂，17－19m，17－18w Mul－ ler， $19 m$ ， $23 m * 28016-22 m 2811-9 m 288$ $w b$ In another place he adds $30-37 \mathrm{~m} / 30-$ $33 "$＂．．＂$/ 31-33 m \notin 2921-26 \mathrm{w}$ general effects of pleasurable，exciting \＆painful depressing （except at first）hardly in young child．18－25m $2934-9 m, 21-23 m, 24-25 m, 24 u$＂specific＂， $32-33 \mathrm{~m} / \rightarrow 2945-27 \mathrm{~m}, 11-14 \mathrm{w}$ oh oh $18-20 \mathrm{~m}$ $29528-29 m / \rightarrow$ ，$w b$ Curious that Dog has acquired bark of pleasure \＆another bark of anger，\＆another of demand to be let in at door 297 wt sobbing is convulsive inspiration wt because prolonged screams $1-2 m$ ，16－ $19 m 332$ 14－19m $4118-10 m, 10 u \bullet, 8-14 w$ crying \＆concentration．Mem problem or understanding a difficulty 626 41－45m 6278 － $11 m, 15-17 m, 20-22 m, 26-29 m, 31-33 m, 34-$ $37 \mathrm{~m}, 37-45 \mathrm{~m}, 42 u$＂features 1 pre－eminence＂， $46 \mathrm{~m} / \rightarrow \mathbf{6 2 8} 6-9 \mathrm{~m}$

BAIRD，William The natural history of the British Entomostraca London；The Ray Society； 1875 ［CUL］
$\mathrm{ci}, \mathrm{no}, \mathrm{phy}, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$
NB1 Cirripedia p．50；p．74；p．144；p．248； p．250；p． 253
p． 265 circulation
p． 303 XX cementing organ
NB2 Sp Theory；p85＊；p189 Rate of Increase in Cyclops；Synopsis Brit Mus 1842；p． 244 Diaptomus with worm－like body full of Spermatozoa．－；Apus Nebulia Chirocephalus Cyclops Canthocamptus Cal－ igus Lerneocera

50 14－17m，29－34m 74 10－15m $8132 m 8534-$ $38 m 1279 w$ Holwood 144 12－15m 154 21w Holwood 31－33z 187 11－14m 189 33－34m 248 8－11m 250 9－11m 253 27－32m 265 21－24m 303 9－12m $3214 m, 38 w 38$

BAKER，J．G．Elementary lessons in botanical geography London；Lovell，Reeve \＆Co．； 1875 ［CUL，I］
cc，gd，gr，ti
NB 46 －Alpine plant on Tropical Mtains 53 －Heat－lovers \＆cold－fearers
90 －plants which have become widely naturalised
99 －certain wide ranging plants
102 －relationship of S．Africa \＆S．America \＆latter with Australia，good
109 －independent of present geographical features
46 16－26m 53 8－13m 90 9－21m $9921-30 m$ $10110-19 \mathrm{~m} 1028-12 \mathrm{~m}, 22-27 \mathrm{~m} 1036-10 \mathrm{~m}$ ， 10－14m，23－27m 106 6－11m 109 17－24m

BALFOUR，Francis Maitland A monograph on the development of elasmobranch fishes London；Macmillan \＆Co．； 1878 ［Down，I］ \wp

BALFOUR，Francis Maitland A treatise on comparative embryology 2 vols．；London， Macmillan \＆Co； 1880 ［Down］
〈marks by FD〉
BALL，Valentine Jungle life in India London； Thos de la Rue \＆Co．； 1880 ［Down］
NB 156， 455
\wp
BARCLAY，John An inquiry into the opinions， ancient and modern，concerning life and organization Edinburgh；Bell and Bradfute； 1822 ［CUL，pre－B，S］\wp

BARKER－WEBB，Philip and BERTHELOT， Sabin Histoire naturelle des Îles Canaries Vol 3，part 1 Géographie botanique Paris；Béthune； 1840 ［CUL］
gd，gr，is，no，sp，wd
NB Marked Chapter on Distribution
title page wt Barker－Webb 57－9m，9－10m， $\Uparrow 15 w$ 14．fam 29．spec $\uparrow 12 m / x / u$＂variétél autres＂ $616 m, \Uparrow 7-3 w 17$ peculiar？ $78-9 m 8$ $12-15 w$ peculiar species in W．group．$\uparrow 7-6 m$ ， $\Uparrow 3-1 m \quad 9 \pi 8-2 w$ broken nature of country species abundant in one isld rare in another 1200 ft of $=$ difference of station $=\Uparrow 1 m, z b$
$127-8 m 164 m 1710 m, 12 m 2211-12 m / w$ Isolated plants－do not know yet，whether indigenous species or not．－ $16-17 \mathrm{~m}, 19-20 \mathrm{~m}$ ， $\Uparrow 3-1 m / w \times$ does this mean plants found nowhere else？Galapagos ${ }^{*}, \uparrow 2 x / u$＂espèces 1 propres＂ $231 m, 9-13 w$ So then List of plants on Teyde elsewhere？ $24 \Uparrow 5 u$＂observations analogues＂，$\uparrow 14-11 m / \Uparrow 14 x / u$＂Canaria＂／$\uparrow 13 u$ ＂représentent＂，$\uparrow 10-6 \mathrm{w}$ I suppose＊plants peculiar（？）to high parts of the Canary 25 $\Uparrow 8 u \wedge / \Uparrow 7 u \wedge / m / w 7,234 \mathrm{ft}$ Palma $261-2 \mathrm{~m} 32$ $9-10 m, 12-13 \mathrm{~m} / \mathrm{w}$（a） $19-20 \mathrm{~m}, 23-24 \mathrm{~m}$ ，$\uparrow 15-$ $13 m, \Uparrow 4-2 m / w$（a）Does this show course of immigration？ $331-2 m, 3 \mathrm{~m} / \mathrm{w}$ whether peculiar or not $37 \Uparrow 13 m 5012-14 m$ ，$\uparrow 6 m 511-3 m$ ， 14 $15 \mathrm{~m} / \mathrm{w}$－See Hooker＇s list of Plants 58 ＂Plantes alpines＂．w Is there any fuller list of Alpine plants？ $667 u$＂Calderal Palma＂，16－ $18 m 6812-14 m 69 \Uparrow 18-15 m$ ，$\uparrow 5-3 m 70$ 介9－ $8 m 715-7 m \quad 72$ 9－10m，18－19m 74 介10w Salvia Canaries $\uparrow 4-1 m \quad 75 \mathrm{im}, 11 u$ ＂buissons＂，11－12u＂provenant Igraines＂， $15 u$ ＂facies＂，$\uparrow 9!/ u$＂chétif＂ 76 介9－8m 78 గ3－1m／w must read $793-4 m, \Uparrow 12-1 m$ 80 2－3m，4－5m $8213-15 \mathrm{~m} / \mathrm{w}$ not from cultivation $95 \uparrow 2-1 \mathrm{~m} / \mathrm{w}$ important Read $97 \pi 2 u$＂quatrel bien＂$/ \mathrm{m} / \mathrm{w}$ different stations $10312-13 m 1048-10 m 122$ $\Uparrow 13-10 m, \Uparrow 6-4 m 123 \Uparrow 1 m 1246-21 m 16710-$ $17 m 175 \Uparrow 3-2 m, \Uparrow 1 w$ Galapagos？

BARRAGO，Francesco L＇Uomo fatto ad imagine di Dio fu anche fatto ad imagine della scienzia Cagliari；Corveso di Sardegna； 1869 ［Down，I］
title page wt 〈translation of title〉 $11 w$ throughout page 〈translation of page〉

BARRANDE，Joachim Acéphalés Chez l＇au－ teur，Prague； 1881 ［Down，I to CD erased and replaced by FD］\wp

BARRANDE，Joachim Brachiopodes Chez l＇auteur，Prague； 1879 ［Down，I］\wp

BARRANDE，Joachim Céphalopodes Chez l＇auteur，Prague； 1877 ［Down，I］\wp

BARRANDE，Joachim Defense de colonies Chez l＇auteur，Prague； 1870 ［Down，I］\wp
bARRANDE，Joachim Distribution des Céph－ alopodes Chez l＇auteur，Prague； 1870 ［Down， I］

3 21－25m 15 11－12m，13－15m 19 25－27m 111 24－29m 117 32－38m 121 31－35m 137 15－20m （Salter） 163 19－23m，40－43m 164 5－9m 165 7－ $13 m, 14-15 m, 26-28 m, 26-27 m, 29-33 m$

BARRANDE，Joachim Trilobites Chez l＇au－ teur，Prague； 1871 ［Down，I］

BARTON，John A lecture on the geography of plants London；Harvey and Darton； 1827 ［Down，pre－B，S］

4 20－26m 74－9m，5w Oak 22 13－18m 27 4－ $5 m 3012-23 m 31$ wtcc，22－25m $321-3 m 36$ 1－13m 38 13－17m 39 14－26m（Humboldt） 41 6－11m

BARY，Heinrich Anton de Die Mycetozoen Leipzig；Wilhelm Engelmann； 1864 ［Down］ \wp

BASTIAN，Henry Charlton The beginnings of life 2 vols．；London；Macmillan； 1872 ［CUL， I］
cc，che，ct，ds，fg，h，hl，phy，sp，t，v
vol． 1 NB xi；xii；160； 167 on Cellular Theory； 215 do．；Nothing for Man
xi $17-31 m$ xii $w t$ But are these supposed Heterogenic changes due to Environment？ $1-20 m, 1-17 w$ can this throw light or accord with the variability of higher form，as they are compounds of separate units？ 160 16－ $28 m 167$ 23－28m 215 10－16w plastide Hackels term best，25－29m 316 25－28m 433 19－22m 456 1－3？Catalogue \wp
vol． 2 NB1 Nothing for Descent of Man NB2
－lix variability of algae
－Ixii variation
－Ixxxii variation in relation to conditions in Infusoria Cohn
－31 Drosera
－79，88， 596 Pangenesis
255 objection
259 variation
377 Drosera
I think there is a tendency to plasticity var． but not proved－ 594 error on my views
597， 599 variation
604 I admit so far
608 I think I am in error
Frequency of generalised forms in old times quite opposed to independent origin of the diverse orders of same class
$114 z 312-7 m 7913-23 m 884-27 m 25515-$ $30 w$ Vorticellae；He omits altogether the conditions；Why not eggs in the infusion．－I do not yet see the reason－ 259 12－26m 261 3－9m 377 5－29m $5943-6 m$ ， $4 u$＂hetero－ geneous＂ $59624-31 m 597$ 2－8m $59920-24 m$ 604 wb like polarities of crystals $1-4 m 608$ 14－23m lix $20-30 \mathrm{~m}$ lxii $13-20 \mathrm{~m}$ lxxxii $2-34 m$

BASTIAN, Henry Charlton The brain as an organ of mind London; C. Kegan Paul \& Co.; 1880 [Down]
pat
NB 188 Douglas Spalding; 213 Blind Horse - self; 216 my Horse - Isle of Wight 213 14-17m 215 30c/w \notin
\wp
BASTIAN, Henry Charlton Evolution and the origin of life London; Macmillan \& Co.; 1874 [Down, I] \wp

BASTIAN, Henry Charlton The modes of origin of lowest organisms London; Macmillan $\&$ Co.; 1871 [Down, I] \wp

BATE, Charles Spence Catalogue of the specimens of Amphipodous Crustacea in the collection of the British Museum London; by order of the Trustees; 1862 [Down, I] \wp

BATEMAN, Frederic On aphasia, or loss of speech London; John Churchill \& Sons; 1870 [CUL]
beh, h
NB1 Descent of Man p.27; 31; 53; 100, 102; 109; 110; 112 Expression; nodding \& shaking Heads; p27 Concepts
NB2 p111 Gartner
27 4-5u "fell ldoor", 15-19m, 16-17u "memory|substantives", $18-24 w\langle C D$? \rangle one case of only the infinitive mood being retained $29 u$ "isl cut", wb How does this bear on concepts? 31 2-5m 53 12-16m $1009-10 m$, 17-20m 101 17-18u "defect |language", 19-22m 102 1-2m, 3-5m, 16-18m, 19-21m 104 8-11m 109 22-28m $1104 u$ "commonly unaffected", 6$15 m, 12-15 m, 12-15 w 2$ cases $16-21 m 1123-$ $8 m$

BATES, Henry Walter The naturalist on the river Amazons 2 vols.; London; John Murray; 1863 [CUL, I in both vols.]
beh, br, cc, cr, f, gd, h, ig, mm, no, 00, phy, rd, sl, sx, tm, v
vol. 1 NB p251
SB1 $\square \mathfrak{R}$ vol. 1
p. 20; 23; $30 x$ gradn in worker ants; 52; 55; 68; 99 monkeys not breeding; 102; 182.analogy of Moth \& Humming Birds; 193 sterile in confinement; 207; 210; 252; 254; 258-262; 304; 312; p 53 Sipo Matador

Bates Amazon vol 1
p. 20 on tropical insects not being more
beautiful \& on differences in sex.
23. on worker ants of 3 kinds
27. tunnell under river - 30 gradations between workers
52 Male \& female butterflies haunting different stations.
55 competition in the Tropics.
68. Trees with buttrefres.
102. 700 butterflies within an hour's walk
182. analogy between Sphynx moth \& humming birds.
207 widely different insects imitating sand in colour.
210 insects of same family having widely different habits.
252 male crickets being musical to attract female.
254 a kind of thrush with nest lined with mud 258-262. discussion on variability of butterflies \& on mimetic butterflies.
304. local vars. of butterflies
312. Ditto -

20 7-19m, 20-21u "almostlonly", 21-26m 21 $2 u$ "morel coloured", 3-31m, $3 u$ "females often", $5 u$ "tropics", $6 u$ "between the", $7 u$ "any temperate" 22 2-10m, 18-22m 23 8-10, 31m 24 10-14m 27 13-16m $308-12 m$, 19- $22 \mathrm{~m} 3126-$ $29 m 5123 u$, 29-31m 52 2-12m, $4 u$ "less dense" $537-14 m, 25 u$ "fig order" $541-31 m 55$ $21-29 m, 31 \rightarrow 5618-24 m 6814 m, 15-21 m 69$ $2 m 99$ 10-16m 102 21-26m 182 10-16m 183 5-8m 193 2-6m, 2-3u "раса"/w 2 Rodents p. 202 9-10m, 11-13m $20723-31 m / \rightarrow 20822-$ $27 m \quad 210 \quad 13-30 m \quad 250 \quad 23-26 m, \quad 29-31 u$ "Locustidae" $/ w$ probably Gryllidae of WellandO 251 1u "Acridiidae", fig.w toothed lobe left wing 252 11-15m, 15-27m, 31a "crickets" Achetidae wb Cicadidae again different 253 1-2m, 4-5m, 8-9m, 18-24m 254 $15-20 \mathrm{~m} / \mathrm{w}$ a kind of Thrush 258 25-30m 259 fig. $\rightarrow 260$ 5-9m, 14-19m, 28-31m $26122-27 m$ 262 介11-1m $2634-7 m, 14-17 m, 21-26 m 304$ 22-31m 312 18-30m 313 1-8m
vol. 2 NB 238 Toucans; 341
SB1 〈not CD? 39 Palm; 49 Tonka bean: fruits on stems; 51 Palm; 53 General descrip; 169 Bulging palm; 217 Fruit conspic ripe; 218 Gulielma palm; 237 Eriodendron; 263 Turtles eat fallen fruit
SB2 $\overbrace{0}\langle n o t C D\rangle$ Bates vol 2.
35 a young savage with instincts of finding his way.
44 Bees using hind legs to collect mud \& using gum.
46 Parasitic fly - like bee.
61-70 - neuters of termites.
228. butterflies of several sp. males living in
sunny places \＆females in wood
\Leftrightarrow 〈CD〉 307 Short－tailed monkeys，yet arboreal．－
《 ${ }^{2}$ not $\left.C D\right\rangle 313$ range of monkeys separated by a river
347 butterflies with males 100 times more numerous than the female．
347 range of butterflies depending on wind
351 gradation in workers of ants
364 great difference in the castes of worker ants．
$\langle C D\rangle 204$ man essentially same in mind
284 strong sexual characters．Umbrella Bird rudiment in female
349 tubes for caterpillars
357 gradation of instincts
SB3 \square ПR
35；44；45；61－to 70 Termites； 113 sterility； 128 expression；159； 162 God \＆Man；194； 219 Cultivated fruit－by Natives；228；313； 347； 351 gradation in workers； 364 ants；＊ close mouth \＆part front of tongue forming the palate \＆open mouth suddenly \＆this makes the click－open mouth sign of surprise．

35 1－9m 44 9－12m 45 13－23m，29－30 $\rightarrow 46$ 8－ $20 \mathrm{~m}, 18-23 \mathrm{~m}, ~ 23-27 \mathrm{~m} 513-5 \mathrm{~m}$ 61 7－14m，15－ $18 m 653-8 m, 28-31 m 665-9 m, 19-22 m 67$ $17-27 m, 28-31 m 1134-12 m 12829-31 m, 31 u$ ＂tola＂ $15920-29 m 16228-31 m 1785-9 z 194$ 16－29m 19710 m 204 1－9m 219 5－12m 228 4－ $9 m, 9-12 m 237$ 3－5m 284 12－18m 307 12－28m 310 24－29m，24－26＂．．．＂，30－31z 313 17－31m $33821-23 m$ ，22u＂seven 1 more＂ $33922-23 m / u$ ＂deficiency｜used＂ $3417-11 \mathrm{~m}$ ， $15 u$＂considered instrument＂ 347 4－11m，27－30m 349 22－31m $35122-26 m, 27-30 m, 30-31 \rightarrow 35221-32 m$ $35720-24 m, 20-22 w$ is it true，stinging 364 $14-17 \mathrm{~m} 36515-20 \mathrm{~m}, 22-26 \mathrm{~m}$ 419a 20 m ， 29 m 419b $1 m, 12 m, 26 m, 31 m$ 420a $8 m, 9 m, 19 m$ ， $29 m, 35 m 420 b \Uparrow 3-1 m$ 421a $1 m, 6-9 m, \Uparrow 2 m$ 421b $16 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 25 \mathrm{~m}, 31-37 \mathrm{~m}, 40 \mathrm{~m}, ~ 40 \mathrm{~m}$ 422a $1-4 m, 9 m, 10 m, 14 m, 27 m, 30 \mathrm{~m}$ 422b 20 m 423a $1-3 z, 16 m, 22 m$

BAXTER，Jedediah Hyde Statistics，medical and anthropological of the Provost－Marshal－ General＇s bureau 2 vols．；Washington； Government Printing Office； 1875 ［Down］

BEALE，Lionel Smith On the structure and growth of the tissues and of life London； Robert Hardwicke； 1865 ［CUL］ ct，phy，t
NB Used for pangenesis and of no other use
$1024-30 m 21 w t$ cell contents $1-5 w$ or as some several authorities object dispute the rejectO the presentO expion of cells， Beale＇s term been very useful 14－18u土， $21 u$ ＂Formed 1 matter＂，29－30m 25 27－30m，29－30u ＂composed Itissue＂ 26 3－7m，18－20m 27 23－ $28 \mathrm{~m}, 27 u$＂lastlylsurface＂， $28 u$＂ofland＂ $283-$ $7 m \quad 29$ 12－14m，13－14u＂comparativelyl matter＂， $24-27 \mathrm{~m} 313-21 w$ says before it has become completely passive 19－21m $34 w t$ the germinal matter in a fully developed muscle must be formed or modified by the development of the muscle． 36 11－13m， $12 u$ ＂islor＂ 37 19－21m $62 w t / 1-21 w$ says the nuclei or germinal matter of the various tissues are＊continually forming 12－15m， $12 u$＂Cells I parts＂ 63 21－23m

BECHSTEIN，Johann Matthäus Gemein－ nützige Naturgeschichte Deutschlands 4 vols， Leipzig；Ernsius；1801－5（2nd edn），1793－5 （1st edn）［CUL］
beh，br，cc，ch，cs，dg，ex，f，fg，gd，h，he， hy，ig，in，is，mg，mn，no，oo，or，pat，rd，sp， sx，ti，tm，ud，v，wd，y
vol． 1 NB Blumenbachs HandBuch of Nat Hist
17．； 26 Book；227， 228 －do．；232－6 Horse； 241 Canines varying
275；285，6；294；300；309；310，12；324；358；
362，5；378；404；425；432；434；448；457；
470；491； 505 to 508 to $536 ; 546$－Dog
It wd be good to investigate the 4 teeth of
upper jaw of Dogs to see about abortion
SB1 ロR
Vol I Bechstein－V End of Book for early references
p548 to 579 to 702
－p609 to 627；end；p． 653
795；850；932；950；984；1032；1046；1078－
83，1084．Squirrels； 1095 Hare； 1119 Rabbits to p．1135－
A Calendar at end with periods of coupling of ali wild animals．
SB2 1β
p241 Mares Eye Canine teeth either absent or very short－sexual \＆rudimentary characters variable
（Bechstein Vol I）
p 294 Hinney more like Mother（ie Ass）then Horse，but ears Horse－like Qwa
p 309 Nine Breeds of Cattle in central Europe
310 Pale－coloured cattle more plagued with Flies then darker colours
359 She Sheep have horns smaller or none 362 In Hornless sheep some have small loose Horns

BECHSTEIN，DEUTSCHLAND
379 Certainly Ram gives fleece
4322 Breeds of Chamois inhabiting different heights
505 Wild \＆tame Pigs produce fertile offspring Q
508 Var．of front teeth in Pigs N．Q
530 Sort of pad defending Boars
536 Many wild Pigs die in Hard winters \＆in very dry summers．－
548 Bitch 5，seldom 4 Q，mammae on each side－Iceland Dogs different voice $\langle u\rangle$
574 Newfoundland Dog－skin between toes
－Not in Newfoundland，when discovered．
584 time of gestation
638 Stutz－Dogs are easiest crossed with Foxes Q
654 Cats with wavy hairs N．Q
663 Astonishing increase of mice in Isld of Placida off Naples，when Cats destroyed．
682 In Lynx tufts of hair 2 inches long
795 Ferret procreates quicker than Polecat， －parent
950 Black \＆Brown Rat cross in nature Q 1032 Marmot or Arctomy inhabit only highest alpine height of Europe
1084 Squirrels in same nest，one finds 2 colours，when parents of two colours
1095 variation in upland \＆lowland hares
1119 Hares \＆rabbit will not breed after many attempts made Q
1123 Rabbit can produce in 4 years 1274， 840
1133 Grey＊Rabbits turned out after some generations assume grey colour
$26 \Uparrow 2-1 m / w b$ On variation $227 \Uparrow 5$ ？，$\uparrow 2 ? / x / u$ ＂deutscher｜ausländischer＂ $2283 m 2336 u$ ＂dünne＂， $14 u$＂Derlist＂，15u＂Ohrenllang＂， 16u＂Mähne dick＂ 234 1－2m／u＂vor－ züglichsten 1 Andalusien＂，5－10m／w He means x －Hunter cross $13 u$＂Yorkshire＂， $17 u$＂diel haarig＂，$\Uparrow 3 u$＂Tigerpferde＂ $2359 u$＂Calabrien＂， $10 u$＂Apulien 1 vorzüglich＂， $15 u$＂Polnischen 1 gleich＂，$\Uparrow 3 u$＂dasslabnützen＂｜w 236 2－ $7 \mathrm{~m}, 10 \mathrm{w}$ Pony $18 u$＂Holsteinische＂，19u ＂Mecklenburgische＂ 241 〈err．printed 235〉 4u ＂Hundzahne＂，6－7u＂fehlen｜kurz＂，4－6m／w Fem．Mares Eye teeth absent or small： variable Owen says absent $275 \uparrow 5 \mathrm{~m} / \mathrm{u}$＂von Natur＂ 285 wt There does not appear to be race of asses in each country．4－8m／w Ar－ abia Donkey very fine $8 u$＂glattes＂，12－18m／w smallness owing to climate（Peacocks do not flourish） $286 \pi 8-5 m / w$ various colours 294 $12 u / a$＂mehr mütterlich＂i．e．Ass 12－13w sometimes much mishapen 300 介5－1m 309 $z t, 1-2 m / w t 9$ Central Europe Kinds of large Cattle 4u＂übrigen Deutscher＂ 310 10－16m／w

These colours more plagued by Flies（1 wonder if true）might bring in 312 介3－1m 324 15－20w Change Bull to prevent inter se 358 5－7m／u土 359 介14－13m，$\uparrow 9-8 m / w$ Horns in Female fail or are smaller $3621-2 m$ ， $13-17 \mathrm{~m} / \mathrm{w} \underline{\mathrm{Q}}$ Hornless but sometimes appear， \＆are then not well fixed．－ $3658 u \leftrightarrow / m / w$ Hellenius case 378 12－14m／w Sheep with least mark often bring quite dark lamb－like Fox＇s fact 379 3－10w Certainly Ram gives wool most strictly heredetary $\uparrow 13-9 m / w$ not interbreed $404 \quad 4-6 m \quad 425 \quad 6-7 m / 7 u$＂lang herabhängenden＂，16－17m 432 介11－1m，介10－9u ＂klein 1 höchsten＂， $\mathbb{7} \mathbf{u}$＂obersten Theile＂，$\uparrow 5 u$ ＂dunkelbrauner＂，介 $2 u / w \tau, w b$ might be 2 species 433 3－4u＂Feld｜Bershirschen＂ 434 14－15u＂Pyrenäischen I Gebirge＂，$\uparrow 6-5 \mathrm{~m} / \mathrm{u}$ ＂Steinböcke I mittlern＂ 448 15－20w Fallow Deer various colours 449 介8－4m 457 介14－10m 458 7－8u＂gemeinisch｜sind＂，6－14m／w Q dif－ ferences according to habitation $4704-6 m$ 491 介3－1m 505 11u＂abgerundete＂， $12 u$ ＂zugespitzte＂，$\uparrow 7-1 \mathrm{~m} / \mathrm{w}$ Pigs wild \＆tame breed together \＆offspring fertile Q Q＊ 507 $\Uparrow 8 u$＂vier＂，$\uparrow 7 u$＂etwas＂ $5084-6 \mathrm{~m} / \mathrm{w}$ front teeth vary；sometimes 2 more in upper sometimes 2 more in under $5 u / w \tau 509$ 介4－ $1 m / w$ Breeds $\Uparrow 4-1 u \pm 510$ 11－12u＂Diel Schweine＂， $16 u / w \tau 517$ 6－15w white sows frequent 15 weeks speckled 18！Q $14 u$ ＂zweymal＂／w breed twice 529 5－7w Wild Boar Dark colour $9 u \leftrightarrow, 12-13 w$ short more projecting ears $15 u$＂hängende Schwanze＂ 530 $10-15 w$ Black hairs have brownish tips $\Uparrow 13$－ $5[$ ．．．］ $534 \Uparrow 7-5 \mathrm{~m} / \mathrm{o}, \uparrow 4 u \leftrightarrow / w$ Twice a year on Heat 535 wt Wild Sow 18－20 weeks $3 u$ ＂fünf｜zwölf＂ 536 〈err．printed 436〉 9－10m，12－ $16 w$ Many die of hunger in hard winters $14 u$ ＂doch｜für＂， $16 u$＂sechs lacht＂， $19 u$＂zuweilen｜ aussterben＂ $5468-16 \mathrm{~m} / \mathrm{w}$ Believes in multiple origin of Hound $5481-2 m / 1 u$＂nur｜Brüste＂ $5495 u$＂den 1 murrend＂$/ w$ voice different． 551 1－6w Fox like dogs like our Spitz 554 6a＂2＂ subspecies Mastiffs $\mathbb{1 1 2 - 1 w}$ Big thick upturned snout；falling chops；slaving mouth； small hanging ears；Breed had flat long neck \＆thick－smooth short hair $5586 w$ Pug（？） $559 \Uparrow 1 w$ 3d subspecies Hounds $5604-12 w$ Head round with ridge Ears very long－ Body long－claws on after－toes 568 1a＂4＂ Spaniel．Poodle $5698 w$ Spaniel 572 8－10w hairs like Lion 15－16w Danish Dog $573 \pi 2 w$ Newfoundland $5745-7 \mathrm{~m} / \mathrm{w}$ Q skin between toes $14-15 \mathrm{~m} / \mathrm{w}$ not there in 1622 15－16w Greyhound 576 1－2w Italian Greyhound 578 $\Uparrow 5-4 w$ Terrier $579 \Uparrow 2-1 w$ Skye Terrier 584 $\Uparrow 6-5 u$＂neun I Wochen＂$/ w$ Wolf p． 617 wb 63－ 70 days $609 \Uparrow 10-9 \mathrm{~m} / \mathrm{u}$＂jeder 1 Backenzähne＂，
$\Uparrow 8-5 w$ teeth different from Dog $617 \Uparrow 12 w 77$ days $\Uparrow 11-10 \mathrm{~m} / \Uparrow 10 u$＂ 2 ｜trächtig＂，$\uparrow 9-5 m / \Uparrow 8 u$ ＂selbstgegrabenen Loch＂ $6276 u$＂Spielarten＂，9－ $10 \mathrm{~m} / u \pm, \uparrow 9-5 w \mathrm{Q}$ tip of tail variable $\uparrow 3-2 \mathrm{~m} /$ $u \pm 6283-8 m 638$ ¢ $5-7 m / w$ Q 653 介11－8m／w differ in habits $\uparrow 11-8 w$ degenerate easily $\Uparrow 6 \mathrm{~m} / \mathrm{wb}$ Tortoiseshell！ $6546 u / w \tau 663 \Uparrow 10-3 m$ ， wb Extraordinary increase of Mice in Isld of Placida when cats all destroyed．－ $67415 \mathrm{~m} / \mathrm{u}$ ＂bringt｜blinde＂ 675 4－8m $6825 u$＂zwey Zoll＂｜ w ear tufts 2 inches long 7025－12m／！ $7864 u$ ＂gewöhnlich｜selten＂ $795 \uparrow 11-7 w$ more than Iltis wild MardO on prowlo p786 850 2－4m， $7-8 m$ ，13－16m 932 11－14m／11u＂zweyen Jahrhunderten＂，$\Uparrow 2 m / u \leftrightarrow 950 \quad 9-11 \mathrm{~m} / \mathrm{w}$ Q Black \＆Brown Rat $\uparrow 9-5 m / w$ Q $984 \Uparrow 14-7 \mathrm{~m} /$ w Water Rats like Snakes inhabit dry \＆wet places $1032 \Uparrow 11 w$ Arctomys Marmot $\uparrow 10-9 m$ ， $\Uparrow 8-4 m 1046$ 介4－1m 1047 3－5m，7－9m 1078 wt In relation to mankind－we cannot account for it．－ $9-12 \mathrm{~m} / \mathrm{w}$ black very common $12 u$ ＂gewöhnlich｜Bauch＂，介3－1m／wb these 3 seem to arise out of cross of red \＆black，but no evidence． 1079 wt N．B it must be remembered that B is not to be trusted about species $9-10 u$＂mit weissen＂，11－12u士／ w ．Then this is Fox var．13－14u＂mit Schwanze＂，$\uparrow 7-5 m / x, \uparrow 4 u / w \tau, w b$ when these vars cross offspring intermediately blended． $1083 \Uparrow 5-3 \mathrm{~m} / \mathrm{wb}$ all the vars of colours cross 1084 介12－8m 1095 iw in several cases he has utterly rejected the Hunters varieties \＆ therefore may be trusted，when he admits them．$\uparrow 11 w$ He has the L．varieties，besides． $\Uparrow 11-9 u \pm, \pi 2-1 \mathrm{~m} / \rightarrow$ ，wb no difference in any respect $10967 w$ Nothing $介 1 m 10972 m 1119$ $\Uparrow 6-1 m$ Rabbits will not breed with Hares， after many attempts $1121 \Uparrow 8-6 m 11236 \mathrm{~m} / \mathrm{u}$ ＂vier lacht＂， $14 \mathrm{~m} / \mathrm{u}$＂mehrentheils viermal＂，$\uparrow 7-$ $3 m 1128 \Uparrow 5 m / u$ 〈colours〉 $1131 \Uparrow 10 \mathrm{~m} / \mathrm{u}$＂vier I Junge＂ 1133 介9－5m／w become grey after some generations． $113616 u \leftrightarrow / w$ short ears， round head $18 u$＂oft I lang＂， $19 u / w \tau$
vol． 2 NB p4»；Frisch Birds－Not in Linn Soc
Pigeon PI．143－151
Cock Tab．127－137
p400 on Pigeons of this Book to p404
p396 Fowls nothing in Frisch
p1150；1168；1170；1184； 1187 to 1204；
1271
SB $\square \beta$
p400 Trumpeter in 1739
p404 some crossing domestic Pigeons I think read
$3961-4 m / w$ From same parents legs feathered \＆not． $400 w b$ Frisch 1739402 1－
$3 m / w$ will cross with others，\＆has cros－ sed with Trumpeter \＆Jacobin．－ $9 u$ ＂Schleyertäbin＂，11－16w It is not true that Hawks cannot catch． $4045 u$＂weisswarzigen＂， $5 w$ Pavodetto $8 m / w$ very large 463 ＂ 143 ＂．m $1150 \pi 10-7 m$ ，$\uparrow 3-1 m / \Uparrow 2 u$＂triff \mid voll＂ 1151 $13-14 u \leftrightarrow, \Uparrow 5 m 1168 \Uparrow 11-9 m 117012-14 m$ ， $\Uparrow 12-9 m / \Uparrow 11 u$＂habe ich＂$/ \uparrow 9 u$＂gesehen＂$/ w$ C corone \＆cornix 1171 6－9w Dwarfs occasionally born $\uparrow 11-8 m$ ，$\Uparrow 7 u$＂Jungen Alten＂，$\uparrow 5-1 m$ ，$\uparrow 5 u$＂gemischt I gesteckt＂ 1174 $5-7 m 1184 \Uparrow 17-1 m / w$ crows following a little dog which used to catch mice 1186 ＂Naumanns Vögel＂．w where $11873 u$ ＂Raubenkrähe I hat＂$/ 3-4 m, \quad 9-10 \mathrm{~m} / u \leftrightarrow / w$ Bey－ ond Ober $\uparrow 12 u$＂Sie I grösser＂ $1189 \Uparrow 13-9 m / w$ The grey colour only an exaggeration of base colour of all crows 1194 15－16m 1204 $\Uparrow 10-7 m 1271 \Uparrow 12 w$ Magpie $\uparrow 9-5 m$

vol． 3 SB $\square \beta$

299 Peacock more fertile in India，but Temminck Gallinaceae better reference
309 Caudal feathers vary in Turkey－Q 316 number of eggs in Tame Turkey 335 Range of wild Fowls－Acosta only authority for American Origin
337 Fowl has 14 Caudals
339 Breed of Hens with Spurs．good layers p． 410
355，6 In Capons，Tail \＆Comb continue growing．They castrate Hens．NB Great variability of Comb，\＆in Spurs，variation of Secondary Male Characters
400 Cocks have not enlarged skull in Polands，only Hens！
406 Frizzled Cock with split Feathers Spurs various；Hens have sometimes．
N．B．Ld Spencer has shown how maturity \＆ size of cattle increased \＆quite lately we have seen this in Ducks \＆Geese．－When no record kept，wd not be observed \＆yet cd go on slowly．－
xv $1 m / w$ Read 〈refers to $p p$ ．293－500〉 299介12－11m $3094 u$＂Anzahl \mid ist＂ 316 介5u／w τ ，wb 54，ie 27 each $33514 u$＂Acosta＂／w Acosta alone says Fowls American $\uparrow 2-1 \mathrm{~m} / \mathrm{u}$ ＂Morella｜Hühner＂ $3374 u$＂vierzehn＂／w 14 tail $339 \uparrow 8-5 m / w$ Q $\neq 0$ Breed of Hens with spurs good layers；but the spurs disturb the nest 355 介10－6m 356 5－9m 396 介 $8 u$＂Kamml Fleischlappen＂ 399 介14u＊＂angefressenen Kopf＂， $116-13 m / w$ Canaries $\uparrow 7-5 m 4005 w$ Has Cocks $8-12 w$ Cocks can withstand this deformity．What says Blumenbach？10－11w Hen－poultry $\uparrow 7 u$＂habe I bemerkt＂，$\uparrow 4 u / w \tau, ~ \Uparrow 3 u /$ $w \tau$ ，wb Hähn Hühne 403 4－6m／Q屯 $4064-8 w$ wing feathers always split $\uparrow 12 u \varkappa_{0}$＂Japan＂

BECHSTEIN，DEUTSCHLAND
407 wt Spurs but in Cochin？tuft $1-4 m / w$ spurs various Qa， $4 u$＂sehr langen＂ 410 15－ $18 m 434 \Uparrow 3-1 m / Q \cos _{3} 7965 z$
vol． 4 SB1 $\square \Re$
p3；p13；p14；p． 31 edge of caudal．－coloured to p． 47 －swallow－tailed Pigeon Pigeons
Canary Birds
p454 difference in disposition of Canaries
p462－if 2 top－knotted canaries are paired
there come bald or birds with wound on head
p465 lay 3－4 times
p468 Hybrids．
487 ＊ 487 ＊ 478
SB2 1β
Bechstein Vol 4
p5 C．oenas Q pairs with tame（nothing said about fertility of offspring）
p14 C．livia varies most in colour of rumpi \＆ is not true in this respect \mathbb{Q}
17 do not mix associate readily with Fancy Pigeons
47 Swallow－tailed Pigeon Q
31 Outer Tail feather on outer edge coloured like body of Pigeon X
454 Great differences in disposition in Canary Birds
462 If you pair 2 crown－turned Canary Birds， crown will be bald，\＆skull fail．
465 Canary Birds will lay 3－to 4 times（no ＊wild Finch will do this）
468， 478 Q Hybrids of Canary Birds，various genera－Hybrids of Siskin \＆Goldfinch breed inter se，but at first small eggs \＆weak young
vii 4－8m／w Read ix＂Canarienvogel＂．m / w Read xi＂Zweyter Anhang＂．m＊xii 6－9m 3 $\Uparrow 9 u$＂paart｜bleiben＂$/ w$ pairs with tame $\rightarrow \mathbf{4} 2 u$ ＂zahnenlzu＂ 13 介9－5m／w House Pigeon with black Bars common in Germany $141 u$ ＂Feldtauben＂w t The field Pigeon great vary in rump $1-6 m / w$ For those with blue rumps bring grey，with white \＆reverse $15 \Uparrow 5 m / u$ ＂bey｜dunkler＂ 16 15－22w with Bars \＆white Rump 1／2 wild in towers \＆c，\＆c．－ 17 \＄2－1m 18 8－15w Field Pigeons vary when fed by man $\Uparrow 11 u$＂Liebhaber＂，$\uparrow 5 u$＂gedüpfelte＂$/ w$ the chequered Dovecot $\uparrow 12-8 m / w$ ，wb has watched how the wild vary as he gives order of appearance，I suppose may be trusted； but then gives Jacobin！Did he judge by commonness of variation？Does not say that crossing avoided．－ $19 \Uparrow 2-1 u$＂dass I setzen＂ 21 $\Uparrow 3-1 m 23 \quad 13-17 \mathrm{~m} / \mathrm{w}$ chequered $\pi 7-1 \mathrm{~m} / \mathrm{wb}$ The ash－grey chequering sometimes disappears leaving the black chequering more conspicuous $25 \pi 7 \mathrm{~m} / \mathrm{u}$＂grossel

Feldtauben＂ $267-9 m / 8-9 u \leftrightarrow, 11-14 m / w$ cros－ ses $274 w 17957-12 w$ Swallow thin fea－ thered legs scarcely larger than Dovecot $9 u$ ＂dünn＂，11u＂kaum merklich＂ 31 1－4m／w edge of outer tail feathers coloured like body．Like white \＆black bars． 32 1－2w Satz of Neumeister $35 \Uparrow 12 u$＂aberlüber＂ $476 w$ as a Plate，I suppose must have seen it $7-14 m$ ， $18 m 1014-5 m / 5-6 u$＂bald \mid mehr＂， $11-13 m /$ ？ $454 \Uparrow 7-1 m 462 w t$ For feathers are parted \＆ the parting gets wider \＆wider．－ $5-8 m / \mathrm{Q} \&$ ， $9-12 \mathrm{~m} / \mathrm{w} \mathrm{Mr}$ Brent believes $11 u / w \tau$ ， $12 u / w \tau$ 465 9－11m／9u＂viermal＂ $4664 m 468 u / w \tau 469$ $6 w \tau, 7 u$＂zeugen $1 J u n g e ", 7-12 \mathrm{~m} / \mathrm{Q} 478$ 〈err． printed 487），3－4m，16u／wr，介4u＂Loxia Chlovis＂ 487 10z 903 ＂Eisvogel＂．w $\notin<4$ ＂Pieplerche＂．w IV

BECHSTEIN，Johann Matthäus Natur－ geschichte der Stubenvögel Halle；Hennemann； 1840 ［CUL，S］
beh，br，cc，cs，ex，f，fg，gd，he，hy，in，mg， no，or，pat，sx，ta，tm，ud，v，wd，y

NB1 I thought of comparing rarity of English \＆German Birds after p210
There is very little information，except by inference，about fertility of the crossed canary－birds＝
NB2 it is surprising how many birds have been introduced as cage birds
p1 to 7
－20－40 83，4 105 skimmed
107 Memory； 108 var； 112 do； 114 range； 137；138；145；177，185，155； 192 var；196；
205；210；212；215；to 253 to 256 to end－
SB \quad－$\langle 2$ sheets \rangle
2 Birds understand each others cries
4 Singing male attribute to charm females
7 Voice of Birds improves by practice Q
20 ＜he means 40）Remarks on rarity of Cage Birds breeding，except such as Canary used to confinement
83 Psittacus large eggs but unfertilised 105 exception
XX 106 Pi 142Q Different facilities in learning in Bullfinches p231 Q Different characters in canaries（as in man）－ 267 Q in Larks taken wild 139 Bullfinch occasionally breeding
139 Canary male Bullfinch female（Canary female Greenfinch male p．145）
185 Male losing sexual character in confinement－ 215 Linnet do．219．do．
205 Habit Chaffinch has Q different song in different places－ 265 Q Larks sing differently individually
210 Can cross House \＆Tree Sparrow，but
not reciprocal（224 on canaries do） \mathbf{Q} 212 on comparative rarity of House \＆Tree Sparrow
221 vars of Goldfinch， 222
230 Easier to pair Siskin with Canary of same colour
237 Origin of Canaries \＆Hybrids of（p347） Hybrids）Q
238 Thinks want of exercise great cause of variation．－
〈over〉
239 Hybrid of Canary \＆F Species always takes after latter in colour \＆shape Qas
242 good Breeders rare amongst Canaries
247 In Birds reared from nest，either sex will do to match with Canaries Q
248 Certain that Hybrid Canaries \＆Q Goldfinches \＆Siskins will breed inter se［but first young are weak］
247＊Has himself crossed Bull－finch \＆ Canaries N．Q
252 Canaries sing till they kill themselves．
262 Several cases of Birds in dark places losing brilliancy of colour（Ch 7）p． 300 do 289 Garrulus lived 12 years
293 Q for instinct Migratory \＆Home Thrushes can be distinguished－probably do not cross（V Brehm）
312 Nightingale once exterminated do not reappear（shows less abroad）
318 Nightingale sometimes breed in cage surrounded by green boughs
319 live to 15 years old－even 25 years
322 Nightingale different \underline{Q} prowess of singers，some are night singers，inherited 403N．Q I think mistake C．oenas \＆livia（No） But says nothing on fertility of Hybrids 418 case of Quail Breeding
title page $\Uparrow 3 m \quad 2 \quad 10-17 w$ not aboriginal！ \＆－urkey \＆\＆－en understand others \＆of fear 15u»＂Zaunkönige verständlich＂3 5－6x，介12u ＂Locktöne＂$/ w$ understood by many species 4 $10-17 w$ from happiness or love $\uparrow 12-11 u$ ＂Denn I Weibchen＂ $\mid \uparrow 15-11 \mathrm{~m} / \mathrm{w}$ few females sing in widowhood $\uparrow 6-5 \mathrm{~m} / \mathrm{u} \pm 5 \pi 15-1 \mathrm{~m} / \mathrm{wb}$ different species learn with different facilities $\rightarrow 7 \Uparrow 13-12 u$＂weil \mid Männchen＂$/ w$ larynx not so strong in female $\uparrow 5-3 u$＂dass I wird＂，$\uparrow 5 a /$ $w \tau, \Uparrow 5-1 m / w b$ improved by practice $20 \Uparrow 8$－ $3 m 40$ wt V Blaines Encyclop of Sport．（Athe） whether Falcons were bread or continually fresh caught－good case of difficulty of breeding，after thousands of attempts on European bird．1－20w Elephants occasionally breeding may be compared to the mule occas．doing so $586 \mathrm{~V} 61 \Uparrow 11 \mathrm{~V} 6715 \mathrm{~V} 83$ $\Uparrow 10 w$ Psittacus macao $\uparrow 5-3 m / \Uparrow 5-4 u$＂Beil
unbefruchtet＂，$\uparrow 1 \rightarrow 842-4 m / 4 u$＂aufgezogene＂， $5 u$＂nurlzähnen＂ 89 11x／u＂pfeifen＂ 105 16－ $17 m / u \leftrightarrow, 17-20 m / x, w b$ it is known how very long pigeons live in confinement－\therefore not diseased． $106 \pi_{2}-1 m 10815-20 m 1121-4 m$ ， $\Uparrow 13-3 m 114$ 15－18m $137 \Uparrow 10-3 m 13811-20 m$ ， $\Uparrow 14 w \tau$ ，$\uparrow 13 \mathrm{~m} / \mathrm{u}$＂wie｜Vögeln＂，$\uparrow 9-8 m / \Uparrow 8 u \leftrightarrow$ $139 \Uparrow 4-3 \mathrm{~m} / \mathrm{u}$＂bringen lauf＂ $142 \Uparrow 10-5 \mathrm{~m} 144$ $\Uparrow 4 m / u$＂Alter der＂ 145 2－6m 155 13－18m 177 $4-5 m 185 \Uparrow 3-1 m / x, w b \times 1$ think 1 have overlooked some analogous facts $192 \Uparrow 2 \mathrm{~m} / \mathrm{u}$ ＂Spielarten＂ 193 1－2m 196 10－12m 205 10－ $12 m 210 \Uparrow 9-8 u$＂ein I gerathen＂$/ w$ Tree Sparr． $211 \Uparrow 3 u$＂Fringilla montana＂ $2129-11 \mathrm{~m} / \mathrm{w}$ still rarer in England 215 9－11m 218 18－21m 219 17－18m 221 介6－4m 222 介18－14m，$\uparrow 11-8 m$ ， $\Uparrow 3 u$＂kohlschwan＂ $224 \Uparrow 9-5 m / \Uparrow 6 u$＂wenn 1 mit＂ 229 14－16m／15u＂Deutschland｜gemein＂ 230 $14-19 m / 15 u$＂die｜gleichen＂／ $18 u$＂sogenannten＂ $236 \Uparrow 19-18 \mathrm{~m} / \mathrm{u} \rightarrow, ~ \Uparrow 8 u$＂ohnel vermehrten＂， $\uparrow 4-3 m / \Uparrow 3 u$＂erzogen．Anfänglich＂，$\Uparrow 1 u / w \tau 237$ 1－4m，6－10m，$\uparrow 11-8 m / \Uparrow 11 u / w \tau / w b$ origin $\Uparrow 3-$ $1 m \quad 23811-12 u \pm / 12 u / w \tau, 14-15 \mathrm{~m} / 15 u$＂oft ausserordentlich＂，$\uparrow 8-5 m / \Uparrow 5 u$＂sehr einfaches＂ 239 1－2m／Q／2u＂Farbe I Gestalt＂ 242 6－20m／ Q＊／20u＂Oderl spät＂，zb 243 1－2m 245 6－8m／ $8 u$＂allel möchten＂ 247 wt X F．linaria 6－7m／u ＂und｜Bastarde＂，9－18m／15u＂Männchen｜bei＂， $\Uparrow 23 a / w \tau$ ，$\uparrow 21-17 m, \Uparrow 16 u / w \tau$ ，$\Uparrow 15-14 u$＂$E r$－ fahrung｜die＂，介11a／w $1, \Uparrow 5-4 m 2483 m / w t \mathrm{~F}$ ． spinus or Siskin $2 a / w r, 3 u$＂wieder unter＂，2－ 3m／Q 5－7m／Q 251 介 $21 u$＂Das IStube＂，$\uparrow 16 \mathrm{~m} / \mathrm{u}$ ＂Verschidenheit ITemperamente＂，$\uparrow 5 m 252$ $2-3 m / w \tau, \quad 8 u \quad$＂Adern｜zersprengen＂， $9 u$ ＂herabfallen \mid sind＂， $15-21 w$ related song $20-$ $21 \mathrm{~m} / \mathrm{u}$＂derlfortpflanzt＂ 256 11－12m／u＂Siel bei＂ $2626 \mathrm{~m} / \mathrm{u}$＂das 1 gemeissen ＂ 264 12－13m／u土 $265 \uparrow 8-4 m / u \pm 267 \Uparrow 3-2 m / u \leftrightarrow / w b$ corporeal virtue \＆vice $2823-5 m 283 \Uparrow 3-1 m 28913 \mathrm{~m} / \mathrm{u}$ ＂zwölf＂ 293 19－22m，$\uparrow 12-19 m$ ，$\uparrow 8-6 \mathrm{~m} / \mathrm{Q} / u$ ＂welche Ifremde＂ $294 \downarrow w$ Nothing said about breeding in domest． $13 w$ The thrush 299介13－10m $301 \quad 2-4 m \quad 308 \quad 20-21 m / u$＂sind Farbe＂ 309 zb $3108 \mathrm{~m} / \mathrm{u}$＂bis 1 Schweden＂，$\uparrow 3-$ 1m 311 介6－5m／u＂wenn｜leider＂ 312 wt The numbers of Nightingales in Europe in summer have no relation to amount of food for them． $5 w \tau, 7-12 m / w$ This helps to show at what period the Sylviadae are destroyed． $15-18 \mathrm{~m} / \mathrm{w}$ think with respect to Malthus． $116-$ $10 \mathrm{~m} / \mathrm{w}$ instincts dormant for one year 313 3－4m／u＂Da｜reisen＂ 318 介17－13m／$\uparrow 13 u$ ＂zuweilen bewerkstelligte＂ $3192 u$＂fünfzehn＂， $3 u$＂bemerkt 1 Orte＂，6－7m／u＂fünflist＂ 322 15－ $20 \mathrm{~m} / 16 u$＂nun ISchweden＂ 323 17－20m／17u ＂Es 1 Nachtigallen＂，$\uparrow 21-13 \mathrm{~m} / \Uparrow 20 \mathrm{u}$＂weiss aus＂，介12－11m 329 7－14m／12u＂Diesel einer＂ 3301 － $7 m 3324-8 m 333 \Uparrow 6-4 m 346 \Uparrow 7 m 356 \Uparrow 6-5 m /$

BECHSTEIN，STUBENVÖGEL
u＂einigelum＂ $362 \uparrow 10 \mathrm{~m} / \mathrm{u}$＂viel matter＂ 377 介 $14 m / u \leftrightarrow 383$ 4－6m 387 16－21m／ $17 u$＂Varietät＂ 397 介9－5m／w appears not uncommon 403 11－15m，$\uparrow 8-6 m 4068-9 m / u$ ＂trittlJungen＂ 407 介11－10m／w Columba risoria $4088-10 u \pm, 11-12 m, 16-20 m$ ，$\uparrow 13 u$ ＂stets＂$\uparrow 14-12 m, \Uparrow 12 u$＂grösser werden＂ $1 \uparrow 13-$ $10 m 4093 m / u$＂acht Jahre＂，13－15m，介7u ＂unserelschön＂ 411 1－3m 418 12－15m／15u ＂Jenelaus＂ 423 17－19m／18u／w 424 介15－14m／介14u＂diel Jahre＂ 428 介11－6m 436 ＜err．printed 466）$\Uparrow 13-12 m$

BEECHEY，Frederick William Narrative of a voyage to the Pacific Philadelphia；Carey and Rea； 1832 ［CUL，on B］
geo，ti
36 39－45m 49 3－17m，26－31m 120 27－28＂．．．＂， $28-35 m 136$ wt Put this note to Matilda Isld wb Redo this Some of isld steeper－18－ $21 w$ before 49 years $24-25 w$ in $176726-30 m$ ， $32 m 137$ wt who was Wallis $1-3 m 143$ wb Here there is no explanation of ledge 19－ 21m，27－39m，37－42m 160 7－14m，13－14u ＂general Ifathoms＂，13－15z 165 16－45m 166 1－ $45 \mathrm{~m}, 20-21 u$＂instancelusual＂，27－29u士 167 wb $672 u$＂equally narrow＂，14－17m，15－17w like hill not Crater 17－21m 168 13－43m，22－ $24 w$ Earthquake wave 169 4－40m 170 1－44m $17435-42 m 2006-25 w$ Note if same occurs to Beagle 15－25m，15－25m 209 4－15m 2114 $11 m 21238-43 m 2131-2 m, 40-43 m 231 \mathrm{wb}$ cc $31444 w$ 180lbs 444 31－37m

BELL，Charles The anatomy and philosophy of expression London；John Murray； 1844 ［CUL， S E．Darwin 1844 to Ch．Darwin Nov． 28 1866］
beh，h，phy，y
NB p． 110 sneering muscles；p． 131 snarling muscles； 158 Pain；Wood－cuts of muscles 99 p． 107109 p． 261 general
title page $w b 1844$ first Edit in 4to 1806．2d Edn in 1824．－facing iii fig．$w \notin 133 m, 14 m$ $3824-32 m / 24-31 w$ add or more strictly bones of the jaw in comparison of Negro \＆ European $27 a$＂jaw＂two $6410 \mathrm{~m} 827-8 m$ ， $12 u$＂alupon＂ $844-5 m 8520-24 m / 23-24 u \leftrightarrow$ ， $26-27 \mathrm{~m} / 26 u$＂office＂ $86 \quad 25-27 m$ ， $27 u$ ＂emotions 1 developed＂，29a＂heart＂but why？ 87 17－18！，17－18u＂instrument｜mental＂ 88 1－ $14 m, 5 w$ fear 21－23w traces of sobbing，22－ $25 m, 32-33 m, 32^{\prime \prime} . .891-2 m, 2 . . . ", 3-6 m, 11-$ $16 m 906-8 m, 6-7 w$ ie Heart \＆Lungs $7 w$ Why？20－22m，29－30w see C．Bernard 919 $11 m, 9-12 w$ because screams natural consequence $16-19 m, 31-33 m, 33 u$＂double＂
$923-4 u \leftrightarrow, 9-13 m 9428-30 m 952-3 m / 2 a$＂of＂ moaning \＆screaming， $8-12 \mathrm{~m}, 15-18 \mathrm{~m}$ ， 16 u ＂serves leconomy＂，21－23m，22－24m，22－23u ＂That｜from＂，23－26m， $24 u$＂extending｜ surface＂， $25 u$＂partslexposed＂ $963-9 w$ albino negros blush，so not to exhibit expression．－ 14－15m 98 wt If all muscles are common to apes，this can hardly be case $1 \mathrm{~m}, 2-6 \mathrm{~m}, 20-$ $22 m, 23 m 996-8 m, 19-20 m 1003-12 m 101$ 27－28m $1026 m, 18-24 m, 26-31 m, 24 u$ ＂straight＂， 30 u＂oblique＂ 103 9－12m／＂．．． 105 $17-20 \mathrm{~m}, 24-26 \mathrm{~m} / 25 \mathrm{u}$＂laughter 1 sneezing＂， 24 33＂．．． 106 1－4．．．＂，4－7m，4c，9－13m，13－15m， $16-27 \mathrm{~m}, 29-33 \mathrm{~m} / \mathrm{"} . . . \mid / w \notin 10711-13 \mathrm{~m}, 11-14 w$ in passion distended nostrils 108 19－22m 109 fig．w／wb 〈explanation of fig．） $11012-21 \mathrm{~m} 111$ $12 w$ M．mentalis $21-25 m 1144-9 m 11718 u$ ＂expression 1 speaking＂， $19 u$＂modulationllip＂， 21－22m 118 12m，18m，28－29m 120 13－18m $1213-5 m, 13-15 m, 16-18 m, 20-22 m 122$ 6－ $9 m, 9-14 m / w, 18-21 w$ \＆ears not depressed $30-32 m / w$ so threaten other males 123 16－ $22 \mathrm{~m} /$ ？， $19 u$＂retroverted leye＂，20－21u＂sol blow＂ 126 4－5m，15－16m 131 2－3m／w because retained $14-17 m, 21-22 u$＂Theirl canine＂ 132 22－25m，26－30m 133 3－5m 135 2－ $3 m 13625-29 m 1372-9 m /$ ？， $5 u \leftrightarrow, 7 u$＂theyl eyebrows＂， $11-14 m / 11-12 w$ monkeys have？ Owen $12-14 w$ frowning good $13-16 m, 15-$ $16 \mathrm{~m}, 16 \mathrm{w}$ this in man but no but not the M 17－22w I have seen well developed in monkeys incessantly clenching skin over eyes $26-30 \mathrm{~m}, 30-33 \mathrm{~m}, 30-31 u$＂a lanimals＂ $1384-6 m, 4$ ？， $4 u$＂arching of＂， $12-17 w$ I suspect he never dissected monkey． $19 u$ ＂expressing \mid fear＂／18－20w Dog ！！！ 139 3－5m，4－ $5 u$＂muscle expression＂， $6 u$＂sign laltered＂，14－ $19 m, 16 a$＂oris＂or triangular oris 22？， $23 u$ ＂weeping＂，28－31m 140 9－11m，12－14m，24－ $27 m, 29-35 m 1471-4 m, 6-9 m, 16-21 m, 28-$ $31 m$ ， $31 u$＂system I nerves＂ 148 1－2w Disputed by Marshall Hall 149 6－8？， $15 u$＂lacrymal infected＂$/ w$ not in Babys 31－33m $1501-3 m$ ，9－ 18m，9－14w upturned corners give look of silly complacency $25 m, 29-34 m, 29-32 m$ ， $30 u$ ＂elevated shoulders＂151 3－6m，5－6Q 10－14m $152 z t, 16-21 m / w$ but are very little under the will $25-26 m 153$ wt in Laughter brows are brought down \＆arched $1-6 m, 1 w$［gr Zygomatic？］ 154 10－13m，10－11u＂tremor excitement＂， $28 \mathrm{~m}, 35 \mathrm{~m} 1557-8 m 1584-8 m$ ，9－ $12 m, 16-21 m, 24-30 m 1594 m 16012 m 163$ 14－18m 164 1－5m，22－24m，29－33m $1658-$ $12 m 166$ fig．w shoulders raised， $8-12 m 167$ 28－40［．．．］， $30-40 \mathrm{~m}, 34-37 \mathrm{~m} 1681-3 \mathrm{~m} 1694-$ $5 m, 10-11 m, 13-14 m, 21-22 u \leftrightarrow 1703-6 m, 8 m$ 171 24－27m 172 8－13m 174 3－11m，5－10m，5－ 7＂．．．＂， 11 ＂．．．＂ 176 8－13m 177 8－16m，9－10w no
muscle keeps still 178 1－4m 180 9－12m 183 14－15m $18529 m 1895-8 m, 9-12 m 1905-7 m$ ， $12-15 m, 22-26 m, 29-33 m 19310-13 m 1949-$ $10 m, 25-26 m 19724-26 m$ • 198 16－22m 211 18－22m 21422 m 219 9－15m
Appendix＂On the nervous system＂by Alexander Shaw，pp．231－258
$24325-37 \mathrm{~m} / \rightarrow 244$ 32－36m 248 23－30m 249 12－16m 252 1－ $4 m 257$ 28－37m
Explanation of plates，pp．259－265
$\langle u, w$ henceforth names of muscles〉 $2617 u, 8 w$ ， $15 u, 15-16 w, 19-21 w, 23-26 m / 24-26 w, w b$ $2622 m / w, 12 m / w, 14 m, 14-15 w \bullet, 16 m / w$ ， $21 m, 21-24 w, 24 m / w, 32 m / ?$

BELL，Charles The hand 9th edn；London； George Bell \＆Sons； 1874 ［Down］
$375 m 7725 m 8914 m 11111 m$
BELL，John \＆Charles The anatomy and physiology of the human body 6th edn， 3 vols．； London；Longman，Rees，Orme，Brown and Green； 1826 ［Down，pre－B，ED］

BELT，Thomas The naturalist in Nicaragua London；John Murray； 1874 ［CUL，S］
beh，cc，ds，f，gd，geo，h，mhp，mm，00，phy， sp
NB1 〈much not CD
Page 2326 Ants
28 Ants helping each other
28 Ants
112 Humming Birds S S
118 Monkey \＆Eagle－〈CD：\rangle give case I do not allude to Mivart－Probably after
Rengger，just allude to Belt on
171 Indians
196 Cockatoos protected－Toucan
198 Toucans
209 Ticks
219 Acacia \＆ants protecting them
220 Nectar protecting plants $\langle C D:\rangle$ by ants
250 Skunk
260 Glacial
291 Nests of wasps
316 Butterflies protection \＆ants \＆spiders〈CD：）resemblance
317 Lampyridae
320 do
〈CD：）
321 Frog protected by colour
334 FW area continuous
383 Protection
384 do
NB2＊These references apply only to facts useful for Descent of Man
－ 70 Phaseolus not frequented by Humble－
bees \＆sterile
p． 333 Wide distribution of FW shells \＆ Coleoptera
207 Romanes
SB p． 19 Phalangidae escaping ants by lifting one after the other their long legs．
23 Blindness of Eciton an advantage in keeping them together
26 sympathetic help of ants
74．Leaf－cutting ants determines existence of trees \＆plants in S．America
77 ants rolling loads down steep slope
79 one of leaf－cutting－p． 83
grass brought by mistake
83 learnt danger by experience from carriages on Railways
p 119 intellect \＆art of Monkeys
p 219．Bulls Horn mimosa \＆ants
p 222 Ants \＆Melastomataceae
260 Glacial deposits．
291 Birds building close to wasp－nests
316 Mimickry．mostly used p． 383 do．
334．Causes why F．Water productions have not given rise to any new species－not continuous under same conditions

1 zb 7 2－8m，3u＂polygamous＂ 19 19－22m 23 23－26m 24 11－20m $266-16 m, 25-30 \mathrm{~m} 2824$ $31 m 7012-23 m / 16-19 u \leftrightarrow 743-16 m, 27-31 m$ 75 9－12m 77 2－6m 78 16－20m 79 21－23m 83 16－18m，28－31m 112 5－21［．．．］／6－21m，10－14c 118 5－12m，8Q 13u＂Cebus＂ 119 6－9m 128 3－ $8 m 13215-19 m, 22 " . . ., 22 c, 23 c, 25 c 133 w t$ Mr Belt says that he watched many flowers during a whole season \＆3－4＂．．．＂／1－4m，6－ $13 m 13414-26 w$ this accounts for the orifice being closed 171 1－24m 196 介6－1m 197 19－ $27 \mathrm{~m} 1985-13 m 20622-30 \mathrm{~m} 2075 m, 5\left[\ldots \chi_{0}\right.$ ， $24 w$ no no 26 w races have 208 13．．．］ 13 ， $16 m 209$ 9－14m 219 11－28m 222 5－12m 250 1－4m 260 22－32m 291 20－32m 316 20－32m 317 10－14m，10u＂familylas＂，12u＂Lam－ pyridae＂， $12 m, 13 u$＂genera＂，14－18m， $15 u$ ＂were invariably＂， $16 u$＂not touch＂，wb over $3187 m, 7-14 m 32013-20 m, 16 m, 16-17 u$ ＂out leatable＂ 321 3－14m，15－23m 334 11－14w no Water Birds $24-30 \mathrm{~m} 335$ 12－15？，16－18？ 336 1－2m 383 7－14m 384 25－28m 385 3－6m， $7-16[. . . "$＂， $8-15 m, 8 a$＂wing＂is

BENEDEN，Pierre Joseph van Mémoire sur les vers intestinaux（Suppl．aux Comptes rendus hébd．des séances de l＇Acad．des Sciences，vol．2）；and
BRONN，Heinrich Georg Essai＂Étudier les lois de la distribution ．．．＂；Paris；Maller－ Bachelier； 1861 ［CUL］
em，geo，hl，tm，y

Beneden \wp

Bronn

SA 〈pp．594－595〉
p513 to 542；555，556；560； 580 Hot Springs 513 介6－4m 514 8－9m 516 5－10m，20－25m，$\uparrow 3-$ $1 \mathrm{~m} / \mathrm{w}$ Bronn preceded 517 1－4m，7－11m，10－ $13 m, \Uparrow 2 w$ Bronn preceded 519 3－4m，17－19m 520 11－15m 525 介 $9 u$＂division \mid travail＂，$\uparrow 6-4 m$ （Milne－Edwards）／$\uparrow 4 u$＂diversification＂ 526 10－ $20 w$ Best discussion on Highness \＆ Lowness．－20－25m／21u＂Pourlanimaux＂／22u ＂minimumlchaque＂ 527 1－5m 528 8－9m 534 $1-10 \mathrm{w}$ Ruminants when young have bones typical \＆distinct－Hence embryo higher than mature animal $13-16 m, 17-24 m 536 w t$ Land animals higher than aquatic $1-17 \mathrm{~m} 540$ 14－18m 542 5－14m 555 1－9m 556 2－8m，介8－ $5 m / \Uparrow 6 u$＂unldes＂ 560 18－23m 580 im／w Hot Spring $5811-8 m, \Uparrow 4-3 m$

BENTHAM，George Handbook of the British flora London；Lovell Reeve； 1858 ［CUL］

NB D

ix $4-9 m$ xiii $10 m$（Babington）， $12-13 m$
（markings not CD，except possibly：） $324-7 \mathrm{~m} 71$
＂Opium Poppy＂．w Down 106 ＂2＂．w W 119 ＂3＂．w Norfolk 130 ＂ 1 ＂．w Wight 137 ＂ 2 ＂．.$w 1$ of 139 ＂ 1 ＂．w Isl of Wight 153 ＂1＂．w Norfolk 154 ＂2＂．m 161 ＂3＂．m $1631-3 m 165$＂ 2 ＂．w｜of W 181 ＂ 1 ＂．w Down isl of Wight＂ 5 ＂．w isl of Wight 193 ＂ 2 ＂．w Norfolk 207 ＂ 1 ＂．w Norfolk I of Wight 223 ＂ 7 ＂．w Somewhere $229 ~ \Uparrow 13 x / u$ ＂in｜hairs＂，$\uparrow 2 x / u$＂covered｜down＂ 230 11－12x／ u＂less｜plant＂$/ w$ Norfolk $\Uparrow 1 x / u$＂and＂ $2311 u$ ＂down＂ 232 9－10m／x／u＂and I hairy＂ 234 ＂ 1 ＂．w〈Hart）field 277 ＂ 9 ＂．w Norfolk 279 ＂ 1 ＂．. w Isl of Wight 292 ＂ 1 ＂．w｜of W 315 ＂ 8 ＂．w｜of W 317 ＂ 1 ＂．.w I of W 405 ＂ 3 ＂．w Norfolk 420 ＂ 1 ＂．.w of Wight＂ 2 ＂．w field 453 ＂ 2 ＂．w Down 70475 ＂1＂．c，＂3＂．c 476 ＂4＂．c，＂5＂．c，＂6＂．c 477 介16x／u ＂Common 1 Britain＂ 478 ＂ 10 ＂．x ，＂ 11 ＂．x ，＂ 12 ＂．x 479 ＂ 14 ＂．x ，＂ 15 ＂．$x 503$＂ 1 ＂．w I of W 525 ＂1＂．w Down 70530 ＂ 1 ＂．w Cambr

BENTHAM，George Handbook of the British flora London；Lovell Reeve； 1858 ［CUL， another copy］

BENTHAM，George and HOOKER，Joseph Dalton Genera plantarum vol． 1 i－iii，vol． 2 i－ ii，vol． 3 i－ii；London；Reeve \＆Co．；1862－83 ［Botany School］
vol． 1 ii， $44130 \mathrm{~m}, 40 \mathrm{~m}, 49 \mathrm{~m}$ ， 53 m 4426 m ， $30 \mathrm{~m}, 34 \mathrm{~m} *, 37 \mathrm{~m}, 39 \mathrm{~m}, 42 \mathrm{~m} 4436 \mathrm{~m}, 16 \mathrm{~m}, 51 \mathrm{~m}$ $4443 m, 6 m, 8 m, 18 m, 51 m 44510 m, 26 m 446$ $9-12 m, 13 m, 24 m, 26 m, 53 m 4471 m, 6 m, 46 m$
$44811 m / 9-12 w$ also see Linnaeus $4497 m$ ， $30 m, 53 m$ ， $55 m 45049 m$ ， $55 m 4513 m, 35 m$ ， $46 m, 55 m 45216 m, 24 m 45327 m 45626 m 458$ $50 m, 53-55 m 4591-2 m, 7 m / w$ Gleditschia Duchata $46019 m 46113 m 46319 m, 29 m$ ， $39 m, 45 \mathrm{~m}, 48 \mathrm{~m}, 51 \mathrm{~m} 4646 \mathrm{~m}, 18 \mathrm{~m}$
vol． 1 iii， $95133 u$＂Petalalimbricata＂， $35 u$ ＂Petala valvata＂
vol． 2 i， $1033 m 119 m, 14 m 1422 m, 27 m$ ， $37 m 1645 m 1732 m 2128 m 246 m, 7 m, 26 m$ $2512 m 2629 m 2738 m, 54 m$
vol． 2 ii \wp
vol． 3 i \wp
vol． 3 ii 〈after CD＇s death〉
BERJEAU，Philibert The varieties of dogs London；Dulau \＆Co．； 1863 ［Down］
［BERKENHOUT，John］Clavis anglica linguae botanicae，or，a botanical lexicon London； Becket，de Houdt，Hawes，Clarke \＆Collins； 1764 ［CULR，pre－B，S］
ac1 10 m ac2 $11-12 \mathrm{~m}, 16-17 \mathrm{~m}$ ap $21 \mathrm{~m} / u \pm$ ar2 4－6m ca1 $17-18 \mathrm{~m}$ ca5 $4-6 \mathrm{~m}$ ci1 $19-23 \mathrm{~m}$ cl $21-$ $22 m$ co5 5－6m cr1 17－19m cr2 8－9m cu2 14－ $15 m, 18-19 m, 20-21 m$ di12 $18-19 m$ em $20-$ $21 m$ er $3-4 m$ ， $23 m$ fi2 $12 m, 18-19 m, 21-23 m$ ， $24-25 m$ ge1 $20-21 \mathrm{~m}$ gl1 $1-2 m, 18-19 m$ ha2 $12-13 m, 19-20 \mathrm{~m}$ hi $3 m$ im $7-8 m$ in $15-17 m$ la3 17－19m li2 $15-17 \mathrm{~m}$ me $13-14 \mathrm{~m}$ mu1 13－ 14 m mu3 $5-7 \mathrm{~m}$ ob $5-7 \mathrm{~m}$ oc $1-2 \mathrm{~m}$ op $3-4 m$ ou $7-8 m, 13-19 m$ pe1 $8-9 m$ pl2 11－12m， $25 m$ pl3 $2-3 m$ pr1 $5-7 m, 11-13 m$ pr2 $3-4 m$ qu1 14－15m re2 $3-5 m$ ri $14-15 m, 17-18 m$ ，$z b$ se1 $18-19 m$ se $213-14 m$ se3 $21 m, z b$ se $416-17 m$ so $5 m$ st4 $5-6 m$ su1 $10 m, 16-18 m$ su3 19－ $20 m$ to $5-6 m$ tr1 $7-8 m$ tr $4 ~ 6 m$ tu1 $9-11 m$ va2 $8-9 m$ ve1 $11-12 m$ ve2 $1-2 m, 17-18 m$ un1 $20 m, 22-23 m$

BERNARD，Claude Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux Paris；T．B．Baillière et fils； 1879 ［CUL（2nd vol．only）］
che，phy
$775-11 w$ glycogen but no sugar in muscles 80 23－28m 327 23－26m 333 17－19m

BERNARD，Claude Leçons sur les propriétés des tissus vivants Paris；Germer Baillière； 1866 ［CUL］
beh，che，ct，phy
NB
The last Chapter on the Heart perhaps concerns Expression．－
p 369 Ton Muscul
Begun p 332
349 will explain blushing
p． 337 for Drosera
SB 〈2 sheets〉
〈1）
21 ；22
164 Contraction of vegetable cell－Drosera； drawing of cell；Drosera p．177 p．210， p． 337
177－Wourara affects nerve \＆not muscle 210 upas digitalis act on muscle
337 Strychnine affects sensitive nerves

Drosera

Bernard Tissus Vivants
［Hence it is wonderfully important that after strychnine a tonal does not produce movement－when most absorbed does do so］
〈2＞
April 201871
p． 310 not contiguity
316 spreading of irritation
321 Reversed nerve current
336．－Bears on spreading of effect of

emotions．

353 profound contrast between voluntary \＆ reflex actions．－latter most powerful when decapitated－Bears on weeping－
358 bears on individual effects of emotions 371； 384
397．－so Paget wrong
409 Name of vaso－motor system－ 410
457 so quite independent of Habit certainly so．－But even here it may be habit which makes nervous power so readily follow this course．－
〈over〉
p354 Action of Brain checks reflex actions of many kinds Blushing \＆＊as the reflex action is to keep capillaries closed，if this is interfered with，there will be blush
p452， 457 Pneumogastrique irritated checks or stops action of Heart．thus a severe pain in any part act through the nose
（See H．H．says＊thinking about the action of the Heart interferes with circulation）
Nearest analogy very good for Blushing
My case of sneezing－about breathingo
p 459 direct action on Heart but why，except
for habit，does the＊sensitive nerve，acting
on brain influence the pneumogastrique．－
very slight sensation initially affects
Heart
46．461， 463 reciprocal action of Brain on circulation \＆vice versa；syncope direct for heart
464 Reverse action \＆ 466 direct action

21 14－21m 22 15－17m，20－23m 177 3－4m，21－ $22 m 1789-12 m 21029 u$＂digitaline＂ $31020 u$ ＂non｜＂ $3111-3 m, 1 u$＂contiguité＂ 316 6－10m， $13-16 m 321 \quad 1-7 m \quad 336 \quad 26-29 m 337$ 15u ＂nerfs I mouvement＂， $20 u$＂animall curare＂，21－ $24 m 353$ 17－25m，20u＂augmentent létendue＂， 21u＂souvent 1 diminuer＂，wb $\vee \rightarrow$ \＆p． 358354 2－5m，6－9m，11u \rightarrow ，19－23m，24－29m，25－26u ＂C＇est｜réflexes＂ $3554-6 m 3581-2 m, 11-16 \mathrm{w}$ between all the reflex actions $11-18 m, 16-$ $18 u \leftrightarrow, 21-28 m / 24-28 w$ this is better than Müller $w b$ Allude to Müller \＆give newer views $37022-28 m 3712-6 m 38412-17 \mathrm{~m} / 12-$ $14 w$ reflex actions very special 397 wt salivary gland acts by relaxation of arteries 2－8m，15－18m，18u＂cette I paralysante＂，20m／u ＂mais I sympathique＂ $\mid w$ a $w b$ Hence in a blush some nerves from sensorium must paralyse the vaso－motor ganglia 400 wt The experiment of the arrow shows that much not affected only＊nerves，but these allow the vaso capillaries to expand，\＆this expansion I presume causes flow of saliva $40924-29 m / \rightarrow 4109-28 w$ I suppose when we burn from sensitive nerve causing impression to the cerebro－spinal ganglia \＆ then paralyse the sympathetic \＆cause it to relax the vessels $17-20 m$ ，$w b$ When we think intently of a part the part of brain which receives the sensitive nerves from part in question is affected，\＆this $*$ influences the cerebro－spinal ganglia－ $4111-7 m, 22-24 m$ 439 15m凶 452 26－29m 453 1－6m 457 22－29m／ \rightarrow ， $24 u$＂douloureuse＂ $45828 u \leftrightarrow 459$ 1－6m， 12－17m 460 19－22m，21－22u↔ 461 14－19m $46313 u$＂pâleur des＂，15－17m 464 24－29m 465 466 2－7m 485 6－12m／7－8w Ton 486 24－29m／ 25－26w Ton？488 26－27m 489 14－15m，25－ $26 m 49014 m, 20-26 m, 31-32 m$ ， $32 u$＂Ton musculaire＂ 491 20－21m

BERNHARDI，Johann Jacob Über den Begriff der Pflanzenart und seine Anwendung Erfurt； Friedrich Wilhelm Otto； 1834 ［CUL］
$\mathrm{cc}, \mathrm{ch}, \mathrm{ds}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}$ ，he，hy，ig，mn，no，or， phy，rd，sp，spo，sy，t，tm，v，wd

SB $\square \mathfrak{R}$

Bernhardi

4．Definition of various forms of species Q 7．slight differences going with white var．
8 on Anagallis－argues for A．collina Q
12 one－leafed Strawberry，heredetary
14 on lacinated and curled leaves common to many genera
30 on Panicum ciliare turns into C ． sanguinale \underline{Q}
35 on vars．of some grapes very constant

BERNHARDI
39 a hybrid grass - rare case
-45 Erysimum strictum not true
50 on a Pimpinella * being on a var.
66 seedlings of Veronica changed colour on vars of Veronica keeping true for 10 generations -
683 vars with analogous differences study these pages \& look to Babington \& Steudel will come in after Anagallis
vi $11-14 w$ Denies the universal tendency to avitism $15-19 w$ has no tendency to return to parent form $15 u$ "Chelidomium lacinatum" 2 $15 u / w \tau, 18 u / w \tau 3 w b$ There is no necessity according to my theory that new species shd have not descended from several pairs 49 $18 w$ Unterart is in fact a doubtful species, probably a species but very little different from other 22-30w "Abarten" a variety which does not tend to go back to parent form. "Spielarten", those that go back in one or more generations $w b$ Does anyone think wild Pampas cattle identical with present stock.5 1-2u "Abänderungen"/1-6w Varieties which do not keep constant, or only in certain ground.- $3 a / w \tau, 17-25 \mathrm{~m} / 18 u$ "sol Zweifel"/17$25 w$ These several forms of species hard to distinguish wb Unterart subspecies = doubtful races or * the close species Abarten - hereditary = race (or variety in animals) Spielarten which * are herditary for few generns - variety of Decandolle Abanderungen, which are not at all hereditary - allied to Monstrosities $628-30 \mathrm{~m} /$ $30 u$ "Rumex Inemorosus" 28 -30w colour of Beet $w b$ compare these with Do they not belong to same Family 7 18-22u↔/18-28w 1st turns into last without sowing. When colour more permanent, then accompanied by some slight changes just as Henslow thought wd be See next Page $23-26 m / w b$ not in Spengler This bulbocapnos * Carus produced white seedlings.- 8 12-19w Differences of anagallis phoenicea \& arvensis. - not proved to be same $23-25 \mathrm{~m} /$ $22-30 w$ anagallis collina has 2 coloured flowers, believes this though experiment not decisive Q $95 u$ "A. carnea" $/ 1-5 w$ Q This case true $7 \mathrm{~m} / \mathrm{m}, 8-13 \mathrm{w}$ fruit, taste \& \& seed vary in colour \& are often inherited $18 u$ "Phaseolus multiflorus"/ $18-19 \mathrm{~m} / \mathrm{w}$? colour of flower \& seed go together 22-25m/23-30w doubling not change of organ, but simply increase of petals 10 1-10w in Datura no loss of * stamens (but may there not be potential stamens?) $14-18 w$ on Hairs or covering of Plants $129 u$ "Trigonella coerula"| $9-12 w$ var. with stalks of leaves with leaflets,

23-26m/23-28w relative length of stamens good character in this \& Fam. but variable in Labiatae.- $29 u$ "Fragonaria monophylla" $/ w b$ one-leafed Strawberry is heredetary $132 u$ "folia terna" $/ w$ rarely inherited $19 u$ "Caulis fasciatus", $21 u$ "Sedum cristatum" $/ 21-23 w$ in this case in some degree hereditary. $24 u$ "Celosia cristata"/24-25w Cockscomb example in flowers $28 u$ "Triticum compositum" $/ w b$ hereditary division of the flower stalk $141-6 w$ Thickening of special parts, as in Cabbages \& heading of Cabbages. 9-27w Same variation affecting so many plants shows, how goes by laws. Lacination hereditary in Sambucus (\& in Lettuce \& Cabbage) so curled, blistered, \&c. $10 u, 12 u$, $13 u, 16-17 u\langle u \uparrow\rangle, 12-17 w$ not hereditary $20 u$, $21 u, 27 u, 28 u\langle u \wedge\rangle 15 w t$ curled leaves of natural species more regular $3-7 w$ curled mint by seed had its first leaves not curled.$7 u a / 10-11 w$ partly hereditary $13 u a / 12-15 w$ petals only curled inherited $16 z, 18 u a / 18-$ $19 w$ leaves of in same situation 16 wt variety of Paeony with small leaves $12-15 \mathrm{w}$ is there any Linaria with regular Corolla $30 u$ "aufl Boden" $\mid w b$ on rich ground leaves of involucra? end in spikes $182 u / w \tau 191 u \oplus / 2-$ $3 u$ "zweil setzen" $11-4 m$ *, 8-10m, 9u^, 8-10w Probable mistake of Kolreuter's $24-30 \mathrm{~m} / \mathrm{w}$ See to this D. stramonium \& ferox might be quite fertile. but D. Tatula \& ferox are not quite but D. stramonium \& tatula are. wb If I understand he only assumes about D. stramonium \& ferox 20 24-30m/wb When intermediate forms found together, always necessary to bear in mind the chances of their being hybrids.- $21 w b$ If the intermediate forms kept constant then one must be considered an "abart" of the other; if they went back to both parent forms, then they shd be considered as vars. \& were result of external conditions $*$ on the two parents; which wd be subspecies 22 15ua/ $16 z / 14-18 w$ Organs of these plants make great differences $26 \quad 27 z 2719 z \quad 28 \quad 28 u \wedge / w$ (a) $w b$ (a) Doubtful whether these varieties, because other species differ in same, but greater degree.- $29 w b$ Those who are not naturalists think species a well defined entity; show the distinctions of Bernhardi; of Decaisne \& Hooker.- H.C. Watsons classification of British close species - then the difference of numbers - Then cases of certain well known genera as Land-shells \& Rats - then such flagrant cases as the 2 Oaks - all this difficulty explicable on my theory depends only on ignorance of creations.- $3014 u \oplus / 18 u \uparrow / 14-17 w$ Q turns
after repeated sowing into $20-24 w \vee$ Steudel to see whether admitted $30 u$ "glatte Abart"/ $w b$ does not change during 12 years $312 u \mathrm{~m} /$ w not this $5 u$ "Abart" $/ 6-7 w$ this also true $11 z$ $322 m, 6 u a / 5-13 w$ This is a caryopllea, when it flowers 1st year, \& differs in only one floret being awned.- leaves smaller 14u^ 35 28$29 u a / w b$ changed in 3d sowing to D. glomerata $362 m \quad 39 \quad 25-28 m 40 \quad 2 u$ "hat nicht", 2-3m 44 19-21w wild Cruciferae vary much $23 u \uparrow / 24-26 w$ probably vars 45 13ua/ $14 u \quad 1 / 14-21 w$ scarcely abortive much less good species being cultivated from seed 46 $3 m, 4-6 m, 7 u / w \tau 508 u \wedge / 8-13 w$ Kept true for 6 generations, but Steudel makes var. of L . Gallicum 16un, 18un, 16-18m/16-19w From this seed gave P. magna (Steudel makes var of P. magna- 66 4-8m/w In Veronica colours blue or red \& some interchangeable $13 w$ changed its colour $17-18 w$ seedlings changed colour 25-26ut/25-30w Red vars. of these $\%$ blue Angallis kept true for 10 generations but may be thought true species; but he seems to think other differences trivial.- $6721-25 \mathrm{~m} / 21-28 w$ when colour of flowers alters; so foliage, \& when less colour, plant smaller. $6817-21 m / 12-28 w$ Like Rubus case \& Hilacium. The abarten with red flowers from these 3 species differ from their stammarten in analogous way

BERZELIUS, Jöns Jacob The use of the blowpipe in chemical analysis and in the examination of minerals London; Baldwin, Cradock, Joy and J. Mawe; 1822 [Down, preB]
$1063 c / w \notin 10823 c / w \notin, 24 c / w \notin 14111 c / w \notin$ $14716 c / w \notin 15415 c / w \notin 21423 c / w \notin 27515 w$ A wb not CD>

BEUDANT, François Sulpice Traité élémentaire de minéralogie Paris; Verdière; 1830 [Down, on B] \wp

BEVAN, Edward The honeybee London; Baldwin, Cradock and Joy; 1827 [CUL, preB, S E. Catherine Darwin]
beh, 00, wd
NB 352 Crippled Spider purling differently; 384*; 261 taming Spiders \& coming to Person for food
$\wp_{261} 25-29 m$
BEVINGTON, Louisa Sarah Key-notes London; C. Kegan Paul \& Co.; 1879 [Down]

BIANCONI, Giovanni Giuseppe La Teoria darwiniana e la creazione detta indipendente Bologna; Nicola Zanichelli; 1875 [Down] \wp

BIANCONI, Giovanni Giuseppe La Théorie darwinienne et la création dite indépendante: lettre à M. Ch. Darwin Bologna; Nicola Zanichelli; 1875; trans. from Italian by G.A. Bianconi [CUL]
ad, beh, gd, ig, phy, rd, t, tm
NB All first part marked but nothing of importance
117; 158; x164, 9x;
I daresay many supposed rudiments have functions
173; x176; 179x; 206; 218;
Ruminant stomach - 268
Teeth \& Skulls of vars of Dogs - 284
SB $\stackrel{\rightarrow}{ }$
31. number of joints in fingers good adaptation. - while intermediate - shows how well limbs adapted
117. Everything explained by adaptations
164. 169 uses of rudimentary toes to grip in descending mountains
174 no such a thing as a rudiment.
179. on the little hoof of oxen in * soft marshy places.
206. In paddle of Cetaceans, variability of nodules of bone in cartilage
208 plan not uniform. joints in digits
218 explains wings of Bat by Mammiform Nature! \& adaptation.-
268. no gradation between Ruminant \& nonruminant stomachs.- see Schiff on Duodenum
title page $w 1874128-12 m \quad 17$ 21-24w Wings of Insects \& jaws of do 19 6-7u "nécessitél mouvoir", 7-9w Crustacean \& Cirripedes 22 23-27m 23 8-12m, 18-21m 24 $18-30 \mathrm{w}$ insects a far greater number of pieces end to end in limbs $258-10 \mathrm{~m} 3122-$ $31 m 46 \mathrm{wb}$ All this adaptation agrees well with me, \& explains cause of general form of limbs $1173-16 m 158$ at (page no.), $8-12 \mathrm{~m} / \mathrm{w}$ why not a mere prominence of adjoining bone 164 20-23m 169 11-15m 173 18-23w but why shd it be a separate bone $25-26 \mathrm{~m} 174$ 11-13m, 23-28m 176 22-26m 179 16-21m 186 $w b$ why three bones \& not in fin of fish or water Beetle plate facing $186 w$ why 3 bones? 206 7-12m 208 15-21m 218 18-22m, 19-20u "adaptation Inature" 224 7-10m, $8 u$ "radius \mid seul" $2684-12 \mathrm{~m} / \mathrm{w}$ Schiff * shows that the Duodenum, I think, acts for this end; but no structural passage $15-19 w$ is it not in Kangaroos occasionally ruminant 269 11-15w

BIANCONI
Is it not in fact part of Oesophagus Schiff 275 6-9m 284 22-28m

BIBLE Cambridge; The Pitt Press; 1838 [Down, the family Bible]
title page 〈Note concerning children's diseases by Emma)

BIGG, Henry Heather Spinal curvature London; J. and A. Churchill; 1882 [Down, I]

BILLING, Sidney Scientific materialism and ultimate conceptions London; Brickers \& Son; 1879 [Down, I]

BINNEY, William Greene The terrestrial airbreathing mollusks of the United States 2 vols.; Cambridge, Mass.; Welch, Bigelow \& Co.; 1878 [Down]

BLACKLEY, Charles Harrison Experimental researches on the causes and nature of Catarrhus aestivus London, Paris \& Madrid; Baillière, Tindall \& Cox; 1873 [CUL, I]
cc, fg, gd
NB Shows how effective wind is in Transportat of pollen

- 75 list of Plants

Effects of moisture discharge of pollen - 127 - 128

131 quantity of pollen of Graminae in air Q - 132 - chaffO of grasses
pollen at great height $-141 *$; 147, 8, 9, do. do. do. - Even alt wind had blown in any how from the sea

- 148 on Board Ship
- 152 error?
- 157 Buckwheat entomophilous
$500-1000 \mathrm{ft}$; more in upper current than of lower [19 times as much] p152 over 1200 at alt 1000 ft
75 33u "Plantago major", $34 u$ "Rumex", 34u "Polygonaceae", 36u "Amentaceae", 36u "Urticaceae", $42 u$ "Graminaceae", $42 u$ "Cypегасеае" 127 26-32m 128 10-19m $13138 m 132$ 16-20m $14129-37 m 1476-11 m$, 11u " 600 I hundred", $14 u$ " 500 " $1487-10 m, 10-11 w$ p149 149 31-32m, 39m 150 8-13m 151 10-15m, 25$27 \mathrm{~m} 1526-11 \mathrm{~m}, 15-17 \mathrm{~m}$

BLACKLEY, Charles Harrison Hay fever 2nd edn; London; Baillière, Tindall \& Cox; 1880 [Down]

BLACKWALL, John A history of the spiders of Great Britain and Ireland 2 vols.; London; The Ray Society; 1861-1864 [Down]
vol. 1 NB O/
\wp
vol. 2 NB 189, 207, 355
189 24-27m 207 16-18m 355 30-33m
BLACKWALL, John Researches in zoology London; Simpkin \& Marshall; 1834 [CUL, S] beh, br, fg, gd, mg, mn, sp, t, wd, y
NB $3 ; 16 ; 29 ; 33 ; 46 ; 47 ; 51 ; 62 ; 73 ; 74 ; 80$; 83; 86 Journal also; 89; 94; 122; 118; 136; 137; 141; 142; 151; 154 to 162; 174; 176; 190; 204; 227 Journal; 240; 245; 260; 270; 301
SB $\square \Re$
158 capacity of piping tunes in Magpie never used in Nature Qa
174. cases of Jackdaw Rook \& Woodpecker with monstrous crossed Beaks Q

3 14-21m

\wp
16 14-20m 17 1-7m 29 6-14m 33 22-27m 46 wt Hence it will be important to show that Malay Fowls make diff noise from Common. 1-4m 47 20-24m $518-11 m 6223-27 m 738$ $11 m 7424-27 m 804-10 m 8313-17 m 86$ wt Nor do all Icteri lay in other birds nest.- Is Molothus pecoris migratory in N. America (Yes I am almost sure Silliman?) 2-7m, wb How easy for an ostrich to learn lay its eggs in other birds nests were there any of same size !!! 87 wt xx There remains to account for young birds expelling brothers.- Not invariably so Molothus in Sillimans Journal $1-7 w$ Blackwall suspects they do xx 5-13w Cuckoos do not pair - a remnant of Ostrich state $14-20 w$ From 4 to 6 eggs $18-24 w$ No see p. 75 wb The causes of Ostrich laying * in different nests, is the number they lay Jenner? has said Cuckoos lay great number does Blackwall say so ?? $898-21 \mathrm{~m} 94$ 613m 118 11-15m, wbec 119 6-7m 122 1-5m 136 23-27m 137 21-27m $1416-12 m, 20-27 m$ 142 9-19m 151 23-27m 154 10-12m, 10-22m, $17-19 m, 23-28 m 1551-7 m, 16-27 m$, wb The action of the old Pointer, they way look round \& have known to go round other side of hedge. shows that they know what they are doing: (my theory will explain all this)Lord Brougham says not knowing object one chief criterion of instinct 156 15-22m 158 16-28m 158/159 $w b$ Hence it would be odd if they did not sometimes acquire arts in wild state. The capacity of animals which can be shown by a thousand instances is in this view important.- $1601-6 m 17413-21 m, 13-$ 16Q 23-27m 175 1-19m, 9-14m, 9-11Q 176 5-

15m, 8-10Q 190 8-15m 191 1-27m 204 9-16m, $12 w \times w b \times$ What a contrast to Martins \& Penguins deserting their young.- In Pointer we see contest between two instincts, standing \& springing game $2277-22 m 2401-$ $13 m 2457-19 m 2602-15 m 2701-4 m 301$ 1$5 m, w b$ Important with respect to Argynauter attaining habit.
〈६ throughout〉
BLACKWELL, Antoinette Brown Studies in general science New York; G.P. Putnam \& Son; 1869 [Down, I]
NB 209
209 15-21m
BLAINVILLE, Henri Marie Ducrotay de Manuel d'actiniologie ou de zoophytologie Paris; F.G. Levrault; 1834 [Down, on B, S] \wp

BLUMENBACH, Johann Friedrich The anthropological treatises of Johann Friedrich Blumenbach, with memoirs of him by Marx and Flourens, and an account of his anthropological museum by Professor R. Wagner, and the inaugural dissertation of John Hunter, M.D., on the varieties of man London; Longman, Green, Longman, Roberts and Green; 1865 [CUL]
beh, fg, h, he, sl, t, wd

SB

191
203 Circumcision of Jews heredetary
$205 \rightarrow$ Man the most domesticated of all.-
$292 \leftarrow$ good to show how quite ignorant B. was of selection
322 tadpoles hatched on back of adult in cells yet have tails!
191 29-30m * 205 14u "is ladvanced" 290 11m 292 11-13m/u "becausel purpose", 15u "consequence of" 322 21-35m

BLYTH, Edward The natural history of the cranes London; Horace Cox; 1881 [CUL]

BOITARD, Pierre Manuel d'entomologie 2 vols.; Paris; Roret; 1828 [CUL, on B]
vol. 1 title page S
$\ell_{0}\langle$ all w are page-numbers)
$554 w, 10 w, 15 w, 18 w, 20 w, 24 w, 32 w 563 w$, $6 w, 11 w, 14 w, 15 w, 17 w, 18 w, 19 w, 24 w, 31 w$, $33 w 571 w, 19 w, 20 w, 24 w, 28 w 583 w, 13 w$, $16 w, 20 w, 23 w, 27 w, 35 w, 37 w, 40 w 595 w$, $6 w, 10 w, 16 w, 18 w, 22 w, 25 w, 28 w, 30 w, 31 w$ $601 w, 20 w, 30 w 6124 w 621 w, 4 w 636 w$, $12 w, 17 w, 22 w, 30 w 641 w, 3 w, 8 w, 15 w, 20 w$, $25 w, 31 w, 37 w 8726 w, 28 w, 30 w, 31 w$
vol. 2 title page Charles Darwin Rio Plata August 7th 1832

BOITARD, Pierre \& CORBIÉ Les Pigeons de volière et de colombier, ou Histoire naturelle des pigeons domestiques Paris; Audot \& Corbié; 1824 [CUL, pre-B]
beh, cc, cs, f, he, hy, ig, oo, phy, sp, sx, tm, $\mathrm{v}, \mathrm{wd}, \mathrm{y}$

NB oo p 34 colours in crossing
SB1 Les Pigeons.
p.VII Introduction

It is a mistake to expect a tumbler suddenly to appear-
p.10; 15; 27 - ask Gould; 30; 34, 37; 54; 58;

64; 80; 120; 158; 163; 164,6 to 229; 235; 238

SB2 $\square \beta$

Special facts on Pigeons not here included
12 Females show antipathy to certain males (Ch. 6.)
15 Roman keep Pedigrees of Pigeons \mathbf{Q}
32 Account of many crosses
35 useful Pigeons more fertile (45 fear experience) p. 160 do.
36 Absorbed in 7 or 8 generations $Q^{\infty} \leftrightarrow$
37 Biset produced from complicated crosses $\underline{\mathrm{Q}}$ - One cross the Cavalier always true $\underline{Q}^{\boldsymbol{c}}$ 54 Pigeons of different size do not cross readily (Ch. 6.)
120 On Hawks observed to pick out white Pigeons; hence some owners examine all nestlings
158 By high feeding Dovecots rendered as fertile as Fancy Breeds (Ch. 3.)
165 The sailing Pigeons Q
173. Var of Pouter of which female never panachés - or chequered Q oo
178 Claquart Q - 221 Turner or Smiter
200 Sub-vars of Nun - colours vary, but feathers coloured remain same \underline{Q}
198 argument of intermediate form not being produced now as proof that both are species 208 Hybrid from Barb \& Turbit very fertile Q 211 Turbit fly from Paris to Liege in 14 hours 224 Fan-tails crossed with any others lose character $Q^{\infty} \rightarrow$
235 Sterility of crossed Turtles Q
238 In crossing white \& common collared Turtle, young take after one side exclusively \underline{Q}^{∞}
title page u "Corbié" $/ w$ kept pigeons for 45 years vii 26-31m $1030-31 \mathrm{~m} / \mathrm{wb}$ p. 1212 115 "...", $16 u$ "six mois" $16-17 m$ 15 1-2m, 7$9 m / 8-9 w$ See to this $275-17 m, 19-20 m, 24 m /$ $24-25 w$ this must be mistake $27-31 m / 28-29 w$

BOITARD \＆CORBIE
what genus $28 \quad 17-22 m \quad 30 \quad 23-24 m \quad 31 \quad 15-$ $18 m / 16-19 w$ effect of cross long continued 27－31m $328 w$ common Pigeon wb Nonain－ Jacobin 34 6－9m， $9 u$＂àlcavalier＂，18－19u ＂souvent plombé＂ $357-12 m, 20-22 m, 24-26 m$ ， $30-31 m 36$ wtcc， $4 a \notin, 6-10 m, 11-12 w$ 3d cross $14-17 m / 16-18 w 7$ or 8 generations 37 $1-4 m / 3-4 u \leftrightarrow / 1-2 w$ ！how odd Q $₫, 17-24 m / 20-$ $25 w$ how odd！Blue bars returning wb p152 description of Biset 54 4－6m 58 24－29m 64 1－ $3 m /!!!/ a$＂effet＂sterility $805-10 m 12014-19 m$ ， 30－31m $1522 u$＂ou｜pur＂／4－5u＂toutes lailes＂／ 6－7u＂dul queue＂／3－8w Dovecot \＆Chequered 153 3－5m／4u＂Chardin＂／3－5w What date 1686 in Ray Billid $1585-10 m 1602-7 m 162$ 22u ＂jadis estimé＂ 163 25－26m，31m 164 13－14m， $17-21 m 1653-4 m, 7-10 m, 11-15 m / 11-13 u \leftrightarrow /$ $14 u$＂moins haut＂ 15 u＂que lillois＂， $17-18 u \leftrightarrow$ ， $23 u$＂àlargenté＂ 166 3－6m，13－17m，16u ＂larvae＂，23－25m 167 16－20m／17－22w hence not wild，yet well characterized $29-31 m 168$ $1-2 m / Q 5-9 m / w$ only colours $1699-10 m, 16-$ $19 m, 20-23 m 1701-3 m, 22-24 m, 29-31 m / 29 u$ ＂les｜panachent＂＂delpetits＂／28－31w not wild $1737-9 m / Q \propto_{0}, 9 u 1744-5 m 176$ 3－6m，15－ $18 m, 22-23 m 17718-22 m$ ，19w variation 22－ $23 m$ ， $25 \mathrm{~m} / 26 u$＂milieulseul＂＂allongélmince＂ 178 6－8m／6u，18u＂Claquart＂，19u＂Columba precursor＂，20u＂Pigeon batteur＂，22－24m，25－ 29m／25a＂plongeur＂p．165， 27 u＂enfle＂ 179 $1 m, 1-2 u$＂aileslyeux＂，2u＂chaussés＂，3u ＂blanc＂，9－14m／10u＂M．Vieillot＂，14－15m，17－ $18 m 1811-2 m, 8-10 m$ ，21－23m 182 19－21m 184 2u屯＂Bagadais＂，3－7m／4u＂longlcrochu＂， 7－10m／9u＂leurlpates＂，25－28w Scanderosa certainly pl． 9 wt Scanderosa $1855 m, 9-10 \mathrm{~m} /$ 10u＂Tous I peu＂，15－16u＂pigeon cygne＂，19－ $20 u$＂et I moindre＂／21－22u＂ordinairement I noir＂$/ 18-21 w$ just contrary to Brent 186 11－ $13 m$ ，15－17m，24－25u＂redoutable＂ 187 $1 m, 18 m / u$＂nouvelles＂ 188 22－23m，23u ＂excessivement farouche＂ 189 2－5m 190 11－ $13 m$ ，23－28m 193 16－17m 194 4－5w Archangel？ $8 m, 14-19 m 19521-23 m, 23-24 m$ ， 24u＂têtelvol＂ $1965 u$＂leur 1 court＂，15－16m／ uн， $17-19 \mathrm{~m} / 18 u$＂parce l conservent＂， $19-30 \mathrm{~m} /$ 23－24w No blue $1978 m$ ，20－21m，23－25w crossing \＆keeping part of character $24-30 \mathrm{~m} /$ 25－29w ！？Why narrow shakers？27a／u ＂cravates＂／w p． 210 27a／u＂coquilles＂／23－25w v． p．199，yet nonains so near can be crossed \＆keep part of character $26 u$＂paons＂，27－28u ＂glouglou＂，27－30m／wb are not the characters chiefly trivial？How is it in crossing poultry with crests？ 198 whole $\ddagger w$ I do not see this argument．It presupposes that characters of a species cannot be transmitted to a hybrid： I know of no such case；on the contrary it
might be argued those characters were not fixed－requiring both parents to have it wt／ $1-6 w$ ．This argument for certain number of races－in fact crossing will not do midpage．w Q，Qus $199 \ddagger w$ \＆c pigeons with a Coquille can be produced p197 by crossing a nonain with a common pigeon $9-12 m, 13 w$ The Coquille is reversed feather like nonain 16－ $26 m, 17-20 m$ ，$w b$ Nuns $2002-5 m / w$ laws of colouring 201 10－12m，19－20m／19－26w ！Yet has said that Coquilles will not transmit their peculiarities $2047-11 m / 9 u$＂brièveté＂ $20617 u$ ＂carmes I soigne＂，24－30m（Buffon） 207 10－11m， 21w Barb？23m，26－27m $208 w t / 1-2 m / w$ Ray talks of head of Turbit being square $-6-8 m$ ， 15－17m，18－19m／？／18u＂morilles en＂，25－27m／ 25u＂Il｜polonais＂，28u＂Il｜nourrit＂ 209 10－ $16 \mathrm{~m} / \mathrm{w}$ Certainly Barb－nothing said about being wild 210 12－14m，18－20m 211 wtec，1－ $2 w 15$ miles per hour $14-17 m, 30 u$＂unl yeux＂／w See to this wb 212 3－6m，26－27m 213 4－5m 214 16u＂bleu＂，21－26m 216 9－30w I shd think these were same as Antwerps 218 16－18m 219 4－5m，15－16m 220 12－13m，23－ $28 m 2217 a$＂culbutant＂Tumbler $8-9 u \leftrightarrow$ ，12－ 16m，23－26m 222 3－10m，14－16m，18w Spot 223 17－19m，26－27m 224 3－5m／Q／！，7w p． 226 20m，23－24m $2254-8 m, 9 x \notin, 12-13 m, 14-18 m$ 226 3u＂facultélrelever＂，4u＂moins large＂，8－ $15 w$ There have been several vars of this 24－27m 227 17－19m 235 3－8m 238 18－21m／Q 22－25m $2404 w \tau, 7 w * \tau, 8-9 w \tau 8 a / u \tau, 9 m / u$ ， 14u／w $, 15-16 u / w \tau, 18-19 m / u / \omega \tau, 20 w \tau, 20 w \tau$ ， $23 u / w \tau, 25 u / w \tau, 28 a / u / w \tau$

BOLINGBROKE，Henry，Viscount A col－ lection of political tracts London； 1748 ［CUL． 1900］
〈ink marks not $C D$ ；the following possibly $C D$ 〉 4 4－12m 6 介 $20-3 m 64$ 介12－3m 65 9－15m 77 12－15m 140 12－20m 177 6－12m 185 介15－13m 187 介4－1m 189 12－18m 213 1－3m 217 介10－6m 219 介11－7m 220 14－18m 234 介11－5m 235介11－8m 236 9－12m 245 介8－6m 247 7－9m 260 15－20m 264 介12－8m 265 5－8m 266 介20－5m 271 1－4m 285 8－16m 291 介3－1m 292 1－12m $295 \Uparrow 14-8 m 31110-20 m 334$ 3－10m 346 介5－ 2 m 347 9－15m 374 介14－2m

BOLINGBROKE，Henry，Viscount A dis－ sertation upon parties London， 1739 ［CUL． 1900］
$133 u / w \notin 269 u / w \notin$
BOLINGBROKE，Henry，Viscount Letters on the spirit of patriotism London， 1749 ［CUL．1900］

〈ink markings not CD；the following possibly CD
18 介10－4m 26 介10－1m $495-10 m 60 \Uparrow 8-1 m 73$ $\Uparrow 12-9 m 77 \Uparrow 3-2 m 91$ 介7－3m 92 介12－9m 118 $8-10 m 135$ 6－8m 138 介10－1m 148 4－9m 157介8－5m 159 2－10m 161 介8－5m 169 6－10m 175 $1 u$＂steddy＂，4－6m 179 介13－8m 190 10－13m 192 Im

BONAPARTE，Charles Lucien Coup d＇oeil sur l＇ordre des pigeons Paris；Mallet－Bacheler； 1855 ［CUL］
ad，gd，tm
SB $\square \beta$
3 －On number of tail－feathers－ 16 in Goura－＊Q
21 Birds of E \＆W Africa often same，but different at Cape
44 Balancement－long tarsi \＆short toes in the Phaps group
50 Zenaida American group－Galapagos
2 26－27m，30－33m， $32 u$ 3 9－10m，10－11Qณи， 11－12m，11u＂pattes 1 plus＂， $12 u$＂douze＂， $16 u$ ＂quatorze 1 seize＂， $29 u$＂s＇élèvel seize＂，34－37m 4 $13 u$＂premièrelsont＂ 5 5－10？， $25 u$＂orbites nues＂， $26 u$＂rémige échancrée＂ $814 u$ ＂quatorze｜pennes＂$/ 13-16 \mathrm{~m} / \mathrm{w}$ The Pptilopoda ought to have $141227-30 m, 32 u$＂les I développé＂， $34-36 m, 35 u$＂presqueloeuf＂ 132 － $3 m 1914 m, 15-18 m, 15 u$＂douze＂， $16 u$＂sous－ famille＂， $16 u$＂seule cosmopolite＂ 20 27－29m， $27 u$＂genre 1 deuxième＂ $2130-35 m 22$ 21－24m， $30 u$＂Col．livia＂，35－36m 23 4－5u＂deux1 caractériser＂$/ 4-7 m / 4 w$ orrupion blanc．，5－18m， $8-9 u$＂clair，gris－bleu＂， $15 u$＂plus d＇assurance＂， 19－21m， $20 u$＂C．｜retrouve＂， $26 u$＂d＇unlou＂， 37－39m 25 12－19m，28－33m 44 3－8m 50 8－ $12 m, 9 m, 10 x, 9-10 w$ Zenaida at Galapagos good case 51 12－17m 52 15－21m

BONAPARTE，Charles Lucien A geo－ graphical and comparative list of the birds of Europe and North America London；John Van Voorst； 1838 ［CUL，S］
gd
NF go through this list with D＇Orbigny \＆self \＆see what birds common to N．of America \＆Europe
NB 35 Nothing in particular on birds
$3526 m 45 \mathrm{~b}$ 19w Galapagos $47 w$ Rio Plata 46b 26w Rio Plata 47b 9－10w Galapagos 17－ 18w Rio Plata 48b 25－26m 49b 5－6w Rio Plata 50b 13－14w Tierra del Fuego

BONDI，Augusto L＇Uomo：ipotesi sulla origine （teoria darwiniana），considerazioni Forlì；Tip． Soc．Democratica； 1873 ［CUL，I］

BONER，Charles Transylvania：its products and its people London；Longman，Green， Reader and Dyer； 1865 ［Down］

BONNAL，Marcel de Une agonie Angou－ lême；F．Lugeol \＆Cie．； 1877 ［Down］\wp

BONNET，Charles Oeuvres d＇histoire naturelle et de philosophie：insectologie 2 vols．； Amsterdam；Marc－Michel Rey； 1780 ［Down， pre－B］
vol． 1 NB 160； 167
130 30－34m，31u＂petit accroissement＂ 160 18－ $20 \mathrm{~m} / 21 u$＂deux｜Eté＂，22－24m／23u＂jusqu＇àl fois＂ 163 2－6m／5u＂douze fois＂ 167 10－12m， 24－28m $26717 m 26815-16 m, 24 m 26919 m$ $2712 m, 5 m$

BONNET，Charles Recherches sur l＇usage des feuilles dans les plantes Göttingen；Elie Luzac； 1754 ［Botany School，FD］

BONNET，Charles Recherches sur l＇usage des feuilles dans les plantes Göttingen \＆Leiden； Elie Luzac； 1754 ［Botany School，FD］
9 1－4m 17 5－9m 19 9－11m 27 1－3m 42 23－ $25 m$

BOOTT，Francis Illustrations of the genus Carex 2 vols．；London；William Pomplin； 1858－1860［Down］

BORRELLI，Diodato Vita e natura Napoli； Enrico Dethen； 1879 ［Down］\wp

BOSQUET，Joseph Description des crustacés fossiles du terrain crétacé du Duché de Limbourg Haarlem；A．C．Kruseman； 1854 ［Down，I］

BOSQUET，Joseph Description des ento－ mostracés fossiles des terraines tertiaires de la France et de la Belgique Académie royale de Belgique； 1852 ［Down，I］\wp

BOSQUET，Joseph Notice sur quelques cirripèdes Haarlem；Les Héritiers Loosjes； 1857 ［Down，I］

BOSTOCK，John An elementary system of physiology vol．1；London；Baldwin，Cradock \＆Joy； 1824 ［Down，pre－B，ED］

BOUDIN，Jean Christian Traité de géographie et de statistique médicales et des maladies endémiques 2 vols．；Paris；J．B．Baillière et Fils； 1857 ［CUL］
cc，gd，he，oo，pat，sp
vol． 1 SB $\square \beta$
－xliv
H－lii；p． 201
\rightarrow p320 number of animals killed in France，showing how one animal increases； co compare with ravages of wolves
p．347；p．392；p． 406
－Poor Book
－The introduction gives all the most important cases；which show that climate \＆ race affects the constitution；if so why not the progeny？
xliii $35-38 m$ xliv $1-36 m$ lii $12-38 m, 16-19 m 1$ ＊9－17m，23－27m 201 15－20m 320 29－33m 347 25－28m 392 31－32m 406 14－23m，14－18m Catalogue \wp
vol． 2 SB Vol 2
295；317；321， 322 Bouton d＇Aleppo
$401 \propto$ Negro diseases
$445 \cdots$ Elephantiasis
$529 \propto$ Deaths of different Races in Ceylon
648 －do in Jamaica．
Most of the local diseases probably have local cause but it shows what little causes act，unperceived by us \＆act differently on different races－may as well produce differns of structure，as such diseases as the Bouton of Aleppo
295 2－5w strictly local diseases 317 12－ $15 m$ ，24－26m $3213-5 m 3227-19 m / w$ drinking certain water saves from Bouton 401 $7 u$＂être｜noire＂ 445 11－17m 529 35－41m 648 4－11m

BOUÉ，Ami Autobiographie Wien；F．Ulrich und Sohn； 1879 ［Down，I］\wp

BOURBON DEL MONTE，Jean－Baptiste François L＇Homme et les animaux Paris； Germer Baillière； 1877 ［Down，S］
SF 63；65；71；72；73；79；81；87；89；90；91； 93；97；98；99；101；108；111；129； 137

BOWDLER，Jane Poems and essays Bath； 1819 ［CUL．1900］
$1253-6 m 130$ 介6－1m $1311-3 m, 10-14 m 134$介3－1m $1351-10 m 1779 x$ ，$\uparrow 4 x 178 \Uparrow 9 m 223$ $5 x / w 29227 \Uparrow 4 x 229 \Uparrow 3 x 2323 x 235$ 11－16m／ $16 x 239 \Uparrow 3-1 m 240$ 1－15m 242 5－10m 245 1－ $10 m, 11-18 m 2491-8 m, \Uparrow 15-9 m 2584-10 m$

259 介6－1m 260 £m $2642 x$ ，介12x $2653 x 266$ $5 x 268 \Uparrow 8 x 2701-12 m$

BOWERBANK，James Scott A monograph of the British Spongiadae 4 vols．；London；The Ray Society；1864－1872［Down］
ad，hl，tm，v
vol． 1 NB Even in so lowly organ．bodies as Sponges B has shown the special uses of the wonderfully diversified \＆curiously formed Spicula－
\wp
〈vols． 2 and 3 §；vol． 4 ed．by A．M．Norman〉
BOYER，Abel Le Dictionnaire royal françois－ anglois et anglois－françois New edn， 2 vols．； London；J．Rivington； 1816 ［Down，pre－B， ED］

BOYER，Abel Royal dictionary（abridged）23rd edn；London；F．C．\＆J．Rivington； 1819 ［CUL，pre－B，S C．Darwin October 29th， 1825］

BRACE，Charles Loring The dangerous classes of New York New York；Wynkoop \＆ Hallenbeck； 1872 ［Down，I］

BRACE，Charles Loring The races of the Old World London；John Murray； 1863 ［Down，I］ h, v
NB 388 correlation of colour of skin； 392 smells emitted by Human beings
\wp
BRADLEY，Richard A general treatise of husbandry and gardening 3 vols．；London；T． Woodward； 1724 ［CUL，pre－B，each vol．S of R．W．Darwin］ ch，fg，phy，v
vol． 1 NB 43．Ash Tree－199．－White edging leaves common by graft； 132 black and white grapes，\＆striped on same plant； 298
43 6－8m 132 19－26m 199 2－5m，21－27m 201 25－37m 202 1－6m 298 15－21m，15－16w 1724 20－24m，21－26m 299 zb
vol． 2 NB p．16；p．172 ；p．172
16 26－31m，39－48z $17122-30 / 22 u$＂soft＂
vol． 3 NB 1722；40＊； 58 on good from change of Seed； 60 ； 90
$4030-33 m 417-15 m 5820-22 w$ in 1724 21－ $31 m 591-5 m 602-17 m, 7-15 w$ A．O． 1722 $11 u 9014-40 \mathrm{~m}$ index，p． $312 \mathrm{~m}, 16 \mathrm{~m}$ p． 4 25 m p． 613 m p． 724 m p． 818 m

BRADY, George Stewardson A monograph of the free and semi-parasitic Copepoda of the British Islands 3 vols.; London; The Ray Society; 1878-1880 [Down]

BREE, Charles Robert Species not transmutable London; Groombridge \& Sons; 1860 [CUL]
beh, cc, sl, sp, t, ta, v
NB 78 Variation accidental as far as good of animal is concd

- Origin
- 102 Sp. Th.
- 132 Origin
- 157 Origin
* 168 good No; 222 Origin; 222 Sp Theory; 252 aphis
168 Look to - may not different castes of ants be produced by different food
222 on variability of Larvae
252 on aphides \& Ants.
$606-8 m, 18-22 m 78 w t$ He must think other species $4-5 m, 5 u$ "uncomfortable", 7 m 102 10$29 m, 22-24 m / 22 w$ good $1034-6 m 10826 a / u \notin$, $25-27 w$ time of - no 132 19-32m $1574 a / u$ "same"/w similarity 7a "these" several $1663-$ $7 m 168 w t$ Plant produces 2 forms $w b$ yet wd be due to selection of instincts $15-23 \mathrm{~m}$ 222 11-13m, 15-22m, 25-28m 223 26-29m 252 11-23m

BREHM, A.E. Illustriertes Thierleben 4 vols.; Hildburghausen, Verlag der Bibliographischen Instituts; 1864-1867 [Down] beh, br, gd, sx, tm
vol. 1 NB 75 Baboon like spirituous drinks \& orang like tea \& coffe \& wine?
\bullet pxxx about polygam?

- xxxvi about pairing
-p261 Baboon \& Leopard
p. 119 stopped reading March 2d
p77 apparently polygamous Q
108 Poly \&
title page S $116-9 m, 10-14 m 2314 m 2535 m$ 30 29-30m $337 m 35$ 8-9m 39 23-45m, 30u "Siamang", $32 u$ "freudiger" 40 17-23m, 21-22u "seinelan", $23 m 47$ 16-18m 50 21-22m, 24 $31 m 5216-17 m 53 w t$ Tail $1-3 m, 7-8 m, 27-$ $31 m 54$ 10-12m 56 1-5m, 9-12m, 11-13m, 20$23 m, 31-39 m 5817-23 m 593-6 m, 9-11 m, 9-$ $11 m, 22-25 m, 22 m 601-4 m 6111-12 m, 11 m$, $17-18 \mathrm{~m} 6233-36 m, 34-36 m 6520 \mathrm{~m} 6713 \mathrm{~m}$ $6816-20 \mathrm{~m} 701 \mathrm{~m}, 16-19 \mathrm{~m} 7246-48 \mathrm{~m} 7424-$ $32 m 751-5 m, 2-3 w$ get drunk $12-14 m / 12-14 w$ distinguish male \& female $33 \mathrm{ua} 7627-40 \mathrm{~m}$, $47 m 776-9 w$ lives in Tropics $15-20$ to 150

10u "und I Weibchen", $12 u$ "Mantel", 13-14u "dielMutter", $44 m 79$ 8-35m $807-26 w$ Saw them roll down stones, as large as head, so as to close the pass for the caravan - act in concert \& use tools.- also defend each other for the males advance $8118-19 u \leftrightarrow 82 w t$ old male Hamadrya \& Geledons fight \& tug each other by the long man or mane of Hair, \& roll down stones against each other $28-31 \mathrm{~m}$ $843 m, 7-11 m, 7-14 w$ hits the ground when in passion with open hands - as in Garden. $22-27 m 85$ wt X Master shown by pretending to strike him, \& the pretender instantly recognised.- Mat on shoulders to protect from heat of sun $25-26 x 861-5 z, 9-11 w$ very fond of riding apes $13-19 w$ very fond of Beer - headache after being drunk $44-48 w / w b$ very much afraid of Lizards \& Frogs \& Lurchen yet very curious like Orang with Turtle- $45-48 m \quad 87$ wt X one individual of distinguished intelligence - very fond of all young animals - \& when kitten scratched him, bit off claws. $12 x, 28-31 m, 29 w$ about food $34-39 m, 42 m, w b$ very clever in stealing \& conquered Dog $8817 m 913 u / w$ fright 7$10 \mathrm{~m}, 8 \mathrm{u}$ "hellbraun", $10-12 u$ "In I gefärbt", 46 m $9425 \mathrm{~m} 968 \mathrm{~m} 10118 \mathrm{~m}, 35 \mathrm{~m} 10317 \mathrm{~m} 107$ 21$22 w$ Polygamy $10819 u \wedge, 33-34 u \wedge / 34 w \tau, 40-$ $41 u \leftrightarrow 11122-24 m, 24 u \leftrightarrow 1122 m 11313-14 z$ $11417 \mathrm{~m} 11621 \mathrm{~m} 11910 \mathrm{~m} 12016-20 \mathrm{~m} 124$ $32 \mathrm{~m} 1289 \mathrm{~m}, 43-48 \mathrm{~m}, 48 u \leftrightarrow 1291-6 \mathrm{~m}, 6 u \leftrightarrow$, $35 m 13011-13 m, 11 u$ "aufgeregten", $12 u$ "sich|möglichst" $2613 m$
vol. 2, 729 11u "die \mid Schild" 731 20-29m, 26$28 u \leftrightarrow, 31-33 m, 36-38 m, 37 u \leftrightarrow, 40-41 m 732$ 10-16m, 13u "auflfallen" 743 13-14w upcurve fig.z, fig.w these ought to curl a little more outwards (see Wallace - correct by him; Reduce Wallace's drawing \& face same way with Boar $14 u$ "rückwärts", 17-18u "Diel kurtz", $19 u$ "ragenlsie" 745 15-17m, 15$16 u \leftrightarrow, 34 u / w \tau$
vol. 3 NB 236 Vidua; 322 Paradisea; 745 Rupicola
$2365-9 m, 18-20 m$, 19u "feuerroth", 23u "roströtlich", 40-44/42-43u "paarweise" 237 3$5 m, 4-6 \mathrm{w}$ sings when in fine plumage 292 15-18m, $15 u$ "bedeutend kleiner", $16 u$ "ist lauf" $2934 u / w \tau, 6 u / w \tau, 11-12 u \leftrightarrow 3251-4 m / 1-2 w$ long feathers $9-12 m, 9 u$ "sonderbar 1 Geräusch" $32624 u$ "Bennett's", 26-32w cannot bear any dust on feathers
vol. 4 NB 351 Courting of black cock; 991 on Courtship (?)
$3529 m, 14-15 m / 19 m 4692-6 m, 18-20 w$ tailfeathers \& secondaries $18 u$ "ungemein

BREHM
stark" 473 10m 990 29-31m, 29-30w few polygamous $33 u$ "Dalgibt"|33-37w more males than female

BREHM, Alfred Edmund Tierleben 2nd edn, Grosse Ausgabe, 9 vols.; Leipzig, Verlag der Bibliographischen Instituts; 1876-1878 [Down] \wp

BRENT, Bernard P. The canary, British finches, and some other birds London; Journal of horticulture and cottage gardener, n.d. [CUL]
hy
NB p.21; p.22; p.30; p. 109 Hybrid Canaries $218-12 m 22$ 19-21m/20u "feather-footed" 30 12-16m $557-11 m 10932 m$

BRENT, Bernard P. The pigeon book London; Cottage gardener office; n.d. [CUL]
br, hy, oo, v
NB w
Q p4 13 - Hybrids with C. Oenas
Q 41 - Kite Tumbler after splDing become black
46 Trumpeter $1 / 16$ blood not trumpeting
55 - Lace Fantails always give lace to offspring what a contrast with my Japan silk Fowls!
60 - The story about Hawks killing tired Carrion wrong.
$\rightarrow 36$ definition of splash pigeon
13 6-12m, 14-16m 36 41-47m 41 12-18m 46 $20-31 m, 28-31 m 50$ zt $5527-31 m 6020-22 m$

BRIGGS, Thomas Richard Archer Flora of Plymouth London; John Van Voorst; 1880 [Down, I] \wp

BRIOSI, Giovanni Intorno un organo di alcuni embrioni vegetali (extr.); 1882 [Down]

British Association Report of the third meeting of the British Association for the advancement of science held at Cambridge in 1833 London; John Murray; 1834 [CUL, S]
SB Brit Assoc Vol 3; p. 50 x; p. 447; O/ Octr. 1857

50 17-29m/w Hooker quite agrees 446 1520 m 447 21-26m
\wp throughout
British Association Report of the eleventh meeting of the British Association for the advancement of science, held at Plymouth in

July 1841 London; John Murray; 1842 [CUL] em, fo, gd, hl, ig, ir, sp, t, ti, tm, ts, v
SB1 1841; p. 77; p. 96; p. 173; p. 181 Waterhouse - low in scale; 185 185; 186; 192; 193; 196; 198 to end.-
SB2 \quad - β
96 Different form of Vertebrae in ant \& post part of column. Ch 7. Kinds of Transition.- \diamond 173 Owen intermediate fossils -185-196 Summary on do
181 do - animals on confines of groups present great differences
197. Argument (Owen) against Transmutation - Resting on assumed rise in development - Grand discussion.-
201 Embryology of recent Reptiles resembles ancient
\wp
77 49-54m 96 44-50m/? 173 37-45m, 44-47m $18123 u$ "like|a"|21-27m/1-24w this is like Waterhouses remark that low groups vary much, $29-34 m / 29-51 w$ according to this, if there were many Monotremes, they wd vary much.- 185 41-48m, 46u "Pleiosaurus"/46w Enaliosaurians $49-53 \mathrm{~m} / 50 \mathrm{u}$ "other fishes" $/ \mathrm{w}$ p. 186 53-54 $\rightarrow 186$ 30-32m $19236-41 \mathrm{~m} / 1-44 w$ As species are long lived (must be!!) so are genera - how is this in Mammifers Badger long-lived - Carnivora in Eocene 193 33u "terrestrial"/31-49w These cd have been np terrestrial Mammifers for 70 specimens of Iguanodons have been found $1969-11 \mathrm{~m}, 13-$ $15 m, 20-22 m, 24-30 m, 36-38 m, 48-52 m 197$ $21-25 m / 33-37 m / 1-35 w$ assumes the series to be perfect \& a tendency to higher development - 198 12-14m/12-42w must confess even on my view imperfection of record surprising $-22-25 m, 36-38 m, \Uparrow 8-2 m$ $1993-5 m, 7-9 m, 18-30 m, 32-44 m, 49-54 m$ 200 1-8m, 29-33m, 45-51m, whole $\uparrow w$ Do those geologists who tacitly think the record pretty perfect - think that there were only 3 Mammifers during Oolitic \& only.-Reptiles during Carboniferous \& so many in Permean \& * Triassic 201 22-25m, 36-41m, 43-50m 202 6-8m/w Falconer 11-15m, 21-24m 8

THE BRITISH AVIARY London; Dean and Munday; n.d. [CUL]
18 โm/"... 20 8-18m 25 wb 232 介8-1m 33 6$14 m 348-16 m 406-14 m 434-10 m 50 \Uparrow 4-2 m$ $511-2 \mathrm{~m} / \mathrm{m} 57 \Uparrow 10-7 \mathrm{~m} 681-4 m$

British Museum (G. Busk and J.E. Gray) Catalogue of Marine Polyzoa in the collection of
the British Museum 2 parts；London；by order of the Trustees；1852／1854［CUL］
Part 1， 39 1－4m 44 18－22m $54 \Uparrow 13-11 m$ ，$\uparrow 9-$ 5 m Description of plates，iii＂$p l$ XXII＂．m
Part 2 NB \langle not $C D\rangle$
$673-8 m$ ，$\uparrow 11-7 m$ 70 2－4m，介16－14m 83 16－ $19 m, 24-27 \mathrm{~m} 84$ 介3－1m $947-9 m 1043-7 m$ ， $16-21 m, 19-21 m / 21 \ldots ", 29-33 m 10513-26 m$ ， $\Uparrow 11-1 m 1061-7 m / 2-7$＂．．．＂$/ 2 a$＂seta＂\＆the $2 a$ ＂observed＂－$\uparrow 4-1 m / \Uparrow 3 u$＂avicularial far＂ 107 $8-11 \mathrm{~m} / \mathrm{w}$ Both avi〈cularium＞\＆vibr〈acula〉 108 table．m

British Museum（J．E．Gray）List of the specimens of Mammalia in the collection of the British Museum London；by order of the Trustees； 1843 ［CUL］
gd，geo，is，$s x$
Part 1， $21 u\langle u$ henceforth a〉 $41 u, 11 u 519-$ $21 \mathrm{~m} / 20 u$ ， $33 u 621-25 \mathrm{~m} / 21 u 76$ ， $76 u$ ， $25 u$ ， $33-34 \mathrm{~m} / 33 u 81 u, 17 u 929-31 \mathrm{~m} / 29 u \quad 1016 u$ ， $20 u, 24 u 1117-18 m / 17 u, 21 u, 26 u 1218 u, 32-$ $24 m / 32 u 1318 u, 27-29 m / 27 u 1518 u$
Part 2 front and back blue covers．w Seals
NF What seals Kergueles Isd Aukland \＆ Campbell Isd Azores S Shetland Georgia Ascension？Falkland Seals－ice－action
NB There is no case of Seal confined to single isld So not case parallel to Bats．－No species common to N．\＆S．but species of same genus N．\＆S．－In fact nothing for me．－
p22 \＆ 24 Caspian Seals It is a Northern genus alone
viib 15－16w Fur seal viii 13－14w representative species in North $22-24 \mathrm{~m} / 23 \mathrm{u}$ ＂Ursinus＂，31－40m 2 34－37m 3 41－43m 13 $23 w$ Packed ice $33 \mathrm{~m} / u$ 〈u henceforth place－ names〉 $146-8 m / 17-18 m / 1-18 w$ Ice does not come to New Zealand $1623-25 \mathrm{~m} / 24 \mathrm{u} / 25 u$ ， 41－42m，wb Distance from S．Orkney to Tierra del Fuego $174 u 2231-39 \mathrm{~m} / 32 u / 33 u /$ $36 u / 37 u 24$ wt good case as identical species in P．viz P．vitulinus Hardly because may have ranged further formerly $9 u, 11-13 \mathrm{~m}, 36-$ $37 u 3441-42 m / 41 u$ ， $43-44 m / 43 u 3531-33 m /$ $31 u / 32 u, 41 u, 45 u 3721-24 m / 21 u$ ， $38 u$ ， $40-$ $43 m 4320-22 m, 24-32 m 4538-39 m$
Part 3，viib $19 m, 23 w$ ？common viiia $17 m *$ ， $36 w$ C Aegoceres $38 \mathrm{~m} / \mathrm{u} / \mathrm{w}$ Aegoceres viiib 16－17m，19－21w C Dar \＆＊29－32m，32w Smith $34 \mathrm{~m} / \mathrm{w}$ Babing $36-37 w$ Colours ixa $4 \mathrm{~m} /$ w Colours 48 〈u henceforth sex－differences〉 $4 u$ ， $6 u, 8 u, 10 u, 18 u 1005-6 \mathrm{~m} / 5 \mathrm{u}, 36-40 \mathrm{~m} / 36-37 u$ $10430 u 10637-40 \mathrm{~m} 12420 \mathrm{~m} 1282 u 1331 u$ ，
$5 u 13422 u 136$ 6u， $25 u 13730 u$ ，35u 139 26u $1417 u, 14 u 14233 u 1435 u 14416 u, 16-17 u$ $14633 u, 40-42 m{ }^{2} 14728 u, 30 u 14819 u, 20 u$ $1496 u, 7 u, 14 u, 17 u, 20-21 u 1507-10 \mathrm{~m}, 8 u$ $15135 u, 36-37 u 15224 u 1534-5 u 1579 u$ ， $15 u, 16 u, 17 u, 19 u 16018 u, 31 u, 37-40 \mathrm{~m} 171$ $36 u$＂in male only＂ $17237-40 \mathrm{~m} 17735 u 179$ 18u，23－25m，42－43m 185 20－22m，28－30m 216 40－43m 220 29－31m 242 24－28m

British Museum（F．Smith）Catalogue of British Hymenoptera in the collection of the British Museum London；by order of the Trustees； 1855 ［CUL］
beh，fg，mhp，oo，sp，sx，tm，v
NB－p225 Ask about accidental other species of they lay their eggs
SB1 DR
16 ．How far mixed；46；114；117；118；144； 158，161； 108 to end SB2 $\square \beta$
16 Mixed colourings of 3 genera \＆ 5 species．Wd not blindness of instinct lead them to become parasites
46 The bee whose larva preyed on，does not interfere with Parasite Bee Q
117 The parasite closed nest in some cases NQ
158 Great diversity of instincts of Bees of same genus：variable in species also Q
174 Males in one genus，female in another hard to distinguish
185 diversity of Habits NQ
211 Bombus diversity in nests Q
225 on occasional presence of working Bees of different species，in nests of others Q
$17 u$＂added lone＂ $2 w b$ for Apidae p 11316 wt Fabre believes certain Sphexidae occur only parasitic $2-5 m, 9-10 m, 13-15 m / 13 u$＂$a$ mixed＂，18－22m 46 1－11m，11－13m，25－30m $56 z t{ }^{2} 11420-21 \mathrm{~m} / \mathrm{w}$ Hibericum 117 19－23m， 26－32m 118 14－22m 144 25－30m 145 16－18m $15810-14 m, 10-28 w$ variable situations of nests $11-28 w$ variable in species \＆genera
 ＂burrows 1 banks＂，20m，25－26u↔，44－46m 161 10－14m，10uA， $12 u$＂underside llying＂ 173 32－ $37 m 17418-22 m, 23-31 w$ In Andrena it was the males which were so difficult to distinguish $27-30 \mathrm{~m} 185$ wt Megachile a leaf culture，what diversity of Habit－11－14m 208 22－26m，29－31m 209 42－46m 210 12－16m 211 $44-46 \mathrm{~m} / \mathrm{wb}$ Build in different situations \＆use moss $\rightarrow 212$ 6－12m，14－18m，43u／w 2213 $15 u / w \quad 3 \quad 25 u / w \quad 1 \quad 36-39 m / Q / 36-38 u$＂inl numerous＂ $\mid w b$ These varieties are males females \＆workers $21423 w$ 1 32－40m， $32 u$ ，

BRIT. MUS. (SMITH), HYMENOPTERA
$37 u / w 21 / 2,40 u / w 12157-11 m / 8-10 u, 21 u / w$ $233 u / w 336 u / w 121622 w 2,29 u / w 231 w 1$ $21723 w 034 w 138 w 021822 w 230 w$ 2, $32 w 121925 w 11 / 2$ 29w 11/2 31w 1221 1w $210 w 1$ 16w 1 26-30m $2234 w 19 w 111 w 1$ $33 z 22433 w 2,38 w 1 z b \geqslant 2254 w 118-$ 30m, 18m, 22u "workers" 226 21w 1 24w 2 26w 21/2 227 22w $134 w 239 w 122918 w 0$, $24 w 11 / 223027 w 032 w 11 / 234 w 123121 w$ $032 w 236 w 22337 w 123 w 326 w 2$

British Museum (T.V. Wollaston) Catalogue of the coleopterous insects of Madeira in the collection of the British Museum London; by order of the Trustees; 1857 [CUL, I]
is, $s p, v$
SB $\square \beta$
Whole Introduction marked -p85 note Canal Elateridae Telephoridae
vii $11-19 m, 11-13 w$ dele these 3 vars. $16-$ $18 w$ add 5 vars. viii $6-10 m$ ix $3-4^{* *}, 7^{*}, 14-$ $15 w$ Italics $16 u$ "far", 25-28wec x $\uparrow 13-11 z$ xii $32-36 m$ xiii $12-14 m, 19-30 m$ xvi wt The species f. on all 3 islands, are all rather indigenous 4-9m $1 z b 207$ wt The numbers to left hand are the vars. to each species added from great Book \& corrected in few cases.- Omit in counting all those marked by one or two Asterisks (a.s counted) 5^{*}, 10.3 〈ie, line 10, CD writes '3' to left hand〉, 17.4, 30.1, 34.1, 42.4208 2.1, 5*, 10.1, 12*, $15.1,20.1,23.3,31.1,34.1,39.1,52^{*}, 53.5209$ $2^{*}, 4^{*}, 17-19 c, 26^{*}, 39.1,43 c, 44 c 2105.1,39.1$, $42.12115 .121229^{*}, 30^{*}, 40^{*} 21312^{*}, 21.1$, 29* $21411^{*}, 17^{*}, 20^{*}, 27.2,29^{*} 2156.5,14^{*}$, $25^{*}, 33^{*}, 41.1216$ 16.4, 19.1, 21.1, 27.2, 28.1, 50.1217 15*, 27.2, 34.1, 35.1, 40.1218 22.1, 26.2, $32^{*}, 43.121910 .1,17^{*}, 20^{*}, 26^{*}, 28^{*}$, 28.1, 29*, 34*, 35*, 36.2, 42* 220 7.1, 10.1, 11.1, 13.5, 18.1, $41.12217^{*}, 29^{*}, 31.1,38.4$, 39.2, 43.1, 44.2, 45.2222 12*, 14.1, 17.1223 7.1, 17*, 27*, 28*, 33.1, 44.1, 53* $2242.1,24^{*}$, $26^{*}, 46^{*}$
Catalogues of the zoological collection in the British Museum 8 zb

BROCA, Pierre Paul On the phenomena of hybridity in the genus Homo London; Longman, Green, Longman and Roberts; 1864 [CUL]
f, h, he, hy
SB 25 Definition of fertility in hybrids; 38; 39; 40; several statements to this effect - quote when I speak of inferiority of Mulatto under Reversion
18 21-26m 25 19-34m 27 29-36m 30 12-18m 33 23-26m, 28-32m 36 9-15m 37 19-24m 38

5-12m, 22-26m 39 18-21m, 32-33m/w Proc R 40 28-30m 49 7-11m $607-34 m 63$ 10-13m, $12 u$ "indirect communications" 66 15-19m \wp

BRONN, Heinrich Georg Handbuch einer Geschichte der Natur Stuttgart; G. Schweizerbart; 1841; 2 vols. and atlas [CUL] ad, af, beh, br, cc, cr, cs, ct, em, ex, f, fg, h, he, hy, ig, is, $\mathrm{mg}, \mathrm{mn}, 00, \mathrm{sl}, \mathrm{sp}, \mathrm{sx}, \mathrm{tm}, \mathrm{ts}$, ud, v, wd, y
vol. 1, xviii $12-13 m 37831-33 m$
vol. 2 NF When in doubt for reference see Index to first time name is mentioned
SB $\langle 10$ sheets, numbered $2-10,12\rangle$
2
Bronn. Geschichte Th. 2
Cross means useful
a p. 93 cage-birds deprived of light become black \& snow insects from * same cause do-
p.96. birds black from food \& being in dark places, generally assume proper colour next year .- (Bechstein)
X p.do (b) nestling goldfinches in cage covered with cloth all became black, resumed colour * next month
do (c) fe male pyrrhulas took on plumage of female in cage (other cases analogous)
(d) Hence light has influence, \& whiteness of polar animals perhaps effect of snow-light Negros!!
Introduce discussion.- though polar animals may have been created white \& beetles under stones black, we yet know that it is possible they may have been so altered.Against relation between tadpoles \& Siren
X Q (e) Beetles become darker \& darker (traced by gradations) till black on snowcovered 7000-8000ft summits of Alps.- but thought species by some authors - so in going to pole: hence climate, though opposite effect on Vertebrata, such beetles must in pupa or larva state must be long under ground
3
p. 99 (a) yellow var of Zygaena not found at Erfuhrt, but common in south Germany.-
(b) accounts for increase of cattle in Australia from greater birth of cows to Bulls 3-to-1 \& in Man ??!
(c) Rabbits \& Hens breed much oftener, in domestication, with food \&c, than free
p. 100 (a) quote Roulin on infertile geese, when taken into America \& Garcilasso for hens not procreating; though now become fertile, yet game-cocks from England are
less so.-
p. 101 (a) late eggs of butterfly produce a different variety from early eggs
p. 102 (a) much food increases fertility:mountain sheep produce only one lamb; whilst lowland more \& if former brought into good pasture, even in first year produce more than one; on other hand, Marsh-sheep taken to mountains retain fertility for 3-4 generations [How opposed to Doubleday!] X X109 Hares larger \& smaller in Woods \& Fields
p110 Most important: Gloger thinks similar differn in feathers of wing in Ducks, especially Musk-Duck differences between migratory \& stationary birds of same species. $=\mathrm{X}$
〈4〉
p111 change in stomach in owl for vegetable food (a) X wh. caused it to perish X alludes to milking of cows - I may say difference is sudden in La Plata
(b) In pig-races, wh. have many young more tits give milk than in less fertile races.
p113 X Difference in Habit of single \& many Beavers.
p. 113 (a) Rabbits much ferreted (?) taken to live in farms (F. Cuvier): anyhow a variation in habits
117. Latent instincts in animals become feral aie tameness
p. 117. It is important to consider whether the male in plants or animals (V. Koelreuter) can propagate the sportive tendency, because if so it will show, that the varying tendency in the generative system, under domestication, is the effect of impregnation \& not the womb influence. In fact if fish \& silkworms vary much, it cannot be foetal influence $X|\mid$ (Yes it may in Egg), nor indeed in birds, as the mother only influences the egg by its warmth, after a very early stage:
p. 118 (a) origin of most varieties of plants, through sports by unknown causes.
p. 118 (a)(a) attribute sporting of apples \& such like to the transplanting, pruning \&c, wh. they have undergone. [no. corn sports as much as anything)
5
p. 119 when a man has once got an \rangle variation (a) (or through bastardising), then he can easily go on raising more \& more. ie variation tends to increase. [this comes very near to my facts]
p119 (b) No character resists variation in cultivated plants; in lesser degree in wild state: cannot compare effects of nature during course of years, with our during a few
years.-
$\mathrm{X} \| \mathrm{p} .120$ (a) is said, that Dahlias at first sported on single characters, \& then in less degree in all: this very important, from analogy to wild (\& whether relations of subgenera to genera)
X 121 variability of heredetariness in weeping ash \& Peach
p123 (a) cases of sports in Dahlia flowers; \& of whole plant producing different coloured flowers Geranium do - Dianthus - case of wild Achillea do
(b) apple with no petals or stamens, but 14 styles; fruit peculiar, when impregnated.
p124 (a) curious account of seeds of a Carduus sown - one young plant came up different, \& the seedling for 3 years from it same, \& then on same soil lost one of its chief ch
$\underline{6}$
p 127 (a) subsequent offspring of a mare, affected by having once produced a mule. \& sow so affected from a cross with wild Boar \& on two races of dogs
p. 130 (a) tailless fowls appear to have an abortive unformed, knotty projection, instead of the Cuckoo-Bone
p. 130 (d) left wound snail can pair with only left - but young are right, in Helix pomatia (contrary to Sowerby)
p. 131 Tail feathers in waders \& webs sometimes X vary in number - Gloger \& Hodgson (references)
p132 (a) case of carp (which bred true) with 4 times larger scales in lines, with some places bare X - call Looking-glass Carp.-
X p. 132 (b) Indian races of sheep \& oxen where female hornless - he compares it with deer-tribe.
X p. 132 (D) cow lost left horn by suppuration, afterwards had three calves with left horn a mere stump attached to skin. X p 133 (a) Bug generally apterous, found in marshes with wings elytre bred in a house produced offspring with abortive wing $\diamond \mathrm{M}$ Dictionary [case where we know what an abortion]
7
p 135 (a) - remarks that the nature of the affinity in plants, wh. favours crossing is not known - because
p141(a) Gartner not external similarity.
some of the closest species have not offspring when crossed; \& because some genera, especially amongst the Monocotyledons will scarcely cross!
(b) No cross of two species produces as many seeds as the * true species; yet

BRONN，HANDBUCH
above says it is sometimes easier to get fertile seeds，through cross，than with no cross．－
p136（a）remarks on uncertainty of Koelreuter experiments，how many trials necessary－first flowers fail－K．saying all that are fertile are vars．，is arguing in circle．－ Good summary of Crosses＝
141．（b）genera crossed with difficulty
p146－（a）［good summing up of results of Hybridisation
（a）seems to think，the more remote，the crossed species \＆the more intermediate the offspring，the less fertile they are \＆more subject to monstrosity which particularly affects generation system（？）
p147（b）－How odd it is hybrids crossing easier \diamond parents than \diamond

8
It is important to show in Azaleas，in（p．147） Lilacs，in animals，that the sterility is not due to tendency to vegetate or to increase of fruit \＆c．－but to some direct influence on propagating system．－
p． 147 （b）（b）remarks from Köl，that variation in hybrids，depends on the parents（or parent？）having been domesticated，or tending to vary－
p148（X）It wd be easy to take 100 double flowers \＆count，which has male \＆which female part most affected
p． 152 （a）From Koelreuter，hybrids self impregnated．others lose or retain their small fertility，or approach to one parent in form \＆ gain in fertility
p152（B）Lindley on Hybrids not propagating in the $3 d$ generation．X
p154（a）－hybrids not intermediate between parents（as by Koelreuter）but seldom！！in some parts like father，in some like mother Gartner

9

155 （a）Gartner．Hybrids the more fertile the nearer they take after the mother－side，less so，the nearer after the father side Hybrids go back to Mother side！Herbert says just different
155 （B）says Hybrids from same species differ（？？）\＆that the facility of impregnation depends on the selection of the sexual organs，\＆not as general relations．Reverse crosses similar offspring
p． 156 （a）He says some species of a genus ＊impress their characters on hybrids，much more strongly than other species（does not d＇Orbigny assert this in some Indian Races？） p156（b）He says either return to mother，or lose their procreative faculty

X p156 Passiflora more fertile with other pollen than own．
10
p． 164 （a）in making hybrids the female generally resists male；so that male donkey must be painted like zebra to cross with mare zebra
Mares will only take stallion－donkey in dark， \＆stallion horse must never have＊seen mare before－alludes $X(d)$ to physical difficulty of crossing some races
X（e）Buffon says that female foxes，dogs，\＆ wolves though in heat drove off with bites the males of other species．
（f）Cuvier says Dingo \＆common dog wont breed，though often＊couple（they will in Australia）\＆Zoolog Garden of London good $\mathrm{X} \|$ See to authority
H ．case of dog pairing with chained wolf X p165 crosses of Domestic Cock with other Birds \＆Finches
p172（a）Case of some crossed by boar （perhaps previous impregnation）had one tame pig \＆other wild \＆c \＆C
X p168 variation which comes on with age appear at corresponding age
X p． 169 \＆ 172 BB －Mongrels have the character of（but many exceptions）〈rest 0 》 hybrids have character \langle rest 0）
〈over〉
It is an old argument，but never to be forgotten，that we must look with our gained experience＊on the history of the world，as an＊animal of years duration must on the variation of domestic animals he wd never suspect such a thing．
12
p184（a）Ammon reckons on colours of of horses being certainly true if only two generations are known true
（b）white hens，peacocks，mice all come true
（D）contrasts fruit－trees－gives Van Mons case of 35 years selection producing all good fruit－（natural mongrelising he does not notice）\＆trees bore fruit sooner
p185（a）High－heel boots，have affected form of childrens feet in Germany！Thaer
p186（b）Shepherd－dog instinctively＊ rounds sheep
X（a）mongrel sheep－dog \＆pointer for several generations pointed at Birds．
（e）varieties sometimes cross whilst wild； white hares in Cornwall \＆C
－Have parasitic plant genera wide range as Waterhouse says parasitic insect do have No
p．54．

SB $\square \mathfrak{R}\langle 4$ sheets, numbered 1, 11, 13, 14〉
56 on mixing of Salt \& FW Fish in Baltic
58 do. \& of shells \& Crust in Caspian
69 changes of colour \& quality of fruit from soil.
77 Doubling of flowers, discussion on.
83 changes of flowers on mountains, intense colour, plant less size, but larger flowers
85 cases of plants changing by culture. Lobelia \& Ziziphora (Refer to in note) \mathbb{Q}
89 Summary on changes of Fur of animals under changed climate
107. most important case of variation of Fish 96. Hawk in Berlin went back to earlier plumage
11
170×8 generations absorb another race, in which one blood is 99.62 of whole

- strong case of sheep taking after Ram in reciprocal cross X
- on crosses not intermediate: on horns going from father X
177 Description of Hybrids wolf \& dog
179 Particulars on Hybrid Canaries \& Goldfinch
I have used all this Book for Hybrids 13

187. feral dogs soon reclaimed (Schomburgk)
188 -Bechstein says Zeisig more readily pairs (Ch. 6.) with \& green than with yellow Canary Birds
189 Brehm's subspecies not merely geographical Races
188. White Hares of Cornwall.- (must allude to Bronns Gesichte in Preface; if soon Gartner, Kolreuter, Decandolle Huzard.Hooker's works - Lyells Geology. Isodore G. St. Hilaire
195 References to G.St. Hilaires doctrine of external cause causing change
210 Horses swim 7 German miles
189. on accidental migration of Lemmings, insects \&c
223 References to falls of inorganic bodies 224. Lost animals - Turtles - \& Birds on continents
225 Reference to Hawk Case Fontainbleau

- R. Brown on Gulf seeds germinating

229 case of Head of Bos m. washed on shore of Greenland shows course of iceberg, with respect to plant common to White Mnt. \& Greenland.-
234 Excellent accounts of falls of seeds, with references
236 Fish \& Crab Rain
247 Remarkable that N. Holland more plant common to Europe than S. Africa -

explained by me

14
252 on Relation of Red Sea to Mediterranean - Wiegmann Arch/- on distrib. of insects \& Lacordaire.-
253 Alpine climate not very like polar.
254 Snow region in Alps 12 plants, many more in Melville Isd
-Table of heights \& Latitudes to show correspondence
272 Duration of Seeds vitality of
284 number of seeds - kind of animals
which have most - number of eggs in Crab-

Fishes

286 number of mice one pair can produce in year

- increase of cattle in America with dates

293 Destruction of forests by insects
297 - on insects destroying crops-
299 Rein-deer killed by insects
300 Mice destroying trees
302 increase of mice, followed by increase of weasels
505 causes of extinction, yet not real for they do not apply to rarity
v 9-12?, $14-18 m, 1-26 w$ Read all on this problem vi $4 m, 23-26 w$ Read vii $20-24 w$ Read viii $1-30 m, 18-23 w$ Read xi $2-12 \mathrm{~m} / \mathrm{w}$ Read \& marked 28 wt Tobacco plants in 5 years wd cover all Germany 29-31m/30w (a) 54 8-10m, 13m/u "die Pflanzen", $19 u$ "lange", $\pi 2-1 m / w$ (a) $w b$ Trees not killed by cases of shells of seawater - did annual seeds spring up again? ask Mr Higgins $557-17 w$ sea \& freshwater shells mixed together 56 14-20w on Fish inhabiting salt \& F. Water $16-17 u \leftrightarrow$, $32 u \leftrightarrow / 30-35 w$ Cyprinus in F. \& salt water 58 21-40m, 23-28w Caspian Fauna genera of salt \& fresh fish \& Crust \& Shells $43-44 m 59$ $28-40 \mathrm{~m}$ * $30-41 w$ changes in vegetation spread of a grass when forests cut down 65 12-17w (Must skim previous Part May 12 45 Begun $69 \quad 23-31 m / w$ dark red Rosa became streaked with white by earth colouring $29-31 m, 32 m, 35-38 m$, $35 u$ " 1837 ", $44 w$ Is this good authority? $w b \times$ other cases of flowers changing colour in diff: soils. $x x$ case of grape strongly manured cow-dung, alum, horse-chips \&c changing from small * yellow-green, with flatened grapes into large watery dark blue grapes 70 wt A Different manures affect greatly melons in quality $2-$ $10 \mathrm{~m} / 3 u$ "Gewürz|zartheit"/w A 72 wt sugarcane \& * Pineapple seedless, from antithesis of sap \& pulpy fruit 1-4m, $1 u$ "Ananas", $2 u$ "verwildert|kleine", $29 m 74$ 1$27 w$ instances of different parts, with

BRONN, HANDBUCH
parenchyme enlarged by culture, as in Cabbages \& Plums 16-27m, 28-29u↔, 29$30 m, 35-39 m / w$ These trees did not produce fruit, from luxuriousness of vegetation 751 $2 u \leftrightarrow, 8-13 m / w$ cutting trees makes them fruit. $7619 a / u / w \tau, 16-28 m / w$ on change of sex in dioeceous plants $771-21 m / 4-17 w$ on doubling of flowers $27-30 m$, $27-35 w$ old \& new seeds differ in producing double flowers $7811-26 w$ did seeds produce female plants - large fruits is opposed by antithesis to seeds $7935 u$ "dasselbe Individuum"|35-37w loose or gain hairyness $8120-22 m / 19-25 w$ European biennials changed into annual in Crete $8211-17 m / 11 u n / 15 u$ "Weiss" $116 u$ "Hibiscus l weisse" 174 "Roth"/w Lilacs when put in hot-house changed from white to red $21 u$ "Wimmer", 28-38m, 44-45m/w (I have not thought worth quoting) $\uparrow 2 w / w b$ all facts on next page I believe taken from this $w b$ R. Brown believes in great alterations in flowers on mountains $834-7 m / w$ dwarf from growing on high mountain $9-13 w$ leaves change a little 20-26w Hairyness increases on heights \& in wet places $27-29 w$ other time lose them $30-35 \mathrm{~m} / \mathrm{w}$ Colours of flower - stem darker 37-45w flower larger sometimes though petal smaller even twice $w b \times$ from above changes many varieties have been considered as other species $8419 u$ "Nessell dioica"/16-22m/ w Link says southward Urtica dioica changes into U. caudata $41 m 85$ wt (a) Lobelia lutea from England flowered for 4 years in Pawlowsk, did not seed, was divided into 3 plants, \& they lost their lance-formed teethed leaves \& has broad, egg-shaped leaves, with different flower; became the L. bellidifolia 1$7 \mathrm{~m} / \mathrm{Q}$ 9a/u^/10a/u^/7-12m/w Both. C.G.H. flowers diff. colour diff time of flowering 30$33 m / w$ Form, direction \& connect less affected; great influence on instincts $39-40 \mathrm{~m}$ $8622 u$ "kleiner|unfruchtbarer"/23-24m!?/24u "die Grad" $/ 17-28 w$ Animals on limits of proper climate less fruitful!? and less size. $31-37 w$ Peron's case of shells altering in size in Australia 37-38m/wb On increase \& decrease in size in Helix's on Alps 89 wt European goats in high mountains have some fur $7-14 m / 10-16 w$ on change in fur in European animals in Himalayas midpage Q $40-41 m, 45-46 m$, $w b$ this Page summary of facts on fur $904 u a / 4-6 m / 4-9 w$ looses hair when old $6-10 \mathrm{~m} / 9-19 w$ Pigs with different hair in different parts of S. America 16-20m, $19 u$ "weit I Winterhaar", 26-30m/w No cause for Angora wool $42 m 9115 u$ "Gloger"/14$21 \mathrm{~m} / \mathrm{w}$ almost all beasts undergo some change in winter in colour $19 u$ "tropischen

Gegenden", 20u "höherlsind", 21u "hellel grauweise", $22 u$ "Polen" $938 m, 14-16 m, 28-$ $33 \mathrm{~m}, 28 w$ (a) $38 u / w b \tau 943-16 \mathrm{~m} / 2-9 w$ animals at pole become white $23-36 \mathrm{~m} / 21-32 w$ birds do all or in patches $951-5 w$ Men, horses \& Birds white with age. $12 u$ "Eichhörnchen"/9$15 \mathrm{~m} / \mathrm{w}$ some darker by age \& by hot climate, $20-27 \mathrm{~m} / \mathrm{w}$ other colours change in birds by climate $28 \mathrm{~m}, 29-32 \mathrm{~m} / \mathrm{w}$ head, neck \& eyes change colour 43m/43-44w Gloger - much praised by him 96 wt a Hawk went back in Berlin to an earlier plumage $3-6 \mathrm{~m} / 5 \mathrm{u}$ "zurückschlagen", 9w (a) 12u^/15un/12-15w Galapagos Finches Black 17a/u/w (b) 22$23 \mathrm{~m} / \mathrm{w}$ (c) $27-30 \mathrm{~m} / 28-29 \mathrm{w}$ d $32-33 u$ "Osw. Heer", 36-39w e Quoted 97 1-18w/wt! Most of these observations are vitiated by doubt of what are species - reason against my going into details $13 u$ "Viele dieses", 14-15u "Systemen I worden", 31-33w Quoted 40u^ 98 $7 u \uparrow, 介 7 m$ 99 11-13m/w a $29-31 \mathrm{~m} / \mathrm{w}$ (b) 38$41 \mathrm{~m} / \mathrm{w}$ (c) 42-43?? 100 12-16m/16u "Schafe"/ $13 w$ (a) $38 \mathrm{~m} / \mathrm{w}$ Gloger $w b$ on different singing in same Birds 101 14u "Freyer" $/ 10-14 \mathrm{~m} / \mathrm{w}$ In Ray has written much on Butterflies no authority $15-19 m / 16-17 w$ (a) $22-26 m / w$ effects of good food chiefly through young 31$36 \mathrm{~m} / \mathrm{w}$ affects flesh more than bones 102 15$16 w$ (a) $26 \mathrm{~m} 10514-26 \mathrm{~m} / \mathrm{w}$ on change in Merinos in France \& Holland $10626 w \tau 107$ wt This case so important as to be quoted 10-12m/13-14u "grosse Ientstanden"/ $11 w$ (a) $w b$ (a) the intermediate form between * these two supposed species, found in a ditch where one species had been turned in. Yarrell. vol I alludes to these two fishes \& gives summary of their differences $1092-4 \mathrm{~m} /$ $2-6 w$ made from many individuals $13-17 \mathrm{~m} / \mathrm{w}$ birds black from seeds $27 u$ "Bombyx |viel", $28 u$ "B.|Blättern", $35 \mathrm{~m} / \mathrm{u}$ "Waldhafen 1 Hirsche" $/ 36 u$ "Gebirge", $48 \mathrm{~m} / \mathrm{wb} \mathrm{x}$ wood-hares larger than field-hares Mem: Fox of Highland 110 20-23m/20-22u "Schwung|Truthühnern"/ $23 w$ Musk duck 25-29m/29u "Gloger" $33 u$ "S.109"/30-33w toes \& membrane (a) $w b$ p109 Alludes to different figures of Mountain \& plain cattle $1115 w$ (a) 19-20u "bisl Werfen"/ $18-25 \mathrm{~m} / \mathrm{w}$ tame cows more milk than wild: organs adapt themselves $34-36 \mathrm{~m} / \mathrm{w}$ (b) $40 \mathrm{~m} / \mathrm{w}$ Greyhounds in Mexico $112 \mathrm{5u}$ "Scheue" $\mid 4-8 w$ domestic animals loose cunning $1134-14 m / w$ case of dog walking on hind legs $18-24 w$ Beavers difference when single \& in company $26 \mathrm{~m} / \mathrm{w}$ (a) $28-30 \mathrm{~m} / \mathrm{w}$ Ducks 115 23-33w original temper \&c of wild dogs different $11614 u$ "Menetries", $41 \mathrm{~m} / \mathrm{u}$ "Isis 1832" $39 w$?read? 117 wt So Rabbit in Falklands, Horse in La Plata Latent
instincts.- 1-12 \rightarrow, $13-16 \mathrm{~m} / \mathrm{w}$ Young wild Cuba dogs reared are tame !! $25-26 m, 33-$ $34 \mathrm{~m} / \mathrm{u}$ "Aber 1 mögen" $/ \mathrm{w}$!! No $40-41 \mathrm{~m} / \mathrm{u}$ "HopkirklIsis 1819" 118 3-6m/w understand? $9-10 \mathrm{~m} / 9-15 \mathrm{w}$ sports on single branches hereditary (a) $21-23 \mathrm{~m} / \mathrm{w}$ (a)(a) 119 $2-8 m / 5 w$ (a) $11-17 \mathrm{~m} / 13-14 u$ "dass 1 vor-komme"/12-17w (b) not understand $20 u$ "1790"/21un/20-23w ? Dahlia history of 30$33 w$ flowers of two colours on 1 plant 33-34u "D. Itrug", $34-38 \mathrm{~m} / \mathrm{w}$ sported extraordinarily $39 m 120$ wt First affected single parts, then all parts of plants but in less degree $1-2 \mathrm{~m}$, $4-6 m / 4 u$ " 6 ' -7 " " $/ 5 u$ " 3 ' $-4^{\prime \prime} / 3-5 w$ by selection $7-12 w$ period of flowering earlier 42-44m, wb (on Cabbage-varieties) $12122-32 \mathrm{~m}, 22-25 \mathrm{w}$ weeping Ash hereditary $29 w$ not hereditary $31-34 w$ Weeping Peach hereditary Qw, $38 \mathrm{~m} /$ u "Versuch 1 Monographie"/w Potatoes 41$44 m \mathrm{~m} 12211-19 \mathrm{~m} / \mathrm{w}$ cases of leaves soldered up like Nepenthes 123 2-3m/wr, 5$9 m / 6 w$ (a) $10-11 u$ "eines 1 Weiss", $13-14 m / u$ "rothgefärbten IJahre", $14 w$ Geranium Dianth $20 w$ (b) $41 \mathrm{~m} / \mathrm{w}$ (a) $42-43 \mathrm{~m} / \mathrm{w}$ (b) $45 \mathrm{~m} / u$ "Ann.|XX"/w Oranges $12421-22 u \leftrightarrow / w$ (a) $23-26 \mathrm{~m} / 24 w$ (b) $w b$ (b) very curious, seedling became smooth instead of hairy; but it was found in ensuing summer, that it was hairy in spring \& smooth later in summer 127 20-22m/w (a) 23-24m, 45-46m/ wb Dog cases 128 34-35m, 39m (Blumenbach), wb skull of tufted Holland-Hen monstrous bladder of bone (yet sexual) 129 15-16m/16u "mehrerlKnochen", 42-44m 130 $1-3 m / 2 w$ (a) $12 m / 13 u$ "Schlegel" $/ w$ (b) 14$23 \mathrm{~m} / \mathrm{w}$ some moveable part in tortoise variable $25-30 \mathrm{~m} / \mathrm{w}$ These genera of Bell only monsters $33-36 \mathrm{~m} / \mathrm{w}$ (D) $37-38 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{w}$ (D) $131 \Uparrow 12-10 \mathrm{~m} / \mathrm{w}$ (a) 132 wt Now see whether number varies in different species $3-5 m$, 6$12 m / 8 w$ (a) $16 u$ "Lambert" $/ 16-19 w$ skin with spines $21-22 \mathrm{~m} / u \leftrightarrow, 31-33 \mathrm{~m} / \mathrm{w}$ (b) $35-37 \mathrm{~m} /$ Q α_{0} / w (D) $39 m, 42 m / w$ (D) $13322 w$ (a) 135 15-16w not cross! $17 u$ "Pelargonium" $/ 18 u \leftrightarrow /$ 17-18!!, 18-21m/w Herbert $26-30 \mathrm{~m} / 27 \mathrm{w}$ (a) 36-37m/w (B) $1369 u$ a, $11 u$ "deren I fruchtbar", 24-39m, $33-35 u \pm / w$ (a) 42-43u "den 1 Petropolitanae" $/ w$ (a) $\pi 2-1 m / u / w b$ Novi Commentarii? 137 44-46m/? 138 1-12w Herschel experiments appear valueless to me $34 \mathrm{~m} / \mathrm{w}$ What result $14031 u$ "Dr Gärtner", 43-46m $1411 u$ "oft l leicht", $10-13 \mathrm{~m}, 10-14 \mathrm{~m}$, 13-14m, 13-15u "keineswegs $\mid A$ " $/ w$ seldom so many seed as in pure cross (a)(b) $21-25 \mathrm{~m} / \mathrm{w}$ all changes take place more slowly 26$29 u \leftrightarrow$, $31 u$ " 600 I $30 " 1445 w$ (a) 17-18u "Alle I praecox", 25-26w Monocotyledon 26$34 m, 36 m, 38 m, 39-40 m, 43-46 m / w$ Amaryllis
$1451-10 \mathrm{~m} / \mathrm{wt} / 1-10 w$ all sterile except 2 cases, as are pure Amaryllis on account of tending to bulbs; How does Herbert find this? $40-45 \mathrm{~m} / \mathrm{w}$ Look to Passiflora Rosa 146 $16-35 \mathrm{~m} / 28 \mathrm{w}$ (a) $37-42 \mathrm{~m} / \mathrm{w} 1824$ to $348 £$. Bailliere $1471-2 m, 4-6 \mathrm{~m} / \mathrm{w}$ (b) $10-11 \mathrm{~m}, 38-$ $42 \mathrm{~m} / \mathrm{w}$ (b)(b) $\uparrow 5-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ tendency to monstrosity; is not this like large fruit of Pears 148 wt Most often sterile on male side $1 u$ "am häufigsten", $2 \mathrm{~m}, 10-17 \mathrm{~m} / \mathrm{w}$ greater * vegetation power of hybrids $1527-12 \mathrm{~m} / 9 \mathrm{w}$ (a) $38 \mathrm{~m} / \mathrm{w}$ В $47 \mathrm{~m} 1534 u$ "Henschel", 5-7m, $44 u$ "Nielzeigten", wb Hybrids never intermediate as in Koelreuters !! V p. 138 $1549 u$ "Gärtner", 22-25m, 27Q, 29-30u "einzelne | Vater" $/ 22-31 w$ Fruit never affected by a cross in the plant itself $36-37 \mathrm{~m} / \mathrm{u}$ "kommt 1 überein", 41-42m, $43 m \star$, wb effects of crossing varieties exceedingly uncertain $1551-20 w$ History of variation of mongrel maize, not very important $30-33 \mathrm{~m} / 31 \mathrm{w}$ (a) 38-41m/39w (B) 43-44m, 45m/w Gartner 156 $1-5 m / 2 w$ (a) $7-9 m / 8 w$ (B) $26 u$ "genannten", 27-30m, 27-28u "ganzenlForm", 30 u "Saamenstaub \mid Früchte", 35-37m, 36-40m, 36u, $w b$ Grt fertility of Hybrid Passiflora than with own pollen 157 29-31w wild Hybrids $40 \mathrm{~m} / \mathrm{w}$ Authority for all 158 wt/1-10w How curious the number of natural Hybrids in Gentianella \& Verbascum \& Conicus I doubt whether some of them are not varieties \& Zygaena in insects $11-12 u$ "dass 1 verband", 13-19m, 18$21 m, 18 u$ "hat \mid Mutter", $18 u$ "Charaktere", $19 u$ "Kelchlausgenommen", $\quad 14.27 \mathrm{~m} / \mathrm{w}$ some character like one parent \& some like other 22-23u "in Iden", 31-32u "scheint 1 unfruchtbar", 36u "Fruktifikation I Vaters", 37u "es \mid Saamen" 159 13-16u "Habitus 1 spuria", 16u "Fähigkeit ISaamen" $28 u$ "Die ICharakter", $37 u / w \tau$, 39-40u/w $160 w t / 1 u$ "auszubilden"/1$4 w$ parents must live together $5-8 w$ L. marshy fields $6 u n, 11-12 u$ "bald \mid Mittel" $\mid 22 u$ "häufig|ähnlicher"/9-25w are not these varieties? they are fertile 29[... $1611-3 m$, 1ua $16214 w \tau, 17-42 w$ curious case of change,- but possibly a hybrid - (not like the Asphodelus case. of Linn Soc) for it has a seedling, 14-15u "angebliche Verwandlung", $21 u$ "blühete|zinnoberroth", $22 u$ "purpurrothen", 25-26u "blüheten IStreifen", $30 u$ "aberlals", 39u "Schneevogt|zwar", 44m 163 8-14m $1643-6 \mathrm{~m} / 4 \mathrm{w}$ (a), $9-11 \mathrm{~m}, 12-13 \mathrm{~m} / \mathrm{w}$ (d) $16-17 \mathrm{~m} / \mathrm{w}$ (e) $19-20 \mathrm{~m} / \mathrm{w}$ (f) $22-23 \mathrm{w}$ She-wolf or dog, 22-23u, 25m/w (h) 31-32Q/33-34w p $13235-38 m / 27-37 w$ are these species? $40 \mathrm{~m} \bullet, 42 \mathrm{~m} 16514-15 \mathrm{~m} / \mathrm{w}$ Bechstein!!! $17 \mathrm{~m} / \mathrm{w}$ * minute account $18 \mathrm{~m} / \mathrm{w}$ minute account! $25 m, 37 m, 45 m 1665-6 \mathrm{Q} / 6 m, 10 w 112 w 2$

BRONN，HANDBUCH
$16 w 6,19 w 916810 u \leftrightarrow / w t$ Peculiarity which comes on with age，are hereditary at same age $w t / 1-9 w$ self－acquired peculiarities scarcely ever transmitted ！！， $8 u$＂allen 1 zwischen＂， $13-16 \mathrm{~m} / \mathrm{w}$ sex determined by strength \＆age of parent $27-30 \mathrm{w}$ on sex of offspring $16914 u$＂Varietäten－Kreutzung＂$/ w$ intermediate $16 w$（B） $18-20 w$ varying when parents vary $21-25 u \pm 170 \quad w t / f i g . w \quad 8$ generations transform one race to another （so Kolreuter says in Species？）Q屯 8－9u↔， 10－11Qas， $15-19 m / 20 u a / 13-20 \mathrm{w}$ strong case of sheep taking after rams ie sex．23－33w cases of odd hereditariness not intermediate in claws \＆horns $28-30 u \leftrightarrow, 32 u$＂gehörnte Kuh＂， $32 u$＂ohne Hörner＂， 33 u＂stall 1 Hörner＂ 171 2－5u士，14－15m，27－29u＂Ein Nachkommen＂，31－32m， $32 u$＂Godine＂， $32 u$ ＂vorzugsweise！gleichen＂，44－45m，45wt，wb Probably good，as he trusts to numbers （Read） $1721-2 u \leftrightarrow, 4-10 m / 6 w$（a） $11-12 w$ Royston \＆Carrion Crows $12-13 u \leftrightarrow, 15 u$ ＂aber $\$ Fällen＂， $16 u / w \tau, 14-20 w$ Q considers them as varieties Newman must be consulted． $24 w$ B $24-26 u \leftrightarrow / 27 w$（e） $34-35 u \pm$ ， $43 m, 44 m 17312 w$ Fish $14 u$＂beruhet \mid von＂， $20 w$ female 174 8－9ua，13－14u＂viele lJunge＂， $28-30 u \pm, 33 u / w \tau, 39 u$＂auch｜legen＂， $42 u$ ＂keine Eyer＂ $17518 u / w \tau$ ， $24 u / w \tau$ ， $32 u$ ＂gleichen｜alle＂，33－35m／34u＂einlähnlicher＂， 34－35u＂ein｜ähnlicher＂， $35 u$＂zuletzt｜ zwischen＂$/ 33-39 w$ is this not effect of which bird is father or mother， $43 u$＂sind fruchtbar＂ 176 10u＂sechs 1 Mutter＂／10－12w Lumbar vertebrae $17 u$＂doch｜beiderlei＂，29－31u士 177 $14-16 m, 27-40 m / 28-45 w 3$ Hybrid wolf－dogs from one litter differed in form \＆instincts： female bore young to a hound $28 u$＂war menschenscher＂，30u＂Kopf＂，39u＂andern｜ Kreutzung＂ $1781-5 m / w$ other cases of dissimilar hybrids $5 u$＂Charakter＂， $5 u$ ＂sanfter＂， $9 u$＂nurlzeigen＂，19－40w Minute account of hybrid of Cat \＆Martin not infrequent－seen in copulation！！ $17910-32 \mathrm{~m} /$ 18－20w A，38－39u＂sich lausgemacht＂／34－40w Crosses of Canaries \＆Finches breed with one parent $\Uparrow 2 m / w$ See to this $\Uparrow 1 m / w$ About breeding of Musk \＆common Duck wb A history of hybrid of canary \＆goldfinch hybrids wb Says the Hybrids of Musk \＆ Common Duck can breed． $1815-10 \mathrm{~m} / \mathrm{w}$ Hereditariness of extra fingers 10－34w How wonderful！the cell shd have such power Often good instance of peculiarity appearing in grandchild．－ 182 1－28w Much of my sort of argument about return to parent－forms－30－ $34 m, 35-38 w$ Crow cases $42 u \wedge / 40-43 \mathrm{~m} / \mathrm{w}$ Koelreuters case 183 wt （my remark）2－5m／w
reasons in circle $23-27 m / 23 w$ remark，$w b$ cases，as sixfingered or case where only one parent has peculiarity ought to make one cautious about saying there is so strong a tendency to return to parent form．184 5－6u ＂216｜Pferden＂／8u＂nur 1 Junge＂／ $15 u / 5-14 w$ only 11 out of 216 pairs produced foals of different colours（b） $23 w$（D） $24-25 u$＂dass scheine＂｜！ 185 13－24w account of what selection \＆crossing have done like my skeleton $30-33 \mathrm{~m} / 32 \mathrm{w}$（a）， $35-41 \mathrm{~m} / 35-45 \mathrm{w}$ mutilation hard to inherit yet believes in tailless dogs from this cause！！ $47 m, 22-23 u$ ＂gehörnten｜zurückschlägt＂／wb which did not go back：no wild permanent vars go back $18612-15 m / 13 w$（b） $17-18 m / w$（a） $21-23 \mathrm{~m} / \mathrm{w}$ （e） $24 u$＂ S .190 ＂， $26-30 \mathrm{~m} / \mathrm{w}$ race of one horned wild stags $37 u$＂Gmelins＂，wb（a） some species resisted culture for $2-3$ years －but with proper culture returned to parent－ form－ $1875 m / w t / 1-5 w$ perhaps often cross now with dogs if inhabitant \＆so with horses． 10－11u＂aber I Rassen＂， 15 u＂Schomburgk＂｜16u ＂nach I Ohren＂$/ 13-15 m / 12-17 w$ wild dogs in 1st generation tame $29-33 \mathrm{~m} / \mathrm{w}$ seems to think new species are formed． $1886 u$ ＂Brehm＇s＂，30－32m，33－35m，33－34u＂nach｜ paart＂， $35 u$＊， $37-39 \mathrm{~m} / 38-39 w$ Brehm subspecies $1891-28 w / w t$ These sub－species are not exclusively geographical vars or species $5-18 m / 16 u \wedge / 18 u$＂aus \mid diese＂$/ 7-15 w$ case where Brehm splits old species into 2 $19 u$＂tinnunculus ${ }^{\text {einen＂，}} 19-30 w 4$ sub－ species（See Gould）Bronn seems to consider them varieties $30 u$＂Sie \mid Klima＂， $34 u$ ＂meisten｜Jäger＂， $35 u / w \tau$ ， $38 u$＂nach｜und＂，39－ $42 m / 39 u$ a／$/ 40-41 u$＂Bär 1 Striche＂ $1903 u$ ＂nach 1 Couche＂$/ w t$ Must see to this． $1-2 m / w$ Hares differ $3-6 m / w$ White Hare $33-37 m / 35 w$ a $39 m, 41 m, w b$ Slow geological change important because domestication shows slowness $191 w b$ I begin to suspect too slow， except in sudden immigrants x－In this case we have fewness of number，sudden change，（in organism \＆external conditions）， but on other hand not many to select from．－ especially changing island．－ $1921-33 w$ seems to think that some species may be varieties 193 11－12u＂viele｜Spezies＂／w tortoise－genus， $41 \mathrm{~m} 19523-26 m, 24-25 u \leftrightarrow$ 202 19－21m，32－35m／w double creations probable $w b$ remarks that 2 must have been created of bisexual animals－［Multiple Creations must not be treated dogmatically］ 203 14m／u＂Candolle Sohn＂，15－21m／w believes whole surface covered with new species $20426-29 m 210$ wt plants distributed along rivers $1-3 m, 32 u$＂ 71 Meilen＂$/ 30-35 m / w$

Horses swim 211 33wt, 34-35u↔/w whether same one does not know $2161-29 w$ in certain periods animals congregate \& migrate in no fixed direction or fixed time hard to explain $31-34 m / 33 u$ "O.1W.", 35$36 \mathrm{~m} / \mathrm{w}$ (a) $w b$ (a) In these cases Congregating always announces intention to migrate, though when in years, when number not great, there is no tendency to congregate 222 29-39w congregate \& migrate, when food \&c fails in own country 223 17-18m 224 16-18w Lost Turtles 26-31w Lost birds on continents $2253-4 m, 30-32 m$, $40 \mathrm{~m}, 41 \mathrm{~m} 2266-15 \mathrm{~m} / \mathrm{w}$ Eggs of mollusca may be attached * fuci \& wood 227 wt x said that maize was floated to Japan 1-2m/w x 229 wt (a) quadrupeds carried on ice may transport seeds- $3-13 \mathrm{~m}, 6-10 \mathrm{w}$ (a) White Bears. Wolves. $15-21 \mathrm{~m} / \mathrm{w}$ Bone washed to Greenland on ice so cd seeds $38 u / w \tau 230$ $11-13 m, 28-40 w$ if Storm Petrel so often blown inland, other birds might be blown to sea $w b$ The real cause of surprise in birds, insects \& light seeds, that not more distributed. 231 19-24m/23u "leichterl schliessen" $/ 22 w$ (a) wb distance to wh. pollen is carried bears on seed transportation 232 $2-20 \mathrm{~m} / 2 u$ "Lupinen" $4-10 \mathrm{w}$ cases of pollenshowers $18 u$ "vor 1 Feldarbeiter" $16-25 w$ This bears on seeds. Meteoric paper of Coniferae.- $233 z b 2343-5 w$ rain of seeds 9$11 \mathrm{~m} / 11 u$ "dielwaren", $14-18 \mathrm{~m} / 18 u$ "zuml Art" $114-20 \mathrm{w}$ corn raised in Africa fell in Spain $15 u / w \tau, 21 \mathrm{~m} / \mathrm{u}$ "Schleffen", $41 \mathrm{~m} / \mathrm{w}$ Read 42m/u "und 217 ", $43 m 23532 m 236$ 16-21w Crab \& Fish Rain 237 7-10w Fish Rain $14 u$ "zweillebend", 27u "Fischen|Fröschen", 28u "und|lebend", $29 u$ "lebend" 238 9-11m, 12$15 w$ Frog Rain 241 15-19w Fish eggs perhaps stick to Birds $20 u$ " 50 I Genera", $21 u$ "mit \mid Saamen", $26-31 \mathrm{~m} / \mathrm{w}$ amount of birds with seeds killed by others $24527-28 m, 29 m$, $37 \mathrm{~m}, ~ 41 \mathrm{~m}, ~ 42 \mathrm{~m} \leftrightarrow 246$ 14-15u↔/5-20w ?? shells in America \& Pacific $25-28 m / 26-27 u$ "ziemlich|besitzen", $37 \mathrm{~m}, 39-40 \mathrm{~m} 2478 u$ ه, $9-11 w$ wider genera $13 u \uparrow, 18-19 u \leftrightarrow, 26 u$ "385Ivon", 31u "nurlArten", 33-35m, 33u "701590", 40-41m 248 6-7m, 9-11m, 19-20u "unter|Europa", 27u "Ursus|Fischotter", 28$32 m / 29 u$ "beiden Wiesel"/29-30w two weasels $37 \mathrm{~m}, 43 \mathrm{~m} 24923 u$ "reicher ist" $\mid 24 u$ " $j e l$ seine") 23-28w Hooker says no no! N. Zealand 251 $24 \mathrm{~m} / \mathrm{u}$ "22| Reiche", 41m 252 5-6m, 7-8m, 17u "Fischen"/18u "Korallen gemein"/19u "500"/ $20 u$ " 32 " $/ 17-21 m / 15-27 w$ Red Sea \& Mediterranean Phillipines make shells more in common $36 m 253$ 11-16w climate of mountain tops differ much from Polar

Regions $25417 w$ in $48^{\circ} w b$ Snow regions of Alps only 12 phanerogam whereas Melville Isids \& Spitzbergen much richer $2555 w$ exclusively confined not peculiar $\ddagger w$ Heer on insects of Alps.- *The number of peculiar insects appear very small at the great heights - most peculiar species at bottom $25624-27 m / 25 w$ (a) $w b$ (a) Larger the continent, larger the animals - Australia \& S America contrasted with Java \& Borneo !!! 272 wt Duration of seeds $27338-42 m / w$ old seeds reviving $278 \quad 25 u$ "Spallanzani's Versuchen" $/ 25-31 w$ no fish eggs keep more than 2 months dry $\Uparrow 2 m, \Uparrow 1 m$, wb account of a disconnected pool annually dry \& annually repeopled with Fish $28416 u \leftrightarrow / 14-18 m / w$ Less propagating powers by ostriches !! wolves !! $\times 19-21 w$ because not destroyed $29 u$ "ihres hundert" $/ 28-34 w$ number of seeds from a 1000 year old trees $w b \times$ number of eggs compensate viability chance of destruction in full grown state \& youthful state \& egg state $28518-19 \mathrm{~m}$, 18 un , 19un, 29u*, 30un, 31u^, 32u^, 33un, $42 u$ "PolygamiclHuilhner", wb How evident protection of womb does in place of many eggs (yet rats) 286 11u "Feldmaus", $12 u$ " 5110 ", 15-21m, 19m, 34u "27 Jahre", 35u "40008000", $36 u$ "35.444"/wt, $37 u$ " 65.1 Besitznahme", wb One is always astonished at geometrical increases $2872 a$ "Rudel" flocks $1-2 m, 40-42 m / u$ "Lyell's Principles of Geology" 288 38-41w impregnation 42-45m, 42u , $43 u \star 2937 u \star, 8-9 w$ destruction of forests 11-18m, 22u/w 294 5-10w Forests destroyed wb To see what injury horses do \& sheep to young plants I have often wondered how anything grows up 296 11m 297 1-3m, 17u "von I Engl.", $18 u$ "land einwärts", $18 u$ " 200 ", 38u^, 39m, 39u "den 1 unmöglich", 43-45m 299 29-32m, 29u "Rennthiere", 31a "Drittel"/u "solstirbt" 300 32-36m, 33u "Feld|Maus", $35 u$ "bedeutende junge" $301 \quad 15-19 \mathrm{~m} / \mathrm{w}$ Epidermis in Caterpillars 302 6m, $42 u 303 w t$ Weasels increased $1 u$ "Wiesel", $2 u$ "Mäuse" $50525-28 m / 25 w$ (a) $w b$ (a) all these great causes given of extinction, yet none of these apply to rarity \& therefore (with exceptions) to extinction

BRONN, Heinrich Georg Morphologische Studien über die Gestaltungs-Gesetze der Naturkörper Leipzig und Heidelberg; 1858 [CUL, I]
$40910-11 w \tau$, $13-16 m$, $19 w$ no $19 u$ "bisher gänzlich entgangen"

BRONN, Heinrich Georg Untersuchungen über die Entwickelungs-Gesetze der organischen Welt Stuttgart; E. Schweizerbart; 1858 [CUL]

SB - p78 Oken Grant 1835 use my copy d'Alton, Unger 1852; p. 80 ?
$7936 m 8034-37 m$, $34 w \tau$
BROOKES, Richard The natural history of insects London; J. Newbery; 1763 [CUL, preB, S]

BROOKES, Richard The natural history of waters, earths, stones, fossils and minerals London; J. Newbery; 1763 [CUL, pre-B, S]
$\left\langle w \varkappa_{0}\right.$ not $C D$; give melting-temperatures of various metals; u mainly names of metals]
iv $34-37 w, 34 u$ v $26-28 w$, $26 u$ xxiv $27-30 w$, $27 u$ xxvi 19-26w, 19u $258 u, 9 u, 13 u$, $30 u 26$ $4 u 98$ 26-31w, 29u, 29a $10215 w 11015 w 111$ 5-10w, 8u $11431 w, 31 u, 32-38 w, 37 u 1162-$ 3u, 2-5w 117 3-9w, 3u 122 38-41w, 38u 128 $15-16 w, 15 u, 23-24 w$

BROUGHAM, Henry, Lord Dissertations on subjects of science connected with natural theology 2 vols.; London; C. Knight \& Co.; 1839 [CUL]
ad, beh, br, ch, cs, fo, h, hl, no, oo, phy, sh, $\mathrm{sl}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{y}$
vol. 1 NB1 is there anything odd in the nidification of Penguin Duck.- M. Miller says so - we want cases of this
N.B. some birds feed their young with different food from what they eat themselves - this paves the way for explaining habits of solitary wasp, * in this book considered good plan thus to take one example.-
Ask Fox to obtain information about Tumbler Pidgeons. cross them.-
NB2 1 all to 54; 70; 77; 79; 84; 91; 102; 107; 108; 116; 119; 123; 121, 122 to 134 to 138 to to 143 to $155 \rightarrow 161,167 ; 179 ; 188 ;$ 196; 203, $204 \rightarrow$ 208; 216- Journal =; 267; 244; 332
SB $\square \beta$
Q 17 Case of solitary wasp feeding young with spiders \& caterpillars. good better than Birds feeding different food
Q 28 Brougham definition of instinct [Insects life too short for much experience or gained habit]. Though habit may do something for higher animals not needed for most complex instincts
Q 30 Instinct - (47 do \& , 52) 70, 203
Q 77 Mathematical work to show how perfect the Bees cell is 79 contrast with man making a plan - p. 244.

Q 117 good instinct - chicken pecking circle inside shell cannot be an habitual action; 208 young alligator snapping/ Chicken seeing, walking, pecking at early youth reflex continued
Q 124 Intelligence
196 On Abstraction in animals Q 219 On the form of Bee Cells All Q
$711-17 m 8$ wt therefore growth an instinct!! $5-7 m 9$ wt or rather apparently voluntary analogy from ourselves would lead one to consider voluntary $2-3 m 1111-15 m 15$ 介11$1 m 17$ wt in whatever way I create my instincts \& habits, or changes in brain's structure, the instincts must have been formed step by step on account of effects of crossing 19-25m, wb excessively hard to account by habit - $244-12 m$, $5 u$ "inl number" $281-7 m / w / w t$ this hardly applies to S. American horse cantering wb Yes the gratification of an habitual action.- or even without it, but disagreeableness of prevented - One sees this in dogs - 29 16-21m/17-23w but why does she like half killing them 30 wt Spallanzani \& the Bat is good to exemplify what I mean 1-2m, $5 u$ "instant" $/ 5-7 w$ false in Bees $7-12 w$ Here is common confusion of means $3212 u$ "cylindrical cells"|? 33 15-25m 42 19-25m 43 1-12m 47 13-23m/w no retriever action does not apply to it $22-25 \mathrm{~m} /$? 48 wt Yet S American Horse cantering * would be called instinctive. ? will not my definition, of that which, according to our own consciousness, wontO be done with deliberation. 1-6m 51 14-18m/Q 52 10-18m, $21-25 m, w b$ is it not that most instincts happen to have some end in view? $70 \Uparrow 5-$ $1 m, w b$ applicable to habit $77 w t$ very wonderful - it is as wonderful in the mind as certain adaptations in the body - the eye for instance, if my theory explains one it may explain other. 2-17m 79 5-25m, wb some wax-working woman worked under a cloth, \& so made likeness by touch $8421-25 m$, $w b$ take the case of chicken being born with powers of sight, which man only acquires slowly - we can see no reason why man shd not be born so - this might be worked into good case $851-19 m, w b$ also lamb walking \& baby not - the movements of lamb in womb could never teach it to balance body - an act which must be most difficult 91 12-14m 102 10-25m 107 12-22m 108 18-25m, wb Casarita boring through mud walls - swallows building on wet places 116 1-13m 117 15-24m/21-22u "and lend"|23-
$25 m / 16-21 w$ hard to account by my theory $12112-18 m, w b$ Blackwall has seen same thing $1224-25 w$ the blindest instinct, birds building nests, is somewhat adapted to circumstances 22-24m, wb I am surprised at this being called intelligence $1238-17 \mathrm{~m} / 9-$ $10 w$ See Rengger $1243-6 m / 4-5 w$ Yes Rengger $w b$. 125 3-7m, 8-12m 134 22-25m 137 14-25m/23w/wb Blackwall - No 139 13$25 m 1401-11 m 143 \mathrm{wt} \mathrm{x}$ it is a faculty $5 u$ "examined 1 Instinct" $/ 4-7 \mathrm{~m} / \mathrm{w}$ very false $\times 19$ 21m 145 19-25m 146 1-7m 147 22-25m 155 12-14m 161 17-25m 167 11-25m 179 6-10m, $14-23 m, w b$ always compare savages 188 23-25m 189 2-5m, 13-18m/15u "which1 kindred", wb Have animals taste? dogs like looking out of window $1968-19 m / 13-14 w$ dont understand $1973-7 m, 3-25^{\prime \prime} . .{ }^{\prime \prime}$, $5 u$ "Judgment | Reasoning", $9-25 m \quad 199$ wt Rengger shows that monkeys domineer over dogs, like men over other animals 203 15$18 m 2046-11 m 20814-17 m 2161-6 m 222$ 18-21m $225 \quad 2-4 m 229 \quad 20-25 m 231$ 13-15m 233 14-22m 235 17u "trihedral" 241 11-15m $2447-19 m / 11-12 u \pm / 11 w w_{0} / 12-13 w a c$ astonishing on my Th. that infinite attempts should have reached that perfection which mathematics requires - this instinct has same relation to geometry, which the eye has to optics $2458-11 \mathrm{~m} / 8-9 u$ "not \mid rhombus" 264 18-20m 265 1-2m/1u "but |three" 267 1118 m 270 10-16m 278 9-14m 279 10-15m 332 $9-13 \mathrm{~m} / \mathrm{w}$ the instincts of young Cuckoo are like those of larva $w b$ The instincts of the young of anims are probably remnants of instincts of ancient larva-state
\wp
vol. 2 NF S
NB 52; 56; 65; 66; 84; 108; 183
SB $\square \beta$
84 Rattle of Rattle-snake; if given to paralize prey by fear useful; not given to warn animals - go on to say Trigonocephalus to show case.- Ch. 9 108 Vis Medicatrix

52 11-18m 56 wt Man's mammae !! abortive wings, under * united wing-cases !! 1-8m, 13-26m 65 13-23m, wb Preservation of life! 66 1-15m $845-10 \mathrm{~m} / \mathrm{w}$ curious instance of injurious structure $1081-25 \mathrm{~m} 109$ 1-13m 183 $w b / \uparrow w$ How many times have shells been changed in Europe since Eocene? Mammals probably greater number. \& how many at present \& how many during Eocene - We might calculate how many have lived in Europe alone yet only 160 have been found fossil

BROUN, Thomas Manual of the New Zealand Coleoptera Wellington; James Hughes; 1880 [Down]

BROWN, Robert The miscellaneous botanical works 2 vols and vol. of plates; London; The Ray Society; 1866-1868 [Down]
vol. 1 §
vol. $2 \wp$
273 3-5m 278 16-21m, 33-37m, 37"... 279 wt -, $1-3 \mathrm{~m} / 1 \mathrm{u}$ "some confidence", $6-8 \mathrm{~m}, 12-14 \mathrm{~m}$ 281 2-4m
\wp
BROWNE, James Crichton The West Riding lunatic asylum medical reports London; J. \& A. Churchill; 1871-1875 [CUL]
beh, ds, phy, sx
vol. 1 NB 95 Blushing; 8 Death of males important for Descent
85-12m, 13-15m
\wp
95 27-28u "nitrite of amyl", 29-33m, 33u "bright|face", $34-36 \mathrm{~m}, 38-39 \mathrm{~m}, 45 \mathrm{~m} 965-7 \mathrm{~m} /$ $5 u$ "eyes lexcited" $9732-39 m, 40-44 m$ \wp
vol. 2 NB for Cicuta p5 or Conium Maculatum $\langle u \otimes\rangle$
$27 *$ Conia acts on the Motor centres of the Brain but I tried HyosycamusO
81 Poisons in animals \& vegetables
297 Singing preserved when voice lost - Drosera
v $13 m, 15 m, 22 m, 27 m$ vi $3 m 271-2 m / u$ "firstly|periphery" 81 20-23m/22-24w Frank has shown $39 m 8214-18 m, 17-20 m$ (G. Harley) 83 6-13m, 29-34m 8420 m 297 16$17 m / 10-21 w \mathrm{Dr} \mathrm{J}$ Crichton Browne 31-33m/ $32 u$ "to sing"
vol. 5 NB O/
vii $4 m, 8 m, 10 m, 17 m, 19 m, 27 m, 31 m$
BRUGUIÈRES, Jean Guillaume Encyclopédie Méthodique - histoire naturelle des vers 1 vol in 2 parts; Paris; Panckoucke; 1789-1792 [CUL, pre-B]
v
vol. 1 part 1 title page "sixième" corrected to premier 163b $13 u / w_{\text {a }}$ 164a $15 u \wedge, 49-55 w$ B. not tulipe? 164b 27u^ 165a 32u^ 166a 29$33 m, 29 u$ a $/ 39-41 w$ var. B. balanoides 166 b $35 u / w$ var. tintarly $56 u \uparrow$ 167a $13-15 w$ var. lentenabulus 167 b 21u 168a $1-2 m, 12 u$ a 168b 1-2?, 31-32m 169b 19un 170a $6-8 \mathrm{~m} /$

BRUGUIÈRES
$8 u \uparrow / 6-9 w$ Probably a ChthanalusO 23-24m 170b 35-38w Conia? Tetradila serrata? 171a 18u^172a 38u^305 $2 m$

BRUNTON, Thomas Lauder The Bible and science London; Macmillan \& Co.; 1881 [Down, I] \wp

BRUNTON, Thomas Lauder On digitalis, with some observations on the urine London; John Churchill \& Sons; 1868 [Down, I] \wp

BRUNTON, Thomas Lauder Pharmacology \mathcal{E} therapeutics London; Macmillan \& Co.; 1880 [Down, I]

BUCH, Leopold von Description physique des Îles Canaries, suivie d'une indication des principaux volcans $d u$ globe Paris; F.G. Levrault; 1836; trans. C. Boulanger [CUL] geo, ve

NF Etna albite lava also produce pumice. p. 328
NB - See Burney - for Shortland world Solomon Isld -
155 25-28m 156 14-17m 159 17-18m, 21$31 \mathrm{~m} 1629-22 \mathrm{~m}, 11-17 \mathrm{~m}$, $31-35 \mathrm{~m} 1631-4 m$, $6-13 m, 29-35 m, 29-31 m 16827-33 m \mathrm{~m}_{0} 1703-$ $6 m * 23-27 \mathrm{~m} 17124-31 \mathrm{~m}$ 173 7-18m, 3135m 178 4-13ma 181 12-18m 182 31$33 m{ }^{183} 32-35 m / 32 u$ "écailles striées" 1841 $18 m 1851-5 m 19015-20 m, 30-35 m 191$ 12$17 \mathrm{~m}, 18-22 \mathrm{~m} / \mathrm{w}$ (A) $19213-22 m \mathrm{~m}_{\mathrm{a}} 193$ 28$35 m \varlimsup_{0} 196$ 22-35m* 197 9-15m/11u* 200 6-16m $2013 a$ "l'autre" (of W) 1-9m, 1-13ma, 20-22m, 20-23m 202 15-19m*, 30-33m 206 20-25m/! 207 15-16z 212 19-23m 215 14$17 \mathrm{~m} 21628-35 m \mathrm{~m}_{0} 27725-28 \mathrm{~m} 283$ 15-19m, 26-29m 293 24-35m, 30-35m* 294 1-10m 295 $12-28 m, 28-35 m 3005-21 m 3238-17 m 3241-$ $4 m 327$ 1-2m, 21-22m, 31-33m $3281 m 3291-$ $3 m, 14-16 m 33327-30 m, 31-32 m 33422-25 m$, 34-35m 335 1-3m, 7-8m 336 9-11m 339 29$35 m$ (E. de Beaumont) 340 1-2m 342 13-18m 343 33-35m 346 1-3m 349 31-34m 350 1-3m, 5-6z, 11-14m, 15-16m 351 7-10m 354 24-27m 355 3-6m 356 20-23m, 22-25m 358 35"...屯 359 9..." 373 16m $3747-11 m 386$ 11a "Island" Same as Amargura Krusenstern 392 31$34 m \varkappa_{0} 3931-10 m$ * 398 6-10m 400 10-15m 403 10c "Ouest"/10w east $40430-34 m$, 31$35 m 4052 m / 3-7 m / 2 w$ Mathews Rock 406 15$17 m, 24-30 m 407$ 10-14m, $17 w$ Lava 32-34m 409 5-8m 411 29-35m 412 1-3m, 13-15m, 21$27 m, 29-32 m 413$ 20-25m 415 11-14m, 27$31 m 4165-7 m 418$ 17-20m $4191-3 m, 30-32 m$,

34-35m 422 1-3m, 1-2m, 17-23m, 33-35m 423 32-35m/Q/33-35m 424 1-2m, 27-29m 425 15$18 m, 19-21 m, 34-35 m 4261-2 m, 33-35 m 427$ $1-3 m 428$ 9-14m, 9-14m 429 18-22m 430 2327 m 435 9-11m 442 6-11m 443 2-8m 446 17$21 m 45026-31 m 4518-13 m, 13-17 m 452$ 13$20 m$, 22-25m 455 1-12m 456 17-24m 457 1$6 m 4581-7 m 4606-13 m, 24-29 m 4661-25 m$ 467 1-26m, 29-31w Valparaiso Earthquake $30 m, 33-35 m 46926-33 m 47025-34 m 471$ 1$4 m, 7-11 m, 12-35 m, 17-20 m, 23-25 m, 34-$ $35 m$, wb XX $4725 m, 10 \mathrm{~m} / 8-25 \mathrm{~m} 4755-10 \mathrm{~m}$ 477 8-13m 480 1-8m, 22-27m 482 4-9m, 4-8m 483 23-31m 485 24-32m 486 16-20m 487 16$19 m, 28-29 m 48813-16 m, 19-20 m$ (Humboldt) $4903-8 m 49129-31 m 4942-12 m 5019-13 m$, 10-14m 505 33-35m 506 1-2m, 19-20m 508 $29-32 m, \quad 29-33 m \quad 514 \quad 18-20 m \quad 519 \quad w b$ Does not some one describe Volcanos in S. Shetland besides great crater; New Isid Discovered 1839 by Enderby's Ship; St Pauls or Amsterdam seems quite omitted.; Proby Isld - Isd North of Bonin Ramilla on coast of Ascension - Matthews Rock

BUCH, Leopold von Travels through Norway and Lapland during the years 1806, 1807 and 1808 London; Henry Colburn; 1813; trans. J. Black [CUL, on B, S Charles Darwin M. Video Nov. 1832]
xvi 19-20m, $24-25 m, 28-29 m$ xvii $16-17 m$, $30-32 m 948-20 m 2367-10 m 3068-16 m$, 16u "fruit 1 maturity", 16-17m, 27-28m, 27u "not 1 well" $3075-9 m, 7 u$ "presented |fruit", $8 u$ "barren"

BÜCHNER, Ludwig Aus Natur und Wissenschaft Leipzig; Theodor Thomas; 1862 [CUL]

BÜCHNER, Ludwig Conférences sur la théorie darwinienne de la transmutation des espèces Paris; C. Reinwald; 1869; trans. A. Jacquot [CUL]
ad, beh, fg, h, ig, phy, t
NB 79 good sketch of Häckel's views on first organisms \& spont. Generation
114 Helmholtz Eye not perfect

- Man 123 Schaafhausen - Gorilla 1/2 way between erect \& quadruped.-
- How difficult to young child to stand upright
- 124 do - on milk teeth of man
- 132 self-reflection or consciousness
-135; 137; 144
- all Q
title page $z 793-29 m 114 \quad 27-32 m 123 \quad 30-$ $33 m 1244-11 m 129$ wt Büchner L. wt 39? 132 6-11m 135 8-18m 137 30-32m, wb higher apes \& lower races of man $\rightarrow 138$ 2-8m 141 6-9m 144 30-32m

BÜCHNER, Ludwig Die Darwinsche Theorie von der Entstehung und Umwandlung der LebeWelt Leipzig; Theodor Thomas; 1876 [CUL, I] \wp

BÜCHNER, Ludwig Liebe und Liebes-Leben in der Thierwelt Berlin; Hofmann \& Comp.; 1879 [Down, I]

BÜCHNER, Ludwig Die Macht der Vererbung Leipzig; Ernst Günther; 1882 [CUL, I] \wp

BÜCHNER, Ludwig Man in the past, present \mathcal{E} future London; Asher \& Co.; 1872; trans. W.S. Dallas [CUL]
h
NB Nothing need be quoted - Nov 1873; All on Man; 120 very good' resume; 142; 156; 266
$11934-37 \mathrm{~m} / 37 \mathrm{w}$ quote $1201-4 m 142$ 13-25m 156 12-17m, 25-30m 266 3u "Dr. Lisch", 13$15 m, 17-25 m$

BÜCHNER, Ludwig Mind in animals trans. of 3rd edn by Annie Besant; London; Freethought Publishing Co.; 1880 [Down] beh

NB 159 on instincts of ants
$159 \Uparrow 2 a$ "are" ie pratensis $36-42 \mathrm{~m} / \rightarrow, 20-41 \mathrm{w}$ \& yet pratenses taken as pupa $16010-13 m$, 41-42m

BÜCHNER, Ludwig Sechs Vorlesungen über die Darwin'sche Theorie der Verwandlung der Arten Leipzig; Theodor Thomas; 1868 [CUL] beh, ds, ex, h, ig, 00, t, y
NB
179; 180; 190; 195; 198; 202 good when described; 210; Schaafhausen Book \& Rutimeyer Paper
SB $\rightarrow \Leftrightarrow$
p. 179 Man first dentition like Apes.- conclude * feed on Plants 180
\Leftrightarrow All used Man
p 90 on Self-consciousness of Savages
195 on the exactly intermediate manner in which apes walk on Hands - good It might have been asked how cd there have been transition between hand \& foot?

198 interval will get greater between man \& higher apes, from extinction of latter
p202. Rutimeyer apes interval between Catarhine \& Platyrhines.-
210 The milder disposition of young apes, perhaps only like mildness of young Carnivora - Bücker

179 12-15m, 12-14w ask Huxley $14 u$ "auffallende", 15-18u "indem l hat", 17-20m, 23-26m 180 14-21m 190 11u/w , 15m, 15$25 \mathrm{~m} / \mathrm{w}$ asks whether savages reflect on relations of things 195 wt Gorilla intermediate in upright position - if not existed wd not be kn 1-5m $198 \quad w t / 3-12 m / 1-14 w$ interval between Man \& higher apes will get greater, from death of lower races \& higher apes. 201 9-10m 202 22-26m $2035-7 m 205$ 25-26m 210 $w b$ The milder disposition of all young apes only like young tigers or lions - perhaps does not indicate descent from a mild form.\wp

BÜCHNER, Ludwig Sechs Vorlesungen über die Darwin'sche Theorie der Verwandlung der Arten 2nd edn; Leipzig; Theodor Thomas; 1872 [CUL]

title page $18 u$ a
 \wp

BÜCHNER, Ludwig Die Stellung des Menschen in der Natur; 2. Lief "Wer sind wir?"; 3. Lief "Wohin gehen wir?" Leipzig; 1870 [CUL]

NB Reichenbach \langle rest 0\rangle
170 - (Lamarck before him)
O/
2. Lief \wp

BUCKE, Richard Maurice Man's moral nature London; Trübner; 1879 [Down, I]

BUCKLEY, Arabella B. A short history of natural science London; John Murray; 1876 [Down]

BUCKTON, George Bowdler Monograph of the British aphides 4 vols.; London; The Ray Society; 1876-1883 [Down]
00, $\mathbf{s x}$
vol. 1 NB p.71; p91 Dimorphism.
p. 71 Some Plants not often attacked by aphides - even very poisonous ones
71 10-13m, 17-23m, 23-26m, 33-39m 914 $17 \mathrm{~m}, 36-37 \mathrm{~m}$
\langle vol. 2, \wp; vol. 4 published after CD's death〉

BULLER, Walter Lawry A history of the birds of New Zealand London; John Van Voorst; 1873 [CUL]
ad, beh, br, ds, gd, mg, 00, phy, sx, t, y
NB1 p29 Protective Colour of Birds
p56 - affection between paired Birds S S. Q p66 - Huia Quin Beaks different in 2 sexes \& aid each other SS
NB2 p74, 76, 78 migratory Birds to N. Zealand
81,84 spreading of a species
93 - Rats destroying Birds
Nothing for Descent
NB3 167 Birds with good wings, but incapable of flight
219 male colours on one side fainter \& the Bird feeds laterally SS
224 Courting of Pied Oyster Catcher, not important
278 - Gulls catching Moths
SA $\langle p p$. 2-3 $\rangle \square \beta$
р. 1; 15; 19; 111; 117; 121; 137; 163; 165

SA $\langle p .372 ;-\infty\rangle$ p. 29 Stringops large wings
but no muscles for flight - colouring assimilative must be protective from Birds of Prey, whilst resting during the day
Part II
p.74, 75, 78 Cuckoo summer immigrant believed to be partly parasitic in incubating but not feeding its young
p.81. Birds, Zosterops which has spread from S. Isid. rapidly
84 Changed Instincts, also, has become permanent resident
94 Believes rats by destroying much chief cause of decrease of
95 Anthornis or Bell-bird - decorates nest with Brilliant feathers.
Part III \& IV
167 Weka good-sized wings, but incapable of flight.
$291-4 m, 6-7 m, 8-10 m, 16-19 m, 17-25 w$ why as no beasts of prey Rats? There are Birds of Prey 33 9-10m 55 15-23m, 37-42m 56 14-19m, 20-23m, 25-26m 66 19-29m 74 29u "another|visitant", 31-34m 76 11-16m 78 19$22 m 811-6 m, 6 u$ "indigenous", $7-11 m 846-$ $15 m, 20-25 m$ 93 13-17m, 24-26m, 31-34m, $41-43 m 947-9 m 9522-26 m 167$ 6-10m 219 33-41m 224 11-20m 242 14-17m 278 6-16m

BURBIDGE, Frederick William Cultivated plants, their propagation and improvement Edinburgh \& London; William Blackwood \& Sons; 1877 [CUL]
fg, hy, phy, v, y

NB p. 34 size of seeds effects on growth of offspring
58 grafting, rules of 4 species which will graft
95, 96 - on Variability
$132 \sim$ - Hybrids dying young
$155 \propto$ - on Hybrids taking after either parent
33 26-33m, $28 u$ "Dr Gustav Marck" 34 1-48m $353-9 m, 5 u$ "Professor Lehmann of Munich"
58 9-18m, 14w Recipient 19-30m, 32-38m 95 4-17m, 18-27m, 28-39m, 42-43m 96 14-45m 132 18-34m 155 2-14m, 5-16m, $10 u$ "comes most", 26-31m, 38-43m 156 13-18m, 26-33m 157 36-43m $15929 m$
\wp
BURCHELL, William John Travels in the interior of Southern Africa 2 vols.; London; Longman, Hurst, Rees, Orme and Brown; 1822 [Down, pre-B, S]
fg, tm
vol. 1 NB p529, 536 wonderfully hooked seed; with woodcut; 529 grapple plant
27 8-9m 101 27-29m 124 23-24m $1584 m, 12-$ $14 m 2591-3 m 40916-17 m, 27-28 m, 34-35 m$ 427 13-14m, 24-27m 428 22-24m 429 10-11m 529 fig.m 536 10-14m
vol. 2, $591-6 m, 10-12 m 6926-27 m 7132-$ $33 m 7211 m, 16 m 7313-14 m 7428-31 m 78$ 12-13m 172 21-24m 173 zt 207 7-13m 450 22-27m

BURGESS, Thomas Henry The physiology or mechanism of blushing London; John Churchill; 1839 [CUL]
beh, cc, cr, h, he, phy, sx, t, ud, y
NB1 p. 1 Youth more liable - care more for opinion of others
Sighhing - Grief
NB2 - p10 Expression
B says Blushing Hereditary in one family (both parents being never subject) except when one child diseased with cyanosis heart -
SB1 p. 1 Youth blushes
10 Description of fear
23 Female blush most
24 Designed by Creator, as check The

- In Ezra \& Nehemiah - Bible
-31 scar in negro blushing
- 33 Mulattos
-34 Otaheitians
38 Albinos blushing - (Iris)
43 Circassian do-disuse Tha
48 Morbid sensibility $\mathrm{Th} \rightarrow$ \$

50 Power of accusers
－ 54 Causes
－56 Infant do not blush，but redden with
passion（evident do not blush）（old age no <0 ）
－61 Hereditary
－ 62 Blushing no proof of guilt x
68 Rage，expression of－Rage
－114， 122 Why face blushes more－
－ 125 Exposure to air
－ 128 whole body glows
－ 133 Sensation on face before blush
－ 134 Concomitants of Blushing \＆Sham 〈ie Shame）
Over
〈over〉
－ 137
－p156－only a moral stimulus excite blush （not a passion）not shrugging shoulders（no shyness）commonest of all causes or self consciousness－
－ 177 Decline of blush
N．B．Personal remark makes a person blush more than anything self consc
－This is differently on my view that vanity does not cause blush－it is on depressing self－consciousness which alone causes it－ No a pretty girl who thinks a man is admires her will blush－One is more sensitive to the ill－feeling than good opinion of others．－
x 180 says depressing cannot be called either exciting or depressing
－ 182 Herditary blushing 10 children
\Leftrightarrow tear－ducts in youngest
＊ 187 upbraiding shy people makes them worse
« 188 Edgeworth quoted（good）
All about Blushing except p68 Rage
Burgess
SB2 Burgess on Blushing p 10
Fear
in regard to voice in Aeneid
＂Obstupui，steteruntque comae，et vox fau－ cibus haesit＂
〈over〉
Will the albinism observed by Dr B
Dr B＂the strength alters the－＂
\otimes_{0} Dr B observed with \＆two albinos that th
＂caused them to blush deeply．－
1 9－10u＂sensitivelconscious＂ 10 10－20m＊ 11 $8-11 m 231-3 m, 1 u$＂children and females＂ 24 $3-5 m / w$ see to this $8-11 m, 9-13^{\prime \prime} . . .1 / 12-13 w$ ） $257 u$＂Ezra＂，8－11m／w Ch IX．6， $20 u$＂blush＂／ w Jer Ch VI v． $1526 u$＂alwrought＂ 31 21－ $24 m, 21^{\prime \prime} . . . "$＂${ }^{2}, 22 a / c / w / 23 a / c / 23-25$＂．．．＂$\notin, 28-$ $29 \mathrm{~m} / \rightarrow 3224-27 \mathrm{~m} 335-8 m, 13-16 \mathrm{~m} 34$ 19－ $21 m 3823-26 m 3913-16 m, 15 m, 20-25 m$ ， $29 \rightarrow 404-8 m, 4 u$＂ears＂， $9-12 m, 20-22 m, 29 m$

43 6－9m，13－16m 48 14－17m 49 3－7m，12－15m 50 16－19m，17u＂presencelaccusers＂ 54 wb nearly all cases，his real \＆false blush， connected with what people will think of one －Remorse does not cause blush．－ $568 u$ ＂hereditary＂，13－15m，15－16u＂of old age＂ 57 $9 u$＂idiot＂，13－14u＂but｜blush＂ 61 1－5m，15－ $18 m 626-11 m / 1-11 w / w t$ no test of guilt because the thought that the other was thinking of you suffices to cause it $6811-12 u$ ＂flushed｜fire＂，17－18e＂My｜rage＂，19－21m／u ＂heart｜rage＂，wb glittering 69 11－13m 114 9－ $13 m, 19-24 m, 20-23 w$ effects of use or Habit 122 1－10w but neck \＆ears colour $5-13 m$ 125 20－29m 128 7－11m，10u＂epigastric＂ 133 18－20m 134 1－20w mental agitation which affects heart and respiration 6－8w \＆ Gratiolet good $10-11 \mathrm{~m} / \mathrm{w} \bullet$ p． 349 \＆ 366 22－ $28 w$（awkward gestures）stammer peace of mind lost 156 wt He may shrug his shoulders voluntary－he may pretend to laugh 6－7w affecting＂to his mind＂9－12w no shyness 177 13－20m 180 21－25m 182 1－11m 187 19－23m， $22-24 m / \rightarrow 1881-4 m / 2 u$＂countenances＂， $5-7 m$ $18921-26 \mathrm{~m} / 24 u$＂frequently wept＂

BURKE，Edmund A philosophical inquiry into the origin of our ideas of the sublime and beautiful，with an introductory discourse concerning taste，and several other additions London；Thomas M＇Lean； 1823 ［CUL．1900，I by G．V．Jackson］
beh，sx，t

NF

The morality \＆Metaphysics of Ambition \} ? I am going to Italy next Summer Sublimity
NB1 Simple Ambition instinct of excellence over other men satisfied（1）
Pride．ditto．with comparison to other men so as to undervalue them．（2）
Fame．desire that（1）should be generally known．\＆acknowledged（3）
Vanity，［do］（3）with undervaluation of others， or overvaluation of yourself（4）
Arrogance a determination to show pride without real pride having been attained
Conceit－pride without foundation and on trifling subjects？
＊But the ideas raised by these words refer to peculiar kinds of character
NB2 He can see reason why instincts （sexual）of animals stronger than in man－ because not having any notions of beauty to keep them in right line
these involve feeling triumph Theoo feelingoo of \rightarrow Sublimity akin to feeling of pure（1）

BURKE
gratified ambition－connected preeminently with consciousness of being a sentient being arising from many ideas．－each preeminent of its class．－［feeling of triumph at being a sentient being］brought on by the thinking faculty by being very active \＆exhilarating （hence aided by bodily conditions）with power to look inwards $=$ Euclid too absorbing $=$ yet conclusions from mathematics sublime－Gravitation sublime－ thinking on subject If pleasure from a source not well understood，sooner look to yourself \＆hence sublime－
iv $6 m, 8 m$ vi $8 m 559-17 m 5613-21 m$（Scipio， Cato） 57 21－25m 58 16－20m 66 zt 103 11－25z $114 \quad 14-15 z \quad 115 \quad 2-25 z \quad 162 \quad 13 ? / u \quad$＂objects small＂163 5－10m 191 13－14m（Tommaso Campanella）

BURMEISTER，Hermann Beiträge zur Nat－ urgeschichte der Rankenfüsser Berlin；G． Rainer； 1834 ［CUL］
em，fg，phy
14 15－17m／w eggs not contemO impregnated 15 3－5m 16 28－29m 17 20u＂Organe＂ 18 3－ $5 \mathrm{~m} / \mathrm{w}$ eye becomes double $194-6 \mathrm{~m}, 20-23 \mathrm{~m}$ $2020-24 m / w$ feelers \＆eyes thrown off 21 $10-11 m, 23-27 m 223-6$ ！！ $2317-19 m / w$ no trace of seam in shell $2423-27 \mathrm{~m} / \mathrm{w}$ calc． plates $251-4 m / w$ epidermis on all young shells $26-30 \mathrm{~m} / \mathrm{w}$ Ovaria within young shell 27 $5-6 m 2811-17 m / w$ eggs in different state in different parts $29 \quad 1-2 m \quad 30 \quad 13-15 m / 14 u$ ＂Gräten＂$/ w$ fish－bones $16-29 \mathrm{~m} / \mathrm{w}$ Burmeisters description best of mouth．－ 31 14－18m／w cissi all alike $3511-16!!371-3 m, 15 u / w \tau$ ， $16 u / w \diamond \tau, 22-26 m 384-6 m, 19-20 m 4011-$ $14 \mathrm{~m} / \mathrm{w}$ case of moth $22-29 \mathrm{~m} / \mathrm{w}$ pretty good $411-3 m, 14-16 m / w$ so cissus ant．are longest $19-20 w$ rest of cissi similar 45 21－ $23 m 4913-16 m 5013-16 \mathrm{~m} / \mathrm{w}$ compare with Cyprus 26－28m $5126 m, 26 u$＂Stomatopoden＂， $27 u$＂lässt｜der＂， $28 m 28 m 535-6 m, 12-13 m$ pl．facing 60 wt \notin

BURMEISTER，Hermann Histoire de la création Paris；F．Sary；1870；trans．E．Maupas ［CUL］
\wp
656 30－33m 667 31－36m
BURMEISTER，Hermann The organization of trilobites London；The Ray Society；1846； trans．Bell \＆Forbes［CUL］
$\mathrm{co}, \mathrm{ig}, \mathrm{sp}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}$

NB p37 \＆ 38 Species Theory
SB $\square \beta$
p．37．The earlier geological types present peculiarities of various existing groups passing into one another Good Remark to quote
1 zb 33 3－4m，3－4w 337 16－18m，37－42m 38 1－6m，12－17m，12－17w Mollusca！Corals support this
\wp
BUSCH，Otto Arthur Schopenhauer München； Fr．Basserman； 1878 ［Down，I］\wp

BUSCH，Otto Arthur Schopenhauer：Beitrag zu einer Dogmatik der Religionslosen Heidelberg； Fr．Bassermann； 1877 ［Down］\wp

BUSCH，Otto Arthur Naturgeschichte der Kunst Heidelberg；Fr．Bassermann； 1877 ［Down，I］\wp

BUTLER，Samuel A．Evolution old and new London；Hardwick \＆Bogue； 1879 ［Botany School，FD］
〈markings presumed to be by FD〉
BUTLER，Samuel A．A sketch of modern and ancient geography for the use of schools 4th edn；London；Longman，Hurst，Rees，Orme \＆Brown； 1818 ［CUL，pre－B，S］
title pages 〈much illegible scrawl）v $2 w 4004$ vi $2 m, 7 m$ vii $37 \mathrm{~m}, 39 \mathrm{~m}, 41 \mathrm{~m}$ viii 4 m ix 11 m ， $21 m, 25 m \times 4 m, 28 m, 33 m, 40 m \times x$（dates）， $5 m, 45 m$ xii $7 m$ xiii $13 m, 17 m$ xiv $9 m, 27 m$ ， $42 m$ xv $17 \mathrm{~m}, 22 \mathrm{~m}, 25 \mathrm{~m}, 32 \mathrm{~m}, 38 \mathrm{~m}$ xvi 5 m 10 wbec 11 wt $-1211 m 1323 m 1516 m 1712 m$ ， $17 \mathrm{~m} 208-14 \mathrm{~m}, 17-20 \mathrm{~m} 31$ wtec $3210 \mathrm{~m} 33 \mathrm{7m}$ $3418 m 3510 m, z b 363 m 3732 m 3914 m 40$ $1 m 4122 \mathrm{~m} 43 \mathrm{3m} 517 \mathrm{~m} 63 \mathrm{zt}, 2-15 \mathrm{~m} 64 \mathrm{zb}$ $6724 m 8414 m 8518 m 8912 m 9320 m 97$ 11m 99 16u＂Ennius＂／w 169BC 100 6w 281 104 wt 〈note about events of 264BC） 122 zt 146 $27 m 1482 u$＂Thucydides＂，2－9w son of Plorus an Athenian died 391 before Christ $1493 m$ $1516 m 15314 m 15411-20 z, 23-25 w 449$ died BC $1555 m, 17 m 15816 m 1597 m 1605 m 161$ $2 m 16211 m 16317 m 16416 m 16611 m 168$ $2 m, 23 m 16921 m 185 w t$（dates）， $11 u$＂Apelles and Hippocrates＂ 186 7－10w（dates）， $9 u$＂Zeno＂ $191 w t / 8 w$（dates）， $7 u$＂Diogenes＂， $8 u$ ＂Mithridates＂，18m， $23 u$＂Punic war＂／wes 218bc 192 30u＂Mithridates and Strabo＂， $32 u$ ＂Pompey＂，30w／31w／wb（dates） $19317 u$ ＂Lucullus＂， $18 u$＂Mithridatic＂，9－16w／17－19w／ $w t / w b$（dates and events BC） $19423 u$ ＂Anaximenes＂ $\mid w, 26 u$＂Themistocles＂ $\mid w$（dates）
$19521 m 196$ 10u＂Strabo＂／w（dates） $1991 m$ 20217 m 20910 m 21026 m 237 wt － $240 \mathrm{2z}$ $241 z t 243 z t 249 w t / 5-8 w$ Mani Manc Mane Manc 251 wt 251253 7w Aegyptus 254 wt Dr Darwin 255 wt Darwin 258 17m

BÜTSCHLI，Otto Studien über die ersten Entwicklungsvorgänge der Eizelle die Zell－ theilung und die Conjugation der Infusorien Frankfurt am Main；Christian Winter； 1876 ［CUL，I］
fg，phy，sx
title page 11u＂Bütschli＂，16u＂1876＂ 207 28－ $32 m 2085-12 m / w$ for a renewal of youth \＆a reformation of parts $20918-22 \mathrm{~m} / 18-19 u \leftrightarrow$ ， $27 m 210$ 10－13m／10－11u↔，19u＂Vereinigung｜ Actinophrys＂，22u＂scheinlich｜Encystirung＂， $31 m / 30-33 w$ Give Butschli first \＆Enger \＆ then Carter 211 19m，22－28m／22－23u＂dass I ist＂$/ 27 u$＂Verjüngungsepoche＂$/ 26-30 w$ this is just what he has said about Infusoria $w b$ According to this view Conjugation is a renewal of youth \＆size which gradually decreases \＆propagation thus division．－ Process seems analogous 212 2－11m／w same process without conjugation or with 2 spores formed 214 17－22m／22u＂denlde Bary＂／w the first man 17－22m／w He fully admits that conjugation is the first step to sexual copulation $2153 u$＂Dagegen＂$/ 5 u$ ＂wirkliche Befruchtung＂ $33-7 m / w$ not so＊with Proteus infusoria \＆c \＆c $10-17 \mathrm{~m} / \mathrm{w}$ seems here all for connection of conjugation \＆ sexual reproduction $22-24 m / u$＂dass 1 erkennen＂$/ w$ Conclusiv $32 u$＂1838＂$/ m$（J． Müller） 216 3－6m／w seems to say that conjugation of infusoria is the same with s ． generation $8-9 u \leftrightarrow 219$ 9－26［．．．］，25－26u ＂erhalten｜Fortpflanzung＂ 252 wb p． 207 to 219

CABOT，Louis The immature state of the Odonata 2 parts；Cambridge，Mass．，Uni－ versity Press；1872－1881［Down］

Part 1 NB O／

CAMERANO，Lorenzo La Scelta sessuale e i caratteri sessuali secondari nei coleotteri Torino； Ermanno Loescher； 1880 ［Down，I］\wp

CANDOLLE，Alphonse de Géographie botan－ ique raisonnée 2 vols；Paris；J．Kessmann； 1855 ［CUL］
ad，af，beh，cc，che，ci，co，cr，cs，ds，dv，ex， f, fg ，fo，gd，geo，gr，h，he，hl，hy，ig，in，is， $\mathrm{mg}, \mathrm{mhp}, \mathrm{mn}, 00$ ，phy，se，sl，sp， $\mathrm{t}, \mathrm{ts}, \mathrm{v}, \mathrm{ve}$ ， wd
vol． 1 NB1 p478 His＊Geogrph Regions As there are only 3－5 Ascension Plants，\＆ I think DeC speaks of several inhabitants，it is one of strongest case of many introduced plants．
NB2 Philology pxxii；p．xiii；p．xiv to end of Introduction
p535．Decandolle Memoir vol X on compositae
SB Mem．Carrier Pigeons caught at Dover－ See McGillvry number of seeds in crop．
That Transport does little for continents，but much for isld．is what I shd have expected．－ In Compositae \＆all others．－Proportion of seeds with plumes \＆small seeds ought to be great in islds；even if not same species．
It may be possible to take two great groups for comparison of range．it cd be useless，I think to compare orders of Vertebrata
SA 〈pp．528－529， 5 sheets〉
SA1
5．Sous－regions 〈ecu showing〉 34 species to Fam．
3 Sous regions 〈ccus showing〉 28 species to Fam
〈over〉
4．Sous－regions 〈a showing〉 40 species to Fam．
This again is hostile，contrary to largest Families do not extend furthest
SA2－5 \square R
SA2
－Vol Ip 516 Decandolle
〈numbers of species in certain families totalled＞
Water Plants seem to make large proportion of Monocot．－wide ranges
Taking the 23 Fams．of Dicot．\＆ 4 Fams Monoc together，with more than 500 species；we have 27 Families，with species inhabiting more than 2．regions

CANDOLLE，VOL．I：NOTES
＜calculation that〉 4.5 is the standard of all
Families whatever
$\langle o v e r\rangle \Leftrightarrow$
SA3 p． 512 of Decandolle；〈list of numbers of species，and totals；names $\Leftrightarrow\rangle$
〈over〉
$\Leftrightarrow 1$ think if Families are used，whole world or Continents shd be used as field of Compositae．But I cannot say why I think so \＆May 1． 56 I have taken the Families （p．512．Decandolle）on other side 〈above〉 from Drege（Flora B．2．1843）．There are 21 （one omitted）Families，which have their species ranging over a＊larger number of the 20 divisions，into which the Cape District is divided．there the average（viz 1.6 re－ gions）＊range of all the Dicots．\＆Ferns together？－These 21 Families have each on average 126.2 species，but if the Compositae from having more than double number of species be subtracted；then the average is only 77．1．－There are other 37 Families which range＊less than the general average mean of 1.6 \＆these have 87.9 species to Family．So that nothing can be inferred safely from these results，＊ Families being too large．－［lf we give a reasonable number to the Compositae，viz 500 species，then the average of the wide－ ranging Families is 96．7］
SA4 〈 x_{0} and \Leftrightarrow ）
Voll p． 516
〈continues totalling numbers of species＞
This gives for the 23 Families of Dicot with some 500 species，that the proportion of species＊per cent which inhabit more than 2 regions is 4．3．The standard for all Dicot being 4．1．－If we＊consider the＊ 7 Fam－ ilies marked $\boldsymbol{\sim}$ which I consider Tropical， \＆which have less means of spreading，for Tropics divided，we find these 7 large families have only 2.0 per cent species widely spreading，so that means of distribution come into play，\＆the remainder， wd be above 4．9．Those of Tropical Families，have 6044 species \＆only 124 in more than 2 Regions．－
〈over〉
Picking out Families with more than＊ 500 species，no of species，no of wide rangers〈list follows，with species names and totals，some marked $\boldsymbol{\wedge}$ ）
SA5 Dicoti only．Families with under＊ 50 species．
〈list follows，with species names and totals，and number of wide rangers）
〈over〉
〈continues list from SA4；calculates that〉

The standard of all Dicots is 4.1
＊General Conclusions
Families with more than 500 have a little above average of wide rangers \＆Fams beneath 50 rather fewer wide rangers，than average－But there is far greater difference according to nature of Family itself，than its mere size．
N．B．Decandolle does not use the very small Families，here used in his average．

SA6 $\Leftrightarrow\langle p p .560-561\rangle$
Cruciferae－p． 550
〈table of totals of species and those in more than 2 regions in various islands \rangle
N．B．If the Labiatae \＆Polygonum worked out this way，it wd show $\&$ in how isolated＊ spots some species of each Family occur．－ $=33 / 100$ agrees nearly with Decandolle
I conclude islds must either have some easy way of getting inhabitants or double creations are tenable
〈over〉
〈another similar table〉 Compositae，p． 552
$=22$ per cent leaving out Canary Isd only 13 per cent．
xii $24 m$ xiii $12-17 m$ xiv $7-10 m$ xv $\uparrow 9-5 m / w$ true xx $30-33 m$ xxii $34-36 m$ xxviii $19 m$ ， $34-$ $35 w$ Individuality xxix $16-17 w$ Cultivated Plants $32 m \mathbf{x x x} 21-22 w$ Definition of species 45 19－33m 47 16－21m〈FD $\rangle, 23-25 m 62$ 6－ $7 w\langle F D\rangle 72$ 8－12m／10－11Q 14－22m 84 8－22m／ $8-9$ ？ $857 w$ say read $88 \Uparrow 3-1 z 11636-39 m$ 117 6－8m，13－16m，27－30m，37－39m 118 6－ $9 m, 16-21 m 1441-4 m 1474-7 m, 9-10 m, 17-$ $25 m 15611 w$ say read $1834 w$ say read 200 10－16m 201 1－7m／3－5w examples of causes $28-31 m 20225-29 m 20336-38 m 238$ $24-30 \mathrm{~m} / \mathrm{w}$ Read $39-40 \mathrm{~m} \quad 246 \quad 18-26 \mathrm{~m} / \mathrm{w}$ Does this refer to America？if so or to Islands？ 247 2－7m，6－8m $25020-28 m / w$ I do not think even at lower limits except approaching a Desert 264 10－11m，12－16m／ 12－13u＂enfin｜nord＂／15u＂on｜fait＂，16－21m 268 9－11m 270 16－31m，28u／29m／w Spain 279 10 w says read 30520 w say read． $31634 \mathrm{~m} /$ $32-34 w$ theoretical average of minimum height $34 m / w b$ I have no doubt native 326 $30-37 \mathrm{~m} / \rightarrow 32914-21 \mathrm{~m} / \rightarrow 3301-7 \mathrm{~m} 3344 \mathrm{w}$ I only read $3376-7 \mathrm{~m}, 9-10 \mathrm{~m} / 9 \mathrm{u}$＂lat．I degrés＂， 15－16m， $15 u$＂selconnaît＂， $25-28 m, 27 u$ ＂environ Itrente＂， $30 \mathrm{~m} / \mathrm{u}$＂bord \mid degré＂ $\mid \rightarrow 338$ $5 m, 41-43 m 339$ wt Island Saxifrages $2 u$ ＂aux louest＂， $3 u$＂la 1 Asturies＂ 340 15－20m 341 $23 m 3437-12 m 39420-24 m, 32-34 m 395$ 12－ 15 m 397 20－22m，23－24m，25－28m，32－38m， $39 \mathrm{~m} / \rightarrow 398$ 29－33m $3998-15 m 406$ 12－18z／w （circle with compass points marked）， $31-36 \mathrm{~m} /$
$31 u$ " 8495 ", wbcc, $z b$ (oval with compass points marked)/wb 4 times elongated E \& W $4077 w$ arctic 11-13m/12u "Montagnes I Japon", $14 u$ "Turquie d'Europe", 37 u "Caucase" 408 15$18 m / 16-17 w$ S. America 410 16-19m 411 2529m, 31-32m 412 3-6m, 12-15m, 38-42m/40u "Sierra-Nevada" 416 11-13m/15-17m/7-20w so make Alpine Plants of N America, so means more wonderful 24-26m 417 11-16w -But Asa Gray's Alpine plants are more than this alone. 35-38m, wb The southern hemisphere of Hooker $4185-10 m, 10-12 m, 25-28 m, 30-$ $33 m 419$ wt All used in the Chapter on Sociability - Struggle for existence Stations \& wt Not used on proportion of genera to range $4221-2 m, 26-29 m, 36-39 m$ 424 36-40m 428 31-35m/32-33Q 431 38-39m $44419 m 44728-34 m / \rightarrow 4488-10 m, 11-13 Q$ 15-18m, 18-20Q 21-23m, 35-36m 450 24-27m $45312-17 \mathrm{~m} / 12-13 \mathrm{Q} 21-26 \mathrm{~m}, 27-36 \mathrm{~m} 4541-$ $5 m, 6-7 m, 24-26 \mathrm{Q} / 26-31 m / 26-37 w$ Every one of such species wd cover ground if no other species present: if rarity here is step to exclusion, then the greater importance of other organic beings is shown $w b$ p463 near confines become rare necessarily, but yet, (at least sometimes) social; see top of p462 (Q) $4556-16 m / 8-9 Q-/ w t$ Not Q 22-23m, 2628Q 31u "caractéristiquelblé" $4561 u$ "dans I cultures", $14 u$ "Plante 1 champs", $40-44 \mathrm{~m} / \mathrm{Q} 457$ $15 u$ "ne labsolu"/15-16w because impossible $4581-3 m 45916-18 w$ I shall not Q. this $28 u$ "espèce I sociale", 20-33w a broad distinction in terms between repandu or diffused, \& abundant or social. (a) see p. 463 wb (a) Does former depend chiefly on physical conditions the latter on other species ??? The latter must chiefly on other species, except where, perhaps conditions very peculiar. $46026-28 \mathrm{~m} / 36 \mathrm{~m} / \mathrm{Q} / 25-38 w / w b$ I am inclined to think that H.C. Watson facts go only to show that most widely diffused are diffused likewise most in smaller areas: hardly descends to such minute areas as field. A species might abound on one spot \& yet be rare over all England, but is this so? $4614 m / u$ "nuisent", $19 u$ "directementlindirectement", 6-29w It comes to this, whether there are * many social plants in good common soil? 25-26u "toutes I grand" $\mid 25-28 \mathrm{~m} /$ $\leftarrow, 11-12 m / 14-15 m / 12-20 w$ Alder in Larchwood, but this must imply adaptation, else wd not grow up. 23-24Q/w Mangrove forests 27-29m, 31u "les lalpines", 34-38m/36u "paraissent | abondance"/38u "d'êtrel moins"/31-39w This is fact of same kind as not being dwarfed $38 u \pm / w b$ This is opposed quite to view that each form more depends on other
organisms than on external conditions, wb ie great numbers to live $w b$ But on the extreme limit of a desert, then plants grow separately, I think 462 1-4m, 3-4m/4u "isolés l étroite"/wt meadows very full of social plants $3 a$ "espèce" but not of all life? 5-9m/Q/wt Q when a form can once live, then it may be social from mere number of seeds. \& occupation.- $11 u$ "enlisolés", 13-16m/w (a) \rightarrow wt (a) As long as conditions exactly same. in relation to physical nature \& other species \& its own * excretions, then of course there will be many individuals, \& so be social.- 13-14u "causes I locales"/12-15w This must include other species. $19-23 m / 18-31 w$ Except (z) at the Cape, it seems the more fertile the land, the more diversified the flora; \& according to me, it is more fertile of production in life in part because more diversified.- (z) The forest of firs grows slowly, for land poor \& cold. \mathbb{N}_{2} $1 Q / w b$ case (z) explained by diversity of stations, such as occur in all dry regions.as stated before $17-34 m / w$ I cannot but think the number of species, depends in part on the goodness of conditions; but why I do not see; much life causes much decay makes strata \&c \&c \& many stations. for different times of year will have species all times of year. good. $\uparrow 11-9 u$ "surtout I station", $\uparrow 5-2 w$ This is cart before horse?? There wd not be many species without stations; yes, how many species can be introduced. $w b$ a field of grass cannot be called so rich for so many genera. - (a damp rich tropical soil \& a damp cold poor soil ought to be compared) 463 wt the many cases of introduction of new species into islands, shows the simple free-road to, from elsewhere created, is important element.Creations not easy work thus also shown.My theory shows how slow \& difficult it must be.- Supply not equal to demand. $-8-9 w$ all this discussion strikes me as unsatisfactory, from struggle with other species, not being here prominent. $10-11 \mathrm{w}$ Not Quoted $14-18 \mathrm{~m} /$ w depends, I think, on beating other species $14 a$ "répandent" no doubt one element $15 a$ "vent" Yet Compositae confined, $14-18 \mathrm{~m} /$?, $7-23 w$ He shows towards end of Book, that genera increase with no of species - but not I think with individuals - yes for mean density \& decay create other stations) $20-$ $25 m, 26-29 m / 28 a$ "communes" but not yet social; but sociality and commonness bound together, for perhaps hardly one absolutely social plant to exclusion of all others, except such as Mangrove $\uparrow 6-5 w$ but yet it seems when does appear is sometimes social.

CANDOLLE, VOL. I: 463
$\Uparrow 4 u / a$ "est \mid rare" Yet social plants occur near limit $\Uparrow 1 u$ "delelle", wb A great diversity of forms will follow from adaptation to different stations (supposing free inroad), as well as from supposing a great amount of life, for the latter creates many stations, iw Would not under same climate a uniform good soil support more diverse forms than uniform poor soil \& climate? $4641-4 m / w t / 1-7 w$ No hardly - flatly contradicted by his social Plants. $8-11 \mathrm{~m} / \mathrm{w}$ thus if compositae abound in many countries it must be due to their organisation; but if * the species in certain countries are more or less common due to conditions $10 a$ "les" different $12-18 m / w$ Does this not imply that habits of species have more in common than they really have?$w b$ One sees a Railway cutting temporarily covered with plants (in most cases only the natives of seeds) next year there wd be more seed, yet the abundance soon ceases.- here struggle comes in. 465 wt these tables refer to species being very generally dispersed within their own region of habitation.- 2-3Q 2nd table "composées".w largest family $6 u$ " 1 sur 4 ", $10-15 \mathrm{~m} / \mathrm{w}$ It wd be very curious to see what result wd follow from genera. calculated in this manner by averages $11-12 u$ "mais Isensible"| $12-14 m / 14 u$ "soit|100"/15u "18|45", 13-15XQ, wb Can Families include too great a range of adaptations to answer for such calculations?? The resemblance in Families may be due to parentage? $4661-10 \mathrm{~m} / \mathrm{w}$ Tropical Families have nearly as many common species as non tropical Families.- This shows how little adaptation to climate goes through a Family. table "Phanérogames".w standard table.w Here again it is clear that largest Families do not have greatest number of common species $\uparrow 12-7 m$, $\uparrow 4$ $3 u \leftrightarrow, \Uparrow 2-1 m 4671 m / 1-4 w$ \& yet it may be social!!! p. $4627 u$ " $17,8^{\prime \prime} / w$ ie below the average of all Phanerogams. $9 w$ ie average $11 w$ the very small families have more than average!! $12-13 \mathrm{~m} / \mathrm{w}$ quite opposed to my views.- table "Phanérogames".w standard table.w Here again same general law 468 table.m/w This goes as it shd do 2nd table "phanérogames". $w / w b$ These are 2 largest families \& they have nearly $1 / 2$ the common species, but single spears in other Families are excessively common $469 \quad 27-31 \mathrm{~m} / \mathrm{w}$ Doubt whether Watson not too large. 34$35 m, 40-41 \mathrm{~m} / \mathrm{w}$ doubts. 470 wt Ask Hooker about paragraph 3.- what it means $8-11 \mathrm{~m} /$ 10-11uн, $13-14 m, 16-17 \mathrm{~m}, 18-20 \mathrm{~m} / 18-19 u$ "moyens 1 remarquables", $20-23 m, 19-24 w$ ।
cannot believe, much is due to this??? Yet it must be part element.- $23 a$ "Quant" to common species of $23-26 m / ?, 27 w *$ What does he mean $31-32 \mathrm{~m} /$??, $34-36 \mathrm{~m} / \mathrm{w}$ but excess of numbers very small $37-39 m, 40-$ $43 \mathrm{~m} / \mathrm{Q} / \mathrm{wb}$ "species with restricted range are not common" ie confined range \& rarity go together. $\Uparrow 2 m / \Uparrow 4-1 w / w b$ propagating by number may account for this to certain extent 471 wt Only those social plants which inhabit common ground are the difficult ones to understand. if such exist near limits $1 a$ "sociale" certainly if conditions peculiar $1-3 \mathrm{~m} /$ $1-8 w$ It shows that sociability does follow other laws than * commonness; how can they help each other. or injure others? $4 a$ "espèces" Can means of propagation come into play $4 u$ "circonstances locales", $5-8 \mathrm{~m} / \mathrm{w}$ diffusion depends more on climate $7-8 w$ This like Benthams cases on Pyrenees. $16-21 \mathrm{~m} /$ Q, $34 u$ "c'est l'abondance" $/ 34-37 m / w$ social plants most easily affected 472 wt If this fact of social plants entirely disappearing be true it shows again that there must be some other law.- It is analogous to social plants suddenly appearing on their limits $w t$ If sociability depends on other species \& not on external conditions, then very slight change might determine their existence 1$2 m / 6-9 m / 8 u$ "parlnaturelle" $11-16 \mathrm{w}$ it is like change in Oyster Beds.- I cannot believe; flatly contradicted by History of shells.- No this seems to apply exclusively to plants social or not social in same area.- is not part of this that social plants now conspicuous, espcially in forests midpage.w But it cannot be that every individual disappears from field $16-22 w$ It looks as if one individual protected another, \& so this wd lessen when preyed on by insects \&c: Trees, wind.- $24-28 m / 24-30 w$ Everyone knows how hard to rear few ears of corn in Garden.- my Radish seed from apparently mice $\Uparrow 11-7 w$ cross impregnation $\uparrow 7-1 w / w b$ are social plants very defined in their adaptations: It has been shown I think greatly depends on number of other species adapted generally to same sort of conditions. $w b / \uparrow w-$ But why none in tropics; because oldest climate, \& all species mostly perfectly adapted: most of the facts come to adaptation in preponderant degree.- $w b$ These several cases seem to show that all the individuals of social plants disappear together owing I presume to rotation - 473 $w t$ The Paris is well fitted as shown by its mere presence; it is social from numbers of seed sown: this I conclude must be
governing element, but easily overlooked in Tropics where more closely adapted species.- 2-12w Destroy $5 / 6$ of English plants \& many wd become social which are * not so now.- 4-32w These two Pages not worth quoting $23-25 m, 23-25 m / w$ of rotation 28-29m/29u "sur|considérable", $31 u$ "de l^{\prime} 'Europe", $\Uparrow 4-2 m /!$, wb/ $\uparrow 15-1 w$ I wonder whether Cardoon is social in Europe? \& spotted thistle of Pampas? If so it wd seem to be merely * excellent adaptations, like when Railway cutting first exposed, due to seeds. wb Fennel - Hooker \& Bentham say yes. $4741-2 z / w$ ordinary shape \langle oval〉, $\Uparrow 8 u$ "endémique" $/ m$, 介6u "sporadique", $\uparrow 3 m 4751$ $2 m, 21-26 \mathrm{w}$ difficulties in defining areas \& terms 476 2-4m, 10-13w Before making any calculations whatever skim over to p 519 26$35 \mathrm{~m} / 28 u$ "mais \mid rares" 33 u "espèces |aire"", wb Introduction $478 w t / 1-5 w$ Now the question is whether this applies to means of transportation or adaptation, probably the latter; for plants seem to have such power of spreading.- The adaptation must be to struggle with other species \& not conditions $4-5 u$ "del $\mathrm{famille"} / 5-9 m / 7 w$ (a) 479 wt The transportation is a theoretical question \& implies single origin, \& probably not considered by Decandolle. In Birds, according to Goulds idea, was considered with means of transportation.- The very nature of the areas, some continuous and others disconnected, shows he did not consider means of transportation. $22-23 \mathrm{~m} /$ $22-25 w$ Can it be right to run them together.- $22 u$ "Archipel indien" $/ 23 u$ "Nouvelle-Guinée"| $24-25 m / ?!!$, $26 u$ "NouvelleZélande" $/ 26-27 \mathrm{~m} / \mathrm{w}$ are these distinct $32 u$ "Bermudes" 480 1-26w without knowing whether areas connected by continuous land or separated by sea, the results seem to me useless. How different cases of plants common to Irdia, \& Africa or tropical S America \& ones common to Europe \& Siberia, must make some difference. 481 2$13 w$ Thus far it seems that intertropical species do not range so far as temperate (but tropical lands * more divided by seas?) not the American provinces. table.w very regular laws indicated by this table. $4847-$ 11m, $15-17 m / 15-32 w$ Q I cannot think why; this fact keeps very constant, see note below, when more species discovered so that a given percentage in each Family are sporadic 486 1-4m 488 table.w R. Brown 489 table.m/w Aetheogames $=$ Mosses, Fern, Hepetiae, $\uparrow 15-5 m / \Uparrow 11 u$ " 730 " $/ \Uparrow 8 u$ "dont 1 Europe" $\mid \uparrow 7 u$ " 8 " $\uparrow \uparrow 14-11 w c e 490$ table.m/wec,
wb ?? So Auckland isld more in common with other countries, but less with Europe If this community is the S American, it accords with glacial, having been subsequently peopled. Kerguelen ought to have been most with S America \& less with Europe - See next Page.- So he counted ones about Glacial agency. 491 2nd table.m/w These must have come from North. 493 table.w/wt (What a contrast with the 730 Phanerogams of N.Zealand more water, more coast - more higher mountains.) Dryness alone most important element, but not enough to account for this difference table "Phanérogames".wct, table.w Far larger proportion common to Europe than in N . Zealand \& Auckland Isd; So far more species in Larch wood, than in all Falkland or Tristan I or Norfolk Isld. Only 272 in Society Islds $\Uparrow 18-1 w$ this shows how much free access determines the number of species: is not this against former continuity of Land. table. $\rightarrow / 5 u$ "soit $\mid 100$ ", $5 u$ "soit 2,3", table. $\rightarrow / \uparrow 5 m, \Uparrow 4 u$ "1843", $\Uparrow 3-1 w / w b$ $5009+1686=6595$ species of Phanerogams The fewness of European plants very interesting as compared with all land further South. Was not Africa the old Tropics? The glacial climate \& ice action explains the greater community in other regions. $494 w t$ Von Buch only \rightarrow Canary Isd Dicot $322+$ Mon 59=381 species. 496 table.m (Dicotyledons)/w so that Kamtschatka \& Labrador have nearly same number of species in common with Europe. (Mem Iceland all in common) $497{ }^{2-}$ $3 \mathrm{~m} / \mathrm{u}$ "Remarks 1 plants", $15-18 \mathrm{~m}$, $\uparrow 2-1 \mathrm{~m}$, table.m/? $/ \rightarrow / w b$ what a contrast with Alpine Plants of N. America 498 1-16w These contrasts of numbers, show that islands never united to mainland $17-23 w$ e contrast with Falkland Isd 18-31w Feroe 192 Dic+80 Mon=272 a contrast with the Oceanic islds $499 \pi 9-6 m / w b$ is this owing to closer adaptation? or longer existence of simple plants, \& \therefore part of existing means of dispersal. wb/iw Means of dispersal \& adaptation are all confounded - in Cryptogams at least, means of dispersion wd come into play. $\uparrow w$ The cases from which he argues are in very many cases islands; \& even when same species occurs in $\underline{2}$ continents * means of distribution must come into play.- 500 8-12m, 17-19m, 21$29 m, \Uparrow 2 u$ "mesure \mid découvertes" $\uparrow \uparrow 2-1 m / w b / \uparrow w \mid$ cannot think cause of this. Perhaps it is only that certain species of genera range far, like certain families in order: but why as discovery progresses, does the relative

CANDOLLE, VOL. I: 500
proportion keep constant? Does the proportion hold good in different countries \leftarrow I shd think it was only chance that more wide rangers \& were found \& more local species. 502 wt can this have anything to do with Glacial Period? carried by ice from Tierra del Fuego? - but none could go from New Holland. At Glacial period New Holland very favourable for introduction of temperate plants. $1-4 m, 6-8 m$, table.w some compositae have wide range.- $5031-3 m / 2 u$ "dont 1 France" $/ 1-3 w$ water-plants (condition more uniform) 4-6m, table-title.w This is the more important comparison? table.m/w These very large \& natural Families have only a few: (a) table.w/wt These 13 Families have 149 species on average: they have 37 species in common with N. Holland, or average nearly 3 in common with N. Holland 2nd table.w These 33 Families (those with less than 15 species being omitted) have 1541 species on average only 47 species each \& not one in common $w b$ (a) N.B. There is another element, besides facility of transport, the durability of same form. No - but this is the very point that we are considering that large Families are wide rangers \& most convertible [but that it is only a few which are wide rangers; the others changed into species]: I see I have not clearly relation between very wide rangers \& variability.- as in water plants. Indeed if wide rangers are only generally variable, then some wd be identic at great distances. $5042-4 m / \rightarrow / w t$ Even if these are added to list on other side, the Families, which on average have larger number of species, have most in common with New Holland.- $3 u$ "Lemnacées"/4u "Hydrocharidées"/5u "Lythrariées", $5 u$ "Alismacées"/w water. 505 table.u "Composées" $/ w$ some wide rangers table.w it is evident that the Glumaceae most widely spread. \& I shd think means of distribution must come into play. second table. $\uparrow 4-2 m / \rightarrow / w$ compos. $50714-16 m / 15 a$ "austral" which are common to Southern islands \& Europe.- 508 wt N.B. Pritchard shows the $\&$ mntains go partly E \& W in Lat 10° N.Africa. 9-15m/w 96/7000 What a contrast with T del Fuego. 18-19u "etlCap", 20 u "oulantérieures", table.m (Salsolacées)/w Here again; must be owing to means of transport. table.c "Fougères" "Phanérogames" "Composées"/wb These 16 Fam. (with species in common with France) having 2222 species have 139 species per Family; ie nearly twice as large as those families which have not one: there wd have been none if Compositae had not
been omitted table.m "Composées"/w so many omitted 509 wt The Cape \& Europe valuable, because have means of distribution, cannot be so important as when islands are compared. - No Sahara - but how in glacial period.- table.w These 41 Fams. with 2895 species, have on average only 70 species to Famy. (wd it be worth great labour to calculate by genera.) $11 u$ "pour 1 moins" $/ w$ on account of smaller Families not giving true averages \diamond calculate this 2nd table.c "Fougères" "Phanérogames"/wb These 21 Fams. having species in common with Cape, having 2438 species have an average of 116 species; if we \& leave out Compositae as so numerous (at least at Cape), we have 20 Fam with 1960 species each Fam. has 96 species - (ie double of those Fam. with no species in common) - see over $5102 u$ "15 | moins"|table.m/wt These 24 Fam. having 916 species (with none common to Cape) have an average of 38 species each $4[\ldots$, 2nd table.m "Composées" 511 table.w \uparrow, 2nd table.w see over There are numerous very small Families with very many species in common, which wd make case the more hostile 2nd table.m "Graminées...26"/w can this be accurate? wb These 13 Fams <in left half have only 36 species to Fam. \& have 255 species in common to N. Africa $w b$ These 13 Fam <in right half〉 have 52 species on average \& only 243 in common. Here then the larger Families have fewer species in common with America. First hostile case. $51216-25 m / w$ These two groups might be contrasted $\uparrow 13 u$ "Documente 1843 " $/ \uparrow 10 u$ "plus | (a)"/ 介13-1w/wb I might work at this Dividing the Plants into 2 groups of those ranging above the mean 1.6 those ranging beneath the mean - (Being continental wd depend not on means of transport) \& not tropic come in, or so much astounding range of water plants $\uparrow 1 m, w b$ Would it be possible to work out this in genera??? Taking for instance the genera found in 2 \& upward sous-regions \& see what average of species such genera have, ie of general average of genera, or give or take those Genera found in only one sub-region 513 wt N.B. Hooker says Dreges Book is great Book with elaborate distrib: (perhaps in Linn Soc) \& he will lend me; good to work out genera larger \& small for distribution.- Does not give genera, only Families $5 w 226-7 m / w$ omit this in calculation $9 w \star 18 w 37$ Ledebour $\Uparrow 12-5 w$ I feel sure that this wd be hostile to view that largest Families range furthest $\Uparrow 8-4 m / \Uparrow 2 w$ This is mean $\uparrow 2 u$ " 6366 lprès"

514 wt F. Water Plants demonstrate that some element quite distinct from numbers of species, come into play in wide distribution. Is not same thing observable in Salsolaceae? love of salt? 515 wt This table gives the proportion in each of the named Families of the wide ranging species to the whole number of species in the Family.- 516 $1-39 w$ This table looks * hostile Can my view be applicable only to single continuous regions; if so, Cape of Good Hope \& Russia wd be excellent.- 517 20-22w V. note p.519 * anomalous 518 table.m " 9 à 7,1" "1 à $0 " / w$ These 2 might be compared table." 1 à $0 " . w$ But these seem mostly tropical $5193-9 m, 9 u$ "danslinfère", 18u "Calyciflores I compliquée", $20-23 m / 20-27 w$ according to this one ought to compare * size of Families in same great division \& not as I have done in great totals. $26-29 m$, 28-29m, 29-33m 520 13-15m, 29$32 m / 30-38 w$ Marshes cannot be so uniform in conditions. But Marsh Birds visit 521 11$14 m / w$ ie Marsh Plants $16-17 m, 23-24 u$ "lal salés", 35-36u "les I grande" 522 table.w Table of acquatic \& Marsh Plants $34-35 u \leftrightarrow / w$ This looks like conditions $8-10 \mathrm{~m} 5238-11 \mathrm{~m} / \mathrm{w}$ conditions \& means of transportation here explained. $20 u$ "plantes annuelles", $38-39 u \pm$ $5244-5 m, 8-11 m, 12-14 m / ? / 13 u$ "plantes arides" $/ 14 u$ "semblent" $/ 13-23 w$ why? few other species or inhabitants, this wd apply to water-plants \& sea-side plants. $\uparrow 4-1 m 525$ 12-15m, 17-18m, 28-34m 526 table-title.m/u $527 \downarrow w$ Trees often dioicous chance transport of one seed insufficient Might be tested by other dioicous Plants. $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ Trees most limited. Herbaceous plants next - annuals most widely - can live in hot countries during their winter $w b$ Does not this depend on means of dispersal, as annuals for very conditions of life must have great means of dispersal.- wb Trees depend less on means of dispersal 528 table.w Have these big seeds? What can reason be? Mostly Tropical $5292-3 m, 10-11 \mathrm{~m}, 21-22 \mathrm{~m} /$ 22-23u "quel mer", 32-35m/w/wb What can reason be Higher developed \& more changeable $5302-3 m, 5-6 \mathrm{~m} / \mathrm{w}$ small seeds 531 table.w In same Families distribution according to annual \& herbaceous \& trees. All accord in same general Result.- 532 12$15 \mathrm{~m} / \mathrm{w}$ no general rule means of distribution greater or less $18-20 \mathrm{~m} / \mathrm{w}$ seeds in proportion small $20 w / 1-20 w$ There is, also, relation of size \& highness in series.- Because big requires more food \& is therefore a flourishing organism. $\uparrow \uparrow 15-1 w / \rightarrow / \Uparrow 9-5 w$ (a) If I am right on size, wd go to show wind.-

But then Compositae!! Yet here the * transportation comes into play; but then the Genera ought to be widely distributed. How is this.- This ought to be worked out in Decandolle \rightarrow or better look to Flora of islands \& see whether genera of Compositae more usually the other genus. $\uparrow 5 u$ "peut-être beaucoup", $\uparrow 4 u$ "reproduction 1 dissémination", $w b$ (a) Means of distribution coming in so importantly is quite in accord with Barriers (ie the stopping of distribution) being so effective; so beyond anything the most important 533 11u "Ailes" $/ w$ or pappus $12 u \leftrightarrow, 17-18 m, 26-27 m, 29 m / w$ This does not concern wind $32-33 \mathrm{~m}, 38 \mathrm{~m} / \mathrm{w}$ I wonder whether in Royal or Linnean Soc.- $w b$ If I am able to add anything new to Decandolle to means of transport, it will show how curiously imperfect our knowledge is.- 534 4-6m, 7-10m 535 wt Wind generally accompanied by Rain will the pappus then cause seed to stick?? table.w I must study distribution of genera. $\uparrow 14-1 m$ 536 wt (a) Note/ the proportion of genera with single species with \& without pappus nearly the same: if transported by pappus \& transmuted, then ought the most genera with single species with pappus $1-20 \mathrm{w}$ As these calculations include many continents, the seeds cannot be more transported than others. $5-7 m, 19-25 m / \uparrow w \quad \therefore$ Pappus, therefore, would seem to act like hooks which can transport to only short distance: remember no transport avails except it be to unoccupied land: no false look at introduced plants $\uparrow 17-10 \mathrm{~m} / \Uparrow 11-10 \mathrm{~m}, ~ \Uparrow 9 \mathrm{~m} / \mathrm{w}$ (see last page) $\uparrow 5-3 m / w$ (a) $5376-9 m / 6 u$ " 2,2 " $/ 7 u$ "2,9", 9m, 13-14m, 17-18m, 20w Range rather small $20-21 w$ therefore rather peary I shd think $5381-2 m$, table.w In same Family species with fleshy fruit have widest range; is it because animals eat them? 31-32m, $38-39 m, w b$ without Isld are specially considered, I hardly dare trust these discussions, for my purpose, as adaptation must so overrule powers of dispersion 539 $2 m, 3 m 5403-7 m / 3-7 u \pm / w$ what complication. 541 介5-2m 544 23-26m, 33-37m/w Russia may be considered as new country peopled from whole South 545 3-5m, 28-34m/29-37w Here isolation clearly comes into play; but this does not account for smaller range of plants within Cape District. 38u "Flora, 1843" 546 16-22m 550 table.w As far as I can see (which is very little) isolation of area seems to have little to do with confinement of species!! In this Family 552 wt Here again it seems perfectly insulated regions have the

CANDOLLE, VOL. I: 552
wide-ranging species in greater proportion; this cd happen whether formerly connected by land, or chance introductions: No if isld was only a bit of a continent, it would not be so, but if it received species, then it wd have wide rangers left half of table: $17 \mathrm{~m}, 18 \mathrm{~m}$, $21 \mathrm{~m}, 26 \mathrm{~m}, 28 \mathrm{~m}, 29 \mathrm{~m}, 30 \mathrm{~m}, 42 \mathrm{~m}, 45 \mathrm{~m}, 48 \mathrm{~m}$, $49 m$, right half of table, $12 u$ "purement insulaires" $/ w$ New Holland Mem 13-16m, 20$26 \mathrm{~m} /$! 554 wt Here again the less the connexion between the areas forming one group, the more species they have which are generally wide rangers or Isld generally possess large proportion of wide ranging species. table.m, 2nd table.m/wb Caledonia a 555 table.w 59 regions $\Uparrow 1 u \leftrightarrow, \Uparrow 4 m / w b$!This exactly opposite result to top of last page 558 table.w This agrees with Bentham 559 $18-19 m, 25-28 \mathrm{~m} / \mathrm{w}$ uniform bad conditions \& means of dispersal $37-40 \mathrm{~m} / \mathrm{w}$ can think of no explanation * $w b$ Give this as example of unexplained facts or law $5608-9 m, 12-$ $13 u \leftrightarrow / 12-25 w$ great regions more separated, but how can this bear on distribution within Cape Region. The very wide rangers which inhabit different great regions will a fortiori inhabit the smallest.- $23 \mathrm{~m} / a$ "proportion" of wide rangers $28-32 m, 33-37 m, 33-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ North most united before Glacial, or rather by ice action during glacial. and Before Glacial action 561 1-4m/3u "Cruciferes"/4m/u "Composées" $/ 3-13 w$ try this with really oceanic isld say only volcanic isld - It is here done: no great difference $10-11 u$ "présentent lautres", $11-17 \mathrm{~m}, 20-26 \mathrm{~m}, 28-30 \mathrm{~m}$, 35-40m/38-39Q ${ }^{3} / 35-40 \mathrm{w}$ I shd have looked at this just contrariwise $w b$ I never shd look at it under this light; yet perhaps agrees with Herbert's views - When then only few species, we must suppose either others extinct, or then few only as yet introduced. 562 $1-4 m / 1-10 \mathrm{w}$ All this opposed to groups with largest number of species having widest rangers $16-17 u$ "indiquent I petit" $/ 17-18 m / 16-$ $20 w$ This perhaps comes into law that great wanderers are very great wanderers. 32$36 \mathrm{~m} / 37-40 \mathrm{~m} / 30-38 \mathrm{w}$ in fact isolation by deserts or climate or sea equal $5631-3 m$, $12 u \leftrightarrow, 13^{*}, 20-30 \mathrm{~m} 56415 \mathrm{~m} / \mathrm{w}$ introduced 36$38 \mathrm{~m} / \mathrm{w} \quad 1 / 2$ world 567 46u 569 46-48m (Hooker) 573 44-46m 579 32-37m 581 24-25m, 36-39m/38u "d'un Icultivé" 582 3-4m, 9-13w 47/117 acquatic or semi-acquatic ! $26-33 w c$ $\Uparrow 14-13 m / \Uparrow 15-7 w$ This looks as if due to * unoccupied site $\Uparrow 2-1 m / w b c c \mid 583-4 m$, $18 m 584$ 2-5m, 15-17m, 21-22m/21u "en Abyssinie", 30-33m, 30-35m, 38-40m 585 1$3 \mathrm{~m}, 15 u$ "La Légumineuses"/15-17m, 19-21m/
w (a) 26-27m, wb (a) yet how extraordinary the law lately developed, that where there are few species of a Family, then average range is greater than when many.- species occur.- The latter are local vars. considered as species $5861-3 m / Q 3-6 m / 5 u$ "àlbaies", 12-14m, 15-16m 587 12-14m, 22-29m/22-24w very local plants $34-39 m 58813-14 m / 12-32 w$ This bears on $*$ few species inhabiting 2 areas, where there are many species. Does it not come to this, that widely extended species break into varieties \& these become species. with confined ranges.- anyhow this shows how complicated a question it is 21$25 m, 36-38 m / 37 u$ "restreintes \mid vastes" 590 28$30 \mathrm{~m} / 27 a$ "la" Mediterranean 591 11-13m, 22$23 \mathrm{~m}, 30-31 \mathrm{~m} / \mathrm{u}$ " 120001 existent", 34-36m, 36$38 m 5927-11 m / w$ Labrador lately colonised, 11-16m $59414-16 \mathrm{~m} / 13-20 \mathrm{w}$ This is important for shows creation by adaptation does not explain. see p. 599 28-30m 595 1-7m 596 2$5 m, 36-37 m, 37-39 m \quad 597$ §22-20m/ $\uparrow 22-9 w$ No, because opposed to generally contest within same Families:- One Family may fail over world. animals or insects allied over world. $\Uparrow 12 u$ "Rutacées", $\Uparrow 12 u$ "Zygophyllacées" $\uparrow \uparrow 13-5 m / w$ (a) $w b$ (a) Here is case in ease with which var. changes into species; \& tending to extinction: Rutaceae \& Zygophylleae small orders in alliance of Rutaceae, which has several small orders $w b$ Antiquity of sp. anoth cause. Most complex problem $59818-21 m / 18-25 w$ seems to attribute much to simple fact of ancient existence. $30-34 m / w$ contrasts these islands in range $37-39 m / w b$ here comes in creation: they are new in North. 599 2-4m, $24 w$ Marsh Plants $26-28 m, 29-30 m, 37-40 w / w b$ speculation, which I shall introduce on Fish, bears on this; changes of River courses: most lakes connected with streams.- How many fresh water deposits with recent shells.- $\uparrow 1 u$ "aux causes" $/ w b$ why, mere hypothesis $6002 u$ "ou lespèces" $/ 2-4 m / w t / 1-7 w$ I think many acquatic plants are social, which is proof not fully occupied; see to this I remember it is in salt-marshes, water-lilies Reeds \& Flags \&c. $9-11 \mathrm{~m} / \mathrm{w}$ whirlwinds 2328m, $38 u$ "Protacées"/38-40m $6015-7 m$, 23$25 m, 28-29 u$ "commelplantes", $29-31 \mathrm{~m} / \mathrm{w}$ no evidence for this $32-34 m 602$ table "régions arctiques". m / u "Petits lespèces"/?/w recently unoccupied area "régions tempérées".m/?, "régions australes". u "Petit nombre"/?/m/??!, $\Uparrow 3-2 u$ "les lextrême" $/ m / w b \therefore$ closely adapted: parasites opposed to this.- 603 table "marais". u "Uniformitél physique"/m/!!!/w why this was contradicted "plantes nivales".m/!!,
"forêts".m/u "époque Iglaciers"|!! 604 tabletitle.m, "Organisation simple".m/wt I see he always thinks simple organisation \& ancientness corelated. More probably is related to adaptation to diverse conditions. I presume complexity or highness \& close adaptation go together. $60538 \mathrm{~m}, 44 \mathrm{~m}, 46 \mathrm{~m}$

CANDOLLE Géographie botanique vol. 2
NF Read \& write sketch \& look over; Read Hooker Galapagos New Zealand \& Flora Antarctica
SF \square ロR
When this read skim over (make index); Reread Hooker N. Zealand \& \& FI. Antarctica \& Galapagos; Skim my own portfolio; Then read my own old sketch, \& write essay
compare D.C. list of introduced Plants in America \& see whether they abound in vars. \& whether large genera: taking average of species with vars. in whole U. States Flora but those very sparingly introduced ought to be excluded.-
NB p. 1130 ask; $1179 *$ ask *; 1332.- Error (about Potatoes

* on absolute numbers in small distant islands.-
If Decandolle cd be trusted we shd have * greatest difficulty to transport seeds from isid to isld in same archipelago \& as most volcanic archipelagoes are rising we shd have the wondrous spectacle of a naked isld somewhere in ocean.-
Isolation most important, as preventing migration \& so altering conditions, \& making gaps in economy of nature, \& quite secondarily causing organisms to vary. Also few individuals would aid in checking crossing, especially the bisexual.- A vigorous wider spreading spec, \& which consequently varies, when isolated, under most favourable conditions to vary. Possibly isolation not long enough in many cases, as in Alps \& F.W. Fish.- Few individuals for isolation, \& this gives bad chance of new forms, but time wd make up for that.-

SB1 $\square R$ Index to Decandolle Chief Points $1 \Leftrightarrow$

$\bar{p} .72$ p.117,8, 147, 201, 203 Adaptation to external conditions, chiefly climate, showing how differences of temp. will affect differently diff. plants, on trees exposed to whole year cold hence (I shd think, dwarfed
p. 264 more height no influence; hence alpine plants show nature of former Glacial
land better than arctic plants.
-p.268. humidity.-394-418*
$x \Leftrightarrow 238$ on difference in leafing \&c of Beech in Madeira. Read essay 397?
246 on sea not determining limits of plants in Europe
250 Nothing said about sterility of plants at lower limit of range [ask Watson or Decandolle at some future time] shows limit dependent on other forms.
$c \rightarrow$ though they are sterile at upper limit
270 Alpine Plants. 316-327, 329 Polar \& height limits are corresponding in different species; 407 Japan Mts; 412 Spain -
\Rightarrow p416 bears on general forms of area of Plants.; 490 Bears on Glacial Period $x \oplus 337$ Limit of cultivation of maize
343 on N. American vines, European does not succeed.
$\Leftrightarrow x$ means used for 1st Volume
x 406 only few plants have elongated area \& 416
$\mathrm{X} \Leftrightarrow 422,428 \mathrm{Q} \Leftrightarrow$ Adaptation to conditions; 447 Q \Leftrightarrow alternation of natural Crops $\Leftrightarrow 453$
\Leftrightarrow Struggle between Fish \& Water Plants
\Leftrightarrow p455 why more species in dry than humid climates
456 Corn Plants, list of
$x \oplus 457$ to $465 \Leftrightarrow$ on abundance of species, or Social Plants.- my discussion on selection of diversity of form to amount of life.- p. 470 to 473
\Leftrightarrow p465 Book on the subject to consult)
465 to $470 \mathrm{Q} \leadsto$ on relation of frequency \& largeness of genera; bears on extinction.503 - 509 in connection with very wide * ranging genera or Fams. \& large genera. see infra
x 476. When species in 2 distinct countries are generally in intermediate - ratio of wide ranging species \& families. Families which range furthest, without regard to obstacles. There is p484 great distinction between Weak species \& very widely extended species, ie when a species is once a spreader it spreads widely. 490 Proportion of N. Zealand \& Auckland Is. \&c with Europe \& \& 505.- on expansion of absolute numbers within Larch wood. On relations of polar districts to each other. 496 Labrador, Kamtschaka \& Europe 499 Low plants 519 (u®) Q ω range furthest ω with exceptions p500.- 498 Bears on former continuity of Islands \& continents.

- Decandolle plants not being spread N x 502 on introduction of glacial plants into N. Holland p.507/508 contrast of Cape \& T. del Fuego in European species.

CANDOLLE, VOL. II: NOTES
x 502 some Compositae wide rangers. 505-508.510.

- 508, 509

503. 509. On largeness of groups \& wide ranging. 511 hostile.
$\Leftrightarrow 514$. \& highness \& lowness in plants 499/519
other causes determining range.- also greater division of Tropical land.
519 on wide range of acquatic plants 522 good index.- do Marshes yet not so uniform 521 sea-side plants do
527, 532 Trees much limited; herbaceous plants next; lastly annuals - good MS. remarks. Bears on distribution of F.Water productions
533 to 540 on * Range in relation to nature of seeds
544 to $563 *$ Range in different countries as Russia \& Cape \&c \& Islands
563 Plants which range over $1 / 3$ of world p. 582 47/117 semi-acquatic/ p584 108/117 in N. temp \& arctic lands, where land continuous, good to show effect of continuity - so good remark on same plants 584 being found on the intermediate islands
1. Azores less endemic sp. than Canaries;

Färoe has none - cases of very local species

SB2 $\square \beta<4$ sheets, numbered $2-5\rangle$ Alph. De Candolle for 2d \& 3d Vols.$\frac{2}{5}$
590 Species which inhabit other areas besides Mediterranean, inhabit all its Provinces
594 shows extension of acquatic plants cannot be explained by uniform conditions p. 599 do
595 winged Compositae not large range p. 600 small seeds widest rangers 596 not large-fruited seeds.
597 to 600 On sp. of same Families having small range in very different countries, but that they come into competition with nearly same Fam.- Good about dominant species spreading:- Long \& Good Discussion on this subject
Vol 2 Naturalisation. by Nature \& by Man
608 Each sp. not perfectly adapted to its own home, \& [good] good MS remark physical causes cannot engender new species perfectly adapted
613 seeds blown up 5400 feet \& effects of wind
617 currents of sea (Madeira to Canaries) note 61620 years in F. Water alive
618 action of Birds on transportation in
various ways. (p769 admits agency of Hooks 797 good)
624 seeds alive in earth.
629 Cases of naturalised plants confined to few localities in new country. [Cardoon, Guava Peaches \& Oranges several cases
631 Few disjoined species, \& even species of same genus generally in same country
631 Cases of aboriginals, which are often injured by weather or do not ripen seeds. [this again shows want of perfect adaptation in indigenes.
632 Curious case of irregular distribution chiefly F. W. Plants: [Birds now rarer] good suspicion. one may say that means wd be now less effectual.
637 List of plants which have spread recently moderate distances
645 List of nat. plants in Britain [compare with Hookers list * of nat. Plants f. in Australia *
698 Resume on do. 83 certain - 10/83 from America \& Discussion on causes.
709722 Nat. at great distances. in various countries; Europe/U. States 716 in 26 years 600 miles of Lat. Many other good facts of rapidity/- 720 Monte Video cases, when became social/ Juan Fernandez on Australian list.
723 Plants nat. in Europe since * date of Columbus; from all countries (Compare with Australian List)
742 Resume on do. 64 sp. good in contrast to many on islands (None from any island) No p. 754). The introduced sp. are wide rangers in home
746 Plants nat. in N. America (751 Nat. plant in many countries \& wider range than its own nat.)
754 Resume of do. p755 (proportion 122: 35) of plants of 2 worlds.- Proportion of Fams. of Nat. Plants nearly same as of indigenous in Europe.-
(p .759) the naturalised plants here again wide rangers in Home
761 Plants probably from merely scientific reasons nats. by nature in Tropics of Africa \& S. America
796 Resume on - shows very few cases from continent to continent.
797 Again rule that naturalised, were originally spread widely \& have naturalised widely
798 On difficulty of succeeding in naturalising a plant. When tried intentionally good to show importance of struggle
804. The species which * have become naturalised belong it seems to Fam. which
have not wide average nat. range; but that does not concern me * on account of specification; if the individual species have that is all
Overlooks time See MS remark.
3
Alph De Candolle for Vol 2. \&3.
807 Recent Fir trees extinct in Ireland \& Shetland Isd - Faroe \& Nut-trees.-
995 cases of trees with Disjoined ranges (Alpine, Glacial \& 996
Disjoined acquatic Plants
999 After Glacial period more lakes - p 1024
Eriocaulon 1027-1029 - Nymphaea W. Plant range of.
1007 Disjoined Alpine Plants to 1019
1019 Alpine Disjoined Species (but some partly glacial) connected with being aberrant forms. p1035 get Hooker to look over lists.
1025 Inter-Tropical Disjoined species.
1030 Cyperus polystachyus hot soil. Mem. Hooker Himalayan Cyperus in Hot Springs shows a genus adapted to become fitted for peculiar site.
1034. No sp. common to S America \& S. Asia, unless also fd in Africa - why on theory of creation? good
1036 Sp. common to Mauritius, Madagascar \& India. do. difference is in Bourbon \& Mauritius.
1047 Good discussion on Disjoined species. 1047. Species common to N. and S. not found in Tropics. Glacial: Antarctic ocean 1054.

1055 Conclusion on Disjoined Sp. races
1056 on ancients causes of dispersion. remarks in general
1062 on antiquity of species - old Trees
1067 Brongniart on relation of American \& Europe in vegetation fossils
1092 to 1104 On Origin of Sp . Extinction, Isolation
1097 Concentration of close species the rule \&
1110 Multiple origin of species (1116 do)
1127 Genera more real than species.
1129 some analogy intimated between all species of genus (1131 do) see my reference below 1145
1130 Disjointed genera - 1132 Metropolis of genera with wandering species
1133 small genera with few far separated species [Glacial] a difficulty here.
1137 The bigger the genus the wider its area of extension; specially if it has subgenera
1138 Relation of area of genus to that of its component species

1141 Genera confined to single isld with several species.-
1141 Case of Genera with very wide \& very narrow Ranges: Average range.
1144 number of individuals not guide to aboriginal country, but number of species is so.
1145 External characters go with consti: differences, as shown by crossing \& grafting. 1146 Cannot explain by any cause Distrib. of Families. 1149
1151 Distribution of Families like species of a genus.-
1152 Outlying genera abnormal or aberrant
1153 Single species ranging far taking place
or representing or equivalent in distribution
many local species in other cases.
4
Älph De Candolle 2d \& 3d Vols.
1158 Fams. with immense ranges \& local
List of small Fam. with few genera \& few species (Aberrant)
1161 Concentration of genera - not range in proportion to number of species.
1165 I suspect lower Fams. more broken?? good if I could show as it could be due to increase in number of species in higher Fams.- No. Higher Reptiles. higher Mollusc. Higher or more Reptilian Fish most broken: if contest within each Family it would be so.-
1170 Definition of Dominant families, which have most species.
1172 on number of species to genera \& to Families in various areas.
1176 On proportions of species of Dicot \& Monocot in different countries \& Islands 1180 Something in common with regard to Temp. even in all Monocot. \& Dicot. So on (1185) Mountains 1188 Humidity chief relation in the Mono. \& Dicot.
1189 to 1233 On the Dominant Families in various countries \& Islands.
1233 Discussion on \& good M.S. remarks.
1236 The richer in species any area, the greater the no of Families, ie more diversity in inhabitants
1237 Under unfavourable conditions the great \& dominant Families only survive.

- The Dominant Fams. over world are not always in same proportion to most numerous; they seem to be the increasing Families.-
1238 On how far the dominant Fams. are affected by climate. The most dom. seem now very complex. 1241. Even in Tropics Leguminosae, Compos. \& Gram. are the dominant Fams.

1247. Local dominant Fams, at Cape \&

CANDOLLE，VOL．II：NOTES
Australia（1251 for cases）
1249 good sentence，cannot explain proportion of Fams．in Islds by conditions．
1252 Arctic Regions very peculiar conditions yet very few peculiar forms，no Fam．Good
1254 Excellent Table of＂characteristic＂ Fams．（not found elsewhere）over whole world 1258 Detailed Table．
1267 On families with double \＆treble centres．
1267 Glacial
1268 good Glacial 1269 Cape at base of Page．
1271 Total no．of species in areas of various sizes（1273 small areas）
1275 same sp．range more widely in Sweden than in France 1276 still less widely at Cape \＆S．Australia
1279 \＆ 1282 On number of species in small islds．－
1278 Africa，tropical poor in species \＆very poor in characteristic Fams．（for latter see 1254 \＆1268）
1287 On proportion of no．of species to genera in various countries \＆ 1288 Islands．
1289 good discussion bearing on the problems of more life supported by more forms（1298）and generally on insular Forms．－ 1293 often monotypic－ie preserved from extinction． 1297 Islands again
1308 First great Division of Distribution of World are not related to Climate，like the forms of land．
1309 remarks Old \＆New Worlds greatest division．－
5
Alph De Candolle（Vol 2．\＆ 3 of mine）
1313 Plants of Europe in relation to Glacial． 1326 Glacial
1326 Lyell on most ancient sp．most repanded．
1329 Vegetation of Madagascar allied to India
1330 Africa \＆America never united all points to ancient Broken Land．
－Many species in common to Mountains of W．Indies Glacial．California \＆Chile
1331 \＆ 2 on Plants of Pacific isids
1332 Ligneous Lobelia in Tahiti
1333 Submerged countries when elevated have uniform vegetation
1334 admits some species are derived by modification
1340 Cause physique of present period one of subordinate importance．
Feb．17th 1860 I have now abstracted whole grand Work．

SA1－10 $\langle p p$ ．878－879〉

SA1 $\square \Re$

Introduction
＊p72 Hence dwarf？；84；116，8；144；147； p． 238
200 －influence of other species overlooked here \＆in similar cases．－
202 \＆so here．A cause which prevents more than $1 / 20,000$ seeds vegetating or giving full－grown plant．－Here in this page：preoccupation overlooked．How little climate explains what species are common \＆ what rare in same district－When ground preoccupied seeds of other plants wd have to arrive at period，when not in full vegetation．－goode
＊246；250；264，68；270；326；395；397； 406， 408 to $418 ; 422 ; 447$ to 474 to ）
SA2
p465 DeCandolle Books to see whether frequency goes with genera，as it does in Families，not in latter markedly in larger Families．
Boreau Flore du centre de la France
Miquel Disquisition Geograph Bot de Plantarum Regni Batavi Distrib 1837 Lugd： Batav：
Furnrohr Flore de Ratisbonne in Naturhist． Top．Regensburg 1839
＊De Plantis Salvadoricis 1830 Ev．Meyer
Meyer on Cape Plants p509 \＆ 512
SA3－6 \square R
SA3
Oct．15／55／：As every organism struggles for life：the individuals of every species，will try to adapt itself to several stations（of course chiefly wide－spread species will meet with such）for thus more will live．Why a species cannot adapt itself to all stations，depends probably on hereditary laws \＆actual chemical nature of its body．－But it may be said＊more wille live by being adapted to several stations；I think this is obvious；we might kill probably many species adapted to flourish under trees
\Leftrightarrow（or food of which species wd disappear \＆ decay if they not present）
without proportionally more trees－（or more chemical change，best measure of amount of live）＊living．－The better the conditions the more the life；\＆the more the life， probably the more the forms
see p 462 Tome 1 Decandolle why？I cannot prove this
（at least the more the small diversity of forms ie species，the more the great diversity ie genera，but not in same ratio．
－though the latter 〈ie number of forms〉 chiefly
depends on diversity of conditions，$\& \&$ for plants，at least，as Decandolle fils
＜over）has shown are most in warm，dry countries．Under peculiar conditions，small stations，there may be a good deal of life \＆ yet few forms，－as in arctic seas，－do the forms live throughout seas？or are they not short－lived．Why have Lakes few forms？no tides，not much diversity；no estuary of brackish water
\Leftrightarrow The question which I cannot answer is， why under bad climatal or soil conditions there shd be fewer forms than under good climate \＆soil．ie when little life，few forms but most diversified in stations．$\rightarrow\langle$ to SA4 \rangle ＊I think Decandolle explains why fewer social plants in good climate \＆soil．viz where more species there will be more neat adaptation．$\rightarrow\langle$ to SA4〉
I can see in case of salt marshes，because like small isolated isld（for salt－marshes are isolated by conditions themselves）there has not been room for creation：all the salt－ marshes in world under approximately similar climate wd make but a small world．－ All F．W．Lakes of same climate（besides too much separation）are likewise small．－Land fitted for heaths small－Even arctic seas small，especially if killed in winter．－
SA4 \rightarrow 〈from SA3〉My old question why so much life in North Seas，\＆so few forms，is probably in fact an illusion，the eye struck by number of same species．One is surprised to see any life compared with arctic Land．－
（Small area only bad from fewness of individuals giving chance of new forms， hence this is opposed to isolation being advantageous）
$\rightarrow\langle f r o m$ SA3〉 In bad climate \＆soil，the amount of live，from slow growth probably smaller than it appears \＆number of forms perhaps really in proportion to quantity of live considerable．－It has acquired a great laboratory to make all forms－Perhaps once there was no arctic Regions．－Hence few Alpine plants on really isolated Mountains．－ this caused by slowness of creation
Caspian biggest brackish water \＆a good many species．
〈over）mos
We may move to discussion on number of species．（N．B．few species，but many individuals in salt marshes）with the distribution of mammifers on premise that I exclude Cetacea，Chriopter \＆Seals？）The presence of Bats＊very strong case．－
\Leftrightarrow Is not Madagascar a great opposed fact to my views of distribution of Mammifers－
perhaps so large as to rank with Australia－ very separate \＆mammifers very like．－
（The way the Inula \＆Alders \＆Gorse， appeared in patches，shows seeds a very important element）
Ought the law of＊common plants belonging to large families，as is faintly case with Decandolle facts，to be common to large genera．A Family may \＆does contain many genera not increasing，but then a genus may \＆does contain many species not increasing．If on average genera contain forms more closely allied，\＆either decreasing or increasing more regularly， then the law wd hold more with genera than with Families－How does a Family increase by the genera increasing \＆splitting up \＆ other genera dying out \＆c Family turns into an alliance by a few portions only increasing \therefore I think law always better tested by genera than by Families．－
Some agricultural green crops are said to be advantageous because they smother weeds Here abundance of seed is important
SA5 Feb 15／57／：In every small area＊if not of some extraordinary nature，there are many genera to species．ie much diversity in organisms \＆no great number of individuals in relation to species－Sqr yard of Lawn－a single wood－\＆a coral islet－an islet of any kind．－This depends on most＊life being supported on small area．－
aaa But if the site be very peculiar，the former part of law fails，\＆species not very different as on Heaths－saline plains Cyperaceae as in Hots－pools（Hooker Himalayan Journ）there peculiar adaptations will come into play：In these cases \＆there are also generally many individuals in comparison to species because only few things can live there．＊
〈over）
Diversity of sites great cause of most numerous species（D．C．explains well effect of dryness）．Subject to this I shd expect \＆ believe it is，that most species when most life，for as organisms are so intimately related to organisms this will in itself cause more species．And this bears on unfav－ ourable conditions，as Arctic Regions \＆c
SA6 aa If the site be small，\＆somewhat peculiar \＆as compared to rest of world，As in arctic regions（near winter）Alpine summits －Lakes of F．Water－then there will be many genera to species，\＆very many indiv－ iduals to species．－
why is this 1 believe because laboratory small；if in nearly whole world，with myriads

CANDOLLE，VOL．II：NOTES
of individuals selection has effected what we see，we could not expect so much for restricted asites，specially if of no great antiquity：as Arctic Regions－［N．B．this is contradicted by islands；No but into these forms transported from other countries come into play］Possibly unfavourable conditions may come into play，but I doubt from case of Lakes．－
〈over〉
p462
SA7－10 〈numbered 1－4〉
Nouvelles Recherches sur les lois on distribution des formes vegetales Humboldt， Sw Acad Sci 19 Feb 1821.
p． 6 Notre imagination est singulerement frappée de la preponderance de certaines q＇a cause de leur facile reproduction \＆cc （would aid no doubt）＂Fallacy．There is something quite unknown about social plants．The cause of such cases in the Mangrove is nearly obvious＝in pine forests in N．America，which when cut down for few years only bear oaks cactus \＆Bamboos＝in our heaths．I think that it is simply，that there are conditions of some peculiar nature to which only few $*$ species adapted．Yet how comes it that in Northern parts of Europe \＆ N．Zealand Ferns are so preponderant． Where a species is so obviously well adapted \＆abundant，there seems no tendency to form new species．A species to form new ones，ought to have been widely spaced under different conditions，\＆not simply numerous under the same，though peculiar conditions
2
II I think this explains the absolute want of relation between abundance in individuals \＆ species of the genus？：it shows that new species not formed by mere chance or laws of simple propagation I suspect the line of succession in making a new family may be this \＆not branch out till＊a new \＆useful form is formed．
p． 9 Generic forms numerous on Mountain summits（ - small area）as in Glacial region：there must be a cause
（as in Dark cases，Blind Fauna．as on Coral islands also）
\＆why such peculiar \＆ill－fitted situations ＂recoivent des colons d＇un grand nombre de genres＂．\＆Why do not several＊species of same genus become adapted，I think it must be because same spot can support more life under very widely different forms－Take glacial region or dark caseses－can support

1 nocturnal 1．diurnal carnivore－one grain－ feeder \＆\＆c\＆c（There is something very remarkable in this \＆very different habits imply generally different genera．（a））
〈back of 1〉
$\Leftrightarrow \rightarrow$ On this view the small number on Coral Isld is due to not－suitable conditions， \＆prob to few arrivals．
＜2 again）
p． 16 Under a given latitude \＆in either the old
3
or new world（which in several families have different proportions between the families） $\langle u \Leftrightarrow\rangle$ if we know the number for instance of the Leguminosae，we can judge of total phanerogames．
© not in Patagonia（Hooker）
〈back of 2〉
（a）We can understand this in animals \＆we must suppose something analogous in plants though not intelligible to us．
（3 again）
p． 22 The proport．numbers of the great families are the same in Germany \＆France； hence the species of Leguminosae， Cruciferae \＆Umbelliferae，which appertain exclusively to Germany，must be replaced by other species of the same families in France． Again France has 1700 or 1800 more species than the German list，\＆yet their additional number must be proportioned in same manner as whole．
＜calculations follow〉
\Leftrightarrow All this ought to be advanced as creationist facts
〈over〉
New species not having been created in Aegypt since Mummies \＆Pyramids is less result of physical conditions having remained unaltered，than of other organic beings having remained the same．－

4
$\bar{p} .23$ ．Taking even few square leagues near Berlin having only 900 species．Vide last page．
These facts show in most astonishing manner how if a new species has to be created，or more strictly perhaps to be introduced（ie if a gap be left in economy of nature）how it will depend on the character of every other plant in country－（Think of this with respect to animals，whose place in the economy of nature we understand better）The point is to consider what old species could be introduced $*$ ，their subsequent modification is a separate question．－

Shows how a gap in Nature is a fixed \＆ difficult point
〈table of calculations follows concerning proportions of Monocotyledons，Cyperaceae， Compositae and Rutaceae in the equatorial zone of the old and new worlds）
How does this list bear on above remarks does it not invalidate it？Wonderful adaptation of some kind is shown．－
〈over〉
－ p 466
SA11 〈pp．980－981〉 $\square \beta$
〈list of species〉 Unknown according to Bentham
SA12 〈pp．1020－1021〉 $\square \Re \otimes_{0}$
p．1020：The case of Geum－Veronica， Myosotis－go to show that Mediterranean was land during Glacial Period．－as does Moufion on Sardinia．－\＆some Alpine plants （in former page）on the Mediterranean islds －Perhaps bears on connection with Abyssinia．－sub－alpine plants on opposite side of Gibraltar－read J Smith？on change of level at Gibraltar
SA13 〈pp．1078－1079〉
Changed habitses
Decand $\&$（9．）
Edin．New Phil．Journ．61／70 fish salt water； Zoologist p． 20 do
Quatrefages Unite p79 Goose laying at new time
6．Colin $1 / 426$ animals accustomed to new food；Gard．Chronicle 1841． 291 Cherries vegetating earlier under Heat
SA14 〈pp．1232－1233〉 $\square \Re$
All these tables with under nearly same climate，the similar proportion of great Families impress my mind，very strongly how the existence of every species，depends on fixed laws \＆relation of organisms．－ Especially the latter respect，when we see how considerabiy different the countries are －It shows too by what laws the creation of new species will be governed．－
The proportion of the great Families in the Atlantic islds，impress strongly my mind as an argument in favour of continuity．Only coral isld（most of which probably at one time have been immersed）shows that different groups only are allowed to live．\＆ seeds from adjoining country wd be in proportion to that country．－
SA15 〈pp．1238－1239〉 ロæ •
〈table concerning Compositae and Leguminosae〉 As Legum are generally good sized seeds＊ I have made out this table of all the islands in foregoing list \＆it certainly seems very
doubtful how far size has anything to do with transport－But then floating；\＆crops of Birds come into play－
Upon the whole nothing can be inferred from this list
$608 w t / \uparrow w$（a）it might as well be argued that plants do not change under domestication because not perfectly adapted to man＇s use． De grants complete adaptation is proved not to hold good arguable，\＆yet argues because there is room left for new species， no change can be effected．On contrary，it might be argued if every country had its species perfectly adapted，then there wd be no cause，or means by selection to change species．－III－good 1－3m／3u＊＂Causes actuelles＂，4－7m／6u＂L＇adaptation complète＂，8－ $10 u$＂et lébranlées＂！！！w（a） $6092 u$＂passagères 1 adventives＂， $30 \mathrm{~m} / 30-39 \mathrm{w}$［The many plants which can live \＆the few which can propagate，shows that seedlings or life of seedlings the most crucial part of existence］ C．D．610 34－36m 611 1－3m，12－17m 613 38－ $49 m$（Boussingault） 614 6－10m，25－30m 6151 － $3 w$ Spiders webs Fall of pollen C．D．15－17m／ 16u＂10Ilieues＂616 31－33m，35－36m 617 10－ $12 \mathrm{~m} /$ ？， $27 u$＂courant \mid Canaries＂，31u＂l＇est letc＂ 618 12－15m， 36 m 619 wt in MacGillvray even Carrion Crow attacked a flying wounded Grouse $3-5 m / 4 w$（a） $11-12 m, 21-24 m, 32-36 m$ $620 \quad 28-35 \mathrm{~m} \quad 623 \quad 10-12 \mathrm{~m}, \quad 28-30 \mathrm{~m} / 30 \mathrm{u}$ ＂transport｜légère＂624 20－25m，34－37m 625 $1-3 m / 2 u \quad$＂magasin 1 graines＂ $628 \quad 30-36 w$ Peaches Oranges La Plata Guava in Tahiti $6291-2 m / 1 u \leftrightarrow, 15-21 m, 23-26 w$ shows difference of conditions $27-36 \mathrm{~m}$ 630 15－18？， 24－31m／27u＂Cel rarement＂ 631 1－4m，7－11m， 18－24m／24w JoyO $632 \quad 17-18 \mathrm{~m} / \mathrm{w}$ of irregular distribution $18-22 w$ । do not see that owing to non－transported $24-29 \mathrm{w}$ very curious details in following pages $63327-30 \mathrm{~m}$ $63414-16 \mathrm{~m} / 15 u$＂enclavés dans＂ $116 u$＂vent 1 le＂，21－25m／ヶ，31－35m／31u＂hypothèse＂｜33u ＂autrefois \mid facile＂ $\mid 35 u$＂accidentelle｜disparition＂｜ 31－39w Only one fact for this hypothesis $37-39 \mathrm{~m}, 40 u$＂àlcertaines＂／wb What an hypothesis 635 wt If herons eat fish with seed，such means wd have been more energetic formerly，when country wild．－1－ $5 u \pm / 19-22 m / \rightarrow / 2-7 w$ less time equally good theory 9－10m 636 9－10m 645 wt p． 703 He excludes plants growing only in cultivated ground，very correct．3－10m／w Big type certainly not． 687 1－3m $6989 u$＂satisfaisant 1 probabilité＂，11u＂quatre－vingt－trois＂／w $8312 u$ ＂avant｜siècle＂， $15 u$＂ 10 venant＂$/ w$ 10／83 Amer 26－28m，31－33m 701 wt（b）England formerly

CANDOLLE, VOL. II: 701
connected, hence most plants which could live in England wd have immigrated. If any species had been introduced by Birds within the last century, \& was not mentioned by old Books, it wd have been thought to have been overlooked.- $30-37 \mathrm{~m} / \mathrm{w}$ (b) (a) So very recent since $1700 w b$ (a) But is there not some arguing in circle for it is the very probability of being introduced by some one chief argument $70220-25 \mathrm{~m}, 26-27 \mathrm{~m}, 27-28 \mathrm{~m} /$!, 33-34m/! $7036 u$ " 55 ", $6 u$ "en 1724", 12$13 m, 39-40 m 7046 m, 7-20 m, 26 u$ "trois mille" $/ w$ Cent? $27-31 \mathrm{~m} / 30-35 w$ How can this be told - look at connections, before any ancient Floras $31 u$ "alpine laquatique" $7057 u$ "manque lexactes" $/ 6-8 w$ this shows the means he uses $7068-9 m, 36-38 m 7075-8 m$, 16$18 \mathrm{~m} / \mathrm{w}$ shows conditions $19-22 \mathrm{~m} / \mathrm{w}$ proves too much $24-26 m 7081-3 m, 8-13 m, 17-21 m$, $32-35 m, 36-40 \mathrm{w}$ even in same country difficult $709 w t$ (a) if all true, either doubt creations, or new isld do not form; but new isld do not form.- $3-6 \mathrm{~m} / \mathrm{w}$ by wind or animals $11 u$ "devaient|rares"/w (a) $17 w$ These are only a few of the best cases 711 $2 m / u$ "1629" "1623", 5-8w age of early good Floras $9-10 m / 10 u$ " $p .11627$ ", $37 m / u 71622-$ $27 w$ in 26 years 600 miles of Latitude Ch. 5 718 28-33m 719 12-13m/13u "quatrelaprès" $/ w$ Ch. 5 18-19m, 23m, 26-27m, 29-30m * 720 17-22m/19-20u "nelMontevideo", 27-28m, 32$38 m 7214-5 m / 3-9 w$ Falkland Isd Azores? Canary Isld How many (See next Page) $7 u$ "le| ordinaire", 18-22m, 30-35m 722 9-18m, $21-23 \mathrm{~m} / 22 u$ "espèces 1 naturalisées", $24-28 m$, 29-32m, 38-39m (Hooker) $72625 m, 30-31 m$ $7317-11 \mathrm{~m} / \mathrm{w}$ on account of Hybrids.- Ch. 9. $18 u$ "la| résolue", 19-20u↔ 732 17-18m/18u "de 1857 ", $19-20 \mathrm{~m} / \mathrm{u} \leftrightarrow, 42 \mathrm{~m} / \mathrm{u}$ "les 1 comme", $48 u \leftrightarrow 7331-4 m / 1 u \leftrightarrow / 3-4 u \leftrightarrow / 1-4 w$ what does Bromfield say on this? $40-42 \mathrm{~m} / 41 u$ "c'est I blanche" 734 7-15m, 16-17u "appuient|vue", $20-24 m, 30-32 \mathrm{~m} / 33 \mathrm{~m}, 37 u$ "que IStramonium" $7426-9 m / 8 u$ " 64 espèces", 17-19m, $30 \mathrm{~m} / \mathrm{u}$ "grand" 743 38-40m 744 1-5m, 6-8m/7u "18। siècle", $19 w$ (1) 20w (2) 18-24w I think this Law wonderful; but not applicable (?) to island.- 25 w (6) $29-30 \mathrm{~m}, 31-36 \mathrm{~m} / \mathrm{w}$ These introduced species are wide rangers in their own countries. $7459-11 u \leftrightarrow, 12-14 m / w$ Q6 746 18-21m 750 14-17m 751 23-31m 754 34$36 m / 35 u$ "à $184 " / 37 u$ " $172 \mid 12$ " 755 16w 35:172 18-20m, 35-36m 757 8-10m, 22-25m $7586 u$ "184", 7-12m, 30-33m 759 17-22m, $34-37 \mathrm{~m}, 39-40 \mathrm{~m} / \mathrm{Q} 7601 u$ "561nouveaux" $/ 2 u$ "Parmilsont"/1-3Q 30-34m 761 1-4m, 23m 762 3-4u "l'ancien 1 monde", 6-9m/6-7u "aux I sont", $9 u$ "trèslinconnue" $/ w$ This may be
natural $15-16 u \leftrightarrow / 18$? $76326 u$ "les courants", 28-36m/30-33w currents from Africa to America \& reverse 764 20-25w Current of Pacific from Hooker $38 u$ "dell'ouest" $/ 39 u$
 Carolines $7657-15 m / 9 w$ currents $19-21 m$, $23 u \leftrightarrow 7665-8 m, 15 w$ The Disjointed Species appear in further list, where there is no good evidence of true partition 769 14-16m/13-21w I see he admits often hooks are powerful agents of dispersion. 773 4-9w Rhizophora on 2 sides of America 774 23-25m, $26 u$ "peulgenre"/25-28m $796 \quad 8-10 \mathrm{~m} / 10 u$ "et 1 Océan"/8-22w opposed to my idea of storms. But so few \& agency of man so difficult to eliminate, that the case is not important. 19$21 \mathrm{~m} / 21 u$ "est légard"/23-38w All this shows that sea is a very effectual Barrier, when wide. How then islands in open ocean. Wind from isld to isld?- $28 u$ "était \mid tropicale", 30$31 m 79710-11 m / 11 u, 13-15 m / 12-17 w$ makes the case of such plants, peculiar to Isid, the more striking.- $17-22 \mathrm{~m} / \rightarrow / \mathrm{wb}$ This often mentioned before \& shows truth of rule, that when a plant ranges widely, it can range very widely Ch. 7. Acclimatisation 798 3-4m, $11-15 \mathrm{~m}, 18-21 \mathrm{~m} / \mathrm{w}$ not on islds $31-32 \mathrm{~m} 799$ $1-7 \mathrm{~m}, 33-38 \mathrm{~m} / \rightarrow 80030-34 \mathrm{~m} / \mathrm{w}$ so could live $801 w t / 1-15 w$ Could I get list of Naturalised Plants from Lowe for Madeira; for Canaries - Webb \& Berthelot; for Azores St. Helena. Sleeman - Watson: it in his publishO lists Bojer has done it for Mauritius.- This cd be important as showing means of distribution \& as showing inhabitants of islands not well adapted. $8024-5 m, 16-18 \mathrm{~m} / \mathrm{w}$ already disseminated $80328 \mathrm{~m} / 28-29 u \leftrightarrow / \mathrm{Q} 804 w t$ I fancy the Compositae agree with my law that Compositae have as class narrow range, \& few the species of range widely. No, my law was that when the species range widely the class ranges widely. But plants will not serve. Except so far how species range narrowly \& I fancy genera range narrowly. $3-6 \mathrm{~m} / 5 \mathrm{w}$ (a) $27-32 \mathrm{~m} / \mathrm{w}$ time, time (a) he argues for 2 or 300 years last 100 only known at all well.- $w b$ The Azores has 100?? European plants, if 1 transported in 1000 years then 1000 wd get in a hundred thousand years.- Who will pretend to think * real species has existed, so short a time? 805 23-28m/20-25w Bears most importantly on origin of cultivated species $29-30 u \leftrightarrow 806$ $9-10 u \leftrightarrow, 17-25 \mathrm{~m}, 24-25 u$ "le lencore", $40 \mathrm{~m} / \mathrm{u}$ "Illespèce" 807 21-27m, 29-33m 809 18-21m, 24-28m 810 || /wt N.B. Most domestic animals \& Plants can withstand most diversified climate, \& therefore (like
accidentally transported plants) they have probably wide range \& therefore are very unlikely to have become extinct or be unknown. $1-5 w$ Mosses only. Animals accidentally transported by man. $4-7 \mathrm{~m} / 1-5 \mathrm{w}$ Generally conspicuous * \& certainly useful. xxx 6-11w Shows that are becoming extinct belong to small broken genera.- This not $15 w$ (Good to compare all this with Bentham's article) $20-24 m, w b$ xxx Might say probably not local species $811 \rightarrow$ from p. $810\rangle / w t$ I suspect it will appear for Decandolle that the originals have not wide ranges; but I suspect Decandolle in the following discussion.- To make this argument perfect, they ought to run wild. Nor fowls \& Fancy Pigeons do not run wild. 815 19-27m 826 9-13m, 15-17m, 23-25m 827 4$7 m, 8 m, 20 u$ "combien 1 par" $/ 20-24 m / w$ not selected except size \& colour of root 32$33 \mathrm{~m} / 33 \mathrm{u}$ "pendant|altérées" $83138-40 \mathrm{~m} 832$ $1 \mathrm{~m}, 4-6 \mathrm{~m}$, 11-14m $8355-8 \mathrm{~m} 836$ 13-15m, 18$19 m 8382-5 m 8401-7 m, 15-19 m / 19 u$ "estimés généralement", $20-21 \mathrm{~m} / 21 u$ "origines 1 Choux", 26-27m $84212-16 m / w$ yet all cross - must be created in Hybrid Chapter. 22-24m, 26$31 \mathrm{~m} / 27-28 u \quad$ "deloleracea"/26-35w Here comes in argument * as in dogs, that reputed parents are closer than variations $32-36 m / 36 u$ "Systema"|? 843 27-34m 844 3$11 m 84820-25 m, 27-31 w$ See in Gartner about fertility. Nothing - 34-38w Not known wild positively - wb Hence not likely that the numerous varieties shd have each wild prototype 849 9-12m, 16-17w Not known positively wild $8507-19 w$ The fertility of the N . chinensis being American bears on the vars. in China (not known wild there) 854 wt/ $1-18 w$ I shd remember that * edible vegetables may be killed out by being eat up.- in times of famine at least annuals. but then seeds in ground, as Decandolle remarks. But annuals do not appear in winter time during famines - $85713-15 \mathrm{~m} /$ $13 u \leftrightarrow 86334 m / w \quad$ Citron $35-39 m / 36 u$ "d'espèce I celle", 40-42m $86421 \mathrm{~m} / \mathrm{u} \leftrightarrow, 29-30 \mathrm{~m}$ $8655-6 \mathrm{~m} / u / \mathrm{w}$ (2) $12-14 \mathrm{~m} / 13-14 u \leftrightarrow, 28-32 \mathrm{~m} /$ $28 w$ (3) $86633-38 m, 41-44 m 86719-21 m / 19 w$ bitter orange $868 \quad 8-13 m \quad 869 \quad 22-23 m / 22 w$ Sweet orange $30-36 \mathrm{~m}, 37-38 \mathrm{~m} / \mathrm{w}$-shows how he believes in hereditariness $39-40 \mathrm{~m}$ $8706 w 410 m, 15-21 m, 22-24 w \mathrm{Sp} . ? 624$ $25 m, 26-27 m 8714-6 m, 11-12 m, 28-29 m / 29 u$ "Bergamotte", 30-34m, 35-37m 872 18w \& Crimea 21-22m, 23-24m, 25-27m, 32-34m, 40-42m $873 w t / 1-3 w$ I daresay wild - Secy Boucher de Perthes in same Library. Hort. Soc. Agricult Soc., Antiq. Soc. $4-6 m / 5 u$
"Reynier"/4-6w Worth reading for Cattle \&c 875 16-19m/17u "multitude ${ }^{1}$ ces" 876 12-18m, $29-33 m, 34-36 \mathrm{~m} / \mathrm{w}$ Flora Jamaicae? $37-38 \mathrm{~m} /$ $36-40 \mathrm{w}$ good case for no doubt an eastern Plant 877 2-3m, 3-4w Poor 3-5m, 6-7m, 10$15 m, 23-24 m, 26-27 \mathrm{~m} / 26 u$ "plusieurs espèces" 878 20-21m, 27-30m, $34 m 87937-40 \mathrm{~m} / 38-39 u$ "faveur I sûr" $39-40 w / w b$ Hence probably derived from single species $88010-12 m 881$ 4-9m, 30u "Malumlils"/29-31m 882 6-7x / u "hort|121", 11-14m, 15-18m/16u "Théophrastelavant" $883 \quad 35-37 m \otimes 8843-$ $8 m / x$ 885 3-7m/x, 13-15m, $22 u$ "en 1857"/ $22-25 m, 27 m / x$ 886 11-12m/12u "S'ill espèces" $/ 1-31 w / w t$ There is strong difference in Laburnum \& Orange? \& apple cases the tree goes on producing separate fruit \& blended fruit. But this case (together with several stones of seed) makes Peach \& Nectarine different far more analogy with Sports. In LaburnumO case it is not pure yellow which produces pure purple; it is a mixed tree.- $19-22 \mathrm{~m}, 30-35 \mathrm{~m} / \mathrm{w}$ Peaches \& Nectarines $35-46 m / w / w b$ I shall have to read all Gartner on this subject $\uparrow 9-1 m, \uparrow 6 u$ "Journ" $1 \uparrow 5 u$ "V"/ $\uparrow 2 u$ "1851।299" $/ \Uparrow 3-$ $1 m 88711-14 m / x$, 17-21m, 35-40m 888 $23-25 m, \quad 26-32 m \quad 889 \quad 24-27 m, \quad 33-35 m$, $w b$ Great cause of doubt in fruit trees is escaped seedlings $8911-2 m 89716-20 \mathrm{~m} 902$ 27-31m 910 §12-9m/ $\uparrow 19-6 w$ (In Loudon good account.) confined range. Probably single origin. good to point out amount of variation. $\uparrow 13-11 m / \uparrow 9-7 m$ 911 1-4m, 14-15m/11-14w This good as well as gooseberry $\Uparrow 14 u$ "1557", 介12u "1597" 918 20-21m, 35-37m 919 25-26m 920 4-6m/4-8w Forster must be read again 921 32-34m 922 1-7m 923 7-9m, 15$16 \mathrm{~m}, 37-40 \mathrm{w}$ Mem Schomburgk in Guyana 925 24-30m 926 4-9m 928 4-7m (Lindley), 12$13 \mathrm{~m}, 16-18 \mathrm{~m} / 17-18 u \leftrightarrow, 21-26 \mathrm{~m}, ~ 26-31 \mathrm{~m}$, 35$37 m / w$ Read $9291-3 m, 5-6 m, 8-12 m / 9 u$ "150। froment", $15-24 m / 17 x / 15 w$ old vars $28-33 m / 28-29 m / 26-32 w$ Does not stigma \& anthers with pollen protrude what for if not for external fecundation in fine weather. $30-$ $31 x$, $35-37 \mathrm{~m}, 39-40 \mathrm{~m} 9301-10 \mathrm{~m} / 4-5 x / \uparrow w$? see the accounts of Australian savages how they try everything - Look at Carrot, Parsnip. Gooseberry - I am sure I have read somewhere of savages getting grass seeds.- Zizania aquatic (?) in N. America How large. $10-16 m / 10-11 x$, $17-21 m / w$ yet do not run wild.- $25-26 \mathrm{~m} / x$ /26-27u "nonl changé"/27-29m $9314 u$ "2822"|x 932 10$18 w$ Only 1 of the 4 species found on any good evidence wild.- So that at least the 200 or 300 sub-vars cannot have wild

CANDOLLE，VOL．II： 932
aboriginals $16-21 \mathrm{~m}, 22-25 \mathrm{~m} / 20-26 \mathrm{w}$｜doubt whether language can be trusted？so far as he does． $25-31 \mathrm{~m} / \mathrm{w}$ it is clear that one arrives at maximum $\Uparrow 3-1 m 9334-6 m, 7-8 m$ ， $15-16 u \leftrightarrow, 32 m, 39-40 \mathrm{~m} / 39 u$＂Bull． 166 ＂$/ x / w$ I have read this $93416-24 m, 38-40 \mathrm{~m} 9355-$ $6 \mathrm{~m}, 12 u$＂hexastichon＂／ $13 u$＂distichon＂｜ $14 u$ ＂vulgare＂，11－13x／w 3 sp．23－24x $/ 24-26 m$ ， $28-30 m, 33-34 m, w b$ The more I reflect the more I come to conclusion that antiquity of man one of the most important elements in history of variaton．－ $936 w t, 17-18 x * / 18 u$ ＂l＇Hordeum distichon＂ $118-20 \mathrm{~m} / \mathrm{w} 1$ or $2 / 4 \mathrm{f}$ ． apparently wild．－ $21-24 m, 31-34 m$ ，wb Lindley or Loudon makes probably only one species of Rye $93719 u$＂Econ．Eg．＂ 938 介10－3m，$\uparrow 2$ $1 \mathrm{~m} 9396-7 \mathrm{~m}$ ， $15-16 \mathrm{~m}, 34-38 \mathrm{~m} 94012-17 \mathrm{~m}$ ， $30-31 x / m$ ，$\uparrow 2-1 \mathrm{~m} 94115-17 \mathrm{~m}, 35-37 \mathrm{~m} 942$ $18-21 m, 22-23 u \leftrightarrow, 28 u \leftrightarrow, 31-32 x$ ，$\uparrow 3-1 m /$ w see about European vars． $948 \uparrow 9-6 m 950$ $5-7 m, \uparrow 7 x / \Uparrow 6 u$＂avait I considérable＂$/ \uparrow 5 u$＂au－ jourd＇huil nouveau＂，$\uparrow 5-4 m, \Uparrow 4-2 m, \Uparrow 15-1 w$ Did I not find it in elevated deposit？ 95110 m ， $13 x / 15 x / 11-18 m, 19 m, \Uparrow 15-14 m, \Uparrow 12 m$ ，$\uparrow 11-$ $8 m$ ，介4－1m 952 15－19m 956 10－11m 957 36－ $37 m 960$ 19－22m／20u＂localitélauteur＂ 961 25－ $27 \mathrm{~m} 9621-4 m, 18-21 \mathrm{~m} 966$ 10－15m 969 20－ $21 \mathrm{~m} / 21-22 u$＂grandel Rouge＂ 980 4－6m，18－ 20 m 981 table．m／w＜notes Bentham＇s opinions as to wildness，affinities and principal locations of species listed；so also pp．982，983） 982 wt Plants not mentioned by Decandolle Celery －（Medlar known wild）Cynara cardunculus （Pistachio nut origin unknown）Anel or Fennel Asparagus Atriplex Isalis lint \＆ Ricinus Castor－oil Plants（origin doubtful） 983 1－3m，4－7m 〈in text below table〉 984 21－23m， $25-28 m, 29-34 m / 30 u$＂ 157 ＂， $34-35 u$＂ $21 \mid 85$＂／ $35-40 \mathrm{w}$ omit in my calculation，though several authors，I think，wd not put in the 85 $9852 u$＂32 laient＂， $9-10 m, 11-14 m / 12 u \leftrightarrow / 11-$ $18 w$ comparatively modern．\therefore this which at first appears a very important original is not so important． $14-15 u$＂dans 1 connus＂$/ m$ ， $20-27 m, \Uparrow 3-1 x * / \Uparrow 6-4 u \leftrightarrow / ? ? / \Uparrow 12-1 m / \Uparrow 11-8 w$ against creation for man？986a $5 \mathrm{~m} /$ ？， $9 \mathrm{~m} /$ ？， $14 \mathrm{~m} /$ ？， $18 \mathrm{~m} /$ ？ $986 \mathrm{~b} 5 \mathrm{~m} /$ ？， $12 \mathrm{~m}, 13 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}$ $9871-4 m / w t / 1-6 w$ Celery not cultivated in Tierra del Fuego Potatoes not south of Chile．because not being civilised for culture No S．America，but Incas far enough \＆long civilised． 988 1－2w But I think ground cultivated in La Plata when discovered 4－ $10 w$ How many of these cultivated along Cordillera－Look to this． $9 w$ Tomato $\uparrow 4-1 m$ $9891 \mathrm{~m} / \mathrm{w}$ This all used $3-4 \mathrm{~m}, 6-8 \mathrm{~m}, 10-14 \mathrm{~m} /$ w exactly the same as in Pigeons $15 u$ ＂XVIe＂， $16 \mathrm{~m} / 16 \mathrm{u}$＂choux l courges＂， $19-22 \mathrm{u} \pm /$
$21 m / 15-21 m / w$ but no evidence that have not reappeared $23-27 m, 27-29 m, 29-37 m 9905-$ $9 m / 7 x / w t \times \mathrm{He}$ seems to have overlooked the indirect effects $1-2 m, 3-4 ? ?, 15-21 \mathrm{~m} / \mathrm{w}$ But this all implies such perfect commun－ ication $28-34 m / 28-29 u$＂oulcommunication＂／ $27-37 w$ Here he admits faulty commun－ ication．This argument equally applicable to var．arriving in one country $31 u$＂silautre＂／ $32 a$＂spontanément＂in same country $\uparrow 5-1 m$ 991 6－8m／？，16－17u＂Quand lagriculture＂／14－ $24 w$ ！How can he pretend he knows origins of agriculture．－（Celts are thought to be agricult．lists）$\pi 7-1 \mathrm{~m} / \mathrm{w}$ How can he tell no change．－No＊selection $9921 \mathrm{~m}, 3-7 \mathrm{~m} / 4 \mathrm{w}$ quote $8-16 \mathrm{w}$ So when one attends to any species，instantly one begins to get new varieties．－ $14-15 \mathrm{~m} / \mathrm{u}$＂seulement lorigines＂ 993 18－20u＂examinél transport＂｜！，24－25m 994 20u ＂occupé＂ $119-20 \mathrm{~m} / \mathrm{w}$ forgets wild 23－26w in Keeling Isid some larger fruited trees $9957 u$ ＂en Sardaigne＂ $15-7 w$ So Decandolle thinks these species distinct $21 \mathrm{~m}, 23-24 \mathrm{~m}, 26-27 \mathrm{~m}$ ， 32－33m／32u＂Quercus Suber＂，33u＂il 1 Madère＂ 996 1－4m，10－11m，19－20m／17－22w Pigeons might transport Beech most or Oaks 1 §6－1m $99714 u$＂Bourbon 1 Maurice＂／ $13-15 w$ ？How if not Fact？ $13-15 m / 13-25 w$ I think there must have been some great subsidence here．－ 1 might ask Maury about soundings between Mauritius \＆Bourbon． $26-27 w$ wingless Birds $9984 u$＂Bourbon，Maurice＂，22－25w He does not bring in depths．－ 999 wt I think soon after Glacial epoch，country with more lakes， like Finland？？ $16 u$＂en Abyssinie＂ 117 m ，21－ $23 m, 28-30 \mathrm{~m} / 29 u$＂flottent｜germination＂，33－ $36 \mathrm{~m} / 36 u$＂aux｜Shetland＂ $10008-9 \mathrm{~m} / 9 u$＂à l＇île＂，14－15m，18－19m，14－25m $10013 u$＂en Lithuanie＂，6－7u＂nord｜Italie＂， $17 u$＂La｜du＂， 24－28m／24w Extinction 31w Extinction $34 u$ ＂dans I méridionale＂，39u＂en Algérie＂ 1002 1u ＂aulEspérance＂， $2 u$＂dans \mid Amérique＂，34－35m 1003 wt Sea breaks with F．W．lagoons often bordering coasts．－1－2m／w Extinction？ $7 w$ Extinction（？）19－21m，29－31m，37－38m 1004 $10-13 \mathrm{~m} / \mathrm{w}$ wd surely stick on birds $22-25 \mathrm{~m}$ ， $32 u$＂mûrit Ide＂$/ 31-34 m / w$ Birds pick up $\uparrow 2-$ 1m 1005 15－17m，20－21m，23－25m，29－33w must conclude belong to causes geological or anterior $\uparrow 8-1 m 10061-4 m / 2-3 u$＂l＇autre I montagnes＂， $10 u$＂d＇immenses＂ $11 \mathrm{~m}, 23-24 m$ ， $27 u$＂première hypothèse＂， $28-29 m / 28 u$ ＂chaque lespèce＂ 1007 5－8m，8－11w D．C． speaks of 300 leagues $=15^{\circ}$ Lat．12－13w nearly 20° between Lapland \＆Switzerland． $17-18 \mathrm{~m} / \mathrm{w}$ Hence 108＋18／685 not altered since glacial epoch $23 u$＂purement＂$/ 22-24 m / w$ I do not understand whether these 124
exclude the Swiss $26 u$ "arctico-alpines" $\mid 26-$ 27 m 1008 wt (It being only genera \& not species in common on Borneo \& Australia, is a difficulty.-) wt Not one of these is Atlantic isld. 10u "au Caucase", 17u "Carinthie"/w where $22 u$ "variété d'Amérique" $/ w$ Extinction $\Uparrow 2 u$ "monts I centraux" 1009 13-15m/13-19w this shows I think, former land transport \& not by icebergs $32 u$ "Corse" $101024 u$ "SierraNevada" 1012 2-4m/3u "arctico-alpines", 15$16 \mathrm{~m} / 15 u$ " 3 Ilieues", $22-23 u \leftrightarrow / 19-26 \mathrm{w}$ This seems to me to presume that we know the causes of struggle far better than we do.-$26-29 w$. Elsewhere far less of these $30-36 w$ mountains \& therefore probably other species take their place $\Uparrow 4 m 10131-2 \mathrm{~m} / \mathrm{wt}$ of course for implies first wide extension. 5$9 m, 14-16 m, 28-29 m / 29 u$ "les \mid Abyssinie" $/ 30 \mathrm{w}$ There are mountains in Ab of $10,000 \mathrm{ft} w b$ Are there many genera in common between Abyssinia \& Europe not fd in intermediate country? $101414 u$ "Sinai", $\uparrow 3-1 m 1015$ 1-2m, $7-8 m, 16-17 \mathrm{~m}, ~ 24-28 \mathrm{~m}, ~ 29-33 \mathrm{~m}, ~ 34-36 \mathrm{~m} / \mathrm{w}$ my facts go only to genera.- $10161-7 \mathrm{~m}, 18 u$ "aux 1 pieds" $/ 19 u \quad$ "dans 1 montagnes"| $20-25 w$ This must have been imported during glacial period (a) $28 u$ "Abyssiniel pieds", $31-32 m$, $37 \mathrm{~m} / \mathrm{w}$ extinction $38-40 \mathrm{~m} / \mathrm{w}$ since glacial $\pi 1 \mathrm{~m} / \mathrm{u}$ "aux|hauteurs"/w (There are also alpine insects $w b$ (a) This good argument against connection by land or if land connection a very long one for cold \& warm plants, so plenty of time for immigration of everything whicho cd immigrate us land quadrupeds.- 1017 1-4w Mem: if seeds transported by icebergs $\$$ it wd be irregular.- $5 u$ "Sommités" $/ 5-6 \mathrm{~m} / \mathrm{w}$ extinction since glacial $8-9 m / w$ extinction $11 u$ "montagnes" $/ 10-11 \mathrm{~m} / \mathrm{w}$ extinction since glacial (?) 16-17w Extinction since glacial. $24 m, 30-36 w$ one of the species which has transmitted down Andes crossing by Behring Straits $\uparrow 6-5 w$ extinction since glacial 10184 7 m , 9-10u "L'identitél quoique"l?!, $14-16 \mathrm{~m} / \mathrm{w}$ extinction since glacial $24-29 m, \uparrow 4-1 m / \uparrow 2 u$ "déposélimpalpables" 1019 13-17m 1020 wt The fewness of these cases show how usually habitat continuous 3-10w Spain \& Greece \& Palestine. Extinction 15-19m/w alpine in Spain \& Taurus 22-23w Extinction $26-27 w$ extinction $32-33 w$ extinction $36 w$ extinction $39 \mathrm{~m} / \mathrm{w}$ extinction $41 \mathrm{~m} / \mathrm{w}$ extinction $44 u / 45 \mathrm{~m} / \mathrm{w}$ partly alpine $w b$ Those with x seem most likely to have been separated by extinction, but they do not seem very good cases or worth calculating for extinction.- $\langle x$ against Minuartia dichotoma, Viscum cruciatum, Solanum persicum> 1021 wt All
these 16 cases are Spain of Western portion of Mediterranean $2 w$ some extinction? 6x, 8$9 u$ "sur 16500 ", $12 x / w$ do $15 m / x, 21 u$ "habitant I sablonneux", 27m/w true $29-30 u \leftrightarrow /$ 28-37w Depth not excessive Now the islds in Mediterranean are not simply volcanic isd I think, but fragments of other rocks. See Map of Europe $39 u \wedge / 39-41 w$ species of Atlantic isld. $38 a$ " p." none mentioned./ mentioned at p. 10161022 2-8m/w After giving Spain \& W. Mediterranean Give Spain \& Ireland.- $7 u$ "car 1 montagnes" $/ 3-8 w$ During glacial period by Rennells current.- hence might have travelled by land during glacial period. 10$12 \mathrm{~m} / \mathrm{w}$ Great Genus $10-11 \mathrm{w}$ See S. America $13-14 m, 20-22 m / 16-22 w$ has only 3 species Decandolle makes a Family: Lindley a sub-family.- with 5 genera $25 \mathrm{~m} / 23 w$ Great Genus $27 u$ "à| famille", $30 u$ "des 1 Népaul", 28-29w Extinction $\Uparrow 10-1 w / w b$ Genus of 3 species Saurureae Rich., Alismaceae Rich. (so I suppose very peculiar) genera. Lindley gives only 4 genera to Saururaceae. It really might be worth while to work out the Spanish cases. No not worth.- $\Uparrow 4 u$ "Etats $10 u$ " $/ w$ this refers to these 2 last cases entirely dying groups. $10231-4 m, 5-7 m / w$ He always leaves out struggle with other species.- 9$12 w$ a great genus: Lindley 9 genera in Eriocaulaceae $22 u / 21-24 w$ Decandolle puts genus in the Family $28-30 \mathrm{~m} 1024$ wt F. Water habitats not being well stocked less likely to become extinct.- $1-2 m, 3-4 m, 7 u$ "la|Eriocaulon" $77-9 m, 10-13 \mathrm{~m}, 19 \mathrm{u}$ "mais \mid quantité" $114-20 \mathrm{w}$ Large genus not small subfam in Lindley.- (now thought peculiar species?) $\uparrow 12-19 m \quad 10254-5 u \leftrightarrow, 12-13 u$ "dirailimpossible", 28 u "siguelles" 1026 14?, 28? 1027 1?, 40-42m 1028 10-11m/10u "Lieux humides", 19?, 26u "Lieux humides"/?, 32? $1029 w t / \uparrow w$ If these are transported accidentally what hundreds of thousands of genera requisite.- May one speculate on excessive antiquity of F.W. Plants.Continents were all once united theo-retically.- It seems most improbable that the great laws of Creation shd be different for simple elements of aquatic Plants.- Is there any geological evidence of Water Plants being older? There is something in relation to land \& F.W. Mollusca, I think; Morris would know. ?The genera of F. W. Molluscs are most ancient $3 u$ " $I l \mid$ humides", 5-6u "les 1 humides", $10 u$ "Lieux humides", 31u "terrains humides", $35 u$ "les Ihumides" 1030 $3 u$ "montagnes IIndes", $4 u$ "montagnes intertropicales", 12-13u "mêmel 20° " $114-15 u$ "où|Antilles"/11-14w Ischia Volcano 1032

CANDOLLE，VOL．II： 1032
$13 u$＂humides＂， $18 u$＂graines＂， $21 u$＂humides＂， $34 u$＂humides＂， $37 u \leftrightarrow, 39 u$＂prés humides＂ $10334 u$＂Lieux humides＂， $10-15 \mathrm{w}$ I see one Dicliptera in Keeling Flora $22-25 m, \Uparrow 3-2 m$ $103417-18 \mathrm{~m} / \rightarrow / 19-21 \mathrm{~m} / \mathrm{w}$ why if creation． 1035 6u＂endroits marécageux＂，8－10m，12－ $17 \mathrm{~m} / \mathrm{w}$ small genus Lindley small Sub－Fam． \＆put it with（？）in another small Fam．26－ $30 m, 33-41 m 10361-3 m, 4-6 m / w$ Double creation．subsidence in Pacific $10-12 \mathrm{~m} / 9-19 \mathrm{w}$ either on coming or on going off of glacial period：species might have travelled by Arabia \＆c Canaries Isld 180 miles from Africa．－ $20 u$＂àl Mariannes＂／21－24m／23－24u \rightarrow／ $x x / w$ Primulaceae；moderate Family $34 m, 36 u$ ＂sont｜Mascareinhes＂，39－40m，wb good to compare list of Mauritius \＆Bourbon to see difference like difference in Galapagos \＆c 1037 9－11m，15－17m，22m＊，27－28w Supplemental list $30-32 w$ These seem all less certain．－ $103817 u \leftrightarrow 1039$ 11－12m，23－ $25 m 1047$ 1－2m，4u＂il monocotylédons＂，5－ $6 \mathrm{~m}, ~ 9-10 \mathrm{~m}, ~ 11-14 m, 15-18[. .],. 19-20[\ldots$.$] ，$ 20［．．］，21－22m， $21 u$＂êtrel hygrophiles＂， $25 m$ ， $27 \mathrm{~m}, 28-35 \mathrm{~m}, 39 \mathrm{u}$＂des 1 existes＂， $40-41 \mathrm{~m} 1048$ 20－25m，35－37m，38－40m 1049 21－22u＂Pour Maloiunes＂$/ w$ Var．of islds $35-48 m / 48 u$＂sept． parte＂ 1050 3－8m，9－12m／12u＂Il｜lithosperm＂， $22-28 m, 30-31 m, 33 w$ Arabia 34－35m，39u ＂Lieux humides＂，48u＂sericeal peine＂ 1051 1－ $2 m / 2 u$＂Les 1 maritimes＂， $2 u$＂Lieux humides＂， $6-7 m, 19-20 m, 31-35 m 10522-6 m, 33-40 m$ $10548-23 w$ There is something very odd in Family resemblance with Cape：quite beyond speculation．－〈u henceforth place－names〉 $8 u$ ， $11 u, 12 u, 14-15 m, 16 u, 22 u, 23 u, 24-25 m$ ， $27 u / 28 u / 26-29 m / w \quad$ cirripede in this predicament $30-31 u, 31 u, 33 u / 33-36 \mathrm{~m} / 34 u$ ， $38-40 m, 43 u, 45 u$ ，wb How little is known： power of floating \＆duration of vitality in salt－ water $10551 m / u, 14 u, 15 u$ ， $16 u, 29-30 m$ ， $42-44 \mathrm{~m} 1056 \quad 1-3 \mathrm{~m}, 4-12 \mathrm{~m} / 10-16 \mathrm{w}$ The separation of areas depends entirely on anterior causes？ie no means of present for transport． 1057 12－16m，25－27m，31－34m，35－ $37 m 1058$ 7－18m，23－26m，28－31m／32－34w Does not mention small number on islands． $\Uparrow 8-5 m, \Uparrow 4-1 \mathrm{~m} / \mathrm{w}$ If we cd believe in antiquity greater，this wd be explained．－ $10593-7 \mathrm{~m} /$ $5 w$（a），wt（a）If I remember right， Compositae wider range in Europe \＆Siberia than at Cape－if so formed into distinct species in latter．－ $10603-7 m / w$ Gerligg wd give opposite presumption $20-35 \mathrm{~m} / \mathrm{w}$ oh！oh！ Look to shells analogous formations．East \＆ West N．\＆S．America．－India．－not exactly contemporaneous $1062 \Uparrow 16 m$ ，wb He looks at extinction as due all to Deluges \＆c！！！ 1063

29－31m，32－39m 1064 1－14m，14－20m，23－ $24 \mathrm{~m}, ~ 38 \mathrm{~m} / \mathrm{w}$ 〈FD〉， $40-41 \mathrm{~m} 106639-41 \mathrm{~m}$ （Unger） 1067 wt Lyell refers to Murchisons Paper on Alps $4 u$＂pliocènes d＇Oeningen＂ $\mid w$ Oeningen．9－14m，15－19m／！！！， $27 \mathrm{~m}, 31-34 \mathrm{~m}$ $10694-7 \mathrm{~m} / 5 \mathrm{w} \bullet / \mathrm{u}$＂mais insuffisante＂， $15 u$ ＂la｜manque＂ $116-17 m, \quad 26-27 u$＂prennent importance＂／28－29m 1070 21－24m，25－28m， 29－32m $10717-17 m / 10 \mathrm{w}$ See next Page 18－ $21 m, 25-29 m, 30-35 m, 40 u$＂ville，village＂ 1072 $24 u$＂nouslépoque＂， $24 u$＂avec 1 données＂ 24 $32 w$ Not one of these characters agrees with primrose \＆Cowslip $26-40 \mathrm{~m} / \mathrm{w}$ The definition； but practically，\＆as far as my subject is concerned descent \＆creation come into play． $33 u$＂positivement I commune＂／wb Here creation comes into play No 1074 14－17m $107512 u$＂zoologistes＂， $18 \mathrm{~m} / \mathrm{u} \leftrightarrow, 23-25 \mathrm{~m}, 32-$ 33 m 1076 9－10m／10u＂la coттиие＂，19－22m， $28-31 m, 28-31!/ 29-34 m, 34-35 \mathrm{~m} / 35 u$＂pollen 1 bouton＂／？， $37 \mathrm{~m} / \mathrm{u}$＂quodlcreatae＂ $10773 u$ ＂hybrides＂$/ w$ oh $4-6 u$＂et｜qu＇on＂$/ 5-9 m / 6-9 \mathrm{~m} /$ $8-9 u \leftrightarrow, 11-12 u \leftrightarrow / w$ So he wd not argue from quadrupeds $19 u$＂la 1 succession＂，34－35u ＂Ainsil seulement＂$/ 35-36 \mathrm{~m} / \mathrm{w}$ even in Hybrids 1078 wt there is no separation between domesticated \＆wild variation $6-8 m, 10 u$ ＂variations 1 races＂， $15-18 \mathrm{~m} / 15 u$＂On \mid même＂／ $16 u$＂années＂ $14-31 w$ variations are fleeting changes in Individual：Probably answering to ＊（shell in brackish water）size in animal and wool－or blackness in Bird fed by Hemp seed 29－30m，33－34m， 37 m 1079 1－2m， $6-9 m, 12-13 m, 18-20 \mathrm{~m} / \mathrm{w}$ not hereditary $21 u$＂perdent 1 toujours＂，$\Uparrow 3 m$ ，$\widehat{4}-2 w$ Horse－ Chesnut origin known． $108019 u$＂àl multiples＂， $18-20 \mathrm{~m}, 26-27 u$＂variations \mid var－ iétés＂ $26-29 \mathrm{~m} / \mathrm{w}$ ie can be propagated by grafts． $30-38 \mathrm{~m} 1081$ wt If this cd be trusted， it wd be very important．－ $1-6 m / 1-4 w$ Chance seedling surely must have been raised？？ $5 u$ ＂jamais I semis＂，14－23m，31－33m 1082 7－13m， $25-26 m, 30 u$＂asperges＂$/ w$ asparagus $34-37 \mathrm{~m} /$ w Race $=$ sub－species $10831 m / x, 2-4 \mathrm{Q}$ 8－ $14 m / 9-10 \mathrm{Q} \quad 16-21 m / 17 u \quad$＂pourpre＂$/ x / 20-21 \mathrm{Q}$ $21-24 m, 24-29 m / 26 \mathrm{w}$ any crossing？ $34-36 \mathrm{~m}$ $108420-23 \mathrm{~m} / \mathrm{w}$ very good \＆new $38-40 \mathrm{~m}$ $10858 u$＂curieuse 1 rarement＂， $17-20 \mathrm{~m} / 20 \mathrm{w}$ only requires selection．21－23m， $25 u$＂est I dans＂， $30-31 u \leftrightarrow, 32-33 u$＂imparfaits 1 borné＂， $34-35 m 10867-13 m / 7-20 \mathrm{w}$ For my view I do not want races，only more variability：these introduced plants are excellently adapted，for they hold their ground in a well stocked country． $19-24 m / 19 u$＂conditions I tendent＂， $24 u$ ＂depuis I siècles＂／22－25w because adjoining continent stocked $27 u$＂cette chimère＂／28－ $30 u \leftrightarrow / 25-30 \mathrm{~m} / \mathrm{w}$ Azores plants．Himalaya

Rhododendron Ceylon Plants. $\uparrow 7-4 m, w b$ The Kidney Bean objection goes for nothing; those who bring it, seem to think that climate acts on all: it is selection \& we know not that colder climate has anything to do with production of hardiest varieties, yet I believe climate does gradually harden plants 1087 3$6 m, 23-30 m, ~ \Uparrow 2 u$ "influence du climat" $/ w b$ (always this) He has not the Key.- 1088 5$6 \mathrm{~m}, ~ 7-12 \mathrm{~m}$, 33-35m 1089 16-20m/15-16w Bears on old glacial period $25-31 \mathrm{~m} / 25-35 \mathrm{w}$ I suppose he means they wd not have been created not to extend for they cd not have extended, owing to their isolation.- $1090 \mathrm{Im} /$?, 8-9m, 25-30m, 36-37m, 38-39m 1091 6-8m, $11 u$ "c'estlcultivé" $109212-17 \mathrm{~m}, 20-23 \mathrm{~m} / \mathrm{w}$ Shows not shadow of evidence in shells !! $109310-16 \mathrm{w}$ not isolation in case of trees; many species in same island.- 18-22m, 25-32m/26-27u "distincteslautre", 38-40m 1094 7-8m, 10-13m, 14-24m, 34-37m, 39-40m 1095 $10-13 \mathrm{~m}, 16-19 \mathrm{~m}, 29-32 \mathrm{~m}, 33-35 \mathrm{~m}, 37-40 \mathrm{~m} / \mathrm{w}$ same argument as Cuvier about Dogs $\uparrow 5 \mathrm{~m} /$ wb but many think these are only varieties 1096 wt (a) It must be most rare, when species gets isolated \& sports suddenly: I shd think favourable but diverse conditions (referring chiefly to other co-organisms) but numbers in the sport not great. - 5-6m, 8$10 \mathrm{~m}, 11-18 \mathrm{~m} / \mathrm{w}$ In fact he here follows man's method of selection too servilely.- $14-18 \mathrm{~m} /$!, $19-22 \mathrm{~m} / \mathrm{w}$ islands $20-25 \mathrm{w}$ (a) Isolation chiefly requisite to get new conditions. $23-30 \mathrm{~m}, 32-$ $34 m / 32-33 u \leftrightarrow 10971-3 m / w$ This necessary for if contrary was rule, they cd not have descended.- 4-6m, 6-10w (a) (Antelopes same case at Cape) 9-14m/12-13u "causel naturelle" $/ 10 w$ Selection 17-24m/14-21w This exactly the reverse argument of old Decandolle about Araucaria $\Uparrow 14 w$ Yet in Compositae we have case of Centaurea in HD Hieracium \& $\uparrow 21-1 w$ Get Watson to give some particulars about Hieracium: see in marked list, how many doubtful vars. $\uparrow 8-1 \mathrm{~m} /$ $\Uparrow 12-3 w$ What is Henslow composite plant which has a palustr species or $*$ Kierecium.〈he means Hieracium), wb (a) Elevation slow * subsidence. every continent has been many times divided into islands. $1098 \quad 7-8 m / 8 u$ "isolement" $/ 7-11 w$ ie avoiding crosses.- yet he says many are impregnated in bud.- 9$12 m /!!109924-26 m, 32-38 m / 35-38 w$ always overlooks selection.- 1100 2-6m, 7-8m, 16$18 \mathrm{~m}, 31-33 \mathrm{~m}, 39-40 \mathrm{~m} 110110-14 \mathrm{~m}, 22-31 \mathrm{~m} /$ 27-28w Well stocked countries $34 w$ (time) $36-38 \mathrm{~m}, ~ 39 \mathrm{~m} \quad 11026-17 \mathrm{~m}, 20-30 \mathrm{w}$ । do not see any good in discussing this hypothesis.- There is so little analogy in a
plant taken suddenly $29-30 \mathrm{~m} / \mathrm{w}$ false $\uparrow 10-$ $2 m /!$? 1103 22-23m, 29-39m 1104 24-31m, 32$37 m 1105 \quad 6-8 m 1110 \quad 36-40 m 1111$ wt (a) Those geologists, chiefly continental, who believe that species all destroyed by catastrophe, upset the whole theory.- $5 w$ (a) $30-33 \mathrm{~m} / \mathrm{w}$ just like shells, with increasing knowledge all upset. $34-37 \mathrm{~m} 11122-5 \mathrm{w}$ Mem. India \& Africa $35-37 \mathrm{~m} 11132 \mathrm{~m} / 3-5 \mathrm{~m} /$ $1-9 w$ Mem. how little is known about Chalk. Hooker is much opposed.- It is like arguing about Mammifers.- $11143-8 m, 21-26 m 1116$ $1-5 m, 17-22 m, 24-27 m 111718-20 m, 29-32 m /$ $33-35 \mathrm{~m} / 28-40 \mathrm{w}$ All this agrees with my theory, but I confess I do not see much weight to argument concerning facts of introduction accidental. 1119 1-4m 1121 21$25 \mathrm{~m} / 25 u \leftrightarrow 11241-5 \mathrm{~m} /$?/wt This shows how little he appreciates real antiquity of world.-27-31m 1125 9-12m, 18-21m 1126 27-28m 1127 14-21m, 27-30m 1128 2-6m, 16-22m $11291-2 m / 2 u$ "complète", $11 m$, $18 m 1130$ wt Glacial Th. 3-4m/w Ask 9-13m 1131 3-4m/3u "individus Ifaits"/2-8w ie you may have many species \& few individuals; or reverse.- 11$13 m, 15-20 \mathrm{~m}, 22-23 \mathrm{~m} 11328-10 \mathrm{~m}, 13-15 \mathrm{~m}$, 16-18m, 21-23m, 22-24m, 26m, 29-30m, 31$32 \mathrm{~m} / 31 \mathrm{u}$ "Les 1 dispersés", $32 u$ "plus rares", 3940 m 1133 wt Are these aberrant genera? 1$2 m, 4-6 \mathrm{~m} / 6 u$ "et \mid Brésil" $/ 4-7 \mathrm{w}$ small genus with wide range, \& species itself wide ranger. $9 w$ cold period $14-16 \mathrm{~m}, 21-23 \mathrm{~m} / 22-$ 23m, 24-25m, 30-32m/26-40w/wb opposed to my doctrine but how little we know of agglomeration of individuals - The number of species will always depend on anterior causes, of individuals or actually existing causes.- $\uparrow 4-1 \mathrm{~m} / \mathrm{wb}$ Yet as far as H.C. Watson's Cybele goes, it wd appear so.-$11343-7 \mathrm{~m}, 8-12 \mathrm{~m}, 18-22 \mathrm{~m} / \mathrm{w}$ on the number of genera in a region.- $27-29 \mathrm{~m} 11351-8 m$ 1136 table.w but here comes in old cause of doubts that regions, not divided according to apparent obstacles of transport. 7-8m * 1138 $1-5 m, 7-11 m / 12-16 m / 7-18 w$ a good proof that with wide diffusion differences supervene all showing slow transport.- $\uparrow 15-9 m, \Uparrow 4$ $3 u$ "la| régulière" $1139 \quad 1-3 \mathrm{~m} / \mathrm{w}$ General conclusion 21-23m, 24-27m/24-39w see next Page So that perhaps (he admits) it is only in the less large genera (ie growing genera) that extension of * one of species affects course of genus $11403-6 \mathrm{~m}, 10-11 \mathrm{~m}, 17-26 \mathrm{~m}$, $28 u 1141$ 18-19m, 22-30m $1142 \uparrow 13-12 \mathrm{~m} / \rightarrow$ / $1-14 w$ area of genus thrice size of species .$X * X$ Perhaps really six times as great as species $11434-6 \mathrm{~m} / \mathrm{w}$ How little he understands extinction. $16 u$ "isolement", 17-

CANDOLLE，VOL．II： 1143
19m，33－35m／34u＂un lprès＂ 1144 27－29m 1145 14－17m 1146 6－10m，11－15m 1147 31－ $32 m 114924-30 \mathrm{~m} / 25 u \leftrightarrow / 28 u$＂n＇est locéan＂， $38-40 \mathrm{~m} 115023-24 \mathrm{~m}, 25-26 \mathrm{~m} 11518-10 \mathrm{~m} / \mathrm{w}$ This like species of a genus $19-21 m, 27-$ $31 m, 35 u$＂quilFissenia＂｜ $36 u$＂doit｜rapporté＂｜ $34-35 w$ seems abnormal genus 1152 wt In Steudel Bontia put in many Families $3 u$＂à l＇extrémité＂$/ w$ small Fam． $6 u$＂Bontia＂$/ 5-8 w$ is Bontia abnormal in the Myoporaceae $7 u$ ＂Sélaginées＂／7w small Family $8 u$＂Gym－ nandra＂$/ 8 w$ abnormal $23-24 m, \quad 28-30 m$ ， 31－32m 1153 1－5m，16－19m 1154 12－15m，17－ $18 m, 23-27 m, 30-33 m, 35-40 m 1155$ 27－28m， $33 u$＂soit $\mid 100$＂ $35 u$＂ 2,5 ＂／36u＂7 1／2＂，36u ＂12 1／2＂／31－40w／wb There are more species of Graminaceae in Holland，than in France， but far more individuals of Graminaceae．\＆ so fewer Leguminosae even of individuals than of species． $115622-25 m 115726-27 m$ 1158 16－18m，29－30w Families with confined ranges $36-37 \mathrm{~m} 115916-19 \mathrm{w}$ I doubt whether cd have been exterminated elsewhere 20 w above 300 species $11604-6 m 11617-8 m$ ， $22-25 m, 26-29 m / 27 u$＂d＇une l régions＂ 1162 22－ $27 m 116414-16 m, 24-26 w$ Examples of above 1165 25－28m／25－32w Monocots．much more broken families Lower Families more broken：so Ferns，Equinatae \＆c．more distinct．－ 1166 1－3m 1167 24－28m 1168 11－ $14 m \quad 1169 \quad \Uparrow 3-1 m \quad 1170 \quad 10-13 m$ ， $14 u$ ＂caractéristiques＂， 22 u＂l＇absence＂， $25 u$＂Enfin I familles＂， 27 u＂delFougères＂ 1172 12－17m／12－ $21 w$ Bears on numbers in small isld－but yet the diversity of forms bears on adaptation $27-29 m / 29 u$＂diminue＂ 1174 介8－ $5 m 11778-10 m 1178$ wt for World 83／17 table．m＂Grande Bretagne＂｜．w Penny Encyclop． 83，827 sq miles table．m＂Nouvelle－Zélande＂｜．w 8600 sq miles－Crawfurd 1179 table．w I wish I knew real size 〈of islands＞so as to see as compared with continents real miles of inhabitants．〈rest of table has dimensions of islands marked \rangle ，wt Make out or ask author whether mere relation to distances from mainland does not influence number of species wbec 1180 19－23m／20－27m／19－35w These are important as showing something common in constitution of the grandest div－ ision of Veg．Kingm． 1181 1－4m， $19 m 1184$ $\Uparrow 9-6 m$ ，$\uparrow 9 u$＂del Monocotylédones＂，$\uparrow 8 u$ ＂beaucoup $\operatorname{régions"~} 1185$ 17－19m 1188 16－18m $118929 u$＂prédominantes＂／w Definition p1170 1194 2nd table．m＂Amentacées＂ 1195 3rd table．w This very different proportion 1197 3rd table．m＂Légumineuses＂ 1199 1st table．m ＂Crucifères＂，3rd table．m＂Composées＂ ＂Scrophulariacées＂＂Renonculacées＂ 1200 1st
table．m＂Graminées＂ 1202 3rd table．m ＂Légumineuses＂ 1203 3rd table．m／w about size of Canary Isd 1204 1st table．m／w／wt Compare Sardinia \＆Canary Isd too Big 1206 2nd table．m＂Rosacées＂＂Composées＂＂Amentacées＂ ＂Renonculacées＂｜．w very curious 1207 2nd table．m＂Sur 157 Phan＂＂Rubiacées＂＂Ver－ bénacées＂$/ w$ very peculiar 1208 first table．m／w These families prevail irregular 1209 3rd table．m＂Salsolacées＂ 1210 3rd table．w Cambridge has 866 sp．m／wb How much more pure $w b$ Same general proportion as elsewhere 1211 1st table．m／w How the orders of the Families agree．－ 1212 1st table．m ＂Rosacées＂＂Amentacées＂，2nd table．m＂Lég－ umineuses＂，3rd table．w Rosaceae seem to abound in N．America 1214 2nd table．m 1215 2nd table．m＂Orchidées＂｜．w Compositae not here 3rd table．u＂ 57 Fougères et 9 Lycopodiacées＂｜．w hardly any Compos． 1216 1－2u＂Composées＂！！，3rd table．m＂Acanthacées＂ 1217 1st table．m＂Orchidées＂＂Rubiacées＂｜．w like New Guinea 1218 1st table．m，2nd table．m ＂Malvacées＂ 1219 2nd table．w Malvaceae prevail in W．Indies 1220 1st table．m＂Mél－ astomacées＂＂Malvacées＂，2nd table．m＂Orchi－ dées＂，3rd table．m＂Euphorbiacées＂ 1222 3rd table．m 1223 2nd table．m＂Scrophulariacées＂ ＂Rosacées＂＂Crucifères＂ 1225 11u＂Mél－ astomacées＂，table．m＂Protéacées＂＂Eparc－ ridées＂，$\uparrow 2-1 m 1226$ table．m，$\Uparrow 3 u$＂ 29° lat． S．＂ 1227 1st table．m＂Graminées＂＂Malva－ cées＂＂Aspholédées＂，2nd table．m＂Scro－ phulariacées＂｜．w None ．u＂Myrtacées＂，$\Uparrow 3 u$ ＂Scrophulariacées＂，$\uparrow 2 u$＂Epacridées＂ 1228 1st table．m／w very peculiar 1229 3rd table．m ＂Cypéracées＂＂Géraniacées＂ 1230 table．m＂Gra－ minées＂ 1231 3rd table．m＂Myrtacées＂＂So－ lanacées＂＂Berbéridées＂ 1232 12－14m，18u ＂316＂｜18－20m，table．m＂Composées＂＂Caryo－ phyllées＂ $12341-24 w$ He seems to think great object to get picture of country 1235 $23-25 m, 21-31 w$ ie the number of Fam．， making half the Flora．ie about 7 or 8 this number depends on richness of species in Flora $\Uparrow 2-1 u$＂nombrelVert＂w so he considers these islands have few species 1236 15－18m／12－24w This wd have been more useful to me if all Families had been counted．I do not see how it bears on me．－ 1237 11－14m／10－16w Hence under unfavourable conditions the great \＆ increasing Families chiefly prevail $22 u$ ＂Prédominantes＂／w Definit p1170 22－25w These must be the growing Families，either over world，or in some regions．－but sometimes peculiar regions．－26－32w Hence the predominating Families do not depend
solely on the number of their species. 1238 $1-2 m 1239$ wt When one sees Legum. Compos. \& Graminae. increasing one can hardly doubt that complexity of vegetation is increasing \& getting higher.- $13 u$ "àl Maurice", $17-23 \mathrm{~m} / \mathrm{w}$ Falkland 19/100 Juan Fernand 25/100 Tristan 9/100 25w \downarrow, 26-28w Madeira 13/100 Azores 111/2/100 | think these facts overcome the fact that individual species are not widely disseminated, because they are correlated. $\uparrow 15 u / w$ \& Timor \& New Guinea 1240 17-19w Perhaps replace Compositae $\uparrow 20-12 m$, $\uparrow 6 u$ "Les I ces" $12411 w$ tropical $1-2[\ldots], 3 u$ "nos \mid tempérés", $7 u$ "Mélastomacées", 13-16m 1242 24-27m 1243 1st table.m, $\uparrow 4-1 m 12441-2 m 1245$ 17-24m 1246 28u "la Nouvelle-Zélande"|?, $\uparrow 4-1 m 1247$ $15-24 m / 17 w$ Cape 1248 2-5m, 13-14m/14u "sont l représentée", 29-32m $124919-21 \mathrm{~m} / \mathrm{w}$ ie, I presume in proportion of Families $\mathbb{1} 7-$ $6 m, ~ \Uparrow 5-1 m$ 1251 16-20m, 21-24m, 21-22u "presqueld'espèces", 27-30m $125218 u$ "la| boréal", $19 u \star$, $17-20 \mathrm{~m}$, $34-35 u$ "Commel arctique" $/ 34-36 \mathrm{~m} / \mathrm{w}$ new forms do not arise under unfavourable conditions. $12534-17 \mathrm{~m} / \mathrm{w}$ It is rather small region, like Lakes, as well as unfavourable.- In middle tertiary still smaller area. Perhaps sea round Pole - If there be circumpolar sea, on some theory Probable.- $125423 u \leftrightarrow / 23-24 m / 12-19 w$ These imply the most fundamental \& longest separation, excepting so far as difference may depend on conditions $26 u$ "énumeration", $27 m$, $28 w 333 m *, 35-36 m / w b$ Except that Isld no islands seem to have any characteristic Fam. 1255 1-2w 4 3-6m, $7 u$ "intertropicale", 9-13w 16 Fams highly characteristic add one for Chile 18-19m, 24$23 w$ only $4 *$ highly characteristic $\uparrow 10-9 w 5$ $\Uparrow 4-3 w 512561-6 \mathrm{~m} / \mathrm{wt}$ Looking at plants on I or at animals, taking most distinct forms. It is clear I think that S . America excluding S . extremity most distinct - then Australia (2), Asia (3), - Mediterranean (4), Cape (5) (temperate N. America 6) - But Decandolle does not consider very small Families. 1257 $27-29 m 1258$ wt These right-hand tables apply to number of species in each Family, compared to world: conditions must influence to considerable extent.- table.m, "Renonculacées". w Refers to other division where found \& in order "Onagrariées". w equal "Cactacées".w *high land 1259 "Uvulariées".w 13 beginning with 2. ie more preponderant in N. America than in any other region. 1260 table.w 20 beginning with 31262 table.w 30 beginning with 4 - many peculiar 1263 table.w seem very distinct from
temperate old world.- 1264 table.w (numbers of species) $1265 \mathrm{wb} 34-10$ with 10 or * more predominant than in other countries 1266 介4-1m 1267 10u "Familles I principaux", $11 u$ " 15 " $/ 14 u$ " 3 " $/ 11-14 w$ This looks as if ancient connection by East old world.- $15 u$ "familles I principaux", 27-29m/w Glacial $\uparrow 4 u$ " 6 " $/ m$, wb I doubt whether had better be used $1268 w t$ I believe no revelation in science will be more wonderful, than the ancient history of geography of world, when we can feel sure that individual species \& genera are descended from one common point, when we know more of means \& facts of distribution of all organisms.- 1-15w Behrens St in Eocene Period.- 11u "ensuitel avec" $/ 10-13 \mathrm{~m} / \mathrm{w}$ Glacial $18-27 \mathrm{~m} / 14-35 w$ Only the wider spreading Families have reached Africa. This looks as if Africa peopled at late times from Asia; \& that at very ancient times there had been much communication between Asia \& tropical America.- $20 u$ "intertropicale $|2 "| 26 u \quad " 15 " \mid \rightarrow / 17 w$ very old介11-8m $12693 u$ " 1 ", 38-39m, $42 m 12709-$ 10m, 13-16m 1271 table-head.w or 75 miles wbac 1272 table.m "Nouvelle-Zélande" 1273 table.m $12752-4 m, 6-11 m / w$ ie same species range more widely over Sweden. 1276 3-7m, 9-15m, 19-22m, 24-27m 1277 36-38m 1278 3$5 m, 15-18 m, 32-34 m 1279$ 9-11m, 32-37m 1280 11-14m, 21-23m 1281 6-8m/6u "les Malouines", 23-25m/21-24w In archipelagoes all isids never in action together $\uparrow 16 u \leftrightarrow$, $\Uparrow 15 u \leftrightarrow, \Uparrow 11 u \leftrightarrow, \Uparrow 10 u \leftrightarrow, \Uparrow 2 u{ }^{\prime \prime}{ }^{2}$ ooker's 1241 ", $\Uparrow 10-1 w$ I cannot at all admit enough to kill vegetation more than Madeira. Look at Etna, Vesuvius or even Sandwich IsIds.- 1282 wt/ Iw It might be argued that there has been fully as much or more creation than could have been anticipated, on theory of some unknown ratio of creation to area (but such theory is complicated by relationship of immigration to creation). Those who do not admit possibility of immigration, but believe in multiple creation, wd be most puzzled.Then antiquity comes into play it may be said that islds near continent not old enough to have creations.- (a) Etna very old But generally if no new species exist in isolated isids looks as if some land - it can't be assumed that each isld very old.- $\uparrow w$ Even theory of creation is complicated by the relationship to easy immigration.- \& by affinity to adjoining lands. $1-2 m, 3-6 m, 9-$ $13 \mathrm{~m}, 14-16 \mathrm{~m}, ~ 21-30 \mathrm{~m} / 24-25 u$ "ont | élevées"| $26-37 w$ volcanic soil very rich, except when too dry. How fertile Mauritius \& Society Islds $12831-9 m, 19-20 m, 30 m 128411-19 m / 2-25 w$

CANDOLLE，VOL．II： 1284
＊During glacial epoch the conditions of low country must have been＊more similar，？ from length of days ？？\＆absence of peculiar united to present alpine climate ？ than to present arctic regions．－There must always have been some arctic regions 1285 $2-3 m / 2 u$＂200，000＂ 1286 19－21m 1287 table－ head．w what a pity not real number $3 w$ p1271 table．m／！ 1288 table．m／w very curious 1289 wt／ $1-26 \mathrm{w}$ What I want to show is that when little life can be supported，most can be supported by very different forms；when more life，more forms；but not so different， as less differns in the conditions to be filled up．$-10-12 \mathrm{~m} / 11 \mathrm{w}$ of course $14-16 \mathrm{~m}, 19 \mathrm{~m}, 20-$ $23 \mathrm{~m} / \mathrm{w}$ more fertile the country，more species in $*$ each genus． $25-27 m, 28-32 m, 33-37 m / w$ In short in＊species are created easier than genera $\Uparrow 4 u \leftrightarrow / w$ with poor countries this doubtful 介10a＂pauvres＂in species not in fertility $\uparrow 10-1 w / w b$ My vars in Keeling good case．showing that species might come in closest approximation？$w b$ it seems whatever causes may be，whether nature of country，or difficulty of immigration，\＆ slowness of creation，when few species， many genera：must be only the different causes，I shd think．－ $\mathbf{1 2 9 0} 3-7 m, 8-11 m, 15-$ $21 \mathrm{~m}, 36-40 \mathrm{~m} / \mathrm{w}$ these causes rather different． $12914-7 \mathrm{~m}, 14-17 \mathrm{~m} / \mathrm{w}$ I do not think subject here approfondi $21-27 \mathrm{~m}, 30-31 \mathrm{~m} 12921-2 \mathrm{~m} /$ $1 a$＂proportion＂in Falkland $14-18 \mathrm{~m} / 1-18 \mathrm{w} / \mathrm{wt}$ This looks as if isolation was not so important as many individuals．－a large archipelago Quite a continent－most favourable of all chiefly rising，but attor．\rightarrow Small outgrowing island may be most favourable，\＆yet make but \＆few species difficulty of immigration of forms to become modified 29－31m，33－35m／34u土 1293 wt in quadrupeds，no Batrachians：－Apteryx \＆ Curious Parrot－Extraordinary Parrot of Pacific Dodo \＆other birds of Mauritius，－ where for from not flying have become insulated．Can insulation be more related to peculiar conditions than to mere crossing．－ $17-23 m / 14-21 w$ One sees not only created so different ie very abnormal from ocean or islands（a）25－31m 1296 table．m 介＂Ile de Madère et Porto Santo＂ 1297 3－5m，6－9m／w but this does not go to cause $16-17 \mathrm{~m} / 16 \mathrm{u}$ ， $19-20 \mathrm{~m}, ~ 21 \mathrm{~m}, 22-23 \mathrm{~m}$ ， $23-28 \mathrm{~m} / 29-40 \mathrm{~m} / 23-$ $40 w / w b$ If we reject accidental introductions，I argue impossible．but look at Keeling Islds．－ We shd conclude that in enormous period， certain genera \＆Families wd increase，\＆ extinguish the various ones introduced \＆so bring proportion to average $w b$ Think of
effect of reuniting America \＆S．Africa，or New Holland 1298 19－29m，24－27m 1299 19－ $20 \mathrm{~m} / 19 \mathrm{u}$＂de chaque diluvium＂ $13018-9 \mathrm{~m}, 10-$ $11 m 130434-37 \mathrm{~m} 13055-6 m, 32-36 \mathrm{~m}$ ，38－ $41 m$（E．Meyer） 1306 36－39m $13071-2 \mathrm{~m} 1308$ wt Climate was first idea，just as adaptation was first idea to explain structure of bodies－ neither position of an organic being depends on adaptation to conditions，nor structure， both show＊a ruling however，viz descent．介3－1m $1309 \leftarrow\langle$ to $p .1308\rangle / w t$（a）it is very important to show that the first great divisions of world are not according to climate，but geographical．$-4-5 \mathrm{~m} / \mathrm{w}$（a） $7-8 \mathrm{~m}$ ， 15－17m，28－29m，32－34m 1311 1－3m 1312 26－ $29 \mathrm{~m} / 27 \mathrm{u}$＂lel septentrionales＂ 1313 8－9m／iw The relation being between North \＆Alps \＆ England，looks perhaps more like land：\＆ only north colonised subsequently．We must remember before it was warmer．－\＆ apparently with more American vegetation．－ The uniform extra outer vegetation，wd have been driven South．Baffin Bay then a great separation．\＆Iceland \＆Greenland Faroe， must have been peopled subsequently to Alps \＆old lowland of Europe 11－14m，$\uparrow 6-1 m$ $131429-37 m / ? / 29-30 w$ transported by ice 1315 34－38m 1316 28－34m，35－38m 1317 18u ＂districts montueux＂ 1318 3－8m／1－6w Land of Mediterranean rest on much better ground．－ $18-30 w$ ！！This is poorest speculation in whole Book 1319 15－18w But these Compositae hate damp． $35 u$＂espèces 1 anciennes＂ $13205-9 \mathrm{~m} /!!$ ， $10-11 \mathrm{~m}$ ，$\uparrow 7-1 \mathrm{~m} 1321$ $17-20 m, 22-26 m, 26-27 u \leftrightarrow, 34-37 m 132225-$ 30 m 1326 6－18m（Lyell），27－34m／w covered with ice different from Kerguelen Land 1327 29－33w ？more likely cold，from neighbouring great continent．－ 1328 14－20m／16u＂Alph． 1 341 ＂ $144 w$ Hills of Java？26－29m，$\uparrow 3 m / w$ What evidence $13291-5 m / w$ yet quadrupeds so distinct．－ $13-16 m, \Uparrow 2-1 m$ 1330 8－13m， $27 u$ ＂aux \mid Antilles＂$/ 24-28 \mathrm{~m} / \mathrm{w}$ agrees with extinct Mammifers $32-33 u \leftrightarrow 1331$ 1－5m，4－9m，25－ 28m，33－38m 1332 1－5m×0／1－5m／4－5＂．．．＂，7u \leftrightarrow / w What kind of seeds．－ 13 uk＂Lobéliacée ligneuse＂， $15-16 \mathrm{~m} / 12-21 \mathrm{w}$ Do not more complicated plants change more rapidly，like Mammifers．－$\uparrow 9-8 m 13336-10 \mathrm{~m}, 23-27 \mathrm{~m} / 25 u$ ＂Avec l imagination＂，29－32m，37－38m 1334 6－ $10 m 13354-6 m / 1-21 w$ ie that the species were once common to all the islands：I cannot believe this：it wd make species too numerous；\＆not applicable to variation：－ This is good argument，the existence of vars．$-13361-4 m, 5-7 m / 5-11 w$ why shd the species supposed to have been identical have become extinct \＆not the others？ $9 u$
"àlespèces", 11-12u↔, $15-18 \mathrm{~m} / 16 u$ "inexplicable|la" 1337 4-8m, 28-30m/29u "Sainte| Afrique", $31-32 u$ "laquelle 1 précédé", $32-40 \mathrm{~m}$ 1340 9-11m 1346 3-7m, 17-19m/18-19u "quel utiles", $\uparrow 2-1 m 1361 \Uparrow 3 \mathrm{~m} / \mathrm{w}$ Longifolia on Ischia p. 1030 1362a $6 u$ " 982 I 986 ", $11 \mathrm{~m}, 12 \mathrm{~m}$, $13 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m}, 16 \mathrm{~m}, 18-19 \mathrm{~m} / 18 \mathrm{~m} / 19 \mathrm{~m}$

CANDOLLE, Alphonse de Histoire des sciences et des savants, suivie d'autres études sur des sujets scientifiques et particuliers sur la sélection dans l'espèce humaine H . Georg; Genève, Bâle, Lyon; 1873 [CUL, I]
beh, gd, h, pat, sp, v
SB p7 species generally in groups in the same country
357-358-361
Selection of Barbarians \& uncivilized man * Somewhere in Vol.
$724-31 \mathrm{~m} / \mathrm{w}$ no separation a disparity 10 19$23 m 1130-31 m / 31 u$ "vol|ailleurs" 316 28-33m $3218-9 m 3221-5$?/3u "robes 1 dames", $21-24 m /$ w Cuckoo answers this question 357 11-16m 358 19-23m $3592-4 m / 3 u$ "manière régulière"/ 3-4w certainly not $6 u$ "barbares", 7-8u $\leftrightarrow 361$ $6-12 m 482 \mathrm{wb}$ Return by atavism of tendency to disease \& about vaccination quite new

CANDOLLE, Alphonse de La Phytographie Paris; G. Masson; 1880 [CUL, I] mhp, tm, v
NB 38 Notes; 81 Variation; 185 Cotyledon of Conifer in appearance multiple 197198 Bloom
$381-7 m 8113-16 m, 32 m 19716-27 m 1985-$ 10 m

CANDOLLE, Augustine Pyramus de Mémoires et souvenirs Genève; Joël Cherbulier; 1862 [Down, I to FD] \wp

CANDOLLE, Augustine Pyramus de Prodromus systematis naturalis regni vegetabilis 2 vols.; Paris; Treuttel \& Würtz; 1824-1825 [Down]

CANDOLLE, Augustine Pyramus de Théorie élémentaire de la botanique Paris; Déterville; 1819 [Down, pre-B, ED]
NF Preserve 〈CD? \rangle
v $17 m$ vi $28 m$
CANDOLLE, Alphonse de, \& CANDOLLE, Casimir de Monographia phanerogamarum 3 vols.; Paris; G. Masson; 1878-1881 [Down, I in vol. 3] \wp

CANESTRINI, Giovanni Origine dell'uomo 2nd edn; Milano; Gaetano Brigola; 1870 [Down]

CANESTRINI, Giovanni La Teoria dell' evoluzione Torino; Unione TipograficoEditrice; 1877 [Down] \wp

CANESTRINI, Giovanni La Teoria di Darwin criticamente esposta Milano; Fratelli Dumolard; 1880 [Down] \wp

CARLIER, Antoine G. Darwinism refuted by researches in psychology London; Jarrold \& Sons; 1872 [Down, I]

CARNERI, Bartholomaeus Gefühl, Bewußtsein, Wille Wien; Wilhelm Braumüller; 1876 [Down] \wp

CARNERI, Bartholomaeus Sittlichkeit und Darwinismus Wien; Wilhelm Braumüller; 1871 [Down]

NB O/
CARPENTER, William Benjamin Introduction to the study of the Foraminifera London; The Ray Society; 1862 [Down] \wp

CARPENTER, William Benjamin The microscope and its revelations London; John Churchill \& Sons; 1868 [Down]

CARPENTER, William Benjamin Principles of comparative physiology 4th edn; London; John Churchill; 1854 [CUL]
ad, af, beh, br, cc, ci, dg, dic, em, fg, fo, gd, h, he, hl, ig, mhp, mn, no, oo, pat, phy, rd, $\mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{tm}$, ts, ud, v, wd, y
NB p. 480 Regrowth of thumb - Doubling of Germ
SB1 ロK
The difference between high \& low in Fish, I think, is whether other classes are considered besides Fish.

* So many insects, It is very odd how many inhabitants of Fresh Water - Gasteropods Insects - Spiders - Plants are landproductions metamorphosed \& not marine productions. How few have passed on to the Sea. Hence so few Radiata in F Water The Sea has Whales, Seals \& Penguins \& formerly Lizards, Sea-Snakes, Turtles
p.3; p.15; p. 16 to 42 to r; p. 257; p.271; p.273,7; p.291; p.309; p.313; p.317; p.319;

CARPENTER, PHYSIOLOGY
p. 322 to p. 332; p. 359; p 377; p 405; p 413;
p 425; p 433; p 448; p.458; p.467; -470;
p. 476 to 480; 493; 546; 553; 561; 569; 571;
$573 ; 575$ to 585 to 610 to end
SB2 $\square \beta\langle 2$ sheets \rangle
〈1〉 16 on highness \& lowness
79 - High Fish. N.B. I think on this subject there is much difference whether we look to Fish alone or to other classes ??
92 same number of cervical vertebrae in Giraffe \& Whale - As in Reptiles only 2 sacral vertebrae in Kangaroo
96. top - special from the general in development
101 Rudimentary \& not developed used as synonyms. [as well to talk of $*$ the final s in generitive, which is rudiment of his, as prophetic of new change, as in Rudimentary organ]
102 Compensation,- Balancement (only terms)
107 Fossils approach nearer to Archetypal form \& to embryos of recent forms p110 Examples p. 112 old forms intermediate or rather with various characters combined, which are now separate [an admirable summary chiefly from Owen on this subject] p 117 Summary of do
122 Even Carpenter believes plethoric population breeds less. Q So did Hugh Miller; must fight against
131 Even the most specialised organs retain other \& more general powers Q
257 On 3 Kinds of Lungs in Fishes NQ
271. same organ, viz. heart, in 2 Classes developed at very different rate.
272, 277 Branchial vessels in loops in young chick like those in Fish or tadpole
279 Branching from aorta very variable in man
320 Gradation in Respiratory organs NQ Wings of insects Branchiae: ReuseO of swimming bladder \& originalO fraena into wings
322 respiratory organs in Arachnidae \& Vertebrates NQ
332 Branchial slits
359 Pagets explanation of Rudiments (false) [over] Carpenter Comp Anatomy lent to L.K. Bruce
<2
405. Atrophy of muscle \& bone when nerve cut of hind leg of Rabbit
$413,425,433$ Glands are f. of utmost simplicity in lower animals - Mammary, Biliary \& Urinary
448 thinks light of larvae of glowworm for Birds to feed on them! Q
458. Q Birds quits eggs when temperature 71° or 72° - not instinct or feeling? 465 Q The "proper electric current" of frog has curious analogy with electric discharge of Fish
467 Q Electrical Fishes 470471 Explanation of
477 to 79,80 | had better allude to Spallanzanis experiments of regrowth to show nisus formativus
480 On Double Monsters being a division of one.- Good discussion on Nisus
493. Abstract of M. Thuret on sexes of Fuci (Chapt. 3)
553 Medusae generally have sexes separate 561 Synapta hermaphrodite differently from * all other Echinodermata

569 Hermaphrodite Byrozoa F.W. false
573 Salpidae Dichogamous 574 Lamellibranch generally hermaphrodite 575 Davaine Carpenter seems to doubt their Dichogamy p. 577 Pteropoda require congress of two 589 Planaria do
577 Eggs of Linnaeus can be dried up \& revivified
590 On Ascaris 64 Million Eggs Q
592 Dorsibranchiate Annelids dioicous,
Tubicolae do. being fixed by Water - 595 Myriopoda do.
602 In White Ants, soldiers are Pupae NQ
608 Some Acaridae hermaphrodite water or land?
610 Fallopian \& Placenta foreshadowed in Fish
627 Explanation of 2d young taking after 1st Father
Chapter on Development might read to see on law of most developed soonest * developed
633 Orchis case, another instance
635 Decandolle says the more common \& robust plants vary most
690 Secondarily automatic - mastication without will
693, 4 Definition of instinct - 696 Relation to habitual (N.B. origin seems chief difference between $*$ instinct $\&$ Habit
726 Different position of eyes, show I think all org never cd become sensorial NQ 730 Eye of Cephalopods Q
734 Eye avoids spectral aberration \& chromatic aberration
title page $w b 1854$ xvii $z b \quad 3 \quad 5-10 \mathrm{~m} / 6 u$ "totally" $\mid 7 u$ "evolution" $92 u$ "the of" $104-7 m$ $1519 u$ "functional"/a "and" internal 16-19m/ $18 w$ (a) $w b$ But why shd analogy or functional correspondence be so much more
than homological or structural correspondence?? $1614 u$ "Lemna" 15 u "Zostera", $17 u$ "degraded" $116-21 w$ I wonder whether really: is there much abortion? $28 u$ "TreeFern"|29u "LemnalZostera"/27-31m 17 51u "gradelin" 18 1-3m, $6 u$ "homogeneousness", $15-16 \mathrm{~m} / 13-19 w$ I have misunderstood Von Baer 48-50m (Budd) 19 45-48m 20 25-28m 23 4-6m 25 30-35m 29 8-15m 42 14-19m/16u 50 $23-27 m 5822-31 m 6029-35 m 6229-37 m 63$ 2-5m 79 26-32m 85 8-12m 87 9-13m 88 49$50 m 8941-44 m 9048-50 m 9137-40 \mathrm{~m} 9210 u$ "7", $13 u$ " 11 । 20 " $/ 12-16 \mathrm{~m}, 35-40 \mathrm{~m}, 44-46 \mathrm{~m} 93$ 6-11m, 13-16m, 47-50m 95 7-10m, 45-49m 96 $5-9 m, 32-38 \mathrm{~m} / 34 u$ "regarded 1 general", $38-40 \mathrm{~m}$ 97 8-12m, 29-42m 99 11-15m 101 6-12m/w Electric organs Poison glands $33 u$ "rudimentary", "underdeveloped" 33 w not synonymous 41-48m 102 34-36??/36u "principle I compensation", $38 u$ "occasions" $/ 40 u$ "accompanied"/42-51w These do seem to me good examples $10432-39 \mathrm{~m} / 34 u$ "teeth" 107 13-17m, 28-31m/30-31u "archetypal generality", $40-47 \mathrm{~m} * 10921-25 \mathrm{~m}, 23-26 \mathrm{~m} 1101-$ $6 \mathrm{~m}, 15-19 \mathrm{~m} 111$ 1-8m, fig. $\mathrm{m}, 22-39 \mathrm{~m}, 40-43 \mathrm{~m}$ $1123-8 \mathrm{~m} / 6 u$ "not lowest", 15-18w ask Huxley $40-44 m$ (Forbes) $11312-21 m 1145-$ $11 m, 23-28 m /$! 115 1-4m, 27-31m, 34-37m 116 1-4m, $5 u$ "but ltype" 117 19-41m, 29-32m/31u "osculant I forms" 122 22-27m/?/Q $12827-30 \mathrm{~m}$ $1304-8 m 13132-36 m, 38-47 \mathrm{~m} 137$ 10-19m $142 \quad 41-42 m \quad 143 \quad 1-3 m, 13-20 m / w$ Falkland Islds - Elephants $32-37 \mathrm{~m} 159$ 9-13m 257 31$42 \mathrm{~m} 2581-11 \mathrm{~m} / \mathrm{w}$ The foundation for another kind of Lung 261 16w Fish?, 18-20m/18-19u "Lepidosiren" 264 13-17m 271 25-30m 272 1$9 m 277$ 26-39m, 44-50m 279 4-9m 290 33$38 \mathrm{~m} / \mathrm{"} . .$. "/ u "rate of life" $30910-15 \mathrm{~m} / \mathrm{w}$ Double organ 313 21-24m $31615 w$ see p 325, 23$27 \mathrm{~m} \bullet 317$ 38-50m $31942-51 \mathrm{~m} / \rightarrow 3201-3 \mathrm{~m}$, 29-34m 322 17-32m 323 21-26m, 30-34m, 45$48 \mathrm{~m} / \rightarrow 3245-12 \mathrm{~m}, ~ 27-31 \mathrm{~m} 325 \mathrm{wt}$ variable organ \& a transitional group $3 u$ "alll developed" $/ 5 u$ "Lepidosiren" $/ 4-9 w$ So ranks as Reptile \& not Fish 14-22m 326 fig.w snakelike Saurian 332 21-34m $33330-37 \mathrm{~m} 359$ 23$31 \mathrm{~m}, 33-43 \mathrm{~m} / \mathrm{w}$ But why present cases of undeveloped glands. 43-35w/wb Rudiments of wings of insects. Rudiment of bone, when so much matter of same kind excreted. wb Rudiment of teeth in young growing whale, when so much phosphate of lime wasted. $w b$ Rudiments in plants! more cellular as a rudiment of a style. Rudimentary instincts. 377 39-45m 405 33-40m, 41-52m 413 27-32m, $29-31 \mathrm{~m} / 30 u$ "simple structure" 425 1-8m 433 $44-51 \mathrm{~m} / \rightarrow$, $w b$ organs 434 1-4m $44849-53 \mathrm{~m} /$ Q $45830-36 \mathrm{~m} / \mathrm{w}$ not instinct 465 18-25m/19-

20Q 467 33-38m/33-34Q $4705-10 m / 6-8 Q 471$ 7-43m/13-14Q/9-10w see p 455476 36-41m, 51-55m, 54u "subjected|influence", 54-55u "has Ispecies", wb But the domestic varieties keep constant under their proper condition. 477 22-31m, 33-39m/36u "not I larva", 45-46m/ $\rightarrow 4787-15 m 479 w t$ for 6 fingers $1-2 m, 21-$ $24 m, 42-48 m 4802-19 m, 11-12 m, 33-43 \mathrm{~m} / 34 u$ "thumb double"/ 35 u "each | perfect" $/ 37$ u "along 1 nail", $43 u$ "formed" $48120-23 m$, $22 u$ "possessing| rudiments" 493 26-33m 546 7$10 \mathrm{~m} 55340-42 \mathrm{~m} 56139-44 \mathrm{~m} 56933-37 \mathrm{~m}$, 38$40 \mathrm{~m} / 39 u$ "visceral cavity", $40-44 \mathrm{~m}, 48-50 \mathrm{~m}$ (Van Beneden, Allman) 571 10-16m/13u "within I cloaca" 573 18-23m/20u "ovarial testes" $\mid 21 u$ "not self-fertilizing", 25-28m 574 37-41m 575 1-3m/3u "ostensible co-existence", $8 m, 10-16 m, 19-23 ? / m / 21 u$ "oval recognised"/ $23 u$ "which | place", 27-32m/31u "which|find"/ $32 u$ "general|shell" $57637-39 \mathrm{~m} / 38 \mathrm{~m} / \mathrm{u}$ *, 42$43 m 577$ 23-25m, 29-31m/30-31u "being| fertility", 32-34m 585 43-47m, fig.m 587 wt Phillip Philip 35-39m 588 8-16m 589 24-29m, $30-41 \mathrm{~m} 590$ 11-15m/Q $59226-27 \mathrm{~m}$, 32-34m, 41-45m 593 1-3m/3u "in|Planariae" 595 33$36 m / 33 u$ "Myriapoda" $36 u$ "dioecious" $599 w t$ Larvae not being simply embryonic but likewise adaptative is never noticed.- 602 8$11 m 60843 u$ "Acaridae" $/ 42-45 \mathrm{~m} / \mathrm{w}$ land or water? 610 24-27m 611 5-8m 613 20-27m, $27-33 m 6153-5 w$ not applicable only in Vertebrata? 5-7m, 27-30m 616 42-46m 627 $40-47 \mathrm{~m} / 42 w$ (a) $w b$ (a) Grafting nearest analogue. does not support this view Do you think if you injected blood from one into other it wd make hair grow different? 628 17$38 m 632$ 9-14m 633 11-22m, 48-50m 634 8$12 m, 24-27 m, 36-40 m, 43-48 m$ 635 1-4m, 31$33 m$, $32 u$ " $61 \mid$ species", $38-43 \mathrm{~m} / 45 u$ "are common" $6373-8 m, 26-36 \mathrm{~m} / \mathrm{w}$ not if nothing better possessed 638 29-32m, 49-51m (Owen), 68-70m 639 40-45m 690 8-13m/ "Medulla Oblongata"/10-11Q\&s, $17-19 \mathrm{~m} / 19 \mathrm{u}$ "684" $692 \quad 31-38 m \quad 693 \quad 25-31 \mathrm{~m} / 27 u$ "immediatel sensations", $28 u$ "intentional adaptation", $43-47 \mathrm{~m} / 45 u$ "nol required", 48$52 m 694$ 4-8m, 14-17m, 17-29m/18-23w sensori-motor connected with Instinct. $25 u$ $69631-37 \mathrm{~m} / 32 a$ "these" habitual $6987-14 m$, 17-20m, 22-45m 699 35-38m 702 20-24m/2030 w dogs turning face on one side not see another petted.-708 10-13m, 23-27m/19-26w Fear of punishment 726 15-19w Mysis Cirripede $18-30 \mathrm{~m} / 20-34 w$ difficult to explain, except on general diffusion of perception. 730 18-21m, 26-28Q/26u "iris", 29-30m, 49$51 m$ (Siebold) 734 11-18m, 28-33 w wonderful! 30-36m

CARPENTER, William Benjamin Principles of mental physiology London; Henry S. King \& Co.; 1874 [Down, I]

CARPENTER, William Benjamin Researches on the Foraminifera (extr.); 1855 [Down] \wp

CARRIÈRE, Élie Abel Production et fixation des variétés dans les végétaux Paris; Libraire agricole de la Maison Rustiane; 1865 [CUL, I]
cc, cs, dic, ex, fg, he, hy, sx, tm, v
NB 21; 30; 28; 34 to 58 very good, wonderful on Bud-Variations; 65; 66; 69; 70 Bud variations; 72; 57 Cytisus Adami

- p 21 \& 30 on Dichogamy \langle rest 0\rangle

SB \propto p.28. on influence of Father - on colour \&c. goodish evidence in certain cases p67 On Hybrids presenting quite new characters Relation to Doublecross
Many valuable facts referred to proper places -
6a 16-23m 21b $36-57 m / 40-44 w$ colouring self-fertilised $48-50 \mathrm{~m} 28 \mathrm{~b} 4-12 \mathrm{~m}$ 30a $27-32 \mathrm{~m}$, $32-34 m / 30-38 w$ in cold weather pollen matured later, $35-44 m, 37-41 \mathrm{~m} / 40 u$ "gelées" 30b 36-49m 31a 28-32m/"..."/29ces/32c| $28-32 w$ ie not crossed 34a wt Bud-variations 1-18m/2-7w Chrysanthemum 35b 12-14w Roses get list 36a $1 u$ "Baronne Prévost", $3 u$ "cinq variétés" 37a 27-28w Cherry, 51-55m/w does not revert perfectly 37b 10-11w 3 fruits 38a 10w Plums 38b $10-11 w$ Grapes $49-57 m$, wb Apples show 39a 6-10w Haricot Maize \& Potatos $23-38 \mathrm{~m} / \mathrm{w}$ But this is by seed 38$41 \mathrm{~m} / 30-34 w$ variable when sown by seed 39b 15-18m 40b $28 u$ "surlsur" $/ 25-29 m / w$ Maize 29-36m 41b 2-13m/5-6w Potatoes 42b 10-16m 54b 1-3m 57a 26-33w Hycanths 57b 1-2w Cytisus 4-6m, 12-14m/12-13x, 19-24m, 33w New character $3636-37 m$ 58a 21-34m, 21-22m, 23-28w Xud variation Effects of conditions 64a 46-58m * 65a 76$82 m / w b$ Varies or breaks like tulips or Vidua 65b $63-73 m$ 66b $67-76 m / 71 w$ ie $w b$ strongly heredetary $67 \mathrm{a} 4-34 \mathrm{~m}$ 69b $33 \mathrm{~m}, 46-55 m$, 61$71 m$, 75-78m 70a 6-13m/w Double flowers $28-32 m, 33-40 \mathrm{~m} / \mathrm{w}$ form of bud variation like tulips, $44-50 \mathrm{~m} / 41-42 w$ conditions 70b 15$19 m / 13-25 w$ moss Rare for seed $24-25 w$ by seed $43 u$ "Moussense partout"/40-45m/w Bud var 54-61m/w Bud var 65-73m/66-67x | 75$79 m / 75-76 x / 78-79 m / w b$ good like his case of Radish - Causes of Variation 71a $25-30 \mathrm{~m} / 30 x / 25-26 \mathrm{w}$ Bud var. $44-66 \mathrm{~m} / 57-$ $61 m /!72 \mathrm{a}$ 32-39m/32-39m $/ 33-34 x / 32 w / w b$ Barbary; this is in principal buds, not all
affected conditions wb Causes of Variation Use these new facts under Var. under Nature 72b wt change slowly $1-3 m, 6-13 m$, $12-23 m / 15-20 \mathrm{~m} / 20-23 \mathrm{~m} / \mathrm{wb}$ These facts of beech \& Barberry bear more on relation of conditions to inheritance $27-30 \mathrm{~m}, 31-40 \mathrm{~m}$

CARUS, Julius Victor Geschichte der Biologie München; R. Oldenbourg; 1872 [Down, I]

CARUS, Julius Victor, and ENGELMANN, Wilhelm Bibliotheca zoologica 2 vols; Leipzig; Wilhelm Engelmann; 1861 [CUL]
vol. $2 \wp$
979 58-64m $107043 m$ 1792a $26 m$ 2000b 61m, $78 m$ 2001a $1 m, 2 m$ 2026a $52-55 m$ 2030b $64 m$ (Morren) 2039a $3 m$ (Newport), $4 m, 38 m$ 2129a $35 m$ (Wallace), $39 m, 40 m, 41 m$

CARUS, Julius Victor, and GERSTAECKER, C.E. Handbuch der Zoologie Leipzig; Wilhelm Engelmann; 1875 [Down, first vol. only] \wp

CASPARI, Otto Die Urgeschichte der Menschheit 2 vols.; Leipzig; Brodhaus; 1873 [Down] \wp

CATALOGUE of the books and maps in the library of the Geological Society of London London; R. \& J.E. Taylor; 1846 [CUL]
NB1 Read p109 Darluc Hist Nat Provence 112 Risso on Ranges
p. 111 Cirripedia Lamarck

In the Presentation Copies in list given in Journal Feb 1851 - Many useful to M Periodicals
p8. Linn Trans of Normandy
Good Journals
Agassiz Recherches sur les Poissons Fossiles - of Old Red Sandstone p. 60
Calcutta Journal of Nat Hist vol 3 \& 4
NB2 107 〈he means 109〉 Dict des sc nat
109 Forbes Star-fish
111 Loudon, Arboretum
112 Royle
Buckland's \& Bridgewater Treatise
p67 Pictet Pal.
Bowerbank - Plants of London Clay
R. Agricult Journal - Edinburgh - other Journals
Wernerian Transactions \& Other Journals recd
Boston Journal
xii $8-9 \mathrm{~m} / \mathrm{w}$ marked $36-37 \mathrm{~m} / \mathrm{w}$ marked $315 \mathrm{~m} /$ $16 w$ read $438 \mathrm{~m} / \mathrm{w}$ read $519 \mathrm{~m} 641-42 \mathrm{~m} 71-$ $2 m, 30 \mathrm{~m} / \mathrm{w}$ read $813 \mathrm{~m} 92-7 \mathrm{~m} / 4 w \mathrm{~m}_{\mathrm{s}}$ Hooker
for $8 w$ read $12-16 m, 19 \mathrm{~m} / \mathrm{w}$ read $21 \mathrm{~m} / \mathrm{w}$ read, $27-29 m \quad 12 \quad 24-25 w$ I do not think worth reading $25 m, 35 \mathrm{~m} / \mathrm{w}$ read $136 \mathrm{~m}, 8 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{w}$ read $46 m 145 m / w$ read $6 m 2538 m 3326 m$ $585-8 m, 10-11 m 602-8 m 614 m, 28 m 6510 \mathrm{w}$ vol. 2 11-12m $6635-36 m 6728-29 m, 40-41 m$, $42 u$ "in vol. 4", 45m, 48m $6833-35 m 10618 m$ $1079 \mathrm{~m} 1087 \mathrm{~m}, 14 \mathrm{~m}, 23 \mathrm{~m}, 27 \mathrm{~m}, 32 \mathrm{~m}, 41 \mathrm{~m} 109$ $6 m, 18-19 m, 34 m 11040 m 1113 m, 27 m, 33 m$, 39-40m $11249 m 11312 m$
§
209b 53-55m (Brocchi) 210a $4 m$ (Bronn) 217a $18 m$ (Lea, J.)

CATALOGUE of the Chiroptera in the collection of the British Museum (G.E. Todd); London; by order of the Trustees; 1878 [Down, I]
ig, tm
NB xvii Gradations in complex Nasal appendages of Bats
xvii $21-35 m, 36 m$ xviii $17-26 m$ xix $10-19 m$
CATALOGUE of the scientific books in the library of the Royal Society London; Richard \& John E. Taylor; 1839 [CUL, S]
fg
NF E.W. Strickland 31 Robert St Chelsea Mondays \& Thursdays
NB1 Hills Essay on Natural Hist 1752;
Montagu Testacea; Libr in Royal
NB2 Brickells Nat Hist of N. Carolina
Whewells Bridgewater Treatise
read Lawrence Lectures on Man 1819
Read Harlan medical \& phis Researches
Edwards. sur la charactere physiologique des hommes des races diverses p. 497 1829 - read - 2d Edit 1841 is to be published
James on man physiologically \& spycologically considered
Edinburgh Hort Soc \& Highland Soc
p 387 List of Hort \& Agricult transacts
Lindley's Horticulture ??
p. 721 Forster on Migration of Birds

505 by Isode G. St Hilaire
p740 = Amoenitates Acad.-
p767 Stillingfleet Transact do -? read Broderip?
p.639. Asiatic Journal Hooker says good.

NB3 p 396 Decandolle papers
p 552 Quetelet sur la loi de la croissance de l'homme
p. 758 Quetelet sur l'homme et le developpement de ses facultes
Dubois voyage
Lichtenstein's Travels read

Loefflings travels Louisiana
Mackenzie north PoleO
Ramond's voyage on M. Perdu
Natural Hist.:
p581 Barton's fragment in Nat. Hist.
583 Catesby's Nat Hist of Florida
585 Linnaeus on study of nature
Virey's Philosophie \& Histoire Naturelle 1835 a miserable book according to Brougham read
Lawrence Lect on Man
538 Meckel
474, 582 Blumenbach: must be read.-
582 Buffon.
449 Pallas Spicilegia Zoolog
510 Haller
contents page $9 m / w, 11 m / w, 12 m / w, 13 m / w$, $14 a \notin, 15 \mathrm{~m} / \mathrm{w}, 17 \mathrm{~m}, 18 \mathrm{~m} / \mathrm{w}$ marked $3873-32 \mathrm{~m}$, $7 \mathrm{~m}, 9 \mathrm{~m} 38820 \mathrm{~m}, 23 \mathrm{~m} /$? $39333-36 \mathrm{~m} 39648-$ $53 m 39813 m 4006 m 40137-38 m$, 42m 403 $43 m 40444-45 m 4058 m, 29 m 40637 m / w$ read $40838 m 40953 m 41041 m 41150-51 m$ $4128 m 4143 m, 5 m, 7-10 m, 8 m 41537 m 416$ $6 m, 11 m 41823 m / w$ read $29 m 42014 m, 32 m$ $4217 m, 50 m 4224 m / w$ read $42538 m, 40 m$, $42 \mathrm{~m} 4281 \mathrm{~m} / \mathrm{w}$ read $10 \mathrm{~m}, 16 \mathrm{~m} / \mathrm{w}$ read 18 m 429 40-41m $43033-34 w$ read $43117 m, 18 w$ (one Edit 1619) 19-21w Recommended by Blyth $43212 m, 14 m, 16 m, 18 m 43318 m, 41 m$ $43442 \mathrm{~m} 43530 \mathrm{~m} / \mathrm{w}$ read $38 \mathrm{~m} / \mathrm{w}$ read 43932 $33 m, 44 m 44020-21 m, 22-24 m, 32 m / w$ read $4411 \mathrm{~m} / \mathrm{w}$ read $20 \mathrm{~m} 44216-19 \mathrm{~m}, 26-29 \mathrm{~m} 443$ 26-29m, 43-45m 444 14-20m/w Read Pigeons \& Fowls $44511 \mathrm{~m} 44722 \mathrm{~m}, 31 \mathrm{~m} 44810 \mathrm{~m} / \mathrm{uta}_{\mathrm{s}}$ " $1788-1806$ ", $14 \mathrm{~m} / \mathrm{w}$ read $46 \mathrm{~m} / \mathrm{w}$ read 51 m $4493-10 m, 9 m, 43 m, 46-47 m$, wb Shriften BerlinD p. $58945035 m 45348 \mathrm{~m} / \mathrm{w}$ read 454 $17 \mathrm{~m} / \mathrm{w}$ read 18 w vol 2 has the $-20-21 \mathrm{~m}$, 22-26w Has this cirripedes? $28 m 45520 \mathrm{~m}$, $22-23 m, 29 m / w$ read $45625-26 m 45715-16 \mathrm{~m} /$ w read 19c/w 8to x $44 m 46117 m, 18-19 w$ read 19-21m $47454 \mathrm{~m} / \mathrm{wb}$ QuotedO by Prichard 497 10-12m/11w read $50547 \mathrm{~m}, 49 \mathrm{~m}$ $50638-39 m / 38 w$ read $51221-23 m 51311 m$ $52244 m 52432 m 538 \quad 14-27 m / 16-30 w ~ D r$ Holland says some good views on generation See which vols $23 m, 27 m 55620 \mathrm{~m}$ $56610 \mathrm{~m} 58137 \mathrm{~m} 5828 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{w}$ read 41$42 m 5836 m, 19 m 58529-30 m, 41-42 m / w$ read $58738 m, 43 m, 47 m 58926 m / w / 22 w$ vol 1 \& vol $559032 m, 36 m 59146 m 5932-3 m, 8 m$, $18 m, 34 m / w$ read $5989 m, 48 m 59953-55 m$, $53 m 60017-22 m / 16 w$ read $23 a$ "Agriculture"/ $m / 29-34 w$ this followed by Archives $54 m 601$ $21 m, 51 m, 53 m 60224 m / w$ read $61447-49 m$, $48 m 63645 m 63718 m 6386-9 m, 53-54 m 639$ $12 m, 23 u$ "1816-1832", 49-53m, 48-49m/wb

CATALOGUE: ROYAL SOCIETY
Hooker says good $64026 m 65113 m 652$ $36 m$, zb $6537 m$, $16 m 65549 m 6564 m 657$ $42 m, 47 w$ read $54 m 6589 m 6597 m, 32 m 660$ $6-13 m, 15 m 66143 m, 47 m 66216 m 66426 w$ read $6656 \mathrm{~m}, 15 \mathrm{~m}, 19 \mathrm{~m}, 44 \mathrm{~m} / \mathrm{w}$ read $50 \mathrm{~m} / \mathrm{w}$ read $66622 \mathrm{~m} / \mathrm{w}$ read 41 w read 43 m 66714 m $66835-38 m, 50 m 66942 m, 53 m 6701 m / w$ read $67139 \mathrm{~m} 67247 \mathrm{~m} 67425 \mathrm{~m}, 29 \mathrm{~m}, 36 \mathrm{~m} /$ $34-35 w$ read, $38 m 6763 m / 4-7 w$ | suspect appalling on separation $67712 m, 32 m 682$ $44-47 m 68825 m 68926-28 m 72126 m 740$ $25 \mathrm{~m} / 21-28 w$ Lyell believes Broderip has Engl. translation $7445 m 76738 m$

CATON, John Dean A summer in Norway 1875 [CUL, S, I]

NB O/
CATON, John Dean The antelope and deer of America New York; Hurd \& Houghton; 1877 [Down]
beh, br, cc, v
NB p. 46 Antelope weeping; 90; 156; Deer not breeding in Parks 294; do.- 304
46 33-42m 47 3-10m $9026-31 \mathrm{~m} / \mathrm{w}$ analogous var. 156 32-42m 157 30-37m 158 27-32m 294 17-22m, 21-31m 295 9-14m, 22-28m 304 22-
$24 m 3051-4 m, 6-9 m, 12-15 m$
CATTANEO, Giacomo Darwinismo: saggio sulla evoluzione degli organismi Milano; Fratelli Treves; 1880 [Down] \wp

CHAMBERS, Robert Ancient sea margins Edinburgh; W. and R. Chambers; 1848 [Down, I]
geo
$2125 m 1003-9 w c ¢ / 3 u$ " 847 ", 26-27w 1202, say; 1210110 17-19m 113 11-13m 115 1-2m/ w p61 of mine $5-8 w$ also entirely overlooks my arguments for the terraces 124 23-27m 157 9-10w 968; 821-6 15-17w 628; 706187 $1 m$, $28 \mathrm{~m} 1893 m 3283-5 w c c, 11-22 w$ average interval 20 ft . $330 w t / \uparrow w 27 \mathrm{ft}$ interval on average \& each observ. * has for 5 or 6 ft of variation. so that real interval not more than 10ft table.m/wec, wbec
[CHAMBERS, Robert] Vestiges of the natural history of creation 6th edn; London; John Churchill; 1847 [CUL]
$\mathrm{ad}, \mathrm{ci}, \mathrm{ds}, \mathrm{em}, \mathrm{fo}, \mathrm{geo}, \mathrm{hl}$, is, $\mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{ts}, \mathrm{v}, \mathrm{y}$

SB1 ロR

р.67; 90; 123; 186; 195; 209; 225; 235; 249 Key of Book; 268; 274; 276; 280; 281; 283; 286; 290; 301; 307; 312; 319 p494; 501

The idea of a Fish passing into a Reptile (his idea) monstrous.-
How easily a soft cirripede might give rise to Balanus Segments of shell - if loose wd be lost
I will not specify any genealogies - much too little known at present.
Never use the word higher \& lower - use more complicated, as the fish type (\& not a mere repetition of parts) where cartilaginous forms are higher for being nearer reptiles \& consequently mammalia.-
SB2 ${ }^{-1}$
90 Embryonic Reptiles now have biconcave vertebrae, extinct form had do
209 Inherent impulse to advance from oldest \& simplest up to highest - \& inherent impulse to become adapted. Quote in Preface. * 249do 225 compare with tadpoles metamorphosis.
235 Yarrells Birds Gull getting thickened stomach Vol. 3 p571 Quotes Pennant on Trout in Galway getting thickened stomach. Was it Trout? Yarrell Fishes vol. 2 p. 57 thinks Gillasso only a var. inner cuticle only undirected.
274 Monomyarian Molluscs before Dizaria latter higher?
276 Young Gasteropods all alike when very young (Forbes) in Jameson's Journ
277 Nucleus of Cephalopods shells is also spiral like Gasteropod (Forbes) Carpenter Gen. Physiology This about Cephalopods, important for it shows what precursors were: see if accurate
280 Dibranchiate Cephalopods commence in Oolitic 281 Cephalopods change quicker because higher
301 Talks of nature being equally ready to go back as well as forward
307 Cecilia is a snake-like Batrachian
494,2 Curculios - Corydalis \& Libellula \& Scorpion in Coal
367 Remarks on isld not having mammals \& less perfect life but really I need not allude to such Rubbish

67 12-19m (Agassiz) 90 5-8m, 17-20m 123 21$26 \mathrm{~m} / 22-25 \mathrm{w}$ See to this in true chalk 179 17$26 z 1868-14 m / w$ new creations !! $16-22 m$ $1954-5 \mathrm{~m} / \mathrm{w}$ is not Pecten very old 209 116"..." $4 u$ "inherent" $/ 1-8 m / w$ quote to show difference V . Whewells remarks against this 11u "inherent" 219 22-26[...] 220 13[... 221 3...] $2255-12 \mathrm{~m} / \mathrm{w}$ whole key to theory 229 16[... 230 24...] $23110 \mathrm{~m} / 10-14[\ldots], 17-21[\ldots]$ 232 9[..., 20-25[...] 235 11...], 20-22m/w Yarrell! 249 23-26m 267 17-18??!/18u
＂exclusively marine＂ 268 2－7m，7－18m （Agassiz） 274 11－21m 276 9－17m／12－13w Forbes 277 14－26m／24w Carpenter 278 6－20m 280 20－24m $2812-16 w$ I must allude to all this $28312-15 m 2861-17 w$ It is strange error that generally he looks at every form，as having started from some known form．19－ $23 m 290$ 1－3m 301 7－11m，15－17m 307 10－ $15 \mathrm{~m} / \mathrm{w}$ I forget this Amph》？ 312 1－3w Hence many Turtles transformed！！4－9m $3191-3 \mathrm{~m} /$ ！！！，17－20m／！！！／20w oh 3405 ！！／u＂walrus＂ 409 $11 ? / z / u$＂monkeys｜houses＂ 494 10－22m 501 7－ $8 m 5058 m, 22 m$

CHAPMAN，Henry C．Evolution of life Philadelphia；J．B．Lippincott； 1873 ［Down，I］ NB O／
$218 w 2230 w 25$ 13－15＂．．．＂$/ 15 w$ Haeckel 86 $2-5 " . . . " / 4 w 10013 w / c 10232 w / c 13028 c 170$ $34 w$
〈untranscribed words not CD＞

CHAPMAN，John Neuralgia and kindred diseases of the nervous system London；J．\＆A． Churchill； 1873 ［Down，I］

NB O／
xiv $21 m$ xv $8 m, 17 m$ xviii $3 m$ xx $5 m, 6 m$ xxiv $21 m, 23 m$
§
CHAPUIS， F ．Le Pigeon voyageur belge Verviers； 1865 ［CUL，I，S］
beh
SA $\langle p p .170-171\rangle$
〈conversions of km to miles）
© nearly say 35 miles
George calculated these and average rates per minute for 20 selected flights the rate is 1066 metres per minute which gives per hour as above
59 18－24m 86 24－27m 87 1－2m，3－7m／5w Instincts $10 u$＂certains mâles＂／9－24w ca，23－ $25 m, 24-27 m 133$ wt Verviers to Lyons 156 11－15m 159 1－3m 161 9－16m 165 19－20m，24u ＂kilomètre ${ }^{\text {minute＂，}} 28 m 166 \quad 18 u \quad$＂soit 1 mètres＂， $23 \mathrm{~m} / \mathrm{u}$＂ 925 ＂ $1677-10 \mathrm{~m} / \mathrm{w}$ but due？ $16822 \mathrm{~m} / \mathrm{u}$＂947＂ 169 1－4m／1u＂Espagne＂｜ $2 u$ ＂Liége＂，5u＂1 kilomètre＂ 171 wt which is kilometers？；average of 20 flights $\mathrm{cc}, 5-6 \mathrm{~m} /$ $w \star=366$ metres？

CHARPENTIER，Jean de Essai sur les glaciers et sur le terrain erratique du Rhône Lausanne；Marc Ducloux； 1841 ［Down］

CHAUMONT，Francis Stephen Bennet Lectures on state medicine London；Smith， Elder \＆Co．； 1875 ［Down，I］

NB 135 Beer； 165 cistern
CHILD，Gilbert W．Essays on physiological subjects Oxford；Combe，Gardner，Hall \＆ Latham； 1868 ［Down，I］
beh，he
NB Consang．Marriages
CHILD，Gilbert William Essays on physiological subjects 2nd edn；London； Longmans，Green \＆Co．； 1869 ［Down，two copies］
NB O／
\wp
CHILDREN，John George Memoir of J．G． Children Westminster；Josiah Bowyer， Nicholas \＆Sons，for private circulation； 1853 ［Down］

CHUN，Carl Fauna und Flora des Golfes von Neapel，1．Ctenophorae Leipzig；Wilhelm Engelmann； 1880 ［Botany School］\wp

CLARCKE，Benjamin On systematic botany and zoology London；J．Bale \＆Sons； 1870 ［Down］

CLARK，Henry James Lucernariae and their allies Washington；Smithsonian Institute； 1878 ［Down］\wp

ClARK，Henry James Mind in nature New
York；D．Appleton \＆Co．； 1865 ［Down］
af，ct，fg，he，ig，sl，sp，tm
NB O／
SA $\langle p p .94-95\rangle$
p．61，66 Pangenesis； 81 do； 85 shows how numerous gemmules must be for carrying on to next generation Not all used up in formation of the animal．－This view of division of single egg，\＆not union of 2 ，is now very generally admitted．
Planaria cut in two says it is true budding
－ 203 Snails asymmetrical．－
263 Lepidosiren，affinities
279 projecting instead of selecting
Lereboullet consult
272－276 Doubtful on intermediate forms in lower classes
279 projecting instead of selecting
61 16－18m，25－29m，30－31u↔，32－36m 62 1－ $4 m \quad 66 \quad 16-20 m \quad 81 \quad 22-23 m / 23 u \quad$＂fissi－

CLARK，MIND
gemmation＂， $33-35 \mathrm{~m} / \rightarrow 8216-18 \mathrm{~m} / 11-19 \mathrm{w}$ but with budding，I suppose for formation of eyes $32-35 m 8515-17 \mathrm{~m}, 25-28 m, 30 \mathrm{~m} 861-$ $5 m 9324-26 m / 25 u$＂budded out＂， $29 \rightarrow 9415-$ $17 m 203$ 13－16m 267 9－15m 272 1－4m 273 1－ 13m 276 10－21m 279 23－30m

CLARKE，J．W．Cattle problems explained Battle Creek，Michigan；published by the author； 1880 ［Down］

CLAUS，Carl Grundzüge der Zoologie 2nd edn， 4 vols．；Mauburg und Leipzig；N．G． Eltwert＇sche Universitäts Buchhandlung； 1871 ［Down，S］\wp

CLAUS，Carl Untersuchungen zur Erforschung der genealogischen Grundlage des Crustaceen－ Systems Wien；Carl Gerhold＇s Sohn； 1876 ［Down］

CLELAND，John Evolution，expression and sensation Glasgow；James Maclehose； 1881 ［Down，I］

COAN，Titus Adventures in Patagonia New York；Dodd，Mead \＆Co．； 1880 ［Down］
NF not yet entered in Catalogue of Books
COGNETTI DE MARTIS，Salvatore Le Forme primitive della evoluzione economica Torino；Ermanno Loescher； 1881 ［Down，I］ \wp

COHN，Ferdinand Die Pflanze：Vorträge aus dem Gebiete der Botanik Breslau；Kern； 1882 ［Down，I］

COLIN，Gabriel Constant Traité de phys－ iologie comparée des animaux domestiques 2 vols．；Paris；J．B．Baillière；1854－1856［CUL］ beh，cs，fg，he，hy，ig，mn，no，oo，phy，sx， tm，v，y
vol． 1 SB p．131，5；p． 142 to p．160；p．192； p374；426；p617；426；p614
Londeners Walk Watch while Snail fixed in crevice pulled in 3 directions to free itself V．2d Vol for Abstract
127 9－10m $13110-12 m / 1-12 w$ none to aid another animal without that aided itself $13 u$ ＂ait｜inutiles＂／w V．p． 134 15u＂susceptible！ essentielles＂， $26-31 w$ wildness in aboriginal Galapagos Birds．－ $32-33 \mathrm{~m} 13435 u$＂animal sanguinaire＂ $13527 m, 29-31 m / 29 u$＂mulet 1 dans＂$/ 30 u$＂espècelcactus＂＂ 142 10－14m／11－ $12 w$ no gradation $14330-31 m 14427-31 m$ 145 wt I have seen young Ourang at looking
glass 4－7m／5w（a） $14731-34 m 151$ 29－32m 160 13－16m $19216-20 \mathrm{~m} 374$ 35－39m 426 2－ $5 \mathrm{~m}, 13-18 \mathrm{~m} 614$ wtec，12－18m／14u＂bout douze＂／16u＂dix I vingt＂／17u＂unelfois＂ 617 wt my notions not half so odd as life of Parasite；bred in fish \＆matured in cormorant wtec， $1 u$＂les 1 membraneux＂， $4 u$＂le héron＂，3－ $5 \mathrm{~m} / \mathrm{w}$ V．next Page 11－15m，33－40m，34u ＂pylorelétroitesse＂，35u＂duvet｜poils＂ 618 6－ $9 m$
vol． 2 NB Book p 405；p492；496；529； 530 to 548； 614
SB $\square \boldsymbol{R}$
374 On Hinny neighing on account of shape of Larynx
426 How soon animal gets accustomed to any particular food．－
614 －excellent on length of time grain kept in crop of Turkey－18－20 hours－
617 Hawks throw pellets because pylorus so narrow

Vol 2.

492．M．Desfossé on hermaphrodite Fish Serranus
529 case of hybrid of Horse \＆Cow NQ author admit clearly only monster
530 Q $\underset{ }{\oplus}$ on ovules in mule
532 Vauban calculated produce of Sow in 12 years at 6 millions－on rate of increase Guinea－Fowl－on sterility of fat animal Ch． 3 Tegument of eggs of wild Peacocks
536 on characters of Mongrels so like Gartner Q
537， 539 Hinny more after ass than Horse Quos〈over〉
540 Horns transmitted from either parent 542 The older races transmit most surely 61410 Mammae in Rabbit，Dogs \＆c
$40544 m$（Geoffroy St Hilaire and Cuvier），wb Has Waterhouse got it 492 12－15m 496 17－22m 497 28－37m 529 1－2m，11－24m 530 5－ $12 \mathrm{~m} / 8-9 \mathrm{Q}$ m， 15 m （Aristotle），29－31m 531 18－ $23 m$ ，29u＂tigrellion＂， $34-36 m / 35 u$＂font 1 sanglier＂，45m／u＂fait loeufs＂ $\mid \rightarrow 532$ 2－6m，26－ 30m，27m／w Sow？？36－37u＂engraissement 1 oiseaux＂，介4－1m 534 10－15m／11－12u＂Suisse। Poitou＂ 535 28－31m， $34-43 \mathrm{~m} / 41 u$＂d＇unel portée＂ $5361-4 m, 5-7 m / 5 u$＂intermédiaire＂$/ 7 u$ ＂mélange Ifusion＂ $5-12 w$ how like to Gaertner， 14－17m，15u＂taureaulJura＂，25－30m，31u ＂mulet｜âne＂， $39 u$＂deux｜cotés＂ $53710 u$＂le｜ mamelons＂， $18-19 u \leftrightarrow, 35-36 \mathrm{~m}, ~ 40-41 \mathrm{~m} / 40 \mathrm{w}$ variable $43-45 \mathrm{~m} / 44 u$＂incontestablement 1 prédomine＂ $5387 u$＂l＇hémione mâle＂，11－12m $5392 u$＂bardeaulmulet＂， $3 u$＂la｜exceptées＂， 31－34m，40u＂cheval IHartmann＂，wb Hartman
is a German Book which 1 have seen referred to elsewhere 540 13-15m, 19-21m, $37-39 m$, $38 u \pm 541$ 36-38m 542 18-19m, 30$32 m 5431-3 m, 14-18 m, 38-40 m$ 544 14-19m/ 17-18u "boeufl breton"/24-26m/1-27w it certainly is not true that one can get as perfect offspring as parents 548 1-6m 614 $17-19 m, 21-23 m, 40-45 m 62731 \mathrm{~m} /$?

COLLETT, Robert Zoologi: Fiske Christiania; Grøndall \& Søn; 1880 [Down] \wp

COLLINGWOOD, Cuthbert Rambles of a naturalist on the shores and waters of the China Sea London; John Murray; 1868 [CUL] beh, gd, ss

NB 173 Electric snake

* Butterflies attracted by dead specimens S. Selection
* 182 Referred
* I have read as far as p 260 (very little)

367 all inhabitants of the Sargasso basin
374 Flying fish Habits
1 11-12z 173 27-34m 182 6-9m/"..." 1834 $6 \mathrm{~m} / 5-6 u$ "frequent battles" 367 12-21m 374 17-21m 37532 m 376 9-12m, 24-29m 377 14$19 m$ end of booklist $w b 64$

COLUMBUS, Christopher Selected letters ed. R.H. Major; London; Hakluyt Society; 1847 [Down]

COMSTOCK, John Henry Report upon cotton insects Washington; Government Printing Office; 1879 [CUL]
beh, gd, mg, oo, phy, tm
NF extra-floral glands; moths boring into melons $\rightarrow 84-85 ; 86-87 ; 90-91 ; 97 ; 89$ great powers of flight of moths; sweet juice eliminated - 319-320
NB 84 Extra-floral nectar-glands
89 Migration of moths grt distances
117 do \& distribution
120 do
213 ants destroy enemies of cotton Nectaries
320 to end with Bibliography.
$8410-22 m, 41-46 m 852-12 m, 19-26 m$, $28-$
$32 m, 38-47 \mathrm{~m} 864-21 \mathrm{~m} 891-16 \mathrm{~m} 1177-13 \mathrm{~m} /$ 13u "Argotis annexa" 120 27-32m 183 26-29m
$21328-30 \mathrm{~m} 317 \mathrm{wb}$ W. Trelease $32022-26 m$
325 14-22m, 31-38m 326 1-7m 327 5-7m 331
$3-7 m, 21-25 m, 38-43 m, 44-46 m 33224-30 m$, $40-47 \mathrm{~m} /$? $3331-5 \mathrm{~m}, ~ 9-15 \mathrm{~m}, 45 \mathrm{~m} 33611 \mathrm{~m}$

COMSTOCK, John Henry Report of the entomologist of the United States Department of

Agriculture for the year 1879 Washington; Government Printing Office; 1880 [CUL] ab

NB 203 Change of Habits in insect; 246 do 203 25-28m 246 17-23m, 18-19u "At । acquired"

CONGRÈS INTERNATIONAL d'anthropologie et d'archéologie préhistorique (Bologna, 1871) Bologna; Fava \& Gavagnani; 1873 [Down, I by Cappellini (secretary of conference)]

\wp

$5401 m 54213 m$
CONTA, Vasile Théorie du fatalisme Bruxelles; G. Mayolez; 1877 [Down]

CONVERSATIONS on vegetable physiology vols. 1 and 2; London; Longman, Rees, Orme, Brown \& Green; 1829 [Botany School, pre'B, FD, E. Catherine Darwin in vol. 1]

CONYBEARE, William Daniel, and PHILLIPS, William Outlines of the geology of England and Wales Part 1; London; William Phillips; 1822 [Down, pre-B]

〈a few editorial marks, not $C D$ 〉
COOK, James and KING, James A voyage to the Pacific Ocean 3 vols.; London; W. \& A. Strachan; 1784 [CUL]
vol. 1 NF This Work was given on its first publication by Josiah Wedgwood Esq of Etruria to Erasmus Darwin M.D. of Derby and is given to their Grandson Charles Robt. Darwin by his Father in 1840

COOKE, Mordecai Cubitt Mycographia, seu Icones fungorum vol. 1; London; Williams \& Norgate; 1879 [Down]

COTTA, Bernhard von Die Geologie der Gegenwart Leipzig; J.J. Weber; 1866 [CUL] af, ch, gd, geo, sp
SB p.198; 200; 208 good; Geology, change of species; closely allied species; Die Urwelt der Schweiz Notes pinned
198 10-12m, 14-15m 199 24-30m 200 21-23m, $31-33 m 20117 m / 14-16 w$ all found together 207 4-12m 208 1-3m/2u "dort | Kreide", 13$15 m / 13 u$ "sechsmalige", 21-25m, 25-27m 209 $1-2 m, 21-23 m / 22 a$ "ausgedehnten" Sea 210 34 m 22128 m

COTTA, Bernhard von Geology and history London; Trübner \& Co.; 1865 [Down]

COTTA，Bernhard von Die Lagerungs－ verhältnisse an der Grenze zwischen Granit und Quader－Sandstein Dresden und Leipzig； Almoldische Buchhandlung； 1838 ［Down， fragment］

COX，Edward William What am I？A popular introduction to the study of psychology London； Longman \＆Co．； 1873 ［Down，I］ ct，fg，hy，phy
$64 \Uparrow 12-8 m / w$ One pollen gr not enough 66 1－13w I hardly understand what you mean by germs 68 18－19x／16－18w hybrids 70 19－ $21 m / 14-21 w$ fused together $712-5 m 723-$ $16 w$ influence of nerves－Plants 73 26－28m／ $27 u$＂must be＂

CRAWFURD，John A descriptive dictionary of the Indian islands and adjacent countries London；Bradbury \＆Evans； 1856 ［Down］ br，gd，geo，is，se，v，ve，wd
SA $\langle p p .216-217\rangle$
10；14；15；16；28；32；38；46；56；59；73； 74；86；88；92；101；107；113；119；121； 122；123；125；92．；135；138；143；144； 145；152；153；171；172；217；220；225；255； 256；268；269；278；288；291；298；306；316； 318；320；407；417；420；433；A volcanic mountain wd undergo enormous degradation when subsided；Penlth note sheet missing SA2 1β
See map at beginning Very many facts show that very large quadrupeds will not exist in the smaller isids
14 Mountains heights \＆nature of
15 Zoology of archipelago
38 Bantam Poultry came from Japan
112 History of Cock Q
119 Genus Cervus
121 Dog NQ
125 Duck no wild ones，Penguin common var．
136 Elephant of Borneo described by Pigafetta
145 Goose not breeding in Manilla
152 Hog ，wild species of
153 Horses many breeds of，not aboriginal
$\frac{\mathrm{Q}}{255}$ Cat of Malay Q
268 Marian isld nothing about aboriginal quadrupeds
288 Monkey wild species of
316 Ox tribe
10；11；16；88；28；31；46；56；59；74；217； 225；92；279；337；143；171；220；291；298； 306；318；321；407；417；420；433：〈names of mammals of different islands）
$1057-62 m / 59 u \pm 1140-43 m, 46-50 m / 46 u \pm 14$ 40－43m，45－47m 15 20－28m，30u士，35u土，40－ $41 \mathrm{~m}, 45-51 \mathrm{~m} / 51 \mathrm{u}$＂Babirusa＂，53u土，56－62m 16 $1-6 m, 4-9 m / 5 u \pm, 13-17 \mathrm{~m} 2852-61 \mathrm{~m} 323-$ $10 \mathrm{~m} 3816 u$＂It Java ＂， $23-27 \mathrm{~m} 4658-61 \mathrm{~m} / 61 u$ ＂the lcat＂ 47 1u＂Thelhog＂ 56 42－48m，44－ $51 m / 46 u$＂hog＂ 58 37－43m 59 20－43m 73 52－ $59 m 744-19 m 8654-59 m 877-15 m 8811-$ 20 m 92 40－45m 101 14－18m 107 12－20m 112 51－56m，61－63m／Q 113 1－3m／1u＂amongl rudest＂$/ 2 u$＂domestic state＂， $2 u$＂bears｜species＂／ $3 u$＂Sumatra＂， $4 u$＂Java＂， $4 u$＂Malayl Philippines＂，5－18m，18－20m／19u＂Malays Javanese＂，21－28m，29－31m，31－37m／35u＂do। such＂，42－48m／44u＂in｜Hindostan＂，51－56m 119 1－16m， $4 u$＂Cervus \mid Cervus＂， $11 u$＂The belongs＂ 121 46－62m $1225-11 m, 58-63 m 123$ 4－9m／8u＂crown－pigeon＂ 125 9－11m，12－20m 135 52－59m 136 1－18m 138 1－3m 143 10－ $16 m 145$ 49－57m 152 19－29m 153 26－62m， $32 \mathrm{~m} / \mathrm{u}$＂Therel breeds＂， $33 u$＂onelto＂， $36 u$ 〈u henceforth place－names $\rangle, 37 u, 40-41 \mathrm{Q} 43 u, 44 u$ ， $48 u, 49 u 49 u, 52 u, 54 u 15420-24 m, 42-51 m$ 155 13－18m 171 47－61m，61－64m 172 14－21m 217 12－17m 220 26－29m，33－40m 225 40－52m 255 44－51m，50－52m 256 13－19m，31－38m 268 14－21m，51－58m 269 14－18m，37－39m 278 60－ $64 m 2794-6 m 2884-19 m 29126-27 m 2987-$ $14 m, 36-45 m 30022-25 m, 31-40 \mathrm{~m} 30658-$ 60 m 316 9－16m，22－29m 318 19－24m／20u ＂about I miles＂，29－34m／29－31w Depth 320 51－ $58 m 321$ 6－9m 33754－59m 407 3－5m 417 32－ 42m 420 54－61m 433 26－31m

CRAWFURD，John A grammar and dictionary of the Malay language vol．1；London；Smith， Elder \＆Co．； 1852 ［CUL］
beh，gd，geo，is，sy，ti，wd
NB ii；viii；xcv；civ；clxxxiii；ccvii；ccxl－on animals of Isd；ccxlviii；？cclii area of New Zealand；ccliv；cclx；cclxii，\＆iv
SB \quad－
civ at Lucon no horse or Oxen－－only Hog， Dog，Goat，Fowl \＆perhaps Buffalo xcv Timor said to be primitive ccvii Horse wild probably feral in Celebes ccxl Domestic animals of Pacific
cclv \＆c on men colonising isids in Pacific cclix Dogs of N．Zealand same race of in Society Isd
cclx Traditions of introduction of esculent plants into N．Zealand
cclxii In Marianne group natives use Fish Bones for arrows \therefore not deer x
cclxiii Fowls wild or feral，probably from wreck，as Cat then found？
ii $1-6 m$ iv $3-8 m$ v $20-23 m, 24-26 z$ vi $22-26 m$ ，

27－29z viii 19－22wec， $34-38 m$ xcv $28-31 m$ civ $25 u$＂absence＂， $26 u$＂buffalo＂，27－30m clxxxiii $25-27 m$ ccvii $3-5 m$ ccxl $23-27 m$ ccxli $27-30 m$ ccxlviii $7 m, 19-22 m$ cclii $18-22 m$ ，19－ $21 \mathrm{~m} / 20 a / w_{\notin}$ ccliv $27-30 \mathrm{~m}$ cclv $25 w$ Sandwich cclvi wt Yet Sandwich had dogs，Hogs \＆ Fowls wt Probably the frequency of being cast adrift wd make it obvious that，the Polynesians had better try to preserve animals．．－ $2-6 \mathrm{~m}$ cclix $15-17 \mathrm{~m}, 20-23 \mathrm{~m}$ cclx $1-11 m$ cclxii $8-13 m, 15-24 m / w$ see to Magellans voyage about Deer cclxiii $8-9 m$ ， $11-15 m$ cclxiv $6-8 m, 23-30 m, 34 u$＂hog 1 wild＂， 35－36？

CROLL Climate and time in their geological relations London；Daldry，Isbister \＆Co．； 1875 ［Down，I］
NB Glasgow Geolog．Soc．iv． 313 p7； Athenaeum Sep 22．＇60； 32
xii $30-32 m 25$ 10－11wec，17－19w 〈not CD〉 331 9－14m 332 6－9m（Geikie and Jukes）

CROOKES，William Psychic force and modern spiritualism London；Longmans，Green \＆ Co．； 1872 ［Down］

CUNNINGHAM，Robert O．Notes on the natural history of the Strait of Magellan Edinburgh；Edmonton and Douglas； 1871 ［Down，I］
beh，gd，is，y
NB \propto 〈page numbers \Leftrightarrow 〉
p56 Live terrestrial insects in sea when 1 found them
94 Young Logger－Headed Ducks can fly but lost when old
131 says Upland Geese do frequent lakes by the sea
195 lizard in T．del Fuego．－
56 9－12m／9u＂live beetles＂，15－17m 94 29－32m 131 1－5m 195 6－10m

CURTIS，William The botanical magazine，or， flower－garden displayed 2 vols．in one； London；Stephen Couchman； 1793 ［Down， pre－B］

CUVIER，Georges Essay on the theory of the earth，with geological illustrations by Professor Jameson 5th edn，trans．by Jameson；London； William Blackwood，Edinburgh \＆T．Cadell； 1827 ［CUL，pre－B，S］
281 1－4m／2w C11 9－11m＊／24w C21 282 9－ $10 m 2837 w 3$ 10w 4 19－21w 5，6， 7284 15w

8 21－22w $92857 w 1012-23 m / 17 w 1118-$ $21 m 345$ 21－23m 346 20－25m 347 2－9m 354 29－31m

CUVIER，Georges Leçons d＇anatomie comparée vols．1－5；Paris；Baudouin；1799－1805［CUL， pre－B］
〈most w apparently not $C D$ 〉
vol．1， 1410 m 1618 m 1826 m 2129 m 22 2－ $3 \mathrm{~m} 231 \mathrm{~m}, 2 \mathrm{~m} 245 \mathrm{~m}, 9 \mathrm{~m}, 10 \mathrm{~m}, 14 \mathrm{~m} 255 \mathrm{~m}$ ， $9 m, 10 m 2612 m 2922 m 3619-20 u \leftrightarrow 3726 c /$ atoe $4617 c \notin 5013 m, 24-27 u \pm 5113 m, 19 m$ ， $20 u$＂irritabilité＂， 24 m ， $28 u$＂poissons＂， 29 m 52 $3 m / 5 m / 1-5 w$ Quant ils font sauter tout hors de l＇eau $6 u$＂n＇ont aucune＂ 62 11a／ctom 92 $16-17 \mathrm{~m}, 30 \mathrm{~m} 933 \mathrm{u}$＂sont＂， $4 \mathrm{~m} / \mathrm{u}$＂parallèles＂， 5－6u＂leurs extrémités＂ $944 m, 5 m 9521 u$ ＂moindres＂， $23 u$＂véritablement＂， $24 m 963 m$ ， $6 u$＂auxquelles＂， $7 u$＂après 1 mort＂， $8 \mathrm{~m}, 12 \mathrm{~m} 97$ $2 m, 3 m, 5 u$＂le fibre＂， $6 u$＂delcorps＂ 98 19－ $20 \mathrm{~m}, \uparrow 4 \mathrm{~m} 9911 u$＂temps＂， $13 w$ रnot $C D$ ）， 15 m ， $18 u$＂dont＂， $18 u$＂nerfs＂， $26 u$＂insensibles＂， $27 \mathrm{~m} 10016 \mathrm{~m} / \mathrm{u}$＂nerfs＂， $18 \mathrm{~m} / \mathrm{u}$＂fonctions＂， 19 u ＂dépendent＂， $20 \mathrm{~m} / \mathrm{u}$＂médullaires＂ $1019-10 \mathrm{~m} /$ $9 u$＂charnue＂， $14 m, 23 m, 24 m, 27 u$＂fluide＂， $28 \mathrm{~m} 1022 \mathrm{~m}, 15 \mathrm{~m}, 19 \mathrm{~m} 1109 \mathrm{~m} / \mathrm{w}$ oiseaux 111 $20 \mathrm{~m} / \mathrm{w}$ oiseau $25-27 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{w}$ remarque 29 m ， $30 \mathrm{~m} 11612 a / c \notin 12010 \mathrm{~m} 12213 \mathrm{~m} \otimes_{\mathrm{s}} 12424 \mathrm{a} \mathrm{k}_{0}$〈not CD $125 \quad 14 m$ un $13318 u$＂sensibilitél irritabilité＂， $19 \mathrm{~m}, 25 \mathrm{~m} 13411 \mathrm{~m}, 12 \mathrm{w}$ 〈not CD ， $15 m 1353 m, 19 u$＂le milieu＂，20m，27－28m $1372 \mathrm{~m}, 17 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}$＂tous sens＂， 29 m 1381 － $2 m, 5 m, 7 m 13919 u$＂cordes＂， $25-26 m / 26 u$ ＂mêmes＂ 140 25－26m 141 28－29m 144 14a／ clote 209 4－6men 248 16－17m 256 10u ＂preuves＂， $11 m 27622 m 288$ 15w remarque 34320 m 《 365 22－25w \langle not CD $\rangle 449$ 3－4m $46312 u$＂poches＂， $13 u$＂qui＂ $46414 m 46521 u$ ＂muscles＂，23m，23u＂muscle＂ $4662 m / u$＂et s＇alonge＂， $3 m, 10 m 472$ 23－25m 476 5－6m，19－ $20 \mathrm{~m} / \mathrm{w}$ 〈not CD） $480 \quad 28 \mathrm{~m} 484$ 8u屯 ＂déploiement I certain＂，11－12u«s＂et lopposé＂ $48611 u$＂talon létendre＂， $12 \mathrm{~m}, 14 u$＂fournit 1 immobile＂， $15-16 \mathrm{~m} / \mathrm{w}$ marquez $23 \mathrm{~m} / \mathrm{w} \notin 488$ $8 u$＂soulever＂， $9 u$＂extenseurs＂， $10 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}$ ＂homme＂ $4896-7 m / 7 u$＂et du＂， $8 u$＂talon 1 arrière＂ 490 9u／c＂gauche＂ $19 w$ d．derriere 11m 494 16－17m 497 23－29m／25－26w $* \mathbb{k}_{5} 501$ $11 u \not \underbrace{}_{s}$＂certain point＂， $12 u \nprec$＂seroit lélastique＂ $50810 m, 14 m, 17 u$＂leurs lque＂／［．．．，18u＂pieds sont＂ 509 7－8m 510 14u＂Lal mouvement＂，15－ $16 u \leftrightarrow, 25-26 m 5115 u$＂avant d＇arriver＂， $6 u$ ＂le premier＂，7－8m，27－28m 512 5－6m，9－11m， $25 m 51316-17 m 5143-4 m, 8 m, 11 m, 15 u$ ＂les 1 dans＂＂martinets 1 fous＂， $16 \mathrm{~m}, ~ 23-24 \mathrm{~m}$ ， $30 \mathrm{~m} 5151 \mathrm{~m} / \mathrm{u}$＂inflexible＂， $4 u$＂centrel gravité＂， $5 u, 6 m, 8 m, 11 m, 15-16 m, 17 u$＂inférieure corps＂， $22 \mathrm{~m} / \mathrm{u}$＂os＂， 23 u＂cylindre｜creux＂｜23－

CUVIER，ANAT．COMP．
 $3 u$＂traitant des＂，5－6m，10－11m， $12 u$＂entre＂， $13 u$＂expansion｜peau＂，15－16m，24－25m 517 $2 m, 3 u$＂grèlel centre＂，10m，24－25m 522 14u屯 ＂156＂，table．wan］
vol．2， $3814 c / w$ à noter $9321-22 m 945 m$ ， $30 \mathrm{~m} 953 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$ ， $21 u$＂sensations＂ 96 $12 \mathrm{~m} / \mathrm{w}-9718 \mathrm{~m} / \mathrm{u}$＂rendre＂， $20 u$＂nerf simple＂／ w gen $23 w$ à noter， $24 m, 26 m / u$＂plupart des＂， $28 u$＂renflemens＂， $29 w$ à not $30 \mathrm{~m} 982 w, 4 m$ ， $8 m 10323 u$＂médullaire＂， $24 m, 25-26 m 104$ $15 u$＂médullaire＂， $16 \mathrm{~m} 10529 \mathrm{~m} 1065-6 \mathrm{~m}$ ， $20 \mathrm{~m} 10713-14 \mathrm{~m}, 14 \mathrm{~m}, 24 \mathrm{~m}, 25-26 \mathrm{~m} / 25 u$＂con－ sommer＂ $1087 m, 8 u$＂substance essentiel－ lement＂， $9-10 \mathrm{~m}, 13-14 \mathrm{~m}, 15 \mathrm{w}$ noter $24 \mathrm{~m} / \mathrm{w}$－ $1091 w$ electrique $3 m / u$＂isolés＂， $4 u$ ＂conducteur＂，5m， $6 u$＂cohibans＂， $10 \mathrm{~m} 11015 u$ ＂branlement＂， $16 \mathrm{~m}, 20 \mathrm{~m} 1115 \mathrm{~m}, 10 \mathrm{~m}, 19 u$ ＂autres ordres＂， $20 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}$＂contracte＂$/ \mathrm{w}$ facture $29 u$＂des sensations＂， $30 \mathrm{~m} / \mathrm{u}$＂portion nerf＂ $1123 m, 12 m, 13-14 m 1138 m 1159 m$ $11714 m, 17 a / c \notin, 21-23 w\langle n o t C D\rangle$
vol．3，xxi $29-30 \mathrm{~m} 389 m 464 m 15410-14 m$ 156 24－29m $40210 \mathrm{~m} 4073 m$
vol．4， $3084 m 30913 m 31915 m 33112 m / w$〈not CD ，13m／w 〈not CD 364 15－17z／20－22z $37414 m 48622 m, 23 u$＂quelfils＂，24u ＂membranes \mid unissent＂， $25 u$＂trachée＂

CUVIER，Georges Le Règne animal 5 vols．； Paris；Déterville； 1829 ［CUL，on B］
beh，sx，tm
vol．1， 151 26－28m 214 20－24m 219 30－32m 220 9－11m， $27 m 227$ 25－28m 228 5－7m，13－ $16 m 30623-28 m 4582-4 m 45910-12 m 460$ 24－25m 462 11－12m 496 9－13m 560 8－14m
vol． 2 NB p． 78
Q \＆G Cap Freycinet；L＇Uranie（wrecked in Falklands）；S．Astrolable
Peron，Lesueur artist；Baudin－Australia
Lesson \＆Garnot voyage de Coquille Capt．－ Duperrey
viia $34 w 1$ viiia $33 w 2$ viiib $31 w 3$ ixa $29 w 4$ ixb $7 w 512 w 629 w 7$ xb $15 w 828 w 936 w$ 10 xia $11 w 1115 \mathrm{~m} / \mathrm{w} 12$ xib $1 \mathrm{~m}, 6 \mathrm{w} 1315 \mathrm{w}$ 14 xiia $1 w 1512 w 1,32 w 2$ xib $10 w 337 w 4$ xiiia $23 w 51224-27 m 2823 m 3013-17 m 54$ $20-23 \mathrm{~m} 603-4 \mathrm{~m} / \mathrm{u} \leftrightarrow, 6 u$＂commelfemelle＂ 65 20－22m 66 19－20m 73 8－10m 81 15－19m 83 $11-15 m 8828-30 \mathrm{~m} 1015 \mathrm{~m} / \mathrm{w} \mathrm{c}_{0}$－ 103 3－5m 104 29－31m 106 9－11m 107 14－17m 110 32－ $36 \mathrm{~m} / \mathrm{Q} 111$ 20－22m 112 14－16？ 113 10－17m 114 5－7m 119 4－6m 189 zt 237 21－24m／23u ＂s＇enfle｜saison＂ 247 22－27m 255 11－13m 333 $15-18 m, 23 m / w$ Cape Fairweather
vol．3， 11 23－25m $1425 m 1516-17 m{ }_{c} 1710-$ 14 m 29 12－15m 33 1－4m，10－15m，16－18m， 23－25m $353 w 507 w 57,10 w 5818 w 6636$ $1 w 7012 w 11019 w 11320-21 m 397-9 m 40$ $15-17 m, 31-33 m 42$ 21－23m $443-5 m, 7-9 m$ ， $14-16 m 46$ 14－16m 47 19－20m 48 8－9m，25－ $27 m 516-8 m 5515-17 m 598-11 m 604-7 m$ 62 18－21m 68 17－19m $784-9 m 81 \quad 13-16 m$ ， $22-25 m 8416-20 m 87$ 21－24m $911-6 m 166$ $\Uparrow 10-9 m, \Uparrow 8-7 m, \Uparrow 3-2 m 168$ 17－22m 170 1－4m 175 20u＂douze paires＂ $17715-18 m, 17 m 179$ 16－20m 207 16－17m 225 20－24m 228 1－4m $2291-5 m 2354-7 m, 10-12 m 2386-10 \mathrm{~m} 266$ 23－25m，30－31m（von Baer） 276 22－23m 300 10－13m 301 1－4m（Lamarck），15－16m 302 20－ $22 m 306$ 6－7m，9－10m 308 13－16m 318 5－13z， $22-24 m 339$ 介4－1m 348 11－12m，介4－1m 350 $9 m, 14 m 373$ 介4－1m $37516 m, 19-22 m 3792 m$ 380 19－22m，32－33m，35－36m 385 10－13m 386 7－10m 392 20－23m 400 24－27m 402 27－29m， zb 403 3－5m 404 12－13m 40923 m 413 17－20m 415 2－4m 416 4－6m 422 7－10m 426 3－10m \wp
vol．4，xvii 11－12m／w Schiropoda， 9933 23－ $27 m 4410 m 5111-12 m, 16-19 m 6712 m 76$介9－6m $794 m, 5 m 822 u \pm 8414-18 m 919 m$ ， $10 \mathrm{~m} 9213-16 \mathrm{~m} 9531 \mathrm{~m} 9710 \mathrm{~m}, 15-17 \mathrm{~m} 100$ 7－10m 108 14－18m $1104-6 m 11721 m 1188-$ $9 m 1199 m, 11 m, 26 m 1207 m, 24 m 12124 z$ 122 19－20m $12331 w 212417-18 w 31286-$ $10 \mathrm{~m} 13217-18 \mathrm{Q} 1336 \mathrm{~m}, 9-10 \mathrm{~m} 1359-10 \mathrm{~m}$ ， $22 m 1366 w 313824 m 1403 m 14114 m 142$ $4-8 m 15114 w 15815428-32 m 15812 m 171$ $26-30 m 2293-6 m 23422-25 m 23521-22 m$ 236 2－5m，17－18？ 240 14－19m 241 9－11m 242 20－22m 244 7－9m，32－34m 247 2－4m，10－12m 250 25－27m 251 23－25m 254 4－5m 255 29－ 30 m 257 27－28m 258 5－8m，12－15m，24－26m 259 22－23m 261 21－24m，32－33m 270 21－23m， 33－37m 273 27－28m 275 9－12m 278 19－21m 281 6－8m，25－27m 286 2－5m， 16 m 287 27－30m $28910 \mathrm{~m} 2901-3 m 3344-8 m, 28-29 m 335$ 5－ $6 m 337$ 24－27m $33816-20 m, 28-30 m 34127-$ $29 m 346$ 27－28m 542 30－39m 543 1u＂mort fuite＂
vol． 5 NB p． 305 Leon Dufour has written on stinging instruments of ants
p． 291 －on antennae differing in male \＆ female Cynips in no．of Joints．－
206 23－25m 305 31－33m 399 13－14w 2403 29w $34085-7 w 541510 w 825-27 w 9423$ $22-23 w 10$

THE CYCLOPAEDIA of anatomy and physiology ed．R．B．Todd， 6 vols．；London；

Longman，Green，Longman \＆Roberts；1835－ 1859 ［Down］
beh，phy，tm
vol．2，221a $6-12 m, 8-9 u, 62-66 m$ 221b $1-7 m$ ， $34 u, 44 u, 47 u, 49 u, 51-54 m / 54 u, 56-59 m, 61-$ $69 m, w b$ the lower eyelid acts during laughter 222a $17-26 w$ very little about it，seems to depress eyebrows \＆causes frown 21－26m， 65－68m 222b $10-14 m, 15 c, 38-42 m$ 223a 26 － 31m，54－55u 224a 9－13m，24－28m 224b 6－9m， $12 c / w \notin, 50-55 m$ 225a $31-33 \mathrm{~m} 225 \mathrm{~b} 17 \mathrm{~m}$ ，33－ $35 m$ 226a $48-56 m$ 226b 3－9m 227a 6－10m， 53－56m，62－69m
vol．3，90a $21-30 m$ 93a $38-43 m$ 94b $24-25 u$ 98a 13－17m 566a 55－58m 566b 41－51m 722， $723 w\langle F D\rangle$ vol．4，1415a $43-44 u$ ， $44 m$ 1415b $29-31 m, 30 u, 35-37 m / 35 u \quad 1424 a \quad 38-41 m$ 1424b $14-17 \mathrm{~m}$ 1425a $42-50 \mathrm{~m}, 54-59 \mathrm{~m}$ 1427b $16-24 m, 31-40 \mathrm{~m}, 44-51 \mathrm{~m}$ 1427a $8-12 \mathrm{~m}$ 1428a 53－58m 1496b 4－11m，29－36m 1497a 38－42m／ 39u 1499a wtє，1－6m，57－61m／60u 1500a 30－ $34 m$ 1500b $1-4 m, 40-46 m$ 1503a $15-19 m$
vol．6，301b $50-57 \mathrm{~m}$ 302b $35-40 \mathrm{~m}$ 303b 9－ 13 m 304a $10-13 \mathrm{~m}, 12 u$＂vermiform＂304b 24－ $28 m / 25 u 317 b 37-42 m$ 318b $24-36 m / 28 u$ 334a 38－47m 642a $35-37 \mathrm{~m} /{ }^{\prime \prime} .$. ＂642b 1－5m，1－ 8＂．．．＂／7c 643b 16－19m

DALLAS，William Sweetland A natural history of the animal kingdom London；Charles Griffin \＆Co．；n．d．［Down］\wp

DANA，James Dwight On the classification and geographical distribution of Crustacea Philadelphia；C．Sherman； 1853 ［CUL，I］ gd，hl，sp，t，ti
SB $\square \beta$
1557 No species in common to W．America \＆central Pacific，except few cosmopolites
1498 On number of species in Torrid zone （Q）
1501 less numerous but higher
1504 Tropics most prolific in Crustacean life 1528 general discussion on above heads
SA 〈pp．1588－1589；part of a letter from J．D． Dana）

1498 35－39m 1501 28－29m 1503 36－38m 1528 1－24m 1529 1－9m 1531 4－5m 1533 wtcc， table．m＂Hyas＂，wb Right 〈also totals in each column totalled 1536 table．m＂Cyclograpsus＂ 1538 table．m＂Lithodes＂＂Paguristes＂ 1542 table．m＂Jaera＂ 1543 table．m＂Amphoroidea＂ 1544 table．m＂Anonyx＂＂Gammarus＂ 1551 $30 x$／30－39m／34u，39u 〈place－names），35－37w Before Glacial B．G． $15527 m, 7 m, 9 m, 12 m$ ， $31 \mathrm{~m} / \mathrm{w}$ Med \＆Japan $33 \mathrm{~m}, 40 \mathrm{~m} / \mathrm{w}$ Med \＆ Japan $15531 m / w, 3 m / w, 5 m / w, 7 m / w$ Med \＆ Japan $8 w 36$ species with enormous ranges $z b \quad 1554 \quad 4 x / 3-9 w \quad 42 \mathrm{sp}$ with curious ranges．－belong to many genera $15571-5 \mathrm{~m} /$ $4-5 x-11 u \leftrightarrow, 23 x *, 28-33 w$ Evidently far more relation between E．\＆W．America than in shells \＆more species in common：but I can hardly judge $35-37 \mathrm{~m}$＊ 1558 19－24m／ $21 x \geqslant 15613 w$ a temperate genus $3 x \otimes / w$ New Zealand \＆America $25 x$ 1564 $30 x$ 1567 18－19x 1569 10－11w New Zealand \＆ S．America $12 x$ ， $16 w$ do $19 x$ ， $26 u$＂eighty－ one＂， $29 u$＂thirteen IJapan＂ $1 x / w$－New Zealand \＆Cape $30 u$＂three＂ 15030 ， $13 x 15747 a$＂above＂ $337 x / w 33$ species in common 15－17m，19x／19－22w it is a difficulty so few being common to Europe \＆ Cape $29 w 12$ Natal \＆Japan 1576 19u ＂eastern｜Australia＂，25－28w New Zealand \＆ America 29x／？ 157821 u＂Hymenicus 1 near＂／ $21-32 w$ No representative case can be made out，as for common Antarctic land；New Zealand \＆America $\uparrow 13-8 m / \Uparrow 11 u$＂over twelve＂$/ \Uparrow 9 x / \uparrow 9-7 w$ are any of these southern genera I wonder $\uparrow 10-8 w$ p． 1561 \＆ temperate genus of Amphoroidea $\uparrow 8 u$ ＂Cyclograpsus＂／wb is a wide ranger，Mid Pacific Florida $\Uparrow 8 u$＂Paguristes＂$/ w b$ wide ranger $\Uparrow 7 u$＂Betaeus＂／wb Indian Ocean

DANA, CRUSTACEA
torried $\uparrow 5 u$ "Palaemon" $/ w$ torrid $w b$ Cancer none torrid $\mathrm{N} \& \mathrm{~S}$. America Ozius torrid 1579 $3 x / u$ "Ozius \mid Xantho", $13 x / u$ "Lithodes 1 Galathea" $/ \mathrm{w}$ range equator wards? $\uparrow 8-1 \mathrm{~m} / \mathrm{u} / \mathrm{w}$〈ranges and climatic zones of species named〉 1580 28-29x $15814 u$ "Glyptonotus"| 3-4x $6 x * / 13 x * / 6 w$ New Zealand \& Cape \& S. America $15827 x / 10-11 x$ /8-9w \& Turtles \&c $15838 x$, 12x, 18-19x/19u "not zone", 21x $27 x / w$ New Zealand \& America 27-28u "AmphoridaelOzius" $\mid x$, $35 x$ 1584 9x ${ }^{2}$, 13c "Horn"/w G Hope 22$23 x / 26-27 x / 36 x / 38 u$ "Japan" $15854 x$, 11c "Horn" Good Hope $16 x$, $27 x 1586$ 13$14 x$, 21-22x , 29-30x , 32-33x 1587 13$25 m / 13-14 x$, $24-25 x$ 1588 33-34x 1589 3-4x

DANA, James Dwight Corals and coral islands New York; Dodd \& Mead; 1872 [CUL, I]
geo
NB p.365; p. 308 Loyalty Isld Quart Jour. 1847 p. 61
7 26-30m 108 8-10m 116 9-13m, 13-16m 158 1-2m, 10-11m, 31-32m $17112 m, 15-17 \mathrm{~m} 184$ 22-26m 193 17u "Metia or" 199 9-10m 219 12-14m 259 13-16m $267 \Uparrow 8 \mathrm{~m} 27315 \mathrm{~m} 301$ $9-18 \mathrm{~m}, \quad 11-12 \mathrm{~m}, \quad 15-17 \mathrm{~m}, \quad 30-33 \mathrm{~m} / 33 \mathrm{u}$ "westernmost islands" 302 11-16m 303 3-7m, $10-13 m, 14 w$ why not $23 u$ "occurlare", 30$31 m 30410-13 m, 18-25 \mathrm{~m} / 23 \mathrm{w}$ why 3059 12m, 13-14m, 16m, 20u "Tatoal volcano", 28$32 \mathrm{~m} / 30 \mathrm{u}$ "evidence I very" 306 6-8m, 12-14m, $14-17 \mathrm{~m}, 20-22 \mathrm{~m} 3077-9 \mathrm{~m}, ~ 12-13 \mathrm{~m}, 18-23 \mathrm{~m}$ 308 25-29m 309 16-19m, 23-24m 310 6-12m $31129-32 m 317$ 8-10m 320 14-19m 321 1620 m 322 1-4m 323 17-23m 324 1-6m, 9-11m, $27-32 m \quad 325$ 11-13m/11-15"..."/12u "deep bays" 326 16-20m, 24-25u "Tutuila Icoral", 28-32m 327 6-11m, 15-16w I do not trust this evidence?? $17-22 \mathrm{~m} / 18 u$ "wide reefs", $26-31 m$ 330 28-31m 331 wt Mr D also shows on authority of Mr Hale that $\%$ these islanders seem to be here held * where certain on Ponape were sacred $1-8 m / 4-8^{\prime \prime}$...", $9 m 333$ $22-28 \mathrm{~m} / 22 u$ "the lagoon", $29 u$ "two feet", 31$21 \rightarrow 3342-4 m, 16-18 m / 18 u$ "six feet"/ 14-21w This wd protect the leeward side $25-26 \mathrm{~m} / \mathrm{w}$ From Keeling Isid $25 a$ "Metia" or Aurora solid coral rock $27-32 m / 29 u$ "northeastern" 336 11u "three hundred", $26 u$ "Rurutu", 28u "high", 29 u "lower eminences", $30 u$ "hundred", $30 u$ "three hundred", 32u "part basaltic" 337 5-8m/6u "All Tonga", $10-14 \mathrm{~m} / 12 u$ "layer thick", $31 u$ "one 1 height" $3384-7 m, 14-17 w$ Samoan elevtn 2 or $318 u$ "twolthree" 339

16u "prooflelevation" 341 12-14m 342 24$26 m / 24 u$ "four Isix" $34319 u$ "onel has", $32 u$ "full | feet" 345 17-37m 346 wt The nature of the slope - (Galapagos \ominus) Tasman - birds of atolls 351 19-23m $3651-7 m / 1-2 u \leftrightarrow / 4 u$ "of Hawaii" 394a $1 m$ 394b $1 m, 3 m$ 395b $13 m, 22 m$

DANA, James Dwight Manual of geology Philadelphia; Theodore Bliss \& Co.; 1863 [Down, I]

DANDOLO, Vincenzo The art of rearing silkworms London; John Murray; 1825 [CUL, pre-B]
NB 23; 244; 270

\wp

23 20-27m/22-23Q 244 1-3m 270 7-11m 349 25-28z

DANIELSSEN, Daniel Cornelius and KOREN, Johan Zoologi: Gephyrea Christiania; Grødahl \& Søhn; 1881 [Down] \wp

DARESTE, Camille Recherches sur la production artificielle des monstruosités Paris; C. Reinwald \& Cie.; 1877 [Down, I]

DARWIN, Charles De Afstamming van den Mensch (The descent of man) trans. H. Hartog Heys van Zouteveen; Delft; Van Ijkema \& Van Gijn; 1871 [CUL] \wp

DARWIN, Charles En Naturforskares resa omkring jorden (Voyage of a naturalist) trans. G. Lindström; Stockholm; J.L. Törnquist; 1872 [CUL] \wp

DARWIN, Charles Het Ontstaam der Soorten (The origin of species) trans. T.C. Winckler; Haarlem; A.C. Kruseman; 1860 [CUL, I] \wp

DARWIN, Charles Origine delle specie (The origin of species) trans. G. Canestrini; Torino; Unione Tipografico Torinese; 1875 [Down] \wp

DARWIN, Charles L'Origine dell'uomo e la scelta in rapporto col sesso (The descent of man) trans. M. Lessona; Torino; Unione Tipografico-Editrice Torinese; 1871 [CUL] \wp
DARWIN, Charles Über die Entstehung der Arten in Thier- und Pflanzen-Reich durch natürliche Züchtung, oder Erhaltung der vervollkommneten Rassen im Kampfe um's Daseyn (The origin of species) trans. H.G. Bronn; Stuttgart; E. Schweizerbart; 1860 [CUL]
af，cc，cr，ct，ds，em，ex，fg，gd，ig，oo，phy， rd，sl，sy，t，ti，tm，ts，v

SF $\square \Re \propto\langle 4$ sheets \rangle
Bronn＇s criticisms for New Edit of Origin
Objects that I cannot precisely say why two species of Rats Hare \＆Rabbit assumed by selection their present characters－very true I can in no case say this－we know so little of use of parts \＆laws of correlation．－But I confess，I thus evade every special difficulty． Why one gets round and another pointed leaves．
Objects that in case of two varieties still living in abundance side by side how can intermediate races＊have been exterminated－But are there such cases， excluding such vars as albinos．－Do not they inhabit distinct countries or stations－surely this is general rule．－
Do you believe in Brehms sub－species．Have you seen them？
Thinks that variation arising from exter－ nal conditions are linked together by intermediate－not those produced by n ． selection．－
Why of two cells，primordial，one got volition \＆sensation \＆other did not．－
Says I ought to answer＊whether my primordial forms were created as eggs or full－grown \＆c．－Admits that vegetable－cell wd come first．
〈over〉
I think Schmidt says the eyes not so completely grown，at least form more related to those of external world＊near extreme of case－＊
I shd never suppose with respect to his supposed changes in 2 Rats，that first longer or shorter tail \＆larger ears were acquired， but that all were modified together．－
\Leftrightarrow Might I not ask Creationist why tail longer or ear shorter？I could not ask this of him who believes that God makes his creation different for mere variety－like man fashions a pattern for mere variety．

〈over〉

Objects there might © ${ }^{\circledR} 100,000$ creations as well as one：I agree © then these would not have borne signs of common descent in homologies \＆embryology \＆rudimentary organs．
Some mistakes about my supposing several glacial periods．－Permian \＆Chalk
＂Why shd the process of development have always caused one race rats in all different parts of world＂I do not believe so－N． Zealand \＆Australia．
\Leftrightarrow I cannot see force of your objection because one cannot explain origination of life－the far grandest problem of any－why it wd not be gain to explain or account for forms；if this could be done－so we $\%$ do not know what selecting is，but - this its action．－
I fully agree to your final sentence－\＆I fully admit the many awful difficulties in my view．〈over〉
Certainly，as he grants ${ }^{(8)}$ that both rats descended from one common parent．
As I cannot justify my opinions in any one single case，so I need not in any．－is as true ＊as it is severe－
Though I can in no single instance，（except by conjecture，as longer legs of Hare for fleetness \＆not－longer ears to hear with） explain changes＊yet the structures \＆c led me to conclusion．－Laws of Variation will hereafter be understood far clearer
1 wt With
$\wp\langle m i s s i n g$ from p．463〉
DARWIN，Charles The zoology of the voyage of H．M．S．Beagle，under the command of Captain Fitzroy，R．N．，during the years 1832 to 1836 London；Smith，Elder \＆Co．；1840－1842 ［CUL］
ex，gd，ig，mg，sp，ti
Part 1， 9 wt 4 apparently the Olivallaria auricular of d＇Orbigny 19－20u＂Oysters＂$/ w \bullet$ ， 22－23c／w \notin ，22－37m 17 23－28m $2810 c / w$ already alluded to $11-13 \mathrm{~m} / \mathrm{a}$＂Toxodon＂in several cases it deviates from 29 1a＂Rodent＂ 55 13－21m，20－25m／20w a Pachyderm 24a ＂Macrauchenia＂$/ w$ animal 72 33－37m 74 19－ $21 m 107$ 1－2m，37－39m

Part 2， 17 31－36m 35 13－15m 48 21w 1273 $2 w 28813-6 m$

Part 3，NB S Representative species p31； 85.

85 capital Glacial Representative，not quoted 113 Beaks of woodpeckers muddy at base
67．intermediate var in intermediate regions 16 〈u＝colourings $\rangle 4 u, 5-6 u, 9-10 u, 10-16 \mathrm{~m} / 10-$ 12＂．．．＂，29－34m／33u 31 11－13m 34 7－8Q 66 19－20Q 67 29－30Q $8322-24 z 859 m 10816-$ $17 w$ Matutina $17 c$＂ruficollis＂ $11332 m / Q 143$ 10－12Q

Part 4，SB1 0

Important to find out those genera which have no marine species or migratory species．In these distribution must offer great difficulty．－Are there many？Feb．／56／

DARWIN，C．，BEAGLE VOYAGE
SB2 Galapagos Fish 〈list of species〉
SB3 $\square \beta$
－p340 odd about Alpine forms becoming less numerous \langle rest $\diamond\rangle$
F．W．Fish
p3 True Perch in S．America
p18 Dules R Tahiti－other species Java
p79 Atherina Valparaiso－some in brackish， some salt species
p98
p114 Poecilia Cyprinidae Lebias S．America p120 Mesites Nov．Gen．
Salmonidae
p123 Tetragonopterus
p131 Aplochiton F．W．Genus Falklands \＆T． del Fuego
p142 Anguilla N．Zealand
Part 5， $212 w 11141 w 251 w 3616 w 47$ $16 w 581 u / 5-6 u$ 〈colourings〉，9－14m，27w 6 $101 w 7111 w 81220 w 91323 w 101431 w$ $111533 w 12171 w 13187 w 121413-4 m$ $5110-12 m$

DARWIN，Charles 〈end of German translation of Beagle Journal？＞［CUL］
pat，phy
$2981-17 w$ thinks palm sap owing to life being continued 299 14－23m／w in Challen Id a well person new arriving made all sick－ believe in New Zealand

DARWIN，Erasmus The botanic garden part 1 and part 2 vol．1，bound together；London；J． Johnson；1791；and part 2，vol．2，2nd edn ［CULR，pre－B，S］
fg，gd，mhp，sp，sx
NB p．8；p197；p200；p202
Species of Plants p． 4 to 7 ； 10 to 26 to 40 ； p．60；75；125；147；169；185；186；Abstract Dec 1857
p3 \＆ 4 female bending down；p． 5 In Genista the pistil Bending round to stamens which last shed their pollen；p． 6 Labiatae similar observation；p． 16 On Arum preventing Flies escaping（Ch．3）； 60 seeds of Tillandria found sticking to trees； 169 Amoen Acad on Rams giving fleeces
vol． 1 title page $w b$ Second＊part 1790 which was published first $823-31 m 91 " \ldots$＂． $19715-17 \mathrm{~m} 17 u$＂the lbush＂，20－21m 198 介5－ $1 \mathrm{~m} / \mathrm{w}\langle F D\rangle 20014-16 m, 21-22 \mathrm{~m} 202$ 17－20m， 22－25m（White）
vol．2，part 1， $418-20 \mathrm{~m} 58-11 \mathrm{~m}, 15-18 m$ ， $20-24 m 69-12 m / 8-15 w$ These facts do not appear to me impossible，though Sprengel
denies them 7 12－17m（Linnaeus）， $19 u$＂with। only＂ 10 11－15m 12 15－18m 14 12－15m，19m／ u＂twoldifferent＂，23？／u＂approach｜pistil＂ 16 11－20m 17 30－32m／31u＂letter 1 with＂ 26 介4－ $2 m 38$ 20－22m 20u＂Caterpillars which＂，26－ $27 m$ 26u＂The lark＂ $3911 u$＂those I green＂ 60 22－24m $23 u$＂withlon＂ $75 \Uparrow 4 m 76$ 8－9m 107 15－19m 121 11－15m 125 20－22m 146 23－25m 147 15－23m 148 18－20m 149 7－9m 169 19－ $20 m 185$ 2－6m 186 4－21m

DARWIN，Erasmus The botanic garden，part 2 vol．2；Lichfield；J．Jackson； 1789 ［CUL， pre－B］

DARWIN，Erasmus Phytologia London；J． Johnson； 1800 ［CULR，pre－B，S］
beh，br，ch，che，cs，fg，mhp，pat，sh，sp， spo，sx，tm，y
NB 45 leaves closing in rain 959699102 106108114
116，8－direct action of pollen of beans V． fabaO
137148181324320350379451452501 532535541543545568570579583
p207 215 Phosphorus not enough attended to but he thinks shells contain an abundance 217 use of Strawo
SB \quad Q
106 Q Case of broom other plants bending pistil to late anthers，I doubt
116 Most curious case of rows of Beans， crossed Bath Soc．vol．5，p． 38
451． 1746 a Mr Cooper selecting his veg－ etables with care，\＆evidently indep－ endently（shows how it may have gone on） \＆with this care，does not find any change of seed．necessary．Quoted from Commun－ ications to Board of Agriculture
532 On Gout produced by intemperance． children can bear less．
568 Phytolacca 1 species with 20 stamens， another with 10，\＆another with $8 \& 8$ Pistils \＆another dioicous－Properly Decandria \＆ DecagyngiaO

2 3－4m 45 9－13m 55 10－12m 76 31＂．．．／32m 77 1－3m，9．．．＂，27－29m 79 29－32m 95 1－12m 96 $10-16 \mathrm{~m} / \mathrm{w}$ will not account for sporting 97 16－ $19 m / w$ How do Horticulturers propagate these $99 \quad 1-3 m \quad 102 \quad 1-5 m \quad 106 \quad 11-32 m / w$ shows that stigma long remains susceptible of impregnation 107 1－9m 108 10－19m，28－ $32 m$（Bonnet）109 6－9m 114 13－18m，21－32m 115 24－32m 116 1－3m／3－1m／11c＂Seelwork＂｜ 22－28m／2－28w important shows extent of crossing 117 21u＂Vol．｜Academic＂／18－21m （Schreber） 118 5－7m，20－29m／22u＂plantsIhis＂

119 4-8m 137 7-15m/11u "Fordyce" 148 19$21 m 181$ 1-5m 207 19-20m/19u "universallyl vegetables"|20u "sufficiently|to" 209 15-16m 211 6-8m 215 6-9m, 7 m 217 6-10m 316 13m $3201-4 m 32424-32 w$ so that Sir G. Sebright explanation of ill effects of breeding in \& in same as my grandfathers for diseases in old trees $3503-9 m, 29-31 m 37927-32 m /$? $4331-$ $2 m, 6-7 m 4511-5 m / w$ good $7-14 m, 19-23 m$, 28-32m 452 2-5m, 25-30m, 28-29m 467 9$12 m 501$ 16-18m/18u "after flowering" 531 1$9 m \quad 532$ 10-15m, 19-25m 533 14-18m (Linnaeus) 535 2-4m (Linnaeus)/4u "Tracts Hist." 541 18-22m 543 18-25m 545 16-19m/ $16 u$ "Philos. 1 Nature" $5577-10 \mathrm{~m}, 18-21 \mathrm{~m}, 22-$ $25 \mathrm{~m} / 24 u$ "old organizations", $30-32 \mathrm{~m} 5595-$ $8 m 5684 w$ Fish? 6-10m/6u "the lorgans" $/ w$ is this so? $9 w$ Lamarck $11-30 \mathrm{~m} 569$ 2-16m 570 1-3m 577 27-29m 579 17-20m (Murray) 583 20-23m

DARWIN, Erasmus The temple of nature London; J. Johnson; 1803 [CULR, pre-B, S; 2 copies, one unmarked]
beh, cr, phy, tm
NB O/
p54 In Man fundus not over opening of urethra; 63; 134
notes p.1; p.18; p. 25
124 Love your mother as yourself
54 consonant to the dignity of the Creator of all things
Notes
120 Machine to speak
87 Reference to my Father on Spectra vol. 76
p11 - advantage of \& Power Microscope
54 12-13m, $26-28 m / 24-28[. .] 6326-.27 m 68$ 11-18m 73 13-17m 124 13-21m (Socrates)/1721[...]/18c/19c£ $1345-8 m, 5-6 m$
Notes, contents " 270 " m, " 295 " m 1 20-21m $115-9 m 183-7 w$ external or internal yolk sac - means of passage $=6-8 m 232 w *$ Read 25 15-19m 33 3w Read to p. 3645 20-23m 120 7-14m/8-12"...", 21-27m

DARWIN, Erasmus Zoonomia 2 vols; London; J. Johnson; 1794-96 [CULR, pre-B] beh, cc, ch, ds, gd, he, ig, pat, phy, sx, t, tm, v
vol. 1 NB1 23; 24; 46; 50; 52; 55; 57; 103; 104; 108 Malebranche gustation; 114; 130; 142; 140; 147; 148 Expression; 150; 152 Expression; 154; 160; 162; 190 I must show habits descended and then $0 ; 192 ; 201 ; 203$ whole chapter on sleep very good \& all
marked; 214; 242; 253; 265; 267; 268; 269; 423 expressions; 425; 427 - good yawning; 483; 487; 502; 504; 505; 509; 510; 517
NB2 p. 183 centipedes cutting worm into 2 pieces
SA $\langle p p .504-5\rangle \square \beta$
140 Q An infant soon forgets to suck - if calf once sucks cannot be up by hand
160 Q Kitten covering spoonful of water. EttyO shaking foot, when it heard water
191 Compares Music with Instinct \& when putting nose into glass
504 Lamarck concisely forestalled by my Grandfather
508 Teats on sheath of Horse (\& in Mule)

- Plato thought that all animals Hermaphrodite
$1214-19 m 237-20 m / 8 w$ (a) $w b$ (a) This is strange as hungry men never dream of hunger $24 \quad 6-32 m \quad 46 \quad 6-21 m \quad 50 \quad 17-19 w$ instinctively so $522-4 m 5512-15 m / w$ the mouth alone repeats the sensation $578-10 \mathrm{~m}$, $13-29 m / 29 u$ "whole skin" $581-9 m / w$ hope is mental desire $9927 \mathrm{~m}, 31 \mathrm{~m} 10322-25 \mathrm{~m}$, 29$32 m 104 \quad 7-16 m 105 \quad 19-31 m / 23-27 w$ does habit imply having ideas? $10630-32 \mathrm{~m} 108$ $22-25 \mathrm{~m} / w$ as soon as we became locomotive 114 8-15m 139 8-17m (Haller) $1405-7 m$, 2026m (Harvey, Hippocrates) 148 14-18m $1505-$ 13m 151 11-14m 152 18-20m/w Sir C. Bell says because he looks back $15412-14 m / w$ Ding to dogs in S. America $30-32 m 160$ 15$21 m$ 162 17-21m, 28-32m 182 9-12m, 19u "flesh|instincts" 183 9-17m 190 28-31m 191 wt There appears to be perfect gradation from concatenated movements of which is only partly unconscious.- to those which by no effort can be recollected yet, but yet one does by instinct \& habit.- $1-5 m, 7-11 m, 13-$ $15 \mathrm{~m} / \mathrm{w}$ \& indeed the more she does the better $w b$ all this is the reverse of intellectual power 192 19-24m $1948-17 m 195$ 24-28m 197 4-6m $19921-24 m / w$ no consciousness介4-1m 201 19-22m $20225 m 203$ 1-14m 207 22-27m 208 4-10m 213 4m/x 214 11-13m 215 13-16m 216 19-22m 219 1-5m/2u "tremulous convulsions" 242 22-25m 253 1- $2 m, 4-7 \mathrm{~m} / \mathrm{w}$ tastes hereditary do $16-20 \mathrm{~m} 25515-18 \mathrm{~m} / \mathrm{w}$ * tooth on edge sound, when earth is crushed between teeth - hear similar sound 2654 $8 m 26713-20 m / 18-19 u$ "sensation" $/ w \bullet$ I think this is $22-23 m / w$ only by drying the mouth 268 20-23m, 24-27m, 28-31m 269 21-25m/22$27 w$ is there or not a muscular contrivance to expel this 27016 - $23 \mathrm{~m} 27316 \mathrm{~m} 339 \Uparrow 7 \mathrm{~m} 356$ $14-17 \mathrm{~m} / \mathrm{w}$ Vide $3593 \mathrm{~m} 38719 \mathrm{~m} 4097 \mathrm{~m} / x{ }_{\mathrm{c}}$ $42112 m * 4227-10 m, 14-16 m / 14 u$ "exertion

DARWIN，E．，ZOONOMIA
of＂，24－25m 423 15－19m，29－31m，32m／w over 424 25－32m $4257-9 m, 11-24 m, 27-31 m 427$ wt yawning．streching fidgets（see Dr Holland）convulsions affecting the voluntary muscles－muscles of jaw，perhaps soonest brought into action \＆likewise perhaps connected by associations with \＆digestive powers \＆therefore soonest gives relief．7－ $9 m / w$ hence yawning attacks these muscles $43124 m / x 4335 m / x$（Helvetius） $4359 m / x$ $4559 m / x 456 \quad 15 m / x \nless 0 \quad 483 \quad 26-28 m / 27 u$ ＂polygonum viviparum＂ 487 10－19m 500 22－ $24 m /[\ldots] / 23 u$＂lactescent women＂ 501 1－5［．．．］， $3 w$ 〈not CD〉 502 13－26m，26－31m／w Bell Bridgewater Treatise argues against this 503 8－16m，25－28m 504 6－16m／12－16＂．．．＂／11－13w Lamarck！！ $5051-3 m, 5-7 m, 7-11 m, 12-18 m$ 506 wt Sir Charles Bell perfectly confutes all this $7-13 m / 7-23 w$ May be quoted，to show no more wonderful．－if merely proved a law of nature we are accustomed to the former．I attempt to show means－which is impossible in the one animal $5077-10 m, 10$ $11 \mathrm{~m} / \mathrm{x} / \mathrm{w}$ variation $19 u$＂learned＂$/ 19-20 w$ what an assumption！！！ 508 11－32m $5094 a$ ＂generation＂／wt aided by endless attempts，of which only few are preserved．－Vide Hume＇s works 1－4m（Hume），17－24m 510 27－32m／w This prob the Dr $5111-8 m 51215-16 w$ sex of Bees changed by food 514 3－11m 517 8－14m
vol．2， $404-8 m / 5 w\langle C D ?\rangle 431-6 m 4612-15 m$ 145 1－19w 〈not CD〉 352 17－31m 573 2u／w〈not CD

DARWIN，Robert Waring New experiments on the ocular spectra of light and colours London；J．Nichols； 1786 ［CUL］

DARWIN，Robert Waring Principia botanica； or，a concise and easy introduction to the sexual botany of Linnaeus London；Longman，Hurst， Rees \＆Orme； 1810 ［CUL，pre－B］

DAUBENY，Charles A description of active and extinct volcanos London；W．Phillips； 1826 ［Down，pre－B］
geo，mi，ti
94 21－25m／22－23w A 95 6－12m＊／8－9w A 104 30wぬ Miocene 105 15－17m，23－31m 170 15－ $16 w\langle n o t ~ C D\rangle 171$ 13－14w 〈not CD〉 180 18－ $27 w$ Covington copy $28-39 m, 28-34 m, 30-39 m /$ ＂．．．＂／36－37u＂frequent I matrix＂ 188 11－15m／w A 265 13－22m $2667^{\prime \prime} \ldots \prime$＂，11－24ww This is correct is taken from chart of the Azores by Reade 13－24m（von Buch），20c／w \neq ，fig．w fathoms 24＂．．．＂ 267 zb 270 27－33m，33m 272 11－12m／11u＂Madagascar＂ 273 1－2m 312 9－
$16 m 313$ 20－26m 323 16－17m／w Carteret in new Britain V．Krusens－ 324 wt New Britain Carteret saw spouting 1－4m， $5 u$＂Ahryn＂， $7 u$ ＂Tanna＂ 325 12－19m 326 1－6m 334 18－27m 343 27－30m 350 1－35m 351 1－11m 361 21－ $25^{*} / 25 m, 27-35 m / 34 w \notin, w b$＊Do either of these periods include \＆Caracas \＆Quito case of connect＞ $3869-11 \mathrm{~m} / 10 u$＂pearly lustre＂， $26-28 \mathrm{~m}, 35-37 \mathrm{~m} / 35 \mathrm{u}$＂nepheline I leucite＂ 387 18－27m，26－33m 388 1－6m 401 1－ $12 \mathrm{~m} / 2-5 w *$ Not in shifting sands 402 10－35m

DAUBRÉE，M．Études et expériences synth－ étiques sur la métamorphisme et sur la form－ ation des roches cristallines Paris；Imprimerie Impériale； 1860 ［Down，I］\wp

DAWKINS，William Boyd Cave hunting London；Macmillan \＆Co．； 1874 ［Down］ wd

NB Used； 77 Domestic Anims；78；137； 382 77 25－31m 78 2－8m 137 2－13m，15－21m 382 25－29m

DAWSON，James Australian aborigines Melbourne；George Robertson； 1881 ［Down， I］
beh， 00
NB White louse beaten out by black louse－ p． 13
p． 90 Change in Habits in Opossum
13 1－5m 90 25－33m
\wp
DAWSON，John William The fossil plants of the Devonian and Upper Silurian formations of Canada Montreal；Dawson Bros．；London； Sampson，Low，Son \＆Marston； 1871 ［CUL， I］
74 21－32m 77 8－13m 80 7－10m，22－26m
DEFRANCE，M．Tableau des corps organisés fossiles Paris；F．G．Levrault； 1824 ［Down，I by F．W．H．］\wp

DE LA BECHE，Henry Thomas Researches in theoretical geology London；Charles Knight； 1834 ［CUL，on B］
che，geo，mi， t ，ve
NB1 Every mountain chain may be considered as the ruin of an earthquake aided or obliterated by time！It is vain to bring first \＆other causes to bear they are comparatively insignificant．－
－192；198；219；242；252；293；297；
greenstones traversing granites serious drawback -
NB2 - 12 Spec Grav of Limestone-; 13 on Sulphur; 34; 43; 44; 53; 58; 95; 97 to 100 to 109 \&c. Cleavage; 128; 131 When considering M. chain; 141 Hence value of unitary System enters; 147; 151; 177 futility of lake theory well shown
$1230-34 m 1324-30 m 141-13 m 3111-12 w$ of silver $345-9 m 431-12 m$, $\uparrow 5 m / w b$ If so absence of ice in Arctic region proof of heat of bottom $441-4 m 3330-34 m 587-17 m / 12-$ 16 w I cannot understand this $15-22 \mathrm{~m} / 17-18 \mathrm{w}$ No 19-33m/xa/wbre Study Mr Palmer's papers in Royal Transactions 60 19-20m, wb Something wrong because breakes from sea and swell nearly similar $611-31 m a 1$ 1$33 m 63$ 2-12m*, 15-27m 74a $15 m$ 74b $4 m, 9 m, 10 m 7511-12 m, 12-14 m 93$ wt Iquique $1-13 \mathrm{~m} 95 \mathrm{wt}$ with respect to obsidian $3-30 m \quad 965-27 m \quad 97$ 19-28m/25u "subsequently"/?? e_{0} wb whilst soft because lime blends with clay $w b$ lquique $w b$ anhydrite $9914-22 m *$, wbs Fissure seen otherO to determine convulsing action.- Hence veins of quartz in many rocks. $10013-33 \mathrm{~m} / 32-33 \mathrm{~m}$, wbes Hollow concretion $10112-17 \mathrm{~m} 1033-8 m$ 104 2-15m 105 14-33m $\boldsymbol{c}_{109} 109-25 m 11122-$ $30 m 128$ wt Falkland Isd 1-8m $1296-22 m$, 12-15z 130 24-26m $1314-11 m 13210-31 m$ 136 11-16m 141 17-26m 147 13-25m 149 28$34 m 150$ wt Hence carbon removed from primary rocks - hence hydrogen \& nitrogen 151 wt X Thence all the bituminous rocks, layers of shales, because carbonic acid decomposed water $10-26 m 16015-28 m 177$ 6-24m, wb applicable to Terraces 192 26-33m 193 1-33m 194 1-15m, wb formed by beaches 198 wt as long as stream rapid form gorge straight (why?) then zigzag, widen it, but could not produce sloping tub $12 w$ V. p200 200 11-18m, 19-21m, wb hence gorge straight 212 12-31m 213 1-15m 219 10-31m 220 11-19m 221 13-32m 242 24$28 \mathrm{~m} 2431-9 m 252 w t{ }^{2} 2$ not too strong. $-5-23 m /!!$, wbow how can the part above the sea determine the action, submarine part may do so.- 267 16-28m 292 wb Mem. carbonic Acid in Springs- 293 12$19 m, 33 u /{ }^{\prime \prime} . . . ", w b$ Insist upon thickness in Cordillera however difficult to understand 297 2-17m 407 23-27m*/24a凶 "Voluta" O/

DE LA BECHE, Henry Thomas A selection of the geological memoirs contained in the Annals of Mines London; William Phillips; 1824 [Down, pre-B] \wp

DELAGE, Yves Contribution à l'étude de l'appareil circulatoire des Crustacés édriophthalmes marins Paris; A. Hennuyer; 1881 [Down, I] \wp

DELAMER, Eugene Sebastian (Edmund Saul DIXON) Pigeons and rabbits in their wild, domestic and captive states London; G. Routledge \& Co.; 1854 [CUL]
br, che, geo, 00, v
NB1 Carbons; Salt \& Old Mortar \& gravel to floor
Runt; Turbit?; Almond-Tumbler; Carrier; Fantail; Powter
NB2 p.1; p.2; p.22; p.38; p.51; p.53; p.66; p.68; p.69; p.70; p.72; p.75; p.77; p.82; p.95; p. 114 good one Rabbit outbred other; p.133; 139

SB $\square \beta$

95 Rabbits probably in Caesars time in Britain
114 If Warren stocked with Grey \& Silver the latter will soon be bred out (on var. beating another Ch. 5)
141 Rabbit with longest ears known 22 inches and this length of ear great point.136 do not breed true.

1 19-23m 2 20-35m/22u "Columella" 3 29$33 m 14 \mathrm{zb} 1723-25 \mathrm{~m} 1827 \mathrm{~m}$, 28m, 31-32m, $35 m$, 37 m 19 3-4m 22 10-14m 30 14-16m 32 34-35m $337 \mathrm{~m}, 35 \mathrm{~m} / \mathrm{u}$ "twenty inches" $342-$ $15 m, 34-39 m$, $w b$ Brick next Pan 35 22-23m, 30-32m 36 12-14m 38 12-17m, 25-27m, 27$28 m 4123 m, 37-38 m / 38 u$ "bay salt" $4226-$ $28 \mathrm{~m} / 27 \mathrm{u}$ "cumin" 43 12-14m, 15-16m/16u "old mortar" 44 12-14m, 30-31m 46 9-11m 51 28$33 m 5324-31 m$, $w b$ marked to end 54 38$39 m 562-7 m, 8-12 m, 21-23 m / 21 u$ "pair" $22 u$ "twolmore", 34-39m $578 m, 26-29 m, 32-34 m$ 58 9-11m 59 27-29m $6122-24 m 63$ 16-19m, 21-39m 65 1-4m $668-16 m, 27-29 m 67$ 29$36 m 68$ 2-12m, 25-35m 69 3-11m, 33-37m 70 15-20m, 34-38m 71 25-31m 72 30-35m 75 17$25 m$ facing 76 fig.w fig. 5 Copied from Mr Delamer 77 28-39m 81 14-15m 82 7-10m 95 12-22m 114 9-15m/10-11Q $13320-39 \mathrm{~m} / \rightarrow$ 134 15-22m/18u "Angora rabbits" 135 14-18m 136 6-23m, 9-18m, 12-15m 137 2-6m, 13$17 \mathrm{~m}, 33-36 \mathrm{~m} 13933-35 \mathrm{~m} / 33$?/u "seveteen 1 ear", wb See next Page $1415 m, 32-33 Q 凶$, 36-39m, 36-39m

DELGADO, Joaquim Filippe Nery da Encarnação Sobre a existencia do terreno siluriano no baixo alemtejo Lisboa; Academia Real das Sciencias; 1876 [Down, I] \wp

DELPINO，Federico Ulteriori osservazioni sulla dicogamia nel regno vegetale Milano； Giuseppe Bernardoni；1868－1874［CUL，S］ $\mathrm{cc}, \mathrm{ct}, \mathrm{fg}, \mathrm{mhp}, 00, \mathrm{phy}, \mathrm{sx}, \mathrm{t}, \mathrm{tm}$

NB1
p． 16 Utricularia \langle rest 0 〉
91 Goodenia
170 Passiflora princeps
p177 In Liguria 1／3000 of Ophrys araneifera only get seed；a good many more near Florence
188 Marcgraviacea
224 Ceropegia
62 George \Leftrightarrow Has seen Bees，not Bombus visit flower of Trifolium．－
NB2 On Anemophilous Flowers（very full \＆ good）
NB3 337； 342 Pontederia trimorphic
Cephalantera Grandiflora－p149， 150 Orchids
154 －male more conspicuous \＆visited first
$123+124$ Ophrys oo
（here also Pt 2）
orchids p61－62；p60 Laburnum
L．MortigonO
NB4 Arumi p18
SB ；${ }^{\text {P }}$
p61 Great Laburnum flower
62 Serapias perhaps gnawed
63 Calyx commestible long discussion on
121 says Sprengel right \＆M．\＆I wrong about nectary \＆lower flower only visited False drops of nectar．
149 Cephalantera ensifolia
150 Waechter－news of explosion of Neottia
See Part I on Ophrys
〈over〉
a；＊
Much on Orchids in Delpino Part II 211f Observazioni

Part 1， 6 4－9m 14 23－26m 15 20－22m 16 2c／ $a \notin, 30-35 m 22$ 11－14m 29 29－32m $3314 u / w \tau$ 35 11－14m 51 19－21m 52 2－7m 59 23－29m 62 1－9m 75 24－26m $11822-23 m 1195-8 m$ ，35m 121 27－31m 122 1－2m $14423-27 m$ ，29－35m 148 7－10m 149 17－19m 158 15－17m 173 3－5m 176 11－13m 177 16－24m 188 6－8m，15－16m $1987-8 u / w \tau$ ， $10 u / w \tau 202$ 4－6m 229 26－29m 258 31－33m

Part 2，fasc．1， 22 7－9m 24 13－15m 25 15－ $18 m, 23-25 m 371-6 m$ fasc．2，title page $w 21$ Ruppia 2459 31－35w cells 60 32－35m 61 29－ $32 m$（Fritz Müller）／29－35w Kind of powder attraction to visit loose cells $627-10 \mathrm{~m}, 23-$ $27 m 634-17 m$（CD），20m，22－31w Calyx \＆

Petals attractive to be gnawed $1216-34 m / w$ thinks H ．Muller \＆self wrong \＆Spengel right about false nectary－says only first flowers visited \＆then bees find out mistake－and that only few pods get $1222-16 w$ says cold accounts for bursting of Epidermia cells within the nectary $30-31 m$ ，wb Other plants with false＊\＆true nectar－pollen both on same plant．Mem How long it is before nectar secretes 123 1－29w Despises idea that nectar an excretion \＆supposes false drops are rare excretion．－（Mem．common Laurel \＆\＆\＆Vicia．－wb Shining swelling like nectar \＆drops of true nectar on same plant． －thus explains case of Ophrys－Liperzia a case－I shall believe when insects seem to try \＆suck．＊ 124 22－27m 149 9－42m／9－ 39［．．．］／w C．ensifolia 4 pollen－masses．－Viscid matter from stigma probably besmears backs of insects \＆thus pollen is carried $1501 u$ ＂Periplocea＂ $11-4 \mathrm{~m} / \mathrm{w}$ like Orchids 13－40w W apparently did not know of CK Spengel，but was well aware of necessity of insects for fert．of Orchids \＆describes well the fert．of Neottia，viz．explosion of－ $15410-11 \mathrm{~m} / \mathrm{w}$ Read $25-32 m$ ，$w b$ it explains male fl more conspicuous than female fl so as male to be visited first 155 28－34m（Buchan White， Spengel） 158 34］ 210 13c $\# 337$ wt Dimorphic one protogynous \＆proterandrous $2-3 \mathrm{~m} /[338$ 30－35m 342 2－4m 343 15m／w Read $27-28 m /$ 28w Read 344 1－7m，21－24m，24－29m／25－26w Read 346 11m，12－14m／15w Read 347 19m／w Read 348 8m，10m／w Read 14－15m $34925 m /$ w Read 351 31m

DENTON，William Is Darwin right？ Wellesley，Mass．；Denton； 1881 ［Down］

DESCRIPTIVE AND ILLUSTRATED CATA－ LOGUE of the fossil organic remains of Mammalia and Aves contained in the Museum of the Royal College of England London； Richard \＆John E．Taylor； 1845 ［Down，I by President and Council］

DESMAREST，Anselm Gaëtan Mammalogie ou description des espèces des Mammifères Paris；Veuve Agasse； 1820 ［CUL，pre－B］
beh，hy，phy，rd，sp，ss，sx，sy，tm，v，y
NB（• up to＂四＂）
p481；p840 to；p．499；434； 437
Dog p190；Cats p233x－Tortoiseshell； 391
414 Hybrid Zebra \＆Horse
499 Ox
p347 Rabbit white star on forehead Important So silver grey has this when
young on head－I think Fancy rabbits have star on forehead No Brent says not particularly often
439 Cervus of Marianne Isld
p193＜he means 198）Canis jubatus with curl of Hair along back female not differ from male Sexual selection
p392 Babyroussa female with lower canines smaller than male．－Wd Bartlett kn any waits〈ie weights〉 \＆body proportions of animal SB $\square \beta$
190 Classification of Dogs－nothing particular，but I daresay good
233 Tortoise－shell cats all female
347 Young Hares always white star on Forehead（Silver Grey Rabbit has this）
391 Mongolia Pigs when young are striped
414 Hybrid Zebra \＆Ass band on legs
421 Corsican Pony small
430 Cervus elaphus smaller than common form
437 Cervus Marianus bad specimen－ Sumatra species very close to
480 Goats，Horns absent in female of some Races－Horns differ in sexes \＆abort in some vars，either in one or both sexes
488 Wild Mouflon．Female either with small Horns or destitute of do
500 Little Zebra，Horns rudimentary per－ iodically cast（like Deer Horns）
Do not mow but grunt
504 S．American cattle several varieties！ Perhaps from different stock introduced

47 wt Primates to p． 107 61a 17－19m，18－ 20 m 61b $20 u 凶_{0} \pm, 48-50 \mathrm{~m}$ 65a $42 u \leftrightarrow, 53-$ 54u＂sommet I crête＂65b 1－2u＂parties I chair＂，4－16m／4u＂Sensiblement I petite＂／8－9u ＂crêtes I saillantes＂ $12-13 u$＂canines petites＂／ $12 \mathrm{~m} / \mathrm{w}$ Canines $16-17 u$＂là locciput＂，29－30m／ u＂indice \mid vertex＂$/ w$ yet male 66b 6－15m，16－ $18 w$ see p65 20－24m／21u＂parltouffus＂／ $22 u \leftrightarrow 67 \mathrm{a}$ 21－23m 67b 14－15u＂dont 1 cornet＂／w ear 45－49！，50－51u＂poils I haut＂68a 1－4m，1－3m／2u 68b 1－2m 69a 38－41m 69b $35-36 \mathrm{~m}, 36-37 \mathrm{~m}$ 70b $34-35 \mathrm{~m}, 44-51 \mathrm{~m} / 44-50 \mathrm{~m}$ 71b 19－30m／20－21ues＂par 1 pelage＂75a $z t, 3 m$ ， 24－27m 75b 4－8m，17－18m 79b 28－35m． 80b $35-37 \mathrm{~m}$ 98a 21－29m 100b $10-12 \mathrm{~m}$ 101a 1－6m 107b 34－36m 189b 16－18m 191a wt xxx 195；xx 292 191b 37－38w Greyhound 192a 16－17m 193b 17－20m／18u＂Chien courant＂， 38－42m／39ud 194a 24－27m 195a 30－31m／30u＾ 195b $8-9 m / 8 u \uparrow / 8-9 u \uparrow, 34-41 m / 36 u \uparrow, 46-50 m$ 217b $28-30 \mathrm{~m}$ 219a $50-52 \mathrm{~m} \nless \mathrm{z}, ~ z b$ 223a 37－ $42 m$ 233a $3-5 m, 22-23 m, 43-49 m, 50-51 m$ 233b $23-24 m, 30-31 m, 37-38 m, 50-53 m, 55-$ $57 m$ 241b $3-7 m$ 241a $25 u$＂mâle adulte＂，

27－28u＂Carinél moyenne＂243a 17u＂im－ proprement｜blanc＂，20－28m，20－23u土，27u ＂marron｜noir＂ 29 ＂restelest＂， $33 u$＂bi－ furcation｜les＂，51－52m 246b 15－19m 249b 46－ 51m 250b 42－44ma／43－44m 253a 9－11m 256b 46－47m 267b 24－27m 304b 35－38m 347b 2－ $4 \mathrm{~m} / \mathrm{w}$ is this not common character of Rabbits？349a 49－52m 349b $55 u$＂Mais। terriers＂350b $4 u$＂ne｜terre＂，46u＂queuel dessus＂351a 43－44u＂uneljoues＂351b $8 u$ ＂nelterriers＂， 37 u＂unlsous＂352a $17 u$＂nel terriers＂387b 48－50m 390a $15-18 \mathrm{~m}$ ，23－24u ＂canines Idéfences＂391a 31－33m／w Ro Q凶， $44-46 m / 44 u$＂oreilles＂， $44 u$＂très pointues＂ 391b $1 u$＂Siam＂， $2 u$＂Guinée＂410b 17－19m 412a $23-24 m$ 414a $12-22 m / 15 u$＂la 1 membres＂ 421b 14－19m 425a 32－36m／33－34Q® 427b 5ucs 429b $15-17 m$ 433a $46-48 m$ 434b 38－40m， 44－50m 435a $40-47 \mathrm{~m}$ 437a 3－6m，12－13m，19－ $25 \mathrm{~m} / 20 u$＂envoyél Sumatra＂／ $21 u$＂àl voisine＂ 438b $53-55 m$ 445a $22-27 \mathrm{~m} / 23 \mathrm{w}$ Horns $36-38 \mathrm{~m}$ 450a $22-25 m$ 452a $37-38 \mathrm{~m} / \mathrm{w}$ female hornless 453a $10-13 m / w$ hornless 453b $53 m$ 454a 42－43m／43u＂Corine＂455a 27－28u＂brosses pouce＂， $38 u$＂brossesllarmiers＂，$\quad 37-39 \mathrm{~m} / \mathrm{w}$ Horns smaller 455b 31u＂celles｜minces＂｜w Horns smaller $32 u$＂les I corine＂$/ w 454$ 457b $\quad 28-30 m / 29 u \quad$＂dans 1 seulement＂$/ w 17$ species 466b $28-33 \mathrm{~m} / 30 u$＂dans 1 sexes＂$/ w 2$ species 468a 30－34m，44－45u＂existant 1 seulement＂470a 3－7m／4u＂couleur I gén－ éralement＂$/ w$ Hornless 470b $30-34 \mathrm{~m} / 32-$ $33 u \leftrightarrow / w$ Hornless 471a $3-4 u / m / w 1$ species 471b 12－13m，41－42u＂quelquefois \mid femelles＂ 473b 18－19u＂Cornes Isexes＂476a 54－55m／w Hornless smaller 477b $42-44 m$ 480a $45-47 \mathrm{~m}$ 481a $32-34 m \quad 482 b \quad 34-37 m / 34-35 u$＂les 1 uniformes＂483a 31－35m，47－50m／48u＂qu＇en l étant＂，$w b \times$ differ in sexes \＆abortive in some vars．483b $17 u$＂Point Itemps＂485a 12－ $15 m, 23-24 m 485 \mathrm{~b} w b 10$ varieties in world 487a 43－46m 487b 33－37m／34－35u＂des 1 mâles＂488b 25－27m 491a 8－21m，45－48m，wb 8 vars with subvars．no particular account of French vars．492a 3－7m 493a $13-17 m$ 498b 30－32m 499b 19－21m，27－29m 500a $10-12 \mathrm{~m}$ ， $12-14 m, 24-26 m, 30-31 m, 33-40 \mathrm{~m}$ 503a $2 w$ Holland $w b 16$ French vars of which one said to be introduced from Holland－some of these vars．have sub－vars．and there is appearance of truth about whole account． 503b 42－47m 504b 3－12m，17－20m，29－31m， 41－45m 505a 20－26m

DEVAY，Francis $D u$ danger des mariages consanguins 2nd edn；Paris；Victor Masson； 1862 ［CUL］
beh，br，he，mn，pat， t, v

DEVAY
NB p97 Close interbreeding cause of mutants？
p103 Albinism very unsightly inheritance
p116 correlation of Deafs \＆Blinds－Cats see Boudin p125 Deaf－mutes
p141 Ohio laws against marriage of cousins Q ${ }_{0}$
97 24－28m／25－26Q4，wb Fish \＆Dogs are $1037-8 m / 8 u$ ，11－18m 117 26－28m 119 17－20m $12521-24 m / 7-24 w$ if true cause of variability 141 21－26m／23Q 142 3－11m

A DICTIONARY of chemistry compiled by A． Ure；London；Thomas Tegg； 1823 ［CUL，pre－ B，S］
che
NB1
Mem 1880 Assuming our well water to contain 15 gr of Hard＊Matter per gallon （some water contains 20）it would require 20 gr （say 21gr）or 1 sample to gallon to precipitate the Lime－It is said that oxalic acid is poisonous when 2 or 3 drachms（ie 60×2 or 3 ）are taken．
NB2
ix 28－29u＂Evaporation Idew＂xi 5－9m 74a 10c ＂by＂／10－59w carb of amm of shops carb A 55 Amm 30 Water 15 75a wt Nitric acid 731／ $3262 / 3$ nitrogen $8-46 w$ Org carb of am 56 carbon \＆ 43 ammonia $w b$ Amm 82 nitrogen 17.6 hydrogen 75b $49 u \leftrightarrow 80 \mathrm{a} 59 u "=4.5^{\prime \prime}$ 157a 39 u＂17．64＂385b $9 \mathrm{~m} / \mathrm{u}$＂ 16° colder＂386a 44－46m 386b 43－46m 387a 25－39w swandown best substance 387b 36－39m，40u＂Charcoall rust＂，42－43m 578 wtcc 582a wt Ammon．a．－ Chrom．a $10 \mathrm{~m} \psi, 11 \mathrm{~m}, 12 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m}, 16 \mathrm{~m}$ ， $17 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 24 \mathrm{~m}$ ， $25 \mathrm{~m}, 27 \mathrm{~m}$ • 28 m • 584a $2-26 m, 45-50 \mathrm{~m}$ 587a $26-29 w / 35-36 w / 52 w / 57-58 w / 64 w$ 〈weights of meteors \rangle 587b $3 w / 4 w / 7 w / 19-20 \mathrm{~m} / \mathrm{w} / 24-25 w /$ $34-35 w / 37-38 w / 41 w / 45 w / 51 w / 55 w / 60 w$〈weights of meteors〉 588a 4－5w／12w／16－17w $22 w / 31 w / 36 w / 54 w$ 〈weights of meteors〉 806a 17－18wcc， $19 \mathrm{~m}, 30 \mathrm{~m}, 37 \mathrm{~m}$ 806b 18 m 807 zb $810 w b 100=180811$ table divided by red and blue vertical lines，$w b x / x / x / x \nless 0144-10 w c c$

A DICTIONARY of chemistry compiled by H ． Watts， 5 vols．\＆suppl．；2nd edn；London； Longmans，Green \＆Co．；1871－1872［Down］ che，phy，tm
vol．1， 118 33wcc 125 wt Morphine 591 5－7m 727 28－30m／29u＂1／1000＂ 781 15－26m 866 41－ $46 m, 54-62 m 92236 m$
vol．2， 21 56－64m 639 11－13w Albumin \＆

Oxygen $60-64 m / 62 u$＂homogeneous substance＂ $64030-37 \mathrm{~m} / 32-33 u \quad$＂albumin 1 composition＂ 643 47－49m 829 15－17m（Liebig）
vol．3， $72128-33 m, 55-60 m$
vol．4， $19957-60 \mathrm{~m} / 60 u$＂and lacids＂$/ w$ I used best of common $7303-7 m$
vol．5， $34937-40 \mathrm{~m} 95016-33 w$ the products of organic which have played their part in the animal organisation 20－21u＂thel oxidation＂ 1016 1－6m，18－21m 1019 5－8m 1020 65－66m 1021 1－7m supplement， 974 4－13m

A DICTIONARY of the English language compiled by S．Johnson， 2 vols．；4th edn； London；W．Strahan； 1770 ［Down，S of Josiah Wedgwood］

DICTIONARY of the Spanish and English languages compiled by Newman \＆Barrett； 5th edn，vol．1，Spanish－English；London； Longman，Rees \＆Co．； 1831 ［CUL，pre－B］

NB rebotar to rivet；chiquechaque，a Sawyer 75 12－17m，60－62w rummage 84 wt nasty， narky 446 30－32m

DICTIONNAIRE classique d＇histoire naturelle vols．1－17；Paris；Rey \＆Gravier；1822－1831 ［Down，pre－B，on B，S in vol．1］
beh，gd，sx，tm，v
vol．1，17b 17－22m／19－20u＂Cellelanalogue＂ 323a $52 u$＂Aurifera＂，wb no Gymnoflora．323b wt 1815． $3 u$＂Lepas＂，4－9m 324a 16 m ， 20 m ， $28 m, 32 m$
vol．2，145a $11-15 \mathrm{~m} / 15 u$＂Balanus＂146a 45－ 48m 451a 5－22m，13－15m，23－25m
vol． 3 SB Article Chameau； 450 Nothing； Balancement；Bones \＆Hair correlation；But see the references to＂Anatomie＂\＆＂Armes＂ 97a 10－14m 98a 9－13m／10u＂bifurcus＂376b $39 u$＂aul mai＂，41－43m，wb males an interval of eight mnths 447b 18－21m 448b 28－33m 450a 19－21m，21－26m／w In BromptonO Dog reverse 49－52m，50－54m 451a 52－54m 451b 6－9m，24u＂deux 1 garrot＂452b 20－23m，wb 3 varieties 454a 53 u＂Don 1 Theran＂454b 27－ 29m，43－45m／43－44u＂une｜Alpaca＂，50－54m 455a 1－6m
vol．4，8a 18－24m（Cuvier）
vol． 5 SB 274 on Cyprinus； 277 on varieties of Gold Fish－
118a 14－16m，17－18m，24－25m，28－32m，34－ 41m，43－47m 261b 1－5m／3u↔ 262 1－5m 274a
$9 u$＂guère que＂274b 21－27m 275a 49－52m 276b 27－40m，47－54m 277a 2－10m，8－10m， $14 \mathrm{~m} / \mathrm{u}$＂une grosse＂， $20-43 \mathrm{~m} / 31-33 \mathrm{~m}$ 277b 18－ $20 m, 46-47 m$ 278a 3－5m，8－9m
vol． 7 SB 499．frog introduced from Mad－ agascar into Mauritius
120a $17-21 m, 47-49 m$ 120b $5-9 m$ 121b $28 u$ ＂quinzelqueue＂，35－39m／36w Ptel 122a 32－ $34 m / 32-33 u \leftrightarrow 122 b$ 15u＂une｜retardé＂／13－ 16m／Q 137a 24－25m 487a 26 ＂Greffe＂．w read 488a 24－29m 499b 46－54m
vol．8，274a $29-32 m, 31-34 m, 33-34 m, 36-$ $37 m$ 324a 17－18m 329b 23－24m 336a 30－54m 405a 29－31m， $34 \mathrm{~m} / \mathrm{u}$＂M．S．Ch．E．＂／wb Kol－ reuterts refers to these 405b $2-7 \mathrm{~m}, 26-28 w$ Potato，Dahlia $28-38 m / 29-39 m / 29 u$＂les espèces＂406a 7－17m，39－40m 406b 4－8m，8－ $21 \mathrm{~m}, ~ 43-47 \mathrm{~m} / 46 u$＂ovules \mid avortés＂， $52-54 \mathrm{~m}$ 407b $5-10 \mathrm{~m} / ? ? / 7 u$＂de structure＂ $467 \mathrm{~b} 8-12 \mathrm{~m} /$ w teeth like points
vol．9，150a 48－53m 151a 9－16m／9－16m 324a 36－41m 324b 11－25m 428a 25－26u＂secondel mâchoires＂
vol．10，121a 3－6m（Buffon），15－23m，30－34m／ 31？／32u＂entièrement＂121b 3－5w only colour 34－36m，37－38m 492a wt What direction did it arrive How many degrees of Longitude 30－ $32 m$ 569b 33－43m
vol．12，305a $43 u$＂clitandre＂，wb Preface 305b 23－24x，wb Preface 39－44m／w exp－ lanation of differn． $48 x / u$＂rétinacte＂， $50-54 \mathrm{~m} /$ 53？／u＂Belardia＂306a 18－21m，22－23u＂ill loge＂307a 14－21m 307b 16－19m，42－50m
vol． 13 NB Lesson； 419 Sea Elephant Penny Encycl \＆Vries； 402 Stemmatope F． Cuvier \＆GrattonO
361a 22－26m 361b 14－20m，21u＂plages＂， $22 u$ ＂entièrement découverte＂402b 40－43m 418a 45－54m／46－47u＂àlamours＂418b 1－5m，32－ 37w Polygamy 39－41m 419a 13－14m／u↔，25－ $28 m$ 610a 38－40m／38u＂Rana Pipa＂
vol．14，10a $25-27 m$（Lamarck）10b 48－51m 131b 29－30Q
vol．15，18b $30-31 u \leftrightarrow, 33-34 u$＂entièrement \mid verdâtre＂， 35 u＂roux＂， 36 u＂élevées＂
vol．16，195b $24-25 u \leftrightarrow 194 a 45 u \leftrightarrow 196 a 48 u$ ＂Tetrao lagopus＂vol． $17 \wp$

DICTIONNAIRE raisonée，étymologique，syn－ onymique et polyglotte des termes usités dans les sciences naturelles ed．A．J．L．Jourdan， 2 vols．； Paris；J．B．Baillière； 1834 ［CUL，on B］
vol．1，286a 45－49m／47－48u＂nom I Candolle＂， wb Coelosperms 286b 1－2m 342a $z b$

DICTIONNAIRE DES SCIENCES NATUR－ ELLES，Planches Paris；F．G．Levrault；1816－ 1830 ［CUL］
che，v
NB Vol with Conia 1818
Lépadiens w PL．115，fig．3．w \times（2）back of plate 2 same size as B tulips in Brown－2a good size for valve；all same size Balanides〈first plate〉 wt PL 116 m, fig．2．w I largish fig． $5 . w$ versicolor or Mitra colur．back of plate 1．－ size of B．suleatum in Brown 4．－size of B． perforatum in Brown Balanides 〈second plate） $w t$ PL $117 \notin$, fig．1．w 3d size fig．4．w 2d size

DILLWYN，Lewis Weston A descriptive catalogue of recent shells arranged according to the Linnean method with particular attention to the synonyms 2 vols．；London；John \＆Arthur Arch，Cornhill； 1817 ［CUL，pre－B］
gd，v
vol． 1 SB $\langle C D$ copies out detailed summary of distinguishing features of the following 35 shells：Chiton，Lepas，Pholas，Mya，Solen， Tellina，Cardium，Mactra，Donax，Venus， Spondylus，Chama，Arca，Ostrea，Anomia， Mytilus，Pinna，Argonauta，Nautilus，Conus， Cypraea，Bulla，Voluta，Buccinum，Strombus， Murex，Trochus，Turbo，Helix，Nerita，Haliotis， Patella，Dentalium，Serpula，Teredo）
〈untranscribed w：CD writes＂ B ＂，meaning ＂British＂）
$625 w 87 w 116 w, 20 w 121 w 1311 w 149 w$ not British $11 w$ not B 20w，21－22u ＂interstices＂， $23 \mathrm{w} 153 \mathrm{~m}, 4 \mathrm{~m} / u$＂communis＂$/ \mathrm{w}$ no $6 m, 17 w, 19 w(2) 37 w$ copied！ $40 u$＂and $f . " / w 167 w, 10-15 w(3)$ var of crenatus or balanoides $11 w, 17-19 m, 25 w, 30-36 w(4) \mathrm{B}$ ． punctatus？－Yes 37－38u＂substances 1 abundance＂ $176 u$＂Lepas borealis＂$|\rightarrow| w t \mathrm{~L}$ ． borealis $1 w, 4-8 w$ is this Ch．ChthamalusO $4-5 w(5) 19 w, 20 w(6) 28 u, 41-42 m / 41 w, 42 w$ $7181 m, 1-9 w$ can this be CranchiiO 16－ $18 w$ CranchiiO $29 u$＂narrow glove－like＂， $32 w$ （8） $35-36 w, 37-39 w=$ sulcatus $199 m / u{ }^{2}$＂p ． 101＂， $15 u$＂striatus 1 Brit＂$/ ? \AA_{0}, 21-22 \mathrm{~m} / 21 u$ ＂Cape｜Bruguiere＂， $29 w$ not recognisable 20 20－24w amphitrite？var cupidusO $w b$ not to be recognised $217-15 c / 6-10 w$ not to be recognized $19-22 w$ B．amphitrite？or idoneus？ $32 \mathrm{~m} / 31-34 \mathrm{~m} / \mathrm{w}$ this is curious 22 $11-14 w$ var of tint $27 w *, 28-32 w$ var of tint 38w，wb $924 z t, 1-8 m, 21 w 25$ 18－20！！ 2624 25？／u＂Kurile Islands＂ 27 12w 28 25－27w I $27 m, 27-36 m, 28 m / w 1806$ ？30－31w 1815？ 29

DILLWYN
$24 w 305 w, 27 w, 34 m 31$ 11w, 13u "Montagu test"|we 1803 22w, 22-23w of Lamarck 25-26u "Ellis 1557 " 32 3-5w var 11w 33 10w Lithotrya, $12-14 m / 13 u$ " p. 197", 25w, 30u "Seba"/28-30w 1734-65 29m/w 1815 30a "Poli." 1791 33u "membranacea"/w 180835 $7 w 3640 w 381 w, 6 u$ "striatus", $26 w 403 w 41$ $10 w$ not $\mathrm{B} 14 w$ not $\mathrm{B} 17 w 4216 w, 38 w 45$ $24 w, 26 u$ "distorta" $/ w$ Ligula $36 w 468 w, 21 w$, $30 w 473 w, 16 w, 20 u$ "Ligula prismatica", 29w, $32 u$ "Ligula substriata" 49 19w, 22u "Mya pictorum" 50 25w, 29w Mya ovalis 52 16w 55 $1 w, 17 w 5711 w 5829 w, 41 w 5932 w 607 w$, $22 w 6424 w 656 w 6930 w 7026 w 7724 w 79$ $1-2 w, 5 u$ "Solen vespertinus" $8125 w, 28 w$ Tenuis 86 10w, 22-23w Pandora inequivalvis $8933 w 90$ 10w, $14 u$ "Tellina Laskeyi", $41 w 91$ $11 u$ "Tellina inaequistriata", $23 w, 29 u$ "Tellina squalida", $41 w 9230 w 9425 w 9512 w 968 w$, $13 u$ "Tellina polygona", $37 w 991 w, 18 w, 39 w$ $10015 w, 38 w 1012 u$ "Tellina solidula", 21w 102 17w, 23u "Cardium discors" 103 27w, 33u "Cardium arcuatum" 104 10w, 25u "Cyclas cornea", 41w $1055-6 w$ Cyclas lacustrus $15 w$, $18 w$ Cyclas amnica $11327 w 11424 w, 40 w$ $1165 w 12312 w 12719 w 13030 w 1314 w$, $16 w, 30 w 1383 w, 8 u$ "Cardium" $/ w$ Edentula 304 5w, 12u "Mya Pholedia"

DIPPEL, Leopold Das Microskop und seine Anwendung 2nd part; Braunschweig; F. Vieweg und Sohn; 1872 [Down]

DIXIE, Florence Across Patagonia London; Richard Batty; 1880 [CUL, I]

DIXON, Edmund Saul The dovecote and the aviary London; John Murray; 1851 [CUL] af, beh, cr, cs, phy, sl, sp, t, tm, v, wd

NB1 Read Willughby \& Aldovrandi Latham NB2 Columella 8/8 Ch.; \& Pliny L10.53; \& Varro 1X/2; \& Aelian B3/15 Greek
Read Read Aldovrandi in Royal Soc Willughby in Royal Soc translated by Ray
Read Latham Royal Soc.- Sloane Birds of Jamaica not in Royal.- Brisson Aves p437 Royal 1760
Read - Ray; Frisch some German Book mentioned by Riedel
Read - Albin Royal p428 1731-38 p57-18 days - Cocks on nest at 2 oclock SB1 Mr Dixon
How Carrier taught to cross the sea.p.165, p166 rather hard to accuse of Atheism because created - worthy of quoting - are you not open to same on account of feathered pigeon legs. - or even
more or less feet - Can you show that you p. 275 do not in this exalt "the idol nature in an

Turbit p77 wd be good to get.
Linn Syst. Nat (my copy) vol.2.769. vars of Pigeon. Read
〈over〉 p.6; p. 11 to 184; p.237; p.247; p. 428
SB2 1β
14 Pigeons feral in Norfolk Isid Qao
88 Case of Phas. colchicus \& versicolor in Q. Review 1850 - cross between the two Pavos Qus
97 Some crosses Runt, Fan-tail \& Nuns p110 Q
155 Blue Rocks do not like other Pigeons (Ch. 6/. p. 156 Q
247 Guans very tame, but breed slowly 428 Every Goose domesticable

6 10-12m, 26-32m 7 1-3m, 7-11m 11 22-27m $1231-33 m 136-8 m 147-11 m, 20-22 m / \mathrm{Q} 15$ 26-32m 16 11-14m 17 1-3m, 8-11m, 17-20m, 28-30m 18 22-25m $2020-22 m 27$ 25-27m 33 21-24m $5426-28 m / 27 u$ "fivelold" 55 1- $2 m 57$ $5-10 m, 12-13 m 583-5 m / 3 u$ "eighteen days" 64 4-8m/6-7u "These leye", $10-12 \mathrm{~m} 7013-14 \mathrm{~m} /$ $13 u$ "It $\mid a$ " $114 u$ "ever become" 71 1-3m 72 21$23 m 743-6 m / 1-15 w$ no argument of what wd take place by caging $9-12 m, 14-16 m, 21-$ $26 \mathrm{~m} / 17-27 \mathrm{w}$ there is now little object in selecting new slight vars. $761-13 w$ even if we admit several species; these must have altered. $29-32 \mathrm{~m} / 31 \mathrm{w}$ no $771-4 m, 13-16 m$, 18-20m 79 20-22m, 26-27u "Short-faced"/? 80 $27 u$ "more" $24-27 m / w$ Geology!! $8123-26 m$, 28-30m $8215 u$ "the lbe" "1637", 17u^/18ua/ $19 u$ "Persian \mid Turkish", $19 u$ "not" $\mid 17-24 w$ yet never feral 83 13-15u/14-15m $8510 w 711 w$ $812 w 913 w 1014 w 1115 w 12-\mathrm{p} 12087$ 10-14m, 28-33m 88 2-6m, 9-12m, 17-20m/Q* (Blyth), 28-32m 89 5-6m, 10-17m, 19u "Willughby" $/ w$ Date $22-23 \mathrm{~m} / 23-24 u$ "than six" 90 19-22m 91 2-4m, 11-17m, 20-24m, wb It wd be worth to ascertain numbers in all the species in Brit. Mus. 92 16-20m $936 w$ 1.31/2 10w 11 18m/w 1.111/2 94 1-6m 96 $11-13 \mathrm{~m} / 12 u$ "second degree", $14-16 \mathrm{~m}, 17-19 \mathrm{~m}$, 23-25m 97 18-21m, 22-25m, 27-29m, 30m 98 18-19mes, $24-27 m / 26 u$ "Runts $1 m a y " / w$ var. $9926-27 m, 29-32 m 1003-6 m$, $24 u$ "arel black", 28-31w 2 vars. \& subvars. 102 29$31 m 1034-6 m, 22-24 m, 29-32 m / 31-32 u \leftrightarrow 106$ 4-11m/4u "mottled", 27-28zen, 33-34m 107 1$4 m, 8-11 m, 23 m \notin, 24-27 m, 31 u$ "Dutch। bill" $10822-24 m 1091-3 m 11025-26 m 11114$ $16 m, 29-32 m 1152-5 m, 19-21 m, 20-22 m / w$ No 117 8-24m 118 4-10m, 9-13m, 13-16m, 17-23m 119 6-8m 120 25-28m 122 21-25m
$1232-5 m / 3 u$ "verylthem", 9-15m/w Nothing about powting 126 4-10m 132 22-31w How the Seas? 27-32m 133 24-27m 136 16-23m $1372-4 m / 1-15 w$ because direction not known or acquired but they probably cd guide themselves if this known $17-23 \mathrm{~m} /$? $13914 u$ "fleshy excrescences", $20-22 \mathrm{~m} / 21 \mathrm{u}$ "still 1 slim" 140 9-11m 141 7-9m, 11-12m, 26-29m 142 57 m 148 17-19m, 21-24m, 26-28m 152 27-33m 153 1-4m, 13-14m 155 5-8m, 25-30m 156 1015m, 16-19m, 24-27m/26u "attributed |Moore" 157 18-22m 158 1-3m 159 26-28m 161 wt Bull-dogs wd not go wild 2-6m, 12-14m, 29$33 m 162$ 29-32m 163 2-4m 164 25-29m, 31$33 m 1651-10 m / 3-6 w$ does Blyth say so 27$28 m, w b$ this ought to be considered a 4th species, if affines be a species.- $1662-6 \mathrm{~m} / \mathrm{w}$ How close! $7-13 \mathrm{~m}, 15-19 \mathrm{~m}, 31-33 \mathrm{~m} / \mathrm{w}$ I wish certain $1671-3 m, 11-14 m / 13 u$ "remarkable I struck", $25 a$ "intermedia" no. 168 7-16m 176 1-5m 184 5-7m, 12-13m, 25-27m 237 6$11 \mathrm{~m} 2475-10 \mathrm{~m} 252$ 17-18m 428 17-21m/Q

DIXON, Edmund Saul Ornamental and domestic poultry: their history and management London; The Gardeners' Chronicle; 1848 [CUL, I]
beh, br, cs, ds, ex, gd, he, hy, mn, rd, sl, sp, sx, t, tm, v, wd, y

NB1

Though, perhaps or probably several of our domestic breeds may have descended from several wild stocks, yet I think others cannot probably have come from their crossing - on account of one absorbing the other \& without systematic selection, the difficulty of making thus any true Breed.
NB2 x; xiv to end; p34; 48; 69-79; 83; 87; 90; 97; 101
p. 188 good case of Hereditary accident with growth
Fox thinks Cochin, Spanish, German, Bantam originally distinct breeds Geese p142.
SB1 p.103; 110®0; 112; 118-122; 125; 128; 137; 139; 146; 174; 183; 188; 196; 200; 202;
205; 251; 264; 273; 277; 281; 285, 6; 291, 2; 300; 305, 9
SB2 \quad 1
p.314, p.200 Cross-bred Fowls sittinges
p8 Peafowls fighting \& preening their feathers
34 - The chicks of Norfolk \& Cambridge Turkey different
48 Old Canada Geese wd not breed with Audubons, unless the young of same species whereas the young of same species wd

79 Guinea Fowl rolling strong eggs into Nest
87 Slight variation in China Goose
101 \& 103 Contrast in Teal \& Wigeon breeding in confinement
111 White Peafowl of inferior size
1153 vars of China Goose (so the goose can vary)
118 Duck could fly in Columella's time
Mem ore Read all about Ducks
122 - Become feral in Marshes Quos
137 Goose origin of - Apt to pair quite as widely with other species as own Qas
139 Gander always white - - Prolificacy increased by high feeding
146 Barnacle Goose is increasing in power of breeding in confinement
183 Cocks not created in Aristotles time
202 Hybrids between Guinea-Fowls \& Fowls NQ

- 253 Chickens of Spanish Fowls 264 of Dorkings 273 Cochin 277 Malays; 285; 287; 306; 309; 325 of Polands; 324 chicks of
273 Cockrels of Cochin do not show rudiment of tail feathers till oldish Q
325 Golden Polands partly webbed O Q
326 Distinction of sex comes on late in Polands (true) Q
81 Peahen makes first advances to Cock
x $2-7 m, 13-15 m, 26-30 m$ xi $5-7 m, 10-13 m$, $16-17 \mathrm{~m}$ xii $24-30 \mathrm{~m}$ xiii $w t$ Look at the oxen of every different country of Europe - look at dogs of do - look at men - if their variations are denied - my work might be closed 1$12 w$ Mr Dixons opinion \& Van Mons show permanence of varieties, it has same effect on them, which wild species has on naturalised, I know the feeling myself.- 1216 m xiv $13-18 \mathrm{~m} / 9-20 \mathrm{w}$ tell him about Bulldogs xix $3 m, 5 m 811-13 m, 14-17 m / 15 u$ "frequently lother", 17-19m 12 3-9m, 8-12m 34 $22-23 m, 35-38 m 4820-22 m 494-7 m 5935-$ $38 m 6033-35 m 633-8 m, 18-20 m 6625-27 m$, 29-31m 69 18-20m, 27-28m $7210 \mathrm{~m}, 30-35 \mathrm{~m} \mathrm{c}_{0}$ $76 \quad 33-35 m \quad 79 \quad 7-9 m \quad 83 \quad 9-10 m / 10-11 u$ "tubercle|neck", $24 m / u$ "harsh|ceremonious", 34-37m 84 6-10m, 24-26m 85 16-17m, 35$36 m 87 \quad 7-13 m, 16-17 m, 25 u$ "clanging| trumpetings" 88 9-10m, 34-38m 90 21-24m 97 4-11m 101 2-3m, 18-21m $103 \quad 8-10 \mathrm{~m} / \mathrm{w}$ contrast with Widgeon 110 3-16w Thinks original species now dead 22-24m $1111-2 m$, 4-8m (Lamarck), 20-24m 112 11-16m 113 12$18 \mathrm{~m}, ~ 29-33 \mathrm{~m} 115$ 1-6m, 9-11m, 12-13m 118 $15-24 m, 27-32 m / Q=1195-7 m 12025-35 m$ 122 18-36m/24-26w NQ 125 17-19m, 29-31m/30-31Qณ 126 6-18m 127 35-38m 12824 $39 m$ (Audubon) 136 31-35m, 36"... 137 1-4m/

DIXON，POULTRY
Q＜＜／3．．．＂，18－22m，23－27m 139 5－7m，13－15m 142 19－23m 146 3－9m 150 5－8m 152 19－23m， $19-24 m / 20-21 Q$ Q $17335-38 m$ 174 11－12m， $16-24 m, 35-37 \mathrm{~m} 17622-23 \mathrm{~m} / 23 \mathrm{w}$ No $32-40 \mathrm{~m}$ 179 17－18m，29－31m，30－32m 183 28－35m 185 29－36m，37－38m 186 23－27m 187 37－38m 188 $15-21 \mathrm{~m}, 20-23 \mathrm{~m}, 22-26 \mathrm{~m} / 22 u$＂grew＂ 189 21－ $25 m 19026-38 m 19629-34 m 197$ 11－23m， $35 m 199$ 32－33m 200 1－5m，30－33m／Q风，35－ $38 m, w b$ He does not appear to have any facts．－ 201 14－17m $20217-21 m / w$ NQ 36－ 38 m 203 1－3m／2u＊＂five 1 ears＂， $4 w \omega_{0} 17 w \omega_{0} 2$ 9－10wぬ 6205 23－27m 247 3－8m $2495-7 m$ ， $29-30 \mathrm{~m} / \mathrm{w}$ pencilled \＆spangled $251 w t$ seem very upright－apt to jerk their heads $33-34 m$ 252 1－3m 253 1－2m，8－16m 254 33－34m，wb I saw Aug 55 an Andalusian Fowl all slate colour $2558-18 \mathrm{~m} / \mathrm{w}$ Spanish Fowl $34 u$＂bluel colour＂ 264 18－22m 265 17－20m 273 7－9m， $14-18 m, 24-26 m, 33-35 m 2758-12 m 277$ 36－ $38 m 28134-38 m / \rightarrow 285$ 31－32m 286 29－31m 287 21－25m，31－33m，34－35m 288 14－18m 289 9－10m，18－20m 291 3－9m，33－34m 292 7－9m $305 \quad 26-28 m \quad 306 \quad 10-12 m \quad 308 \quad 16-20 m / 18 u$ ＂Aldovrandi＂， $26 u$＂Coral｜Greys＂ 309 9－12m， $36-38 m 31033-35 m 31121 m 312$ 18－19m／？， $26-29 m, 31-34 m 31420-23 m, 24-27 m 3159-$ $13 m 316$ 12－15m 318 9－12m，13－17m 320 5－ $8 \mathrm{~m} / \mathrm{Q} 32116 \mathrm{~m}, 25-28 \mathrm{~m}, 30-34 \mathrm{~m} 32338 \mathrm{~m} 324$ $18-20 \mathrm{~m} / 18 u$＂white breasts＂ $32520-23 \mathrm{~m} / \mathrm{Qe}$ ， 26－28m，29－38m 326 8－12m，19－22m，33－36m 327 1－5m凶 332 10－13m 333 28－33m 342 1－ $13 m$

DIXON，Frederic The geology and fossils of the Tertiary and Cretaceous formations of Sussex London；R．\＆J．E．Taylor； 1850 ［Down，I by R．Owen］

DOBELL，Horace Lectures on the vestiges of disease London；John Churchill； 1861 ［Down， I］\wp

DODEL，Arnold Die Kraushaar－Alge，Ulotrix zonata Leipzig；Wilhelm Engelmann； 1876 ［CUL］
fg，sx
NB 125； 126 I must allude to this
$12412 m, 35-38 m 12524-32 m / w$ if the sexual zoospores do not copulate，yet they ger－ minate $1262-4 m, 3-8 m / 3 u$＂Pringsheim＂，11－ 14m 127 28－31m

DODEL，Arnold Die neuere Schöpfungs－ geschichte nach dem gegenwärtigen Stande der Naturwissenschaften Leipzig；F．U．Brodhaus；

1875 ［CUL，I］
sl, tm
ix $27 m 112 w t$ In Grey seedling a few hairs on the leaves，as a protection，may determine which out of a 1000 seedlings will survive 1－5m 115 21－22m \wp

DOHERTY，Hugh Philosophie organique： l＇homme et la nature Paris；Didier \＆Cie．； 1881 ［Down］\wp

DOHRN，Anton Fauna und Flora des Golfes von Neapel 3．Pantopoda Leipzig；Wilhelm Engelmann； 1881 ［Botany School］\wp

DOHRN，Anton Untersuchungen über Bau und Entwickelung der Arthropoden vol．1； Leipzig；Wilhelm Engelmann； 1870 ［Down， I］

DOLFUSS，Gustave Principes de géologie transformiste Paris；F．Sary； 1874 ［Down，I］

DOMESTIC MEDICINE，a handbook London； Bell \＆Daldy； 1872 ［Down］\wp

DONDERS，F．C．On the anomalies of accommodation and refraction of the eye trans． W．D．Moore；The New Sydenham Society； 1864 ［CUL］
NB 573.574
19－10m，wb 10
\wp
573 18－21m 574 6－17m，26－28m／27u＂tension। accommodation＂，32－35m，37－40m／38u＂with－ out＂

DONN，James Hortus Cantabrigiensis 10th edn，ed．J．Lindley；London；C．\＆J．Riv－ ington； 1823 ［CUL，pre－B，ED］
mhp，tm
facing $66 w\langle C D$ ？\rangle NB Lobelia in Linnaeus is Syngenesia monogamia as Lindley says stigma with rings of hair wipes pollen out of anther in same manner as in that order〈many other markings，presumed to be by ED＞

DONNEGAN，James A new Greek and English lexicon 3rd edn；London；Sipkin， Marshall \＆Co．； 1837 ［Botany School，ED］

DOUGLAS，John William，\＆SCOTT，John The British Hemiptera London；The Ray Society； 1865 ［Down］\wp

DOWNING，Andrew Jackson The fruits and fruit trees of America London；Wiley \＆ Putnam； 1845 ［CUL］
ad，cc，cs，ds，fg，gd，he，hy，no，oo，pat， phy，sl，sp，spo，sx，sy，t，tm，v，wd

NB1 262 Walnuts
NB2 Catalogue of Books at Beginning p．viii SB1 Catalogue of Books p．viii；p． 10 to 12； p55；60，9；75；106；115；116，9；124；130， 4；139；150，3，6，8；161；171；176；184； 192；195，6， 8
Does Thompson give origin of Fruit Varieties D It is important as showing what in small things makes variation．is the sporting from true kind，when grafted．
202；210；215，6；220；248；250；252，4，6， 9；260，3，5；278；280，4；304，7；310，12， 17；317，29；330；340；356，8；366；379； 396，99；419，21，22；447，8； 460 to $\rightarrow 5$

〈over）

p．469；470，3．to 502；517；524，25，31； 542，7；553， 7
SB2 -1β
p． 5 On fruit－trees not being true，when grafted－Good
8．Facts against．Van M．viz old var． producing good plants
9．Crossed apple with fruit different at 2 ends
60．Every district has its fruit best adapted to it．（Mem：Chinese）
75．A marked American Apple
116 Italian tender apple－Several hardy ones mentioned in County of Wick \＆p． 124 － Several sub－vars mentioned as（p．130） several Reinettes \＆c
150 Difference in hardiness in Almonds p473 in Peaches $\langle u$ ）p488 do Raspberries p． 517 －Strawberries p． 533
157 Hardy apricot
176 American Cherry p． 184
« 192 Sporting Cherry
195．Cluster Cherry；a flower has several pistils \＆each produces a fruit－Flemish peculiar cherry
as 198 a var．of cherry liable to attack of insects more than other vars．
220 Mildew stops culture of Grapes in U．S
248 The wild native vines differ in quality p．253，p254，259／p．261．do．vars of wild Hiccory
256 A cross between old world \＆new world Grape
270 Purple Plums much most attacked by certain diseases，never yellow vars．Many vars．of Plums raised in America p289， 292 \＆Peaches $\langle u *\rangle$ p． 469

284 －Siamese Plum－attached together on one stalk
304 Groups of Orleans Plums，when known to have descended－many plum hereditary 317 Pears not native，many vars－Pliny says \＆heavy most only good when cooked 422 Washington，a very distinct pear discovered in Hedge
I 462 The yellow disease originating with American Peaches 466 Yellow Peaches much most affected
470 Classification of Peaches by glands on leaves \＆serration \＆size of Flower－
476 Most Peaches either free or clingstones， but one is on same tree always either \otimes_{0} bothes cling or free xx scores of instances cd be given of this
492 Some Peaches very variable by seed， others constant \＆so it was with Plums
501 Smooth－skinned fruit destroyed by Curculios
er over
〈over〉
502．Nectarine from Peach \＆now true by seed
525 on selection turning Hautbois her－ maphrodite
553 Northern Apples will not do in Southern States
viii $33-37 m$ xi $5 m$ xii $28-29 m$ xiv $27 m 1 z b 2$ $5 m / u$＂chance when＂ 3 22－24m，37－42m 4 10－ 14m，35－37m，45－48m 5 16－22m，19－29m／22u ＂tolof＂，23－28m 6 15－19m，24－25m，33－35m， 46－48m 7 4－8m， $10-12 m / 11-12 u$＂subduel luxuriance＂，16－17u＂he Ishortens＂$/ w$ this does not look like excess of food $18-20 \mathrm{~m} / 19 u$ ＂vigour 1 trees＂， $29-31 m, 36-42 \mathrm{~m} / \mathrm{w}$ why more in America than in Europe $86-8 m, 9-10 m$ ， $40-45 m \quad 934-37 \mathrm{~m} / \mathrm{w}$ are these species V ． table $40-42 m, 43-47 \mathrm{~m} / \mathrm{w}$ any case of crossed species like this $101-2 m 551-2 m / 1 u$＂singlel moths＂ $605-9 m / w$ is this selection or adaptation．latter I think $6916-17 \mathrm{~m}, 27-28 \mathrm{~m}$ 75 11－13m $1064-5 m 115$ 28－29m，32－33m， $36-37 \mathrm{~m} 11636-37 \mathrm{~m} 11914-15 \mathrm{~m} / \mathrm{w}$ sub－var $124 \quad 23-24 m \quad 130 \quad 21-22 m, 37-44 w / w b 4$ Reinette；several Pearmain；several Russett； several Sweeting；p．139；Spitzburghs 134 wt 4 11－13m 139 32－35m $1504-9 m 1515-9 m$ 152 20－23w Study all．I have only skimmed 153 43－45m 154 2－4m，3u＂have litle＂， $6 u$ ＂Stone l bitter＂，35－39m，39－41m，44u＂adhering somewhat＂， $45 u$＂Kernel sweet＂ 155 7u ＂Kernel bitter＂，12－14m， $15 u$＂compressed＂， $32 u$ ＂Flesh separating＂ 156 12－16m，13－15m 157 $24 m, 31-35 m$ ， $38 u$ 158 19－21m 161 13－16m 167 1－3w p9．Heart \＆Bigarrieu have been

DOWNING
crossed by Knight $17125-29 m 176$ 2－5m，3－ $6 \mathrm{~m} / 6 \mathrm{u}$＂called＂ 184 10－15m／13－15w Mem Graft 189 18－21m 192 6－11m $1935-8 m$ ，9－ $11 \mathrm{~m} 1951-5 \mathrm{~m}, 39-40 \mathrm{~m}, 41-42 \mathrm{~m}, 48 \mathrm{~m} / \rightarrow$ 196 4－6m，34－36m，35－37m 198 16－17m，24－ $26 m 20035-37 m 2024-10 \mathrm{~m} / \mathrm{w}$ I suppose only one original species \＆no possibility of Hybridising $204 \quad 15-22 w$ vars in size of berries \＆bunch colour sweetness \＆time \＆ fruiting 25－26m 205 7－9m 210 12－13m／13u ＂perhaps Ihardiest＂ 213 10－11x／10u＂one fourth＂ 215 25－28m／27u＂149｜considered＂／ 28m ，38m，40－45u士 216 4m／u＂Early＂，20u ＂obovate＂$/ 22 u$＂oblong＂ 24 ＂oval＂ 217 ． $14 u$＂hangs＂， $33 u$＂flavour 1 rate＂ $22031-34 m$ ， 36－41m 248 25－36m $25046-48 m 252$ 34－38m／ $34 u$＂Prince 1 describe＂ 253 2－7m，23－24m／23－ $24 u \leftrightarrow 25415-18 \mathrm{~m} / 24-28 \mathrm{~m} / 30-34 \mathrm{~m} / 1-37 \mathrm{w}$ all this sporting must be in state of nature \＆ seized by Selection as owing to little general cultivation of country $2551-3 m, 35-37 m$ 256 17－18m／17－18u＂habit｜here＂，24－41w Ascertain whether this comes under the Fox （V．Labrusca）p． 253 group or under some other（V．adlum or Prince），if so case of two species blended by crossing，though unintentionally crossed．25－26w p240 Old World Grape；a native Grape 257 43－44m／ $44 u \leftrightarrow 2591-12 m 2607-10 m 261$ 18－21m／Q \propto_{0} $2633-6 m, 20-41 w$ the number of American plums really surprising $w b \times$ it cannot be extra food which makes so many new vars． of apples Peaches \＆plums in N．America－ V．further on－climate or soil very fav－ ourable 265 33－35m／\rightarrow ，39－46m 266 22－27m 267 48m 270 9－13m／7－21w colour \＆ constitution－is there not something about peaches \＆nectarines？42－46m 271 29－30w 1 272 22－23w 2 30－31w $341 w 4273$ 11－12w 5 $2757 w 617 w 727-28 w 837-38 w 9276$ $9-10 m, 40-41 m 27721 w 1024-26 m, 38 w 11$ $27831 w 1232-33 m$ 2，34－35m，43－45m 279 $3 \mathrm{~m} / 3-4 u$＂has 1 shoots＂， $11-12 \mathrm{~m} / 12 u /[\ldots]$ ， 33 w $1328031-32 w 1434-40 m, 34-39 m 2824-5 w$ $1533-34 w 1628415-19 m / 17 w 1731 w 18$ $35-36 m 28510 \mathrm{~m} / \mathrm{u}$＂handsome round＂， 22 m 287 39－40w 19289 13－19m／13w $2038 w 21$ 291 28－32m／28w 22292 19－20w 23 22－33m $2935 w 2418 w 2524 w 2635 w 27296$ 8－9w 28299 29－30w $293007 m, 10 w 30301$ 8－9w $313025-6 w 3230312 w 3337 w 343046-$ $38 \mathrm{~m} / \mathrm{w}$ There have been several cases of fruits thus classed，where reproduction is known or inferred $3051-3 m / w 35307$ wt I have noticed that most of the varieties differ in all respects as well as in fruits $1-2 m 309$ $3-4 w 3613 w 3733 w 3831012-13 m$ ，41－ $45 m 312 \quad 37-39 m 313 \quad 36-38 m / w \quad 393147-$

8m 315 16－17w 40317 24－26m，39－46m， $46 \mathrm{~m} 3297-12 \mathrm{~m} 330$ 1－6m 340 1－5m 356 19－ $25 m 3584-8 m, 12-14 m 366$ 33－38m 379 34－ $35 m 391$ 37－46m 396 37－39m 399 8－9m 415 $33-36 m 4193-6 m / w$ numerous cases such as this $42140-44 m 42213-15 m, 13-16 m$ ， $19 u \leftrightarrow 442$ 19－25m 447 3－5m 448 39－41m 460 $17-19 m, 21-22 \mathrm{~m} / 22 u$＂twenty years＂， $25 u$＾ $46144-48 \mathrm{~m} / \rightarrow 462 \quad 17-22 \mathrm{~m}, ~ 23-24 \mathrm{~m}, ~ 36 u$ ＂established I question＂，39－40m／43－44m／39－45w new disease originated in America 463 7－9m， 18－19m，31－33m／32u＂many｜peach＂ 465 37－ 38m，41－42m 466 15－17m，20－22m，23－25m 469 10－15m ，11－13m，17－22m，26－28m／21－ 30 w almost certainly though probably derived from Eng．seeds 41－48m 470 1－4m，13－ $16 m, w b$ I rather doubt how far genealogical wd be best it wd be the most scientific classification of varieties even putting crosses on one side $w b$ 4ss for p． 475 not hereditary $47320-22 m 47520 m, 36-41 m, 36-$ $41 m$ ， $37 w$ H． $40 u$＂absence I glands＂ 476 14－18m，30－31w many American kinds 478 11－12m 485 32m＊ 488 29－32m／30u＂garden I New＂ 489 10－11m／10ma， $23 u$＂is 1 variety＂， $34-38 \mathrm{~m} / 34-38 \mathrm{~m} / 34 \mathrm{~m} \quad 49213-14 \mathrm{~m}<\mathrm{m} / 11-$ $19 \mathrm{~m} / \mathrm{w}$ others contrast p489 p494＋ 493 1－ $5 m 4941-5 m$ ，2－5m／4－5mes，7－9m／7u ＂reniform＂， $15 u$＂without glands＂，25－27m， 44－45m／45mu／u＂frequently｜with＂ 496 21－ 22mes 501 12－14m，15uts＂smaller＂，26－ $31 m$ ， $27-29 m, 33-35 m / 34 u$＂all soils＂， $39 u$ ． ＂Vol．14，p．53＂ 502 23－26m ＂wasla＂， $36-38 m$ ， $37 m 505$ an $19 m$ ， $35 m$ ， $37 m 510$ 13－18m 514 21－23m 517 17－18m／w V．p514 523 34－38m 524 1－6m，1－4m ，11－ $13 m, 26-30 m$ 〈ин〉 $525-17 \mathrm{~m}, 17-18 \mathrm{~m} /$ $18 u, 19 u, 21 u, 22 u, 23 u, 33-47 / 37-40 w$ selection producing $5261 w$ N American $52722-23 m, 22-23 m \otimes / 23 u \leftrightarrow, 28 u$＂seeds। imbedded＂， $35-37 \mathrm{~m} / 36 u$＂Fruit \mid size＂， $38 u \leftrightarrow$ $52825 w$ Surinam $5317-8 m, 7-8 m$ ，20－21m $5322-3 m / 3 m * / 2 w$ Pine $13-15 m 5333-5 m$ 534 12－14w English origin $37-40 m$ 535 15－ $17 m 542$ 26－29m 547 41－42m 553 35－41m 557 17－21m

DOWSON，J．Erasmus Darwin：a lecture London； 1861 ［CUL．1900］
NF 6 Dec 1871
DRAYSON，Lieut．－Col．On the cause，date and duration of the last glacial epoch of geology London；Chapman \＆Hall； 1873 ［Down，I］

DREHER，Enger Der Darwinismus und seine Stellung in der Philosophie Berlin；Hermann Peters； 1877 ［Down，I］

DROUËT，Henri Mollusques marins des îles Açores Paris；Baillière； 1858 ［CUL］
gd，sh，sp
NB 8 No Fresh－Water Shells
9 Many land－shells Endemic－very few Marine－peculiar
Species common to Mediterranean Canaries \＆Antilles
Much Sargasso weed
p26 2 sp of Littorina
8 31－32m／u＂illAçores＂9 9－13m／12u＂Ant－ illes＂， $23 u$＂ 139 ＂， $25 u$＂ 75 ＂／w 5／75 new $29 u$ ＂ 70130 ＂， $30 u$＂inédites＂ $31 w$ perhaps more endemic $115-17 m, 22-24 m 125-6 m 138 u$ ＂nombre｜doublé＂ 24 19－22m 26 3－6m／3m，11－ $14 m 34$ 17－20m

DRYSDALE，John The protoplasmic theory of life London；Baillière，Tindall \＆Cox； 1874 ［Down，I］

DUB，Julius Kurze Darstellung der Lehre Darwin＇s Stuttgart；E．Schweizerbart； 1870 ［Down］

NB O／
\wp
DU BOIS－REYMOND，Émil Gedächtnissrede auf Johannes Müller Berlin；Königliche Akademie der Wissenschaft； 1860 ［Down］

DUCHENNE，Guillaume Benjamin Mécan－ isme de la physionomie humaine，ou analyse électro－physiologique de l＇expression des passions Paris；Jules Renouard； 1862 ［CUL（Plates at Down），S］
beh，h，phy，t，y
NB 2 woodcut of facial \langle rest 0\rangle
SB $\square \mathbb{R}$
Duchenne 8vo Edit
Part I
p．31．showing absurdly how all examples created．
$38 *$ describes facial muscles continuous．
seem quite aware of many sources of error
－Huxley says discovered muscles．
Part II
p8．eyebrows－move least under will
－29 separation of pyramidal \＆frontal
36，43， 53 antagonism of sourcilier \＆frontal 75 triangular of lip
〈not CD〉 180 On the pyramidal bringing down the brows
184 In a false laugh the zygomatic is alone contracted

Part 1， $54 u$＂1805＂／4－5m，6－7u＂a composé＂ 20 15－18m 22 22－26m／w only one muscle used！！ $2617 u$ 18－19m $18 u$ 29 15－22m 31 介12－ $1 " . . . " / \Uparrow 10-6 u \pm / \Uparrow 11-2 m \Uparrow 12-9 w$（as in the many Limb movements of our limbs．）$\uparrow 11-$ $6 m!!/ w \leftrightarrow$ good to show how theory fails $\uparrow 5-$ $1 w \diamond / w b$ Praise his book．Well－known for other excellent Treatises，\＆add much undervalued，in my opinion，by other writers －a vast step in advance $w b$ After speaking of the movement of the limbs，he turns to the ph．of the face，\＆remarks $3320-22 \mathrm{~m} 34$ $17-20 m 3610-12 m 381-5 m / w$ All muscles continuous－says it is an illusion $25-26 \mathrm{~m} 39$ $1-3 m, 7-8 m, 21-23 m 40$ 11－14m 42 11－25m 43 $1-34 m, 17-18 m / 17-21 w$ in Laughter upper palpebrae，also；but these diurnal in young because associated with intense \＆painful attention． $473 \mathrm{~m} / \mathrm{w}$ eyes $5113-16 \mathrm{~m} 5210-$ $12 \mathrm{~m} / \mathrm{w}$ No．endurance $537-10 \mathrm{~m} 593-5 m$
Part 2， 2 fig．w（identifying little and great zygomatic）8 15－17m 16 12－15m $262 u$＂ces gonfle＂／w by mere corrugator $277-8 \mathrm{~m} / 8 u \leftrightarrow$ $285-8 m 297-11 m, 23-25 m 305-8 m 318-$ $10 \mathrm{~m} 323-6 \mathrm{~m} / \mathrm{w}$ The contraction of orbiculars by themselves do not give look of Hardness $367-9 m 438-11 m / 3-16 m / w$ Judging by his experiments，the movement does seem entirely due to something which I suppose opposes sourcilier $18-21 m, 23-26 m 441-2 m$ ， 3－5m，6－7m 53 1－3m 56 10－11m 61 21－24m $6215-16 \mathrm{~m} / 15 u$＂paupière inférieure＂， $17-22 \mathrm{~m} /$ w See Large Plates $6313-14 m, 21-26 m 73$ 16－18m $7515 u$＂lèvre＂， $16 u$＂peu lavant＂，20－ $21 m 761-4 m 7810-13 m 857-10 m 8722-25 m$ $8910-12 m, 15-17 m 906-13 m 916-9 m, 10-$ $13 m 92$ 23－27m 104 22－24m 105 1－3m 106 3－ $6 m, 26-27 m 10721-23 m 17623-26 m / w$ the eyes being open to see $18014-21 m 18413-$ $17 m$

DUFRÉNOY，Pierre Armand，and ÉLIE DE BEAUMONT，Jean Baptiste Armand Léonce Mémoires pour servir à une description géologique de la France 4 vols．；Paris；F．G． Levrault； 1836 ［CUL（vols． 3 and 4 only）］ geo，mi，se，t，ti，ve
vol． 3 SF1
There appears to me great force in De Beaumont opposition to lava basalts（which certainly have been most fluid）stretching into wide sheets at inclination as great or narrow streams of lava on planches of cones －
p．255．says superficial basalts of Auvergne resemble those of submarine at Teneriffe ？？ forgets flatness of bottom of sea－

DUFRÉNOY \＆BEAUMONT
p．254．Proofs of recent elevation at Canary Islds－
〈over〉
p256 M．Babbage says part of crust，when volcanic forces have acted most likely to be elevated－
With respect（p257 \＆c）to thinning out of lava，round craters of elevation，not at all satisfactorily explained
It is very foolish giving one theory to any craters of elevation－
States that beds thicken towards source－ are strata upset at Cantal？Yes－
The foundation of Theory original explosion
Says Vesuvius \＆c all active volcanos put out
of the question by both parties．C．Prevost p． 315 Bull．Soc
SF2 Are the lower trachytes of M．Dore sub－ aqueous？
p．241．Cantal different streams，unequal contradiction to first statement
Good god leaves out the Sea
Says Basalt must have had greater fluidity－ Which agrees with supposition of being under water－
p．243．Basalt Terrestrial
p． 246 Cause of no cones subaqueous Good．〈over〉
Is it certain Basaltic platforms lavas of Ccantal flowed in air？
Is Cantal perfect crater
is basalt so uniform
He himself slightly contradicts himself on latter point．
His rigid comparison with Etna alone most unsophisticated
p． 217 important on inclination of lava without becoming basaltic
243 15－22m／19u＂plaines｜plateaux＂ 246 12－
$19 m 287$ 18－23m 288 21－26m 291 1－8m 295
$15-19 m 302$ 22－24m，25－28m 303 1－2m 309 zt
vol．4，SB1 〈6 numbered pages〉
1
Elie de Beaumont Recherches sur les Terrains volcaniques des deux－Siciles
a Vol．IV．Memoires pour servir a une description geologique de la France
p57 M．G．Rose first published fact that （Annales des Mines 3° Tome viii p3）\＆lavas of Etna Labrador Pyroxenes \＆some peridodt，fer Titanea
also Stromboli \＆some streams in Auvergne \＆have lava of same constitution
p95 as far as argument has yet gone，no proots of the ancient lava being ancient－
as N．B．though no proofs every one seems to consider they are ancient
－\＆therefore all this argument about small quantity of recent ejections trifling
p98 says the successive ejections only tend to make cone of Etna L° of 8．－or rather $\%$ uniformly less than Central gibbosity－p． 97 compare it with＊volcanos－？？
π_{0} seems to leave out of question case of all eruption being from centre
＊
$\underline{2}\langle$ top line 0\rangle
can scarcely doubt AscensionO a＊cone if eruptive，but no proofs
（part as）The whole argument appears to me founded on assumption that eruptions must always have＊proceeded from the same points as they now proceed．－
p． 102 Theory of Etna given in few words
p103．dike theory，p115，p116 clearly given
p． 106 matter thrown applicable to separate volcanos in Cordillera
p． 118 －Theory well given of Etna：ask will it not explain domes of Trachyte
p331 〈he means 131 －text erroneously has 331〉 dike ought to incline＊outwards in Val del Bove if the strata had been originally nearly horizontal
p331．parallel Bands of cellular rocks in
dikes from stretching \propto－theory of Keihan＇s dike．－
p133 Etna dikes are often accompanied by faults－how are Cordillera dikes？in this respect？great difference in formation of the kinds of dikes
3
p．132，some dikes join like roots to streams．－
＊｜Dikes generally run to ENE \＆therefore the elevation（cause of them）does not tend to form＂noyau centraux
p137 Valle del Bove like the Taoro in Teneriffean
p141 argue badly against cavity under Etna 142 －then argues fluid near surface，\＆ hence eboulement of Val del Bove；\＆hence elevation of noyau centraux（non sequitur） p144 are not centres of elevation，now all given up（see Bull．Soc）No are they not all Eboulement．－
p． 145 Wishes now to consider dikes as mere feeders of ancient lavas
$\otimes_{\&} \&$ forgets by his own argument they show elevation．－
4
$\bar{p} .149$ argues that dike T the union not minutely © viz thickness at point of junction； coarseness of lapilli at spot
＊the loss of parallelisms＊which he says would surely happen if streams hot flowed
over great slope，rests on supposition of lower cones being points of eruption instead of solely upper ones．$-*$ ，is their＊breadth ＊is a quality so explained
p151 Volcanic cones are generally from 18° to 40° in inclination
p158 the argument of gibbosity from his own showing here，may be invalidated because this is tending to form two kinds of slopes， where \＆everything takes place from one point． \checkmark
p161－Talus depends on form of fragments $\&_{\infty} \&$ is the same in air \＆under still water ！ good．－
5
p161－curious error repeated at 182 in reasoning could not have been formed beneath the sea because they are recent－？ Perhaps they overlie Tertiary strata？？
as Gradual elevation of the slope would exactly counterbalance the decrease of slope from the thicknening of the end lava stream at bottom of cone．－
${ }_{40}$ There is a fallacy（165 166）in arguing as if Val del Boves was entirely formed from loose matter \＆not partly from lava
p182 says streams have great horizontal extension－how ascertained－by section at head of valley
p． 188 seems to consider＊elevation of Etna quite sudden
p．do line of elevation in Etna－not true ＂crater of elevation＂
6
p191 considers Val del Bove engulfed like Papandugong．－
192 considers subsidence of Val del Bove like the pits formed on the crevasses in Etna －＋
193．thinks elevation sudden because of discordance between ancient \＆more modern lava．－N．B．part must have been gradual whether dikes point to centre or not 194．Think it was so because subsidence probably sudden why was it not for collection of gaz
\＆De Beaumont talks of the play of the fragments on Etna excellently expressed p．116＠
Etna must consist of two volcanic his from the point of eruption having changed \＆ the older part dislocated \＆inclination of beds－added to from distension．－
SB2 Dufrenoy
p．286．Somma extensive 26° strata $23^{\circ}-30^{\circ}$ 349．Tuft of pumice Siliceous infiltration Pompeii

354 soda in Vesuvian formations potash in Volcano of Camp－Phlegreens Read Naples geology in Lyell
356 Trachyte first，Somma beds 2 Trachy 3. Veins lava of Ischia Vesuvius \＆Mt Nuovo〈over〉
p．361．－I conclude when the great eruption of Vesuvius took place，there was accumulation of Pumice \＆Trachyte Matter in Upper part of Volcano－Somma being base of ancient great cone，the summit of which was trachyte．If Teneriffe fell \＆was then then blown out，first great eruption would be trachyty \＆the central one might be basaltic like flank－Study Lyell－The tuft on Somma shows central trachyte mass．－
p374．Lava streams diffuse composition or surface－in body－
〈over〉
p．382．Feldspar \＆Albite not＊in Lava！\therefore little Silex
Compare the Analyses of the substances from upper \＆middle part of stream p372

112 12－15m 131 26－28m 173， 174 〈pages cut and restuck $175 w t$ 〈CD transcribes part of p ． 174〉 178 12－15m 183 21－27m 191 19－20m 272 15－18m 371 1－8m

DUHAMEL DU MONCEAU，Henri Louis Traité des arbres 2 vols．；Paris；H．L．Guérin \＆ L．F．Delatour； 1755 ［CUL，pre－B］
vol．2， 233 21－22m／21u＂racines lendroits＂
DUMONT，Léon A．Haeckel et la théorie de l＇évolution en Allemagne Paris；Germer Baillière； 1873 ［CUL］

NB 15
7 2－5z 15 12－16m，26－27m
DUMONT，Léon A．Haeckel et la théorie de l＇évolution en Allemagne Paris；Germer Baillière； 1873 ［Down］\wp

DUNCAN，Andrew The Edinburgh new dispensatory Edinburgh；Bell \＆Bradfute； 1826 ［CUL，pre－B，S Charles Darwin 1826］ che
$10625 m, 27-33 m / 29 u$＂pounds I grains＂，39－ $41 m$ ，wb Correct by Almanac $w b$ © 107 10－ $12 w c a, 11-14 \mathrm{~m} / \mathrm{w}$ Correct by Almanac 110 wtct 111 wt $8750=1$ Pint of distilled water ie $1 / 8$ of 10 lb or 70,000 iw Penny Encyclop says 280 grains $\mathcal{I} w_{0} \mathrm{Mr}$ Baxter says 1 fluid oz of distilled water at 60F certainly contains 437.5 gr ．apothecaries or

DUNCAN，A．
FI oz；$c \subset, w b$ correct I do not doubt x $437.5 \times$ －Almanac wbas 1 fluid oz contains 455.77 grains 480 grains

DUNCAN，James Matthews Fecundity， fertility，sterility and allied topics Edinburgh；
Adam \＆Charles Black； 1871 ［CUL，I］
beh，br，ds，no，sx，t，v，y
SB $\quad \infty$
53 Variation of weight of infant according to age of mother
59 of length of do according to do．
100 on Twins produced chiefly by women between 25－29 years old．
252 on ages at which women may marry \＆ produce only Malthusian numbers of children NB 53；59；64； 100 Summary on Twins；262； 334 Important Descent； 382 do．Death of males
53 7－15m 59 8－12m 64 14－24m 100 18－23m 262 25－30m（Malthus） $29723 m 302$ 6－11m 334 13－21m 382 24－25m

DUNCAN，John Shute Analogies of organized beings Oxford；S．Collingwood； 1831 ［Down， on B，I to Lord Widmouth］

NB 54
54 25－28m
DUPONT，Edouard L＇Homme pendant les ages de la pierre Bruxelles；Macquardt \＆Cie．； 1871 ［Down］
45 5－11m，16－24m
DU PREL，Karl Freiherr Der Kampf ums Dasein am Himmell Berlin；Denike； 1874 ［Down］2nd edn； 1876 ［Down］

DU PREL，Karl Freiherr Die Planeten－ bewohner und die Nebularhypothese Leipzig； Ernst Günther； 1880 ［Down］\wp

DU PREL，Karl Freiherr Psychologie der Lyrik Leipzig；Ernst Günther； 1880 ［Down］\wp

DURAND，Jean Pierre de Gros Essais de physiologie philosophique Paris；Germer Baillière； 1866 ［Down，I］
NB O／
DURAND，Jean Pierre de Gros Les origines animales de l＇homme éclairées par la physiolgie et l＇anatomie comparatives Paris；Baillière； 1871 ［CUL］ ig，phy，tm

NB 32；88； 138 Eyes imperfect Helmholtz； 90；93； 138 Lamentin， 141 Hallotherium allied to； 137 Steenstrup on Sole \＆Turbit SB 88； 158 on Eyes imperfect； 93 The hinder legs of Lamantin subserve as tail 141 on gradation in structure of Talpa，with figure of Humerus
43 31č＂pas＂ $6416 w$ qui $887-12 \mathrm{~m} / \mathrm{w}$ Does this apply to normal organ p． 33290 18－25m $919-10 m 9226 u / x \notin 935 u$＂queue anatomique＂， $6 u$＂résiduldestitué＂ $1296 \mathrm{~m} / \mathrm{w}$〈refs．to figs．） 130 10a／w，12a／w 〈refs．to figs．） $1311 a / w, 2 a / w, 7 a / w$ 〈refs．to figs．） $1324 a / w, 5 a / w$ 〈refs．to figs．） $13710-14 m$ ． 138 11－14m 141 19－25m 144 28－32m 158 1－ $6 m$

DUTROCHET，René－Joachim Henri Mém－ oires pour servir à l＇histoire anatomique et physiologique des végétaux et des animaux Paris；J．B．Baillière； 1837 ［Botany School］

DUVAL，Joseph Histoire du pêcher et sa culture Paris；De Roret； 1850 ［CUL］

NB Nothing
DUVAL，Joseph Histoire du poirier（Pyms sylvestris）Paris；De Roret； 1849 ［CUL］ phy，wd

NB
p． 2 Certain Pears known to have been wild seedlings
－ 32 p41 p47＊＊
Two Pears which do not take well on Quince stock
2a $61-64 m$ 2b 16－20m，44－57m，59－64m 5a 49－52m 32a 31－39m 41b 4－12m 47a 32－41m 48a 22－30z

DUVAL，Joseph Histoire du pommier et sa culture Paris；De Roret； 1852 ［CUL］
beh，wd
NB O／
2a $2-8 m, 57-59 m, 57-64 m / w$ origin probably of orchards

EATON, John Matthews A treatise on the art of breeding and managing tame, domesticated and fancy pigeons London; the Author; 1852 [CUL]
beh, br, cs, em, f, he, phy, sl, t, ti, tm, v, y
NF1 Annals \& Mag. vol. 191847 p. 105 variability of Pigeons
NF2 Of noblemen \&c p.vi coming after p88
NB1 p.62. Powter grand Passage; p.vi
NB2 Facility of * crossing \& Keeping
Breeds pure - Value as Carriers -
It will be all important to find whether the vars. vary in the points, which characterise them as vars.
Questions
About fertility of crosses; Young Birds; Feathers in tail of Fan Tail.
NB3 First Part
piv; p xiv; xvii Buy; p26; p34; p.40-50, 52to; p. 62
Second Part
p.iii to vi; p21 - Important about not telling qualities of Birds in nest.-; p.22; p32; p.37; 41
p.vi 2d part funny Passage
noblemen \& gentlemen vi of Almond Tumbler \langle not $C D$ 〉
SB $\square \beta$
Special facts on Pigeons not given always x XV advice to young Fancier to keep to one kind (Ch I) $1 / 2$ quoted S
40 Total length of Carrier Q
46 On tendency to degenerate in highestbred breeds, ie selection not perfect S
49 Mayor on flight from Bury St Edmunds to London in $21 / 2$ hours
51 Length of Pouter Q 65 Fashion varies
56 On ill effects of not intercrossing Pouters p.v about changes effected during last 100 years Q
vi "the field is as still open for competition as it was 100 years ago" Q (on limit of variation)
9 Advice to keep on Goldfinches head S* $\times 11$ Advice to young Fanciers not to try for too much Q S*
11 on great variability in feather in Almond Tumbler - Selected first \& now variable 21 on difficulty of judging young Tumblers
33 believe many of the shortest beaked birds perish in egg Q (Ch 6)
p. 32 Beak may still be shortened S

Part 1, iv $4-6 m$ xv $w t$ Hence many vars. 1$3 \mathrm{~m} / 2 \mathrm{u}$ "this 1 knowledge" $3 u$ "Turke 1 Morocco" vi $21-23 m, 37-42 m$ xvii $4-9 m, 23-24 w{ }_{c}$ This Yarrell has 27 u* " 1765 "/...][..., 30...][...,
$36 m / w$ I have Delamers work published by Routledge $40 u$ "Bees \mid Rabbits" $\rightarrow / 36 w$ Buy it wbe A Treatise on Domestic Pigeons, London Printed for the Proprietors (no date) 2.6.old. lent me by Mr Evans - before 1809 for owner name has this 26 26-29m 3448 $49 w 176540$ wt Did old Aegyptians keep Pigeons? 8-9m/8u "Tavernier", $11 u$ "but |the", $22-26 \mathrm{~m} / 23 \mathrm{u}$ "fifteen", 33-35m 41 wtc¢, $3-4 \mathrm{~m}$, 34-38m, 48m 43 28-30m/30u "of l half" 44 15$17 m, 19-21 m, 29-32 m, 33-36 m 45$ 18-23m 46 $1-3 m, 31-37 \mathrm{~m} / 32-33 u$ "therel back" $34 u$ "cast offs", 39-41m, 42-45m 47 1-5m 49 2-3m, 10$13 w c \in, 17-18 m 508-14 w$ very different from now 27-28m/28u "Horsemanl Cropper" 51 1$3 m, 9-11 m, 15 w$ in 1765 21-22m/22u "wanting|quarter", 41w $\neq 41-42 u$ "merel inches", $42 u$ "sevenlit", $43 u$ "inllength", wb Ask Mr Bult 52 1-3m/1-4x $/ w$ MarredO 17$19 m 581-4 m, 9-19 m / 9-43 w$ The Horseman being thought by some to be a cross between Carrier \& Powter 21w Dutch Powter $591 u$ "English 1 miniature" 61 33-41m 62 20$24 m, 35-38 m 6318 x$, 21-25m/22x $642 u$ "jowlter leye" 1 - $8 \mathrm{~m} / \mathrm{w}$ Rollers? 33-34x 2, 39$42 m 651-3 m, 5-12 m / 8-9 \mathrm{Q} 凶$ ®, $15-17 x$, 29$33 \mathrm{~m} / 31 \mathrm{u}$ "bald \mid beard", $40-44 \mathrm{~m} 66$ 4-9m 67 1$2 m 6835-38 m \quad 705 u$ "turnedlduck", $7 u$ "bending Iswan", 8-11m/9u "his 1 bird", 29-30m $713-6 \mathrm{~m} / 4-5 u$ "three 1 long", $5-7 \mathrm{~m}, 22-27 \mathrm{~m} / 23 \mathrm{u}$ "Runts \mid Runt" $/ 27 u$ "havel half", 41-43m, 45$46 m 72$ 11u "and 1 more", 12-14m, 23-26m 73 $3 u$ "blues" $/ w t$ probably bars $1-2 m, 5-7 m, 40 u$ "sometimes blue" $749 u$ "sixlfeathers", $20 u$ "therelblue", 21-23m 75 8-24m, 29-30m, 33$34 m 762-4 m 77$ 19-21m, 22-24m, 30-31m, $36-37 \mathrm{~m}, 45-47 \mathrm{~m} 78 \mathrm{wtcc}, 11-12 \mathrm{~m} / \mathrm{u}$ "six|tail"| w var. $813-8 m, 26-27 m / 2-28 w$ This shows variability in the tumbling fraternity $5 u$ "thoughlthis", 12-14m, 20w Probably the same as Finnikin \& Tumbler $23 u$ "Dutch। Drager", 24-27m, 48-49m/49u "Archangel" 82 $5-12 m, 6-8{ }^{\prime \prime} \ldots \prime$.." $834-11 m, 51-56 m, 51 u$ "AntwerpI sharp", 52u "sharpl cunning" 84 1$4 \mathrm{~m} / 1 \mathrm{u}$ "Roman nose" 86 44-49m

Part 2, iii $41-43 m$ v $46-56 m / 46-50 \mathrm{~m} * / 47 u$ "seven-eighths", wb V. p.9xx vi 6-9mQ $x^{2} / 6-$ $7{ }^{\prime \prime} . . . ", 30-36 \mathrm{~m} / \mathrm{x} / /^{\prime . . . ", ~ 49-51 m} 819-21 \mathrm{~m} / 14-$ $21 w$ ie variable $95-6 m, 8-12 m / x x / u$ "fiveeighths", $13 u$ "three quarters", 16-18m, 19$26 \mathrm{~m} / \mathrm{"..."/20u}$ "the I beak" $106-13 \mathrm{~m}, 51 \mathrm{~m} 113-$ $6 \mathrm{~m} / 3-4$ "..."/Qan, 7-10m, 12-16m, 25-29m, 3438 m , 40-45m 20 50-51m 21 1-9m/6-8m 22 37-41m 32 50-57m 33 13-17m/w Q Ch 637 47-55m 41 34-40m

Part 3, ii $14-16 \mathrm{~m}$

EATON，John Matthews A treatise on the art of breeding and managing tame，domesticated， foreign and fancy pigeons London；the Author； 1858；［CUL，bound with：］
MOORE，J．Columbarinus，or the pigeon－house， being an introduction to a natural history of tame pigeons London；J．Wilford； 1735 ［pre－B］ beh，br，cs
NB p60 Pouter；carr p44 Carrier
Frontespiece Tumbler 100 Barb；Jacobin； Fantail；Turbit
SB 78 Q
86 Fashion goes in extremes with Fanciers．－Q ${ }^{\boldsymbol{s}}$
120．in Beards
Q 145 Blue Tumbler bred from Splash Cock \＆Kite Hen see p．

78 53－61m／55u＂original Columbarian＂ 79 24－ $30 m 86$ 43－55m，57－60m 120 48－53m 127 42－ 45m 145 3－6m

ECKER，Alexander Die Anatomie des Frosches 3 vols．；Braunschweig；F．Vieweg \＆Sohn； 1864－1882［Down］\wp 〈some marks by FD＞

EDGEWORTH，Michael Packenham Pollen
London；Hardwicke \＆Bogue； 1877 ［Down］
EHRENBERG，Christian Gottfried Mikro－ geologische Studien Berlin；K．Akademie dr Wissenschaften； 1873 ［Down，I］

EHRENBERG，Christian Gottfried Vorläu－ fige Nachricht über das kleinste Leben im Weltmeer，an Südpol und in den Meeres－Tiefen Berlin；L．Voss； 1844 ［CUL，I in each part，S］ gd，geo，ve
Part 1， $39 m 413 m, 31 m 59 m, 17 m, 26 m$ ， $34 m 61 m, 21 m 78 m, 14 m, 23 m, 25-28 m, 29 m$ $89 m 1027 \mathrm{~m} 1417 \mathrm{~m} 153 \mathrm{~m} 1613 \mathrm{~m}, 15-16 \mathrm{~m}$ ， 31－36m（Darwin） $188 m, 13 m, 25 m, 36 m 19$ $8 m, 32 m$

Part 2， 12 21a／ct
Part 3 title page w Nothing
Part 4 title page w Matter Dust
Part 5， $1132-34 m$
Part 6 title page w Patagonia－Infusoria－B． Blanca－Pampas 10 19w 2511 15－19w with some fragments of Infusoria 12 14－16m／ $4-16 w$ volcanic character more clear \＆ number of Infusoria increase each time 13 $13 u / w \tau 145 u$＂verglühter＂， $25 c$＂A＂，26－32m／ $27 c$＂B＂， $27 \mathrm{~m} / \mathrm{w} \tau, 29 \mathrm{~m} / \mathrm{w} \tau, 30 \mathrm{~m} / \mathrm{w} \tau, 31 \mathrm{~m} / \mathrm{w}$ ， $32 u$＂ 8 ＂w 〈locations of species〉， $33 u \tau, w b$ land
forms $153 w$ though near $8 u$＂Süsswasser＂， $9 u$ ＂verschiedenen＂， $10-16 \mathrm{~m}, 14 \mathrm{~m} / \mathrm{w}, 15 \mathrm{~m} / \mathrm{w}, 16 \mathrm{w}$〈locations of species）， $25 \mathrm{c} \mathrm{c}_{0}$＂$A$＂， $26-31 \mathrm{~m} / 29 \mathrm{c} \mathrm{c}_{0}$ ＂B＂／30m／27w p90 wb p． 17516 wt no．Inf－ usoria $1-4 m, 1 m, 2 m, 4 m, 5-6 w 137-9 m / 7 u /$ $w \tau / 9 u / w \tau 19$ 11－16m，19－24m，34－38m
Part 10， $518 a / c \notin \notin$
part 11 title page $z 33326 \mathrm{~m} / 26 c / w_{\notin} \equiv 339$ 12a／ c $\notin 359$ 9－25m
Part 12 title page w Nothing
EICHWALD，Eduard von Geognostisch－ palaeontologische Bemerkungen über die Halbinsel Mangischlak und die Aleutischen Inseln St．Petersburg；Buchdruckerei der Kaiserlichen Akademie der Wissenschaft； 1871 ［CUL］\wp

EIMER，Theodor Untersuchungen über das Variiren der Maureidechse Berlin；R．Stricker； 1881 ［CUL，I］
204 10m 21210 m 2192 m
ÉLIE DE BEAUMONT，Jean Baptiste Armand Louis Léonce Leçons de géologie pratique Paris；P．Bertrand； 1845 ［CUL］ beh，ch，geo
137 11－17m 140 22－27m，22－24u＂terrel diminution＂，26－29m，27－30＂．．．＂ 141 16w Buildings $17-19 m, 19-20 u \leftrightarrow, 23-27 m, 29-32 m$ $1421-7 m, 2-3$＂．．．＂ 143 23－32m 145 23－32m 148 24－29m，25－26u＂permanence l végétale＂ $1498-13 m, 22-25 m 1501-5 w$ has changed very little 2－6m， 3 u＂l＇an 451＂ 152 wt He did make sections，\＆ 1 shd thought may have been steeper 1－6m，30－32m 153 1－4m 160 wt Tumuli in many parts $1644-9 m 1651-11 m$ ， 17－22m 168 6－10m，6－29w I think earth－ castings when they come to bottom of slope must be carried away $16921-25 \mathrm{w}$ He forgets new Humus formed 182 26－32m 187 29－33m 18920 m 226 29－32m
\wp
ÉLIE DE BEAUMONT，Jean Baptiste Armand Louis Léonce Note sur les systèmes de montagnes les plus anciens de l＇Europe Paris； 1848 ［CUL］
124 17－29m
EMERY，Carlo Fauna und Flora des Golfes von Neapel 2．Fierasfer Leipzig；Wilhelm Engelmann； 1880 ［Botany School］\wp

ENCYCLOPAEDIE der Naturwissenschaften Breslau；Trewendt；1879－1882［Down］\wp

ENGELMANN，Wilhelm Bibliotheca histor－ ico－naturalis vol．1；Leipzig；Wilhelm Engelmann； 1846 ［Down］
gd，wd
NF buc
NB1 Any of Nillson in French？； 305 Is Nillson＇s Handbook in German or Swedish？－ I think not； 367 Wagner on Geog Distrib of Mammals；Pritzel Thesaurus Literaturae Bot． 2.2 （in Athenaeum Club）；Steudel Nomenclator Bot． 33 in Linn Soc．
NB2 Tidsshrift p133
Danish Tra．p57
p289 Vermischte Zoolog．includes domestic animals
Ancheria p749
Sardinia p157
p531；p．636；73； 142
ix $11 m / w \notin \pm, 12 m 3846 m, w b$ England \＆ Amer p38 France p61 $489 m 5751 m 6135 m$ $10317 m 13322 m 15749-53 m 240$ wt 303 $6 m 3043 m / w$ Meyer－got $45 m 31148 m 320$ 31－34w 1st edit about 181636 m （Cuvier），38－ $39 w$ this is mine $33839 w \notin 33943 \mathrm{~m} / \mathrm{w}$ out of print 341 39－47w／wbec，44－45u＂1789－1813＂ $42942 m 48631 m 52731-32 m$ ，41－43m（F．L． Delaparte） $53130 u$＂R．IXXXIX＂ $5543-7 m$ 749a 19m 754b $5 m$ 785b 44－48m

ENTEN，Schwanen und Gänsezucht Ulm； Ebnerschen Buchhandlung； 1828 ［CUL］ $\mathrm{f}, \mathrm{v}, \mathrm{wd}$
NB p．25；28，36；78；83；87；143； 144
SB $\square \beta$
p25 Goose sometimes top－knot p36 Wild Goose 10－12 Eggs p28 tame lays 13－18
p87 Tame Duck will lay 80－100 Eggs in year p143 Details of Rearing wild Ducks in Sweden－Tiburtius reared them for 3 generations \＆they did not vary in least in taste or feather．
$2512-14 m \quad 13 u$＂selten isabellgelb＂ $14 u$ ＂Straus＂ 28 介7－5m 36 介10－9m $741 u$＂un＂／？ 78 介10u＂wilde \Art＂｜！！ 79 14u＂Busch｜Kopfe＂｜ w what $\Uparrow 10 u$＂hängende＂，$\uparrow 3-1 m / \Uparrow 3 u$＂Chinal Vaterland＂ $83 \uparrow 4-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ one considers the handsomest tufted Ducks those，whose tufts are made of many little tufts． $876-10 \mathrm{~m} 143$ $13-15 m / 15-25 w$ Has reared \＆formed useful Ducks from wild Birds Q 144 5－10w Have kept for 3 generations feathers \＆taste like wild Ducks

ERCOLANI，Giovanni Battista Nuove ricerche sulla placenta nei pesci cartilaginosi e nei mammiferi e delle sue applicazioni alla
tassonomia zoologica e all＇antropogenia Bologna；Gamberini \＆Parmeggiani； 1880 ［CUL，I］\wp

ERCOLANI，Giovanni Battista Sull＇unità del tipo anatomico della placenta nei mammiferi e nell＇umana specie e sull＇unità fisiologica della nutrizione dei feti in tutti i vertebrati Bologna； Gamberini e Parmeggiani； 1877 ［CUL，I］\wp

ERICHSEN，John Eric The science and art of surgery 5th edn， 2 vols．；London；James Walton； 1869 ［Down］

ERNEST，J．A．Dictionary，Graecium lexicon London；J．Rivington； 1816 ［Botany School， pre－B，ED］

ERRERA，Léo Sur la structure et les modes de fécondation des fleurs Part 1；Gand；C．Annot－ Braeckman； 1878 ［CUL，I］
v
NB 212；62，65， 66 Cleistogamic Flowers； 70；117；144；123；Plantago 170 variation passing from Entomoph into Anemophilism； 129 Table of terms；133； 146 Index of terms； There is also much on variation of Pentstemon
62 3－19m 65 5－25m 66 26－28m 70 12－24m 84 $22 u$＂àlguêpes＂， $24 u$＂Linaria sriata＂ $854 u 111$ 1－23m（Sprengel） $12217 \mathrm{~m} 1235-17 \mathrm{~m}$ ，18－21m 124 6－10m $1335-21 \mathrm{~m} 135$ 28－30m 136 16－ $27 m 154$ 11－19m 196 22c＂portaient＂ 212 24－ $31 m 213$ 20－24m

ESCHRICHT，Daniel Frederick，REIN－ HARDT，Johannes Theodor and LILL－ JEBORG，Wilhelm Recent memoirs on the Cetacea ed．W．H．Flower；London；The Ray Society； 1866 ［Down］
NB not read
$5732 u 6613-17 m, 22-24 m / 22 u, 30-39 z 746-$ $9 m 7826-31 m$

ESCHWEGE，Wilhelm Ludwig von Beiträge zur Gebirgskunde Brasiliens Berlin；G．Reimer； 1832 ［CUL，on B］
gd，sh
NB 3666486 Shells at Bahia \＆St Pauls
The last chapter I have marked，but must be read again carefully 36 6－12m／7u＂aufgeschichtet＂
\wp
469 24－25m 471 5－7m 472 1－2m／u＂Bergbaul getrieben＂ 478 7－9m $47912 m 483$ 1－11m 484 $9 u$＂Granitmassen＂$/ 9-16 \mathrm{~m} / \mathrm{u}$＂nichts＂$/ 15-16 \mathrm{~m}$ 486 6－16m 488 9－13m，34－38m

ESPINAS，Alfred Des sociétés animales；étude de psychologie comparée Paris；Baillière； 1877 ［CUL］
beh，co，in，oo，or，sl，t，ts，wd
SB $\square \beta$
p14
47 Instinct of Aphides
54 Actions performed without distinct reasoning－good
－196；Much on instinct
\＆the mental qualities of animals \＆ individually on sexual selection，but I have not read all carefully．
p． 300
305；308； 317
〈over〉
Except in the coral instance I do not believe that either corporeal structure or mental ability are $*$ due＊to the preservation of single individuals
a I have never alluded to the very useful work of definition，but it seems to me that the term social ought to be confined to＊ animals which are induced \Leftrightarrow to $*$ live together through mental attributes， independently of any physical bond，\＆if so corals \＆c cannot be said to be social even in the lowest degree，any more than the buds on the same tree．－but it is rather beyond my line of work，being too philosophic or
I have now read your work，but I have nothing particular to say
It seems an interesting \＆very valuable Work \＆you have been great adaptible in acquiring great knowledge from all sources．Every one alluding to the mental power \＆nature of animals wd be bound to study it．／p54 As you hardly admit to principle of evolution we view all subjects from such widely differt points of view，that it is not surprising that we should often differ．Allow me to point out that you have unintentionally misrepresented me at p． 47 I have not discussed the origin of the instinct of domesticity，\＆have only alluded to them with respect to the question whether the aphides have any advantage from giving to the ants the social instinctsO I shd have added differs from conscious

14 2－5m 47 16－24m 54 14－31m 55 1－12m 57 $7-17 m 196$ 1－9m $3007-13 m / w$ fear makes cluster more together？ $3051-8 m 3081-$ $3 m$ 309 wt a Cat \＆a Dog brought up together will love one another 9－12m，21－ 23？ 317 8－12m 351 12－18m

EURIPIDES Hecuba Oxford；J．Vincent，H． Slater，J．Mawman，Deighton \＆Sons； 1836 ［CULR，S Charles Darwin，Christ．Coll．］
〈here and there，translations and para－ phrases of text）

EYTON，Thomas Campbell Osteologia Avium 2 vols．；R．Hobson；Wellington，Salop； 1867 ［Down］

FABRE, Jean-Henri Casimir Souvenirs entomologiques, études sur l'instinct et les moeurs des insectes Paris; Ch. Delagrave; 1879 [CUL, I, S]
beh, v
NB p122; p.129; p174; p.211; p241; 271, 2
SB $\quad 121$ p. 122124 variation p. 122124 Instinct good; 129; 176-177 some variation of; 211 on finding way; 241; 318.
$\Leftrightarrow 168$ cutting off Antennae; 172 shutting up cell; 177 parallel case
title page u 〈author, title〉 $7326-27 m 12131-$ $35 m 122$ wt Gauchos killing by pittingO 6$17 m, 36 m 12319 u$ "criquets \mid habituels", $36 m$ $1241-3 m 12532 u$ "dernier siècle" $12628 u$ "gиêpe" 129 33-36m 168 31-35m, wb antennae or palpae when former cut off 169 $17-20 \mathrm{~m} / 19 \mathrm{u}$ "tous 1 palpes", $30-36 \mathrm{~m} / \rightarrow 1702-$ $5 \mathrm{~m} / 3-4 u$ "six loviscapte", 19-22m $17134-36 \mathrm{~m}$ 172 9-15m, 17-22m 174 2-13m 176 31-36m 177 1-4m, 14-22m, 25-31m 211 15-24m, 27$29 m 24125-32 m, 33-35 m 26214-29 m 271$ 21$28 m, 32-35 m 272$ 27-32m 274 wet 296 18$26 m 297$ 18-24m $29926 m 311$ 8-21m 315 30$36 m 318$ 28-32m

FAIVRE, Ernest La Variabilité des espèces et ses limites Paris; Germer Baillière; 1868 [CUL, I]
ct, em, f, he, phy, spo, sx, t, v
SA $\langle p p .12-13\rangle \square \Re \notin$
Dom. Animals
Faivre Var. des Espèces

- p. 44. various sports enumerated some good.-; p. 100 on certain cult. plants which lose their character in certain sites
p71. for Pangenesis. on special action of poisons Cl. Bernard \Leftrightarrow
- p 111. Pangenesis on embryonic limb grafted \& developing itself. p. 132 do; p114 on permanence of new race of Datura Tatula obtained by Godron.
$\Leftrightarrow 119$ Cases of Reversion by seed.
155 vitality of pollen
- 112 good (on Canna)
$7 \quad 13-20 m, \quad 36-37 m \quad 10 \quad 36-37 m / 30-37 w$ Termites 8 forms!! 22 2-9m 23 1-14w or rather a state of Direct action Polymorphism 16-31m $2536 m 44$ 24-28m/26-27w Sport 36$38 \mathrm{~m} / \mathrm{w}$ Sport $454-7 \mathrm{~m}, 12-17 \mathrm{~m} / \mathrm{w}$ Sport $37 u$ "Carrière" $/ 37-38 m 7135-38 m$ 90 9-16m 95 $27-35 m 10010-37 m 1012-18 m 102$ 21-36w yet has said before few * natural races!! 103 11-21m $11033-35 m, 36-37 m \quad 111$ wt Pangenesis $1-4 m, 38 m 1121-6 m / 2 u$ "membre anormal"|4u "cette|plan"/1-2w Pan 114 11-

15m 119 9-16m $13234-37 m 13310-17 m 141$ 33-35m 155 12-14m, 25-28m, 36-37m 156 15$19 m 158$ 15-18m, 16u "Balisiers", 16-19w Canna Dict. class. 159 9-11m, 19-24m, 2630 m 177 8-15m, 18-22m

FALCONER, Hugh Palaeontological memoirs 2 vols.; London; Robert Hardwicke; 1868 [Down, I in vol. 1]
tm
vol. 1 NB 577 Canines; 581
xv $18 m$ xvii $16 m, 18 m, 20 m, 28 m$
\wp
577 24-25m/25u "caninesljaw" 581 33-40m vol. $2 \wp$

FALCONER, Hugh Report on the teak forests of the Tenasserim Provinces Calcutta; F. Carbery; 1852 [Down, I]
NB 3030 11-22m, 25-31m $3134-39 m 32$ 20$24 m 336-10 \mathrm{~m}$

FARRAR, Frederic William Chapters on language London; Longmans, Green \& Co.; 1865 [Down, I]
beh
NB Gesture language 104
104 1-19m $113 w\langle n o t C D\rangle$
THE FARRIER and Naturalist edited by a member of the Zoological Society of London 3 vols.; London; Simpkin \& Marshall; 18281830 [CUL, pre-B]
ch, sl, tm, wd
vol. 1 NB Those struck out read in Vol I; 338*; 380* Q 452 * ; 466 change in Wool in sheep; 469* 547. - Guinea-fowl on St Helena in 1588
$3381-3 m / Q 3806-13 m 452 w t$ All Q $17 u$ "the sorrel", $20-21 m, 26-28 \mathrm{~m} / 26 u$ "often" $\mid 27 u$ "black|dark", 28u "often"/Q 32m, 45m 453 $1 u$ "sorrel", 3-5m, 25u "tincturedlclaret" "brown", 25-31 \rightarrow /31u "dappled", 39-41 $\rightarrow 455$ $5 u, 7-8 m / 7 u$ "fallow", $10 u$ "because I goes", $12 u$ "thence | backed", 19-21m/19u "fallow|duns"| $20 u$ "faintly dappled", $40 \mathrm{~m} 45626-30 \mathrm{~m} / \mathrm{w}$ Q colour 466 32-41m 467 1-7m 469 33-35m 547 21-22m, 26-27u "pintados"
vol. 2 NB Dog

- 151; 349; 365; 368; 379

Allude to Wilson Essay
151 25-33m 349 26-31m 365 24-26m 368 10$14 m 37920-24 m, 39 m 3807-12 m$
vol. 3 NB 17; 115
Rabbit \& Hare not crossing Qas

FARRIER
17 9－20m，wb no selection by men 115 16－ $25 m$

FAUNA UND FLORA des Golfes von Neapel， Monografien 1－4 Leipzig；Wilhelm Engelmann；1880－81［Botany School］\wp

FAYRER，Joseph The royal tiger of Bengal London；J．\＆A．Churchill； 1875 ［Down，I］

FENWICK，Samuel The student＇s guide to medical diagnosis 2nd edn；London；J．\＆A． Churchill； 1871 ［Down，FD］

FERGUSON，George Illustrated series of rare and prize poultry including comprehensive essays upon all classes of domestic fowl G ． Ferguson；Beaufort Library； 1854 ［CUL］
af，beh，br，cc，cr，cs，dg，f，fg，he，hy，in，sl， sx，wd，y
NB 1 must be careful about trusting this man．－Mr Tegetmeier says not known as a Farrier．Mr Brent does not know，but says he offered to sell Coops \＆Aviaries－so must at least have kept Birds．－
Tegetmeier has commented The whole Book a pack of lies \＆compilations

SB1 $\square \Re$

ivャ；iv；v＊；v；vi»；p．v＊；vi
23；27；31；32；35；49；67＊；69＊；75，75＊；82；
85 ；91；93；108；151；162； 163
－$\&$ see $p .27$ to explain
＊a good deal of remarks on Polish Spangled Cock \＆Hen；Cocks \＆Hens almost always different Spangling v ．wild Hen which is I think barred
$\left\langle\boxminus ; \star \otimes_{0}\right\rangle$ Cuckoo Poland；Cocks \＆Hens almost always different from part Spangling \＆barring plannedO in Hens
SB2 317；320；333； 342
$\langle(\Delta) ;\rangle$ Always put after Page names of Breeds（Shangae）（Game）\＆c；connect perhaps 4 by dots ．．．．．．．．（See p．27）；Clean well the pencil marks．－；Keep Book Clean．； Write smallish on one side，number your pages．
〈over〉
$\leftrightarrow \mathbb{k}_{0} \rightarrow$ Mr Norman put in name at top
171； 172 н；176；177； 186 Good example of Malays；187；192；201；206；230； 254；260；262；277；281； 284 －KissingO each other； 296 see Weight of Malays 297； 299；302； 304 ；305；311； 313
$\langle(a) ; \Leftrightarrow]$ Look at weights of Malays
over
SB3 $\square \beta$ 风
p vi．no ancient selection $Q \Leftrightarrow$
p． 23 Black－red Cock Shangai resembles game $\mathrm{Q} \Leftrightarrow$
－ 27 on power of male Cochins in courting shy females
35 Shangai eggs granulated $Q \Leftrightarrow$
49．－slowly feathered
75 Prefer breeding from bad bird of good pedigree to good bird with bad pedigree
83－experiments on interbreeding Spanish＊ causing Degeneracy．
93 Grey Dorking like male X
108 about ascertaining \＆selecting flavour of flesh when killed＊preserve brother：with respect to neuter insects．－X
162 Fanciers select each point to excess．a little peculiarity＊valueless－a great more valuable or．－quote．－X
172 All birds more readily acquire than lose a peculiarity．－Polish Fowls heads very hereditary see Poultry Chronicle Easily grafted by a cross
186 O Malay Hen 10 caudals－crow peculiar．－individual differences
〈over〉
192．Deist－believes of multiple origin $\mathrm{Q} \Leftrightarrow$
201 Hybrids with Pheasant－Lies 〈u．＠〉
285 on proportion of Male \＆Females－ Males in excess．－
297 Eggs of Black Bantam different shape Q
302 Cuckoo Bantams Q \Leftrightarrow
311 Highly－bred Birds－many eggs unproductive
313 －change of locality lessens injurious effects of interbreeding
317 Freemans Game stock degenerating from interbreeding
iv $14-20 \mathrm{~m}$ v $23-30 \mathrm{~m}, 34-35 \mathrm{~m} / 34[\ldots$ vi $1-10 \mathrm{~m} /$ 3－4Q $2313-17 \mathrm{~m} 271-6 \mathrm{~m}, 20-24 \mathrm{~m}, 26-33 \mathrm{~m} 28$ $1-10 \mathrm{~m} 3116-21 \mathrm{~m} 328-17 \mathrm{~m}, 18-23 \mathrm{~m} 3412-$ $13 m 35$ 11－21m 49 22－26m 67＊28－33m 69＊ 30－33m 75 30－33m 75＊1－4m 82 24－31m 83 1－ $5 m 915-8 m 9331 w$ Grey Dorking 32－33m $1085-11 \mathrm{~m} / \mathrm{Q} 151$ 11－17m 162 24－32m 163 1－ $3 m, 4-15 m 171$ 19－28m $1725-12 m 176$ 28－ $33 m / 30 w$ Dixon $1773-17 m$ 186 7－10m，29u ＂ 13 ＂／28－32m／w see Bantams 187 17－22m 192 2－5m 201 4－29m 206 20－29m 230 25－28m 235 10－16m 252 33u＂Thel varies＂ 253 1u＂froml cream＂， $7 u$＂hens \mid unusually＂ 254 26－31m 260 4－8m，13－16m，17－18m，18－24m 261 15－25m 262 24－33m 277 32－33m／wb Pencilled H． 282 1－4m，7－11m 284 31－33m 285 1－2m，9－15m 287 6－11m 296 2－6m，15－17w Cock \＆Hen same plumage $19-22 \mathrm{~m}, 29-33 \mathrm{~m} 29715-22 \mathrm{~m} /$ 19z $299 \quad 8-12 m \quad 302$ wt Cuckoo Poland mentioned $1-3 m 30511-15 m, 23-26 \mathrm{~m} 31130-$
$33 m 312$ 1－5m 313 5－10m，20－29m 317 11－ $32 m 320$ 3－9m 333 1－8m 342 7－11m〈 67^{*} means second $p .67$ etc．）

FERRIÈRE，Émile Le Darwinisme Paris； Germer Baillière； 1872 ［Down］

NB O／

FERRIÈRE，Émile Le Darwinisme Paris； Germer Baillière；n．d．［Down，another copy］ NB O／

FERRIS，Benjamin G．Origin of species，a new theory Ithaca，N．Y．；Ithaca Democrat Print； 1871 ［Down］

FICHTE，Immanuel Hermann Die Seelen－ fortdauer und die Weltstellung des Menschen Leipzig； 1867 ［Down］
xlvi $9-46 \mathrm{~m} / 10 \mathrm{w}$
FISKE，John Darwinism and other essays London \＆New York；Macmillan \＆Co．； 1879 ［Down］

FISKE，John Outlines of cosmic philosophy based on the doctrine of evolution 2 vols．； London；Macmillan \＆Co．； 1874 ［Down］
vol．1， $1297 m, 8 m$
FITTON，William Henry Notes on the progress of geology in England London； Richard Taylor； 1833 ［Down，on B？，I］

FITZGERALD，Robert David Australian orchids vol． 1 i－vii，vol． 2 i，iii，iv，v；Sydney； Thomas Richards；1877－［Botany School，I］ $\mathrm{f}, \mathrm{fg}, \mathrm{gd}, \mathrm{sp}, \mathrm{tm}$
vol． 1 i， $126-27 x$ ， $27 \mathrm{~m}, 28 u \uparrow$ ， $34 u \uparrow / 34$ $39 m, 35-38 m / 36-41 w$ How in other parts of range？ $40 u$＂in 1 seed＂ $\mid x / w$ seed with every 44－47m／44u＂or Itime＂，49－50m／x 2 wt is this native rate－Try with own pollen F． Muller \＆Scott（in Fs letter one is perfectly fertile if own pollen placed on stigma） $1-3 m$ ， $34-40 \mathrm{~m} /$ ？， $50-52 \mathrm{~m} 31-5 \mathrm{~m} / \mathrm{x}, 5 x$ ， $12 x$ ， $16 x / w$ rare $41-6 w$ As the seeds did not germinate，it cannot be told that nat fertilisation occurred 13－15x，16－17m，26－ $30 m, 47-49 m$ Pterostylis longifolia $8-9 m$ ， 14－19m／15u＂from｜half＂ $16 u$＂onelfive＂，22－ $27 \mathrm{~m} / 22 u$＂instantly carried＂$/ 24 u$＂twol pollen＂， 33－35m，36－39m，40－42m，43－44m Caladenia dimorpha $7 u$＂lip｜column＂， $7-9 \mathrm{~m} /$＂．．．＂$/ \mathrm{w}$ Genus like $10 u$＂without｜such＂，24－26w are
not the calli nutritious
vol． 1 ii，Spiranthes $15-17 m / x / 16-17 u$ ＂touch 1 stage＂， $20 x / u \leftrightarrow, 23-27 \mathrm{~m} / x / 26 u$＂under 1 fertility＂Adenochilus 14－16m／x Saccolabium $2 x$
vol． 1 iv Thelymitra $13-17 \mathrm{~m} / 16 u$＂havel the＂， $18-25 m, 28-42 m$

FITZROY，Robert and KING，Philip Parker Narrative of the surveying voyage of H．M．S． Adventure and Beagle 3 vols and appdx．； London；H．Coburn； 1839 ［CULR， 2 copies of vol．3，one marked by FD］
gd，geo，gr
vol． 1 NB－2；8；56；136；140；204；210； 258；306；328；337；363；375；385；copied out
SB 〈not CD
2 15－17m 3 21－27m 6 3－6m 8 1－4m 56 31－ $34 m / w$ Feb $5722-24 m 581-3 m 595-7 m 87$ 14－16m 133 29－33m 136 6－10m，29－34m 140 9－12m，19－20m，22－28m 204 20－28m 210 18－ $25 m 25822-26 m 306$ 3－9m 307 22－26m 328 9－12m 329 9－10m 337 1u＂some｜which＂，14－ 21m／16－21w 168 ft ！！42ft 126 28－31wec 343 $7-8 m 363$ 10－13m 375 20－28m 385 1－6m 398 24－30m
\wp
vol． 2 NB1－251；277；415；418； 420 copied out
NB2，SB 〈not CD \rangle
39 30－31m 43 13－15m 65 5－7m／w no 131 （markings not by CD until） 251 33－34m 277 30－33m 412 20－25m 413 10－13m，18－20m，22－ 28m，33－36m 414 1－13m，15－23m 415 1－7m， 18－20m 420 5－15m 421 1－7m，33x／u＂twenty toises＂ 485 31m 486 17－18m 488 22－23m 490 $23 m / m / u$＂ 1832 ＂ 496 27－30m $49811 u$＂James Island＂， $12 u$＂side ICharles＂， $8-14 m / w$ the leeward side compared with 502 9－11m，35－ $37 m$ 504 19－22m 505 15－18m／16u＂north－ west＂，30－34m，36－37m
vol． 3 NB 209 \＆ 210 Law of succession of life in S．America
153 Distribution not always
〈many markings not by CD，except〉 153 1－4m 154 17－21m 184 wbec 185 wtcc 201 wtcc 209 4－6m 210 6－9m 215 31a＂The＂／31－33c／31－37w／ $w b$ puma，with the condor on its train follows \＆preys on the guanaco（Habits of．） 216 1－7c 272 16－17m，25－26m 273 9－20m 307 wbcc 460 4－7m（Henslow） 556 3－4m 585 3－15m

[^0]FLEMING，John A history of British animals Edinburgh；Bell \＆Bradfute； 1828 ［CUL，pre－ B］
br，tm，v
NB p． 264 －Analogous to Pigeons－on vars of Helix nemoralis coupling together．－〈untranscribed w are page－number references〉
$599 w, 37 w, 42 w 604 w 941 w 11620 w, 33 w$ $1171 w 14815 w 16213 w, 35 w, 49 w 177 w t$ acanthopterygious $22 w, 37 w 1781 w, 19 w$ ， $29 w 2022 w, 8 w, 29 w, 36 w, 39 w 2031 w, 11 w$ ， $22 w, 38 w 224<2 w$ not in this volume $12 w$ $2254 w, 8 w, 9 w, 10 w, 14 w, 15 w, 17-19 \mathrm{~m} / \mathrm{w}$ ， $21 w, 25 w, 26 w, 28 w, 29 w, 31 w, 33 w 226$ $12 w, \quad 25 w \quad 264 \quad 13-20 \mathrm{~m} / 16 u$＂Reverend I Sheppard＂ $114-16 w$ Linn Trans？27－29wec 281 \＆ $33 w, 34 w, 36 w 296$ \＆ $3 w$ Scutibranchia $12 w, 13 w, 15 w, 20 w, 27 w, w b$ Cryptobranchia Heart entire detached from rectum Scutibranchia Heart with two auricle traversed by the rectum． $29712 w, 16 w 328$《 $5 w, 12 w, 17 w, 23 w, 29 w, 32 w, 36 w, 39 w$ $3291 w, 2 w, 5 w, 8 w, 10 w 381 \leftrightarrow 11 w, 22 w$ ， $29 w, w b$ Siphonida．Cloak more or less closed forming syphons ．．．． $4083821 w$ ， $9 w 408 \not 2 w, 10 w, 26 w 409 \Leftrightarrow 1 w, 17 w, 32 w$ ， $43 w 4101 w, 7 w, 14 w 467 \otimes_{2} 23 w 472 \otimes_{3} w$ ， $7 w, 9 w, 13 w$ not in this volume $47388 w$ ， $10 w, 12 w, 13 w, 18 w, 20 w 4749 w, 17 w, 20 w$ 505 d $2 w, 3 w, 5 w, 7 w, 10 w$ not in this volume $506 \Leftrightarrow 9 w, 24 w, 27 w, 35 w, 43 w 528$＊ $3 w, 5 w, 12 w, 19 w 538 \nless 10 w, 16 w, 23 w, 27 w$ ， $31 w$

FLEMING，John The philosophy of zoology 2 vols；Edinburgh；Archibald Constable \＆Co．； 1822 ［CUL，pre－B，S in both vols．］
beh，br，cc，fg，gd，is，mg，oo，phy，sx，t，ti， ud
vol． 1 NB1 See Class Index in next volume． NB2 almost all first relating to Instinct 20；50；52；221；224；229；231，2；236； 241 －good；246；254， 6 to 268 to 274；277；298； 302；308；409；425；427xx；429；430； 432
20 10－15m，27－34m／30u＂instinctive linjuries＂／ 28－32w how loosely worded 50 19－21m 52 15－18m（Linnaeus） $2208 u$＂Association IIdeas＂ $2212-6 m / 6 u$＂recollection＂， $9 w$ dreams 224 19－23m／？，23－26w 225 2－8m／w how known？ $2297-9 m, 32-33 m 23026-30 m 23123-27 m$ $2324-9 m / w$ like Audubons Water－Dog 10－ $17 w$ Old Greyhounds will not run if Hare starts at a distance 233 25－31m 235 23－32m $2365-11 \mathrm{~m} / \mathrm{w}$ shamming death＊My Rio de Janeiro spider shows insects know their 241 $\uparrow w / w t$ The individual who by long intellectual study acquires a habit，\＆can perform action
almost instinctively，does，that in his life time，which successive generations do in acquiring true instinct：－instinct is a habit of generations，－each step in each generation， being intellectual for in lowest animals some intellect？No！23－25m／27－28m／u＂rather 1 impulse＂／$\ddagger w$ the distinction between these habits perhaps important $w b$ it is strange according to my theory that habit which results often of intellectual processes，－ Habit may result from any train ie only incidentally effect of reason or 〈of intellectual processes \rangle－is so related to instinct，which analogy of plants leads one to believe to exist，independently of intellect．－ $2435-9 m$ ， $10-16 w$ How wonderful young of Kangaroo sucking $247 w t / 1-6 w$ \＆turning round before sleeping－covering dung \＆c show that principle may possibly be laid down that every instinct preserved is not changed \＆ some of these may once have been important．7－10m／x 254 4－6m，7－8m，31－34m 255 12－13m 256 19－23m 257 1－4w station \＆ home confounded $258 \quad 29-32 \mathrm{~m} / \mathrm{w}$ monkeys pulling things to pieces－looking behind looking－glass 259 28－32m／30u＂immediatel individual＂，33－34m $2618-14 \mathrm{~m}, 26-30 \mathrm{~m} 263$ $1-2 m / w$ monkey with dogs 265 wt the sudden way insects recover from feigning death shows it is not effect of fainting－do insects such as Byrrhus contract their legs in dying？？？3－7m，11－12m，12－13u＂Affections I pain＂， $14-17 w$ ！！！Baby＇s affect．to Mother！！ $2681-3 m / w$ difficult to be accounted for 9－ $12 m, 19-22 m 27227-31 m / w$ difficult 273 17－ $20 m 2744-7 m / w$ dogs－wolves porpoises 277 9－13m／w By nerves in＊some compound animals 298 2－6m 302 9－16m／w ！！！dogs running Hare p304 304 18－21m，29－ $35 \mathrm{~m} 30510-17 \mathrm{~m}, 23-30 \mathrm{~m} 30824-26 \mathrm{~m} / 21-28 \mathrm{w}$ What are active powers？ 309 1－6m 409 19u／a ＂neuter＂$/ 17-19 \mathrm{~m} / \mathrm{w}$ of both sexes my theory like plants $4251-4 m / w$ Has true Eggs 15－ $17 \mathrm{~m} / 15 \mathrm{u}$＂tol confined＂， $19-29 \mathrm{~m} / \mathrm{w}$ । think infusoria properly breed $4261-2 m 4275-$ $18 \mathrm{~m} / 13 u$＂Soc． 1268 ＂，23－30m／w argument not conclusive also x by flowers not being permitted．wb Hypothesis－such plants were originally long lived and have become annual，having been transported（by nature） to cold climate． $42811-14 \mathrm{~m} / \mathrm{w}$－in course of time，every $25-28 \mathrm{~m} / \mathrm{w}$ this is merely same as successive buds on trees $31-34 \mathrm{~m} / 33 u$ ＂acotyledonous＂，36－38m，wb Hence one can only say－strongly tempted to believe， only true reproduction is seminal－ 429 $w t / 1-6 w$ makes vast distinction between plants \＆animals $7-9 m / 8-9 u$＂preventivel
aversion＂$/ w$ ？assumed V．p． 430 note．－27－ $29 \mathrm{~m}, 29-34 \mathrm{~m} /$ ？ $4307-8 m, 29-30 \mathrm{~m}, 30-32 \mathrm{~m} /$ $32 u$＂whichlexhibited＂ $4329 u$＂procreating＂， $10 u$＂of species＂$/ 10-12 w$ only applies to plants vol． 2 NB1 The sexes of Nightingales arriving at different times，is illustrated by sexes separating as in chaffinches，where there is no migration．－
NB2 good Chapt on migration of Birds
5；6；8；10；12；30；33；35；40，3，4．；108； 140；149；355；356；362；379；407；530；535； 578； 618
SB $\square \Re$
231 C．cornix breaking shells
\＆ 233 All here excellent illustrations of reason in animals．－
241 some good remarks on instinct vol． 2
10 Horse in Zetland pregnant only biennually Q
42 Flight of Birds Rate of－Hawk－case．－ 44 On birds knowing time \＆direction 149 on masculine instincts in old Females 356 Fecundity of Fish
5 24－30m 6 9－10m／10u＂excite｜vomiting＂ 8 $12 u$＂produced \mid stature＂$/ w$ sometimes $14-16 m$ ， 19u 10 20－21Q 24u＂his｜year＂｜ $25 u$＂twelfth＂｜ $26 u$＂abovel years＂$/ 24-29 m / w$ How other horse －goodish－How in cattle 12 9－33m 13 16－ $20 m 308-16 m 3234 u$＂leafing｜elm＂ $28-34 m$ （Linnaeus，Stillingfleet） $331-5 \mathrm{~m} / 2 u$＂leafing sycamore＂， $19-24 m, 31-33 m \quad 34 \mathrm{wt} / 1-5 \mathrm{w}$ These facts show how much influence small differences of temp－have upon－ distribution of Birds 5－9m 35 2－22m，21－24m， 30－32m／w Zoology of those Islds $361-7 m$ ，9－ $13 m 41$ 1－8m，25－34m 42 wt in Montagus Dict it is said from Dr Show that a Falcon of Duke of Cleve flew out of Westphalia into Prussia in one day－but this too vague． 4 $37 w$ In Montagu Col．Thornton estimated that a Falcon after a Snipe went at rate of 9 miles in 11 minutes $=49$ miles per hour but independently of numerous turnings $433-7 \mathrm{~m} /$ w all correctly quoted $8-13 m$ ，$w b$＂certainly 100 miles is not beyond a fair computation for migratory continuance＂．Montagu． $447-$ $26 m / 15-19 w=$ very good $=20-23 w$ Pacific also $w b$ proves a faculty－useless in indulge in mere conjecture as has been done，showing ＊that electrical currents $1089-11 \mathrm{~m}, 30 \mathrm{~m}$ ， 31u＂fallow－deer＂，32m 109 25－27m 140 5－30m 149 3－16m，19－21m
\wp
355 1－4m 356 1－4m，20－35m 357 21－24m，27－ $29 m \quad 362$ 1－5m $366 \quad 28-32 m \quad 379 \quad 10-12 m / w$ Secondary male characters $21-22 m 407$ 21－
$24 m 5306-8 m, 35-38 m 5356-10 m, 33 m$ \wp
$57814-23 w$ is presence of neuters universal in these genera
\wp
$6194-8 \mathrm{~m} / \mathrm{w}$ possibly serve for reference 10 $16 w$ See about Royston Crow

FLOURENS，Marie Jean－Pierre Examen $d u$ livre de M．Darwin sur l＇origine des espèces Paris；Garnier Frères； 1864 ［CUL］

NB 4864 nothing
48 1－5m 64 8－9m 65 1－9m
Catalogue \wp

FLOURENS，Marie Jean－Pierre De la longévité humaine et de la quantité de vie sur le globe Paris；Garnier； 1855 ［CUL］
br，ch，cs，f，geo，he，hy，pat，t，ta，tm
NB p．50；p．84；p．105－9
p120；p130；p146；p．148；p156；p．173；p185 SB \quad－β
109＊ 143 Hybrid Dogs \＆Wolves sterile from 4th generation－p． 156 － Q
p144 On Prevalence Q of types in crossing Asses \＆Horsean Dog \＆Jackall \＆c \＆c
145 reduced in 4 generations to pure form Q 148 It is succession，not resemblance which makes＂a species＂．（Ch．4） 185 vis medicatrix
title page u 〈author，title〉 $50 \Uparrow 15-1 m 84 \downarrow w /$ wt How utterly the law fails in insects，How in Birds？Pigeons mature very quick；yet they live pretty long 104 介4－1m／！！ $1055-8 m$ 106 介11u＂le thur＂／$\uparrow 11-8 m 108 \Uparrow 6-1 m 1096-$ $12 m, \uparrow 8-4 m, \Uparrow 2-1 m 1204-15 m 130 \Uparrow 7-1 \mathrm{~m} / \mathrm{wb}$ Has a Man seen an escarpment worn by the sea？ 134 wt argues against an inherent tendency to change． $1356!/ u$＂aucunel espèce＂，9－10m 140 介15－1m／wb Yet Cuvier believed in Dogs． $141 \Uparrow 15-1 \mathrm{~m} / \mathrm{w}$（a）$w b$（a） shows only the difficulty of deciding $143 \Uparrow 1 u$ ＂dès la＂／w at wb context shows this meaning 144 wt This shows，means in \＆in．The interbreeding may have aided，only aided， the natural sterility of the Hybrids． $1-2 \mathrm{~m} / \mathrm{w}$ （a） $4 u$＂bientôt＂， $6 u$＂Mes expériences＂$/ 6-8 m$ ， 12－13m，$\uparrow 10-9 m$ ，$\uparrow 8-6 u \pm, ~ \Uparrow 6-1 m ~ 145 ~ 3-6 m$, $7-16 m, 18-19 \mathrm{~m} / \mathrm{w}$ crossed with pierpoints Q_{o} $1462 u$＂bientôt＂， $4 u$＂bientôt＂ 148 介6－4m 149 $12-13 \mathrm{~m} /$ ？ $154 \Uparrow 12-10 \mathrm{~m} 1564-8 \mathrm{~m}, ~ 9-12 \mathrm{~m} / \mathrm{w}$ 161 male 133 fem $\Uparrow 7-5 m 157$ wtec $1731-4 m$ $18510-15 \mathrm{~m} / \mathrm{w}$ always forming the bones \＆ therefore capable of forming a lost part V ． ante

FLOURENS, Marie Jean-Pierre De l'instinct et de l'intelligence des animaux 2nd edn; Paris; Paulin; 1845 [CUL]
beh, br, cs, ex, f, h, hy, mg, sp, t, ta
NB p.26; p.32; 50; 57; 85; 88; 97; 101; 106; 110; 130; 141; 175 〈he probably means 173); 191; 200

SB $\square \beta$
27 Condillac on instinct Q
32 Instinct a Primitive Force, \mathbf{Q} like intelligence
50 man alone reflects
57 Qa F. Cuvier has compared instinct to Habit - Well discussed
85 On Breeding of Monkeys \& Hybrids in confinement, 88 do
97 On Breeding of Chacals \& Hybrids of
101 Camel \& Dromedary produce sterile mules
106 Breeds of sheep all fertile \& with Mouflon
108 Zebra - crossed with Cattle Hybrid fertile
111 Q Beavers always amassing material in Cage
121 Thinks Fox \& Dog will never couple p 121
131 Dog \& Wolf sterile from 2d generation (Think of savages)
191 Cat exercise Kitten with Mice NQ
200 He saw bear wash poison off cakes NQ
$2612-15 w$ He thought it actual habit 27 7$9 m / w$ in that generation $3215-18 m 47 w t$ bird modifying nest not migrating 18-19m 50 17$20 \mathrm{~m} / 1-21 \mathrm{w}$ except by consciousness of oneself, how can this be told? if not there are no proofs that animals do not reflect 57 8-11m 58 3-6m, 13-20m 60 11c "habitude"/ $11 w$ intelligence $19-21 \mathrm{~m} 85$ 〈at top of page a portion of The Times is stuck, concerning Duke of Northumberland giving Cercopithecus griseo, Grivet, and C. viridis to Royal Surrey Zoological Gardens; dated 10 August 1847), $10-$ $12 \mathrm{~m} / \mathrm{w}$ p. 88 14-17m 88 4-9m/6u "makilblanc" $9711-14 m / 15 u \leftrightarrow, 18-19 m 1013-4 m 1064-$ $6 m, 19-21 m 10716-19 m 1086-7 m, 12-14 m$ 110 9-13m/Q 111 9-11m 114 2-5!/m, 11-14m 116 2-6m, 9-15m 121 9-15m 130 wt/1-10m/w no doubt Pallas theory presupposes the extinction of many aboriginal species 14-23w only tenable by getting a little blood of some other species in.- $1317-10 m, 20-24 m 132$ $14-17 \mathrm{~m} / 1-18 w$ the Pig good to state Pallas hypothesis from. $13319-21 m 141$ 11-13m 173 18-20m 191 11-12m 200 1-2m/1u \leftrightarrow

FLOWER, William Henry Catalogue of the specimens illustrating the osteology and dentition of vertebrated animals contained in the Museum of the Royal College of Surgeons of England part 1; London; David Bogne; 1879 [Down]

FLOWER, William Henry An introduction to the osteology of Mammalia London; Macmillan; 1870 [CUL, S]
af, ds, phy, rd, sx, tm, v
NB 64 Caudal Vertebrae *
p.265-268 - good for * plates of Homologies of Limb-Bones
270; 279 Analogy; 291 Rudiments; 294 Descent
Descent 325 spur of male Echidna
296 Ligamentum teres
303 Rudiment
321 foot of Marsupials origin
SB π_{0} Flower Osteology of Mammals
p.265-268 excellent figures of Homology of Bones of Limbs

- p. 270 va
p279-good case of analogical resemblance in bone of foot
p.291. Rudiment of Limb in Cetacea, used for attachment of Bone of Penis
p. 296 List of animals which do not possess Ligamentum teres to thigh-bone - Orang is one. Have I not read case in Man doubtful? Mivart says cavity in Orang \& Chimps variable
303 Rudiments of Limbs present in an ancient Sirenia, but absent in all existing species
64 13-15m/14u, 18-21m 270 24-30m 279 1-8m 291 25-33m 292 5-10m 294 12-17m, 22-24m 296 1-7m 303 1-6m, 15-17m, 18-21m 321 28$33 m 322$ 1-6m, 7-12m 323 1-33m 325 3-5m

FLÜGEL, Johann Gottfried English-German E German-English Dictionary part 1; Leipzig; G. Liebeskind; 1838 [Down] \wp

FOCKE, Wilhelm Olbers Die PflanzenMischlinge Berlin; Gebrüder Borntraeger; 1881 [CUL, S, I]

\wp

$4645 m 48310 m$
FOL, Hermann Recherches sur la fécondation et le commencement de l'hénogenie Genève; Henri Georg; 1879 [Down, I]

FOLLEN, Eliza Lee The life of Charles Follen Boston; T.H. Webb \& Co.; 1844 [Down]

FORBES, Edward On the Asteriadae found fossil in British strata (offprint) [CUL, I] af, ds, em, fo, sp, t, ti, tm

SB1

p. 458 \&c
\& 526 This paper must be read after looking over Von Buch
to end - I am not at all convinced by it -
SB2 $-\beta$
458 Crinoidae \& Echinidae essentially "chronomorphic"

- Knowledge of Fossils confined to N America \& Europe, evidently one region.460 Silurian star-fish a recent genus
526 Table of affinities of Echinoderms, showing that does not go with age p531
$4571 u$ "Asteriadae", $2 u$ "Forbes", 12-16m 458 1-6m, 10u "chronomorphic", 14-20m, 42-43m 459 21-25m, 35-38m, 43c "corresponding"/ww Silurian 460 11-13m 461 3-12m 463 33c "Lower" 464 5c "Lower", 21c "Lower" 526 wt/ table.w How absolutely without Law is the development of groups ie nothing like * embryonic metamorphosis $1 u$ "Echinidae"/ wt doubtfully palaeozoic p458 $1 u$ "Asteriadae"/wt existing genus Bala. \therefore oldest p. $4593 m / w$ carboniferous ?Older? table.w Silurian table.w I do not see why Cystideae may not have been the parent form \& given out 3 lines; as well as be inserted between Crinidae \& Echinidae. table.m "Crinoideae"/w Lowest order * order wb I do not see why Cystideae placed above Crinoideae; the only sd. argument ought to be derived from simple organization.- 527 $25-27 m \omega_{0} 531$ 16-23m*s, $33 u$ "first" $/ w$ I fancy not in time 532 11-12!, 13u "negative ! polar", $24-36 \mathrm{w}$ absolutely unintelligible $5338-9!/ 9 u$ "exactly \mid value", 15-17!, 38m, 39-40!

FORBES, Edward A monograph of the British naked-eyed Medusae London; The Ray Society; 1848 [Down]
sy
NB * 40 Remark on nomenclature
FOREL, A. Les fourmis de la Suisse Zurich; Zurcher \& Furner; 1874 [CUL, I]
beh, cs, em, fg, he, ig, no, or, pat, phy, r, $\mathrm{sp}, \mathrm{sx}, \mathrm{tm}, \mathrm{ud}, \mathrm{v}$
SF $\square \beta \rightarrow$
Kreisirrenanstalt Munich
NB Page III
13-19 121-134 144-147 116-121 258-269 272-274 276-283 285-293 299-300 308$310 \quad 341-351 \quad 314-315 \quad 371-374 \quad 386-388$

391-396 440-449 443
SB1 $\quad \beta$ -
All marks from beginning to end SB2 \sim
p. 14 on differences of worker Ants
p. 123 Brains of male female \& neuter very curious
135 Ants clean each other, 152 take old nests \& modify them to their own use
p. 203 Make or work on roads.- 206 invent new methods \& vary their work.
208 adjoining colonies friends 248 in cutting off heads of other ants - knows position of ganglion
249 courage varies according to number of community. $250 *$ attend to slightly injured ants - leave badly wounded.- 251. Friendly ants rather perish than attack each other for food. 258263 allied ants of distant species274. In fighting tactics of different species different. 280 association of 2 species
286 On ants recognising each other for a time \& at last forgetting - Huber error
296 A few ants determine course of others 301 signal communicated
304. Ants get mad with rage when fighting \& are calmed by the others
307. Stupidity of Rufescens in not taking cocoons on ground, because will try to find entrance to supposed nest. p. 321 number of slaves 20,000-25,000 under 1 year by P. rufescens They examine previously the nests to be attacked.
343 In one genus concludes that all crossing except between Brothers \& sisters male cannot leave Nests (dimorphic!) (but I think courting \bullet)
〈over〉
p341 a slave-maker.- 347 gradation towards perfect slave-maker.
p. 359 F. sanguina number of slaves very variable p. 363 Errors of F. Smith
363 Different tactics of 2 species in fighting
365364 var of rufa F. rufa normally makes slaves $366 *$ number in nest -
367 sick one attended to by comrades 367 play
373 Mixed colonies, not explained.
394. Nymphs of Ants cannot open cocoon for themselves, without aid from others, often aid them in removing the skin
397 same female fecundated by several males - 398 fecundated female does not enter old nest
399 females fecundated are often caught \& brought back by force to natal nest, \& these must have been fecundated by males of same nest.

FOREL
417 not known how new colonies est－ ablished．
419 very curious evidence how rarely ants of distinct nests intercross．
421，422 Ants protect their Aphides from all enemies－so mutual service．
440 excellent summary of Whole；approves of what I have said of origin of slave－making 441．thinks atrophy of ovaria in Neuter may be due to development of their brains．－ 441 trace of castes in neuters very general－ about intercrossing 446 Indecision of Mind \＆ Struggles between opposed instincts．

14 9－16m，18－24m 15 1－4m，6－8m 7u＂règlel distincts＂，11－12m，介6－4m 18 16－20m 19 1－5m $123 \Uparrow 18-16 \mathrm{~m}, ~ \Uparrow 13-10 \mathrm{~m} 135$ 介14－12m 152 11－ $16 m 2036-8 m / 8 u$＂travaillent \mid les＂ 206 10－12m $2085-11 m, 12-17 m 209$ 介6－1m 248 15－19m $249 \Uparrow 12-9 m 2501-4 m 1 u$＂exceptionellement＂， $\Uparrow 3-1 m 25110-12 m 258$ 介18－15m，$\uparrow 9-5 m 262$ $1-3 m, 10-14 m 10 u$＂fraîchement écloses＂ $111 u$ ＂travaux｜des＂，18－20m／19u＂trois｜jours＂ 263 3－7m 274 介14－12m／$\uparrow 14 u$＂tactiquelest＂$/ w$ of different species $280 \uparrow 8-2 m / w$ association of 2 distinct species 286 15－20m 15－16u＂Voilà I origine＂ 287 1－4m 1 u＂compagnes 1 mois＂，18－ $22 m, 23-24 m 296 \Uparrow 18-14 m / \Uparrow 18 u$＂la 1 donnée＂， $\Uparrow 3-1 m / \Uparrow 3-2 u$＂elles \mid arrière＂ $301 \Uparrow 12-7 m / \Uparrow 10 u$ ＂un｜toutes＂$\uparrow 94$＂dans 1 direction＂$/ w$ clearly signal $302 \Uparrow 15-12 m 304 \Uparrow 10-3 m 3078-15 m$ ， 16－18m，20－24m，介7，／u＂esclaves 1 reconnurent＂ 308 介11－8m／介10u＂Revue｜scientifiques＂ 321 11－16m，$\uparrow 7-4 m 3255-6 m / w$ ponte larva 16－ $18 m$ 17－18u＂tandis＂ 343 介4－1m 344 1－5m， $\uparrow 7-5 m / \uparrow 7 u$＂P．rufescens＂ $347 \Uparrow 3-1 m 359$ § 8 － $4 m 3604-9 m 3626-8 m 3632 m, 4-8 m 6 u$ ＂faisaient｜du＂，$\uparrow 5-1 m \quad 364 \quad 14-15 m, 17-$ 20 m 18 u ＂savoirlplus＂ 365 介18－16m 366 介9－ $3 m / \Uparrow 8 u$＂ 50001500,000 ＂ 367 17－19m，$\uparrow 6-1 m$ $369 \Uparrow 14-11 m / \uparrow 14-13 u \leftrightarrow, \Uparrow 8 m 373 \Uparrow 10-1 m$ $3947-11 m, 13-20 m 395$ 介 $13-9 m / \uparrow 12-11 u$＂sel seules＂ 397 20－22m $3984-5 m 5 u$＂de 1 diverses＂ $399 \Uparrow 15-11 m, \Uparrow 10-9 m, \Uparrow 7-5 m 400 \Uparrow 2-1 m 402$ $\Uparrow 14-10 \mathrm{~m} 417$ 12－15m 418 介14－12m 419 11－ $28 \mathrm{~m} / \mathrm{m} 4215-8 \mathrm{~m}, ~ 9-11 \mathrm{~m}$ ，介12－9m 422 7－9m 436 介2－1m 440 介14－6m 441 1－7m $5 u$＂le｜du＂ $6 u$＂atrophie I secondaire＂， $10-12 \mathrm{~m}, 18-20 \mathrm{~m}, 21-$ $23 \mathrm{~m} 442 \mathrm{Im}, 15 \mathrm{w}$ Sexual differences $\Uparrow 17 u \leftrightarrow /$ $\Uparrow 15 u$＂travail 1 tout＂$/ \uparrow 9-6 \mathrm{~m} / \mathrm{w}$ not transmitted， but given to neuters \＆thus indirectly acquired by by males $\&$ females．very curious．$\uparrow 5-4 m, \Uparrow 3 u$＂aulautre＂ $4438-9 m / w$ I ought to read again about Strong．testaceus 10－13m， $19-22 \mathrm{~m} / 21 u \quad$＂dans I manière＂$/ 22 u$ ＂d＇uneld＇autres＂，24－26m／w \＆most dominant on earth $\uparrow 3-1 m 4442-10 m \quad 3 u$＂tandis besoin＂，9－12m $44512 u$＂les 1 sont＂，$\uparrow 20-18 m$ ，
$\Uparrow 13-11 m, \uparrow 7-4 m, \Uparrow 3-1 m 4463-15 m, \Uparrow 10-7 m$ ，介7－4m 447 1－3m

FORSTER，Johann Reinhold Observations made during a voyage round the world London； G．Robinson； 1778 ［CUL，pre－B，S］
beh，co，gd，geo，gr，is，se，sp，ve，wd
NF Classes Islands p14
p． 27 Tanna volcanic and has I certainly think elevated coral on coast
NB $-21 ; 22 ; 179 ; 183,5 ; 187,9 ; 193$
（Abstract）
187 Besides two domestic Mammals only Bat in Western isld；\＆Black Rat in Society， Friendly \＆New Hebrides p188 in Tanna 2 species of Bats．
p188 Hogs of same breed in the several isld 193 Natives of Society \＆Friendly Isld catch \＆tame Pigeons \＆Parrots－
14 2－23m，7u 〈place－names）／5－8w Maatea a little to SE of Tahiti V．p $938 u$ 〈place－names）／ w close together $174-5 m 201-2 m 2318-$ $23 \mathrm{~m} / 20 \mathrm{u}$＂formed of corals＂ 24 1－5mes 26 20－ $23 \mathrm{~m} 2716 \mathrm{~m} 698-10 \mathrm{~m} 7018-22 \mathrm{~m} 147$ 7－16m／ $7 u$＂onelonly＂w V．173！10－14w NB in Cooks voyage nothing is said about Forster landing here $17 u$＂Turtle Island＂｜15－20w ？ought this not to be written Savage Isid In journal（his own）says passed by it，no anchorage 155 18－23m 173 8－16m／10－11u ＂raised｜water＂ 13 u＂grew｜without＂ 179 17－ $19 m / \rightarrow 1801-5 m 18318-21 \mathrm{~m} / \mathrm{w}$ stuck to rocks 185 22－24m 187 4－6m，18－19m 188 7－ $9 \mathrm{~m}, 16 \mathrm{~m} / 14-16 \mathrm{w}$ implies same var． $17-20 \mathrm{~m}$ $1898-16 m / 9-10 w$ implies same var． $1939 u$ ＂at Isize＂，12－15m 229 15－18m 235 5－9m 237 14－17m 238 1－7m，26－27m 251 23－24m 326 1－ $3 m 327$ 18－19m 364 11－13m 384 介7－5m 403 4－5m 432 22－23m 450 13－15m 459 6－8m 554介9－8m，$\uparrow 2-1 m 5601-4 m 56112-16 m 56220-$ $26 m 567$ 18－19m 569 9－11m 588 15－21m 589 1－4m

FORSTER，Thomas A synoptical catalogue of British birds London；Nichols，Son \＆Bentley； 1817 ［CUL，pre－B，S Charles Darwin 1826］
sp，y
facing $2 w_{0}$ The Ringtail in Turton＇s British Fauna is made a distinct species，under the name of Falco Pygorgos－as does Lewin \＆ Wolcot facing 11 wes 77.78 These are considered by Turton，on the authority of Dr Latham，as only the young \＆very old ones of E ．Nivalis

FOSTER，Michael，and BALFOUR，Francis M．The elements of embryology part 1； London；Macmillan \＆Co．； 1874 ［Down］

FOSTER，Michael，and LANGLEY，J．N．A course of elementary practical physiology London；Macmillan \＆Co．； 1876 ［Down，I］

FOURNIER，Eugène De la fécondation dans les Phanérogames Paris；F．Savy； 1863 ［CUL］ dic，fg，gd，mhp，00，sx
NB 56 Read；Fert of Lilium
p．52．－Lopezia curious contrivance for fertilisation
－ 61 Drosera
68 ．
73 Flowers under water make ball of air－ － 117 to 130
61 Parietaria like Nettle（wind）
117 on fertilisation of grasses
118 Dichogamy
120 Moicous like Dioicous in fertilisation
Cucurbita Pepo monoicus \＆dichogamous
52 15－20m 56 2－10m 57 25－30m 61 2－13m／5u ＂acide cyanhydrique＂ $55-6 u$＂leslacides＂， $23 u$ ＂Pariétaires＂ 62 12－21m 66 6－11m 68 13－25m （Hofmeister） $703-9 m / 1-5 w$ no doubt wd visit occasionally 73 10－14m 117 18－25m 11814 16m，26－31m 119 22－26m 120 9－12m

FRANCISQUE－MICHEL Du passé et de l＇avenir des Haras Paris；Michel Lévy Frères； London \＆Edinburgh；Williams \＆Norgate； 1860 ［CUL，S］
beh，v，y
SA 〈pp．81－82；a fragment〉
NB 7 Horse imported into France 705－7
47 different colour valued by end of 15 th cent
Xes 50 Arab do
－ 84 only end of 8th century－ Charlemagne gives precise valuation about Stallions； 90 Prince of Wales bring a Stallion in 1305
SB • p7；p．47；50；84；90；all classed
title page u 〈title，author〉 $72-4 m / 3 u$＂arabis＂， 15－19m 47 6－8m，11－13m／12u＂liart pommé＂ $50 w t / 5 w \diamond / 7 w$ 〈not CD〉，5－10m／w arab superstition about calves Hoof $5119-21$ mos 84 1－2m，6－7m／6u＂des 1 reproducteurs＂，11－ 12 m 90 9－10u＂Edward 1 Canterbury＂，11－23m／ $13 u$＂etlétalons＂， $15 u$＂beaulservir＂， $16 u$ ＂prêter＂／20u＂bien｜ramèneront＂

FRANK，Albert Bernhard Beiträge zur Pflanzenphysiologie Leipzig；Wilhelm Engelmann； 1868 ［CUL，S］
mhp，t
$526 m 826-28 m 930-31 m 1020-26 m / w 128-$ $31 m / w 211$ 14－20m 15 27－28m 16 30－31m 17

26－28m 19 11－21m／14－15u＂musslauswärts＂， $25-27 \mathrm{~m} 2523-33 m 2626 m 3211-12 m 3822-$ $25 m 3925-26 m 42$ 15－18m 43 8－14m，22－ 23mé，24－25m $4613 m 4722-24 m 5433-34 m$ $5530-32 m \omega_{0} 5611-17 m 573-5 m 597 w$ 15／9 17－27m，28－30mms $6115-17 \mathrm{~m}, ~ 21-22 \mathrm{~m} / 21 u$ ＂Die 1 völlig＂，25－26m 70 table－columns．w V＇X＇ V X 72 17－23m／17－19m／18－19m 76 6－8m 77 wt Good Boy 78 23－25m／24u＂inneren Schichten＂ $804-19 w$ inverted radicles，quite perpendicularly yet moved downwards 81 1－ $4 \mathrm{~m} / \mathrm{wt}$ Explains by growth not being equal all round $83 \quad 32 m \quad 85 \quad 18-27 m / 21 u$＂Helio－ tropismus＂ 244 ＂Geotropismus＂ $864-5 u$＂häng－ enden \mid trauernder＂$/ w$ geotropic $13 u$＂Siel während＂ $112-14 m / w$ capable during whole growth $887 \mathrm{~m} 9017-20 \mathrm{~m} 912-6 \mathrm{~m}, 17 \mathrm{~m}$ ，19－ $26 \mathrm{~m} / 20 u$＂Decandolle＂， $23 w$ BR $971 m, 3-5$ ？， 24－27m，26u＂concentrirte Zuckerlösung＂，27u ＂Krümmung unverändert＂ 98 wt $\uparrow, 1-3 m, 12-$ $14 m$

FRANK，Albert Bernhard Die natürliche wagerechte Richtung von Pflanzentheilen Leipzig；Hermann Weissbach； 1870 ［CUL］ ad，beh，cc，mhp，phy，t，v

SB1 $\square \mathfrak{R}$

From final chapter

p． 90 Organs will grow in all directions some favourable \＆some hurtful－will change into favourable position－I suppose individ． movements．－
Movements become so firmly associated with certain external influences such as light \＆gravity that the latter suffice to cause the same process of growth or movement．
good／like instinct－compare with chicken seeing food \＆eating it an associated habit in this case
over
〈over〉
We must say that we＊take nearly the same general view as Frank does about the manner \＆means by which all the parts of plants adapt themselves to the position in which they stand \＆to external agencies；but with this considerable important difference that we now know that each growing part is continually in circulation，ie bending to all sides，\＆if it be advantage to a part \＆to the plant，for it to bend in any direction with respect to the remainder of the plant，or to any external agency，if this agency produces any effect which can be perceived by the plant，then the circulating movement can be modified to or for such agency，or the time of such movement can be modified in

FRANK
atten. O to such agency as in the shape of * Leaves.- no darkness may be cause, but not of direction.
SB2 $\square \beta$
A.B. Frank Die Naturliche Wagerichtes Richtung von Pflanzentheilen 1870.
p. 2 speaks of sense for attraction

17 says position of all horizontal stems due to gravitation \& light; but at
18 Light always preponderant over gravity
20 Fragaria stolons see to this movements very slow.
45 leaves stand at right angle to light inclined when light strike one side
46 leaves rise up in darkness - ie are apogeotropic \& light causes them to be horizontal.
In short an organ will put itself in any position with reference to light which may be advantageous; but then the rising in the evening is odd.
52 twisting confined to petioles.- \& not to jointsO how different from Pfeffer.
62, 64 leaves of tree which do not rise in darkness.
75 Hofmeister nearly discovered transverseO - geotropism \& Heliotropism

2 wt a sense for attraction of gravity $2 u$ "einlfür" 17 12-18wes at least often get into horizontal position by epinasty $18-23 m$, wb Nothing * else $1810 u \leftrightarrow / 10-12 \mathrm{~m} 2022 \mathrm{~m}, 33-$ $34 w$ Fragaria 35-39m, 40u "erfolgendel gediehen", wb takes place very slowly 219 $13 m$, 13-16m 22 10-12m, $24 u$ "vertical aufrecht" $237 u$ "Achsen", 14-19m, 24 m 24 8$9 m, 26-27 m 2533-38 m 2614 u$ "aber 1 die", 15u "derlgleich", 24-27m $2725 u$ "horizontaler Richtung" 28 31-35m, 36m, 38-39m, wb He overlooks epinasty 29 17-20m 3027 u* "eine Incurvation", 29-32m 31 \& $7-8 m, 12 m, 14$ $16 m, 36-38 m 32 \Leftrightarrow 1-4 m, 34-37 m 33 \Leftrightarrow 1-2 m$ $34 ぬ_{0} 17-22 m 358 m 36$ 12-16m 45 18-21m, $21-22 u$ "Beziehung|steht", $24-27 \mathrm{~m} / \mathrm{w}$ inclined when one side shaded $29-36 m / 31-33 w$ evidence of $4611-16 \mathrm{~m} / \mathrm{w}$ leaves rise up in darkness $15-24 w$ \& is an apogeotropic but says that light causes them into horizontal 52 9-15m/10-11u "eigentliche |übernimmt"/1-12w * twisting confined to petiole; *, 19-21m/19u "der Stiel"/17-25w How different from Pfeffer 53 1-10m/w Use of compound Leaves 14 $17 \mathrm{~m} / \mathrm{w}$ especially when fixed by tendril 19-21m, $33 u$ "Clematis"/ \rightarrow /22-25w Mutisia Bignonia Fumaria $\bigcirc 5511 m 5923-28 z / z b$, $34-39 w$ This might be tested by Klinostat 60 $3 m, 28-38 w / w b$ This is the same thing as epinasty Origly caused by light afterwards
guided by geotr. $6226-30 \mathrm{~m} / 23-34 w$ I thought he said rise in darkness $32-33 \mathrm{~m} / 32 u$ "Letztere| und" 33 u "ihre|horizontal" 63 32$35 m / 33 u$ "weniglaufrechter" $641 w$ in darkness $3-7 m, 8-13 m / 8-9 u$ "durch 1 können" $/ 12 u$ "ausgeprägte| Lichte", $13-17 \mathrm{~m} / 14 u$ "Schwerkraft \Licht", 35-39m $735-8 m / 6 u$ "Achsen" $/ 7 u$ "andererldurch", $10-15 \mathrm{~m}, 23-27 \mathrm{~m} 74$ 21-27m $751-3 m / 1-2 u \leftrightarrow / 2 u$ "Hofmeister" 76 15-19m, $25-32 w$ goes on growing $34-37 \mathrm{~m} / \mathrm{w}$ fulvinus I believe error Pfeffer 77 11u "der 1 in" $/ 14-17 \mathrm{~m} /$ $11-17 w$ seems to consider it a direct result and not mere excitement $26-30 \mathrm{~m} / 27-28 u$ "Transversal Heliotropismus" $7834 \mathrm{~m}, 35 u \leftrightarrow$ 81 wt I seem always to consider the movement direct effect of light $5 m, 9-32 w$ this assumption appears to be merely lazy so it is $8528 m 89 \downarrow w$ He believes that the individuals which originally chanced to have, for instance, plumule erect $\&$ radicle vertically downwards, would survive; but this as yet does not apply to movements, \& still less to cases like sleep-movements. $\mathbf{9 0} 2 \mathrm{~m}, 3 \mathrm{~m}$

FREKE, Henry On the origin of species by means of organic affinity London; Longman \& Co.; 1861 [Down, I]

FRÉMONT, J.C. Report of the exploring expedition to the Rocky Mountains in the year 1842, and to Oregon and North California in the years 1843-'44 Washington; Gales \& Seaton; 1845 [CUL] \wp
beh, br, gd, is, sl, y
NB1 It might well happen, as in Horses of Falkland, that the old animals might live at ease \& not be driven to search new countries, open to them (as is evidently the case with the Buffalo) and the pressures are chiefly falling on the young.- It is important to observe that no selection cd aid Horse in Falkland.- or Horses in Paraguay except strength of constitution \& breeding at diff time of year; but that cd be effected only if a little earlier or later was more favourable
NB2 Windhorn Mountain Lat $43^{\circ} \mathrm{N}$; 84; 124; 174; 144
166.

Abstract Feb 57
p144 The Buffalo only crossed R. Mountains lately owing to persecution

84 44-51m 124 45-49m 144 43-46u士, 49-53m 166 wt $/ \uparrow w$. Previously there was good evidence of the Buffalo having been driven into new districts by Hunters one race of Indians much obliged for this

FREY, Heinrich The histology and histochemistry of man trans. A.E.J. Barker; London; J. \& A. Churchill; 1874 [Down] \wp

FROHSCHAMMER, Jakob Das Christenthum und die moderne Naturwissenschaft Wien; Tendler \& Co.; 1868 [Down] \wp

GALLESIO, Georges Traité $d u$ citrus Paris; Louis Fantin; 1811 [CUL, pre-B but read later: S C Darwin Feb 1842]
cc, cs, f, fg, gd, hy, ig, mn, oo, or, pat, spo, $\mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB1 p146 Orange; 143
32; 40; 46; 62 to 85 to 167
line across page 〈hereafter page-numbers by CD but some words possibly not)
193 to 222 Hist of Citron, marked but unimportant
to 286 - ditto ditto
p. 292 \&c \&c Sweet Orange different from bitter \& later introduced
p. 297 * Origin of Sweet orange
p. 321
p. 327 to end
p. 359 the only passage on acclimatisation of orange
NB2 Nothing important in all these extracts below the cross line \rightarrow 〈to NB1 line across page)
Nov. 47 I think that experiments cd be worth looking over again.-
Look at the Synoptical Tables first.-
SB $\square \Re$
34. Sweet \& bitter oranges \& almonds \& Peach \& nectarine always true
40 orange fruit affected by pollen of Lemon! 46 crosses with pinks analogous, striped \& some pure white \& red.
67 The Lemons which depart most from type, (or are monstrous are sterile) p331
147 Mixed orange, lemon \& citron
co 359 curious case showing how slowly \& rarely real attempts have been made at naturalisation $\langle u \Leftrightarrow\rangle$
a poor Book
$3023-25 m 3111-13 m 3218-20 w$ it is not different in W Indies $20-22 \mathrm{~m}, 22-24 \mathrm{~m} 341$ $2 m 40$ 18-23m 45 24-26m 46 1-5m/w Like chrysanthemums latter prbly a cross of 2 vars. 12-16m 47 12-15m 62 9-15m/10u "grande 1 mélanges" $/ w$ polyadelphia *, $13 u$ "nombre infini de races" 63 9-11m/9-10u "plusieurslévènements" 66-67 wt xox according to this view, a plant as soon as it became accustomed to new conditions, would produce more seeds, \& therefore in most cases would produce * less fruit \& hence would be said to degenerate!! $667-$ $14 m, 16-17 u$ "ils I variétés"/15-22w shows how little weight he puts to character of sterility $25-29 w$ for he certainly admits * varieties distinct from hybrids $18-19 \mathrm{~m} / \mathrm{w}$ both hybrids 66-67 wbas, part * This is quite new view of varieties being born sterile, it is

GALLESIO
certainly case with many pears，apples \＆c \＆c not due to mere effects of conditions on the actual $*$ plant，but $*$ is born with $x x$ tendency to be sterile（\＆hence good fruit or fine double flowers are produced）－think Kolreuter found certain individual hybrid－ crosses＊more sterile than others，thus if pear seeds are sown，some seedlings are more sterile than others $673-4 u$＂celles stérilité＂ $\mid 1-5 m, 13 u$＂leurs \mid toujours＂，20－ $21 u \leftrightarrow, 22-28 m,\{w \notin$ in animals out of conditions no case of offspring being born sterile（？do not perhaps get full fecundity for some generations？）but in plants it is very frequent case $\|=$ very important：＝view－ xxx XOX 68 17－18u＂pour 1 distinction＂／w $\mathfrak{\text { nato }}$ oxen！！ $7110 u \leftrightarrow 737-10 m 832-5 m / 2 u$＂ces noms＂｜ $3 u$＂innombrables＂ 85 4－8m $9027 u$ ＂plusieurs siecles＂， $28 u$＂conservée＂ $911 u$ ＂variétés＂， $3-5 m, 3 u$＂Dès lcolline＂， $5 u$ ＂multiplier 1 semence＂，6－7m 92 26－28m 95 7－ $8 \mathrm{~m}, 11-18 \mathrm{~m} 962-3 \mathrm{~m} / 3 u$＂souvent＂ $9716-20 \mathrm{~m} /$ $19 u / w \tau 10015-17 m 10220-22 m / u \pm / w b$ This is not like Kolreuters certain hybrids $1033-8 m$ 109 12－14m 116 20u＂vulgo Pomum＂ 117 19－ 20m／20u＂jamais pu＂ 118 3－5u士，9－12m 119 $12-14 u \pm / 10-16 w$ Every one of his hybrids as yet conjectural $w b$ Has the Bergamot seeds？？ $1219-11 m / 10 u$＂Il semence＂ 125 27－ $28 m 126$ 1－3m $1294 u$＂n＇offreljaunes＂ 130 14－16m 133 24－25m／u＂ils 1 dépine＂ 135 4－5？， $22-23 \mathrm{~m} / \mathrm{u} \leftrightarrow 1378 u$＂feuille l crépue＂，9－10u ＂la｜limonier＂， $12 u$＂orangier＂，21－23m／23u ＂hybrides I se＂， $26 u$＂variées 1 proportions＂ 140 $18 u \leftrightarrow, 23-24 m / 24 u$＂en 11270 ＂ $14322-28 m /$ $22 u$＂Seslespeces＂$/ 23 u$＂blanchâtres＂ $1466 u$ ＂1644＂，24－27m 147 6－10m／1－10w／wt X are the several cases of citrus above given with flowers \＆fruit of different $*$ forms cases of hybrids sporting．－ $11-20 \mathrm{~m}, 22 u$＂aussilpoint＂／ $24-28 m / 25 u$＂unel de＂$/ w b / 8-28 w$ These are extreme cases of sporting \＆hybrids－no more probably like Laburnum－like mottled Hollies sporting back to pure leaves 148 1－ $2 u$＂arbrelformes＂， $4-7 m / 7 u$＂orangesisans＂， $14-16 \mathrm{~m} / 15 \mathrm{u}$＂orangers l cédrats＂， $18-21 \mathrm{~m}, 22-$ $25 m 1546-7 u$＂quild＇épines＂，7－10m，11u↔ 155 4－6u＂etlordinaires＂，8u＂quelquefois｜ semis＂ 156 19－21m／20u＂couleurl de＂ 157 3－5u ＂ne｜chétives＂， $6 u$＂c＇est｜fécondation＂ $\mid 7 u$＂ill pépins＂， $8 u$＂selsemence＂ $\mid 5-8 w$ not a hybrid because no ways intermediate $9-24 m / 23-$ $25 m 15827 \mathrm{~m} / \mathrm{u}$＂exclusive \mid Chine＂ 159 25－28m $16513 u$＂du।de＂ $1667-9!/ 9 u$＂quilespece＂ 167 18－19m 194 10－11m／11u＂en Médie＂ 197 17m， $18 u$＂Palestine＂ 198 19－20m／19u＂Théo－ phraste＂｜ $20 u$＂description dans＂ 203 4－5m 207 $1-2 m / 2 w$ conjecture $11-23 m / 17-20 u \pm / 7-22 w$
proofs of old cold climate V．Arago $25 u$ ＂quel vigne＂， $28 u$＂elle｜point＂ 208 3－5m，6－ $8 \mathrm{~m} / 7 \mathrm{u} /$ ？＂certainement＂ 210 20－21m 217 8－ $15 \mathrm{~m} / 8 a$＂Paludius＂ $115 u$＂dans 1 siecle＂ 218 14－ $16 \mathrm{~m} / 15 u$＂lelquatrieme＂ 222 20－22m 223 3－5m／4u＂plusitransmigration＂ 227 12u ＂Maderel Canaries＂， $13 u$＂dès 1463＂ 252 20u ＂1383＂，22－24m 257 5－8m 270 13－15m 287 14－17m 292 9－12m，16－19m 293 11－16m 295 1－6m $2975-13 m / 8 u$＂deltransmigration＂ 321 $10-11 \mathrm{~m} 32627 \mathrm{~m} 3271-3 \mathrm{~m}, ~ 9-11 \mathrm{~m}, 15-16 \mathrm{~m}$ ， 22－24m，26－28m 329 1－2m $3306-8 m 3314$ $6 \mathrm{~m} / 6 u$＂celuilstérilité＂，$\quad 8-9 \mathrm{~m} / 8 u \quad$＂cette 1 singuliere＂ 334 1－6m，18－22m，25－30m 344 9－ 12m，24－26m 345 11u＂d＇Acosta＂，11－22m，22－ $25 m 3497-10 m, 13 u$＂l＇Espagne＂， $14 u$＂un orangers＂， $16 u$＂tous 1 greffés＂， $19 u$＂demil commencé＂， 20 w to sow seeds of Sweet Orange $\uparrow 3 \mathrm{~m} / \mathrm{u}$＂orangerlSauvageon＂ 351 15－ $17 \mathrm{~m} / 15-16 u$＂Dansladroite＂ 352 1－7m 355 11u＂1709।Ligurie＂ 357 4－6m，7－8m／w in Liguria $17 u$＂unel portât＂ 359 1－6m

GALTON，Francis The art of travel，or，shifts and contrivances available in wild countries London；John Murray； 1855 ［CUL，I，S］
NB1 〈by FD
NB2 91 Authority； 115
2 7－9m 3 1－3m，6－13m 4 13－14m 5 23－26m 8 31－32m 9 12－15m 14 10－14m 15 7－8m／7u 16 5－12m 17 1－3m，26－28m $1826-27 m 265-6 m$ 31 25－29m 35 23－25m 91 16－17m 115 25－30m

GALTON，Francis English men of science： their nature and nurture London；Macmillan \＆Co．； 1874 ［Down，S］
〈markings not by $C D$ 〉
GALTON，Francis The narrative of an explorer in tropical South Africa London；J． Murray； 1853 ［CUL，ED］

GARROD，Alfred Baring The essentials of materia medica and therapeutics 3rd edn； London；John Walton； 1869 ［Down，FD］
〈markings not by CD＞
GARROD，Alfred Henry The collected scientific papers London；R．H．Porter； 1881 ［Down］\wp

GÄRTNER，Carl Friedrich Beiträge zur Kenntniss der Befruchtung der vollkommeneren Gewächse 1．Teil；Stuttgart；E．Schweizerbart； 1844 ［CUL］
cc，cs，dic，em，f，fg，gd，he，hy，in，is，mhp， no，oo，pat，phy，sp，sx，t，ta，tm，v，wd

NB N．B．p 137．on varieties of Verbascum crossing \Leftrightarrow used
p． 212 Fruchnoten 〈ie Fruchtknoten〉＝ Germen；griffel＝stylus；narbe $=$ stigma
SB Oct． 1855 This book abstracted \＆ abstracts \＆references distributed．－
SA1 $\langle p p .622-3\rangle$
This is Index of whole volume p75 on Honey to p92．
p． 104 on time of shedding pollen
to p119 on contabescence
to p128 on richness of pollen； 137 on pollen varying in species \＆individuals of Dianthus p137 on fertility of vars of Verbascum according to colour
to p .148
p．220．p222
p242；p250 on concepcion．to p． 253.
p． 328 on periods of concepcion；to p367
p． 440 on abortion p． 444
See over Page
〈over〉 p528 on＊dispersion of Lychnis （quoted from Tausch）diurna \＆vespertina in hermaphroditism．－I presume the number of seed here refers to cultivated Plants
p539 on crosses taking place at distances p．550．do
p560；p564
p571 on crossing \＆ c to 577．do．
p598．on number of seed in Lychnis vespertina－diurna；p600
p366 self－fert often fails in＊Lycium， Tropaeolum，Mirabilis \＆Campanula \＆ Lycium－
All these references have been recopied out into papers in＊Hybrid Chapter
SA2 $\langle p p$ ．622－3〉 口 β
136368386497 － 138 －134，135；136； 386567595
人 p． 128 on quantity of pollen．
135 Each embryo requires more than one pollen grain－
226 Narben－fuchte 〈ie feuchtigkeit〉 secreted from stigma at various points
236 secretion of stigma of Nicotiana took months to dry－so very different from that of Orchis．－
256 Reichenback Vol．l p． 120
345,347 quantity of pollen required for full fertilisation
351， 600 Successive application of pollen necessary
for Orchids
〈over）
－In Corn \＆Hemp Fields \＆Palms clouds of pollen p107
Cop
p116 Contabescence

SA3 $\langle p p$ ．622－3〉
Dichogamy Gärtner Kenntniss s． 539 on plants 6－800 yards fertilising each other very good．p551？p573－577
（Keep）
xi $6 \mathrm{~m} / \mathrm{w}$ Read $7-10 \mathrm{~m} / 10 \mathrm{w}$ Read $12-15 \mathrm{~m} / 13 \mathrm{w}$ Read $17 \mathrm{~m} / \mathrm{w}$＊Read 20m／w Read $21 \mathrm{~m} / \mathrm{w}$ Read $32 m, 33 m / 33-34 w$ because it will show crossing $34 m, 35 m / w$ read $36 w$ read， 37 w read
\wp
$752 w$ read 18－21w nectar before opening of flowers $765-6 w$ after pollen 18－19u ＂Wandelbar fanden＂$/ w$ secretion variable $*$ ， no doubt due to conditions $24 u a / 24-25 m / w$ no＊secretion $31-38 \mathrm{~m} / \mathrm{w}$ sometimes honey in hermaphrodite，but not in unisexual flower of same species．Sometimes in male sometimes in female $777-13 \mathrm{~m} / \mathrm{w}$ quite absent in many flowers 78 14－15w increases ＊flower falls $791-7 \mathrm{~m} / \mathrm{w}$ quite sterile Hybrids have nectar 80 1－10w They do not seem to know about Vetches $859-16 \mathrm{~m} / \mathrm{w}$ does not think nectar can be accounted for by for insects alone to favour fructification 87 9－ $11 m / 11 u$＂Tilia europaea＂／8w No nectar！！11－ $12 u$＂Tilia odorata＂ $11-14 w$ small \＆nectar do not go together $89 w t$ generally the period of concepcion，the spreading of pollen， secretion of honey，\＆opening of flower all together． $1-4 \mathrm{~m} / 3 u$＂den meisten＂， $8-10 \mathrm{~m} / \mathrm{w}$ often put out by circumstances $16 \mathrm{~m}, 18-20 \mathrm{w}$ Sometimes nectar before opening of anthers 23u＂Leguminosen I Cruciaten＂／23－26w In these most nectar，when pollen is mostly or quite shed．－ $9022-27 w$ Thinks no relation between secretion of Honey \＆density of Pollen－many Families have no nectary 31－ $34 w$ no relation in quantity of pollen \＆nectar $911-2 u \uparrow / w$ Pollen not dusted yet much Honey $3 u$＂Dichogamen＂／4ua／4－7w Male flowers of these no nectar－but females have $8-9 \mathrm{~m} / \mathrm{w}$ castration no influence on nectar 12－14w Absolutely sterile Hybrids have nectar $18 u$＂Leguminosen ICruciaten＂／ $19 u$＂Dehiscenz I Antheren＂ $117-19 w$ in these nectar begins after opening of anthers．20－ $21 w$ But then in Legum：pollen is brushed out by stigma 26－30w When fructification has taken place nectar ceases though pollen not shed． $9510-11 \mathrm{~m} 10411-16 \mathrm{~m} / \mathrm{w}$ pollen shed before opening of flower 19－33m $1064 u \uparrow / 5-$ $8 m / 8 u$＂verstäuben＂ $1-8 w$ Pollen usually dispersed in air，except in families where of large size as these． $10-14 \mathrm{w}$ a cloud $* 11 / 2$ inch in diameter 107 22－25w clouds of pollen in corn \＆Hemp fields． $10812 u$＂ $6-8$＂$/ 11-15 w$

GAERTNER, BEFRUCHTUNG
emptying the anthers takes these hours.109 12-13m/u "Malvaceen|scheint"/ w wind much influence $11323-28 w$ castrated flowers seldom visited by Bees, than even quite sterile Hybrids $1171 u, 2 u a$, 3-4w Contabescence of anthers $17-19 w$ colour often changed of anther $27 u \wedge / 26-27 w$ sometimes filled with Water 28-29u \uparrow, $31 w$ grain ill-shaped $1183 \mid 1 / 1-3 m / w$ even no pollen anther shrivelled up. $5-8 \mathrm{~m} / \mathrm{w}$ rarely sometimes only 1 or 2 anthers or $1 / 2$ anther thus affected $13-16 \mathrm{~m} / \mathrm{w}$ Generally all flowers affected 17-22w When one flower has one another affected, all flower more or less affected. $25 a$ "superbus" Europe $25-36 \mathrm{~m} / 33-$ $35 u$ "Wenn|haben"/26-27w gradations in contabescence 29a "barbatus" Germany 119 wt N.B The contabescence probably due to effect of conditions on parents, at least in many cases.- $1-4 w$ these anthers can be perceived at earliest period of development $10-12 w$ affections permanent in individuals 14-15w except in Silene 17-19w cannot be altered by cuttings \&c or in new soil \&c 1920u/an Europe, England, Germany/w These species continued so for 4 years 22-23ua/ $22-31 w$ a plant taken out of wild of Lychnis did not alter in the least. 22-31w Nor did these alter when moved from pots to plain ground. $\pi 8-5 w$ Doubts whether hereditary, for experiments give different results 1-25w This is a point of resemblance to Hybrids which keep sterile during whole life.- wb A All this vehemently against my notion of change of conditions, indeed, almost disproves it.- I am not so sure any peculiarity wd be propagated by layersO $1207-$ $10 w$ concludes since an individual in earliest stage. $-10-15 \mathrm{w}$ seems to occur in all plants, but more common in some than others, \& most common in Hybrids. $14 u$ "Caryophylleen" $/ w$ most common in free \& cultivated Caryophyllea $18-19 w$ next cases 20an England, S. Europe, Britain, Italy 22$23 u \pm, 27 u$., $28-30 \mathrm{~m} / \rightarrow / 28 u$ "Unfruchtbarkeit 1 Gewächse", $34-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ in these female flowers, sometimes stamens occur in same state as the contabescent flowers 121 17$28 w$ In these, contabescence hastens conception period, \& praecosity of stigma always connected with contabescence; yet perhaps not necessarily allied $1228-23 w$ Contabescence has no destroying influence on female organs: but this not universal, for has observed instances with both sexes imperfect, very in \rightarrow 〈to "Verbascum", "Dianthus"), $12 u \uparrow / 10-17 w$ These species with quite sterile stamens produced normal
number of seeds \& no more wb Contabescence no effect on lengthening life of plant, even when conjoined with female impotence 123 wt [Must never forget the great fact that exotics most subject to these affections.] $1-5 m / w$ above shows that contabescence confined in its action to the stamen alone. $7-10 \mathrm{w}$ Generally female organ not affected, when stamen are contabescent 20un/16-22w many have attributed this affection to planting in damp earth; but his found in light sand on mountains $26-30 w$ These plants produced more pollen when nourished by pure water. wb (no doubt cause of contabescence, must be very early in life of plant, we know that state of plants one year determines its fruiting next year C.D) $1242 u \wedge / 2-17 w$ These plants were quite sterile for 4 years on female side but produced pollen.- affects from it became quite contabescent \& female organs remaining sterile $\uparrow 16-1 w / w b 3$ of this plant was quite fertile \& all flower \& \& twigs which had flowered were cut off, \& then all the flowers which came were more or less contabescent \& many with precocious stigma \& small corollas: (a) subsequently perfect flowers were again produced.- (b) Repeated same experiment with same results next year 125 $14-16 \mathrm{~m} / \mathrm{w}$ (a) note on last page $24 \mathrm{~m} / \mathrm{w}$ (b) $26-28 m / 26-33 w$ never saw a male of this species with contabescent anthers, thinks therefore state is connected with hermaphrodite condition $126 \quad 5-12 w / \rightarrow / w t$ Thinks that contabescence of Hybrids \& pure species must be something distinct. It is evident there is no difference in appearance in the two classes of facts $12 u$ "Treviranus"/ $14-19 w$ Trev attributes to fungi; G. inclined to think this is a secondary cause. Leaves it all unexplained 127 wt Pollen when some degree \diamond part gathered \& placed in water or in transplanted plants, but female capacity much more easily injured - 1-11m/4w (a) 128 wt I do not doubt this shedding has caused belief in impregnation in closed flowers C.D. $1-3 m / w$ In these anthers shed pollen when closed. A $12 u$ "ungekörnter" $/ 11-13 w$ ungrained pollen powerless $23-24 m / 23-30 w$ Richness of pollen always great [1 think can only be explained by crossing.] Of course dioecious \& Monooecious plants must be excepted $\uparrow 3-2 u$ " $8-10$ ", $\uparrow 2 u$ " $80-96$ " $/ w$ has ten times too much $12932-34 m / w$ some monoecious plants little pollen 131 29-35w no relation between size of stigma \& quantity of pollen $13229-33 m / w$ quantity of pollen has no relation to wind or insects $1337-8 m, 10-$
$12 w$ little pollen few seeds $20-22 w$ few seeds richer in pollen 31－32w many seeds little pollen $1346-7 w$ many seeds much pollen 135 11u＂ein Eychen＂／11－15m 136 12u＾／13ua／ $12-16 \mathrm{~m} / \mathrm{w}$ great size of pollen；yet size varies greatly in some of the species． $24-28 \mathrm{~m} / \mathrm{w}$ size of pollen no influence on hybridising $30 u$ ＂Kleinheit｜Unförmigkeit＂／31u＂bestimmten＂｜ $32|\mid 137$ 11－13 w Pollen different in Petunia 16－21m，21u＂Tulpen＂，16－25w Pollen generally same throughout genus but different in different species of Dianthus \＆in varieties $34-36 \mathrm{~m} / 31-35 \mathrm{w}$ most important compare Kölreuter experiments \＆Gaertner＇s wb good pollen known by bright colour as well as regular shape 138 25－35w Proved that pollen in same species of different shapes，but G．doubts whether all effective 145 15u＂Caryophylleen＂，16u＂48 Ikräftig＂， $17 u$＂Conception＂$/ w 4-6$ days $20 u$＂dritten＂， $33 u$＂ $9.1 / w 9$ days $1476-16 \mathrm{~m} / \mathrm{w}$ Henschel＇s cases in fact showing natural crossing；did Henschel castrate？if so useful facts．－ 148 $9-16 \mathrm{~m} / \mathrm{w}$ in water all the grains do not explode，but some become transparent 153 $w b$ Finished from 104 －to 153

220 21－37w N．B When many pistils，then number variable［when many of any organs apt to be variable；Why．Hairs \＆c \＆c vertebrae of serpents］$w b$ Nature does not keep count 222 15－22m／w says anthers open in Labiatae before flowers open \＆implies impregnated then 226 11－15m 229 wb Read to here 236 9－11m $2419 w$ Read 242 5－12w concludes＊all C．C．Spengels dichogamy depends on the abnormal praecosity of pistil！！ 247 28－35w Mere opening of stigma of Mimulus does not show yet ready for impregnation 250 17－26w power of conception varies in individuals．sometimes absent without apparent cause $2513-7 \mathrm{~m} / 2$－ $13 w$ want of power of concepcion most often observed in exotic from warm countries．as in examples．but sometimes observed in home plants． $17-28 \mathrm{~m} / \mathrm{w}$ influence of fresh air， \＆light seems necessary to fertility of some plants，as in these when placed in pots in chamber，though pollen was produced． $27 a \tau m / w$（a）$\Uparrow 4 u / w \tau, w b$ unhurt roots appear very important for concepcion for plants \＆if they have not＊mourned over trans－ plantation，But seldom give good seed．－has often experimented on this．－ 252 wt In many cases Plants in pots with roots coming out of vent－hole in bottom，taken up with greatest care，\＆with pots placed in saucer with water，though development of flower
continued as much \＆pollen good was produced，yet ovarium was $\&$ remained undeveloped \＆unfertilized－so never in cut－ flowers in water 253 wt But Digitalis has stood transplanting out of open ground into pots，\＆has yet retained capacity of being fertilised． $1-7 m / w$（a）$w b$ Chester Read $w b /$ \rightarrow 〈to＂Brassica Rapa＂＞But roots were left p333 wb／\rightarrow to $p .252,23 \mathrm{~m} / 31-34 \mathrm{~m}\rangle$ cases of Coniferae producing seeds in cut flowers \＆ cases of Monocotyledons plant doing same．－ $3281-14 m / w$ From general way of speaking of coincidence of stamens \＆pistils evidently does not believe in Conrad Sprengel 23－ $28 m / w$ In these Fam．pollen shed \＆partially spread on stigma before flower opened $\uparrow 8$－ $1 \mathrm{~m} / \mathrm{w}$ occasionally within flowers $3291-6 \mathrm{~m} / \mathrm{w} /$ $w t$ In these sometimes corolla ready before stamens $9-18 \mathrm{~m} / \mathrm{w}$ Pistils generally ready after stamens $\pi 7-3 m / w b$ The relation of development of flowers \＆organs of fructification not very fixed，especially in Exotics $33211 m, 13-20 \mathrm{~m} / \mathrm{w}$ From this it almost follows that artificial self－fructification was done in House 333 1－2m／wt Many plants more fertile in wild state than in Garden or greenhouse．11－12u＂Gräsern｜u．s．w．＂｜13u＊／ $14 u * / 15 w$ Nothing $5-15 \mathrm{~m} / \mathrm{w}$ In some，rich food makes more seed，in others a withdrawal of food．In former，those with dark． $16 u$＂Henschel＂$/ w$ Has written on the above 335 11－12w aid of insects overrated by some，underated by others 13－14u ＂Labiaten IIrideen＂，35－16m／20－25w admits to considerable extent service of insects in impregnation wb Ch．Morren worth reading 336 22－31m $3374-16 m / w$ In most flowers stamens \＆pistils so near together that by the twisting of anthers must be impregnated； \＆the co－temp ripeness of both bears on this point． $20 \mathrm{~m} 33812 w$ Campanula 344 11－16m／ 14－15u／11w Kolreuter $22 m, 25-27 m / 24-31 w$ In these genera，one stamen suffices to impregnate all ovules $2 u$＂Geum＂w 1／8 345 $23 / w 10$ pollen $26-27 w$ failed $30 w 20$ pollen $\uparrow 2-1 w 30$ gr failed $346 w t$ Malta $1-16 w$ Some grains seem used to exact position of capsule \＆c $5 u$＂Vierzig＂$/ w 40$ 15－16u＂diel versehen＂，18 \rightarrow 〈to p．347，介10〉，21－29w In Malta 40 grains required for even imperfect impregnation $3476 m, 23 w$ S．p． $351 \pi 9 w$ saturated $3496 u$＂ $15 \mid 20$＂$/ 7 w$ failed $14-15 u$ ＂ 30135 ＂$/ w$ failed $26 u$＂vierten＂， $34 u \leftrightarrow 35036 u$ ＂nicht｜von＂ 351 5－8m，16u＂wiederholte＂ 353 $11 m, 27-31 \mathrm{~m} / \mathrm{w}$ signs of fructification slower after evening fructification than after morning fruct．Is not this like Hybrids．－ 358 32 u $\mathrm{a} / 31-$ $36 m / w / w b$ became more fruitful \＆almost

GAERTNER, BEFRUCHTUNG
exclusively female by the destroying of male flowers - Bernhardi has observed opposite in Cannabis $364 \Uparrow 8-1 m, w b$ When seeds few number constant, when many seeds variable.- Law of variability - Lower animals, generally most vegetation. $3651-10 \mathrm{~m} / \mathrm{w} / \mathrm{wt}$ (a) In artificial impregnation number of seeds * often more variable, accounts for it by isolation out of free air $11-15 \mathrm{~m} / \mathrm{w}$ But in some cases can hardly account for difference $17-20 \mathrm{~m} / \mathrm{w}$ some * are as fruitful in Chamber as in free $22 w$ not castration $w b$ All above shows how easily \& inexplicably fertility is affected- $£ w$ All these observations show that he must have considered all causes affecting his standard of comparison for Hybrids wb p. 600 important experiment showing the repeated application of pollen necessary for full impregnation \& this is not done artificially $36613-15 m / 12-$ $23 w$ How observed pollen out of another individual in these 3 genera more efficacious ie advantage of crossing - $\uparrow 11-1 m / w b$ artificial self-impregnation often entirely fails, for reasons quite inexplicable - Very odd that he never seems to have included Primula in this Category.- $3676 m, 11 u / w \tau$, $12 u$ "verharren", $14 u / w \tau 439$ wb Read \& skimmed $44015-18 \mathrm{~m} / \mathrm{w}$ Thinks quantity of pollen merely for security of impregnation. $20-23 \mathrm{~m} / \mathrm{w}$ But pollen is perfected. 441 19$23 \mathrm{~m} / \mathrm{w}$ abortion commoner by artificial than in nat. fruct. $44236 u$ " 500 Eychen" $/ 33-36 \mathrm{~m} / \mathrm{w}$ In polyspermous plants, always some ovules abort.- 443 13-14u^/17u^/12-35m/18-26w curious experiment try to remove fertile flowers \& see whether sterile wd become fertile $44428-33 \mathrm{~m} / \mathrm{w}$ cuttings \&c give plants apt to abort $33-34 w$ luxuriant fruit $45936 m$ $528 \pi 20-3 \mathrm{~m} / \mathrm{w}$ p618 Tausch in Flora 1833 p. $22553323!!535$ 26-32w 123539 wt above 500 experiments we thought it sufficient if our experimental plants were from 6-800 steps from their like kind, when castrated, but was much deceived $8-11 m / 9 u$ "hinreichend" $/ w$ (a) 11-12u "der 1 hatten", $16 u$ "zwei"/w 2/2 flowers $20-22 c \leftrightarrow / w 0 / 223-25 w$ $3 / 5$ flowers gave good seed $31 w$ 2/2 $35 w$ 6/9 540 Iw [numbers of flowers giving good seed, as previous pagel, $\uparrow 3-2 w 25$ were impregnated $w b$ in these castrated flowers no doubt stigma wd remain far longer ready for impregnation than in hermaphrodite yet it shows how much pollen of same species is carried to same flower (V. p145) 550 table.wec, "After-befruchtung 202"/w Very striking this many out of 520 flowers dusted with foreign pollen $w b$ No doubt others refer
to pollen left in flower or brought from outside $560 \Uparrow 4-3 u \uparrow / w$ is this Lilac, if so no seed. Yes it is $5649-10 \mathrm{~m} / 12 \mathrm{u} / / 8-17 w$ Many exotic plants produce fruit but no seed, rather owing to bad pollen than female organ.- 565 zt $57134 u$ "Frühzeitiger" $34-36 \mathrm{~m} /$ $33-34 w$ precocious good word wb Power of concepcion in frühzeitig stigma causes impregnation before flower opens 572 2-6w stigma in such cases goes on growing 2026 w chief cause of after-befruchtung lies in act of Castration. $57310-12 \mathrm{~m} / 8-15 \mathrm{w}$ has observed after fruct in Nicotiana when 80100 yards distant; on account of fineness of pollen.- $16 \mathrm{~m} / \mathrm{w}$ read. $5745-35 \mathrm{~m} / 13-15 \mathrm{w}$ all cases of after fruct. $16 w / 26 w / 29 w / 32 w / w b$ (number of species and genera totalled) $5752 w /$ 1-4wac, 12-14m/w $5764 u$ " 520 " $6 u$ "202 Afterbefruchtung"/wt 499 (remains 29 whose seeds did not grow) wb 8577 wt $831 w 70$ $w b$ The fewness of these after befrucht have compared with those given before in experiment out of doors, show that the latter received pollen from other flowers, I think $5985-9 m / 7 u$ " 234 " $6005-17 m / w$ repeated impregnation necessary to full impregnation of Tropaeolum 604a $23 \mathrm{~m} / \mathrm{w}$ Kolreuter on Contabescence $25 \mathrm{~m} / \mathrm{w}$ What books is this of Sprengel V. Pritzel (I have looked \& there is none) 610b $26-27 m, 30-33 m$, $34 u$ " 1838 Vol XII" 611b $6 m, 36 m$ 618b 41-47m, wb on distribution of some LichnisO 619a $3 \mathrm{~m} / \mathrm{wt}$ Mustel on fruit in glass cases not having seed

GÄRTNER, C.F. Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich Stuttgart; 1849 [CUL]
af, br, cc, che, cs, ct, dic, ds, em, ex, fg, gd, h, he, hy, ig, is, mhp, mn, pat, phy, oo, rd, sl, sp, spo, sx, sy, t tm, v, wd, y

SF Oct. 1855 * This work is abstracted \& abstracts distributed, except the Bundle herein enclosed.
\Leftrightarrow p521 top. p524 on germination of Hybrid seed. \& all seeds.
The abstract has been carefully compared with those of all Kölreuter \& Herbert \&c \&c \&c
NF1 Gaertner Bastard When read make Abstract; \& read one abstract of Koelreuter \& make abstract of Herbert \& look over Portfolio When finished read Berkeley Criticisms on ...
NF2 I think began Sept 15/54/
1849<

NF3 p602 Mothers name first
p． 444 Definition of Gemischte \＆Zusam－ mengesetze Bastarde \＆Ausnahmen typus p502 Better definition \＆examples Griffel style
p． 602 Nicotiana glutinosa female mother－ perenne male father
p429 Explanation of Kolreuter＂auf－ steigenden Grad＂absteigenden grad p． 451
NB Books of great importance to Refer to Note 626717 p． 734 of this Book
p． 157 Seeds long retaining vitality
p142 See to this important
p577 fertility of dogs
Has he ever experimented with the umwandelung of Varieties？
p． 640 Genera which produce good pollen \＆ovules \＆yet require pollen of other species to fertilise them
p． 418 Ask Author
p． 387 Digitalis for comparison with Herbert
There are facts on variation．－
Ask Author：p． 84 Were any of the Mongrel Peas reared？p．92（？）© Stet p． $102=$ Table of Primula $=$ p577 p578 p． 579
86 duration of pollen
322 Maize p292
Treviranus ought to be read．He seems a Lamarckian．
SA1 $\langle p . x v i\rangle$
The real odd thing is in Hybrids，that not＊ varieties not thus affected \＆ $2 d$ that offspring are sterile．
Does he give any case of two wild varieties when crossed，producing a more variable offspring than two true species？in first generation，because the difference in variability he makes so important distinction in vars \＆species（p581）
〈over）Hybrids
Does pistil or stamen ever become monstrous？
Stigma＊becomes more divided
In Hybrid offspring Does Male sex sometimes fail \＆sometimes female or always both equally？which more often Relation of Hybridisation to Variability Dissimalirity of Mongrel offspring
Did Kolreuter cross many Silene vide p． 140 of Gaertner？
Do not two Hybrids breed easier together sometimes than each with self－for this wd upset Gaertners explanation of weakened pollen．－
SA2 $\langle p p .728-729\rangle$
\Leftrightarrow For p .178
〈a list of species，and some editorial comments＞
〈not CD；note on application of the terms
＂calycantha＂，＂communis＂，＂veris＂and ＂officinalis＂）
\Leftrightarrow（C．C．Babington）
vi $17-21 m$ diii $26-29 m / 29 u$＂Uebereinkunft＂／ w great agreement in animals \＆Plants in Bastardising xi $6-7 m$ xiv $21 m$ xv $15 w$ Compounded 5 11－12w confirms Köelreuter 7 $15 u / w \tau 87-19 m / w$ under apparently similar circumstances produce difft quantity of seeds．Hybrids few seeds $26-27 u \leftrightarrow / 24-28 m /$ w these have succeeded only once or twice． $912-14 \mathrm{~m} / \mathrm{w}$ cause of failure chiefly in female organs． $101-2 m, 5 / 7 / 8 u / w \tau, 21-22 w *$ Herbert p． $37122 u / w \tau, 25-29 w$ all injurious influences more injurious to hybridising． 11 wt N．B．As damp \＆rain so injurious to fructification it makes it odder that flowers are not $\%$ regularly impregnated in closed state，for they can be impregnated haufig in this condition．In cases of Campanula which are impregnated in bud，are these foreigners？\＆ wd they open in own country． $11 u$＂häufigl Blume＂ $12 u$＂bloss＂， $14 u / w \tau, 22 u / w \tau, 25-29 m$ ， $31 u / w \tau$ ， $33 u / w b \tau, 34-35 m 1210-12 m / w$ some effect of variability on hybrids $\mathrm{Q} 14-17 \mathrm{~m} / \mathrm{w}$ no great difference in hybridisation of wild \＆cultivated $19 u / w \tau, 28-31 \mathrm{~m} / \mathrm{w}$ Disputes Herberts case of fertile hybrids $35 u / w \tau$ ，35－ $37 \mathrm{~m} / \mathrm{w}$ thinks has mistaken the fertility of some hybrids，with the results of a first impregnation． $131 u / w \tau, 2-5 w$ some hybrid fruits are richer in seed，than the fruit produced by first union．3／6／9／23／27／31u／w 14 $30 u / w \tau 15$ 5／10／24／26u／w $1921 u / w \tau, 23-26 w$ condition of pollen on stigma changes sooner or later according to relationship 21 $\Uparrow 1 u / w b \tau 229 u / w \tau 235 u / w \tau 28$ 17－21w fruit falls off，from imperfect impregnation $296 u /$ $w \tau 30$ wt lt is not Hybrids－but Hybrid－ fructification．Most important distinction which I have overlooked． $18-21 \mathrm{~m} / \mathrm{w}$ Hybrids never produce full abundance of seeds． $21 u / w \tau 32$ $7-10 w$ Hybridisation requires all outward circumstances favourable． $347 u$＂fremden＂$/ w$ Never the least effect．－ $3523 w$ no mixed effect $31 u$＂rustica＂$/ w$ female prefers paniculata $32 w$ female $33-34 w$ prefers Langsdorf $4322-27 \mathrm{~m} / \mathrm{w}$ pure \＆hybrids out of same capsule，but no tincture． 45 11／27u／w $465-6 \mathrm{~m} 501-8 \mathrm{~m} / \mathrm{w}$ Q case of variety with characters like other species $3 u$ Ansätzel Zähne＂ 52 10u＂dreifach｜gemischten＂／8－10w 3 sorts in same capsules 55 18－22w Herbert believes in tincture $561-16 w$ This is what might have been expected mere physical difficulty？？ $17-28 w$ This slowness is important as it is character in parents \＆not

GAERTNER, BASTARDERZEUGUNG: 56 in hybrid. 29-32m/w injures the other ovules 58 28u/w $6410 u$ "einem \mid Pollen", $12 u$ "rusticol Langsdorfii" $/ 7-14 w$ In Hybrids father or mother's pollen makes own powerless. so does quite foreign pollen sometimes $15 u / w \tau /$ $16 u$ "erotischen", 20u/a "Lobelia" Example 15$22 w$ In some pure, specially exotics, own pollen will not impregnate, whilst that of other undivided, or even other species, get own pollen good.- $28 u$ "W. Herbert", $28 u$ "Zephyranthes" $\mid 27-31 w$ p. 355 so Herbert with Zephyranthes but not good example see xx next Page. 32u "Bosse", 32a "Hippeastrum"/ wb Amaryllidae p. 371 - in this case it is Hybrid with hybrids 33-34u "Passiflora" 65 wt xx This like Herberts Zephyranthes case; P. racemosa can be fructified by pollen of coerulea, but stigma of coerulea cannot be fructified by pollen of racemosa or by its own - we may say female organ of coerulea injured. $3 u / w \tau, 5-9 m / w \times x \quad 10-12 m / w$ takes the view given above xx 13/14/19/25u/w , 21$23 m / w$ compares with snails 66 28-31w seldom any pollen has no action on stigma $675-9 \mathrm{~m} / \mathrm{w}$ sometimes stigma decays \& flowers fall without slightest fructification. 68 $16-20 \mathrm{w}$ gradation of affinity shown by time of decay of stigma \& flowers $6927 u / w \tau 729-$ $19 w$ Thinks the fruit of hybrids is not due to pollen-influence, but to that power of forming fruit, which the most sterile hybrids without any pollen do produce Repeated p106 73 1$3 m / w$ mother not more powerful than pollen $13-15 w$ Hybridising generally no effect on seeds. $22-24 w$ apple half sour half sweet.-28/29/31-32u/w, $29 u$ "liess", /-34w castrated pear-blossoms in orchard bore much fruit, showing crossing $35 \mathrm{~m} / \mathrm{w}$ thinks experiment not careful enough $7510 u / w \tau, w b$ Disbelieves (perhaps very truly) all these cases of direct effect of pollen on the mothers fruit.- $7611 u / w \tau$, $19 u$ "Pelargonium" $/ w$ Qas sport in $23 u a / w$ sports in $24 u \wedge, 28 u \wedge / w$ sports in wild 77 2/5/9u/w 78 1-5w Discussion on Koelreuters 3 cases of seeds directly affected by Hybridisation. $14-15 \mathrm{~m} / \mathrm{w}$ seeds vary much. wb Disbelieves seed ever really affected; the only difference he has ever observed being solely in size.- 80 wb see p499 \& p135 81 tw . This most important, * if crossing varieties * has had anything to do with diverse coloured seeds, then they are crossed naturally by Bees.$w b$ Has tried Wiegman experiments with quite different results, ie seeds never affected see next several Pages $\Uparrow 10 w$ All a mistake. $\uparrow 7-6 m / \Uparrow 6 u$ "reine" $/ w$. The selfimpregnated flowers gave same result as the
castrated \& cross impregnated \& these showed colours altered $821-2 \mathrm{~m} / \mathrm{w}$ most constant vars. $19-25 \mathrm{~m} / \mathrm{w}$ here seeds were coloured $28 \mathrm{~m} / \mathrm{w}$ * were these mongrels 832 $3 / 5 / 10 / 16 / 34 u$ (colours of seeds) $841 u / w \tau, 20-$ $24 m / 22 u / w \tau 8510-11 m / w$ \& Berkeley's $10 u /$ $w \tau, 13 u \pm / w$ see account p. $1415 u$ "geringer Fruchtbarkeit", 18-25w plants from Wiegmanns Pisum oticia he rather thinks varietats-Bastard rather than a hybrid, because, flower impregnated with common impregnation \& pollen of Vicia had no effect. $29 w$ ie offspring of Wiegmans Piso-vicia 86 $25 u$ "sondern|war"/w Conclusion mere variety, \& says nothing about mongrel. 30$33 \mathrm{~m} / \mathrm{w}$ cd not make any of them cross. $31 \mathrm{~m} /$ $w b$ Loudon makes these distinct species besides vulgaris $871 u / w \tau$, $6-8 m / w$ Leguminosen opposed to Hybridisation 8$12 w$ If then mongrelising takes place easily; yet cannot at all between Wiegmanns hybrids 13-15m, 18a "аппиа" Cruciferae $18-21 w$ W doubts about seeds in Matthiola what to say 19/21/23/25u/w $\mathbf{1}$, 33 u "einer \mid die"/ $31-35 m / w b$ Mays not affected $88 w t$ also Berkeley did not artificially cross.- 89 wt xx It seems he does fully admit that cross fertilisation does in Pisum affect seeds, \& as Wiegmann did not artificially impregnate, shows that Peas, when $*$ not castrated, are crossed naturally. Be sure read Book mentioned in note 62 p734 (How strange considering sweet Peas) $9 x x, 12 / 15 / 21 u / w \tau$ 90 17-19m/w female sterility transmitted in cross. $17 / 18 / 19 u / w \tau, 30-35 \mathrm{~m} / \mathrm{wb}$ The tinctures on half-bastards of Koëlreuter, Wiegmann \& Herbert are upset.- $9110-17 \mathrm{~m} / \mathrm{w}$ Father \& Mother element more powerful in some 11/ $16 / 17 u / w \tau, 21-26 w$ Hybrid pollen more effect on own stigma than on other pollens; but the converse no effect 31-33m/w another severe case of different effects. $928 u$ "Lychnicucubalus"/w Hybrids, I suppose $10 u$ "Lychnis diurna", 22-24w colour \& size of pollen no relation to fructification $28-30 \mathrm{~m} / \mathrm{w}$ most important see his other work. $28 u$ "Varietäten"|wb speaks p181 of species so holds good with species too From table at end really species $30 u$ "fruchtbare"/wb more fruitful, \therefore crossing cross colours less fruitful \therefore perhaps Hollyocks thus accounted for. So he says most distinctly in his Beitrage p137 in regard to Verbascum. $9319-20 w$ (a) $w b$ (a) Koëlreuter * confused imperfect impregnation in the first cross, with the imperfect fructification of Hybrids, but this shows how similar the case is.- $945-12 w$ imperfect fructification differs from no fruct, in
seeds being more perfect $7 u$ "Grösse", 9$11 m / 10 u$ "ohnel worden", 17-20m/u \pm / w first cross * never quite fertile as of cross of pure species. $9610-12 w$ no relation in state of capsule \& state of seed. 17-27w fertility of original act of hybridisation so different, that even in flowers of same plant, that it is difficult to make scale of fertility or consequent relationship. $w b$ (a) * Grades of Fructification, imperfect to normal \& perfect pollen no more effect than foreign dust; occurs even not seldom in species of same genus, "from want of sexual affinity"- (mere words) 97 3-4ua 101 16-17u "erlaus"/Q 20u "schwachen LLeben", 21-24w out of many imperfect seeds \& 1000 buds apparently perfect, * not one germinated. $25 u$ "nicht 1 gekeimt" 102 1-2x/wt every gradation of imperfection in capsule with one or more seeds, capable of germination. $4-7 \mathrm{~m} / \mathrm{w}$ Important $7 u / w \tau, 12-14 m / w$ most fertile hybrids $1032 u$ "Sageret", 1-2w See to this Annales des Sciences Nat 105 2-6m/wt can the effect of pollen of plant in producing capsule be analogous to Ld Moreton's case? $10811 u$ "Morton", 12-17m/w Morton attributes power of hybridisation to capacity of domestication.- $1099 u$ "grosser" $/ 8-9 w$ greater number will not hybridise $11 u$ " 700 ", $12 u$ " 250 " $12 a$ "Bastarde" different sorts? $\Uparrow 14 u$ "versagt", $\Uparrow 13-11 m / w$ unions which failed with Kölreuter $110 \Uparrow 15-14 u$ "eine l Elemente" $/ w$ a certain sexual harmony necessary for union.- (1 presume in contrast to general affinity) $\uparrow 4 w \tau, \uparrow 5-3 w$ pollen does not adhere to stigma $1118-15 \mathrm{w}$ even when pollen does cling to stigma fructification very often fails in hybrids the stigma fails $\uparrow 10-9 u$ "wie|scheint"/w (a) $\uparrow 10-9 w$ Only certain individuals can be hybridised $w b$ (a) I cannot but think hybridisation commoner with animals than plants.- $1123 u / w \tau 11311 u$ "Prof.", table.w shows natural crossing $\uparrow 10 w$ 14 genera $\uparrow 9 u$ "AllelSamen", $\uparrow 9-5 m 114$ $10 u / w \tau$, table.c/w no scarcityO table.w List of Families which have admitted of hybridisation 115 table.m/w failed with these, but experiments not numerous enough to show cause.- 116 table.u "Primuleae"/w easy table.w Fams. of easy manipulation 5-7m/w capacity for hybridisation not liesO in Family Character. $10 u / w \tau, 13-18 w *$ In families with regular species, subdivided into not real genera, most hybridisation $19 u / w \tau, \pi 9-8 u \uparrow /$ $\Uparrow 11-6 m / w$ The spec of most natural Families very - resist hybridisation $\uparrow 2 u / w$ No hybrids in Compositae $11722 u$ "Apocineen"/w is not this * Vinca $25 u / w \tau$, 26-30w thinks

Orchideae \& Asclepiadae wd be hard to cross. from structure of flower $1197 u$ "Gymnogramma", $17 w$ Disputes from hybrids, thinks only variations observed only in Gymnogramma 120 16-20w Dioecious less easy hybridised than hermaphrodite $1213-$ $5 \mathrm{~m} / \mathrm{wt}$ The capability of * fructification * lies in more special character, than those characterising any whole family $2-4 m, 13 m$ 122 2-10w No distinct relation between polyspermous \& oligospermous plants \& capacity for hybrid. fruct.- 123 wt Dioecious plants a longer capacity for impregnation. wt I see uses Dichogamous = Dioecious $1-2 \mathrm{~m} /$ u "inlBlüthe", $4 u$ "neun", $5 u$ "zu Conceptionskraft" "Lecoq"/w a book on Hybrids $\uparrow 11-9 m / w$ (a) $w b$ (a) Dioecious plants less capable of Hybrid-fruct: at least than some hermaphrodite 1257 m , table.w (asterisks added)/w other observers have suceeded, though he failed $1268 w \tau, 9 w \tau$, $\Uparrow 6-5 u$ "Aquilegia" $/ w \leftrightarrow$ Hooker thinks all same species $\uparrow 10-1 w / w b$ closely allied genera differ greatly in tendency to hybridfructification several examples \& I believe quotes Kolreuter but observes only few species in each experimented on.- 127 6-12m 128 2nd table.m, $8 w \tau$, $10 u$ "Afterbefruchtungen", 13-14u/w , 15w , 3rd table.m/w All this shows that when anther removed, how much crossing can take place from adjoining plants - i.e. intermarriage 129 $1 w \tau 130 \Uparrow 11-10 \mathrm{~m} / \mathrm{w}$ I do not know whether Kolreuter or self. he suceeded anyhow. 介7$5 u \uparrow / w$ Dichogam crosses $\Uparrow 1 u$ "wiederholten Versuchen" $1311 w \tau, 3 w \notin, 2-3 u$ "vergeblich hatte" $/ m / w$ (a) wt (a) Reverse case which always failed with Kolreuter succeeded once with him,- but was very difficult Hybrid Plants no ways different - $14 w \notin 1324-12 w$ none of these bigeneric seeds germinated. though some had embryo $\uparrow 10-4 w$ only ones known Bigeneric crosses $w \notin 134 \Uparrow 8 m 135$ $11-14 \mathrm{~m} / \mathrm{w}$ universal law that pollen of parents fructifies hybrids more then own. $20 \mathrm{w} \notin 136$ §3-1m/u "Canis \mid Mouflon"/wb ram or he goat $137 \Uparrow 3 w \notin 138 w t$ (a) Against limit of genus being determined by power of crossing, even Herbert does not pretend all species can cross, though when any true species do cross, he says they must belong to same genus - so the "reverse crosses!! \& cases of Crosses which after years succeed only once, go against law of genus by crossing being connected. $8-22 \mathrm{~m} / 12-15 \mathrm{w}$ sense given above (a) $\uparrow 3-2 u$ "inneren Arten" $/ a$ "in" power of uniting depends on $1391-2 u \leftrightarrow / w$ Hence a sexual \& systematic

GAERTNER, BASTARDERZEUGUNG: 139 relationship $15 w_{\notin,} 17-20 w$ genera formed of diverse $\%$ characters 140 wt When two genera have united, the species do not always in these genera readily unite. Tormentilla \& Potentilla, though so close, will not unite. $1 w \notin, 1-3 m, 6-16 \mathrm{~m} / \rightarrow, 17-30 \mathrm{w}$ it is quite wrong to infer because some species within a genus, will cross that all will; generally only a few. Herberts cases, however, rather contradict this. Hippeastrum, Azalea, Calceolaria 141 wt (a) Sections of genera will sometimes unite \& sometimes not $1-5 m / w_{\uparrow}$ (a) $\uparrow 18-10 m / 16-14 w$ Sections of genera $\uparrow 8 / \uparrow 6 w * \notin, ~ \Uparrow 6-5 u$ "blauen 1 gelben" $/ m$,介1ua $1428-12 w$ in his Treatise speaks of species see to this $9-11$??, $12 \mathrm{~m} / \mathrm{u} / \mathrm{w} \diamond \tau, 13 /$ $15 w \notin, 13 a$ "Pepo" pumpkins $14 a$ "Citrullus" Water melon $15-17 w$ Girou succeeded in these $15 w \tau, 19 w \tau, 20-30 w$ The list of sections of genera which will not cross, shows no necessary relation of genera \& crossing.- $1436 u \pm / 6-15 w$ sexual affinity belongs only to species, \& often to only individuals, \& cannot be externally recognised. Different Times of flowering do not prevent hybrids. $\uparrow 3-2 u \star, w b \bullet$ Bush with plant? $1441 w \tau, 3-6 w$ annual, biennial \& perennial cross. 16-19w evergreen with deciduous cross $21 w \tau, 22-32 w$ many hybrids wh succeed in summer, \& fail in Autumn some succeed so seldom may be called accidental. $\uparrow 2-1 m, w b$ the most different varieties can cross.- $1453 u \uparrow / w$ can cross $14 u$ "Lecoq"/w see to this $147 \uparrow 12-10 u$ "Nicotiana Iglauca" $115-7 \mathrm{~m} / \mathrm{w}$ Pollen of some plants can impregnate others, but not be impregnated by them. $\pi 7-1 \mathrm{~m} / \mathrm{w}$ case of Nicotiana which will neither impregnate or be impregnated by other close species. wbex 8 specs $148 \Uparrow 1 u$ "jene"/wb species 149 wt Van Mons thinks stability in first generation \& variability in first distinctive character of species. $1 u$ "diese" $/ w$ varieties $8-11 m / w$ analogous to some organisms not varying in domestication $8-10 u \pm / 9-15 w$ some hybrids as these keep constant in 7th \& 8th generations but this rare.- $14 w \tau$, $\Uparrow 12 u$ "Blyth" $/ w$ see to this $\Uparrow 10-9 w \tau, \pi 3 w \tau$, wb I had better give cases of closely allied \& identical species in different climates to show species, \& very different species in similar climates to show not direct effect of climate $1501 w \tau$, 1-15w I quite agree very near or identical species may have been created, but this has to be decided. $14 \mathrm{~m} / \mathrm{u} /$ $w \tau, 20 w \tau, 17-22 m / w$ (a) $20-30 w$ Seems to agree with Blyth, I must study him - wb (a) A great power of place - attraction has no
relation to geographical range.- in direct opposition to my view, but agrees with Hooker on Compositae. 152 9/11w 153 5/ $6 w \tau, \Uparrow 10 w \tau, \Uparrow 1 u \leftrightarrow / w$ genera with many doubtful species $1542 / 6 w \tau$, $\uparrow 7 / \Uparrow 6 w \tau 155$ $18 w \tau$, $\uparrow 5 w \tau 156 \Uparrow 12 / \Uparrow 11 w \tau 157 \Uparrow 4-1 m / w$ seeds long retaining vegetating Power 158 $1-12 m / 8-12 w$ Wheat-seed identical $\uparrow 14-8 m / w$ These plants identical before So cross with recent. 159 $\pi 17-13 \mathrm{~m} / \mathrm{w}$ says varieties go back $160 \Uparrow 15 w \tau 1611 w \tau, \Uparrow 8 w \tau 162 \Uparrow 17 w \tau$, $\Uparrow 9 w \tau 16310 w \tau$, $15 u$ "nahe verwandte" $/ w$. hybrids from close species when united with another, show their differences even plainer than whilst pure 8-11w I think it means only the result of A.B.C where χ differ from each other (a) $15 u$ "nahe verwandter", 18-19u "z. 1 fulgens" $115-21 m$, 21-22u "geben 1 Bastarde", 22-28m/w Remarks This very odd if these close species descended from common ancestor. $\uparrow 8-3 m / w$ The existence of species consists of fixed sexual relation to other species $w b$ (a) Is there any case of two close vars. when united to a 3d var. producing very different mongrels. $16411 w \tau$, $16 w \tau$, 17-18u "diel fruchtbar", 16-20w Kolreuters Law of sterility can hardly be accepted. $24 u a / w$ do they seed? $23-30 w$ These 2 Penstemons though so like, as to be considered varieties, cannot be crossed. $w b$ || rarely certain individuals will not be impregnated see G. Beitrage. $1655 w \tau$, $\uparrow 17-$ $13 m, w b \times$ There are two P. gentianoides in cultivation the one commonly so called is the Hartwegi so misnamed - the true gentianoides is rare in cultivation differently shaped and not red $1669 u$ "der 1 seie" $/ 8-12 m$ $167 \$ 14-11 \mathrm{~m} / \mathrm{w}$ nearly related but will not cross $\uparrow 4 u$ "H. Lecoq" $1681-5 w$ I fancy that this is only that parents have originally crossed. 3wr, 12u/a "Vareitätsbastarde" I do not understand. are circumstances $\&$ as the second generation of species - bastard Will explain more afterwards $13 w \tau$, 14-24w Holds good with some wild * species which fructify each other but do not sport like true vars whereby these plants are characterised like true species. $19-26 \mathrm{~m} / \mathrm{w}$ Get information on these - wild * species Fertility tested by himself $\uparrow 6 m / w$ (a) $w b$ (a) Genera with species agreeing in Habit, as above, hybridise most, Yet some species of these will not cross. $1694-8 m / w$ These species cross easily, yet other others of the genus, will not cross. $9-17 w$ Though power of crossing sometimes goes with external resemblance yet the most natural Families \& genera as here do not hybridise well.- 14
$16 u \uparrow, \Uparrow 13 w \tau, \Uparrow 12 m / w$ Hybridises differently $1712 u$＂Umbellaten＂ $\mid w$ No Hybrids tried on Umbellifera $\uparrow 16-12 w$ Thinks wd hybridise from being so variable $\uparrow 9 u$＂Cruciaten＂／ $19-$ $5 \mathrm{~m} / \mathrm{w}$ all failed $172 \Uparrow 17 u$＂Labiatae＂ $17-10 \mathrm{w}$ Labiatae little tried，but I know that Mimulus has succeeded $1731-4 \mathrm{~m} / w_{0}$ Most Natural Family $9-11 m / w$ all failed $\uparrow 10 u$＂Sageret＂ ＂Lecoq＂／w quotes from Sageret $\uparrow 9 u / w \tau, \Uparrow 11-$ $9 m / \Uparrow 11-1 w$ Sageret \＆Lecoq has found vars of Cucurb．will not cross promiscuously （References hardly bear out conclusion） 174 $1-6 \mathrm{~m} / \mathrm{wt}$ cases of only few species in very close genera uniting，new species which are hard to specifically characterise．－table．w cases of very close species＊or more exactly，species having the same habitus which will not unite．－$\uparrow 5 u \uparrow$ ，$\uparrow 5-1 m, w b$ cases of species having very different habitus which do unite，chiefly from Herbert， except darks $1751-7 m, 9 w \tau, \Uparrow 14-7 \mathrm{~m} / \mathrm{w}$ So Kolreuter shows，that propinquity does not go with power of hybridising $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ other examples of the same law $17611-13 \mathrm{~m} / \mathrm{w}$ so says Morton of Beasts $14-20 \mathrm{~m} / \mathrm{w}$ The non－ success of reciprocal impregnation clearest proofs that hybridisation not＊result of affinity．$\Uparrow 13 w_{\notin,} \Uparrow 11-3 w$ cases of non－ reciprocal fructification $1772 a$＂Langsdorfi＂ cannot be fructified by the 4 named sorts， though it can fructify them \＆some easily． $10-20 \mathrm{~m} / \mathrm{w}$ even when mutual crossing does take place in closely allied species，yet facility not alike（this is new） $21 u \wedge / \mathrm{m} / \mathrm{w}$ closely allied，yet unite with difficulty \＆will not be reciprocal． 178 wt \｜officinalis \＆ acaulis not in Loudon．－p721 officinalis $=$ veris＝Cowslip－I see it is barely possible without consulting Babington to know which is which wt Here are vars which will not unite 1－2w Most important $3-4 u / w \tau / w$ on Babington＇s authority see Table $4-8 m / w$ ． Compare these very difficult $10-14 m, 11-15 w$ very different in Habit，yet unite easily．－ 179 $7-11 m / 8 w$ Herbert $10 u$＂Cereus＂， $11 u$＂schon längst＂，13－19w Cactus or Cereus Melocactus Echinocactus，Echinopsis， Phylocactus $20 u$＂H．Neubert＂，21－22u ＂Cereus 1 Ottanis＂，24u＾，24－25u＾，25u＾，27－ 28u＾，24－28w Neubert has succeeded in these crosses $1803-6 \mathrm{~m} / \mathrm{w}$ Mongrels sport \＆ he has seen same thing Cucurb．$\$ 19-16 \mathrm{~m}$ ， $\Uparrow 12-8 w$ Flowers very unlike yet cross $\uparrow 4-1 \mathrm{~m} /$ w Colours of Verbascum $1811-5 m, \uparrow 9 u \leftrightarrow / m$ $1829-13 \mathrm{~m} / \mathrm{w}$ These succeeded with G． having failed with Koel：$\Uparrow 10-2 m / w$ shape of pistil no effect in hybridising $183 \pi 7-3 \mathrm{~m} / \mathrm{w}$ size of pollen no effect $184 \Uparrow 6-5 m 185 \Uparrow 7 / \Uparrow 6 /$
$\Uparrow 2 w \tau 1866-8 m / 1 \Uparrow 8 w$ cause of Hybridising a Vital action \＆allows that the sexual relations is mere word $15 w \tau, 19-20 u$＂sondern｜beide＂｜ $m, \Uparrow 12-1 m / w$ Summary but nothing new 187 $1-15 \mathrm{~m} / \mathrm{w}$ Summary but nothing new $\uparrow 16-8 \mathrm{~m} /$ w cases when fructification has taken place， once after repeated failures．－ $1886-14 m / w$ cases of plants differing chemically，compare this with difference in their sexual affinity $10 w \tau, 15 w \tau$ elective affinity $189 \quad 13-20 \mathrm{~m} / \mathrm{w}$ The closer or less close affinity．is shown by action of pollen on stigma \＆corolla．－$\uparrow 10-$ $7 m / w$ a chain of graduated affinities 191 10－ $13 \mathrm{~m} / \mathrm{w}$＊Yet in table does not put K．but i a $15-17 \mathrm{~m} / \mathrm{w}$ reverses with fewer seeds 194 wt Fertility of Hybrid，＊is in even less reation〈ie relation）to affinity of parents than facility of first＊union or hybrid－fructification．It seems no relation between case of getting 1 st hybrid \＆this hybrids fertility．This is case with the common Mule．－ $4 w \tau, 7 w \tau$ elective affinity $3-13 m$ ， $11 u$＂manche＂$/ 12 u$＂leicht＂／10－ $15 w$ many plants easily cross，whose hybrids are quite sterile $11-16 \mathrm{~m}, 16 u$＂sexuell verwandt＂， $16 u$＂ 49 ＂，17－18u＂waren fruchtbar＂，22－25m／w and fertility of similar Hybrids very variable $25 w \tau$ ，table．w Hyb． fruct．of great difficulty $w b$ I think Verbascum is case in point． $195 \uparrow 16-14 w$ seeds in pure ＊parent cross $\uparrow 15 u$＂ 80 I120＂，$\uparrow 12 u$＂paar 1 Samen＂$/ w$ numbers of seed Hyb．fruct．＊ when crossed $\uparrow 10 u$＂ 151 ＂／$\uparrow 9 u$＂ 29 ＂$/ w b$ numbers of seeds in reciprocal 〈u（z）〉 Hyb． fructification $w b$（hyb．－fruct．best expression） $w b$（pure．fructification） 196 wt Bad simile We might as well as deny that the different were really different，because they had no ＂elective affinity＂（I use word of Gärtner） whereas other two had strong elective affinity \＆wd unite \＆make a third．－ $4 w$ sexual non－reciprocity of the＂elective affinity＂．－ 197 wt The reciprocity of sexual alliance is not only different in strength，but is often entirely deficient $1-4 m, 6-8 m, 12-$ $24 \mathrm{~m} / \mathrm{w}$ cases of slight unequal reciprocity in very closely allied species，some even thought to be varieties．table．m / w cases of more unequal reciprocity $198 \uparrow 10-1 w$ cases of sexual non－reciprocity $1994 w \tau, 14-15 u \uparrow / w$ most striking example $\Uparrow 13 w$（a）$w b$（a） Special potency of pollen to impregnate other species of genus occur in Verbascum nigrum \＆Geum＊coccineum 200 wt In cases of entire sterility of one side of the reciprocal union，the other side generally only slightly fertile．－1－4m 201 wt（z）｜｜The absence of perfect reciprocity even in nearly related species，shows that male \＆female

GAERTNER, BASTARDERZEUGUNG: 201
power of union do not go together: but the difference of male \& female has no effect on the hybrid offspring $8 \mathrm{~m} / \mathrm{w}(\mathrm{z}) \rightarrow 202 \Uparrow 16-1 \mathrm{w} /$ wb Hybrid $\mathrm{A}+\mathrm{b}$, crossed with pollen of C , hybrid is always like C. Repeated on p.273, \& speculates, but does not explain says vital power of Hybrid is subordinated to the pure species.- 203 wt (a) N. rustica will not unite with N. glutinosa, but hybrid N. paniculata rustica, will with glutinosa, \& the character of rustica is seen in offspring. $-8-12 \mathrm{~m} / \mathrm{w}$ (a) $\uparrow 7-$ $5 w \rightarrow$ do $2051-13 w$ as in Primula \& Verbascum (?) But thus question of what species are is begged - $15 u$ "Kölreuter", $16 u$ "hybride Befruchtung", 14-17w First cross * never bring so many seeds as nat. fruct. $\Uparrow 4 u$ "jedem Eichen" $/ w$ from each $\Uparrow 2-1 m$, $w b$ Remarks that Herbert's Crinum was not growing in own climate - But he says every ovule was impregnated. $2062-4 m / 4 u$ "Calceolaria bemerkt", $\uparrow 12-5 w$ The number of seeds in Hybrid though dependent on conditions does not pass certain maximum 207 wt (a) Can judge of scale of elective affinity by number of seeds in hybrid-fruct., as compared to normal fruct. $1-18 \mathrm{~m} / \mathrm{w}$ (a) $\Uparrow 16 w \tau, \Uparrow 9 u$ "nicht constant", $\uparrow 8-7 u \leftrightarrow, \Uparrow 2-$ $1 u \leftrightarrow, \Uparrow 15-1 m, w b$ an average of seeds taken from a number good plant growing in open nature $208 \$ 15-12 \mathrm{~m} / \mathrm{w}$ seeds variable in colour \& size $w b$ as far 1 understand this, properly to count good seed, all ought to be tried by germination \& growth, but then more elements of growth \& death of seeds come into play $209 \Uparrow 11-6 m, w b$ on account of unfavourable conditions, we take maximum of seed of hybrid cross. $2101-6 \mathrm{~m} / \mathrm{w}$ always requires repeated experiments.- $\uparrow 13-8 \mathrm{~m} / \mathrm{w}$ only single instances of these unions. 211 $2 x, 13-22 m / w$ in wild Plants number of seeds do not differ so greatly as to cause much difficulty in estimating numbers. $\uparrow 5-1 \mathrm{~m} / \mathrm{w}$ There are * differences in flowers of same plant in being impregnated by foreign pollen.- $2123-8 w$ as individuals differ in some respect, as last page, several must be experimented on.- $8-9 \mathrm{~m} / \mathrm{u} \leftrightarrow, \quad 16-19 \mathrm{~m} / \mathrm{w}$ cases of individual plants wh were femally sterile $\Uparrow 14-1 w$ as the difference between nature \& artificial self-impregnation is never so great as in Hybrid fructification; he has taken wild plants as base of calculation, which seems to me to be an error. $\uparrow 4-3 u$ "selbst Ikäme" $/ w b$ Effects of crossing every plant by self injurious.- see Beitrage p. 366 $213 \Uparrow 14 m$, $\Uparrow 8 w \tau 214 \uparrow w$ Sexual affinity calculated by maximum of good seeds till further experiments ever increase this
maximum $\uparrow 7-1 m, w b$ experiments shd be tried at different times on different plants. $215 w t$ (a) Take average of number of seeds capable of germination under normal circumstances as the standard for comparison of best fruits $5 u$ "vollkommensten" $/ m / w$ (a) $14 u$ "keimungsfähigen", $\uparrow 6-1 m / \Uparrow 4 u$ " 20 Versuchen", wb very important, if this smaller number be not due to $*$ art used in the fructification. 216 table.a "polline" naturally * impregnated table.w Scale of sexual elective affinity, inferred from maximum seeds from hybrid-fruct, not from Hybrids themselves 217 $\uparrow 8-3 m / w$ (a) $w b$ (a) Gärtner thinks that these tables of affinity show that pure species are aboriginally formed sterile.- It is contradicted absolutely by his vars. $218 \pi 1 w$ Silene of Steudel $w b$ Here a genus more fertile than other species $w b$ 777/7000 219 wtcc, table. w 3 genera before other species $2204 u$ "Kreuzung"/w with G. \& Kolreuter implies reciprocal fertilisation $\uparrow 2-1 m / w b$ cases of non-reciprocal fructification. $22117 w$ Reciprocity holds good generally when hybrid is intermediate in character. 20-23m/w Reciprocal case $\Uparrow 3-1 \mathrm{~m} / w$ (a) $w b$ But when hybrid takes after mother or father type. then reciprocity will not take place.- This seems very curious $2224 w$ Mother type 6-9w Father-type most numerous. $\uparrow 14-11 m / w$ (a) $\Uparrow 7 m$, wb I fancy that the predominating power of one of 2 species, as shown in the hybrid - prevents reciprocity.- But there are exceptions. $2231-24 w$ self \& Köelr. find the reciprocal crosses exactly alike. $19 u$ "allgemeine" $/ w$ This is general rule, specially in wild plants, which are not varieties. 22-23u "Abweichungen 1 Farbe", $26 u$ "Ausnahmstypen", $\Uparrow 10-1 w / w b$ Difference from animals as Mule \& Hinny also hybrid animals differ in same litter; but in animals all half domesticated $2241-5 w$ Diff in animals \& Plants owing to sexes separate in animals. $\uparrow 16-12 m / \Uparrow 15 u$ "DifferenzlHabitus", $\mathfrak{\imath w}$ In comparison of sexes we must suppose habit the same, \& form of parts direct result of sexual peculiarities. Whiskers in Man!! $\uparrow 7-6 \mathrm{~m} / \mathrm{w}$ Hybrids varied $w b$ Whiskers \& Mane cannot be thus accounted for $w b$ No difference in Habitus of Plants, when sexes separate (because I say do not struggle for female: so lower radiata. $2258-12 m / w$ exceptions to uniformity of reciprocal crosses $\Uparrow 18-8 w$ curious exceptions in Genus Digitalis; not reciprocally alike 227 17-20w slight variations in hybrids $22814 m 230 \Uparrow 17-12 m / w$ Double flower raised from male or female 231 wt Differs from animals for sex no effect on

Hybrids $4-9 m / w$ a $10-14 m / w$ see to this 232 $13-19 \mathrm{~m} / \mathrm{w}$ Form of hybrids stable in 1st generation $20-24 m / w \rightarrow$ does not hold good with animals. $2338-10 \mathrm{~m} / \mathrm{w}$ experimented with wild plants $234 \downarrow w / w b$ it is proved by long course of his \& Köl's experiments that bastard even in 1st generation from same parents are always alike; \& return in constant course to either parent when repeatedly crossed with such. \rightarrow (a) Thinks this evidence of permanence of species; but I do not see more than ordinary generation keeping true; perhaps tests the trueness in another way: but a plant does not vary in first generation, when part out of normal conditions. $\uparrow 13-4 m / w$ (a) Notice this argument 235 wt (a) Hybrids unions therefore follow same law in first generation as the union of pure species. $-5-7 m / w$ a $6 w \tau, 9-19 w$ Thinks the few exceptions to this normal structure of hybrids is due to variation $19-21 \mathrm{~m} / u \leftrightarrow / w$ (a) $\uparrow 13-5 m / w(z) w b$ (a) Rather hard, it seems to me to draw distinction; but Gaertner (z) urges the resemblance of Hybrids made at same time \& after long intervals from same pure parents. $2368-14 w$ The normal Hybrid type keeps constant in succeeding generations only in the most fertile hybrids, generally. $2371 w \tau, 6-14 w$ very rarely sometimes single sports in a set of normal hybrids out of same fruit; \& $9 u$ "einzelne| Bildung", 11u " sehrl einem", $12 u$ "doch|mehreren" $2382 m / u$ "Digitalis, Lobelia" $/ w t$ only genera in which these exceptional types have been observed: (z) These exceptional types from same species always resemble each-other!! $12-15 \mathrm{~m} / \mathrm{w}(\mathrm{z}) \rightarrow \Uparrow 12-6 \mathrm{~m} / \mathrm{w}$ on two years a peculiar yellow rare, so unlike as might be thought different kind. The mother type prevailing $239 \quad 12-17 w$ From this cross obtained common normal \& abnormal type. $2405-8 w$ one species of abnormal type. $w b$ I observe that these abnormal types often take after one parent $2422-5 m / w t 2$ plants of Passiflora differed from each other. 243 6$8 m / 6-12 w$ neither father nor mother exclusive influence on abnormal types but depends on likeness to one or other. $15-17 \rightarrow, 19-22 \mathrm{~m} / \mathrm{w}$ These abnormal are not vague, but fixed production. $\uparrow 7-1 m / w$ similar unlikenesses occur in these several cases $24411 m, 16-$ $23 w$ abnormal types generally quite sterile; (this very curious) $\uparrow 9-4 w$ compares these abnormal types to atavism $\uparrow 6 / \Uparrow 4 w \tau$ 245 11-15w In abnormal types like both parents but most like one. $2462 w \tau 247 \Uparrow 16 w$ (a) These varieties seldom repeat each
other. $\uparrow 9-7 m / u \leftrightarrow / w$ They occur chiefly in such species as are so closely allied, as to be held mere varieties $w b$ The irregularity of reappearance, \& slightness of differences seem only distinct differences with his abnormal Hybrids of the previous chapters.249 12-16m/w (a) $w b$ (a) The abnormalities in Hybrids has observed only in plants, long cultivated in gardens, \& not in wild plants; but I remember that only one side wild in Kölreuter is sufficient $250 \Uparrow 11 / \Uparrow 6 w \tau 251$ 20$25 w$ not seldom * in Hybrids one side or species prevails over other; \& their prevailing is not accidental but is constant. $252 \pi 4-1 \mathrm{~m} /$ $\rightarrow / w b$ most difficult which of two parentforms a hybrid comes nearest to $2553-7 \mathrm{~m} /$ wt Does not believe that Hybrids are ever unlike both parents $256 \pi 20-15 \mathrm{~m} / \mathrm{w}$ cases where one side in Hybrid preponderates. $\Uparrow 14-13 u \wedge / w$ strongest instance $\uparrow 7-6 m / w$ (a) $w b$ (a) N. paniculata is almost lost in N. paniculata-vincaeflora, whereas in N. quad-rivalvi-vincaeflora, vincaeflora is almost lost. $2575-7 m / w$ Father type in this mixture prevails $13-16 w$ seldom in Hybrid two parents of equal force. 258 wt (a) When two hybrids * unite, \& one offspring takes almost exclusively after one side, hybrid is sterile. $1 w \tau, 5-7 \mathrm{~m} / \mathrm{w}$ (a) $11 u_{\mathrm{a}}, 11-12 u^{\mathrm{a}}$, 14$18 \mathrm{~m} / \mathrm{w}$ * one spec took most closely after father; was fertile. 259 13-16m/w Hybrids generally higher than pure; seldomer dwarfed. 261 4-5m/w Hybrid Verbascum generally woolly in Pots. $262 \Uparrow 13-1 w$ odd that this hybrid no rudiment stamen, considering structure of both parents. $\uparrow 5-3 \mathrm{~m} /$ $w(\mathrm{~B}) w b$ (B) Female organ generally shows no signs of imperfection even when perfectly sterile. $264 \Uparrow 10-9 m / u \leftrightarrow 2659 u$ "Thiervarietäten", 19-21m, wb The entire differences, of different authors in ascribing more or less to Father or Mother shows there no real rule. $266 \Uparrow 15-12 m, \Uparrow 15-14{ }^{\prime \prime} . . . ", ~ \Uparrow 13 u$ "pater major"/w seems pretty true 268 $\uparrow 17-11 w$ in Plants neither father or mother has exclusive influence $269 \uparrow 12 m 2733 m$, 5u "oben 1202 ", 1-24w See in Kolreuter whether vars. with a species give very similar Hybrids - $19 a$ "Specifische" (a) $19-20 u \leftrightarrow, 23 u$ "Stramonium \mid Tatula" $\mid 22-25 m / w$ (a) different species because hybrids different $\Uparrow 13 u$ "ganz|Bastarde", $\uparrow 11-9 u \star / w$ These with N . glutinosa give quite similar product \& therefore considers them vars. $\uparrow 9 a$ "asiatica" not in Loudon $\uparrow 9 / w$ and these vars. of rustica $w b$ (a) (On Datura see my Abstract of Kolreuter p.8/Bis) I see no reason why varieties shd not equally show this

GAERTNER，BASTARDERZEUGUNG： 273 distinctness in same way．Does not Ancon sheep impress offspring very remarkably？？ 274 11－15w External conditions no special influence on character of Hybrids． 275 4－8w Hybrid Dianthus more stabile than other genera－ $12 u \wedge / w *$ Mongrels follow different laws to Hybrids $13-16 w$ Digitalis peculiar in its sporting，\＆exceptional．$\uparrow 17-15 \mathrm{~m} / \mathrm{w}$ G $\Uparrow 8 w$ in embryo plant no alteration in Hybrid from Mother $\uparrow 7-6 \mathrm{~m} / \mathrm{w}$ embryo of mother $w b$ G Thinks the by far greater number of normal to abnormal Hybrid types opposed to their resulting from external circumstances． 276 wt In Hybrids，form of the cotyledons affected $27712-19 m / w$ differ $20 w \tau, w b / \downarrow w$ । think children of pure parents，thus go after either one or other or intermediate but as he says for Hybrids how \＆difficult to judge \＆ compare 279 §17－10w Exactly intermediate in number of segments of Pistil，\＆in sterility of stamens $\uparrow 7 a$＂ruber＂of same parents 280 $w t$ In the cross Lychnis quite prevails over Silene，so that Hybrid is like var．of the Lychnis 2－4m， $7 m 281$ table．w Really intermediate Hybrids Kölreuter thought they too many intermediate $\uparrow 9-4 \mathrm{~m} / \mathrm{w}$ most difficult to settle whether plant most like Father or Mother 282 2－5m／wt commonest in close species $19 w$ When one part more resembles （but is never identical with）Father，another the Mother；this part this，that part that \＆c－ 283 9－15w This gemengte character constant in those species，where it occurs．$\uparrow 16-1 m$ $2843 w$ sterile 140 ， $18 w$ sterile $20-21 u \leftrightarrow, 220$ ， 24o，27o，30o $28513-14 w$ Puts strongly how these 3 classes blend into each other．． $14 w$ When a hybrid most strongly resembles either parent $\Uparrow 1 u$＂decidirt｜mütterlich＂，wb These terms used when the two have been crossed not reciprocally－Relativ－vaterlich \＆c used，when they do cross reciprocally \＆ takes after the father in cross specified．－ 286 $10-15 m / w$ No relation in closer resemblance to Father or Mother to fertility of Hybrid 15－ $17 m / 15-23 w$ reciprocal crosses take place though＊the offspring take decidedly after one parent．20a＂syphilitica＂Decided types generally sterile，but not always as in Lobelia $\Uparrow 4 w$ strongest example $\uparrow 3-1 m / w b *$ These Hybrids，$\&$ are a cross of Hybrid $\& \&$ a third species－How is it called when two Hybrids cross？ $2876 \mathrm{~m} / \mathrm{w}$ strongest case 288 $5-9 w$ some exceptional types＊come into this class． 289 wt Perhaps gemengte（or 2d class）the commonest p．282．－ $4 m / w$（a）$\Uparrow 7 w$ （a）$w b$（a）So there are species of genus which a prepotent fertility $\&$ power on other species；so others have predominating
influence on structure of Hybrids；but these two are not connected $2905 u$＂Gat－ tungstypen＂，4－10m／4－25w These kinds specially influence structure of Hybrids of other species，as \rightarrow These are generally very distinct species．－Even these are sometimes overborne by other species；or rather there is a series of these gattungs－ types $2911-2 m / w t$ Even in the mixed types， one part now resembles one parent，now another part the other parent．－ 292 wt No relation between facility with which A will impregnate B or be \＆impregnated by it，in different cases，\＆the resemblance of hybrid to the parent．－ $10-17 \mathrm{~m} / 10 \mathrm{w}$（a）$\uparrow 2-1 \mathrm{~m} / \mathrm{wb}$ This seems a Lamarkian $2931 w \tau$ ，介10m 295 wt（a）Always something new in appearance of Hybrids；but not absolutely new，but appear so from odd unions \＆opposition of parent forms $1-3 m / w$（a） $7-9 m / w$（a） $17 u$ ＂Mirabilis＂／w cases of in 17－20w N．B Both sporting genera $296 \Uparrow 18-11 \mathrm{~m} / \mathrm{w}$ Day sleep of Lychnis blended \＆\＆modified 297 15－20w power of reproduction by shoots \＆c Much exceeds that of pure parent $298 \pi 8 u$ ＂Morton＂$/ \uparrow 8-3 w$ Dogs vary from 10－6 nipples；thinks owing to crosses $301 \Uparrow 17-12 w$ Colour variable often，in crosses \＆ unexpected 302 13－20w Variations in colour in Hybrids 303 13－18m／w flowers do not take after Mother or Father in colour．－$\uparrow 2 u \pm / \Uparrow 4$ $1 w / w b$ Some simple Hybrids retain in successive generations their colour as in Dianthus \＆c．But generally（next Page）case very different；colour most variable $304 w t$ variation said to keep true．－Vinca rosea a store Plant．Syringa Lilacs p743．The Book quoted probably cd not be consulted $2-5 \mathrm{~m} /$ $\rightarrow / 3-4 u$＂Vinca 1 coerulea＂， $8-14 \mathrm{~m} / \mathrm{w}$ very variable colours in successive generations of Hybrids 19－24w complex Hybrids even more variable in colour．$\uparrow 10 u$＂zusammengesetzten＂／ $\Uparrow 10-4 w$ These hybrids take almost always colour of father． 305 wt Sports 1－5u士，3－7m， $8 u$＂dreilverschiedenen＂，介14u＾／w Sport 306 $\Uparrow 10 m$ ，$\uparrow 9-7 m / w$（a）$w b$ White flowers commoner here than more South．－ 307 wt Important on account of \＆Kolreuter Verbascum Lychnite with white flowers rarely with yellow on sandy Places－（So Kolreuter case goes for nothing） $1-4 m / w$（a） $8-12 m / w$ seed from yellow gave chiefly white $14-20 \mathrm{~m} /$ w when crossed colours did not mix，but came pure yellow or white 6－20w See 3d Fortset．p． 35308 介13－12u＂gelbe 1 Blume＂／w vars． $309 \uparrow 10-6 \mathrm{~m} / \uparrow w \mathrm{w}$ In Henslows List considered as varieties：I am nearly sure has been experimented on．Watson in Cybele
seems to consider them distinct：says perhaps or probably 2 species both varying． Refer to experiments of Magazine of Nat Hist V．p．493．\＆VIII． 634 \＆Phytologist 2.164 $\Uparrow 6 \mathrm{~m} / \uparrow 10-6 \mathrm{w}$ Ask Babington．－ 310 介12－8m／w colours changing during summer $312 \Uparrow 15 w \notin$ 313 10－12w Blue \＆Yellow seldom unite 19－ $22 w$ curious ways colours unite． 323 wt（a）In Mongrel Maize self－impregnated seeds of two colours $6 u$＂selbst＂／4－8m／w（a） $3244-17 w$ in 2d generation of Hybrid Maize seeds variously coloured $325 \Uparrow 8-4 m, w b$ It is decided that seeds of Zea not affected immediately as in Pisum．Yet Next Page 326 $15-17 \mathrm{~m} / 16 u$＂wie \mid Pisum＂，$\uparrow 7-2 m / w$ The Peas in second or hybrid generation varied in colour independently of immediate action of Pollen．－ $329 \uparrow 8-7 m / w$（a）$w b$（a）Hybrids are affected especially in Male organs，with exceptions $3325-11 w$ anthers \＆pollen in appearance sometimes good yet hybrid quite sterile $333 \Uparrow 9 u$＂Liliaceen＂$/ w$ often mentioned $\Uparrow 9-5 m / \uparrow 8 u$＂und \mid Gewächsen＂，$\uparrow 9-1 m, w b / \Uparrow 9-$ $1 w$ in these plants．pollen，though in appearance good yet no impregnation follows－（may be faculty of female organs） C．D］pollen though swells，does not burst，in water，yet admits it may be owing to female organs，or structure of roots $33410-18 \mathrm{~m} / 1-$ $18 w$ But in cases，where plant can be impregnated by other individuals or species， we can infer pollen is bad．12a＂candidum＂ p745 Duvernoy $18 m, \uparrow 12-8 m / w$ in most fruitful hybrids，pollen is unequally developed．－ $3366-9 w$ The contents of pollen grains commonly fails．$\uparrow 6-2 w$ seldom give out contents when placed in water 339 wt（a） In this hybrid M．Jalapa－longiflora，own pollen more powerful than own concepcion power．－ $2-7 m / w$（a） $34018-21 m / w$ in Hybrid Birds no spermatozoa $\pi_{6}-1 w$ thinks in animals as in plants，male organs more deficient than female． $34413-17 \mathrm{~m} / \mathrm{w}$ even in most fruitful hybrids normal number of seeds never produced \＆always mingled with bad ones．$\uparrow 14-11 m / w$ compares this fact to result of Hybrid fructifications． 346 7－10w Kolreuter failed in this Reversed experiment 347 介14m $34819 m 350$ 介7－5m／u＂dass 1 vermögen＂ 353 $8-12 \mathrm{~m} / \mathrm{w}$ Power of fructification in Hybrids always weakened $17-22 m, w b$ Speaks of bisexuality as quite exceptional in vegetable Kingdom－ 355 wt（a）insists male organs more \＆earlier affected in Hybrids than female 10－15m／w（a） $35617 u \sim / 15-19 w$ case of pure species with female organs impotent while male perfect $22 u \star / w$ so Passiflora $\uparrow 9 u$ ＂freien lerzogenen＂$/ \uparrow 8 u \uparrow / w$ so this $\uparrow 2-1 m / w b$

On other side pollen fails，yet female organ quite perfect \＆potent；in some Dianthus， this happened only with individuals plants．－ $357 \mathrm{\imath m} / \mathrm{w}$ The wonderful cases，where in Lobelia，Verbascum \＆Zephyranthus，pollen wd not impregnate own stigma，but wd impregnate other species；these＊stigmas being also impregnated by pollen of other species $\uparrow 8 / \Uparrow 7 w \notin 358 w t$（a）The foregoing cases seem chiefly in plants brought from a warmer climate．－1－4m／w（a）5－9m／w Such anomalies much plainer in Hybrids $14 u \leftrightarrow / w$ Hybrids 3 forms of sterility $17-18 w$ cases of I． $3591 u \uparrow / 1-5 w$ case in single individual of the Hybrid $\uparrow 20-1 w$ Gaertner has great advantage that the sexual organs certainly are weakened，as producing so few seeds $\Uparrow 7-3 m / w$（B）$\uparrow 2 u$ ，$\uparrow 1 u / w \tau$ ，wb（B）Puts this under category，that male less potent than female in each case；but surely Herberts is more true，viz advantage of crossing．－See to Herbert．－ 360 wt（B）In this III．pollen of Hybrid wd not act on self，but in both parents；\＆pollen of latter impregnated Hybrid．accounts for this（not as I shd by advantage of crossing，\＆which I still think must hold in Herbert＇s case）but by believing （\＆it is probable）that both male \＆female organs weakened \＆cd not act on each other but only pure parents，or even the Nicotiana on a 3d species． $4 u / w$（B） $5-8 w$ is there any parallel III case in pure species？ $10-25 w$ These（I，II．\＆III）cases in Hybrids wonderful parallels to what happens in joining pure species！！！ 361 wt（a）Reurges male organs fail first \＆most in Hybrids 1 － $4 m / w$（a） $17-20 \mathrm{~m} / \mathrm{w}$ says above＊analogous with animals $21 \mathrm{~m}, \uparrow 13-10 \mathrm{~m} / \mathrm{w}$（B）$\uparrow 8-2 \mathrm{~m}, \mathrm{wb}$ （B）In Dioecious plants not hybrids，in females，male organs sometimes imperfectly developed，yet can fertilise；but in male rudiment of pistil never acquires power of conception． 362 1－25w／wt In L．Vespertina，in female flower，the rudiments of stamen much smaller than in L．diurna，\＆ consequently only in latter are anthers sometimes found．Does not this well show that a rudiment has something essential \＆ real in it－Very Good We can prove Mammae in Male to be a reality．－Wings in insects \＆Here we can prove in another way． Gaertner somewhat suggests in Carrot to cut off the fertile flower early \＆see whether other flowers wd become fertile．At p345 \＆ p． 330 long description of crosses of Dioecious plants study it all．$-\Uparrow 14 w(z) \Uparrow 11-$ $5 w$ Similar changes take place easier in Monooecious than in Dioecious 363 15xx，

GAERTNER，BASTARDERZEUGUNG： 363
$\Uparrow 12-8 w$ In doubling male organs always change first $w b$ Reasons why male organs more affected than female；seasons quite worthless．－May it not have some relation to Falconers Law of external parts first affected 364 wt accounts for hybrid breeding easier with parents than with self by own pollen having less strength；so in cases as below （zz） $1-6 m / \rightarrow, \Uparrow 8 / \Uparrow 7 u \uparrow / m / w(z z) ~ \Uparrow 5 a$＂ 333 ＂ $357 \Uparrow 5 u \uparrow, \pi 5-1 m, w b$ I cannot see how his explanation holds good，for the pollen of L ． fulgens（s．64）did impregnate two other pure species． 365 wt（a）says much experience has shown him that hybrids，after $8-10$ generations，have their procreative powers weaker \＆weaker；\＆hence cannot be prolonged．－（But then all crossing avoided） $4 m, 8-13 m / 13 u$＂wie｜hat＂｜！／10w（a） $3662 w$ quite sterile $11-15 w$ Some individuals of these Hybrids quite sterile．$\uparrow 16-1 w / w b$ Degree of fertility in most Hybrids，except the quite sterile，generally very variable， even in Hybrids from same capsule \＆reared alike（This shows how innate，$\&$ is opposed〈written over＂compared＂＞to its being a character of species，as species．）－（P） Hence different accounts by different authors，as follows，－ 367 wt A）This unfixedness of fertility of Hybrids，their special character，\＆not observed in pure species．－5－6m／w A $13-23 m / 13 w$（B）$w b$（B） Some Hybrids，produce only seed at end，or middle，or（generally）beginning of their flowering，\＆are at other times sterile．－This a peculiarity，confined（when so pronounced） to Hybrids．－ 368 介10－7［］／w Does not believe 369 wt Cases in pure Dioecious plants of changes in sexual relations $1-3 m / w$（a）7－ $12 m / w$ Female sterility of D．Japonica transmitted to offspring in Hybrids．$\uparrow 7-3 m$ ， $w b$ Hybrid Plants which produce an extraordinary number of flowers \＆are quite sterile；caused by sterility p． 372370 wt Same thing sometimes occurs in pure species $1-6 m 373$ wt ？？In Hybrids crossed with either parent，\＆thus assuming fertility \＆ the ancestral form，yet fertility variable in such individuals；in the successive generations．－ $2 u$＂eigenen＂， $5-8 m / w$（a） 377 wt（a）seems to attribute sterility of Liliaceous Plants to state of roots．－ $13 u$ ＂der｜Liliaceen＂$/ w$（a）$\pi 5-1 m / w$ all sterile Cape of Good Hope Oxales 378 wt My point that plants often sterile \＆yet not unhealthy not touched on．－G．gives only obvious cases of infertility． $12-15 \mathrm{~m} / \mathrm{w}$ Hybrids in pots more fertile than in open ground． $20-22 m / w$ In fruitful years more birth from domestic
animals $24 m, \uparrow 4-3 m$ ，wb More often cause of infertility on male than female side；as in Caryophyllea \＆Verbascum 379 12－16m／w cases when pollen good but female organ $17 u$＂manchen｜unseren＂，20－30w often in exotics，pollen \＆female organs are ready at different times，\＆so can be impregnated artificially $X \uparrow 10-7 \mathrm{~m} / \mathrm{w}$ insects less important than wind！！$\uparrow 4-1 \mathrm{~m} / \mathrm{w}$ Infertility through long cultivation by layers \＆c $w b$＊Would he say that C．Sprengel＇s facts were due to climatic influences？ $3801 w \tau, 2-5 w$ Reported by Reichenbach $10-30 w$ case of wild Verbascums \＆in pots，with certain flowers sterile \＆certain fertile；cannot explain．like Kolreuters cases 381 介13－10w Female mules in warm country breed．$\uparrow 7 u$＂erwähnt｜Crax＂｜ $7-5 m, \pi 4-2 w$ Black swan with white $3826 u$ ＂männlichen＂／w Male Hybrid pheasant sterile 15－19m／w Morton thinks relation between capacity of Hybridising \＆domestication $\uparrow 5 u$ ＂Fruchtbarkeit＂／w（a）$w b$（a）Fertility a fixed attribute of pure species（in natural conditions C．D）Mem．cases of moss not breeding，（these are probably Dioecious）in Hybrids a varying attribute． $3833 w \tau, 7 u \uparrow / w$ fertile according to Kolreuter $38412-14 u \leftrightarrow$ ， 15－19m／16u＂immer＂， $16-18 \mathrm{~m} / \mathrm{w}$ in pure species artificial impregnation has not always yielded full number of seed $\uparrow 7-5 m / x / \Uparrow 10-5 w$ I do not think G had GreenHouse he always speaks of ZimmerO $w b$ Hybrids always less seeds than pure parents，as in following examples．－ 385 wt See in Beitrage p398 Lychnis vespertina－diurna gave with own pollen 234 seed． $1-4 m / w$ see to Kolreuter about Datura $3 u$＂200－280＂， $4 u$＂ $600-800$＂， $7 u$ ＂192＂／8u＂210ISamen＂／7－8m／w differences between natural \＆artificial impregnation $\uparrow 6-$ $2 m / w$（B）$w b$（B）Great differences in different individuals of same hybrids $\&$ in different years，in fertility striking．－ $3862 m$ ， $\Uparrow 12 u \leftrightarrow \pi 14-12 m / w$ Genera with most fruitful Hybrids 387 1ua／wt Henschel says this fertile，but reverse quite sterile．See Henslow．13－20w No relation between fertility of pure parent \＆the facility of uniting，or with these Hybrids having fertility $\uparrow 12 / \Uparrow 9 \omega \tau$ $3881 w \tau, 5-8 m / w$ Hybrids nearly as fertile， but never quite as pure parents．－table．w The reverses of these not equally fertile． ＂Lobelia＂．w（K）in Table＂Matthiola＂．w This not in list \rightarrow as repeated at $0.402 \rightarrow$ The table is probably wrong＂Verbascum＂．w Some great mistake Not in List！！！$w b$ in little degree fertile，which is commonest case 389 table．＂Verbascum＂．\rightarrow to previous table， $8 u$ ＂Absolut unfruchtbare＂ 390 table．w／1－5m／w

The above numbers show that in Hybrids greater inclination for sterility than for fertility．介 $9-7 m / 14-3 w$ Fertility so variable at different times，\＆in different individuals，that simple classes of fertile \＆infertile Hybrids will not do． 391 wt（B）Here are 4 cases，in which other authors find fertility whereas Gaertner finds great sterility：was he bad Gardener？ $5-10 \mathrm{~m} / \mathrm{w}$ various striking cases of difference fertility，as found by different authors． $8 u$ ＂unseren＂， $8 w$（1） $9 u$＂total steril＂， $11 u$＂bei uns＂lw（2） $13 u$＂beiltotal＂， $14-19 \mathrm{~m} / \mathrm{w}$ one year so fertile as to self sow，in next year very sterile．$\uparrow 14 u$＂immer total＂ $\mid w$（4）（B）$\uparrow 6-$ $3 m / P, w b(\mathrm{P})$ cases of Hybrids out of same capsule，of different degrees of fertility \＆ some quite sterile．－ $3927-15 w$ in the greater number of Hybrids sterility belongs more to the individual than to the kind；（ie some are or may be fertile）$\Uparrow 14-3 w$ in same category stands fact (χ) that Spring or first flower of Hybrids only bring seed generally． $3935 u$ ＂ersten Früchte＂ $7 u$＂ 40 Samen＂， $8 u$＂2－3＂／w Examples of above laws $\chi \Uparrow 11-6 \mathrm{~m} / \mathrm{w}$ in pure species the difference in no．of seeds in early \＆late flowers inconsiderable $\uparrow 9 u / w \tau$ $3947 m, 8-14 w$ Variability of Fertility cannot be accounted for by luxuriance $17-20 w$ In pure species，when periodically infertile not very luxuriant $\uparrow 4-3 m / w b$ Fertility does not stand in inverse relation to their Luxuriance 395 9－14w Herberts＇case of fertility after 16 years might be due to pollen of pure parent． $\Uparrow 6-1 w$ No art or＊culture will alter or improve the organs of generation in Hybrids． $39610 w \tau, 16 z, \uparrow 9-7 w$ Fertility does not go by genera $\uparrow 5 u \uparrow, \Uparrow 4 u \pm, \Uparrow 4-1 m 397 \Uparrow 8-1 w$ The inequality of fertility in hybrids from same generation，shows that fertility cannot depend on outwards circumstances 398 2－ $4 m / 1-8 w$ Hybrids in pots easier bear seed than in open land，because too much luxuriance thus checked $11-16 \mathrm{w}$ tried experiment to see effect of different culture \＆c \＆cd perceive none．－ 399 wt II Certainly a priori，one wd have expected a gradation in fertility of hybrids \＆old mongrels as Dogs In Gaertner Tables there is appl to this． $4 m, \Uparrow 11 w \tau 4003-13 w$ Contradicts Wiegman that maternal or paternal types fertile individuals sterile．$\$ 13-$ $1 w$ Chief conclusions（1）Unfixity of fertility in same hybrid The varying form of the＊ Hybrid is the abstract which can be divided into following classes． $402 \Uparrow 2 / \Uparrow 1 \mathrm{~m} 4034-6 \mathrm{~m}$ $404 \Uparrow 2-1 u \leftrightarrow 405 w t$（a）Hence resemblance of Hybrids to either parent no marked influence on fertility．－ $1 u a / w$ male $5-7 m / w$
（a）$\uparrow 20-12 m, \Uparrow 20 w$（B）$\uparrow 10-3 m, ~ \Uparrow 10 w$ Examples $\uparrow 7 u$＂ 256 ＂，$\uparrow 5 u$＂diesen 1 Bastarde＂， $\Uparrow 4 u$＂absolut unfruchtbar＂，$\uparrow 3 w$ Examples $\uparrow 2-$ $1 m / \Uparrow 1 u$＂ 49 ＂，wb（B）These authors think law of relation between fertility of Hybrids \＆the affinity of parents；but if we judge of latter by seeds yielded，there is no relation to fertility of Hybrids when reared from them 406 9－ $10 m, 9-11 m / 8-13 w$ We conclude that fertility of hybrids stands in no near relation to $\%$ elective affinity of parents．－ $25 x / 16-19 w$ Yet strong exceptions on next page 20－30w When plants cross easily both ways，hybrids most commonly fertile．This fertility seems to depend on resemblance in Hybrids of parents，but with exceptions 407 wt（a）In Hybrids from reversed crosses，even when quite like each other，Yet fertility not same，\＆ in one case even on one side quite sterile．X Important as shows not in essence of Hybrids．－ $2-12 \mathrm{~m} / 10 u \leftrightarrow / w$ Yes for see p .385 $13-16 \mathrm{~m} / \mathrm{w}$ Ease 〈he probably means Case〉 when reverse cross easy，yet Hybrid sterile $\Uparrow 6-2 m / w(B) w b$（B）From \＆facility of union cannot infer fertility of product $4089-10 u / 8-$ $13 w$ It seems that systematic affinity of Parents favours the fertility of Hybrids see p．410．$\uparrow 7-5 m / w$ Above law it seems has been discussed table．w see p． 414 Hybrids from these have remarkable fertility \＆were considered by Kolreuter as varieties．$w b$ When we consider these facts we might conclude that fertility of Hybrids indirect relation to affinity of parents $4091-20 \mathrm{w}$ But on other side（ \rightarrow this other side seems most strong）many close species will not unite，\＆ （2d）that some species will unite \＆produce more fertile hybrids than more closely allied species．examples． $18-20 m, \Uparrow 13-12 m 4101 u$ ＂Herbert＂，5－7w Examples as before 12JI， table．w Examples of nearly related species having hybrids quite sterile $\uparrow 8-4 w$ Most unlike dogs breed \＆produce fertile offspring． $\pi 1 \mathrm{~m} / \mathrm{wb}$ concludes that likeness in Habitus cannot be ground cause of fertility or sterility of Hybrids． 411 12u＂constitutionellen＂／w considers this an unknown element $\uparrow 8-5 m$ ， $w b$ Repeats that as fertility varies in Hybrid from same parents，it belongs to the individual \＆not to the Kind 412 wt Even in quite sterile plants in both sexes，yet flowers remain longer when stigma dusted with pollen of either pure parent so in truth not utterly ste．rile $2-7 m, 8-11 m, \uparrow 8-1 m / w$ argues against the several explanations of Herbert of special cases of sterility $41314-18 w$ not on account of evergreen \＆deciduous leaves． $41413 u$ ，table．w considered varieties

GAERTNER, BASTARDERZEUGUNG: 414
by Kolreuter from fertility "Datura", "Malva". w ia (others). w o o means not tried by Gaertner "Dianthus".w XX 2nd table.w o not tried These 2 are added, though Kolreuter cannot dare to call only vars. $\uparrow 4 u$ "parum vel", wb XX. V. My M.S. p. 19 on Kolreuter, showing that all Botanists agree in thinking these only vars. 415 table.w/wt ia But as several of these are probably rare it is very important that G. says not so fertile as pure parents, for we get then a series table.w also highly fertile Hybrids "Matthiola".w Bentham says var. $3-5 \mathrm{~m} / \mathrm{w}$ but yet not so fertile, in any of above cases, as pure parents. $3 u$ "allen diesen" $3-10 w$ Yet he has not tried all Koelreuters must mean these last alone $4 u$ "ausgezeichneten", 5-6u "niemals |hervorbringen" 417 wt (a) Agrees with Herberts constitutional doctrine (which I think means only some internal difference. $3-8 m / w$ (a) $418 \Uparrow 12-8 m / w$ (a) $5-2 m, w b$ (a) The most fertile hybrids always lose fertility in successive generations.- some sterilish plants if artificially fertilised increase in fertility $42012-25 w$ In 2d \& other generations of Hybrids, fertility becomes unstable \& often less, so that even parent-pollen will then have little or no effect. This sterility, however, varies much in different individuals \& depends especially on the individuals 13 $18 m$, $\uparrow 9-6 \mathrm{~m} / \mathrm{w}$ A $\uparrow 5-2 \mathrm{~m} / \mathrm{w}$ Fertility never greater in 2 generation, than in first. $\uparrow 1 w \tau$, $w b$ (A) In Mongrels, fertility even greater in second generation, than in first. see further on; for this perhaps implies less fertility in crossing varieties.- 421 wt (B) This decrease of fertility in second generation has been observed in less fertile hybrids of Nicotiana, \& fertile Dianthus hybrids, as in example given. As this is only second generation cannot be due to want of crossing.- $1-4 \mathrm{~m} / \mathrm{w}$ B $8-9 \mathrm{~m} / \mathrm{w}$ So in animals according to Morton $15-25 w$ sometimes fertility increased after repeated artificial impregnation in succeeding generation, but this plant has commonly gone back to either father or mother type $20 w \tau, 25-27 m / w$ D $w b$ (D) Many very fertile hybrids propagate themselves, with unaltered type like pure species, as in list, but always with decreasing fertility. 422 3$4 m, 5-10 \mathrm{~m} / \mathrm{w}$ In 2d \& succeeding generation hybrids sport much * $\uparrow 6-1 m$, wb some remain like hybrid others go back to either grandmother or grandfather 423 wt (a) The * manner in which type divides, \& goes back, varies much.- $2-8 \mathrm{~m} / \mathrm{w}$ (a) $13 u \uparrow / w$ offspring of this varied more than from reverse $15 u \star / w$ greatly \& $\Uparrow 15-9 m / w$

Kolreuter compares these with hybrids crossed with pure parents. $42415-21 \mathrm{~m} / \mathrm{w}$ The exceptional or abnormal hybrids, when fertile, generally produce normal hybrids. $\Uparrow 8 m 42512 u \uparrow / 12-16 \mathrm{~m} / \mathrm{w}$ with own pollen 4 seeds with pollen of D. barbatus 10. seeds.$16 u$ " 29 gute" $/ 17 u$ " 67 hervor" $/ 16-17 \mathrm{~m} / 16-23 w$ so again, \& thus often.- \& likewise so with very fertile hybrids.- $\uparrow 8-3 w$ \& so with quite sterile hybrids, corolla remains longer when dusted with either parent pollen.- 426 11$14 w$ examples as last page $\uparrow 12-1 w / w b$ when parent \& hybrid pollen mixed, latter rendered quite ineffectual, so that no need to castrate; just like when foreign \& own pollen applied to a plant, own eliminates quite effect of the foreign.- This Curious. 427 wt (A) Pollen of a third kind will sometimes produce more effect, than own hybrid polien. 1-2w(A) 3un, $5 u a / 3-6 w \quad 13$ seeds with own pollen; langsdorfii 16 seeds. $18 w \tau 428$ 15-19m/13$30 w$ The pollen of the two parents has no regard to their sexes in the effect they produce, but that pollen, which has most power of metamorphosis or umwandelung, which will be discussed afterwards, I suppose that pollen which soonest converts hybrid into pure species, produces also most seeds in Hybrid. $\uparrow 18-7 m / \Uparrow 13 w$ A $w b$ (A) Niger again variability of offspring of selfimpregnated hybrids. = so mongrels are.- 429 $1 / 2 / 4 w \tau, 12 u$ "aufsteigenden", $16 w \tau, 17-18 u$ "väterliche Bastarde" $/ w$ Paternal Hybrids - are offspring of pollen of * same species twice $\pi 6 u$ "2"/wb If this * hybrid had been crossed with pollen of atro-purpura, it wd have been a "Muterliche Bastard" or "absteigenden" grade p. $4514301-8 w$ by Father pollen more seed generally then by Hybrids own pollen, but generally not so many as in first cross of pure parents $14 u$ "einfache", $15-17 \mathrm{~m} / \mathrm{w}$ much unfixedness in this class of Hybrids $17 \mathrm{~m}, 18-30 \mathrm{w}$ Like second generation of simple hybrids, these Paternal Hybrids vary much \& differ much in fertility, out of same capsule. So very different results from repeated experiments with same species. $4311-3 m / 1-10 w$ The more fruitful hybrids vary less, \& go back more to paternal type, but have often reduced fertility, as, - examples $9 w \tau, \Uparrow 17-7 w$ When they take less after paternal type \& are much less fruitful, so vary much.generally under 3 types, in accordance with resemblance to ancestors \& parent.- $\Uparrow 10 u$ "schwächeren"|? 432 wt Different species have different tendency to communicate their variability; old cultivated plants $9-11 \mathrm{~m} / \mathrm{w}$ (a)

介14－1m，wb In these cases the＊type which normally approaches to father or double pollen side is less fertile 433 wt I am not quite sure that these two pages are fully understood $8-13 m / w$ Here the type which came nearest father was most fertile． $17 w \tau$ ， $18-25 w$ all sorts of variability in type \＆ fertility $\uparrow 2 u 4342 m, 16-20 \mathrm{~m} / \mathrm{w}$ It is clear that fertility does not always at all increase＊in resemblance in succeeding generations，with t $\boldsymbol{\infty} \boldsymbol{\infty} \boldsymbol{\infty} \mathrm{X}$ ancestor $\Uparrow 12 u$＂fiunf＂$/ \Uparrow 16-12 w 5$ different types out of this＂paternal＂hybrid介10－8m／w Here case of coming near the paternal type with considerable fertility 435 wt A Commonest rule or appearance in this stage of conversion is that the more the hybrids differ from mother \＆approach the paternal type，the more they suffer in fertility．－Thinks the reverse more probably really the law． $12-16 m / w$ A $18 w \tau$ ，$\uparrow 12-6 w$ Female organs recover first their powers．－ $\pi_{4}-1 m, \prod_{1 u \oplus / w b}$ Fertility in this in such as \rightarrow always very variable 436 4－8w Examples of above variability in fertility 10－30w These ＂paternal＂hybrids are when self impregnated，generally more fertile，than in former generation，\＆of themselves tend to approach the paternal type；ie even when self impregnated \＆are variable in structure． $\Uparrow 10-9 u$＂in I Generation＂，$\uparrow 10-3 m / \Uparrow 8 w$ B $w b$ B This particular hybrid came by itself more fertile，which he seems to consider normal result of repeated impregnations of own pollen 437 wt Think the above like avatismus in Animals 1－4m，8－9u＂inlGeneration＂，8－ $12 w$ when go back to Mother，not quite \＆ unequally． $16 w \tau, \Uparrow 10 w \tau$ ，$\uparrow 9 u$＂Puvis＂＂Van Mons＂$/ \uparrow 9-4 w$ So these authors wrongly dispute tendency to avatism 438 8－12w Thinks all variation from cultivation when free tend to go back．19／20wr，19－22w tends more to mother than Father $\uparrow 10-4 m / \Uparrow 9 w(A)$ $\Uparrow 3 w \tau, w b$ Happens oftener with same genera than with others；never in the very fruitful Hybrids－ $4396 u$＂Lavateral Generation＂，7－ 10 w This first time more to mother in another case more to Father．14－20w In these going back progenyO of Hybrids，fertility less， sometimes gone，never increased．$\uparrow 13 / \Uparrow 8 w \tau$ $44010 w \tau, \pi 16-4 m, \Uparrow 9 w \tau, w b$ I believe he here argues that going back of Hybrid offspring，\＆of varieties not crossed，is evidence of aboriginal foundation form of species．So it is some evidence－ V ． p． 455 my Note．Good． 441 wt Thinks the former Laburnum case a proof of sterility of species \＆tendency to go back． $1-3 m$ ，9／ $10 w \tau, \Uparrow 13-3 w$ The occasional approach to
father in simple Hybrids or in second generation of Paternal Hybrids，is rarer than the approach to the mother． $4428-13 w$ amongst simple Hybrids Those that approach Father are more sterile．19u／19－ $20 \mathrm{~m} / \mathrm{w}$ These are apt to tend to Father $112-$ $1 w$ The Paternal Hybrids in 2d degree which go back to father have increased fertility． These cases liable to error． $4436 w \tau, 6-9 w$ All the above facts like avatismus in animals． $4441 w \tau, \Uparrow 3-1 m / \Uparrow 2 u$＂weiteren Generationen＂， $w b$ in very fertile hybrids these goings back to mother or father have not been perceived， so prevented apparently by strength of sexual organs． 445 wt（A）These goings back agree with the Abnormal types，except these latter are the result of the crossing of pure parents：they also are very sterile．1－ $3 \mathrm{~m} / \mathrm{w}$ Law of variation $6-7 \mathrm{~m} / \mathrm{w}$ A $17-20 \mathrm{w}$ In successive generations more variability $\Uparrow 13 u \uparrow / \Uparrow 13-11 w$ These sorts of Hybrids give most variation．$\uparrow 8 w$ D．barbatocarthusia，－ carthusium．$\uparrow 7 u$＂väterliche Bastarde＂，$\uparrow 7-3 w$ variation seldom then in last case（＊next Page on do）$\uparrow 2 u$＂paniculatorustico－glutinosa＂／ $w b$ These hybrids always with one exception approach father（or 2d species）\＆commonly totally sterile Yet I think they were sometimes more fertile than with own pollen．－ $4464 m, 6-10 \mathrm{w}$ Male more power in causing variation than female．$\uparrow 14-6 w$ Cause of variability lies in act of generation perhaps aided by circumstances 447 介16un／ $\Uparrow 16-12 w$ not to be distinguished from pure N ．rustica，but less sterile $\uparrow 8 u \uparrow / \Uparrow 8-6 w$ \＆ even in this generation less fertile $z / w b$ Mother Father p pure＊paniculata Grand Father Mother Gt Gr．Mother（3）Grt Grt grandFather（4）was paniculata 448 1－8w Different species are changed at very different rates with the paternal type，but this varies in same species $4493 w \tau, 8-10 \mathrm{~m} / 3-$ 10 w colour of flower does not vary more in later generation than in first，which is different from other variability $\uparrow 15 w$ A $\uparrow 7 u \uparrow /$ $\pi 7-1 w$ Even some of these quite sterile in both sexes $w b$ A in some case，especially such as are slow to be converted，the fertility is lessened，especially on male side，even when hybrid has gone back nearly to paternal type． 450 wt A Such Hybrids with own pollen improve fertility $\&$ of themselves go nearer the paternal type． $1 m, 1-12 w$ Even some fruitful paternal hybrids in 3d degree were quite sterile on male side．Generally with higher degree of Paternal hybridism，so much more fertile． $14 u \star / w$ A $\uparrow 13 w \tau, \Uparrow 12 u \uparrow$ ， $w b$ In each paternal degree this became

GAERTNER, BASTARDERZEUGUNG: 450
more sterile on female side, because it approached D. Japonica which is naturally sterile on female side. 451 介10w $4521-4 w$ More fertile than corresponding paternal Hybrid $9-12 w$ varies more * than paternal hybrid $\quad x \rightarrow$ chinensis-barbatus female barbatus male table.w These bore 6-15 varieties $\uparrow 10-1 w$ Most of the vars have approached very close to pure maternal type 453 wt xxx I shd think caused by female side of Hybrid being most fertile \& other side being crossed with same type, through a male, caused their greater fertility. \& is partly proof of more fertility on female side. $8 \mathrm{~m}, 10$ $14 w$ More fertile than corresponding Paternal Hybrids xxx 17-28w But even here amongst those most closely resembling Maternal type, quite sterile individuals are found. Here also male side fails in fertility more than female. $\pi 12-9 m / w$ A $w b$ A In further generations, when self impregnated, become of themselves more like mother \& more fertile \& less variable- $454 \quad 10-20 \mathrm{w}$ The more fruitful stick to the hybrid type longer than the less fruitful. Rate of going back varies according to Kind $455 w t / 1-5 w$ A Neither var. shd be an aboriginal form. This makes me believe the reported fact that Mongrels go back: Bell insisted on this to me one day, in regard to Pigeons, \& I think Dixon did. So Gaertners remark that this proof of Real Species fails, for applicable to Varieties 1$15 w \rightarrow$ But it might be said that one var. was an ursprungliche forme.- $8 u$ "zur Stammmutter", $7-18 w$ The law that these (I fancy both paternal \& maternal, anyhow the latter) of themselves, self-impregnated go back to type of Mother, most important. (A) 22-23w The metamorphosis of one species into another like a variety into another seems opposed to species being something distinct as Entity.- XX $\uparrow 6-5 w$ In Tollets case of Malay Fowls so long affecting breed is case of a var. with stronger tendency than others to go back, like species $w b$ XX It is argued that the sterility of hybrids, shows that species are a distinct entity, then surely the points in which they agree, may be fairly adduced to show that they are not essentially different $45710 w \tau 458 \pi 7-4 m / w$ (a) $w b$ (a) The rate of metamorphosis depends chiefly on the species employed; but also in less degree on the variety (This rate has narrow limit) of the individuals employed; on account of different degree which they go back in type 459 13-16w The shorter the period of Metamorphosis the less variable $16 m, 19 w \tau, \pi 14-12 m / \Uparrow 16-5 w$ in
reverse cases, the metamorphosis at different rates, even though the hybrids from the reverse * be alike. Thinks this proof of aboriginal creation. $\pi 2-1 m / w$ A $w b$ A Always approach to type of ancestral form before organs of generation quite perfected; ie these are last restored. 460 wt it is not likely we shd understand the slow restoration of the generative organs, as long as we remain so ignorant regarding the esesential action of these organs; \& why two sexes necessary.- $8-10 \mathrm{~m} / 6-16 \mathrm{w}$ Not seldom quite like pure parents \& yet even quite sterile, specially male organs; sexual organs universally * in some degree affected 11$12 u$ "allen | Ausnahme", $\uparrow 16-12 m / w$ Law, that male organs not only more easily affected but slower restored. $\pi 7-1 m / w$ do not understand. $461 \hat{\imath} w$ extreme variability of fertility during the umwandelung, not connected with any law.- Never suddenly appears by a jump. Yet one almost exception by Kolreuter, with unusual approach to pure type, and Gaertner one other case with relatively little approach to pure parent. These cases show that the gain of fertility $*$ is due to peculiarities of the individual 17-22u土 463 wt (A) As in first generation, decided types (Given in last page \& p285) arise close to one parent, so it is evident the number of generations required for metamorphosis must vary much. $6-12 \mathrm{~m} / 8 \mathrm{w}$ A table.w on average $464 \Uparrow 13-7 w$ As far as yet known never requires more than 6 or 7 generations $\Uparrow 10 / 7 w \tau, 6 m 465 w t$ A Attributes the variability not entirely to the difference of the going back of individuals, but also to variability due to long cultivation, for has not perceived it in the wild-growing, nor in the more fruitful hybrids.- $11-19 \mathrm{~m} / 12 \mathrm{w}$ (A) $\uparrow 14 u$ "oben 1220 ", $\Uparrow 13 z, ~ \Uparrow 13-1 w$ In reversed crosses, even when hybrids are alike yet they are not metamorphosed with equal readiness, which shows some difference in their nature $\rightarrow \Uparrow 2-1 u \leftrightarrow / w$ example wb. Thus Dianthus 466 wt Hybrids may be considered as a united brother \& sister $17 w \tau 467 \quad w t / 1-10 w$ Would not "Reduction" good be term for Umwandelung $=$ inversion in Dict. \rightarrow Absorption by Father form wt Reduction by the Father or of mother or by paternal pollen or maternal pollen $7-10 m / 7-17 w$ (B) Fertility of hybrids stands in no special relation to capacity for metamorphosis: Examples,- very sterile \& yet in 3 power almost reduced to D. car. 13ua, $16 u$ "dritten Grade", $20-24 m / w$ fertile but require 5 powers \&c \&c $\uparrow 2 m, \Uparrow 1 w$ other
reasons for (B). $468 \pi 8-5 \mathrm{~m} / \mathrm{w}$ A $w b$ (A) Generally with less * "sexual affinity" of first pure parents the Reduction * slower, \& the reverse with * more fertility $4698-10 w$ Exceptions to * last rule $\Uparrow 15-12 w$ Examples of above rule 470 wt Foregoing examples show no fixed relation between periods of Metamorphosis \& sexual affinity of Plants.-1-2m/w A $8 u$ "der 1 Typus" $/ 6-15 w$ A species with this power of producing a decided type will reduce a species in the reverse manner $\Uparrow 13-10 \mathrm{~m} / \mathrm{w}$ There is also relation to systematic affinity of species. wb Systematic affinity must mean "likeness of characters externally visible. $471 \Uparrow 14-6 m / w$ Examples of last Rule $\Uparrow 3-1 w$ Exceptions to $472 w t(Q)$ The different powers of reduction in hybrids from reversed crosses, show no fixed relation to "systematic affinity of parents 9 $13 \mathrm{~m} / \mathrm{w} \mathrm{Q} 473 \mathrm{wt}$ (B) Returns to parent-forms through self-impregnation are very slow, \& require many generations. 11-15m/w (B) 23 m 474 6-10m/w The goings back seldom observed in wild plants when experimented on 12a "428" 438? 13-20w Conclusions (1) Facility of Reduction not absolutely depends on sexual or systematic affinity.- (2) Returns more often to Mother than Father. $\Uparrow 8-6 w$ Not all embryos affected alike. $475 \mathrm{i} w$ I suppose he wd say there was a hatred in the Vegetable Kingdom to these crosses: perhaps his argument directed against those; like Herbert who believe in hybrid origin of species. $2 w \tau, 16-17 u(13-18 w \mathrm{In}$ reduced hybrids traces of parental character may be yet discovered. $19 w \tau, \quad \pi 13-8 m / \Uparrow 11-10 u$ "unzweidentigen"/w (a) $\Uparrow 1 w \tau$, wb Thinks the Reduction of species affords "unequivocal" proof that the limits of species confined \& fixed. How curious. I can see force in this argument in reductions by self-impregnation.- $4761 w \tau, 1-6 m / w$ Excessive care in preventing parent pollen, Kept in chamber. $-\Uparrow 9-8 w$ The old stories of Grasses changing into each other.- $\uparrow 4 w \tau 4778 w \tau 478$ $5 w \tau$, 4-6w Hornsuch defender of transmutation $13 w \tau$, $17 u$ "Berg" $496 \pi 7 w /$ $\Uparrow 4 w / w b \tau, w b$ Amongst seed of Vetch, some chickpea, which produced 2 vars. like Vetch $497 \Uparrow 7-5 w$ Amongst the seeds he found 4 vars. $498 \quad 18-23 w 4$ vars of Peas, very slightly different, raised out of bought seed.-$4998-16 w$ no variously coloured seeds produced \& it is clear he wd like pairs to prevent crossing $\uparrow 11 a$ " 51 " 3 correct $\Uparrow 3 /$ $\Uparrow 2 w \tau 500$ 〈fn nos corrected〉, wt (a) Remarks that many plants when put out of proper conditions do not vary, \& those that do, their
union retain \& power of union suffer much less $7-10 \mathrm{~m} / \mathrm{w}$ a $11-16 \mathrm{~m} / \mathrm{w}$ Cases of change of Form chiefly in Lecoq $16-18 u \pm / \mathrm{m} / \mathrm{w}$ these very fixed $\Uparrow 14 w \tau, \pi 10-8 w$ long cultivated plants as $\uparrow 6 u$ "Cerealien, Leguminosen" $/ \uparrow 4-2 u$ "Dianthus \mid Tabacum" $/ m / w$ vary $5011 \mathrm{~m} / \mathrm{w} t$ same cause makes them * easily depart from normal Bastard-type 7-9w varieties tend to go back; no facts given $8 w \tau$, <fn nos corrected $\rangle, \uparrow 12-6 m$, wb Quotes Herbert, that domestic variations do not affect organs of generation $50322 w \tau, 23-24 w$ There are 6 of these classes. $5045-8 w$ Simple Hybrids of own type $2 n d$ table.w I cannot think why Reduced Hybrids per patrem are here omitted $w b \rightarrow$ (a) \& (b) Hybrids alike \& so also (c) or Reduced Hybrid per matrem. 505 $9 \mathrm{~m}, 11 \mathrm{~m}, 23 \mathrm{~m} / \mathrm{w}$ (C) 506 wt (a) it is only the quantity of blood from either side which makes a difference. 4-17w Thus these are alike (a) But when one factor is more powerful in its influence, then there is a difference, as. $12-17 \mathrm{~m} / \mathrm{w}$ very variable \& generally very sterile with exceptions. 507 $1 w \tau, 2 m / u$ "aus |Faktoren", 19u "sind|steril"/ 15-19w Excessively variable \& generally absolutely sterile 22-23w compounded. 3 species same as last only mother a hybrid $\Uparrow 2-1 m / w b$ in type always (yet a prepotent type in any species has some influence) go to Father: * but in different degrees.- (So Kolreuter also says) fertility varies generally little.- $5084-5 u$ "vermittelnde" $/ 3-5 w$ are very distinct from class $56-10 \mathrm{~m} / \mathrm{w}$ in this subclass the 3 pure parents are somewhat allied table. w very little fertility in one folling case very considerable fertility $\mathbb{\Uparrow 2 - 1 \rightarrow 5 0 9}$ $\pi 7 m, \pi 5 w(\mathrm{~A}) w b(\mathrm{~A})$ In the second subclass, species are used which will not cross without the intermediate \& 3d species, \& therefore are very little allied in sexual affinity.- These always most closely resemble pure father. Excessively sterile 511 14-19m 512 13-15m/w a tendency to vary even in individual plant $17-24 m / 22 w$ (a) $w b$ This extreme closeness to father very singular \& against ordinary laws of Hybridism, explained by greater potency of pure pollen of Father, as likewise is shown in the 3d class, in which Mother is pure \& yet it seems no leaning to either side. $513{ }^{1} 19-11 w$ it seems that where pollen pure \& ovules hybrid, then appr to pure \& less variability $\uparrow 9-4 m / m, w b$ not so variable, apparently owing to the potency of effect of pure parent.- 514 wt A Conclusions (1) that hybrid ovule or pollen cause of variability. (2) that the pollen, even of hybrid origin has preponderating influence over

GAERTNER，BASTARDERZEUGUNG： 514
female ！！！I do not see how second conclusion $1-6 m / w$（A） $5 w \tau$ ， $6 m 5154 w \tau$ ， table．w Here whichever species has the most typical strength，the offspring resembles it－ quite sterile table．w Not one is Double 516 table．w 4 species united table．w In this the several offspring resembled all four parents table．w Excessively variable，no two individuals alike．Fertility lost． 517 wt It is clear that the more complicated the unions the more variability ensues．$\uparrow 14-11 w$ Hybrids can be told from pure only by variability $\uparrow 6 u$ ＂schonlersten＂，$\uparrow 5-3 u$＂niemals 1 Arten＂$/ m / w$ repeated over \＆over again $\uparrow 1 m \otimes 5182 m \otimes$ ， $3 m *, 8 m * 10-13 u \leftrightarrow, 14 m * 15 m *, 16 m \otimes$ ， $17-18 \mathrm{~m} / \mathrm{w}$ not more subject to mal－ conformation than pure species $18-19 u \leftrightarrow$ 519 wt Some hybrids can be much more easily impregnated when growing in pots than in open land，because too much luxuriance checked．－Good instance of ease of effect of too much luxuriance $1-7 \mathrm{~m} / 3 \mathrm{w}$（a） $\Uparrow 4-2 w$ some seeds look poorer $5201-10 w$ of these many seed fail quite or seedlings live very short time or rather longer or only just flower $16-17 w$ examples of above $\Uparrow 13-4 w$ The above one exception to rule，\＆may be due to greater susceptibility of outer causes $521 \Uparrow 14-13 u \leftrightarrow / x, \Uparrow 11-10 u$＂Sageret laus＂／$\uparrow 11-$ $9 m 522$ 1u＊，18u＂11｜Bastardarten＂$/ m / x / 1$－ $18 w$ ．Period of germination in Hybrid seeds very various $52313-14 m / x$ ，$\Uparrow 18 u$ ＂Bastardsamen｜Art＂／ $18-16 m / x, \quad \uparrow 15-13 m / x /$介13－12u＂weil｜werden＂，$\uparrow 12-11 m / w(\mathrm{a}) ~ \Uparrow 8-$ $5 \rightarrow$ ，wb The typical strength of a species over the other is shown in affecting period of germination of Hybrid seeds 524 13－17m，介16－15u＂daherlgrosse＂／介16－8m 525 介4－1m， $w b$ Hybrid seeds do not appear to keep so long as pure seeds $526 \pi 4-1 m / w$ all observers agree about luxuriance of hybrids $5275 w$ long stems $\uparrow 12-8 w$ Easily propagated by cuttings \＆\＆c $\uparrow 9 u$＂stocken sich＂／wb Even in stocks＂make offsets＂$\uparrow 7-$ $6 m, \Uparrow 4 u$＂Seitenästen＂ 528 8－9w Proliferus 17－ $23 w$ Thought to be related by Kolreuter to sterility of Hybrids $21 w \tau, \pi 9-1 w / w b$ Opposed to this is the fact that luxuriance begins before development of sexual organs I do not think this objection 529 3－8w（3）all very sterile hybrids are not luxuriant 12－17w（4） These hybrids which are most fruitful are the most luxuriant $\uparrow 14-10 w$ concludes luxuriance a peculiar quality of Hybrids．$\Uparrow 9 u / w \tau 5304-$ 10 w Hybrids flower earlier with exceptions 531 13－19w unseasonable flowers This is odd．Is it not like double flowers？$\uparrow 11-4 w$ stamens \＆stigma increase in number
sometimes，but not both $w b$ rare exceptions to above，when very distinct species united． 532 13－25w Kolreuter accounts for above by sterility，but doubts as most fruitful＊Hybrids， are those which produced most flowers $17 u$ ＂diejenigen Bastarde＂，wb＊Yet these are in some degree sterile $533 \Uparrow 16-8 w$ absolutely sterile hybrids have＊their flower long preserved，when dusted with pollen of either parent．－ $534 \Uparrow 15-13 w$ Flowers longer $\uparrow 2-1 w$ some exceptions $537 \Uparrow 18-5 w$ Because Bees freely frequent quite sterile hybrids，for Honey，thinks no close relation between dissemination of pollen \＆nectar．＊Might as well as say elytre not connected with protection of wings，because present in apterous insects $\Uparrow 11 u$＂Fruchtungsvermögen＂ $539 \uparrow 6-1 \mathrm{~m} / \mathrm{w}$ Thinks Kolreuter wrong in concluding these are only vars $540 \uparrow 20-15 \mathrm{~m} /$ $\Uparrow 20-5 w$ Never gives so many seeds as pure parent．As pure species are often sterile sterility cannot be taken as proof of hybridism 541 wt can offer no explanation of Sterility 1－6m 542 wt Duration of plants whether 1 or 2 years always very variable 3－ $5 m / 5 u$＂Koch＂，7－17w Hybrids longer lived． strong character of such plants，as below $\Uparrow 4-3 u \leftrightarrow 544 \Uparrow 3-1 m, w b$ attributes above partly to sterility，but－ $5454-15 \mathrm{w}$ objects that some quite sterile are only annuals，\＆ objects that castrated parents have not life prolonged． $17 w \mathrm{c}, 16-18 \mathrm{~m} / \mathrm{w}$（a）$\uparrow 17-12 w$ in crossing hermaphrodite to 2 unisexual plants sexual organs repaired．$w b$ In dioecious plants organs imperfect of one sex．in Hybrids perfect，but functionless 546 wt Hybrids become decrepid in successive generations． $1-4 m / w$（a）$\uparrow 15-1 m / w$ Hybrids can bear cold better than parents，which is connected with their tenacity of life 548 5－ 10w However Some hybrids from little related species are tender． $549 \Uparrow 18-17 u$ ＂den \mid Tulpen＂$/ w$ These vary during life of individuals but then variable flowers $\uparrow 16-1 w$ In This Hybrid（perhaps only a mongrel iy） some of the flowers in middle of summer \＆ autumn went back to Mother in flowers 550 $3-5 w$ other cases of above $14-17 \mathrm{~m} / \mathrm{w}$ Suspect the 2 Tropaeolum only vars，yet very different．$\uparrow 7-5 m / w$ a $\uparrow 7 a$＂speciosissimo＂ female $\Uparrow 7 a$＂phyllanthus＂male $w b$（a）This hybrid for first three years had angular 5 sided stigma，\＆then became like Phyllanthus．－ $553 \quad 12-13 u \leftrightarrow / 15 u \oplus / 10-20 w$ cases of hybrids in which type has kept very constant，in this case for 10 generations，but with lessened fertility $19 x \approx 21 x$ ，$\uparrow 8-4 w$ above only examples of progeny of hybrids
not varying 554 2-18w Fertility even more variable than other characters. Rarely becomes more fertile in 2d generation but generally, even in most fertile Hybrids, much more sterile. 556 wt The tendency to go back, he argues, wd prevent new species being formed by variation; but overlooks any mention of selection picking out the new form adapted to new end.- $1-5 \mathrm{~m} / \mathrm{w}$ (a) \rightarrow $\Uparrow 16-8 w$ Local \& constant varieties are different as long as new conditions are present, but change them \& the species will go back 557 wt (a) as opposed to those who believe genera are made by crossing of species, brings case of Verbascum with species most difficult to distinguish, yet most sterile.- $1-6 \mathrm{~m} / \mathrm{w}$ (a) $9-15 \mathrm{w}$ Thinks monstrosities not occurring more in Hybrids than pure species, though Kolreuter did think so.- 558 wt Has made 1000 artificial impregnations 1-2u "an|Befruchtungen" 559 $\Uparrow 17-13 w$ cases of Dwarf Hybrids enumerated by Kolreuter 561 11ua/14ua/11-16w The doubling of calyx \& colouring of do., even in these genera, not once observed. 564 wt Hybrids become double like pure speciesDoes not seem more apt to be double $1-3 \mathrm{~m} /$ $2 u$ "Jäger" $/ w t$ Has described double flowers in all classes. $5658-12 \mathrm{~m} / \mathrm{w}$ rare case of double hybrid, if parents single $\uparrow 11-8 \mathrm{~m} / \mathrm{w}$ sparing \& retarded dusting with pollen, most apt to bring double flowers $\uparrow 5-2 m / w$ (a) $w b$ (a) Hybrids more inclined to double than * pure species 566 10-15m/w It wd appear that this stock was impregnated by Plants 100 yards off - $5677 c / w \notin, \Uparrow 14 c / w \notin, \Uparrow 13-7 w$ luxuriant growth no doubt necessary for doubling, but some other cause shown to exist $\$ 3-1 m / w$ near Hot Spring several Plants double $5681-4 w$ cases of wild flower double $\uparrow 4 w \tau 569 w t$ (a) This seems to agree with male organs being most easily rendered sterile in Hybrids. $4-7 m / w$ female organs more often spared from changes in double flowers (a) $7 \mathrm{~m}, 10-14 \mathrm{w}$ The coupling of stamens in Hybrids the opposite of Doubling. $\Uparrow 10-5 \mathrm{~m} / \mathrm{w}$ Pistil more often converted into Petals in pure species than in Hybrids. 571 $\Uparrow 13-10 \mathrm{~m} / \mathrm{w}$ Monstrous Sea-hound with 2 heads $5727-10 w$ it is remarkable that vegetative strength owing to sterility does not disturb rest of flower $\uparrow 15-1 w$ The Pollen \& ovules themselves must have to be modified: the variation is not due to mere mixture of two kinds of cells $\uparrow 3-2 m / w / w b$ very strange that corolla as altered * stamen is not modified in Hybrids. wb In the second generation of Hybrids we have much
variation, which is kind of monstrosity 574 wt xxx This remark very curious \& bears on what I have shown The large genera var most. I do not know whether remark applied to wild or tame. If wild $*$ as I fancy all is right. If tame it wd indicate that my explanation of spreading \& favourable conditions must be superseded by some new law. Could it be tested by Loudon, ascertaining the proportion of genera with single species. by Lindley??? $1-2 w$ Shd this rule hold for domestic plants, then we may account for it by variability being necessary to improve plant. 2-3w As I thought of doing with Domestic animals. Wd it be good to take domestic Plants \& see proportion of species to genera??? (or do it all by Loudon. that wd be best) according to Nat Family \& whole Kingdom. 5-7w Maize has one (or two Molina!?) species) $8-10 w$ Rye has only 2 species Rice only one? $\$ 12 u \uparrow / w$ Hardly vary at all anywhere $\uparrow 10-9 u \wedge / w$ These vary vastly $\Uparrow 10-4 m / w$ (B) $\uparrow 7-4 m / w \mathrm{xxx}$ (a) $\Uparrow 1 w$ aescutus Horsechesnut 1a "macrostemma" Red Horsechesnut $w b$ (a) Q Some have thought that single species of genera do not vary (Man!) much, but case of Platanus given $w b$ (B) But the Platanus of Pavia have more than one species as far as I can find out 575 wt Admits the crossing in cultivation must check the ausartung of plants but doubts whether this holds in wild Plants!!! 1$9 m, 15-18 \mathrm{~m} / \mathrm{w}$ variation affects every part of Plant. $\uparrow 13-7 w$ crossing of species \& varieties an evident cause of variation $\uparrow 4-1 \mathrm{~m} / \mathrm{w}$ variability quite * owing to mongreling than to external agency $5761-3 m / w$ Van Mons 2 kinds of variation $13-17 \mathrm{~m} / \mathrm{w}$ some varieties are constant but crosses of where vars. very variable $18-22 \mathrm{~m} / \mathrm{w}$ White Dahlias not one white seedling $\uparrow 3 u$ "zum Theil" $/ \uparrow 5-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ all agree that vars cross \& produce partly more fertile * offspring, than the pure parents.- But exceptions as on next Page $5773 a$ "von"/wt at $p .87$ says these two vars grown in garden always kept pure. 3-4u "Cucurbitalmajor", 3-8w These unite with great difficulty, but offspring very variable \& fruitful $8-10 \mathrm{~m} / \mathrm{Q} \neq 0,8-10 \mathrm{~m} / \mathrm{w}$ says some vars of Dogs, some crosses are more fertile than others Ask $14-18 u \mathrm{a} / \mathrm{w}$ K. calls these stabile vars. (Gaertner the following; some Botanists consider as species $21 u$ "unserer 1 fortpflanzen" $/ w$ finds like Herbert the vars of Hollyock constant. $23 u$ "Lychnis" $24 u$ "phoenicea" $/ w$ (A) \&, $\uparrow 11-5 m / w$ Mongrels like offspring of simple Hybrids, only more variable, (which surely might be expected

GAERTNER, BASTARDERZEUGUNG: 577
C.D) $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ case of variability in varieties $w b$ (A) These true species in relation to variability like Mongrels, in fertility like Hybrids.- Yet Lychnis is wild \& not cultivated Plant see p. 582 at top 578 wt In Cucurbitae, on same plant often two kinds of fruit in shape \& flavor $1 u \uparrow / 1-4 m / w$ (B) $6 w \tau, 7-8 u \leftrightarrow /$ w Important $8 w$ intermediate \& this is commonest in close species see p. $28313 u$ "früher" $/ 16 \mathrm{~m} / 9-20 \mathrm{w}$ The uninjured \& often increased fertility of mongrels, accounted for by luxuriance of Hybrids (I do not see this) \& says he finds garden Plants varied from crossing vars. are earlier than ordinary vegetables. (The earliness is hardly same as greater fertility.) ? ask table. V to each line/w On account of greater but not equal to pure species fertility. Kolreuter considered these as only vars: * G. thinks from actual experiments * only the Hyosciamus as true varieties, because by cultivation one turned into other. $w b$ Steudel makes agrestis a Synonym of H. niger G. says they turned into each other $5795-6 u \mathrm{a} / w$ same conclusions regarding these $7 u$ "Bastard", $10 u$ "Bastarde" $/ 11 u$ "absolut" $/ 8-14 w$ says fruitfulness of Hybrids not absolutely * proof of parents being only varieties $7-8 \mathrm{~m}, 9-11 \mathrm{~m} /$ w ask author, I fancy means only some fertility. wb Examples of Hybrids very fertile but not as fertile as pure parents $w b$. These are not hybrids, but nearly the union of two pure species. 580 table.w The hybrid from these quite sterile $\Uparrow 20-1 w$ seems to admit quite the crossing of varieties left to themselves \& may be cause of return of vars to parent forms. says mongrels in their variation in successive generations may be classed like the Hybrids, which he has classed. 581 wt Says besides infertility Mongrels differ from Hybrids in * varying in the first generation whereas Hybrids vary in 2d or in paternal \& maternal reductions. He gives no case of wild varieties, when first crossed varying more than mongrels; at least I cannot remark any. $1-4 m / w$ (a) $6 u$ "andere| Bastarde"/w in other respects like Hybrid only more like to pure species. 8 m , $10-25 w$ He evidently considers these very important characteristic differences (just respecting p.273) between * crossing species \& varieties $\uparrow 4-1 m \quad 582 \quad 1-4 m / w$ mainly repeats p. $5779-10 w$ more accessible to impregnation of other vars $12-13 w$ More tendency to revert to parent form $14-17 \mathrm{~m} / \mathrm{w}$ more variable $18 u$ "gewöhnlich"18-19w commonly more fertile $\uparrow 6-1 m / w$ (a) $w b$ (a) Lecoq states great variability in lris,
supported by observations of Berg, hence suspect that there may be variety-bastards So necessary to show no need of crossing look at Potatoes \& Maize \& Rice!!! * 585 4$7 w$ The smaller proportion of Hybrids are "intermediate" $586 \uparrow 14-12 \mathrm{~m} / \mathrm{w}$ speaks of law of both organs being ready at same time! $5872 a$ "Wimmer" * $15 /$ all folling numbers wrong $\Uparrow 10 w \notin, w b$ see Corrigenda 589 16c/ $w \notin 5902 u a / w$ Natural Hybrids 5-8m 591 7$17 \mathrm{~m} / \mathrm{w}$ cases of Verbascum self-formed Hybrids, yet offspring these Hybrids excessively sterile. $598 \Uparrow 15-11 m / w$ (a) $w b$ says not know how long \& in what limits keep true. but wheat shows how long can be preserved under same conditions. 601 8$10 \mathrm{~m} / \mathrm{w}$ The inner nature of Plants cannot be judged from outside.- $6024 u$ "paniculata"/3$6 \mathrm{~m} / \mathrm{w}$ He puts Mother first \& Father after, some have followed an opposite course 605 $\Uparrow 8-3 m$, wb Thinks the facts of Hybridisation show that original species forever remain true $6066-7 w{ }^{4}$ all $Q \Uparrow 4-1 m$, wb as varieties can generally be propagated, as known for centuries, any alteration, if they ever occur, requires careful observation.- $607 \uparrow 8-3 m / w$ (a) $w b$ Points in which grafted Plants do differ from same raised by seed $6086-10 \mathrm{w}$ sometimes less fruitful, sometimes more.10?, $16 u$ "vollkommenere" $/ 17 u$ "zahlreichere"| 18u "Geschmack|Früchte"/16-22w seedlings generally bear more perfect \& more numerous seeds than when grafted. $\uparrow 13-7 w$ sometimes life rendered longer, sometimes shorter $\uparrow 4-1 w$ longer in foreign trees $60910-$ $14 \mathrm{~m} / \mathrm{w}$ evergreen oak grafted on common cast leaves \& Daphne laureola flowered in winter 15-22w effect of one Pear grafted on an earlier kind was to make it actually later! $23 w \tau, \pi 10 w$, 10 true is right $\Uparrow 6 w \tau, \Uparrow 3 c / w \notin$ $611 \Uparrow 11 u$ "Oleander" $/ w$ cases of mottled leaves affecting the Stock. 613 5-9w Even the wood keeps distinct at place of grafting. $6202 u$ "allein \mid vermischte" $\mid 5 u$ "selbst $\mid z u$ " $\mid 1-$ 10 w a statement that two kinds of grapes branches split \& joined longitudinally produced striped fruit \& crossed foliages. G. does not believe. $\uparrow 8-5 w$ other similar cases $6219-13 m, \Uparrow 12-9 w$ objects that these are cases of sporting $\Uparrow 5-2 \mathrm{~m} / \mathrm{w}$ ughO $6285-25 w$ case of sport in common Laburnum with flowers like C. Adami is not this like the orchard case? Were they sterile? The sport \& parent in Austrian Bramble are sterile. (Herbert has shown are sterile. in Hort. Journal) $w b$ (B) He is dreadfully puzzled about the Laburnum case \& says not analogous to anything known $6294-12 m / 8 w$

B $\uparrow 14-4 w$ Power of grafting＊much longer than of hybridising；even very different genera（A）（It makes it the more remarkable that certain vars．shd．not do well together．） $\Uparrow 11 / \Uparrow 9 w \notin, \Uparrow 7 / \Uparrow 6 w \tau, w b$（A）I think I have heard it said same Family．wb Syringa Fraxinus Olea Chrisanthus－all Oleaceae 630 wt The relation of the different kinds which can be grafted on same stock is very different from the relationship on which hybridisation depends $2-7 m, 8 m 6317-13 w$ A certain affinity necessary beyond doubt．11c／ $w \notin, \Uparrow 16 w \tau, \Uparrow 15 u$＂organischen Structur＂，$\uparrow 9-$ $8 u$＂die \mid Individuen＂$\ \uparrow 11-5 w$ The above influences not only possibility of graft，but＊ fructification \＆duration of life $\prod_{5-1 m}, \Uparrow 6 u$ ＂Familien－Affinität＂$w w b$ Family affinity，though greater difference between the graft \＆stock in wood，yet permits the graft． $6328-9 m / u$ ＂schlagen \mid Diel＂／Q／3－13w great difference in powers of grafting．Pear \＆Apple though altered will with difficulty graft．－Difference in reverse case $18 w$ Will not hybridise．介15－ $12 \mathrm{~m} / \mathrm{w}$ can be grafted but not hybridised 633 $11 c / w \notin 6355-7 m / 5-12 w$ Puvis speaks of grasses modifying but not exactly crossing． Has Wiegman shown that grasses cross？ $\Uparrow 10-4 m / w 2$ colours in turnips not capable of crossing $639 \Uparrow 14-11 m / \Uparrow 14-1 w$ Genera which have perfect pollen \＆ovaries，but produce commonly no good seed，but will produce if impregnated by pollen of same species， specially by pollen of another individual 641 $\Uparrow 4 m 648$ 9－12w Mainly how they worked p．354，369，374） $15 u$＂Herbert＂$/ m / w$ See $651 \pi 8-7 \mathrm{~m} / \mathrm{u}$＂Unkenntnis। Gewächsen＂，wb Ignorance of process of fructification in some plants has caused \＆failures 653 wt cases in wh he failed but others succeeded $4-7 \mathrm{~m} / 7 \mathrm{u}$ ＂oben 1126 ＂，$\Uparrow 13 m 6549-13 m / w$ has never seen ill effects from castration，except when all castrated．$\uparrow 9-5 m / w$（a）$w b$ Dichogamous plants less \＆capable of hybridising；\＆very liable to crypto－hermaphroditism．－ $6551-20 \mathrm{w}$ （Can the pollen of another individual or var overpower own pollen？）－ $8-9 m / 8-12 w$ Best generally to castrate at moment of open－ ing of flower． $19 u$＂Leguminosen＂， $20 u$ ＂Malvaceen＂$/ 18-22 w$ Necessary have cut or open or partly or wholly cut away petals $22-$ $23 u \leftrightarrow / 25-28 w$ Oenothera Epilobium Fuchsia Clarkia 22－23m／w（a）（Quoted）$\uparrow 9-7 w$ Lecoq says pollen of Fuchsia not shed for 3 days after flower opened $\Uparrow 5-1 w$ even whole corolla can be removed without injury to seeds $w b$（a）Anther $\&$ ripe before opening of flowers in these Families \＆the fructification takes place not only some
hours，but even days before flowers open． Then how do Cruciferae \＆Peas cross？？ 656 $16 w$ Pincers $65714-18 w$ cut with scissor or pull off stamens，not touch anthers $658 \uparrow 16 \mathrm{w}$ （a）$\uparrow 4 m, w b$ Stigma of Lobelia in own climate seldom protrudes till lost capacity of being impregnated，\＆hence species bears no seed，but if anthers drawn over stigma produce plants．－I think this is meaning． 659 $1-2 m / w$ Pistil grows in Geum after impregnation．$\uparrow 15-11 w$ By many plants pollen \＆ovaries not ready at same time $\uparrow 7-$ $4 m / w$ Impregnate easily，because Pollen keeps its strength $w b$ Stigma generally ready when flowers open，but sometimes not ready for some time afterwards 660 9－12w Repeats impregnation several times． $662 w t$ Cultivated in Pots so thus excluded from cross impregnation $1-4 m 663 \Uparrow 9-1 m / w$ The artificial impreg of many flowers on same plant injurious to it．－ 664 wt（a）The impregnation with own pollen，\＆fertility always greater than in any Hybrid，\＆equal or at least near Natural fertility，but sometimes less．－Really this accounts for the（i a）of Hybrids． $2-10 \mathrm{~m} / \mathrm{w}$（a） 10 m 665 11－15w Plants to be fertilised in chamber facing S．E． 666 1c／w $\notin 667$ 11－15w Many Hybrids bring seed in Pots，but not in open land． $6701 \mathrm{~m} / \mathrm{wt}$ Isolation only superfluous in exotic plants when only one present $4-5 u$ ＂Die INothwendigkeit＂$/ 2-8 \mathrm{~m} / \mathrm{w}$ speaks of the absolute necessity of isolation（\＆so does Lecoq）which all shows how some crossing goes on． $8 \mathrm{~m}, 14-16 \mathrm{w}$ cutting off all flowers injurious 674 〈fn nos corrected〉 $6753 m 677$ 〈fn nos corrected 678 介5 $6794 u$＂ganzen Habitus＂， $5 u$＂M．longiflora＂， $14 u$＂ 5,2 ＂， 15 w intermediate $16 u$＂ 12,5 ＂， $17 u$＂ 3 ＂，$\uparrow 10-9 u$ ＂Farbe IJalapa＂，$\uparrow 8 u \leftrightarrow, \uparrow 10-5 \mathrm{~m} / \mathrm{w}$ seed of this Hybrid returned to two distinct parent forms． $w b \leftrightarrow \&$ so in Maize I am nearly sure 2．vars of seeds in Mongrels $683 \Uparrow 18-15 w$ fertility varies more in different experiments． $684 w t$ （Get Hooker to read over this list）There are important facts $*$ in this Table not noticed in my abstract or results．3－7w instances of series of fertility $12-13 w$ count how many pure species have（ K ）when self impregnated See whether any difference in two vars．，I have seen to Verbascum $22 w$ Mothers name first $\Uparrow 12 w$ succeeded with Kolreuter $\Uparrow 11 w=$ arvensis Loudon Cat．$\Uparrow 10 w$ $=$ arvensis Steudel $\uparrow 8 u$＂ 9 ＂，$\uparrow 15-3 w$ I do not think same species Herbert succeeded see p． 653 are these the English species？（yes．） $\pi 1 w$ no of flowers no of fruit $w b$ See how many genera no result，\＆genera I believe

GAERTNER, BASTARDERZEUGUNG: 684
with close species: this bears on vars. $w b$ I shd trust this more * (see case p.706) more information given ? of results of self impregnation The very near to approach to (K) \& yet the rarity of actual (K) makes me think the effect of artificial fecundation. 685 wt Hooker thinks that probably Canadensis \& atropurpurea, are merely synonyms: Hooker thinks Canadensis \& vulgaris distinct $5 w$ Siberia $8 w$ var. Hooker $9 w$ of vulgaris ?? $12-13 w$ Steudel var of atro-purpurea $14 w$ This means hybrid crossed by Father $22 w$ What Ask author Steudel makes var of atropurpurea $26 w / 27 w$ var of vulgaris $28 w$ var of atropurpur $\Uparrow 13$?, $\Uparrow 10$?, $\Uparrow 3 w$ var. of vulgaris $w b$ viridiflora is a Siberian species of Pallas var. of atropurpurea according to Steudel 686 wt In this country Hooker says C. littoralis or maritimum is considered a very close but distinct species $1 w$ var of vulgaris $3 \mathrm{~m}, 12-15 \mathrm{~m} / \mathrm{w}$ Steudel makes synonyms $13 w$ Prop. Poll $\Uparrow 23-17 w$ Dr Hooker considers undoubtedly vars. except steticum○ $\uparrow 22 w$ Prop pol $\uparrow 19 w$ wild var $\Uparrow 18 w$ Prop poll w wild var $\uparrow 16-1 w$ in text p. 197 \& elsewhere Maritimus is spoken of as crossing with C . Behen Must be a misprint. anyhow C. Maritimus $=S$. inflata according to Steudel.- $\uparrow 15 w$ very different Hooker $\Uparrow 14 u, \Uparrow 14-1 w$ all these i a \&c are from crossing varieties. wb (species names equivalent to Silene inflata Steudel) Some authors think Silene italicus, pilosa There is nothing in Loudon Catalogue to make me doubt the conclus $68719 m, 25 w=$ incornis of Kolreuter 688 wt Asa Gray considers the D. tabula as var of D. Stramonium \& introduced into America Dr. Bromfield in Phytologist says he has tried every gradation between these two forms \& yet here not fertile (K). This then is case of some sterility, if we are to trust the same class of facts as we infer sterility from.- $\ddagger w$ See p. 385 for degree of sterility of D. tabula \& stram $\uparrow 23 w$ ActaO $\Uparrow 13 w=$ plumaria Linn. $689 \Uparrow 20 w$ Prop. Poll $69517 w$ Prop. Poll. $696 \pi 18 w$ Croatia $\Uparrow 11 w \star, \pi 1 w$ perhaps var. $697 w t$ [p. 225 Much important on reciprocal crosses in Digitalis.] $11 w$ var of last Lindley makes $12 w$ perhaps * var $17 w$ some think var of 2. last $17 w$ ambigua of Kolreuter p. 175 ambigua anyhow probably distinct 19/20w perhaps var $\Uparrow 19 w$ var. of ferruginea acc to Lindley 698 $2 m / w t=$ angustifolium Steudel $\langle u$ henceforth: numbers in cols. 2 and 3$\rangle 6 u / w$ Prop pol 7u, 6$15 \mathrm{~m} / \mathrm{w}$ crosses more fertile than with own pollen. 10 w Yet Newman says quite fertile $15 u / w$ Prop. poll. $22 w$ Prop. Poll. $\pi 8 w$ Dr

Salter Bell says quite fertile Phytologist 699 $18 m, \Uparrow 19 w=$ niger $\Uparrow 18 w=$ niger Probably vars. $\uparrow 13 w=$ niger? $\uparrow 12 w=$ niger $\Uparrow 12-11 w$ perhaps vars. $w b$ p.578. G. says agrestis $=$ albus as known by experiment - Steudel makes albus distinct - $70010 \mathrm{w}=$ undulata $\Uparrow 20 w$ I think Herbert p. 345 succeeded \& they sowed themselves. $\uparrow 19 u /!$, $\uparrow 13-12 m$, $\Uparrow 8-7 m / w$ Prop. Poll $701 \Uparrow 13 m d / x \diamond, \Uparrow 7 x / w$ Prop. poll $7027-8 m d, 11 m, \Uparrow 18 w$ Prop. pollen $\Uparrow 13 m / w$ Prop Pol $\Uparrow 10 w$ This is speciosa fertile according to Herbert p. $34670314 w=$ sylvestris $15 w$ Prop pollen $15-20 \mathrm{~m} / \mathrm{w}$ see my slip of Paper about Synonyms $18 w$ var. self $\operatorname{im} 20 w=$ dioica $23 m, 24 w=$ Silene nicosa $\Uparrow 18 m, \Uparrow 13 w=$ Silene $w b$ It is evident from Steudel that Silene, Lychnis \& Cucurbitum all most closely allied $7049 w$ p385. contradicted $\uparrow 16-12 m / w$ Here it is evident that first cross normal $\uparrow 16-7 m / w$ Prop. pollen $70522 m / 23 m / 25 m / 23-25 m / w$ see Beitrage p598. \& compare with p. 385 of this Book. Shows that (K) is quite correct $\Uparrow 13 / \Uparrow 12 / \Uparrow 11 m$ $7064 u / 1-4 m / w$ What differences $19 u, 20 \mathrm{~m} /!!$, $24 m / u, 25 m, 27 m, 19-27 w$ (This very important) see Koelreuter about this. $23 m$, $30 m$, $\Uparrow 19 x / w$ Loudon ten week start O $\Uparrow 18 m$, $\Uparrow 16 x / w$ smooth $\uparrow 15 m$, $\uparrow 7 m / w$ Prop. poll. wb These seem distinct * $7072 m / w$ Kolreuter raised them $4 \mathrm{~m} /$?, $25 \mathrm{~m} / \mathrm{w}$ Sageret raised them $\mathrm{p} .35 \Uparrow 5 m, w b$ according to Steudel nearly all these are true species of Nicotiana $70826 m / w$ f $29 m 709 \Uparrow 15 m 711$ $\Uparrow 9 m / w{ }^{*}$ Prop P. $7134 m, 9 m 71727 w=$ Lamarckian 618 22-23m/w p. 168 some authors think vars. $\pi 19 u / m / w$ Prop $\Uparrow 18 u$, $\Uparrow 18-11 m / w$ More fertile than with own pollen $\Uparrow 12 u / m / w$ others have succeeded $7196 w \notin$, $9 w$ or cocanus $16 w$ cocanus $20 w=$ vidacea St $22 \mathrm{~m} / \mathrm{w}$ see Herbert p. 379 More fertile than either parent $7203 w=$ vulgaris $14-30 \mathrm{~m} / \mathrm{w}$ Here are plenty of undoubted vars. producing only i a.- Great effect of artificial impregnation or separation in House. 14 m , $15 m, 20 m, 21 u \leftrightarrow / m, 29 m, 30 m, 32 m / w$ This really only cross between two peas 32 m , $33 m, 34 m 721$ wt number of Flower wt of Fruit $5 w$ Prop. Poll $15 w$ Prop pollen $22 w$ vars fertile $\Uparrow 24 w$ Florist var of Oxlip. Oxlip primrose $\uparrow 24 w$ Not normal or $\mathrm{K} \uparrow 23-21 m$, $\Uparrow 20-19 m$, $\uparrow 17-15 c$ <c henceforth: entries in cols. 2, 3 and 4 crossed out \rangle, $\uparrow 14 w$ Oxlip $\uparrow 13-$ $3 w$ p. 247 it is evident that he did cross elatior \& officinalis, Table not correct $\uparrow 13-$ $12 m, \Uparrow 11 c$, $\uparrow 10 c, \uparrow 9-8 m, \Uparrow 7-5 m / w$ cowslip $\Uparrow 4 w$ cowslip Elatior $\uparrow 4-1 m \epsilon_{0}, w b$ If this be elatior calycantha, most strange 722 wt I see he has not tried Primula proprio polline $3 c$,
$4 c, 5 w$ Cowslip $6 w$ primrose $6-7 m, 8 c, 9 c$ ， 10 w Oxlip var $11 w$ Oxlip． $16 \mathrm{w}=$ floridum $\Uparrow 16 w$ Prop．poll．$\uparrow 15 w$ Silene inflata $\uparrow 14 m / w$ S $\uparrow 13 w$ S．pilosa $\Uparrow 12 w$ S．italicus $72326 w$ Prop Polline $\uparrow 10 w$ Prop．poll．wb 1 see Moerch considers same species p549 Gaertner says perhaps only varieties 724 wt It is impossible to make out whether vars． albus \＆luteus are put first \＆second on principle or by chance $3 u * 3-4 w *, 4 w$ Yellow？Yes says p． $2805-7 \mathrm{md}, 10 \mathrm{w}$ ，8－ $14 w$ © Colour？If Yellow half agrees \＆ opposed to rule of vars．of same colour most opposed $21 w$ agrees with $20-25 m, 30 w 1845$ 1827／ $18 \Uparrow 14 w$ Blattaria $\Uparrow 8 w$ Colour？$\uparrow 8 m /$ $w b$ Steudel make＝virgatum，which is yellow $\Uparrow 1 x$ \＄／w $2861617253-4 m, 9 w$ yellow 10－ $13 \mathrm{md} / \mathrm{w}$ opposed to rule 17 w Probably yellow，both parents being yellow 17－27w Even Babington admits there are 2 coloured vars of V ．lychnitis $20 \mathrm{~m}, 26 \mathrm{~m}, 29 \rightarrow, 30 c\langle c$ henceforth：whole entry crossed out, $32 c / w$ These lines merely guiding 34c，37c，39c， $\Uparrow 13 / \Uparrow 7 / \Uparrow 4 / \Uparrow 3 / \Uparrow 2 c, \Uparrow 10 / \Uparrow 8 / \Uparrow 6 / \Uparrow 5 / \Uparrow 1 m, w b 226$ 182．119． 142×726 1w Colour see Index not in index $19 \mathrm{~m}, 25 \mathrm{w}$ yellow 26 －28md／ $w \diamond, \Uparrow 21 w$ yellow $\uparrow 9-\Uparrow 20 \rightarrow, \uparrow 9 ?, \pi 9 c, w b 234$ x \＄ $837273 w$ yellow $5 m, 6-11 \rightarrow, 7-8 w$ opposed to rule 11c／w why luteo put first？ $15 w$ Purple $28 w$ yellow $\uparrow 20 w$ why luteo put first $w b$ 179－201x 68728 wt years no of flowers number of seed $1 w$ bright yellow $2 m$ ， $4-9 \rightarrow$ ， $19 w$ yellow $20-23 \rightarrow$ ，22－28 \rightarrow ，介13－ $12 u$ 〈first 4 columns）／w $13884 \pi 11 w=$ Scrophyll $\uparrow 8-1 m / \Uparrow 8-1 m x_{0} / w$ vars yet all i B． \＆i g．wb 22 730．b $62 m, 73 m 73462 w$ at Hort Soc．？account of experiment with Peas，see to this $67 w$ Berg Read variation of Leguminosa $17 w$ Read $73682 m$ ，110－112m $737129 \mathrm{~m}, 137 \mathrm{w}$ • $138140-141 \mathrm{md}, 145 / 146 \mathrm{~m} /$ w Read 149－152m／w Herbert \＆， 152 Worth reading or consulting p． 145 of Book 157w See to this Blyth 738 186－188m／w seeds retaining long vegetating power 191w Omalius disputes vars going back $207 w$ See to this $3 m$ ，25－26w Read Girou on vars of Cucurb crossing Sageret do not crossing $26 x$＊ 740 X．10m／x／w Read 742 18－19m／x 743 XVIII．15x $74427 \mathrm{~m} / \mathrm{w}$ Read on curious sport in Oenothera 47－48m／w Read on the 2 Anagallis being vars． 745 11－12m 746 XXI． $2 w$ Read $3 \mathrm{~m} / \mathrm{w}$ Beitrage 6－7m／w Read XXII．1－ $2 w$ Read 747 17w Zuccarini on sterility of Oxalis from C．of Good Hope $22 w$ Read 24 $25 \mathrm{~m} / \mathrm{w}$ Read 27 w Read 28w Read XXIII．7w Read $21 w$ Read 748 98－99m $75259 \mathrm{~m} / \mathrm{w}$ But opposed to much alteration Perhaps worth reading $54 \mathrm{~m} / \mathrm{w}$ cases of transformed plants
p． 500 text $55 w$ nothing $56 m, 57 m 75321 \mathrm{~m} / \mathrm{w}$ on duration of seeds 7548 ）． $5 \mathrm{~m}, 10$ ）． 3 w p． 540 755 13）． $13 \mathrm{~m} / \mathrm{w}$ read 756 XXXIV． 2 md ， 3 w See $4 w$ very important Puvis $6 w$ Read 12－17m， $17 w$ Sageret read 19w Herbert 20w Read $w b$ To get titles it will be necessary to look over these notes at beginning of these notes，for it is impossible to make out by Index the titles 757 23w Read？45w Theophrastus on crossing plants：how old！ $51 w$ I dare say V．Baer quoted by Lecoq in V．Berg $52 w$ on variation of lris 759 XXXVII． $2 w$ Read Link on relation of grafting to Hybridisation $3 w$ Puvis Read？？I have got impression that Puvis no good authority 760 $46 w$ Read？ $53 w \times$ Read $76164 w$ Diel XXXVIII． 5 Puvis on crossing of grasses $22 . w$ x Beitrage on pollen \＆Stigma being ready at different times 762 45w Read 763 Blyth．m 778 Lychniti－pyramidatum．m 781．b $2 m$＊ 789 Vater．w 253790 ＂Wahlverwandtschaft＂．u／w ＂Elective affinity＂Chemical term Dict．

GASTALDI，Bartolomeo Lake habitations and pre－historic remains trans．C．H．Chambers； London；Longman，Green，Longman \＆ Roberts； 1865 ［Down］

NB O／
GAUDRY，Albert Animaux fossiles du Mont Léberon P．Fischer \＆R．Tournouër； 1873 ［Down，I］
ex，ti，tm
13 25－27m 75 6－13m 89 1－2m，26－32m 91 19－ $23 m 92$ 29－31m，wb Yes these are old forms generally verging to extinction Jäger $931-3 m$ 94 9－15m，28－32m 96 1－4m

GAUDRY，Albert Animaux fossiles et géologie de l＇Attique Paris；F．Savy； 1862 ［Down］

GAUDRY，Albert Les Enchaînements $d u$ monde animal dans les temps géologiques Paris； F．Savy； 1878 ［Down，I］

GAUSSOIN，Eugene The island of Navassa illustrated Boston； 1866 ［Down］

GEE，Samuel Auscultation and percussion London；Smith，Elder \＆Co．； 1870 ［Down， probably FD］

GEGENBAUR，Carl Elements of comparative anatomy trans．F．Jeffrey Bell，revised \＆with preface by E．Ray Lankester；London； Macmillan \＆Co．； 1878 ［Down，I］
〈markings by FD＞

GEGENBAUR，Carl Grundzüge der vergleich－ enden Anatomie 2nd edn；Leipzig；Wilhelm Engelmann； 1870 ［Down，I］
v $25 m, 26 m$
GEGENBAUR，Carl Manuel d＇anatomie comparée trans．C．Vogt；Paris；C．Reinwald \＆Cie．； 1874 ［Down］
phy
NB 37 fibre－cartilage
37 21－24m／22－23u＂tissulfibreux＂ 38 11－15m \wp

GEGENBAUR，Carl Untersuchungen zur vergleichenden Anatomie der Wirbelthiere 3 Hefte；Leipzig；1864－1872［Down，I］\wp

GEIGER，Lazarus Zur Entwickelungs－ geschichte der Menschheit Stuttgart；F．G． Gotta＇schen； 1871 ［Down］\wp

GEIKIE，James The great ice age 2nd edn； London；Daldy，Isbister \＆Co．； 1877 ［CUL，I， ED］
geo，t，ti
NB1 0
362 Glaciation S．of Thames
364 O GlaciationO
$30 \diamond$ Glaciation \diamond
405；427；0；521；548；550； 554
NB2 427 Post－glacial Mammoth \＆ Rhinoceros；547； 564
226．；374•Erratum？；p． 14 at top．at－you speak of glacier theory before iceberg theory；but I heard of iceberg theory \＆ alluded to icebergs in S．Am．at last of \＆c but glacier theory 415．Holsts；Axel Blytt also p．545
Skertchly What a first－rate observer whom I believe always on sound observations
484 Glaciation in S．Hemisphere； 506 Stones standing on end
1220 m 3411 m 786 m 854 m 101 zb 1332 m
$19119 m 22612-23 m 22737 m 32612 m 374$
$14 a$＂certainly＂， $14 c$＂posterior＂， $14 w *$ anterior
386 15－20m，22－38m 415 37－41m 41620 m 427
24u＂postglacial＂，27－31m， 29 u＂mommoth
rhinoceros＂ 442 7－8m 485 1－9m 487 8－9m 488 11－13m 491 16－19m 492 14－16m，20－22m 496 $13-15 m, 29-31 m, 36-37 m 4995-7 m 502$ 20－ $22 m 50416-18 m, 25-27 m 50532-35 m 506$ 15－ $21 m 511$ 11－13m $5212-5 m 5242-5 m, 23-26 m$ 527 19－23m，24－29m，31m 528 6－10m，16－ $20 \mathrm{~m}, 27-30 \mathrm{~m} 5291-3 m 5304-7 m, 8-10 \mathrm{~m} 531$ － $4-6 m, 31-34 m 532$ 5－7m 533 18－20m 534 19－

20 m 540 10－15m 541 16－18m，27－30m 542 2－ $4 m 545$ 3－13m，42－45m 547 26－30m／w sub－ sequent to great glacial deposit $5481-3 m$ ， 29－31m 550 18－21m 551 11－15m，37－39m 554 $1-2 m, 13-14 m 555$ 15－18m 556 3－6m，26－28m $5594-7 m 563$ 8－10m，18－21m 564 18－23m， $27-30 m 565 \quad 5-7 m 56734-37 m 56844-47 m$ $61318 z$

GEIKIE，James Prehistoric Europe：a geological sketch London；Stanford； 1881 ［CUL，I］ geo
NB1 132 －brick earth covering gravel； 165 Do
409；414； 432 or（500）；457； 335 \＆Chap XIV
loess（Mackintosh Erratics of England as far as Wolverhampton）
Mr．Kerr p230 Falkland Isds frequent
As a bay the Severn floods from melting of snow more turbid than from rains．
101；111； 112
NB2 166 Richthofen
〈rest by FD \rangle
$386 m \quad 50 \quad 3-8 m, 11-14 m / 12-13 u$＂equablel times＂ 54 8－12m 75 介15－11m 89 介9－6m 101 $10-12 m 1024-8 m 11114-17 m 112 \Uparrow 7-4 m 114$ 13－18m／w Conclusions 117 8－11m 11813 m $132 \Uparrow 3-1 m 15413 m 16511-13 m 1661-5 m$ 167 10－13m 239 介7m 260 介11m 261 zb 263 16－20m 335 介7－2m $34715 m 3558 m 414 \Uparrow 16-$ $13 m, \Uparrow 10-3 m 420 \Uparrow 11-9 m / z$（drawing），$\uparrow 7-3 m$ $42111-15 \mathrm{~m} / \mathrm{z}$（drawing）， $20-24 \mathrm{~m} / \mathrm{z}$（drawing） 422 10－15m，$\uparrow 10-7 m, \Uparrow 2-1 m \quad 425 \Uparrow 12 m / u$ ＂Oaks＂ 428 5－8m 432 5－7m，15－17m 435 2－4m 457 9－15m 461 介 $23-19 m, ~ \Uparrow 17-16 \mathrm{~m} / \Uparrow 17 u$ ＂consisting｜pine＂，$\uparrow 12-7 m 462$ 11－15m，17－ $21 \mathrm{~m} / 20-21 u$＂rot l bogs＂ 483 介2－1m $486 \Uparrow 3-1 m$ $487 \Uparrow 7-3 m 4887-9 m 495 \Uparrow 14-10 m$ ，介1m 544 $14-16 m 5529-12 m 553 \Uparrow 12-9 m 554 \Uparrow 9 m 555$ $12-15 \mathrm{~m} 561$ 介9－6m

GENTRY，Thomas G．Life－histories of the birds of eastern Pennsylvania Philadelphia， 1876 ［I］［CUL．1900］
beh，v
NB1 O／
NB2 I have read only first part
Very Dull
Variability of nesting
GEOFFROY SAINT－HILAIRE，Étienne Principes de philosophie zoologique Paris； Pichon \＆Didier； 1830 ［CUL］
af，cr，em，he，ig，mn，rd，sp，tm，v

SB $\square \beta$
65 Curious statement on what plan animals created（good to put at end of Chapt．6）Q \mathbb{a}_{0} It is proper to speak of him shortly as M． Geoffroy
214 Law of connexion invariable
215 Properly speaking there is but one animal
215 Q Monstrosities，always resembles other species（allude to this in Ch．7）
216 speaks of ultimate form of species as irrevocable！
218 Does not seem to attribute Unity to inheritance for speaks of it as Law

11 3－10m 12 4－15m 19 5－11m 32 18－30m （Milne Edwards） $335-10 m, 11-15 m$（Savigny） 49 8－12m（Laurencet，Meyranx） 55 26－29m 56 $19-22 m 571-4 m 5923-27 \mathrm{~m} / \mathrm{w}$ ancestral \＆ modern types 61 19－23m 65 12u＂parl composition＂， $14 u$＂ressemblance＂，23－24w Curious words 26－29m， $26^{\prime \prime} . . .27 \mathrm{Qa}, 27 u$ ＂bien Ifécond＂ $28-29 m, w b$ I demur to this alone $661-4 m / 1 a$＂nature＂$/ w t$ all this will follow from selection．The unity of course due to inheritance 69 18－31m（Cuvier，Serres） 71 12－24m 83 3－16m 111 18－22m 114 18－23m $1151-7 m 2091-6 m 2101-20 \mathrm{~m} / \mathrm{wt} / 1-5 \mathrm{w}$ As it appears to me strongest argument against G．H．is existence of trees，which are so hardly separateO from animals 214 4－6m 215 $1-5 m$ ，16－28m／21－23Q／26u＂développement naturelle＂ 216 1－15m（Tiedemann，Serres）／8－9u ＂irrévocablement＂！！，17－21m 217 18－26m 218 wt All this is not G．H．writing but he approves \＆publishes it $4-18 m / 10-12$ ！／10u ＂laisser｜distraire＂｜11u＂des lorganes＂｜14－15u ＂parlimposée＂，18－21m，24－26！／25u＂créés 219 25－30m 222 1－16m（Cuvier）

GEOFFROY SAINT HILAIRE，Isidore Essais de zoologie générale Paris；De Roret； 1841 ［CUL，S］
ad，af，beh，br，cr，ds，f，gd，he，hy，ig，in，is， rd，sl，sp，sx，sy，t，tm，v，wd，y
NB - Read 420 to 468 again
SB $\square R$
$\frac{1}{8}$
$\overline{8} 3$ With respect to rudiments Vicq d＇Azyr says native does not depart from primitive model
90 old Geoffroy states never new organ－in relation to Electric Fishes 94 ＂Nature always works with same materials＂
142 on parallel series by＊Geoffroy
165 Goethe believed in Balancement
167 Believed in change of species，as did old Geoffroy．＂Modificateurs ambiants＂sur
l＇organisme＂．Yes this is his belief 247 Introduce in Preface
257 Distinction between tamed \＆domestic
260 On animals not breeding．Rein deer good case of animal not spreading not interfering with being domesticated in Ch． 2. M．S．add to case of Goose
281 argues well that F ．Cuviers doctrine of
Sociability not only key to domestication 286 do
292 Pallas Spicilegia zoologica
〈over） 2
297 Art．Mammifera Dict．Class．Hist．Nat．－ on colour of domestic quadrupeds
298 Cat intestine Ionger
299 Dog with splitO nostrils
306 We have no case of Spaniel or Blood Hound \＆with Savages（CD）
344 Mammals in close sub－groups do not differ much in size
350 Remarks on small isid having small mammals－see how small isld have mammals in Malay Archipelago 353 forgets Java \＆Sumatra！I contradict his statements flat－think of S．America formerly．
382 insists on difference of size in allied dogs． 381 Table of measurements．－All I need say is that author has insisted strongly on differences in size．compared to wild species
433 Old Geoffroy on degree of influence of external conditions on species－Mem．Acad． Tom．xi．p．93．－
〈over〉 3
442 Madagascar a fourth continent
445 Ceylon same mammals with India
491 On spots \＆c on young quadrupeds
493 Cross between gold，silver \＆common
pheasant just mentioned Q
496 Cases of ten species of Birds which have assumed male plumage
506 changes of habit in old Hen，like cocks
513 Horns growing on old female Deer
516 －His law of Mongrels \＆Hybrids．N．Q．
7 5－8m 49 13－14m／？／w what $14-30 m 7320-$ 21 m （Newton） $753-6 \mathrm{~m} / 3-15 \mathrm{w}$ This argues against descent of species being held by the Geoffroy sect of Philosophers 76 26－28m 77 15－19m 79 28－29m（Leibnitz） 81 3－8m／4－6？， 25－32m（Herder，Demaillet，Cuvier） $8220-23 m$ ， 26－27m（Vicq d＇Azyr） 83 1－2！／u＂générall regret＂，6－11w compare with Pig with solid Hoofs－ $23-25 m, 29-31 m / 24-31 w$ compare in this respect skull of Greyhound \＆Bull－dog－ $w b$ Decrease in size of Frontal Bone in Hornless ox：strictly analogous to the intermaxillary bone of man－ $8714-19 m, w b$

GEOFFROY, ZOOL. GEN.
compare this fundamental idea with what Decandolle has shown has taken place in Cabbage.- $89 \quad 7-11 m \quad 90 \quad 17-23 \mathrm{~m} / 17 u^{\prime \prime} \mathrm{il} \mid$ nouveau", 27-28?/u "sélaciens", wb see previous note for reference $916-7 ? / 7 u$ "polyptères" 94 9-10"...", 10-12m 96 22-24m (E. Geoffroy) 142 19-22m 143 3-17m/7-10?, wb why Man more perfect than coleopterous Beetle or Bee 144 18-21m/19u "semble" 146 18-20m 147 23-28m (Serres) $148 \quad 27-29 m$ (Blainville, Cuvier) $15111-17 m 1538-10 m$ (Goethe), $23 m$ (A. Saint Hilaire)/w Botany 165 19-25m, wb What is developed more in Apterix in consequence of little wings.-?? 166 1-9m 167 10-11m/u "Goethe" "Buffon et Lamarck", $12-15 m / 13 u \quad$ "modificateurs ambiants" 18 u "1822", 23 u "docteur Koerte"| $20-25 \mathrm{~m} / \mathrm{w}$ see this in Goethe's Works translated by Martins $16913-17 \mathrm{~m}$ (Duméril, Blainville, Goethe) 199 15--21m $2007-16 \mathrm{~m} 202$ 2-9m/3-4? 203 3-7m 205 8-21m 207 15-17m 232 25-28m (W. Edwards) 237 4-12m, 16$21 m / w$ assumed $26-28 m, 29 u$ "quelquefois nuls" 238 13-17m/19u "espèces sauvages", 23$24 m / 24 u$ "variables 1 inégaux" $23927-29 m, w b$. true wild varieties, would be equally ready to sport $w b$ How comes it that there is species to every small variation of conditions? - so it is - How another question 240 1-9m/1-2u "rigoureusement fixée", $16-19 \mathrm{~m} / \mathrm{w}$ does not allude to selection $27-29 \mathrm{~m} / \mathrm{w}$ Man some involuntary selection 241 18-23m $24325-27 \mathrm{~m} /$ w don't understand $w b$ rest of this section Nothing 244 12-17md 246 24-29m (Dureau de la Malle) 247 12-17m, 26m (Buffon, Goethe, Lamarck) 257 1a/u "apprivoisement"/wt tame wild 1-2m/1a/u "captivité"/wt chained wild 23$24 m 2581-4 m, 10-11 m, 25-26 u$ "civettes 1 marabouts"/w Guanaco 259 wt capital cases of non-breeding $1-3 \mathrm{~m} / 3 \mathrm{u} \uparrow$, 6a/u "gиépard" $/ 5$ $6 w$ hunting leopard 6-12m, 8-9u "éléphant", 17-19m, 27-29m, wb In case of Elephant, cannot be considered as weakling - when we consider feats in war - less so than the stunted elephants in North India - 260 wt/1$19 w$ Ferret not very tame yet breeds not less tame than many of Renggers quadrupeds- $18-20 \mathrm{~m}, 19 \mathrm{u}$ "mais \mid race", 24 $25 m, 25 u$ "mais 1 mêmes", wb The effects becoming hereditary, show, that apprivoisement "tameness" has an effect on organization: hence is new condition. Hence sterility $=2615-15 w$ we must not assume camel could not $15-28 \mathrm{~m} / 18 w$ Buffalo?? 21u "partout"/w Camel?! 22w Rein Deer. 23-25m, $w b$ The present great diffusion, so different from other mammals, renders probable this is effect of acclimatisation - contrary of
camel. shows not necessary. 263 12-14m 265 $12-21 m, \quad 22-29 m d \quad 266 \quad 1 w * / 3-8 w \quad$ Aperia breeds readily in S. America Rengger 267 6$8 m, 13-16 m / 16 a$ "oie" Canada \& Chinese Geese 18-21w Fallow \& Rein Deer? omitted 269 12a "lama"|8w 2 spec 13u "l'yack"/w Hybrid? 23-24u "temps immémorial" 272 fig.m 274 1-5m, 15-17m/16-17u \leftrightarrow, wb Neither Cat, nor Ferret social $2776-7 w$ Guinea pig No 8-13w Ass does yet - ferret - Rabbit $=$ Fowl - $9 u$ "sauvage" $/ 9-10 \mathrm{~m} / \mathrm{w}$ because not of much use 278 27-28m 279 1-5m (F. Cuvier), $8 u$ "solitaire 1 domestication" $/ 8-10 \mathrm{w}$ yet many quite tame 11-28m/11u "chat Ifuret" 280 1$5 m, 28-29 m 281$ 1-2u士, 5-6u "importance exclusive", $8-9 w$ Zebra $11-13 \mathrm{~m} / 12 \mathrm{w}$ untame? $2823-6 \mathrm{~m} / 5 u$ "alimenter", 16-19m, 24-29m/w opposed by monkeys $w b$ this doubtless much easier in social intelligent animal feeding on vegetable food.- $2838-11 \mathrm{~m} / \mathrm{w}$ no, not in wild ducks $15-25 \mathrm{~m} 28416-19 \mathrm{~m}, 22-$ $26 m 2851-3 m, 5-15 w$ this last argument certainly shows that these species. as well as families probably were not easy to "tame". 11-13m, 14-17m, 17-22w Guanaco, would make one think some species happened to be as easy. 18-21m $2861-4 w$ is this so? Lord Spenser 4-5m, 9-14m, 23-25m 287 9-12m, 22-29m/22-23u "plus |avantage"| $25 u$ "et 1 soumettre", wb Australian dog shows by what little advantage may be induced to take pains- $2891 u \leftrightarrow, 6-8!, 14-16 m, 27-28 m$ 292 24-26w In Royal Soc Library? 25-27m (Pallas)/u "Spicilegia zoologica" 293 12-14!/u↔ "fixitélespèce"/ w in France 14-15u "quel encore", $19-20 \mathrm{~m} / \mathrm{u}, 21 \mathrm{u}$ "variations", 22-23u "dénuées|variations"/w 1- p.L; 2 p. 294294 $w b$ - only assumed there not proven - 295 $2 u$ "intensité", 9-10m (Cuvier) 296 wt would say descended from several wild types.- 1$5 m, 10-12 m /!$, 16-22m 297 3-5m, 13-14m 298 9-12m, 15-20m $299 \quad 3 u$ "crânel supérieurement", 6-7w sudden varieties 9$12 m / 9 u$ "autre|palmées" $30021 m$, wb The principal value of this Sect to me is showing other motives besides facility of variation, has determined the domesticated animal - \& therefore that variation would probably have occurred in nearly all, which must have been selected.- $3031 \mathrm{~m} / \mathrm{u}$ "de Pallas", 13-14m/?, 17-22m, 23-28m (Roulin) 305 13-16m 306 10$15 w$ non-selection 11-20m 307 wt The following sections not very important.- 312 14-17m $3138-9 m / 9 u$ "sil réussissait", $26-28 m$ (Temminck) $3146-8 m 31526-27 m / w$ no notice of selection 320 wt Mr Blyth 10?! 1-3m/u "six espèces" $11-12 \mathrm{~m} / 11 u \leftrightarrow, 19-21 \mathrm{~m}$ (Duvaucel, Cuvier), 29-30m 324 13-15m/13u "àldegré",
wb Spanish ass \& Sykes little ass 339 wt All these sections vague \& of little value to me $12-17 \mathrm{~m} / \mathrm{w}$ Lizards unevenly so $3403-6 \mathrm{~m}$, 13$19 m / w$ Whale \& smallest porpoise 342 10$12 m 3435-18 m$ (Blainville), $13 x / \rightarrow / w b$ in short in sub-genera no great diversity of size 344 $1-9 m, 4 x, 22-26 m, 27-29 m$, wb like what Lund says anciently was in Brazil- 346 4-9m, 1526m, wb Polar Bear! 349 7-14m, 17-18m, 24$26 m, w b$ was S. America once desert.- like Siberia $3506-7 u$ "très-petites"|?, 20-24m 351 $1-5 m$ (Virey) $2-3 u$ "ceux I déserts" $/ w$ S. Africa 352 17-24m, 20-24m, wb Bull grows large in Falkland ?- Horses smaller. = are the White Bulls very large? 353 11x, 13-15m/w Java!! Sumatra $21-25 m, 26-28 m, w b \mathrm{X}$ It is odd no fragment of continent - is it effect of few only being supported - their inter-breeding destroyed by men - Auroks decreased in Russian Forest 354 24-28m 355 21-23m/22u "cerfs" 356 3-5m, 9-12m, 17-20m 363 14-32m, 16-18!!/m, 17-25m 364 10-15m 366 1-3m, 24$29 m 367$ 9-14m 368 16-22m $3698-11 m 370$ $14-24 m / w$ all very loose $3713-6 m 374$ 12$14 m, 24-28 m, w b$ Mountains $=$ Northern plains 375 12-18m/w How dreadfully false when thinking of Sumatra 376 wt Megalodon!! 377 16-19z 378 1-21w Fatness element peculiar to domestic animals \& Greater Prolificness $12-13 m / ? / u \leftrightarrow, \quad w b$ Domestic animals are forced into more various uses \& exposed to more varied conditions, hence change of size more - but differs only in degree \& not kind $3797-12 \mathrm{~m} /$ w The subsequent remarks well prove this = $23-27 m / 25-26 u \leftrightarrow, w b$ because not selected for this end- $38016 u$ "de chacal" $15-16 \mathrm{w}$ S. America! 382 7-13m, 14-16m, 21-23m, 26u "au furet", $w b$ do they differ more than Cats.- 383 25m (Dureau de la Malle), wb Before referred to $3848-10 \mathrm{~m}, 15-29 \mathrm{~m} 385$ $w t / 1-14 \mathrm{~m} / \mathrm{w}$ Aug. 1841. Saw Shetland Pony exhibited. Whose at withers I measure was $321 / 2$ inches (\& less in centre of back) Beautifully formed - I presume have no aboriginal horses. $4 a$ "taille" $/ 8-9 w \quad 34.9$ English Indes $12 \mathrm{~m} / \mathrm{u}$ "froides" $/ \mathrm{w}$ No India $14 u$ "est I connu" $3865-7 m 387$ 15-18m 388 9$11 m, 20-23 m 389$ 15-20m, 28-29m 390 19$24 m 392$ 16-20m 393 11-17m 404 24-29m (Villermé, Haller), 28-29w/wb \& doubtless hereditary $4051-m 407$ 10-25m/13-16? 415 24-28m 421 22-24m 430 9-12m 433 24-26m (E. Geoffroy) 434 1-7m, 7-14m, 16-24m (Cuvier) 435 1-6m $437 \quad 1-10 \mathrm{~m} / 3-5 w$ dont understand $12-20 \mathrm{~m}$, wb He overlooks successive creations - not worth arguing against such a view as this pretended one of

Cuvier 438 1-5m, 17-20m/? $4401-3 m, 8-11 m$, $15-18 m, 27-28 m 44311 u$ "archipel Indien"|1016w How absurd remarks India \& East Indian islds $25-28 m 44512-22 m 4593-6 m / 5 u$ "dans 1 individus", 18-24m $4896-16 \mathrm{~m} 490 \mathrm{wt} /$ $1-9 w$ The case of Irish Hare which turns when old, makes one suspect not final cause Acquatic birds being white V Dr Fleming - At least my theory will prevent those animals being white wh would be so injured by it- $3-7 \mathrm{~m} / \mathrm{x}, 27-28 \mathrm{~m} 49113 u$ "seul"/w ?? 15"..., 15-32m 492 8-12m, 20$24 m 493$ 22-26m/23-24Q 495 9-11m 496 9-10u "femelle|paon", $14 u$ "poule", $14 u$ "canard", 20u "dix espèces", 24-26m, 27-29m (Yarrell) 498 12-17m 499 27-29m 500 1-2m, $25-27 m 50111-13 m 5041-4 m, 10-13 m$, wb good case of adaptive sexual structure 505 $18-21 m, 24-26 m 5068-12 m$ (Home), 28-32m $5071-2 m 5104-8 m$ (Edwards) $51110 u$ "poules d'Inde", 19u "encore"/w Blyth $5138 u$ "paons"/ $15-18 m, 22-29 m / 29 u$ "chevreuil" 516 6-14m, $17-22 m / 20-22 u \pm / 19-20 w$ N.Q.

GEOFFROY SAINT HILAIRE, Isidore Histoire générale et particulière des anomalies de l'organisation chez l'homme et les animaux 3 vols and atlas; Paris; J.B. Baillière; 1832-37 [CUL]
af, beh, br, ct, em, f, gd, h, he, hy, ig, in, mn, phy, rd, sp, sx, sy, t, tm, v, wd
vol. 1 NB Have I read the Philosophie Zoologique
p. 241 Book = Edwards Suites Races Humaines
(?p. 677 Book worth getting? most cases seem given in text) ??
p. 711 Coll of Surgeons worth consulting

16 wt Embryology 1-2m 18 11-14w What is difference? $14 u$ "l'âge embryonnaire" $/ m$, $15 u$ "l'âge foetal" $228-14 m, 14-32 w$ I do not see how the reverse could be effected even if doubt monsters start from the germ 30-31u士 23 8-11m 24 6-7m, 15-16m/16u "Loilsoi" 25 $1-3 \mathrm{~m} / \mathrm{m}$ \& $3912-17 \mathrm{~m} / 13 \mathrm{u}$ "quilses", $18-19 \mathrm{~m}$, $24-28 m / u \pm 5214-18 m, 25-26 m 531-3 m 59$ 29-33m 60 2-11m/5u "leur 1 à", 31-33m 61 30$32 \mathrm{~m} / 31-32 u$ "unlmême" $625-12 m, 30 \mathrm{~m} 64$ $28-31 m / 28-29 u$ "on \mid rudimens" 104 13-25m, 17-20m, 27-32m $10526-32 m / x, w b \times 1$ ought to apply it to Varieties $11518 u$ "unlplacés" "l'habile anatomiste", $20-22 \mathrm{~m} / 20-21 u \leftrightarrow, 32 \rightarrow$ $116 \quad 16-18 \mathrm{~m} / 18 u \quad 129 \quad 12-13 \mathrm{~m} / 12 u$ "extérieur congéniales", $30-31 \mathrm{md} / 31 u$ "sont 1 congéniales" $13116-20 \mathrm{~m} / 18 u$ "foule lcas" $1439-14 \mathrm{~m} / 9 u \leftrightarrow /$ 13-14u土 147 7-9m/8u "mais|ans" 152 12$13 \mathrm{~m}, 15-17 \mathrm{~m}, 19 u$ "Dans 1 vieillesse", $21-23 \mathrm{~m}$,

GEOFFROY, HIST. GEN. ANOM. VOL. I 25-26u "fort I moyenne", 27 u "dont l'un", $28 u$ "lui", 31-33m 153 8-12m, 31m 154 4-12m, 5$8 m, 10-12 m / 11 u$ "dessus 1 moyenne" $\mid 12 u$ "àl nain" $15825-27 m$, wb p. 164 exception 159 6$9 \mathrm{~m} / 8-9 \mathrm{u}$ "bien lélevée", $16-18 \mathrm{~m}, 21-30 \mathrm{~m} 160$ 7-10m 161 13-32m 164 8-10m, 22-27m 165 7$12 m, 21-22 m$ (Blumenbach) $w b$ Rengger gives plenty of cases $1679-17 m 18316-19 m$, 26$32 m 1849-12 m, 28-32 m 18524-27 m 1861-$ $3 m, 14-16 m 189$ 4-8m, 15-16m $1907-15 m 191$ $22-26 m, 29-33 m, w b$ The Laws of growth \& reproduction being so allied, may it explain any of the facts of sterility? Hybrids not. 192 5-22m, 28-33m 193 29-33m 196 4-16m, 22$24 \mathrm{~m} / 22 u$ "transmissible"|23u "Il| point" 208 24-31m 210 17-20m, 23-25m 211 2-4m, 17$21 m 213$ 1-4m, 19-33m 215 4-15m $2165 u$ "particulier", 6-8m, 29-33m 217 1-3m, 3-8m, 14-16m/15-16u "mais tempérés" 218 29-31m 219 9-12m 220 6-9m/9m 221 1-6m, 8-13m, 21-26m, 32m (Dureau de la Malle) 222 12$14 m, 23-25 m 2239-17 \mathrm{~m} / \mathrm{w}$ This is case of animal being smaller northwards $19-24 m 224$ 30-33m 225 5-9m 227 8-9m, 15-17m, 26-31m 229 3-16m 231 11-13m, 14-17m, 26-31m 236 26-33m 240 20-26m, 27-31m, 32w (Last page) Coll of Surgeons. 24133 m (Milne Edwards), wb New Edit? Never published Balliere 242 13-20m/13-16u士, 21-27m, 28$31 m 243$ 1-3m, 8-14m 253 4-8m, 21-23m, 24$26 m 254 \quad 1-3 m 255 \quad 28-32 \mathrm{~m} / \mathrm{w}$ corn==cutter 258 26-28m, 29-33m/30u "dogues" 260 31$32 \mathrm{~m} 2611 \mathrm{~m}, 8-10 \mathrm{~m}, 19-22 \mathrm{~m} 262$ wbec 263 7$8 \mathrm{~m} / 7 \mathrm{u}$ "frères 1 pesait", wbec 269 5-12m, 23$28 m 2706-7 m, 32-33 m$ (Aristotle) 272 6-8m/ $u \pm, 14-17 m 275$ 30-33m 274 1-4m 276 2829m/Q 278 1-2m, 29-31m (Meckel), wb There seems gradation between Monsters of this class \& varieties. $2811-5 m, 5-7 m, 14-22 \mathrm{~m} / \mathrm{Q}$ 282 1-3m, 24-25m 284 1-2m, 11-12m, 13$14 m, 13-21 m, 22-24 m 285$ 20-24m/Q 286 1$20 \mathrm{~m}, 26-30 \mathrm{~m} 287$ 9-14m, 18-20m/Q 22-24m, $26-28 m, 28-31 \mathrm{~m} / 28-29 u \leftrightarrow, 29-33 m 2883-6 m$, $15-18 m, 30-33 m$ (Serres) $2897-11 m, 29-30 m$ 293 21-26m 294 8-15m, 30-31m 299 1-2m 305 $16-18 m 3063-6 m, 13-18 m / 16-22 w$ । do not agree 19-28m $3071-7 m, 25-27 m$ (Schreber) 311 7-8m 315 17-19m, 23-25m 316 32-33m 317 20-28m 318 11-14md, 20-23md 319 1819 m 320 11-14m $3247-9 m, 10-12 \mathrm{~m}$, 20-23m $5253-5 m, 15-17 \mathrm{~m} 326$ 13-15m 328 23-26m, 31-34m 334 29-30m 335 3-4m, 12-14m 337 wt Bay horses Goats Pigs Cows $1-3 m /$? 328 1$6 m$, 12-14m $344 \quad 6-11 m / 7 u \quad$ "caractères 1 maladies", $28-32 m / 20 u$ "était \mid mâle" 347 17$24 m 392$ 15-20m $4004-6 m$, 11-16m 404 $27-29 m, 30-32 m$ (Meckel), wb X outer reversement not so explained 405 2-9m/4-

6??, 24-26m/24-25u "c'est|uterine" 408 19$22 \mathrm{~m} / 20 \mathrm{u}$ "cils 1 sourcils" 409 23-24m 410 1720m, $21 u$ "de l'irritation", 22-24m, 27-28m/w shows how common. $41112-14 m / ? / 13 u$ "bouc", 15-16m, 28-30m 413 27-30m/29u "combien Isituation" 414 5-8m, 16-21m 415 $11-14 m, 15-18 m, 21-23 m, 25-26 m 41625-27 m$ $4171 m 4188-9 m, 13-25 m / w$ This wd go to show that any part which has changed much will tend to change more. $16-18 \mathrm{~m} / \mathrm{Q} 42013-$ $17 \mathrm{~m}, 23-32 \mathrm{~m} 4214-16 \mathrm{~m}, 24-31 \mathrm{~m} 429$ 12-14m/ w bears out embryological view 29-31m 430 12-15m 431 2-3m 434 17-20m/18-19u "le। mâchoire", 22-25m/25-26u "del surnuméraires", 27-30m, 33u "la transposition" 435 1-5m 436 $26-29 m / 27-28 u$ "fréquemment" 437 1-6m, 11$13 m, 19-23 m 4398-10 m, 31-32 m 440$ 18-23m 441 24-25m (Serres), 32-33m 445 11-19m, 15$16 m 447$ 23-25m 450 18-26m 452 8-9m, 13$15 m$ (Breschet) 453 16-18m, 26-27m 456 20$21 m 459 w t / 1-4 w \times$ there have been endless remarks such as this; but they appear vague, considering what endless diversity the whole series of animals must present. 5$7 m / x 462$ 3-6m 467 1-2m 470 11-13m 473 23$25 m 478$ 3-4m, 14-15m 479 19-21m 480 1-2m, $9-10 m, 26-28 m 48316-17 m, 20-21 m 4841-$ $33 w / w b$ Q Avoiding term of "development excentrique" I ought to say that variation parts, as trunks \& branches of arteries \& nerves, depend in some degree upon which are first developed in embryo, the first being most constant. 13-16m, 22-25m 485 1-33w/wt No case of hereditariness in any of these varieties, but then hard to discover how seldom father \& son dissected. 11-12m, 16$17 \mathrm{~m}, 27-29 \mathrm{~m} 4965 \mathrm{~m}, 8-11 \mathrm{~m} 5084-7 \mathrm{~m} 5091-$ $3 m, 13-15 m, 17-18 m 51524-26 m 5272-5 m$ 528 5-8m 531 10-13m, 18-21m 532 1-5m, 12$15 m, 22-25 m 53617-22 m, 29-33 m * 537$ 25$30 \mathrm{~m}, 31 \mathrm{u}$ "affinitélsoi", $32 \mathrm{~m} / \rightarrow 538$ 17$22 m, 19-21 m 54022-25 m / Q 24-32 m, w b$ This perhaps may bear on some organ single in some animal \& double in another.- V. Cuvier Anat: Comp: $w b$ see next Page 541 3-4u "ordinairement médiane", $16-25 \mathrm{~m} / 17-18 \mathrm{Q} 32 \mathrm{~m}$ (Martin) 542 3-7m/5u "médiane"/9m/1-9w/wt some other cases of monstrosities have been given in Man \& Mammifers 544 24-26m 545 25-26m/Q 546 12-15m/Q 548 25-26m 549 1-3m 550 19-24m, 30-32m (Dr La Roche) 552 $10-15 m / 3-15 w$ See what Müller says on this Theory $31-33 m 5531-5 m, 15 m, 17-26 m$, 32$33 m 557$ 29-32m 558 1-9m 561 24-30m 564 $1-3 m, 3-5 m 565$ 3-7m 579 1-2m, 11-15m 580 18-21m, 26-31m $58123-26 m 582$ 3-6m/5u "bien 1 poissons" $5831 \mathrm{~m}, 21-25 \mathrm{~m}, 27-28 \mathrm{~m}, 29-$ $33 \mathrm{~m} / 30 u$ "nés I portée" 588 26-29m 589 24-30m

599 6-8m 601 15-17m, 28-33m 603 1-2m 604 $4-8 m, 11-14 m 60514-18 m 60614-18 m$, 29$31 m 60724-26 \mathrm{~m} / \mathrm{w}$. This is hereditary Dict: Med: Sci: $w b$ This tendency to monstrosities by arrest of development, is perhaps allied to "avitism".- No, sporting back of hybrids, where germ affected shows no connection with arrest of variation $6106-8 m 6131-3 m$, $4-5 m, 7 m 6141-2 m 6227-11 m, 13-16 m$, 22$26 m 6231-2 m, 5-6 m 6248-13 m 63014-17 m /$ $16-17 u \leftrightarrow 6315-7 m, 18-20 \mathrm{~m}, 22-23 \mathrm{~m} 6321-$ $2 m, 3-6 m, 13-14 m 6341-2 m / 1 u \leftrightarrow 63513-27 m$ (Meckel)/18-20Q 21u "cuisselpied", 32-33m $6361-3 m, 8-15 m, 29-32 m 63711-14 m, 28-$ $31 m 638 \quad 1-9 m, 27-28 m 641 \quad 25-27 m$ (. Rousseau) 642 17-22m, 25-27m 643 17-24m 644 5-9m (Otto), $10-13 m, 22-27 \mathrm{~m} 645$ 13$16 \mathrm{~m} / 14 u$ "au|plupart", 26-29m 648 6-7m, 20$21 m, 28-31 m 64914-16 m 6501-3 m, 1-6 m$, $9 m, 11-13 m, 28-29 m 651$ 10-14m 655 11-12m 656 27-30m 657 1-5m, 28-30m 658 1-4m, 26$28 m$ (Borel, Danz) 659 1-8m, 22-24m, 28-29m (Gavard, Soemmerring), $29 u$ "chez I nègre" 660 $3-6 m, 12-17 m, 26-29 m 6627-11 m, 12-13 m$, $15 a$ "général" of homologous organs varying $16-17 \mathrm{~m}, 32-33 \mathrm{~m} 6658-9 \mathrm{~m}, 10-12 \mathrm{~m}, 14-17 \mathrm{~m}$, $22-25 m 66612-13 m, 16-20 m, 24-26 m 6672-$ $6 \mathrm{~m}, 13-18 \mathrm{~m}, 27-29 \mathrm{~m} 6681 \mathrm{~m}, 5-7 \mathrm{~m}, 13 \mathrm{~m} 669$ $10-13 m 6701-3 m, 3-9 m 6718-13 m, 16-19 m$ 672 17-19m 673 4-5m *, 16-19m, 20w Another 21-22x $22 m, 23-26 m 6742-4 m$, $26-27 m / x$ * $67524-28 m 67622-23 m, 24-25 m$ $6777-8 m / 8 u$ "rudiment", $10 u$ "orteils arrondi", $13-14 u \leftrightarrow, 17-18 \mathrm{~m} / 18 u$ "quelfille", $33-35 m$ (Béchet) 678 1-13w inheritance of diminished fingers $3-6 m, 4 u$ "leurs incomplètement", $10-11 \mathrm{~m}, 10 \mathrm{u}$ "étaient rudimentaires" $/ 11 u$ "Le père", $12-13 \mathrm{~m}, 16 u$ "de moignon" $/ w$ rudiment in the father $22 u$ "réduits" $/ 21-22 w$ in granddaughter $26-29 \mathrm{~m} /$ $26 u$ "par diminution" $/ 28 u$ "par augmentation" $68117 w$ to $7026823-6 m, 4-5 m, 11-14 m$, $13 m 68313-15 m / 3-29 w$ How often have light monstrosities accompanied grave ones. 30$33 m 6843-10 m$, $12-13 m / x / u$ "le chien" 685 wt quite regular so is to be counted $17-18 \mathrm{~m} / \mathrm{x} 68630-31 m 6873-4 m$, 9-11m, $13-15 m 68826-28 m / x \geqslant 6891-2 m / x$, $8-10 m /$ x, $10 u$ "trois doigts", $18-19 m / 19 u *$ "cinq", 20-22m, 31-33m/x (F. Cuvier), 32$33 u \leftrightarrow 6906 u$ "deux", $7 x \geqslant / u$ "cheval", 13$15 m, 17-22 m, 18-22 m * 692-11 m, 19-22 m /$ x, $25-32 \mathrm{~m} / \mathrm{w}$ rudimentary organ variable 30-31u "presquelterre" $6931-2 m, 3-4 x$, 6$8 m / x$, $10-11 m$ 694 $1-2 w$ two thumbs $2-7 m$, $9-10 x$, 23-24m, 28-29x , 33m (Bechstein) $6956-8 m, 15-16 x$ 696 14-18m, 20-21m 697 $13-15 m \quad 699 \quad 20-24 m \quad 700 \quad 8-10 m, 14-15 w$
grandchildren $20 u$ "quatrième génération", 23$26 m, 28-29 m, 30-31 m 7011-2 m / x$, $3-4 m$, $13 u \leftrightarrow, 14-16 m 7021 u$ "poils", 5-6m 70617 m 710 16-22m, 24-25m, 29-31m/w yet no abortive parts $7112-3 m, 9-12 m, 14 u$ "même d'hommes", 16u "M. Percy", 25u "se développe", $28 u \leftrightarrow, 32-34 m, w b$ Consult for Cows 712 11-15m 716 7-9m, 26-28m 717 20u "des oiseaux", 23u "oiseaux"|!?, 31-33m 718 810m 719 23-25m 721 3-5m 722 18-21m, 22$23 m 729$ 12-15m (Jussieu), 30m $73010-12 m$ 731 14-18m, 7-10m/9u "rudimentaire" 736 3$4 m, 13-16 m 737$ 8-12m, 13-17m (Martin Saint Ange)
vol. 2 NB1 200 Classification
NB2 "Traité élémentaire". w X
SB1 Abortive organs
Hereditariness
Period of Monstrosity supervening cause of
Are rudimentary parts more variable than other parts?
〈over〉 26; 44; 60; 63; 110; 134; 137; 144; 196; 210; 214; 221; 223; 224; 229; 233; 234;
243; 249; 251; 262; 288; 344; 375; 382; 393;
395; 399; 403; 407; 409; 413; 415; 441; 464;
470; 477; 512; 519
Use the word anomaly for his variations or often Monstrosities Usage "anomaly" is not quite correct
SB2 $\square \mathrm{R}$
1 Vol 2
29 shells to left in vars. \& species of same Family
57 \& 110 on change in habits in old Hens 110 on Carps with imperfect female organ like neuters (Ch. 9)
210 on rudiments of limbs. 223 hereditary in Dog.
224. some rudiment almost always present.395 do.
413 certain monstrosities more common in certain species than others,- quite inexplicable.-
The intermaxillary bone when it appears in man is only a rudiment, \& yet it occasionally appears so here we have a tendency in a rudiment to appear
SB3 $\square \Re$
Vol I Study of Monstrosities
39 admits that arrests of Development do not apply to variation.
104 Correlation of Monstrosities
115 dispute M. Vernière
116 Monst like other animals X 285 Carp. X 2 276 Q Compensation Ch. Kidney \& super-vent capill

- 281 Most abnormalities in abnormal

GEOFFROY，HIST．GEN．ANOM．VOL．II organs．
294 young spotted old mature
－ 418 organs most change in position which during normal development change most
484 X $\mathbb{Q}<0$ Parts earliest developed vary least because later formed affected by earlier
635 Muscles of arms when monstrous take after legs－Homologous parts $X \otimes \underline{Q}$
692 rudimentary organs variable
Vol 3.
352 X trunk so frequent in Pig．－relation between monstrosities \＆varieties
392 first forms tend monstrous because late organs must be affected by first formed （Andral）$x \geqslant \underline{Q}$
402 correlation of Monstrosity without apparent cause $X \otimes \underline{Q}$
〈over〉 406 distinction between amount of development \＆of position
437 Monstrosities resembling lower animals X Q
$265-7 m, 8-10 m / 9-10 u \leftrightarrow, 14-21 w$ Sowerby facts show almost hereditary $25-27 \mathrm{~m} 27$ 3－ $5 \mathrm{~m}, 8 \mathrm{u}$＂Canalifères＂， $12 u$＂cinqlque＂，14－16m， 16u＂trèslnombre＂， $29-32 \mathrm{~m} / 31 \mathrm{u}$＂Helix nemoralis＂，$w b$ over $\rightarrow 28$ 22－25m 29 1－2m， $2-3 m, 7-8 m, 11 u$＂genre 1 physes＂，17－19m，26－ $27 m 4417-21 m$（Serres） $578-9 m / 7-11 w$ does not Yarrell say that they fight？ $23-25 m 60$ $14-15 m, 15-36 w$ p． 57 \＆ 110 There is analogy （？）in change of instances of old Hen－birds \＆ mules，with instincts of neuter insects \＆ castrated cocks 22－23m 63 17－21m 110 20－ $25 m$（Gaspard） $13414-29 m 13713 \mathrm{~m} / \mathrm{u}$＂del séminale＂ 144 1－7m 196 14－17m，26－33m 197 15－17m（Blainville），18－21m 210 24－25u＂très－ rudimentaires＂，$\quad 25-27 \mathrm{~m} 211 \quad 1-2 \mathrm{~m} / 1 u$ ＂rudimentaires＂，24－27m／26u＂soudés leux＂／27u ＂rudiment＂ 214 12－13u＂d＇un moignon＂，13－ $15 \mathrm{~m} / 13 u$＂terminél par＂ $144 u$＂imparfaits 1 rudimentaires＂ 221 21－23m 222 28－30m／28u ＂de｜non＂ $2232-4 m / w$ hereditary rudiment $3 u \leftrightarrow, 6 u$＂moignonslcourts＂ $2241-2 u \leftrightarrow, 2-$ $7 \mathrm{~m} / 4 u \leftrightarrow 228$ 23－30m 229 3－9m（Schenckius）， $27-29 m, 33 \rightarrow 23015-19 m / 16 u \leftrightarrow 23322-24 m$ ， 28－32m 234 1－2m，3－5m，23－28m 243 3－4m／u ＂on linférieure＂，13－14m， $14 u$＂soudés । longueur＂， 16 u ＂plus fréquemment＂， $21 \mathrm{~m} / \mathrm{u}$ ＂soudés＂， $31-33 \mathrm{~m} / 33 \mathrm{u} \leftrightarrow 249 \quad 11-14 \mathrm{~m} / 14 u$ ＂renfermel deux＂，17u 251 12－14m／14u＂parl non＂ $2626-9 u \pm / w t / 1-13 w$ does not hereditariness prove this，or may same cause affect embryo in its growth？7－11m， 20－21m 288 18u＂de l＇éventration＂，20－24m， $31-32 m, w b \mathrm{xx}$ often before remarked Monstrosity in one part it seems，causes
monstrosities in may other parts 289 12－ $13 x x / u \leftrightarrow 3442-7 m 375$ 17－21m，wb May be mentioned as one of the laws governing variation $=$ in what cases have we double organs in one species becoming single in another．Womb？ 382 9－13m／9u＂représentés＂， 27－28m，28u＂les 1 des＂ $38317 u$＂atrophiel complète＂， $18-19 \mathrm{~m}, 18 \mathrm{u}$＂nasal＂， 19 u ＂représentel extérieur＂， $22-27 \mathrm{~m} / \rightarrow 38511 u$＂àl l＇extérieur＂， $12 u$＂Intérieurement I contraire＂ 393 15－25m（Meckel） 395 13u↔，14－18m／16u ＂attentif｜toujours＂／17u＂cartilages informes＂， $w b$ It is remarkable that many of the former monstrosities of the head，not uncommon with man has never been observed in animals $3993-4 m, 29 m 403 w t / 1-7 w$ There is most evident gradation in this sort of rudimentary organ $9-11 \mathrm{~m} / 10 \mathrm{u}$＂elles 1 rudimentaires＂，12－13u＂Les｜celles＂ 407 1－9m／ w this may be very important $41022-30 m$ 411 11－14m／12u＂lapin＂ $4133 u$＂pourquoi＂，7－ $8 u \leftrightarrow, 15-18 m 41515-20 m 441$ 3－6m／4－6u↔ 464 17－21／18u＂atrophie complète＂ 470 22－24m 477 15－17m $5127-11 m 5134-5 m 5191-4 m$ ， $27-32 m \quad 536$ 13－20m 537 16－18m／16u＂en général＂，28－33m 549 20－25m，29－31m 550 $17 u$＂Elles idépourvues＂ 551 1－8m，10－11u ＂mais I constatée＂，11－12u＂c＇est｜dentition＂ 552 13－16m，17－20m 560 7－9u＂car 1 distinct＂，11u ＂l＇autre l contraire＂， $12 u$＂parties accidentelles＂， 18－24m（Meckel）／18－22u士 561 17－21m 562 28－ $33 m$（Bichât） 564 22－25m
vol． 3 NB 187 Zoology Double Headed WormsX
Owen says this book inaccurate－M．de Serres not to be trusted；some truth in law of Excentricity V Müller－Meckel good authority p． 503 Try experiments on eggs galvanize them－
SB1 $\square \mathfrak{R}\langle 3$ sheets〉
1 Vol 3
111．The perfect union of one leg or arm of some double monsters very striking
284 －on some double monsters breeding， opposed to their sterility but then it is the one perfect which breeds 377 fertile generally．
350 domestic animals，like man，have numerous variations in veins
352 monsters occur differently in number \＆ head in different species－a trunk specially common in Ele＊Pigs．－ 355 in wild animals very few monstrosities－there is evident relation between monsters \＆varieties
392．organs or parts later formed，always must be affected by causes producing monstrosities．Quote Andral－on first formed
least monstrous－（shows most monstrosities do not come on very early）
402 on coexistence of monstrosities，without any evident relation of parts．
〈over〉
406．distinction between arrest of devel－ opment \＆of formation
437 Q cases of monstrosities in man resembling Lower animals resulting from permanence of embryonic condition
448 －intimate parallelism between the embryonic，zoological \＆teratological series． 456 again insists on law of number varying in part when numerous，\＆being in itself variable
456 Summary on laws governing variation－ generally rudiments－（hence cause does not act very early）
462 On homologous parts uniting both in monstrosities \＆in Nature．－Do not some account for this by division of cells at some period of growth？？
479 on germs being originally monstrous
499 arguments for monstrosities being produced late \＆ 500 Read， 503 See Ray Catalogue）．－506，7
〈over〉 3 Tom． 3
347 －throws over imagination having any effect on nature of monstrosity．392．Q
593 －summary of Laws of monstrosity， nothing new
604 on parallel series in zoology
609 good instances，showing how easily final causes may be falsely invented．
SB2 Owen
de Soi pour soi－Centripetal Law－ Balancement des organs－M．de Serres－ old Geoffroy；Isidore；－Meckel；－Carus
〈over〉 Vol 3
I．St．Hilaire．Anomalies
p．89．p． 111
p． 134 shows how all parts go together
138143151
172 －at 267 skim chapters to 349
246257261264279284321350 to 359 376 to 279391 to 418428 to 547551
p592 p． 597 p． 602 p． 604 p． 606 p． 608
$897-9 m, 18-20 u$＂restent｜grêles＂， $24 u$＂elles \mid même＂， $29 m 901-3 m 1118-14 m / x$ ，25－26m， $w b$ the perfect union of the two adjoining arms or legs of some of these monsters，is very striking． $13425-29 m 1356-7 m, 32-33 m$ （Serres） $1384-8 m 14322-24 m 15123-27 m$ 172 wt X this，I suppose consists of two limbs united．p． 157 8－11m／9u＂ce 1 membre＂ $1874-5 m, 25-27 m$（Pallas） $24611-14 m / 5-28 w$ case of a perfect＊individual bearing
another head with no trunk on it－How curious this new course of the arteries 12－ $14 m / u \pm, 21 u$＂n＇avoirlaucune＂ 257 9－12m，29－ $31 \mathrm{~m} /$ ？ $26114-17 \mathrm{~m} / 17 u \leftrightarrow / 12-26 \mathrm{w}$ because the jaw is generally only developed in these parasites－good instance of this Law of＂soi pour soi＂$w b$ V．p． 285 where this is discussed．X N．B I dont see why if a jaw， considered as an amorphous mass，be considered as an individual－why not an additional finger shd not？He wd answer because as additional finger makes asymmetrical part of the perfect individual：－ yet why not law of＂soi pour soi＂put this finger in proper place－improbable 264 1－ $12 m, 20-21 m / 21 u$＂mais loiseaux＂，22－24m 279 24－26m，27u＂chez｜grenouille＂ $2842-3 m$ ，4－ 6m，12－14m，16－19m，20－22m 285 28－32m 286 15－17m，17u↔ 321 14－21m，13u＂des originairement＂ $15 u$＂qu＇un seul＂／18？／w what $18 u$＂épigénèse＂，22－28m 350 4－6m／5u↔， 7－9m，7u＂ses｜vaisseaux＂，10－12m，10－11u ＂sinon Imoins＂ 351 19m， $20 u$＂ 3,000 nais－ sances＂ 352 21－23m／22u土 353 3－5m，7－11m／ $x / \mathrm{Q} 17-20 m, 22-24 m, 29 m 3541-3 m, 8-9 m$ ， $13-15 m 3551-7 m / 2 w$ not domesticated ？ 8－14m，20a＂classes＂Mammifers \＆Birds 22－ $24 m / 23-24 u \pm, 28-33 m 3566 u$＂quelcerf＂， $7 u$ ＂lièvreltaupe＂，8－9u士 359 15－17m，28－31m 376 25－27m 377 1－2u \rightarrow ，11－16m 378 9－10m， 14－17m，25－28m，30－32m 379 3－4m， $7 u \leftrightarrow, 8 u$ ＂sont｜ectroméliens＂， $11 u$＂donc｜de＂， $12 u$ ＂monstruosités ectroméliens＂， $15-20 \mathrm{~m} 391$ 16－ $18 m / w$（a）next page $3921-4 m, 5-8 m / x$ ，7－ $9 m, 9-10 m, 17-19 m, 20-22 m, 25-28 m, 29-$ 30m，31－32m（Andral）／Q 393 1－5m，6－8m／w a ＊9－12m，29－30m／u↔，wb（a）＊Does not this explain variability of hair－size \＆c \＆c ？Q 394 17－20m，22－27m，32－33m（Serres） 395 1－ $2 m, 5-6 m, 7-18 w$ surely in embryos the heart is hear to beat very soon？V．Müller 3977 － $11 m 39827-31 m / w$（a）（B）$w b$（B）Therefore applicable to any part，as skin，which has no central，uniting point 400 17－20m，24－25m 402 $4-8 m / x / " . . . "$＇Q 403 28－30m 405 1－6m／2－3u士， 7－9m，20－21m，22－23m，29－30m 406 2－4m， $15-16 m, 31-33 m 407$ 2－4m，16－18m，22－24m 408 10－12m 414 20－23m，24－29m 415 1－5m 416 8－9u＂faitelféminin＂， $9-12 \mathrm{~m} / 10 u$＂del hémitéries＂／w clitoris？ $13-15 m, 22 u$＂et l douteuse＂$/ 14-24 m / w$ pooh！a tailless animal excess of development because man has no tail！！ 417 11－16m，19－22m 418 13－16m 428 14－ 19m，21－23m，28－30m 433 3－7m，30－33m 434 11－16m 435 24－28m 436 13－15u＂Les supérieurs＂／？， $17 u \leftrightarrow, 18-24 m / 20-23 Q 4372-$ 5Q 11－17m／11u＂parlqueue＂， $15 u$＂absencel biliaire＂，22u＂cloaque＂， $22 u$＂lal matrice＂，18－

GEOFFROY, HIST. GEN. ANOM. VOL. III
26m/25-26u "bifurcation \mid pénial", 28-30m, 30-
$33 m 438$ 1-4m/1u "parldes", 5-23m/13-15?/
$13 u$ "la|profonde"/14u "diverses cavités" 439
2-10m/5-7?, $15-20 \mathrm{~m} / 18-19 w$ pooh! $20 u$ "chezlanoures", $21-27 m \quad 440 \quad 23-27 m \quad 441$ 10-11m, $15-27 \mathrm{~m} / 19 w$ pooh! 448 21a "embryonnaires" He means embryological $21 u$ "les l espèces", 24-25u士/20-30w What is this? No variation from a likeness of the parents can be strictly normal - $4494-5 w$ V. next page $x x x$ so be cautious- $8-10 w$ all this he considers only analogy.- $11-13 \mathrm{~m}, 16-17 \mathrm{~m}$, 20-26m 450 9-15m, 18-20m (Serres), wb NB in case of limbless, tailless, fingerless races (\& reverse) the hereditariness must come on at nearly same age (as in horns) for the early foetus has not these parts.- $4511-19 m$, wb $x x x$ according to the bearing of this discussion, there wd be only an analogy, between a man become fat by much eating, or large \& one born $\%$ fat or large; \& which I think is false?-4525-11m 456 22-31w What is Owens law? about these organs? is it that the reduction of these organs is one step in development $24-27 m / Q / 26 u$ "variabilité anomale", $27-31 \mathrm{~m} / 30 u$ "constantel importante" $4571-4 m, 5-11 m / 6-7 u \pm, 9-13 w$ \& more chance of exposure to new conditions? 14-16u "parlspinal", 15-20w when any connection but not in so pairs 23-25m, 28$33 m / 32-33 u \leftrightarrow 4581-3 m, 4-10 m, 14-20 \mathrm{~m} /$ $18 u$ "quelconservés", $19 u$ "rudimentaires 1 formations", 27-28w no examples $29 u \leftrightarrow$, 30$32 m 4591-4 m / 1 u$ "avecldes" $4605-17 m$, 29$31 m 46129-32 m / 32 u$ "seulement" $4628-9 m / u$ "semblables 1 analogues", 18-20m, 21u "Loilsoi" 463 9-11m, 24-25m/25u "chezlcomposés", 26$28 m$, 29-31m 464 20-22m, 28-30m 465 30$33 m 47917-18 m, 18-31 m$, wb I shd think the cause must be often anterior to impregnation $4997-9 m, 16-17 m$, 24-27m $500 w t / 1-16 w$ Hereditary \& legless Dogs \& Men with polydactylism show that germ can communicate such tendency $2-3 m, 14-16 m, 18-$ $33 w$ according to this male wd have no influence in producing monstrosities $2 \overline{2 w}$ see Ray Catalogue $22-24 \mathrm{~m} / \mathrm{m}, 25-27 \mathrm{~m} / 25 u$ "t.xxxiv" $/ 26-27 m / 27 u$ " $t .1511$ ", wb Study this to see whether small deviations as long legs \&c were produced - In plants we know it is from treatment of parents \& out of generation $-14-16 w$ III $5011-4 m$, wb I must allude to III this when 1 give my view of cause of deviations to parent treatment before impregnation $50211-13 m, 14-16 m$, $13 u$ "soit simples", 14-15u "atrophielyeux", 22-26m $5031-3 m$, 2-4u↔, 27-30m/28w Where? 506 26-28m 507 wt/1-5w in plants it
may be said gestation of seeds causes anomaly - but seeing what effect male pollen can do, I shd greatly doubt $1-9 m, 11-$ $14 w$ This applies to all slight deviations 12 $15 m, 20 m, 21-22 u$ "quilmême", 22-23m, 25$28 m$, 29u "delanciens" 510 13-17m 515 1-3m, 4-17m, 21-23m/22u "nilentièrement" 516 2$6 m 521$ 4-7m 522 29-31m 523 4-8m, 9-14m 524 5-8m, 18-20m (Serres) 526 2-7m 529 25$27 m 5301-6 m, 8-14 m, 28-31 m / 29 u$ "problème complétement" $5311-3 m / 2 u$ "cettelforce" 534 4-6m 541 4-8m 542 11-13m, 14-17m 543 13$16 m 545$ 13-15m, 24-27m 547 3-5m, 15-19m, 25-30m 551 24-27m, 25u "congéniauxl originels" 592 3- $6 m, 29-31 m 5931 m, 22-27 m /$ 26-27u "quel nombre", 29 u "pèrelsoi", $32 \rightarrow$ 594 6u "Théorielarrêts" 597 9-11m, 32-33m 602 19-22m (Cuvier), 29-30m, wb X Reflect of the possibility of classification of monsters (and many other $\%$ artificial things) is showing that classification may be quite independent of any theory of origin, as I suppose is implied in Natural Classification $6047 \mathrm{~m} / u$ "parallélisme I séries", 12-17w agrees with Forbes $13-18 m / 18-19 u \pm, 20-24 m$, $30-$ $32 m 605$ 12-13m 606 3-4m/3u "cettel que" 608 $7-8 \mathrm{md} / \mathrm{wt} \bullet / 1-15 \mathrm{w}$ rather attributes species to monstrous births than to small changes. 28-29m, 28u "profondeur", 29u "espèces animales", $7 x \rightarrow 60923-24 \leftarrow X, 13-15 m, 22 u$ "encorelintelligence", $24 u$ "qu'ilslla", $26 u$ "nelque" $61313 m 61419 m, 28 m, 32 m, 37 m$ $6153 m, 9 m 6185 m$ Catalogue, 1 11-12w Read Skimmed through

GEOFFROY SAINT HILAIRE, Isidore Histoire naturelle générale des règnes organiques 3 vols; Paris; Victor Masson; 1854-62 [CUL] br, ex, f, gd, geo, h, he, hy, ig, in, is, sl, sp, sx, sy, v, wd

vol. 1 NB Read

SB $\square \beta$

- 4; 10; 14; 431; a miserable Book - all words, words, words
Abstact Feb. 58
5 Dog not mentioned in Genesis
14 Goats with pendant ears
4 14-15m 5 20-21m $104-7 m 11$ 20-24m 121 $3 m, 4-8 m 1422-24 m$, 25-29m 431 10-14m, 21-22m, 24-27m
vol. 2 NB On Man 167 to 260
SB $\square \beta$
On extinction I have too much overlooked subsidence of isld like St Helena \&c volcanic outburst \&c \&c
vol 2
$185<$ Rank of Man Man
- How are teeth in Sirenidae - yes they have but not very ample * naked? Man Elephant
- 216; 243 Manes; 287; 304; 311 to; 1 apply races only to domestic productions - 383 to 438 History of Believers in modification Say that I shall notice only the m conspic writers - when I began I had no idea of rest of catalogue
- p. 431 - to p. 438 Isidores own argument that species change.
- ※ $^{2} 41 ; 448 ; 474,476 ; 482,485$,
$488 \rightarrow$ Reference about White Ants important for me; 498 - Must include sexes
Explain that I use his race in particular man
185 2-13m (Linnaeus) 213 24-26m 216 1-7m, $9-11 m / 8-14 w$ variation \& sexual difference going together $17-19 m / 17 u$ "lion-marin", $25 u$ "cravate I gau" $/ 21-26 \mathrm{~m} / \mathrm{w}$ I thought some sexual differences in Monkeys?? vide my Notes.- $27-28 m, 30-31 m$, wb How in young Nylgaus V. Andrew Smith wb Mem. Eyebrows Paget's fact.- 217 2-5m, 6-11m 243 1$7 m, 18-20 \mathrm{~m} 244$ 13-18m 287 1-2m, 22-23m $304 \quad 29-30 m \quad 311 \quad 14-20 \mathrm{~m} / \mathrm{w}$ yet very slight differences even if inherited wd hardly be called Races - 312 11-15m (Kant) 321 15$18 m 326$ 22-24m/23-24u士 328 18-22m 329 1$4 m 3337-8 m 337$ wt (a) not really known under nature, because inheritance not thus ascertained $=$ sub-species or species $1-3 m$, $6-8 \mathrm{~m} / \mathrm{w}$ (a) does for species $9-15 m 347$ 23$25 m 3836-8 m$ (Buffon) $3864-9 m$ (Buffon) 387 6-10m, 12-15m 388 2-6m (Buffon) 390 13-21m (Buffon) 393 9-12m, 13-14m/w this will do for variation $3947-10 m 396$ 18-23w a collection of individuals which perpetuate * themselves for considerable periods * \& which are sufficiently unlike other forms to deserve in the opinion of Naturalists a nameO So with varieties Add found in state of nature. $3992 u$ "Daubenton", 5-9m 402 16-18m 405 $15-17 m, 16 u$ "1801|1803", $19 u$ "1809" 406 27-29m (Goethe), $27 u$ "était I partisan" $4086 u$ "besoins", 7-9m, 26-29m (Lamarck) 416 11$14 \mathrm{~m} / \mathrm{w}$ No change now $41825-27 \mathrm{~m} 423$ 11$12 m$ (Cuvier) 431 5-6m 432 20-23m 437 16$19 \mathrm{~m} / \mathrm{w}$ not distinguished from race 441 15$16 w$ Definition of species $4488-9 m / 8-12 w$ This refers to alternate generation \& larvae \&c \&c 17-20m (Leuckart) 465 15-17m (Meissner) $47422-23 \mathrm{~m} / \mathrm{w}$ sexes $4767-10 \mathrm{~m}$ (Gould)/8-9w variable? $4775-9 m, 12-14 m$, $31-32 m 47811-15 \mathrm{~m} / \mathrm{w}$ variable?? $4817 w$ Drilus $8-14 m, 14-15 m 48226-33 m$ (Latreille) 483 25-30m (Desmarest, Audouin, Milne

Edwards) 485 wt (a) Andrew Smith case of Birds of 2 size - Azara's case of Moloths Land-shells are all Dimorphism- $6-10 \mathrm{~m} / 7 \mathrm{w}$ (a) 23?/u "mâles" 488 16-18m, 19-20m (Lespés) 489 1-3m 498 18-20m
vol. 3 part i NB Oct 19 1860
I have selected for my 1st volume on Dom animals - Must be all gone over again \& Indexed Especially for Hybridisation very good.-
Cats hybrids p. 177 Used
22 9-20m 23 26-29m 27 18-22m (Dareste), 29$31 m 2825 m, 26-27 m 2926-29 m 343-5 m 45$ $18-19 \mathrm{~m} / \mathrm{u}$ "Tels 1 soie" $/ \mathrm{w}$ silk-worms artificially fed \& well domesticated $25 m 46$ 9-13m, 20$22 m$ (Aristotle) 47 24-25m, 28-30m (P. Julien), $28 u$ "quarantelsiècles" $487-8 m$, 13-15m 49 $12-15 m / 13 w$ no selection $508-10 m, 11-13 m$ $512 u$ "dix loiseaux" $527 w$ Colour in mimicry $8-10 \mathrm{~m} / \mathrm{w}$ colour \& size in Turkeys $20-22 \mathrm{~m} 55$ 2-3w Swan not varied 56 20-22m (Varro) 57 $10-14 m, 32-33 m 5810-12 m, 19-21 m$ (Pictet) 59 10-13m/w Guinea Fowl not much variation 60 4-6m, 13-15w Peacock no variation 21$23 m$ (Aristotle) 61 28-29m (Pucherau) $627-$ $9 \mathrm{~m} / 8 \mathrm{u}$ "Zend-avesta", $13-14 \mathrm{~m} / \mathrm{m}$, 21-23m (Link), 22-23m (Pictet), $33 u \leftrightarrow 6328-30 \mathrm{~m}$ (Aristotle) 65 17-19m/17-24w Chinese swans not known form not perfectly 67 20-21w Llamas 69 21-26m (Albert Geoffroy, Linnaeus) 72 6-8m/w Guinea Pig Origin unknown 73 9$15 / w$ Ferrets probably Polecat $751-3 m / w$ Rabbit not in Greece or Italy 13-14w originally Spanish $24-27 \mathrm{~m} / 29 u$ "îles | Baléares"| $25-30 w$ rabbits in France \& Spain before our $\begin{array}{lllllll}\text { era } & 77 & 18-19 m & 78 & 8-10 m & 79 & 23-25 m\end{array}$ (Hamilton Smith), 31-33m (Fitzinger) 82 wt/1$3 w$ Savages may reclaim animals Caffres nato Oxen - Dogs - Pacific Ocean Ascension Dogs - Pampas Indian take to Horses so readily $7-10 m, 13-16 u \pm 834-9 m$ (Dureau de la Malle)/7-8w N.Q. 10-12m 84 9$12 \mathrm{~m} / \mathrm{Q} 851-4 m$, 20-24m (Fitzinger) 86 12$16 m 87$ 1-4m (Pallas, Güldenstädt)/2-3Q 88 13-15m 91 10-13m, 15-23m (Pictet) $w b$ Why shd not name of conquering races become modified \& transferred 95 29-32m (Joly, Pictet)/31u土 96 2-3m 97 20-23m/w Blyth 98 3$8 m 991-10 m, 2 u$ "Cretzschmar" $10031-33 m$ (Link)/w Dog wis All $18-21 m 1021 \mathrm{~m} / u$ "uneloreilles" $1037-9 m / w$ How about spots over eyes 106 6-13m 107 18-30m (Pliny), 35$37 m / Q 1083 u$ "tel|Tilesius", $6 u$ "chiens \mid africains", $7-9 \mathrm{~m} / 9 u$ "Ehrenberg et Hemprich", 15-19m, $25 u$ "kaukasischen Schakals", 27-29m (Güldenstädt) $1098-9 m / 8 u$ "Rueppel", $9 u$ " C . simensis", 10-14m/w like Greyhound 110 33-

GEOFFROY，RĖGNES ORGANIQUES
$35 m$（Broca） 111 29－32m 112 1－4m，6－9m （Bellingeri），14－16m，22－30m（Cuvier） 113 2－ $6 m$（Flourens）， $14-17 m 1141-2 m 11519-23 m /$ Q $12129-30 m / w$ too few recent 123 6－8w Rabbit Coney Bird $7 \mathrm{~m}, 12-13 m, 27 u$＂enl transitions＂／w Only Habit 154 15－19m 155 16－ 20m（Aristotle，Pallas），27－29m（Dryander） 157 $15 \mathrm{~m} / \mathrm{u}$＂L＇hybriditél tétras＂，21－22m 158 8－9m／ $8 u$＂dindon｜faisan＂，15－16u↔ 159 6－8m，11－ $12 m 16012-13 m 1613-4 m / ? ? / w$ see 4 pp163 $4 u$＂surtout｜bouc＂，19－21m 162 9－12m 1634 $5 m 1647-8 m 1652 m, 13 m 16719-21 m, 25 m$ 168 2－3m，18－20m 169 29u＂menstruation＂ 171 32－34m（Hunter），33u＂Wolf｜are＂／w Dogs 172 10－12m，13m，14－15m／w Dogs 173 1m／！， 14－15m 175 35－36m／36u＂baudetlsans＂ 176 16－18m 177 18－19m／Q，21－22m 179 21－24m， 29－31m／w Pheasants $1801-4 m, 7-9 Q 9-14 m /$ 11－13w Pigeons crossed $25 m$（Dureau），29－ $30 m 1815-13 m 182$ 9－13m（Gloger） $1977-$ $9 m 1996-9 w$ same rules hold in individuals $12-15 w \div$ The rule holds with squirrels 17－ $18 m 200$ 18－23m 203 7－9m 204 4－8m 206 13－ $19 m 207$ 1－3m，6－8m 211 24－26m（Broca）／w see p． 222216 22－26m／w Dogs \＆Wolves 28－ 30m（Buffon） 217 1－3w Q under Dog 4－5m （Flourens），13－18m（Flourens），27－29m／w Chacal \＆Dog 30－31m（Duvernoy），31－34w Q under Dog 218 2－8m，16－17u↔ 219 1m，13－ 14m，20m，25－27m（Francisco de Therau） 220 9－10u↔，24－29m（Weddell，Denis） 221 19－21m $2221-2 u \leftrightarrow, 18-19 u \pm, 27-31 m 223$ 1－2m，4u ＂troisleux＂，5－8m，9－10m，19－21m（Broca）， 24－26m，28－32m（Rouy） 225 1－4m，18－20m， 28－30m 226 3－9m 227 21－23m（Lecoq） 228 17－ 20m，21－23m 229 4－8m，10－13m，23－27m 234 6－8m 254 12－28m／13－15Q／u＂1784＂ $16 u$＂surl jaune＂，18－20w selection 27－28wct 259 12－ $18 m / 14 w$ atavism 27－32m（Roulin） $2601-7 m$ （Cantal） 261 9－12m
vol． 3 part ii SB1 $\square \Re$
322；328； 336 to $377 ; 402 ; 407,409 ; 427 ;$ 434；438；41；446；450；461；469；472； 476，8；482；498；507； 529
SB2 1β
2 330 Falcons or Hawks caught at long distance from home．
\rightarrow Variability of species in state of Nature
－（Not abstracted）
402 changes in naturalised Helix－ May bear on Madeira \＆P．Santo peculiar species－
322 3－12m 323 介 $1 \rightarrow 324$ 介2－1m 328 5－12m 330 9－17m 332 1－6m $3331-2 m, 7-10 m 3351-$ $5 m 336$ 介3－1m 337 6－12m 338 16－21m 340 $12-17 m 342$ 介19－9m 345 介15－11m 347 介14－

11m，介9－6m 348 2－8m 350 1－7m，13－19m，20－ $25 m 3511-3 m$ ，$\uparrow 13-7 m 354 \Uparrow 8-1 m 357$ 介11－ $6 m 359$ 18－21m $3606-12 m$ ，$\uparrow 10-5 m 36510 m$ ， $\Uparrow 3 m 370$ 介18－16m，$\uparrow 8-1 m 373$ 9－13m 376介19－14m 377 10－15m，$\uparrow 5-1 \mathrm{~m} 402 \Uparrow 17-10 \mathrm{~m}$ 403 wt is this allied to Madeira or Porto Santo close species 7－15m 407 6－15m 409 10－20m $4271-5 m / w$ But how kn parent $\Uparrow 12-$ $9 \mathrm{~m} / \rightarrow$ ，$\uparrow 3-1 \mathrm{~m} 434$ §3－1m $4354-6 \mathrm{~m}$ ，$\uparrow 12-6 \mathrm{~m}$ ， $\Uparrow 1 u$＂ 1834 ＂ 438 介 $7-2 m / Q$ ® $^{2} 441$ 12－21m 446 10－15m／m，介2－1m 447 16－18m 448 tab．w six times as long－tail not included wbec 449介13－7m 450 $115-10 m$ ，$\uparrow 9-4 m$ ，$\uparrow 3-1 \mathrm{~m} / \mathrm{m}$ 451 $5-9 \mathrm{~m} / \mathrm{m}, 18-21 \mathrm{~m}, \uparrow 3-1 \mathrm{~m} / \rightarrow 4531-6 \mathrm{~m} / 3-6 \mathrm{~m}$ ， $14-22 m 4555-8 m, \Uparrow 8-1 \mathrm{~m} / \mathrm{m} 461 \Uparrow 3-1 \mathrm{~m} / \Uparrow 1 u$ 469 介8－3m 472 17－20m 476 介7－3m／Q＊ 478介6－2m 479 1－4m 482 12－14m／w Cart－Horse \＆ Race Horse 498 12－15m 507 8－13m 529 3－ $17 m$

GEOFFROY SAINT－HILAIRE，Isidore Vie， travaux et doctrine scientifique d＇Étienne Geoffroy Saint－Hilaire Paris；P．Bertrand； 1847 ［CUL］
ad，af，beh，em，geo，ig，mn，rd，sp，tm，v， wd

NB1 p．69；p．121；p．134；p．139；p．157；p． 212 to p．218；p．229；p．238；p．245；p．258；p．281； $291,4,7$ ；to $312 ; 332336$ to 357 －Omalius d＇Halloy on changes in species
NB2 Read 428；？ 454 Book G
SB $\square \beta$
135 all organs，are same modified \＆c
139 never a new organ，with respect to Electrical organs
213 Relative position \＆mutual dependence， more important than forms or functions in ascertaining homologies－＂Un organ est plutot aneanti que transpose＂－（small changes）
214 Law of Balancement，quote Goethe－ attributes Rudimentary organs to Balancement
229 Teeth in Birds， 238
291 monstrosities made by shaking eggs \＆c 294 Meckel in 1812 proved that mon－ strosities were arrested embryonic states 298 On affinity of same part in Monsters the same 302 in Monsters，\＆in normal states
337 It wd seem that Geoffroy has not propounded change of Species No p． 345
347 Local conditions only causes of change 350 ＂Leur monde ambiant＂
353 ＂It is problem for future＂
1 16u＂1772＂ 69 10－12m 121 26－28m 134 21－ $28 m 135$ 11－12m 139 16－18m／？，21－29m 157 $6-10 m \quad 212 \quad 9-11 m / 1-11 w$ in ascertaining
homologies $12 u \leftrightarrow 213 w t$（a）because small changes will not transport $3-4 m, 7-8 \mathrm{~m} / \mathrm{w}$（a） $28 m 21414-16 m /!/ 16 u$＂affinités électives＂， 24 $25 m 215$ 1－8m，12－13m／？？／u $\leftrightarrow 218$ 3－7m 229 $15-17 m \quad 238 \quad 6-8 m, \quad 25-28 m \quad 245$ 1－2m （Savigny）， $24 m 258$ 13－18m 259 1－3m／1？／ $2 u$＂différenceslest＂ 281 13－15m， $14 u$ ＂subordination I caractères＂ 290 18－24m／21－22u ＂surtout｜verticale＂，24－25m 291 12－22m 294 6－16m（Meckel） 297 20－24m 298 14－21m 299 11－15m $30115-20 m$（M．Serres） $3023-5 m / w$ （a） $24-26 m, w b$（a）if true parts gradually brought near wd become confluent．－ 312 8－ 11m 332 16－20m 336 7－12m／7w Cuvier 337 $w t$（a）apparently，this refers to theory of change of Species $2-7 \mathrm{~m} / 3 \mathrm{w}$（a） $338.13-15 \mathrm{~m} /$ w see Catalogue at end 339 22－26m 341 18－ $19 m, 22-23 m, 24-27 m 3451-2 m, 16-17 \mathrm{~m} / \mathrm{w}$ Mutability of species． $20 u$＂ 1828 ＂， $24-25 m d$ ， 27－28m 347 1－4m， $9-12 m \quad 348$ 16－20m （Lamarck）／19u＂regret＂，21－22u＂prêterlmême＂ 350 wt（a）Compulsory changes of condition \＆habits，as in domesticated animals． $6-12 \mathrm{~m} /$ 9u＊＂monde ambiant＂／8w（a）16－18m 351 8－ $11 m 352$ 12－13u土，13－15m／14u＂Lamarck＂／15u ＂des limites＂，23－24m 353 6－9m／9u＂oul encore＂， $10-12 m 3546-8 m, 8 m, 16-18 m, 27-$ $29 m 3552-5 m$ ， $13 u$＂$d^{\prime} u n \mid n o u v e a u$＂， $15-17 \mathrm{~m} /$ $16 u$＂oùleux＂ 357 2－4m，26－28m 423 33－39m／ ？ 427 27－38m $4281-40 m 4291-2 m, 20-21 m / w$ not much I shd think $45429 m, 31 \mathrm{~m}$

GÉRARD，R．La Fleur et le diagramme des Orchidées Paris；Faculté de Médicine； 1879 ［Down，I］

GERLAND，Georg Über das Aussterben der Naturvölker Leipzig；Friedrich Fleischer； 1868 ［CUL，S］
beh，cc，ex，f，h，he，oo，pat，sl，sx，ud，v，y
NB Left off p．124＊＊ 136
NB2 On Man alone
－p37；56；89；122，3， 4
SB $\langle 8$ sides；not CD 〉
1 Introduction－List of dying out Races Includes all cases from whatever cause－no special account of causes
2nd Receptiveness of savage races for miasmal illnesses，which arise spontaneously on the meeting of savage \＆ civilized races
This first gives a great number of accounts of spontaneous illnesses．\＆of the greater ravages of moderately hurtful European illnesses－His theory to account for this－is not that there is some noxious influence emanating from the civilized races
$\underline{2}$ caused by their being shut up in ships etc －but that we are all innoculated，as it were， from our earliest childhood with the germs of all kinds of infectious disorders－but that we partly by inheritance \＆partly by use are able to possess these germs in a latent state－ These same germs being quite able to infect savage races．He gives in proof of this－ that certain illness seem only to appear at certain intervals－that the
$\underline{3}$ innoculation only lasts a certain number of years \＆then wears out when we are again liable to the attack of this epidemic（I suppose under certain conditions is understood－H．E．D．）
〈expanding on＂latent state＂＞because we have assimilated their nature to ours \＆so they are not wholly inimical to us．
43 Directly brought in diseases The same principle applies to directly brought in infectious \＆contagious diseases The first introduction was the most violent but they continued to rage furiously－
The worst of all the smallpox It broke out in Mexico 1520 brought by a slaver－raged then carried to Antilles where it raged amongst the natives without killing one European－
Waiz says Smallpox has killed more than near＊drinking together in America．at least $1 / 2$ perhaps $2 / 3$ rd of the Population．
5 According to Meinecke smallpox broke out spontaneously in New Holland
We now come to the original illnesses of＊ savage races An illness raged in New Zealand before Cook－but illnesses are rare －
A gall fever raged in Central America every 100 years（4）Treatment of $\%$ Illness in Savage Races All dangerous illnesses are made worse thro＇mistreatment
6 In America steambaths with cold washing directly after nearly always killed the patients．In Australia they only exorcise evil spirits whom they suppose the cause of all illness－They pretend to draw a bit of stone out of them．They kill the bewitcher \＆rub the bewitched with his suet．Or to bleed away the Magic They are cleverer in outside injuries \＆serpent bites－
They are buried before they are dead in Feejee so that they mayn＇t bother the living． In the New Hebrides they kill delirious patients so that
7 they mayn＇t infect others－In Melanesian it is all taken for work of demons，tho＇they practise bloodletting \＆such means－＊
In Polynesia the sick are not cared for．In

GERLAND
Mukuhiva they hold the nose \＆the mouth of the sick to＊keep the＊spirit or life firm． only in New Zealand they know better how to manage－They used hot springs，light food，\＆rubbing of the limbs－In Tahiti they hold it wicked to take Medicine－but they $\underline{8}$ are clever surgeons The Mexicans are acquainted with Medicines－but put more faith in magic．－The drawing out of the stone found in Haiti \＆Brazil as well as Australia． The Botokuda in Sth Am．alone use natural means Steambaths all over America Real Doctors \＆magic doctors The Hottentots consider it all as the work of evil spirits－\＆ they $\&$ in the Antilles draw out the stone（or here bone）as in Australia In America \＆ Africa they punish unsuccessful doctors

SA $\langle p p .52-53\rangle \square \beta<4$ sheets \rangle
2
Ch VIII p48 infertility of woman only cause of dying out．－intermarriage in Botokudos－ general misery \＆hard work of women－ Lactation－\＆c \＆ c －
Killing children $\langle u\rangle$ Knisteno kills female Children to save them being brought up to misery－Pooh－
$\langle u \geqslant$ Guianas kill $1 / 2$ children of both sexes －［In Upper Paraguays kill all children but own according Azara，$\langle u\rangle$ hence race almost disappearing］p51
［Abipones save－not more than 2 children $\langle u \geqslant\rangle$－Indians do not speak of child murder
［Darish says women p． 53 kill＊children＊ to save their beauty：also in Upper Paraguay Azara 〈u®〉 says p．51．－Proof of Indian women valuing their own beauty．］
Many other cases of infanticide．－
［ $p .54$ in Melanesia only bring up 2 or 3 children］\＆many other islands of Pacific much infanticide－especially Tahiti－ 11 some women had killed 4，6，8，or so＊ children
p57 Infanticide in Sandwich Isd
1 Austerben－Gerland－ 1868
Great extinction of many races－
p． 8 Poeppig＂poisonous breath of civilisation＂ ｜｜p．10．Williams says healthy ships，bring disease，\＆not infectious disease－
$\| \$ s .12$ If an Indian tribe is once reduced in number，generally becomes extinct－ Tschudi in N．\＆S．America found this to be the case－In N．America some exceptions．－ $\langle u\rangle$
Ch．2．－
Known diseases introduced．Especially small－pox in America－\＆in all parts of
world．－
Ch． 3
＊Children suffer in health in p．27． Proportion of women to men in Australia according to Grey 1：3－others says as 2： 3 －female infanticide practised．$\langle u\rangle$ Women little food－long Lactation－
Many causes against health，\＆so we can understand why numbers of each tribe not great \＆no increase，but as he says does not explain actual decrease．
\oplus Galton too unsettled to work
〈over〉
Sexual selection
Tattooing．about being so ugly．
3 Sexual selection
$\| /{ }^{*} \otimes$ Arevi kill（Tahiti）all female children： Tahiti kill in order to keep $\langle u\rangle$ beauty．－ Wonderful amt of infanticide．in whole Pacific．Laziness one of main causes of infanticide－particularly kill girls－old custom－Thinks religious motive－
｜｜p． 82 Natural physical conditions do not destroy races，viz T．del Fuego \＆ Esquimaux．
Sense of Justice very strong in Savages－ shown even by Revenge－Depression of Spirit causes extinction．
Mutual wars－infanticide－Unfruitfulness \＆ long Lactation－diseases brought by Europea－drink \＆c Depression－Dissolut life－
Tribe when once reduced seldom revives again
Famine．－Unhealthy life－Hostile $\&$ appearance of Whites most hurfful of all－ Psychical effects most important－ Introduced diseases－When several causes so act effect marked－＊Savage races are not increasing，so always must be much＊ extermination going on，\＆a little addition from \＆advent of Whites，turns the balance 4 Sandwich Isld Population not decreasing Said to be increasing in Tahiti．Tonga not decreased Feejie Keep up．－

〈The following passages are annotated with literal translation and／or close paraphrase of the text＞ 1 （title）3 12－20，25－43 4 19－29 5 13－22， 32－41 6 wt，3－8，11－27，37－44 7 wt，2－4，6－14， 25－36，39－45，wb 8 8－14，27－42 9 10－44 10 $w t, 1-23,27-45, w b 11 w t, 1-20,7-19,25-40$ $12 w t, 1-17,20-30,30-45$ ，wb 13 wt，1－8，3－ 14，13－19，18－40，19－23，26－39，41－45 14 wt ， 1－17，1－17，16－22，21－41，38－43，wb 15 wt，1－ 16，18－22，25－29，31－40 $16 w t, 1-1517$ 11－20 18 12－20，24－27，33－45，wb 19 wt，4－8，22－27， 30－36，40－45 20 5－15，18－22，25－33，35－40 21

5－11，14－29，26－35，32－34，37－42 22 1－5，11－ 13，15－24，31－45 23 2－5，8－17，19－24，29－34， 35－43，39－42 24 7－16，21－24，28－29，31－40 25 3－16，4－11，16－18，25－27，29－34，40－45 26 wt， 8－12，16－21，31－45 27 15－20，22－31，36－45 28 $w t, 3-8,14-18,36-4529$ 1－5，14－18，21－23， 25－29，31－43，wb 30 wt，4－8，11－22，25－28 31 $w t, 3-8,10-24,20-33,31-3832$ 11－26，39－45 33 3－8，17－30，32－45，wb 34 wt，2－3，8－45，wb 35 1－4，6－24，28－39，45－49 136 1－5，9－14，18－ 35，36－40，wb 37 wt，1－2，10－45，wb 38 wt，5－ 17，24－25，wb 39 wt 48 wt，4－20，22－43，32－38 49 4－8，10－15，17－19，29－45，wb 50 1－12，14－ 18，24－38，36－45，40－45，wb 51 2－13，3－5，15－ 26，18－31，28－45，wb 52 3－19，21－39，27－29， 43－44，wb 53 1－4，8－14，15－17，18－24，25－36， 27－43，wb 54 wt，2－4，8－15，23－30，35－45，wb 55 wt，3－17，19－21，24－45 56 wt，3－4，6－13， 14－21，23－34，39－45 57 wt，8－13，15－27，29－ 32，34－45，wb 58 wt，5－23，26－33，41－45，wb 59 wt，1－7，11－26，29－37，38－43，wb 60 wt，1－ 10，11－20，21－23，25－31，33－45，40－45，41－45 61 wt，6－15 79 wt，1－29 80 wt 81 13－14，28－ $3982 w t, 1-6,10-24,26-31,40-4383$ 7－11， 14－33，23－42，35－45，wb 84 wt，1－19，10－17， 20－23，21－26，30－32，34－41 85 6－45 $86 w t, 14-$ 22，25－35，wb 87 2－45，28－45，wb 88 1－11，18－ 32，37－45，wb 89 wt，1－9，1－14，19，21－33，34－ 39，wb 90 wt，1－7，9－13，17－29，30－35，36－38， wb $91 w t, 1-36,40-45, w b 92 w t, 4-23,28-32$ ， 37－45，wb $93 w t, 1-3694$ wt，1－45，wb 95 wt， 1－3，17，19－32，25－40，wb 96 wt，16－29，31－45 $97 w t, 1-45, w b 98 w t, 1-27112$ wt $11524-$ 32，36－38，wb $116 w t, 1-45, w b 117 w t, 1-45$ ， wb 118 wt，1－45，wb 119 wt，3－9，16－32，34－ 45，wb $120 w t, 1-45$ ，wb $121 w t, 1-45$ ，wb 122 $w t, 1-11,12-38, w b 123$ wt，1－45，wb 124 wt， 1－18，16－38，wb $125 w t, 1-43,20-43126$ wt， 1－45 127 wt，1－45，wb 128 wt，1－45，wb 129 $w t, 1-45, w b 130 w t, 1-45, w b 131 w t, 1-27$, 4－45，wb 132 wt，1－40，wb 133 wt，1－34，5－45， wb 134 wt，1－16，24－40，wb 135 wt，1－14 136 $w t, 1-45, w b 137 w t 138 w t, 1-3,9-43139 w t$ 141 27－45 $142 w t, 3-43143 w t, 1-45,34-45$ ， wb $144 w t$ ，wb $145 w t, 1-9$

GERVAIS，Paul Les trois règnes de la nature： Histoire naturelle des mammifères vols $1 \& 2$ ； Paris；Curmer；1854－55［CUL］
br，ex，gd，h，hy，sl，sp，sx，t，ti，tm，v
vol． 1 NB p．282，285 Rabbits for Dom．A．
title page Tome $1608-13 m 614-6 m / w$ apparently not sexual $623-5 m, \Uparrow 18-16 \mathrm{~m} 63$ fig．w see Back X $\underline{2}$ rubicondus 64 wt Seven figures＊rubicond \＆marked with X fig．w （1）X comatus $676-10 m 68 \Uparrow 5-1 m 741 m / u$ ＂favoris＂，$\uparrow 14 u$＂barbel descend＂，last fig．w X

78 23－24u＂pygerythrus＂， 29 ＂＂rufo－viridis＂ 79 1 u＂cynosurus＂ $89 \Uparrow 19-13 m 9118 x, 24 n / u$ ＂quel colore＂ 102 介12u＂boursouflures mexillaires＂ $1035-8 m, \Uparrow 17-15 m, \Uparrow 16-15 u$ ＂leur Iblanche＂，$\uparrow 13-12 u \leftrightarrow, \pi 11-9 m / \Uparrow 9 u$ ＂rides＂，介8u＂parlmême＂，介7－4m，介3u ＂MalbroukIGrivet＂／w p． 78 Cercopithecus $104 \mathrm{zt}, 2-5 m, 7-9 m$ ，top fig．w $\times 6 \uparrow 4 m / u$ ＂menton｜jaunâtre＂ $1052-5 m / 4 u$＂leurl rouge＂， $17 u$＂G．Cuvier＂，18－21m，24u＂auxljeunes＂，介6－4m 106 1u＂la｜verdâtre＂，1－2u＂Dans 1 généralement＂$/ w$ of Hair $3-4 u \leftrightarrow, 5-7 m 107$ 17－18u0＂âgelolivâtre＂， $19 u$＂simulant 1 perruque＂， $20 u$＂restel camaie＂ $108 \uparrow 2-1 m / u \leftrightarrow$ 110 \＄5－2m／$\uparrow 5 u$＂Chez｜plus＂$/ \Uparrow 4 u$＂lesquels \mid иne＂ 119 top fig．m／w well－coloured M． chrysurus $12020-22 m 124$ last fig．w X 3128 top fig．w $\times 4$ last fig．w $\times 5150$ 10－15m \wp
279 14u＂doigts＂， $15 u$＂de dernière＂， $16 u$＂del dix＂，19－20u＂six l supérieures＂，21－22u＂cinq I inférieures＂，$\uparrow 6-5 u$＂quelnoir＂，$\uparrow 5 u$＂noirel dessus＂，$\uparrow 4 u$＂sont lavec＂ $2803 u$＂deloreilles＂ 282 9－25m／w Every part of Europe has its peculiar Hair 〈ie Hare！ 283 3－8m／8u＂saufl pointe＂， $12 u$＂des 1 Russie＂，$\uparrow 20-16 \mathrm{~m} / \uparrow 18 u$ ＂oreille＂$\uparrow \uparrow 17 u$＂noire＂ 284 11－12u＂Il oreilles＂， $20 u$＂un｜noire＂，$\uparrow 8 u$＂le｜noir＂，$\uparrow 5 u$＂le｜noir＂ 285 10－11u＂sauf｜des＂，15u＂seslan＂，16u ＂saufloreilles＂，24－25u＂aveclannée＂，31u ＂Lepus brasiliensis＂，33－34m，$\uparrow 6-5 u$＂leurs 1 fermés＂ 286 9－10m／10u↔，16－20m，24－28m， $\Uparrow 4-3 m / u$＂conséquent｜lombaires＂ 287 2－9m／u土 $288-12 m / 10 u$＂sanslsongt＂， $18 u$＂Sal oreilles＂， $19-20 \mathrm{~m}, ~ \Uparrow 22-21 \mathrm{~m}$ ，$\uparrow 17-14 m$ ，$\uparrow 14$ 12m，$\uparrow 6-4 m 2894 m / u$＂commel Nord＂，10－ $11 u \leftrightarrow, 16-18 m 292$ 介25－23m，介19－15m，$\uparrow 15-$ $13 m, \uparrow 11 u$＂le \mid Espérance＂，$\uparrow 3-1 m$
vol． 2 NB p144 ancient Horses Selection 153 Hybrids－ 2 Genera
140 Canines in Equidae absent in females
146 colour of Colli of one breed－forked stripe on shoulder of Zebra
150 vars of Ass
title page wt Tome $25222-23 m / 23 u$＂sont I arrière＂，$\uparrow 18-15 w 6 / 7 \pi 3-1 m / \Uparrow 2 u \uparrow / w 5 / 653$ ＂Cynhyène＂．w 6／7 55 1－4m，介10u＂solitaires bandes＂ $563 u$＂réunit \mid individus＂， $11 \mathrm{~m} / u$ ＂soixantel jours＂，$\uparrow 23-20 m$ ，$\Uparrow 23 u$＂Douél naturel＂\uparrow T21u＂ill lieux＂ $57 \Uparrow 3-1 m / \Uparrow 1 u \leftrightarrow 58$ $\Uparrow 26 u \uparrow$ ，$\uparrow 24 u$＂pas I séparé，$\uparrow 15-14 u$＂Loupl sinus＂ $\mid w$ C．Sinensis Sinensis $\Uparrow 4 u$＂àl inférieures＂ 59 top fig．w 6／6 60 8－11m 61 7－ $15 \mathrm{~m} / \mathrm{w}$ variable in races of Man $9 u$＂M ． Nordmann＂，21u＂OnlChacals＂，介13un，介12u＾，介11u＂ChacallMorée $62 \quad 13 u$ ＂énumèrelà＂，23－25m／w I．G．add C．

GERVAIS
sinensis like Greyhound $27 m 63 \Uparrow 12 u$＂Chien crabier＂，$\uparrow 7-4 m \quad 644-5 m, 22 m / u$＂bien préférable＂，$\uparrow 14 \mathrm{~m} / \mathrm{u}$＂au Chien＂ $65 \uparrow 17-12 \mathrm{~m} / \mathrm{w}$ if one extinct species could be believed in， one might accept these doubts $666-10 \mathrm{~m} / \mathrm{Q}$ $\Uparrow 24-20 \mathrm{~m} / \mathrm{Q} / \uparrow 21 u$＂que I genres＂，$\uparrow 20-19 \mathrm{~m} / \mathrm{w} \mathrm{V}$ ． p． 76 7／8 Molars $\Uparrow 18 u$＂six 1 dernière＂ 67 亿27－ 26u／＂．．．＂＂Jelobjection＂，$\uparrow 19-17 u \pm / m / Q$ 介13－ $12 u$＂illdomestique＂，$\Uparrow 7 u$＂Lel hyéroglyphes＂， $\Uparrow 6 u$ restél Babyloniens＂ 68 介9－5m 69 $\uparrow 6-1 m$ ，
 $87 \Uparrow 12-10 \mathrm{~m}, \uparrow 7 \mathrm{~m}, \uparrow 4 \mathrm{~m} / \mathrm{u} \uparrow$ ，$\uparrow 3 u \wedge 883-5 \mathrm{~m}$ ， 8－10m 89 1－2m，4－8m $13817 w$ All used for Ch．3．on Horse $139 \Uparrow 16 m / u$＂dont rudimentaire＂，$\uparrow 10 \mathrm{~m} / \mathrm{u}$＂sortel6／6＂ 140 1－3m 143 介20－10m／Qx $144 \uparrow w$ Classical period pairs taking in breeding $1454-8 m, 6 Q 9-12 m$ ， $13 u$＂v． 29 ＂ 146 12u＂la｜Camargue＂， $13 u$ ＂noirâtres I poils＂，pl．Zebra．w Fork of shoulder Stripe here much plainer $150 \Uparrow 15-9 m 151$ 18ua 153 10－12m 177 5－7m／5u＂mais｜vrai＂ $178 \quad 1-5 m \quad 183 \quad 13-18 m 187$ 介22－21u＂sans 1 souche＂，$\uparrow 18 u$＂chanfrein＂，$\uparrow 16 u$＂unel caractères＂，$\uparrow 4 u$＂al Afrique＂ $1893-8 m, 14 u \wedge$ ， 15un，$\uparrow 22 u_{\mathrm{A}}, ~ \Uparrow 20 \mathrm{~m} / \mathrm{u}$＂fort 1 Asie＂，$\uparrow 14-11 \mathrm{~m}$ $1912-5 m, 14 m / w(1) \Uparrow 12-10 m, \Uparrow 9 w / \Uparrow 8 w / \Uparrow 7 w /$ $\Uparrow 3 w e{ }^{192} 6-10 \mathrm{~m} 236$ wt Nothing to quote about Pigs $7-13 m, \Uparrow 13-10 \mathrm{~m} / \Uparrow 11 u$＂êtrel espèces＂，介8－2m $2373-4 m 2386-9 m / m$ ，介17－ $14 \mathrm{~m} / \mathrm{m}$ ，$\uparrow 8-3 \mathrm{~m} 2391-2 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m}$ ，$\uparrow 6-$ $4 m$
\wp
GIRAUD－TEULON，Alexis Les origines de la famille Genève， 1874 ［I by author；CUL．1900］

GIRTON，Daniel The new and complete pigeon－fancier：or，modern treatise on domestic pigeons new edn；London，n．d．［CUL］
beh，cs，pat，sp，v，wd
NB Nothing Ap． 1857
$719-22 m 930-34 m 10 w b$ describes the Blue Rock by the name of Stock dove $1232 a \notin 14$ 8－19m，22－24m 15 1－3m，12－13m 17 10－12m， $28-30 \mathrm{~m}, 34-35 \mathrm{~m} 181-5 \mathrm{~m}, 14-16 \mathrm{~m} 1913-15 \mathrm{~m}$ ， $36-38 m$＊14 $1-3 m, 7-9 m \quad{ }^{*} 15 \quad 23-26 m / w$ education＊16 37－38m／wb Seems to consider all the Horsemen \＆Dragoons crossed breeds Can this be so considering how true？ ＊17 17－20m，31－34m＊18 10－19m $203-8 m 22$ 20－22m，34－36m 23 1－4m／1u＂with｜long＂， $28 u$ ＂four 1 length＂，31u＂the \mid Roman＂， $34 u$＂table＂ 24 8－12m，13－15m，30－32m 315－7m 32 7－9m $331-3 m, 4-5 m, 5-6 u$＂the I better＂，wb so that for me，it is immaterial whether originally different species，as these qualities differ in each．－ $344-7 m, 29-30 m, 30-31 u$＂muchl
name＂，32－35m，36－37m 35 12－14m 36 2－7m， $17-18 \mathrm{~m} / \mathrm{u}$＂less \mid thirty＂$/ w$ Varies $35 u$＂neck \mid is＂ 37 19－20m，23－25m，33－34m 38 13－17m，23m， 33－34m，wb This \＆following shows that domestication has produced much effect．－ $3924-32 m 5518-31 m / w$ a curious treatment for apoplexy $5715-17 \mathrm{~m}, 23-27 \mathrm{~m}$

GLEN，William Cunningham Collection of Poor Law Statutes 2nd edn；London；Shaw \＆ Sons； 1857 ［Down］
y
12 13－15m，31u＂three＂，35－38m，45－47m 13 $10-13 \mathrm{~m} / 10 u$＂two guardians＂， $23-27 \mathrm{~m}, 31-34 \mathrm{~m}$ ， 42－45m 14 1－5m $151-3 m, 11-14 m 178-11 m$ 19 22－25m 22 22－29m 23 5－26m 25 24－26m， 27－30m，45－47m 26 1－5m，30－33m 27 43－49m 28 4－14m／9u＂but 1 money＂，20－25m，45－46m 29 30－33m，36－38m 32 20－25m 33 1－3m 34 $14-22 m 369-15 m 4612-20 m, 32-36 m, 43-$ $46 m 475-7 m, 9-14 m, 21-25 m, 27-32 m 487-$ $14 m, 31-39 m, 43-46 m 491-3 m, 33-38 m 507-$ $14 m, 36-40 m 529-12 m, 24-28 m 533-7 m 55$ $35-41 \mathrm{~m} 5739-48 \mathrm{~m} 5826-29 m 5914-19 \mathrm{~m} 63$ $32-38 m 6432-36 m 6526-32 m 6626-31 m 67$ $10-14 m, 42-45 m 6844-49 m 69$ 13－16m，18－ $22 m 7025-27 m 713-7 m / 3 w$ ie under 7 years old $19-20 m, 33-36 m, 40-43 m$ 72 5－8m，23－ $25 m 731-4 m, 7-10 m 7426-28 m, 32-38 m 75$ 25－30m 76 26－32m，34－38m 77 17－19m，35－ $38 m$ 78 14－18m，29－31m，44－46m 79 23－29m 80 24－27m 81 43－46m 82 18－21m，45－46m 83 $4-6 m 8720-27 m, 35-44 m 8821-26 m 8924$ $34 m$ ，42－45m $9030-33 m 9332-33 m$ ，38－39m $9520-23 m 9743-48 m 9820-25 m 9928-30 m$ ， 40－48m

GLOGER，Constantin Lambert Das Abänd－ ern der Vögel durch Einfluss des Klima＇s Breslau；August Schulz \＆Co．； 1833 ［CUL， on B］
br，cc，fg，gd，he，ig，no，pat，rd，sp，spo，sy， ta，tm，ts，v，wd，y
NB Only skimmed very poor Book all Assertion
Graba＇s Ornith Voyage Feroe
p42；p．44；p69；p．74，75；89；98；103；113； 138； 140
SB1 ロR
23 tints of plumage vary with Climate
69 Nillsson on variation of Beak in Tetrao saliceti Q
70 many short－tailed birds have 1 or 2 pairs of extra－caudal．（as Kingfisher）can this be compensation or rudimentary．（allude when I talk of important organs being few \＆not variable．－）

69 References to Bruch's papers (I have read)
74 on changes of Ducks wings \& feet, tamed \& Geese according Bruch
103 on spreading of sparrows with cultivation in Russia
143 corvus of Faroe \& C. cornix
Appendix systematics at end on doubtful species
157 on Tetrao saliceti \& scoticus being same species Q
SB2 722. on variability of Head \& Beak Brehm made some of his species from single specimens \& dry specimens.
722 Colymbus 18 or 20 tail feathers
731 Beak \& length of * promb in Anser segetum variable - so it is with domestic geese
733 tail feathers increase in number in Colymbus with age
© Is Anser segetum supposed part of domestic goose.-
Bruch in Isis 1828 Band XXI
do Isis 1829 Band XXII
p. 629 Caudals increase with age. variable in Anser segetum - 16-20!
p. 152 on the Sparrow Ch 4
xv $17 m / w$ - Begin xxxi $3 m 2 \ddagger w / w t$ Defines "Ausartung" - a deformity, as white or crossbilled sparrow, not hereditary - not affecting all individuals under any circumstances - not exact relation to true characters [this not true as all deformities have such relationst"Abanderung" - is, as a Spanish sparrow, where change is superinduced from climate on previous organization, \& affects all; \& young inherit it, \& gradation into common character can be traced. Alpine plants wd have Abanderung yet not hereditary Monsters are hereditary Vague distinction wb All sports wd be Ausartungs - In Abanderungs the change will * I shd think, supervene by effect produced on mature animal during generation.- 3 wt 1. Variety directly dependent on external influence 2. Variety indirectly so dependent \& directly on propagating system. $\ddagger m / w$ P.S. I think the upshot of his distinction, is whether the change be produced, at early period through propagating system being affected, or whether, during one or more generations, the mature being is affected \& altered. $5 \Uparrow 3 u$ "wirklichen", $\uparrow 1 w \tau, w b$ true \& imagined, true \& false, constant \& changeable skulldifferences $156 m / 1-17 w$ it appears that warm countries affect colours like age. 33$38 m / w$ late arriving XX $w b$ XX Quails from
hot south country with red throats. $212 x 22$ 20-25m/w Nut-hatch more blue in warmer countries 23 wt X I might say according to Gloger plumage varies little according to climate wt Green seldom brighter in hot countries-x $1-3 m, 22 x$ 24 5-11m/w legs \& beaks in difft climates vary in colour 2519 m $2728 m 28$ 21-29m, 7-34w About $1 / 5$ of Kolreuter's white-variegated in Faro!? \& yet these do not pair together $293-7 m, 4 u$ "Schwandrorsel (Amsel)" $11-7 w$ This Bird in Italy has in first month white bar over tail 829m, 29-30m 42 14-17m/w thinks same species 44 10-33w Nillson does not think Tyrol have same as Northern 69 20m (Bruch)/w V. Read $26 u$ "Varietät durch" $/ w$ Whistling Duck 29-31m/w Bruch good See to this $34 u$ "Pfeifenten"|34-39w Nillson says out of 30 , Beaks differ in all $Q 31 \mathrm{~m} / 39 \mathrm{~m} / \mathrm{wb}$ Both Read $7013 u$ "gar 1 mehr" $\overline{7}$ - $13 w$ many shorttailed birds have a pair of extra tail-feathers. $17 w \tau, 20 u$? " 14 oder 13", 17-25w 3 out of 12 had 14 or 13 tail-feathers instead of 12 Kingfishers in Dictionary. $7418 \mathrm{~m} / \mathrm{u}$ "etwas \mid Flügel"/17-20w Goose shorter wings what compared with?! $27 \mathrm{~m} / \mathrm{w}$ Duck 31-34m/32-33u "dass| langt"/33-34u "fast lerreicht" 75 1-2u "Füsselaber", $3 u$ "schwimmt| geworden", $7 u$ "plumperen" 76 24-25m/w isis $8915-25 m / 8-$ $24 w$ Nillson - Tree sparrow in N. is found about houses in greater numbers, than common sparr 98 14-20m/1-23w all cuckoos eggs in different years differ $10324-30 \mathrm{~m} / \mathrm{w}$ spreading of sparrows $11341 m 1174-5 Q$ 138 16-34w number of deaf \& dumb vary extremely in diff parts of Prussia 140 31-33m 141 14-16m 143 25-28m 152 3-22m 157 33-37m/33u/wr/33-35Q

GODMAN, Frederick du Cane Natural history of the Azores, or Western Islands London; John Van Voorst; 1870 [CUL] \wp $\mathrm{mg}, \mathrm{ti}, \mathrm{tm}, \mathrm{v}$

NB Variation - p19
Dentition Summary on
Birds - 330

- Coleoptera - 335

Immigration of Birds - 337
Upper Miocene - 338
\Rightarrow formed in full size at close of Glacial Period - ${ }^{-140}$
co Wandering of Insects \& Birds - 341
19 26-33m, 32-34m 20 9-12m, 18-21m, 30$34 m 2523-27 m 4323-27 m 3303-18 m 3314-$ $21 m 3351-7 m, 19-24 m 337$ 25-29m 338 1$14 w$ They seem much more modern than Madeira 340 29-33m 341 5-27m

GODRON，Dominique Alexandre De l＇esp－ èce et des races dans les êtres organisés et spécialement de l＇unité de l＇espèce humaine 2 vols．；Paris；J．B．Baillière et Fils； 1859 ［CUL］ ad，beh，br，cc，ch，cs，ex，f，fg，gd，geo，h， he，hy，ig，in，mg，no，or，sl，sp，sy，t，ta，ti， tm，ts，v，wd，y
vol． 1 SB1
p10－History of Believers in Mutation
19； 30 to 58 to to 260
－no marks
341； 346 to end of volume
Book of Gervais referred to．on Zoologies〈over〉 p10 History of＊Believers of Mutation SB2 口及；\＆
Godron sur l＇Espece All abstracted for my 1st vol．separately．－
Voll
36 change in range of Sparrow
77 on naturalised plants from hotter countries becoming extinct－one good case of plant naturalised，yet not getting seed－ like Ivy under nature
90 curious special adaptation to particular localities in plants p． 95
120 \＆ 124 Batrachian Ranunculus 2 kinds of Leaves，－means of transition to pre－Glacial Ranunculus
134 Puerile to quote Pompeian \＆Aegyptian remains，as nothing in antiquity
148 cases of seeds long buried coming up
160 case of＊ancient variety of Mercurialis
168 on the facility with which Aegilops triticoides is produced
181 Hybrids of Partridge－p． 183 cases of copulation of distinct molluscs so no repugnance under nature p． 196 Hybrid Pheasants
195 〈he means 193〉 Antiquity of Common Mule in Bible
247 references about Hybrid－Papers
249 Fertility of Hybrids p250
$\Leftrightarrow 391$ No stripe on Black Ass
title page $1 u / 6 u$ 〈author，title〉 $101 u$＂Fries＂／ $1-2 \mathrm{~m} / \mathrm{w}$ Believes in Mutability $194-7 \mathrm{~m} 30$ 3－ $7 \mathrm{~m} 348-9 \mathrm{~m} 36$ 6－15m 37 7－9m 38 11－16m 39 $15-22 \mathrm{~m} / \mathrm{w}$ Fish same in different kinds of Water $28 \mathrm{~m} / 28 \mathrm{~m} / \rightarrow \boldsymbol{\infty}_{0} 402-6 \mathrm{~m} 41$ 17－22m 43 $1-7 m 4420-23 m 4619-26 m / w$ These are not natural acclimatisations $475-8 m / w$ acclimat $489 m, 22-24 m 581-2 m, 12-15 m / w$ like Peloria；what does Ruta belong to？27－30w analogous variations $611-5 m / w$ several analogous facts before \＆after this． $643-5 \mathrm{~m} /$ w variable in genus $10-15 \mathrm{~m} / \mathrm{w}$ var．in individual． $21 u$＂unel monstrosité＂， $31-35 m 65$ $6-7 m, 15 m 676-11 w$ Cases of plants with
wider ranges identical．－12－18w Alph D．C．of course gives infinitely many cases $778-15 m$ ， $20-24 m / w$ this is like such cases as lvy naturally ranging where cannot fruit 7824 $27 \mathrm{~m} / \mathrm{w}$ not really changes $8517-23 \mathrm{~m} / \mathrm{w}$ I think other characters of Alpine plants 17－ $23 \mathrm{~m} / 18 w$ on mountains $901-5 \mathrm{~m}, 13-20 \mathrm{~m} 95$ $5-15 m / w$ shows how ignorant we are 1184 $8 m, 19-28 m 12010-14 m / w$ Mentions 2 organs $12112-15 \mathrm{~m} / \mathrm{w}$ analogous variations 12416 － $22 m / 17-18 w 2$ forms $12527-28 m 1276-10 m$ 134 19－24m／18－29w nothing whatever compared to geological facts puerile to quote them． 148 19－22m 149 11－19m 154 14－19m $160 w t$ Did he observe its origin 1－4m，4－8w Has it spread or increased？？21－24m，22－ 25m，25－26m（Marchant）161 5－9m，15－17m 168 22－26m 169 3－6m，21－26m，30－31 \rightarrow 170 $16-23 \mathrm{~m} / \mathrm{w}$ shows how much crossing $27-29 \rightarrow$ 171 2－7m，31m 172 7－18m $17331 \rightarrow 1744-$ $11 m 179$ wt This wd be very good argument if we did not meet such difficulty in well－ known countries $2-7 m / 5 w$（a） $11-16 m 18117-$ $24 m 1831-3 m 1937-8 m, 9-11 m 1965-14 m$ 238 2－9m 239 2－18m 247 24－25m，26－27m 249 23－27m 250 3－6m 251 12－13m 252 11－17m 260 15－27m 261 1－12m 336 16－18w All used about dog 341 12－15m $3424-7 m, 18-27 \mathrm{~m} / 21-$ $22 u$＂l＇arcadelarquée＂／Q 346 19－22m 348 7－ $11 m 352$ 1－5m 355 5－10m，17－18m 357 wto All used about dog $8 w$ All used Cats 358 23－ $24 m 359$ 16－18m 362 6－8m 363 4－6m，8－10m， 12－13m， 27 m （Cuvier）， 28 m （Gervais），29－30m／ Q 364 8－10Q＠ 365 26m／26－30w All quoted except antiquity of certain Breeds 367 16－ $19 m 3683-9 m, 24-26 m$（Cuvier） 369 17－20m， $29 m 3701-5 m, 9-23 w$ give summary of facts for arguments－gradation of domestic race －fertility crossing when tamed，\＆character of those gone wild．－Q\＆ 374 14－20m 375 10－ $12 \mathrm{~m} /$ ？，27－28m 376 1－10m／4－5Q凶 377 11－ 13m，28－29m 378 1－3m，4a＂Cheval＂／9－14w All Q in Ch． 3 on Horses 379 2－9m 382 15－19m 387 17－18m 389 6－7w p． 391 Black Asses no stripes $39125-27 \mathrm{~m} 40215-18 \mathrm{~m}, 18-27 \mathrm{~m} / 22-$ 23Q $4065-7 m, 19-21 m, 22-25 m, 27-29 m 407$ 6－7m 409 16－18m 416 13－19m 441 21－27m 442 2－4m，20－24m／Q屯 \mathbb{m}_{1} 25－26m 443 10－16m， 27－28m／w Black less common 30 m 4445 m ， $25-27 m 4456 m 44611-12 m, 27 m 45811-16 m$ 459 17－21m 460 8－10Q $11-13 m / 12 u$＂ 2700 ＂， $18-20 m / 19 u$＂ 1494 ＂ $4617-10 \mathrm{~m} / w$ is this race 9－18m／15－17m／w Dandolo $18-19 \mathrm{~m}, ~ 20-24 \mathrm{~m} /$ 20－23m 462 6－7m／6u＂leur forme＂ 7 u＂bien 1 fournir＂，8－10m，12－16m，25－27m／19－25w Quatrefages（They do not stick their eggs） 29－30m 463 4－5m Catalogue \wp back cover 38－44mas（Boudin）
vol. 2 NB1 Melon p.62; 95 Apricots; 84 Dahlia see Loudon Encyclop.
NB2 56 Pea
NB3 Gosse p. 301
SB1 4
$\Leftrightarrow 246$ to 337 About Man good.
$\Leftrightarrow 374$ character of races of Man
p. 300 Case of Man exaggerating natural peculiarity
p. 322 argues against effect of introduced women into Harems.-
p. 326 differences in chiefs of Polynesia

- Book p. 251 Castelnau Auguste G St Hilaire
SB2 1β
Godron vol 2. sur l'Espece
\Leftrightarrow Much about Man. good. [All abstracted for my 1st vol.]
as good case of bitter almonds not being eaten by Mulots \& therefore sown in Preference for wood Q \Leftrightarrow

4 23-24m 6 21-23m 9 22-24m, 26-27m, wb effect of scanty milk when young - given in puppies - But is this hereditary? $2212-17 \mathrm{~m} /$ w Cresy's fact $271-7 m 287-15 m 301-4 m 35$ $30 m 4029-30 m / w$ read $431-6 m / 2 w$ Zebra? $442-6 m / w$ this is his argument everywhere $9-10 \mathrm{w}$ Pouters $4922-25 \mathrm{~m} / \rightarrow 501-6 \mathrm{~m} 5213-$ $19 m, 25-27 m 5412-13 m / w$ Turnips \& Rape ?? 24-27m $553-6 m / w$ B. canpestus oleifera $9 u$ "Colza", $10 u$ "Chou-Rutabaga", $10-14 \mathrm{~m} / \mathrm{w}$ Swedish Turnip 27-28m (Metzger) 56 21-24m 57 12-18m 58 9-13m $6013-17 m, 23-26 m 63$ $12-13 \mathrm{~m} / \mathrm{X}$, $20-23 \mathrm{~m} / 20-29 \mathrm{w}$ differs in selected part \rightarrow so in cabbage it is only selected part. which differs $644-8 \mathrm{~m}, 11-16 \mathrm{~m} /$ w analogous variations in distinct species $18-20 \mathrm{~m} / \mathrm{"} . . . " \notin, 26 \mathrm{~m}, 28 \mathrm{~m}$, 30 m - $6711-12 \mathrm{~m}$, $22 \mathrm{~m} / \mathrm{w}$ selection $695-8 \mathrm{~m}, 12-22 \mathrm{~m} 7011-12 \mathrm{~m} /$ 9-17w How are Bulbs of Hyacinth in contrast. I think they can be recognised. 71 $8 m 721-5 m, 7-9 m, 12-17 m 736-8 m$, 14-17m, 27-29m 74 13-16m, 21-24m 75 5-19m, 6-7m/ $6 u$ "exactement parallèles", $7-16 \mathrm{w}$ if these all real species, still odder that not known wild $16 u$ "présente| races", $22 u$ "sont 1 espérances" $/ w$ Triticums $762 u$ "Nous 1 patrie" $/ w$ Rye 77 10-12m, 18-25m 78 15-16w 3 Hordeum 19-20w 2 Oats wb 5 Triticum + 1 Rye +3 Hordeum +2 Oats all in N temperate parts of old world. $-!=11$ species + one Hordeum \& common wheat apparently known in wild state 79 9-10m, 11u "panicule serrée", 13-14u "pourvues|d'arête", $14 u$ "albumen", 16-17u "ne I caractères", 19-21m 80 21-23m, 29-31m 81 7-10m 82 18-20m, 21$22 m 843-8 m, 26-28 m 858-12 m, 20-23 m, 27-$
$29 m, 30-31 m 863-8 m 871-3 m 88$ wt in single flowers selectors only try for size brilliant colour \& regularity of shape wt in Thyme I have noticed grt differn in shape of corolla \& * stigma $7 w$ - run regular $7-9 m$, 8-11m, 19-20u "reproduisent I stérile", 21-25m, $22-31 m 8926-30 \mathrm{~m} 901-3 m, 26-29 m 912-$ $5 m$ \$/3-4u "encorelaiguillons" 93 18-21m 94 23-28m $971-4 m 9815-18 \mathrm{~m} / \mathrm{w}$ good selection 100 13-19m 101 14-17m, 20-22m, 24-27m 102 3-5m, 13-15w what a proof of powers of variability $18-21 \mathrm{~m} / \mathrm{w}$ but so it wd be in France \& England. 103 14-17m, 18-22m, 23$25 m 1063-10 m$, 16-19m, 21-25m 107 1-9m, 12-13m 216 10-14w Form of shin \& heel of Negro $16-32 \mathrm{~m} / \rightarrow$, 18-21w could not be produced by Selection 25-32w Different amount of Beards before mentioned - views of Huc's 217 1-11m/9-11x $\$ / w$ Conditions with colour 246 16-18m 247 5-8m, 10-11w Migration 12-15m 248 9-11m, 12-14m, 18$19 \mathrm{~m}, 22-24 \mathrm{~m}, 23-28 \mathrm{~m}, 25-27 \mathrm{~m} 249$ 9-13m/1$18 w$ These American facts diversity of very good to show not climate - We simply do not know 15-20m 250 1-5m, 8-12m (Humboldt) 253 11-14m/w like sexual selection 254 19-21m/w Migration good to show race $2553-6 \mathrm{~m} / \mathrm{w}$ this looks like sexual selection $2613-8 m 26313 m 265$ 2-6md 266 2-6m 268 wt This agrees with poorness of colour of productions of Galapagos \& Patagonia - But then how in Chiloe? \& Tierra del Fuego 3-8m 269 3-10m/w Compare tropical Africa \& America Tasmania 275 3-6m 276 1-5m, 13-18m, 19$21 \mathrm{~m} / 20 \mathrm{u}$ "maisltoujours", 28-31m 277 wt my notion of correlation \& darkness of skin not applicable to Tasmanians for healthy climate, migration- $3-11 \mathrm{~m} / 5 w$ (a) $24-27 \mathrm{~m} 278$ 8-12m, 16-22m 279 10-11m 280 1-2m 282 22-25m 283 4-8m 285 8-9m, 22-23m, 25-28m 288 7$\begin{array}{llllll}13 m & 289 & 10-19 m & 297 & 1-6 m & 299 \\ 6-27 m\end{array} 9 u$ "deux"|13u "incisives"/15u "phalange \mid doigt"| $11-15 w$ mutilations not hereditary Q $3005-$ $7 m, 7-8 u$ "ce|naturelle", $9 u$ "laideur" $/ w$ no $30118-25 m, 27-28 m / 22-30 w / w b$ This wd be good to show Man exaggerates peculiarities 302 27-30m/? $3088-9 m / 8 u$ "poitrine", 11$14 m, 15-21 m 3111-6 m 3131-9 m$, $18 u$ "quel climat" $118-21$ w but how vague $20-25 w$ p308 $w b$ It may be said if conditions of life can do something, why not make Pouter \& fantail, but we see no corresponding difference \& we cannot believe this it seems incredible to me - especially in case of pigeons, \& this other agency which is a real agency I have shown selection suffices for 322 13-20m 324 $17-28 m \quad 326 \quad 15-25 m \quad 327 \quad 22-27 m \quad 333$ 15-

GODRON
$21 m 3341-4 m / w$ Jews 336 17－21m 337 12u ＂genre＂／9－16m／w food \＆exercise 17－21m／w intellect，vistas \＆happiness 374 19－24m 375 12－15m

GONNE，Christian Friedrich Das Gleich－ gewicht in der Bewegung Dresden；R．V．Zahn； 1882 ［Down］\wp

GOOCH，Robert On some of the most important diseases peculiar to women London； The New Sydenham Society； 1859 ［Down］

GOODSIR，John，and GOODSIR，Harry Anatomical and pathological observations Edinburgh；Miles MacPhail； 1845 ［Down］\wp

THE GOOSEBERRY GROWERS＇REGISTER for the year 1862 C．Leicester；Macclesfield ［CUL］
v
NB 192 London；Dwts；Pennyweight； 210 Hamp．O；All＊these named gooseberry won Prizes the one year winner？
205 wb $38206 w b 35207 w b 44208 w b 36$ 209 wb $342104 m$ ，wb 39211 wb 17 wbcc 243 kinds

GOSSE，Philip Henry Letters from Alabama， chiefly related to natural history London； Morgan \＆Chase； 1859 ［CUL］
beh，gd，00，pat，v，wd
NF 〈list of synonyms and antonyms〉
NB 106；146；161； 191 odd flower；Moths sucking Melons 229； 280 Mules；Beaver fur 300
SB
p106 Partridges laying in Hens nest
146 Aegeria with appearance \＆manner of flight like wasp
161 Picus eating fruit passionately
229 Moths sucking wounded Water－melons
106 2－14m，28－35m 146 4－15m 161 9－16m 190 22－24m 191 2－5m 229 24－29m 280 8－15m 300 3－8m

GOSSE，Philip Henry A naturalist＇s sojourn in Jamaica London；Longman，Brown，Green \＆Longmans； 1851 ［CUL，S］
ab，gd
NB p． 91 Enquire；339；340； 386 Pigs $\$$ ； 418 $430 \times$ ；442，3；447；469；Singing 168
－Wool of Sheep－Colour of Cows－Sea－ Horse rabbit
SB $\square \beta$
339 The Alco－or Mexican Mopsy，white woolly var．wd．only associate with another

Dog of its own Breed－becomes passionately attached to single individual $Q \in$ 340 Feral Dog of E ．Haiti different from St Domingo of Col．Smith；thought to be an aboriginal S．American feral Dog Q
386 Feral Hogs of Jamaica Q
429．Haiti tradition of Frogs brought by shower－alludes to Moreau case
431 Frogs imported \＆spread in several W． Indian islds
441 Rabbit feral Q but not common－Slate－ coloured Qu
447 European Ferret rendered useless from their inability to overcome Chigoe infestment Q
469 On the indigenous Capromys of W． Indian islds．－

91 介13－10m $3312-3 m, 6 u$＂absolutely mute＂， 11－20m／11u＂Alco＂／ $12 u$＂from Mexico＂，19－ 22m，21－22u＂al eye＂ $3327 u$＂Mexican Mopsy＂ $33514 u$＂AgnaralSurinam＂，28－30m／Q 338 28－32m 339 2－5m 340 24－27m，29－32m／29u
＂Dog｜Haiti＂／Q 30－31u＂Ferall Domingo＂ 386 5－7m，15－20m／Q 389 1－2m／Q 9－11m，19－20u ＂well－toothed＂ 428 3－9m 429 19－22m，24－27m／ $26 u$＂bull－heads＂ 430 9－12m，23－28m，31－33m 441 27－29m／Q 442 4－8m， $7 u$＂deeply＂／Q 443 6－10m 447 4－9m 469 21－28m， $31 m$ catalogue \wp

GÖTZ，Theodor Hunde－Galerie 2nd edn； Weimar；Eduard Lobe； 1853 ［Down］

GOULD，Benjamin Apthorp Investigations in the military and anthropological statistics of American soldiers New York；Hurd \＆ Houghton； 1869 ［CUL］ cc，f，gd，h，he，phy，tm，v，y
NB All for Man Chapter
93；107；115；116；126；131；132； 134 Height； 207 Colour of Hair； 256 length of legs－not rank； 288 do in Sailors；negro 298；do－arms 301；do foot 302；Pelvis of Indian 310；do 316；Inferior vitality of Mulattoes－319；Summary of eyes 359； Size of head 371；Size of Lungs Negros 471；Pilosity of Negros Q 569 －
SB \quad ；；\propto
x p93 Different stature of men of W ． Virginia \＆New Jersey
$x 107115$ growth longer continued
x ． 126 Causes of statures xp． 136 do．
$x 134$ sailors stunted
［Even so simple an affair as stature depends on concealed conditions．－Yet a direct nature for transplanted infants affected］ －（Military Statistics）
$\propto 206$ colour of Hair \＆Eyes，seems effect of conditions
－ 256 Length of legs in white soldiers，the most variable element in stature
－ 288 Sailors in comparison with soldiers have longer legs \＆shorter arms，in a degree entirely disproportionate to difference in height
－ 289 Neck greater．－chart－waist \＆hips small．－ 290 instep thicker．－Direct action．－
298 in Blacks distance from tip of finger to patella differs much from Whites
301 Blacks－Length of Humerus
302 do great length of foot $\langle u$ ）
310 Red men very long arms－palms very broad

316 Table of Summaries

317 Length of two sections of arms
319 Summary in words on differences of races \Leftrightarrow less Vitality of Mulattoes
358 Better Summary
371 Size of head varies with stature，not in same proportions
471 different capacity of Lungs in Black \＆ Whites 〈u＊
569 No difference in pilosity between Black \＆White but this is the U．States．－
［U．States Sanitary Commission］
$9127-34 m / w$ p109 \＆ 111 p115 36－40m 93 13－22m 107 8－13m，35－36m 111 11－21m 115 9－15m 116 3－8m $1254-8 m 1265-11 m$ ，16－ $18 m 127$ 4－5m，6－8m $1315-7 m$ ，11－15m，18m $1323 u$＂agency linfluence＂，12－16m，31－33m 134 12－14m 206 介18－1m 207 4－16m 256 介5－ $1 m 2885-11 m$ ，wb These cases not known to be inherited $2895-7 \mathrm{~m} / 5 u$＂girth＂$/ 6 u$＂ 3 ＂$/ 7 u$ ＂breadth｜hips＂， $24 m / \rightarrow 290$ 21－25m 298 25－ 30 w ie distance from tip of finger to patella 32－33w see p． 253299 1－5m 301 16－18m／ $17 w \bullet, 26 u$＂fore－arm＂$/ w \diamond \otimes_{0}$ humerus $30-32 m$ 302 13－15m 310 6－8m，19－22m，32－35m 316 $2 w$ Summary Table 317 7－15m 319 12－13m／w Mulattoes $24-28 m 3594-9 m, 14 u / w \notin 37112-$ $19 m 47110 \mathrm{~m}, 15-18 m 5699-10 \mathrm{~m} / \mathrm{w}$ Pilosity 12－16m $620 \Uparrow 15 m 640 w b 9$

GOULD，John Handbook to the birds of Australia 2 vols．；London；by the author； 1865 ［CUL］
beh，br，ds，f，sl，sp，sx，sy，t，tm，ud，v，y
NB 145 variation in nests
SB
97 female larger \＆brighter Gould © Vol I 118 Merops Young
124 Dacelo Y \＆sexes
130 Halcyon Y
135 －good case Kingfisher with sexes cur－
iously different－young male like female 136 sexes with different ．．Kingfisher
Kingfishers
140 Y
How are young in species in which tail differs in colour．\＆ring－neck．
［When adult obscure 2 like I think young always alike］no
Sexual Selection
145 Y；168；177； 181
193 Y complex changes；196； 200 sexes
210 males conspicuous \＆shy Q
213 2nd year males assume plumage； 215 Y； 249
256 sexes \＆Y
260 sexes alike young different； 266 do
277；278 N
300 Menura visits same mounds
310 tail \＆nest of Menura
〈over〉
317 N Nest dome－yet female obscure－ strongly against Wallace as Splendid Birds during Breeding Season
（I have erased recently all marks I must look over volumes．）
［I may put the case that many Birds which differ sexually build domed nests．－\＆many which do not differ \＆are not brilliant also build such nests．］－
395 female less than half size of male Q \checkmark
419 castanotis
442 Bower Bird－Give figure to 461
457 Beauty causing shyness \mathbf{Q}
471 Corcorax displaying himself to utmost advantage
（It wd be well to look apropos of nest， whether many of Honey－suckers are bright－ 597 peculiar noise made by wings by males \checkmark
602 female never beautiful
［In same genus with sexes alike，\＆young either like or unlike adults．？］
All about Sexual Selection
94 21－25m 97 1－6m 99 12－15m 118 21－22m， 32u＂this 1 deep＂ $1192 u$＂black｜blue＂ 124 10－ $15 m 12512-15 m 1308-11 m 1345-10 m, 15-$ $17 \mathrm{~m} / \mathrm{w}$ very fertile $31-35 m 1356-9 m 13626-$ $34 m 137$ 22－25m $1407-11 m, 19-21 m, 30-32 m$ 145 15－17m，30－35m 162 3－7md 168 13－15m 169 24－28m 181 8－9m，16－18m，18－19m，33m 182 13－15m 193 20－21m／20u＂brown＂，22－ 26m／25－27u士，28－30m 196 3－8m／3u＂throat｜ back＂／4u＂jet－black＂／7u＂uniformlhead＂，20－ $21 u$＂throat Igrey＂ 197 10－11m 200 21u ＂Camphegae I Graucali＂， 23 u＂sexes I colour＂ 210 3－7m／Q 213 12－14m 214 12－16m 215 28－31m

GOULD, AUSTRALIA HANDBOOK
249 1-2m 256 24-27m $2608-11 m / 8 u$ "sexes alike", $8 u$ "young"/10-14w observe bird 266 19-23m/w get/observe birds $2771 u$ "sexes considerable", 17-19m 278 31-33m/32u "black। scarlet" $2796-13 w$ how is rest of plumage $15-20 \mathrm{~m} / \mathrm{w}$ common to both sexes whilst others differ more 280 1-4m 285 9-13m 287 12-13m, 21-23m 290 22-26m 29416 m , 18$21 m 30026-29 m 30123-26 m, 32-34 m / 33 u$ "appearancel roofed" 302 15-18m 303 21-26m $3088-13 m, 22-23 m / 22 u$ "powerful | voice", $24 u$ "own I beautiful", $\quad 24-26 \mathrm{~m} / 24 u \pm, \quad 29 u$ "of 1 grounds" 309 1-3m/2u "domed", $33-35 m 310$ $1-3 m, 30-34 m 311$ 11-14m/13u "and lin" 312 $9-11 m / 12 u$ "domed lone" 317 wt (a) many species all so far as known differ greatly by sex \& build dome nests $6-9 \mathrm{~m} / \mathrm{w}$ (a) $11-13 \mathrm{~m} /$ $12 u$ "build dome" 318 19-21m, 24-27m 319 $28-29 m / 28 u$ "whichlshaped" $3206-18 m 323$ 24-26m, 33u "doтe" 324 18-22m $3253 u$ "dome-shaped" 340 5-7m/6u "openinglside" 341 27-29m 358 19-21m 359 26-29m 362 2$5 m / 2 u$ "dome-shaped" $363 \quad 32-34 m \quad 364$ 19$20 \mathrm{~m} / 19 u$ "domed" 365 15-17m 374 2-4m/ $3 u$ "domed", 33-34m 383 4-6m, 7-9m/7u "recommended lobserver", $10 u$ "domed form" 386 27-28m/27u "entrancelabout" 387 19-20m 388 17-19m/17u "dome-shaped nests" 389 3-5m $3919-12 \mathrm{~m} / 9 u$ "oflform", $18-19 \mathrm{~m} / 18 u$ "arel similar" 395 16-19m/17u "whichlsize" 407 3$5 m / 4 u$ "dome-shaped" $4147 u$ "Plain|finch", $16 u$ "domed form", 19-20u "absencel female" $4182-5 \mathrm{md} / 3 \mathrm{u}$ "pendant"/6u "offer" 419 2729m/u "upperlwhite" 440 24-27m 441 3-6m 442 wt B. genera no doubt co-descendedO by some ancient bird, which acquired their strange instinct. 1-3m $443 \quad 23-26 m / 24 u$ "differed" $\mid 25 u$ "third larger", 30-32m, 33-35m 444 2-4m, 3-6u士, 5-7m, 11-12u士, 16-17u "which 1 males", $11-14 m, 19-20 m / x$, 26$27 u \otimes, 29 m * / u$ "picklleaf", 32u* "opening|the" $4458 u$ "blue-black", 11u "velvety1 shining", 14-16m, 20-23m/w Eyes 25-27m 447 12-15m 448 2-6m, 7-9m/8u "bothlthese", $9-12 m, 12 Q 12-14 u \leftrightarrow 44914-18 m$, 16u "2 1/2llong", $22 x / 22-23 u \quad$ "flying|side"/ "..., 27-29m/28u "thelpink" 451 1-2m/2u "threelin", 3u "beautifullylgrasses", 5$6 u$ "bivalvelby", 10-16m, 10u "stones I within" $116-17 u \leftrightarrow / 17 x$, $21 u$ "round", 23$24 \mathrm{~m} / 24 u$ "formed lindividuals" 452 16-18m 453 8-16m 455 1-2m $/ 1 u$ "thickl4", 2-3m/3u "Snail l berry", 9-12m, 10x, 10u "4 I high", $11 u$ "somelberries" 457 20-24m/Q 26-27u "twolconflicts" 458 26-32m 459 25-28m 460 $5-9 m, 22-25 m 4612-6 m, 8-11 m, 21-26 m 464$ $14-17 m, 30-35 m 47110-14 m 478$ 23-24m, 25$27 m, 30-33 m \quad 483$ 19-21m 486 8-17w
generally beautiful \& nest not domed, I think. 495 11-12m 496 33-35m 497 13-17m 50214 $17 \mathrm{~m}, 31-33 \mathrm{~m} 5045-7 \mathrm{~m} / 6 u$ "rest 1 shaped" 509 $16-17 m, 30-31 m 5256-7 m 52631-32 m 527$ $16 u$ "of birds" $/ 15-17 \mathrm{~m} / \mathrm{w}$ nest open \& cupped 531 32-33m 534 12-15m 535 22-26m 542 21$26 m 547$ 9-10m, 18-20m/18u "denuded"/19u "knob"/20u "less lanceolate" 556 1-6m $5623 u$ "on l shaped", $6 u$ "inltop", 17-22w beautiful birds 21-27m 567 22-25m 573 23-26m 574 15-17m 581 1-2m 588 14-15m 597 1-5m/3u" a hundred" 602 12-17m 603 32-33m 604 1-2m 607 1-2m 617 6-11m, 20u "the lbrown", 30$31 u$ "upper|rufous", $33-35 \mathrm{~m} / 33$ u "tail |white" 625 4-6m/w 633 30-32m
vol. 2 NB 538 New Zealand many * anomalous Birds
6 18-22m/19u "yellow|centre"/20u "crest" 7 18-22m 10 7-10m, 19-21m $123-4 m 1433-$ $34 m 1733-34 m / w$ and white cockatoo $185-$ $16 \mathrm{~m} / 8-11 w$ Generally different $206-9 m, 16-$ 19m $224-5 m 254-5 m, 29-31 m 2820-23 \mathrm{~m} /$ $20 u$ "the plumage" 30 10-12m, 32-34m $3127-$ $29 m 321-5 m, 10-11 m / u$ "thighs I green" $/ w$ var 36 22-24m, 25u "the 1 scarlet", $33 u$ "throat | red" 37 3-5m 38 24-27m $4031-32 \mathrm{~m} /$ $31 u$ "rich I glory" $4119 m 4534-35 m 46$ 1-4m, 4-7m 48 32-34m $4931-33 m 54$ 7-11m, 24$27 m 5527 u$ "beautiful bird" 56 Iw Hence It does not seem as if variation had occurred early in life, but had crawled backwards or invaded the young. \& it seems whenever this happens it invades both sexes $-\&$ ceases to be limited to one sex. $-\uparrow 5-1 m / \Uparrow 5 w$ one of the most Beautiful spec $w b$ In other species of genus young very different - very beautiful. Shows not descent - from differently coloured ancestors 59 11-14m,33$35 m 6122 m, 24-25 m 6312-14 m 6624-25 m$ 67 20-21m 68 25-28m 70 8-10m, 32-35m 72 3-5m, 20-21m, $22 u$ "band|less", $23 u$ "conspicuous|blue", $24 u$ "bordered labove" 74 $15-17 m 7618-20 m 775-6 m 7819-20 m 82$ $14-17 \mathrm{~m} 8312-14 m, 32-35 m 8515-17 \mathrm{~m} 87$ $35 m 9035 m 92$ 2-4m 95 19-20m 97 18-29m 99 34-35m 101 21-22m $10232-33 m 109$ 11$12 m, 14-15 m, 29-30 m 1111-2 m 1121-3 m 113$ 28-31m 117 22-23m $1197 m 12129-31 m 129$ 30-31m 132 16-18m 134 12-14m 143 18-19m 144 24-26m 147 25-28m 149 12-13m 154 27$33 m 17816-20 m 18028-31 m 1834-5 m 186$ 6-9m, 20-22m 187 19-21m 188 10-12m 191 20-23m 200 6-7m 203 6-8m 212 7-10m 213 30-31m 215 12-15m 220 8-12m 228 30-33m 232 23-25m 234 4-6m, 23-25m 236 33-35m 255 15-20m 264 19-23m 275 20-26m 276 18$22 m 283$ 33-35m 285 28-31m 295 29-31m 312

33-35m 319 26-28m 329 7-8m 333 24-28m 335 18-21m 337 27-32m 351 14-15m 355 27$29 m 359$ 24-26m 360 29-32m 362 18-22m 363 $31-32 m 3641-4 m 366$ 24-26m 373 16-18m $378 \quad 15-17 m \quad 380 \quad 6-8 m \quad 383 \quad 13-17 m / 14-15 u$ "this lperceptible", 21-24m, 33-34m 384 16$19 m 433 \mathrm{zb} 491$ 21-24m 497 15-19m 500 31$35 m 502$ 25-28m 503 13-17m 505 20-25m 511 $26 u \leftrightarrow, 29-31 m 5136-8 m 52022-23 m 5275-$ $8 m 53024-28 m 531$ 13-15m/13-14u "straight I beak" 538 27-31m

GOULD, John An introduction to the birds of Australia London; Richard \& John E. Taylor; 1848 [CUL, I]
ex, gd, in, mg, 00, sp, sx, v
NB p. 8
SB1 p. 8 to 18; p.23; p30; 36; 51; 64; 70; 75; 82; 101; 112; 134
I have forgotten to observe the relation of range of genera \& species
SB2 $-\beta$
10 Smooth Trees accounts for no Woodpeckers
10 Many representative Birds in Australia of those of North. (but I do not know, whether f. in intermediate region: I did ask.

15 Vars of Birds in Tasmania, migrating in one \& not in other Ch. 6
23 Strix numerous in species \& individuals in Australia
36 Grauculus of Tasmania
51 vars of Anthus 70 vars of Cacatua - 75 101
64 Law of representation in Australia chiefly holds E \& W
71 Nestor of Philip Isd extinct
82 Megapodium 3 species Q or rather genera - all male keep for hatching. Description of Habits
$822-27 m 915 a / 8-13 w \notin\langle n o t C D\rangle 1025-28 m$, 38-49m 11 3-5m $151-3 m, 6-17 m$, 19m, 37$38 m 161-2 m 171-2 m 1841-43 m 2322-31 m /$ $1-31 w$ this wd look as if number of species \& number of individuals were related - not so in plants $3012-20 \mathrm{w}$ I daresay true 31$46 \mathrm{~m} / \mathrm{w}$. Hence in mundane genus - close species represent each other in different parts of same continent $361-4 m 5141-45 \mathrm{~m} /$ $42 u$ "extra-tropical regions" $6428-36 m 70$ 39$44 m 71$ 13-14m, 38-40m, 42-45m 75 41-42m $8239-42 m / w$ mother attends them p 8883 $35 m / u$ " $12-13$ " 84 19-20m $855-7 m \cdot 883-7 m$ $8917-19 m, 38 m 9046-47 \mathrm{~m} 919-10 \mathrm{~m} / 10 u$ "lat | South", 21-23m, 25-26m, 29-30m/29u "six feet" 101 17-19m $11023-26 m 112$ 2-6m/ wt what authority? 122 table "Name of
species".w You may shorten name. table "Number of Volume and Plate".w This column nothing $\langle p p$. 122-33, many entries in column headed "South-eastern Australia or N.S. Wales" marked with a cross) 134 25-30wec, 34-36m

GOULD, John Introduction to the birds of Great Britain London; Taylor \& Francis; 1873 [CUL, I]
beh, cc, ex, fg, gd, is, mg, oo, sl, sp, tm, y
NB - 23 S. Selection
SB $\boldsymbol{\infty}$
5,7,8 On migration
7 Birds not common in parts of England where not formerly known.
11 Destruction of Birds during severe winters 13 Protection of certain species unduly increases other species
16. On slight differences of Birds of Britain \& Europe \& on small size of insular Birds
21. Eggs in Holes generally white; but others white as with Wood-pigeons \& exposed.
22. Water-birds can swim at once; \& one kind of grouse can fly almost at once.

5 15-24m, 33-39m, 46-50m 644-49m 75-9m $81-7 w$ So France is not S. $14-21 m / 10-20 w$ In Ireland no 25-29m 11 15-20m, 31-37m, 45$49 m 1320-22 m 161-9 m, 12-22 m 177-9 m$, 8$12 \mathrm{~m}, 12-14 \mathrm{~m} 21$ 19-26m $222-7 \mathrm{~m} 231-8 \mathrm{~m} 42$ 31-43m

GOULD, John An introduction to the Trochilidae, or family of humming-birds London; Taylor \& Francis; 1861 [CUL, I] beh, cs, gd, ig, in, sp, sy, t, tm, v
NB1 All references seem here abstracted. Those not struck out, all refer to slight variations \& doubtful species.- No doubt many of the doubtful species could be cleared up by more specimens.-
141 ${ }^{\text {; }} 146$ var; 158 var; 161 var; 164 do; $167 \mathrm{do} ; 170 \mathrm{do} ; 174 \mathrm{do}$ 176; 177, 8 do do 174 tips of 4 central tail feathers, tipped with dark green
Mem vast numbers of species are known by only few spec.
would it not be worth while to quote all the cases of doubt -
State that many of the doubtful forms would be cleared up. \& considered distinct, on other hand would be connected by intermediate gradation.

- 7; 9; 14; 18; 19; 20; 22; 52 Vars \& close species.
61 var; 62 do; 67*; 74 * close species; 83 do; 86 var; 89 var; 91 var; 98 do; 102 do;

GOULD, TROCHILIDAE
$106 \mathrm{do} ; 109 \mathrm{do} ; 112 \mathrm{do} ; 116 \mathrm{do} ; 118 \mathrm{do} ;$ 120, 126 Salviae; 127 var; 129 var; 136 var; 138 var
NB2 Mr G. says * he has never noticed vars; but then he admits some slight individual variations \& if he find 2 forms for 2 districts ever so slightly different, they are called species.- In the same district at same time, seem to be similar
variation hardly can occur; \rightarrow 〈to NB1, 61 var)
States as the Groups have been carefully monographed - \& also confined to warm part of our Continent, good to consider * what amount of doubtful species were offered - Then state within same region could hardly vary. on account of crossing SB $\boldsymbol{\sim}$
p.7. Humming Birds very confined ranges.
8. Juan Fernandez p. 141
9. West Indies distinct species.

14, 17, 18 Great sexual differences: given exhibition of $\&$ p. 20 nest ornamented with feathers

- 22 singing \& beauty not together
p. 20 nest loaded with stone to make Heavy \& keep level
$\Leftrightarrow 28$ pugnacity
p. 35 sexual * similarity

52 do females in excess
67 do female more beautiful gorget than male

75 do

120 more than 20 males to 1 female - male very gorgeous.-
49 Males Shafts of feathers expanded in male

7 5-32w Humming birds very num. \& confined ranges $35 \rightarrow 830-36 m 920-28 m$, $31-32 m 1437-45 m 15$ wt Bates Butterflies when underside displayed this is beautiful 1$2 \mathrm{~m} / \mathrm{m}$, $24-29 \mathrm{~m} / 24 \mathrm{u} \uparrow / 25 u$ "pierce 1 bases" $/ 28 u$ "Bourcierlbird" 17 21-25m 18 1-10m/5u "beards", 14-19m, 19-23m, 30u "blue eartufts", $33 u$ "bearded", $43-46 \mathrm{~m} / 44 u$ "undertailcoverts", 49-50m/50u "from behind" 19 6-8m, 9-15m, 17-21m, 24-26m, 41-50m/42-44"..."/ $43 w$ of the nest $47-51 c \leftrightarrow 201-3 m, 36-43 m$ $2211-16 m / 1-13 w$ because the charm suffices Nature never extravagant 18-39w However fighting \& beauty go together p. 2828 46$50 \mathrm{~m} / \mathrm{w}$ males? 29 16-22m/19-20u "perceived fastened", 23-26m 34 31-33m 35 1-3m 46 21$27 \mathrm{md} / 26-28 \mathrm{~m} 49$ 32u^, $33-36 \mathrm{~m}$, $41 u$ "similarlitylappearance" 52 19-22m,37-42m/ $42-47 m / 18-47 w$ so that weapons of war might be gained even when males few 61

12-15m 62 8-11m 64 35-40m/26-43w Males or females more numerous? 67 17-22m, 35$38 m 7425-31 m 7525-29 m 8338-43 m 8924-$ $26 m 9137-38 m 9828-32 m 10215-16 m$, 21$25 m, 41-44 m 103$ 15-17m 106 26-32m 109 13$15 m 1109-10 m, 13 u \leftrightarrow, 14 u$ "white l four", 17$20 \mathrm{~m} / 18 \mathrm{u}$ "That 1 sole", $23-25 \mathrm{w}$ see p102 for Andes - case $37-38 m$ $1114-9 m / 6 u$ "attractive as may be" 112 29-32m, 35-39m 113 32-36m $1165-9 m 1181-8 m / 6 w$ only 119 35-38m 120 11-13m 126 11-16m 127 38-41m 129 31-34m 136 42-44m $13840-44 m 141$ 27$35 m 146$ 26-29m 158 26-31m 161 7-10m, 20$22 m 16428-30 \mathrm{~m} 167$ 15-20m 170 18-20m 174 40-42m 176 1-3m 177 16-18m, 22-23m 178 2$5 m, 30-33 m$

GOULD, William An account of English ants London; A. Millar; 1747 [CUL, pre-B]

$213 w$ Myrmeco

GRABA, Carl Julian Tagebuch geführt auf einer Reise nach Färö im Jahre 1828 Hamburg; Perthes \& Besser; 1830 [CUL, on B]
beh, br, gd, is, mg, sp, tm, v, wd
NB
50 to 67; 62 wild Pigeon; 80; 102; 106; 118; 150; 187; 205
SB
51. The White Raven not fixed (Magillvray $3 /$ 745) Descript of - other ravens drive away, only at Faroe as pair together
56 anthers varying in measurements \& tints \& 67 Q
-63 C. livia varies (read)
65, 80 Larus 2 spec. varies much in beak \& tarsi Q
103 * seldom found 2 birds of same kind of same dimensions - took great pains on 100s of specimens
107 another capital case of Uria, see to this Q (p150 another case of 2 forms breeding together)
118 Colymbus, beak \& tarsi variable Q 205 there are migratory Birds in Faroe Q The Pied Faroe Raven is analogue of Hooded Crow \& Jackdaw \& Magpie(?)
title page w See about Pie-bald Raven mentioned in Macgillvry Vol. 3 end. Does Ch. Martins in Voyage to Scandinavia mention this Bird.- p70 1 wb Read 38 16$23 m 50 \quad 25-28 m 5116 w$ vol 3 p 745 of Macgillvry 17-19m, 24-25m/24u "nicht|auf"| $25 w$ not a fixed species $5210 u$ "Derlstark", 11-12m, $15 u$ "sehrl vorne"/12-16w agrees pretty well with Mac. $25-28 \mathrm{~m} / \mathrm{w}$ exactly same
as Mac $30 \mathrm{~m} / \mathrm{u}$＂hornweiss＂ 53 16u＂diel mittlern＂， $20 u$＂Schwanz＂， $21 w$ black in Mac． $23 u$＂rein schwarz＂ $\mid w$ agrees $25 u$＂Krallen｜ weiss＂， $27-30 \mathrm{~m} / \mathrm{w}$ varies 54 wt very curious being produced only at Faroe $9-10 \mathrm{~m} / \mathrm{w}$ ornithologist $10 u$＂Viell．｜Brehm＂／11u＂Brün－ nich＂／w have named it $14-17 \mathrm{~m} / \mathrm{u}$＂gewöhn－ liche｜vorkommt＂／w pecking him away 20－ $23 m / u$＂dass 1 erhält＂，$\uparrow 4-2 m / u$＂ein 1 Junge＂ 56 $27-29 \mathrm{~m} / \mathrm{w}$ measurements not here to be trus－ ted 57 2－4u＂Mailübrigen＂，8－9m 59 1－3m 62 18－21u＂daslbehalten＂，18－25w Des－ cription 63 17－26m／20w varies $24 u$＂eine＂／ $25 u$＂eine Andeutung＂／25－26m，27－28m／28u ＂ist｜gemein＂ 65 22－27m，29u＂Knoch－ enbildung＂，$w b$ skeleton $664-7 m / 5-6 u$＂diel wirken＂， $11-13 \mathrm{~m} / \mathrm{w}$ very rash to trust to measurements on dryed skins 19－24m／w does not trust to measurement without they are constant over 25－30m， $26 u$＂Papagei－ taucher＂$/ w b$ Puffin $674 u \wedge, 7-9 w$ differences of 2 specimens－ $22-27 \mathrm{~m} / 24 u$＂ $111 / 12$＂ 80 13－15m／14u＂5 Linien＂ 102 22－30m／24－25w Variation 103 4－8m／7－8u＂und｜wären＂， 22－26m，23－25u＂hunderte｜untersucht＂ 106 20u＾，22－24m，25－26u＂halbenl Zoll＂，27u＾／Q $w b$ Faber $w b$ See MacGillvry for other localities $29-30 \mathrm{~m} / 30 u \leftrightarrow 1071 u \leftrightarrow / w t / 1-7 w$ Uria ringvia var of U ．troile．is certainly only a variety，though he at first doubted $8-17 w$ MacGillivray 5 p .328 with picture of head．Q 7－9u＂einigen 1 Auge＂，16－17 $u \leftrightarrow$ ，19－21m 118 21－22m 146 14u＂dunkelbrauner＂／10－13w 2 other chance visitors $22-25 m / w$ Goldfinches arrived 150 6－8m／Q $1878-12 m / 9 u$＂die Hälfte＂ $20219 m 205 w t$ Faroes about 160 miles from Shetland \＆further from Iceland 7－10w in Iceland I think many migratory Birds $11-12 \mathrm{~m} /$ $u \leftrightarrow / w$ migratory Q

A Graduate from Cambridge The Darwinian theory of the transmutation of species London； James Niskett； 1867 ［Down］

GRANT，Robert Edmond Outlines of comparative anatomy London；J．B．Baillière； 1835 ［CUL］
NB 〈back cover of each of the four parts〉 Nothing
Part 3，Catalogue， $1825 m 1940 \mathrm{~m} 206 \mathrm{~m}$ supplement to Catalogue， 1 16－17m 3 10－ $13 m$ ， $45 m 625 m, 29 m$

GRATIOLET，Pierre De la physionomie et des mouvements d＇expression Paris；J．Hetzel； 1865 ［CUL，S］
beh，he，pat，phy，t, v

NB1 Book 14；p． 311 Book；p135
NB2 p． 123 Hensleigh；p137；161；p． 167 Dyspnoea；Englehart；MouthO BD
title page $1 u / 3 u$ 〈author，title〉，wb See p436 for Lecture 7 1－4m，22－25m 12 8－10m，15－ 20 m ，21－25m 14 17－20m 15 4－12m，15－17m 17 $5-8 m / w$ rolling eyes $1815-19 m /$ ？ $1917-19 m$ 23 15－16m，18－20m $243-5 m, 10-21 \mathrm{~m} 26$ 18－ $23 m 3519-25 m / 22$＂．．． $371-9 m / .$. ＂ $428-13 m$ 43 9－12m $475-13 m, 14-17 m 51$ 12－15m／w p256 p346 52 1－8m，12－23m $539 u$＂presquel regard＂， $10-12 m / 10-11 u \quad$＂mouvements 1 sensibles＂｜ $12 u$＂tête inclinée＂， $13 u$＂chairs du＂， $14 u$＂flasques＂ 65 18－25m／＂．．．＂ 66 2＂．．．，4－8m 73 3－5m 75 12－15m 78 8－13m 79 12－14m／w colour changes suddenly in Turkey $21-22 \mathrm{~m}$ ， 23－25m 81 1－7m，15－17m，19－22m 82 5－8m， $20-23 m 8310-15 m 848-13 m 8510-14 m 90$ 6－7m，24－25m 91 4－9m，17－22m 92 6－25w Have the capillaries muscular coats？Does Beale discuss this？（of course） $20-25 m$ ，$w b$ This view of nervous power merely general $941-7 m / 1-5^{\prime \prime} . . . " / 4 w$ oh $16-19 m 986-10 \mathrm{~m} / 8 \mathrm{w}$ Cats 14－16m 99 3－6m $10015-20 \mathrm{~m} /$ ？ 101 1－ $8 m 104$ 21－25m 105 1－4m 106 7－10m 113 6－ $8 m 1155-23 w$ seems to say that noise of laughing \＆crying the same 117 9－13m，19－ $20 \mathrm{~m} / ? / u / w \tau 1189-13 \mathrm{~m} / \mathrm{w}$ hence close eyes $22-25 m, w b$ Bell wrong on expanding chest for effort $120 w b$ retardation of circulation 121 $14-18 m / 5-17 w$ to check the circulation 19－ $21 m 12521 u$＂bâillement＂ $1264-9 m, 13-16 m$ $1275-7 m 1299-11 m / w$ trembling at dawn of life $\Uparrow 2 u$＂l＇action 1 froid＂ 144 wt to see distinctly $1-4 m 145 \quad 1-4 m 1464-7 m / w$ tears too bright light $1525-8 m 1558-25 m 1574-7 m$ 160 14－25m 161 11－19m，23－25m 168 14－21m 186 17－25m 187 21－25m $1881-3 m!!/ . . . " 189$ 13－24m 206 19－21m 207 wt This is Key－stone inherited 1－2m，4－7！ 212 24－25m／＂．．． 213 1－ 4m／1－5．．．＂，16－19m 217 22－24m 218 19－24m 221 11－13m 230 4－11m 232 4－6m，10－12m 233 8－9u＂oublient 1 respirer＂，10u＂cet Iqui＂ 234 11－14m 247 18u＂excessive tourmente＂，19－ $25 m / \rightarrow / w b$ shortest injured limb 248 1－5m 250 8－15m，22－25m 251 3－7m，20－25m 253 6－9m， 23－25m 254 4－6m，7－9m／w astonishment I doubt 19－24m 255 3－4m，fig．m／w like Husckke 256 8－11m 257 5－9m 264 5－12m／6－8w Piderit 21－25m 265 17－20m 268 11－16m 283 wt to 287 10－14m，18－23mas／ 20 w do 23－25m 284 6－ $10 \mathrm{~m}, 10-15 \mathrm{~m}, 22-25 \mathrm{~m} / \mathrm{w}$－〈about placebo effect） 285 10－19m 286 wt The wish to stop crying increases it－1－4m，8－10m 287 10－ $11 \mathrm{~m} / \mathrm{w}$ Lemon 289 13－15m／14u＂M．Chevreul＂ 290 20－25m 311 5－7m 322 13－18m 323 12－ $18 m 32414-18 m / 15 m / 14-18 u \pm 3346-21 m / 8 w$

GRATIOLET
opposite feelings 335 13-15m/10-17w anger does the same $16-21 m, w b$ is it not because it has led to action see Note in Portfolio 336 $5-10 m, 17-21 \mathrm{~m} / 21 u$ "pousse laffreux", 24-25m, $1-25 w$ can pain be said to excite an animal - yes if not accompanied by fear whipping of a horse shows it - \AA collapse soon follows $w b$ (See Bell) 337 17-25m $3384-8 m 345$ 18$23 m 346$ 11-14m, 19-23m 351 wt Antithesis to humility $1-12 m 35710-12 m 35820-24 m 359$ $w t$ hides his face $3-6 \mathrm{~m} / \mathrm{w}$ shame $16-18 \mathrm{~m}$, $20 m, 22-25 m, w b$ hiding thus is wildness \& distinct from shame, which makes a blush 360 1-3m 362 1-6m 369 15-18m 370 14-19m 376 16-25m 378 21-25m 384 24-25m 436 5$7 m 438 w b$ p253 Hippocrates: cannot feel pain in 2 places at once

GRAVES, George The naturalist's companion London; Longman, Hurst, Orme, Brown \& Green; 1824 [CUL, pre-B, S Charles Darwin August 4th 1825] \wp

GRAY, Asa Botany for young people: part 2, How plants behave New York \& Chicago; Ivison, Blakeman, Taylor \& Co.; 1872 [CUL, I]
fg, mhp, 00
NB 17; 18; 34; 42; 45; 12 error
12 21-24m/21u "is 1 right" 17 2-6m 18 31-33m, $w b$ No, because a tendril that has caught nothing coils $3416-23 \mathrm{~m} / \mathrm{w}$ insects \& pollen 37 20-21m 42 5-15m 45 28-37m (Linnaeus)

GRAY, Asa Darwiniana New York; D. Appleton \& Co.; 1876 [CUL]
cs, t, v
NB1 Westminster R July 1875
NB2 357-58 Design \& Purpose
Raindrops 157
Cloth 85
p338 about variations wearing out of oncecrossed
iv $7-9 m 114 u c \circledast$ "he"/w Dana 357 29-31m 358 19-33m

GRAY, Asa First lessons in botany and vegetable physiology New York; G.P. Putnam \& Co., and Ivison \& Phinney; 1857 [CUL, I] ct

NB 51 Sarracenia; 165 Proteine
49 20-24m 51 29-38m 120 1-6m $12314 m$, $25 m 12734 u$ "wholelovary", $38-40 \mathrm{~m} / 39 u$ "orange|berry" 130 19u "Caryopsis I Grain", $23 u$ "Indian corn", 26-29m/26u "hazelnut", $29 u$ "inlhusk" 165 17u "Proteine", 23u "as 1 lining", 25u "Protoplasm" 210 17m

GRAY, Asa Manual of the botany of the northern United States 2nd edn; New York; 1856 [CUL]
gd, sp, sx, t, v
NB 257 Q var. of Azalea
p80 Rhamnus dimorphic clearly

- p123 Crataegus wrong

SB1 $\square \Re$
Asa Gray
Phanerogams (calculations showing) 2.6 species to genera; 134 Families〈line across page〉
Introduced by Decandolle on whole U States (calculations similar to above)
SB2 <not CD; lists of species naturalised from Europe; some calculations by CD in pencil similar to above>
< $0=$ marks by $M r$ Norman identifying plants naturalised from Europe; most m / u mark "common" ${ }^{\text { }}$
$422 u 64 m d, 17 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m} / \mathrm{u} 75 \mathrm{~m} / \mathrm{u}$, $38 \mathrm{~m} / \mathrm{u} 8$ $4 \mathrm{~m} / \mathrm{u}, 16 \mathrm{~m} / \mathrm{u} 911 \mathrm{~m} / \mathrm{u}, 13 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{u}, 35 \mathrm{~m} / \mathrm{u} 10$ 10o, 180, 27o, $3201119 \mathrm{~m} / \mathrm{u} 123 \mathrm{~m} / \mathrm{u}, 60$, 12o, $24 m / u 1311 o 1426 m, 30 m 1518-26 \mathrm{~m} / \mathrm{w}$ These remarks mean nothing $193602121 \mathrm{~m} /$ u $234 \mathrm{~m} / \mathrm{u}, 18-19 \mathrm{~m} / \mathrm{u} 2412 \mathrm{~m} / \mathrm{u} 2510$, 80, 11o, 140, 200, 330, 40 o 26 10, 60, $17 \mathrm{~m} / \mathrm{u} 277-8 \mathrm{~m} / \mathrm{u}$ $286 \mathrm{~m} / \mathrm{u}, 80,10 \mathrm{o}, 13 \mathrm{o} 309 \mathrm{o}, 16 \mathrm{o}, 35-36 \mathrm{~m}, 36 \mathrm{~m} /$ u, $39 u 31403231 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m} 3413 \mathrm{~m} / \mathrm{u}$, 35 m 35 $11 \mathrm{~m}, 13 \mathrm{~m} 3610,50,150,21 \mathrm{o}, 24 \mathrm{o}, 27 \mathrm{o}$, 28 o 38 160, 200, 360, 39039 1o, 50, 240404041 13o, $17 o 4224 \mathrm{~m} / \mathrm{u} 436 \mathrm{~m} / \mathrm{u}$, $10 \mathrm{~m} 448 \mathrm{~m} / \mathrm{u}$, $13 \mathrm{~m} / \mathrm{u}$, $18 \mathrm{~m} / \mathrm{u}, 24 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m}, 27 \mathrm{~m}, 350$, 39 md 5012 m , $28 \mathrm{~m} / \mathrm{u} 5135 \mathrm{~m} / \mathrm{u} 5216 \mathrm{~m} / \mathrm{u} 5428055$ 3o, 90, $31056220,29 m / u, 310,3505710,9058220$, $2805960,21 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u} 6040,90,230,31 \mathrm{o} 61$ 110, 140, $2906210 \mathrm{~m}, 140,170,33 \mathrm{~m} / \mathrm{u} 6310 \mathrm{o}$, 15064 190, $2406511 \mathrm{~m} / \mathrm{u} 6620,50,100,160$, $2106733 \mathrm{o}, 37 \mathrm{~m} / \mathrm{u}, 40 \mathrm{o} 68106910,36 \mathrm{~m} 72$ $9 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m} / \mathrm{u} 73 \mathrm{11o}, 190$, $22 \mathrm{o} 74 \mathrm{9m} / \mathrm{u}, 13 \mathrm{~m} / \mathrm{u}$, $17 \mathrm{md} 7523-24 \mathrm{~m} / \mathrm{u} 7735 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} / \mathrm{u} 786 \mathrm{~m}$, $8 m / u 793-4 z, 6 u$ "Flowers often polygamous", 41080 wt long-style \& short pedicels is more Masculine wt in R. catharticus $5-6 \mathrm{~m} / \mathrm{u} 81$ 40 m 8323 o , $38 \mathrm{~m} 8435 \mathrm{~m} 855 \mathrm{~m} / \mathrm{u} 8630 \mathrm{~m} / \mathrm{u} 87$ $22 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m}, 46 \mathrm{~m} / \mathrm{u} 91 \mathrm{19m} / \mathrm{u}, 33 \mathrm{o}, 38092150$, $200,2509360,110,160,220,250,330,37 o 94$ $50982 \mathrm{~m} / \mathrm{u} 9924 \mathrm{~m} / \mathrm{u} 10027 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} /$ u $10111 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 41 \mathrm{~m} 1022 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m}$, 42010350 , $901044 m 10510-11 \mathrm{~m} / \mathrm{u}$, 21 m , $24 \mathrm{~m}, 27 \mathrm{~m} 10828 \mathrm{~m} / \mathrm{u}, 30 \mathrm{o}, 40 \mathrm{~m} / \mathrm{u} 10930 \mathrm{~m} / \mathrm{u}$ $11211 \mathrm{~m} / \mathrm{u}, 260,29 \mathrm{md}, 43 \mathrm{~m} / \mathrm{u} 11312 \mathrm{~m} / u 114$ $3 m / u 1153 \mathrm{~m} / \mathrm{u}$, 22o, 280, $31011626 \mathrm{~m} / \mathrm{u}$, $30 \mathrm{~m} /$ u, $42 \mathrm{~m} / u 11730 \mathrm{~m}, 42 \mathrm{~m} / u \quad 11813 \mathrm{~m} / \mathrm{u}$, 29 m , $31 m 1195 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} / u 1202 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u}$, 28m/u $1218 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m}, 28 \mathrm{~m}, 29 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / \mathrm{u}, 43 \mathrm{~m} / \mathrm{u} 122$ $30 m / u, 36 m / u 12310,60,14-26 w$ NB This
was omitted by me $270,41 \mathrm{~m} / \mathrm{u} 1247 \mathrm{~m} / \mathrm{u}$, $10 \mathrm{~m}, 13 \mathrm{~m}, 17 \mathrm{~m}, 34 \mathrm{~m} 12516 \mathrm{~m}, 17 \mathrm{~m}, 18 \mathrm{~m} / \mathrm{u}$, $38 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} 1262 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{u} 12823 \mathrm{o}$ $1295 \mathrm{~m} / \mathrm{u} 13011 \mathrm{~m} / \mathrm{u}, 19 \mathrm{~m}, 39 \mathrm{~m} / u 1318 \mathrm{~m}, 9 \mathrm{~m}$, $10 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 13 \mathrm{~m} / \mathrm{u} 1327 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m} / \mathrm{u} 133 \mathrm{~mm} /$ u, $31 \mathrm{~m} / u 1346 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u} 1356 \mathrm{~m}, 7 \mathrm{~m}, 8 \mathrm{~m} / \mathrm{w}$ $313624 m 1374 m / u, 9-10 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} 14120$, $18 \mathrm{~m} / \mathrm{u} 14324 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u} 14542 \mathrm{~m} / \mathrm{u} 14639 \mathrm{~m}$ $15030-31 \mathrm{~m} / \mathrm{u} 15125 \mathrm{~m} / \mathrm{u} 15210,80$, $30 \mathrm{~m} / \mathrm{u}$, 330,410154290 , $3501561 \mathrm{~m}, 8 \mathrm{~m}, 11 \mathrm{~m}, 230$, $28015710 \mathrm{~m} / \mathrm{u}$, $13 \mathrm{~m} / \mathrm{u} 15822 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u}$, 27o, $3401601 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u} 16114 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} /$ u, $34 \mathrm{~m} / \mathrm{u} 1643 \mathrm{~m} / \mathrm{u}$, $23 \mathrm{~m} / \mathrm{u}$, $41 \mathrm{~m} / \mathrm{u} 16522 \mathrm{~m}$ $16618 \mathrm{~m} / \mathrm{u} 16722 \mathrm{~m}, 24 \mathrm{~m}, 34 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m} / \mathrm{u} 168$ $10 \mathrm{~m} / \mathrm{u} 1709 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 22 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m}, 43 \mathrm{~m} / \mathrm{u} 1712 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u}, 13 \mathrm{o}$, 40 u 172 1$2 w$ DD $7 w$ DD $8 m, 21 m / u, 25 u, 33-34 m / u / w$ DD $17321 w$ DD $26 m, 30 m 1743 w$ DD $4 m / u$ 176 4o, 33o, $4101773018519 m / u, 26 m 186$ $25 \mathrm{~m} / \mathrm{u} 18814 \mathrm{~m} / \mathrm{u} 18990$, $1801906 \mathrm{~m} / \mathrm{u}$, 28m/ u, 36m/u $19113 \mathrm{~m} 19210 \mathrm{~m}, 13 \mathrm{~m} / \mathrm{u}$, 20m, 24 m $19311 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m}, 45 \mathrm{~m} / \mathrm{u} 19410 \mathrm{~m} / \mathrm{u}$, $19 m, 20 \mathrm{~m} / \mathrm{u}, 27 \mathrm{u}, 38 \mathrm{~m} / \mathrm{u} 19511 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m} /$ u, $38 \mathrm{~m} 19625 \mathrm{~m} / \mathrm{u} 1976 \mathrm{~m} / \mathrm{u} 1988-9 \mathrm{~m} / \mathrm{u}$, 21m/ $u, 26 \mathrm{~m} / \mathrm{u}, 31 \mathrm{~m} / \mathrm{u}, 50 \mathrm{~m} / \mathrm{u} 1995-6 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u}$, $34 m / u \quad 20121 m, 22 m / u, 27 m / u$, $32 m / u 202$ $18 \mathrm{~m}, 28 \mathrm{~m}, 33 \mathrm{~m} 20423 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m} / \mathrm{u}$ 205 6m/u, 12m/u, 39m/u 206 19m/u, 21m, 22m, $26 \mathrm{~m} / \mathrm{u}, 31 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 208$ 1o, 50210 $20 \mathrm{~m}, 38 \mathrm{~m}$, $46 \mathrm{~m} / \mathrm{u} 21214 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{u} 213$ 2-3m/u, $5 m, 8 u, 90,37 m 21416 m, 17 \mathrm{~m} / u 21510 \mathrm{~m} / u$ $21740 \mathrm{~m}, 42 \mathrm{~m} / \mathrm{u} 21817 \mathrm{~m}, 17 \mathrm{~m} / u, 24 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m}$, 41m/u 22045 m 222 4m/u, $28 \mathrm{~m} / \mathrm{u} 2247 \mathrm{~m} / \mathrm{u} 225$ $40,11 o, 140,21 o, 23 o, 29 o 2264 m / u, 50,80$, 150, 220, 290227 10, 35 m , 37 o 228 4o, $26 \mathrm{~m} / \mathrm{u}$, $30 \mathrm{~m} / \mathrm{u} 22914 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}, 23 \mathrm{o}$, 33 o 230 $6 \mathrm{~m} / u 23150,13 \mathrm{~m}, 15 \mathrm{~m}, 17 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u} 23250$, 110, 150, 190, 250, $34023350,38 \mathrm{~m} 2344 \mathrm{~m} / \mathrm{u}$, $220,280,310,340,41023510,110,170,230$, 25o, 31o $2363 m, 19 m, 27 \mathrm{~m} 2377 \mathrm{~m} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u}$, $33 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m}, 43 \mathrm{~m} / \mathrm{u}, 48 \mathrm{~m} / \mathrm{u} 2386 \mathrm{~m}, 8 \mathrm{~m} / \mathrm{u}, 16 \mathrm{~m} /$ u $23939 \mathrm{~m} / \mathrm{u} 24022 \mathrm{~m}, 24 \mathrm{~m} 2415 \mathrm{~m} / \mathrm{u}$, 80, 150, 20o, $25024217 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 2446 \mathrm{~m} / \mathrm{u}, 10 \mathrm{~m} 245$ $5 \mathrm{~m} / u 24720 \mathrm{~m}, 35 \mathrm{~m} / \mathrm{u} 24817 \mathrm{~m} / u 24924 \mathrm{~m}$, $26 m / u, 37 m / u, 42 m / u 2502 m, 5 m, 7 m, 9 m$, $26 \mathrm{~m} / \mathrm{u} 251$ 11m/u, 29m/u $25244 \mathrm{~m} / \mathrm{u} 25538 \mathrm{~m} / \mathrm{u}$ $2563 m, 8 m, 28 m 2577 m, 9 m, 17-19 m, 36 m / u$ $25934 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m}, 38 \mathrm{~m}, 39 \mathrm{~m} 2605 \mathrm{~m} / \mathrm{u}, 19 \mathrm{~m} / \mathrm{u}$ $26110 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u} 262$ 19m/u, $28 \mathrm{~m} / \mathrm{u} 263$ 17$18 m 26423 m / u 268$ 21o, $36 m 269$ 10, 13m, $17 m 27022 m 27224 m / u, 40 \mathrm{~m} / u 2734 m / u$, $17 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m}, 26 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 27490$, 150 , $40 \mathrm{~m}, 41 \mathrm{~m} / u 2768 \mathrm{~m} / u 277$ 29m/u 279 10, 80, 13o, $25028021 \mathrm{~m} / \mathrm{u} 281$ 18m/u 283 22o, 30o, 35o, 39o $28412 \mathrm{~m} / \mathrm{u}$, 14o, 200, 260, 290, 350 $28541 \mathrm{~m} / u 28638 \mathrm{~m} / u 2887 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / \mathrm{u} 290$ $23 m / u, 32 m / u 2916 m / u, 14 m / u, 160,19 m / u$, 23o, 27o, $32029239 m / u 2939 m / u$, 22m/u,
$27 m / u, 35 m / u 29542 m / u 29622 m / u 298$ 27o, 31o, $4103001 \mathrm{~m} / \mathrm{u} 303$ 17o, 21o, $28 \mathrm{~m} 3041 \mathrm{~m} /$ $u, 10 \mathrm{~m}, 14 \mathrm{~m}, 280,34030512 \mathrm{~m} 30613 \mathrm{~m} / \mathrm{u}$, 260, 34o, 37 o 307 3o, 7o, 13o, 27o, 40 m 30870 , 10o, 16o, $30-31 \mathrm{~m} /$ и 311 31o, 40 o 31230313 $38 \mathrm{~m} / \mathrm{u} 31526 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m} / \mathrm{u}, 350$, 43 o 316 3o, 13o, $190,33 \mathrm{o} 3176 \mathrm{~m}, 11 \mathrm{~m}, 15 \mathrm{~m}, 280,380,42 \mathrm{o} 318$ 1o, 120, 15o, 17o, 22o, 260, 34031940032040 , 8o, 13o, 17o, $24 o 32133 o 3221 o 3244 m, 220$, 300, $43032515-16 \mathrm{~m} / \mathrm{u}, 17 \mathrm{o}, 24 \mathrm{o}, 310,360331$ $19 m 333230$, 280, 40033440 , 290, 340335 $8 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} 33618 \mathrm{o} 3378 \mathrm{~m}, 25 \mathrm{~m} / \mathrm{u} 3405 \mathrm{~m}$, $13 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m} / \mathrm{u}, 23 \mathrm{o}, 290,320,40 \mathrm{o} 341$ 1o, 13o, $160,230343330,41034430,9034520 \mathrm{~m}$, $36 \mathrm{~m} / \mathrm{u} 34636 \mathrm{~m} / \mathrm{u} 347 \mathrm{2m}$, $35 \mathrm{~m} / \mathrm{u} 35019 \mathrm{~m} / \mathrm{u}$, $28 \mathrm{~m}, ~ 29 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m} / \mathrm{u} 35218 \mathrm{~m} / \mathrm{u}, 26-27 \mathrm{~m} / \mathrm{u}$ $3536 \mathrm{~m} / \mathrm{u} 3544 \mathrm{~m}, 5 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m} / \mathrm{u}$ $35513 \mathrm{~m} / \mathrm{u}, 350$, 43 o 356 240, 30 o $35734-35 \mathrm{~m} /$ и 358 8-9m/u, 18m/u $35926 \mathrm{~m} / \mathrm{u} 36128-29 \mathrm{~m} / \mathrm{u}$ 362 41o 363 13o, 20o, 260, 320, 39o, 440364 9o, 17o, 21o, 25o, 29o, $35036514 \mathrm{~m} / \mathrm{u}$, 20o 367 $14 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m}$, 37 o 368120 , 190, 250, 290, 360, 42 o 369 3o, 16o, 22 o 3705 m 372 60, 20m/u, $24 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} / \mathrm{u}, 35 \mathrm{~m} / \mathrm{u}, 44-45 \mathrm{~m} / \mathrm{u} 373100$, 17o, $36 m / u 3744 m / u, 5 m, 9 m, 22 m / u, 29 m / u, 41 m /$ u 375 12-13m/u, 200, 33m/u, 350376 1o, $38 \mathrm{~m} /$ и 377 14m, 27o, 330, 390, 450378170379 $22 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / u 3824 \mathrm{~m} / u 38320 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m}, 35 \mathrm{~m}$, $37 \mathrm{~m} / \mathrm{u} 38418 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 30 \mathrm{~m} 38627 \mathrm{~m} 387 \mathrm{6m} /$ u, $13 \mathrm{~m} / \mathrm{u} 38830,21 \mathrm{~m} / \mathrm{u}, 35 \mathrm{~m}, 41 \mathrm{~m} 3892 \mathrm{o}$, 17 o $3904 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m}, 40 \mathrm{~m} / \mathrm{u} 396 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} /$ u $39714 \mathrm{~m}, 17 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}$, $39039819 \mathrm{~m} / \mathrm{u}$, 24o, $2803997 m / u, 23 m / u, 36 m / u 4018 m / u, 34 m / u$, $40 \mathrm{~m} / \mathrm{u} 40228 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m} / \mathrm{u} 403 \mathrm{1m}, 12 \mathrm{~m} / \mathrm{u}, 19 \mathrm{~m} /$ u $40422 \mathrm{~m}, 37 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u} 405 \mathrm{1m} / \mathrm{u}, 4 \mathrm{~m}, 9 \mathrm{~m}$ $40619 \mathrm{~m} /$?, $22 \mathrm{~m} 407 \mathrm{3m} / u, 12 \mathrm{~m} / \mathrm{u}$, $18 \mathrm{~m} / \mathrm{u}$ "hybrid", $43 \mathrm{~m} / \mathrm{u} 40823 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 4091 \mathrm{~m} / \mathrm{u}$, $16 \mathrm{~m} / \mathrm{u} 41112 \mathrm{~m} / \mathrm{u} 41233 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} 413 \mathrm{5m} / \mathrm{w}$ Omit whole genus Mr Norman $41838 \mathrm{~m} / \mathrm{u} 419$ $28 \mathrm{~m} 4222 \mathrm{~m} / \mathrm{u}, 8 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u} 42311 \mathrm{~m} / \mathrm{u}$ $42521 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 42711 \mathrm{~m}, 11 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m}$, $37 \mathrm{~m} / \mathrm{u} 4288 \mathrm{~m} / \mathrm{u}, 48 \mathrm{~m} / \mathrm{u} 43011-12 \mathrm{~m} / \mathrm{u}$, $21 \mathrm{~m} / \mathrm{u}$ $43116 m / u, 20 m / u 43222 m / u, 37 m 43312 m / u$ $43424 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 4351 \mathrm{~m}, 14 \mathrm{~m} / \mathrm{u}$, $30 \mathrm{~m} / \mathrm{u}, 31 \mathrm{~m} 4364 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m} / \mathrm{u} 43718 \mathrm{~m} 4386 \mathrm{~m} /$ u $43917 \mathrm{~m} / \mathrm{u}, 18 \mathrm{~m}, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 31 \mathrm{~m}$, $31 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 33 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{u} 44126 \mathrm{~m} / \mathrm{u} 442$ 1-2m/ u $44412 \mathrm{~m} / \mathrm{u} 44518 \mathrm{~m} / \mathrm{u}, 23 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u}$, $39 \mathrm{~m} / \mathrm{u}$ $44610 \mathrm{~m} / \mathrm{u}, 18 \mathrm{~m}, 36 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 44737 \mathrm{~m} / \mathrm{u}$, $43 \mathrm{~m} / \mathrm{u} 44825 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 45010 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m} / \mathrm{u}$ $45214 \mathrm{~m} / \mathrm{u} 4539 \mathrm{~m} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u} 45420 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m} / \mathrm{u}$, $40 \mathrm{~m} / \mathrm{u} 455$ 6-7m/u $45641 \mathrm{~m} / \mathrm{u} 458$ 18m/u 459 $22 \mathrm{~m} / \mathrm{u} 46015 \mathrm{~m}, 17 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u} 4613 \mathrm{~m} / \mathrm{u} 462$ 12$13 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} 46316 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u} 46413 \mathrm{~m} / \mathrm{u}$, $19 \mathrm{~m} /$ $u, 22 m 466$ 1o, $70,28 \mathrm{~m} / \mathrm{u} 46714 \mathrm{~m} / \mathrm{u}, 22 \mathrm{~m} / \mathrm{u}$, $33 \mathrm{~m} / u 468$ 190, 280, 370, 430, $4904704 m$, $38 \mathrm{~m} / \mathrm{u} 4715 \mathrm{~m} / \mathrm{u}, 10 \mathrm{~m} / \mathrm{u}, 27 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u} 47343 \mathrm{~m} /$ u $4742 m / u 4752 m / u$, $25 m / u 47639 m / u 479$

GRAY，NORTHERN U．S．
$37 m / u, 39-40$ ？ $4808 m / u, 17 m / u, 32 m / u 481$ $21 \mathrm{~m} / \mathrm{u}, 28-29 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m} / \mathrm{u} 48211 \mathrm{~m}, 25 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u}$ $48320 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 34 \mathrm{~m} / u 48428 \mathrm{~m}, 29 \mathrm{~m} / \mathrm{u} 485$ $14 \mathrm{~m} / \mathrm{u} 49126 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u} 49235 \mathrm{~m}, 37 \mathrm{~m} / \mathrm{u}, 46 \mathrm{~m} / \mathrm{u}$ 493 23m／？， $35 \mathrm{~m} / \mathrm{u} 49410 \mathrm{~m} / u 4951 \mathrm{~m} / \mathrm{u}$ ， 16 m $49612 \mathrm{~m} / u, 24 m, 27 m, 29 m / u 4972-3 u / 3 m$ ， $10 \mathrm{~m} / \mathrm{u} 4987 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} 5003 \mathrm{~m} / \mathrm{u}$ ， 22 m ，24m／u， $45 m 50124 m, 26 m, 28 m / u 5029 m / u$ ， $14 m$ ， $16 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{u}, 27 \mathrm{~m} 50318 \mathrm{~m} / \mathrm{u}$ ， $30 \mathrm{~m} 50526 \mathrm{~m} / \mathrm{u}$ $50632 \mathrm{~m} / \mathrm{u} 507$ 13w Mr Norman omit 510 10u $5116 u, 30 u, 31-32 m 5126 u, 24 u 5139 m, 19 u$ ， $23 u, 31 u 51428 u, 30 m 5156 m, 7 m, 8 m, 9 m$ ， $11 m, 12 m, 16 u, 37 u, 41 u, 43 u 51611 m, 14 m / u$ ， $27 u 5179 m 51815 m, 18 \mathrm{~m} / \mathrm{u} 51910 \mathrm{~m} / \mathrm{u}$ ， 13 u $52131 u, 46 m 5227 u, 7 m 523$ 15－16m 524 $20 \mathrm{~m} / \mathrm{u} 52534 m$ ， $36 m$ 526 11u，14－18w Naturalised $5274 u 53014 u, 31 u$ ， $43 u 531$ $25 u, 35 u, 40 u 53227 m$ ，29u $53419 m$ ，22u 540 $4-5 m / u, 8 m / u, 27 m / u$ ， $41 o 541$ 1o， $9 m / u$ ， $17 o$ $5424 m / u 54338 m / u 54420,10 m, 240,290$ ， $3405458 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m}, 42 \mathrm{~m} / \mathrm{u} 5464 \mathrm{~m} / \mathrm{u}$ ， $10 \mathrm{~m} / \mathrm{u}$ ， $15 m / u, 44 m / u 54721 m / u 5493 m / u 55014$－ $15 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 5521 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 15 \mathrm{~m} 553 \mathrm{31m}$ 554 11o，180，20o，300，320，40o 555 zb 557 $150,220,34 m 55820 \mathrm{~m} / \mathrm{u}, 33 \mathrm{~m}, 36 \mathrm{~m} 55916 \mathrm{~m} /$ u， $34 \mathrm{~m} / u 5602 \mathrm{~m} / \mathrm{u}, 9-10 \mathrm{~m} / \mathrm{u} 56114 \mathrm{~m} / u 562$ $33 \mathrm{~m} / \mathrm{u}, 42 \mathrm{o} 56328 \mathrm{~m} / \mathrm{u}$ ， 33 o 564 10， $39 \mathrm{~m} / \mathrm{u} 565$ $4 \mathrm{~m}, 10 \mathrm{o}, 210,41 \mathrm{~m} 566 \mathrm{1m}, 70,280,330,380$ $5674-5 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / u, 25056819 \mathrm{~m} / \mathrm{u} 569$ 3o， 70 ， $110,29 m 57043 m, 44 m / u 5715 m, 24 m / u$ ， $40 \mathrm{~m} / \mathrm{u} 57225 \mathrm{~m} /$ ？ 573 180，240，30o，330，41o 57422 o ， 290575 60，20－21m／u 577 19o，22m／u， $260,29 \mathrm{~m} / \mathrm{u} 57810 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} / \mathrm{u} 579$ $10 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m}, 18-19 \mathrm{~m} / \mathrm{u} 58023 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} / \mathrm{u}$ ， 460 581 10o，18o，23o，27o， $31058223 \mathrm{~m} 58315 \mathrm{~m} /$ $u, 23 m / u 58413 m / u$ ，wb Here Mr Norman ends

GRAY，Asa Natural science and religion New York；Charles Scribner＇s Sons； 1880 ［CUL，I］ $8011-17 m 8421 m$

GRAY，George Robert A fascicle of the birds of China London； 1871 ［Down，I］

GRAY，Henry Anatomy，descriptive and surgical 5th edn；London；Longmans，Green \＆Co．； 1869 ［Down，probably FD］

GRAY，John Edward Synopsis reptilium London；Treuttel，Wurtz \＆Co．； 1831 ［Down， S］\wp

GREEN，Charles The history，antiquities，and geology，of Bacton，in Norfolk Norwich；Josiah Fletcher； 1842 ［CUL，I Charles Darwin from C．Lyell］

GREENE，Joseph Reay A manual of the sub－ kingdom Coelenterata London；Longman， Green，Longman \＆Roberts； 1861 ［Down，I］
14 27－31m／31u／w viz．Protozoa
GREENWELL，William British barrows Oxford；The Clarendon Press；together with ROLLESTON，George Description and figures of skulls Oxford，The Clarendon Press； 1877 ［Down，I］\wp

GREG，William Rathbone The creed of Christendom London；Trübner \＆Co．； 1863 ［Down］

NB • 〈CD？$\rangle \mathbf{3 1 ; ~ 7 5 ; ~ 8 5 ; ~} 117$
GREG，William Rathbone Enigmas of life London；Trübner \＆Co．； 1872 ［Down，I］

GROBBEN，Carl Beiträge zur Kenntnis der Männlichen Geschlechtsorgane der Dekapoden Wien；Alfred Hölder； 1878 ［Down，I］\wp

GROVE，William Robert The correlation of physical forces 4th edn；London；Longman， Green，Longman，Roberts \＆Green； 1862 ［Down，S］

GÜNTHER，Albert Description of Ceratodus London；Taylor \＆Francis； 1871 ［Down］

GÜNTHER，Albert The gigantic land－tortoises （living and extinct）in the collection of the British Museum London；by order of the Trustees； 1877 ［Down］\wp

GÜNTHER，Albert An introduction to the study of fishes Edinburgh；Adam \＆Charles Black； 1880 ［Down，I］

GÜNTHER，Albert The reptiles of British India London；The Ray Society； 1869 ［Down］
$12230-33 \mathrm{~m} / 30-31 u$ ， $33-38 \mathrm{~m} / 33 u / 35 u / 36 u / 38-$ $39 u 1239 u 12517 u 12813 u 13013-14 u$ ，20－ 21u $1313 u, 7-9 u 1329-12 m, 18-21 m 13422-$ $31 m 1355-7 m, 16 u, 18 u, 27 u, w b-1363-6 m$ $14332 u, 34 u, 36 u 38619-21 m / 20 u 41315-$ $17 m / 15 u, 26-28 m, 35-36 m / 35 u, 37-39 m$

GUTHRIE，Malcolm On Mr Spencer＇s formula of evolution London；Trübner \＆Co．； 1879 ［Down，I］〈markings by FD〉

GUY，William A．Principles of forensic medicine 2nd edn；London；Henry Renshaw； 1861 ［Down，FD］

HAAST，Julius von Geology of the provinces of Canterbury and Westland，New Zealand Christchurch；The Times Office； 1879 ［Down］

HABERLANDT，Gottlieb Die Schutzein－ richtungen in der Entwickelung der Keimpflanze Wien；Carl Gerold＇s Sohn； 1877 ［Down，I］
NB \langle not $C D$ 〉
33 30－31m，34－35m 42 9－10m／9u＂viele＂／10u ＂Verbreitungsfähigkeit＂ 43 13－16m，33－37m 45 11－13m，23－25m $5026-29 m 6035-37 m 62$ 21－ $25 m 6836-37 m 8331-32 m 8832-34 m 98$ 35－ $36 m$

HABERLANDT，Gottlieb Die Schutzein－ richtungen in der Entwickelung der Keimpflanze Wien；Carl Gerold＇s Sohn； 1877 ［CUL］
cc，che，fg，ig，mhp，pat，phy，t，y
SA $\langle p p$ ．52－3； 2 sheets $\square \boldsymbol{\square}$
Dr Haberlandt Schutzrichtungen 1
p． 23 The hypocoty of Phaseolus first geotropic \＆then apogeotropic do not allude to，as may be different in different plants
25 The coats of seed by rubbing roots causes bending which increases geotropic bending－compares with what Sachs says about Earth．p． 26 shows by drawing what takes place．（mem diff．with Peas．
48 seedlings resist frost wonderfully
52 Winkler \＆Irmisch－the sinking of hypocotyl．axis in Earth－shorten so that cotyledon drawn into Earth
66 must break through Earth，or at least find cracks to pass through－Brakes through bowed to protect growing point p． 69 do．－ explain grasses breaking through the ground by turgency \＆stiffness of cotyledon．
69 Plants with hypo〈gäisch＞cotyledon break through ground bowed－The convex side of arched hypocotyl turn up through apogeotropism．
72 Helianthus annuus weight of Cots．cause bowing
79 －Allium true Knee in the Cot．
79 experiments with cutting off Cots of Barley repeatedly \＆did not Kill
〈over〉 Haberlandt p．94．Cots of Lupinus anatomically intermed between sub－）\＆ hypo〈gäisch＞Cots In Leguminosae all gradation between the 2 states
98 The 2 sides of Cots．not usually so much differentiated＊as in true Leaves．
title page $w t$ Can Nutation help seedling rise through earth $w b$ p．4；12；Time 16O；wo 29； Dry 61；Mangroves 63；Climate 64；See

Wiesener chlorophyll 2 10－13m $31-3 m 410-$ $13 \mathrm{~m} 7 \mathrm{~mm} 1112-16 \mathrm{~m}$ ， $18 \mathrm{~m} 1226-28 \mathrm{~m} 152 \mathrm{~m}$ ， $31-34 m 167-11 m 1712-15 m 1835 m 2332-$ $37 m 248 m, 25-29 m 2514-23 m 2927-30 m 30$ $21 m, 30-33 m 351 m 3716-18 m 396-8 m / 7 w$〈FD $, 33 \mathrm{~m} 4327 \mathrm{~m}, 33-37 \mathrm{~m} / \mathrm{w}$ weight of seed $456 u$＂trockenen＂，10－13m，34－35m 48 7－10m， 10－14m／12u＂Jelälter＂，17－19m 49 12－16m， $27-38 m 5120 m 52.31-35 m 531-6 m$ ，11－ $15 \mathrm{~m} / 12 \mathrm{u}_{\mathrm{s}}$＂hypokotylen＂｜14u＊s＂Verkürzung 1 Keimachse＂ $58 \quad 7 m \quad 61 \quad 1-5 m \quad 66.13 u$ ＂bergenden 1 Erdreichs＂，1－14w may not sensitivity to light of PhilexiaO serve to find way through cracks $30 u$＂genannte Keimblattscheide＂／21－30w short stem bowed to protect bud at end $\uparrow 4 u$＂ 27 ＂$/ w b \tau 6728$－ $30 \mathrm{~m} / \mathrm{w}$ This explains grasses getting out of ground 69 wt Put＊ He attributes most importance to older part \＆partition of young plant．We have learned much from this valuable essay，though our observations tend to differ in some points $1-10 \mathrm{~m} / 6-8 u$ ＂rückwärts｜nachfolgt＂｜11m，17－18m／12－24w This is utterly different from my view 12－ $24 m / 17-18 w$ do not understand $28 u$ ＂Raumverhältnisse।wird＂ 70 10－15m 71 14m， $36-40 \mathrm{~m}, 36-40 \mathrm{~m} / \mathrm{wb}$ So he knows nothing of my Nutation $7224-30 \mathrm{~m} / \mathrm{w}$ weight of Cots cause stem to bend $7515-19 \mathrm{~m} / 10-20 \mathrm{w}$ He evidently considers this the sole Nutation 76 $19 \mathrm{~m}, \quad 22-27 \mathrm{~m} \quad 77 \quad 1-4 \mathrm{~m}, \quad 20-25 \mathrm{~m} / 20 \mathrm{u}$ ＂Keimblatt＂，24－26m／24－26u＂mittelst｜Rede＂， 33－35m／35u＂Sachs I Experimentalphysiologie＂ $796-13 \mathrm{~m}, ~ 21-25 \mathrm{~m} / \mathrm{w}$ bears on my light experiments $8512 \mathrm{~m} 8814 \mathrm{~m} 944 \mathrm{~m}, 14-19 \mathrm{~m} / \mathrm{w}$ Lupine cotyledons anatomically $15 u$＂grünen， vergrösserten＂／17－18u↔， $23 u$＂Rückbildung＂， $25 \mathrm{~m} / \mathrm{u}$＂ausser 1 bau＂，31－32m 95 wt Gradation $2-22 m, 17 w$ Bean $9626-30 m$ ， $26 u$ ＂Aussenseite＂／26－29m 97 25m 98 1－16m／w Different function of upper \＆lower surface－ the Upper much more active $18 u$＂der Transpiration＂，29－31m／w in Cotyledons 31－ $35 m$

HABERLANDT，Gottlieb Vergleichende An－ atomie der assimilatorischen Gewebesystem Berlin；G．Bernstein； 1881 ［Down，I］

HAECKEL，Ernst Anthropogenie oder Ent－ wickelungsgeschichte des Menschen Leipzig； Wilhelm Engelmann； 1874 ［Down］\wp

HAECKEL，Ernst Anthropogenie oder Ent－ wickelungsgeschichte des Menschen 3rd edn； Leipzig；Wilhelm Engelmann； 1877 ［Down， I］\wp

HAECKEL, Ernst Arabische Korallen Berlin; Georg Reimer; 1875 [Down]
NB 20
20 29-36m
HAECKEL, Ernst Zur Entwickelungsgeschichte der Siphonophoren Utrecht; C. Van der Post Jr.; 1869 [CUL]
cc, ds, em, mn, phy, t, v
NB p. 79 Regrowth
p. 80 \& elsewhere extraordinary tendency in Larvae of Medusae to produce monsters \& varieties.-
98 Monstrosity throwing light on primordial parent-form.-
NF - p218; 220; 232; 233; 243; Best passages Häckel <cannot refer to this book only 120 pp.)
36; 73; 80; 92; 97; 100; 103
79 6-12m 80 14-22m/w Slight changes in conditions cause monstrosities $813-4 w$ new structures arise $9815 \mathrm{~m} / 18-24 w$ Monstrosity throwing light on primordial parent-form \wp

HAECKEL, Ernst The evolution of man 2 vols.; London; C. Kegan Paul \& Co.; 1879 [Down]
tm
vol. 1, $16911-13 w$ does not satisfy me 181 $8 m 22021 m 28014 m 287$ 7-15m, 17m 389 28 m 39421 m
vol. 2 SB 321 about differences between spiral tendril \& notochord

HAECKEL, Ernst Freedom in science and teaching prefatory note by T.H. Huxley; London; C. Kegan Paul \& Co.; 1879 [Down] \wp

HAECKEL, Ernst Freie Wissenschaft und freie Lehre Stuttgart; E. Schweizerbart; 1878 [Down, I]

HAECKEL, Ernst Generelle Morphologie der Organismen 2 vols.; Berlin; Georg Reimer; 1866 [CUL, I in vol. 1]
af, beh, ct, ds, em, fg, h, in, oo, pat, phy, rd, $\mathrm{sp}, \mathrm{ss}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{tm}, \mathrm{ts}, \mathrm{v}, \mathrm{y}$
vol. 1, xxvii $3 m / 4 w$ skimmed $5 m, 22 m, 36-$ $39 m / 36 w$ R to $39-43 m / 41 w \mathbf{R}$ xxviii $2-5 m / 4 w$ R $22 m$ xxxi $21 m$
\wp
$2806-15 m$
vol. 2 SB Band 2.- Ernst Häckel

- p. 36 add spores to test of means of propagation. or proof of internal separation given not to Hackel; 59 on eggs of insects of many cells
\star Vol. 2
p. 242 colour of pelagic animals

244 Selectio feminina
245 Sexual selection; 246 do good ℓ_{0} Cop
239 good criticism on my term of struggle for existence - says ought to be confined to struggle between organisms for same end all other cases are dependance - Misseltoe depends on apple.
259 Law of Perfectiona
270 Rudimentary organs; 272 do
over
〈over〉
In man Chapt I might add as proof of theory - "the progressive perfection or development of organic beings" - their diversity or differentiation"
[Under Man - allude to fullest description of Rudiments ever given by Hackell]
p278 Rudiment in Man \& injurious, in what animal fully developed? Propose vermiform of intestine - see Todd Encyclop Man Copro Rudimentary organs to p. 285.
305

- 361 Book order Copa
- p238
xi $22 m, 29-33 m, 33 m, 35 m, 36 m, 37 m, 38 m$, 41-46m xiv $9-13 m / 11 w$ R $49 m$ xv $1-20 m$ xvi $13-17 \mathrm{~m}, 36 \mathrm{~m} / \mathrm{w} \mathrm{R}$
\wp
cli $w t$ abstracted cliii $4 u \leftrightarrow / w t$ it is indisputable $1-3 m$ (Huxley) clv $w t$ says if no prejudice no one wd doubt affinity with tailless or anthropomorphic apes $-8-10 \mathrm{~m} / 5-$ $13 w$ next division of tailed $\&$ tailless apes of Old World $28 u$ "Gesässschwielen"/25-30w anthropoids no callosities on rump $44-51 \mathrm{~m} / \mathrm{w}$ Men sometimes have large canines. wbr clvi $9-13 m / 8-15 w$ none of these existing anthropoids is ancestor $3633-42 \mathrm{~m} / 24-42 w$ Formation of spores a distinct process 377 $9 m, 10-12 u$ "solstrenger" $/ w$? Spores of Ferns?? $5910 u$ "auslzusammengesetzt" \wp
171 20-22m 242 18-42w Sea - Pelagic animals of many classes colourless \& transparent - good $24338-42 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ larvae which are pelagic colourless and not the adults 245 10-13m/11u "menschlichen", 1721m, 27u "Wamme 1 Stiers"/27-31w dewlap of Bull a defensive weapon!! 30u "Schnabelthiers"/35-37w ornith) * 246 26-
$32 \mathrm{~m} / \mathrm{w} \times$ women ornament themselves to attract men 33-41w women the most beautiful \& song $24716-22 m / w$ may act materially on both sexes $28-30 \mathrm{w}$ acts on intellect 253 3-12w Divergence or Differentiation of organs * explained, as I have done for species $2591-10 \mathrm{~m} 2708-18 w$ organs become rudimentary as slowly \& as by as many steps, as they are first formed. 272 9-26w not only organ, but whole individual may be said to be rudimentary. $2751-25 m / 6-8 w$ eyes rudimentary $2778-9 w$ Limbs rudimentary $27827 m, 28 m, 32 u$ "Menschen 1 rudimentärer", $33 u$ "Processus Blinddarms", $36-40 m \quad 279 \quad 26-42 m / 28-32 w$ rudiments of sexual organs in both sexes 284 1-20w eg Parasitic animals are rudimentary wholes. 305 2-10m 427 11-20m $42822-38 m, 22-28 w$ line of descent $4292-$ $21 m$

HAECKEL, Ernst Gesammelte populäre Vorträge aus dem Gebiete der Entwickelungslehre 2. Heft; Bonn; Emil Strauss; 1879 [Down, I] \wp

HAECKEL, Ernst The history of creation trans. revised E.R. Lankester, 2 vols.; London; Henry King \& Co.; 1876 [CUL, S in both vols.]
ad, cc, cs, hy
vol. 1 NB 〈w not $C D\rangle 43$; 49 facts for D; 52; 108 Baer; 117 monde ambiante
$517 m 43$ 10c/w£ 49 21-22m 52 19-20m 109 9x/u "Baer" $1174 u$ "ambiant" 118 13-18m (Naudin, Lecoq) 146 17-20m/w no 148 5-6?, 19 w no 16017 m 16512 m catalogue, 79 wt hybrids crossing - ApercaO \& sheep \& goats wt p118 Saporta \& Gaudry 8-21w Adaptation bad term 80 wt 160 wb 13
vol. 2 NB 45 very good
〈by FD > errata 71; 16; 195
93; 106; 108; 111; 340?
$14-6 m, 7-8 m, z b 1113 m 454-22 m 71$ 19$20 \mathrm{~m} / 19 c / w \notin 7617 c$ "by" $/ x 93$ 21-22m 106 17$19 m 108$ 23-24m 109 1-2m 111 29-30m, 31u "Gnetum I Ephedra" 112 3-4m 195 22-23m/c/ $w_{\notin} 1978 m 23520 m 3407-9 m 37532 m 408$ $z b$

HAECKEL, Ernst Die Kalkschwämme 3 vols.; Berlin; Georg Reimer; 1872 [CUL, I in vol. 1] ds, in, phy, sp, v
vol. 1 NB 381 cause of var.
382 grt. var. of Sponges; 385 do.
462 on origin of Sponges
$381 \quad 25-30 m \quad 382 \quad 15-37 m / w$ variability of Histology of Elementaries 383 22-28w variable in the species \& in the individuals $38428 m 385$ 22-39m
\wp
462 30-33m/31u "homophyle"
vol. $2 \wp$
HAECKEL, Ernst Natürliche Schöpfungsgeschichte Berlin; Georg Reimer; 1868 [CUL, I]
ad, ds, em, ex, h, he, hl, ig, in, is, mn, or, phy, r, rd, ss, sy, t, tm, ts, v

NB1 p240 I must no about embryology

- 390; 409; 437 to 509

NB2
469 Classification of Mammals; 492 of Quadrumana; 501 Genealogy of Man.-
Read 1st Chapt
p228; 390 to end
good p. 5 - for the beginning of my Book
Nothing about Sexual SelectionOO
SB $\square \beta$
Hack-
p. 230 reduction of parts an advance in ordganisation
p235 imported rudiment-Lung
p446 anomalous forms surviving in Rivers.
p457. Manner of descent of Birds
Placentata descended from several implacentata
481 Contrast of adaptation \& inheritance Lion \& Sea-Lion
482 Intermediate forms
Man all used.
vii $2 w$ Read ix $31 w$ I have read $\times \Uparrow 6 w$ । have read $\uparrow 3 m$ xii $19 w$ Read xiv $32 m / w$ Read xv 19m, 31m xvi 12-13m, 13-15m 524 $27 m / ? / 16-28 w$ (a) Perhaps begin my Book wb When theory generally accepted I say light will be thrown on the origin of man \& his history. * The meaning of this cd hardly be misunderstood, but I can see isO not the period of going into details. now that the views $1223-26 m / 14-27 w$ List of Rudimentary Organs
\wp
228 26-32m/iw I shd think more differences in $\&$ civilized individuals than in savages (?) Bates 230 3-5m, 11-19w lessening of number a result not cause of development $23130-$ 33m/31-32u "die \mid Rückschritt" 235 1-7m/wt Very important organ a rudimentary Lung $11-12 u \pm / w$ ovaries 22-23m $2363-5 w$ See to this 251 17-23m, 18u "Organen", 19u "Kiemenbogen", 9-17w Branchial arches

HAECKEL, SCHÖPFUNGSGESCHICHTE
$20 u / w \tau, \quad 27-31 m \quad 252 \quad 19-20 u \quad$ "drei Schwanzwirbeln" 253 3-9m/4-7u "muss 1 Stammes", 21-29m 256 1-25w the lower forms change more slowly than higher Applies to Man (or I think terrestrial)
\wp
390 19-32m/22-29w single origin most probable $40920-29 m 4373-4 m / u \uparrow / w$ This last remnant of class $16-20 \mathrm{~m} / 17 u$ "Pallas Nachtschmecke" $/ 18 u, 24 u \mathrm{a}, 28 \mathrm{un}, 33 \mathrm{~m} / \mathrm{u}$ "während lembryonalen" $4381-3 m, 10 u$ "weil| noch", $27 u$ "merkwürdig übereinstimmt"|25$28 w$ embryology of Amphioxus 439 wt X I shd say creations like larvae of Ascidians gave rise to Vertebrata $5-9 m / w \times$ Both groups out of same sources 442 29-33m/w Selachians parent-form of all chief Vertebrata 443 24-27w Selachii only in remnant $44433 a \notin 4456-8 m / w$ Selachians parent form $13-16 \mathrm{~m} / 14 u$ "Urfischen" $/ 12 w$ Selachii 446 9-13w Rivers $44711 u$ "Flussfischen", $10-12 \mathrm{~m} / \mathrm{w}$ Rivers $14 u$ "Zwischen I Amphibien", 14-16m, 17u^/w Rivers $22-24 w$ separate intermediate class 448 11-12u "Stammformen I Wirbelthiere", 1620m/18u/a "Lurchfische" Lepidosiren 450 12$15 m 453$ 13-16m 457 wt I shd prefer supposing that both classes descended from forms more intermediate than Dinosaurs \& Solenhofen Birds 16-19m/18u "zweifelsohne dieser" 461 20-23m/21-22u "Ornithodelphien I unterschied" 462 4-6md/5u "Jurazeit" 463 wt Man has cloaca 2-6m/6u "zwölfte Woche", 8$10 \mathrm{~m} / \mathrm{w}$ Breast bone like Birds $19 u$ "eine l Klasse", 27-30m, wb absence of teeth a change $46924 m / w$ Hydrax $4711 m 47217 m$ $473 \quad 27-28 u \leftrightarrow 474$ wt X Placentata descended from several implacentata or Marsupials $6-10 \mathrm{~m} / \mathrm{w}$ thinks X 47527 m 481 wt contrast of adaptation \& inheritance Sea-Lion \& Lion $-10-16 \mathrm{~m}, 21-25 \mathrm{~m} / \mathrm{w}$ separate Lemurs from Monkeys 27-30u土 482 1-22m/w intermediate forms, leading to various orders.- $26 m 495$ 27-33m 496 9-13m, 20-23m 497 22-25m 498 1-3m/2c/u "Rolle"/w£, 7-8u "dass|kann", 21u "Affenähnlichkeit Menschen", 22u "einen I Volke" $49928 u$ "Rolle" 503 10-12m/11u "abgekürzte Vererbung" 505 9-11m/9u "entfernter" 506 8-11m, 18$22 m, 24-26 m, 31-34 m, 35-37 m$ 507 2-3u "theilweisen 1 Behaarung", $2-3 w$ loss $28 u$ "aufrechte | Sprache"/26-31w 2 chief points upright position \& speech $33 u$ "Kehlkopfs"/wb Head of windpipe 508 6-7u "höherel Extremitäten", 8-11u "Indem 1 Sehens", $18 u$ "Veränderungen I Gefolge" 509 17-19m/18w (a) 25-26u "denlerblicken", 26-27u "August Schleicher", wb (a) Remember a special part
of Brain for speech 510 18-20w speech polygenitive $29 u$ "Sprachen IUrsprache", 30$32 m / w b$ but we know nothing about lost primitive tongues, during earliest stages. 511 $15-21 \mathrm{~m} / \mathrm{w}$ my argument \& Huxley 51220 m , $25 u$ "Afronegern I findet", $29 u$ "Mongolen", $30 u$ "Mesocephali", 31u "Amerikanern" 513 25-43m 515 1u "meisten \mid Asien", $2 u$ "das 1 Ort", 22$26 \mathrm{~m} / 23 \mathrm{w}$ islands 517 11-12m $5186-9 m 520$ 20-24m 554 19m

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 2nd edn; Berlin; Georg Reimer; 1870 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 3rd edn; Berlin; Georg Reimer; 1872 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 4th edn; Berlin; Georg Reimer; 1873 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 5th edn; Berlin; Georg Reimer; 1874 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 7th edn; Berlin; Georg Reimer; 1879 [Down, I] \wp

HAECKEL, Ernst Les Preuves $d u$ transformisme, réponse à Virchow trans. J. Soury; Paris; Germer Baillière \& Cie; 1879 [CUL, I]

HAECKEL, Ernst Das Protistenreich Leipzig; E. Günther; 1878 [Down] \wp

HAECKEL, Ernst Die Radiolarien 2 vols.; Berlin; Georg Reimer; 1862 [Down, I] \wp

HAECKEL, Ernst Studien zur GastraeaTheorie Jena; Hermann Dufft; 1877 [Down, I]

HAECKEL, Ernst Das System der Medusen 4 vols.; Jena; Friedrich Manke; 1879-1880 [Down, I]

HAGEN, Hermann On some insect deformities Cambridge, Mass.; University Press; 1876 [Down, I by A. Agassiz]

HAHN, Otto Die Meteorite (Chondrite) und ihre Organismen Tübingen; H. Laupp; 1880 [Down]

HAHN, Otto Die Urzelle Tübingen; H. Laupp; 1879 [Down, I]

HALL, Sydney An alphabetical index of all the names contained in a new general atlas of fiftynine maps London; Longman, Rees, Orme, Browne \& Green; 1831 [CUL, on B, S]
NB wec
170 col. 323 m 251 col. 141 m 285 col. 160 m , 61 m 287 col. $353 \mathrm{~m} / \mathrm{u}$ "Sarstedt"

HALL, Sydney A new general atlas London; Longman, Brown, Green \& Longmans; 1829 [Down, on B, ED]

HALLEZ, Paul Contributions à l'histoire naturelle des Turbellariés Lille; L. Danel; 1879 [Down, I]

HANCOCK, Albany On the organization of the Brachiopoda extract of communication by T.H. Huxley; 1857 [Down, I] \wp

HANSEN, Adolph Vergleichende Untersuchngen über Adventivbildungen bei den Pflanzen Frankfurt a.M.; 1881 〈said to belong to CD but no indication) [Botany School]

HARRIS, George The theory of the arts 2 vols.; London; Trübner \& Co.; 1869 [Down, vol. 1 only, I] \wp

HARRIS, Thaddeus William Entomological correspondence ed. S.H. Scudder; Boston; Society of Natural History; 1869 [Down, I by editor]
gd, v
NB var insects do not vary in all localities p125
201 joints of Antennae variable - 201 Referred
$1251-4 m 201$ wt joints of Antennae variable
HARRIS, Thaddeus William A treatise on some of the insects injurious to vegetation new edn; Boston; Crosby \& Nichols; 1862 [Down, I]

HARRIS, Thaddeus William A treatise on some of the insects of New England, which are injurious to vegetation Cambridge, Mass.; John Owen; 1842 [CUL]
beh, em, in, oo, sp, sx, ta, tm, v
NB Orthoptera 121- to 133
128 Katy-did calling
133 Fiddles of Locusts

SB 56, The weavil of N.A. attacks the introduced Pea
59 Remarkable variations in sexes \& individuals of Brenthidae
68- variable instincts
121 - Males musical Grasshoppers; 124,125 - Males

128, 132,33 I fancy these musical instruments, which are secondary sexual differ much in 2 sexes - Rivalry of Males
x 165- musical male Cicada
315 - Night-Moths dull coloured
373 - Larvae of Hymenoptera spin from lower life like Caterpillars - same structure in very different groups.

24 27-28w〈CD? At what season $2610 u$ "dors", 10u "darers"/? 56 17-20m 57 5-7m 59 26-28m, 28-29u "evenlsex", wb How in different species? of genus? $6834-35 m 69$ $1-6 \mathrm{~m} / 2 u$ "variable instincts" $12135-38 \mathrm{~m} 124$ 29-31m $1251-5 m, 31 w a 1285-8 m / 5 u 1321 w$ Acrididae $23 u$ "the males" $1339-15 m 16517-$ $20 \mathrm{~m} / 18 u$ "The lorganization", 26-28m, 34-37m 315 33-34u $\leftrightarrow 373$ 12-14m

HARTMANN, Eduard von Wahrheit und Irrthum im Darwinismus Berlin; Carl Ducker; 1875 [Down, two copies]

HARTUNG, Georg Die geologischen Verhältnisse der Inseln Lanzarote und Fuertaventura Zürich; 1857 [CUL]
gd, is, v
NB 142 Differences of Plants in Lanzarote \& Fortaventura Remarkable
\wp
HARVEY, William Henry Nereis australis, or algae of the southern ocean London; Reeve, Benham \& Reeve; 1849 [Down, I]

HARVEY, William Henry The sea-side book; being an introduction to the natural history of the British coasts new edn; London; John Van Voorst; 1849 [CUL]

NB 66 Q
66 6-16m/Q 27-29m/Q
HASSE, Carl Das natürliche System der Elasmobranchier Jena; Gustav Fischer; 1879 [Down]

HAUGHTON, Samuel Six lectures on physical geography Dublin; Hodges, Foster \& Figgs; 1880 [Down, I]

HAWKINS, Benjamin Waterhouse A comparative view of the human and animal frame London; Chapman \& Hall; 1860 [Down]

HAWKINS, Richard The observations of Sir Richard Hawkins, Knt, in his voyage into the South Sea in the year 1593 London; The Haakluyt Society; 1847 [Down]

HEAD, Francis Bond Rough notes taken during some rapid journeys across the Pampas and among the Andes London; 1826 [Down, pre-B]
$1268 w$ O $1274 w$ oh $8-10 z, 12-13 w$ oh 128 $1 m 1296 m / u, 13 w$ R

HECKEL, Édouard Du mouvement végétal Paris; G. Masson; 1875 [Down, I]
NB Vol of Trans Phylido
19 22-24m 49 3-7m, 9-15m
HEDERICUS, Benjamin Graecium lexicon London; J, Rivington; 1816 [Botany School, pre-B, ED]

HEER, Oswald Contributions to the fossil flora of North Greenland, being a description of the plants collected by Mr. Edward Whymper during the summer of 1867 communicated by Professor Stokes, F.R.S.; 1869 [CUL, I]

HEER, Oswald Flora fossilis arctica 6 vols; Zürich; Wurster; 1875 [CUL]
\wp

HEER, Oswald Flora fossilis Helvetiae vols. 13; Zürich; J. Wurster \& Co.; 1876-77 [Botany School]

HEER, Oswald Die Miocene Flora und Fauna Spitzbergens Stockholm; P.A. Norstedt; 1870 [Botany School, I, FD]
$1527 m 1713-15 m / 13-14 u$
HEER, Oswald Le Monde primitif de la Suisse trans. J. Demole; Genève \& Bâle; 1872 [CUL]

HEER, Oswald Recherches sur le climat et la végétation du pays tertiaire trans. C.T. Gaudin; Winterthur; J. Wurster \& Co.; 1861 [Botany School]

HEER, Oswald Untersuchungen über das Klima und die Vegetationsverhältnisse der Tertiärlandes Winterthur; Wurster \& Co,; 1860 [Botany School, I]
ad, af, cc, ex, fg, fo, gd, geo, gr, is, mg, no, or, $s h, s p, t, t a, t i, t m, ~ v e$

NB Read from p. 115 to end
SB $\square \beta$ 西
Oswald Heer N.B. Hooker says the Mull Flora Miocene according to Heer allied to that on W. Coast of Greenland.
p. 116 to 120 In Iceland various Miocene Trees - with American character like rest of Europe N.B. During Glacial period would Mediterranean \& Ara-Caspian joined with Black Sea prevent S. migration of temperate plants \& thus destroy many forms whilst in N . America would have remigrated from N . Or is it not that greater area of Old World has caused greater advancement of consequent extinction. Odd Horse surviving in Old World \& it \& Rhinoceros extinct in New World.
121 Madeira Tertiary flora Diluvial not many so ancient as Iceland. Thinks some of the fossil plants formerly lived in Europe
122 N.W. American fossil pl. like those of Europe. Subtropical up to 50° North
124 At Eocene period European Flora not American (NB Nebraska lower Miocene shows affinity with Europe.) In India Miocene feeble American character which is stage in Upper Miocene - Pliocene - disappears at diluvial period.
126 It seems one palaeotherium in underMiocene period.-
127 Considering the well-proved warmth of Miocene period, the hot parts of world were probably very large \& number of tropical forms ought too to be very large
128 List of Tropical forms together with cold forms which now flourish on Madeira which show how they could have lived during Glacial in Tropics. Mem. C. Moore list at Sydney.
129 list of trees which can bear our climate, but of which few bear ripe seeds.
131 Willow seeds perish if not sown immediately - showing on what odd particulars distribution, for instance to N . Zealand, may depend.-
132 general conclusion \& comparison of state of Europe during Miocene Period
135 Miocene Insects American same general results as from Plants
137 Apparently Zones of Tem. in Europe during Miocene as now
138 Reference to paper on Arabo-Caspian since Murchison \& Co
143 On Proportion of American forms now in N . Europe from Martius

144 On connection of Europe \& N. America in Diluvial Time - On relation of several Atlantic Isd in formation of plants to Europe - on greater relation to Europe than to Africa - On relation of living Madeira shells to extinct European species.- Relation of Madeira plants to American
148 on separation of shells at C. Cod.
149 Arguments against Hopkins deflected Gulf-Stream
150 Arguments against Lyells views on World Temperature from change of Land.-

116 19-23m/21u "Liviodendron|islandica" $/ w$ American? $32 u$ "Platanus aceroides", $38 u$ "Rhus" 118 3u "Pinus $\mid M x . ", 6 u$ "entspricht \mid Nordamerikas", $7 u$ "amerikanischen", $9 u$ "Alle Islands", 10u "sind IFormen" 119 20-21u "nord|Tulpenbaum", 23u "Juglans bilinica" 120 13-14u "jetzigelhat", 9-15w Tertiary vegetation of Iceland, like rest of Europe a decidedly American character 16-21w Iceland existed as Volcanic Is. in Miocene period. $1211 w$ Not so ancient as Iceland Plants 12-13u "Laurus|verschwunden", 18u "muss 1 Zeit" 122 1-4w N.W. American plants like European 3-7m, 16-21m/18-21u士 $12418 u$ "eocenen", $19 u$ "dielamerikanischen", 21u "untermiocene", $22 u$ "subtropischen", 27u "grossentheils \mid Arten", $28 u \leftrightarrow, \quad 32 u$ "Der deutlicher", $34 u$ "pliocenen", $35 u$ "noch subtropische", $37 \boldsymbol{u}$ "Der|das", $47 u \leftrightarrow 12644$ $45 u$ "reicht I hinauf" 127 13-29w considering that range of Hottest countries was so great during Miocene - the number of species in Equatorial regions ought to be very great; had they not been destroyed during Glacial period. 128 wt There are truly tropical forms which flourish in Madeira, so cd have borne the Glacial climate. At Sydney some tropical forms live. See C. Moon letter to me. 129 7$19 w$ All these trees can bear much colder climate than own, but do not get ripe seeds $46-47 m / 47 u$ "reift IFrüchte" 131 41-42m/w Willow seeds perish immed. if not sown immediately 132 10-12u "unteres Itreffen" 135 $2 w$ Insects $4 u$ "Pflanzenwelt \mid übereinstimmen", 30-33m/w American Insect-forms $13629 m$ 137 13-14u "Bewohner I geben", 17-22w Zones of temperature as now in Europe during the Miocene period 42-45m 143 33-34m, 46-48m, $50-54 m 14422-23 m / 23 u \leftrightarrow, 28-29 u$ "erstens 1 Insel", $31 u$ "weitaus|Bowdichiana", $32 u$ "einer 1 Art", 34a "sie"/[..., 38-39u↔, 41u \leftrightarrow $1453 m, 4-8 m / w$ Relation of Madeira Plants to American forms $17-20 \mathrm{~m} / \mathrm{w}$ Land-shells like tertiary land-shells of Europe $26-45 \mathrm{~m} / 28 u$ "527|einheimisch" 146 41m/u "Zurlsolche",

49-51m, wb It is remarkable extinction of Rhinoceros \& Horse in America \& not in old World, as there seems to have been more extinction \& replacement of forms in New World than in old. $1471-3 m / 1 u$ "australisches" $/ 2-3 w$ Australian forms in Madeira $46-48 \mathrm{~m} / \mathrm{w}_{0}$ Hooker says no Pittospora is Indian.- $14840-42 m 1497 x$, 45$51 \mathrm{~m} / \mathrm{w}$ Remarks against Hopkins deflected Gulf-Stream $150 \quad 1-8 m / 1-2 w \quad$ World Temperature

HÉLIU La loi unique et suprême. 1, Genèse terrestre Paris; Brasseur; 1878 [Down]

HELLER, Karl Bartholomaeus Darwin und der Darwinismus Wien; UniversitätsBuchhandlung; 1869 [Linnean Society of London]

HELMHOLTZ, Hermann Popular lectures on scientific subjects trans. E. Atkinson, introduction John Tyndall; London; Longmans, Green \& Co.; 1873 [CUL, S]
ad, che, phy
NB 219 imperfection of eye; 227 do.; 269 do.; 390 do.
234* like Drosera - pressure Good - chem action \& Heat
Nothing for Descent

- Mrs Treat preserved T.H. Farrer Answers to Donders Helmholtz
219 10-20m/10-14"..." 227 13-24m, 26-30m, 32-34m 228 3-11m 234 6-10m (Johannes Müller)/w so with Drosera 235 15-18m 269 14-23m 372 13-17m 390 5-18m 391 15-19m

HENFREY, Arthur Botanical and physiological memoirs London; The Ray Society; 1853 [CUL]
cc, fg, he, hy, phy, spo, tm, wd
NB xxi, xxii \&c; 2; 8; 23; 42; 94; 307; 310; Book 312 X important; Book 317 X? to end of part
346; 352
116; 118 Books on Divergence of Leaves
SB $\square \beta$
xxi Statement that C. Adami produced by
budding - doubts p. 317 to 320
xiii Nat Hybrid in Laburnum
3 Teeth in Whales
42 Littorella lacustris never flowers under water
310 Hybrid Ferns
312 Single-leaved Fragaria
312 On Hereditariness in Sports of certain Trees

HENFREY，BOT．\＆PHYS．MEM．
313 my view of cultivation，putting luxuriance very strongly forward Ch I
314 Sports
xi $10-11 m, 22-27 m$ xii $2-11 m, 18-21 m, 25-$ 26Q xxii $2-10 m, 14-16 m 232-38 m 337-38 m$ $440 u / w \notin 822-29 m 2334 u$＂multiplication＂ 24 $12-25 m$ 39 22－25m， $30-34 m 429-14 m$ ，21－ $27 m 457 u / w \notin 4610-12 m$ ，33－36w p xxiii 81 $33-35 m 94$ 介5－1m $957-17 m 9733-36 m 108$ 30－41m 115 42－43m 116 12－24m，27－29m，28－ $31 \mathrm{~m} / 28 u$＂Principles 16 ＂ 117 3－6m，9－12m 118 wb（Fibonacci numbers in plant organisation） 119 23－30m 195 11－18m $30736-38 m 310$ 19－ 32m，41－45m 312 20－21m／21u＂Godron＂，41－ $45 m, w b$ Henfrey cannot trace this essay 313 5－16m，21－24m，32－35m，40－44m 314 5－12m， $21-27 m, 25 m, 29 m, 32-39 m 3152 m, 6-10 m$ ， $10-11 \mathrm{~m}, 11-23 \mathrm{~m} / 13-15 \mathrm{w}$ seems to think $15-$ $16 \mathrm{~m}, ~ 20-21 \mathrm{~m} 31614 m 3171-3 m, 5-9 m, 18-$ $19 \mathrm{~m} / 19 u$＂Horschuch＇s I plants＂，21－23m，wb A． Henfrey says that Hornsuchs essay is long \＆ formal essay in the earlier numbers of the Ratisbon Flora for 1848．Ueber Ausartung der Pflanze．－ 318 36－39m 319 9－12m 320 1－ $8 m 322$ 4－14m 347 19－20m 352 34－38m \wp

HENFREY，Arthur Outlines of structural and physiological botany London；John Van Voorst； 1847 ［Down］
ct，gd，phy，tm
NB Aquatic PI no epidermis no fibro－ vascular bundles－but elongated cells no stomata

HENFREY，Arthur（ed．）Reports and papers on botany London；The Ray Society； 1849 ［CUL］
gd，mn，oo，v
NB p． 471 Hooker on Conifers in S．Hem． SB1 $\square \Re$
p263；285；289；313；319；320；361，2；384； 386；388；418；421，2；427；435，7；447； 450；465；468，9； 4 ．
SB2 $\square \beta$
263 on variable twisting in Solanum dulcamara
385 Remarkable distinction in E．\＆W Flora of C．Colony（as in Australia
388 Flora of Azores
422 Central European Plants on S．Nevada \＆Pindus－p447－ 450 Endemic Alpine Plants
－Hooker on Islands having wooded plants of Compositae．－Summary of－
435 Thistle of Pampas not social in Europe

437 Rhetian Alps 106 Phanerogam in 23 Fams－ 468 Cordillera 250 sp in 50 Fams．
468 S．American Alpine forms at great height in Cordillera，with Arctic forms
469 Hooker on resemblance of Vegetation of Pacific isld being more apparent than real．
471 Hooker on Coniferous Tree of Australia \wp
263 10－16m 284 19－21m $2857 a$＂case＂｜7－10m／ w ie when style developed before corolla 15－ 18 m 286 12－13m，14－17m 289 10－11m，25－ $26 m, 28-30 \mathrm{~m} 313$ 17－18m 319 21－29m 320 1－ $5 m 361$ 27－37m 362 6－9m，31u＂general Japanese＂， $38 m 38429 u$＂Rubus＂／27－30m／25－ $28 w$ Is this f．in Tropics $3856-13 m 386$ 20－ $25 m 3881-6 m, 29-35 m 38938 m 3904-7 m$ 418 17－19m，22－29m，29－32m 419 4－6m／w no． ＊Antarctic Lands $11-12 \mathrm{~m}, 30-36 \mathrm{~m}, 36-38 \mathrm{~m}$ $42127-33 m / 32 u$＂provided the＂$/ 33 u$＂with। climate＂，39－42m 422 8－12m，36－39m，40－43m 423 1－4m 427 17－19m 435 5－7m 437 1－5m $445 \quad 27-29 m \quad 447 \quad 20-24 m \quad 450 \quad 16-24 m / w$ species Alpine $4655-12 m / w$ not isolated Mountain 468 26－30m 469 15－28m

HENLE，Jacob Handbuch der systematischen Anatomie des Menschen Braunschweig； Friedrich Vieweg \＆Sohn； 1858 ［CUL］ phy

NB p135－162

\wp

133 wt（a）Muscles all blended together 1－ $6 m / w$（a） $21 u / w \tau 135 w t$ to be reduced to $2 / 3$ －sides cut off where I have put pencil lines〈preparation of fig．for reproduction〉，11－13m／w see Back $1364 w$ pyramidis $6-17 w$ The Pyram is not attached to skin between Brows－I must refer only to movement， however．caused． $34 u$＂sehr dünne＂$/ 35 u$ ＂sehnig＂／36w sinewy $40 \mathrm{~m} / u$＂M．pyramidalis＂ $13838 u / w \tau, 42-44 m, 45-50 w / w b$（a）It does not seem clear what muscle acts in those who can move their ears． $1396 w(B) 35-$ $42 \mathrm{~m} / 38 \mathrm{w}$（а） 142 fig． $\mathrm{m} / \mathrm{w} \notin 14333 \mathrm{~m}, 34-36 \mathrm{~m} /$ $34 u$＂M．malaris＂$/ 35 u \leftrightarrow 1445-7 \mathrm{~m} / 6 \mathrm{w}$（a） $32-$ $38 m / 34 w$（b） 145 fig．w（names of muscles） 146 $14 m, \quad 38-43 m / 38-39 u \leftrightarrow 14731 m, 33 u$ ＂bedeckt｜orbicularis＂ 148 fig．m／w（names of muscles） 149 wt All the 3 previous muscles （ELS）sometimes equally draw up nostrils as the levator prop．22m，fig．m／w（names of muscles） $15024-34 m / w$ hardly distinct from platysma $1513-5 m / w$（a） $7 m 15412 u$＂M．। sup．＂ $15512 m 159$ 3－18w Nothing particular \wp

HENRY, William The elements of experimental chemistry 2 vols.; London; Baldwin, Cradock \& Joy \& R. Hunter; 1823 [CUL, vol. 2 only, pre-B, S]

HENSLOW, John Stevens Descriptive and physiological botany (Lardner's Cabinet cyclopedia) New edn; London; Longman, Orme, Brown, Green \& Longman; 1837 [CUL]
ad, beh, br, cc, che, co, cs, dg, ds, ex, f, fg, fo, gd, gr, he, hy, is, mhp, mn, oo, or, pat, phy, $s p, s x, t, t m, t s, v$

NB1 Are there yellow hyacinths for there are blue \& pink-?

- The purple Dahlias show approach to the third colour or blue ?
- Does Desmodium gyrans. p. 166 sleep * Zostera is one of family, not peculiar characters \& Ground-Nut the most hostile flower p. 278 to non-intermarriage theory Does not flower under ground
NB2 - People constantly speak about every organism being perfectly adapted to circumstances, if so how can there be a rare * species breeding power being efficient (food not sufficiently * abundant is answer NB3
If my argument see previous page be pushed to its extreme it will include every organic being - which is unfortunate. Geograph: range has ceased to argue for this \&c \&c \&c.- Transmutation of organs have done so.- That is criterion
* How close an analogy between dicotyld. seed. \& bulb.-food in each case laid up in a modification of leaves. for a germ
- I do not understand whether the bud makes the leaf, in the axilla of which it stands? p. 79
- Where can 1 find many facts about monstrosities in plants bearing on laws of abortion degeneracy \& adhesion
- Continue description of woodcut

NB4 Ask Henslow
*) * The simplicity in ultimate structure of Vegetables very remarkable
2; $\rightarrow 11$ - ? Marchantia -; 28; 51; 52; 56R *; 58; 71; 79; 98; 118; 114; 140; 163; 169; 188; 195 reference ask Henslow - coral; 201 ?; 186. ?; 220?; 221?; 223; 233; 236; 241; 249?; 253; 254; 256; 259; 261; 263?; 266 266?; 272?; 276?; 279?; 281; 286?; 288?; 290?; 294?; 300?; 303; 308; 312
[49 Twining stems]
p173. Water will not freeze till $161 / 2^{\circ}$ in capillary vessels authority? - in relation to
roots melting.
Spiral p175.
SB $\square \beta$
p. 130 Variation in Phyllotaxy - Flower pentamer. \& tetramerous.-
15 cylinders becoming Hexagons \& Dodecahedrons - for Waterhouse view
p169 Poisons -
114 Cotyledons of Sycamore due to division 167 Dionaea Knight gave bits of Beef to Fly-Catching Plant.
220 Night-flowering plants with lurid flowers - Cereus with splendid flower only at night Coloured ??
277 The pulp round many fruits does not accelerate their growth
278 Exceptions to damp closing pericarps
$1 z b 2$ 21-27m/wb Phen Life 1 Physiological description of organs in themselves \& in different animals 2. Theory of cotransmutation of organs, not separate, or Descriptive Botany relation to habits \& conditions, which cannot be told by consideration of separate organs. $1113-18 \mathrm{~m} /$? 49 fig. 41.w Left hand Right H $5112-17 \mathrm{~m}$ $526-10 \mathrm{~m} / \mathrm{w}$ tree of life $564-7 m 573-17 m$, 18-21m 58 1-22m, wb How can tuber be distinguished from sporule of cryptogams? by being organ for its production? $713-8 m$, $9-10 m 983-18 m 1057-9 m / 8-9 u$ "is 1 stone" 107 1-6m/3-4u "Lindley" 113 7-10w V. p268 13-19m 114 22-25m/24u "proven 1 subdivision" $11811-29 m / 26-29 m / 1-29 w$ is this merely apparent, will be said that parent never was regular flower? $12011-17 \mathrm{~m} / \mathrm{w}$ find out some true species which is distinguished by bearing thorns $26-36 \mathrm{~m} / \mathrm{w}$ all this might be put strongly to favour my theory $1211-15 m 122$ 1-7m 126 8c/w $£ 127$ 16u "twenty-one", 31$34 \mathrm{~m} / 32 u$ "eight", fig. 11128 wbec $1308-11 \mathrm{~m} /$ $8 u$ "few cones", 15-17m 132 19c "9/34"/w 13/ 34 22c/m/w 21/54 〈he means 55〉 163 19-38m 164 1-10m 165 22-23u "but|depressed"/21$24 m / w$ try this with Ether $\Uparrow 1 u / w b$ Drosera has duct But Dionaea not so $1666-12 \mathrm{~m} / \mathrm{w}$ Does Desmodium gyrans sleep 24-28m 169 $1-5 m, 7-27 m, 33-39 m 17314-20 m 18614 u$ "carbonaceous matter"/15-19w whence derived primarily $18812-19 m / 1-21 w$ touching mutual impregnation 193 1-31m/10-26w try with Corallina $w b$ if Corallina do, then doubtless the Nullipora will, although living in 200 fa. $19511-20 \mathrm{~m} / 13 u$ "feet", 17-19w where described $17-21 m / w b$ relates to the three colours in varieties 201 19-26m/?/23u "freel exceptions", wb State in new Edit - case of species having pure colours $2202-4 m / 2 u$

HENSLOW, DESCR. \& PHYS. BOT.
"night-scented stock"/wt Is this peculiar variety $22129-38 m, 38 u \leftrightarrow / w$ is there a bag here? wb how like vipers 222 21-27m, wb describe (See Humboldt) Argument for one origin how curious the similarity in products between animals \& vegetables is - $22322-27 m 232$ 16-22m/w Oak \& Chestnut - Chartworth Vol $223337-39 \mathrm{~m} / \mathrm{wb}$ will it ever check flowering or more especially fruiting? $\| \rightarrow 2341-5 m 236$ 28-31m 237 8-19m 238 19-22m, 24-29m 240 $2-12 m, 29-30 m 241$ 1-9m 249 22-24m, wb How do you reconcile this with Lemna 253 11-22m (De Candolle) 254 24-36m 256 12-21m $259 \quad 30-35 m \quad 261 \quad 19-31 m / 23-26 w \quad$ where related $2621-8 m, 10-14 m, 23-30 \mathrm{~m} / 30 u$ "in succession", 32-39m/37u "Stylidium", 38-39m/ $w b$ | examined this at Maer 263 1-2m/wt/1$4 w$ has opposite tendency $\&$ fact (a) $26-27 u$ "the influence" $/ w$ Subularia \&c \&c 33-38m/wb How can these cross - $2641-15 m, 26-33 m$ 265 12-16m 266-267 wb Then it is certain whole grain of pollen must be wafted even as in Palm!- where 30 miles apart 272 15u "ovaries" $/ \mathrm{w}$ ovules? $18-20 \mathrm{~m} / 19 u$ "ovules 1 abortive", 31-35m 276 16-22m, 25-33m 277 22-27m/24-25u "pseudospermic \mid provision" $/ w$ how 28-31m, $33 \mathrm{~m} / u$ "compensation \mid which" 278 13-16m, 29-39m 279 21-26m/22w hermaphrodite 24-26m, 24c/a "produced lthe"/ $w \overbrace{0}$ is carried $w b e_{0}$ But Dic Class says that the Arachis flowers above ground 280 18$22 m 281$ 1-6m 286 13-27m 287 16-21m/?/20$21 u$ "scarcely differ", wb Azalea, Rhododendron, Lychnis \& Cucubalus? 288 $3-9 m, 13-18 m / 18 u$ "marked \mid species" $116-23 w$ is not this arguing in a circle $\uparrow 11-3 m / w b$ From the not greater number of hybrids in Dioecious might it not be argued that there might be super-foetation by the more fertile pollen?- $\uparrow 5 a$ " $w e$ "/wb a great exception Herbert \& Knight 289 16-23m, 26-35m $2904-$ $12 \mathrm{~m} / \mathrm{w}$ argue against this $12 w$ who? $12-13 w$ Most strange doctrine, when we reflect on animals.- Potato - Dahlia even granting two species $w b$ sowing Ribston Pippin * a ribston pippin but not quite like, is produced $2943-24 \mathrm{~m} / \mathrm{w}$ periodicall + opening of flowers even in dark does not harmonize with this 300 32-35m/w No 303 wt Compare St Helena in distance with Sandwich Isls $10-19 m 308$ 1$18 m 312$ 22-32m/19-27w See Bowerbank's work $w b$ What is the character of my Van Diemen's Land Fossils 313 28-29md

HENSLOW, John Stevens A dictionary of botanical terms London; Groombridge \& Sons; n.d. [Down, S]
NB Lancinata not given

HERBERT, William Amaryllidaceae London; J. Ridgway \& Sons; 1837 [CUL]
ad, beh, br, cc, ch, cs, dic, ds, dv, f, gd, he, hy, ig, mhp, no, phy, sp, spo, sx, sy, t, ta, tm, ts, v, wd

NF In Letter talked to me of an Appendix NB1 Read whole Memoir
p.8; 28; p. 32

411, 12, 16 - Supplement
p. 28

Any Plates of Hybrids
136 \&c \&c description of the Hybrids
V. Hybrid in Index

NB2 411 Labels for Gardens
O Oct 18/55/ This Book has been fully abstracted \& the abstracts distributed.-
p412 Case of Hybrid sporting into character like other species \underline{Q}
p416 Hybrid from Rhodora Canadensis \& Rhod. Ponticum in Flower

8 3-30m (Lindley), 32-40m 18 20-33m 19 1$8 m$ (Jussieu), 20-27m, 37-39m 28 38-44m 29 2-17m, 22-27m $3232-38 m / 38 u$ "on l ripened" 211 18-26m, 27-35m 283 12-19m/12m/13m/ $15 w$ fertile Hybrids $20 \mathrm{~m} / 21 w$ infertile Hybrids 284 1-3w note p. 412335 4-7m (Kölreuter)/w in * 1775 \& following years $7-8 u 336$ 30-31u "hybridising loffspring"/w what in varieties?! 337 wt (a) I see in Journal he in fact gives up genera - ie thinks some genera, which will not cross, have probably descended from one stock $3 m / w$ (a) $6 u$ "anylintermixture" $/ w$ Fowl or Peacock! $9 u$ "tol genus" $/ 9-18 w$ Grouse \& Pheasant all one genus. if term genus thus ill-used some other term must be invented. $29-30 \mathrm{~m}, 34$ $38 m / 37-40 w$ Polyand 41-42m/ 41-42m/w/wb〈botanical terms) 338 16-18m/17-27w not known probably because changed gradually - same answer can be made to those, who say. when was species made? 37-38Q 40$41 \mathrm{~m} / \mathrm{w}$? where published $40 u$ "Mentha" $/ w b$ Pallas specifies the Labiatae as plants which cannot naturally be crossed. He must, however, be refer to Snap-Dragons $42 \mathrm{~m} / \mathrm{wb}$ No Papilionaceous flowers Some Monooecious \& Dioecious... 339 19-24m, 42-43m/ $43 u$ "father" 340 1-2m, 5-7m/5u "black | pony"| $5-12 w$ instance of my law of variation agreeing other species of genus $30-33 \mathrm{~m} / 32 u$ "31 sterile"/33u "quote I constitution", 34-36m 341 wt (a) contains remarks on acclimatizing of plants $1 u$ "Sweet | Britannicus" $/ m / w$ (a) 6$9 \mathrm{~m}, 9-10 \mathrm{u}$ "naturally lapproximated", $10-15 \mathrm{~m} /$ $12 u$ "isolated" $15 u$ "ready to intermingle", 33$37 m / 34 u$ "varieties 1 prevented", 41-42u "did sterility" $342 w t+$ is this not error: does not
constitutional difference confer some difference in innermost organization，or rather on whole organization $1-4 m / 3-4 u$ ＂greaterlothers＂， $7 u$＂constitutional＂$/ w+8 a$ ＂botanical＂w ie external 16－32w it might be worth while to consider native conditions in Kölreuter 23－24u＂dissimilar I genera＂／w Crinum 27－32m，41m 343 wt Animals \＆ plants are domesticable because not rigidly adapted，\＆these are easily hybridisable．－1－ $2 m, \quad 5-15 m / 10-14 m / 10-11$＂．．．＂${ }^{4}$ ， $16-17 m$ ， $\Uparrow 14 w$ Crinum $\uparrow 12-4 m, w b / \uparrow w$ Habits \＆c determining sterility（\＆hence probably intermarriage in some degree）is very important，as solving the case of willow wren \＆explaining great importance generally solving question of habits in determining what is species－a fact tacitly admitted by all naturalists．Habits being not fixed in domesticated animals，or indeed in plants， not exactly related，$\%$ to the varying conditions causes the greater facility in being crossed．－ 344 17－23m／18w Calceolaria 29－ $30 \mathrm{~m} / \mathrm{u}$＂abundantly fertile＂／＂．．．＂，32－34m 345 $w t$＊Loudon both of Europe，figured in Bot． Mag．99，\＆2183．－ $2 u \wedge / w^{*}$ Linaria 3－5m／u士／ w Mexico Penstemon $4 a$＂gustifolium＂ Louisiana $10 u$＂wholelwhich＂／11－14m／13u ＂offeringlfertile＂，22－28md／22w Cereus 42w Cucumis $346 \quad 5-6 \mathrm{~m} / \mathrm{u}$＂reproduces 1 abundantly＂／wt Did I not examine this at Maer ？？？4u／a＂special＂／wt p． 352 properly Lowii 17．1455 Herbert Bot．Reg． $4 a$ ＂speciosa＂$/ 4-7 w$ Bot．Mag． 3604 this reference from Loudon $12-14 m / 12-13 u$＂that I genera＂， $15-17 \mathrm{~m}, 18-23 \mathrm{~m} / 18-20{ }^{\prime \prime} . . . "$ ， $36-$ $43 m / x / w b \times$ This would all apply to animals． but breed is．not introduced with this consideration．－ 347 wt We know there is something in intimate structure of Marsh Plants which renders it wholly impossible to live in dry \＆vice versa with dry．\＆as \＆ crossing＊makes constitution half way，it affects the most important part of whole structure，－even as much as form of heart or other vital structures．－4－5u＂In｜parents＂， $12-18 \mathrm{~m} / \mathrm{w}$ How exactly similar to giving dash of courage to greyhounds by Bull－dogs blood $23-24 u$＂accidental seedling＂／23－31w This is like sudden appearance of cowslip from primrose it is analogous to Australian dogs， producing piebald young． $25-31 \mathrm{~m} / 26 \mathrm{w} \times 33-$ $34 m, w b \times$ against my theory．－change， however，is sudden－\＆not many generations．－From foregoing facts，about constitution we should expect such changes to be slow．\＆likewise any attempt to change aquatic to dry plant This is only one
particular，in others the change？$w b / 35-42 w$ See．Sir J．Banks Vol I．Hort．Transact． Laurels not raised by success．generations 348 10u＂connected I membrane＂／11－14m／11－ $21 w$ Now does this tendency to sport in hybrids decrease after several generations of same appearance same fact as in varieties of animals where crossed． $22 w / 24 w{ }_{c} \neq \Uparrow 9-$ $1 \mathrm{~m} / \mathrm{w}$ must be read $\uparrow 9 \mathrm{~m} / \mathrm{w}$ read $\uparrow 7-6[\ldots]$ ， \＄5］ $3496 u$＂thelout＂$w 313 u$＂cross－bred seeds＂，28u＂coverings＂／w 3 32－38m（Gaertner， Hedwig，Kölreuter） 350 1－8m／4u＂full I seeds＂｜ wt I doubt whether Gaertner now allows this． See to it．－ $25-31 m, 25-28 m, 38-43 m$ （Gaertner） 351 6－11m， $27 u$＂every ovule＂／15－ $17 w$ impossible to be more fertile $26-29 \mathrm{~m} /$ $m \otimes / 22-27 m / 26 u \uparrow / 27 u$＂big revolution＂$/ 29-30 u$ ＂Datura 1 laevis＂ $126-30 w \times$ Crinum Datura $w b$ Might not Gartner have been a bad Gardener \＆so not had his plant so healthy －I think Herberts positive facts outweigh negative：he knows so well causes of error \＆ trusts to nothing but appearance of hybrid plants－ $3528-10 \mathrm{~m} / 7 \mathrm{w}$ Lobelia $9-14 m, 14$ $16 \mathrm{~m} / 15 \mathrm{u}$＂seeded abundantly＂， $18-19 \mathrm{~m} / \mathrm{u}$ ＂Wiegmann｜language＂$/ w$ ．Enquire at Linn Soc 23－26m，28－32m，33－38m，41－43m，$w b$ does the multitude plants preserve them，by allowing very many impregnations，the stigma keeping its power－with respect to wheat 353 2－8m／w Note in Philosoph－ Transaction．about White Blue Peas 354 9－ $18 m$（Gaertner，Wiegmann，Knight）／12u＂is 1 erroneous＂ $\mid 13 u$＂oat＂ 116 a＂racemosa＂Scarlet $18-22 m /{ }^{\prime \prime} . . " / 22 u, 24-28 m / w$ This must be functionally dichogamous． $27 u$＂Calceolaria＂／ 24－28w In Calceolaria＊stigma ready before ＊pollen 29u／a＂Pelargonium \mid Alstroemeria＂ $29-33 w$ in these＊stigma ready after pollen介6－2m／$\uparrow 4 u$ a 355 3－5m， $8 w$ Zephyranthes 13－ $17 \mathrm{~m} / \mathrm{w}$ This shows two sexes differently affected by conditions：are sexes ever unequally affected in Hybrids．－15－19m，23－ $25 m 356$ 〈u＾〉 $1 u / 3 u / 4 u / 7 u / w t$ Crinum， Hippeastrum 20－24m，21u＂accidental impregnation＂，29－35m $357\langle u \wedge\rangle$ wt Pelar－ gonium 1－5m，8－12m， $9 u, 10 u, 14 u, 14-17 w$ see Sweets work on Geraniums $20 u / 21 u$ ， 24 25u土，27］［， $29 w$ Passiflora $32-37 \mathrm{~m} / 34 u$＂not｜ fruit＂／w ！！my notion of fruit improving 358 wt Note p． 411 11－12w Gladiolus 10－15m／13－22w seems to leave out of question，greater indelibility of some stocks than others 16－ $24 \mathrm{~m} / 21-24 \mathrm{~m}, 25-30 \mathrm{~m}, 36-40 \mathrm{~m} / \mathrm{w}$ good step in series of infertility $35919-20 \mathrm{~m} / 20-23 \mathrm{w}$ Rhododendron Rhodora Azalea $30-32 \mathrm{~m}$ ， $38 m / u \uparrow / w$ Nicotiana $42-43 m 360 \quad 6-11 m / 6-$ $14 w$ I am sure I have heard of some such

HERBERT
facts in animals: new characters educed this is constitutional ? difference $21-23 m$, $\uparrow 12-$ $10 m / \Uparrow 12 u$ "fragrance", $\uparrow 8-6 m / \Uparrow 6 u$ "veryl number", $\uparrow 2-1 u$ "Altaclarae" 361 5-8m/5u "profusion", 42-43m/u $\leftrightarrow 362$ wt I should think it impossible that many hybrid permanent species were produced from the conditions of the place seldom being better adapted to the hybrid than to either parent. $1-3 m, 1 u$ "important", $4 u$ "themselves 1 situation", 15ll, $15 u$ "Rosa", 21-24w Rosa nothing particular 25-31m, 43II/u "honeysuckles" 363 7]l, 8u "magnolias"/w Magnolia 7-11][/w Calceolaria $13 u$ "Calceolaria", 23-43m/35-36u "therefore 1 thereof" $/ 26-30 w$ (a) $Q w b$ (a) My rule of variation from domestication producing changes analogous to those found in other species of same genus, thus is seen to hold good with varieties produced by crosses $3645-7 m / 3-8 w$ there is a case of different constitutions crossing 16-22w Calceolaria Loudon makes 12* many species \& many vars. $23-30 \mathrm{~m} / 26-27 u$ "they sorts" 365 6-9w Gaertner tried only few, but fertile 10JI/w Gladiolus $3669 u$ "floribundus", $18-21 m / w$ (a) $27-31 m / w$ Is this fact owing to these being double $33-43 \mathrm{~m} / 34 u$ "almost" $/ 36 u$ "double"|37u "pink"|39u "although|together"/ $34-38 w$ these if single, or quite fertile would be true species $w b / \downarrow w$ (a) Now this shows that some * species will not cross (which cannot be accounted for by constitution), which yet by their appearance must be forced into one genus - \|I on other hand we have seen most remote forms forced into one genus - shows definition of genus will not serve \& shows power of crossing has no close relationship to affinity, (even of constitution) but to some other causes - age - 367 27-28w Camellia 369 31-43m/35-36Q4, $42-43 m 370$ wt X weakly anàlogous to successive generations fixing peculiarity 1$5 m / 2 w \times 23-36 m / 24-25 w$ Turnips 371 wt B. This may be wellO introduced in my views of all organic beings marrying $-4-7 \mathrm{~m} / 7-14 \mathrm{~m} /$ $5-12 m / 10 w$ B $6-12 m / w \operatorname{Mr}$ Knight makes very same remark Vol I Hort. Transact. $15 u$ "different |aspect" $115-22 m, \quad 27-32 m / 27-34 m / w$ in this case of hybrids tested probably by slight infertility (a) $\uparrow 6 u$ "pollen lanother" $\uparrow 6-$ $1 m / w$ my theory explains this: because offspring differ in the two cases, in one going back to parent, $\&$ in * other remaining constant $\uparrow 3 a$ "stock" But they do not yield so much seed with pure parent $\uparrow 3 u$ "fecundate them", $\uparrow 2 a$ "themselves" still stronger when with a 3d species $\Uparrow 2 a$ "fertilise" $/ w b$ but they fertilise less $w b$ Probably stigma would
actually prefer pollen of other plant; as stigma * remains open to choice $-\&$ as in Mammalia bred in \& in, loose passion (but I do not know whether prefers other kind)-$3727-10 m$, $18-31 m, 30-36 \mathrm{~m} / \mathrm{w}$ No. note p. 375 38-43m 373 wt XX I think these facts only show that constitution, or internal differences are far more important than external.- $23-30 \mathrm{~m} / 25 \mathrm{w}$ XX $28 w$ Nerine $28-$ $34 m / 31 u$ "Loxanthus", $\uparrow 4 u$ "conformity", $\uparrow 4 u$ "41mule"/w XX 介3u "verified" $3743 a$ "feature"/wt namely the difference of the perianth being centripetal or centrifugal, in addition to * its distortion $6 w$ P $81 / / w$ Heaths 9-12m, 25-29m/27u "referable! genera", 33-38m/33-34u "The lespecially", $\uparrow 5 u$ "complete fertility" $/ \uparrow w / w b \underset{P}{P}$ As constitutional differences, probably, show * greater distance of common ancestor, than external differences, so as these constitutional differences can be readily discovered by facility of crossing such facility admirable assistance.- in same way habits of animals so useful. $3751-7 \mathrm{~m} / 1 u$ "sixteen"|7u "1835", 34-35m 376 10-16m/w last step in series of infertility $\uparrow 4-1 m 3771$ $2 m / w t$ it is analogous to the seedling Camellias recovering their simple flowers 8$16 m, 18-23 m, 35 w$ Nicotiana $\uparrow 3-1 m / \Uparrow 2-1 m /$ $\Uparrow 1 u \leftrightarrow / w b$ Variation in $*$ unimportant character 378 3a/u "different power"/wt Gaertner p. 262 says false $1-15 m / 1-7 w$. case of the passing of a plant from one Linnaean class to another. $w b$ NB See P p. 374 The value of crossing, as a test of genera \& c is of little value, as the Natural System seeks to know relationship \& does not attempt date of separation 379 wt (a) This cross in Gaertner i a, \& ig. ie less than (K)a normal. May not much be attributed to skilful gardening ?? 9-13m/w Petunia (a) 11a "P. nyctanigenaeflora" Hardy 11a "phoenicia" frame $11-13 \mathrm{~m} / 13 u$ "than I parent", $14-16 \mathrm{~m} / 15-$ $17 u \pm, 20-23 m / 21-23 m / 21-22 u$ "in 1 itself", $\uparrow 6-$ $4 m / \Uparrow 7 w / \pi 3-1 w$ anagallis failed with Gaertner; Hibiscus not tried by G 380 11-14m, wb Hybridise sensitive Plant \& sleeping Mimosa \& then try my experiment - $4028-12 m, 21-$ $24 m 411$ 23-33m, 37-41m/37w p. 358412 1$7 m, 33-40 \mathrm{~m} / 35-37 \mathrm{Q}$ 38-40m 416 52-55m/w considered by Lindley a true genus Catalogue <New works in course of publication by James Ridgway \mathcal{E} sons, April 1837; scored on last page against Forbes, Horticultural tour through Germany, Belgium and France)

HERMANN, Ludimar Elements of human physiology London; 1875 [Down]
105 10-13m

HERMANN，H．C．The Italian alp－bee G． Neighbour \＆Sons； 1860 ［CUL］ beh，ct
NB $\Perp_{\text {Cells Instinct } \& \mathrm{c} \text { \＆Marked }}$
6 9－12m，19m／u＂Yellow Alp－bee＂，21－23m 7 1－4m，25－27m 8 17－19m，21－24m $103-5 m$ ， $10-14 m 1129-30 \mathrm{~m} / 29 u$＂ 2,000 ＂ $2410-16 \mathrm{~m} /$ $15 c / w\langle n o t C D\rangle, 31-36 m 251-9 m$

HERMANN，Ludimar Handbuch der physio－ logie 6th vol．，part 2；Leipzig；F．C．W．Vogel； 1881 ［Down，I］

HERSCHEL，John Frederick William A manual of scientific enquiry London；John Murray； 1849 ［CUL］
161 21c／a＂surprising＂／w some degree of 22c／ $w \notin$

HERSCHEL，John Frederick William Phy－ sical geography Edinburgh；Adam \＆Charles Black； 1861 ［Down，FD］

HERSCHEL，John Frederick William A preliminary discourse on the study of natural philosophy London；Longman，Rees，Orme， Brown \＆Green \＆John Taylor； 1831 ［CUL， on B$]$

25 8－19m $35 \quad 20-27 \mathrm{~m} / 22 u{ }^{\circ}$＂depending｜will＂ $9310 \mathrm{~m} / \mathrm{w}$ yes $183313521-28 \mathrm{~m} 1362-8 m 167$ 24－31m 182 1－20m（Bacon） 287 27－33m 351 5－12m，29－33m 352 1－ $7 \mathrm{~m}, 16-20 \mathrm{~m} / 16^{\prime \prime} .$.

HERSCHEL，John Frederick William A treatise of astronomy London；Longman，Rees， Orme，Brown，Green \＆Longman \＆John Taylor； 1833 ［CUL，S 1838］
118 3－10m，24－30w
HERSCHEL，Mrs John Memoir and cor－ respondence of Caroline Herschel London；John Murray； 1876 ［Down］

HERTWIG，Oscar Über das Zahnsystem der Amphibien Bonn， 1874 ［I by author］ ［CUL．1900］
SB $\square \beta$
101101257
〈over〉 $\mathrm{O} /$
HERVEY－SAINT－DENYS，Léon $\mathrm{d}^{\prime} \mathrm{Re}$－ cherches sur l＇agriculture et l＇horticulture des Chinois Paris；Allonard \＆Kaeppelin； 1850 ［CUL］
sl

NB 23219 dates； 229 speaks of History of Chinese standing $w \diamond 1000$ years SB $\square \Re$
229．ancient precise Rule for selection
p． 219 This great Encyclop was published in 1737．－but it is compilation
p221．Name of this Encyclopedia
23 5－6m／u＂Ma－touanlin＂ 24 zt 219 3－5m 221
$2 u$ 〈title〉 229 9－12m／10we Plot 12－14m／12－
13m 239 8－9m 254 4－7m 255 7－9m
HEWSON，William The works of William Hewson，F．R．S．ed．G．Gulliver；London；The Sydenham Society； 1846 ［CUL，I by editor］ phy，v
SF 〈letter from Gulliver〉
NB Blood corpuscles nothing particular for me，I think
p． 218 p． 238 vars．∞ in vars．X in Do
\wp
218 5－7m，18－19m，35－37m 219 10－13m 236
$39-40 \mathrm{~m} 237 \mathrm{~b} 47 \mathrm{~m}, 48 \mathrm{~m} 238 \mathrm{a} 13 \mathrm{~m}, 14 \mathrm{~m}, 23 \mathrm{~m}$ 238b $18 m, 20-22 m, 27-29 w$ very variable $w b$ what var．239b wt send blood $6 \mathrm{~m}, 46 \mathrm{~m} / \mathrm{w}$ white＊owl $w b$ which is white owl 241b 10 m \wp

HEYWORTH，Lawrence Glimpses at the origin，mission and the destiny of man London； Williams \＆Norgate； 1866 ［Down，I］

HIBBERD，Shirley The fern garden 4th edn； London；Groombridge \＆Sons； 1872 ［Down］

HIGGINSON，Thomas Wentworth Out－door papers Boston；James G．Osgood \＆Co．； 1871 ［Down］

HILDEBRAND，Friedrich Die Geschlechter－ Vertheilung bei den Pflanzen Leipzig；Wilhelm Engelmann； 1867 ［CUL，S］ cc，cs，dic，ex，fg，hl，mhp，oo，rd，sp，sx，ti
NB p37e； 28 abortion of Rag Floret of Compositae for－p20 Digitalis most fertilised by pollen first on closed stigma 1 18－22m 3 10－12m，20－22m，24－26m 4 8－12m 5 10－19m 7 wt Dioecious \＆Mon．plants flower in Spring，when little honey in other flowers $1-2 m, 24-25 m, 26-27 m$ 9 23－25m 11 $1-3 m / w t$ Consider Thyme a case of Polygamia $6-18 m / 11-25 w$ each kind of flower on separate tree \rightarrow ash－a tree？12 7－10m 13 wt It may be that lower plants have survived owing to having this advantage of separated sexes．6－7u＂mehr｜zwittrigen＂／w Doubtfully Thinks Hermaphrodite earliest state $9-11 m$ ，

HILDEBRAND, GESCHLECHT
11-12m/ 11-15w (a) Lower plants oftenest have separated sexes $30-31 m 1420-23 m /$ $21 u$ "Mehrzahl", 23-24m 15 3-7m/4w Sprengel $30 m 1614-17 m$ (Sprengel), 18-24m, 27-28m 18 8u "Protogynische", 10-11m, 21$32 m 20$ 12-16m 21 12-20m 22 13-17m, 18$23 m 23$ 21-25m, 27-30m 24 9u "Protrandristen | Blüthen" $/ 5-17 \mathrm{~m} / \mathrm{w}$ Rudimentary organs 14-16m 25 13-15m 26 10w p11 11-14m/ 10-16w In Thyme anthers of Hermaphrodite flowers developed before the pistil 14-17m, 16-29m $276 u$ "allelsind", 1115m 28 14-25m/15-18w Compositae 17u/w , $19 u / w \tau, 20 u / w \tau, 26-34 m 321-4 m, 17-25 w$ more dichogamous than non-dichogamous!! wb 2 divisions when anthers lie so close as to fertilise the stigma \& when distant from stigma $3632-33 m \quad 3712 m, 12-13 u$ "diel übertreffen", 19-22m, 27-34m/30-31x 39 23$33 m 40$ 1-6md, 23-27m 42 1-10m 43 13$16 m 453-6 m, 10-15 m 4811-14 m / 5-20 w$ in Cruciferae, manner in which anthers open checks self-fertilisation $511 m, 5-7 m 5311$ $15 m 54$ fig.w Viola tricolor $5612 m, 20-34 w$ D does not know the self-fertilisation by movement of petals. $5717-21 m 5910-15 m$, 15-18m 62 19-22m/w Does not Cyclamen self-fertil. $637-9 m, 31 \mathrm{~m} / \mathrm{w}$ BorgniO 67 26$29 m \quad 73$ 20-21m/w Dimorphic 74 1-4m, 28$29 m$, 32m (Walz) 77 12-14m, 23-25m/w waterflower $28-31 \mathrm{~m} / \mathrm{w}$ come to surface $w b$ instead of flowering under water, as we see is quite possible. $7814-16 m 79$ 29-33m 801 $28 m 8216-19 m / 1-20 w$ adduces Snails - 1 think must have been primordially self-fertile $13-16 m$, $12-20 \mathrm{w}$ Thinks flowers are hermaphrodite to favour crossing - one to favour seeds.- like bulbs \&c 84 17-19m 86 13-17m 87 4-9m $904-10 m$, 14u "Alter 1 Gesetzes"/w age of law

HILDEBRAND, Friedrich Die Verbreitungsmittel der Pflanzen Leipzig; Wilhelm Engelmann; 1873 [CUL, bound together with previous item, I]
ad, fg, gd, mhp, 00, phy, sp, sx, t, v
NB p5 \& 6 List of authors on Means of Distribution
p36; p.80; 104; 107; 112; 114-117; 129 to 150; 155 to end
SB \rightarrow
p. 5 \& 6. List of works on Means of Distribution.
36 fruits eaten by birds on trees - those which stick to furry coats on branches of Herbs (p.160)
80 fruits with Arillus (My case)
104. wonderfully many adaptations for scattering seeds fleshy fruits more open.
107. fruits which do not open have only 1 seed.
112. fruits do not become coloured or tasted until ripe. (Like calyx of Polygala) \& shell of seed hard as a protection
114. good remarks on coloured fruit

116 wonderful economy in the means of distribution - nothing superfluous \& vary 2 ways - confined to the female flowers
129 - Bears on what useless Q
144. Cases of same sp. with 2 means of distribution
145. Means often differ much in allied plants. 150 When many seedlings of same sp. struggle together all weakened, not different sp. kill each other more easily - \& thus good of distribution.
151 \& parents close interbreeding
2 12-14m $411 m 82 m 9$ zt 13 3m $2020 m 26$ $23 m 361-7 m 4117 m 48$ 8-10m $5215-16 m 57$
 90 26-27mxo 99 25-26m 101 27-29m 102 22$25 m 10417-30 m / w$ all sorts of adaptations to scatter seeds $29 m 1071-2 z, 3-5 m, 23-31 m$, 33-34m $1123 m, 12-15 m / 14 u$ "hervortretende"/ 15-16u "derlGeruch", 16u "angenehme Geschmack", 26u↔ 114 18-22m/19u "Asparageen 1 Früchte", 25-29m 115 5-7m\& 116 3-6m/3-4u "an IFrüchte", $24 m / 20-26 w$ Great economy in superfluous adaptations 117 1$4 m, 17-20 m / 17-18 u \leftrightarrow, 23-31 m 12512 z \leftrightarrow_{0} 129$ 19-26m 130 26-30m 144 22-34m/ 23-29w on same Plant $1451-16 \mathrm{~m} / \mathrm{w}$ Means of Distribution often differ much in allied Plants $1505-12 m / 1-34 w$ When seeds of same kind * sown together all struggle together \& all weak - not so when different kind for then the strong kill the weak $15122-26 m 155$ 28$33 m 157$ 11-14m, 18-20m 159 14-22m, 17$20 \mathrm{~m} / 21 u$ "ausbildenlnicht" $160 \quad 3-4 m / u \leftrightarrow / w$ Hooker 6u "Vögel", 7-10m/7u "an Istrauch" $1618-12 m / u \pm 162 w b$ [When pollen is brought from a distance commonly - it is possible that means of distribution wd be less necessary C.D]

HILDEBRANT, Gustav Die Verbreitung der Coniferen Bonn; Carl Georgi; 1861 [Down] \wp

HINDS, Richard Brinsley The regions of vegetation, being an analysis of the distribution of vegetable forms over the surface of the globe in connection with climate and physical agents London; G.J. Palmer; 1843 [CUL, I] gd, no, sp

SF $\square \beta$

11 Greenland 2 species to genus
36 Species of European genera in Mexico distinct - like other alpine regions no peculiar Family \& few genera (Like lakes \& Arctic regions
48 Mountains of Brazil vitis, Galium, *, Gaultheria (Nothing)
54 Alludes to Pisidium or Guava at Tahiti 62
62 Vaccinum \& Fragaria on Sandwich Isd
63-47 species in Low Arch, belonging to 40 genera \& 27 Families (small size few individuals \& therefore not new species)
94 Relations of Abyssinia to Cape of Good
H. Protea, mesembryanthemum

NB1 What has Schow written, who is so often quoted on Bot Geog.??
NB2 p.11; p. 14 to end
11 1-2m 14 16-20m 15 2-7m 17 17-20m 20 $27-28 m, 28-29 m 2227-29 m, 30-31 m 2416-$ $17 \mathrm{~m} 254-7 \mathrm{~m} 27$ 12-13m, 16-18m 30 13-19m $368-9 m, 13-14 m / 12-18 w$ Contrast this with species being same further north; also T. del Fuego 17-19m/u "It | genera"/9-16w so lakes \& Arctic regions $21-23 m$ 39 6-11m/7u "strongerlthan", 18-20m 41 17-19m 43 23$32 m / 27 u$ "ribes, rubus" $/ 28 u$ "andromeda" $/ 29 u$ "vaccinium" $30 u$ "berberis" 44 20-22m/21u "oflabies" 47 21-34m/24-25实/26-31w * No European forms $w b$ see to this $486 m / 7 ? / 4$ $5 w$ not species $4920-24!/ 22-26 m 5414-17 m /$ $12-20 \mathrm{w}$ compare with mountains of Brazil p148 V. Von Martius $27-28 m 5810-13 m, 15 u$ "ribes I vaccinium", $17 u$ "salix", $18-20 \mathrm{~m}, 23 \mathrm{~m}$, $28-31 \mathrm{~m} 621-2 \mathrm{~m}, 16-17 \mathrm{~m}, 31-34 \mathrm{~m} 6313-15 \mathrm{~m}$, $27-33 m 641-2 m 687-10 m 711-3 m 7415-$ $18 m, 28-34 m / w$ some of these are American \therefore ought they not to be considered mundane 79 17-20m, 20-22m 81 13u "salix| viola"/w mundane. $18-19 m \quad 82 \quad 26 m \quad 83 \quad 9-11 m / 11 u$ "strongerlIndia" $8726 u \leftrightarrow, 31 m 8824-29 m 90$ 10-12m 94 20-22m 98 15-18m 101 9-12m 102 4-8m, 12-13m 104 1-4m 115 23-28m 117 32$34 m 1191-10 m 12114-19 m 12211-15 m 125$ 9-12m 128 4-5m/4u "dwarf|stunted" $/ w$ so in Himmalayah 130 15-18m/15u "Sempervivum"| 17 u "sedum" 133 19-25m 135 17-18m 136 16$20 \mathrm{~m} / 17 \mathrm{w}$ odd $27-34 \mathrm{~m} 1397-10 \mathrm{~m}, 29-31 \mathrm{~m}$

HITCHCOCK, Edward Final report on the geology of Massachussets 2 vols.; Amhurst; J.S. \& C. Adams; 1841 [Down, I] \wp

HOCHSTETTER, Ferdinand von Reise der Österreichischen Fregatte Novara um die Erde ... 1st vol., 1st and 2nd parts separately; Wien;
K.K. Hof \& Staatsdruckerei/ Karl Gerold's Sohn respectively; 1866 [Down] \wp

HODGE, Charles What is Darwinism? London and Edinburgh; T. Nelson \& Sons; 1874 [Down]

HODGSON, Shadworth H. The theory of practice 2 vols.; London; Longmans, Green, Reader \& Dyer; 1870 [Down, I] \wp

HOEK, Paulus Peronius Cato The zoology of the voyage of H.M.S. Challenger: 10. Report on the Pycnogonida London; Longmans \& Co.; 1881 [Down, I] \wp

HOEK, Paulus Peronius Cato Embryologie von Balanus Leiden; E.J. Brill; 1876 [Down]

HOERNES, Rudolf, and AUINGER, M. Die Gasteropoden der Meeres-Ablandungen der ersten une zweiten Miocären Mediterran-Stufe 3 parts; Wien; J.C. Fischer \& Co.; 1879-1882 [Down, I by Hoernes] \wp

HOFACKER, J.D. Über die Eigenschaften welche sich bei Menschen und Thieren von den Eltern auf die Nachkommen vererben, mit besonderer Rücksicht auf die Pferdezucht, mit Beiträgen von F. Notter Tübingen; G.F. Dsiander; 1828 [CUL, on B]
beh, br, cc, cs, fg, h, he, pat, phy, sp, sx, tm, ud, v, y

SB Hofacker

10 on Heredetary colour of Horses; when forefathers for some generations of same colour, more easily transmitted. p94
15 on confining of animals of 2 colours \& offspring taking after one or other NQ
34 on handwriting heredetary Qus
83 of Hybrid NQ canaries Birds propagating for 4 generations: inter se? Q
98 on changes of colour in calves from parents of two colours. with age $Q x_{0}$
107 on stags with one horn, producing a Family of. Q ${ }^{\infty}$
$727 m 81-8 w$ Shape of hoof \&c \&c hereditary $101-6 \mathrm{~m} / 5-10 \mathrm{w}$ approximate colour $12-13 u$ "dem I seyn", $23 u$ "nurlsich", $27-28 \mathrm{~m} /$ $28 u$ " 5.87 " $\mid w b$ colour of forefathers appearing easier in colts $111-5 w / w t$ Horses of different breeding establishments of different colours 12 wt Chestnut appeared when neither parent chestnut $7 u / w \tau, 8 u / w \tau$, $\langle u$: "Goldfuchs" and "Hellfuchs" $10 u, 11 u, 13 u, 14 u, 15-16 \mathrm{~m} /$ $u, 18 m 1317 x$ /Q χ_{0} / w Chesnt 11-27w cases

HOFACKER

of new colours appearing 14 7-8u "braunen 1 Braun" $/ 7-11 \mathrm{~m} / \mathrm{w}$ brown mare always bore chesnut foals $17 u$ "Mausrappen", $17 u$ "Braunen" $16-19 w$ Mouse-black from black \& brown $26-27 \mathrm{~m} / \mathrm{w}$ piebald $151-6 \mathrm{w}$ not so with Horses $8-11 \mathrm{~m} / \mathrm{w}$ like Hollyocks $13-14 \mathrm{~m}$, 15$23 u \pm 161 m \quad 176-11 w$ great tendency (without white young destroyed) for all animals to become white - $237-8 w$ Mulattos smell like Negros $22-26 \mathrm{~m} / \mathrm{w}$ odours of different parts of body hereditary $244 u$ "Rheumatismen I Catarrhen", $\quad 25-27 \mathrm{~m} / 18-27 w$ when both parents fat young fat very early. $2516 \mathrm{~m} / \mathrm{u} \leftrightarrow 29$ 12-16w great strength hereditary 30 wb Genius not hereditary [How many qualities together make Genius!] $323-13 w$ Hereditary genius $23 u$ "Bach 150 ", $24 u$ "Bernouilli" $348 u$ "Handschrift" $/ 6-15 m / w$ handwriting hereditary $354 u$ "Brugnone"/1$7 \mathrm{~m} / \mathrm{w}$ recommends starting horse not to be bred from. $14-22 w$ cross of pointer \& shepherd dog, after many generations when become like sheep dog still pointed birds 36 21-29w/wb short \& high heredetary (produced by manner of life) $378-10 \mathrm{w}$ diseases of eye hereditary in horses. 39 21u "Grösse IGeschlechtstheile", 23u "leicht I gebären"/22-23w facility of birth hereditary 43 $1-2 m / w 20$ female cats for one male $6015 m$ $801-13 w$ sex of plants influenced by conditions 83 17-18m, 29-30m $848 \mathrm{~m} / \mathrm{w}$ genera $18 u$ "Perlhahn", 19m/u "Haushenne", $20 u$ "Jungen der", 25m/w gen $896 u$ "Absicht I Grösse", 10-11u "JungelZebra" 6-12m/w hybrids of one kind resemble father \& of other kind, mother $12-13 \mathrm{~m}, 21 \mathrm{~m}, 27-29 \mathrm{~m} / \mathrm{w}$ Fineness of Hair after father $908-9 u$ "Den I Vater", 11u "Denl Mutter", 13u "Diel Vater", 15u "MutterlOhren", 18u/wr, 23u "Schweif", $23 u$ "Mutter" 91 2-4m, 6-11m/8-9u "Zahl| überwiegt", $11 u$ " $7: 2$ ", $12 u$ "3:1", $13 u$ "16:3" 93 3-4m, 14u "keine Bastarde", 20-25m/23u "Statur" 24 u "Längel Beckendurchmesser", wb Pelvis $94 w t / 1-24 w$ stallions transmit qualities more than mares. because generally former of long-continued good breeding but mares are less so \& crossed. $16-25 m 967 m d, 8 m d$, $11-14 m, 15 \mathrm{md}$, $19 \mathrm{~m} / u / \mathrm{w} \tau 97 \mathrm{wt} / 1-5 \mathrm{w}$ Duns hereditary colour - but these are picked cases of hereditary transmission of colour $\langle u$: colours in $3 r d$ column $\rangle 3 m / u, 6 u, 8 u, 9 u, 10-$ $12 m / 12 u, 22 u, 23 m / u, 27-29 m 9819 u \pm, 20 u \pm$, 23-24m/u士 99 4-5m, 14-15m 100 3-4m, 6u "Männchen" $1016-9 \mathrm{~m} / \mathrm{w}$ men affected by producing one mule $10222-25 \mathrm{~m} / \mathrm{w}$ children like first husband 105 19-20m/u "oder Ihaben" 107 8-9m/9u "Burdach", 11u "Nabelbruch", $13 w$ Hare-lip $21-25 m / w$ one-horned stag $\mathrm{Q} *$,

26Q* $110\langle u=$ names of diseases $\rangle 13-23 \mathrm{~m} / 13 \mathrm{u} /$ $14 u / 18 u / 19 u / 20 u / 21 u$, $22 u / 22-23 u$, $24-27 \mathrm{~m} /$ $24 u / w \tau, 25-28 w$ tendency to bleed on small hurts $1117 u$ "Roz"/w glanders 9-10u "Exostosis|tarsi", 11u "Exostosen", 20u↔ 112 $9 m, 23-28 m / 26-27 u$ "wederlSchauher", wb discussion on hereditary venereal diseases probably, when from father, not actual mother. 114 16u "nurlVater", 17-18u "nurl nachkommen" 123 22-24m 130 8-13md/8u "nur Raçen" 140 3-18w many old nations married their near relations

HOFFMANN, Hermann Zur Speciesfrage Haarlem; De Erven Loosjes; 1875 [CUL]
cc, che, cs, ds, fg, gd, he, phy, sp, sx, t, tm, v

NB All abstracted

p. 53 Papaver somniferum self-fertile
p66 On Causes of Variation \& Range of Viola lutea \& tricolor
11 Adonis aestivalis self-fertilised protandrous
Look over, some references for Good for crossing Book
p4 What he considers evidence of specific form ! p27
7 causes of variability
8 Reversion
17 on the form of Anagallis blue \& red arvensis cd not cross them!
22 Range of \& differences of -
3 18-21m/w no - Cytisus adami 4 12m, 21$23 \mathrm{~m} / 22 u$ "Blosse I Nachweis" $/ 13-27 \mathrm{w}$ it comes to this that without direct evidence of descent from 1 to other forms must be considered as species! Blood Hound \& Fox Hound * $71-5 m / w$ external conditions do not influence when no relation to chemical nature of soil.- 9-23m, 24-25u "sondern Erscheinung", $26 \mathrm{~m} / \mathrm{u}$ "unabhängig|Impulsen"/ 24-36w Excites not direct cause !! like an illness excited on effect of a poison which I have said $813-14 u \leftrightarrow, 12-17 w$ thinks reversion prevented by successive changes of structure. $1124-27 \mathrm{~m} / 24 w$ Adonis 17 13$15 m, 17-21 m, 29-34 m / w$ did not cross $186-$ $10 \mathrm{~m} / 6 u$ "Bemühungen 1 kreuzen", 26-34m, 27$31 \mathrm{~m} 192-7 \mathrm{~m}, 11 \mathrm{~m}, 14-17 \mathrm{~m} / \mathrm{w}$ crossed with no result $30-32 m / 31 u \leftrightarrow 205-6 u \leftrightarrow$, $11 u$ "isochronisch" 21 29-31m 22 2-4m/3u "sich। decken" 26 30-32m 27 wt yellow berry holly also nearly constant \therefore according to his rule a species! 3-4m/u士 $283-7 \mathrm{~m} / \mathrm{w}$ reverted to parental \& typical form 22-24m/w only evidence that it is a var. is above $3034-37 \mathrm{~m}$ $327 m 43$ 31m 46 22-26m 47 23w Papaver
alpine $24-37 m / 27-30 w$ Covered with net $37 \rightarrow$ $483-10 \mathrm{~m}, 14-17 \mathrm{~m} / 15 u$ "anscheinende bei", 17$21 \mathrm{~m} / \mathrm{w}$ Protandrous state variable 5024 m 53 $28 u$ "Selbstbefruchtung I kann", $33-34 m / 33 u$ "keimten sie", $35 u$ " 72 I producirten"|34-38m 59 $5-7 m 6116 m 662-4 m 6812-20 m, 23-26 m$, 37-38m 69 19-22m 70 4-7m

HOFFMANN, L. Thier-Psychologie Stuttgart; Schickhardt \& Ebner; 1881 [Down, I]

HOFMANN, August Wilhelm The life-work of Liebig London; Macmillan \& Co.; 1876 [Down, I]

NB not read
HOFMEISTER, Wilhelm Die Lehre von der Pflanzenzelle Leipzig; Wilhelm Engelmann; 1867 [Down]

HOFMEISTER, Wilhelm On the germination, development and fructification of the higher Cryptogamia trans. F. Currey; London; The Ray Society; 1862 [Down, S]
fg, tm
NB 439; 406 pollen-tubes of Conifers; 415 \wp
280 26-29m $2841 m, 11-13 m 2857-9 m / 8 u$ "third internal" 286 1-2m $2875-7 m, 12-13 u \leftrightarrow$ 289 1-5m, 20-23m 290 14-16m, 32-36m 293 17-19m, 27-29m 294 28-30m 295 2-5m 296 27-31m 297 8-11m/w archegonia 298 2-3m 299 22-25m, 36-39m 406 15-20m 415 12-17m, $18 u$ "endosperm", $19-21 \mathrm{~m} / 21 u$ "end l second" 439 13-22m

HOGG, Jabez Elements of experimental and natural philosophy London; Henry G. Bohn; 1861 [Down, S of Henrietta Crofts-Adel]

HÖLDER, H. von Zusammenstellung der in Württemberg vorkommenden Schädelformen Stuttgart; E. Schweizerbart; 1876 [Down]

HOLLAND, Henry Chapters on mental physiology London; Longman, Brown, Green \& Longman; 1852 [CUL]
beh, y
NB Chapter on instincts - (Notes \& References in M.S. notes -) Nothing Else.234 Family trait long inherited
214 change of * sobbing in child; \& so with laughing, pain primary
223 Habit, good
91 24c/w〈not CD〉 201 5-8m, 24-26m 203 2$4 m 204$ 17-20m 205 6-7m, 10-13m 208 27-
$31 m \quad 209 \quad 12-14 m \quad 210 \quad 26-30 m \quad 211 \quad 11 u$ "automaticlaction", $12 u$ "from instincts", $17 u$ "congenital propensities" 213 18-21m 214 23$28 m 216$ 33-35m 220 11-14m 222 8-10m, 27$32 m$ (De Candolle) 223 1-5m, 28-31m 224 1922m, 24-25m 234 5-11m, 27-29m/Q 244 21w instrument

HOLLAND, Henry Chapters on mental physiology 2nd edn; London; Longman, Brown, Green, Longmans \& Roberts; 1858 [CUL, I]
beh, mhp, t
NB p.79-114
111 Effect of attending to any part
237 Habits in plants
239 do to quote Habit \& Instincts compared p212 Read whole Chap of Instincts \& Habits
79 16-17m (J. Müller) 81 2-4m 83 4-8m, 23$26 m 8528-31 m 8623-25 m 8715-17 m 9114-$ $18 m / 15 w 193934-6 m 10417-29 m, 23-27 c$, 29-31m 105 1-6m 106 6-9m, 14-19m 111 15$20 \mathrm{~m} / 15 u$ "effect | circulation" $116 u$ "suddenly directed" $117 u$ "oftenlimmediate" 228 22-28m 237 23-30m 239 5-13m 246 29-31m \wp

HOLLAND, Henry Essays on scientific and other subjects London; Longman, Green, Longman \& Roberts; 1862 [Down, I]

HOLLAND, Henry Medical notes and reflections London; Longman, Orme, Brown, Green \& Longmans; 1839 [CUL] beh, he, pat, phy, sx, y
SB $\quad \square$
10 Strong sentence on Heredetariness - 22 18 Child most like parent in feature \&c inherits its diseases
20 Hydrocele transmitted through female 25 Form of hereditariness occurring in children \& grown up people at same age 33 Disposition of members of same Family to be affected similarly under like Maladies 35 Hereditary diseases appearing at same age
x $25 \mathrm{~m} / \mathrm{c} / \mathrm{w} \notin, 27 \mathrm{~m} \mathbf{x i} 3 \mathrm{~m}, 5 \mathrm{~m}, 9 \mathrm{~m}, 11 \mathrm{~m}, 13 \mathrm{~m}$, $15 \mathrm{~m}, 24 \mathrm{~m}, 26 \mathrm{~m} 110 \mathrm{~m} 1010-17 \mathrm{~m}, 24-28 \mathrm{~m} /$ "..." $1310 u / 10-11 m$ (Whewell) $167-23 m 17$ 15-21w faulty texture of skin, hare-lip stratismusO all hereditary $184-8 m, 9-10 \mathrm{~m}$, 10-13m, 19-23m 19 2-16m, 30-32m $205-7 m$, $9 . ..], 20-27 w$ blindness often hereditary gives cases also deaf \& dumb. 32-33m $21 w t$ disease of heart hereditary, 4 brothers died

HOLLAND, MED. NOTES 1 ST EDN
between 60 \& 65 - another case in their generation - obesity hereditary - cutaneous diseases hereditary $-7-8 \mathrm{~m} / \mathrm{w}$ case of Patella was wanting to father \& son. $10-15 \mathrm{~m}, 18-$ $25 m, w b$ are men more exposed - hence Rheumatism \& haemorrhage?? more in-temperate.- hence gout.- 22 10a "effect"/4$10 \mathrm{~m} / \mathrm{w}$ Pellagra of Lombardy gives Reference $20-23 \mathrm{~m} /{ }^{\prime \prime} . . . "$, wb Diabetes. Prout \& Co * Self say hereditary asthma. 24 22$24 m / 25-28 w$ enlarges this strongly $w b$ Suicide seems on sufficient evidence to have tendency to become hereditary Pinel Dr Rush D Burrows $251-31 w$ Chomel rates as high as half proportion of rheumatism cases where patients have suffered $21-24 m$, $w b$ Make some remarks about diseases, not connected with particular stimulus, being hereditary, as gout, scrofula. * 26 wt/126wo I presume more men, than women are subject to gout, to * rheumatism \& to haemorrhagic tendency? 1-2m, 12-15m, 29$33 \mathrm{~m} / 4-34 \mathrm{w}$ Consult this.- to see whether predisposing causes act chiefly during manhood, as in gout, in relation to secondary male character $w b$ speaks of cases where a child escapes hereditary. disease (\& likewise resemblances in countenance) for one generation 27 28-32m $3123-28 m 321-5 m 3324-30 m 351-10 m / x$, $w b \times$ Boerhave gives cases of schirrus, icterum \& melancholia, at certain age in same family $36 \quad 29-33 m \quad 37$ wb H. says looking over works of Morgagni gives many cases of hereditary diseases to which he incidentally refers. $658 u$ "attention" $110 u$ "direction \mid consciousness" $/ 8-10 \mathrm{~m}, ~ 22-25 m 66$ 1-5m, 13-15m 67 3-7m, 16m, 22-24m 68 2-5m $691-3 m 708-10 m, 20-22 m 323$ wt δ These muscles which are subject to involuntary action (so eyelids \& eyebrowO) are not subject to Pulse.

HOLLAND, Henry Medical notes and reflections 3rd edn; London; Longman, Brown, Green \& Longmans; 1855 [CUL, I] beh, hl, in, pat, phy, ta, y
NB1 276 Mind \& Body cannot work hard at same time
NB2 19.
24. Wonder that all not inherited

31 Hydrocele per female
inheritance at corresponding age \& in same
Family - 33 Ask = 44 good

- 36; 40
xiv $3 m 510-11 m 98 m, 32 a$ "way", wb as to the duration of Life, and the influences upon
health of individuals \& communities the various physical \& moral conditions to which they are submitted $114 w$ fully $1214-17 w 0$, $24-31 w \diamond, 30 c / w \notin 1323-24 m 1911-14 m 24$ 14-16m $3125-29 m 326-9 m 331-2 m / w$ at early age? $7-9 \mathrm{~m} / \mathrm{w}$ eyes $19-21 \mathrm{~m}, 22-24 \mathrm{~m} 35$ $28-30 \mathrm{~m} 36$ 26-29m 40 30-32m (Chomel) 41 $1 m, 16-18 m 42$ 2-3m 43 14-15m/w 49 16$18 m, 21-22 m 44$ wt When peculiarity appears in several members of family without having occurred in parents it is clear comes on at same age - and it is form of inheritance 1$2 m, 5-6 \mathrm{w}$ same age $6-10 \mathrm{~m}, 13-16 \mathrm{~m}$, 22Q@, 30-32m 45 25-27m 49 1-5m 50 21-25m, 28$33 \mathrm{~m} / 29 u$ "certâ|schirrum" $/ 31 u$ "icterum"/33u "certâ aetate"
\wp
HOLLAND, Henry Recollections of past life London; Spottiswoode \& Co.; 1868 [Down, I]

HOLUB, Emil Seven years in South Africa 2nd edn, 2 vols.; London; Sampson Low, Marston, Searle \& Rivington; 1881 [Down] \wp

HOLUB, Emil, and PELZEN, August von Beiträge zur Ornithologie Südafrikas Wien; Alfred Hölder; 1882 [Down, I]

HOOKE, Robert Micrographia London; James Allestry; 1667 [Botany School, pre-B, ED, FD]

$$
3 \text { 19-21m }
$$

HOOKER, Joseph Dalton Botany London; Macmillan \& Co.; 1876 [Down, I]

HOOKER, Joseph Dalton The botany of the antarctic voyage of H.M.S. Erebus and Terror in the years 1839-1843: 1. Flora antarctica 2 vols in 1 binding; London; Reeve; 1844-47 [CUL] af, ds, ex, gd, ig, in, is, no, 00, phy, sp, sy, v

SB $\square \beta$

Hooker Antarctic Flora
1 Auckland \& Campbell Isid - Arctic Plants (G)

4 Ranunculus with hooked seeds - curious variety
23 case of wide difference in proportions of Nat. orders in Falkland \& Aucklands
30 case of plant common to highest mountains of New Zealand (G)
53 Myrsine common to Cape. Abyssinia \& Azores

56 Gentiana eminently alpine \& yet not common \& N \& S low-lands
61 Veronica with 3 stamens sometimes
62 Remarkable variations Ch 4
73, 74 No alpine plants in S. p. 74 (GI.) North much richer in species than the S. - even in S. America - 75 N . Zealand very poor Flora, contrast with Australia-
97 One Arctic group common to S. varying in N. but not in Campbell Isld N.B I notice in Webbs Canary isld that often only one form of a varying plant is there found
114 A species varies more in one country than in another p.271, p115 or not varies in one
116 Variation Ch. 4 varying in one country more than in another
211 All Antarctic Lands take after T. del Fuego, except Auckland \& Campbell Isd -
217 Plant extinct at St Helena between Hookers 2 visits Few species to genera generally in isld
246 True Arctic plant or representative in T. del F. p. 280 do
268 Acaena with beautiful hooks confined to Kergueles Land \&
275 Wandering species from Australia.exiled sp of Decandolle
276 On representatives \& identical species going together 277 On relation of number of individuals to species 278 Very good cases
288 Plant constant in leaves in Falkland, very variable at R. Plata
306 A form from one country unites two in another country
315 On confined range of Senecio species, yet genus very large range
327 American Epacris, very distinct form.
387 Tussack group so eminently fitted for cattle as to be on road to extermination in country where no quadruped (Hooker) often Hooked seeds
390 At Chonos Isd the flora unite but Dr Hooker remarks no blending of forms as if from descent Ch.6.
549 On affinities of Lyallia of Kerguelen to Bolivian Plant
vi $18-19 \mathrm{~m} / 19$ u "Crozet \mid volcanic" vii $15-16 \mathrm{~m} /$ $15 u$ "vast Icontinent" $232-36 \mathrm{~m} / \mathrm{w}$ great difficulty $413 \mathrm{~m} / u$ "uncinati" $/ w / \mathrm{V}$. Plate $15-$ $17 \mathrm{~m}, 20-22 \mathrm{~m} / \mathrm{w}$ var. 41-43m $535-39 \mathrm{~m}$ (H.C. Watson)/36-38u土 $74 m 106-8 m, 16-17 m 11$ 6-7m, 12m, 22u "specieslone", 33-34m 13 5$7 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m}, 38-39 \mathrm{~m} 1510-12 \mathrm{~m}, 28-$ $29 \mathrm{~m} / 28 u$ "decidedly|form" 18 13-15m 22 41$42 m 23$ 3-10m $3025-26 m 332-7 m 3516-22 w$ Mr Norman not to be counted with varieties

- nor any species introduced as notes 37 $25 w$ not count. in Norman 39 25-27m, 43$45 m 4024-26 m 53$ 3-8m (De Candolle) 54 21$27 m 55$ 26-30m, 28-30m, 31u "Indeed I genera", 33-35m/34u "confined|Andes", 41u "blueflowered" $561-2 w$ How alpine a genus! 3-8m, 9-11m, 14-15m 57 6-11m, 41-44m $5811-17 m$ $617-8 m, 10-12 \mathrm{~m}, 33-35 \mathrm{~m}$ 62 9-17m, 9-12m, 14-16m/16u "3-valved" $6637-40 \mathrm{~m} 676-9 \mathrm{~m}$, $11-13 \mathrm{~m}, 20-22 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{w}$ var $41-42 \mathrm{~m} 7336$ $43 \mathrm{~m} / 40 \mathrm{u}$ "on loccur"/w explain $741-5 m$, 6$11 m, 12-15 m / 13 w$ whence paucity $21-25 m$, $28-31 \mathrm{~m} / \mathrm{w}$ S. America even isolation compared $39-44 m 751-3 m, 10-12 \mathrm{~m}$, 14-15m, 16-18m, 21-23m, 26-27m/26u "exuberant| necessarily", $29-30 m 784-9 m 8027-29 m 82$ 4-8m 83 1-4m 85 16-17m/16u "most|L.", 20u "L. ITasmania" 90 20-23m 92 37-38m 97 14$15 m, 17-18 m, 19-21 m, 24-28 m 10134-36 m$ 103 25w Mr Norman end here 104 21-23m 106 1-3m 107 15-16m, 35u " 500 miles", 4042m, 44-46m $10932-37 \mathrm{~m} / 33 \mathrm{u}$ н $11124-27 \mathrm{~m}$ $11211-14 m, 21-22 \mathrm{~m} / 21 u$ "naturall cannot" 113 wt Mr Norman nothing to be counted in this part $16-17 m, 25 m, 34-35 m 1146-9 m, 25-$ $30 w$ This Lycopodium may have travelled along Andes $1153-5 m / 4 u$ "like 1 does", 27$28 m, 41-44 m / 43-44 u \pm 1167-8 m, 14-15 m, 17-$ $18 m, 31-32 m, 35-36 m, 46 m 1177-8 m, 9-13 m$, $16-21 m, 23-25 m, 26-27 m 1187-9 m 11915-$ $16 m 12438 \mathrm{~m} 12637-39 \mathrm{~m} 127$ 22-23m 129 wt Mr Norman, nothing to be counted in this Part 132 18-21m 134 8-9m, $15 m 141$ 11-12m 145 wt Mr Norman not count this part 146 10-13m 162 3-5m 167 16-18m 169 31-32m 209 8-10m 210 1-4m, $1 m 2114-7 m, 9 m, 15-$ 16m, 20-22m (Humboldt), $22 a$ "west" $\mid u$ "west \mid stream"/w East 24-25m/25u "Gmelin's 'Flora Siberica" $27 u$ "approximated I geographical" $/ w$ 1000 miles $29 u$ "flanks 1 Himalayah" $\mid 30 u$ "Tristan | Cape" $/ 29-31 \mathrm{~m} / \mathrm{w}$ not flanks, but opposite side of continent $33 u$ "Sandwich" $/ w$ in Labiatae \& Lobeliaceae 39-42w/wb actually same species? very good yes Have a list $40-41 \mathrm{~m} / u \pm / w$ Cynocusus O a grass 212 21u "North|Antarctic"/w Panama? 23u "granitic" $?, 36-37 m, 39-40 \mathrm{~m} 213$ 28-29m 215 $21-25 \mathrm{~m} / ? / \mathrm{w}$ do not understand $21623-25 \mathrm{~m}$, $25-27 \mathrm{~m} / 27 \mathrm{u}$ "twenty|plants", 29-32m/29m/29$30 u \pm, 36-38 \mathrm{~m} / 37 u$ " 16,062 feet" 217 2?/u^, 5$9 m, 22-24 m, 26-27 m, 30-32 m, 34-35 m, 35-$ $40 \mathrm{~m}, 37-40 \mathrm{~m} 219$ 16-23m/18?/u "Colobanthus" "fossil" $22133 x$ /u 223 28-33m 224 26-28m 225 10-12m, 26-27x/26u "This \mid plant", $39 m$ $2279 w$ var $33-36 m 22818-20 m, 40-41 m 229$ 33-39m 230 8-9m, 14-17m, 21-23m, 24-25m, 26-28m, 29-31m $23131-32 m 23226-28 m$, 28$29 m, 39-42 m 2331-4 m, 31-32 m, 35 w$ not

HOOKER, FLORA ANTARCTICA
count as var. 240 21-25m 241 15-16m/16u "American Andicola", 30-35m, 37?/u^ 242 14m, 6-10m (De Candolle), 22-23m, 34-35m 245 $32-40 \mathrm{w}$ This is first European genus with no evidence of other species on Cordillera of Chili or Peru $2464-5 m, 21-22 m, 26 m, 27-$ $28 m, 35-36 m 2476-9 m, 9 u \pm, 11 m, 15 u$ "excluded North", 33m/w var, 37-41m 248 10-12m, 43m 25027 w var 29-30m 251 1-9m/ $14 w$ var 2 18-19m 252 20-22m 253 3-4m, 8$12 w$ I think these are Oxalis in the Cordillera of Peru $27 w$ var $25912-13 m, 30 m 2601-2 m$, $8-10 \mathrm{~m} / 7-12 \mathrm{w}$ I suppose not found in intermediate districts $25-26 \mathrm{~m}, 32-33 \mathrm{~m} / 32 u$ "maritime", $35-37 m, 38 m 2613-5 m, 9-10 m$ 262 13-14m, 21-25m, 34m 263 26-27m, 39$41 m 2643-4 m, 13-14 m 26738-39 m 268$ 2-5m, $18 w$ var. 19-20m/20u "South Georgia", 38$41 w / w b$ A plant with hooked seeds confined to Kerguelen Land. V Plates beautifully hooked. $2706-7 m / w$ var $31-33 m, 42-43 m 271$ $1-2 m, 4-5 m, 16 m, 20 m, 23-25 m, 26-27 m 272$ $1 m, 7-8 m, 13-22 w$ another case of plant skipping the intermediate parts of S. America. $28 w$ var. $140 \mathrm{~m} 2745 \mathrm{~m} / a$ "another" 3d $8 u$ "even 1 rudiments", $32 u \leftrightarrow, 38 \mathrm{~m} / \mathrm{u}$ "same species" $27525-28 m, 35-37 \mathrm{~m} / 36 \mathrm{ua} / \mathrm{w}$ large range $36-37 u \uparrow, 39-40 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{m}$, $w b$ This not holding in Birds, is argument against much accidental transportation $2763-8 m, 9-12 m$, 30 w var $40-41 \mathrm{md} 2779 \mathrm{w}$ var $37-39 \mathrm{~m} / \mathrm{w}$ it may be if all individuals of all the species be counted. $2782-3 m, 5-7 m, 8-12 m, 19-20 m 279$ $5-6 m 28022 w$ var. 3. $27-29 m / 29 u$ "of 1 America", $34 \mathrm{~m}, 39-40 \mathrm{~m} 282$ 20-21m/21u "inl flowers" $28421-22 m, 30-31 \mathrm{~m} / 30 u \pm, 37-38 m$ 2853 m 287 21-23m, 25-26m, 31m 288 4-6m, $7-8 m 289$ wt Nothing marked in this Part 302ii $8-9 m$ 303ii $24 m 30516-19 m 3061-3 m$, 16 w 2 vars $18-19 \mathrm{~m}, 20-21 \mathrm{~m}, 25-27 \mathrm{~m}, 28-29 \mathrm{~m}$ $30723 w$ var. $130833-34 m 30914 w$ var 1 $31226 w$ var $\mid 3132 w$ var $112 w$ var 1315 $17-21 \mathrm{~m} / 19 u$ "both 1 flowers", $22-25 m, 31-33 m$, $36-38 m, 38-39 m 3178-9 m, 9 m, 12 w$ var 322 $32 w$ var $3238 w$ var $32 m, 35 m 32410-11 m$, $19-20 \mathrm{~m} /!32631 w$ var $132722 \mathrm{~m}, 37-39 m 328$ $2-4 m 32919 w 1$ species $36 w$ do not count this 331 1-5m, 26-28m, 40-44m $33412-14 m / w$ water-plants $21-24 m / 23 u$ "perhaps" $33523-$ $26 m 3361-3 m, 30-32 m 33716-17 m, 27-30 m$, $35 w$ var 338 27-29m $3391-2 m, 9 w$ var 12$13 m, 29 w$ var 2340 wt Though we cannot explain same species common to Australia \& Fuegoe yet the generic conection is in harmony -: hence the identity of some species with Europe is in itself probable 1$2 m, 14 w$ var. $224 w 4$. 341 17-18m 343 14$16 m 344$ 36-39m 345 15-19m 346 13-16m, 17-
$21 m 347$ 14-16m, 19-20m $35238 w$ var 1354 $19-21 m, 39-40 m 3618 w$ var $36328-30 m 368$ $6-9 m, 25-29 m, 32-36 m 3701-4 m, 35 w$ var. 1 $37235 w$ var $37317 w$ var $13787-11 m 379$ $11 w$ var $538134 w$ var $338223 w$ var 3384 $19 w$ var $\mid 38617-20 m 3871-7 m 38915 w$ var $425-27 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{w} \mathrm{Mr}$ Norman end here 390 16-20m $39134-36 m 392$ 31-33m 393 10-12m 394 23-25m 395 17-18m 457 17-29m $5437 m$, $9 m$

HOOKER, Joseph Dalton Himalayan journals 2 vols.; London; John Murray; 1854 [CUL, I in vol. 1]
af, beh, cc, ch, gd, geo, gr, oo, no, sp, t, ti, tm, v
vol. 1 NB See index for case of coloured Ticks.-
24; 28; 30; 101
109 - Tropical \& temp vegetation
159; 248 Glaciers; 257 Cedar \& Deodar; 293; 314 - Cocks crow; 380; 400
p221 - Poa annua \& Shepherd's purse 314; 380; 400; 221
$244-9 m \quad 28 \quad 6-8 m 3031-33 m 385-21 m 101$ 28-31m $10914-16 m, 24-27 m, 30-33 m 15928-$ $30 m 221$ 6-10m, 23-25m 248 29-33m 257 5$7 m, \quad 24-37 m \quad 293 \quad 30-34 m \quad 314 \quad 8-10 m \quad 342$ $26 \mathrm{md} / \mathrm{a} / \mathrm{w}$ \& $\ddagger 380 \quad 18-23 \mathrm{~m} 398 \quad 10-24 \mathrm{w}$ about 500 ft - 262 ft see 440 vol 2. $24-34 \mathrm{~m} / 31 \mathrm{u}$ "of 1 English"/34c "Dioscorea"/33-34u "Saponarial Dioscorea", wb 2 not English 400 10-14m
vol. 2 SF $\square \beta$
p18 Mixture of Tropical \& temperate plants p39 \& N. American genera \& Japan.
25 Himalayan Reptile allied to N. America p. 305 do

67 gathered 47 plants without rising - 30 average in England - alludes to struggle.
92 few Mammals in moist cold atmosphere.
96 Bengal Toad rise to Tungu - a good height Q
255 Rose on plain of Bengal - Salix in Terai, shows how little form related to climate Q
280 Khasia flora richest in India, owing to very various sites
281. Primrose \& cowslip not one species on Khasia mountains (Hence very ancient according to my view \& hence probably aboriginal) some change at early period of growth
302. A judge will tell whence Elephant came (Ch. 4)
336 Stylidium an Australian genus with 1 species here.

NB1 Mixture of Tropical \＆tem plants－p． 18 25； 26
On mixture of European，N．American \＆ Japanese forms 39
57
67 －on no．of plants in limited species
92；96；150；255；281；302；305； 314 flowers under water；312．\＆ 317
Mixture of Tropical \＆temperate plants－ 319 333；336； 415
p． 281 On Khasia range H ．speaks of Primrose \＆Cowslip！
－p251 \＆Poa
NB2 p38 rippled sand
18 24－30m 25 31－34m，34－39m 26 31－34m 39 $1-4 m, 6-25 m 5724-27 m 6724-27 m, 31-36 m$ $924-11 \mathrm{~m}, 16-21 \mathrm{~m} 9619-23 \mathrm{~m} 15012-16 \mathrm{~m} / 12 u$ ＂double＂ $114 u$＂twins＂ 255 20－26m 281 6－8m， $32-33 m 2879 c / w \notin 302 \quad 6-18 m \quad 305 \quad 21-27 m$ $312 \quad 6-7 m 31426-36 m 31730-31 m 31928-$ $33 m 333$ 15－21m 336 11－13m，25－27m $4159-$ $25 m$

HOOKER，Joseph Dalton Introductory essay to the flora of New Zealand London；Lovell Reeve； 1853 ［CUL］

HOOKER，Joseph Dalton Memoirs of the geological survey of Great Britain vol．2，part 2； ［CUL，I］
gd，geo，ig，no，phy，v，y

SB1 $\square \beta$

399 Tasmania 200 miles long has four times as many flowers as New Zealand 900 miles long（\＆higher mountains）
410 Venation generally very important in Ferns；but differs in older \＆younger forms of some species－kind of transition－Ch． 8

SB2＊

Prelim good－upright ferns but distinctly large separated
Ferns drifted being greatly objected to by whom．－Why not allude to Bunbury \＆Lyell on N．America
I valuated O the Owen
Most interesting indeed quite amusing

Whole Plates

I wonder you do not suggest aquatic plants appear to meet so well all the same case with leaves of fern \＆cones－
〈over〉 391－392；399；410；429； 437
title page w Hooker Carboniferous Plants n．d 391 18－21m 392 5－9m，17－19m 399 15－ $17 m 41024-29 m, 30-33 m 4112-3 m 42929-$ $33 m 437$ 29－39m

HOOKER，Joseph Dalton On the flora of Australia（introductory essay to flora of Tasmania），London；Lovell Reeve； 1859 ［CUL］
cc，ch，che，co，cs，gd，geo，hl，ig，is，no， 00 se，sl，sp，sx，t，v，wd

SB1 $\square \beta<24$ sheets \rangle
I intended in this but to copy out all Falkland \＆T ．del Fuego plants on parallel lines
〈lists of plant species and their sexes〉
〈on p． 24 of lists〉 This list has been marked by Hooker for close species．－NB See what big genera are left out．－They ought not to have been left out for mem．highness．－But Hooker does not know CarexO or UrociniaO so these ought to be left out．－Leave out genera with single species．
SB2 $\square \beta \Rightarrow$
Hooker Flora of Tasmania
V．no two countries present all vars．of same sp．on common p．xiv
－But－marked vars．on confines of range
－simplest groups present most variable species
vi．more unstable than stable forms－social plants constant
vii no relation between isolation of group \＆ closeness or definition of its species．
－Extinction allows us to define groups．
ix conditions of cultivation are not really unnatural
xiii one var constant．the other var．of same sp．variable．
$x v$ ．Flora of isld not nearest related to nearest mainland
xvi．great contrast between Hebrides \＆Fidji xvii Effect of dampness in extending range of Tropical products
－Has used glacial hypothesis for New Zealand Mountains
xviii Fuegian species not entering Mexican table－land
xix to Geological succession－no progression
xxiv Many plants are higher（so－called） plants reduced．
On Highness \＆Lowness
xxvii Richness of Antarctic in forms－xxviii not so very peculiar a Flora as thought to be．
xxix Peculiarities common to same orders in diverse parts of world．－
xxxi on similar proportions in great groups （due to battle of life）
xxxiii xxxiv Relation to Africa－xxxv Invaders in S．E．Australia
xxxvi No of species to genera in Australia
wide rangers in Tropics－Hooker thinks not material to know Look to A De Cand－Again I suspect very few confined to hottest parts of Tropics．which might be expected from range in Australia \＆C．of Good Hope．－ There must be discussion in Alp．D．C．on range of Tropical plants compared to temperate．－if the range were given $N . \& S$ it would be best．－But America from Atlantic Ocean complicated problem．－xlix $15-18 \mathrm{~m} 1$ 3－7m，7u／9un，10u＂Malayan Peninsula＂，13－ $16 \mathrm{~m}, ~ 20-23 \mathrm{~m}, ~ 26-28 \mathrm{~m}, ~ \Uparrow 7-2 \mathrm{~m}, ~ \Uparrow 3-1 \mathrm{~m} / \Uparrow 2-1 u$ ＂great I genera＂li $8-11 \mathrm{~m} / \mathrm{w}$ most favourable in conditions \＆larger $12-13 \mathrm{~m} / x, 17 u$＂ 1700 ＂， 20－21w Eyre＇sO desert between $\Uparrow 12 w$ wonderful lii＂Acacia＂．w $82 / 133 \mathrm{sp}$ ． ＂Eucalyptus＂．w 55 liii 18－19m，22－23m，25m／ w in S．E．a much more mixed \＆imported Flora liv $1-4 m, 17-20 w$（a）One intruding dominant form might well destroy several closely allied representative species．介21－ $20 \mathrm{~m} / \mathrm{w}$（a）$\Uparrow 21-20 u$＂It｜area＂$/ m / x / w$ yes because dominant forms wo only invade the land．－$\uparrow 16-12 \mathrm{~m} / \mathrm{w}$ was not S．W．corner an archipelago with representative species like Galapagos or Madeira \＆P．Santo with respect to land－shells？？？He hints at this further on．wb Indian Tropical plants formed in big area \＆fitted for Tropics \＆not for temperate parts have invaded \＆almost exterminated Australian Flora of Tropics．－ Further on states that Indian Flora（as distinct from Malay）is formed in low part of Malay Isd $w b$（a）Pampas \＆N．temp．Europe \＆Siberia are all lately tenanted lands by dominant species \＆are not number of species few？？Perhaps different case altogether lv 9？，16－19m，$\uparrow 5-1 \mathrm{~m}$ Ivi $\uparrow 20-19 \mathrm{~m}$ lxxxiv 3－4m，15－17m， $19 u$＂fully one－fifth＂， $20 u$＂one－tenth＂，$\uparrow 21-18 m, \Uparrow 14-11 m$ lxxxv $2-$ $5 m, 14 x, 18-19 m, 23-25 m, \Uparrow 15-11 m, \Uparrow 9-5 m$ lxxxvi $\uparrow 3-1 \mathrm{~m}$ lxxxvii $6-9 \mathrm{~m}, 11-13 \mathrm{~m}, 15-17 \mathrm{~m}$ ， $18-19 \mathrm{~m} / \mathrm{w}$ This looks again as if S．W．corner was original focus of Australian forms $\uparrow 21$－ $20 \mathrm{~m}, \Uparrow 18-1 \mathrm{~m} / \mathrm{w}$ very striking looks to me conclusive that never continuous land．-x wb x we can with some probability suppose that plants wd have marched along continuous land－but we know hardly anything about march across seas．－lxxxviii $9-12 \mathrm{~m}, 15 \mathrm{~m}$ ， $19-24 \mathrm{~m}, 25 \mathrm{~m} / \mathrm{u}$＂eastern＂，$\uparrow 9 x / \mathrm{w}$ it looks as if more transport during Glacial Period－ icebergs $\uparrow 12-10 \mathrm{~m} / \mathrm{w}$ dominant invaders lxxxix $5 \mathrm{~m} / \mathrm{u}$＂theory 1 migration＂$/ \mathrm{w}$ You do not know effect of Salt－water on the seeds． 10 － $11 \mathrm{~m} / \mathrm{w}$ ？I do not understand $15-18 \mathrm{~m}, \Uparrow 3-1 \mathrm{~m}$ xc $1-2 m, \Uparrow 2-1 m$ xci $\Uparrow 9-6 m$ xcii $2-5 m / w$ some excessively ancient connection xciii $7 x / u$
＂220｜genera＂ $\mid w$ Hooker believes only few $8 a$＂are＂ wwt almost exclusively $4-6 \mathrm{~m}, 7-11 \mathrm{~m} / \mathrm{w}$ But I suppose many found in Tropics？？？－ see p ．xcviii for same question $\mathrm{xcv} w t / 1-15 w$ I wish I knew which of these genera are not found in lowland Tropics \＆include species representative of those f in northern Europe or N ．Asia for on Glacial view these have been modified since Glacial period．（next page 38 identical species are given）It has always been my greatest fear that there has been so much modification since Glacial， that it wd．upset view．－Some few genera may formerly have been mundane \＆ Tropical \＆not now so．－$\uparrow w$ For Glacial strike out all those marked Trop．Strike out those marked with＊Are many of these genera monotypic like the identical species－？？ Water plants ought＊perhaps to be struck out－no．not so if not found in Tropics．X This mark means species identical with Europe（＊）but the water plants not struck out．because not marked by Hooker xcvi〈similar markings，no $w\rangle$ xcvi－xcvii，SA $\langle n o t e$ for Hooker， 8 April 1860 on numbers of supposedly post－Glacial genera not found in Tropics but common to Europe and Australià xcvii $3 u$＂ 38 ＂$/ w$ These plants immigrated during Glacial period．－＂Montra＂x / w Water ＂Alioma＂x / w Water＂Glyceria＂x / w Water $\Uparrow 6-$ $1 \mathrm{~m} / \mathrm{w}$ Hooker says about 18／38 are monotypic $\uparrow 2-1 \mathrm{~m} / \mathrm{u}$＂great｜plants＂xcviii 1－ $14 m, 2 u$＂them｜alpine＂，＂Taraxacum＂．m／w composi great range tab．w These genera I presume not found in Tropics？wb The species in S．Africa seem not to be identical －is this fact or want of knowledge of species are your facts taken from Drege？ xcix $20-21 m$ с $1-4 m / w$ Arctic Plants $11 a$＂ 30 ＂ Fuegian 14－16m，20－22m， $22 a$＂is＂doubtful $23-27 m$ ci $12-15 m, \$ 9-6 m$ ，$\langle m a r k$ by FD \rangle cii 2－4m／u＂types 1 migrated＂$/ w \notin, 11-12 ?, \$ 14-$ $12 m$ ，$\Uparrow 2-1 m$ ciii $\uparrow m$ civ $1-2 m / u$＂and Islands＂，〈mark by FD＞， $19-1 \mathrm{~m} / \mathrm{w}$ good about Struggle cv 1－4m，风o $\Uparrow 5 u$＂unoccupied 1 England＂$/ w$ were these spots bare？cvi 2－ $3 m / ? ?, 1-21 w$ very good showing how many of the same species are naturalised in Australia \＆U．States with very different climates；opposed to your conclusion cvii ＂ 38 ＂m ，＂ 51 ＂m cviii＂78，79，81，85，89，92， $93 " \mathrm{~m}, \downarrow w$ Several Indian plants \＆US shows us such grt necessity of constant introduction of seed．cix＂ 115 ＂m ，＂ 139 ＂m ，wb No remarks on cultivated plants！！！cxii 14wed

〈bound with previous item〉 HOOKER，Joseph Dalton Introductory essay to the flora of New

HOOKER，AUSTRALIA
xli Exclusive Tropical orders are all Indian． See MS note liv
xlii Great range of many tropical sp．because are much Extinction during Glacial．good see MS note Ask Hooker．
I Entire want of reciprocity between India \＆ Australia
li Wonderful difference between S．E．\＆S．W． Australia
liii to Iv in S．E．a much more mixed \＆ imported Flora：The invaders have destroyed many indigenes
Ivi Tasmanian list classed geographically
Ixxxiv Discussion on．On European Plants． much modification in Tasmania Xxxxv The Alpines of the mundane genera are more variable than the Alpine \＆Australian genera．－Perhaps the latter existed before Glacial epoch．－
｜xxxvii Wonderful facts on absence of Aus． Plants in N．Zealand－showing non－ continuous land．Dominant invaders in N ． Zealand．Ixxxix Lord Howe＇s Island．－
Ixxxix Antarctic Plants xcii \＆xcviii S．African forms：$\langle u \triangleq\rangle$ relation with respect to Glacial period
xcv \＆xcvii Important lists bearing on Glacial．－Many monotypic＊in Australia
xcviii Grand list bearing on Glacial distribution V．good remark p．cii
c．not reciprocity in Europe with Australia〈over〉 Hooker Flora Tasmania
pci Relation of fossil \＆recent plants
ciii Discussion on Glacial Flora
civ Good remarks on Struggle for Existence cv．On Naturalised plants good－M．S．
Remarks on．－
cx Many Native Esculent plants
SB3 $\square \Re \sim$
C．Darwin References to whole in Abstract of 4 to Pamphlets
v $11 \mathrm{~m} / \mathrm{u}$＂and｜both＂， $14-15 \mathrm{~m} / \mathrm{w}$ proot？chiefly from variation in arctic countries $\uparrow 5-4 m$ vi $10-11 \mathrm{~m}$ ，介19－17m／w crossing vii $4-5 \mathrm{~m}, 7-8 \mathrm{~m}$ ， 11－16m，介15－11m viii 3？？／u＂alunalterable＂， 18？／u＂weakened lexhausted＂，$\uparrow 19-18 \mathrm{~m} / \mathrm{w}$ ？ without selection doubtful $\uparrow 18-17 x / u$＂the inhabits＂$w b \times 1$ doubt whether holds with animals．－With Elephant it does perhaps．－ix $5 u$＂neglected＂$/ w$ with or without propagation by seed？！！ $14 m / u$＂original lapple＂／w good $15 u$＂extent \mid Roses＂$/ m / w$ where are facts on roses？$\uparrow 20-19 \mathrm{~m}, ~ \Uparrow 17-12 \mathrm{~m} / \mathrm{w}$ good $\Uparrow 3-$ $1 \mathrm{~m} / \mathrm{w}$ good $\times 21-22 \mathrm{~m} /$ ？？xii $\uparrow 5$ ？／u＂different provinces＂，$\uparrow 3 u$＂morel permanent＂，$\Uparrow 3 a$＂per－ manent＂\＆more easily disseminated xiii 3－ $5 \mathrm{~m} / \mathrm{w}$ do not understand $\uparrow 21-29 \mathrm{~m} / \mathrm{w}$ Battle
of life pretty equal．－$\uparrow 6-4 m / w$ Does it differ beyond having bulb．－xiv $1-3 m, \Uparrow 18-17 m$ ， $\Uparrow 12-11 m$ xv $w t$ is there not Epacris in Sandwich：how allied to Fuegian genera of Epacris？ $1 u$＂very＂， $2 u$＂often＂， $3 a$＂Africa＂ yet African，\＆islands，barren $5 u$＂somel forms＂， $8 a$＂found＂exceptionally $8 u$＂Tristan d^{\prime} Acunha＂$/ w$ is it not nearest to America？1－ $8 m, \uparrow 11-9 m / w / w b$ As coral islands them－ selves are included，they will generally have subsided，at intervals \＆been stocked by sea－borne plants \＆coral－soil very peculiar．－ \therefore In Indian Ocean comparison not valuable． xvi $1-15 w$ An isld so lofty \＆ancient as Tahiti，whether rising or sinking must have been long peopled．1－15w Hardly facts enough known－some islands rather near continent included．－（Marianne \＆Caroline Isd ought to be included．－\＆Gambier Isid） $5-7 w$ I doubt whole case $\uparrow 8-1 m$ xvii $3-7 m / w$ Effects of dampness on range－9－20m，$\uparrow 5-$ $4 m$ xviii＂ 29 ＂m / w I doubt because the temperate forms have crossed the Equator in old \＆new world，\＆tropical orders still exist in both $\uparrow 5-1 m$ xix＂Lycopodiaceae＂．$m \mathrm{xx}$ $1 u$＂genera＂$/ w$ \＆Devonian not different $13 u$ ＂conelAraucaria＂，15u＂Cretaceous＂， $16 u$ ＂Juglans＂／w Juglans old \＆intermediate $18 u$ ＂Characeae＂ $\mid x / w$ Lyell says in Middle Purbeck xxi $7 \mathrm{~m} / \mathrm{u}$＂ 900 ＂，$\uparrow 18-14 \mathrm{~m}$ xxii $1-2 \mathrm{~m}, 4-9 \mathrm{~m}$ xxiii $\uparrow 16-14 \mathrm{~m} / \mathrm{w}$ good $\uparrow 12-9 m$ xxiv $1-3 \mathrm{~m}, 5-$ $15 \mathrm{~m} / \mathrm{w}$ Highness \＆Lowness．$\uparrow 19-17 \mathrm{~m} / \mathrm{w}$ । have somewhere discussed this $\uparrow 10-1 \mathrm{~m} / \mathrm{w}$ good Highness \＆Lowness xxvii $\uparrow 11-9 m$ xxviii $9-20 \mathrm{~m} / 17-18 u \pm, \Uparrow 22-18 \mathrm{~m}, ~ \Uparrow 15-11 \mathrm{~m}$ ， $\pi 6-3 m$ xxix $1-3 \mathrm{~m} / \mathrm{w}$ peculiarities common to Orders xxxi $3-6 m, 9-12 m / w$ Shows relations of organisms most important in battle of life． 18－19m／w A Farmer in Australia would I presume follow same rotation of crops at equal＊intervals in N．\＆S．xxxiii $12 u$ ＂South Africa＂ $111-17 \mathrm{~m} / \mathrm{w}$ curious $19-20 \mathrm{~m}$ ， $\Uparrow 15-14 m / m, ~ \Uparrow 9 x$ xxxiv $1-10 x / w$ Those with cross aboundedO next most in S．Africa This looks as if affinity to S ．Africa had come round by $\mathrm{N} . \uparrow 15 u$＂the genera＂，$w$ chiefly mundane orders． $\mathbf{x x x v} w$ Invaders，with more species modified．w This makes difference look considerable w \＆all over World Alph De Candolle xxxvi $6 \mathrm{~m} / \mathrm{u}$＂six＂，〈in table 1b〉c ＂Cruciferae＂$/ w$ Coniferae w How many species xxxvii $2 m / x$ xli $\uparrow 9-7 m$ xlii $8-10 \mathrm{~m} / \mathrm{w}$ must take old \＆new worlds as distinct categories．$\ddagger w / w b$ What a number African \＆ some American NB great extinction within Tropics during Glacial explains vast range of many tropical plants in at least old World Ask Hooker．－Whether there are not many

HOOKER, NEW ZEALAND
Zealand (reprint of)
cc, ch, ex, f, gd, geo, in, is, no, or, sy, t, v
NF pxxxiii Note Definition of "Antarctic" । have I think been misled, \& often in doubt by not knowing this definition earlier

SB $\square \beta$-o

Plants common in New Zealand \& South America but not European
(not CD, annotated by him with locations of species listed; 6 sheets)
Abstract no $20\langle 6$ sheets: abstract of Botany of the antarctic voyage "Flora Novae-Zelandiae", not this Introduction)
ii "Chapter 1".w J Lubbock you had better skip this first Chapter $\times 16 \mathrm{~m} / \mathrm{u}$ "reproduce processes", $17 \mathrm{~m} / \mathrm{Q} 17-23 \mathrm{~m}, ~ \Uparrow 22-17 \mathrm{~m}, \Uparrow 12-8 \mathrm{~m}$,介5-1m xi $1-3 m, 5-6 m, 8-9 m, \Uparrow 14-12 m, \Uparrow 11-$ $9 \mathrm{~m} / \mathrm{Q} \uparrow 8-5 \mathrm{~m}, \uparrow 1 \mathrm{~m} / \mathrm{Q}$ xii $17-19 \mathrm{~m} / ?, \uparrow 4-1 \mathrm{~m} / \mathrm{Q}$ xiii $5-7 m, \Uparrow 11-10 m / \Uparrow 11 u \leftrightarrow$ xiv $w t$ shows that vars. * on these different in different countries $3-6 m, 12-14 m \times 1-5 m, 7-9 m, \Uparrow 10-$ $9 m$ xvi $13-18 m$, $\uparrow 3-1 m / \Uparrow 2 u$ "transport 1 sex" $\Uparrow 4 m$ xvii $2 a$ "typical"/wt of that species $2 \mathrm{Q} / u$ "we I common", $116-14 m, \uparrow 12-10 \mathrm{~m}$ xviii $7 \mathrm{~m} / \mathrm{u}$ "oflseas" $/ w$ V. Harvey Whether absent in Tropics $\uparrow 22-20 \mathrm{~m} / \mathrm{w}$ Decandolle 250,000 I think! $9 u$ "did \mid Zealand" xix $\Uparrow 17-16 m$, $\Uparrow 8$ $7 x / m / w$ how many common to North? $\uparrow 6 m /$ u "greater \mid peculiar" $/ \mathrm{w}$ see further on. $\uparrow 4-1 \mathrm{~m} /$ $x / \uparrow 4 u$ "100 genera" $/ \uparrow 3 u$ "confined to", $\uparrow 2 i u$ "one species", $\uparrow 2 a$ "species" $/ w b$ different?? if different points to some ancient connection.xx $2 a$ "so" $w t$ comparatively $2 a$ "Africa" $w t$ about 1600 miles! $2 u$ "placed 1 Africa", 1- 4 m , $4 u$ "Antarctic", 4-5m/u "New \mid Australia" $\mid x / w$ Does this remark extend of Fuegia? $4-5 \mathrm{~m} /$ $x \$ / w$ exactly like White M \& Europe. circumpolar cold $8-10 m, 11-14 m / x, 15-16 u$ "many|Tasmania", 18-19x 22-23u "individuals|scattered" $/ w$ Yet Decandolle says often social! $\Uparrow 12 u \leftrightarrow / a$ "related" they wd not be $\underline{2}$ natural orders, if there were many connecting links.- $\uparrow 10-8 m / x, \Uparrow 1 u \leftrightarrow$ xxi $13 u$ "the l birds" $/ w$ are these land Birds. I think not. $\uparrow 8-7 m / x$ xxiii $14-28 m / 14-15 x / 20!/ u$ "Chili", $\uparrow 16-13 m$ xxiv $2-3 m, 9-13 m, 14-15 m$, $18-23 \mathrm{~m} / \mathrm{w}$ division of Alpine Floras $18 x$, 19x 18a "Those" regions or flora 18-19u "none | Arctic/w || But surely there are northern European forms.- $21 a$ "Alps" X would you add Auckland \& Cambell Isd \& Kerguelen land? No $22 u$ "mountains" $/ w$ see Meyer $23 u$ "Pacific Islands"/w Sandwich? $\pi 11-6 \mathrm{~m} / \mathrm{w}$ do not quite understand $\uparrow 9 u / \mathrm{w}$ which $\uparrow 8 a$ "difference" $/ w b$ ie show more species to be in common $\uparrow 8 ? / \mathbf{u}$ "three", $\uparrow 7 u$ "they" $/ w$ in difference $\Uparrow 7-6 u \leftrightarrow \Uparrow 4 u$ "Fagus"/
wb Xhy These are Java, N. America, Europe. Give up wb Mem. Beech leaves before Glacial in T del Fuego xxv 1u/a "the islands" $/ w$ which? , 9-16m/10-11Q 16u "the islands" $/ w$ which T del Fuego? $20 u \leftrightarrow / w-$ Can this be from change of seed? * (Mention under my Ch.6) $22 u$ "Sonchus" $/ w$ vide (\& algae) $\uparrow 11-10 x$, $\uparrow 11-7 m / w / w b$ very curious. So mammals in the 2 Americas - \& Australia. Decandolle. Australia. \& even C. of Good Hope - Might it not be that NO temperate plants of S . shores of Australia wished to get still further south \& far from wishing to get north. Yes. The tropical plants wd crowd the equator \& some few might cross. Hence Borneo plants wd have come from equatorial regions. $w b$ The mere numerical preponderance of N . forms, from form of land wd account for it $w b$ It wd make great or some difference whether northern or southern forms first occupied the gaps in the Tropics; when once occupied, S. forms wd have little chance of holding their own then. $w b$ If it require time for some degree of acclimatisation than I think it wd certainly make difference $w b$ But being driven out wd not make any difference in spreading. $w b$ If cold first came on on N. side? I think it wd explain. wb No: it wd be that the southern plants wd be not driven out by by fresh arrivals from further south, or only feebly so. Yes*, $\uparrow 9 u$ "are |transit", $\uparrow 8 u$ "havelaltitude"| w attributes apparently to $\%$ altitude xxvi 15$18 \mathrm{~m} / \mathrm{w}$ if an individual dies suddenly, is his formation sudden? xxvii $\uparrow 12-10 \mathrm{~m}$, $\Uparrow 10 u$ "Myrtaceae" $/ w$ any species in common p.xxx 1 in common $\uparrow 10 u$ "Epacrideae" $/ w$ p.xxx some in common $\uparrow 10 u$ "Protaceae" $/ w$ do not one only 2 altogether? \rightarrow X $\uparrow 9-4 m$, $\Uparrow 10-1 \rightarrow \star, w b$ This is all fully answered at p.xxx p.xxx. Compositae \& Orchideae Australian genera. Surely there is considerably more affinity to Australia with Tasmania than to any other quarter of World, both in same species \& genera Yes p.xxx: this was very impressive in looking over the Flora. vide Strezlecki whether Eucalyptus formerly in Tasmania NO xxviii $4 u \leftrightarrow / w$ ie very distinct. $5-7 \mathrm{~m} /!, 8-10 \mathrm{~m}, \Uparrow 19-$ $17 \mathrm{~m} / \mathrm{w}$ So at C. of Good Hope very many bushes. xxix title.w Endemic $\Uparrow 20 u$ "Phaenogamic", $\uparrow 20-16 \mathrm{w}$ more than $* 2 / 3$ of which peculiar or $507 / 730 \Uparrow 12 u$ "genera", $\Uparrow 11 u$ "Australia" $/ \uparrow 11 c$ "otherwise" $/ w$ great inaccuracy $\&$ making order. $\uparrow 8 u$ "twelve species" $/ w$ \& 5 genera $\uparrow 4 u$ "Dammara", $\uparrow 2 u \leftrightarrow$ xxx $w t$ Are many of the 60 European species Annuals $1 u$ "NewlCaledonia", $3 u$
＂but Thuja＂， $6 u$＂Atlantic＂$/ w$ Canary Isd $10 u$ ＂onelspecies＂$/ w \times$ of these Calceolaria seems the only special one to S ．America why not Fuchsia mentioned 10－11u＂Mimuli Ourisia＂，13－14m／u $\leftrightarrow, 16 u$＂and \mid Australian＂， $19-20 u \leftrightarrow, \quad 22-27 \mathrm{~m} / 24 u \leftrightarrow / 26-27 u \leftrightarrow, ~ \Uparrow 15 u \leftrightarrow$ ， $\Uparrow 11 \mathrm{~m} / \mathrm{w}, 76$ genera are S．American－of which 17 not in Australia（pxxxii）or in Old World．$\Uparrow 11 \rightarrow / \Uparrow 15-11 w$ Q pxxxii as well as in number of genera＊Therefore I infer N ． Zealand in species，as well as such genera as Fuchsia \＆Calceolaria，more allied to S ． America than is Australia X？$\geqslant 11 \rightarrow / w b$ have you lists？11a＂American＂of which only 12 not in Australia，\＆ 29 （some of them unaltered forms from old temp：antarctic land．Yes）not Europe；\＆ 39 not in Antarctic $w b$ of those 89 common $\rightarrow 17 / 76$ of the genera to which these 89 species belong， are confined to New Zealand（ie not Australia）\＆America．\therefore are not Arctic see Q．p．xxxii This shows，again，much affinity betwen N．Zealand \＆America－It clearly is not transport direct from S．America to New Zealand which has caused affinity．V．（Q） pxxxii）to N．Ze．\＆S．Amer．there are 29 not in Europe；（ \rightarrow How many of these not f ．N ． of Equator？see opposite page for 7 of the 29 species；are there more？）which are these？are they N．Asian， 1 is N．Asian，or are they all southern forms．or almost mundane except Europe $\uparrow 12-7 m / w$ p．xii． Flora Antarctica there is said to be Arctic forms in Auckland \＆Campbell Isids $\uparrow 10 a$ ＂above＂of the 50 indicate no particular affinity $\Uparrow 9 a$＂ 4 ＂These seem all world to me but wd require cold $\Uparrow 9 a$＂species＂come direct to each from North $\uparrow 9 w$ Are these all Australian？〈u ${ }^{\text {〉 }}$ pxxxii， 17 may have come by Sea．$\AA 8 w$－Therefore the affinity is not closest by now coldest regions．－Yet affinity by mountain plants．$\uparrow 7-6 u$＂decided 1 species＂， $\Uparrow 6-5 u$＂generalalso＂，$\Uparrow 3-2 u$＂ 240 Icountries＂ xxxi $1-2 m / w$ The making of species \＆ conditions renders this doubtful．－＊ Galapagos－though $8 w$ \＆Casuarina $9-11 \mathrm{~m} /$ w very wonderful；but yet we know not means of transport viz duration of vitality． anyhow not continuous land．－ $12 a$ ＂Clianthus＂／w a Legum，\＆most rare Family in N．Zealand．12－13u $/ w$ Has Norfolk Isd many Leguminosae in common with Australia $14 u \leftrightarrow 20 u$＂admirably｜transport＂$/ w$ ？generally killed by sea－water；yet some Float \＆Mimosa sensitiva survived 50 days． $23 u$＂land｜between＂$/ 22-24 m / w$ ie in negative point of view，which wd be very strong if we knew means of transport．－22－24w X R．

Brown has said some survived．Gulf－Seas $27 u$＂Edwardsia＂ $28 u$＂the I Carmichaelia＂ 29 u ＂feebly｜plants＂，$\uparrow 14 X$ ，$\Uparrow 13 u$＂ 89 ＂，$\uparrow 13 u / a$ ＂some＂｜wb 26 confined to Southern temperate Zone $\Uparrow 13 u$＂Myosurus aristatus＂ $\Uparrow 12 w 7 \Uparrow 8 c$＂former＂$/ w$ N．Zealand $\uparrow 8 u$ ＂representative＂，$\uparrow 8-6 m / \uparrow 7-6 u$＂is 1 shown＂， $\Uparrow 6 u$＂Fuchsia 1 Calceolaria＂，$\uparrow 5-4 X * 1 u$＂ 76 ＂ xxxii $1 a$＂ 17 ＂／wt yet only 12 species not f ．in Australia（1 shd think from N．Z going further south） $1-2 m / w(\mathrm{Q}) \mathrm{V} . \mathrm{p} . x x x(\mathrm{Q}) 1 a$＂found＂ either $1 a$＂Australia＂｜｜1c＂elsewhere＂，1X 2c＂latter＂／w $173 a$＂form＂some groups 4X ， 7－9X＊／u土， $9 a$＂European＂ie 29 14－15u ＂Many｜numbers＂，17－24wec，19－20u＂161 were＂， $21-22 X, 23 a$＂five＂which are the 5 ？ Sonchos PrD Sanaxicum Cotula 23－24m／u ＂Thelso＂，24a＂ones＂in N．Zealand？？介14－ $9 m, \Uparrow 8-4 m, \Uparrow 4 u \wedge / w b$ Have these become since extinct in Australia or have they arrived by other route：Australia has many European plants not f．in New Zealand．xxxiii $1 u$ ＂European \mid Australian＂， $1-5 \mathrm{~m} / \mathrm{w}$ absent in N ． Zealand $7-8 \mathrm{X} / \mathrm{X}, 7-14 \mathrm{~m}, 10 \mathrm{u}$＂Those Europe＂$/ w$－come from North 13XX $\$ / w$ either from Common source of Old Antarctic land．15－16 \rightarrow ，17－19m／17a＂those＂species $20 a$＂these＂antarctic 20a＂genera＂but not genera f exclusively in South $20 a$＂ 50 ＂ genera $22 u$＂Drosera＂$/ w$ such genera may be representative，from－in North．$\uparrow 8-5 \mathrm{~m} / \mathrm{w}$ Definition $\uparrow 4-3 m / x \& 4 \rightarrow / w b$ \＆we have seen New Zealand contains some 17 not in Australia xxxiv－xxxv＜marks against nearly all lines，indicating location of species listed wt X Would you mark genera f only S．of S． Tropics with S．－only N．of Tropics with N． Excepting mountains within Tropics would you mark the Genera not f．North of Equator $-S$ ．Tropics？wd it not have made it much more interesting of the identical species had been put in．$\Uparrow 17-12 w$ very strong case（ p 80 ）only one other species known $w b$ This very strong Antarctic genus （p128 F．N．）with species on all the S．lands including Tasmania wb p．154．N．Z．very remarkable alpine plants of N．Z．Tasmania， \＆Fuegia，nearly allied to extensive Australian genus of Stylidium．xxxv wb $\mathrm{X} \geqslant 7$ North having representative species 18 Mundane \＆doubtful 25／50 Southern genera （There are 5 cases of representative species between S．America \＆＊Australia \＆not occuring in New Zealand．）xxxvi $1-13 w$ S 14－19m／X \＆，20－31m／24u／a＂New Caledonian＂ great subsidence of $28-31 \mathrm{~m} / X \geqslant 5-1 \mathrm{~m} / \mathrm{m}$ ， $\Uparrow 2 u$＂Epacrideae＂xxxvii tab．m／w see average

HOOKER，NEW ZEALAND
number of species $\$ 16 \mathrm{~m} / \mathrm{u}$＂that｜genera＂$/ \mathrm{w}$ This variability is rather different from actual vars．for if very polymorphous．vars．are not designated．$\uparrow 12-11 m / \Uparrow 11 u$＂necessarily vague＂，$\uparrow 8 m / u$＂that \mid tendency＂，$\Uparrow 6-4 m, \Uparrow 3 u$ ＂and｜variable＂xxxviii $1-2 m / w$ How in N ． America？ $3-5 m, 8 m / w$ more variable $12 m$ ， 14－15？／u＂geographicallcharacterize＂， $16-17 \mathrm{~m}$ ， $\uparrow 4 u$＂Banksial form＂xxxix $\uparrow 12-9 m, \Uparrow 4-2 m$

HOOKER，Joseph Dalton and BALL，John Journal of a tour in Marocco and the Great Atlas London；Macmillan \＆Co．； 1878 ［Botany School］
gd
NB Geographical Distribution； 417 to 446 whole discussion
1 1－10m 417 24－36m 420 1－6m 421 11－17m， $25-29 m 436 \quad 1-7 m 440 \quad 28-35 m 441 \quad 4-8 m / 6 u$ ＂half＂ 445 1－6m，23－28m 446 14－23m

HOOKER，Joseph Dalton，and THOMSON， Thomas Flora Indica 2 vols．；London；W． Pamplin； 1855 ［CUL，vol． 1 only，I］
af，cc，ch，ds，ex，fo，gd，hl，ig，in，is，no，oo， phy，sp，sy，t，ti，tm，v
NB1＊If very few temperate European plants occur in S ．Africa probably Africa hottest part of world during Glacial period： but Heath＊extended over whole－
The connection of Flora of Old \＆New World before Glacial period，when temperate forms inhabited now＊arctic regions－probably by Beering St－
Hookers remark，somewhere，that flowers whose organs are only a little meta－ morphosed from leaves are most variable is only part of general law，that lowest＊ organisms most variable．－
Glacial epoch；p．87；p．101；p．103，4； 104 Khasia \＆India \＆Java； 105 Japan \＆China； 108；113；253；126； 235
NB2－Mayatts cinquefoil strawberry advertised
p．11？；p．13；p 19 to 43；p82；87； 91 to end of Introduction
р．2；p．22；p．28；56；p89；91；165；171，2； 186；207；217，8；222；226；233，34；240； 243 to 248 Ask Hooker； 251 ； 258
$\leftarrow\langle$ to NB1 \rangle Glacial
SB $\square \beta$ 〈last three references on separate small sheet \rangle
over（Flora Indica）
p．13．Remarks that local Botanists new species makers（Ch．4）
p． 24 Says generally plants vary more in one climate than another（Ch．4）
－Cannon．〈he means＇canon＇〉 Similar climate in distant areas not inhabited by same or similar plants
p26 Plants of N．Zealand more variable than those of India
27 Dry hot lower hills of central India poor in species
28 Individual variation（Ch．4）
29．Organs least modified vary most XX
30 Cedar of Lebanon \＆Deodar
30 Division of vars．of more permanent which accompany change of locality ？？（Ch． 4）
32．Change of value in timber－Oak worthless at Cape
32 Great change in medicinal properties of Plants in different climates
37 Many extraordinary instances of deficiencies，as no Oaks \＆Pines－Caution about Islands．Woodpecker \＆Vulture in Australia
41．India \＆Java formerly continuous！Argues against chance introduction as too harmonious；－＊look at dispersal of Boulders．－
41．Good remarks on strife of Plants
82．Mean temps of Equatorial Zones（？）for Glacial－at 30° of Lat． 1 for each Degree 1° for $300 \mathrm{ft} \therefore 3000=10^{\circ}$ of Lat
87．Lower Himalaya \＆plant of Ceylon at 8000 ft ，often identified（Glacial）
91 India very general sort of Flora（\＆very central site C．D）
92 Local numerous assemblages of species only connect on temperate \＆subalpine districts
99 4000－6000ft truly temperate veg． supersedes Tropical
113 Connection of Africa \＆India，especially mountain plants p． 129 do p152
114 Cases of identical \＆representative species in remote \＆exceptional areas
－Abnormal very wide rangers but disconnected？？p． 165 do + es
237 In Khasia orchids $1 / 12$ of vegetation〈line across page〉
p2．On Highness \＆Lowness－Low variable Q
28 Ranunculus species of widely diffused， therefore variable Q
165 The most perfect species in group ought to be used for classification
171 Organ of vegetation，as wood of no value for classification
207 －Orders of limited extent point in many directions，just like Cucurbitaceae of Wight， though he took distinctness as element．－
217 Berberis aplexus of species（Ch．4）

218 Berberis some species evergreen, some deciduous \& some variable - (so in Privet? \& Oaks).
219 Marked vars of Berberis vulgaris (Ch. 4) 233 \& 34 on remarkable structural differences in member of same Family. p. 234

237 Point of classification

240 All water plants wide rangers \& variable The Glacial references are marked at end of Book
p248 "structure of grave interest in a Physiological point of view, but of no weight in systematics"
249 Connecting link between two Nat. Fam. 259 Corydalis one of few genera with many species in Himalaya, in which majority are remarkably distinct.-

Introductory essay, $1128 ? / u$ "descriptions", $29 u$ "definitions" $135-10 \mathrm{~m} / \mathrm{w}$ Shows how vars. \& species run into each other $22-25 m$ $1920-23 \mathrm{~m} 203-6 \mathrm{~m}, 23-27 \mathrm{~m} 212-11 \mathrm{~m} 223-$ $5 m, 20-22 m /!$!, $24 u$ "but |in" 23 1-4m 24 16$18 \mathrm{~m} / 16 u \leftrightarrow, 20-27 \mathrm{~m} / 22-23 \mathrm{~m} 254-5 \mathrm{~m}, ~ 8-10 \mathrm{~m} /$ $8 w$ What $11-16 w$? Yet parentage of scarcely any oldest plants known $16-24 \mathrm{~m} / 20 \mathrm{w}$ (a) $32-$ $36 \mathrm{~m}, \mathrm{wb}$ (a) All very good against mere climate or change in conditions.- $264-8 \mathrm{~m}$, $9-14 m, 35-36 m \quad 27 \quad 2 u \quad$ "dry|lower" $/ 2-8 \mathrm{~m} / \mathrm{w}$ How absolutely opposed to Gardner \& Bromfield 9-10u "Such 1 is", $12-17 \mathrm{~m} / 14 \mathrm{w}$ (a) $w b$ (a) Everywhere existing conditions of existence thought to be cause $293-6 \mathrm{~m} / 5-7 \mathrm{Q}$ $9-10 \mathrm{~m}, 9-33 \mathrm{~m}, 15-16 \mathrm{~m}, 32-33 \mathrm{~m} / 32 \mathrm{u}$ "leaves 1 bracts" $/ 33 u$ "perianth" $307-11 \mathrm{~m} / 11 u$ " 2 ", $12-$ 20m/16-18u "habit lexposures", 28-34m 31 1$4 \mathrm{~m} / \mathrm{w}$ Why put under 2d Head? 32 6-9m, 16$21 m 3321-24 m 3517-23 m 3722-30 m 3916-$ $19 \mathrm{~m}, 23-24 \mathrm{~m} 412-5 \mathrm{~m}, 8-10!$, $9-11 \mathrm{~m}, 14-19 \mathrm{~m} /$ 15-23w are not oceanic currents Harmonious Look at drift deposits.- 42 1-2m/u "is continuous"/??, 3-8m, 19-21m $825-9 \mathrm{~m} / \mathrm{w}$ See next Page $831-2 m 879-22 m 918-20 \mathrm{~m} / 10-$ $16 w$ India \& Africa oldest parts of world 92 $27-30 \mathrm{~m} / \mathrm{w}$ Have you list? Several species of same genus? 32-36m $932-10 \mathrm{~m}, 11-16 \mathrm{~m} 96$ $33-36 m 9829-32 \mathrm{~m} 9910-11 \mathrm{~m}, 25-28 \mathrm{~m} 1011-$ $5 x / 2 u$ "Gentiana" $/ 3-4 m 10322-28 \mathrm{~m} / 22 x$ */u "Malay peninsula", 32-36m/33x 104 1-4m/w can they have travelled up? $18-23 \mathrm{~m} / \mathrm{w}$ When these connected the few Australians arrived in Ceylon 105 6-9m, 11-14m, 19-23m, 25$29 m / 26 w$ (a) $w b$ (a) I suppose these species are found in temperate China: this is important.- $1061-2 m / w t$ I presume absent in Tropics $1081-3 m / 1 x * 11-22 m / 17 x * 1091-$ $4 m 112$ 10-14md 113 15-22m, 27-30m/27-28u
"mountain \mid Africa" $114 \quad 8-11 \mathrm{~m} / 9 \mathrm{u}$ "Few \mid identity", $10-16 \mathrm{~m}, 20-24 \mathrm{~m} / 18-30 \mathrm{w}$ Wandering species seem to connect whole world.together $32-34 m, 35-36 \mathrm{~m} / 36 u$ "identity| species", wb Identical Species \& representative going together. $115 \quad 22 u$ "representation", $28 u$ "Chilian species" 29 u "representatives" $\mid 26-30 \mathrm{~m} / \mathrm{w}$ are these genera Chilian 116 1c/a "Western" East/ 120 5-8m, $17-21 \mathrm{~m} / 15-23 \mathrm{w}$ during cold period wd be driven here as last refuge $126\langle u \mathrm{a}\rangle 11 u, 12 u$, $13 u * 13 u, 17 u, 19-20 m 12927-34 m 1332-$ $7 \mathrm{~m} 15224-28 \mathrm{~m} 16519-20 \mathrm{~m} / 20 \mathrm{w}$ (a) $\mathrm{I} w$ It is only species common to distant points of continents, \& when accidental sea-carriage out of case. $w b / 24-36 w$ it wd be worth seeing in all such cases, whether there were small aberrant genera, indicating extinction. There were cases before in Book. (Myrsine at Cape \& Abyssinia a case ??) $17022-27 \mathrm{~m}$ $17328-33 m 23513-17 m, 20-23 m 2373-6 m$ 253 1-4m/x
vol. 1, 2 wt 2. $22-33 \mathrm{~m}, 39-46 \mathrm{~m} / 41-45 \mathrm{Q} 22$ $44-47 \mathrm{~m}, ~ 49-51 \mathrm{~m} 2843-47 \mathrm{~m} 2925-28 \mathrm{~m} 33$ $19 m 408 m 46\langle u \sim\rangle 17 u, 18 u, 19 u, 22 u, 23 u$, $27 u, 28 u, 29 u, 32 u, 33 u, 34 u, 35 u, 36 u, 37 u$, $38 u 5628-32 m 8920-23 \mathrm{~m} / 22 u$. 91 8-11m/w here, 1 think, some temperate forms occur 157 zb 165 35-37m 171 41-46m, 53-56m 172 45-53m 186 9-11m $20738-43 \mathrm{~m} / \mathrm{w}$ like ancient Fossils - There are living Fossils 217 46$52 m, 53-55 m 21830-38 m / 34-36 \mathrm{Q} 2193-6 m$ $2223-8 m 22635-39 m 23332-37 m 23424$ $26 \mathrm{~m}, 27-30 \mathrm{~m}, 34-37 \mathrm{~m}, 38-39 \mathrm{u}$ "explained \mid apparent" $/ \mathrm{w}$ What mean? 237 3- $6 \mathrm{~m} / 3 \mathrm{w}$ What? $37-41 m \quad 41-50 m \quad 240 \quad 1-2 m, \quad 5 u$ "thalamiflorous polypetalous", 6-7m, 21-27m, 33-35m/33-34u "all 1 ranges", $35 u$ "from 1 stamens" $24146 \mathrm{~m} 243 \mathrm{£m} / \mathrm{w}$ If these characters did not vary \& so in BarberusO they wd be good species. $2471-2 m 2481-$ $6 \mathrm{~m} / 2-4$ "...", 26-31m 249 10-12m/11u "being structure" $25141-45 \mathrm{md} / \mathrm{w}$ is having a style a peculiarity $258 w t$ owing to corydalis $1-3 m$, $45 m 259$ 1-3m, 33-34m

HOOKER, William Dawson Notes on Norway 2nd edn; Glasgow; George Richardson; 1838 [CUL, I by J.D. Hooker]

HOOKER, William Jackson The British flora 4th edn; 2 vols.; London; Longman, Orme, Brown, Green \& Longmans [Down, FD, 1st vol. only]

HOOKER, William Jackson The British flora 4th edn; London; Longman, Brown, Green \&

HOOKER，W．J．，BRITISH FLORA
Longmans； 1838 ［CUL，S C．Darwin April 1841］
f，fg，gd，mhp，no，phy，v
NB1 178 variety
NB2 Galium aparinaO hooks on seed \＆ leaves Agrimonia？I should doubt acting as hooks In end of August flowers of Lathyrus Nissolia do not open $\%$ have petals＊ $1 / 2$ size of those in spring，\＆of a very pale dirty purple，but yet get seed，are produced abundantly．
NB3 p． 35
〈untranscribed $w: W$ meaning Water－plants〉 $121 w 27 w, 23 w, w b$ some water $32 w$ Marsh $7 w$ water $40 w$ water $534 w, 41 w 6$ $1 w 814 w, 27 w, 40-41 w 98 w, 18 w, 28 w, 37-$ $38 w 109 w 1131 w, 38 w, 46 w 124 w, 13-14 w$ ， $46 w *$ Marsh 13 20w $*$ Marsh $25 w *$ Marsh 15 $4 m, 16-19 m 1632-37 m, 38-43 m, 45 m 175-$ $9 m, 36-39 m, 43-44 m 185-8 m, 10-16 m$ ， $19 m$ $1929-32 m 211 w, 6 w 247-9 w, 28-29 w, 47 w$ $256 w, 25 w, 37 w 268-9 w, 17-18 w, 25 w, 37-$ $38 w 2713-14 w, 21 w, 32 w, 47 w 2813-14 w \bullet$ ， $30-31 w, 38-39 w 294 w, 28 w, 34 w, 40 w 316 w$ ， $12-13 w, 18-19 w 3315 w, 38-39 w 34$ 43－45w $351-8 m / 4-5 w$ ，44－46m $3610-14 m, 22-25 w$ $3828-30 w 4024-26 w 4111 w 5013-14 w$ ，41－ $42 w 5326-27 w 5430-33 w 5738 w$－ $582 w$＊ $6011-13 w, 24-25 w 6642-45 w 688 w, 17 w$ ， $34 w, 43 w 696 w, 16 w, 23 w, 27 w, 33 w 706 w$ ， 19－20w，31－32w $711 w, 18 w, 31 w 737 w 74$ $10-11 w 754 w \star, 9 w \star, 14 w * 895 w 9015-$ $16 w, 25-26 w, 33-34 w 938-10 m, 13-14 w, 29 w$ $9524 w, 32 w, 40-41 w 9827-28 m / w$ Below Barston 100 22－23w，46－48w 101 13－18w Eastbourne $10744 w 1084-5 w 1108-10 w 111$ $43-45 w 1125-6 w, 45 w 1134 w 114$ 29w，36w $1158-9 w, 26 w, 34 w, 43 w 1169-10 w, 20-21 w$ 118 12－13w，30－31w，39－40w 120 介2－1w Down，Aug 45129 28－29w 130 20－21w 131 17－18w 132 22－23w，34－35w 133 6－7w 137 $35 w 1384-6 w 1436 w, 38-39 w 1444-5 w$ ， $12 w, 23 w 1458-9 w, 31 w, 43-44 w 1464 w, 14 w$ $14710 w, 34 w 148$ 19－20w，29w 150 32－33w $1516-7 w, 15-16 w 15216 w, 22 w 1533 w, 9 w$ ， $20 w, 34 w 15411-12 w, 25-26 w, 33-34 w, 41-$ $42 w 1559 z 16029-31 m 1613 w, 27-28 w, 34-$ 35w 162 12w，15－17w，35－37w 164 41－42w $16528 w 166$ 32－33w，43－45w 167 11－12w 172 37－39w，45－46w 173 41－42w 174 20－21w，30－ $33 w 178$ 28－30m $1792 u 181$ 10－11w，20w 190 13－15w，36－38w 192 11w，18－19w 206 7－9w $20833-34 w 2153 w, 11 w, 19 w 216$ 31－34w $21717 w 218$ 27－28w，33－34w，42－43w 219 2－ $3 w, 31 w 22039-40 w 22644 w \quad 227$ 7w，18－ $19 w, 26 w, 39 w, 45-46 w 22812-13 w, 32-33 w$ 229 19w 232 42－43w 235 17w 237 41－42w 238

29w Down 36w Down 239 2w Down 13w Down 28－29w，35－36w 240 20－22w 247 40－ $42 m 249$ 17－18w，22－23w，37－38w 251 24w 253 27w，35w，41w 254 1－2w 262 17－19w 270 9－10w 273 zb 274 24－27w Down Aug．29th 281 15w，47w Down 282 33w，34－36w 284 25w very common $2895 w$ Down 292 2－4w， 20－21w 296 42－43w 297 42－43w 298 14－15w， 41－42w 299 3－4w，36－37w，42－43w 300 5－6w， 39－40w 301 30－31w 302 17－18w $30310 w 304$ 9－10w 305 18－19w，26－27w，40－41w 306 38－ $39 w 307$ 1w 313 7－9w Down common 15w Maeres Down 27w Beechy Head 314 35－37w Down June 22／43 46－48w 315 3w» Maer $15 w \diamond$ Maer $29 w$ Eastbourne $35 w$ N．Wales $43 w$ Down 316 2－7m，8－18m，22－24m，27－32w Down June 25／43 27－29w Down June 15／43 38w Down 317 3－4m，37w Down 318 17－18w， 27w Maer 43－45w Down May 21／54 319 21－22w，30w Down 320 8－10w，18－19w，26－ $28 w 321$ 18w，24w，29w，39w $3226 w, 12-13 w$ part W 28－29w Marsh 33－34w Marsh 323 $33 w, 42 w 3246 w, 11-12 w 325 w b 9$ water 3 marsh $32840 w, 47 w 3297 m, 9 w, 19 w, 30 w$ ， $47 w 3306 w, 14 w, 19 w \bullet$ ， $30 w 3313 w, 3 w$ Bogs 12w，14w Bogs 31w，33w Bogs 332 $5 w$ W／Bogs $28 w$ W／Bogs $36 w$ W／Bogs $44 w$ W／Bogs 333 15w Marsh 17w，27w Marsh 29w，44w • Marsh 45w $3344 w, 5 w *$ Marsh 34w Marsh 45w Marsh 336 6w Marsh 40w Bogs $3373 w$ rocks $14 w$ Marsh 27w Water 42w Bogs 338 10w Bogs 17w Marsh 35w Bogs 42w Marsh 339 22w Marsh $48 w$ Marsh $3407 w$ Marsh $48 w$ Bogs 341 10w Bogs 342 33－34w 343 21w，33w，41w $34441 u$＂watery＂／ w Marsh $3454 w 346$ 32w Water $3477 w, 20 w$ ， $29 w$ Eastbourne 30w $3484 w$＊Down 350 35－ $37 w$ part Marsh 351 31w Marsh $3529 w$ Marsh 27w，wb 1 Water 3 Marsh 354 39w Marsh $35514 w, 35 w, 45 w 35636 w 357$ 21w， $43 w 35814 w, 27 w, 41 w 35935 w 36329 w$ ，
 Bogs 376 30w $3774 w, 10 u$＂wet rocks＂，11w， $32 w, 34 w 378$ 30w Water 379 26w，31w，wbcc $4342 m / w 39819 w 403$

HOOKER，William Jackson，and ARNOTT， George Arnott Walker The British Flora 7th edn；London；Longman，Brown，Green \＆ Longmans； 1855 ［CUL］
sy，v
NB Q 486 Variability of Zannichelliae
166 ＂39＂．m，＂5＂．m 167 ＂7＂．w 8 ＂ 18 ＂．m， ＂ 23 ＂． m 168 ＂ 39 ＂． m 486 17－22m／Q $5609-12 m /$ $6-10 w$ In 4 th Edit．this is a Bromus $17-18 u \leftrightarrow$

HOOKER，William Jackson et al．Sup－ plement to the English botany of the late Sir J．E．

Smith and Mr Sowerby vols．1，2，4，5； London；J．D．C．\＆C．E．Sowerby；1831－65 ［Botany School］

HOPE，Frederick William The coleopterist＇s manual London；Henry G．Bohn； 1837 ［Down，I］§

HOPKINS，Evan On the connexion of geology with terrestrial magnetism London；Richard \＆ John Edward Taylor； 1844 ［Down，I］

HORNER，Leonard Alluvial land of Egypt London；Taylor \＆Francis； 1858 ［Down，I］\wp

HOUGHTON，William Gleanings from the natural history of the ancients London；Cassell， Petter，Galpin \＆Co．；n．d．［Down，I］\wp

House of Commons Report of the Select Committee on wild birds＇protection London； House of Commons； 1873 ［Down，I by C．D． Groom Napier］ no
NB Dr Groom tells me that there is much in this volume about the increase \＆decrease of Birds of last year in England
48a 24－30m，32－43m 121a 50－53m
HOVELACQUE，Abel Notre ancêtre Paris；E． Leroux； 1878 ［Down］\wp

HOWORTH，Henry Hoyle History of the Mongols part 1；London；Longmans，Green \＆ Co．； 1876 ［Down，I］\wp

HROMADA，Adolf Die vorsokratische Nat－ urphilosophie und die moderne Natur－ wissenschaft Prague；Druck der Stadt－ haltereidruckerei； 1879 ［Down］

HUBER，François Nouvelles observations sur les abeilles 2 vols；Paris－Genève；J．J． Paschoud； 1814 ［CUL，pre－B］
beh，che，em，f，fg，oo，no，phy，sx，ta，v
vol． 1 SB 171 Queen killing sisters 10 minutes after Born－
184，198 can sting each other without being killed，but risk is run．
190－How Bees treat strange Queen
220 Queen killing larvae of other Queen
231，235 mistaken Instincts
－Not abstracted
169 2－3w Read $171 \Uparrow 6-1 m / \Uparrow 6 u$＂peinel minutes＂ $184 \quad 10-22 m 190 \Uparrow 11-9 m / \Uparrow 10 u$＂la reconnoissent＂$/ \uparrow 12-9 w$ their own Queen $\downarrow w$

W．Fox says workers know strangers 198 1－ 5m $2005 w$ Read 208 1－2w Read 220 9－18m／ w V． 224 介7－1m 224 3－7m，11－13m 225 4－9m 231 介8－2m $235 \Uparrow 5-2 m 359 \Uparrow 3-2 w$ Read． Read 360 1－3w Read
vol． 2 NB 104 －Wax secretions piling wax
140 seems to consider architect a different race
SB $\square \Re\langle 2$ sheets \rangle
p426 to 430 Very good
43．show same peculiarity appearing in many＊Evidently different for old \＆battered Bees．）
442．Bourdon workers lay only Males \＆ Workers
444．Ants always killed by copulation
It seems quite possible that the 1st row may be formed differently，as they cannot initiateO work with usual number of Bees〈over）
66，67， $69 \times$ Instinct 188
98； 110 Vide PI 4；120； 141 to 187；211； 215
219 Instinct bending comb
286 The fallen comb
222 to 226 size of Drone cells．－gradation of size before \＆after． 3 or 4 rows or when Honey abounds（247）Bears on W．Indian cells
234 to \＆c
238 inclination of prisms to base not yet inserted－distorted．－
250
342 Ventilation 357 to 360
374 Bees begging for Humbles
Huber proper Bees have very acute smell－〈2）
On First Wall p110，146－141
ก thus
$2 / 3$ of diameter of cell
175 repeat over \＆over again edge rounded of outer margin of base of first cell
235 ribbon of wax surrounds whole comb when bigger
〈over：drawing of small circles and hexagons＞
＜words here indicate that this is a scrap torn
from the abstract of a different book and re－used）
66 15－20m 67 1－2m，7－11m $695-8 m 989-$ 12m 104 20－25m 108 11－18m $10913-22 m 110$ 6－9m，6－8u＂six｜cellule＂， $12-13 u$＂mais！ élévation＂ $120 \quad 6-8 m \quad 140 \quad 3-8 m, 10 u$＂les 1 architectes＂ $14119-21 \mathrm{~m} / 20 \mathrm{u}$＂petite cavité＂， 21－23m 142 3－5m／3－4u＂bordslcire＂，8－9u ＂maislalongés＂$/ w$ this will be the posterior face 14－15u＂étant｜alongé＂， $17 \mathrm{~m} / 9 u$＂del diamètre＂／u＂portionlbrute＂ 143 wt $\cap[\mathrm{He}$ speaks of this as connected with \wedge independently of walls］3－5u＂Le｜rectilignes＂，

HUBER, ABEILLES
4-13m/5-25w If the sides of separate cell one are angular before other cells formed fatal to my theory. opposed by my facts.yet Icaria; but Icaria only becomes angular after some cells formed $20-23 u$ "douées épaisse", $23-25 m, w b$ [This is very last part excavated!!! that they begin near where 3 planes meet.] 144 11-13u "ainsilautres"/w | presume simultaneously $1462-5 \mathrm{~m} / 5 u \leftrightarrow$, 11$14 m 147$ 18-20m $14816-17 \mathrm{~m} / 17 u$ "une |droite" $149 \quad 15-23 w$ when (1) cell only $2 / 3$ of diameter in height ie. 2/3 of total height what will acquire $1503-4 u 1517-8 u \leftrightarrow, 17-21 m 152$ $16-18 m, 21-23 u \pm / w$ Queen cells 153 2$4 u \leftrightarrow / 2 a$ "derrières" $/ w t$ or posteriors 12-22m/ 12-13u "tardèrentlpartie", 18-19m, 23-24u "àlà", wb [I believe never done, except when cell added or where Bee can stand] $1544-7 m 15511-18 m 15819 u$ "approfondirl cavités", 22-25m 159 13-18m 161 1 12-1w/wb [Here he speaks as if 1st cell completed before any trace of other 2 above on same side, \& one above on opposite side. inaccurate $1645-9 \mathrm{~m} / 5 \mathrm{u}$ "mais|elles", 8-11m/ 9-10u "elles lcavités", 17-19m 165 1-2u "dont | prolongés", $3 u$ "tandis", $9-12 \mathrm{~m} / 9-10 \mathrm{~m} /$ $u \leftrightarrow, 16 a / u / w \tau, 22-24 m, 23-25 u \leftrightarrow 1686-7 \mathrm{~m} / \mathrm{w}$ 1 st cell of $2 d$ row $7-8 u / 8 a$ "mais quelques" other $15-25 w$ He speaks as if one hex outline of 3 rhombs always first formed, but says nothing about these being zig-zag $1692-5 m / 4-8 w$ so that they begin on level of base of prisms $7-11 m / 1-11 w$ Error here hexagon before excavating $\uparrow 6-3 m / w$ Error $\Uparrow 5-3 m / w / w b$ it seems that this rhomb was completed on one face before the face in 2d row was begun: I doubt this. $\mathbf{1 7 0} \mathrm{iw}$ [Here it is clear, that he thinks hexagonal outline completed before excavation begins $\uparrow 2-1 \mathrm{~m} /$ $w b$ it is clear that they perfect one rhomb \& then other two $171 w t / 1-5 w$ I may say after outline of trihedral pyramid formed; \& added to, the outline seen through wax guides according to Huber the excavation of the base \& making the internal planes $1-3 m$, $7-$ $8 u \leftrightarrow 1722-5 m / 4-9 w$ ie first of $2 d$ row on posterior face $17320-22 m / 21 u$ "d'abord arrondi" w always round 175 iw [Error - in fig 21 he draws hexagonal outline with no pyramids!! $\uparrow 8-6 u \pm / m / w$ but then all outlines obtained * from adjoining cells 176 12-16m, $18 a$ "élevant"/ $18-23 w$ first an arched line, then converted into $1792 u$ "aucunelbornent" $180 w t / 12-18 m / 1-19 w$ Here he shows he thinks hexagonal outline at first up \& down vertically $15-16 \mathrm{w}$ of pyramid bases 182 20$24 \mathrm{~m} / 21 u$ "alternativement" $18314-17 \mathrm{~m} / 16 u$ "l'obscuritél gâteaux" $1846-14 m / 12 u$ "creuses I
bloc", $21 u$ "unel des" $1858-11 u \leftrightarrow 1868-15 m$, 16-19m 187 wt [I doubt about wax being added in successive stages.] $5-11 m / 7-11 m$ $1882-7 m / 4-5 w$ Internal 211 1-5m/w How can this be considering Drone cells \& other irregularities? $2156-9 m 21910-17 m, 18-20 \mathrm{~m}$ 222 1-6m, 24-25m 223 1-3m, 9u "troisl quatre", 14-15m/14u "à quatre" 224 7-8m/8u "formes bizarres" 226 15-16m/15u "ill poute" $2277-12 m 2284-8 m / w$ because cd not stand to measure?? \& edges rounded?? 234 13$17 \mathrm{~m}, 20-25 \mathrm{~m} 23510-16 \mathrm{~m}, 23-25 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ the little wall of first wax surrounds the whole comb 236 5-8m 237 15-20m 238 3-5m/4-5u "quatrelcinq" 242 1-3m/w/wt no pyramids like case in Fig 2 PI IX 247 6-8m/w Drone cells 250 7-12m 252 wt All about Proportions except words about fallen comb. 256 12-16m 286 19-25m 287 23-25m 288 16-19m 294 1620 md 295 24-25m 318 〈err. printed 317〉 $3 u$ "àlquart" 342 wt Has shown by laborious experiments; that Bees require constant ventilation on acct. of carbonic acid, \& that they do ventilate the Hive. $1-14 m 3431-3 m$, $24-25 \rightarrow 344$ 17-18u "dansitout" 357 5-9m, 13-16m $360 \quad 20-24 m / w$ only workers know how to ventilate $37412-16 m \times 12-16 \mathrm{~m} / \mathrm{w}$ Hated \& killed by other bees $42816-17 u \leftrightarrow /$ $12-19 w$ shows |vast| number affected same way $4307-16 m / 12-13 m 433$ 22-25m 442 11$19 w$ Many workers of Bourdon fertile \& lay only male eggs $4443-9 m$

HUBER, Pierre Recherches sur les moeurs des fourmis indigènes Paris; J.J. Paschoud; 1810 [CUL, pre-B]
beh, cc, em, in, mg, 00, phy, sp, sx, v
$203-7 m /$? $6014-17 m / 14 u$ "fourmis rouges", $18 m, w b$ F. rufa in tree at Moor Park $6110-$ $12 \mathrm{~m} / 11 u$ "représentent Il'enfance", 14-15m 75 4-10m $779 u$ "au sexe", 12-14u "donnent mâles" 79 9-11m/10-15w differs in larvae of different seasons $22-24 m 8021-24 m 8416-$ $20 m 8524-26 m, w b$ Differ in species \& variable in individuals $8811-14 m 1104-7 m$, $8-10 z 111 \quad 10-14 m \quad 114 \quad 6-8 m, 9-11 w$ Virgin Queens 12-15m $1155 u$ "cet|leur" 116 21$24 m 11815 u$ "le plus"/16-19m/w Free Queens feed themselves 144 wt Migration $3 m / u$ "puis Ifemelles" $14524 \rightarrow 146$ 23-24m/w Make roads $15015 u$ "quatre mois", 17-19w 4 months afterwards $22-24 m 1511 u \leftrightarrow, 9-10 m$ $1594 u$ "fourmis" $/ 5-6 u$ "ont $\mid d^{\prime}$ armes" $/ 4-6 \mathrm{~m} / \mathrm{w}$ what genus? $7-9 w$ V. Latreille Treatise 165 9-13m 173 17-24m 179 16-19m 181 7-8m, 15$17 m \quad 183 \quad 13-14 m \quad 186 \quad 5-9 m \quad 188 \quad 9-20 m / 9 u$ "les 1 manoeuvres", 20-23m 189 7-12m 192 5-
$8 m 19324 \rightarrow 194$ 4-10m $19524 \rightarrow 1963-6 m$, $8-10 m 201$ wt \times Coverings for Aphides on stems. 8-10m/x 204 19-22m 205 19-21m, 22$24 \mathrm{~m} / \rightarrow 2065-7 \mathrm{~m} 207$ 1-4m 210 13-15m 212 $12 u$ "larvel nymphe" 213 1-5m/2-3w like M 215 2-5m 216 3-6m/4u "indifféremmentlces" $219 \quad 12-13 m \quad 228 \quad 1-4 m / 3 a$ "soin"/wt of the males \& females 229 7-12m/12u "gardent| nid" 230 2-8m 231 14-16m 232 14-17m 233 9-11m, 12-14m 234 1-3m, 8-10m, 15-16m 235 8-9m, 19m, $21 m 239$ 10a "retour" without Booty 10-12m, 17-21m 240 11-12m 241 1-5m, 7-20m $2429 u$ "noir-cendrées"/w F. fusca 14a "mineuses" F. cunicularia 243 20-21m 244 1$4 m, 6-10 m 2457-10 m 2516-11 m, 10-12 m$, 15-16m 252 7-11m/8u "rarity", 18-24m 253 1$4 m, 11-14 m, 17-19 m 254$ 13-16m, 17-19m 255 4-6m, 12-13m 257 12-14m, 15-18m, 23-24m $2593 m, 16-22 m 2708-11 m / w t / 1-15 w$ They must mistake the amazon workers, for males or females, for these are fed by their own workers. $14-15 \mathrm{~m}, 16-18 \mathrm{~m} 27116-17 \mathrm{~m} / 16 u$ "une fois", $24 m \quad 2763-6 m$, 18-20m/w different? 21-22u "que l cendrées", $23 u$ "comme elles" $2773 m, 4 u$ "quelquefois", $5 m / u$ "lal auxiliaires" $/ w$ different $7 \mathrm{~m} / \mathrm{w}$ * What says $8 w$ F $13 x / u$ "certaines I fourmis", $15 u$ "on I troupes", $18-20 m$, wb X it is remarkable any ants preying on \& keeping slaves of same species $27822 u$ "cendrées" $2792 u$ "et 1 captivité", $\Uparrow 3 u$ "assiégées lassiégeantes" $2827-$ $13 m 2836-9 m, 18 u$ "cent lpas" $2842-4 m, 7 m$, 9-10m, 12-14m, 19-22m/19-24u士, 23-24m, wb not due not knowing road $2853-5 m / 4 u$ "fauves", 20u "mineuses"/20-24m, wb F. cunicularia $2863-5 m$, 11u "sanguines 1 roussâtres", 13-16m, 19-22m 297 3-6m/4-10w \& variation in individuals as F . Smith shows $3001-7 m 31010-14 m$ last plate $w \uparrow$

HUBER, Johannes Die Lehre Darwin's München; F. Leutner; 1871 [Down]

NB O/
HUBRECHT, Ambrosius Arnold Willem Studien zur Phylogenie des Nervensystems Amsterdam; Johannes Müller; 1882 [Down, I]

HUC, Evariste Régis Recollections of a journey through Tartary, Thibet and China London; Longman, Brown, Green \& Longmans; 1852 [Down, S]

DIE HÜHNER und Pfauzenzucht in ihren ganzen Umfange Ulm; F. Ebnerschen; 1827 [CUL, pre-B]
dg, fg, gd, he, hy, ig, oo, phy, sp, sx, sy, t, tm, v

NB p1 to 21 Rest Nothing
SB 11 Crested Fowl either wattles or beard, parent no beard easily killed by Hawks: cannot see them for tuft $\&$ can hardly see to eat) Q
12 Breed without Middle long tail feathers NQus
17 Black-boned degenerate in Germany Q $\underbrace{}_{0}$ 20 Hens with spurs NQ

4 wb How many eggs has wild F.? $617-18 u$ "vierzehn" $/ w 14$ tail feathers $9 w b$ (14 kinds with subdivisions) 11 wb The tufted fowls prevent fowls from seeing food \& will grow them, \& be easily killed by Hawks. who ever would have thought that a tuft on head wd determine whether fowl shd be more easily killed by Hawks.-9-12w has either flat-tufted or feather beards $18-20 \mathrm{~m} / \mathrm{Q} \star_{0}, 23-25 w$ Pure breed no wattles 12 wt Some think little wattles because nourishment go to crest -$1-4 m$, $5 u$ "mexikanische" $/ 5-6 w$ all Mexican Hens said to be of this race $14-17 w$ sometimes feather footed \& always rough skin $17 w$ varieties of Tufted Hens $18 u$ "brabantische", $20 u$ "goldfarbige", $22 u$ "Gewöhnlich", $28 w$ Large Birds 32-36w/wb in this \& longtail feathers wanting \& other tail feathers smalier $w b$ I shd think these were Gold \& Silver speckled Hamburghs $1311 m$, $18 u$ "Kolo"/13-23w Long in legs with small Body \& red flesh with ornamental Beak. Like Philippine Hen. $1426 u$ "Steissbeins", wb Tailless hens, shortening of coccyx is the cause $167-10 \mathrm{~m} / 8 \mathrm{w}$ (a) $21-23 \mathrm{~m} / 22 w$ (b) $w b$ (a) In crisp Fowl Hen has no tail!? wb (b) Wooly Hen, black legs \& comb common in China, Japan, \&c 17 wt Black-boned Fowl degenerate in Germany Q屯, 1-2m, 5-9m/w Mongrels intermediate $11 w$ bantams $17-20 w$ naked feet very small $20 w$ do. $21 w$ feathered feet 24-28w Feet very short Belly almost touches ground.- wb Feet wonderfully feathered 18 21-22u "einen ISchwanz"/19-22w Hens from isthmus of Panama 19 5-10w Philippine Hen with excessively short legs, wings scrape ground $11 u$ "Hamburgische", $13-21 w$ Belly \& legs like Velvet very sharp Beak, tuft of feathers over ears Legs \& feet blue with yellow soles. $13 u / w \tau, 24 m, 25 u$ "paduanische", $26-29 w / w b$ is as big again as foregoing double comb \& tuft of feathers Rough Voice 20 wt Bahia Hen race of Padua hen $2 u$ "Persischen IPeguanischen" $\mid 2-6 m / w$ Yet their feathers very late $9 u$ "türkische", 10-11w Beautiful feathers $20 u$ "Sansevarre"/w white

HÜHNER
comb；under other comb．22－23w very big eggs $27-28 w$ Hens spurs like cocks $w b$［l suspect all this copied from some Systematics Book］ 21 wb See Linnaeus Syst Nat（my copy）vol II p． 737 for good references Bright \＆Pallas \＆Willughby 3－4w 5 －toed breed spur divided 65 zb

HUMBOLDT，Alexander von Cosmos 2 vols．，trans．E．Sabine；London；Longman， Brown，Green \＆Longmans； 1846 ［Down］ vol． $1 \wp$

HUMBOLDT，Alexander von Essai géo－ gnostique sur le gisement des roches dans les deux hémisphères 2nd edn；Paris \＆ Strasbourg；F．G．Levrault； 1826 ［CUL，pre－B， S］
geo，mi
176 10－13m／11c＂O＂／12m／w E 17－21m，32－ $33 m 326$ 24－26＂．．．＂，28－32m 327 9－12m，14－ $16 m, 18-19 w$ A $25-26 m / 25 w$ A $31-32 m / w$ A 328 1－11＂．．．＂，4－5m／z／5u＂grès schisteux＂，6－ $11 \mathrm{~m} / 6 u$＂nids \mid roguous＂$/ 7 u$＂juxtaposition＂ $111 u$ ＂rubanée＂， $23 \mathrm{~m} / \mathrm{u}$＂zones parallèles＂ $22-24$＂．．．＂， $30-33 \mathrm{~m} / \mathrm{w}$ No centre to mine $w b \mathrm{~A}$ ．do． Obsidian nodules no centre 329 1－3m 334 6－ 16 m

HUMBOLDT，Alexander von Fragmens de géologie et de climatologie asiatiques 2 vols．； Paris；Gide，A．Phian Delaforest，Delaunay； 1831 ［CUL，on B，S in both vols．，vol． 2 Chas Darwin Monte Video Novem：1832］
geo，mi，sp，t
vol． 1 NF1 Metaphysics
NB2 Interesting parts begin P．84；The Andes P143
NB1 27；53； 97
NB2 Species theory O／March 57
7 wb Metaphysics 27 14－16m 53 1－8m 74 1－ 20m，wbec 95 14－20m $976-17 m / 7-8 w$ seems high 133 10c＂horizontales＂$/ w$ secondaires 137 12c＂amphibole＂／w Diorite 144 15u＂Teneriffe＂／ w TolimaO
\wp
vol． 2 NB 320；331；March 57 O／
320 12－14m／13w 1200－1500 327 wtcc， $13 \mathrm{~m} / \mathrm{u}$ ＂260－270＂，15－16wac 328 15－18md，19－20m 329 8－12m 331 7－13m／10－11u＂d＇un｜la＂｜12a ＂Barrière＂／w 1560 13a＂Mysore＂／w 2400361 wbec 385 10－15m 386 1－20mas $38715 w$ 62d 560 15－19w $/ w b$ © 621 18－19m

HUMBOLDT，Alexander von Personal narrative of travels to the equinoctial regions of
the New Continent during the years 1799－1804， by Alexander von Humboldt and Aimé Bonpland trans．M．H．Williams， 7 vols．； London；Longman，Hurst，Rees，Orme \＆ Brown；1819－29［CUL，pre－B and on B；vols． 1 and 2 （1822，in one binding），vol．3，3rd edn（1822），vol．4，1st edn（1819），vol．5，1st edn（1821），vol．6，1st edn（1826），vol．7，1st （1829）；I in vol． 1 by Henslow：J．S．Henslow to his friend C．Darwin on his departure from England upon a voyage round the World 21 Septr 1831］［CUL］
af，beh，br，cc，co，cs，ex，fg，gd，geo，gr，ig， is， $\mathrm{mg}, \mathrm{mhp}$ ，no，oo，se，sp，$s x, s y, t, v$, ve， wd
vols． 1 and 2 NB 177， 186
SB
Voll p61
121 top
123 bottom
Abstract at end of last Vol
125 m
195 m
262 b ．The diffusion of volcanic Dust explains diffusion of Lichens．
270 m．－an oak allied to that of Thibet．How transported was acorn－Volcanos show elevation，this subsidence－hence Continent extended nearer．－Pidgeons bring grain to Norfolk－Maize to Arctic America Nutmeg－ Grain like fishes falls in India．（a）
274 －When studying Geograph of Canary Botany look to this part．
〈over〉
（a）Bruce describes East of Nile daily，whole troops regiments of enormous dark glittering ＊pillars of sand，raised by whirlwinds
274．Camels abundant in Fortaventura \＆ vegetation different than from＊other Islands－N．B Numerous wild asses formerly in Fortaventura．Vide Early part of Chapt．
〈line across page〉
2d Vol
p269－Goats； 276 t．－
vol．1， 60 28－30m 61 16－21m $9810 z 171$ 16－ $29 \mathrm{~m} / 19 \mathrm{~m} /{ }^{\prime \prime} . . \epsilon_{0} 1722 \mathrm{~m} / \ldots{ }^{\circ} 19915-16 \mathrm{~m} / \mathrm{w}$ Geology 203 23－24m 205 21－20z 212 10－13m／ w quote on craters of elevation 219 9－11w A 222 11－15m／w A 240 8－12m 262 19－27m
vol．2， $94-20 \mathrm{w} 35^{\circ}$ to 25 or perhaps 30 to 20 called by seamen Horse－Latitude because subject to calms in which horses die for want of water，food \＆are thrown over of 195－9wec $177 w b 6$ in year $1867-9 m 187$ 24－26m 207 4－19m 208 9－17m 209 15－19 210 1－6m 213 5－14m 214 19－22w Agrees with
equatorial rise $20-27 m 2174^{\prime \prime} \ldots, 12-27 m$, 28-31.circled 218 4..." 219 21-28m 224 17$21 m 2253-21 m$, 7w February $19 w \star_{0}$ (1797)? 20-21wcc, wb Guadaloupe to Quito 1650 miles in BorneoO Rialza to 53° of Lat $=3180 \mathrm{~m}$ \& $226 w t$ (a) Guadaloupe \& Cumana 400 miles St Vincent to Caraccas * $370-3-11 \mathrm{~m} / \mathrm{w}$ About 400 miles $16-20 \mathrm{~m} /$? 227 12-19m, table.w/wb cc 229 3-16m 269 19-23m
vol. 3 NB1 July 61881 to p417; April 3 1882 finished
NB2 360; 383; 491, 2, 8, 9
SB
14B Allude to this, when saying, the causes of the progress of intellect from Monkeys to Man is inexplicable.
p42. Aug 1872
48. M.
63. note

71 Mr Milne
P. 205 Sleep of Leaves
106. t
227. M \& note. like Indian Castes

229 b. expression thinking
234
360; 383 Q; 491-9 Silla of Caraccas vegetation

48 9-14m, 15-17m 106 6-12m 205 20-28m 227 18-24m 229 19-30m 316 wt 332 25-30z 333 $1 m, 25-29 z 360$ wt Thus man has trained plant to its own destruction.- Nature makes seeds somewhat palatable to ensure dissemination 5-9m 383 wt Birds sing better in one district than in another $5-18 m 491$ 1$13 m 4921-4 m / 3-4 w$ see (a) $49312-20 m / 12 m /$ w (a) $17-18 m, 21-23 m, 23-26 m / w$? do not understand See original $w b$ (a) Have not probably plants migrating from equatorial mountains to both temperate zones \& not vice versâ - $4946 u$ "befaria"/w spec. different $V \times 49711-12 m 4958-13 m, 14-18 m$, 22-26m $4962 m, 5-6 m, 10 m, 12-21 m$, wb a rising mountain, (like isid in midst of sea) affords a station free for seeds to germinate, from other mountains.- We may consider all seeds equally wafted, but their growth in most cases is prevented. $4971-21 \mathrm{~m} / 5 \mathrm{w} \times w b$ The distrib. of alpine plants, (considering elevation) can only be compared to imagining case of new continent. A desert isld has never been found.- $4981-4 m 500 w t$ The Befaria is other species $2 m, 11 m, 15 m$ 520 12-15m, 21m, 22-23m
vol. 4 NB 84,$6 ; 106 ; 111 ; 173 ; 231 ; 333$; 336; 351; 380; 384 Geolog. Cop.; 422;

437; 441; 447; 459; 484; 489; 506
p.466-522 ornamentation by Savages

527 Tears Monkey; 528 - recognizing pictures of insects
5 11-25m 6 3-8m 11 8-16m 20 14-19m 21 1$8 m 2710-14 m / w 630$ miles $2917-20 m 301-$ $18 m / 4-6 w$ with Chimbrazo 32 29-32m 36 13u* "1796", 17u* " 1796 "/w 4.1797 28u/w "1811" ? $181230 u / w{ }^{4} 1811$ " ? 181245 20$29 m 461-15 m 8418-20 m 1061-3 m 111$ 18$21 m 1121-2 m 116 \quad 11-15 m, 12-14 m 17315-$ $21 m 231$ 13-24m 232 8-11m/8w V 246246 2$\begin{array}{llllll}9 m & 333 & 19-24 m & 336 & 18-19 m / u, ~ w b & \text { in }\end{array}$ Paraguay cannot run wild $35129 m 38014$ 17m 384 13-18m/14-15w Like Patagonia 422 15-20m, 18-19m 437 22-30m 441 24-28m 447 18-20m 459 28-30m $46614-17 m, 17-24 m 489$ $11-13 \mathrm{~m}, ~ 16-20 \mathrm{~m} / 17-18 u$ "three \mid tortoises" $/ 20 u$ "thirtylmillions" 490 11-13m, 19-21m 506 1$5 m 5147 u$ "furnishes 1 colour" 515 5-9m 518 17-22m 522 11-16m 527 7-11m, 16-17m, 22$28 m 528$ 23-29m 556 11-28m/15-19u土
vol. 5 NB $79 ; 80 ; 81 ; 98 ; 101 ; 107 ; 110$; 161; 180; 193; 221; 352; 410; 440; 503; 540; 565; 585; 590; 620; 672
17 20-23m 18 15-19m 24 15-17m/w Yes 25 $1-3 m$, 11-13m 26 19-22m 79 3-4m/w like Guanaco 80 18-20m $9813-20 m 10111-14 m$, 19-22m, 24-26m 107 1-4m $11024-28 m /!161$ $17-21 m, 27-30 m 1806-21 m 18126-28 m 183$ $14-17 m 1936-10 m 22124-30 m / w$ \& MD \& p. 225222 1-2m 225 14-19m 352 3-7m 410 2$8 m 440$ 3-14m 454 1-6m, 1-25m 456 2-12m/ $2-5 w$ Chili 457 1-2m 459 1-11m 503 8-16m 540 11-15m/w V p543 541 16-19m 543 5$12 m / 8 u$ "squirrels", $8 u$ "parrots" $/ 9 u$ "macaws"/ $7-8 w$ so dispersed $56510-16 m, 17-20 m 585$ $5-25 \mathrm{~m} / 9-22 w$ good to give idea of number 590 fw To show how animals prey on each other - what a "positive" check. 8-20w Think of death only in Terrestrial Vertebrates $\ddagger w / w t$ Smaller Carnivora - Hawks - What hourly carnage in the magnificent calm picture of Tropical forests. Let him from some pinnacle view one of these Tropical how peaceful \& full of life $23-25 m / w b$ Probably two or three hundred thousand Jaguars in S. America What Slaughter! Daily - \& as many Pumas $62010 u, 12-14 m / w 33 y r 6723-9 m$
vol. 6 NB1 Nothing respect to Species Theory
Granitic areas of Parime p526; p604
NB2 390 Geolog - before any general view \& Patagonia
71 17-32m 73 1-6m, 10-26m 74 4-7m 99 26$30 m 1001-16 m 10119-23 m 10214-30 m$ part 2, contents page $p .391 . m, p .624 . m 409$ wtca,

HUMBOLDT \& BONPLAND
20-29m/".." 411 15-19m 417 1-10m 421 1314? $42216 u$ "Vincamarca", $17-21 \mathrm{~m} /$ "..." 423 16-29m 425 2-8m 441 18-30m 461 1-11m 464 $1-3 m, 19-30 m 46515-18 m 4661-7 m 471$ 17$19 \mathrm{~m} /{ }^{\prime \prime} . . . " 50312-13 \mathrm{w} 300 \mathrm{~m} 60016-22 \mathrm{~m} 504$ $2 a$ " 25,000 "/wt some error $5191-10 m 526$ 15$17 m, 22 w 102023-30 \mathrm{~m} / 26 \mathrm{w} 420527$ 1-8m, $1-18 m / 8-17 m 5297-27 m 531$ 1-16m 532 1$30 m 5331-29 m 5351-18 m 5431-21 m 5792-$ $29 m 5811-5 m 5828-25 m, 22-25 m 5831-12 m$ $5861-5 m 5911-30 m 5921-30 \mathrm{~m} / 1-16 \mathrm{~m} / 11 u / ?$, $19-30 \mathrm{~m} / \mathrm{w}$ I think most decidedly so Either way, but in each spot one direction far more prevalent $5931-3 m, 6-9 w$ not necessarily so, but since appears frequently to happen 17$18 w$ Change as gradual or sudden 19-20m, 28-31m, zb $5941-30 m, 9-10 m 595 \mathrm{zt}, 1-28 \mathrm{~m}$, 16-18m 596 1-29m, 17-25m, wbec 597 1-3m, 8-9wce, 23-28m, wb n. 28604 24-31m, 24$25 m, w b$ p504 25000 square leagues 609 21$25 m 631$ 11-20m (von Buch) 645 13-20m, 20$25^{\prime \prime}$..." 6466-10m
vol. 7 NB 51 - Coral
86 - to $90,291,309,320$
75; 439
SB $\square \beta$
Humboldt Vol. 1
275 - Suggests the former union of Canaries with Mainland Vol. 3. p48 Male animals giving milk
106 The male wh. reasons best
227 good remarks on races of Man, especially in mountains, who do not intermarry with others keeping uniform.
383 Monkeys differ in disposition greatly from certain isld can be tamed easy
360 Birds \& destroy corns owing to goodness of seed.-
492 Violet on Peak of Teneriffe common to Pyrenees
493 Silla of Caraccas has alpine plants of same genus as lowlands
497 On relation of Befaria of Caraccas, are specifically different from those of Bogota
Vol 4 p. 173 Gyrocarpus, one S. America - 1 India - 2 Australia (Has been put into many orders) some have made order for it \& one other genus
p336 wild cattle on Llanos, in relation to Paraguay
422 Alligators males kill each other in loveseason (Ch.6)
489 Turtle \& lay 100-116 eggs.-
Vol 5101 The Pulex penetrans distinguishes a new arriver from Creole
193 On great destruction of Cattle, so that Farmer beggared by Bats, \& those increase
favoured by Drought - lilyO?
352 Birds do migrate in Tropics
410 Near social plants, generally a few stragglers, at least with trees
503 The Colchicum always solitary amongst grasses: allied plants social.
591 Black Jaguar said never to mingle with others (vars keeping distinct
Vol. 6. \& 7 Nothing
51 16-26m/25c "fathoms"/u "20130"/w ??? feet $521-15 m / 8 ? / 8-9 u \leftrightarrow / 9 ? / 11 c / \quad w \notin / Q 25-$ $30 m 5328-31 m 541-25 m, 26-27 m 5526-28 m$ 75 14-17m 87 9-30m 89 3-23m 134 3-34m 291 4-21m 309 4-29m, 27-28m 319 9-21m 320 1-25m, 21-26m 369 13-14m 434 21-25m 439 4-11m 480 1-14m

HUMBOLDT, Alexander von Political essay on the kingdom of New Spain trans. John Black, 2 vols.; New York; I. Riley; 1811 [CUL, pre-B, on B, S Chas Darwin Buenos Ayres]
fo, geo, mi , se
vol. 1 NF Height of town of Lima above Callao. 582ft p25
Fall of R. Magdalena in feet - p 23
an p.63. Elevated Shells
$631-13 m$
vol. 2 NB Tome Saltpeter Concepcion
$2594-9 m, 12-19 m 2616-16 m 3454-6 m$, 33$36 m 346$ 12-20m 347 5-13m

HUMPHREY, George Murray Observations on the limbs of vertebrate animals Cambridge \& London; Macmillan; 1860 [Down, I]
NB O/
HUNT, Robert Researches on light in its chemical relations 2 nd edn; Longman, Brown, Green \& Longmans; 1854 [CUL] cc, gd, hy
NB p. 215 to p. 239 (p. 238 Abstract); p.376; p. 378

217 1-3m (Daubeny), 5-8m/8u "its illuminating" $2261-12 w$ Salt those plants as Silene which have maritime species $13-20 \mathrm{~m} /$ $21-23 m / 24 m / 14-24 w$ one might alternate the glasses $22925-28 \mathrm{~m} / \mathrm{w}$ when $23436-37 \mathrm{~m} 235$ $1-3 m, 14-16 m, 19-23 m 23612-16 m, 32-37 m$, $w b$ This wd do instead of picking off flowers 237 wt Look over annuals \& consider which are easiest raised. Werner looking glass? 7$11 \mathrm{~m}, 10-11 \mathrm{~m} / \mathrm{w}$ (a) 14-20m,15-18m, wb Make Hybrids under red glass. $2389-10 m, 22-36 m$, 23-36m 239 15-16m, 24-26m, 29-32m 376 5$10 \mathrm{~m}, 17-22 \mathrm{~m} 3784-19 \mathrm{~m}$ 379. 27-32m

HUNTER，John Essays and observations on natural history，anatomy，physiology，psychology and geology and
OWEN，Richard The introductory lectures on the Hunterian collection of fossil remains 2 vols．；London；John Van Voorst； 1861 ［CUL］ beh，cs，ct，em，he，phy，sx，tm，v，wd
vol． 1 NB Add to Hubers case－p． 50 Wasps recognizing each other like by ants
Expression 144 Relation of lapping \＆ sucking with form of lips，so as to expose teeth
185 Oxen compared to Cows \＆Bulls of same breeds with respect to neuter males〈line across page〉
Sexual character
－p185 $\rightarrow 236$ Castration of Bull，short curled Hair on face
－ 194 Zebra painted for Ass－very good
245 On split Lizards tail will form 2 tails Pangenesis
267 Expression
Hunter remarks p． 194 male more eager than female p194｜｜＂she requires being courted＂ to give her desires．＂
p236 Description of Eunuch
xiii $3-14 m, 17 m, 34-40 m \times v 8 m, 9-13 m, 24$ $30 m 451-3 m 5027-33 m 1442-14 m 18524$ $29 \mathrm{~m} / \mathrm{w}$ Oxen of Black Cattle larger than male \＆female $42 u$＂and lnot＂ 194 18－20m，22－27m， 28－30m 236 1－12m，14－23m，26u＂his 1 curved＂ 245 20－24m 267 31－32m
8
vol． 2 NB p． 2 Negro small extremities \＆ Head
p． 135 Musk Deer has ruminant stomach in embryological condition
322 Geese crossed with wild
461 Humble－bees 6 or 8 different sizes in Workers
2 20－35m 3 1－7m，14－19m 135 35－38m
HUNTER，John Memoranda on vegetation London；Taylor \＆Francis； 1860 ［CUL，I］ phy
NB 1 proof that＊shoot in same line with trunk does receive more sap than laterals；〈also w by FD〉
117－19m
HUNTER，John The natural history of the human teeth London；J．Johnson； 1778 ［Down， Robert Darwin］

HUOT，Jean Jacques Nicolas Atlas complet du précis de la géographie universelle de Malte－ Brun Paris；Aimé André； 1837 ［Down，ED］

HUSSEY，Mrs Thomas John Illustrations of British mycology London；Reeve，Benham \＆ Reeve； 1849 ［Botany School，S］
HUTCHINSON，W．N．Dog breaking 2nd edn；London；John Murray； 1850 ［CUL，S］ beh，pat，sp，v
NB 24 line on page \＆rather narrower lines Sir B．Brodie
SB1 1β
39 Pointer which not taught wo move round to opposite side of thicket \underline{Q}
46 Retriever killing one Bird to bring other \mathbb{Q} 111 Dog running straight to bring anything dropped \＆not on trail
144 Puppy pointing by self \underline{Q}
279 Different breeds of Dogs more liable to distemper Q
Hutchinson on Dog
SB2 33；39；46；111；143； 279
9 25－26m 33 23－25m，26－28m 39 25－28m 46 $8 u$＂two partridges＂$/ 12-17 \mathrm{~m} /$＂．．．＂， $19-23 \mathrm{~m} /$ 21cॄ／21－22＂．．．＂，1－26w Colquhoon Moor \＆ Lock－exactly parallel case 48 7－12［．．．］，17－ 23［．．．］，wb 231 words 111 10－25m 143 19－ $24 m, 27-31 m 1445-6 m, 10-12 m, 14-16 m 279$ 27－31m，40m

HUTH，Alfred Henry The marriage of near kin London；J．\＆A．Churchill； 1875 ［CUL］ beh，cc，phy，ta，v
SB Ch．VI； 285 with respect to pigs attributes the result to fat．＊； 297 M．Legrain； 302 Reference to Journal
$861-9 m, 7-10 m / 8 u$＂relative ages＂ $1383-6 m$ （Darwin） 142 23－31w animals have no such horror $143 \quad 25-32 m \quad 146 \quad 25-26 w$ oh $152 \quad 20-$ $23 m 15728-31 m 27220-22 w$ began with 300 sheep $24-28 m \quad 274 \quad 17-23 m / 22 u \quad$＂signl degeneration＂ 278 21－32m 280 18－22m 281 13－ $17 m \quad 282 \quad 4-22 m \quad 283 \quad 5-8 m \quad 284 \quad 22-34 w$ differences in different animals like difference of withstanding changed conditions 285 25－ 31m 286 7－15m 291 5－10m 295 1－15m 299 1－ $6 \mathrm{~m} / \mathrm{w} 3$ generations of Brothers \＆sisters 7－ $20 m, 19-22 m 3003-4 m / 3 u$＂fifth generation＂， $27 m / x$ ， $31 u$＂paired＂ $3011-2 m, 14-16 m 3023 u$ ＂sixth＂，7－14m 305 14－18m 307 18－21m 312 23－28m

HUTTON，Thomas The chronology of creation；or，geology and scripture reconciled Calcutta；W．Thacker \＆Co．； 1850 ［CUL］ gd，h，sh
NB 202．
SB1 $\square \beta$
202 case of Shell，which can bear heats of

HUTTON
plain \& ascends above $10,000 \mathrm{ft}$ of Himalaya SB2 202; 408; 407; 410; 413
$202 \quad 25-27 \mathrm{~m} / \mathrm{Q} \quad 407 \quad 6-11 m \quad 408 \quad 1-4 \mathrm{~m} / \mathrm{w}$ antiquity of man $4101-5 m 41310-13 m$

HUXLEY, Thomas Henry American addresses
London; Macmillan; 1877 [Down] \wp
HUXLEY, Thomas Henry The crayfish London; C. Kegan Paul \& Co.; 1880 [Down, I]

gd

NB Good facts in last chapter on Geographical Distribution - Japan \& S Hemisphere \&c \&c
8 1-2m 10 14-15m $1718 m 19$ 21-24m $209-$ $10 \mathrm{~m}, 23-24 \mathrm{~m} 227-9 \mathrm{~m} 3117-18 \mathrm{~m} 3226-27 \mathrm{~m}$ 33 13-14m $357-12 m 3610-12 m 394-6 m 43$ 8-9m, 10-12m $7117 u$ "fibrous tissue" 99 3$8 \mathrm{~m}, 11 \mathrm{a} / \mathrm{c} \neq 12 \mathrm{c} \neq /^{\prime \prime} .$.

HUXLEY, Thomas Henry Critiques and addresses London; Macmillan \& Co,; 1873 [CUL, I]
t
NB1 $\langle b y$ FD \rangle
NB2 287 Material \& formal morality Used
HUXLEY, Thomas Henry Critiques and addresses London; Macmillan \& Co.; 1873 [Down, ED, I to ED]

HUXLEY, Thomas Henry Evidence as to man's place in nature London; Williams \& Norgate; 1863 [CUL, I]
af, beh, em, h, pat, phy, sp, sx, t, tm, v, y
NB \& p. 65 Diameter of H. Ovum
74-73 ribs; p. 110 Owen's quotation
SB1 23 specific characters which man-likes
have in common
24 affinities
27? 26 when possible (Dutch)
X 38 Expression
Boston Journal Nat. Hist. vol IV \& 1867 (he means 1847) Dr Savage (p. 211 Huxley 46 do.)
$\times 48$ Expression picking up 50
49 Polygamous
65 to 119
Look at all scores before writing about man
137 Correlation of frontal sinuses \& strong muscles
144 good reference (p.46)
153

- Reduction of Wise-tooth

SB2 Man $3443 *{ }_{*}$

Species th 40 variability in skulls of * Orang
Read Lubbock - Wallace - Lyell - Prichard - Pickering - LoringO

21 32-36m 23 21-35m/25u "their 1 than" $248 u$ "possess callosities", $10-12 m$, $14 u$ "intol excrescences", 27-30m $261 m 27$ 9-12m/w masculine chants $13-14 m 3315-20 \mathrm{~m} 341-$ $3 m / 1-2 u, 4-7 m 3516-21 m, 27-32 m 3812-$ $13 \mathrm{~m} / \mathrm{w}$ The expressive face of young Orang 32-37m 39 17-19m, 21-24m, 27 m 40 17-22m/ 22-28m/14-28w important as bearing on causes of difference in Man $4132-34 m 43$ 19-21m/w warts? $33-36 m 448-9 m, 15-17 m$ $453-6 m, 30-31 m 461-4 m, 35-36 m$, $w b$ On Chimpanzee p. 21 48 $18-21 \mathrm{~m} / 19-20 u \leftrightarrow, 20-$ $26 \mathrm{~m}, 26-30 \mathrm{~m} / 27 \mathrm{w}$ Expressions $4920 \mathrm{~m} / \mathrm{u}$ "the lsex"/w Polygamous 21-23m/w sexual selection $505 u$ "a yell", 8-12m $527-9 m$, 13$14 m 5916-23 m 6519-29 m, 34-36 m 6719-$ $22 m 70$ 9-12m/1-11w Key-note of Book 2628m/w Africa 74 31-35m $774-7 m 814-7 m 84$ 1-7m, 10-15m 90 25-28m $914 u$ "tol deep", $6 u$ "as 1 man", $18-20 \mathrm{~m}, 19 u$ "alfoot", 29-32m 92 13-16m, fig.w fig. $20931-2 m, 3-7 m, 14-17 m$ $946-9 m, 12-16 m 9511-15 m 1021-6 m 103$ 14-17m $104 \mathrm{zb} 20-25 \mathrm{~m}, 27-32 \mathrm{~m}, \mathrm{zb} 106$ 11$16 m 109$ 18-23m 110 16-19m, 28-37m, 28-30u "conceivel growth", 31u "or 1 degree" 111 1-4m 119 2-7m 137 6-29m $14435-36 m 15313-36 m$, wb Skulls in some races fixed in others variable - Rutimeyer wrong about Orang brachycephalic

HUXLEY, Thomas Henry Hume London; Macmillan \& Co.; 1879 [Down]

HUXLEY, Thomas Henry An introduction to the classification of animals London; John Churchill \& Sons; 1869 [CUL, I]
em, h, phy, rd, sp, sy, t, tm
NB Sp Theory
p. 53 Natural system?

65 - Digit in Fishes
73 Mammary Glands
77 to 85 on Classes
87 Class of Mammalia
93 Placenta - 99
class of 99 Man * Primates
6 wba $5332 u$ "rudimentary" $/ w$ nascent 65 4-8m 73 21-23m 77 25u "Articulata", 26u "Arthropoda" 78 13-14m/13u "Annulosa" 81 $8 u$ "Echinodermatal scolecida", $18-21 \mathrm{~m} / 19 \mathrm{u}$ "Annuloida" 85 29-30wa, 29m, 30-31m/w \& 87 15-18m 88 13-15m 89 1-4m 93 1-10m 994 $10 \mathrm{~m}, 17-19 \mathrm{~m} / 18 \mathrm{u} \leftrightarrow$

HUXLEY, Thomas Henry Our knowledge of the causes of the phenomena of organic nature 6 vols; London; Robert Hardwicke; 1862 [CUL]
00, tm
vol. 1 title page $5-12 m 1619-20 z, 29-32 z 20$ $19 m, 21-26 m / 22 u$ "limits"
vol. 2 NF \langle not $C D\rangle$
3825 m 48 lm
vol. 4 NB Phil 1813
vol. 5 NB1 Fan-tail have tail \& feather fixed in relating points; 111 too strong; 113; 122 very good on Relations of all Beings in struggle of life
NB2 122
$11127-31 m 1138-9 m / 9 u$ "absolutely|one" 115 $2 m 1222-32 m$
vol. 6, $1431 x / u$ "Sanscrit" $1518 m / w$ <not CD), $28 m$

HUXLEY, Thomas Henry Lay sermons, addresses and reviews London; Macmillan \& Co.; 1870 [Down, S]
NB O/
〈other marks by FD>
HUXLEY, Thomas Henry Lectures on the elements of comparative anatomy London; John Churchill \& Sons; 1864 [CUL]
af, fg, phy, tm
NB $15 ; 19 ; 62 ; 69 ; 72$; Character of Fishes Birds; $288\langle b y$ FD ; 140, 143 visceral arches; Have read the last Ch. p. 298
SB \Leftrightarrow
15 Sponges true sexual Process
19 Infusoria do
62,64 Fishes \& Amphibia hardly distinguishable - (good case telling how unlike say a Frog \& Salmon.-)
69 Birds are aberrant Reptiles.
70 Hiatus between Birds \& Mammals.
72 Mammae extreme modification of sebaceous glands-
298 Result on homology of skull compared with Vertebrae
15 29-33m/29w Sponges $194-7 m, 10-12 m 62$ $26-37 m$ 63 1-36m 64 8-16m 69 9-12m 70 35$37 m 72$ 11-15m 75 29-30m/29u "Arthropoda" $7618 u \leftrightarrow 819 u *$ "Coelenterata" $808-13 \mathrm{~m} /$ w Molluscoids $31 u$ "Molluscoida" 140 11$21 m 2891-3 m / 1 c / w \notin / 3 c / w \notin 2982-7 m$

HUXLEY, Thomas Henry A manual of the anatomy of invertebrated animals London; J. \& A. Churchill; 1877 [Down, I, S, FD]

HUXLEY, Thomas Henry A manual of the anatomy of the vertebrated animals London; J. \& A. Churchill; 1871 [CUL, I, S] fo, ig, tm
NB $p 174 ; 248 ; 375 ; 387 ; 461 ; 469 ; 482$; $484 ; 486 ; 491$; excelent abstract of the Anatomy of Apes
SB \propto_{0}
174 gradation in characters of Vertebrata of Amphibians in amphicoelus nature
375 Intermediate types, Hippotamidae
387 Toxodon show how impossible to construct animal from parts of skeleton
461 on outer \& upper incisors some falling out in certain Lemurs - Others permanently have only 2.
76 2-4m 79 zb 115 30-36z 174 22-28m 248 $36-38 m 375$ 32-38m 387 16-25m 409 32-36m 461 35-37m 469 1-3m/3a "Cynomorpha"/wt all - $4827-14 m 48437-39 m 48630-37 m 487$ $18-21 m, 27-37 m 49130-31 m 492$ 12-16m

HUXLEY, Thomas Henry The oceanic hydrozoa London; The Ray Society; 1858 [Down]
NB O/
HUXLEY, Thomas Henry On our knowledge of the causes of the phenomena of organic nature London; Robert Hardwicke; 1863 [Down, $\mathrm{FD}]$

HUXLEY, Thomas Henry Physiography London; Macmillan \& Co.; 1877 [Down] geo
NB 10 variation of compass
10 17-20m
HUXLEY, Thomas Henry Science and culture, and other essays London; Macmillan \& Co.; 1881 [Down]

HUXLEY, Thomas Henry and MARTIN, H.N. A course of practical instruction on elementary biology London; Macmillan \& Co.; 1875 [Botany School, FD]

HYATT, Alpheus The genesis of the Tertiary species of Planorbis at Sceinheim Boston; Boston Society of Natural History; 1880 [Down, I]

INGERSOLL，Ernest The history and present condition of the fishery industries：the oyster industry Washington；Government Printing Office； 1881 ［Down］

L＇INSTITUT：Sciences mathématiques，physiques et naturelles 2 vols．，1ère section； 1837 and 1840 ［CUL］\wp
cc，cs，fg，fo，gd，geo，gr，ig，mi，no，sp，y
vol． 1 SF Paper Boards in volumes； L＇Institut \＆Year on Back
$\mathrm{SB} \square \beta$
255 〈he means 253）Mammales of W．Indies－ a Sorex in Cuba \＆Rodents
285 Blocks of Granite in S．Shetland－proof of S ．Continent
149 wt Humboldt wt Andesite Mexican albitic Trachyte 156a $17-25 \mathrm{~m} \alpha_{0}$ ，17－20m 173 wtes Edwards on Corallines 192b 3－13man 205b 26－38m（Lartet），39－54m 206a 6－17m 243a 2－70m 243b 4－62m（Buffon，Lartet）247b 47－59m 248a 66－71mo 253 wb Cuvier says genus Capromys confined to Cuba West Indies Gervais．253b $20-40 \mathrm{~m}<\mathrm{s} / 34-39 \mathrm{~m}$ 273 wto＜names of various metallic salts found in mines 279 wt Blocks transported on Shetland 283b 35－43m／＂．．．＂297b 51－54m 315 wt $319 \quad 320$ Brongniart fossil vegetation 319b 16－22m 320a $63-69 \mathrm{~m} /$ ？320b $44-51 m$ 321a 8－20m 330b 46－53m＊／48－55m （Ehrenberg）331a $50-62 \mathrm{~m} / 51-61 \mathrm{~m}$ 346a 39－46m， $53 u$＂beaucouplarrondis＂，61u ＂radeaux｜glace＂， $62 u$＂des \mid d＇eau＂ $\mid w$ of facts？ 68－71m，wbo surely a local circumstance 346b 11－15m 367b 27－52m 369 wt Analogy of Molluses with Vertebrata $371 \mathrm{~b} 9 \mathrm{~m} / \mathrm{u}$ ＂centripète＂$/$ ？374a 22－62m 405a＠10－25m 417b 47－70m 418a 1－38m＊
vol． 2 SB 221 Cross of Cerf \＆Axis
274 Bees in Nova Zembla Baer
345 Isopod Crustacea 800 young
408 Prevost has crossed two Ranae，but not toad
49 wt 53 53b 21－31m 57 wt 5884 wt 87 87a 32－35m 101 wt p106 106b 介28－26m，$\uparrow 21-23 m$ 133 wt p137 137a 10－14m／14u＊＂13＂，30－ $32 m$ 143b 40－42m 149 wt p154 \＆ 151 151a 19－22m（Kirschleger）154a 3－6m 157 wt 159 159a 介14－5m 165 wt 169 169b $\quad 11-20 m$ （Wesmael） 173 wt 175 175a $\uparrow m 181$ wt Read 189 wt 193 misprint V．189b 3－4m，8－9m，14－ $16 \mathrm{~m}, 22-24 \mathrm{~m}, 24-26 \mathrm{w}$ just like Plot 29－33m， 35－39m 193b 39－41m 205 wt 207， 211 207a $49-54 m, 62-67 \mathrm{~m} 211 \mathrm{~b} 62-67 \mathrm{~m} 213 \mathrm{wt}, 218$ Geology 218a 33－41m 221 wt p221 221a 43－ $44 m$ 221b 1－3m／3u＂zoologie générale＂（I． Geoffroy） 229 wt 232 232a $28-29 m, 32-35 m$ ，

49－50m，54－57m 233b 16－21m 237 wt 242 Geology 240 242a 4－11m／5u＂lel servant＂ 255 wt 256 256a 13－14m／u＂parlgermes＂ 269 wt 271， 272271 wb Nylgerres？？step to S. Hemisphere wbo I suppose Nylgerries vegetation is analogous to Cordillera according to Humboldt－European genera， species all different geographically （considering revolution in climate）Mountains of Caraccas，further than with European，like the of 271a 59－66m 271b 5－11m，30－50w West indies mountains in relation to Caraccas－Tierra del Fuego：is more connected 53－57m $272 w b$ No doubt M Martins papers on the vegetation of Alpine in Europe o－272a $37-39 m$ 272b $7-12 m$ 274a 34－36m／w Means of crossing plants wb Look in Index for former paper by M Baer on some plants not flowering 274b 9－15m，50－ $70 m$ 275a 10－16m 293 wt 293 293b 5－12m， 19－42m 301 wt p303，p306 303b 14－16m （Martins）／14－19w This author wrote in Bibliotheque Genève 20－23w 2d paper abstracted in L＇Institut 306b 15－18m，27－30m， $47-51 m, 54-47 m, 58-60 m 313$ wt 316 316a $63-68 m$ 321 wt 321 321a $33-37 m$ 322a 42－ $45 m / 43 u$＂nonlPhoque＂，62－65m 329 wt 336 336a 23－27m 345 wt p345 345a 23－25m 381 wt 381 381b 42－43m 389 wt 392， 394 392a 58－60m 394a 58－60m $405 w t$ p408 408a 14－ 17 m
§
437 wt 444 444b 35－58m，61－62m，65－69m
INTERNATIONAL HORTICULTURAL EX－ HIBITION and botanical congress London； Truscott，Son \＆Simmons； 1866 ［Down］ 114 35－39m 115 28－32m 117 30－31m

IRMISCH，Thilo Beiträge zur Biologie und Morphologie der Orchideen Leipzig；Amrosius Abel； 1853 ［CUL］
fg，00，phy，tm
SA＜not CD；pp．78－9；tr of part of fn；then：）
（Compare A Brogniart＇s treatise on these plants ety - ）that however Brown＇s opinion （in which Brogniart agrees with him） according to which the fruitful stamens of Cypriped belong to a different whirl，than does the Stamirodium，
〈over〉
is the one，in accordance with nature－the history of development also most clearly shows．
NB 25．Birds nest not parasite； 78 View of Anther in Cypripedium； 55 Epipogum
vii $39 \mathrm{~m}, 40 \mathrm{~m}$ viii $14 \mathrm{~m}, 26 \mathrm{~m}, 27 \mathrm{~m}, 39 \mathrm{~m} 2223 \mathrm{w}$ R 2536 w not parasite $556-9 m 7844-46 m$

JAEGER，Gustav Die Darwin＇sche Theorie und ihre Stellung zur Moral und Religion Stuttgart；Hoffmann； 1869 ［Linnean Society of London，I］

JAEGER，Gustav Die Darwin＇sche Theorie und ihre Stellung zu Moral und Religion Stuttgart；Julius Hoffmann；n．d．［CUL］
ad，beh，cs，no，oo，sx，v
$\mathrm{SB}\langle$ following from $p .63\rangle \mathrm{X}$ old Black rat with Aegyptian parent，the colour was not originally black－Now the Hanoverian Rat occasionally produce a blue－black var \＆it is said this var is rapidly increasing－so that he believes will sooner or later supplant the common brown var．－This he attributes to much greater difficulty in Cats seeing the black var．in the dark in Houses．－
NF p86 Crossed marked Pig 〈this book only 64pp）
$145-20 m 1620-22 m$＊ $1818-27 m 193-29 m$ 20 3－29m 21 14－26m 39 8－15m（M．Wagner） $\begin{array}{llllll}55 & 4-27 m & 56 & 1-25 m & 58 & 9-23 m / 12-21 w\end{array}$ Measured legs \＆neck of Flamingos \＆P． very variable the long－legged being the more numerous． $23-25 m 59$ 1－13m／w The male chosen or favoured by the female $13-26 \mathrm{~m} / \mathrm{w}$ J ；who has had not much experience with animals，＊states that he has observed a male silver pheasant which＊had been victorious，had been chosen by the female， had its ornamental plumage spoiled \＆＊ immediately his rival got the upper hand \＆ led the flock． $6022-27 m 6324-27 \mathrm{~m} / \mathrm{w} \mathrm{m}_{\mathrm{o}}$ From comparison of $X \rightarrow\langle$ rest on $S B\rangle$

JAEGER，Gustav In Sachen Darwin＇s insbesondere contra Wigand Stuttgart；E． Schweizerbart； 1874 ［CUL］
ad ，beh，br，cc，ch，cs，dv，em，hl，in，mhp， oo，r，sl，sp，ss，sx，tm，ud，v，wd
NB 106 Climbers；243－244 Expression SB1 $\square \Re \subset$
p． 4 to 16 on ammonites \＆c changing in successive strata \＆on variability
p．29．variations which were perpetuated without selection
p．33－39 causes why fruit \＆flowers not made very large by nature，as under cultivation
40．Selection cannot act on embryo，in relation to environment
48．explains how use increases a part．
52．thinks insects feeding on a new kind of plant，wd gain a new odour \＆wd then not cross with other individuals

69 Eggs of silkmoth vary in resisting cold
70．Several pigeons killed by Hawks all white or yellow vars．
86 Higher form can adapt Characters \＆ range further？？
90．In all divergence there is always advance or retrogradation of organisation
114 nictitating membrane a necessary constituent of Eyelids
SB2 〈an apparently unrelated fragment〉
SB3 \rightarrow
on account of view of constant（old）forms \＆ variable forms considers dom．plants \＆©．－ The grainO a fixed form，but many allies－ The－fixed very isolated－Plants wd be best－Is any cultivated \＆variable plant monotypic？
\Leftrightarrow
p69
p102 good nectar
All marked
p243 Expression
p106 Climbers
〈over〉 Many marks；p38
SB4
p． 115 on use of skeleton of Vertebrates its ground－plan．－
p．130－134 Sexual S．use of barb of fishes as exciting organs．
176 to 183 Each new modification necessarily throws back the embryological stages，unless whole evolution is longer－ （not so with insects）
$423-28 m 51-3 m, 1-23 w$ it is a mistake to assume all species variable－Yet domestic $20-24 m, 28-30 \mathrm{~m}, 34-36 \mathrm{~m} 8 \mathrm{23-26m} / 25-26 u$ ＂nämlich variirende＂ $931 \mathrm{~m}, 33-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ It may be no selection alsoO $w b$ if all species varied equally all wd be in confusion $105-$ $16 \mathrm{~m} / 7-21 \mathrm{w}$ very false calculations．number of species wd not arise Case like RussiaO 11 $29-36 \mathrm{~m} / \mathrm{w} 2$ periods 1）of plasticity \＆2） invariant 12 wt It is strange all animalsO shd have lost their flexibility at same time $5 u$ ＂Biegsamkeit＂$/ w$ flexibility $14 m, 18-21 \mathrm{~m} / 18-$ $36 w$ if long exposed to same conditions form hardens \＆loses plasticity－how came it so many domestic forms vary．29－30u＂sondern 1 Art＂$/ m, w b$ variation makes the form new \＆ vigorous．This is like effects of crossing（a） $1312-15 \mathrm{~m} / \mathrm{w}$（a） $14 w t$ This is proof that the variable forms have given rise to many species．1－4m $158-14 m, 20 \mathrm{~m}, 26-30 \mathrm{~m} / \mathrm{w}$（a） $w b$（a）Yet Terebratulae very old \＆yet very variable：so Foraminifera $174 m 297-9 w$ without selection $15-18 \mathrm{~m} / \mathrm{w}$ with selection 30 3－12m／？ $3322 u$＂Stiefmütterchen＂ $11-22 w$ Not

JAEGER，CONTRA WIGAND
good soil for many generations－often start from too large fruits－Pang $3425 m 3815-$ $21 m, 27-30 \mathrm{~m} / 24-36 \mathrm{w}$ no naturalist could improve variability in characters not possessed by the forms $394-7 m / 1-5 w / w t$ To make gigantic gooseberry like gourd tissue would have to be allowed \＆roots for supply $406-11 \mathrm{~m} / \mathrm{w}$ cannot act on embryo before Birth relation to external conditions $484 m$ ， 32－35m 49 1－8m／3－5w blood increases in 33－ $36 m \quad 52$ 12－20m／13－24w odour of mint probably easily changed，$\&$ thus wd not pair with old stock． $5329 m 6920-26 m / w$ Eggs varied in their resistance to cold． $7013-17 \mathrm{~m} /$ w struggle between nestlings \＆Caterpillar $21 w$（a）$w b$（a）found several pigeons killed by Hawks \＆all were white or yellow vars！！ $8627-36 m / 14-36 w$ Higher forms can range further can adapt themselves more？ 87 8－ $12 \mathrm{~m} / \mathrm{w}$ extermination only when（？） $885 \mathrm{~m} / 1-$ $8 w$ ．On progressive development $906-9 m$ 921 m 9918 m 102 fw \＆protected from rain \＆evaporation \＆stored for use－\＆saving of Honey from other preyers $22-27 m 1031-5 m$ ， $19-22 m / w$ to decrease number of visiting insects very good $10422-31 m / 8-29 w$ Thinks visitation by insects searching for pollen might cause secretion of Honey－ 106 24－ $28 m / 1-29 w$ Plants growing in shade have thin stems－a character of climbing plants－ no movement of Axes by wind $10710-14 \mathrm{~m} /$ $7-28 w$ Fruits stronger leaves support the plant $1149 m, 18-19 u$＂nothwendigel Augenlider＂， $17-21 \mathrm{~m} / \mathrm{w}$ The nictitating membrane a necessary constituent of Eyelids 115 24－31m／w thinks I am wrong 117 $26-26 m / 29 w$（a）$w b$ Roaring to disturb prey \＆ then to track them？？\＆so with Rattlesnake $13017-24 m 13114-23 m 1331 m, 4-8 m / 7-9 u$ ， $8-30 w$ Thinks males are sacrificed to protect female for good of species？？？32－36m 134 $8-29 w$ Brillian male butterflies decorated to save females，whilst laying？？？ 16323 m 176 wt With each new change－process of evolution necessary thrown backwards－not so with insects $3-11 m, 22-25 m 1831-7 m 190$ $24 m \quad 218$ 10－12m 240 13－18m／w Instinct of Dogs to scratch backwards variable 242 1－ $11 \mathrm{~m} / 2-3 w$ Expression 244 wt good criticism－ an habitual movement implies nervous force －I ought to say nervous force independently of any use $3-4 m, 35 m 24518-19 z$ ， $23 m 246$ $2-27 w$ accuses me of confusing Reflex \＆ partO－voluntary movements 250 17－26m 251 10－19m

JAEGER，Gustav Lehrbuch der allgemeinen Zoologie 2 vols．；Leipzig；1871－78［Down］ 80

JAEGER，Gustav Seuchenfestigkeit und Constitutionskraft Leipzig；Ernst Günther； 1878 ［Down，I］\wp

JAEGER，Gustav Seuchenfestigkeit und Constitutionskraft Leipzig；Ernst Günther； 1878 ［CUL］\wp

JAEGER，Gustav Zoologische Briefe Wien； Wilhelm Braumüller； 1876 ［Down］\wp

JAMES，Constantin $D u$ Darwinisme ou l＇homme－singe Paris；E．Plon \＆Cie．； 1877 ［Down］
$\mathrm{NBO} /$
8
JAMESON，Robert Manual of mineralogy Edinburgh；Archibald Constable \＆Co．； 1821 ［CUL，pre－B，S］
che，geo，mi，se
NF1 Charles Darwin Esq．MD，FRS， ASS？？Member of the Royal Medical Society of Edinburgh Honorary Member of the Royal Plinian Society
NF2 Tusus＊Contrarius Ceriltrum Giganteum
〈u＝mainly colours of rocks etc＞4 $10 w$ is this emitted from the Trap Rocks near Edinburgh $618 w$ is found in the oldest primitive rocks $1022-27 w$ Owes its deliquesance to the Lime \＆Magnesia Blue \＆Red colours are owing to the Iron $1117 w$ Rock salt has never been found in Scotland 177 w Sub Sulphate of Alumina $23 \quad 7-8 w$ Easily distinguished from Marble by yielding to the Nail $w b$ Easily mistaken for Satin Spar but can be distinguished by its softness 28 10－ $11 w$ melts like lce Before the blowpipe $36 u$ ＂rare／w very 29 wt All Alum is not prepared from this Mineral $29 w$ Always associated with Volcanic Rocks $31 u, 35 u$ ，wb＊Fluor－called so from being used as a flux 30．19－20［．．．］， 19－26w False Topaz（\＆according to their respective colour are called false gems．） 31 $10 w$ Chlorophane $321 w$ Phosphate of Alumina wb Phosphate of Lime was formerly thought to belong solely to the Animal Kingdom：\＆after that，it was thought to be an animal formation $34 w b^{*}$ First discovered in Arragon 35 6－18z 〈drawings of crystals〉，wb Fragments of Arragonite will scratch Calcareous Spar． $363 u, 29 u, 30-31 z 372 w$ Iceland Spar 38 20－21w Never contains organic remains 39 wt A block of Statuary Marble values 200－4－11w while marble equal to the Sarian is found in small pieces
in Sutherland $4034 m, w b$ The Break-Water at Plymouth is composed of this rock; \& therefore is much attacked by the Pholas. 41 wt Sometimes this limestone contains fragments of shells such as the Nautilus \&c, \& gives rise to a very beautiful appearance.it is called Fire-Marble 20 w Is supposed by some to be of volcanic origin $21^{*}, w b$ * It is disputed whether this mineral is caused by fusion; or by fragments of a broken strata ejected by the Crater $4218 \mathrm{~m} / \mathrm{z}$, 19-21w Formation of distinct concretions $29 w$ occurs only in Secondary rocks $w b^{*}$ Is only found in very small quantities in Scotland; but is found in great quantity in England 44 1-4w The Flint only occurs in 3 upper deposits $9 w$ The newest of the Secondary Rocks $11 u$, $19 w$ Extends from Flamborough Head down to Sidmouth $20^{*}, 20-21 w$ so-called because it is found emitting through rocks So called from Agaric $453-4 u / w$ in Salisbury Craigs $11-12 w$ does not yield to the Nail.- $31 w$ is continually forming $46 \quad 7-9 w$ generally diverging $32^{*} 4724 w^{*}$ Nearly all Rome is built of a compact Variety of this Mineral 28 30z, 31-33w Formation of the Concretions 48 $31^{*}, w b$ * Easily know by its pearly lustre 49 $24-26 w$ * So called from Lucullus a Roman Consul who proved these sorts of Marble $33 u$ "fetid" $/ w b$ Owing to Sulphurs Hydrogen $w b$ * If the variegated specimen be immersed in weak Muriatic Acid The limestone is dissolved, but the animal matter remains.- $5022 w$ Owes its colours to bituminous matter $26 w$ Often globular 51 19$27 z 52 w b$: It is Carb. of Lime with Alumina \& Silica met with in the Coal Series $5417 w$ also accompanied with Copper Pyrites is called Copper Slate $20-23 w$ Owes its dark colour \& bad smell to animal matter $55 w t$ Extends for a very great distance in Europe \& varies extremely in thickness $5 w$ Magnesian limestone 13-14w Called so from Dolumin a celebrated French Geologist 22$25 w$ is harder \& heavier than limestone 30 w sometimes it is slightly flexible 31-32u $567 u$, $16^{*}, 18 w$ Only occurs in Secondary Rocks wb * The Cathedral Walls of the City of York are built with this mineral $5711 u 5816 u 5916 u$ $6227-28 u 6314-15 w$ The Damascus Steel is supposed from this mineral $29 u$ 70 $1-3 m$, $28 w$ from Dr. Withering $7130 w 2$ also in Shropshire 72 20-21w Something similar to Porcelain Earth easily distinguished by its great Sp. Grav. is called Cawks $7411 w$ is of most common occurrence 77 wb Calcareous. Fluor. Heavy. Spar. often occur together 78 14-18w Alestone looks like some varieties of

Quartz. but of course much softer called so because the first kind that was described was of a blue colour $w b$ (The term Sparry is nearly synonymous to Foliated) $824^{*}, 34$ $35 u, w b$ * Occurs most abundantly in the upper parts of the vein $883 w$ has lately been met with in Brazil 4* 89 wt * Have not I a specimen of this in my Cabinet? wb (Nearly all these Lead Spars are daily forming: thus Spades \&c have been found coated with Carb: of Lead) $9817 w$ Carb: of Copper $1064 w$ to shine $14 w$ Arceniate of Copper $20 u, w b^{*}$ By a late Analysis appears to be Phosphate of Alumina $1077 w$ * Phosphate of Uranium 108 5-9c 114 4-7z 115 $17 w \times$ Phospate of Iron Vivianite $x / z b 1181 u$, $2 u, w b$ Occurs in isolated irregular pieces in different strata.- $1195 w$ Talc is derived from a Japan word meaning Tallow $12 u, 13 u, 18 w$〈Greek〉, $25 u, 26 u$ 120 9-14w Nearly always contains Magnetic Iron Ore $1214-9 w$ often accompanies \& is intermixed with Shockcrystal $24 a / w$ dark copperish $12214 w$ in Calton Hill Arthur Seat Pentland Hills when heated changes into a red which is used as a pigment $26 u / w$ pearly $35 u$, $36 u 123 w t$ Crayons are prepared from produced Talc mixed with the various colouring matters $17 w$ The Chines ornament their walls with ground Talc $w b$ (Rouge is made by extracting the colouring matter from Saffron by Carb. of Potash praecipitated by Acetic Ac. * sediment is well mixed up with powdered Talc) $1242-3 w$ made into Culinary Vessels 12-13w Used for coating Furnaces in Norway $1265 w$ \& in by - Shropshire 127 10u, 14 $15 w$ Case 2nd of the Museum begins here $32 u \quad 128 \quad 18-21 w$ occurs sometimes associated with Volcanic Rocks $35 w^{*}$ from its scaly structure $w b$ very beautiful $1295 w$ rather unfrequent $26 u / w \times$ Foliated Structure $1307 w$ lustre inclining to Metallic $1313 u, 28^{*}$, $w b$ * looks like Bronze 132 15u, 30u/30-31w Copper colour $13312 u, 16 w$ occurs as a constituent of Greenstone $13416 u 13511 u / w$ colouring matter 32-33m 136 20-24w Called so from a Dutch officer who first discovered it in the Cape of Good Hope $\uparrow 6 x / w b \times$ generally botryoid \& internally diverging 138 $17 u, 28 w$ rests upon Calcareous Spar in drusy Cavities $13931 u 1415 u, 6 u / 6-10 w$ named White Garnet generally assuming the form of Garnets $12 u 1422 u /^{*}, 4-6 w$ * The lava generally contains a good deal of Soda. whereas the leucite contains only Potash $22 u 14334-36 w$ The crystals are generally twin placed cross-wise $14712-15 z, 12 u, 16 u$ 148 wb (Supposed Zeolites to be formed by

JAMESON, MINERALOGY
infiltration) $1534 w$ Warellite. Appendix II P333. 9u/w Signifies a Rock $15413 w$ from the mountain Adula 1566 w appears to have suffered heat $22 w$ One of the most abundant minerals in the Crust of the Earth $1579 u$, $26-27 w$ contains Soda not like the other Felspars, Potash wb Potash was first detected in the Mineral Kingdom in the Lepidolite $1581-2 m / 16 w$ this perhaps ought to be a distinct species $1593-5 w$ Salisbury Craigs * the White variety $1601 u, 2-5 w$ Braid Hills Pentland Hill There must be some 100000 tons of Soda in this rock $23 w$ is met with in the centre of solid granite \& deep in mines 161 28-29w For the process of making Porcelain see Jameson's System. $1653 w$ from shining $8-9 w$ The green colour in the secondary rocks of Edinburgh is caused by augite $21 u, 34-35 \mathrm{~m} / \mathrm{w}$ colours owing 167 11$12 w$ from Coccus a grain $17025 u / w$ blended in other rocks Refers to its toughness 28 29w contains much less Magnesia than Augite $1726 u, 7 w$ from occurring in Basalt $8 u, 20 w$ Arthurs Seat $27 u, 29 u 1742-3 w$ from a mountain in land $26 u / z 17521-22 w$ is composed of very minute crystals of White Hornblende $1764 w$ mountain leather $12 w$ Hornblende $30 u \quad 17730 w$ from Pistachio green $32 u$ "green" $17833 u 18022 u 1814 w$ Lapis Lazuli. App.II P.317.- 10 w from Andalusia in Spain $1826-7 w$ might perhaps used as a substitute for Emery from Saussure. 18-21w Case 3rd of the Museum begins here.- 183 wt * Spinel occurs by far most beautifully near Equator $9 w$ * Spinel Ruby $12 a, 24 u / w$ Colouring matter 32a/w The most beautiful specimens $w b$ (many gems are composed of Alumina) $w b$ * The most beautiful specimens was in possession of JosephineO $18427 u, 32 w$ is highly crystallized Alumina $1859 u, 27 u, 33-34 w$ must be distinguished from the Spinel is an uncrystallized Sapphire 1863 w Chiefly composed of Alumina $10-12 w$ may be supposed to connect Emery \& Sapphire 188 wt I think it not impossible that some time Diamond will be found to be a vegetable secretion $2 u, 3 u, 6 u 18915^{*} / w b$ * Said by some to have been the universal solvent 190 $\pi 11^{*} / w b$ * when polishing on the wheel it flies into pieces which the true Emerald does not $19129-30 \mathrm{~m} / 30 \mathrm{u} 19210^{*} / \mathrm{wb}$ * Beryl is well described by Pliny 193 3-9w is an old Saxon word expressing the disagreeable sound caused by the friction of two pieces of Quartz 194 14*, 17-18z, wb * it is Silica coloured with Iron Manganese $19511 w$ in its upper part $15-19 z, 33-34 w$ very rare in

Secondary \& Tertiary rocks $w b$ * in Specimens from Dauphigny have one very large acuminating plane the 5 others being almost evanescent 196 wt sometimes encrusted \& interspersed with Chlorite $8 u$, $10 w$ are distinguished from Topaz by inferior Sp. Grav. \& Hardness $12^{*}, 18 w$ never occurs crystallized $26 w$ Silica coloured by Manganese $w b$ * When put in dry places, exposed to the light looses in a few years looses its colour 197 wt X The massive variety is easily distinguished from all other minerals by its superior hardness $4-5 w$ A flexible variety occurs in Arthurs Seat $21 w$ from its light green colour.- $198 \pi 11^{*} / w b$ * Common Quartz impregnated with Iron 200 $2 w$ wood petrified with Hornstone wb (The Tick tree in Calcutta has been known to form a strong Mineral. like Woodstone) $2018 u / w$ owing to Bituminous matter $12 w$ is often traversed by veins of white Quartz $17^{*}, 18 w$ That variety which is free from veins is used for touchstone $w b$ * by comparing the streak of the pure gold, with that of the specimen essaying $202 w t$ is of rare occurrence in Scotland owing to the scarceness of Chalk $10-13 w$ The base of pudding of stone in quartz; the concretions flint $13 w$ from Calcedon in Asia Minor 16x, 18u/18-21w where blue is called Sapphirine by the Jewellers $w b \times$ The dendritic variety is called Mocha Stone from a place in India or from a German word signifying moss, this appearance is owing to Iron \& Manganese $2031 x / w t \mathrm{x}$ is mentioned by Pliny as a different mineral $4 u / w$ owing to Nickel $27 w$ from its colour $20414 u / 14-16 \mathrm{w}$ The green colour is owing to Green earth $25 w$ origin of name disputed $29 u l^{*} / w b$ * mentioned by Dr Clarke as occurring near Cairo in great plenty $2062 x / w t \times$ Clay long exposed to heat $14-15 w$ is Quartz combined with Alumina $\pi 4 x / z b / w b \times$ some varieties are called EyeStones 207 wb (All these Romboidal quartz when heated \& thrown into water, splits in direction of its cleavage) $20831 w$ is daily forming $2106 w$ (minute portions have been found in Scotland $30-31 w$ has lately been found in Mexico \& Faroe Islands 212 23-26w distinguished from Jasper by superior lustre $21310 w$ in New-Holland $18 w$ from Menil, a hill near Paris 214 23-24w from Obsidian a Roman 215 5-8m/w Colouring matter \& Carbonaceous matter $16 w$ often imbedded portions of Pearl-stone $25 w$ from its resinous appearance $25 x / w b \times$ black colour owing to Carbonaceous matter $2163 w$ in Arran 218 $7 w$ the crystals resemble the head of an axe
$21926 u, 33^{*} / w b$ * Is Chrysolite in a less perfect form. 220 wt Meteoric Iron often contains a mineral like Chrysolite or Olivine - $12 w$ near Edinburgh - Arthur Seat $13 w$ Borate of Megnesia 29 m , 36w always 221 $15 u / w$ Bubulite $w b$ (Boracic Acid is found in Salisbury Craigs) 222 11w occasionally contains a little Boracic Acid $18 w$ from a village in Saxony. $22427 w$ signifying a Gooseberry $22519 w$ from $\mu \varepsilon \lambda \alpha \sigma$ niger 226 $2^{*} / w t$ * From the different colours it undergoes under the blowpipe 227 wt Many of the Carbuncles of the ancients are garnets: the origin of the name signifying its shining in the dark is erroneous, this word sometimes refers to the Quartz \& Sapphire $2286-7 w$ from its beautiful red colour $18 u$, $25 w$ is called the Bohemian Garnet. 232 25*/ wb * not unlike Hyacinth distinguishes from yielding to the knife $2349 w$ from oxide of Titanium $23622 w$ Oxide of Copper $23830 w$ Oxide of Tin $240 w b$ Distinguished from Tin Ore by its stump being of reddish brown colour; Tin ore having a yellow grey colour 243 1*/wt Streaks yellowish 33w (Streaks a distinguishing character) $w b$ Occurs in Magnesian rocks. such as Talc \& Serpentine.- 244 5-6u, 10u/9-10w The magnetic property only occurs in rocks near the surface.- $31 w$ when pure, affords 70 per cent of Iron 24510 w in Salisbury Craigs 14 $15 u, 28 u, 32 u 246 w t$ (The Magnetic Iron Ore occurs in greater plenty in the North. The Specular in the South) $17-19 w$ occurs in plates in the crevices of Volcanic Rocks. as. Vesuvius $19^{*} / w b$ * distinguished from Mica by the rigidity of the Plates $25018 w$ Hydrate of Iron $18^{*} / w b$ * Makes better Steell than the two former varieties $2547 * / w b$ * is well adapted for making cast Iron $8 w$ is daily forming in boggy places $26328 w$ Occurs in newer formations than the last.- 266 wt formed of crystals; in this mineral. by cubes $2 u, 13 w$ because when struck gives out sparkes $19 w$ Arsenuent of Nickel $2732 x / w t \mathrm{x}$ decays more rapidly than the other varieties $27418 u 275 w t$ does not afford sparks with steel $10 u 2802 w \times$ continues to be formed by aqueous means $289 \quad 24 u \quad 294 \quad 36 w$ associated with Native Arsenic 29529 w along with compact Gypsum 296 wt Every time volcano emits sulphur mostly in form of Vapour.- 298 wt (all the insects inclosed in amber are extinct.) \& different from those now alive $29922 w$ Pitchford \& Coal-Brook, Dale 300 wt The walls of Babylon were cemented by melted Mineral potash $6 u, 19 w$ Mineral Caoutchouck $30118 w$ the remains of
ancient trees.- 30210 w but must be mixed with some connecting matter $30331 w$ common Coal $3045 w$ the most common variety $w b$ Is of older formation than the Browne.- (was formed before Mammalia Aves Amphibia but there existed fishes \& shells) $3058-9 u, 29 x / w b \times$ little Bituminous matter 307 wb The Browne coals when burnt emit a very bad smell The Glance Coals never contain vegetables were formed before vegetables existed 317 14-19w Iron Pyrites is often disseminated in it is then mistaken for gold $23 w$ * Lapis Lazulis has been met with in Vesuvius wb Origin disputed. whether formed. or merely broken fragments.- $333 \quad 6-7 z \quad 337 \quad 22 u / w$ not homogeneous $338 \quad 34-37 z, w b$ a basis including crystals $3395-8 z, 9-11 w$ a basis containing cavities or other foreign substances of an amygdaloidal form 29-30w vid: the secondary rocks of Arthur Seat 32$35 z, w b$ * the grains joined without basis or cement. 340 10-12z, 13-15w A Slaty B Granular 17-21z, 19-20u, 25w of rarer occurrence $26 u / w$ Base granular $31 u / w$ Base slaty $3412-5 z, 11 w$ of frequent occurrence in the Carlton Hill $\quad z b \quad 342 \quad 35^{*} / z b \quad 344 \quad w b$ (Hydrogen \& Nitrogen are emitted in greater quantities in some Volcanic countries) 346 $16-25 z / 25 w$ Hornblende $26 w$ Felspar Syenite wb (Felspar is distinguished from Quartz by its inferior hardness, yielding to knife) 361 $15 w$ These four rocks generally cccur in the order here placed minute scales of Mica 365 $25 w$ according to the formation or is this state of crystallization $36928 w$ so called from its resemblance to the colouring of Serpents- 370 wt a mixture of Marble with Serpentine is called Verde Antique.- wb Magnesia occurs in the greatest quantity in the newer Primitive Rocks as Serpentine 371 29-30w perhaps ought to be considered a variety of pormilica Greenstone $3775 w$ is clayslate with imbedded fragments $6-10 \mathrm{z} 382$ $w b 1$ Old Red Sandstone 2 Mountain Limestone 3 Bed Conglomerate 4 Magnesia Limestone 5 New Red Sandstone 6 Shell Limestone 7 3rd Sandstone formation 8 Oolite 9 (Sand Clay Marl.) Chalk Marl 10 Chalk formation $38310 w 1384 \mathrm{wb}$ It is disputed that this rock is of the primitive series $38533 u 3864 u, 17^{*} / w b$ * Sometimes contains Iron Pyrites, which from its decomposing entirely unfits for building 387 $w t \times$ The Trap in this formation is composed of Augite \& Felspar 10u/x 392 29w $73941 w$ $915 w 339613 w 73985 w 935 w 1039913 w$ $114053 w$ an earthy greenstone $410 w b$
whole substance is removed \& merely a cast remains sometimes it percolated with some Fossil matter \& then it is named petrified.. 504 7-11m, zb 505 whole page.z 506 whole page.z

JAMESON, Robert A treatise on the external, chemical and physical characters of minerals Edinburgh; Archibald Constable \& Co.; 1816 [CUL, on B, S C. Darwin Feb 13th 1826]

JARROLD, Thomas Anthropologia: or, dissertations on the form and colour of man London; Cadell \& Davies; 1808 [CUL, pre-B]
h, tm
NB p.87, 90, 110, 115, 116; 191, 192 freckles; 216 grey eye formerly more common
$3213 c 3315 a 8728-33 m 9015-20 m 9116-$ $18 m 11020-24 m 11520-24 m 11610-14 m 190$ 32-36m 191 1-4m, 24-27m 192 28-32m 216 $10-19 \mathrm{~m}$

JEFFREYS, Gwyn, and CARPENTER, William Benjamin The 'Valorous' expedition London; Taylor \& Francis; 1876 [Down, I]
NB O/
JENYNS, Leonard Memoir of the Rev. John Stevens Henslow London; John Van Voorst; 1862 [Down, I]
$5323 m /] /[\ldots . .5444 \ldots] / w$ В $5-17[\ldots], 18 m /[\ldots 55$ $7 w$ B 7-9[...]

JENYNS, Leonard Observations in meteorology London; John Van Voorst; 1858 [Down, I] \wp
JENYNS, Leonard Observations in natural history London; John Van Voorst; 1846 [CUL, I]
beh, em, ex, gd, h, mn, no, oo, tm, v, wd, y
SB1
Introduction good writing
Squirrel eating little galls
Variation
Like your remarks on givens - on statistics
p. 162 Martins (1)
210. Cyt \& some Carabus
p313 Mem breaking leg
p315 Planaria (land species)
Barometer Brit. Assoc.es
〈over〉 38; 51 to 60; 76; 100; 108 \&c; 114; 131; 137; 147; 150; 162; 168; 188; 210; 221; 216; 266; 278; 290 Arachnidae do not undergo any such metamorphosis; 318; 321; 324

SB2 38 Birds using NQ material at hand \& adapting nest to situation
54 One cat rejoicing in Bat, another indifferent to it Ch.6.
Polecat devouring Eels p. 55 some parallel facts. Rooks p. 150 feeding on Fish p147 on Eggs
78 Rabbits with incisors grown very long Monstrosities Ch 5
100 Pheasant betraying place of roost \underline{Q} by screaming (mistake of instinct) * Hen Clucking on Egg
107 On destruction of Rooks \& Sparrows \& yet no diminution Ch. 5
114 Destruction does not fall on very young Birds Ch. 5
137 Abnormal NQ nest of long-tailed tit.
162 Caged Birds carrying bits of thread \& stick in Beak Qa
168 Increase of turtle Doves since 1823.
212 Abnormal Gold Fishes
278 Flies hatched in gentlemans intestines.
318 On sudden great increase in Water Shells. Ch. 5
321 Ransome case of cistern with molluscs
324 On difference in habits in closely allied Pisidiums.
38 31-32m/32u "Bolton's Harmonia" 51 18$23 m 549-11 m, 26-27 m 5519-21 m 5629 m 60$ 1-3m/2u "rare" 64 18-19m 76 18-20m 100 911 m 107 17-21m $1081-12 m, 16-19 m 1093-$ $8 m, 13-23 m, 24-25 m, 26-31 m$ (Wagner) 110 29-32m 114 26-30m 115 5-18m, 23-27m, 28$30 \rightarrow 1168-13 m 1172-3 m, 6-7 m 1313-5 m / w$ V. p. 134134 7-9m, 19-20m $137 \quad 15-18 \mathrm{~m} / \mathrm{w}$ unusual? 147 14-17m, $23-27 \mathrm{~m} 15010-12 \mathrm{~m}$ 162 2-9m/Q 163 7-19m 168 6-12m 187 19$26 m 210$ 24-26m 211 11-12m, 15-19m, 32m 212 1-8m 213 1-9m, 17-22m, 30-32m 216 16$19 m 21724-25 m 2213-7 m 266$ 12-15m 267 15-16m 278 15-16m 279 $25-27 \mathrm{~m} 29021-23 \mathrm{~m}$ 318 8-12m 319 9-11m, 21-22m 321 13-17m 324 4-7m
$\langle p .329$ ff., markings presumed not by CD \rangle
JEVONS, W. Stanley Elementary lessons in logic London; Macmillan \& Co.; 1881 [Down]

JOHNSON, Samuel A dictionary of the English language london; C. \& J. Rivington; 1826 [CUL, pre-B]

JOHNSON, Samuel W. How crops grow London; Macmillan \& Co.; 1869 [Down, FD]
JOHNSTON, George The natural history of the eastern borders: vol. 1 botany London; John Van Voorst; 1853 [Down]

JONES, John Matthew The naturalist in Bermuda London; Reeves \& Turner; 1859 [CUL]
beh, cc, fg, gd, geo, is, mg, mm, oo, sp, ta, tm, wd
SB $\square \beta, \infty_{0}$
Jones' Bermuda
ix Sea-Birds tame on discovery of Isd x Hogs run wild \& swarmed p.1. 3 mice p12 At discovery 1609 no rats \& mice 12 to 16 to On migrations of Bats occasional (like Birds)
27 to 84 Migrations of Birds (p174 Blank season)
30 European Lark killed in Bermuda! p45 Land-Rail do
43 variation in tail-feathers in Snipes
67 case of wanderers of same species as resident
70 case of enormous migrations 72 do
76 probable rate of flight in Plover during migrations $30-35$ miles per hour
98 Scincus no Batrachians
115 Honey-bee perhaps Apis caffra
121 Only 3 nocturnal Lepidoptera
133 Antigua Orange-trees all destroyed by coccus p. 117 Ants very destructive to Rabbit Poultry
172 Imported poultry all die
190 Sapindus saponaria not growing in foreign Gardens, raised from sea-drifted seeds.- - Gulf Stream occasionally wanders from course \& brings timbers to Bermuda
191 At Azores trees torn up by roots \& 2 dead were washed ashore (See Bate)

SB2 ${ }^{*}$

ix; x in 1609; 11,2 Bats; 12; 27 to 38; Read to 66 to end; p190
No peculiar Birds; good
Audubons flight across Bays cutting off distance explains case.-
vii $4-6 m$ ix $23-26 m \times 4-7 m$ 11 $5 u$ "exception 1 domestic" $/ 5-7 m \quad 12$ 11-14m, 19$22 \mathrm{~m}, 26 \mathrm{u}$, 27-31m 13 9-13m, 17-18m, 26$31 m 154-6 m, 12-15 m, 18-21 m, 28-30 m 16$ 20-22m 27 4-8m, 24-27m 28 25-30m 29 3-9m, $8-11 \mathrm{~m} 3010-15 \mathrm{~m} 3317-20 \mathrm{~m}, 23-26 \mathrm{~m} 34$ 1028 m 35 14-18m $3622-26 m 4122-25 m$, 27$29 m \quad 42 \quad 9-13 m \quad 43 \quad 4-5 m, 12-15 m / w \quad \mathrm{~S}$. BrobsiniO 44 1-4m, 7-10m, 19-26m 45 714m, 19-22m 46 29-31m 62 27-30m 65 5-7m $66 \quad 28-31 m \quad 67$ 2-7m, 10-14m, 17-20m/18w imitation $22 u$ "flock" ?, 25-29m/26x 6814 $16 \mathrm{~m}, 19-20 \mathrm{~m}, 24-26 \mathrm{~m} 694-7 \mathrm{~m}, ~ 24-28 \mathrm{~m} 703-$ $6 m 725-8 m, 15-19 m 734-9 m 7427-31 m 75$ $22-25 m, \quad 29-31 m \quad 76 \quad 15-16 m, 30-31 \mathrm{~m} / 31 u$ "moderate 1 thirty" 77 8-9m 80 17-21m 81 22-

JONES
$23 m / w$ go to Jamaica $8230-31 m 8412-17 m$ $986-8 m, 25-26 m 1151-4 m 117$ 7－10m 121 $20-21 m 13320-26 m 17216-28 m$ 174 2－8m $1904-6 m, 9 u$＂pine timber＂， $11 u$＂mahogany＂， 29－31m $1914-8 m$

JOURNAL OF A HORTICULTURAL TOUR through some parts of Flanders，Holland and the north of France in the autumn of 1817 Edinburgh；Bell \＆Bradfute；1823；London； Longman，Hurst，Rees，Orme \＆Brown ［CUL］
ch，fg，he，hy，spo，ta，v
NB 25，48，84；67，8；107；134－；178；185； 193，5；205；293，5；308；328；331；363；419； 423；459；470，72；495，6； 538 Don on Elms SB $\square \beta$
107 Purple Beech Hereditary
185 out of 1000 seedlings $1 / 2$ dozen good Hyacinths \＆Tulips is reckoned good
196 on the rearing of Tulips，certain whole classes have come a certain Breeder，I may say even in most sportive plants，more hereditariness than generally supposed
293 Brussels Sprout has been true for 400 years 295 a sub－var rendered true
459 Paradise \＆Doucin original dwarf vars of Apples
495 The varin Lilac Hybrid between common \＆Persian
25 7－13m 48 12－16m 67 3－7m／wt Weeping Cherry mentioned before 68 13－16m 84 13－ $15 m 107$ 介9－6m 134 介15－10m 178 介5－3m 185介15－13m 193 介16m／u＂J．B．Sickler＂ 195 2－4m／ $u \pm, \Uparrow 2 m / u$＂Al explained＂ $1961-3 m, 8-13 m$ ， 15－17u士，18－21m，介11－5m 205 10－15m 293 $\Uparrow 12-11 m 295 \Uparrow 15-13 m, \Uparrow 4-1 \mathrm{~m} / \uparrow 4 u$＂only｜ most＂ 308 介11－10m $3095-10 \mathrm{~m}$ ，$\uparrow 15-12 \mathrm{~m} / \Uparrow 13-$ $12 u$＂provinglbad＂ $328 \pi 6-4 m / \Uparrow 6 u \quad$＂P．I Corsica＂ $331 \uparrow 10 \mathrm{~m} / \mathrm{wb}$ will here probably treat of change of seed $3631-2 m 419$ 介12－2m／ $\Uparrow 12 u$＂Salix \mid revolutis＂ 423 1－3m，6－8m 459 $\Uparrow 6-3 m, \Uparrow 2-1 m 470 \Uparrow 2-1 m 4724-5 m, 14-15 m$ ， $\Uparrow 7-6 \mathrm{~m} / \mathrm{u}$＂seventy＂，$\uparrow 2-1 \mathrm{~m} 4736 \mathrm{~m} / \mathrm{u}$＂ 130 ＂， $\Uparrow 7 m / u$＂forty＂ 495 介2－1m 496 10－12m 538 10－ 17 m

JOUVENCEL，Paul de Genèse selon la science． La Vie Paris；Garnier Frères； 1859 ［CUL］ he，hl，hy
NB 99 highness \＆lowness；p283－see Isidore Polydactylism Two cases of mules given with polydactyl Hoof－can this be reversion？
Isidore Geoffroy $1 / 691$ gives several cases
－in pure Horse－so facts nothing
99 20－23m 283 20－27m

JUAN Y SANTACILLA，Jorge and ULLOA， Antonio de A voyage to South America trans． John Adams，4th edn；London；John Stockdale \＆c．； 1806 ［CUL，vol． 1 only，on B， I by FitzRoy］
beh，gd， 00
NB 9－20
\bigcirc Journal 17.1826
〈untranscribed w apparently not $C D$ 〉
iii $11 u$＂is 1 remain＂vi $w b c c 217 m 24 \propto 6-7 m$ $25<2 m 26 \Leftrightarrow 17 m, 27 m 27<23 m, 35 m 28$ 25－33w $294 m, 12-13 m, 15-16 m, 31 m 30<0$ $6 m 31$ \＆ $9 m 32 \otimes_{4} 4-5 m 33 \Leftrightarrow 20 m 35 \Leftrightarrow_{6}$ $7 \mathrm{~m}, 17-18 \mathrm{~m} 36<\mathrm{m}, 13-14 \mathrm{~m}, 17-18 \mathrm{~m} 39$ $9 m, 27 m 40 \Leftrightarrow 23-26 m 445-17 w 5217-21 m$ ， 31－32m 53 14－16m 54 14－18m 55 6－8m，9－ $11 m, 17-18 m 561-2 m 5716-33 w 5835-36 m$ $59 \quad 1-23 m \quad 60 \quad 31-36 m \quad 61 \quad 1-5 m, 14-29 m / w$ snakes in Jamaica $621-21 m 631-6 m, 9-18 m$ 64 23－25w Jigger Chigoe $6524 m$ ，$w b$ exaggeration of pain caused by insect sting in Carthagena 66 14－24w $67 \quad 24-37 m 6810-$ $24 m 6919 m 715-9 m$ ，$w b$ Thinks mistake They have only one crop in year $7211 m$ ， $26 w$ Pineapple $744 m, 7-30 m$ ，$w b$ Some description as to planting and mode of gathering is necessary $7713-18 m 92$ 26－ $27 \mathrm{~m} / \mathrm{w}, 28 u$＂The lirregular＂，30－32w 97 17w $12327 \mathrm{~m}, 28-30 \mathrm{~m} 132 \mathrm{19w}-255 \mathrm{wtcc} 277 \rrbracket_{0}$ 29－39m 278 2－34m，26－27m

JUDD，John Wesley Volcanoes London；C． Kegan Paul； 1881 ［Down，I］
se，ve
NB Volcanoes along coasts，greatest pressure Fissures due to general elevation

JUKES，Joseph Beete General report of the geological survey of Newfoundland London， 1843 ［CUL．1900］［I］
geo
NB p． 130 cleavage
143 Boulders
145 rest on clay \＆c
130 介6－2m 143 10－14m 145 5－9m
JUKES，Joseph Beete The student＇s manual of geology Edinburgh；Adam \＆Charles Black； 1857 ［CUL］
fo，gd，geo，hl，ir，sp，t，ti，tm
NB p160 to 165
SB \square ロ
p160 to 165 on interruptions to Deposition
177 on length of time of Deposit
254 good remark on Denudation
275 Denudation－some very ancient
antiquity world
317 Littorina bright colours in Tropics dark in north
321 - generic areas inexplicable
387 on breaks in resurgence of fossils \& formations
388 foundations not strictly contemporaneous before \&c
389 law of succession same at all times 390
391 imperfection of record
393 Higher groups as well as species more limited in time
395 - one fossil in extreme Arctic Regions
399 do $x \rightarrow\langle$ to 388\rangle

- 489 to 503; 565

489 breaks in 3 stages of Purbeck
503 Breaks in succession $\rightarrow\langle$ to 399\rangle
565 on antiquity of world
160 23-27m 161 18-21m 162 35-40m (Emmon) $1638-13 m, 23-25 m \quad 164 \quad 19-23 m, 26-29 m$, $27-39 m, 30-39 m, 10-39 w$ This is strongly supported p167, 168 by small area of most beds 165 11-14m, 27-32m 177 30-35m 254 $13-24 m 27516-24 m 317 \quad 26-38 m 321 \quad 21-25 m$ 387 1-4m, 15-20m $388 \quad 36-45 m \quad 389 \quad 26-30 m$ 390 31-35m $39123-26 m, 37-40 m$ (Owen) 393 $10-19 m 39531-38 m 3994-12 m 489 \quad 29-34 m$ $5031-10 m 5658-18 m, 21-30 m$

JUKES, Joseph Beete The student's manual of geology Edinburgh; Adam \& Charles Black; 1862 [Down, I]

NB 414; 402
Begin \& read at p425
414 22-29m, 29-31m 415 40-44m (Owen) 416 14-29m 444 fig.w Crust Plant Pol

JUKES, Joseph Beete, DE LA BECHE, Henry, SMITH, Warington W. and HUNT, Robert Record of the School of Mines vol. 1, part 2; London; Longman, Brown, Green \& Longmans; 1853 [Down, I by Jukes] \wp

KASPARY, Joachim Natural laws; or the infallible criterion London; J.A. Brook \& Co.; 1876 [Down, I]

KATER, Henry, and LARDNER, Dionysus Mechanics (Lardner's Cabinet cyclopaedia) London; Longman, Rees, Orme, Brown \& Green; 1830 [CUL, on B]
NF 〈lists of volumes in Lardner's Cabinet cyclopaedia>

KEIR, James Sketch of the life of James Keir London; R.E. Taylor (printed for private circulation); 1859 [Down, I by editor]

KERNER, Anton Joseph Die Cultur der Alpenpflanzen Innsbruck; Verlag der Wagner'schen Universität; 1864 [CUL] gd, sp, 00, v

NB $\mathrm{p} 2, \mathrm{p} 20$ laws of variation
p42 - On slips \& other situations; Alpine plants long hold their places of lower land p52 - species which are swamp plants on the plains, not so higher up p139 feeding of Alpine plants \underline{Q}
vii $4-8 m, 19-22 m$ viii $7-15 m$ ix $18-24 m 211-$ $18 m, 19-27 m 2017-22 m 4221-31 m / 5-30 w$ On slips \&c alpine plants hold their place occupancy $5211-12 m, 23-29 m / 13-32 w$ are swamp plants on plains \& not so on mountains.-139 5-10m

KERNER, Anton Joseph Flowers and their unbidden guests trans. W. Ogle, with a prefatory letter by Charles Darwin; London; C. Kegan Paul \& Co.; 1878 [CUL, S]
ad, che, phy
NB Use of every Part - 6
p. 136 Oxalate of Lime discharged from edges of leaves
p141 * adaptation never a direct one
SB $\square \beta$

* / How can this be reconciled with the facts
as they stand in the case of polygonum amphibiani?
$611-21 m 720-26 m 12921 x, w b$ pollen flower 136 1-5m 141 19-25m
8
KEY, Axel, and RETZIUS, Gustaf Studien in der Anatomie des Nervensystems und des Bindegewes 2 vols.; Stockholm; CentralTryckeriet; 1875-1876 [Down, I by Retzius]

KIDD, William The canary London; Groombridge \& Sons; n.d. [CUL]
tm, y

KIDD
NB $p 10$
SB \quad Q 18 Prize canaries have black wings \& tails only till 1st month
$1020-23 m 1214-18 m 1331 m 147-9 m 188-$ 15m/11-12Q/16-18Q 19-22m, 23-25Q 25-27m/ $25 u$ "Albirds"

DAS KIND: Tagebuch eines Vaters 2nd edn; Leipzig; H. Hartung \& Sohn; 1876 [CUL, I] beh, y
NB 7 knowing; 121 blushing; 147 one year old; 68,9 6 months
$72-3 m 8910 m 12126-27 m / 27 u$ "Sie|roth"
KIRBY, William Monographia apum angliae 2 vols.; Ipswich; J. Raw; 1802 [CUL, pre-B] beh, oo, sp, sx, v
vol. $1 \mathrm{NB} Q \mathrm{Q} .47$ has been stung by Ichneumon; p200 males \& females of Bees; p.4; p.204; p. 40 palpi * differing in one genus
$40 \quad 13-16 m \quad 47 \quad 3-5 m \quad 200 \quad 21-30 m / 24 u$ "females" $\mid 25 u$ "neuters" 204 22-27m
vol. 2, $38715 \mathrm{~m} / \mathrm{w}$ read $3887-8 \mathrm{~m}$ plates z
KIRBY, William and SPENCE, William An introduction to entomology 3rd edn, vol. 1 (1818); 2nd edn, vol. 2 (1818); 1st edn, vols 3 \& 4 (1826); London; Longman, Hurst, Rees, Orme \& Brown [CUL, pre-B]
ad, beh, br, cc, che, fg, he, hl, ig, in, mg, mhp, no, oo, phy, rd, sl, sp, sx, t, ta, tm, ud, v, y
vol. 1 NB1 Reaumur's work ought to be read
Are there any instances serving the parent itself which come into play, after period of propagation, connected with death, making a place to die in - such as cats going into holes, because these cannot be acquired by habits \& then transmitted, they must be consequences of some previous habit wasps killing their young in autumn at first appear so, but then perhaps some of the old murderous wasps survive.- As neuters are sometimes converted into Queens \& then breed my argument * against instinct arising from habit, is not perfect.- are neuters of ants ever converted? The instincts of neuters, probably same with those of females of same species anciently
NB2 136; 148; 153; 166; 171; 176; 179; 192, 194, 199, 201, 203**, 4, 9; 230; 270; 272; 293 to 98 insect impregn; 322; 332; 336; 357; $361 ; 371$ to $4 ; 76$ to $82 ; 386 ; 390$; 399; 402; 435; 442; 448; 459; 472; 474; 476; 78; 492; 98; 500; 505

NB3 496 on manner in which Bees form their cells
p293 Capital references about all Plants which catch insects
SB1 ${ }^{-1}$
165 There are in Hives Bees called corsairs idlers Q
179 Seed of Clover Crops almost destroyed by Apions.
192 Cucumbers not injured by insects in England but much in America
203, 230 on artificial substances - p386 390; Cases of foreign fruits in England \& America injured by insects, so changes in Habit
203 - Nectarine destroyed by insects in America \& not Peach - selection wd act on a trifle Ch. 6.
357 Q good relation ichneumon with long ovipositor laying eggs in larvae in fir-cone
371 Q Female ant first takes charge of nest (but I presume is never soldier \&c)
274 Q Mother wasps, several in nest take charge of young
380 Q Humble Bees
382 Case of reason in Bees Q
391 Q When insect has fed on one sort of plant will die rather than change \underline{Q}
435 Q Ant-Lion \& Fly making same sort of trap for catching prey.
459, 461 Q Q Remarkable instincts 474
478 NQ Caterpillars social in early stages remarkable fact
492. Musc \& wax making Bees - former do secrete little Honey - (ant which secretes sweet juice in Westwood
to 504 Q Bees. Nothing particular for me in Instincts
SB2 $\square \Re$ Vol I
p382 * Bees supporting comb till pillars built

- W. White about snail pulling them at L' (ie at right-angles \rangle to extract themselves
- p391 about changes of food Q*
- p435 Ant-Lion \& Fly same sort of trap Cuckoo \& Molothus
459-461 Tineae cutting leaves to Pattern
- \star_{0} Sentence about comb each part depending on what has gone before
380 Workers destroying eggs of Queen Humbles, Spider
$13625-26 m$, wb We can thus see how Oestrus acquired instinct of depositing eggs to be licked up. 148 9-11m, $10-13 \mathrm{~m} / \mathrm{w}$ What use is to Coleopters? $153 \quad 20-22 m 1653-5 m$ 166 29-31m 171 $26-28 m, 29-31 m / 30 u \leftrightarrow 176$ 26-28m 179 6-17m/7ua/9u. "purple"/13u^/14u
"Dutch|clover" 192 27-28m 194 4-6m/m 196 19-21m 199 2-11m/3u "some |Germany"/1011u "fortunately|us"/6w Why 201 12-13m/13u "1787", 21-22u "tolstreet" 202 14-16m/14$15 u$ "arel empire" $203 w t$ change of instincts $4-5 u$ "which | fruit $" 3-8 w$ curious considering not aboriginal fruits $11-14 m / 14 u$ "fruit \mid unripe", $17-22 \mathrm{~m}, 30-32 \mathrm{~m} / \mathrm{w}$ yet only varieties $20422-28 \mathrm{~m} / 23 u$ "date 1 the" 209 14-15m 230 $1-6 m, 7-10 m 25510-18 m \quad 270$ 12-18m, 2227 m 272 3-7m 293 14-18m (Barton), 22-30m, $31-33 \mathrm{~m} 29418-20 \mathrm{~m}, 25-32 \mathrm{~m} / 27 u$ "rich 1 soil" 295 1-7m, 28-30m 296 15-27m 297 4-23m 298 $9-10 \mathrm{~m}, 30-33 \mathrm{~m} 2999-12 \mathrm{~m}, 26 \mathrm{~m}, 28-31 \mathrm{~m} / 29 \mathrm{u}$ "Mordellae" $32122 u$ "perennial knawel", $23 u$ "in I country" 332 1-3m, 27m, 29-30m 333 3$13 \mathrm{~m}, 32 \mathrm{~m}$ (Humboldt \& Bonpland) $3361-3 \mathrm{~m}$ 337 6-10m 357 12-20m 361 4-6m, 14-16m 371 $27-29 m 372$ 9-10m 374 14-16m 376 19-22m, 20-21m $37814 m 3797 x, 8 u$ "drones 1 workers", $16 x 3801-4 \mathrm{~m}, 8-11 \mathrm{~m}, 9-15 \mathrm{~m} / 9-10 \mathrm{u}$ "mayl bounds", $15-17 w$ useless instinct $w b$. This instinct coming into play, only $3826-9 \mathrm{~m}, 12-$ $13 m, 19-23 m, 22-24 m 38616-17 m, 18 w \mathrm{~V}$. p. $390390 \quad 2 u$ "the lpurpose", 1-3!, 1-6m (Réaumur), 5-6m, 23m, 25m 391 6-9m/"..."/ $7 c \notin, 18-19 m 39918-19 \mathrm{~m} / \mathrm{w}$ useless 402 11$16 m 4352-4 m / 2-11 w$ very singular not inherited from same parent stock 442 15-19m $448 \quad 25-32 \mathrm{~m}$ 452 $10-17 \mathrm{~m} / 16-17 u \leftrightarrow, 27-31 \mathrm{~m}$ 453 10-15m, 21-23m 454 30-31m 455 15-19m, $21 u$ "flowers", $22-25 \mathrm{~m} / 24 u$ "flowers" 456 9$11 m, 10-16 m / 10 u$ "A. Pini" 459 20-27m/21$22 w \vee 464461$ 1-4m 472 8-13m 474 6-9m $4763-5 m, 7-24 m 47813-14 m / 12-17 w$ This is remarkable contrast with parents instincts 485 4-6m 486 1-2m 487 6-8m 491 5-6m, 10$11 m 492$ 10-11X/11-16m, wb X The Humbles who make pillars of wax shows adaptation of instinct to circumstances 493 $2-4 m / w$ gradation $Q \notin, w b$ It is analogous to difference accompanying age or sex attached to something unknown - being produced contemporaneously is novelty 494 15-16X/4-28w Humbles all secrete a viscid fluid to unite various substances 49519 m , $22-25 m / 24 u \leftrightarrow 496 w t / 1-8 w$ Ants work by hollowing clay \& wood out, same principle V. ante $3-9 m, 10-17 m, 20-22 m 497$ 2-8m, 29$31 m 49816-22 m, 23-24 m, 24-27 m / 24 u$ "but 1 successive", $^{\prime} 25 \mathrm{~m}, 28-30 \mathrm{~m} 499$ 11-16m, 20-24m 29w Habit 30-32m 500 18-23m, 27-32m 501 $25-32 m 502 \quad 2-4 m \quad 503$ 12-14m 504 21-23m/ $22 u$ "thin 1 purpose", 31u "irregular|placed" 505 1-2u "connected \mid wax", $3 u$ "pale 1 bodies", 7 u "oral | might", $15-16 u$ "flattened I dimensions", $20-21 \mathrm{~m} / 20 \mathrm{u}$ "the I cells" $/ 21 \mathrm{u}$ "female", 26-31m, 28u "goblet-like", 29-31m, 30u
"chiefly", $32 m 5063-4 m, 5-6 m 50710 u$ "hexagonal" $5087 u$ "but \mid convex", $26-29 m 510$ 1-3m 512 25-26m, $29 m$
vol. 2 NB1 I think Kirby considers Bees converting * Neuters into female \& Ants taking prisoners, as the most wonderful instincts
NB2 p. 119 Bees boring holes, p. 523 references on ditto
Linn Trans Vol VI p222 Huber says he has seen large Humble bees try to enter "fêves" \& failing bite hole in corolla, whilst smaller Humbles entered the corolla - He has seen them bite the tubes of "l'ancolie" The seed * pods of the fêves were not injured.-
NB3 p395 Beetle Pneum
SB1 Kirby. Vol 2-
12; 22; 30 to $5 ; 51,58 ; 68$ to $100 ; 108$ to 119; 125 to 216; 220 to $241 ; 267 ; 288 ; 302$; 421; 459; 468 to end of Vol
SB2 1β
12 Q Emigrating insects not usually social makes case odder
31 Bees, Wasps \& Ants, one female lays foundation. How in Termites p35 they seem never to work \underline{Q} (Full account of Societies of Ants \& Bees \& c
35 Termites contend for the females
74 Q Each ant seemed to know its own fellow of nest - p. 80 Slave ants Bees \underline{Q}
231 Beetle living in Hot-bed \& standing Boiling water.
234 Beetles shamming death \underline{Q}
420 Showers of insects falling
471 Q Definition of instinct - 473 Q good remark on
476 NQ Substitution of one material for another
481 Q Instincts of same species different at two Seasons
492 Q instinct 496 good remarks on not reason - 507 good

511 wonderful Q

514 Reason Q

- A fertile worker is throwing Back.-
- My metaphor of hereditary piano-forte, ought to have been 1st hereditary spinet, simple \& grand piano-forte player. What wd good player do if in concert note stuck. If hereditary playing failed in tune, new tune wd be formed if new tune did imply several notes altered contemporary.
- Read all. with idea that originally many queens \& no workers - then few queens with workers \& lastly one queen.- \& that instincts in neuters retain traces of old instinct when made Queens

KIRBY \＆SPENCE
〈over〉 There is antagonism between an habitual action \＆reason－a person knitting meets some accident \＆reason comes into play－it is no argument that not reason because a person did not intend a perfect repair
SB2 $\square \mathfrak{R}$
Female spiders destroy Male
Vol 2．Kirby
12 Emigrating insects not social congregating like some Birds－\＆some birds congregate without emigrating－
35 workers of Termites Queen．－
－ 74 Each ant knows its own nest \＆males Do not go out till Workers Slaves are ready － 77 Slave makers are not allowed to go abroad till others have neuter pupae
－ 86 The Slave feed the Slave making Neuters－Do the Negros in their own nest feed Males or Queen ？？
〈over〉 2
p55 workers usually found to come back
－ 119 Hive Bees begging Honey from Humble．Means of new Instinct 207 Corsairs －148， 155 －Neuters keeping Queens prisoners－（may say endless strong instincts \＆then allude generally $-*$ Ch． 8 \＆no passage known few other Bees Known．－
161 Confused \＆mistaken instincts in Hive Bees
－ 194 Ventilating Hive
－ 234 shamming Death
－X 470 young Bees making comb perfectly
－ 471 good definition of Instinct
－（p．92．Migrations）
－ 473 Spiders Nets pitt－falls insects beat higher animals
－ 476 case of sensible adaptation of instinct of insects（Door of intelligence）487／495／
－（481 Marked variation at 2 times of year
－ 496 argues not reason
－513， 511 Perhaps old instinct retained
（Von Baer about organisation of Bee
－ 516 Really reason
－519 Ants in hot place not moving Pupae X
－ 525 Communication of Knowledge in Ants
－ 529 Swarm successive years
〈over；$>\underline{3}$
208－210 Astounding manoeuvre once in life 227 Variation in making Cocoons or home
277 Making exit for moth \＆thread to guide it 287 jaws given for this purpose to be used once
4 p31 Sedentary Spider turned Hunter
2／495 cells longer on one side of comb opposed to Waterhouse．－
2／187 Knight on artificial Propolis－
$1216-19 m / 18 u$＂swallows＂ 13 1－2m 22 24－ $31 m, 25-29 m 3030-32 m 3110-13 m, 17 m / 17-$ $18 u$＂ants llays＂ 32 17－18m／17u＾ $3317-18 m$ ， $21-22 m, 28-29 m / 28-29 u \leftrightarrow 342 m / u$＂four 1 female＂，6－9m，29－32m（Huber） 35 2－3u＂a！ get＂，3－5m，6－9m／＂．．．＂，10－14m，20－23m， 29 m 51 wt Probably nascent female never practices the work of a soldier ant－not has it same structure？any structure which profits its work in early days wd be selected．Ask F． Smith V．F．Smiths work on Ants $1 m, 3-8 w$ The jaws of soldiers must have been made by selection $4-6 m, 26-28 \mathrm{~m} / \mathrm{Q} / 27 u$＂toujours＂／ $28-29 u \leftrightarrow 531-3 m / 2 u$＂females \mid birds＂ $55 w t$ xx I can understand a neuter having any instinct which the female could have had， but no others cd have been acquired by habit $3 u \leftrightarrow / 1-4 m / 2-5 w$ origin of most instincts in neuters $\mathrm{xx} 7 \mathrm{~m}, 13-14 u$＂prudent linstinct＂／ 13－18w Neuters do not breed！How instinct acquired．19－21m，19－22m／20u＂workers＂，24－ $25 u$＂wholout＂， $29-30 \mathrm{~m} / \mathrm{u}$＂some I common＂$/ \mathrm{w} /$ $w b$ So one female may wish to determine others！ $582-6 m$（Huber and Gould） 68 16－ $17 \mathrm{~m} / \mathrm{u}$＂besides I bag＂／12－29w Many insects have reacting glands of anus for bad smells \＆c \＆we here see，used either as sting，or poured into wound． $27-30 m 695-7 m 707-$ $13 m 74$ 19－23m 75 5－6w Slaves 10－12m 76 21－24w Latreille confirms 27－31m（F．Smith） $777-10 \mathrm{~m}, 14 \mathrm{~m}, ~ 15 \mathrm{~m} / \mathrm{u} \leftrightarrow, 24-25 \mathrm{~m}, ~ 30-31 \mathrm{~m} / \mathrm{u}$ ＂linklMyrmica＂ 78 15－16m／15u＂composed neuters＂ 79 21－22m 80 28－29x／28－32w only fighting neuters $34-38 \mathrm{~m} / \mathrm{w}$ they have no neuters then？or many soldiers？？35－38m （Latreille），wb like Cuckoos with their eggs in other birds Nests $817 u \uparrow, 7 m / u$＂others purpose＂， $29 u$ a $836 m 851-2 w \times$ Smith sold Myrmica $3 x x$ ，13－14u＂Activel field＂ $13-17 w$ so these are neuters 17－18u＂Sol they＂， $21 u$ ＂will｜suffer＂ $\mid x x / X \geqslant / w$ impossible to explain 29x 86 22－26m $87 \quad 7-8 x$ ， $16 u$＂thel helpless＂／w gradation $18 \mathrm{~m}, 29 \mathrm{~m}, 30-32 \mathrm{~m} 88$ $5 m, 9-12 m, 15-16 u$＂It I character＂／12－16w for the Negroes dread the Robbers 27－28m 89 $25 \mathrm{~m} / 26 \mathrm{u}$＂alternately＂， $30 \mathrm{~m} / \mathrm{u}$＂that 1 cows＂ 90 3－5m，10m $913 m, 5-9 m, 10 x / u$＂withl pays＂， 20－21m，21x 92 9－11m，12－14m 93 18m． $10018-21 m 10815 m, 16-20 m, 27 m 10923 m$ ， $31 m 1101-2 m, 9 u$＂male＂， $9 u$＂than 1 female＂， $18-19 m, 26-27 m, 29-30 m \quad 11416 u$＂the I females＂ $114-16 \mathrm{w}$ Ask F．Smith $20 \mathrm{~m} / \mathrm{u}$＂in 1 resemble＂，23m，29－31m $11524-30 m 116$ 9－ $11 \mathrm{~m} / 9 \mathrm{u}$＂honey｜pollen＂ $10 u$＂males｜females＂／ $11 u$＂pure honey＂， 12 m ， $20 \mathrm{~m} 1172 m$ ＂between \mid workers＂， $5-7 \mathrm{~m}, 8-10 \mathrm{~m}, 11-12 \mathrm{~m} 118$ $10-11 m, 13-15 m, 24-25 m 1191-5 m, 6-7 m, 8-$ $27 \mathrm{~m} / 11-27 \mathrm{w}$ How new instincts cd arise 30 m ，
$32 m 1254 u$ "Two females", $10-11 u \leftrightarrow, 11-14 m$, $12 u$ "areloccurrence", $35 u$ "shorter" $/ w$ Queen $1261-2 m / u \leftrightarrow, 3 u$ "straighter maxillae", $4 u$ "not |theirs", $12-13 \mathrm{~m} / \mathrm{Q} / \mathrm{u} \leftrightarrow 1271 \mathrm{~m} 1281 \mathrm{~m}$, $2-3 m, 4 m, 5-8 m 12931-32 m 13110-12 m / 10-$ $11 u \leftrightarrow, 14 m$ "differently|mandibles", 17-18Q 20m, $21 u$ "curvelsting", $22 u$ "wax-pockets" $13225 m 136$ 13-21m 137 24-28m 139 12m, $14 u$ "thoselfour", $17 m 14014-23 m, 21-24 w$ acquired to injurious self $24-26 \mathrm{~m} / \mathrm{w}$ false instinct injurious 142 12-13Q $15 m 145 \quad 6 a$ "the" worker 22-23u "forlfortiori" $14712 m$ $1489-15 u \pm, 20 u$ "oflher", $w b$ it is difficult to believe the workers could have acquired these instincts when they were gender before their neutrality was gained. 151 $15 m, 16-24 w$ Maternal aversion !! how accustomed we are to maternal affection= 26-30m/30w p. $148 \quad 1527-11 \mathrm{~m} / 9 w$ p. 148153 $13-14 m 1556-10 \mathrm{~m} / 7-27 w \times 148$ in state of females, they could never have learnt so to respect \& value a female; this implies there being few females \& hence the neuters having their femality cod not acquire it. $11 \mathrm{~m} /$ $12-17 \mathrm{~m} / 13-19 w$ XX this might arise from mere social affection originally $20 u$ "pregnant state", $26-27 m / 27 u$ "enable", $29-31 m / 30 u$ "twenty|day", $32 m 1563-5 m / 3 u$ "sometimes", $8 u$ "atlto" 157 24-25m 158 1-4m 161 wt What are males fed on $1 \mathrm{~m} / u$ "laying \mid worker", $2 u$ "male cells", 5-6m, 6-7u "male ${ }^{2}$ ones", 7$9 m, 8-11$ "..." $/ 10-11 u$ "male ${ }^{\text {jelly" }} / 11 m$, $12 m$, 13-14m 162 26-31m 166 3-4m/w X p. 148168 3-5m, 8-10m $16912 \mathrm{~m} / \mathrm{u}$ "Herel defective", 15 m $17112 m 17216 m, 23 u$ "male|royal" 173 4 $5 m, 13-16 m / 14-15 u$ "result|drone" $1773 m / u$ "both|young" $17922 \mathrm{~m} 1805-7 \mathrm{~m}, 17-19 \mathrm{~m} 182$ 8-11m (Aristotle) $18324-28 \mathrm{~m} 18430-31 m 187$ 10-12m, 32u "Philos.l1807" 191 20-30m/28$29 u / 21-27 w$ shows not individual Knowledge $1924-5 m / w$ like Humbles $\times 1946-7 m 1955 u$ "workers", $10-11 m, 14 u$ "in files", $18 u$ "twenty", $24 u$ "retinas" 198 6-8m 207 17-19m 208 8-10m 215 26-31m 216 7-9m 220 5-8m, $21-23 m 223$ 18-24m 231 3-5m, 16-17m, 20u "hot dung" $20-21 m / w$ not by nature 24-25!/ $25 u$ "native station" $2336 u$ "orangelthorax", 8-9m, 12-14m 234 15-17m/16u "by|death", $19 u$ "which|dead" 235 8-9m, 18m, 19u "simulation 1 death", 22m, 23-24"..." 241 5-9m 267 10-32m $28826-29 m 3024-9 m / 4 u$ "рира" 303 6-10m $358 \quad 25-28 m 384$ 1-10m 385 14$18 m 387$ 15-19m 391 1-8m, 3u↔, 20-21u \leftrightarrow, $24 u$ "baselelytra", $27 u$ "would t heir" 395 1$4 m, 18-20 m 396$ 19-25m 399 3-6m 401 5-10m, 16-22m 407 3-13m 411 8-10m/9u "though1 light" 412 27-28m $4131 u$ "is winged", $20-21 m$ $415 \quad 18-22 m \quad 420 \quad 8-18 m \quad 421$ wt A, How
gradually acquired? $7-12 m / 7 w$ A $42420-28 m$ 459 16-20m 468 11-16m (Lamarck), 20-21m/?, $28 m / u$ " $i 1.325$ " 1 ? $4708-11 m, 13-22 m 47113 u$ "faculties", 14-16u "independent|view", 16a "without"|w necessarily or even generally 17-19m, 20-21u "whichlignorance" 472 9$14 m, 30-33 m$ (Germar) $47312-19 m, 14 \mathrm{~m} / 23 \mathrm{~m} /$ u "All"/14-16w Migrations Hatching eggs Bears HousesO 25-32m/28u "regular cities" "nets|artfully", $32 u$ "sheepllabour" "pit-fall" $4748 u, 27 u$ "never attempts", 27? $47521 u$ "variation laccommodation", $22 u$ "amongl numerous", 29-32m/29u "cowlhorse", 31-32u 476 1m, 5-9m/5u "bark"/6u "pieces 1 paper", $29-31 m / x / 31 u$ "span $\mid w e b$ ", wb X These seem to show that they do know end in view or rather what they work for $4777-8 \mathrm{~m} 479$ 2$6 m, 12-24 m, 29-30 u$ "requiring lonly" $48025-$ $31 m / 31 u$ "Bonnet" $4811-16 m / w$ See to this it wd appear as if the latter brood had acquired this instinct $32 u$ "Oeuvres, ix.370" $4831-4 m, 27-30 m / 28 u$ "lids lordinary" $4845-$ $11 m, 13-17 m 48530-32 m 48619 u$ "glass" 487 3-6m, 10-12m/11w good $26-30 m 488$ 9-12m/ $10 u$ "propolis m mixture" 492 15-16m, wb compare them to bricklayer born with consummate art - \& provided with actual instruments 493 18-20m/19u "would|less", $20-27 m 49511-32 m / 20 u$ "the former" $/ 21 u$ "the I latter" $114-15 w$ Knitting wb The difficulty is just as great if we look at instinct as innate power $49626 u$ "Variationslinstincts", $28-30 \mathrm{~m}$, wb it comes to this because reason goes so far \& no further, it is not reason. An Australian co not do Principia.- $29 u$ "always"/wb How do we know this 497 3-4m, $22-23 m, 23-27 w$ Knight on use of graftingO Mixture 28-31m 498 5-10m, 27-30m 499 19u "manifold", 20-21m $5001 u$ "not mean", 2-4m, $18-20 \mathrm{~m} / 20 \mathrm{u}$ "another", $26-27 \mathrm{~m}, 29 \mathrm{~m}, 31 \mathrm{~m} 501$ 6-8m, 27-30m 502 4-7m $5032-4 m, 8-10 m 504$ $5-10 \mathrm{~m} / 8 u$ "A third", 11-14m 505 2-5m 506 $22-29 m 5071-3 m, 5-7 m, 8 m, 16-18 m, 18-20 m$ $5086-8 \mathrm{~m}, 16 \mathrm{~m}, 17-18 \mathrm{~m}, 30-31 \mathrm{~m} 5105-7 \mathrm{~m}$, 6$25 m, 23-28 m 5114-11 m, 25-30 \mathrm{~m} / 25-26 \mathrm{w}$ old instinct retained $51230-31 u$ "fed Imaturity", $w b$ is this given ordinarily to all queen larvae $5137-12 m, 23-26 m / w$ (a) $w b$ (a) One may suppose that originally many queens were ordinarily thus reared \& a few workers \& the instinct is thus retained $51422-25 m 515$ 21$28 m 516$ 8-13m, 17-20m, 25-29m 517 23-30m 519 10-13m, 15-20m, 21-22Q 24-28m/24-32w like Robin which built on Steam Engine 520 $1-3 m$, 19-26m $5214-7 m$ 522 5-9m, 12-15m 523 16-19m 524 5u "all", 11u^/w not indigenous $5254-7 m, 19-30 m \quad 52714-17 m$ 529 3-27m 530 5-11m

KIRBY \& SPENCE
vol. 3 NB 89; 95 \& 96; 101; 162; 202; 210; 221; 227; 257; 261; 276; 287; 305; 330; 338; 466; 474; 593; 594; 605; 632; 645; 654
SB $\square \beta$
Marshall 284
89 Number of eggs various insects
96 adaptation of eggs like seeds of \& plants 208-210 Q Astounding manoeuvre performed once in life.
227 Q very important variation in Habit Perhaps Instinct rather
261 var. in \% colouring of crysalises
277 NQ larvae preparing exit for imago \& even providing guide to find trap-door.-
287 Q jaws given for this sole purpose (under selection Ch. 6) to be used only once!
474. Good sentence about no new organs being produced without transition Q
594, 605 Rudimentary organs for symmetry
632 In Hymenoptera the progress of neuration of wings can be traced
645 Scales, as on Butterfly appear in some Diptera
665 Number of legs vary in luli \&c.-
$891-7 m / w$ Proof that numbers here depend on means of prosecution $8-24 m / 10 u \uparrow / 11-$ $20 w$ We only know by experience that every species can increase if not checked $12 u$ "30,000", $14-15 u$ " 40,0001 more", $16 u$ " 200,000 ", $22 u$ " $211,449,600$ " 95 22-25m 96 $1-3 m, 14-22 m / 14-17 w$ adaptation as in seeds $1018-14 m \quad 1625-11 m \quad 202$ 9-14m/10-11w adaptation $208 \quad 10-31 m \quad 210 \quad 1-29 m / 10-14 w$ wonderful 211 19-25m/20u "now" $21 u$ "silken" $/ 22 u$ "horizontal", 29-31m 212 1-2m, 3-7m, 12-21m, 13-31m $2132-9 m, 17-28 m 221$ 19-25m 227 1-5m 256 15u "рирае", 21-25m 257 8-10m, 17-22m 261 9-12m 276 28-32m/ $28 u$ "previouslylpupa" 277 1-10m, 28-30m 278 1-4m 287 1-10m/4-6u $\rightarrow 299$ 27-28m 300 $1-4 m / 3-5 w \notin, \quad 6-9 m \quad 301 \quad 26-29 m / 28 u \star / 29 u$ "female | rubra" 302 1u "red", 4u "elytre", 23u "testaceous |black"/w Lepidopt 24-26m/26ua/w male $28 u \star$, wb Aperture Iris emperor 23u*/ $w b=$ Polommatus aegon $3031 u a, 2 u$ "orange 1 upper", $3 u$ • 305 21-25m, 28-31m 306 $7-8 m / 7 u$ "tibia| bearded" 309 14-19m 313 4$7 \mathrm{~m}, 11-17 \mathrm{~m}, 21-26 \mathrm{~m}, 27 \mathrm{~m} 31428-30 \mathrm{~m} / \mathrm{Q} 315$ $16-17 \mathrm{~m} / 17 u$ "female male" 323 1-5m 327 3$7 m \quad 329$ 17-26m/19u "pectoral" $/ 21 u$ "weevil" 330 19-21m, 23-25m, 26-27m 331 30-31m 332 1-18m $33316 u$ "incrassated 1 male", $23 u$ "the erroneously"/w incrassated not always sexual 336 6-9m 337 18-27m/Q $3381-4 m / Q 3402 u$ "Pneumonia" 342 26-30m $344 \quad 5 u$ "ofl Coleoptera", 11-12m 345 15-18m 346 26-29m

466 20-22m 474 wt If all Mammalia which have ever existed were preserved, probably as many traces of abortive organs wd be found as in insects in nearly all of which they are present. $2-10 \mathrm{~m}, 19-25 \mathrm{~m} / \mathrm{Q} / 21 \mathrm{u}$ "but 1 organs" $5931 \mathrm{~m} / \mathrm{u}$ "represented lthe", 18-19m 594 22-29m, 25-26m $5951-3 m 60517-18 m$, 18-23m/21u "appearance|elytre" 632 14-26m 645 29-31m 654 13-18m 655 〈erroneously 665〉, 5-11m
vol. 4 SB1 Vol IV
p.31; p.357; 358; 373; 397; 405, 6, 8, 411 to 15 wretched trash; $478 ; 484 ; 486$ to 508
SB2 $\square \beta$
31 Crippled Spider from Sedentary became Hunter See. J. Banks. Ch. 8 Q
373 on use of larva in classification
478 On number of individuals in different orders, without relation to number of species 488 Calasoma poor in species \& individuals, very wide ranging genus.
500 Battles of Lethrus (a vegetable feeder) 156 stings \& ovipositors described.-
$314-7 m, 8-10 m 156$ 8-9m/? 258 wt Calcaria $25910 \mathrm{~m}, 12 \mathrm{~m} 2613 \mathrm{~m}, 16 \mathrm{~m}, 19 \mathrm{~m}, 27 \mathrm{~m} 263$ $27 \mathrm{~m} 26411 m, 27 m 2675 m, 27 m 26817 m$, $19 m, 20 m 27012 m 27118-21 m 27219 m, 28 m$ $27312 m, 18 m 27421 m, 28 m, 31 m 27720 m$ $2783 \mathrm{~m}, 27 \mathrm{~m} 2791 \mathrm{~m}, 8 \mathrm{~m}, 16 \mathrm{~m} 2801 \mathrm{~m}, 3 \mathrm{~m}$, $7 m, 13 m, 21 m, 24 m 28127 m 2821 m, 4 m, 7 m$, $15 m 28821 m 2936 m 294$ 17w Margin 20$21 m, 23 m, 25 m 2953 m, 17 m, 25 m 29730 m / u$ "Spurious suture" 302 18-22m, 27-29m 303 5$6 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m} 32027 \mathrm{~m} 32114 \mathrm{~m}, 17 \mathrm{~m}$ $32218 m \quad 3257 m \quad 32719-20 m 33410 m, 15 m$ $357 \quad 7-11 m \quad 358 \quad 7-13 m, \quad 15-17 m, \quad 30-33 m$ (Linnaeus) 3595-6u, 19-20m, 26-29m 373 2227 m 397 4-13m/6-7u "especially| distinct", 14$19 m / 15-16 u \leftrightarrow / 18-19 u \leftrightarrow 4051-2 m$, $16-21 m$, $16-19 m, 20-25 m, 30 m 40626-30 m 4081-17 m$, $19-20 m, 29-30 m 4094-7 m 411$ 18-21m 413 16-19m 415 21-27m 421 zb 478 9-15m/8-12w Think over this $48418-21 m 48611-16 m / 13-$ $14 u \leftrightarrow 4878-10 m, 20-22 m, 29-32 m$ (Latreille) $48820-21 m, 23-28 m, 27-28 m$, $w b$ This is opposed to my notion of formation of genera. Think over this Extension in this case must depend on adaptation to some peculiar food \& not to any general superiority over congeners.- $4891-11 m, 17-18 m$, 23$32 m, w b$ My notions require that number of individuals \& species \& genera shd in some degree accord which is doubtful.- NB Comparison can be instituted only when there is struggle. Diptera \& Coleoptera cannot be compared 490 1-6m, 22-25m 492 3-7m 494 1-2m, 9-11m (MacLeay), 12-16m
$49622-27 m 4971-5 m, 21-22 m, 25-28 m 498$ $4-7 m 5003-6 m / 4-5 u \leftrightarrow 508$ 19-25m 512 25$27 m$

KIRCHHOF, F. Das Ganze der Landwirtschaft Leipzig \& Torgau; 1835 [CUL]
beh, br, f, fg, he, mn, sp, sx, sy, tm, v, wd, y
NB A very poor book with wretched classification.-

- 1 to 56; 79; 88,90 Geese - large in Pomerania small in Poland; 104 Duck lays 30-36 eggs; 111-114
April 1857 Nothing except above Ducks good to quote in Ch. 4
6 Polish swine broad stripe down back related to young wild swine being striped
$311-12 w$ swine with undivided hoofs $26 u$ "61Junge"/w wild swine $4 w b$ Breeds differ in size short feet bowed back power of fattening $512-17 w$ great difference in size of wild swine $19 w$ Races $24 u$ "101 Junge", $26 u$ "seine I Glieder"/26-27w fine hair on joints $32 u$ "kurz|Körper", 33u "Ohren", 32-35w short round bodies, long ears, woolly bristles 6 1$3 w$ broad stripe along the back $31 u$ "ist $\mid 9$ ", $32 u \leftrightarrow, 35 u$ "vielen 1 sein" $/ w$ must be provided with many teats $819-20 \mathrm{~m} \sim, 21-25 w$ Do wild breed twice a year? $531-2 \mathrm{~m} / \mathrm{w}$ The leg on which roost generally stronger than other! 54 $25 m, 32 w$ pointed head $34 u$ "kleinen Federbusche", 37u/wbr $551 w$ crested 7-10w cannot find way when crest wet with rain $10 u$ "brabantische" $/ w$ Gold spangled $13 u$ "silberfarbige Hahn", 16u "zart|Eier"/w punctured eggs $17 u$ "Der 1 Hahn", $18 u$ "rothe 1 Schnabels" $/ w 2$ red warts on side of beak $26 w$ Tail-less $33-36 w$ Frill-like Fowls collar almost like Jacobin!? $561-8 \mathrm{~m} / \mathrm{w}$ can hardly fly $5-7 \mathrm{w}$ Bantams 11u/w 10 , 10 "Hamburgische" $110-23 w$ Cock \& Hen have legs clothed like velvet cock sharp beak: yellow circle \& band of yellow feathers round eyes with tuft of black ornamenting ears 22-24m, 24-25w Frizzled Fowl 26u "Kammlschwarz", 33u "einen। Farbe", 35-36?/u "hat | Kehllippchen" 57 wt Hen spurs like Cocks $6 \mathrm{~m} / \mathrm{w}$ Dorking 79 wb this tuft cd have been mistaken for monstrosity $88 \quad 26-31 \mathrm{~m} / \mathrm{w}$ Geese in Pomerania very large. small in Poland 90 15-20m $10424-26 m / 24 u$ "siellegt" 10514 $17 \mathrm{~m} 11128-29 \mathrm{~m} / 29 \mathrm{u}$ "aber $\operatorname{lbringt",~30u/w\tau \text {,}}$ $33 u$ "fast | bringt", $35 u / w \tau 112$ wt I shd think this man knows very little or nothing of subject) $2 u$ "Schnabel| dick", $3 u$ "Schneppe", $3 w$ Trumpeter $5 u$ "oft |zeit", 11u "ihrlfehlt", $22-25 \mathrm{~m} / \mathrm{w}$ Pouters some vars males \& females different males being spotted. I
wonder whether true? wb vast number of coloured vars. of Pouters $1132 w$ Carrier 3$4 m / u$ "Dalentfernen" 114 1-2!/1u "einen Schwann", 29-32m/w Carmelite

KLEIN, Edward Emmanuel The anatomy of the lymphatic system part 1; London; Elder \& Co.; 1873 [Down, I]
part 2; London; 1875 [Down, I]
KLEIN, Edward Emmanuel, BURDONSANDERSON, John Scott, FOSTER, Michael and LAUDER-BRUNTON, Thomas Handbook for the physiological laboratory 2 vols.; London; J. \& A. Churchill; 1873 [Down, I, FD]

KOBELL, Franz von Grundzüge der Mineralogie Nürnberg; Johan Leonhard Schrag; 1838 [Down]

KOHLRAUSCH, Otto Leitfaden der praktischen Physik Leipzig; B.G. Teubner; 1877 [Down] \wp

KÖLLIKER, Albert von Anatomischsystematische Beschreibung der Alcyonarien vol. 1; Frankfurt a.M.; Christian Winter; 1870 [Down, I] \wp

KÖLREUTER, Johann Gottlieb Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen Leipzig; in der Gleditschischen Handlung; 1761-66 [CUL, pre-B]
beh, cc, cs, dic, f, fg, gd, he, hy, ig, in, mhp, $\mathrm{mn}, \mathrm{no}, \mathrm{oo}$, pat, phy, sp, spo, sx, sy, t, ta, v, wd, y
NB1 * Read Muller in Berlin Trans
NB2 Oct/55/Everything - this Volume fully abstracted \& abstracts distributed.-
NB3
What good experiments might be made by mixing pollen together of several kinds.-
p. 12 Male \& Female organs in Hybrid unequally affected.
According to Gaertner (p.273.) when several varieties of the same species are crossed with another species, offspring closely alike; but when several close, but true species, are crossed with another species offspring very unlike. This must be tested in this work, specially in 3 races of Nicotiana.- In the Nova Acta he experimented on plenty of vars of Mirabilis * Jaleppa. but I fear that vars differed only in colour. But Dic Classique remarks that Mirabilis Jalep differs only in colour of flowers

KÖLREUTER, GESCHLECHT DER PFLANZEN Part 1, $922 u$ " 4863 " $/ w$ pollen $*$ in flower $25 u$ "dreyssig"/27-28u "fünfzig I sechzig"/25-30w 30 seeds from 50 or 60 pollen grains 1021 $26 \mathrm{~m} / \mathrm{w}$ less than 10 pollen grains did not fructify $111-5 m / w$ in cold weather more pollen is required $9-14 w$ in very late \& cold season no quantity of pollen suffices 12 wt when all but * one stigma cut off, yet all capsules with seeds $1-4 m 155 c \notin, 11 u$ "noch I geschlossener", 13 u "Gräser", 1-22w Know nothing dichogamous plants.- $29 \mathrm{um} /$ $31 u a / 26-31 m / w / w b$ Grasses \& these are all flowers, which are impregnated, without aid, by contact, \& even in the yet unopened flowers!! 17 wt pollen of some Mono \& dioic plants fully \& others spored on all sides.-$13-15 m, 25-31 m$, wb plants with stigma right under anthers. $1819-23 \mathrm{~m} / \mathrm{w}$ In rue stamens move over stigma $197-14 w$ stamens move to stigma quicker or slower according to weather. $20-23 \mathrm{w}$ stamens move when anther removed. $2126 u$ a, 26-30w Malvaceae impregnate only by insects 28 u "allein"/28$31 \mathrm{~m} / \mathrm{wb} \mid$ was astonished good sentence to translate $221 u / w \tau, 1-9 m, 5-9 m 2928-31 m$, $w b *$ juice, sought by Bees secreted from stigma of Iris $364-13 w$ Scrophularia \& Antirrhinum lay their anthers on the stigma but are also aided by insects 436 w V p. 10 next Chapt- fertile $=$ when this season experiment succeeded. $8-10 \mathrm{~m} / 8-15 \mathrm{w}$ inverse experiment produced infertile seeds but rather larger $10-22 \mathrm{~m}, 17-30 \mathrm{w} / \mathrm{wb}$ those wh . appear in an unpregnated capsule $20-24 \mathrm{~m} / \mathrm{w}$ in many plants $44 w b$ seems to think, pollen of foreign \& own can together act \& produce a tinge of Bastardism this seems possible as 20 grains of pollen are in some cases requisite for any fructification, but not proven.- 47 18-24m, wb What Crown Imperial not much frequented by * Humble - secretes honey from opening to withering of flower

Part 2, 10 23a "Nachricht" p. 43 26-29m 11 wt produced another year 24 * capsules p. $234 w \quad 8$ petals $9-13 m / w$ absolutely undistinguished from reverse experiment 12 $4-7 \mathrm{~m} / \mathrm{w}$ infertile on male side but fertile on female $1327-29 m, 29-30 u$ "einigelweniger" $1410-11 m / 9-12 w$ in some parts more than in others rather like to Rust. $16-17 \mathrm{~m} / \mathrm{w}$ some plants more good seeds than others $18-22 m$, $24-28 \mathrm{~m} / \mathrm{w}$ plants from same capsule differed in fertility $151-3 \mathrm{~m} / \mathrm{w}$ differed from all parents 17 20-21m, 23-26m/25u "Fruchtbarkeit", $27 u$ "unterschieden" $181-6 \mathrm{~m} / \mathrm{w}$ most of them are more infertile than the hybrid parent $7-9 m / w$
as if tendency to miscarry was given 11$13 \mathrm{~m} / \mathrm{u} \leftrightarrow, \quad 16-21 \mathrm{~m}, 15-19 \mathrm{w}$ some seeds, however, produced plants. $13 x / w b \times$ All these results are confirmed by (p .20 other, different experiments $\rightarrow \&$ by an analogous experiment p87) (\& by same p.91 \rightarrow) of next Part; but one of them quite sterile 19 12$14 \mathrm{~m} / \mathrm{w}$ varied $19-23 \mathrm{~m} 2011-12 \mathrm{~m} / \mathrm{w}$ did not take at all after perenne $221-4 m / w$ fertility much increased $14-21 \mathrm{~m} / \mathrm{w}$ concludes probably that hybrids with some pollen change into maternal form. 23-25w p. 55 of 3d Part one plant came much nearer to Rust. 26c\&, $29 a$ "einen"/wb genugen $2320 u$ "Missgeburten" $/ 19-23 w=$ Miscarry? or monster? 22-23w another instance p54 of 3d Part in another cross 24 wt In Hybrids from Rust \& Panic, male or reverse the hybrids have no good pollen but female principle yet acts on both A. $12 u$ "gänzlich", $11-13 \mathrm{~m} / \mathrm{w}$ ganzlich means very \& tolerably $w b$ A. How unintelligible is this, as this hybrid fructified itself p. 21 prop. pulv. consperso $25 w t \leqslant X$ odd this not taking at all after perenne $4 u \leftrightarrow /$ $x, 5-12 m, 8-22 m, 9 w$ two pollens $21 u \leftrightarrow 26$ $10 u \leftrightarrow, 12-16 \mathrm{~m} / \mathrm{w} 3$ pollens mingled together \& not hybrids $295-8 \mathrm{~m} / 1-8 w$ exactly intermed $9-11 m, 26-32 m / w$ hybrid more flowers plants higher \& taller $1-23 w \quad X$ this shows that hybrids are well suited in soil \&c \&c 30 11$13 m / 7-13 w$ absolutely sterile $31 w t / 1-2 w$ or seven-hill tobacco $3 \mathrm{~m} / \mathrm{w}$ var of Mag. \& vulg. $17-24 m / 5-24 w$ Difference from last hybrid $\%$ correspond to differs. of 2 varieties 32 wt A gave smaller capsules \& fewer seeds, than when this hybrid was impreg. with pure N . Rust. or Pan $5 m / 15-18 w$ var of N . Maj vulg. $21-24 m / 22 w$ ㅅ $3-5 m / \rightarrow 3316-19 w$ \& this is a second cross $9-10 \mathrm{~m} / 9-15 \mathrm{w}$ These two hybrids differed greatly. 36 14c/17c "male" female/9-25w exactly intermediate between male \& female $386-24 m / 23 u \leftrightarrow / 2-24 w$ Pollen quite worthless Capsule began to swell, with other pollen.- 25-31w/wb I suspect, pollen fails in hybrids, easier than female principle $395-25 w$ These \& other hybrids tend to throw up strong stems in autumn $4119 u$ "Mit | Worte"/19-22w finally very like male parent $424 m / 1-6 w$ (quote this) as different as Cat \& Lion $4322-24 w$ V. same experm p119 next Part: 25c "carthus." $\mid x / w$ barbatus wb Sweet-William 44 wt Yes Does Gaertner mention this? 3-6w seed affected $5-7 m$, 8$30 \rightarrow, 27-29 m / w$ A $30-31 m$, $w b$ I shd think female principle more defective than male.?? V. p. 117. 45 wt I see in Loudon this is Hibiscum vesicarius $=$ African Irionum $=$ Bladder Kelmia these are all right $\rightarrow 3 w$

Cavanilles \& Decandolle make this 2 species, but they are evidently very close both from Africa. $4 w$ Kippist thought it very doubtful whether real species $5 w$ reverse $5 w$ Mongrels $5-10 \mathrm{~m} / 10 \mathrm{u}$ "Hibiscus", $10 u$ "blosse Varietäten"/8-10w Probably 2d Edition of Linnaeus 14-15u "beyden I Seiten", 19-21m/17$21 w$ Like each other in reverse exp differed from each other 24-27w Repeated with same results p. 128 next Fort $28 w$ Cheiranthus p51 $\uparrow 1 u$ "Levcojen", wb stock-gilliflower $\Uparrow 1 u$ "Lack"/wb Wallflower (Dictionary) $467-9 m / 5-$ $11 w$ difference in period of flowering in the reverse experiment $16 u$ "einfach", $16 u$ "gefillt" " $12-16 w$ The mongrels were single, the pure-bred were double? $17 x x$, $23 u$ "anders I ganz" $117-25 w \times$ cannot make out in Loudon what species they are $w b$ XX p. 128 second Fort raised intermediate \& quite fertile hybrids; hence considers only varieties 47 8-9m/5-11w quite sterile p. 124 3d Fort quite fertile $501-16 w$ refers to individual plants $7-29 m \quad 541-13 w$ reiterates greater infertility of male side $5510-27 m 5823-24 m /$ $24 u \leftrightarrow / 21-30 w$ Generally speaks of * mongrel having possibly lost some fertility, sometimes. $60 w t / 1-14 w$ cannot account for varying degree of infertility in foregoing hybrids; even in one case increased infertility though plant became more like mother. 12$14 m, 15-16 \mathrm{w}$ fruitful on female, but sterile on male side $61 \quad 1-31 m / 1-18 w$ only some exception to characters of hybrids being intermediate \& chiefly in $\times 12-20 \mathrm{~m} / 20 \mathrm{u}$ "als 1 Bastarden" 63 2-4m/4u "Vater 1 der" $64 w t$ Experiments which did not bring offspring, interesting as showing gradation in effect 19$20 \mathrm{~m} / \mathrm{w}$ reverse failed $657-8 \mathrm{~m} / \mathrm{w}$ reverse failed $13-14 \mathrm{~m} / \mathrm{u}$ "Die 1 Grösse", $16-18 \mathrm{~m} / \mathrm{w}$ seed appeared good 23-24u "Diel natürlichen" 66 12-13m, $12 u$ "Beym umgekehrten", $26-27 m, w b$ capsule fell of when half ripe $676-7 \mathrm{~m} / \mathrm{u}$ "einige|sitzen"/6$10 w$ Do some remained on * $13-22 w$ gave offspring p58 Fort 2 next year $\rightarrow 25-30 \mathrm{~m} / \mathrm{w}$ seeds did not appear quite perfect 68 wb see p. 45 to see what species $69 w t / \uparrow w$ Impregnation Hibiscus impregnated by pencil \& by insects, during many days was done almost as well by the insects, though they lost some days during rain $11-12 m / 11 u$ "310", $13-15 m / 13 u$ "10886"/14u "11237"/15u " 351 ", $24-28 m 71 \mathrm{wt} / 1-25 w$ Pollen of misteltoe expelled into flower before open, \& several flies are attracted by the sweet juice on both male \& female flower \& \&c impregnate it 20X, $22 u$ "Stacheln", $23 u$ "unterlzusammenhängt", 28-30m, 29u "Gat-
tungen Fliegen", wb X pollen covered with points \& sticks together $728-11 \mathrm{~m} / \mathrm{w}$ not by wind $17-25 \mathrm{~m} / \mathrm{w}$ remarks that depending on insects \& Birds

Fort. 2 Part 3, $86 u$ "Häufig"/5-9w Canaries \& Linnet hybrids of fertile. 11 u "absteigenden 1 erstreckt" $\mid x, w b \mathrm{X}$ This near crossed again by Canary bird twice over.- $95 w \mathrm{~S}$. Europe 11$14 m / 13 u$ "Sulz |Neckar" $/ w$ experiment tryed at Sulz Neckar 17-20w Britain \& Italy/L 10 wt p.1-46 in 3d Fortsetz all about Verbascum. $2 w$ England $5 w$ England $10-26 w$ Mem. Mr Herberts letter to me 20-24m/22-23u "grossen 1 Blume", $25 u$ "ringste | Befruchtung", wb Found on many flowers on the 3 plants on two successive summers, that the female of phoenicena, cd not be impregnated by its own pollen, showed no sign of fructification, but yielded seed to 4 other species growing in same country!! 11 wt There were 3 plants of this phoeniceum. 9-10w same on another plant $13-14 m / w$ cannot explain. $w b$ The female or phoeniceums were garden seedlings \& p. 41 3d Fort not grow here wild 16 19-30w exactly intermediate 17 1-25w every point exactly intermediate $185 z 217-$ $9 m / 7-18 w$ colours rather different in different plants \& petals of same, not similarly coloured. $2316-21 w$ intermediate $2412-13 z$ $2725-28 \mathrm{~m} / \mathrm{w}$ flowers varied a little in colour 30 12-19w intermediate $3520-27 w$ intermediate 39 11-19w anthers held little 24-31w power of growth vigorous, for they flowered sooner than natural $30-31 \mathrm{~m} / \mathrm{wb}$ quite infertile even with pollen of parents $401-6 w$ but a half fructified for germen swelled $11 u \leftrightarrow / 12-$ $15 \mathrm{~m} / 11-18 \mathrm{w}$ colours of the autumnal flowers became darker \& more like female $411-18 w$ intermediaie (even in such points as smell which the parent \& the other has not at all.44 wt only one plant raised $3-6 \mathrm{~m} / \mathrm{w}$ quite sterile $8-28 w$ I observe most of the plants in this Fortsetzung either raised on Hotbeds or planted in boxes in open air, \& transplanted into pots $451 \mathrm{~m}, 13-15 \mathrm{~m} / 13-19 \mathrm{w}$ fertility in same degree as in former V appendix 46 $12 w$ pot $501-4 w$ nearly intermediate 14 $18 \mathrm{~m} / 12-17 \mathrm{w}$ later flowers became darker 22$23 w$ not quite intermediate $w b$ N.B in former experiments, where no mark characters are intermediate 52 1-11w not intermediate, but does not say after which parent. $5321 u \wedge / 20-22 w$ differs in leaves, stem flowers shape of $w b$ p. 19 N . perenne seems distinct in shape of leaves \& small sharp capsule of fruit, \& shape of flowers 54 $7-8 u \wedge, 17-29 m / 19-20 w$ plenty of differences

KÖLREUTER, GESCHLECHT DER PFLANZEN
26-28w Habits different Leaves move in evening to stem. wb Certainly these vars. most distinct \& only the last said to have been found wild in Tobago $551-25 w$ crossed 5 as he believes, varieties of tobacco \& found offspring intermediate \& quite fertile $24-27 \mathrm{~m} / 26-30 \mathrm{w}$ were intermediate in every respect between parents. 56 1-15w Hyb fruct. more successful Offspring quite unfertile (I think) more fertile than 〈Nicot. mai.) or vice versâ 1 * believe but cannot make out which V. p. 60 (this Fort:) $11-12 \mathrm{~m} / \mathrm{w}$ varieties of same as shown p55 14-15m/w a very little fertile $18 u$ "Hauptsache", 23-25m/ $20-26 w$ differed only as much as the 2 vars differed $28 u$ "geringen Grad", wb X thinks some little of own pollen may have got mixed!? \& ? (No according to Gaertner) 57 $19-24 m / x 5816-21 m / w$ These failed the year before 16-21w Reverse experiment of last offspring as like to them as egg to egg 60 wt (a) This is very important (though only belief) well grounded/: has shown that N. perenne, N . major var fl. alb. $\bigcirc \mathrm{N}$ - are all varieties by perfect fertility (\& not mentioned as species by Loudon), or yet N. perenne seem rather more fertile with N. glutinosa, than other vars. \& is 1) Major fl. alb.O 2) Major vulg 3) Transylvan. 8-11u "solVarietäten" $/ \mathrm{m} /$ w (a) $13-28 m / w$ XX shows that little of own pollen prevents quantity of foreign pollen having any effect. $611-11 m, 11-27 m 6216-$ $23 \mathrm{~m} / 10-23 \mathrm{w}$ very little being used, hybrid was produced $731-29 w$ In all respects A more approaches male, except in particular p. 77 further on 12-17w A on p78 on sterility male quite sterile, female side more fertile than $* 742 m 771-14 w$ this refers to the parent A except in some respects differed from all parents, as in dwarf growth \& shape of leaves 78 wt All this refers to parent hybrids marked by an A $w t / 1-16 m / w$ Essential difference, * (though male side quite sterile), female more fertile (when impregnated with pure pollen) producing 100 seeds, instead of as in parent hybrid only $20-30$ seeds $2-13 m / 10 u \leftrightarrow 791-25 w$ These hybrids (in the 3 generation) all (many) closely resembled each other \& the Pan. \& were nearly with few exceptions quite as fertile as it. $8014 m / w t / 1-14 w$ The infertile few, partly sterile probably both on male \& female sides. $812-31 w$ Proved their fertility by all kinds of crosses \& so found they very nearly equate in fertility to Pan: $823 m 84$ $27 w / w b$ two of the three quite unfertile 861 $29 w$ some fertile, some unfertile, though some of the latter came nearest to Rust., in
which respect apparently some variability 89 14-23w The hairiness \& smallness of leaves not common in this degree of descent X in hybrids $29-31 \mathrm{~m} / \mathrm{w}$ Results of these confirmed $9010-13 \mathrm{~m} / \mathrm{w}$ plants differed * 2 from other \& in fertility 4 of other sex raised $10-12 \mathrm{~m} / 10-$ $11 u$ "einigel weniger", 27-28m, wb pretty good pollen \& left to self produced very good seeds. $9712-14 m / 12-24 w$ differs a good deal one from another especially in colour \& substance of leaves $w b$ seedlings described at p59 next Fort. $9828-31 x / w b$ fresh proof of variation in second descent, when crossed with either parent.- $997-8 w$ barbatus? see p. $112 \quad 23-27 m \quad 100 \quad 1-18 w$ in all respects analogous to last experiment. $26-31 w$ all pretty fertile except one plant $w b$ The fact of one species by crossing with another assuming such infinitely various new characters is an argument in favour of possible variation $1012-4 m / w$ some variation in different plants. 10-11w reverse of Exprmt p.96. 13c "carthus." barbatus $14-28 w$ does not bear so many seeds as pure Chinensis, but more than some experiments hence the hybrid male has more confined fertility as a female, than as male. wb N.B I think this requires more testing $1027-11 \mathrm{~m} / 9 \mathrm{w}$ variation $10314-19 m / 14-19 u \pm 1049 u / w$ one of the plants $16-18 m / 10-21 u \pm 105 \quad 5-11 w$ on the whole fertility increased with some exceptions 106 1-6w p. 166 3d Fort another experiment described $5 \mathrm{~m} / \mathrm{w}$ barbat $12-15 \mathrm{~m} / \mathrm{w}$ partially fertile, like hybrid-parent in character 8-19w In my Abstract (p18) of experiments: I see there is D. Carthus \& barbatus. $-20 \mathrm{~m} / \mathrm{w}$ Italian = barbatus $10719-21 \mathrm{~m} / 19-20 \mathrm{w}$ very like Hortensis $23-26 w$ in Hortensis pure, pollen often not matured $28-31 w$ less fertile than hybrid mother $10817 \mathrm{~m} / \mathrm{w}$ Be sure to see to Reverse p. 66 next Fort. $19-20 \mathrm{~m} / \mathrm{w}$ of very difficult impregnation 17-20w experiments with different varieties of both *, 24-29u土, wb B Does this case occur elsewhere of difficult impregnation, \& yet hybrids so raised, being fertile rather? Has reverse been tryed? $1093-6 w$ p65 next Fort prop. pulv consperso $15-18 u \pm / w$ Hybrids $23 m$, wb B These four differ, as they are separately described. but they appear to have come from different varieties of Hortensis $1101-17 w$ in some points after one parent in some after another, in some intermediate Mostly after male. 30-31w/wb Male parent or Hortensis, double. 111 3-11w flowers double so that monstrosity can be transmitted to other species. $30-31 \mathrm{~m} / \mathrm{w} / w b$ important, because takes most after * the
male an artificial variety; Not because the female is also a variety. $11211 \mathrm{~m} / \mathrm{w}$ a variety of $12 \mathrm{~m} / 3-12 \mathrm{w}$ a wild plant on poor rocky ground. $11520-23 m / w$ pollen partly good 116 wb appears upon the whole to have taken most after the wild male. certainly not intermediate as so generally happens. 117 $22-28 w$ female side, was fertile with pollen of other species wd not self fructify $w b$ This seems to show the want of intermediary due to cultivation. 118 wt Vide former Fortsetz p. $431192-5 \mathrm{~m} / \mathrm{w}$ some little variation in the hybrids 120 wt 4fold or 201 u "meisten" $/ 2-4 w$ most not all 121 14-19w empty. smell bad pollen in some of growing wild - 17c/u "plumar"/wb p. 69 ought to be D. superbus \uparrow $\rightarrow \mathbf{1 2 2} \mathbf{7 u}$ "vervielfältigen Kupfernelke"/w \& M 11ua/11-14w \& in others Botanic garden 19$20 u \leftrightarrow, 25-29 w$ \& in other wild plant $28 u \star$, $28 w$ \& in $w b$ compares this to blight of Oats \& suspect it due to weather. so be cautious $12418-19 w$ see 3d. Fortsetz p114 28-29m/ $w b$ offspring did not flower owing to cold summer $12510 \mathrm{~m} / \mathrm{wt}$ See Gaertner p273 on Distinctness $11 \mathrm{~m} / \mathrm{w}$ England Smith says(?) Loudon says aboriginally S. America $12 \mathrm{~m} /$ $10 w \mathrm{~N}$. America $11-14 m / 18 u \leftrightarrow / 11-21 w$ all like each other \& quite fertile \& so varieties contrary to Linnaeus $w b$ I see Gaertner gives the reciprocal experiments only i.(a) $1267-$ $1 \mathrm{~m} / \mathrm{w}$ quite agreed with each other $8-9 w$ Read vars. $23-26 m 1287 w$ Stocks

Fortsetzung 3, 1 wt Experiments carried on * from p. 1 of last Fortsetzung $12 x$, wb Crossed many Verbasca of that country, \& found them fertile, to his surprise, as he thought that plants of same country did not readily yield hybrids. $25 w$ No $6 w$ S. Europe $7 w$ Brit 14-15u "Scherben", 21un/4-9w Never seen * Thapsus \& Phlom. growing in same spot though in same country $23 w$ \& Thaps. 4 19-24w intermediate $516-17 w$ quite infertile 20-21w Reverse p. 12 2d Fort: $20 w$ Britain $21 w$ S. Europe $23-24 w$ exactly like $614 w$ England $15 w$ Britain $\times w b \times \mathrm{p} 35$ when crossed with flav. var. colour of hybrid-flower rather darker.- $79 m 911-20 \mathrm{w}$ intermediate $26 w$ sterile $102-4 w$ some Mountain flowers $17 \mathrm{~m} / \mathrm{w}$ Britain 17-26w exactly similar to last. reverse of last- $113-4 m / w$ Britain 15 13-24w sterile: those in pots, produced larger empty capsules (a) perhaps from pollen of neighbouring plants.- p. 20 same fact 24 $26 \mathrm{~m} / \mathrm{w}$ Reverse of last $w b$ (a) N.B. In almost every experiment plants saved in hot-bed, \& transplanted into open ground \& pots; so Wiegmann wrong. 16 1-11w like last, or
reverse, except in leaves, being shorter \& with little wing-like projections, as in female $14 w$ Britain $15 w$ S. Europe $24-26 \mathrm{~m} / 24-25 u \leftrightarrow /$ $26 u$ "strohgelbe", $27-28 \mathrm{~m} / \mathrm{w}$ except in some colour. $17 \quad 3-4 \mathrm{~m} / \mathrm{w}$ Britain 19 14-25w intermediate $20 w t / 1-4 w$ This shows a negative potential power, \& ignores my argument from cucubulus. Thus several cases where one species has not an organ, (as in this case one species hair \& the other has not hairs with knobs) the hybrid has it in less degree.- $4-8 w$ p. 24 an analogous fact in stalks of leaves $24-25 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ those in pots near other plants half fructified, but no seeds - (same fact p26 onwards) $213-4 \mathrm{~m} / \mathrm{w}$ Reverse of last quite like. 23 17-19m/u "beyl davon" $2414 w$ see opposite page $15-25 w$ intermediate $16-19 \mathrm{~m} / \mathrm{w} \mathrm{V}$. ante a $\mathrm{X} 19 \mathrm{u} / \mathrm{w} \tau$ 25 9-12m/w a X do $25-27 \mathrm{~m} / \mathrm{w}$ a X do 29$31 m / w$ sterile $268-9 m / w$ Reverse of last $21 u$ "wesentlicher" $/ 22 u$ "nur schienen" $\mid w$ no great differn 27-28u "sondern|muss" 28 15-22w intermediate $2918-22 \mathrm{~m} / 19 \mathrm{w}$ sterile 31 $14-26 \mathrm{~m} / \mathrm{w}$ intermediate $3218-21 \mathrm{~m} / 15-21 \mathrm{w}$ intermediate $3322-25 \mathrm{~m}$, wb It is evident, from the great similarity between these hybrids \& the foregoing ones, that Phionrides \& Tha $343-4 m / w$ infertile $7-8 \mathrm{~m} / \mathrm{w}$ reverse of last $20-22 m / 14-26 \mathrm{w}$ quite like last, except in colouring of some of the flowers N.B. One parent is a var 27 u "vier", $28-30 \mathrm{~m} /$ w intermediate in colour - p307 Positively contradicted by Gaertner wb quite fertile 35 wt Even Babington allows that there are two such. vars. $1 u / w \tau \tau, 5-7 w$ wild Natural variety (a) $8 w \tau, 10 u$ "beträchtlichen Anzahl", $12 u$ "nicht Art", $15-16 \mathrm{~m} / \mathrm{w}$ case of var. $w b$ (a) It is biennial - grows wild close together, yet during 4 years found they came true; in some districts, only white vars.- Why do they not cross naturally? very strange. Like Hollyock case. $3612-14 m / 1-14 w$ corollas of many of these hybrids fell off the unopened flowers. 17 u "fünf 1 Gattungen", 16-18w only native species $3720-22 w$ self formed hybrid 39 wt insects visit all Mulleins, but no hybrids, because own pollen strongest effect $1 x / 2 u$ "zur \mid beytragen" $/ w$ especially assist $27-$ $30 \mathrm{~m}, \mathrm{wb}$ says he has shown by certain experiments that species will take only own pollen, if two blends put on together.- 41 wt V. phoenicum, which grows in Lower Saxony \& Silesia near Kalw, is sterile on the male side with itself (as said at p.20, 2d Fortz) 4$8 m / x, 9-10 u$ "von \mid selbst" $/ w$ \& yet it seems it had pollen. 11-15m/10-21w 2 always fertile in one plant $15-22 m / 15-18 u \pm / 19-20 u \pm / 21-$ $22 u \pm, 23-25 u \pm 421-4 w$ self-formed Hybrids.

KÖLREUTER, GESCHLECHT DER PFLANZEN $6 x / 7 u / w \tau 44 w t$ all hybrids of Verbasc. sterile (yet easily male C.D.) $2-6 m, 13-17 w$ sort of half fructification $21 x, w b$ wd appear as if quicker growth, longer flowering \&c was property of * all hybrids.- especially of those that properly flower the second year or die 45 wt hard to explain strong vegetation before flowering: the permanence of flowers explicable by their sterility $2-4 x, 4-7 m / x 46$ $18-22 w$ 1. 2. 3. V. p. $5324 u$ "sieben"/w z $25 u$ "noch höhern"/25-27w yet higher fertility $w b$ z These do not seem to sport. $472-6 w 1$ 1. 2. 3. $48 u$ "zehen" $/ w$ z $13-15 \mathrm{~m} / \mathrm{w}$ some few bad pollen-grains in autumn $23 w$ no offspring 48 $1-9 \mathrm{~m} / \mathrm{w}$ did not differ from hybrids between Pan \& Rust 23-29w sterile. 2 of the plants differed from a third $w b$ NB in bringing back a hybrid to either parent, does not appear favourable to sporting $4914 w 116 w * 217 w$ Spring from self sown seed $w b$ This \& following appear extra fertile; is there any difference between first cross of Pan \& Rust, \& reverse? $502-7 w$ some with more seeds and some with less $519-15 w 1-1 / 2 ; 2-1 / 4$; 3-1/8; 4-1/16; 5 16-17m, 25-26u "durch1 Merkmal" 52 13-19m/x/wb probably some plants may be changed in more or fewer generations $-x$ probably this facility is in proportion to the fertility of the hybrids. 53 10-16m/xx/19-20u "aus I Kräften", wb $\mathbf{x x}$ important; the gran-children, of themselves, without crossing come nearer to Pan (as if crossed again with Pan. as in XX) $544-8 \mathrm{~m} /$ w now more resembled each other $14-16 \mathrm{~m} / \mathrm{w}$ not very fertile $565-7 \mathrm{~m} / \mathrm{u}$ "denen 1 Unterschied", 15-20m/w these hybrids came into flower sooner than either parent $28-30 \mathrm{~m}$, wb Hybrid pinks often arise naturally in gardens \& cross much $5720-21 \mathrm{~m} / \mathrm{w}$ (a) 2325m, 28-30u "dalerstreckt"/w Pinks!! wb (a) This unnatural case of pollen not being mature in time often happens with native pinks when planted in gardens 58 16x/12$16 w$ p. 99 2d Fort same as Dia. carthus. 59 wt (a) These hybrids self sown. become * partly more sterilized or partly more fertile in seeding themselves, but offspring sterile \& tend of themselves to return to $\%$ side of Barbatus $5-8 m / w$ (a) $25 u$ "Forts. 1 unter", 28$30 m$, wb become very like mother-plant \& assumed fertility by self action $607-11 w$ supported by reverse $612-4 w$ less fertility 62 $17-19 m / x, w b$ - hardly differed from Hort. \& was double, so that these varieties produced full effect on a compound hybrid.- 63 19$23 \mathrm{~m} / \mathrm{w}$ differed \& double on double calyx 64 $8-14 w$ intermediate $17-22 w$ vary in colour 66 1u "Ansehen ISamen", 14m, 21-28m/23u
"vielen" $/ 24 u$ "einige" $/ 25 u$ "einen \mid etliche"/21$27 w$ very few capsels with very few good seeds $677 u$ "einfach" $/ 9 u$ "gefüllte" $/ 8-11 w$ varied much 2 double $18-19 \mathrm{~m} / 22-24 \mathrm{~m} / 19$ $26 w$ resembled one in reverse experiment \& greatly resembled the reverse cases wb Does the homogeniousness of reverse experiments hold in varieties, as well as species? $68 \quad 18-21 w$ varied in colour all single $26-30 m / x / w b \mathrm{xx}$ took much after Hortensis: thinks in 3 or 4 generation wd be undistinguishable- $6913-15 m / x x \quad 70 \quad 2-3 u \leftrightarrow /$ $1-16 w$ D. chinensis two varieties can be impregnated with D. superbus (a native) as * surely \& fully as with own pollen. 72 1$17 \mathrm{~m} / \uparrow w$ wonderful how intermediate in every point, even the colour (wh varies) these hybrids are; yet we kn. one a wild species, other cultivated varieties. $w b$ (a) Pollen of these Hybrids partly good partly bad, yet impregnation of parents sure as in pure D. Chinen $732 w$ (a) $3-5 u \leftrightarrow$, $10-11 u \leftrightarrow / 9-21 w$ inherited doubleness strongly more or less inherited Yet wild male \& inclined to be hose in hose - colour darkens in Autumn 25u "inl sich", wb Could never self impregnate them; but produced when begottened by other species \& by seeds $74 w t / 1-12 w$ duration of flowers \& power of vegetation shows their hybrid origin, as in other instances. $25-27 \mathrm{~m} /$ wb Doubleness hereditary from female as well as male side $7529 u$ "durchgehends", wb On male side quite sterile, on female with other pollen produced some seeds. $7615 w$ p108 16-23w intermediate $77 \quad 13-18 w$ self infertile but fertile with pollen of superbus 78 $7-12 w$ intermediate $16-23 w$ self-infertile but fertile with Hortensis $791-4 w$ Both these \& reverse of difficult impregnation. Reverse of last $5-15 w$ intermediate \& like last $19 w$ variety $20 w$ wild growing $w b$ barbatus is Sweet William 81 12-18w intermediate 82 1$7 w$ quite sterile $9 w$ variety $10 w$ wild plant 83 $5-26 w$ | cannot tell whether intermediate in colour seems to take after chinensis - sterile $8416-24 m / 4-28 w$ Varied greatly in colour doubleness strongly heredetary 85 wt Though species \& simple varieties, take intermediate colour, when crossed, yet those which have been much cultivated, sport greatly $1-23 w$ has carefully self-impregnated some much altered Varieties \& finds offspring sport much $5-29 w$ So that this analogy has not escaped him-13-17m, 15$16 u$ "nicht ISorten", $19-26 m / x / w b$ \& thinks long-continued changes of conditions tends to destroy the balance $\&$ preserved in ordinary generation, in form colour \&c \&
everything as in hybrids of the first ascending or descending degree 8617 m , $18 \mathrm{~m} / \mathrm{w}$ double $19 \mathrm{~m} / \mathrm{w}$ wild species $27 u$ "zehn", $28 w 10$ hybrids $871-31 w \mathrm{X}| |$ strictly intermediate, even in colour, but also the flowers double, so showing strength of double hereditariness!! $8825-26 \mathrm{~m} / 25 u$ "kein \mid einfachen"|26-27u "vervielfältigten | gefüllen"| $23-26 w$ Not one simple $891-4 w$ quite sterile on female side. $92 w t / 1-10 w$ intermediate in some few points apparently less like male or chinensis $Q \quad 15-16 \mathrm{~m} / \mathrm{Q} \quad 17-20 \mathrm{~m} / \mathrm{w}$ considerable fertility on both male \& female side 21-22u "wenn|Saamenstaube", 24-25u "zwanzig \mid ziemlich", 31u "nach|von" 93 1-10w about $1 / 3$ of natural seed \& next to [63] the most fertile hybrid he has raised $13 \mathrm{~m} / \mathrm{w}$ Loudon makes distinct $13-16 \mathrm{w}$ thinks a var: of D. deltoides a wild species $24-26 \mathrm{~m} / 24-$ 30 w form of petals a little different in D. glaucus from D. deltoides 94 wt (a) sowed seeds of wild D. glaucus \& sometime a red flowered plant came up like D deltoides * Both British \& considered by Loudon as distinct 5Q $8 m / w$ (a) $961-3 w$ intermediate 6$7 w$ quite sterile $16-26 w$ supported strong vegetation $=$ theory of all hybrids whether quite sterile or partly fertile $97 w t / 1-5 w$ B. This experiment produced much good seed; which surprised him, as this hybrid impregnated with D. Hortensis gave none. NB is perhaps explained by great fertility of D. plum sib with D. chinensis (p.43) So that a third species is more fertile with the hybrid, than one of the parents $6-8 \mathrm{~m} / \mathrm{w}$ B $9-12 w$ ought to be repeated to be trusted. $9812-$ $16 w$ intermediate $995-8 w$ offspring differed considerably in every respect from same capsules $10012-17 \mathrm{~m} / \mathrm{w}$ sterile except in one, some good seeds. 101 12-13w Another example 13a "der"/w 1st 14u "S.32" 102 2$18 w$ The two hybrid plants differed in colour \& in some other respects $w b$ confirms remark, that hybrids in second generation with other hybrids not so constant, as in the first cross $103 \quad 6-8 w$ fertility of some increased $15-16 \mathrm{~m} / 15-26 \mathrm{w}$ wild species yet does not seem to induce its form in this cross with any particular force. $10425-28 \mathrm{~m} / \mathrm{w}$ fertile with self by self $10511 m, 19-26 m, 26 u$ "zwergartige" $/ w$ dwarf wb 3 plants differed in colour * two approached nearer to D. barbatus \& one to D. chinensis.- 106 1-19w similar hybrids from 2 reverse experiments sported \& two leaned to D. barbatus $24-31 w$ seems no rule in the variation of such hybrids $1071-3 \mathrm{~m} / \mathrm{w}$ tendency to be dwarf 109 wt seems to * say, that, as in a hybrid,
the male or female side is most fertile, so will its offspring take after that side. $7-12 m$ $112 \pi 2-1 m / w b 2$ differed * 3 hybrid generation $11324-31 m / 12-29 w$ repetition of old experiments $114 \quad 17 u \uparrow / 18 u \wedge / 1-24 w$ intermediate \& quite sterile - fertile: \& hence varieties Loudon makes out diff. shrubs \& plants China \& E. Indies 25-26m, wb Hooker looked to these Hibisci for me; those now thus named are very distinct \& really very distinct in appearance \& male even into 2 genera: case cannot be trusted 116 wt A) Hooker found for me, that Mat. incan \& annua are thought vars. by R. Brown \& Bentham says M. glabia is also only a var. So case fails $4-6 m / 1-6 w$ thinks infertility shows these distinct species $18-20 \mathrm{~m} / \mathrm{w}$ Make a list with reference to X Hunt out these vars $18 w=$ Mathiola in Loudon A. $23 u$ "Winter 1 $z u ", 24-29 w / w b$ Gaertner has not tried this, Note given in K. to reciprocal cases of M. annua \& glabia p. $7061027 w$ so that 3 reported species are distinct $w b$ x Resembled each other in inverse Incana is Purple stock. annua ten-week stock. 117 19$20 \mathrm{~m} / \mathrm{w}$ as fertile as two parents $26-29 m$, $w b$ Must be considered as varieties, though flowering at different times duration of flower \& other differences. 118 wt Impossible to make anything out in Steudel Mem. species not in Loudon 1-2w Sida Not experimented on by Gartner $10-15 \mathrm{~m} / 7-10 \mathrm{w}$ fertile hence varieties intermediate 19-21w cannot be traced in Sageret 22-26w Compare with Sageret. 119 wt Hooker allows these two Aquilegias probably distinct 5-6w intermediate \& fertile $8 w$ varieties $17 \mathrm{~m} / 15 \mathrm{w}$ Columbine $22 w$ double $24 u$ "einfach" $/ w$ single wh I see Gaertner p365 experimented much on Aquilegia \& nearly all (i.g.) (but no Ks.) with many species: *Now Hooker thinks all one species; has he published? 120 14-15u "stark verveifältigen"/w V very double 122 $1-15 w$ Greatly varied * in colour \& doubleness. $18-27 w$ as in inverse \& varied as in do 123 wt Attributes the great variation to the cultivated state of the garden Columbine: supports statements at p.85. 10$11 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "und \mid Fruchtbarkeit" $/ w$ not small * fertility $\times 9-14 m *, w b / 17-31 w$ Some might think these hybrids p49 might be selfpropagated for perpetuity; he does not believe, as seeds somewhat less, or doubleness only right number in parents. also from the tendency in many cases to return to either parent form $124 \quad 22 w$ Hyosciamus $23 w$ p46 $1258 m 12719-27 \mathrm{~m} / 10-$ $31 w$ I have not well made out following

KÖLREUTER，GESCHLECHT DER PFLANZEN
pages．wb In Syngenious plants，the pistils head down \＆touch pollen \＆C．Sprengel I shd think did not know this $13022-24 m 131$ $9 m \quad 134 \quad 1-6 m / 1-15 w$ wonders at the movement，as he thinks impregnation \＆ happens by insects alone $13627-31 \mathrm{~m} / \mathrm{w}$ On Pollen 152 1－18w pollen in water，when swelled，does not burst in many genera

KONINCK，Laurent Guillaume and LE HON，Henri Recherches sur les Crinoïdes du terrain Carbonifère Bruxelles；Académie Royale de Belgique； 1854 ［Down，I by Koninck

NB 55
$554 w$
KÖRNER，Friedrich Thierseele und Men－ schengeist Leipzig；Otto Wigand； 1872 ［Down］
$\mathrm{NB} \mathrm{O} /$
§
KOWALEWSKY，Wladimir Monografie der Gattung Anthracotherium Cuv．1．Theil； Cassel；Theodor Fischer； 1873 ［CUL，I］
$\mathrm{ad}, \mathrm{dv}, \mathrm{phy}, \mathrm{tm}, \mathrm{ts}$
SB ${ }^{\circ}$
147 The older pari－\＆impari－digitata have collar bones much more alike than they have now－gradual divergence
147 thinks changes very stow 〈ie slow \rangle
153 thinks reduction of 4 －toed to 2 or 1 toed wd be grt saving，for reduced blood－vessels \＆ C
183 much about adaptive \＆unadaptive changes．
What I do not understand
$13725 m 14513 m 147 w t$ The older forms of the paridigitata \＆imparidigitata have collar bones much more alike than at present day －gradual divergence．－2－16m，35－41m 148 8－9m 149 23－26m／25u＂Choeropotamus＂ 151 $27 \mathrm{~m} 15311-21 \mathrm{~m}, 37-40 \mathrm{~m} 1546 \mathrm{~m} 16135 \mathrm{~m}$

KRUSENSTERN，Paul von Wissen－ schaftlichen Beobachtungem auf einer Reise in das Petschora－Land im Jahre 1843 St． Petersburg；Carl Kray； 1846 ［Down，I by Murchison］\wp

KUHL，Joseph Die Descendenzlehre und der neue Glaube München；Ackermann； 1879 ［CUL］
title page $w t$ Febr
\wp

KÜHNE，H．Die Bedeutung des Anpas－ sungsgesetzes für die Therapie Leipzig；Ernst Günther； 1878 ［Down］

KÜHNE，Wilhelm Untersuchungen über das protoplasma und die Contractilität Leipzig； Wilhelm Engelmann； 1864 ［Down］\wp

KUNTZE，Otto．Methodik der Species－ beschreibung und Rubus Leipzig；Arthur Felix； 1879 ［Botany School，I］\wp

KUNTZE，Otto Um die Erde Leipzig；Paul Frohberg； 1881 ［Down，I］\wp

KURR，Johann Gottlob von Untersuchungen über die Bedeutung der Nektarien in den Blumen Stuttgart；Henneschen Buch－ handlung； 1833 ［CUL］
ad，beh，che，fg，gd，mhp，mn，no，oo
NB $w<0$
SA $\langle p p .28-29\rangle \square \beta$
Jan． 191861 Abstract of whole Book
He asserts that Cruciferae are unfrequented before flower opens（Kurr）
〈over〉 \rightarrow
Jan．13th／61／Nectar an excretion－as seen in Legum．\＆Laurel－see also Kurr for other cases．－In Bracteen \＆flowers later produce only when sun shines－sugar is highly oxidised，\＆is not oxygen exhaled when sun shines．－Nectar is sought eagerly by various insects－C．C．Sprengel，finds case that it is excretion in various parts \＆organs within flowers \＆its very general presence in highly organised plants（see Kurr）was of special use to plant by attracting insects．－He erred in supposing that these visits were for self－ fertilisation；though in many cases necessary for self－fertilisation（a）\＆for various of the Dioicous plants．The real object as shown by many general considerations is to ensure occasional cross．－But true as it in those flowers，as Papaver \＆
〈over〉 \＆Verbascum（Kurr）no nectar，yet these genera naturally cross－I suspect pollen－searchers do the job－But there are some as grasses，conifers，on pollen of which insects do not seem to feed－here wind both unites dioicous \＆crosses the hermaphrodites－Often have feathered pistil without pollen in adundance－dangling anthers－open petal flower \＆c \＆c．－\＆no nectar（except Poa aquatica probably）Think of number of Insects which feed chief on Nectar！
（a）A hermaphr plant not self fertilising itself \＆thus requiring insect agency is in fact for same object of crossing
SB2 $\square \beta$
Nectary p． 129 p133 V tricolor Delphium
（over）Abstract of Kurr on Nectary Jan 14 18611
p． 17 Cyperaceae \＆Gramineae Junceae no nectar Arum none（false）－p34 Rumex， Atriplex none Rheum has 36 Plantago none 25 Calyx of certain Iris secrete Nectar
29．Lip of Butterfly orchis secretes before flower opens $\|$ throws light on secretions in Listera \＆c
28＊Bracteen of certain orchids secretes honey
29 Cypripedium no nectar！
－ 79 Polygala vulgaris none；yet I have seen Hive－Bees smelling shows how rarely secretion happens So Viola same facts
39 Small flower with nectar Veronicas（44 Myosotis） 54 Galium 2 spe．\＆Asperula／64 Epilobium hirsutum \＆Montanum） 79 Stellaria \＆Sagina procumbens／83 Draba verna／
40 Verbascum none（yet cross naturally）－ Solanum tuberosum \＆parent none
42 Syringa vulgaris none？whether in own country？
80 The fruitful flowers of Viola have no corolla or nectary－（probably self－fertilisers） 85 in Cruciferae generally fertilisation in compound flowers．－\＆Honey after fertilisation $=$ some error $=$
86 Papaveraceae（they have the guiding mark of C．C．Sprengel）no nectar
95．Amentaceae $\%$（except Salix known to be visited by Bees．）no nectar．Or Coniferae Good as showing use of nectar in several cases as Graminae Cyperaceae．\＆ Coniferae when we see structure \＆pollen strong that wind is agent No nectar
〈over〉 99．List of plants without nectar
102 Nectar rarely secreted before pollen shed but last afterwards
115 cases of nectar secreted outside of flower（does not know of many cases）
124 cases of Orchids which get no seed when spurs cut off．－but opposite cases given in note
126．Viola tricolor bore seed when spur cut off probably bees do not see \＆are guided by flower－so with Corydalis later
129 general conclusion from 441 experiments barely lessened seed．－
131．some orchids bore fruit when corolla cut off
133 V．tricolor bore fruit 135 General
conclusion that cutting off corolla did not prevent flower producing fruit！
138 to 142 General conclusion of whole Book on use of Nectaries－All spoilt by not knowing of use of Crosses．
$12 w b$ Krultz $173 m / w$ Arum must have Honey $11 w$ none $\Uparrow 15-10 w$ none Poa aquatica must have－one Moth frequents 19 $4 w$ none $2215 \mathrm{~m} / u$＂beiden untern＂ $25 \$ 14$ $12 m 285-10 \mathrm{~m} / \mathrm{w}$ No Honey look at night－ $\Uparrow 7-4 m / \Uparrow 6 u$＂Bracteen＂ $292-5 m / w$ lip of Butterfly orchis before flower opens 18 m 32 $7-15 m / x / w$ Proteaceae with nect on one side 34 ＂Rumex＂．x，＂Chenopodeae＂．x 36 ＂Plantago＂．x ，＂Primula＂．$x 381-10 w$ Bees wd not go where the nectar accumulates．- ie in Nectar pollen $\Uparrow 9-8 m 395-15 w$ Veronicas， though so small secrete Honey 40 ＂Verbascum＂．m／w X Yet cross so readily！ Naturally moveableO by polien－searchers ＂Solanum＂．m / w none 42 ＂Syringa＂．m / w none 44 ＂Myosotis＂．m / w small flower $45 \Uparrow 8 u \leftrightarrow 49$ ＂Apocynum＂．m $50 \Uparrow 18-14 \mathrm{~m} / \uparrow 17-16 u$＂welche। Saftmal＂$/ w$ receptacle 51 ＂Pyrola＂．m 52 1－2m／ wt shows secretion of pollen relates to opening of flower 3－8m 54 ＂Galium＂．m／u，介3－ $1 m 571-4 m / 4 u$＂unterelHälfte＂， $16 u$＂der 1 umgibt＂， $19 u$＂ihnlumfasst＂ 64 ＂Epilobium＂．m 65 ＂Potentilla＂．m $66 \quad$＂ 25 ＂$m \quad 67 \quad 5-6 m / 6 u$ ＂Saftabsonderungldem＂ 71 ＂Melianthus＂．m／w latent 74 介4－1m $751-2 m / 1 u$＂ist einseitig＂ 79 ＂Cerastium＂＂Spergula＂．m／u，＂ 11 ＂m ，＂ 12 ＂m ， $" 13 " m, \quad \Uparrow 11-9 m, ~ \Uparrow 10 u$＂keine Honig＂／w Bees frequent $80 \Uparrow 10-1 \mathrm{~m} / \Uparrow 2 u$＂einigemall wurzelständigen＂ 83 ＂ 9 ＂$m 85$＂Cheiranthus＂．$m /$ ！／u士 86 ＂Papaver＂．m / w Yet cross naturally 88 ＂Anemone＂．m／u 95 ＂ 1 ＂－＂4＂．m，＂ 7 ＂$m, ~ \Uparrow 4-1 m$ 96 3－5m 97 ＂ 27 ＂m ，＂ 44 ＂$m 99$ wt Poppies have mark at base of petals to guide Bees $6-7 w$ Eliz has plant＇s／ua，$\ddagger w$ Anemone remarkable exception cover up Anemone 100 3－5m $101 \Uparrow 14-8 m / w$ good for looking to Pistil $1029 u$＂höchst selten＂， $22 u$＂gleich häufig＂，$\ddagger w$ Nectar very rarely secreted before pollen shed but sometimes lasts after fertilisation． Present in dioicous plants $103 \Uparrow 18 u / w \tau$ ， $\Uparrow 16 u / w \tau$ ，$\quad \uparrow 14-10 \mathrm{~m} / \mathrm{w}$ Nectaries become regular in double flowers $10412-16 \mathrm{~m} / 15 u$ ＂Orchis Imaculata＂ $17 u$＂sehrlabsondern＂／w Nectar receptacles present where no honey！！？These，I suspect，are cases of secretion at odd times． $21-24 \mathrm{~m} / \mathrm{w}$ doubts whether they serve as guides to insects． 115 $\Uparrow 6 u \mathrm{t}_{\mathrm{o}}$＂heisser＂，$\uparrow 12-6 \mathrm{~m} / \uparrow \mathrm{w}$ Secretion of sugar by other parts of Plants $1197-10 \mathrm{~m}$ ， $14-17 \mathrm{~m}, \quad 20-22 \mathrm{~m} \quad 120 \quad 1-12 \mathrm{~m}, \quad \Uparrow 12$ ？$/ u$ ＂Viehwaiden＂，$\uparrow 10 u / w \tau 1212-6 m$（Sprengel）／w

KURR
(a) wt (a) First who saw use of nectar to temt insects $1245-7 \mathrm{~m} / \mathrm{w}$ O. conopsea bore no fruit $8 u$ " 15 ", $9 u$ "nurlan" $/ 8-9 m, \Uparrow 6-1 m / w$ contrary result 126 wt Nectarys cut off 11$12 \mathrm{~m} / \mathrm{u}$ "alle|reife" $/ \mathrm{w}$ It is clear Bees do not perceive when nectary cut off.- $1278-9 m$ 128 " 27 " m, " 30 " $m 12914 a$ "Versuchen" with nectary cut off $i w$ before the whole cutting off nectary hardly lessened Seed. 130 wt Orchids Cutting off flower $\Uparrow 11 u$ "keinel trug", $\uparrow 7 u$ "Blumen 1 Kelch" 131 wt corolla cut off $4 u$ "sind gereift", 8-9u "aber|Frucht", $18 u$ "eine Frucht", 21u "Hälfte" 133 5-6m, $11 m$ "Blumen I Früchte", "Viola". $m / m \$ / w$ (a) wb (a) Could he have artificially fertilised these flowers? 134 " 69 " m /!/u "sie | Saamen" 135 " 76 " m, " 77 " m "Fruchtbildung", "II"m $138 \quad 7-10 \mathrm{~m} / \mathrm{wt}$ says as he cut off corolla \&c \& yet plant bore seeds yet cannot argue that these parts useless so he says with Nectarys $\uparrow 4-1 m$, wb argues against Sprengel, because in most honey-secreters no help is wanted (does not think about crossing) he has proved in many cases no help wanted. Because many are fertilised in bud, as Campanula!! 139 2-6m/w no help wanted $7-9 m, 10-12 \mathrm{~m} / \mathrm{w}$ Nectar fails in many dioicous plants. $16-17 w$ B $19 u$ "solhabe", $\Uparrow 17-1 m / \Uparrow 10-8 y \pm, w b \quad$ B Believes insects necessary for some dioicous plants, but cannot believe so important an office left to chance! $1401-4 m 1415-9 m 142 \pi 8-2 m$, $w b$ Secretion of nectar, he concludes, relieves flowers, like menstruation, before seeds are got.-

KURTZ, F. Die elektrischen und BewegungsErscheinungen am Blatte der Dionaea muscipula Leipzig; Veit \& Co.; 1876 [Down]

LABILLARDIÈRE, J.J. de Relation du voyage à la recherche de la Perouse 2 vols.; Paris; H.J. Jansen; 1791 [Down, pre-B] \wp

LACEPÈDE, Bernard Germain Étienne de Histoire naturelle des cétacées 2 vols. in one binding; Paris; Plassan; 1809 [Down, pre-B]

NB 242
vol. 1, 239 12-14m 242 9-17m

LAING, Sidney Herbert Darwinism refuted; an essay on Mr Darwin's theory of "Descent of man" London; Elliot Stock; 1871 [Down]
NB O/

LAMARCK, Jean Baptiste de Histoire naturelle des animaux sans vertèbres 1 st edn, 7 vols.; Paris; Verdière; 1816-17 [CUL, pre-B, on B?]
gd, sy, tm

vol. 1 NF Have

〈untranscribed w are page-number references; $\infty\rangle$
vol. 2, $172 w, 13 w, 17 w, 24 w, 25 w 181 w, 2 w$, $3 w, 6 w, 8 w$ Order Polypes Tubiferes 405415 $228 w, 14 w 71 z t 908-12 m, 9-23 c / 15 w$ (a) $w b$ (a) Flustra is stony \& entirely membranous $9117 w, 18 w, 19 w, 20 w, 21 w$, $22 w, 23 w, 24 w, 25 w 10511 w, 12 w, 17 w, 22 w$ 123 15-17m $4496 w, 7 w 4572 w, 19 w 4587 w$, $15 w 504$ 9-10m $5272 w, 9 w 5281 w 53014-$ $18 m$
vol. 4 NF ω
Hymenoptera 38; Neuroptera 179; Orthopteras 229; Coleoptera 266; Dom. 272; Frim. 275; Tetrar. 283; Heterom. 366; Pentam. 437; fil. 439; clav. 532; Lamell. 564 $4225 w 433 w, 12 w, 18 w, 24 w, 28 w, 32 w 123$ $10 w, 14 w, 18 w, 22 w, 25 w 18519 w 227$ 31$32 m 2348 w \Leftrightarrow 240 w b$ caught a specimen 370 miles from coast of Africa where it must have come from 248 15-18m 272 10w, $11 w, 12 w, 13 w, 16 w 28414 w, 21 w, 25 w 285$ $2 w, 4 w, 6 w 35823-26 m 36720 w, 27 w, 30 w$ $3682 w 3975 w 3991 w \Leftrightarrow 4391 w, 4 w, 7 w 440$ $14 w, 18 w, 20 w, 24 w, 27 w, 29 w 49227 w, 28 w$ $4933 w, 13 w, 14 w, 15 w, 16 w, 20 w, 22 w, 25 w$, $30 w, 31 w 4943 w, 4 w, 6 w, 8 w, 9 w, 13 w, 14 w$, $19 w, 20 w, 21 w, 25 w, 28 w, 31 w, 32 w, 33 w 532$ $\Uparrow 1 w 5332 w, 6 w, 9 w 5668 w, 9 w, 11 w, 14 w$, $18 w, 19 w, 23 w, 30 w, 31 w, 32 w 5672 w, 5 w$, $9 w, 10 w, 11 w, 13 w, 19 w, 22 w, 23 w, 24 w, 26 w$

LAMARCK, Jean Baptiste de Histoire naturelle des animaux sans vertèbres 2nd edn,
revised by G.P. Deshayes and H. MilneEdwards, 11 vols.; 1835-45 [CUL]
ad, af, is, mhp, t, ud
vol. 1 NB1 It is doubtful whether Lamarck has done more good by awakening subject, or harm by writing so much with so few facts.-
This volume no facts, wild metaphysical speculations - very poor
vol. 7 - Land-Snails on Islds
Nothing else in whole work March 1857
NB2 March 1857 Nothing
111; 112; 114 to 116; 126; 132; 134; 151;
152; 153 to 165; 197; 249
287 On analogies
$11127-28 \mathrm{~m} / 28 u \leftrightarrow 11210-11 \mathrm{~m}$, 12-14m 113 $28-33 m$, wb Owen gives Rept (Rept Brit Assos) as strongest case of wide range of perfection $11430-35 m 115$ 19-23m 116 2931!/30u "perfectionnement" 126 34-36m 132 2$18 \mathrm{~m}, 23-25 \mathrm{~m}$ 134 12-14m, 18-20m, 28-33m, wb Milne Edwards 135 22-25m/!! $15120-24 m$ $1521-12 \mathrm{~m} / \mathrm{w}$ evidently has no notion $9-14 \mathrm{~m}$ $15518-23 m, 19-20 w$. 156 1-16m, 4-7w only proofs $1571 \mathrm{~m} / \mathrm{u}$ "loilobservation" $!!!/ \mathrm{wt}$ Because use improves an organ, wishing for it, or its use, produces it!!! oh - 158 5-6m, $24-25 m, 26-27 m, 30-31 m \quad 1593 m, 4 u$ "habitudes 1 prises", $5-12 \mathrm{~m} / \mathrm{w}$ this is nonsense applied to Plants, What makes them acquire a habit $13-18 \mathrm{~m} / 15-16 \mathrm{w}$ Base of theory $20-$ $23 \mathrm{~m} / 21 \mathrm{w}$ oh 163 14-16m 165 7-19m/11u "peulplus", $31-36 \mathrm{~m} / \rightarrow 16633-35 \mathrm{~m} 197$ 32$36 m 2491-5 m 2871-3 m, 4-11 m / 9 w 288$ 17$18 \mathrm{~m} 2887-12 \mathrm{~m}$, 16 m
vol. 5, 646 33-36m, wb V. Thompson Zoolog. Researches No 3 p69 651 22-28m 652 18$21 m / 18 u / w \notin$

LAMARCK, Jean Baptiste de Philosophie zoologique 1st edn.; Paris; Duminil-Lesueur; 1809 [vol. 1 only; CUL, pre-B, cover is that of 1830 edn .]
ad , beh, cc, ch, che, cr, cs, dg, ds, dv, ex, fg , fo, gd, geo, h, he, hl, hy, is, mhp, mi, no, oo, phy, sh, sl, sp, sy, t, ti, tm, ts, v
NB p261 On effects of intermarriage in preventing multiplication of species
SB $\square \mathfrak{R}$
44 It is odd that in animals organs for conservation of life important, in plants organs of reproduction - But a flower is more than organ.
58 good remark how arbitrary the distinction race \& species is.
62 alludes to conditions. [in Preface ask
whether from earliest * age there can have been revolution of climate corresponding to the many changes in organisms on earths face.]
Very poor \& useless Book
21 19-25m 22 14-18m, 19-21m 25 23-27m 26 $8-12 \mathrm{~m} / 9 \mathrm{w}$ Why? $10-21 \mathrm{~m}$, $21-22 \mathrm{~m} / \mathrm{u}$ "oul existé", wb Fallacy common to Swainson \& Macleay 31 wt X Here seems to think existing series perfect $12-14 m, 21-26 m / x 32$ 18-21m 33 26-28m, 27-28m, wb V. p31 38 wb In this Chapter argues that all divisions or gaps are artificial or that the series is either now perfect or has been so - Fallacy - 39 $9-12 \mathrm{~m} / 11 u$ "parenté" $4410-13 \mathrm{~m} / \mathrm{w}$ why so strong a division? $5024-28 \mathrm{~m} /$? $511-12 \mathrm{~m} 52$ $w b$ On the importance of relations $5511-25 m$ 56 14-25m 57 22-25m, $w b$ Lower animals where many species $581-9 m, 18-28 m 5916-$ $17 \mathrm{~m} / 16 \mathrm{u}$ "forment 1 rameuse", $18-24 \mathrm{~m} 62$ 21$28 \mathrm{~m} /$?, $w b$ is there any marked difference between races produced in same or different countries, with respect to propagation? 63 1$5 m * /$? $6422-26 m / 23-24 m, w b *$ a want of Proof $68 w t / 1-12 w$ The case of acquired hereditary instincts, shows that instincts can be acquired. 3-4m, 10a "tout" $\mid \rightarrow / 8 u$ "sublime Auteur", 21u "nature" 70 21-27m, 24-28m, wb \& not isolated pair 71 1-4m/??, $13-15 m / 14$ $15 \mathrm{~m} / \mathrm{w}$ Well-said $18-21 \mathrm{~m}, 20-28 \mathrm{~m}$, wb Like Lyell in Geology 75 1-7m, 10-14m, 13-27m, $w b$ not well stated $761-25 m, 10-23 \mathrm{~m} / 14 \mathrm{w}$ Poor $13 u$ "à détruire" $\mid \rightarrow / w b$ S. Africa 78 1$26 w$ The similarity of type on old Continents \& in oldest seas - does it point to first Creation?? wb Lamarck argues, species of shells, not killed by man, no apparent cause of death; but causes of change are present \therefore therefore fossil same species with modern.- 79 13-15m, 24-29m/w \therefore rate of change not uniform in world, except on great scale $w b$ Geologists judge of time by change of species, these changes effect of physical changes (dynamical changes). these we can only judge of by present day - Therefore measure of past ages is reduced to observation of changes at present day .- 80 wb Therefore every fossil species direct father of existing analogies \& no extinction except through man!- [Hence cause of innumerable errors in Lamarck] 81 wb On species - argues against permanence, when conditions changing - series branching now or once perfect - no genera - conditions change species \& these changes by time become fixed - assumes some more species made by (p.64) by hybridity \& fixed

LAMARCK, PHIL. ZOOL.
by time - wants produce habitudes, the source of actions, faculties \& instincts argues against Egypt case \& asks what is 2000 to 3000 years? -/definition of species 75 /doubts any extinct animals! (hence theory must be false $X X w b$ There is nothing about types as Geograph. Grouping 83 9$15 \mathrm{~m} / 10-11 u$ " n 'offrant | parfait" ?, wb nearly all compound animals being fixed, analogy with vegetables,- caused probably by * imperfect transmission of will preventing voluntary \& coinstantaneous movements. 84 $1-4 m /$? $861-4 m 8916-22 m /$? $931-5 m 101 \mathrm{wb}$ Speculations $10511-14 m, 21-25 m 106 \quad 17-$ $27 m 107$ 15-27m/17u "quelle" 108 13-22m 109 9-16m $11024-28 m 127$ 15-23m $129 w b-$ Classification - p.105. few animals at the limits of classes - animals in series \& not ramified p. 109 (quite different from my view) - organs vary in developement \& not in same ratio, as the developement of the class to which it belongs $13427 \mathrm{~m} 1351-3 m 1361-$ $6 m 1401-27 w$ There appears to me to be some confusion in these ideas of degradation. What makes perfection, except that towards the end wanted. Look at House) of Crustacea wb Scale (of many kinds) of complication $=$ on exists. $1441-3 m$ $1456-14 m, 13-27 w$ Here is the difference between Lamarck \& Me 146 5-8m/? 147 1$2 m 1483-8 m, w b$ The economyes of world would have gone on without Bats or Ostriches.- It can only be following out some great principle it is clear Birds made preeminent for air. yet if no birds: Mammalia would best take place 149 wb <continuation of p. 148) There limit to this Adaptation. Fish could hardly have lived out of water. Though Crabs - Spiders under water.- $\mathbf{1 5 0} \mathbf{w t / 1 - 5 m /}$?/w This is rather false; Simply to differ from highest animal, does not prove degradation. Who can doubt superiority of some organs \& therefore senses in lower animals $15-28 \mathrm{~m} / \mathrm{w}$ How curiously different from Swainson $16 u$ "palmipèdes"/w Why? 18u "sortant|marcher" $1516-10 \mathrm{~m} / \mathrm{w}$ as bad as Swainson 155 13$15 \mathrm{~m} / \mathrm{w}$ no links with high classes 156 15$16 \mathrm{~m}, 16-28 \mathrm{~m}, \mathrm{wb}$ according to his class of argument. This not degradation because mere effect of in $1575-10 m$, wb NB Snakes perform the parts of fish, \& fish of snakes.$1587 u$ "odorant" $/ \rightarrow / w b$ On this scheme of organization lower down it would not be expected to find organs \downarrow smell more perfect. But in others as articulates it is much more perfect 217 wbo This chapter must be looked over again: L. distinguishes between degraded or abortive organs, such as
extremities of Cetacea, \& less developed forms -: discussion on this point fills much of this Chapt. wbe The want of progression in the vegetable world serious fact Lamarck has rather overlooked - Though no doubt vegetable world should rather be considered as one family (not so large as insects) in the scheme of organic beings. $22123-27 \mathrm{~m} 223$ 14-21m/w Therefore not same theory to plants \& animals 229 24-28m/28u "formées pays"/? $23516-18 m / 17-22 w$ are there any facts? I doubt 241 3-8m, 13-16w Australia honey-sucking marsupial. $2421-6 \mathrm{~m} / \mathrm{w}$ Mem. Tucotucu wb Coleoptera wings beneath soldered cases $2448-13 m / 9$? $2465-13 m 261$ $22-28 m 2621-7 m 2667-14 m, 10-28 m$, wb Does not pursue this into Geographical Distribution 267 7-16m, 18-27m 268 wb Explains how animals \& plants change. Lamarck's theory differs for plants \& animals - It is absurd this way, he assumes the want of habit causes animals annihilation of organ and vice versâ - \|Explains how crossing presents innumerable varieties of man - \& supposes if no distance between men, there would not be many races of man - does not extend this view 376 1-3m/1-13w This shows connection of life with laws of Attraction- 16-28w if food in stomach is vitalized one need not wonder at the power of the womb $37810-18 \mathrm{~m} / 12-13 \mathrm{w}$ crystal 379 $19-25 m / 21-22 m 3801-7 m / 3$? 381 wt Have not crystals certain properties common to the whole \& not to part? 1-3m, 1-10m, 4-14m 382 20-21u "toujours laccidentale"/w crystal 25-28m, wb Endosmos \& Exosmos purely Physical action 384 1-28w The interruption of ordinary laws of classical attraction most striking character of life $13-26 \mathrm{~m} / \mathrm{wb}$ Other final cause 388 13-26m/ $24-25 m 3926-9 m$ 393 16-27m

LAMARCK, Jean Baptiste de Philosophie zoologique new edn, revised and introduced by Charles Martin, 2 vols.; Paris; F. Savy; 1873 [Down, I by Martin] \wp

LAMBERT, Charles L'Immortalité selon le Christ Paris; Michel Lévy Frères; 1865 [Down, I]
§
231 14-18m 233 11m, 14m 256 24-26m 275 12-16m 27922 m
\wp
LAMBERT, Charles Le système $d u$ monde moral Paris; Michel Lévy Frères; 1862 [Down]

LAMBERTYE, Léonce Le Fraisier Paris; Auguste Goin; 1864 [CUL]
hy, sp, tm, v
NB All used 1865
p. 14 M. Gay ; p. 24 no runner; 37 5-leaved curious; 50,51 to p.63; 76
History 125; 127; 137; 221 - 230; 2445 leaved; Belle Bordelaise not a Hybrid
14 6-11m/w Hautbois $2425-27 m 37$ 17-20m 50 17-20m, 25-31m 52 19-23m 53 24-25m/w Scarlet 57 11-22m (Hooker) 59 1-2m/1u "c'est 1 subalpine", 27-31m 61 4-7m, 16-21m 62 25-30m, 31-32m 76 19-24m $7735 m$, wb not hybrid $125 \quad 14 w \quad 1683127 \quad 28 w \quad 1746 \quad 29 u$ "citées"/29-31m 137 11u "Fressant"/4-14w 1766 all specs known 5 vars with some subvars of F. vesca $17323-29 m 22124 m$, 28$33 m 230$ 13-19m, 21u "Belle Bordelaise", 28$33 m 24431-34 m 2451-3 m, 4-7 m 37923 m$

LAMONT, James Seasons with the sea-horses London; Hurst \& Blackett; 1861 [Down, I] beh, gd
NB 89 Drift wood on Spitzbergen from W. Indies \& some N. country
141 Walrus fighting manner of
$897-18 m 1411-3 m 1439 m, 25 m$
LAMOUROUX, Jean Vincent Félix Exposition méthodique des genres de l'ordre des Polypiers Paris; Veuve Agasse; 1821 [CUL, pre-B, S]
facing viii table.wec $5 \mathbf{b} 32-33 m$ 11a 20-22m 107a 20 m 107b 19 m 108 21m, table $31 . w$ Pavonia table 57.w Modespora table 64.w Cillepora, 12-16 F, 171822 Cill table 65.wt Cilla - table 65.wb Tert

LANCIANO, Raffaele L'Universo, l'artro e l'individuo Napoli; Tipografia Italiana; 1872 [Down, I] \wp

LANESSAN, Jean Louis La Lutte pour l'existence et l'association pour la lutte Paris; Octave Doin; 1881 [Down]

LANESSAN, Jean Louis $D u$ protoplasma végétal Paris; A. Parent; 1876 [Down] \wp

LANKESTER, Edwin Ray Degeneration. A chapter in Darwinism London; Macmillan; 1880 [CUL]
$\mathrm{ci}, \mathrm{dg}, \mathrm{sx}$
NB male cirripedes the shorter cirripedes the primitive cirripedes
reason for Mites being degenerated Spiders Anclasma Ibla

LANKESTER, Edwin Ray On comparative longevity in man and the lower animals London; Macmillan; 1870 [CUL, I]
beh, ct, fg, h, he, in, 00, pat, sl, sx, ta, y

NB1 Bears on Natural Selection

p. 75 Rate of Reproduction

I think I had better only say after discussing how long the series of changing cells goes on (perhaps for even senile diseases) that longevity is a more difficult subject $\&$ refer to this book.-
NB2 Who has * discussed this obscure subject more fully than 2 other recent authors
Pangenesis 31, 36
Longevity \& Individuation *
45 longevity
do $71 \checkmark$
76
Pang - 77, 108 © Death-rate of married men
$\checkmark 79$ 人
Summary on Longevity 87 Summary; 119

- 91 Struggle for existence between societies
- savages perish in old age from starvation - 117
- 120 Destruction by Intemperance; Table p. 114
- 122 - The struggle for existence includes rearing children
- average mortality has increased - 126
- 128 on Fraser's article

31 16-24m, 28-29m (Darwin) 32 12-20w no, they multiply $33 z t$ 00000000 wt the last will consume all gemmules in repair wt How many stages of metamorphosis $1-6 w$ I suppose after a time, same cell reproduced 8-14m/w Gemmules? used up in repair 36 1$11 \mathrm{~m} / \mathrm{w}$ If any gemmule had but limited power of increase all wd be clearer $451-4 \mathrm{~m} / \mathrm{w}$ Parrots Tortoise? 71 21-28m 75 28-30m, 28m/ w ? Herbivores $31 m \quad 76 \quad 17-23 \mathrm{~m} / 18 u$ "generative expenditure" $/ 9-21 w$ greatly opposed to his belief $7713 u$ "castrated animals" $/ 12-15 m / w$ They ought to be for they retain gemmules \& , 23-29m 79 8-12m 87 13$25 m / 17-22 u \pm 916-11 m 10827-28 m 1175-8 m$ $119 \quad 6-8 m \quad 120 \quad 28-29 m \quad 122 \quad 17-19 m / 15-20 w$ that not starved to Death, to marry \& rear children 126 7-9m 127 9-13m 128 20-24m, $26-28 m / 26 u$ "social virtues" $12919-21 m, 30 m$, $31-33 m /$?, wb No some differn in constitution same disease not twice
catalogue \wp

LARDNER, Dionysius (ed.) The cabinet cyclopaedia; outlines of history London; Longman, Rees, Orme, Brown \& Green; 1830 [Down, I Charles Darwin 1839]

LATHAM, Robert Gordon Man and his migrations London; John Van Voorst; 1851 [CUL]
af, beh, cc, ds, ex, gd, h, ig, mg, no, oo, sy, tm, v
NB 49 Man \& Monkey compared by summary, only numerical on Resemblances
SB1 \square R
p.47, 49 (If we cd we shd class Man by Descent, I think) p. 74
p.62; 70

97 - Perhaps a decrease or unfavourable conditions might destroy the intermediate vars, or the increase of a new \& better variety or species. when formed overtakes the intermediate vars.
123; 135; 156
SB2 $\square \beta$

- Latham Man \& His Migrations - refer to \& read these passages.

48. Quotes Owen with approval, teeth offering more valuable character because not surrounded by muscles.-
69 \& 70 good remarks on contrast of sudden removal and the natural slow movements of spreading species or man.-
49. Excellent remark (quote in Ch. 6?) on how during incroachment, one var. will 123 do obliterate intermediate forms: I do not see force of Displacement .- If one form gains an advantage over the other independent of climate, it will overwhelm the graduated intermediate forms
74 Excellent remarks on classification by descent \& resemblance
135 Clever remark on different climates which man inhabitants of Cape of G. Hope \& of S . America must have passed through.over
$\overline{\langle o v e r\rangle}$ p. 156 contrasts the primary diffusion of man, with that of subsequent diffusion, when man is opposed by man - N.B the wide \& rapid spreading of introduced plant is something like this - its progress are not yet developed
47 24-27m 49 3-11m 70 1-4m 74 6-17m, 2627 m 75 11-12m, 15-16m/16a "same" descent $24 u$ "Ethnology", $28 m 76$ 2-7m 97 21-23m 123 26-28m 135 19-27m 145 wb 205156 wt But in quite open country man wd increase more rapidly $5-13 m \quad 181 \quad 8 \mathrm{~m} / \mathrm{u}$ "Comorin" $/ \mathrm{w}$ Matapari? 191 6-9m

LATREILLE, Pierre André Histoire naturelle des fourmis Paris; Théophile Barrois père; 1802 [CUL, pre-B]
beh
NB Abstract of Oct/58/
71 Winged ants * carried low in nest when it is disturbed
73 Workers try to keep in winged individuals in nest.
title page wt Latreille died 6 July 183371 1$2 m 733-6 m 14018 w$ В $1431 w$ В $1504 w$ В $1511 w$ В $1565 w$ В $1591 w$ В $1667 w$ В 168 $8 w$ В $1952 w$ В $2467 w$ В $2516 w$ В $2551 w$ В $2571 w$ B $2591 w$ B $34517 w 8$ 〈number of eyes) $3474 m 349$ 9-10m, $12 u$ "Huit", $26 m$

LAUGEL, Auguste Les Problèmes de la nature Paris; Germer Baillière; 1864 [Down, I]

LAUGEL, Auguste Science et philosophie Paris; Mallet-Bachelier; 1863 [Down, I]
272 7-11m
LAVATER, Jean-Gaspard L'Art de connaître les hommes par la physionomie new edn by M. Moreau de la Sarthe, 10 vols.; Paris; Depélafol; 1820 [CUL, pre-B]
beh, pat, phy, ss
vol. 1, Avis 19 u "en 1807" 20927 u "cel1806"
vol. 3, $1391 w$ Read to $p .162$
vol. 4 NB All read

- p. 15 Camper Book; 17 Sexual Selection; 48; 52; 54; 120 sexual selection; 123 do
- 194; p. 205 to end Abstracted
p.194, 217 Plate of Muscles

15 19-20m $1715-17 \mathrm{~m} 4819-21 \mathrm{~m} 527-10 \mathrm{~m} /$ $7 w$ Buffon $544-14 m$ (Maupertuis) $12022-29 m$ 121 13-15m $12310 m, 11-13 \mathrm{w}$ all soft parts 205 4-8m/5-7u "c'est I musculaire", 17u "celui respiration", 18-20!!/20u "d'unelépisodique", $21 u$ "parole à", 29-30 $\rightarrow 2067-9 m, 10-12 m$ $20922-25 m / w / 30 \mathrm{~m} / \mathrm{wb}$ can it have been of service like language voluntary use to express ideas thus coming into aid of natural beginning $\rightarrow 210$ 1-4m, 14-15m, 27-30m 211 1-4m/2u "suivant Haller" 221 18-22m 222 2$4 m 22323-25 m / w$ same as corrugator $27-$ $29 \mathrm{~m} / \mathrm{w}$ different from Duchenne $22414-18 \mathrm{~m} /$ 1-18w/wt in opposition to the muscles which depress eyebrows in grief \& concentrated thought 228 24-26"...", $26 a$ "concentrées"/wb He then adds that these muscles from their attachment \& position are fitted * 229 $1-2 m, 1-2 u$ "principale I physiognomique", $3 u$
"sentiments sombres", 3-12"..." $23012-14 m$ 231 25-29m 237 2-3m, 12-15m 244 12-16m 263 3-10m, 18-20m 264 23-24m 274 20-23m 282 14u "noir 1 sang", 15u "le |artériel" 293 9$11 m / 15-22 m / 8-23 w$ is most delicate abounds with nerve \& tissues hence perhaps no other part could bleed so easily, \& specially liable to be affected by cutaneous eruptions 300 $16-18 m, 26-29 m, 29 m 3013-9 m, 17-26 m 302$ $18-27 \mathrm{~m} 3031 u$ "beautél ébène", $13-17 \mathrm{~m}$, 19$28 \mathrm{~m} / 19 \mathrm{u}$ "parlfront", $30 \mathrm{~m} 3042-7 \mathrm{~m} 30510-$ $14 m, 19-21 m$
vol. 6, 27 zt
vol. 8, $27418-22 z$
vol. 9 NB whole volume skimmed; 116 \& they hear excellently Pampas; 266 Hope; 273; 278; 289; 293; 295; 299; 300
116 8-13m $2664-5 m, 24-25 m 267$ 27-29m 268 12-13m 273 13-15m 277 fig. 11.w fear 278 5$6 m 2797 u$ "les \mid même" $/ w$ drawing back $10 u$ "prunelle | paraître", 25-26u "le|autre"/".../w frowning \& astonishment together $2808 u$ "voulant respirer" $11-8 \mathrm{~m} / \mathrm{w}$ If I want to show what rubbish has been written a translation of this will do.- 13..." 289 fig. 19/20.w sorrow fig. 21/22/23.w excessive pain fig. 24.w joy 293 fig. 25.w laughter fig. 26.w angry fig. 28.w passion $4 a$ "fermés" ie brought down at each end 3-8u士, 8-11m $2944 u$ "les lenflées" $2953 u$ "les lenflammés", 6-7u "narines lélargies", 810m, 11u "grinces", 13-15u "veines \mid hérissés" 299 19-21u士, 300 16-18m, 23-25m, 28-30m

LAWRENCE, John The horse in all his varieties and uses London; Longman, Rees, Orme, Brown \& Green; 1829 [CUL, on B] ch, he, pat, rd, v
NB p.5; p.9; p.30; p.230,234; 265; 283
SB $\square \beta$
30 Hereditary diseases of Horses
230 Changes in Fox Hounds Quou
p. 14 Tushes variable in Mare - Variable Rudiment
$525-26 m 928-29 m / Q 1428-32 m 3017-22 m$, 24-29m 230 9-16m/7-8Q 231 20-24m, 27-33m $2341-7 m 23523-25 z 2654-10 m, 24-25 Q 26-$ $32 m 266$ 8-10m 267 1-3m 283 19-28m 285 25 m

LAWRENCE, William Lectures on physiology, zoology, and the natural history of man London; Benbow; 1822 [CUL, pre-B]
beh, cc, ch, gd, phy, rd, sl, ss, sx, sy, tm, wd, y h, sx, tm, v
NB co p484 * 243 Blushing
172 - position Heart - \& other organs,
clearly by form of thorax \& attitude Appendix vermiformis 191
Expression - Tears vented by various animals - 205
Sexual selection • 272274276 Beard

- 393 Arabians beautified - Persian Chardin

397 Selection not applied to man (ω by other men it shd be added)
Ure $\rightarrow 484$ Ure's \underline{Q} sense organs.

- 437 Pallas on changes of coats of domestic \& wild animals in winter \& summer.-

452. Eyes of Negros at Birth

317, 319 exaggerate form of Head
337. flatten nose

354 Ears

- 356 Tattoo females
- 357 Lips
- 366 Hottentot women
- 368 Baboonser steatopyga
vb $3-9 m$ via $21-24 m, 40-55 m$ vib $17 m, 57 m$ viia $17-23 \mathrm{~m}$ viib $1-7 \mathrm{~m}, 22-30 \mathrm{~m}, 24 \mathrm{~m}, 59-61 \mathrm{~m}$ viiia $10-13 m, 20-25 m$ viiib $1-7 m$ ixa $12-16 m$ ixb $2-10 m, 15-20 m, 43-46 m, 53-62 m$ ха $27-$ $34 m$ xb $3-22 \mathrm{~m}, 38-60 \mathrm{~m} 1721-6 \mathrm{~m} / 6 \mathrm{w} \notin 173$ 12-18m $1919-13 \mathrm{~m} / 11 \mathrm{w}$ Ateles $20426-36 \mathrm{~m}$ $2057-11 \mathrm{~m} 243$ 16m/u (Forster) "Observations 1 229" 272 3-10m, $30-33 m 2731-4 m, 8-12 \mathrm{~m} / 8 u$ "practice extermination", 20-21u $\quad 25-27 \mathrm{~m}$ 274 9-11m, 18-21m 278 5-10m 317 25-31m 319 19-33m 337 30-32m $3548-26 m 3551 u$ "the 1 South" $/ 1-4 m \quad 35630-32 m / 32 u$ "of 1 the" $3571 u$ "female sex", 19-21m, 24-25u↔ 366 23-26m 368 31-34m 393 3-14m/7-11m/10-11w found $20-28 m, 31 \mathrm{~m} / \mathrm{u}$ "even 1 sprung", wb Chardin $\uparrow 5$ ".../wb Chardin says $3941 u$ "on 1 countries", $8-14 m / 10 \ldots$... $/ w$ poor $39715-17 m$ $40421-27 m 405 w b$ in all parts of the world confined to one stock $w b$ Pallas 437 24-32m, $31 u$ "Siberian roe"/wb Capreoli Sibirici subecaudata $30-33 u \pm 438 \quad 32-33 \mathrm{~m} / \mathrm{w}$ \& Gligium ordine $177845130-34 m, \Uparrow 6-1 m 452$ 1-2m, 5-12m

LAWSON, Peter and son Lists of seeds and plants Edinburgh; Peter Lawson \& Son; 1851 [CUL, I by W.J. Hooker] v

NB Oct 1857 O/
p. 65 Hollyocks; p.67; 87; 179; Nuts, Currants \& Gooseberies described 206 Synonyms of fruit; p. 20 Grasses
12a 10-11we 16 vars 13b 19-20wa vars 21 $6535-37 m 6711 w$ How many $871 w$ How many vars. $2 w 3-5$ feet $4 u$ "constant" 179 23-29m, 35-42m

LAWSON, Peter and son Treatise on the cultivated grasses and other herbage and forage plants 〈bound with previous item〉
20 8-14m, 21-29m, 21 m 23 3-7m 27 22-23m
LE BRUN, Charles The conference of Monsieur Le Brun, chief painter to the French King, chancellor and director of the Academy of painting and sculpture London; John Smith; 1701 [Down, pre-B]

LE COUTEUR, John On the varieties of wheat Jersey-London; H. Payn \& H. Wright; n.d. [CUL, I to C Darwin Octob 1841]
ad, cc, cs, dg, fg, he, mhp, no, oo, phy, sl, spo, v
NB Introduction \& p. 1 to 79; p17
SB vi variability of common wheat. adaptation to different soils
p. 6150 vars

12 chance origin of some vars X
15,16 careful selection of separate ears of corn in Columella's time \& Virgil
52 disbelieves necessity of change of some seeds but then he studiously varies the manure
$551 / 10$ of seed perishes even with greatest care Q
59 on one variety soon predominating over (good) another in wheat \& hence called degenerating (He has shown how every little trifle is heredetary) without destruction Q
65 an incorrigible tendency to sport in some vars. Q
66 Talavera does not cross because flowers earlier Q
70 Wheat seems affected by climate whence derived (Evidently believes in crossing)
23 Habit of growth differs
proportion of gluten
64 flower at different periods
79 quality of straw
vi $6-8 m / 4-12 w$ Henslow corroborates the degree of variation in wheat vii 22-24m $22-$ $5 m, 28 m 311-13 m 510-12 m, 11-13 m /!/ 12 u$ "perfect oats", 19-20m $64-6 \mathrm{~m}, 24-25 \mathrm{~m} 815-$ $18 m 1115-17 m 121-4 m, 5-6 m, 26-27 m 13$ $8 m, 17-20 m 1415-20 m / 19 x$ 15 10-12m 16 3-5"...", 5-6m, 9-10m 17 4-5m/4u "similar appearance", 9-15m/10u "tolsorts" 22 17$18 \mathrm{~m} 241-2 \mathrm{~m}, 5-7 \mathrm{~m}, 17-18 \mathrm{~m} 2622 \mathrm{~m} / \mathrm{u}$ "is tall" $353 \mathrm{~m} / \mathrm{u}, 15-16 \mathrm{~m} 388 \mathrm{~m}, 13 \mathrm{~m}, 16$-17m 41 16-19m/17u "fourteen"/19u "forty-two" 47 1$3 m 528 \mathrm{~m} / \mathrm{u}$ "is 1 idea", 23-24m $534 u$ "grown 1 land", $5 u$ "becomes \mid with" 54 5-6m/5u "brick| all" $5514 \mathrm{~m} / \mathrm{u}$ "one-tenth", $27-28 \mathrm{~m} / 27 u$ "seven
varieties" $583 u$ "degenerate", 8-9u "has 1 quality", $10 \mathrm{~m} / \mathrm{u}$ "less suited" 59 wt the same proportion wd exist $2 u$ "werelseed", $4 u$ "bel degenerated" 60 7-9m 64 6-8m/6a "some" different $6 u$ "some varieties", $23 u$ "A17" 655 $6 u$ "threelears", $7 u$ "two hundred", $8 u$ "twenty-one"/w $29 u$ "eighty six"/w $310 u$ "and |smooth"/wo $412 u$ "ear \mid discovered", $13 u$ "mixed Icorn", $19 u$ "Kentish|seedling", $26 u$ "smooth ears", $27 u$ "appearancelgrain" $662 u$ "eight|sort", 3-5m/3u "it incorrigible", 5-7m/ $7 u$ "is 1 pure", 11-13m 67 9-11m 70 9-12m 79 $20-21 m, 23-24 m, 26 m$

LE COUTEUR, John On the varieties, properties, and classification of wheat 2nd edn; London; W.J. Johnson; 1872 [Down, I]

LECOQ, Henri Études sur la géographie botanique de l'Europe et en particulier sur la végétation du plateau central de la France 9 vols.; Paris; J.-B. Baillière; 1854 [CUL]
$\mathrm{af}, \mathrm{cc}, \mathrm{ch}, \mathrm{cs}, \mathrm{dic}, \mathrm{ex}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}, \mathrm{hl}$, hy, ig, in, is, mhp, no, oo, pat, phy, $s p, s x, t, t m, t s$, ud, v
vol. 1 NB Index at end of Vol 9-
SA $\langle p p . x v-1 ; 10$ sheets $\square \beta$ except that referring to vol. 2
0
Lecoq. Vol. $1 \Leftrightarrow$ (Put in at end of Vol 9)
8. Number of species \& number of individuals not correlated in Coniferae

- Red mark cross pollination \& Dimorphism

56. Alpine plants often do not mature seed.

80 Saline plants in Puy de Dome!
139 Ref. to Catalogue of Plants of central France with rarity marked.
\Leftrightarrow A good deal about Tyme-like flowers 2 forms
144 Terminal flowers often different from others
159 Natural Hybrids
162 Hybrid Primulas fertile \checkmark
165 isid. Geoffroy on close representative species.
170. good remarks on resemblance of American \& European plants \& on Arctic plants varying much, explained.
182. Increase of Branchiae from use \& of Lungs from disuse in Proteus submerged.
194 Alpine plants bud at fixed time when transplanted
197. Vars. of Solidago flowering at different times
207. Von Buch on small genera in Islands * Believe in mutation of species \& so Lecoq 209 Land Mollusca of distinct species seen
in copulation
250．Lecoq believes in Transmutation
Feb． 71877 I have copied all I want for quotationo
Vol 2.
－ 162 plants standing very different climates
－Lapland \＆Greece
199 Atlas \＆New Grenada plants in comm．
205 Alpine Plants good
283 Forms which have wandered from Tropics
289 do．－Isolated Tropical forms
331 species ranging from high to low on Mountains
404 Alpine plants
406 do
410 alpine plants；their varieties
412 do
414 do－Middle heights have most peculiar forms
419 Alpine vars \＆intermediate vars．
－ 430 duration sign of Highness he remarks
162 Plants ranging from Lapland to S ．
Granada； 32 in number．－
Vol 3
71．thinks annuals highest forms！
72 Only one annual dioicous
75 few monooecious．
76 on proportion of Trees with separated sexes \downarrow
79 on separation of sexes all good \＆curious \checkmark
80 Extraordinary cases of separation of sexes under different latitudes，like Ivy case．
Imperfection of Nature
94 Imperfect flowers of Violet
102 On diversity in same species in flowering
161 different periods of flowering of same species on $X \geqslant>$ plain \＆mountain－a day for 90 ft
182 flowers which open at night
211．Replacement of one group by another
214 Changes in plants in pastures
222 Parasitic plants generally on very different plants－－gradation in degree
257 Northern Trees unarmed．by thorns
287 villosity character of plants in warm countries X＜\＆not of mountains－ 291．dryness most effect
$X \ll 405,7$ Piebald flower for crossing， like Gallesio
410．do striped flowers
see Back
Vol． 4.
4 White flowers steadily increase from S．to N．
11 In Arctic few bright

14 So on mountains
27 On smell of flowers Dichogamy
57 On social plants－to 68 on do
73 do
80 definition of sum of life
86 association distinct from social
207 Association parallel in different regions
233 representative species or vars．－
237 parallel species in different soils
239 do
272 On absence of certain forms in Islands
304 on struggle between allied Plants
407 Some sp．of Clematis polygamous D．
425 Some with aborted female fl． 431
470 Shady var．of Ranunculus no petals
482 Ranunculus sceleratus，or Dichogam．
488 Caltha polygamous D
497 Helleborn，probably by insects．
514 Aconitum a Dichogam
〈not CD；«〉 Vol．V．$\langle u, C D\rangle$ D．means
Dichogamy
p． 6 \＆ 15 crosses wd be difficult
p． 22 \＆ 26 Fumaria self impregnated
p． 157 Cistus clouds of pollen in early． morning．
p． 180 〈CD Viola imperfect flowers alone seed
p． 196 Drosera flowers open only in sunshine
p． 200 Parnassia D．
p 227 D．p． 241 D．
p 242 Silene five stamens often aborted
p 246 D 250 － 249 D
p 252 a Diochous Silene
p 257 Lychnis
p． 273 Arenaria with viscid glands．
p． 288 Holostium flowers very sensitive to light
－ 295 Stellaria D
－ 305 \＆ 309 Cerastium stamens move to pistil
－ 317 Linum catharticum stamens move to pistil $\vee\langle C D\rangle$
$-331-332,336,338 .\langle C D\rangle$ Malvatiae D〈over〉
367 Acer eminently polygamous
371 Vine pollen of carried by air American Diooichous．
377，379，380．Geranium D．fertilized after petals fall
397 Erodium D ？
384，387，391．Geranium D．
397 Erodium D ？
401 Impatiens dimorphic
411 Ruta fert．by second set of stamens．
416 Erconymus．the upper flower often has
5 parts like Ruta the other flowers having 4
$\checkmark\langle C D\rangle$
418 Paliurus one of the Rhamnic D．

LECOQ, GÉOG. BOT.
420 Rhamnus Catharticus male \& female trees have different kinds of leaves - is dioicus \& hermaphrodite $\checkmark\langle C D\rangle$
422 R. infectorius dioicus. R. alpinus ditto
$\langle\langle C D\rangle$ Vol 5. continued
$\Delta\langle n o t \overline{C D}\rangle$
424 R. frangula. flowers for the most part hermaphrodite
426 R. alituruus. dioicus
468 Ononis. dimorphic
481 Medicago - its fruit twisted either to the left or right, whilst in most species the twisting is from left to right. $\checkmark\langle C D\rangle$
513 Trifolium subterraneum buries its fruit. - $\langle C D\rangle$

Lecoq. Vol. 61
15. Spiraea fertilised when flower opens 40 F. Elatior Dioicous
88 Potenium - monoicous \& yet dioicous in function
118 Epilopicum some dichogam some not so. 121, 125, 126, 128
133 Cricaea do?
156 - Lythrum - species.
160, 166 Byonia, Portulacea Tropical forms 200 Sedum, some species dichogamous
209 Sedum with 2 kinds of flowers differing in number of petals \& stamens
214 Sempervivum curious case of Dichogamy. showing slow regular movement of stamen not to impregnate - as in Berberis.-
224 Ribes * sexes separated
262 Sanicula polyg - female dichogam.
Umbelli=
266 Eryngium dichogam =ferae
273 do. 275 do, 277, 283,, 289, 310, 318, 323
367 (not all Umbelliferae marked)
310 Foeniculum central * umbels sterile. 335, 344.
335 Imperfection of structure
371. Hedera dichogam

〈second sheet)
Vol 6
376 Cornus - in fact monooecious
386 Adoxa 2 kinds of flowers
402 Lonicera periclymenum fertilised in bud.
420 Rutia (Rutiacea) nocturnal
425 Galium tricorne polygamous
429 Galium anglicum do - day flower
473 Knautia (Dipsacea) strongly poly-
gamous.-
477 Scabiosa * succisa do -

- Vol 7.

357 Pyrola minor apparently dimorphic
369 Holly dioicous, sexes unequally separated

391 Menyanthes dimorphic
400 Gentians Dichogam, 401, 403, 406, 407
449 Echium vulgare dimorphic
452 Pulmonaria angustifolia do
504 Gratiola (Personata) dichogam $\boldsymbol{\checkmark}$
(Scroph.
526 Erinus (do) fertilised in bud
538 Veronica spicata dichogam
573 Lathrae fertilised in bud -

- Vol. 8

6 Lavandula fecundation in bud
9 Mentha syrhastus dimorphic peculiar
26 Origanum vulgare dioicous by abortion
1 V *
29 Thymus from Vaudan dimorphic
32 Satureia dioicous occurs
37 Calamintha dimorphic. do. when flowers
44 Hyssopus do almost
48 Nepeta do x_{0} - same as Glychoma regular
74 Stachys dichogam -
146 Hottonia dimorphic
150 Cyclamen Dichogam. *
157 Globularia female Dichogam
241 Polygonum flower different in Water \& out.
254 Stellera, fertilisation of
324 Celtis a true dichogam \& polygamous
326 Ulmus - do - do
535 Crocus fecundation in bud
557 Asparagus dioicous
\checkmark

- Vol. 9

393, 431 Lecoq believes in Modification by conditions of life
395 changes in kinds of trees in Denmark
411 on single species of group with immense ranges
414 when species numerous, range restricted
423 In Compositae the feather separate from seed!!
128 Juan Fernandez proportion of endemic plants
435 relation of Madeira to America
438 More disjoined species in N. than in Tropics \& we can see cause in Glacial
445 Cyperus \& Pteris by Hot Springs of Ischia old Tropical plants left there, says
455. All this Alpine plants common to Finland \& New Grenada make stage of Alps(?) 482 passage for my Orchid Book on Diversity of Orchids.
(I began reading this volume at only p. 386 -
8 23-29m 56 16-22m 80 2-6m 139 24-31m 144 21-23m 159 12-23m 162 8-14m 165 1-

$16 m 1707-17 m, 26-31 m 1718-10 m, 11-16 m$, 25-27m 182 25-29m (Schreibers) 183 31m 194 17-32m 197 5-8m/5u "alpestris" 204 18-26m, $32 u \leftrightarrow / w / w b$ Do my tables show more or less vary. in Monocotyl?? 205 1-5m, 7-11m, 13$14 m, 32 \rightarrow 2067-12 m, 13-14 m$ (Goethe), 30-32m/31-32u↔ 207 15-23m 209 25-30m 229 $23-32 m \quad 250 w t / 1-3 w$ From certain other passages, it is here difficult to know how far he extends his belief in the modification of organic beings 4-12m 287 20-28m
vol. 2 §
162 32-34m $19928-32 m 20520-21 m, 23-24 m$, $25-27 \mathrm{~m} 29-31 \mathrm{~m} / \rightarrow 2062-8 m, 26-29 m 2073-$ $9 m, 10-12 m, 18-23 m / 19 u, 32 \rightarrow 2088-10 m 283$ $2-6 \mathrm{~m} / 4 \mathrm{w}$ which $4-5 u$ " 80 " $/ 6-10 \mathrm{w}$ ask Hooker are these large genera? $7-20 \mathrm{~m} / 10-11 u \leftrightarrow$, $22-27 m 2895-9 m, 10-15 m, 22-30 m 331$ 21$25 m, 25-27 w$ ie plant How little climate has to do with Heather 30 m 332 "plupart espèces" $116 u$ "cette catégorie" $/ 12-17 \mathrm{~m} / \mathrm{w}$ ie plant growing at various heights between $6000 \mathrm{ft} 24-25 \mathrm{~m}$ • 402 8-10m 404 10-12m 405 $30 m 4065-10 m 41021-30 m 4116 u$ "parl Heer", 16 w var. $16-17 \mathrm{w}$ all Mountain vars. 412 wt cor-responding varieties \& corresponding species $12 w, 14 w, 16 w, 17 w$, $18 w, 19 w, 21 w, 22 w, 23 w, 24 w, 26 w, 27 w$ species $4147-14 m / 9-12 w$ would there be more struggle then? $17-21 m 415 \quad 1-2 m / 3 w$ Mntains 419 4-6m, 8-9m, 11-14m $4308-16 m$
vol. 3, $7122-27 m$ 73 $26-29 m / 29 u$ "dioique" 75 1a/u "monoïques"/wt or annuals $11-13 m, 18 u$ "1:35"/w 1:12 in polycarpius $7610-11 m, 25-$ $29 \mathrm{~m} / \mathrm{wcc}, 28-29 \mathrm{~m}, w b$ ie more than a $1 / 3$ of polycarp plants with separate sexes are trees 77 1-2m/2u "monoëсie" $/ 3 u$ "dioëcie", 25$30 m 78$ 9-12m, 27-29m 79 7-8u "particulièrel dioïquement", $11-13 m, 14-20 \mathrm{~m}$, $14-15 \mathrm{w}$ imperfection 23-27m $801-5 m 9426-32 m / 28 u$ "intéressant mémoire" $955-7 \mathrm{~m} / 6 \mathrm{~m} / \mathrm{u}$ "colorées 1 Hortensia" $\mid w=$ Hydrangea same as 96 27$30 m 10217-23 m / w$ imported ? by nuts? 161 $20-24 m / w$ bears on crossing $31-32 \rightarrow 16216-$ $18 \mathrm{~m}, 20 \mathrm{~m}, 21 u$ "vernales" $18215-19 \mathrm{~m}, 26-$ $32 m / 32 u$ ^ $1832-7 m / 3-4 u$ "oenithères lépilobes" 185 20-30m 211 19a "gordura" $\rightarrow 1$ 6ин, 16$19 \mathrm{~m} / 18 u$ "graminée" $/ \mathrm{w}$ replacement of one group by another 21-29m, 25-26m 214 17$25 m 21525 m 216$ 6-10m 222 22-24m 223 22$32 m 2574-7 m 2874-7 m 28810-13 m 291$ 22$26 m 40512 u$ "une 1 couleurs", $20-32 \mathrm{~m} / 20-$ $25 u \pm / w$ piebald 406 wt <results of the crossing of 3 varieties of colours), $3-4 u \leftrightarrow, 29-32 m / w$ perhaps from a cross $4071-3 m, 16-19 m / 17-$ $18 u$ "qu'une I panachures", $21-25 m 4104-11 m$ 411 14-18m
vol. 4, $426-31 m \quad 5 \quad 1-4 m \quad 11$ 7-10w Mem Bates on insects $1323-30 m 1426-28 m / 31-$ $32 m / 25-32 w$ Partly cold in both cases 26 $24 m, 24-27 w$ white flowers sweetest 2714 $16 m 578-9 m 581 u$ "orchis", $3 u$ "seconds", 14-16m, 22-24m, 23-25m, 32m/u "augmenter" $591-2 m, 32 m 6011-12 m, 17-19 m 611-4 m$, $32 m 62$ 29-32m 67 10-12m (Humboldt), $22 m$, $25-29 m, 31 m 68 \quad 12-16 m \quad 731-7 m / 1-15 \mathrm{w}$ । have seen Heath at isolated shows that they can live separate - bad term "social".false term $8025-28 m 8621-25 m, 27-30 m 207$ $12-24 m, 26 m 20911-14 m, 15-21 m, 21-25 m$ 233 30-32m 234 1-5m, 18-32m 237 7-10m, 14-17m 239 12-30m 272 1-9m, 11-18m 273 6$7 w * / 6 u$ "Coprosma", 13-18m 293 22-27m 304 $11-16 m$, 19-32m 407 11-16m $425 \quad 28 u$ "Quelques fleurs" $/ 28-31 \mathrm{~m} / \mathrm{w}$ it is not second distinct plant $43122-26 m 466$ 11-14m, 21$27 m 470$ 21-26m 482 10-19m 488 12-18m 497 25-30m 514 18-23m
vol. 5 NB Vaucher's Book p. 142
SB 6-15 makes crossing difficult; 22; 26; 157; 180; 196; 200; 227; 241; 243-246; 249; 252; 257; 273; 288 flowering sensitive to light; 295; 305; 309; 317; 325 Linum; 331; 332; 336; 338; 367; 372; 377; 379; 380; 384; $387 ; 391 ; 397 ; 401 ; 404 ; 411 ; 416 ; 418 ; 420$ to 426; 430; 469; 481; 513; Abstracted
$6 \quad 10-16 m \quad 15 \quad 10-13 m \quad 22 \quad 12-15 m \quad 26 \quad 6-11 m$ $157 \quad 4-10 m \quad 180 \quad 4-13 m / 7 a / u \quad$ "fleurs" w cleistogam 196 15-20m $200 \quad 3-4 u$ "ses 1 glanduleux" $/ w$ any movement? 6-9m 22714 $19 m 2419-17 m 24223-26 m / 24 u$ "illétamines" 243 17-21m 246 18-27m 249 24-29m 252 6$8 m 25729-32 m / w$ but will they fertilise 273 $30-31 m 274$ 4-8m 288 2-6m 295 2-7m 305 10-12m 309 7-12m 317 1-4m $3257-14 m, 10-$ $12 m 33122-24 m 332$ 26-28m 333 29-30m 336 $1-4 m 33821-25 m 36726-30 m 3682-28 m 372$ 6-14m 377 17-21m 379 13-14m $380 \quad 23-27 m$, $27-28 m 3847-14 m 387$ 1-3m 391 26-29m 397 $7-12 m 401$ 6-10m 404 19-22m 411 1-6m, 14$20 m 416$ 16-19m 418 26-29m 420 25-29m/w Mem R. Lanceolatus 422 6-8m 423 5-6m 424 $12-13 m / 12 u$ "hermaphrodites" $4268-11 m 430$ $1-4 m \quad 469 \quad 1-4 m, 29-30 m \quad 481$ 3-8m/5-6u "plupart des" 513 2-15m
vol. 6, 15 25-30m 40 19-22m 88 15-27m 118 $7-11 m 12117-20 m 1252-4 m 12615-18 m 128$ $\begin{array}{lllllll}7-9 m & 133 & 24-27 m & 156 & 2-30 m / 20-22 w & p .158\end{array}$ $15820-25 \mathrm{~m} / 20 u$ "déploient 1 fin"
〈between p. 158 and p. 159, tiny fragment of a letter)
$1601-7 \mathrm{~m} / 5 u$ "illstérile", 26-28m/w Balsanus another case 162 28-32m 166 2-7m 200 18$27 w 210206 \mathrm{p} 204$ not so some other

LECOQ GÉOG. BOT.
species 23-29m 204 10-14m/12w 206206 26$30 m 20910-14 m, 32 \rightarrow 21018-23 m 214$ 21$28 m 224$ 13-19m 262 20-23m 266 26-30m 273 18-22m 275 25-28m 277 1-3m, 35m 283 10$13 m / 13 u$ "celal Ombellifères" 289 16-19m 310 $12-17 m, 12 u$ "petitslsouvent", $15 u$ "quel stigmates" 313 21-26m 318 20-26m 323 15$17 \mathrm{~m} / 17 u$ "avancelstigmates" 333 21-24m 335 15-24m/22-23u "Il| semences"/24u "ne| placer", $27-29 m 34423-28 m 3671-5 m 371$ 3-6m 376 $1-7 m 3867-14 m / w 2$ kinds of flowers $15-18 m$ 402 1-6m 420 23-26m/23u "Elle 1 celles" 421 23-25m 425 5-10m 429 9-12m/11u "s'ouvrent | soirée" 473 3-9m, 4-6u↔, 6-9w fertility because so strongly protandrous. 477 28$31 m$
vol. 7, $35723-25 m / 24 u$ "inclus \mid saillant" 369 17-23m 391 12-14u "dans lcilié" 398 16-20m/ $17 u$ "toutes"/w no! 400 10-13m 401 26-28m 403 11-13m 406 15-17m/15u "tard, seulement" 407 22-25m 449 29-31m 452 18-21m 504 19$22 m 52611-17 m / w$ other cases of assertions not always marked 538 14-19m/14u "indirecte" 573 9-21m
vol. 8 SA $\langle p p .144-5$: fragment of an abstract \rangle
are tied together by a few weak elastic threads
6 11-13m 9 24-28m 26 17-22m 29 10-13m/ $12 u$ "Lalmâle", $14-16 \mathrm{w}$ good cases of gradation 16-18m/17u "toujourslavorté", 20$28 m$, 29-32m 32 16-22m 33 21-29m 37 1-7m 38 15-26m 40 23-29m 44 20-23m 48 3-5m 74 3-9m $129 \quad 13 z 141 w b$ \& in Europaeo-arctic contrast○ some not differ from Keeling \& PD 142 1-3m $1436 u$ "moyenne | australe", $9 u$ " 40 ", $10 u$ " 50 " 146 7-13m 150 18-21m 1574 $8 m 241$ 1-9m 254 17-21m $3241-3 m, 14-21 m$ 326 15-17m 535 26-29m 557 10-14m
vol. $9 \wp$
395 10-14m, 17-24m 397 25-27m 411 5-10m $41411-17 m 42314-18 m 428 \quad 27-30 m 431$ 6$14 m 435$ 1-28m 438 19-26m (de Candolle) 445 $13 u$ "Tenore", 14-15m, 21-26m 455 30-32m 482 7-9m, 26-31m

LECOQ, Henri De la fécondation naturelle et artificielle des végétaux et de l'hybridation Paris; Audot; 1845 [CUL]
fg, mhp, mn, sp, spo, tm
NB $\uparrow 5$ p6 Books Appendix ordered
title page $17-18 u \leftrightarrow$ xv $1-3 m / 1 u$ "ébranler" 4 $6-25 w$ contrivances \& movements of anthers \& pistil $516-21 m / w$ pollen shed first before flower but contact afterwards 28-34w in Veronica impregnation when corolla falls with pollen at its base $63-4 w$ so in lris 16-19w

Use of Hairs on corolla $91-4 m / w$ flower under water \& secretes air 16 11-12u "quand létamines", $14 u$ "position lorganes", 17$20 m, 20-23 m / 21 u$ "une infinité", 25-26u "àl indirecte" 18 13-18m 21 1-3m/1u "habitude"/2a "acquise", 21-23m/22-23u "surtout |nouvelles" 22 11-25w At Maer Gardens new case of Polyanthus seedlings all sports of Primrose $30-33 m / 32 u$ "primevères" $/ 33 u$ "primevère" $/ w$ Ch. $4 w b$ shows the primrose can cross 34 $14-20 \mathrm{~m} / \mathrm{w}$ pull petals off double flowers 39 $14-23 \mathrm{~m} / 17 \mathrm{w}$ oh $33-34 m$ (Vaucher) $4317-22 m$ $441-3 m / 1 u$ "directe \mid indirecte" $5230-32 m / 30 u$ "monoiquement" 53 24-25m, 26u "doit indirecte" 61 13-15m $701-4 m / 2-3 Q \quad 27-28 m /$ $27 u$ "àl défloraison" 71 1-2m, 6-7m 72 16-17u "stigmatelétamines", 17-19m 73 7-8m 75 2$5 m, 15-18 m 7717-21 m, 27-29 m 807-11 m$, 25-29m 81 15-17m $853-9 m, 19-21 m 874-7 m$ $9210-13 m 953-5 w$ are these Trees 9-11m, 26-27m 97 2-4m/w How false 29-30m/30u "légèrement l époque" 99 1-2m, 25-28m 101 14$16 m, 18-20 m 1029-12 m, 33 u$ "entourél poils" 103 1-5m, 5-9m 105 6-7m 115 8-12m, 13-18m 119 9-12m, 19-21m, wb Good to contrast flowers \& fruit. $12415-19 m 1281-7 m, 7-14 m$ 129 6-7m $1315 m 142$ 16-19m 176 5-10m 179 8-12m 195 6-9m, 10-13m, 23-28m 196 2-7m $1977-9 m 20310-12 m * / 11 u$ "les poirées" $/ 12 u$ "leurs feuilles", 15w 2 species $2085-8 m 218$ 30-31u "On lautres" 219 1-4m/2-3u "quoiquel indirecte" 234 20-24m/21-22? 238 30-33m 239 19-25m/22u "M. de Bure", 30-32m, wb Look in Pritzel 240 11-13m 243 1-3m 253 20-22m $268 \quad 29-32 m \quad 269 \quad 26-28 m \quad 270 \quad 23-29 m \quad 272$ $19-23 \mathrm{~m} / 20 u \quad$ "plus 1 variétés", $\quad 25-27 \mathrm{~m} / 25 u$ "Seringe | Philippas" 273 9-12m

LECOQ, Henri De la fécondation naturelle et artificielle des végétaux et de l'hybridation 2nd edn; Paris; Libraire agricole de la Maison rustique; 1862 [CUL]
cs, dic, f, fg, he, hy, mhp, mn, ta, tm, v
NB 76. Orchis sterile like Scotts case X 79
81 Nectar aids fecundation
92, 94; 126
220 Natural Hybrids
233. Flower of circumference more often double in Compositae X
303 . Mirabilis crosses of $X=$ panachures= 308 ; 311; 315 ; 325; 335; 338
Get a Stapelia
368 - Parentage of Gladiolus gandavensis
393 Seeding \& growth antagonists
404; 411
SB $\square \Re$
p 81 〈not $C D\rangle$ Nectar aids fertilization
p. 404
p.93, 95 on Trollius, open flower, crossing spont.
126 Reseda dichogam
220 spont. Hybrids of Sedum
311 Hybrids from 2 sp . of Mirabilis sporting so much as to be very different
315 on Hybridisation causing type to break \Leftrightarrow or vary
325. reversion in Hybrids p. 237

Hybrids becoming more fertile with age \& very fertile
335 Cannabis \& Morus clouds of pollen
338 Fertilisation of Ficus
411 in some Graminae stamens short \& remain enclosed in florets.-
Lecoqs. Fertilation
title page $17 \mathrm{w} \mathrm{c}_{0} 18627624-31 \mathrm{~m} 7912-17 \mathrm{~m} /$ 12-14Q 81 26-31m 92 19-21m/19u•/20u^/19$23 w$ sporting $931-5 m 9411-14 m / 11-12 u$ "aulcette", 26-30m 126 14-17m $2201-22 \mathrm{~m} / 5-$ $6 u$ "tous 1 infécondes" $2331-7 m 3025-10 \mathrm{~m} / 6 u$ "guère de", 8u "presque", 13-15m, 12-13u "presque\identiques", 21-23m/21u "panaché"/ $22 u$ "deux \mid fondues" 303 17-23m, 26-27m, 35m 304 6-9m, 11u "Rougel primitive", 24-28m 308 4-12m 311 1-3m, 12-18m, 31-35m 313 15$17 m / 17-20 u \pm \quad 315 \quad 3-5 m \quad 325 \quad 4-6 m / 4 w$ reversion $12-13 \mathrm{~m}$, $35 \mathrm{~m} 32631-35 \mathrm{~m} 3273-7 \mathrm{~m}$ 335 3-5m/4u "de| nuages", 28-30m 338 5-15m, 23-24u "Elles 1 maturité", $21-27 \mathrm{~m} / \mathrm{w}$ but generally are sterile $36818-22 m 3697-10 m$, 19-21m (Herbert) $3935-27 m 4046-9 m / w$ wetting stigma with honey keeps from pollination 411 9-10u "Quelquefois|filets" $/ w$ what

LEES, William Elements of acoustics, light and heat London \& Glasgow; William Collins \& Sons; 1877 [Down]

LE HON, Henri L'Homme fossile en Europe Bruxelles; C. Muquardt; 1867 [Down]
NB O/
vii $14 m$ ix $9 m$
LEIDY, Joseph The ancient fauna of Nebraska Washington-New York; G.P. Putnam \& Co.; 1853 [CUL]
fo, gd, geo, ig, sp, ti
NB 8 List of Tertiary Mammals; 17; 24; 29; 57 Nebraska Mammals very close; 67 good name; 78; 79; 95
SB $\square \beta$; $-\infty$
8 List of all fossil mammals

17 paridigitata \& Imparidigitata
24 Intermediate forms 29 do
57 relations of European \& N. American fossil mammals 67 do. 78 do.
79 \& 80 Rhinoceros apparently older in N America than in Europe
95 Machairodus in N. America.-
8 1-6m, 41m 17 27-29m 24 27-28m 57 19$23 m \quad 67 \quad 2 u$ "Imparidigitata" $/ w$ Paridigitata $22 \mathrm{~m} / \mathrm{w}$ European genus $78 \quad 24-27 \mathrm{~m} / 25 a$ "Titanotherium" close to Palaeotherium 79 2$6 \mathrm{~m}, 12 u$ "two species", 16a "Rhinoceros" What age? $17-18 \mathrm{~m} / 15-20 \mathrm{w}$ I think none so old in Europe as Eocene or older Miocene 80 30$33 m 9518 m$ (Owen)

LEIDY, Joseph Contributions to the extinct vertebrate fauna of the Western Territories vol. 1 Fossil vertebrates Washington; Govern ment Printing Office; 1873 [Down]
vol. 1, 154 2-5m 155 18-19m 160 37-41m
LEIGHTON, William Allport Lichen-flora Shrewsbury; printed for the author; 1872 [Down, I]

LE MAOUT, Emmanuel and DECAISNE, Joseph Traité général de botanique Paris; Firmin Didot frères; 1868 [Botany School, FD]

LEMOINE, Albert De la physionomie et de la parole Paris; Germer Baillière; 1865 [CUL, S] beh, h, he, pat, phy, t, ti, tm, y

NB 19; 28; 30; 32; 41 to 135; 181 Expression; 185. Man; 190; 160 HamburghO
19 4-10m $284-5 m / /^{\prime \prime . . . " ~} 308-10 \mathrm{~m} 3221-25 m$ (C. Lebrun) 41 22-24m (J. Parsons) 42 20$24 m$ • $481-6 m 50$ 17-22m $5311 u$ "cherchél raison"/11-12m (C. Bell) 54 1-5m 57 22-25m/ $22 w$ Bell $581 m, 10-12 m 598-12 m 604-6 m$ 62 17-25m $65 \quad 5-8 m \quad 69$ 19-25m 70 1-15w voluntary mvment \& action of Heart \& Mind all asserted $21-23 \mathrm{~m}$ (C. Bernard)/w sur les Tissus vivants?? $726-10 \mathrm{~m} 7412-14 m 783-$ $7 m 836-22 w$ He objects no proof, but one can see whether agrees with common experience $8714-19 m 893-5 m, 7-25 m / 14 u$ "dédain"/ 8-18w avoid such compound emotions hard to define 19 " "mépris" 91 17$19 m 92$ wt Child may be attentive to any arousal or pleasure, as sucking, \& no howling. 1-2m,3u "front \mid sourcil" $/ w$ grief? $5 u$ "pensées", $\uparrow w / w b$ If one thinks ever so attentively on pleasant subject, no

LEMOINE
contraction of brow, but if an puzzle or difficulty occurs, though not actually unpleasant, brow contracts, every * difficulty during early infancy accompanied by this movement. * Perhaps aided by vision in primordial times.- But why not corners of mouth?? With infant first beginning is the frown.- $935 \mathrm{~m}, 19-20 \mathrm{~m} /!? / 20 \mathrm{u}$ "sphincter \mid iris" $9421 u / 21-25 w / w b$ Does iris contract under emotion - well shown to do so in Brain affection? Bowman, How in paroxysm of mania? 95 15-18m 99 19-22m 101 1-7"..." $/ m /$ w Sir C.B whose merit has been fully appreciated by late French writer 103 13$14 m, 15 w$ Instinct $16-19 \mathrm{~m} / 17 \mathrm{w}$ doubtful 104 $w t / 1-8 w$ argues from difference of observers \& writers that there can be no innate knowledge - but we can tell family likeness 16-20m $10512-16 \mathrm{~m} / \mathrm{w}$ taught by exper $1072-$ $10 \mathrm{~m}, 16-21 \mathrm{~m} / 19-20 \mathrm{u}$ "baisse Itête" $/ \mathrm{w}$ not to be seen or hide faces $1097-10 m, 20-25 m$, wb Children cry for aid, voluntary $1105-8 \mathrm{~m} 118$ 2-4m/wt/1-3u "que|poussé" $/ w$ animals do 125 7-10m 126 2-5m, 9-11m/ 10u "souriant| effraye" $13013-18 \mathrm{~m} 1354-6 \mathrm{~m}, 8-10 \mathrm{~m} 1819-$ 12m/1-10w Bowman.- Person born blind blushes?? for shame $16-25 w$ do they look downwards? or cast their eyes down.- wb whether blush as much or at all? not redden for anger.- $1851-3 m / w$ Tylor shows they do invent $1907-10 \mathrm{~m} / 7 \mathrm{u}$ "parole" $1914-10 \mathrm{~m}$, wb a stone first instrument of man \& monkey $1971-6 m / 3-4 w$ laws of mind

LEMOINE, Victor Recherches sur les oiseaux fossiles des terrains tertiaires inférieurs des environs de Reims Reims; F. Keller; 1878 [Down, I]

LEPELLETIER de la Sarthe, Alme Traité complet de physiognomie Paris; Victor Masson \& Fils; 1864 [Down]
NB O/
Rubbish!
\wp
LESSON, René-Primevère Manuel de mammalogie Paris; Roret; 1827 [Down, pre-B]
29 19-22w F. ascribes to Cuvier 39 5-8w L. Hunt $426-7 m, 8-9 w$? Smith $38 w$ pronett 43 9-15w Pig \& $459 \mathrm{~m}, 15 u$ "lubricité" 465 $6 m 4713 w$ No

LESSON, René-Primevère Manuel d'ornithologie 2 vols.; Paris; Roret; 1828 [Down, pre-B]

LETOURNEAU, Charles Physiologie des passions Paris; Germer Baillière; 1868 [Down]

NB1 95*; O/
NB2 O/
LEWES, George Henry The history of philosophy 3rd edn, 2 vols.; London; Longmans, Green \& Co.; 1867 [Down]

LEWES, George Henry The physical basis of mind London; Trübner \& Co.; 1877 [CUL, I] ad, beh, cc, ds, oo, t, ud

NB 43; "External conditions of existence" 45; 71, 2 On use \& Disuse \rightarrow 104, 7; 110 definitions of Struggle \& Adaptation; 120 Organisms descended from several primordial forms; 124; 126; 377 Expression〈other notes, by FD>
$432-5 \mathrm{~m} / 3 \mathrm{u}$ "external 1 existence", $30-35 \mathrm{~m} 45$ $20-24 m, 27-30 \mathrm{~m}, 32-35 \mathrm{~m}, 36 \mathrm{~m} 7122-30 \mathrm{~m}$, $35-36 m 72$ 29-36m $73 \quad 18-21 \mathrm{~m} 10418-35 \mathrm{~m}$ $10532-38 m 1061-14 m 1071-2 m, 24-27 m$ (Darwin and Spencer) $1087-13 \mathrm{~m} 10920-23 \mathrm{~m}$, $31-34 m 11012-16 \mathrm{~m} / \mathrm{w}$ they do in some way, or are the result of some cause $1113-8 m$ 120 29-38m $12433-38 m$ (Pasteur) $12530-39 m$ 126 20-28m 127 20-26m 377 33-36m $480 z b$

LEWES, George Henry The physiology of common life 2 vols.; Edinburgh \& London; William Blackwood; 1860 [Down, vol. 2 only]
287 5-6m, 6-7m
LEYBOLD, Federico Escursion a las Pampas Argentinas Santiago; Imprenta Nacional; 1873 [Down, I]

LIEBIG, Justus von Organic chemistry in its applications to agriculture and physiology ed. Lyon Playfair; London; Taylor \& Walton; 1840 [CUL, S Charles Darwin 1841]
h, phy
NB 46; 49; 85; 109; 110; 139; 152; 157; 287; 352; $369\langle w$, not $C D\rangle$
SB $\square \beta$
369 The blood of a man with fair complexion has different odour from dark man
49 1-3m 85 26-30m $10915-18 m 1104-8 m$, 11-15m 139 26-30m 140 1-7m, 4-8m, 15-24m, $29 m 1419-11 m 1529-14 m, 27-31 m 1575-$ 12 m 183 10w 3287 7-10m 352 17-27m 369 26-30m

LINDEMUTH，Hugo Vegetative Bastard－ erzeugung durch Impfung Berlin；Wiegandt， Hempel \＆Parey； 1878 ［Down，S］

LINDLEY，John A natural system of botany 2nd edn；London；Longman，Rees，Orme， Brown，Green \＆Longman； 1836 ［CUL，I Charles Darwin 1840］
af，no，phy，sp，sy
NF Does not Lindley use Diagrams to represent affinities，like the maps of Strickland？
Have any of the great Divisions，the Alliances，only one or two species？
Orders with few species rarer in Vertebrates \＆insects
NB 163－ 308 Grafts of Olive \＆Ash Q
163 9－11m／10u＂flowers｜none＂ 238 1－4m 242 $8-10 \mathrm{~m} 3084 u$＂Von Martius＂，7－13m／8u＾／ $9 u \wedge / 10 u \wedge / 11-12 m$

LINDLEY，John An outline of the first principles of Botany London；Longmans； 1830 ［CUL，S］
fg，phy，sl
$77 \Uparrow 8 u$＂pistillum＂，$w b$ The pistillum being a modified leaf 78 ＂ 421 ＂m / u＂Hazel－nut＂ 79 wt Fruit \＆stone of Plum，Peaches，Cherry not essentially different－kernel in the seed ＂ 424 ＂ m / w（a）＂ 425 ＂ m / u＂pericarpium＂／a ＂ovarium＂i．e．formed of lamina of leaf ＂ 427 ＂u＂Peach＂$w \therefore$ also plum cherry $w b$ probably seeds rarely selected for themselves No Peas．－ 84 ＂ 452 ＂u ＂Strawberry＂，＂ 453 ＂m

LINDLEY，John School botany and vegetable physiology new edn；London；Bradbury \＆ Evans； 1856 ［Down］
〈markings presumed to be by FD＞
LINK，Heinrich Friedrich Die Urwelt und das Alterthum，erläutert durch die Naturkunde Part 1；Berlin；Ferdinand Dümmler； 1821 ［CUL，pre－B］
cc，gd，is
NB p． 96 cases of plants apparently brought by Sea
p．do Osbeck saw on Ascencion only 4 plants 102 speculates on change of climate connecting N \＆S．alpine plants
181 African cattle
（All skimmed）
Inhalt $5 w$ Read $12 m 96$ 9－23m，31m／u＂Sahl Arten＂ 102 9－21m 181 15－19m， 21 m

LINNAEUS，Carl Philosophia botanica 2nd edn；Vienna；Johan Thomas de Trattern； 1783 ［CUL，pre－B］
$\mathrm{cc}, \mathrm{fg}, \mathrm{mn}, \mathrm{sp}, \mathrm{tm}, \mathrm{v}$
NB p． 80 Double flowers natural orders of some which are never double
Maris fundus p87 seeds
Not much satisfactory too brief $=$
p79 Flowers apetalous from cold
245 Variation in colour of seed
$79 \Uparrow 1 \rightarrow 95$ 33－39m 98 30－31m 245 33－40m
LINNAEUS，Carl Systema naturae Lund； 1735 ［Botany School，pre－B］

LINNAEUS，Carl Systema naturae 13th edn， ed．J．F．Gmelin， 10 vols．；Lund；1789－96 ［Down，vol． 1 missing？］

LINNAEUS，Carl Systema vegetabilium Göttingen；C．Dietrich； 1797 ［Down，ED］

LIPPERT，Julius Die Religionen der Europäischen Culturvölker Berlin；Theodor Hoffmann； 1881 ［Down，I］\wp

LISLE，Edward Observations in husbandry 2nd edn， 2 vols．；London； 1757 ［Down，pre－ B］
〈markings presumed to be not by $C D$ 〉
LOCARD，Arnould Études sur les variations malacologiques ．．．du bassin du Rhône 2 vols．； Lyon；Henri Georg； 1881 ［Down，I］\wp

LOCKE，John An essay concerning human understanding 2 vols．；London； 1726 ［CUL．1900］
vol． 1 contents＂ch．$x x i .37 / 38^{\prime \prime} . X \sim 027$＂ $26^{\prime \prime} x$
 282 ＂ 4 ＂X 283 ＂ 5 ＂X®，＂ 6 ＂X 286 介 $17 x 288$ 介 $5 x$ 290 1－3x $29410 x 306$ 介6－3x 329 ＂ 12 ＂X＜ 330 8－10X＊ 331 介4－3X 333 介16－15X 334 21－ 24mas 339 11－13x，$\uparrow 5-4 x \quad 3417-8 x 344 \uparrow 6-5 x$ 345 介16－13x 346 13－14x $347 \Uparrow 10-8 x 34822 x$ $34915 x 35020 x 35120 x 352 \Uparrow 9-6 x 354$ 介 $7-$ $5 x$
vol．2， 145 介4－3x $25717 w{ }_{\text {Word }}$
LOISELEUR－DESLONGCHAMPS，Jean Louis Auguste Considérations sur les céréales， et principalement sur les froments Pairs； Bouchard－Huzard； 1842 ［CUL］
$\mathrm{cc}, \mathrm{dg}, \mathrm{fg}$ ，he，hy，mhp，oo，sl，sp，t，ta，tm， v ，wd

LOISELEUR
NB Part I
\rightarrow p.12; 32 to 49; $70-78 ; 83$ to 107, 8
© II: 165; 181; 183; 199; 200 to 205; 208,210; 217-219; 224; 234
SB1 *
35 Wheat less attended to \& modified than garden vegetables - contrast with Dahlia certainly not a conspicuous variation.
37 Wheat must have been nearly what it was when first cultivated. Q
45 M . Dalbret has cultivated 30 years 150160 vars, \& all keep true, except in seed itself-
49. Wild Oat of Australia, Journal Agricult Soc. Vol 2. Part 2.
70322 vars.
78 Botanists disagree what to call species
80, 83 thinks wheat impregnated with closed flowers
81. has never seen Hybrids, between his $100-200$ vars. sown near each other.
84. Aegyptian vars. differ from French

89 Vilmorin on carrot. *
94. Argues if wheat changed by culture, so ought all weeds * quite ignores selection 97 grains from Aegypt as good var \& no
107. Had it not been for innumerable vars. he wd have thought that what was at first as now
108 contrast variability of wheat \& seigleO
SB2 $\square \Re$
Part II.
179, 183 gain of weight in grains when cultivated in France - certain effect of climate. Q
200 Tessier on no good from change of seed.
202 disproved by his own experiment \& observation explain Tessier by great care of cultivation Change of seed usual practice in France
bad seeds producing equally good plants with good p. 216 - rather opposed to principles of selection
224 Effect of climate on habit of wheat Q p. 29 Mongolian Wheat

12 23-28m 43 6-10m, 15-18m, 30m 14 6-9m, $11-14 m, 24-26 \mathrm{~m} 2914-20 \mathrm{~m} 329-14 m, 20-$ $24 m 35 \quad 24-26 m 36 \quad 25-31 m 37$ 19-20m, 26$28 m 397-13 m 444-13 m 454 u$ "trente ans", $7 u$ "cent|soixante", 17-19m 46 19-22m/19u "depuislans" 47 1-2m 49 18-20m 69 21-22m $704-7 \mathrm{~m} 713-4 \mathrm{~m} / \mathrm{w}$ \& 1 or 2 others 77 22$27 m 785-7 m$, 8-12m $801-8 m, 18-19 w$ Quo 19-22m/20u "àlleur", 24-29m/w pollen partly shed. $w b$ R. Brown says the hairs in stigma cannot admit pollen tubes $811-3 m, 14-19 m$,
$20 u$ "semées lautres" 82 10-11m/10u "nombre| tardifs", $21 \mathrm{~m} 839-12 m 84 \mathrm{wt} / 1-5 \mathrm{w}$ In a mass of interlaced roots different nourishment or position be acquired Manure. $7-10 \mathrm{~m} / 9 \mathrm{u}$ "trop simple" $\mid 6-11 w$ they have not to struggle with other species: sowed in different soil $13-14 w$ Climate \&c $\uparrow 10-6 \mathrm{~m} 855-10 \mathrm{~m}, 15-17 \mathrm{~m} 9317-$ $19 m 9410-18 \mathrm{~m}, 29-30 \mathrm{~m}, \mathrm{wb}$ Knows nothing about selection $952-6 m 961-3 m / w t$ again does not consider culture $9710-22 \mathrm{~m} 989-$ $21 m / 10-18 w$ the actual grains quite similar to wheat 100 14-18m, 20-22m $10214-17 \mathrm{~m} 107$ 20-30m 108 1-15m
Part 2, $1654-10 \mathrm{~m}, 12-15 \mathrm{~m} 1814-8 \mathrm{~m} 183$ 1$3 m 199$ 23-27m 200 18-21m, 30m 201 23-26m $2025-11 m, 14-17 m 20324-29 m$, wb I have no doubt that degeneration is a wrong idea.205 6-11m $2083-6 m, 8-10 m, 13-27 m, 28-$ 30m/29-30u "produit | grains" 209 1-3m, 22$27 \mathrm{~m} 2104-7 \mathrm{~m} / \mathrm{w}$ opposed to selection 211 $28-31 m 216 w t / 1-7 w$ Would be opposed to Principles of Selection, if vars with all bad seeds were chosen. $w t$ The size of grain differs much according to what part of ear it comes from.- $\leftarrow\langle$ from 217 wt it wd seem that the grains vary extremely without affecting the race: but a new race might be selected - a good race though it may have some poor seeds, yet the quality of the race is inherent in such seed.- $2-3 m / \rightarrow 21828-$ $31 m 219$ 12-14m/w Peas \& Beans! 224 813m/Q 234 8-10m/9u "huit \mid deux", 23-30m

LOMBARDINI, Luigi Ricerche sui Cammelli Pisa; T. Nistri; 1879 [Down, I] \wp

LOUDON, John Claudius (ed.) An encyclopaedia of plants London; Longman, Orme, Brown, Green \& Longmans; 1841 [CUL]
$\mathrm{f}, \mathrm{mhp}, \mathrm{sp}$
NB

- White Yellow White Bengal quick Bankl; Quercus olivaeformis (mossy cup) heavy loam V Vol 13 of Gardeners Mag for some trees
more of Dentzia scabra \& corymba; Bignonia radicans; Tropaeolum 302,1184; Tendrils 516

6 " 19 ". $x 12$ 介 $1 \mathrm{~m} / \mathrm{u}$ "In|evergreen" 16 " 258 ". x 18 " 51 ". $w 1146$ " 318 "m/w viscosissima sessilis asceuleus 20 " 319 " a / w purpurea "321"a/w plantago 36 " 83 ". $x 42$ " 105 ".w 1150 44 " 115 ". w p. 115054 " 953 ". $x 68$ " 206 ". $w 1$ sp. Decand 70 " $1233 / 1235 / 1236$ ".w sp. a. D.C. $\uparrow 40-35 m, ~ \Uparrow 32-27 m \quad 71 \quad " 1233 / 1235 /$ 1236 ".m 94 " 1620 ". $x 102$ " 305 ". x 106 介4-1m/
w The yellow berry Holly came true from seed 120 ＂1916＂．x 126 ＂350＂．w 1156 ＂ 2031 ＂．m ，＂ 2041 ＂．m 127 介23－15m，$\Uparrow 22 u$＂the crossing＂，介6m 132 ＂369＂．w 1156134 ＂2146／ 2149＂．m $136^{\prime \prime} 382^{\prime \prime} . w$ p． 1158 ＂ $2206^{\prime \prime} . w$ end of Nic． 138 ＂ 383 ＂．x ，＂2224／2240＂．m 140 ＂2260／ 2266＂．m，＂387＂．$x 142$＂388＂．x 144＂402＂．w 1162146 ＂ 413 ＂．$x 152$＂ 439 ＂．x 154＂ 440 ＂．x 156 ＂ 450 ＂．$x \quad 156$＂ 2517 ＂．m / w Tomato 158 ＂ 2530 ＂．x，＂ 2534 ＂．$m 162$＂ $463 "$. w 1164 ／166 ＂ 464 ＂．x, ＂ $2713 / 2719$＂．$m 167$＂ $2713 / 2715$＂． \boldsymbol{m}_{0} 170 ＂ 474 ＂．$x / w 1164$＂2789＂．w Mr Henfrey 174 ＂ 501 ＂．$x 176$＂ $504 " . x 178$＂ $507 " . x 180$＂ $515 " . x$ 184 ＂ 3018 ＂．m／w fulva 193 $\uparrow 4-1 m$ 194 ＂574＂．x 208 ＂615＂．w $1170 \quad 232$＂3916／3918／ 3922／3929／3937＂．m $254 \quad$＂ 4286 ＂．$x / m \quad 270$ ＂4597＂．m，介7－1m 282 ＂ 815 ＂．$x / m, ~ " 4862 " . x / m$ 290 ＂ 843 ＂．$x 298$＂ $868 " . x 302$＂ $875 / 876^{\prime \prime} . x 306$ ＂5180＂．m 318 ＂ $901 " . w \quad$ p． 1184 ＂5449／5450／ 5461／5463＂．m 320 ＂ 904 ＂．w p． 1186324 ＂ $916^{\prime \prime} . x$ 326 ＂ $5586^{\prime \prime}-$＂ 5590 ＂．$x \quad 328$＂923／924＂．$x \quad 358$ ＂1014＂．w 1190362 ＂1019＂．w 1194362 ＂1027＂．x 380 ＂1051＂－＂1052＂．x 394 ＂1082＂．x 396 ＂1086＂．x 410 ＂Order 3＂．u 411 ＂1148＂．x 420 ＂ $1128^{\prime \prime} . m 422$＂1129＂． \mathbf{m} damson \＆cherry ＂7056＂．m 424 ＂1132＂．w 1204426 ＂7093／7099／ $7101^{\prime \prime} . m$ ，〈text：〉 $1-3 m / w$ increase 428 ＂1139＂．w 1208442 ＂7464／7467／7473／7477＂．m， $\Uparrow 4 u$＂centifolia，damascena． $443 \Uparrow 3 \mathrm{~m} / \mathrm{u}$＂ 300 varieties＂ 444 ＂7480／7486／7493＂．man 446 ＂7497／7495＂．mぬ 448 ＂7500／7502／7509／7510／ 7512＂．m屯，＂7512＂．w DropnaeaO 450 ＂7515／ 7518／7521＂．m 454 ＂7630／7633＂．m 472 ＂1203＂．x 474 ＂1206＂．$x 479$ 10－12m／w probably in first generation！！！ 480 ＂ $1219^{\prime \prime} . x 482$＂ $1227^{\prime \prime} . x 508$ ＂ $8395 / 8399$＂．$m \quad 509 \quad$＂8395／8399＂．$m \quad 514$ ＂1294＂．x，＂8538＂．m，＂1297＂．w p． 1226515 ＂ 8538 ＂．m 516 ＂1299＂．$x \quad 518$＂1308＂．$x \quad 520$ ＂1322．w 1228522 ＂ $1328^{\prime \prime} . x 526$＂ 8765 ＂．$x / m$ ， ＂ 8771 ＂．m，＂ 8772 ＂． md ，＂ 8793 ＂．$m 527$＂ 8771 ＂．m， ＂ 8793 ＂．m 530 ＂ $1355 " . w 1078-554$＂ 9245 ＂－ ＂ 9247 ＂m / w（a）capitata Blistered A． Decandolle thinks all the same． 564 ＂ 1459 ＂．x 572 ＂ 9523 ＂．$m, ~ " 9540 " . m 574$＂ $9546 / 9565 / 9568 /$ 9575＂．m 576 ＂ $9633 " . m 582$＂9711／9731／9732／ 9733／9731／9764＂．m，＂9733＂．w sterile 583 ＂ 9731 ＂．m 584 ＂9766／9768＂．m 586 ＂9835／ $9846^{\prime \prime} . m 588$ 4－8m，6u＂herbaceum＂， $9 u$ ＂cultivated＂，10u＂nankeen－coloured＂ 590 ＂ 9897 ＂－＂ 9921 ＂m／w Genus Abutile see p． 1236 592 ＂ $1496^{\prime \prime} . w 1238600$＂ $9970^{\prime \prime}-" 9973 " . x 602$ ＂1511＂．$x \quad 604$＂1513＂－＂ $1519 " . x$＂ $1521 " . x$ ＂10030＂m / w open fl ＂ 10031 ＂．m / w open flower 606 ＂ 1522 ＂．x, \quad＂ 1524 ＂．$x, ~ \downarrow w$ \＆Cytisus \＆ Rotinia 11 genera true with prop．flowers 614 ＂10247＂－＂10248＂．m 615 ＂10231／ $10235^{\prime \prime} . m 621 \pi 6-4 \mathrm{~m} / \mathrm{w}$ Yet the open flowered is specific character 624 ＂10435／

10449＂．m 626 ＂10460＂－＂10462＂．m 630 ＂10554＂－＂10558＂．m／w D Desmodium 631 介2－ $1 m / x 632$＂10560＂－＂10563＂．m／w D＂10566＂－ ＂10580＂．m／w D＂10600＂．m／w D＂10577＂m／w－ ＜text：） $5 u$＂during｜night＂ 633 ＂10569＂．m／u ＂stem climbing＂ 640 ＂10787＂．m 642 ＂10802＂．m，＂10811＂．m，＂10836＂．m 656 ＂10998＂．m $688 \quad$＂1683＂．$x \quad 690$＂ $1686^{\prime \prime} . x$ ， ＂1696＂．$x 692$＂11625＂．$x, \quad " 11626 " . x \quad 712$ ＂1741＂ not CD） 766 ＂1934＂．$x 774$＂1944＂．x 786 ＂13287＂－＂13289＂．x 796 ＂13415／13417／ 13419／13420＂．m $798 \quad$＂13433＂－＂13434＂．m／x，〈text：〉 $8-11 m / 9 u$＂varylsoil＂ $9 u$＂scarcelyltree＂ 800 ＂ 13462 ＂．$m 802$ wt P．macrocarpa quick grower＂2011＂．w 1270 ＂13504＂．m／w quickest grower of all 804 ＂2013＂．w 1274806 wt Juniperus 848808 ＂13560／13563／13565／ 13566＂．m／w 809 介12－10m 810 ＂13573／13577／ 13578／13579／13590＂．m 814 ＂2039＂．$x \quad 834$ ＂2066＂．x 836 ＂2080＂．x 838 ＂2083＂．$x 844$ ＂2114＂．w $1278 \quad 854 \quad " 2123 "-" 2125 " . m$ ， ＂14104＂m 855 ＂14101＂－＂14104＂．m／u土 864 ＂2143＂．w 1278 ＂14279／14280／14285／14286／ 14289＂．m 865 ＂14280／14285＂．m 1166 ＂2543＂．x， ＂17012／17013＂．$\quad 1226 \quad$＂17592＂．m 1228 ＂17633＂．w 13021272 ＂18056＂－＂18057＂．m／w Sir John very handsome 1288 ＂3118＂．m 1300 ＂ $3652^{\prime \prime}$－＂3654＂．m 1301 ＂ 357 ＂．m／u＂Joseph Plant｜Staffordshire＂ 1307 ＂Anagallis＂．m

LOVÉN，Sven Ludvig Études sur les échinoïdes Stockholm；P．A．Norsted \＆Söner； 1875 ［Down，I］

LOW，David On the domesticated animals of the British islands London；Longman，Brown， Green \＆Longmans； 1845 ［CUL］
ad，beh，br，cc，ch，cs，f，gd，he，no，sl，sp， sx，ta，tm，v，wd，y
NB Questions for Mr Low；Introduction；p． 36 $S B \square \beta$
LXIII．Supposes the longer any quality in breed comes truer－Believes in ill effect of interbreeding
LXIX States roundly that vars．of sheep \＆ Dogs will keep distinct p671
p． 5 \＆ 8 Species of lbex
12．Syrian Goat same character for 2000 years（no authority）－Horns absent sometimes in one or both sexes（do sie no authority））p． 14 in India
24 Horns in Female wild sheep often wanting or small
91 Black－faced sheep will not amalgamate by crossing with other Breeds
159 Rye－land sheep will not do．－
188 Remarks how soon a breed in any

LOW
county changes with no record of it S
239 On various Park cattle of England with coloured vars p. 241 p. 301
242 .
242 Crouching instincts of young lost immediately - no doubt lost in Chickens, not in Turkeys through tameness of Parents
258 Crosses with Indian Cattle said to be fertile inter se
297 Zetland cattle receive male earlier than any other Breed Q
309 Kerry Cattle white ridge along spine
316 Modern Aberdeenshire Breed hardly true as yet
351 Sheeted colour common to several breeds \& strongly inheritable
370 Long-horn with difficulty amalgamated Colling \& Bakewell r name Ellman for sheep 387 Short-horn communicate character very easily \& yet is an imposed modern Breed 402 Male Boar tends to destroy young to prevent too great increase - so some Rams attack pregnant females!!!
409 Wild not gregarious? (Bechstein) tame are. \& even when feral in S. America
411 Tame pigs 3 incisors in each jaw \& number not constant
415 Vauban calculation of increase of Pigs (Ch 3)
428 Sus Papuensis - young striped along back
646 Canis anthus of Arabia very like Dogs sculptured on Pyramids Q
650 Half-bred Dingos wd attack Poultry Low kept them
717 Some of Dholes of India like Greyhounds - Pointers Mute Q
721 Pedigrees of Greyhound attended to like Races
a Poor Book - not to be trusted.
v $14-18 m$ vi $15-18 m, 27-29 m$ vii $21-27 m$ viii $15-16 m$ lii $33-36 m$ liii $5-12 m, 14-16 m$ liv 4$9 m, 27-29 m, 31-35 m$ lv $26-33 m$ lvi $34-35 m$, wb This I think, must be a specific character \& not direct effect of temperature lvii $7-22 m$, $27-28 m, 32-33 m$ lviii $19-24 m, 28-34 m$ lx 16$21 m$ lxi $8-9 m, 13-15 m$ lxii $25-27 m, 34-36 m$ lxiii $1-7 m, 8 u$ "characters 1 supposed", $9-16 m$, $20-23 m, 32-36 m$ lxiv $11-14 m$ lxv $20-24 m, 30-$ 34 m lxvi $17-22 \mathrm{~m}$ lxviii $26-28 \mathrm{~m}$ lxix $12-16 \mathrm{~m}$, $13-14 m, 16-18 m, 16-17 m, 28-30 m, 31-34 m$, $35-36 m$ lxx $1-10 \mathrm{~m}$ lxxi $33-35 \mathrm{~m}$ lxxii $19 \mathrm{~m} / \mathrm{u}$ " $13 \mid 18$ " lxxiii $20-21 \mathrm{~m} / 21 u$ "onelare" lxxiv $19-21 m / 20 u$ "werelyoung" xcviii $1-7 m, 16-$ $19 m, 20-23 m$ с $24-26 m$ ci $2 m$ ciii $7-10 m$, $7-$ 9 m cvii $18-21 \mathrm{~m}$ cxi $25-28 \mathrm{~m}$ cxii $16-20 \mathrm{~m}$ cxiv $17-20 m, 34-36 m$ cxv $1 m 15-6 m 231-36 m 3$
$2-4 m, 6-8 m, 12-17 m 819-23 m 11$ 17-28m, $35-36 m \quad 12 \quad 3-7 m, \quad 19-20 m \quad 14 \quad 10-11 u$ "sometimes lears" 15 4-6m, 31-33m $2415 u$ "horns 1 small" $258-10 m, 12 u$ "inloften", 24 27 m 27 1-5m, 5-6m, 13-16m 32 27-28m, 29$30 \mathrm{~m} 3330-32 \mathrm{~m} / 27-34 w$ There must be 100s of species caught, not probable for trouble $w b$ We know how apt savage natures are strike on same plans \& therefore domestication wd probably take place to great extent - taming wild animals \& birds common t Dt of $344-7 m, 31-33 m 3528-31 m$, $33-34 m, \quad 35-36 m \quad 36 \quad 7-8 m, \quad 17-18 m / 18 u$ "character", 26-27m, $28 u$ "hair", 32-34m 37 $16-18 m, 26-28 m, 35-36 m 3818-22 m 393-5 m$, $10-13 m, 18-19 m 4028-31 m, 35-36 m 5828$ $30 m 5927-28 m 604-5 m 6222-23 m 63$ 22$24 m 655-7 m, 25-29 m, 31-36 m 668-11 m 68$ $1-2 m, 10-11 \mathrm{~m}, 13 \mathrm{~m} 69 \mathrm{wb}$ comparable to the trifling characters distinguishing geographical representation 73 19-22m, 26-27m, 28-29m 75 22-25m 81 10-11m 82 3-5m, 24-26m 83 6$7 m, 14-17 m 8430-33 m 8527-29 m, 32-35 m 86$ $1-4 m, 14-18 m 871-3 m, 22-23 m 9117-18 m 93$ 31-32m 94 1-3m, $16-17 \mathrm{~m} / \mathrm{u}$ "Theirlquarter", $31 m, 34 m 11317-18 m, 27-28 m 11431-32 m$ $11534-36 m 116 \quad 6-7 m \quad 117 \quad 27-35 m \quad 118$ 17$20 m, 23-26 m, 31-32 m 1205-7 m / 5 u$ "outline of" 121 12-13m, 35-36m 123 6-8m, 33-36m 124 30-33m 125 9-11m $1265 m / u$ " 4000 ", 10$11 m 133$ 29-33m 134 12-14m, 24-26m 136 1$6 m, 10-12 m, 22-23 m, 27-28 m, 34-35 m 137$ 12-13m 138 31-32u "The ISheep", 32-35m/3233u "knowlare" 141 26-31m 143 20-23m, 25$28 m 145$ 15-20m 147 32-36m 148 13-16m 150 4-6m 151 27-30m 155 13-16m, 32-33m 158 15-19m 159 2-5m 163 13-21m, 28-31m 164 $13-14 m 1707-9 m, 11-14 m 1738-12 m 1744$ $9 m, 18 u$ " $50 \mid l b . " 18-24 w$ Does not P King say 65?!!! at first in Australia 175 1-5m/w must be due to external agents $1772-6 m$, 19-21m 179 11-12m 181 13-16m, 29-30m 184 $12-14 m, 24-26 m 185$ wt Crossing evidently produces rapid effects \& has done much more than selection.- $4-6 m / x \quad 188 \quad 18-21 m$ 192 2-4m $1931-2 m, 11-13 m, 29-30 m 19425-$ $30 m 195$ 31-35m 196 1-6m 197 27-36m 198 $2-4 m 19931-36 m 20922 m 21735-36 m 231$ $7-8 m, 28-32 m / 30 w$ (a) $w b$ (a) No such great change has been effected in reclaiming the common Ox of Europe V. further on.- 233 33-41m 234 34-36m 236 3-5m 238 6-9m, 12$14 m, 15-27 w$ Compared to Falklands! $30-31 m$ 239 1-2u "existed 1 immemorial", 3-4m, 13$17 m, 31-36 m 241$ 18-19w like Pigeons 19$22 m, 23-26 m 242 w t / 1-7 w$ instinct by young animal lost, $\&$ it must be lost by change in instincts in old animal. by the old ones not
depositing their young. $3-7 m / 4-5 u \leftrightarrow, 8-12 m$ 256 6-8m, 25-30m 257 2-5m 258 14-16m 259 3-5m 261 19-22m 264 28-30m 265 9-11m, 2428m, 29-33m 266 9-11m, 20-22m, 23-25m 296 $28-30 \mathrm{~m}$, $\quad 30-31 \mathrm{~m} \quad 297 \quad 11-12 \mathrm{~m} / 12 u$ "Scandinavian", 13m, 21-24m 299 25-27m, 2936 m 300 15-18m, 29-31m $3017-10 \mathrm{~m}$, $30-31 \mathrm{~m}$ $3043-4 m, 32-33 \mathrm{~m} 30616-18 \mathrm{~m} 3073-6 \mathrm{~m} / \mathrm{Q}$ $10-12 m 30820-25 m 309$ 14-15m/14u "white", $30-32 \mathrm{~m} 31022-26 \mathrm{~m}, 27-30 \mathrm{~m} 31625-36 \mathrm{~m} 318$ $28 \mathrm{~m} 31926-27 \mathrm{~m} 32127-30 \mathrm{~m} 322$ 3-7m 324 $22-24 m 3347-9 m 33922-24 m 3443-6 m 345$ $24 m 34625-27 m 34927-29 m, 31-33 m 350$ 29$31 m 3513-7 m$, 14-16m 353 28-31m 357 1920 m 358 19-22m 359 15-17m, 22-24m, 29$31 m 362$ 17-21m $3632-4 m, 7-11 m / 10 u$ "late | century", 17-20m/17x /18u "1769", 31-32m, 32-34m 364 10-15m, 16-19m/18u "not" 365 10-11m, 13-15m 366 8-10m, 11-12u "very short", $15-16 \mathrm{~m}, 21-22 u \leftrightarrow 3684-5 \mathrm{~m} / \mathrm{Q} 8-10 \mathrm{~m}$, $24-27 \mathrm{~m} 3691-2 \mathrm{~m}, 4 \mathrm{~m}, 8-9 \mathrm{~m}, 11 \mathrm{~m}, 12-15 \mathrm{~m}$, $16-17 \mathrm{~m}, 20-21 \mathrm{~m}, 22-24 \mathrm{~m}, 34-35 \mathrm{~m} 370$ 13-15m $3713 u$ "goodly|horns" $3726 \mathrm{~m}, 14-15 \mathrm{~m}, 30-$ $34 m, 35-36 m 3736-7 m, 35-36 m 3751-2 m, 4-$ $6 m 376$ 9-12m, 27-29m, 30-34m/32w (a) 377 $1-2 m / 1-8 w$ (a) because cannot see within.Selection cannot regulate position of fat.-32-34m 379 26-31m, 32-34m 380 34-36m 381 $5-6 m, 23-25 m$ (Colling) $/ w$ I ought to use his name $28 u$ " 1770 " $3823 u \leftrightarrow, 6-10 \mathrm{~m}, 17-20 \mathrm{~m}$, $30 \mathrm{~m}, 34-36 m 38325 u$ "crosses", $26 u$ "Scotch 1 Galloway" 384 1-5m, 6-8m $38513 w$ Cows $17=3873-5 \mathrm{~m} / \mathrm{Q} 7-9 m, 14-15 m, 27-29 m, 34$ $35 m 389 \quad 7-8 m \quad 393 \quad 34 m 39411-13 m / 8-16 w$ such selection ed never apply to wild animals, as every parent must be adapted to same conditions 396 19-21m 397 7-8m, 14-16!??/15-16u "is |Africa" 401 20-24m 402 2021m, 22-24m, 34-35m/35u "prevent I great" 408 24-26m, 32-34m 409 4-5m, 10-12m, 19-22m, 25-29m, 31m 410 3-5m, 13-16m 411 4-6m, 4$5 \mathrm{~m}, 10 \mathrm{~m} 4158-10 \mathrm{~m}, 15-22 \mathrm{~m}, 35-36 \mathrm{~m}, \mathrm{wb}$ What is average age of Elephants? 421 8$10 \mathrm{~m} 42218-19 \mathrm{~m} 424$ 20-21m, 22-25m, 26$27 \mathrm{~m} 42612 \mathrm{~m} 42810-12 \mathrm{~m}, 28-30 \mathrm{~m} 4293-7 \mathrm{~m}$ 431 14-18m 433 6-10m, 12-14m, 25-27m 438 $24 u$ "Asses", 27-28m 441 31-34m $44527 u \leftrightarrow$, 29-31m, 33-36m $45336 m 457$ 8-14m 468 8-14m/11-12u "hardy|enduring" $/ 9-16 w$ Change of character from external conditions. $4695-$ $7 m, 15-18 m 47021-25 m 513$ 9-13m, 31-34m, 35-36m 514 30-32m 516 5-6m/6u "piebald" 517 9-11m 523 1-4m, 21-23m, 28-31m 524 23-25m 527 12u "King Herod", 13-14Q 1516m, 25-26w Darley Arabian 30u "Eclipse" 528 15-16m, 30-33m 529 20-21Q $22 u$ " 334 winners" $122-23 m, 26-27 m 53020-22 m 532$ 1$3 m, 7-10 \mathrm{~m} / \mathrm{l}$..."/Q $20-21 \mathrm{~m}, 27 \mathrm{~m}, 31-33 \mathrm{~m} 533$

1-2m, 9-11m 544 17-18m, 20-22m 546 7-10m, 10-12"..." $/ m, 19-22^{\prime \prime} . . . " / m / Q 5841-5 m 5881-$ $3 m 598$ 22-26m, 27-29m, 35-36m 602 30-31m $60612-17 \mathrm{~m} 6078-10 \mathrm{~m}, 11-14 \mathrm{~m} 60821-23 \mathrm{~m}$ 617 8-9m, 12-14m $6192 m, 3-5 m, 8 m, 17-21 m$ $62513-17 m 62818-28 m 6411-4 m, 18-20 \mathrm{~m}$, 21-24m, 27-29m 643 18-21m, 32-33m 646 29-$30 m, 32-35 m 649$ 14-16m 650 3-5m, 3-4m, 34-37m 653 28-32m 655 1-5m 656 30-31m, $35-36 m 6571-4 m, 5-10 m, 31-36 m$ 658 5-7m 660 13-19m 663 3-7m $66413-17 m, 27-28 m /$ $28 u$ "Maltaldog" 665 5-15m, 16-25m, 26-32m $6666-10 m, 22-27 m / 21-31 w$ one cross, without fertility inter se, wd produce effect.good - $67120-21 m / 21 u$ "race" 22-24m, 28$29 m 672$ 24-26m 673 12-15m, 22-26m 674 10$11 m, 17-18 m, 26-28 m, 30-31 m 6777-9 m 678$ 27-30m 706 1-9m, 34-36m 711 21-25m 716 6$9 m 717$ 30-36m 718 32-36m 719 10-15m 721 $14-17 \mathrm{~m} / \mathrm{Q} / 15 u$ "pedigrees of", $22-25 \mathrm{~m}, 28-31 \mathrm{~m}$ 723 19-21m, 32-33m 724 1-3m $73016-19 m / 8-$ $26 w$ Sulivan's case of other dogs doing so at Falkland $\quad 21-24 m / 27-28 m / 30-36 m / 22-35 w$ adaptation, striking case of $7313-7 m, 10-$ $12 m 735$ 22-23m 736 4-6m 740 32-35m 741 4-6m, 18-20m 743 1-2m, 32-34m 744 15-18m $7458 \mathrm{~m} / \mathrm{u}$ "webbed" $7464 \mathrm{~m} / \mathrm{u}$ "His|webbed" 747 16-18m 749 15-18m, 16-19m, 24-27m, 28-31m 751 25-32m

LOWNE, Benjamin Thompson The anatomy and physiology of the blow-fly London; John Van Voorst; 1870 [CUL, I] beh

NB p. 18 Flight of insects a form of crawling $1410-15 m, 17 u$ "thirty times", 23-27m 15 17m 18 27-30m 34 5-6m

LOWNE, Benjamin Thompson Descriptive catalogue of the teratological series in the Museum of the Royal College of Surgeons of England London; R. Hardwicke; 1872 [CUL, I]
ct, ds, em, h, rd, v, t
NB Rudiments \& Law of Variation; xii Rudiments; xiv Doubling of embryo in single Blastoderm; xvii "soi pour soi"; xviii; Nothing for Descent of Man
xii $16-20 m, 36-37 m$ xiii $24-26 m$ xiv $24-27 m$ (Milne-Edwards) xv 20-22m xvii 3-6m 18 17$22 m$

LOWNE, Benjamin Thompson The philosophy of evolution London; John Van Voorst; 1873 [CUL, I]
beh, cs, ds, h, he, ig, in, rd, t, tm

LOWNE

NB1 All concerning Descent of Man
119 No Bird or Reptile comes between
Amphibian \＆Mammals－good
141 Flies know plaintive cry of captured fly

NB2 p41； 43
accounts for good from crossing by giving plasticity．-44
55；57； 58 Rudiment；Pangenesis 62 or 65
All marked to end of Book
$4117-21 \mathrm{~m} / \mathrm{w}$ if of use to the individual 27 m $4210-12 m / 11 w$ Yes $432-6 m, 25-28 m 4410-$ $15 m 558-15 m 571-8 m, 20-28 m 58$ 17－23m／w No in rudiment of pistil $625-8 m, 8-14 m 63$ $15-19 m 6514-17 m / w$ because they must collect the earliest stage $7221-27 \mathrm{~m} / 21-23 w$ Sir J．Paget $753-6 m 7611-18 m /!!/ \downarrow w$ It is incredible to me so fine a balance．If so American ought not to be more naked than European－Brain not so much developed 104 17－28m 105 7－15m，19－22m 115 21－28m 118 22－27m 119 22－28m（Parker） 120 12－18m $1238-13 m / 9 u$＂homoplastic＂ 141 23－27m 144 23－28m（Bain）

LUBBOCK，John An account of the two methods of reproduction in Daphnia ．．．（extract）， communicated by Charles Darwin； 1857 ［Down，I］

LUBBOCK，John Addresses，political and educational London；Macmillan \＆Co．； 1879 ［Down，I］

LUBBOCK，John Ants，bees，and wasps 4th edn；London；Kegan Paul，Trench \＆Co．； 1882 ［Down］

LUBBOCK，John Monograph of the Collembola and Thysanura London；The Ray Society； 1873 ［Down］

NB O／
\wp
LUBBOCK，John The origin of civilisation and the primitive condition of man London； Longmans，Green \＆Co．； 1870 ［CUL］
beh， $\mathrm{h}, \mathrm{t}, \mathrm{y}$
NB p355 Savages \＆Men cry or weep only slight occasionly copiously－Q Puzzled savage frowning
p277 signs of affirmation．
$427-10 m, 31-32 m 48$ 19－22m 50 17－20m／w \＆ so forth $5223-29 m 5513-16 m 6016-19 m$ ， $20 u$＂almost＂，25－27m／25－26u＂communal marriage＂ $648-11 m, 14-18 m / 1-18 w$ It is very
odd that children shd not know their mother． or rather conversely． 66 28－31m 67 wt（a） other explanation of closer connection of child to mother 11a＂M＇Lennan＂\＆MorganO （a） $11-17 \mathrm{~m} / \mathrm{w}$ says so，but am not convinced 69 11－16m，24－26m 70 7－9m，12－14m，23－28m 72 11－14m，19－21m 76 20u＂Malay＂ 77 1－2m $7928 u$＂Fijians＂，30－31m $861-5 m 878-11 m$ $8819-27 \mathrm{~m} / 6-26 \mathrm{w}$ This all looks like communal marriage $9327-31 \mathrm{~m} 941-2 \mathrm{~m} / \mathrm{wt} /$ $1-4 w$ What is the evidence $5-7 \mathrm{~m} 9917-20 \mathrm{~m} /$ w or rather of many－places $1008-9 m, 10-$ $11 m, 28-32 m 10129-32 m 1043 m$ ，13－18w because tribe of utmost importance 105 2－ $5 m 108 \quad 24-28 m 119$ 9－22m $128 \quad 10-24 m 171$ $25-30 m \quad 221 \quad 30-34 m \quad 259 \quad 2 u$＂friends＂$/ 4 u$ ＂words｜justice＂$/ 2-4 w$ but reality $26028-31 m$ 261 26－29m 263 2－6m，26－28m 265 30－32m $27334 m 274 \mathrm{wb}$｜think I need only refer to L on wickedness of savages \＆Primitives $w b$ Moral sense citing the term－the latest acquisition is that which impels a Man to certain actions each or wholly or in part not counting to his own＊advantage，or plans， \＆which reportsO have under the term 〈rest 0） 277 3－8m 278 14－27m $3217-8 u$＂Among 1 Saxons＂，11－15m／Q 21c／wも $3554-7 \mathrm{~m} / 6 u$ ＂knit｜brows＂，19－38m／29－31m

LUBBOCK，John On the origin and metamorphoses of insects London；Macmillan \＆Co．； 1874 ［CUL］
ad，ds，em，ig，sy，tm，ts
NB Modern Classification 20 （Error） Termes－F．Müller；66；73； 81
SB π_{0}
p66－Similarity \＆dissimilarity of Larvae， relating to mature state－Medusae the most wonderful case．
p73 on difficulty of believing that a suctorial mouth cd be developed into a mandibulate one，\＆vice versá；both descended from intermediate form．
p82 summary on metamorphoses＂adap－ tional \＆nonadaptational＂
66 3－25m 73 12－25m 81 3－5m 86 11－20m
LUBBOCK，John On the ova and pseudova of insects（extract）； 1858 ［Down］

LUBBOCK，John Prehistoric times London； Williams \＆Norgate； 1865 ［CUL，I］ beh
NB \langle not $C D$ 〉
337 14－22m，28－30m 354 18－20m（Crawfurd） 451 18－24m 473 9－12m／w Rengger $25 m 474$ 1－3m，29－32m 475 16－21m 476 14－18m，20－
$29 m 477$ 23-30m/w Castes of India 478 1-5m 479 13-19m 480 20-26m (Wallace)

LUBBOCK, John Prehistoric times 2nd edn; London; Williams \& Norgate; 1869 [CUL, I, S]
beh, gd, h, tm, y
NB 417 Advance in Savages
$562,563 \rightarrow 437$ Power of counting by Savages No abstract terms

- 471 females noses flattened
- 508 size of underlip standard of beauty (?) - 507 Amers. shape of Head very deformed 539; 543; 545 independent inventions showing oproperty of Savages
552 Kissing not general
553, 554 - odd mores \& fashion
558 - Mental development of Child, near like
563-564-Religion
569 - Witchcraft
- 571 - Cloud of evil hangs over savages
animals using weapons - 572
574 - State of Race when they first spread over Earth
399 1-3m 402 14-16m 405 5-7m, 11-13m 417 20-31m 437 15-27m $47125-27 m 50616-17 m$ 516 27-28m 539 30-34m 542 20-31m 543 11$20 m 5452-7 m 5527-12 m, 21-25 m 553$ 5-9m, $11-17 \mathrm{~m}, 17-20 \mathrm{~m}, 33-34 \mathrm{~m} 5544-10 \mathrm{~m}, 11-16 \mathrm{~m}$, $25-27 m, 28-29 m 55822-31 m 5626-8 m$, 23$26 m 5637-9 m, 16-20 m 5651-11 m$ 569 1720 m 571 wt one must consider their evidence or their dread fully to appreciate the important benefit of knowledge \& science. 4$6 m / 5 w$ (a) 572 10-14m 574 wt when they spread over the earth $2-6 \mathrm{~m} / 2 u$ "ignorant 1 pottery", $5 u$ "Theylarrows", $7 u$ "boats" $18 u$ "possible character", 1-19w , 15-25w-18$20^{\prime \prime} . . . ", 30-32^{\prime \prime} . . " / m / w$ He adds $21 . . . " / w$ \& Fire But he admits that from why 575 13$20 \mathrm{~m} / 17 u, 26-34 m$

LUBBOCK, John Scientific lectures London; Macmillan \& Co.; 1879 [Down, I]

LUCAE, Johann Christian Gustav Der Fuchs-Affe und das Faulthier Frankfurt am Main; Mahlau \& Waldschmidt; 1882 [Down] 80

LUCAE, Johann Christian Zur Statik und Mechanik der Quadrupeden Frankfurt am Main; Mahlau \& Waldschmidt; 1881 [Down]

LUCAS, Prosper Traité philosophique et physiologique de l'hérédité naturelle 2 vols.; Paris; J.B. Baillière; 1847 [CUL]
beh, br, cc, che, cs, ct, ds, em, f, fg, gd, he, hy, ig, in, mn, no, or, pat, phy, sl, sp, spo, sx, sy, t, ta, ti, tm, ud, v, wd, y
vol. 1 NB
Prof. Piorry Not ancient, probably Medical work; I think French. on Hereditary diseases. Enquire prior.-
title page $\uparrow 8 m$ (Piorry), wbec xxiii $10-16 m$ $11414-20 \mathrm{~m} 1273-11 m 12917 \mathrm{~m} / \mathrm{u}$ "neuvième। naissance", $32 m 1303 u$ "enfants d'Edward" $1494-7 m$ (Gall) $175 \quad 18-32 w$ period of variation different according to different authors. Cause \& time of appearance may be very different $176 \quad 17-20 \mathrm{~m} / 17-32 \mathrm{w}$ variation of hybrids inter se wd make one believe in this distinction of parent acting on germ.- 177 8-13m 179 18-24m 180 12-16m 181 13-20m/w inheritance cannot be cause of variation has nothing to do with it.-1833$12 m / 4$? / $10-11$? $18427-29 m / 29 u$ "unl spontané" $1854-9 m, 19-22 m / 19-32 w / w b$ Difference of twins looks against every theory. specially of germs. Action of parent different on germs Twins in Plants Extra uterin \& inter uter Why one take more after grandfather than other Entire mystery, can say only a law 18720 22m, 25-26m/26u "sponanéité" 195 2-5m/! 196 $3-5 m, \Uparrow 3 m / w b$ What. Not cited before I have looked all $1985-11 m, 16-19 m 1993-4 m 203$ 15-16m 211 20-24m 212 13-20m/w colours not mixing $21514-17 w 216$ couple 205 true 11 false $2176-8 m / w$ species not good to give one particular. $18-20 \mathrm{~m} 22122-25 \mathrm{~m} / 25 u$ "moindres", 27-28m 222 19-21m, 32m 223 10$13 \mathrm{~m} / 11 u$ "soixante ans"/ $13 u$ "trente ans" 244 $17-19 w$ constitutional inherited peculiarities $20-22 m \quad 245$ wt These are necessarily inherited at same time $1-4 m, 5-7 m / 5 u$ "précosité", $8 u$ "développement tardif", $10 u$ "puberté" 291 23-27m 305 13-15m 313 2-6m $3144-8 m / 5-17 w$ my selection view not applicable to all melanism. By variation \& by crossing in Birds \& squirrels $32518 m 326$ 3$4 m * 13-23 w 1234 / 842 / 6$ of children 16$22 w$ How very hereditary these six fingers $26-28 m / 27 u$ "du limmémoriale" 327 1-3m/2x 333 18-27m 337 1-11m 380 介 $1 \mathrm{~m} / \mathrm{wb}$ Hybrid Rhododendrons $3881-7 m 392$ 8-10m 393 18$26 m, 27-28 m 39527 m 39614-17 m 39920-$ $21 \mathrm{~m} / \mathrm{w}$ same age $22 \rightarrow, \Uparrow 6 \rightarrow 4002-6 \mathrm{~m}, 18-$ $19 u$ "trente 1 fille", $19-20 u$ "dix-neuflans", 22$23 \mathrm{~m} / \mathrm{w}$ Earlier $26 u$ "treize", $27 u$ "onzième année" 4013 u "onze ans" 428 1-14m 4297 $10 \mathrm{~m} 43014 u$ "nous \mid notre" $/ 15-21 \mathrm{~m} / 15 u$ "qui| congéniales" 463 7-18m 577 4-13m/9-10u "mêmelenfants" 584 6-14m 598 18-21m 600

LUCAS

24－28m 602 13－15m 605 28－29m 614 22－25m
（Maupertuis） $62519 m 626$ 21－22m
vol． 2 NB 0 On sexes p 159－163
SB1
393；399；400； 428 deaf Cats；430；463；
577； 584 Music；598；600；602； 605 good〈over〉 Tom 1
p．114；127；129；149；175，180－5 used； 187；195；196；203；211，12；221；244；291；
305；313，14； 326 －many fingers；333；337；
380； 388
I must order Piorry
－Probably offspring never absolutely like parent，in mind or body．at least in Man．－ Whatever causes this difference is exaggerated in varieties．if we look at similarity as the powerfulness \bigcirc of generation
Allude to the many opinions
－p． 175 I shd allude to uncertainty of period，
as complicating our ignorance of causes of variation．
Think of difference in Twins．p． 185 Good ＜over〉
－In inheritance the only point which concerns us New structures being inherited or not．
One might fancy that in Ass crossed with Horse there is a greater potency of race，\＆ that this potency is transmitted more by male in this case than in others．Niata cow transmits with more force than Bull－Pouter Cock \＆Hen equally．
SB2 $\square \beta$
Tom I H Means Inheritance
114 Twins with circulation in common very different dispositions
129 Lambert，horny excresses given to children Hs
149 Difference in young pure wolves of same litter＊in disposition
175－185 on period at which variation caused （1 believe Q）
195 ancient law of the beautiful marrying－ in Crete
196 on likenesses in children coming on at corresponding age to parent $(\mathrm{H}) \otimes$
211 Colours not mixing in species $\langle u \geqslant\rangle$ varieties $X \& \underline{Q}$
222 Hereditary Hernia not at same age H
244 corresponding periods of inheritance H\＄；connected with periods of life dentition，puberty．
305 Adams thought deformations by arrest were not hereditary H＊
326 Polydactylism very heredetary－my view everything very heredetary，but not
rendered latent $H \$$
333， 337 On Double monsters，whether really double X
388 Taste for Barley changed by domestication in Pig．Sir F．wild Pigs wd not eat swill
H＊Curious case of Hereditariness in eye in Lens moving \＆causing blindness（Ch．8）
399 same age blindness supervening H＊ 577 in Cretins comes on in infants－calls it exceptional H＊
428 Blind Deaf Cats \＆White－Adams in Cyclop of Practical Medicn Vol 2．p． 418
463 Blending instincts by crossing vars \＆ species
584 Musician heredetary H＊
598 In Hybrid Wolves \＆Dogs，likeness to wolf in all the males and conversely $\mathrm{H} * \mathrm{~S}$ 600 Hereditary sleeping on back \＆crossing legs H
605 Good summing sentence about Hereditariness．－H＊
SB3 $\square \Re$
439；445；455，7；471，2，5，8；483，4；501；
$567 ; 571 ; 574,7 ; 580 ; 592,5 ; 605 ; 611 ; 627$
678 same age \rightarrow summary on this head．；
691 do； 700 do； 702 do； 713 do； 715 do；
748 do； 759 do； 849 age； 850 age；852－ age
858；891； 892 very important on crossing obliterating individual character；896； 904 2
129；135， 7 － 140 －145； 156
157 on latent characters，in respect to reversion
158－165－good．
172－5
180 comparison of Hybrid \＆Mongrels ＂Race－Hybrids＂－＂Species－Hybrids＂
185； 190 －Books important； 192
198， 212 to 218 Crosses of Zebra \＆Ass．
229；240；253；296；299；301；307；310；315； 334；347；382， 4
I must express things diffuse \＆with $* a$ most wearisome pretence to formulas．
〈over〉
2 children have some peculiarity which no＊ ancestor had－

So Porcupine \＆Echidna Orchis \＆Asclepias Explanation same，in some degree similar constitution acted on same causes，but in latter case selection comes into play very importantly－Both，however，derived from modified pair－Turned up snouts in Crocodile，Goldfish \＆Bull－dogs．
But now in bars on Pigeons \＆Asses legs \＆ Horse back no selection．It comes to this can we believe external agencies cd
produce the bars；I do not－
That there is real \＆not mere external potency of race；Gaertner I think shows by rapidity of conversion into another form．－
〈over）Tom 2
See Back of Page
p．4；p8； 33
40 The most inexplicable case wd be an additional finger reappearing a tendency to form it somehow checked．－p48 Yes there are cases．－ 45 So masking theory must be given up．
54， 58 effect of ant－copulation
75,78 on action of Sexes，contradictory．
$82,85,86$ ，（ 88 opposed to my theory of colour \＆constitution．）
93， 94
103－5 about which sex has greater influence 109
111， 12 Preponderance of race in different sexes \＆p120
116 Book Huzard
124
SB4 1β 〈 2 sheets \rangle
－T． 2
8．Male giving certain parts p． 75 Summary on do． 78 do． $82\langle u$ 〉
33 on similarity in children distinct from inheritance H \＆
40 Atavism，as in six－children：H Predisposition－may say latent；not marked．，＂Ruckslag＂〈ie Rückschlag〉
58 Cases like Ld Moretons Q
X 85 Colour \＆character going together 88 93,94 shows colour \＆constitution do not go together
103 Whether male or female parent preponderate in general in a cross，to p．105． Much diversity $\langle u \otimes\rangle$ of opinion
109 He thinks they have equal power－ p．111．in some［instances］male most，in some females－ p 112 Q examples of preponderance of race 114 so with individuals 120 Potency of Race in one sex p 124 Sexuality in itself nothing（good summary）
129 Differences in Monoicous \＆Dioicous flowers Ch． 6 Sexual selection（Probably much correlation of growth
135 Sexuality goes for nothing in crosses
137 Sexes transmit commonly to own sexes － 140 in many cases reversed H S
158 Differences in sexes throughout animal Kingdom（look at under Ch．6）
165 Excellent case of same Peculiarities attached to either males or females S（is it due to sex tendency to transmit to own sex？ H8

171 Father of Polydactilism \＆c showing how does not go by sexes．H
X \＆ 180 Q Comparison of Hybrids \＆ Mongrels－Upset to Geoffroy Rules to 190 － 192 Summary on．D Lucas firm believer in Species
185 case of non－reciprocity in Mammals Q
194 Subdivides resemblance with groups like Gaertner（Compare）
198 Cases of parts taking after one parent （ Give case of tail taking after Male in Triple cross
217， 218 accounts for all new Characters by Combination，forgets sports in birds－This is in fact same sort of theory，as that which accounts for all races by crossing
229 Melange takes place only where parts are like．
240 Hare \＆Rabbit good case of difficult union in close species．Buffalo \＆Cow Cow （？）
253 His law of election \＆mixture \＆ combination
296 On animals，as Bull \＆Stallion，having much more choice than wd think．Ch 6 （
301 Q On Old Race preponderating in cross 307 Hybrid of Fowl \＆Pheasant，fertile Q
308 On＂Reduction＂Q of races； 310 Effects of Q climate on reduction p 315 The rate of reduction as shown by Gaertner shows that there is real potency in $1 / 2$ breeds
355 on various combinations of colours
347 Knox \＆Weber think both sexes present in embryo（Knox \＆Weber）Ch． 8 Opposed by gt authors p382
445 Classification of variation with congenital －spontaneous \＆immediate；never alludes to effect of causes on ovules \＆spermatozoa 483 Dumb Dogs learning to Bark in England 484 －Hereditary Handwriting Comptes Rendus H
501 ．Effects of accidents heredetary H
5.

〈over）
－Tom 2
567 Hereditariness at corresponding periods H
571 Good Remarks on little distinction between inheritance of predisposition \＆ disease itself H
576 List of Hereditary diseases Ho
580 Diseases appear，when inherited，under insufficient causes（Ch． 6 when showing how inheritance aids primary causes of variation） 592 Disease to be inherited need not appear early，any more than character in imago $\mathrm{H} \otimes$ 595 Inherited Disease not very rarely appears in infant H

LUCAS
605 Inheritance from parent after an abnormal state has appeared. $H \otimes X$
611 Doubts any great distinction of inheritance of acute \& Chronic diseases 627 Veterinaries especially believe in heredetary diseases (short quicker breeders) H
Hereditary cases at same age (or nearly) or rather young 678 good same disease at different age p. $691700702(713$ 715) 748 759 H

- Hereditary cases at very different ages

848 Summary on Hereditariness at same age to 852 H
858 Local diseases inherited H
891 Noble Families endure barely 300 years 892 Owing to marriages, character of one * single individual is soon lost He [Lateral characters on both sides different case for Crossing] C.D
904 Summary on ill effects of Breeding in \& in. (*)
$423-26 m 715-16 m * 83-6 m 337-10 \mathrm{~m} / 3-14 w$ Bears on Reversion as Sir H. Holland.What brings them, but something in common similarity acted on. 40 14-16m (Burdach), 15u "prédisposition" $451 u$ "Ruckschlag", wt Reversion better than atavism throwing back $2-5 m 4833 m 5425 u \leftrightarrow, 27-30 m 581-10 m$ (Van Helmont \& Haller) $5915-17 m 754-10 \mathrm{w}$ great diversities in relation to action of Sexes 78 26-32m 79 26-29m 82 19-32m 83 24-26m 85 15m/u "Da Gama Machado", 20-33m/21u "coloration I caractère" 86 24-27m, 25-26u "transmission I couleur", 26-27u "du tempérament" $886-10 m, 28-32 m / w / w b$ My point is only whether generally.- \& only relation of colour \& diseases of hot countries That colour \& withstanding climate are connected all organisms show - No it may be effect of light $9315 a$ " $L e$ " $/ m / u \leftrightarrow / w$ Mental I think $942-6 m, 28-29 u$ "penchantsIfacultés" 95 18-22m 103 9-12m 104 13-16w diverse opinions $26-27 m 10513 m, 23-24 m 1095-8 m$ $111 \quad 30-32 m \quad 112 \quad 15-26 m / 17-18 \mathrm{Q} / 18-23 w$ preponderance of one race over another with a 3d race 113 wt Austrian face must, I shd think go with father.- $3-6 \mathrm{~m} / \mathrm{w}$ preponderance of race according to sex $13 u$ "mongole" $13-19 \mathrm{w}$ preponderance when either sex - like Pouters \& Fan-Tails. 114 5$11 m / 4-25 w$ crosses of individuals like races \& like species - Same conclusions as Gaertner - with the difference that the sex variously determines the preponderance 116 25-26m, 31-32m (Huzard) 120 12-16m/w case of potency of race in sex 124 16-21m/16-
$19 u \pm, 28-32 m / 31 w$ a $w b$ ie an individual, either male or female can preponderate, \& so he thinks it is (I think) in species; but surely he must allow one species or race alone preponderates $1252 u$ "Cettel des", 16$18 m, 16 w \tau, 26-31 u \pm / 28 w$ (a) $w b$. In fact every animal is bisexual 126 wb Sexual characters generally confounded with other characters 129 5-10w Differences in monoicous flowers $23-29 \mathrm{w}$ great differences in dioicous flowers $31-32 m 130 \quad 28-31 m 135$ 25-27m 136 9-11m 137 9-12m/w was the 1st Pouter a male? 11-14u士, $22 u$ "unelces", $23 u$ "métamorphose", $24 u$ "épidermiques", $25 u$ "polydactilie" 138 6-16m, $7 u$ "chromatopseudopsie" $14022-23 \mathrm{~m}$, 25 u "dire| père"/ w in many cases $1457-10 \mathrm{~m} / 8 \mathrm{w}$ in-version $12-14 m, 15 u \leftrightarrow 15620-24 m, w b$ It is clear that characters sometimes go with sex - as sometimes polydactylism \&c - Pouting \& Wattle, \& so if useful to one sex can be selected \& returned - In fact both sexes have these characters but not displayed 157 $w b$ The latent characters as shown in reversion to ancestors are illuminated by cases of females having them in potentiality $7-10 m 158$ wt Differences between males \& females $4-29 m * 159 \quad 2-9 m / m * / 5 u$ "la Raie" $/ w$ Fish $9 u$ "Chien|que" $/ w$ M $1612 m / u$ "la huppe", $3 u$ "voile", $4-5 m / 5 u$ "gutturaux", $8 \mathrm{~m} / 8-9 u \quad$ "épines llatérales", $15 u$ "crêtel Condor", 16u "aigrette lespèces", 17-21m/ 19$20 u$ "barbe|Élan" 162 4-6m/4u "odorifères" 163 12-21m/13-18u士/13-15w ω, u Badger Otter \& Lynx $\uparrow 2 m / w \otimes, u \otimes$ Monkey $164 w b$ all the foregoing * ie of male sexual character being transmitted to males alone is wrong, as shown by sterile females - but it is latent in female 165 wt Looking at everything which can be transmitted being transmitted, in a child What a number of latent principles, from parents \& grandparents - there may be a latent tendency to produce long or very short tails, \& by no means necessarily an intermediate tail 11-12u↔/?/11-15w Mem. Polydactylism sometimes goes in males \& sometimes in females, I think. $\rightarrow 16-20 \mathrm{~m} / 18 \mathrm{u}$ "masculin | mâles", 21-23u↔, 29-31m, $30 u$ "affectél femmes" $/ 22-33 w$ hence, I shd think cannot be called an "annexed" character. or only accidentally annexed. 1665-9m, 10-12m, 16$17 u$ "exclusivement I auquel" $1674 u$ "occasion", $5 u$ "elle 1 cause" $1724-5 w$ Table on Back $9 \mathrm{~m} / \mathrm{u}$ "intermittent"/? 173 1-4m 175 9-14m/ 10-11w I doubt this $17625-27 m$ 180 5-8m/5u "rarement | moyenne" $/ 6-7 w$ just reverse $10 u$ "d'autres règles", 15 u "intermédiaire", $19-21 \mathrm{~m} /$
w just reverse $1815-7 \mathrm{~m} / \mathrm{w}$ Hence preponderant $18327-31 m$ 184 2－4m，7－16m， $19-21 \mathrm{~m} / \mathrm{w}$ ass prevails－one here $19-21 \mathrm{~m} /$ w odd go back？domesticated $\Uparrow 12-8 m / \Uparrow 11 u$ ＂Chien｜Boue＂$w w$ This variability of hybrids is independent of domesticity 185 16－20m， $\Uparrow 6 u \leftrightarrow / w$ Q $\Uparrow 7-5 m / w$ Reference \＆c next Page $w b$ case of non－reciprocity $18630-31 m$ 190 14－17m，19－21u＂la｜produite＂，28－29m， 32－34m $1923-10 \mathrm{~m} / 3-4 u$＂contrastantes＂ 194 $9 w$ Decided type 14－16w mixture of characters，or fusion $18-20 \mathrm{w}$ fusion of do $1989-13 w$ election of character agrees with Sturm $26-27 m, 32 m / w$ Good Book 199 1－4m／ $1 u$＂Étalon \mid Anesse＂ $3 u$＂semblable \mid père＂ $\mid 2-5 w$ Election of character by sex 7－8m $2007-8 \mathrm{~m} /$ $7 u \leftrightarrow 2018-11 m 20227 m, 28 m / 27-32 w$ in Mus of Practical Geology 212 33－34m 215 2－3m／ $2 u$＂combinaison Ichimie＂， $3 u$＂nouveau principe＂， $25-28 m 216$ 9－13m 217 7－17w He explains all variation \＆even in same species to this fancied law of chemical combination． $2186-20 w$ He forgets sports，which upsets his theory of variation by chemical union of qualities of two parents $22919 u$＂similitude। caractères＂｜？，21u＂Mélange＂／21－23w What does Gaertner say？ 253 20－24m， $23 u$ ＂mélange＂$/ w b$ similarity $24 u$＂combinaison＂ $\mid w b$ affinity wb What rubbish 295 21－25m，28－ $30 \mathrm{~m} / \mathrm{w}$ Cows 296 3－20m／9u＂Chevaux＂$/ \mathrm{w}$ Individual choices 296－97＜paper fragment attached〉 297 25－28m 299 18－19m 300 27－29m $301 w t$ as a mere matter of chance when anything has appeared in many generations， more likely to appear－Perhaps this is all 1－ $5 \mathrm{~m} /$ ？ $30723-24 \mathrm{~m} / \mathrm{Q} 28 \mathrm{~m} / \mathrm{Qu}$＂sal génération＂， $32 \mathrm{~m} 30817 u$＂septième génération＂ 310 6－18w Perhaps black－faced sheep－Anyhow I must be cautious about potency of race 315 2－5m， 8－11m（Burdach），12－14m，18－22m， 28 m 316 13－17m 317 15－19m 334 26－32m 335 15－25m 347 14－16m 382 10－16m 384 10－18m 439 13u ＂Muller＂，18－21m，20－21u $444 \quad 19 u$ ＂médiates＂ $445 \mathrm{wt} / 1-9 w$ Divides variations（ into spontaneous ？）\＆direct effect of external agencies on the parents \＆on the individuals after they have life，or when born． He seems to use congenial 〈ie congenital〉 when generated \＆not when born．－10c ＂premier＂／w spontaneous $12 u$＂sans \mid externe＂ \mid ？，15－16u↔／14－21w never seems to think of action on ovules \＆sperms before conception wb He gives so much in following pages to external conditions that I know not what is left for spontaneity． $4551-15 m 457$ $1 u$＂révoquent｜caractères＂， $2-3 u$＂qu＇ils 1 développent＂／w after born 459 wt My rabbit black when young．then turning grey－there
is no reason why this shd be so．－ $1-3 \mathrm{~m} / \mathrm{/}$ w ？whether new characters $3 a$＂âge＂$/ 2-$ $10 w$ ie whether the parents are young or old． Quite different question from mine． 471 8－ $11 m / 3-14 w$ He puts all this down to climate without any reason，except that they do differ in different climates 30 u ＂Prichard 142 ＂ 472 13u＂Vilmorinlont＂， $31-32 m 473$ 1－7w Puts all this down to climate \＆overlooks selection 475 3－6m，14－15u＂jusqu＇aul gallinacés＂， $16-32 m, \Uparrow 1 u \leftrightarrow / w b$ see to this 478 $1-6 m 483$ 13－16m $48412 u$＂des $\mid d u$＂／11－19w How he does confound congenital variation with real habit $28-30 \mathrm{~m} / \mathrm{w}$ on writing see p .92 ． $4931-4 m, 10 w$ coincidences $50117-26 \mathrm{~m} / \mathrm{w}$ accident might have produced poor offspring 567 5－15m $571 \quad w t / 1-7 w$ Differences of predisposition \＆disease chiefly being inheritable，blend together \＆not very great， \＆are both present though much discussed－ good remarks all refer to $7-13 \mathrm{~m}, 15-19 \mathrm{~m} 574$ $7-10 \mathrm{~m} / 6-19 \mathrm{w}$ tendency to same disease clearly transmitted in species Man during many generations 576 15－18m 577 2－6m， 9 u ＂Les laccord＂，10u＂prédisposition＂ 580 29－ $32 \mathrm{~m} / 30 \mathrm{u}$＂avec I concours＂$/ 32 u$＂l＇excitation I insuffisantes＂，wb This enlarged on in following pages $5927-12 m, 15-30 \mathrm{w}$ To be hereditary，disease need no more appear at first，than that the imago shd not be heredetary，because not preceded by larva． $59525-28 m / w$ good many cases given， of non contagious cases $605 \quad 17-26 \mathrm{~m} / \mathrm{w}$ Grognier What is melanism 611 9－12m，19－ $20 u$＂c＇est Piorry＂ 627 17－20m 678 17－19m， 19－21m， $20-21 \mathrm{~m} / 20 u / 21 u, 24 u, 25-27 \mathrm{~m} / \mathrm{m}$／ 27 u＂enfance＂ $6791-4 m / 2 u$＂depuislannées＂， $5 u$＂âgélan＂，14－29m／16－20w asthma strong cases of Hereditary $6918-9 \mathrm{~m} / \mathrm{u}$＂cinquante critique＂／w not good 17－19m／19u＂dèslans＂ 700 8－11m／9－10u＂pèrel croissante＂ 702 14－ $18 \mathrm{~m} / 15 u$＂euxlans＂／w goodish $71324 w$ Clionea $25-28 m / 26 u$＂aulâge＂ 714 29m／u ＂quinze＂ 715 5m／u＂dans l＇enfance＂，7－8m 748 11－18m／12u 〈ages〉， $14 u$＂méningite tuberculeuse＂／15－16u 〈ages）／11w apoplexy 759 $12-14 \mathrm{~m} / 13 u$＂quarante ans＂ $80221-22 \mathrm{~m} 803$ 8－10m $804 \quad 23-25 m 80514-18 m 8068-11 m$ 809 22－25m 810 3－6m $81325-27 m 81520-$ 21 m 818 22－24m 823 11－17m 848 8－11m／10u ＂d＇élection＂， $12-15 \mathrm{~m} / \mathrm{w}$ This important to me 849 〈и《＞＞6－17m／7u＂chorée＂／11u＂phthisie＂／ $14 u$＂goutte＂$/ 18 u$＂apoplexie＂$/ 6-11 w$ almost necessarily hereditary at same age $22-25 \mathrm{~m}$ ， $28-30 \mathrm{~m} 8503-13 \mathrm{~m} / 3-8 u \pm, 15-16 u \leftrightarrow 85132 \mathrm{~m} /$ wb young age $8521-3 m, 4-7 m 8583-11 m / 4$ $5 w$ Local diseases 891 18－23m／19u＂on filles＂／ $21-22 u$＂nominale＂$/ w$ ie by male side

LUCAS
$w b$ © $8928-13 m / 7-16 w$ This crossing may be rather different from the obliteration of a variety by changes of conditions \＆selection 18－22w Crossing will even obliterate a specific character $25 u$＂sommel caractères＂／22－ $28 w$ In crossing the character is not latent at all． $25 u$＂individu＂／wb ie with constant crossing wb In very latent characters both parents have．it for all ages．－Hence it comes out in cross $8931-7 \mathrm{~m} / \mathrm{w}$ Yet likenesses in families where peculiarities have never been fixed like specific characters． $8944-9 m / w$ characters produced in act of generation 23－29m 895 21－23m 896 $25-30 m \quad 904 \quad 28-30 m / w b$ attributes ill effect of 905 9－10m $90613-24 m 907$ 14－15m，16－ $18 m 914$ 22－26m 923 10－13m 924 6－9m，26－ 29 m 93319 m

LUERSSEN，Christian Handbuch der systematischen Botanik 2 vols．；Leipzig；H． Haessel；1879－82［Botany School，FD］

LUNZE，Gustav Die Hundezucht im Lichte der Darwin＇sche Theorie Berlin；Louis Gerschel； 1877 ［Down］

NB not read only skimmed
LYELL，Charles Elements of geology London； Murray； 1838 ［CUL，I］
geo，mi，t，ve
NB1 for Lyell
156158359439462524
NB2 Myself
－；∞
p． $27 \quad 387688119171$ 173X 181207212 217233237290 295，299－Glen Roy 329 350411417419426437432447449450 461473474517

23 wt 〈no．of words on page counted〉 $27 \Uparrow 10$ $1 m$ ，wt C．of Good Hope 38 8－10m 76 11－ 16 m ，wt I must be cautious about Ascension 88 Im 119 fig．m $125 \Uparrow 8-3 m 156$ 9－16m／w ？all infiltered？ $158 \quad 2-6 \mathrm{~m} / 4 u$＂somel rocks＂ 161 $\Uparrow 15 x, \Uparrow 14 x, \Uparrow 11 u$＂Labrador－felspar＂，$\Uparrow 8 x, \Uparrow 7 u$ ＂magneticlolivine＂ 162 3u＂Phonolite＂，10u ＂trachyte｜basalt＂／3u／a\＆ 163 14－15u土， $21 u$ ＂baslaticltrachytic＂，22u＂Hornblende rock＂， $\Uparrow 5 u$＂syenitel granite＂，$\uparrow 4-3 u$＂greenstone＂ 164 $1 u$＂Obsidianllava＂， $2 u$＂pitchstone＂， $9 u$ ＂Pearlstone＂，12u士，16u＂Pitchstone＂，21u ＂basaltic dikes＂， $22 u \pm \Uparrow 13 u$＂of tuff＂，$\Uparrow 12 u$ ＂Pumiceltrachyte＂，$\Uparrow 11 u$＂augitic porphyry＂， $\Uparrow 9 u$＂Scoriae＂，$\Uparrow 2 u$＂Syenitic greenstone＂ 165〈many lines．u〉 171 fig $93 . \mathrm{m} / \mathrm{w}$ ？reference？wb An argument against lateral injection，that
the origin of common dike is lateral tension which must be prolonged to surface \＆ therefore no tendency 172 1－15m／w Argument for－curious－separation of matter．Mem St．Jago dike was amygdaloid？？？16－19w if so introduction note 173 fig．m／wt is relative position faithful？ of fragment \＆clear salband．fig．m / w is cleavage faithfully represented？$\uparrow w<_{0}$ The cryst threads of greenstone at Salisbury Craigs．caused by cavities，like veins－when hollow－quartz veins in quartz rocks．－ cavities in lava．－（space yet pressure）介3－ $1 \mathrm{~m} / \mathrm{w}$ shows not altered great dike $w b$ The streching formed vacuum．\＆more fluid parts sucked in to walls or round fragment．－ 181 $\uparrow m, \Uparrow 2 \rightarrow, \Uparrow 1 m, w b$ These cases appear to me most wonderful $1821-5 \mathrm{~m} / \mathrm{w}$ or if stone was very fluid so as to communicate pressure $1 u$＂if $n o$＂$/ m * /!!\leqslant 207 \pi 4-2 m / ?, w b$ cause？ $2126-10 \mathrm{~m} / \mathrm{w}$ Hornblend pumped out？ $217 \Uparrow 17-8 m / w$ poor $233 \Uparrow 8-3 m 237 \mathrm{fm}$ 266 〈no．of words on page counted〉 290 1－8m 295 1－10m 299 1－3m 329 1－5m／？ 350 介 $6-1 m$ 359 wt would be preserved on such coasts as are now muddy $1-2 \mathrm{~m} /$ ？ $4111-3 m 41713-$ $19 m 419 \Uparrow 6-1 m / ?$ ，wb Sydney \＆C．of Good Hope．－ 426 fig．m 432 1－6m／4u 437 3－ $6 m / 3 u$ ＂existing genera＂ 5 u＂Cephalopoda＂／6u＂more widely 439 14－18m／？ 447 fm ，wb At all vertical 449 9－15m／w UspollataO $13 ? / u$ ＂clear＂ $450 \Uparrow 1 m /$ ？，wb Mem．Bartram．－∞ See scrap of Paper pasted at end of Book A $4587-14 m 4615-13 m 4621-2 m /$ ？ $4735 u$ ＂opposite directions＂$/ 5-9 m 474 \pi 6-1 m$ ，$\uparrow 3 ? / u$ ＂olivine＂ 475 1－14m 517 wt Chalk highest bed－case analogous to Cordillera 2－12m $524 \Uparrow 9-6 m, w b$ \＆Humboldt

LYELL，Charles Elements of geology 6th edn； John Murray； 1865 ［Down，I］ ad，ex，fo，gd，geo，gr，ir，no，oo，sp，ta

SB $\square \beta, A_{0}$
155；168； 231 Dryopithecus；265；269；299； 306；311； 377 to 384 good case of imperfection with MammaliaO；387；230； 410；414；435；451；509；510；542；552；569； 576；580； 583
SA $\langle p p$ ．664－5，not CD \rangle
Lyell＇s Elements of Geology 1865.
p． 155 Depths at which sea－shells can live
231 on Dryopithecus．
265 Myocene Flora richer in species than any existing
269 To West of Rocky Mountains extinct genera now formed to the east．
265 to p． 273 on the supposed Atlantis

299 Footprints of mammals in great numbers in upper Eocene
306 On the Eocene nummolitic rocks． forming parts of great mountain chains．
310 On great break between chalk \＆ Tertiary
377 to 384 On Purbeck beds showing imperfection of record－ 387 ditto
410 On great breaks in oolite series． 414 ditto
435 St Cassiew Beds．1st appearance of some Paleozoic genera
451 Hitchcock on Footprints in U．States
509 On airbreathers in Coal period in U ． States
542 On lowers Devonian formation at C ． Good Hope
552 On oldest known fossil fish
571 Table of Cambrian formations
576 On some of the oldest fossils
579 On the Laurentian formations
580 Speaking generally Silurian deposits have a pelagic character
583－585 Table of the first discovery of fossil vertebrates
viii $2 m$ ix $9 m, 34 m 1551-4 m 16832-39 m 231$ 9－46m 265 39－47m 269 21－29m 271 1－5m，34－ $41 m 273$ 8－18m 299 31－37m，42－47m 306 2－ $15 m 310 \quad 25-31 m, 32-41 m 311 \quad 17-20 m$ ，44－ $49 m 333$ 15－21m 377 21－38m／32－33u土 $3806-$ 17 m （Owen and Falconer） 384 27－34m 386 19－ $32 m 387$ 9－15m 390 15－34m，35－39m 41014 $24 m, 36-40 m 411$ 9－17m，43－46m 414 7－17m， 24－29m，29－45m 435 16－23m，24－30m 451 16－ $27 m 50825 w$ Coal $26-31 m 5104-21 m 542$ 33－40m 552 9－17m，20－30m，32－42m 553 12－ $19 m 569$ 16－23m 571 table．m，＂Lower Cambrian Rocks＂．m 576 10－14m，40－44m 577 6－14m，46－ $49 m 57843-45 m, 46-47 m 5792-3 m, 5-7 m$ ， $20-21 m, 24-38 w$ must have lived on prey 41－ $49 m 5804-7 \mathrm{~m}, 11-13 \mathrm{~m}$ ，18－21w now has Eoozoon $5811-3 m, 15-17 m 583$ table．m 584 33－40m 585 28－34m

LYELL，Charles The geological evidences of the antiquity of man London；John Murray； 1863 ［CUL，I］
cc，ch，ex，fo，gd，geo，gr，h，ig，in，ir，is，no， 00，or，r，sl，t，ta，ti，v

NB1

Torquay Head \＆shoulders

Fuller description of Celts
Alludes too much to Principles．－
Imperfection of Geolog．Records very good． 187
p107 reduced
p． 111 fallen level
p． 147 －square acres
179 Sir Andrew Smith
One sentence for S．Hemisphere \＆absence in Tropics New．Zealand Celts．
NB2 Man Chapt．；p 87．Variation of Australian skulls；90；91；370； 375 378；386； 493；496； 495
21；22；24；143；145；146；157；191；216； 236；282，285；288；351；365；367；375；400； 427 －to end of Chapter； 433
SB $\square \mathfrak{R}$ ，
p．145．Imperfection of Geolog．Record
157 Glacial Mammals
216 Contrast of Flora \＆Mammals of Norfold〈ie Norfolk〉 Drift（see 2d Edit）
236 changes of climate in Greenland．
282，285， 288 wonderful complex changes during Glacial period
351．Ice action on N．American continent
365 Bending of isothermals Europe \＆N． America
367 Depth of Baring St．
400 Eocene mammals in stages older than formerly thought．－
427 Davidson reduces Brachiopoda immensely．－gradation of forms
429，437， 439 well argued－gradation
446 Argument that Bats \＆Seals have not produced on Islands new forms of life－Why not wingless Bats．there is no insectivorous apterous Bird ？？
over
p449 Imperfection of Geological Record
x $37-38 m$ xi $4 m, 22-23 m, 35-36 m$ 9 17－19m 16 13－16m $214-9 m 2230-31 m / 30 u$＂swamp＂ 23 29－33m 24 14－18m 25 11－24m 26 6－12m $275-11 \mathrm{~m} 871-11 \mathrm{~m} 9017-20 \mathrm{~m} 915-8 \mathrm{~m} 107$ 28－29m／28c＂reduced＂ $11126-27 m 1436-12 m$ $145 \quad 19-26 m \quad 146 \quad 21-32 m \quad 147 \quad 7-8 m / 7 u / \mathrm{c}$ ＂square＂ 157 8－15m 187 18－26m 191 8－12m／w How modern compared with old stone period 216 18－23m，29－32m 229 24－29m 231 17－25m 236 22－29m 237 26－33m $24312 u$＂stones＂／w striae 257 31－32m $282 \quad 2-29 m$ ， $1-13 w$ wonderful changes，so complex $2854-13 m$ 288 12－15m，20－25m 294 1－2m 351 18－22m 365 14－22m 366 5－10m 367 1－4m（Darwin and Hooker），20－23m 370 4－24m／13－18w Progress $28 a$＂stone＂polished？ 374 10－11w S．Africa $3753-12 m 3781-4 m 3791-18 m / 2-4 w$ wrong？ Australians $3865-8 m / 6-7 w$ see reference 400 6－18m $41226-27 \mathrm{~m} / 26 u$＂labours＂ $4134-6 \mathrm{~m} / 5 u$ ＂islby＂ $42124 m / u$＂Sefström＂ 426 8－14m 427 $8-17 m, 33 m 42823-31 m 42915-22 m 43027-$ $33 m 433$ 25－32m $4365-15 m 4375-13 m 439$ 2－6m，20－30m（Leidy） 442 23－32m（Hooker） 443 13－16m 444 18－21m 445 1－7m，23－27m

LYELL，ANTIQ．MAN， $15 T$ EDN
446 19－21m／21u $4473 m / 1-14 w$ I \＆have added great \＆means of change vast nos of individuals－in my discussion whether rapid change $27-32 m 44928-30 m 45010-15 m$ ，21－ $22 m / 21 u$＂macrurus＂ 457 5－8m 463 10－12m 464 3－4m 465 24－25m 467 17－18m 469 18－ 24m，27－28m／u＂become I probable＂ 493 24－29m （Agassiz） 495 20－22m（Quatrefages）， $21 w$ No 496 11－17m 497 wt Rengger says Monkeys are improvable $1-3 m / 2 u$＂progressive \mid reason＂／ $1-5 w$ compared Dog or wolf or Jackall $9 u$ ＂capable 1 improvement＂ 500 3－8m／？ 503 17－21m 505 1－4m／4u＂unprogressive＂ $5 u$ ＂improvable reason＂$/ 2-3 w$ oh 506 8－16m，23－ $29 m$

LYELL，Charles The geological evidences of the antiquity of man 3rd edn；London；John Murray； 1863 ［Down，I］

LYELL，Charles The geological evidences of the antiquity of man 4th edn；London；John Murray； 1873 ［CUL，I］
ig，tm
NB 486,488 on the intermediate types，very good
486 1－9m 488 1－13m（Falconer）
LYELL，Charles A manual of elementary geology 3rd edn；London；John Murray； 1851 ［CUL］
ch，co，fo，geo，gr，mi，se，sl，sp，tm，ve
SB CD 65；66；68；95；98；103；107；139； 147；150；151；152；155；174；176；188；197； 200；219；231；235；265；270；273；297；298； 301；306；309；324；336；340；359；360； Abstracted；V．Principles
〈over〉
p217 coral－mud known to be transported Spec growing by AscencionO
p221 S Amer Chalk
p220 p． 235 p． 282
Copper in Sea－water－absent in Volcanic regions
sucked out of rocks
facts not given
area of elevation－like a fan
$3633 u$＂may＂， $34-37 \mathrm{~m} / 34 u$＂artificial mixture＂， $41-42 \mathrm{~m} / \mathrm{w}$ on volcanic rocks $4025-28 \mathrm{~m} /$ ？ 55 12－19m 64 wtcc，16－19m 65 27－33m 66 13u ＂running＂／14u＂marine current＂／12－29w ！Think of the $32,000 \mathrm{ft}$ of strata－so much deposited；sea－chalk 68 3－13m／12－14u＂at｜ another＂，14－18m $8133 a$＂sun＂earthquakes $36-37 w$ shell－sand sand－dunes $8417-18 \mathrm{~m}$／ w＊only rising $856-8 \mathrm{~m} / 6 u$＂In 1 cases＂ 95 3－
$10 \mathrm{~m} / 4 \mathrm{w}$ so age $9820-30 \mathrm{~m} 10335-40 \mathrm{~m} 107$ 4－16m 113 23－34m 139 1－10m，13－24m 147 $31-37 m$（Owen，Meyer） 150 8－29m 151 19－ 27 m • 152 27－29m 155 21－28m 166 42－43m／ $42 u$＂Carentan＂ 174 20－23m，fig．153．m 176 13－18m $177 \Uparrow 3-1 m / x, w b / \uparrow w$ singular how rarely little patches of half－a－mile of green left except outlyers．colour in large patches－ ？Silurian largest？V．Map of Europe？\＆ World $1883-9 m, z b 1971-8 m 200$ 11－32w see what difference even within Eocene 21－ $34 m$（Brongniart） $21942-44 m 22834 m 231$ 15－24m，23－26m 235 20－24m，45－49m 265 29－ $36 \mathrm{~m} / \mathrm{w}$ Mem Purbeck animals changes 38 m 266 1－11m，38－44m 270 14－24m 273 1－3m 297 42－45m（Hitchcock）／43w 44 46－47 $\rightarrow 298$ 44－ $46 m$（Owen），31－40m 299 22－24m，38－43m （Dana） 301 10－11m，14－18m 306 16－22m 309 19－22m $324 \quad 12-16 m 33630-37 m 3375-7 m$ （H．von Meyer） 340 38－40m 359 1－5m 360 3－ $12 m, 15-33 m$（ E ．Forbes） 468 2－6m，fig．509．m $46930-35 m, 32-37 z 4724-12 m 48027-35 w$ granite not flowed；grain in granite

LYELL，Charles A manual of elementary geology 4th edn；John Murray； 1852 ［CUL］ t

NB 139
SB 〈errata－sheet〉 Please paste this in without delay
x fig．m xiv fig．529．m， $25-34 m$ xvi $27-33 m$ xviii 12－31m，29－33m，41－45m xix $10-15 \mathrm{~m} /$ $13 u$＂Cephalopoda＂，24－26m，31－41m（Owen） xx $8-9 \mathrm{~m} /$ ？， $13-18 \mathrm{~m}, 23-27 \mathrm{~m}, 28-32 \mathrm{~m}, 39-40 \mathrm{~m}$ ， $41-44 m, 45-47 \mathrm{~m}$ xxi 11－13m，15－16m，18－ 19m，29－32m，42－47m／46a／u＂embryonic＂ ＂perfect condition＂$w b$ This is not an equivalent proposition xxii $9-17 \mathrm{~m}, 28-32 \mathrm{~m}$ 29 4－10m $30 \quad 15-17 m, 30-34 m \quad 314 u$ ＂carnivorous＂ $34 \quad 35-40 z \quad 138$ 41－42m，41u ＂post－glacial deposits＂ 139 3－6m／w what evidence $13-39 m$

LYELL，Charles A manual of elementary geology 5th edn； 1855 ［CUL，S］
ch，ex，fo，gd，geo，ig，is，no，oo，or，r，sl，sp， $\mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{v}, \mathrm{ve}$

NB

Chapter on Veins absent in volcanic regions as shown by no veins on any volcanic islds p． 460 misprint
Amber beds L．talks more about Lower Limburg or Hampstead Beds
p． 231 Hardly distinct age of Alps ？
It is shame you have never read my Abstract of S．Amer
p118 p． 130 p． 18 p．53．p． 97 Principal For．
p. 23811 from top - Cambrian
p. 295 not clear whether 3 strata with gypsum?
Wealden more historical
p310 misprint
p. 339
p406 very good
504 Canary Isd. do.
SB
I begin at Chapt $* X$.
p. 114
p140 important to end of Cha. Think of effect of the cold Permian current meeting the N. downward current.
p154 to - p 435; p.447; p448 to 463
Abstracted
$1147-9 z, 38-49 m 1151-6 m, 41-46 m / w$ Plants probably long-lived $11912-25 \mathrm{~m} 120 \quad 21-28 \mathrm{~m}$, $38-42 m 14020-23 m, 34-37 m, 38-42 m / w$ see next page $47-49 m 14227-31 m, 28-29 m 143$ $15-18 m, 43 m 14427-32 m / w$ How is this in Europe. 29-32w Macrauchenia in Patagonia $40-49 w$ In Chiloe recent shells occur in changed proportions. $14538-41 m, 46-47 m$ $1461-5 \mathrm{~m} / \mathrm{w}$ is it certain that Elephas \& Rhinoceros survived glacial Epoch.- $15433 u$ "variety called", $35 u$ "some naturalists", 36$38 \mathrm{~m} / 33-47 \mathrm{w}$ is there not great difference about fossil Boves. Have Nillsons writings been translated into German? 157 18-25m $16448-50 m 1831-5 m$, 32-35m/34u "seven species"/23-49w These numbers, as in Brazil cases, wd make one think succesive Faunas merged.- 192 25-29m, fig.169.m 193 1-4m $19543-46 m 19733-49 m / 37-42 w 3$ Mamm Faunas besides recent 207 20-23m 212 26$30 m 213$ 18-23m 217 19-29m 220 24-28m 227 $39-42 m \quad 230 \quad 40-46 m 2314-6 m \quad 232$ 24-29m/ 19-35w Yet continents must have existed nearly as now during later Tertiary periods. $23612-17 m, 41-44 m$. 237 8-16m, 19-25m, $\begin{array}{lllll}29-34 m & 238 & 11 c / w & 251 & 24-26 m / 26 u\end{array}$ "perhaps Wealden" 255 21-28m, 30-32m 256 26-27m/27u "ten other", 33-35m 257 1-6m 258 26-39m/w so geographically; consider this.- same functions \& purposes, slight differences; implies separation: hardly S. \& N. species at $\%$ Shows a coordinate change in several forms. 267 9-14m, 17-22m 2684 $7 m 295$ 4-7m, 29m, 34-35m 296 14-20m 297 $7-9 m 3007-17 m 3016 u$ "great lime"/2-6m/w Selection slow - change of species reacting. new introductions. 22-26m $30833-35 \mathrm{~m} / 33 u$ "of change" 309 1-2m $3107-16 m 311$ 17-20m $31332-38 \mathrm{~m} / \mathrm{w}$ Has not 4 th species been discovered 316 17-22m 319 31-35m 321 zb $324 \quad 1-2 m \quad 335 \quad 25-31 m \quad 337 \quad 21-26 m$ (A.

Brongniart) 342 17-32m 343 43-46m (Owen) 348 38-43m 349 40-41m (Owen) $35040-44 m$ $3519-12 m 35724-30 m / w$ duration of plants 358 32-37m (Murchison) 359 27-32m 360 25$28 m 36334-45 w$ When we come here Plants have changed even more than animals 369 35-36z 373 22-28m $38040 u$ "sixty-eight" 389 $4 u$ "Scarabaeus family" $11-4 m / w$ ancient \& great classes of insects. $9-10 \mathrm{~m} / \mathrm{Q} \propto_{\mathrm{s}} / 9 u$ "severall Termites" $40035-37 \mathrm{~m}$, $40-42 \mathrm{~m} / 41 u$ "nolthan" 401 13-21m $40433-36 m 405$ 3-4m, $15-16 m, 20-22 m$ (Owen), 31-32m, 36-39m 406 $5-15 m \quad 407$ 11-17m, 14-16m $408 \quad 3-8 \mathrm{~m} / \mathrm{w}$ Passage a difficulty. great one. $20-22 m 410$ $30-35 \mathrm{~m} / \mathrm{w}$ This analogous to Goulds birds coloured in interior of continents. $4117-10 \mathrm{~m}$ 416 fig. $536 . m 4177-12 m, 15-19 m 4186-10 m$ $423 \quad 26-27 m, 29-32 m \quad 424 \quad 11-14 m \quad 433 \quad 1 w$ Read 435 33-35m 446 6-10m 447 3-10m, 24$28 m, 31-32 m 4481-2 m, 13-15 m 44927-31 m$, 34-36m 450 39-42m 451 3-9m, 21-24m 453 1$4 m, 17-21 m, 30-31 m$ (Murchison) 454 9-14m, fig. 617.m, 27-31m/28u "facies of" 455 15-19m 456 17-21m, 22-25m/22u "unconformably", 24$26 m, 28-32 m 45717-20 m, 20-21 m, 24-26 m$, 30-37m, 45-47m 458 8-13m, 17-21m, 24-28m 459 3-5m, 17-19m, 42-46m $46016 a$ " 1839 " no Secondary Bird 38-40m/39a "18101C8"/w 7 48-53m 461 15-18m, 35-41m, 44-50m, 47-49m $4626-12 m, 12 m, 15-19 m 4635-9 m, 13-15 m$, 17-24m $55318-25 m / 22 w 3^{\circ}$ Lat $27 w 4 h 31 w$ 5h $516 \Uparrow 16-11 z \epsilon_{0}$

LYELL, Charles Principles of geology 1st edn, 3 vols.; London; John Murray; 1830-33 [CUL, on B, S]
ch, f, geo, ti, ve
vol. 1, 308 11-23m $31432 u$ "forty-sixth"/w what Volcanos ? $31511-16 \mathrm{~m} / 11-14 \mathrm{~m} /$? 325 $11-40 m 346$ 1-24m 374 20-38m 440 11-19m $468 \mathrm{i} w$ We may more easily imagine the fluid stone injected (as occurs in every mountain chain) amongst damp strata. $-w b$ at time of Earthquake Lava under great pressure, how could water penetrate to it would it not be driven back with violence?470 28-38m 471 22-39m 476 1-19m 477 13$18 w$ if there are hollows left what forces up the lava
vol. 2 NB p153 Ulloa * on asses multiplying See this Book generally on this subject 201 5-22m 248 1-7m 291 12?/u "Otaheite", 24$25 w$ oval \& irregular form? $29413-18 m / 15 w$ Galapagos 19-34m 295 7-14m
\wp
vol. 3 NB1 6.- Sand as 1 \& 2; 7. Large shingle or Rock

LYELL，PRINCS．GEOL．， 1 ST EDN
NB2 14
$5820 u$＂synchronous＂$/ 20-23 w$ if the rate of change is everywhere the same $11410-15 \mathrm{~m} /$ ？／w Flat valleys \＆terraces $1528-9 w$ Estuary
Glossary， $6130 m, 32 m 628 m, 28 m, 38 m 63$ $6 \mathrm{~m}, 7 \mathrm{~m}, 10 \mathrm{~m}, 17 \mathrm{~m}, 28 \mathrm{~m}, 34 \mathrm{~m}, 38 \mathrm{~m} 641 \mathrm{~m}, 5 \mathrm{~m}$ ， $9 m, 18 m, 19 m, 21 m, 24 m, 36 m, 41 m 651 m$ ， $6 m, 10 m, 15 m, 18 m, 19 m, 42 m 662 m, 5 m, 6 m$ ， $8 m, 21 m, 27 m, 29 m, 49 m 6718 m, 29 m, 33 m$ ， $37 \mathrm{~m}, 43 \mathrm{~m} 685 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}, 18 \mathrm{~m}, 38 \mathrm{~m} 693 \mathrm{~m}$ ， $4 m, 13 m, 15 m, 29 m, 35 m, 40 m 703 m, 12 m$ ， $23 m, 25 m, 32 m, 38 m, 42 m 715 m, 16 m, 21 m$ ， $37 m 723 m, 22 m, 33 m, 42 m 7310 m, 21 m$ ， $26 m, 29 m, 32 m 743 m, 5 m, 10 m, 19 m 7511 m$ ， $15 m, 35 m 765 m, 14 m, 18 m, 20 m, 23 m, 25 m$ ， $34 m 773 m, 20 m, 32 m, 34 m 7814 m, 21 m, 30 m$ $793 m, 23 m, 27 m, 30 m, 31 m, 32 m, 34 m, 42 m$ $803 m, 8 m, 13 m, 18 m, 20 m, 25 m, 30 m, 32 m$ ， $34 m 813 m, 7 m, 18 m, 19 m, 20 m, 24 m, 30 m$ ， $33 m, 34 m, 40 m, 42 m 824 m, 6 m, 10 m, 18 m$ ， $37 \mathrm{~m}, 41 \mathrm{~m} 831 \mathrm{~m}, 6 \mathrm{~m}, 12 \mathrm{~m}, 15 \mathrm{~m}, 23 \mathrm{~m}$

LYELL，Charles Principles of geology 5th edn， 4 vols；London；John Murray； 1837 ［CUL］ ad，beh，br，cc，ch，che，co，cr，cs，dg，ds， dv ，ex，f，fg，fo，gd，geo，gr，h，he，hy，ig，is， $\mathrm{mg}, \mathrm{mhp}, \mathrm{mi}, \mathrm{mn}, 00$ ，or，pat，phy，se， sl, sp ， sx，t，ti，tm，ts，v，ve，wd
vol． 1 NB $144 ; 146 ; 147 ; 153 ; 155 ; 161$ ； 168；187；248；270；278；285；326；350； 381 132 9－32m／＂．．．＂ 144 1－20m／15－20w Mem Guanaco dying near water $14614 u$＂tropical plants＂ $114-17 w$ C．of Good Hope $147 w t$ Jaguar in Lat 42° Puma－ 53° ？1－3m，16－ 20 w Puma $10,000 \mathrm{ft}$ high near snow 15018 － $20 \mathrm{~m} / \mathrm{w}$ Guanacos at $70^{\circ} 29-31 \mathrm{~m} / \mathrm{w} 69^{\circ} 151$ $6-10 m$（Pallas） $15312-14 m, 18-22 w$ Mem desert character of C．of Good Hope 155 17－ $24 m, w b$ Mem．tropical vegetation．South America approach．limits of perpetual congelation． 161 wt Tree ferns appear not to like the light，most gloomy spots $14-23 m 168$ $25 u$＂Indian＂ ？ 187 15－20m／16u＂longer 1 sun＂ 248 7－19m 270 14－22m 278 17－27m 279 zt 284 zt 285 wt Lockhead on Guyana－ Demerara river．Edinbg Transact Vol IV 15－ $21 m 318$ 25－31m（Sedgwick） 326 6－15m，16－ $30 \mathrm{~m} / \mathrm{w}$ Gypsum stalactites Ascension wb Little evidence of Volc action in many parts of Tropical coral forming seas 350 wt How can lime be precipitated？more water．－1－ $17 m / 2-8 m 381 w b$ great tides sometimes on very open coasts，Patagonia $43416-17 m$
vol． 2 NF1 Mississippi，New Madrid，\＆ Caraccas 46
Albite Volcanic Rock V．Buch p175

Necker on curves Mag．\＆Mountain chains p． 326
－Exert．m
Exemplify the force of pebbles knocking together
Beach．is only cause of sediment on whole of Peru，－as far as granite so far same sediment
NF2 〈drawing of mountain〉
p． 336 trees touching ground
p． 217 Dolomen Calabria
NB1 〈on p．442〉
X Argument 2nd．Excellent argument sheep do not get big tails in Africa or cattle longhorn or cow bumps on back，or dogs like fox in Australia，or－or－or－yet whole breed being so．it must be effect of country， yet exciting or else Nature would have altered back XXX
XXX Now if in course of ages（having shown time is requisite）offspring differed as much from Indian Cattle \＆as\＆Buffalo neares long horned \＆as these do now from common stock．then would they perish．－
These irreversible changes may explain extinction they might act on some important organs \＆become hereditary like diseases
Without reference to either，but simple change
The great difficulty appears，that though some animals long domesticated change not indefinite（Do we know this），but most domesticated animals are hereditary monsters．yet we should have expected some race which would have showed a slight repugnance to breed with our animals X 2 d ．The changes apparently being rapidly superinduced in domesticated animals．The very character of species is＊character being hereditary，\＆as we know we can give forms not hereditary，some that are；we might expect gradation

NB3

p． 215
187 Ask Captain about earth parting from solid Rock
Beechey is he authority of Concepcion？－ No，Lesson？－no
Stokes，height of any land near Concepcion？ Sulphur passing from solfatara like veins， analogy
Abich bulletin of Geological Society of France Leucite in specks．Galapagos VII－ 1835－1836
Von Buch．Canary Isid．－
NB4 12；20；27；36；41；42；46；55；149； 151；185；188；192；218；221；255；256；305； 351；356；403； 416

The two kinds of Elevation going on together Error in Constant Prevost. p. 154
$\langle w$
p323
12 wt The work of degradation goes on in inland bays.- St Joseph.- 2-8m (Pallas) $13 z t$ $205-13 m / 10-12 w$ Peru $2724-28 w$ Mouth of St of Magellan 31w St. Helena 36 wb Pebbles beaches enormous manufactory for sediment draw back.- muddy water Calcaire 41 10$18 m / 13 w$ No $428-29 m$ (Humboldt) $461-8 m$, 20-26w Juan Fernandez 29-32w ancient trap rocks $557 z, 8-16 m 54 z t 1492-8 m 151 z t$, fig.z, 18-22m/19u "dike" 154 27-29m 156 9$16 m 158 \quad 1-17 m \quad 175 \quad 15-31 m / 17 u$ "local earthquakes"|18u "conceded" 185 zt 186 wt/1$7 \mathrm{~m} / \mathrm{w}$ Connection O of local earthquakes fig.z $18823 u$ "northward" $/ w$ South $1901-4 m / 2 u$ "one hundred" 192 11-17m, 21-23m 203 wtec, 16-33m, wb New Madrid to coast of Caraccas 2040 miles 218 13-16m 221 1520 m 255 16-26m 256 16-21m, 22-25m, 22$28 m 2573-8 z / 4-5$? $2983-17 m 30126-32 m$, $30-33 m \quad 302$ 29-34m 304 wt How come stones not displaced? 1-8m $305 \mathrm{zt}, 15-23 \mathrm{~m} / \mathrm{z}$ $18 w$ Pampas $z b 307$ 21-24m/w no $w b$ Jamaica. Isd in Pacific Ocean 311 4-18m/714 "..." 318 8-10m 326 5-13m 336 16-25m 351 $32-34 m /$?, wb \& water 356 16-23m 360 wt lt is somewhere said Hippopotamus found in rivers of Asia - ?! This must be looked to 362 24-25u "progenitors", 25-27m (Geoffroy), $32 u$ "ancestors" $3643-5 \mathrm{~m} / 4 \mathrm{u}$ "still more" 365 wt When writing refer to this abridgment compare \& see if true $6-13 m 36812-18 m$ (Lamarck)/w isolation not considered $370 w t$ why if changes in circumstances rapid not changes in species.- It looks as if each peculiarity required to be firmly impressed XX 2-9m, 9-15w loss of tail a loss of organ $16-21 w$ Double flowers assumption of organ wb XX hence plants long cultivated cannot be recognized! - Pyramids of Egypt 374 23$34 m, w b$ Because there were localities fitted for simplest animals as well as the most complex. therefore some remained simple, if not created. The incidental good that one race performs to others proves adaptation in Universe. 375 1-7m, 28-32m 376 1u "progressive"/wt change of adaptation 17$34 m, w b$ very diff from my view $37722 x$, wb No more inexplicable than Bump in Indian Cow or change in Plants.- 381 1-3m 384 17$23 m 386$ 1-8m, 13-34w in mammalia we must stick to one rule - let fertility be test. - wb Hogs varieties in animals but in plants species which are fertile? $38721-26 m$, wb

Mem. find of Land Shells 391 7-11m * 392 $16 m, w b$ Varieties are made rapidly by man. Are there any cases of animals going back in one generation to parents stock 393 32$33 m$ (Dureau de la Malle) 395 wt X I think this fact coupled with Egyptian shows change suddenly produced 1-33w Not time to form varieties in America \& Australia - X Appeal to any breeder, whether if none imported, some breed would there be endemic $w b$ Yet those animals in certain countries have been changed, but yet fresh ones now imported do not change Oxen do not get long horns now in S. Africa. 397 24-25u "three I centuries" 398 wt see Boussingault Falkland Rabbit \& Horse Study Azara. Mice of Cape de Verde $2 u$ "The I cattle" $11-5 m / w$ Falconer Dobrizhoffer $14-34 m / 14-15 w$ great difficult. X wb Have they? What is date of Cat of Persia Dog of Australia Sheep of Cape of Good Hope. 399 wt Llama of S. America $40026-31 m 4015-$ 10m, 31-32m (Smith, Knight), wb Study Horticultural Transactions $4021-9 m, 1-6 \mathrm{~m} / 1-$ $17 w$ parallel-Monsters in Animal Kingdom 403 6-15m (Henslow, Herbert) 17-26m 404 wb Wild dog of Australia, grand fact. It would be good experiment to find whether plants which transmit their varieties easily * present any difficulties in crossing.- wb There appear two kinds of variations one persistent \& other varying. Man offers instance of first - how is fact of crossing with them/- 406 wt A So they maybe be not very permanently ? Esquimaux dog on Indian Cattle could they. $1 u$ "its", $28-34 m$ 407 wt The idea of slowness, \& of long intermarriage to make variety perfect \& then when perfect it will rebranch off.- $1-5 \mathrm{~m} / \mathrm{X}, 7$ $19 m / 8-9 w$ A $29-33 w$ Yes until it is made species $w b$ in those where change greatest we do not know what was aboriginal 408 21$22 u$ "indefinite lages" $/ w$ adaptation $w b$ The effects of time must be shown in effecting propagation. Wheat, \& old vegetables most constant. yet we hear of new \& strange variations produced in far countries 41032 m (Roulin) 412 17-27m, 32-33m (Jameson) 416 1$4 m / 1 a$ "in" $/ w t$ parts of 417 13-17z/15-18w not to Man but beast $32-33 \mathrm{~m} 4195-34 \mathrm{~m}, 4-7 \mathrm{~m} /$ $w b$ \& when perpetuated, more might be gained like the intellect of civilized man.- 420 $17-31 \mathrm{~m}, 19-31 \mathrm{~m} / \mathrm{w}$ Strong argument 24 m 421 wb If wolf \& Fox same very different habits 423 21-26m (Buffon), 27-32m, 30-34m, wb Where 425 wt Tiger \& Lion intermediate 330 m (Hunter, Wiegmann, Prichard), 32 m (Hunter) 426 6-34m 427 11-18m, 13-15m, 27$33 m 428$ 12-32m 431 11-23m 432 6-21m 433

LYELL, PRINCS. GEOL., 5TH EDN
$13-22 m$ 435 8-16m, 19u "species", wb Centaurea hybrida 439 1-7m $44128 a$ "great" $26 w$ or small $30-32 m / w$ with $34 a$ "offspring" $/ w$ with no tendency to go back $w b$ respect to changes superinduced in short period 442 $10 u$ "improvement or deterioration" $4-12 \mathrm{~m} / \mathrm{w}$ if this were true adios theory
vol. 3 NF1 p63 Vanessa migratory
p93 AD1794 unparalleled for drought.
Cape de Verde? Monkey peculiar?
How far High land from the Radark Isids
Insist very strongly on animal, resisting powers of breakers
NF2 z
NB1, $2 z$
NB3 Lyell for Ch

- 7; 8; 10; 19; 31; 32; 50; 70

109; 115; 121; 182; 227; 270; 272; 274; 380;
434; 424; 440,41,42; 445
128; 138; 182 4 ; 179; R Recent; 380
4 wb There is a resemblance analogy of animals of tropics like that of animal inhabiting Water or air - This is different from forms of Isd near continents $523-33 \mathrm{~m}$, wb Consult R. Brown. Appendix 65-14m, 19$31 \mathrm{~m} 74-10 \mathrm{~m} / 4-6 \mathrm{w}$ V. Lesson $816-22 \mathrm{~m} / \mathrm{w}$ Royle 9 27-34m/24-25?* $10 \quad 7-11 \mathrm{~m} / \mathrm{w}$ authority? 1432 m (Brown) $19 \mathrm{zt}, 19-27 \mathrm{~m}$, $29 m, w b$ In Jenner paper Royal Transact pidgeon cross daily England \& Holland 20 wt The first origin of migration must be before countries had divided $30-34 \mathrm{~m} 21$ 1-8m 23 327 m (De Candolle), 6-23m 29 10-14m/11u "three |belonging" $\mid w$ \&c wb \& subgroup.Madagascar \&c 30 wt Ask Lyell for authority 1-4m, 33m (Temminck) 31 15-18w Barbarossa Marsupial animals $21-24 m, 25-28 m 321 w$ Falklands $3-5 m, 24 w$ was taken by Cook to N . Zealand 33 wt Crocodile near the Navigators $1-5 \mathrm{~m} 3415-20 \mathrm{~m} / 17$?/u "remote"/w 10 miles 35 wt Elephant Borneo \&c \&c! 42 $3-33 m$, wb Not in the least applicable to big animals 43 1-29m $461-4 m, 18-27 m 484-18 m$ (Spallanzani), wbec 50 25-28m, 25 w * Ascension wb. Frogs not on Volcanic Isd. Snakes Lizards first 51 wt How far from Mainland? 13x/13-25m 54 15-20m (Gmelin), $33 m 57$ 11-24m 58 1-19m (Lowe)/21-28m/wb the species of general diffusion are they like Lizards \& Frogs, with rsp to eggs.- 62 1$23 \mathrm{~m}, 7-9 \mathrm{~m} / 8 \mathrm{u}$ "sea-pens" $/ 21-23 \mathrm{~m} / 7-23 \mathrm{w}$ Duck weed Caryophillia Sponge 63 21-24m, 32$34 m$ (Kirby \& Spence) $6422-32 m$ (Kirby) 69 28-33m $7024-30 m / 26-27 w$ No wb Falklands Bourbon Norfolk Isld Pitcairn? Mauritius Galapagos 71 13-29m, wb Dillons Voyage 78 24-31m 79 1-4m $801-34 m 816-33 m$, wb All
this agrees perfectly with my theory 85 21$33 m 93$ 25-29m $99 w b$ (Most Philosophical Chapter) $1095 \mathrm{~m} / ? / \mathrm{u}$ "lizards" 112 3-12m/wt Journal $24-29 m, 32-33 m$, wb Reference to quadrupeds native inhabitants $1153 w$ St of Magellan 117 21a "of"/19-20w intellectual 119 $16-29 m, w b$ will the theory do, forms acquired but not unacquired \therefore change extermination $12122 \mathrm{~m} / ? / \mathrm{u}$ "mangrove" 128 1$8 \mathrm{~m} / \mathrm{w}$ capital 30 u "shallow| the" $/ \mathrm{w}$ where 133 10-19m, wb authority? 134 wt Were separate sexes introduced in those orders most subject to variation? 135 20-33m $1363-19 m$ 138 wt Besides difficulty of transportat in two directions, surely time required for such change of climate would produce fresh species. 139 wt Alpine forms ought to be varied, to be sure mountains generally near each other 1-5m, 13-23w x Yes but he accounts for the insects on top of mountains $22-33 m / x$, wb Intermediate steps * species, propagation on isld.- $1403-19 \mathrm{~m} / \mathrm{wt} / 1-15 \mathrm{w}$ Certainly not but the chesnuts \& some of the Tropical forms must be altered into races 18-33m 141 1-19m, wb Good 144 4-10m, 18$22 m$, $w b$ \& where whole continents have become colder then Mountains centre 146 $23-26 m / w$ which reasons? wb Sudden appearance of animals quite done away by my theory. State what opposite theories have been driven to. 149 zt 152 wb Nothing beyond this with reference to Transmutation of Species $153 \quad 1-3 z \quad 154 \quad 22-34 m$ * $178 w t$ Worms turning up soil 1-10m (MacCulloch) $179 w t / 1-7 w$ May this not be viewed merely that the peat plants cannot grow whilst under trees but conquer when blown down $8-15 m$ $18210-19 \mathrm{~m}, 19-31 \mathrm{~m} / 22-26 \mathrm{w}$ action of bog on red sand 217 zb 227 wt earthquake caused by subsidence $4 u$ "subsidencel earthquakes" 270 介9-1m, wb Coral was on Stones Yet probably moved $274 w t / 1-28 w$ in one case dependent on the species, in other on no decomposition $z t, 20-26 m 2753-6 \mathrm{~m} / \mathrm{w}$ only in some zoophytes 276 fig.m, $z b, w b$ not characteristic 279 1u "land birds" 281 zt, 1$4 m 282 z t, 3-8 m, 21-26 m$, wb Only can be judged after subsidence artificial channels in Cocos soon filled up.- 283 zt , 14-20w Meandrinae - $25 u$ "we admit" $/ w$ No 286 1$22 \mathrm{~m} / 14 \mathrm{w}$ very good $288 \mathrm{zt}, 10-21 \mathrm{~m}$, $16 u$ "Otaheite" $/ w$ parallel lines $23-27 \mathrm{~m}, 24 u$ "corals" 289 15-19m 290 zt, 14-24m/w Mud 292 18-29m/w very good 22-29m 293 wt । suspect reefs of diff strata in diff parts $1-3 \mathrm{~m}$ 294 1-2? 297 8-11m, 12-15m 298 wb where is the reef 600 miles long? $299 w b$ Why lime not all fastened near-Equator 380 9-15m
$424 z t, \quad 14-28 m$ (Daubeny)/w Galapagos Ascension 434 zt , 1-19m/w ought not this to have come sooner or never 440 1-13m/w follow it out $4413-5 \mathrm{~m} / 4 \mathrm{u}$ "at lelevations", 24$34 m, w b$ This would be the result if the periods of repose followed each other in a moreO accelerating $442 w t$ at first stage little more repose would destroy bit z, but how much longer to destroy z: fig.m/w, 7-13m/w X surely all valleys $w b$ Origin of St. Cruz Valley $w b$ Mouth of St. of Magellan $44325-31 \mathrm{~m} /$?, wb Terraces; cliffs; on sides of valleys; Inclination of valleys $445 \quad 2-23 m / 12-16 w$ Capital!
vol. 4 NF1 p. 25 elevated hills Red Sea Good remark on Cleavage; and on cal. columns
The pureness of the Primary Limestones argument in favour of not sole metamorphic but separation
p. 13 Geograph Journal Vol V Ca rises from the bottom with stones Thames \& Angara is frequent.- it cannot be dribbled water merely freezing in large estuary.
p. 224 Shows much inclination after elevation into dry land
NF2 Mem. Transportat of shells by sea weed
Falklands, no Boulders \therefore subsidence ${ }^{2}$ Baron Munchausen story of frozen horse Gold being found near surface of Granitic countries, same vapor pressing upwards
Tension? does it express * compression?-
NB1 - Read Meyer Look to Humboldt Vol II
p. 213 Pata wronO spelt - Lucanas?

Put Table of Chapters
Lucanas diocese Guamanga 25 or 30 SW of Guamang, Lat $12^{\circ} 50^{\prime}$.
150 miles from Sea Volcan so called in Chapt in Humboldt Map p40 N. subl leads to coast
Index wron Mountain elevation of I.
NB2 - date of earthquake Concepcion wrongly spelt
number of numbers wrong G.F.
What is proof of hills of Miocene, Scoriae
Lyell's index wrong ice Vol. I 269 icebergs 7; 9; 38; 80; 99; 107; 125; 141; 143; 161; 162; 201; 214; 224; 244; 252; 254; 258; 262; 264
Vol I p. 25724 If elevation eheu! date wrong 1752
Are the plates of shells worth their expense Just mention M St Elias
282; 284; 292; 298; 308; 309; 311; 312; 324; 332; 350; 360; 363; 366; 372; 377; 378; 380; 381; 388; 386; 392

3 14-32m/15-16w G 18-25z/w G 7 wt ?Has not great force tendency to break things smoothly, mem pane of glass with bullet 88 $15 \mathrm{~m} / 11$?, $14-18 \mathrm{~m} / 15 \mathrm{u}$ "made|upwards" 9 1$14 m / 3-5 w$ St Helena $101-5 \mathrm{~m} / 3 w$ scoriae 16 $8-17 \mathrm{~m} / 10 u$ "chiefly"/11u "historical"/?, 14?/w no doubt generally 23-25?? $179 u$ "Rimao" $\mid w$ C. $16-23 \mathrm{~m}, 26-32 \mathrm{~m} 183-20 \mathrm{~m} / 6 u$ "Pacific", $10-14 w$ dip seaward 19 zt $20 \quad 30-34 m$ (Deshayes) 23 9-25m 24 22-23m, wb What would Hopkins say to expansion without fissures?? $2522-30 \mathrm{~m} / \mathrm{w}$ Ehrenbergh 2821 $26 m / 11-26 w$ odd - in tusk 38 wt Why not estuary? 47 2-5m, 3-9m/?!!! 63 17-20m $807-$ $14 z / w$ too much? $8125-31 w$ first origin? wb break? $83 z t 99 z t, 1-3 m / ? 107 z t, 23-32 m$, wb Azores? Melted lava Galapagos $\%$ volcanic rocks $109 \mathrm{zb} 117 \mathrm{wt} / 8-15 \mathrm{~m} / \mathrm{w}$ Black silicified wood/B. Blac red Clayed 16-18m, 18-19w X Patagonia 31-33? 124 fig.z 125 31-33m, wb This different from other section \& like Patagonia 126 1-4m 141 10-29m, wb Ascension $143 w t$ a very admirable specimen of descriptive geology 161 wt excellent for beginners but elementary $1-19 \mathrm{~m} 16215-22 \mathrm{~m} /$ w excellent 20-3m 163 1-10m 201 wb Leave out Mosaic flood? flood generally 214 10-33w Mem Ascension Migrants proves London movesO from - 224 iw How far from base of escarpment does gravel extend (of the S ought to be more marked)(then 3 to 4-) $w b$ show * inclination after elevation into dry land 225 zt 226 1-13z, 20-29z 227 fig.w very good 232 fig.w Diluvius tilted 244 wt Doing away anticlinal line hollow chalk continuous $2-25 w$ transverse valleys $=$ every crust part of linear valleys $=2521-13 w$ it appears owing to your dread of Elevation Craters 17$31 w$ incomprehansible to me: $21-32 \mathrm{~m}$, 30 u "whole mass", wb ridge of unstratified rock vera causa 253 5-9m/? 254 14-34m, wb Make analogy stronger pumping in, instead of out fluid rock 258 fig.w good $8-21 m 2591-10 m$ 262 3-21m (Mantell)/w What do they say? $26427-30 \mathrm{~m} 282 \mathrm{zt}$, wt is there not marine animal, case undistinguishable fig.m $284 \mathrm{wt} /$ 1-28w How wonderful that any character of vegetable earth remains - silicification 915m, 20-28m 292 3-19m/w All this comes rather flat after first admirable chapters $w b$ do p. 297297 3-33z 298 1-10m/w Cordillera 308 9-15m/2-16w Coast of Brazil Just water \& other formations 309 20-24m/w Pampas Delta wb Has Indian delta been examined -- where can I read account? $3108-31 \mathrm{~m} / \mathrm{w}$ very strong \& very honest $w b$ as long as Didelphys - x Monkey no progression wb Man strong fact on opposite side you lean

LYELL, PRINCS. GEOL., 5TH EDN
311 wt I think it is an argument for precedence of certain $\%$ classes at former times, the precedence of orders now.- as pachyderms in Tertiary - Deer now 11-12?/ $9-17 w$ do not understand $15 m, 25-32 m$, $w b$ Galapagos plenty of reptiles $w b$ Distribution of animals at present day evidently not owing to mere circumstances: \therefore great lizards not!- $3128-17 \mathrm{~m} / \mathrm{w}$ T. del Fuego 324 $1-11 m / w$ Unfortunate $332 w t / 1-4 w$ if not correspond of my short parallel line $4-7 \mathrm{~m} /$? 333 zt $338 \quad 7-18 m$, fig.w Elevatory $18 u$ "reader"/w beginners 339 wt is it good paper? $1-5 \mathrm{~m} 3403-15 \mathrm{~m} / \mathrm{w}$ very remarkable 341 fig. m / w very good $w b$ very common 350 $z t, 1-12 m$, $w b$ arrival of fresh peated matter 360 wt good abstract $1-4 m, 5-31 \mathrm{~m} / \mathrm{w}$ Cordillera. Snow hence Metamorphic; not like basalt $z b 036133 m / w$ wrong reference $3625-9 m, 10-17 m * / 11-12$? 363 wt Does any one? 4-9m/? 366 3-12m/5-6w St Jago 14$24 m / w$ wrong $21-33 m /!/ 22 u$ " 6001 high" 367 $w t$ fragments brought up much more altered $10-23 m 370 z \neq 371$ wt Wire has been known to crystallize \& become brittle from frost \therefore arrangement of particles $3721-9 m, 11-26 \mathrm{~m} / \mathrm{w}$? would not percolation destroy symmetry? 373 wt permeation of solid coral rock by tides $5-8 \mathrm{~m} / 6 u$ "sponges", $29-32 \mathrm{~m} 3741-7 \mathrm{~m}$ $37520-25 m 377 w t$ is this theory or fact 8 $13 m / 10-11$? 378 29-32m 379 1-2m 380 wt Henslow Botany 5-11m 381 21-30m/z 385 wt contrast general lowness of Tertiary formations $1-12 m \quad 388 \quad 1-29 m, 1-14 w$ Elementary $38913 u$ "visible" $/ 13-22 z / w$ almost solely elevation because rests on very hypothesis 392 19-26m/w Who? 393 5-8w Sir \checkmark Herschel $7 u$ "infinitesimal" $/ w$ HJS? 394 11$17 m / 12-21 w$ Does it not always appear vice \& versa $18-29 m 39525 m / w t$ beneath coast of Chili 408.b zt, 1-13m

LYELL, Charles Principles of geology 6th edn, 3 vols; London; John Murray; 1840 [CUL, S] ad, beh, cc, ch, co, ds, ex, fo, gd, geo, gr, h, hy, ig, in, is, mg, mi, no, oo, or, se, sl, sp, spo, t, ti, tm, v, ve, y
vol. 1 NB1 Lyell
Account of Hutton very eloquent - not credit enough; Metamorph - not blame enough 138 misprint; 155
190 Whole Chapter inimitably good New Continent -
193 You yourself remark same form has never reappeared - hardly cautious enough.-

201 Cayman Isd
232; 240, 241 Excellent Chapt; 252; 260; 272; 279; 282,5,6; 295; 296; 317; 328; 330; 370; 372; Springs Chapt very - 395; 396
NB2 Self
Spec Theory; 134; 137; 154; 193; 209; 230,248 Chapt IX excellent summary against theory of progressive development; 249; 252 Lyell always considers that there is saltus between man \& animals -
Chapt XI Showing chasms in Animate world not real - most striking passages pages p.284, 287, 295, 298, 301

392; 414; 415 Geology
xvi $22 m / m 134 \quad 28-31 m 137$ 15m, 15-16u "hippopotamus lonly", 21-29m (Strickland)/24u "bear", 31-32m 138 20-21m 154 22-25m 155 wt some one says plants of six months growth $1-5 m$ pl. f190 wt New continent 193 wt Facility of transport of seeds \& not adaptation perhaps causes this $2-26 m, 4-8 m$, 14-15?, $17 \mathrm{~m}, 18 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ G?? 201 13$17 \mathrm{~m} / 15 w$ no $20919-32 m$, $w b$ not sound as species of shells numerous at first commencement of Tertiary $2101-33 m 222$ 23-24m/!, 24-27m $2304-28 m 231$ 17-28m 240 $28-31 \mathrm{~m} / \mathrm{w}$ not clear to me 241 15-25m, 26$34 m / 34[\ldots] / w$ no $33 u / w b$ not quite accurate: parts of continent 248 1-24m $2495-27 \mathrm{~m} / \mathrm{w}$ All this applies only to man as cosmopolite, i.e. civilized $28-34 m / w / w b$ not man, with such knowledge as he is born with $25214-21 \mathrm{~m} /$!, $18-19 m, 23-25 m /!!, 24-25 m 260 w b$ । do not think you clearly enough state that there is no evidence of progressive development like metamorphic rocks that we know, species have successively appeared - but we know nothing of first peopling this planet, like its origin. The introduct of man, only greater change than any species ornithorhyncus 261 $w b$ we know that species differ much from each other.- 272 3-16w Hereafter enormous area of S. America Tertiary desposits 1800 Tertiary deposits 279 27-28m/ ?/27u "persuading" $282 \quad 23-34 m$, wb again man as cosmopolite also p. $285 \quad 283 \quad 2-8 m$ 284 9- $24 \mathrm{~m} / 10 \mathrm{u}$ "with|chasms" $28515 u$ "anterior Iman"/w p. 286 20-21w Peru 26-32w raised beaches with cotton thread $w b$ What would you say even to American Geologist who said man did not exist, because no remains of Patagonian soil $28610-12 m /!/ 11 u$ "at earth" 287 3-15m/7-8w Self 295 20-23w possibly many $24-34 m / 29-30 w$ Self $2961-7 w$ \& as nature of bottom changes different distribution $9-16 w$ no known relation with respect to change $17-19 w$ Scicily elevation

Lyell $w b$ My theory goes to show that period is excessively long, during which species do not change, because no case of such change in any one structure can be shown $29721-24 m / w$ Self $29814-18 m / 12-22 w$ add. to this Europe exception \& not rule - World simple $30128-32 m 31712 a$ "in" the breccia $32825 w$ rain \&c \&c $331 w t$ Tropical plains 1$2 \mathrm{~m} /$? 370 24X, wb Col Jackson describes much dirt \& stones with Russian 392 20-24m/ $22 u$ "withlthe" $3932-5 m / 2 w$ - $395 w t$ abundant in Cordillera $1-3 m / w$ very 396 18$19 \mathrm{~m} / 19 u$ "many parts"/w where $41410-14 m$ 415 23-28m
vol. 2 NB1 Lyell-; 266 isl N. of Ascension =; 278; 297; 372; 399
NB2 Self
Geology 106, 279, 447
Spec 416
108 29-33m 120 14-16m 130 27-28x/24-28w incorrect layer 134 11-16m $26615-16 \mathrm{~m} 279$ 11u "attributes"/w stronger 297 23-24x, wb Most interesting feature omitted of volcanos already in action. $37211-13 w \mathrm{~V}$. your Map ?? 399 1-2m/?d/u "hydrometer" 416 27-31m 447 7-11m
vol. 3 NB1 *
Where are Wiegmans experiments on plants p. 66 Amoenitat Acad * p. 204 authority? * 300 *
Lyell p.116; p.127; 157; 200
295 Coral Chapt. Very satisfactory
Have a recapitulating character she means chapter) on whole bearing of vols to explain present state of earth, which at first every one thinks formed by catastrophe
NB2 Self. Spec The.; 10; 34; 48; 67; 93 to 136; 204; 275; 300; 357

- 313 Geolog -

10 13-19m/15-17w extra claw 20-32m (Lamarck)/26-28w weak $w b$ no new organs in whole classes 34 wt . St. Hilaire 1-8m/4? wb G. St Hilaire $3615-22 m$, wb ? $3923-25 m / ?$? 41 22-25m $4216-20 \mathrm{~m} /$?, $20-21 \mathrm{~m} / \mathrm{w}$ no $4425-$ $28 \mathrm{~m} /$? $4715-17 \mathrm{~m} /$? $48 \mathrm{wt} / 1-28 \mathrm{w}$ surely new Varieties sport, though individuals may be acclimatised in few years $4-6 m, 10-34 m, w b$ Think of all this when writing $491-21 m, 28$ 31 m (Cuvier, Dureau de la Malle) 51 26-28m, $27-29 m, w b$ accustomed in early infancy 66 10-14m 67 29-31m (Wiegmann), wb Where 74 7-11m 90 4-7m $997-10 \mathrm{~m} 100$ 24-29m $1087-$ $9 m 11625-29 m / w$? Beale 118 wt XX My Patagonian case Weissenborn on Libellulia

Squirrels \& ? ? wb (a) Why do men in fear herd together - 119 wt (a) Why does suffering make animals flock? wt Not always of same kind in insects XX 17-18m/x, 1-30w The useless ones cannot be for killing the animal, or they would have died from want wb 2 kinds of migration useful \& useless are here confounded $1214-6 m 1257-8 x$, wb X once connected with main by verdant continuous trails. $1276-8 \mathrm{~m} /!!/ 7$ u "pumas" 138 $33 m$ (Richardson) 139 23-26m (Gmelin), 27$32 m, 33 m 140 \mathrm{wb}$ do any fish live on seeds? fish eaten by Herons- $14610-14 \mathrm{~m} 157 \mathrm{Iu}$ "Pitcairns" $/ w$ - 161 9-17m, 21-24m 174 wt/126 w The number of years some rare plants have occupied same spots - ? exact spot? argument against this - \& the fact on opposite page antagonist principle. $20-26 \mathrm{~m}$, 30-34m (De Candolle) $175 \mathrm{wb} / 1-34 \mathrm{w} / \mathrm{wt} \mathrm{XX}$ would merely affect new countries \& new devastations. (seeds in ground part of same class)- in short time struggle must come into play - occupancy can only hold to actual plant or tree, in first seedling struggle must commence - the surrounding land possibly more favourable because leaves of own kind best manure- $3 u \leftrightarrow /$? $19733 \mathrm{~m} 2007-9 \mathrm{~m} 201$ 4-9m, 17-31m $2042-7 m / w$ Please tell me authority $7 w$ Thinks M F. Cuvier 221 15-24m 222 10-14m 224 1-11m/5-6? $2275-32 m 228$ 1-11m/5!!/wt/1-6w Let whole world get hotter or colder whole continent or whole islet 27$32 m, w b=$ islands $=$ Absurd - as we know in every country some new forms can be introduced 15a "marshes" 229 wb from lake in midst of Africa !!!! whence can come lacustrian plants $w b$ Form islet, let this become Mountain, whence the Alpine plants?!! 276 1-3m 292 10-31m/22-24w V. p. 297 wb Refer to Lunds theory \& quote Lyell against it. $293 w t / 1-2 w$ The cause of this association of iron with limestone \& corals - laws of organic forces?? 13-21m/15x $29510-13 \mathrm{~m} /$??/wt What should empty it 297 1-8m 300 24-28m, wb p. 303 do you believe contemporary? 303 1-13m 305 20-23m/23u "alcolour" 313 1-6m, wb as wood drifts by surface currents it may be transported to parts where no sediment is accum 357 6-8m 367 20-22m 370 26x/28-30w Dr Allan p77 372 24-26w at most 30 fathoms 377 23-25m, 3032 m 378 wt set of little rings $27 w 493843-$ $5 \mathrm{~m} /!/ 4 u$ "supposes" $388 \quad 6-8 \mathrm{~m} /$? $14-17 \mathrm{w}$ does not give as fragments $21-25 \mathrm{w}$ leeward side dead \& not growing 391 11-13m/? 394 5-6? 395 1-20w border denuded \& real growth of upsurge Corals denuded $39624-25 w$ no! 398 7-8? $39924-29 m 4003 c$ "be" is

LYELL, Charles Principles of geology 7th edn; London; John Murray; 1847 [CUL, I, S] geo, sp, t
SB 〈list of changes from previous editions〉
NB1 Icebergs; 97; 101; 228
NB2 97 ice; Species Theory; 83; 105; 125; 134; 156; 177; 589; 591; 592 596; 600; 604; 605; 606; 608; 671; 697 of \& next Edition 83 20-26m 97 37-40m 101 fig. 2cc, 4-5m, 7$8 m 105$ 29-39m (Hooker) 125 12-14m/14u "11 3" 134 1-40m $1351-7 m 15625-37 m 19741-$ $46 m 2312-7 m 321 \mathrm{zb}$ (drawing of mountain) 362 24-28w Such however is not the case $40137 w$ must? $44 w$ or valley $46 w$ valley 589 21-23m 591 31-49m/ $\rightarrow 592$ 5-10m, 8-12m, $13-15 \mathrm{~m}, 27-29 \mathrm{~m}, 31-37 \mathrm{~m} 59612-16 \mathrm{~m} 6005-$ $9 m, 37-43 m 604$ 7-15m 605 11-22m, 25-45m $6061-9 m, 37-43 m 6088-23 m 6711-7 m$

LYELL, Charles Principles of geology 9th edn; London; John Murray; 1853 [Down]

LYELL, Charles Principles of geology 9th edn; John Murray; London; 1853 [CUL, I]
NB 697; 184; 343; 489; 753; 769; 795
162 39-44m $18420-21 \mathrm{~m} 238$ zt 278 32-35m 279 24-29m 569 3-5m, 6-7m, 11-15m 572 2$6 m 66945 w$ to p. $68067016-17 m, 47 m, 48-$ $49 m 673$ 2-4m, 40-41m (Kirby) 675 10-11m, $27-28 m 676$ 3-4m $67738-43 m 6808-9 m 685$ 38-39m/u "twenty|thousand" $?$?, 41u "eight thousand"

LYELL, Charles Principles of geology 10th edn, 2 vols.; London; John Murray; 1867-68 [Down]

LYELL, Charles Principles of geology 10th edn; London; John Murray; 1867-68 [CUL, I] $\mathrm{ad}, \mathrm{cc}, \mathrm{ch}, \mathrm{gd}, \mathrm{geo}, \mathrm{gr}, \mathrm{hl}, \mathrm{mg}, 00, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$
vol. 1 NB 146 on advance of organization 174 on changes of climate
393 Means of Distribution
209 9-10u "sandstone 1 shale", $14 u$ " $300 \mid$ least", $15 u$ "Viennal Switzerland", $18 u$ "several 1 feet", $19 u$ " 6,000 feet" $2732-8 m 39313-24 m$, 26$29 m, 31-33 m$, $34-36 m 3941-8 m$
vol. 2 NB Sp. work Theory; 323; 338 to 345 G Distrib.; 355; 358; 366; 369 to 395; 406 to 431 very good
Errata \& \& Remarks; p.291; 307 corrections; 308; 317; 377; 421; why did you not contrast sea \& Land-shells; 476; 478; 488; 489 । rejoice; 490 Ditto
Man; 469; 471 when? to 491

SB ∞

1867.- Lyells Principles 10th Edit Vol I
p146 Discussion on advance of organisation. 174 Chapt. on causes of change of climate 393 Means of distribution - organisms in borings by Artesian wells - even living fish. Vol. 2.
p. 341 on Geographical Distribution p. 341 Japan
p. 345 Madagascar - good speculations
p. 355 Means of Distribution, p. $358-365$ to p.395.-
p. 406 persistence of same Flora in Madeira from Pliocene to present day, shows then separated.- to 431 - Admirable discussion on relations of Fauna \& Flora of Madeira \& P. Santo to each other \& to Europe.-

246 20u "to lextent" I? (Geoffroy and Lamarck) $29124 u$ "germ cells"/w no 307 26-28m,/? 308 $13-16 m 30933 w$ short $3173-8 m 32326-37 m$ (Linnaeus) 324a $38-41 \mathrm{~m} 33812-39 \mathrm{~m} 33938-$ $39 \mathrm{~m} 341 \quad 27-35 \mathrm{~m}$ (Wallace) 343 21-24w chance migration by sea $26-31 \mathrm{~m} 34528-37 m$ $3554-10 \mathrm{~m} / 11 \mathrm{w}$ Singapore $19-24 \mathrm{~m} 3583-5 m$ 359 17-22m 365 1-3m 366 16-20m 369 17$23 m$ 370a $40 \mathrm{~m} 37126-28 m 37722 u$ "New Holland" 380 30-39m 387 32-35m 391 7-13m 395b $36-37 m$ (Henslow) 406 7-11m (G. Hartung), 22-24m 408 11-15m 410 4-9m, 35$37 m 414$ 30-33m 418 31-39m 419 10-21m (Hooker) 420 21-25m 421 10u^ 422 28-34m $42314-21 m, 26-36 m 4267-17 m 4271-4 m$, $21-28 m 4281-5 m, 22-29 m 42910-16 m$, 17$32 \mathrm{~m} / \mathrm{w}$ well stocked Birds of Galapagos; the case I give of shells \& of true genera 430 25-31m 431 26-32m 469 27-30m 471 36-38m (Brace, Wallace) 473 29-35m 474 27-35m (Wallace) $47627-30 \mathrm{~m} / 28 u$ "to vary" 478a 38m/ w Error 479 27-38m 481 24-29m 482 8-18m, 19-31m/28u "Gaudry's memoir" 483 31-34m 484 8-13m (Gaudry) 485 18-19m $48733-36 \mathrm{~m}$ 488 9-12m 489 14-17m, 20-24m $49027-31 m$ $4917-12 \mathrm{~m} / 9 u$ "higher Iorganisation" $/ w$ What is higher $21-29 m$

LYELL, Charles Principles of geology 11th edn, 2 vols.; London; John Murray; 1872 [CUL, I]
af, geo, h, hl, t, v
vol. 1 NB 149; 159; 162; 212; 342
\wp
149 16-21m/16-17u "primordial \mid Barrande" $\mid 20 u$
"Orthoceros", 27u "chambered IOrthocerata" 159b 33-40m (0wen) 162 14-21m 163 7-11m 212 31-37m $2325-9 z \wp$
342 4-6m (Jamieson)
\wp
vol. 2 NB Resemblance from similarity of exposure - p. 295 in Dogs -
p496 Difficulty of a higher grad from lower is not a very cleverer man a sight higher than a dull man? Is not that power of a man work of - or power of Brain \& wd not the replicationO of the degree of cleverness ultimately produce a great result? \wp
295 9-26m (Flower and Wallace)
§ 396 11-13m (Forbes) 496 31-33m
LYELL, Charles A second visit to the United States of America 2 vols.; London; John Murray; 1849 [CUL]
ad, beh, ci, ex, fo, gd, geo, mg, sp
vol. 1 NB Read second time
p.29; p.303; p.330; p.348; p. 351

SB 29 Lat $43^{\circ} 6^{\prime}$ S limit of Boulder Deposit
303 Many genera of Birds \& Mammals with representative species on two sides of Rocky M
330 Birds \& Squirrels having habit of burying acorns allude in my Staffordshire case as not applicable to it
348 No less than 3 species of Horse in N. America
29 28-31m 303 21-25m, 27-31m 304 1-12m, $15-25 m 33019-26 m 34818-22 m 3513-27 m$ 366 14-17m
vol. 2 NB1 250 Rate of deposition of Delta.
NB2 293- Migration; 294*
150 Cirripedes; 270; 312
Abstract
p. 270 Dr D. Owen says newly introduced Plants, first overrun the country \& then become scarcer (Ask A. Gray)
312 Footprints of Air-breathing Reptile in Carboniferous Rocks
250 9-12m 251 12-17m 270 19-23m 312 3-7m 313 25-29m

LYELL, Charles The student's elements of geology London; John Murray; 1871 [CUL, I] ex, fo, gd, geo, ig, no, sp
NB 160 Mammals before \& after glacial period
348 Muscle chalk absentes in England
357 intermediate * Caspian beds
361 Reptiles in Trias very rich
467 absence of Cephalopoda in Upper Cambrian
470 fossil of Longmynd Groups Read Ch VII p263
xii $5-6 m, 14-16 m$ xiii $38-39 m$ xv $9-11 m$ xvi $33-34 m 1601-11 m 348 \quad 23-26 m 35611-16 m$

357 10-33m, 35-36m $358 \quad 20-27 m 3591-2 m$ 361 1-4m (Meyer), 22-24m 467 33-41m (Barrande) $47021-27 \mathrm{~m}$
\wp
LYELL, Charles The student's elements of geology 2nd edn; London; John Murray; 1874 [Down, I]

LYELL, Charles Supplement to the fifth edition of A manual of elementary geology 1st edn; London; John Murray; 1857 [CUL] gd , geo, ti
1 15-17m, 18a "older" crag $240-43 \mathrm{~m} 3$ 16$21 m$ 5 33-38m/35u "Norwegian 1 Lemmus" $/ w$ Does Lemming inhabit Alps. Vide Waterhouse 6 17-21m, 25-28m (Falconer) 9 21-29m/ w How blended Eocene \& Miocene 11 10ul 7-10w What age of oldest Elephant 11-16m, 34-35m, 37u, 38u "Pliocene" 12 22-25m/23u "partly|period"|18-25w no one dreams sea acting all time 14 30-31u "no 1 marsupial", 32$38 m 153 u$ "Triconodon"/w Marsupial 40u "probably marsupial" 18a 45-49m $2027-31 \mathrm{~m} /$ $30 u$ "rangelmarsupiala", 43-45m 22 21-23m (Falconer) $2310-13 m 23 b 15-18 m 248-11 m$, 15-17m, 17-21m, 23-28m $252-4 m, 6-7!/ 7 u$ "climatal", 13-24m/15-17?, 34u "St Cassian beds", 37-39m 28 26-28m, 29-31m, 35-38m 29 18-21m (Lindley), 44u "Palaeozoic"|wb not diphthong $305-8 m, 17-19 \mathrm{~m} / 19 u$ " 27 ", 20$24 \mathrm{~m} / 20 \mathrm{u}$ "beds" $/ 23-24 \mathrm{~m}, 28-33 \mathrm{~m}, 36-43 \mathrm{~m} 32$ 29-42m 33 39-46m 34 17-25m

LYELL, Charles Supplement to the fifth edition of A manual of elementary geology 2 nd edn; London; John Murray; 1857 [CUL]
ex, fo, geo, ig
NB - p14 intermediate forms
p30 Old N American Mammal Trias or Permian
Letter from Lyell - new proof that Dromotherium below - - perhaps not actually Permian same discovery sinks the level of Hitchcocks Birds Tracks
14 9-11m (Falconer), 10-23m/16u "Rhinoceros Anoplothera" 30 5-29m/10u "Chatham Carolina"/19un, $26-29 m 33$ 25-28m 35 19$24 w e c 3735-39 m 39$ wt New edition

LYELL, Charles Travels in North America 2 vols.; London; John Murray; 1845 [CUL]
af, cc, ch, ex, fo, gd, geo, gr, h, no, se, sp, t, tm
vol. 1 NB1 138. any extinct Gnathodons?? or Fulgur??

LYELL, TRAVELS
Lyell says Cretaceous \& Eocene quite conformable \& similar substances, so that most difficult to separate.
〈drawing of a continental shelf or bank of slowmoving river
NB2 Species Theory ; p.5; p.7; p.9; 10; p.20; 52; 55; 67; 78; 87; 134; 137; 168; 173;

178; 198; 202
Geology S. America
Mastodon \& at Niagara *; p. 164 Mastodon \&c Cursed Horse Tooth; 201 Man skeleton in Brazil
p.48. subsidence Glaciers-period.

SB $\square \beta$
5. Daisy will not live in U. States

735 per cent of shells of Massachussetts identical, many representatives
10 On the curves of cold being same at Glacial Epoch as now
20 on certain shells having wide geograph \& geotropical Range
52 on time since Niagara formed (since Glacial?) 67 Mastodon since Glacial
78 Of New Jersey Cretaceous shells only 4/ 60 identical, but many representatives. Reptiles analogous - some of them identical have greatest vertical range
87 Devonion \& Silurian Strata $41 / 2$ miles thick
134 shells analogous to Suffolk Crag p. 138. only 9 Miocene identical The shell Fauna then distinct of America \& Europe (\& in Chalk
178 Of Eocene shells $7 / 125$ identical. Now 1 fancy in S. States very few identical or more but many representatives
202 Number of F.W. shells in U. States
$521-24 m 7$ 3-6m (Gould)/w now are these 70 Glacial 13-15m, 16-18m 9 1-3m, 6-8m/w against seeds transported $1014-19 m 2016-$ $22 m 483-10 m / 4^{\prime \prime} . . " 523-19 m 544 m 552-4 m$ $678-10 m, 11-16 m 787-9 m, 26-27 m 791-3 m /$ w V. proportion of living $8-9 m, 20-24 m, 27 m /$ $\rightarrow 807-11 m, 15-18 m, 20-24 m, 25-26 m 81$ $10 a / u$ "coralslinsects" $/ 5-14 w$ Satularia very like of V. Diemen's Land ?!? $14 \mathrm{~m} / u$ "arcticl antarctic"/w ?!! no wb Dr Beck Margarita is found in * Antarctica, which is genus not found in Tropics $8722-25 m / w=41 / 2$ miles 134 12-13m/12u "verylthose" $13623 u$ "147" 137 4-5m/4u "close affinity", 26-27m 138 2$5 m / 2 u$ "mine" $/ 5 u$ "with \mid species", $7 u * / 8-10 m+/$ $8 u \star, 14-17 m, 18-21 m 1512-5 m / 3 w$ Breath $9 u$ "absorbed" $/ m /$?, $11-14 w$ The absurdity of arguing from one position $1683-7 m 17214$ $27 m 173$ 1-9m 178 21-23m, 25-27m/x, wb | forget how many Miocene common to

Europe \& America - see to this- $181 \mathrm{Im} /$? $18518 u$ "depressinglspirits" 198 19-22m 202 $15-20 m$
vol. 2 NB Sp Theory p.19; p.30; 48; p.50; p. 52 54; 59; 131; 135; 152; 154; 158; 179; 187; 188; 190; 255
Geology; p. 60 Mastodon \& Elephant with Recent shells
p. 99 - Subsidence during ice-period
$S B \square \beta$
19 Carboniferous shells some identical, \& most closely related
35 Proportion of Trees on Indian Mounds
Plants many identical, I think not surprising, when land in fact continuous
2/3 identical of Coal Plants (See Below)
51. Silurian shells not many in common - so with Russia. Exploded doctrine
52 Orthis still living in Mediterranean, but very rare - 54 Causes of absence of landplants in Silurian - Good discussion -
152. Lat $44^{\circ} .25^{\prime}$ most S. Lat in which Arctic shells have been found
155 Arctic shells have retreated 14 degrees of Latitude
158 Lingula. still living, in oldest Silurian Rocks
179 Carboniferous strata of N. Scotia 4-5 thick p187. Ten layers of upright trees p187 37/48 Plants identical. Of $35 / 53$ of Coal plants of U. States, further S. are identical.
19 6-10m, 14-19m, 22-25m, 26-27m $205-8 m$, 13-15m, 17-21m (Brongniart) 21 8-16m/13u*, $18 u$ "genera", 20-21m 30 6-10m 35 12-27m 37 20-21w No 48 19-27m, z/wb 50 22-26m 51 3$10 m, 13-20 m$ (Murchison and De Verneuil), $21-25 m 5210-21 m / w$ ie rare genus $5317-$ $19 m \quad 545-6 m / ?, 11-13 m$, wb/ $1 \mathrm{w} w$ Old formations are oceanic; because these have the best chance of being thick \& last brought up; this rests on idea of movements being widely extended \& continuous, which is also proved by continents. $551-9 m / w$ There must have been a considerable continent.- $12-$ $16 m, 17-20 m, 22-26 m, 27 \rightarrow 56 \quad 12-15 m$ (Murchison and De Verneuil) 57 1-3m 5914 $17 m 991-17 m 131$ 1-8m, 10-15m, 20m 135 $24-26 m \quad 152 \quad 3-5 m \quad 154 \quad 9-13 m / w \quad p .149 \quad$ \& number of species of genus $1551-2 m / w t$ ie. Arctic Climate has retreated at least 14 degrees of latitude - effects of changes of Geography - not connected with central Heat $1583-7 m, 17924-27 m / \rightarrow / w$ with vertical trees $181 \quad 20-22 m \quad 187 \quad 8-14 m$, 24-25m/25u "ten levels" $188 \quad 11-15 m / w$ important as showing former communication 19-27m 189 1-6m 190 25-27m 255 1-27w Mainly \& 12
divisions judging from fossils corresponding to Upper \& Lower Silurian formations many lines in table marked; subdivisions 24-28 bracketed.w Devonian

LYELL, James Carmichael Fancy pigeons London; The Bazaar Office; 1881 [Down]

LYMAN, Theodore Ophiuridae and Astrophytidae Cambridge, Mass.; University Press; 1875 [Down]

NB O/

LYMAN, Theodore Supplement to the Ophiuridae and Astrophytidae Cambridge, Mass.; University Press; 1871 [Down]

NB O/

LYON, W.P. [as "Homo"] Homo versus Darwin, a judicial examination of statements recently published by Mr. Darwin regarding "the descent of man" London; Hamilton, Adams \& Co.; n.d. [Down]
title page $w b$ By the Revd. William P. Lyon (near Norwich)

McALPINE, Daniel The botanical atlas, part 1 Edinburgh \& London; W. \& A. Johnston; 1882 [Down]

McALPINE, Daniel Zoological atlas Edinburgh \& London; W. \& A. Johnston; 1881 [Down]

MACAULAY, James, GRANT, Brewin and WALL, Abiathar Vivisection scientifically and ethically considered London; Marshall Japp \& Co.; 1881 [Down, I by H. Gillespie] \wp

McCLELLAND, John Indian Cyprinidae, part 2 Calcutta; Bishop's College Press; 1839 [CUL, I]
f, gd, oo, no, sp, sy, t, tm, v
NB1 A Good many fish - semi-alpine 4-500 feet nevertheless no species similar to European-I believe - V. Synopsis
Contrast with Hope's paper on insects \rightarrow especial contrast with Water beetles, I believe,
Good contrast with Fish of Pacific \& Indian Oceans-
How is this in N. America?-
NB2 The Commencement of this Book good to consider when treating Quinary System It must be considered
229; 230; 232; 237; 266; 364; 385; 399; 458; 452
SB 230 Fishes bright to be caught
266 on domesticated Fishes of India varying so much - Ch 1 or 2
262 On Salmonidae in India- place filled by Cyprinidae
229 13-22m, 20-22m 230 6-13m/16w see p. 229 19-23m/19-26w 1 must utterly deny this.- If this could be passed - farewell my thesis- $27 \mathrm{~m} / \mathrm{w}$ Nothing new spec $2313-6 m$, 18-20m 232 1-3m 237 23-27m 266 12-13m/w V. p. $313 \quad 26-28 m / w \quad$ p. $268 \quad 268 \quad 4 m \quad 313 \quad 15-$ $19 \mathrm{~m} / 17 \mathrm{u}$ "form" pl. 46 wb Perilampus perseus $365 \quad 23-28 m 3854-9 m 399 \quad 13-15 m$ 452 1-7m (Hügel, Heckel) 458 22-27m/w not so much destroyed \& therefore not become so prolific $4591-3 m, 17-21 m 469 b \overline{3 m} 4 m$, $6 m, 7 m, 10 m, 12-19 m$

MacCULLOCH, John A geological classification of rocks, with descriptive synopses of the species and varieties comprising the elements of practical geology London; Longman, Hurst, Rees, Orme \& Brown; 1821 [CUL, S Chas. Darwin June 1837]
geo, is, mi

MACCULLOCH
NB 185 to $188 ; 199 ; 270 ; 332 ; 349 ; 351$ ； 364；376；471；475；528； 531
Ap 21／57 〈CD？〉
Macculloch from p－to p will be worth looking at before writing Cleavage
$18522-24 m 1878-14 m, 16-22 m 188$ 8－13m， $15-20 \mathrm{~m} 1891-7 m 19914-21 \mathrm{~m} / 17-21 \mathrm{~m}$ ， wb ？？ quartz ever fluid from Heat even in granite $2335-7 m, 18-21 m 244$ 9－14m 270 4－10m， $11 m, 13-23 m$ ，wt \＆see p273 \＆ $2742736-$ $14 m 27411-18 m 301$ 19－22m 332 12－20m／w like F．Isids． $34918-24 m 35020-24 m 35113-$ $18 m 36411-24 m 3654-6 m 3767-13 m 4712-$ $4 m \quad 475$ 13－19m 528 13－20m 531 wt Make note to Obsidia paper say it is remarkable that no one has hereto stated the fact of separation 5－14m，20－24z

McCLINTOCK，Francis Leopold A narrative of the discovery of the fate of Sir John Franklin and his companions London；John Murray； 1859 ［Down，I by publisher to Mrs Darwin］

NB p16；p20；p102
16 11－20m $2024-27 m 10222-25 m$
MACGILLIVRAY，William A history of British birds 5 vols；London；Scott，Webster \＆Geary；1837－52［CUL］
af，beh，br，cc，ch，cs，ds，ex，gd，gr，hy，mg， no，oo，phy，rd，sy，t ，ta，tm，v, wd，y
vol． 1 NB do show extinction not so easy extinct in England Capercailzie recently extinct，Bustard
p．5；For Pigeon－ 25 －Skeleton；90；101； 119，20；153；162；173；192，7；225；249； 265，6；270；274，8－Pigeons to 289；331； 398；．Read from 90 to 96 well；423；501； 505；512； 529 to $534 ; 538 ; 569 ; 571 ; 604$
269 Scutella； 231 Skeleton of Pigeon； 285 number of seeds in crop；skeleton $\$$ ；Black grouse 157 superorbital space becomes red in Breeding season
SB 90 －ostrich rudimentary tie
119 Disputes ring－neck pheasant being a Hybrid
153 variation in intestines in length of Black Grouse
162 Q Black \＆Red Grouse crossing
249 In Pigeons Head \＆Bill chief characters of Family
270 On Birds having Beak crusted with earth or mud
275 On＊House Pigeons taking to Rocks－ taming Pigeons
285 on number of seeds in Crop of Pigeon
289 On C．oenas building in Rabbit holes
398 Cases of natural pairing of Green－Finch
\＆Gold Finch Q
422．Abnormal characters in Cross－Beak varying Q
501 On Faroe Raven（I believe quoted）
512 NQ Ravens build in cliffs in N．，in trees
in South p604 So starlings in Hebrides
538 Rook varying much in Beak．
569 Eggs of Magpie varying much shape， size \＆colour
570 Magpie getting 3 females－another case of size Q
157 supraocular carmine space brighter red during breeding season．－

5 18－22m／w nearer literal relationship 24 27－ $28 m 25$ 11－12m，16－17m $261 u$＂sacral＂，33－ 36 m 27 fig．w＜naming of parts of skeleton〉 28 $11 u$＂manubrial＂， $22 u$＂crest｜ridge＂ $299 a$＂is＂ clavicle $316 u$＂ilium＂， $8 u$＂pubes llatter＂ 34 20－34m $754-6 \mathrm{~m} / 4 u$＂a large＂， $19 u$＂accessory plumage＂，26－28m／26－27u＂tollength＂， $28 u$＂in feather＂ $128-32 m$（Richardson，Audubon） 90 19－ 20 m plates w（parts of skeleton＞ $1014-6 \mathrm{~m} / 5 \mathrm{u}$ ＂second quills＂，22－24m， $26 w$ Crows 106 7－ $11 m 11125 u$＂twelve＂ $11813 u$＂Length inches＂， $14 u$＂tail 18 ＂， $14-17 w$ say 18 to 21 tails $1193 u$＂ 26 inches＂$/ 4 u$＂tail 11 ＂／3－5w say ab 12 inch $8-10 \mathrm{w}$ analogue of P ．torquatus $12-14 m, 15-18 m / 17 u$＂very \mid varieties＂ $12110 u$ ＂tail 20＂，14－15m，18－20m $12215 u, 19-22 m$ ， $31-32 m / 31 u$＂Phasianus torquatus＂ $1512-3 m$ ， $34-37 m 15228-31 m 15328 m 15432-37 m 157$ $34-38 m, 35-38 m / 37 u$＂a deeper red＂ $1583-7 m$ ， $7-14 m, 21-26 m 15914-16 m, 18-19 m 16128-$ $30 \mathrm{~m} 1626-10 \mathrm{~m} / \mathrm{Q} 16912-13 u$＂breast \mid white＂， 16－17u＂breast｜barred＂ 172 23－24u＂breast｜ chestnut＂ $1733-7 w$ proportions different $9 w e c, 12 m / w c c, 20-28 \mathrm{~m} / 23 u$＂lighter red＂， $26 u$ ＂lighter＂， 27 u＂but duller＂， $30 u$＂is I brownish＂， $31 w$ see over 174 2－3Q 5u＂lowerlare＂， $6 u$ ＂spotted｜barred＂，11u＂less｜white＂，21－25m／ $22 u \leftrightarrow / 24 u$＂tips I feathers＂ 184 11－15m 185 25－ 26Q 187 14－19m 193 5－14m 197 20－27m 207 17－19m 216 32－35m 219 35－37z 225 3－5m 249 13－15m $25122-24 m, 25 u$＂seven dorsal＂ 257 11－12m，37－38z 265 7－10m 266 16－18m 269 $3 u \leftrightarrow, 11-16 \mathrm{~m} / 14 u$＂the I fourteen＂ $27034-36 \mathrm{~m} /$ w seeds 274 36－38m 275 15－17m／x，37－38m 276 8－18m 277 24u＂James Barclay＂ 278 16－ 19m，22－23m 279 15u＂Mr Andrew Duncan＂， 16－18m／17u＂tamed＂，32－33m $2819 u$＂threel long＂ 282 24－27m $28313-14 m / 14 u$＂is 1 feet＂， 31－32m（J．Smith），36－37m 284 5－8m 285 17－ $19 m / 18 u$＂ 1000 lodds＂ $19 u$＂ 510 ＂ 289 31－35m 331 14－19m 352 21u＂in｜which＂ 370 14－18m $3725-8 m 373$ 17－19m，21－24m 375 30－34m （Temminck） 398 9－11m，12－13Q 20－23m 422 34－36m／Q $4231-3 m / Q 29-37 m 4281-4 m 501$

8－10m，15－17m，20u＂Feroe Isles＂／20－24w see in Travels which I have，what is said about this．26－28m $50536-38 m 51210-12 m, 13-14 m$ $52914-15 m, 17-20 \mathrm{~m} / \mathrm{Q} 5324-5 \mathrm{~m}, 30-31 \mathrm{~m} 533$ $21-22 m 5341-4 m, 11-13 w$ This is good case of doubtful species $13-17 \mathrm{~m}, 18-21 \mathrm{~m}, 21-22 \mathrm{~m} /$ $21 u$＂being｜wilder＂｜22－23Q 24－26m，25－27m 538 9－12m／9u＂remarkable diversity＂ 569 1－8m $57034-38 \mathrm{~m} / 35 \mathrm{u} / \mathrm{Q} 571$ 10－11Q 11－14m／12－ $13 u$＂saw leggs＂ 572 32－34m 577 zb 599 10－ $14 \mathrm{~m} 60416-27 \mathrm{~m}$
vol． 2 NB1 451 Crested Tit female has crest smaller
417 Crested wren crest paler
NB2 Upon the whole little variation in Birds except rarely tendency of colour \＆size \＆ proportions．No races
p．53；84；92；91，6；98；102； 104 transportat of seeds；113；118； 125 －transport of seeds；130；138；143；172；245；302；438； 446；483；484，5
185 Anthus breeding flight； 354 do better \underline{Q} 52 Dipper； 83 T．merula； 100 P ．torquatus SB $\square \beta$
92 Thrush \＆Blackbird pairing in Nature Q
96 Nestling Black－birds know cry of danger； 99 crowing like a Cock
104， 125 Disbelieves strongly that Birds disseminate for never but＊twice having f any．viz Mountain Ash
172 ＊Eggs of Alauda arvensis varying greatly
438 Tomtit feed their young 475 times in day on caterpillars Q
483 ＊Doubt about distribution of Motacilla alba \＆Yarrelli，after comparing French Birds
$276-17 m / 7-9 w$ Voice Muscles $2917-24 m$ ， 22－24m $5231-35 m, 31-33 m 533-8 m, 22-25 m$ 55 14－20m， $31-35 m 841-4 m \quad 91 \quad 30-33 m$ （Blyth） 92 13－18mQ $967-11 \mathrm{~m}, 13-16 \mathrm{~m} 9724$ $28 m 98 \quad 14-19 m \quad 9910-12 m 10017-19 m 102$ $26-28 m \quad 103 \quad 7-12 m \quad 104 \quad 14-20 \mathrm{~m} / 19-20 u$ ＂whichlintestine＂，30－33m 113 5－12m／6wec， $7-12 w$ proportions vary $1188-15 m 1259-$ $17 \mathrm{~m} / 11 \mathrm{u}$＂sixty｜various＂ 130 14－21m 138 31－ $32 m 14328-34 m 1724-10 \mathrm{~m} 18533-36 m 188$ $16-21 m$／16u士 223 16－18m 245 14－15m 256 $2-5 m \bullet / 3 u$＂much \mid frequent＂ $3027-9 m 32924$ $28 m 35411-16 m 43836-38 \mathrm{~m} / \mathrm{Q} 44624-27 \mathrm{~m}$ ， 31－33m 451 27－28m 460 13－17m 461 18u＂of। fable＂ 483 11－26m 484 29－34m 485 30－33m
vol． 3 NB1 548 on making preparations of Digestive organs．
NB2 11；17；36；39；59；60；113；140；187； 208；215；224；250；256；299； 300 rate of flight；329；351；376；459；Owls prey on
shrew－480；535；560；591；599；607；625； 700；713；714；717；721；730；745，46 SB $\square \beta$
17 Beak of wren variable； 36 Creeper do 140 American Cuckoo hatching young successfully Q
187 Scutella in Buzzard variable
215 Eagle carrying \＆dropping Pig alive
225 variation in wings of Tracheae \＆ intestines in Sea Eagle p250 p329 in Caeca intestine p351
257 soles of Hawk crusted with mud
300 Peregrine Falcon does not much exceed a Pigeon ψ_{0} in rate of flight
535 Waxwing－the wax－like terminations variable in number．－Abnormal variable Q
560 Swallow lateral tail－feathers more or less elongated do \underline{Q}
Swallows entombing Sparrows Q
599 Disputes Swallow Q gluing materials together 625 Q present in Swift X
736 on Bird carrying \mathbb{Q} egg from nest to prevent discovery
11 17u＂Furnarius＂／ $17-18 w$ variable in species 17 16－19m 22 1－19m，21－30m 23 9－ $11 m$（Weir） $247-8 m 368-11 m 3920-23 m$ （Audubon） $597-11 \mathrm{~m} / 8 \mathrm{w}$ differences $25-28 \mathrm{~m} /$ $25-26 w$ diffs． $6026-29 \mathrm{~m} / \mathrm{w}$ singular organ presenting differes $6121-22 m 795-7 m 833-$ $5 m 8423-26 m / 26 u$＂till 1 sonorous＂ $855-8 m / 7-$ $8 u$＂feathers 1 crimson＂ $878-11 m / 9 u$＂crown 1 crimson＂，29－30m 88 8－18m，24－30m，25u ＂vibratesItree＂ $89 \quad 30-34 m, 32 u \quad$＂amatory performance＂ $944-7 m 102$ 23－24u土 113 11－ $18 m, 29-34 m * 12124-27 u \pm 12215-17 m 124$ $20-23 m, 28-37 m, 33-37 m 12518-26 m 12621-$ $27 \mathrm{~m} 12916-25 m 13318-26 m 13928-30 \mathrm{~m} 140$ 3－6m 187 14－16m，19－30m 208 30－34m 215 8－ $13 m, 14-17 m \quad 224 \quad 23-34 m \quad 225 \quad 10 m, 12 u$ ＂scutella＂，13－19m $250 \quad 27-35 m 257$ 28－29m 299 1－20m 300 19－21m $3291-10 m 351$ 12－ $16 \mathrm{~m}, 20 \mathrm{~m} 376$ 31－37m $45932-37 \mathrm{~m}$（Bonaparte） 480 3－5m 502 9－10u＂head｜black＂，16－18u \pm w female barred on parts inferior $53513-14 m$ ， 19－21m／Q 560 21－22mQ $59124-34 m 2992-$ $3 \mathrm{~m} / 2$ u＂по саеса＂， $35-38 \mathrm{~m} 62531-37 \mathrm{~m} 626$ 8－ $12 m 7005-11 m 7132-4 m 71436-38 m 7151-$ $3 m, z b 717$ 15－17m 745 15－16u＂neglected｜ stranger＂，18－21Q 20－22m，21u＂being convinced＂，27－29m／27u＂The I larger＂ 746 2－3u ＂head｜white＂， $5-9 u \pm, 11 u$＂coverts＂$/ w$ parts of wing 14－16Q $16 u$＂throat｜the＂， $19 u$＂The｜ white＂， $32-37 \mathrm{~m}$
vol． 4 NB • 371 No difference in summer \＆ winter Plum．of Snipe
SB1 ロR
xiii，iv，viii；89；155；206；309；370；422；446；

MACGILLIVRAY
476; 572,3,4; 593; 606; 611,14,17; 627; 632;
665; 687
SB2 $\square \beta$
p. 89 Remarkable variation in Beak of Plover
p206 do in Tringa p370 Snipe
pxx
155 do in Oyster catcher perhaps case of abnormal varying \underline{Q}
422 several cases of American Bittern shot in England pxiii, xiv, xviii other American Birds.
446 Q Herons building in trees, on rocks, \& on heathy ground
573 Geese \& Ducks all blend together, might be left in one genus. Flamingo modified form 593 thinks Anser forms ancestor of domestic goose
655 variations in internal organs
687 var. in number of tail-feathers in Swans
xiii $25-26 m$ xiv $9-10 m / w 2$ xviii $6-7 m / w 3$ 23 33-38m (Temminck) 33 15u "somel polygamous" 89 19-23m $1034 u$ "scarcelyl their" 109 3-4m/3u "males Ifemales" 155 6-15m/8-9Q 171 16u "Female| lighter", 17u "more grey", $21 u$ "theland" $1728-16 \mathrm{~m} 173$ $28-30 m \quad 17730-38 \mathrm{~m} / 35-36 u$ "naturelbirds" 178 17-20m 180 1-5m/4u "MaylJune", 6-9m, $30 u$ "fivelsix", 31 u "about lounces" 181 6-8m, 10-13m, 15-23m, 21-22m $18720 m 20614$ $18 m 30924-27 m 37035-37 m 3713-8 m$, $34 u$ "zigzags along", $35 u$ "zoolzee" $3724 u$ "Airgoat", 16-17u "amuselmore", 25-29m/25-26u "Welhas", 27u "bylonly" 422 5-21m/9-12w American Bird 446 12-14m, 33-37m 476 16$20 \mathrm{~m} / \mathrm{w}$ wader very wide Rangers 537 27-28m/27-28u "betaking lease" $54524 m 55035 m$, $36 m 572$ 3-7m 573 18-29m 574 17-19m 576 13-15m 580 18-24m 587 25-27m 593 23-28m, $30-35 m 606 \quad 27-30 m 61125-31 m 61424-27 m$ 617 27-34m 627 27-29m 632 17-39m 639 18$21 m / 19 u$ "obtuselknobs" $651 \quad 23-27 \mathrm{~m} / \mathrm{Q} 665$ 10-14m/Q 671 11-14m $678 \quad 38-39 m 6879 u$ "eighteen Ifeathers", 12-15m, $16 u$ "twenty"
vol. 5 NB Lestris, Gulls \& Terns, female like male, except generally smaller - very white Birds - Oceanic
p. 226 Princeps tuft on Head \& Raff in female rather smaller
228 Merganser crest do
Puffin, Razor-Bill, Cormorants, Uria, Gannet males $=$ females
70 Double-Moult of Pintail within less than 2 months
223 Merganser Moults \& makes an appr to female
(reckoned one of most extraordinary facts in Nature)

31-40 * tooth-formed * conical reversed teeth Merganser first Entry
SB1 36; 39; 69; 64; 58; 51; 38; 59; 114 wd fly to water \& might be killed there.; 205; 247; 255; 272; 279; 500; 518, 546 vary same way in same genera; $550 ; 577 ; 596$ SB2 18
36 Wild Duck, thinks flight 100 miles per hour
69 Pintail Teal \& Wild Duck (p38 seeds * feed on p64 other Ducks p. 114 p51/58/six species of Ducks p255 Even Grebe eat seeds. 272 do 278
89 Wigeon has bred with Pintail \& Common Duck
247 Grebe, tail a mere tuft of down. How is Coccyx - see Brit. Mus.
518 variation with age \& almost disappearance of hind Claw in Kittiwake
550 change in Stomach of Raven when kept on vegetable food, \& so in Gull, as I understand in times of year, when it feeds on seeds.
577 colour of outer Primaries vary in same way in 2 species of Gulls \& in in allied Gavia p. 596
$346 u$ "and \mid coloured", $10 u$ "speculum 1 male", $23 u$ "24th|May", $28 u$ "23rd", 30-34m, 30u " 6 thl July", $34 u$ "10th", 31-32w about 3 months $368 u$ "Seedslgramineae", $30-33 m 37$ 1-6m $3831 u$ "and lspawn" 39 22-26m $5136 u$ "seeds!grasses" 58 10u "aquaticlseeds" $644 u$ "seeds I gramineae" $694 u$ "seeds and" $702 u$ "bylAugust", 8u "of l September" 71 8-11m 73 $34-38 m 8914-17 m 112 \quad 20-27 m 114 \quad 29-32 m$ (Temminck)/30u土 129 10-16m/12u "with orange" $13 u$ "bluish-white patch", $17 u$ "plumage|blue", 20-21u "plumage|black" 134 $13 u$ "unguis", $14 u$ "sideslorange", $15 u$ "upper 1 yellow" 140 13u "upper \mid yellow" 199 13-16m/14-15u "conicallbackwards", 28-31m $20526-30 w$ It might be worth examining note 30-33m, wb Goosander: \& M. serrator Dundiver: M. castor or M. Merganser 207 18u "head|black" 208 5u "billlduller", 6u "reddish-brown", 8u "upperlgrey", 10u↔ 210 $31 u$ "scapularsllong" $21122-25 m / 25 u$ "scapulars" 213 20-22m/20-21u↔ 214 27-33m 223 17-21m $24731 \mathrm{~m} / \mathrm{w}$ How are Coccyx 255 35-36m 266 31-33m 272 10-11m/10u "seeds" $2797 m 326$ 9-10u "alwhite" 327 7Q 11-13w see Grebe p. 107 13-16m, 24-27m/24-26u "Eye |half" 328 2-5m/Q 329 10-11m, 12Q 14$16 m$ (Yarrell), 19-20m 330 22-24m/Q $33112 u$ "prevailing | white", $17-19 \mathrm{~m} / 18 \mathrm{u}$ "plumage 1 on", 19-22m 436 34-39m/35u "bodylpale" 50034 $39 m 50817 u \pm 5091 u$ "Younglat", $2 u$
"plumage|brownish" 515 18u "black|grey", 20-21u "except I grey", 22 u "head I pure" 518 1$15 m 525 \quad 19-25 m \quad 546 \quad 25-30 \mathrm{~m} / 27 u$ "unless quills" 550 19-22m 577 34-37m/36u "thel primaries" 584 15-18m 585 3w L 596 11-14m

MACGILLIVRAY, William The natural history of Dee Side and Braemar ed. Edwin Lankester; London, for private circulation; 1855 [CUL]
beh, dg, gd, is, 00 , no
NB 176; 310; 387; 388; 412; 462; 468; 470; 474; 476; 480; 482; 487
SB \square
310 on massive mountains descend lower than on isolated mountains; \& sometimes will be quite absent on such isolated mountains - Perhaps shows that a mass of same species necessary to keep up stock.
474 Deer swimming for isld 12 miles distant 476 Degeneracy of Deer owing to best Stags being killed

176 10-12m 310 19-32m 387 22-23m 388 29$31 m 3895-8 m 412$ 11-14m/11u "var. scotica" 462 2-7m (Bonaparte) $4687-15 m, 18-21 m 469$ 30-33m $470 \quad 6-9 m 474$ 19-21m 476 16-20m, $28-36 m 48033-37 m 48114-17 m 482$ 20-22m 487 29-35m

McINTOSH, William Carmichael A monograph of the British Annelids 2 vols.; London; The Ray Society; 1873-74 [Down]
vol. 1, NB 3
2 36-43m 3 1-5m, 11-15m, 20-25m, 27-32m vol. $2 \wp$

MACKINTOSH, James Dissertation on the progress of ethical philosophy 2nd edn, preface by W. Whewell; Edinburgh; Adam \& Charles Black; 1837 [CUL, S]
beh, h, he, t, v, y
NB Whewells Preface good Abstract
56 to 68; 97; 103; 113; 129; 151; 152; 164; 188?; 194; 196; 200 The remarks on Butler contain the cream of Sir J's opinions; 224; 231; 233; 234; 239; 240; 248; 251; 254; 255; 257; 261; 262; 265; 272; 326; 328; 333; 346; 348; 356; 359; 364; 368; 375
16 ought 231 Man Chapt
377; 380; 382; 397
16 3-6m 41 4-5m/!?/5u "moral sense" "invariably", $11-14 w$ but why the separate parts? $566-11 m, 20-21 m 573-4 m$, wb A pointer ought to stand $6016-18 \mathrm{~m} /$? $628-12 \mathrm{~m}$ $661-4 m 971-2 m 1034-12 m 1131-11 m 128$
$w \diamond 12915-20 \mathrm{~m} / 11-31 w \diamond$, $w b$ even our true taste is pleasant * according to habit $1315-$ $27 w \diamond 13513-17 w \diamond 1418-26 w \diamond 15111-26 m$ $1521-8 m, 12-13 m, 17-20 m, 26-30 m 1531-$ $11 m 16422-26 m 18816-28 m 1941-7 m / 4-5$?, $12-14^{\prime \prime} . . . " / \mathrm{m} / \mathrm{w}$ if so, my theory goes.- in child one sees pain \& pleasure struggling 196 9-13m 198 11-15m, wb How can cowardice, or avarice or unfeelingness be said to be dispositions leading to action yet conscience rebukes a man, who allows another to drown without trying to save his life.- $19924-27 m /!\mid 26 u$ "desire", $26 u$ "will"/ $27 u$ "conscience", 29-30m $20030 u$ "with direct" 201 1-2m/?/1u "action | will" $2249-18 m$ (Hите) 231 11-14m, 15-17m 233 11-14m 234 $2-12 m / 4-7 w$ common to animals $2401-7 m$, $w b$ Try whole question with the breaking mere rule of etiquette $248 \quad 6-10 \mathrm{~m} / \mathrm{w}$ Try theory of place in brane $25133-35 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ See Brit Museum 254 21-24m (Hartley)/23u "perception and emotion" 255 6-15m, 16-25m, 26-31m (Lord Kames) 256 13-18m 257 18$29 m / 18-22 w$ common to animals hence love of Place. - $\mathrm{x} w b \times$ will not explain love of parent to child - except hereditary.- 261 22-29m/23-24w rather instinctive 262 26-30m 263 11-14m, 26-30m 265 17-21m/19u "almost instinctively" 267 5-12m 272 17-22m/17-19w with respect to life $17 w$ music? 21-24m 326 $7-13 m 3284-8 m 33312-26 m / 23 u$ "impel the will"/22-28w can the instincts of bird building nest be said to impel will.- $25 u$ "emotions"/ $w b$ yet emotions are results - are trains of thought long * associated with action 346 $25-28 m \quad 348 \quad 9-17 m \quad 349 \quad 25-29 m / 28 u$ "is 1 remembrance" $3501-6 m / 1-4 w$ so in birds it is $3537 \mathrm{~m} / \mathrm{u}$ "moral approbation", $w b$ certainly independent of conscience which applies only to one self.- ?sympathy? yes because one feels the pleasure for others which one would have felt, if one had done it oneself $355 \quad 5-15 m 356 \quad 8-24 m 357 \quad 6-7 u$ "beneficial tendency" 359 1-17m/3x, wb poor attempt to account for beneficial tendency being test of virtue 364 26-30m 368 7-19m 372 1-5m/1-2w assumed $10-30 \mathrm{~m} / 17-19 \mathrm{w}$ poor 373 11-13m/ 12-13u "resentmentlour" 375 15-24m 377 wt Nonsense - similar association may be made with actions, involuntary as \& etiquettes of society broken unconsciously.-$1-7 m, 14-21 m / ?!!378$ wt All this applies to moral approbation but scarcely to conscience, which $1-13 m 37920-23 m 380$ $21-27 \mathrm{~m} / 23-24 u$ "contact| were"/w trash $27!!/ u$ "mental contiguity", $w b$ because the primary instinctive feeling tends to action like an emotion.- $3818-10 w$ here considered as

MACKINTOSH
unity $w b$ Emotions having been formed by actions will always lead to them．－ 382 $1-7 \mathrm{~m} / 2 u$＂beneficial tendency＂$/ 3-4 u$＂that 1 sentiments＂， $12-30 \mathrm{~m} / 19-20 \mathrm{w}$ poor 383 2－19m／ $7-8 w$ poor 385 zb 397 3－5m／？， $6 u$＂perfectly＂， 7 u＂different spheres＂

MACKINTOSH，James The history of England vol．1，Lardner＇s Cabinet cyclopaedia London；Longman，Rees，Orme，Brown \＆ Green； 1830 ［CUL，on B，S］
NF
MACLAREN，James A critical examination of some of the principal arguments for and against Darwinism London；Edward Bumpus； 1876 ［Down，I］
NB O／
MACLAREN，James Natural theology in the nineteenth century London；Edward Bumpus； 1878 ［Down，I］

MACLAREN，James Some chemical difficulties of evolution London；Edward Bumpus； 1877 ［Down，I］
$123-5 m$＊
MacLeay，William Sharp Horae entomo－ logicae London；S．Bagster； 1819 ［CUL，pre－B］
32 31－32m 42 22－26m（Latreille） 289 4－10m／5－ 6m／6u 291 30－32m 321 4－20m 447 17－23＂．．．＂

McLENNAN，John Ferguson Primitive marriage Edinburgh；Adam \＆Charles Black； 1865 ［CUL］
beh，ch，h，he，hl，no，sl，ss，sx，v，y
SB 〈3 sides，\uparrow ）
M＇Lennan＊All Used
22,30 It is clear that brides purchased，but man wd choose prettiest－except when bought mostly young．－It will depend on forms of inheritance common to Man， whether females alone or both sexes affected
31,40 －choice in woman－Fuegians Pages marked
74,76 choice－Betrothed does not keep woman
45 no choice when captured 50 No Bates 95122 intermarriage incestuous
118，120 Exogamy keeps distinct tribes similar opened to sexual selection．
166165 －origin of infanticide to lessen number of Women．to 208 good summary on Polyandry \＆Exogamy．

As yet idea of practice of avoiding incest not explained，probably arose in time of monkey－men
The scarcity of Women from infanticide of females leading to＊－to promiscuous intercourse \＆polyandry，wd make the selection of women very difficult－ had Men wd then be selected－p． 176 （Promiscuousness a grt difficulty）
〈over〉 There must have been a time judging from lower animals，when men did not forsee，when there was not infanticide \＆ when sexes equal，\＆then sexual selection wd come in \＆only occasionally since，at least when general licentiousness or polyandry prescribed．－
\Leftrightarrow p． 288 I cannot help doubting whether lesser number of females owing to infanticide was so common as to make so many tribes exogamous．－？Extension of feeling for a cross－where close interbreeding in small tribes－passion－ instinctive for foreign blood．
Effects of Habit for Explanation of Younger males－or instinct－
〈over〉 Guiana kill most female children bring up about 1／2
\＆Abortion，which wd destroy both sexes
\＆Abipones
\＆many tribes
It does seem rare to kill females alone
24 4－5m／4u＂bargain＂ $30 \quad 13-16 m / 13 u$ ＂Kalmuchs \mid price＂ 31 17－29m 32 1－4m，12－ $15 m / 13 u$＂price＂ 40 9－13m $454-8 m$ ， $21 m 46$ $6-10 m \quad 50 \quad 6-17 \mathrm{w}$ why not a father receive money for parting with his useful daughter？ $574-14 m 66 \mathrm{wb}$ There is no evidence as yet that men might not marry in own tribe．－if they lost their wives they would steal others 74 14－16m 75 13－14m 76 5－6m／5u＂celebrated｜ beauty＂，19－21m 95 13－18m 99 10－15m 102 12－17m $103 \quad 2-4 m \quad 118 \quad 7-12 m / w$ Keep tribe similar $1203-8 \mathrm{~m} 121$ 10－15m，14－15m 122 9－ $11 m \begin{array}{lll}130 & 5-10 m & 134 \\ 6-11 m & 138 & 13-18 m \\ 139\end{array}$ $5-13 m, 21-23 m 140 w t / 1-3 w$ but if all tribes killed their daughters how is this possible？ 3－9m 146 4－7m 147 16－21m 148 1－4m 151 7－ 11m 159 1－4m／w Gorilla 162 3－5m 163 1－ $3 \mathrm{~m}, 14-17 \mathrm{~m} /$ ？， $18 u$ 165 6－14m，7－13m， 10－13m $1661-7 w$ More Males killed in War 8－12m，12－15m，13－15m，18－20m 167 2－ $5 m, 6-8 m, 9-11 m / ?, 12-14 m$ 168 $7-$ 11m，16－18m，20－22m，wb Fuegians 170 1－ $7 \mathrm{~m}, 7-9 u$＂The existence＂，7－9m／8u＊ ＂assuming＂，9－10m 171 7m／？／u＂Wel promiscuity＂，13－15m，16－21m，17－21m 172 3－ $6 m 1733-7 m, 5-9 m$ 177 $\ddagger w$ There may
have been a stage with infanticide \& other stages of almost promiscuousness $5-8 m$, $15-$ $1 m$, wb Judging from the lower animals, 1 cannot persuade myself that at any early times powerful Men would not get more wives \& 178 2-7m 179 11-14m $1801-8 m$ $1818-14 m 19019-21 m 19318-20 m 1944-5 m /$ $3-16 \mathrm{w}$ Has there been so much infanticide??? See the Chapt. on infanticide.- 197 5-8m $2045-7 m 207$ 1-6m, 7-9m, 10-15m 208 wt can this account for races formerly modified \& then being stationary: but now acting a little $1-10 m, 6 a$ "earlier" but not earliest $7-9 u \leftrightarrow, \uparrow 9 u$ "artificially", $\uparrow 5-3 u \pm 209$ $1-7 m, \quad 10-13 m, \quad 16-19 m \quad 210 \quad 2-7 \mathrm{~m} / 3 u$ "practising polygunia", $7 u$ "originally promiscuous"l?? 211 1-2m, 3-6m 212 1-7m 213 12$14 m 223$ 8-18m $2251-4 m, 7-11 m 228$ 14-19m 229 10-15m $2307-10 m, 12 a$ "of" foreign $12 a$ "stocks" within the group $2331-4 m 2451-5 m$ $2512-7 m 270$ 12-20m $2885-14 m / 1-13 \mathrm{w}$ but it wd hold to female, with which each man was familiar 289 12-16m

McLENNAN, John Ferguson Studies in ancient history, comprising a reprint of Primitive marriage London; Bernard Quasitch; 1876 [CUL, I]
beh
NF 〈pp. 133-34 of Nature, 14 December 1876; review of this book>
133b $8-12 m, 26-30 m, 33-37 m$ 134a wt I think McL always believes that Lubbock implies by marriage monogamy 3-10m]

MACQUART, Justin Facultés intérieurs des animaux invertébrés Lille; L. Daniel; 1850 [CUL]
beh, em, h, he, ig, no, or, phy, sp, sx, tm
NB $p 2, p 6, p 10, p 14, p 95, p 111, p 112$, p149, p210, 218, 230, 243, 264 a miserable Book
SB 2 Condillac on Instinct being only Habit NQ
6 Duges definition of instinct, as Hunger \&cReflex action; True instinct NQ
14 Flourens Reflexion distinction of man NQ 210 Instinct of larva of Meloes hard to account for by gradation NQ
218 Larva of Hydrophilus shams death, as does one species of Zygaena NQ

2 26-30m/29-30u "cependant | toujours"/wb Hereditary Habit. 4 11-12m 6 22-25m, 27$33 m 77 u$ "Dugès" $/ w$ What written? 15-20m/ $16 w$ Reflex action $31-34 m / w$ True instinct 10 $\begin{array}{lllllll}12-13 m & 12 & 1-6 m & 14 & 5-6 m & 95 & 17 u\end{array}$
"d'Hermaphrodites | Androgynes", 17w What difference? $11119-31 \mathrm{~m} / 30-31 \mathrm{~m} / \mathrm{wb}$ They can do more, or as much, with fewer organs.-$1128-13 \mathrm{~m} / 9 \mathrm{u}$ "sanslefforts" 149 1-2m $2107-$ $11 \mathrm{~m} / \mathrm{w}$ How did this instinct come? $13-18 \mathrm{~m} / \mathrm{w}$ Human cases show that larvae can survive \& live 218 31-33m 230 26-30m 243 1-15m 264 4-11m

MAGNUS, Paul Wilhelm Beiträge zur Kenntnis der Gattung Najas L. Berlin; Georg Reimer; 1870 [Linnean Society of London, I] $9 z t 1114 m / c \notin 3316-18 m 3611 \notin \bigotimes_{0} 37$ 介 20 m , $\Uparrow 15 m, \Uparrow 10 m 456-12 m 6110 \notin\langle C D ?\rangle$

MALLERY, Garrick A collection of gestures and signals of the North American Indians Washington; Government printing office; 1880 [Down]

MALLERY, Garrick Introduction to the study of sign language among the North American Indians Washington; Government printing office; 1880 [Down]

MALLERY, Garrick Sign language among American Indians, compared with that among other peoples and deaf-mutes Washington; Government printing office; 1881 [Down, I]

MALM, August Wilhelm Göteborgs och Bohusläns Fauna, Ryggradsdjuren Göteborg; Göteborgs Handelstidnings Aktie-Bolags Tryckeri 1877 [Down, I] $\wp 0$

MALTHUS, Thomas Robert An essay on the principle of population 2 vols., 6th edn; London; John Murray; 1826 [CUL, pre-B but S in vol. 1 C. Darwin April 1841]
beh, ex, f, h, no, 00, ta, y
vol. 1 NB In the British Critic or in the Critical Review for 1804 Review of Malthus by W. Taylor of Norwich
(Savages purchase wives - get arms \& tools)
(Expelled natives with no stones near death) 5 Increase in U. States; 6 According to Euler SB1 3; 29; 23; 41; 81; 343 Doubleday; 499; 517; 519
SB2
3 Malthus \& Franklin saw the law of increase in animals \& Plants clearly
23 Allows increase of some very population may be * prevented by powerful \& obvious checks.
343 Force of life in each country in inverse ratio to Fecundity (Doubleday)
malthus
517 On Doubling in U．States in 25 years〈Also attached，a letter to the editor of the Times）

2 21－22Q 3 3－6m 5 12－16m，21－25m 6 10－ $14 m 2330-32 m 29 w b$ Even in savagest life some preventive check，for all savages do not marry quite young，have generally to purchase wife \＆prepare tools and implements．－ $4115-17 \mathrm{~m} 8112-18 \mathrm{~m} 343 \mathrm{wt} /$ $1-4 w$ This is much the same as to say well－ fed are less fecund．－ $7-9 m /!$ ， $22 m / u$＂mosgt 1 countries＂， $27 \mathrm{~m} / \mathrm{u}$＂M．Muret＂，$w b$ give note after Doubleday 344 4－6m，15－17m，22－23m 352 23－28m／24u＂487／379＂，wbc屯，wb preventive checks come into play．－ $3539 u$ ＂preventive check＂ $4996-8 \mathrm{~m} / \mathrm{w}$ \＆animals 517 $10-19 m 51914-18 m, 22-24 m 52116-18 m$ ，22－ 27 m vol． $2 \wp$

MALTHUS，Thomas Robert An essay on the principle of population 6th edn；London；John Murray； 1826 ［vol． 2 only；Down，pre－B，ED］
〈markings presumed to be by ED＞
MANTEGAZZA，Paolo Fisiologia del piacere 5th edn；Milano；G．Bernardoni； 1870 ［CUL］ beh

NB Like dog not wagging tail when it gets food
119 1－14m 483 1－11m，15－18m，17－20m，22－ $30 \mathrm{~m} 4847-9 \mathrm{~m}, 15-16 \mathrm{w}$ illust．ion $26-34 \mathrm{~m} 485$ $1-5 m, 7-11 m, 12-16 m, 17-20 m, 22-29 m, 30-$ $34 m 4861-34 m 4893 m / w 649128-34 m 492$ 8－9m 497 3－8m 522 7－10m，12－17m，26－30m， $31-34 m 56517 m 56714 m$

MANTEGAZZA，Paolo Fisionomia e mimica Milano；Fratelli Dumolard； 1881 ［Down，I］ \wp

MANTEGAZZA，Paolo Rio de la Plata e Tenerife Milano；Gaetano Brigola； 1867 ［CUL， I］
beh，$h, s x, t, t m, v$
NB
［Seeing what a passion for se it is strange that races of man not more altered．］
658792
Q 162163 166－67 186－87
320－325 334352389391453457 458－9
463465525 to 546615624676 X
tembeta
American \＆Negro Beards
A 525 Exaggeration of what he has from nature．
（526 Beards）

529 teeth s
530 －\＆\＆
Nose in all parts of World
525－546 tattoos \＆ornaments
19 4－5m，9－10m $202-10 m 52$ 24－27m，30－ $32 m, 34-36 m 5713-14 m, 24 m 6515-36 m 66$ $1-35 m 7116-18 m 8730-36 m 881-37 m 92$ $26-34 m \quad 9314-36 m 9416-35 m 16214-25 m$ ， $27-36 m 16318-24 m 166 \quad 25-36 m 1671-22 m$ $18623-36 m 1871-4 m, 5-15 m 32033-36 m 321$ $1-36 m 32215-19 m, 24-35 m 3231-4 m, 6-16 m$ ， $18-36 m 3241-34 m 3251-21 m \quad 33412-36 m$ $3351-5 m, 8-36 m 352$ 29－36m 353 1－10m 389 $12-16 m 391 \quad 21-36 m \quad 392 \quad 2-6 m \quad 453 \quad 34-36 m$ $4541-36 m 4551-4 m, 5-10 \mathrm{~m}, 13-17 \mathrm{~m}, 21-36 \mathrm{~m}$ 457 29－31m，33－36m 458 1－36m 459 1－5m，9－ $12 m, 16-20 m, 24-35 m 4635-7 m, 10-14 m, 21-$ $36 m 464$ 17－31m 465 6－11m，16－35m 511 15－ $19 m \quad 525 \quad 21-30 m / 23-28 w$ Man always exaggerates what he has $5261-24 m / 7-9 w$ Calmuks beardless $16-17 \mathrm{~m}, 16-27 w$ New Zealand No woman for Hairy man．$w b$ As from T．del Fuego to Vancouver Isd（Sproat） ie Lat to Lat New Zealand the natives eradicate the beard－not likely to be merely handed down fashion or custom；but dependent on the general principle of man exaggerating natural characters． $5274-21 m *$ 528－546（m on every page except 542－544 inclusive） 528 1－20w deformation of Head （also Mentioned by old Classical writers） 529 $15 u / w \tau, 15-18 \mathrm{~m} / \mathrm{w}$ women $18 u / w \tau, 24 u$＂Alto Nilo＂， $25-26 u \leftrightarrow 5308-10 \mathrm{~m} / 9 u$＂averlcani＂， 21－22m， $24 w$ Nose 531 23w Lips 532 22－23m／ u＂donne inferiore＂／w women 533 wt lower lip 4 inches in diameter $1-3 m / x / 3 u$＂quattrol diametro＂， $24-31 m, 24-31 m / \rightarrow / 24 u$＂tembeta＂／ $30 u$＂con I gioia＂$/ w b$ curious account of man who sold his tembeta from lower lip \＆was ashamed of hole left \＆all laughed at him．－ $5342-5 m / w$ women with upper lips perforated $19 u$＂Zenzibar＂$/ w$ Ears $27 u$ ＂Negrilaustrali＂／w Ears 535 6u＂Bali＂／w Earring $8 u$＂Nepal＂／8－9w Nepal earring $12 u$ ＂Car－Nicobar＂／w Ears 24－25w New Zealand Earring $536 w t$ It is curious that face far more operated on than rest of body－in same way as we think more of beauty of face than rest of body．－ $15 u$＂qualche｜spalle＂／ $14-18 \mathrm{~m} / \mathrm{w}$ Ears distended to touch the shoulders．！ $28 u$＂vanità＂， $29 u \leftrightarrow, 27-34 w$ Motive for tattoing－add sign of tribe \＆High birth 537 wt it is curious how in all parts of world，Men paint \＆tattoo themselves－\＆ perforate their ears－In Africa \＆America both lips are perforated \＆distended－Every part of face in some part of world is
perforated- lips cheeks all parts of nose.-5$6 m / 6-7 m / 5-9 w$ old Jews tattooed \& Ancient British $19 u$ "Nuova Zelanda"/19-21w New Zealand \& Pacific Isds $28-31 \mathrm{~m} / 30 \mathrm{u}$ "donnel tatuate", $30 \mathrm{~m} / 31 \mathrm{w}$ women less tattoed 32$33 m / u$ FN 538 1-5m, 3u "Nuova Caledonia"/3$7 \mathrm{~m} / \mathrm{w}$ New Caledonia tatt00 6 m , "Non-hiva", $10 \mathrm{~m} / 11 \mathrm{u}$ "donne I godono" $110-16 \mathrm{w}$ Tattoo but not women except partially $5399 u$ "Novao Goda" $111 u$ "menol faccia" $/ 9-11 \mathrm{~m} / \mathrm{w}$ face not tattoed $26-27 m / 27 u$ "Giapponesi" $/ w$ Japanese tattoo $32 u * / 30-32 w$ women only powder themselves 540 wt Women of high birth in some cases allowed to tattoo most.- $1-3 \mathrm{~m} / \mathrm{w}$ Hindoos 6-8m/7u "JItatuano" $/ w$ Burmans 13$15 \mathrm{~m} / \mathrm{w}$ sometimes the women $23 u$ "Etiopia"/ 24-25u "strappanole" $/ 24-26 m / w$ tattoo \& pull out eyebrows \& paint lines $5 m / w b$ Tembeta 541 wt (a) Africa tribe-marks also Royal marks (not ©) 1-9m, 11-12m/11u "donnel unghie"/11-16w colour nails \& so in several parts of Africa $18-22 m / w$ (a) $542 w t$ Women of Kattivar tattoo arms \& \& chin \& are thought \& irresistly attractive.- Men. My case N. Zealand or Tahiti 2-3m/u "annevisconollabbra" $/ w$ paint? * Eyelids $5-7 \mathrm{~m} / 6 u$ "son lattrattiva" $/ w$ (a) $8 u / w \tau, 18-19 \mathrm{~m} / 18 u$ " $|n|$ hanno" $/ 20 u$ "Esquimesi" $/ w$ women \& men $26 m$ 543 1-36w They paint themselves in the most diversified manner with various colours - as is notorious.- $11 u$ "vicinilo" $12 u$ "semprelagli" $10-16 \mathrm{w}$ S. America tattoo \& paint thinks not for beauty but to look terrible $28 u$ "èlivrea"/26-31w The slaves of same master paint in same way as Livery. $33 \mathrm{~m} / u$ "tatuano" 544 1-2m/1u "invecelsi", $9 u$ "abipone", 11u "quandolnubili", 10-13w Women paint themselves when marriageable $19 u$ "tatuaggio", 21u "laldonne", 20-22w virgins of women $26 u \leftrightarrow / 25-28 m / 25-31 w$ Chief of S . America much tattooed in face 5454 $22 m / 8 u$ "quelle" 546 1-5m, 11-16m 588 25$26 m 5891-3 m, 4-22 m 59429-33 m 611$ 17$25 m 6157-8 m$, 11-16m 621 12-19m 623 23$28 m$, 31-36m 624 14-17m, 19-36m 625 1-18m 645-647 $m / \omega \tau 6767-32 m$

MANTEGAZZA, Paolo Studii antropologici ed etnografici Firenze; Tipografia dell'arte della stampa; 1877 [Down, I] \wp

MANTEGAZZA, Paolo Il terzo molare nelle razze umane Firenze; 1878 [Down, I] rd

NB Shows that the wisdom tooth is really being rudimentary

MARCHAND, Étienne Voyage autour $d u$ monde 5 vols., introduction by C.P. Claret Fleurieu; Paris; Imprimérie de la République; 1792 [Down, pre-B] \wp

MARSHALL, William Minutes of agriculture made on a farm of 300 acres of various soils, New Croydon, Surrey London; J. Dodsley; 1778 [CUL, pre-B, I]
MARSHALL, William A review of the reports to the Board of Agriculture from the northern department of England York; Thomas Wilson \& Son; 1808 [CUL, pre-B, belonged to Josiah Wedgwood]
ch, cs, or, sl, t, ta, v
NB Please do not rub out these numbers Ch. Darwin
50; 73; 74; 78; 80; 95; 97; 99; 115; 153; 154; 196; 200; 202; 295; 303; 403; 404; 406; 480; 487; 489
SB $\square \beta$
78 Oats - varieties very transient
192 Origin of Potato Oat in Potato Field
200 On the want of Uniformity of the unshepherded sheep in different parts of England, whereas those within fences, each have uniformity - owing to crossing
295 Great attention paid to changing sets of Potatoes
406 Speaking of sheep, on common of Yorkshire "as they are mostly in small lots they can never be improved"
$5014 m 73$ 25-31m 74 30-31m 78 9-11m 80 $12-18 m, 26-29 m 951 m 9737-38 m 9917-20 m$, $25-27 m \quad 100 \quad 5-7 m \quad 115 \quad 29-36 m$. 153 26$27 u$ "byladvantage", 27-28u "areldisadvantageous", $38 \mathrm{~m} / \mathrm{u}$ "preservel old" $15421-23 \mathrm{~m}$ 177 14-15m 192 5-10m, 12-25m 196 30-31m, 34-37m 200 8-18m, 25-31m/25-26u "Sheepl in"/Q\& 201 14-19m/15u "p.199"/w Selection $32-35 m 20214-16 m / x / w b \times$ But it does not follow that the aboriginal stock varied like present mixed unshepherded sheep 22-24m, 27-29m, 37-38m 262 12-13w 295 wt 1808 $8-9 m / 7-12 w$ seeds or false bulbs? $20-21 x$, $26-27 m$, wb X Lancashire great authority in Potato crops 296 1-6m 303 9-10m, 11u "curl", 19-22m, 37m 403 12-18m/12u "which| on" $114 u$ "plowidiscernable" 404 17-20m/17u "be suited" $118 u$ "soils I climatures" $4052-4 m / 3 u$ "beltwo" 406 19-21m, 38-39m 480 32-34m 487 27-29m/27u "mixed 1 two" 489 27-32m

MARSHALL, William E. A phrenologist amongst the Todas London; Longmans, Green \& Co.; 1873 [CUL, S]
beh, ex, h, no, sx, t

MARSHALL, TODAS
SB p100 Infanticide
110 do \& cousins marrying.-
193 infanticide Britons
194 infanticide extinct with Todas
196 good evidence
204 Polyandry among the * barbarians surrounding the Jews
212 Todas girls can reject a Man * they are in a very primitive condition \& the damsel bought for Buffaloes
225 Natives promiscuous union was aboriginal
228 causes of Polyandry
232 polyandry \& female infanticide always together or the latter has existed
as number of sexes differ in animals there must be some other causes than infanticide
xi $26-28 w$ O/ xii $22-23 m$ xiii $16-17 m, 23 m$ xvi $14-16 \mathrm{~m} 1 \mathrm{zb} 213-16 \mathrm{~m}, 22-25 \mathrm{~m} 8$ 介 $17-9 \mathrm{~m}$ 81 17-19m $83 \quad 26-29 m 997-10 m 1005-10 \mathrm{~m} /$ $9 u$ "Suspected" $1015-8 m 1106-10 m, 34-35 m$ $1113-6 m, 13-15 m, 17-30[\ldots], 24-33 m 12315-$ $23 m 12421-22 m, 23-24 m 1251-3 m 1367-$ $13 m 14215-18 m 145 \Uparrow 4-1 m 154$ 27-32m 160 $\Uparrow 1 m 1661-3 m 1766-10 m, 12-13 m 1804-5 m$, 11-13m 193 20-22m 194 23-31m 195 31-33m $196 \quad 4-10 m \quad 198 \quad 19-23 m \quad 204 \quad 14-18 m / w$ Semites polyandrous $25-28 m 206$ 6-9m 212 $1-4 m 213 \quad 28-32 m 215$ 1-4m 225 7-11m 228 12-19m 229 6-9m 232 15-22m 260 1-2m 263 29-30m

MARSHAM, Thomas Coleoptera Britannica 2 vols.; London; J. White; 1802 [CUL, vol. 1 only, pre-B, S]

MARTIN, W.C.L. The history of the dog London; Charles Knight \& Co.; 1845 [CUL]
beh, br, cs, ds, gd, h, he, hy, 00, or, sx, sy, ta, tm, v

NB 1 to $21 ; 18$ cross Rabbit \& Hare
$52 ; 61$ to $71 ; 78 ; 84 ; 104 ; 107 \& 8 ; 114$ to end
SB $\square \beta$
14 Dog in Zoolog. Garden Q learned to Bark 18 Proc. Zoolog. Soc. Hybrid Hare \& Rabbit I see M. doubts parentage of Richardsons Dogs
p. 31 admits only a cross with such

51 Dogs of antiquity Q
63 Remarks on instinct : barking do. acquired
67 Yarrell Zoolog. Soc. Proc. on Hairless Dog toothless Q
104 First Dog affects subsequent puppies
106 Classification of all Vars Q

116 Esquimaux \underline{Q} taking Wolves to improve Breed
146 Rough Greyhound aboriginal form QN 154 In Greyhound females smaller 180 On a Dog liking to catch carp \& trout \& M. Jukes mentions another Dog in Lapland ch. 6)
203 African Dogs in Tower never bred Q
title page $w b 1845512-13 m 76-8 m$, 15$16 m, 25-27 \mathrm{~m} 911-12 m, 17-21 m 113-4 m 12$ 29-32m $14 \quad 10-11 m / Q 15 \quad 1-2 m 18 \quad 2-4 m$, $9-$ $13 m, 18-19 m 19$ 9-12m $2126-27 m 316-17 m$ $4510-12 m 464-7 m 47$ 27-28m 49 13-31m/16$17 u \leftrightarrow / 25 u$ "old turnspit" $/ 27-28 u$ "most 1 dog" $513 w$ peculiar $5227-32 \mathrm{~m} 5311 \mathrm{~m}, 13-16 m$, 14-17m, 18-22m/22u "andlextant" $549-11 m$ $572-3 m, 8-9 m / u$ "tolears", $17 m, 28 m 613-$ $7 \mathrm{~m}, 19-20 \mathrm{~m}, 23-24 \mathrm{~m}, 25-26 \mathrm{~m} 624-5 \mathrm{~m}, 11$ $14 m 63$ 15-23m/18-21"..." 64 10-11m/"...", $27-29 m, 29-32 m 654 u$ "is an acquired", 5-8m, $23 u$ "all \mid scent" $672-4 m, 9 m, 18-21 m, 24-30 m$ $701-2 m, 11-13 m 71$ 介14-6m $781-6 m 8410$ $15 m 10421-24 m, 26-31 m 10610-35 m 1085-$ $8 m 11427-31 m 11513 u$ "great ltrue", 21-24m $116 \quad 11-15 m / 14-15 u \leftrightarrow 126 \quad 21-25 m \quad 128 \quad 14$ $22 m 129$ 13-18m 131 29-32m 132 21-24m 134 26-32m 136 9-11m 137 16-18m/17u "All। were", $21-24 m$, wb H . Smith wd say from crossing 139 14-15m/14u "smooth|sprung" 143 4-9m $146 \quad 20-30 m \quad 147 \quad 1-4 m 148 \quad 1-2 m$ 152 2-6m 153 26-28m 154 23-26m 155 16$20 m 170$ 3-10w St Bernard Dog 9-15m 173 19-22m, 21-23m 176 27-32m 180 29-32m 181 wt Jukes mentions dog in Newfoundland 1$4 m, 21-23 m / 22 u$ "abbreviated" 192 13-16m 202 $22 u$ "Central Africa" 203 7-9m/8u "wonder bred"/Q $14-17 m / 15 u$ "related 1 hound", $18 u$ "old Spanish", $19 u$ "vigorouslactive" 204 27-29m/ $28 u$ "which 1 quarter" 205 1-5m 212 6-10m 215 5-6m, 22-24m 216 5-8m

MARTIN, William Charles Linnaeus The history of the horse London; Charles Knight \& Co.; 1845 [CUL]
beh, fg, fo, gd, geo, gr, hy, is, or, phy, ta, v, wd

NB 28 to $50 ; 86 ; 97 ; 129 ; 134 ; 155 ; 159 ;$ 167; 169; 171; 177; 190; 202; 205; 208; 211; 212; 220; 221 to end
SB $\square \beta$
41 Tarpans scrape snow with feet Qu
97 Red-Back Horses only asinine in colour Q
129 Period of gestation differs very much.
Q×
134 Dappling in black, Bay \& Gray Breeds Q 206 Striped common ass \& Mule 212

207 Ass more variable than generally supposed: 3 breeds in Syria 222 Zebra Mules Q
title page $w b 1845614-23 m 813-19 m 10$ $18-24 m \quad 123-12 \mathrm{~m} / \mathrm{w}$ Brazil cases $16-20 \mathrm{w}$ Beavers $24-38 w$ There are no regular strata, young enough 21 17-21m $2839-40 \mathrm{~m} 30$ 23$26 m 31$ 19-21m $341-6 \mathrm{~m} / 3-4 \mathrm{Q} \mathrm{m}_{\mathrm{a}}$, 15-19m, 31$33 m, 38-39 m 355-8 m, 32-38 m 361-4 m 372-$ $6 m 4015-20 \mathrm{~m} / 12-17 \mathrm{w}$ ie real wild Horse 41 2-4w S. wind Falklands $5-8 \mathrm{~m} / 7 \mathrm{x} \mathrm{k}_{\mathrm{c}}, 37-40 \mathrm{~m}$ $481-3 m 508-13 m 6230-35 m 631-4 m 863-$ $7 \mathrm{~m}, 35-39 \mathrm{~m}$ 87 12-15m, 27-33m, 34-36m, 38$40 \mathrm{~m}, w b$ Are horses found * in Peat Bogs?-$883-8 m$ 89 1-5m, 6-9m 97 24-29m/25-26Q $1296-10 \mathrm{~m} / 9-10 \mathrm{Q} \pm$, $25-30 \mathrm{~m}, 40 \mathrm{~m} 13023-27 \mathrm{w}$ like Roulin mules $26-33 \mathrm{~m}$ 134 $13-16 \mathrm{~m} / 15 u$ "still \backslash circles", $18-20 \mathrm{~m} / 18-19 \mathrm{~m}, ~ 23-27 \mathrm{~m}, 31-$ $32 m 15519-21 m 15933-41 m 1601-4 m 167$ $6-9 \mathrm{~m} / 9 \mathrm{u}$ "mouflon ranges", 10-12w insular quadrupeds 169 19-23m/22u "several ponies"/ $20-24 w$ not all aboriginal $29-30 \mathrm{u} \leftrightarrow, 34-37 \mathrm{~m}$ $17136-40 \mathrm{~m} 1721-4 m 1777-9 m, 27-33 m 190$ $34-39 m \quad 202 \quad 5-10 m \quad 205 \quad 14-16 \mathrm{Q} \quad 16-17 u$ "clouded | ground", $18 u$ "dapple", $26 u$ "dorsall bar", $35-40 \mathrm{~m} / \mathrm{Q} / 40 \mathrm{u}$ "double cross" 206 1-4m, 9-13m/Q 17-22m/18-19m/ues "small \mid breed"/ $21 u \pi_{0}$ "Syrian ladies", 28-29ma, 34-36man
 "saddle", $40 \mathrm{~m} / \mathrm{u} \mathrm{E}_{\mathrm{s}}$ "is 1 stout" $2082-4 \mathrm{men}, 7-$ $9 m 20927-29 m 211 \quad 2-4 m \leftrightarrow / 3 u$ "Genesis $x x v i " 212$ 4-7m, fig.Q 218 23-26m 220 2124m/Q 221 19-24m (Thomas Bell), 33-37m 222 $4-9 m, 35-37 \mathrm{~m} 2237-9 m, 11 u$ "was 1 dun", $18 u$ "drab|dun"/Q 23u* "more|down" 124 u "side 1 fetlocks" $/ 22-25 \mathrm{~m} / \mathrm{w}$ Burchells Zebra \& Ass

MARTIN-SAINT-ANGE, Gaspard Joseph Mémoire sur l'organisation des cirripèdes Paris; J.B. Baillière; 1835 [CUL]
beh, af, ci, phy, sx, sy, tm
2 19w 18067 22-24m 8 24-25m 9 26-28m 10 1-4m, 8-10m $118-9 m, 21-22 m / w$ does not mention inner tunic of sack $25-28 \mathrm{~m} / \mathrm{w}$ are these muscles in 6 bundles 13 15-16m/1620 w Does not perceive homology $22 a / u$ "seconde" $/ w$ double $23-24 \mathrm{~m} / \mathrm{w}$ all right $23 u$ "en| même"/24u "les|une"/26m/23-31w does not state that this is the conum for inside of - $32 u / 32-33 m / w$ pedical not articulated 14 11-15m, 21-24m/X, $\Uparrow 1 x$, wb Does not describe much of pedicel of body- 15 wt Cirri power of separating from each other \& two rows from each other $1-2 m, 4-5 m, 6-12 w$ does not mention much of dorsal articulation $14-15 w$ or their attchm to 2 d joint of pedicel 22-24m/16-24w knows nothing about
apodeme or homology $28-30 u \pm / w$!! 4 pair, right Considers palpi as Mandibles $30 u$ "langue"|wb ? \& p. $23165 u$ "une ligue" 1 ?, $6 u$ "muscle constrictor", $10 x, 12 w$ does not moulting $14-16 \mathrm{~m} / \mathrm{w}$ quite right $26 x, 33 x$, wb a single caecum!! $177 u$ "d'une lenfoncemens", $9-12 \mathrm{~m} / \mathrm{w}$ I always have found loose. $16-18 \mathrm{~m} /$ $16-33 w$ is not aware of the distinctness of rectum shown by moulting, for he does not describe the two coats - or two coats of oesophagus. $w b$ I believe it contracts itself, when separated by the cloche of rectum 18 $10-12 \mathrm{~m}, 13-14 x$, 14-16m, 17-19m, 20-29w ie what I have called - oviduct - There is hollow in middle of pedicel of body 19 17$25 \mathrm{~m} / x / 18 u$ "filet \mid salivaire" $/ 24 u \pm, 30-33 \mathrm{~m} /$ x / w thinks legs thoracic!! $w b$ is this owing to basal joint being confluent?! probably 21 2-4m, 11u "la queue" $/ 10-11 \mathrm{~m} / \mathrm{w}$ No $16-17 x$ $227-8 m$, 9-17w Male organs differ considerably from those of a true Crab. 23 $23-24 \mathrm{~m} / \mathrm{w}$ this must be when agitated by fear $26 u$ "petite langue" $\mid 27 u$ "deux dernières" $\mid 26-$ $29 \mathrm{~m} /$? $2415-18 \mathrm{~m}, 24-30 \mathrm{w}$ is edge of oesophagus fixed to stomach? I think so $z b /$ $w b$ ant support Dorsal support muscle attached to end of spoon \& opening valvular mouth 25 wb Look at stomach of B. candidus - $2628-30 \mathrm{~m} / \mathrm{w}$ in Polliceps too hard to contract surely.- $271-3 \mathrm{~m} / 2 \mathrm{u}$ "sur| repli", 6$9 m 291-11 w$ Body generally bent a good character Articulation oblate except 5. posterior abdominal segments. $26-30 \mathrm{~m}-30$ 26-27m $3625-27 m!!/ w$ wrong $371-3 m!!/ w$ No $6-9 \mathrm{~m} / 8 u$ "branchires" $/$?, $12 w$ Yes $14-15 \mathrm{~m} / \mathrm{w}$ Yes $20 u$ "autre part" $119-23 m /!/ w$ No $22-$ $23 m!!/ w$ No $26-27 m, 29 w$ Yes $33 u$ "sac membraneux"/w No 38 1-3m 41 9-11m Plates〈parts of animals named)

MARX, Karl Das Kapital vol. 1; Hamburg; Otto Meissner; 1873 [Down, I] \wp

MASARYK, Thomas Garrigue Der Selbstmord als sociale Massenerscheinung der modernen Civilisation Wien; Carl Konegen; 1881 [Down] \wp

MASKELYNE, Nevil Tables requisite to be used with the Nautical ephemeris 3rd edn; London; 1802 [CUL, pre-B, on B, S]

NF wed

\Rightarrow When barometer stands higher than the neutral point the Capacity is to be added: when lower it is to be subtracted The logs at end of this book to be used.

MASKELYNE
NB 〈a drawing〉
$57 w$ p． 1 These tables are explained at end $62 w b \not a c$

MASTERS，Maxwell Tylden Vegetable teratology London；The Ray Society； 1869 ［CUL］
he，mhp，mn，sp，tm，v
NB 29；90； 320 phyllotaxis； $204 \boldsymbol{\vee}$ ；340； 373； $404 \boldsymbol{\checkmark}$ Cleistogam flowers；410；424； 467；472； $478 \boldsymbol{\checkmark}$ Pang；483；485；486； 488 SB
\＆not CD \rangle Masters on Teratology
29 Cohesion of stamens in exaggerated degree as in normal species
$2926-32 m 9021-26 m$ ，fig．42．m $911-4 m 131$ $30-32 m \quad 204$ 12－20m 251 7－9m 253 24－26m $32018-28 m 3403-13 m 3737-8 w$ other cases $10-16 m 4042-18 m 4101-6 m 42430-42 m 467$ $13-34 m \quad 472 \quad 27-34 m 478 \quad 6-14 m 479 \quad 2-14 m$ 481 1－3m（Bentham） 483 20－22m 485 11－19m 486 16－29m 488 15－23m $534 z b$

MATTHES，Benno Betrachtungen über Wir－ belthiere Dresden； 1861 ［CUL．1900］\wp

MATTHEW，Patrick On naval timber and arboriculture Edinburgh；Adam Black； 1831 ［CUL，S C．Darwin Apr．13th 1860］ h，oo，sl，sp，t，ta，tm，v
NB 32 Oaks 2 vars or species sessile \＆ peduculated
107 on selection of Forest－trees why not flowered
302 Occupancy like Herberts view of plants not growing in soil best suited to them
307 on Selection good Man interferes with law \＆this causes variation．
357 Size of English \＆Scottish acorns \＆ quicker growth of tree from English Acorns
364， 381 Law of Natural Selection published
in G．Chronicle April 7th 1860
$\langle C D ?\rangle$ 364－5，381－3，106－7
32 8－17m $1065[\ldots 1076-19 m 108$ 介11．．．］ 302 $14-25 m 3031-6 m 30724-26 m 308 \quad 2-17 m 328$ $30-31 m 357 \quad 22-27 m \quad 358$ 18－21m 365 8－9u ＂morelkind＂ 381 5l．．． 382 17－21m／w too near to 29 u＂nearlylliving＂ $3831-4 m, 27-29 m \ldots$ 388 10．．．］

MAUDSLEY，Henry Body and mind London； Macmillan \＆Co．； 1870 ［CUL］
beh，h，he，mn，pat，sx，t，tm
NB1－p． 48 Hand of idiots－thumb not used in
NB2 p51 Idiots smelling food see Scott Deaf
\＆Dumb－p86
p7，8，10 \＆all 1st Chapter
53 Savage snarl－Selection
p47－49，51 Reverse idiots Hair After Vogt \＆ idiotcy
p． 55 Brain weight
59，60 Moral Sense
62 －Brain Wanting parts
All referred to proper places
p10 Savage snarl of Habitual Microcepho Insane Reversion
p29，p85 Devotion
$29 m, z b 76-18 m 83-7 m / 3-13 " \ldots " / 8-13 m 10$ 28－30m／＂．．．＂ 11 7－11m，14－18m $127-12 m 13$ $1 u$＂ganglionic nuclei＂， $2 u$＂arelwith＂ 28 29－ $30 m 29$ 16－22m／19w devotion $305-9 m 31$ 19－ $23 m / 23-25 m / 20-29 w$ like other secondary sexual characters $413-7 m 4710-15 m$ ，19－ $27 m \quad 48 \quad 23-24 u$＂often｜hands＂， $25-27 \mathrm{~m} /$ 27u＂shortlcheek＂，30u＊＂filthy＂ 49 16－ $22 m / 17-18 u \leftrightarrow 5029 u *$＂dirty in＂ $513-7 m /$ 3－4＂．．．＂／Q 24－29m，29－30w smelling 30－32m， 32－33u＂his 1 smell＂，35－36m $531 u$＂savage snarl＂／1－3m／Q 55 10－16m（R．Wagner） 59 1－ $18 m / 7 w$ H．Spenc $604-8 m / 5-7 " . . . \mid / w t / 1-7 w$ sympathy \＆social affection deteriorated wd suffice $62 \Uparrow 3-1 m / w \bigcirc$ wanting parts 67 zb 85 11－14m

MAUDSLEY，Henry Body and mind London； Macmillan \＆Co．； 1873 ［Down，I］\wp

MAUDSLEY，Henry The physiology and pathology of mind London；Macmillan \＆Co．； 1868 ［CUL］
beh，h，pat，phy，sl，sx，tm

SB1 \rightarrow Man

Maudesly on \Leftrightarrow Mental Phys；p． 220 p． 19 p311 imagination
54 Brain of Bushwoman
108 Language \＆Expression
－Good
SB2 \rightarrow Maudesly on Insanity；Expression； 103；104；109；148；158；160； 193 （？）
SB3 $\square \beta$
19 Man； 54 do；72；89； 103 Use increasing sensitivity of senses； 104 Instinct； 108 Origin－term of Natural Selection－；109； 132．Man（good）Q；148； 158 Expression； 160；193； 220 Man （Imagination）；311； 199 Laura Bridgman The tongue grt organ of speech
Look over
Slips all put in proper places
19 28－34m 54 9－20m 72 8－14m，21－25m 89 25－30m／26w Drosera 103 12－20m 104 26－34m

105 34-39m 109 8-12m 125 28-37m $13430-$ $31 u$ "of \mid places" $/ 32 u$ "senses 1 again" $/ 29-33 m / w$ looks as if man gaining more perfect smell $148 \quad 7-10 m \quad 149 \quad 19-21 m /!/ 20-21 u \quad$ "selfexpansion" 158 32-34m, 35-39m 159 13-17m 160 11-15m 193 31-39m $19914-20 m, 27-36 m$ $220 \Uparrow 3-1 m 311$ 18-24m (Coleridge)

MAUDSLEY, Henry The physiology of mind London; Macmillan \& Co.; 1876 [Down, I by publisher]
beh
NB 384 Expression
270 19-20m 384 31-36m 385 5-6m

MAWE, John Travels in the gold and diamond districts of Brazil new edn; London; Longman, Hurst, Rees, Orme, Brown \& Green; 1825 [CUL, pre-B, on B, S Chas. Darwin Octob: 1832 Buenos Ayres]
$1827 u$ "fazenda"/w Brazilian
MAXWELL, James Clerk Matter and motion London; Society for promoting Christian knowledge; 1882 [Down, FD]

MAZAROZ, Jean Paul La Genèse des sociétés modernes Paris; A. Lévy; 1877 [Down]

MEDLICOTT, Henry Benedict and BLANDFORD, William Thomas A manual of the geology of India 2 vols. and a vol. of maps; Calcutta; 1879 [Down, I]

MEEHAN, Thomas The native flowers and ferns of the United States 2 vols.; Boston; Prang \& Co.; 1878 [Down] \wp

MEETKERKE, Cecilia Elizabeth The guests of flowers London; Griffith \& Farran; 1881 [Down, I]

MEITZEN, Ernst Bhawani Leipzig; E.H. Manen; 1872 [Down]

MELIA, Pius Hints and facts on the origin of man London; Longmans, Green \& Co.; 1872 [CUL]
beh, pat
NB p. 47 can these statements be true? Deaf \& dumb do not know what right \& wrong is As dogs have social instincts it is incredible that deaf \& dumb shd not - though I daresay they do not know what is called right or wrong
∞ But no doubt they may have social instincts \& family affections which wd prompt them to right action.
47 18-23m
MENGOZZI, Giovanni Ettore Della filosofia della medicina vol. 1; Livorno; Scuola italica; 1869 [Linnean Society of London, I]

MERRIAM, Clinton Hart A review of the birds of Connecticut New Haven; Tuttle, Morehouse \& Taylor; 1877 [Down]
beh, ch
NB 52 Changes in Habit of Birds
52 23-34m
METZGER, Johann Die Getreidearten und Wiesengräser Heidelberg; C.F. Winter; 1841 [CUL]
ad, cc, ch, ds, gd, mhp, no, sl, sp, ta, tm, v, wd
NB N.B. The cases of grains changed from Summer to Winter wheats \&c is rather a different course of variation from anything which I have hitherto considered; an self adaptive power
12; 24; 36; 47; 50; 54; 56; 63; 65; 66; 68;
88; 90; $96 ; 114 ; 116 ; 137 ; 185 ; 206$ to 217
SB $\square \Re$
18 Summer \& winter Barley differs only in constitution \& easily goes back 54 Wheat do.- a self adaptive power, a habit -
24 Naked Barley changes into common
63 advocates change of seed in Germany
66 \& 116 var varied at first, \& then came more (20 years) constant being accustomed to climate 25 years This fact very important for shows yet accustomed to change.
69 a var. not injured by late frosts.
91 vars. variable in one climate not in others 116 so in different soils
114 a very constant var; many unconstant mentioned.
206 on Maize, difference in height \& period of Vegetation; says American seed gives plants which become acclimatised \& altered in form - Each land has its own form; form of seeds \& number of rows differs.
208 Description of changes in Maize from American seed, 210 due to climate, so quick - Change in period of ripening. - Variation (p.212) comes on in Europe; \& American vars. quickly take European Character. 217 very early Maize. [Believes all maize one species \& gives reason for]
All used

METZGER
title page $w t \leqslant 3$ Herbacious 4 oats $912 w$ $1121 w 21835-37 m, w b$ no difference between summer \＆winter barley except time of sowing \＆ripening \＆will go back again （NB so it is in Mexico） $191-2 m$ ，31－32u ＂einelhat＂，wb might be quoted as constitutional difference with no external difference $244 u$＂Wirlbemerkt＂，6－10w changes in common Barley $32-36 \mathrm{~m} / \mathrm{w}$ naked seeds 27 1－2w $33613-14 m / u$＂weill ausartet＂ 47 19－21w no Botanical difference $23-25 \mathrm{~m} / 23 \mathrm{w}$ changes $503-5 \mathrm{~m} / 4 \mathrm{w}$ changed wb to p． $120 \quad 54 \quad 29-32 m / 31 u$＂Aussaat 1 Frühling＂ 56 30－31u＂DieselÜberzug＂，31－ $35 m 5712-13 m / 12 u$＂jedoch｜sich＂， $27 u$＂artet I Spielart＂， $28 u$＂jetzt keine＂， $35 \rightarrow 58$ 32－33u ＂ist｜übergeht＂ 63 18－25m／w strong on advantages of change of seed $6510-11 \mathrm{~m} /$ $10 u$＂artet 1 und＂， $17 u$＂Jahrhundert＂ 66 29－ $36 \mathrm{~m} / \mathrm{w}$ varied first year then became more constant 68 9－10m／u＂grösserelKälte＂ 69 $14 u$＂Spätere｜Schaden＂ $8827-28 m / u$＂und erscheint＂ $9132-34 m / 35 u$＂einen beständigen＂／ $\rightarrow 921 u$＂Charakter angenommen＂， $9 u$＂wohl 1 beständigen＂， $17 u$＂in｜wechselnd＂， $18 u$＂bald 1 länger＂ 96 21－24m $9732-36 m / w$ changes in colour of seed $11417-18 \mathrm{~m} / \mathrm{u}$＂und beständig＂ $116 w t / 1-16 w$ we have seen that some varieties of wheat in a colder climate have been variable，so no relation to food $19 u$ ＂günstigen＂，20u＂magerem Boden＂，21－23m／ $21-24 m / w$ variable for 25 years at last constant $35 m$ ， $38-43 m$ ， $38 u$＂Seitllang－ jährigen＂／41－42w variable 117 17－19m／18－ $19 u \leftrightarrow / 19 \mathrm{~m} / \mathrm{wb}$ I do not see that selection has anything to do with this $13528 w 1137 w t$ many trifling cases of Variation not marked $8 m / w \tau, 9-12 m / w$ awns vary in presence＊ $14112 w 21451 w 324 w 418513-14 m / w 14$ kinds of Rice $20619 u$＂dem｜Jahrhundert＂， $24 u / 25 u / 27 u / 28 u c c, 20-27 w$ no plant more variable than Maize 29－32w vegetative periods $32-33 m, 34 u$＂selbst｜Form＂，35－38m， $39 u$＂Dalbesitzt＂，wb the longest－vegetation American kind sowed in our climate in gd year gives seeds which＊vegetate in shorter time \＆ripen seed，\＆the form \＆ shape of seed alter \＆become like common German 207 13－15u＂Reihe ISamen＂，23m， $28 u$ ＂eine Stammform＂$/ 24-35 \mathrm{~m} / \mathrm{w}$ thinks all maizes same species though some forms more persistent $208\langle\operatorname{many} m, u$ ） $6 u * / 7 u$＂Flach＂／ $8 u$＂kleinen Zahn＂$/ 8 u * / 5-9 m / w$ shape of seeds seems to vary greatly $10-11 w 12$ Unter－art． 13 u＂12 Fuss＂， $14 u$＂oberen＂，22－ $24 \mathrm{~m} / 22 u$＂ $9 \mid$ Fuss＂$/ 23-25 \mathrm{~m} / 21-26 \mathrm{w}$ some seed of 1st year seedlings departed from type 27－ $35 u \pm, 28-36 \mathrm{~m} / \mathrm{m} 209$ wt see Description

1－7m，1－6m，1－7u士，8m＊／u＊＂12｜Samen－ reihen＂， $9 u$＂längerlbreit＂， $10 u *$＂Zahn＂， $16-18 m / 15-22 u \pm / 18-20 m$ ， $29-33 m, 33-34 w$ same variation as above $w b$ two vars． returning into one．－） $2103 u$＂Engelmann＂／wt good man $9-14 u \pm / w t / 1-18 w$［These are the most striking facts of effect of climate．18－ $20 \mathrm{~m} / 18-22 w$ no one wd really believe in such change $22 u$＂Chicken corn＂，23－24w a more constant form 26u＊＂12＂／25－28w rows of seeds differ $29 u$＂ersten Jahre＂， $34 u \leftrightarrow 211$ 14－ $15 \mathrm{~m}, \quad 15-18 u \pm, 24-25 \mathrm{~m} / \mathrm{w}$ long cultivation fixing forms $34 u$＂starken｜ausgehend＂$/ 32-35 w$ seeds toothed $2126-7 u \leftrightarrow / w$ wet summer $8 a /$ $u / w \tau, 9 u$＂Diese Spielart＂，10u＂zeigt｜mehr＂， $18 w$（a） $20-22 u \pm, 24 u \leftrightarrow, 35 u$＂rund lgewölbt＂， wb（a）Every variety seems to change in Europe $2131-2 m, 5-6 m / 5-11 w$ thinks all the European Maizes descended from the two great varieties of America $15 u \pm, 26 \mathrm{~m} / \mathrm{u} \pm 214$ 20－23m $21510 u$＂12－20＂，15m／u＂Stammt Spanien＂，20－30w 3 or 4 Spanish varieties 216 〈u） $3 u$＂unregelmässigen＂， $8 u$＂diel beständig＂， $15 u$＂verzweigten ästigen＂， $22 u$ ＂Kolben 1 kurz＂， 23 u＂meist 12＂，25u＂Italien＂， $26 u$＂Cinquantino＂／26－27w Italian 217 9－10m／ x ， $14 u$＂artet laus＂

MEYEN，Franz Julius Ferdinand Beiträge zur Zoologie gesammelt auf einer Reise um die Erde including
ERICHSON，Wilhelm Ferdinand and BURMEISTER，Carl Hermann Conrad Beschreibungen und Abbildungen der von Herrn Meyen auf dieser Reise gesammelten Insekten Breslau \＆Bonn；Verd．der Kaiserlichen Leopoldinisch－Carolinischen Akademie der Naturforscher； 1834 ［CUL，S，on B］
gd
NB p．112．
8
62 24－26w middle Chile at most height \＆c $634 u$＂Insekten 1 Würmen＂，6u＂paarweise＂， 26u＂Spiegel＂ 64 21－22m
80
MEYEN，Franz Julius Ferdinand Neues System der Pflanzen－Physiologie 3 vols．；Berlin； Haude und Spenersche Buchhandlung； 1837－39［Botany School，FD］

MEYEN，Franz Julius Ferdinand Outlines of the geography of plants London；The Ray Society； 1846 ［CUL］
cc，gd，geo，gr，is，no，sp
NB Hooker says very poor \＆I quite agree〈CD？〉 Meyens Travels Lichtenstein Martius Humboldt Treviranus Biologie Gaudichaud

SB1 3; 4; 40; 43; 69; 82; 93; 94; 95; 99 to end.; 103; 187; 251; 253; 255; 256; 258; 261; 264; 270; 272; 323; 326
SB2 43 Trees Cedrela washed to Canary Isds from America viz Cedrela
103 Representatives of S. African Flora in Spain, according to Link
187 O/ 109 Genera in La Plata 70 Europe \& 85 N. Hemisphere (\& as few identical species there must be much representation, without these 85 genera are Mundane.
248 Bejaria in Florida in Lat 30° at level of Sea
255 very few genera confined to Alpine regions
256 Near Snow-line of Cordillera, the greater number of alpine plants are peculiar (very poor authority)

- Reinwardt says none of Java alpine plants identical with Europe (Hence at least vars)
257, 258 On American Alpine plants of Chile \& some European forms
261 Fewness of plants on islands has been disputed by Schouw
3 24-26m 4 24-26m/? 40 19-22m 43 18-31m 69 15-18m $828-11 m$ (Humboldt), 21-23m 83 6-7m, 26-28m 93 25-28m (Schouw) 94 30-33m $957-9 m, 12-15 m, 28-29 m 99$ 11-13m, 21-23m 103 12-15m, 32-35m 119 2-4m 1665-7m 187 33-35m 248 19-24m 251 13-14m, 22-23m 253 $27-29 \mathrm{~m}, 31-35 \mathrm{~m} /$? 255 17-20m, 23-24m, 25$26 m, 27-29 m, 29-33 m$ 256 11-31m, 11-13m 257 15-24m 258 1-2m, 7-11m, 16-25m 259 5$8 m 261$ 15-21m (Alphonse De Candolle, Von Buch) 262 21-26m, 28-31m 264 34-38m 265 1m 270 17-22m, $30-34 m / ? ? / w$ V. Hooker $35 w$ p. $27336-38 m, w b$ i.e. under countries of similar climate, extant soil \& height \& inhabited by similar forms the proportions keep similar; this is curious.- 272 wtcc, 12$15 m 273$ 26-38m, 36-38m 323 29-30m 326 11$28 m$

MEYER, Friedrich Albrecht Anton Versuch einer vollständigen Naturgeschichte der Hausthiere, im Grundrisse Göttingen; Johann Christian Dieterich; 1792 [CUL, pre-B]
tm, v
NB March 19th 1857; Nothing
p.38; 98; 119; 125; 126

I have only skimmed after p150 for the whole a wretched compilation though it seems he is Entomologist
$3812-15 m 937-12 m / 1-11 w$ Gmelin skin on back saccatus $9814-15 m / w$ Angora Rabbits 119 18-19m 125 wb Molar teeth; 5 toes on hind feet; palmated feet; chief difference tailless 127 28-29m 128 14-15w Pug

MICHELL, John Conjectures concerning the cause, and observations upon the phaenomena of earthquakes London; 1760 [CUL, pre-B, S, I "the Author's Present", i.e. not to CD] geo, t
NB 16; 459 * 70
10 vibration from same point; 16 ; 17 \& 26 my argument used by Mihell; 46; 55; 58; 70.

8 20-22m 9 1-2m 10 18-20m 11 13-16m 16 12 m , 29 m 17 1-19m 26 1-11m 35 5-14m 36 1$20 \mathrm{~m} 3828-33 \mathrm{~m} 391-3 m 461-10 \mathrm{~m} 5515-27 \mathrm{~m}$ 58 4-19m 70 30-32m

MIERS, John Travels in Chile and La Plata 2 vols.; London; Baldwin, Cradock \& Joy; 1826 [CUL, pre-B, S in both vols.]
vol. 1 , vii $7 \mathrm{~m}, 8 \mathrm{~m}, 10 \mathrm{~m}, 11 \mathrm{~m}, 13 \mathrm{~m}, 14 \mathrm{~m}, 16 \mathrm{~m}$, $18 \mathrm{~m}, 19 \mathrm{~m} 38321-32 \mathrm{~m} 3925 \mathrm{w} \rightarrow \rightarrow$ n 7-12z, 19-29m $3931-7 m 3941-8 m, 14-19 m 3951-$ $2 m, 6-7 m$
\wp
MILLER, Hugh Footprints of the creator London; Johnton \& Hunter; 1849 [Botany School]
$\mathrm{cr}, \mathrm{em}, \mathrm{geo}, \mathrm{ig}, \mathrm{sp}, \mathrm{tm}$
$91-2 m 1510-14 m / 12 w$ Why not? $404-7 m 46$ $3-8 m 6020-25 m 686-9 m /!6915-22 m$, wb What is embryonic Head of a Placoid or ganoid Fish $837-10 m, 24-27 \mathrm{~m}, 28-32 \mathrm{~m} / \mathrm{wb}$ This assumes no transition of such minute characters $841-8 m 10414-18 m 1054-7 \mathrm{~m} / 6 \mathrm{w}$ Devonian 107 1-4m 109 6-9m (Murchison) 133 13-14m 136 4-7m 144 15-18m, 27-30m 146 24-25m 147 25-27m 150 17-21m 154 1$5 m 15511-14 m 1619-15 m / 8-11 w$ too few 162 $28-32 m / w$ good but too hasty.- $1632 a$ "early" p. 161 1-5m/wt yet in Red Sandstone two kinds 166 20-23m $17511-20 \mathrm{~m} 17921 u$ "two"/w or three? $18212 u$ "Brachiopods" $/ w$ \& Cephalopods 17-21m 193 19-24m 196 7-13m (Lyell), 14-17m 197 11-14m 200 16-25m 203 25-32m 204 1-4m 214 9-22m 215 3-7m 216 $5-7 \mathrm{~m} / \mathrm{w}$ often cease earlier $7-10 \mathrm{~m}, 10-16 \mathrm{~m} / \mathrm{w}$ decay when in sediment $13-16 \mathrm{~m} 2177-11 \mathrm{~m}$ 219 22-23m 243 17-27m 280 19-20?

MILLER, Philip The gardener's dictionary 3rd edn, 3 vols.; London; for the author; 1748 [Down, vols. 1 and 3 only]

MILLER, William Allen Elements of chemistry: Part 2, inorganic chemistry 3rd edn; London; Longman, Green, Longman, Roberts \& Green; 1864 [Down, FD]

MILLIGAN，Edward A．Corn．Celsi medicinae libri octo Edinburgh；Maclachlan \＆Stewart； 1826 ［Down，S］\wp

MILNE EDWARDS，Henri Histoire naturelle des crustacés 3 vols and vol．of plates；Paris； 1834－40［CUL］
af，ch，ci，cr，ds，dv，em，gd，gr，in，is，sp，sx， sy，t，tm，v
vol． 1 NB 〈on p．468〉
（Species Theory）p．6．p117．p．184，5
p191－Hence Branchiae in the Podophthalm
Crust．perhaps not so anomalous－not more a new organ than in Cirripedes．
196 p121；227，8
SB $\square \beta$
186 Newport says in Scolopendra mandibles first formed－Jaws formed before legs in Crustaceans
197 The changes which Crustaceans undergo when hatched are the＂complement＂ of those within the egg
226－8 On 2 methods of classification；that of Cuvier impracticable（very good sentence）
title page u 〈author，title〉 2 29－30m／30u ＂cing｜de＂ $31-2 m / 1$ u＂sept paires＂$/ 2 u$＂nommés antennes＂， $4 u$＂coeur artériel＂， $6 u$＂sont doubles＂ $62-5 m, 30-32 \mathrm{~m} 121-7 \mathrm{~m} 1425-27 \mathrm{~m}$ $1519-20 \mathrm{~m} 164-6 \mathrm{~m} / \mathrm{w} \mathrm{V}$ ． $1810-19 \mathrm{~m} 192-$ $3 \mathrm{~m}, ~ 6-9 \mathrm{~m}, ~ 13-16 \mathrm{~m} / \mathrm{z} / 15 \mathrm{u}$＂généralement＂$/ 16 u$ ＂ordinairement｜dernier＂，24－28m 21 6－8m 23 $19 m \quad 27 \quad 7-9 m, 16-20 m \quad 296-10 m \quad 30 \quad 28-32 m$ 31 23－29m 40 15－16m 41 30－35m 42 21－22m $437-10 m 441-2 m, 5-8 m, 14-29 m 45$ 24－29m， $24-26 m 47$ 2－5m，3－4m 48 14－16m $50 \quad 16-18 m$ 51 1－4m 55 14－16m，26－29m，30－32m 61 17－ $30 \mathrm{~m} / 19 \mathrm{u}$＂lame cornée＂ $621-4 \mathrm{~m}, 6-8 \mathrm{~m}, 15-$ $17 m$ ，19－20m 64 9－11m 72 25－30m 73 2－6m， $10-13 m, 25-27 m \quad 74$ 4－6m，11－13m $755 u$ ＂Édriophthalmes＂，6－9m，28－29m 76 5－10m， $29 m$（Cuvier） $78 \quad 28-29 m 79$ 12－14m 80 14－ $18 m$ ， $22-28 m \quad 81 \quad 12-13 m / 5-23 w$ what difference in branchiae of Stomapods 82 29－ 32 m 84 21－25m，29－30m 97 15－18m $1007-$ $10 \mathrm{~m} 10417-20 \mathrm{~m}, 22-23 \mathrm{~m} 1105-7 \mathrm{~m}, 10-11 \mathrm{~m}$ ， $12-17 m, 27-30 m \quad 114 \quad 23-25 m / \mathrm{Q} \quad 115 \quad 8-10 \mathrm{Q}$ $11-18 \mathrm{~m} / 12 \mathrm{w}$ stemmate 116 1－2Q 5－7m／16－ $24 m$ os w Larva of Lepas $10-13 m 117$ 1－ $11 m / w_{0}$ This must be case in Larva of Lepas $6-10 m / 7 w$ Sp．Q $11818-19 m, 19-22 Q$ 20－22m 119 1－2Q 5－8m，20－22m 120 1－2Q 4－ $6 m, 17-18 m, 28-29 m 1211 Q 15-19 m / 1-19 w$ Species theory． 2 into 1 －into 2 into none $16-17 w$ V．Daphnia $26-29 m, 29-33 m 12312-$ $15 \mathrm{~m} / \mathrm{w}$ the second pair are the exterior 128 31－32c／w $\neq 12910-13 m, 31-32 m 13121-23 m$ $1335-8 m, 10-20 \mathrm{w}$ Cirripedes come near

Isopods $13521 u$＂nerfs＂$/ \rightarrow / 28 a$＂céphaliques＂， $29-33 m \quad 136 \quad 20-23 m / 21 u$＂nerfs gastriques＂， 25－27m， $28 \mathrm{~m} / \mathrm{u}$＂formentlde＂ 138 9－11m／7－ $18 w$ argues with＊cirripedes for 1 st thora． goes to all pied machoirs \＆c \＆c．－Jaws \＆c $18-24 m / w$ This is strongest possible argument that 1st cirrus is a pied mach 140 wb Pedunculated cirripedes in concentration about $=$ to half way between Astacus \＆ Palemon． 141 30－31m（Cuvier） 142 13－16m $1438 m 14432-35 m / 34 u$＂la Squilla＂ 153 1－8m $16517-21 m, 22-24 m / w$ not in cirripedes 166 $\begin{array}{lllllllllllllllllll}4-7 m & 168 & 25-28 m & 170 & 1-4 m & 184 & 21-23 m / w\end{array}$ mandible already formed $26 \mathrm{~m} / 23-26 \mathrm{w}$ ie 7 cephalic segment transformed $28-29 m 185$ wt Now irregular development does not proceed regularly from ant．to Post．end $4-$ $5 u / 1-5 m / w$ ie 1 st thoracic segment $\times 24$ $27 m, 31-32 m 186$ wt Brullé so far right．wt Newport tells me that in Scolopendra mandibles first formed． $3-5 m, 4-6 \mathrm{~m} 191$ $6-10 m \quad 196 \quad 25-29 m \quad 197 \quad 13-15 \mathrm{~m} / 15 u$ ＂Complément＂ 198 9－12m 199 21－25m 200 2－ $5 m 22624-31 m 2271-4 m, 7-28 m, 8-10 m, 33 m$ $228 \quad 24-30 m \quad 231 \quad 24-28 m \quad 233 \quad 1-3 m / 1 u$ ＂plusieurs séries＂ $2349-11 m, 12-17 m 2362 w$ （1） $13 w$（2） $19 w$（3）$w b$（4）－Cirripedia 238 31－33m 239 1－3m，11－13m 242 8－11m $25310 u$ ＂pates－mâchoires＂
8
vol． 2 SA $\langle p p .50-51\rangle$
p42；p50
＊add 2 short－styled out of Orchard〈over〉

（Books of Rules）
8
42 32－34m 50 17－20m，27－28m 441 9－11m， $14 m, 16 m 4444-6 m, 5 m, 6-7 m, 8 u$＂sept＂， $9 m /$ u＂conformés＂， $19-20 \mathrm{~m}, 20-22 \mathrm{~m} / 20 \mathrm{u}$＂aul sept＂ $22 u$＂le 1 de＂， $23-24 m, 25-27 m 4454-6 m /$ $4 u$＂Trois＂，14－16m，25－28m 446 2－3m，10－ $14 \mathrm{~m} 4481 \mathrm{~m}, 4-5 \mathrm{~m}, 17-18 \mathrm{~m}, 25-27 \mathrm{~m} / \mathrm{w} \quad \mathrm{p} 471$ $46 w$ p． 489449 6－7m／7u＂Schiropodes＂ $4501 u$ ＂tous les＂， $3 \mathrm{~m}, 10 \mathrm{~m}, 17 \mathrm{~m} 45122-23 \mathrm{~m}, 26-27 \mathrm{~m}$ 455 29－32m／30u＂soitlflancs＂ 465 5－8m／5u ＂aplati＂ 468 10－11m／10u＂Lalsaillante＂，14u ＂deux paires＂， $15 u$＂paire de＂ 470 5－6m／5u ＂feuille＂， $24-25 m 4711 \mathrm{~m} / u$＂dépourvues palpiforme＂， $2 m, 3-6 m, 13 u$＂sept 1 huit＂，20－ $21 m, 24 m, 26-27 m \quad 473 \quad 7-9 m, \quad 9-10 u$ ＂lamelleuses l apparentes＂，15－24m，20－24m，25－ $32 m, w b$ \＆ 1 st thoracic legs very small 474 $6 m / u *$＂très－petites＂ $4751 u *$＂ill rudimentaire＂， $3-4 m, 10-11 m, 12-13 m$ • 480 $25-27 m / 25-26 u$＂pates I réduites＂ 486 22－23m 487 12－13m，13－16w V，p． 473 foliaceous 32－
$34 x x 4887-10 m / x / w$ Misprint $9-10 m, 21-$ $22 m 51020-22 m$
vol． 3 NB 〈on p．638〉
410 On Cirripedia
p412 Even in Copepods organ of generation in last thoracic segment
SB $\square \beta$
555 Difference of Crust，in proportion to separation of area，other things being equal 561 only 2 or 1 Endemic Crustaceans at Canaries Isld
567 Individuals of same species are almost always continuous areas 571－
573 few cases of interrupted ranges
574 Crust individually numerous in Polar seas
5 13－16m 103 5－9m
\wp
$3491 w$ Entomostracous 391350 16－18m 353
11－13m 354 14－18m 364 11－12m 372 11－13m， $12 m 373$ 9－10m $3743-13 \mathrm{~m} / 6-8 w$ probly not Copepods 375 29－34m 376 12－18m 377 2－5m $3916-7 \mathrm{~m} / 7 \mathrm{u}$＂rames＂，19－21m 393 17－20m $410 w b$ Cirripedes allied to family of Daphnia only by dorsal anus，ovaria，inflected abdomen \＆shell－（differ widely in cirri \＆ mouth）\＆in caeca at cardiac end of stoma－ More allied to Stomapoda $4124-7 m, 17-18 m$ 432 5－8m 433 29－31m $4341-3 m 437$ 26－28m 447 22－25m 448 12－15m 539 17－18m，21u ＂yeux composés＂ 541 8－9u＂on｜paire＂／w answers to 1st cirrus 17－18u＂plutôt｜paires＂ 542 14－18m 544 11－13m／12u＂quilavant＂，17－ $18 \mathrm{~m}, 25-27 \mathrm{~m} 5451-2 \mathrm{~m}, 9-11 \mathrm{~m} 555 \mathrm{wt}$ How explains this，except by single creations $17-$ $23 m / 1-24 w$ without regard to anything else－ Make a Barrier \＆you will have species different on opposite sides $w b$ । do not think read with sufficient care 556 29－33m 557 4－ $20 \mathrm{~m} 56121-26 \mathrm{~m}, 22-23 \mathrm{~m} 56411-12 m 5652-$ $5 \mathrm{~m}, 15-17 \mathrm{~m}, 23-26 \mathrm{~m}, 23 \mathrm{~m} / \mathrm{u}$＂Palémons＂ 566 32－3m 567 9－10m，16－18m 568 1－9m，11－14m， $31 m \quad 571 \quad 18-19 m \quad 573 \quad 3-12 m, \quad 6-7 m / w$ Interrupted ranges $30-31 \mathrm{~m} / \mathrm{w}$ do $57422-23 \mathrm{~m} /$ 19－24w Arctic Sea likes big lake 588 〈u》〉 $11 u$＂versans \mid Atlantiques＂，$\quad 14-15 \mathrm{~m}, \quad 15 u$ ＂Ptalycarcin＂，17－18u＂pas｜Antilles＂，20u＂au Chili＂， $21 \mathrm{~m} / \mathrm{u}$＂au Chili＂， 23 ＂Callianasses＂， $24-25 u \leftrightarrow, \quad 29-30 u$＂àl Hollande＂， $32-33 u$ ＂Hippolytes＂ 593 11m／w Mouths $14 \mathrm{~m} / \mathrm{w}$ Mouths 597 10－39［．．．］ $60039 w 26014 w 3$ $60240 w 360315 w 432 w 5$

MILNE－EDWARDS，Henri Introduction à la zoologie générale Paris；Victor Masson； 1851 ［CUL］
ad，cc，ch，ci，co，ct，em，fo，geo，he，hl，ig， in，mn，or，phy，rd，sl，sy，t，tm，v
SF $\square \beta$
7 Diversity of organisms first condition of nature（Ch 4）
9 Law of＂economy of nature＂＂sober in innovations＂－Qas has not recourse to any new creation of organ．other strong expressions on do p .10 Q
13 nature varies degree of perfection Q 14 as embryonic development
31 On Highness \＆Lowness 25 to 34
35 Division of Labour $\underline{Q} p .57$ do $60,61 x * Q$ 43 Beautiful gradation in stomach Q－63 in Respiration Q；in annelid surface \＆body near legs．
$\times 61$ Q Nature rarely introduces a new organ
p．64， 65 in Squilla new organ introduced Q
－but cirripedes have shown how cautious one must be 118 do＊ 121 do Q
68 Q Clearly admits that new organs are at last created． 118 do
96 On Embryological similarity p98 mistake of Branchial slits p102 not arrest p112 p114 111 Point in Classification．
124 Parallel series
126 on animals＂borrowing＂（instead of inheriting）structure from other class．
132 on different kinds of fusion or unison 137
132 Rudimentary organs tend to become separated from proper connexions！
138 absolute disappearance of organs
141 Law of Balancement of minor importance
148 Law of connexion 151，154
161 If one part is changed others are changed（so with varieties of \＆monstrosities of gross nature）
163 on various empirical connexions of structures
165 On subordination of characters i．e． character in connexion with other（Jussieu） 169， 166 doubts this pp171
172 on value of characters in classification
NB1 〈refers to Catalogue attached to book〉 18 Milne Edwards Books； 26 Decaisne Cours Floriculture et Potagest 7.6
NB2－132－137 Jussieu primordial
iv $4-7 m 7$ at＜page number）， $13 m 93-4 m / 3 u$ ＂sobre d＇innovations＂，5－6Qas／6u＂autantlest＂｜ $7 u \leftrightarrow, 10 u$＂loi d＇économie＂／Q 28－30m，30－31u ＂aucune \mid nouvelle＂ $10 \quad 6-7 \mathrm{~m} / 7 u$＂rendent avare＂，8－9Q $12 u$＂quarante＂， $23-25 \mathrm{~m} / 24 u$ ＂seule｜physiologique＂ 11 1－5m，13u＂apus＂， $18 u$＂Céphalopodes＂， $24 u$＂Reptiles sauriens＂， 26u＂Lépidoctéel Mississipi＂ $1232 m 1313-16 m$

MILNE-EDWARDS, ZOOL. GÉN.
14 16-20m 16 17-22m 17 1-3m 21 9-17m/11u "puissance" $/ 12 u$ "perfection" $/ 15 u$ "quantité"/ $16 u$ "qualité", $20-23 m / 22-23 x, w b \times$ Best way of putting superiority.- though each perfectly (?) (Can young be said to be perfectly?) adapted to conditions. $227-8 u$ "illvie", $18 u$ "grandeur 1 résultats", $20 u$ "massel dont" 254 $9 m 262-5 m / x x / w t$ Is true individual? Gigantic Saurians.- Cetacea - Pachydermata Devonian Sharks 17-18u "on Icelles"/w Megatherium? 27 wt How value secreting, muscular \& nervous * organs. $2 u$ " n 'entraîne| nécéssairement", $8-10 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "lal dont" 29 wt So relation of size to warmth of Climate $1-4 m / 3 u$ "cette nature" $/ 4 u$ "cel seulement", $16-17 \mathrm{~m} / 17-18 u$ "se répéter" $116-$ 20 w vegetation repetitive cellular division 30 $1-5 m$, 9-12m 33 25-31m/27-28u "précision। actes" $35 \quad 13-15 m \quad 42 \quad 14-28 m \quad 43 \quad 6-20 \mathrm{w}$ beautiful gradation $571-3 m 608-11 m, 15-$ $18 m 619-11 m, 15-17 m, 25 u$ "unlnouveau"/Q 63 23-32m/24-25Q 64 8-11m, 13-21m/14-15Q $651-13 \mathrm{~m} / 1-3 u$ "d'organes 1 perfectionné"/Q/4 $5 u$ "déterminentlsurface" $66 \quad 28-31 m \quad 68 \quad 12-$ $16 m$, 24-25m/24-28u士, $31-32 m \quad 70 \quad 25-31 m$ (Prévost and Dumas) 74 17-20m $8030-32 m 81$ $1-3 m 85 \quad 5-11 m 86 \quad 10-13 m \quad 94 \quad 28-32 m / 28 u$ "Généralisant I vagues" $9515-18 m 9720-24 m$ (Tiedeman, Serres) $984-11 m, 12-17 m 10218 u$ "est I mouvant", 20-25m, 24-26m, 29-32m/ $30 u \leftrightarrow 1039-13 m 1055-10 m 1079-14 m 109$ $6-9 m, 25-31 m 1116-8 m, 23-29 m 1129-12 m$, 12-18m $11312-14 m 11412-16 m, 23-26 m 115$ $7-8 m$, 11-12m $11718 u$ "besoin|variété"/w poor! $20 u$ "tendanceléconomie"/w poor! 118 11-13m/12-13u "puis | instruments", wt/1-13w This very important: if proved upsets changes in species $1198-10 \mathrm{~m} *, 27-32 \mathrm{~m} / 27-$ $31 m / 29 u$ "types fondamentaux" $31 u$ "types secondaires" $12012-13 m 12124-30 \mathrm{~m} / 24 \mathrm{Q} 26-$ $28!!, \quad 28-30 u \leftrightarrow / ?, \quad 31-32 \rightarrow \quad 122 \quad 25-26 u$ "unlexemple" $/ 24-27 w$? only functionally or physiologically new $12311-16 m, 9-13 w$ natural enough by Selection $19-22 \mathrm{~m} / 21 u$ "Dacgtylopère", 29-32m 124 14-17w Marsupial parallel 126 1-32w what metaphorical rubbish, how much simpler my view 127 1$4 m, 9-12 m 1284-10 m 1305-9 m 1323-4 m / 3 u$ "fusion primordiale" $/ 4 u$ "développement confus", 26-28m 137 15-16m/16u "unlconfus", 19$22 m, 23-25 m / 24-25 u$ "la disparition", 26-32m/ $26 u$ "jeune" 138 17-22m, $25 \mathrm{~m} / \mathrm{u}$ "la répétition", $30-32 m 13910-13 m, 17-19 m, 31-32 m 1403-$ $4 m, 10-14 m 14118 u$ "vitales \mid pouvaient", 2026 m (Geoffroy St Hilaire)/22u "loilbalancement" $23 u$ tenir compte/ $26 u \leftrightarrow 1421 u$ "ce chevaulement", $16 u$ "la carapace" $14317 u$ "texturelpropriétés" 148 17-20m, 19u "con-
nexions anatomiques", 1-23w because even monstrosity could not invent-; manner of growth + hereditariness p151 20-24m, 2527 m (Geoffroy St Hilaire) $15113-14 m, 18-21 \mathrm{~m} /$ w if can be moved by steps $1524 u$ "Lal rapports", $5 u$ "tendance" 153 15-18m 154 4$14 m / w t / 1-15 w$ are not these parts lastformed in womb \& so exposed to modifying circumstances? $28-29 m /!? / 17-32 w / w b$ one feels an early embryo more independent of outside world, but why? so less apt to vary the late-formed parts exposed to sum of influences \& to selection; selection cd not act on embryo $15813-19 m / 13^{\prime \prime}$... $16124-25 m$ 162 1-3m 163 9-11m, 15-16m, 18-23m, 28$32 m 164 \quad 9-12 m, 10-15 m / 10-11 u$ "harmonies empiriques" 165 9-10u "principel caractères" $16618-20 m, 26 u$ "répondre affirmativement", 28-32m 168 9-12m $169 \quad 26-27 m 170 \quad 25-29 m$ $1716-11 \mathrm{~m} / 8 u$ "conséquences" $10 u$ "effets" 172 $2 u$ "caractères prédominants", $8-16 m, 17-19 m$, $20-22 \mathrm{~m} / 20 u$ "système dentaire", $30-31 u \leftrightarrow /$? 173 1-7m, 7-15m, 21-32m Catalogue, 12 9$11 m$ (Milne Edwards) $188-11 m, 17 m, 29-31 m$ (Decaisne)

MITCHELL, Silas Weir Researches upon the venom of the rattlesnake Washington, The Smithsonian Institute; New York, Appleton \& Co.; 1861 [CUL, S]
beh, phy, sy, tm, v
SB
5 Powers of fascination
12 Relation of Poison to Venom glands
37 do
43 do
66 classed
5 10-14m 12 41-42m 13 7-8m 37 32-35m, 42$45 m 431-9 m 6639-44 m / w$ so with Rabbits So illustrates variability
\wp
MIVART, St George Jackson On the appendicular skeleton of primates (extract, pp. 299-429), communicated by T.H. Huxley; 1867 [CUL, I]
h, v
SB 403 Variation; 410 \& 412 Man; 424
$40329 \mathrm{~m} / \mathrm{u}$ "digit", 38-41m 410 31-33m, 35$37 \mathrm{~m}, 38-40 \mathrm{~m} 4113-5 m, 9-10 m$, $11 \mathrm{~m} 4123-6 m$ 424 35-38m

MIVART, St George Jackson On the genesis of species London; Macmillan \& Co.; 1871 [CUL, I]
ad，af，beh，cc，ch，ci，cr，ct，ds，dv，em，ex， fo，gd，geo，h，he，ig，mm，mn，oo，or，phy，r， $\mathrm{rd}, \mathrm{sl}, \mathrm{sp}, \mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{ts}, \mathrm{ud}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$

NB1－Mivart；p15 I do not understand；15； 35 false quotation；54；60x Not fair；You entirely ignore use－ 67 Use entirely overlooked
NB2 Sp．Theory；p120； 145 Distribution Geographical； 155 Homologies
Vol 3 p． 327 of Cyclop of Anat \＆Phy．on Larynx of Kangaroo－Owen in Phil Trans p． 182 Gascoyen
SB1 $\square \beta$ य \langle by Emma \rangle
Mivart Genesis of Species
p21 List of his objections
25 Giraffe，with MS notes
34 On variations in all directions MS notes
37 Flat fish．
39 Origin of limbs $\langle C D, \Leftrightarrow\rangle$ do not consider
40 Whalebone
42 Larynx of young Kangaroo $\langle C D, \Leftrightarrow\rangle$（add after Whale）
〈CD，$\Leftrightarrow 44$ Pedicellariae
46 Metamorphosis of flies．
47 Mammary glands $\langle C D, \Leftrightarrow$ \＆ 42 for Larynx
50 Cobra．
53 Rods of Corti
62 Objection demonstrably sufficient
72 The shoulder of pterodactyls．
75 \＆ 77 ear \＆eye of cuttlefish v ．MS notes
$80\langle C D, \Leftrightarrow\rangle$ Avicularia
81 Placentae of mammals \＆sharks．
82 Resemblance of mouse \＆marsupial．
85 Effects of conditions on butterflies from Wallace
97 Modification as great as between Hipparion \＆horse－
〈over〉 Mivart Genesis
105 Abortion of finger in the Potto
107 believes wing of birds comp．suddenly developed－
107 On origin of tendrils $\langle C D, \Leftrightarrow$［see p47］
110 Macrauchenia a very generalised structure．
112 M．S．notes on suddenness of var．good －
130 Seems to believe that bat \＆ pterodactyle suddenly developed．
139 Argues rate of change in progenitors before their divergence from the amount of difference in their descendants
145 The same fishes in distant continent
148 Plurodont lizards \＆certain insectivora in Madagascar－
153 \＆ 158 Diff．from homologies of skull bones．

163．H．Spencer on \＆serial homologies
164 Mivart thinks there is an internal force or tendency．
170 There is serial homology in Chitons〈over）Mivart Genesis
174 Correlation very slight between teeth \＆ hair
176 Homology between limbs \＆fins．
178 M．S．notes on primitive homologies．
$\langle C D, \Leftrightarrow$ p107 sudden change of Birds wing．－
SB2 Kangaroo Larynx；Strange arrangement 125 \＆Pottos forefinger
$\langle C D$ ，hereafter〉 See to Mouth－Find ＂Brewster＂on age of Cephalopods－
Placentae of Sharks \＆Mammals－like Fritz Mullers cases \＆Claparede－
Mr Mivart＇s book consist of all objection to nat．selection advanced by various authors \＆ myself，expanded \＆admirably illustrated， with nothing said in favour，except in opening chapter
p147 Get Gunthers Catalogue
p196 Morals over
〈over）

（drawing of lens）

Evolution whether N．Selection is admitted is all important，as long as changes gradual， for then facts can be tested，for scientific purposes Mr Mivarts belief that sudden change，as Horse \＆Hipparion，\＆I suppose －Birds bats \＆Pterodactyles（otherwise his argument of intermediate not being found wd be valueless）seems to me no gain over the old belief of separate creation：Of course it may be true，but will be most difficult to prove

21 17－19m／18a＂useful structures＂and useless $20-24 m 2415-21 m, 27-30 \mathrm{me} 2517-$ $18 u$＂supposition｜tended＂ $\mid 17-20 \mathrm{w}$ only tallest animals in each country $267-9 \mathrm{~m} / \mathrm{w}$ only dense forests 27 16－25w Variations not supposed－too large an animal for country $27-31 m / 29 w$（a）$w b$（a）If large antelope \＆ giraffe can now exist or flourish under so much competition，so cd intermediate sizes $281-23 w$ We do not know whether in all countries trees are as nutritive as Mimosa 23－26m，wb Escape other beasts of prey 29 $4 u$＂theseldrought＂／w No 34 7－13m／4－12［．．．］／ $m / w t / 1-13 w$ I do not see．－no because only the most like some object wd be selected．－ if exactly equal Variation they wd counter－ balance each other．－wt M．on（there I do allow＊to the mO of my doubts） $353 u$ ＂mimic＂$/ w$ Mock 12x 36 13－17m，28－31m／w｜ do not see $378-10 \mathrm{~m} / 8 \mathrm{l} \ldots / 8-10 \mathrm{w}$ see Portfolio

MIVART, GENESIS, 1ST EDN
on gradation fig.w Ask Gunther 15-22m/22[... 38 3-9m/5...], 19u "functionless" $/ w$ * No no 39 wt we have no means of judging 7-14w idle objection $403-7 m 41$ wt (Straining or sieving action.) $7-15 \mathrm{~m} /{ }^{\prime \prime} . . . ", 11-12 w$ Ducks Beak 42 $24-30 \mathrm{~m} /[\ldots] 431-2 w$ Voice $3-6 w$ ie about Kang \& also all oth $4432-34 m / 13-34 w$ Cirripede Branchiae first nascent structure applied after to other uses. $24-27 \mathrm{~m} / \mathrm{I} . . \mathrm{J} / \mathrm{w}$ (a) $451 w$ He adds 2-7[...] 8-10w never useful structures 46 9-12m/9-14w Lowne explains intermediate conditions 47 17-21m/L...J/w p. 53 $22-26 \mathrm{~m} / 22 u$ "mammary|breast", 22-27[...]/24u "sucking|scarcely"/w Mucus massage fails 28-34m, wb M doubting about sucking; but to this kno does not run 50 fig.w Mem snake devoured by Peacock in India to frighten enemies $515-11 w \mathrm{M}$ - Linn Soc Fascination $30-34 m / w$ not in native country $5211-14 m 53$ $25-28 m \quad 54 \quad 1-17 m / 4 w$ No $10 u$ "only| enjoyment"/11u "perfect I performances"|6-15w are used for some other purpose Crustaceans $579 u$ "escaped" $/ w$ No $601-12 w$ not fair not to add $6122-23 \mathrm{~m} / 23 u$ "seems irresistible" 62 wt with mimickry init. resemblance $\&$ more distant to one var. \& in another to another var. $3-8 \mathrm{~m} / 6 \mathrm{w}$ (a) $15-17 \mathrm{~m} /$ $15 u$ "demonstrably insufficient", wb I have never said demonstrated but in highest degree probable $678-10 \mathrm{~m} / \mathrm{w}$ so do I $21-24 \mathrm{~m}$ 72 25-29m/wb Here add that Mr Mivart sees such strong improbabilityO I cannot see it.Variation analogies do arise $7511-15 \mathrm{~m} / \mathrm{w}$ he always omits the share of selection 7633 m 77 wt Remember what structure is necessary for vision Lens are found in Annulosa 4-6w utterly deny $6-11 \mathrm{~m}, 7-9 \mathrm{~m} / 7-8 \mathrm{u}$ "independent 1 variations" $/ w$ (a) $16-21 \mathrm{~m} / \mathrm{w}$ what does this mean? wb (a) you cd not make greyhound \& pug - pouter or fantail thus - it is selection \& survival of the fittest $8119-27 \mathrm{~m} 821-7 m$ 84 23-27m 85 1-7m, 25-31m, 27-33m, wb Direct conditions $9716-18 u \leftrightarrow, 17-19 \mathrm{~m} / 19 u$ "Hipparion IEquus" $981 u$ "sphenoid" 102 22$27 \mathrm{~m} / 23-25 w$ false quotation $10511-16 \mathrm{~m} / 11 w$ disuse $1071-3 m / w$ oh $5-7 m / w$ see my paper. 109 9-12m!! 110 6-12m 112 2-7m, wb Says variation, of which we have evidence, \& not exceptional cases were suddenly changes \& unnatural changes, such may sometimes have occurred. $w b$ As dom. productions so much more variable, these variations probably greater, \& the strongest partake of nature of Monstrosities.- In large genera, very known in nature, including recent \& fossil, the species are so close, that steps probably not great in line of death. 119 13$17 m / 13-21 w$ we do not know causes of
variability $12013-17 \mathrm{~m} / \mathrm{w}$ yet it varies in W.Indies. 21a "some" most 121 19-24m/1930 w I say so merely because other reasons make me believe in it. 123 wt Do I not give it as a mere possibility when arguing against this view? $2 w(a) 6-11 m 1301-5 w$ Does he believe that a Bat \& Pterodactyle was suddenly produced - such facts tell against Evolution, as well as nat. selection.- so with Whale \& Zeuglodon - 139 1-34w this seems false reasoning, he assumes amount of difference in progenitors from amount in existing divergent descendants. $14522 u$ "distant" $23-31 \mathrm{~m} / 27-28 u$ "is I fresh" $1465-13 \mathrm{~m}$ (Günther), $31 m 1472 u \wedge$, $3 u$ "China 1 Moreton", 4-6m, 10-12m/w ask Gunther 23-24m/22-28w Is this an aberrant \& ancient form 148 1$11 m, 15-17 w$ Distinct genus $25-27 \mathrm{~m} / \mathrm{w}$ no remnants 151 20-24m 153 2-6m 157 17-19m 158 11-15m 159 1-3m (E.R. Lankester)/w | have called analogy $16323-29 \mathrm{~m} 16416-18 \mathrm{~m} /$ $17 u$ "is \mid tendency" 166 9-13m $17016-20 m$, 20$22 m 174 \quad w t / 1-12 w$ So add, but the connection, if any, as Mr. Mivart provided not extremely vague.- some evolutionary tendency in both to vary together $13-15 \mathrm{~m}$ $1751-3 m, 13-16 m 176$ 6-12m, 16-18m/14-28w ask for Günther's view $177 \quad 12-13 \mathrm{~m} / 12 u$ "tarsus |cartilaginous" 178 wt/1-11w Parts primordially similar wd be apt to vary in same way, but can be congruent to any extent - to moderate extent - Veronica.How primordially similar, is an obscure subject.- repetition of past one of commonest forms of variation. 179 11-14m, 24-27m (I. Geoffroy) 182 10-13m/11u "Gascoyen", 20-22m 192 18-22m 196 1-17m, 26-29m/27w No 197 2-11m 198 15-20m 200 19-24m 204 7-14m 212 15-21m/wt/1-21w Not longer duration than gemmules of atavic structure such as stripes on Horse. 213 28 m . $10-15 \mathrm{w}$ like pollen-grains within ovule 214 28-32m (Lewes) 215 6-8w gemmule \& germs $10-14 w$ absorbs organic matter \& divides 19-20w true $21-25 m$ 217 24 $30 m 22112 m, 24-26 m 223$ 11-13w from conditions $2255-7 m 22615-20 \mathrm{~m} 227$ 21-23m $2309-13 m 2316 m 232$ 4-19w How great, see my remarks at end $20-21 m / 21 u$ " "greatly different" $23927-30 \mathrm{~m}, 31-34 \mathrm{~m}$, wb differs only in colour \& size? $2403-5 m, 25-28 m / 27 u 242$ $w b$ Urges any amount of sudden variation of which we have evidence, \& not monsters (\& not reversion) I will admit, but probably less than we see under Domestication.

MIVART, St George Jackson On the genesis of species 2nd edn; London \& New York;

Macmillan \& Co.; 1871 [Down, S]
48 17-22m
\wp
MIVART, St George Jackson Lessons in elementary anatomy London; Macmillan \& Co.; 1873 [CUL, S]
h, ig, rd, tm, v
NB1 - Rudiment in Gorilla
Inguinal mammae in Lemuridae \& 2 pairs in Galago \rightarrow 〈to NB2, 489)
NB2 125 Hyoid Bone

- 396 Lobule of ears

489 Mammae
496 Difference of Man \rightarrow
\rightarrow tiny distance under an anatomical point of view
125 6-9m 396 19-22m, 27-29m, fig.m 489 42$44 m 496$ 20-25m
\wp
MIVART, St George Jackson Man and apes London; Robert Hardwicke; 1873 [Down, S]
NB O/
MOGGRIDGE, John Traherne Harvesting ants and trap spiders with supplement; London; L. Reeve \& Co.; 1873 [CUL] beh, che, fg, gd, oo, y
vol. 1 NB1 Very clearly * described Wallace NB2 p. 36
p. 128 Young spiders make web as perfect as old ones Q
The seeds stored in ants nests not germinating - these cutting off the radicals \& bringing up damp seeds to dry are the most remarkable instincts
Trap door spiders very wonderful
Perhaps add to when I specify the wonder of ants
xi 3-5m 128 5-12m (Blackwall), 14-16m
Supplement, NB1 p.161; 164
174 acid on seeds
p. 161 closely allied species in the same district have different habits
164 curious instinctive manner in which Cicendela seizes ants
174 acids \& seeds
161 7-15m, 20-24m 164 1-23m 174 4-15m
MOHL, Hugo von Principles of the anatomy and physiology of the vegetable cell trans. A. Henfrey; London; John Van Voorst; 1852 [CUL, S]
ct, mhp, mn, no, phy, sp, tm

NB1 Drosera; Cells; 37 Protoplasm; 38 do; 79 do; 84; 87 nutrition; Drosera 99; 100
76 Sp. theory; 109 do; 133* On Grafting various forms number of pollen-grains in some plants.-
Chlorophyll not absorbed so purple suppuration from the purple fluid must be protoplasm
NB2 Orchis 133
147 Tendrils, 151 to 156 to end
143 Knight on gravity
146 Roots turn from light
158 Bot. Zeitung
25 13-16m 26 39-42m 28 8-12m 29 1-4m. 37 38-47m, 44-46m 38 1-16m, 3-6m, 24-39w speaks as if nucleus necessary $3920-24 m$, 40-43m, 45-49m 40 24-31m 41 16-20m, 47 \rightarrow $422-7 m, 34-37 m, 37-40 m 443-9 m, 14-18 m$ (Kützing) 75 28-32m 76 30-35m 79 22-26m, 34-36m 84 46-49m 87 44-48m (Bouchardat) 93 $16-25 m, 36-38 m 9514-25 m$ (Brown) 99 2532m (Schulz) 100 19-27m 109 36-43m 133 3640 m (Kölreuter)/39u "120,000 pollen", 40-45m 143 34-47m (Knight and Dutrochet) 146 40$46 m 147$ 1-6m (Knight), 24-29m 148 47-50m 151 45-46m 154 22-27m (Dutrochet) 156 11$17 \mathrm{~m}, 29-34 \mathrm{~m}, 35-48 \mathrm{~m}$ (Treviranus), 35 w Phyllt 157 9-21m, $17-19 \mathrm{~m} / 18 u$ "of which", $24-27 \mathrm{~m} /$?, 41-46m 158 3-9m (Dutrochet, Mohl) 14-19m

MOHL, Hugo von Über den Bau und das Winden der Ranken und Schlingpflanzen Tübingen; Heinrich Laupp; 1827 [CUL, preB]
ig, mhp, no, phy, rd, sp, t, ta, tm, v, y
NB p. 39 Lygodium; p. 112 Species Theory non-climbing Plant - occasionally climbing; 125.

SB1 D \bigotimes_{0}
1 Summary twiners
All objects same - twiners either way glass - will clasp when young \& grow -Palm.-
A America arboreal - most highly organised tendrils
Dropping off or withering up of uncaught tendrils - these results useful special contraction after clasping or formation of linksO-
Anyone who did not understand the of the movement of the t. would conclude that as the internodes revolve \& carry the tendril, \& as these at the same time are revolving, that the tendrils would necessarily twist in advance more quickly than the internodes \& get in advance of them one internode instead of both moving harmoniously

MOHL，BAU UND WINDEN
together as is the case．But in fact the＊t． incurves to the＊upper internode of a twining plant when several are revolving，
－but is $\%$ generally separated from it by a rigid petiole；\＆in the former part of the P ．it was explained how＊several internodes revolve together by their whole length successively moving to all points of the compass．There is，however，this difference that in many cases the revolving t ．is separated from the revolving stem by the rigid petiole；＊but this makes an important differn in the movement－There is another difference，$*$ namely that $*$ along the $*$ part from which the tendril $*$ arises，the terminal \＆motionless young shoot almost always projects；this＊generally projects on one side，so as to be cut of the way，＊of the tendril which at the time is revolving；but when it is not sufficiently not of the way we have seen in ED how well the t passes this obstacle in its path，by shifting \＆straighten slowly，\＆rising vertically upwards．－
＜over〉 〈various plants listed，with rates and amounts of twining
SB2 Palm＊Mohl on Twiners＊Tendrils
p． 4 Tamus elephantoides $X \Leftrightarrow-\&$ Paullinia winding stems \＆tendrils it is one of Sapindaceae．
37 gradation of leaves with tendrils
39，50 Astragalus rudimentary tendrils No \Leftrightarrow
39 Lygodium leaf－climber
40 Cocculus Leaf－climber－－Ophio－ glossum leaf－climber
41 Uvularia like Gloriosa Nepenthus－ Smilax stipulae
43 Fumaria claviculata tips of branches converted into tendrils
45 Maurandia scandens－flower peduncule irritable－Sapindaceae－on Vines 47 Passiflora
49 Vanilla
52 on winding of tendrils spontaneously p78
57 tendrils increase rapidly in strength
59 on spontaneous winding with notes by self
63 Sensitiveness of t ．touch does nothing！！ look（too old）S． 65
65 convex side not sensitive \Leftrightarrow in Cucurbit \＆ Passiflora
70 Virginian creeper
77 Vine creeper point to N．\＆dark．other t ． not affected by light
82 will wind on glass，tendrils
〈over〉 Mohl on Twiners
103,108 twisting cause of revolving movement
111 no twisting of axis when plant twines！
round smooth support \＆old twisting disappears
112 a plant already twisted cannot twine！！
do．stems
－ 112 Asclepias X vincetoxicum twines only when it grows in most shady places
116 Experiments on odd＊supports， showing influence of light，
－ 119 Twiners care little for light，especially Ipomaea
－ 125 Abrus a right－hand winder
－ 135 will not twine round very thick support
－ 135 Hooks on certain twiners，specially ipomaea muricata
－ 149 has seen axial twisting vary in same plant
SB3 Palm
SB4 Bull．Soc．Bot．de France Tom V 1858. Dutrochet．Comptes Rendus．1843．Tom． 17.〈over〉 Comptes Rendus 1844 Tom 19.
SB5 1864．Weights 〈table of equivalents〉〈over〉 1863 वC

2 8－9u＂Bewegungen \mid werden＂$/ 8-10 \mathrm{~m}$（De Candolle）， $16-21 \mathrm{~m} / \mathrm{w}$ Tendrils \＆winding plants totally different $45-8 \mathrm{~m} / \mathrm{w}$ Touch not mentioned $24-26 m, \quad 25-26 u \leftrightarrow / x * 30 u$ ＂Paullina＂，wb Paullinia winding stem with cissus $59-10 m / 9 u$ a $/ 10 u$＂inlauslaunen＂，21－ $22 x$／21u＂Vicia tarba＂ 6 1－3m，4ca／w 214 $5 c \wedge, 6 u \approx 1 \mathrm{~m}, 11 \mathrm{ca}, 13 w$ Sapindaceae $14 w$ A， $15 \mathrm{c} \uparrow$ ， $16-20 w$ All worked with Lindley $18 w$ ค，22w＾ $3128-31 m 3310 u$＂beil Strephanthus＂ $10-12 w$ ！Apocynaceae 13－ $14 m / x \geqslant 13 u$＂bleibt \mid Abfallen＂ 35 19－20m，21－ $24 m / w$ Oenius Gloriosa $3724-25 m / x / 26-$ $29 w$ gradation yet jump 38 25－26m／25u ＂äussern＂ 39 11－12m／11u＂dielaufrechtem＂， 18－19m／19－20m／16－20w Rudimentary $22 w$ Leaf climber $36 \mathrm{~m} / x * 40 * 3-5 m, 23-24 \mathrm{~m} / \mathrm{w}$ Leaf climb 41 6m／un，32－33m $421-2 \mathrm{~m}$ ，8－ $18 w$ none of these seem to catch $4316-17 \mathrm{~m}$ $454-5 m, 8 x / w$ all wound into a tendril $10-12 m, 12 u$＂die｜Traube＂$/ 12-14 w$ does not say whether catches $19-24 \mathrm{~m} / 20 \mathrm{u}$＂die $\mathrm{ist}^{\prime} 47$ $9 u$＂zweiltragenden＂， $23-25 m / x$ ， $31-34 m$ （Jussieu） 49 4－18m／9－16m $50 \quad 4-7 m / x / w$ Mucro in Legumin $18 m 5131 m 5220-23 \mathrm{~m} /$ $x 5712-13 x$／ $11-13 m / w$ t．grow strong \＆ long 5811 u＂dem 1 durchaus＂， 13 u＂Blattstiels＂， $31-32 m / 18-35 w$ seems to think lateral movement consequent on twisting＊59 11－ 14！！／12－13u＂dalBewegungsfähigkeit＂，13－14m／ u＂die｜Spirale＂，18m，21－22u＂Fläche｜Uhr＂｜ $20-24 w$ Gloriosa winds up differently from ordinary tendrils． $22-34 \mathrm{~m} / 33 u$＂Korkziehers＂$/ w$ Smilax does not wind up．B．unl not Vines do not？Cissus does when it catches 60 1－
$10 \mathrm{~m} / \mathrm{w}$ does not at all understand reversed twisting of tendrils $10 x \$ / u$ "der 1 innen"/11$12 w$ i.e. sensitive side $639 u$ "eine | besitzt"/ $8-10 \mathrm{~m} / \mathrm{w}$ Tendril sensitive $13-14 x$ /!!/u "Einfache 1 Berührung", 16-23m/18-27w Touch does nothing were they too old?? I presume expected movement too soon $26 x \geqslant /!!!/ u \leftrightarrow$ $641 m, 2-3 x * / u$ "gerade \mid Zusammenwinden"/w this looks as if he took too old-13-15!!/15u "von 24 Stunden" $652-5 m * / w$ convex side not sensitive 3a/u "Passiflora" $/ w$ \& Peas $21-22 m / u \pm / x<70 \quad 18-20 \mathrm{~m} / \mathrm{w}$ Virginian creeper $718-9 u \pm / 9-10 x * / 7-10 w$ swelling in all parts when touch 20-21x "Vollendung Längewachsthums" $/ w$ AmentO 75 13-14m/1$21 w$ Astonishing that he did not see spont. movements. - I presume too old $775-6 x / 1-$ $10 \mathrm{~m} / \mathrm{w}$ Grape tendrils point to north \& to wall $13-20 \mathrm{~m} / \mathrm{w}$ not common to other tendrils of various plants kept in House $24-27 \mathrm{~m} / \mathrm{w}$ so with Pea $7827-30 \mathrm{~m} / x * / 28-29 u$ "während \mid herabsteigt" 79 1-3m/x $/ 2-3 u$ "welche nothwendig" 82 wt Big. cap \& cot wd not stick $6 u / w \tau / 4-6 x / m \quad 105 \quad 14 x / 11-15 m / 12-18 w$ seems to consider twisting in axes cause of movement $26 u$ "eine"/27u "dreilsechs"/22$26 m / 23-24 x * w$ number of twists $29-32 w$ end becomes spiral $30-34 m / 31-32 x$, $w b$ (a) I presume from each lower part of internode ceasing to move or acting like a fulcrum106 1m, 6-7m 108 16-17x/13-19m/w accounts for movements by spiral twist 109 $6 u$ "mehreremal" $/ 6-8 w$ passed mark many times in day. 110 wt He shows well how climbers get to their support. 4-5x $111 w t$ movement ceases when plant comes into contact with support!!! 4-7m/4u "hört"/6u "auf"|w (a) 13-14m, 15x /13-16w Vascular fibresO do not become twisted when plant twines round stem? 19-28m/22x 21-26w When plant twines axes not twisted !! 112 4$6 \mathrm{~m} / 4 u$ "Kreisbewegungen" $/ \mathrm{w} / / 1-4 w$ This looks as if he knew tendrils performed a circle. 11$16 \mathrm{~m} / 16 u$ "sich \mid schlingen" $/ 8-13 \mathrm{w}$ a plant which is already twisted cannot climb!!! $21-25 \mathrm{~m} / \mathrm{w}$ twining plants have sensitive stems!! 33$34 u \cdot / 33-36 m / w$ twines are not according to place of growth $w b$ I must explain why tendril bearing plants do not twine - tip does not move in some - 116 12-13x /12-33w experiments on odd shaped support strong influence of light $1192-4 \mathrm{~m} / \mathrm{w}$ do not so much incline to lighter $6-9 \mathrm{~m} / 8-9 \mathrm{u}$ "sich $\mathrm{richten}^{\prime}$, $14 \mathrm{~m} / \mathrm{m}, 16 \mathrm{u} / 16-22 \mathrm{w}$ This plant cared paticularly little for the light $29-32 m 1207-$ $8 m, 9-13 w$ Yet light some influence on Ipomaea $20 m, 22-34 w$ Explain little effect of light by all sides turned to it - will not do 122

11-13m/12-13u "sie \mid Kreisbewegungen" 124 32-34m 125 1-4m/2u "Gattung IFamilie", $22 x / w$ Legumin. $12629 m 130$ 29-30u "beil vorkommen" 134 3-4x 4-12m/5-9w Every thread suffices to wind on $17 \mathrm{~m}, 22 u$ "von! Zoll", $31 u$ "3|Zoll", $32 u$ " 9 Zoll" 135 1m, 3$19 w$ will not wind round a very short stick. - I suppose movement not arrested till bent considerably \& movement acts on opposite side $32-36 \mathrm{~m} / 35-36 \mathrm{~m} / 32 \mathrm{w}$ Hooks $1395-7 \mathrm{~m} / \mathrm{w}$ spiral arrangment of vessels $1404-6 \mathrm{~m} 143$ $32 m 1475 u$ "findet | desselbe"/4-6w Palms sole proof of identity $28-32 m /!!!/ 29 x * / u{ }^{\prime \prime} u m$ I gedreht" $1494-6 \mathrm{~m} / \mathrm{w}$ He disputes this $7 x$, $8-12 \mathrm{~m} / \mathrm{w}$ and says owing to Stutz not being smooth $15 \mathrm{~m} / \mathrm{u}$ "an IInternodien", 18 u "beobachtete lebenfalls", $115-20 \mathrm{w}$ he has seen twining in opposed directions $23-25 \mathrm{~m}, 30-$ $32 w$ Disputes Cuscuta case $15023-30 \mathrm{~m} / \mathrm{w}$ Palm did not discover irritability of Tendrils $1512 u$ "Rückwärtsbewegung", 9-11!!/m, 12x $16-18 m / 16 x / 16-17 u \leftrightarrow 1527-10 m, 15-18 \mathrm{~m} /$ $15-16 x \geqslant$

MOHL, Jules Vingt-sept ans d'histoire des études orientales 2 vols.; Paris; G. Reinwald; 1879-80 [Down] \wp
MOJSVÁR, Edmund Mojsisovics von Die Dolomit-Riffe von Südtirol und Venetien Wien; Alfred Hölder; 1878 [Down, I] \wp
MOJSVÁR, Edmund Mojsisovics von Das Gebirge um Hallstatt Part 1, 2 vols.; Wien; K.K. Hof- und Staatsdruckerei; 1873-75 [Down, I] \wp
MOJSVÁR, Edmund Mojsisovics von
Geologische Übersichtskarte TirolischVenetianischen Hochlandes [Down, I]
MOJSVÁR, Edmund Mojsisovics von Über die Triadischen Pelecypoden-Gattungen Daonella und Halobia Wien; K.K. Hof- und Staatsdruckerei; 1874 [Down, I] \wp

MOLESCHOTT, Jacob La Circulation de la vie 2 vols.; Paris Germer Baillière; 1866 [Down]
cc , phy
vol. 2 NB 43 particular earth good for particular plants
43 7-34m
MOLESCHOTT, Jacob Der Kreislauf des Lebens vol. 1; Mainz; Victor von Zabern; 1877 [Down]
〈markings presumed to be by FD>

MOLESCHOTT, Jacob and FUBINI, S. Sull'influenza della luce mista e aromatica nell'esalazione di acido carbonico per l'organismo animale Torino; G.B. Paravia; 1879 [Down] \wp

MOLINA, Juan Ignatio Compendio de la historia geografica, natural y civil, del reyno de Chile 2 vols.; 1788-95 [CUL, pre-B, on B, S in vol. 1 Charles Darwin, Valparaiso 1834] gd, gr, he, ve
vol. 1 NB1 369 Pace of Horse inherited Earthquakes
3-8.
33 globe of fire
NB2 30; 36; 57; 62; 81; 95; 102; 105; 114
earthquakes
NB3 earthquakes
28 15-18m 30 15-28m 33 6-37m/29w Copiapò earthquake $3618-32 m 5726-30 m 581-5 m$, $6-8 m, 17-18$?, $19-23 \mathrm{~m} / \mathrm{w}$ Not to where I say no map of sea $591-7 m 62$ 14-19m 63 5-15m $735 m 7625-27 \mathrm{~m} / \mathrm{u} \leftrightarrow 8128-30 \mathrm{~m} 821-9 m 95$ $15-29 m 10019-25 m 1061-11 m, 13-24 m 114$ 9-13m 223 22-26m 262 7-15m 268 1-16m 294 $20-28 m 301 \quad 25-30 m \quad 302 \quad 6-12 m$, 12-13u "ladran", $13-15 \mathrm{~m}, 16-20 \mathrm{~m} / 13-20 \mathrm{w}$ do the early voyagers say anything about dogs in T. del Fuego $30426-30 \mathrm{~m} / \mathrm{w}$ en V. p. 330330 21$23 w \vee 3043317-8 m, 10-28 m 34315-29 m$ 368 3-5m 369 22-25m 370 9-13m 373 zb 376 $20 u$ "Los Pehuenches", 22-23u "cabrones especie"/Q $418 w b{ }_{c}$ Birds p. 257 Quadrupeds p. 301

MONIEZ, Romain Mémoires sur les cestodes Part 1; Paris; Octavo Doin; 1881 [Down, I by Alfred Giard] \wp

MONS, Jean Baptiste van Arbres fruitiers 2 vols.; Louvain; L. Dusart \& H. Vandenbrock; 1835-36 [CUL]
cc, ch, cs, f, gd, he, hy, or, phy, sl, sp, spo, $\mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}, \mathrm{wd}$
vol. 1 SB1 440 to $446 ; 450 ; 453 ; 458$ \& 457

- In first origin cd not have been transported must have sported in nature \& not grafted; 472; 478; 486
SB2 - I think much must be attributed to selection of good sorts
- =He mingled his seedlings=
p.215; 218; 221; 225; 230,1,3,4,7; 247,8
- Old cultivated kinds tend to vary loose the hereditary quality of goodness
254-6,8; 322; 373; 400; 406; 410; 415; 430,32,34; 437,39; 441; 446
〈over〉
successive generation. at short intervals, with selection, the key
113; 115 not fixed
160 162,4 Chief end of his system is to domesticate them, ie to give them the effects which richer soil \& cultivation will give
172-179-180-183-184
This system chiefly illustrative of effects of external conditions on successive generations. \& fixity of the characters ie goodness - not injured by seasons - taste \& consistence *
Short period of renewing must be an element if he is true about earliness - yet not applicable to animals
187 to 209
SB4 $\square \beta$
115 Cannot account why one stock increases size of part more than other (p113)
180183 with his successive sowings there was selection; \& it is valuable case that after last, he got great majority good p203 almost all good. Whence it is proverbial 204,206 that if you sow seeds of any ordinary good fruit very 0 you get anything good. Law of character becoming fixed with selection by successive generations 247-472
186215 Seed not ripe (probably to cause sterility in offspring; \& from first fruit, weak
230 Great changes take place at first sowings??
400 "Variation est une chose insatiable." Elle entre dans un sentier sans issue et plus elle advance moins elle peut reculer"
406 Facts against pears crossing in adjoining trees
431 Cd tell by leaves or growth 800 or 900 Pear Trees
437 Has never got seedlings identical with parent
444 Wild seedlings like domestic apples \&c -446 Q α_{0}

8
$11323-27 m 1156-10 m$
$1605 w$ Origins $6-13 m 1622-6 m, 15-21 m 163$ $6-10 m, 14-19 m, 20-24 m 16417-22 m, 22-25 m$ \wp
172 9-12m, 13-19m/13-14w like cabbages $1793-6 m, 27-30 m, 32 m 1802-4 m, 6-7 m, 20-$ $24 m, 25-32 m, 27-32 u \pm 1814-8 m 18327-31 m$ $1843-8 m / w$ time only thus saved $1854-6 m$ 186 4-8m 187 1-5m, 4-7m, 13-21m/w crossing? $18813-17 m / 23-28 m / 12-32 w$ fruits \& leaves do not go together $1891-3 m, 16-20 m$ $1907-12 m, 25-26 m 191$ 18-22m/!! 194 12$16 m 195 \quad 6-10 m \quad 196 \quad 1-5 m \quad 197 \quad 1-5 m / 2 w$
curious 21-23m $198 \quad 29-32 m \quad 203$ 9-16m, 12$15 m, 18-22 m /$? 204 17-22m 206 14-18m, 29$32 m 208 \quad 30-32 m 209$ 1-2m 215 12-17m 218 8-14m, 26 w not roses $22120-24 m 2257-12 m$ $230 \quad 21-26 m \quad 231 \quad 28-29 m \quad 233 \quad 29-32 m / 30 w$ tulips $23416-20 \mathrm{~m}, 24-27 \mathrm{~m} 23711-14 m 2477-$ $12 m 248 \quad 20-24 m 25416-20 m 2564-7 m$, 8$11 m, 29-32 m 258$ 21-25m 259 19-23m
8
322 9-13m
\wp
373 9-13m
8
400 5-11m 406 21-30m 410 25-30m 415 wt Belgium good for Pears $1-7 m$ (Duhamel) 430 4-32m 431 15-20m, 21-30m 432 16-18m, 22$26 m 433$ 1-3m 434 14-26m 437 4-20m 439 30-32m 440 1-5m 441 6-10m 442 10-13m 444 $13-22 m, 27-31 m 44625-30 m 45014-17 m / 11-$ $21 w$ This makes me believe in other cases.H. Watson no 452 26-32m 453 4-8m 457 19$\begin{array}{lllllll}22 m & 458 & 9-29 m & 472 & 6-12 m & 478 & 4-10 m\end{array}$ (Klinkhardt) $4864-8 m, 12-15 m$
\wp
vol. 2, $103-6 m 1618-20 m, 22-23 m 242-4 m /!$ 8
81 27-32m 86 17-23m 108 19-23m/wt/1-22w some trees do a little - period of flowering too slow for selection; in animals, a nonconstant is rejected $1238-17 \mathrm{~m} / 10 u$ "concevable \mid effet" 126 2-4m (Cabanis)/w doubt it 128 15-20m $13123-29 m$, wb cases of some good ones springing up, only hypothetically doubted 132 19-27m/19-20m 144 3-8m 149 29-32m 158 3-5m $1612-5 m 17028-32 m 178$ $8-12 m 18111-16 m$ (Sageret) $18414-18 m 197$ $3-6 m, 1-23 m 20215-20 \mathrm{~m} / \mathrm{w}$ not seed 203 22$28 m 20530-32 m 2093-8 m 225$ 3-13m, 23$\begin{array}{llllll}32 m & 226 & 1-13 m / 4-9 m & 241 & 18-24 m / w\end{array}$ The experiments are related before $2491-6 m, 9$ $11 m 2504-22 m / w t / 1-26 w$ important. not caused by season, for all trees in the same nursery not affected $24-27 \mathrm{~m}, 30-32 \mathrm{~m} 251$ 1$5 m 252$ 28-32m 253 1-4m, 23-27m 254 11$16 m 25527-32 m, w b$ Can the wild be too vigorous to be crossed by domesticated ones; but I think he tryed the reverse 256 $16-20 \mathrm{~m} 258$ 11-16m 263 11-20m 264 25-32m $2652-6 m 2716-11 m / 7-9 w$ crossing? $2861-$ $8 m \quad 290 \quad 27-32 m \quad 291 \quad 1-7 m$, 2-3Qa, 6u "séquestration 1 vigne" 293 12-20m 298 1-6m/w Grape $30810-18 \mathrm{~m} / \mathrm{w}$ just contrary to Knight 312 20-27m 313 11-15m, 21-27m 314 5-10m \wp
385 9-16m 386 11-23m 388 22-30m 403 14$22 m, 30-32 m 4041-5 m, 5-8 m, 14-19 m, 22-$ $27 m 4061-10 m, 18-22 m 413$ 8-12m 414 10-

15m, 20-24m, 30-32m 415 1-15m 416 8-22m/ $9 u$ "prunier 1 pommier" $4187-12 m 4214-10 m$, 29-32m 422 15-22m 424 7-16m 428 18-24m
§
$4841-9 m$
8
MOORE, David and MORE, Alexander Goodman Contributions towards a Cybele Hibernica Dublin; Hodges, Smith \& Co.; 1866 [Down]
cc, gd
NB p.xx, xxiii
xx 16-20m/16-17w Water plants $17 \mathrm{~m} / \mathrm{w}$ Doubts $18 m$, 20u "Atlantic" $19-22 w$ doubts whether not naturalised xxiii $10-14 \mathrm{~m}$
80
MOORE, Frederic Descriptions of new Indian lepidopterous insects Calcutta \& London; Taylor \& Francis; 1879 [Down] \wp

MOORE, George The first man and his place in creation London; Longmans, Green \& Co.; 1866 [Down]
beh, h, pat, v
NB 252 Nods; 341 *lackness \& Fever
252 2-7m 341 20-29m, 36m

MOORE, Thomas The poetical works London; Longman, Brown, Green \& Longman; 1847 [Down]

MOQUIN-TANDON, Alfred Éléments de tératologie végétale Paris; P.: Loss; 1841 [CUL] af, cc, ch, em, f, fg, gd, he, ig, mm, mn, no, 00, phy, rd, sl, sp, sx, t, ta, tm, v, wd
NB1 266; 271; 285; 295; 300; 303; 305; 309; 322; 324; 326; 328; 329; 342; 345; 352; 354; 370; 385
N.B. I have not attended to variations with normal abortive parts
NB2 V. Back First for N.B.; 19; 20; 25; 29How then are flowers in fern-leaved Beech Irish yew \&c \&c; 30; 37; 42; 44; 50; 53; 54; 56; 58; 60; 62; 65; 66; 68; 69; 73; 77; 79; 85; 91; 113; $114 ; 116 ; 121 ; 122 ; 124 ; 126$ to $130 ; 132$ to $146 ; 154$ to $159 ; 163 ; 166$ to 192; 197; 213; 214; 216; 219; 221; 225; 229; 235; 236; 252; 254
SB1 ロK
30 varieties, i.e. slight modifications rarely congenital
42 Mountains destroying colour sometimes Qa to 58 a good deal about striped flowers

MOQUIN-TANDON
\& fruit
61 effects of good soil on villosity, \& low elevation Q屯
68 Atrophy of organ often causes villosity of Part
73 Fleshiness of leaves caused by proximity to sea Q
113 Monstrosity of axil almost always affects the parties appendiculaires Q
115 Monstrosities more common under cultivation than in state of nature.
116 Q Monstrosities are generally normal in some other species.
121,139 organs arrested \& rudimentary at different ages of evolution \& hence more or less rudimentary.
Q 124 organs often repeated are most variable in form Isidore G. St. Hilaire
126 in Maize a return to supposed primitive form.
128 comparison of rudiments of stamens to normal rudiments in other flowers
138,140,156,167 case of monstrosity analogous to other species- Q
人 173 good
156 Believes in Balancement; 158 Q
163 changes of form when organ becomes rudimentary
168 variation of "Piment annuel" see Vilmorin Catalogue
172 analogous variation in most distinct plants; crinkled leaves.
SB2 $\square \mathfrak{R}$
189 great tendency in irregular flower to become regular (or peloric) - this is return to ancestral structure? p191 hereditary generally sterile. Why?- see further, for the peloric flowers retake their normal structure 212 Monstrosity analogous to other allied genus
221 in Malus apetala all stamens converted into pistils
225 Rudiments normal of parts.
248,266 on soldering of homologous parts Q 285 on trunk of tree with nuts \& acorns in solid wood ($\alpha \&$ Birds nests - Loudon Journal.)
309 Deplacement very rare monstrosity, as in animals
323342 Q Monstrosity analogous to another genus in Family
327 Q Linnaeus on plants wh. lose corolla in Arctic regions
352 Return in stamens to normal number, even when rudiment not present
353 Remarkable heredetary Capsella bursa pastoris
385 Description of the St-Valery apple
ix $21 m 19$ 4-6m, 19-23m $207-12 m 2516-17 m$ $291-3 m, 6-9 m \quad 305-6 m, 10-11 m, 14 m / w \vee$ note 31 16-18m!!, 31-32m 37 29-30m 42 10$14 m, 16-19 \mathrm{Q}$ © , 20-22m, 28-30m, 32m (SaintSimon) 44 9-10m $475-7 m / w$ like Apples half sour \& sweet $8-10 \mathrm{~m}, 13-15 \mathrm{~m}$ (Knight), 19$21 m 5016-17 m, 22-24 m 5329-31 m$ 24 27$29 m 56$ 9-14m, 22-24m (Sénébier) 57 16-18m (De Candolle), 24-27m 58 1-4m 60 29-30m 61 7-8m 62 19-22m/20w Ch $726-27 m 632-4 m$ 65 3Q® ${ }^{2}$, 6-8m 66 6-9m, 28-30m 67 11-12m 18-21m (De Candolle) 68 11-14m, 27-29m 69 $1-5 m 7323-28 m / w$ Q Good for Chapt. 777 3-4m, 9-10m 79 24-26m, 28-29m 85 6-11m, $14-16 m, 19 m / u \quad " 618 ", 21 u{ }^{2} 415$ ", $23 u$ "moitié", $25 u$ "qu'àlstation" $913-4 m / 4 u$ "généralement Istériles", $5-7 \mathrm{~m}, 6 \mathrm{u}$ "Ses dimensions" $/ 8 u$ "ses habituels", $13-16 \mathrm{~m} / \mathrm{w}$ Do they seed $25-29 m 11322-23 m / Q 1147-9 m$, $28-29 m 1151-4 m, 5-6 m 1161-2 m, 3-5 m / Q$ $12014 m 1211 m, 2-4 m, 5-6 m 1229-18 m / w \mid$ suppose frequent 124 at <page no.), $7-8 \mathrm{~m} / \mathrm{Q}$ $1255-6 m, 16-18 m / w$ naturally so, I suppose $1264 u$ "involucre calice" $/ 4-9 \mathrm{~m} / \mathrm{w}$ known to be true - good case $10-13 m, 22-24 m / w$ now known $26-27 m 127 w t$ wild Quince tree $1 u /$ $w \tau, 3 m, 6-7 m, 11 m, 27-28 m$ 128 1-2m, 5-7m, $17-18 m, 20-23 m / 21-26 \mathrm{w}$ actually compares with normal cases $28-30 \mathrm{~m} / 28 \mathrm{u}$ "rudiments" $1293-6 m 1302-5 m, 20-23 m, 25-28 m 13213-$ $15 m, 16-19 m 1367-9 m / 5-12 w$ example with respect to the balancing of organs $1376-8 \mathrm{~m} /$ $7-26 w$ also occur normally V. note but in different families: Does this not bear on such cases, as similarity in Orchis \& Asclepias? 138 18-19u "Solanum Dulcamara", 20u "deux étamines", $22 u \leftrightarrow, 23-24 u$ "quelquefois extranormales", 29-33m/16-19Q $29 u$ "une I habituel", 32-33u "Solanum tridynamum" $1396 u$ "Anémones", $9 u$ "les \mid Goëthe", $11 u$ "Diplotaxis", $10-14 w$ are these same families? (No) 15u "Cleome" 140 23u "Seneçon", 28-29m/u "Barkhausial Crepis" $/ w$ I think same family $31-32 m / w$ worth reading $1469-10 \mathrm{~m} / \mathrm{w}$ is this not analogue of Turnip 154 10-13m $1552 w$ Quote generally 11-13m 156 wt Q $1-2 m, 9-13 m, 12-13 m$ (De Candolle, A.P.), $17-23 \mathrm{~m} / 17 \mathrm{u} / 19 \mathrm{~m} / 22 u \mathrm{a} / 21-$ $22 w$ same Family $25 u$ "temps |pédoncules"| $26 u \leftrightarrow / w$ Balancement 28-30Q/31-32m (De Candolle, A.P.), $24 u$ " Muscari"|wb I cannot make out in Loudon whether this is Feather Hyacinth $1573-5 \mathrm{~m} / \mathrm{w}$ same Family 13-16m/ $14 w$ Balancement $22-28 \mathrm{~m} / \mathrm{w}$ Q cart before horse $31 u$ a $/ 32 u$ "caractères |Carex" $\mid 31-33 m$ $1583-6 \mathrm{~m} / \mathrm{w}$ Right horse before cart $10-12 \mathrm{~m} / \mathrm{u}$ "sexuels lhabituel" $/ \mathrm{w}$ Balancement $24-27 \mathrm{~m} / \mathrm{w}$ Garden fruits \& seeds $30 \mathrm{~m} / \mathrm{w}$ worth reading

159 9-10m/w Balancement $1631 m, 19-20 m$ 164 1-2m $166 \quad 6-12 m / 9 u, 21-23 m, 25 m 167$ 19-21m, 27-28m 168 5a "Podolepis".w 7-8m, $13 \mathrm{~m}, 26-28 \mathrm{~m}, 32 \mathrm{~m} 1691-2 \mathrm{~m}, 16-18 \mathrm{~m} 172$ 11-13m/w Umbellifera Coniferae Compositae $14 u$ "Chou", $14 u$ "Laitue"/14-15m, 16m/w Parsley? 28-30m $173 \quad 24-30 m \quad 174 \quad w t$ variegation but only analogous $1-6 \mathrm{~m}$, 14 $16 m, 18-20 m 1758 m, 8-9 u$ "oultemps", $23 m$ $18227-29 m 1849-12 m, 19-21 m / x 18517 m$ 186 11m, 13-14m, 15-16m, 18-19w 13 species of Linaria ! $1873-4 w$ Linaria $10 \mathrm{w} /$ $13 w / 15 w / 17 w$ a 7 genera 188 12-14w (10 genera) $17-19 m, 24 u$ "Rhinanthus" $1893 u$ "Chelone", 15-19m, $19 m 191$ 6-9m\&, 15-16m, $20-21 m, 23-25 m, 26-31 w$ see only about 6 stamen, too many $1922 \mathrm{~m} / 6-10 \mathrm{Q} 11-13 \mathrm{~m}, 20-$ $22 m / w$ so I saw in Laburnum $1935-12 m$, 14$16 m$ (De Candolle, A.P.) 197 3-5m/5u "habituelles", 7-8m 207 25-27m 213 1-10m/5u "Arbousier 1 Éricinées", 8-9u "Argophyllum", 24-26m/Q 214 25-27m 216 1-2m 217 6-9m, 19-21m $2189 m 2191-2 m, 3 m, 30-31 \rightarrow 220$ 24-27m 221 19-20m 223 11-14m 225 5-7m/6$7 u$ "trouvel onglet", $14 \mathrm{~m}, 27-30 \mathrm{~m} 2358-10 \mathrm{~m}$, 11-16m 236 15-17m (Richard) 248 1-2Q 4-9m, $20-24 w$ Leaves or their lobes 249 27-28u "Gleditsia"| $28 m$, wb 250 2u "Dracontium" 251 16u "Séphales", 25u "Pétales" 252 1$2 m, 25 u$ "Étamines" 253 15u "Pistils" 254 $6-7 m / w$ influence variation $25815 m 263$ $3 w$ buds 266 23-29m/Q 267 3-5m, 23-25m/ m 271 9-11m 285 19-21m 295 29-30m 297 3-6m, 9-11m $30016-19 m, 29-31 m 3017-10 m$ $30310-12 m, 30 m$ (Guillemin and Dumas) 304 16-17m $3092-4 m$ (Geoffroy St Hilaire) 315 1$2 m, 28-30 m \quad 319 \quad 28-31 m \quad 320 \quad 7-10 m \quad 322$ $14-17 \mathrm{~m} 3235-6 \mathrm{~m}, ~ 15-17 \mathrm{~m} / \mathrm{w}$ which is Leguminous $23-24 m 3248-10 m, 11-12 m, 13-$ $18 m 325$ 9-12m, 21-25m/21-23m, 31-33m/32u "2,500", $33 u$ " 658 " 326 25-26m, $25 u$ "foule|causes", 26-27m, 26u "plupart", 27u "normalement" $327 \mathrm{~mm}, 4 \mathrm{~m}, 5-6 \mathrm{~m}, 8-10 \mathrm{~m} / 11-$ $13 \mathrm{~m} / 8-13 w$ are there many arctic Plants, without corolla $3285 u \uparrow$, 5-6u "bois disparition", 6-7m, 19-21m, 22-24m 329 6-8m, $11-13 m, 21-24 m, 29 m 3301-3 m, 4-6 m 342$ $20-28 \mathrm{~m} / 20-23 m / \mathrm{Q} / 24-27 m 3431-2 m, 14-19 m$, $23-25 m, 27-28 m 3445-6 m / 5 w$ What is it 14 $16 m 3458-9 m, 21-22 m 352 \quad 2-6 w$ So in Azalea $18-20 m, 24-26 m, 25 u$ "d'éléments nombreux" $/ 27-30 \mathrm{~m} / 29-31 \mathrm{~m} / 29-30 u \leftrightarrow / 6-32 w$
Here I suppose not even a rudiment present, but tending to produce perfect organ, or rudiment 353 9-12m, 24-27m, $33 m 3541-3 m$ (A.P. De Candolle) $3707-9 m 385$ 26-33m 386 10-12m, 31-33m, 31u "Mém.lLinn.", 33u "Seringe 1117 " 394a 39m, 41m

MORGAN, Lewis Henry The American beaver and his works Philadelphia; J.B. Lippincott; 1868 [CUL]
beh, h, or, sx, v

NB1 Instinct

- 300 Castoreum not sexual Used p. 44 * variability

89; 93; 95; 100; 102; 116; 133; 140; 158; 165; 191; 222
248, 250 to end Best observers admit intellect
instinct 264 good
289 variability
NB2
Mind of Man-poor-252; 256; 258; 259; 272
Blind Pelican fed
Our pity is an instinct; Blyth; crows - Fowl
$443-19 m 8317-33 m / 22-26 m, w b$ over $847-$ $11 m 8917 u$ "and lbark" $117-19 w$ instinct first arose accidentally? $93 \quad 1-3 m$ 95 29-32m 99 $13-18 m 100 \quad 26-33 m 10420-23 \mathrm{~m} / 22 \mathrm{~m} 10518-$ $20 \mathrm{~m} / 19 u^{\prime \prime}$ "than I structure" $10818-20 \mathrm{~m} 11616-$ $22 m / 1-22 w$ could a lodge have been originally found in centre of stream? 133 12$15 m 14025-29 m 15816-24 m 16521-27 m 172$ $28-30 m 19111-14 m / 11-12 m \quad 2228-9 m$, $14 u$ "much \mid members", 23-27m 248 12-28m 250 10-14m, 27-32m 252 6-11m, 17-21m 256 2630 m 258 1-5m, 6-8m (Hamilton), 12-16m/14 $16 m 2593-7 m, 18-21 m 262$ 8-12m 264 3-9m 265 6-9m 266 9-11m/8-14w No - Chicken picking up grain - Sphynx Moth 18-19m/w Wasp-Ants 272 23-31m 273 15-29m 278 17$23 m 289$ 19-24m

MORGAN, Lewis Henry Systems of consanguinity and affinity of the human family Washington; The Smithsonian Institute; 1871 [Down, I] \wp

MORREN, Édouard Actes $d u$ congrès de botanique horticole Liège; Fédération des sociétés d'horticulture; 1877 [Down]

MORREN, Édouard Principes élémentaires de physiologie végétale Gand; C. AnnootBraeckman; 1871 [Down]

MORRIS, John A catalogue of British fossils 2nd edn; London; by the author; 1854 [Down]
geo, ti
NB 363 Hooker Eocene Temperate Plants \wp
363 30-34m

MORTON, Samuel George Types of mankind; with contributions by L. Agassiz, W. Usher, H.S. Patterson ed. J.C. Nott and G.R. Gliddon; Philadelphia, Lippincott \& Grambo; London, Trübner \& Co.; 1854 [CUL]
ad, af, br, cc, cr, cs, dg, ds, ex, fo, gd, geo, h, hy, in, mn, or, sl, sp, sy, t, ta, tm, v, wd

NB Dtitute of Mankind 1200B.C. Sir W JD 800B.C. Wilson \&
\Leftrightarrow Prichard Last Edition
-
Jackinot, Considerations generales Voyage au Pole Sud Zoologie (Royal Soc-? must be studied.-
Rosellini Athenaeum Monumenti dell'Egitto \& c

Champolion

Morton Crania Aegyptiaca

Lipsium Denkmalen (read)
Mr BirchO seems to have written illustrated Book
p. 459 - 724 Important Book. G. St. Hilaire p. 675 Chronology

688 -Aegyptian Dynasties.-
691,2; 696 Chinese; 701,2 Assyrian; 712; 715 Hindoo
Sir James BrookeO says positively DyaksO कt no greyhound, only degenerate Chines Dog. \& Pig seems equally degenerate Chines
SB1 xlv; liv; Ix to end of Agassiz; 56; 54 to 66 to 75; 81-85
90 Have 1 read Edwards description of Races of Man
94; 141; 156; 169; 175; 179; 181; 186; 194; 212; 237; 256; 272; 275; 280; 305; 309; 322; $338 ; 340$ to $403 ; 413,14 ; 425 ; 436 ; 439 ; 440$; 449

As mere naturalist, excepting from blending of races to certain extent, independently of crossing, I shd look at races of man as deserving to be called distinct species, yet 1 consider as descended from common stock, so come back at common belief; only difference is name whether to be called species or variations.
What effect wd idea of beauty have on races and selection. it wd tend to add to each peculiarity. V. our aristocracy.
The question of Origin of our domestic animals from 1 or more stocks, as only of interest, as showing amount of variation \& hybridity
<over〉 - It will be quite necessary for me to state most strongly how impossible it is to
guess the steps by which even vars., as of human race (or of Pigeons) have attained their characteristics.-
It is of course no ways impossible that some of the dogs of the Monuments may have descended.-
I am beginning to conclude that it is more difficult to account for small variations, as of man, when there is no adaptation than greater differences, when adaptation.
Consider cases of Rabbits, mere laws of growth
So geese \& Ducks
Nothing is more odd than similarity of Fuegian \& Brazilian. Why Puma shd range continent unvaried \& Monkeys differ in every province.- It is great hiatus in knowledge. I may contrast Man with Monkeys, for on my theory, the Monkeys have varied.-
xlv $25-28 m$ liv $7-11 m / 8 u$ "Monograph on hybridity" lx $8-11 m, 17-20 \mathrm{~m} / 18$?, 24-27m lxvi $31-38 m / 32-33$?, 37-43m lxvii $42-43 m / 43 u$ " A. Wagner" lxix 24-32m/w How false for how distinct S. America \& North temperate America. lxx 6-14m, 28-32m/w what forced reasoning ! lxxi 12-14m/12-17w Cape of Good Hope Plants of ! so distinct. 1xxii 12$18 \mathrm{~m} / \mathrm{w}$ Here single genus, instead of whole Fauna taken. Ixxiv $7-11 m / 10-12 m / 1-17 w$ But it will come in, what is meant by primordial, except that not descended from other form. 10a "Characteristics"/11-13m/9-16w nor does analogy cause doubt whether they may not have varied. $26-29 m, 35 u$ "as |the" $/ 31-35 w$ this not known $32 u$ "primordiallforms" 31 $34 w$ primordial begs the question $w b$ "organic forms now keeping distinct" wd be more correct - but in common acceptation, certainly origin comes into play: hence cowslip \& primrose discarded. lxxv 11-13m lxxvi wb Plants used at beginning, ignored at Cape of Good Hope, \& New Zealand look at Madagascar - Look at same race in United States \& S. America oh fish pudor Agassiz!.- 54 34-35m (Prichard)/34u "1847" 56 8-9m (Lepsius)/8w read 57 30-34m (Prichard), 46-48m 58 21-35m/26-32w well argued $40-47 m 668-13 m$ (Pickering) $6826-$ $33 m 7216-19 m 7435-40 m 754-7 m 7643 m$ 81 17-18m, 20-23m/19-27w These terms are objectionable because "allied" means also systematically allied. $858-11 m 903-10 \mathrm{~m} 94$ $1-13 m$, $22-26 m$ 95 16-21m, 26-30m, wb depends on the individuals or race \& not on law of proximity. $14121-25 m$, wb can men portraits ${ }^{\text {s }}$ rude sculptures be trusted 146 "Memnon".m/wb Knox Races of Mankind
says p. 204 that Bust of young Memnon is that of a Jew (see next Page) 148 "Ramses $I^{\prime \prime} . m / w b$ Dr Birch says this is young Memnon of Knox $15424 u$ "Romenen", 29$34 m \quad 156 \quad 33-35 m \quad 159 \quad 34-41 m \quad 160 \quad 23 u$ "Japhetic", 25-30m 163 6u "Chinese"/8u "Tartar" $12 u$ "Mongolian" $/ 6-8 m / w$ are Chinese \& Tartars now alike 169 39-41m, $43 \rightarrow 1701-3 m 17311-13 m / 11-12 u$ "variously explained", $19 u$ "Israelitish|Hyksos", 19-23w shows that the races not so easily recognized $27 u$ "Semitic", $39 u$ "Hyksos" $17412 u$ "northernlorigin", $26-29 m / 26 u$ "Champollion I Greeks"/29u "Hyksos-family" 175 16u "Semitic", 19-26m 179 9-16m, 23-32m $18123-27 m, 36-38 m 18632-37 m 19026-32 m$ (Prichard) 194 37-44m 212 9-10m 237 23-27m 256 37-41m 272 13-16m 274 wt To show how little we know how variations are produced mem. changes of colour in domestication; reduction of size \& interbreeding - small \& great forms rising in same country, as sheep \& Bantams \&c \&c - why Yankees differ from English? 26-30w mem. an old-worid form, mem. nose $31-34 w$ similarity owing to character of first intruder $35-36 w$ a group 40$43 m / 37-43 w$ slight distances these are. 275 $1-9 m / w t$ like the Puma $43 m \quad 27611 u$ "infinitude of types", 13-18m, 36-40m 277 41$43 m 28034-42 m / 35 u$ "without material" 305 $22-26 \mathrm{~m}, 35-37 \mathrm{~m} / 37 \mathrm{u}$ "peculiar 1 constitutions" 319 31-35m 322 20-28m 327 25u "Usher"/w unknown to Lyell $3386 m 33943 m$ (Cuvier) 340 32-34m (Buckland), $38-40 m 341$ 2-3m, 9$10 \mathrm{~m} / 10 \mathrm{w}$ ancient $26-28 \mathrm{~m} / \mathrm{w}$ European Dog 35-38w Eocene age? 41-42m 342 1-2m, 32$34 m$ (Serres), 37-38m, 41-42m/z $3431 m, 6-$ 8?!!/m (W. Mantell) 347b $43 m$ (Schmerling) 35341 m 357 1-2m 364 wt The age of Man very important, as most savage races have domestic animals (at least dogs), \& hence is concerned with origins of Man. 368 13-20m/w Successive extinction $37318 \mathrm{~m} / \mathrm{w}$ since contradicted $23 w$ do. $25 m, 27-28 m$ 374 17$22 m 375$ wt Race-hybrids Species-hybrids 2$6 \mathrm{~m} / 4 \mathrm{u}$ "Charleston Medical Journal", 26-30w implying, I think, separately created $38-39 \mathrm{~m}$, 40-41m, 42u "turnspit"/wb (A Monster) 43$45 m 3771-4 m, 26-28 m, 32-33 m, 34-35 m 378$ $10-16 \mathrm{~m}, ~ 39-41 \mathrm{~m}, ~ 43-45 \mathrm{~m}$, $50-52 \mathrm{~m} / \mathrm{w}$ Col. Ham. Smith $37913 u$ "unprolificlse", $13 u$ "without | coupled" $/ 12-15 \mathrm{~m} / \mathrm{w}$? no precision $17 u$ "victoriously 1 Morton" 19 "Charleston 1 Journal"/Q凶, $27 w$ Buffon 30-31w See Chartsworth Journal $37 \mathrm{~m} / \mathrm{w}$ inter se $45-48 \mathrm{~m}$ 380 19-21m/20u "Bolta|Layard", 28-44m/41$44 m, 45-46 w$ p. 724 good references $47-50 w$ not intended $382 \quad 12-15 \mathrm{~m} / 13 u$ "among
themselves" $115 u$ "wolf-dogs", 18-19m, 32-37m, $38-40 \mathrm{~m} 3834-7 \mathrm{~m} / 7 \mathrm{u}$ "continues 1 remarkable", $8-9 m, 19 w$ i.e. C. Lupus of many authors $34-$ $40 \mathrm{~m} / 36-40 \mathrm{~m} / 36-37 w$ Richardson 37-39m, 39$40 m, 52-53 m 3841-3 m, 8-9 m, 10-12 m$, 21$29 m, 42-45 m, 46-49 m, 47-49 m 385$ wt Think of the geographical distribution difficulty $12 u$ "Tchudi" $12-13 w$ most probably in Nat History $13-17 \mathrm{~m} / 13-14 u$ "found l epoch" $/ 14-15 u$ "that lseldom", 23-25m, 45-48m 386 10w quoted from Lyell 26?/u "inlforms" 387 fig.235.w Pariah dog $16-18 \mathrm{~m}, 43-50 \mathrm{~m} 388$ wt Rosellini fig.237.m, fig.240.m, $1-4 m, 3 a / u$ "3400", 16-18m/17a "dynasty" 2400-2100 BC $21 w$ Lepsius $22 w$ *, $25 u$ "alhound", $28-30 \mathrm{~m} /$ $29 u \quad$ "IVth \mid dynasties" $30 u$ "curled tail", fig.240.w How alike Jackall \& supposed Greyhound 41-42u "the! BC" 389 fig.241.w Rosellini $7 u$ "from 1 Roti", $9 u$ "XIIth" $/ w$ 24002100 13u "gazelle", fig.242.wヵ modern 29$30 \mathrm{~m}, 31-33 \mathrm{~m}, 42-45 \mathrm{~m}, 51 \mathrm{u}$ "at 1 species", 52$55 m / 53 u$ "small|peculiarities"/w Eyton $3902-$ 5 m , fig.243.w What dog is this? so long in body. Lepsius Dankmalen Rosellini ears not like $13 u \leftrightarrow, 15-19 m, 20 u$ "Rossellini's", fig.244.w Lepsius short body - what a tail fig.245.w Rosellini big ears fig.247.w ears not like hound, long body 391 2-4!, $5 u$ "common 1 of", $8 u$ " 433 " $/ w$ Hoskins Ethiopian $12 u$ " 434 "/ 13-19m/12-16w Bennett Tower menagerie has figured African Bloodhound (?) $29 u$ "twentyl before", 35-37m 392 8-10m, 10-15m, fig.251.w Layard \& Vaux 38-39m 393 6-7m, $14-18 m, 27-33 m 3943-7 m / 4 w$, $10 u$ "pugs $\mathcal{E} c$ "/10-12w no sort of evidence $17-28 m 395$ $1-10 \mathrm{~m} / 2-6 w$ i.e. variation due to crossing $5 w$ Pigeons 41-44m, 46-50m 396 10-17m 397 $36 m 398 \quad 37-40 m 400 \quad 14-24 m, 27-29 m, 34$ $35 m 4013-5 m / 4 u$ "but lhound", 10-11m, 21$23 m, 24-25 m, 32-36 m, 41-44 m 4024-12 m 403$ $3 u$ "natural" $/ 3-5 m / w$ Giant Horse 12-14m 413 4-10m/7u "nolcamels"/8u "nolfowls" $/ 4 w$ Gliddon $21 u$ "may $\mid B C$ ", 24-26m, 27-30m, 44$47 \mathrm{~m}, ~ 48-53 m \quad 414 \quad 32-35 m \quad 415 \quad 1-3 m$ (Crawfurd) 424 38-43m 436 28-36m 439 3$15 m$, $41-44 m / 43 u$ "excessive" 440 1-4m, $3 u$ "authentic documents", $4 u$ "anomalous conformation", $13-21 \mathrm{~m} / 13-16 \mathrm{~m}, 35-37 \mathrm{~m} / 37 u$ "foetus" 449 24-28m 669 12-14m (Rosellini) $67524 m, 27 m 6881-4 m / 3 u$ "pyramids 1 tombs"/ $4 u$ "thirty-fifth" $6898 m$, 10u "Pyramids extant" 691 41-45m 692 20-25m/w \therefore Romans probably did not receive domestic Birds 693 $35-37 m 70117-20 m 70214-18 m 71420 m 715$ $11-13 m, 37-39 m$ 717b $35-39 m$ 724a $51-52 m$ (Ritter), $54-55 \mathrm{~m}, 57 \mathrm{~m} / 59 \mathrm{~m} / 56-60 \mathrm{w}$ Camels hybrid wolves Pallas on wolves 724b 74$76 m, w b$ St. Hilaire

MOSELEY, Henry Nottidge Notes by a naturalist on the "Challenger" London; Macmillan \& Co.; 1879 [CUL, I] ad, beh, cc, ch, gd, no, 00, rd, sx, tm
NB 123 Distrib; 125; 133; 154 Rudiments; 168; 265; 457-84 Expression 492; 337; 292; 305; 360; 386; 591
Geogr Distribution; 17; 24; 123; 135; 164; 281; 368; 386; 433
SB Moseley
125 changes of Habit
169 Plants in Antarctic growing on mounds wind
292 Nesting of Edible swallow
305 Gill-cavity partly lung \& partly store for air
3861 male nutmeg to 50 female trees 586 Competition
591 Light \& colour of animals at grt depths
17 25-26m $2435-37 m 354-6 m 45$ 17-19m, 36-38m 123 7-10m $1258 u$ "under stones", $12 u$ "totally new", 14-19m 133 14-25m, 29-33m $13511-21 \mathrm{~m}, 31-36 \mathrm{~m} 14217-21 \mathrm{~m} 154$ 18-26m $1644-11 \mathrm{~m} 16835-38 \mathrm{~m} 1691-7 \mathrm{~m} 2651-4 m$ 281 1-8m 284 27-33m 285 8-17m 292 35-38m 305 27-37m 337 11-16m (Darwin) 360 12-16m 368 5-10m, 12-14m 386 8-12m, 23-25m, 2738 m 387 1-4m, 5-9m/6u "eject I hard", 12-16m $42130-32 m 43223-26 m / 24 u$ "70least" 433 $15-22 m, 32-33 m, 35-37 m 457$ 27-33m 492 29$35 m 538$ 22-23m 540 13-14m 581 17-18m 586 $17-34 w$ Competition with other forms far more important than conditions $58723-28 m$ 591 17-35m (Wallich)

MOSELEY, Henry Nottidge Oregon: its resources, climate, people and productions London; Edward Stanford; 1878 [Down, S]

MOSELEY, Henry Nottidge On the structure and development of Peripatus capensis (extract); 1874 [Down, I]

MOSSO, Angelo Kreislauf des Blutes im menschlichen Gehirn Leipzig; Veit; 1881 [Down, I] \wp

MOUBRAY, B. A practical treatise on breeding poultry, pigeons and rabbits 7th edn; London; 1834 [CUL]
beh, br, f, he, no, wd
NF1 Recommended by Mr Brent
NF2 p. 147
NB1 Hens, Domestic Hints p70
NB2 p13; 17 to 24; $30 ; 54 ; 87 ; 106 ; 130$; 133; 152; 154; 156; 165; 168; 176; 185; 203

SB $\square \beta$
13 Game Chickens very pugnacious. Q Eggs very thin. Ch 6 Q
30 Some Hens much addicted to lay eggs in other nests
54 tapping on board with nail induced chicken to peck
107 colour of Ducks eggs going with plumage - Correlation (Memb. B. Ayles Duck)
133 Qas Hen Pheasant lays seldom more than 10 in confinement but 18 to 20 wild
170 London to Liege $4^{\circ} 34^{\prime} \mathrm{AM} 10^{\circ} 24^{\prime}-5^{\circ} 50^{\prime}$ said to be 45 miles per hour.
176 Some Cats Ratters \& some Mousers Chapt 6 (Hereditary) \& took to water \& swimming
Blyth on Felis cilidigitataO aquatic kitten dabbling in water.-
185 Hare-Rabbit large eyes
$1314-17 \mathrm{~m} / \mathrm{Q}$ 18-19m, 25-26m/Q $1723-25 m$ 18 4-5m/4u "white tops", 12-13m, 23-25m 19 12-13u "exclusive I very", 16-17m $209-10 \mathrm{~m} 22$ $11-12 \mathrm{~m} 2411-13 \mathrm{~m} 30$ 19-23m 54 19-24m 55 16-21m $703-17 \mathrm{~m} 87$ 3-12m (Buffon) 106 14$17 m 1072-8 m 13031-32 m 13328-31 m 152$ 24-25m $154 \quad 17-22 m 15514-16 m 156 \quad 28-32 m$ 162 1-5m 165 1-3m 168 28-30m $17028-32 m$ 171 3-6m 176 4-6m, 20-21m 185 8-14m 203 2-6m
\wp
MÜLLER, Ferdinand von Fragmenta phytographiae australiae vol. 7; Melbourn; J. Ferres; 1869-71 [Down, I]

NB O/
\wp
MÜLLER, Friedrich Allgemeine Ethnographie Wien; Alfred Hölder; 1873 [Down, I] \wp

MÜLLER, Friedrich Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859: anthropologischer Theil 3. Abtheilung, "Ethnographie"; Wien; Kai-serlich-Königlichen Hof- und Staatsdruckerei; 1868 [CUL]
beh, cc, h, mg, t, tm, v
SB1 p.127- He discusses \& disputes whether the civilization of W . coast of S . America is due to immigration from Asia- I wd remark if so, the aborigines must have already been somewhat advanced, for for while not nec with our inference, it is very unlikely that a few shipwrecked men from some less civilized nation cd have produced any permanent effect on savages.-

SB2 xi Remnants of Races xii Beard no connection with Climate．－
xi $34-39 m$ xiii $11-15 \mathrm{~m} / \mathrm{w}$ Beard correlation $19 u$＂Australier stark＂xiv $22 m 12721-22 m$ §

MÜLLER，Fritz Facts and arguments for Darwin London；John Murray； 1869 ［CULR］ br，ch，ds，em，ig，sp，sx，t，ta，tm，ud
NB 80 Orchestia shown
79 sexual differing good development goes on
40 zigzag above
21 \＆ 26 two such forms
Species Theory
83；94； 98 to 109 embryology no fixed plan
110，119 Metamorphosis of Insects acquired 139 like Plant
80 means of transition from changes going on in the sexually mature males Case like the larvae of Batrachians breeding
$1430-33 m 1912 w$ p． $922-23 m 201 u$＂anterior antennae＂， $8 u$＂Copepoda＂，15－19m，22－25m／ $23 u$＂different＂，28－30m 21 fig．m／c／w 25 fig．w Fig｜ $11 u$＂powerful chelae＂ $262 u$＂bylterms＂， figs．w Fig 2， 327 12－13u＂females 1 species＂， figs．m，24－26u＂coxal｜process＂ 40 20－26m （Milne－Edwards），21u／a＂inferior＂．w posterior $475-23 m \quad 72 \quad 23-26 m / w$ this is specific difference 76 6－7u＂structure 1 sexes＂ $781-7 \mathrm{~m} /$ $w t / 1-3 w$ acquired only during adult age $791-$ $7 \mathrm{~m}, 8-9 \mathrm{~m}, 10-11 \mathrm{~m}, 14-17 \mathrm{~m}, 15-17 \mathrm{~m}, 19-21 \mathrm{~m}$ ， 23－31m 80 1－13m，figs．m 83 19－25m 94 1－4m， figs．m， $6 u$＂plus 1 the＂， $27-34 m 959-18 m 981-$ 18 m 100 29－30m 101 25－28m（Rudolf Wagner） 104 22－29m 105 1－6m 106 26－29m（Cuvier） $1077-18 m / 16 a$＂and the＂Spider $1081-6 m 109$ 20－21a＂us＂！ 110 21－23m $1114-12 m, 7-13 m$ ， 19－25w But the Embryo of the intermediate progenitor will reveal this stage $11414-18 \mathrm{~m}$ 116 15－30m $117 \quad 23-30 m \quad 118 \quad 1-3 m, 27-30 m$ 119 1－6m，8－40m（Gerstäcker） $12040-42 \mathrm{~m} / u$ ＂amongladult＂ $12131-38 m 127$ 11－15m 131 15－24m 137 11u／？＂carina＂ 139 6－11m

MÜLLER，Fritz Für Darwin Leipzig； Wilhelm Engelmann； 1864 ［CUL，I］ sx，tm
SF $\langle 4$ sheets，not $C D\rangle \square \beta \notin$
13 figs．3－6．w 2 forms of same male 17 figs． 8 and 9．w 2 forms of same male 19 $3 m, 14 m 716-8 m / 6 u$＂gleichem＂

MÜLLER，Hermann Alpenblumen Leipzig； Wilhelm Engelmann； 1881 ［Down，I］ f, v
$16920-21 m 18935-38 m, 40-41 m 205<26-$ $29 \mathrm{~m} / 26 u$＂Wohlgeruchs＂｜28u＂Auszackung＂ 206 10－13m 267 5－16m $26840-42 m 269$ 41－43m $2797-9 m 2871-3 m, 6-8 m 2881-3 m 2891-$ $4 m 290$ 20－29m 297 25－29m，35－41m 305 2－ $5 m, 18-19 m, 20-24 m, 25-32 m, 40-41 m 352$ $10 m 477$ 37－38m $4781-2 m, 37-38 m 4791-3 m$ ， 25－26m 481 fig．m 483 41－42m 484 29－30m 486 $4-7 m, 24 m 4875-7 m, 35-38 m 48830-35 m 492$ 37－40m 493 25－33m 495 2－4m，7－18m 496 2－ $4 m, 33-35 m 49710-21 m / 15-17 m, 31-35 m 498$ $7-10 m, 21-22 m, 36-39 m 5004-5 m 50212 m$ 503 table．m $50523-24 m 5068-10 m, 35-40 m$ ， $41 m 507$ 1－2m，25－29m 508 fig．m 509 3－7m 511 17－20m／19－20u＂dal darbieten＂ 513 1－3m， $11-13 m 514$ 21－25m $5151-4 m, 28-31 m$ ，42－ $43 m 521$ 17－21m，34－38m＊ 528 28－32m，43－ $44 m 5291-2 m, 9-10 m 53022-25 m 53119 m$ ， $33-35 m \quad 533$ 31－33m 536 32－34m 539 31－39m 540 31－32m 541 1－3m，41－43m 543 31－34m $54612-14 m, 18-39 m \quad 5471-5 m 548$ 19－22m， 38－41m 549 38－42m 551 37－40m 552 23－26m， 42－44m 554 23－25m $55516-24 m, 28-36 m 558$ $30-36 m 559$ 9－16m $560 \quad 27-30 m$ 561 24－29m $56226-30 m 56418-23 m 5654-15 m$ ，21－22m， 34－38m 566 19－21m 567 3－5m，27－28m／27m， $35-36 m, 39-40 \mathrm{~m}$

MÜLLER，Hermann Befruchtung der Blumen durch Insekten Leipzig；Wilhelm Engelmann； 1873 ［CUL，I］
ad，beh，cc，f，fg，ig，mhp，no，oo，or，phy，sl， sp，sx，t，ta，tm，v，wd
NB $\left\langle\Theta\right.$ ，repeated $\left.\propto_{0}\right\rangle$
extraordinary facts about the 2 forms of Rhinanthus \＆Malva－very important as showing new way of variation－Strange they do not blend－wd it not be worth while to cross and experimentise on with ε_{0} them \＆ publish separate paper－
© ${ }^{0}$ 369．Scabiosa case like Thymus－ female flowers smaller．
p． 37 Orchids 0 p73 0 all have descriptions separate
430 for Orchids
4033 for Orchids
$\left\langle\ominus\right.$ ，overwritten $\left.\sum_{\square}\right\rangle$ p444 of Mullers Laws of Variation
title page $2 u$ 〈author〉， $10 u$ 〈title〉 3 14－18m 4 11－15m／／．．．J／13－15u＂ohnel müsse＂$/ 5-23 w$ have been blamed，but is \＆ $18-21 \mathrm{~m}, 23 ? / \mathrm{u}$ ＂Sprengel｜Erkenntnis＂， $41 \mathrm{~m} 717 \mathrm{~m} 136 \mathrm{~m} / \mathrm{u}$ ＂cleistogami＂ 17 7－38w it seems that Axell has shown that many flowers can be self－ fertilised 18 22－25m／24u＂Windblüthen＂ 19 $26 w$ Why not you give on page 2238 m 27 $20 u$＂1868＂， $23 m$（Fritz Müller）， $27 m, 28 m$ ，

MÜLLER, H., BEFRUCHTUNG
$28 m 3511 u$ "zu fressen"/w Diptera 43-46m 37 32-40m/36u "Rhingial Rüssellänge" $/ 33-36 \mathrm{w}$ Flies not stupid $399 u$ "die Empisarten", 10u "Anbohren lbefähigt" 46 14-22m 47 13-20m, $16-22 m \quad 49 \quad 15-23 m \quad 58$ wt p235/p333 Erythraea 4a/u "LaburnumlCarum"/w 10061 35-37m/39u "sich|blühten" $7534 \mathrm{~m} / 35 \mathrm{~m} /$ 31-34w Hildebrand on late pollen 39-44m/ 35-37w self-fert orch $49-53 \mathrm{~m} / \mathrm{w}$ self-sterile $53-54 m$, wb Proc 76 35-36w 5 spec 81 21$22 m 8324-29 m, 33 u \star$, $34 u \uparrow$, 43u*, $43 u$ "Blüthen Imascula"/w $249 u \wedge / w$ 3, $4844 u$ " 32 ", $42-57 \mathrm{~m} / \mathrm{w}$ shows time right $8517-20 \mathrm{~m}$, $21-23 w 1-6$ Bombus 2 other \& $8727-31 m$, $39-41 m 8813-21 m 901-5 m$, 20-22ms 92 37-40m (Sprengel) 97 wt Ensuring crossfertilisation $20 \mathrm{~m} / \mathrm{u}$ "proterandrische Dichogamie" $9934-40 m \quad 113 \quad 31-33 m \quad 115$ 43-47m/45-46u "Diese \mid ihrer" 122 8-12m, 23-26m, $24 w$, $29-32 m, 41 u \wedge$, 42-43m, 42u "Ritterspornart" 127 15-27m (Fritz Müller), 30-31u "und|Blüthenstaub" 131 39-43m 133 $1-4 m, \quad 4-7 m \quad 143 \quad 10-13 m, 23-26 m, 28 u$ "Prosopisarten", 49-50m/49w no \& $1453 u$ "Sprengel", 3-4u "Hildebrand", 20-27m, $23 u$ н, $26 u$ "dieselbewirken", $32 u$ "kleine", 32u*, 32-34m (Delpino), $34 u$ "Selbstbestäubung|tricolor" 146 21-30m 147 13-23m, 45-47m 149 37-39m 151 10$11 \mathrm{~m} / \mathrm{u}$ "werdenlaufgelockt" 153 42-48m/ $46 u$ "von Dipteren und Hymenopteren" 154 $28-30 m \quad 165 \quad 34-37 m \quad 167 \quad 35 u$ "fünf Honigtröpfchen", $45 u$ "gleichzeitig", $46 u$ "doch 1 statt" 168 18-20m, 23-26m, 27m/u "durch। 70", 27-28m, 29-32m 169 19-21m, 23-25m 173 27-47m, 35-36m, 38-39m (Kölreuter, Gaertner) 174 9-10m, 27-31m, 27-28u "zu|hindurch", 35-37u \leftrightarrow / m, wb Several other non-dimorph species $1758 m / u$ "Insektenbesuch beschränkten", $34 u$ " 41 ", fig. $56 . m / w$ How like dimorph (must be origin of 176 3-4u "proterandrischer Dichogamie" $1855-6 u \leftrightarrow 188$ 20-22m (Axell) 193 6-7x/6u "langer", fig.m, 10-21w \& different form \& size. $12 \mathrm{~m}, 13-15 \mathrm{~m}, 13-26 w$ Spike when cultivated plants as we shall see variation $19 m, 22-23 m 1951-2 m 2243-6 m, 46-47 m 232$ $45 \mathrm{~m} / \mathrm{u}$ "monadelphisch" 235 15-17m $24024 u$ "honiglos", 24-26m, 32-33m/33u "Honigbiene" 241 wt excellent observations compare mine $9 u$ "welcheloben", $15-17 \mathrm{~m} / 16-17 u$ "aller| zwängen", $30 u$ "dielRücken", 31u "der plattenförmige", 35-41m/? 242 22-27w । cannot but think adaptation $33-35 \mathrm{~m} / 37-$ $47 \mathrm{~m} / 37 u * / 30-45 w$ Saft-maal \& no Honey yet he thinks Bees $42-46 m, w b *$ a juicy swelling near centre of Standard $2438 u$ "luteus" 249 $19 u$ "HoniglInsekt", 15-26w Beautiful
adaptation $28 w$ must be strong $30-32 w$ Difficult flowers for endemic insect $36-39 \mathrm{~m} / \mathrm{w}$ Thinks notior insects wd be stronger so fertilise better $48 \mathrm{~m} / \mathrm{u}$ "Viertelstunde", $w b$ very few Bees visit them $2503-9 m, 38-41 m$ (W. Ogle) 253 42-46m $2582-7 m / 4 u$ "coccinus", 8$37 w$ distinct species conclude must be crossed - this the one Phaseolus which flowers at the same time distinct species 1723 m , 23u* "vulgaris"/wes wrong 46-49m 264 3-6m, $7-17 m / 14-16 m 2659 u$ "einen Theil", $28-32 m \quad 267 \quad 29-34 m / 31 u$ "ausgeprägtel Blüthen" 277 9-10m/10u "Blumenkrone", 12u "nigrum", 30u "Blüthen| Honigtröpfchen", 32-33u* "orangel und", $34 u \leftrightarrow, \quad 36 u$ "uberwiegend wahrscheinlich", 37us "Insektenbesuchel möglich", 46-49m, 47u "Saftmaal" 278 12-14w various insects 35 © "Thapsus" $27940-41 \mathrm{~m}$, $42-46 \mathrm{~m} / \mathrm{m}$ 282 29-33m/30u "Wespen" 284 1-2m, fig.100.w It is a dichogam) \&o (Ogle \& Spengel) 23$30 \mathrm{~m} / 17-30 \mathrm{w}$ Think self fertilisation of seed 32-34m/33u "Bot. Z. 1865", zb 285 6-9m/w 287 10-12m, 39-42m 289 wt The more conspicuous a flower is the more likely to be fertilised by foreign pollen \& to be sterile if not visited $20-37 \mathrm{~m} / 28 w$ (a) $29241-46 m 295$ 8-11m, 42-43 $\rightarrow 296$ 22-29m 303 46-48m 306 22-28m, 31-32m/31u "Bezug|Ogle" 311 2126 m 318 fig.116.w Polygonum dioicius 18-25m/23-24u "weiblicher 1 seltener" 319 20-22m/ $21 u$ "Die kleinblumigen", 33-36m, $50 u \leftrightarrow$, wb greater fertility is real cause $32520-22 m, 28-$ $29 m \quad 326 \quad 10-21 m \quad 328 \quad 5-9 m / 7 u$ "proterandrischer", $8 u$ "kleinblumigerlStöcke", 6-7w forms $14 u \leftrightarrow 334$ 1-3m/2u "13"/w p113 341 $20 u$ "Bot. 167 "/w many cases given 34239 $41 m / 28-42 w$ fecundation wind \& insects $w b$ Begins by saying that D. describes 3 forms which noteO in passingo of owing to plants it \& $3432 u$ "sammelnde | Pollen" $/ 2-3 w$ on pollen from 4-6m, $43 u$ "ausgeprägten proterogynischen" $3451-3 m, 5-9 w 2$ Gradations between Arumarten \& Erbsenarten $346 \quad 37-44 \mathrm{~m} / 40 u$ "homomorphischelproterandrische", $38-39 w$ non-dimorphic $42 u$ "striata", 43u "Riceallongifolia" 347 21-25m/ $23 u$ "Kelcheldie" $/ 21 w 4$ Hon $39 w$ cases 40$44 m 348 \quad 5-11 m / 7-8 w \quad 2$ forms 349 18$19 u \leftrightarrow, 28-30 m / 28-29 u$ "Narbel Staubgefässe"/ $30 u$ "honiglosen" $3507 \mathrm{~m} / \mathrm{u}$ "Den 1 der ", fig. $130 . w$ between two \& three as long $14 u$ " $0,0111 \mathrm{~mm}$ ", $30-34 \mathrm{~m}, 32-35 \mathrm{~m} 3511-3 m$, 6$18 \mathrm{~m} / \mathrm{fig} . \mathrm{m} / 6-8 w$ chiefly Diptera $10 u$ " 103 ", fig.c

MÜLLER, Hermann Die Wechselbeziehungen zwischen Blumen und den ihre Kreuzung
vermittelnden Insekten Breslau; Trewendt; 1879 [Linnean Society of London]
1 wt From the Encyklopaedie der Naturwissenschaften Linnean Soc. presented by C. Darwin

MÜLLER, Johannes Elements of physiology trans. W. Baly, 2 vols \& supplement; London; Taylor \& Walton; 1838-42 [CUL] ad , af, beh, br, cc, ch, che, cr, cs, dic, em, fg, geo, h, he, hl, hy, ig, in, ir, mhp, mn, oo, pat, phy, rd, sl, sp, sx, t, ta, tm, ud, v, wd, y
vol. 1 NB1 Owen says he can perceive not much difference between reflex action \& effects of habits - (he conceives an habitual action takes place through special cord)
404 On division of Planariae
It seems to me most difficult to separate a really habitual (if such there be) \& hereditary habit- from real mental willed actions, which the consciousness does not perceive from want of attention, in same manner as it does not perceive all coinstantaneous impressions on the senses -
\& Associations may become hereditary, which wd account for the alliance of instincts with times, places - V. Hartley on association??
NB2
How then can Geologists say, that animals were first created!!! a capital argument showing that we must not generalize from absence of organic remains - see p. 46

9; 10风; 16; 19; 20风; 23; 26; 28; 30; 39; 41; 43; 47; 48; 54; 56; 72; 76; 89; 90; 144; 158; 165; 193; 194; 198; 203; 254; 225; 290; 298; 302; 320; 350; 352; 354; 364; 373; 394; 395; 399; 401; 402; 407; 431; 448; 460; 499; 500; 568; 570; 572; 624; 280; 686; 698; 713; 719; 720; 730; 735; 739 \& following pages for association; 748; 762; 778; 786; 791; 793; 794; 818; 820; 822; 824; 836; 846
Expression; 350-354; 730; 740; 748; 762; 778; 818
p407 Nails Reproduced
721 Theory of reflex actions
SB $\square \beta$
33 The more developed the parts, the more dependent on each other
54 All organs require occasional use to keep perfect
76 Young Dogs as long as blind generate less heat, born at earlier period
165 Branchial arches in higher animals p302, 320
290 on same part attracting same
substances, as in Tumours (Pangenesis)
395 Peculiar teeth in ornithorhynchus, Anteater \& Whale
399 On similarity of embryos of higher animals
403 On monstrosities in relation to division of genus - Double monsters Pang
499 In sucking objects to Cuviers idea of Dream for instinct NQ
686 On the insulation of the will to certain muscles in playing piano NQ
713 Reflex action compared by me with Habit.- 716 Reflex adaptive - 721 NQ
791 On atrophy of nerve of eye from lesions 468 Urea in blood \& separated by glands
$136 u$ "Sodium" 4 28-34m 5 6-14m/? 9 40$43 m, w b$ As if this whole function of life was first used in counteracting ordinary chemical laws- $10 \Perp 3-6 \mathrm{~m} /!/ 4 u$ "oflorganic", $12-17 \mathrm{~m} /$ 13-15w remarkable 16 wot How is this to my theory (\& parasitical insects) $3-8 m, 6-8 m$, $10-16 \mathrm{~m} / \mathrm{w}$ like diseases proof of relation of man to other animals $24-26 \mathrm{w}$ great change $26-27 m 174-13 m, 24 m 1836-42 m / w$ poor 19 $w t / 1-41 w$ NB in the growth \& ground of reformation of those simple animals in which any part out of will make new individuals the ordinary growth must be nearly same as true reproduction. \& the theory may probably be extended to all organisms $1-10 \mathrm{~m} / 5 \mathrm{w}$ poor $11 w{ }^{0}$ Yet a snail will reproduce its head!-21-26w There must be some wider difference between ovum \& bud.- wb There must be in the bisected parts organs sufficient to keep them alive \& then any part may be reproduced.- $\mathbf{2 0} 38 a$ "adaptation"/c "end" $|w|$ (as the effect of) $*$ circumstances 23 12-15m/w well seen in Zoophyte buds 34$38 \mathrm{~m}, 40-44 \mathrm{~m} 24$ wo now in a bud we must suppose there is one old particle of old organized structure.- a filament of old nerve $1-22 m / 7-8 w$ very good $38-42 \mathrm{~m} / 41 \mathrm{u}$ "anencephalous monsters" $25 \chi_{0} 3-5 m, 6-8 m / 7 u$ "byidream" $/ 9 w$ bad comparison?? wb The inherited structure of brain must cause instincts: this structure might as well be bred. as any other adapted structure.- 26 9$13 m 2738 m 2832-36 m$, wb Combustion, 1 shoud think, was strongest analogy to live.instead of heat being produced by the action. life - * $3027-32 \mathrm{~m} / 30 \mathrm{x} / \mathrm{u}$ "those life", wb X The vital principle produces the organs.- as the latter vary, so must the vital Principle. $315 u$ "indispensable" $15-6 \mathrm{w}$ deep water sea-weeds! $3326-28 \mathrm{~m}, 30-32 \mathrm{~m} /$?, 35$40 \mathrm{~m} / \mathrm{w}$ I suspect false 3410 u ? "transferred" $3923-25 \mathrm{~m} / 23 \mathrm{u}$ "organiclalso" $4120-22 \mathrm{~m}$, 32-
in (Note p.1661) German Translat. of Prichard
1661 Rudolphi Beitrage zur Anthropologie, treats of Species \& Hybrids -
p. 1671 List of good Books on Races of Man

List of good Books

- 1144 frowning

NB2 870; 928; 931; 934 Book on Expression; 936 to 950; 965; 1038; 1071; 1086; 1090; 1110 to 1117 to 1125; 1144 \& 1150 Expression; 1148; 1169; 1229 Appendix p8; 1233; 1236; 1245; 1262; 1311 Expression; 1315; 1318 Instinct; 1328 do; 1335; 1339; 1344; 1347 to 1364; 1384; 1399; 1400; 1405; 1407; 1421 to end
Best abstract against metamorphosis which I have seen

- 1335; 1339; 1347

Expression 933,34; 1311 See Passions, Index; 1328; 1351 animals \& man's mind compared; 1399; 1144 frowning short sighted people close eyelid \& frown
SB $\square \beta$
928 Consensual movements - at birth in eyes
935 instinctive walking (Heredetary easy flow of nervous force to certain muscles) Q 939, 943 Q
946 Definition of instinct. 947-949-950
on importance of Coordination. Q
Müller Phys 2d vol
965 Rudiments of toe in Horse \& Pig do not touch ground
1344 Instinct Q - 1347 innate ideas - 1361 1405 Argument that monsters not due to imagination of Mother. (good)
1407 on temperaments of the old writers shows rubbish.-
1425 A Polype is a multiple of all that is necessary for development of individual (Pangenesis)
1437 A good sentence in relation to reproduction in connexion with superfluity for own Life ${ }_{c}$ in relation to Doubleday
1453 Tape-worms either bend \& fertilize themselves or two unite - shows how important crossing must be as pollen of later dichogamous flower wasted \& so with Lymnaei
1454 Tendra is it Bryozoon? sexes distinct 1458 Rudolphi has enlarged on sexual difference in his Beitrage Pang
1478 Imperfect Spermatozoa of Hybrids
1569 Membrane of egg agrees with membrane of uterus (Mem Fish coming to have Placenta
1592 On how far true that all embryos
resemble each other
1596 on embryo Torpedo increasing in weight in womb (a sort of Placenta * 1597 (striking case of Passage)
1599 great difference in 2 species of Mustelus in placentation
1610 Relation of Vertebrae in Fish to embryos of higher animals
1622 Sharks have gills during early part alone of embryonic life
1661 Definition of Species
1662 On the two causes of Variation: innate \& external
1663 characters fixed by long intermarrying〈over〉 Passions

870 26-43m 928 wt N.B The summing up in this chapter good $3-15 \mathrm{~m}, 16-19 \mathrm{~m}, 41-42 \mathrm{~m} /$ $42 u$ "be|habit" 929 4?/u "of birth"/w instinct 931 31-38m 932 8-17m/12-13u "any action" 933 wt what makes a passion? 6-15m, 25$29 m 934$ wt $0,2-8 m, 2-3 m, 4-5 m, 5-8^{\prime \prime} \ldots$ ", 41-42m (Huschke) $93524-39 m$, wb this bears on instinctive walking The nervous fluid flows into habitual channel $93623-26 \mathrm{~m}, 33-37 \mathrm{~m}$ $9373-9 m / 6-7 u$ "There 1 mind" $/ 8-9 u \leftrightarrow, 34-36 m$ 938 14-16m, 15-19m/15-16u "the production", $16-20 m, 17-19 m, 23-24 m, 29-31 m$ 939 25-32m/28-29"..." 946 15-22m/"...", 36-38m 947 17-18m, 23-24m/u "the form" $/ 23$ "..., 24-25u "unison laction" $/ 25-28 w$ yet upon some education 948 4-6m, 23-27m, 25-27m 949 $20-22 u \leftrightarrow, 20-22 m, 23 w$ (a) $31-32 m, 35 u$ "decapitated", $35 u$ "were spasmodic", wb These are hereditary in Horses paces.- 950 18$21 \mathrm{~m} / 18 u$ "the 1 movements" $96543-44 m 1046$ 6-7m 1071 9-11m 1086 3-35m 1088 wt Q to p. 11621089 34-36m/36u "convex |crustacea" $10902-4 m / 3 u$ "three modes" $23-28 m, 25-27 m$, 29-31m 1091 19-21m 1092 1-2u "mosaic instrument", $2 u$ "concentrating |organ" 1099 1$3 m 11106-7 m, 28-30 m, 38-42 m 11117 u$ "pupillopening", $10 \mathrm{~m}, 21-22 \mathrm{~m}, 23-25 \mathrm{~m}, 32-$ $33 m, 34 m, 36 m, 38-40 \mathrm{~m} / 38 u$ "perception" 1112 $4 m 11134-5 m, 9 m / u$ "the cornea", $9 u$ "in general", 15m, 21z, 23m, 27-28m, 33m 1114 68 m (Milne-Edwards), $8 u$ "Callianassa", 9un, $10-11 u \leftrightarrow, 13-14 u$ "the Icones", $17 u \wedge, 23 \mathrm{~m}$, $24 \mathrm{~m}, 28 \mathrm{~m}, 33 \mathrm{u} \mathrm{A}, 36 \mathrm{~m}, 39-41 \mathrm{~m} / 40 \mathrm{u}$ "namely humour" 1115 1-2m, 7-9m/8u "manl generally", 19-20m, 22-24m, 25m, 28-29u "larvae 1 eyes", $36-37 \mathrm{~m} 11163-4 x$, $7 x / u$ "the I oblong", $9 x, 37-39 \mathrm{~m} / 38 u$ "more lbody" 1117 11-12Q 12-14m, 24-26m, 37-38m, 42-44m/44u "rudimentary state" 1118 13-15m, 28-30m/w Have they lens for images $111929 \mathrm{~m}, 36 \mathrm{~m} /$ $u^{\prime \prime}$ characteristic of" 1120 5-6m 1123 24Q 26$27 m, \quad 28-30 m \quad 1124 \quad 11-13 m \quad 1126 \quad 6 \mathrm{~m} / \mathrm{u}$

MÜLLER, J., PHYSIOLOGY
$41 m, 33 m, w b$ Plants going to sleep without the stimulus of darkness strongly analogous to a voluntary action from a diffused nervous system. $438-10 m 4625-33 m, 34-42 m 47 w t$ Look at differences of variation propagated 2-5m/??, 9-27m $4834-39 m 51$ 20-23m $54 w t$ in savages no cause apparent. [an ourang more ear? $5-15 m 564-22 m, 11-12 w$ curious $6525-27 Q 31 \mathrm{~m} / \boldsymbol{u}$ "torpedo", 38-39u↔, 40u "of 1 distributed", $41 u$ "gymnotus and", $42 m$ $666 u$ "hundredlnerves", 9-10u "branches 1 superficially", $11 u$ "without", $18 u$ "nervus vagus", 20 u "intercostal nerves" 72 13-43m 73 wt Vitality is to ternary compounds, what electricity is to binary $-3-9 m /!7631-37 m 89$ $26-27 m 901-3 m / ?, 23-28 m / 25-26 u$ "torporl time", $34 z 9230-35 m 107$ 20-22m 141 21-25m $14437-43 m 1458-13 m 158$ wt it shows, I think, that * same external form may be arrived at from two very different courses of generation $1-6 w$ it is an extreme case of analogy $16533-38 m$, wb Hence prototype aquatic 192 34-38m 193 12-16m 198 14-30m, $w b$ therefore habit of general movement of body would act on the heart.- $20318-21 m$ $22520-25 m, 33-37 m / 35 u$ "such 1 gallopavo" 290 $26-30 \mathrm{~m} / 1-39 w$ But it does not follow that any cancerous particles are in the blood to be attracted. 28-37w Transmission of varieties is answer enough. $38-44 \mathrm{~m} / \mathrm{w}$ Rose-gall \&c \&c $w b$ it is less wondrous that each new structure should reproduce itself if cancer does $29517 u$ "tembrio" $/ w$ tenebrio? 298 3$6 \mathrm{~m} / \mathrm{w}$ impregnated? $30223-30 \mathrm{~m}$ (Rathke), 42$48 m 30322 m 320$ 1-21w Hence greater complexity of structure in early than in later stages. 13-23m (Geoffroy) 350 12-15m, 20$25 \mathrm{~m} / \mathrm{w}$ what has pouting to do with respiration $3519-25 m, 20-23 w$ crying imagination disgust $27-38 m 352$ 1-4m, 11$33 m / 21-25 w$ urine from fear! 353 26-27u "oblongata 1 nasal" $/ 25-30 \mathrm{~m} / \mathrm{w}$ established by habit $32-35 m / w$ analogous to tickling $37-39 w$ not alae of nostril? $35435-44 w / w b$ in playing a tune are the fingers connected with brain? or cerebellum $w b$ why more difficult than any instinctive movement. $36422-23 u$ "Nutrition 1 reproduction", $23-24 m, 26-35 m 365$ 29-30m, 30-34m 373 34-36m, 42-43m 374 1-15m 395 31-38m 399 1-10m/8u "but|while", 11-24m, $28-34 m 40040-42 m 401$ 1-13m, 27-38m 402 1-30m 403 6-11m, 14-43m $4044-11 m$ (Dugès) 407 31-33m $41028-30 \mathrm{~m} / 28 u$ "it Itransparent", 32-33u "affinitylsurface" 412 37-39m 416 3$5 m 431$ 25-30m/! 447 32-41m 448 30-37m 460 $10-17 \mathrm{~m}, 34-39 \mathrm{~m} / 39 u$ "and lornithorhynchus" $4684-7 m 469$ 13-33m 473 15-18m 486 27w \neq $4877-12 m /$? $4893 u / w \notin 49930-42 m$ (Cuvier)

500 1-2m 513 32-33m 514 wtcc, 4-6m/5u "1.14 to", $27 w 48451534-35 m 568$ 8-12m $57036-41 m 57234-35 m 6241-5 m / w$ * would a blind man have sensation of light $8-10 \mathrm{w}$ nerve aborted $680 \quad 23-27 m \quad 686 \quad 22-24 m$ 698 1-6m, 23-33m, 38-40m 699 25-27u "radiation lcord", 27-33m, 34-37m 713 30$36 \mathrm{~m} / \mathrm{w}$ Infant winking see how old Willy was $33-36 m$, $w b$ Pretend to poke a man in the stomach, he will ward off. quite involuntary. Mr Wickham. Surely this must be custom 714 32-41m 715 wt Bell wrong $1-3 m, 4-10 \mathrm{~m} /$ $6-11 w 2$ sets of nerves for same end $13-15 m$ $7164-9 m / 5-18 w$ but why does it not excite instead of this misadapted movement 717 wt the eye would not work $5 x, 18-24 m / 19 x, w b x$ it has been said that respiration, also, subject to the will - Habitual movements show that any may become reflective 718 14-23m 719 37-42m/38-40u "therelaction", wb the connection here is hypothetical why not custom? $7201-2 m, 12-24 m, 14 m / u$ "somel communication" $114-16 w$ surely custom $w b$ I think Dr. Holland has some remarks on the connection of instinctive reflex \& habitual.721 wt XX May not a movement be said to be instinctive, when it is become reflex, without connection with true sensation, at least accompanied by conscience $11-20 \mathrm{~m} /$ 14XX 724 26-34m 727 10u "warming agent"/w heat not light $73026-32 m / 23-29 w$. Hence there is some such conclusion $30-37 m$, wb This makes my notion about effects of passion \&c very hypothetical No $73535-41 \mathrm{~m}$ 739 19-34m 740 10-15m, 23-25m 747 39-43m 748 1-39m 762 28-30m, 39-44m/42u "tickling" $7635 u$ "reflection 1 brain" 778 38-41m, 39w Cockatoos $w b$ expression of species of genus same? 786 19-23m 791 30-37m 793 23-36m 794 9-30m 818 19-44m 819 1-14m, 29-37m 820 15-24m 822 34-42m/34-36w/wb | suspect all this is not so certain from the obscurity of sensitive plants. $82311-12 x / u$ "it I matter"/wt ? when habit becomes heredetary?? 9-17m/11-12xx, 17-18m/?!, $20 u$ "dreams"/20-21w memories \therefore ? dreams 24 $42 m, w b$ curious coincidence of thought with my notion of hinge of shell \&c \&c \&c $8245-$ $44 m 8259-41 m 83623-26 m, 23-31 m, 31-41 m$ $8373-14 m 84631-39 m / w$ in reference to tumblers $36-40 m$ Catalogue $16-7 m$ (M. Allen) 2 wbcc
vol. 2 NB1 None hardly worth buying see Coll of Surgeons
p. 1458 Reference to book on secondary male characters -
p. 1478 Wagner Physiologie on Hybrids - \&

MÜLLER, J., PHYSIOLOGY
"cornealbody" 1133 1-3m 1144 13-15m/w opposed to frowning theory 1145 24-26m $1148 \quad 38 u \leftrightarrow, \quad 39-40 \mathrm{~m} \quad 1149 \quad 25-26 \mathrm{~m} / \mathrm{u}$ "voluntaryliris" $1150 \quad 6-9 m \quad 1159$ 13-14m, $19 m, 32 m 11693-12 m, w b$ The case of chickens shows how inappropriate the expression of dream is to this instinct - it is a habit. $112931-33 \mathrm{~m} 12301-4 m, 30-32 m$ $123324-29 m$ 1236 15-16m 1245 22-27m 1252 34-43m 1262 19-23m 1311 10-11m/11u "the eyelids" $\mid 6-11 w$ I shd say Habit, no in infant $13158 \mathrm{~m} / \mathrm{u}$ "rudimentarylbone", $28-30 \mathrm{~m}, 28-$ $29 \mathrm{~m} / 29 u$ "human \mid rudimentary" $/ w$ | believe in Negro more developed 32-33w Bentham law 1318 17-20m 1328 19u "may|unperceived"/16$26 w$ Has remarked this with all senses, bears on habitual actions not being perceived 1335 18-22m/18u "germ|parent"| 19-20u "merely \mid plant"/?/21u "only | organised" 1339 23-26m $134426-30 m, 30-35 m, 42-43 m$ 1345 5-7m/5-6u "The I consciousness" 1347 21$27 m 13481-5 m, 8-9 ? ? ? / 8-12 w$ savage has power $11-13 m, 32-33 m / 33 u$ "distinct power" 1351 21-33m/21u "humanlable", 30-31u "and \mid speech" $/ 28-33 w$ V. Ld Brougham \& Althorp 42-44m/44u "are | notion" $13525-9 \mathrm{~m} /$ $w t$ if there is 'abstraction' on smallest scale, it may graduate into the highest $-7-9 m / 8 u$ "image I constant", 30-40w this does not apply to animals doing things for first time 1353 2$6 m, 18-19 u$ "but \mid reaction" $136125 x, w b \times \ln$ the case of the Dray horse, there is, he wd say, no intermediate step, by generalising or abstracting that function retards movement \&c \&c - but simple association - 1362 22m/u "special memory" $1364 \quad 28-30 \mathrm{~m} / 30 \mathrm{u}$ "but 1 relation", $31-33 \mathrm{~m}, 40-43 \mathrm{~m} / 40-41 u \leftrightarrow 139920 u$ "ennobling|form", $23 u \leftrightarrow 140026-36 \mathrm{~m} 1405$ 15-19m, 27-30m 1407 13-16m, 32-35m, 42$44 \mathrm{~m} / 42 u$ "temperaments" $142119 u \pm / 17-20 \mathrm{w}$ I remember Owen doubted this. 1424 19-26m $14255-6 u \leftrightarrow / 3-9 m / w$ good expression 1426 18-21m, 12u*, 20u "a force", 25-26u "formative power", $32 \mathrm{~m} / \mathrm{u}$ "formativellatent", $36-37 \mathrm{~m} / 37 \mathrm{u}$ "then 1 manifested", $40-41 \mathrm{~m} / 40 \mathrm{u}$ "formative I cytoblastema" $142734-37 \mathrm{~m} 14281-$ $5 \mathrm{~m}, 26-27 u$ "But 1 may", $27-31 u \pm / 29 w$ (a) $w b$ (a) differs in duration of life $=$ nonmetamorphosis or less variation. $=1435$ 10$15 m, w b$ I have to treat simply of variation by gemmiparous \& sexual generation 1437 11$15 m$, $21 u$ "force", $23-26 \mathrm{~m} / 23 \mathrm{u}$ "differs fissiparous", $29-30 \mathrm{~m}, 36-37 \mathrm{~m} 14387-13 \mathrm{~m}, 33-$ 35 m 1439 13-16m/15u "gemmation Idivision" 1440 30-34m 1444 36-38m 1445 1-9m, 7-9m, $10-17 \mathrm{~m}, 10-12 \mathrm{~m}, 18-19 \mathrm{~m}, 30-32$?, $33-34 \mathrm{~m}$, $37-43 \mathrm{~m} \quad 1447 \quad 7-9 m \quad 1448 \quad 19-20 \mathrm{~m}$, 19-21m 1449 1-3m, 33-40m 1451 21-29m 1452 22-

32m, 23-24u "notion linadmissible", 30-31u "somelalone" 1453 5-7m/u "eachlindependently", 21-22m/21-24w like dichogamous flowers $30-31 \mathrm{~m} / 31 \mathrm{u}$ "Once \mid tapeworm", 38$39 m$ 1454 4-6m, 12-13m, $25 u$ "includes 1 sexes", 26-29m 1455 11-14m, 18-35m 1456 28-29m, 40-42m (R. Wagner) 1457 27-32m, 37-39m 1458 12-14m/12un, 41-43m (Rudolphi), $44 w$ Poor Book 1459 4-6m, 31u "but |internally" $146131-33 \mathrm{~m} / 33 u$ "but | atrophied" 1462 42-43m 1463 1-2m 1464 9$10 \mathrm{~m} / 9 u$ "in lembryo" 1478 wt z) not more peculiar * to hybrids than to Mongres $16 \mathrm{~m} /$ $w \mathrm{z}$) ? 21-25m, 27-29m, 30-32m, 34-36m (R. Wagner), 34-36w analogue to Digitalis $43 \mathrm{~m} /$ $w b$ Coll. of Surgeons 1479 1-10m/4-7w are these dioecious? 35-36m (Meyen) 1480 22$24 m 1481$ 30-34m (Geoffroy, Cuvier) 1482 37$40 \mathrm{~m} 150225-26 m, w b$ the conditions which allow free propagation of leaf buds will yet prevent flower buds $15045-14 m, 18-20 \mathrm{~m} / 19 \mathrm{u}$ "downlstock" 1506 15-18m 1516 29-33m (Rathke, Reichert) 1520 16-19m 1531 16-17m/ 16-17u "fishes Itype", 38-39m 1553 18-19m/u "the larches" 1555 zb 1566 20-22m (Prévost and Dumas) 1569 2-4m, 17-19m 1570 34-35m 1586 42-43m/43u "3|slits" 1589 16-18m, 17$18 \mathrm{~m} 15922-6 \mathrm{~m}, 10-12 / 11 u \leftrightarrow, 13-15 m$, 19$21 m, 22-24 m / 23 u$ "unaptly|branchial", $25 m$, $28-31 \mathrm{~m}, 34-37 \mathrm{~m}, 38-41 \mathrm{~m} 159320 \mathrm{~m} / \mathrm{u}$ "are reduced" 1596 7-11m, 34-38m 1597 2-3u "humanlsharks", 3-4m, 15m/u "Mammalial Man"/w always contrasts them $15996-10 \mathrm{~m} /$ 7-8u "genus Ifoetus" $1610 \quad 25-27 m, 37-38 m$ 1613 42-43m, 44u "whichlabortive" 1614 5$11 m 161511-14 m, 32-39 m 1616 \mathrm{wb}$ All this section had perhaps be better reread 1619 $34-36 m \quad 1620 \quad 1-3 m \quad 1621 \quad 1-3 m, \quad 3-5 m / 5 u$ "earlylembryo" $1622 \quad 33-35 m \quad 1624 \quad 11-17 m$ (von Baer) 1629 32-36m 1630 20-23m, wb ones wonder is lessened, * at selection making an eye, when one sees how eyes are really formed $163239-41 m$ 1633 20-22m (Huschke), 34-41m 1639 23m,32-38m $16409-$ $11 m, 13-14 m 165028-40 \mathrm{~m} 166114-18 \mathrm{~m} / 17 u$ "certain invariable", 19-25m /!, 27-29m/29u "another genus", $30 u$ "natural repugnance", 36-38m, 39-42m (Rudolphi, Prichard) 1662 6$9 \mathrm{~m} / 8 \mathrm{u}$ "varieties I faculties", $\quad 12-14 m, \quad 16 ? / \mathrm{u}$ "races"/ 17 w individuals $20 u \leftrightarrow, 26-28 \mathrm{~m} / 26 u$ "is 1 species", 31-34m, 39-42m 1663 2-8m, 19$29 \mathrm{~m}, ~ 27-30 \mathrm{~m}, 31-35 \mathrm{~m}, 37-40 \mathrm{~m}$, 44u "alsol education" 1664 1-3m, 9-12m, 14-21m 1665 1$20 \mathrm{~m}, \quad 37-42 \mathrm{~m} \quad 1666 \quad 12-13 u \quad$ "caused propagation", $35-44 m$ (Vrolik) 1667 4-7m, $9 u$ "ossalone", 18-20m, 29-30m, 33-35m 1669 15-18m, 42-44m $167132 m$ (Vrolik), 34m (R. Wagner), $38 \mathrm{~m} / \mathrm{u}$ " R. Wagner 11840 " 1675.a
$66 m$ 1675.b $2 m$ 1688.a $56 m$, $57 m$ 1701.a $22-$ 36 m appendix, 1 wt $\mathrm{O} / 8$ 19-27m (Retzius)/ $21 w$ gradation $28-31 m 107-9 m$

Supplement Recent advances in the physiology of motion ... [ed. Baly and Kirkes]; London; Taylor \& Walton; 1848
rd, sX
NB 111 Rud. uterus in Males Q $23 \Uparrow 16 x / u$ "crystalline" 26 12-15m $60 \Uparrow 20-$ $17 \mathrm{~m} / \mathrm{w}$ Now there has. Newport $111 \Uparrow 12-6 \mathrm{~m} /$ Q

MÜLLER, Johannes Über die Gattungen der Seeigellarven Berlin; K. Akademie der Wissenschaft [Down, I]

MUIR, John (?) Supernatural religion 2nd edn, 2 vols.; London; Longman, Green \& Co;; 1874 [Down, I] \wp

MURCHISON, Roderick Impey The Silurian system 2 parts in 3 vols.; London; John Murray; 1839 [CUL]
$\mathrm{ci}, \mathrm{fo}, \mathrm{gd}$, geo, gr, is, mi, se, sp, sx, t, ti, tm, ve
vol. 1 NB X means Species Theory
18; $104 \times$ Curculios \& Neuropterous insects in L. Coal.; 109; 111
116 In reading an account of the Carboniferous formations - the variety of beds on which the whole rests \& the thinning out of certain portions - the footsteps in New Red \&c \&c show how many partial elevations like East Indian Archipelago -
140; 151; 160; Read Chapt 13 again with sections; 183; 186; 189; 200; 205 list of good sections in Ludlow Rocks; 211; 230; 233; 235; 243; 244; 245
$18 \quad 18-24 m / w$ compare with coasts of Patagonia in the map appear like isid in the map.- 104 21-25m (Buckland), 29-31m 109 33-38m 111 11-15m 116 24-30m $140 \quad 1-31 m$ 151 33-37m $160 \quad 23-28 m \quad 183 \quad 14-17 m / w$ Do they reappear in the Carboniferous 186 6$14 m 1894-8 m 20017-21 m 20514-23 m 211$ $3-9 m 23033-38 w / w b$ p109. look back to Malvern ? several other instances occur of reelevation of lines/volcanic eruptions. \& on simple lines of violence $23132-35 m 23314$ $20 \mathrm{~m} / \mathrm{w}$ Curious analogy with Falkland Isd the sandstone there resembling Caradoc sandstone 235 24-32m 243 12-15m 244 17$33 m 245$ 19-24m 246 20-23m, 26-39m 247 1$7 m, 22-29 m$
vol. 2 NB O Species Theory
256; 260; 262; 271; 273; 277; 278; 283; 291
Bedded trap. worth visiting; 299; 360; 374; 400 how curious the connection of sandstone caradoc at Falklands with quartz; 407; 421; 426; 482; 491; 515; 517; 522; 534; 553 \& 554 \& 557 On range of Mammalia; 560 do; 564; 569; 572
$2566-21 m / 11-13 w$ rather faulty $26021-25 m$ 262 1-11m, 7-13m 271 10w Perr fig.41.m 273 $1-6 \mathrm{~m} / \mathrm{w}$ I much suspect metamorphosed dikes 277 25-30m/w Cordillera same case 278 29-31m/w analogous to the copper mines of Chile 283 4-10m 291 30-42m 299 1$8 m 360$ 18-25m, 26-33m/28w V. p. 362362 $32-39 m \quad 374 \quad 11-15 m / 15 w \quad$ V. p. 377 377 22$24 m, 24-28 m / 24 w$ see p. 378378 16-21m, 22$28 m 4005-9 m 401$ 1-5m 407 25-38m 421 12$18 m 426$ 1-6m 482 10-15m 491 25-29m 515 $5-9 \mathrm{~m} / \mathrm{w}$ this shows the withdrawing power of the sea $51712-15 m, 23 w$ i.e. islands 5226 $32 m 528$ 8-10m, 24c/w€ 533 3-5m 534 37$39 m 536$ 8-11m, 9-14m 553 20-22m 554 9$12 m, 15-17 m 555$ 15-16m (Strickland) 557 wb Mammalia on both sides of channel dividing England good instance to remove difficulties - they might have been before united. 560 21-24m 564 15-22m 569 9-26m 570 20-22m, 32-38m 571 3-5m 572 6-12m
vol. 3 NB 583; 584; 585; 589; 665; 666 eyes in Cymothoadae, sexes of $\mathrm{Q} ; 671 ; 701$ $58310-43 m 5845-35 m / 25-29 w$ if seas less divided this would follow $5858-17 \mathrm{~m} / 10 u$ "true I transition", 28-31m, 33-36m 589 4-6m/ !! 595 31-39m/33-35w only analogy? 665 1$15 m, 29-32 m 66632-37 m$, 33-44m 667 43$44 m 668$ wb Nesocila 669 20-29m, 30-33m/ $33 u \leftrightarrow / w$ from me?! $67114-16 \mathrm{~m} / 15 w$ Falkland Isld $70133-42 m$
\wp
MURCHISON, Roderick Impey The Silurian system (from Edinburgh review April 1841) [Down, I]

MURPHY, Joseph John Habit and intelligence 2 vols.; London; Macmillan; 1869 [CUL, I from publisher in vol. 1]
af, beh, ds, he, hl, mhp, ig, no, oo, pat, phy, sl, t, tm, v, y
vol. 1 NB p.215; 233; 237; 238; 241; 253; Carp 258•Man*; 263; 265
294- contractile Sarcode with musclesHypothetically there must be diffused nervous muscle in lower animals \& even Plants - 304 Surely * in fish we have

MURPHY, HABIT, 1ST EDN
gradation to bone from cartilage?- Other tissues?-
301; 303; 307 * ; 322
\& 339 Causes of difference in number of offspring - Ratios of increase \& Struggle for Existence. See H. Spencer, Principles of Biology
SB \sim I.
233 Medusae will root \& develop polypites
237 of Ungulates alone bear horns
238 Tissues of all Vertebrates homologous
241 Serial Homology ought to precede Homologies between distinct species.-
247 on Difference in no of cervical vertebrae in different Mammals.-
253 differentiation of tissues \& organs mark of Highness
265 The young flowers which swim vertically retain primordial condition \& so may be said to reverse-
294 on possibility of transitions in tissues (see M.S. notes at end of Book)
301 Homologies of Trachea - Mucus-sack
322 striped muscles common to Vertebrates \& Invertebrates, cd have been derived from common ancestor for wd have been too low.-

215 17-20m, 36-37m (Huxley) 233 34-38m (T. Hincks) 237 22-24m $23818-23 m, 24-27 m / w-$ 239 18-21m 241 11-20m 247 5-19m 253 1-5m 258 1-5m 263 11-16m, 18-23m, 28-37m (Huxley) 265 29-35m/ $\rightarrow 294$ 1-11m 301 19$25 m 303$ 16-25m 304 35-38m (Spencer) 305 $13-17 \mathrm{~m} 3074-18 w$ This seems all rubbish $35-38 m \quad 320 \quad 1-15 w$ Look at the greyhound See dom. animals $32211-17 m, 27-29 m 323$ $28-30$! $33921-29 m / 17-27 w$ Death falling on young more probable selection
vol. 2 NB p.2; 186 read; 187 * 190 * Copied
SB \propto Vol. 2
p.2. forms of Blindness in which iris opens \& closes \& yet no transmission of light.-
v $3 m$ viii $2 m$ xiv $8 m, 21 m$ xvi $25 m 235-37 m$ $59 \quad 24-31 m \quad 186 \quad 37-39 m \quad 187 \quad 33-36 m / 34 u$ "selfish|contentious" $1881-6 m, 12-17 m / 14 u$ "are fidelity", 26-30m 190 31-36m

MURPHY, Joseph John Habit and intelligence 2nd edn; London; Macmillan \& Co.; 1879 [Down]
no, sp, v
NB 241 Delboeuf
Law of Equality of number of vars \& species 241 21-28"..."

MURRAY, Andrew The geographical distribution of mammals London; Day \& Son; 1866 [Down]

MURRAY, Andrew The geographical distribution of mammals London; Day \& Son; 1866 [CUL]
ad, af, ch, gd, geo, h, sp
NB All on Geographical Distrib.

- no explanation of adaptationp. 8 Change of dogs in W. Africa 17 error
19; 20 \& 30 \& 32 Glacial
34; 36; 38 to 56 Man; 57 do; unimportant
126; 138; 140; 144; 151; 155 Reindeer of N . America; 197; 209 Glacial; 213; 216; 261; 312; 314

8 33-42m 17 28-30m 19 16-23m 20 15-23m/ $16-17 w$ I dispute $3013-17 m 313-8 m 3226-$ $32 m 3423-28 m 36 \quad 6-10 m 38$ 39-41m $3926-$ $28 m 40$ 9-12m 42a 32-38m (Malmgren) 42b 33-38m $438 w$ Spain $4534-41 m 56$ 17-21m 57b 36-42m (Pickering) 59a 22-35m 59b 38$43 m 126$ 2-15m 127b 35-43m (Falconer), $46 m$ 138 15-19m, 22-27m (Lund) 140 6-10w Dr Hayes○ says now a native of Greenland 144 $20-27 m 15132-36 m 155 \quad 5-8 m 197$ 31-35m (Cuvier and Owen) 209 22-36m 213 31-43m $2147-10 m / 1-9 w$ This theory does not account for affinity of American \& Indian genera. 12-23w Same species being accorded 2 distinct Indian lines will account for their similitude $39-41 \mathrm{~m} 2167-14 m 261$ 1$8 m 3121-7 m / 3-4$? $3145-14 m$

MURRAY, Lindley An English grammar 5th edn, 2 vols.; York; T. Wilson \& Sons; 1824 [CUL, pre-B, on B, S Robt FitzRoy 1831]
vol. 1, 218 4-6m 219 13-16m 220 1-6m, 26$32 m \bullet 22114-18 m *, 27-30 m, 31-33 m 2221-$ $3 m, 5-9 m, 10-11 m, 13-15 m 225$ 22-23m 226 14-24m 228 21-29m 229 1-10m 395 25-26m $39629-30 m 3973-5 m, 15 m, 19 m 3985-6 m$ vol. 28

NÄGELI, Carl von Botanische Mittheilungen 2. Band; München; F. Staub; 1866 [CUL]
ad, af, cc, ch, che, cs, ct, ds, em, ex, f, gd, geo, h, he, hl, hy, ig, in, mhp, mn, no, oo, or, pat, phy, sl, sp, spo, t, ta, tm, ts, v, wd
SB $\square \beta$
106 Von Baer - believes Bee on its own type higher than Fish
210 He has 2 embryos in his possession that he cannot tell whether they are Mammals or Fish or young Birds - (good to quote)
211 The more different 2 animals, the further back we must go to * find similarity. (I believe date 1828 see last number. Must have preceded M Edwards
214 The embryo of higher animal resembles the embryo of lower
217 Dog \& Pig resemble each other - still longer Pig \& Cow
219 \& 220But embryo of Mammal more like mature fish, than embryo of Fish is like mature Mammal
221 Arrests of Development well established for Monotremes
228 The higher the histological \& morphological differentiation, so is perfection of type
229 Retrogression of types
231 Ruminants stomach more perfect than mans
267 Twisting of leaves in relation to great size: correlation??
103 wt All marked $11025-34 m / w / w b$ var. grows everywhere in all soils strongest Europe - But other vars also produced (it is a polymorphic genus) $1119 \mathrm{~m}, 16-17 \mathrm{~m}, 21-$ $24 \mathrm{~m} / \mathrm{w}$ also Differt vars in same plant 113 10-17m $114 w t$ other examples as before 115 $5-11 m, 14-15 m, 17-20 \mathrm{~m} / 17-25 \mathrm{w} \quad 2$ vars adapted to 2 stations rarely mixed in equal number * in both $31-33 m 1161-2 m, 4-11 m$, $16-22 \mathrm{~m} / \mathrm{w}$ cases of direct action $23-30 \mathrm{~m} 118$ $3-22 m / 5-12 w$ On Hardyness of Plants 13$32 w$ Various vars in same station, so not effect of evolution 24-32m 119 16-19m 120 wt growth of size \& chemical products direct effect of conditions- $1-7 \mathrm{~m} / \mathrm{w}$ Light on colouring matter 121 wt Alpine forms due only to want of food \& not form true races 1 $10 \mathrm{~m} 12215 \mathrm{~m} 1231-14 \mathrm{~m} / \mathrm{w}$ He argues from these facts that height no influence but these no proof - so others $w b$ He overlooks effect of length of exposure \& inheritance - 125 $16-26 m, 29-34 m / 29 w$ Summary $w b$ Maintains that Alpine height does not cause Large size of flowers. $1263-13 \mathrm{~m} / \mathrm{w}$ My objections of
time \& chance $=$ spreading considered. 127 $w t / 1-19 w$ Variation must depend on some chance relation between state of organism \& certain conditions 17-19u "Ueberhaupt | Ausnahme", $32-34 m \quad 128 \quad 1-3 m / w t / 1-20 \mathrm{w}$ These close species which inhabit distinct Districts $*$, shows how little we know about adaptation of near var - So some close species, live mingled together. Are we sure that the 2 Oaks are not specially adapted for special circumstances - 2 AnagallisO 15-16u "Primula |elatior", 23-24u↔, 29-30u "die| andere", 33-34u $\leftrightarrow 129$ wt When alone, each will grow on wrong formation; but not in company for then I suppose competition, this looks like adaptation. $1-3 u \leftrightarrow, 4-7$ m, 19$26 m / 7-17 w$ says all true local vars. wd behave thus. $130 w t / 1-11 w$ All foregoing reasons do not apply to vars. arising from inner causes; but something must set inner causes into action. 5-6u "durech 1 sind", 25$30 \mathrm{~m} / \mathrm{w}$ Opposed vars. arise under cultivation 131 wt one plant might absorb different elements from another $1 m, 1-2 u$ "äussern können", $18 \mathrm{~m} 1331-7 \mathrm{~m}$ • $134 \mathrm{wt} / 1-24 w * \mathrm{He}$ seems to admit there is some relation between variation \& extreme conditions \& $1-24 w \mathrm{He}$ remarks that greater size independently of good soil * never could become hereditary \& constant $w b$ Effect of grafting - \& cultivation \& wide range \& budvariation all show that extreme condition have close relation $1353-20 \mathrm{~m} / 1-20 \mathrm{w} / \mathrm{wt}$ He admits that difference of soil \&c may in course of generations affect chemical \& molecular constituents \& then lead to changes of form - this is the same thus -$23-33 w$ as individuals differ so will results differ in fluctuating variability 136 wt a chill is direct cause of various illnesses $-1-11 w$ but here denies all before apparently admitted $16-33 w$ Denies that a plant can in same bed with others absorb different nutriment * 138 $15-18 m, 30-34 m / 26-34 w / w b$ permanence in culture in garden no test of specific distinction 141 wt Yet if these sp . were cultivated like P. Ponticum it wd no doubt vary thus perhaps not so much.- $5 a / u$ "Alpenrose" $/ w$ Rhododendron ferrugineum 6$7 u \leftrightarrow, 8-10 \mathrm{~m} / \mathrm{w}$ (a) $8 u$ "trockenen", $8 u$ "oberitalienische", $9 u$ " $700 \mid 1300$ ", $20-27 w$ similar facts $143 w t / 1-10 w$ objects to Hooker on acclimatisation.- (He is a general objector.) $13 \mathrm{~m}, 20-31 \mathrm{~m} / \mathrm{w}$ He tried experiments but failed with uncertain results $1443-6 m, 11-12 w$ explains fact $149 w t$ difficulty of knowing direct action of conditions on account of Selection.- 1-6m

NÄGELI, BOT. MITTHEIL.
150 wt Asks Have plants which * have long lived under different conditions different constitutions, though externally alike? He doubts $151 \quad 1-2 w$ Conclusions on Direct action $5-6 w$ natural Distribution $7-9 u \leftrightarrow$, 11$12 u \leftrightarrow, 19-20 u$ "innerelbedingt" $/ w$ But what excites them; something must, as with illnesses.- 25-34w His Causes work through chemical condition of Plants \& cause direct \& indirect effects 152 29-34m, wb He assumes direct effects never become heredetary.- $155 w t / 1-28 w$ He allows that changed conditions give impulse to variation; the differences in the results must depend on differences in the individuals; but these differences must have had some cause. 17$34 m 15610 m 158 w t / 1-23 w$ | think here he attributes the mixed vars in same locality to selection, or adaptation wb Finally I do not see that he throws much light on * subject - Everything remains as odd as before some good facts on Distribution of Varieties.- $164 w t / 1-21 w$ On Alps when no detritus - chemical nature of racks has influence on distribution.- $18-31 \mathrm{~m} / \mathrm{w}$ representative species on different soils 170 $13 \mathrm{~m}, 16-32 \mathrm{w}$ Closely allied plants excluding each other - my view 172 6-26w Struggle for existence explains well, but not new.- 174 $34 m 175$ wt Both the Achillaeas will live on wrong soil - if only one form is present, so no struggle.- 7-13m, 16-18u士 176 11-26w These sp. exclude each other according to dampness.- $20-23 \mathrm{~m}, 28-30 \mathrm{~m}, 29-32 \mathrm{~m} 1779-$ $13 \mathrm{~m} / 11 \mathrm{w}$ do 179 wt Thinks many plants do not grow in certain places, because seeds have never been brought there. $3-7 \mathrm{~m}, 25 \mathrm{~m}$ 180 9-11m, 24-25u "Aufl Arten", 27u* 181 $11 u$ "Kerner" $111-13 w$ doubt his observations $29 u$ "Gültigkeit"/w authenticity 182 19-21u \leftrightarrow, $29 m 18719 w$ I have not read $29410-12 w$ some close plants distinct $15-18 \mathrm{~m} / 16 u$ "Mittelformen", $17 u$ "Verbindungsgliedern", w some thus $20-21 m, 25-27 w$ says very important?? $300 \quad 12-14 m 30514 m 31025-$ $34 m, w b$ argues well against those intermediate forms, which are constantly or frequently found, near the forms which they connect, being Hybrids 312 wt a complete graduated row of intermediate forms may be hybrids, but such cases are rare - The exactly intermediate wd be rarer than the steps on either side. $12 u$ "Verfechter" $/ w$ defender 313 25-29m/28-29u "zwischen officinalis" $25-31 w$ intermediate forms exist both Hybrids \& really intermediate \& constant \& fertile.- $3141-20 \mathrm{w}$ He evidently doubts (with reason) any * constant
intermediate form being Hybrids. 31812 m 319 wt (a) If species which are connected by intermediate forms are blended with single species the result monstrous. $-5-10 \mathrm{~m} / 7 \mathrm{w}^{\prime}$ (a) $13-18 w$ must be enumerated as intermediate forms- $3207-18 w$ these are good instances of a species constant in one place \& variable in another from crossing with intermediate forms. $21-23 m 32410 m, 17-$ $20 \mathrm{~m} / 16-26 \mathrm{w}$ Middle forms not Hybrid generally inhabit nearly same districts as the forms they connect- $29-33 \mathrm{~m} / \mathrm{w}$ but less in number $w b$ I presume he attributes the intermediate forms to variation $32612 u \wedge / w$ Hybrid 18w Hybrid $28 w$ Hybrid 327 2-3u "beiden 1 Uebergänge", 3-5w Hybrid? or middle form? $34 w$ Hybrid $3285 w$ Hybrid? 11w Hybrid 21-22w Hybrid 25w Hybrid $32 w$ Hybrid 329 18-20w gradations from crossing 29$30 u \star \leftrightarrow 3305 w$ Hybrid 23-24u "da| vor", $30 u$, $32 u$ "Das I Vorkommen" $32-34 m / w$ not Hybrid yet intermediate $331 \quad 2-26 w$ it seems improbable to decide whether a hybrid, which in places has become constant, or has arisen from variation of one of the 2 species which it connects.- $332 w t / 1-8 w$ another doubtful case $8-9 u$ "Sielacaule", 10-15m $3334 w$ Hybrid $3355 u \wedge, 7-8 u$ "Dieses IUrsprungs", $13 w$ Hybrid $17 u$ "Zwischenformen", 18u "wiederholt | Floristen"| w not Hybrid 21-24u "fast \mid der", 31-32u $\leftrightarrow 336$ 13-14w Hybrid $24 w$ Hybrid $32-34 w$ True intermediate form 337 17-18w Hybrid 23$26 m / w$ Hybrid 338 15-16w Hybrid $23 u$ "Siel Uebergangsreihen", 24-28m, 30w Not Hybrid $339^{*} 3-4 w$ not Hybrids $3425-10 m, 6-8 u$ "welche lauftreten", 28-33m/29-31u $\leftrightarrow 343$ 32$34 m / 34 u$ "entspringen 1 Ursachen" $3443 u$ "verzichten" $/ \mathrm{w}$ delay 4-6m/5-6u $34510 \mathrm{u} \uparrow /$ $10-14 w$ most variable \& graduating of all endemic genera. 31-32u "dielsind", 34u "nur ISpecies" $3464-6 \mathrm{~m} / \mathrm{w}$ between the 3 no intermediate forms $24-32 w$ looks at this species as in process of formation the intermediate forms not extinct $3475-8 w$ also Hybrids formed. 349 wt The Hauptformen are much commoner \& * then the intermediates $1-3 m, 4 u$ "Die \mid vielen", $5 u$ "die \mid finden", $7-8 u$ "IchI von", 10 u "Tausendfache übertroffen", 11$17 \mathrm{~m} / \mathrm{w}$ Intermediate do not extend beyond range of Haupt-formen $19 \mathrm{~m}, 20-28 \mathrm{~m} / \mathrm{w}$ range in height rather more than Haupt- $f 30-34 \mathrm{~m} / \mathrm{m}$ $350 \quad 14-17 \mathrm{~m} / \mathrm{w}$ no intermediate forms between exclusively Alpine \& exclusively plain species $3512 m, 12-13 m / 10-15 w$ What he has said before on Hybridism applies to * Hieracium $35518 \mathrm{~m}, 21-25 \mathrm{~m} / \mathrm{w}$ are Hybrids in some places 357 9-11m/u "H. |angesehen"

359 Im 361 10m 362 17u^/18u "Welchel Zwischenformen"/16-19m/w the only 2 forms previously characterized $3662-12 \mathrm{~m} / \mathrm{w}$ Evidence from treatment by authors how intermediate some of these forms are $367 w t$ The Haupt-forms must first be settled \& then the intermediate forms - (so it wd be if we possessed all linear descendants) 1-3m 393 $14-24 w$ I think because as much vars of one form as of other $22-24 \mathrm{~m} / 22 u \leftrightarrow 39412-16 \mathrm{~m} /$ $12-14 u \leftrightarrow, \quad 23-28 \mathrm{~m} / \mathrm{w}$ Constancy most important element. 39610 m 397 wt We must judge of constancy only from many individuals from many different stations.- $1 u$ "verschiedenartigsten" $39928 m 401$ 19m 402 $11-15 \mathrm{~m} / \mathrm{w}$ closely allied species exterminate each other $40430-33 \mathrm{~m} / w / w b$ but no great difference effect of good soil- $4065-15 \mathrm{~m} / 6-$ $7 w$ grades of species $16-27 m / w$ He does not believe Kerner 407 15-22m/w natural selections of genus going with power of Hybridity $410 w t / 1-13 w$ Does not believe the intermediate forms are commonly Hybrids $41117-24 \mathrm{~m} / \mathrm{wt} / 1-11 \mathrm{w}$ Between 2 forms either a few intermediates or a whole series of steps, \& in the latter case the species more allied $\mathrm{i} w$ N.B May not many of Nagelis constant intermediate forms be Hybrids. which * are constant like Gärtners * hybrid Dianthus? I suppose not.- $27 u$ "grenzlose Verwandschaft" $27-34 m$, wb in these the Haupt-form, (independently of the intermediate forms) is variable, whereas in former case, when growing solitary the Haupt-formen are constant 412 13-15m, 21$25 \mathrm{~m} / 22 \mathrm{w}$ examples 413 wt We have, also, variability in the first individual planting Constant as in Vine-tendrils - or occasional i.e. sports, or bud-variations $\hat{\imath}$ w We have protean or chaotic species nowhere $\%$ constant - species constant in places but connected by few or more intermediates, \& true species not thus connected.- it looks like a process of exterminating the intermediate links.- $28-31 m$, wb His grades of affinity graduate into each other. $-41410 x /$ wt This shows that conditions have certain effects $17 x / w t$ The chaotic forms in places have fixed characters $9-11 m / w$ Hybrids \& intermediates absent in certain localities 12 $16 \mathrm{~m} / \mathrm{w}$ examples $15-20 \mathrm{~m}, 22 \mathrm{~m}, 28-31 \mathrm{w}$ mingled vars. adjoining \& representative vars Distinctly-inhabiting vars 415 5-6u "hängt| dasein" $/ 3-6 w$ This refers to true species $12-$ $14 u$ "entwederlsind", 15-22w so much 2 plants mingled, generally so much more synodically distinct $19-21 w$ \& therefore can live together $21-23 \mathrm{~m} \star, 30 \mathrm{~m} / w b$ Close.
species of same genus tend to exclude each other.- $4164-7 w$ representative forms. 6-8u "oft|die", 20-21un/21-22un/19-23m/w more forms adapted to different stations $25-27 \mathrm{~m} /$ $w b$ These forms sometimes found mingled, sometimes as synodic or representative 418 wt/1-16w Constancy alone will not decide what forms to call species; for many finest varieties are constant \& Jordans species wd all have to be admitted. Comes to what I said amount of difference deserving a name. $20-22 u \leftrightarrow, 28-34 u \leftrightarrow 4191-2 m, 17-21 u$ "Sol Zeiträume" $/ 17-33 w$ a species depends on degree of relationships (or difference from) other forms. $42024 m 42111 m, 22-27 \mathrm{~m} / \mathrm{w}$ all the forms which are connected by intermediates cannot be united as a single species.- 33-34u "doch|sind", wb "generally sharply defined" must be admitted as part of definition of species!! 422 11-29w Rules cannot be applied to forms inhabiting distinct areas. $42333 u$ "Zwischenarten", $34 m$, wb Ought to be so designated, so new term 426 $31 m 4273-4 u \leftrightarrow / 6 u$ "bleiben I Hauptformen"/wt/ $1-6 w$ Thinks the variables \& intermediate forms extinguished by competition. 22-24m/ 22-23u "Gattung I Entwickelungsprocesses", 23$32 m / 25-29 w$ The glacier is a stream, though one does not see the streaming $33 w$ examples

NÄGELI, Carl von Die niederen Pilze in ihren Beziehungen München; R. Oldenbourg; 1877 [Down]

〈markings presumed to be by FD>
NÄGELI, Carl von and CRAMER, Carl Pflanzenphysiologische Untersuchungen 3. Heft; Zürich; F. Schulthess; 1855 [Botany School]

NASH, Wallis Oregon: there and back in 1877
London; Macmillan \& Co.; 1878 [Down, S]

NATHUSIUS, Hermann von Abbildungen von Schweineschaedeln zu den Vorstudien für Geschichte und Zucht der Hausthiere Berlin; Wiegandt \& Hempel; 1864 [CUL, S]

NATHUSIUS, Hermann von Vorstudien für Geschichte und Zucht der Hausthiere zunaechst am Schweineschaedel 1 vol. \& vol. of tables and plates; Berlin; Wiegandt \& Hempel; 1864 [CUL]
cc, ch, cs, ds, fg, fo, gd, he, ig, in, mn, no, pat, sl, sp, sy, t, tm, ud, v, wd, y

NB 103; 104; p133 use; Use Q

NATHUSIUS，VORSTUDIEN
SB $\square \beta$
Used
Nathusius Schweineschaedel
〈over〉 \langle not $C D$ except X and $\Leftrightarrow\rangle$
Nathusius p． 2
p． 104 X The culture，shape of skull does not depend upon race most different races have it，yet most seem crossed with the Indian．
p． $105 \times$ about skull－dogs \＆Nata cattle
106 but common swine have not the short culture－head
113 the Diploe different in wild \＆culture races．Extremest culture－skulls
131 ＊Great Yorkshire race－probably crossed with Indian，has all its characters． wonderful changes incisors do not touch．not monstrosities for all inherited $\langle u, C D\rangle$
133 x articular suffaces of condiles of occiput modified head not much used
134 case for brain not much changed
135 all these great changes only a climax of those seen in wild boar races
136 all house pigs belong to the above two races
$138 X \$ 1 / 32$ even $1 / 64$ of Indian blood is sufficient plainly to modify the skull
138 great differences in the ears \＆c \＆c in the 2 great tribes
139 all Indian Swine introduced into England have short ears
$140 X$ Q Berkshire swine of 1780 is quite different from that of 1810 \＆since that time 2 quite difft races have borne that name
141 All the new English breeds seem to have Indian blood
142 Sculptures in Herculaneum shew no doubt that Neapolitan breed then existed． this breed \＆Andalusian \＆Rutimeyer＇s grau bundtner race are all like Roman therefore like the Indians
144 Roman probably is a cross from the Indian
146 is not convinced that the turf－swine was wild，but will not dispute it－147．gives reasons why with swine difficult to tell -148 in India wild cross with tame
149 almost certain that turf \＆Indian closely allied
150 curly swine with curly wool in South East Europe from lower Hungary－closely allied to Indian
153 Japan swine in skull is near to Indian．
157 certainly stands near to short－eared Chinese race．
〈over〉 Used $\langle C D\rangle$
〈over〉 160 Nathusius
Rutimeyer has shewn that N．African wild
swine is like European
163．S．verrucosus excluded 164．S． Celebensis skull like Past
165 S．vittatus from Java like skull like Indian
166 S．Timoriensis close to vittatus
167 in S ．barbatus tho＇with long face， lachrymal bones are short
168 S．lucomistax from Japan like S．vittatus 169 Arn wild Pig
$\ell_{0}\langle C D\rangle$
173．Summary on wild swine
175．Diagnosis
185 wild Boar of Hindustan
\langle over $\geqslant\langle<C D\rangle$
Laws Nathusius Pigs 1
p．2．X Gestation earlier in Culture－races \＆ features less matured
20 －teeth developed in well－fed races
63 S．scrofa－tamed races－\＆greater height of head in relation to length－in all dimesions broader－p． 66 －all differences variable 68．－in tamed intermediate in character between young \＆old wild explain changed shape by less use of scratching in ground．
71．The position of rows of teeth a central character．
72．Much intermediate variability．
$74 X$ In these swine beginning of changes more plainly seen in culture－races－
75 These swine in Russia \＆all over N．\＆ central Europe．
76．Difference in length of Ears－hair－ colour．length of limbs \＆shape of body all different．
Indian
\langle not $C D ; X Q C D\rangle$
77 Almost all now crossed with Indian；not known wild，comes from China
83 Shortness of lachrymals most remarkable character
86 and the shape of the palate \＆position of row of teeth
89 position of last upper molar－ 89 X Considerable slight differences in teeth－ 90 width of fore part of palate does not depend solely on divergence of pre－molars
91 X skull broader in relation to length than in common swine
94 Indian swine a distinct species if no reference made to domestication．［ \Leftrightarrow Culture races］\Leftrightarrow
95 the above Indian pigs not more affected by culture than common swine
$99 \times$ Berkshire not high culture race \＆ descended from Indian，a born dispeptic individual had skull much modified \＆legs
elongated，\＆period of appearance of the teeth \＆crowns of molar teeth affected．
Laws
103 rich food during youth gives short \＆ broad head
103 X in high culture races the incisors stand much higher than back teeth；the canines of upper jaw stand before the canines of under jaw \＆this is a most remarkable anomaly．
$2 \mathrm{Im} / w$ period shorter in the early matured races．gestation different in sheep \＆swine．－ In early culture races of swine，the young less matured in skull $*$ ：perhaps from crossing with Indian． $316 \mathrm{~m}, \Uparrow 4 \mathrm{~m} 4 \Uparrow 5-1 \mathrm{~m} / \mathrm{w}$ change of skull from growth to adult comes from elongation of front part of skull \＆ separation of the 2 laminae $20 \Uparrow 15-10 \mathrm{~m} / \mathrm{w}$ teeth developed earlier in well－fed．culture－ races than in common pigs． $231-2 m 2720-$ $23 m \quad 636-8 m / w$－in tame i．e．face shortened．$\uparrow 2-1 m 66 \Uparrow 4-1 \mathrm{~m} / \mathrm{w}$ differences in these swine from wild are variable． 68 介 $20-$ $15 \mathrm{~m} / \mathrm{w}$ common swine＇s skull intermediate between that of young \＆old wild swine $\uparrow 15-$ $1 w / w b$ Explains differences by primarily wild swine wholly living by rootingO \＆using greatly the muscles attached to back of head－entailing that other differences in skull by action during youth－lays great stress on this view．－Mem．he does not here refer to Culture－races．－ 71 iw a＊constant difference in flexure of row of teeth $*$ in common \＆Indian swine or their crosses．－ 72 $\Uparrow 12 u$＂kürzen I des＂，$\Uparrow 15-10 \mathrm{~m} / \mathrm{w}$ individual variability $7412 \mathrm{~m} / \mathrm{u} \pm, 10-13 \mathrm{~m} / \mathrm{w}$ In these swine beginning of changes，which are variable，in teeth which are greater in culture－races $17-20 \mathrm{~m} / \mathrm{w}$ wild swine with simple teeth $75 \Uparrow 16-13 m, \Uparrow 4-3 m / u \pm / w$ such swine in these countries 76 6－7u＂Ohrlänge Rippen＂$/ w$ of these swine with same skull these parts differ \＆can be selected $22 u$＂lang｜kurzohrige＂， $24 u$＂osterlogisch \mid begründet＂， $25-27 \mathrm{~m} / \mathrm{w}$ He formerly placed some of the short－eared races in this class， which have been crossed with Indian． $779 u$ ＂indischen Hausschwein＂， $10 \mathrm{~m} / \mathrm{u} \leftrightarrow, \uparrow 8-3 \mathrm{~m} / \mathrm{w}$ almost all cultivated swine crossed with Indian $\Uparrow 1 u$＂nur 1 Culturrasse＂$/ w$ not known wild $7814-15 u \pm / 14-18 m$ ，$\uparrow 5 u$＂zwei＂$/ w$ Few skulls exist only 2． $792 \mathrm{~m} / \mathrm{u}$＂chinesischen Hafenstädte＂，$\uparrow 5-1 m / \uparrow 4 u$＂Chinal 14 ＂ $83 \Uparrow 8$－ $7 \mathrm{~m} 86 \quad 10-15 \mathrm{~m} / \mathrm{w}$ shape of palate or space between teeth different in Indian \＆wild介14－12m $89 \quad 3-4 m, \quad 13 u$＂bedeutende Verschiedenheiten＂$/ w$ considerable slight
differences in teeth $906-8 \mathrm{~m} / \mathrm{u} \pm, 12-16 \mathrm{~m} / \mathrm{w}$ width of fore parts of palate does not depend solely on divergence of premolars介12－11m 91 介8u＂ist \mid zur＂，$\uparrow 6 u$＂Hausschwien sind＂，$\uparrow 5 u$＂in 1 geringerm＂ $928-10 w$ Breadth may have been graduated． $14 u$＂Kürzel Breite＂$/ m / w$ no trace of these in common swine．－ $11 u$＂eine \mid Schweine＂ $931 u$＂dass 1 im＂，3m／u＂Breitel Gaumens＂ 94 5－12m／w concludes that Indian race descended from distinct wild species \＆this wd be admitted by Zoolog．if no reference made to identity \＆ domestication $9510 \mathrm{~m}, 11-17 \mathrm{w}$ The above Indian pigs not more affected by culture than common swine before described．－not highly cultured race $\uparrow 8-7 u$＂und 1 Jugend＂，$\Uparrow 6 u$ ＂einen｜aller＂ 99 15－18w Berkshire not very high culture race．skull \＆descended from Indian．－$\uparrow 16-13 w$ A Dyspeptic individual from youth $\uparrow 10-9 u \pm / w$ skull thus modified by want of food－Can this be Reversion？ 101 §4－ $1 m / \Uparrow 4-3 u$＂Kopf I geworden＂，$\Uparrow 2 u$＂ernährten \mid geworden＂ 102 20－22m／w Period of teeth appearance \＆structure affected in this dyspeptic pig． $1034-7 \mathrm{~m} / \mathrm{w}$ division of crown of molar teeth affected． $11-12 \mathrm{~m} / \mathrm{u} \leftrightarrow, 16-20 \mathrm{w}$ \＆Do not use their muzzles because ringed $\Uparrow 6 u \leftrightarrow, \Uparrow 1 \mathrm{~m} / \mathrm{u} / \mathrm{c} / w \tau \notin, w b$ see p． $1301045-6 \mathrm{~m} /$ w Proofs $9-12 \mathrm{~m} / 9 \mathrm{u}$＂langohrige Rücken＂， $10 u$ ＂diese \mid wie＂， $15-22 m, \uparrow 9-3 m / w$ Nata Ox 105 $1-8 \mathrm{~m} / \mathrm{w}$ Offspring vary in shortness of head according to keepO $17-19 \mathrm{~m} / \mathrm{w}$ says not hereditary！！！19－21m／w happens with our cattle \＆sheep 23 u ＂Egelkrankheit＂，$\uparrow 14-12 \mathrm{~m} /$ w Bull－dog analogy $\uparrow 11-5 \mathrm{~m} / \mathrm{w}$ argues this does not contradict his explanation of want －of Snout 106 1－2m／1－4m／w common swine like wild－Boars have not this short head 13－ $16 \mathrm{~m} / \mathrm{w}$ probably might be gained．by progeny of common wild Boar．19－21m／u $\leftrightarrow 10813 \mathrm{~m} / \mathrm{a}$ ＂Form＂i．e．short－head $1123 u$＂Stirnhöhlen＂， $4 m / a$＂Schwein＂in cultur pigs $4 u$ ＂Entwicklung laber＂ 113 4－7w Diploe different in wild \＆cultur－races 130 9－11m／w p． 103 $\uparrow 20-5 m 1318-10 \mathrm{~m} / \mathrm{u} \pm, 21-22 u \leftrightarrow, 21-30 \mathrm{~m} / \Uparrow 3 u$ ＂Gehörgänge＂ $1322 u$＂Augenhöhle＂，$\uparrow 15-13 \mathrm{~m} /$ w do not touch $1334 u \leftrightarrow / m / w$ all inherited $\Uparrow 20 u \quad$＂Gelenkfläche＂$/ \uparrow 20-15 \mathrm{~m} / \mathrm{w} \quad$ articular surface condyles of occiput modified $\rightarrow \Uparrow 4$－ $1 w$ because head not used $134 \ddagger w$ can affect Brain？Very similar $1359 u$＂nurldort＂，8－ $12 \mathrm{~m} / \mathrm{w}$ All these great changes only a climax of those seen in the races like wild Boars． $14 u / w \tau, \Uparrow 10-1 \mathrm{~m} / \mathrm{w}$ two Races $1363-7 \mathrm{~m} 138$ $\Uparrow 15-13 m$ ，$\uparrow 12-8 \mathrm{~m} / \mathrm{w}$ Argument for Indian Race being parent of Domestication $\uparrow 4-1 \mathrm{~m} /$ w All these differences in pure European \＆ Indian Races $139 \Uparrow 14-11 w$ Siam \＆China all

NATHUSIUS，VORSTUDIEN
with short－Ears $\uparrow 9 u$＂Siam＂，$\Uparrow 4 m / u$＂Rassel Pallas＂，$\uparrow 1 m 140 \Uparrow 5-2 m 14114-19 m, \Uparrow 10-7 m$ 142 11－16m／11u＂aus Herculaneum＂$/ w$ Neapolitan Breed！ 143 2－5m／4u＂Andalusien＂， $6-9 w$ All these like indian $11 u$ ＂Graubündtner＂， $12 u / w \tau, \Uparrow 16-15 u$＂dass \mid steht＂ $14419 \mathrm{~m} / \mathrm{u}$＂romanische Schwein＂ 146 介11－ $10 u \leftrightarrow / \Uparrow 12-6 m, ~ \Uparrow 12 u / w \tau, ~ \Uparrow 5 u$＂wilder＂$/ w$ is not convinced that turf swine was wild 147 $11-16 \mathrm{~m} / \mathrm{w}$ wild swine in fertile plain joints different $\uparrow 19-14 m / w$ turn out tame when stock of wild reduced $1487-14 \mathrm{~m} / \mathrm{w}$ in India wild swine cross much with tame $\uparrow 19-14 \mathrm{~m} / \mathrm{w}$ Rutimeyer difference between wild \＆tame born generally correct，but must be received with caution with pigs $\uparrow 13-11 u \pm 149$ 1a ＂Formen＂Turf \＆Indian 1－3u土，5－6u＂Diel Gaumens＂， $10-12 \mathrm{~m}$ ， 15 w Not certain 16－ $17 u \leftrightarrow, \uparrow 16 u$＂des indischen＂$/ w$ only for Pallas介13－12u＂allel Japan＂，$\Uparrow 8-7 m / u \leftrightarrow / w$ not certain for E．India $1507 w$ curly Hair $12 u$ ＂südöstlichen Europa＂，$\uparrow 14 m / u$＂sogenannten Schwein＂，$\Uparrow 12 u$＂aus Ungarn＂，$\Uparrow 4 u$ ＂Niederungarn＂ 151 1－3m $1528-10 \mathrm{~m} / \mathrm{w}$ like Indian $153 \Uparrow 15-13 m, \Uparrow 8-7 u$＂Der｜bekannt＂ $1541-8 w$ Gray makes it a distinct genus $\uparrow 14-13 \mathrm{~m} / \mathrm{u}$＂daslnahestehend＂，$\uparrow 5-4 m$ ，$\uparrow 1 u$ ＂weil＂$/ \mathrm{m} / \mathrm{w}$ Indian swine has not forked snout 156 3－9m，介14－12m $157 \Uparrow 7-5 m 1604-6 m, 10-$ $13 m, 15 u$＂Nilinseln＂／16u＂Aegypten＂／15－17m， 19－20？ 161 介14－13u＂das｜ähnlich＂，$\uparrow 6-4 m / w$ doubtful 162 13－14m，介10－1w Gray not to be trusted in the least $1637-9 u$＂kann／nahe＂， 14－18w whether Hindostan \＆European different not yet known．$-\Uparrow 4 u$＂S ．verrucosus＂／ w Excluded as parent of our domestic Pigs $164 \Uparrow 8 u$＂S ．celebensis＂／$\AA 8-1 w$ skull very like that of S ．verrucosus \＆not parent of domestic $1655 m, \Uparrow 13 u$＂S．vittatus＂／w different from European \＆like＊Chinese skulls $16617-18 \mathrm{~m} / \mathrm{u}$＂Sus｜vittatus＂，$\uparrow 10 \mathrm{~m} / \mathrm{u} \leftrightarrow$ $16712-13 u$＂dass｜Wildschwein＂／w though with long face $14-17 w$ argues that \therefore specific character in Chinese $1683-5 \mathrm{~m} / \mathrm{w}$ in general appearance like S ．vittatus $11-13 u \pm / m / w$ but in these respects liker to S ．vittatus $19-20 \mathrm{~m}$ $1695-6 m, 7 u$＂Typus 1 haben＂，$\uparrow 8-6 m 1708-$ $9 u$＂dass｜Thränenbeins＂，$\uparrow 19-15 \mathrm{~m}, \uparrow 14-8 \mathrm{~m} / \mathrm{w}$ no proof that wild $171 w t / 1-2 m$ if Arn Pig is feral shows constancy of character of Indian Swine 173 介10－1m 174 ＂5＂－＂7＂．m 175 Im，$u \pm$ 176 im 179 1m／u＂Daslkurz＂ 183 7－8m／u ＂männlichen \mid Cochinchina＂，$\uparrow 5-3 u$＂Eckzähnel gleich＂ $184 \quad 15-16 m, \quad \uparrow 14 m / u \quad$＂ächten Maskenschwein＂，$\Uparrow 6 u$＂Breite｜Gaumens＂ 185 $1 \mathrm{~m} / \mathrm{u}$＂auch｜von＂， $7-11 m, \pi 10 u$＂sind 1 europäischen＂，$\uparrow 9-8 m, \Uparrow 6-3 m 186$ £m
Atlas Taf．II，＂ 10 ＂．＊

NATHUSIUS，Hermann von Vorträge über Viehzucht und Rassenkenntnis 2 vols and supplement；Berlin；Wiegandt \＆Hempel； 1872－80［CUL］
cs，ds，f，fg，he，in，pat，sp，sx，t，ta，tm，ud， $v, w d, y$
vol． 1 NB 8；26； 63 Descent； 64 Horse； 135 Sheep Case Q
title page $w t$ Horn of Sheep $84-8 m / 1-13 w$ now so many no such need 2120 m 26 9－ $17 \mathrm{~m} / \mathrm{w}$ False the Chili ones are cross between goat \＆sheep $24-30 \mathrm{~m} / \mathrm{w}$ swine distinct． 28 10m 35 14－15m 47 10－11m $5012 m$ $5931-34 m / 32 w / w b$（a）individual differences $635-9 \mathrm{~m} / \mathrm{w}$ females more like males most variable 11－13m，11u＂eigentliche Representant＂ $12 u$＂welches｜Universellen＂ 64 $1-11 w$ can Long Horns be Reversion to wild state？－See Antelopes 18－20m／16－20w castration stops Horn in Sheep（a）3－31w castrated rather late－the effect may be known when done earlier－castration ought to produce greatest effect．How with Welsh sheep on both sexes－but then they end wb （a）is there not here curious relation \＆ evidence of Horns retaining more of S．Lex． character than in cows－in as much as the females of some breeds have no horns？In Merino is white males alone are horned． 68 $3 m, 5 u$＂ganz gleich＂／4－7m／w Free－martin horns like oxen－！ $6912-16 \mathrm{~m} / 17-18 \mathrm{~m} / 12-$ $19 w$ Food makes differences of period when adult character attained $21-22 u \leftrightarrow / 21-24 w$ even when capable of reproduction $7124 m$ 93 wt（a）early \＆late maturity depend in part on food of pregnant mother \＆milk，\＆partly on race．－ $4 m / w$（a） $7 m 9425-33 m / 3-34 w$ proportion of 3 stomachs altered in highly nourished young $9814 m, 16-21 w$ early maturity only slightly hereditary $993-6 \mathrm{~m} / \mathrm{w}$ Treatment alters period of gestation $18-25 \mathrm{~m} /$ $21-28 w$ related to early maturity \＆ $1 / 2$ breeds show hereditary 100 wt individuals differ in profiting by same amount of food 4－10m 102 $23 m 10917-18 m, 27-29 m / 27-31 w$ castration causes less consumption of food．－ 1121 m $11825-31 m / 11-31 w$ Rule of male or female transmitting certain parts false．－ $12219-27 \mathrm{~m} /$ 15－28w Merino sheeps tails cut for years \＆ not inherited． $1271-3 m * 13525-30 \mathrm{~m} 1401-$ $6 \mathrm{~m} / \mathrm{w} / 1-3 \mathrm{w}$ of same race individuals transmit with greater power $19-20 \mathrm{~m} 1425-10 \mathrm{~m}, 13 \mathrm{~m}$ ， 15－23w Does not believe in individual potency of transmission $14524 m 1584 m 166$ 27 m
vol． $2 \wp$

Supplement "Kleine Schriften und Fragmente" Berlin; Wiegandt, Hempel \& Parey; 1880
iii $\Uparrow 15 x / u$ " $249-264$ " Inhalt " 93 ". $m, ~ " 179$ ". m \wp

NATURAL HISTORY 2 vols. of plates; London; Whittaker; 1824-26 [Down, pre-B]

THE NATURALISTS'S LIBRARY ed. W. Jardine Ornithology vols 9, 14; Edinburgh; W.H. Lizary; n.d. [CUL]
beh, cs, gd, hy, mg, sx, tm, v, wd, y
vol. 9, Pigeons; SB $\square \beta$
117 Carpophaga oceanica excrescence at base of Beak sexual
178 Wilson \& Audubon on rice in Pigeon crops at New York
$90 \quad 23-26 m 113$ 21-30m 117 18-23m 136 20$23 \mathrm{~m} / \mathrm{w}$ - 140 1-5m 144 9-11m, $12-15 \mathrm{~m} 146$ 23u "Orkneys" 148 5-6m 151 19-23m 153 12$15 m, 24-31 \mathrm{~m} 157$ 12-17m 158 10-16m $1605-$ 9 m 161 6-8m, 15-17m 164 11-13m 179 1-5m
vol. 14, Gallinaceous birds; NB 203205 P superbus
166169 Argus Pheasant
SB $\square \beta$
129 Turkeys associating. 3 sitting on one nest
138 wild often crossed with tame
173 Siberian or Russian Muffler with tuft from lower jaw
184 Gallus forcatus
126 17-22m/Q 127 1-10m/2-3u "strut| feathers"/6u "strutting|puffing"|3-4Q 128 17$19 m 12927-30 m 1386-16 m, 10-15 m 1391-$ $3 m 1401-4 m 141$ 15-19m, 28-29m 166 20$25 \mathrm{~m} / 22 \mathrm{u}$ "feathers \mid inches" 167 12-15m/13-15u "being | flight"/"...", 18-24m (Temminck), 27$29 m 1683-7 m 1691-3 m, 7-22 m 17118-21 m$ (Temminck) $1721-18 \mathrm{~m} / 3-10 \mathrm{w}$ Malay $21 \mathrm{~m} / \mathrm{w}$ Sultan Persian $25-26 w$ X Bearded crested $1735-8 \mathrm{~m} / \mathrm{w}$ Bolton Grey Siberian or Russian Muffler. 10-11w This Dorking is baby one $17 w$ The true Dorking $26-28 w$ A cross from the Silk fowl $1741-3 \mathrm{~m} / \mathrm{w}$ Jap 15 c "Crested" Frizzled 175 24-25u "withlchestnut"112-28w Resembles the black breasted Red Game $1761-6 \mathrm{~m} 1777 \mathrm{~m}, 12 \mathrm{~m} / \mathrm{w}$ nonsense $\times 13-$ $14 \mathrm{~m} / \mathrm{w} \mathrm{J}$ right I think $17 \mathrm{~m} / \mathrm{w}$ pumilo is crested 21-22m/w Sebright not a Bantam $23 \mathrm{~m} / \mathrm{w}$ not near $w b \times$ Crawfurd says from Japan. on what authority? $17811 \mathrm{~m} / \mathrm{w}$ Malay pl. 9 w tail purple 183 wt Mr Blyth says positively a hybrid between G varius \& ...? wt N.B G. varius is distinct from G. furcatus or does he mean only Synonym?? 184 wt When Blyth
says not furcatus does he only mean that G. varius is prior name - 1 suspect so.- $10 u$ "with|entire" $/ w$ yes $11 u$ "single \mid springing" $/ w$ yes $12 u$ "they| red" $\mid x x w b \mathrm{xx}$ if G. furcatus $=$ varius this utterly wrong description.- pl. 10 w Feathers on neck short \& rounded Crawfurd says wretchedly unlike 185 23-24w so will a pheasant $1887 u$ "the 1 margin", 9$10 \mathrm{~m} / 10 \mathrm{u}$ "mottled \mid markings", 15-20m (Latham) 203 9-12m/11u "feather 1 feet", $13-14 \mathrm{~m}$, $15 u$ "more|feet", 15-17m 205 12u "3|long", 21$23 m, 22 u$ "The llength" pl. 19 wt 237 zt 251 3-5m (Dickson)

NATURAL SCIENCE, religious creeds and scripture truth by "the author of the Divine footsteps in human history"; Edinburgh \& London; William Blackwood \& Sons; 1870 [Down, I by publisher] $\wp 0$

NATUURKUNDIGE Verhandeligen van de hollandsche Maatschappij der Wetenschappen, te Haarlem Part 3, 3rd edn; Haarlem; De Erven Loosjes; 1878; containing
FRITZ, Hermann Die Beziehungen der Sonnenflecken [Down] \wp

NAUDIN, Charles Nouvelles recherches sur l'hybridité dans les végétaux Paris; 1862 [CUL, I]
cs, fg, he, hy, no, sp, t, v
SB $\square \beta$
151 Pangenesis - good on Hybrids being a living mosaic of 2 species \& on specific essence of each (this is vague term) being accumulated \& self-alternatedo either in ovules or pollen-
161 Definition of a species-
title page $w t$ Nouvelles Archives du Muséum TTome 1 p25 274 w Father; Mother 20-22m/ 20-21u "turbinée lovoïde" 29 25-26m $302-6 \mathrm{~m}$ $3223-28 \mathrm{~m} / \mathrm{w}$ First generation flowers of both colours \& panachee $331 u$ "bandes 1 pourpres", $2-3 u$ "quelquefois I couleurs" $36 \quad 1-14 \mathrm{~m} / 3 \mathrm{u}$ "deux"/7u "un cependant" $/ 10 u$ "dix-sept"/ 13 u "un |maturité" $10-18 w$ given in full in Chapt 27 on Pangenesis 22-31m/23-25w Pangenesis 37 7-10m 41 25-28m 42 15-20m $4528-30 m 475-7 m / 1-8 w$? yet most distinct species $15 u$ "fleurs Ifertiles"!!!, $23-30 \mathrm{~m} / \mathrm{w}$ action of pollen good - like Hildebrand's facts $497-13 \mathrm{~m} / 13 \mathrm{u}$ "influence lannihilée", 24$25 \mathrm{~m} / \mathrm{w}$ like my sweet pea case Ch. X $25-$ $31 \mathrm{~m} / 26-31 u \pm, \quad 31 \rightarrow 50 \quad 1-3 \mathrm{~m} / 1 u$ " "qu'un quart" $/ 2 w$ Loevis 4-6m, 9-10m/9u "hybridité disjointe" $511-6 w$ He does not say the seed was separated, only other capsules

NAUDIN
produced the two forms $19-23 m$ 53 22-25m 54 16w Sweet Pea 22-24m/!!!/18-24w Polyanthus \& Cowslip one of grandchildren returned to pure Cowslip $588-17 m 6029$ $31 m 9328-31 m 9925-30 w / w b$ He admits the L vulgaris grew near !! \& yet advances the case as one of Reversion- He never counts seeds! Seeds were forgotten \& other neglegences \& never apparently protected from variation Careless experiments in every way.- $10012-14 m, 25-29 \mathrm{~m} / \mathrm{w}$ colours not blended $1138-22 m 12612-17 m 1273-6 m / 5 u$ "pas l embryonée" 131 17-20m 135 20-31m 136 8-14m 137 9-11m, 13u "la| année"|13-14w crossed with common none were peloric 22$24 m / 23 u$ "cinqlégaux", 24-25m/u "alors 1 présence" 141 14-15u "l'hybriditélovules"/w confirmed $1428-11 \mathrm{~m} / 10 \mathrm{u}$ "unlovaire", 17$19 m, 21-23 m, 24-25 m, 27-29 m 14323-27 m /$ 23-25u "car|vertu" 145 3-8m 146 6-9m/6-7u "une|génération" 147 23-27m (Klotzsch)/23$25 w$ Reciprocal Hybrids like each other 148 $6 u$ "intermédiaires", $7-9 u$ "l'immense lespèces", $18 u$ "c'est |tort", 19u "au|père" 149 11-12w prepotent species 12-14u "dont lespèce", 24$26 u$ "la lhybrides" 150 22-26m/21-28w/wb If so this pollen of a hybrid placed on one of parents or on third species wd give widely different results from Hybrid fertilised by the same. 151 1ús "deux essences", 10-16u士/10$11 w$ Pangenesis 19-35 $\rightarrow 1521 u$ "les hybrides", 13-18m, 20-23m, 25-28m 153 12$14 m, 16-21 m 15419-23 m, 28-31 m 1551-4 m$, $32-35 \mathrm{~m} / 32 \mathrm{w}$ loevis close $1619-14 m, 15-18 m$, 26-29m

NETTER, Abraham De l'intuition dans les découvertes et inventions; ses rapports avec le positivisme et le Darwinisme Strasbourg; Trenttel \& Wurtz; 1879 [Down]

NEUMAYR, Melchior and PAUL, Carl Maria Die Congerien- und paludinenschichten Slavoniens und deren Faunen Wien; Alfred Hölder; 1875 [CUL, I]
cc, ch, ds, dv, gd, geo, gr, ig, 00, sp, sy, t, ti, tm, v

NB1 All marked very important on direct effect of conditions-
NB2 p57
$5725-28 \mathrm{~m} / \mathrm{w}$ like Hyatt $30-33 \mathrm{~m} 8440 \mathrm{~m} 90$ 1$3 \mathrm{~m} / \mathrm{w}$ gradual slow changes $45-55 \mathrm{~m} / 45 \mathrm{u}$ "viele | Typen"/48-50u "Viviparen 1 müssen"/53$55 u \pm 9136 m$ (Lyell) $9326-28 m / 29 m / 17-35 w$ is vehement that it is arguing in a vicious circle to call all forms which can be connected by gradations the same species [true but useful or necessary for systematic work.] 95 22-
$27 m / 23-25 u$ "die \mid sind", $27-32 m / 30-32 u$ "dass 1 Gestalten", $36 m, 41-45 m \quad 97$ 26-31m/28u "Auftreten | Formenreihen"|30u "variiren | Abänderung", $33 w 3$ species of new genus $34-39 z / 39 w 3$ species $43 m 989 u$ "Reihen", 11-12u "während | slavonischen", $13 u$ "mehrfach Ammoneen", $17 u$ "sondernlUebergänge", 20$21 u$ "dass lfeinsten", $31-40 \mathrm{~m} / 31-35 \mathrm{w}$ each form in a successive bed. $52-54 m / 53-54 u \leftrightarrow$ $991 m, 20 u$ "auflX", 19-22m/w Table of Descent $47-48 u \leftrightarrow, 49-51 m / 50-52 u$ "einel Hauptverbreitung" 100 3-4u "währendlauftreten", 4-12w Looks as if periods of rapid variation \& then of rest, but denies. $25-27 w$ modification goes on in same district. $31 u$ "kein", $32 u$ "innerhalb|stattfindet", 33-34u "Auftreten I Mutationen", 33-40w a row of forms divides into 2 rows only in separate districts $41-46 \mathrm{~m} / 42 \mathrm{~m} / 45 \mathrm{w}$ an exception 101 wt just what I have said $3-5 m, 18-19 u$ "vonlhin", $20 u$ "dielVariationen", $21 u$ "erhalten sich", 24-27m/27u "diel nicht", 30 m , $32-33 \mathrm{~m} / 33 \mathrm{u}$ "solAuge", 35-38m, 40-41u "Verdickung|Sculptur" 102 2u "Verdickung| Sculptur"/3u "Unionen"/4u "Dickschaligkin"|1$5 w$ in a distinct genus, (showing effects of conditions. $7-10 m / 8-9 u \leftrightarrow / 12 u$ "Einwirkung suchen" $/ 8-13 w$ in a different district another series of forms. $18-24 m / 14-22 w$ Thickening of shell in small pond to be due to water becoming more fresh. $30-34 \mathrm{~m} / 30-32 \mathrm{u} \leftrightarrow, 36-$ $37 u$ "Nurlangenommen", $46 m 103$ 19-23m, $40 u$ "abgeänderten|wird", 41u "constatirt| können" $1041 u$ "innerhalb|ihrer", $4 u$ "von 1 bekannt", 16-17u "dass I Reihen", 18-22m/w fail on sea because we do not have whole area $33 m, \quad 42-45 m / 43 u \quad$ "Mealnopsis \mid nachgewiesen" $145 u$ "Jahrb. 1 Heft" 105 1m, 19-20u "betrachten |Formenkreise", 20-21u "wiel Verbindung", $50 \mathrm{~m}, 51-52 \mathrm{~m} / 51-55 \mathrm{w}$ same kind of variation in several distinct forms 106 1$3 m / 1-5 w$ same var. at very distinct periods

NEUMAYR, Melchior Zur Kenntnis der Fauna des untersten Lias in den Nordalpen Wien; J.C. Fischer; 1879 [CUL, I]
fo, geo
NB 45 Parallelism of Ammonites \wp
45 8-18m
NEUMEISTER, Gottlob Das Ganze der Taubenzucht Weimar; B.F. Voigt; 1837 [CUL] beh, cs, f, he, 00, ta, tm, v, y
NB 4,6
SB $\square \beta$
Neumeister

17 Dovecots do not like Fancy Pigeons 18 Crosses very fruitful
21 In young white bars nearly red \& true Q character remains only till 3 or 4 years 24 Nearly parallel case
29 odd heredetariness in Trumpeter
31 Hinkel flight-feathers doubts Q P19 Never seen yellow or red Fantail
title page $w t$ A working man enquired all himself; Laugher ${ }^{\circ}$ Finnikin Spanish rust not mentioned θ Frill-back i 11-12m $49 w 20-24$ years $8-10 w$ These fancy races $6-8$ years age.- $12 u$ "Holländerknopftaube" 17 wt 17 5ul $w \tau, 10 u / w \tau, 13 u$ "Gesellschaft |zahnen" $112-14 w$ Dovecots do not like fancy pigeons $188-9 u$ "Es \mid Tauben" $/ 6-9 w$ House Pigeons crossed with Fancy very fruitful $2113 u$ "schwarz"/ $11-16 w$ correspondence in age $18 u$ "gewöhnlich"|19-20u "der|schön"/I.../18-22w in young the white bars are rust-red \& perfect character remains only till 3d or 4th year old $2212 w$ shell-shaped cap $13 m / 14 m$ "Muschelhauben" $113-23 w$ cross at back of Head top of head white upper \& lower Mandible different colours $2311-12 w$ * This seems rather different $12 u$ "etwas grösser", 13u "Brust |Oberrücken", 14-15w Head smooth white tail flight feathers \& feathers on feet white $17 u / w \tau$ 19-24w These have strongest shell-shaped caps of all Breedsruns down half neck $245-8 w$ In young the white feathers are first edged with colour $11 w$ Spot $251 u$ "wegen 1 kurzen", $5 u$ "Schnabel lals" $/ w$ I see this is mine $267-11 w$ I have now written descriptions on plates 27 $10 \mathrm{~m} / \mathrm{w}$ Blue 23 w (a) $w b$ (a) called Riedel Polish Pigeon $292 w \tau, 2-9 w \mathrm{Mr}$ Gilbert will back one of his to travel for $1 / 4$ of hour $7 u$ "einen I Schnippe", $16-17 \mathrm{~m} / \mathrm{u}$ "doch \mid trommeln"/ Qa, 17-18u "Ohne 1 tauben", $18 u$ "noch ${ }^{\text {g }}$ gt", $19 u$ "Altenburgische" $3024 u \pm 311-2 \mathrm{~m} / 1 u$ "Schwungfender I doppelte", $4 u / w \tau$
〈all plates.w (descriptions of varieties of pigeons and doves))

NEWBERRY, John Strong The structure and relations of Dinichtyes Columbus; Nevins \& Myers; 1875 [Down, I]

NEWTON, Alfred Zoology London; Society for promoting Christian knowledge; 1874 [Down, I]

NICHOLSON, Edward An elementary treatise of ophiology Madras; Higginbotham; 1874 [Down, I] ig

NB O/
10 Gradation
10 1-22m 29 22-25m
NIEMEYER, Felix von A textbook of practical medicine revised edn, vol. 1; London; H.K. Lewis; 1871 [Down, FD]

NIEMEYER, Felix von A textbook of practical medicine vol. 2; London; H.K. Lewis; 1871 [Botany School, F.D.]

NILSSON, Sven The primitive inhabitants of Scandinavia 3rd edn, ed. with introduction by John Lubbock; London; John Murray; 1868 [Down, I]
h, oo, t
NB I a universal law that strong tribes extirpate weaker; 104; 248
$126-30 \mathrm{~m} 1042-9 \mathrm{~m} / \mathrm{w}$ identity of man under similar conditions 248 29-31m (Lovén)

NITZCH, Christian L. Pterylography ed. Philip Lutley Sclater; London; The Ray Society; 1867 [Down]
no, tm, y
NB 39*; 110*; 16*; 13 numbers of feathers; 14 young birds 13 40-43m $148-12 m$

NOGUEIRA, A.F. A raça negra sob o ponto de vista da civilisação da Africa Lisboa; Minerva; 1880 [Linnean Society of London, I]
title page $w t$ as Mark wb 233
NOIRÉ, Ludwig Der Ursprung der Sprache Mainz; Victor von Zabern; 1877 [Down, I] \wp

NOIRÉ, Ludwig Die Welt als Entwickelung des Geistes Leipzig; Beit; 1874 [Down, I]
title page $w t$ Prof. of Mainz
NOIRÉ, Ludwig Das Werkzeug Mainz; Diemer; 1880 [Down] \wp

NORDENSKIÖLD, Nils Adolf Erik The voyage of the Vega round Asia and Europe London; Macmillan \& Co.; 1881 [Down] ss
NB 97 Sexual Selection, dogs
97 11-23m/11-21[...]
NUSBAUM, Jozef L'Embryologie de Mysis chameleo (extract); Warsaw; n.d. [Down]

ODART, Alexandre Pierre Ampélographie universelle ou traité des cépages 2nd edn; Paris; De Dusacq; 1849 [CUL]
ad, br, cc, ch, ds, gd, mhp, no, oo, or, sp, $\mathrm{sy}, \mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}$, wd
SB1 18; 20; 34; 41; 43; 48; 51; 54; 55; 70 *; 70; 72 to 84; 107; 228 variation; 243; 244 taste \&c \&c varieties besides common peculiarities resisting wind another quality early fruits - age at which it produces; 254; 268; 327; 362; 397; 401; 429; 436; It is striking how many varieties there are, \& how some seem to do better in one province than another
SB2 266 Journal Geolog. Soc *
SB3 $\square \beta$
$42,44,48$ of immense numbers sown, rarely new variety produced.
70 on classification of grapes - 74 p. 80 wd like descent if possible p107 is possible (p244 Sub-families)
71 same grape has round \& oval berries Q
78 Simon (like Van Mons) cannot think all came from one Parentage (Ch. 2)
227 grape like dry, but apt to rot when ripe p243 slow to * breed but ripens fruit early; fruit resists long-continued humidity; attracts wasps A_{0}; p254 apt to be broken off bunch - resisting wind \& 254 More attacked by insects 362 Early excited by April sun \& so killed by Frost
243 \& 254 \& 362
327 a Grape more than. 600 years old.-
397 see leaves turning yellow when fruit ripe
429 Pulp adheres slightly to seed 436 in other case turning red, at lower part of shoot.-
(All Quoted)
18 4-8m (Dussieux) 19 17-20m, 30m $201-3 m$ $341-2 m 4129-30 \rightarrow$, $w b$ very few \& yet thousands sown; applicable to domestic birds $4323-30 m$ (D. Simon) $443-5 m, 22-30 m$ (Rozier) 48 4-9m 51 19-24m 53 12-13w 600 to $800545 u$ "ait | huit", 6 u "un |cultivées" 55 $1-3 m \quad 70 \quad 1-3 m / w t / 1-7 w$ Wants to make classification natural $4-9 m, 11-14 m, 16-18 m$, 19-24m 71 15-18m/16-17u \rightarrow, 26-29m/Q凶 72 3-6m 74 16-19m 75 12-14m 76 13-19m 78 $17-25 \mathrm{~m} / \mathrm{w}$ like Van Mons on peas 79 20-21m/ 20 "oùltrouver" 121 u "surlla" 80 24-25m 84 12-18m $8522-24 m$ • $1072-3 \mathrm{~m}$ "ce 1 toujours", 10-22m, 21-25m 227 介2-1m 228 1-3m↔, 2$4 m 243 \quad 20-21 m 244$ 11-16m/13-14w Subfamily $254 \quad 18-19 m / 19 u \quad$ "cet I fragilité", $28 u$ "passerillerlguêpes", 29u "cette espèce"/w raisins? $2681-2 m, 8-11 m 3272 u$ "plus|six",

8-11m 362 26-29m 397 23-25m, 25-27m 401 5-10m 429 7-10m $4364-9 m$

UN OFFICIER DU ROI Voyage à l'isle de France Neuchâtel; Société typographique; 1773 [Down, pre-B]
NB 8 use of broom for cordage - Pliny 8 last paragraph.x $1701-5 m 1731-2 m, 4-7 m, 9-16 m$

OGLE, John William The Harveian oration, 1880 London; 1881 [Down]

OKEN, Lorenz Elements of physiophilosophy trans. Alfred Tulk; London; The Ray Society; 1847 [Down] \wp

OUR BLOOD RELATIONS; or the Darwinian theory London; Sipkin, Marshall \& Co.; 1872 [Down]
O^{\prime} NEILL, T. Warren The refutation of Darwinism Philadelphia; J.B. Lippincott; 1880 [Down]

ONTARIO, Province of Annual report on agriculture and arts for the year 1872 Toronto; Hunter, Rose \& Co.; 1873 [Down]

OPPERT, Gustav On the classification of languages Madras; Higginbotham \& Co.; 1879 [Down, I]

ORD, William Miller On the influence of colloids upon crystalline form and cohesion London; Edward Stanford; 1879 [CUL, I] phy
NB 31; 154 bears on concretion in worms 31 14-19m 154 29-33m 155 1-9m

ORDINAIRE, C.N. Histoire naturelle des volcans Paris; Levrault; 1802 [Down, pre-B] \wp

ORMATHWAITE, John Benn Walsh Astronomy and geology compared London; John Murray; 1872 [Down]
NB O/
ORTON, James The Andes and the Amazon New York; Harper \& Brothers; 1870 [CUL] beh, br, che, gd, no, phy
NB $1 / 4$ of Plants near Quito are Compositae colour of flora due to chemical rays 103 107 Geese not breeding; 283
$1033-6 m, 20-24 m$ (Herschel) 107 21-23m 283 $1-5 \mathrm{~m}$ *

ORTON，James The Andes and the Amazon 3rd edn；New York；Harper \＆Brothers； 1876 ［Down］
ex，fo
NB 154 Extinct deer fossil in Amazonia 154 15－17m／15u＂deer＂

OSBORNE，J．The horsebreeder＇s handbook London；Benjamin Clegg； 1881 ［Down，I］
x 42－44m
OTLEY，Joseph A concise description of the English lakes 4th edn；Keswick； 1830 ［CUL．1900］
NF 〈prob CD \rangle Sept 241830 Kendal
OVINGTON，John A voyage to Suratt London；Jacob Tonson； 1696 ［CUL，pre－B］ gr ，is
NB 69 72
69 Floating Isd 100 ft long \＆broad covered with grass about 4 leagues at sea－
$6912-14 w$ See p．64．probably 4 leagues from shore $14-18 m 726-15 m 4481-3 m$

OWEN，David Dale Report of a geological survey of Wisconsin，Iowa and Minnesota 1 vol ． with vol．of illustrations；Philadelphia； Lippincott，Grambo \＆Co．； 1852 ［Department of Earth Sciences Library，I by J．D．Dana］
fo，ig，ir，sp，sy，ti
NB Think what wd classification be if only Eocene fossils had been unearthedO
p． 50 Fossil Lingula
p． 198 Nebraska－some of Leidy genera very intermediate－＊
p． 571 do．Nebraska intermediate mammals
50 14－19m 19ं 5－17m $1992 \mathrm{~m} / \mathrm{u}$＂eоселе＂， $\Uparrow 1 \rightarrow 200$ 8－16m $571 \Uparrow 3-1 \mathrm{~m}$

OWEN，John Pickard［i．e．Samuel Butler］ The fair haven ed．W．B．Oxen；London； Trübner \＆Co．； 1873 ［CUL，I，S］ beh
NB 52； 40 an halln．；51； 134 judgemt 179 do〈some editorial marks in text〉

OWEN，Richard On the anatomy of vertebrates 3 vols．；London；Longmans，Green \＆Co．；1866－68［CUL］
ad，af，beh，ch，em，ex，fo，h，he，hl，ig，phy， $r, r d, s s, s y, t, t a, t m, v, y$
vol． 1 NB 168；170； 179
SB1 Voll Owen
331 Eyes of Fishes in Lancelet \＆some other as simple as in the lowest craniaO； 342＊range of gradation great in F．\＆R．；vol 1； 354 Electric organs； 358 similar action with Muscles
xxxvi；254；345；378；393；401；409；486，7； 492，7； 533 Wollfian glands Man； 543551 567 －Regrowth for Chapter on Inheritance －；576；588； 589 sexual selection；609；611； 612； 615 sexual sel．；616； 640
SB2 $\square \beta \propto\langle n o t C D\rangle$
Owens Anatomy of Vertebrates Voll 1866
p．xxxii Rudimentary \＆nascent organs． Cases of fins becoming rudimentary in old age．
254 Gradation between homocercle \＆ heterocercle tail－also in embryos．
345 On air bladder in Colitis aiding organ of hearing
378 Six modifications of structures of teeth in fishes， 2 sometimes in same fish or each in same tooth．
393 On egg feeding serpent with mouth without teeth but with vertebrae acting as teeth in the gullet．
401 Dicynodonts approach mammals in having growing tusks，besides as in other reptiles being implanted in a socket．
409 In an extinct crocodile the teeth can be divided into canines，incisors \＆molars．
486 on the persistence of an embryonic structure of the branchiae in certain low fishes．
487 on an accessory breathing organ in the climbing perch．
492 Structure of air bladder in fishes． 497 ditto．
551 Drawing of the female Surinam toad with eggs on back
588， 576 Gradation in reproductive organs of fishes
609 Embryonic characters of fishes permanent in sharks．
611 Metamorphoses in fishes．
640 On transitory tooth in young sharks \＆ lizards for cutting through egg
xxxii 10－18m（Tiedemann and Vrolik），19－25m xxxiii $3-6 m, 6-10 m$ xxxv $7-15 m, 21-27 m$ xxxvi $1-7 m, 27-31 m$ xxxvii $14 u$＂selective＂ 9 $12 m, 26 m 1228 m 1419 m 1524 m 16624-25 m$ $167 \quad 22-24 m \quad 168 \quad 23-27 \mathrm{~m} \quad 179 \quad 16-19 m$ ， fig．112．m 254 8－25m 331 24－29m 342 10－14m 345 19－25m 346 1－8m $3541-6 m$ ，19－23m 355 29－36m 356 25－32m 358 31－42m 378 12－27m， $23-27 m 39317-33 m 40038-41 m 4011-5 m$

OWEN, VERTEBRATES
409 7-12m 486 17-32m 487 1-6m/fig.325.m 492 35-43m/fig.327.m 493 1-7m, 25-30m, 34$38 m 497$ 13-18m (Borelli) 533 8-13m 543 7$14 m 551$ fig. $367 . m 5671-12 m / 11 u$ "Anourous", 26-29m (Van der Hoeven) 568 10-12m 570 39$42 m 5764-16 m 588$ 19-29m 599 37-43m 609 $5-9 m 611$ 32-40m 612 9-16m, 20-34m 615 $3-5 m, 12-15 m, 17-19 m, 21-24 m, 23-24 u$ "submaxillary glands" 616 24-38m 617 3-6m 640 6-13m 646 54-56m
vol. 2 SB
p.12 affinities of Birds - greatly Modified Birds their affinities
read as far as p.14; 517 Tail of monkeys 551 \& 552 . Apes anthropomorphism Man; 544 \& 560 to end Man
All used
258 Sexual diffrn in Beak
12 23-27m 13 10-16m
§
p. 258 27-34m 517 27-36m 520 33-35m, 36$38 m 55127-29 m / 29 u$ "mastoid processes", $31 u$ "the Ithe", $32 u$ "auditory process", 33-43m/37u "posterior linternal", $40 u$ "ectopterygoidlthe" $5521-3 m, 13-17 m 5538-14 m / 10 u$ "great toe"। $11-12 u$ "perhaps adaptive" $/ w$ adaptive 5644 $15 m 50616$ - 21 m
vol. 3 NB
Law of Inheritance 619 Hair in foetus; 628; 624 \& 630 Man; 632 \& 634 to 638 sexual selection; 641; 675 Rudiment; 676; 685 Man; 687; 701 Sexual; 706; 739 Law of Inheritance; 767; 791; 746 Polygamy; 770 Gradation in Marsupial pouch; 791 Gradation in characters of Horse; Man external 236 \& 244 Ear; see about external ears
SB 〈a fragment〉
323; 325 ; 336 gradation of characters; 347 affinities of Hippopotamus shown by Milk Teeth; 348 • Relation of Horns \& Canines *; 415 Kangaroo Ruminating; over
vi $7 w$ to 219 read viii $7 w$ read $17 w$ read $23 w$ read ix $19 w$ read $39 w$ read $\times 7 w$ read
\wp
54 17-20m 60 18-23m 63 21-25m 71 24-29m 135 31-37m 228 1-2m/fig.171.m 229 2-6m 236 $16-29 m / 22 u$ "onlyland" $/ 23 u$ "inlare" $24338-$ $42 m 244$ fig.189.w 245 8-11m, 12-14m (Lamarck) $2605 u$ "thirdlid", $39-42 m$ $2612 u$ "nictitating \mid developed", $5-9 m, 8 u$ "Quadrumanal Man" 279 23-24u "orlwith", 26-30m 283 14-17m/14u "1601281", 20-22m, $43 m 284$ 15-21m 285 fig. $231 . w$ p. 331315 15$20 m 317$ 3-7m 318 wt Chimpanzee 320 31$35 m \quad 321 \quad 14-18 m \quad 32310-13 m / 10-16^{\prime \prime}$..."/13$15 m \bullet|14 c / 15 c| 16 c \notin 3259-10 m, 21-23 m 331$

30-31m 336 2-7m 347 16-21m 348 38-41m $3495-6 m, 11-13 m 415$ 11-18m 416 26-28m 417 fig. $315 . m \quad 433 \quad 36-38 m / 38 u$ "terminall short" 434 1-5m 441 36-40m, fig. $345 . m$, $39 u$ "follicular glands" 585 35-37m $595 \quad 7 u \leftrightarrow / 6-$ $8 \mathrm{~m} / \mathrm{w}$ \& so is the Porcupine $5981-3 \mathrm{~m} / \mathrm{w}$ Lemuridae 34-35m 600 10-11m/11u "alone sing", $12 u$ "Laryngeall Orang-utan", 13-18m/ $17 u$ "sacculi" $18 u$ "adult males" $6014 u \uparrow$, 710 m 603 18-19m 619 6-9m, 28-30m, 32-36m, wb J. Müller Archiv fur Physioly 1837624 20-22m, 31-33m 626 12-14m 627 wt Law of Inheritance $1 u / a$ "Commencing 11855 ", wt when about 5 or 6 months old $6-8 w$ ie from Jan or Feb $185562840-42 m / 40 u$ "in lboth" $6294 u$ "in year", $20-22 \mathrm{~m} / 21 u$ " 20 points", $24 u$ "yearling fawn", $40 u$ "seventh" 630 1-4m/ $1 u$ "condition \mid snags", $11-13 \mathrm{~m} / 12 u$ "swelling \mid throat" $6313-12 m, 26-31 m, 42-44 m / w$ not so sexual in char see Mullers letter 632 18-20m, $31-33 m 63318 u$ "pairs", $19 u$ "in pairs", $23 u$ "not gregarious", $33 u$ "in pairs", $35 u$ "not gregarious", $43 u$ "in pairs", $45 u$ "in pairs", $46 u$ "ib." $6343 u$ "in pairs", $12 u$ "in pairs", $16 u$ "in pairs", 22-26m, 31-32m, 37-42m 635 17-21m/ w sexual? $6376-12 m, 13-30 w$ Seems not generally sexual $63835-36 u \leftrightarrow, 39-42 m 639$ 19-23m 640 13-15m 641 8-10m, 16-17m 675 fig.532.m 676 16-23m $68538-43 m 6863-7 m /$ $4 u$ "two uteri" 687 35-41m 701 18-21m/ 21u "Lemuridae", $23 u$ "vaginal|cavity", $24 u$ "Insectivora" 703 6-8m/7u "notlcornua", 21$23 \mathrm{~m} / 22 u$ "last I cornua" 706 3-5m 739 33-37m/ w Cattle nearly equal $7463-9 m 7631-3 m / 2 u$ "activel rut", 5-7m 767 14-23m, 25-27m 770 32-39m/33-34? 771 9-13m, fig.605.m 791 16$35 m, 39-40 m 792$ 19-24m 793 2- $4 m 796$ 13$19 m 798$ 37-42w Say, as far as 1 mention damn this 41-48m $7993 a / c \notin / w$ Man 9-11m (Darwin) 800 18-22!!/20u "my basis", 26-30m 807 10-13m 8
OWEN, Richard Description of the skeleton of an extinct gigantic sloth (Mylodon) London; John Van Voorst; 1842 [CUL, I]
af, ch, em, fo, ig, rd, sp, sy, tm
NB $83 ; 97$ to $106 ; 137 ; 154 ; 155 ; 162 ; 165$; 166; 170
SB $\square \beta$
100 striking gradations in abortion p.101-106 162 Sloth now seems to be a remnant of large class - Sloth most anomalous if looked at by itself
165 Modifications of teeth in this order extreme - indicating low ebb \& flickering of development
166 approach Birds in some respects

83 28-31m 97 1-4m, 4-6m $98 \quad 1-2 m / 1 u$ "atrophy" $/ 1-2 w$ another term 99 9-10m 100 $11-15 \mathrm{~m}, 23-26 \mathrm{~m} / \mathrm{w}$ entirely aborted 10120 u "fifth" $20-22 m / 20-25 w$ 5th here present absent in Unau. What a gradation of abortion! 106 18-23m 137 17-18m/17u "Thel structure", 31-33m 154 32-34m 155 15-19m 162 30-31m 163 1-4m (Cuvier, Blainville), 10$12 m, 15-17 m 16414-18 m 16516-19 m, 20-$ $21 \mathrm{~m} 1661-6 \mathrm{~m}, 7-10 \mathrm{~m}, 11-14 \mathrm{~m}, 19-20 \mathrm{~m} 167$ $3-5 m \quad 170 \quad 19-25 w$ is Glyptodon in the Phyllophagous group?

OWEN, Richard A history of British fossil mammals and birds London; John Van Voorst; 1846 [CUL, S]
af, beh, ch, ds, em, ex, fo, gd, geo, ig, ir, is, $\mathrm{mg}, \mathrm{no}, \mathrm{or}, \mathrm{rd}, \mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$
NB Owen - Queries?

- p.81.-; 83,7; 99; p212 - Reference to Corsica cavern
p441 \& 432 How far are * Anoplotherium \& Palaeotherium distinct; are they are as distinct as are at present the unequal \& equal-toed Pach-Rum:- or rather were the two Eocene groups of equal and unequal toed animals as distinct, as present 2 groups
p245 width of tusks 160 sp .
SB1 All Introduction
It is important S. America having Mammals in Eocene Toxodon \& Rio Negro \& Miocene Mastodon
Most of cases animals also found in Strata This looks as if record not so imperfect p. 151 How few skeletons even any number of perfect Crania! though enough to make out species
p.7,8,10; 20; 25; 31; 49; 53,5,6; 61,2,7; 74,6; 78; $30,3,6$ to $91 ; 107,9,12 ; 114,7 ; 121 ; 129 ;$ $130,1,3,5 ; 171,3 ; 192 ; 197 ; 202,8 ; 211 ;$ 213,4,5; 220; 236; 243,4; 293,5,6; 300; 311; 341; 334, 342; 346,50,354; 359; 372, 381,5; 388,90,92,97; 413,14,18; 427,29,30,32; 436441; Over
〈over〉
Owen B. Blanca. Toxodon plateum
- p.xxi; xxiv; p.28; How far can close species be distinguished by skeletons for instance American \& English Beaver
How isolated would the elephant be without fossils . How is pachydermata \& Ruminanta fall into 2 new classes not this
Mastodon \& Dinotherium to connect it with Tapir? or Palaeotherium
p.442; p.449; p.451,2,4; p.458; p437,8; 473,8; 483; 488; 493,4; 499,500; 505,8; 510; 512; 514; 520; 526; 540,2; 546,8; 557

SB2 $\square \Re\langle 2$ sheets \rangle
xxi Dinotherium \& narrow t. Mastodon diminish distance between Lophiodon \& Elelphant
xxxvii - On relation of fossil to recent mammals of same districts to xliii no fossil Mammal in N. Zealand - xliv ${ }^{2}$ except seal - Huxley
87. variability in rudimentary premolar in Ursus * spelaeus
111 Badger oldest existing mammal Red Crag
133;2 varieties of Dog * doubtful case Q
173. Domestic cat. not from F. maniculata
197. On the animals which have existed since Peat cd form in Britain.-
212 Rabbit Bones in Corsica
214 Lagomys do \& in Britain N.B variability of Tusks of male Elephant in India is a variable sexual character
261 Southern range of Mammoth in America. p359 of woolly Rhinoceros in Tuscany
296 Mastodon older than Elephas \& intermediate in structure of teeth
334, 342 affinity shown by rudimentary organ
$\langle o v e r\rangle$?
394 Elasmotherium forms link between Horse \& Rhinoceros, especially some fossil Horses.
413 Fossil genera between Sus \& Hippopotamus
432 Anophotherium, remarks on rudimentary teeth in Ruminants; young of latter approach anophotherium.- (N.B. A form whilst forming would not spread? © p. 436
540 on Rudimentary teeth in Whales, \& embryonic character in Ruminants
514 Bos longiform parent of British wild cattle
title page wbo 1846 xiv $31-33 \mathrm{~m}$ xv $35-36 \mathrm{~m}$ xvii $21-24 m$ xx $16-19 m, 29-31 m$ xxi $1-3 m$, $25-26 m, 30-31 m$ xxii $1-3 m, 10-11 m$ xxiii 24 33 m xxiv $1 \mathrm{~m} / \mathrm{w}$ at same time $20-21 \mathrm{~m}, 29 \mathrm{~m}$ xxv $1-8 m, 16-19 m$ xxvi $17-20 \mathrm{~m}$ xxviii $12-$ $16 w$ about Tiger swimming a few miles xxxi $25-27 m$ xxxii $7-9 m, 21-27 m$ xxxiii 19-20m (Nilsson)/w see Description to understand fully $w b$ altogether 2 . Bos Primigenius \& longiform 2. Bisons priscus \& minor xxxiv $25-30 \mathrm{~m}, 32-33 \mathrm{~m}$ xxxv 33 m xxxvi 1-5m, 6-10m xxxvii $1-2 m$, 5 w Hippopotamus 7-11m, 14-19m, 27-31m xxxviii 9-11m, 13$17 \mathrm{~m}, 18-19 \mathrm{~m}$ xxxix $10-14 \mathrm{~m}, 15-16 \mathrm{~m}, 31-32 \mathrm{~m}$ xl 11-12m xlii $9-13 m$ xliii $4-6 m, 17-19 m$ xliv $6-8 w$ (see my Journal) $10-13 \mathrm{~m}, 23-26 \mathrm{~m}$ xlv

OWEN, FOSSIL MAMMALS
3-8m 7 11-13m $88 \mathrm{~m} / \mathrm{u}$, 21-23m 918 m , 20$24 m, 23 m 105-6 m$ (Lyell) $2021-22 m 259-$ $11 \mathrm{~m}, 13 u$ " "gigantic Beavers", $14 u$ "watermole", 17-19m, $22 \mathrm{~m} 271-3 \mathrm{~m} / 3 u 2821-22 m$, 25-28m $3133 m 495-8 m 52$ 24-26m (Cuvier) 53 13-16m, 24-28m 54 1-4m, 31-34m 55 16m, 27-28m (Cuvier) 56 9-11m, 31-34m $619-$ $12 m 623-6 m 67$ 29-33m 69 15-16m, 27-29m $743-6 m 766-8 m, 9-14 m$ (Cuvier) 78 10-14m, 28-33m, wb Philippi shows in shells, that decrease in size does not go with increasing rarity $791-3 m \bullet, 5-6 m \bullet 808-10 m, 11-14 m 81$ 3-4m/4u "verylexceptions", $25-27 \mathrm{~m} / 26-27 u$ "from I character" 83 24-25u "in lobliterated" 86 $23-25 m 87$ 18-20m, 21-22m/w \therefore direction variable? $8820-23 w$ firm species are hard to settle from Bones 91 9-17m 99 5-7m/5-6u "the | destructive" 107 1-3m, 27-34m 10914 17 m 111 22-24m 112 16-21m 114 10-13m, 15$16 m 116$ 4-5Q 117 18-19m/u "the \mid Weasel" $12121-22 \mathrm{~m}, 33-34 m 1264-5 m 127$ 27-30m/ 29u "Wolf 1 Dog" 128 28-31m 129 12-21m 130 $2 m, 5-12 m, 19-21 m$ (Cuvier, Daubenton) 131 $4-7 m, 19-22 m, 24-30 m, 32-33 m 1336-7 \mathrm{~m} / 6 u$ "two Inotably", 11-13m (Blainville), 21-22m/! (Schmerling), 22u "recent", 23u "Human remains" 135 2-4m/! (Bell), 30-32m 171 9-15m 173 12-15m, 19-20m, 22-23m (de Blainville) 178 12-19m 192 7-9m 197 11-26m 202 8-16m (Lyell) 208 12-14m (Bell) 211 16-21m, 24-26m $21215-16 \mathrm{~m} / \mathrm{u}$ "osseus I Corsica"/ w See to this as change of surface $21315-17 \mathrm{~m}, 21-24 \mathrm{~m}$ 214 8-10m, 14-15m $21527-28 \mathrm{~m} 216$ 4-7m, $13-15 m 2201-4 m 2323-8 m 2361-5 m 243$ 31-33m $24433 \mathrm{~m} 24524 u$ "hundred | sixty" 261 $15-17 m 293$ 16-21m 295 17-22m 296 2-5m, 27-31m 300 10-11m, 31-32m 311 10-13m, 15$19 m 334$ 1-12m, $9-13 m$ (Cuvier)/w affinity from abortive organs $3416-13 m, 36-38 m 342$ 20-26m, 33-35m (Pallas) 346 1-2m/2u "Caldy Island" 350 13-19m 354 12-17m (Pallas)/12$22 w$ England \& N. America good case of range, interrupted, with Siberia between 359 $26 \mathrm{ua} / 23-26 \mathrm{~m} / \mathrm{w}$ This is the cold animal 32 m 372 8-13m 381 4-7m $38423-25 m, 28 m 3859-$ $10 \mathrm{~m}, 14 \mathrm{~m}, 23-25 \mathrm{~m}$ (H. von Meyer) $3885-6 \mathrm{~m}$ 390 29-30m, 33m 391 9-15m 392 10-12m, 21$22 m$ (von Meyer) 393 1-4m, 22-26m, 27-33m $3941-5 m, 7-9 m 3971-3 m, 14-16 m, 19-21 m$, 29-33m/w 4 species in England wb ? whether Drift \& Pliocene \& caverns will not turn out very different periods 413 13-16m, $23 \mathrm{~m} 41425 \mathrm{~m} / \mathrm{w}$ Eocene $4151-3 \mathrm{~m} 41814 \mathrm{~m} /$ $14-17 w \mathrm{X}$ analogical or real $18-22 \mathrm{~nm} 25-28 \mathrm{~m}$ $42711-12 \mathrm{~m}, 16 \mathrm{~m}, 20 \mathrm{~m} 4292-4 \mathrm{~m}, 20-22 \mathrm{~m} 430$ 12-15m 432 12-13m/7-16w Reference to Lamarcks views $16-17 \mathrm{~m}!/ / \mathrm{u}$ "or rudimentary", 19-20m, wb Owen says young of present

Ruminants in not having horns \& rudimental teeth approach Anoplotherium $4335-12 m$, $31 m$ (Goodsir) 435 17-20m 436 27-30m, 31$34 m 441 w t / 1-18 w$ Did ruminants then exist in some other quarter $-1-3 m, 4-5 m, 9-10 \mathrm{~m} /$ $10 u$ "forlRuminant", $15-18 m / 18 u$ "young Musk-deer" 442 26-28m 443 1-8m 449 32-34m 451 6-8m 452 4-5m, 13-14m, 18-19m, 29$30 \mathrm{~m} / 29 \mathrm{u}$ "The l both" 45332 m 454 7-10m, 26$29 m 45828-29 m / 28 u 467$ 19-25m 468 3-7m 473 3-9m 478 8-10m, 11-14m, 18-20m, 2328m, 29-32m 483 25-29m 488 9-13m, 19-20m $4902-4 m, 8-10 \mathrm{~m} / 9 \mathrm{u} \uparrow / 10 \mathrm{u} \uparrow$, $14-15 \mathrm{~m}$, 19-20m 493 24-30m $49428-31 \mathrm{~m} 4956-10 \mathrm{~m}$, 19-21m $4963-9 m, 17-19 m 49723 x$, wb This seems whole evidence of Bison minor 499 21-23m/w now extinct? 500 12-20m, 31-33m (Bell)/ $w \mathrm{~V}$. p. $510505 \quad 2-4 m 50818-20 m 509$ wt Nillson (V. Annals 1849 p.350) makes another doubtful species B. frontosus $1-2 m$ (von Meyer) 2-5m (Cuvier) 3x , 7-10m, 19-22m/ 21x/21-22u "primitive \mid Bos", $31-32 \mathrm{~m} / 32 u$ "species" $510 w t / 1-29 w$ NB The Rhinoceros, Elephant Hippotamus (Horse?) Bos primigenius \& Bison priscus all having had such immense ranges; is opposed to the cattle of different parts of Europe being descended from several species. $1 u$ "or variety", $10-13 \mathrm{~m}, 11-13 \mathrm{~m}, 27-31 \mathrm{~m} 5116-11 \mathrm{~m}$ (Ball), $30-32 m \quad 512 \quad 33-35 m, \quad 36-39 m / 38 u$ "havel Bos" 513 1-2m/x 514 7-14m 515 6$9 m, 18-22 m 520$ 14-16! 526 10-11m $54025-$ $33 m 5411-8 m, 26-27 m, 32 u$ "eосепе"/31-33m/ $w \leftrightarrow$ only probable age $\rightarrow 5425-7 m$ 546 3-8m (Cuvier, Mantell) 548 29-33m/31u "still lany"!! 557 4-5m/u "referred lapproximated", 21-25m

OWEN, Richard Lectures on the comparative anatomy and physiology of the invertebrate animals 2nd edn; London; Longman, Brown, Green \& Longman; 1855 [CUL, S]
ad, af, beh, br, ci, cs, em, ex, fg, gd, hl, ig, oo, phy, sl, sp, sx, sy, t, ti, tm, v
SB1 91; 110; 125; 130; 152; 153; 157 to 162; 179; 183; 187; 194; 208; 211; 212; 220; 223; 236; 239; 254; 264; 267; 268; 297; 301; 324; 334; 339; 342; 346; 354; 399; 405; 406; 425; 437; 439; 443; 455; 459; 467; 476; 479; 498; 508; 521; 525; 527; 528; 537; 543; 560; 563; 565; 566; 576; 589; 603; 615; 638; 642; 643 to end
SB2 1β
86 Union observed in Planariae
125 Hydra sometimes male, sometimes female, sometimes both \underline{Q} variable by double organs p. 137 Qu
151 Spermatozoa escaping from Bryozoa Ch. $3{ }_{\circ}$

161 My notion of relation of Medusae \& Hydrozoons
179 On dioicous Acalephae
213 Synapta only hermaphrodite Echinoderm 221 Parasite of Synapta, wd seem impossible to cross
239 On Homology of Tracheae (?) Q
256 Earth worm \& Leech unite
264 Great diversity in having or not metamorphosis in Annelids
268346 In low organized classes, there is extreme gradation in forms - Perhaps more extinction in lower than in higher forms
297 Thinks Larvae typical of Epizoa \& Cirripedes!
425 in all insects the 1st segment is quickly modified \& most modified
439 Owen compares Embryo of Vertebrate, of independently living to larva
443 Arachnids a short special branch, beginning very low
455 Spiders with both pulmonary sacks \& Tracheae
459 Hermaphrodite Acarus 467 do
477 Solitary Ascidians of distinct sexes, aggregate hermaphrodite
521 Lamellibranchs generally dioicous
527 Doubts locomotion in larval stage of Molluscs
539 Pteropods coitus reciprocal
543 Gastropods, before Lias have simple shell-mouths
560 In a few Gastropods pulmonary sack combined with Branchiae
565 Bulini make nest for eggs with leaves is it water tight? in Coll. of Surgeons
567 Larvae of naked Mollusc Tritonia survived for 2 weeks in sea-water
577 Nautilus Pompilius \& Spirula only representative of the vast assemblage of old Cephalopods - (single species in genus) Vide p. 650 Classification
603 Belemnite combines characters now separated
638 No Metamorphosis in Cephalopods \& I believe none in Spiders
643 Vegetative repetition
645 all organisms alike in very earliest stage - 647

648 Laws of embryological development
$86-9 m, 10-17 m 29$ 39-41m (Barry) 38 32-34m 39 32-34m, 33-34m 42 34-40m 58 12-17m 69 $6 \mathrm{~m}, ~ 7-8 \mathrm{~m} / 7 \mathrm{u}$ "androgynous", $12-15 \mathrm{~m} / 14 \mathrm{u}$ "small orifice" $115 u$ "pore 1 male", $22-24 m 86$ 34-37m $9134-37 \mathrm{~m} / 35 u$ "dioecious generation" $9240-42 w$ <renumbering of lines of text which are wrongly ordered〉 93 1-6w 〈renumbering
continued) 1, 6, 7, 8, 2, 3, 4, 5, 9110 36-39m $11827 \mathrm{~m} 12515-17 \mathrm{~m} / \mathrm{Q} 1307-14 \mathrm{~m}$ (Ehrenberg and Krohn) $13522-25 m 13714-19 m / Q 150$ 15-16m, 33-35m (Van Beneden) 153 16-19m/w but others are dioecious 157 14-21m 159 12$24 m 16014-19 m, 23-25 m 1616-9 m / 8 u$ "few analogous "/wt/1-22w If some larvae of Beetle truly bred in this state we shd have then have parallel of Hydrozoa \& Acalephae. If the male glow-worm had been like female then wd have been case. But all Acalephaeought to have hydrozoa larvae, without the embryo be concealed in egg state i.e. either Hydrozoa or none.- p183 some have \& p187 40-42m 162 1-6m 179 11-13m, 17-18m $18235-38 m 1835 c \quad " 3$ " 7 7-12m 184 fig.w The Medusa first produces an infusoria planula which turns into a polyp $18735-37 \mathrm{~m}$ 188 1-3m 191 13-15z 198 1-6z 199 6u "starfishes", 8-12m 208 8-9m $21138-40 \mathrm{~m} 21234$ $36 m 2131-3 m, 7 m 216$ 39-43m (J. Müller) 217 8-11m (von Baer) 220 29-33m (J. Müller) 221 11-16w Mollusca parasite of Synapta 30$32 \mathrm{~m} / \mathrm{w}$ seems impossible to intermarry $36-$ 40 m 223 15-25m, 27-31m 236 1-5m 23924 $34 m / 26-27 Q / 29 u$ "lateral sacs" $33-34 u \leftrightarrow 254$ 37-40m 255 22-23m, $25 w$ worms couple $28-$ $29 m 256$ 18-19m, 30-31m 264 6-19m, 21-24m 267 21-28m $268 \quad 6-7 m, 26-29 m$, fig.114.w Extinction. 269 14-15m $28333-37 \mathrm{~m} 297$ 1-2m/ $!/ 1 u \leftrightarrow, 41-42 \mathrm{~m} 301 \quad 37-39 \mathrm{~m} 32427-37 \mathrm{~m} / \mathrm{w}$ Daphnia do their females or larvae undergo metamorphosis 325 31-36m $3341-4 m 339$ 5$9 w$ not adapted to active life 342 14-30m 346 7-11m/7-16w retrograde development or rather in another line, less height.- $23-26 \mathrm{~m} /$ 26-27u "the lvaried" $/ 19-28 w$ because not really lowest, but retrograde developed 353 5-6m 354 40-43m 399 10-13m, 32-34m 405 $29-33 m \quad 406 \quad 17-21 \mathrm{~m} / \mathrm{w}$ I wonder whether anyO selection 425 5-9m 437 17-21m 439 $15-17 \mathrm{~m} / 16 u$ "the structure", $37-41 \mathrm{~m} 443$ 20$25 m 44536-41 m$ (Simon) $4465 u n$, $8 u$ "waterbear" $447 \quad 40-43 m \quad 455 \quad 23-29 m \quad 459 \quad 24 a$ "Macrobiotus"|24u "is androgynous"/19ua/19$22 w$ is acquatic p446 23-26w p. 446 see fig. of.- 466 41-43m 467 36a "Macrobiotus" aquatic $37-38 \mathrm{~m} / 38 \mathrm{u}$ "hermaphrodite", $39 \mathrm{w} / \mathrm{wb}$ Inhabits follicles in skin - p. 445 they swim in Pus- \therefore hardly land animals $47633-35 \mathrm{~m} /$ $34 w-477$ 37-38m (van Beneden) 479 7-10m (Milne Edwards) 480 19-23m 481 15-23m 483 $31-32 \mathrm{~m}$ (Krohn) $49834-37 \mathrm{~m} 50813-19 \mathrm{~m} / \mathrm{w}$ nearly terrestrial $521 \quad 35-37 \mathrm{~m}$ 522 $26-28 \mathrm{~m}$ (Krohn) 523 2-4m, 23-26m 525 27-31m, 29$32 \mathrm{~m} 52733-40 \mathrm{~m}$ (Forbes), 42 m 528 11-13m, 14-16m, 29-32m 529 19-23m, 36-38m 537 40$41 m 53931-33 m 541$ 1-2m 543 22-25m 560

OWEN, INVERTEBRATES
$7 m, 12-14 m 5631-2 m 5658-10 m 566$ 9-10m/ w how transported $56718 w$ Tritonia 19-20m, $41 m 568$ 30-34m 576 24u "fromltypes", 35$37 m 577$ 5-6m/6ua/w Dibranchial 589 17$18 \mathrm{~m} / 18 u$ "ink-gland" $60311-17 m 605$ 8-12m 615 1-2m 638 21-30m/21-24w p. 466 Q 34$38 m 64122-27 m 6421-6 m, 34-37 m 6431-5 m$ $64521-24 m, 30-36 m 64615-17 m 647$ 11-14m, $27-35 m 6482-7 m, 10-18 m, 18-22 m, 27-31 m$

OWEN, Richard On the nature of limbs London; John Van Voorst; 1849 [CUL] ad, af, ch, ds, em, fo, h, ig, rd, t, tm, ts, v

NB 1 look at Owens Archetypus as more than ideal, as a real representation as far as the most consummate skill \& loftiest generalizations can represent the present forms of Vertebrata.- I follow him that there is a created archetype, the parent of its class
NB2 2; 9
$S B \square \beta$
2 the primal pattern of all the modifications of a part
9 Man does not trammel himself in his inventions by any common type
10 Final causes not sole governing principle 14; 37
13 Capital comparison of hand of Mole, Bat \& Fin
33 In Elk rudimentary hoots of use in marshy ground
35 Abortion of one toe variable in Ourang
39 a desire to ascend to cause of Homologies
40 On Head of Human foetus formed of pieces for parturition not applicable? Chick
45 Horses legs \& Lepidosiren good contrast if simplicity from abortion \& original
45 Only rudiment of Pelvis in Whales - 78 rudimental limbs in Boa
82 Lepidosiren realises nearly ideal Archetype (see my remarks at end of Volume)
84 Some think falsely (I argue. that conformity of plan is opposed to idea of design.
86 Alludes in grandiloquent sentence to some law governing progression, guided by archetypal light - \&c.-
99 Vertebrae of head \& thorax first developed
103 on variability of coalesence of segments of vertebrae.-
115 Rudimental tail proportionally longer in embryo man, than subsequently.

2 28-30m/28-29u "essentiality|form", $35 u$ "primal pattern", $36 u \leftrightarrow 316-18 \mathrm{~m} / 17 \mathrm{u}$ "special homology" 8 zb 9 33-36m 10 9-11m 13 1-3m, 22-25m, 33-35m 14 3-6m 15 1-2m 30 9-14m 32 19-23m 33 20-24m/21u "dangle | project" 35 $6-8 \mathrm{~m} / 7-8 u$ "commonly", $10 u / w \notin 3628-31 \mathrm{~m} 37$ 27-36m 39 14-28m 40 6-11m, 24-26m $4522 u$ "lepidosiren" $19-23 \mathrm{w}$ in all these cases the tibia \& fibula shows that they are simple by abortion \& it is rash to argue from. about original simplicity of limb. 23-24m/13-25w apparently aboriginal simplicity. $31-35 m / 34 u$ "rudiment" wb The contrast between the 8 almost singly serial bones of Horses leg. (p8) \& appendage of Lepidosiren good instance of * rudimentary \& primeval or transitory stage $4928-31 m, 35 m 5610-14 m /!/$ $10 u$ "return lit"/12-13u "development I point", $16-18 m \quad 59$ 17-18u "osseous fishes"/17-21w What is relation in Sharks? 78 21-29m 79 15$19 m 8233-35 m 8412-14 m, 21-34 m 867-9 m$, $12-17 \mathrm{~m} 8934-39 \mathrm{~m} 9639-40 \mathrm{~m} 97$ 1-8m 99 29-36m 103 27-30m/?, 33-37m 115 6-10m

OWEN, Richard Palaeontology Edinburgh; Adam \& Charles Black; 1860 [CUL] e, geo, ig, tm
NB 57 \& 69 shows how important record is 70; 132; 145; 150; 152; 199 Enaliosaurians . SB $\square \Re \rightarrow$
57 \& 69 \& 70 shows how imperfect record of Mollusca is
132 gradation in ossification of first bones 145 generalised ancient member of Sturgeon Family
150 The History of Fishes indicates mutation rather than development - good remark -
57 2-4m 69 30-33m $7012-15 m 13216-19 \mathrm{~m} / \mathrm{w}$ grades $14515-19 m 15016-22 m, 31 u$ "special piscine type" 151 10-14m 152 6-8m 199 9-21m

OWEN, Richard Palaeontology 2nd edn; Edinburgh; Adam \& Charles Black; 1861 [Down, S]
25 9-14m, 24u^, 27u• 27 22-25m 28 5-6m 30 19-31m 39 9u^ 54 32c/wも $552 u$ "long", 8$10 \mathrm{~m} / 9 \mathrm{u}$ "mid", 24u* 57 1u "havinglspires", $4 u$ "deltidium", $11 u$ "internal partitions"
8
OWEN, Richard On parthenogenesis London; John Van Voorst; 1849 [Botany School, I to Alexander Bain]

OWEN, Richard On parthenogenesis London; John Van Voorst; 1849 [CUL, I]
br, ci, em, fg, h, he, in, phy, sp, t, ti, v

NB 13; 25 metamorphosis of epizoic Crust
5, 6, 7, 8 Pangenesis
25-26 - Owen's Belief
64 do
75 Pangenesis - buds \& ova alike
Remember that Metagenesis (generation or growth within) blends into Metamorphosis any explanation for one must hold for other.SB1 ロケ 13; 20; 25; 35; 53; 62; 64
To Owen's view, there appears to me \& 3 objections.- 1st the astounding diffusion of the spermatic force in many mosses \&c which for centuries do not breed - 2d the vis medicatrix - nails produce over stump in Man's \& fingers, which facts blend into gemmation. 3d facts of buds \&c partaking of character of old time, \& not varying, whereas seeds go back \& take new characters. $=4$ th (p26 - growth \& gemmation are hardly distinguishable
SB2 $\square \beta$
13 Larva of cirripede more typical of class than Mature Barnacle
title page wb $1849527-35$ "..."/32-35m 6 8$9 \mathrm{~m} / 8 \mathrm{u}$ "individualitylspermatic" 7 26-28m 8 22-23m, 25u "legacy|virtue" 9 29-34m 13 4$8 m 207-16 m$ (J. Müller) 24 19-22m, 28-31m 25 14-17m, 21-24m/25-27m/"..."/23-27m/17$34 w$ He uses expression that it is Metamorphosis - growth within $36 \mathrm{~m} /$ "... 26 1$5 m, 6-10 \mathrm{~m} / 6 \ldots$... $8-22 w$ all growth may be thus called parthenogenesis for metamorphosis gradates into metagenesis 35 29$35 m 535-11 m 623-8 m 643-7 m 7511-13 m$

PACKARD, Alpheus Spring (the younger) A guide to the study of insects Salem; Essex Institute; 1868 [Down]
beh, sx, tm
NB1 124 On Cells of Bees
NB2 149; 177- Mutillariae females wingless, but in 2 species females winged; Habits of Ants
177 28-32m 181 10m (Huxley, Latreille, Kirby, Spence)

PACKARD, Alpheus Spring (the younger) Insects injurious to forest and shade trees Washington; Government printing office; 1881 [Down]

PAGE, David Man, where, whence and whither Edinburgh; Edmonton \& Douglas; 1867 [CUL]
beh, cc, ch, ex, geo, gr, h
NB . Man; 55; 62 good Q; 88; 92; 98; 142; 153; 171; Extinction of old civilisations 55 17-24m (Agassiz) 62 6-8m/1-12w Tropic Dr Hayes * yet little change, not more than between Tropic of old \& new world $8-13 \mathrm{~m} /$ $16-22 w$ Effects on Habits of Life $8812-19 m$, $19-23 m 926-16 m / 9 w$ refer to 98 wt but not through inheritance $3 a$ "members" $/ 3-8 m 142$ 22-27m (Huxley) 143 1-7m 152 24-27m 153 $1-5 m / 1 w$ Lyell 170 12-17m $171 \quad 23-28 m$ (Owen)

PAGET, James Lectures on surgical pathology vol. 1; London; Longman, Brown, Green \& Longman; 1853 [CUL]
af, beh, cc, ch, che, ct, em, h, he, in, pat, phy, rd, sx, t, ta, tm, v, y
NB p.25;32; 39 \& 41 Size of Bloodvessels through attention to part- Expression; 63; 67; I have read First 3 \& last Sections; 69; 71; All read; Ch 7 wd be worth reading; Pangen \leqslant; 1.11 ; p. 13
SA $\langle p p .38-39\rangle \square \beta$
Lectures p39 \& 41 On thought increasing Blood-vessels
SB1 Pagets Pangenesis $1 \otimes$

- p. 11 growth of new tooth \& hair by offset go for simile with cell-gemmules
- p. 13 each hair
∞
a feather lives its appointed time \& then dies.
p. 19 On differences in parts or cells appearing alike as shown by symmetrical diseases due to * matter in blood which has affinity with those certain parts
$\checkmark 27$ On affinity of each part for

PAGET
certain substances in blood Kidneys for urea \& for certain morbid poisons. as chancre.Hydrophobia
50 scar propagating itself for years; \& bears on blood altered for life by certain diseases
72 transplanted spur of cock, excessive growth of.-
$150 \checkmark$ Repairs of parts wonderful provision ready though so seldom wanted.- adult repaired by adult form - tail of tadpolehence same force which was Oefore occupied in its maintenance during wear \& tear
154 power of reparation inverse to amounts of power, already consumed in development of individual
158 Gemmation retards repair of injury
159 Nais cut into $30-40$ pieces \& all formed individuals
163 Insects which do not go through much metamorphosis can alone when adult repair injuries p. 164 power of development of embryo same as that * in restoration from injury
SB2 181 \& 331 The theory of coagulable lymph developing structure \& as I supposed containing gemmules
219 - cuticle on sole thicker than elsewhere \& so renewed, independent of pressure. good sentence to quote under Nisus, \& on identity of power of development \& of repair
239 Q On the tissues of scars gradually \& slowly altering \& assuming proper character 243 first material thrown down in uniting Bone.
343 assimilative power was assigned formerly to each tissue or the coagulable lymph in the vicinity
357 False membranes assume character like adjoining parts 369 Lymphatics
384 on Pus cells

- 254 Repair of Bones
- 256 good

SB3 Pangenesis; Pagets Lectures on Path.
11; 13; 19-20; 22 Laws of Variation ; 27; 32 *; 50; 58; 60 good - refer to in *; 72; 150; 154; 158; 163; 164; 181 good; 199 . Nisus formativus; 209 quote; 239; 243; 263; 268; 290; 331; 343; 351; 357 Ask- Nisus Formativus; 384; 483 Direct Action
I must say that Paget maintains that ordinary reparation \& growth \& gemmation \&c are all the same.-
[I shd say that unknown cause prevents a man cut in twain from reproducing - partly too much injury]

SB4 $\square \beta \rightarrow$

25 Rudimentary organs serve to excrete matter Human foetus covered with wool
27 Kidney increases \& does double work if one destroyed 67 skin growing thicker from use
39,41 on thought of part increasing bloodvessels
71 on growth of Hair, near where surface inflamed 73
72 enormous growth of spur on comb did not decrease spurs on legs
SB5 \quad e
Mem.- it is possible that gemmules may come from surrounding tissues \& be developed in the Lymph - case of Negroskin looks like this so with elastic tissue, which comes afterwards.-
<over, part co>
Mullers Phys I p410 speaks of effused Lymph as transport \& formation of new parts as due to its reciprocal action on inflamed adjoining structures.
[p416 regenerated skin in Negro after a time became black.- shows that gemmules entered after a time over

1 zb $112 u$ "shows I connection"/wt/1-6w These germs must be very different from my gemmules; far larger \& with power of male \& female gemmules uniting - probably always distinct \& not united into germ like that of tooth. Yet there is analogy in these cases. 15-19m, $15 u$ "fromlgerm", 16-17u "separating|germ", 28-34m (Kölliker)/15-34w These germs may be compared with offsetbulb 13 15-19m $143 m 1815-24 m 193-5 m 20$ 11-16m 22 7-10m (Budd), 12-16m 25 21-32m/ $22-24 w$ like milk teeth $33 m 261-9 m, 9-14 m$ $271-9 w$ special affinities $12 w$ Hydrophobia 13-16m, 17-20m $325-12 m / 9-15 w$ Horns for fighting $\quad 13-17 \mathrm{~m}, \quad 19-24 \mathrm{~m} \quad 33 \quad 10-16 \mathrm{~m}$ (Treviranus) 39 29-30m 41 14-17m $5015-25 m$ 58 12-13m, 14-15m/18a "But" $/ w$ not $23-28 m$, 28-33m $597-11 m, 14-17 m, 17-18 m 601-31 w$ How on my view can milk $2 d$ teeth, what are effects of old first teeth resemble those of father $5-9 \mathrm{~m}, 17-21 \mathrm{~m}, 25-30 \mathrm{~m} / \mathrm{w}$ important $31-34 m / 34 w$ good $613-5 m \quad 6312-13 \mathrm{~m} / \mathrm{u}$ "dependence 1 composition" 67 9-16m 69 5-9m, 22-26m 71 10-14m, 22-25m/w Bears perhaps on wet producing more hair $35 \rightarrow 722-6 \mathrm{~m}$, 16-18m $734-6 m 1502-6 \mathrm{~m} /{ }^{\prime \prime} . . . " / 6 c / 7 c \notin, 32-$ $34 m 151$ 1-3m/1-2u "tolparts", 9-29w Newport has some remarks on this in Myriapoda 31-34m/w tail of tadpole which cut off $15215-19 \mathrm{~m} / 17 x$ 154 $7-9 \mathrm{~m}, 13-18 \mathrm{~m} /$ $13-16 \mathrm{~m} / 11-21 w$ when body grows old
gemmules like rest of structure cannot multiply． 155 1－2m $15827-29 m$（Trembley） 159 2－5m，8－11m（Lyonet）／9u＂Nais＂ 163 6－8m／w some mature incr $1644-10 \mathrm{~m} 1818-14 \mathrm{~m} / 1-$ $31 w$ must contain gemmules of many kinds； coag．lymph．I suppose is not cellular but forms cells 29－33m，wb p198－coagulable lymph is apparently＊exuded always with＊ some inflammation．－ 182 1－6m，23－30m 187 $\begin{array}{llllll}5-7 m & 198 & 10-12 m & 199 & 3-6 m / w & \text { false }\end{array}$ membranes $2091-2 \mathrm{~m}, 11-18 \mathrm{~m} / \mathrm{w}$ from Coag Lymph but has said before on Hairs $28-31 \mathrm{~m} /$ ＂．．．＂ 210 6－8m 217 1－3m／wt outgrowth of Blood－vessels into granulations 238 13－16m， 19－22m $2392-4 m / 4 u$＂changelyear＂， $7-11 m$ ， 12－19m $24328 w$ Bones $29-31 m 2548-13 m$ 256 11－13m／12u＂exposed＂，14－15m 257 9－14m $26330-34 m / 30 w$ cartilage 268 11－12m 290 10－12m 331 9－10u＂coagulable lymph＂， 11－19m，11u＂inflammatory exudation＂， $12 u$ ＂pellucid＂， 13 u ＂through 1 capillaries＂，17－19m， $34 m 333 w t$ These are evidently formed 2－ $5 \mathrm{~m}, 2 u$＂coagulation Iordinary＂， $3 u$＂corpuscles form＂， $9 u$＂corpuscles 1 cells＂， $10-14 m, 15 u$ ＂first＂， $20-22 u$＂not I nucleus＂， $23 u$＂in I hours＂， $24 u \leftrightarrow, 26 m 3347 u$＂exposes 1 nucleus＂， $9 u$ ＂thelcells＂， $15 u$＂various degenrations＂， $15 u$ ＂pus－corpus＂ 335 3－10m，31－35m 343 22－34m 351 1－3m，16－18m 356 6－10m，10－12m， 14 $15 \mathrm{~m}, 33-34 \mathrm{~m} / 34 u$＂fibrous \mid ligamentous＂ 357 $2 u$＂bone＂， $2 u$＂osseus＂， $3 u$＂epithelium＂， $3 u$ ＂epithelial＂， $7-9 u / 7 w$ Bone？？14－18u↔，23－ $27 u \pm, 32-34 m 369$ 11u＂that 1 first＂ 384 28－ 31m／19－31w Differs from L．Beale 483 20－ 30 m

PAGET，James Lectures on surgical pathology 3rd edn；London；Longmans，Green \＆Co．； 1870 ［Down，I］

PALEY，William A view of the evidences of Christianity London，1822， 7 vols［CUL．1900］ vol．1， 130 介11－8m 307 9－11m $3156 c$ ＂fortuis＂ 342 11－13m
vol． 2 NB 159
33 11－15m 34 介15－10m 39 wt Peter \＆John 41 wt Stephen $18 w$ persecut $4311 w$ James $44 \uparrow 6-5 w$ Barnabas $453 u$＂one＂$/ w$ Paul $\uparrow 5 w$ Luke 46 wt $57 \Uparrow 10-5 \mathrm{~m} 80 \Uparrow 2 w$ Matthew 81 1－10w Mark Luke John 140 1－7m，9－17m，9－ $17 \mathrm{~m}, 20 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u}$＂our Digesta＂，$\uparrow 10-9 \mathrm{~m} / \mathrm{u}$ ＂Old \mid Testament＂，$\uparrow 6-5 m 19016 u$＂Nothing＂ $\mid w$ the letting of a house some times depends upon it！ 233 18－25m 236 介18－1m $238 \Uparrow 15-1 m$ 239 1－6m，13－16m 257 Im 258 1－20m 263 1－ $12 m 264$ 介7－1m $2651-20 \mathrm{~m} 269$ โm 270 1－6m 272 ปm 273 ปm 274 fm 275 ปm $2781-15 m 280$

1－6m $2899 m 30913 m 3106-10 m, 16-22 m$ 335 介18－1m $3361-12 m 341$ โm $342 \uparrow m 385$ โm $3861-8 m 393 \uparrow 20-1 m 394 \mathrm{\imath m}$
vol．4，xxii＂vi－xxii＂．m xxiii＂Part II＂．m ，＂x－ $x i i " m / w$ read＂Part III＂．m，＂Book $I V^{\prime \prime} . m / w$ read＂Book V＂．m／m xxiv＂Book VI，ch x＂．w read
vol．7，vii－xiv 〈dates between 29 November 1840 and 4 September 1842 written against contents entries＞

PALM，Ludwig Heinrich Über das Winden der Pflanzen Tübingen；C．Richter； 1827 ［CUL，pre－B］
gd，mhp，or，phy，sp，v，t，wd
NB1 Phaseolus cirrosus； 29 \＆ 52 Momordica winds to left； 52
NB2 p． 34 Hops
NB3 ${ }^{\text {s }}$ Species Theory
p． 26 Convolvulus sucking plant like Cuscuta．－origins of new habit－Anagous var．see p． 45 perhaps describes growth of papillae of Cuscuta
41 on certain plants becoming＊Twiners－ good analogous variation．－see my Paper on Climbers
p45 On growth of Cuscuta
p2 Movements of Plants
1 介4－1m 2 19－21m／19u＂Calcana＂ 6 17－23m／ 23u＂Fünftel＂， $26 u$＂ 6110 ＂ 7 6－7w 4／5ths 10 $27-32 m / 27-28 u$＂die iführen＂ $113-7 m / 4 x$ ， 19u＂Blumenstiele＂，21u＂Amplideen＂，22－24m， 32－34m／33u＂Blattstiel＂ $1218 \mathrm{~m} / \mathrm{w} 42422 \mathrm{~m} / \mathrm{w}$ $33924 m / w 37829 m, 31 \mathrm{~m} / \mathrm{w} 58933 \mathrm{~m} / \mathrm{w} 402$ $132 m / w 66433 \mathrm{~m} / \mathrm{w} 653142 \mathrm{~m} / \mathrm{w} 686 \mathrm{~mm} / \mathrm{w}$ $5118 \mathrm{~m} / \mathrm{w} 52412 \mathrm{~m} / \mathrm{w} 53816 \mathrm{~m} / \mathrm{w} 28120 \mathrm{~m} / \mathrm{w}$ 205 21m／w $20523 m / w 15825 m / w$ • 713 ？27－ 28（line across page），29－31w all world not－ Lindley $1512 m 16$ 17－20m，32－34m 17 6－8m $18 \quad 8-10 m \quad 26 \quad 10-19 m \quad 27 \quad 2 m \quad 28 \quad 25-27 \mathrm{~m} /$ $26 u$＂Arten 1 Gattung＂，30－31x，30u＂wahr－ scheinlich＂，31u＂Gattungen｜natürlichen＂ 29 14u＂Passiflora＂，14u＂Mormodica＂ $3031-34 \mathrm{~m} /$ $x \$ / 32 u$＂Stengels 1 sich＂ $3226 m 343-4 m, 6-$ $8 x, 13-17 m * 3531-32 m 413-4 m / x * / u \leftrightarrow$ ， $15-20 m, \quad 22-26 m / x * 26-28 u \leftrightarrow / 28-30 \mathrm{~m} / 25-$ 30 w wild plant $426-9 \mathrm{~m} / 7-8 \mathrm{u}$＂es 1 Habitus＂， 21u＊ 43 10u＂Periplora＂，14－16x $/ u$＂denn Aesten＂ $459 w$ not read $4819 u$＂sich। Gegenstände＂$/ 17-21 \mathrm{~m} / \mathrm{w}$ Mohl devices 52 11－ $15 m 53$ 27－29！，28－30！ 54 15－17m 55 3－ $6 \mathrm{~m} / 4 x \geqslant / u$＂für 1 hält＂， $26-27 \mathrm{~m} / \mathrm{u}$＂sind \mid Blum－ enstile＂，29－30x 31u＂Sielvon＂，32－33u ＂und｜untersten＂ $565-12 w$ do not curl up 12－ 14x $/ \mathrm{m} 57$ 14u＂Cardiospermum＂，16－24m／22－ $24 m$ ， $32-34 m 585-7 m / 5 x * / u \star, 30-34 m /$

PALM
$34 x / 23-34 w$ Cirri more like Ivy Plants 60 $12-14 m, 14-15 x / m 6111-12 m, 23-29 m / 14$ $29 w$ Will not twist lvy 62 27－28m／28u 63 10u＊／10－11w Linaria $14 u$＂dielselbst＂x $6831-35 m / 33-34 x$ 20－22m 92 13－14x ， $15-28 w$ no irritability！！！ $934-7 \mathrm{~m} / 4-6 \mathrm{~m}, 7 \mathrm{~m} / x *$ $9430 u \uparrow$ ，31－33u＂ersteres｜Windung＂ 95 wt This shows his theory $1 m, 5-6 m, 7 x \geqslant 9 u$ ＂Die｜Spiralform＂， $33-35 \mathrm{~m} / 34 \mathrm{~m} / \mathrm{u}$＂mit｜Breite＂ $963-7 m / 5 x$ ，32－35m／x $9734 u$＂diel selbst＂ 98 1u＂aberlvariire＂，10－11u＂indeml Pflanzen＂，15－16x $/ u \leftrightarrow, 26-27 \mathrm{~m} / \mathrm{u}$ Wachs－ thum｜unabhängig＂$x \Leftrightarrow 100 \quad 21 \mathrm{~m} / 21-22 u \leftrightarrow / 1-$ $25 w$ there is no relation of quickening in movement of cirri to revolution $31-33 \mathrm{~m} / 31 \mathrm{~m} / \mathrm{u}$ ＂paralell｜Wachsthum＂ 101 wb｜cannot make out whether he knew revolving movement of tendrils

PAOLUCCI，Luigi Il Canto degli uccelli Milano；G．Bernardoni； 1878 ［CUL，I］\wp

PAOLUCCI，Luigi Il Canto degli uccelli Milano；G．Bernardoni； 1878 ［Down，I］\wp

PARIS，John Ayrton The elements of medical chemistry London；W．Phillips； 1825 ［Down， pre－B，S］\wp

PARIS，John Ayrton Pharmacologia 6th edn， 2 vols．；London；W．Phillips； 1825 ［Down，S］

PARKER，William Kitchen A monograph on the structure and development of the shoulder－ girdle and sternum in the Vertebrata London； The Ray Society； 1868 ［Down］\wp

PARKES，Edmund A．A manual of practical hygiene 4th edn；London；J．\＆A．Churchill； 1873 ［Down，FD］

PARKINSON，James An introduction to the study of fossil organic remains London； Sherwood，Neely，Jones \＆W．Phillips； 1822 ［CUL，ED，S（Erasmus crossed out and replaced by Charles）］

PAUCHON，A．Recherches sur le rôle de la lumière dans la germination Paris；G．Masson； 1880 ［Down，I］\wp

PENNANT，Thomas History of quadrupeds 3rd edn， 2 vols．；London； 1769 ［CUL，S in vol．2］
beh，hy，tm，v
vol． $1 \mathrm{NB} \rightarrow 237-242 ;$ p． 21
$2116 \mathrm{~m} 3311-14 \mathrm{~m} 3414-17 \mathrm{~m} 151 \mathrm{~lm} 2371 \mathrm{~m}$
$23816-17 m, 21-27 m / 21 u$＂produced \mid puppies＂ 239 22－26m 242 17－21m／20u＂videli．49＂
vol． 2 （markings presumed not by $C D$ 〉
PERNETY，Antoine Joseph Journal historique d＇un voyage aux Îles Malouines en 1763 et 1764 2 vols．；Berlin；Étienne de Bordeaux；1763－64 ［CUL，pre－B］
vol．2， $4381-9 m$

PERRIER，Edmond Les Colonies animales Paris；G．Masson； 1881 ［Down，I］\wp

PERSOON，Christian Henrick Synopsis plantarum 2 vols．；Paris \＆Tübingen；C．F． Cramer \＆J．C．Cottam；1805－07［CUL，ED］ gd，sx
vol．1，222a $31 \mathrm{~m}, 38 \mathrm{~m}, 43 \mathrm{~m}, 52 \mathrm{~m}$
vol． 2 NB1 Eucalyptus Icosandria
NB2 Many monoeic dioecious plants in New Zealand \＆many trees \＆bushes compare Monooeic \＆Dioecious here marked by crosses
〈untranscribed w：W meaning Water－plants〉
506b $15 u$＂labello tripartito＂512a $7-10 \mathrm{~m}$ 529b $4 w, 30 w$ 530a $11 w 531 b 5 m$ 532a $37 w$ 532b $19 w 534 a \operatorname{17w} 550 b 11 m$ 551b $9 m$ 557b $23 m$ 561a 9－11m 562a $28 m$ 562b $21 m$ 565a $27 m$ ， $42 m$ 566a $2-3 m$ ，11－12m，45－46m 567a 18－ $20 m$ 571a $43 m$ 571b 25－26m 572a $15-17 m$ 572b $46-47 m$ 573a $16-17 m, 28-29 m, 50-51 m$ 576a $32 m, 49-50 m$ 576b $\Uparrow 21 m, \Uparrow 4 m$ 577a $50-$ $52 m$ 578a 2－3m，36u＂geminis elongatis＂579b $36 m, 52 m$ 580a 31－33m 580b $32 m$ 588a 39－ 40 m 588b $34-35 m, 45-46 m$ 589a $3-5 m$ ，15－ $16 m, 32-33 m$ 596a $6 m$ 597a $6-7 m, 33 m$ 597b $28 m$ 598a $50-51 m$ 598b 21－22m 604a 41－43？， $44 m$ ，54－55m 608a 6－9m 612a 32－33m，41－ $43 m$ 612b $31-33 m$ 616a $12-13 m, 35 m, 39-40 m$ 616b 47－48m 617a $2-4 m$ 622a 12－13m，29－ $30 m, 42-43 m, 51-52 m$ 622b $43-45 m$ 623a 2－ $3 m, 14-15 m$ 623b 3－6m 624a 24－26m 626a 2－ $4 m, 20-21 m$ 626b $2-4 m$ 628a $47-48 m$ 628b $27-29 m$ 629a $23-24 m$ 639b $9 m$ 630b $29-30 m$ $6326-8 m, 21-23 m$ 632b 39－40m 633a 22－24m 634a $44-46 m$ 634b 22－24m

PETTIGREW，James Bell The physiology of the circulation in plants，in the lower animals， and in man Edinburgh；Oliver \＆Boyd； 1873 ［Down，I］

PETTIGREW，James Bell On the physiology of wings Edinburgh；Neill \＆Co．； 1871 ［Down，I］

PHILIPPI, Federico Catalogus plantorum vascularium chilensium Santiago de Chile; Imprenta Nacional; 1881 [Botany School, I] 80

PHILLIPS, John Geology of Oxford and the valley of the Thames Oxford; The Clarendon Press; 1871 [Down]
fo, geo, sy
NB p. 404 on the filiation of Secondary Molluscs
$4041-9 m / w$ see previous cases $40517-20 \mathrm{~m} /$ $17 w$ Palaeotherium

PHILLIPS, John Life on the earth Cambridge \& London; Macmillan \& Co.; 1860 [CUL, I] ch, fo, geo, ig, ir, or, sh, sp, t, ti, tm
NB1 (a) argue against this; it is not always the perfect types which first appear Ruminant \& Pachyderms. Intermediate Reptiles - Intermediate fish-
In Asa Grays Review of this book (I think in Origin Portfolio) I have some remarks on one important subject, why some forms are changing I bring forward some mammals not changing
p. 163

NB2 Species Theory; 212 \& 214 good (a); $66 ; 69 ; 99 ; 126$ calculation of sediment of Ganges; 133 - Time required for formation of Coal; 141 Retrocession of Falls; 167 Age of chief axes of Britain; 207 Breaks are not real, elsewhere filled up
When I come to Geolog. Record or Laws of Succession look over this Book

69 21-27m 99 23-27m 126 9-15m/6-14w Blank interval omitted $12717-18 \mathrm{~m} / \rightarrow 12916-$ $20 m 1308-11 m 13324-26 m / 26 u$ "127.5" 134 3-6m, 9-12m 141 23-25m 163 wb $23316714-$ $19 m 2062-27 w$ Silurian strata not like Tertiary - one steep inletO at MalvernO 207 $1-17 \mathrm{~m} / \mathrm{wt} / 1-18 \mathrm{w}$ but what percentage of identical fossils in these stages - what term for each 3 or 4 percent $1-13$ w How can this be said, when we have such cases as Forbes 3 sets of shells $17-24 w$ it is hard to judge of breaks. 210 9-21m $2127-22 m 214$ 4-12m, 17-26m

PHILLIPS, John A treatise on geology (Lardner's Cabinet Cyclopaedia), 2 vols.; London; Longman, Orme, Brown, Green \& Longman; 1839 [CUL, S in vol. 1]
che, fo, gd, geo, mi, sy, t, ve
vol. 1 NF Buy Brewster on Microscope
267 37-38m $26820 u$ "red \mid masses" $119-21 w c a$ 272 19-22m 277 36-40m
vol. 2 NB1 Lyell; p. 13 wretched classification; Mention this, whenever I come to S. America; Copied
NB2 18 〈he means 13) List of Mam. of Europe must be referred to for notes

- 46; 51; 57;

The whole of Plutonic including trap veins perhaps do not differ greatly from the whole of the Volcanic.- But in the latter there has been a greater separation of ingredients, from position, causing cooling \& crystallisation
lead \& silica do not separate, whilst both fluid - How is brass, \& glass with red lead in it? Attraction 0 in these cases.-
63; 65; 73; 80; 83; 100 St Jago; 115; 125; 135; 160; Copied
1 zb 13 21-43m (Lyell, Cuvier, Owen, Agassiz)/ $26-36 w$ not applic. to S. American fossils 24 $25-27 \mathrm{~m} / 26$ u "Irish Elk" 27 15u "Irish|Ec" 28 27?/u "fallow" $/ 26-29 \mathrm{w}$ see Bell's quadrupeds $46 \quad 27-33 m / 30-31 w$ see p. 5050 介 $10-1 m 51$ $24-39 m \quad 52 \quad 1-28 m \quad 57 \quad 29-35 m$, $w b$ This classification infers that there is as great a difference in the Plutonic as the Volcanic which I reject 65 9-15m, 2nd fig.m 66 11-12m, wb Felspar is in excess surely see analysis of greenstone 68 1-27m (Phillips) $72 w b$ There are dikes of granite $73 w t$ Tortuousness still more distinguishing character hence not streched mechanically shrinking $1-37 w$ The Plutonic rocks being so much most internally heated would shrink more than volcanic. Do most substances shrink in solidifying, yes, except water. iron shrinks?? wb Trap veins most analogous in Salisbury craigs to Plutonic: $80 \quad 37 u$ "porphyritic", $39 u$ "never \mid case", wb Andes 81 $17-22 m / w$ argue granite near surface of all ages in all parts of world hence thinness of crust $835-39 \mathrm{~m} / \mathrm{wb}$ thin crust theory $843-20 \mathrm{~m}$ 100 4-6m (Daubeny, Von Buch) $11530-37 m$, $38-39 m, w b$ augitic porphyry: granite:: basalt: trachyte $1161-8 m, 20-24 m / w$ thin-crust theory $125 \quad 1-28 m, z b 1264-39 m 1271-38 m$ (Necker) 128 1-26m (Dufrenoy) 129 15-18m/w No 135 3-18m (De la Beche) 160 12-19m (Fox) 162 14-23m (Patterson) 209 3-32m (CD)

PHILLIPS, John Vesuvius Oxford; The Clarendon Press; 1869 [Down]

PHILLIPS, William An elementary introduction to the knowledge of mineralogy 3rd edn; London; W. Phillips; 1823 [Down, preB]
che, mi

PHILLIPS, W., MINERALOGY
SA $\langle p p$. 224-25〉 Jamieson lecture 2.2.1846 about iron when cmpds. scratched SA $\langle p p .62-63\rangle$ ditto, about Hornblende
SA $\langle p p .350-51\rangle$ ditto, about Tin when scratched
xxvii $26-27 m$ cvii $4 w$ potash○ 58 wtec, 17$19 z w b 114 w t / w b$ (calculations for making various compounds), $10 \mathrm{~m} / 13-20 \mathrm{w}$ Jamieson 136 14-16m 146 wbec 147 wtcc 161 14-15m, $31-32 m, 34-35 m 3681-4 m$

PHILLIPS, William An elementary introduction to mineralogy 4 th edn, ed. R. Allen; London; Longman, Rees, Orme, Brown, Green \& Longman; 1837 [CUL]
55 fig.wed $21810 \mathrm{~m}, 36-37 \mathrm{~m}$
PICKERING, Charles The races of man new edn, to which is prefixed An analytical synopsis of the natural history of man by J.C. Hall; London; H.G. Bohn; 1850 [CUL] fg, gd, is, ti, wd

SB1 I have not read this book sufficiently * Read again
$46 ; 74 ; 63 ; 315 ; 317 ; 318 ; 323 ; 326 ; 333$
Table; 339 ; $340 ; 346 ; 366 ; 369 ; 372 ; 374$; 377
Consult Index for History of ancient animals

- Mr Birch told me that History of Fowl is
given in some work by Pickering
SB2 $\square \mathfrak{R}$
Selected References Oct 56
317 Dog, thinks introduced into America.338 Feral Animals of Pacific
315 She means 335) Rhamses Sethos,
Bullocks in Aegypt during his age
361 Domestic Pigeon in Sama Vida
374 Ancient History of Fowl
361 \& in Institutes of Menu
58 on island only 2 plants \& drift wood
55 transported seeds
59 lizards
$4625-33 m 553-10 m 5813-27 m, 31-34 m 59$ $30-33 m 61$ 31-33m 63 6-8m/7-8u↔ 75 20$29 m 274 \quad 1-7 m 314$ 介 $4-1 z / z b 315 \quad 6-8 m$, 17$20 \mathrm{~m} / 25 \mathrm{u}$ "Greyhound|Turnspit" 317 3-6m 318 $29-32 m 32325-31 m 3264-8 m 339$ 9-11m/11u "has \mid wild", $\quad 16-17 \mathrm{~m} / 16-17 u \leftrightarrow, \quad 22-25 \mathrm{~m} / 23 u$ "Hawaii", 23u "accordingISamoa", 26-27m, $36-39 m / 38 u$ "greatly|Honolulu" $34027 m 345$ $27-29 m 346$ 9-11m 355 33-34m 359 36-39m/ $38 u$ "Rhamses Sethos", $45 m$ (Rosellini), wb age 360 29-30m, $43 m 36113 m, 14-16 m, 34-37 m$, $36-46 m / 37-46 m \quad 362 \quad 4-5 m \quad 363$ 13-15m 368 $38 u$ "sixth \mid Saccara" $3694-21 m / 4-5 m, 10-15 m$, 19-21m 370 2- $4 m 372$ 19-21m/19u "BC2200",
$23 u$ "Beni-Hassan", 29-33m, 33-37m, 39-41m 373 45m 374 18-27m, 26-28m, 29-32m/30u "Medinet Abou" 377 36-38m 415b 48w

PICTET, François Jules Traité élémentaire de paléontologie vols. 1 and 3; Genève; Cherbuliez; 1844-45 [CUL]
cc, ch, ds, em, ex, fo, gd, geo, hl, ig, im, ir, is, mg , no, or, sp, t, ta, ti, tm, v , wd
vol. 1 SB1 $\square \beta$
$67 x-x 91$ Law more ancient the animal the more different from living (must mean in mass p.69)
89 argues no important differences in domestic animals
$91 x$ argues against change of species, from apparition of new types. Good like new organs
91 admits that successive stages of same formation have closely allied forms
108 curious to see how lately my conclusion wrong on coming in of Mammalia
126 what a number of monkeys over world must have existed since Eocene period \& tertiary beds of Hymalaya \& Brazil continuous in Europe - How rash to judge of what world holds from Europe: no insectivora or hollow-horned Ruminants in S. America - Madagascar no Carnivora Australia Carnivora. Europe probably once an isid.
144 Cuvier doubts on species of Ursus
154 on intermediate forms
165 Dog, origin of, important
Bearing in mind Glacial periods rash to say conditions similar in stages of one formation; or if so look to space as guide.-
I will cease extracting better get new Edit
SB2 read as far as p37. Pictet Vol I
66; 80; 83; 91; 108 creation; 126; 129; 134 to End of Vol.; 362

66 16-20m 68 5-11m/5-7w Fish!! $696 u$ "terrains anciens", $15-16 \mathrm{~m}, 19 u$ "térébratules", 24-25m 80 16-17u "gastéropodes", 24-30m/25w ancient $831-11 m 895-16 m 913-5 m, 23-30 m$ $10820-25 \mathrm{~m} / \mathrm{w}$ immigration of ruminants?? 126 18-30w/wb What an immense number of monkeys must have existed - this highest form being Eocene convinces me of prior existence of Placental Mammifers. How many marsupials since Jurassic ones. we may always put on one side cases ie those of Brazil \& N.S. Wales 127 24a "Simiae"/w old world 129 19-25w In Europe from Eocene to Miocene \& only 2 fragments 134 24-26m $1381-5 m / w t / 1-6 w$ Australia now no great Carnivora - $1411-3 m / w$ none fossil or recent
in S. America 145 18-21m/w Madagascar no Carnivora? 149 24-27m $154 \quad 10 u$ "bassin Paris"/w Eocene 11-19m, 14-15m, 18-21m 157 24-25m/24u "deslsa" $158 \quad 3-4 m / 4 u$ "miocène" $16022-24 m, 24-26 u$ "dès!qu'ils", $28 m 1655-7 m, 17-19 m 16610 u$ "osseuses Sardaigne"/10-11m 168 26-28m 172 26-27m $17423-25 m / 6-25 w$ it is evident that Carnivora more connected formerly than now $17810-12 m 18215-19 m / 14-21 w$ yet widest ranges, ought to have lived long $18726-30 \mathrm{~m}$ (Lund) 188 19-20m $190 \quad 14-17 m 195 \quad 24-26 m$ 212 23-25m 231 20-21m 235 10-14m 236 11$16 m 2375-8 m, 11-13 m, 15-16 m / 16 w$ recent 238 10-11w Miocene Mastodon 255 26-29m, wb 1 do think it odd that not more intermediate forms - many as they are. Preservation only at periods 256 24-26m 258 20-22m 259 8-9m 260 30-31m 264 6-8m, 12$\begin{array}{llllllll}14 m & 267 & 9-12 m, & 14-16 m & 269 & 1-2 m & 274 & 28-1\end{array}$ $30 m 275$ 15-16m 276 13-15m 280 2-4m 288 $6-12 m \quad 289 \quad 9-12 m / 9-25 w$ Ruminants \& pachyderms coincide in India- From Edentata of La Plata how rash to argue Rumin not created - or Australia 297 13-14m 308 9-11m/w S. America $w b$ We see now that several tribes more restricted than at latest Tertiary period, so formerly they might have been still more so - If we knew that the Anoplotherium was created at Eocene then we might argue that Ruminants were created lately $320 \quad 16-19 m \quad 346 \quad 16-21 m$ (Cuvier)/19u "onze espèces"/16-21w cf. Water \& Land Birds! 13-25w/wb How strange not more common in Secondary period Lobsters Fish in Old Red also - Didelphys again What a gap from Lower Jura to Tertiary $3478 u$ "l'argile|Londres", 16u "l'argile lLondres" 349 22-24m (Schmerling) 350 20-22m $3517 u$ "àldoigts"/5-8m (Lund) 362 18-21m
vol. 3 NB1 I must allude to Pictet in Preface as having argued against perfectibility \& variability with great skill.-
NB2 45 Ampullaria Branchiae \& pulmonate cavity
SB1 In the Gasteropods \& in a lesser degree in the Acaephales, it is really surprising how few exceptions there are to the succession of the genera - when a genus appears in Silurian it almost always (all exceptions marked) appears in nearly all the great formations. When we consider the different mineralogical nature of some of the formations; \& difference of depths (such as chalk Sea probably deep) it is wonderful when an existing genus appears in Jurassic
almost * always \downarrow far most generally appears in Chalk \& Tertiary [Fish are genera are too short-lived for this to appear: but yet I think it holds pretty often; but then the formations for fish are so rare] It must be remembered how easily errors occur.
SB2 See to this \& to Chelonia \& Crocodiles, \& in few existing genera of Mammifers which are formed in Eocene. It wd be very important to show that this is law; certainly in Mollusca it is impressed on one; \& so in few Cephalopods?- It would be like showing connection in Geographical Range. so in space \& time.- [I did not think of this, till beginning Gasteropods: easy to see to it in other orders] In Fish the law had better be tested by families. It will signally fail if M . Bolca in Cretaceous
7 15-19m 10 13-15m/?, 28-30m 11 19-20m 12 23-26m $213-4 m 2718-21 m / w$ certainly $26 m$, 27-30m 36 1-5m (d'Orbigny) 39 6-9m, 16-18m 43 13-15m/w Have they Branchiae 45 11$13 m / 11-17 w$ V. Cuvier would the abortion of Branchiae give structure of Pulmones? 46 15-18m 47 17-21m 53 3-4m/w Turritelles 90 $12 w$ Triassic $15-17 m \quad 95 \quad 1-2 m \quad 128 \quad 15-18 m$ 133 12-15m $208 \quad 28-30 m 22318-24 m 22418-$ $22 m 225$ 3-9m 241 1-2m 252 10-17m 256 9$12 m 27011-12 m 27312 m$ • 305 28-30m/25$39 w$ Thus the extinct genera occur in considerable formations $w b$ What a number of genera are Silurian; it is most clear that according to me Silurian must have been preceded pretty much by longer time than has since elapsed. Cephalopoda lead to same result. $31323-25 m, 26 m /$? $32215-17 m$ 325 16-18m 327 27-30m/29u "tandis 1 Europe"/ w perhaps not $33319 m, 23-24 m 362$ 22-27m $36513-29 m / 14-15 w$ series is extinct $w b$ it may be said, when a genus is extinct \& occurs in several formations, those with rarest exceptions are consecutive formations $\rightarrow 366 w b / 23-28 w$ This class of facts makes one think the record for Mollusca pretty perfect, but it does not affect frequency \& size of gaps in record. $3971-5 m 40825-28 m$ $409-15 m / w$ so found in consecutive formations

PICTET, François Jules Traité de paléontologie 2nd edn, 4 vols. and atlas; Paris; J.B. Baillière; 1853-57 [CUL]
af, ch, ds, em, ex, fo, gd, geo, gr, hl, ig, ir, no, oo, or, se, sp, sy, t, ta, ti, tm, v, wd
vol. 1 SB $\square \beta$
42 to 55 D'Archiac Law to 75 to 133 157; 166; 169 to end

PICTET
573 important on classification
202 on fossil Dogs Q
363 on Bos
46 16-19!!/17-19u↔, 27-30m/28u "verra que"/ 29-30u "les 1 tranchées" 47 9-16m, 20-22m 48 $18-20 \mathrm{~m} 49$ 13-23m, $30-33 \mathrm{~m} 5312-14 \mathrm{~m}$, 20 u "delpour" $5411-16 m 558-11 \mathrm{~m} / \mathrm{Q} 5620-25 \mathrm{~m}$ 57 26-28m 58 15-18m 59 7-11m, $28 u$ "terrains anciens", $29-30 \mathrm{~m}, 31-33 \mathrm{~m} / 33 \mathrm{u}$ "térébratules" $605-6 \mathrm{~m}, 8-12 \mathrm{~m} / 8-18 \mathrm{w}$ not evidence enough - How few new orders have appeared 61 $14-25 m / 16-18 w$ decreasing Forms $622 u$ "dévonien"/w Lizard $7 u$ "époque oolithique"|!, $9 u$ "monodelphes"|! 65 29-31m $676-7 m 68$ 13$15 m 691-7 m, 20-22 m 7024-26 m 718-14 m /$ $8 u$ "genres"/9u "celle|familles" $7314-15 \mathrm{~m} 74$ 9-11m 75 29-30m 77 24-28m/25w Extinction $30-33 m, w b$ it is not surprising that Geologists shd talk so, but it is astonishing that Naturalists shd do so - 78 1-6m 79 2728 m (Elie de Beaumont), 29-31m 82 20-23m, 24-28m 85 1-4m 87 29-33m, wb like Vestiges 89 1-3m, 25-29m 100 9-19m/13-14? 101 20$22 \mathrm{~m} /$? 111 7-14m 133 21-27w 5 or 6 Faunas in France beneath recent 157 27$33 m 1611-2 m 16314-17 m 1665-7 w$ yet how specialised a genus $9-10 \mathrm{~m}, 11-12 \mathrm{~m} / \mathrm{ua} / \mathrm{w}$ same genus $1698-10 m, w b 1854$ Spalacotherium tricuspidus present Mammals in Purbeck 17920 m , wb Machairodon f. in Nebraska Eocene 186 12-14m 188 411 m (Serres), $31-34 m \quad 192 \quad 16-17 \mathrm{~m} / 17 u$ "intermédiaire", 21-24m $1936 u$ "pendant 1 existence" $1946-8 m$, $9 u$ "miocène", 28-33m $20214 u$ "tertiaires éocènes", 15-17m 203 16$21 m 2045-7 m, 13-19 m$ (de Blainville), 26-29m 205 6-8m/7u "crânes 1 sont" $20716-17 \mathrm{~m}$, 18$19 m \quad 209 \quad 13-15 m \quad 211 \quad 20 u \quad$ "miocène d'Auvergne" 214 17-19m/18u "transitions intéressantes" 216 4-5m 223 20-28m 226 2930 m 230 6-8w Now in N. America \& I believe S. America 234 17-18u $\leftrightarrow 257$ 23-26m 261 22-25m/24u "comblé l'espace" 262 4-7m 263 9$12 m \quad 273 \quad 8-11 m \quad 276 \quad 18-21 m / 18 u$ "tous 1 habitent" $/ 19 \mathrm{w}$ no $2926-7 \mathrm{~m}, 11-17 \mathrm{~m}, 20 \mathrm{~m}, 21-$ $23 m, 32-33 m 2933-5 m, 10-11 m / 6-12 w$ Look at globe \& see where a spot explored 25$26 w 2$ series of Pachyderms $28-29 u \leftrightarrow$, 31$33 m 313$ 29-30m 318 29-34m 335 15-16m/12$34 w$ Ruminants may have existed in other continents $w b$ In all such cases, it is not that Ruminants \& Pachyderms then existed. How often people have wondered why no Ruminants in Paris Basin! 343 21-23m 344 $5-8 m$, 11u "moyenne" 352 10-12m/11u "tertiaires | supérieur" 361 19-21m, 26-27m 363 22-23m 364 29-32m $3655 u$ "commelboeufs",

12-13m (von Meyer), 14-15Q 16-17m (Owen), $18 u$ "brachyceros" 366 28-29m/27-35w I shd think Probably new order; but naturalists object properly to new orders. $36713-15 m$, 28-31m $3757 \mathrm{~m} / \mathrm{u}$ "ordre nouveau" 38326 w Arctic seas $w b$ \& Sirenidae Tropics 38414 $15 w$ What range $38625-28 m 3904-10 m$ (Buckland) $392 \quad 15-18 m \quad 393 \quad$ wb 1854 Stereognathus ooliticus a larger quadruped Charlesworth Stonefield 2ce the size of many of his \& $39527-28 \mathrm{~m} / \mathrm{u}$ "espèces de"/w Didelphus in lower Miocene 404 18-24m/20$22 w$ Iguanodon Owen 407 26-28m 408 1012??, $13 w{ }_{c}$ see p. $52741022-23 m / 22 u$ "la| de" 411 18-19m/18u "Strix"/19u "gypses। Montmartre" $\mid 20 \mathrm{u}$ "genre I caverne" $41222-23 \mathrm{~m} /$ $22 u$ a $4142 u \wedge, 3 u$ "cavernes 1 Brésil" $/ m, 6 u \wedge$, $8 u \star$, 15-17m/17w Am $4157-8 \mathrm{~m} / 7 u$ "gypses Paris" 416 1-3m, 6-8m (Lund), $19 u$ "sousgenre Rhea" $/ 18-20 \mathrm{~m} / \mathrm{w}$ Good Birds follow law 417 11-12m (Owen) $4196 \mathrm{~m} / \mathrm{u} \uparrow 42020-23 \mathrm{~m}$ (Mantell) 421 17-18m/18u 425 1-3m 429 27$33 m 430$ 11-15m 431 10-12m, 17-20m, 29$35 \mathrm{~m} 4325-8 \mathrm{~m}, 10-14 \mathrm{~m}, 18-21 \mathrm{~m} 43911-13 \mathrm{~m} /$ $w 4$ families \& Chelonians $440 \quad 28-32 \mathrm{~m} 455$ 14-16m 459 13-17m/13-28w Emys \& Trionyx being now present alive in F.W. is another instance of F.W. preserving alive ancient forms. 474 wb 1654 Nothelis destructor a minute Megalosaurus - Owen - 475 28-30m, 33-35m 493 21-27m/22w Transition $500 w t / /$ 1-6w Even to a certain extent our generally FW crocodiles are only remnants of the large families numerous Secondary \& ancient Tertiary Marine genera So many were formerly F.W. forms $5017-8 m, 9 u$ "rappelle Icrocodiliens", 12-14m 513 21-22m 527 10-12m (Owen) $52913 u \leftrightarrow, 22 u$ "sauriens 1 de" 530 12-16m 532 19-22m 543 7-10m, 18$21 m$ 544 3-5m, 6-8m $54527-29 m 547$ 9-11m 551 4-5m 554 15-17m, 20-23m (P. Duff and W. Mantell) 555 23-26m, wb Excellent case of Analogy (?) 556 6-10m 560 3-6m, 8-9m $56813-20 \mathrm{~m} 57234-37 \mathrm{~m} 573 \mathrm{wt}$ Does it come to be whatever is fixed? 1-4m,5-6m
vol. 2 SB1 22 to 40; 77; 98; 101; 102; 127; 132; 196; 226; 309; 310; 318; 349; 361; 363; 368; 371; 386; 396; 399; 405; 406; 409; 411; 413; 476; 481; 482 to 484; 490; 502; 580 ; 582; 585; 601; 619; 649; 659 groups of ammonites more or less confined to different stages; 485 Balancement; 476 blending; 480 soldering; Vol 2
22 13-16m, 19-22m 23 1-2m 24 5-8m (J. Müller)/5-6u "esturgeon 1 polyptère", 14-16m 25 7-9m 26 19-23m, 23-28m 27 11-14m, 22-25w Eocene mammals very-different 24-26m, 34-
$35 m / 34-35 u$ "àlépoque" 28 11-13m, 30-33m $30 \quad 8-11 m \quad 31 \quad 3-6 m \quad 32 \quad 22-26 m / 27-33 m / 17-$ $33 w / w b$ sea shells \& echinoderms convince one sea was salt if there was rain there wd be lakes. Might as well say no caves. $351 u$ "Glavis"/w Tertiary $3624-27 m / 17-29 w$ So he thinks Teleosteon a recent fish the most perfect 37 16-20m 40 14-16m 77 14-19m 98 $30-34 m \quad 101$ wt Constantly removed from sea, is why not more ancient. 7-13m, 15$17 m, 33-34 m 1028-9 u$ "d'eau douce", 9-11m $12716-18 m, 28-29 m 12813-21 m / w$ If we look to sea alone more striking still $1291-4 m 132$ 16-21m 133 1-5m 196 31-34m 226 21-24m 309 16-22m 310 12-19m, 22-24m 318 21-23m 329 20-22m 349 1-2m 361 1-9m 363 21-24m 368 3-8m $37124-25 m 38023-27 m 3861-4 m$ 396 13-15m 399 25-26m 405 18-20m 406 23$26 m 40913-14 m 41123-26 m / 23-32 w$ \& very different in Fish \& in Mollusca Cephalopods $27-30 m 4137-8 m, 22-28 m, 28-29 m, 31 m 414$ $28-32 m \quad 476 \quad 23-29 m \quad 480 \quad 12-13 u \quad$ "mais। ensemble" 481 21-28m 482 15-22m/6-22w Gestation or incubation necessary for discovery of Metamorphosis or free \& different life $4836-11 m, 12-14 m, 27-28 m 484$ 1-5m 485 1-2m/ 1 u "àl thorax", 3-7m 490 16$25 m$ (Barrande) 502 22-25m 570 wb $4741 w$ is a boring sponge $8 w$ is a boring sponge 580 9-11m, 31-33m 581 19-25m 582 1-5m, 26-30m, 31-33m 584 29-33m 585 2-8m, $9 u$ "des|diverses", $11 u$ "pendant 1 primaire", 1620m, $33 u$ "deux |branchies" 593 1-2m 594 14m $6013 a$ "spirulides" $/ w t$ all Tertiary $4 a$ "céphalopodes"/wt Lias $2-6 \mathrm{~m}, ~ 7 \mathrm{~m}, ~ 12-14 \mathrm{~m} /$ $13 u$ "famille|tenthides", $14 u$ "bélemnites", $16 u$ "aptiens" 619 6-8m, 10-14m, 16-19m, 21-24m 649 24-31m 6595-12m
vol. 3 SB $\square \beta$
$7 \& 11$ \& 12 \& 14 \& 36 \& 38 \& 128 How excessively slow Gasteropods species change - how few groups appear or disappear since Eocene.-
250; 333; 416
463 It is evident thus very few exceptions at whatever stage species a genus or Family commences it is continued till it becomes extinct. This being capable of in fact strongest fact I turn against Imperfection of Record. Perhaps only shows no enormously long blank intervals
7 26-33m 11 10-13m, 17-21m 12 15-20m 13 $13-16 m$, $21-25 m \quad 14 \quad 5-11 m \quad 36 \quad 25-29 m$ (d'Orbigny) $38 \quad 6-7 m 128 \quad 26-31 m 2505-11 m$ $33312 m, 17-20 m, 32 m 3343-4 u$ "orthoconques sinupalléales", $26-33 m 3351-5 m, 14 u \leftrightarrow 416$ 2-5m, 7-9m 463 3-9m
vol. 4 SB $\square \beta$
2; 7; 8; 42; 79; 90; 119; 231; 261; 263; 284; 293; 360; 481; 487; 532; 562 to 569; 577; $578 ; 580 ; 584$ to 617 to end of Vol.
All evidence in this Book relates to Genera It may be that species change quicker without than genera; about higher \& lower forms changing quicker
SB2 (over) On my view of formation of long intervals (because during subsidence \& when mud) \& though each very long in years yet infinitely short compared to all time; the chief difficulty is contemporaneousness of formations over Europe \& in America - it shows some grand movement of earths crust yet very existence of continents implies very wide elevation-

2 6-9m 7 16-18m, 20-22m, 27-29m/28u "presquelmoitié" $81-3 m / m * / / 3 u$ "vingt-huit", $7 u$ "dix", $10-12 m / 9-17 w$ le genera which change quickly necessarily have short duration wb When many species \& genera exist they change quickly because they are too common \& varying forms not in class but in whole Kingdom, \& are quickly replaced 9 1-3m, 11-12u "quatorze linférieur" 42 11-15m $7928-31 m 903-5 m, 4-8 m, 19-20 m 11923-$ 26 m 231 wb so many cases of this (leaving out Silurian) that it must be a rule, though exceptions as in Fish Ctenoids coming in 261 wt show how small proportion of lines from Silurian to present day compared to what has existed $3-9 \mathrm{~m} / 5 \mathrm{w}$ (a) $26317-19 \mathrm{~m}$ 284 12-16m $285 \quad 17-20 m, 30-31 m / 31 u$ "trois quarts" $2861-5 m, 5-21 w$ There seems no relation to speciality \& absence of genera here 293 27-28m 360 15-21m, 24-26m, 27m $3611-4 m / 1 u \oplus, 6-8 m 4814 w 796 w 519-13 m$ $4877-11 m 53216-21 m 5623-7 \mathrm{~m} / 3 u^{\prime \prime} \mathrm{Si}^{\prime \prime}, 15-$ $16 \mathrm{~m} / 15 u \leftrightarrow, 23-25$! $5632-4 m, 9-13 m, 16-18 \mathrm{~m}$ 564 27-30m 565 18-23m 566 17-22m 569 1921m, 27-30m 577 3-6m (Agassiz) 578 fig.w Inequality of relations of successive Formations $58017-26 m, 32-34 m$, wb Marine Triassic not well known $5811-3 m / w$ less marked $58324 w$ St Cassian? 584 18-21m $58615 u$ "six genres" $114-16 w$ In total 588 27$28 m 589$ 19-20w change rapidly $29 u$ "dont 1 spéciaux" $6174-5 m, 8 m, 14 w$ St Cassian 16$20 m 618 \quad 12-16 m \quad 619 \quad 20-25 m / w \quad$ \& very closely allied $31-33 m \quad 620 \quad 1-3 m, 23-31 m$ (d'Orbigny) $622 \quad 34-35 m \quad 624 \quad 25-27!/ 27 m / u$ "Unlde", 29-30m $6274-5 m / 4 u$ "deux 1 genres" $6304 m, 8-9 m 63412-14 w$ no Genera see Table 636a $27 \mathrm{~m}, 37 \mathrm{~m} 636 \mathrm{~b} 7 \mathrm{~m}, 8 \mathrm{~m}, 12 \mathrm{~m}, 17 \mathrm{~m}$, $25 m, 26 m, 28 m, 42 m 64437-38 m, w b$ So he brings down to level of Teleostees \& before

PICTET

that Fish not very rich $6459 u$ "en Amérique"/ $1-31 w$ shows how many sub-divisions can be locally traced, not so everywhere $64624 u$ "sont labondants", 31-32m $6493 u$ "gault |de" 650 9-11m $65112 u$ " y |connus", $15-16 m / 15 u$ "genres" $65236-37 m / 36 u$ "mont Liban" 666 2$4 m 6671-4 m / 4 u$ "ont |tranchées" $66814-16 m$, 31-38m 669 10-13m/w 7672 37-39m 678 19$24 m 684$ 2-4m 687 18-20m, 28u "Monte Bolca" 688 12-16m $6927 u$ "quelques 1 douce", 13-14m $70240-41 m 7034-5 m, 25-27 m$, wb Palaeozoic, Secondary \& Tert., only due to larger gaps

PIDERIT, T. Wissenschaftliches System der Mimik und Physiognomik Detmold; Klingenberg; 1867 [CUL]
af, beh, ds, h, pat, phy, rd, t, tm, v, y
NB 21 to 27 His view given
p. 88 do to end of Chapt
p107-9 Th. resume -
p. 91 Perhaps a rudiment ask W. Turner.

After p. 109 Not one word for me
Many good bits in this Book, but the fundamental idea seems to me groundless \& fanciful - Nov. 67
SF $\square \beta \ll 10$ sheets, not CD; mainly a translation of $p p .21-27\rangle$
4 4-13w Man understands expressions without a grammar Very interesting 24-28w No explanation $56-12 m / w$ Sir C. Bell does not explain why certain muscles act during certain emotions. $14 u$ "Oken", 15-18w explains by Homologies of muscles of Limbs \& face.- $75-6 \mathrm{~m} / \mathrm{w}$ madness? 21-23m/w order 8 wt He prior to Gratiolet $1-5 m$, 16$17 \mathrm{~m} \quad 19 \quad 7-13 \mathrm{~m} / \mathrm{w}$ Face most expressive because nerves site nearest to Brain!!! $212 w$ Translated 23 3-16w Each abstract idea appears to mind like real object $19-20 \mathrm{~m}, 20-$ $25 m 252-4 m 26$ 19-21w His theory!! 21-27m 40 14-26w Hence face muscles not very distinct so Huxley says $23-25 m$ 44 wt corrugators used in shutting eyes very closely $1-2 m, 10-11 u$ "und|Auges", 20-31w Henle considers Corrugator as part of Osb. Palp. 46 1-13w wrinkle forehead pulling on Boot.- a stammerer.- Concentrated thought, when difficulty - seeing or hearing anything with difficulty. Suffering diseased Men.- 48 4-8w Expression of eyes modifies character of frown- 50 wt widely open eyes astonishment $527-12 w$ occip-frontal raises eyebrows \& thus opens eyes widely 5624 $27 \mathrm{~m} / \mathrm{w}$ shining of eye $588-20 \mathrm{~m} / \mathrm{w}$ secretion of tears excited differently from saliva or milk 59 15-33w Rubbish - no explanation - nerve
excited because near seat of mind.- 60 12$23 w$ why do tears relieve grief why do scream relieve pain - $6124 u$ "Lebensmonate"/ $22-26 w \underline{Q} \cos ^{2}$ Cretins do not cry nor babies 63 wt Brightness of eye depends on fullness of ball $1-4 m / w$ In Cholera eye collapsed $7 m / w$ in dead do $6418-19 m / 9-23 w$ in Fever eyes sparkle owing to capsules gorged with blood, so perhaps in passion - $6520-24 w$ in grief circulation depressed \& eye dull $31 u$ "Freude|Zorn" 66 14u土/w sparkle 67 7-8w Drinking eye dull 70 13-23w Kissing initiation of sucking - movements of Babies: after nodding, but not instinct for Fuegians do not kiss.- $727-18 w$ mouth opened with bitter taste that the tongue may not be rubbed against palate $21-30 w$ good account of expression from bad taste. upper lip raised $745-28 w$ Thinks the bitter look, with raised upper lip comes in expression of horror Leonardo says upper lip raised as if for scream $794-8 w$ In great exertion one shuts mouth \& teeth firmly. 11-5m/11-22w the exertion spreads in useless way to other muscles: especially face muscles- (so in yawningO) $8026-30 \mathrm{~m} / \mathrm{w}$ nearly my view 81 $15-17 w$ firmly closed mouth expresses 18$22 m 8218-28 w$ in \& rage upper lip raised!! for bitter taste \& teeth closed for energy $w b$ X Wings of nostril raised, because respiration \& heart action increased. \& with closed teeth person must breath through nose - No $\pi 3-1 m / x / w$ All like my views 83 $29 w$ Contemplative expression 84 1-5w lifts head \& looks downwards \& sideways \& half closes eyes. 20-29w upper lip bitter expression Lower lip as if to push away something disagreeable $28 u, w b$ blows out air as if to blow away some insignificant object. $85 \quad \Uparrow 3-1 m \quad 87$ wt/1-23w When Eustachian tubes plugged by mucus in inflammation of the throat Hearing rendered difficult $14-22 \mathrm{~m}, 25-27 \mathrm{~m} / \mathrm{w}$ He who listens to unclear sound opens his mouth \rightarrow wb See my old Notes - Whales Dr. Murie. all very doubtful $884-7 w$ I must quote him 8-13w elevates eyebrows in astonishment opens mouth. 11-15m, 15-22w My theory is here given, \& is applied to mental phenomena. $22 u 89 w b$ When horses \& dogs surprised \& startled they prick their ears, Man opens mouth - \& raises eyebrows 91 23-26m/w rudimentary $w b$ See Moreau's Essay - He does not know this Essay The variability of Muscles of face stated by Moreau perhaps indicates the tendency to rudimentary condition in many \& agrees with descent 92 $11-23 w$ nostrils distended in surprise $\&$ in

Careful observation This f true curiosity.Perhaps owing to being startled. $932 u$ "Mm.|nasi", 3-5m/w orifice of nose made smaller $13-16 \mathrm{w}$ in bad smell shut nostrils with upper lip $968-13 w$ by Laughter after powerful respiration goes back by starts; conversely in crying $9 u$ "rückweises", $9 u$ "Zwerchfell", w diaphragm 15-24m/w attributes respiration affected by emotions to nerves arising near sense-organs!!! 97 1-18w In fact he explains nothing about laughing or crying. $28-32 \mathrm{~m} / 28 u$ "Zeichen IInnervation", wb spasmodic action, want of force, the nerves which wd show during exertion of respiration 98 wt see Duchennes photographs $4-17 w$ In laughter \& crying mouth opened wide speaks as if no difference in shape 1 !! $992 u$ "l,h,o", 4-6m/4u " p, q ", 22-25m/23w Smile 100 $6-12 w$ dimple caused by some muscles not extending to corner of mouth 101 wt Great laughter approaches to pain, thinks brows contracted!!! $1-4 m / w$ oh $102 \mathrm{wt} / 1-13 \mathrm{w}$ action of depressor alae nasi only difference between crying \& violent laughing. I rather trust Duchennes; but how little known about muscles The action of this muscle is to narrow nose \& says it can be easily perceived. $26-30 \mathrm{~m} / \mathrm{w}$ This muscle does not contract in Babies $10314-17 m, 22-34 w$ in Babies tears irritate eyes \& surrounding muscles contract !!! oh oh!! Sir C. Bell fig. 15 w Bad taste fig. $19 w$ Horror fig. $46 w$ excessive laughter fig. $47 w$ still more excessive laughter, so as to have bitter expression
PISTOR, E.M.W. Das Ganze der Feld- und Hoftaubenzucht Hanau; C.F. Edler; 1831 [CUL, on B, S Ap. 10/56]
beh, cc, cs, f, he, hy, v
NB p.12-22, p. 46
SB $\square \beta$
15 Hybrids of Barb \& Fan-Tail sterile Q
46 Lesser fertility of Dovecots only owing to less food
v $11 m, 13 m 7$ wt will not feed themselves 5$7 \mathrm{~m} 1212 u$ "krumme"/10w bowed 15-18w carriers $27 u$ "Augenkreis", $27 u$ "weisswarzig", $w b$ white wattle \& very big only differences $1314 u$ "zwölf"/15u "zweilbesitzen"/14-16w 12 to $3214 \quad 3-5 m / 5 w$ will cross with Turbits \& have both characters $16 u$ "bläuliche", $19 w$ Jacobins $1512 u$ "Ciprianer", $13 w$ Barb $19 u$ "Hövchen"|Pfauentauben", $24 u \leftrightarrow, 26 w$ like barbs but bigger $w b$ Eggs of Barbs \& Fantails sterile $162-4!/ 3 u$ "kurzen", $5 w$ Runts $215 m, 9 u$ "dreht|Burzler" $\infty_{0} 15 w$ C. Coronata $465-7 m, 12-17 w$ owing to food

PLANCK, Karl Christian Seele und Geist Leipzig; Fues; 1871 [Down]
xviii $6 m$ xxii $43 m$

PLANCK, Karl Christian Wahrheit und Falschheit des Darwinismus Nördlingen; Bech; 1872 [Down]
NB not read
PLANS of the various lakes and rivers between Lake Huron and the River Ottawa Toronto; John Lovell; 1857 [Down, I by M. Logan]

PLAYFAIR, John Illustrations of the Huttonian theory of the earth Edinburgh; Cadell \& Davies; 1802 [CUL, pre-B, S] geo, mi, t

NB 414 sand \& gravel moving〈CD? ${ }^{\text {P }} 501 ; 511 ; 524$ Theory \& observation viii $4-10 m \quad 54-9 m \quad 6 \quad 1-3 m, 22-25 m \quad 97 u$ "other 1 series" $1218-20 \mathrm{~m} 139$ "Primary", $9 u$ "Primitive" $1426 m^{*} 15$ 1-9m 18 1-5m $218 u$ "pressure", $17 u$ "increased pressure" $2214 m^{*}$ 25 19-27m/22? 26 6-10m $3014-20 \mathrm{~m} 311-4 m$ $321-5 m 331 u$ "pyrites", $3 u$ "the 1 fire", $4^{*} 37$ $18-21 m 3911 m / u$ "trona" $4224 u$ "moved angularly" 43 4-5u "in llayers", 6-9m 45 1-5m $46 \quad 21-24 m \quad 49 \quad 16-20 m \quad 51 \quad 5-9 m, 18-19 u$ "breccial between", 21-22u "is 1 general" 5 $14 m, 26-29 m 547-16 m 552-3 u$ "expansivel heat" 58 20-23m 67 11u "spathose", 19-20u "series I gradations" 68 11-12u "This \mid former", $29 u$ "solwhinstone" $695 u$ "carbonat lime", $8 u$ "compressing force", 24-26u "hencel surface", $27 u$ "whinstone", $28 u$ "un-erupted lava" 71 22$23 u$ "one| them" 72 11-15m 75 20-25m 78 10$13 m, 20-24 m 796-10 m 824-9 m 8316-19 m$ 84 14-19m 99 3-6m 102 18-26m 104 13-21m $1071-5 \mathrm{~m} /{ }^{\prime \prime} .$. " $1141-3 \mathrm{~m} 11921-26 \mathrm{~m} /$? 125 $\begin{array}{lllllll}19-25 m & 135 & 6-10 m & 144 & 18-22 m & 148 & 6 u\end{array}$ "Buffon", 9 u "Almistake", 14 u "omitting", 15 u "coal", $15 u$ "carbon" 151 22-24u "at | degrees" 163 15-21m 167 20-25m/24u "small lother" 170 17-21m/19-21u "it Iformation" 186 14-15u "Friction |heat" 189 10-14m 191 14-16m/? 195 $22 m 1987-13 m 20817-21 m 2105-20 m$, 2327 m 211 4-8m, 27-29m 217 11-17m 222 16$20 m 225$ 19-23m/19-20u "have I soft" $2261-3 m$ 227 11-16m 240 13-16m 242 25-27m 243 1$2 m \quad 246 \quad 23-27 m \quad 248$ 11-14m 256 2-4m 258 22-26m $26319 u$ "largelterraces", 22-23u \rightarrow 265 9-13m, 19u "granite", 20u "basalt" 267 $14 u$ "extinguished volcanoes", $17 u$ "fire mineral" 283 12-17m $28421 m, 27-28 u$ "that which" 285 1-18m/1-2u "is lother" 294 2-8m 296 12-24m 298 16-19m 304 17-19m/18u

PLAYFAIR
＂plumbago＂ 336 11u＂schistose＂， $15-20 \mathrm{~m} / 18$ ？／ $19 u$＂fluidity＂ $33823-27 \mathrm{~m} 340$ 1－4m 351 21－ $22 m 36213-23 w$ explained ice theory $3647-$ $10 \mathrm{~m} / 8 \mathrm{w}$ ice $37110-16 \mathrm{~m} 3731-4 m, 15-19 \mathrm{~m}$ 374 13－17m，24－27m 377 8－11m 378 10－14m， $23-28 \mathrm{~m} 39011-14 \mathrm{~m} 3931-3 \mathrm{~m} 39417-28 \mathrm{~m}$ ， $w b$ Geneva Stone angular 399 11－19m 401 $17 u$＂is I we＂／w retiring sea $41420-29 m 417$ 23－27m 488 14－22m／＂．．．＂ 494 17－26m（Buffon） $4971-8 m 49915-16 m, 21-28 m 5001-5 m 510$ $13-17 \mathrm{~m} 50518-24 m 5061-14 m 5115-6 m 512$ $20-25 m 5181-4 m 521$ 11－13m 523 17－21m $52424-27 m, 28-29 m 5251-7 m, 8-19 m, 21-$ $28 \mathrm{~m} 5261-6 \mathrm{~m}$
\langle other markings here and there not by $C D$ 〉
POMPPER，Hermann Die Säugethiere，Vögel und Amphibien nach ihrer geographischen Verbreitung Leipzig；F．C．Hinrich； 1841 ［CUL］
gd，is，v
NB 1 Lepus variable Iceland
p． 5 Animals of Greenland \＆not Greenland〈lists follow〉
title page $w t$ Nothing $121-23 \mathrm{~m} / 23 u$＂Island＂ $57-8 m / 7 u$＂M． 1 Grönland＂，9－11m／10u＂auch 1 Grönland＂，14－15m，16u＂Grönland＂，17－19m／ $18 u$＂C．｜zwischen＂｜ 19 u＂nicht I Grönland＂

PORCHER，F．Du Fuchsia，son histoire et sa culture Paris；Audot； 1844 ［CUL］
$\mathrm{f}, \mathrm{sp}, \mathrm{v}$
NB Oct 1857 O Nothing
3；94； 98 Read；105；35； 95722 vars 34 species
title page 10 w Porcher p． $10233 u$＂trente－ quatre＂， $5 w \star 3532 u$＂Constellation＂，33－35m／ $34 u \wedge 9320-33 m / 21 u \wedge, w b$ Corallina not in list！ $94 \quad 6-8 m 97 \quad 24-26 m 98$ 9－12m 101 37－ $38 m, w b$ How fruitful Corallina has been 102 22－24m 105 16－20m／17u＂tube｜nul＂

POSNETT，Hutcheson Macaulay The hist－ orical method in ethics，jurisprudence，and political economy London；Longmans，Green \＆Co．； 1882 ［Down，I］

POUCHET，Georges The plurality of the human race trans．of 2 nd edn by J．C．Beavan； London；Longman，Green，Longman \＆ Roberts； 1864 ［CUL］
h ，is，pat，$s p, t, t m$ ，wd
NB 50
SB $\square \beta$
50 Aegyptian types not so distinct
60 Negros Yellow Fever
－ 83 Pouchet has argued at length that domestic animals are quite different take easily plants removed to new isld
－About Will of Animals being destroyed－ does not apply to plants
114 \＆ 118 Remarks on Species Theory of no value－
114 Definition of Species
50 2－12m 60 28－44m 83 3－19m（Cuvier and I． Geoffroy St Hilaire） 114 1－6m，16－23m（Buffon） $1151-4 m 11830-33 m 11911-20 m$

POURTALÈS，Louis François de Illustrated catalogue of the Museum of comparative zoology， at Harvard College．No．IV：Deep－sea corals Cambridge（Mass．）；Museum of comparative zoology； 1871 ［Down］

POWELL，John Wesley Inroduction to the study of Indian languages 2nd edn； Washington；Government printing office； 1880 ［Down， 2 copies］

POZZI，Samuel Du crane（extract）；Paris； 1879 ［Down，I］

PREYER，Thierry William Die Blausäure 2 parts；Bonn；Max Cohen \＆Sohn； 1870 ［CUL］
che，in
part 2 NB1 I cannot find place where said that different individuals are differently susceptible to P．Acid
NB2 Not read
PREYER，Thierry William Die Blutkrystalle Jena；Manke； 1871 ［Down］\wp

PREYER，Thierry William Das myophysische Gesetz Jena；Manke； 1874 ［Down］\wp

PREYER，Thierry William Naturwissen－ schaftliche Thatsachen und Probleme Berlin； Gebrüder Paetel； 1880 ［Down］\wp

PREYER，Thierry William Die Seele des Kindes Leipzig；Th．Grieben； 1882 ［Down，S］

PRICE，John Old Price＇s remains London； Virtue Brothers \＆Co．；1863－64［CUL］\wp

PRICHARD，James Cowles Researches into the physical history of mankind 3rd edn，vols． 1 and 2；London；Sherwood，Gilbert \＆ Piper； 1836 ［CUL］
beh，cs，f，gd，h，he，hy，oo，pat，sp，sx，tm， v ，ve
vol. 1 NB1 w
NB2 * Alpine Botany of do
The entomology of Tierra del Fuego with respect to Europe - Patagonia to S. Africa must be well studied-
Vol. 47 Zoolog Soc about contagious diseases my Father about diseases common to animals.
The Highlands \& Western Isles in Letters of Walter Scott: 4 Vols
W. f D. Edwards sur les Characters des Races Humaines
Lesson Hist. Nat. des Mam. often quoted
NB3 p114 Lyell's mark
14 to 56 all worth reading again - to 164. 174
ask Henslow to put name in my catalogue.March. 1857 I have not looked through all these, but I have gone through the later Edition
206; 216; 220
225 on Blushing \& 271 - Good
242,4; 258; 264; 266; 286; 288; 305; 311; $314 ; 318 ; 333 ; 334 ; 340 ; 350$ to end of Vol done Feb 25/01 $\langle F D\rangle$
xii $36-38 w$ this not in Ed ii xiii $36-37 w$ $=\mathrm{p} 130$ Ed ii xv $29 w=192$ Ed $21427-32 m /$? $153-5 m$, 11-19m $1739 m$ (Rudolphi) 21 27$31 w$ singular/catacea/converse of antiquity $31-32 m+/ w$ Latin $242-39 m 251-8 m, 26-30 \mathrm{~m} /$ w How does my collection show this 31-32w a great difficulty $35-36 \mathrm{w}$ I suspect not so 26 $24-32 m / 28-30 m 291 u$ "analogous species"/1$4 m / w$ in a limited sense.- $7-22 m$ (Humboldt, Robert Brown)/11-12w insects forms 30 3-12m (Humboldt), $7 w \quad$ B $31 \quad 7-10 m / w$ Waterhouse similar remark $29-34 m, 35-37 w$ Tell Henslow $3522-28 \mathrm{~m} / 27 \mathrm{w}$ aquatic? $3722-$ $28 m$ (Rudolphi) 43 6-13m (Rudolphi), 15-17m, $23-28 m 4412-20 m 451-3 m / ?, 38-39 m 501-$ 7 m (Linnaeus) $511-39 \mathrm{~m} 521-38 \mathrm{~m}$ (Humboldt, A.P. De Candolle) 53 1-5m 57 23-28m/24u "the 1no", 37-38m (Latreille) 58 1-11m $6037-$ $38 \mathrm{~m} / 37 \mathrm{u}$ "Quarterly Review, vol. 47" 61 6-33m (Lyell) $6338 m$ (Lesson) $6434-36 m, 36-39 m 66$ wt consult Beales Book 1-15m 67 3m, 6-9m, $39 \mathrm{~m} / \mathrm{u}$ "Gmelin | Amoenitat." 68 17-30m 73 20$27 \mathrm{~m} / 24-27 m$ (Lesson), 35-37m 74 18-23m/19u "chironectes" \mid ?, $32-37 \mathrm{~m} / 35$ u "parameles", $35 u$ "New Guinea" 77 26-33m 80 10-14m 82 10$23 m / 14-17 w$ Flying squirrels in N. America 84 16-20m/16u "The |everywhere" $853-11 m / 4-6 w$ Relation to trees?? $8611 u$ "Moluccas"/w ! Baluchian 89 34-35m/36u "Annales 1 vii", 38$39 m$ (Cuvier) $9038-40 m 93$ 9-11m (Lesson) 95 11-13m 105 6-20m/6!!!, $7 u$ "definite", $8 u$ "separate origin"/10-11?!!!/11"..." "always" 106

4-19m (A.P. De Candolle) 107 31-40m (A.P. De Candolle) 108 36-37m (Geoffroy St Hilaire and Serres) $1121-4 m, 33-39 m / 35-36 u \leftrightarrow 115$ $18-25 m, 31-33 m 11823-29 m 11936-38 m 130$ $11-22 m, 29-36 m, w b$ | have heard of some facts different from this 13836 m (Rudolphi) 139 37-38m (A.P. De Candolle) 144 37-39m $14524-27 m / ?$? (Gaertner) 149 9-13m 153 30$36 m 155$ 12-21m 156 19-31m 157 31-36m, wb In Malcolmson's Pamphlet is there not something about goitre peculiar to races 158 1-5m 163 2-37m 166 37-38m (Jacobi) 174 4$8 m \quad 175 \quad 6-31 m / 31 u$ "everywhere", $36 m$ (Hancock), wb Anafuras have no such beliefs 176 1-39m $18028-31 m / 29 u$ "voyager Kolben", wb consult for Cattle \&c see p. 182183 5$10 m 216$ 26-31m $22030-33 m 22531-33 m / 32 u$ "parlhonte" 242 20-23m 243 17-32m, 17-19w Consult Rengger $22 w$ when? $29 u$ "permanencylbreed"/w how long? 244 1-7m/w strongly versus Walker; if considered races 32-33m, 39m 245 9-15m/13-15m, 19-21m, 2731m, 37-38m 258 31-35m 264 16-20m 266 1014 m 271 18-22m 286 10-15m, 17-24m 288 27$33 m 30438 m$ (W.F. Edwards) 305 11-15m 311 $26-30 m 314 \quad 21-32 m 318$ 12-21m/12-13? 333 6-11m, 21-29m (Vrolik) 334 18-22m (Owen) 340 18-29m 341 1-11m 350 31-39m (A.P. De Candolle) 351 38m (Pallas) 352 29u "byl organs", $27-30 \mathrm{~m}, 27 \mathrm{w}$ retriever ! $38-39 \mathrm{~m}$ (Meckel) 354 4-25m, 27-37m (Buffon) 355 134 m (Blumenbach) 356 5-10m, 10-36m (Blumenbach and Cuvier) 357 1-28m, 29-31m (Pallas) $36031-37 m 361$ wt I have note of small sheep on Red Sea $1-2 m 36730-39 m$ $36823-30 \mathrm{~m} 3709 m, 10-13 \mathrm{~m} / \mathrm{w}$ This being cross, father ought to have given $20-27 \mathrm{~m} / \mathrm{w}$ Mr. Walkers Theory!!! The father here gave only part of cuticle!!! $30-40 \mathrm{~m} 371$ 23-28m $374 \quad 6-11 \mathrm{~m} / 8-9$? $375 \quad 10-12 \mathrm{~m} / \mathrm{u}$ "separatel economy" $/ 10-13 \mathrm{~m} / \mathrm{w}$ assumed $17-20 \mathrm{~m} /$?, 31$39 \mathrm{~m} /$? facing $3764-18 \mathrm{~m}$ (Prichard)
vol. 2 NB March 1857 I have not looked through.-
2; 3; 10; 33; 95; 97; 141; 175; 181
197 All before Chapt X: very dull This whole Chapt. amusing
207; 210; 221,2,3,6; 264; 275; 278- is this true; 323,5 ; 329 ; 331 ; 336,$8 ; 340$ whole section; 344 -copied FD; 348 Done FD
SB 〈by FD, referring to $2 n d$ edn, vol. 2 \& $4 t h$ edn, vol 4〉
2 3-8m 3 34-36m (Lacépède) $1031-33 m 333 w$ Galapagos $7 u$ "abounded 1 size" $/ 5-8 \mathrm{~m} / \mathrm{w}$ New Zealand 9w Gap $9533-34 m 974-37 m 141$ 16-20m 154 9-16m 175 34-37m (Rüppell) 181 19-32m/25-26m $197 w t$ The case of African

PRICHARD, MANKIND
nation which has grammatised its language from the Arabian has been mentioned, so much so, that it might be mistaken for Semitic dialect 15-18m 207 19-22m 210 38$41 m 221$ 26-28m 222 1-38m 223 1-39m/39u "purposely framed" $2241-8 m, 13-38 \mathrm{~m} / 15-20 \mathrm{~m} /$ 14-17w What evidence? 226 2-14m 264 25$30 m 275$ 29-31m 278 14-21m, 28-30m 279 4$5 m 323$ 1-16m 325 9-22m, 25-38m 32934 $38 m 331$ 17-22m $334 w b$ - 336 17-24m 338 $7-34 m, 36-39 m 3391-4 m, 19-27 m 3401-4 m$ 344 5-13m/8-9"..." 345 17-21m 348 24-35m

PRICHARD, James Cowles Researches in the history of mankind 3rd \& 4th edns, 5 vols.; London; Houlston \& Stoneman; 1841-51 [CUL]
beh, cs, f, gd, geo, gr, h, he, hy, is, mg, mn, no, pat, sl, sp, sx, ta, ti, tm, ud, v, ve, wd
vol. 1 NB1 〈note on Mendel by FD〉
NB2 Blumenbach de Unite de Genre Humain
Blumenbach Beytrage zur Naturgesichte \& Meckel Traite general de Anatom Compr Must be read Has not Erasmus one of their works
Pallas Spicilegia Zoolog
p311,320
271 Blushing said to have been acquired by Negros (passage in text is about Amerindians)
SB1 Prichard Vol I p.23; 26; 33; 41,42; 61; 84; 87; 90; 94; 112; 115; 133; 141; 144; 153, 163; 175; 224; 228; 245; 271; 311; 316 How like my Book all this will be.
I must read some Book on geograph distrib of insects or of one great class
p.321; 322 \& p. 324 \& 331 on relation of body, pelvis \& Head
311; 334; 340; 345; 349; 351; 353; 366; 370 SB2 $\square \beta$
23 S. African plants in Europe (Glacial?)
42 quotes Lyell \& Keith on seeds in Baltic from Germany do. 61 Eding. Phil. Mag. 1832 on Distribution of Parrots
84 Bat in Sandwich Isld 87 Pteropus keraudren at Marian \& Oualan; at Tonga peculiar species
90 Australian Dog same as that of N. Ireland M. Lesson N.Q.

141 Sparrmann says hybrids of common \& Aethiopian Hogs fertile
144 It seems Buffon was strong on repugnance to 2 species to cross
155 On Heredetary Plica Polonica - on races of Man becoming predisopsed to disease in certain countries

163 do on diseases of Hot countries
224 Albinos subject sensible to bite of flies 245 Good Heredetary cases of toes \& fingers - Heredetary rudiments
311 Xasal cavities large in American skulls, Blumenbach connects with high smelling powers
321 Cox says flattened head "an essential point in Beauty" in American Indians
324 Vrolik says shape of Pelvis must have some influence on that of Pelvis **s Headeo 331333
334 Lumbar vertebrae sometimes six in Negro
341 In Tobolsk Cats generally red Q
343 Skin \& hair go together in colour Sheeps Mouths black when \& hair black
345 On complexion \& temperament.
349 Porcupine Man coming on at same time in him \& children
353 Blumenbach on some strange vars of Pigs - Marcel de S. on skeletons of dogs \& wolves Eding. Phil J July 1835 p. 244
356 Feral horses of Pallas in Siberia. Dun or brown Q \mid
$2316-18 \mathrm{~m} / \mathrm{w}$ N. Migration during cold Period 16-20m, 20-25m 26 3-10m 33 38-41m 41 27$35 m$ (A.P. De Candolle) 42 26-29m/w Fundus maris semina non destruct $4328-29 m 4439 u$ "marine birds" 58 19-22m (Latreille), $36-39 m$ $5936 m$ (Illiger) $6136-37 m \quad 84 \quad 8-10 m / 9 u$ "small crepuscular" $874 m / 4-5 u$ "has 1 Oualan" 90 31-33m (Lesson) 94 25-28m (Buffon) 112 29-39m $1153-9 w$ who can tell - it is begging question to say constant. $11-12 m, 19-23 m$ 133 9-12m, 21-23m $141 \quad 13-14 m$, $37 m$ (Sparrmann) $14435-37 m 15331-35 m 1556-$ $10 \mathrm{~m} / 10 u \leftrightarrow, 11-15 \mathrm{w}$ The point to show is that a race by living in district long may acquire hereditary tendency $14-21 \mathrm{~m} / \mathrm{w}$ proof of peculiarity acquired by certain race in certain area $24-25 m, 26 m, 33-38 m / 37-38 m, 39 m 156$ $1-6 m, 8-16 m, 23-30 m 15718-21 m, 27-29 m$, $32-33 m, 36 m 1581-4 m 1596-10 m, 36-37 m$ (Winterbottom)/36-38w would be worth reading $38-39 m 1633-9 m 1751-3 m 22435-$ $39 m 225$ 30-34m (Buffon) 228 6-18m 245 7$16 \mathrm{~m} / 11 u$ "rudiments of"/ $15 u \leftrightarrow / 11 w$ Heredity $17-21 \mathrm{~m} 27117-21 \mathrm{~m} / \mathrm{w}$ no doubt wd increase tendency $311 \quad 1-3 m, 28-35 m \quad 316 \quad 12-17 m$ (Tiedemann) $31739 m 318$ 16-22m 320 22-25m $3217-9 m, 7-8 u$ "They|point", 18-19u "Dublin|1834" 322 16-18m 324 3-10m (Vrolik) $33126-29 \mathrm{~m} / \mathrm{w}$ see references to Book p324 333 25-28m/w p281 for main character of skulls $26 u$ "oval shape" $/ w$ do.
head $28 a$＂oblong＂do．head $28 a$＂Mongolians＂ do．head 334 19－21m $34040 m$（Blumenbach） $34116 m$（Gmelin） $3435-8 m$ ，wb over $34433-$ $35 m 345$ 14－16m，17－21m 347 21－23w氏ct， $29 u$＂barklhide＂ 348 11－13m，21－26m（H． Baker） 349 7－9m，21－24m（Lawrence） 351 7－ $9 m / 7 u$＂J．F．Meckel＂ 353 13－20m，33－35m （Serres）， $36 u$＂Beyträge｜$u b i$＂， $38 m 354$ 14－16m， 18－20m 355 18－21m（Blumenbach） 356 6－7m／ $6 u$＂dunlbrown＂ 366 18－23m 367 36－37m 370 32－36m／w Piebald

NB［done FD Feb 25／01］
vol． 2 SB1 p33；p45；p181；p334
SB2 $\square \beta$
33 Dogs \＆Goats in Canaries－Cada．Mosto discovered C．de Verdes
181 To produce effect on race by crossing， the two parent races must be nearly equal in number．
334 Reference to table of complexions by Esquirol，possibly may allude to liability to disease（But it was madhouse）

33 9－13m，30－32m／31w／u＂Cadamosto＂ 35 $22 u$＂bandages lskin＂ 45 23－32m 46 6－9m 47 7－12m 181 20－31m 334 31－34m
vol． 3 NB O／
vol． $4 \mathrm{NB}\langle w<$ ，not $C D\rangle$
［FD copied］p103； 243 －X not N．Sel；407； 413；423；454xx；477；492；519x Beauty； 525； 529 －ext condus
530 common mule（c of Ass \＆Horse）shows that no great variability or appearing of new characters in Hybrids
534537 Beauty 539 Climatex 616
SB $\square \beta$
103 Date of Vedas 1343 B．C． 477 History of China 2200 B．C．
407 X on shape of Head in relation to senses
454 X On variability of chief characteristics of each Race of Man 519， 530
519 X Chinese admire Chinese beauty 534 so Siamese 535 Cochin China 537
$1036-12 m / 8 w$ concludes $24330-39 m / 34-36 m$ 407 19－21m，23－27m $4136-10 m 4231-5 m 454$ $21-23 m / 21-38 w / w b$ so darkness variable in Hindoos－Bump in Hottentot，\＆I think many other particulars which I have omitted to mark，wd require selection to separate． There was something on skull of Australians． So shape of Pelvis．－Shin Bone of Negros？ 476 18－26m，31－37m（Rémusat） 477 4－7m，10－ $12 m 492$ 22－25m 519 12－13m（Barrow）／u＂thel nose＂， $15 u$＂highlbones＂， $17-18 \mathrm{~m}, 24 u$ ＂Pallas＂，25－29m， $39 m 5202-5 m / 5 u$＂short｜
flattened＂，15－16m／15u＂hands｜feet＂ 521 34－ $35 m 525$ 10－19m 529 6－10m 530 35－38m 533 30－36m，38－39u＂features I bold＂ $5341 u$ ＂small＂， $2 u$＂nostrils＂， $4 u$＂rather thick＂，8－ $13 m / 9 u$＂breadth lof＂，13u＂large＂，27－28u ＂beauty｜them＂，29－30u↔／29－32m／w Siamese $5354 u$＂Cochin China＂，26u＂globular＂， $27 u$ ＂orbicular \mid face＂， $33-35 \mathrm{~m} / \mathrm{w}$ Cochin China 39 m 537 21－26m 539 22－28m 615 13－15m
vol． 5 NB 67 Beauty
SB1

X 67 Beauty

146 Drift wood Easter Isd
168 Spaniards introduced Stag，Mariane Isd？From Freycinet．Lib 3．p． 270
283 Differences of Oceanic People－ 292 N． America－Man in a Polymorphous condition． 419 Mandans grey－hair
463 Chest \＆Body of Indians
$\checkmark 476$ Beauty
542 Differences in American Races
X 145 Difference low level Islets \＆High Volcanic isld－
〈over〉 ${ }^{\text {© }}, \infty$
In my note on Man－Ask what makes any peculiarity not always heredetary；then why shd not this cause act \＆react．－Effect of civilisation on poor children \＆rich．－Hair \＆ colour－Polymorphous state Geographical reprentatives most difficult to decide whether to call vars．or species． Moral＊restraints－ （Spreading not like spreading of other animals？）Allude to Pritchard on colour \＆c
\rightarrow ，\oplus
Mans Sexual characters like tufted Ducks．－
FirstO spreading out evenO families wd be partO

67 16－21m／19－21m，22－25m 141 18－21m 144 32－36m 145 2－7m，21－29m 146 33－36m 168 30－35m 283 6－10m（Foster） 293 17－29m （Morton） 418 31－35m 476 35－37m（d＇Orbigny） 542 28－33m（Humboldt and d＇Orbigny） 543 17－23m（d＇Orbigny）

PRINCIPLES of organic life London；Robert Hardwicke； 1868 ［Down，S］

NB O／
\wp
PROCTOR，Richard A．Pleasant ways in science London；Chatto \＆Windus； 1879 ［Down，I］
geo， 00
NB p379 Dust important for Worms
379 wt But this cannot apply to a whole country 6－37m，wb St Jago When covered

PROCTOR，RICHARD
with vegetation＊very little dust raised 380 $1-2$ ！， $26-37 \mathrm{~m} / 30-35 \mathrm{~m} / 13-35 \mathrm{w}$ But clay O must have been taken from one part to another

PROCTOR，Robert Narrative of a journey across the Cordillera of the Andes London；A． Constable； 1825 ［Christ＇s College Library，on B，S］

NF Have read as far as the pages are cut －X Vizcacha Azara ；Biscacho－ Proctor；Cachia Caldcleugh；Cuvier Viscatcha
$15 w b$ Gau 〈for Gauchos〉 $368 w t / 1-2 w$ Gua Gua Gau quipos Gau

PSYCHOLOGICAL ENQUIRIES（published anonymously by B．C．Brodie）；London； Longman，Brown，Green \＆Longman； 1854 ［CUL］
beh，ch，gd，gr，h，or，phy，t，tm，ud，ve
NB1 Emma 104
NB2 much good on man
p166；p183，4；186；190；192；194；196；198；

203

p． 196 Man wd not spread beyond Tropics till fire invented nor very widely，perhaps，till Boats？
Perhaps first Learnt in a Volcanic region， with lava flaming things around

SB $\square \beta$

188 Q Good case of Bees building comb beneath a fallen hive temporarily
192 Moral sense due to Social Instinct p203
195 Man must have had more instincts when first Produced
199 Q An acquired habit converted into instinct show change in Brain

166 13－19m $18319-22 m 18420-23 m /$ ？ $1865-$ $9 m 187$ 18－22m $188 \quad 13-19 m / 17 \ldots " 189 \quad 24 m$ （Dujardin） 19023 m 192 16－18m，17－24m 194 21－24m 195 4－8m，15－18m 196 14－18m 197 21－22m／u＂instinct of self－preservation＂ $1985-$
7 m 199 18－21m 203 7－10m，22－24m

PUBLIC LIBRARIES in the United States of America Part 1；Washington；Government printing office； 1876 ［Down，S］
NF 419－442；476－504
\wp
PUGIN，Augustus Welby Contrasts or parallels between the noble edifices of the middle ages and corresponding buildings of the present day London；Charles Dolman； 1841 ［Down］ \wp

PULTENEY，Richard A general view of the writings of Linnaeus London；J．Mawman； 1805 ［Botany School，pre－B，ED］

PUSEY，Sidney Edward Bouverie Per－ manence and evolution London；Kegan Paul， Trench \＆Co．； 1882 ［Down，I］\wp
NB All mere rubbish
PUTSCHE，Carl Wilhelm Ernst Tauben－ katechismus Leipzig；Baumgartner； 1830 ［CUL，on B］ no，v，wd
NB Nothing March 1857
p27；p30
iv $16-19 m / 17 u \leftrightarrow$ v 6－8m／6u＂dreyssigjähriger＂ vi $9 u$＂Leipzig＂，9－10w I have $2219 u$ ＂Montauban＂，20－22w Leghorn Rump scanderosus \＆c $239 w$ Carrier 26 9m， $32 u \leftrightarrow /$ 31－32w／wb Almond Tumbler has been reduced in England 27 14－15u＂auch｜ihnen＂｜ w Turbits $28-30 \mathrm{~m} / 28 u$＂ 1573 ＂ 30 21－24w same as spots $3122 w$ with a mane $3213-$ $24 m / w$ Swallow－Pigeons thus seem to be domesticated

PUVIS，M．A．De la dégénération et de l＇extinction des variétés de végétaux Paris； Huzard； 1837 ［CUL］
ch，che，cs，dg，fg，phy，sp，t，ta，ti，v，wd
NB p1－41 \rightarrow chiefly on old vars of Fruit－trees dying；48；p．63，5；76－79； 82
SB 36 on apples half one sort，half another． Attitude to direct fecundation
37 on genera varying in having only single species Q
41 on vars．of Peaches within recent times
76 on certain fruit－trees coming true
7781 in cultivating a number of Cereals，all those near each other，were greatly modified in garden of Society－attributed to crossing but I doubt Q
〈over〉
p10 M．S．reference to Lindley on grafting
$58-10 \mathrm{~m} / \mathrm{w}$ Fruit－trees $1511-16 \mathrm{~m}, 18-21 \mathrm{~m} 22$ 27－31m 15 11－16m，18－21m 22 27－31m 25 25－ $28 m 301-8 m 311-5 m, 10-13 m 3410-15 m 36$ $1-7 m$ ，$w t / 1-4 w$ attributes all variation to crossing 11－12m，19－23m（A．P．De Candolle），24－26m，27－32m\＆37 wt Maize Rice Potato $1-4 m, 1 u$＂principalement＂， $4 u$ ＂kolreuteria＂， $3 u$＂seigle＂／w Rye 5－6m，7－8Q $11 u$＂platanes＂， $12 u$＂encore entr＇eux＂$/ 9-1.4 \mathrm{~m} / \mathrm{w}$ Ch 4 Big grain \＆small grain－13－15m，wb The Variation in Fruit－Trees shows that many generations are not necessary to cause
variation $3920-28 m 411-4 m, 11-14 m 4819 u$ "Annales"/19-21m (Sageret) 49 5-8m 63 20$23 m 654-10 m 762-4 m$, $15 w$ cultivated $15 u$ "franche", 16-18m, 19-21m, $24 u$ "prune", 31$32 m 771-2 m, 9-11 m, 21-23 m, 24-29 m 783-$ $7 \mathrm{~m} / \mathrm{w}$ chemical change $18 u$ "été" $/ 9-18 w$ Thinks it all due to crossing affecting the very grains. 79 11-14m 81 23-26m $82 w t$ spell. Dict. French $1-3 m / 1 u$ "épeautres", 8$11 w$ ask about Aegilops 12-15m 83 10-12m

QUADRI, Achille Note alla teoria Darwiniana Bologna; Giuseppe Vitali; 1869 [CUL, I] ad, ex, fg, is, no, sh, t, ts
NB1 p26 * p. 28 very good; Struggle for existence
NB2 〈not CD
SB Ch2 p37; 3 p105; 4 p137; (I have not read)
$28 w t / 1-9 w$ (a) Prophesied that Culicidae wd be rare on account of vast number of Empitae, \& these abounded because Waterbeetles sick \& very rare $9-30 \mathrm{~m} / \mathrm{w}$ (a) $32-35 \mathrm{~m} /$ $34 w$ (b) $w b$ (B) Land-shells devoured by Mice - one kind protected by Carduus - like plants on commons by Thorns - Beans on shells in islands, where no mice, lately exterminated $\rightarrow 29$ wt He classes the relations of the Economy of Nature $8-9 \mathrm{~m} / 4$ 21w The more perfect the organism the less Evolution (external) wb Mr Traherne Moggridge remarked to me that he cd find seed of Legum. climbing plants only when dropped among thorny plants, in all other places devoured

QUATREFAGES DE BRÉAU, Jean Louis Armand de Charles Darwin et ses précurseurs français Paris; Germer Baillière; 1870 [CUL, I] NB O/
8
QUATREFAGES DE BRÉAU, Jean Louis Armand de Études sur les maladies actuelles du ver à soie Paris; V. Masson; 1859 [CUL, I] ad, beh, br, em, ex, gd, he, mn, 00, pat, rd, sl, sx, ta, v

NB 12; 31; 101; 209; 214; 304; 321
SB $\square \beta \alpha_{0}$
Q
12 \& 214 do One knows that everywhere in France white races have resisted disease better than yellow.- [It may of course have been accidental coincidence]
31 Disease Hereditary The old races promptly disappeared from whole country 101 Great care is always taken in selecting cocoons for breeders.
209 a breed of which females had much finer \& not so monstrous wings $*$ as in the South-* certain black caterpillars resist disease much better
214 some breeds have lost property of attaching eggs to any support
304 Often mere rudiments of wings $\langle u\rangle$ doubtful whether due to disease 321 an account of diff vars. of Mulberry with leaves of different qualities some only fitted

QUATREFAGES, VER À SOIE
for caterpillars in latter stages; Hence selection might easily come into play - as the stiff-leaved vars could exterminate a species.- No doubt judging by our oaks only the more delicate trees wd be thus exterminated.
12 27-28m 31 18-20m 101 21-24m $2091 u$ "vers 1 Jean", $17 u$ "plusidans", $18 u$ "sont \mid étalés", 25-28m 214 14-15m, 16-17m 217 26$29 m 3041-13 m / 7-8 Q 3214-12 m / 6-9 Q / 8-9 m /$ 9 u "qu'on 1 davantage", $14 u$ "assez \mid découpées", $15 u$ "feuille \mid plus", $19 u$ "laquelle \mid ramassage", $23-26 \mathrm{~m} / 25-26 \mathrm{~m}, 29 \mathrm{~m}$
QUATREFAGES DE BRÉAU, Jean Louis Armand de Histoire naturelle des annelés 2 vols.; Paris; Roret; 1865 [Down, I] \wp
QUATREFAGES DE BRÉAU, Jean Louis Armand de Métamorphoses de l'homme et des animaux Paris; J.B. Baillière \& Fils; 1862 [CUL, I]
cc, em, fg, gd, mn, oo, phy, sx, t, tm, v
NB 32; 79; 84; 94; 99; 103; 113; 118; 122; 129
SB $\square \Re$ no
32 Embryology
79 do
84 - Destruction of caterpillars by Ichneumonida
94 - Neuter insects
994 forms of successive Respiration in Frogs
103 do.
113 Retrograde development
118 F.W. Molluscs no metamorphosis
122 Embryology
129 Period of monstrosity X
174 alternate generations
251 True generation always necessary
280 Parthenogenesis in Wasps
299 do.
293 do.
312 \& 315 \& 317 Embryology
32 8-16m $7917 u$ "quatre formes" $/ 13-25 m$ (Fabre), 28-34m (Joly) $8427-30 \mathrm{~m} 9421-24 \mathrm{~m} /$ $1-24 w$ I doubt - will not explain two castes of ants $9921-30 \mathrm{~m} / 18-30 \mathrm{w}$ four forms of respiration 100 1-9m, 19-25m 103 1-6m, 8$24 m 10422-32 m 10731-34 m 11323-27 \mathrm{~m} / 23 \mathrm{w}$ Lernaea $118 \mathrm{wt} / 1-2 w$ Why ? No food $23-27 \mathrm{~m}$ 119 13-16m 121 27-30m 122 24-29m 129 48 m (Meckel and Geoffroy), 13-23m/7-19w so with all variations $28-30 \mathrm{~m} 17412-30 \mathrm{~m} 251$ 12-19m 280 4-11m (Leuckart) 28212 w ovipary 290 9-14m 293 6-13m 312 18-22m 313 9-12m 315 4-7m 317 29m (Dufossé)

QUATREFAGES DE BRÉAU, Jean Louis Armand de Nouvelles recherches faites en 1859 sur les maladies actuelles $d u$ ver à soie Paris; Victor Masson; 1860 [CUL, I]
NB O/1860
QUATREFAGES DE BRÉAU, Jean Louis
Armand de Physiologie comparée. Les métamorphoses Paris; Estrail de la Reine des Deux Mondes; 1855 [CUL, I]
$\mathrm{ad}, \mathrm{cc}, \mathrm{ct}, \mathrm{em}, \mathrm{fg}, \mathrm{in}, \mathrm{no}, \mathrm{sx}, \mathrm{t}, \mathrm{ta}, \mathrm{v}, \mathrm{y}$

SB1 ${ }^{\circ} \beta$

In insects variation cannot come on till later in life-so no necessity for coming on early The case may be early if measured by year towards close of life.
85; 96; 102; 118; 121; 125; 126; 134; 136; 138; 140 Hermaphrodite Fish.
By the enormous increase of individuals by gemmation in animal \& vegetable kingdom number of eggs increased, \& at times of year when perhaps not good for seeds or eggs to be produced-
SB2 $\square \beta$
96 great differences in Metamorphoses of closely allied Polyps
125 Transformations, Metamorphoses, genea-genesis.- all forms of Metamorphosis 138 Summary of do

140 Serranus Hermaphrodite Fish

N.B. In an ephemeral insect how late a variation appears in life as measured by time - though the causes may act at a very early period
85 26-41m 96 7-14m (Löwen) 102 23-29m 116 9-11m 118 18-24m, 28-32m 121 1-6m, 21$25 m 1231-10 m$ (Owen) $1255-11 m 12623-$ $25 \mathrm{~m} / 20-34 \mathrm{w}$ This after all turns on metaphysical point of what is individual. $37 u$ "monogénèse", wb In young Anodon wd it be mono or digenesis - the cases blend together $12715 m, 22 m$ (Carpenter)/u "son l fond" $1283-4 m, 6-9 m / w$ just as I thought 129 $3-7 m 13416 m, 26 u$ "n'aura|germe"/w No 27$31 w$ His own case of Moths.- 136 17-21m $13735-37 m 1381 a$ "oeuf"/wt \& the young organisms adapt to external. conditions 2$8 m, 37-40 m 14040-43 m$ (Dufossé)

QUATREFAGES DE BRÉAU, Jean Louis Armand de Souvenirs d'un naturaliste 2 vols.; Paris; Charpentier; 1854 [CUL] af, ch, dg, em, gd, no, or, phy, sx, t, tm
vol. 1 SB1 vol 2 p.184; p.193; p.278; p. 338 vol I p.116; p.121; p.123; p.135
p. 254 works out well particularly of laws of
propagation in animals \& vegetables.p296; p.306; p.308; p. 321
SB2 $\square \beta$
121 On division of labour, 297
137 Great size with degradation in Nemertes vol 2193 simple eye of Annelid
338 On important change in one part not compelling changes in other parts, with good remarks against the subordination of Characters of Cuvier

116 2-6m/4-5w analogue 117 18-23m $121 w t$ How applicable to Plants - Shark \& Salmon \& Pike The mere facts of being less like Reptile makes more Fish-like $1-4 m, 7-10 \mathrm{~m} /$ $9 u$ "inférieur", 24-25m (Milne Edwards) 122 11-15m/11u "types", $17-21 \mathrm{~m} / 20 u$ "plan général", 23-25!/23-24u "le | branchie" $1235 w$ Lamprey 22-26m 135 15-18m, 26m 137 3-6m, 25-26m 139 14-20m/16w Fish? $26 m 1403-5 m$ 257 18-22w The leaf buds are \& larvae 295 24-26m 296 1-11m 297 24u "illans"|23-25m (Milne Edwards), 25-26m 306 1-7m 308 22$26 m 309$ 3-8m, 19-22m 321 10-22m/22u "réunis", $23 \mathrm{~m} / \mathrm{w}$ Land $24 w$ some Rotiferae are bisexual $26 w$ Land $27 u$ "Turbellariés" $/ w$ Land 29-32m (van Beneden), wb * There have been land-forms produced because such has been possible owing to these being M All wrong
vol. 2 NB1 40; 48; 52; 64
NB2 40; 48; 52
NB3 O
$4017 u$ "représenter" $4126 m 43$ 9-14m 52 13$17 \mathrm{~m} / 13 u$ "parenté zoologique", 16-21m, 23-24u "d'identité apparente" 53 2-4u↔ 62 10-13m 64 4-8m $1841-7 m \quad 193 \quad 1-13 m / 3 u$ "partout 1 centre" 278 6-15m/10-11w Teredo $3382-23 m$, 15-18m, 24-26m 339 1-5m (Jussieu), 9-16m, 20-21m

QUATREFAGES DE BRÉAU, Jean Louis
Armand de Unité de l'espèce humaine Paris; J. Claye; 1861 [CUL]
beh, br, ds, em, h, hy, phy, sp, v
SB1 $\square \beta$
20 Man. Language
31
39- Definition of Species
Some truth to similarity, some truth to descent alone
$52 ; 53 ; 57 ; 78 ; 119 ; 152 ; 156 ; 158 ; 161$; 169; 205 a Book on Health of World
Americans altering looks like conditions
Whatever produces 6 fingers, could if prolonged produce six.-
Nothing important
Jan 1861 Quatrefages on me

SB2 $\boldsymbol{\circ}$
20 Compares Languages of Man \& of Animals
152 Results of crossing Primrose \& Cowslip 156 on the crossing of 2 species of Camels. doubts thrown on.- \& 2 species of Guanaco. 158 on the sheep \& Goats of Chile.
161 Naudin on Law of Return of Hybrids - I doubt - It is certain that he does not believe much in insects.-

19 11-16m $20 \quad 28-35 m \quad 21 \quad 21-23 m / 22 u$ "caractères moraux", 26u "vertulvice", 37$41 m, 43 u$ "sel généralement" $3127-30 m, 31-$ 38m, 40-41m, 42u "compagnie" 32 9-14m 33 $1-6 m 3920-25 m 52$ 31-38m (De Candolle) 53 26-34m, 35-40m (Linnaeus) 54 34-39m 55 3340 m (F. Cuvier, I. Geoffroy St Hilaire) 56 3-9m 57 6-12m (Sageret) 59 21-22m 69 29-33m 78 12-15m $79 \quad 24-36 m$ (Geoffroy) $88 \quad 14-21 m$ (d'Orbigny) $93 \quad 40-41 m \quad 95 \quad 39-40 m$ (Desmoulins), 39u "seize" 119 25-35m 125 2$10 m, 28-33 m / 29-30 w$ like Wallace 128 24$43 \mathrm{~m} \quad 129 \quad 21-24 m, \quad 36-39 \mathrm{~m} \quad 152 \quad 12-20 \mathrm{~m}$ (Naudin) $1565-24 m$ (Khanikoff) 157 37-41m (H.A. Weddell) 158 18-24m 159 2-9m, 31-34m 161 wt I must study Naudin on Return; 1 cannot but suspect crosses $25-30 m 16926$ $37 m$ (Geoffroy) 205 21-27m (Winterbottom), 31-38m (Boudin), 39-41m, 介3u "Boudin" $/ w b$ I must read that book 206 11-16m

QUETELET, A. Sur l'homme et le développement de ses facultés 2 vols.; Paris; Bachelier; 1835 [Down, ED]

THE RABBIT BOOK London; Journal of horticulture; n.d. [CUL]

NB p.2; 4; 14; 16; 22; 24; 34
2 2-8m (Confucius) 4 33-35m $145 u$ "Double Full" $/ w$ Oar lop - Horn-lop $13 u$ " 5 thleye", $20-23 m / 21 u$ " It inches" $/ 22 u$ " 5 " 15 fig.m 16 2$4 m, 29-32 m 22$ 28-32m 24 27-33m 26 16u "Chinchilla", 20u "wild|sprig", 23-29m 28 1$3 m$, 12-14m 30 15-17m, 19-21m, 22-23m 31 11 u "Ram Rabbit", 17-19m/18u "from 120 " 32 $4 u$ "Rouennais", 4-16m/12-16m, 19-23m, 2628m/26u "Nicard" $348-10 \mathrm{~m}$

RADCLIFFE, Charles Bland Dynamics of nerve and muscle London; Macmillan \& Co.; 1871 [CUL, I]
beh, phy, tm
NB1 Does killing Drosera cause contraction - is elasticity contracted during life?

NB2 9 \& 27 \& 29 \& 38 Torpedo
144; 165 Blushing
178 contraction of muscle due to elasticity contraction of amoeba
237 Trembling- why excitment, because too great
9 3-5m (Du Bois-Reymond) 27 25-31m (Matteucci) 28 30-31m 29 1-11m, 23-27m 38 $2-8^{\prime \prime}$..." $/ 3-10 m 144 \quad 7-17 m \quad 1654-10 m$, $19 u$ "vaso-motor" 178 22-31m 179 20-23m 237 2030 m 238 3-15m/14-16m

RADENHAUSEN, Carl Osiris: Weltgesetze in der Erdgeschichte 3 vols.; Hamburg; Otto Meissner; 1874-76 [Down] \wp

RAM, James The philosophy of war London; C. Kegan Paul \& Co.; 1878 [Down]

RAMES, J.B. La création d'après la géologie et la philosophie naturelle part 1; Paris; F. Savy; 1869 [Down, 1]

RAMSAY, Andrew Descriptive catalogue of the rock specimens in the Museum of practical geology London; G.E. Eyre \& W. Spottiswoode; 1858 [Down, I]
11 1-3m 13 1-7m 148 13-14w Galapagos 149 $16-19 m$
\wp
RAMSAY, Andrew Crombie The physical geology and geography of Great Britain London; Edward Stanford; 1863 [Botany School, I]

RAMSAY, Andrew Crombie The physical geology and geography of Great Britain 3rd edn; London; E. Stanford; 1872 [CUL, I] geo se
NB Will Shrinkage account for surface grt elevation \& subsidence on same area p. 261 Earth brought down by Rivers 261 1-9m

RAMSAY, Andrew Crombie The physical geology and geography of Great Britain 5th edn; London; Edward Stanford; 1878 [Down, I]
ad
NB p107 On Marine animals getting accustomed to salt water $10731-34 m$

RANG, Sander Manuel de l'histoire naturelle des mollusques et de leurs coquilles Paris; Roret; 1829 [CUL, on B, S]

RANKE, Johannes Grundzüge der Physiologie des Menschen 3rd edn; Leipzig; Wilhelm Engelmann; 1875 [Down] \wp

RAY, John The correspondence of John Ray ed. Ray Lankester; London; The Ray Society; 1848 [Down]
NB (not CD)
$3564-7 m$
RAY, John The wisdom of god manifested in the works of the creation 2nd edn; London; Samuel Smith; 1692 [Botany School, S]
NB1 \& Instinct so Babies
Vine 99 manured in Vine leaves
99; 107 babies; 100
NB2 p106 112114115121 125-140
p. 134 p. 136 Part II
part 1, 106 9-18m $1071-5 m\langle F D\rangle 108 \uparrow w$ As domestication makes some animals more prolific (? fresh teats produced?) questions answered $1091-8 m / w t / \downarrow w$ are the last eggs fertile If so, possibly animals might regulate their prolificness according to case of feeding young Will not apply to caterpillars.Was not Doris superfluously prolific 112 介3$1 m 113 \Uparrow 12-1 m 114 \Uparrow 10-1 m 115 \Uparrow 10-1 m 116$ 6-20m $1214-6 m, \Uparrow 6-1 m 1251-10 m 1271-$ $7 \mathrm{~m} / \mathrm{w}$ if not they would not live. This argument shows in what strife each species lives wb Adaptations might be classed always necessary to existence, necessary under $0128 \Uparrow 10-1 m 1293-12 m 130 \Uparrow 16-1 m$, wb burrowing animals grow analogues 132
wt Co relation in structure, as breast \& womb, must be result of laws of organisation $\ddagger w$ Adaptations which may have grown with formation of the species $5-20 m 136$ "II".? $139 \Uparrow 10-3 m$
〈other markings not CD - some FD)
part 2, 68 介20-1m 69 8-14m 134 10-16m 136 4-20m

RAY, John Memorials of John Ray ed. Ray Lankester; London; The Ray Society; 1846 [Down] \wp
$1498-10 m$
READE, Thomas Mellard Chemical denudation in relation to geological time London; David Bogue; 1879 [Down, I] \wp

READE, Winwood The African sketch-book 2 vols.; London; Smith, Elder \& Co.; 1873 [CUL]
beh, gr, h, sl, ss, sx, tm
vol. 1 NB African do not 41 Kissing

- 60 Error; 306 Aymara <text has "Amyamara")
152 Direction of Hair on arm of Gorilla \& manner of killing
223 Women ugly in lowest tribe \& selected as slaves
- Ananga pretty story (Sketch of African discovery)
445 Rage Expression
109 wonder
41 21-23m $603 u 109$ 16-18m 152 25-27m/25$26 u$ "rainlhead" 223 9-13m $306 \Uparrow 1 u$ "Amyamara" 445 5-17m
vol. 2 NB African Map. ingored
Missionary 153313 savages singing when excited
253 Beauty, \& 521-522 Blackness
258 intelligence of Negros
306 \& sexual selection man
- 310 Language

313 singing
394 Blue eyes in negress, uncanny
364 M. of N.
Your map not alluded to
153 16-19m 253 1-7m, 11-14m, 18-22m 258 10-16m 306 17-23m/19-20w like male Birds $30729 \rightarrow 30811-14 m, 15-16 m, 19 u$ "women fanciers" $/ 18-24 w$ American Men have as long hair as women $310 \quad 18-22 m \quad 312 \quad 11-15 m / ?$, 26-29m 313 11-12m/11u "the", 16-20m 394 1$4 m, 10-12 m \quad 520 \quad 6-10 m, 16-19 m, 29-32 m /$ $31 u \leftrightarrow, 32-34 m 5211-2 m, 7-10 m, 22-24 m, 29-$
$31 m, 33-35 m, 38-39 m, 40 m 522$ 1-4m, 12$15 m, 20-21 m, 31-34 m, 35-36 m 5231-2 m$

READE, Winwood The martyrdom of man London; Trübner \& Co.; 1872 [CUL, I] beh, h, or, sl, t

NB 112*; 410*; all very striking \& original; 415 Poetical 434* 420; 423; 237; 441 \& 453 What authority

SB $\square \Re=$

Passion
420 \& 421 combination depends on language Selection Man
423 Sharpening sticks by rubbing probably origin of Fire.

- 437 Origin of curiosity

441 Savages - When excited singing What authority Own
453 Origin of $\&$ decency \& propriety - Mind of Man

W Reade Martyrdom of Man
112 14c "West"/w East 410 12-17m 415 3$10 m 420 \quad 13-17 m 421 \quad 17-18 m 423$ 8-9m 434 6-9m 437 15-18m/w Why not danger 441 19$30 \mathrm{~m} 4538-20 \mathrm{~m}$

RÉE, Paul Der Ursprung der moralischen Empfindungen Chemnitz; Ernst Schmeitzer; 1877 [Down, S]
NB O/
REEVE, Lovell The land and freshwater mollusks indigenous or naturalized in the British Isles London; Reeve \& Co.; 1863 [Down, I] gd
NB 255-57 Distribution of
255 2-10m, 41m 256 10-17m, 20-24m 257 18$21 m, 21-22 m, 21 u$ "havelinfluence", 32-34m 258 24-30m

REICHENAU, Wilhelm von Die Nester und Eier der Vögel Leipzig; Ernst Günther; 1880 [Down] \wp

REINKE, Johannes Untersuchungen über die Quellung einiger vegetabilischer Substanzen Bonn; Adolph Marcus; 1879 [Botany School I to Grisbach; FD]

RENDU, Victor L'Intelligence des bêtes Paris; L. Hachette \& Cie.; 1863 [Down]

NB Mere Compilation not worth reading
RENGGER, Johann Rudolph Naturgeschichte der Saeugethiere von Paraguay Basel;

RENGGER

Schweighauser; 1830 [CUL, on B]
ad, beh, br, cc, cr, cs, dg, ds, fg, gd, geo, gr, h, he, mg, no, oo, or, pat, phy, sp, sx, t, ta, ti, tm, v, wd, y
NB
I did not notice whether tame Monkeys have bred
354; 357; 360
334; 336; 340; 364; 368,9,70,90
$10 ; 21 ; 38 ; 41 ; 43 ; 45 ; 47,8 ; 50$
$71 ; 100 ; 106 ; 110 ; 115 ; 118 ; 125 ; 126 ; 149$; 152; 155; 165; 212; 214
368,9,10
173; 174; 175; 185; 189; 196; 201; 208; 224; 233; 249; 250; 259; 263; 265; 268; 276; 288; 291; 294; 295; 298; 301; 309; 327; 331; 342; 345; 351
xv $6 m, 9 m, 10 m, 11 m, 12 m, 14 m, 15 m, 16 m$, $17 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 24 \mathrm{~m}$, $25 m, 26 m, 27 m, 28 m, 29 m, 30 m, 31 m, 32 m$, $33 m, 34 m, 35 m$ xvi $2 m, 3 m, 4 m, 5 m, 6 m, 7 m$, $8 m \quad 35-14 m / 7-10 w$ resemble of women to men 20-22m/w Beard 26-27u "Die|Farbe", 30-32w complexion in passion $418-20 \mathrm{~m} / \mathrm{w}$ from Life in Canoes 8 19-22m, 24-25m/w See correction pxv $97 c / w \notin, ~ \Uparrow 5 c / w \notin 1032$ $38 m$, wb Jemmy Button sharper eyesight than sailors 11 1-5m $1412 u$ "ums ! Zoll", 22$34 m / 23-28 w$ sexual differences in colour 26u飞n "graulich-gelb", 27u凶 "bräunlich-gelbe", $29 u$ "jungen Carayas", $30 u$ "tragen 1 Weibchen", 34u "rötlich-braun", $35 u$ "dritten Schwan", $37 u$ "viertenlJahre" 15 27-28u "Das Stimmapparat", 33-37m, 34u "Beimldieser", 35-36u "zweil Männchen" 20 19-22m/w Polygamy 21 5u "Des Morgens", 6u "der warmen", 11u "Männchen!gewöhnlich", 14 $15 u$ "oft|lang", $17-24 \mathrm{~m} / \mathrm{w}$ these Monkeys make noise merely for pleasure $232-4 m 26$ $14-17 m+2726 u$ "sieben" $3130-31 \mathrm{~m} / \mathrm{u} \leftrightarrow 34$ 32-37m $3512 u$ "Cebus-Azarae", 16u "der Eckzähne", 17u "etwaslSchwanz", 18u "Gesichtswinkel" 38 15-17m, 22-23m $3921 u$ "einige Töne", 33-34u "mit|lösen" $/ 33-37 \mathrm{~m} / \mathrm{w}$ Beat the oranges to losen rind $402-4 m / w$ Yet oranges not aborigin $41 \quad 19-22 m / w$ Monkeys drive flies from their young 42 35$37 m$, wb afraid of cold Mothers $4320 u$ "häufig", 36u "Käfich" 45 30w Cebus 34w/ $36 w / w b \tau 46$ wt Ennui - desire for object astonishment - passion - Fear \& pain Joyful recognition 1-8w Desire astonishment (2) Passion (3) Fright or Pain (4) (5) (6) $9 u /$ $11 w \tau 13-16 \mathrm{~m} / \mathrm{w}$ same in all - instinctive 19$27 \mathrm{~m} / \mathrm{w}$ the crys cause very strong associated emotions \& act on them $30-33 \mathrm{~m} / \mathrm{w}$ Crys \& laughs $34-35 \mathrm{~m} / \mathrm{w}$ Laughter $32-34 u \pm / w b$

Expression wbt, wb Humboldt mentions crying monkey $4728 m 4825 u$ "Zorne"/24 $27 \mathrm{~m} / \mathrm{w}$ Harm by passion ! by spirits $491-2 m$, $11-12 \mathrm{~m} / \mathrm{w}$ male monkey arrives later at puberty than female $15-18 \mathrm{~m}$ 50 $1-6 \mathrm{~m} / \mathrm{w}$ Monkeys diseases very like men $5-23 \mathrm{~m} / \mathrm{w}$ colds, coughs consumption. Cutting teeth die from fever accompanying. Cataract. Apoplexy \& inflammation of the bowels. Medicine produces same effect on them 51 $5-19 m$, 5-12w directly accustom to confinement - very affectionate \& loose even wish of freedom $26-30 \mathrm{~m} / \mathrm{w}$ like Negros best $34 u$ "Hunde", $32-36 \mathrm{~m} / \mathrm{w}$ People say horses created for men, I might say dogs created for monkeys wb (With reflection a monkey with these feelings would be sorry having attacked his friend) 52 wt How like to man's character! do for comparison $1-4 m$, $6 m, 8-20 m / 7-16 w$ (Vengeance encircledO) 21-26m, 29-31m, 34-37m 53 wt Emma often perceived he had been on dining room on the table \& found it so $-1-10 \mathrm{~m} / 2 \mathrm{w}$ Jemmy did this $3-5 w$ but SquibO was not so $12-13 u$ "Habsucht", 17-24m $545 m, 6-8 m, 14-15 m / 14 u$ "selbstständigen Charakter", $20-22 \mathrm{~m} / 20 \mathrm{u}$ "andere 1 unterwerfen", $24-29 \mathrm{~m} / 25-33 \mathrm{w}$ Rides dogs \& makes them go where he likes. $w b \times$ Man to horse, Molothrus to cows dog to monkeys (\& even some crustacea probably to Cetacea see Macleay in on accidental selections; $551-3 m / w / w t$ was easily taught $\%$ to open shells of Palm with stones $7-15 \mathrm{~m} / 8$ $11 w$ generally learns to break eggs. $15 w$ Learns by exper $15 u$ "sachte", $16 u$ "zerbrochenen Theil", $17 u$ "nur einmal", 17$18 \mathrm{~m} / 17-20 \mathrm{w}$ if once cut himself with tool very careful $35-37 \mathrm{~m} / \mathrm{w}$ wasp always listened to paper $35-37 \mathrm{~m} / \mathrm{w}$ knows expression of Man wbou these alpaca in S. America Man to Mule! better 56 wt A This shows how arts wd be acquired. $6-18 \mathrm{~m} / \mathrm{w}$ A once taught to break nuts, with stone, uses this art to break nut with stones with bad taste $19 w$ \& boxes $20-27 \mathrm{~m} / \mathrm{w}$ N.B Monkey gave me nut out of herself \& seem to expect it to be cracked 57 wt strength of judgment $2 u$ "Urtheilskraft", 6$10 \mathrm{~m} / 4-11 \mathrm{w}$ senses of Monkey * are much impressed by circumstances $8 u / w \tau, w b \times 58$ $10 w$ Nothing about breeding $61 \quad 22-27 \mathrm{~m} / \mathrm{w}$ p38. lay only on other side $6210-11 m$, 17$18 w$ Nocturnal Monkey $6415-20 m 7116-18 m$ 99 19-26m/20-23w Occasional differn in sexes $10010-18 m$, $20-28 m, 29-37 m$, $34-$ $36 \mathrm{~m} / 36 u$ "Farbenabänderungen" 106 18-23m/ $19 u$ "Gefangenschaft" $19-20 u$ "Jahre lang" $121 u$ "zeichen" 107 1-3m/1-2u "der 1 Behandlung", $12 u$ "Derlzahm" $1107-9 m 1155-9 m, 14-18 w$

This is a representative species $16-26 \mathrm{~m} / 18-$ $19 u \leftrightarrow 118 \quad 13-15 m \quad 125 \quad 5-7 m / 7 u$ "von Geschlechtstrieb", $12-13 \mathrm{~m} / 13 u$ "sehr zahm" $114 u$ "folgt|wird" 126 13-14m/14u "grösseren|zu" 129 29-32m $14126 u$ "solzahm" 148 12-14m, $31-36 m 1491-5 m, 26-32 m / w$ like Bizatcha useless instinct 151 1Q $15212-19 \mathrm{~m} / \mathrm{w}$ Proofs from name of places that Dog is aboriginal $21-22 m, 32-36 m$, wb Thinks hairless dog probably aboriginal - is called Chinos which is evidently wrong, as African species is nearest $15318-22 \mathrm{~m} / 18 \mathrm{w}$ (a) $22-28 \mathrm{~m}, 30-$ $33 \mathrm{~m} / \mathrm{w}$ not uncommonly some of the Hairless Dogs, are dumb, only howl - wb Qao The naked dogs appear to cross less with the common than the latter amongst themselves - where they do cross young take after mother - * never knew a hairy dog produce hairless or half hairles how in vixen 154 XX Although Spaniards introduced many races, now so generally mingled that it is rare to find trace; though that sometimes can be done $6-9 m / w$ concludes hairless dogs descended of aboriginal dumb dogs $11-18 \mathrm{~m}$ 155 14-18m/14-32w wild dogs like tame in colour \& form - burrow holes hunt like wolves single or in packs do wolves burrow 24-25m 161 29-36m $1657-9 m / w$ curl end of tail like cats $18-21 \mathrm{~m} / \mathrm{w}$ do not break neck 173 $25 u$ "bewegen 1 Schwanz" $/ 24-27 \mathrm{~m} / \mathrm{w}$ like cats. $174 \quad 23-26 m \quad 175 \quad 17-23 \mathrm{~m} / \mathrm{w}$ does not live probably 20 years produces 1 or 2 young $1832-6 \mathrm{~m} / \mathrm{w}$ like young deer $8-22 \mathrm{~m} / 11-17 w$ slight different shades of colour 189 25-28m/ $27 u$ "schmiegtenlan"/26w \& p. 190 30u "Spinnen"|29-32m 190 14-15m 194 10-14m $1965-8 m, w b$ the variation of wild animals probably is only at different point of wider range- very different from domesticated animals $19916-24 m / w$ Toads \& serpents kill this Cat $32-36 m 2013-6 m / w$ even in Native country $7 \mathrm{~m} / u$ "Niederkunft Iseine" $/ w$ odd possession in instinct $210 \mathrm{wt} / 1-7 \mathrm{~m} / \mathrm{w}$ Two cats in same country with very similar habits yet much rarer 212 wt/1-10w Most important instance of my theory Marriage keeping form constant 10Q 11-14m, 13-30m, 16u "300 Jahre", $22 u$ "fortwährend", $26 u$ "kürzere", $28 u$ "Schwanze", 15-19m/15-32w/wb The cats of interior of Paraguay differ in quantity of hair, \& places of body where most scanty, \& \& forms for European, but not in Aegyptian where European Cats have perpetually been introduced 213 3-4u "verschnittene Männchen"/ w castrated males larger 11-12m, $35-37 \mathrm{~m} / \mathrm{w}$ no wild cats! $w b$ wild dogs rare in Paraguay common in La Plata $2141-7 m / 1 u$ "Eseln", $10-22 w$ no old wild cats - even
when left behind, die $224 \quad 22-28 m \quad 233$ 4$8 w$ not good case p. 236 9-14m/10-12w representative Species $23-26 \mathrm{~m} / 22 w$ exceed $28-33 m / w / w b$ but wild far from Man $2361-2 m$ 249 28-29m/29u "wie I Kaninchen", 32-34m/34u "allelkamen" 250 25-31m 251 25-35m/28-29w variation $33 u$ "dritte" 252 1-4m 259 18-22m/w variation $26031 m 26111-13 m 26314-25 m /$ 23-29w shows how necessary for * pheasant to avoid this path $w b$ has confessed it varies a little from British species $26533-37 m, w b$ is it not unhealthy women which most miscarry? 268 31-32m 276 34-36m, wb no variation 277 6-10m, 27$36 m / w$ not parent of Guinea Pig - wb without indeed the changes in constitution of latter, prevents its breeding with the Aperia 288 20$25 m 29133 m 29424-31 m / w$ anchylosis kind of vis medicativa $29529 u$ "nicht | vor"/28-32w yet very similar habits $2986-8 m 2995-6 \mathrm{~m} / 5 u$ "gemein" 301 26-30m 304 3-6m 309 1-6m 310 $27-28 \mathrm{~m} / 27-35 \mathrm{w}$ other species rarer than foregoing but habits rather diff. $31218-20 \mathrm{~m}$ 325 1-2m 326 13-16m 327 11-15m/w yet so tame almost domesticated $331 \quad 1-3 m / 1 u$ "gross"/2u "solJunge", 24-27m 334 1-29w \& in 1580 (ie 43 years afterwards) Sarmiento saw horses with the Indian in Str of Magellan. 1-25w Horses new in 1545. have run wild for 300 years $27-29 m, 34-38 \mathrm{~m} /$ w so increased without man's care $w b$ Pampas did not exist $33513 u$ "beilvon"/w like Capons 23-31m/w Q Compare Azara 34-37m/36-37u "brauner \mid Farbe" 336 14-19m 340 $21-27 \mathrm{~m} / \mathrm{w}$ rickety horses short in legs $30-$ $32 m / x / 30 u$ "gourme", wb Glanders \& gourme, shows that contagious diseases peculiar to constitution \& break out without contagion. $34126-27 m$, $w b$ ass remained unchanged in colour - more degenerated than horse - 343 13-18m * $34426 u$ "braunlichroth" $3456 u$ "Mittellinie I Brust", $\quad 10-14 \mathrm{~m} / 12-13 u$ "Der 1 und" $/ 10-11 w$ Deer $19-22 m 351$ 28-30m 354 $6-9 \mathrm{~m} / \mathrm{w}$ therefore different habits 355 22$27 \mathrm{~m} / \mathrm{w}$ secondary character $3573-10 \mathrm{~m} 360$ 14-22m 363 6u "1546", 26-29m, 28w. oranges $3646-12 m / w$ Paraguay no wild cattle - from flies $3692-17 m, 3-8 w$ no monkeys rest of Andes $13-17 m \quad 370$ $1-7 \mathrm{~m} / 1-20 \mathrm{w}$ apparently horse constitution peculiarities go with genera C.D. 8-19m 371 $1-8 m / 2-6 w$ these limits of genera all wrong $15-18 m / 15-22 w$ species of Carnivora, Bats genera. not generally confined in longitude, with some exceptions. 372 20-25m 274 2$10 \mathrm{~m} / 5-6$? 375 wt Thinks distribution of these animals, which do not feed on grass, is determined by vegetation, which changes

RENGGER
much in longitude. I doubt- X 1-26m, 29$32 m$, 32-33m 376 2-7m, 13-15m, 18-22w Distrib. of Carnivora indirectly follows plants 27w (see p.396) 28-31w Distribution bears relation to process of locomotion of species $32-37 m / w$ even rivers separate Monkeys $w b$ in some genera chiefly depends on the form of the tail!! $w b$ NB Memo Sir F. Chantreys story of tame Monkey readily taking to water 377 4-10w (a) examples of distrib in proportion to tail $13-18 \mathrm{~m} / 16 \mathrm{w}$ a 21 u "zum Laufe" $/ 20-27 m / w$ surely this does not apply to antelopes of Africa 31-32u "einigel ausgenommen" $/ 31-37 w$ one exception shows range not determined by powers of locomotion but by adaptation $w b$ (a) Surely the doctrine of range being determined by locomotion powers \& kind of foods (such as can be perceived) is false; for think of case of two ostriches: they living together shows $\langle r e s t \geqslant\rangle 3781-9 m / w t / 1-4 w$ This is all absurd,powers of locomotion will perhaps greatly limit in many cases most wonderful overuled Coypus extension, but adaptation is great feature N.B Are not these remarks applied to genera if so perhaps true $8-9 w$ Biscatcha \& Agouti $27-31 m, w b$ ie as far as $\&$ food \& climate (\& enemies preoccupation by other species) ie conditions allow species \& genera to range, so will they range in proportion to their mode of progression \& the form of the land $3794-8 \mathrm{~m} / \mathrm{w}$ S Africa 15$22 \mathrm{~m} / \mathrm{w}$ Monkeys partial migration \& of other animals $3801 u$ "Auchl Einfluss", 2-12m, 25$29 \mathrm{~m} / 24-33 w$ Beasts of prey destroyed others increase immensely, \& drive others from habitation $3811-3 m, 25-26 \mathrm{w}$ probably increased 26-28m/27-28u "fünften laller" 382 $2-4 m / 3 u$ "kleinen Raubthiere", 11-24m/w chief deaths of carnivora when young 390 wb Waterhouse Mice generally or sectionally very large range, but many species of S. America show that species small range Now this agrees with Rengger 376 fact about Monkeys, but the larger range coincides with possibility of transport.

RETZIUS, Gustaf Anatomische Untersuchungen Stockholm; Klemming; 1873 [Down, I]

RETZIUS, Gustaf Finska Kranier Stockholm; Central-Tryckeriet; 1878 [Down, I]

RETZIUS, Gustaf Das Gehörorgan der Wirbelthiere part 1; Stockholm; CentralTryckeriet; 1881 [Down, I]

REYNIER, Louis De l'économie publique et rurale Genève, 1818 [CUL.1900]

SB all Q

363 Merchants visited England \& Ireland before Caesar
418 several vars of Cereals cultivated by the Celts at time of Caesar
486 nomad people do not improve beasts. Celts did attend to this subject.
499 Celts had 2 races of sheep with work for different purposes
503 Celts improved Horses.
$363 \Uparrow 6-2 m, \Uparrow 2-1 \rightarrow 3645-9 m 48614-17 m 487$ 4-8m 499 9-14m 503 9-13m, 13-15m

RIALLE, Girand de La Mythologie comparée Paris; C. Reinwald \& Co.; 1878 [Down] \wp

RIBEIRO, Carlos Noticia de algumas estações e monumentos prehistoricos Lisboa; Academia; 1878 [Down, I] \wp

RIBOT, Théodule L'Hérédité psychologique Paris; Germer Baillière; 1882 [Down]

RIBOT, Théodule Heredity London; Henry S. King \& Co.; 1875 [CUL]
beh, h, he, mn, pat, t, ta, tm, y
NB + p.25; 33,34; 39; 142; 323; 373
SB \bullet
253334 Relation of instinct \& intelligence.
39 Effects of Habit in giving short-sight
142 Calculation like LutkeO on chances against accidental reappearance of attribute in children.-
373 Average duration of French noblefamilies
25 2-34m 33 32-38m 34 6-12m/7u "iflexist" 39 19-37m 142 25-28m (Maupertuis) 323 25$36 m 373$ 27-36m (Benoiston de Châteauneuf)

RICHARD, Louis-Claude Démonstrations botaniques ou analyse du fruit Paris; Gabon; 1808 [CUL, S]

RICHARDSON, H.D. Pigs Dublin; J. McGlashan; 1847 [CUL]
Cs, f, or, sl, tm, v, wd, y
NB p.15; 24; 29; 30; 32; 38; 41,2; 44
SB $\square \beta$
26 Cross with Chinese restores lessened fertility Q
29 Berkshire a spotted Breed Q
30 Irish Grey-hound Pig with appendages Q
3716 British Breeds NQ
41 Westphalian $1 / 2$ wild Breed always have
young striped like wild (p. 43 do)
42 Crossed Breed of 3 kinds in Pigs, forming a Breed Q
44 Good sentence on selecting short legs of Swine
$152-7 m, 11-12 m 1912 m 245-8 m 261-3 m$, 5Q 12-15m, 22-24m, 8u "Lawrence"/Q 29 1$4 m 30$ fig.w compare with drawing in title 32 1-2m $3314-18 m 344 w 15 w$ Berkshire $7 w 2$ $31 w 339 w 43522 w 536 w 6365 w 710 w 8$ $19 w 926 w 1032 w 1138 w 1243 w 13374 w$ 14 22-23Q 38 16w $1529 w 1633-36 m 41$ 9$10 \mathrm{~m}, 11-12 \mathrm{Q} 13-18 \mathrm{~m} 4211-13 \mathrm{~m}, ~ 26-27 \mathrm{~m} 43$ $33 w$ N.Q. $34-36 m \quad 44 \quad 5-8 m, 34-37 m / 35^{\prime \prime} \ldots /$ $37 u \leftrightarrow / 34-35 Q \infty, w b$ it has been obtained \wp

RICHARDSON, John Fauna Boreali-Americana 3 vols.; London; John Murray; 1829-36 [CUL, on B and later, I (14 August 1837)] ad, beh, ch, cs, ex, gd, gr, ig, mg, oo, sl, sp, sx, ta, tm, ts, v, y
SB1 Richardson Vol I.
p.xxxi.

Fauna B Americana

- NB Write to Dr Richardson about selection of dogs of
p3; p.11; 14; 16
- 26 (p35 Journal) - Canis Azarae Bahia Blanca cat in Chile - an armadillo at Concepcion Mntains
294247 to $51 \quad 61$ to $95116 \quad 125,7136$ $\begin{array}{lllllllll}140,2 & 157 & 161 & 166 & 181 & 191 & 195 & 231 & 233\end{array}$ 239241250 p252 p. 263 p. 268 p. 276 p. 280 vol. 1 SB2 $\square \beta$
15 White rings around neck characterises several bears when young \underline{Q}
29 Vars. of Bears in colour differing in ferocity p. 66 variation in Wolf
49 Mustela with aquatic habits Q
51 Local races of Pine Martins
64 on resemblances in appearance \& voice of Dogs \& Wolves 75 do. 79 do.
67 variation in Wolves Q
62 Dogs broader feet for running on snow \underline{Q} 72 Crossing of do
Q 76 Var. of American wolf analogous to European wolf - $84 \underline{Q}$ do. in Foxes in C. lagopus, fulvus \& vulpes
93 on Cross Foxes Q
140 on Brown Rat exterminating black in N. America, as Europe, (\& as N. Zealand?)
as so Hooker shows how many plants which are naturalised in America are same with those in Europe
142 Field Mouse occupying sheds in N . America

191 Squirrel approach to structure of Flying Squirrels Q
239 Rein Deer \& distinct vars. inhabiting woods 250 \& other barren grounds
241 Horns various Sexual Q
263 Herds of Deer which remain, all destroyed by wolves. Q here we see manner of destruction p88 Colonies of Foxes do. destroyed.-
268 Female * antelope with only prominences \& no horns see the account \underline{Q}
xxxi $23-24 m / 24 u$ "same |animals", $35-37 m$ xli $25 m 334 m 1125-26 \mathrm{~m} / 25 u$ "larger \mid tail" 15 17-23m/Q $1628 m, 30-32 m 2637-39 m 2910-$ $12 m 35$ 10-11m 42 25-26m $494-6 m, 7 u$ "its otter"/w a Mustela $10 u$ "hauntsI hunts"/9-14w Q good to argue against the assumed impossibility of otter-transformation 5120 $21 \mathrm{~m} / 20 u$ "Particular races" $6116-17 \mathrm{~m} / 16 u$ "others totally", 23-24m/24u "Wolves I litter" 62 $1-2 m, 4-5 m, 13-15 m, 16-18 m 6319-20 m 64$ $25-26 \mathrm{~m} / \mathrm{Q}$ 28-29m/28u "four 1 nine", $30-32 m$, $33 m / Q 651-3 m 6612-13 m 675-6 m, 8-9 u$ "reindeer", $10 \mathrm{~m}, 22 \mathrm{~m}, 25-28 \mathrm{w}$ shorter, though larger animal $29 m 7017 m / 15-21 w$ greater than in last, though this is smaller wolf 30 m , $33-34 m 71$ 1-2m 72 12-13m 73 1-3Q 74 1$2 \mathrm{~m} / 1 u$ "muzzle| ears" $757-8 \mathrm{~m}, 10-13 \mathrm{~m}, 14 \mathrm{~m} /$ Q $761 m, 3-4 m / Q / 3 u$ "characters" $/ 4 u$ "which 1 wolves" 77 13-14m, $15 u$ "fivel litter" 7920 m , $25-27 \mathrm{~m} / \mathrm{Q} /$ "...", $31 u$ "the 1 paws" 80 19-21Q 26-27m/Q 81 22-23m 84 42-43m (Gmelin) 86 35-36m 88 5-9m/6-7m 90 13-15m, 24-29m 91 $19 m, 22-24 m, 27 m 92$ 21-24m/21-22u "Cross Foxes"/Q • $9315 \mathrm{~m} / \mathrm{Q} / \mathrm{u}$ "inclined to", 24-25m/ $25 u$ "beldifference" $9426 m$ $9525 u$ "an arangement" 116 38-39m $1173-4 m / u$ "threel young", 11u "great |cause"/w So with Beavers 125 31-33m 127 23-25m 136 9-11m 140 20$22 m 1415 u$ " 1730 ", $6 u$ "1775", 8-9m 142 10$13 m 1434-5 m, 13 u$ "varieties \mid met", $14-15 \mathrm{~m} /$ $14 u$ "in Itail" 157 18-19m/18u "rudiment of" 161 3-5m 166 1-3m (Sabine) 181 18-23m (Pallas) 191 24-25Q 25-26m (Vigors) 195 15$17 m, 18-21 m 231$ 9-10m 233 8-10m 236 30$33 m, 34-36 m 237$ 20-22m/20-21"..."/21m 239 $6-9 m / w$ only for keeping distinct $Q 19-20 m$ 240 top fig.w 19 points low fig.w 29 points 241 12-15m/12u "largest I horns"/Q/13u "havel branched", $18 u$ "majority", 29-33m/32u "byl bucks" 242 1u "month|May" 250 5m/6-7m/wt/ $1-9 w$ other var In May the Females proceed northward to coast \& the males follow in June $8-10 m / 11 u$ "Lake Superior"/9-14w Q only for keeping distinct $15 \mathrm{~m} / \mathrm{u}$ "September"/ $16-17 \mathrm{~m}$, $15-19 \mathrm{w}$ other var. proceeds southwards at this month $24-30 \mathrm{~m} / \mathrm{w}$ does not

RICHARDSON
appear that Bucks \& Does migrate separately in the other var: does $2527-9 \mathrm{~m} /$ $8 u$ "moose 1 rein", 16-20m (Cuvier) 259 35$37 m$ - 263 29-33m/Q 32-34"..." 268 1-4m 276 17-20m 280 15-18m, 20-23m
vol. 2 NB Remark about Beak
G.R. Gray ask about number of tail-feathers; 27; 30; 31
SB $\square \beta$
pxx The Younger Birds are driven away \& go wandering
27 var. in tooth of mandible of Jer Falcon, present or absent p30 Q
31 var. analogous to other species of Hawks Q
60 variability in length of primaries $-80,90 \underline{Q}$ all 3 quoted
89 Owl fishing 139 Tyrannus do 192 Orpheus changing range with man
268 Similarity in Habits of Goldfinch - Habits often more constant than Structure
283 Var. geolographical of Sturnella
292 Eggs of Magpie different from those of Europe; so with an Owl
331 \& 332 Change in migration of Swallow Q nest differing Q only for nest
361 On a Grouse running in circles
404 Fulica var in number of tail feathers Q
469 Variability in length of tarsus \& toe in Anser canadensis Q
xix $34 m$ xx $1-10 m$ xxxv $2-3 m \bullet / 3 u$ "mostly 1 birds" 27 25-26m, 28-33m/33Q 30 30-31m, $32-33 \mathrm{~m}, 35-38 \mathrm{~m} 315-9 \mathrm{~m} / \mathrm{w}$ analogous Q 57 $21-27 m, 34-36 m / 36 u$ "perhaps I birds" 58 3-4u "third Ifourth", 4-6m, 20-21m/20u "third| equal" 59 3-5m, 34-37m 60 4-6m (Savigny and Temminck) 70 19-20m $729 u$ "birdlof", 26$28 m 778-9 m 801-2 m 834-6 m / 5 u$ "localities"/ $6 u$ "rufous tints" $8526-29 m, 30 u \leftrightarrow 898-9 m$ $905 u \bullet / 5-6 u$ "Thelshorter" $/ w$ not equal $8 u$ "about | fifth"/w 1st short $34-36 \mathrm{~m} 91$ 11-13m/ $13 u$ "the lother" $118 \quad 12-13 m / 13 w$ very close $13935-36 m / 36 u$ "dives \mid fish" $15035-38 m / 37 u$ "octavelwhole" 177 1m $18712 m 189$ zb 192 18-19m, 22-25m $22630-32 m 23136 m 233$ 33$34 m 249$ 32-33m, $34 m 25010 m 268$ 22-26m (A. Wilson) $/ 20-28 w$ other instances of representative species, having allied habits Thrush in their songs \& nests - Gull in S. America $2787-9 m, 22 m 28224-27 m 28330 m$, $33 u$ " 6 " $/ w$ yet small $34 m, 35-37 m 292$ 16$18 \mathrm{~m} / 17 \mathrm{u}$ "blotches 1 diffused", 27-35w English eggs shorter but broader $33-36 \mathrm{~m} / 35 \mathrm{~m} / \mathrm{w}$ broader 293 34-35m 305 13-16m, 25-27m 306 36-37m (Swainson) 331 18-19m, 20-22m, 25$29 m, 36 m 3322-4 m, 4-7 m, 9-13 m, 25-29 m$, $34-36 m \quad 343$ 1-5m, $6 u \leftrightarrow 355$ 35-38m (E.

Sabine), $w b$ observes measurements from stuffed specimens often vary apparently. 359 $5-17 m / 7 u$ "celebrating|wedding" $/ 8 u$ "buzzing| ground" $19 u$ "bare|size" $113 u$ "presencel intended" 361 32-35m 362 1-3m, 4-7m/4u "last I more" 404 29-30m, 32-33m (Cuvier) 407 39-40m/39u "thanlamong" 413 31-35m 422 17-21m, 22-24m 443 18-21m (Pennant), 22$23 m, 25-27 m 44838-39 m 453$ 22-27m, 38m 456 36-39m 469 19-22m/21u/22u 〈numbers〉, $23 u$ "same length"/w Q (a) 24-25m/24u "middle|lines", wb (a) many cases especially amongst these water birds, of variations in total length, have not been marked 472 17$23 m$ (Pennant and J.R. Forster) 475 8-9m, 33$34 \mathrm{~m} / 33 \mathrm{u}$ "The l but"
vol. $3 \wp$
RICHARDSON, John and GRAY, John Edward The zoology of the voyage of H.M.S. Erebus and Terror London; Longman, Brown, Green \& Longman; 1844-48 [Down, I by Gray]

RICHARDSON, Samuel The history of Sir Charles Grandison 7 vols; London; W. Strachan; 1781 [CULR, on B; vols 1 and 2 missing; S in each vol. Charles Darwin Buenos Ayres Sept. 1833]

RIEDEL, W. Die Taubenzucht Ulm; F. Ebner; 1824 [CUL, pre-B]
ad, beh, br, cs, ds, f, hy, no, oo, or, sp, sx, ti, tm, v, wd

SA $\langle p p .232-233\rangle \square \beta$
17 Fertility of Crossed Pigeons
25 Turbit \& Fantail with Bald Pate - 27 other Hybrid Q
41 On Hawks catching light-coloured pigeons
42 Dragon silent Q
86 Some she pigeons prefer stranger pigeons to own husband
158 Same coloured pigeons pair more readily (Ch. 6)
163 Results of crossing different colours
9 wt Home-doves not so fertile as field! $12 u \leftrightarrow 1021 w$ carrier $25 w$ Turkish Pigeon $29 w$ Ranger 11 wt long wing-feathers $1 u$ "Möven", $4 u$ "Schwungfedern" w (a) $7 u$ "Hauben" $/ w$ Capuch $8 w$ Top-knots $9 m / w$ Tumbler 11w Fantail; 17 wt Bastards very good breeders Vilmorin Turkish to Carrier \& common Pigeons either bastard will bastardize with other bastard $193 u$ "gewöhnlich behaupt" $33-6 w$ German variety of
carrier $2030-32 w$ Horsman on origin of Carrier 21 1－2w great Pigeon $*, 6-14 w$ Beak middling long little curved great Wurzel \＆ skin at nose Body \＆wings small 22 wt Either these Turkish Pigeons or as cross with common pigeon，so not pair breeding with Owls \＆Trumpeters－Owl hybrids \＆ trumpeters $6-9 \mathrm{~m} / \mathrm{w}$（a） $13-18 \mathrm{w}$ Canton crossed with Powters fertile $2321-23 w$ all kinds can inflate crop． 25 26－31m，wb Hybrid Turbit－fantail X into a Bald Pate 26 5－10w can be crossed with Capuchin \＆Powters $19 w$ Jacobin $23 w$（a）$w b$（a）Wings so long as often to sweep ground $27 w t$ very quiet $1-3 m / w$（a） $25-27 \mathrm{~m} / w$（a）$w b$ Hybrid Capuchin－Trumpeter X Turbit 288 m, 26－$^{-}$ $28 m, w b$ Bechstein never sees so many as 32 feathers $298-9 u / w$ Bald orbits $30 w$ Trumpeter $30 \quad 14-17 w$ male \＆female trumpeter alike $3131 m$ ，wb Trumpeting varies $327 w$ Pair $8 w$ Swallow $12 u$＂Feen！ Feentaube＂$/ w$ Fairy 16－29w Marked like the PowO of Sea Swallow of the Germans colours vary I think mine very pure．Purest not very true．－Those with crest have been crossed generally $w b$ Swallow smooth beaked feather footed coloured as mine－ only little smaller than Field Dover but slenderer quick flyer Thin legged $331 u$ ＂einer 1 versehen＂，wb Good flyers \＆at first wild 34 wt not caught by Hawks for manner of flight like swallows $4-6 m / 4 u \pm 358 m, 9 u$ ＂Cypersche＂，10－15w Bald Pate？a toy Neumeister Priest $23 u$＂Pfaffen＂$/ w$ Priest 36 $21-27 w$ Bechsteins birds 1 genus $3829-30 m$ ， wb 14 sub vars colours of the Monck Pigeon or Bald Pate $394 w$ Toys $4017 u$＂Spot Pigeon＂ 41 16－20m／17w（a）21－28w same account as Neumeisters variety of Horseman or Carrier $w b$ very great difference is attributed to colour in facility of Hawks catching them 42 wt very silent；I think our Dragon is．－ $3 m / w$（a） $8-12 w$ crossed with Turkish produces following 10 w The Turkish is figured by Neumeister $12 w$｜cannot think what this is $13 u$＂Römische＂， $14-17 w / 16 u$ ＂Schnabel ldick＂used for carrying letters 20－ $24 w$ not the Spanish Birds $w b$（B）Moore says white Barb is the Mahomet Pigeons，so little known $43 w t$ I suspect all details here copied $4 w$ Barb $5 u$＂Indianischeljudische＂ $\mid w$ Barb see Neum 10－11w Leghorn，Runt．16－ $19 w$ Tail stands up $24 w$ a Toy $w b$ on Finakin and Turner 44 wt These strike their wings together like trumpeters $1 u$＂Trommler＂，8－ $14 w$ very small fingers，Legs very short feathered Beak excessively short 17－29m／w Not the Lace Pigeon but the Foilback 33－
$35 m, w b$ with a mane He has not seen this $455 u$＂Col． 1 Forficata＂，6－10w Pigeons with forked tails $12 u$＂Thiergärten＂， $26-28 \mathrm{~m} / \mathrm{w}$ very modern 46 wt Ring Dover $543-12 w$ Blue Rock Pigeons 9－11m，32－33m／w doubtful 55 $9-34 w\langle n o t C D\rangle 568 m, 10-15 \mathrm{~m} / 12 w$（a）$w b$ （a）Will occupy old trees when house destroyed $6130-34 m 62 \quad 23 c / w \notin 8613-20 w$ some she pigeons prefer stranger to own husbands $1585 \mathrm{~m} / \mathrm{w} / 1-13 w$ This seems to imply like coloured Pigeons prefer each other． $159 w b$ same coloured Pigeons pair most readily 16022 m 161 wt （a）difference is reciprocal cross of Pouter \＆common Pigeon $11-12 w$ Hybrids bigger $12-19 m / 15 w$（a） $21-$ $24 w$ male gives form the female instinct $24 m$ 162 17－32w Rules of results in crossing colours $1645 w$ cry back $2274-34 w / w b$ रnot $C D\rangle 244$ 8－16w $\langle n o t C D\rangle 2451-2 m / w$ a popular error 246 wt 〈not CD＞3－6w Whitish yellow skin over nose 11－19wunot CD〉，21－26w V．Dixon．－24－26m／24u＂Campana＂ $2475 w$ Foilback 15－16w Sea swallow Turkish 248 5－ $12 w$ Tumblers turn on ground with Crop inflated 13－17m／w $\mathbf{n o t} C D\rangle, \pi 13 u \quad$＂Pag－ gedetten＂／w Horsemen $\Uparrow 3 w$ Carrier $2493-8 \mathrm{~m} /$ w Powting Horsemen wb〈not $C D\rangle 250 \downarrow w\langle$ not $C D\rangle 251 \downarrow w / w b\langle$ not $C D\rangle$
RIEDEL，Wilhelm Die vorzüglichst bekannten Feinde der Tauben Ulm；F．Ebner； 1824 ［CUL， pre－B］
NB O／
\wp
RILEY，Charles Valentine Annual reports on the noxious，beneficial and other insects in the State of Missouri Jefferson City；Horace Wilcox；1871－77［CUL］
beh，ds，em，fg，gd，h，ig，mg，mm，no，oo， or，r，rd，sl，ss，sx，ta，tm，v
no． 3 （1871）NB 14 Stridulating insects；46； 52； 67 Transitions；92；97；101；127；131； 139；141； 148 Descent；156； 164 V； 168 Origin
SB1 $\square \Re \rightarrow\langle n o t C D\rangle$
Riley on noxious insects
156 Autumnal broods alone of a certain caterpillar having a peculiar instinct of forming house，so that it is developed in alternate generations
SB2（as SB1）
Riley Noxious Insects of Missouri
46 Pea Weevil one of the few injurious insects endemic in Europe America \＆ introduced into Europe．
52 Sudden spreading of Bruchus fabe＜i．e． fabae＞

RILEY, MISSOURI INSECTS
67 Larvae of a same moth of 2 distinct colours \& respectively attached to corresponding objects. Means of sudden transition
92 \& 139 Native insect which has lately acquired an appetite for cultivated apples, but only in certain districts, so considers it a newly formed race with new habits.
97 Rapid spreading of potato-beetle.
100 Increase of its natural enemies; certain vars. of potatos more exempt than others
127 Phytophagous races.
131 Same insects forming coccoon above or below ground \& varying in being single or double brooded
$\Leftrightarrow\langle C D\rangle$ Very good essay on Mimicry
14 48-50m 33 40-44m 35 12-17m 46 27-35m $5216-20 m 676-15 m, 17-25 m 923-12 m, 17-$ $20 \mathrm{~m} 973-6 m, 8-21 m, 39-45 m 10019-23 m 101$ $24-28 m, 38-41 m 12738-45 m 1314-8 m$, 40$42 m 1397-11 m 14120-24 m 14843-47 m 149$ 14-16m $156 \quad 27-36 m 15717-27 m 163$ 21ua, $26-32 m, 37-42 m, w b$ Archippus has bad -$16421-25 m 168 w t / 1-13 w$ Grt destruction of the grey makes the preservation of the Old Type important $15-19 m, 22-25 m, 33-37 m$
no. 4 (1872) NB $\mathrm{p} 10 ; 11 ; 16 ; 23 ; 35 ; 58 ; 63$; $66 ; 74 ; 85 ; 119 ; 123$
SB $\square \mathfrak{R}$ -
10 On new colonists at first most injurious
16 Enemies increase \& acquire new habits
11 change of Habits in introduced insects
23 local var. of moth of caterpillar attacking peaches.
35 Migration of an American insect
58 Aphis, two distinct types of Habits though forming same sp. \rightarrow to p. 66
74 Silk-moth the caterpillars of distinct $s p$. quite alike at first
$106-13 m 112-4 m, 7-12 m 1629-33 m, 41-43 m$ 23 1-3m $357-13 m, 21-24 m 58$ wt leaf-galls \& roots-galls $1-4 m 6310 u$ "No leaf-galls", $11 u$ "Leaflabundant", 26-27u "Nollice", 29u↔, 32-34u↔, 43-45m, 46m 64 1-3m, 24-26m 65 3-5m, 46m 66 25-31m 74 7-15m 85 15-27m, $33-34 m, 38-42 m, 43 m 865-7 m, 20-22 m 119$ 25-29m 123 13-18m
no. 5 (1873) NB 63 Change of Nature; 66 Phylloxera; 83 Mistaken Instinct; 86 of Transportation of Pollen of Coniferae Q

- 87 Scale insects of Vars. of apples 150 The moths which fertilised Yucca for crossing
Nothing for the Descent of M.
SB 63 Phylloxera. Change of instincts 83 Mistakes in instincts in Scale-louse
150 The Moth which fertilizes the Yucca

63 17-24m 64 13-18m 66 39-43m/40u "as most"|42-43u "Somelhere" 83 25-33m 86 36$40 \mathrm{~m} 871-4 \mathrm{~m} / \mathrm{Q} 7-13 \mathrm{~m} / \mathrm{Q}$
no. 6 (1874) NB 115 Sexual Selection in Curculio; 131; Pronuba Moth, Yucca
114 33-38m (Wallace) 115 4-20m
no. 7 (1875) NB 20; On Hemiptera with perfect wings \& more or less wingless copulate together \& continues inhabit distinct regions, the wingless generally to the north.-$2031-40 \mathrm{~m} 21$ 1-6m
no. 8 (1876) NB1 103 Grasshoppers drifted far down Mississippi clinging to logs
106- take advantage of wind \& often travel 100 miles per hour-
122 very curious changes of vegetation owing to Locusts destroying certain kinds; \& the change in vegetation caused proportion of insects to change
NB2 - 103; 106; 122
103 12-17m 106 16-21m 122 wt because the I plant not eaten $1-7 m, 14-18 m, 22-27 m 123$ $12-14 m, 14-17 m, 18-23 m, 31-39 m$
no. 9 (1877) NB 18; 17 Indigenous insects how learn to prey on endemic; 20 Rudiment; 24; 37 Rate at which potato bug travelling; 40; 52 new Habit in insects attacking Wheat 57
$828-35 m 17$ 3-8m 20 fig.m 21 6-16m 2414 $18 m 378-14 m / 9 u$ "average 1 bribes" $4013-27 m$ $523-7 m 57$ 8-12m

RILEY, Charles Valentine The cotton worm Washington; Government printing office; 1880 [Down]
mg
NB 23 wide migration of moths; 34 ants
$1520-24 m / 21 u 2322-30 m, 32-34 m, 35-44 m$ $341-10 m, 17-24 m / 23 u, 24-28 m$

RILEY, Charles Valentine The locust plague in the United States Chicago; Rand, McNally \& Co.; 1877 [Down]

RILEY, James Loss of the American brig Commerce ... with an account of Timbuctoo London; John Murray; 1817 [Down, S C. Darwin Feb. 13th 1826] $\wp 0$

RITCHIE, Archibald Tucker The creation. The earth's formation on dynamical principles 5th edn; London; Daldy, Isbister \& Co.; 1874 [Down, I] $\wp 0$

ROBINET, Stephane Manuel de l'éducatuer de vers à soie Paris; Dusacq; 1848 [CUL]
beh, sx, v

NB p267 female cocoons heavier－ （separation of Sexes）probabilities
p． 275 I suppose Males were tested again－ ley eggs immediately
4 9－11m 5 26－29m， $30 m 716 m / u \leftrightarrow 816-20 m$ ， 29－30m $121-6 \mathrm{~m}, 10-16 \mathrm{~m}, 17-20 \mathrm{~m} 1317-24 m$ $157-11 \mathrm{~m} 262-6 \mathrm{~m} / 2 \mathrm{w}$ mistake $3025-26 \mathrm{~m} / \mathrm{m}$ $311-3 m / 1-2 m * 3724-29 m 266$ 20－26m 267 $1-3 m, 20-21 m 26919-20 m 27116 m, 22-24 m$ ， 25－27m 272 7－9m，26－29m 273 2－4m 303 16－ $18 m 304$ 4－8m 306 21－23m， $24 m 307$ 11－12m $30828-29 m / 28 u$＂vers＂ $3092-3 m, 14-17 m 310$ $1-3 m / 2 u$＂teinte verdâtre＂，15－17m 311 1－2m 312 9－12m 313 9－10m 314 13－14m 315 6－7m $3165-7 m, 23-24 m / 23 u$＂Les 1 deviennent＂ 317 $20-22 m, 22-25 m, 26-27 m 31816-20 m$

ROLLE，Friedrich Darwins Lehre cc，ex，gd，00，spo，v，wd
$6631-36 m / w$ crocodiles of Egypt $761-6 m / w$ variation of forest trees $14-20 \mathrm{~m} / \mathrm{w}$ rich soil produces variation $784-9 m / w$ wild sport 84 $6-9 \mathrm{~m} / \mathrm{w}$ Tacitus says Germans ate wild apples $851-4 m / w$ Perhaps but cultivated of Crab cider？1－4w parents $33-34 m 8710-$ $22 m / 10-12 w$ acclimation $107 \quad 5-6 m / w$ Properties of sexes attended $1775-7 \mathrm{~m} / \mathrm{w}$ Rutimeyer says not known $15-18 \mathrm{~m} / \mathrm{w}$ 1st record $26-30 \mathrm{~m} / \mathrm{w}$ treating Common Rat 31－ $35 m / w$ kill each other $1793-6 m, 15 u$ ＂Deutschland＂， $19-20 \mathrm{~m} / \mathrm{w} \quad 180 \quad 14-15 \mathrm{~m} / \mathrm{w}$ Mice earlier $1823 u$＂grossen＂，6－10m，10－ $15 m, 13-15 m / w$ are the larger beasts of 0 destroyed？

ROLLESTON，George Forms of animal life Oxford；Clarendon Press； 1870 ［CUL，I］ ad，af，fg，gd，geo，in，no，sp，sy，t，tm

NB1 $\langle w$ by $F D\rangle$
－p136， 152
NB2 XXI Sp Theory
XXXII La）
－VIII Generative Organs
XXXV Reproductive organ
LI Sp Theory
LXVII Affinities of Fishes to Dipnoi \＆ Ganoids
LXXX CV Classification of Fishes
Sp．Theory
XXI －Ascidians C．I
LI；C．V．Spe Theory；CX CXXV CXXVI SB \rightarrow
pXXI Von Baer paucity of individuals \＆ species \＆confined area go together
pLI Dental papillae with caps of dentine observed in Parrots
p．C．V．On important organs multiplied in Annulosa，but not in Arthropoda
p．CX Transition between aerial \＆aquatic respiration．
Rolleston
xxi 1－5m，33－36m（Wyville Thomson）xxxii介2－1m xxxv $13-27 m$ xxxviii $4-6 m$ li $34-36 m$ lxv $27-29 m$ lxvii $\uparrow 12-7 m$ lxviii $7-11 m, 11-$ 14 m lxxiv $39-40 \mathrm{~m}$ lxxv $15-17 \mathrm{~m}, 30-37 \mathrm{~m}$ lxxx 21－24m，24－27m，介8u＂Ganoideiltype＂lxxxi $5-8 \mathrm{~m} / \mathrm{w}$ Lab， $11-15 m, 24-26 m$ lxxxiv 6－13m， $20-22 m$ ci 13－14u＂distinctivelVertebrata＂cv $3-6 m / w$ I suppose multiplied inversions in Vermes cx 19－30m cxxv 20－24m／21－28w these might seemO at every point cxxvi 11－ $32 m$ cxlvii $1-2 m$ facing P1． $10 w$（barometer readings）

ROLPH，W．H．Biologische Probleme，zugleich als Versuch einer rationellen Ethik Leipzig； Wilhelm Engelmann； 1882 ［Down，I］\wp
［ROMANES，G．J．］＂Physicus＂A candid examination of theism London；Trübner \＆Co．； 1878 ［CUL］
〈markings presumed to be by FD＞
ROMANES，George John and EWART， James Cossar Observations of the locomotor system of Echinodermata（extract from Phil． Trans．Roy．Soc．）； 1881 ［Down，I］

ROSENBUSCH，Carl Harry Ferdinand

 Mikroscopische Physiographie der massigen Gesteine Stuttgart； 1877 ［Down］\wpROSS，James The graft theory of disease，being an application of Mr Darwin＇s hypothesis of pangenesis to the explanation of the phenomena of the zymotic diseases London；J．\＆A． Churchill； 1872 ［CUL，I］
beh，ch，ct，em，fg，he，or，pat，phy，r，sp，t
NB Pangenesis；p40
quotes Hippocrates on Pangenesis－ 4248
description of growth of cells -53
113；114；241； 247249252 Beauty；262； 267
conclusively inquires on origin of contagious Diseases－ 269272
$401-11 m, w t / 1-11 w$ This bears on pangenesis i．e．not gemmules in blood 42 1－ $3 m, 29-30 m 4816-23 m 5318-23 w$ but the skin on sole of foot is inherited $5425-30 \mathrm{~m} 55$ $18-26 m \quad 58 \quad 25-30 m \quad 59 \quad 3-20 \mathrm{~m} / 9-11$ ？ 112 $16-18 m, 21-24 u \leftrightarrow, 25-28 m 1134-6 m, 9 u$

ROSS
＂circulation＂$/ 8-11 \mathrm{~m} / \mathrm{w}$ this is against me 114 $26-30 \mathrm{~m} / \mathrm{w}$ I look at quantity $w b$ ．No Nature must be different $w b$ The prepotency of foreign pollen depends on general vigour for a change 224 wt development may be said to result from the fecundation of tissue by gemmules from older tissues $1-3 m 24130 \mathrm{~m}$ （Adam Smith） $2473-9 m / w$ The delicate kind of Beauty 249 16－21m 252 2－13m（Burke， Dugald Stewart） 261 14－22m（Wallace） 267 12－ $20 m 268$ 8－28m 269 15－20m 272 8－19m

ROSSI，Darius C．Le Darwinisme et les générations spontanées Paris；C．Reinwald； 1870 ［Down］

NB O／
ROUX，Wilhelm Der Kampf der Theile im Organismus Leipzig；Wilhelm Engelmann； 1881 ［CUL，I，FD］
$1422 \mathrm{~m} 6521 \mathrm{~m} 71 \mathrm{11m} 8123 \mathrm{~m} 9416 \mathrm{~m} 100$ $5 m 12131 m 1279 m 1345 m 14113 m 14928 m$ $15411 m 17111 \mathrm{~m} 21819 \mathrm{~m} 22419 m$

Royal Commission Report on the practice of subjecting live animals to experiments for scientific purposes London；HMSO； 1876 ［CUL］
NB
р．30 ；74；166；172； 200
iii＂Colam．．77＂m x＂4672＂－＂4667＂m／ ［＂．．．＂］，＂1188＂－＂1543＂$m /[$＂．．．＂］xii＂ 1442 ＂m xv＂1018＂－＂ 2242 ＂m xvi＂ 1867 ＂－＂ 1874 ＂m xvii ＂5627＂$m, 21 a$＂knowledge＂／w $-\quad " 4934 "-$ ＂5037＂m ，介12m 78b＂1538／1541／1543／1546／ 1548＂m 166b $\uparrow 2-1 m$ 167a＂ $3163 "-$＂ $3178^{\prime \prime} m$ 169a＂ $3218^{\prime \prime} m$ 172b＂ 3298 ＂m 176a＂ 3383 ＂m 279a＂5583＂m 282a＂5627＂m 335a ＂Innervation＂．m

ROYAL SOCIETY Catalogue of scientific papers， $1867-79$ vols 1－8；London；Eyre \＆ Spottiswoode［Botany School］
vol．2，142．b $22 m$（Dana）153．b 36w General work 154 wt Lythrum Illustration Essay 0 655．b 57 m （Forbes）656．a 53 m （Forbes）
vol．3，482．a $59 m$（Huxley）483．a $53 m$（Huxley） 483．b 57 m （Huxley）687．b $10 \mathrm{~m}, 24 \mathrm{~m}$（Knight）， $42 m, 45 m$（Knight）688．a $33 m$（Knight）， $39 m$ ， 43m 688．b $11 m$
vol．6， 247 wt A narrative of travel on the Amazon 1853 wt 7 papers 1850－53 247．b ＂ 8 ＂． m ，＂ 11 ＂．. m ，＂ 12 ＂． ．large number of papers put here $248 . \mathrm{b} 18 m, 27 m, w b 55$ papers up to 1863
vol．7，140．b 13 m （Bentham）744．a 26 m （Gaudry） $10465 m$（Hyatt）

ROYER，Clémence Origine de l＇homme et des sociétés Paris；Guillaumin－Masson； 1870 ［CUL］
beh
NB－67；84；89；328； 337 good；339； 121 good note \diamond on growth
67 6－10m／6w courage $842-6 m 8915-20 \mathrm{~m} / \mathrm{w}$ No quite different 121 23－26m（Gratiolet， Huxley）／26u＂atropié＂，wb some monkeys here becoming extra arboreal if so hand degraded Hence degraded in some of the swinging monkeys $\Uparrow 1 \rightarrow 1223-8 m$（Huxley） 328 6－15m 337 at p． 337 wt never defend each other only good，perceiving danger （Rabbit social \＆silent）C．D． $33914-18 \mathrm{~m} / \mathrm{w}$ Birds pair \＆yet are social

RUDOLPHI，Carl Asmund Beyträge zur Anthropologie und allgemeinen Naturgeschichte Berlin；Haude \＆Speuer； 1812 ［CUL］

NB 〈on p．188〉
40＊58，72，78 〈he means 73〉 Felis Manul origin of Angora；Pallas Books
115 to 137 to $167 ; 184 ; 186$
SB ロஅ
Rudolphi
115 does not believe after careful looking that seeds ever stick to birds feathers，as Willdenow accounted for water－plants，
139 Bring case of F．W．Fish，difficulty in diffusion
139 Linnaeus asserts that the Pike is disseminated by Birds
－ 143 Rudolphi argues f
155 Rudolphi was greatly misled by little knowledge of antiquity of world in present state
161 cases of Hybrid Fish
163 －Zebras（only references），no one good case for me
163－Rabbit
165 －Hellenius case Q
184 on the Hen of＊Vidua（？）with long tail disowns cock when robbed of it（very good） 186 Beautiful male butterflies more difficult．

40 8－11m（Pallas） 58 14un， $15-17 \mathrm{~m} / 15 u$ ＂stammelab＂ 72 26u＂Petrop．1780＂，31－32m （Pallas）／wb｜have，I think，read 73 3－4m／w supposed parent of Angora Cat 78 16－18m $812 w$ not read $11513-16 w$ Bird \＆beasts can do but little in spreading plants $20-26 \mathrm{w}$ still less sticking to feathers of Water Birds，
for feathers oily.- $1161-6 m / w$ Has looked to many Water Birds \& fd. no seeds. Stomachs of migratory he has always fd. empty.- $21 u$ "Wassergewächse"/18-30w He thus accounts by water-birds for wide distribution of water plants - by sticking to feathers \& in dung 119 22m 120 9-12m/w When salt, sea-side Plants occur $124 \quad 14-20 \mathrm{w}$ wind cannot transport from mountain to mountain 1274 $6 m / w$ when cold $1295-9 m / w 181213710-$ $12 \mathrm{~m} / 8-18 w$ When wingless insects fd. in 2 parts of world proof of distinct Origin 139 wt/ 1-3m/w (Remember Water-spouts) So before Agassiz - Fish speak strongly that they have been created at many points, as same Fish in distinct rivers - $7 \mathrm{~m} / \mathrm{u}$ "Fischen 1 Wassers" $/ \mathrm{w}$ (Remember Löess) 11-12w Rivers of Scotiand. 14-20w Alps; But if all under sea, it requires more means of transportat. 22-24m/ w Glacial case makes of Fish much more difficult 25-26u \rightarrow, 26-27u "ablseritur", $28 u$ "Th|1391"/w My Edit - 35-36m, wb Take North of Gt Britain alone all under water, except Peaks perhaps, \& then wd not have Fish.- But then since united to Mainland,as shown by land-animals.- 142 22-27m/w if only pair created then carnivores wd have destroyed the herbivores \&c 143 19-22m/19$29 w$ When S.B. found on Alps \& Mtain of Asia what right to suppose came from one to other 154 wb How completely all this is Nott \& Gliddons work in Abstract - fortified by the Aegyptian work 155 wt All that I shd expect wd be that Negros raised in U. States wd be more variable in slight degree in colour \& other respects.- $6 u$ "Anfang"/6-11w there shd be at least the beginning of variation in Negros \& c in U. States $13-14 u$ "nicht list"/ $13-18 w$ as we know the world not so old in present state!! 156 26-28m/17-32w Mem Races have been driven from place to place, confounding effects of conditions \& so with animals. $1595-7 \mathrm{~m} / \mathrm{w}$ how like Agassiz \&c $10-11 u$ "alle | bleiben", $21-26 \mathrm{~m} / 19-29 \mathrm{w}$ species or no according as one looks to variability of limits $1614-11 m / 6 w$ Hybrid Fish $32-33 m / w$ Hybrid Canary $1621-7 \mathrm{~m} / 1 \mathrm{u}$ "Citronenzeisig"/ w Siskin 5-6w Bechstein fruit Bronn- Have 163 3-4m/3-8w Donkey painted like Zebra before it was permitted to cover the Donkey 23-24m (Hartmann)/23-26w This Book I have seen referred to $25 \mathrm{~m} / \mathrm{w}$ Hybrid Zebra $1646-$ $8 m / 7 u$ "äthiopischen 1 gemeinen"/Q 10-12m, 1416 m , $38 u$ "Auszuge"/w abstract $1653 u$ "Rehkuh" $2-7 w$ Sardinian Roe-Cow was this not probably a Mouflon?? $13-17 \mathrm{~m} / \mathrm{w}$ case os Seals old observer offspring not described $166 z t, 22-23 u$ "Meerschweinchen"/w vars of

Guinea Pigs true 167 wt albino $2 a$ "Kakerlaken" albino $2 a$ "Kaninchen" rabits 180 14-16m/u \leftrightarrow / w female elephants \& Rein-deer 181 24-26m 182 29-31m/u "beylmehr"/w I suppose confined to male $18313 m, 18-19 u$ "der 1 hindert" $/ w$ checks flight $21-22 u$ "Dann 1 fliegen", 26u "fesseln", $30-32 \mathrm{~m} / \mathrm{w}$ Polygamous $1842-5 m / 2-10 w$ The female does not recognise the "Anmer" without tail when robbed of tail $-4 u / w \tau, 20-27 w$ What cause of beauty of snakes? $30 u$ "fand lzwey" 185 wt Lizard or Newt $1 u / w t \tau, 5 u \leftrightarrow, 8 u \leftrightarrow, 9-12 m$, 19-21w Salmon Hook male fish different $20-$ $23 m 1867 u$ "Leuchtkäfern", 9-13m/w female shells $15-19 w$ male butterflies most beautiful $1871-9 w$ female Bees sting $20-22 m / 22 u \leftrightarrow / w$ spiders $188 \quad 10-15 \mathrm{~m} / \mathrm{w}$ generally no differences in flowers in dioicous flowers 17$19 m, 20-24 w$ Exceptions of Male flowers authority Ask Hooker

RÜTIMEYER, Ludwig Beiträge zur Kenntnis der fossilen Pferde Basel; Schweighauser; 1863 [CUL, I]
gd, geo, sp, tm, v
NB Milk teeth; 38 Sp. Theory; 57; 79; 136 Sp. Th
$3820 u$ "sol dieser"/21-22u "Moschusarten"/24u "Anoplotheriumart" $26-27 u \leftrightarrow / 15-31 w$ milk teeth of Moschus like 2d teeth of Anoplotherium 57 19-21m, 28-32m 79 1-14m, 15-20m, 23-30m 126 12-17m 131 5-6m/w Slight difference in teeth $6 \mathrm{~m}, 8-9 \mathrm{~m}, 12-17 \mathrm{w}$ does not know whether present Horse of same district like the ancient one of Lake - $23-25 m / u \pm / w$ great differences in other respects $26 m \quad 132 \quad 1-2 u$ "Celtisch bezeichneten" $11-4 w$ In Horses of bronze \& Celtic periods $5-7 m / 7 u$ "Bronzezeit", $24 m$, 32$33 m, w b$ E. fossilis distinct from E. caballus which is the living Horse $1334-7 \mathrm{~m} / \mathrm{w}$ one Horse; probably not endemic, but imported from several places \& times $11 u \leftrightarrow, 12-14 u$ "Equus |Varietät"/w fossil Horses in S. Russia $22-24 w$ but not same as true E. fossilis 134 3-4?, 8-12w In Switzerland few remains belong to E . fossilis $13526-28 \mathrm{~m} / 28 u$ "Diluvium" 136 14-18m/w E. plicidens doubtful

RÜTIMEYER, Ludwig Die Fauna der Pfahlbauten der Schweiz Basel; Schweighauser; 1861 [CUL]
br, ds, e, f, gd, geo, ig, mg,sp, tm, v, wd
NB p30 Wild Boar formerly larger than now Changes in Foxes, Weasels \&c \&c

RÜTIMEYER, SCHWEIZ
SB1 Variation of Nature; Spec very good Look through volume
SB2 $\square \beta$

- 75 Friesland ox nearest to B P

Cattle Rutimeyer
130 cows bones proof of old domestication
133 teeth present certain difference from our present cows
134. People of Stone period possessed race of cows of different sizes

- Turf cow oldest race short body \& fine legs \& feet like Zebu
- 136 \& very large races

137 Trochoceros race fd only in 1 locality 140 domesticated - 148 doubtful sp.
140 Primigenius races found everywhere, of slightly variable size, \& agreeing closely with wild type mixed races
143 Brachyceros Brachyceros race or longiform p148 very distinct - small race - B. frontosus very close to it - This agrees closely with Turf cow of which is so common in oldest buildings
145. B. frontosus of Owen race now living in Switzerland, did not exist during Stone period.-
145 from moment of taming wild allied races, then stability is lost \& hence he calls them races - B. taurus for commonest races Bos. primigenius \&c for species.
148 Simmenthal race now in Switzerland belong to frontosus-races
201 Oldenburg Holland Friesland race. = Primigenius
205 Brachyceros-race fd in Switzerland $\boldsymbol{\checkmark}$ 207 frontosus-race - thinks, possibly the Norwegian race descended from it not fd in Stone period - but living in Switzerland
211 Canton of Freiburg cattle belong to this race
The great part in all these fd fossil \& domesticated
214 Brachyceros race no white, different shades of - dark-colours with lighter stripe along back \checkmark
215 Frontosus race red or black - * or some patched with white
216 for M. \& W. Europe - Brachyceros race East \& South

- 221 B. trochoceros - formerly domesticated, but does not recognise as parent of any country race - so may be passed over-
SB3 $\mathrm{D} \beta{ }^{\circ}$
Rutimeyer Pfahlb Pigs Θ

27. S. crofa \& S. scrofa palustris - latter wild \& domesticated
30 wild swine formerly bigger otherwise
identical
42 Summary on difference of teeth of Turf swine
28. X Stone turf swine as wild species. 53 X nearest to Siam
120, 121 on domestication of Turf swine \& common swine
163 Turf swine domesticated towards end of Stone period X
167 - a still smaller race at a later period
168 a Roman race with different teeth
171 Races of 6 th century
181, 184, 186 Bundtnerschwein - Turf-races
188 all tame swine have different back head
190 Turf \& Indian swine closely allied X \$
SA $\langle p p .102-3\rangle \square \beta$
Rutimeyer
Cats. 23,28 Swine p. 27 \& 120, 160, 168, 171, 175, 176
Cattle p. 71 to 112 - 130 to 149 p.161, 172, 200 to 223, 235
Dog 117, 119, 162, 170, 238
Horse 122, 164
Goat 127
Sheep 128-191
Swine continued 181
Hens 231 about
15 wt character of Bones different in wild \& Tame animals. $1-5 m, 4 w / 5 w \tau, 16-17 m / 16 u$ "Ur und Bison" 16 8-15w urges effect of domestication on the Bones 11-17m, 21-28w Recent skeleton of wild swine darker than tame $2225-30 \mathrm{w}$ Fox not so large as wild certainly same species $2328-31 m 257-12 w$ Beaver of greater size apparently teeth modified $7 u$ "ausser", $8 u / w \tau 275 w$ excluding sub genera $8 w$ only 3 known species $13 w$ Fitzinger rubbish $23 w$ House-swine few remains $24-30 u \pm, 26-33 w$ the common swine is a race, now extinct, which he calls Turf swine existed with the wild swine $-27-28 m$ $281-7 w$ Turf swine also domesticated People would call this a species. 29 11-13w Bones of wild \& tame swine break differently 30 19-28w The wild swine of old period bigger than recent, otherwise identical.- 33 $2 u$ "Das Torfschwein", 9-11m/w From reasons given does not consider distinct species. 42 $6-18 \mathrm{~m} / \mathrm{w}$ summary of differences of teeth of Turf swine $4922-23 m 5232-34 m / 32 u \leftrightarrow$ 53 1-5m, 1-8w Later Turf-swine was domesticated \& traces yet remain in our Breeds.- now extinct in wild state $23-29 \mathrm{w}$ comes nearest in short face to Siam swine, which is not known wild $5521 u$ "erlischt"|17$22 w$ Turf-swine has some characters of Miocene Suidae 57 -8w identical with
recent $13 w$ Horns variable 18-21w differences do not bespeak new race 58 $7-9 m, 8-14 w$ great weight of Horns in old animals causes slight differences in back of skulls $20-22 w$ great size of skeleton 60 23-24u "uml übertrauf" $611 w$ no change 70 20-30w Musk \& Bison both lived during Stone Period.- over all Switzerland.- 72 $6-9 m / w$ cattle descendants of Urochs 75 14-15w Friesland Ox nearest to Urus 84 $3 u$ "Der $\mid Z e b u$ " $/ 3-8 w$ I see many references to differences in various Bones $8515 u$ "Zebu|Taurus" 98 2-3m/2u "Genus \mid Mitte" 101 8-11m/9-11u士 $1094 a$ "Auerochs"/wt Bison 3-4u "gemeine \mid Auerochs" "/w B. primigenius $6 u$ "Urochs 1 Ochs" $/ 8 u$ "doch 1 constant", $6-8 \mathrm{~m} / \mathrm{w}$ points of anatomical agreement $13 u$ "auch | Ausnahmen" 11112 m $11213-19 \mathrm{~m} / \mathrm{w}$ What a History of changes 117 * $28 u$ "kleinsten 1 Race" $/ 25-28 w$ Stone Period one very constant race of Dogs. 118 23$24 m / 23 u$ "welchel Grösse" 119 2u "Wachtelhund" $/ 2-4 w$ quail-Dog setter-Spaniel agrees with this $10-12 \mathrm{~m} / \mathrm{w}$ agrees in these respects with Hunting dog - 21ula "Jagdl Wachtelhund" $19-25$ w both remote in equal degree from Wolf \& Jackall; \& agree with the oldest known domestic dog.- 120 6u "Wangen"/6-8w no tame swine here $9 u$ "Moosseedorf", $29-33 \mathrm{~m} / \mathrm{w}$ in these later buildings the Turf-swine was domesticated 121 1u "Schwächung I derselben", 5-7w good arguments that turf-swine was domesticated $18 u$ "gewöhnliche Wildschwein"/w not then domesticated. 25-28w in these the wild swine were domesticated \& which agree with present swine $12213-15 w$ very rare, though present in all 27-33w common in newer Buildings; large \& small Big \& Small Horse $w b$ as they kept so many domestic animals, probably many domesticated.- 127 12-15w Goats identical with present Swiss goats $19 u$ "ältern Pfahlbauten", 19-21w Goat commoner than sheep in older Buildings 128 wt Goat has not altered since the old period. 129 14a/ u "Solche | Ziegenhörnen" $/ m / w$ wild horses like those of Stone-period. now in Orcades, Wales.- 15-18u土, $22 u \leftrightarrow, 26 u$ "Schaf 1 war" $/ 24$ $27 w$ very small sheep with thin \& rather high legs. $130 \quad 29-33 m / w$ cows bones show marks of long domestication. $13324-28 \mathrm{~m} / \mathrm{w}$ some teeth like those of present kinds, some different.- $134 \quad 12-16 \mathrm{~m} / \mathrm{w}$ differently sized Races.- 18-20w Different Breeds at all seasons localities 23-30w The commonest races, especially in oldest buildings (but these not exclusive) is the Turf-cow.- This had short body \& very fine legs \& feet. like

Zebu.- $1351-3 m / w$ Zebu very unlike our cattle in proportions $30 u$ "Concise" w has the turf cow \& a race larger than largest present race. 136 2-6w Robenhausen besides Turf cow race as large as one between largest race \& Urus.- $12-14 m, 23-25 u \leftrightarrow / m 1379-$ $11 m, 16 u$ "welche lengster" $/ 17 u$ "aufgestelltel Species" $/ 15-18 w$ only found in one * locality $1404-8 m / 1-8 w$ Trochoceros shown to have been domesticated by variability of size of Bones $14-15 w \bullet$, $18-24 w$ Trochoceros is a very large-horned race.- $24-27 m, 28-33 w$ Former domestic race confined to W. Switzerland. This present race found everywhere, of variable size \& agreeing with wild B. primigenius. $14120-22 \mathrm{~m} / 21-22 u \leftrightarrow$ $14221-23 \mathrm{~m} / \mathrm{w}$ size does not vary greatly 143 $1 a$ "Concise" $/ 1-3 w$ skulls certainly of mixed races between these two $4 w$ or longiform "mit | Rhinoceros", $8 u$ "Torfmooren 1 Megaceros", $9 u$ "römischen Antiquitäten", 26-30w B. frontosus comes very close to B. longiformis.- $26 u \leftrightarrow, 28 u$ "kleinhörnigelauf", $31 u \leftrightarrow 1442 u \quad$ "ab|Torfkuh"/1-8w The foregoing agree with Turf cows which is so common especially in oldest Buildings.rarer in the more modern-145 15-20w The above 3 Races alone found- A common living "frontosus" race now in Swiss, is not found. $18-20 m, 25-29 w$ From the moment of taming allied wild species, their stability as species is lost - Hence he calls them races. $29-31 m / w$ a $31-32 u \leftrightarrow, w b$ (a) The right of giving the descendant of distinct species under name of Bos taurus is not so difficult, as the separating the wild parents.- wb What a proof of fertility of distinct species.- If not good species what variation in a state of nature.- 146 wt the races, Bos primigenius, trochoceros \&c for wild Taurus primigenius, trocheros \&c for tame $1 u / w \tau, 18 u$ "Owen" $/ w$ Nillson $19-20 \mathrm{~m} / \mathrm{u}$ "Boslindicus"/w 3 other parents of our tame oxens $32-34 m$ (Cuvier), wb Cuvier thinks primigenius one of parent races $1479 m, 11-12 u \leftrightarrow, 13-17 w$ Yet some difference between these \& tame Oxen of present day. 29-31m/w differences perhaps due to crossing $1481-3 w$ more doubts abour specific differences of B. trochoceros $9 w$ or longiform 11-14w This form very distinct from the 2 others 149 1-6w Zebu more distant from B. primigenius \& others, than any of these from each other. $15-18 \mathrm{~m} / \mathrm{w}$ difference in no incisors in such as he has seen Does not Blyth speak about differences at birth? 17 u "Verminderung|Incisiven", 21$22 u \leftrightarrow$, $31-33 m / w / w b$ quite immaterial in bump of fat - appears in Argali \& Rein Deer

RÜTIMEYER, SCHWEIZ
in winter.- 156 22-25w Extinction \& rarity of some species. 157 wt who could have ever expected so much change??- $1-2 m, 3-8 w$ Changes in wild anims gigantic size of perhaps differs in Horns of the(1) - small size of Foxes - the sharper teeth * of some of the Carnivora 25-27w Abbeville 2 races of cows of different sizes $15915 u$ "Verschiedenheit" $111-19 w$ Morlot's Bones from Railway cutting, are like present races \& very different from Pfahlbauten - \& of variable size, whereas constant in the Pfahlbauten -. 161 17u "Brachyceros"/w or longiform 18-28w Turf cow almost exclusive in oldest buildings.- In later supplanted by large primigenius races. \& in one region the other larger B. trochoceros.- $w b$ (The whole importance of case depends on the 3 forms being found fossil \& not domestic. C.D.) 162 $1 u$ "einer 1 zahmen", 2-3u "Concise 1 Rindvieh", $5-7 w$ native Concise only tame beasts were Turf-cow \& one small dog. $7 w \tau 10-15 w$ Dogs do not change, whilst cattle do $1631-3 \mathrm{~m} / \mathrm{w}$ In Morges, dog larger 9-11w Turf-swine domesticated towards end of Stone period. $20 \mathrm{~m} 16410 \mathrm{~m} / \mathrm{g}-13 \mathrm{w}$ The Horse of Morges belonged to very small Breed 167 4-6m/4$17 w$ a still smaller race of swine than the Turf-swine.- in a rather recent Building, this Breed a strong Breed - so diversity in the lost race of Turf-swine 168 23-31w or Roman - this race of Pigs like little turf race, but with stronger marks of domestication, \& change in Molar $31705-7 w$ in 563 different Dog from Stone Period $1712 m, 3-9 w$ in 6 th century Swine large race \& above mentioned smaller domestic Turf-races with difference in teeth. $26-31 w$ The shortening of row of teeth.- Here comes question whether race really same as Turf swine $31-32$ "äusserst $3^{\prime \prime} 17221-27 w$ a very small race of cows of rather recent date $17525-30 \mathrm{~m} / \mathrm{w}$ Does not doubt that long-raced common swine descended from S. ferus 176 4-10w Turf swine - wild seems to come nearest to Siamese swine.- 179 10-11m 181 wt He has before remarked that all the Eastern, Chinese, Siamese are pretty closely the same $9-11 m / w$ Berkshire \& Chinese Swine skulls closely alike 17-23w a small peculiar Swiss race somewhat allied to Berkshire. 184 $16-22 w$ Turf swine differs greatly from Berkshire but with some exceptions comes near the small Swiss Race p. $1811867 x, 7-$ $19 w$ Berkshire reverse in Teeth of Turf-swine $20 u$ "Bündtnerschwein", 23-28w This Breed near to Turf swine, like common swine to the wild Swine 29-30u↔ 187 15-19w Berkshire
perhaps related to S . Celebensis $23-24 w$ Berkshire a crossed Breed 188 5-8m/w certain of back of Head common to all wild Swine $10-12 m / 11-15 w$ all tame swine have a * different back Head - $13 u$ "sondern 1 betrachten", $16 u \leftrightarrow, 25 w$ Summary $26-27 u \leftrightarrow$, $32 u \leftrightarrow 1893-4 u \leftrightarrow, 8-9 u$ "das 1 Formen", 16$19 \mathrm{~m} / \mathrm{w}$ not improbable that Turf-swine related to short-faced Breed. 25-29w Turf-swine in wild state assuredly not confined to Swiss. $1908-13 w$ He widely thinks Turf-swine \& Indian swine closely allied.- wb The great point is that a distinct wild species or variety, * has been domesticated - (probably more). Whether the Turf-Schwein be called a race or species is unimportant - it differs osteologically $19117 m, 19-21 w$ Stone sheep different from present common races 192 20$21 \mathrm{~m} / 21 u \leftrightarrow 1933 a$ "Wildschafes"/wt Wild forms not enough known.- $1-5 w$ Thinks many parent-forms probably.- $6-9 \mathrm{~m} / \mathrm{w}$ The only known fossil sp . differs from the known wild $19-20 \mathrm{~m} / \mathrm{w}$ Not one to him known race of sheep agrees with that of Stone Period 195 $1 u$ "den \mid Nalpsthales" $/ 1-8 w$ Here a race of Sheep like those of Wales \& agrees with Stone Race (I do not think this race wild.) 201 16-20w He misses in Stone period one existing race; \& amongst the existing there is one not found in Stone period.- $21 u$ "Friesland | Holland", 22-27w These races agree with the Primigenius race of Stone Period closely in skulls. $2051 w$ This is the same as fossil longiformis of Owen 207 21$22 w$ Found in Turf in Scandinavia 23-24u \leftrightarrow 208 5-7m (Nilsson)/6u "Ausser 1 dieser", 11$13 m / 11-22 w$ thinks that some Norwegian cattle may be descendants not found fossil in Switzerland in Stone Period but domestic races belong to it in Switzerland. 21118 m , $20 u$ "Freiburg"/ $19-22 w$ These cattle belong to frontosus race * $w b$ * The great point is that 3 or 4 species or forms of cattle have been found fossil, \& clearly allied domestic groupd are found at the present day.- $21212-14 \mathrm{~m} /$ 11-16 w apparently a crossed race with that of Brachyceros 214 21-28w agriculturalists make 2 chief Swiss races, which are geographically separated $30-33 w / w b$ all dark coloured - a lighter stripe along Back - This agrees with Brachyceros Race (ie longiform) see next Page $21512 w$ a Southern Breed 21-22u "roth |gefleckt"|21-25w patchy colours This is Frontosus race $2166-7 w$ a Northern Race 19-21w This present at oldest period $20 u$ "Brachyceros", $21 u$ "Frontosus", $22 w$ this is a later importation $32 u$ "nördliche |zweite"। $w b$ ie frontosus $2181 m, 7-8 u$ "romanische

Vieh"/w with great Horns $8 u$ "folgenden 1 rechnen", 27-32w 4 Wild Races primigenius frontosus longiform or Brachy \& trochoceros 220 18u "Simmenthal|wahrscheinlich", 19$20 u \leftrightarrow 221$ 1a "brachyceros"/wt Norwegian wt longiform $8-9 m, 14-15 m / 14 u$ "bracycheros"/ $15 w$ longiformis $16 w$ Final result $17-21 u \pm / w$ longiformis 20-21u士, 22-26w as this found in oldest Buildings, probably endemic in Switzerland, not so B. frontosus $22 u$ "Bos", $27-28 u \leftrightarrow / 28-32 w$ This formerly domesticated; but he does not recognise it in any living race.- $2228 u$ "podolische | romaische"/8-10w origin doubtful perhaps from $10 u$ "Bos primigenius", $11 u$ "trochoceros" $/ w$ or $14-19 \mathrm{~m} /$ 15-17w Indian ox distinct 223 11-14m/13u "Mischformlansehe" 225 15-16u↔/13-16w Robenhausen true old Stone period Q\&o, 23u/w $24 u$ "Roggenl Hafer"/w none 226 4$5 u \leftrightarrow, 9 u$ "Fruchtkappeln", 10-12u "kleinerel Klappen", 14-15w more like this 17-21m/17$19 u \leftrightarrow, 29-30 u \leftrightarrow / w$ apples $33 u$ " 14 mm " $/ 34 u$ "22 Millim" 227 1-3m/3u "oder|Robenhausen" 228 6-8m/6u "Vorkommen IScop."/7u "fehlt 1 ganz", $9 a$ "findet" now this is found $9 u$ "ist I L.", 14-20w Hooker disputes that they can be distinguished $22-24 w$ The P. mughus now in Mountains $25-27 \mathrm{~m} / \mathrm{w}$ case like as in Ireland turf-bogs $31-32 m, 33-34 m, w b$ These plants now only in mountain-lakes $2293-4 m$ (Kölliker)/w this plant now very rare $6-7 m / w$ formerly very common in turf-waters 9-15w Altogether flora of old \& present times nearly the same; so different from Denmark 23-26w yet some traces of vegetation changes in Swiss 230 10-14m/w Except for Bones of Buildings did not know of these 3 animals $21-23 u \leftrightarrow 2318-11 m / 9 w$ changes in animals $13-15 \mathrm{~m} / 13 \mathrm{w}$ no mice or rats 19 w no cats or Hens 23-24u "Hausthierenl Hund", 25-27m/w two races of cows $30 w$ next come Pigs 232 $3 u$ "concise"/wt more modern 5-12w The large House swine from wild swine seem to have suppressed the small previous Turf swine. 16-18w After Concise new domestic beasts appear $17 u$ "grosses Hund", $19 u \leftrightarrow 233$ $w t$ since then wild \& tame are near $1 u$ " 6 . Jahrhundert", 7-10w not much change in domestic animals during the whole immense period 11-15m, 11-23u士, 21-23m 235 20-28w Frontosus race $*$ is absent in older periods - The longiform has endured. The old primigenius race has disappeared; apparently remained until 10th or 12th century. 237 wt oldest period $1-3 u \leftrightarrow / w 2$ races of cows $5-6 u \leftrightarrow, 8 m, 14-15 u \leftrightarrow, 15 a$ "dieser" those $2381 m, 21 u$ "Torfhundes 1 Pferdes", 22-24m, 22-27w These probably
from the East for not known fossil in Europe $27-28 u \leftrightarrow 23910-14 w \quad$ B. frontosus race seems to have travelled from the North.-

RÜTIMEYER, Ludwig Die Grenzen der Thierwelt Basel; Schweigerhaus (Hugo Richter); 1868 [CUL, I]

RÜTIMEYER, Ludwig Die Rinder der TertiärEpoche part 2; Zürich; Zürcher \& Furrer; 1878 [Down]

SABATIER, Armand Études sur le coeur et la circulation centrale dans la série des vertébrés Montpellier; C. Coulet; 1873 [CUL] em, he, ig, phy, y
SB p. 315 to 322 Embryology of Heart \& animal series-
$31513-33 m / \rightarrow / 11-12 w$ inheritance at younger age 316 10-12m/11u "précose | penser" 317 11$13 \mathrm{~m} / \mathrm{w}$ see p319 319 10-12m/w good 24-28m 320 10-17m 322 3-13m, 22-26m

SACHS, Julius Geschichte der Botanik vom 16. Jahrhundert bis 1860 München; R. Oldenburg; 1875 [Botany School]

SACHS, Julius Lehrbuch der Botanik 2te Auflage; Leipzig; W. Engelmann; 1870 [CUL, I]
dic, f, fg, he, hl, ig, oo, phy, sx, tm
NB 633. \vee Vegetable Elements; 638 Separation of sexes in lowest Plants; C.Sprengel on non-sexual fertilisation - was he before Kolreuter?; 641 small Cleistogams imperfect perfect always sterile V 0 ; 665 \& 676 Abstract of Nägeli on intermediate form on inheritance of morphological characters \wp
$1695-6 m 17010-17 m, 31-35 m, 37-40 m, 41-$ $43 m 171$ 8-11m 173 37-41m 175 34-36m 176 8-13m 177 22-24m, 41-43m
8
633 30u "dielactiv", 31u "andere 1 passiv", wb Even in the vegetable K. Sachs in speaking of S. ElementsO he says $6388 m, 16-34 m$, $41 w$ Monoiacous $6394-7 \mathrm{~m}, 18-22 \mathrm{~m}, 30-34 \mathrm{~m} /$ 31u "auch \mid Farnprothallien" $\mid w$ Dichogamy 41$46 m$ (C. Sprengel) $65436 m 65622 m 665$ 13$42 \mathrm{~m} / 24-41 \mathrm{w}$ Nageli struggle 66743 m 676 646 w about inheritance of morphological characters, worth studying $43-47 \mathrm{~m} 677$ 3$34 m$

SACHS, Julius Lehrbuch der Botanik 3te Auflage; Leipzig; W. Engelmann; 1873 [CUL, I]
che, mhp, phy, tm, v
NB1 86 Bloom on fruit \& leaves NB2 Drosera
p771 p782 interesting discussion Carbonic acid in atmos
on catch of clasping movt of Tendrils
p785 Movement causes of
801 He Sprengel quotes Contrivances 0
[The Last section of Book hasO discussion on Variation 0
p134,143 Trichoms
p674 Effect of gravity on movement of Plants

- 118 Work on Harz-elongationO Bot Zeitung/
v $24 \mathrm{~m}, 30 \mathrm{~m} 86$ 32-33m
\wp
118 2m, 50-51m (Hanstein)
\wp
771 1m, 32-47m/47u "de Vries" 772 19u "Verkürzung der" $118-21 \mathrm{~m} / 18 \mathrm{w}$ chiefly $23-32 \mathrm{~m} /$ $25-26 u$ "durch | Oberseite" $/ 25-28 w$ by pressure the concave side $39 m, 41-44 m / 42 w$ (a) $w b$ some tendrils can clasp only thick objects $7736-10 \mathrm{~m} / 7 w$ (a) $24-31 \mathrm{~m} / \mathrm{w}$ press more closely on object after clasping $78214-17 \mathrm{~m} /$ 14-15u "starkl Atmosphäre" 785 16-19m/17$18 u \leftrightarrow 78925 m 8014-13 m, 40-47 m$ (Sprengel)

SACHS, Julius Traité de botanique trans. of 3rd edn; Paris; F. Savy; 1874 [CUL]
cc , che, ct, em, he, mhp, oo, phy, sp, sx, t, ta, tm, v

NB 829 Roots making mark on Marble bears on Chalk in Worm experiments
SB (See other paper)

* (By bloom I refer to movements in my experiments by shaking
803; 831; 846; 850 Bloom; 853; 854 Temp.; 855 Bloom 856 do.; 867 Bloom; 868 on refrangibility of rays which actO in chlorophyll, 875 Bloom; 887 (do); 889 do; 890 do; 901 do; 903 do; 908; 919; 924 Bloom; 936 glycerine extracts \& water; 953 Bloom; 957; 958; 972 Bloom; 986 Bloom; 988 do
〈over〉 996 Geotropism depends on growth; Bloomes \& 999 ; 1010; 1020 Tendrils; Bloomas 1025 to 1031 Bloom; 1035 transitory rigidity, what I have called paralyzed; Bloom 1039 to 1051 Mechanism of Movt; 1056 crossing to 1061 Sexualityes; 1072 dox; 1093 Struggle for existence between closely allied species; 1021 Bloom to 1018 \& all this last Part
ix $w t$ Dissolution of dextrine by protoplasm Traube on passing of fluids out x 49 m xxix $10 m, 36 m$ xxxi $42 m 268-13 m 4320-23 m$ $\begin{array}{llllll}\text { (Nägeli) } & 49 & 13-29 m & 51 & 12-16 m, & 15 u\end{array}$ "métaplasme" $5523-28 m 63 \mathrm{wt}$ The contents of cells cannot be considered as chlorophyll because not in grains $3-4 u \leftrightarrow / 5 u$ "couleur homogène" $/ 3-7 m / w$ \& entire cells contents green 64 21-26m, 22-23u "masse |chlorophylliens" 65 8-9u "des|rouge" $719 u$ "Pisum sativum", 11-14m, $12 u$ "d'aleurone", $13 u$ "légumine", fig.w over 72 5-8m/7u
"albuminoide" 77 35-40m 101 1-4m 116 fig.w 73/74/75 16-20m, 21-24m/21-22u 117 31$36 m, 35-37 m$ (Strasburger) 118 2-7m 119 18-20m/19-20u "bien \l'épanouissement" 153 26$28 m$ (J.B. Martinet) 155 1-3m 769 9-15m 771 1-11m, 34-39m, 40-43m (Nägeli) 772 14-19m 774 4-9m, 32-36m 779 6-16m, 17-19m, 18$32 m$ (Traube) 803 23-27m, 25u "absorber appréciable", 25 w (a) $28-31 \mathrm{~m}, \quad 39-42 \mathrm{~m}$ (Duchartre), $46 m$, wb Plants with bloom must be different - their epidermis perhaps not that protective $804 \quad 14-23 m \quad 820 \quad 24-31 m$ 823 41-43m, 45-46m 824 16-21m 827 2-3u "abstractionltransitoire", 11-12m, $12 u$ "inuline", 13 u "formatrices I cellulaires" 828 35$40 \mathrm{~m}, 35 u$ "albuminoïdes", $36 u$ "transport organes", $37 u$ "nombreuses", 41-46m/41u "albumine", 41u "caseine", 42u "gluten", 45$46 m 8316-14 m, 23-26 m 8398-15 m$, $10 u$ "grains d'aleurone", $13 u$ "formation! protoplasma" $8442-12 m, 14-17 m / 17-18 u$ "les 1 endosperme", 21-24m, 32-35m, 36-42m 846 5$10 \mathrm{~m}, 8-12 \mathrm{~m} 85030-32 \mathrm{~m} / \mathrm{w}$ Drosera $8515-7 \mathrm{~m} /$ w Leaves $7-39 m, 7-11 m, 38-41 \mathrm{~m} / 39 u$ "rosée $q u i " 853$ 12-15m $8545-8 m 855 w t$ for I did not know of analogous observations $10-19 \mathrm{~m}$, $26 u$ " $47^{\circ}-48^{\circ}$ " $/ 25-28 m$ (Nägeli), $28 w$ over $29-$ $30 \rightarrow 856$ 11-16m 857 35-46m 867 29-34m, 40-43m 868 6-11m/7u "faible refrangibilité" $/ 8 u$ "rouges |verts" 11 u "rayons frangibles", 12$13 \mathrm{~m} / 13 u$ "actions mécaniques", $31-37 \mathrm{~m}, 45 u$ "autrelammoniaque", wb | had better try first in dark 875 38-41m, 40-41m 876 1-3m 877 4$5 u$ "danslintensités" 887 11-17m 889 21-27m/ $21 u$ "obscuritélieu", 33-38m/34-36w an error 890 12-15m/9-15w He thinks Mimosa same case as sleep?? $90138-40 \mathrm{~m} 903$ 15-20m/w many facts about growing $21-22 \rightarrow$, $33 u$ "déterminées I pesantent" 904 2-5m 908 13-19m/18-19u "pourlaccroissement" 919 wt ${ }^{\text {In }}$ Drosera is must be elasticity of under cells $1-3 m 924$ 11-17m, 35-39m 925 6-10m, 13$15 m 9367-12 m 9536-22 m, 26-29 m 95725-$ 33m/28-34[...] 858 42-46m (Hofmeister) 972 1$9 m, 31-38 m, 39-41 m$ (Reinke, Sanio) 973 310m, 24-26m/24-25u "allongement Inuit" 986 8-13m, 35-38m/36u "contact I protoplasma" 988 $14-27 m / 7-24 w$ if so, they cannot go back 996 35-37m 997 3-9m 999 23-25m 1003 20-24m/ 20 w leaves 1004 11-18m, 19-22m, 24-43m/ 29-37w owing to growth!! $100514-21 m 1010$ 25-34m 1020 38-43m $10215-17 m, 21-24 m$ (de Vries), 27-37m 1022 wt ??Does he apply growth to sensitive Plants ? May not elongation on one side favour growth $8-14 m$, $20-26 \mathrm{~m} / \mathrm{w}$ (a) $w b$ See how quick P . gracilis bends - 1 think in a few seconds - is it credible that it can grow so quickly? 1023

12-17m (de Vries) 1025 8-12m, 19-20u "parce I influence" $/ 20 \mathrm{~m} / 21 u$ "complétement 1 croître" $/ 16-31 w$ How are movements of leaves of Mimosa \& Desmodium with respect to age $20 x / w b \mathrm{X}$ may be these more sensitive 1026 15-16u "selaccroissement", 28$32 m$, $36-39 m / 36-38 w$ No Stem of RandoniumO $39-43 \mathrm{~m} / \mathrm{w}$ This asserts that tendrils owe only to growth $102737-45 m / 42 u$ "variations I température" $1028 \quad 6-11 m / 3-13 w$ How different from Drosera in which the bending plant is not touched $15-17 w$ Distinct category $30-32 \mathrm{~m}$, $41-45 \mathrm{~m} / 43 u$ "Starrezustände\1863", $46 m$ (Meyen) 102924 $26 \mathrm{~m}, 27 \mathrm{u}$ "différente l latérales" $/ 27-29 \mathrm{~m} / \mathrm{w}$ I do not quite understand $36 u$ "Marsilia", 45-46m (J. Sachs) 1030 wt in climbing plants the movement is only required whilst young \& growing 21-22u "feuilles \mid autonomes" $/ 18-22 \mathrm{~m} /$ w I suppose this is by nutation $23-28 \mathrm{~m}, 35-$ $38 \mathrm{~m} / 36 u$ "Phaseolus", $40-45 \mathrm{~m} 1031$ 26-32m, 33-34m, 35-36m $103445 u$ "rigidité transitoire" $10351-4 m, 6-11 m, 17-22 m$, 23-26m/24u " $490-500$ ", $30-32 \mathrm{~m}, 34-39 m, 42-46 \mathrm{~m} / 42-43 u$ "Bert I Paris" 1036 20-23m/16-23w my test of C. of Amm. is better $22-24 m 1037$ 22-26m (Kabsch), 31-38m, 34-39m 1038 7-12w 1039 1-9m/1-2u "endomostiquelélasticité" $/ 1-3 m$, 19-20m, 30-35m, 45-46m (Unger)/46m 1040 19-21m, wt 1st Protoplasm Passes out of cell - Endosmosis \& Exosmosis may be supported by - but wb be like in effect 1041 wt of cell-wall \& not expelled wt must have some different object $5-8 m, 6-9 m$, 9$12 m, 15-17 m, 35-37 m 104224-29 m 10431-$ $5 m, 36-42 m / 36-37 x / 39-40 x$ 1044 19-25m/ x /19-20m, 37-41m 1046 29-36m, 41-44m 1047 6-10m, 24-29m 1048 1-5m (Pfeffer), 7$12 \mathrm{~m} / 7-8 u$ "que I cellules", $19-26 m, 33-38 m$ (Brücke), 44-46m (Dutrochet) $104932 u$ "pétioles I continuel", 34-36m 1050 6-17m 1051 $4-12 m, z b 1053$ wt under same conditions action with the exterior tends to cease \& the union of 2 differently exposed differentiated the aggregate $1-4 m 10567-10 m / 1-18 w$ may be related to exposing them to different conditions so as to diversify them 1059 2$17 \mathrm{~m}, 31-39 m, 44-46 \mathrm{~m} 10611-7 \mathrm{~m} / 1-5 \mathrm{~m} 1072$ $40-43 m 109318-44 m$

SAGERET, Michel Mémoire sur les Cucurbitacées Paris; Huzard; 1826 [CUL] cs, ds, gd, h, he, hy, sp, t, v, wd

SB1 Sageret 7; p8; 10; 12; 17; 18; 20; 23; 25 to 30 to 55
2d Part; 5; 93; 102; 104; Duchesnes Works? Bailliere or Hort. Soc.; see to

SAGERET, CUCURBITACÉES Duchesnes
SB2 $\square \beta$
8 certain melons more true than others
17 A melon from U. States
25 \& 27 Melon with seeds of different shapes
28 Hybrid melons more vigour 30 more fertile 36 repeated
I must see Duchesnes' works look in Pritzel Catalogue
Part 1, $622-26 m 77-19 w$ He evidently thinks descended $10-14 m / 11-13 w$ all cross 14 $21 m 83-5 m, 7-12 m / 7-15 m * / 12-14 m$ 9 5-9m $11 \quad 6-7 m \quad 12 \quad 15-16 \mathrm{~m} / 10-16 \mathrm{w}$ colour and character 17 21-23m $1811-12 m 208-10 m 23$ $1-3 m, 8-10 m 24$ 13-16m, 17-25m $257-9 m /$ m 26 9-11m $27 \quad 2-7 m \quad 28 \quad 5-9 m / 1-10 w$ confesses it doubtful whether Cucumis flexuosus a species $25-26 m$ 29 9-11m, 10$14 m$, $15 a$ "le" $\mid w \star$, $15 a$ "dudaïm" p30 17$24 m$ / $20 u$ "les 1 naître" $/ 21 m, w b$ all animals \therefore fertile $30 \quad 16-17 \mathrm{~m} / \mathrm{m} \otimes 31 \quad 16-17 m \quad 33 \quad 9 u$ "Koelreuther", 24-25m/u士 34 18-19m 35 1-5m/ $3 w$ Tobacco 36 1-2m, 12-13m 37 19-25m 38 22-27m (Duchesnes) $3920-21 m 401-3 m, 5-$ $6 m / ?, \quad 7-9 m$ (Vilmorin), $13-15 \mathrm{~m} / 14-15 u$ "époquelculture" 41 25-27m 43 1-4m 45 6-8m $461 \mathrm{~m} / \mathrm{w}$ " a gourd $3 u$ "giromont", $5 u$ "pastisson", $6-9 m / 3-11 w$ Look in Bot Catalogues $10-12 m, 14 u$ "dans louvrages"/13$14 m$ (Duchesne)/w He is avitism man 47 15$17 m, 18-19 m 527-10 m, 12-13 m, 15-18 m 53$ $13 w$ gourds $5410-11 u \leftrightarrow / 8-13 \mathrm{~m} / \mathrm{w}$ variation \& tendency to hybridise does not go together $557-13 m / 10 u$ "bastisson"/12w V. supra
Part 2, $513-17 m 931-2 m, 15-16 m / 5-15 w \times$ Hence I suppose fertile $1027-12 m 104 w t / 1-$ $11 w$ all these plants appear cultivable on same system, so constitutions not different. $6-11 m / w$ other cases

SAGERET, Michel Pomologie physiologique Paris; Hizard; 1830 [CUL, on B]
$\mathrm{cc}, \mathrm{ch}, \mathrm{dv}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}$, he, hy, in, phy, sl, sp, spo, sx, t, ta, tm, v, wd, y
NB 6 compare grafting \& Hybridisation are there any exceptions to plants of same Genera being grafteable.-; $9 ; 13 ; 14 ; 16$ effects of graft \& 44 summing up $=; 43 ; 47$; 48; 65 as odd as Crinum being more readily impregnated by foreign species; 72; 105; 106; 126; 134; 136; 138; 143; 146; 151; 153 to $158 ; 161 ; 168 ; 217 ; 218 ; 222 ; 228 ; 231$ to 404; 491; 552 to end
$\mathrm{SB} \square \beta$
17 Sterility from grafting Q

43 \& 72 seeds from grafting Pear on Quince gives more varieties than on pure stock
47 Contrasts the diminution of size in seeds of fruit-tree, with increase in size of nuts, Almonds \& chestnuts by selection
65222 some vars of pears succeed better on Quince Qan than on own stock (like case of Crinum) Q
106 The more a plant departs from type the more tends to depart (contrast with opinion of limit)
126 on double fecundation in melon like Thwaites Inula case
136556 on "variantes" or slight direct variation from conditions
155 does not believe in acclimatisation, only in seedlings vegetating at different periods
218 on changes in fruit-trees
262 on some pears \& apples being true by seed
321, 346 Peach does not succeed equally well on all plums Quo
358, 364, 367, 382 Remarkable vars of cherries - good to quote as more than trifling
398 Work on Gooseberry
561 in characters of parents in Hybrids N.Q. 569 two Fathers

6 23-26m 7 10-12m 9 14-17m 13 10-13m 14 9-10m, 24-26m (Thouin) 15 26-28m 16 19-
 $22 m \quad 43 \quad 24-27 m \quad 47 \quad 8-10 m, 18-23 m, 20 u \leftrightarrow$, 27-28m 65 24-28m, 25-26Q*, 25u "chosel remarquable", wb Coignassier is quince 668 12"...", 20-22m 72 3-6m (Cabanis) 105 1-4m $1068-12 m 1075-9 m / w$ like hybridisation 126 7-11m/12-13w like Fuchsia 14-17m/15-16Qas $1275-6 \mathrm{~m}, ~ 12-13 \mathrm{~m}, 21-25 \mathrm{~m}$ (Brongniart) 134 2-16m 136 10-14m, 16-19m, 21-28m 137 17$22 m, 21-28 m 13811-17 m, 21-23 m 14313-$ $17 m, 17-19 m 14611-14 m 15124 u$ "datura stramonium" $/ w b$ is it N. America? 153 10$13 \mathrm{~m} / 13 u$ "crois \mid plus " $/ 10 \mathrm{w}$ acclimatisation 28 m $1553-7 m, 9-15 m, 22-25 m 15713-16 m 1583-$ $5 m$ (Thouin) $161 \quad 19-22 m \quad 168 \quad 12 u$ "arbres hybrides", 16-18m, 18-19m 217 18-22m (O. de Serres), 22-26m 218 10-21m (Duhamel) 219 20-23m 222 13-21m/16-18Qu, 22-27m 228 24-26m/24-25? 231 1-5m/2w p. 251 8-13m 233 2-11m, 12-18m 239 10-14m (Knight) 240 13-14m 241 13-16m/5-27w How inexplicable that the improvements should suddenly stop, as soon as fruit gets arbitrarily good.- 244 $11-14 m \quad 245 \quad 1-5 m / w t / 1-15 w$ By selecting these poor seedlings, the race passes through many changes.- this perhaps explains it; but then we must suppose that
all the good old fruits have been sudden sports!!! or they have been long individually exposed to same conditions $2461-6 m, 7-$ $10 \mathrm{~m} 2471-3 m, 10-13 \mathrm{~m} 24822 \mathrm{~m} 25014-20 \mathrm{~m}$ 252 1"..., wb X Perhaps whole case resolves itself into that good fruits do not come in first generation - V. Mons choosing spicy plants has relation, Poiteau says, to their bearing early 253 28..." 257 3-8m 258 11-14m 259 9$11 m \quad 260 \quad 16-19 m \quad 262 \quad 7-12 m, \quad 27-28 m / 28 u$ "leur espèce" 263 2-3m, 4m, 14-16m 264 3-4m 265 13u "Belges", 20-24m 266 7-9m 271 2$4 m / w t / 1-5 w$ very true Van Mons all bosh except so far better try successive seeds seedlings than of established pears which may have been produced suddenly C.D. 272 25-28m $2734 m, 5-9 m 288$ 10-13m (Van Mons) 289 13-17m 293 11-15w I never knew what the paradise stock was $14-17 \mathrm{~m} 296$ 22$26 m 297$ 3-8m $2997-9 m$ • 303 19-22m, 27$28 m 306$ 3-6m $3136-7 m 32015-17 m 32117 u$ "pêcher", 18-21m/18u "prunier", 24-25Q®o, $25-28 m 3251-4 m 3465-8 m, 9-12 m, 13-15 m /$ $14 w$ for plums $22-24 m, 23-26 \mathrm{~m} / 24-25 u$ " ll | abricotiers", 25-27m/Qג 351 2-4m 355 1220 w Before rereading this be sure to look at Loudons Ency of Gardening p. 922358 16$20 \mathrm{~m} / 17 \mathrm{~m}$ 364 16-24m/19-20x Q 367 2-4m/ x /Q $5-7 m, 13-15 m / 14-17 w$ Monter 17-19m, 20-21m $3694-5 m, 21 u$ "soixante-quinze" 379 $3-5 m, 24-26 \mathrm{~m} / 24-25 x$ /u $\leftrightarrow 38025-26 \mathrm{~m} /$? 381 14-17m 382 3-5x /4-6m 393 20-23m 398 23$24 m 4006-11 m, 12-16 m 404$ 18-22m 491 22$26 m 552$ 24-28m $5541-4 m 55516-19 m /$? 556 $20-25 m$ 558 25-28m 559 6-13m 561 25-28m/ 27 u "non dans une fusion" $5621-2 m, 3-7 m$ $5652-3 m / 3 u$ "plus étonnante" 566 17-20m 569 24-28m 571 10-15m (Vilmorin)

SAINT BARTHOLOMEW'S Hospital reports ed. J. Andrew and T. Smith, vol. 11; London; Smith, Elder \& Co.; 1875 [Down, FD]

ST. CLAIR, George Darwinism and creation London; Hodder \& Stoughton; 1873 [Down, I]

NB1 〈author's address)
NB2 O/
SAINT-HILAIRE, Auguste de Leçons de botanique Paris; P.-J. Loss; 1841 [CUL]
af, ch, ci, cr, ds, em, fg, gd, h, hl, ig, in, mhp, mn, no, oo, or, phy, rd, sp, sx, sy, t, ta, tm, is, v, y
SB1 $\square \beta$
57 analogies, Tillandsia like Lichen (172)

63 Rudiments of many organs, a so called gland
143 \& $153 Q$ abnormal * organ in class, variable
145 good case of Balancement: 199.-619 Q 183 Q var in individuals analogous to difference in classes
226 species turning into branches
301 Q on passages being general 508 stronger 541 do
407 Rule of colours (same for vars \& species)
413 Embryology in plants irregular flowers at first regular
442 rudimentary stamens- 475 of Pistils: 637

- 446 var. in individual \& differences in species?
448 on anthers of Asclepias
516 two kinds of placentation in same genus characterising two sections of genus = passage by jumps possible $=$

548 do on ovules

572 a multitude of flowers are impregnated in bud. strong case of - in Goodenia
617 seems to think multiplication sign of highness
A under classification allude to Ch. 7 my discussion showing abnormal parts variable
711 Genus not natural when founded on one character
754 on classificatory value of different parts of seeds; it is in fact embryology
756 On great difference in cotyledon in 3 allied plants, showing no charcater is constant
SB2 1β
761 Ash 500,000 seeds
763 introduced plants into S. America
782 \& 784 on value of character, according as it allies itself with others, which is inferred simply from being constant
786 on value of characters good - embryo most important, yet it is a whole
787 direction of embryo in Helianthemum, very different
788 good showing that physiological importance no rule, because importance of all characters variable.
789 Remarks on Mirbels views on classification
791 \& 793 \& 814 on High \& Low plants good m.s. remark
793 on series not being lineal
815 good case of impossibility of arrangement
818 Monstrosities are only anomalies of the species Q

SAINT-HILAIRE, A., BOTANIQUE
821 Classification of varieties.
826 no resemblance of embryo in plants as in animals
834 Important organs may vary in early stocks: hypothesis. 836
confirmed by Owen on swim bladder in vol on Fishes
SB3 35; 43; 47; 51 to $57 ; 63 ; 66 ; 127 ; 138$; 143; 145; 152; 154; 159; 170; 171; 172; 183; 195; 199; 226; 297; 301; 312; 332; 352; 355; 356; 358; 364 series in Pappus; 369 in Nectaries; 375; 391; 403; 407; 410; 413; 415; 417; 418; 422; 439; 441; 442; 446; 448; 454; 461; 475; 481; 482; 508; 509; 515; 516 SB4 526; 534; 541; 548; 554; 556; 568; 570; 571; 572; 587; 590; 599; 600; 613; 616; 618; 619; 625; 629; 630; 633; 637; 639; 643; 652; 708; 710; 712; 714; 720; 734; 753; 754; 758; 760; 763; 767; 772; 779; 780; 782; 784; 786; 788; 791; 793; 794; 798; 810; 813; 814; 815; 816; 818; 821; 823; 826; 833; 836; 839
title page $z 357-11 m, 29 m, 33 m 361-3 m 43$ $1-2 m 474-7 m$, $33 m 481-5 m 511-3 m, 7-8 m$, $23-24 m 5328-30 m 574-5 m, 6-7 m, 8-11 m 63$ 29-33m 66 17-19m, 22-28m, 30-33m 70 28$30 m 7123-24 m 891-8 m 127$ 21-23m, 21-22m 138 13-18m 143 18-19m, 26-33m/Q 28-33w/ $w b$ Case of double organs No. not exactly. but of same on different slates $\rightarrow 1456-8 \mathrm{~m} /$ Q $8-11 \mathrm{~m} / \mathrm{w}$ How is this in Cauliflower 152 $29 u 1531-3 m, 21-23 m, 30 \mathrm{~m} / \mathrm{c}$ " 5 " $/ \mathrm{w}+81154$ 1-7m 159 4-9m, 21-30m 170 27-33m 171 30$33 m 1721-4 m, 21-24 m, 29-31 m 1734-9 m 183$ 4-6m, 11-15m/Q 195 19-22m 198 20-33m 199 1-3m/Q 226 30-32m 297 15-19m 301 5-6m 312 24-29m 332 9-13m 352 14-15m $3554-8 m /$ w is there not analogy or relation with masssizes? $17-18 m, 27-28 m$ * 356 9-13m 358 11$14 \mathrm{~m} 36411-15 \mathrm{~m}, 18-21 \mathrm{~m} / \mathrm{w}$ series in pappus $24-28 m 3691-2 m / w$ Then not true nectary! 375 16-25m 391 1-7m, 10-12m 399 1-4m, 5$8 m, 11-13 m, 21-24 m$ (Schleiden) $40320-21 m$, 24-26m 407 9-12m, 14-17m, 23-31m/23u "le même", $24 u$ "jaunelbleu", $30 u$ "bleues", $31 u$ jaunes", $33 m 40814-17 m 410$ 18-19m, 22$25 m$, $27-29 m \quad 413 \quad 7-10 m \quad$ (Schleiden)/w Embryology $415 \quad 16-23 m / 14-30 w$ Laws governing abortion 416 9-11m 417 6-8m, 10$12 m, 15-18 m 4184-6 m / 4-20 w$ as many exceptions as facts $25-27 \mathrm{~m} 4225-6 \mathrm{~m} / \mathrm{w}$ Law of variation $4395-7 m 44114-15 m 4428-10 m$, $11-12 m, 15-17 m, 20 u$ "doigt | Gallinées", 27$28 m$, 31-33m 443 1-4m 446 9-15m/10u " M. Mohla", $14 u$ "la|des", 14a "grains" in same genera 447 15-19m $4483-6 m$, 18m, 19-21Q $23-25 \mathrm{~m} 45411-28 \mathrm{~m} / \mathrm{w}$ number of non varying characters 455 zb 461 20-24m 475 10-16m,

16-17m 481 12-16m (Guillard, Schleiden, Vogel) 482 24-26m 508 15-19m/Q 509 30$33 \mathrm{~m} / 32 u$ "altranché" 515 30-33m $516 \quad 1 \mathrm{~m} / u$ "axiles | Puisque", $27 m 517$ 1-10m, 7-12m/7-8u "placentas axiles" $111 u$ "pariétaux |axiles", 13$14 m, 21-22 m, 23-25 m 526$ 21-25m 534 24 $26 m, 29-31 m / 29 u$ "sans exception" 541 19-25m 548 2-11m, 24-26m, 27-30m, 30-31m, 32m, $33 m, w b$ I wonder how if species $5491-2 m$ 552 4-6m, 20u "M. Schleiden" $119-22 m$) 554 19-21m 555 zb 557 4-20m (Schleiden) 56814 $18 \mathrm{~m} / \mathrm{w}$ curious $57026-29 m$ (Salvert) $5714-7 \mathrm{~m}$ $57230-33 \mathrm{~m} / 30 u$ "une foule" $/ \mathrm{w}$ Q!!? $5731-9 \mathrm{~m} /$ 4-5Q 577 3-5m 587 1-11m 590 30-33m 591 $1-3 m, 4-6 m, 6-8 m, 16-19 m 5991-7 m, 7-12 m$, 13-19m, 20-22m $60031-32 m$ (Jussieu) 613 3$4 m / w$ not so in animals Owen $61633 \mathrm{~m} / 32-$ $33 w / w b$ How made out value of series 617 wt let have no nervous system, no man alsoO head 1-2m, 29-30m, wb If most complicated \& altered form is to be highest - no for worm forms first - origin might then be highest.- 618 9-13m 619 20-22m, 23-25m, 28-29Q 29-31m 625 2-6m 629 20-22m 630 $10-13 m 631$ 13-15m, 17-22m, 23m 633 12$19 m$ (De Candolle, Guillard, Schleiden) 637 wt V.p. 643 How know ever existed? 2- 6 m 639 4-8m (Roeper) 642 28-33m 643 4-12m, 15$16 \mathrm{~m} / \mathrm{u}$ "Commencement I développement", 20$21 u$ "suppositionlthéorique" 652 17-20m, 21$23 m \quad 708 \quad 5-7 m \quad 710 \quad 25-29 m \quad 711 \quad 18-21 m$ (Kunth), 21-22m 712 4-17m, 7-9m/9-12u "mais | faible" $/ 8-17 w$ good similarity $17-31 \mathrm{~m} /$ 18-22u土, $24 u$ "n'en! pas", $25 u$ "secs", 27-28u "contraire | génériques" $7135-8 m, 16-18 m$, 21$23 m, 26-27 m 7141-5 m, 6-8 m, 12-18 m 720$ $20-23 m 73425-29 m \quad 735$ 22-24m 753 16-17m $7541-3 m, 12-15 m, 30-31 m 7551 a$ "sa"/wt the embryo $1-4 m / w$ like embryonic animals $5-$ $6 m, 7-10 m, 10-12 m$, $13-14 m, 20-21 m$, 22$25 m, 26 u$ "n'est 1 caractère", 28-32m 756 1-4m $75811-27 w$ Means of dispersion of seeds by springing of capsules \&c \&c $75914-17 \mathrm{~m} / 17-$ $26 w$ it is curious both seeds \& envelopes, being thus furnished good argument for final cause. $19 u$ "les fruits", $20 u \leftrightarrow, 21 u$ "graines elle", 28-29m $7609 u$ "corniche I haute"/8-12w What kind of seeds. Gilliflower \& Sedum 761 $4-5 u$ "cing 1 fruits", $6 u$ "trois mille", $21 \mathrm{~m}, 23-$ $24 m 762$ 32-33m 763 1-11m, 17-19m, 21u "aucunelculture", $30-31 \mathrm{~m} / 31 u$ "laines" 767 $10-11 \mathrm{~m} / 10 u$ "cent ans", $14-15 \mathrm{~m} / 15 u$ "laissées vingt", $25-26 \mathrm{~m} / \mathrm{u}$ "vingt|ams", $33 u$ "moins \mid siècle" 768 16-20m 772 17-20m 779 27-30m $780 \quad 4-8 m \quad 782 \quad 25-30 m, 31-33 m / 31 u$ "s'ill possible", wb We know from experience that any one character is general it will go with others - all organization is corelative 7848 -
$10 m, 13-16 m, 19-20 m, 21-23 m, 23-24 m 785$ 4-5m/4u "caractèrelpeu", 12-16m, 17m, 24 $25 m 7866-7 m, 7-8 u \leftrightarrow, 8-10 m$ (De Candolle〈both〉), 13-15m/15u "d'ailleurslmoins", 1518m, 26-28m/27u "delcaractères", 31-33m/! 787 4-7m, 4-6m, 6-8m/7-8u "ne! isolé", 13a "caractères" of embryo $12-15 \mathrm{~m}, 14-15 \mathrm{~m} / \mathrm{u}$ "leur 1 constance", $16-17 \mathrm{~m}, 22-25 \mathrm{~m}, 27-30 \mathrm{~m} /!/$ $30 u$ "del différente", wb How well worth getting good Botanist to explain variation of do $7886-9 u \pm, 14-16 m, 16-17-19 u \pm, 20-25 \mathrm{~m} /$ $21 u$ "nous 1 serions", 25-26u "lalMalpighia", 27-31m $7891-4 m, 5-8 u \pm / 7-10 w$ where has Mirbel done this?? $8-18 u \pm, 18-24 m$, wb Descent is the key, least variable will then be best guide, whatever the part may be 791 wt Whatever parent form we can trace * modification $w t$ \& so agrees with my theory $20-24 m / 25-27 \mathrm{~m} /!!/ 28-32 m / 4-33 w \quad$ Schleiden Compositae Hooker some parasite So in parasite Lerneidae \& cirripedes, especially males of $33 \mathrm{~m} / \mathrm{u}$ "Renonculacées", wb There is no highest, there is most modified but when much rudimentary, what we must call useless, \therefore not highest \& by man's standard high \& low. The impossibility of saying what is highest is conformable to my theory which is highest var of cabbage or dog? most changed will not do - put man on one side having any index - except most unlike a primary simple form $7931-3 m, 13-15 m, 18$ $20 \mathrm{~m}, 23-25 m, 25-27$!, 27-31m/27-28u "moins 1 Composés", $33 m 7941-2 m, 4-6 m, 11-14 m, 15-$ $17 \mathrm{~m}, 19-21 \mathrm{~m}$ (Jussieu), 22-24m, 25-26m 798 1-3m, 4-6w - type of family $7996-7 m, 7-$ $10 \mathrm{~m}, 10-11 \mathrm{~m} 8101-3 m, 5-9 \mathrm{~m}$ (Schleiden) 813 $24-27 \mathrm{~m} / 25-26$ u "nous \mid rapports" $814 \quad 7-15 \mathrm{~m} /$ 12-13u "les 1 complètes", 17-20m, 20-24m, 24$26 m 8152-4 m, 8-10 m, 11-13 m, 15-16 m$, 117 w What case of impossibility of arrangement $8165-11 \mathrm{~m} 81810-15 \mathrm{~m}, 16-17 \mathrm{~m}$, $20-22 m, 24-27 m 8213-7 m, 8-13 m 8237-11 m$, $19-20 m 8267-13 m / 1-33 w$ it does not appear that embryo of Dicot, is like at any stage embryo of Monocot or Cryptogamic plants Even Dicot \& Monocot are quite unlike in earliest age. as shown by name)- wb N.B Reflect on plants not passing through any larva-embryonic state (?because they come at once to play their part in nature?) good selection. $8278-11 \mathrm{~m}, 16-18 \mathrm{~m}, 18 \mathrm{~m}, 18-24 \mathrm{~m} /$ $19 u$ "surl différents" $83314-15 m, 18-21 m, 27-$ $28 m \quad 834 \quad 9-12 m / w t / 1-20 w \quad$ N.B X May use account for diversities in important characters in families, to their having varied in the lower or parent stocks. $83511-16 \mathrm{~m}$, 25-26m, 29-31m 836 17u "fleurs", 20-24m/20u "grandes différences", $25 u$ "bornerai", $26 u \leftrightarrow 1$
$26-30 w$ V. Lindley on the rest $83711 u$ "mucilagineuses", $28-32 \mathrm{~m} / 28 u$ "mucilagineuses"/29u "morphologiques"/30u "carlces"| w I think there has lately in Linn Trans 839 $1 \mathrm{~m} / \mathrm{u}$ "mêmelet"

SAINT-HILAIRE, Auguste de Voyage aux sources du Rio de S. Francisco 2 vols.; Paris; A. Bertran; 1847-48 [CUL]
beh
vol. 1 NB Unreadably Dull

SB $\square \Re$

17 Aboriginal Indians cultivated the ground; 70 a proprietor can sell on $1 / 10$ of his stock of cattle yearly
17 7-10m 70 13-16m 71 1-2m, 9-11m
vol. 2 NB Unreadable
ST. JOHN, Charles Sketches of the wild spots and natural history of the Highlands London; John Murray; 1878 [Down, FD]

ST. JOHN, Charles A tour in Sutherlandshire 2 vols.; London; John Murray; 1849 [CUL] beh, br, cs, hy, no, oo, sx, t, v, wd
vol. 1 NB see end of Vol 2 for Abstract
x 16 m xi $19 \mathrm{~m} / \mathrm{u}$ "Fighting of Stags" xii 10 m xiii $15 m 1513-16 m 7414-18 m \quad 109 \quad 21-26 m$ $1343-8 m$
vol. 2 SB1 Vol I; 15; 74; 109; 134
Vol 2; 178; 208

SB2 $\square R$

Voll
15 On Herons breeding on ground
74 On cross of common \& wild cat - simple facts
134 on increase of Grouse when clever keeper \& trapper kept -
Vol 2
178 More particulars on what Birds have increased by destruction of vermin 179.
179- Q on resemblance of the several grouses to where they haunt; \& importance is shown by the great increase in numbers when Hawks destroyed.
iii $19 m, 22 m / u$ "Fox-chace" iv $16 m$ vi 17 m vii $4 m 1784-5 m, 12-17 m 1794-20 m / 10-11 Q 208$ $1-3 m$

SALTER, John The chrysanthemum London; Groombridge \& Sons; 1865 [CUL]
sports, t, v
NB Laws of Variation; The first breaking or change is the difficulty- \rightarrow p.3; 41* to 43 . Sports

SALTER
2 21-26m, 26-27m 3 15-18m, 24-27m 6 25$27 m 727-32 m 413-6 m, 10-12 m, 14-17 m, 18-$ $20 m, \quad 27-28 m, \quad 29-31 m, 31-32 m, \quad w b$ p. 3 primordially yellow $423-6 m, 8-10 m, 16-18 m$, $19 a$ "Dr. Brock" yellow kind $21-25 \mathrm{~m} / 21 \mathrm{u}$ "yellow", 31-33m/31u "in suckers" 43 9-15m/ 10-12m

SALTER, John William and WOODWARD, Henry A descriptive catalogue of all the genera and species contained in the accompanying chart of fossil crustacea, including an abstract from the Geological Magazine, Oct 2, 1865 London; J. Tennant; 1865 [Down]

SAMOUELLE, George The entomologist's useful compendium London; Thomas Boys; 1819 [CUL, pre-B] t

NB 338 Explanation of terms
SAPORTA, Gaston de Le Monde des plantes avant l'apparition de l'homme Paris; G. Masson; 1879 [Botany School, I]

SAPORTA, Gaston de and MARION, Antoine Fortuné L'Évolution du règne végétal: Les Cryptogames Paris; Germer Baillière \& Cie; 1881 [Botany School]

SAPORTA, Gaston de and MARION, Antoine Fortuné Recherches sur les végétaux fossiles de Meximieux, précédées d'une introduction stratigraphique par Albert Falsan Lyon, Genève, Bâle; H. Georg; 1876 [Botany School]

SAPORTA, Gaston de and MARION, Antoine Fortuné Révision de la flore Heersienne de Gelinden Bruxelles; 1878 [Botany School, I]

SARMIENTO DE GAMBÓA, Pedro Viage al estrecho de Magellanes Madrid; Imprenta Real de la Gazeta; 1768 [Down, pre-B, S]

SAUSSURE, Henri Louis Frédéric de La question du lac Genève; Charles Schuchardt; 1880 〈extract from Journal de Genève〉 [Linnean Society of London, I]

SAVAGE, Minot Judson The religion of evolution Boston; Lockwood, Brooks \& Co.; 1876 [Down]
$\mathrm{NB} O /$

SCHACHT, Hermann The microscope London; Samuel Highly; 1855 [Down]

SCHERZER, Kärl von Aus dem Natur- und Völkerleben im tropischen America Leipzig; Wigand; 1864 [Down, I] \wp

SCHERZER, Karl von La province de Smyrne Wien; Alfred Hölder; 1873 [Down, I]

SCHIFF, Maurice Leçons sur la physiologie de la digestion 2 vols.; Paris; Germer Baillière; 1868 [CUL]
beh, che, 00 , phy, t , tm
vol. 1 NB
64 vegetable feeders can undergo greater \& more prolonged fatigue \& thus whole structure is in condition. Curious remarks, explaining this
379; 380 Experiments; 396 Expts; 387 Tests; 396 Tests
0 os
p255 p261 p263 266270 Blushing

- 270

16 Vogar
63 26-35m 64 1-2m, 13-20m/13u "activité", 24-27w Esquimaux Dogs 69 27-32m 73 3$7 m / 3-11 w$ so probably C. of Ammonia not digested \& is not nutritious $30-32 \mathrm{~m} 25514-$ $17 w$ l ought to read the previous Chapter 19$25 m 256$ 14-17m 261 12-16m, 17-19m 263 510 m 266 13-16m 268 2-8m, 18-21m 270 11$15 m 37610-12 m / 13-15 \mathrm{~m} / 2-15 \mathrm{w}$ There is this difference that it digests at ordinary tempsso must stomach of Frog $3791-4 m, 15 u$ "substance albuminoide"/w cabbage juice 17$18 \mathrm{~m} / \mathrm{w}$ Extract of Belladonna 29-31m 380 1$13 w$ l ought to add C of soda to a leaf which has dissolved cube of albumen \& see if any precipitate $15-17 w$ see p. 382 for salt. experiments 382 21-22m/u "Lelmercure"/w see p. $38738319 u$ "acide tannique"/18-19w Try $23-25 m 38727-30 m, 33-35 m 388$ 8-10m $390 \quad 30-33 m$, $34 m 39630-35 m 41131-38 m /$ $34 w$ Have read $41313-15 m, 45-46 m 4142-$ $4 m$ 19-20m
vol. 2 NB1 \langle not $C D\rangle$
NB2 150 Exper. with Milk done; 154 Exper. done; 157
Drosera 4 to 200 * 245299 304; 281; 304 Blushing 527; 539
410 Expression 415 * 0
SB $\square \beta\langle b y$ Emma
Schiff
Vol 1. p. 73 Digestion modifies food \& therefore probably, C of Ammonia is not strictly digested by Drosera.
－〈CD〉 p．376．On Digestion of higher animals requiring heat
$\Leftrightarrow\langle C D\rangle$ p．379．On changes of albumen thro＇digestion Do－On certain forms of albumen $\checkmark\langle C D\rangle$ not precipitated by boiling 383．Digestion requires an acid．
390．All albuminous substance acquires same properties thro＇digestion
Vol 2
p． 4 On strength of acid best for digestion
18 On digestion of cold－blooded animals．
22 \＆ 25 On dissolution of albumen by weak acids X 〈CD \rangle
〈over〉 Vol 2
$\Leftrightarrow\langle C D\rangle 29$ On replacements of acids．
$\rightarrow \infty\langle C D\rangle 38$ Fibres of fibro－elastique cannot be attacked by pepsine．
$\Leftrightarrow\langle C D\rangle 56$ On weakness of acids best for digestion．
$\Leftrightarrow\langle C D\rangle$ On replacement by various acids．
77 It is doubtful whether pepsine is an albuminous substance：Mem－my pepsine not really pure．
80 There is a relation between quantity of pepsine \＆digestive matter
86－The same subject
$114\langle C D\rangle$ Demonstrates that pepsine is destroyed during digestion
126 Same subject
142 Gastric juice cannot affect amedon
$145 \Leftrightarrow\langle C D\rangle$ Excellent description of changes in muscular fibres from digestion of W．I did not know when I described my changes．
$\langle o v e r\rangle\langle C D\rangle\langle u\rangle$
p387 Remarks of Millon with a fly
〈over〉 Schiff Vol 2
$\Leftrightarrow\langle C D\rangle$ 149．On angles of cubes of albumen being dissolved．
－$\langle C D\rangle 150$ On liquid casein or Milk \＆its coagulation not due simply to the acid－
$153 *\langle C D\rangle$ On solid Casein．His explanation does not apply to my experiments．
－$\Leftrightarrow\langle C D\rangle 154$ On Legumin soluble in water \＆its coagulation by gastric juice．
－$\langle C D\rangle$ Long boiling turns albumens into peptones．
104 Gastric juice of carnivorous \＆herb－ ivorous is the same．
188 Mechanical irritation of stomach causes acid secretion but not true pepsine－ 245 － same subject
196 After copious digestion the stomach is destitute of pepsine
200 On peptogenes
\langle over $249 *\langle C D\rangle$ It appears that if gastric juice does not act characteristically on
gelatine，it at least efficaciously accelerates its modification by acidulated water．
281 The peptic glands seem to be different from the mucous glands．Nevertheless the former present an acid reaction．In Drosera they are combined．
304 〈CD On a layer of mucous preventing the auto－digestion of the stomach． $157 \|\langle C D\rangle$ On digestion of fibro－cartilage \＆on the solution of bones－

4 25－31m／24－29w shows how little acid required $530-32 \mathrm{~m} 17$ wtec， $30-32 \mathrm{~m} / \mathrm{w}$ How about cold－blooded anims $1812 u$＂liquide＂／ $13 u$＂à froid＂ $12-15 \mathrm{~m} / 14-17 \mathrm{~m} / 1-17 \mathrm{w}$ The pepsine of Drosera probably differs from that of warm－blooded but how about cold－blooded in water $35 u$＂néanmoins 1 poissons＂$/ 19-35 \mathrm{~m} /$ 24－35w all related to liquid Albumen 19 1－ $9 m / 7 u$＂deux 1 semaines＂， $19-21 \mathrm{~m}, \quad 33-34 m$ （Spallanzani） $2110 \mathrm{~m} / \mathrm{u}$＂l＇albumine liquide＂$/ \mathrm{w}$ loh 25 12－14m／13u土 $2924-33 m 38 \quad 26-27 \mathrm{~m} /$ 26u＂fibro－êlastique＂ 39 5－6m／u $\leftrightarrow 56$ 18－24m （Brücke） 57 27－31m 58 13－19m 59 24－30m 71 2－10m 77 13－15m，18u＂un lazoté＂｜14－26w it causes inflation of－of Drosera but these seem not to be absolutely pure $8031-35 \mathrm{~m} 86$ 22－26m 114 28－35m 126 23－25m（Brücke），wb He has shown that it is impossible to get pepsine \＆pure without the most laborious operations even if it be possible at all－ 127 $18 u$＂matières albuminoides＂， $24 u$＂graisses 1 intestin＂ 142 4－8m 145 5－28m／［．．．］／9－18w transverse chain of dots which I saw－there being no more $11-27 \mathrm{~m}, 30-32 \mathrm{w} X$ not Page $1462-12 m / / \ldots / / 7-12 m / 8-9 u \leftrightarrow 149 \quad 7-12 \mathrm{~m} / 8 u$ ＂angles＂ $150 \quad 29-32 m 1511-2 m, 23-29 m 153$ $25-30 m, 31-32 m / 30-33 w$ No not so with Drosera 154 15－20m，21－22m 156 13－30m （Blondlot） 157 1u＂fibro－cartilagineux＂ 166 wt／ $1-3 w$ Turn them into peptones $3-6 m 18421-$ $25 m 18813 u$＂sécrétion acide＂$/ 16-17 u \leftrightarrow / 12-$ 17 m （Corvisart） 196 12－18m $2003-6 \mathrm{~m} 202$ $35 m 203$ 1－4m 245 5－7m，15－16w Mechanical irritation $25 u$＂liquide acide＂， $23-26 \mathrm{~m}$ （Tiedemann，Blondlot） 249 9－13m $28123-27 \mathrm{~m} /$ $26-27 u \leftrightarrow / 24-25 w$ Same glands in Drosera $3049 u$＂l＇autodigestionll＇estomac＂， $10-16 \mathrm{~m}$ ， 17－23m（Kölliker），24－25u＂et｜pepsine＂，33－ $35 \mathrm{~m} / 34 u$＂alcalin＂ $41022-28 \mathrm{~m} / 22-24 u$＂très 1 altéré＂，29－33m 411 9－10m，12－14m，15－16m， $19-20 m, 26-32 m * 41430-35 m, 31-35 m 415$ $1-3 m, 12-16 m, w b$ Perhaps for expression I had better read next Chapter $527 \quad 6-8 m$ （Ludwig）／4－12w I have not read this Essay $12-17 \mathrm{~m}, 20-24 \mathrm{~m} 5396-31 \mathrm{~m} 545$ 22－23m 553 4－5m，17－18m，32－33m 554 10－11m，26－27m， $30-40 \mathrm{~m}, ~ 49-50 \mathrm{~m} 5555-6 \mathrm{~m}, 15 \mathrm{~m}, ~ 25-26 \mathrm{~m}$ ，

SCHIFF
40m, 47m 556 15m/u "extrait renfermant" 557 $1-3 m / 2 u$ "influences lacide" $/ w$ Drosera $47 m /$?

SCHLEGEL, Hermann Essay on the physiognomy of serpents Edinburgh; Maclachlan, Stewart \& Co.; 1843 [CUL]
beh, br, gd, geo, ig, in, is, 00 , or, phy, rd, $\mathrm{sp}, \mathrm{sy}, \mathrm{tm}, \mathrm{v}$, ve

NB p.10; p.21; p26.7 to 55; 71; 80; 85; 92; 129; 131; 144; 146; 149; 197 to end

- It might be worth looking to great work to see if he argues his local varieties.
Many for Java \& Celebes
SB $\square \beta$
10 Q Many innocuous serpents have grooved teeth 42 on do. important 47 Q
22 Snakes \& Lizards a good gap well filled up p24
26 Q Great changes in position of viscera owing to shape of body conclusion Ch 7 \& great difference in different forms. External organs more constant
27 Number of vertebrae differing in same species
38 Rudiment of posterior extremities in 3 genera
45 Q Snakes with tips of ribs forming teeth
$55 \underline{Q}$ Pancreas spleen differing in species \& varies in individuals
80 NQ Crotalus mutus has spine $\langle u \geqslant\rangle$ not rattle
146 Coluber canus only species of genus in S. Africa \& abnormal species

199 Snakes in Isid of Pacific
203 Section of genus Elaps, trifling distinction in S. America (shows persistence of trifling characters)
206 Corvus cornix \& Corone breeding at Dresden (Ch. 4)
207 Sardinia has many vars. (but not many distinct species)
218 Many Mammals of Japan identical
219 Saurians \& snakes of Japan all distinct from Europe. Frogs the same!
222 to 226,8 - to 235 The Monkey of Timor a darker var. this looks as if endemic \& other Mammals. Much on Zoology of Malay Arch. Philippines \& Ceylon allied!
240 N. America in Reptiles seems to have derived from South (do not range far N.
$107-13 m / 8-10 Q 2122 a$ "species" approaches to $224-8 m / 3-26 w$ good passage if such organs did not exist now, we shd marvel at the transition. p24 $246-14 m / 8 u$ "difficult 1 impossible", 30u "Pygopus"/30-34m/w Snake or Lizard? 25 36-39m 26 7-13"..."/Q/10u "but|lung", 24-26Q 27-32m, 34u "external"

27 35-39m/37-38u "in |vertebrae" $282 u \quad 38$ 24-28m 42 $5-10 \mathrm{~m} / 5 u$ "salivary", $19 u$ "anterior end", $31 u$ "posterior part", $32-36 \mathrm{~m} / 33-35 \mathrm{~m} / \mathrm{Q} /$ 34u "morelsaliva" $4313-15 m, 26-30 m$, 32$36 \mathrm{~m}, 37 u$ "fatal" 44 10c/9u "germs"/w gums 25c/w๕ 45 31-34m/Q $36-38 m 4614-18 m$, 31$32 u$ "developed 1 venomous", 32-35m, 36-37m 471-4m/w Explain origin of teeth $9 w$ Salivary $11-13 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{u}$ "tendinous", $21 u$ "tendinous", $23 u$ "tolarticulation" $481 u$ "dangerous", 1a "consequences"/wt it is painful, at once 55 2932m/Q 71 1-3m $806-10 \mathrm{~m} / \mathrm{Q} 85$ 22-26m, 33$36 \mathrm{~m} / 34$?/u "local variations", $37 \mathrm{~m} 8630-33 m$ 92 14-20m 99 36-38m 110 37-39m 129 37w Plenty of cases afterwards show no. of vertebrae vary $13137-40 \mathrm{~m} 14421-27 \mathrm{~m} 146$ 9-11m/10u "known 1 Africa", $15 u$ "curious"119$20 u$ "Thislspecies"/15-21w a wanderer 149 15-18m * 197 16u "most 1 means", 15-20m, wb Snakes can live without eating $6 \& 18$ months $19836-38 \mathrm{~m} / \mathrm{w}$ not volcanic isids 199 6-9m, 12-14m, 19-22m/20u "other species"/2122u "often 1 Antilles", 28a/u "Japan"/w Java 29-31m, 35-38m 205 15-23m 206 17-26m, 26$30 \mathrm{~m}, ~ 38-41 \mathrm{~m} 207$ 8-9m, 10-12m, 14m, 1719m, 24-29m $21032-36 m 21134-40 m 212$ 26$30 \mathrm{~m} / 28 \mathrm{u}$ "elevation 1 species" 213 37-41m (Buffon, Lamarck) 216 29a/u "Cameleon"/22$34 w$ Q case, I suspect, of great peculiarity, variable. 31u "Ptytodactilus|nose"/28-32m 217 31-35m 218 17-21m, 27-34m/37-41m (Siebold, Bürger) 219 wt Sea \& Land must have been connected between Europe \& Japan.- 2$11 \mathrm{~m} / 11 u$ "laudatus"/?, 21-25m (Temminck), 29-33m/30-31u "Saurians IOphidians", wb what a difficulty introduction of F.W. Eel in Otaheite \& some of the Antarctic Isds - Do not they breed in Sea. 220 3-17m 221 29$31 m 222$ 3-9m, 26-40m, 30-31m/30u "Timor" 223 wt consult Waterhouse.- $1-5 m, 6-40 m$, 13-15m/14u "Timor", $18 u$. 224 2-19m/8u "Timor", 20-26m 225 3-5m (Temminck), 9$36 \mathrm{~m} / 26 u$ "Marianne Islands" $/ 28 u$ "Timor", 34 $36 m$, 39-40m 226 1-8m/1u "Timor", 8-10m, 10-20m, 21-23m, 24-29m, 32u "Marianne" 227 5-13m, 23-24u "Sumatral Borneo", 33-38m 228 wt Sumatra \& Java very different soils 2-9m, 24u "islands। Timor", 27-34m 229 2832m, 33-35m $2303 u$ "and 1 known", 5-8m, 9$13 \mathrm{~m} / 12 u$ "No Antelopes", 14-26m, 26-30m, 34-41m/35u "also 1 tail" 231 17-19m, 22-25m, 38-41m 232 20-24m, 29-36m, 37-42m 233 1823m, 24-36m/25u "Canis 1 Javanicus" 234 20$23 m, 23-28 m 235$ 11-16m, 33-40m 237 16$19 m 238$ 21-23m, 29-34m 239 1-2m, 18-25m, 25-34m 240 21-30m $2455 w$ Cuv I p405 246 $\Uparrow 7 w$ l. 409247 12w Edw p375.I./l.p410 248 $\Uparrow 16 w$ l.409 $\Uparrow 5 w$ l.p410 $2494 w$ I p409 250
$\Uparrow 3 w 1.411$ 介 $8 w$ Edw p374 col $2 / 1.410 \Uparrow 18 w$ Edw p374／l．406 $2513 w$ Edw p378．2／l．417 $\Uparrow 11 w$ Edw：p378 col $2 / 1.416 \quad 2522 w 1.419$ $11 w$ Edw p377．2／l．413 介5w Edw：p377／I．414 $\Uparrow 10 \mathrm{w}$ Edw p376 1.412 ＜cross referencing of Shlegel＇s arrangement of serpents to other works）

SCHLEICHER，August Darwinism tested by the science of language trans．A．V．W．Bikkers； London；John Camden Hotten； 1869 ［CUL，I by translator］
beh
NB Languages primevally invented difficulty －p． 54
Speculation on grammar
If one admitted＂amabo＂is formed of 3 words I will love，agglomerating amabis i＊ you will love
title page $9 m 545-17 m$

SCHMIDT，Oscar Descendenzlehre und Darwinismus Leipzig；F．A．Brockhaus； 1873 ［Down，FD］\wp

SCHMIDT，Oscar The doctrine of descent London；Henry S．King \＆Co．； 1875 ［CUL］ $\mathrm{cc}, \mathrm{ch}, \mathrm{fo}, \mathrm{hl}, \mathrm{ir}, \mathrm{mg}, \mathrm{no}, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$

NB $-94 ; 97,8 ; 152 ; 174 ; 214$
SB ${ }^{\circ}$
p． 97 gives reference to German Palaeontologists who have shown impossibility of separating Ammonites into species．－Now if the exuberance of forms had occurred in only some one sea or at only one time we might easily have had not record－with occasionally a few forms emigrating \＆spreading．good resume of Wurtenberger \＆c
p152 case of apparent convergence of character in Sponges（higher organism）
p174 causes why no two groups or stems of polyps are exactly alike．
p214 Ammonites（like Hyatt）first changing in external conditions

94 2－32m 95 1－14m（Haeckel），23－32m （Agassiz） 97 7－16m（Waagen，Zittel，Neumayr， Würtenberger，$\quad 23-32 m$ 98 7－32m （Würtenberger） 152 29－32m 174 1－25m 214 1－ $19 \mathrm{~m} 2151-11 \mathrm{~m}, 16-32 \mathrm{~m}$

SCHMIDT，Oscar The doctrine of descent and Darwinism London；Henry S．King \＆Co．； n．d．［Down］

SCHMIDT，Rudolf Die Darwin＇schen Theor－ ien und ihre Stellung zur Philosophie，Religion und Moral Stuttgart；Paul Moser； 1876 ［Down］
NB not read
SCHNEIDER Der thierische Wille Leipzig； Abel； 1880 ［Down，I］
$58 m 1025 m$
SCHOUW，J．F．The earth，plants and man together with
KOBELL，F．von Sketches from the animal kingdom trans．A．Henfrey；London；Henry G．Bohn； 1852 ［CUL］
ad，cc，ch，cr，gd，hl，is，mhp， $00, \mathrm{sp}, \mathrm{t}, \mathrm{ti}$ ， tm，v，wd
SB1 ロR p．4；6；12；17；18；23； 27 to 29； 59，60；64；81；95；102；138；140；172；210； 218
SB2 $\square \beta$
12 on great number of naturalised plants on Islds
18 argues for double creation from Alpine Plants（Glacial Chapt）
20 thinks higher animals never are created at 2 places
29 Alpine plants extremely variable
59 Parallelism in Labiatae \＆ Scrophulariaceae
95 Lotus of Hot Springs in Hungary
218 There have been instances of Convolvulus arvensis sending papillae into plant，which supports it very interesting in relation to Cuscuta（Ch．4）（marked vars）
4 32－34m，35－40m $61-2 m 1221-31 m / 21-23$ ！／ $22 u$＂seal recent＂，26－27u＂extent｜where＂ 13 $7-41 m, 10-14 m /!!!, 21-23!!!, 33-35!!!181-2 m$ ， 22－27m，33－40m 19 14－16m，39－40m 20 8－ $10 \mathrm{~m}, 29-33 \mathrm{~m} / 29 u$＂many places＂， $29 u$＂single＂ 23 18－19m，37－40m 24 19－25m／w never has 27 20－30m $2828-31 m, 33-34 m 291-4 m \quad 59$ $32-40 m 6030-34 m 6119-28 m, 28-36 m 6435-$ $41 m 66$ 6－9m $8132 u \pm, 36-41 m 8218-25 m 93$ $2-3 m \quad 95 \quad 35-40 m \quad 102 \quad 35-36 m$ ，wb many species are required to confine \＆modify habits of forming species． $1035-6 m 13818-$ $32 m 13923-28 m, 34-37 m, 38-40 m 1401-4 m /$ $w t / 1-4 w$ ？by acclimatisation？ 141 13－16m 172 26－29m 210 1－6m，40－41m 218 14－17m， 23－29m catalogue attached \wp

SCHÜBELER，Frederick Christian Die Pflanzenwelt Norwegens Christiania；A．W． Brøgger；1873－75［Down，I］
NB 381,82
$38137-41 m$

SCHUFELDT, R.W. Osteology of the North American Tetraonidae 1881 [CUL.1900, I by author]
title page "Osteology".u
SCHULTZE, Fritz Kant und Darwin Jena; Hermann Dufft; 1875 [CUL]
NB1 O/
NB2 Hand revisionsO
25; 26; 27; 28; 32; 38; 46; 47; 48-50; 55-58; 61 (1775); 65; 76; 84 \&

SCHULTZE, Fritz Die Sprache des Kindes (Darwinistische Schriften 10) Leipzig; Ernst Günther; 1880 [CUL]

SCHULZ, Ernst Nine plates of photographs: facial expression [later than 1867] [CUL]
wr to most photo-captions
SCHWANN, Theodor Manifestation en l'honneur du Professor, Liége, 23 juin 1878 Düsseldorf; L. Schwann; 1879 [Down]
[SCIENTIFIC LAYMAN] The new truth and the old faith London; C. Kegan Paul \& Co.; 1880 [Down, I] \wp

SCORESBY, William Jun. An account of the arctic regions, with a history and description of the northern whale-fishery 2 vols; Edinburgh; Archibald Constable \& Co.; 1820 [Down, pre-B]
gr, tm
vol. 1 NB p. 457 whalebone; 485 Balaenoptera (6-9 miles)
$25114-17 \mathrm{~m} / 15 u$ "three $\mathrm{in}^{\prime \prime} / 14 u$ " 100 " $/ \mathrm{w} 480$ $\mathrm{ft} 22-24 \mathrm{~m} / 23 \mathrm{u}$ " 325 " $/ 24 u$ " 150 " $/ 25 u$ " 250 ", wber $2523 w \quad 2 \quad 1 / 2$ miles $13-15 \mathrm{~m} / \mathrm{w} \mathrm{V}$. Forster 255 27-30m 259 17-19m, 23-25m, 26$28 \mathrm{~m} 4572 u$ " 300 ", 4-6m/4u "Fifteen I greatest", 24-25m 479 14-15m/15u "4 feet" $48314 u$ "3। long", 16u "fringel bristly" 484 8-9u "about| length"/6-13w Balaen. p457 p483 p479 485 $26 \mathrm{~m} / \mathrm{u}$ "whalebone linches" $48612 u$ " 9 inches" 490 9-10m/Q 491 8-11m/Q
vol. 2 NB p. 416 Whalebone
416 19-22m
SCOTT, John Annual report on the experimental poppy gardeners at Deegah and Meetapore Calcutta; Bengal Secretariat Press; 1876 [CUL, I]

NB O/

SCOTT, John Manual of opium husbandry Calcutta; Bengal Sectretariat Press; 1877 [CUL, I]
ad, beh, cc, che, fg, he, oo, phy, sl, tm, ud, v

NB see to all marks; 46; $36 ; 70$ to 77 ; 81 ; 111; 130; 131; 154; 167; Cross-fertilisation SB ${ }^{2}$
36 Effects of salts in causing seeds to germination
49 acclimatisation of vars. \& closer adaptation to climate 77 slight chemical differences in vars.
80. 111 apparently inherited effects of scarification like inherited milking
154. vars. differ in liability to mould

167 gnawing capsule with the opium causes convulsive twitch to Caterpillar
ii $14 m, 17 \mathrm{~m}, 20 \mathrm{~m}, 33 \mathrm{~m}$ iii $3-9 \mathrm{~m}, 33-37 \mathrm{~m}$, $39-$ $45 m, 47-55 m$ iv $20-28 m$ v $14 m$ vi $7 m 3620-$ $28 m 431-3 m 458-11 m / 9 u$ "althe" $461-3 m$, $35-40 \mathrm{~m} 4843-51 \mathrm{~m} 4912-16 \mathrm{~m}, 41-46 \mathrm{~m} 5027-$ $36 m 5120-23 m, 23-25 m 52$ 8-14m 56 34$39 \mathrm{~m} / 36 u$ " $80,000190,000$ " 70 15-21m 7124 $32 m 777-17 m 785-35 w$ He has before said is found in petals \& stamens $9-12 m$ (Schleiden), 15-21m, 22-30m, 32-35m/? $8016-$ $26 m / 16-35 w$ i.e. not due to selection - 1 suppose he means inherited effects of Scarification $45-51 m 818-13 m 1114-11 \mathrm{~m} / 9 \mathrm{u}$ "earlylexercise" 130 27-32m, $37-40 \mathrm{~m} / 37 \mathrm{u}$ "Bulklabsolute" 131 1-3m, 11-14m 134 32-34z 154 27-31m 167 9-13m

SCOTT, John Report on the experimental culture of the opium poppy Calcutta; Bengal Secretariat Press; 1874 [CUL, I]
00 , phy
14 1u* "weighing I capsules", $36-42 \mathrm{~m} / \mathrm{m} 20$ $13-19 \mathrm{~m} / 14-20 \mathrm{~m}, 32-37 \mathrm{~m}, 40-42 \mathrm{~m} / \mathrm{m} 2110-$ $39 m / 22-24 m / 35-37 m 2420-22 m 2929-34 m 30$ $16 m 42$ 44-53m 47 49-54m 53 32-37m 54 4147 m 58 11-33m/25u "affecting only" $6042-$ $47 \mathrm{~m} 6130-38 \mathrm{~m}, 47-56 \mathrm{~m} 6342-46 \mathrm{~m}$

SCOTT, John Report on the experimental culture of the opium poppy for the season 187778 Calcutta; Bengal Secretariat Press; 1878 [CUL, I]
00, phy
NB Frank Protection from Insects p9 Monkey
17 to 21-22, 28 Protection of poppy by Opium Frank
part 1, $139-46 m$
part 3, $91-15 m 1762-70 m 184-12 m 1948-$ $64 m 2024-29 m 2158-68 m 2262-66 m 25$ 8$23 m, 29-35 m$

SCOTT, W.R. The deaf and dumb 2nd edn; London; Bell \& Daldy; 1870 [CUL, I] beh, he, pat, t

NB 8*; Deaf Mute reason - ?; 10 smelling - Imbeciles; Expression - 10 Proof of laughing sign of pleasure; 12 Continuation of Gesticulation
There is nothing about antagonism of expressive gestures

- 53 Savage snarl of Insane Reversion

$85-12 m, 15-16 m, 18-23 m$, 21-23m 10 9$11 \mathrm{~m} / 10-13 \mathrm{w}$ Maudsley has similar case 13$14 u$ "the | boy", 19-22m/20u "laughing" 12 19$26 \mathrm{~m} / \mathrm{m} /\left[{ }^{\prime \prime} . . . "\right]$

SCROPE, George Julius Poulett Considerations on volcanos London; W. Phillips; 1825 [Down, pre-B]
geo, se, t
iv $23-29 m$ vii $1-20 m$ xiii $9-16 \mathrm{~m} / 10-14 \mathrm{w}$ Sir H $301-21 m, 17-22 m 6437-43 m 6527-38 m 107$ $11-13 m 147$ 21-24m 194 6-14m/11? 199 22$25 m / 26-29 m / 22-28 w$ maximum elevation having expended the force $w b$ NB none of these theoretical views agrees with the structure of the S. American Andes. 212 8$42 m / 21-22$? $2643-5 m / w t$ The curved stratification of the clay beds is not accounted for. Humboldt gisement.

SCROPE, George Julius Poulett Volcanos 2nd edn; London; Longman, Green, Longman \& Roberts; 1862 [Down] \wp

SCUDDER, John M. Specific diagnosis Cincinnati; Wilstach, Baldwin \& Co.; 1874 [Down, I]

SCUDDER, Samuel Hubbard Butterflies New York; Henry Holt \& Co.; 1881 [Down]

SCUDDER, Samuel Hubbard Historical sketch of the generic names proposed for butterflies Salem; Naturalist's Agent; 1875 [Down]

SEDGWICK, Adam A discourse on the studies of the University of Cambridge 5th edn; London; John W. Parker; 1850 [CUL, I] ad, af, cc, ch, ds, em, ex, fo, gd, geo, he, hl, ig, ir, no, or, sp, sy, t, ti, tm, v, wd, y

NB1
NB2 xxvi; 33; xlv; xliv
SB1 \square R
The publication of the Vestiges brought out * all that cd be said against the theory excellently if not too vehemently
I am almost sure that Hooker in one letter says that Salix is not variable in Himalaya Is rubus - this very important.-
The constant speaking of a species, as a something known to be definite is source of error.-
$216 \rightarrow$ Introduct. Even the insertion of a Genus between any two others, though it cannot be said to break down a family, yet in fact tends to same way, for the two portions of the family might have been formed into two sub-families. Sedgwick speaks as if family or group of any kind fixed \& ascertainable thing.- The not filling up of gaps depends * chiefly on * our view of how far Palaeontology represents old inhabitants of world - but it
〈over〉 might have been expected that some
forms intermediate between $\&$ Mammals \&
Birds, like ornithorhyncus should have been found - such must have existed probably anterior to Silurian system.- As far as evidence goes decidedly opposed.-
$294 \cdots$ take any species in which there are several varieties - make any one or two races $\&$ we are making a species at the present day.- this is the only evidence possible - What domestic varieties are not making!? I do not mean mere seedlings-

SB2 \square R

Introduction; 26; 33; 48; 54,7; 62,4 to 139; 151; 212; 216 V. next page of this paper; 219; Appendix; 152; 185; 188 to 192 we here see that a Bony fish as a fish may be highest, but as part of the Vertebrata lower; 208; 278; 290; 294 V. Back
SB3 $\square \beta$
Ixv Oldest Fish highest (Book written against law of development higher \& higher with which I have nothing to do
lxxi X good against evidence for any number of supposed fossils xciv
xcvii difficulty of appearance of Cycloids \& Ctenoids (Developed in hot ocean)
ci - on separation of Fish \& Lizard
cxiii argument for coming in of Mammals, now broken down by Purbeck
cxxv Falconers argument that serial species do not accord in time or space
ccxii nature shows love of order \& harmony independent of mere vulgar use - one may say this when one knows one plant or

SEDGWICK
animal so well as to say why its numbers are so many, not that 1 pretend every character useful - Inheritance \& Laws of correlation \& direct effects of conditions
ccxvi On genera \& orders always keeping distinct. V. note at Back
152 Socrates on use of eye-lashes
186 Good account of why Fishes. Sharks highest to p. 193
188 On Embryological Development p. 278
192 On coexistence of spiral valves in intestine \& Bulbus arteriosus in Ganoids \& so allied to Batrachians
208 Oldest Rocks in America
ix $z b$ xxxiii $1-3 m, 16-18 m$ xxxiv $11-15 m$ xlviii $4-6 m, 14-20 \mathrm{~m} / 15-17 \mathrm{w}$ not put fairly liii $17 u$ "Cuvier", $24 u$ "Agassiz" liv $7 u$ "Owen"/ 9-14m/1-8w 3 greatest authorities, pointedly, even bitterly declared against theory So Horticulturalist about varieties lv $\uparrow 5-2 m$ lvii 19-23w absence of links between classes lxii $4-11 m$ lxiii $4-8 m$, $15-23 m$ lxiv $17-20 \mathrm{~m}$ lxv 28-30m (Owen) lxviii $1-5 m$ lxxi $6-9 \mathrm{~m} / \mathrm{w}$ all excellent lxxiv $11-15 m$ lxxxiii $1-3 m$ xci $20-23 m$ xcii $13-19 m$ xciii $13-15 m$ (Cuvier) xciv $14-16 \mathrm{~m} / \mathrm{w}$ very true $30 \mathrm{~m} / \mathrm{a}$ "Classes" Kingdoms $30 u$ "Classes" $/ w b$? not the Fishes \& Reptiles xcvi $23-26 m$ xcvii $6-9 m$ xcix $10-$ $14 m$ c $25-28 m / w$ But take existing fish \& existing Reptiles ci $5-12 m$ (Agassiz) cii $w t / 1-$ $12 w$ the first appearance alone ought to be chronologically in harmony with natural affinities $24-27 m, 30-31 m$ ciii $5-22 m$ civ 9$16 \mathrm{~m} / \mathrm{w}$ shows how imperfect our knowledge of aerial productions $19-23 m / w$ Birds a capital argument versus. cvi $7 w$ no! cvii 1$3 m$ cxii $23-25 m$ cxiii $10-12 m$, $29-30 m$ (Cuvier) cxvii $1-5 m / w$ except change in nature of deposits 6-7u "organic interval", $27-29 m / 27 u$ "seem" cxix $6 u$ "Ceteosaurus"/w Where described? cxxv 13-16m, 17-18m, 19$26 \mathrm{~m} / \mathrm{w}$ opposed to Agassiz argument of affinities going with space cxxvi 3-6m,3$13 m, 14-20 m, 22-25 m, 5-26 w$ The most important case I have yet seen cxxvii $5-10 \mathrm{~m}$, $15-17 \mathrm{~m}$ cxxviii $1-3 \mathrm{~m}, 17-19 \mathrm{~m}$ cxxix $25-27 \mathrm{~m}$ cxxxiv $21-27 m$, wb All facts \&c. do not show that there is no difference between species \& varieties, only that no one can often distinguish them - cxxxix $3-5 \mathrm{~m} / 3 u$ "gradually exterminated" $/ 5 u$ "not \mid transmutation" cli 16 m (Whewell), 30 m cliv $3-6 \mathrm{~m}, 14-16 \mathrm{~m}$ cxii $2-6 \mathrm{~m}$, $16-23 m$ ccxiii $20-22 m / 21 w$ Owen coxvi wto True great classes will never run into each other - even Lepidosiren does not do that.$w t / 1-16 w$ what does break-down mean either then true classes run into one, or are
not so distinctly separated $4-5 u$ "therel organic", 5-9m, 13-14m/we. What does this mean 14u* "improvelperfect", 14-15u* "breakl down", $15-17 \mathrm{~m} / \mathrm{w}$ yet naturalists often do this ccxix $9 u \mathrm{e}_{\mathrm{o}}$ "organiclanalogy", 1418man, 20-21m 181 13?/u "Neptune" 185 28$32 m 1865-9 m, 15-19 m$ (Owen, Hugh Miller), 29-32m, 36u^, wb Electrical Fishes 187 15$21 m / 17 u$ "chronological history"/w no $18 u$ "stultifies | development" $/ w$ yes $1883-5 m, 11-$ 19 m (H. Miller), 31-36m $1901-10 \mathrm{~m}$ ($\mathrm{M}^{\prime} \mathrm{Coy}$), 19-21m 191 26-36m (Agassiz) 192 35-36m 193 1-3m 208 16-19m/16w $/ 17 u$ "oldest", 33-36m 276 1-19m (Vestiges, Owen) 277 22-32m/22u "what I prove" $290 \quad 13-17 \mathrm{~m} / 13-20 \mathrm{w}$ quite certain no means of telling what is a species 294 14-15u "appearance finished"/13-16m (Vestiges)/w no $-V$. note my M.S.

SEDGWICK, Adam Geology of the Lake district Kendall; John Hudson; 1853 [Down, I]

SEDGWICK, Adam Supplement to the memorial of the trustees of Cowgill Chapel Cambridge; University Press; 1870 [Down, I]

SEELEY, Harry Govier Index to the fossil remains of Aves, Ornithosauria and Reptiles pref. by Sedgwick; Cambridge; Deighton, Bell \& Co.; 1869 [Down, I by Sedgwick]
NB O/
SEELEY, Harry Govier The Ornithosauria Cambridge; Deighton, Bell \& Co.; 1870 [Down, I by Sedgwick]
$\mathrm{NBO} /$
SEEMANN, Berthold Flora vitiensis London; Lovell, Reeve \& Co.; 1865 [Down] \wp

SEGUENZA, G. Ricerche palaeontologiche intorno ai Cirripedi Terziarii 2 parts; Napoli; Regia Università; 1874-76 [Down, I]
part 1 NBO /
part 28
SEIDLITZ, Georg Beiträge zur DescendenzTheorie Leipzig; Wilhelm Engelmann; 1876 [Down, I]

SEIDLITZ, Georg Carl Maria von Die Darwin'sche Theorie Dorpat; Mattiesen; 1871 [Linnean Society of London, I]
title page wto Presented by C. Darwin (Duplicate)

SEIDLITZ, Georg Die Darwin'sche Theorie Dorpat; C. Mattiesen; 1871 [CUL, I] beh, ct, em, gd, he, mm, mn, oo, or, phy, sx, ud, v, y

NB 37 Variability of Embryo
47 Castrated Reindeer does not cast Horns off
0
122 Causes of colour of eyes of Birds
127 Protective Colours of Beetles
135 Instinct good - diving of young ducks whose parents fly away - only like squatting - for parents do not dive to avoid danger 208 Origin of senses in cells in skin sensitive to light
144 Reversion in blind insect \& has imperfect eyes
147 Replacement of rats in Europe
176 Carabus in Pyrenees \& in N. of Europe
37 21-33m (von Baer) 38 25-29m 47 31-33m $1228-33 m, 34-37 m 12627-32 m 12735-36 m$ $13421 \mathrm{~m} 135 \mathrm{wt} / 1-4 w$ Diving of young ducks whose parents fly away cannot have been learnt by no by ancestors $16-22 \mathrm{~m} / 18 \mathrm{w}$ (a) 144 18-21m 147 12-29m 176 8-13m 208 2$38 m$ (A. Müller) $21027 m$

SEIDLITZ, Georg Die Darwin'sche Theorie 2nd edn; Leipzig; Wilhelm Engelmann; 1875 [Down, I] 80

SEMPER, Carl Gottfried Arbeiten aus den Zoologisch-Zootomischen Institut in Würzburg Hamburg; W. Mauke Söhne; 1876 [Down, I] \wp

SEMPER, Carl Gottfried The natural conditions of existence as they affect animal life London; C. Kegan Paul \& Co.; 1881 [CUL] gd , is, t

NB 287298 Geog. Distribution
290 Wagners Theory
287 15-21m, 38m 288 10-13m, 18-21m, 23$26 m 2901-5 m$ (M. Wagner) 292 11-14m * 298 $20-28 m 30010-15 m 3039 m 3086-15 m$

SEMPER, Carl Gottfried Die natürlichen Existenzbedingungen der Thiere Leipzig; Brockhaus; 1880 [Linnean Society of
London, I]

SEMPER, Carl Gottfried Die Palau-Inseln im Stillen Ocean Leipzig; F. Brockhaus; 1873 [Down, I] \wp

SETTEGAST, Hermann Gustav Die Thierzucht Breslau; Wilh. Gottl. Korn; 1868 [Down]
cc, 00, tm, v
NB p39 - Buck-wheat - Affecting animals differently coloured

- p41 graduated skulls

39 36u/w 41 1-41m

SEWARD, Anna Memoirs of the life of Dr Duncan London; J. Johnson; 1804 [Down, pre-B, S]

SHAFTESBURY, Anthony, Earl of Characteristicks of man, manners, opinions, times 3 vols.; London; 1749 [Down, ED]

SHARPE, William Man, a special creation, or, the preordained evolution of species London; Robert Hardwicke; 1873 [Down, I]
h, pat
NB p. 119 Colour \& resists disease Used
118 22-26m 119 1-6m, 21-24m
SHIREFF, Patrick Improvements of cereals Edinburgh \& London; William Blackwood \& Co.; 1873 [CUL]
cs, sl, spo, ta, v
NB 7 several vars. selected out of Fields
SB
7 selected 3 new vars. in one year, from 70 Ears collected out of several fields
p. 10 vars. crossing
p. 33 \& 35 constant \& inconstant vars. from crossed wheat.
p. 47 The vars. naturally cross, but seldom
p.94. crossing increases variability, \& gives greater field for selection
7 1-7m 10 12-24m 29 18-25m (Darwin) 33 20-23m/23u "constant variety" $3411-14 m 35$ $18-19 m, 23-24 m 471-7 m / w$ do not cross much $11-16 \mathrm{~m} / 12 \mathrm{w}$ bud-sports $9412-16 \mathrm{~m}, 15-$ $24 m$

SHUCKARD, William Edward Essay on the indigenous fossorial Hymenoptera London; by the author; 1837 [CUL, I]
ex, f, fg, ig, in, sp, spo, sx, sy, t, tm, v
NB1 Neuration of wings variable in the species of Fossorial \& \& difference in this point characterizes the sexes.-
So individual bugs are winged or less \& so sexes.

SHUCKARD
So jaws of Lucanus sexual \& variable So horns of Sheep.
NB2 $=$ Make stalk of variable parts $=$ also in Coleoptera
5111923
Variation p40 43486264 to $707679 \& 80$ $\begin{array}{llllllll}85 & 98 & 100,2,5,7 & 137 & 139 & 141,4,8 & 186 & 191\end{array}$ 204213 241,2 250
Besides these species which are variable, it must be remembered how very many are rare \& therefore may vary, but it is not known-
SB $\square \beta$
$40 \underline{Q}$ variation of nervures $p .43$ do better case in genus Typhia Q
39 Neuration differs in sexes Q
$48-\mathrm{Q}$ In Pompilus nervures differ in species \& in individuals (p. 4 Neuration of fundamental importance in classification of these Hymenoptera, as shown by Jurine 241 Excessive variability of shades of colour in Cerceris
I see I have note about Bugs being winged according to sex \& variable individually
$57-9 m / 8 u$ "to vary", 11-13m/13u "marked constant" $818-19 m$ * $1116-18 m / 17 u$ "great genera", 21-23m 19 10-12m 22 15-23m $231-$ $2 m, 8 m, 11-12 m / 8-18 w$ Important as showing some species are fertile, not owing to any general law, but to the peculiarities of their own propagation.- $3928-29 \mathrm{~m} / \mathrm{Q} 4020-31 \mathrm{~m} /$ $21 \mathrm{~m} / 25 \mathrm{~m} / 27 \mathrm{u}$ "stigma nearly" $/ 29 \mathrm{~m} 4231-33 \mathrm{~m}$ 43 3-5m $4818 \mathrm{~m} / \mathrm{u}$ "in 1 individuals" $/ 16-19 \mathrm{~m} / \mathrm{w}$ are different in Fossores in males \& females V. p. 39 24-25m/u "P.Imonstrosity" $/ 20-25 w$ In allied families wings absent in females 62 $10 \mathrm{~m} / \mathrm{u}$ "oflposterior" $64 \quad 18-20 \mathrm{~m}$, $18-19 \mathrm{u}$ "which I Aporus"/w a diff. genus 65 15-19m/ 16-17u "and lpunctured" 67 14m, 20-23m/20$21 u$ "markings|wings" $703-4 m$, $3 u$ "line colour", $4 u$ "traversing 1 not", $21-22 \mathrm{~m} / 21 u$ "markings vary", 27-28m 76 33-35m 79 31$32 u$ "third Ipetiolated" $806-8 m 8523-25 m / u \pm$ $9818-19 m 10023 u$ "black ring", $24-25 \mathrm{~m} / 24 u$ "sometimes obsolete", $27 \mathrm{~m} / \mathrm{u}$ "interrupted", 27$28 u$ "yellowimargin" $102 \quad 12-13 u$ "arel interrupted", 13-14m $10315-19 \mathrm{~m} / 16 u$ "male"/ $18 u$ "multitudelspecies" $10432 u$ "abdomen", 33-34u "first I red", 34u "is I red" $1051 u$ "or black" $/ 2 u$ "sometimes" $/ 3 u$ "lacteous 1 of" $/ 4 u$ "segment" $11-4 m \quad 1071-3 m / 2-3 u$ "characters тисro" 137 2-3u "yellowlabove" 139 14$16 m 14134-35 m / u \leftrightarrow 144 \quad 9-11 m, 9-10 u$ "sometimes lonly" $14823 u$ "sometimes", 2426m, 25u "reduced 1 spot" $1498 u$ "variablel abdomen" 152 10-12m 156 11-12m 186 4-6m/ w These may be compared to the sports of

Roses \& Wheat $19114 m 20419-21 m / 21 u$ "frequently entirely" 205 12-14m 213 3-5m 241 14-20m, 27-32m 242 4-6m, 26-29m/!!!, 29-30u "without I fault" $2507-9 m, 22-25 m 251$ $1-2 m, 7-8 m$ • $2528-10 m, 15-17 m$

SIDGWICK, Henry The methods of ethics London; Macmillan \& Co.; 1874 [Down, I, S]

SIDGWICK, Henry A supplement to the first edition of The methods of ethics London; Macmillan \& Co.; 1877 [Down]

SIEBOLD, Carl Theodor Ernst von Beiträge zur Parthenogenesis der Arthropoden Leipzig; Wilhelm Engelmann; 1871 [Down, I]

SIEBOLD, Carl Theodor Ernst von On true parthenogenesis in moths and bees trans. W.S. Dallas; London; John Van Voorst; 1857 [CUL, S]
beh, cc, cs, em, f, fg, hy, 00, phy, rd, sp, sx, v

NB1 Find single seed-bearers \& mix pollen of two species or vars
p. 70 order F. Smith get good description of Italian Bees
NB2 4; 34; 38; $53 ; 61 ; 68$ to 75 vars of Bees; Crossing natural; 107; 107 Hooker -Gall-insects male \& female in different galls SB1 $\square \beta$
p. 4 long life of Spermatozoa - p. 61

34 Female Psyches in rudimentary condition
53 Dzierzon on unfertilized eggs producing drones
68 Differences of Italian Bees - dark Bees appear amongst the Italian Bees Apis Ligustica p71.
69 Golden Bees more industrious \& better tempered
70 References to the Bienenzeitung 72 fertile when crossed
107 on differences of sexes according to conditions of life of larvae of certain Hymenopter. insects.
106 sexes in Parthenogenesis
<fragment of a letter from B.D. Walsh of 25 February 1867>

4 17-21m 34 17-26m/w rudimentary state 38 10-15m $3922 w$ why ? 23-33w They are not fully developed \& therefore are in degree in larvae state 53 25-28m (Dzierzon) 56 24-28m (Dzierzon) 61 24-26m $684 u$ "variety" $33-6 m / w$ F. Smith calls species $8-19 m / 9 u$ "rustyl colour", 23-26m, $24 u$ "amongst \mid yellow", $27 u$
"praesentior 1 magis", wb V. original German to see whether in same hive $691-3 m, 5 u$ "gold \mid Bees", $6 u$ "together", $10 u$ "cum \mid alvo" $/ w$ same hive $16 u$ "rectioribus cruribus"/w ask F. Smith 20-22m, $25 u$ "1806", $29 u$ "Lago Maggiore", 32u "accordingISpinola", $33 u$ "alsol Piedmont", 35-39m 70 1-8m, 20-22u "Fromlbee", 21-25m, 40-42m (Berlepsch)/w order this book $7110 u$ "crossings"/wt/1-10w I must ascertain whether this refers to pure Italian Mothers. $14-16 \mathrm{~m} / \mathrm{u} \leftrightarrow$, $14 a$ "Italian" crossed?? 20u "only", 21c "Such"/21-24m/w I do not understand V. original 72 24-32w clearly much crossing has taken freely place \& yet fertile $735 u$ "hybrid hives", 13-15m/14a "hybrid" ized 18a "hybrid" ised 19-20m 74 16-19m, 34-36m $757-12 m, 14 c$ "otherwise say", 20a "hybrid" ised 94 25-34m (Herold) 106 27-32m 107 19-23m (L. Dufour)

SIEBOLD, Carl Theodor Ernst von and STANNIUS, Hermann Anatomie comparée, 2 vols in 3 parts; Paris; De Roret; 1850 [CUL] cs, em, fg, phy, sx, sy, tm
vol. 1, 1st part, NB p.12; p.22; p.34; p.48; p.51; p.70; p.106; p.142; p.170; p.221; p. 223 like Land-Crabs; 229 Hirudo no metamorphosis-; Annelids Cephalobranches fertilised by means of water
12 26-29m 22 1-3w Larvae ? 4-6m 34 1-4m 48 21-24m, 40-42m 51 34-35m 69 1-2m 70 1$6 m 9415-19 m 1063-5 m 1074-8 m 1422-6 m$, 8-9m $1705-8 m, 7-11 m 221$ 17-21m 223 6-9m 229 15-17m, 18-20m $23014-17 m 231$ 19-23m
vol. 1, 2nd part, NB p.282; p.285; p.328; p.330; p. 341 \& 2; p.348; p.355; 520; 527; 535; 537; 568; 594
SB $\square \beta$
330 Ampullaria Lungs \& Branchiae
342 Male \& female glands invaginated \& yet leading to distinct orifices! p. 348
529 Tardigradae, Arachnidae Hermaphrodite $28220-27 m / 11-31 w$ is Herm. so must be able to cross $2856-7 m 3287-11 m 33037-$ $41 \mathrm{~m} 3411-7 \mathrm{~m}, 14-17 \mathrm{~m} / 16 u$ "invaginés", 19 m $3421-14 m / w t / 1-16 w$ How striking as they arise from invaginated glands: showing bisexuality $3431-8 m 3485-11 m, 10-17 m, 30-$ $34 m 3556-10 m, w b$ shows animal System not perfect, nowhere to put Sagitta, throughout exceptions made $4006-15 m 410$ 6-7u "Monografisk|1842" 77 m (Kroeyer) 418 27-30m/! 426 1-6m 433 1-2m 434 27-31m 436 $7 \mathrm{~m} / \mathrm{u}$ "yeux Ifacettes" 443 7-8m, $27 \mathrm{~m} / \mathrm{u}$ "Karsten 120" 445 1-5m 465 10-18m 470 1$14 w$ glands for viscid substance $47320-24 m$ 476 38-41m (Goodsir) 477 1-2m 489 32-35m
(Rathke)/33u "Wiegmann", 36-37u "Erdll 1843" $49124 m$ (Rathke), $28 m$ (Goodsir), 33-39m/37-38u "Kröyer| Homerus"/w Bell 38w 1 $39 u$ "Erdl 18 "/w 2520 17-21m 521 1-4m, $44 \rightarrow 522$ 28-31m 526 1-19m/w curious case of poisons so different in two orders 527 6$28 m 529 w t / 1-3 w$ see p. 496 for references 5$9 w$ I cannot find out what $5-7 w$ only genera Milnesium Macrobiotus Enydium 9-12m, 13$14 u$ "Les Tardigrades", $14 u$ "hermaphrodites"/w What are Tardigradae $5355 u$ "desitrès", $8 u$ "entre\postérieures", $14 u$ "prolongement | menton", 22-23m 536 18-19m, 21-25m 537 $12 u$ "aboutit |abdomen", 19-21m, 26-29m/w peaking 40-43m (Menge) 568 13-16m 594 1$2 m 601$ 22-27m
vol. $2 \wp$
SIEGWART, Karl Das Alter des Menschengeschlechts Berlin; Denicke; 1873 [Down]
NB O/

SKERTCHLY, Sydney Barber Josiah The physical system of the universe London; Daldy, Isbister \& Co.; 1878 [CUL, I]
geo
NB George p369; p315 References on Denudation; decay of flints; 321 Denudation \& Worms
xiii $7 m, 13 m, 26 m$ xiv $7 m 31527-31 m$ (Taylor, Geikie) 321 4-20m 369 19-22m

A SKETCH of a philosophy, part 2: Matter and molecular morphology London; Williams \& Norgate; 1868 [Down] 8

SMELLIE, William The philosophy of natural history Edinburgh \& London; Elliot, Kay, Cadell \& Robinson; 1790 [CUL, pre-B, I by J. Wedgwood, S C. Darwin Given me by my uncle J. Wedgwood]
beh, f, fg, he, is, $\mathrm{mg}, \mathrm{mm}, 00, \mathrm{no}, \mathrm{sl}, \mathrm{sx}, \mathrm{ta}$, y

NB Poor Book; p.139; p.146; p.150; 204; 254; 258; 282; 281; 310; 381; 389; 393; 396; $458 ; 462 ; 466 ; 472 ; 491 ; 500 ; 512 ; 515 ; 520$ SB $\square \beta$
p383 Marine Birds few eggs - Orang outang - Lions a good many p284

396 Pair of sparrows destroy 3360 caterpillars weekly
515 age of toad (Ch. 5)
513 age of some Big Birds.- Ravens \& Geese lay a good many eggs, yet old livers - So with Carp, which lay so many eggs-

SMELLIE
139 14-19m 146 17-19m $14922 \mathrm{~m} / \mathrm{u}$ "and |it" $1505-11 \mathrm{~m} 151$ 4-5m, 7-8m 204 19-21m 253 $19 u$ "seeds" $119-31 w\langle$ not CD 254 28-31m 258 $6-9 m, 29-32 m 28110-11 m, 15-16 m 3103-$ $14 m 3815 w$ V. p. 383 7-10m/7-32w/wb What is probable cause of this? - Why should many struggling for life ultimately better succeed, than a few $=$ is it that young carnivores are protected by fierce parents in youth? - are parents long lived? or not destroyed by other animals? $3832 a$ "carnivores" $w w$ marine birds few eggs $4 a$ "waters"/wt crocodiles $2 a$ "prolific" Elephant, Ourang!!! 2a "quadrupeds"|wt pooh. V. p. 284 for Lions \& tigers - contrasted with horse sheep \&c \&c ! $2-4 m / 4 u$ "who are all carnivores", 4-6m, 6-19w Ostrich many eggs - Humming birds few eggs?? = does defending powers of parent cause few young ?* by only few being destroyed? 389 5$6 m, 9-10 m, 23-25 m 39320-22 m /!/ 22 u \leftrightarrow, 24 u$ "annihilated | universal", 25-29!, 27 u "single| permitted", 28-29m 396 1-4m $3971 \mathrm{~m} / \mathrm{u}$ "and weeks" $454 \quad 25-27 \mathrm{~m}, 30 \mathrm{~m} 462 \quad 13-14 \mathrm{~m} / \mathrm{u}$ "Dogs Igenerations", 30 m 466 16-18m, 24$26 \mathrm{~m} / 24 u$ "a 1 mark" $\mid 25 u$ "impossible 1 immense", $28-30 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ This being habitually considered wonderful, shows how closely they resemble each other. 472 9-12m 491 7-9m/w occasional yet true migrations are of difficult explanation $5001-4 m, 20-21 m$ 512 7-8m, 27$29 m$ (Buffon) $5133 u$ "Eagles", $6 w 41+$? 11$12 u$ "The pelican", $13 u$ "eighty", $17 u$ "twentyl years", 19-20m, 24u "knewlyears", 26u "hundred \mid years" $5158 u$ " 1 years" $/ w$ toad $20 u$ "old toad", 21u "thirtylyears" 520 10-11u "annihilation |species", $13-14 w$ islands!! $16 u$ "would |this"!!

SMITH, Alexander The philosophy of morals 2 vols.; London; Smith, Elder \& Co.; 1835 [Down, JW]

SMITH, Andrew Illustrations of the zoology of South Africa 4 vols.; London; Smith, Elder \& Co.; 1849 [CUL]
af, beh, ex, gd, geo, ig, is, mg, oo, sp, sx, sy, t, tm, v
vol. 1 SB $\square \beta$
Macleay p6 Says importance of character inversely to variability
8 thinks anomalous groups merely mean links lost
$56-22 m, 23-26 \mathrm{~m} / 23 u$ "gепия" $630-33 m 7$ 1$5 \mathrm{~m}, 19 \mathrm{u}$ "Natural arrangement" $/ 18-29 \mathrm{w}$ It may be asked what is meant by natural arrangement - first step vague.- if it is said affinities of animal - what does affinities
mean? 29-32m/!, wb most resemblances endless disputes, sum of differences I conceive object is real relationships 8 1518m, 41-43m
vol. 2 NB \& PI. 13 \& 17 other vars. \& colour; Pl. 26 .
SB $\square \mathfrak{R}$
PI 13 \& 17 other cases of vars. in colour surprising =
\& PI 3 bright green good case of local var.
Pl. 26 good case of Local var of Lizards Pl.77 + pl. 11- $35-39 \mathrm{~m}$ pl. $11+31 \mathrm{~m}$ pl. $13-$ $15 \mathrm{~m}, 21-30 \mathrm{~m} / \mathrm{w}$ see before good case of variation $36-37 \mathrm{~m}$ pl. 18+ 1-3m pl. 27- 1516 m pl. $38-8-9 \mathrm{~m}$ pl. $38++32-33 \mathrm{~m}$ pl. 3932 m pl. 39+ 9-12m pl. 78- 22-26m
vol. 3 SB1 $\square \Re$ Aves
Pl vi; Pl ix; Pl xxii XX; Pl xx 9; PI. 44; PI 63; PI 68 species replacing each other; PI 110 SB2 $\square \beta$
PI ix one swallow taking others place periodically during migration of former.
Pl. xxii Variation of Beak - good sentence --44 Variation in size even $1 / 3$ longer -
-63 many close representative species Cape \& Senegal -
-110 A lark, which strikes its wings together in flying up
Pl. 7-19-22m Pl. 10-33-36m pl. 23-35-39m pl. $30++13-16 \mathrm{~m}$ pl. $45-1-10 \mathrm{~m}, 15-16 \mathrm{~m}$ pl. 64-22-30m pl. $69+14-17 \mathrm{~m}$ pl. $110-26-27 \mathrm{~m}$
vol. 4 SB $\square R$
PII
Pl. 3033 Q 38 one Antelope ranging further than other feeding together \& then separating \& one ranging further South Thinks some animals as Elephant migrate from Will others from impulse.Catoblepas Gorgon
pl. 9- $z b$ pl. $14-\Uparrow 7-3 m$ pl. $29+26-41 m / 26 u$ "proportion 1 herds" $/ 28-30 u \pm / w$ Polygamy $36 u$ "male \mid young" $/ 35-39 w$ killed when expelled \& not adults of others watching pl. 31- 21$23 \mathrm{~m} / \mathrm{w}$ these two species have different habits.- vide next species $25-27 \mathrm{~m}, 37-40 \mathrm{~m}$, $w b$ Every continent must once have been islands - hence representative species would radiate out \& keep to their localities pl. $31-13-20 \mathrm{~m}$ pl. $32-30-33 \mathrm{~m} / \mathrm{w}$ This is the other pl. 33- 25-27m pl. 39-1-3m pl. 39-36-40m pl. 42+wt Koodoo

SMITH, Charles Hamilton Dogs (vols 9 \& 10 of The naturalist's library: Mammalia) ed. W. Jardine; Edinburgh; W.H. Lizars; 1839-40 [CUL]
af, beh, br, cc, cs, dg, ex, f, fg, fo, gd, he, hy, ig, mn, no, oo, phy, rd, sl, sp, sx, t, ti, tm, v, wd, y
vol. 9 NB1 - It would appear that greater the difference as in pigs between parents greater the fertility, as long as difference is not connected with generative system. Infertility is not consequence of difference in size.
Dioecious \& hermaphroditic flowers can be crossed.
NB2 What a case of confusion in the canines, what are species \& what races especially the diurnal canines
75; 87 to 190; 239
p75 Reference to Pallas Works - Paper on Degeneration See Cuvier Eloge
SB $\square \beta$
88 Australian Dingo not breeding at Paris Q
89 Capra tharal breeds easily with domestic goat
93 Young * of feral boars striped this is a return of long latent character. as well as Tusks \& bristles Q
94 Hair of tail in Indian Boar bristly \& sagittated. Mem. W. Indies \underline{Q}
96 Bos gaveus fertile. see Griffiths Animal Kingdom
101 Posterior branch of lower jaw in Mastiff, altered Q
98 Cuvier says Jackall comes nearest to Dog Q
106 Mastiffs always in temperate countries (Cuba Bloodhound, Aegyptian do N.Q.
119 Difference in gestation in domestic animals by Tessier
136 The Siberian race of Wolves easily known 148 various vars. of
152 Pallas on crossing of Black \& White wolves \& Dogs Q
155 says Black \& White wolves keep separate from others (see Mauduyt pamphlet) (Ch. 6)
154 Doubts on distinctness of American \& European wolves
168 The Red wild Dogs of India destroy young Felidae
xii $10-13 \mathrm{~m}, 13-15 \mathrm{~m} 7521 \mathrm{~m}$ (Pallas) $871-6 \mathrm{~m}$, $13-17 \mathrm{~m}, 17-20 \mathrm{~m} 888-11 \mathrm{~m}, 13-14 \mathrm{~m}, 18-20 \mathrm{~m} /$?/14-22w curious if true $891-3 m 913-17 m 93$ 3-10m (Cuvier), 13-23m/Q 94 11-16m, 1618Q, 19-21m 95 25-28m 96 19-23m (Griffith) $9727-31 m 98$ 17-19m $100 \quad 25-27 m$, wb quite overlooks selection $10110-14 \mathrm{~m} 102 \quad 20-24 \mathrm{~m}$ (Cuvier) $1043-19 m, 22-24 m / w$ no! $10528-$ $31 m 106$ 19-23m 108 8-14m/wt/1-15w | think several allied forms have lately been found
$1096 u$ "foxes", 32-33m 110 7-8m 112 17-21m 117 11-13m $1183-5 m 11924-27 m 12421-$ $24 m, 30-31 \mathrm{~m}$ 125 15-19m, 24-30m, wb stories not being invented to show revenge in dogs, makes one believe it in monkeys 127 1-5m $129 w b$ is the Aguarachas related to fossil Hyena of Lund. $13330-31 m 13620-21 u$ "Siberian race", 22-24m 144 13-21m 148 16$25 m 149$ 2-17m 150 17-19m 152 16-23m, 31m (Pallas) 154 10-19m (J. Richardson) 155 6$10 \mathrm{~m} / \mathrm{w}$ How known?! $26-31 \mathrm{w} / \mathrm{wb}$ good case, if true, of 3 allied \& analogous species in the two continents 159 24-28m (J. Richardson) 168 $6-14 m, \quad 16-21 m / 16 u$ "surmise" $118 u \quad$ "keep 1 increase" $17111-15 \mathrm{~m} / \mathrm{m} \bullet / 19025-26 \mathrm{~m} /$? 239 24-28m $2678 \mathrm{~m} / \mathrm{u}$ "End $\mid \mathrm{I}$."
vol. 10 NB1 The analogy of sheep \& Cattle makes me doubt Col. Smith hybrid view of dogs (supported with recent conditions \& showing pains taken in old times) - for equal numbers must be used to make an intermediate breed \& how many parent sources \& these sources with characters more permanent (because since hybridised) than now, more acute greyhound - more * brave bloodhound.- occasionally crossing produces effect merely like ordinary variation in excess \& thus I believe in - as all hybrids are intermediate, we must suppose as many types as now varieties. How many does H . Smith make?
NB2 78 to 236 302
Think over how many English Breeds how many in Zoolog Gardens \& other parts of world \& extinct kinds!!

SB \quad B

7 Q9 Mammae of Dogs 10 to 7
94 Ancient Dogs, few Q
103 Colour attended to in ancient dogs, Xenophon (Selection Ch I
104 no pendent ears in old Dogs except in one Aegyptian Dog p107 do
121 Feral Dogs of St Domingo Q
133 Newfoundland semi-palmated Q
156 Florida Indian Dog like Wolf of country Qus
158 American dogs breeding freely with wolves of Country N.Q.
196 Pointers standing $1 / 4$ hourQ
207 Bull-terrier a crossed Breed
210 Extinction of Dogs in Pacific
214 Q Patagonian Dogs destroying poultry

- Ears erected in all these

215 Fuegians value dogs
217 Mastiffs indifferent to form crosses with other Breeds!
218 Toes of Mastiff very generally a fifth in hind feet Q

SMITH，C．H．，DOGS
243 Races of Foxes
Synopsis of Canidae at end．
〈over〉 The Plate of Alco dog shows hair growing round eyes

\wp

78 28－30m（Richardson） $798 u$＂inlsow＂／Q 9－ $10 u$＂species \mid intermixed＂， $10-14 m$（Daubenton）， 15－16u＂and lother＂／w hence variation 20－ $22 m / w$（a）$w b$（a） 1 doubt any hybrid having unequal mammae $807-9 m, 10-13 \mathrm{~m} / 10-11 u$ ＂albinism and melanism＂，12－13u＂theyl generation＂ 81 15u＂alllof＂，16－17u＂intol variety＂ $821 m 891-2 m, 8-10 m, 16-17 m$ ，21－ $23 m 941-2 m, 6-11 m, 15-17 m 97$ 1－15m，14－ 19 m 99 19－20m，26－30m（Buffon） 101 17－25m $1021-3 m, 4-9 m, 11-14 m 1039-10 m$ ，11u ＂vulpine character＂， $16-20 \mathrm{~m} / 17 \mathrm{u}$＂were originally＂$/ 18-20 u \pm 1041-2 m, 3-5 m, 30-31 \mathrm{~m} /$ $30 \mathbb{x}_{0}$＂．．．／31u＂exception linstance＂ $105 \quad 2-5 \mathrm{~m} /$
 $16-18 m, 20-24 m, 28-29 m 10913-15 m 1104-$ 7 m 111 18－21m $11312-17 \mathrm{~m} / 14 w$（a）$w b$（a）a most unclear rigmarole of old names，all these latter pages 116 12－13m $12011 m, 11-$ $12 m 121$ 14－16u＂large｜ears＂／m／Q 22－23m／ $u \leftrightarrow, 26 u$＂whitish－grey＂， $27 u$＂slate coloured＂ 122 14－16m，28－31m 123 1－3m／1u＂blackish＂， 15－19m，25－27m 124 3－8m，17－19m／18u ＂webbed Ifurred＂ $1313-4 m, 24 m 1327-8 m / Q$ 133 12－14m 134 13－16m／13－14u＂Esquimaux races＂ 136 22－26m 137 16－18m，18－19u＂till｜ innate＂ $1398 u$＂Theldog＂， $19 u$＂Molossian 1 dog＂ $1407 u$＂Theldog＂， $14-16 \mathrm{~m} / 15-16 u$ ＂called｜Society＂ 150 18u＂Turkmenldog＂ 152 $23 u$＂yet lto＂ $1531 u$＂the 1 Domingo＂ $1545 u$ ＂The Drover＂，6u＂Firma in＂， 24 m ，29－30m $155 \quad 28-29 m \quad 156 \quad 22-23 m / Q 15711 u$＂thel national＂， $12 u$＂like wolves＂， $19 u$＂the Caygotte＂，22－25m，29－30u＂The｜resemble＂ 158 1－5m，24－26m 159 6－11m 160 5－6m 162 $1!!/ u$＂such 1 modern＂，3－7w how little he knows of Selection $8-11 m / 9-10 u$＂forml qualities＂， $23 u$＂instead Ismell＂／w Bull－dog！25－ $26 u \leftrightarrow, 29 u$＂individual attachment＂ 163 12－ $16 m 164$ 11－13m，16－17m／17u＂black＂ $1654 u$ ＂Russian｜Tahtar＂，6u＂silky＂，8u＂Southern1 Western＂，10u＂haired Ithose＂，22－26m，26－28m 167 13－15m／14u＂personally attached＂ $1681 \mathrm{~m} /$ w 15－6m／w $214-15 m / w 316912 w 41701 w$ 5172 3－5m（Bacon）／4－5u＂idols I kennel＂，11u ＂breeding－in destroys＂， $12 u$＂afterlfirst＂，21－ 24m／22－23u＂which｜rough＂ 174 16－17u＂that 1 many＂ $17520 u$＂longlears＂ 176 17－18m 180 $21-26 \mathrm{~m} / 25 u$＂race＂， $26-31 \mathrm{~m} 1811 u$＂small Hyaena＂，3－4u＂Lychaon pictus＂，7－10m 182 $8 u$＂tigris＂，12－13m $18412-15 m, 16-17 u \leftrightarrow$ $1851-4 m 188 \quad 26-28 m, 26-30 m$ ，$w b$ always
overlooks the necessity of long selection to make a crossed－race $19014-16 \mathrm{~m} / 15 u$＂more crossed＂ 191 20－22m，27－28m $1949-11 m, 20 m$ ， 23－24m $1953-4 m, 11-15 m 1963-7 m$ ， $7-11 m$ ， 15－16m，16－18／Q 197 1－4m 198 3－5m 199 $12 m 200$ 16－20m 202 19－22m 203 24－31m 206 $26-31 m 2071-4 m, 15-18 m 20911-14 m$ ，14－ $16 m 21015-17 m 2119-26 m, 27-29 m 2132-$ $7 m 214$ 2－7m，15－17m，18－20m，22－24m，28－ $31 m 2157-13 m$（FitzRoy） $21714-16 m 218$ 19－ 23m／Q 219 2－4m 220 4－5m 221 14－24m 222 17－22m 224 18－20m 226 25－27m 227 10－19m， $19-26 m \quad 228$ 10－12m 236 3－6m 237 28－31m 238 3－4m 239 10－12m 242 12－14m 243 15－ $16 \mathrm{~m} / 16 u$＂smaller＂ 244 3－5m， $6 u$＂black ring＂， $7 u$＂more grizzled＂，7－8u＂Mr Pennant＂， $8 u$ ＂cur foxes＂，8－9w V．this descript： $11 u$ ＂without I mark＂， $12-17 \mathrm{~m} / 14 \mathrm{u}$＂becomel the＂， 24－26m 246 13－15m 248 23－24m 250 5u ＂The｜Fox＂ 251 11－13m／11u↔／12u＂larger size＂ $113 u \leftrightarrow, 18 u \leftrightarrow 252$ 5－8m 253 29－31m （Cuvier，Richardson） 265 15－17m／16u＂fifth＂ 267 10－13m（Lalande） 268 22－24m／22u $\rightarrow 269$ 4－6m（Rüppel） $2767-10 m 2825-8 m$（Lalande） 284 15－17m 285 18－20m 289 12u＊＂have small＂， $27 u$＂odour offensive＂ $3026-8 m / 8 u$ ＂common｜wolf＂，10－13u土， $14 u$＂is I south＂

SMITH，Charles Hamilton Horses（vol． 12 of ＂Mammalia＂in the Naturalist＇s Library），ed． W．Jardine；Edinburgh；W．H．Lizars； 1841 ［CUL］
hy，or，sp，sx，t，ti，v，wd
NF This work is reviewed in Veterinary for October？\＆November 1841
NB1 \propto Mrs Hamilton Gray＇s Etruria says the figure of the old Etruscan horses are like． those of a Dongola breed
NB2 ix；xi； 63 to $120 ; 135 ; 145 ; 151 ; 156$ to 185；192；199；202；207；208；210；224； 237 to \＆c \＆c 266 to end
ix 1－2m xi $7-9[\ldots] / 8 u / c / w_{\notin / 9-12 m / Q / 11-13[. . .] / ~}^{\text {／}}$ $11 u \notin$ ， $26 u$＂curiously spotted＂ $6319 u$ ＂Tahtary I Ireland＂，$\quad 22-23 m, \quad 32 u$＂somel Ireland＂ 64 13－16m，20－21m／！／21u＂other genera＂ 65 29－30m $664 u$＂upwardsisurface＂， $5-8 \mathrm{~m} / \mathrm{w}$ ice period！ $67 \mathrm{~m}_{\mathrm{o}} 10-11 u$＂existencel type＂，12u土， $13 u$＂Asia，Africa＂， $14 u$ ＂Mediterranean＂， $19 \mathrm{~m} / \mathrm{u}$＂cannot have＂， $27-30 \mathrm{~m}$ $68 \star 2-5 m /!, 7-10 m 69 \Leftrightarrow 1-3 m, 8-16 m, 18-$ $19 m, w b$ it certainly is no greater difficulty in supposing many pairs，than one pair produced．－ $70 \Leftrightarrow 8-10 m, 14-18 m, 28-29 u \leftrightarrow$ $71 \otimes_{17 u}$＂1821＂， $22 u$＂fivelafter＂ $72 \notin \geq$ ，5－ $9 m, 16-25 m, 22 u$＂plurality＂$/ 26-33 w$ point of comparison between varieties \＆species crossing 73 4－8m， $11 u$＂onelspecies＂， $14 u$
"Equus caballus", 16-31m 75 1-2mes/u* "it noticed", 14-15m, 23-25!!/m 76 27-29m, 29$33 m 823-9 m 854-6 m$ (Moses) $8732-33 m 91$ $2 u$ "feral" $/ w$ good word 94 16-18m 95 20-23m (Herodotus, Aristotle, Pliny) 101 17-18m/ $17 u \leftrightarrow, 19 u$ "still|Axia", $20-23 \mathrm{~m}, \quad 21 u$ "Attention 1 in" 103 22-25m/24u "in|fortieth" $1061-4 m, 7-10 m, 12-24 m 109$ 18-20Q 2022m, 21u "alcolour" $11031-32 m 1127-10 m$ $11615-19 m, 22-23 m 1207 u$ "poneys"/?, 8$14 \mathrm{~m} / \mathrm{w}$ are these now different??? 121 zb 135 3-4man, 4-7m, 11-12m 140 9-12m 141 7-8m 145 12-19m $1487 u$ "Forster", 10u "Pallas", 11-22m $151 \quad 19-26 m \quad 156 \quad 1-2 m / u \quad$ "Great \mid highlands", $3-12 \mathrm{~m} / 6-10 \mathrm{~m} / 7-8 \mathrm{u}$ "the l black" 157 24-25m 158 20-23m/20u "Prussia" 159 2-4m/ $3 u$ "eelback dun" 160 17-20m 163 11-15m, 16a "Tarpans" ie wild horses $16-18 \mathrm{~m} / 17 \mathrm{u}$ "tan 1 mouse" 164 12-15m, 15-20m 165 5-7m 168 14-18m (Virgil), 23-27m 169 3-6m 173 21$22 m$ 174 24-25m (Rengger)/25u "1537", wb 3 authors 175 13-16m, 25-26m, 31 m 176 8-11m, $13-21 m, 14-15 \mathrm{~m}, 30-31 \mathrm{~m}$ 178 21-25m, 24-25m $1791-3 m, 5-7 \mathrm{~m} / 5 u$ "mostly bay" $18126-31 m$ 182 23-28m 183 1-3m, 6-9m, 29-31m 184 5$15 m 1924-7 m 19912-19 m / 14 u$ "five great stirpes" $/ w$ what? $19 u$ "some seals", $20 u$ "the 1 brown", 22-25m 202 21-23m, 25-27m 207 25$31 m 208$ 19-21Q 21-23m/w 5 stocks $21027-$ $29 m 224$ 14-15m 237 24-28m 243 24-31m 253 5-11m, 18-23m 266 24-29m 268 17-20m 269 $13-16 \mathrm{~m}, 23-24 \mathrm{~m} 274 \mathrm{wt}$ chesnut 1-9m, 7-9m, $12-26 m, 28-29 m 2752 \mathrm{~m} / 2-3 u$ "when I grey", 3-5m, 5-10m, 13u "divergent I chestnut", 1416m, 15-16m, 18-19w Kutch \& Malay Archipel. 21-22x, 23-25m/23u* "dunlthe", 25-26u "without Icause", $\quad 26-27 \mathrm{~m} / 26 \mathrm{u}$ us "dappled" 276 28-31m 277 1-4m $280 \quad 22-$ 23x 24-29m $2816-8 m, 10-11 m, 28-31 m 283$ $10-16 \mathrm{~m} 28412-16 \mathrm{~m} 285$ 6-16m, 28-31m 286 14-23m 287 11-13m 288 7-10m, 10-11m 289 $3-6 m 2903-7 m, 19-24 m 29224-32 m 2931-$ $5 \mathrm{~m}, 13-20 \mathrm{~m} 2995-6 \mathrm{~m} 30416 \mathrm{~m} / \mathrm{w}$ Bands on legs $22-27 m$ (Banks), wb Not likely from Zebra Cross 307 1-21w Utter confusion of species $3083-6 m 30916-20 \mathrm{~m} 3133-7 \mathrm{~m}$, 12$14 m / 14 u, 24-25 m 3144-10 m, 13-15 m, 16 m$ (Pliny) $316 \quad 5-8 m 318$ 8-11m/Q 319 29-31m (Duvaucel) 334 16-18m (F. Cuvier) 337 7-11m $33813 m, 22-25 m 33911 u$ "twol camel", 13u "including I chartreux", $15 u$ "cat | Pennant", 16u "tortoiseshell cat", 17 u "originally indigenous", 21u "females Ipreserve" $/ w$ bosch! $3406-10 \mathrm{~m}$ 342 2-13m 343 1-6m, 11u "femalelass", 14 $15 \mathrm{~m}, 15 \mathrm{u}$ "slate-coloured", 30 u "mule। indifference" $344 \quad 22-26 m$ 345 $16-17 \mathrm{~m} / 16 u$ "grey|Egypt", 22-23m/22u "racellarge", 31u "dun|breed" $3467-12 \mathrm{~m} / 10 \mathrm{u}$ "twolfemale" 348

7-9m/8u "claim 1 demonstrations" facing 352 1?, wb a Doubtful species-

SMITH, Charles Hamilton The natural history of the human species Edinburgh, W.H. Lizars; London, Henry G. Bohn; 1852 [CUL] geo, gr, se, t, ti
NB1 Australian Geologists BoulderO
NB2 p. 47 change in river flowing into Caspian of the Euxus

- 116; 117; 146

Nothing May 301857
47 wt Consider proofs of uprising of Siberia.- Erratus? no I think before Glacial Deposits wt Cd the Caspian have joined the Japan Sea 4-5m, 24-25 $\rightarrow 48$ 6-10m/2-9w See Murchison $13-27 m 49$ 20-25m/21w Fish $26-27 \rightarrow 5022-27 m 1167-12 \mathrm{~m} / \mathrm{Q} 1176-8 \mathrm{~m} / \mathrm{w}$ what an argument $21-22 \mathrm{~m} 1465-10 \mathrm{~m}$

SMITH, James Edward The English flora 4 vols.; London; Longman, Hurst, Rees, Orme, Brown \& Green; 1824-28 [Down, pre-B, ED] che, fg, gd, oo, sp, tm, v, wd
vol. 1 NB1 Well worth while to plant seeds of common teazel \& see if they cd be turned into hooked teazel; Preserve〈CD?)
NB2 Verbascum Nineveh
329 first flowers 5 -cleft subsequently 4 -cleft; Preserve 〈CD?
NB3 5
5 22-24m 280 wb Proved by Henslow, see Hooker that they are same species- grow mixed at Down in same field - foliage different 306 36-39m (W. Hooker) $30844 u$ "3Ihigh" $3091 u$ "seldom branched", $3 u$ "decurrent", $4 u$ "covered 1 sides", 11-15m, $38 u$ "yard high", 39u "panicled Itop", 41u "dark। above", 42-43u "not decurrent" 311 wtos Dec 41862 Rev. W. A. Leighton says he has tried this repeatedly on V . virgatum with like result $\times 9-17 m, 40-43 m$, wbes I suspect end to partial capsule: \& blow ants incidentally like chloroform on stamens of Picaberg.- 329 35-36m 333 9-22m, $45 m 3344-9 m 339 z b$
vol. 2 NB Maple Rare in Scotland; p337 Great variation in seeds of Spergula, but in no other part
$3834 u$ "central 1 coloured" 39 35-38m/36u "one"/37u "neutral 1 red" $21814 m, 16-17 w \mathrm{~V}$. Down Nov. 5231 2m, 17u "rare \Scotland" 337 33-38m, 40-48m 398 wb Down. Oct. 13/42/ Found a Bramble with 9 or 10 petals.
vol. 3 NB 157 Subularia
$93 w b$ in colour \& size of flower - in shape

SMITH, J.E., ENGLISH FLORA
of spots on lower lip in their absence or in their being white or yellow - Down $108 w b$ Found wild Thyme with no stamens. Down Oct.13./42 126 wb Down $15724 u$ "always" 252 13-15u土, $17 u$ "slightly|tips", 21u $\leftrightarrow 427$ $1-5 m, 7 u$ "barren florets", $8 u$ "reddish Corolla" $43342-46 \mathrm{~m} / \mathrm{Q} 43431-34 \mathrm{~m}$
vol. 4 NB 149 Acorn out of Pheasant crop grew
23 wb July 2d found snow white Conopsea 1843 - Down. 32 32-34m 43 24m 149 32-36m, 38-43m, 42u "whylerror", $43 u$ "contrary|botanists"

SMITH, James Edward A grammar of botany, illustrative of artificial, as well as natural, classification, with an explanation of Jussieu's system London; Longman, Hurst, Rees, Orme \& Brown; 1821 [Down, on B, ED]
sy, tm
NF Preserve
$205-7 m, 13-14 m, 18-19 m 21$ 9-26m $221-4 m$ $281-4 m, 18-20 m, 24-28 m 291-4 m, 7-10 m 30$ $2-18 m 40$ wt There are figures illustrating each class $422-3 w *$ Geranium $6 w$ Broom $18-19 w$ compound flower $22 w$ orchis 43 1$12 \mathrm{~m} / 4 \mathrm{w}$ Nettles $14-16 w$ Mosses, Ferns 45 11 m

SMITH, James Edward An introduction to physiological and systematcal botany 4th edn; London; 1819 [Down, pre-B, ED]
$414-6 m, 10-13 m 62$ 19-25m 63 26-29m 64 $20-21 m 6921-24 m, 28-29 m 14916-19 m 150$ $6-7 m, 27-29 m 21716-17 m 2275-6 m 2312$ $6 m 232$ 14-16m $24120-23 m 244$ 17-19m 247 15-17m 250 1-2m, 7-10m 253 26-27m 256 2527 m 257 15-17m 385 13-15m 387 11-14m

SMITH, J. Toulmin The Ventriculidae of the chalk London; Richard \& John E. Taylor; 1858 [Down] §

SNELL, Karl Die Schöpfung des Menschen Leipzig; Arnold; 1863 [CUL] r

NB p. 54 Remarks on me; 103*; O/ $5412 m$

SOLE, Francesco Il Positivismo Napoli; V. Morano; 1881 [Down] \wp

SOLE, Francesco Su la sensazione Napoli; V. Morano; 1882 [Down, I] \wp

SOLIS Y RIVADENEYRA, Antonio de Historia de la conquista de Mexico Madrid; Antonio Fernandez; 1790 [Down, pre-B, S]

SOLMS-LAUBACH, Hermann zu Fauna und Flora des Golfes von Neapel 4. Corallina Leipzig; Wilhelm Engelmann; 1881 [Botany School] 8

SOMERVILLE, Mary On the connexion of the physical sciences London; John Murray; 1834 [Down, on $\mathrm{B}, \mathrm{S}, \mathrm{ED}$]

NB z
\wp
SOMERVILLE, Mary On molecular and microscopic science 2vols.; London; John Murray; 1869 [Down] \wp

SORET, J. Louis François Pictet, notice biographique Genève; Ramboz \& Schuchardt; 1872 [Down]

SOWERBY, John Edward, JOHNSON, Charles and JOHNSON, C. Pierpoint British poisonous plants 2nd edn; London; John Van Voorst; 1861 [Down] \wp

SPENCER, Herbert The classification of the sciences 3rd edn; London; Williams \& Norgate; 1871 [Down]

SPENCER, Herbert The data of ethics London; Williams \& Norgate; 1879 [Down, I]

SPENCER, Herbert Descriptive sociology London; Williams \& Norgate; 1873 [Down]

SPENCER, Herbert Education: intellectual, moral and physical London; G. Mainwaring; 1861 [Down]
NB O/
SPENCER, Herbert Essays, scientific, political and speculative (2nd series); London; Williams \& Norgate; 1863 [Down]
beh, phy, t, tm
NB 138 Definition of Emotion \& Sensations title page $w b 1863 \infty$
8
$10630-31 m, 33-35 m 107 \quad 20-21 m / 21 u \leftrightarrow 109$ 11-15x/m/11c "For"/"...", $12 u$ "existing force", 14-15u "must \mid somewhere" 110 wt after I speak of grinding teeth cont the sensor, give H.S. view that the nerve force is thus
expended instead of exciting * goes to feeling \& thought. $1-2 \mathrm{~m}, 15-18 \mathrm{~m} / \mathrm{w}$ the nervous energy is concentrated in the mind 111 wt not in Love or gentle dislike or despair $1-2 u \pm / w$ why $14 u$ "purposeless"/1320 w so for frantic gestures of rage or intense grief $23-26 u \pm / 27 u$ "organs 1 speech", 31-34m/ w sobbing must be explained 36?/u "extra action" $1128-10 \mathrm{~m}, 11 u$ "undirected energy", $17 u$ "upperlare" $/ 8-17 w$ Give this under Man under direct action 27-34m/29-32ut/w why 32-35m 114 wt/1-28w but why does the kid amuse persons even if it causes laughter - a bore might interrupt the train \& yet not cause Laughter or enough anger to take off superfluous nervous power $15-18 \mathrm{~m} / 15^{\prime \prime}$..., / $17 x$, wb Use of voice goes with pleasure by calling social members to each other - to parents - to other sex. 116 wt [Can any idea or remembrance stimulate or depress the brain - does it not first act on the circulatory system \& this excite or depress the brain??] $1-3 w$ [As hurting a nerve does so, probably it can] $22-27 m / 24 u$ "falling jaw" $/ 20-23 w$ passive wonder 118 28-36m 119 wb He seems to conclude when sensorium excited a certain quantity of nerve force is generated, which must flow off in thought, sention muscular or glandular action.- 135 $5-7 m 13711-13 m / w$ \& so the idea of snake $1387 u, 13 u, 18-19 u 1393 u, 5-6 u$ \wp

SPENCER, Herbert First principles 6 issues; London; G. Mainwaring, Williams \& Norgate; 1860-62 [CUL, S in no. 1] \wp

SPENCER, Herbert First principles 2nd edn; London; Williams \& Norgate; 1867 [Down, S]
〈markings presumed to be by FD>
SPENCER, Herbert Grundlagen der Philosophie trans. B. Vetter; Stuttgart; E. Schweizerbart; 1875 [Down] \wp

SPENCER, Herbert The principles of biology vols 1 \& 2 bound together; London; Williams \& Norgate; 1864-67 [Botany School, S]
ad, af, cc, ch, ct, ds, em, fg, h, he, hl, hy, $\mathrm{mn}, \mathrm{no}, 00$, or, phy, sh, sl, sp, sx, t, tm, ud, v, wd
vol. 1 NB1 186. nisus formativus; 179 Pangenesis; p. 181 Pang.; 186 Use \& Nisus; 191 Use
NB2 p.243*; 244*; 240; 248 - 249 Use;

254 Pangenesis Theory of Generation when limb of Newt cut off tadpole - 0 - limb not proved 259*; 260*; 262 - Twins; 264; 269 Man acted on unequally differently by same power; 272*; 309,10 ; 316
NB3 p. 383 Vertebrae number cannot be accounted for by type
NB4 445 Sp Theory; 451-2 used under Domestication
455 small jaws in civilized Man
47 21-23m 179 32-35m 180 34-36m 181 1-5m, $10-28 m, 24-26 m \quad 182 \quad w t / 1-5 w$ like my attention on elective affinity $183 \quad 19-24 m / 19 u$ "physiological", $22 u$ "physiological units" 186 19-26m 191 21-29m 243 15-18m (Sedgwick) 244 32-35m (White Cooper) 248 18-20m 249 9-13m 253 22-25m, 29-31m, 30-31m/31-32u "undifferentiated cell" 254 1-3m, 5-8m, 13$16 \mathrm{~m} / \mathrm{w}$ Pan $15-16 \mathrm{~m} / \mathrm{"} . . .0,18-20 \mathrm{~m}, 24-28 \mathrm{~m}$ $2551 u$ "Heredity", 13-21m/"...", 14-18m/w Pan $\langle u$), $16 u$ "onllarge", $21-31 \mathrm{~m} / \mathrm{w}$ shows that he has not got idea $23-34 m *, 26^{\prime \prime} \ldots \star$, $34 \ldots . .2566-13^{\prime \prime} . . . " \mid 7-12 m * 2593-6 m / 4 w$ increase 8-10m 260 1-3m, 7-12m 261 20-25m 262 3-14m 264 1-7m 269 19-21m $2721-6 \mathrm{~m} / \mathrm{w}$ Monsters? $2744-10 m / x / 5^{\prime \prime} \ldots 27920-26 m / x$ 285 wt Chapt XI 8m/8-10"..." 286 6-10m 289 $34 z 30925-35 m 3101-3 m 3162-8 m 3835-$ $\begin{array}{llllll}14 m & 435 & 11-17 m & 445 & 14-19 m & 20 \mathrm{~m} / \mathrm{u}\end{array}$ "maintained 1 produced" $449 \quad 29-34 m 45010-$ 14m 4515-6m, 12-16m 452 5-11m, 13u "Thel skull", 14u "seated lthickened", 16u "vertebrae| neck", $17 u$ "ligaments", $18 u$ "muscles", 21u "upper dorsal", $22 u$ "spines", $26 u$ "bones 1 legs", $27-35 m / 34 u$ "blood 1 nerves" $/ w$ Use wd come in- $45520-22 m 4564-7 m / w$ feet smaller? 457 1-3m $46825-31 \mathrm{~m} /{ }^{\prime \prime} . .$. "
vol. 2 NB1 O/
NB2 Direct action
145 Laws of Variation
147 shape of flowers
151 to 154 do
157-158 Umbelliferae
Hooker disagrees about Umbellifers
NB3 185*; 188*; 201 Origin of Vertebrae
Copied 233 - direct action
Explains first cause of change in prototype organisms
NB4 not abstracted
NB5 ${ }^{4}$
326 How animals acquired Lungs in shallow water.-
399 Struggle for existence \& Law of Increase
NB6

- 428 He does not understand Pangenesis
W

SPENCER，PRINCS．BIOL．
A
437 Bears on Hybridism
－ 439 Antagonism between growth \＆ Reproduction for Pangenesis
401 Causes which determine degree of fertility
409； 471 to 473
X470； 416 Male fish guarding nest ask further
SB1 \langle not $C D\rangle \square \beta$
Vol 1
383 Good about vertebrae．Why are those of the sacrum anchylosed together？
445 Speaks of the importance of Nat．Select． in maintaining as well as producing structures
Vol． 2
145 on the general relation of form to conditions 147 in relation of obliquity of flowers to their position
151 Do－with respect to Peloric flowers．
157 discusses outer florets of Umbelliferae \＆ Compositae．Hooker disbelieves
185 ＂the naked Gasteropods in losing their shells have lost that immense one－sided development of the alimentary system which fitted them to their shells，\＆have acquired that bi－lateral symmetry of external figure which fits them to their habits of locomotion； but the reproductive system remains one－ sided，because in respect to it，the relations to external conditions remain one－sided＂
188 Discusses one－sided fishes
201 argues well with Amphioxus that the muscles first gave rise to Vertebrae but first of all to the Neural Spines（see quotation of Owens＇）
233 argues from bulk \＆cells outside \＆ inside of leaves on the effects of external conditions
〈CD） 346 Origin of Nerves
〈over〉 Herbert Spencer Principles of Biology
SB2
That many structures are directly related to differn of the incident forces，as highly probably as shown by Mr H Spen，but hard to distinguish from selective spontaneous variations．But＊p． 253 it is difficult to bring proof of such［Direct Action］
p． 263 flow of sap－origin of vessels
p． 269 ；p． 270 p． 273 p． 274 ；p．276；p．278；280； 287； 294
See note of err．I have marked all 296－97 Thickened epidermis Origin of Horns，Nails，hoofs
301 formation of teeth \＆Hairs
313；319；Laws of Variation
H．Spencer No． 16 Vol． 2 （Not abstracted）

〈over〉 •，\rightarrow

I am inclined to attach＊much weight to＊ Mr Spen＇s 4 views \＆inquest；but they do not \＆harmon with the method followed in this work of giving the variations actually observed under domestication，so that I will ＊say no more on this head．
SB3 No． 16 H ．Spencer
253－direct action；269，58 trunks of trees an by exuding sap Use \＆Disuse； 263 formation of vessels by elongation of cells；a Sap \＆ vessels 273274 direct action－Species； 287 first formation of skin； 297 Origin of thickened epidermis by used \＆of spurs on Birds wings Sp．Theory； 313 gizzard hardened；\propto_{\square} Ch．3．IV \＆V SB4 $\square \beta=$
p399－473 Rate of Increase \＆Struggle for existence
The conclusion is that fertility is increased on demand by N．selection，according as wanted too great an increase being an evil to the species－producing more than can take，but that will not injure individuals，but each mother expends more than is necessary．She who produces few eggs will produce better eggs－But there is limit to possible amount of fertility going on by individuation of organism \＆expenditure in vital actions \＆growth．－［I think there is error， the individuals who produce much young，wd not be themselves or offspring injured，\＆ them that produce few wd not profit．－］
〈over〉＜a fragment of note relating to Westwood，Insects，1840，vol．2，p．541）
$371-6 m 938-11 m, 16-23 m 14422-24 m / c / w \notin /$ ＂．．．＂ 145 1－7m／2＂．．． 146 fig．m 147 19－28m 151 $26-30 \mathrm{~m} / 1-30 w / w b$ Plantains are on spike by of，$i w$ May it not be that insects visit indifferently male \＆an upright \＆ 153 22－ $36 m 154$ 3－13m 157 11－18m 158 26－30m，32－ $36 m 185 \quad 27-36 m / \rightarrow 188 \quad 18-34 m \quad 201 \quad 7-19 m$ 233 4－10m，wb Bark cells－outside \＆inside of leaves $2538-14 \mathrm{~m}, 16-20 \mathrm{~m} / \rightarrow 2541-30 \mathrm{~m} /$ $4-18 w$ but how distinguish relations $12-17 \mathrm{~m}$ 258 22－31m 263 5－10m，17－20m 269 25－29m／ ＂．．．＂ $2707-25 w$ spiral winder hundreds of feet in length！ 273 25－32m 274 11－15m 276 21－27m 277 7－10m〈FD？ 278 20－25m $28023-$ $28 m 287$ 9－24m 289 23－25m／24－30w in man， but in lower anims yes 294 26－33m 296 25－ $34 m / 9-32 w$ But then a sort of spur grows to wing of Blackbird \＆claw of tail of Lion 297 12－15m，18－19u＂nails I horns＂，27－29m，33－ $36 m \quad 299 \quad 2-8 m \quad 301 \quad 1-11 m \quad 313 \quad 26-36 m$（J． Hunter） 319 22－34m 326 1－12m 338 16－27m 345 17－24m／18－19w Rickets children 354 17－ $24 m 368$ 27－31m 369 6－9m 375 23－27m／26u
＂interdependence 1 parts＂ 398 22－28m，30－35m 399 21－30m 400 29x 401 1－3m，14－17m／16－ 17u＂major 1 mortality＂，22－26m 402 25－30m／x 403 23－26m 407 19－22m 409 1－2m，31－35m 416 34－36m 428 7－9m／8u＂orl part＂ 437 14－ 24 m 439 11－31m（Carpenter） 470 wt I must confine my remarks to beings equally highly organised $w t$（1867）Chapt II to XI 1－10m 471 9－21m／x 472 14－27m／x 473 15－28m

SPENCER，Herbert The principles of psychology London；Longman，Brown，Green \＆Longman； 1855 ［CUL，I］
beh，hl，ig，t
NB1 178 swimming；330－332 essential unity of intellect \＆instincts； 400 ； 410 High \＆ Low； 539 Instinct
Trick，in studying sense \＆habit－if inherited are comparable to＊or rather identical with 2 ways in which instincts are acquired；\＆ 2 ways in which corporeal structures acquired．－
573 Man 596 Expression
〈other w not CD
NB2 \langle not $C D$ ）
viii $30 \mathrm{~m} / \mathrm{wb}$ Here he explains how gradation necessarily comes into play 21 14－15m 117 zt 400 21－23m， $25 u$＂ability｜decompose＂， $26 u$ ＂Water＂ 401 1－14m（Schultze）， 36 m 402 15－ $22 m 4107-11 m / 8-9 w$ Well put $41126-32 m$ $41520 c$＂heron＂，20w hawk 21c＂fish＂，21w heron $539 \quad 3-7 m \quad 540 \quad 5-10 m, \quad 16-23 m$ （Carpenter） 542 33－35m 573 16－21m 596 9－ $15 w$ also alludes to in Essays $10-32 \mathrm{~m} / 11-$ 18＂．．．＂ 599 31－36m

SPENCER，Herbert The principles of psych－ ology 2nd edn， 2 vols．；London；Williams \＆ Norgate；1870－72［CUL，S］
vol． $1 \mathrm{NB}\langle b y$ FD \rangle
〈most markings probably by FD＞
〈CD〉 131 介4－2， 138 12－18m $14015-17 \mathrm{~m} 141$ $11-15 m \quad 323$ 介13－11m 324 介 $15-13 m / 14 u$ ＂organism｜duration＂ 377 11－13m 390 介10－1m／ ？ 391 介15－10m 515 7－11m $614 \Uparrow 4-1 m 61514-$ 19 m
vol． 2543 11－13w fingers！ $546 \Uparrow 5-1 \mathrm{~m} / \mathrm{w}$ quite otherO Gratiolet $5526-15 \mathrm{~m} /{ }^{\prime \prime} . . . " \mathrm{l} / \mathrm{w}$ Slyness －checking the turning of the head to look to one side $5562 u$＂every feeling＂$w b$ love $5 u$ ＂degreelstrength＂$/ w$ No $1-4 m$ ，$\Uparrow 11-7 \mathrm{~m} / \Uparrow 10 u$ ＂conceal I primary＂

SPENCER，Herbert The principles of sociology London；Williams \＆Norgate；1874－77 ［Down］\wp

SPENCER，Herbert The study of sociology 6th edn；London；Henry S．King \＆Co．； 1877 ［Down］

SPENGEL，Johann Wilhelm Die Fortschritte des Darwinismus Köln；E．H．Maner； 1874 ［CUL，I］
$\mathrm{h}, \mathrm{ig}, \mathrm{mm}$ ，phy， $\mathrm{sh}, \mathrm{sp}, \mathrm{sx}, \mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB protective colours of shells Nakedness of Man
Put note 0
on Physiologcal cause why has Hand escaped I may be quite wrong
〈words torn away at top of cover〉
$518 u$＂Planulaten＂，1－23m／w Chains of species connected $21-24 u \pm 64-9 \mathrm{~m} / \mathrm{w}$ Surely I give this view 12－14m 8 1－3m 10 23－26m 19 wt whether I could show that the long Hand in Chimpanzee are touching organs $12-15 m$ 27 27－28？ 71 1－6m／3u＂adaptive＂， $7 u$ ＂Strahlen 1 Flecken＂，12u＂dunkelbraune Schale＂， $16-17 u \leftrightarrow 7316 m 7711 \mathrm{~m} 8016-10 \mathrm{~m} / 18-19 u$ ＂aus｜werden＂ $\mid 18-25 w$ Universally rejected－ Nakedness is a sexual character $824 u$ ＂Adern＂$/ w$ veins $7-10 m$

SPIX，Johann Baptist von and MARTIUS， Carl Friedrich Philipp von Travels in Brazil 2 vols．；London；Longman，Hurst，Rees， Orme，Brown \＆Green； 1824 ［CUL，pre－B， on B，S Chas．Darwin Buenos Aires］
beh，cc，geo，gr，mi，t
vol．1， $1088 w$ \＆Slavery 110 16－17？ 164 7－ 8？，9－11？ 214 19c＂a mile＂$/ w 8$ miles $216 w t /$ $1-27 w$ when I visited this spot in 1832 this retired cottage was uninhabited $2208 c$ ＂granite＂$/ w$ gneiss 19－21？，22－23？，wb on this coast there is no shelter for their growth 221 wt Insecta Arachnida Zoophytes Testacea！ $247 w t / 1-16 w$ All this appears to me much exaggerated 273 2－6m 289 9－19m 290 1－7m， 17－30m 291 7－22m 301 8－19m
vol．2， 51 3－30m 117 24－30m／26－28！／28u ＂from｜N．E．＂ 136 24－30m 137 1－29m 138 17－ $31 m 147$ 18－27m 152 18－30m 154 12－20m 156 1－30m 158 1－28m $1641-30 \mathrm{~m} / 8 u$＂incumbent＂， 26－27u＂decomposed＂ 168 16w p164 172 wb The Lithomarge cannot be decomposed Gneiss－if it contains Topazes \＆the solid $\langle w s-\rangle$ difficult $17327-36 \mathrm{~m} / \mathrm{w}$ Germany $w b$ The altered mica is here also incumbent 185 8－ $28 m 187$ 3－9m 189 23－28m 211 zb 270 1－17m 273 14－22m＊ 281 11－26m

Sprengel，Christian Konrad Das entdeckte Geheimnis der Natur im Bau und in der

SPRENGEL
Befruchtung der Blumen Berlin; F. Vieweg; 1793 [CUL, pre-B, S]
ad, beh, cr, cs, dic, f, fg, gd, hy, mhp, mm, mn , no, oo, phy, rd, sx, sy, t, ta, tm, ud, v, wd, y

NF He treats of forms of seeds with reference to means of distribution
NB1 It would be worth while to cross Vinca to see if it would then produce seeds-

- Strong case of Dichogamy in Paridaceae in Gaertner Bastard p. 65
Gaertner Bastard p. 537 a most weak argument against final cause of Honey to attract insects
586 speaks of it as general law that male \& female organs are ready at same time at p. 659 contradicted
- Gaertners Beiträge must be studied all about Honey p. 75-92
p. 242 attributes all C.C. Sprengel facts to praecosity of pistil.-
- Kolreuter 3d Fort p127 on movement of pistil to anthers in Compositae \& on other cases of movement: this latter subject largely described by Gaertner in Beitrage -
March 19. 59. Lathraea squamaria visited by Bombus - right at top pistil bends slightly over towards passages, projecting \& apparently ready, but pollen not shed Yet pollen on stigma for Bee - In lower (\& earlier) flower pollen shedding, so that here female organs apparently ready first.
p. 415 on Spiders haunting plants with nectar: mem Willy's remark on Listera
NB2 260 on the red Lychnis flowering at different period from the whites ask Henslow or Babington or Watson
- p. 367 Seeds diff shape from disk \& \&374 Margin of Picris Composite flower -
- Flower of males larger than of Females

March 30-46-Read straight through from 1 to 223-299. Read all
Only subjects not on crossing X
Good case of mechanical action comparable to action of pollen on head - for no use in seeds being different \rightarrow
369 Differences in shape of seed in Disc \& centre of Composit.
374 do - (this must be a correlation of structure, \& perhaps owing to insects) Figures of 3 kinds from same flower
371 On stigma in Compositae bringing out Pollen - Rudimentary organ useful
383 do - otherwise rudimentary - very curious case
Watch Acacia - Put pollen of own \& other var. of Cabbage \& shut up flowers

- X Lobelia - Crucianella; Examine next spring; Arnica to see how far passage closed X; Aristolochia whether insects can escape; Honey in night in Orchis morio; Impregnation of Ophys \& seeding of try crossing \& see whether some seed; Heartease - whether night insects do the work; Castrate common Pea, several \& impregnate several \& see if Bees go for pollen or Honey, as perhaps they wd not visit pollen-less Peas.-; Arum about filament about insects escaping; Fraxinella if my account accurate
SB1 $\square \beta$
2 Iris only by Bees
8 Violets
3 Flys impregnate Orchis 21 \& 23 do
4 Epilobium impregnated from younger flowers - same in Euphorbia
16 marks on Corolla to guide insects none on right flower
18 was not aware of use of crossing Bees boring holes dispose necessity of his marks. 42 pollen generally ready first
43 quite as many dichogamous, as dioecious \& monoecious
61 case of Salvia
106 Butterflies - Phlox - Dichog:
111 On Campanula read
117 Phyteuma = does not get dusted in room X (one of Campanulaceae) * Solanaceae * p126 \& 167 Passiflora, stigma not ready during the second day whilst another moving up. (Mention after Barberry) probably night flower
186 Allium in same case with Parnassia
212 Horse chesnuts, probably Dichogam.
240 Kalmia like Barberry, moves on being touched
244 Saxifraga saw fly impregnated
SB2 ${ }^{-1} \beta$
249 Dianthus dichogam, \& yet stated to be impregnated in close flowers
296 saw ants carry pollen (Nothing to show Dichogamy in this class
346 Hollyock Dichogam.
354 does not understand impregnation of Pea.
358 on depression of wings in Bean-flowers \& other Legum. causing exsertion of Pistil \& anthers so Bees impregnate - whole structure of flower with rectangular pistils fitted for this end - Keel springs up slowly to old position
359 Phaseolus, does not know about one side - hairs of pistil brush out pollen; thinks a dichogamit.
390 violet - cavity full of pollen stopped by
pistil from being shaken out；curved point of stigma moved by bees
394 can know when no Bee has visited by no shed pollen－
395 proved it by putting gauze over
397．does not know much about Heartease
SB3 13 Kurr
〈over〉（List of plants supposed to be fertilised by the wind \rangle
〈over〉In one of the Ray Soc．Report Bot． Paper a long description on position of nectars in Veg K．
SB4 $\square \beta$
403 Orchis latifolia－thinks this impregnate －never saw Bees．－has never seen nectar in．calls them sham－nectar producers－ nectary within hairy－look at night－
405 Butterfly orchis has nectar－smells at night－probably a moth impregnation
406 Listera ovata has nectar \＆visited by Ichneumon（p407）with 2 pairs on head． 409 Next year other cases \＆Beetles．Saw the act of impregnation effected．
414 often see Flies in Epipactis，cd not be impregnated without insects
415 saw fly remove the pollen－masses \＆has figured it sticking on back．－
419 Aristolochia from structure cannot be impreg．without insects－ 421 f ，many flies on with pollen on 423 thinks flies cannot escape owing to smoothness of bottom of trap \＆from number，but Mem Arum may be here introduced to show how then little insects can carry pollen．－
over
〈over〉 426．No，flies cannot escape on account of hair in passage－ 428 Fabricius has made same remark－（Does not say has f．many dead flies）
〈over〉 〈List of dichogamous species〉
SB5 OR
A Tussilago or Petasites vulgaris type if grows disc hermaphrodite say female（some plants all female \＆so Senecio vulgaris）； Pistil acts in brushing out pollen but has no stigma．；Antennaria always dioicous．－； Pimpinella magna－tends to have some exclusively male；Anthriscus sylvestris say floret with imperfect stigma \＆no stamens． thinks never sets seeds．－
P see Babington for seeds on orchids \＆ ViolaO；Picris＝Helminthia
－Tabulate how many Dichogamous \＆ species
Henslow．Aug 13／1857
1 wb Hairs protect nectar from Rain 222 $25 w$ Corolla coloured to attract bees
insects $29-30 m, w b$ lris can be impregnated only by Bees $38-12 w$ see p． $526-29 w$ hairs of pistil to keep pollen $30-32 m / w$（a）$w b$（a） Flys impregnate Orchis morio \＆latifolia \＆ Aristolochia in former attracted by colour，as if there was nectar of wh．there is none 4 $37 w / w b$ N．B．Epilob．august \＆Nigella pistil always impreg．by Bees from pollen of younger flowers－Reverse in Euphorbia 5 wh in this page upsets at other uses of Nectar 75－10w Most perhaps all Nectar plants require（W）insects for impreg．12－13w P wb P．Bees carry pollen as well，wh． Nectar，as when pollen－hunting $817 u$ ＂Märzveilchen＂／w 1 1 30 w 2 wb 1．Violets require Bees for impregnat（2）Most hermaph．flowers require insects for their impregnat． $1236 m$ ，wb Suppose all these contrivances only to protect nectar wh he imagines protected even at expense of anthers！ 14 wb C．D．The permanence of standard of Kidney－Beans，when lower petals are decayed，shows that the petals serve other protecting ends besides nectar $156 u$＂haaricht＂$/ 3-9 w$ I do not think explains use of hairs on lower lip of foxglove $16-18 \mathrm{~m} /$ w stel．Vp．29X 18－21w all nectar－flowers have corolla．－ $22-28 w$ He says p． 19 Euphorbia has nectar！！！29－34w Euphorbia has no true corolla R．Browno 16 wt Marks on corolla guide insects $10 \mathrm{~m}, 39 a$＂ihnen＂$/ 35 \mathrm{u}$ ＂Nachtblumen＂｜＂．．．＂，38u＂Saftmaal＂，39u ＂ihnen IStatt＂ 17 34－36m／36u＂kürzer 1 Dichogamie＂ 18 1－25w Seems to think fact of insects being required at all does not deserve any explanation \＆how poor a one of Dichogamy for convenience of insects－！！ 14－16m／14u＂jeder｜gewählt＂｜15－16u＂nicht｜ kann＂，22－23u＂halbgetrennten 1 ähnlich＂， $25-33 \mathrm{~m} / \mathrm{w}$ How poor！ 30 w （a） $37 a$ ＂Schirmblumen＂／u＂ganzen Familien＂｜36－37w dichogam $w b$（a）Has no notion of advantage of intermarriage 19 4u＂Euphorbia＂， $5 u$ Blume＂， $13 \rightarrow$ ， 14 u＂Saftblume ist＂， $20-22 \mathrm{~m} / \mathrm{w}$ How poor！as in p． $1823 \mathrm{~m}, 32-40 \mathrm{~m} / \mathrm{w}$ First \＆ last flowers in the true kind Dichogam must remain unimpregnat $w b$ This kind of Dichogamy requires secretion of nectar for long time，as both old \＆young flowers must be visited；final cause？ 20 wt（a）some plants as Euphorbia \＆Umbellifera visited by insects／all kinds \＆visited irregular in manner；not so other flowers $3-5 \mathrm{~m} / 4 \mathrm{w}$（a） 13－22u士，Says Bees guided to Antirrhinum by the saft－maal；but has the Purple Linaria a saft－ maal．－No whole flower slightly veined but not there more than elsewhere $219 u$ ＂Fliegen＂，10u＂Asclepias＂，14u $\leftrightarrow, 37-39 m$ ，wb

SPRENGEL
X abortive florets of Golden Rose \& Centenary * act for this end V. Viburnum 23 3-4u "kleine Fliege"/4u "Serapias longifolia" $/ 5 u$ "Staubkölbchen"/4-5w Serapias ophidious 24 $5-9 m / 7 w$ z 34-35u "aus 1 Saft", $38-41 m$, wb z Directions for finding nectary $252 u$ "Blasensüsse |Blumen" 27 7-15m, 9-10m/9u "GewächselTreibhause", 15u "Jasione", 19-20u "Coronilla Emerus", 30-31m/30u "wenigstens 1 Art"/w (a) $33-36 m, w b$ (a) I saw one in Allen's garden a Campanula $285-6 u \leftrightarrow$, 38$41 m / w$ (a) $w b$ (a) Bees attracted by their beauty to some flowers without nectar, for pollen \&c \&c fructify them 29 wt So then he disbelieves pistil bending down \& touching anthers. $7 w$ Elder $8-12 \mathrm{~m}, 14-16 \mathrm{~m}, 14-20 \mathrm{~m} /$ $16 w$ P 21-25m, 23-24m/23w L. 31-37m, 38w These are Hermaph flowers impregnated by wind $w b \mathrm{P}$ Hostile to my theory.- are many mono or dioecious plants saft-leer, if so less so - Carex? 30 3-8w Quantity of pollen in Poplar \& Pinus sylv. $15-18 \mathrm{~m} / \mathrm{w}$ male catkins larger than females $3123 u \wedge / 24 u \wedge / 20-23 \mathrm{~m} / \mathrm{w}$ Horse willows impreg by insects $27 u a / 31 u$ "den |werden" $27-34 w$ Hence flowers without nectar are impreg by insects [but have pollen] 37-41m, 43a "liegen" $/ \mathrm{m} / \mathrm{w}$ allow to intermingle this being so \& being large or pollen plentiful, with $w b \times X$ Important to discover what hermaph flowers, are impregnat by wind $3224 a / u / w \tau$, $32 w$ secretion, but serving for no other end?? wb Q flowers before leaves not to prevent impreg. by wind \& before leaves of other trees 33 wt M. case of false final cause very poor $17 w$ M 34 19-22m/w no, not in wheat 35 $34-38 w 18$ days longest duration of flowers! 34-35u "achtzehn", 41-45w flowers fade after fruct. $3611 m, w b \times$ in Scrophularia, stamens move to pistils one after other but S says they are dichogamous - female first 37 wt P . hidden flowers exhale much odour $11-13 \mathrm{~m} / \mathrm{w}$ P 40 wt (a) Anthers \& stigma in same place that Bees may touch both $7 \mathrm{~m}, 29-31 \mathrm{~m} / \mathrm{w}$ (a) $w b$ * \& yet Bees bore holes in the Salvia \& Stachys! 42 21-23m/w (a) $26-28 m / 26-31 w$ Hairs on underside of Foxglove to keep off rain! 31-32u "dass I herabhangende", 33-34m/ $34 u$ "regular 1 müssen", wb (a) how generally he seems to think pollen is mature first 43 $1 u \star$, $6 u$ "Linde", $7 u \uparrow, 8 u$ "Bienen nicht", $9 u \star$, 14-17m, 17-20m/17-24w no! I saw small ones at holes \& reverse $27 u$ "irgend" $24 w \mathrm{P}$ 27$28 \mathrm{~m} /$ "...", $34-36 m, 42 u$ "Schirmblumen Euphorbien", 43-44m, wb P. If this had been 'always' instead of 'ever' it would have been correct perhaps 45 wt compares nectar of fresh seeds $15-18 m / w \mathrm{~m} 28 w \mathrm{P} 32-34 m / w \circ$
$w b$ Hence relation of plants to mammals $w b$ o Seeds which are eaten are conspicuous like nectar-flowers $4637-44 m / w$ considers the vast numbers of seeds necessary for some to be preserved $471 w \times$ means Read $4 \mathrm{X}, 30 \mathrm{w}$ requires insects $491 \mathrm{X} 501 \mathrm{X}, 24$ $26 m$, $25 u$ "Dichogamist", $26 u$ "männlich weiblicher", $27 u$ "Antheren" $528 u$ "dass findet", $10 u$ "vonlum" 55 wb insect impregnation $5812 x 615-10 m, 15-18 m 637-$ $9 m / 7 u$ "männlich weiblicher" $6425 x 65$ 12-13u "dass 1 ist", 29x/ua $665 u \wedge / 4-6 m / 4-14 w$ male flowers larger than female in order that insects may visit male first $25 u \leadsto / 26 u$ "grösser sind"|17-41w So in Strawberries Gardners Chronicle Aug 1861 \& so in Wild Thyme- 67 $8 x \quad 682 x \quad 693 u \leftrightarrow$, $6 a / u$ "keinesweges mechanische" $/ w$ gives good reasons $19-20 m$, $39 x$, $41 x 7043 x 72$ wt X analogous to Hive Bees at Humble Apertures. 4-5m 74 24-30w Iris impregnated by pollen of distinct flowers $7531-35 m, 40-41 m / u \leftrightarrow, w b$ iris must be impregnated by Bee which has come from another flower $7932 x / w$ Rye $38 u$ "Saftdrüse", 39-41m, $\uparrow w$ (a) \mid observed in every spike of a Rye-grass anthers hanging \& pistils feathering, projecting on one (or both?) sides of scales so as to be easy of impreg observed this in one other grass. $w b$ In Introduction confesses he knows no use for nectar in grasses \& this upsets his theory of its sole use.- I kept wheat in glass \& was astonished at one night how many long stamens were produced - hence fruct effected by wind, as he remarks; but the Pistil in the wheat, though very healthy, seemed quite concealed. One day in (a) 81 $8 x 823 x, 4-5 w$ large marginal florets, that insects may see flower from side, as well as from above $-14 m, 20-22 m, 24-36 m / 29-31 w$ Candy tuft $w b$ The variation in marginal florets of Viburnum good instance of structure being acquired - CD $8340-42 \mathrm{~m} / 40-$ $41 u \leftrightarrow / w$ (a) $w b$ (a) pollen first ready $8420 x$, $39 x 851-3 m$, $1 u$ "Ameisen", 1-2u "inl hineinsteckten", $8 x 91$ 1-25[...] 94 2-6m/w cannot be impregnated by wind but by insects $21 x 9733-37 m / 35 w$ (a) $w b$ wb Dichogam, males first ready 98 1-6m, 2025m, 32x 100 44-45u "Dichogamisten| Art" $10139 x 102$ 13-15m/13u "Kultur"/14-15u "Saftmaall können", 28w* Nothing 28x, 30x $1037 x 10425 x, 28 u$ "Saftlich", 29u "Saftblume ist" 105 18x, 20x, 42-43m/43u "Dichogamist", wb Manlich dichogam 106 1$3 \mathrm{~m}, 47 \mathrm{~m}, 12 \mathrm{~m} / \mathrm{u}$ "Schmetterlingen" $/ x 10813 u$ "sondern|Insekten", $15 u$ "Krone zukehren" 109 $28 m 110$ 32-34m/33u "älteren", 43-44m 111 8-
$10 \mathrm{~m} / \mathrm{u}$ "könnenlist", 22-24m, 36-37m/w (a) $40-44 \mathrm{~m} / \mathrm{w}$ no real explanat $w b$ Perhaps it is so in Menganthes, but impregnation does not necessarily follow $11311 x$ 115 5-13w dichogam manlich 117 25u "dieselben 1 jüngeren", 26-27u "dasloder", 28u "Erfahrung|überzeugen", $32 m, w b$ in some stigma got no pollen, field covered with it 120 $\begin{array}{llllll}15 x & 121 & 11 x & 122 & 26 w & \text { knows nothing }\end{array}$ whatever in whole Genus No Honey discernable 129 5-6u "Sie|besucht" $13041 w$ not Solenaceae $13111-16 \mathrm{~m} / \mathrm{w}$ stigma turned from anthers $13512 m 13717-18 m, 20-22 m$, $31-35 m, 35-37 m, 41-42 u \leftrightarrow / 42 x 13917 x 141$ 8-11m 142 43-45m/44ua $1437-9 m, 11-12 \mathrm{~m}$, $13-15 m, 19-20 m \quad 14516-20 m, 28-30 \mathrm{~m} / 29 u$ "Bemühung vergebens", $31 u$ "kleine Wespe", $33 u$ "nachging" 146 27-28m 149 38-39u "welche | Füssen" $1504 x, 19 x / 18-19 u$ "bloss \mid wegen" 152 17-19m/17-18u "dass 1 Art", $44 m$ $15421-23 m / 22-23 u$ "für l bestimmt" 156 wt it is evident that many genera are dichogamous $1 u$ "diese Blumen", $3 u$ "zwar 1 männlich", 6-7u "Noch|IV", $7 m 15725 x / w$ plenty? $29-37 \mathrm{~m} / 33 \mathrm{w}$ (a) $w b$ Last umbells planted or plant had imperfect pistil; became dichogamous \& therefore useless \& no pollen or other flowers $158 \quad 2-3 u$ "Schirmblumen IGriffel", 40u "von IDichogamie" 159 19-20m, 23-24m, 23u "geschlechtslose" 160 5-6u "Saft | Blumenkäfer", 8x 164 31u "3lauf", 31-33m/33u "nicht !kurz", 34-35u $\leftrightarrow 166$ 10x, wb Next page Pollen ready on stamen one after other other move stigma not formed - so dichogamous 167 4$7 \mathrm{~m} / 5-6 u$ "nicht Igeblieben", $8 u$ "von 1 Insekt", 14-18m/16u "verlängern" $117 u$ "das | hinlegt", 33-34u "fünf| sieben", $34-36 \mathrm{~m} / 35 \mathrm{u}$ "und \mid verwelkt", 42-45m/42-45u士 168 33-36m/33u "drey verschiedenen" $35 u$ "Ein Umstand" $/ 37 u$ "Kennzeichen I Dichogamie" 169 wt (a) How is Loaca in these respects). $5-6 m, 7 w$ (a) 35$39 m$, wb On mechanical theory successive rising of stamens useless $17023-26 \mathrm{~m} / \mathrm{w}$ this should be not is $35-39 \mathrm{~m} / 35-38 \mathrm{u} \rightarrow 1711-2 \mathrm{~m} /$ $1 u$ "Stigmalist", $33-36!/ 35-36 m 17222-23 \mathrm{~m} /$ w (a) $w b$ Cover some plants day \& night some by day - some by night 173 20-23m/w B 25-26u "Ob|Geheimniss", 26u "nicht entdeckt", $28 u$ "als |kann", 41x 182 11-17w this \& snowdrop can have not be impreg. except by insects $18422 u$ "ein 1 Dichogamist" $1865-7 u \pm, 9 u$ "männlich 1 Dichogamist" 187 26X, $27 x 188 w b$ Martagon enclosed seeded - hence Spr. cannot see thinks exception use of Nectar \& 6 stamens - ! I can, occasional intermarriage $18929 m / x 19032-$ $37 m / 32-24 w$ nectar impreg. not easy 199 29-
$34 w$ a feather hyacinth $20031-32 u \leftrightarrow 201$ $w t$ feather-hyacinth 203 7-12m/7u "Dass I befruchtet"/10-11u "und|Krone" 204 39-45m $205 w b$ Berberis more than anthers might on stigma $20723 u$ "also wahrscheinlich", $24 u$ "Insekten", 25u "staubvolle" 209 4x, 6-8m/6$7 u$ "die \mid Geschlechts", wbo 2 May $612101 u$ "Schein 1 männlichen", 22-23u "Wind IStigma", wb associated plants must be in same predicament $w b / 1-7 w$ Dioecious plants are produced where self-impregnat. too easy??? Hence is it that so many trees each having so many flowers all dioecious?? See to this for my theory $21125-32 m, 41-44 m / 43-44 u$ a $2122 u$ "immer 1 Dichogamie", $21 w$ (a) $25 u \wedge$, 27-28u "Trauben ${ }^{2}$ viel", $28 u$ "Strauchs", 31$32 m, 35-36 u$ "eine 1 Krone", wb (a) Horsechesnuts probably dichogam $* 2133-6 \mathrm{~m} / 4 \mathrm{u}$ "mehr 1 Zwitterblumen", $5 w$ (a) $14 w$ (a) Veratum nigrum has many male flowers 214 14x 216 23u "männlich-weiblicher", 45X 219 1$2 m 220$ 33u "die|weibliche", 45X $2214 u$ "Nachtinsekt" 223 10x/w from p. 1 to here 225 wb stamens ready first saw Bees impregnating $22625 w$ (a) 25-26ua, wb same 229 40-41m/41u "mechanische geschehe", 42un, $43 u$ "angezeigt" $23025 x 2312 x 232$ 14u "Befruchtung durch" 233 28-42[...] 234 3234m/33u "Dichogamie|findet" 238 11x, 15u "vonlberuihrt" $2405-7 m / w$ (a) $25 x, w b$ (a) This, as I thought, appears like case of self-impregnation.- 243 26-27w Dichog. $24416 u$ "Fliege", 16-17u "habelangesehen", 22u "jüngen", 23u "hineingekrochen", $26 u$ "eine Blume", 44X 245 16-18m, 19u "Dichogamie", 45X 247 15x, wb I found this Dichogam. June 2d $186124924 w$ (a) 24-25u "das IStigmate", $32 u a, w b$ \& yet Editor of Annales des Sc. says impreg. before opening 252 zb 255 31-32m/u "ihrer Einrichtung", $41 x 258$ $17 u \leftrightarrow /$?, $24-27 m, 33-35 m / ?!/ w$ no $37-38 u$ "Nachtinsekten|nicht" $259 \quad 38-40 \mathrm{~m} / 38 u$ "als Nachtblumen", $43 u$ "sondern|Loch"|42-45w Humble Bees bite holes 260 5-9m/5u "weiblichen"/6u "weiter", $6 u$ "männlichen"|7u "zwanzig", 34-38m/36-37Q 44x $26137 x 262$ 15-17m/16-17u "Spergula 1 Dichogamie" 263 $6 u$ "männlich|Dichogamist" 264 5-6m, 8u "dichogamischer Einrichtung" 266 4x, 7-8m, 15-16m, 16u "Käserlandere", 24-26m, $25 u$ "zuerst|Dichogamie", 35-37m, 35u "denn | Pistill" 268 18x $26935 x 270$ 6m, 7x 272 29x, 31-32m/u "denn!können" 273 5-7m, 6u "Bienen befruchtet", $6 u$ "wahrscheinlich", $9 u$ "leicht wegblassen", 18x 277 17x 278 13-15m/ 14-15u "sielsind", $31 x 279$ 22-23u "Blumen 1 Artheren", 23-25m, 39x, $41 x 2803 u \leftrightarrow, 4 m, 6-$ $9 m, 21-22 m, 28 x, 30 x, w b$ Bees biting holes

SPRENGEL
287 6-8m 289 12-13m, 20-23m, 32x $295 \mathrm{wt} / 1-$ $19 w$ Repeatedly shows that impregnation is not by mechanical act; such movements appear chiefly to favour insects $15 u$ "mechanischer Befruchtungsart" $29626 u$ "Ameise", 30w saw ants impregnate $3057 u$ "AuchlDichogamist" 307 29x 308 5-6m 309 6X $31523 x, 31-32 m$, wb hole cut. $3165 m / u$ "häufig besucht", 12x, 28x 317 25-29m, 3x, 32x $31942-45 m / 43-44 u$ "Staublabstreifen" 320 $1 u \leftrightarrow, 13 u$ "Bienen", $14-16 \mathrm{~m} / 16 u$ "sondern Horn", 24-26m, wb Bites holes 321 32x 323 36-37m/36u "weiblich| Statt" 324 23-26m 325 $1-2 m, 12 x, 44 m 32622-24 m / 23 u$ "sie ein" 327 $3 x \quad 329$ wt Nothing in class to show Dichogamy $3354 x \quad 336 \quad 20 \mathrm{~m} / 20-21 u \leftrightarrow$, wb Lindley thinks in Pelargoniums this is effect of culture $34126-28 m 3423-4 m / u \leftrightarrow 34324$ $28 w$ Skimmed $34440 x 3456 x 346$ 26-29m/ $29 u$ "zwischen lsind", 43-45m/45u "älterer Blume" 347 14u "Um|vermuthlich", 23x 349 23x 350 16u "scheint", 17u "Dichogamie", 30x, 32x, 33u "Saftblume" 351 31x, 33x 352 15$17 \mathrm{~m} / 16 u$ "keinen 1 gefunden", $29-30 \mathrm{~m} / \mathrm{w}$ (B) 36 $36 \mathrm{~m} / \mathrm{w}$ (a) $40 u \leftrightarrow, w b$ (a) In Gardeners Chronicle humbles were said to bite base of Bean-flowers $3534 x, 6 a$ "tinctoria" saw Humble at Shrewsbury sucking flower $9 u$ "keinen", 11x, 12u "keinen Saft", 16u↔, 21x, $23 x 3547-8 m, 8 x, 31 x, 37-38 u \leftrightarrow / 38 x 35542 u$ "vermuthlich \mid Befruchtung" 356 wb He knows of Honey on the stipulae $35713 x, 29-31 m$, $29 u$ "oberen", $30 u$ "Loch", wb Holes 358 5-6u "dass I waren", 6-11m, 13-20m/13uн, 29-31m 359 26-44m/32-40w Kidney Bean $42 w$ (a) $w b$ (a) Does not mention Bees always going on one side $3603-6 m, 8-9 u \leftrightarrow, 27 m, 28 w \mathrm{~K} 27 x$, $29 x$, wb K bites holes $36142 x 3632 x 36414 x$ 365 14-28[...]/15u "Saftblumen", 30x 366 23x, $24 w=$ Helminthia $25 x 36717-27 m / 17 u$ "des 1 Scheibe", 21w seeds 21-23u "Dielbesetzt"/Q 24-25u "Seitelbesetzt", 27x 368 15x, 24u "den lbesucht" 369 14x, 19u "Bienen ungemein", $38 x \quad 370 \quad 26-31 m / 28 u$ "wenn Befruchtung" $/ 30-31 u$ "sondern 1 sind", $36 x$, $47 x$ 371 17-18m, 28-29m $3737 x 374$ 10x, 27m/Q $30 m, ~ 41-43 m \quad 3773 x$, 5-37[...] $37927 u$ "von|Insekt", 33-35m, 42u "Insekten", 43u "nützlich", 44u "schädlich" $38013 x 381$ 3-6m/ 3-4u "geschlechts|saftleeren", 15-17m, 36x, 38x $38228 u$ "Insekten geschieht", 29-33m 383 12-16m/12-13u "Siel Zwitterblumen", 32-36m/ w (a) $39-41 m$, $w b$ (Q) a most curious case of abortive organ being made useful, like marsupial bone in some male marsupial animals $3841 u$ "Blume hineinschieben", 11ua, 19x $38527 x 386$ 3u "männlich-weiblicher", 4], 6[$38829 m, 37-38 m, 45 X 38934 u$
"vollkommen trocken"/w (a) wb (a) like that of Kalmia - I have no doubt this is case with Allen Wedg plant wh does not seed 390 1120 m 391 10-12m/11u "bestaubt", $11 u$ "nothwendig I Theil", 21-22m 394 6-9m 395 3$9 m, 39 x, 40 x 3976-8 u \pm, 16-17 m, 35-37 \mathrm{~m} / \mathrm{w}$ (a) 40-42m, wb (a) as I have seen $44-45 \mathrm{~m} /$ $w b$ no $4005-8 m / w$ (a) $13 x$, $w b$ (a) From Henslows account is common to genus. But I believe at different periods $4024 x, 34 X / u$ "Bewegung machte" 403 10-11m/11u "es 1 wollen", 19-21m, 23-25m/23u "niemals" $/ 24 u$ "Saft langetroffen", $38-39 \mathrm{~m} / \mathrm{u}$ "inwendiglist", 44-45m, 44u "Scheinsaftblume", wb | am nearly sure nectary of Butterfly covered with growths 404 wt Cannot be deceptive for insect has at once to fly to catch florets 16m, 7-21w p. 418 Aristolochia clematitis $14 u$ "Osterluzen", 32a "Morio" fresh winged 35$36 \mathrm{~m} / 35 u$ "Scheinsaft", $41 u$ "beweist Orchis", 44-45m/45u "nurlSamen", wb Little flies often on stigma can stigma secrete sweet better $4051-8 m / 1 u$ " 26 "/ $/ 2 u$ " 42 " $/ 2-5 u \pm, 9 u$ "wohlriechendes"/w Habenaria, Butterfly orchis certainly $26 u$ "der Saft", $27 w$ nectar $35 u$ "das|vortrefflich", $36 u$ "Nachtblume ist" $4065-7 \mathrm{~m} / 6 u$ "mit|versehenen", 12-14m/14x/u "Serapias |verdeckt", 16x/w Listera 24X/u "trockner", 28-30m, 41X 407 8-11m/10-11u "denselben 1 vergebens", 12-14m/12u "ähnliches Insekt"/13u "zwey Staubkölbchenpaare", 18m/al u "ähnliches"/w 3d 19-22m/20u "ablecken konnte", $29 u$ "jederlZeit", $36-38 m$, $37 u$ "abzulecken", 40m, 43-45u士, 45m, wb Would succeed only by stickiness of stigma $40820 u$ "oder lankleben", 27-28u↔, 38u "Absicht", 38$40 u \pm / 40 m, w b \times$ otherwise he would have caught a third hair $4096 u$ "wieder", $7 u$ "an Kopf", $8 u$ "einen 1 Käser", $10 u$ "Kopfschmuck", $17-21 m$, wb X saw act of impregnation by Hymenopt 411 25w One of the Ophrydiae) Lind Epipactis 26X, wb = Ep palustris - 1 think this - certainly this No or Cephalanthus ensifolia - this latter I now believe 413 31$34 m, 42-45 m$, wb He does not really understand this flower $41410-11 u / w$ with Insekts $12-21 \mathrm{~m} / 14-15 u \leftrightarrow / 18-19 u$ "weil 1 habe", $22-45 w$ He probably examined only flowers which had gone off $w b$ he forgot to look whether any sticky contrivance to anther He overlooked the spherical rostella 415 21-27m/ w Saw fly with pollen mass on Back $30-45 m$, wb Remarks about spiders making nets on plants which afford nectar $4187 x 419$ 17-18u "Alsdennlseiner", 20-21u "Alsdenn|geöffnet", 28-29m, 42-45m 420 12-16m, 45X 421 32$34 \mathrm{~m} / 33 u$ "zuweilen"zehn", $38 u$ "vor 1 kleinsten", 44-45u "dasslansetzen" 422 28u "Muth-

massung", 34-35u "dergleichen | habe"|35-36u "dass I bestimmt" $34-40 \mathrm{w}$ so let flys escape or go to other flowers? 423 2-36w All this passage a priori reasoning V. vulpa $41 u$ "schliess | theils", 42-45m/45u "vielleicht I glatt", $w b$ If the flies were really imprisoned - this would be strongest case except perhaps Zostera of self impregnat. remember Figs 424 wt Nothing, for he could not found nectar in Beans 1-4m, 23-24u "dass ansetzen" 425 wt $\bullet \times$ Why do so few flowers, then, produce seed which he has insisted on as explained? $17 \mathrm{~m} / \mathrm{u}$ "jedesmal", $38-40 \mathrm{~m} / 40 \mathrm{u}$ "sondern \mid Art" 426 5-8m, 8-10m, 38-39m 427 $12 u$ "muss \mid leicht", $23-27 \mathrm{~m} / 23 a$ "Zustand" of ripe pollen stigma $46-48 m 42826 u$ "nicht verwelkt", 37-39m 429 9-11u↔, 12x, 14x, 21x, 34-35m $43017 x, 24 u \star$, 25u^, 27u "kleinen Fruchtknoten" 431 wt According to my notions all associated plants ought to be essentially dioecious (as single trees are) 4 6m, 15-16u "solfinden", 24-26u "Dielan", $28 x, 30 x, 36 u \leftrightarrow, 38 x, 40 x, w b$ The - is perpetuated like insects-plants Most plants seeds are perpetuated like wind - dioicious plant $4321 u$ "keinen Saft", $12 u$ "Stigmate gross", 14x, 16x, 27-28u "unansehnlich 1 Krone" $4332 x, 4-12[\ldots], 14 x, 40-42 m / 41 u$ "die 1 voller" 434 17-18m/18u "so |Stielen", $44 x 435$ 2-22x/ 14-15u "Die|grösser", 24x, 34-35u "die| weiblichen" $43634 x, 39-41$ m/40-41u "vielen weiblichen", $42 x 4374 x$, 17u "Irrthum", 18u "die| männlichen", 30-31u士 $43824 x 439$ 25$26 u \leftrightarrow, 42-45 \mathrm{~m} / 43-44 u$ "sehrlwird" $44018 u$ "Lütschen", 20-21u "ganzen|Körper", 22u "aber ITheile", 26u "keine Blätter", $29 u$ "weit \mid Stiel", $43 x 4412 x, 4 u$ "männlichen", $5 u$ "weiblichen", 10x, $12 u$ "weiblichen", $26 x, 28 x$ $44224-25 u \leftrightarrow, 27 u$ "längeren 1 sitzen", $33 u$ "aber I vorhanden", $38 u$ "einmal| weise", $39 u$ "welche lhervorgebracht", $44 x 4433 x 444$ 11x tab.i z tab.xx w Speak of it as seed (acherium) It is calyx which differs Tussilago is superflua Picris aequalis

STAINTON, Henry Tibbats A manual of British butterflies and moths 2 vols.; London; John Van Voorst; 1857 [CUL, GD]
(markings presumed to be by GD)
STEBBING, Thomas Roscoe Rede Essays on Darwinism London; Longman, Green \& Co.; 1871 [Down, I]
NB O/
STEENSTRUP, Johann Japetus On the alternation of generations trans. G. Busk;

London; The Ray Society; 1845 [CUL]
beh, ct, em, fg, gd, in, mn, oo, sx, t, ta, tm, y
NB1 It is clear in each successive stage of development, that the young are formed from what he calls germs, little aggregations of cells, \& that these go through regular gradations, in each stage; I do not know how they can be distinguished from ovaJun. 63/so my notion on * difference of true generations \& buds destroyed.-
NB2 Abstracted March 1857
p.1; p.2; p.3; p.6; p.13; p.23; p.25; p.31; p.43; p.45; p.71; p. 96
F.W. Fish almost normally have Trematoda within eyes
112; 113; 114
1 20-23m 2 31-35m 3 23-27m, 32-33m 4 1922? $632-37 \mathrm{~m} 1320-23 m, 30-31$?, 32-33? 23 $27-29 m$, wb so Medusa does not pass through state of Polype Owen $24 \mathrm{wt} / 1-$ $27 w$ This comparison of polyp-formed nurses $1-7 w$ with neuter Bees very loose indeed! [The nurse is a compound body \& larvae are not formed by simple section - wt/1-7w (which I imagine are more like Medusae than the Medusae larvae) $7 a$ "or" a $31-35 \mathrm{~m} /$ w This shows power of division at all periods $w b$ I do not think propagation at any time of life by division odd 25 4-6m/5-6u "belongs other" $3130 u$ "perfect 1 Medusae", 34-38m/35u "their" 43 1-3m 45 11-14m 46 17-20m, 38$40 \mathrm{~m}, \mathrm{wb}$ I cannot anywhere see that the foster generation is seminal $716-8 m / 7 u$ "originally from" 92 16m 96 29-32! 113 1-3m, 16-18x/!, $17 \mathrm{~m} / \mathrm{u} \leftrightarrow, 18 u$ "alsolsex", wb X Because males with aborted organs wd not have the proper instincts $\rightarrow 1145-6 m, 7-$ $10 w$ 〈CD? connected with end $10-13 \mathrm{~m}, 13-$ $37 w$ - analogous to common metamorphosis \& hence the bud-like system of generation returned $16-38 w$ The generative system supervening later in life ought $11514-25 m$, $w b$ Termes are Neuropterous insects

STEENSTRUP, Johann Japetus Hectocotyldannebsen Kjöbenhavn; Bianco Luno; 1856 [Down, I]

STEENSTRUP, Johann Japetus and LÜTKEN, Christian Frederick Bichagtil Kundskab om det aabne Hans Snyltekrebs og Lernaer samt om ... parasitike Coprepoder Kjöbenhavn; 1861 [Down, I by Steenstrup] \wp

STEPHENS, James Francis Illustrations of British entomology 2 vols.; London; Baldwin \& Cradock; 1828-29 [CUL, on B]

STEPHENS, ENTOMOLOGY
vol. 1, $522 w$ p27 $24 w$ p74 6 33-35m, 40-41m $71-30 \mathrm{~m}, 30 \mathrm{~m} / \mathrm{u} \leftrightarrow, 31-42 \mathrm{~m} 81 \mathrm{~m}, 26 u \leftrightarrow, 27 \mathrm{~m} /$ w Brinston Butterfly $1018 w$ clouded sulphur 24 41w Wood-white $272 w$ Black-veined White $2820 \mathrm{~m} / \mathrm{u}$ "12 Cynthias" 30 10w Heath fritillary $3223 w$ Small fritillary $3321 w$ Plantain fritillary $373 w$ Lesser silver spotted fritillary $3922 m / w$ Great fritillary $4017 w$ The Great Fritillary $424 w$ The dale common 37w The great Tortoise shell 43 32w The lesser tortoise shell $44 \quad 15 w$ Peacock $45 \quad 4 w$ Camberwell beauty $467 w$ The admiral 47 $23 w$ Painted lady 50 11w The purple emperor $524 w$ White admiral or admirella $5423 w$ Speckled wood $556-7 w$ The Gt. Argus or Wall B. 56 14w The Grayling B. 57 26w The martled White 58 27w The Gatekeeper 59 $18 w$ The meadow Brown $608 w$ The Ringlet $6438 w$ Scarce Heath 75 29w The Brown Hair Streak $7618 w$ Purple Hair Streak 78 $17 w$ The Green Butter. 79 22w The Copper $818 w$ Large Copper 85 5w The Azure Blue $864 w$ Bedford Blue 87 14w Argus Blue 88 $26 w$ Chalk Hill Blue $8936 w$ The Chifden Blue $9129 w$ The Blue B. 93 26w Silver studded Blue 94 27w Edged Brown Argus 95 13w White-spot Brown 97 19w Grizzle B 98 12w Dingy skipper $1007 w$ Chequered skipper 101 $15 w$ Small skipper $32 w$ Large Skipper 102 19w Pearl skipper
vol. 2, $2 w b$ L. nocturne p86 Semidiurne p140 35 25-27m

STEPHENS, James Francis Illustrations of British entomology vols. 3 and 4; London; Baldwin \& Cradock; 1829 [Down, on B]

STEPHENS, James Francis A manual of British Coleoptera London; Longman, Orme, Brown, Green \& Longman; 1839 [Down, I to $\mathrm{FD}]$
<markings presumed to be by FD>
STEPHENS, James Francis A systematic catalogue of British insects 2 vols; London; Baldwin \& Cradock; 1829 [CUL, pre-B] gd, v
(untranscribed w : names of places where $C D$ has seen the species listed)
〈some w not CD〉
vol. 1, $27 w, 12 w, 18-20 m, 31 w$ Hope 39-40w $37 m, 13 w, 25 w, 38 w 41-2 w, 8 w, 25 w, 29-$ $30 m$, wb $526 m 611-12 w 78 m, 16-17 w 8$ $15 w, 32 w 914 w, 23 m, 34 w 108-9 w, 12 m, 19-$ $20 w, 30 m 1115-17 w$ Hope and Thompson $27 w, 32 w 122-3 w, 12 m, 22 w$ Hope $32 w 131-$
$3 w, 8 m, 16 w, 18 w, 20 w, 29 m, 35 w, 38-39 w 14$ $5 w$ Waterhouse $8 m 1510-11 w, 14 w, 21-24 w$, 31-32w $1613 m, 21 m, 32-33 m, 40-41 w 1711-$ $12 w, 20-21 w, 26 w, 31-32 w, 36 w, 41 m 186 w$, $7-22 m, 14 w$ Waterhouse $24 w, 40-42 \mathrm{~m} / 40 \mathrm{w}$ A. Cooper 43 w Mr Waterhouse 19 14-16m/w, $37-39 m 207-9 w, 15 w, 21 m, 26 m, 34 w, 37-$ $38 w, 42 w 211 w, 4 w, 11 w, 23 w, 27 w, 32 w$, $41 w 223 w, 6 w, 10 w, 25-26 w, 39-40 w, 235 w$, $11 w, 16 w, 19 m, 24 w, 34 w, 37 w, 39 w, 40 w$, $41 w, 44 w 2415 w \mathrm{Mr}$ Waterhouse $9 m, 16 w$, $21 m, 26-27 w, 32-34 w, 38 w 256-8 w, 32 w, 41 m$ $269 m, 16 w, 19 w, 22 w, 31 w, 33 w 271 w, 7 w$, $19 w, 22 w, 26 w, 32 w, 38 w 281 w, 5 w, 8 w, 9-$ $11 \mathrm{~m} / 9 w, 16 w, 18 w$ var. $20 w, 26 w, 29 w, 36 w$, $38 w, 41 w 295 w, 21 w, 23 w$ Hope 26w, 41w 30 $10 w, 18 w$ Hope $30 w, 31 w, 33-34 w, w b$ Waterhouse $3113-14 m / 13 w 3214 w, 34 w$, $37 w, 43 w 3334-36 w 341 w, 6 w, 15 w, 18 w$, $23 w \bullet, 29-30 w, 36-37 w, 40 m 3518 w, 27-28 w$, $30 w, 34 w$ Waterhouse $40-42 m 36$ 18-19w 37 $19 w, 21 w, 23 w, 28 w, 32 w, 34 w, 37 m 381 w$, $13 w, 15 w, 18 w, 29 w 3911-12 w, 27 m, 34 w 40$ 31-32w 41f w 42f w 43f w 44f $w 459-10 w$, $22 w, 35 w 4625 w 4832-34 w 48 f w 494 w$, $12 w, 15 m, 19 w, 23 w, 30 m, 35 w, 39 w, 44 m 50$ $5 w$ Hope $7 \mathrm{~m}, 10-11 \mathrm{w}, 13 \mathrm{~m} / \mathrm{w}, 18 \mathrm{w}, 24 \mathrm{w}, 28 \mathrm{w}$, $34 m, 39 w, 43 w 516 m, 19-20 w, 21 w, 24 m / w$, $28 m, 30-31 w, 34-36 w 5211 w, 18 w, 21 m, 29 m$, $36 w 5314 m, 26-28 w 5432 w, 37 w 55$ 5-6w 56 $41 m 5727 w$, 30w $5830 \mathrm{~m} / \mathrm{w}$ Hope 59 11w, $20 w 604 w 211 \Uparrow 20 m 221 \Uparrow 19 m$, $\uparrow 14 m$, $\uparrow 6 m$ $2223 m 2231 m, 6 m, 15 m, 24 m, 27 m, 31 m$, $34 m 22416 m, 25 m, 33 m 2254 m, 26 m, 32 m$ vol. 2, 28 11-14z, $27 m$ 28f $w 37$ wt Moths

STERNE, Carus (i.e. Ernst KRAUSE) Werden und Vergehen Berlin; Gebründer Borntraeger; 1876 [CUL] \wp

STERNE, Carus Werden und Vergehen 2nd edn; Berlin; Gebrüder Borntraeger; 1880 [Down]

STEUDEL, Ernst Gottlieb Nomeclator botanicus Stuttgart \& Tübingen; J.G. Cottae; 1841 [CUL]
sx, sy, wd
NB p. 112
Poinsettia Cyanophyllum Hot House Plants Azalea anaena
Hibiscus (Abutilon) allied to Viscus (Hooker) Rudgea Rubiaceae dimorphic
part 1, 5b $48 m$ 95b $10 m, 18 m, 20 m, 26 m$, $32 m, 37 m, 41 m, 46 m, 48 m, 52 m, 54 m, 58 m$, $59 m, 63 m, 65 m, 68 m, 72 m, 77 m, 78 m, 83 m 96 a$ $2 m, 5 m, 12 m, 18 m, 22 m, 25 m, 26 m, 28 m, 31 m$,
$37 m, 47 m, 50 m, 53 m, 58 m, 64 m, 66 m, 72 m$, $80 \mathrm{~m} 96 \mathrm{~b} 5 \mathrm{~m}, 7 \mathrm{~m}, 12 \mathrm{~m}, 13 \mathrm{~m}, 15 \mathrm{~m}, 22 \mathrm{~m}, 33 \mathrm{~m}$, $37 m, 39 m, 42 m, 47 m, 49 m, 50 m, 53 m$ 112a 50 m 118a 35-37m/35u "hypogaea" 256 zt 450b $73 m, 74 m$ 451a $1 m, 32 m$, $33 m$ 494a $14-15 m /$ $14 u$ "uncinatum" 494b $82 m$ 495b 43 m , 64 m 496a $3 m, 6 m, 59 m 496 \mathrm{~b} 45 m$ 507a $29-32 m$, 34-37m, 45-50m, 53-58m 507b 7-12m 559a 61m 601b 6 m 677b $67 \mathrm{~m} / \mathrm{u}$ "cinereum" 678a 35-37m $/ 35 u$ "Endressii" 678b 10m 679b $20 \mathrm{~m} / \mathrm{u}$ "Richardsons", 66m 681b $50 \mathrm{~m} / \mathrm{u} \leftrightarrow 766 \mathrm{~b}$ 80-84m
part 2, 51a $74 m, 75 m$ 51b $8 m, 14 m, 26 m, 63 m$, $83 m$ 52a $4 m, 54 m$ 52b $26 m, 27 m, 43 m, 62 m$, $71 m, 74 m$, wb 14 94b $75 m$ 106a $30 m, 32 m$, $57 m, 60 m$ 325b $39 m, 63 m, 75 m$ 326a $75 m$ 326b 18 m 386a 58 m 391b wbct 395a $64 m$ 590a $26 m, 45 m$ 748b $13 m$

STEWART, Dugald Philosophical essays 3rd edn; Edinburgh; 1818 [ED, CUL.1900]
$\langle p r o b a b l y$ CD $\rangle 415 \Uparrow 10-6 m 416 \Uparrow 12-10 m, \Uparrow 2-$ $1 x$

STONEHENGE (i.e. John Henry WALSH)
The dog London; Longman, Green, Reader \& Dyer; 1867 [CUL]
br, cs, he, sl, ta, tm, v, y
NB - Reversion in $3 \& 5$ generations - 173 Reversion
175 Breeding in \& in

- Shows how soon Bull-dog form is eliminated-
179 \& 183 good on crossing Bull-dog \& Greyhound
Period of adultness in dogs - 187 - Periods of adultness
188 Breeding in \& in; 196
223 form of young animal- cannot be selected
Reversion Close interbreeding Crossing, elimination of character Period of adultness Qas Form of young * Dogs
118 6-15m/7-9"..." 173 18-27m $174 \quad 1-13 m$ 175 13-17m 177 1-4m $179 \quad 7-17 m / 10 u \leftrightarrow 181$ $4 w$ child, 1st yr $1821 w$ grandchild $2 d 1831 w$ grgrchild 3d 2-4m,5m,6-8m $1841 w$ grgrchild $18716-19 m 18810-14 m, 17-20 m 1891-5 m$, 15-22m 190 2-4m 223 2-5m, 14-16m

STRASBURGER, Eduard Sur la formation et la division des cellules revised edn; Jena; Herman Dabis; 1876 [CUL, I] \wp

STRASBURGER, Eduard Über Zellbildung und Zelltheilung 2nd edn; Jena; Hermann Dabis; 1876 [Down]

STRASBURGER, Eduard Zellbildung und Zelltheilung 3rd edn; Jena; Gustav Fischer; 1880 [Down, I]

STRAUSS, David Friedrich Der Alte und der neue Glaube 2nd edn; Leipzig; G. Hirzel; 1872 [Down]

104 11m
STRICKER, Salomon Handbuch der Lehre von dem Geweben des Menschen und der Thiere 5 parts; Leipzig; Wilhelm Engelmann; 186872 [Down] \wp

STRZELECKI, Paul Edward de Physical description of New South Wales and Van Diemen's Land London; Longman, Brown, Green \& Longman; 1845 [CUL, I]
$\mathrm{f}, \mathrm{fo}, \mathrm{gd}, \mathrm{h}, \mathrm{is}, \mathrm{mg}, \mathrm{no}, \mathrm{se}, \mathrm{sp}, \mathrm{ta}, \mathrm{ti}$
NB Abstract March 57; 143 Van Diemens long an isld for coast elevated 100 ft 143 so that animals cannot have passed from one isld to another, recently
56 .
254 Proteaceous leaf Bulinus \& Helix 296 Van Diemen Carbonifer series Morris
302 Diprotodon Marsupial. Pachyderma Fossil to 312 (not important)
314 List of Animals \& birds common to Australia \& Van Diemens Land
347 Sterility of one race of Mankind with another.
352 number of natives Van Diemens Land
143 23-26m 254 2-16m (Darwin, R. Brown, G.B. Sowerby) $2708 w 12716 w 22721 w 2$ $7 w 314 w 421 w 52735 w 617 w 72745 w 8$ 275 20w 9 New genus $27613 w 925 w 10277$ $7 w 1117 w 1225 w 132785 w 1412 w 1525 w$ one same $2797 w 1628 w 17280$ 10w 18281 $6 w 192827 w 2026 w 2128318 w 222844 w$ 23 20w $242855 w 2528 w 262865 w 2723 w$ $282879 w 292882 w 3028 w 312898 w$ not new $22 w 322904 w 3329110 w$ or $342961-$ $3 m 301$ 34-37m 302 9-12m 303 26-28m 305 $3-4 m, \quad 31-33 m, \quad 34-37 m \quad 30631-32 m / 31 u$ "marsupial" 309 32-35m $31032-35 m 311$ 22$30 m 312$ 9-14m 314 wt x means common $23 m 3159 x, 18 x 3161 x, 7 x, 25 x, 29 x 3171 x$, $6 x, 8 x, 12 x, 14 x, 16 x, 18 x, 27 x, 30 x, 33 x 318$ $4 x, 15 x, 18 x, 20 x 3199 x, 14 x / ?, 16 x, 32 x 320$ $10 x, 23 x, 33 x 3213 x, 5 x, 7 x, 12 x, 14 x, 22 x$, $28 x 3222 x, 14 x 3238 x, 23 x, 25 x, 27 x, 32 x 324$ $15 x, 20 x, 28 x 3255 x, 8 x, 13 x, 17 x, 19 x, 21 x$, $23 x, 25 x, 27 x, 29 x, 31 x, 33 x 3263 x, 5 x, 8 w$ not $16 x, 21 x, 27 x, 30 x, 32 x, 34 x 3272 x, 8 x$, $10 x, 13 x, 15 x, 17 x, 20 x, 22 x, 25 x, 29 x, 31 x 328$

STRZELECKI
$1 x, 4 x, 10 x, 12 x, 17 x, 20 x, 23 x 24 \mathrm{x}, 28 \mathrm{x}, 30 \mathrm{x}$, $32 \mathrm{x}, 34 \mathrm{x}, 36 \mathrm{x} 3291 x, 3 x, 5 x, 7 x, 9 x, 11 x, 13 x$, $15 x, 17 x 3471-8 m$

STURM, Carl Christoph Gottlieb Über Raçen der landwirthschaftlichen Hausthiere Ebberfeld; Büscher; 1825 [CUL]
beh, cc, ch, cs, dg, h, he, hy, in, or, phy, rd, sl, sx, t, ta, tm, ud, v, wd, y
NF This book shows that any laws can be made out, in accordance with authors own observations on such ill defined points as resemblance to parents \&c- The only way \& that poor is to take indifferent peoples statements \& from such statements build facts. Reason for quoting \& for authorities NB p15 to
SB $\square \mathfrak{R}$
16 Rule of ant. part taking after father NQ
82 On weakening of cows maternal instincts Q
85 Q In districts where cattle worked, it is well known young are more easily broken in - so in Pampas Horses) Compulsory instinct. 104 NQ Horns always after Merino Ram: one cross from Horned Bull gave Horns to Hornless Herds, (because a part previously lost, so tendency to return.- (N.Q. in Ch. 9)
107 Attention quicker or slower according as we take male or female of H \& cross it with B.

67 drawn back neck in alpine sheep like Alpine kinds
120 Selection
ii $1-9 \mathrm{~m} / \mathrm{w}$ does not always quote his authorities $54-12 w$ longer a variety exposed to any condition greater the change \& then harder this change to vary $78-15 w$ Head most important sure race-character amongst intellectual animals $153-6 \mathrm{~m} / w \mathrm{t} / 1-$ $14 w$ general forms of heads of domestic races especially differ from each other, even in horses, \& even in cows $1614-17 \mathrm{~m} / 13-26 w$ Father gives heads, \& mother hinder parts is general rule. Some exceptions do not destroy the rule! $23-24 m, 26 u$ "Daubenton", $29 \mathrm{~m} / a$ "Landschaf"/wb Sheep crossed with Merino ram head \& fine wool on anterior part of body take after father - case given in p18 \& in p19 with Birds anything can be proved! $171-30 w$ His laws hold to hybrids as well as Mongrels $187-8 m, 13 m 19$ wt HofackerO gives many cases of changes in colour in Foals as they grow 2-18w Muscovy \& drake crossed with common duck follows same law $2 u$ "türkischen", 7-8u "Jungelähnlich", 10$14 m / 11-12 u \leftrightarrow, 15-16 u$ "Kopfeslvon", 25-27w
\& crossed geese \& crossed pheasant 20 1$7 w$ foals from old stallions have old looking heads!! Bosh. not in men $=10 u$ "Im \mid Bande", $11 u$ "Maulthier", $13 u$ "Maulesel", 27-28m/27u "Alle | haben" 28 u "Mutterl dem" 21 1-2m, $3 u$ "Kopfes 1 Glieder", 21-22u士 22 2-8w Size of head varies much in bulls compared with size of body $239-19 w$ Eyes \& ears vary much in races of cows \& horses $248-10 w$ Horns vary in individuals of same race 17$25 m, 21-26 w$! Quoted more curled the wool the more the horns $w b$ introduce in relation to teeth \& pairs $258-12 w$ The hair on head often characteristic $15-19 w$ one race of sheep with woolless head another with head covered with wool 26 wt \times Can convert one race into another most preferably by crossing of the male $1 x / w \leftarrow$ Can 30 wt N.B These enumerations of differences merely show that all parts differ - $311-2 m 32 w t$ Fig. wrong $4230-33 m / 28-33 w / w b$ No authority for sheep in S. Sea loosing wool 47 $8-12 w$ Cabbages change forms 48 wt White Cabbage seed planted in Naples gave Black-Kohl but generally cauliflower?? 2$13 m / 8 u / w \notin 15-22 m / 16 u$ "mir" $/ 20 w \times \mathrm{xa} w b \times$ (a) Says from own observation clearly made out that the naked huskless barley especially in wet year of 1823 always degenerates into common $491-13 m / 5 w$ (a) $w b$ One ought not to infer that climate causes these variations, but only that they cease being persistant under new climates 50 19-20m/? 53 19-24m/ w Says Cattle taken to E Indies decrease in size in few generations $5426 m 5526 u$ "brasilianischen" $/ 26-30 \mathrm{~m} / \mathrm{w}$ Brazilian (Rio Plata) proverbially best $5716 \mathrm{~m}, 24-28 \mathrm{~m} / \mathrm{w}$ Portuguese cows transported to Brazil give better milk 58 12-26m/12-21w quantity \& character of milk varies in diff. countries 28 $30 \mathrm{~m} / \mathrm{w}$ milk varies in different years 5915 m , $16-22 w$ candle manufacturers prefer Russian tallow 60 wt X he attributes this to the effects of climate but Youatt shows it is in breed \& can be got by selection 3-9w Much more tallow in Holland races, than in Tyrolese $9 x 6118 m \quad 28-29 u$ "dass I hat"/w of Men what wd Malthus say? 67 wb Remarks that true sheep have drawn back neck like all Alpine animals, wh is quite lost in lowland sheep - Mem Levington Sheep - $683 m 74$ $3-14 \mathrm{~m} / \mathrm{w}$ says all animals living in mountains as sheep, goats \& pigs are less fruitful than in low countries 79 14-15m/u "Consuetudol natura" $8123-29 m$, wb instinct of period of propagation has varied in all ruminants $\mathbf{8 2}$ $14-25 \mathrm{~m} / \mathrm{w}$ says cows from long generations habit do not care for their calves being taken
away directly here. $27-28 w / w b$ have lost maternal instinct $831-7 m / w$ says he has observed great differences in cows himself 19-20u "während I duldet"/9-27w The Merinos will let about any strange lamb suck them, because Spaniards kill weak lambs \& put strong one to them; hence individual Maternal instinct is destroyed. $8413-27 w$ says the acquired instincts of dogs are easily lost, so are natural ones, as burrowing \& wildness in Rabbits $8518-21 m / 18-26 w$ it is well known, in districts where oxen are used for draft they are easier broken in $-27-30 \mathrm{~m} /$ $27 u \leftrightarrow, w b$ good case of compulsory instinct $9928 u$ "Kartoffeln", wb many races of fruit \& Potatoes have risen from crossing! 100 11$16 \mathrm{~m} / \mathrm{w}$ Merinos originally a crossed breed $10110-13 \mathrm{~m} / \mathrm{w}$ Father chief, especially in mind $13 u$ "nurlbeträgt", $22 u$ "neue Mittelrafe", $23 u$ "Typus|Vaters" 103 1-6m/w Father chief?? 21-24m/21-30w Hair, horns \&c are most easily altered by crossing other parts more difficult 104 5-13w curly hair from alpine bulls transmitted to first cross $16-26 m / w / w b$ so with Merino rams, even in parts of body which have no hair in the mother: in one case length of tail not increased, but covered with wool $1055-10 \mathrm{~m} /$ w always has horn of Merino Ram 11-18m/ 14-21w A I think this is because lost part; or rudimentary $21-29 \mathrm{~m} / \mathrm{w}$ Hoof takes after father in Oxen \& Horse $w b(\mathrm{~A})$ In herd of invariably hornless cattle for many generations, one year of war the hornless bulls were lost \& horned ones were used, \& first year 9 out of 10 calves had horns 106 15-16u $1073-7 \mathrm{~m} / \mathrm{w}$ alterations slower according as sexes of different breeds are crossed 6u* "friessischen Ochsen", 12-16m/Qu 109 wt Memory 3-8m, 5-6u "Kunst fertigkeiten", 6-7u "Raphael's, Mozart's, Dante's" 110 11m, 29$31 u \leftrightarrow / 21-31 w / w b$ as many years as teeth require so many generations for new race!! $11118 u$ "dem 6ten", $19 u$ "oft"/w variation 112 wt in crossing head after father \& in succeeding generations the change travels down the Back! 4-6m 113 1-8m/4-5w instance of above! $16-19 \mathrm{~m} / 17 \mathrm{w}$ A wb A Has already shown that attention through father is so much quicker, as this does not depart much from original race $115 w t / 1-8 w$ A says to produce new race (viz to make a Merino breed come out of country sheep) it is very disadvantageous to commence crossing very unlike breeds, better begin with a half-bred \& so go on step by step. A $1-20 \mathrm{~m} 11726 u$ "gemeine Veredlung"/25-28w selection with crossing $30 u$ "individuelle Veredlung", wb
what we call selection without crossing 119 $6-10 \mathrm{~m} / \mathrm{w}$ good milking tendency goes by father: curious - 18-21m/w instance 120 15$26 \mathrm{~m} / \mathrm{w}$ Quote English selection best means least requires great knowledge \& a fixed forelook on stocks of cattle 27 u "Ductilitäut" $12110-14 m$, wb says particularly necessary to know influence of Father \& Mother in this kind of selection - this I doubt

SULLY, James Sensation and intuition London; Henry S. King \& Co.; 1874 [CUL] beh, r, t

NB Expressions; 29 to 36 goodish
$1716-21 \mathrm{~m} / \mathrm{w}$ What can I have said $297-39 \mathrm{~m}$
$3038-41 m 3424-32 m 36 \quad 14-24 m / 6-23 w$ This wd apply only to social animals

SULLY, James Sensation and intuition London; Henry S. King \& Co.; 1874 [Down, I; 2 copies] \wp

THE SUPERNATURAL in nature London; C. Kegan Paul \& Co.; 1878 [Down]

THE SURVIVAL London; Remington \& Co.; 1877 [Down, I by publisher]

SWAINSON, William The cabinet cyclopaedia, natural history: A treatise on the geography and classification of animals London; Longman, Rees, Brown, Green \& Longman; 1835 [CUL, S]
ad, beh, cc, ex, gd, is, mg, 00, no, sp, sy, t, ti, tm, wd

NF1 Read Kirby on Geograph Distribution of Insects
N.B. European Plants on Himalaya agrees with idea of great zone
∞ Swainson has written in the Geographical Dictionary
There is a great deal of nonsense talked about perfection of groups \&c as far as I can discover; some families have mingled characters \& varied habits, others confined characters \& peculiar structure.-
NF2 $\otimes_{\text {Chas Darwin }}$
p.8. Each country is said to have an original breed of own domesticated quadrupeds.p12 General aspect of forms from different countries
p. 17 No large animals in Madagascar
p. 21 waders peculiar to Europe
p. 22 Parrots confined to particular isis -
p. 24 soft billed birds best characters taken from-
p. 26 Many genera in Europe

SWAINSON, GEOG. AND CLASS.
492 Lions
50 Malacca birds peculiar
55 European birds go to Asia not v versa
58 North Australia like Africa
69 Mexican Ornithology
106 Australi genus in S. Africa
110 Madagascar
115 Australia \& 118
NB I see grallatores greatest range among birds
Antelopes in North America
p107 Barn Owl S. Africa
SB $\square \beta$
8 says neither temp - food, foes \&c account
for local distribution - good to quote him as an example of ignorance - something must check - See about nightingale in Bechstein. 12 show how climate is given up. What a contrast between Java \& Madagascar N. Guinea. New Zealand \& N. Caledonia as far as is size of Mammals.
21 Waders greatest ranging Birds
50 Analogy of S. Asia \& Africa (Probably much extinction in Tropics series before glacial period)
111 on relation of Mammals of Madagascar \& India
$334-38 \mathrm{~m} / \mathrm{w}$ Motacilla - nightingale 7 19-31m $87-18 m, 35-39 m \quad 12$ 1-6m 17 wt New Zealand Caledonia New Guinea contrasted with Sumatra \&c \& c \& England $4-9 \mathrm{~m} / 5 \mathrm{~m} / \mathrm{u}$ "absencel Madagascar", 11-16m 21 15-29m 22 $27-35 m / 32-35 m 2422-25 m 26$ 11-16m, 21$39 m 271-13 m, 30-35 \mathrm{~m} / \mathrm{w}$ because better known? $297-20 \mathrm{~m} / 10-11031$ 35o/u "perfectly naturalized" 35 zb 39 29-30o 48 5-6o, 12-130, $23-38 m \quad 49 \quad 22-39 m \quad 50 \quad 24-30 m \quad 51 \quad 1-10 \mathrm{~m} / \mathrm{w}$ like Elephants driven down $5541-43 m 582-$ $7 m, 9-11 m / ? / w$ Brown 69 28-36m 72 8-9o 81 8-10o 87 20-24o $92 \quad 7-90 \quad 103 \quad 35-380 \quad 104$ wt Monkeys even in Cape 35° ! $1-2 w \mathrm{~N}$. America 5-11m $10530-38 \mathrm{~m} 106$ 21-31m, 3840 m 107 31-39m $11031-39 m 111$ 2-18m, 31$39 m \quad 114$ 29-33m 115 1-21m/20-24w Mem Brown on Birds $1161-13 \mathrm{~m} / 8-11!/ 4-8 w$ Opossums make nests 118 2-28m 119 18$26 m, 35-37 o 243 w t / 1-3 w$ Every word in this page will serve for the Caracara - an aberrant Eagle $1-36 m 245 w t / 1-3 w$ it would appear that some circles unite many characters \& varied adaptations others more confined 4-7m 357 29-36m (F. Cuvier)

SWAINSON, William The cabinet cyclopaedia, natural history: The natural history and classification of birds 2 vols.; London; Longman, Rees, Orme, Brown, Green \&

Longman; 1836-37 [CUL]
beh, ch, ds, gd, ig, no, sp, sy, t, tm, v, wd
vol. 1 NB 166 Monkey noise a call note 31 Expressions p. 31 - Crests *

- 29 Head ornate

I do not allude to call notes \&
167 on singing of Birds to
185 Nests
29 26-39m, $37 u$ "Guinea-fowl", $38 u$ "havel horns" 31 10-11m/11u "danger langer" 72 fig.w angle too ac little too sharp too coarsely shaded 166 4-15m, 27-32m (Buffon) 167 8-9u "autumnal l robin", 13-14u "exerted 1 where", $18-25 m 1687 w$ cranes $10-13 m, 15-20 m, \Uparrow 2 u$ "of perchers"/wb swallow $1695-7 m, 9-13 m$ $17021-26 \mathrm{~m} / 21 u$ "swallow", $30-36 \mathrm{~m} / \mathrm{w}$ cawing a tone song $17435-38 \mathrm{~m} / 35 u$ "Insessorial" 177 23-30m 185 31-37m
vol. 2 NF 11 is Falcunculus cristatus a shrike? Vanga a crow?
SB $\square \beta$
11 Falcunculus. Australian Shrike tears off Bark \& hunts for insects; do well to insert in Ch 8 on Transition, when 1 treat Bird becoming like Woodpecker
112 Vidua, widow Bird of Cape wd suffice for Ch. 6
$5 \quad 13-18 m \quad 6 \quad 8-15 m / w$ This should be considered in the Fissirostrial type $10 w b$ It is like Echidna \& Histrix having spines 11 30$39 m / 31-33 w$ Examine this Bird $w b$ N.B. XX It is not difficult to see how all types would be repeated. because all spring from one stock \& same circumstances. which makes order, would make same number of representative wild forms $144-8 w$ what difference $6-10 \mathrm{~m} 15$ $1-20 \mathrm{~m} / 4-8 w$ thoroughly unphilosophical 307 10-15m 308 11-15m

SWAMMERDAM, Jan The book of nature London; C.G. Seyffert; 1758 [CUL, pre-B, S Charles Darwin 1827]
title page co Josiah Wedgwood to Erasmus Darwin, to R.W. Darwin to Charles R. Darwin to William Erasmus Darwin 1858
A present from my ingenious friend Josiah Wedgewood to Erasmus Darwin F.R.S.
(CD) This book 1 wish to be given to George
part 1, 125b 35-41m 132a 3-8m 217b 14-22m
SWANK, James Moore Statistics of the iron and steel production of the United States Washington, Government printing office; 1881 [Down]

SWINHOE, Robert Narrative of the north China campaign of 1860 London; Smith, Elder \& Co.; 1861 [Down, I]

SWINHOE, Robert Notes on the island of Formosa London; F. Bell; 1863 [CUL, I]
beh, cc, gd, gr, ig, is, $s x, t, t a, t m, v$
NB Introduction 0.29
Ibis p.12; p.47; 57; 75; 86; 103
p. 2 to 5 Zoolog Proc

Formosa Ornith lbis P 44 Female assuming late Plumage of Male; 50. Petrocinala; 68 Oriolus do do - but rarely; 131 \& 132 Squacco Herons
SB $\square \beta \propto_{0}$
Introduct lbis p. 29 general character of Fauna of Formosa- distance from China
p. 12 lbis - grades of differences \& variation in Birds of Formosa
p47 example well-worked out in Lanius
57 do in Garrulus
75 Drymoeca - less marked vars
86 Wagtail more complicated vars like British - conditions of life 103 Centropus do.-
Zoolog. Proc.
p. 2 to p. 5 general characters of mammals, also to slightly differ in characters of colour slight vars, some distinct
Good for Variation - Geograph. Distrib.- and effect of Conditions of life.-

Introduction, 29 34-56m
Ornithology of Formosa, 12 11-25m, 26-28m $1311-13 m 44 \geq 23-28 u \pm, 27-35 m$, wb Ibis Jul 1863 p. 2247 1-11m, 13-20m $5011-16 m 57$ 17-27m 68 23-28m/26u "green I spotted" $/ 29 u$ "This|much" 75 16-19m 86 5-30m 103 2-6m $13110-13 w$ sexes alike same places $24-$ $32 \mathrm{~m} / 27-28 u$ "splashed I very" $13216-20 \mathrm{~m}$ Mammals of Formosa, $21-4 m, 44-47 m / 46 u$ "generally darker" 3 5-9m, 14-15m, 17-22m, $27-33 m, 43-46 m, 48-50 m 41-6 m, 10-19 m 5$ 29-31m

SYME, Patrick Werner's nomenclature of colours 2nd edn; Edinburgh; 1821 [CUL]
sx, tm, v
NF
Beak of female; ash grey males nearly black Legs \&c exact orange - few

Soles of feet yellow, skin of beak with very faint - legs partly - shape of feathers becomes same - lower mandible \& part of upper - grey

TASSO, Torquato Gerusalemme liberata 2 vols; Firenze; 1821 [CUL.1900]
3 "vi".m, "viii".m 4 " x ".m 8 "xxiii". $m 10$ "xviii".wt 21 "lxi".X

TAYLER, John James Christianity London; Williams \& Norgate; 1868 [Down]

TAYLOR, John Ellor Flowers London; Hardwicke \& Bogue; 1878 [Down]
NB O/
TAYLOR, Richard (ed.) Scientific memoirs vol. 1; London; 1837 [CUL]
che, mhp, t

NB Nothing October $/ 56 /$

vii $25 m$ (Ehrenberg) $2246-10 \mathrm{~m} / 7-8^{\prime \prime} . . . ", 9-$ $10 z, 22-26 m, 27-45 m 2255-9 m, 11-15 m, 15-$ $21 m, 33-38 \mathrm{~m} / 33-34 u$ "the 1 multiplicity" 227 wb The whole Universe a life, the plant a crystal, a life - i.e. his definition, but what commonly called life, a unity producing a different class of complexity than other unities.- Good idea- to show life only laws like universe $23435-42 \mathrm{~m} / 37-39$?, $w b$ Is there more unity in zoophytes 236 15-16u "utterly incapable" $/ ? / 9-17 \mathrm{~m} / \mathrm{w}$ Mem. plants gain habits 25-28m/? 240 16-19m/18w Zoophites 411 14-38m

TEALE, Thomas Pridgin Dangers of health London; J. \& A. Churchill; 1878 [Down]

TEGETMEIER, William Bernhard The poultry book 11 parts; London; Orr \& Co.; 1856-57 [CUL]
cs, he, v, wd, y
part $1 \mathrm{NBO} /$
part 2 NBO/
part 3 NB p.47, p. 48
$47 \quad 26-27 \mathrm{~m}, ~ 27-28 m / Q \quad 48 \quad 10-12 \mathrm{~m}, 10 u$ "the lquill"
part 4 NB Cuckoo Cochines; 53; 56
52 31-33m/33u "Cuckoo" 53 26-28m
part 5 65; 66; 72 Correlation of Eggs and plumage; 76
$653-5 m, 32-37 m 6635-37 \mathrm{~m} / \mathrm{w}$ like wild 72 8-10Q, 10-14m, 36-37m $7625-28 \mathrm{~m} / \mathrm{Q}$
part 6 NB 86; 87
$861-6 m, 38-40 \mathrm{~m} 876-11 \mathrm{~m}, 12-15 m$
part 7 NB 89; 95 good Reverses
$\chi_{0} 2$ [Q ?] non * sitters producing sitters not so with me
98; 99; 100 spur often on Hens; 93 related Characters of Spanish not shown early

TEGETMEIER，POULTRY BOOK 1856
It would be good to cross 2 distinct hen－ tailed breeds \＆see if tails wd not come－
Cross 2 breeds of which chicks are not barred \＆see if not come barred．
$897-11 m, \quad 36-39 m \quad 90 \quad 11-14 m \quad 93 \quad 1-5 m$ $9517-21 m, w$ Reverse $Q \varkappa_{0} 20-21 m / 21 u$ ＂sits lsteadiness＂ $9724-25 \mathrm{~m} / \mathrm{w}$ Andalusians 25－29m／27u＂themlweeks＂ 98 5－7m 99 $1-3 \mathrm{~m} / \mathrm{Q}, 41 \mathrm{~m} / u$＂is 1 sharp＂，$\uparrow 1 \rightarrow 1001-2 \mathrm{~m} / 1 u$ ＂set｜leg＂， $2 u$＂that \mid softer＂， $37-41 m / 39 u$ ＂markings 1 reason＂
part 8 NF Plates of Ptarmigan NB 102；111； π_{0} Comb if not clipped fearful vantage fighting
$101 \pi 9-8 m / u \leftrightarrow / w$ in same sub－breed 102 $13-15 \mathrm{~m} / \mathrm{w}$ very different from other breeds 17 u＂henslformer＂， $19-20 \mathrm{~m}, 30 \mathrm{~m} 10314-$ $16 \mathrm{~m} / 25-27 \mathrm{~m} / \mathrm{w}$ a relation between Hens \＆ Cocks $\uparrow 11-10 \mathrm{~m} / \mathrm{m} / \rightarrow / w b$ I think a Cochin Cuckoo yes p． 53 \＆Dorkins（I think I have seen a Cuckoo Spanish at Anerly $\uparrow 9-5 m / w$ loss of character $106 \Uparrow 16-10 \mathrm{~m} / \mathrm{w}$ Boldness $111 \Uparrow 16-15 m$
part 9 NB 115 to end；123；133； 123. Sexual selection．

SB \quad－

p． 123 Pheasant attached to single Hen．
124 Hybrid Pheasant \＆Fowls
－ 133 crossed Hamburgh good motherings．
$115 \Uparrow 13-11 m 11613-15 m$ ， $19-7 m 119$ 9－11m， 26－29m $122 \Uparrow 17-13 m, \Uparrow 14-13 m<1232-5 w$ it is an ambiguous variation $21-22 m$ ， $\Uparrow 12-11 \mathrm{~m} / \Uparrow 11 u$＂somel favourite＂$/ w$－Selecting Bird T3Q $1243-6 m, 7-9 m, 10-11 m, 14 u$ ＂extraordinary wildness＂，14Q＠，15u＂tails very＂， $16 u$＂andlwas＂，17－20m，19－20u ＂whilst I pheasant＂，19－21m／w Prepotency Qus $21 u$＂entirely black＂，介14u＂colourldark＂， $\Uparrow 14-4 w$ Different race of Fowls unduly affects hybrid with Pheasant shows Pheasant not preponder in colour $Q \propto_{0} 125$ $\Uparrow 8-5 m / \Uparrow 7-6 u$＂that Inest＂／w Q ag death of embryo $\uparrow 4-3 m \quad 126 \quad 8-12 m, 9-13 m \quad 129$ 13－14m $130 \Uparrow 7-4 m 1315-7 m$ ，$\uparrow 12-10 m, \Uparrow 6 u$ ＂threelvarieties＂ 133 介7－4m／Q® 135 5－6m， 6－7Q 136 8－11m，14－15m，$\uparrow 18-14 m, \Uparrow 8-7 m$ ， $\Uparrow 7-4 m / \Uparrow 7 u$＂Cuckoos＂，$\Uparrow 6-5 m$ ，wb Spangling runs through several breeds
part 10 NB several pages marked
\pm 154．relation of sterility \＆Hen－tailed Sebright Bantams．
142 9－12m 148 介5－2m 150 10－13m，介13－10m， $\uparrow 9-4 m \quad 153 \quad \Uparrow 6-1 m \quad 154 \quad 5-9 m, \quad 13-15 m$ ， 16－18m风，25－28m 1569 ＂assume 1 tinge＂，11－ $12 \mathrm{~m}, 18 u$＂twolhere＂，19－22m， $\mathrm{m}^{23-26 \mathrm{~m} /}$ $24 u$＂for 1 years＂／Q
part 11 NB $\neq 162$ Chicks of silky Fowls
Q－

163 Silkiness not transmitted to offspring plate＂White Aylesbury Ducks＂．w Lemon Beak 158 18－21m，$\Uparrow 6-3 m 159$ 18－20m／19u ＂Spangled Bantams＂ 161 wtw 161 $11-15 m / 13-15 m$ ，$\Uparrow 9 u$＂its｜hue＂ 162 1－3m， $12-14 m, \quad \Uparrow 17-13 m \quad 163 \quad 11-14 m \quad 164 \quad 12 u$ ＂Somellike＂， $13 u \pm, \Uparrow 10-5 \mathrm{~m} 16512-18 \mathrm{~m} / \mathrm{Q} 172$ $\uparrow 5-3 m$

TEGETMEIER，William Bernhard The poultry book 15 parts；London；Routledge； 1866－67［CUL］
beh，br，cs，f，fg，gd，he，hy，in，or，phy，sl， ss，sx，ta，ti，tm，v，wd，y
part 1 NB O／
part 2 NB Marked \＆referred to old Pages
$40 \Uparrow 4 m 41 \Uparrow 3-2 m 4219-20 m 461-2 m$ ，$\uparrow 13-$ $11 m / \Uparrow 12 u$＂consumelgrass＂

part 3 NB

Cochins produce many Cocks
p．49．New
p55 \＆p． 58 Q Brahmas crossed Breeds now true for Cochins \＆Chiltern greys a large var． of Malays．－Himalayan Rabbits
p72 \underline{Q} Crossed birds after moulting not true．－
Reversion in individual Birds
$4914 m / u$＂pectoral＂，介2－1m $5511-16 m 58$ $\Uparrow 6-1 m \quad 72 \Uparrow 3-1 m$ plate＂Silver Polish＂．w Black Poland with white white－Poland with black Silver Poland Golden Spangled Poland part 4 NB strong shells 78
Malays very small comb \＆wattles 76 new
－ 79 Interbreeding Q
73 1－2Q，9－11m／Q 76 介13－10m 78 15－17m 79 $1-6 \mathrm{~m} / \mathrm{w}$ Hens $\rightarrow / 25-30 \mathrm{~m}$ ，17－21u士，23Q／a ＂fact＂says $24 a$＂necessarily＂cause $24 c$ ＂the｜who＂，25－26＂．．．＂，25c＂breedinglin＂， 28－30＂．．．＂ 81 7－13m
part 5 NB Copied
－ 97 Old Cocks getting yellow Hackles Reverse in individuals
p102 Q in ch． 24 Spanish Fowls originally＊ Mediterranean origin
$974-7 m$ ，$\uparrow 1-13 m / \Uparrow 17-16 u \leftrightarrow 102$ 8－12m， $\pi 10-8 m / w$ Tender $\pi 3-1 m / \rightarrow 103 \quad 2-5 m$ ，介19－18m／介18u＂immenselface＂，$\uparrow 5-1 m 105$ $\Uparrow 6-2 m 106 \Uparrow 3-1 m$ • 107 14－16m， $16 m 119$ $17-20 \mathrm{~m}$
part 6 NB 123 new．form of sexual selection － 128 Black \＆white Games not breeding Q． － 40135 Interbreeding Game spurs extra on Game breeds．
121 11－12m，$\uparrow 10-8 \mathrm{~m} / \uparrow 8 u$＂early \mid precocious＂ $12317-23 \mathrm{~m} / \mathrm{Q} 凶_{0}, 25-26 m 1246 u$＂necklstray＂， $8 u$＂whole land＂，9－10u＂wings I powerful＂，10u ＂thighsimuscular＂， $18 u$＂plumagellike＂， $24 u$
＂beaklmassive＂，26u＂The spur＂， 27 u＂dense 1 leg＂， $28-29 m 125 \Uparrow 3-1 m / \Uparrow 2 u$＂arel savage＂ 128 $23-25 m 131 \Uparrow 12-9 m 1351-6 m, \Uparrow 14-12 \mathrm{~m} / \mathrm{Q} \mathrm{o}_{0}$ 137 3－6m $139 \Uparrow 8-4 m$ ，$\uparrow 7 \mathrm{c} / a$＂an＂ $\mathrm{An} \uparrow 7^{\prime \prime} . . . "$ ，介7a＂bird＂as＊Mr T＇s poultry works
part 7 NB p． 165 Pheasant male；p．155；157； 165，167 Hybrids
$150 \Uparrow 18-12 m \quad 1554-7 m$ ，8u＂pairs｜hens＂， $8-9 w$ Hens selected $11 u$＂Golden Mooneys＂， $14-16 \mathrm{~m}, 19 \mathrm{u}$＂hens＂，$\uparrow 4 u$＂the small ＂，$\Uparrow 1 \rightarrow$ $15620-22 \mathrm{~m}$ ，29＊ 157 介17－14m，介13u ＂year \mid feathers＂，$\uparrow 12-9 m 15813-18 w$ As also produced by crossing probably reversion－ $17 u$＂they｜pencilled＂， $17 c / a$＂ 8 ＂ 2 \＆ 8 17－ $20 \mathrm{~m} 163 \Uparrow 13-7 m \times 5$ 亿18－1m，介18u＂the single＂，$\uparrow 17 u$＂affection 1 common＂，$\Uparrow 13$＂．．．α_{0} ， $\Uparrow 13-11 u \leftrightarrow, \quad \Uparrow 10 u \quad$＂entertain lto＂，$\Uparrow 8 u$ ＂artifice lanything＂，$\uparrow 6 u$＂sooner 1 takes＂，$\uparrow 2-1 u$ ＂Extra－ordinary wildness＂ 166 介9u ＂Silver 1 Hamburgh＂，$\uparrow 9-8 w$ Pheasant male $\uparrow 7-5 m / \Uparrow 6 u$＂close pencilling＂ 167 19－22m，介14－12m，$\uparrow 9-7 m$
part 8， $17238-40 \mathrm{~m} 17320-25 \mathrm{~m} / \mathrm{w}$ no too young $30-32 m, 35-37 \mathrm{~m} 1752-5 m, 7-10 \mathrm{~m}$ ， $22-23 m, 23-28 m 18126-27 m 18418 m 185$ 24－26m，37－41m 191 9－12m
part 9 NB 204 Houdans
$20933-36 m / 36 u$＂and lhorned＂，$\Uparrow 1 \rightarrow 210$ $1-5 \mathrm{~m}, 26-29 \mathrm{~m}$
part 10， 219 26－29m，32－33m，40－41m，43u ＂are non－sitters＂ 222 9－10m／9u＂bright blue＂ $2243-7 \mathrm{~m} / 4 u$＂produced 1 had＂， $14-17 m 231$ $33-40 \mathrm{~m} 23440-42 \mathrm{~m} 2361-4 m$
part 11， 248 1－5m，11－13m 250 19－25m
part 12 NB 269 Turkey 271277
Fertility 280， 282 eggs Peacocks Q
285
269 14－23m（Baird） 271 20－23m（Baird） 277
28－30m，36－38m 280 18－20m 282 3－5m 285
$12 u$＂fiveleggs＂
part 13 NB O／
part 14 NB O／
part 15 SB $\square \beta$
The Poultry Book
p． 47 \＆ 48 Cochins－O middie－toe very long．－p． $41 \& 42 \&$ tail very short－ primaries very short．
p． 446 Cuckoo Cochins p．$* 46$ Cochins graze much－57＊49．Pectoral muscles little developed
65 Sykes on Fowls imported from Deccan Pigeons from Aegypt breeding at first（as did my African Fowls）
72＊Malays 81 eggs variable in size \＆ colour 〈u \langle Q＊78－chicken Q feathers slowly
p．76．97．Cuckoo Dorking Cock ， remarkable for having nearly same coloured
feathers in both sexes．
86．102．\＆ 107 Spanish－tender－p103． immense comb in both sexes．87\％ 103. Shape of Skull，affected by Comb
88．89． 105 Two strains of Spanish；one from Holland．－Q 106 get white patch at different periods $\langle u\rangle$
－ 90 p107．About Spanish Fowls not sitting p97．R
93 in Spanish Fowls great uncertainty in getting the cordedO white face
－ 95 p． 119 Two non－sitters produce sitting chickens．p． 133 do R
X 97 Spanish Audubons \Leftrightarrow p121 \Leftrightarrow get secondary male characters very early：crow at 6 weeks Q
99． 123 Pedigrees of Game Fowls extend ＊ 100 years
X 100． 124 Spur often present in Hens of Game．－（\＆savage）
100 Colours differ in cocks of several sub－ breeds of Game；more than Hens．X but p． 131 Hens（p．102）also differ much
193131 Cuckoo Game
X 103131 A Game sub－breed with Cocks \＆Hens alike
111．139．Comb a fearful vantage to foe． curious like injury for Beauty sake！
116 Pencilled Hamburghs described by Aldovrandi－X Cocks not pencilled．119 150 non－sitters
123 Spangled Hamburgh－p155 2 sub breeds underg to Pheasants
123．124． $165 \Leftrightarrow$ Pheasants selecting particular Hens to pair with
－ 165 \＆ 167 stronger－like Hyaenas
－ 124 Young Hybrid Pheasants ＂Extraordinary wildness＂Reversion．－R \＆
126 167 First crosses of breeds of Fowls \＆Hybrid Pheasants very large size
1292 ＊p．155 sub－breeds of Spangled Hamburghs
X 130 Hen－tailed Cocks p154 do strong generally not very fertile；［but Hen－tailed game are said to be so p．102］
135172 Polish Fowls at least 200 years old
$136172 \Leftrightarrow$ Difference in top－knot of Cock \＆ Hen Polish．－Hackles in Cocks correlation comb only rudimentary－wattle \＆Beard congenitive－Nostril 175 not so open； inter－maxillary bones absent．－ $\boldsymbol{\theta} \Rightarrow$
173 Blumenbach on the Skull－good
181 in some breeds wattles，in some beard．－
$\Leftrightarrow 175$ Correlation of Skull \＆Plume
\Leftrightarrow do form of comb
p． 136 Cuckoo $185 \Leftrightarrow$ Polish：Silver \＆Golden

TEGETMEIER，POULTRY BOOK 1866 Spangled．
p． 188 Sultans－p． 191 Ghoudkas－
p． 158 Bantams，length of feathers on leg－ Breed nearly extinct 159 Spangled Bantams p161．Breeds of Silk fowls p． 162 Degenerate in this country：Chickens Q very pretty canary－yellow－ 163 224 Silkness not transmitted，but colour of skin \＆bone is transmitted．
165．Ringless Fowls producing tail－feathers－ never true to colour．－
over
〈over〉
172． 209 Creve－coeurs．large toothed 2－horned comb．
150． 241 Origin of Sebright Bantams－ complex cross．
$\Leftrightarrow 156$ 248．White Bantams，when mature tend to assume yellow colour \＆ $\mathrm{Q} \Leftrightarrow$ this very heredetary－Reversion．－－so with Black－Bantams when 2 or 3 years old． Reversion．－R \Leftrightarrow
－New Geol 204 Houdans described \Leftrightarrow
210 Advantages of crossing Fowls
219 Guelders，Comb mainly a rudiment； Cuckoo Guelder－a sub－breed of polish．no top knot
224 Crossed Silky Fowls
231 good case of Reversion，without a cross － 234 ＊combs Immense Comb
236 Weight of Poultry \＆Ducks
250 Bantams with feathers on legs \＆ 2 outer toes longer than wing feather Ch． 25 Correlation of Growth

TEGETMEIER，William Bernhard Profitable poultry London；Darton \＆Co．； 1854 ［CUL，I］ beh，cs，sl，v

NB 17；18；24；27；28；32；37； 40
SB $\square \beta$
27 Black Cockins produced from Buff \＆ White－Cochins never fly
36 White lappet very uncertain in Spanish Fowl－（Selection）

17 28－30m 18 13－18m，20－22m，29－32m 19 $28-31 m \quad 20 \quad 16-31 m / 16-21 m / 21 u \quad$＂crumbly paste＂ 21 1－2m，14－18m 22 14－19m 24 1－11m， $26-32 m \quad 25 \quad 29-33 m \quad 27 \quad 1-4 m / 1 u \quad$＂small rudimentary＂， $31-32 m 28$ 11－13m 29 5－7m， 17－19m，27－28m $3012-14 m, 16-19 m, 28-32 m$ $312-3 m 3227-30 m 335-7 m, 8-10 m, 14-17 m$ $3424-30 m 354-7 m 365-8 m, 12-16 m, 19-20 u$ ＂long I comb＂ $3710-12 \mathrm{~m}, 30-33 \mathrm{~m} 392-3 m 40$ wto golden Hamburgh 2－6m，17－20m 41 6－ $8 m, 12 u$＂Creoles I grays＂ $423-6 m$

TEGETMEIER，William Bernhard Pheasants for coverts and aviaries London；Horace Cox； 1873 ［CUL，I］
cs
SB See to；p47．scent；112－114． crossing＊；＊
24 9－13m 47 5－12m 92 37－40m 93 18－23m， 24－27m 113 26－34m 114 2－11m

THOMAS，Cyrus Acrididae of North America Washington；Government printing office； 1873 ［Down］
NB 25
25 11－14m
\wp
THOMPSON，J．New，correct and complete ready reckoner Gainsborough；H．Mozley； 1805 ［Down，pre－B］
NB
THOMPSON，William The natural history of Ireland 3 vols．；London；Reeve，Benham \＆ Reeve；1849－51［CUL］
beh，br，cs，ex，gd，hy，ig，is，mg，oo，or，no， pat，sp，sx，t，ta，tm，v，wd，y

SB1 ix；xix；122；136；138；208；307；309； 311；329；339；341；366；373； 407 good cases of occasional migrations；Dixon＇s Poultry first part merely amusing；Index Corvidae Rare birds dull
SB2 $\square \beta$
ix Disease of Birds in England compared to continent \＆Ireland comp．to England．Odd against migration p22 Sea Eagle preferring Black Fowt－p39 Peregrine Falcons getting a mate when one killed－Eyries well known－ Ch． 5
xix on increase of Missel Thrush Ch 5 （p．122）
136 Q Thrush odd variations in place of nest \＆materials of
307 Carrion crow races in Ireland 208 different variety of Tomtits in Ireland \＆ England
309 Cross with Hooded
330 Q On Magpie changing place of nest from persecution－tame in Norway Q
366 On American Cuckoo in Ireland－
373 Kingfisher American do 407 Swallow \＆ Bittern
〈over）
\approx viz by leading the Bird to be constant in one or the other Method．－
Ducks
ix 16－23m xix 17－27m $2214-19 m$（Edmonston） $3913-19 m$

8

122 1-5m 136 18-20m, 25-27m 138 1-4m 208 1-6m 209 12-15m (Macgillivray, Jardine) 307 $17-18 m \quad 309 \quad 27-30 m \quad 311 \quad 3-5 m \quad 329 \quad 27 u$ "reward", 29-32m/31u "persecution", $36 m 330$ 1-8m (Hewitson)/1u "collection!notice", 28$33 m$ (Selby) 339 28-30m 340 23-27m (Jardine) 341 1-3m 366 5-14m (Temminck) 373 16-20m (Thompson) 407 20-24m (Yarrell) 434a 37-38c/ $w \notin$
vol. 2 SB1 $\square \Re$
p12; p19; 27; 42,4; 47,9; 60; 65; 69; 70; 85,8; 98; 103; 122; 133; 146; 164; 172; 228; 247; 256; 272; p314; p328
SB2 $\square \beta$
11 In Islay half Rock Doves chequered
15 Flight of Carrier Pigeon
49 Cases of grouse breeding in confinement
61 Decrease of Partridges, even to local extinctions, cause very obscure 314 Rails at same time
65 Q Different Habits of Partridge of Scotland \& Ireland in rising quietly or scream $69 \underline{Q}$ increase of Quails \& of those staying to breed 70 do Q
122 NQ our shore birds know Equestrian less dangerous than footman 133 Q Heron not afraid of Train
146 Q Herons breeding on the ground
172 Q American Herons in Ireland at time of Migration in America, which was case with Cuckoo
247 Q Breeding of Woodcocks in Ireland256 Q Case inexplicable Probably would not cross 254 thought to be lighter natural colour Q
272 Crested Snipes var. several shot.
328 Q Waterhen not covering eggs in a safe Place.

* 327 Waterhens fighting violently for females
$1117 u$ "in Islay" $/ 16-20 \mathrm{~m} / \mathrm{w}$ * Ireland $32-35 \mathrm{~m}$ (Andrews), 36u "Col. macularia" $12 \quad 5-9 \mathrm{~m}$ (Blyth) 15 1-5m 19 16-19m 25 29-37m 27 25$33 m 42$ 9-11m (G. White) $4421-23 m$ (Sabine, Eyton) 47 17-20m, $28 m 4912-16 m 604-6 m$, 8-11m 61 2-3u \rightarrow, $10-15 m$ 65 15-19m/19u "morel of", 31-35m 69 1-7m $705-8 m 852-7 m$ 88 wt singular so small a habit $1-2 m, 15-$ $21 m / 17-19 w$ different genus $98 \quad 32-35 m$ (Selby) 103 11-14m (Yarrell), 13-14u "ringed feathers", 14-18Q 16-18m/16u "several |ringed" 122 14-15m 133 31-35m/w game $14630-35 m$ (Jardine) 147 8-10m 164 11-12m, 16-18m (Selby) 172 27-33m (Temminck, Keyserling, Blasius, Schlegel) 173 1-2m 228 5-8m 229 2123 m 247 2-6m (Thompson) $25410-16 \mathrm{~m} 256$

19-27m (Selby) 257 1-4m 272 9-12m, 30m 314 9-16m 327 28-33m 328 13-22m
vol. 3 SB1 p17; p31; 39; p.44; 63; 68; 70; 102; 110; 323; 441; 457,8; 461,2,5; I have read only 1st vol. of Yarrell
SB2 $\square \beta$
31 Origin of Domestic goose - variable (good) p. 44 Domestication of Grey Lag: or Parents
63 Q Migratory instinct wearing off in 12 years in wounded geese
102 Division of flocks of Wigeons \&c into distinct flocks (Ch. 6)
441 Extension of frequency of Starling of late years, after loss.
457 Hybrid Blackbird \& Thrush (intermediate young)
458 Various Hybrid Swans to 462
465 Ages of Birds Ch. 5

- 39 \& 70 Hybrids Ducks \& Geese

17 1-5m, 33-35m 31 8-16m/11-12Q@ 39 1$7 m$ (Yarrell) 44 26-28m 63 20-26m 68 1-5m (St John) 70 31-34m 102 9-13m, 18-28m/2327 m 110 12-16m 323 31-33m, 35-36m 441 1$4 m 45636-37 m 4576-8 m, 30 m, 30-37 m 458$ $1 m, 13-15 m, 25-26 m 46026-27 m 4614-15 m$, 22-27m (Yarrell), 29-32m (Selys-Longchamps) 462 6-10m (Westwood, S. Moreton) 465 33$35 m$ 467 12-14m, 16-17m, 19-21m, 24-25m, $27-28 m, 37 u$ "fifty-one years"

THOMSON, David Handy book of the flowergarden 2nd edn; London; William Blackwood \& Sons; 1871 [Down]

THORELL, Tamerlan Études scorpiologiques Milan; J. Bernardoni; 1877 [Down, I] \wp

THORELL, Tamerlan On European spiders Upsala; Ed. Berling; 1869-70 [CUL, I]
ad, af, sp, sx, sy
NB a generalised group of spiders with radiating affinities \& small genera, very distinct - p41
135 Blind Spiders in caves

- 205 Sexes

41 2-9m 135 13-15m (Keiserling) 205 16-21m
THORELL, Tamerlan Remarks on synonyms of European spiders Upsala; J. Lundström; 1870-73 [Down, I] \wp

THORNTON, Robert John A new illustration of the sexual system of Linnaeus vol. 1 [Down]

THOUGHTS on the mental functions Edinburgh; Oliver \& Boyd; n.d. [Down, I] beh
NB 115 to end
On Expressions
116 recognises Expressions instinctively $\mathrm{O} /$
iv $6-7 m, 10 u$, $w b\langle n o t C D\rangle \mathbf{v} 8 m, 9 m, w b\langle n o t$ $C D\rangle$ vi $20 \mathrm{~m}, 29 \mathrm{~m}$ vii $9 \mathrm{~m}, 17 \mathrm{~m}, 28 \mathrm{~m}, 31 \mathrm{~m}$, $33 m, 49 m$
8
116 23-35m

TIEGHEM, Philippe Van Traité de botanique 4 fasc.; Paris; F. Savy; n.d. [CUL, S] che, ct, fg, phy, tm
fasc. 1 NB p61,2 Bloom; p155; -85 Fluids for absorbing Light; 91 Constituents; 96; 98; 122 Frank Bicarbonate; 138 read to 60 fig.m 61 11-22m 62 1-5m 86 1-8z 9124 $30 m 9623-29 m, 40-47 m 9840-46 m 9916-$ $23 m, 48-51 m$ (Sachs) $10323-25 m, 26-28 m$, 40 m 123 35-48m (Sachs, Guillemin), 41-44m/ $43 u$ "cupro-ammonicale" $12614-17 m 1383 m$ $1472 m 1551-5 m, 7-8 m, 42 m$ (Sachs)
fasc. 2 NB 202 \& 208 \& 209 Frank. Loss of weight of grains; 209 Bears on my experiments with drops of water; 225 Root-Hairs.-; 248 Effect on Haricot crest of Ammonia in humid air; 255 Hairs
202 16-23m, 38-40m $2035 m, 40-46 m / 46 u$ "Barthélemy I Dispacées" 208 6-7m, 8-30m, 39$46 m 2094-12 m, 34-36 m, 38-43 m 2251-4 m / 3 u$ "Rapa", 41-43m 248 31-34m 253 介2-1m 255 20-26m 309 $\uparrow 15-12 m 315$ 9-11m 318 15-19m
fasc. 3 NB 474; 480 Protoplasm
341 1-4z 343 34-42m 355 18-27m 359 17-20m $4327-12 m 43735-37 m 45020-22 m 4535-9 m$, 15-18m 456 31-35m 474 15-18m, 37m 480 39$45 m$
fasc. 4, $4904-5 m / 5 u$ "leucite" $/ w$ or Aleuron! 492 11-19m, $28 u$ "condense 1 protoplasma", 43$46 m 493$ 8-14m 494 9-12m 498 fig A.m, fig B.m, 18-19u "partagent I protoplasma" 50040 $45 m 505 \quad 20-21 m / 21 u$ "latex 1 Euphorbia" 524 35-37m/35-36u "paraissent | réserve" 526 27$29 m 52841-44 m 52929-34 m 532$ 18-22m 574 $34-46 m 5965-10 m, 13-18 m 598$ 28-32m, 41$45 m 6221-6 m 6247-10 m, 19-25 m / 19-20 u \leftrightarrow$ 627 8-12m

TIETZE, Emil Über Devonischen Schichten von Ebersdorf Cassell; Theodor Fischer; 1870 [Down, I] \wp

TIMIRIAZEFF, Clement An essay on the theory of Darwin St Petersburg; 1865 [CUL, I] [in Russian]

TORNØE, Hercules Chemi Christiania; Grendall \& Son; 1880 [Down] \wp

TRÉMAUX, Pierre Origine et transformations de l'homme et des autres êtres Paris; L. Hachette; 1865 [Down]

TRÉMAUX, Pierre Origine et transformation de l'homme et des autres êtres part 1; Paris, L. Hachette; 1865 [CUL]
NB O/
TREUB, Melchior Notes sur l'embryogénie de quelques orchidées Amsterdam; Johannes Müller; 1879 [Down, I] \wp

TRIMEN, Henry and THISELTON-DYER,

 William Turner Flora of Middlesex London; Robert Hardwicke; 1869 [Down] ex, gd, noNB 345 large number of rarest plants, compared with common in Middlesex 345 15-23m
8
TSCHUDI, Friedrich von Sketches of nature in the Alps London; Longman, Brown, Green \& Longman; 1856 [CUL]
beh, cc, gd, mhp, 00, ta, v, wd, y
NB1 p16.
NB2 16
SB1 p.18; p.89; p.151; p.152; p.160; 170; 178; 236
SB2 $\square \beta$
163 weeks between blossoming of highest \& lowest Cherry-tree
89 case of Fox carried by Eagle \& escaped alive Goat 90 children
1513 vars of Bears - Black feeds more on vegetable. 152 Brown attacks Goats
160 Cattle in Spring know the Bell for turning out for Summer Q
178 Wild sheep in Alps - Bergamesque peculiar Breed N.Q.
236 lbex or Steinbock very different on Alps \& Pyrenees
96 Chamois common to Pyrenees, Caucasus, Carpathian
16 3-7m 89 16-28m, 35-38m $90 \quad 27-36 m 91$ $3-6 m \quad 151 \quad 20-23 m, \quad 26-27 m \quad 152 \quad 8-12 \mathrm{~m} / 9 u$ "while Ibrown" $160 \quad 31-37 \mathrm{~m} / 33-34 \mathrm{Q} 170 \quad 22-$ $26 m 178$ 5-9m, 29u "Bergamesque" 179 1-9m 236 23-27m

TUCKER，Abraham The light of nature pursued 4 vols；London； 1831 ［CUL．1900］
vol．2， 269 介14a＂implying＂no
TUKE，Daniel Hack Illustrations of the influence of the mind upon the body in health and disease London； 1872 ［CUL．1900］
beh，em，phy，t
SB All on Expression，except p． 282 on imagination of Mother
remarks sensation via the epigastric region from many emotions long ago observed．
p． 2930758898135136141154159223 244261263269271273
282 －Effect of imagination of mother on foetus
340345
$296-7 \mathrm{~m} / \mathrm{w}$ He experimented on himself 8－ $10 \mathrm{~m} / \mathrm{Q} 303-5 \mathrm{~m} / 4 u$＂sensory ganglia＂，11－16m $754-5 m 88 \mathfrak{\downarrow w}$ I err when I speak of retching from Habit or resulting tone－imagination is cause． 89 15－22m 98 介5－1m $1353-7 m$ ，介12－ $6 m 136 \Uparrow 19-16 m, \Uparrow 12 u$＂burning shame＂，介9－ $7 m 141$ 8－18m 154 介10－3m 159 16u＂Pride＂， $18 u$＂elevationlhead＂， $17-20 \mathrm{~m}, \mathrm{wb}$ Does a man making himself tall－account for position of Head－He is ready for action－ 223 5－12m 244 介4－1m 261 2－12m／？ 262 介18－ $9 m, \Uparrow 8-1 m 263$ 2－6m，13－17m 269 8－18m 271 $\Uparrow 19-16 m, \Uparrow 15 u \leftrightarrow 273 \Uparrow 12-9 m \quad 282 \Uparrow 16-3 m$ $34018-24 \mathrm{~m} / \mathrm{w}$ shows how different emotion is from will－like reflex action $345 \Uparrow 14-10 \mathrm{~m}$ 347 17－23m，$\uparrow 14-10 m, \Uparrow 4-2 m 3505-12 m$

TURTON，William British fauna vol．1； Swansea；J．Evans； 1807 ［CUL，pre－B，S Charles Darwin 1826］
sh，tm
$87 \Uparrow 4 w \notin 118 \Uparrow 10-9 w \star B>12916 w \ll$ Horse Luck $1364 m 13832 m 14039 m 141$ $32 m 14247 m 14331 m, 36-45 m 1445-9 m 145$ $47 \mathrm{~m} 14624 \mathrm{~m}, 31 \mathrm{~m} 14755 \mathrm{~m} 14813 \mathrm{~m} 14927 \mathrm{~m}$ $1504 m 1543 m, 27 m, 40 m 1562 m 15721 m$ $159 \mathrm{Im} 1613 \mathrm{~m}, 16 \mathrm{~m}, 39 \mathrm{~m} 1629 \mathrm{~m}, 32 \mathrm{~m}, 51 \mathrm{~m}$ $1637 \mathrm{~m}, 26 \mathrm{~m} 16515 \mathrm{~m} 16736 \mathrm{~m} 17137 \mathrm{~m}, 52 \mathrm{~m}$ $17333 \mathrm{~m} 17417 \mathrm{~m} 1772 \mathrm{~m} 1785 \mathrm{~m}, 40 \mathrm{~m} 179$ $41 m 184<30 m / w$ Odostomia $32 w 141 w 2$ $46 w 353 w 4 w b$＊Shell spiral produced， mouth contracted subangular generally distinct from，in body short \＆furnished with teeth $185 \propto_{0} 7 w 522 w$ Sym：30w 9 39w do $18688 w 16 w 723 m / w 830 w 939 w 10$ $46 w 11187 \pi_{0} 1 \mathrm{~m} / w^{*}$ Planorbis $22 \mathrm{~m} \Leftrightarrow / \mathrm{w}$ 1＊* $29 m \Leftrightarrow / w 236 w 345 m \Leftrightarrow / w 452 w 5 w b$ Shell simple，spiral，depressed，spines lateral mouth oblique $188 * 3 w 610 w 716 w 8191$

18w Sym：26m，42m 192 4w Sym：11w do $17 w$ do $24 w$ do $36 w$ Sym $43 w$ do $50 w$ do 193 do do $8 w$ Symnaea 33m／w Symnaea $34 w$ 1＊$^{*} 41 w 247 w 3$ wb＊Shell ornate conical mouth entire longitudinally oblong the rt lip joined to the left at the base \＆folding back on the pillar $194<1 w 47 w 515 w 6$ $21 \mathrm{~m} / \mathrm{w} 728 w 841 w 10195 \times 1 w 111966 m$ ， $21 \mathrm{~m}, 40 \mathrm{~m} 197 \mathrm{Im}, 35 \mathrm{~m}, 42 \mathrm{~m} 1986 \mathrm{~m} 2014 \mathrm{~m}$ ， $50 \mathrm{~m} 207 \uparrow 11 w_{\neq} 20822 m, 24 w$ Fecal orifices turned one way $29 m 20923 m, 28 m, 52 m 210$ $12 m 21139 m 212 \Uparrow 29-28 m, \Uparrow 23-22 m$ ，$\Uparrow 18$－ $17 m, \Uparrow 13-12 m, \Uparrow 7-6 m 21336 m, 52 m 21411 m$ $21526 \mathrm{~m}, 33 \mathrm{~m}, 38 \mathrm{~m}, 43 \mathrm{~m}, 45 \mathrm{~m} 21615 \mathrm{~m}$ ， $31 \mathrm{~m} /$ w of Lamarck $37 \mathrm{~m}, 41 \mathrm{~m} 21714 \mathrm{~m}$ ，30w Chelata of Lamarck

TUTTLE，Hudson The origin and antiquity of physical man Boston；W．White \＆Co．； 1866 ［CUL］
h，no，v
NB 35 Number of races of man made by various Authors
$357-16 m$（Buffon，Kant，Hunter，Virey， Blumenbach，Desmoulins，Bory de St Vincent， Morton，Pickering，Burke，Jacquinot）， $7 u, 9 u$ ， $10 u, 12 u, 13 u, 14 u, 15 u$ 〈numbers〉

TWINING，Thomas Science for the people：a memorandum London；C．Goodman； 1870 ［Down］

TYLOR，Edward Burnett Anthropology London；Macmillan \＆Co．；1881［Down］

TYLOR，Edward Burnett Primitive culture 2 vols．；London；John Murray； 1871 ［CUL，I from the author with regrets that chap．II was in print before the Descent of man was published－Apr．28］
beh， t ，tm

vol． 1 NB Expression

p． 150153 voice tones of； 167 do； 169 pleasure only in air Greenlanders turn up nose in contempt or horror； 27
16 15－21m，28－31m $15029 u$＂accompanied＂／w （a）$w b$ I shd say the sounds cause the form of face $1516-9 m 15321-34 m 16621-30 \mathrm{~m} / 28 u$ ＂whine of＂ 167 24－37m 169 15－19m

TYLOR，Edward Burnett Researches into the early history of mankind London；John Murray； 1865 ［CUL］
beh
NB Expression
41 opposition in signs p38－Opposition p51

TYLOR，MANKIND 1ST EDN
\＆ 53 －Gestures Kissing rubbing noses \＆c 62 ； 54 foreigners talk by gesture
Nodding do gestures
$615-18 m 3521-25 m 384-18 m 4126-30 m 45$ $12-17 m 5118-27 m 5226-31 m 532-8 m 543-$ $21 m 621-4 m$

TYLOR，Edward Burnett Researches into the early history of mankind 2nd edn；London； John Murray； 1870 ［CUL］
beh，h，t
NB1 p45 snapping fingers；p52
Expression；38；41； 44 Book；47；48；52； 69 p272 Excellent on Progress with Mankind－ \＆similarly of mind－Referred

NB2

$385-9 m, 14-22 m 4123-35 m 4429-31 m, 38 m$ $45 \quad 15-17 m, \quad 16-25\left[^{\prime \prime} . .{ }^{\prime \prime}\right], \quad 24-28 m, \quad 34 u$ ＂smelling＂ 47 10－15m 48 20－23m，33－34m 51 $23-29 m / 23 u$＂pleasure \mid greeting＂$/ 24 u$＂rubbing 1 other＇s＂$/ 29$ u＂pattings I Fuegians＂ 52 16－21m 53 13－15m，19－22m／19u＂back with＂ 69 1－5m／2u ＂with fingers＂， $36 m$（Lieber） 275 31－32m（G．J． French） 276 16－23m 372 3－38m，19－20z 373 1－ 20 m

TYNDALL，John Address delivered before the British Association assembled at Belfast，with additions London；Longmans，Green \＆Co．； 1874 ［Down］

TYNDALL，John Essays on the use and limit of the imagination in science London； Longmans，Green \＆Co．； 1870 ［Down，I］

TYNDALL，John On the physical phenomena of glaciers（extract）；London； 1858 ［Down，I］ \wp

UNITED STATES Entomological commission for the years 1878 and 1879 relating to the Rocky Mountain locust Washington； Government printing office； 1880 ［Down］

VACEK，Michael Über Österreichische Mastodonten Wien；Alfred Hölder； 1877 ［Down，I］\wp

VASSEUR，Gaston Recherches géologiques sur les terrains tertiaires de la France occidentale part 1：Bretagne Paris；G．Masson； 1881 ［Down，I］\wp

VAUCHER，Jean－Pierre Étienne Histoire physiologique des plantes d＇Europe 4 vols．； Paris；Aurel； 1841 ［CUL］
cc，cs，dic，f，fg，hy，ig，mhp，phy，sp，sx，t， tm，v, wd

NB1 Not abstracted nor is Lecoq
NB2 160 Williams vessels of Cruciferae
SB Voll
Everything without red cross is about cross－ fecundation
p4 D； 17 －wind D；Look over Marks； 21．D；24．D
－to 58 （from now I shall skip largely）
All used about Crossing
74D．
143－151 Fumaria D
156 Cruciferae
Law of Variation 159 X 160 D 163200 D Dimorphism 308 X Violets do－ 316 X Reseda
$\times 322 \times$ Drosophyllum allied to Drosera D 329 Polygala D 388；D 347；D 350；D 355；D 364
Sagina $377 \times$ dimorphic？
D 383
Used $+400,403$ Linum
407 Malva D
－ 408 Do
493 Acer D
518521 Pelargonium D
523528 D
542 X Noli me tangere Dimorph
Dimorph
544 X Oxalis
563 －Dictamnus D
572587
very poor Book
〈over〉 24D
〈D indicates＂dimorphism＂〉
vi $25-28 m$（Cassini） $417-21 m 821-37 m / w C$ ． Calycina 10 23－27！／25－28m 11 1－6m 17 33－ $36 m 2030-37 w$ opening of anthers $31-40 \mathrm{~m}$
(Sprengel) 21 13-16m/15u "etlpied" 23 26$30 \mathrm{~m} / 28 \mathrm{u}$ "premièrel mâle" (Jussieu) $2424-28 m$ 33 20-25m 36 1-3m (De Candolle, A.P.), 39$41 m 44$ 21-26m $58 \quad 27-31 m \quad 7410-16 m 112$ 20-21m $1175-6 m 1437-13 m 14422-25 m 150$ $13-18 m$ (Soyer Willemet) $1518-16 m, 36 u$ "Capnoïdes" 154 20-24m 156 26-31m 159 11$26 \mathrm{~m} / 16 u$ "Cochlearialalpina" 117 w good $20-$ $21 w$ Law of Variation 160 1-6m (De Candolle, A.P.) $161 \quad 1-4 m \quad 163 \quad 35-40 \mathrm{~m} \quad 200 \quad 15-31 m$ (Gaudin) 308 12-15m, 19-21m 309 8-15m, 26$28 \mathrm{~m} / 26 \mathrm{u}$ "deldans" 316 15-27m 322 22-26m $32327-32 m 324$ 8-10m 325 3-6m 329 13-15m, 16-20m, 21-25m 347 3-9m 350 3-10m 355 26$30 m \quad 364 \quad 25-30 m \quad 377 \quad 13-16 m$ (Gaudin)/ $14 u$ "souvent apétale" $/ w$ dimorphic $3851-4 m 400$ $3-8 m / 4 u$ "Austriaticum" $401 \quad 21-25 \mathrm{~m} / 22 \mathrm{~m} / \mathrm{m} /$ $24 u$ "c'est les" 403 16-18m/18u "dix carpelles" 404 19-20m 407 11-22m 408 18-23w Fermond 22-27m 493 23-26m, 29-33m (Linnaeus) 518 $37-39 m 52118-20 m, 30-32 m 523$ 37-41m, wb I have seen this differ in Greenhouse vars $52516-21 \mathrm{~m} / 16-27 \mathrm{w}$ strange notion but shows what a relation there is in position of anther \& nectary 528 3-8m 542 30-38m 543 21-24m/ ?? 544 8-15m 546 10-12m 547 21-23m 549 6$13 m 555$ 28-29m $55937-39 m \quad 5601-8 m 563$ 7-14m 572 19-25m 578 16-21m
vol. 2 NB p371 Lythrum
SB $\square \beta$
Vol 2 Vaucher
21 \& 22 Rhamnus - dimorphic or polygamous
42 Leguminosae Dichogamy \&c
64 Spartium Dic.
82 Ononis dimorphic
90 Nat. Hybrids
188 Nectar-glands Vicia - Dimorphic Vicia
194 Lathyrus. Dimorphic \& good gradation
204 Phaseolus - Dic.
213 Lupinus 2 sorts of anthers
225 Arachis dimorphic
225-299 Dioicous Legum. Dic
327330333 Epilobium \&c Dic
339 allied genus D. Moth caught by proboscis
370 Lythrum Dimorphic
535 Saxifraga Dic.
558563565 to 571 Umbellifera Dic
610611624627 Flowers of Ray \& centre in Umbellifera. Law of Relations; in relation to Daucus - central flowers at 613,614
644 Adoxa central flower, form from position 682, 693 Crucianella. Dic.
702 Galium sexes separate
732 Scabiosa dimorphic
11 18-28m, 21u "dioiques", 33-36m, 33u
"femelles" $2113 u$ "diö̈ques lavortement", $14 u$ "hermaphrodites", 23-24m 22 8-10m $4241 \mathrm{~m} / \mathrm{w}$ Legumin 65 19-22m (Koch) 82 28-33m 90 5$12 m \quad 106 \quad 19-29 m / 28 u$ "filets 1 neufs" 110 31-35m/32u "renflent I ferment" $111 \quad 1 u$ "Globosum", 2-3u "les |les" 188 10-18m, 31$37 \mathrm{~m} 1897-11 \mathrm{~m} 1947-11 m$ (De Candolle, A.P.) 204 15-19m 205 39-41m 213 10-15m, 39-41m $22434-36 \mathrm{~m} / ? / 35 u$ "fleurs infertiles" 225 15$22 m, 36 m 2265-8 m 227$ 34-38m (De Candolle, A.P.), 37-41m/39u "vers larbre" 229 2-4m 231 20-21m 327 21-22m (Koch), 25-30m 330 13$17 \mathrm{~m}, 20-23 \mathrm{~m}, 28-34 \mathrm{~m}, 35-39 \mathrm{~m} 331$ 35-38m/ $37 u$ "ouvrent lsoir" $33316-20 \mathrm{~m} 3398-13 m$, 25-27m $36834 w$ Read $36930-32 m / 31 u$ "oùl et" $37030-38 m, 34-40 m 3711-12 m, 4-12 m$, $22-24 m 38115 w$ Read $53513-21 m 558$ 8$16 m 5639-21 m 5644-7 m 5656-9 m, 24-28 m$, $34 z 56634-37 m / 35 u$ "la 1 sessile" 568 8-11m $571 \quad 25-29 m \quad 610 \quad 13-15 m \quad 611$ 6-10m (De Candolle, A.P.) $61322-26 \mathrm{~m} / 23 u$ "et l rouge" $61413 u$ "ombellule 1 ordinairement" $\mid w$ see p.611 624 16-19m 627 9-13m, 14-17m, 18-22m/18-19u* "la|femelle", $33-39 m / 34 u$ "femelle centrale" $63038-40 \mathrm{~m} 636$ 33-38m 644 25-33m 682 20-24m, wt Rubiaceae 693 7$\begin{array}{llllllllll}12 m & 702 & 31-40 m & 703 & 41 m & 705 & 10-11 m & 732\end{array}$ $30-36 m, 37-41 m$
8
vol. 3 SB Vol 3 Vaucher
300 Compositae. Dichogamy
307 Lobelia fertilization a dioicous form D
309 Goodenia References good D
387 Asclepius does not believe is D.
396 Apocynum D.
399 Vinca D
402 Menyantes Dimorphic
413 Dic.
454 Dimorphic
461 Echium dimorphic
461 Pulmonaria do
466 Myosotis palustrus do
518 Digitalis Dic
576 Mentha dioicous
578 Lycopus do
584 Salvia manner of fert (subsid) Dic.
596 Origanum 599 Thymus 603 Satureya
611 Melissa 687 General Remarks on d.
723 Hottonia dimorphic 724 Lysimachia
738 Primula dimorphic 741 Soldanella dimorphic?
In former Volume about Lupins with 2 coloured Stamens?
3 3-4w Not read to p. 299300 12-16m, 34$38 m 3014-7 m, 9-13 m 3073-8 m, 27-31!!309$ $5-7 m, 28-32 m 38722-27 m 3996-8 m, 13-15!!/$ $m, 30-33 m 402$ 6-11m 413 27-32m 461 21-

VAUCHER
$22 m, 23-28 m 46230-31 m / 27-31 w$ mentioned by Gray $4661-4 m 48929 w$ Read 490 9-11m $518 \quad 36-39 m \quad 596 \quad 15-19 m \quad 599 \quad 7 u$ "Thym commun" $/ 6-13 w$ not our garden plant see Steud 18-22m, $24 u$ "souslcouchées", $33 u$ "fleurs I dioïques" 600 15-17m, 19-20u "le। avorte", $21-31 \mathrm{~m} / 26 u$ "fleurs 1 rose" $60128-34 m$ $60325-28 \mathrm{~m} 611$ 12-17m 687 24-32m 71840 $41 m 7191-3 m 72310-17 m 7244-6 m 73813-$ 16!/m 741 16-21m (Koch)
vol. 4 SB $\square \beta$
Vol 4
35 Atriplex
complex sexual case gradation
521
very imperfectly skimmed, but as much as it deserves
521,522 on relation of fertilization to position of nectar Dichogamy

35 12-27m 434 15-17m 521 2-11m, 15-18m $52230-34 m$

VEITH, Johann E. Die Naturgeschichte der nutzbaren Haussäugethiere Wien; W. Braumüller; 1856 [CUL]
cs, dg, gd, geo, or, sl, sp, tm, v, wd

NF Veith

title page wt Reith Veith 11 29-36m/31w (a) $w b$ (a) races produced by selection deteriorate when neglected 15 24-25m/u "weilltheilt" $24 \quad 24-29 \mathrm{~m} / \mathrm{w}$ wild horses of central Asia $28 u$ "ohngefährlgewöhnlichen"/w small 33 u "Ihrelkraus" 25 1u "lohbraun", $2 u$ "isabellgelb|mäusegrau", $9 u$ "weissliche", $10 u$ "behaarte|Pamer", 12u "Kumurah|Bergpferd", $13 u$ "das ISardiniens", $14-16 \mathrm{~m} / \mathrm{w}$ doubtful whether really wild $17 \mathrm{~m}, 27 u$ "dunkelbrauner silbergrauer" 29 wt How little we can trust geological evidence shown by the 2 Americas $1 u$ "werden|Hauptstämme", $11 u$ "dunkelbraune 1 Pferd", $3-17 \mathrm{~m} / \mathrm{w}$ I daresay from Smith 20-25w Remarks cannot be traced 31 11-13m/12u "langel Mähnen" 33 wt 1 remember lately seeing that English horses had beaten Aegyptian 10u "Siel Stammältern" $3412 u$ "noch|gemeine"/w Dray Horses 20$21 w$ india Pony still different $22-25 w$ But new Forest Shetland \& Welsh Ponys have different appearance $26-28 \mathrm{~m} / \mathrm{w}$ English Pony $3520 u$ "Neapolitaner", $21 u$ "schweren \mid Kopf", $22 u$ "Höhe gerichteten", $27 m, 33 u$ "sardinischenlklein" 36 7-15w nothing particular $3713 u$ "abstehend|hängend"12-19w Great heavy horses $3816-22 w$ Germany nothing particular- $25 w$ Northern horses tow.- $394 u$
"russische", $7 u$ "lange Mähnen", $8 u / w \tau$, 11$14 w$ These crossed by Eastern Horse $15 u$ "liefländischen", 21u "Ukraine", 25u "domische Kosakenpferd", $26 u$ "Ganaschen"/w lower jaw $31 u$ "polnische" $/ w$ very distinct $35 u / w b \tau 407 u$ "Bachmatten!Podolien", $16-17 m / 16 u$ "sehrl haut" $416 u$ "edle ungarische", $28 u \leftrightarrow, 34-35 \mathrm{~m} /$ $34 a$ "Paarung"/wb i.e. Neapolitan-Spanish 42 $11 m / u \leftrightarrow, 12 u$ "in I Slavonien", $16 u$ "böhmischen Pferde", 18u "fleischigen\Augen", 19-20u \rightarrow, 27 u "Steiermarks", $31 u$ "Salzburgs", $33 u / w \tau 44$ $10-11 \mathrm{~m} / 10-14 w$ never have white spot on forehead $48 \quad 32-33 m / u \leftrightarrow 52 \quad 30-32 m 55$ 13$15 m$, $18 u$ "Dielraçe", $19 u$ "spitzigem Kopfe", 21u "hohen Beinen", $32 u$ "Das | Würzthaler" 56 $1-3 m / 1 u$ "das | Vieh" $/ w 3$ 30-35m/33w $6573 u$ "England" $33-5 w$ England not counted 20 m , 26u "Holländer", $33 u$ "friesischer" $583 u$ "Tütische", 8c£, 10-11w Short Horn $17 u$ "Alderney", 18u "aus |stammend", 20u "fette Milch", $25 u$ "grosselscheckige", $30-31 u$ "Hintertheil ! Schwein-wurzel" 59 wt could these all arise from few crosses? $1 u$ "Simmenthaler ISaanervieh", $5 u$ "Tiroler", $18 u$ "einelMaul", $19 u$ "Ohren", $22 u$ "Schweizer" $601 u$ "Vorarlberger", $7-10 \mathrm{w}$ sub-vars $17-27 \mathrm{~m} /$ $22-25 w$ sub-vars $29 m / 29-35 w$ So above does not include crossed races in his opinion.- 64 26-27u "Alpenketten 1 Nordasien", $27-28 u \leftrightarrow$, 33-34u "Früher 1 heimisch" ? 65 1u "Sardinien 1 getroffen", $2 u$ "jung zähmbar", $4 u$ "Gebirgel Nordafrika", 6-7u "im Armenien" 67 10-12m $6831 m / w$ Felt $33 u$ "gemeine Landschaf" $695-$ $7 \mathrm{~m}, 14 u$ "Lüneburger 1 Niederungen", $16-19 \mathrm{~m} /$ $16 \mathrm{w} 3.25 u$ "ungehörnt lhohen", $30-33 \mathrm{~m} 70$ 5u^, 11u^, 12u "abstammend", 34-35m 71 22$24 m 725 m, 11-12 m, 31 u$ "hängenden Ohren" 73 3-4m 78 9-10u "hatlZitzen", $22 u / w \tau 80$ $21 u$ "grosselkleine" 81 2-4m, 9u九, 10u "konstant", 11-12u "Das|ähnlichkeit", 18u "durch Kreuzung", 21-22u "Chinalvor", $27 u \leftrightarrow, 31 u$ "Russland" $8525-27 m, 27-28 u \leftrightarrow$ $865-7 m, 19 u \wedge / w$ setter $25 u$ "selten Haare" $/ w$ spaniel $26 u \pm, 32 w$ Newfoundland 87 1-2!/2u "kegelförmiger 1 Ohren", 4-5w Greyhound 14$15 w$ Cattle Dog 22-23w short snout hanging ears \& jaws $25 w$ Terriers $28 w$ Pointer 88 5$6 w$ Danish Dog 14-15w Pug 17w Bull-dog 27w Mastiff 32-33w St. Bernard 91 10-12m/ 11u "maniculatalRüppel", 19-21m/19w Tortoise shell

VERITY, Robert Changes produced in the nervous system by civilization London; S . Highly; 1839 [Down]

33 21-25m 34 1-3m 134 3-12m

VERLOT，Jean－Baptiste Sur la production et la fixation des variétés dans les plantes d＇ornement Paris；J．B．Baillière； 1865 ［CUL，I， FD］
cs，dic，f，fg，gd，he，hy，in，mhp，mn，or， phy，sl，sp，spo，sx，t，ta，tm，v

NB 4 \＆ 5 Sports；Hybrids； 14 Cytisus adami； 22；28；31； 46 Hybrids；54； 56 Colour of flowers；59； 63 panachure；61；71，2； 80 \＆ 88； 84 very good；90； 92
SB1 $\square \beta$ not CD but dictated by him and with corrections in pencil by him）
Verlot
p． 4 \＆ 5 Bud variations－goode
11 Hybridization，facts on Bryanthium Genera
14 case of Datura illustrating Cytisus Adami 20 Leptosiphon Polemoniaceae case of crossing naturally
28 \＆ 31 Vilmorin on selecting greatest duration
30 causes of variation－age of see \＆ time when gathered
32 \＆Individual plants of same variety alone having power of transmission
34 individual dwarf Ageratum sterile
38 case of dwarf Saponaria with no power of transmission
39 another dwarf with strongest power
42 Macnab on different effect on offspring of pollen from difft anthers of different size in Rhododendron
46 on crossing Tropical \＆temperate Amaryllis case like Rhod．Arboreum．
54 inheritance of purple beech \＆of purple barbary．\Leftrightarrow Used in Ch xi
56 principle of the 3 colours in flowers．
59 white flowers very rarely vary into other colours
$63 \& 66$ Vilmorin on θ origins of $\&$ stripe of striped flowers being case of partial reversion．Good．I shew also from crossing． \Leftrightarrow I think partly used
SB2 〈as SB1）
\Leftrightarrow Copy of Dichog Next
66 Vars of Convolvulus，Antirrhynum \＆ Nemophila naturally crossing good as I know the 2 former are self－fertile
71 Do on dianthus
72 some plants Tomatos Pimentos \＆c said never to cross naturally
72 Cases of corellation of colour of flower \＆ seed Q s
74 White spotted leaves inherited partly Q 80 Hose \＆hose primrose sterile
84 Stocks producing mostly double plants quite sterile \＆a few single－flowered plants
by which race is propagated，illustrating production of neutral ants．Used
85 Old seeds positively said to produce most double flowers not since disputed
＜$\langle C D$ 〉 Bears also on selection，knowledge of vars
86 case of gardener who cd distinguish 150 vars of Camellia when not in flower 884 cases of monstrous flowers which can be inherited \＆therefore are not sterile SB3 〈simile〉
$89 \& 90$ On Peloria of Linaria
92 Var．horrida of common Hawthorn （used）
93 on inheritance of weeping trees
94 Exaggeration of fastigate habits in seedling Irish yew
\rightarrow
$422-27 m / 23-25 w$ sport $27 u$＂une famille＂ 5 $15-22 m / 17-18 w$ sport $1127-33 m 1414-22 m$ （Naudin） 22 19－25m／w crossed naturally 28 $19-33 m 3024-28 \mathrm{~m} / 25 u$＂moins récemment＂ $26 u$＂recueillies sur＂ $28 u$＂plus Itardives＂ 31 12－18m $327 u$＂Vilmorin＂， $8 u$＂plantes 1 semblables＂， $9 u$＂mêmelmême＂，11－24m／16u ＂semencelnombre＂， $18 u$＂tandislautres＂， $20 u$ ＂dans \mid descendance＂， $22-24 m / 1-24 w$ individual plants transmitting colour vars $348-11 m 38$ 17－24m／w non－inheritance 39 6－10m 41 5－7？／ 7 u 42 12－18m（Масnab） 46 8－14m，21－24m 54 13－35w Purple Beech degree of inheritance 55 17－19m（Bertin）／Q／18u＂et l variêté＂ 56 6－ $12 m 5911-18 w$ white flowers rarely vary vary into coloured $23 u$＂rose｜Robinia＂ $613-37 m 62$ $w t$ The striping is by seminal generation in Vilmorins case by bud－var with tulips \＆in carnations $w b$ Gallesio \＆Lecoq \＆self with sweet peas show it can come by crossing 63 wt I suppose care was rather to prevent the white flowers from being crossed－p． 66 care was taken with flowers when one striped wt Simple Reversion with crossing 1－6m，2－6m， 7－30w Perhaps I ought to allude to Vilmorin under Tulips $30 w$ done $7-12 m / 9-$ $12 \mathrm{~m}, 12 u$＂quil par＂ $\mid 10-15 \mathrm{w}$ see p66 15－17m／ $u \leftrightarrow, 27-32 m$（Vilmorin）／27w read $29 u$ ＂manièrelgraines＂，36－37u＂parlblanche＂ 66 $1-3 m$ ， $10 u$＂cultivél distance＂ $11 u$＂Nemophila insignis＂$/ 8-14 \mathrm{~m} / \mathrm{w}$ yet self－impregnated $21-$ $25 m, 25-28 m 6924-27 m 714-7 m \quad 723 a / u$ ＂Piments＂，wto 1 suppose Pimenta on Jamaica true of the Hills 3－4u＂Aubergines mélangent＂$/ 4-5 \mathrm{~m} / 3 \mathrm{we}$ Both Solanum $27-36 \mathrm{~m} /$ $15-34 w$ correlation of colour of flower \＆ seed． $7428-35 \mathrm{~m} / 28-29 m / 14-30 \mathrm{w}$ inheritance of spotted leaves $751-5 m, 6-10 \mathrm{~m}, 15-22 \mathrm{~m} / \mathrm{w}$ inheritance $768-12 m, 32-34 m / Q<8021-$

VERLOT
$24 m / w$ Monster sterile $8410 u$ "Quarantaine", 11-13m, 16-22m, 16-18u "se |simples", 20-21u "parlsimples", 23-24u "sildoubles", 1-25w excellently good case illustrating selection of neuter ants 33 "Cheiranthus Iquarantaine" $8510-24 \mathrm{~m} / \mathrm{w}$ old seeds produce double flowers $8622-26 \mathrm{~m} / 22 u$ "Camellia" $/ 24 u$ " $150 \mid$ inspection" $88 \quad \varepsilon-15 m / 8 u \bullet / 10-13 w$ Monster inherited Calendula 17-19w Monster do 25$26 w$ Monster do 29-31m, 32-34m 89 2-4m/3w neuter $24-26 \mathrm{~m} \quad 90 \quad 14-16 \mathrm{~m}, \quad 25-28 \mathrm{~m} / 25 \mathrm{w}$ Linaria $92 \quad 28-30 \mathrm{~m} / \mathrm{Q} 93 \quad 19-20 \mathrm{w}$ weeping trees $22 u$ "Fogus pendula", $23-26 \mathrm{~m} / 24 \mathrm{u}$ - $/ 25 u$ "àlforme", 34m $942-6 \mathrm{~m}$ (Macnab), 32m/ua/ 25-34w Exaggeration of character

VIARDOT, Louis Libre examen Paris; A. Le Chevalier; 1871 [CUL, I]

VIARDOT, Louis Libre examen new edn; Paris; A. Le Chevalier; 1872 [Down, I] \wp

VIARDOT, Louis Libre examen 5th edn; Paris; C. Reinwald; 1877 [Down, I] \wp

VIARDOT, Louis Libre examen 6th edn; Paris; C. Reinwald; 1881 [Down, I]

VIARDOT, Louis Libre examen (a fragment starting p. 97) [Down] \wp

VINCENT, Charles W. The year-book of facts in science and the arts for 1875 London; Ward, Lock \& Tyler; 1876 [Down]

VIRCHOW, Rudolf Cellular pathology trans. from 2nd edn by F. Chance; London; John Churchill; 1860 [CUL, I]
af, ch, che, ct, em, fg, he, in, pat, phy, sp, $\mathrm{sx}, \mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB O/

- How can 2 widely separated ends of tendon be rejoined by * proliferation of cells from either end - or does connective tissue between rendings then change - No doubt he wd say yes
do Sp Theory p334 Mammary glands \& sebaceous glands, identical in nature
442 give up Nisus formativus
SB1
14 a body represents a social arrangement of parts every element having its own special action
18 an enormous mass everywhere of minute centres of action
27 plastic matter given up - no structure starts de novo
39 everything formed by prolification.
important m.s. note
50 cellular view not established for all structures
60 no morbid growth really new
66 Hairs found in Brain
83 early single bone-corpuscle really possesses conditions of nutrition peculiar to itself
123 affinities between definite tissues \& definite substances 126 example of do organic poison \& disease
129 great importance shd be given to specific action of the elements of the tissues 155 a pus corpuscle cannot be distinguished from colourless blood-cells
162 Fibrine not excretion, but local formation 187 \& 219 cancer spreads by absorbence to * near glands but acctual cells not absorbed - Smallpox can be given by volatile matter \& does not require a pus corpuscle.
233 speaks indirectly of all the tissues of body including blood cells building themselves up directly from the Embryonic formative cells of the ovum.* *
245 on single cells in single skin papilla being diseased \& growing into a condyloma 284 whole body consisting of vast number of centres of action -
SB2
294 Woorara poison special action on nerves, \& in Bernard, some other book, but such cases are not specialized from single cells
390 \& 392 Filmous exudations do not occur in all parts, not in Brain or liver, formed by adjoining parts, with exudations from blood 396 Rejects Blastoma; believes in continuous development of tissues from tissues
398 \& 406 connective tissues as germs of the body
399 ovum a cell
400 Two principles, proliferation \& division of cells (\& endogamous growth within cells less important than latter)
402 subordinate differences in proliferation of cells in morbid structures.
404 Formative cells of embryo exactly alike whether a muscular or nervous element will proceed from them - so they change. \& must be impregnated with gemmules
410 In cancer in Bone, the cancer-cells are the indirect descendants of the cells of the Bone.-
SB3
412 cartilage-cells may be converted in medullary or osseous, or back again changes all *

412 fat-globules can pass into cells
414 with cartilage \& bone we can always trace direct descendence of cells from cels, but with changed nature
421 Pus can be traced back to the elements of preexisting tissues, generation by generation.
422 Cartilage into bone, into marrow, into granulation tissues \& into pus - (NB \& these latter changes depend on conditions, \& not on gemmules, why not former changes? see MS notes on broken bones
426 In formation of Bone a series of permutations \& substitutions
431 Cartilage can only calcify, when it becomes bone it is transformed, the chonodrine changing into gelatine
439 In repair of bones connective tissues become changed into bony tissues
441 every new formation has its origin in preexisting cells - no new acceptions to body - Give up Nisus
445 Pus young tissue with dissolution of intervening matter
450 indifferent formative cells, which might become pus, mucus, or epithelial cells.
SB4
453 granulations in every case arise out of tissues
454 galls \& morbid growth show that gemmules not reproduced for change - so change colours of parrots' feathers
Muller about Polypoid growth peculiar to each part
460 every single epithelial cell \&c leads a sort of parasitical existence in relation to rest of body - so distinct in each cell
463 All new formations are at first of similar same nature
484 allude to dermoid growths in the orang which produce hairs, teeth \& sebaceous glands
SB5
Virchow
function of nucleus
14 an individual consists of cells
18, 27, 38 The eye only epidermis for Origin 99 do
39 important M.S. notes
50; 53; 62; 64; 66; 68; 83; 101; 123; 126; 128; 155; 162; 164; 187; 219; 223; 245; 284; 294; 334 Sp. theory; 441 Species Theory ; 442 Sp Theory; 445 to $463 ; 484$; 487 All references to Pangenesis except two SB6 * The independent life according to V. * of each cell or cell-territory * accords well with each cell procreating its own gemmule - making its own offset
xxiii $24 m / u$ "The |continuous" 11 1-6m 14 6$14 m 18$ 13-16m, 15-16m 27 9-12m, 15-21m, $34-35 m \quad 38 \quad 19-22 m \quad 39 \quad w t / \downarrow w / w b$ But remember action of pollen on Mother plant: here we have proof that male element can affect cells during proliferation $14-16 m$ (Remak)/15u "proliferation", 20-26w yet many produce gemmules at each age, but of what use? $20 u$ "proliferation", $23 u$ "exception| lymphatic", $24 u$ "belonginglorgans", $27-30 \mathrm{~m} /$ $27-28 u$ "when I divide", wb the question is whether a new cell formed from gemmule in opposition with another might not be confounded with division or proliferation 50 $7-11 m / 1-21 w$ \& Paget says muscles, nerves \& Blood-vessels are not formed in * effused lymph.- $8 a$ "the" internal $531-5 m 60$ 6c "physiological" $/ w$ natural 20a "every" newly formed 21-24m $621-4 m, 22-26 m 6335 u$ "ofl structures" 64 2-3u "consists \mid business", 3- $8 \mathrm{~m} /$ 6-7u "Heterotopialloci" $/ w$ see p. 6666 23$32 m$, $30-32 m \quad 67$ 9-12m, 15-18m, $25 u$ "epidermic", $26 u$ "tumour", 27-28u "structurel epidermis", $31 u$ "sometimeslparts", $32 u$ "epidermis", $33 u$ "of lymphatic" 68 17-20m 83 17-18m/17u "single l corpuscle" $9924-27 \mathrm{~m} 101$ $34-35 m$, wb Elastic tissues $12315-18 \mathrm{~m} / 16-$ 18u "certainl constitution" 126 17-23m, 21a "substances", 20-27w no doubt organic substances poison of Hydrophobic for salivary glands.- $28-20 \mathrm{~m} / \mathrm{w}$ Blister-Beetle 31$35 w$ Poisonous Fishes $w b$ Small-pox on skin 128 23-26m 129 17-20m, 24-26m 155 25-31m 162 12-18m 164 21-25m 165 2-5m, 33-35m 187 7-15m 219 10u "corpuscular"/w or cancer-cells $12-17 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ of cancer $30-$ $33 m \quad 223 \quad 18-22 m \quad 245 \quad 1-5 m, \quad 6-11 m / 7 a$ "papilla" though so minute $11-12 \mathrm{~m} / 11 u$ "acuminatel condyloma" 284 4-10m 294 32$36 \mathrm{~m} / \mathrm{w}$ special affinity of organs pulsates \bigcirc 334 17-22m 335 17-19m 338 28-33m, 33-35m $33910-15 m 39022-23 m, 28-31 m 3914-7 m$, $35 m 3928 m, 10-11 m / 11 u$ " $p .162$ ", 14-18m, $31-35 m 3934-9 m 3962-6 m, 21-23 m 397$ 21$25 m, \quad 27-35 m \quad 398 \quad 7-11 m, 14-17 \mathrm{~m} / 14-16 u$ "substitute 1 germs", $26-28 m, 33-35 m, 35 u$ "connective" $3993 u$ "connected framework", 10-15m (J. Müller, Schwann) 400 1-4m, 7-9m 401 17-18u "endogenous icells" 402 18-20m, 30-35m 403 8-19m, 21-25m 404 12-17m 405 $11-14 m 406$ 1-6m, 19-23m, 29-32m 407 1-6m $41033-35 m 4128-10 \mathrm{~m} / 8^{\prime \prime} . .44131-5 m / 5 \ldots{ }^{\prime \prime}$, 17-29m, 18c "in"/u "nucleilthem", 21-33w i.e. do not generate fat $32-35 \mathrm{~m} / 33$ u "may|fat", $w b$ if this be so many gemmules may pass into cells - it certainly appeared in intestines \& liver that fat passes into \& out of cells 414 15-19m, 16-19m/16u "proliferation" 421 28-

VIRCHOW

$34 m 4222-26 m, 18-21 m, 23-26 m / 23-25 w / w b$ what a change of nature must have included gemmules; or it is rather chemical, can hardly be chemical as at any age such changes supervene in broken bones.- 425 13-17m/16-17u "intercellular substance" $/ 17 u$ "artilaginous", 19 u "calcification lensues", 24 $27 m 42612 u$ "permutations 1 substitutions", 25$31 m 43131-35 m 4392-4 m, 16-19 m, 20-23 m$ $44130-34 m 442 w t / 1-2 w$ | must give up Nisus formativus 1-8m 445 9-12m 446 12$14 m 447$ 11-14m 448 18-23m 449 29-34m 450 $12-17 m 45316-19 m, 25-27 m, 30-32 m 4545-$ $8 \mathrm{~m} / \mathrm{wt} / 1-21 w$ Galls \& morbid growths shows that cells may be modified, without new gemmules by morbid nutrition or stimulus a $45515-17 m, 25-27 m 4578-11 m, 29-31 m 458$ $25-27 \mathrm{~m} / 17-27 w$ this looks like gemmules 459 $1-5 m 46026-35 m, 26-28 m 462$ 29-30m 463 1$9 m 484$ 19-24m/22-24u "producelovary" 487 $4-8 m, 19-26 m 4882-6 m$

VIRCHOW, Rudolf Über einige Merkmale niederer Menschenrassen am Schädel Berlin; K. Akademie der Wissenschaften; 1875 [Down, I]
h, r
$51-3 m / 1 u / 3 u, 15-18 m, 16-19 m$
VIRCHOW, Rudolf and HOLZENDORFF, Freiherr von Sammlung gemeinverständlicher wissenschaftlicher Verträge 1. Serie; Berlin; Carl Habel; n.d. [Down, I by Theodorus Müller] \wp

VÖCHTING, Hermann Beiträge zur Morphologie und Anatomie der Rhipsalideen Leipzig; 1873 [Down, I] \wp

VÖCHTING, Hermann Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie. 3. Der Bau und die Entwick-lung des Stammes der Melastomeen ed. Johannes Harnstein; Bonn; 1875 [Down, I] \wp

VÖCHTING, Hermann Über Organbildung im Pflanzenreich part 1; Bonn; M. Cohen \& Sohn; 1878 [CUL]
26 14-16m 27 26-30m 28 9-12m 34 13-16m 57 15-17m $674 u$ "krautige", 26-28m 79 19$21 m 8619-22 m 9136-37 m 9936-37 m 107$ 12-22m 169 4-8m $17213-17 m 1757-10 m, 32-$ $33 m 18010-12 m 18915-17 m 19926-28 m 200$ 19-20m 201 19u "Stachell Weiden" 202 24u "Hollunder", 25-27m 203 2-5m/3u "irrige", 27-28m 209 23-24m 211 1-5m, 21-26m 213 4$7 m, 12-15 m 215$ 15-21m 233 20-29m 242 1419m 244 11-15m/12u "Anstösse" 247 27-30m

VOGT, Carl Lectures on man ed. J. Hunt; London; Longman, Green, Longman \& Roberts; 1864 [CUL]
he, ig, $s p, t, t s, v$
NB - p.45; 395 Turf-swine; 397,8 Cattle; 399 Sheep good; 400 Barley; 355 Herr on do; Used
p.452-453 Transitions 454 457; 458 good 468
SB $\square \beta$
452 on intermediate forms between the classes \& between species.
4 454 Do

* 455 gives Agassiz blunders on first coming in of various classes
411 Even purely bred black Cats whose pedigree is known for some generations have kittens fairly striped at birth
See back of Page on Transmission of Characters
$\infty_{3}, 121$ Negro pelvis
${ }^{*}\langle$ not CD \rangle p. 45
(Species Theory)
C. Vogt

8123 "head \mid rounder", $24 u$ "jaws \mid skell", 25$38 m, 29 u$ "type 1 skull", $37-38 \mathrm{~m}, \mathrm{wb}$ over 82 $18-24 m 88$ table. m to lines $1,5,23,27,29,31$, $339022-29 m, 30-38 m 9115-19 m, 32-36 m$ $12133-36 \mathrm{~m} / 36 u$ "cuneiform, lengthened" 127 9-11m, 12-15m 129 12-14m, 20-22m $13314 u$ "self-consciousness" 137 15-16m, 18-22m 150 6-9m, 6u "gap|diastema", 9-10u "tooth| chimpanzee" 151 5-8m 189 5-9m/5w Child 222 27-32m 290 36-38m (Lund) 355 10-28m (Rütimeyer, De Candolle, Alphonse) 356 26$32 m 39528-32 m 3961-3 m, 7-10 m$, $34-39 m$ 397 4-6m, 17-19m (Rütimeyer) $3982-7 m$, 1112 m (Owen), 18-22m, 27-30m, 37-38m $3992-$ $5 \mathrm{~m} / 4 u \wedge, 8-11 \mathrm{~m}, 12-15 \mathrm{~m} / \mathrm{m} / \mathrm{m} / \mathrm{w}$ Sheep 15 m , $23-24 m, 28-31 m 40030-31 \mathrm{~m} 4117-13 \mathrm{~m} 421$ 19-21m/? (Rengger) $43134-37 \mathrm{~m} 45216-38 \mathrm{~m}$ $4536-31 m$ (Andreas Wagner) $454 \quad 26-34 m$ (Gaudry) 455 26-39m (Agassiz) 457 27-33m 458 19-26m (Lovén) 459 8-12m $46421-31 w$ Orang developed Gibbon 465 2-3w developed Macacus $12 u$ "mandril", 17-21m (Gratiolet) 467 1-2m 468 7-20m

VOGT, Carl Lettres physiologiques Paris; C. Reinwald \& Co.; 1875 [Down]
NB read to p. 83. May 3d
VOGT, Carl Mémoire sur les microcéphales ou hommes-singes Paris; 1862; including
QUATREFAGES DE bréaU, J. Comptes rendus des scéances de l'Académie des Sciences

64 (1867): 1-5 [review of Vogt] [CUL, I]
af, beh, dg, ds, dv, geo, h, he, hl, ig, pat, r, ta, ti, tm, v

Quatrefages, NB 2; 4
title page Quatrefages on Vogt on Man (important) All used
2 22-27m, 29-33m 3 3-6m 4 6-13m (Gratiolet), $17-20 m, 27-30 m, 35-38 m$ (Vogt) 5 8-11m, 22$24 m, 28-31 m$
Vogt, SB1 $\square \beta \infty$
This will come under Arrest
Vogt on Microceph; \& Quatrefages on Vogt
Add Vogt to names of those who have declared descent of man
50 on Prognathism pithecoid of Microceph in Anthropomorphic apes the intermaxillary bone disappears very early
54 curious correlations of frontal sinus \& muscular force \& degraded state \& age in man \& apes
56 crests for jaw muscles in Microceph \& old apes
59 Skulls simian, faces human
73 ages at which last molar or dens sapientiae appears
79 Apes born with relative larger skulls or brain than Man
125126 idiots case like endowed with less surface of brain than simiae but more in mass
168 good. Desor no dom. animals imitate; notorious that monkeys do - so do savages so do grt. microcephalic idiots - Imitation no doubt plays a most important part in education
176 idiot, when Brain excited near death, recalled old recollections so do animals, remember without thinking of them.
184 are very fond of climbing: one does not doubt the Theory of lambs, \& kids frisking on a tiny hillock as alpine animals, but every one wd laugh at passion in Boys for climbing trees being remnant of arboreal Habits.-
SB2 $\square \beta$
197 summary on Skulls \& brains of Microcephalous
199 on parentage of man - from a form lower even than Ouistitis
Quatrefages
p. 3 argues that man not descended from Anthropomorphous but I think Vogt expressly admits this.
p. 4 admits Gratiolets view of no real affinity between Anthropomorphous apes - Blyth admits also.- says man not descended from one ape. but that all apes \& man descended from a common unknown type - quote

Quatrefages - but this implies so much convergence I cannot admit - probably the split was taken way back
SB3 Vogt p. 169 Micro tendency to imitation to extraordinary dgree
171 Micro dumb
Small skulls - yet development of frontal sinus - prognath going dumb - good. strong tendency to imitation, eg fond of climbing
p. 197 convolutions of brain simpler

198 Prognathus effrayant
184 strong, very active, jumping \& gambolling - grimaces - go up stairs on all 4 s
185 Versatile - attention never long to anything - intelligence below that of animals

20 30u "docteur Behn", 31-32m/31u "treize ans" $/ 32 u$ "en rougissant" $214-6 m / 5 u$ "oeill une" 26 30-32m 27 1-2m/1u "enltête" $\mid 2 u$ "d'unel suivants" $3 u$ "accentuer 1 fortement" 50 $8-10 m, \quad 16-18 m \quad 54 \quad 20-21 m, \quad 22-23 w$ correlation $25-27 m, 27-28 m 561-6 m 5721 m$ 59 1-3m 73 10-12m $786 m 796-11 m 12413-$ $17 m$ (Rudolf Wagner) 125 11-13m $1264-9 m$ 127 3-4m 156 25-31m/27w correlation $1603-$ $6 m 16827-31 m 1691-3 m, 6-8 m, 20-24 m$, 26$27 \mathrm{~m} / 26 \mathrm{w}$ Savages $1763-10 \mathrm{~m} 18425-28 \mathrm{~m} 185$ $13 u$ "versatilité", 22-24m 191 17-22m 194 17$29 m$ (Rütimeyer) $1972-11 m / 9 u$ "requius", 27$30 m$, $32 m 198 \quad 2-4 m$, $20 u$ "prognathisme effrayant" $19930-32 m \quad 200 \quad 1-3 m, 15-17 m$ (Lartet), 19-23m

VOGT, Carl Über die Aufgänge der Organismen Hadelborn; Ferdinand Schöningh; 1870 [Down]

VOLZ, Wilhelm Beiträge zur Kulturgeschichte Leipzig; G. Teubner; 1852 [CUL]
beh, br, ch, cs, ex, gd, h, hy, is, mg, oo, or, no, sl, sp, t, ta, v, wd

NB x_{0}
77 Goose 78 Duck Antiquity
NB2 Many important marks; marked from here p137; p226; p230; p232; p264; p371; 380; 400; 455
NB3 p.99; Dates of Authors; p392.
SB $\square \Re$
7 Bischof \& see beginning says seeds stick to water Birds
$47 \times$ Mixing of races forbidden -3 Moses 19.19 shows was attended to \& done
$76 \times$ Polycrates of Samos had done much to improve cattle (which cd only be selection)

VOLZ
78 age of Fowls well made out - Duck not known tame in Aristotles
80 X Alexander chose best Indian cattle to send home
91 Sheep \& Goat in Ctesias time larger than in Europe
$99 \times$ increase in number of varieties of Plants \& Dates
115 History of Dog - sheep dogs shd be white
114 Sheep in Columellas time improved by cross
137 Ducks introduced in Germany from Rome. Anas Enten
226 increase of animals in S. America
2292 breeds of cattle in Brazil
231 Newfoundland not fd in N. England when discovered
400 Alpine cattle generally small Q
5 39-40m (Brown)/39-45w 13 plants in W. Africa from W. Indies are there any American genera? $616-20 \mathrm{~m} / \mathrm{w}$ Siebold says Mays washed ashore in Japan 1200 years ago 43 m (Link), $44 m$ (Siebold) 7 wt No precise facts in regards to distant migration $3-8 w$ Bischoff seeds hang to water-Birds. Look to this $4-6 m, 9-13 w$ Have any waterPlants hooked seeds - $16-21 w$ cases of distribution of plants in own country by animals $29-30 \mathrm{~m} / \mathrm{w}$ so first Rose transported No precise facts $815 \mathrm{~m}, 23 \mathrm{ua} / 22-29 \mathrm{~m} / \mathrm{w}$ It might be questioned whether these species not created during period of agriculture 10 $27 m 12 w t / 1-10 \mathrm{~m} / \mathrm{w}$ Flowers of potatoes same on Ms of Chile, as in plains of Siberia 10-16w Cereals same in Aegypt old \& new $16-22 w$ onion from mummy hand grew!!! like present $32 u$ "Blumenkohl", $32-35 \mathrm{~m} / \mathrm{w}$ Cauliflower ? introduced 16 13 $13-20 \mathrm{~m} / \mathrm{w}$ Citron changed since time of Palladius $35-$ $42 w 1500-1600$ only wild Tulips now 5000 kinds of Tulips $17 w b$ N.B as many, even most Camels? Sheep cd not run wild, or all domestic animals have run wild, whereas many vegetables in their present recognisable forms as wheat, probably wd become extinct with man: it shows plants most altered. To some extent it may be that plants more diffused \& everywhere better stocked.- C.D. 19 23w Barley 25-26w Origins not known of these $25 w$ Rye $25 w$ Wheat $25 u$ / $w \tau, 26 u / w \tau, 27 u / w \tau, 41-44 ? / m$ (Dureau) 21 $34-36 w$ Sheep never run wild 22 19-23m/w Camels run wild in S. Siberia $2311-15 \mathrm{~m} / \mathrm{w}$ Places where wild Horses said to exist formerly $24 w t / 1-17 w$ Reichenbach has an astonishing theory that races of Dog get like
the animals they pursue. Quote perhaps for folly $1-20 m, 29 u$ "wussten" $\mid 28-32 m / w$ The Greeks had not dogs with hanging ears? 25 $7 u$ " 948 " $/ 7-10 w$ Cats previous in this year $41 u$ "Truthühner"/w Turkey 26 wt Hens known in oldest times of Aegypt $1 \mathrm{~m}, 2-4 \mathrm{~m} / 2 u$ "Hesiod \backslash Testament", $3-4 w$ Hens not mentioned $19-20 \mathrm{~m} / 17-22 \mathrm{w}$ old Aegyptians distinguished wild \& tame geese 2930 m 35 $31 m 4620-27 w$ Moses speaks of Cinnamon so common very old $30 \mathrm{~m}, 33-35 \mathrm{w}$ Peacock "Kings" 43 m 47 1-5w Horses brought by Soliman from Aegypt 10u "Abraham"|11u "Tauben" $/ 10-13 m / w$ Abraham Pigeons $26-$ $27 m, 39 m, 42 m / w$ Pigeons $46 m, w b$ Mixing of races forbidden: this shows formerly done or by other nations 48 wt The antiquity of races is very important in showing how very slow variation is - Horses have varied since 2$6 \mathrm{~m} / \mathrm{w} 2$ races of donkeys in Abrahams time Hence have varied since $11-13 \mathrm{~m} / \mathrm{w}$ Pigeon let out of ark 14-16m/14-19w in old Testament hens not mentioned 32-33w wheat barley spelt $4911 u \leftrightarrow / w$ Leek Onion $18-23 w$ Wine olive figs pomegranate $5024 w$ almond $512-7 w$ Plums Pears Quince Trees $568 u$ "Schafe | Kameele" $/ 7-9 w$ Sheep Camels Ass Cattle 13-14w In old Aegypt no Buffalo $14-18 w$ horses like Dongola $16-25 w$ horses in Moses time but their cultivation not that ancient apparently 57 wt Terrier $1-5 m / 3 u$ "Windhunden \mid Arten" $\mid w$ Greyhound 16-17w Geese Pigeons 58 1-2w 2 kinds of Barley 69 $10 m \quad 70 \quad 29-31 \mathrm{~m} / \mathrm{w}$ Grafting attributed by Athenians to Eumolpus $73 \quad 6 m \quad 75 \quad 16 u$ "Theophrast" $118 u$ "Kopfsalat" $116-17 \mathrm{~m} / 16-22 w$ 2 kinds of cabbages cabbage lettuce vars of Lettuce in time of Athenians $76 \mathrm{wt} / 3-6 \mathrm{~m} / 1-$ $7 w$ Polycrates of Samos had done much to improve breed of Oxen $17 \mathrm{~m}, 25-30 \mathrm{w}$ Horses of Phidias, fiery, simple but noble $32-38 w$ mules in Homers time Swine do $778-17 w$ Great Molossus dog from Albania in Alexanders time $26-27 w$ Hunting dogs \& Grey-hounds X $37 w$ Goose $38 u$ "Homer", $42 u$ "noch | bekannt"/41-42w/wb Fowls not known to Homer or Hesiod, but later wb X certainly strong argument that so little done in last few 1000 years, compared to what must have been done before $78 w t / 1-8 w$ Athenaus says imported from Persia. Hence not Europe - age well made out of Fowls $1-3 \mathrm{~m} /$ m (Homer), 4-6m/w Duck not tame in Aristotles times in Greece 16u "Perlhühner"/ $21 u$ "Pfauen" $114-26 w$ Peacocks \& Guineafowls in Aristotles times - (Perhaps extinct again in Dark Ages. C.D.) 79 wb Aelian 222 after Christ $805-10 \mathrm{~m} / \mathrm{w}$. Alexander chose the
best of the Indian cattle to send to Macedonia to improve the Breed $7 u / w \tau 81$ 18－25w Elephants tamed long before Alexanders times in india $846 u / w \tau 8517-$ $23 w$ North China native Land of Silk Worm 88 38－43w Peach not common in Theophrastes times $891-5 w$ in Lucullus times sweet cherries in Europe 26ua／26－28w mentioned by Strabo \＆Aelian 38 m ，wb All these facts impress on me that at one period there is limit of amount of variation． $915-13 w$ Times of Ctesias sheep \＆Goats larger in India than Europe 98 20－33w Spread of Fruit Trees 99 tab．w Increase of varieties $30-33 \mathrm{~m}$ ， wb p． 79 Aelian 222 after Chr．Dates $1005-$ $7 w$ Roman Pears $1075 m 109$ 38w Savoy 110 $1 u$＂Krauskohl＂／w Cabbage 1－4w Broccoli 5 kinds $7-13 m / 7-8 u \oplus / 8 u \star / w$ Romans $9 u \wedge 113$ $3 \mathrm{~m} / \mathrm{u}$＂Plinius \mid Rosen＂$/ w$ Roses $114 \mathrm{wt} / 1-15 w$ Spanish sheep celebrated for wool in Columellas time improved by cross of N ． African $25 u$＂man＂$/ w$ Ferretts $33 a$＂nicht＂$/ 29-$ $30 w$ un？？？ $30-33 m / w$ arose in time of Roman Emperors $32 \mathrm{~m} / \mathrm{w}$（a） $34 w$ Nictures $w b$ （a）Our present beloved races of Dogs not known to Graecians \＆Romans，as clear from Monuments 115 wt A．D． 79 Herculaneum \＆Pompei buried in Pliny＇s time $1 u$＂Herculaneum 1 Stabiä＂， $1-4 w$ all belong to rough spitz－Dogs $2 a$＂Pudel＂ Spaniel \＆Poodle 2－3w first in time of Augustus $3 u$＂Schoos＂，5－7w Lap－Dogs as large as squirrels $9 u$＂Schäferhund＂／w Sheep－ dogs 38－43w Sheep dogs white not to mistake for wolf Q 11730 m 128 17－27w Caesars time English great Dogs \＆Horses taken to Rome $26-29 m 13728-31 m / w$ Ducks introduced from Rome 226 6－11m，18－21m $22933-37 m$ ， $35 u$＂sehr verschiedener＂，36u ＂unterscheidet I wenig＂， 45 m 230 39m，40u ＂allein I geblieben＂ $339-40 \mathrm{~m} / \mathrm{w}$ sheep have not run wild $23137-45 \mathrm{~m} / \mathrm{w}$ Newfoundland not f in New England when discovered 232 42－45？， $w b$ Das Ausland a Periodical 264 14－21w not received from almond $22-26 \mathrm{~m} / \mathrm{w}$ new maize $37123-25 \mathrm{~m} / \mathrm{w}$ S．Sea isld $26-29 \mathrm{~m} 380$ 17－ $22 m 400$ 26－30m，41－45m／42u＂Berg vieh＂$/ 45 u$ ＂Simmenthaler｜Freiburger＂ 455 38－39m

VRIES，Hugo de Over de Bewegingen der Ranken van Sicyos Amsterdam； 1880 ［Down］ \wp

VULPIAN，Alfred and CARVILLE，Henri Canille Leçons sur l＇appareil vaso－moteur 2 vols．；Paris；Germer Baillière； 1875 ［Down］ \wp

WAGNER，Moritz The Darwinian theory and the law of migration of organisms trans．James L．Laird；London；Edward Stanford； 1873 ［Down］\wp

WAGNER，Rudolf Elements of the com－ parative anatomy of the vertebrate animals ed．Alfred Tulk；London；Longman，Brown， Green \＆Longman； 1845 ［CUL］
em，phy，rd，sp，sx，sy，tm，v
NB March 27－46
Read as far as p． 130 \＆marked thus far－\＆ I do not think worth reading further－
SB $\square \Re$
4．Hairs even in Ant－eater \＆Ornithorhyncus （good remarks on Skeleton \＆bones） 43 gall－bladder
36 Narwhal 1 large tooth，the other small
60 on great diversity of foetal envelopes
70 Skull of Birds
73 Cervical vertebrae so constant in mammals variable in Birds
78 Rudimental bones in Birds
98 Tongue rudimental
109 On Trachea differing much in allied species \＆between 2 sexes of same species 124 on stages in rudimentary state of right ovaria in Birds
217．On Electric fishes．
$48-14 m / w$ any relation to absence of teeth？ $56-11 m / w$ what a different order from true relations $\uparrow 11-8 m 6 \Uparrow 11-9 m, \Uparrow 1 u \leftrightarrow 7 \Uparrow 11-$ $10 m 103-4 m, \Uparrow 7-4 m 148-10 m, 14-16 m$ ，$\uparrow 3 x$ 15 3－8m 16 15－19m，20－22m，23－24m／24u ＂to l wanting＂，27－30m $1711-13 \mathrm{~m}, 18-20 \mathrm{~m} 18$ $10-13 m 19 \Uparrow 8-6 m 21 \Uparrow 10-9 m 25 \Uparrow 14-13 m$ ，介12－11m 26 介15m／u＂butlof＂ 32 7－9m 35 $\Uparrow 14-13 m \quad 36$ 14－16m， $18 x, \Uparrow 10-8 m$ ，$\Uparrow 7 u$ ＂molar 1 fall＂ 43 介11m 44 介2－1x $458-9 m 46$ $10-11 m 48$ 介21－21m $494-5 m 502-3 m 554-$ $6 m 583-7 m 5915-18 \mathrm{~m} 608-10 \mathrm{~m}, ~ \Uparrow 12-6 \mathrm{~m} / \mathrm{m} /$ w strange！ 68 14m，$\uparrow 5-2 m 69 \Uparrow 10-9 m 73$ $\uparrow 10-8 m$ ，$\uparrow 8 u$＂the Swan＂，$\uparrow 7 u$＂also 24 ＂ $\mid x / w$ （a）$w b$ Yet very constant in Mammalia？ 75介19－11m 76 12－15m $77 \quad 6 u$＂Trochilus， Cypselus＂ 78 16－18m／16u＂rudiment＂， 119 $16 \mathrm{~m}, ~ \uparrow 14-13 \mathrm{~m}, ~ \Uparrow 8 \mathrm{~m} / \mathrm{u}$＂wanting 1 Emeu＂ 79 16－18m，20－22m，27－29m $92 \Uparrow 20-15 m 9816-$ $20 \mathrm{~m} 109 \Uparrow 13-9 m, \Uparrow 5-1 m \quad 110 \uparrow \mathrm{~m}$ ，$\uparrow 13 u$ ＂convolution lthe＂，$\uparrow 11-7 m \quad 114 \quad 15 u$＂Anas semipalmata＂， $19 u$＂both $\operatorname{Grus"}$＂ $23 u$＂in I extremity＂， $24 u$＂the sexes＂ $1172 u$＂male Mergansers＂， $10-12 \mathrm{~m}$ 124 $\uparrow 21 \mathrm{~m} / \mathrm{u}$＂right 1 rudimentary＂，$\uparrow 19-18 m, \uparrow 17-9 m \quad 1251-2 m$ $1276-8 m 132 \Uparrow 18 u / c / w \notin 217 \Uparrow 21-20 u$＂order 1 Fishes＂，$\Uparrow 18-17 u \leftrightarrow$, ，$\uparrow 8 u$＂Narcine 1 Torpedo＂， $\uparrow 6 u$＂Form 1 Eels＂，$\uparrow 5 u^{\prime}, \Uparrow 1 u \star$

WAGNER, Rudolf Zoologisch-anthropologische Untersuchungen I Göttingen; Dietrichschen Buchhandlung; 1861 [CUL, S, I] ds, gd, sp, ts

NB 51 (Quote Baer as believer in change)
$341-4 m 4413-17 m 50 \pi 9 m /^{*}$, $w b$ I believe in X Vol of St Petersburgh Memoirs see p. 44 apparently 1859 Memoirs of the Imp Acad of Sci in St Petersburg. $51 \Uparrow 3-1 m, w b$ V. B to whom all zoologists feel so profound a respect in M.. about yr 1859 expresses his conviction, wholly grounded on the facts of geoph distribution, that forms, now perfectly distinct, have proceeded from a single parent-form

WAITZ, Theodor Introduction to anthropology vol. 1; ed. J.F. Collingwood; London; Longman, Green, Longman \& Roberts; 1863 [CUL]
beh, h, pat, sl, sp, ss, sx, t, ti, v, y
NB * Too dull to read; 135 Blushing
SB1 p287 When I speak of antiquity of Man, I might add as shown by the branching off of languages \& by their very formation

- p305 sexual selection good man.
- When I speak of evidence of theory of N. selection - add * "the progressive advance in organization - \& diversifications of structure \& host of other such points-"
SB2 〈over; some gone over in ink〉
Waitz Anthropology
208 Virey makes $\underline{2}$ species of Man viz Negro \& all others
198 Agassiz changed from 11 or 12 to 8 species
209 Differences of Negros - very variable race of man.
224 on variability of skulls in same race
227 on different classifications of men no two authors agree in manner of grouping - 96 Beard

99 Colour of Children, when young \checkmark

- 105 Negros fat Buttock beautiful; 107 foreheads of Peruvians
113 Excessive Mortality in children young in Australia
124 Yellow-fever of Negros - doubts on 238 * Feet of Chinese small
266 Capacity of crania in relation to intellect. When speaking of what races have in common, I ought to insist on all having the art of articulate Language
275 All races adorn themselves - quote 291 Belief in an invisible power I might quote York Minster. No Devil in his country
iv $18-26 m / 18-19 w$ | ought to read v $21 m / w$ । have read vii $25-31 m, 31-37 \mathrm{~m}$ viii $3-5 m 90$ $18 w$ I have read whole section $9616-20 m 99$ 20-32m (Camper) $105 \quad 26-30 m \quad 107 \quad 13-17 m$ (Morton) 113 5-10m $1246-32 m 1353-13 m / 7-$ $9 u$ "shame", 14-22m (Roth, d'Orbigny, Spix, Martius), 21-22m $1987 u$ "distributeltwelve", $8 u$ "eight" 208 14-17m 227 1-22m 238 4-8m 266 5-8m 275 1-3m $27821 u$ "invisible", 24$25 u$ "invisible \mid which" 305 1-3m, 10-11m, 12$14 m, 19-20 m, 24-25 m, 26 u$ ® $_{0}$ "rosylflowers", $34 m, 35 m, 37 m, 39 m$

WAKE, Charles Staniland Chapters on man London; Trübner \& Co.; 1868 [CUL]
beh, h, v
NB1 It would be useless to discuss - the possession of general ideas, abstraction, \& the various forms of consciousness, as hardly two writers * use those words $*$ in exactly the same sense; or, \& have come to any general agreement on difference between Mind of Man \& Animals- Nor do we know what a wise old animal fully awake \& not occupied thinks about.- These points \& must be left under our present state of knowledge. Apparently we shall come only to a definite conclusion, when it is admitted from other eivdence that the mind of Man has been developed from * mental powers possessed by a quadrumanous animal - All too abstruse for me.-
NB2 - Man Used; Carpenter Man differs in degree 79; Self-consciousness 81; Spiritual perception criteria of 97 Man; On high art in languages of -101 Savages; Hottentots most distinct 172 from Negros; 199 Frizzled Hair in Americans 205

79 11-29m (Carpenter, Brougham) 81 17-21m (Mansel) 97 16-17u "spirituallideas" $10124 u$ "on lacquaintanceship"/24-27m (F.) von Schlegel), $30 \mathrm{~m} 1027-10 \mathrm{~m}$ (Du Ponceau), 23$25 w$ Monkeys use stones 172 6-12m 199 316 m 205 9-10m, 16-18m, 20-23m

WAKE, Charles Staniland Chapters on man London; Trübner \& Co.; 1868 [Down]
NB O/
WALDNER, Heinrich Deutschlands Faune 2 parts; Heidelberg, C. Winter; 1879-80 [Down, I]

WALKER, Alexander Intermarriage London; Churchill; 1838 [CUL]
af, beh, br, cs, dg, em, f, fg, h, he, hy, in, mn, or, phy, sp, sx, t, ta, ti, tm, ud, v, y

NB1

－Put the case to Sir J．Sebright of two half breed mongrels exactly like each other being interbred－will offspring not be then constant－Ask his opinion of Walkers Book
－Ask Mr Ford whether he has ever matched two half bred animals which were closely alike \＆yet the offspring varied－
－Progeny of hybrid plants stable
－In all crosses of varieties，according to Mr W offspring ought to take in form after male What has Mr Blaine written p． 271 Mr Hunt p． 290 \＆Mr Thacker 291
NB2 It is singular twins being so like，\＆yet between two litter in Man，or in litters so unlike
－Experiments．－To cross some very artificial male with old female－according to Mr Walker，the former ought to preponderate in body－according to Mr Yarrells theory＊ the father ought either in first breed or permanently．－Cross half breed with some other breeds－to see whether grandfather will appear－Cross two $1 / 2$ breeds exactly similar．
NB3 24；61；107；112；118；120；124；From 139 to $144 ; 152 ; 163 ; 175 ; 177 ; 182 ; 202$ ； 205；209；210； 214 to 243；258；266；270； 244；275；276；281；282；290；299；301；303； 309；312；322；361；362；377；379； 396 －on Hermaphroditism
SB1 Argument against Mr Walkers law－The intellect \＆instinct in a cross－breed comes from both parents，as in shepherd dog \＆c \＆c－now one would have thought if one parent gave one part \＆one another，nothing would be so little divisible as the thinking faculty－
SB2 $\square \beta$
24 Capons are female castrated 140 Hereditary fingers \＆toes
205 Knight on cross of Drayhorse \＆pony
161 Knight says long faces go with long limbs－Hard to get head of Greyhound on Bull－Dog
206 do says the male in Hybrids overrules female in giving form
209 A well－bred animal will give preponderance 216 do
223 Wilkinson says he has seen breed between long \＆short horned permanently made
228 Knight believes in breeding in \＆in＊－ Walker sums up authors Ch 3
243 do－put pollen of 2 colours on female \＆ both kinds when produced not mixed 244 Bitches more inclined to pair with one

Dog than another p． 276
275 effects of imagination on offspring
299 Knight thinks keeping cattle under different circumstances prevent it of in \＆in
362 on advantages of crossed races of Man
377 Accoucheurs state hands of labourers infants larger（disuse）
SB3（4 pages）
1 reject Mr Walker＇s theory of one parent giving（see p．150）one series of organs \＆＊ the other a different set．－because
（1）the propagation of plants．as we see in their crossing \＆c \＆c．is closely similar to that animals，now，in plants we cannot＊ separate the organs into any two analogous divisions－＊In plants，according to Mr K either father or mother can give＂excitability＂
（\＆I daresay other similar case could be gathered）now excitability or constitutional peculiarities would scarcely be given in one system of organs．－
2d The kind of argument in favour of it，are such as Phrenologists advance．（one series affecting muscle \＆another their supports，ie only in the face）－does not hold good in my experience．or rather a double answer might be given
When different variations cross，the offspring take＊the locomotive system from the male， because，the male has greatest desire for the female being very
〈over〉 different－according to this，this law， would be quite interfered with in $*$ a case where the \＆ova were impregnated by the semen of the male，as in fishes \＆frogs，\＆ yet we know that mule fishes occur，\＆that it is not necessary in insects or fish that male should see female．－Moreover，how in cross of black \＆white man．\＆different varieties of dogs come there to be litters＊of puppies some taking after mother \＆some father．－ Again，there seems to be as much law（\＆as doubtful）in crosses of plants，the greater desire of the male is absurd－Again in some cases，the cross－bred offspring vary much．（as in passion flowers described by Sabine）here then no certain law appears to prevail．Again Mr．W．admits the offspring of cross breeds．p． 220 revert，\＆explains it by． one having the system of
〈over〉 one parent，\＆another a different one －yet by his＂law of crossing＂all will have locomotive system of male，\＆hence the possibility of this Heterogeneity depends on ＊male being less vigorous than female．－（\＆ this is next thing to assumption．for if other wise would have been recognized in human race）

WALKER, A., INTERMARRIAGE
How will Mr. Walker laws explain plants which show traces of 3 parents as in plants i\& - ? animals as ass \& Zebra \& horse * \&c of gardens - This will overthrow his system: no because he allows. (p.301) that one series modifies another! here is cause of error!
He bases some of his view on axiom that "organization is * indestructible" (p.224) how have our varieties been formed?!!
Law of Breeding in \& in
Female always giving locomotive series.probably invented to explain the loss of secondary character in the male, but is not this more probably effect of infertility. which likewise affects the female.-
〈over〉 I must think there is no difference in laws of resemblance to parents in species, varieties, \& individuals -

24 4-8m 107 8-19m $112 \quad 25-28 m 118$ 11-23m $1204-8 m 12424-28 m 1251-10 m 13914-28 m$ (Réaumur, Carlisle) 140 11-28m/22a "this" great Q $1435-13 m / 6-9 w$ This must be case of jumping one 144 19-27m 152 24-29m/w Colour f. has form of father - 160 26-28m (Knight) $1611-14 m / 2-4 w$ Law of symmetry $163 \quad 19-23 m \quad 164 \quad 4-14 w$ Analogous to Renngers descriptions of dogs in Paraguay \& Horses \& Cows $18-23 \mathrm{~m} / \mathrm{w}$ do not go back - yet not fixed, like species 165 17-19?? 175 10-22m (Clarke, Lewis) 177 9-26m (Knight) $1825-11 m / 8-9 w$ See p. 191191 12-19m 202 $13-22 \mathrm{~m} / \mathrm{w}$ How will this apply to Plants \& cases where impregnation is external $205 w t$ He would thus doubtless explain the effects of Arabian $1-5 m, 6-10 m, 11-15 m / w$ this is absolutely different from some other authors 206 9-18m, 11-13m 207 1-11m 209 1-28m, 20-28m $2105-8 m, 24-25 m 211$ 1-2m, 4-5m $2121-3 m, 17-21 m 2137-13 m / w$ according to Mr W. theory, whole bird ought to resemble $19-20 \mathrm{~m} / 20 \mathrm{~m} / \mathrm{u}$ "the I vital" $/ 20-22 \mathrm{w}$ I do not see proof of this $2142-29 m 2151-6 m$, 19$20 \mathrm{~m} /!!, w b$ As yet no notice whatever is taken of litters, where one puppy is of one kind \& another of another,-! 216 8-14m, 11$14 m, 15-26 m / 18-21 w /$ do not understand 217 11-21m, 21-28m (Sebright) 218 26-28m 2191$8 m 220$ wt Surely not if C exactly resemble D, yet these will vary I presume, according to views of Knight \& Co. $3-5 m, 5-7 u$ "forl occur" $/ 6-8 m, 7-15 w$ so that on this depends the possibility of heterogeneous offspring accounting for reversion $w b$ But yet in these crosses I thought the male always prevailed.- The offspring of very wide crosses, when male certainly does
preponderate, ought to be uniform 221 wt if halfbred animal is crossed with some distinct breed, the character of grandfather will reappear, now here breed age surely must be an element * is case true?? $15-20 \mathrm{~m} / \mathrm{w}$ but here I may assert that time comes in as element 222 wt Now this is question in point $1-6 m, 10-12 m / w$ (a) $w b$ is this not explicable on the idea of breeds time asserting the permanency in future generations. the crossbred animal its characters perfectly, the mule not at all 223 19-28w between breeds of equal antiquity the tendency to vary would be less - 224 3-11m (Knight), 27-28!/u "Organizationlindestructible", wb What is origin of all our varieties!! $2267-14 m 2275-$ $25 m$ (Sebright)/6-14w is not vice versâ. They degenerate because they lose productive powers $2285-6 m / ?, 25-28 m 229$ wt The converse of the law t ill effects of breeding in \& in holds in Plants.- namely crosses being more fertile - therefore effects of desire of male nonsense $6-8 m /!!!, 9 m, z b, w b$ Plants \& Fish \&c!! $2301 a$ "female" young or female 231 13-20m, 20-28m/24-26u $\leftrightarrow 232$ 24-26!!/25u "excitement", wb plants \& Fish 233 27-29!/29u "excitment|power" 234 20$29 m, w b$ I would rather trust the Practical Sense of Sir J.S.! 236 22-26m 237 22-27m (Sebright) 243 15-21m 244 5-6m 258 8-12m 266 8-15m/9-10w Dr Holland 270 6-13m (De Candolle, A.P.), 6-28m (Pritchard, Good) 271 5-27m, 4-5??/5u "Blaine", 13-15m, 18-28w This is the opposite of the case I want -1 want new variety 275 12-23m 276 6-8m, 17u "puglspaniel"/w Blaine 18-28m, 24$26 \mathrm{~m} 2779 u$ "female setter", 11u "mongrel", 17u "refused intimacy"/17-26m 280 27-28m 281 23-26m/"..." 282 3-9m 290 68?/7u "Mr Hunt" 291 15u "Mr Thacker" 299 1-14m 301 6-13m (Wilkinson)!!!! 303 4-6m, $11-22 m 3091-13 m / w 3$ solutions may be here given 312 wt surely same law to ordinary births, not to crosses $1-5 \mathrm{~m} / \mathrm{w}$ dogs in litter 9-10m/? 322 14-16m 328 1-4m/w Kangaroo!!! 361 3-21m (Prichard, Pallas) 362 4-17m (Moodie) 363 1-23m (Hancock) 377 12$17 m 3794-7 m / 4-13 w$ about Stallion broken leg see Mr Knights facts on this head I think it is in part where * discussed $3968-28 m$ 397 6-14m 398 13-17m

WALKER, Francis Monographia Chalciditum London; Hyppolitus Baillière; 1839 [Down, 1] \wp

WALKER, John and Charles Atlas of the British Isles London; 1837 [Down]

WALLACE, Alfred Russel Contributions to the theory of natural selection London; Macmillan \& Co.; 1870 [CUL]
beh, fo, h, he, hl, pat, ss, sx, t, ti, v
NB1 350; intelligent power 356 \& 359
NB2 113 a female mocking Diademas
Butterflies
205 Instincts of nidification

- 225 Man

229 mistaken instinct
221 Song of Birds acquired confirmed by Hon Herbert, I suppose in his edition of White - see L. Jenyns

- 353 Santals wd not break their parole

204 wt Female Ants leave the nest \& cannot have seen but very little of the Work done by the Workers \& yet have offspring It is wonderf. 205 wt Cuckoo - Tanagrella 4-8w The last female Bee which is hatched 14$15 w$ cocoons of Butterflies wb Solitary Wasps Spiders 214 8-29w Think of influence of Language Antiquity of Man Brazil \& California 219 9-11m/10-11u "simple hereditary" 221 14-19m (Herbert) 225 1-28w A Man does not make a canoe or arrow-head without practice - so differs from Birds - all a fallacy $2295-13 \mathrm{w}$ mistaken instinct 292 15$30 \mathrm{~m} / 17-21^{\prime \prime} . . . " \geq_{2} / 17 c \notin / 19-22 \mathrm{~m} 2937-19 \mathrm{~m}$, 22$30 \mathrm{~m} 294 \quad 7-15 \mathrm{~m} 336 \quad 19-21 \mathrm{~m} / 4-30 \mathrm{w}$ Yet it must be added that some extremely ancient skulls were fairly well developed $29-30 \mathrm{~m}$ (Lubbock, Huxley) 338 23-25m 340 3-5m 342 $1-23 w$ There is all the difference in the World between an instinct (ie not hereditary habit) \& intellectual act 343 wt It is brain here \& not use of hands $3-6 m, 9-11 \mathrm{~m} / 10-11 u$ "his | disproportionate" $344 \quad 20-26 m / 16-29 w$ If we look to detail to usage of hair above the lips, over whole body 346 21-29m/6-29w Under sexual selection - like injury for Horns of Stags $3506-11 \mathrm{~m} 35124-28 \mathrm{~m} / \mathrm{w}$ incitable/ incidental $w b$ Perhaps specify thus $w b$ He who can count \& reason \& do the rest $w b$ No new faculty 353 11-15m 356 12-15m/! 359 $7-8 u 371 w b$ I admit the possibility but I do not see the necessity or evidence in interference for the production of man as distinct from the production of lower animals.

WALLACE, Alfred Russel Contributions to the theory of natural selection 2nd edn; London; Macmillan \& Co.; 1871 [Down, I]

WALLACE, Alfred Russel The geographical distribution of animals 2 vols; London; Macmillan \& Co.; 1876 [CUL, I]
cc, ex, fo, gd, geo, hl, is, mg, oo, no, sp, t, tm, v, ve
vol. 1 NB
463 poverty of insects \& inconspicuous flowers
Frogs ice - salt-water; Galaxias - without further evidence your view on which provides complications; Bates - T. del Fuego; Poverty of insect life; Aromatic leaves as a protection like thorns
NB2 p.9.
I can hardly believe in connection between Africa \& Ceylon see p. 328 Blandford?
Capital remark on head of Argus How plain a char is when once explained!
Explanation of Java admirable
426 Mammoth in Timor

References

1 am very glad of your somewhat changed views of the wonderful Celebes
SB x_{0}
Geograph. Distrib.
p. 9 to 34 Means of dispersal.
p. 20 Migration
p. 36 Whole book on Distribution, so I will not give Pages.-
p. 346 Argus Pheasant - Head not ornamented
p. 463 Poverty of bright flowers corelated with Poverty of insects

9 32-35m 18 15w Tortoises 20 34-38m (Serres) $219 u$ "moderate widths" $\mid w$ Berents 24 $30-37 \mathrm{~m} 36$ 9-11m, 12-15m 37 12-18m 43 10$14 \mathrm{~m} / \mathrm{w}$ Canaries C de Verde?? Volcanic Etna? 32-37m/32w Axell Blytt 52 1-5m, 5-8m 53 19-26m $5617-22 \mathrm{~m} / \mathrm{w}$ no they must have 57 21-26m 59 5-6u "Madagascar"|?, 11-12?, 16-20m (Günther) 76 wt No look at depth 118 $6-13 m / 11 u$ "animals" 13 u "Miocene" 1504 23m, 25-32m 151 1-5m 157 9-12m, 25-28m $15824-29 w$ cd Man have destroyed the largest $31-37 \mathrm{~m} / \mathrm{w}$ yet higher animals change quicker than low 162 28-32m 163 15-18m 167 33-37m 168 12-17m 174 14-19m/w Antarctic Land 175 33-36m 206 28-30m 207 1-11m, 1421 m 208 1-7m, 9-18m, 17-25m 209 1-12m, 15-27m, 29-36m 210 10-13m 211 22-28m 212 16-21m, $25-28 m 21834-37 m$ (Wallace) 263 27-30m 265 29-37m 268 26-28m 269 22-26m 273 12-15m 274 4-11m 277 8-14m, 16-19m 278 11-14w Madagascar 1000 miles long $15 u$ "lost continent"|? $27911-14 \mathrm{~m} 2807-9 \mathrm{~m} 281$ 9-13m, 14-16m, 24m, 34-36m 282 8-20m, 2830m, 33-36m 283 1-9m, 23-24m 284 7-12m, 16-25m, 29-33m 285 1-5m 286 1-13m, 22$26 m, 33-37 m 2871-3 m /$?, 11-15m/?, 28-34m, 34-37m 288 34-36? 289 20-26m, 28-35m 291

WALLACE, GEOG. DISTRIB.
11-14m, 18-19m, 31-36m 327 1-4m, 18-24m $3281-7 m, 8-14 m, 18-27 m / w$ A continent since Permian times $3409-14 m 34114-34 m$ $3457-11 m 3461-4 m, 32-36 m 352$ 25-37m 357 $29-36 m 358 \quad 12-24 m 35917-22 m / w$? during Miocene more tropical \& this cd have made a larger tropical Land $30-35 m 362$ 22-31m 391 33-37m 395 10-19m (Wallace) 400 12$26 m, 19-29 m, 30-34 m 40111-23 m, 30-37 m$ (Günther) $40213-19 m 4037-28 m / w$ The one fish may have kept long to same species 406 $6-14 m 4134-12 m, 19-26 m 416$ 19-28m, 33$37 m 417$ 23-25m $41927-36 m 42128-31 m 424$ $\begin{array}{llllll}7-16 m & 425 & 1-4 m, & 27-37 m & 426 & 24-28 m / w\end{array}$ Mammoth $43616-20 m 4384-15 m, 35-36 m / w$ Flora! 440 15-19m 442 1-2m 446 3-7m, 24$29 m 4476-11 m, 12-23 m, 26-34 m 44827-39 m$ (Günther) $44910-14 m, 16-19 m 45231-41 m$ $45323-33 m / w$. May they not have in 454 $27-34 m 46027-37 m 4611-11 m, 25-37 m 462$ 25-34m 463 1-18m, 35-37m (Hooker) 464 813 m
vol. 2 NB1 〈draft of letter sent 26 June 1876〉
References Forel - Hooker Great care with which you have worked the Southern part of S. America - I suspect you argue too strongly on the necessity of a large area for the development of many forms.- So many species of same genera on many volcanic islands in inviolated valleys seems sufficient 122 Error??
252 I doubt, though I agree with Principle 265
359 Error
I like much the discussion on the distribution of Land-shells
Axell Blytt paper
NB2 All marked on Geographical Distrib-ution.-
p. 205 N. seals in Baikal 465 Distribution of F.W. Fishes
$725-31 m 2022-37 m 212-17 m$ (Günther) 23 $26-31 m, 34 m 2634-37 m 356-10 m 3827-37 m$ $426-26 m, 29-31 m / 30-31 u$ "not lforms", 34$37 m 4421-33 m, 34-37 m 451-5 m, 26-37 m 47$ $22-26 m 488-12 m, 17-19 m, 30-32 m 514-10 m$ 57 26-34m $594-10 m, 22 u$ " 100 fathom", 32$37 m 6126-31 m 6225-30 m 654-9 m 6627-$ $32 m 76$ 3-9m 79 10-15m/14u "of Anguilla" 80 $2-9 m 8131-33 m 821-5 m 831-8 m 12135-$ $37 m 122$ 1-6m, 11-17w ! Edentata Mastodon Horse Tapir Tertiary! 123 12-16m 154 11-16m 155 10-15w why not separately described then $1624-9 m 20528-35 m 2526-13 \mathrm{~m} /$? 265 $10-11 m 321 \quad 32-33 m 323 \quad 26-31 m 341 \quad 26-30 m$ $3596-7 m 37022-29 m, 27-30 m 3712-5 m 386$ 17-21m, 23-27m 387 25-30m 392 18-23m 423

1-6m 430 9-11m 432 8-13m (Günther) 465 2$8 m, 11-13 m, 25-28 m 4661-12 m, 28-32 m 467$ $1-7 m 4843-18 m, 34-37 m 48716-25 m 496$ 12$16 \mathrm{~m} / \mathrm{wt} / 1-17 \mathrm{w}$ several other such cases of semi-tropical or warm Eocene Antarctic found $5006-14 m 5031-5 m, 9-11 m$ 26$30 \mathrm{~m} / \mathrm{w}$ • by $52433-37 \mathrm{~m} 5251-8 m, 12-17 m$, $23-35 m 526$ 1-8m 537 12-28m 546 5-15m, 16$31 m 548$ 19-26m 549 11-16m 550 31-36m

WALLACE, Alfred Russel Island life London; Macmillan \& Co.; 1880 [CUL] gd, geo
NB \bullet p46; 88 Percentage of C. of Lime in Chalk; 68 have long thought so \& so other to Günther
166 great amt of Denudation 207 Tylor on Denudation; 251 Means of Distribution; 262 do; 294 do
$462-5 m / w$ Viti New Caledonia New Hebrides 68 9-15m 72 15-19m/? $887-12 m 89$ 21-41m 166 29-33m 172 29-33m/29u "the water" 199 26-38m 207 1-5m (Tylor), 35-36m 208 19-22m 250 28-40m 251 21-41m 262 12-24m 294 3$9 m, 24-28 m \quad 295 \quad 5-12 m \quad 345$ 2-13m 403 19$22 m$

WALLACE, Alfred Russel The Malay archipelago 2 vols.; London; Macmillan \& Co.; 1869 [CUL, I]
beh, fo, gd, geo, h, mhp, oo, or, sl, sp, sx, tm, v, wd, y
vol. 1 SB1 $\square \beta$
Vol I Wallace
1923 to 24 Origin Geographical Distribution - 022 Mem Institution

49 Pitcher-Plants insects

- \& 87 Orang throwing missiles

183 \& 184 Alpine Vegetation
222 Distribution
225 do=0
245-248 453 Birds -transportation of seeds 318 Distribution to 327
418 Megapodius instinct
427 Distribution to end of Chapt

- 428 Pigeons with racket tail
$441 \sim$ Vars. in Outline of wings of
Butterflies in Celebes.-
- 468 Kingfisher do do
- 433 Barbirusa Defence 435
- Penny Encyclop p246 Vol 23

SB2 over \star_{0}
splendid Eulogia on Rajah
How interesting plants of BorneoO wd be Timor splendid case
on Subsidence directly due to pouring out
of Lava - Reports Habits
\checkmark Sondiacus
Caterpillars Hairy－Jenner○ Hair
\Leftrightarrow Style very good
Celebes splendid
Babyrusa organ of defence I presume lower canine not developed
Sevalik miocene fossils－
18 1－2？， $20-22 m 1911-21 m 2118-25 m 23$ 3－ $10 \mathrm{~m} / 12 w$ Origin 14－18m 24 21－25m $26 \quad 24$ $26 m, z b 2913-20 m 4911-15 m 601-2 w / f i g . w$ Gunther do not believe story 87 11－17m／13－ $16^{\prime \prime} . . " / 12 w / 14 a \notin 18322-26 m 18411-16 m$ ，19－ $25 m 185$ 1－3m 222 20－26m 225 15－20m 226 $12-21 m 2451-3 m 2481-6 m 31818-26 m 319$ $16-26 m$ 320 $2-12 m 321$ 11－25m 322 14－23m 323 18－21m，23－24m 325 10－16m 327 5－8m $32917-23 m 418 \quad 14-21 m / w$ may it not be argued that large egg necessary to develop young Bird so perfectly？ 419 11－15m 427 17－ $24 m 428$ 20－22m 429 13－14m，19－20m 431 22－ $26 m 432$ 9－11m，12－18m 433 24－26m $4342 a$ ＂eyes＂$/ 1-4 w$ with the tips in－curved so that they cd not possibly be used as weapons 7－ $9 m 4357 \mathrm{~m} / \mathrm{wt}$ probably originally weapons $11-13 \mathrm{~m} /$＂．．．＂， $14-16 \mathrm{~m} / \mathrm{m} / \mathrm{w}$ How about the lower 437 13－18m 438 16－17m 439 19－22m 441 fig．m $4437-9 m, 19-22 m 444$ 7－15m 445 wt More probably round－reflects on connection with Africa of Sevalik fossils．9－ $15 m$（Sclater） 453 9－11m／10u＂crimson mace＂， 12－14m
vol． 2 NB
SB1 D β
－p． 43 Man－a small colony lose its language and yet impresses its character to certain extent \＆may increase into large nation．－ 49 do
＊o 103 Tropical fruits have all been improved by Selection
141－142 Distribution－Pigs swimming
－ 150 Casuarius females sitting alternately ？？
－ 178 \＆ 207 Man
－ 203 Birds of Paradise seasonal
－ 252 do Dance
－ 255 Man 445－453
276 failure of instincts in Insects boring trees or sticking in holes
－male fighting Beetles
290 Distribution
295 Flowers not fine in Tropics
－ 306 Man beauty
－ 314 Sexual characters Diptera
－ 388 Paradise－skim through Chapt．－ 399
431 Distrib，435， 436
SB2 〈over〉
－you make sometimes feel young again as
if I was once again collecting specimens p150 ask Casuariusen
I am astonished you ever returned alive
－ $236 \checkmark$ for Western read Eastern 255 Savages males self－ornament－do they care for admiration of women？or of other men，for presumably not exclusively self－ admiration ？
－Distribution
－ 295 number of insects no need to be conspicuous．
－ 315 like Elk－do you not mean Moor or fallow Deer 399 ask
43 14－16m，19－21m， $22 u$＂Malayllanguage＂， $w b$ if a small colony native language 48 18－20u士 49 16u＂Orang Sirani＂，21－23m／u ＂withlstocks＂ 103 16－24m 141 9－15m 142 1－ $9 m 14512-16 m 1463-13 m 1504-6 m 1533-$ $11 m \quad 178 \quad 13-17 m, 25-26 m \quad 179 \quad 4-5 m, 8 u$ ＂twisted beard＂，13－15m 203 16－20m 207 11－ $15 m 236 \Uparrow 5 c / w \notin 252$ 17u＂dancing－parties＂， 21－26m $2538 u$＂arelover＂， $11 u$＂striped t the＂， $13 u$＂then overshadowed＂，14－15u＂emerald｜ throat＂ 255 16－17m／w self－vanity $2763-13 m$ ， 23－26m 277 1－6m，8－11m $2907-23 m 291$ 20－ $23 m 2959-15 m / 7-23 w$ so many insects no need to be conspicuous $2966-14 m / 7-25 w$ I think Humboldt remarks Tropical plants not so social $29726 m 2985-15 m 3061-3 m 314$ $12-14 u \leftrightarrow 3151-3 m, 4 u$＂elk＂／？， $13-16 \mathrm{~m} / 14 u$ ＂Nonelany＂ 390 11－12m／12u＂feathers 1 colour＂，14u＂across lforehead＂ 391 1－2m，17－ 18m，18－19u＂effect I moultings＂，23－26m／24－ $25 u$＂assumed 1 season＂ 393 4－9m 394 24－25m 395 1－2m $398 \quad 5-8 m, 9-12 m 399$ 1－19w variety of colour $9-22 m, 21-22 w$ I do not see \＆I wish I did see it the connection between variation having been first a long ago selected \＆\＆then appearing at an earlier age than more recently selected variations．I can see，why an increase in the length of feathers，which has to be fully formed \＆then added to in length by variation \＆then further modified，shd appear later in life $4058 u \wedge$ ， $17-20 \mathrm{~m} / 19-20 u \leftrightarrow 4065 \mathrm{~m}$ ， $6 u$＂blackl colour＂， 11－12m 407 7－12m 408 9－12m 409 2－ $4 m 420$ $9 u$＂eighteen＂ 431 19－26m 435 7－10m 436 18－ $22 m 445 \quad 15-16 m \quad 453$ 1－6m／3w 456455 8－ $13 m \bullet 45615-18 m 4607-10 m / w$ like a herd of animals

WALLACE，Alfred Russel The scientific aspect of the supernatural London， 1866 ［S］〈presentation copy〉

WALLACE，Alfred Russel Tropical nature and other essays London；Macmillan \＆Co．； 1878 ［CUL］

WALLACE, TROPICAL NATURE
NB 59 Mimosa
59 31-32m (Pfeffer) $604-8 m 616-11 m$ (Bates)
WALLICH, George Charles Eminent man of the day London; John Van Voorst; 1870 [CUL]

WALTERSHAUSEN, W. Sartorius von Untersuchungen über die Klimate der Gegenwart und der Vorwelt Haarlem; De Herven Loosjes; 1865 [Down] \wp

WALTHER, Alfred and MOLENDO, Ludwig Die Laubmoose Oberfrankens Leipzig; Wilhelm Engelmann; 1868 [CUL]
gd , is, $00, \mathrm{sp}, \mathrm{t}$
NB1 218 Intermingling in range of mosses
224 Even close species of mosses do not live close together; the Struggle for Life, being severest between nearest forms good!
263 translated to end
265 gives cases against M. Wagner's Isolation
$21822 \mathrm{~m} 2244-10 \mathrm{~m} / \mathrm{w}$ close species do not live together $26421 m, 30-35 m 2659-25 w$ Argues against M Wagner Not result of isolation

WALTHER, Friedrich L. Der Hund Giessen; G.F. Heker; n.d. [CUL, pre-B]
beh, br, cs, ds, gd, h, tm, v, wd
NB \otimes_{0} This only useful for ancient History of Dogs Q
March 291857
Find out what classics translated
Athenaeum London Library
Aristotle; Pliny; Xenophon 0 ; Varro
Columella; Oppianus; Treviranus
1 doubt whether any use
40 Greyhounds do not bark
48 Dogs of ancients 0
31 Bechstein first remarked about skin between toes
39 Animals of Corsica speckled
1 doubt whether any use
4 31-35m 5 6u "Varro"/6-9w In Athenaeum "Rei Rusticae Scriptora" $7-8 \mathrm{~m} / 8 \mathrm{u}$ "Columella" $631-35 m 913 m$ (Linnaeus), $17 u$ " 22 ", $19 m$ (Linnaeus) $1210-12 w$ ears very variable 21$22 \mathrm{~m} / \mathrm{w}$ Lungs of swift dogs very + large $33-$ $35 \mathrm{~m} / \mathrm{w}$ 10-8 nipples latter more rare $167-$ $13 w$ Crossed with these 2037 m (Azara) 21 $33-34 m 237-11 m, 14 m, 15-17 \mathrm{w} 2$ dogs in New Zealand $26 m, 31 m 2623-26 m / 24 u 28$ 18m, 19-20w Spaniel 33-35w Carrying Dog
$299 w$ Poodle $17 u$ "Herrmann" $3027 m 312-$ $5 w$ always slavering mouth $11 u \leftrightarrow / 9-11 w$ webbed feet $14 u / w \tau 34 \Uparrow 10 w$ our Bull Dog 35 30-32w Claw on hinder feet 37 15-16w Pointer 39 36-38w Animals of Corsica oddly speckled 40 1u "Hühner 1 Hunde" $/ w t / 1-5 w$ Men, hounds, hens black on coasts of Guinea! 18-21w Danish carriage dog 25-28w Greyhounds do not bark $41 \quad 16-18 \mathrm{~m} / \mathrm{w}$ Persian greyhound $28 u / w \tau, 29 u$ "Hasen"/w like Hare $425-6 w$ naked dogs $28-30 w$ terriers $4324-30 \mathrm{w}$ Carver says only 1 dog amongst Americans $32 u \leftrightarrow 44 \quad 3-7 \mathrm{~m} / 4 u$ " 1622 "/2-10w Newfoundland dog not found there in $16224630-32 w 2$ dogs Chile $482-$ $9 \mathrm{~m} / \mathrm{wt} / 1-11 \mathrm{w}$ talks of impossibility of recognising dogs of ancients $14-19 \mathrm{~m} / 12-20 \mathrm{w}$ doubts whether they could have been kept pure. $22 u$ " 400 Jahre", $27-33 \mathrm{~m} / \mathrm{w} 2$ kinds of dogs described $28-34 \mathrm{~m}, 34-36 \mathrm{~m} / 34 \mathrm{u}$ " 350 "/ $35 u$ "3-4" $4924 u$ "Melitäischen" $\mid 23-25 \mathrm{~m} / \mathrm{w}$ Pliny mentions quite a little dog $34-35 w$ \& Indian Dog 50 21u "ex Icane"/25-26?/14-29w I see that Aristotle * attributed Dogs to crosses with wild animals! whether correctly may be doubted? $5117-19 \mathrm{~m} / 17 \mathrm{u}$ "ersten Jahrhundert", 19-22u $/ \mathrm{w} 12$ Dogs $30 \mathrm{~m} / \mathrm{w}$ 2d century $33-36 \mathrm{~m} / \mathrm{w}$ many breeds 527 m , 9$11 \mathrm{~m} / \mathrm{w}$ which variety in Dogs $21 \mathrm{~m}, 30-31 \mathrm{w} 1$ $36 w 2531 w 34 w 46 w 58 w 68 w$ aids in Hawking $10 w 712 w 813 w 95510 w 1017 w$ 1158 19w Charlemagne $23 u$ "Molossus"/w Bloodhound $6016-22 \mathrm{~m} / \mathrm{w}$ only few hounds in Germany at this period $6910-14 m 704-5 m$, $11-13 m, 20-26 m / 13-27 w$ long legged \& long snouted thin haired dogs in hot countries, short legged thick haired in cold countries

WALTHER, Friedrich L. Das Rindvieh Giessen; G.F. Heker; 1817 [CUL, pre-B] br, cs, f, gd, geo, rd, sx, t, tm, v, wd
NB p. 17 p. 113 Book; Nothing after p.150; (Very little)
SB $\square \beta$
30 Humped cattle with hump much larger in Bull than Cow
31 Horns in Iceland
Bring fruitful offspring with common cattle
$316-17 \mathrm{~m} / \mathrm{w}$ wild nothing known $25-26 \mathrm{~m}$, $w b$ same as Aurock $631-33 m / w$ Grt humped Ox in Alexanders time $1225-27 \mathrm{~m}$ (Buffon), 31$39 m$, wb thinks the Aurocks may have crossed with our cattle. By Buffon they have crossed 15 29-34m, wb I presume all these breeds are different but are not here described 16 18u "Hochbeinig"/17-20w longlegged with outstanding horns $178-10 \mathrm{~m}, 11-$
$12 m, 29 m, 31-32 m / u \leftrightarrow / w$ See Next Page 18 $18-22 \mathrm{~m} / 19-20 \mathrm{w} \bullet, 21-22 u$＂ungemein sind＂ 19 $24-25 m 2021 w 3226 \ddagger w$ White aurochs or Ladrones three wild Cattle of Scotland mistaken for 29 wt（a）Pallas theory that N ． America \＆Europe one united island \＆ wrecks of old land $5-16 \mathrm{~m} / 9 \mathrm{w}$（a） $30 \mathrm{Iu} / 3 \mathrm{u} / 4 \mathrm{u}$〈place－names〉，11－13m／5－16w Oxen a hump， cows very little Breeds with common subherds with a Bump 17－18m／17u＂Beiträgen IV＂， $30 u$＂fruchtbare Junge＂ $127-32 w$ lose hump in other climates！！Breed with common cattle $30 u \pm, 33 \mathrm{~m} 3114-16 \mathrm{~m} / \mathrm{w}$ Hornless in iceland commoner than Horned $17 u \pm$ ，20－ $24 w$ Mem how different from sheep of Iceland $26-31 w$ Aelian remarked on herd of hornless cattle $31-32 m$ ，wb in S．America when crossed with hornless，calves no horns $w b$ very odd considering rudimentary when contrasted with sheep 54 25－38m／w 2 Indian Oxen described one with long mane $554-$ $5 \mathrm{~m} / \mathrm{w}$ 3d kind $5719 u$＂Aegypten＂／19－23m／21u ＂Cameelen＂ $613 u$＂ 50 ＂｜ $4 u$＂Vierzig＂／1－6w Varro 50 Books on Agriculture $664-9 \mathrm{~m} / \mathrm{w}$ Italy several Breeds in Columellas time．－ 73 $14-20 w$ Romish cattle very different from those of N ．Land $22 \mathrm{~m} 83 \quad 1-6 \mathrm{~m} / \mathrm{w}$ cattle curious Thuringia $9023 \mathrm{~m} 1138 \mathrm{~m}, 9 \mathrm{~m}$

WANDERINGS through the conservatories at Kew London；Society for promoting Christian knowledge；n．d．［Down］

WARD，Robert Arthur A treatise on investments London；E．Wilson； 1852 ［Down］

WARINGTON，George The week of creation London， 1870 ［CUL．1900，I］

WATERHOUSE，George Robert A natural history of the Mammalia London；H．Baillière； 1845－48［CUL，I，S］
af，beh，cc，ds，fo，gd，he，hl，ig，in，is，oo， $\mathrm{rd}, \mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{tm}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$
SB1 $\square \Re$ 〈at end of part 22〉
p． 32 p． 52 p． 54 p． 66 p． 68 p． 106 p． 111 p． 144 p． 161 p． 187 p． 188 p． 190 p． 202 p． 452 XX p． 467463469
SB2 $\square \mathfrak{R}$ 〈at end of part 22，several sheets〉 p． 2 All Marsup．out of Australia \＆N．Guinea belong to sub－genus of Phalangista Cuscus， which is not fd in Australia，but is in New Guines．In N．Guines 7 species in 6 genera p． 3 Talks of ranges，－ 1 species ranges from Ambyona to New Ireland！introduced I shd think about 1400 miles from Ambyona to N ． Ireland，about same as to Timor
p． 3 species nearly allied generally do not inhabit same district
13 Stonesfield marsup．cannot be arranged in any known group of recent marsups．
18 on greater amount of difference in low orders
232831 on relations of Montremata
47 var．or species of Echidna in Tasmania．－ 53 slight rumination in Kangaroos
56 Eye－lashes only in diurnal Kangaroos
61 Rodents with Marsupials＊
87 Kangaroos on Barrow isd 30 miles off Mainland－
109 Echymis，hairs varying to species in same genus Gradation
〈over）
131 var．of Kangaroo in Tasmania
183 Macropus Brunii of N．Guinea approaches in many respects anatomical to the N ．guinea genus Dendrologus，a new Guinea genus－cd only be accounted for by descent
194 var．in molar teeth．
204 local vars．from W．Coast
232 Gigantic Diprotodon \＆Nototherium of Owen between Rat Kangaroo \＆Wombat
244 Fossil Wombat very close to recent
256． 265 certain small teeth varying in species \＆individuals
277 Cuscus purchased from natives by Lesson
293302 vars Tasmania
310 Phalangista with skin some way between legs giving character of Petauruses， no habit to explain use
318 Curious analogy to flying squirrels even to form of tail in different realmsO
〈over〉
343，4 Rudimental teeth in Tarsipes variable
424 Doubtful Tasmanian Species How much more distant N ．Guinea than Tasmania；not then climate comes into play
537 Cuscus chrysorrhos in N．Guinea－list of Marsup．of N．Guinea
538 East \＆W．Australian districts have only $8 / 60$ in common（compare with N．Guinea \＆ Timor）－S．Australia hardly only few peculiar $9 / 20$ peculiar to Tasmania Thylacinus \＆a sub－genus peculiar to Tasmania，but both fossil in Australia
〈over〉
Rodents beginning at Part xii
32 Fossil Lagomys Northern genus in Corsica \＆Sardinia
52 Lepus variabilis in N ．of Alps，almost in Middle Europe
54 Thinks same species with Irish a：It does not appear that L．glacialis

WATERHOUSE
106 p111 marked variations in populations of Hares（161 in Cavy）
141 Brazilian Hare approaches most nearly to N．American Hare－inhabits Bolivia as well as Brazil－\＆p144 very close to Cave Hare of Brazil，identical except size－Came during glacial period $\&_{0} \&$ so the Antilope
452 When a species has is characterized by maximum development that part is most subject to variation．Q
463 Nepal Porcupine breeds domesticated
467 vars of Java Porcupine，there \＆in Sumatra \＆Borneo
477 Porcupine Fernando Po \＆Sierra Leone
vol．1， 2 19－23m 3 wt All caught \＆solidly native p277 wt do．p283 esteemed a great delicacy 5？？？， $6 \mathrm{~m} / \mathrm{w}$ Temminck $9 a / \mathrm{c}$ ＂Cavifrons＂／w Orientalis V．p． 279 Some make this a distinct section of Genus $12 u$＂seven species＂， $14 u$＂six distinct＂， $20-23 m, 27-30 m$ （Müller）$/ 28 w$ when？ $46 \mathrm{~m}, 25-31 \mathrm{~m} 56-8 \mathrm{~m} /!6$ $24-25 m 1028-30 m, 31-32 m 111-6 m 128-$ $11 w$（wait for explanation） $133-5 m, 18-22 m$ $174-7 m, 12-14 m, 18-21181-3 m, 4-5$ ？，12－ $19 m / 14-15$ ？， $16-19 m \quad 20 \quad 1-2 m \quad 21 \quad 25-28 m$ （Owen） 23 1－2m $284-6 m 319-11 m 32$ 26－ $28 m 40$ 13－14m 42 17－18m 47 20－21m，28－ $30 m 4819-23 m 5016-17 m 51 \quad 6-8 m \quad 52 \quad 5-7 m$ 53 12－13m 54 22－23m 55 9－13m，13－17 56 3－ $5 m 615-7 m 6423-24 m / w$（a）$w b$ I thought Gould said there were different varieties at the two places $698 w 18 w 222 u / 22 u / 25 u / 25 u$ ＜numbers）／23－28w proportional variation in bredth of teeth $35-37 \mathrm{~m} 709-11 \mathrm{~m}, ~ 18-20 \mathrm{~m} 72$ 11－14m（Gould） $7430-32 m 771 m 873-5 m 90$ $13-15 m$－ 93 32－33m $109 \quad 9-12 \mathrm{~m} / \mathrm{w}$ case of series in same genus 28－31m $1106-9 m 113$ $1-2 m 12529 m / u \leftrightarrow, 32-33 m 12632-34 m 131$ $8-12 m 13530-31 m \cdot 13828 c$＂ear＂／w tail $32 m$ ， wb same total length but parts vary $1489 m$ ， $10 \mathrm{~m}, 12 \mathrm{~m}, 13 \mathrm{~m} / 10-16 \mathrm{w}$ smaller，yet longer tail，\＆longer from nose to ear 17 m 15011 － $14 m, 22-23 m 15520-22 m 1583-5 m, 6-8 m 159$ $25-26 m 16029 m / 29-32 w$ specimen longer yet tail shorter $16230-31 \mathrm{~m} 16336 m$ ，wb ear less in larger specimens $1666-8 m, 25-28 \mathrm{~m} / 23-$ $31 w$ yet a former species was described as inhabiting rocks $1706-7 \mathrm{~m}, 16 \mathrm{~m} / \mathrm{m}, 19-27 \mathrm{w}$ similar variations；age may have something to do $17230-32 \mathrm{~m} / \mathrm{w}$ representative？wb NW Coast $18030 m 1819-11 x$ ，wb \times Gould has this work in Dutch－will there be any tables of the Mammifers 182 21－22m 183 3－5m，7－ $9 m, 19-20 m, 22-23 m 1851-4 m, 5-9 m, 10-$ $15 m, 16-19 m 18622-25 m 19433-35 m 202$ 25－ 27 m 214 13－14m，16－19m 215 tab．m 216 1－3m， 7－10m 218 18－22m 226 24－26m（Ogilby） 232

30－34m（Owen） 256 20－23m 262 11m／u ＂protected leyelashes＂ 265 11－15m $2678 m 275$ $4 m, 6-8 m$（Temminck） $2774-6 m 27917 m / u$ ＂Timor＂ $28633 m 287$ 8－17w I have often observed all parts do correspond in X size， when a specimen is extra large $29032-33 m$ 291 4－5m 293 6m，7u＂specifically＂ 295 26－ $27 m, 32-33 m 30214-15 m 30825-27 m 31013-$ $15 m 3123-18 w$ there seems no habit to account for skin from sides of body to legs $3134 \mathrm{~m} / \mathrm{u}$＂oflthe＂，8－10m 318 15－19m 323 9－ $10 m, 30-31 m, 35 m 33226-27 m 34313-18 m$ $34424 m 34714 u$ 〈numbers〉，16－18m／m +355 $2 m, 22-23 m 35615 m, 19-20 m 38712 m 4031-$ $2 w$ generic character $3 m \bullet / 3-4 u$＂The pouch＂ 417 26－28m 418 15－19m 424 10－13m 429 28m／ $28-29 w / w b$ species appear nearly all distinct here．V．how many genera $43210-14 m, 30-$ $32 m 4387-9 m, 10 m /$ ？， $12 m 4435-6 m$（Gould） $4441-2 m 4511-4 m 4824-6 m, 5 m, 7 m 4842-$ $7 m, 3 m, 4 m 4931-2 m 5184-7 m 52925-27 m$ 534 30－32m 537 13－15m，15－21m，25－27m 538 $3-7 m, 8-9 m, 13-16 m, 18-22 m$
vol．2，3 9－10m $1019 m 1231 u$＂supra－orbital process＂ $131 \mathrm{~m} 324-6 \mathrm{~m} / 4 \mathrm{u}$＂Corsica＂，15－16m／ $15 u$＂Sardinia＂ 34 19－38m $3514 u$＂supra－ orbital＂，27－32m $365 u$＂squarelmiddle＂，7－ $11 m 39$ 16－17u＂earslpoint＂ 41 22－23m／23u ＂blacklabove＂， $25 u$＂brownish colour＂ 43 11－ 12m＊ $4510 u$＂withlexternally＂， $13 u$＂Thel along＂ 46 6－7u＂with｜apex＂， $12 u$＂taillabove＂ 48 26u＂withlapex＂，34－35u＂blacklmargin＂ 49 27－28u＂apicallblack＂ $5134 u$＂Winter fur＂， 35－36u＂upper \mid yellow＂ 52 4－6m，10－11u＂tail｜ surface＂， $30 u \leftrightarrow 531 u$＂and lears＂， $4 u$＂withl ears＂ $544 u$＂andlabove＂，16－29m／22u ＂surface｜greyish＂ 55 zt ，tab．m $578 u$＂withl black＂，10u＂tintedlsurface＂ 58 6－8m 60 11u ＂dense fur＂， $12 u$＂surface 1 colour＂， $24 u$＂upper black＂ $6414 u$＂taillabove＂ $66 w t / 1-6 m / w$ The argument against variation must be extended to all these cases $5-6 m$ ， $10-12 m 6712-13 u$ ＂whichlblack＂，32－34m 68 4－9m，11－12m 70 23－24u＂externally｜extended＂ $7220 u$＂ears externally＂， $23 u$＂pencilled labove＂ 74 30－31u ＂with lexternally＂， $32 u$＂taillabove＂ $821-2 u \leftrightarrow$ $8310 \mathrm{~m}, 25-27 u \pm 8420-21 u$＂taillblack＂ $867-$ $8 u$＂margined 1 black＂ $8735 u$＂externally \mid patch＂ 93 11－13m $9634 u$＂areland＂ $977 u$＂onl colour＂ 104 20－25m $1057 u$＂soleslears＂ 106 $3 u / 5 u / 5 u / 9 u / 9 u$ 〈numbers〉 110 13－17m 111 $21 u / 25 m / u$ 〈numbers $11618-22 m 144$ 21－26m $17710 u$＂ 3 ＂／w in fig． 12187 tab．w proportions different $188 \quad 10-20 \mathrm{~m}$（Rengger）， $17-18 m \quad 189 \quad 11-19 m, \quad 26-28 m, \quad 29-33 m$ （Rengger） $190 \quad 31-34 m \quad 191 \quad 9-12 m, 14 u$ ＂previously domesticated＂ 192 15－18m，27－33m
(Rengger) $2024-10 \mathrm{~m} 203$ 8-10m 21710 m , $18 u$ " 10 " $29625 w$ where is it found. $4529-$ 11Q 17-19m, 19-24m/Q $4535 w \bigcirc 46330$ $32 m 467$ 8-17m 469 3-7m (Gray) $4775 m$

WATERHOUSE, George Robert The naturalist's library; Mammalia, vol. 11: Marsupialia Edinburgh; W.H. Lizards; 1841 [CUL, I]
af, $\mathrm{sp}, \mathrm{tm}, \mathrm{v}$
NB 67,8; 81; 84; 86 to 105
from 200 to 251 only skimmed nothing
253; 263; 266; 284; 306; 313
SB $\square \beta$
68 Owen on marsupial Bones in Reptiles \& arteries in Marsupials like them
84 Analogous var in stripe in other species of Opossum \underline{Q}
$496-8 m, 14 w$ New Ireland $27 m 508-10 m 67$ 23-26m 68 16-18m (Owen) 81 15-22m 84 11$15 m / 13-14 \mathrm{Q} 28 w$ see $8629-30 \mathrm{~m} / \mathrm{Q} 863-5 m /$ Q $8929 m 961-3 m 10515-17 m 135 \quad 26-27 m$ (Gould) 253 3-4m 263 19-20m 266 23-25m 267 19-21m 284 wt I see some squirrels in Zoolog. Gardens have flattened tails like the flying squirrels $8 m 3066-7 m 31319-32 m 314$ 13-14m, 28-30m 323 6-8m

WATERTON, Charles Essays on natural history London; Longman, Orme, Brown, Green \& Longman; 1838 [Down, S of Matthews]

WATSON, Hewett Cottrell Cybele britannica 4 vols. and part 1 of supplement; London; Longman \& Co.; 1847-60 [CUL, I] cr, gd, geo, no, phy, sh, sp, t, tm
vol. 4 NB 397 misprint; 123 introduced Plants
SB
Forbes \mid quite agree Alpine \& recent of glacial sea-shells only good parts - You always write with such vigour \& spirit that I am carried along with you over dryest points.

- i.e. thanksO

Reconnectibility
Value of Groups very good; I was so glad to see you praise Bentham's paper.-
62 curious coincidence in idea with what I have written
I am glad you praise Alp. D.C.
SB2 p16
175 It would be easy by this Table to calculate distribution by the 112 countries of census in larger \& smaller genera. Take one
of old lists with names. In order to see whether the most diffused species are the species of larger genera (see p.438)
Pages marked not abstracted Cl

16 12-17m, 20-21m 19 13-19m 20 19-21m 25 5-11m, 19-24m $3130-34 m 3218-20 m /$? $331-$ $7 m 4029-32 m 42$ 3-13m $4412-14 m 45 \quad 1-3 m$ 46 8-13m, 13-15m 47 6-10m, 16-18m 49 1$2 m, 7 m 62$ 2-11m 78 2-12m/4-7w American plants $8011-19 m 10526-32 m 1233-7 m$, $7-$ $9 m 156$ 18-22m 159 11-13m 160 22-25m 171 2-4m $1752 w$ p. $23142 w 19 w 410 w 131$ 12w $213 w 10014 w 116 w 12342 u$ " 38 subprovinces"/w counties 278 20-30m (Bentham, Babington), $29 u$ "to 320 " 279 23-27m, 24-30m, $28-29 m 28032-38 m / 36 u$ "partly fallacious" $285 z b 3571-8 m 3591 w$ No of species $2 w$ World 368 27-39m 387 18-34m (Bentham) 388 4-22m, 20-25m 389 5-7w Doubtful British species 397 1? 399 13-18m, 27-32m/31-32u "relativel decreases" 401 30-34m 403 29-34m/ $31-32 u \leftrightarrow / 34 u$ "Thelorders" 404 10-13m (Lindley), 21-27m, 28-30m 405 4-6m, 14-20m $41221-24 m, 25-30 m 41325-33 m 415$ 20-22w \& rate of growth $25-31 m 4176 m, 30-32 m 423$ $7-20 m, 28-29 m 424$ 5-10m 426 21-28m 435 $17-23 m 436$ 1-6m, 28-34m 437 19-25m 438 24-28m 440 7-10m 461 21- $25 m, 30-33 m 462$ $1-4 m$, 5-8m 463 21-25m/21-23m/"...", 2729"..." 464 21-31m 465 12-17m, 18-23m, 24$27 \mathrm{~m}, 27-30 \mathrm{~m} 4665-8 m 46815 w \cdot 47030-32 m$ 474 9-20m, 22-26m 475 5-11m, 13-15m, 19$21 m, 27-34 m 47616-19 m 4862 m \rightarrow 4873 w 1$ $4 w 25 w 87 w 38 w 139 w 1910 w 411 w 6$ $12 w 26$ 21z 519 15-31m 525 30-34m (Lyell) 526 8-9m (Lyell), 22-23m
supplement NB1 p32 On infinite multiplication of species
p118 Definition of species \& groups \& Babingtons Remark that species cannot be defined
NB2 The 2 lists, which have the same species repeated from N. \& S. Britain, must be worked when I consider commonness \& size of genera - But there will be difficulties, as 1 believe the universal ranges are omitted, \& some of new species inserted. I must well consider what to do-

116 19-27m (Babington) 117 5-10m (Babington) 118 10-13m, 20-23m (Linnaeus)

WATSON, Hewett Cottrell Compendium of the Cybele britannica 3 parts; London; Thames Ditton; 1868-70 [CUL]
ex, gd, no, oo, or, r, sl, sp, t

WATSON，COMPENDIUM
Part 1 NB 13223738425052545760 75 （p65 Formulas explained）
p69 Littoral plants
－ 1836 Pamphlet wonderfully \＆striking excellent sketch of my views
－ 54 Misnomer Origin of species in same way that a pug dog owes its origin to man
－ 54 I quite agree no evidence except no explanO shown
－I have discussed indefinite increase in number of specific forms in 3d Edit p． 141 SB $\square \beta$ c
p． 13 on manner in which each species dies out in horizontal range．
p． 22 －trespassers are more usual downwards than upwards on Heights．
$37-41$ Terms for aggregates of super sp．
57 On convergence of forms
60．Definition of Naturalised Plants．
75 on Flora of Greenland v．Hooker．－
$2 \Uparrow 15-10 m 13 \Uparrow 14-6 m 22 \Uparrow 13-8 m 3710-12 m$ ， $\Uparrow 1 \rightarrow 386-18 m, \pi 14-1 m / w$ Ist Edit of Handbook wb see p． $4141 \quad 1-5 m, \Uparrow 1 \rightarrow 42$ $\Uparrow 11-5 m 431-3 m 49 \Uparrow 15-12 m * 50 \Uparrow 4-1 m 52$ $\Uparrow 10-5 m 541-4 m, \Uparrow 8-4 m 55 \Uparrow 18-9 m / w$ I have discussed this 3d Edit p141 57 6－15m 60 $\Uparrow 14-6 m 65 \Uparrow 8-1 m 69 \Uparrow 12-1 m 757-17 m$ ，$\uparrow 12-$ $6 m, 介 1 \rightarrow 76$ 1－8m 92 ＂ 55 ＂－＂Zones＂．m，＂ $56^{\prime \prime}-$
＂Zones＂．m 96 ＂72＂－＂Zones＂．m，＂Littoral＂．m， ＂72＊＂－＂Zones＂．m 103 ＂110＂．m，＂111＂．m， ＂113＂．m 105 ＂124＂．m 107 ＂131＂．m 111 ＂142＂．m $120 \quad$＂174＂．m $128 \quad$＂ $210 " . m \quad 132$ ＂228＊＂．m 142 ＂274＂．m 154 ＂311＂．m 167 ＂361＂．m 185 ＂ 444 ＂．m \＆ 186 ＂ 448 ＂．$m 187$ ＂450＂．m 192 ＂ $471^{* " .}$ m 193 ＂ 476 ＂．m 194 ＂ 478 ＂．m
Part 2 NB 225
225 ＂ 624 ＂．$m 229$＂ 641 ＂．m 233 ＂ 657 ＂．m 235 ＂ $664^{* " .}$ m 248 ＂ $724^{* " .} . m$ 〈all three〉 250 ＂ 731 ＂．m 266 ＂ 794 ＂．$m 281$＂ 858 ＂． m 288 ＂ 894 ＂．$m 289$ ＂ 897 ＂．m ，＂ 898 ＂．m，＂ $899 " . m 290$＂ 900 ＂．m 291 ＂905＂．m 292 ＂ 911 ＂．$m 294$＂ 918 ＂．m，＂ $919 " . m$ 295 ＂ 920 ＂．m，＂921＂．m 296 ＂924＂．m，＂925＂．m， ＂926＂．m 297 ＂927＂．m，＂928＂．m，＂929＂．m， ＂930＂．m 300 ＂ 940 ＂．m ，＂ $940^{* \prime \prime} . m 304$＂ 954 ＂．$m$ 306 ＂ 961 ＂．m 307 ＂ 969 ＂．m，＂ 970 ＂．m 335 ＂1096＂．m $340 \quad$＂1115＂．m 346 ＂1135＂．m， ＂1137＂．m ，＂1137＊＂．m 351 ＂1153＂．m 352 ＂1154＂．m，＂1155＂．m $353 \quad " 1160 b^{\prime \prime} . m \quad 359$ ＂1183＂．m，＂1184b＂．m $360 \quad " 1188 " . m \quad 361$ ＂1190＂．$m \quad 365 \quad$＂1208＂．$m \quad 368 \quad$＂1218＂．m， ＂1217＂．m $372 \quad 1235 " . m \quad 380 \quad " 1263 " . m$ ， ＂1264＂．m 385 ＂1285＂．m 387 ＂1293＂．m 394 ＂ 1323 ＂．m / w all but 1 of＂ 1324 ＂．m ，＂1324＊＂．m 395 ＂1325＂．m，＂1327＂．m 399 ＂1340＂．m 404 ＂1362＂．m 405＂1365＂．m 406 ＂1369＂．m， ＂ 1371 ＂．$m, w b$ End 413 ＂ 1397 ＂．m

Part 3 NB O／
\wp
WATSON，Hewett Cottrell The geographical distribution of British plants 3rd edn，part 1； London；printed for the author； 1843 ［Down］ \wp

WATSON，Thomas Lectures on the principles and practice of physic 2 vols．；London；John B． Parker \＆Son； 1857 ［Botany School］

WEBB，Henry Dogs London；Dean \＆Co．； 1876 ［Down］

WEBER，D．A．Der Taubenfreund 2．Auflage； Leipzig；G．Basse； 1850 ［CUL］
beh，br，cs，f，fg，hy，00，v，wd，y
SB $\square \beta$
41 Fancy Pigeons must be taught to field
42 The more noble pigeons keep separate from others
43 Some crosses Q
6 17－20w 12 feathers in tail normal $22 w$（a） $w b$ do not tread on sole $135-6 w$ Fantail 26－ $27 w$ Turbits or Owls 32－34w seldom more than one young $36 w$ Caporetin $145 w$ Powter 22－23w Turkish with curved Beak 26－33m／ $28 \mathrm{~m} / 29 \mathrm{u}$＂Pagadette＂，30－34w will breed together Carrier 39－41w Runt Spanish 15 1－ 5w Romish Runt，like Spanish 9－15w Barb （allied to Turbits）can cross with own \＆Fan－ tails $13-16 m / 14 u$＂aber｜unbrauchbar＂$/ w$（a） $19 w$ Tumbler 26w Trumpeter 31－38w Moon Pigeons so called for great fertility $34 w$（b） $w b$（a）Barb \＆Fantail have useless eggs wb （b）This new kind to me $16 w t / 1-7 w M$ Brent says a high bred swallow．－is mostly meant by this But the description is applicable to short－footed Tumbler－Riedel gives same account．copied from Bechstein Brent calls it a Magpie Tumbler but possibly not pure．－ $4 w$（a）12－15w shell－tuft behind head 19－21w Swallow Pigeon 27－32w Turn like Tumblers $36-41 w$ Stripe from head along body $w b$ a Carmelite apparently most like almond Tumbler in shape，so low as to walk nearly on Belly． 17 14－17m， $32 m 28$ 12－18w Snuff to destroy insects Powdered quicklime $20 u / w \tau, 36 m 3026 m, 35-37 m / w$（a）$w b$ some think Pigeons pair after colour \＆I think White Trumpeter took first to White Fan－tail 32 wt House pigeons lay oftener than Field Pigeons $357 m, 7-9 w 4$ to 6 months for the pairing $27 \mathrm{~m} 365-7 m, 5-11 w$ choose for purpose－thin，reared in spring 22－24m／w Fertility of field Pigeons lasts longer 41 wt
(a) must not be hybrids, as their eggs are infertile though Birds themselves Bigger 10w (a) 32-34m, wb The house or fancy Pigeons (with few exceptions) will not go to field to feed. Much truth to learn there $4234-38 m$, $w b$ the more noble pigeons keep separate from others.- 43 7-15w Fantail \& Turbit Turbit \& Caporetin Carrier \& Runt Runt \& Carrier

WEDDELL, H.A. Voyage dans le nord de la Bolivie Paris; P. Bertrand; 1853 [CUL]

WEDGWOOD, Hensleigh On the origin of language London; N. Trübner \& Co.; 1866 [CUL, S]
beh, h, hl, pat, t, v
NB 2*; 14*; 61 CD fear like cold; 63 astonishment open mouth; 75 disgust spitting good; 76 pride - good on hard breathing in anger; 79 to pout; 91 Origin of no. Who is Charma; 139 Lubbock; No Explanation of abbrev: Chapter on top of Page.-
$217 u$ "a generation"/w generations \&c $7 w t$ N.B. Savages of T. del Fuego power of imitation \& repeating words \& so Australians $w t / 1-26 w / w b$ or like lowest savage. But is it not possible that Man's intellectual power was lower before improved by use of language $16-17 u$ "tolourselves" $107-26 w / w b$ would you call senseless gabble of Idiot instinctive?? Instinctive scream, when attacked would blend into shout for assistance $7 ? / u$ "instinctively" $146 ? / u$ "instinctively" 41 6-8m/w p. 4545 16-17m 61 5-7m 63 18-20m 75 11-14m 76 9-17m/14-15u "swelling |pride" 78 25-26m 79 1-3m 83 13$17 \mathrm{~m} /$? 139 1-12m 154 12m/u "there"

WEDGWOOD, Hensleigh On the development of the understanding London; Taylor \& Walton; 1848 [CUL]
beh, h, t, v
NB p126-133.-
$12622-27 m, w b$ The dog is social \& man is the leader of the troupe $12719-24 m, w b$ will not apply to savages, comes in, but not the $\%$ original cause $12825-27 \mathrm{~m} 1318-11 m 133$ 12-18m

WEDGWOOD, Hensleigh A dictionary of English etymology - On the origin of language 2nd edn; London; Trübner \& Co.; 1872 [CUL, S]
beh

NB1 37 Shudder, cold, disgust Horror; xliv disgust, spitting
Mr W Hensleigh *
Ugly Rage; from state mind
NB2 xliv * Smacking
xxxvii $10-27 m, 17-19 m$ xlv $37-43 m$
WEINLAND, David F. Über die in Meteoriten entdeckter Thierreste Esslingen; G. Fröhner; 1882 [Down, I]

WEISBACH, A. Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859: Anthropologischer Theil, 2. Abtheilung, "Körpermessungen" by K. Scherzer and Eduard Schwarz; Wien; K.K. Hof und Staatsdurckerei; 1867 [CUL]
af, h, ss, sx, tm, v
NB 265 Feet of Chinese women 270 Negro does not approach Orang
SB p.218; 231 width of mouth an Orang character; 232; 234; 236; 239; $243-245$ 265; 269 sexual selection; 270
title page author.u, title.u \wp
216 11-15m, 17u "Unterschied Ibeiden", 18u "65 Millim", 20-23m/20u "2181 grösste" 218 fig. $w \tau, 3-5 m / 3-14 w$. Height of men more variable than women \& before shown that the difference between sexes differs in different races. $2317-11 m / w$ width of mouth Orang character 232 15-17m/15u "Weibern 1 nicht" 233 28m 234 4m/w Back-bone 236 27$29 u$ "dem Orang"/w circumference size of thorax 36-39u士 237 1m 239 23-25m/23u "ändert | Völkern"|24u "viel| Weibern"/36-41w In many points proportions of men \& women different. 243 19-22m $2453 m$, 39-44m 247 $12-14 m 25211-16 m 26514-16 \mathrm{~m} / \mathrm{w}$ slenderest feet round instep $34-37 \mathrm{~m} / 35 u$ "unterl kleinsten" 267 12-14m 269 6u "wovonl Jochbreite" $/ 4-7 m / 4-12 w$ Bears * on sexual selection on greater variability of male. 270 $w t / 1-4 m / w$ no one race in all parts nearer Orang 23-26m/24w Translate $w b$ It seems that negros do not approach to Orangs in length of Arms, $-*$ for his legs are likewise long.

WEISMANN, August Beiträge zur Naturgeschichte der Daphnoiden 2 vols.; Leipzig; W. Engelmann; 1879 [CUL, I, S]
em, fg, phy, sh
vol. 1 NB p149 in Part III - he shows that summer eggs are nourished by a fluid secreted from the shell-cavity \& are not in more water

WEISMANN, DAPHNOIDEN
69 19-34m $701-3 m$
8
149 20-27m 151 11-17m, $24 m$
WEISMANN, August Studien zur Des-cendenz-Theorie. I. Leipzig; Engelmann; 1875 [CUL]
$c c, d s, e m, f o, h e, p h y, s l, s p, t a, t m, v, y$
$2 \Uparrow 10-5 \mathrm{~m} / \mathrm{w}$ slight season difference * more common 4 1-15w The caterpillars differ but feed on same food \& are all mingled together $\uparrow 7-4 m / \Uparrow 15-1 w$ The differently coloured caterpillars produce the same form of Butterfly $51-5 w 2$ colours not adaptation to conditions $6 \Uparrow 20-12 w$ under sides of wings differ very little- $\uparrow 7 u$ "direkten", $\uparrow 3-2 u$ "Temperatur I Entwicklungsdauer", $\quad \pi 6-1 w$ Dimorphism due to direct effect of conditions 77 m 8 wt Temp. during pupation affects colour of Butterflies. by experiments $91-15 w$ Temperature did not make a complete transformation $126-7 \mathrm{~m} / \mathrm{u} \leftrightarrow 141-8 w$ Summer form is a newly acquired form, \& cold causes avitism \& return to pristine winter forms $15 \Uparrow 12 m 16 \quad 10-15 m / 1-15 w$ effects of climate cumulative like a poison $\uparrow 15-10 w$ bears on climatal variations, which are slow. 23 1-15m/w Explains Marcellus \& Papilio on same principles but reversion easier $\uparrow 7 m 27$ $\hat{\imath} w$ Thinks great heat will cause atavism of the Porima-Vanessa as well as cold $w b c o$ over $28 \downarrow w$ Thinks shaking causes reversion - It comes to what I said, anything which disturbs the organisation. 2913 m 3011 m , $\Uparrow 15-5 w$ The so called alpine \& arctic var. is the parent form. $31 \Uparrow 10-5 w$ Winter-form much less variable than summer form 33 11$20 \mathrm{~m} / \mathrm{w}$ if the same species thus split we must expect it in distinct forms $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ distinguishes climate \& local variations $w b$ These cases may be compared with the Polar-Bear always white \& Ermine white only in winter- $3415-20 \mathrm{w}$ Thinks this a new definition of Climatal variations (applies to Birds in U. States.) $358-10 \mathrm{~m}, 9 u$ "var. Bryoniae" $/ w$ a climatal var. \& season dimorphic $\uparrow 15-13 u \pm 37 \Uparrow 9-3 m * 385-10 \mathrm{~m} / 3-$ $15 w$ 1st question to decide whether change of climate acts by accelerating or delaying period of * development. Birds in U. States answer this.- $3915-17 \mathrm{~m} / \mathrm{w}$ the result he concludes of higher temp $401-4 m$, wt The change of colour \& males depends on Nature of organism \& not on the warmth 42 $19 m \quad 43 \quad 2-15 \mathrm{~m} / \mathrm{w}$ argues that nature of organism far more important than the exciting cause $11 u \leftrightarrow, 17-23 \mathrm{~m} / \mathrm{w}$ quotes me
to above effect $\uparrow 8 u$ " $i m$ Ischwarz", $\uparrow 7 u$ " $i m 1$ schwärzer", $\uparrow 5-1 m / \Uparrow 8-1 w$ But in Birds the nature of change seems more alike in many species- $44 \quad \pi 12-8 \mathrm{~m} / \mathrm{m} / \mathrm{w}$ Warmth has affected one sex more than the other, so with Birds in U. States. see last Edit. of Descent. $451-4 m / x, \Uparrow 10-7 m 46 \Uparrow 6-1 m / w$ Caterpillars of season - dimorphic alike 47 $\Uparrow 4-2 \mathrm{~m} / \mathrm{w}$ inheritance of corresponding sexual generation 48 6-12m/w New law of inheritance, well-known in asexual generation $\uparrow 20 u$ "cyclische Vererbung", $\uparrow 16 m$,介12-11m/u↔ 49 $\uparrow 20-14 m / w$ climatal vars., but no season dimorphic vars: exist $56 \Uparrow 6$ $1 m 591-3 m / w t$ I think he means that sexual generation has been lost \& is parthenogenetic for intermediate generations 69 wt A Crust.O with summer \& winter eggs the latter alone undergo a regular metamorphosis $1-10 \mathrm{~m}, ~ \Uparrow 14-10 \mathrm{~m} / \mathrm{w}$ We see here a passage from metamorph to none $\Uparrow 8-3 \mathrm{~m} / \mathrm{w}$ think it direct result of climate??? $704 \mathrm{~m}, \Uparrow 10-3 \mathrm{~m} / \mathrm{w}$ Divides cases, as I mentioned, into whether or not, the embryology is different $713 \mathrm{~m} 73 \uparrow 17-14 \mathrm{~m} /$ $\Uparrow 6-4 m / w$ as $74 \Uparrow 12-8 m 751-4 m 7712 m 78$ $7-9 \mathrm{~m} / 8-9 \mathrm{u}$ "die \mid Variabilität", $10-11 \mathrm{~m}$, 16$17 u \leftrightarrow / w$ applies to this particular case $\uparrow 12-$ $9 m 79 \Uparrow 13-8 \mathrm{~m} / \mathrm{w}$ This is same in Jaeger $\Uparrow 7-$ $3 \mathrm{~m} / \mathrm{w}$ allows doubts about Hilgendorf $803-$ $15 \mathrm{~m} / \mathrm{w}$ His theory of isolation referred to * Because variation not quite identical in 2 stations in relative number. $81 \Uparrow 8-1 \mathrm{~m} / \mathrm{w}$ All variation due to changed conditions, but does not directly depend on nature of conditions. $8213-16 \mathrm{~m} / \mathrm{w}$ each species has different history \& so is differently acted on by conditions differently from other sp . $\uparrow 4 \mathrm{~m}$ $831 m, \Uparrow 10-9 u$ "gerichteten \mid Askenasy's" 84 314m, 14-20m, 介11-10u "sie \mid Reize"
Plates figs 1, 5, 10, 11, 12, 13, 16, 17: wa <and whether summer or winter form $>$

WEISMANN, August Studien zur Des-cendenz-Theorie. II. Über die letzen Ursachen der Transmutationen Leipzig; W. Engelmann; 1876 [CUL, I]
ad, ds, em, he, tm, v
NB1 All book marked
p. 5556

In first part shows use of coloured stripes \& ocelli of caterpillars.- In 2d \& very important part - shows that that caterpillars, pupas \& imagos all vary independently - \& that when one stage varies more or differently in 2 groups the difference always stands in relation to conditions to which stage
subjected－Flies－\＆ 2 groups of Hymenoptera best cases．－
good evidence of Axotl being reversion NB2 68； 72 for Letter
all marked wonderful book 277 last mark
xiv $5 m 5524-27 m 5610-16 m 6814-15 m$ ，28－ $32 \mathrm{~m} / 23-32 \mathrm{w}$ I have said do not appear in young $6912-17 w$ stages of ammonite like stages of same caterpillar 33－38w thinks not selection He \＆I inheritance $72 w t / 1-18 w$ Does not allude to rule of inheritance at corresponding ages，but after earlier But why I know not $27 \mathrm{~m} / \mathrm{u}$＂Bildungsgesetze＂ 73 1－3m 79 2－13m，25－29m 80 12－14m $8113 m 8529-$ $34 m 86$ wt very unsatisfactory on some ancestor 2？ $8732 \mathrm{~m} 8914 m, 28-32 \mathrm{~m} 921-4 m$ $943 m 985 m 10110-19 m / 11-13 w$ Effects of eye－spots $29 m 10316-29 m 1063 m 1166 m$ $12018 m 14218-22 m / 14-21 w$ If developed according to phyletic instinct Kräft 149 5－9m， 15－17m $15034-37 \mathrm{~m} / 34 u$＂dreileinen＂ 151 1－ $4 m, 6-8 m, 10-12 m, 21-24 m, 29-30 m$ 152 1－4m $15313 \mathrm{~m}, 14-23 \mathrm{~m} / 23-37 u \pm 15414-16 \mathrm{~m} / 11-19 w$ i．e．caterpillar or XX imagos of allied species constant or variable 155 14－15m，28－30m 157 $5 m 1594-10 m, 37-38 m 1601-4 m, 9-11 m 161$ $30-32 m 16520 m 16713-23 m, 25-28 m, 29-$ $32 m$ 170 18－20m／17－22w no characters in common of larvae of Butterflies $1715-7 m$ $17332 m 1763-8 m / 5-6 u$＂inlstehen＂ $17722 m$ $1829-11 m / 10 u \leftrightarrow, 14-15 u \leftrightarrow 18329-30 u$＂diel nicht＂ $1847 \mathrm{~m}, 17-20 \mathrm{~m}, 17 u$＂blos＂， $18 u$ ＂Raupen varietäten＂，21－25m 185 9－14m，34－ $\begin{array}{lllll}38 m & 187 & 12 m & 188 & w t / 1-6 m / w\end{array}$ which determines greater variability of one stage than other $24-28 m$ 191 $21-37 m / 22-27 w$ All this deserves full consideration $36-38 \mathrm{~m} 192$ $33-38 m 19820 \mathrm{~m} 20022-30 \mathrm{~m} 201$ 26－28m 203 4－15m，20m，22－30m 2096 m 210 11－15m，12－ 26m，15－26m，28－38m 212 12－18m 214 6－13m 216 8－24m 219 11－20m， 36 m 220 1－5m，18－ 20u＂solaufgeben＂ $22126-30 \mathrm{~m} 223$ 32－38m $2247-24 m 2253-9 m 227 w t$ I have read this essay before except the appendix p． 273273 22－26m，34－36m，37u＂verwerthbar 1 muss＂ 274 17－20m，21－24m 277 26－30m $28015 m$

WEISMANN，August Studies in the theory of descent trans．R．Meldola；London；Sampson Low，Marston，Searle \＆Rivington；1880－82 ［Down］
part 1 NB 101－107
106 12－30m 107 1－30m 109 14－25m
WEISMANN，August Über den Einfluss der Isolirung auf die Artbildung Leipzig；W． Engelmann； 1872 ［CUL，I］
beh，cc，cs，ds，em，fg，fo，gd，geo，ig，in，is， $\mathrm{mg}, 00, \mathrm{phy}, \mathrm{sl}, \mathrm{sp}, \mathrm{ss}, \mathrm{sx}, \mathrm{tm}, \mathrm{v}$

SB1 ロR

Weismann Einfluss der Isolirung
p8 p12 p41 on the Hilgendorf case of Planorbis－periods of variability succeeded by constancy－（Mem．Forbes case in Purbeck Birds）p． 137 good arguments against M．Wagner
p． $20 * 42$ on manner in which these forms of Planorbis become constant．
p． 45 In a variable colonist to remain constant many individuals must immigrate
47 about drying of eggs of Apus \＆revival 48 Isolation by itself does nothing
51 Periods of variability long，yet shorter than those of constancy
52 My argument M．S．against periods of variability
p． 54 Lays greatest stress on difference in results when a variable or constant species is a Colonist
p． 55 Protective resemblance of butterflies
65 case of constant butterflies in separated areas during Glacial period．－
〈over〉 p． 67 p． 74 He calls it amixie the non－ crossing \＆accounts for very local forms by the same proportion of variation not occurring in one stocked by very few individuals－I shd think slightly different conditions wd likewise influence the propagation of varieties．－The difference these gained wd never exceed the amt of individual differences in species in question
p． 76 cases of extremely slight differences in different countries of Lepidoptera－many most species do not present any local vars． p． 85 Effects of crossing slight \＆slow except in locomotive organisms
9597102 Does he not ignore effects of conditions long continued－p102 good argument against．
107 local form of butterflies have never spread from Corsica to mainland of Italy
106 Cause of richness of endemic forms on islands in part due to fact when once formed not spreading to other areas
$85-17 m 1221-26 m / 19-20 w$ see to Forbes case $1418 m 156-30 w$ argues wonderfully well about these species \＆their distinctness 16 17－19m（Hilgendorf） $1823 m 20$ 11－21w differently coloured vars of Caterpillars 21 14－15m $2212 m$（CD） $2631 m 323 m 4028-$ $31 \mathrm{~m} 411-6 \mathrm{~m} / \mathrm{w}$ slowness of change $28-31 \mathrm{~m} /$ $26-30 \mathrm{w}$ most important $31-33 \mathrm{~m} 42 \mathrm{wt} / 1-19 \mathrm{w}$ different individuals vary in different ways \＆ all lead to the same end－like what I have

WEISMANN, ISOLIRUNG
said of Giraffe in the Descent. $1-2 m, 13-19 m$, 20 m , 22-23u "vollzieht|werden", 32-34u "sondernlaus" 43 2-3u "sondernloxystomus", 5-7u "Verschmelzung|kommen", $\quad 10-11 u$ "durch Individuen", $26-28 m / 27 w$ (a) $w b$ constancy lost when all individuals fail to cross $4512 u$ "sehrl Individuen" $110-16 \mathrm{w}$ thinks cause of constancy lies in colonies consisting of several individuals $28-32 \mathrm{~m} / 30 \mathrm{w}$ (a) $w b$ (a) Thinks individual differences overstated (?) $4730-32 m$ (Siebold)/30w (a) $33 u \leftrightarrow, w b$ about the drying of eggs of Apus $48 \quad 18-28 w$ Islands where some forms changed \& some identical shows isolation by itself does nothing $27-28 u \leftrightarrow 4918 \mathrm{~m}, 29-31 \mathrm{~m}$ 51 wt a species remains constant till some cause induces variation- $3-8 \mathrm{~m} / 5 \mathrm{w}$ (a) $18-$ $27 \mathrm{~m} / \mathrm{w}$ Evidence of Periods of variation long, yet shorter than those of constancy $31-34 m$ (Hilgerdorf) 52 wt A difference in result whether a variable or constant form in the colonist is new $24 \mathrm{~m} / 4-26 \mathrm{w}$ The species which remain for long periods \& in many countries (\& whole genera) variable are opposed to periods of variability $54 w t / 1-3 w$ i.e. without selection or any new tendency to variation, supposing the new arriver to be already variable- $1-8 m, 32-34 m$, $w b$ says very difficult to prove what are purely morphological characters $5526-28 m, 27-32 m$, $w b$ cases like Kallima $5631 m 58$ wt/1-9w asserts the dark colour of wings of female Blue Butterflies is certainly a protection 1$9 m, 9 z, 9-10 u \leftrightarrow, 11 m, 11-12 m, 11-24 w$ I think because his wings have been coloured blue the female has not this habit because her wings are brown $6016-19 m / 19 u$ "Satyriden", $27 m 62 w t / 1-30 w$ He considers Secondary Sexual characters as morphological or indifferent, but I doubt, for so would be primary sexual characters $34 m \quad 632 u$ "VanessalSardinien" $/ 2-5 w$ case not due to his scheme $5-15 m, 13-22 m 6426 u \wedge / 29-35 m /$ w trace of mark in V. ichnusa $659-14 m, 15-$ 17 m 67 11-15m, 30u "Amixie", 31-32u $\rightarrow 70$ $5-9 m / 9 m / 10-12 m / 4-17 w$ he assumes taste of female wd remain constant.wd be affected by momentary colour - We have cases of local vars of Birds in which males alone differ. $20-27 m / 24-33 w$ have I not case of male Moths like female in Shetland islands $728-14 m / w 2$ Sulphur-Butterflies with female alike $74 w t / 1-25 w$ on his peculiar view isolation cannot make a greater amount of difference than the extreme varieties of parent species - but may be aided by S . Selection $1 m, 5-7 m \quad 75 \quad 12-17 m$, $13 w$ conclusive 76 17-26m, 6-25w very slight
differences in different countries 77 1-12w Cases of absolute identity ever since glacial period $11-16 \mathrm{~m}, 12-30 \mathrm{w} / \mathrm{wb}$ the greater no of species of Butterflies do not present local vars. $821-2 m 854-26 w$ On effect of crossing very slow, in slowly moving organism - true - he ignores greater vigour of crossed offspring $9124 m 9516-22 m / w t / 1-21 w$ But how does he know that the black female not due to directly external agencies $9621-29 m$ 97 wt 1 think so if cause of variation preponderant $5-7 m, 8 u \leftrightarrow / w$ (a) $9 m 1008 m$ $102 w t / 1-28 w$ important that the many local vars of V. cardui in America due to S. Selection because such are not found in other parts of world \& the same argument applicable to direct action of conditions. 103 11-13m/12-13u "als I Stammart" 104 2-7m 105 $25 m 10626-29 m / w$ in islds $10719 u$ "Corsical Sardinien", 24-29m/25u "italienischen"

WEISMANN, August Über die Berechtigung der Darwin'schen Theorie Leipzig; W. Engelmann; 1868 [CUL, I]
cc, ch, cs, dg, gd, he, is, mm, oo, sl, sx, t, tm, v

NB Causes \& Law of Variation most important
All marked
p26 Nägeli to 30
$1121 m \quad 12$ 5-9m/wt/1-9w Caterpillars coloured alike Moths different 1310 m 16 15$22 m, 32-33 m 1721 m, 32-34 m 186 u$ "Eil Larvenhaut", 26-28m/29-31m/u↔/23-31w Why on doctrine of Plan do the shoulder girdle \& pelvis fail in snakes 32--33m (Dohrn) 2220 m $2419 m 268-12 m, 8 m, 14-16 \mathrm{~m} / \mathrm{w}$ degraded organisms $23-33 w$ trifling characters constant - External influences kept constant by crossing $24-29 m, 30 m 273-4 m / 19-29 m / 1-33 w$ I think this means that "morphological" characters are the results of what I call the definite action of conditions -1 do not feel quite satisfied with this - free intercrossing cd perhaps keep * the characters, which are not in use, free from fluctuations.- 28 $21-22 m / 19-23 w$ a cat will vary differently from a dog. $23-26 m / w b$ So the Laws of variation (as well as inheritance) will prevent the same form being produced by two distinct forms- $29 w t / 1-5 w$ In Variation under Dom. I have been strong on ND of species -6-8m/7u "Variationsqualitüt"/w good 16-20m * $30 w t / 1-17 \mathrm{~m} / \mathrm{w}$ This is justly directed against what I have vaguely said of indefinite variability - in all cases the variability, within a large circuit, is definite \& thus certainly
overrides the power of selection $3223-26 \mathrm{~m} /$ $1-26 \mathrm{w}$ my objection that an isolated form could cross at first 33 wt (a) Truly remarks that of offspring, crossed with parents, some wd inherit the new variation \& some wd not, but the latter by natural selection wd be be the less favoured $3-7 \mathrm{~m} / 5 \mathrm{w}$ (a) $28-34 m$ (M . Wagner), wb Thinks much of Sexual Selection $3428-31 m$ (Hilgendorf) $363-6 \mathrm{~m} /$ $5-7 u$ "Jedem | grün" $/ 3-11 w 2$ or 3 forms of Caterpillars I shd have thought more variability $10 u \wedge, 11-12 u \leftrightarrow, 18-22 \mathrm{~m} / \mathrm{w}$ isolation by itself does not cause change 39 $8-16 \mathrm{~m} / \mathrm{w}$ Plants \& insects later developed on Mountains \& so do not cross with same species on the plains $18 u \mathrm{~A}$, $19-20 u$ "diel Stynge"

WELLS, William Charles Two essays London and Edinburgh; Archibald Constable; 1818 [Down, pre-B, ED]

WESTWOOD, John Obadiah An introduction to the modern classification of insects 2 vols; London; Longman, Orme, Brown, Green \& Longmans; 1839-40 [CUL, S]
ad , af, beh, ci, em, f, fg, gd, ig, in, mm, mn, no, oo, or, rd, sl, sp, sx, sy, ta, tm, v
vol. 1 NB Change of Habits in House Crickets

SB1

- $x_{0} 427$ Mantis fight

437 Saltatoria 3 Families
439 Crickets
440-442 males chirping noise
445 fight $\& \&$ \& attract females
450 Gryllidae

- 452 Both se

453 both sexes
457 Locust act by Femora

- Pneumora anoth case
- The use of Limb perhaps stated
?? (p447. Male of one cricket veil. use not stated)
SWestwood Vol. 2 Secondary sexual Ch. Orthoptera
SB2 \quad -
104 Variation in Females of Dyticus - Also case of analogous var.?
144 Case of analogous variation
167 Violent Battles in Lucanus Males
164 Definition of Typical form
3435 species of Cionus taken on one plant of Verbascum
396 Coccinellae uniting, but producing sterile eggs

408 Forficula few species, wide ranges
447 So Male Crickett
413 wings not developed in certain species of orthoptera \& Homoptera
SB3 $\mathrm{D} \beta$
447, 445 after p. 456 I will look out for peculiarities to see if variable in single species

75 22-23Q 104 12-15m (Bonelli)/Q 25-28m $1444-10 \mathrm{~m} / \mathrm{Q} 8-15 \mathrm{w}$ difference in sexes hardly a variation. $1641-5 m, 5 m 172$ 29-33m, $37 z 1846-13 w$ of the few cases of differ known two being same group some are splendidly coloured 15-17m/16u "Linnaeus Fabricius" 187 6-11m, 18u^ 212 24-27m/25un 217 21-25m 236 27-30m, 36-41m (Latreille) $34030-35 m 34322-25 \mathrm{~m} / \mathrm{w}$ Hard to see how selection cd make them 396 9-14m 397 37$39 m$ (Dufour) 405 13-16m/15u "rudimental" $\mid w$ wrong 406 15-18m $40834 m$ (Audouin, Brullé) 37 m (Serres) 410 22-24m (Serres) 411 16-17m/ 16u "rudimental \mid wings" 413 10-15m 416 16$22 m 421$ 12-13m (Hummel) $42732-36 m / 36 u$ "resemble|fighting" 437 1uA, 13-19m/18u "crepitaculum", $20 u$ "foramina" 439 6-10m, $24 w$ Crickets $4429-13 m / 9 u$ "fig. 54.7 " $/ w \bullet$ $15 u$ "underside", 20-24m, 30-32m 443 37-38m 445 3-6m 447 25-28m, 36m, 37-39m/w does this vary? 450 21-24m, 26-27w Grasshoppers? $4529 u$ "side 1 like", $10-11 u$ "which stridulation", 22-24m, $27 u$ "twol14", $35 u$ "Linnaean Transactions", 37 u "fifteenth volume", $38 u$ "been I Donovan", $40 u$ "as 1 mile"/ 37-40m (Guilding) 453 1-5m, 6u "exists 1 covers", $7-9 \mathrm{~m} / 8-9 \mathrm{u}$ "of $\mathrm{which} ", 11-13 \mathrm{~m}$, 15 u "Lehmann ISensibus" 455 30-37m 456 10-11w Locusts 457 25-29m 458 1-6m, 8-12m/9u "large cavity" $/ 11 w$ probably $13-15 m$ (Latreille, Linnaeus, Burmeister) $46030-34 m / 32 u$ "known grasshoppers" $46113 u$ "gayest |insect", 1417 m , 15-16u "posteriorlbeing", $30 u$ "Pneumora", 33-35m/34-35u↔, 38-39u 462 1-5m (Charpentier)
vol. 2 NB1 * 313; 402
NB2 These marks refer to many abnormal parts, which, if required, might be hunted up to see whether variable - I have put X to them
12; 15; 24; 37; 67; 80; 82; 88; 98; 109; 119; 147; 150; 154; 158; 160; 172; 224; 232; 237; 252; 254; 261; 279; 281; 311; 312; 319; 321; 324; 326; 329; 333; 342; 344; 340; 352; 354; 358X; 356 to 389X; 406; 422; 431X; 432X; 444; 454; 469 \& 478; 481; 483X; 499; 502; 508; 514; 524; 526; 541; 557; 559; 567; 578; 574; 575; 473 Reduvius stridulating; 213 \& 214 Mutillidae; 465 Homoptera

WESTWOOD
SB1 $\square \beta$
40 Suppl Phryganea do Palpi differ in different species?
213 Mutillidae female destitue of ocelli
SB2 $\square \beta$
12 Affinities of Termites
14 on their habits
15 doubts about pupae walking
24 Nemoura species in same genus with or without branchiae
67 do in Phyganea
88 Classification by habits alone fails 262 do
88 Ichneumons use ovipositor as organ of defence \& secretes fluid 150 do
89 antennae very variable differs in number and form of joint, in various species \& in sexes of same species
98 varieties in imago from differences in food (Ch. 7)
10920 parasites on a saw-fly
119 All wood-feeders vary in size. Allude to Wollastons cases of molluscs of 2 sizes \& Birds in note
147 Ichneumons avoiding vital parts of caterpillars
224 Strange diversity of neuters amongst Ants
232 Slaves * only neuter pupae taken
228 Curious variation see F. Smith Pamphlet 155 on - ch 4.
237 On minute characters very constant through whole order - good sentence
261 On resemblance of some Flies parasites on Bees to Bees.
279 Important on diversity of workers in Hive bees. occasional workers Q
311 In Butterfly 34,650 facets on eyes
321 Allied insects generally fed on allied plants (showing how same character goes in genera
324 on single species not having some very abnormal character not sufficient to render character unavailing
342 Definition of typical
344 Cases of Butterfly with many relations
346 \& 348 On Caterpillars of same genus differing greatly 352 \& 386 \& 294 do

- 406 \& in Habits

524 in Diptera
356 Nymphalidae are polymorphous
359 Caterpillar attaching fruit to tree by silk-
thread. (Difficulty) 381 do Q
380 Males of Bombyx flying swiftly
382 two crysalises in one cocoon in relation to something about silk worms
384 Parthenogenesis - males alone in 3d generation
SB3 $\square \beta$

422 Musical instrument of male Cicada hard to understand by Selection
37 good on Libellula noticing bright colours 428 Projection varies in the different species in Fulgoridae
431 Development of wings in Homoptera
454-469 \& 481 Important Ch. 7
444 Retrograde development in Cocci: females lose artic. of body \& limbs 526 Males of Tipulae fight Ch. 6
541 In Tabanidae only females bloodsuckers - Males on Flowers

6 16-23m $811 u$ "Isoptera", 11u "single| Termes", 11x $125-7 m / 6 u$ "economy", fig.w Pupa fig.w Neut fig.w Neuter larvae Neut $1321-23 \mathrm{~m} / \mathrm{w}$ wide rangers $1416-18 \mathrm{~m} / 16 u$ "closely leach" $118 u$ "called |Latreille", 24-28m/u "underlhead"/w Neuters 25u "fromlPo", 32$34 m / 33 u$ "veryl resembling" $1513 w$ Analogy $14-16 \mathrm{~m} / 16 u$ "lose 1 off", $31-36 \mathrm{~m} / 33 x 16$ 9-10x, 18x, 40x 21 28-30m (Curtis, Lucas) $244-11 m$ $\begin{array}{lllllll}\text { (Pictet) } & 25 & 5-10 m & 26 & 27-33 m & 35 & 14-17 m\end{array}$ (Ashton) 37 9-10m, 21-25m (Newman), 25$27 \mathrm{~m} / 25 u$ "In \mid males", $27-29 m 39$ 29-31m (Réaumur) 44 11-12m (Dufour) 67 30-33m (Pictet) $7717 u$ "of 1 valves", 19-20m, 23-27m/z/ 26u "retroserrated spiculae", 28c "latter"/w sheath $29-30 \mathrm{~m} / 30 u$ "articulated internal", $34 u$ "spiculae", 34-35u "servinglinternal" $788 a$ "some" male $9 x 7935 x 80$ 17-20m 82 12-14m, $14-17 m 8335-36 m, 36-39 m 88$ wt Some evidence that formed, like corporeal structures, by selection.- not particular 1$3 m, 2-8 w$ These agree with corporeal structures 38-40m (E.W. Lewis)/Q 89 1-2m/Q $9820 u$ "Dahlbom" $119-21 \mathrm{~m} / \mathrm{w}$ first rate authority $10918-20 \mathrm{~m} 11710-17 \mathrm{~m} 119$ 19-20m 147 17-19m/18u "feeding \mid matter" $15027-32 \mathrm{~m} /$ $30 u$ "painful irritation" 154 26-28w variable 28-29m 158 33-37m $1604-10 w$ like cirripedes $8-11 \mathrm{~m} 1724-7 \mathrm{~m} / \mathrm{w}$ variable $18114-16 \mathrm{~m}, 24 \mathrm{~m} /$ 24-25u "compelslabortive" 182 20-23m (St. Fargeau) 183 25-27m/26x/u "beel makers" 205 8u* "jawslburrowing" 206 8-14m 209 10$17 m 212$ 22-28m (Strickland, Bakewell) 2134 $6 \mathrm{~m} / \mathrm{Q} / 5 u$ "latter|wings" 214 12-17m (Goureau) 217 11-12u "whence labortive", 13-14x, 14-15u "which|wings" 218 4m, 5-6u "but| middle"/w workers 19-20x/u "the leyes", $23 x 21934-35 u$ "especiallylhabits", 38-39m/x $2202 x 223$ 29$30 m / x, 33-35 w$ transition to Hive Bee 36-37x $2247 x, 8-9 m / 9 x, 16-19 m / 19 x, 25 x / u \wedge / 22-26 w$ Different genera 2 workers 28u*, 31-46m/ $34 u \uparrow / w$ 4th genus $38-40 m$ (Huber) 225 32$41 m$ (Wesmael), 32-38m/33u^/w 3d gen 3536x, 35u "immenselsphere", 38u "almost inactive", 39-40m/39u "only|honey" 228 16m,
$29 m 2295 x / u$ "tribesIspecies" 230 19-20m/u "inlspecies" 231 1x 232 21-22x/21u士/18-29m (Huber), $34 u$ "neuter pupae" $35 x 23322 x, 25 x$, 27-29m (Lund), 28x 234 11x, 32x, 33x $2356 x$, $10 x 23728-30 w$ folding of wings $2387 x, 30-$ $36 m \bullet$, 37-40m (Jurine) 246 22m/20-22w Kirby says clear nest $2471 x 25225-28 m 2534 w$ Hive do $6 u$ "constructing \mid nest" $/ w$ * How then had neuter \& lost them? $2547 x / u$ "females 1 alone", $10-16 \mathrm{~m} / 10-11 u \leftrightarrow / 15 u$ "cuckoo"/14-15w How arise $25527 x 26038-39 x 26136-38 m$ 262 2-7w is there any case of Bee occasionally parasitic. $15-21 \mathrm{~m} 26410-11 \mathrm{~m} /$ $10 u$ "These|all" $/ 11 u$ "and females" $2688 x / u$ "solitary working", $9 u$ "great this" $2694 x / u$ "Bees।Trigonis"/w See Dict Class 271 21z 272 28-34m, 30-34w Ch. 8. like webbed geese Q $27838 \mathrm{~m} / \mathrm{u}$ " 50,000 Iqueen" $2793 u$ "distinguished \mid secreting", $\quad 23-24 u \quad$ "their 1 pockets" $/ w$ see Kirby $32-40 m$ (Huber), 34$41 u \pm, 34 x, 36 x, 39 x, 40 x 2818 x / u$ "Unlike hive", $10 u$ "twolorgans", $13 u$ "pollen posterior", $14 u$ "theljoint", 15-16u "presencel nest", $28-32 m, \quad 29 x, \quad 36-39 m$, $w b$ Disappearance of these pollen plates interesting $28522 x 28627 x / 28 x / w$ vide this $2873 x / u$ "neuterslbeing" $31137-39 m$ (Geoffroy) 312 19-25m 313 7-9m, 13-16m 317 34-35m/34u "Zygaenae 1 wings" 319 6-8m, 1315m 321 28-32m (Loudon), 33-38m 324 29-34 m 326 7-8m (Boisduval) 329 15u "seven"/14$16 m$ (Newman), 31-36m 333 11-13m/"...", 38un $3354-5 m 342$ 34-37m (Boisduval) 344 29-35m 346 32-37m/34a "Papilio" p. 348348 24-31m 352 9-17m $3547-12 \mathrm{~m} 2 \mathrm{~m} 3568-10 \mathrm{~m} /$ w Nimphalidae $35810 w$ (variable) $11-13 \mathrm{~m} / x$ $3595-8 m / 6 u$ "the lof", 15-19m (Westwood), $15-17 z 368$ 21-25m, 27-33m 376 37-39m/38u "twilight |considerably" 380 1-5m/w which family with rudimental mouth $23-31 w$ It does not appear wingless $26-30 \mathrm{~m}$ (Stephens), 29$31 \mathrm{~m} / \mathrm{m} 381$ 23-24m, 26-29m 382 35-36m/34$39 w$ happens with silk Worms. $3838 u$ "MemoirlTrans."/w Read 384 4-12m/12u "pocket | cllector"/12-13w Bombycidae $16 u$ "Davis 14 ", $\quad 24-26 m, \quad 35-36 m \quad 386$ 15u "prominent" $\mid 7-16 \mathrm{~m} / 8-13 \mathrm{w}$ larvae differ more than Moth $30-32 m, 32-33 m / 33 u$ "species wings", $z b 387$ 17-19m, 29-30m, 32m/a "genera" wonderfully $z b 38925-26 \mathrm{~m} / \mathrm{w}$ wings variable?? 390 18-21m 391 17-18z 392 36$37 m / 37 u$ "which|fly" $3931-2 u \leftrightarrow, 2 u \uparrow$, $3 u$ "pluvial patches" 394 22-27m/w Mem.Crustacea metamorphosis of $3968-11 \mathrm{~m} / 9 u$ "occasionally |vertically" 397 19-24m, 32-34m 400 15-19m 402 25-27m 406 2-6m 416 15x, zb $4196 w$ bristle-like $8 x / w 4321$ 10w $44411 w$ Coccidae $12 w$ Aphidae. Physillidae \&

Aleyrodae $4217 u$ "the 1 three", $10 u$ "antennae", $11 u$ "seven joints", $12 u$ " 6 " $/ w$ or $42215 u$ "legs|not" $\mid w$ for jumping $17 u$ "males", $19 u$ "the base", $20 u$ "abdomen", $21 u$ "insertion। legs", 23-28w How arrived at by selection 26-28m/25-31m/Q (Réaumur, Goreau, Solier), 35$39 m 423$ 12-13m $4275 c / u \leftrightarrow$, fig. $x, 7 u$ "legs", $8 u$ "general|leaping" 428 3-5m, 5-7Q $10 u$ "varyinglspecies" 430 10-12m (Merian) 431 10a/u "species"/w of Delphax 13ua/12-14w are some species winged \& some not 14 $21 m$, $24 u$ "antennae |jointed" $4322 u$ "last \mid seta", $5 u$ "ocelli 1 number", $5 c$ "in number", 17$22 m / w$? variable in individuals $43511 u$ "antennae", $12 u$ "ten joints" $4385 u$ "antennae ljointed" 442 29-30u "broad I wings", $34 u$ "antennae l jointed" $4445-9 m 454$ 16-22m, 23-29m 469 4-7m, 10-11m, 14-16m, 18a "condition" ie with rudiments $20 u$ "destitute rudimental", 22-25w like some plants with 2 sorts of Flowers 37 m (Westwood) 473 17-18m, $23-25 m, 31-34 m 48132-36 m$ (Curtis, Linnaeus) $4839-10 m / x / w$ variable $4992-5 m /$ $3 u$ "proportionate" 502 10-13m 503 16-21m/w a discussion of several pages on this. 5087 $19 m$ (Latreille) $5147-9 m, 17-20 m 524$ fig.w all these larvae one family $5267-8 m, 20-22 m$ 541 3-5m 555 33-35m (Linnaeus) 557 36-38m (St Fargeau) 567 20-23m, 24-25u "thus Ichneumonidae" 571 3-12m (Jenyns), $35: 40 \mathrm{~m}$ (Owen, Hope) $588 w$ (list of orders of insects and number of subvenient species>
Synopsis of the genera of British insects, 1 $8 w$ p. 30 10w p. $811 w$ Stirps 2 p. 45 zt 8 23$24 m 21 \quad 26-27 m 22 \quad 27-28 m$, $30 m 451 w$ Antenna long 20 w Antennae short 49 23-25m 51 21-23w p79 Aculeata

WHEWELL, William History of the inductive sciences 3 vols.; London; John W. Parker; 1837 [CUL, S]
beh, cc, ch, cr, ds, geo, h, he, ig, mn, oo, no, pat, rd, sy, t, tm, ud
vol. 1 NB 17; 54; 80; 119 curious; 136 good sentence; 169; 238; O Feb/58
xix $18 w$ R 17 18-21m/w Herschel's craving How acquired? $5111-14 m / w$ one does can conceive such ignorance $541-3 m / 1-5 w$ curious with respect to origin of language 80 3-14m/9-10? 119 8-10m $12213 u$ " 1461 "/13$15 w$ How was this calculated $13511-12 \mathrm{~m} / \mathrm{w}$ V. p. 122136 18-21m $13814-16 \mathrm{~m} / 15 u$ "readyl times" 169 13-18m 238 8-25m
vol. 2 NB 127; 177; 287 good; 438; 482; Feb/58 O/
116 11-17m 127 13-22m/w/wb May conclude from this body of Man requisite. Hence

WHEWELL
political state of country Great influence of science hence dark ages as in Spain 177 11-17m $1807[\ldots], 18-19[\ldots], 25[.],. 30[.]$. 1[...], 13[...], 14[...] $183 \mathrm{~m} 2441-10 \mathrm{~m} 287$ 25$31 m 438$ 11-15[...]/m 441 11-22m $48230 m 483$ $1-6 m$
vol. 3 NB 188; 265; 321; 322; 324; 342; $352 ; 354 ; 369 ; 374 ; 379 ; 390 ; 397 ; 415 ; 419$; 436; 448; 452; 456; 458 et sequitur; 466; 471; 472; 574; 576; 578 read whole Chapter; 582; 620
SB $\square \beta$
Vol 3
189374 Definition of classification p374
321 on natural Classification Linnaeus rules 324 very good
342 do. very good.- 352 do
459 Eyes of Cephalopoda discussed by Geoffroy in his Principes de Phil. Zoolog. p. 551830

468 Maintains that every organ has some use

188 24-31m 189 1-2m 255 12-19m 263 30wॄ $3218-23 m / 10-22 w$ This is strictly applicable to family likeness - though rules may be estab to guide observer as os vary least or most 25-26u®s "latent linstinct", 28-29m, wber when such expressions are used, it is certain there must be some great hiatus in our knowledge $3222-7 m, 15-20 \mathrm{~m} / \mathrm{w}$ what is this but to say, that every character is variable Linnaeus $22 w$ V. p. $32424 m, w b$ when Published? 324 13u "but limpossible"/ $11-14 w$ surely not always - Elephant? Man? $3253 c$ "organization of life" $/ w$ descent $342 w t$ Systematic naturalists are the heralds of Nature $7-8 u$ "studylonly", 7-12w What organs abortive? What least subject to change? use of each part $13-17 w$ The relations consequent on one part, or organ changing $18-24 w$ Trifling resemblances independent of external causes of slight weight wb importance of organ is not the rule in species, or even genera. : only the red band on the Furnarii and Synallaxis of S. America. Consider the Trogons of world, whether of there is not more 352 17-28m 354 $18-23 m 3695-22 m 374$ 9-26m 379 15-22m/ 17-18u "Philosophy|Life" 390 1-4m/3-4w see p. $4005-7 m 397$ 8-12m 400 26-27m (Harvey) 401 1-3m (Harvey) 415 11-25m (Grew and Malpighi)/15-18! 419 9-12m/9-22w why not as well as the skin of the hand know how to grow properly, all live fresh again? or tree produces same buds 436 15*/u "five sepals"/ 16u "five"/wb * Preponderates in all Dichotiledons - \& in Radiata - (?) Mem.

Agassiz - Quinarian arrangement - 3 - in Monocotyledons 441 21-30m (De Candolle, A.P.) 448 12-15m, $29 m 45218-31 m, 30-31 m$ (Jenyns, Clark) $4565-14 m / 6-8 w$ Mammae in Man 7-14m/8-12?/9-10?/12-14m 457 11-15m (Geoffroy St Hilaire)/w Clearly wrong 458 wt rather, the function gives rise to the structure $45915-21 \mathrm{~m} / \mathrm{w}$ How singular that so different a series should have arrived at same end. $4613-7 m 4623 a$ "play" w thus qualified is correct. Owing to external contingencies, \& numbers of other allied species \& not owing to mandate of God $4631 z 4661-8 m, 30-31 m /$? (Cuvier) $4674 a$ "made" $2-4 m / w$ born \& altered $4 a$ "offices" $/ 4-5 \mathrm{~m} / \mathrm{w}$ under changing circumstances $30-31 \mathrm{~m}$ (Cabanis) $4683 \mathrm{~m} /$ wt Shrivelled wings of those non-flying Coleoptera?! wt In every science, one may trust that every fact has some relation, $\&$ to whole world $3 u$ "use" $/ w$ relation $w b$ In every animal, final cause or adaptation is applicable to far greatest proportion of structure. For otherwise it would be pressed $4701-3 m, w t / 1-19 w$ All this reasoning is vitiated; when we look at animals, on my view. 4-18m (Kant), 18-20m 471 wt/1$2 w$ When a man inherits a harelip, or a diseased liver is this adaptation as much as Bullfinch to linseed.- doubtless it is in one sense, but not that in which these philosophers mean. $47213-15 m / w$ appears to me rather far-fetched 473 1a/u "possible"/ $w t / 1-3 w$ with innumerable other animals striving to increase 4-5u "thoselit" $5431-5 m$ 574 1-25m 576 1-12m 577 1-31m 578 25-32m/ 27?/28u "constantly" 579 15-17m/16u "additional assumptions", wb These are not assumptions, but consequences of my theory, \& not all are necessary $58027 m$ (Cuvier) 582 22-25m/23u "his 1 beauty" 6107 -15m/10-12? 620 1-5m

WHITE, Gilbert The natural history of Selborne 2 vols.; London; C.\& J. Rivington; 1825 [CUL, S]
af, beh, cc, ch, fg, h, he, mg, oo, or, sp, sx, t, ta, ud, v
NB1 Modifications \& migrations of species of same genus shows great diversity in habits See end of 2nd vol for Classified Index - p169 ; p277 Furnarius boring holes

NB2 p126; 139 Many birds do not pair; 169 allied species similar habits; p246; p255; p256X; p272X; p278; p292

126 17-23m, wb Good instance of punctual migration wb D'Orbigny case of memory of time 139 2-19m/8-9Q/11u "cock| hen", 23-24Q
$1692-10 \mathrm{~m} / 3-6 w$ In S America same fact 246 15-24m/15-19m 255 1-5m 256 6-17m/7-8w Lin $142721-7 m / w$ like my bird boring holes 278 6-26m/7w p. 773292 12-17m $3201 w$ Swallows
vol. 2 NB comparison with man good comparison with old animals gnashing their front fangs
p6; p8; p9; 10; p54; p56; p92; p110; 117; p119; p120; p124; p207; p296; p310
SB Letter 29 - On Partridges
139 On Birds when one shot, getting soon mated Q
246 on singing of Birds, due to rivalry 256 on wren hiding mouth of nest
272 Martins nests continually washed down vol 2
8 on capons hovering or brooding over chickens
110 some notes of own on instincts
117 Barley in Hawks stomach from W. Pigeons
119 Chinese dogs not relishing meat Q
120 sporting Dogs refusing Partridges \&c N.Q.

6 1-18m 7 6-20m 8 1-4m/2-3u "hoverlhens"। $1-9 w$ dormant instincts in every male, account for a difficulty in origin $7-9 m / ? / 9 u$ "Mr. Lisle" 9 9-12m 10 wt This must be reason, instinct would have led hog to have waited for boar 1-5m 54 1-10m 55 15-16z 56 $w t$ cause of straight lines easy to keep direction recollect FitzRoy idea of soundingnoises to hear the line when not see it $1-2 m$ 57 15-22m 92 15-19m/15?/u "miscellanies" 110 wt Habitual action, like instinct does not vary, indeed difficult to vary much bitter experience to cure tricks yet curable. so instincts can be altered.- wt habitual desires \& actions go together in Man.- eating dinner Instinctive desires $w b$ Habitual desires appetite at certain times $w b$ Instinctive action Habitual action - in sucking both must be brought into play $w b$ Instinctive when origin cannot be traced in life of individual 111 wt in an habitual action, consciousness of desire which must be preparatory, obliterated $w t / 1-11 w$ It is not more wonderful that a desire should be hereditary - than that memory itself should be hereditary. or that taste, mental thought should be so $7-24 w$ in Man an habitual desire may become instinctive or heredetary. ambitious man ambitious children - civilized man. civilized children $13-16 \mathrm{w}$ It is transmission of thought through egg $15-19 \mathrm{~m}, 17-21 w \quad \mathrm{X}$ - that cuckoos should know so much the
impregnated ovum should be mathematical $20-25 w$ the mind has only cause to sleep $20-25 w$ because circumstances do not vary $w b$ Man scarcely any instinctive actions. Many desires, \& therefore many habitual $w b$ animals having * many instinctive few habitual actions? 117 14-18m 118 12-19m 119 $15-20 \mathrm{~m}, 20-25 \mathrm{~m} 12020-25 \mathrm{~m} / 21 \mathrm{w}$ good 121 $w t$ If effect of being beaten as seems most probable a most curious instance if not yet an acquired instinct!- 1-4m, 3-6"...", 7-11m, 14-21m $1241-3 m 2078-13 m / 11 w$ reason $w b$ nothing short of it would make them run out of doors $25915-17 z \quad 265 \mathrm{zb} 296$ 2-16m, 18$21 m 310$ 16-19m/17u "Montagu|xxx"

WHITE, Gilbert The natural history of Selborne new edn by L. Jenyns; London; John Van Voorst; 1843 [CUL, I by Jenyns]
beh, mg, phy, sx, tm, y
NB p47 on chaffinches sexes in flocks
p53; p69; p91; p112; p130; p137; p143; p173; p214; p236; p348; p204
SB $\square \beta$
Mice using tail slightly as prehensile Brehm Thierleben says same of monkeys
69 Snakes using Dung Heap to incubate in NQ
$\overline{112}$ on a cat habitually taking to water
137 Differences in migration within England NQ
140 Both male \& female swallows have forked tails - but males the longest
143 Grey or Hooded Crow very rarely builds in England
214 On tough envelope to Dung of young Birds, due to inaction Q
215.

348 On Birds near cotton-mills using cotton for nest. N.Q.
354 Dogs lose taste for flesh. Q
Letter 16 Martens building in exposed situations Q

47 21-32m (Thompson) 53 21-27m 69 18-23m/ $18 u$ "of heap" 82 28-29m 91 17-21m/19u "protract" $13030-34 m 13728-30 \mathrm{~m} 14328-$ $32 m 173$ 24-30m (J.E. Gray, Yarrell) 204 23$32 \mathrm{~m} / 29 \mathrm{u}$ "Mr. Blackwall" 205 30m 206 27-33m 215 23-26m 216 6-8z, 22-29m 217 9-13z 236 21-30m (Robert) 348 24-32m (Thompson) 354 9-14m

WHITNEY, John Dwight The auriferous gravels of Sierra Nevada of California Cambridge, Mass.; University Press; 1879 [Down] \wp

WHITNEY，William Dwight The life and growth of language London；Henry S．King \＆ Co．； 1875 ［Down，I］

NB 139
139 2－6m
WHITNEY，William Dwight Oriental and linguistic studies New York；Scribner， Armstrong \＆Co．； 1873 ［CUL，I］
beh，t
NB All on language
285； 287
No sound argument that Man cannot think without the use of words－296－Quoted 353
354 Uses of unforseen Useda How far Language consciously invented Useda
＜many markings presumed not to be by CD
$24626-27 w$ chesnut $28515-28 m 28722-27 m$ 296 31－35m 297 1－8m，1－24＂．．．＂$/ 12-17 \mathrm{~m} / 12-$ $22 m$（Max Müller），20－24m 353 11－25m，32－ $33 m 354$ 20－25m，33－35m 355 6－8m

WICHURA，Max Die Bastardbefruchtung im Pflanzenreich Breslau；E．Margenstern； 1865 ［CUL，I］
ad，br，cc，ch，cs，f，fg，gd，he，hy，ig，in，mn， no，pat，sp，sx，tm，v，wd，y
NB1＊the most striking case given of constitutional weakness of Hybrids
NB2－p22；p43 Variation under Dom－ estication； 89 do－Look over－allude to theory of non－accommodation－will not do if Primula \＆Linum are sterile．－
SB1 $\square \beta$ \＆＜mostly dictated by CD
Full Abstract Max Wichura
24 Willows have great power of combining into complex hybrids；he has united 6 species into one hybrid．
28 Thinks Gärtner＇s reversions due to parent pollen：Naudin＇s results point to opposite extreme．Does not Gärtner say that cultivated vars．revert more than wild species？Does this not account for difference between Naudin \＆Wichura？
see Book p． 2
29 The 6 fold hybrids cd not live－
31 Says generally that Hybrids are not so strong \＆healthy．－
30 Gradation in sterility of Hybrid willows which in extreme point of scale ends in death of young plants
35 Gradation in potency of pollen．
38 pollen gets worse \＆worse in offspring of Hybrids inter se \＆in（p．39）the more
complex hybrid．
41 Luxuriance in hybrid willows is by no means the rule rather than reverse．
SB2 〈as 1）
42 Cases of weakly hybrid willows
43 Believes in Kohlreuters view that luxuriance of hybrids results from sterility， false from mongrels－
43 \＆ 44 Number of individuals of either sexes modified in hybrid willow．There are more females \＆see p．63．
50 Never saw a prepotent type \＆therefore doubts Gärtner．
56 variability in hybrid willows when hybrid pollen used；uniformity when pure pollen used．
58 \＆ 66 difft kind of hybrid willow found wild 64 Gives proportion of hybrids to pure species in different districts－in some places more hybrids than pure plants－
65 Ingeniously explains how they abound on certain spots from rapid Germination of seed－
80 gives case of species very like each other yet do not unite easily．－
SB3 〈over，CD
Gärtner p． 474 \＆ 582 on Reversion occurring chiefly in cultivated Plants－Naudin who used cultivated plants goes to one extreme \＆＊Wichura who experiments on wild willows goes to other extreme
SB4 〈as 1）
83 Explains sterility of hybrids by combined organization being ill－fitted for conditions．I give this view p．288／3rd ed．of Origin；but contradicted if offspring from homomorphic unions are sterile．
85 Explains increasing sterility of successive generations of hybrids inter se by inter－ breeding like I do．
85 The crossed Triticum \＆Aegilops which increased in fertility had $3 / 4$ of Triticum blood．
89 cultivated plants which vary most often have irregular pollen and seems to think there is some analogy between variability \＆ hybridism
92 Cultivated plants like hybrids，are in a state of dis－accommodation \＆he gives Kohlreuters view on this point

10 13－14u 11 14－18m 22 fig．m／w 6 species compound into one． 24 14－17m／11－17w in Willows great power \＆tendency for production of complicated Hybrids 27 9－ $10 m$（Gärtner）／w 4 generations implied for Reversion 16u＂individuelle＂，13－17w Propagation of individual peculiarity in a

Hybrid $28 \quad w t / 1-5 w$ Thinks reversion of Hybrids due with Gaertner's experiments to pollen of either parent - I daresay Naudin's reversions are largely due to his plants being cultivated $3-6 m, 27-28 m \quad 29$ 17-18m/17u "sechsfachen" $118 u$ "die \mid Grunde" 30 9-13w Gradation of sterility $16 u$ "aber lin" $315-11 m /$ $10 u$ "aber meist" $/ 6-8 w$ gradation in number of seeds $15-16 u \leftrightarrow /$?! $35 \quad 24-26 m 386-11 w$ pollen gets worse \& worse from hybrids inter se 39 12-14m/12u "Zahl"/13w mingled 41 8$9 \mathrm{~m} / \mathrm{u} "$ doch \mid Regel", $21-23 \mathrm{~m} / 21-22 u \leftrightarrow, 25-26 \mathrm{~m}$, $30-31 w$ dwarfs from weakness $42 w t / 1-21 \mathrm{~m} /$ w cases of weakly Hybrid willows did not produce flowers $431-9 w$ believes in Kohlreuters view that luxuriousness of Hybrids results from compensation for sterility $20-22 w$ Relation of sexes modified in Hybrid Willows 17[$20 u$ "Zahlverhältniss", $21 u$ "als \mid Arten", 29-30u "Differenz| bedeutende" 44 3-4u "mehrlweiden", 8-13w more females! under nature Hybrid females very abundant $9 u \leftrightarrow, 12-13 w \quad 1 / 10$ males females 16-17u"unter Ibefand" 50 8-16w never saw a prepotent type in willows \& doubts of Gärtners statement $529 m 56$ 17$22 m / 17-18 u \pm 58 \quad 14-17 m / 16-17 u$ "66|ihren" 63 10-12m 64 6-7m/u↔, 9-13m, $34 u$ "einzelne" $651-3 m / 1 u$ "zusammenwachsen", 2$6 \mathrm{~m} / \mathrm{w}$ more Hybrids than pure parents!! 9$28 m / 10-20 w$ Explains how these numbers come from willows vegetating only in bare places $8010-12 m 8221-25 w$ common mule $24 u$ "eine 1 Bastarde" $/ 24-25 m /$? 83 9x/wt X give this view distinctly p. 288 3d edit of Origin $10-12 m / 10 w$ Clever $15-25 w$ no Hybrid exactly fitted for place in nature contradicted by species from different climates forming Hybrids $84 w t / 1-5 m / w$ More different the parent species the more imperfect the Hybrids $852-11 w$ This is my view of interbreeding causing sterility in successive generation, but too rapid $28-29 \mathrm{~m} /$ $29 u$ "Diel begreift" $898-19 m / w$ Plants which vary have often irregular pollen - I think some connexion between sterility \& variability $92 \quad 8-29 w$ Cultivated Plants like Hybrids are in a state of disac-commodation.- 33u "Die|wird" 93 1-3m (Koelreuter), 21u "dass \mid Accommodation", 22u "Fähigkeit | Varietätenbildung"

WIESNER, Julius von Das Bewegungsvermögen der Pflanzen: eine kritische Studie über das gleichmässige Werk von Charles Darwin Wien; Alfred Hölder; 1881 [CUL, I] cc, mhp, phy, t, y
NB 601 think \diamond

8 I do not understand; 11 no; 34 no; 80 no; 78 Georges translation; 158 George; 122; 126; 162; 211
〈by GD〉 What you say p. 485 almost justifies Wiesner
SB co Pots 2, 4, 8, 12, 16, 20 ft (for 4 hr) in 2d $1 / 4$ 3d $1 / 16$ 4th $1 / 365$ th $1 / 64$ 6th $1 / 100$ of the light received by the seedlings in the 1st Pot
$323-27 m 812-22 m / 1-21 w$ do not understand whilst struggling itself accommodation wd stop $94 u$ "beschränkten Masse" $1119 u$ "alle", $19 u$ "Circumnutation", $19 w$ no $20 u$ "Reizphänomene" $241 m, 17-20 \mathrm{~m} / 18 u$ "nicht 1 Zusammenhang"/w no $\begin{array}{lllll} & 30 & 13 m & 60 & 23 u\end{array}$ "Krümmungsfähig"/w no 66 32-34m/32u "nicht heliotropisch" 68 17-20m/17w Weight can 69 $8 m 711-5 w$ loading very good $732 m 78 z t$, $23-30 \mathrm{~m} / 17-29 w$ I do not understand 81 lm 122 10-31w But will not Cotyledons place themselves horizontally in the dark 123 8$10 \mathrm{~m}, 18-21 \mathrm{~m} /$! $1248-10 \mathrm{~m} 1257 \mathrm{~m} 126 \mathrm{wt} / 1-$ $17 w$ It ought to be tried again. Whether Cots. (with hypocotyl fixed) bend in proper measure to bright light. $33-35 m / 18-35 w$ in my study, when hypocotyl. bend itself Cots. were horizontal, but when with same light Cot fixed the Cots bent in proper measure $1273-14 m / w$ I cannot quite follow $20-31 w$ Do all Cots rise if kept in dark? 162 wt lt does not explain lateral mvmt. $5-11 m / 1-11 w$ This does not apply to 2 triangles $20522 u$ "Fast alle", 23u "sind |bewegungen" 211 23$27 m / ? / 26 u$ "verkümmern 1 sterben" $/ w$ no

WIESNER, Julius von Elemente der wissenschaftlichen Botanik: 1. Elemente der Anatomie und Physiologie der Pflanzen Wien; Alfred Hölder; 1881-89 [Linnean Society of London, I]

WIESNER, Julius von Die Heliotropischen Erscheinungen im Pflanzenreiche Wien; K. Gerolds Sohn; 1878-80 [CUL, I]

WIGAND, Albert Der Darwinismus und die Naturforschung Newtons und Cuviers 3 vols.; Braunschweig; F. Vieweg \& Sohn; 1874-77 [Down] \wp

WILCKENS, Martin Form und Leben der landwirtschaftlichen Hausthiere Wien; Wilhelm Braumüller; 1878 [Down, I] \wp

WILCKENS, Martin Grundzüge der Naturgeschichte der Hausthiere Dresden; G. Schönfeld; 1880 [Down, I]

WILCKENS, Martin Die Rinderassen MittelEuropas Wien; Wilhelm Braumüller; 1876 [Down, I]
NB Skimmed too difficult O
WILLIAMSON, William Crawfurd On the recent Foraminifera of Great Britain London; The Ray Society; 1857 [Down]
NB xi
xi $2-11 m$
\wp

WILLIAMSON, William Crawfurd On some of the microscopical objects found in the mud of the Levant and other deposits Manchester; Gillett \& Moore; 1847 [Down, I]

WILSON, John British farming Edinburgh; Adam \& Charles Black; 1862 [Down]
NB Colling, Ellman, Bakewell
WILSON, Owen S. The larvae of the British Lepidoptera and their food plants London; L . Reeve \& Co.; 1877 [Down, S] \wp

WINKLER, Tiberius Cornelius Descriptions de quelques nouvelles espèces de poissons fossiles des calcaires d'eau douce d'Oeningen [Down, I] NB O/

WINKLER, Tiberius Cornelius Des tortues fossiles Haarlem; Les Héritiers Loosjes; 1869 [Down, I] \wp

WOLLASTON, Thomas Vernon Insecta Maderensia London; John Van Voorst; 1854 [CUL, I]
gd, oo, no, sp, tm, v
SB1 Cossyphodes a Blind Insect in AntsNest common to the Canaries Isd with wings obsolete \& Bates says Prelaphidae are blind but some have yet wings \& fly \& are f. in Ants-Nests.
SB2 $\square \beta$ Genera marked Woll. \& so I presumed endemic
〈list of genera and number of their species; totals calculated)
〈untranscribed words are numbers of varieties listed under each species \rangle xxxva $11 w, 15 w, 22 w$, $34 m, 37 m, 40 w \operatorname{xxxvb} 7 w, 11 w, 16 w, 21 w$, $25 w, 29 w, 39 w, 45 w$ xxxvia $4 w, 10 c$ "var β ", $17 w, 18 m, 33 w, 42 w, 45 w$ xxxvib $4 m, 16 w$, $25 w, 34 w, 42 w, 47 w$ xxxviia $2 w, 10 w, 19 c$ "109 spinipes, Woll.", 19 w var a $30 \mathrm{w}, 33 \mathrm{~m}$, $35 m, 42 m, 44 m, 54 w$ xxxviib $4 w, 8 w, 15 w$,
$27 w, 31 w, 32 m / ?, 33 w, 36 w, 37 m, 38 w, 40 w$, $42 w, 45 w, 47 w, 49 w$ xxxviiia $6 w, 9 w, 12 w$, $17 w, 20 w, 28 w, 31 w, 34 w, 37 w, 40 w, 44 w, 45-$ $46 \mathrm{~m}, 47 \mathrm{w}, 50 \mathrm{w}$ xxxviiib $3 w, 6 w, 7 \mathrm{~m}, 9 c$ "var β ", 12w, 14w, 15m, 17w, 20w, 34c "206| Woll" $\mid w$ e var $35 w, 37 w, 42 w, 47 w, 49 w, 51 w$ xxxixa $2 w, 7 w, 8 m, 9 w, 10 m, 15 w, 16-17 m$, $18 w, 21 w, 24 w, 29 w, 31 w, 32 m, 43 w, 45 m$, $46 w, 47 \mathrm{~m}, 48 \mathrm{w}, 53 \mathrm{w}$ xxxixb $4 \mathrm{w}, 7 \mathrm{w}, 13 \mathrm{w}, 15 \mathrm{w}$, $30 w, 35 w, 37 w, 43 w, 46 m, 47 w, 49 w, 50 m, 55 c$ " $281 \mid$ Woll" $/ w$ var $\alpha 56 c / w$ var. β xla $7 w, 12 w$, $14 m, 17 w, 18 m, 20 w, 21 m, 23 w, 25 w, 27 m$, $28 w, 33 w, 36 w, 43 w, 53 w$ xlb $3 w, 7 m, 8 w$, $13 w, 17 w, 19 w, 21 w, 22 w, 23 m, 24 w, 26 w$, $27 \mathrm{~m}, 28 \mathrm{w}, 32 \mathrm{w}, 35 \mathrm{w}, 39 \mathrm{w}, 43 \mathrm{w}$ xlia $4 w, 13 \mathrm{~m}$, $15 w, 17 w, 19 w, 21 w, 30 w, 43 w, 45 w, 49 w$, $50 m, 51 w$ xlib $2 w, 4 w, 5 m, 6 w, 8 m, 11 c$ " $370 \mid$ Woll" $\mid w$ var $\alpha 12 \mathrm{~m}, 14 w, 15 c$ "var β ", $17 w$, $20 w, 22 w / ?, 24 w, 26 w, 29 w, 31 w, 35 w, 36 m$, $39 w, 40 m, 42 w, 46 w$ xliia $3 w, 21 w, 25 w, 30 w$, $33 w, 36 w, 43 w, 46 w, 50 w$ xliib $4 w, 6 w, 7 m$, $10 w, 27 w, 35 w, 37 w, 39 m, 40 w, 45 w, 48 w$, $50 w, 52 w, 54 w, 57 w$ xliiia $4 w, 7 w, 9 w, 17 w$, $20 w, 22 w, 26 w, 28 w, 31 w$ lxiiib $1 m, 2 w, 8 w$, $9 c$ "var β ", 13w, 19w, 21w, 28w, 29m, 30w 21 1-2Q

WOLLASTON, Thomas Vernon On the variation of species London; John Van Voorst; 1856 [CUL, I]
ad, af, beh, br, cc, ch, co, cr, cs, ds, dv, em, ex, gd, geo, ig, is, mg, mn, oo, rd, sh, sl, sp, sy, t, ta, ti, tm, ud, v, wd

NB How are Birds? in size measure wings of Swallow
4 11-14m, 12-19m,22u "namely|creation" 5 11-12Q/u "alstability", 14m/Q 15-16m, 25$27 m 16$ 12-15m 24 13-14m/13u " 240 ", 20-23m 27 25-29m $2915-18 \mathrm{~m} / \mathrm{Q} 3025-29 \mathrm{~m} / \mathrm{Q} 312-$ 9m/Q 20-25m/Q $22 u$ "Europel Madeira", $26 u$ "Sweden I Canaries", 27 u "insect I cosmopolitan" $3211 u$ "the thesis", 12-16m 33 1-9m/7-8w why not a true species $12-19 \mathrm{~m} 347-12 \mathrm{~m}$ (Westwood, Kirby), $23-27 m 3520 u$ "small", 21-23m/22u "of itself", 29!/u "legitimate variation" 36 2-4m, 17-22m, 23u↔ 37 11-17m $381-2 m, 6-8 \mathrm{Q}$ 9-14m, 26-29m/w Glacial Inst $3910-15 \mathrm{~m} / \mathrm{Q}$ 18-23m/Q 40 10-14m/11-12Q 16-20m $414 m, 5-6 \mathrm{Q}$ 6-9m, 15-18m, $w b$ Do not forget changes in larval condition.- as causing change in Mature $4326-29 m / Q 44$ 1-3m/Q 45 1Q 4-6m/w How odd 15-16Q 23$25 m, 28-29 m$ (Westwood) 50 21-24m $5425-$ $26 w$ Great webs, action on the larvae? So in plants, according to Decandolle) $26-28 m 55$ 2-7m 57 14-16m/Q 26-29m/Q 58 2-8m $591-$ $5 \mathrm{~m} / 3 \mathrm{u}$ "solcolour", 10-12m/Q 23-25m (Hardy,

Bold) 60 wt $Q 2 u$ "the change", $12-14 \mathrm{~m} / 12 u$ "southern shores", 22-26m 61 wt Q 4-6m, 1319m, 27-28m $627 u$ "ornamented typically"/6$9 \mathrm{~m} / \mathrm{w}$ variation analogous Q $633-6 \mathrm{~m}, 8 \mathrm{Q} 9-$ $12 m$ (M. de la Ferté) $64 w t / 1-4 m / 3-4 u \pm / 1-6 w$ Q How curious the impossibility of creation \& variation producing same end. Capacity in one case \& not in other to adapt itself or be acted on.- $8-17 w$ You have a vera causa, but you invent another.- $653-4 w$ do not understand $11-20 \mathrm{w}$ It is begging question to attribute these to soil. 14-18m, 18-29m/22$29 w / w b$ May be the result of something of use, or indirectly connected. 66 21-29m 67 1$5 m$ (Curtis)/ w This common \& important 68 6-14m, 21-23m $691 m, 3-7 m, 12-18 m$, $w b$ Here the forest seems the active cause 70 1Q 13-18m/16-18"..." 71 1Q 22-23m, 25u "constant|atmosphere", 29 u "diminution|area", $w b$ reduces isolation to these - \& interbreeding $72 \quad 11-13 m / u \pm / 7-12 w$ Java Sumatra America? 73 15-20m 74 1-4m, 10$12 m, 19-20 m 75 w t$ It is very important that the linking forms are often rarer; by Mr Wollastons account, these the extremes: hence easily exterminated. wt How far are intermediate links produced by crossing? If so they wd cease when species made $5-8 m$, $19 m \quad 79 \quad 13-15 m 81 \quad 20-21 m / w$ (a) $w b$ (a) Thinks decrease of wings increases size in some instances \& It makes up for isolation which tends to reduce size $828-9 \mathrm{Q} \quad 10-$ $13 w$ ce, $19-20 \mathrm{~m} / \mathrm{w}$ why $25-30 \mathrm{~m} / \mathrm{Q} / \mathrm{u} / \mathrm{w} 1783$ $6-10 \mathrm{~m} / \mathrm{w}$ \& p 85 8-10u士, $14 \mathrm{~m} / \mathrm{Q} 845-6 w$ Balancement 6-10m, 23-26m, wb But how cd it have gone over low lands, certainly hotter, than present Madeira. Applies to Balea pencosa, \& ! 85 wt With this I can hardly believe, that intermarrying can decrease size.- May not greater powers of locomotion be regained for apterous insects $13-14 m, 15-$ $18 m / 15 u \pm / w$ (2) Q $20 w(3)$ Q $24-26 m 863-5 Q$ 27-29Q 87 12-16w Can this account for absence of thalerophaga lamellicornes 14 $16 u$ "iflcertain"/ $Q w b$ Why not allude to greater propor $885-8 m, 16-20 m / 20 u$ "arelelsewhere", 20 w opposed to $891-2 \mathrm{~m}, 2 u$ "external 1 form", wt This cannot be interbreeding \therefore probably in all cases some other relation.- $90 w t / 1-15 w$ it wd be well to put the case of 2 isld were united, there wd be largely intermediate forms: or indeed * the variation prevented. Just as varying exceptionally slow, so a few crosses wd help to check it. 96 6-8m, 10-13m $9724-28 m 98$ $19-29 w / w b$ Wings, I suppose last developed organs, can that bear on their variability? 99 wt Insects may seldom be able to fly so
decrease like ducks or silk moths come into play, aided by selection. Analogy of wingless Birds, cd lead to former belief. $10118-23 m$ (Westwood, Spinola), $29 m 102$ 1-5m, 20-26m 103 1-6m, 16-17m, 22-24m 104 25-26u "sizel colour", 26-27m 105 12-13u "twol states", 23$28 \mathrm{~m} / \mathrm{w}$ so in Birds $10617-19 \mathrm{~m} / \mathrm{w}$ so in Ploceus \& Icterus 109 4-6m 115 12-14m/? 116 9-15m/? 117 6-8m/?/u "with|powers" 119 $13-15 m, 14 u$ "once continuous", $15 u$ "slowness"/w hypothesis $120 \quad 13-16 \mathrm{~m} /$? 122 19-20m 124 6-9m, 10[...], 16-20m 125 10-14m, $11-13 \mathrm{~m} / \mathrm{w}$ think of confined mammals \& Birds $25-27 \mathrm{~m} / 25 u$ "Its \mid rarity" 126 23-24u "thel regions"/w Lyell 128 10-14m, 12-16m $1293 u$ "Sir Charles" $/ w$ No 5-9m, 14-16m, 18-20m, $23 u$ "occurlstate", $20-25 \mathrm{~m} / \mathrm{w}$ (not differently associated with other organic beings. 130 11-12u "extreme ${ }^{\text {progress", }} 14-$ $15 m 1315-6 w$ \& some appeared $8-10 m, 11-$ $31 \mathrm{~m} / 11 \mathrm{w}$ variation $13-15 \mathrm{~m} / \mathrm{w}$ (a) $17 \mathrm{w} \star$, $w b$ (a) We shd not expect much change in seashells within such a period. $1321-12 \mathrm{~m} / \mathrm{B}-9 \mathrm{Q}$ 13-21m, 27-29m/Q 133 9-12m, 14-18m, 18$22 m, 18-20 m, 21-22 Q 134 w t / 2-9 m / 1-11 w$ Both these wider spreading \& varying species: must do so to have local vars. $w b$ All amount of differences, simply called species, when great (and formed by selection) \& called vars, when small \& intermediate not found 135 wt Did a creative spirit blow from S . to $\mathrm{N} . ?!$ 9-11w unintelligible to me, except a mutation 12$18 \mathrm{~m} / 13 \mathrm{u}$ "that \mid tract" ? $/ 16$ u "identical", $22-$ $23 \mathrm{~m} / 23 \mathrm{u}$ "aborigines" 136 15-16m, 25-27m 137 $22-29 w$ i.e. that some $*$ Madeiran insects have got into S. Europe 138 wt Yes when it was cold, there wd have come a different set, even if current always the same $4 u$ "distinct epochs"/? 139 12u "genera"|12-14w What have they to do with land $1419-11 \mathrm{~m} /$!, $12 u$ "generic areas" $/ 12-14 w$ but not points $14-$ $15 u$ "on Iplanned"/wb no explanation it is mere assertion of fact 143 26-28m 144 14$17 \mathrm{~m} / \mathrm{w}$ sure \& certain witnesses 147 10-19m (Kirby), 27-31m $148 \quad 2-5 m$ (Lyell) 153 1014m, 15-17Q 26-29m/w/wb Probably often renewed like Alpine Plants wb These cases opposed to struggle for existence $1559-10 \mathrm{~m}$, 26-28m 158 14-15?/u "first |instincts" 163 $19 w$ hypothetical $16517-22 m \quad 166 \mathrm{wt} / 1-9 \mathrm{w}$ Breaks influence greatly as shown in groups by enchainement $9-24 w$ ie branching whether or not extinction $13-16 \mathrm{~m}, 19-22 \mathrm{~m}$ $168 w t / 1-25 w$ Probably a species ought to be described animal-Vertebrate-Mammal-Carnivore-Canidae-Canis familiaris 170 1924m 171 9-26w All much too Metaphisical

WOLLASTON
Nothing to me $-27 u \uparrow, 22 a$ "position"/wb in affinity or geograph position $1729 a$ "cannot"/ wt He means always have been!! 11-23w Shows the effect of studying insects in comparison with Mammals $14 u$ "accident", 15$19 m 173$ 20-23m 174 9-16m 175 6-12m, 20$24 m 177 w t / 1-9 w$ How good to make genera when new rising comes on.- 13 w new $14-$ $25 \mathrm{~m} / \mathrm{w}$ most genera in isld he attributes to extinctions but does not apply to cases like coral islds. $-20-25 \mathrm{~m} / \mathrm{wb}$ so A. de Candolle in Plants, but he applied it to very distinct plants - so in Birds 178 29-31m 179 24-26!, 25-27m, 25-26u "convincedl demarcation" 185 6-7Q 10-12w same as A. Decandolle $1865 u$ "most mischievous", $28 u$ "monstrous", $w b$ you may doubt when I doubt, but if you go one step further you will be eternally d-d, quoth the Priest. 187 19w Canary Birds $22 u$ "cultivated plants/21-23w flowers! Rices 188 6-9m, 14u "absurdity", $17 u$ "unsound", 20-23m, 20-29w/wb why then created? Do you know these conditions well enough to say why one is rarer than another. Yet quite ignorant of the Life of larvae. $1933 u$ "traces | design" $/ 3-6 w$ Flowers Canary Birds Fancy Pigeons 8 m

WOLSTEIN, Johan Gottlieb Über das Paaren und das Verpaaren der Menschen und der Thiere Altoma; Hammerich; 1836 [Down]
$118 w b$ O/ Rubbish.

WOODWARD, Samuel Pickworth A rudimentary treatise of recent and fossil shells 2 parts and supplement; London; J. Weale; 1851-56 [CUL]
ad, af, ch, ci, ex, fo, gd, geo, hl, is, mg, oo, no, sh, sp, sx, t, ti, v, wd
part 1, 61 9-11m
part 2 NB p. 271 good
\& Relation of Extinct \& living genera S. America
167 26m/u "Phosphorax, Webb", $28 u$ "Sandwich Ids" $16830 u$ "Cryptella, Webb", 31u "Canary Ids." 169 11u "Canary Ids." 170 19u "Philippines" 271 10u "Miocenel Patagonia"
Supplement, NB All; p. 336 Sexes of Tunicata
p.439; p.454; p. 486

336 19-21m 348a 3-7m, $13 m$, 20m 348b $9 m$ $349 \quad 21-23 m, 38-40 m \quad 35038-40 m, 44-45 m$ (Forbes), wb Read 351 wt X In sense of typical representing structure of whole group, it comes to commonest form have widest
ranges - aberrant form extinction, is quite applicable to this view $8-10 \mathrm{~m} / 1-21 \mathrm{w}$ as aberrant probably here means widely different, must have been produced by extinction 9-10x/20-32m 352 16-20m, 21-27m (Swainson) $3533 w \ln$ Tropics? 26-30m 354 $w t / 1-9 w$ are these not also Cape? $4 a$ "sea" about 30. p. 363 3-5m, 8-9w Never mind 21$22 u$ "Red Sea", 24u "Cape" 355 15-17m (Forbes)/16u "subject।form" 358 wt If Boreal inhabited arctic region, there wd have been more continuous coast land, in fact quite continuous land. 3-5m, 6-8m, 43-51m (Richardson) $35923-29 c / 25 w{ }^{2}$ N. Zealand Chile $26 \mathrm{~m} / \mathrm{u}$ "Mesodesma", $27 u{ }^{\text {un }}$ "Boreal", $26 u$ "Crepidula" $/ w$ is f only wild in Tropics 361 43-46m 362 27-28u $\leftrightarrow / 27-37 w$ What endemic. None $37 u$ " 831 the" 363 1-3m, $9 u$ "about 30"/ $40 u$ " 74 ", $20 u$ " 2001 extinct", $22 u$ "Thel Sea", $38 u$ "common 1 Indies", 39-44w 44 being common to Atlantic \& Red Sea $3646 u \star, 8-$ $9 c / w \notin, 9 w$ S.P.W. $28 u$ "part \mid Caspian" $36518 a$ "shells" living I suppose $36712-13 \mathrm{~m}$, $23 u$ "200", $24 u$ "11Icommon", $25 u$ "whilst |the" $368 w t$ Strange so few $* w t / 1-15 w$ are these found in Tropics with cross seem good case $w t / 1-12 \mathrm{~m} / \mathrm{w}$ All doubtful according to Woodward 18-22m, 39m (Cuming) 368a $8 x$, $9 u$ "Red Sea", 13x, 14x, 15x 368b 7u "Red Sea", $8 x, 11 x, 13 x, 15 x \varnothing_{2} 36918-22 m, 26 u$ "74", $32-34 m \quad 370 \quad 42-44 m \quad 371 \quad 16 x / u$ "Solonella"/w \& nowhere else America \& Medit. $17 u$ "Panopaea"/wes Confined to \& Australia W. Africa * 18 u "Monoceros", 19 m , $20 w$ no- $26 w$ Falklands p378 27a/u "Modiolaria trapezina" Falklands p378 28w book in Index 372 19w During glacial 21$23 \mathrm{~m} / 21-22 u$ "same I found" $3734-8 \mathrm{~m}, 33-34 \mathrm{~m}$, $37-39 m 37510-13 m, 29 m$ (Cuming), $34 m / u$ "Litoral I common" 381 14-18m, 23-24m 382 3$6 \mathrm{~m}, 15-19 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ in Land \& F. W. Mollusca 383 10-11m, $33 u$ " 74 ", $34 u$ "water 1 4 ", 38-39m (Deshayes) $38529 u$ "Spain 1 Syria", 33-37m/34u "mountain"/36u "has $|46 "| 37 u \leftrightarrow$ $3865 u$ "peculiar \mid snails", $14 u$ "and \mid Limaces"/ $9-18 w$? p. 383 only 74 British 19 u " 132 ", 20a "The". $320 u$ "section limax", 22-25m/w Saline, Marine, very little water $28-29 u$ " 111 Santo", 34-35m, 36-41m, 40-41m (Wollaston), $w b$ ca 387 wtec, wt Vide p486 Supplt Fossil Landshells $1-6 m, 2 m / u$ "(132) 111 ", 3-4u " 5 11 ", 6-19w as Sicily has 3 peculiar Limaces, these are probably introduced $13 u$ "Ancylus fluviatilis"| $11-13 w$ introduction \& only 2 F.W. Shells 16-17u士, $22 w$ living 64/132 fossil 22$34 w$ Santo 42-43m (Wollaston) 388 1-5w Looks so.- $8 u$ "Only 13"|10u "and|viz"/8$11 w$ more modern group 1-17u "80|Limax"/
w 60/80 perhaps $18 u$ "these 1 peculiar", $19 u$ "and IIndies", 20u "Physal1", 21-22m, 43u "trunks of", wb Canaries 389 10u "Limax Ascensionis", 18-22m/19u "Thelspecies", 26$27 \mathrm{~m}, 27 \mathrm{~m}, 36 \mathrm{~m}, 45-46 \mathrm{~m}$ (Sowerby) $390 \mathrm{wt} / 8-$ $12 m / 1-15 w$ Hooker says Ferns at Ascension are W. Indian $28 u$ "similar"/w not identical 391 21-22m/21u "section I Madagascar", 38$40 \mathrm{~m} / 38 \mathrm{u}$ "The|peculiar" $39224 \mathrm{~m}, 34-35 \mathrm{~m}$ 393 25-28m, 30-32m 394 16-19m 395 2-5m (Mousson), $38-40 \mathrm{~m} 396 \quad 29-32 \mathrm{~m}$, $30 u$ "peculiar", 33-34u "twolbitentaculata", $36-40 \mathrm{~m} / 37 \mathrm{u}$ "MelanopsisItype", $40 u$ "Vitrina zebra"/wb 2 Vitrine \& in fact naked 397 15$17 \mathrm{~m} / 16 u$ "thoselislands", $31-34 \mathrm{~m} / 31-32 u \leftrightarrow$, 35-37m, 40-42m 398 4-6m, 13-17m/15u "one Limax", 18-26m/18-19u "the 1 multispiral", $21 u$ "HelicesIglabrous", $34-38 m, \quad 41-44 m$ (Humboldt) $399 \quad 33-38 m \quad 400 \quad 41-42 m$ (Waterhouse) $40142-43 m 4025-7 \mathrm{~m} / 6 u$ " 4 ", $12-14 m 4031-4 m, 30-32 m /!/ u \leftrightarrow, 40-41 m 404$ $4-6 m \quad 40519-38 w$ See range of these Genera \&c 27-28m/wes N. Bolivia \& J Fernando $30 u$ "least I shells", $30 u \star$, $35 u \star$, $36 u$ "Spiraxis"/wbon sub. gen W. Indies. Mexico $407 \mathrm{~b} 31 \mathrm{~m} 40828 u$ "close" $26-29 \mathrm{~m} / \mathrm{w}$ so successions of Life $30-31 m 41026-31 \mathrm{~m} / 29 z$ 411 wt on questioning how many forms are this kind $1-4 m / w$ evidence? $11-14 m / w$? compare to sea shells? 14w This is contradicted by changes in islds $15-16 \mathrm{~m}, 16$ $19 m$ (Forbes), 20?, 22-25m, 26w Where means of distribution are Mundane 39-40m (Lyell)/ wb but not these sea-shells - that is not known $4128-11 m$ (Forbes), 14-16m, 18-21m, $31 u$ "some l larger", $36-38 m 414$ wt Capital Table But only some of the genera $1 a$ "of" some large $4 u$ "Litnites" why italics $\downarrow w$ There ought to be a line for each genus 34-36w why both given 25-36w How few began in Tertiary per 415 wt See my Table $1 a$ "of" all? for he speaks of 85 in next Page 9-16w Begin in Tertiary $w b 62$ It wd be curious to arrange these like last table $\hat{i} w_{0}$ <each line numbered) 416 1-25w Other Tribes Cirripedes now must replace other animals $13-15 \mathrm{~m}, 16$ $19 m, 20-25 m / ?, 26-30 m, 34-36 m 417 \mathrm{wt} /$ fig. $\mathrm{w} /$ $1-12 w$ Hence reduced organisms now flourish, \& so it is with Fish: take place of lower animals from some advantage 4-6m, $5 u$ "classes 1 testacea", $9-10 m, 10 a$ "typical", wb Most evenly balanced. $12-15 m 41823-24 m$, $31-32 m 419$ wt I shd say an ideal archetype was that form from which in imagination all others cd be made with parts changed $1-3 \mathrm{~m} /$ $3 u$ "theirlarchetypes", 4-5m, 26-27?, 30-32m, $33 \mathrm{~m} / \mathrm{w}$ end $37-41 \mathrm{~m} 4201 a$ "extent" compared to Land Mammals $2 w \therefore$ if not changed, they
will be widest rangers $26-28 m, 29 u \leftrightarrow 4215-$ $9 m / 9 u \quad$ "White | rusticum"/wt/1-10w a very long Journey for them by Mediterranean 21u/ $u * / 22 u / 23 u * / 19-21 m / 18-25 w \quad$ Are these American. wbo Monoceros America * except M. Zebra No \propto Pseudo olive W. America (but fossil in Europe) only in Eocene.- Solenella America 422 15-17m 439 $\overline{40-42 m} 454$ 11-15m/m, fig.m 486 28-32m

WRIGHT, Chauncey Darwinism: an examination of Mr. St. George Mivart's 'Genesis of species' London; John Murray; 1871 [Down] \wp

WRIGHT, Chauncey Philosophical discussions New York; H. Holt \& Co.; 1877 [CUL, I by editor Charles Eliot Norton]

NB Excellent book

v $5 m$ (Spencer), $9 m, 15 m$ (Lewes), $16 m$ (McCosh, Tyndall), $19 m$

WUNDT, Wilhelm Grundzüge der physiologischen Psychologie 2 vols.; Leipzig; Wilhelm Engelmann; 1880 [Down] \wp

WUNDT, Wilhelm Nouveaux éléments de physiologie humaine Paris; F. Savy; 1872 [CUL, FD]
〈markings presumed to be by FD>
WÜRTENBERGER, Leopold Studien über die Stammesgeschichte der Ammoniten Leipzig; Ernst Günther; 1880 [Down] \wp

WÜRTENBERGER, Leopold Studien über die Stammesgeschichte der Ammoniten Leipzig; E. Günther; 1880 [CUL, I] \wp

CHARLES DARWIN'S MARGINALIA

I dedicate this book to
David Kohn who sighted the fish in the first place;
Peter Gautrey who kept the nets in perfect repair, while
Nick Gill struggled to land what turned out to be a whole shoal.
M.A.D.G.

CHARLES DARWIN'S MARGINALIA Volume I

Mario A. Di Gregorio with the assistance of N.W. Gill

GARLAND PUBLISHING, INC. • NEW YORK \& LONDON 1990

© 1990 Mario A. Di Gregorio

All rights reserved

Library of Congress Cataloging-in-Publication Data

Darwin, Charles, 1809-1882.
[Selections. 1990]
Charles Darwin's marginalia / [edited by] Mario A. Di Gregorio with the assistance of N.W. Gill.
p. cm. - (Garland reference library of the humanities; vol. 783)

Includes bibliographical references.
Contents: v. 1. Books.
ISBN 0-8240-6639-1 (v. 1: alk. paper)

1. Darwin, Charles, 1809-1882-Quotations. 2. Marginalia. I. Di

Gregorio, Mario A. II. Gill, N.W. (Nicholas W.) III. Title. IV. Series.

QH365.A1 1990
575'.0092-dc20

Laudata sii, Diversità delle creature, sirena del mondo! Talor non elessi perché parvemi che eleggendo io t^{\prime} escludessi,
o Diversità, meraviglia
sempiterna. . .

GABRIELE D'ANNUNZIO
LAUS VITAE'

acknowledgments

In the first place I should like to thank wholeheartedly the three people to whom this volume is dedicated, and without whom it would have been impossible. David Kohn conceived the original project - though no-one anticipated the gigantic proportions to which it would grow. Nick Gill, my valued friend and collaborator, has worked as research assistant, general editor and 'typesetter', performing technical feats that baffle me utterly. Peter Gautrey, recently retired from the Manuscripts Room of Cambridge University Library, was always a superb source of warm and knowledgeable support: to this true gentleman, generations of Darwin scholars are deeply grateful.

It is also a pleasure to record our debt to the staff of the Darwin Correspondence project, especially Ann Secord, Janet Browne, Marsha Richmond and Stephen Pocock, who continually sustained us with encouragement and much valued advice and experience. Frederick Burkhardt kindly allowed me to take from the first volume of the Correspondence the list of books Darwin had with him on board the Beagle.

In the early stages my research was funded by the British Academy and later by the Royal Society, for whose support I am duly grateful. The work took us to Down House, where we greatly appreciated the homely efficiency of Philip Titheradge. It is also a pleasure to thank the staff of the University Library, particularly Janice Fairholm of the West Room, and Arthur Owen for granting special privileges of access to the manuscripts.

Last but not least, I should like to record our enormous debt to all the staff, temporary and permanent, of the Manuscripts Room, superintended by our friend Godfrey Waller, and graced by the ever-helpful Jayne Ringrose, and Margaret Pamplin, who found it in her heart to laugh benevolently when my assistant, who shall briefly be nameless, tipped an entire trolley of priceless books and pamphlets across the floor. "Were they in alphabetical order?"
M.A.D.G.

Cambridge
December 1989

contents

Prologue and introduction ix-xxxvii

Part one: catalogue and transcription
$\begin{array}{lrl}\text { table of titles } & \text { xli-lxi } \\ \text { text } & 1-895\end{array}$

Part two: index and conceptual concordance
lxiii ff

Epilogue
prologue and introduction

Some time ago David Kohn had the idea that it would be beneficial to have some kind of outline catalogue to Charles Darwin's marginal annotations. A long story and a number of years later, something rather more complex at last sees the light of day. Like all good stories, ours grew in the telling, and this volume is now intended as the first of three which will provide a complete transcription of the marginalia and a classified map of the whole corpus of annotations. The 'long story' by which the original germ has become a projected multi-volume set has involved the gradual addition of new layers, during which the bare catalogue became first a partial transcription and then a complete one, hence now entitled 'Catalogue and transcription'. By a parallel process, what started as a brief conceptual record of the principal content of the annotations in each book eventually gave birth to the huge document which forms Part two of this volume. We felt that the term 'conceptual concordance' would designate our purposes in Part two readily enough; further explanation is given on p. xviii. Finally, however, we concluded that our readers might be unnerved at the thought of a text of this density not having an 'index', and so the hybrid title 'Index and conceptual concordance' was eventually fixed.

The process has thus in essence been a continuous amplification of an first very narrowly defined objective - almost echoing CD's request:
"Clean well the pencil marks.- Keep Book Clean. Write smallish on one side, number your pages." (see p. 227 g)
We can fairly claim to have done a little better than that, given the latter-day wonders of camera-ready copy.

CD's instructions here were in fact originally issued to one of his amanuenses, probably Mr Norman, a shadowy figure for whom we came to feel a considerable sympathy. The ground level of our work has been just about as pedestrian as his, in copying everything out to provide the 'Catalogue and transcription' which forms Part one of this volume. At least in Part two, and more especially here in this Introduction, we have the luxury of spreading our wings a little into the realms of interpretation; such joys were not to be for the hapless amanuensis. "Mr Norman end here" (390c), CD instructs whenever the interesting bits seem about to begin.

Having established the foundations of our role, we headed off towards finding our material. The principal locations of Darwin's annotations are the margins around the text of the books, separate sheets or 'slips' of paper, and the front and back inside covers of the books. These different locations, we believe, constitute different layers of annotation emanating in the main from different occasions on which CD paid attention to a book. The 'slips' are now mainly found stuck or pinned inside the back cover - though we believe that is not where they spent the prime of their working lives. The quality and the colour of the paper used for these slips vary, again probably implying different bouts of attention. We have seen fit to distinguish three broad types: smooth blue paper; rougher yellow-mottled grey-blue paper; and the rest (mainly nondescript white or greyish paper). We report the material from these various locations in the following order: notes and/or slips inside the front cover; notes and/or slips inside the back cover; slips attached anywhere else in the body of the book; marginal marks and comments in the body of the book.

As to our presentation of the material transcribed in Part one, we have provided a 'Key to symbols used in Part one' on the sheet at the front of the book. The key is hopefully self-explanatory; the only further detail which needs mentioning is that each column in Part one is numbered, and is referred to as if it were a page.

So much for our code-marks; CD however has some of his own. The capital letters "Q" (for "quote") and "NQ" (sometimes apparently for "not quote", sometimes for "note quote") are frequent. There are also other much more occasional letters, such as " H " (for heredity or inheritance), " S " (for selection), and "D" (usually dichogamy). But others are less fathomable: e.g. brown or reddish pencil crosses: "X means used for 1st volume", he says at a certain point (122c) - but does this apply generally? As with the mysterious coloured ticks (or are they 'V's or 'L's?) which pop up here and there, and the 'O's in the margin in some plant books, we have not thought it part of our job as transcribers to decode these marks, and are indeed thankful to be able to hand such puzzles over to the wider company of Darwinists. It is worthwhile, however, to draw attention to the way these marks run through the craggy mass like thin veins of special little crystals, presumably meaning something.

Our fitful involvement over the years in the production of this material, at computer terminals and in libraries, both in Cambridge and at Down House, has included many hours spent in the U.L. archives themselves - a privilege which facilitated our work immensely, despite the curious effects of the changeless bookstack weather. The project has also survived a double bomb scare, a fire beneath the computer centre which put the tapes out of action for many a long week ('on a shelf gathering dust' becomes in these latter days 'on a tape gathering smoke particles'), and the near-arrest of the assistant author in a certain College library where he was mistaken for the key to a missing case (cf fn 12). CD's remark to the intrepid Wallace felt at times distinctly pertinent:
"I am astonished you ever returned alive" (842a)
"(from now I shall skip largely)" (812d)
Here we find CD instructing himself to pay only cursory attention to the remainder of the book in question (Vaucher's Histoire physiologique des plantes d'Europe). What, more generally, has our reading of his marginalia revealed to us about his procedures in reading the scientific books he owned? Given how systematic CD seems to have been, it is not difficult to build a general picture.

CD acquires a book and begins reading. It does not take him long to make his judgment about the quality and usefulness of the book. If, as was quite frequently the case, the verdict was broadly dismissive, he would usually persist, but less intensively and only in the hope of encountering a handful of useful pieces of data: hence the large skipping, or comments to the effect "only skimmed". During this basic reading, intensive or otherwise, the margin is scored and peppered with comments. At the end of the reading, he would now list out the locations of his more important comments and margin-scores on an inside cover (usually the back cover), occasionally adding brief mnemonic notes.

The book will now probably lie fallow - maybe even for a number of years - until the lucky moment arrives for it to participate in the process of data-collection for a CD publication. At this stage, the list of locations is re-examined, and a new, shorter list made on a separate sheet of paper of the most important locations, now with details in the form of long-hand notes about the information to be gleaned at those locations. "I will cease extracting", he says at a certain point (668f), reinforcing our growing impression of him as a kind of intellectual dentist. We have the strong feeling that he hardly ever reread the book itself - a feeling underlined by his exceedingly rare self-instruction to "Read second time" (545c), which would scarcely make sense if he usually did this anyway. However many years later he returned to the book, he was confident that he had already 'extracted' everything of value.

The separate slips containing the vital gems at this point reach the prime of their working lives: we imagine those relevant to the publication in progress now collected in a heap (or in CD's systematic case, no doubt a pile) on the writing table, being finally reviewed. It is at this stage, we presume, that the code-letters "Q" or "NQ" are entered on the slips and/or at the original locations in the text against the items he has decided to use. The set of slips, together with CD's own notes and drafts, combine for a while into 'Portfolios of working notes' for the writing of the publication in question. Once the publication has been pieced together, "slips all put in proper places" (572 h) - i.e. stuck for any future reference usually inside the back cover of the now fully-harvested book. A slip may take part in this 'cycle' a number of times - its important underlying content, as we shall see later, being the broad theoretical themes invoked by the data recorded on it.

There are of course exceptions to this general procedure - though not, we feel, all that many; and only two are worth noting specifically. The first concerns books that CD read early in his career, where one is likely to encounter inside-cover comments not referred to page-numbers in the text of the book, making recovery of the original data extremely tiresome. The other, more significant exception is the occasional set of slips stuck into the text of a book - these were quite possibly part of the initial thorough reading, and are there to facilitate understanding of the text, especially anything requiring calculation.

It is for the wider company of Darwinists to embellish this basic picture of CD's reading habits. Our brief outline here is but the prelude to analysis of his interaction with his scientific library.

We found one annotation particularly evocative as a metaphor of the contents of the marginalia as a whole:
"I suspect reefs of diff strata in diff parts" (536h)
Apart from reminding us of CD's early involvement in geology, this remark suggests a summary of our hypothesis about CD's main mode of 'processing' scientific reading matter: the margins, end-notes and the slips of various different paper types constitute physically discrete strata or layers, corresponding more or less closely to different bouts of attention. Insofar as these bouts imply an accumulation across different 'layers' of time, the metaphor of geological deposition seems quite reasonable.

In fact the 'layers' concept begins to unlock the inner nature of CD's mode of working with sources: and indeed, we should ideally look upon the whole great corpus of marks and comments not piecemeal, but as a single complex laminate - fused layers not only of time and attention, as we have seen, but also of types of response to the source-material, and also layers of themes reflecting CD's lifelong theoretical preoccupations.

(ii) CD's responses

It is CD's extraordinary single-mindedness, already apparent in his hyper-methodical reading habits, which is reflected in our perception of the marginalia as constituting essentially a single structure. Furthermore, CD had his theory pretty well framed before all but a handful of the books represented in this volume were seriously read. In the main therefore he was not reading to theorise. There are, rather, some half-dozen 'layers of response' we detect in the marginalia.

i) "Many valuable facts referred to proper places" (159c)

CD's principal layer of response' to a text, constituting the great bulk of the annotations, was in fact data collection, or 'extracting', to revive the CD term we encountered earlier. At first sight, the sheer detail, quantity and range of these 'extractions' might suggest vicarious activity, but that is absolutely not the case. On the contrary, the whole process was strongly purposive - namely, to assemble a vast store of sometimes tiny points of information in order to illustrate and support the Great Theory. This résumé is, as $C D$ might himself have remarked:
"good but too hasty.-" (578f)
We qualify this résumé to some extent in pointing to the existence of several 'layers of response'; nonetheless we believe the reader will see that 'our man in the margins' appears more relentless, dismissive and self-regarding than his modulated public persona would imply. In a sense this is hardly surprising - anyone's personal notes are likely to have a greater curtness to them than their finished texts. Nonetheless two impressions may merit an airing here.

CD often judged a book on the sole criterion of its relevance to some aspect of his Grand Enterprise: "After p. 109 not one word for me" (675 d) he pouts, almost; "This only
useful for ancient History of Dogs . . . I doubt whether any use" ($843 \mathrm{e}-\mathrm{g}$). There are other not infrequent remarks to the effect that books failing to minister to his need for data are eo ipso pointless - his dismissive sign "O/", meaning "Nothing for me", being tellingly close to the copy-editor's symbol for "delete" (which his sign can also mean when he waxes subeditorial, of which more anon). "Erase from memory" might be the late-twentieth-century translation.

The undercurrent of predation here is notable in itself; but the manner of it - i.e. its near-total absorption in pinning the already-formed Weltanschauung down to fact - leads to the first of our two impressions: that, from quite early on, CD's mind was no longer really 'open' at the level of high theory (however flexible he remained in respect of subvenient principles).

Our second impression is also connected with fixation. As giants of nineteenth-century creativity, two figures in particular make excellent subjects of comparison - Charles Darwin and Richard Wagner.
"What can I have said" (794c), CD might have been prompted to wonder . . .
We shall develop this line more fully later. The Darwin-Wagner similarity of relevance immediately is the power of their obsession with their work. Anything that crossed their paths was to be assessed for its usefulness in the construction of their creative monuments. This is reflected in Wagner's notorious personal exploitation of everyone he encountered. In Darwin's case everything tended eventually to be pressed into the service of the Theory. Thus the parts of his correspondents' letters not dealing with science were crossed out so that they would not distract from his rereading of the relevant parts. Furthermore, when he wanted to study infant behaviour, he began by watching the behaviour of his own son William, whose development, to cite Janet Browne in Kohn 1985, ${ }^{1}$ he followed "as if it were [that of] a barnacle or a primrose". He even had ladies who obligingly made their children cry so he could watch the infants' reactions. These points tend to amplify our view of Darwin's public persona as a certain modulation of the 'inner man'.

ii) "quite opposed to my views!" (111g)

Connected with the enterprise of data-extraction, and accounting for a large minority of annotations, the second layer of response' we detect is CD's evaluation of an author and his work. These reactions are usually very forthright, again not infrequently selfregarding: "excellent summary of Whole; approves of what I have said" (239b); sometimes rather patronising: "Most interesting indeed quite amusing" (393g); or "Good Boy" (242b); and occasionally downright rude: "If I want to show what rubbish has been written a translation of this will do.-" (485d). There is plenty of generous praise - "all marked wonderful book" (857a) - but on balance negative criticism outweighs the positive variety.
"Unreadably dull" (738b) represents a quite noticeable type of reaction. CD certainly responded to a degree of entertainment - "2d part funny passage" (217d) - and disliked being bored by an author. CD himself is quite often entertaining in his reaction to an author and his work; naturally we will allow the reader to stumble across these little gems. Our own warped sense of humour detects a tendency towards poisonous wit, especially in putting an author down: "ass prevails - one here", he notes on Lucas' Hérédité naturelle (521a), along with a number of other remarks which sound scarcely straight-faced, despite the seriousness with which he took the book as a whole.

However, let us en passant charitably suppose that CD's reference to Haeckel as "Hack" (358d) owes more to abbreviation than to denigration .
iii) "World simple" (541a)
$C D$ is evidently more forceful in his marginalia than in his published works, which are the province of what we might call 'Selection with a human face'. He appears aware of this as deliberate: "I must express things diffuse and with a most wearisome pretence to formulas" (516 g), he moans, contemplating the requisites of public style. He has to be so to speak 'the Very Model of a Modern Major Scientist' - but in his inmost self he is perhaps convinced that the world is simple, and is quite impatient of all this deference to 'ifs-and-buts'-ism, disclaimers in face of irritatingly incomplete evidence, and openers to the effect 'it is therefore by no means inconceivable that'. CD himself might have thought this comment
"too strong" (425b) -
and it may indeed seem strong in description of someone who after all spent a lifetime reading and writing in meticulous and cautious detail. However, a further example may strengthen the impression; and one basic consideration may help dispel the paradox.

The example is the extraordinary tone of CD's final dismissal of the thrust of "Bronn's criticisms for New Edit of Origin" (181a-182c) - for example "As I cannot justify my opinions in any one single case, so I need not in any.- is as true as it is severe- Though I can in no single instance . . . explain changes yet the structures \&c led me to conclusion. - " ($182 \mathrm{~b}-\mathrm{c}$). And that's that.

The consideration is that CD's 'diffuse and wearisome' complaint (and indeed this last quotation) implies that he had seen more fully and more definitively than he felt able to show. Other evidence for this takes us in the first place back to the Notebooks, ${ }^{2}$ and specifically to that point where CD, in some apparent haste perhaps propelled by elation, sets down the finally formulated concepts underlying natural selection. He had held the workings of the living universe in his head with a sense of clarity and comprehensiveness hitherto probably given to no-one. He had struggled with the issues for a long while, but now he knew, and knew that he knew: he had the Key.

One probable lasting consequence of these hard-won certitudes of insight was that CD may never have felt in need of an elaborated methodology or philosophy of science, confident enough in his seemingly natural instinct for the relationships between solid evidence, creative intuition, the need for 'wearisome formulas' of ever wider explanatory power and for physically plausible models of the world. That something like this is the case is evident in the marginalia from the near-absence of our third 'layer of response': comment at the level of high theory.

Most of CD's comments at this level are really quite perfunctory, even when he is assessing work he took most seriously, or work by earlier evolutionists. It is as if from the security of his vantage point he would see others working (like Candolle?) on areas too specific to enable an appreciation of the Grand Process: "he has not the Key" (145b) or attempting (like Chambers or Lamarck?) to scale the heights with an insufficient database and an insufficient respect for physically feasible mechanisms: "It is doubtful whether Lamarck has done more good by awakening subject, or harm by writing so much with so few facts" (477a). CD by contrast had the overview well before he came to the bulk of his reading, in which he was forcing himself by the systematic procedures we outlined before to acquire and retain the detail. He had no great need by this stage to rehearse his case in defence against the theories of others. Even his comments on the higher principles relating to his own theories are in the main quite cursory and matter-of-fact. "The Natural System," he comments during his reading of Herbert (probably during the 1840s), "seeks to know relationship \& does not attempt date of separation" (376e), implying that the notion of descent with modification was already to be taken for
granted, and that any troublesome Grand Concepts found upon the lurk had merely to be pushed into line, or reduced to a purely 'operative' status no longer in control of the debate: "It is succession, not resemblance which makes 'a species'"; and within any one such line of succession "Comes to what I said, amount of difference deserving a name" (630 b ; cf 317f). The conceptual pragmatism here sounds almost off-hand. But we should resist seeing it as a kind of opportunistic abdication of the old problems; it is, rather, the considered solution to them. Furthermore, this attitude is applied consistently, in his understanding of scientific method, his whole defence of his theory (see Variation, vol. 1, p. 9), his tiffs with Huxley over experimental proof of natural selection, and so forth. Further thoughts around these issues are to be found in Di Gregorio (1981); it can now be added that CD's remarks in the marginalia, and the fewness of them, clarify that his largely unargued philosophical position may owe more to feel, instinct and 'having the Key' than to intellectual decision at a philosophical level. Here the marginalia are the crucial bridge between the raw insights of the Notebooks and his considered but inextensively supported comments on method and theory made many years later.

Such, then, is our third 'layer of response', almost missing. In fact, of course, in a different sense it is there the whole time: it resides, as we shall see, in the thick weave of topics and themes underpinning the whole corpus of annotations, and is thus imprinted - "diffuse" indeed, and sometimes even "wearisome" - on every comment. However, the thinness of the layer of explicit 'remarks on high theory' may come as a disappointment to those who turn to the marginalia of a Great Thinker expecting them continuously to overflow with Great Thinks.

iv) "must be a misprint" (295d)

CD may have found formulae tedious, but he was by no means averse to a bit of genteel pendantry now and then. He not infrequently trips a (living) author up on spelling or other detail; more significantly on misquotation of himself. Sometimes these minutiae are noted down alongside more substantial comments which look like scraps of drafts of letters to the authors in question: "Allow me to point out that you have unintentionally misrepresented me . . ." (223g); "I am glad of your somewhat changed views . . ." (838c); "eheu! date wrong" (537 h). Our fourth thin but distinct layer is thus a combination of CD waxing subeditorial, and a scattering of footnote fodder for future volumes of the Correspondence ${ }^{4}$. . .

v) "What I do not understand" (471f)

Here we find CD alluding to a fifth 'layer of response', requiring little comment as such - a relatively thick vein consisting of translation and/or close paraphrase of the original text, especially prevalent in German books, but not unknown in Italian or even French books either. In the case of German, this may in part have to do with the tribulations of the Gothic script adding themselves to the trials of the language. But in any event, the consequence for the reader is that the number and density of annotations in a book are no clear guide to the importance either of the book or of the marginalia it contains. Hence our annotation of the title page of Part one, taken from CD's annotation of Candolle: "Upon the whole nothing can be inferred from this list" - a light-hearted motto, but intended as a serious caveat. Indeed, any comparison of the entries for Candolle and Gärtner, the latter taking more space, will quickly show that the former is of far greater importance.
vi) Mention of Gärtner brings us to Darwin's Joke, and thus to our sixth layer, 'general wit and merriment'. It is pleasing to note that CD left a few examples of the art of being serious without being solemn - such as the doubles entendres attending the 'cross foxes' of p. 705h, the 'high fish' of p. 155a, and the 'boring sponge' of p. 673d - and that he also shows the tendency of the highly creative mind to put things to itself in a radically offbeat way, as with the comment about the 'man cut in twain' (see p. xxix). However, we will spoil the reader's fun of further discovery only in respect of the aforesaid Joke. It is to the effect that Gärtner, despite the name, was probably not much cop as a Gardener. It is actually more important than its flippancy might lead one to suppose: in the first place, it demonstrates that CD was good enough at German to invent a bilingual pun, and thereby lays to rest the myth of his alleged ineptitude at that language. Furthermore, CD liked his Joke. This we know because he chose to share it with the future mildew of the margins not just once, but twice ($374 \mathrm{c}, 277 \mathrm{a}-\mathrm{b}$). 'It is therefore by no means inconceivable' (to coin a phrase) that this implies a simultaneous reading of the books in question. CD was sporadically given to dating his comments; following through the more, and less, serious cross-references may thus eventually enable the making of a workable historical map of the whole of his interaction with his scientific sources. As CD himself remarked, albeit in a rather different context:
"light will be thrown on the origin . . . The meaning of this cd hardly be misunderstood, but I can see is not the period of going into details." ($358 \mathrm{f}-\mathrm{g}$)
vii) Nor indeed of going from the marginalia to CD's private life. Our last layer another almost absent stratum - consists of very rare and insubstantial glimpses (always assuming, of course, that his rapturous "Flora!" of p. 839c does not address a mistress hitherto hidden from history). There are one or two mentions of (genuine) relations, and the occasional name of a pet or other animal. Most of these references analyse details of behaviour - reinforcing our earlier implication that $C D$ was often unable to resist surveying even the domestic scene with the professional eye of a proto-ethologist.

(iii) CD's themes

We meanwhile must now pass back to surveying the world at large. Having provided a brief description of the strata visible in the mass of the marginalia, we need now to look more closely at our first layer, the 'data-processing' to put it crudely, that forms the bulk of the annotations. It is time to investigate its own internal stratification - the layers of themes and topics - and hopefully in so doing to discover what CD might have termed the
"whole key to theory" (164h).
The major layers we are considering here are the great themes and subthemes that $C D$ pursued (or that pursued him) throughout his career. They function like the 'Leitmotive' of a Wagner opera, or, to echo Sloan's not dissimilar analogy:
a complex keyboard instrument with several keyboards and registers, these registers each able to act sometimes in solo, other times contrapuntally, and at times in synchronous harmony. ${ }^{1}$
A Wagnerian 'Leitmotiv' has a comparable flexibility; the 'Leitmotive' interwoven are the
constitutive matter of the whole composition, and they are repeated and evoked whenever logically necessary. None of them is ever forgotten or allowed to drop out. Similarly in Darwin's case:

Some themes and registers form dominant melody lines at various times . . . Other themes function more as a basso continuo, often submerged but nevertheless present if one looks closely enough. (Sloan again.)

This procedure enables continuous integration of detail into the whole, and enables detail constantly to refer to the big serious themes - for example the 'Leitmotiv' of the Dragon in Wagner, or that of comparing wild and domesticated animals in Darwin. It is this which makes the exceptional range of research of a figure like Darwin mentally manageable. It also explains the many repetitions and (in)direct references to other parts of their work that both Wagner and Darwin introduce.

We believe we have captured the essence of this continuous state of inter-reference in the structure of the 'index and conceptual concordance' which forms Part two of this volume. The classification headings used in Part two reflect the themes and topics we detected in the marginalia. There is a relatively straightforward list of names of animals (under the category 'fauna', 'fa' in our code), plants (under 'flora', ' fl '), places (under 'geography', 'gr'), populations (under 'humankind', ' h '), and geological epochs (under 'time', 'ti'); and the document is rounded off with a list of people and works cited. ${ }^{5}$

Interwoven however with these name registers is a classified conceptual index, whose categories were as far as possible inducted cautiously from the annotations themselves, in order to reveal Darwin's 'Leitmotive'. Work on transcribing the annotations in each book was accompanied by noting down the range of themes and topics in play. A brief cipher was developed for each of these topics, and these are recorded for each annotated book immediately beneath its title in Part one. The conceptual index was then prepared by taking each individual annotation and noting down the topics in play there, subcategorising as necessary within the broad categories previously developed, and adding a few new categories relating to CD's other 'layers of response'. The full list of the ciphers denoting these categories and subcategories is recorded on the sheet at the back of the book.

The 'concordance'-like aspect came in when we decided to enter each annotation into the index as a string of topic-ciphers, cross-referenced under each cipher in the string. Thus a statement involving the four ciphers A, B, C and D appears in the document four times, as $A-B-C-D, B-A-C-D, C-A-B-D$, and $D-A-B-C$. In this way Part two claims to have preserved intact the entire network of CD's thought.

The resulting document is rather large and very fine-grained. The structure of the entries under each topic-heading is as follows:

```
A [by itself][pp.] 12 . . 
and [in combination] 3456...
infra:
ABCD5
ACE36
ADFGH4
(etc).
```

This arrangement means that those wishing to do battle with the interplay in its full intensity can work from what one could call the 'infra'-structure . . . Those preferring to take their concepts so to speak lying down and one at a time can work with the same references as collected at the head of each entry.

The reader will no doubt be glad that we resisted the temptation to present the whole of Part two in the form of an irregularly branching tree. We did however fall for the idea of using coral- and tree-like diagrams to punctuate our presentation of the way our analysis of topics-in-play breaks the corpus of annotations down into their elementary strands, the 'Leitmotive' of the Darwinian revolution. Thus those wishing to study the logical interactions of the 'Leitmotive' as it were medium rare might do worse than start from these 'clustergrams'.

For our part, let us begin our presentation of these interactions at CD's own beginning:

"Diversity of organisms first condition of nature" (582a)

Variation ('v' in our code) just is, basic, unargued: "N.B When many pistils, then number variable [when many of any organs apt to be variable; Why. Hairs \&c \&c vertebrae of serpents" (253d-e). As we shall see further below, this emphasis on the reality of variation is essential to an understanding of the profound change in perspective away from Platonic notions that the 'Darwinian revolution' is all about. Real variation for CD plays something like the role played for Newton by the distribution of matter - the variable density of the universe, to make the analogy sharper.

All characteristics of organisms are subject to variation, the behaviour of animals and plants ('beh', 'mhp'), not just their physical structure: "Great diversity of instincts of Bees of same genus: variable in species also" (74e); "has seen axial twisting vary in same plant" (592c). Variation, as this last extract implies, distinguishes every organism at least minutely from its nearest relatives, and thus the primacy of variation brings the notion of the 'individual' ('in') to the fore: "as individuals differ in some respect . . . several must be experimented on.-" (267 g). If, as Mayr claims, Darwin introduced "population thinking", then what matters for him is "variable populations consisting of uniquely different individuals". 6

Variation occurs both in nature and under domestication, as the first two chapters of the Origin readily remind us; thus annotations on variation need to be related to those comparing the variations of wild with domesticated animals ('wd'): "tame cows more milk than wild: organs adapt themselves" (84 g); or wild with cultivated plants ('wdc'): "old cultivated kinds tend to vary loose the hereditary quality of goodness" (595h).

This last extract pushes us onwards to take note of reproduction ('fg', for fertilisation and generation), and heredity or inheritance ('he'). If variation is Darwin's 'matter', then heredity, the passing of characters from parent to offspring which holds the chains of beings together, is perhaps his equivalent of Newton's gravity, the unexplained agency holding the chains of objects together. As we shall see below in mentioning pangenesis, Darwin never quite managed to make variation and heredity cohere conceptually rather as it was beyond the Newtonian mind to conceive of matter and gravity as coessential. In remarks which seem to show the shutters partly closing on the fully 'open' mind, he insists: "Contrast of adaptation and inheritance" (359f); or again: "Inheritance cannot be cause of variation has nothing to do with it" (514c) - an annotation which effectively sweeps all before it.

In this and the following diagrams we attempt to display some fraction of the densely woven threads of themes and topics constituting the bulk of the marginalia. The key to the topic-ciphers is to be found on the sheet at the back of the book. The diagrams summarise the text immediately preceding them.
"If all species varied equally all wd be in confusion" (430f)
But they don't: variation is itself variable. In the first place, this means that all is not in confusion - groupings of organisms are discernable, which we call varieties, races, species and higher groupings ('var', ' vc^{\prime} ', 'sp', 'sph'); and this will refer us eventually to definition and classification, or systematics ('sy'). We have observed CD's pragmatism in these matters already; he pauses to praise Lamarck's scepticism: "good remark how arbitrary the distinction race and species is" (477 h).

In the second place, the variability of variation has its own correlates, and brings into consideration the size of genera ('nos') and their wide geographical ranges ('gdw'): "but this is the very point that we are considering that large Families are wide rangers \& most convertible [but that it is only a few which are wide rangers; the others changed into species] . . ." ($115 \mathrm{~d}-\mathrm{e}$). The whole time, we perceive in the background the fundamental questions of modification and speciation.

diagram 2

"Malthus and Franklin saw the law of increase in animals \& Plants clearly" (562h)
The other basic condition of nature, again implied by reproduction, is 'increase' - our category 'no' for 'number' includes increase and decrease, and in its subdivisions wider concepts such as the 'amount of life'. Increase can be discerned directly in special cases like naturalisation ('gdn'), where introduced organisms ('gdi') at first increase swiftly: "Europe/U. States 716 in 26 years 600 miles of Lat. Many other good facts of rapidity/-" (124d); "Dr D. Owen says newly introduced Plants, first overrun the country \& then become scarcer (Ask A. Gray)" ($545 \mathrm{e}-\mathrm{f}$).

The finitude of any natural context means that there are checks on increase, principally struggle between organisms for relatively scarce resources such as food and space. The basic process of nature is thus increase checked by struggle ('oos'): "ie as far as food \& climate (\& enemies preoccupation by other species) ie conditions allow species \& genera to range, so they will range . . ." (703e); "Beasts of prey destroyed others increase immensely, \& drive others from habitation" (703f); "Every one of such species wd
cover ground if no other species present: if rarity here is step to exclusion, then the greater importance of other organic beings is shown" (109d).

The relationships of organism to organism ('oo') are not all directly antagonistic; and these complexities constitute perhaps the central focus of Darwin's world-model. Without a clear understanding of the place of the relationships between organisms in the model, one cannot understand either the notion of selection or the Darwinian conception of evolution. CD likes Hooker's "Good remarks on strife of Plants" (404d); and ponders Haeckel's "good criticism on my theory of struggle for existence - says ought to be confined to struggle between organisms for same end -all other cases are dependance misseltoe depends on apple" ($356 \mathrm{~b}-\mathrm{c}$). CD also painstakingly wrote notes concerning the symbiotic relationships between insects and pollen.

In the competition for resources, death and destruction do not only visit themselves upon the old; indeed, the fate of the variably vigorous young (' y ') (including eggs 'fge', seeds 'fgs', etc.) is in an evolutionary sense more significant, because dead young do not mature to reproduce, and thus their variations cease to be inherited. "<Young monkeys and humans> Cutting teeth die from fever accompanying" (700a-b). Killing ('ook'), predation ('oopr'), and food (' fd^{\prime} ') are also of the greatest significance: "Several Pigeons killed by Hawks are white or yellow vars" (430a). External agencies other than disease ('pat', for pathology) complete the picture - the direct action of conditions ('cc'), interwoven with the indirect action of conditions on food ('fd'): "Many wild Pigs die in Hard winters \& in very dry summers" (39b, 40f) - some from harsh weather as such, but most from hunger.

These agencies act most tellingly on variations between closely allied individuals and/or species ('spc'), because these are the most near competitors for the same resources: "closely allied species exterminate each other" (629c).

diagram 3
"selection wd act on a trifle" (448c)
The 'mere trifle' of the margins became the 'trifling characters' of chapter 4 of the Origin, which are on the contrary of the highest significance, as CD was fully aware in his comment, and in his collection of many details concerning variation in the colour, size and reproductive power of animals and plants ('tmp'). Natural selection' ('sl'), the heart of Darwin's vision, invites comparison with the effects and contexts of human selective intervention ('br', 'ooh'), and thus refers us back to the comparison of wild and domesticated productions: "such selection cd never apply to wild animals, as every parent must be adapted to same conditions" (509e-f).

One especially notable set of variations in not-so-trifling physical characters comprises sex differences ('sxd') and secondary sexual characters ('sxch'), leading to the topic of sexual selection ('ss'), and thence to the topics of breeding ('behb') and other social/sexual behaviour ('behs'). "Huia with Beaks different in 2 sexes \& aid each other SS" (99b); "Sexual S. use of barb of fishes as exciting organs." "It is clear that characters sometimes go with sex - as sometimes polydactylism \&c - Pouting \& Wattle, \& so if useful to one sex can be selected \& returned <does he mean 'retained'?>" ($520 \mathrm{c}-\mathrm{d}$). This last point, with its passing mention of deformity, reminds us that some naturally occurring sexual characters, developed in the struggle between members of one sex for the attention or possession of members of the other, invite comparison with artificially produced 'monsters' ('mn'): "a breed of <silkworms of $>$ which females had much finer \& not so monstrous wings as in the South" ($690 \mathrm{~g}-\mathrm{h}$).

diagram 4
"I fancy not in time" (237f)
$A u$ contraire, time is of the essence. Selective pressures act on an organism all its life invoking our category of 'organic time and age' ('ta'): "Curious case of quick deterioration by neglect in Glamorgan Cattle showing some selection always going on" (885f). However as an evolutionary process, selection acts slowly over historical and geological time ('ti') - "Slow geological change important because domestication shows slowness" (88f-g) struggle leading in the case of the less well adapted parts of populations to rarity and
extinction ('ex'), especially again amongst closely-allied forms. "Perhaps a decrease or unfavourable conditions might destroy the intermediate vars . . ." (483c). Selection thus leads to divergence ('dv'); distinctions between populations, sharpened by extinction of intermediates ('ig') as against increase of those organisms in favourable stations ('gds'), permit us to speak of varieties, races, species, etc. This is the meaning of 'adaptation' (' ad^{\prime}) and 'descent with modification' ('ds', 'ts'). "So Porcupine \& Echidna Orchis \& Asclepias Explanation same, in some degree similar constitution acted on same causes, but in latter case selection comes into play very importantly - Both, however, derived from modified pair" ($516 \mathrm{~g}-\mathrm{h}$).

The existence of 'stations' is independently demonstrated by the observation that broadly speaking a particular spot can support a greater amount of life ('noa') the higher the number of species ('nos') involved. "Much life causes much decay makes strata \&c \&c \& many stations. for different times of year will have species all times of year. good. . . There wd not be many species without stations; yes, how many species can be introduced . . . Creations not easy work thus also shown.-" (110d-f).

It is worthwhile pointing out that $C D$ uses 'creations' here to mean 'natural formations' and does not mean to implicate the Almighty. But equally it is worth pointing out that the facts about naturalised introductions often outstripping endemic and indigenous forms ('gde') (because they are able to colonise untenanted stations) is an important argument against those Creationists ('cr') who maintain that God necessarily made each form perfectly fitted for its circumstances, "because there were localities fitted for simplest animals as well as the most complex. therefore some remained simple, if not created. The incidental good that one race performs to others proves adaptation in Universe." (533g).

diagram 5

"It is important to observe no selection cd aid Horse in Falkland . . ."

Circumstances favouring selection include high numbers of individuals or species in any sizeable area ('gr') (because of competition); or isolation ('is') (because any variation in isolation is subject to changes specific to the location) ". . . or Horses in Paraguay except
strength of constitution \& breeding at diff time of year; but that cd be effected only if a little earlier or later was more favourable" ($244 \mathrm{f}-\mathrm{g}$). "In this case <isolation> we have fewness of number, sudden change (in organism \& external conditions), but on other hand not many to select from.- especially changing island.-" (88 g).

Crossing also aids selection: it tends to add 'vigour' and fertility ('phyfl', for plant physiology, and ' f '), whilst inbreeding ('bri') tends to reduce it: "The converse of the law ill effects of breeding in \& in holds in Plants.- namely crosses being more fertile -" ($836 \mathrm{c}-\mathrm{d}$). The subject of crossing takes us also to those of reproduction and transmission ('het'): "one might fancy that in Ass crossed with Horse there is a greater potency of race, \& that this potency is transmitted more by male in this case than in others. Niata cow transmits with more force than Bull - Pouter cock \& Hen equally" (515d-e); also to the existence of sexes ('sx'), the symbiotic relationships between the habits of plants and animals, and so forth, which together account for a very sizeable number of annotations. "Nectar is sought eagerly by various insects . . . The real object . . . is to ensure occasional cross . . . Think of number of Insects which feed chief on Nectar!" (472e-h, part of an extended comment of considerable range and detail).
"It may be that lower plants have survived owing to having this advantage of separated sexes." (378h) - sex thus being a topic of capital importance in CD's work. It was related by him to variation in his pre-selection theory of evolution (see Kohn 1980). ${ }^{7}$ It then remains connected with his lifelong preoccupation with generation (see Hodge in Kohn 1985), and continually surfaces in his mature reflections.

diagram 6
Annotations on crossing and its related concepts are frequently interwoven with those on hybrids ('hy') and the complex subject of relative fertility and sterility, distinguishing the possible mismatch between fully competent organs and instincts in an attempted cross from the possible inheritance by a hybrid of incompetent organs or instincts, or impaired vigour. "In Hybrids crossed with either parent, \& thus assuming fertility \& the ancestral form, yet fertility variable in such individuals . . . My point that plants often sterile \& yet
not unhealthy not touched on.-" (275g-h) "Q for instinct Migratory \& Home Thrushes can be distinguished - probably do not cross" (45d); "Certain that Hybrid Canaries \& Goldfinches \& Siskins will breed inter se [but first young are weak]" (45c).

"Much intermediate variability" (632d)
Many annotations concern intermediate forms and gradations ('ig'). Again, as with variation, we are talking of gradations in behaviour as well as in structures - often interwoven: "on the exactly intermediate manner in which apes walk on Hands - good it might have been asked how cd there have been transition between hand \& foot?" (97 h).

The theory of gradual speciation by descent with modifications subject to selective pressure should in principle be able to show change ('ch') and transition over geological time, and grades of affinity ('af') between 'types' of organisms ('tma'). Embarrassingly, it is often unable to do so. This refers us back to extinction, and the fact that the record left by geological time is not perfect ('ir' for imperfection of record), so that the fossil remains ('fo') will never be able to reveal the whole story: "It is evident thus very few exceptions at whatever stage a genus or Family commences it is continued till it becomes extinct. This being capable of in fact strongest fact I turn against Imperfection of Record. Perhaps only shows no enormously long blank intervals" ($673 \mathrm{~g}-\mathrm{h}$). "How isolated would the elephant be without fossils . . . Mastodon older than Elephas \& intermediate in structure of teeth" ($649 \mathrm{~h}-650 \mathrm{e}$).

An important subtheme here is the 'succession of types' and their distribution ('gd'): "the succession of the genera . . . would be like showing connection in Geographical Range. so in space \& time.- [I did not think of this, till beginning Gasteropods: easy to see to it in other orders] In Fish the law had better be tested by Families" (669 g -670b). Another important subtheme in the study of the record is the relationship between shells ('sh'), deposition during subsidence ('se') (partly explaining the imperfection of the record) and thence to to the importance of geology generally ('geo'). It was probably geology that during the Beagle voyage had alerted CD to questions of distribution, through which he was able to connect geology with his early training in zoology (see

Sloan in Kohn 1985). ${ }^{1}$ His own experience here was vital background to his reading of L . von Buch and the works of J.D. Hooker.

diagram 8
"This is case of animal being smaller northwards" (307d)
The topic of geographical distribution, both as a fact ('gd') and as a process ('gdd'), accounts for a large and very important set of annotations. The distribution of the representatives of common or widely-ranging forms ('spr', 'gdc', 'gdw') displays networks of affinities and reveals the results of geologically ancient community and subsequent transmutation. "Though we cannot explain same species common to Australia \& Fuegoe yet the generic connection is in harmony" (391h); "It has always been my greatest fear that there has been so much modification since Glacial that it would upset view.- Some few genera may formerly have been mundane \& Tropical \& not now so.-" (398b-c). Distribution therefore refers us again to geological time and changes in conditions ('cc') and geographical features - a striking example is afforded in the comparison of glacial-period distribution and that of present-day mountain-tops.

By way of the subtheme of migration (' mg^{\prime}) and its near-opposite isolation ('is'), we are led to consider annotations on the manifold means of dispersion of forms ('gdd'): direct or indirect pressure from conditions; the action of wind and weather ('ccw') on seeds; the movement of animals and their capacity to carry seeds; sea-currents, icebergs ('ccs'), etc.
diagram 9

"Unknown cause prevents man cut in twain from reproducing . . ." (659h)
Halve a worm, and two may leave the scene of the accident; halve a higher animal, and the result is more likely to be two remnants of a very dead original - what does this imply about the principles governing growth and repair? It used to be said that Darwin did not know enough about physiology ('phy') and morphology ('tms') and was therefore left out of the mainstream of nineteenth-century biology (see E.S. Russell in his otherwise fundamental Form and function ${ }^{8}$). However, the marginalia do not bear this out. He seems to have been especially interested in many aspects of plant physiology ('phyfl'), since they bear on problems related to adaptation: "Movements become so firmly associated with certain external influences such as light \& gravity that the latter suffices to cause the same process of growth or movement" (242e). A considerable number of annotations on physiology concern Helmholtz's consideration of the imperfection of the eye, directly relevant to CD's view of adaptations as non-perfect. Furthermore, there are a great number of annotations in Johannes Müller's Elements of physiology: "Plants going to sleep without the stimulus of darkness strongly analogous to a voluntary action from a diffused nervous system" (615a); "in playing a tune are the fingers connected with brain? or cerebellum" ($615 \mathrm{f}-\mathrm{g}$).

Physiology leads back to heredity through the hypothesis of pangenesis and the gemmules ('pan'), whose existence CD postulated. This ill-fated hypothesis developed from CD's interest in the 'gemmules', stimulated in studying Flustra under the guidance of Robert Grant at Edinburgh (see Sloan and Hodge in Kohn 1985). ${ }^{1}$ He retained this interest throughout his life; it surfaced particularly in Variation, and relates in the marginalia to pathology: "on same part attracting same substances, as in Tumours (Pangenesis)" (613h-a); embryology and growth ('em'): "Pangenesis on embryonic limb grafted \& developing itself" (225f); cell theory ('ct') and physiology generally: "many gemmules may pass into cells - it certainly appeared in intestines \& liver that fat passes into \& out of cells" (822h); and monstrosity: "Double monsters Pang" (614a).

diagram 10
"intimate parallelism between the embryonic, zoological \& teratological series" (313b)
Embryological resemblance reveals community of descent. Rudiments ('rd') do so also, by implying one-time use falling into disuse ('ud') through adaptive pressures. "Objects there might <be> 100,000 creations as well as one: I agree <but> then these would not have borne signs of common descent in homologies \& embryology \& rudimentary
organs." ($181 \mathrm{~g}-\mathrm{h}$). Morphological resemblances and homologies ('hom') demonstrate the affinities of organisms within their 'types': "Tissues of all Vertebrates homologous" (623d).

The concept of descent with modification therefore provides the ground-rules for that holy grail the 'Natural System' - although CD is too cautious to suppose that he could put much flesh on that particular skeleton: "I will not specify any genealogies - much too little known at present" (164a). Although in the Origin Darwin avoided arguing directly against what Russell called 'transcendental morphology' (1916, pp. 103-12), the marginalia throw light on his rejection of Richard Owen's Platonic concept of the 'archetype': "I look at Owen's Archetypus as more than ideal, as a real representation as far as the most consummate skill \& loftiest generalizations can represent the present forms of Vertebrata.- I follow him that there is a created archetype, the parent of its class" (655c; italics ours). This annotation focuses Darwin's philosophical emancipation from the Platonic eidos:

According to [this] there are a number of fixed, unchangeable 'ideas' underlying the concept of variability, with the eidos (idea) being the only thing that is fixed and real, while the observed variability has no more reality than the shadows of an object on a cave wall . . . any commitment to an unchanging eidos precludes belief in descent with modifications. (Mayr, 1964, p. xix). ${ }^{9}$
For Darwin, the 'type' is simply the ancestor of evolving, living forms, and the emphasis is on variety, i.e. the diversity of life, rather than its unity as with Owen.

diagram 11
"How like my Book all this will be" (683e)
we catch Darwin musing quietly. The categories and subcategories of the index were, as we said before, inducted from our attempts to classify the annotations themselves. In our overview here of the principal categories and some of their logical interconnections, we have succeeded, as Darwinists and other conversants will have discerned, in recapitulating the ground-plan of the Origin (with some input from Variation) - i.e. in effect the ground-plan of the Big Species Book 'Natural Selection' ${ }^{10}$ Our categories are, it
would therefore seem, CD's own to a very large extent. "This book is one long argument", CD says (Origin, p. 492): our argument was that CD's whole career is one long argument - and it is therefore useful corroboration that there are very few of our categories still left out in the cold, indicating that CD's reading, whether for 'Natural Selection' or not, did indeed continuously revolve around the same 'Leitmotive'. This, as CD himself might have remarked, is our
"Key-note of Book" (424c)
One senses further confirmation of this in a slightly curious way from those annotations in which CD collects material for particular chapters or volumes of his own publications: they all look exactly the same. He says, as it might be, 'use in ch. 5' - but ch. 5 of what? These notes, in not differentiating one book from another, suggest that the manner in which CD wrote coheres very closely with the manner in which he read - like a practised vintner sampling continually and laying down the selected vintages to support main courses concocted maybe years later. It is as if he experienced his publications as interim extracts from a single, endless conversation with nature.

Those of our index categories not much mentioned in the above overview in fact fall happily into just three groupings: a) reflecting CD's interest in geology and related topics; b) reflecting the reading which surfaced in Descent and Expression; and c) reflecting our own attempt to report CD's critical, reflective and other 'asides'. Our last diagram thus completes the analysis:
A)

B)

C)

diagram 12 a.b.c

Mention just now of Descent and Expression provides a cue for us to add a few necessary words about the marginalia concerning humankind. Although there are many annotations around this topic, it cannot be said that $C D$ was primarily interested in ethnology or anthropology as such. Their relevance is very frequently to other matters, principally variation and sex (indeed the greater part of Descent is about sexual selection). Humankind is just another test-case for the great Theory: "I am beginning to conclude that it is more difficult to account for small variations of man where there is no adaptation than great differences, where adaptation. Consider cases of Rabbits, mere law of growth . . . Nothing is more odd than similarity of Fuegians and Brazilians. Why puma shd range continent invaried and Monkeys differ in every province . . . I may contrast Man with Monkeys, for on my theory, the Monkeys have varied" (604a-c). Another example is provided by Mackintosh's Ethical philosophy; here CD relates conscience to habit, both in man and animals. The moral sense is seen from the viewpoint of what we would call 'animal behaviour' - for example the love of parents for their children is related to adaptation and selection. Such an attitude might be of considerable interest to sociobiologists.

It is instructive to see how CD used the great interplay of themes even in his so-called minor books. In Contrivances (1862) CD started with a specific problem, that of pollination. Consideration of this quickly leads to adaptation, and the vast theme of the relationship of organism to organism (insects and orchids). In the background lurk individual variation and the action of selection, within the framework of evolutionary transmutation, the major theoretical problem in play.

The case of worms is even more interesting: one might marvel that someone whose thought had encompassed the most broad-ranging and revolutionary theory in the history of his science should end on such an apparent low - Vegetable mould (1881). But even here the 'Leitmotive' are fully functioning. CD began observing the action of worms in 1827, 54 years prior to his publication, and continued working on them throughout his life (see Gould's revealing foreword to the 1985 Chicago reprint). The book is based on the relationship of organism to organism (worms and leaves), and touches on individual variation in behaviour. Last but not least, the action of the worm totally alters the face of the earth through small continuous changes (gradualism): we see the result of the process but scarcely the process itself taking place (geological history), on analogy with an annotation made many years earlier: "The glacier is a stream, though one does not see the streaming" (630d).

(iv) influence of particular authors ${ }^{11}$

a) $C D$ as part of the British tradition

Darwin's theory was an ecological one. The views of both Wallace and Darwin sprang from the established natural science tradition, rather than the relatively new laboratory biology. The still-flourishing tradition had its roots in the works of Ray and Willughby and reached its height immediately before and during Darwin's youth - such authors as Kirby, Spence, Fleming, Strickland, Henslow, Blyth, Bicheno, Westwood, Jenyns and Roscoe were familiar to and influential upon the young Darwin. Darwin's approach focuses on instincts (like Fleming and Blyth) and the relationship of organism to organism (like Fleming, Westwood and Strickland), and therefore tends to be an
ecological theory in the manner of Strickland. ${ }^{12}$ In Ray's Wisdom of God Darwin discerned the ecological approach he made his own in the Origin; in Ray we find annotations concerning behaviour, adaptation, sex, morphology and the relationship of organism to organism.

The relationship between instinct and acquisition by habit is the main topic to be found in Kirby and Spence's Entomology; here Darwin focused on the problem of neuter insects which surfaces in the Origin: "one may suppose that originally many queens were ordinarily thus reared and a few workers and the instinct is thus retained" ($454 \mathrm{~g}-\mathrm{h}$). Much is to be found on reason in animals as related to instinct, along with annotations on the struggle for existence, selection, speciation, and distribution.

Fleming's Philosophy of zoology also prompted CD to analyse instinct: "it is strange according to my theory that habit which results often of intellectual processes . . . is related to instinct, which analogy of plants leads one to believe to exist, independently of intellect" (232b-c); and "The individual who by long intellectual study acquires a habit, \& can perform action almost instinctively, does, that in his life time, which successive generations do in acquiring true instinct:- instinct is a habit of generations,- each step in each generation, being intellectual" (231h-232a) - where CD seems to leave a loophole for backdoor Lamarckism.

Our emphasis on the influence of British natural science requires a mention of Darwin's reaction to Natural Theology, and especially its central tenet of perfect adaptation. CD read and annotated Brougham's Dissertation on natural theology; but here the annotations mainly concern animal behaviour and pigeon-breeding. It is in Henslow's Botany that he distances himself definitively from 'perfect adaptation': "People constantly speak about every organism being perfectly adapted to circumstances, if so how can there be a rare species breeding power being efficient (food not sufficiently abundant is answer" (369d).

It is clear from the quality of annotation that Lyell was of paramount importance to Darwin's development; in fact Lyell is the most heavily annotated author. Other British authors who had a significant impact on Darwin include Blyth, Yarrell, Blackwall, Newman, Newport, Jenyns, Westwood and of course Henslow; and he had a lot of time for books on pigeon-breeding, whether British or continental.

b) CD and continental traditions

By observing the manner of annotation, we may deduce that $C D$ was confident with French, less so but still conversant with German, and occasionally read some Italian and Spanish.

Only a few annotations are found in Cuvier's Anatomie comparée, and all of them concern morphology. There are a few more in Le Règne animal, concerning behaviour, sex, speciation, morphology and variation. Darwin also possessed The theory of the earth in English. Mentions of Cuvier are often marked in other people's books; but to judge by the degree and quality of annotation Isidore Geoffroy St Hilaire was much more important to him than Cuvier, though it seems something of a 'love-hate' relationship: "Believed in change of species . . . 'Modificateurs ambiants' sur l'organisme'. Yes this is his belief . . . Introduce in Preface" (301h-302a); however: "Remarks on small isld having small mammals . . . forgets Java \& Sumatra! I contradict his statements flat" (302d).

CD annotated Milne-Edwards' Histoire des crustacées, accusing him in effect of creationism: "How explains this, except by single creations" (581e). On the same page there is an important annotation concerning isolation: "Without regard to anything else make a Barrier and you will have different species on opposite sides" (581f). Other Milne-

Edwards marginalia, mainly on issues connected with classification, are found in Introduction à la zoologie générale: "Law of 'economy of nature' 'sober in innovations' has not recourse to any new creation of organ" (582a-b); "on value of characters in classification" (582g); and "Best way of putting superiority.- though each perfectly (?) (Can young be said to be perfectly?) adapted to conditions" (583a).

As far as Lamarck is concerned, his Histoire naturelle des animaux sans vertèbres bears very few annotations. More are found in the Philosophie zoologique. Darwin's relationship with Lamarck is very complex, and one should not take the disparaging remarks we partly quoted before as Darwin's only view - ". . . so few facts . . . very poor and useless book" (477a/478a). Basically Darwin charged Lamarck with failure to understand extinction and geographical distribution: "Therefore every fossil species direct father of existing analogies and no extinction except through man!- [Hence cause of innumerable errors in Lamarck]" (478g-h); "Does not pursue this into Geographical Distribution" (480c); but echoes our remark above: "The case of acquired hereditary instincts shows that instincts can be acquired" (478d).

Other important French-language authors are C.L. Bonaparte, especially on the connection between distribution and the struggle for existence; and F. Huber on insect instinct in Nouvelles observations sur les abeilles.

The annotations in German-language books are in the main much closer to translation/paraphrase. Gärtner, Kölreuter, Ehrenberg, Haeckel and others are well represented in his library. Gärtner's Kenntnis der Befruchtung is very heavily annotated on variation, fertility, hybrids, and the relation of organism to organism, very often interrelated. Many annotations concern contabescence and refer to Kölreuter: "most important compare Kölreuter experiments and Gaertner's" (253b). Some markings concern dichogamy as seen by Sprengel and Delpino.

Darwin read and annotated Haeckel's Schöpfungsgeschichte, liking its stance enough to mark out passages "good - for the beginning of my Book" (358d); interestingly, there is no annotational evidence that $C D$ thought Haeckel had gone over the top with his 'phylogenies' - rather CD appears keen to play the same game, despite his public caution about 'specifying genealogies': "I shd prefer supposing that both classes descended from forms more intermediate than Dinosaurs \& Solenhofen Birds" (359d-e). Incidentally, Haeckel kept sending copies of his publications to CD, who did not pay many of them much attention. Very often in their inscriptions to Darwin in their books German scientists, including Haeckel himself, wrote 'Sir' or 'Professor', not being able to believe that someone as distinguished as Darwin would not be one or the other - or both.

It is interesting too that there is no annotational evidence that Darwin read von Baer's Entwickelungsgeschichte, which is not even in his list of 'Books to read' (see Vorzimmer ${ }^{13}$). But he certainly read Huxley's translation of the fundamental fifth Scholium. Other German-language authors of some importance to CD include Nägeli, Nathusius and Rütimeyer.

The marginalia suggest that two authors who had an enormous impact on CD were Alphonse de Candolle and Alexander Humboldt.
"I must read some Book on geograph distrib of insects or of one great class" ($683 \mathrm{e}-\mathrm{f}$), CD instructed himself reading Prichard; it seems that that book turned out to be Candolle's Géographie botanique, probably the most densely annotated work in the whole library, which seems to have been the catalyst for much thinking around distribution, the struggle for existence, isolation, and consequently selection. The annotations in Candolle are difficult, and this is because Candolle is perhaps the only major work in whose
company CD is for a while noticeably confused and uncertain at a (quasi)-theoretical level; "A species might abound in some spot and yet be rare over all England, but is this so?" (109 g); "Here isolation clearly comes into play; but this does not account for smaller range of plants within Cape District." ($118 \mathrm{~g}-\mathrm{h}$); "As far as I can see (which is very little) isolation of area seems to have little to do with confinement of species!! In this family" (118h); "I never shd look at it under this light; yet perhaps agree with Herbert's views. When there only few species, we must suppose either others extinct, or then few only are yet introduced" (119f); "This bears on few species inhabiting 2 areas, where there are many species - does it not come to this, that widely extended species break into varieties and these become species with confined ranges.- anyhow this shows how complicated a question it is" (120b).

By volume 2 he is beginning to recover his usual slightly declamatory poise: "England formerly connected, hence most plants which could live in England wd have immigrated. If any species had been introduced by Birds within the last century, \& was not mentioned by old Books, ${ }^{14}$ it wd have been thought to have been overlooked.-" (134h-135a); "The more I reflect the more I come to conclusion that antiquity of man one of the most important elements in history of variation.-" (139b).

Finally CD succeeds in 'trumping' Candolle by reference to his own higher-theoretical insights: "He always leaves out struggle with other species.-" (142d); "He looks at extinction as due all to Deluges \&c!!" (143h). Candolle has approached the 'right' problems, but lacks the focal concept in the understanding of speciation: without the idea of selection it is impossible to make sense of variation, extinction, isolation, distribution and the struggle for existence as forming a single complex nexus. Thus, as we quoted before: "(always this) he has not the Key.-" (145b).

Humboldt, especially in the Personal narrative, got CD thinking about distribution and the relation of organism to organism in the context of isolation, extinction and the breeding of wild and domesticated animals: "Camels abundant in Fortaventura and vegetation different from . . . other Islands - NB Numerous wild asses formerly in Fortaventura" (416f). If Humboldt's almost ecstatic tone excited CD, it seems to have been towards envisioning a raw elementalism incompatible with Humboldt's Panglossian optimism, his falsely a priori harmonious world where adaptations are basically perfect. On the contrary, the raw elementalism is hardly even hidden below the surface: "to show how animals prey on each other - what a 'positive' check . . . Think of death only in Terrestrial Vertebrates . . . Smaller Carnivora - Hawks - what hourly carnage in the magnificent calm picture of Tropical forests . . . Probably two or three hundred thousand Jaguars in S. America What Slaughter! Daily - \& as many Pumas" ($418 \mathrm{f}-\mathrm{g}$).

Thus we end our selection from the marginalia on a rather bloodthirsty note . . .

The basic objective of publishing this 'marginal' material is to contribute to the reconstruction of Charles Darwin's place in his historical and scientific context, and so to facilitate a clear understanding of his importance for modern science. A principal bonus of these volumes will be an enormous increase in the accessibility of CD's primary, unmodulated thinking.

As such the Marginalia are expected to be of interest not only to Darwin scholars, but also to historians of ideas, to biologists, psychologists, naturalists and evolutionists alike. The marginalia show Darwin not only 'alone', but also as part of his historical and social milieu, and as a major protagonist at a vital stage in the development of science. In showing us the material Darwin chose to use or discard, and in recording his assessments of other authors, the marginalia reveal more candidly than any other source the nature of the influences upon his thought, and the methods he used in the formulation and application of his theory.

CD himself was well aware of the potential future importance of the annotations he was making in his personal library. For example, he makes certain, in a letter written to his wife Emma, to prescribe that in the event of his death 'some competent person' should receive 'all my Books on Natural History, which are either scored or have references at the end to pages, begging him carefully to look over \& consider such passages, as actually bearing or by possibility bearing' on the subject of the sketch of his species theory, which he had just finished (5 July 1844), when the question of its publication in book form should arise. ${ }^{15}$

We make no claim to have taken up that challenge as laid down by the Master himself; but it is at least pleasing to feel that he would not have found our exposure of his 'private' scribblings unduly intrusive.

notes

1. Kohn, D. (ed.) The Darwinian heritage Princeton 1985 (chapters quoted:
Browne, J., 'Darwin and the expression of the emotions' Hodge, M.J.S., Darwin as a lifelong generation theorist' Sloan, P.R., 'Darwin's invertebrate program 1826-36: preconditions for transformism').
2. Barrett, P.H., Gautrey, P.J., Herbert, S., Kohn, D., Smith, S., Charles Darwin's notebooks 1836-1844 (Cambridge 1987); see Notebook D (especially Inside Front Cover) and Notebook E (especially p. 58).
3. Di Gregorio, M.A. Order or process of nature: Huxley's and Darwin's different approaches to natural sciences Hist. Phil. Life Sci. 3 (1981): 217-42.
4. Burkhardt, F. and Smith, S. (eds) The correspondence of Charles Darwin (Cambridge 1985-).
5. The University Computer has occasionally had ideas of its own - curious rather than disruptive, fortunately - on where to put items in its sorting of the name registers: the ghost in the machine had to leave its mark somewhere, one supposes. The ghost is clearly no fan of Darwinism, to judge by the capricious appearance of the gooseberry among the place names. This is a genuine accident; we only wish we had thought of it ourselves, in its implication that we do after all materialise under bushes of that ilk, rather than by the agencies of evolution.
6. Mayr, E. The growth of biological thought Cambridge, Mass. 1982.
7. Kohn, D. Theories to work by: rejected theories, reproduction and Darwin's path to natural selection Studies in the history of biology 4 (1980): 67-170.
8. Russell, E.S. Form and function London 1916.
9. Mayr, E. 'Introduction' On the origin of species (facsimile of first edition) Cambridge, Mass. 1964.
10. Stauffer, R.C. (ed.) Charles Darwin's Natural Selection Cambridge 1975.
11. Parts of this introduction, especially this section, are based on a full reworking of Di Gregorio, M.A. Unveiling Darwin's roots Archives of natural history 13 (1987): 313-24.
12. Di Gregorio, M.A. Hugh Edwin Strickland (1811-53) on affinities and analogies: or, the case of the missing key Ideas and production 7 (1987): 35-50.
13. Vorzimmer, P.J. The Darwin reading notebooks 1838-1860 J. Hist. Biol. 10 (1977): 107-53.
14. "old Books": CD had a lively interest in such sources as the Bible, 'classical writers', books on ancient Egypt, and so forth, for information on the antiquity of varieties.
15. Burkhardt, F. and Smith, S. (eds) The correspondence of Charles Darwin vol. 3 (Cambridge 1987), pp. 43-5.

PART ONE

CATALOGUE AND TRANSCRIPTION

"Upon the whole nothing can be inferred from this list" (134a)

table of titles

"You may shorten name" (342a)
Thank you.
Full details of author, title, publication and current location are recorded with each entry in the text. These details also record if the book bears CD's autograph, or was inscribed by whomever gave it to CD; if it was in CD's possession before and/or during the Beagle voyage; and if the book contains uncut pages.

Abercrombie Inquiries concerning the intellectual powers 1838

Abernethy Physiological lectures 1822

Acébla Les Impiétés 1878

Acharius Lichens 1803

Adams Field and forest ramblers 1873

Agassiz, Alexandre Harvard College catalogue - Echini 1872-74

Agassiz, A. Harvard College catalogue - Acalephae 1865

Agassiz, A. North American starfishes 1877

Agassiz, A. Zoology of Challenger voyage - Echinoidea 1882

Agassiz, A., \& Pourtalès Harvard College catalogue - Echini, crinoids and corals 1874

Agassiz, Elizabeth and Alexandre Seaside studies 1871

Agassiz, Louis Humboldt centennial address 1869

Agassiz, L. Bibliographia zoologia et geologiae 1848-54

Agassiz, L. Natural history of U.S. - Classification n.d. 9

Agassiz, L. De l'espèce 1869

Agassiz, L. Lake Superior 1850

Agassiz, L. Methods of study in natural history 1863

Agassiz, L. Nomenclatoris zoologici 1848 14

Agassiz, L. Florida reefs 1880
Agassiz, L., \& Gould, A.A. Principles of zoology - comparative physiology 1848
Alder \& Hancock British nudibranchiate Mollusca 1845-55
Allen, Grant The colour sense 1879
Allen, G. Der Farbensinn 1880
Allen, G. Physiological aesthetics 1877
Allen, Joel North American pinnipeds 1880
Allman Fresh water Polyzoa 1856
Allman Gymnoblastic or tubularian hydroids 1871-72
Allen, George James Hydroida 1877
Altum \& Landois Zoologie 1872
Anderson Yunan expedition 1871
Angelin Iconographia crinoideorum 1878
Archiac Géologie 1834-1845 1847
Argyll Primeval man 1869
Argyll The reign of law 1867
Aristotle On the parts of animals 1882
Arnott Elements of physics $1833-18$
Askenasy Kritik der Darwin'schen Lehre 1872
Aubuisson Basalts of Saxony 1814
Aubuisson Traité de géognosie 1819
Audubon Ornithological biography 1831-39 21
Audubon \& Bachman Viviparous quadrupeds 1846
Aveling The student's Darwin 188124
Ayrault De l'industrie mulassière 1867
Azara Quadrupèdes de Paraguay 1801
Azara Voyages dans l'Amérique méridionale 1809
B, J.P. Spiritual evolution $1879 \quad 27$
Babington British botany 1851
Baerenbach Teleologie 1878
Baerenbach Naturgeschichte des Weibes 1877
28
Baere Naturgeschichte des Weibes 1877 29
Baerenbach Anthropologischen Philosophie 1879
Bagehot Physics and politics 1872
Baildon The spirit of nature 1880
Bain The emotions and the will 1865
Bain The emotions and the will 3rd edn 1875
Bain The senses and the intellect 1864
Baird British Entomostraca 187531

Baker Botanical geography 1875 32

Balfour Elasmobranch fishes 1878
Balfour Comparative embryology 1880
Ball India 1880
Barclay Life and organization 1822

Barrago L'Uomo 1869
Barrande Acéphalés 1881
Barrande Brachiopodes 1879
Barrande Céphalopodes 1877
Barrande Defense de colonies 1870
Barrande Distribution des céphalopodes 1870
Barrande Trilobites 187134

Barton Geography of plants 1827
Bary Die Mycetozen 1864
Bastian The beginnings of life 1872
Bastian The brain 1880
Bastian Evolution 1874
Bastian Origin of lowest organisms 1871
Bate Amphipodous Crustacea 1862
Bateman Aphasia 1870
Bates River Amazons 1863
Baxter Statistics medical and anthropological 1875
Beale Structure and growth of the tissues 1865
Bechstein Naturgeschichte Deutschlands 1793-95, 1801-05 38
Bechstein Naturgeschichte der Stubenvögel 1840
Beechey Pacific voyage 183244

Bell, Charles Expression 1844
Bell, C. The hand 187449

Bell, John \& Charles Human body 1826
Belt Nicaragua 1874
Beneden Vers intestinaux including Bronn Essay on distribution 1861
Bentham British flora 1858 two copies $\quad 51$
Bentham \& Hooker, J.D. Genera plantarum 1862-83
Berjeau Dogs 1863
Berkenhout Botanical lexicon 1764
Bernard Animaux et végétaux 1879
Bernard Tissus vivants 1866
Bernhardi Pflanzenart 183454

Berzelius The blowpipe 1822 57

Beudant Minéralogie 1830
Bevan The honeybee 1827
Bevington Key-notes 1879
Bianconi La Teoria darwiniana 1875 58
Bianconi La théorie darwinienne 1875

- Bible 1838

Bigg Spinal curvature 1882
Billing Scientific materialism 1879
Binney Terrestrial air-breathing molluscs of U.S. 1878
Blackley Catarrhus aestivus 1873
Blackley Hay fever 2nd edn 1880
Blackwall Spiders 1861-64
$\begin{array}{ll}\text { Blackwall Zoology } 1834 & 60 \\ \text { Blackwell General science } 1869 & 61\end{array}$
Blackwell General science 1869
Blainville Actiniologie 1834
Blumenbach Anthropological treatises 1865
Blyth Cranes 1881
Boitard Entomologie 1828
Boitard \& Corbié Pigeons domestiques 1824
Bolingbroke Political tracts 1748 64
Bolingbroke Upon parties 1739
Bolingbroke Patriotism 1749
Bonaparte Pigeons 1855
Bonaparte Birds of Europe and North America 1838
Bondi L'Uomo 1873
Boner Transylvania 1865
Bonnal Une agonie 1877
Bonnet Insectologie 1780
Bonnet L'Usage des feuilles 1754 two copies
Boott Carex 1858-60
Borrelli Vita e natura 1879
Bosquet Crustacés fossiles de Limbourg 1854
Bosquet Entomostracés fossiles de France et Belgique 1852
Bosquet Cirripedes 1857

Bostock Physiology 1824
Boudin Traité de géographie médicale 1857
Boué Autobiographie 1879
Bourbon del Monte L'Homme 1877
Bowdler Poems and essays 1819
$\begin{array}{ll}\text { Bowerbank British Spongiadae 1864-72 } & 68\end{array}$
Boyer French dictionary 1816
Boyer Royal dictionary 1819
Brace Dangerous classes of New York 1872
Brace Races of the Old World 1863
Bradley Husbandry and gardening 1724
Brady Copepoda 1878-8069

Bree Species not transmutable 1860
Brehm Illustriertes Thierleben 1864-67
Brehm Tierleben 2nd edn 1876-78
Brent The canary n.d.
Brent The pigeon book n.d.
Briggs Flora of Plymouth 1880
Briosi Embrioni vegetali 1882
British Association Third meeting, report 1834
British Association Eleventh meeting, report 1842

- British aviary n.d.72

British Museum Marine Polyzoa 1852-54
British Museum Mammalia 1843 73
British Museum British Hymenoptera 1855 74
$\begin{array}{ll}\text { British Museum Coleopterous insects of Madeira } 1857 & 75\end{array}$
Broca Hybridity in Homo 1864
$\begin{array}{ll}\text { Bronn Handbuch einer Geschichte der Natur } 1841 & 76\end{array}$
Bronn Morphologische Studien 1858 90
Bronn Entwickelungs-Gesetze 1858 91
Brookes Insects 1763
Brookes Waters 1763
Brougham Natural theology 1839
Broun New Zealand Coleoptera 1880 94
Brown Botanical works 1866-68
Browne West Riding lunatic asylum reports 1871-75
Bruguières Encyclopédie méthodique 1789-92
Brunton The Bible and science 1881
Brunton Digitalis 1868
Brunton Pharmacology 1880
Buch Îles Canaries 1836
Buch Norway and Lapland $1813 \quad 96$
Büchner Aus Natur 1862
Büchner La Théorie darwinienne 1869
Büchner Die Darwin'sche theorie 1876
Büchner Liebe und Liebes-Leben 1879
Büchner Vererbung 1882
Büchner Man 1872
Büchner Mind in animals 1880
Büchner Sechs Vorlesungen 1868
Büchner Sechs Vorlesungen 2nd edn 1872
Büchner Stellung des Menschen 1870
Büchner Stellung des Menschen 1870
Bucke Man's moral nature 1879
Buckley Natural science 1876
Buckton British aphides 1876-83
Buller Birds of New Zealand 1873
Burbidge Cultivated plants 1877
$\begin{array}{ll}\text { Burchell Southern African travels } 1822 \\ \text { B } & 100\end{array}$
Burgess Blushing 1839
Burke The sublime and beautiful $1823 \quad 102$
Burmeister Rankenfüsser 1834
Burmeister Histoire de la création 1870
Burmeister Trilobites 1846
$\begin{array}{ll}\text { Busch Schopenhauer } 1878 & 104 \\ \text { Busch Schopenhauer } & 1877\end{array}$
Busch Schopenhauer - Beitrag 1877
Busch Naturgeschichte der Kunst 1877
Butler Evolution 1879
Butler Geography 1818
Bütschli Infusorien 1876

Cabot Immature Odonata 1872-81
Camerano La Scelta sessuale 1880
Candolle, Alphonse de Géographie botanique raisonnée 1855
Candolle, A. de Géographie botanique raisonnée vol. 2
Candolle, A. de Histoire des sciences 1873
Candolle, A. de La Phytographie 1880
Candolle, Augustine Pyramus de Mémoires 1862
Candolle, A.P. de Prodromus 1824-25
Candolle, A.P. de Botanique 1819
Candolle, A. de \& A.P. de Monographia phanerogamarum 1878-81
Canestrini Origine dell'uomo 1870
Canestrini La Teoria dell'evoluzione 1877
Canestrini La Teoria di Darwin 1880
Carlier Darwinism 1872
Carneri Gefühl 1876
Carpenter Foraminifera 1862
Carpenter The microscope 1868
Carpenter Comparative physiology 1854
Carpenter Mental physiology 1874
Carpenter Researches on the Foraminifera 1855
Carrière Production et fixation des variétés 1865
Carus Geschichte der Biologie 1872
Carus \& Engelmann Bibliotheca zoolica 1861
Carus \& Gerstaecker Handbuch der Zoologie 1875
Caspari Urgeschichte der Menschheit 1873

- Catalogue of the Geological Society library 1846
- Catalogue of the British Museum Chiroptera 1878
- Catalogue of the Royal Society library 1839

Caton Norway 1875
Caton Antelope and deer 1877
Cattaneo Darwinismo 1880
Chambers Ancient sea margins 1848
Chambers Vestiges 1847
$\begin{array}{ll}\text { Chapman, Henry Evolution } 1873 & 165\end{array}$
Chapman, John Neuralgia 1873
Chapuis Le Pigeon voyageur belge 1865
Charpentier Glaciers et terrain erratique du Rhône 1841
Chaumont State medicine 1875
Child Physiological subjects 1868
Child Physiological subjects 2nd edn 1869
Children Memoir 1853
Chun Ctenophorae 1880
Clarcke Systematic botany and zoology 1870
Clark Lucernariae 1878
Clark Mind in nature 1865
Clarke Cattle 1880
Claus Zoologie 1871
Claus Genealogische Grundlage des Crustaceen-Systems 1876
Cleland Evolution 1881
Coan Patagonia 1880
Cognetti de Martis Evoluzione economica 1881
Cohn Die Pflanze 1882
Colin Physiologie des animaux domestiques 1854-56
Collett Zoologi: Fiske 1880
Collingwood China Sea 1868
Columbus Selected letters 1847
Comstock Cotton insects 1879
Comstock Report, U.S. Dept. Agriculture 18791880

- Congrès internationale d'anthropologie, Bologna 1873

Conta Théorie du fatalisme 1877

- Conversations on vegetable physiology 1829

Conybeare \& Phillips Geology of England and Wales 1822
Cook \& King Voyage to the Pacific Ocean 1784
Cooke Mycographia 1879
Cotta Geologie der Gegenwart 1866
Cotta Geology and history 1865
Cotta Granit und Quader-Sandstein 1838
Cox What am I? 1873
Crawfurd Indian islands 1856
Crawfurd Malay grammar and dictionary 1852 172
Croll Climate and time 1875 173
Crookes Psychic force 1872
Cunningham Strait of Magellan 1871
Curtis The botanical magazine 1793
Cuvier Essay on the theory of the earth 1827
Cuvier Leçons d'anatomie comparée 1799-1805 174
Cuvier Le règne animal 1829 175

- Cyclopaedia of anatomy and physiology 1859 176
Dallas Animal kingdom n.d. 178
Dana Crustacea 1853
Dana Corals and coral islands 1872 179
Dana Geology 1863 180
Dandolo Silk-worms 1825
Danielssen \& Koren Zoologi: Gephyrea 1881
Dareste Monstruosités 1877
Darwin, Charles translations of his works various
Darwin, C. Zoology of the Beagle voyage 1840-42 182
Darwin, Erasmus The botanic garden 1791 183
Darwin, E. The botanic garden part 2 vol. 21789 184
Darwin, E. Phytologia 1800
Darwin, E. Temple of nature 1803 185
Darwin, E. Zoonomia 1794-96
Darwin, Robert Waring Ocular spectra 1786 187
Darwin, R.W. Principia botanica 1810
Daubeny Volcanos 1826
Daubrée Roches cristallines 1860 188
Dawkins Cave hunting 1874
Dawson, James Australian aborigines 1881
Dawson, John Fossil plants of Canada 1871
Defrance Tableau des corps organisés fossiles 1824
De la Beche Theoretical geology 1834
De la Beche Annals of Mines selection 1824 189
Delage Crustacés édriophthalmes marins 1881 190
Delamer (Dixon) Pigeons and rabbits 1854Delgado Terreno siluriano no baixo alemtejo 1876
Delpino Dicogamia 1868-74 191
Denton Is Darwin right? 1881 192
- Descriptive and illustrated catalogue of Mammalia and Aves 1845
Desmarest Mammalogie 1820
Devay Mariages consanguins 1862 194
- Dictionary of chemistry (Ure) 1823 195
- Dictionary of chemistry (Watts) 1871-72
- English dictionary 1770 196
- Spanish-English dictionary 1831
- Dictionnaire classique d'histoire naturelle 1822-31
- Dictionnaire raisonnée des termes usités dans les sciences naturelles 1834 197
- Dictionnaire des sciences naturelles: Planches 1830 198
Dillwyn Recent shells 1817
Dippel Das Microskop 1872 199
Dixie Across Patagonia 1880
Dixon, Edmund Dovecote and aviary 1851
Dixon, E. Ornamental and domestic poultry 1848 201
Dixon, Frederick Tertiary and cretaceous Sussex 1850 203
Dobell Vestiges of disease 1861
Dodel Ulotrix zonata 1876
Dodel Die neuere Schöpfungsgeschichte 1875
Doherty Philosophie organique 1881 204
Dohrn Pantopoda 1881
Dohrn Arthropoden 1870
Dolfuss Géologie transformiste 1874
- Domestic medicine 1872
Donders The eye 1864
Donn Hortus Cantabrigiensis 1823
Donnegan Greek-English lexicon 1837
Douglas \& Scott The British Hemiptera 1865
Downing Fruits of America 1845 205
Dowson Erasmus Darwin 1861 208
Drayson The last glacial epoch 1873

Dreher Der Darwinismus 1877
Drouët Mollusques marins des Açores 1858
Drysdale Protoplasmic theory 1874
Dub Lehre Darwin's 1870
Du Bois-Reymond Johannes Müller 1860
Duchenne Physiologie humaine 1862
Dufrénoy \& Elie de Beaumont Description géologique de la France 1836210
Duhamel du Monceau Traité des arbres 1755
Dumont Haeckel 1873
Duncan, Andrew Dispensatory 1826
Duncan, James Fecundity 1871
Duncan, John Analogies of organized beings 1831
Dupont L'Homme 1871
Du Prel der Kampf ums Dasein 1874
Du Prel Planetenbewohner 1880
Du Prel Psychologie der Lyrik 1880
Durand Physiologie philosophique 1866
Durand Les Origines animales de l'homme 1871
Dutrochet Histoire anatomique et physiologique 1837
Duval Histoire du pêcher 1850
Duval Histoire du poirier 1849
Duval Histoire du pommier 1852
Eaton Breeding pigeons 1852
Eaton Breeding pigeons including Moore Columbarinus 1858
Ecker Anatomie des Frosches 1864-82
Edgeworth Pollen 1877
Ehrenberg Mikrogeologische Studien 1873
Ehrenberg Das kleinste Leben im Weltmeer 1844
Eichwald Geognostisch-palaeontologische Bemerkungen 1871220
Eimer Maureidechse 1881
Élie de Beaumont Géologie pratique 1848
Emery Fierasfer 1880

- Encyclopaedie der Naturwissenschaften 1879-82

Engelmann Bibliotheca historico-naturalis 1846

- Enten, Schwanen und Gänsezucht 1828

Ercolani Nouve ricerche sulla Placenta 1880
Ercolani Unita della placenta 1877
Erichsen Surgery 1869
Ernest Dictionary, Graecium lexicon 1816
Errera Fécondation des fleurs 1878
Eschricht, Reinhardt \& Lilljeborg Cetacea 1866
Eschwege Gebirgskunde Brasiliens 1832
Espinas Sociétés animales $1877 \quad 223$
Euripides Hecuba $1836 \quad 224$
Eyton Osteologia avium 1867
Farbre Souvenirs entomologiques $1879 \quad 225$
Faivre Variabilité 1868
Falconer Palaeontological memoirs 1868 226
Falconer Teak forests of Tenasserim 1852
Farrar Language 1865

- Farrier and naturalist 1828-30
- Fauna und Flora des Golfes von Neapel 1880-81 227

Fayrer Bengal tiger 1875
Fenwick Medical diagnosis 1871
Ferguson Rare and prize poultry 1854
Ferrière Darwinisme 1872 two copies 229
Ferris Origin of species 1871
Fichte Die Seelenfortdauer 1867
Fiske Darwinism 1879
Fiske Cosmic philosophy 1874
Fitton Geology in England 1833
Fitzgerald Australian orchids 1877
Fitzroy \& King Adventure and Beagle voyages 1839230
Fleming History of British animals 1828 231
Fleming Philosophy of zoology 1822
Flourens Examen du livre de M. Darwin 1864
Flourens Longévité humaine 1855
Flourens Instinct et intelligence $1845 \quad 235$
Flower Osteology and dentition of vertebrated animals 1879236
Flower Osteology of the Mammalia 1870
Flügel German-English dictionary 1838
Focke Die Pflanzen-Mischlinge 1881
Fol Fécondation et hénogenie 1879
Follen Life of Charles Follen 1844
Forbes Asteridae offprint237
Forbes Naked eyed Medusae 1848
Forel Fourmis de la Suisse 1874
Forster, Johann Observations 1778 240
Forster, Thomas British birds 1817
Foster \& Balfour Embryology 1874
Foster \& Langley Physiology 1876 241
Fournier Phanérogames 1863
Francisque-Michel Haras 1860
Frank Pflanzenphysiologie 1868
Frank Pflanzentheilen 1870 242
Freke Orisin of species 1861 244
Fremont Expedition to the Rocky Mountains 1845
Frey Histology and histochemistry of man 1874 245
Frohschammer Das Christenthum 1868
Gallesio Traité du citrus 1811 246
Galton The art of travel 1855 248
Galton English man of science 1874
Galton Tropical South Africa 1853
Garrod, Alfred Baring Materia medica 1869
Garrod, Alfred Henry Collected papers 1881
Gärtner Befruchtung der vollkommeneren Gewächse 1844
Gärtner Bastarderzeugung im Pflanzenreich 1849 256
Gastaldi Lake habitations 1865 298
Gaudry Animaux fossiles du Mont Lébéron 1873
Gaussoin Navassa 1866
Gee Auscultation adn percussion 1870
Gegenbaur Comparative anatomy 1878
Gegenbaur Vergleichende Anatomie 1870299
Gegenbaur Anatomie compare,e 1874
Gegenbaur Wirbelthiere 1864-72
Geiger Entwickelungsgeschichte der Menschheit 1871
Geikie The great Ice Age 1877
Geikie Prehistoric Europe 1881 300
Gentry Birds of eastern Pennsylvania 1876
Geoffroy St Hilaire, Étienne Philosophie zoologique 1830
Geoffroy St Hilaire, Isidore Zoologie qénérale 1841 301
Geoffroy St Hilaire, I. Anomalies de l'organisation 1832-37 306
Geoffroy St Hilaire, 1. Règnes organiques 1854-62 316
Geoffroy St Hilaire, I. Vie d'Étienne Geoffroy 1847 320
Gérard Des Orchidées 1879 321
Gerland Das Aussterben 1868
Gervais Les trois règnes de la nature 1854-55 325
Giraud-Teulon La famille 1874 327
Girton Pigeon-fancier n.d.
Glen Poor Law Statutes 1857 328
Gloger Das Abändern der Vögel 1833
Godman The Azores 1870 330
Godron De l'espèce 1859 331
Gonne Das Gleichgewicht 1882 335
Gooch Diseases peculiar to women 1859
Goodsir, John \& Harry Anatomical and pathological observations 1845

- Gooseberry growers' register 1862
Gosse Alabama 1859
Gosse Jamaica 1851
Götz Hunde-galerie 1853 336
Gould, Benjamin Military and anthropological statistics 1869
Gould, John Handbook to the birds of Australia 1865 337
Gould, J. Introduction to the birds of Australia 1848 341
Gould, J. Introduction to the birds of Great Britain 1873 342
Gould, J. Trochilidae 1861
Gould, William English ants 1747 344
Graba Reise nach Färó 1830
Graduate from Cambridge Darwinian theory 1867 345

Grant Comparative anatomy 1835
Gratiolet Expression 1865
Graves Naturalist's companion 1824
Gray, Asa How plants behave 1872
Gray, A. Darwiniana 1876
Gray, A. Botany and vegetable physiology 1857
Gray, A. Botany of northern U.S. 1856
Gray, A. Natural science and religion 1880
Gray, George Birds of China 1871
Gray, Henry Anatomy 1869
Gray, John Synopsis reptilium 1831
Green Bacton in Norfolk 1842
Greene Coelenterata 1861
Greenwell British barrows including Rolleston Skulls 1877
Greg Christendom 1863
Greg Enigmas of life 1872
Grobben Dekapoden 1878
Grove Correlation of physical forces 1862
Günther Ceratoden 1871
Günther Land-tortoises 1877
Günther Fishes 1880
Günther Reptiles of British India 1869
Guthrie Mr Spencer's formula of evolution 1879
Guy Forensic medicine 1861
Haast Geology of Canterbury and Westland, New Zealand 1879353
Haberlandt Schutzeinrichtungen 1877 two copies
Haberlandt Vergleichende Anatomie 1881
Haeckel Anthropogenie 1874
Haeckel Anthropogenie 3rd edn 1877
Haeckel Arabische Korallen 1875
Haeckel Siphonophoren 1869
Haeckel Evolution of man 1879
Haeckel Freedom in science 1879
Haeckel Freie Wissenschaft 1878
Haeckel Generelle Morphologie 1866
Haeckel Gesammelte Vorträge 1879
Haeckel History of creation 1876
Haeckel Die Kalkschwämme 1872
Haeckel Natürliche Schöpfungsgeschichte 1868
Haeckel Natürliche Schöpfungsgeschichte 2nd, 3rd, 4th, 5th, 7th edns 1870-79 360
Haeckel Les preuves du transformisme 1879
Haeckel Das Protistenreich 1878
Haeckel Die Radiolarien 1862
Haeckel Gastraea-Theorie 1877
Haeckel System der Medusen 1879-80
Hagen Insect deformities 1876
Hahn Meteorite 1880
Hahn Die Urzelle 1879
Hall Index to new general atlas 1831
Hall New general atlas 1829
Hallez Turbellariés 1879
Hancock Brachiopoda 1857
Hansen Adventivbildungen bei den Pflanzen 1881
Harris, George The arts 1869
Harris, Thaddeus Entomological correspondence 1869
Harris, T. Insects injurious to vegetation 1862
Harris, T. Insects of New England 1842
Hartmann Wahrheit und Irrthum im Darwinismus 1875 two copies 362
Hartung Lanzerote und Fuertaventura 1857
Harvey Nereis australis 1849
Harvey Sea-side book 1849
Hasse Elasmobrnchier 1879
Haughton Physical geography 1880
Hawkins, Benjamin Human and animal frame 1860
Hawkins, Richard South Sea voyage 1847
Head Journeys across the Pampas 1826
Heckel Du mouvement végétal 1875
Hedericus Graecium lexicon 1816
Heer Fossil flora of North Greenland 1869

Heer Flora fossilis artica 1875
Heer Flora fossilis Helvetiae 1876-77
Heer Miocene Flora und Fauna Spitzbergens 1870
Heer Le Monde primitif de la Suisse 1872
Heer Pays tertiaire 1861
Heer Klima des Tertiärländes 1860
Héliu La Loi unique 1878
Heller Darwin und das Darwinismus 1869
Helmholtz Popular lectures 1873
Henfrey Botanical and physiological memoirs 1853
Henfrey Physiological botany 1847
Henfrey (ed.) Reports and papers on botany 1849
Henle Anatomie des Menschen 1858
Henry Experimental chemistry 1823
Henslow Botany 1837
Henslow Botanical dictionary n.d. 371
Herbert Amaryllidaceae 1837 372 372
Hermann, Ludimar Human physiology 1875376
Hermann, H.C. Italian alp-bee 1860
Hermann, L. Handbuch der Physiologie 1881
Herschel, J.F.W. Scientific enquiry 1849
Herschel, J.F.W. Natural philosophy 1831
Herschel, J.F.W. Astronomy 1833
Herschel, Mrs John Caroline Herschel 1876
Hertwig Zahnsystem der Amphibien 1874
Hervey-Saint-Denis Agriculture et horticulture des Chinois 1850
Hewson Works 1846378

Heyworth Man 1866
Hibberd The fern garden 1872
Higginson Out-door papers 1871
Hildebrand Geschlechter-Vertheilung bei den Pflanzen 1867
Hildebrand Verbreitungsmittel der Pflanzen 1873
Hildebrant Verbreitung der Coniferen 1861
Hinds Regions of vegetation 1843
Hitchcock Geology of Massachussets 1841381
Hochstetter Reise der Novara 1866
Hodge What is Darwinism? 1874382

Hodgson Theory of practice 1870
Hoek Zoology of Challenger voyage 1881
Hoek Embryologie von Balanus 1876
Hoernes \& Auinger Gasteropoden 1879-82
Hofacker Eigenschaften 1828
Hoffmann, Hermann Zur Speciesfrage 1875384
Hoffmann, L. Thier-Psychologie 1881385
Hofmann Liebig 1876
Hofmeister Pflanzenzelle 1867
Hofmesiter Cryptogamia 1862
Hogg Experimental and natural philosophy 1861
Hölder Schädelformen 1876
Holland Chapters on mental physiology 1852
Holland Chapters on mental physiology 2nd edn 1858
Holland Scientific and other subjects 1862
Holland Medical notes and reflections 1839
Holland Medical notes and reflections 3rd edn 1855
Holland Recollections 1868 388
Holub South Africa 1881
Holub \& Pelzen Ormithologie Südafrikas 1882
Hooke Micrographia 1667
Hooker, Joseph Botany 1876
Hooker, J. Flora antarctica 1844-47
Hooker, J. Himalayan journals 1854392
Hooker, J. Introductory essay, flora of New Zealand 1853
Hooker, J. Geological survey of Great Britain n.d.
Hooker, J. Flora of Australia 1859
Hooker, J. Introductory essay, flora of New Zealand reprint 398
Hooker, J. \& Ball Marocco and the Great Atlas 1878
Hooker, J. \& Thomson Flora Indica 1855
Hooker, William Dawson Norway 1838
Hooker, William Jackson British flora 1838

Hooker, W.J. \& Arnott British flora 1855
Hooker, W.J. et al. Supplement to Smith E Sowerby 1831-65
Hope Coleopterist's manual 1837
Hopkins Geology and terretrial magnetism 1844
Horner Alluvial Egypt 1858
Houghton Natural history of the ancients n.d.
House of Commons Wild birds' protection 1873
Hovelacque Notre ancêtre 1878
Howorth Mongols 1876
Hromada Vorsokratische Naturphilosophie 1879
Huber, François Abeilles 1814
Huber, Pierre Fourmis indigènes $1810 \quad 412$
Huber, Johannes Die Lehre Darwin's 1871413

Hubrecht Nervensystem 1882
Huc Journey through Tartary, Thibet and China 1852

- Hühner und Pfauenzucht 1827

Humboldt Cosmos 1846415

Humboldt Essai géognostique 1826
Humboldt Fragmens de géologie 1831
Humboldt Travels to the New Continent various edns 1819-29
Humboldt Kingdom of New Spain 1811
Humphrey Limbs of vertebrates 1860
Hunt Light 1854
Hunter Essays including Owen Introductory lectures 1861
Hunter Vegetation 1860
Hunter Human teeth 1778
Huot Atlas complet 1837
Hussey British mycology 1849 422
Hutchinson Dog breeding 1850
Huth Marriage of near kin 1875
Hutton Chronology of creation 1850
Huxley American addresses 1877423

Huxley Crayfish 1880
Huxley Critiques and addresses 1873
Huxley Man's place in nature 1863
Huxley Hume 1879424

Huxley Classification 1869
Huxley Phenomena of organic nature $1862 \quad 425$
Huxley Lay sermons 1870
Huxley Comparative anatomy 1864
Huxley Anatomy of invertebrates 1877
Huxley Anatomy of vertebrates 1871426
Huxley Oceanic Hydrozoa 1858
Huxley Phenomena of organic nature 1863
Huxley Physiography 1877
Huxley Science and culture 1881
Huxley \& Martin Elementary biology 1875
Hyatt Tertiary species of Planorbis 1880
Ingersoll The oyster industry 1881427
L'Institut Sciences mathémathiques 1837, 1840

- International horticultural exhibition 1866428

Irmisch Beiträge zur Biologie 1853
Jaeger Die Darwin'sche Theorie 1869429
Jaeger Die Darwin'sche Theorie n.d.
Jaeger Contra Wigand 1874
Jaeger Zoologie 1871-78
Jaeger Seuchenfestigkeit 1878 two copies
Jaeger Zoologische Briefe 1876
James Du Darwinisme 1877
Jameson Manual of mineralogy 1821
Jameson Treatise on minerals 1816
Jarrold Anthropologia 1808
Jeffreys \& Carpenter The Valorous expedition 1876
Jenyns Memoir of Henslow 1862
Jenyns Meteorology 1858
Jenyns Natural history 1846
Jevons Logic 1881
Johnson, Samuel English dictionary 1826
Johnson, Samuel W. How crops grow 1869

Johnston Botany of the eastern borders 1853
Jones Bermuda 1859

- Journal of a horticultural tour 1817

Jouvencel Genèse selon la science 1859
Juan \& Ulloa Voyage to South America 1806 444
Judd Volcanoes 1881
Jukes Geological survey of Newfoundland 1843
Jukes Student's manual of geology 1857
Jukes Student's manual of geology 2nd edn 1862445

Jukes et al. Record of the School of Mines 1853
Kaspary Natural laws 1876
Kater \& Lardner Mechanics 1830
Keir Sketch of the life 1859
Kerner Alpenpflanzen 1864
Kerner Flowers 1878
Key \& Retzius Anatomie des Nervensystems 1875-76
Kidd The canary n.d.

- Das Kind 1876 447

Kirby Monographia apium Angliae 1802
Kirby \& Spence Entomology various edns 1818-26
Kirchhof Landwirtschaft 1835 457
Klein Lymphatic system 1873
Klein et al. Physiological laboratory handbook 1873
Kobell Mineralogie 1838
Kohlrausch Physik 1877
Kölliker Alcyonarien 1870
Kölreuter Geschlecht der Pflanzen 1761-66
Koninck \& Le Hon Crinoides du terrain carbonifere 1854
Körner Theirseele und Menschengeist 1872
Kowalewsky Anthracotherium 1873
Krusenstern Reise in das Petschora-Land 1846
Kuhl Descendenzlehre 1879
Kühne Anpassungsgesetz 1878
Kühne Protoplasma und Contractilität 1864
Kuntze Speciesbeschreibung und Rubus 1879
Kuntze Um die Erde 1881
Kurr Bedeutung der Nektarien 1833
Kurtz Dionaea muscipula $1876 \quad 475$
Labillardière Voyage de la Perouse 1791476
Lacepède Cétacées 1809
Laing Darwinism refuted 1871
Lamarck Animaux sans vertèbres 1816-17
Lamarck Animaux sans vertebres 2nd edn 1835-45
Lamarck Philosophie zoologique 1809477
Lamarck Philosophie zoologique new edn 1873480
Lambert L'Immortalité 1865
Lambert Monde moral 1862
Lambertye Le Fraisier 1864
Lamont Sea-horses 1861
Lamouroux Polypiers 1821
Lanciano L'Universo 1872
Lanessan La Lutte pour l'existence 1881
Lanessan Du protoplasma végétal 1876
Lankester Degeneration 1880
Lankester Comparative longevity $1870 \quad 482$
Lardner Cabinet cyclopedia - history 1830
Latham Man 1851
Latreille Fourmis 1802 - 484
Laugel Problemes de la nature 1864
Laugel Science et philosophie 1863
Lavater Physionomie 1820
Lawrence, John The horse 1829 485
Lawrence, William Lectures on man 1822
Lawson Lists of seeds and plants 1851486
Lawson Treatise on grasses 1851487
Le Brun Conference 1701
Le Couteur Wheat n.d.
Le Couteur Wheat 2nd edn 1872
Lecoq Fécondation des végétaux et hybridation 1845 495
Lecoq Fécondation 2nd edn 1862 496
Lees Acoustics, light and heat 1877 497
Le Hon L'Homme fossile 1867
Leidy Fauna of Nebraska 1853
Leidy Fauna of Western Territories 1873 498
Leighton Lichen-flora 1872
Le Maout \& Decaisne Botanique 1868
Lemoine, Albert Physionomie et parole 1865
Lemoine, Victor Oiseaux fossiles de Reims 1878 499
Lepelletier Physiognomie 1864
Lesson Mammalogie 1827
Lesson Ornithologie 1828
Letourneau Physiologie des passions 1868 500Lewes History of philosophy 1867
Lewes Physical basis of mind 1877
Lewes Physiology of common life 1860
Leybold Pampas Argentinas 1873
Liebig Organic chemistry 1840
Lindemuth Bastarderzeugung 1878501
Lindley Natural system of botany 1836
Lindley First principles of botany 1830
Lindley School botany 1856
Link Urwelt und Alterthum 1821
Linnaeus Philosophia botanica 1783502
Linnaeus Systema naturae 1789-96
Linnaeus Systema vegetabilium 1797
Lippert Religionen 1881
Lisle Husbandry 1757
Locard Variations malacologiques 1881
Locke Human understanding 1726
Loiseleur-deslongchamps Céréales 1842
Lombardini Cammelli 1841504
Loudon (ed.) Encyclopedia of plants 1841
Lovén Échinoüdes 1875506
Low Domesticated animals 1845
Lowne Blow-fly 1870510
Lowne Teratological series 1872
Lowne Philosophy of evolution 1873
Lubbock Reproduction in Daphnia 1857 511
Lubbock Addresses 1879
Lubbock Ants, bees and wasps 1882
Lubbock Collembola and Thysanura 1873
Lubbock Civilisation 1870
Lubbock Metamorphoses of insects 1874512
Lubbock Ova of insects 1858
Lubbock Prehistoric times 1865
Lubbock Prehistoric times 2nd edn 1869 513
Lubbock Scientific lectures 1879
Lucae Fuchs-Affe und Faulthier 1882
Lucae Quadrupeden 1881
Lucas Hérédité naturelle 1847
Luerssen Botanik 1879-82 523
Lunze Hundezucht 1877
Lyell, Charles Elements of geology 1838
Lyell, C. Elements of geology 6th edn 1865 524
Lyell, C. Antiquity of man 1863 525
Lyell, C. Antiquity of man 3rd edn 1863 527
Lyell, C. Antiquity of man 4th edn 1873
Lyell, C. Manual of elementary geology 1851
Lyell, C. Manual of elementary geology 4th edn 1852 528
Lyell, C. Manual of elementary geology 5th edn 1855Lyell, C. Principles of geology 1830-33
530
Lyell, C. Principles of geology 5th edn 1837 531
Lyell, C. Principles of geology 6th edn 1840
539
539
Lyell, C. Principles of geology 7th edn 1847 543
Lyell, C. Principles of geology 9th edn 1853Lyell, C. Principles of geology 10th edn 1867-68 two copiesLyell, C. Principles of geology 11th edn 1872544

Lyell, C. Second visit to U.S. 1849
Lyell, C. Student's elements of geology 1871
Lyell, C. Student's elements of geology 2nd edn 1874
Lyell, C. Supplement to 5th edn of Manual 1857
Lyell, C. Supplement 2nd edn 1857
Lyell, C. Travels in North America 1845
Lyell, James Fancy pigeons 1881549

Lyman Ophiuridae and Astrophytidae 1875
Lyman Supplement to Ophiuridae 1871
Lyon Homo versus Darwin n.d.
McAlpine Botanical atlas 1882
McAlpine Zoological atlas 1881
Macaulay et al. Vivisection 1881
McClelland Indian Cyprinidae 1839
MacCulloch Classification of rocks 1821
McClintock Sir John Franklin 1859551

Macgillivray British birds 1837-52
Macgillivray Deeside and Braemar 1855
McIntosh British Annelids 1873-74
Mackintosh Ethical philosophy 1837
Mackintosh History of England 1830 1876559
Maclaren For and against Darwinism 1876
Maclaren Natural theology 1878
Maclaren Chemical difficulties of evolution 1877
MacLeay Horae entomologicae 1819
McLennan Primitive marriage 1865
McLennan Ancient history 1876
Macquart Facultés intérieurs 1850
Magnus Najas 1870562

Mallery Gestures and signals of N. American Indians 1880
Mallery Sign language among N. American Indians 1880
Mallery Sign language among American Indians 1881
Malm Fauna 1877
Malthus Population 1826 two copies of vol. 2
Mantegazza Fisiologia del piacere 1870
Mantegazza Fisionomia e mimica 1881
Mantegazza Rio de la Plata e Tenerife 1867
Mantegazza Studii antropologici $1877 \quad 565$
Mantegazza Il terzo molare 1878
Marchand Voyage autour du monde 1792
Marshall, William Minutes of agriculture 1778
Marshall, W. Board of agriculture reports 1808
Marshall, William E. Phrenologist amongst the Todas 1873
Marsham Coleoptera britannica 1802567
Martin The dog 1845
Martin The horse 1845 568
Martin-Saint-Ange Cirripèdes 1835
Marx Das Kapital $1873 \quad 570$
Masaryk Selbstmord 1881
Maskelyne Nautical tables 1802
Masters Vegetable teratology $1869 \quad 571$
Matthes Wirbelthiere 1861
Matthew On naval timber 1831
Maudsley Body and mind 1870
Maudsley Body and mind 2nd edn 1873 272
Maudsley Physiology and pathology of mind 1868
Maudsley Physiology of mind 1876
Mawe Travels in Brazil 1825
Maxwell Matter and motion 1882
Mazaroz Genèse des sociétés modernes 1877
Medlicott \& Blandford Geology of India 1879
Meehan Flowers and ferns of U.S. 1878
Meetkerke Guests of flowers 1881
Meitzen Bhawani 1872
Melia Origin of man 1872
Mengozzi Filosofia della medicina 1869
Merriam Birds of Connecticut 1877
Metzger Die Getreidearten 1841
Meyen Reise um die Erde including Erichson \& Burmeister Insekten 1834

Meyen Pflanzen-Physiologie 1837-39
Meyen Geography of plants 1846
Meyer Naturgeschichte der Hausthiere 1792
$\begin{array}{ll}\text { Michell Earthquakes } 1760 & 578 \\ \text { Miers Trazels to Chile } 1826 & \end{array}$
Miers Travels to Chile 1826
Miller, Hugh Footprints of the creator 1849
Miller, Philip Gardener's dictionary 1748
Miller, William Inorganic chemistry 1864
Milligan A. Corn. Celsi 1826
Milne-Edwards Crustacées 1834-40
$\begin{array}{ll}\text { Milne-Edwards Zoologie générale } 1851 & 581\end{array}$
Mitchell Rattlesnake venom 1861
Mivart Skeleton of primates 1867
Mivart Genesis of species 1871
Mivart Genesis of species 2nd edn $1871 \quad 588$
Mivart Elementary anatomy $1873 \quad 589$
Mivart Man and apes 1873
Moggridge Ants and spiders 1873
Mohl, Hugo Vegetable cell 1852
Mohl, H. Bau und Winden der Pflanzen 1827
Mohl, Jules Études orientales 1879-80 594
Mojsvár Dolomit-Riffe 1878
Mojsvár Gebirge um Hallstatt 1873-75
Mojsvár Geologische Übersichtskarte n.d.
Mojsvár Daonella und Halobia 1874
Moleschott Circulation de la vie 1866
Moleschott Kreislauf des Lebens 1877
Moleschott \& Fubini Sull' influenza della luce 1879
Moniez Cestodes 1881
Mons Arbres fruitiers 1835-36
$\begin{array}{ll}\text { Moore \& More Cybele Hibernica } 1866 & 598 \\ \text { Moore, Frederic Indian lepidopterous insects } 1879\end{array}$
Moore, Frederic Indian lepidopterous insects 1879
Moore, George The first man 1866
Moore, Thomas Poetical works 1847
Moquin-Tandon Tératologie végétale 1841
Morgan American beaver 1868602

Morgan Consanguinity 1871
Morren Congres de botanique horticole 1877
Morren Physiologie végétale 1871
Morris British fossils 1854
Morton Types of mankind 1854
Moseley Notes by a naturalist $1879 \quad 607$
Moseley Oregon 1878
Moseley Peripatus capensis 1874
Mosso Kreislauf des Blutes 1881
Moubray Treatise on breeding 1834
Müller, Ferdinand von Fragmenta phytographiae australiae 1869-71 608
Müller, Freidrich Allgemeine Ethnographie 1873
Müller, Friedrich Reise der Novara 1868
Müller, Fritz For Darwin 1869 609
Müller, Fritz Für Darwin 1864
Müller, Hermann Alpenblumen 1881
Müller, H. Befruchtung der Blumen 1873610

Müller, H. Wechselbeziehungen zwischen Blumen und Insekten 1879

Müller, Johannes Elements of physiology 1838-42 613

Müller, J. Seeigellarven n.d. 621

Muir Supernatural religion 1874
Murchison Silurian system 1839
Murchison Silurian system reviewed 1841 622
Murphy Habit and intelligence 1869
Murphy Habit and intelligence 2nd edn 1879 623
Murray, Andrew Distribution of mammals 1866 two copies 624Murray, Lindley English grammar 1831Nägeli Botanische Mittheilungen 1866
625
Nägeli Die niederen Pilze 1877 630Nägeli \& Cramer Pflanzenphysiologie 1855

Nash Oregon 1878
Nathusius Schweineschädeln 1864
Nathusius Geschichte und Zucht der Hausthiere 1864

Nathusius Viehzucht und Rassenkenntnis 1872-80

- Natural history - plates 1824-26

Naturalist's library Ornithology n.d.

- Natural science, creeds and scripture 1870
- Natuurkundige Verhandeligen including Fritz Sonnenflecken 1878

Naudin Hybridité dans les végétaux 1862
Netter De l'intuition 1879
Neumayr \& Paul Slavonien 1875
Neumayr Fauna des untersten Lias 1879
Neumeister Taubenzucht 1837
Newberry Dinichytes 1875
Newton Zoology 1874
Nicholson Ophiology 1874
Niemeyer Medicine 1871
Nilsson Primitive inhabitants of Scandinavia 1868
Nitzch Pterylography 1867
Nogueira A raça negra 1880
Noiré Ursprung der Sprache 1877
Noiré Die Welt 1874
Noiré Das Werkzeug 1880
Nordenskiöld Voyage of the Vega 1881
Nusbaum Embryologie de Mysis n.d.
Odart Ampélographie 1849

$$
643
$$

Officier du roi Voyage à l'isle de France 1773
Ogle Harveian oration 1881
Oken Physiophilosophy 1847

- Our blood relations 1872

O'Neill Refutation of Darwinism 1880
Ontario Province Report on agriculture 1873
Oppert Languages 1879
Ord Colloids 1879
Ordinaire Volcans 1802
Ormathwaite Astronomy and geology compared 1872
Orton Andes and Amazon 1870
Orton Andes and Amazon 3rd edn 1876645

Osborne Horsebreeder's handbook 1881
Otley English lakes 1830
Ovington Voyage to Suratt 1696
Owen, David Wisconsin, Iowa and Minnesota 1852
Owen, John (ie Butler) The fair haven 1873
Owen, Richard Anatomy of vertebrates 1866-68
Owen, R. Mylodon 1842
648
Owen, R. British fossil mammals 1846
Owen, R. Invertebrates $1855 \quad 652$
Owen, R. Limbs $1849 \quad 655$
Owen, R. Palaeontology $1860 \quad 656$
Owen, R. Palaeontology 2nd edn 1861
Owen, R. Parthenogenesis 1849 two copies
Packard Insects 1868
Packard Insects injurious to trees 1881
Page Man 1867
Page Man 1867
Paget Surgical pathology 1853
$\begin{array}{ll}\text { Paget Surgical pathology 3rd edn } 1870 & 661 \\ \text { Paley }\end{array}$
Paley Christianity 1822
Palm Winden der Pflanzen 1827 662
$\begin{array}{ll}\text { Paolucci Uccelli } 1878 \text { two copies } & 663 \\ \text { Paris Medical }\end{array}$
Paris Medical chemistry 1825
Paris Pharmacologia 1825
Parker Shoulder and sternum in vertebrates 1868
Parkes Practical hygiene 1873
Parkinson Fossil organic remains 1822
Pauchon Rôle de lumierre dans génération 1880
Pennant Quadrupeds 1769
Pernety Îles Malouines 1763-64
Perrier Colonies animales 1881
Persoon Synopsis plantarum 1805-07
Pettigrew Physiology of circulation 1873
Pettigrew Physiology of wings 1871
Philippi Catalogus plantarum 1881

Phillips, John Geology of Oxford 1871
Phillips, J. Life on earth 1860
Phillips, J. Treatise on geology 1839
$\begin{array}{ll}\text { Phillips, J. Vesuvius } 1869 & 666\end{array}$
Phillips, William Mineralogy 1823
Phillips, W. Mineralogy 4th edn 1837
Pickering $R \cdots$ s of man including Hall Analytical synopsis 1850
Pictet Paléontc?ogie 1844-45 668
Pictet Paléontologie 2nd edn 1853-57 670
Piderit Mimik und rhysiognomik 1867
Pistor Taubenzucht $1831 \quad 677$
Planck Seele und Geist 1871678
Planck Darwinismus 1872

- Plans of lakes and rivers between Huron and Ottawa 1857

Playfair Huttonian theory 1802
Pompper Säugethiere, Vögel und Amphibien 1841
Porcher Du Fuchsia 1844
Posnett Ethics, jurisprudence and political economy 1882
Pouchet Human race 1864
Pourtalès Deep-sea corals 1871
Powell Indian languages 1880 two copies
Pozzi Du crane 1879
Preyer Blausäure 1870
Preyer Blutkrystalle 1871
Preyer Naturwissenschaft 1880
Preyer Seele des Kindes 1882
Price Old Price's remains 1863-64
Prichard Physical history of mankind 1836
Prichard History of mankind 3rd \& 4th edns 1841-51 683

- Principles of organic life $1868 \quad 686$

Proctor, Richard Science 1879
Proctor, Robert Journey across the Cordillera $1825 \quad 687$

- Psychological enquiries 1854
- Public libraries in the U.S. 1876

Pugin Edifices and buildings 1841
Pulteney Linnaeus 1805
Pusey Permanence and evolution 1882
Putsche Taubenkatechismus 1830
Puvis Dégénération et extinction 1837
Quadri Teoria Darwiniana 1869
Quatrefages Charles Darwin 1870
Quatrefages Maladies du ver à soie 1859
Quatrefages Annelés 1865691

Quatrefages Métamorphoses 1862
Quatrefages Nouvelles recherches sur ver à soie 1860
Quatrefages Physiologie comparée 1855
Quatrefages Souvenirs 1854
Quatrefages Unité de l'espèce humaine 1861
Quetelet L'Homme 1835 694

- Rabbit book n.d.

Radcliffe Nerve and muscle 1871
Radenhausen Osiris 1874-76
Ram Philosophy of war 1878
Rames La Création 1869
Ramsay Rock specimens 1858
Ramsay Physical geology and geography 1863
Ramsay Physical geology and geography 3rd edn 1872696
Ramsay Physical geology and geography 5th edn 1878
Rang Mollusques 1829
Ranke Physiologie des Menschen 1875
Ray Correspondence 1848
Ray Wisdom of god 1692
Ray Memorials 1846
Reade, Thomas Chemical denudation 1879
Reade, Winwood African sketch-book 1873
Reade, W. Martyrdom of man 1872
Rée Moralische Empfindungen 1877
Reeve Mollusks 1863
Reichenau Vögel 1880

Reinke Vegetabilische Substanzen 1879
Rendu Intelligence des bêtes 1863
Rengger Säugethiere von Paraguay 1830
Retzius Anatomische Untersuchungen 1873703
Retzius Finska Kranier 1878
Retzius Wirbelthiere 1881
Reynier Économie publique et rurale 1818 704 7
Rialle Mythologie 1878
Ribeiro Noticia 1878
Ribot Hérédité psychologique 1882
Ribot Heredity 1875
Richard Analyse du fruit 1808
Richardson, John Pigs 1847
Richardson, J. Fauna Boreali-Americana 1829-36 705
Richardson, J. \& Gray, J.E. Zoology of voyage of Erebus and Terror 1844-48 708
Richardson, Samuel Sir Charles Grandison 1781
Riedel Taubenzucht 1824
Riedel Feinde der Tauben $1824 \quad 710$
Riley, Charles Missouri insects 1871-77
Riley, C. Cotton worm 1880712

Riley, C. Locust plague 1877
Riley, James Loss of the Commerce 1817
Ritchie Creation 1874
Robinet Vers à soie 1848

* Rolle Darwins Lehre n.d. 713

Rolleston Animal life 1870
Rolph Biologische Probleme 1882714

Romanes Theism 1878
Romanes \& Ewart Echinodermata 1881
Rosenbuch Physiographie der Gesteine 1877
Ross Graft theory of disease 1872
Rossi Darwinisme 1870
Roux Kampf der Theile 1881
Royal Commission on live animal experimentation 1876
Royal Society Catalogue of papers 1879
Royer Homme et sociétés 1870716
Rudolphi Anthropologie und Naturgeschichte 1812

Rütimeyer Fossile Pferde 1863 718

Rütimeyer Fauna der Schweiz 1861
Rütimeyer Grenzen der Thierwelt 1868 726
Rütimeyer Rinder der Tertiär-Epoche 1878
Sabatier Coeur et circulation des vertébrés 18737727
Sachs Geschichte der Botanik 1875
Sachs Lehrbuch der Botanik 1870
Sachs Lehrbuch der Botanik 3rd edn 1873
Sachs Traité de botanique $1874 \quad 728$
Sageret Cucurbitacées $1826 \quad 730$

Sageret Pomologie 1830	731

St Bartholomew's hospital Reports 1875
St Clair Darwinism and creation 1873
Saint-Hilaire, Auguste Leçons de botanique 1841
Saint-Hilaire, A. Rio de S. Francisco 1847-48 738
St John Highlands 1878
St John Sutherlandshire 1849
Salter The chrysanthemum 1865
Salter \& Woodward Fossil crustacea 1865 739
Samouelle Entomologist's compendium 1819
Saporta Monde des plantes 1879
Saporta \& Marion Évolution du règne végétal 1881
Saporta \& Marion Végétaux fossiles de Meximieux 1876
Saporta \& Marion Flore de Gelinden 1878
Sarmiento Viage al estrecho de Magellanes 1878
Saussure La question du lac 1880
Savage Religion of evolution 1876
Schacht The microscope 1855
Scherzer Im tropischen America 1864
Scherzer Smyrne 1873
Schiff Physiologie de digestion 1868
Schlegel Physiognomy of serpents $1843 \quad 743$

Schmidt, Oscar Descendezlehre 1873
Schmidt, O. Descent 1875
Schmidt, O. Descent and Darwinism n.d.
Schmidt, Rudolf Die Darwin'sche Theorien 1876746
Schneider Der thierische Wille 1880
Schouw The earth including Kobell Animal kingdom 1852
Schübeler Die Pflanzenwelt Norwegens 1873-75
Schufeldt Tetraonidae 1881
Schultze Kant und Darwin 1875
Schultze Sprache des Kindes 1880
Schulz Photographs n.d.
Schwann Manifestation 1879
Scientific layman New truth and old faith 1880
Scoresby Arctic regions 1820
Scott, John Poppy gardeners 1876
Scott, J. Opium husbandry 1877
Scott, J. Culture of opium poppy 1874
Scott, J. Culture of opium poppy 1878
Scott, W.R. The deaf and dumb 1870
Scrope Volcanos 1862
Scudder, John Specific diagnosis 1874
Scudder, Samuel Butteflies 1881
Scudder, S. Names for butterflies 1875
Sedgwick Discourse 1850
Sedgwick Geology of the Lake District 1853752
Sedgwick Cowgill chapel 1870
Seeley Index to fossil remains 1869
Seeley Ornithosauria 1870
Seemann Flora vitiensis 1865
Seguenza Cirripedi terziarii 1874-76
Seidlitz Descendenztheorie 1876
Seidlitz Darwin'sche Theorie 1871
Seidlitz Darwin'sche Theorie 1871 second copy 753
Seidlitz Darwin'sche Theorie 2nd edn 1875
Semper Arbeiten aus Würzburg 1876
Semper Natural conditions 1881
Semper Natürliche Existenzbedingungen 1880
Semper Palau-Inseln 1873
Settegast Thierzucht 1868
Seward Dr Duncan 1804
Shaftesbury Man 1749
Sharpe Man 1873
Shuckard Indigenous fossorial Hymenoptera 1837
Sidgwick Methods of ethics 1874
Sidgwick Methods of ethics - supplement 1877
Siebold Parthenogenesis der Arthropoden 1871
Siebold Parthenogenesis in moths and bees 1857
Siebold \& Stannius Anatomie comparée 1850757
Siegwart Menschengeschlecht 1873758
Skertchly The universe 1878

- Sketch of philosophy 1868

Smellie Natural history 1790
Smith, Alexander Morals 1835759
Smith, Andrew Zoology of S. Africa 1849
Smith, Charles Hamilton Dogs 1839-40 760
Smith, C.H. Horses 1841764
Smith, C.H. Human species 1852766
Smith, James English flora 1824-28
Smith, J. Grammar of botany 1821
Smith, J. Introduction to botany 1819
Smith, Toulmin Ventriculidae 1858
Snell Schöpfung des Menschen 1863
Sole Positivismo 1881
Sole Sensazione 1882
Solis y Rivadeneyra Mexico $1790 \quad 768$
Solms-Laubach Corallina 1881
Somerville Physical sciences 1834
Somerville Molecular and microscopic science 1869
Soret Pictet 1872
Sowerby et al. British poisonous plants 1861
Spencer Classification of sciences 1871
Spencer Data of ethics 1879
Spencer Descriptive sociology 1873
Spencer Education 1861
Spencer Essays, 2nd series 1863
Spencer First principles 1860-62769
Spencer First principle 2nd edn 186
Spencer Philosophie 1875
Spencer Principles of biology 1864-67
Spencer Principles of psychology 1855 773
Spencer Principles of psychology 2nd edn 1870-72
Spencer Principles of sociology 1874-77
Spencer Study of sociology 1877
Spencer Study of sociology 1877 774
Spengel Darwinismus 1874
Spix \& Martius Travels in Brazil 1824
Sprengel Entdecktes Geheimnis der Natur 1793
Stainton Butterflies and moths 1857 785
Stebbing Essays on Darwinism 1871
Steenstrup Alternation of generations 1845
Steenstrup Hectocotyldannebsen 1856 786
Steenstrup \& Lütken Coprepoder 1861 787
Stephens British Coleoptera 1839
Stephens British insects 1829
Sterne (ie Krause) Werden und Vergehen 1876 788
Sterne Werden und Vergehen 2nd edn 1880
Steudel Nomenclator botanicus 1841
Stewart Philosophical essays 1818 789
Stonehenge (ie Walsh) The dog 1867
Strasburger Cellules 1876
Strasburger Zelltheilung 1876
Strasburger Zelltheilung 3rd edn 1880 790
Strauss Der alte und der neue Glaube 1872
Stricker Handbuch der Lehre 1868-72
Strzelecki New South Wales 1845
Sturm Raçen 1825 791
Sully Sensation and intuition 1874 two copies 794

- Supernatural in nature 1878
- Survival 1877
Swainson Geography and classification of animals 1835
Swainson Birds 1836-37 795
Swammerdam The book of nature 1758 796
Swank Iron and steel statistics 1881
Swinhoe North China campaign 1861 797
Syme Werner's colours 1821
Tasso Gerusalemme 1821 798
Tayler Christianity 1868
Taylor, John Flowers 1878
Taylor, Richard (ed.) Scientific memoirs 1837
Teale Dangers of health 1878
Tegetmeier Poultry book 1856-57
Tegetmeier Poultry book 1866-67 800
Tegetmeier Profitable poultry 1854 803
Tegetmeier Pheasants 1873 804
Thomas Acrididae 1873
Thompson, J. Ready reckoner 1805
Thompson, William Ireland 1849-51
Thomson Flower garden 1871806
Thorell Études scorpiologiques 1877
Thorell European spiders 1869-70
Thorell Synonyms of spiders 1870-73
Thornton Linnaeus' system n.d.
- Thoughts on mental functions n.d.
Tieghem Traité de botanique n.d.
Tietze Devonische Schichten 1870
Timiriazeff Essay on Darwin 1865808
Tornae Chemi 1880

Trémaux Homme 1865 two copies
Treub Orchidées 1879
Trimen \& Thiselton-Dyer Flora of Middlesex 1869
Tschudi Nature in the Alps 1856
Tucker Light of nature 1831
Tuke Influence of the mind 1872
Turton British fauna 1807
Tuttle Physical man 1866
Twining Science 1870
Tylor Anthropology 1881
Tylor Primitive culture 1871
Tylor Early history of mankind 1865
Tylor Early history 2nd edn 1870
Tyndall British Association address 1874
Tyndall Imagination in science 1870
Tyndall Glaciers 1858
U.S. Entomological Commission Rocky Mt. locust 1880

Vacek Österreichische Mastodonten 1877
Vasseur Terrains tertiaires de France 1881
Vaucher Plantes d'Europe 1841

Veith Haussäugethiere 1856	815
15	

Verity Changes in nervous system $1839 \quad 816$
Verlot Plantes d'ornement 1865
Viardot Libre examen various edns 1871-81 . 819
Vincent 1875 Yearbook 1876
Virchow Cellular pathology 1860
$\begin{array}{ll}\text { Virchow Niederer Menschenrassen } 1875 & 823\end{array}$
Virchow \& Holzendorff Vorträge n.d.
Vöchting Rhipsalideen 1873
Vöchting Melastomeen 1875
Vöchting Organbildung 1878
Vogt Lectures on man 1864
Vogt Lettres physiologiques 1875
Vogt Microcéphales including Quatrefages' Review 1867
Vogt Aufgänge der Organismen 1870
Volz Kulturgeschichte 1852
Vries Ranken van Sicyos $1880 \quad 829$
Vulpian \& Carville Appareil vaso-moteur 1875
Wagner, Moritz Darwinian theory 1873 830
Wagner, Rudolf Vertebrates 1845
Wagner, R. Zoologisch-anthropologische Untersuchungen 1861831
Waitz Anthropology 1863
$\begin{array}{ll}\text { Wake Man } 1868 \text { two copies } & 832\end{array}$
Waldner Deutschlands Faune 1879-80
Walker, Alexander Intermarriage 1838
Walker, Francis Monographia Chalciditum 1839836
Walker, John and Charles Atlas of British Isles 1837
Wallace Natural selection 1870
Wallace Natural selection 2nd edn 1871
Wallace Geographical distribution 1876
Wallace Island life 1880
Wallace Malay archipelago 1869
Wallace Supernatural 1866
Wallace Tropical nature 1878
Wallich Eminent men 1870842

Waltershausen Klimate 1865
Walther, Alfred \& Molendo Die Laubmoose Oberfrankens 1868
Walther, Friedrich Der Hund n.d.
Walther, F. Das Rindvieh 1817 844

- Wanderings at Kew n.d. 845

Ward Investments 1852
Warington Creation 1870
Waterhouse Mammalia 1845-48
Waterhouse Marsupialia 1841
Waterton Natural history 1838
Watson, H.C. Cybele britannica 1847-60
Watson, H.C. Compendium of Cybele britannica 1868-70 850
$\begin{array}{ll}\text { Watson, H.C. Distribution of British plants } 1843 \\ \text { Watson, Thomas Physic } 1857 & 852\end{array}$
Watson, Thomas Physic 1857

Webb Dogs 1876
Weber Taubenfreund 1850
Weddell Bolivie 1853
Wedgwood Language 1866
Wedgwood Language 1866
Wedgwood Understanding 1848
Wedgwood English etymology 1872
Weinland Meteoriten 1882
Weinland Meteoriten 1882
Weisbach Reise der Novara 1867
Weismann Daphnoiden 1879
Weismann Descendenz-Theorie I 1875 855 85
Weismann Descendenz-Theorie II 1876
Weismann Descent 1880-82 857
Weismann Isolirung 1872
Weismann Berechtigung der Darwin'schen Theorie 1868 860
Wells Two essays $1818 \quad 861$
Westwood Classification of insects 1839-40
Whewell Inductive sciences 1837886
White Selborne $1825 \quad 868$
White Selborne new edn $1843 \quad 870$
Whitney Gravels of Sierra Nevada 1879
Whitney Language 1875
Whitney Oriental and linguistic studies 1873
Wichura Bastardbefruchtung 1865
Wiesner Bewegunsvermögen der Pflanzen 18818873
Wiesner Wissenschaftliche Botanik 1881-89 874
Wiesner Heliotropische Erscheinungen 1878-80
Wigand Darwinismus 1874-77
Wilckens Form und Leben der Hausthiere 1878
Wilckens Naturgeschichte der Hausthiere 1880
Wilckens Rinderassen 1876
Williamson Recent Foraminifera 1857
Williamson Microscopical objects 1847
Wilson, John British farming 1862
Wilson, Owen British Lepidoptera 1877
Winkler Poissons fossiles n.d.
Winkler Tortues fossiles 1869
Wollaston Insecta Maderensia 1854
Wollaston Variation $1856 \quad 876$
Wolstein Paaren und Verpaaren 1836
Woodward Shells 1851-56
Wright Darwinism 1871882
Wright Philosophical discussions 1877
Wundt Physiologische Psychologie 1880
Wundt Physiologie humaine 1872
Würtenberger Ammoniten 1880 two copies
Yarrell British fishes 1836 883
Yarrell British birds 1839
Youatt Cattle 1834 885
Youatt The dog 1845 888
Youatt The pig $1860 \quad 889$
Youatt Sheep 1837 890 88
Young Natural philosophy 18078895
Zerffi Development of art 1876
Ziegler Atomicité et zoicité 1874
Zuckerkandl Reise der Novara 1875

* The annotations in Rolle were reconstructed from Martin and Uschmann Friedrich Rolle 1827-87, ein Vorkämpfer neuen biologischen Denkens in Deutschland Leipzig 1969. CD's copy of Rolle seems to have disappeared.

ABERCROMBIE, John Inquiries concerning the intellectual powers and the investigation of truth 8th edn; London; John Murray; 1838 [CUL]
beh, che, fg, h, he, pat, phy, sx, t, ta, ts, y
NB1 Origin of shame \& blushing, fear \& anger mixed??
NB2 It requires much attention to observe in self an habitual action.
Nothing for Species Book
vi $25 m, 26 m$ viii $14-16 m$ 2 $21-22 m / 21 u$ "organs 1 mind" $/ 22 u$ "external 1 brain" 7 wt/wt It is clearly common to animals, the dogs $\%$ does not doubt, that the smell of a partridge shows partridge there. $\mathrm{XX} \mid$? $3-6 \mathrm{~m} / \mathrm{w} \mathrm{X}$ is it with animals? Yes. V. p. 8 wb XX His master taking a gun, is to the dog a law of nature that he is going out shooting.- he learns this by his own experience.- he learns instinctively, that $* \mid ? 8$ wt What is cause of difference.- if dogs sees take up hat, it is long before he knows this means to go out of doors.- Association \& Causation united somehow. $7-11 m / w$ This applies to animals wb as simple animals must also have causation the conviction of truth may be owing to * simple causes followed by uniform effects, only affecting such beings. 9 $4-6 m 101-4 m 1224-27 m 134-5 m, 8-13 w$ Hope love joy sorrow $8-11 m / w$ sublime terrible pleasure of imagination 14 19-29m/w do not understand $w b$ is fear active or passive emotion? $224-6 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "wills", wb How far can these be simplefied? $262-5 m$ $278-11 \mathrm{~m} / \mathrm{w}$ functions of the nervous system, as gravitation of matter. $17-23 \mathrm{~m} / 22 x, 19-20 \mathrm{~m} /$ w $1 / 2$ instincts $w b$ \& by these laws, such as of gravity, of crystalline arrangement of particles 28 1-10m/1".../1-10m, wb By Materialism, I mean, merely the intimate connection of kind of thought, with form of brain.- like, kind of attraction with nature of element 29 wt Here organ produces life! - \& life \& thought intimately related 3-19m, 19$22 w$?will my theory apply here? $27 w$ z Generation! 28u "functions", wb Elective Affinity is a thing not analogol's to others qualities of bodies, yet is supposed property of $\&$ matter, so would I say thought was from analogy of organs.- $301-20 \mathrm{~m}, 21-26 \mathrm{~m}$ $31 w t / 1-9 w \times$ From the myriads of animals that have existed We may assume thought as function of matter, \& then say, to what function of matter, shall we compare the phenomena of attraction? - This assumption is as justifiable as the other we only know thought, as a phenomenon attendant on
structure, \& we only know elective attraction, as function of matter. $18 x / w \times$ But why should not matter have such function, as plain facts indicate, as well as they have attraction 32 wt What a poor argument, liver continues to secrete bile, \& testes same vivifying semen! $1-3 m, 5-10 \mathrm{~m} /!$? 33 wt a Then animals immortal.- $w t$ xa. As the elective affinity of a salt changes, when its elements unite in composition, so may mind.- $2 u$ "thing mental" $/ 2-4 m / w$ xa $9-29 m$, $13-29 m / 22 x / w b$ good $341-25 m$, $w b$ it is sufficient to point out close relation of kind of thought \& structure of brain $359-13 \mathrm{~m} 39 \mathrm{wt} /$ $1-11 w$ But some of these impressions may be hereditary.- but they are habitual impressions \& therefore * about which there is no consciousness, otherwise, mind could act, without having had perception. \& why not? would not simple mind feel lust?-7-9ml $x, 23-29 \mathrm{~m} / 25 \mathrm{w}$ emotions? $408-14 \mathrm{~m}, 15-17 \mathrm{~m} /$ $16 u, 17-21 m 42 w t$ whether dog first time smells partridge knows there is something there. $3-7 \mathrm{~m} /$? $5418-29 m$, wb p. 59 On other hand by attention perception becomes more perfect, \& likewise willing does - $551-29 m$, $28-29 m 5614-17 m / 1-25 w$ ought this not to be expressed as willing becomes uncon-scious.- as perception becomes uncon-scious,- so do impressions, \& hence ideas, \& actions consequent on these ideas. $-w b$ a person whistles - \& tricks are wholly unconscious actions.- great effort of attention to perceive them these acts are only unconscious in the steps 57 wt An action becomes habitual if repeated without at same time, without much attention at first as taking off cover to tea-chest. 66 3-21m, 3$4 m, 9-11 m 67 \mathrm{zt}, 21-23 m, w b$ is Conscience effect of certain lines of action, useful on the large scale having been done on the less scale $80 \quad 3 u$ "marvellous", 4-8m/5u "miraculous" 92 18-20m 93 1-9m, 12-26m 94 1-4m $9728-29 m 98$ wt X is not an indistinct idea seldom repeated, because unsatisfactory? 2-3m, 11-12X 99 wt like manner we learnt to repeat at school - 1 think by same association. $1-16 \mathrm{~m} / 8 \mathrm{X}, 17 \mathrm{u}$ "attention"/w repetition? 101 wt Conception of a view or is a perfect instance of association of many impressions 4-11m, 28x/ u "reverie", 11-29w X As far as the mind is concerned nearly like sleep. the relations of ideas just past not quite so broken - body different state $w b$ argument for mind working always during sleep $w b$ habit must be associated will.- $10419 u$ "of emotion"|18-24w Does thinking of vexing thing, bring other

ABERCROMBIE
disagreeable thoughts? 105 18-29m 109 24$28 m / x$, wb Scarcely ever a new thought arises from this process - only old associations 110 11-13m, 19-29m/29w imbecility of age? $1111-4 m, 23-29 m / x / w t \times$ I know from experience * memory of many unconnected facts is far most easy to me by such local associations. 114 11-14m/?/14u "are little acquainted" $115-16 \mathrm{w}$ what difference? 116 wt A dog. when he has had good hunt after any animal in a spot in a hedge recollects it, \& always go there with pleasure \& eagerness $w b$ Horse sweating, when he hears hunting horn in stable. Euphrates if he guessed he was going to race by little water being given him mad with eagerness all night. 117 wt Horses wonderful local memory $20-24 m 122$ 2-3m 132 19-24m 134 17-19m 143 wt 3 These cases like Miss Cogans, \& serve to show that affections of brain will recall facts in $\%$ an individual life after long periods.- $1-8 m, w b 3$ These may be adduced as nearly as wonderful a priori as instincts - an habitual action being repeated would be more to my purpose.144 14-24m 147 17-29m (Prichard) 148 1-3m 149 1-6m 150 3-8m, 19-29m 151 9-13m/x, 26$29 m, w b$ Exactly like my Father's case of Archdeacon Corbet $15211-15 m 1543-7 m$, $22-27 \mathrm{~m} /$? , wb Animals minds are influenced by age, like that of man $15513-16 m / 14 u$ "Dr. Beattie", wb X What has he written? 156 5$10 \mathrm{~m}, 18-26 \mathrm{~m} 157$ 11-15m, 19-28m 158 10$13 \mathrm{~m} /[\ldots] / \mathrm{w}$ (1)(a) $14-16 \mathrm{~m} /[\ldots] / \mathrm{w}$ (2) $w b$ (a) Does not a bird when it builds its nest, use abstraction respecting place, \& softness \& elasticity of materials, which are not constant in kind, but only in quality.- $1591-5 m, 10-$ $13 \mathrm{~m} / 11 w$ (a) $w b$ animals have ideas of colour.- mad horse (?Cline) dread of scarlet. of any kind.- - Smells. do - 161 19-29m 162 wt Peacock has idea of beauty?- $3-8 \mathrm{~m} /[\mathrm{I} .$.$] ,$ $w b$ Animals sometimes suffer from abstraction. Thus the Casarca which bores through walls, has an abstract idea of vertical surface of hard earth as the requisite, \& does not combine, such conditions as imply a cliff of earth $163 \mathrm{wb} / 7-$ $24 w$ When cat pounces \& runs after feather, it knows it is not mouse, but does it not use imagination or picture to itself it is. $-\mathrm{X} \rightarrow$ quote Madam Necker. on playing of children- 164 20-22m, wb What are the feelings of a dog, when he bays the moon? 165 wt When two Male birds are rivalling each other in singing is it not a work of imagination? 167 wt is not imagination, abstraction of several different parts of
several ideas \& their unions, instead of as in pure abstraction of same qualities (as colour \&c) * several ideas? 23-24m/? 168 27-28m/? $1721-6 m / w$ common to animals $10-13 \mathrm{~m} 173$ $1-29 m / 4-18 w$ very Poor $17426-28 m 175 w t$ If because such combination is observed in an animal, it is called instincts.- there is an end of argument. 1-6m $176 \quad 8-14 w$ Yet imagination must be always checked by reason - otherwise dreaming $9-17 m$, $21 u$ "Reasoning"/22u "reason", 26-27u "Discursive Faculty", wb 1 suspect the Paper in Zoological Journal will be worth study.- 177 $3-7 m 179$ wt Perhaps mathematical reasoning does not.- each step there does not require the memory \& knowledge of all contingencies,- it is merely to find the step, \& then to pursue the deep train.- $4-6 \mathrm{~m} / \mathrm{w}$ requires properly arranged memory XX 181 12-13m $18512-13 m *$, 24-29m $18717 w$ All Poor 17-23w But yet must be thought over with regard to Transmutation of species theory 191 wt Would not simple association of ideas lead to this expectation, which would be believed in till contradicted (which it is not) by experience.- $13-19 m / 14 x$, $21-$ $22 \mathrm{~m} / \rightarrow / \mathrm{wb}$ Surely all this may be resolved into simple fact we trust our memory, until taught to contrary. 199 wt A man may wish to jump from a bridge to save another, but absolutely will not let him.- Makes the muscles fall, \& heart sink - 4-12m 202 across whole page.w See following Pages \& Copy all this $\ddagger w / w t$ H believed - pretty world we should be in!- But it could not be believed excepting by intellectual people - if I believed it - it would make no difference in my life. for I feel more virtue more happiness - Believers would a will only marry good women \& pay detail attention to education \& so put their children in way of being happy. wt it is yet right to punish criminals for public good. wt * All this delusion of free will, would necessarily follow from mere feeling power of action.- wt View no more unreasonable, than that there should be sick \& therefore unhappy. men $w t *$ What humility this view teaches $i w$ * A man $\&$ hearing bible by chance becomes good. this is effect of accident with this state of desire (neither by themselves sufficient) effect of birth \& other accidents: May be congratulated, but deserves no credit $w b \diamond P$ For wickedness is no more a man's fault than bodily disease!! (animals do persecute the sick as if were their fault). If this doctrine were. H $2037 u$ "consideration"/wt Yes but what determines his consideration?- his own previous
conduct - \& what has determined that? \& so on - Hereditary character \& education - \& chance (indepdt of his will) circumstances. $3-8 w$ Changes of character possible from change of organization $11 u$ "desires" "conduct" $/ w$ What has given these desires \& conduct $13 a$ "agent" but not desired 4-27w When opposed desires are absolutely equal which is possibility. May free-will then decide.- but it must be decided by habit or wish \& these all originate as before 15-27w Then why does not act of insanity give shame?? wb According to all this ones disgust at villain $*$ is nothing more than disgust at some one under foul disease, \& pity accompanies both. Pity ought to banish disgust.- $\mathrm{P} \rightarrow 204$ 29"... 205 1-4m/4...", 15$17 \mathrm{~m} / " . . . " 206$ 9-12m, 16-20m, wb A man may put himself in the way of above accidents. but desire to do so arises as before; \& knowledge that the effect will be good, arises as before. education \& mental disposition.- wb. One feels how many actions, not determined by will, passion When the motive power feeble \& complicated \& opposed we may free will (or chance $2094-5 m / 27-28 m$ (Stewart) $210 w t$! presume these first truths are something quite distinct from instinctive knowledge. or passion - as fear of death.- sexual desire pleasure of affection or charity $-1-5 \mathrm{~m} /{ }^{\prime \prime} . .$. "/ w How many of them do animals possess? 212 10-15m $213^{-9 w}$ The following pages very poor 217 14-17m 218 8-17c/12u "required"/11-14w so much the better! Feehunting doctor $w b$ in short that your hypothesis shall be real cause with respect one item at least in group of facts - if it be only possible cause. hypothesis of very poor kind. V. M. le Comte 219 18-20w to 256. wretchedly poor - as far as originality goes 221 3-6m 233 wt Main difficulty of judging probabilities multiplied into probabilities. \& the alternatives omitted.- present always, except in mathematical reasoning $1-20 \mathrm{~m} / \mathrm{w}$ again the chance of several independent proofs from probability tending to one end, if not true $2411-5 m 2518-12 m, 10-12 \mathrm{~m} / \mathrm{z} / \mathrm{w}$ yes 257 wt X| In insanity, there is belief, though opposed by many of the senses - in dreaming, mainly passive belief from absence of evidence of senses $29 \mathrm{~m} / \mathrm{X}, 26-$ $29 w$ drunkeness more * closely allied than dreaming 258 wt no, a vivid thought neither pleasant nor painful but merely vivid cannot be dismissed even by strongest will,- is insanity an unhealthy vividness of thought. $7-8 m / u$ "is linsanity", $9-19 w$ they ought not
to be classed together, * the reality of the thought or absence of doubt in one case being owing to the weakness absence of contending impressions, \& in insanity opposed to many present impressions. $17 \mathrm{~m} /$ $\rightarrow / w b$ In Spectral illusions, what is history of kind of impssn $259 w t$ (a) There is some sophistry here: insane man has perfect consciousness - somnabulism has not.- $2-$ $5 m / w$ a $7-16 m, 12-17 m$, 21-23w 5th Drunkeness Nitrous oxide 260 21-22m, wb It would be worth while to write down every dream 275 wt \& double consciousness \& likewise many which from repetition have ceased to be objects of conscious memory namely all habitual movements $8-17 \mathrm{~m} / 12 x /$ 17? 287 16-19m, 23-28m 289 1-8m, 10-19m, $w b$ I have a distinct recollection of solving some geological puzzles in my sleep - what it was I forget, which I am surprised at for I have so clear an indistinct notion. $29119 u$ "dream"/w ? dream - wb Mem: my father's cases of quick oblivion - 311 wt like the memory after apolexy in some cases "Clubs are trumps" \& V. ante 1-5m 312 24$29 m$ (A. Comte) 313 18-20m * $3141-4 m / 2 u$ "pleasure"|?, 8-19w No account is here taken of the consciousness of people, that they are insane $3155 a$ "is not corrected" can not be corrected in the one case, dreaming, $6 a$ "would." , \& in the other case, is so vivid, that external world is almost wholly neglected. 10a "state" partially $10 a$ "will." ; insane people do to certain extent vary, \& forget the insane train ideas. $15 u$ "higher states" "mania" $/ w$. My father considers the two as wholly different. 27a "some impression has" any impression is $28 a$ "of the mind" by the mind $/ w b$ the thinking machinery acting with unequal \& praeternatural force $28 a$ "and" accordingly $316 \quad 2 a$ "are calculated immediately to" though often rightly perceived (as in D Ashe \& in case of man eating porridge) do not immediately 318 14-15m 320 wt Surely as in passion from fatigue, (or fear from sickness) from long habit some object must be fixed on \& it scarcely signifies what it is. $2-4 m, 26-28 m, w b$ just as passion of the above kind is generally most unreasonable 321 11-14m 330 wt low spirits is to melancholia : : passion to mania - frame of mind in the state \& any idea fixed on.- 4$7 m / 7 u$ "occasional cause", $12 a$ "constitutional peculiarities" diseased state of brain. 349 19$21 m 355$ 26-29m 356 2-12m, 13-26m 357 12$13 m 3631-5 m 375 w t$ if an idea was called up, with this degree of vividness, like a concepcion - no one would doubt it was a

ABERCROMBIE
concepcion $8-11 \mathrm{~m} / \mathrm{w}$ how completely ungoverned $3791 \mathrm{~m} / \mathrm{w}$ All trash 431 11-15m 433 2-12m

ABERNETHY, John Physiological lectures, exhibiting a general view of Mr Hunter's Physiology, and of his researches in comparative anatomy 2nd edn; London; Longman, Hurst Rees, Orme \& Brown; 1822 [CUL; ED; 352pp]
$13615 u$ "trowel"/w a mistake
in same binding:
Introductory lectures in the year 1814 [publ $1821 \& 1823]$
The Hunterian oration for the year 1819
part of the Introductory lecture for the year 1815 [publ 1819]

ACÉBLA, Alexandre Les Impiétés Paris; A. Ghio; 1878 [Down] 80

ACHARIUS, Erik Methodus qua omnes detectos Lichens 2 vols.; Stockholm; F.D.D. Ulrich; 1803 [Down, ED]

ADAMS, Andrew Leith Field and forest ramblers London; Henry S. King \& Co.; 1873 [CUL, I by author]
ad, beh, fg, gd, mg, oo, ss, tm, v
NB 660, p69.
Sexual Selection Birds good- p76 * Q
Rein-deer Horns - 89*
139
S. Selection - Birds Wax-wings - $153 \bullet$ Q 167, 182, 190, 192
SB \propto p.60. Two differently coloured vars. of sable with fur of qualities live in different kinds of wood, \& colours apparently of service to them in each case; but both vars. highly variable
p.69. Racoons first expelled \& now returning in numbers to cultivated trails.
p. 139 Dung of Bears almost made up of seeds - Dispersion.
p183 Birds common to America and Europe \& vice versâ- depends on winds. during periods of migration
p190 several sp. of duck which occasionally nest in trees

60 15-23m, 30-35m 61 33-36 $\rightarrow 62$ 11-18m 69 12-20m 76 26-35m 77 6-8m, 9-11m $897-9 m$, $12-14 m, 26-27 \mathrm{~m}, 31-33 \mathrm{~m} 13933-35 \mathrm{~m} 153$ 29$32 m, 32 \rightarrow 1541-5 m 16726-35 m$ (Baird) 168 2-16m 182 26-35m 183 1-10m, 27-35m, 35 \rightarrow 184 1-3m, 14-29m 185 27-31m 190 10-20m 192 20-27m

AGASSIZ, Alexandre Illustrated catalogue of the Museum at Harvard College - Revision of the Echini 4 Parts and Plates; Cambridge, Mass.; 1872-1874 [Down] \wp

AGASSIZ, Alexandre Illustrated catalogue of the Museum of Comparative Zoology at Harvard College, No. 2, Acalephae Cambridge, Mass.; Sever \& Francis; 1865 [Down, I]

AGASSIZ, Alexandre North American Starfishes Cambridge, Mass.; 1877 [Down, I]

AGASSIZ, Alexandre The zoology of the voyage of H.M.S. Challenger, Part 9, Report on the Echinoidea Longmans \& Co.; 1882 [Down, I] \wp

AGASSIZ, Alexandre and POURTALÈS, L.F. Illustrated catalogue of the Museum of Comparative Zoology at Harvard College: Echini, Crinoids and corals Cambridge, Mass.; 1874 [Down] \wp

AGASSIZ, Elizabeth and Alexandre Seaside studies in natural history: marine animals of Massachussets Bay: Radiates Boston; James R. Osgood \& Co.; 1871 [Down, I]
NB PediallariaeO p105 no 105 18-26m, 18$22 m, 27 \rightarrow 106$ 1-3m, 6-12m, 10u "certain lines", 12-16m 111 1-5m, 4-5m

AGASSIZ, Louis Address delivered on the centennial anniversary of the birth of Alexander von Humboldt Boston; Boston Society of Natural History; 1869 [Down]

AGASSIZ, Louis Bibliographia zoologiae et geologiae, corrected and edited by Hugh Strickland 4 vols.; London; The Ray Society; 1848-54 [Down]
gd, or
vol. 1 NB Brehm origin of Cat Isis 1829 VI. p.639, Brehm do on Pigeon Columba Isis 182811 p136
3 29-31m $1211 m 15736-37 m$ (Audouin and Milne-Edwards) $41428 m 4163 m$
vol. $217512 x, 16 x, 20 x, 22 x, 23 x, 26 m, 26 w$ P $29 m, 29 w \mathrm{P} 33 m 1761 m, 1 w \mathrm{P} 25 w \mathrm{P} 26 m$, 30 m 272 "Dufour. $2 " m \quad 27311 m \quad 276$ "Dufour.62" m
vol. 3 NB1 E. Lankester on animals of Sulp. Springs
NB2 Karsten Nova Acta omitted. Vol XXI
p. 643 - important paper on Distrib of Indian Archipelago
p185 - On the Loves of Ants \& Aphides 106 4-6m 153 3-4w Reisen omitted 177 "Hamilton. 1 "u "Proc.|II"/w p545 "3"u "Proc.IIII", "6"u "Journ.II", "8"u "Geol.|V"| wb Last Paper.
vol 4 NB p. 419 Temminck on Indian Archipelago-
62 "126" $m 186$ "Richardson. 1 " u "1823", " 6 " m, "13"m 187 "19/20/21" m, "27" m, "30" m, "31" m, "Richardson \& Swainson.1"u "1831", "Richardson, Swainson E Kirby.1"u "1829। Quadrupeds" 419 " 20 "m 532 "Waterhouse.25/ $33 / 34 " m \quad 533 \quad " 58 " m \quad 534 \quad " 85 " m \quad 550$
"Westwood. 22 " $m 551$ " $48 / 49$ " $m 552$ " 76 " $m 553$ "86/95/103" m 554 "111/117/118/121/122/125" m 555 "135/153" $m 590$ "Yarrell. 23 " m 591 " 40 " m

AGASSIZ, Louis Contributions to the natural history of the United States of North America vol. 1, part 1: Essay on classification n.d. [CUL, I]
af, cc, ch, co, em, fo, gd, geo, in, is, mn, no, 00 , or, rd, sp, t, ta, ti, tm, v

SB \quad I β, ∞
 Agassiz on Classification

p. 5 My valuation of Groups

10 Agassiz explanation of Rudiments
15 Ambylopsis very remote affinities. p. 15 Proteus affinities of
24 Admits the Vertebrata p. 31 probably arose with other types. Well may he say what changes ($p .24$) has 30 years produced. \Leftrightarrow in date of appearance of groups 30 Isolated Fam. of Fishes.- p.42. do Freshwater abnormals
37 Admits that conditions do not explain distribution
38 No class exist without having some cosmopolitan genera
39 On creation of number of individuals
41 Quotes Waterhouse of representation of all orders by Marsupials in Australia
44 curious tables of relation of Scincus with no relation to geograph. Distribution
49 Aquatic Animals bigger than terrestrial
53 Same species have lived for 30,000 years or 200,000 years as inferred from coral-reefs.
58 Chelonians much individual variability
61 On Lungs of spiders not really two kinds. 74. Possible explanation of the strange Mollusc within Synapta
82 On Classification of Fishes
100 \& 113 \& 115 On Embryological \& geological Succession 107 to 111 Classificatory rank \& Geolog. Succession.102 Lund on succession of Types.

117 On combinations of characters in old Forms
124 Parasites belong to all orders (no Strepsiptera)
〈line across page〉
162 the sentences from Linnaeus about genera
166 idea of sp . proceeding from single pair almost given up by all naturalists!
172 On the development of parts in order of importance: I suspect * importance applies solely to being important for classification; if so simple case as might be expected.
225 on degrees of resemblance of embryos
3 9-10u "peculiarities Istructure", $12-13 \mathrm{~m} / \mathrm{w}$ Geograph Distribution? $421-25 m$ 5 2-8w । believe species genera \& classes all equally good or false, as one pleases to call it 9$12 w$ Botanists far better authority than Zoologists. 10 11-15m 15 11-12m, 4-26m/25u "Proteus anguinus"|26u "North|Japan" 17 27$31 \mathrm{~m} 2320-21 \mathrm{~m} / \mathrm{w}$ Agassiz himself 23-25m 24 4-7m/!, 36-38m $2913-16 m / 14 a$ "Classes" in 4 great kingdoms 16-18m 30.a $33-34 m / 34 u$ "Labyrinthici", wb How large a group 30.b $30 u$ "Goniodonts", 31-34m/31u "Chaca"/wb What? Abnormal? Amblyopsis is so 31 1- $4 \mathrm{~m} /$ $!, 5 u$ "Radiata" $/ w$ * Planaria 37 1-6m 38 19$22 m / ? * / u$ "class", $22-24 m / 23 u$ "majority" 39 32-34m/! 40 15-19m $4112-24 m / 21 u \bullet / w$ no 42 19-25m/20u "Labyrinthici"/22u "Cestraciontes" 43 17-19m 43.a 17-19m $443 a / 2-13 w$ but is this a natural arrangement? May there not be parallel differences in different countries; those in same countries being really allied.-45 $26-31 m 468-12 m 4913-15 m$ 53 25-26m $54 \quad 8-10 m$ 57.b $32-34 m$ (T.W. Harris) 58 13-15m/13-14u "seenlidentical" 60 9-10m, 18-20!!/19u "tolerable precision" $6135-$ $36 \mathrm{~m} / \mathrm{m} 65 \mathrm{zb} 66$ 6-11z 67.a 31-36m 74.b 16$31 m$ (J. Müller, De Bosset, Gegenbaur) 75 13$14 m$ 82.a $28-38 m 852-6 m 891-2 m 944-8 m$ 100 1-13m, 24-28m 102.a 29-33m (Lund)/31u "1841" 104 22-25m 107 25-26m 108 22-25m 109 6-13m, 22-29m 110 9-16m, 30-31m/31u "Seel26" 111 29-35m 113 34-36m 114 12$15 m, 27-29 m 1154-9 m, 15-17 m, 20 m, 27-$ 29m, $30-34 m /$ "..." $/ 31-32 u \quad$ "verylground" 117 10-14m/14u "Ichthyosauri"/?/w Mere analogy $22-23 m, 25 c / w \notin 119 \quad 19-21 m$ (J. Müller) 120 1-7m 121 wt All rubbish 3-4m/w oldest 12-14w !!Eocene Monkey 32-35m 124 7-10m/w Strepsiptera $14030-36 m 1484-10 m$ 151 13-18m (Cuvier) 162 1-6m (Linnaeus) 163 27-30m 165 6-10m 166 4-9m, 33-36m 167 19$24 m, \quad 25-26 m, \quad 28-30 m \quad 169 \quad 13-18 m / w$ Assumes that these points are not variable

AGASSIZ, NAT. HIST. U.S.
$17031-34 m /!$, wb All this discussion merely shows that no talent can really plainly define principles of Classification 171 6-8!/6u "suborders", $12 u$ "sub-families", $15-16 \mathrm{~m} / \mathrm{u}$ "subgenera", 20-21u "largel subdivisions", 23-26m/ !, 33-34m, 38m 172 3-5!, 13-17m, 31-35m 173 $26-27 \mathrm{~m} / \mathrm{w}$ - $17422-24 m 1759-11 \mathrm{~m}, 14-15 \mathrm{w}$ but the teeth are in gums $15-17 \mathrm{~m} 189$ 23$26 \mathrm{~m} / 25 u$ "successively llimited" 1943 m 195 $31-32 m, 37-38 m 22126-29 m 225$ 6-7m, 1112m, 15-16m 225.a 24-26m (Huxley, von Baer, Baden-Powell) 225.b 27-31m (Huxley, Cuvier, von Baer) 228 26-32m

AGASSIZ, Louis De l'espèce et de la classification en zoologie trans. F. Vogeli; Paris; Germer Baillière; 1869 [CUL]
beh, v
NB $97 \diamond$ Animals have conscience and soul Man

- 106 Love making of Snails

380 varieties See \&े
97 27-37m 99 11-15m (Ehrenberg, I. Geoffroy)
100 1-9m 106 13-20m/13-17[...] 380 3-11m
AGASSIZ, Louis Lake Superior: its character, vegetation, and animals, compared with those of other similar regions Boston; Gould, Kendall \& Lincoln; 1850 [CUL, I]
$a d, b r, c c, c i, d v, e m, f o, g d, g e o, h l, i g, m n$, no, or, sl, sp, sy, t, ti, tm, v, y
NB p. 406 Scratches
SB1 p.13; p.34; 36; p.141; p.142; p.150; p.154; p.186; p. 192 to 200; p.239; p.240; p.241; p.246; p.252; 255 to 377; 398

SB2 \square R
1.

33 Gar-pike-Ganoid of F.W. in N. America
34 Another rather ancient Fish in F.W.
36 on lowness. because like Embryo.
150 On analogy of recent of N. America \& Miocene of Europe
175 List of F.W. Plants of Lake Superior; I doubt whether any use
187. 193 On ant. \& post. extremities of the Bat, being alike at early age - so in Birds 195 on relation of embryology to geolog succession.
198 on order in Cephalopods - Nautilus simplest
239 - On entomology of *L. Superior - No. American forms.- a common Fauna with Europe \& N. Asia - species different but most close (Mem. Kirby thought same) admit identity in Arctic, \& most close analogies in L. Superior.

240 on greater range of aquatic Beetles
247 F. Water animals under similar latitudes are uniform as vegetation
2.
*252 On embryonic forms fish not deserving a separate class.
255 Ganoids \&c in F.W.
257 on impossibility of making groups of equal value
260 Reptilian character of Ganoid, "enbodying prospective view of another class"
265 on Families intermediate in character \& in space or position.
285. Excellent case of Percopsis of Chalk, which combined characters, which soon diverged, intermediate between Ctenoids \& Cycloids.
289. Hardly one Family in which some species are not both Marine \& F.W.
292 - case of variability in a Perch, good as for Agassiz
*317. Esox boreus is made distinct by Agassiz
327. Account for uniformity of Salmonidae by uniformity of conditions
352 Range of Cyprinoids p363
374 Are F.W. Fish of N. America distinct〈over) 3.
375. On F.W. Fish being analogous with those of Europe \& Asia
377 On shoals created as shoals
13 38-40m 33 15-16m, 31-34m 34 4-8m, 16$22 w$ Percopsis p. 285 20-23m, 29-32m 3624 $27 \mathrm{~m}, 31-33 \mathrm{~m}, ~ w b$ * an entomostracous animal is lower than cirripedes $14136-42 m$ 142 15u "anylliving", $16 u$ "guidance 1 man", 17-20m/!/18u "thelover" 143 18-24m 150 1$6 \mathrm{~m} /!/$? $154 . \mathrm{a} 16 \mathrm{~m}$ 155.a $3 \mathrm{~m}, 7 \mathrm{~m}, 9 \mathrm{~m}, 11 \mathrm{~m}$, $13 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}$ 156.a $15 \mathrm{~m}, 28 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m}$ 157.a $3 m, 5 m, 24 m, 25 m, 27 m, 35 m$ 158.a $13 m$, $25 m, 29 m, 35 m, 36 m$ 151.a $4 m, 7 m, 8 m, 12 m$, $15 m, 16 m, 20 m, 22 m, 29 m, 32 m, 34 m$ 162.a $3 \mathrm{~m}, 6 \mathrm{~m}, 8 \mathrm{~m}, 10 \mathrm{~m}, 13 \mathrm{~m}, 16 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 37 \mathrm{~m}$ 163.a $8 m, 11 m, 19 m$ 164.a $9 m, 25 m$ 165.a $10 m$, $31 \mathrm{~m}, 33 \mathrm{~m} 166 . \mathrm{a} 11 \mathrm{~m}, 13 \mathrm{~m}, 18 \mathrm{~m}, 20 \mathrm{~m}, 24 \mathrm{~m}$, $27 \mathrm{~m}, 37 \mathrm{~m}, 38 \mathrm{~m}$ 167.a $3 \mathrm{~m}, 5 \mathrm{~m}, 11 \mathrm{~m}, 14 \mathrm{~m}, 20 \mathrm{~m}$, $22 m, 25 m, 29 m, 30 m, 31 m, 33 m, 37 m$ 175.a $4 m, 5 m, 7 m, 8 m, 14 m, 15 m, 16 m, 18 m, 20 m$, $22 \mathrm{~m}, 24 \mathrm{~m}, 25 \mathrm{~m}, 31 \mathrm{~m}, 33 \mathrm{~m} 176 . \mathrm{a} 8 \mathrm{~m}, 9 \mathrm{~m}, 10 \mathrm{~m}$, $17 \mathrm{~m}, 18 \mathrm{~m}, 23 \mathrm{~m}, 27 \mathrm{~m}, 31 \mathrm{~m}, 34 \mathrm{~m}, 38 \mathrm{~m}$ 177.a $9 m, 11 m 1865-9 m, 24-27 m 1878-11 m, 34-$ $39 m 192$ 25-34m $19325-28 m, 35-41 m / \rightarrow 194$ 8-18m, 27-29m/28u "equally|fin", 34-37m 195 29-37m 197 2-6m, 14-21m 198 11-26m 199 6$8 m, 10-13 m, 31-36 m 2397-14 m / 7-8 w$ see to Plants $10-12 w$ very singular $14-15 w$ Europe
first cold 14-19m, $23 u$ "many genera", $24 u$ "Europe 1 Asia", $25 \mathrm{~m} / \rightarrow$, 34-35 \rightarrow 239* 3-7m, $11-16 \mathrm{~m}, 16-20 \mathrm{~m} / 19 u$ "analogous species", 24$27 \mathrm{~m} / 25 u$ "equivalent species", $27-31 \mathrm{~m} / \mathrm{w}$ Subgenera $33 u$ "Arctic circle", 35-36u "Wel points" 240 11-15m, 19-22m, 28-31m 240* 3237 m 246 18-23m/! 247 26-27!!, 27-28m $2497-$ $8 m 252$ wt X It comes to this that arrested development ought not to weigh with difference of full development; I doubt truth $9-18 \mathrm{~m} /$?/X $25522-27 \mathrm{~m} /$?/23u "ten 1 species", 29-32m, 34-37m 257 6-13m, 13-15m 258 1$6 m 259$ 14-21m $26020-22 m, 29-31 \mathrm{~m} /$ "..." 261 13-17m, 17-19m, 28-30m 262 1-7m 263 32$35 m 2641-4 m 265$ 17-19m, 20-21m/w New Law $15-28 m, 32-36 m$, wb insects wd illustrate this or Plants. Mem. Hooker these are a wandering species is often aberrant 266 1113 m 284 10w F.W. $2854 a$ "never" with this exception 6-9m/8u "chalk", 10-12m, 14-15m, $19-21 m / w$ I wonder whether this agrees with Müllers classification, as seen in Owen Lectures XX 24-26m/25u "Ctenoids and Cycloids", wb XX if Fish properly classed, whether so related to geologi. formations. 289 22-25m, 24-31m/24-28w opposed 30-33m 292 15-20m, 26-35m/30-35m 293 30-33m 294 19-23m 295 7-11m (Richardson) 297 24-29m 318 2-6m, 9-11m 327 27-30m/? 328 20-24m $3292-10 m, 7-21 m, 23-25 m, 27-29 m$, $w b$ The fact of existence proves some advantage in the two types else one wd outbreed the other.- $34831-34 m 35222 w$ Yes Sir J Richardson 24-28m, 25X, 29-32m/29-30u/30$33 w$ p. 353353 15-16m $36336-37 m 3747-$ $12 m, 19-22 m 37516-17 m, 16-20 m, 20-21 m$, $23-25 m, 27-30 m, w b I$ think Behring St. must have been land before Glacial epoch 376 12$15 m, 21-23 m, 33-37 m 377$ 16-22m/17-18!!!!, 25-28m/w Andrew Smith wb argumentum ad absurdum $3984-9 m / w$ i.e. W. of Lake Superior $31-37 m 406$ 19"... $\uparrow, 23 u$ "eastern"/w N $24 u$ "western"/w S 29-34m/"..." 408 wt Why scratches all N. \& S. or near it - for any current temporary or permanent from S. wd not tend to scratch.-

AGASSIZ, Louis Methods of study in natural history Boston; Ticknor and Fields; 1863 [Down, I]
af, tm
NB p. 105 Snakes and certain Lizards compared \& Lizards and Salamanders Excellent cases of Analogy of Form

105 23-29m 106 9-13m 107 13-16m

AGASSIZ, Louis Nomenclatoris zoologici index universalis Soloduri; Jent \& Gassmann; 1848 [CUL]

AGASSIZ, Louis Reports on the Florida reefs Cambridge, Mass.; 1880 [Down, I by Alexandre Agassiz]

AGASSIZ, Louis and GOULD, Augustus Addison Principles of zoology: part 1, Comparative physiology Boston; Gould, Kendall \& Lincoln; 1848 [CUL]
beh, cc, em, gd, hl, sx, sy, t
SB1 p.5; p.31; 123; 156; 165; 170; 179; 192 SB2- β
Gould \& Agassiz
5. On Highness \& Lowness.
31. Blind Cavern fishes \& Crabs

123 Speaks "if order of formation is in relation to importance" - I infer he think so 106 Male toads carry eggs on Back
157 Admits difference in C. of Good H \& S. America, \& admits some higher law
165 Arctic Regions not one bright bird or Fish with varied hue proof of action of external conditions.-
179 Rivers of U. States some fish in common, some distinct.
$521-26 \mathrm{~m} / 22 u$ "perfect | proportion", 30-34m 31 21-27m 106 19-22m $1232-6 m, 8-21 m / 9 w$ (a) $30-34 m, w b$ (a) There is nothing to show this in previous chapter 156 14-21m $1575-12 m$ 165 4-5m/5u "fishl hues" 170 25-26m, 28-29m 179 25-27m 192 3-10m

ALDER, Joshua and HANCOCK, Albany A monograph of the British Nudibranchiate Mollusca parts 1-7; London; The Ray Society; 1845-55 [CUL]
em, hl, sh

Part 7

SB
p. 25 Larvae in operculated shell 26 .
$34 *$ It is sign of lowness an animal undergoing its metamorphosis in a free state - some mollusca undergo a free metamorphosis \& in some it is in egg state.-
25 29-32m 26 13-18m 34 27-31m
\wp
ALLEN, Grant The colour sense: its origin and development London; Trübner; 1879 [CUL] ad, beh, cc, cs, fg, hy, oo, phy, ss, t, v

NB1 why shd the exercise of certain gustatory nerves by sugar * give grt

ALLEN, COLOUR SENSE
pleasure \& the exercise say of the tactile nerve of the tongue give little or no pleasure NB2 Hybrid - Error This is mere cross fertilisation in Aphys p39 * 39?
Wiesner - coloured scales of tip of short to moderate height
73 Saaf-maal
131134 ?
like Hook.bug new 186
xi $8 m, 10 m$ xii $3 m 4 w t / 1-17 w$ Fritz Muller years ago maintained that surrounding coloured flowers influenced s.s of Butterflies Self Galapagos 12-18m 39 19-21m*, 1920? ४, 23-24?, $26 u$ "essentially" $4013-17 m 41$ $16 w$? Lilies $16 u$ "monocotyledons", $28 w$ Pinks $28 u 45$ 29-35w Hazel and Pl crimson female flowers 48 3-4m 73 25-28m (Lubbock, Fritz Müller) 131 5-20w I believe specially acquired $18-29 m \quad 143 \quad 26-32 m, 26-28 w$ ValerianO cats 152 5-23w my Copridae magnificent do the splendid Curculid live on flowers 186 1-35m (Wallace) 190 13-14w Peacock!?

ALLEN, Grant Der Farbensinn introduction by Ernst Krause; Leipzig; Ernst Günther; 1880 [Down] \wp

ALLEN, Grant Physiological aesthetics London; Henry S. King \& Co.; 1877 [Down]
beh, phy, t
NB 194; 159 appreciation of colour
vii $1-21 m$ viii $1-4 m 2014-28 m$ (Bain) 21 111 m 22 12-16m, 28-29m 23 1-29m 24 1-29m 25 1-29m 26 1-29m 27 1-28m $3617-27 m 37$ $1-4 m 398-9 w$ association omitted $10-13 \mathrm{~m} /$?, $11-12 m, 19-29 m 401-23 m 4223-29 m 431-$ $29 m 441-29 m / 19 u$ "nerves Icalibre"/ w Why? 46 23-29m 47 1-9m, 19-23m 48 11-21m 49 $19-24 m 675-26 m 681-29 m 691-29 m 701-$ $29 m 71$ 1-18m 72 18-29m 73 1-20m 74 1-29m 75 1-3m, 20-29m 76 1-4m 79 25-29m 81 15$28 \mathrm{~m} 821-27 \mathrm{~m} 87$ 12-29m 90 3-29m 91 1-29m 92 1-13m 99 1-23m 100 1-16m 105 13-28m. 106 1-20m * 108 14-19m 109 26-29m 111 6$28 m 1121-28 m 11322-29 m 1191-11 m$, 19$27 m 1201-16 m 12319-29 m 1241-15 m 125$ 4-29m 126 1-23m 128 7-13m 150 1-29m 151 1-27m 152 1-28m 153 1-29m 154 1-29m 157 $1-26 m 1593-17 m 16118-28 m 163 \quad 23-29 m$ 164 1-29m $1651-13 m, 25-27 m 16827-28 m$ 169 1-9m 194 12-18m

Allen, Joel Asaph History of North American pinnipeds Washington; Government printing office; 1880 [Down]

ALLMAN, George James A monograph of the fresh-water Polyzoa London; The Ray Society; 1856 [Down] \wp

ALLMAN, George James A monograph of the gymnoblastic or tubularian hydroids 2 vols.; London; The Ray Society; 1871-72 [Down]
vol. 1 NB O/
105 37-38m
vol. 2 NB 201 like Galls
201 10-17m
ALLEN, George James A report on the Hydroida Cambridge, Mass.; University Press; 1877 [Down, I by A. Agassiz] \wp

ALTUM, Bernard and LANDOIS, Hermann Zoologie 2nd edn; Freiburg im Breisgau; Herder'sche Verlagshandlung; 1872 [Down]

ANDERSON, John A report on the expedition to Western Yunan viâ Bhamô Calcutta; Office of the Superintendent of Government printing; 1871 [Down, I] \wp

ANGELIN, Nils Peter Iconographia crinoideorum Holmiae; Samson \& Wallin; 1878 [Down] \wp

ARCHIAC, Étienne Jules Adolphe d' Histoire des progrès de la géologie de 1834 à 1845 vol 1 (1847) Paris; Soc. Géol. France [CUL]
fg, geo, phy
NB Possibility that 0
X 287 seeds
p. 287 Blocks actually transported from Terres de L. Philipe \& Graham Land - Self on Mould/223

222 7u "terre végétale", 7-10m, 10...", 15-19m/ 16-17u↔, 21-29m 223 介1u "vol|1837" 224 6$7 и \hookleftarrow \multimap \leftrightarrow 287$ 10-20m/w seeds

ARGYLL, (Campbell, George Douglas) Duke of Primeval man London; Strachan \& Co.; 1869 [CUL]
beh, ds, $h, h l$, is, t, ta, tm
NB p60; 66; 70; 100; 130; 162; 165; 172 to $174 ; 178$ to end; Only Man all used I doubt whether low intellectual state \& high moral state would ever concur.-

- If one of the Lower animals cd reason \& he heard that man was ashamed of being a co \langle descendant \rangle O with him he might laugh with scorn \& ask what of $*$ practices \rightarrow
- X Degradation of Man In Partricide Polyandry * Bloody sacrifice Superstitions causing life to be miserable, \& abject fear justice by administering poison \& other fatal schemes - Despotic government (\& abject obedience) with right of life \& death)

60 14-15z 70 10-16m 100 1-5m 130 12-16m 131 10-13m/11-12u "acquire|knowledge"/10$16 w$ No an old Rat does all but transmit, \& perhaps this How transmit by example? 132 wt ie state in which we now see savages 1$3 m 136$ wt I must rest my conclusion on descent \& not on traces of savagedom.- wt Say animal nature - not necessarily like present Barbarians, 1-4m 139 3-7m 145 10a "use" the fashioning $11 u$ "fashioned I purpose"| w over $1473-7 a / c / m / u / w / x \notin 1484-6 m 1569-$ $13 m 1621 a$ "weaker" or smaller $1636-7 w$ But not the least civilized $1656-12 \mathrm{~m} 172$ 10-14m (Darwin) $1731-7 \mathrm{~m} 17414-17 \mathrm{~m} 17513-17 \mathrm{~m}$, $w b \&$ for Isids. man obeys usual law of no mammals, in Isid except by boat building races $1784-6 m 1801-5 m, 8-11 m, 8-13 w$ No India N. Africa Syria China New Zealand 181 11-13m 182 13-17m 185 2-5m (Lubbock) 188 13-17m 189 9-14m 190 9-13m (M. Müller) 194 4-8m 199 2-10m (Lubbock), 11-17m

ARGYLL, (Campbell, George Douglas) Duke of The reign of law London; Alexander Strachan; 1867 [CUL, S]
beh, he, sx, t, tm
NB1 187; 196; 198 sexual; 203 Argus Pheasant; 206 Narwhal Sexual; Humming Bird tails 246 do; 253; 324, 326 inherited mind; 256 Correlation of Growth
NB2 8; 14; 30; 84; 89; 102; 133; 178
〈also attached: p. 590 of The Saturday Review, 15 November 1862); ∞ To be returned
$1014 m 138 m 149-12 m 3019 m 8417 m / w$ see p. 285102 3-5m 133 7-14m/? $1364 z 142$ 7-8m 171 10-13m 177 6-9m 187 10-11w Wryneck Creeper 196 4-15m 198 5-15m/wt/ $1-13 w$ But there is no such thing as beauty, except to eyes of some living creatures 199 24m 200 8-13m 203 5-12m/8u "a sphere" 206 9-16m 212 19-20z, $23 m 217$ 3- $7 m 221$ 19$24 m 228$ 19-23m $2324-7 m 246$ 6-24m/24u "central feathers" $2475 u$ "whichlthe", 7c/w \pm, $8 u$ "Tuftslof", $9 u$ "greens Iviolets", $12-14 m$, 16-19m 251 20-22m 253 7-14m 268 10-13m/w no no 279 17-22m 285 15-16m/w See p. 84

ARISTOTLE On the parts of animals tr. W. Ogle; London; Kegan Paul, Trench \& Co.; 1882 [Down]

ARNOTT, Neil Elements of physics or natural philosophy 2 vols.; London; Longman, Rees, Orme, Brown and Green; 1833 [Down] geo, ve
vol. $127922-28 m, 22-29 w$ Volcanoes offer certainly some counterbalance to the effect of running water though perhaps not one equal to it.-
vol. 2, 5 12-15m $1021 m, 30-32 m 111-4 m$, 9$18 m, 20-25 m 1916-24 m 2322-24 m 2411-$ $13 m 2522-30 m 283-10 m 2921 m 3421-29 m$ 135 28-29m 198 30-33m 199 1-5m 266 13$16 m$

ASKENASY, Eugen Beiträge zur Kritik der
Darwin'schen Lehre Leipzig; Wilhelm
Engelmann; 1872 [CUL]
cs, fg, gd, in, sx, v, t
NB p. 54
I have only skimmed this Book - too difficult
Supports Nageli on everything
$411 m 7$ wt Argues against quite undirected variation 1-33w I admit not even individual variation in all directions, as in case of colour of rose - no marked variations is no evidence against some variation in many ways.- $821 \mathrm{~m} 279 m 3611 m 539 m 541-15 w$ Yes if strong tendency to vary $12-16 \mathrm{~m}, 13-$ $26 w$ Plants in distant localities remain the same but they cross within same locality 26$32 m, w b$ variation supervenes only by sexual generation $551-26 m, 2-24 w$ This all in fact explicable $6625 m$

AUBUISSON de Voisins, Jean François d' An account of the basalts of Saxony, with observations on the origin of basalt in general trans. P. Neill; Edinburgh; A. Constable \& Co; 1814 [CUL, pre-B]
mi
NB p180 Lead volatilised into vesicular cavities of Basalt when used as the wallstones of a furnace
97 18c/w $\notin 1801-12 m 2758-13 z$
AUBUISSON de Voisins, Jean François d' Traité de géognosie 2 vols; Strasbourg \& Paris; Levrault; 1819 [CUL] S: C. Darwin HMS Beagle
co, to, geo, mi, se, sh, t , ve
vol 1 NF C Darwin
Saussure voyages dans les Alpes Study works of Cordier \& Dolimen
Strength of salt water diminished on sea coast - Cocos p43

AUBUISSON，GÉOGNOSIE
The Sandstone craters of Galapagos allied to Salses．（salt \＆mud）but differs in size \＆ some other respects．－p．189．－
Saussure says laminae \＆strata of Slates same p291
Cleavage p． 297
Proofs from Orbicular structure of movement in particles of Felspar \＆Hornblende p． 308 Globular porphyry p． 311
Empty concret．Ferrug．Balls．Chiloe 318
22 （markings signed RF） 28 〈some marks signed
 $1 m 77 \Uparrow 9-5 m 86 \Uparrow 4-1 m 189$ fm $291 \Uparrow 10-3 m$ 297 介 $15-1 m 298$ โm 308 介17－4m $3113-10 m$ $318 \Uparrow 12-1 m / w b$ The spots C．of Good Hope 442 table．w $46^{\circ}-47^{\circ}$ lat wbec 443 さwec
vol 2 NF1 Mal Hydrate of iron
N．B．I see the only way of describing Porphyrys \＆Greenstones，is by describing each base．\＆each crystal
Beyond secondary rocks，no page marks without reference；excepting the Volcanic rocks \＆Mineral Veins
Voyage Mineralogique en Hongroi et Pais Bearn
Brongniart Traite de Mineralogie
Breislac Voyage physique en Campania
NF2 Ch．Darwin
Secondary formations
Coal form： 276 Conglomerates
Porph．base to Conglomerate 309 Maclure N．America
Angular concretions of Limestone 346 K ． George Sound
Cellular limestone rauchwak 345 angular cavities Coquimbo
Stinkstone connected with 390 gypsum beds Andes
Seashells in salt bed 395
Part of tree silicified 452 part Carbon \vee
Hydrate of Iron C of Good Hope 456
do 476
Gold watering 479 Valparaiso
Alluvial salt form 483－485
$514-19 m / x / w b \times$ This is remarkable if all rocks are metamorphised $61-7 m$ ，$\uparrow 13-10 \mathrm{~m} / \mathrm{x}$ 7 17－19m $8 \quad 2-5 m / w$ Maldonado Portillo V．p． 15 16－20m，wb X Analogous to sedimentary beds where quartz sand is alone found pure or lime in masses：What would result from calc．Sandstone？Would calc be removed by Volcanic agency？ $152-$ $8 m / x 25 \Uparrow 4-2 m / w$ C of G Hope $\uparrow 1 x 43 \Uparrow 12-$ $8 m \leftarrow / X, \pi 5-1 m 44 \quad 13-20 \mathrm{~m} / x$ ，wb it is remarkable no tin in such rocks in Cordilleras．－from Cornwall Tin miners at

Copiapò 47 1－10m／x 48 4－5？ 49 5－10m，介7－ $1 m 50 \Uparrow 10-1 m$ ，wb two cases． $666 x, 7-12 m /$ w Very abundant 72 介10－2m／x 73 1－4m 75 $\Uparrow 16-1 m / x 79$ wt Not in ChonosO grand form $1-3 m 80$ 介15－4m／x／13u＂quelquefois＂ 83 6－ $12 m / w$ ChonosO No $8515-24 m 95 \Uparrow 11-1 m / x /$ w turn over $w b$ Therefore materials must be separated by some process：\＆not layers of siliceous sandstone \＆less pure layers．－ 96 1－10m，15－20m $100 \Uparrow 15-1 m / x / w b$ Falkland Isld．－ 101 10－20m／18－20m／x 102 1－5m 104 $\Uparrow 10-4 m / x$ ，wb Mention in T del Fuego the Lydian balls from Laguna $108 \uparrow 12-1 m / x 109$ $1-10 \mathrm{~m} / \mathrm{w}$ Maldonado $114 \Uparrow 10-3 \mathrm{~m} / x 125 \Uparrow 7-$ $3 m 132 \Uparrow 8-6 m / x 1332-5 m, 8-15 m 1511-8 m /$ w T．del Fuego $154 \Uparrow 15-3 m / w$ Andes $1551-$ $15 m 157 \Uparrow 15-1 m / x / w$ False C．Horn 158 1－7m $1894-8 m / x / x, w b$ Therefore subsequent action purified it．－ $211 \mathrm{Im} / x, w b \times$ Ponsonby Sound 212 1－15m 223 1－10m，介3－1m 224 1－ $3 m 228$ 介15－1m 230 14u＂druses＂ 236 6－16m／ 12－16m 276 介 $20-1 m 309$ 6－11m，$\uparrow 8-1 m$ ，$w b$ Turn over 310 介5－1m 311 1－ $6 \mathrm{~m}, 15-20 \mathrm{~m} 312$ 1－11m／6－11m 345 wt Cavities owing to dissolved angular fragments Mem the Coquimbo limestone shows facility or small difference causing redissolution $\uparrow 15-10 \mathrm{~m} / \mathrm{x}$ 346 13－22m 347 1－8m 389 介 $6-3 m 390$ 1－12m／ $3-6 m / 5-8 m 3921-10 m 395 w t$ it is clear from fineness of sediment that salt beds true deposits，not Subsided salines $12-20 \mathrm{~m} 452$介12－2m 456 介10－1m 457 fm 476 fm 479 介12－ $1 m 4836-20 \mathrm{~m} 48411-15 \mathrm{~m} / \mathrm{m}$ ，$\uparrow 5-2 \mathrm{~m} / \mathrm{m} / \mathrm{w} / \mathrm{wb}$ Mem：How universal this character．Copiapo． Galapagos．Patagonea How far is dryness a general characteristic 485 wt NB At Iquique， the fresh water shows that Nit．Soda is not beneath the surface． $1-6 \mathrm{~m}, 12-16 \mathrm{~m}, \uparrow 15-1 \mathrm{~m}$ ， $w b$ The formation of salt is more probable if the Carb of Soda effervesces．\＆that may as well as Nitrate of Potash． 520 ＂L＇olivine＂．m ，介4－1m 523 nos $1-9 m / w$ Ascension $7 u$＂globules＂ 526 ＂L＇argile＂．m／w CauquenesO 528 介4－ $1 m / w$ Galapagos $\uparrow 4-1 m / x 529 \quad 1-20 m / w t$ These Greystones some of the commonest Volcanic rocks $4-7 \mathrm{~m} \mathrm{~m}_{\mathrm{o}} / \mathrm{m}$ 530凶 $1-5 \mathrm{~m} / \mathrm{w}$ Ascension 531 10－15m＊o $x \otimes_{0} / m / x / w \star_{0}$ Ascen－ sion 532 5－10m／x／w A 533 wt In Galapagos \＆Ascension，in Basalts，or at least dark Trachytes 6－12m／x 534 9－15m／xes， $9-15 m / x /$ $w{ }^{*}$ Ascension $\uparrow 12-1 \mathrm{~m} / \mathrm{z} \mathrm{cm}_{0} / \mathrm{w}$ A 535 wtas Ascension 1－2m／A，9－18m／mes／we 4 Ana－ lyses in Beudant $77 \times \pi 5-1 \mathrm{~m} / \mathrm{mas}$ ，wbero Felspar 64 May be taken as percentage of Silica Hornblende 44 Augite $505364-8 \mathrm{~m} / \mathrm{w}_{0}$ therefore diff．comp． 537 wt（a）Mem The trachyte below wells，decidedly prismatic or irregularly columnar $1-4 m, 11-22 m / 14-17 \mathrm{~m} / \mathrm{w}$
（a）$\Uparrow 3-1 m, w b$ Ascension！Phonolite．My felsp．this state $538 w t$ The basal hills of oldest series，allied to base of Phonolite cones，St Jago 1－4m 539 1－4m，5－8mea，7－ $11 \mathrm{~m} / \mathrm{w}$ At SSt Jago，not slaty from force of pebbles neither decomposes 13－14＊／u ＂habituellement＂，$\uparrow 11-1 m, w b$＊Therefore Ascension not Phonolite $5402-8 m / m \omega_{0} / w{ }_{0}$ Characteristic of St Helena 6－12w Phonolite same relation to Trachyte as basalt to basaltic lava $\uparrow 12-5 m, \Uparrow 2-1 m ~ 542 \Uparrow 10-1 \mathrm{~m} / \mathrm{w} \mathrm{m}_{\mathrm{s}}$ Ascension $545 \Uparrow 10-1 m 548 \Uparrow 10-1 m / \Uparrow 6-2 m *_{s}$ ， $w b$ Mem Ascension 549 wt I think from these descriptions the Galapagos trachytes，must be very singular rocks．$\uparrow 15-5 m / x 550 \Uparrow 12-9 m$ 552 4－6m／4u＂phonolites＂／5u＂porphyre siénitique＂，11－19mas 560 15－20m／w Steam cause of vesicles $5627-15 \mathrm{~m} / 13-15 \mathrm{~m} / x 563$ $\Uparrow 11-10 m 5641-4 m / w t$ Does－say that Sapphire are found at the Galapagos？－ 565 $1-7 m 5683-8 m 5691-4 m, 6-11 m / 8-11 m / x / w$ Van Diemen＇s land $\uparrow 4-1 m / w$ C．de Verde 573 1－8m 574 15－17！ 575 17－21m 578 3－10m $580 \pi 6-2 m / w$ T．del Fuego $581 w t$ Wackes being often amygdaloid \＆therefore porous explains greater decomposition $\uparrow 11-8 \mathrm{~m} 582$ $1-2 m 590 \Uparrow 17-1 m / m$ ，$\uparrow 17-13 w$ Coral Paper介13－10w Coral B Paper wb If trachy，where eruption happen，is generally missing，there is less chance of alternations than if subsiding；agrees with facts in Pacific 591 1－ $15 \mathrm{~m} / \mathrm{w}$ Is this true？ $593 \Uparrow 10-1 \mathrm{~m}$ ，wbes Dolomieu in Voyage to Lipari Isid talks much about effects of Vapour．says deposits crust of oxide of iron or outside fragments． 595 $\Uparrow 8-5 z 596 \Uparrow 15-10 m 6051-5 m / x 6081-6 m / w$ St Jago 609 1－6m／w Copiapo $w b$ NB The existence of sea shells on several of the sandstone craters at Galapagos，argument for mud eruptions． 616 \＄17－5m 627 介12－1m 636 1－10m $6373-17 \mathrm{~m} / 13-17 \mathrm{~m} 645 \AA 8-1 m 647$ $\Uparrow 15-3 m 648 \Uparrow 13-5 m, \Uparrow 4-1 m$ 649 1－5m，介13－ $6 m, \Uparrow 4-1 m 651 \mathrm{fm} / w$ Mem：YaquitoO Gold Mines $\uparrow 7-6$ ！

AUDUBON，John James Ornithological biography 5 vols；Edinburgh；Adam Black； 1831－39［CUL，B］
beh，br，ch，mg，sp，sx，ta，tm，y
vol．1， 4 35－37m 535－38m 1336 －38m 14 32－ $37 m 1516-17 m, 18-20 m, 21 m, 22-29 m 343 u$ ＂colours｜duller＂ 110 11－18m 113 14－16m 139 12－14m 174 29－32m $17527 u$＂al yellow＂， $34 u$ ＂fine yellow＂， $35 u$＂brownish－olive＂ 193 22－ $25 m, 27-31 m / 30-31 u$＂equally 1 sexes＂， $36-38 m$ ， $39 u$＂when line＂ 203 4－9m $21627 u$＂sides 1 domestic＂，33－36m 221 4－10m，19－21m，26－
$27 m, 30-32 m 222$ 18－21m，37－38m 223 11－ 14m，16－18m 229 14－17m 233 wt Male all vermilion $2 u$＂male them＂，8－12m，15－18m 234 31u＂whole｜vermilion＂ $2352 u$＂light brownish－ green＂ 254 19－20m 257 3－4u＂Head｜blue＂，15－ 16m 280 15－22m 327 27－33m 352 8－11m 377 32－33m 378 $7 u, 8-10 m / 8 u$＂brightest I green＂$/ 9 u$ ＂three years＂，11－13m，14－16m 379 21u ＂general｜blue＂ 380 2u＊ 389 20－23m 393 $16 u \leftrightarrow, 21-22 m 39419-22 m 39616-17 m 486$ 16－20m
vol． 2 NB 407 Expression Owl puffing out feathers
SB Vol．2．－Audubon
p10；22； 51
55 Jay－attend whether young like old in other jays
75， 79 woodpeckers alternately incubating
87 sexes very different \＆young not like female
89，92；143；153；170；About sexes of Birds 195 all Thrushes spotted on breast How in Blackbird
198；202；326；364；407；420；450； 475
－493， 497 T．cupido
509；529；538； 545
561 do not get mature plumage soon
$103-5 \mathrm{~m} / 3 u$＂all \mid resembles＂， $5 u$＂Young 1 acquiring＂ 13 7－9m 22 19－20m 51 23－26m／26u ＂they lin＂｜ $27 u$＂second＂$/ 26 w$ sexes alike 554 $7 m, 14-15 m / w$ sexes nearly alike $7524 u$ ＂both｜incubating＂ 79 20u＂differs from＂，26－ 27m／26－27u＂differ 1 distribution＂ 87 4－5／10／ $11 \mathrm{~m} / \mathrm{u}$ 〈colourings）， $14-15 \mathrm{w}$ nest in Hole 15／16／ $17 u$（colourings） $899-17 m / 10-12 w$ both sexes change $926-10 \mathrm{~m} 14311-13 \mathrm{~m} / \mathrm{w}$ sexes dif－ ferent \＆young differ 144 5／13－14／15u〈colourings〉，20－23m 152 21－23m $1705-8 m$ ， 19－24m $195 \quad 19 u \quad$＂female \mid paler＂$/ w$ this common to other species $23-28 \mathrm{~m} / 23-24 w$ How are Blackbirds？ $1988-10 \mathrm{~m} 199$ 20－21u ＂female leye＂ 202 23－27m／24－25w Sexes dif－ fer $2751-5 m, 1-7 m 3268-10 m 327$ 24－25u ＂general 1 with＂，27－32m，29－30u＂general black＂$/ 30 u$＂and a broad＂，31u＂yellowish＂，33m 364 1－3m 407 19－22m $42034-36 m 45016 u$ ＂young lorange＂，18－21m／21u $47435 u$＂light vinaceous＂，36u＂hind｜part＂ $4751 u$＂neck। blue＂，8－9u＂lower｜red＂， $16-21 \mathrm{~m} / 18 u$＂are＂， 21－22m 493 1－4m／4u＂globular lof＂，35－37m $49721-24 m / 23 u$＂bird Ithe＂ $124 u$＂air 1 bladder＂， $26 u$＂muffled＂， $27 u$＂refils 1 receptacles＂，31－ $36 m$ ， $38 u$＂than a mile＂ $4984 u$＂autumn much＂ $50918 u$＂graduated I male＂／18－20w so with long－tailed Flycatcher 529 9－14m 538 10－ $13 \mathrm{~m} 54512 u\langle$ colourings $\rangle, 13-24 \mathrm{~m} / 14 \mathrm{u} / 16 \mathrm{u} / 21 u /$ $23 u\langle$ colourings〉 560 25－29m 561 32－34m

AUDUBON
vol． 3 SB Vol 3 Audubon
p133－Young Birds occasionally breeding 4 years arriving at full characters yet sexes alike
p139； 141 do
$174{ }^{\circ} \circ$ changes in Beak \＆legs of lbis during Breeding season
210；213；250；258；412，416，419；552；614， 616
All about sexual Plumage
2 24－35m／＂．．．＂ $30-32 c \notin / 34 c \notin 13318-21 m$ ，21u ＂arel brown＂，22u＂covered＂，26－27m 139 29－ $33 m, 33-36 m 14122 m, 30-33 \mathrm{~m} / 30 u$＂at first＂／ $31 u$＂begin＂ 174 29－34m 210 36－38m／38u ＂sometimes \mid dress＂ 211 1－2m，2－5m，16－18m 213 18－20m 250 11u＂alsol speculum＂， $28 u$ ＂speculum greyish＂，32－34m 258 11－14m 412 $18-26 m$（Bonaparte） $41610-15 \mathrm{~m} / \mathrm{w}$ change from 15 w change later $4195-7 \mathrm{~m}, 18-20 \mathrm{~m}$＊ 552 1－4m 614 7－10m 616 12－13m
vol．4， $181-2 m 2220-23 m 5811-16 m 6625-$ $28 m$ ，32－34m 109 32－34m 114 25－27m，28－ $29 w$ no speculum 117116 4－6u＂outer margin＂，31／34／35u〈colourings〉 117 3－4m 275 29－34m 278 14－19m 294 35－37m 330 9－13m 389 1－3m 392 11－12u＂generall black＂，28－30m 424 32－36m 466 33－37m 470 22－27m $5073 u$ ＂destitutel for＂$/ 2-6 \mathrm{~m} / \mathrm{w}$ I was doubtful on this head 518 21－25m 564 21－24m 566 3－6m 599 $6-8 u \leftrightarrow, 19-22 m / 20-21 u$＂Thelbronzed＂，22u ＂rump greyish－brown＂ $6111 m, 4-5 u \leftrightarrow / 2-6 m / w$ yet plumage acquired slowly
vol． 5 NB 456 Parasitic Cow－Bird
602 Migration
－ 601 Noise to cause alarm Q
SB Vol． 5 Audubon
p．11；63；176；183； 210 Jay； 308
Only about Plumage of Sexes
519 Tanagra aestivalis female almost as red as male

10 31－35u土 11 15u＂upper｜tinged＂，16u＂loral space＂ $18 u$＂light greenish－yellow＂， $30-33 \mathrm{~m} / 30 \mathrm{u}$ ＂loral＂／31u＂black＂ 63 33－37m $1764 u$＂tints duller＂$/ 4-7 m / w$ other cases $1832 u$＂part 1 forehead＂，30－31u＂bright Iextent＂ 210 10－19m 308 10－11u＂broad leyes＂， $12 u$＂in a rather＂， $13 u$＂is 1 pale＂， $14 u$＂parts yellowish－green＂， $24-$ $32 m 45424-33 m 5191-2 m 601$ 12－16m／Q 602 1－6m

AUDUBON，John James and BACHMAN， John The viviparous quadrupeds of North America New York；J．J．Audubon； 1846 ［CUL］
ad，beh，br，ex，gd，ig，mg，no，00，rd，sp， tm，v

SB1 Dß 34；38；40；59；62；67；77；131；143； 146；191；193；216；218；220；221；252；266；
268；272；304；358； 265 var in Teeth
－ 365 Sheep Q
SB2 ${ }^{2} \beta$
Audubon＇s Quadrupeds
34．Florida Rat great diversities in Habits \＆ Instincts in different districts
38 Squirrel，curious manner of avoiding a fall，spreading itself out 40 subject to many animals of prey
59 on terror caused by Rattle－snake－ 62 on do
77 gradation in teeth falling out in one genus，permanent \＆small in another． Rudiments
131．graduated form in Squirrel \＆in Habits 143 good discussion of parallelism in diff．
Lat．of Europe \＆N．American animals
191．Black Rat became rare in N．Am．as in Europe 193
216 Flying Squirrel with additional small Bone， 218 Habits of， 220
269．Squirrels fighting at rutting season（a little lively animal）
272 On Migration of Squirrels
304．On a Mouse becoming domestic \＆ inhabiting Houses．
358．Pigeon which used to breed in communities now by persecution seldom 2 nests in same tree．－
title page＊ 18464 5－7u＂markingl numerous＂ 34 4－12m，25－27m／26u＂hollows＂， 29－30m／29u＂clefts＂，34－38m 38 17－21m 40 26－37m 59 2－7m 62 9－15m 67 6－10m 76 29－ $34 m 771-5 m 10931-33 m 13116-21 m 136$ 32u＂beneath｜ruff＂ 137 1－3m 143 21－40m 146 12－21m 147 4－6m $19123-27 \mathrm{~m} 1931-7 \mathrm{~m} 216$ 30－32m 218 21－25m，29－31m 220 1－5m 221 19u＊＂threelyoung＂， $25 \mathrm{~m}, 25-29 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{u}$ ＂than｜young＂ 252 19－25m 265 24－29m 266 15－20m 268 介9－3m 269 3－5m 272 4－13m 304 6－14m 358 22－27m 365 8－19m／11－12Q

AVELING，Edward The student＇s Darwin London；Freethought Publishing Company； 1881 ［Down，I］

AYRAULT，Eugène De l＇industrie mulassière en Poitou Niort；L．Clouzot； 1867 ［CUL，I］ cs，f

NB 178 \＆ 180 \} \propto Different fertility of ass \＆Horse when reciprocally crossed．
$17824-30 m, 30 m 1791-2 m, 4-6 m 18016-18 m$ $1992 m, 4 m, 11 m, 19 m, 24 m 2005 m, 6 m, 11 m$

AZARA, Félix d' Essais sur l'histoire naturelle des quadrupèdes de la province du Paraguay 2 vols; Paris; Charles Pougens; 1801 [CUL, pre-B, B?]
beh, br, cc, ds, gd, no, 00, sx, ta, ti, tm, wd, y
vol. 1 NB p3 Tapir striped when young p136 Puma curls tip of tail when young to spring \& purs like a Cat, when scratched.(Copied)
3 3-6m 136 9-13m/10u "extrémitél queue"/11$12 w$ purr
vol. 2 SB1 $\square \Re$
p209; 296,298; 306; 319; 332; 339; 349; 359; 363; 364; 368; 371; 376-1783-1796
\leftrightarrow References for my 1 st Vol. copied out SB2 1β
296 Date of introduction \& increase of Horses in La Plata p298
332 Wild Cattle Horses in Falklands removing snow
339 on Cardoon \& Cattle destroying entire pasture
349 Mares which produce mules get old sooner
359 increase of Cattle in Falklands \& dates given Θ - Introduced from La Plata
$\Leftrightarrow 360$ periods at which * Heifers conceive later in hotter country \underline{Q}
368 Cattle killed by flies

- On natural rate of increase of Cattle in the Estancias
372 Rudiment of Horns in Cattle. descended from Hornless Bull.-
$2097-11 \mathrm{~m} / \mathrm{w}$ so with all sexual charact 296 $9 u$ "1535", $18 u$ "1580", 19-20u "trouvèrent 1 Chevaux", wb Mule Zain-clairs 298 14-15m/u "dix lindividus", 16-17m 3058 m , 15 m 306 17$22 m / 19 u$ "zain" $\mid x / w$ set 24-26Q wb M Dictionary says what it is Dunn? V. p350 Mules are Zain-clairs 307 5-6Q/6-8m/7u "quatrel Chevaux", 9-10m 308 20-26m 313 21Q 318 18-21m 319 1-3m, 6-14m 324 1-8m/ 5-6Q 332 3-5m 333 6Q 7-10m/9u "leur sabot est" $\mid 10 u$ "poils", $11 u$ "point|blancs", $12 u$ "tous", $13 \mathrm{~m} / \mathrm{u}$ "beaucoup 1 courts", $21 u$ "Cette reproduit", $24-25 m, 26 m 3341-2 m, 18 u$ "dans 1 corne", $24 u \leftrightarrow 335$ 20-26m/24u "Cabril (chevreau)" 339 7-10m/10u "anéanti le pâturage" 349 24-26m $3517 u$ "zain-clairs" 352 $9-10 m$, $13-14 m / 13 u$ " 1546 " 355 9- $11 \mathrm{~m} / 10 u$ "1552" 358 3-4m, 20-21m 359 7-11m, 19$21 m / 20 u$ " 1760 ", $21 u$ "six mille", $22 w$ no $w b$ 800 - in 15 years - increased to about 6000 $\rightarrow 3607-11 m / 9-10 Q 3611-3 m / 1 u$ "sombre ou rougeâtre"/Q 9-13m 363 8-10m 364 5-9m 368

1-6m, 9-12m $3718-17 m / 10-14 w$ Horns go with Males $16-18 \mathrm{~m} 3728-10 \mathrm{~m}, 10-11 \mathrm{Q}$ \& $12-$ $16 m 37310-13 m 37622-25 m / 1-26 \mathrm{w}$ see life when in S. Amer. see date of Cattle at M. Video p355. Cattle let lose in 1552377 wb He visited La Plata 1783-1796.-

AZARA, Félix d' Voyages dans l'Amérique méridionale 4 vols and atlas; Paris; Denton; 1809 [CUL, pre-B]
beh, ex, 00, sp, ti, tm, ws, y
vol. 1 SB Azara Vol I
p. 100 - struggle for Existence.
p. 165 - Wasps nests - 215 - worms in navels of Beasts
247 - Young Tapirs striped
375 Horses
381 «wild Dog Q
386 on some species \& others rare of same group.-
376 White Horses swim best
100 3-7m 101 17-26m, 19-27m/22u "une। rampant" 102 1-4m 146 26-27m/26u "tendre | rôtir" 147 17x 165 17-23m (Latreille) 215 25-27m 216 2-8m 247 2-4m 373 2$7 m 3765-14 m 38114-17 m$ (Buffon), 19-20Q 386 19-27m
vol. 2 So Ch. Darwin
NB O June 1860 Much about Indians
11 6-16m 21 20-24m 22 15-18m/x, 19w see
$231-5 m / x / 4 w$ HearnO $2519-22 m 58 \Uparrow 4$ $1 m$, wb Guanys ${ }^{*}$ Guaranys $601-3 m 649 m$ 92 22-27m 93 14-16m, 21u "deslaccouchent", 26-27m 94 16-18m, 21-22Q 23-27m 95 2-5m, $17 u$ "guanás" $10512-18 \mathrm{~m} / 14 u$ "sourcils 1 poil"| 13-15w Other Indians do the same 115 10$15 m 1161-2 m, 11-13 m / 12 u$ "déformélvieillir" 179 11-19m/14-16w more men killed
vol. 3 NB p8
I have not read the rest. except Intro-duction.-
p33 Caracara makes * Vulture disgorge prey Lestris take advantage of natural instinct to disgorge
$825-29 m$ (Buffon) 33 19-25m/20-22u \leftrightarrow
vol. 4 NB p10. Habits of Woodpeckers
327 Habits of Musk Duck
328 Measures of do
I have not read all this Book.-
$320-21 m / 21 u$ "parcourent|grimpant", $22 u$
"dominicainlguêpes", 23-24m 253 wt Philomachus cayanus 327 19-24m 328 26$29 m$
B., J.P. An essay on spiritual evolution London; Trübner \& Co.; 1879 [Down]
BABINGTON, Charles Cardale Manual of British botany London; John Van Voorst; 1851 [CUL]
fg, gd, $00, \mathrm{sp}, \mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB1 Tragopogon porrifolius (p. 188)
seeds of ray \& centre very different
Verbascum 5 stamens differ in length \& structure - in Veronica only 2 stam - in other Scrophs, $4 \&$ of unequal lengths Penstemon
NB2 \oplus p. 31 Subularia
p. 120 var.; p. 301

Abstract
120 Similar vars in allied genera
301 Pinus mughus in Scotch Bogs a var. exterminated by present vars?
viiia $30 w$ p. 65 viiib $17 w$ p148 xi $w t$ This seems all quite artificial $12 w$ xiii $19 u \leftrightarrow$, $21 w \leftrightarrow$ xiv $3 u \leftrightarrow, 5 w$ Corolliflorae $20 u \leftrightarrow \mathbf{x v}$ $24 u \leftrightarrow 428 u$ "in|fields" $526 u$ "floating", $26 w$ Nor $33 m 728 w$ Nor $826-27 m, 34 w$ Nor 9 $26 m 1219 w$ Nor $1314 w$ Nor 27-28m 1414 $15 w$ I. of W. $24 w$ Nor $27 m 1531 w$ Nor $312 m$, $13 u \otimes_{0}$ "often Imargins", $16 w$ I. of W. $324 w$? I. of W. $331 w$ I. of W. $8 w$ Nor 34 $43 u$ "spur" $351 u$ "thel short", $9 u$ "spur 1 straight", 18-19u "spurlend", $34 u$ "cor.I cordate" $364 w$ Nor $5 u$ "blunt \mid roundedly", $22 u$ "cor.Iblunt", $34 u$ "spur|calycine" $373 w$ Nor 4-5u* "spur I calycine", 27w Hart $3824 w$ Nor $437 w$ Nor $4410 w$ Nor $4534 w$ Nor 42$43 w$ White Nor $43 u$ "l. |hairy", $44 u$ "calyx | lanceolate" $461 u$ "elongated lerect", $6 u$ "st. 1 calyces", $6 w$ Nor $8-9 u \leftrightarrow, 14 w$ Nor $27 w$ Nor? $5027 w$ Nor 51 1w Nor 20w Nor 54 41w Hartf? $5512 w$ Nor $567 w$ I. of W. $5722 w$ Hartf $32 w$ Hartf 39w Hartf 58 15w Hartf 61 $29 w$ Nor $628 w$ Nor 15w Nor 31w Nor $641 w$ I. of W. $6612 w$ Nor $703 w$ Nor, Hartf 18-20w Hartf Down, $37 w$ Nor $7127 w$ Nor 72 17w Nor $733 \mathrm{~m}, 40 \mathrm{w}$ I. of W. $7411 \mathrm{~m} 77 \mathrm{~m}, 18 \mathrm{~m}, 28 \mathrm{~m}$ $7937 m 8035 w$ Down $829-13 w$ Down I. of W. $23 w$ Down 29-33w Isle of Wight $8738 w$ Nor $8834 w$ Nor 90 12w Nor 40w Nor $916 w$ Nor 92 19w Mr Norman omit 106 29w Nor $36 w$ Nor 107 8-9w Mr Norman omit 112 12w Norfolk 113 32w Nor 114 7w I.W $32 w$ Hartfield 116 10-13w Hartf. I. of W. $12028-$ $32 m, 32 w$ I. of W $36-39 m, 41 w$ I. of. W $1212-$ $6 \mathrm{~m}, 2-6 \mathrm{w}$ similar vars in allied genera 128 17w Nor 143 32-33w Down everywhere 144 $27-29 w$ Down everywhere $32-34 w$ orchis Bank $1453-7 w$ Below Stonfield Field 12-14w Down everywhere 33-35w Down everywhere 147 33w Norfolk 151 14w Nor 29w Nor 152
$12 w$ Nor $35 w$ Nor 153 42w Nor $15417 w$ Nor $35 w$ Nor $1555 w$ I of W. $28 w$ I of. W $35 w$ I of. W $15622 w$ l. of. W? $157 \mathrm{zb} 158 \mathrm{zb} 15925 m$, $29 m, 33 m 1603 m 16632 w$ I. of W. 16720 w I of W 181 10w I of W. 182 16-24m $18322 w$ I of. W $1889-10 w$ I of. W. $28 w$ | of. W. 192 $25 w$ Mr Norman omit 203 33w Hartf. 206 28$29 w$ Hartf 213 8-11w Nor. I of. W $29 w$ Nor $21532 w$ Nor $21730 w$ Hartf $2215 w$ I. of W. 222 11w Nor $35 w$ Nor 223 10-17w I think my plants clearly this species $40 \mathrm{~m} / \mathrm{w}$ Nor 224 16w Nor 225 21w Nor 231 26w Nor 232 38w I.W 233 12-15w I of Wight 234 29w Nor 235 1w Nor 236 3-4w Hartf 30w Nor 41w Nor 237 $38 w$ Hartf 238 11-12w I of W. 40w Nor 239 $5 w$ Nor $12 w$ Nor, $24 w$ Hartfield $24020 w$ Nor $24137 w$ Nor $24434-35 w 2$ vars $2451 m$, 6$7 m, 37-38 w 3246$ 4-5m, $23 w$ Nor 248 22-27c, $31 w$ Nor, $38 w$ Hartf $2497 w$ Nor $38 w$ I of W 250 40w Nor? 251 5w Nor, 27w Nor 39w Nor 252 25w Hartf 253 18-22c 255 29w Hartf 256 $4 w$ Nor $28 w$ Nor $2595 w$ Nor $38 w$ Nor 260 1w Nor $8 w$ Nor $18 w$ Nor 275 33w Nor 277 22w Nor $2839 w$ I of W. $28529-33 m, 24-25 w$ I of W. 286 14w Nor 288 26w Mr Norman omit $30126-30 m 30222 w$ Nor $3037 w$ Nor 306 37w Nor 307 6w Nor 308 15w Nor $44 w$ Nor $3107 w$ Nor $9 w$ Down 12w Hartf $16 w$ Nor 18w Down 25w Nor $3129 w$ Nor $28-31 w$ Hartf I. of W. $40 w$ (Var. of dat) $31314 w$ (var of d) $26 w$ I of W $3223 w$ Nor $3284 w$ Hartf $33522 w$ Nor $33612 w$ Nor 353 31w Mr Norman omit 356 $18 w$ var $35812 m, 25 m 36017-18 w$ omit 365 $40-41 w$? var $36633-34 w$ var $36924 w$ var $34 w$ var 372 10u "flowered a ", $10 u$ "Glumes nearly", 24a/w 1-flowered $37313 u$ "Fl.I hairs", 26-27u "1land", $28 u$ "2lof", $39 u$ "1flowered" $3744 u$ "2| fl." 375 11-12m, 21w water $3774 u$ "onel flower" $37826 m 379$ 21$22 m, 39 m 380$ 17-18m, 20-23w Down Ch Lane 381 31-34w Honeygrove Jul 53382 22$23 m, 30-32$? 385 24-25m 386 9-10w Hayes 16-19w Larch wood 41-42m 387 21-22m, 40$41 \mathrm{~m} 3887 \mathrm{~m}, 13-14 \mathrm{~m}, 24-25 \mathrm{w}$ Hartfield $32-$ $33 w$ orchis Bank $3893 w$ Down 10w =Molica $11 w$ Hayes $39 w$ Down $39042 w$ Honeygrove $39133 w$ passim 39-40w passim $3925-7 w$ Larch wood, $14 w$ wall $44 m 39438-39 m 395$ $1 m, 11-12 m, 38 m 396$ 31-32w Honeygrove $33-34 m 3978-9 m, 24 m, 30 \mathrm{~m}, 38 \mathrm{~m} 398$ 31$32 \mathrm{~m}, 42 \mathrm{~m} 39940 \mathrm{~m} 40013-14$?, 21 m 4016 m , 15m 402 17-18w Beckenham 18-19m, 30-31w Hartfield $w b \mathrm{Mr}$ Norman end here 403 wt Mr Norman end here

BAERENBACH, Friedrich von Gedanken über die Teleolgie in der Natur Berlin; Theobald Grieben; 1878 [Down]

BAERENBACH, Friedrich von Das Problem einer Naturgeschichte des Weibes Jena; Hermann Duft; 1877 [CUL, I]
NB Skimmed \wp

BAERENBACH, Friedrich von Prolegomena zu einer anthropologischen Philosophie Leipzig; J.A. Barth; 1879 [Down, I] \wp

BAGEHOT, Walter Physics and politics London; Henry S. King \& Co.; 1872 [Down, I, S]

57 6-28m
BAILDON, Henry Bellyse The spirit of nature London; J. \& A. Churchill; 1880 [Down, I]

BAIN, Alexander The emotions and the will London; Longmans, Green \& Co.; 1865 [CUL]
beh, h, sl

SB

Bain Emotions \& Will
p.5.6 to under qu.
p.111; 119

127, 129 Expression
176
Laughter 247
Moral sense
254 Moral sense
Quo 267 481-good to quote
269 - social instinct apparently denied by Bain
B. seems to think moral sense acquired during life-time - seems to give too deep a feeling for this wd never resist Hunger, Revenge or lust.-
277; 279; 283; 289; 290; 308
p 270 Mohamedan * woman covering her face

- 283 imitation of external government !!! 284 obedience (Monkeys slapping their children)
viii $8-10 m, 9 u$ "Feeling 1 misery", 32-33m, $32 u$ "Will" ix $17-20 m \times 26 m$ xi $13 m$ xii $6 m$ xiii $20-21 \mathrm{~m}$ xiv 33 m xv 23 m xxv $30 \mathrm{~m} 523-26 \mathrm{~m} 6$ wt The love of a mother for her child is a strong emotion, but this is hardly shown by any action or expression, but ready to lead, if her child requires assistance, to energetic or heroic actions. $2-37 w$ a mother may be feeling the warmest love for her child, \& yet how is it exhibited? When poets \& speak of
green-eyed jealousy they must find it impossible to give \& actions \& plain characters. Perhaps Bain calls love a Sensation \& not emotion.- \rightarrow No p. 37 9$13 m, 26 u$ "secondarily automatic" 7 31-33m 8 12-15m 9 12-13m, 34-35m, 36-37m 37 17$21 m 5415-30 m, 29 m 555-15 m, 5-9 w$ to make appearance dredful 56 28-31m 58 28$34 m 65$ 19-22m 67 32-37m/w/wb Dog when going to fight; Birds erect plumage; Lynx sets up its back \& spits $7319-27 m 11132-$ $37 \mathrm{~m} 11932-37 \mathrm{~m} / \rightarrow 1206-9 \mathrm{~m}, 11-12 \mathrm{~m}, 14$ $17 m 127$ 25-28m 128 21-24m 129 26-28m 176 $34-37 \mathrm{~m} 2477-29 \mathrm{~m}, 35-37 \mathrm{~m} / \rightarrow 24810-13 \mathrm{~m}$ $2497-12 m, 13-14 m, 32-33 \rightarrow 2506-10 m 254$ 26-29m 255 1-2m, 5-11m 267 1-5m 268 26$29 m 269$ 4-6m, 8-9!, $8 u$ "rational appreciation", 22-28m, 29-30 $\rightarrow 2707-11 m, 30-$ 34m, 36-38m 271 7-11m 277 10-14m, 10-11w But what the importance 279 12-14m, 13u "tolpig" $28310-18 m, 20-23 m, 22 u$ "performancel social", 26-29m,36-37 $\rightarrow 2841$ 1$4 m, 15-17 m, 25-30 m 2853-5!, 4-7 m 2875-$ $11 m 28927-30 m, 37-38 \rightarrow 29012-18 m 3081-$ $14 w$ so the associated state is advantageous 4-7m, 10-14m, 12u "the blood", 34-35m 309 7-13! 481 18-22m

BAIN, Alexander The emotions and the will 3rd edn; London; Longmans, Green \& Co.; 1875 [Down, card from author]

NB 86
xiii $7 m$ xvi $13 m$ xvii $18 w\langle n o t C D\rangle 8632-39 m$ 305 3-5m, 3-4u "initial I generally", $30 u$ "play 1 accord" 309 15-20m, 16u "central brain", $17 u$ "discharge", $17 u$ "solitary streams" 31323 m , $23 u$ "spontaneous workings", $30 u$ "two", $32 u$ "Emotional", 33u "Volition" 314 2-6m, $5 u$ "selection", $16 u$ "why then", $17 u$ "doctrine of", $18 u$ "commencement", $25-28 \mathrm{~m}, 25 u$ "two views", $30 u$ "think it", $31 \mathrm{~m}, 31 u$ "primordial source" 315 23-25m, 23u "accidentallyl pleasure"

BAIN, Alexander The senses and the intellect London; Longman, Green, Longman, Roberts and Green; 1864 [CUL]
beh, h, phy, t

SB

p 12 Intellect \& size of Brain
50 can this bear on sobbing
52 Expression
96 do - theory of -
121 Expression of Man pain; \& such movements wd get mingled with true expression of distinct emotions

BAIN，SENSES
152．effect of imagination on the body admirable 1
225 Muscles of eyebrows
264 Expression
274 a child twisting tongue about in writing， perhaps connected with idea of speaking．－
277 V 279 Expression； 288 do；292－297 do it is expectation of pleasure when（a dog wags tail before food given him \＆while eating in quiet）－so when scratched
332 association
411 The mind is never intently concentrated on a merely pleasant idea
626 expression
Bain the Senses \＆intellect
50 28－32m 52 37－40m 53 27－30m，27－29w explains frowning $9629-41 \mathrm{~m}, 31-34{ }^{\prime \prime} .$. ＂／c／uॄ 121 19－32m，36－37 \rightarrow 122 2－6m，10－13m，27－ $30 m 15233-36 m 1539-11 m, 10-11 w 169$ odours $2258-18 m 26412-14 m, 34-37 \mathrm{~m} 274$介4－1m 277 36－39m 278 ＂sighing＂，12－ $14 m, 15-19 m, 34-36 m \quad 279 \quad 14-16 m$ ， $16 u$ ＂excitement \mid trembling＂，17－19m，17－18w Mul－ ler， $19 m$ ， $23 m * 28016-22 m 2811-9 m 288$ $w b$ In another place he adds $30-37 \mathrm{~m} / 30-$ $33 "$＂．．＂$/ 31-33 m \notin 2921-26 \mathrm{w}$ general effects of pleasurable，exciting \＆painful depressing （except at first）hardly in young child．18－25m $2934-9 m, 21-23 m, 24-25 m, 24 u$＂specific＂， $32-33 \mathrm{~m} / \rightarrow 2945-27 \mathrm{~m}, 11-14 \mathrm{w}$ oh oh $18-20 \mathrm{~m}$ $29528-29 m / \rightarrow$ ，$w b$ Curious that Dog has acquired bark of pleasure \＆another bark of anger，\＆another of demand to be let in at door 297 wt sobbing is convulsive inspiration wt because prolonged screams $1-2 m$ ，16－ $19 m 332$ 14－19m $4118-10 m, 10 u \bullet, 8-14 w$ crying \＆concentration．Mem problem or understanding a difficulty 626 41－45m 6278 － $11 m, 15-17 m, 20-22 m, 26-29 m, 31-33 m, 34-$ $37 \mathrm{~m}, 37-45 \mathrm{~m}, 42 u$＂features 1 pre－eminence＂， $46 \mathrm{~m} / \rightarrow \mathbf{6 2 8} 6-9 \mathrm{~m}$

BAIRD，William The natural history of the British Entomostraca London；The Ray Society； 1875 ［CUL］
$\mathrm{ci}, \mathrm{no}, \mathrm{phy}, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$
NB1 Cirripedia p．50；p．74；p．144；p．248； p．250；p． 253
p． 265 circulation
p． 303 XX cementing organ
NB2 Sp Theory；p85＊；p189 Rate of Increase in Cyclops；Synopsis Brit Mus 1842；p． 244 Diaptomus with worm－like body full of Spermatozoa．－；Apus Nebulia Chirocephalus Cyclops Canthocamptus Cal－ igus Lerneocera

50 14－17m，29－34m 74 10－15m $8132 m 8534-$ $38 m 1279 w$ Holwood 144 12－15m 154 21w Holwood 31－33z 187 11－14m 189 33－34m 248 8－11m 250 9－11m 253 27－32m 265 21－24m 303 9－12m $3214 m, 38 w 38$

BAKER，J．G．Elementary lessons in botanical geography London；Lovell，Reeve \＆Co．； 1875 ［CUL，I］
cc，gd，gr，ti
NB 46 －Alpine plant on Tropical Mtains 53 －Heat－lovers \＆cold－fearers
90 －plants which have become widely naturalised
99 －certain wide ranging plants
102 －relationship of S．Africa \＆S．America \＆latter with Australia，good
109 －independent of present geographical features
46 16－26m 53 8－13m 90 9－21m $9921-30 m$ $10110-19 \mathrm{~m} 1028-12 \mathrm{~m}, 22-27 \mathrm{~m} 1036-10 \mathrm{~m}$ ， 10－14m，23－27m 106 6－11m 109 17－24m

BALFOUR，Francis Maitland A monograph on the development of elasmobranch fishes London；Macmillan \＆Co．； 1878 ［Down，I］ \wp

BALFOUR，Francis Maitland A treatise on comparative embryology 2 vols．；London， Macmillan \＆Co； 1880 ［Down］
〈marks by FD〉
BALL，Valentine Jungle life in India London； Thos de la Rue \＆Co．； 1880 ［Down］
NB 156， 455
\wp
BARCLAY，John An inquiry into the opinions， ancient and modern，concerning life and organization Edinburgh；Bell and Bradfute； 1822 ［CUL，pre－B，S］\wp

BARKER－WEBB，Philip and BERTHELOT， Sabin Histoire naturelle des Îles Canaries Vol 3，part 1 Géographie botanique Paris；Béthune； 1840 ［CUL］
gd，gr，is，no，sp，wd
NB Marked Chapter on Distribution
title page wt Barker－Webb 57－9m，9－10m， $\Uparrow 15 w$ 14．fam 29．spec $\uparrow 12 m / x / u$＂variétél autres＂ $616 m, \Uparrow 7-3 w 17$ peculiar？ $78-9 m 8$ $12-15 w$ peculiar species in W．group．$\uparrow 7-6 m$ ， $\Uparrow 3-1 m \quad 9 \pi 8-2 w$ broken nature of country species abundant in one isld rare in another 1200 ft of $=$ difference of station $=\Uparrow 1 m, z b$
$127-8 m 164 m 1710 m, 12 m 2211-12 m / w$ Isolated plants－do not know yet，whether indigenous species or not．－ $16-17 \mathrm{~m}, 19-20 \mathrm{~m}$ ， $\Uparrow 3-1 m / w \times$ does this mean plants found nowhere else？Galapagos ${ }^{*}, \uparrow 2 x / u$＂espèces 1 propres＂ $231 m, 9-13 w$ So then List of plants on Teyde elsewhere？ $24 \Uparrow 5 u$＂observations analogues＂，$\uparrow 14-11 m / \Uparrow 14 x / u$＂Canaria＂／$\uparrow 13 u$ ＂représentent＂，$\uparrow 10-6 \mathrm{w}$ I suppose＊plants peculiar（？）to high parts of the Canary 25 $\Uparrow 8 u \wedge / \Uparrow 7 u \wedge / m / w 7,234 \mathrm{ft}$ Palma $261-2 \mathrm{~m} 32$ $9-10 m, 12-13 \mathrm{~m} / \mathrm{w}$（a） $19-20 \mathrm{~m}, 23-24 \mathrm{~m}$ ，$\uparrow 15-$ $13 m, \Uparrow 4-2 m / w$（a）Does this show course of immigration？ $331-2 m, 3 \mathrm{~m} / \mathrm{w}$ whether peculiar or not $37 \Uparrow 13 m 5012-14 m$ ，$\uparrow 6 m 511-3 m$ ， 14 $15 \mathrm{~m} / \mathrm{w}$－See Hooker＇s list of Plants 58 ＂Plantes alpines＂．w Is there any fuller list of Alpine plants？ $667 u$＂Calderal Palma＂，16－ $18 m 6812-14 m 69 \Uparrow 18-15 m$ ，$\uparrow 5-3 m 70$ 介9－ $8 m 715-7 m \quad 72$ 9－10m，18－19m 74 介10w Salvia Canaries $\uparrow 4-1 m \quad 75 \mathrm{im}, 11 u$ ＂buissons＂，11－12u＂provenant Igraines＂， $15 u$ ＂facies＂，$\uparrow 9!/ u$＂chétif＂ 76 介9－8m 78 గ3－1m／w must read $793-4 m, \Uparrow 12-1 m$ 80 2－3m，4－5m $8213-15 \mathrm{~m} / \mathrm{w}$ not from cultivation $95 \uparrow 2-1 \mathrm{~m} / \mathrm{w}$ important Read $97 \pi 2 u$＂quatrel bien＂$/ \mathrm{m} / \mathrm{w}$ different stations $10312-13 m 1048-10 m 122$ $\Uparrow 13-10 m, \Uparrow 6-4 m 123 \Uparrow 1 m 1246-21 m 16710-$ $17 m 175 \Uparrow 3-2 m, \Uparrow 1 w$ Galapagos？

BARRAGO，Francesco L＇Uomo fatto ad imagine di Dio fu anche fatto ad imagine della scienzia Cagliari；Corveso di Sardegna； 1869 ［Down，I］
title page wt 〈translation of title〉 $11 w$ throughout page 〈translation of page〉

BARRANDE，Joachim Acéphalés Chez l＇au－ teur，Prague； 1881 ［Down，I to CD erased and replaced by FD］\wp

BARRANDE，Joachim Brachiopodes Chez l＇auteur，Prague； 1879 ［Down，I］\wp

BARRANDE，Joachim Céphalopodes Chez l＇auteur，Prague； 1877 ［Down，I］\wp

BARRANDE，Joachim Defense de colonies Chez l＇auteur，Prague； 1870 ［Down，I］\wp
bARRANDE，Joachim Distribution des Céph－ alopodes Chez l＇auteur，Prague； 1870 ［Down， I］

3 21－25m 15 11－12m，13－15m 19 25－27m 111 24－29m 117 32－38m 121 31－35m 137 15－20m （Salter） 163 19－23m，40－43m 164 5－9m 165 7－ $13 m, 14-15 m, 26-28 m, 26-27 m, 29-33 m$

BARRANDE，Joachim Trilobites Chez l＇au－ teur，Prague； 1871 ［Down，I］

BARTON，John A lecture on the geography of plants London；Harvey and Darton； 1827 ［Down，pre－B，S］

4 20－26m 74－9m，5w Oak 22 13－18m 27 4－ $5 m 3012-23 m 31$ wtcc，22－25m $321-3 m 36$ 1－13m 38 13－17m 39 14－26m（Humboldt） 41 6－11m

BARY，Heinrich Anton de Die Mycetozoen Leipzig；Wilhelm Engelmann； 1864 ［Down］ \wp

BASTIAN，Henry Charlton The beginnings of life 2 vols．；London；Macmillan； 1872 ［CUL， I］
cc，che，ct，ds，fg，h，hl，phy，sp，t，v
vol． 1 NB xi；xii；160； 167 on Cellular Theory； 215 do．；Nothing for Man
xi $17-31 m$ xii $w t$ But are these supposed Heterogenic changes due to Environment？ $1-20 m, 1-17 w$ can this throw light or accord with the variability of higher form，as they are compounds of separate units？ 160 16－ $28 m 167$ 23－28m 215 10－16w plastide Hackels term best，25－29m 316 25－28m 433 19－22m 456 1－3？Catalogue \wp
vol． 2 NB1 Nothing for Descent of Man NB2
－lix variability of algae
－Ixii variation
－Ixxxii variation in relation to conditions in Infusoria Cohn
－31 Drosera
－79，88， 596 Pangenesis
255 objection
259 variation
377 Drosera
I think there is a tendency to plasticity var． but not proved－ 594 error on my views
597， 599 variation
604 I admit so far
608 I think I am in error
Frequency of generalised forms in old times quite opposed to independent origin of the diverse orders of same class
$114 z 312-7 m 7913-23 m 884-27 m 25515-$ $30 w$ Vorticellae；He omits altogether the conditions；Why not eggs in the infusion．－I do not yet see the reason－ 259 12－26m 261 3－9m 377 5－29m $5943-6 m$ ， $4 u$＂hetero－ geneous＂ $59624-31 m 597$ 2－8m $59920-24 m$ 604 wb like polarities of crystals $1-4 m 608$ 14－23m lix $20-30 \mathrm{~m}$ lxii $13-20 \mathrm{~m}$ lxxxii $2-34 m$

BASTIAN, Henry Charlton The brain as an organ of mind London; C. Kegan Paul \& Co.; 1880 [Down]
pat
NB 188 Douglas Spalding; 213 Blind Horse - self; 216 my Horse - Isle of Wight 213 14-17m 215 30c/w \notin
\wp
BASTIAN, Henry Charlton Evolution and the origin of life London; Macmillan \& Co.; 1874 [Down, I] \wp

BASTIAN, Henry Charlton The modes of origin of lowest organisms London; Macmillan $\&$ Co.; 1871 [Down, I] \wp

BATE, Charles Spence Catalogue of the specimens of Amphipodous Crustacea in the collection of the British Museum London; by order of the Trustees; 1862 [Down, I] \wp

BATEMAN, Frederic On aphasia, or loss of speech London; John Churchill \& Sons; 1870 [CUL]
beh, h
NB1 Descent of Man p.27; 31; 53; 100, 102; 109; 110; 112 Expression; nodding \& shaking Heads; p27 Concepts
NB2 p111 Gartner
27 4-5u "fell ldoor", 15-19m, 16-17u "memory|substantives", $18-24 w\langle C D$? \rangle one case of only the infinitive mood being retained $29 u$ "isl cut", wb How does this bear on concepts? 31 2-5m 53 12-16m $1009-10 m$, 17-20m 101 17-18u "defect |language", 19-22m 102 1-2m, 3-5m, 16-18m, 19-21m 104 8-11m 109 22-28m $1104 u$ "commonly unaffected", 6$15 m, 12-15 m, 12-15 w 2$ cases $16-21 m 1123-$ $8 m$

BATES, Henry Walter The naturalist on the river Amazons 2 vols.; London; John Murray; 1863 [CUL, I in both vols.]
beh, br, cc, cr, f, gd, h, ig, mm, no, 00, phy, rd, sl, sx, tm, v
vol. 1 NB p251
SB1 $\square \mathfrak{R}$ vol. 1
p. 20; 23; $30 x$ gradn in worker ants; 52; 55; 68; 99 monkeys not breeding; 102; 182.analogy of Moth \& Humming Birds; 193 sterile in confinement; 207; 210; 252; 254; 258-262; 304; 312; p 53 Sipo Matador

Bates Amazon vol 1
p. 20 on tropical insects not being more
beautiful \& on differences in sex.
23. on worker ants of 3 kinds
27. tunnell under river - 30 gradations between workers
52 Male \& female butterflies haunting different stations.
55 competition in the Tropics.
68. Trees with buttrefres.
102. 700 butterflies within an hour's walk
182. analogy between Sphynx moth \& humming birds.
207 widely different insects imitating sand in colour.
210 insects of same family having widely different habits.
252 male crickets being musical to attract female.
254 a kind of thrush with nest lined with mud 258-262. discussion on variability of butterflies \& on mimetic butterflies.
304. local vars. of butterflies
312. Ditto -

20 7-19m, 20-21u "almostlonly", 21-26m 21 $2 u$ "morel coloured", 3-31m, $3 u$ "females often", $5 u$ "tropics", $6 u$ "between the", $7 u$ "any temperate" 22 2-10m, 18-22m 23 8-10, 31m 24 10-14m 27 13-16m $308-12 m$, 19- $22 \mathrm{~m} 3126-$ $29 m 5123 u$, 29-31m 52 2-12m, $4 u$ "less dense" $537-14 m, 25 u$ "fig order" $541-31 m 55$ $21-29 m, 31 \rightarrow 5618-24 m 6814 m, 15-21 m 69$ $2 m 99$ 10-16m 102 21-26m 182 10-16m 183 5-8m 193 2-6m, 2-3u "раса"/w 2 Rodents p. 202 9-10m, 11-13m $20723-31 m / \rightarrow 20822-$ $27 m \quad 210 \quad 13-30 m \quad 250 \quad 23-26 m, \quad 29-31 u$ "Locustidae" $/ w$ probably Gryllidae of WellandO 251 1u "Acridiidae", fig.w toothed lobe left wing 252 11-15m, 15-27m, 31a "crickets" Achetidae wb Cicadidae again different 253 1-2m, 4-5m, 8-9m, 18-24m 254 $15-20 \mathrm{~m} / \mathrm{w}$ a kind of Thrush 258 25-30m 259 fig. $\rightarrow 260$ 5-9m, 14-19m, 28-31m $26122-27 m$ 262 介11-1m $2634-7 m, 14-17 m, 21-26 m 304$ 22-31m 312 18-30m 313 1-8m
vol. 2 NB 238 Toucans; 341
SB1 〈not CD? 39 Palm; 49 Tonka bean: fruits on stems; 51 Palm; 53 General descrip; 169 Bulging palm; 217 Fruit conspic ripe; 218 Gulielma palm; 237 Eriodendron; 263 Turtles eat fallen fruit
SB2 $\overbrace{0}\langle n o t C D\rangle$ Bates vol 2.
35 a young savage with instincts of finding his way.
44 Bees using hind legs to collect mud \& using gum.
46 Parasitic fly - like bee.
61-70 - neuters of termites.
228. butterflies of several sp. males living in
sunny places \＆females in wood
\Leftrightarrow 〈CD〉 307 Short－tailed monkeys，yet arboreal．－
《 ${ }^{2}$ not $\left.C D\right\rangle 313$ range of monkeys separated by a river
347 butterflies with males 100 times more numerous than the female．
347 range of butterflies depending on wind
351 gradation in workers of ants
364 great difference in the castes of worker ants．
$\langle C D\rangle 204$ man essentially same in mind
284 strong sexual characters．Umbrella Bird rudiment in female
349 tubes for caterpillars
357 gradation of instincts
SB3 \square ПR
35；44；45；61－to 70 Termites； 113 sterility； 128 expression；159； 162 God \＆Man；194； 219 Cultivated fruit－by Natives；228；313； 347； 351 gradation in workers； 364 ants；＊ close mouth \＆part front of tongue forming the palate \＆open mouth suddenly \＆this makes the click－open mouth sign of surprise．

35 1－9m 44 9－12m 45 13－23m，29－30 $\rightarrow 46$ 8－ $20 \mathrm{~m}, 18-23 \mathrm{~m}, ~ 23-27 \mathrm{~m} 513-5 \mathrm{~m}$ 61 7－14m，15－ $18 m 653-8 m, 28-31 m 665-9 m, 19-22 m 67$ $17-27 m, 28-31 m 1134-12 m 12829-31 m, 31 u$ ＂tola＂ $15920-29 m 16228-31 m 1785-9 z 194$ 16－29m 19710 m 204 1－9m 219 5－12m 228 4－ $9 m, 9-12 m 237$ 3－5m 284 12－18m 307 12－28m 310 24－29m，24－26＂．．．＂，30－31z 313 17－31m $33821-23 m$ ，22u＂seven 1 more＂ $33922-23 m / u$ ＂deficiency｜used＂ $3417-11 \mathrm{~m}$ ， $15 u$＂considered instrument＂ 347 4－11m，27－30m 349 22－31m $35122-26 m, 27-30 m, 30-31 \rightarrow 35221-32 m$ $35720-24 m, 20-22 w$ is it true，stinging 364 $14-17 \mathrm{~m} 36515-20 \mathrm{~m}, 22-26 \mathrm{~m}$ 419a 20 m ， 29 m 419b $1 m, 12 m, 26 m, 31 m$ 420a $8 m, 9 m, 19 m$ ， $29 m, 35 m 420 b \Uparrow 3-1 m$ 421a $1 m, 6-9 m, \Uparrow 2 m$ 421b $16 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 25 \mathrm{~m}, 31-37 \mathrm{~m}, 40 \mathrm{~m}, ~ 40 \mathrm{~m}$ 422a $1-4 m, 9 m, 10 m, 14 m, 27 m, 30 \mathrm{~m}$ 422b 20 m 423a $1-3 z, 16 m, 22 m$

BAXTER，Jedediah Hyde Statistics，medical and anthropological of the Provost－Marshal－ General＇s bureau 2 vols．；Washington； Government Printing Office； 1875 ［Down］

BEALE，Lionel Smith On the structure and growth of the tissues and of life London； Robert Hardwicke； 1865 ［CUL］ ct，phy，t
NB Used for pangenesis and of no other use
$1024-30 m 21 w t$ cell contents $1-5 w$ or as some several authorities object dispute the rejectO the presentO expion of cells， Beale＇s term been very useful 14－18u土， $21 u$ ＂Formed 1 matter＂，29－30m 25 27－30m，29－30u ＂composed Itissue＂ 26 3－7m，18－20m 27 23－ $28 \mathrm{~m}, 27 u$＂lastlylsurface＂， $28 u$＂ofland＂ $283-$ $7 m \quad 29$ 12－14m，13－14u＂comparativelyl matter＂， $24-27 \mathrm{~m} 313-21 w$ says before it has become completely passive 19－21m $34 w t$ the germinal matter in a fully developed muscle must be formed or modified by the development of the muscle． 36 11－13m， $12 u$ ＂islor＂ 37 19－21m $62 w t / 1-21 w$ says the nuclei or germinal matter of the various tissues are＊continually forming 12－15m， $12 u$＂Cells I parts＂ 63 21－23m

BECHSTEIN，Johann Matthäus Gemein－ nützige Naturgeschichte Deutschlands 4 vols， Leipzig；Ernsius；1801－5（2nd edn），1793－5 （1st edn）［CUL］
beh，br，cc，ch，cs，dg，ex，f，fg，gd，h，he， hy，ig，in，is，mg，mn，no，oo，or，pat，rd，sp， sx，ti，tm，ud，v，wd，y
vol． 1 NB Blumenbachs HandBuch of Nat Hist
17．； 26 Book；227， 228 －do．；232－6 Horse； 241 Canines varying
275；285，6；294；300；309；310，12；324；358；
362，5；378；404；425；432；434；448；457；
470；491； 505 to 508 to $536 ; 546$－Dog
It wd be good to investigate the 4 teeth of
upper jaw of Dogs to see about abortion
SB1 ロR
Vol I Bechstein－V End of Book for early references
p548 to 579 to 702
－p609 to 627；end；p． 653
795；850；932；950；984；1032；1046；1078－
83，1084．Squirrels； 1095 Hare； 1119 Rabbits to p．1135－
A Calendar at end with periods of coupling of ali wild animals．
SB2 1β
p241 Mares Eye Canine teeth either absent or very short－sexual \＆rudimentary characters variable
（Bechstein Vol I）
p 294 Hinney more like Mother（ie Ass）then Horse，but ears Horse－like Qwa
p 309 Nine Breeds of Cattle in central Europe
310 Pale－coloured cattle more plagued with Flies then darker colours
359 She Sheep have horns smaller or none 362 In Hornless sheep some have small loose Horns

BECHSTEIN，DEUTSCHLAND
379 Certainly Ram gives fleece
4322 Breeds of Chamois inhabiting different heights
505 Wild \＆tame Pigs produce fertile offspring Q
508 Var．of front teeth in Pigs N．Q
530 Sort of pad defending Boars
536 Many wild Pigs die in Hard winters \＆in very dry summers．－
548 Bitch 5，seldom 4 Q，mammae on each side－Iceland Dogs different voice $\langle u\rangle$
574 Newfoundland Dog－skin between toes
－Not in Newfoundland，when discovered．
584 time of gestation
638 Stutz－Dogs are easiest crossed with Foxes Q
654 Cats with wavy hairs N．Q
663 Astonishing increase of mice in Isld of Placida off Naples，when Cats destroyed．
682 In Lynx tufts of hair 2 inches long
795 Ferret procreates quicker than Polecat， －parent
950 Black \＆Brown Rat cross in nature Q 1032 Marmot or Arctomy inhabit only highest alpine height of Europe
1084 Squirrels in same nest，one finds 2 colours，when parents of two colours
1095 variation in upland \＆lowland hares
1119 Hares \＆rabbit will not breed after many attempts made Q
1123 Rabbit can produce in 4 years 1274， 840
1133 Grey＊Rabbits turned out after some generations assume grey colour
$26 \Uparrow 2-1 m / w b$ On variation $227 \Uparrow 5$ ？，$\uparrow 2 ? / x / u$ ＂deutscher｜ausländischer＂ $2283 m 2336 u$ ＂dünne＂， $14 u$＂Derlist＂，15u＂Ohrenllang＂， 16u＂Mähne dick＂ 234 1－2m／u＂vor－ züglichsten 1 Andalusien＂，5－10m／w He means x －Hunter cross $13 u$＂Yorkshire＂， $17 u$＂diel haarig＂，$\Uparrow 3 u$＂Tigerpferde＂ $2359 u$＂Calabrien＂， $10 u$＂Apulien 1 vorzüglich＂， $15 u$＂Polnischen 1 gleich＂，$\Uparrow 3 u$＂dasslabnützen＂｜w 236 2－ $7 \mathrm{~m}, 10 \mathrm{w}$ Pony $18 u$＂Holsteinische＂，19u ＂Mecklenburgische＂ 241 〈err．printed 235〉 4u ＂Hundzahne＂，6－7u＂fehlen｜kurz＂，4－6m／w Fem．Mares Eye teeth absent or small： variable Owen says absent $275 \uparrow 5 \mathrm{~m} / \mathrm{u}$＂von Natur＂ 285 wt There does not appear to be race of asses in each country．4－8m／w Ar－ abia Donkey very fine $8 u$＂glattes＂，12－18m／w smallness owing to climate（Peacocks do not flourish） $286 \pi 8-5 m / w$ various colours 294 $12 u / a$＂mehr mütterlich＂i．e．Ass 12－13w sometimes much mishapen 300 介5－1m 309 $z t, 1-2 m / w t 9$ Central Europe Kinds of large Cattle 4u＂übrigen Deutscher＂ 310 10－16m／w

These colours more plagued by Flies（1 wonder if true）might bring in 312 介3－1m 324 15－20w Change Bull to prevent inter se 358 5－7m／u土 359 介14－13m，$\uparrow 9-8 m / w$ Horns in Female fail or are smaller $3621-2 m$ ， $13-17 \mathrm{~m} / \mathrm{w} \underline{\mathrm{Q}}$ Hornless but sometimes appear， \＆are then not well fixed．－ $3658 u \leftrightarrow / m / w$ Hellenius case 378 12－14m／w Sheep with least mark often bring quite dark lamb－like Fox＇s fact 379 3－10w Certainly Ram gives wool most strictly heredetary $\uparrow 13-9 m / w$ not interbreed $404 \quad 4-6 m \quad 425 \quad 6-7 m / 7 u$＂lang herabhängenden＂，16－17m 432 介11－1m，介10－9u ＂klein 1 höchsten＂， $\mathbb{7} \mathbf{u}$＂obersten Theile＂，$\uparrow 5 u$ ＂dunkelbrauner＂，介 $2 u / w \tau, w b$ might be 2 species 433 3－4u＂Feld｜Bershirschen＂ 434 14－15u＂Pyrenäischen I Gebirge＂，$\uparrow 6-5 \mathrm{~m} / \mathrm{u}$ ＂Steinböcke I mittlern＂ 448 15－20w Fallow Deer various colours 449 介8－4m 457 介14－10m 458 7－8u＂gemeinisch｜sind＂，6－14m／w Q dif－ ferences according to habitation $4704-6 m$ 491 介3－1m 505 11u＂abgerundete＂， $12 u$ ＂zugespitzte＂，$\uparrow 7-1 \mathrm{~m} / \mathrm{w}$ Pigs wild \＆tame breed together \＆offspring fertile Q Q＊ 507 $\Uparrow 8 u$＂vier＂，$\uparrow 7 u$＂etwas＂ $5084-6 \mathrm{~m} / \mathrm{w}$ front teeth vary；sometimes 2 more in upper sometimes 2 more in under $5 u / w \tau 509$ 介4－ $1 m / w$ Breeds $\Uparrow 4-1 u \pm 510$ 11－12u＂Diel Schweine＂， $16 u / w \tau 517$ 6－15w white sows frequent 15 weeks speckled 18！Q $14 u$ ＂zweymal＂／w breed twice 529 5－7w Wild Boar Dark colour $9 u \leftrightarrow, 12-13 w$ short more projecting ears $15 u$＂hängende Schwanze＂ 530 $10-15 w$ Black hairs have brownish tips $\Uparrow 13$－ $5[$ ．．．］ $534 \Uparrow 7-5 \mathrm{~m} / \mathrm{o}, \uparrow 4 u \leftrightarrow / w$ Twice a year on Heat 535 wt Wild Sow 18－20 weeks $3 u$ ＂fünf｜zwölf＂ 536 〈err．printed 436〉 9－10m，12－ $16 w$ Many die of hunger in hard winters $14 u$ ＂doch｜für＂， $16 u$＂sechs lacht＂， $19 u$＂zuweilen｜ aussterben＂ $5468-16 \mathrm{~m} / \mathrm{w}$ Believes in multiple origin of Hound $5481-2 m / 1 u$＂nur｜Brüste＂ $5495 u$＂den 1 murrend＂$/ w$ voice different． 551 1－6w Fox like dogs like our Spitz 554 6a＂2＂ subspecies Mastiffs $\mathbb{1 1 2 - 1 w}$ Big thick upturned snout；falling chops；slaving mouth； small hanging ears；Breed had flat long neck \＆thick－smooth short hair $5586 w$ Pug（？） $559 \Uparrow 1 w$ 3d subspecies Hounds $5604-12 w$ Head round with ridge Ears very long－ Body long－claws on after－toes 568 1a＂4＂ Spaniel．Poodle $5698 w$ Spaniel 572 8－10w hairs like Lion 15－16w Danish Dog $573 \pi 2 w$ Newfoundland $5745-7 \mathrm{~m} / \mathrm{w}$ Q skin between toes $14-15 \mathrm{~m} / \mathrm{w}$ not there in 1622 15－16w Greyhound 576 1－2w Italian Greyhound 578 $\Uparrow 5-4 w$ Terrier $579 \Uparrow 2-1 w$ Skye Terrier 584 $\Uparrow 6-5 u$＂neun I Wochen＂$/ w$ Wolf p． 617 wb 63－ 70 days $609 \Uparrow 10-9 \mathrm{~m} / \mathrm{u}$＂jeder 1 Backenzähne＂，
$\Uparrow 8-5 w$ teeth different from Dog $617 \Uparrow 12 w 77$ days $\Uparrow 11-10 \mathrm{~m} / \Uparrow 10 u$＂ 2 ｜trächtig＂，$\uparrow 9-5 m / \Uparrow 8 u$ ＂selbstgegrabenen Loch＂ $6276 u$＂Spielarten＂，9－ $10 \mathrm{~m} / u \pm, \uparrow 9-5 w \mathrm{Q}$ tip of tail variable $\uparrow 3-2 \mathrm{~m} /$ $u \pm 6283-8 m 638$ ¢ $5-7 m / w$ Q 653 介11－8m／w differ in habits $\uparrow 11-8 w$ degenerate easily $\Uparrow 6 \mathrm{~m} / \mathrm{wb}$ Tortoiseshell！ $6546 u / w \tau 663 \Uparrow 10-3 m$ ， wb Extraordinary increase of Mice in Isld of Placida when cats all destroyed．－ $67415 \mathrm{~m} / \mathrm{u}$ ＂bringt｜blinde＂ 675 4－8m $6825 u$＂zwey Zoll＂｜ w ear tufts 2 inches long 7025－12m／！ $7864 u$ ＂gewöhnlich｜selten＂ $795 \uparrow 11-7 w$ more than Iltis wild MardO on prowlo p786 850 2－4m， $7-8 m$ ，13－16m 932 11－14m／11u＂zweyen Jahrhunderten＂，$\Uparrow 2 m / u \leftrightarrow 950 \quad 9-11 \mathrm{~m} / \mathrm{w}$ Q Black \＆Brown Rat $\uparrow 9-5 m / w$ Q $984 \Uparrow 14-7 \mathrm{~m} /$ w Water Rats like Snakes inhabit dry \＆wet places $1032 \Uparrow 11 w$ Arctomys Marmot $\uparrow 10-9 m$ ， $\Uparrow 8-4 m 1046$ 介4－1m 1047 3－5m，7－9m 1078 wt In relation to mankind－we cannot account for it．－ $9-12 \mathrm{~m} / \mathrm{w}$ black very common $12 u$ ＂gewöhnlich｜Bauch＂，介3－1m／wb these 3 seem to arise out of cross of red \＆black，but no evidence． 1079 wt N．B it must be remembered that B is not to be trusted about species $9-10 u$＂mit weissen＂，11－12u士／ w ．Then this is Fox var．13－14u＂mit Schwanze＂，$\uparrow 7-5 m / x, \uparrow 4 u / w \tau, w b$ when these vars cross offspring intermediately blended． $1083 \Uparrow 5-3 \mathrm{~m} / \mathrm{wb}$ all the vars of colours cross 1084 介12－8m 1095 iw in several cases he has utterly rejected the Hunters varieties \＆ therefore may be trusted，when he admits them．$\uparrow 11 w$ He has the L．varieties，besides． $\Uparrow 11-9 u \pm, \pi 2-1 \mathrm{~m} / \rightarrow$ ，wb no difference in any respect $10967 w$ Nothing $介 1 m 10972 m 1119$ $\Uparrow 6-1 m$ Rabbits will not breed with Hares， after many attempts $1121 \Uparrow 8-6 m 11236 \mathrm{~m} / \mathrm{u}$ ＂vier lacht＂， $14 \mathrm{~m} / \mathrm{u}$＂mehrentheils viermal＂，$\uparrow 7-$ $3 m 1128 \Uparrow 5 m / u$ 〈colours〉 $1131 \Uparrow 10 \mathrm{~m} / \mathrm{u}$＂vier I Junge＂ 1133 介9－5m／w become grey after some generations． $113616 u \leftrightarrow / w$ short ears， round head $18 u$＂oft I lang＂， $19 u / w \tau$
vol． 2 NB p4»；Frisch Birds－Not in Linn Soc
Pigeon PI．143－151
Cock Tab．127－137
p400 on Pigeons of this Book to p404
p396 Fowls nothing in Frisch
p1150；1168；1170；1184； 1187 to 1204；
1271
SB $\square \beta$
p400 Trumpeter in 1739
p404 some crossing domestic Pigeons I think read
$3961-4 m / w$ From same parents legs feathered \＆not． $400 w b$ Frisch 1739402 1－
$3 m / w$ will cross with others，\＆has cros－ sed with Trumpeter \＆Jacobin．－ $9 u$ ＂Schleyertäbin＂，11－16w It is not true that Hawks cannot catch． $4045 u$＂weisswarzigen＂， $5 w$ Pavodetto $8 m / w$ very large 463 ＂ 143 ＂．m $1150 \pi 10-7 m$ ，$\uparrow 3-1 m / \Uparrow 2 u$＂triff \mid voll＂ 1151 $13-14 u \leftrightarrow, \Uparrow 5 m 1168 \Uparrow 11-9 m 117012-14 m$ ， $\Uparrow 12-9 m / \Uparrow 11 u$＂habe ich＂$/ \uparrow 9 u$＂gesehen＂$/ w$ C corone \＆cornix 1171 6－9w Dwarfs occasionally born $\uparrow 11-8 m$ ，$\Uparrow 7 u$＂Jungen Alten＂，$\uparrow 5-1 m$ ，$\uparrow 5 u$＂gemischt I gesteckt＂ 1174 $5-7 m 1184 \Uparrow 17-1 m / w$ crows following a little dog which used to catch mice 1186 ＂Naumanns Vögel＂．w where $11873 u$ ＂Raubenkrähe I hat＂$/ 3-4 m, \quad 9-10 \mathrm{~m} / u \leftrightarrow / w$ Bey－ ond Ober $\uparrow 12 u$＂Sie I grösser＂ $1189 \Uparrow 13-9 m / w$ The grey colour only an exaggeration of base colour of all crows 1194 15－16m 1204 $\Uparrow 10-7 m 1271 \Uparrow 12 w$ Magpie $\uparrow 9-5 m$

vol． 3 SB $\square \beta$

299 Peacock more fertile in India，but Temminck Gallinaceae better reference
309 Caudal feathers vary in Turkey－Q 316 number of eggs in Tame Turkey 335 Range of wild Fowls－Acosta only authority for American Origin
337 Fowl has 14 Caudals
339 Breed of Hens with Spurs．good layers p． 410
355，6 In Capons，Tail \＆Comb continue growing．They castrate Hens．NB Great variability of Comb，\＆in Spurs，variation of Secondary Male Characters
400 Cocks have not enlarged skull in Polands，only Hens！
406 Frizzled Cock with split Feathers Spurs various；Hens have sometimes．
N．B．Ld Spencer has shown how maturity \＆ size of cattle increased \＆quite lately we have seen this in Ducks \＆Geese．－When no record kept，wd not be observed \＆yet cd go on slowly．－
xv $1 m / w$ Read 〈refers to $p p$ ．293－500〉 299介12－11m $3094 u$＂Anzahl \mid ist＂ 316 介5u／w τ ，wb 54，ie 27 each $33514 u$＂Acosta＂／w Acosta alone says Fowls American $\uparrow 2-1 \mathrm{~m} / \mathrm{u}$ ＂Morella｜Hühner＂ $3374 u$＂vierzehn＂／w 14 tail $339 \uparrow 8-5 m / w$ Q $\neq 0$ Breed of Hens with spurs good layers；but the spurs disturb the nest 355 介10－6m 356 5－9m 396 介 $8 u$＂Kamml Fleischlappen＂ 399 介14u＊＂angefressenen Kopf＂， $116-13 m / w$ Canaries $\uparrow 7-5 m 4005 w$ Has Cocks $8-12 w$ Cocks can withstand this deformity．What says Blumenbach？10－11w Hen－poultry $\uparrow 7 u$＂habe I bemerkt＂，$\uparrow 4 u / w \tau, ~ \Uparrow 3 u /$ $w \tau$ ，wb Hähn Hühne 403 4－6m／Q屯 $4064-8 w$ wing feathers always split $\uparrow 12 u \varkappa_{0}$＂Japan＂

BECHSTEIN，DEUTSCHLAND
407 wt Spurs but in Cochin？tuft $1-4 m / w$ spurs various Qa， $4 u$＂sehr langen＂ 410 15－ $18 m 434 \Uparrow 3-1 m / Q \cos _{3} 7965 z$
vol． 4 SB1 $\square \Re$
p3；p13；p14；p． 31 edge of caudal．－coloured to p． 47 －swallow－tailed Pigeon Pigeons
Canary Birds
p454 difference in disposition of Canaries
p462－if 2 top－knotted canaries are paired
there come bald or birds with wound on head
p465 lay 3－4 times
p468 Hybrids．
487 ＊ 487 ＊ 478
SB2 1β
Bechstein Vol 4
p5 C．oenas Q pairs with tame（nothing said about fertility of offspring）
p14 C．livia varies most in colour of rumpi \＆ is not true in this respect \mathbb{Q}
17 do not mix associate readily with Fancy Pigeons
47 Swallow－tailed Pigeon Q
31 Outer Tail feather on outer edge coloured like body of Pigeon X
454 Great differences in disposition in Canary Birds
462 If you pair 2 crown－turned Canary Birds， crown will be bald，\＆skull fail．
465 Canary Birds will lay 3－to 4 times（no ＊wild Finch will do this）
468， 478 Q Hybrids of Canary Birds，various genera－Hybrids of Siskin \＆Goldfinch breed inter se，but at first small eggs \＆weak young
vii 4－8m／w Read ix＂Canarienvogel＂．m / w Read xi＂Zweyter Anhang＂．m＊xii 6－9m 3 $\Uparrow 9 u$＂paart｜bleiben＂$/ w$ pairs with tame $\rightarrow \mathbf{4} 2 u$ ＂zahnenlzu＂ 13 介9－5m／w House Pigeon with black Bars common in Germany $141 u$ ＂Feldtauben＂w t The field Pigeon great vary in rump $1-6 m / w$ For those with blue rumps bring grey，with white \＆reverse $15 \Uparrow 5 m / u$ ＂bey｜dunkler＂ 16 15－22w with Bars \＆white Rump 1／2 wild in towers \＆c，\＆c．－ 17 \＄2－1m 18 8－15w Field Pigeons vary when fed by man $\Uparrow 11 u$＂Liebhaber＂，$\uparrow 5 u$＂gedüpfelte＂$/ w$ the chequered Dovecot $\uparrow 12-8 m / w$ ，wb has watched how the wild vary as he gives order of appearance，I suppose may be trusted； but then gives Jacobin！Did he judge by commonness of variation？Does not say that crossing avoided．－ $19 \Uparrow 2-1 u$＂dass I setzen＂ 21 $\Uparrow 3-1 m 23 \quad 13-17 \mathrm{~m} / \mathrm{w}$ chequered $\pi 7-1 \mathrm{~m} / \mathrm{wb}$ The ash－grey chequering sometimes disappears leaving the black chequering more conspicuous $25 \pi 7 \mathrm{~m} / \mathrm{u}$＂grossel

Feldtauben＂ $267-9 m / 8-9 u \leftrightarrow, 11-14 m / w$ cros－ ses $274 w 17957-12 w$ Swallow thin fea－ thered legs scarcely larger than Dovecot $9 u$ ＂dünn＂，11u＂kaum merklich＂ 31 1－4m／w edge of outer tail feathers coloured like body．Like white \＆black bars． 32 1－2w Satz of Neumeister $35 \Uparrow 12 u$＂aberlüber＂ $476 w$ as a Plate，I suppose must have seen it $7-14 m$ ， $18 m 1014-5 m / 5-6 u$＂bald \mid mehr＂， $11-13 m /$ ？ $454 \Uparrow 7-1 m 462 w t$ For feathers are parted \＆ the parting gets wider \＆wider．－ $5-8 m / \mathrm{Q} \&$ ， $9-12 \mathrm{~m} / \mathrm{w} \mathrm{Mr}$ Brent believes $11 u / w \tau$ ， $12 u / w \tau$ 465 9－11m／9u＂viermal＂ $4664 m 468 u / w \tau 469$ $6 w \tau, 7 u$＂zeugen $1 J u n g e ", 7-12 \mathrm{~m} / \mathrm{Q} 478$ 〈err． printed 487），3－4m，16u／wr，介4u＂Loxia Chlovis＂ 487 10z 903 ＂Eisvogel＂．w $\notin<4$ ＂Pieplerche＂．w IV

BECHSTEIN，Johann Matthäus Natur－ geschichte der Stubenvögel Halle；Hennemann； 1840 ［CUL，S］
beh，br，cc，cs，ex，f，fg，gd，he，hy，in，mg， no，or，pat，sx，ta，tm，ud，v，wd，y

NB1 I thought of comparing rarity of English \＆German Birds after p210
There is very little information，except by inference，about fertility of the crossed canary－birds＝
NB2 it is surprising how many birds have been introduced as cage birds
p1 to 7
－20－40 83，4 105 skimmed
107 Memory； 108 var； 112 do； 114 range； 137；138；145；177，185，155； 192 var；196；
205；210；212；215；to 253 to 256 to end－
SB \quad－$\langle 2$ sheets \rangle
2 Birds understand each others cries
4 Singing male attribute to charm females
7 Voice of Birds improves by practice Q
20 ＜he means 40）Remarks on rarity of Cage Birds breeding，except such as Canary used to confinement
83 Psittacus large eggs but unfertilised 105 exception
XX 106 Pi 142Q Different facilities in learning in Bullfinches p231 Q Different characters in canaries（as in man）－ 267 Q in Larks taken wild 139 Bullfinch occasionally breeding
139 Canary male Bullfinch female（Canary female Greenfinch male p．145）
185 Male losing sexual character in confinement－ 215 Linnet do．219．do．
205 Habit Chaffinch has Q different song in different places－ 265 Q Larks sing differently individually
210 Can cross House \＆Tree Sparrow，but
not reciprocal（224 on canaries do） \mathbf{Q} 212 on comparative rarity of House \＆Tree Sparrow
221 vars of Goldfinch， 222
230 Easier to pair Siskin with Canary of same colour
237 Origin of Canaries \＆Hybrids of（p347） Hybrids）Q
238 Thinks want of exercise great cause of variation．－
〈over〉
239 Hybrid of Canary \＆F Species always takes after latter in colour \＆shape Qas
242 good Breeders rare amongst Canaries
247 In Birds reared from nest，either sex will do to match with Canaries Q
248 Certain that Hybrid Canaries \＆Q Goldfinches \＆Siskins will breed inter se［but first young are weak］
247＊Has himself crossed Bull－finch \＆ Canaries N．Q
252 Canaries sing till they kill themselves．
262 Several cases of Birds in dark places losing brilliancy of colour（Ch 7）p． 300 do 289 Garrulus lived 12 years
293 Q for instinct Migratory \＆Home Thrushes can be distinguished－probably do not cross（V Brehm）
312 Nightingale once exterminated do not reappear（shows less abroad）
318 Nightingale sometimes breed in cage surrounded by green boughs
319 live to 15 years old－even 25 years
322 Nightingale different \underline{Q} prowess of singers，some are night singers，inherited 403N．Q I think mistake C．oenas \＆livia（No） But says nothing on fertility of Hybrids 418 case of Quail Breeding
title page $\Uparrow 3 m \quad 2 \quad 10-17 w$ not aboriginal！ \＆－urkey \＆\＆－en understand others \＆of fear 15u»＂Zaunkönige verständlich＂3 5－6x，介12u ＂Locktöne＂$/ w$ understood by many species 4 $10-17 w$ from happiness or love $\uparrow 12-11 u$ ＂Denn I Weibchen＂ $\mid \uparrow 15-11 \mathrm{~m} / \mathrm{w}$ few females sing in widowhood $\uparrow 6-5 \mathrm{~m} / \mathrm{u} \pm 5 \pi 15-1 \mathrm{~m} / \mathrm{wb}$ different species learn with different facilities $\rightarrow 7 \Uparrow 13-12 u$＂weil \mid Männchen＂$/ w$ larynx not so strong in female $\uparrow 5-3 u$＂dass I wird＂，$\uparrow 5 a /$ $w \tau, \Uparrow 5-1 m / w b$ improved by practice $20 \Uparrow 8$－ $3 m 40$ wt V Blaines Encyclop of Sport．（Athe） whether Falcons were bread or continually fresh caught－good case of difficulty of breeding，after thousands of attempts on European bird．1－20w Elephants occasionally breeding may be compared to the mule occas．doing so $586 \mathrm{~V} 61 \Uparrow 11 \mathrm{~V} 6715 \mathrm{~V} 83$ $\Uparrow 10 w$ Psittacus macao $\uparrow 5-3 m / \Uparrow 5-4 u$＂Beil
unbefruchtet＂，$\uparrow 1 \rightarrow 842-4 m / 4 u$＂aufgezogene＂， $5 u$＂nurlzähnen＂ 89 11x／u＂pfeifen＂ 105 16－ $17 m / u \leftrightarrow, 17-20 m / x, w b$ it is known how very long pigeons live in confinement－\therefore not diseased． $106 \pi_{2}-1 m 10815-20 m 1121-4 m$ ， $\Uparrow 13-3 m 114$ 15－18m $137 \Uparrow 10-3 m 13811-20 m$ ， $\Uparrow 14 w \tau$ ，$\uparrow 13 \mathrm{~m} / \mathrm{u}$＂wie｜Vögeln＂，$\uparrow 9-8 m / \Uparrow 8 u \leftrightarrow$ $139 \Uparrow 4-3 \mathrm{~m} / \mathrm{u}$＂bringen lauf＂ $142 \Uparrow 10-5 \mathrm{~m} 144$ $\Uparrow 4 m / u$＂Alter der＂ 145 2－6m 155 13－18m 177 $4-5 m 185 \Uparrow 3-1 m / x, w b \times 1$ think 1 have overlooked some analogous facts $192 \Uparrow 2 \mathrm{~m} / \mathrm{u}$ ＂Spielarten＂ 193 1－2m 196 10－12m 205 10－ $12 m 210 \Uparrow 9-8 u$＂ein I gerathen＂$/ w$ Tree Sparr． $211 \Uparrow 3 u$＂Fringilla montana＂ $2129-11 \mathrm{~m} / \mathrm{w}$ still rarer in England 215 9－11m 218 18－21m 219 17－18m 221 介6－4m 222 介18－14m，$\uparrow 11-8 m$ ， $\Uparrow 3 u$＂kohlschwan＂ $224 \Uparrow 9-5 m / \Uparrow 6 u$＂wenn 1 mit＂ 229 14－16m／15u＂Deutschland｜gemein＂ 230 $14-19 m / 15 u$＂die｜gleichen＂／ $18 u$＂sogenannten＂ $236 \Uparrow 19-18 \mathrm{~m} / \mathrm{u} \rightarrow, ~ \Uparrow 8 u$＂ohnel vermehrten＂， $\uparrow 4-3 m / \Uparrow 3 u$＂erzogen．Anfänglich＂，$\Uparrow 1 u / w \tau 237$ 1－4m，6－10m，$\uparrow 11-8 m / \Uparrow 11 u / w \tau / w b$ origin $\Uparrow 3-$ $1 m \quad 23811-12 u \pm / 12 u / w \tau, 14-15 \mathrm{~m} / 15 u$＂oft ausserordentlich＂，$\uparrow 8-5 m / \Uparrow 5 u$＂sehr einfaches＂ 239 1－2m／Q／2u＂Farbe I Gestalt＂ 242 6－20m／ Q＊／20u＂Oderl spät＂，zb 243 1－2m 245 6－8m／ $8 u$＂allel möchten＂ 247 wt X F．linaria 6－7m／u ＂und｜Bastarde＂，9－18m／15u＂Männchen｜bei＂， $\Uparrow 23 a / w \tau$ ，$\uparrow 21-17 m, \Uparrow 16 u / w \tau$ ，$\Uparrow 15-14 u$＂$E r$－ fahrung｜die＂，介11a／w $1, \Uparrow 5-4 m 2483 m / w t \mathrm{~F}$ ． spinus or Siskin $2 a / w r, 3 u$＂wieder unter＂，2－ 3m／Q 5－7m／Q 251 介 $21 u$＂Das IStube＂，$\uparrow 16 \mathrm{~m} / \mathrm{u}$ ＂Verschidenheit ITemperamente＂，$\uparrow 5 m 252$ $2-3 m / w \tau, \quad 8 u \quad$＂Adern｜zersprengen＂， $9 u$ ＂herabfallen \mid sind＂， $15-21 w$ related song $20-$ $21 \mathrm{~m} / \mathrm{u}$＂derlfortpflanzt＂ 256 11－12m／u＂Siel bei＂ $2626 \mathrm{~m} / \mathrm{u}$＂das 1 gemeissen ＂ 264 12－13m／u土 $265 \uparrow 8-4 m / u \pm 267 \Uparrow 3-2 m / u \leftrightarrow / w b$ corporeal virtue \＆vice $2823-5 m 283 \Uparrow 3-1 m 28913 \mathrm{~m} / \mathrm{u}$ ＂zwölf＂ 293 19－22m，$\uparrow 12-19 m$ ，$\uparrow 8-6 \mathrm{~m} / \mathrm{Q} / u$ ＂welche Ifremde＂ $294 \downarrow w$ Nothing said about breeding in domest． $13 w$ The thrush 299介13－10m $301 \quad 2-4 m \quad 308 \quad 20-21 m / u$＂sind Farbe＂ 309 zb $3108 \mathrm{~m} / \mathrm{u}$＂bis 1 Schweden＂，$\uparrow 3-$ 1m 311 介6－5m／u＂wenn｜leider＂ 312 wt The numbers of Nightingales in Europe in summer have no relation to amount of food for them． $5 w \tau, 7-12 m / w$ This helps to show at what period the Sylviadae are destroyed． $15-18 \mathrm{~m} / \mathrm{w}$ think with respect to Malthus． $116-$ $10 \mathrm{~m} / \mathrm{w}$ instincts dormant for one year 313 3－4m／u＂Da｜reisen＂ 318 介17－13m／$\uparrow 13 u$ ＂zuweilen bewerkstelligte＂ $3192 u$＂fünfzehn＂， $3 u$＂bemerkt 1 Orte＂，6－7m／u＂fünflist＂ 322 15－ $20 \mathrm{~m} / 16 u$＂nun ISchweden＂ 323 17－20m／17u ＂Es 1 Nachtigallen＂，$\uparrow 21-13 \mathrm{~m} / \Uparrow 20 \mathrm{u}$＂weiss aus＂，介12－11m 329 7－14m／12u＂Diesel einer＂ 3301 － $7 m 3324-8 m 333 \Uparrow 6-4 m 346 \Uparrow 7 m 356 \Uparrow 6-5 m /$

BECHSTEIN，STUBENVÖGEL
u＂einigelum＂ $362 \uparrow 10 \mathrm{~m} / \mathrm{u}$＂viel matter＂ 377 介 $14 m / u \leftrightarrow 383$ 4－6m 387 16－21m／ $17 u$＂Varietät＂ 397 介9－5m／w appears not uncommon 403 11－15m，$\uparrow 8-6 m 4068-9 m / u$ ＂trittlJungen＂ 407 介11－10m／w Columba risoria $4088-10 u \pm, 11-12 m, 16-20 m$ ，$\uparrow 13 u$ ＂stets＂$\uparrow 14-12 m, \Uparrow 12 u$＂grösser werden＂ $1 \uparrow 13-$ $10 m 4093 m / u$＂acht Jahre＂，13－15m，介7u ＂unserelschön＂ 411 1－3m 418 12－15m／15u ＂Jenelaus＂ 423 17－19m／18u／w 424 介15－14m／介14u＂diel Jahre＂ 428 介11－6m 436 ＜err．printed 466）$\Uparrow 13-12 m$

BEECHEY，Frederick William Narrative of a voyage to the Pacific Philadelphia；Carey and Rea； 1832 ［CUL，on B］
geo，ti
36 39－45m 49 3－17m，26－31m 120 27－28＂．．．＂， $28-35 m 136$ wt Put this note to Matilda Isld wb Redo this Some of isld steeper－18－ $21 w$ before 49 years $24-25 w$ in $176726-30 m$ ， $32 m 137$ wt who was Wallis $1-3 m 143$ wb Here there is no explanation of ledge 19－ 21m，27－39m，37－42m 160 7－14m，13－14u ＂general Ifathoms＂，13－15z 165 16－45m 166 1－ $45 \mathrm{~m}, 20-21 u$＂instancelusual＂，27－29u士 167 wb $672 u$＂equally narrow＂，14－17m，15－17w like hill not Crater 17－21m 168 13－43m，22－ $24 w$ Earthquake wave 169 4－40m 170 1－44m $17435-42 m 2006-25 w$ Note if same occurs to Beagle 15－25m，15－25m 209 4－15m 2114 $11 m 21238-43 m 2131-2 m, 40-43 m 231 \mathrm{wb}$ cc $31444 w$ 180lbs 444 31－37m

BELL，Charles The anatomy and philosophy of expression London；John Murray； 1844 ［CUL， S E．Darwin 1844 to Ch．Darwin Nov． 28 1866］
beh，h，phy，y
NB p． 110 sneering muscles；p． 131 snarling muscles； 158 Pain；Wood－cuts of muscles 99 p． 107109 p． 261 general
title page $w b 1844$ first Edit in 4to 1806．2d Edn in 1824．－facing iii fig．$w \notin 133 m, 14 m$ $3824-32 m / 24-31 w$ add or more strictly bones of the jaw in comparison of Negro \＆ European $27 a$＂jaw＂two $6410 \mathrm{~m} 827-8 m$ ， $12 u$＂alupon＂ $844-5 m 8520-24 m / 23-24 u \leftrightarrow$ ， $26-27 \mathrm{~m} / 26 u$＂office＂ $86 \quad 25-27 m$ ， $27 u$ ＂emotions 1 developed＂，29a＂heart＂but why？ 87 17－18！，17－18u＂instrument｜mental＂ 88 1－ $14 m, 5 w$ fear 21－23w traces of sobbing，22－ $25 m, 32-33 m, 32^{\prime \prime} . .891-2 m, 2 . . . ", 3-6 m, 11-$ $16 m 906-8 m, 6-7 w$ ie Heart \＆Lungs $7 w$ Why？20－22m，29－30w see C．Bernard 919 $11 m, 9-12 w$ because screams natural consequence $16-19 m, 31-33 m, 33 u$＂double＂
$923-4 u \leftrightarrow, 9-13 m 9428-30 m 952-3 m / 2 a$＂of＂ moaning \＆screaming， $8-12 \mathrm{~m}, 15-18 \mathrm{~m}$ ， 16 u ＂serves leconomy＂，21－23m，22－24m，22－23u ＂That｜from＂，23－26m， $24 u$＂extending｜ surface＂， $25 u$＂partslexposed＂ $963-9 w$ albino negros blush，so not to exhibit expression．－ 14－15m 98 wt If all muscles are common to apes，this can hardly be case $1 \mathrm{~m}, 2-6 \mathrm{~m}, 20-$ $22 m, 23 m 996-8 m, 19-20 m 1003-12 m 101$ 27－28m $1026 m, 18-24 m, 26-31 m, 24 u$ ＂straight＂， 30 u＂oblique＂ 103 9－12m／＂．．． 105 $17-20 \mathrm{~m}, 24-26 \mathrm{~m} / 25 \mathrm{u}$＂laughter 1 sneezing＂， 24 33＂．．． 106 1－4．．．＂，4－7m，4c，9－13m，13－15m， $16-27 \mathrm{~m}, 29-33 \mathrm{~m} / \mathrm{"} . . . \mid / w \notin 10711-13 \mathrm{~m}, 11-14 w$ in passion distended nostrils 108 19－22m 109 fig．w／wb 〈explanation of fig．） $11012-21 \mathrm{~m} 111$ $12 w$ M．mentalis $21-25 m 1144-9 m 11718 u$ ＂expression 1 speaking＂， $19 u$＂modulationllip＂， 21－22m 118 12m，18m，28－29m 120 13－18m $1213-5 m, 13-15 m, 16-18 m, 20-22 m 122$ 6－ $9 m, 9-14 m / w, 18-21 w$ \＆ears not depressed $30-32 m / w$ so threaten other males 123 16－ $22 \mathrm{~m} /$ ？， $19 u$＂retroverted leye＂，20－21u＂sol blow＂ 126 4－5m，15－16m 131 2－3m／w because retained $14-17 m, 21-22 u$＂Theirl canine＂ 132 22－25m，26－30m 133 3－5m 135 2－ $3 m 13625-29 m 1372-9 m /$ ？， $5 u \leftrightarrow, 7 u$＂theyl eyebrows＂， $11-14 m / 11-12 w$ monkeys have？ Owen $12-14 w$ frowning good $13-16 m, 15-$ $16 \mathrm{~m}, 16 \mathrm{w}$ this in man but no but not the M 17－22w I have seen well developed in monkeys incessantly clenching skin over eyes $26-30 \mathrm{~m}, 30-33 \mathrm{~m}, 30-31 u$＂a lanimals＂ $1384-6 m, 4$ ？， $4 u$＂arching of＂， $12-17 w$ I suspect he never dissected monkey． $19 u$ ＂expressing \mid fear＂／18－20w Dog ！！！ 139 3－5m，4－ $5 u$＂muscle expression＂， $6 u$＂sign laltered＂，14－ $19 m, 16 a$＂oris＂or triangular oris 22？， $23 u$ ＂weeping＂，28－31m 140 9－11m，12－14m，24－ $27 m, 29-35 m 1471-4 m, 6-9 m, 16-21 m, 28-$ $31 m$ ， $31 u$＂system I nerves＂ 148 1－2w Disputed by Marshall Hall 149 6－8？， $15 u$＂lacrymal infected＂$/ w$ not in Babys 31－33m $1501-3 m$ ，9－ 18m，9－14w upturned corners give look of silly complacency $25 m, 29-34 m, 29-32 m$ ， $30 u$ ＂elevated shoulders＂151 3－6m，5－6Q 10－14m $152 z t, 16-21 m / w$ but are very little under the will $25-26 m 153$ wt in Laughter brows are brought down \＆arched $1-6 m, 1 w$［gr Zygomatic？］ 154 10－13m，10－11u＂tremor excitement＂， $28 \mathrm{~m}, 35 \mathrm{~m} 1557-8 m 1584-8 m$ ，9－ $12 m, 16-21 m, 24-30 m 1594 m 16012 m 163$ 14－18m 164 1－5m，22－24m，29－33m $1658-$ $12 m 166$ fig．w shoulders raised， $8-12 m 167$ 28－40［．．．］， $30-40 \mathrm{~m}, 34-37 \mathrm{~m} 1681-3 \mathrm{~m} 1694-$ $5 m, 10-11 m, 13-14 m, 21-22 u \leftrightarrow 1703-6 m, 8 m$ 171 24－27m 172 8－13m 174 3－11m，5－10m，5－ 7＂．．．＂， 11 ＂．．．＂ 176 8－13m 177 8－16m，9－10w no
muscle keeps still 178 1－4m 180 9－12m 183 14－15m $18529 m 1895-8 m, 9-12 m 1905-7 m$ ， $12-15 m, 22-26 m, 29-33 m 19310-13 m 1949-$ $10 m, 25-26 m 19724-26 m$ • 198 16－22m 211 18－22m 21422 m 219 9－15m
Appendix＂On the nervous system＂by Alexander Shaw，pp．231－258
$24325-37 \mathrm{~m} / \rightarrow 244$ 32－36m 248 23－30m 249 12－16m 252 1－ $4 m 257$ 28－37m
Explanation of plates，pp．259－265
$\langle u, w$ henceforth names of muscles〉 $2617 u, 8 w$ ， $15 u, 15-16 w, 19-21 w, 23-26 m / 24-26 w, w b$ $2622 m / w, 12 m / w, 14 m, 14-15 w \bullet, 16 m / w$ ， $21 m, 21-24 w, 24 m / w, 32 m / ?$

BELL，Charles The hand 9th edn；London； George Bell \＆Sons； 1874 ［Down］
$375 m 7725 m 8914 m 11111 m$
BELL，John \＆Charles The anatomy and physiology of the human body 6th edn， 3 vols．； London；Longman，Rees，Orme，Brown and Green； 1826 ［Down，pre－B，ED］

BELT，Thomas The naturalist in Nicaragua London；John Murray； 1874 ［CUL，S］
beh，cc，ds，f，gd，geo，h，mhp，mm，00，phy， sp
NB1 〈much not CD
Page 2326 Ants
28 Ants helping each other
28 Ants
112 Humming Birds S S
118 Monkey \＆Eagle－〈CD：\rangle give case I do not allude to Mivart－Probably after
Rengger，just allude to Belt on
171 Indians
196 Cockatoos protected－Toucan
198 Toucans
209 Ticks
219 Acacia \＆ants protecting them
220 Nectar protecting plants $\langle C D:\rangle$ by ants
250 Skunk
260 Glacial
291 Nests of wasps
316 Butterflies protection \＆ants \＆spiders〈CD：）resemblance
317 Lampyridae
320 do
〈CD：）
321 Frog protected by colour
334 FW area continuous
383 Protection
384 do
NB2＊These references apply only to facts useful for Descent of Man
－ 70 Phaseolus not frequented by Humble－
bees \＆sterile
p． 333 Wide distribution of FW shells \＆ Coleoptera
207 Romanes
SB p． 19 Phalangidae escaping ants by lifting one after the other their long legs．
23 Blindness of Eciton an advantage in keeping them together
26 sympathetic help of ants
74．Leaf－cutting ants determines existence of trees \＆plants in S．America
77 ants rolling loads down steep slope
79 one of leaf－cutting－p． 83
grass brought by mistake
83 learnt danger by experience from carriages on Railways
p 119 intellect \＆art of Monkeys
p 219．Bulls Horn mimosa \＆ants
p 222 Ants \＆Melastomataceae
260 Glacial deposits．
291 Birds building close to wasp－nests
316 Mimickry．mostly used p． 383 do．
334．Causes why F．Water productions have not given rise to any new species－not continuous under same conditions

1 zb 7 2－8m，3u＂polygamous＂ 19 19－22m 23 23－26m 24 11－20m $266-16 m, 25-30 \mathrm{~m} 2824$ $31 m 7012-23 m / 16-19 u \leftrightarrow 743-16 m, 27-31 m$ 75 9－12m 77 2－6m 78 16－20m 79 21－23m 83 16－18m，28－31m 112 5－21［．．．］／6－21m，10－14c 118 5－12m，8Q 13u＂Cebus＂ 119 6－9m 128 3－ $8 m 13215-19 m, 22 " . . ., 22 c, 23 c, 25 c 133 w t$ Mr Belt says that he watched many flowers during a whole season \＆3－4＂．．．＂／1－4m，6－ $13 m 13414-26 w$ this accounts for the orifice being closed 171 1－24m 196 介6－1m 197 19－ $27 \mathrm{~m} 1985-13 m 20622-30 \mathrm{~m} 2075 m, 5\left[\ldots \chi_{0}\right.$ ， $24 w$ no no 26 w races have 208 13．．．］ 13 ， $16 m 209$ 9－14m 219 11－28m 222 5－12m 250 1－4m 260 22－32m 291 20－32m 316 20－32m 317 10－14m，10u＂familylas＂，12u＂Lam－ pyridae＂， $12 m, 13 u$＂genera＂，14－18m， $15 u$ ＂were invariably＂， $16 u$＂not touch＂，wb over $3187 m, 7-14 m 32013-20 m, 16 m, 16-17 u$ ＂out leatable＂ 321 3－14m，15－23m 334 11－14w no Water Birds $24-30 \mathrm{~m} 335$ 12－15？，16－18？ 336 1－2m 383 7－14m 384 25－28m 385 3－6m， $7-16[. . . "$＂， $8-15 m, 8 a$＂wing＂is

BENEDEN，Pierre Joseph van Mémoire sur les vers intestinaux（Suppl．aux Comptes rendus hébd．des séances de l＇Acad．des Sciences，vol．2）；and
BRONN，Heinrich Georg Essai＂Étudier les lois de la distribution ．．．＂；Paris；Maller－ Bachelier； 1861 ［CUL］
em，geo，hl，tm，y

Beneden \wp

Bronn

SA 〈pp．594－595〉
p513 to 542；555，556；560； 580 Hot Springs 513 介6－4m 514 8－9m 516 5－10m，20－25m，$\uparrow 3-$ $1 \mathrm{~m} / \mathrm{w}$ Bronn preceded 517 1－4m，7－11m，10－ $13 m, \Uparrow 2 w$ Bronn preceded 519 3－4m，17－19m 520 11－15m 525 介 $9 u$＂division \mid travail＂，$\uparrow 6-4 m$ （Milne－Edwards）／$\uparrow 4 u$＂diversification＂ 526 10－ $20 w$ Best discussion on Highness \＆ Lowness．－20－25m／21u＂Pourlanimaux＂／22u ＂minimumlchaque＂ 527 1－5m 528 8－9m 534 $1-10 \mathrm{w}$ Ruminants when young have bones typical \＆distinct－Hence embryo higher than mature animal $13-16 m, 17-24 m 536 w t$ Land animals higher than aquatic $1-17 \mathrm{~m} 540$ 14－18m 542 5－14m 555 1－9m 556 2－8m，介8－ $5 m / \Uparrow 6 u$＂unldes＂ 560 18－23m 580 im／w Hot Spring $5811-8 m, \Uparrow 4-3 m$

BENTHAM，George Handbook of the British flora London；Lovell Reeve； 1858 ［CUL］

NB D

ix $4-9 m$ xiii $10 m$（Babington）， $12-13 m$
（markings not CD，except possibly：） $324-7 \mathrm{~m} 71$
＂Opium Poppy＂．w Down 106 ＂2＂．w W 119 ＂3＂．w Norfolk 130 ＂ 1 ＂．w Wight 137 ＂ 2 ＂．.$w 1$ of 139 ＂ 1 ＂．w Isl of Wight 153 ＂1＂．w Norfolk 154 ＂2＂．m 161 ＂3＂．m $1631-3 m 165$＂ 2 ＂．w｜of W 181 ＂ 1 ＂．w Down isl of Wight＂ 5 ＂．w isl of Wight 193 ＂ 2 ＂．w Norfolk 207 ＂ 1 ＂．w Norfolk I of Wight 223 ＂ 7 ＂．w Somewhere $229 ~ \Uparrow 13 x / u$ ＂in｜hairs＂，$\uparrow 2 x / u$＂covered｜down＂ 230 11－12x／ u＂less｜plant＂$/ w$ Norfolk $\Uparrow 1 x / u$＂and＂ $2311 u$ ＂down＂ 232 9－10m／x／u＂and I hairy＂ 234 ＂ 1 ＂．w〈Hart）field 277 ＂ 9 ＂．w Norfolk 279 ＂ 1 ＂．. w Isl of Wight 292 ＂ 1 ＂．w｜of W 315 ＂ 8 ＂．w｜of W 317 ＂ 1 ＂．.w I of W 405 ＂ 3 ＂．w Norfolk 420 ＂ 1 ＂．.w of Wight＂ 2 ＂．w field 453 ＂ 2 ＂．w Down 70475 ＂1＂．c，＂3＂．c 476 ＂4＂．c，＂5＂．c，＂6＂．c 477 介16x／u ＂Common 1 Britain＂ 478 ＂ 10 ＂．x ，＂ 11 ＂．x ，＂ 12 ＂．x 479 ＂ 14 ＂．x ，＂ 15 ＂．$x 503$＂ 1 ＂．w I of W 525 ＂1＂．w Down 70530 ＂ 1 ＂．w Cambr

BENTHAM，George Handbook of the British flora London；Lovell Reeve； 1858 ［CUL， another copy］

BENTHAM，George and HOOKER，Joseph Dalton Genera plantarum vol． 1 i－iii，vol． 2 i－ ii，vol． 3 i－ii；London；Reeve \＆Co．；1862－83 ［Botany School］
vol． 1 ii， $44130 \mathrm{~m}, 40 \mathrm{~m}, 49 \mathrm{~m}$ ， 53 m 4426 m ， $30 \mathrm{~m}, 34 \mathrm{~m} *, 37 \mathrm{~m}, 39 \mathrm{~m}, 42 \mathrm{~m} 4436 \mathrm{~m}, 16 \mathrm{~m}, 51 \mathrm{~m}$ $4443 m, 6 m, 8 m, 18 m, 51 m 44510 m, 26 m 446$ $9-12 m, 13 m, 24 m, 26 m, 53 m 4471 m, 6 m, 46 m$
$44811 m / 9-12 w$ also see Linnaeus $4497 m$ ， $30 m, 53 m$ ， $55 m 45049 m$ ， $55 m 4513 m, 35 m$ ， $46 m, 55 m 45216 m, 24 m 45327 m 45626 m 458$ $50 m, 53-55 m 4591-2 m, 7 m / w$ Gleditschia Duchata $46019 m 46113 m 46319 m, 29 m$ ， $39 m, 45 \mathrm{~m}, 48 \mathrm{~m}, 51 \mathrm{~m} 4646 \mathrm{~m}, 18 \mathrm{~m}$
vol． 1 iii， $95133 u$＂Petalalimbricata＂， $35 u$ ＂Petala valvata＂
vol． 2 i， $1033 m 119 m, 14 m 1422 m, 27 m$ ， $37 m 1645 m 1732 m 2128 m 246 m, 7 m, 26 m$ $2512 m 2629 m 2738 m, 54 m$
vol． 2 ii \wp
vol． 3 i \wp
vol． 3 ii 〈after CD＇s death〉
BERJEAU，Philibert The varieties of dogs London；Dulau \＆Co．； 1863 ［Down］
［BERKENHOUT，John］Clavis anglica linguae botanicae，or，a botanical lexicon London； Becket，de Houdt，Hawes，Clarke \＆Collins； 1764 ［CULR，pre－B，S］
ac1 10 m ac2 $11-12 \mathrm{~m}, 16-17 \mathrm{~m}$ ap $21 \mathrm{~m} / u \pm$ ar2 4－6m ca1 $17-18 \mathrm{~m}$ ca5 $4-6 \mathrm{~m}$ ci1 $19-23 \mathrm{~m}$ cl $21-$ $22 m$ co5 5－6m cr1 17－19m cr2 8－9m cu2 14－ $15 m, 18-19 m, 20-21 m$ di12 $18-19 m$ em $20-$ $21 m$ er $3-4 m$ ， $23 m$ fi2 $12 m, 18-19 m, 21-23 m$ ， $24-25 m$ ge1 $20-21 \mathrm{~m}$ gl1 $1-2 m, 18-19 m$ ha2 $12-13 m, 19-20 \mathrm{~m}$ hi $3 m$ im $7-8 m$ in $15-17 m$ la3 17－19m li2 $15-17 \mathrm{~m}$ me $13-14 \mathrm{~m}$ mu1 13－ 14 m mu3 $5-7 \mathrm{~m}$ ob $5-7 \mathrm{~m}$ oc $1-2 \mathrm{~m}$ op $3-4 m$ ou $7-8 m, 13-19 m$ pe1 $8-9 m$ pl2 11－12m， $25 m$ pl3 $2-3 m$ pr1 $5-7 m, 11-13 m$ pr2 $3-4 m$ qu1 14－15m re2 $3-5 m$ ri $14-15 m, 17-18 m$ ，$z b$ se1 $18-19 m$ se $213-14 m$ se3 $21 m, z b$ se $416-17 m$ so $5 m$ st4 $5-6 m$ su1 $10 m, 16-18 m$ su3 19－ $20 m$ to $5-6 m$ tr1 $7-8 m$ tr $4 ~ 6 m$ tu1 $9-11 m$ va2 $8-9 m$ ve1 $11-12 m$ ve2 $1-2 m, 17-18 m$ un1 $20 m, 22-23 m$

BERNARD，Claude Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux Paris；T．B．Baillière et fils； 1879 ［CUL（2nd vol．only）］
che，phy
$775-11 w$ glycogen but no sugar in muscles 80 23－28m 327 23－26m 333 17－19m

BERNARD，Claude Leçons sur les propriétés des tissus vivants Paris；Germer Baillière； 1866 ［CUL］
beh，che，ct，phy
NB
The last Chapter on the Heart perhaps concerns Expression．－
p 369 Ton Muscul
Begun p 332
349 will explain blushing
p． 337 for Drosera
SB 〈2 sheets〉
〈1）
21 ；22
164 Contraction of vegetable cell－Drosera； drawing of cell；Drosera p．177 p．210， p． 337
177－Wourara affects nerve \＆not muscle 210 upas digitalis act on muscle
337 Strychnine affects sensitive nerves

Drosera

Bernard Tissus Vivants
［Hence it is wonderfully important that after strychnine a tonal does not produce movement－when most absorbed does do so］
〈2＞
April 201871
p． 310 not contiguity
316 spreading of irritation
321 Reversed nerve current
336．－Bears on spreading of effect of

emotions．

353 profound contrast between voluntary \＆ reflex actions．－latter most powerful when decapitated－Bears on weeping－
358 bears on individual effects of emotions 371； 384
397．－so Paget wrong
409 Name of vaso－motor system－ 410
457 so quite independent of Habit certainly so．－But even here it may be habit which makes nervous power so readily follow this course．－
〈over〉
p354 Action of Brain checks reflex actions of many kinds Blushing \＆＊as the reflex action is to keep capillaries closed，if this is interfered with，there will be blush
p452， 457 Pneumogastrique irritated checks or stops action of Heart．thus a severe pain in any part act through the nose
（See H．H．says＊thinking about the action of the Heart interferes with circulation）
Nearest analogy very good for Blushing
My case of sneezing－about breathingo
p 459 direct action on Heart but why，except
for habit，does the＊sensitive nerve，acting
on brain influence the pneumogastrique．－
very slight sensation initially affects
Heart
46．461， 463 reciprocal action of Brain on circulation \＆vice versa；syncope direct for heart
464 Reverse action \＆ 466 direct action

21 14－21m 22 15－17m，20－23m 177 3－4m，21－ $22 m 1789-12 m 21029 u$＂digitaline＂ $31020 u$ ＂non｜＂ $3111-3 m, 1 u$＂contiguité＂ 316 6－10m， $13-16 m 321 \quad 1-7 m \quad 336 \quad 26-29 m 337$ 15u ＂nerfs I mouvement＂， $20 u$＂animall curare＂，21－ $24 m 353$ 17－25m，20u＂augmentent létendue＂， 21u＂souvent 1 diminuer＂，wb $\vee \rightarrow$ \＆p． 358354 2－5m，6－9m，11u \rightarrow ，19－23m，24－29m，25－26u ＂C＇est｜réflexes＂ $3554-6 m 3581-2 m, 11-16 \mathrm{w}$ between all the reflex actions $11-18 m, 16-$ $18 u \leftrightarrow, 21-28 m / 24-28 w$ this is better than Müller $w b$ Allude to Müller \＆give newer views $37022-28 m 3712-6 m 38412-17 \mathrm{~m} / 12-$ $14 w$ reflex actions very special 397 wt salivary gland acts by relaxation of arteries 2－8m，15－18m，18u＂cette I paralysante＂，20m／u ＂mais I sympathique＂ $\mid w$ a $w b$ Hence in a blush some nerves from sensorium must paralyse the vaso－motor ganglia 400 wt The experiment of the arrow shows that much not affected only＊nerves，but these allow the vaso capillaries to expand，\＆this expansion I presume causes flow of saliva $40924-29 m / \rightarrow 4109-28 w$ I suppose when we burn from sensitive nerve causing impression to the cerebro－spinal ganglia \＆ then paralyse the sympathetic \＆cause it to relax the vessels $17-20 m$ ，$w b$ When we think intently of a part the part of brain which receives the sensitive nerves from part in question is affected，\＆this $*$ influences the cerebro－spinal ganglia－ $4111-7 m, 22-24 m$ 439 15m凶 452 26－29m 453 1－6m 457 22－29m／ \rightarrow ， $24 u$＂douloureuse＂ $45828 u \leftrightarrow 459$ 1－6m， 12－17m 460 19－22m，21－22u↔ 461 14－19m $46313 u$＂pâleur des＂，15－17m 464 24－29m 465 466 2－7m 485 6－12m／7－8w Ton 486 24－29m／ 25－26w Ton？488 26－27m 489 14－15m，25－ $26 m 49014 m, 20-26 m, 31-32 m$ ， $32 u$＂Ton musculaire＂ 491 20－21m

BERNHARDI，Johann Jacob Über den Begriff der Pflanzenart und seine Anwendung Erfurt； Friedrich Wilhelm Otto； 1834 ［CUL］
$\mathrm{cc}, \mathrm{ch}, \mathrm{ds}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}$ ，he，hy，ig，mn，no，or， phy，rd，sp，spo，sy，t，tm，v，wd

SB $\square \mathfrak{R}$

Bernhardi

4．Definition of various forms of species Q 7．slight differences going with white var．
8 on Anagallis－argues for A．collina Q
12 one－leafed Strawberry，heredetary
14 on lacinated and curled leaves common to many genera
30 on Panicum ciliare turns into C ． sanguinale \underline{Q}
35 on vars．of some grapes very constant

BERNHARDI
39 a hybrid grass - rare case
-45 Erysimum strictum not true
50 on a Pimpinella * being on a var.
66 seedlings of Veronica changed colour on vars of Veronica keeping true for 10 generations -
683 vars with analogous differences study these pages \& look to Babington \& Steudel will come in after Anagallis
vi $11-14 w$ Denies the universal tendency to avitism $15-19 w$ has no tendency to return to parent form $15 u$ "Chelidomium lacinatum" 2 $15 u / w \tau, 18 u / w \tau 3 w b$ There is no necessity according to my theory that new species shd have not descended from several pairs 49 $18 w$ Unterart is in fact a doubtful species, probably a species but very little different from other 22-30w "Abarten" a variety which does not tend to go back to parent form. "Spielarten", those that go back in one or more generations $w b$ Does anyone think wild Pampas cattle identical with present stock.5 1-2u "Abänderungen"/1-6w Varieties which do not keep constant, or only in certain ground.- $3 a / w \tau, 17-25 \mathrm{~m} / 18 u$ "sol Zweifel"/17$25 w$ These several forms of species hard to distinguish wb Unterart subspecies = doubtful races or * the close species Abarten - hereditary = race (or variety in animals) Spielarten which * are herditary for few generns - variety of Decandolle Abanderungen, which are not at all hereditary - allied to Monstrosities $628-30 \mathrm{~m} /$ $30 u$ "Rumex Inemorosus" 28 -30w colour of Beet $w b$ compare these with Do they not belong to same Family 7 18-22u↔/18-28w 1st turns into last without sowing. When colour more permanent, then accompanied by some slight changes just as Henslow thought wd be See next Page $23-26 m / w b$ not in Spengler This bulbocapnos * Carus produced white seedlings.- 8 12-19w Differences of anagallis phoenicea \& arvensis. - not proved to be same $23-25 \mathrm{~m} /$ $22-30 w$ anagallis collina has 2 coloured flowers, believes this though experiment not decisive Q $95 u$ "A. carnea" $/ 1-5 w$ Q This case true $7 \mathrm{~m} / \mathrm{m}, 8-13 \mathrm{w}$ fruit, taste \& \& seed vary in colour \& are often inherited $18 u$ "Phaseolus multiflorus"/ $18-19 \mathrm{~m} / \mathrm{w}$? colour of flower \& seed go together 22-25m/23-30w doubling not change of organ, but simply increase of petals 10 1-10w in Datura no loss of * stamens (but may there not be potential stamens?) $14-18 w$ on Hairs or covering of Plants $129 u$ "Trigonella coerula"| $9-12 w$ var. with stalks of leaves with leaflets,

23-26m/23-28w relative length of stamens good character in this \& Fam. but variable in Labiatae.- $29 u$ "Fragonaria monophylla" $/ w b$ one-leafed Strawberry is heredetary $132 u$ "folia terna" $/ w$ rarely inherited $19 u$ "Caulis fasciatus", $21 u$ "Sedum cristatum" $/ 21-23 w$ in this case in some degree hereditary. $24 u$ "Celosia cristata"/24-25w Cockscomb example in flowers $28 u$ "Triticum compositum" $/ w b$ hereditary division of the flower stalk $141-6 w$ Thickening of special parts, as in Cabbages \& heading of Cabbages. 9-27w Same variation affecting so many plants shows, how goes by laws. Lacination hereditary in Sambucus (\& in Lettuce \& Cabbage) so curled, blistered, \&c. $10 u, 12 u$, $13 u, 16-17 u\langle u \uparrow\rangle, 12-17 w$ not hereditary $20 u$, $21 u, 27 u, 28 u\langle u \wedge\rangle 15 w t$ curled leaves of natural species more regular $3-7 w$ curled mint by seed had its first leaves not curled.$7 u a / 10-11 w$ partly hereditary $13 u a / 12-15 w$ petals only curled inherited $16 z, 18 u a / 18-$ $19 w$ leaves of in same situation 16 wt variety of Paeony with small leaves $12-15 \mathrm{w}$ is there any Linaria with regular Corolla $30 u$ "aufl Boden" $\mid w b$ on rich ground leaves of involucra? end in spikes $182 u / w \tau 191 u \oplus / 2-$ $3 u$ "zweil setzen" $11-4 m$ *, 8-10m, 9u^, 8-10w Probable mistake of Kolreuter's $24-30 \mathrm{~m} / \mathrm{w}$ See to this D. stramonium \& ferox might be quite fertile. but D. Tatula \& ferox are not quite but D. stramonium \& tatula are. wb If I understand he only assumes about D. stramonium \& ferox 20 24-30m/wb When intermediate forms found together, always necessary to bear in mind the chances of their being hybrids.- $21 w b$ If the intermediate forms kept constant then one must be considered an "abart" of the other; if they went back to both parent forms, then they shd be considered as vars. \& were result of external conditions $*$ on the two parents; which wd be subspecies 22 15ua/ $16 z / 14-18 w$ Organs of these plants make great differences $26 \quad 27 z 2719 z \quad 28 \quad 28 u \wedge / w$ (a) $w b$ (a) Doubtful whether these varieties, because other species differ in same, but greater degree.- $29 w b$ Those who are not naturalists think species a well defined entity; show the distinctions of Bernhardi; of Decaisne \& Hooker.- H.C. Watsons classification of British close species - then the difference of numbers - Then cases of certain well known genera as Land-shells \& Rats - then such flagrant cases as the 2 Oaks - all this difficulty explicable on my theory depends only on ignorance of creations.- $3014 u \oplus / 18 u \uparrow / 14-17 w$ Q turns
after repeated sowing into $20-24 w \vee$ Steudel to see whether admitted $30 u$ "glatte Abart"/ $w b$ does not change during 12 years $312 u \mathrm{~m} /$ w not this $5 u$ "Abart" $/ 6-7 w$ this also true $11 z$ $322 m, 6 u a / 5-13 w$ This is a caryopllea, when it flowers 1st year, \& differs in only one floret being awned.- leaves smaller 14u^ 35 28$29 u a / w b$ changed in 3d sowing to D. glomerata $362 m \quad 39 \quad 25-28 m 40 \quad 2 u$ "hat nicht", 2-3m 44 19-21w wild Cruciferae vary much $23 u \uparrow / 24-26 w$ probably vars 45 13ua/ $14 u \quad 1 / 14-21 w$ scarcely abortive much less good species being cultivated from seed 46 $3 m, 4-6 m, 7 u / w \tau 508 u \wedge / 8-13 w$ Kept true for 6 generations, but Steudel makes var. of L . Gallicum 16un, 18un, 16-18m/16-19w From this seed gave P. magna (Steudel makes var of P. magna- 66 4-8m/w In Veronica colours blue or red \& some interchangeable $13 w$ changed its colour $17-18 w$ seedlings changed colour 25-26ut/25-30w Red vars. of these $\%$ blue Angallis kept true for 10 generations but may be thought true species; but he seems to think other differences trivial.- $6721-25 \mathrm{~m} / 21-28 w$ when colour of flowers alters; so foliage, \& when less colour, plant smaller. $6817-21 m / 12-28 w$ Like Rubus case \& Hilacium. The abarten with red flowers from these 3 species differ from their stammarten in analogous way

BERZELIUS, Jöns Jacob The use of the blowpipe in chemical analysis and in the examination of minerals London; Baldwin, Cradock, Joy and J. Mawe; 1822 [Down, preB]
$1063 c / w \notin 10823 c / w \notin, 24 c / w \notin 14111 c / w \notin$ $14716 c / w \notin 15415 c / w \notin 21423 c / w \notin 27515 w$ A wb not CD>

BEUDANT, François Sulpice Traité élémentaire de minéralogie Paris; Verdière; 1830 [Down, on B] \wp

BEVAN, Edward The honeybee London; Baldwin, Cradock and Joy; 1827 [CUL, preB, S E. Catherine Darwin]
beh, 00, wd
NB 352 Crippled Spider purling differently; 384*; 261 taming Spiders \& coming to Person for food
$\wp_{261} 25-29 m$
BEVINGTON, Louisa Sarah Key-notes London; C. Kegan Paul \& Co.; 1879 [Down]

BIANCONI, Giovanni Giuseppe La Teoria darwiniana e la creazione detta indipendente Bologna; Nicola Zanichelli; 1875 [Down] \wp

BIANCONI, Giovanni Giuseppe La Théorie darwinienne et la création dite indépendante: lettre à M. Ch. Darwin Bologna; Nicola Zanichelli; 1875; trans. from Italian by G.A. Bianconi [CUL]
ad, beh, gd, ig, phy, rd, t, tm
NB All first part marked but nothing of importance
117; 158; x164, 9x;
I daresay many supposed rudiments have functions
173; x176; 179x; 206; 218;
Ruminant stomach - 268
Teeth \& Skulls of vars of Dogs - 284
SB $\stackrel{\rightarrow}{ }$
31. number of joints in fingers good adaptation. - while intermediate - shows how well limbs adapted
117. Everything explained by adaptations
164. 169 uses of rudimentary toes to grip in descending mountains
174 no such a thing as a rudiment.
179. on the little hoof of oxen in * soft marshy places.
206. In paddle of Cetaceans, variability of nodules of bone in cartilage
208 plan not uniform. joints in digits
218 explains wings of Bat by Mammiform Nature! \& adaptation.-
268. no gradation between Ruminant \& nonruminant stomachs.- see Schiff on Duodenum
title page $w 1874128-12 m \quad 17$ 21-24w Wings of Insects \& jaws of do 19 6-7u "nécessitél mouvoir", 7-9w Crustacean \& Cirripedes 22 23-27m 23 8-12m, 18-21m 24 $18-30 \mathrm{w}$ insects a far greater number of pieces end to end in limbs $258-10 \mathrm{~m} 3122-$ $31 m 46 \mathrm{wb}$ All this adaptation agrees well with me, \& explains cause of general form of limbs $1173-16 m 158$ at (page no.), $8-12 \mathrm{~m} / \mathrm{w}$ why not a mere prominence of adjoining bone 164 20-23m 169 11-15m 173 18-23w but why shd it be a separate bone $25-26 \mathrm{~m} 174$ 11-13m, 23-28m 176 22-26m 179 16-21m 186 $w b$ why three bones \& not in fin of fish or water Beetle plate facing $186 w$ why 3 bones? 206 7-12m 208 15-21m 218 18-22m, 19-20u "adaptation Inature" 224 7-10m, $8 u$ "radius \mid seul" $2684-12 \mathrm{~m} / \mathrm{w}$ Schiff * shows that the Duodenum, I think, acts for this end; but no structural passage $15-19 w$ is it not in Kangaroos occasionally ruminant 269 11-15w

BIANCONI
Is it not in fact part of Oesophagus Schiff 275 6-9m 284 22-28m

BIBLE Cambridge; The Pitt Press; 1838 [Down, the family Bible]
title page 〈Note concerning children's diseases by Emma)

BIGG, Henry Heather Spinal curvature London; J. and A. Churchill; 1882 [Down, I]

BILLING, Sidney Scientific materialism and ultimate conceptions London; Brickers \& Son; 1879 [Down, I]

BINNEY, William Greene The terrestrial airbreathing mollusks of the United States 2 vols.; Cambridge, Mass.; Welch, Bigelow \& Co.; 1878 [Down]

BLACKLEY, Charles Harrison Experimental researches on the causes and nature of Catarrhus aestivus London, Paris \& Madrid; Baillière, Tindall \& Cox; 1873 [CUL, I]
cc, fg, gd
NB Shows how effective wind is in Transportat of pollen

- 75 list of Plants

Effects of moisture discharge of pollen - 127 - 128

131 quantity of pollen of Graminae in air Q - 132 - chaffO of grasses
pollen at great height $-141 *$; 147, 8, 9, do. do. do. - Even alt wind had blown in any how from the sea

- 148 on Board Ship
- 152 error?
- 157 Buckwheat entomophilous
$500-1000 \mathrm{ft}$; more in upper current than of lower [19 times as much] p152 over 1200 at alt 1000 ft
75 33u "Plantago major", $34 u$ "Rumex", 34u "Polygonaceae", 36u "Amentaceae", 36u "Urticaceae", $42 u$ "Graminaceae", $42 u$ "Cypегасеае" 127 26-32m 128 10-19m $13138 m 132$ 16-20m $14129-37 m 1476-11 m$, 11u " 600 I hundred", $14 u$ " 500 " $1487-10 m, 10-11 w$ p149 149 31-32m, 39m 150 8-13m 151 10-15m, 25$27 \mathrm{~m} 1526-11 \mathrm{~m}, 15-17 \mathrm{~m}$

BLACKLEY, Charles Harrison Hay fever 2nd edn; London; Baillière, Tindall \& Cox; 1880 [Down]

BLACKWALL, John A history of the spiders of Great Britain and Ireland 2 vols.; London; The Ray Society; 1861-1864 [Down]
vol. 1 NB O/
\wp
vol. 2 NB 189, 207, 355
189 24-27m 207 16-18m 355 30-33m
BLACKWALL, John Researches in zoology London; Simpkin \& Marshall; 1834 [CUL, S] beh, br, fg, gd, mg, mn, sp, t, wd, y
NB $3 ; 16 ; 29 ; 33 ; 46 ; 47 ; 51 ; 62 ; 73 ; 74 ; 80$; 83; 86 Journal also; 89; 94; 122; 118; 136; 137; 141; 142; 151; 154 to 162; 174; 176; 190; 204; 227 Journal; 240; 245; 260; 270; 301
SB $\square \Re$
158 capacity of piping tunes in Magpie never used in Nature Qa
174. cases of Jackdaw Rook \& Woodpecker with monstrous crossed Beaks Q

3 14-21m

\wp
16 14-20m 17 1-7m 29 6-14m 33 22-27m 46 wt Hence it will be important to show that Malay Fowls make diff noise from Common. 1-4m 47 20-24m $518-11 m 6223-27 m 738$ $11 m 7424-27 m 804-10 m 8313-17 m 86$ wt Nor do all Icteri lay in other birds nest.- Is Molothus pecoris migratory in N. America (Yes I am almost sure Silliman?) 2-7m, wb How easy for an ostrich to learn lay its eggs in other birds nests were there any of same size !!! 87 wt xx There remains to account for young birds expelling brothers.- Not invariably so Molothus in Sillimans Journal $1-7 w$ Blackwall suspects they do xx 5-13w Cuckoos do not pair - a remnant of Ostrich state $14-20 w$ From 4 to 6 eggs $18-24 w$ No see p. 75 wb The causes of Ostrich laying * in different nests, is the number they lay Jenner? has said Cuckoos lay great number does Blackwall say so ?? $898-21 \mathrm{~m} 94$ 613m 118 11-15m, wbec 119 6-7m 122 1-5m 136 23-27m 137 21-27m $1416-12 m, 20-27 m$ 142 9-19m 151 23-27m 154 10-12m, 10-22m, $17-19 m, 23-28 m 1551-7 m, 16-27 m$, wb The action of the old Pointer, they way look round \& have known to go round other side of hedge. shows that they know what they are doing: (my theory will explain all this)Lord Brougham says not knowing object one chief criterion of instinct 156 15-22m 158 16-28m 158/159 $w b$ Hence it would be odd if they did not sometimes acquire arts in wild state. The capacity of animals which can be shown by a thousand instances is in this view important.- $1601-6 m 17413-21 m, 13-$ 16Q 23-27m 175 1-19m, 9-14m, 9-11Q 176 5-

15m, 8-10Q 190 8-15m 191 1-27m 204 9-16m, $12 w \times w b \times$ What a contrast to Martins \& Penguins deserting their young.- In Pointer we see contest between two instincts, standing \& springing game $2277-22 m 2401-$ $13 m 2457-19 m 2602-15 m 2701-4 m 301$ 1$5 m, w b$ Important with respect to Argynauter attaining habit.
〈६ throughout〉
BLACKWELL, Antoinette Brown Studies in general science New York; G.P. Putnam \& Son; 1869 [Down, I]
NB 209
209 15-21m
BLAINVILLE, Henri Marie Ducrotay de Manuel d'actiniologie ou de zoophytologie Paris; F.G. Levrault; 1834 [Down, on B, S] \wp

BLUMENBACH, Johann Friedrich The anthropological treatises of Johann Friedrich Blumenbach, with memoirs of him by Marx and Flourens, and an account of his anthropological museum by Professor R. Wagner, and the inaugural dissertation of John Hunter, M.D., on the varieties of man London; Longman, Green, Longman, Roberts and Green; 1865 [CUL]
beh, fg, h, he, sl, t, wd

SB

191
203 Circumcision of Jews heredetary
$205 \rightarrow$ Man the most domesticated of all.-
$292 \leftarrow$ good to show how quite ignorant B. was of selection
322 tadpoles hatched on back of adult in cells yet have tails!
191 29-30m * 205 14u "is ladvanced" 290 11m 292 11-13m/u "becausel purpose", 15u "consequence of" 322 21-35m

BLYTH, Edward The natural history of the cranes London; Horace Cox; 1881 [CUL]

BOITARD, Pierre Manuel d'entomologie 2 vols.; Paris; Roret; 1828 [CUL, on B]
vol. 1 title page S
$\ell_{0}\langle$ all w are page-numbers)
$554 w, 10 w, 15 w, 18 w, 20 w, 24 w, 32 w 563 w$, $6 w, 11 w, 14 w, 15 w, 17 w, 18 w, 19 w, 24 w, 31 w$, $33 w 571 w, 19 w, 20 w, 24 w, 28 w 583 w, 13 w$, $16 w, 20 w, 23 w, 27 w, 35 w, 37 w, 40 w 595 w$, $6 w, 10 w, 16 w, 18 w, 22 w, 25 w, 28 w, 30 w, 31 w$ $601 w, 20 w, 30 w 6124 w 621 w, 4 w 636 w$, $12 w, 17 w, 22 w, 30 w 641 w, 3 w, 8 w, 15 w, 20 w$, $25 w, 31 w, 37 w 8726 w, 28 w, 30 w, 31 w$
vol. 2 title page Charles Darwin Rio Plata August 7th 1832

BOITARD, Pierre \& CORBIÉ Les Pigeons de volière et de colombier, ou Histoire naturelle des pigeons domestiques Paris; Audot \& Corbié; 1824 [CUL, pre-B]
beh, cc, cs, f, he, hy, ig, oo, phy, sp, sx, tm, $\mathrm{v}, \mathrm{wd}, \mathrm{y}$

NB oo p 34 colours in crossing
SB1 Les Pigeons.
p.VII Introduction

It is a mistake to expect a tumbler suddenly to appear-
p.10; 15; 27 - ask Gould; 30; 34, 37; 54; 58;

64; 80; 120; 158; 163; 164,6 to 229; 235; 238

SB2 $\square \beta$

Special facts on Pigeons not here included
12 Females show antipathy to certain males (Ch. 6.)
15 Roman keep Pedigrees of Pigeons \mathbf{Q}
32 Account of many crosses
35 useful Pigeons more fertile (45 fear experience) p. 160 do.
36 Absorbed in 7 or 8 generations $Q^{\infty} \leftrightarrow$
37 Biset produced from complicated crosses $\underline{\mathrm{Q}}$ - One cross the Cavalier always true $\underline{Q}^{\boldsymbol{c}}$ 54 Pigeons of different size do not cross readily (Ch. 6.)
120 On Hawks observed to pick out white Pigeons; hence some owners examine all nestlings
158 By high feeding Dovecots rendered as fertile as Fancy Breeds (Ch. 3.)
165 The sailing Pigeons Q
173. Var of Pouter of which female never panachés - or chequered Q oo
178 Claquart Q - 221 Turner or Smiter
200 Sub-vars of Nun - colours vary, but feathers coloured remain same \underline{Q}
198 argument of intermediate form not being produced now as proof that both are species 208 Hybrid from Barb \& Turbit very fertile Q 211 Turbit fly from Paris to Liege in 14 hours 224 Fan-tails crossed with any others lose character $Q^{\infty} \rightarrow$
235 Sterility of crossed Turtles Q
238 In crossing white \& common collared Turtle, young take after one side exclusively \underline{Q}^{∞}
title page u "Corbié" $/ w$ kept pigeons for 45 years vii 26-31m $1030-31 \mathrm{~m} / \mathrm{wb}$ p. 1212 115 "...", $16 u$ "six mois" $16-17 m$ 15 1-2m, 7$9 m / 8-9 w$ See to this $275-17 m, 19-20 m, 24 m /$ $24-25 w$ this must be mistake $27-31 m / 28-29 w$

BOITARD \＆CORBIE
what genus $28 \quad 17-22 m \quad 30 \quad 23-24 m \quad 31 \quad 15-$ $18 m / 16-19 w$ effect of cross long continued 27－31m $328 w$ common Pigeon wb Nonain－ Jacobin 34 6－9m， $9 u$＂àlcavalier＂，18－19u ＂souvent plombé＂ $357-12 m, 20-22 m, 24-26 m$ ， $30-31 m 36$ wtcc， $4 a \notin, 6-10 m, 11-12 w$ 3d cross $14-17 m / 16-18 w 7$ or 8 generations 37 $1-4 m / 3-4 u \leftrightarrow / 1-2 w$ ！how odd Q $₫, 17-24 m / 20-$ $25 w$ how odd！Blue bars returning wb p152 description of Biset 54 4－6m 58 24－29m 64 1－ $3 m /!!!/ a$＂effet＂sterility $805-10 m 12014-19 m$ ， 30－31m $1522 u$＂ou｜pur＂／4－5u＂toutes lailes＂／ 6－7u＂dul queue＂／3－8w Dovecot \＆Chequered 153 3－5m／4u＂Chardin＂／3－5w What date 1686 in Ray Billid $1585-10 m 1602-7 m 162$ 22u ＂jadis estimé＂ 163 25－26m，31m 164 13－14m， $17-21 m 1653-4 m, 7-10 m, 11-15 m / 11-13 u \leftrightarrow /$ $14 u$＂moins haut＂ 15 u＂que lillois＂， $17-18 u \leftrightarrow$ ， $23 u$＂àlargenté＂ 166 3－6m，13－17m，16u ＂larvae＂，23－25m 167 16－20m／17－22w hence not wild，yet well characterized $29-31 m 168$ $1-2 m / Q 5-9 m / w$ only colours $1699-10 m, 16-$ $19 m, 20-23 m 1701-3 m, 22-24 m, 29-31 m / 29 u$ ＂les｜panachent＂＂delpetits＂／28－31w not wild $1737-9 m / Q \propto_{0}, 9 u 1744-5 m 176$ 3－6m，15－ $18 m, 22-23 m 17718-22 m$ ，19w variation 22－ $23 m$ ， $25 \mathrm{~m} / 26 u$＂milieulseul＂＂allongélmince＂ 178 6－8m／6u，18u＂Claquart＂，19u＂Columba precursor＂，20u＂Pigeon batteur＂，22－24m，25－ 29m／25a＂plongeur＂p．165， 27 u＂enfle＂ 179 $1 m, 1-2 u$＂aileslyeux＂，2u＂chaussés＂，3u ＂blanc＂，9－14m／10u＂M．Vieillot＂，14－15m，17－ $18 m 1811-2 m, 8-10 m$ ，21－23m 182 19－21m 184 2u屯＂Bagadais＂，3－7m／4u＂longlcrochu＂， 7－10m／9u＂leurlpates＂，25－28w Scanderosa certainly pl． 9 wt Scanderosa $1855 m, 9-10 \mathrm{~m} /$ 10u＂Tous I peu＂，15－16u＂pigeon cygne＂，19－ $20 u$＂et I moindre＂／21－22u＂ordinairement I noir＂$/ 18-21 w$ just contrary to Brent 186 11－ $13 m$ ，15－17m，24－25u＂redoutable＂ 187 $1 m, 18 m / u$＂nouvelles＂ 188 22－23m，23u ＂excessivement farouche＂ 189 2－5m 190 11－ $13 m$ ，23－28m 193 16－17m 194 4－5w Archangel？ $8 m, 14-19 m 19521-23 m, 23-24 m$ ， 24u＂têtelvol＂ $1965 u$＂leur 1 court＂，15－16m／ uн， $17-19 \mathrm{~m} / 18 u$＂parce l conservent＂， $19-30 \mathrm{~m} /$ 23－24w No blue $1978 m$ ，20－21m，23－25w crossing \＆keeping part of character $24-30 \mathrm{~m} /$ 25－29w ！？Why narrow shakers？27a／u ＂cravates＂／w p． 210 27a／u＂coquilles＂／23－25w v． p．199，yet nonains so near can be crossed \＆keep part of character $26 u$＂paons＂，27－28u ＂glouglou＂，27－30m／wb are not the characters chiefly trivial？How is it in crossing poultry with crests？ 198 whole $\ddagger w$ I do not see this argument．It presupposes that characters of a species cannot be transmitted to a hybrid： I know of no such case；on the contrary it
might be argued those characters were not fixed－requiring both parents to have it wt／ $1-6 w$ ．This argument for certain number of races－in fact crossing will not do midpage．w Q，Qus $199 \ddagger w$ \＆c pigeons with a Coquille can be produced p197 by crossing a nonain with a common pigeon $9-12 m, 13 w$ The Coquille is reversed feather like nonain 16－ $26 m, 17-20 m$ ，$w b$ Nuns $2002-5 m / w$ laws of colouring 201 10－12m，19－20m／19－26w ！Yet has said that Coquilles will not transmit their peculiarities $2047-11 m / 9 u$＂brièveté＂ $20617 u$ ＂carmes I soigne＂，24－30m（Buffon） 207 10－11m， 21w Barb？23m，26－27m $208 w t / 1-2 m / w$ Ray talks of head of Turbit being square $-6-8 m$ ， 15－17m，18－19m／？／18u＂morilles en＂，25－27m／ 25u＂Il｜polonais＂，28u＂Il｜nourrit＂ 209 10－ $16 \mathrm{~m} / \mathrm{w}$ Certainly Barb－nothing said about being wild 210 12－14m，18－20m 211 wtec，1－ $2 w 15$ miles per hour $14-17 m, 30 u$＂unl yeux＂／w See to this wb 212 3－6m，26－27m 213 4－5m 214 16u＂bleu＂，21－26m 216 9－30w I shd think these were same as Antwerps 218 16－18m 219 4－5m，15－16m 220 12－13m，23－ $28 m 2217 a$＂culbutant＂Tumbler $8-9 u \leftrightarrow$ ，12－ 16m，23－26m 222 3－10m，14－16m，18w Spot 223 17－19m，26－27m 224 3－5m／Q／！，7w p． 226 20m，23－24m $2254-8 m, 9 x \notin, 12-13 m, 14-18 m$ 226 3u＂facultélrelever＂，4u＂moins large＂，8－ $15 w$ There have been several vars of this 24－27m 227 17－19m 235 3－8m 238 18－21m／Q 22－25m $2404 w \tau, 7 w * \tau, 8-9 w \tau 8 a / u \tau, 9 m / u$ ， 14u／w $, 15-16 u / w \tau, 18-19 m / u / \omega \tau, 20 w \tau, 20 w \tau$ ， $23 u / w \tau, 25 u / w \tau, 28 a / u / w \tau$

BOLINGBROKE，Henry，Viscount A col－ lection of political tracts London； 1748 ［CUL． 1900］
〈ink marks not $C D$ ；the following possibly $C D$ 〉 4 4－12m 6 介 $20-3 m 64$ 介12－3m 65 9－15m 77 12－15m 140 12－20m 177 6－12m 185 介15－13m 187 介4－1m 189 12－18m 213 1－3m 217 介10－6m 219 介11－7m 220 14－18m 234 介11－5m 235介11－8m 236 9－12m 245 介8－6m 247 7－9m 260 15－20m 264 介12－8m 265 5－8m 266 介20－5m 271 1－4m 285 8－16m 291 介3－1m 292 1－12m $295 \Uparrow 14-8 m 31110-20 m 334$ 3－10m 346 介5－ 2 m 347 9－15m 374 介14－2m

BOLINGBROKE，Henry，Viscount A dis－ sertation upon parties London， 1739 ［CUL． 1900］
$133 u / w \notin 269 u / w \notin$
BOLINGBROKE，Henry，Viscount Letters on the spirit of patriotism London， 1749 ［CUL．1900］

〈ink markings not CD；the following possibly CD
18 介10－4m 26 介10－1m $495-10 m 60 \Uparrow 8-1 m 73$ $\Uparrow 12-9 m 77 \Uparrow 3-2 m 91$ 介7－3m 92 介12－9m 118 $8-10 m 135$ 6－8m 138 介10－1m 148 4－9m 157介8－5m 159 2－10m 161 介8－5m 169 6－10m 175 $1 u$＂steddy＂，4－6m 179 介13－8m 190 10－13m 192 Im

BONAPARTE，Charles Lucien Coup d＇oeil sur l＇ordre des pigeons Paris；Mallet－Bacheler； 1855 ［CUL］
ad，gd，tm
SB $\square \beta$
3 －On number of tail－feathers－ 16 in Goura－＊Q
21 Birds of E \＆W Africa often same，but different at Cape
44 Balancement－long tarsi \＆short toes in the Phaps group
50 Zenaida American group－Galapagos
2 26－27m，30－33m， $32 u$ 3 9－10m，10－11Qณи， 11－12m，11u＂pattes 1 plus＂， $12 u$＂douze＂， $16 u$ ＂quatorze 1 seize＂， $29 u$＂s＇élèvel seize＂，34－37m 4 $13 u$＂premièrelsont＂ 5 5－10？， $25 u$＂orbites nues＂， $26 u$＂rémige échancrée＂ $814 u$ ＂quatorze｜pennes＂$/ 13-16 \mathrm{~m} / \mathrm{w}$ The Pptilopoda ought to have $141227-30 m, 32 u$＂les I développé＂， $34-36 m, 35 u$＂presqueloeuf＂ 132 － $3 m 1914 m, 15-18 m, 15 u$＂douze＂， $16 u$＂sous－ famille＂， $16 u$＂seule cosmopolite＂ 20 27－29m， $27 u$＂genre 1 deuxième＂ $2130-35 m 22$ 21－24m， $30 u$＂Col．livia＂，35－36m 23 4－5u＂deux1 caractériser＂$/ 4-7 m / 4 w$ orrupion blanc．，5－18m， $8-9 u$＂clair，gris－bleu＂， $15 u$＂plus d＇assurance＂， 19－21m， $20 u$＂C．｜retrouve＂， $26 u$＂d＇unlou＂， 37－39m 25 12－19m，28－33m 44 3－8m 50 8－ $12 m, 9 m, 10 x, 9-10 w$ Zenaida at Galapagos good case 51 12－17m 52 15－21m

BONAPARTE，Charles Lucien A geo－ graphical and comparative list of the birds of Europe and North America London；John Van Voorst； 1838 ［CUL，S］
gd
NF go through this list with D＇Orbigny \＆self \＆see what birds common to N．of America \＆Europe
NB 35 Nothing in particular on birds
$3526 m 45 \mathrm{~b}$ 19w Galapagos $47 w$ Rio Plata 46b 26w Rio Plata 47b 9－10w Galapagos 17－ 18w Rio Plata 48b 25－26m 49b 5－6w Rio Plata 50b 13－14w Tierra del Fuego

BONDI，Augusto L＇Uomo：ipotesi sulla origine （teoria darwiniana），considerazioni Forlì；Tip． Soc．Democratica； 1873 ［CUL，I］

BONER，Charles Transylvania：its products and its people London；Longman，Green， Reader and Dyer； 1865 ［Down］

BONNAL，Marcel de Une agonie Angou－ lême；F．Lugeol \＆Cie．； 1877 ［Down］\wp

BONNET，Charles Oeuvres d＇histoire naturelle et de philosophie：insectologie 2 vols．； Amsterdam；Marc－Michel Rey； 1780 ［Down， pre－B］
vol． 1 NB 160； 167
130 30－34m，31u＂petit accroissement＂ 160 18－ $20 \mathrm{~m} / 21 u$＂deux｜Eté＂，22－24m／23u＂jusqu＇àl fois＂ 163 2－6m／5u＂douze fois＂ 167 10－12m， 24－28m $26717 m 26815-16 m, 24 m 26919 m$ $2712 m, 5 m$

BONNET，Charles Recherches sur l＇usage des feuilles dans les plantes Göttingen；Elie Luzac； 1754 ［Botany School，FD］

BONNET，Charles Recherches sur l＇usage des feuilles dans les plantes Göttingen \＆Leiden； Elie Luzac； 1754 ［Botany School，FD］
9 1－4m 17 5－9m 19 9－11m 27 1－3m 42 23－ $25 m$

BOOTT，Francis Illustrations of the genus Carex 2 vols．；London；William Pomplin； 1858－1860［Down］

BORRELLI，Diodato Vita e natura Napoli； Enrico Dethen； 1879 ［Down］\wp

BOSQUET，Joseph Description des crustacés fossiles du terrain crétacé du Duché de Limbourg Haarlem；A．C．Kruseman； 1854 ［Down，I］

BOSQUET，Joseph Description des ento－ mostracés fossiles des terraines tertiaires de la France et de la Belgique Académie royale de Belgique； 1852 ［Down，I］\wp

BOSQUET，Joseph Notice sur quelques cirripèdes Haarlem；Les Héritiers Loosjes； 1857 ［Down，I］

BOSTOCK，John An elementary system of physiology vol．1；London；Baldwin，Cradock \＆Joy； 1824 ［Down，pre－B，ED］

BOUDIN，Jean Christian Traité de géographie et de statistique médicales et des maladies endémiques 2 vols．；Paris；J．B．Baillière et Fils； 1857 ［CUL］
cc，gd，he，oo，pat，sp
vol． 1 SB $\square \beta$
－xliv
H－lii；p． 201
\rightarrow p320 number of animals killed in France，showing how one animal increases； co compare with ravages of wolves
p．347；p．392；p． 406
－Poor Book
－The introduction gives all the most important cases；which show that climate \＆ race affects the constitution；if so why not the progeny？
xliii $35-38 m$ xliv $1-36 m$ lii $12-38 m, 16-19 m 1$ ＊9－17m，23－27m 201 15－20m 320 29－33m 347 25－28m 392 31－32m 406 14－23m，14－18m Catalogue \wp
vol． 2 SB Vol 2
295；317；321， 322 Bouton d＇Aleppo
$401 \propto$ Negro diseases
$445 \cdots$ Elephantiasis
$529 \propto$ Deaths of different Races in Ceylon
648 －do in Jamaica．
Most of the local diseases probably have local cause but it shows what little causes act，unperceived by us \＆act differently on different races－may as well produce differns of structure，as such diseases as the Bouton of Aleppo
295 2－5w strictly local diseases 317 12－ $15 m$ ，24－26m $3213-5 m 3227-19 m / w$ drinking certain water saves from Bouton 401 $7 u$＂être｜noire＂ 445 11－17m 529 35－41m 648 4－11m

BOUÉ，Ami Autobiographie Wien；F．Ulrich und Sohn； 1879 ［Down，I］\wp

BOURBON DEL MONTE，Jean－Baptiste François L＇Homme et les animaux Paris； Germer Baillière； 1877 ［Down，S］
SF 63；65；71；72；73；79；81；87；89；90；91； 93；97；98；99；101；108；111；129； 137

BOWDLER，Jane Poems and essays Bath； 1819 ［CUL．1900］
$1253-6 m 130$ 介6－1m $1311-3 m, 10-14 m 134$介3－1m $1351-10 m 1779 x$ ，$\uparrow 4 x 178 \Uparrow 9 m 223$ $5 x / w 29227 \Uparrow 4 x 229 \Uparrow 3 x 2323 x 235$ 11－16m／ $16 x 239 \Uparrow 3-1 m 240$ 1－15m 242 5－10m 245 1－ $10 m, 11-18 m 2491-8 m, \Uparrow 15-9 m 2584-10 m$

259 介6－1m 260 £m $2642 x$ ，介12x $2653 x 266$ $5 x 268 \Uparrow 8 x 2701-12 m$

BOWERBANK，James Scott A monograph of the British Spongiadae 4 vols．；London；The Ray Society；1864－1872［Down］
ad，hl，tm，v
vol． 1 NB Even in so lowly organ．bodies as Sponges B has shown the special uses of the wonderfully diversified \＆curiously formed Spicula－
\wp
〈vols． 2 and 3 §；vol． 4 ed．by A．M．Norman〉
BOYER，Abel Le Dictionnaire royal françois－ anglois et anglois－françois New edn， 2 vols．； London；J．Rivington； 1816 ［Down，pre－B， ED］

BOYER，Abel Royal dictionary（abridged）23rd edn；London；F．C．\＆J．Rivington； 1819 ［CUL，pre－B，S C．Darwin October 29th， 1825］

BRACE，Charles Loring The dangerous classes of New York New York；Wynkoop \＆ Hallenbeck； 1872 ［Down，I］

BRACE，Charles Loring The races of the Old World London；John Murray； 1863 ［Down，I］ h, v
NB 388 correlation of colour of skin； 392 smells emitted by Human beings
\wp
BRADLEY，Richard A general treatise of husbandry and gardening 3 vols．；London；T． Woodward； 1724 ［CUL，pre－B，each vol．S of R．W．Darwin］ ch，fg，phy，v
vol． 1 NB 43．Ash Tree－199．－White edging leaves common by graft； 132 black and white grapes，\＆striped on same plant； 298
43 6－8m 132 19－26m 199 2－5m，21－27m 201 25－37m 202 1－6m 298 15－21m，15－16w 1724 20－24m，21－26m 299 zb
vol． 2 NB p．16；p．172 ；p．172
16 26－31m，39－48z $17122-30 / 22 u$＂soft＂
vol． 3 NB 1722；40＊； 58 on good from change of Seed； 60 ； 90
$4030-33 m 417-15 m 5820-22 w$ in 1724 21－ $31 m 591-5 m 602-17 m, 7-15 w$ A．O． 1722 $11 u 9014-40 \mathrm{~m}$ index，p． $312 \mathrm{~m}, 16 \mathrm{~m}$ p． 4 25 m p． 613 m p． 724 m p． 818 m

BRADY, George Stewardson A monograph of the free and semi-parasitic Copepoda of the British Islands 3 vols.; London; The Ray Society; 1878-1880 [Down]

BREE, Charles Robert Species not transmutable London; Groombridge \& Sons; 1860 [CUL]
beh, cc, sl, sp, t, ta, v
NB 78 Variation accidental as far as good of animal is concd

- Origin
- 102 Sp. Th.
- 132 Origin
- 157 Origin
* 168 good No; 222 Origin; 222 Sp Theory; 252 aphis
168 Look to - may not different castes of ants be produced by different food
222 on variability of Larvae
252 on aphides \& Ants.
$606-8 m, 18-22 m 78 w t$ He must think other species $4-5 m, 5 u$ "uncomfortable", 7 m 102 10$29 m, 22-24 m / 22 w$ good $1034-6 m 10826 a / u \notin$, $25-27 w$ time of - no 132 19-32m $1574 a / u$ "same"/w similarity 7a "these" several $1663-$ $7 m 168 w t$ Plant produces 2 forms $w b$ yet wd be due to selection of instincts $15-23 \mathrm{~m}$ 222 11-13m, 15-22m, 25-28m 223 26-29m 252 11-23m

BREHM, A.E. Illustriertes Thierleben 4 vols.; Hildburghausen, Verlag der Bibliographischen Instituts; 1864-1867 [Down] beh, br, gd, sx, tm
vol. 1 NB 75 Baboon like spirituous drinks \& orang like tea \& coffe \& wine?
\bullet pxxx about polygam?

- xxxvi about pairing
-p261 Baboon \& Leopard
p. 119 stopped reading March 2d
p77 apparently polygamous Q
108 Poly \&
title page S $116-9 m, 10-14 m 2314 m 2535 m$ 30 29-30m $337 m 35$ 8-9m 39 23-45m, 30u "Siamang", $32 u$ "freudiger" 40 17-23m, 21-22u "seinelan", $23 m 47$ 16-18m 50 21-22m, 24 $31 m 5216-17 m 53 w t$ Tail $1-3 m, 7-8 m, 27-$ $31 m 54$ 10-12m 56 1-5m, 9-12m, 11-13m, 20$23 m, 31-39 m 5817-23 m 593-6 m, 9-11 m, 9-$ $11 m, 22-25 m, 22 m 601-4 m 6111-12 m, 11 m$, $17-18 \mathrm{~m} 6233-36 m, 34-36 m 6520 \mathrm{~m} 6713 \mathrm{~m}$ $6816-20 \mathrm{~m} 701 \mathrm{~m}, 16-19 \mathrm{~m} 7246-48 \mathrm{~m} 7424-$ $32 m 751-5 m, 2-3 w$ get drunk $12-14 m / 12-14 w$ distinguish male \& female $33 \mathrm{ua} 7627-40 \mathrm{~m}$, $47 m 776-9 w$ lives in Tropics $15-20$ to 150

10u "und I Weibchen", $12 u$ "Mantel", 13-14u "dielMutter", $44 m 79$ 8-35m $807-26 w$ Saw them roll down stones, as large as head, so as to close the pass for the caravan - act in concert \& use tools.- also defend each other for the males advance $8118-19 u \leftrightarrow 82 w t$ old male Hamadrya \& Geledons fight \& tug each other by the long man or mane of Hair, \& roll down stones against each other $28-31 \mathrm{~m}$ $843 m, 7-11 m, 7-14 w$ hits the ground when in passion with open hands - as in Garden. $22-27 m 85$ wt X Master shown by pretending to strike him, \& the pretender instantly recognised.- Mat on shoulders to protect from heat of sun $25-26 x 861-5 z, 9-11 w$ very fond of riding apes $13-19 w$ very fond of Beer - headache after being drunk $44-48 w / w b$ very much afraid of Lizards \& Frogs \& Lurchen yet very curious like Orang with Turtle- $45-48 m \quad 87$ wt X one individual of distinguished intelligence - very fond of all young animals - \& when kitten scratched him, bit off claws. $12 x, 28-31 m, 29 w$ about food $34-39 m, 42 m, w b$ very clever in stealing \& conquered Dog $8817 m 913 u / w$ fright 7$10 \mathrm{~m}, 8 \mathrm{u}$ "hellbraun", $10-12 u$ "In I gefärbt", 46 m $9425 \mathrm{~m} 968 \mathrm{~m} 10118 \mathrm{~m}, 35 \mathrm{~m} 10317 \mathrm{~m} 107$ 21$22 w$ Polygamy $10819 u \wedge, 33-34 u \wedge / 34 w \tau, 40-$ $41 u \leftrightarrow 11122-24 m, 24 u \leftrightarrow 1122 m 11313-14 z$ $11417 \mathrm{~m} 11621 \mathrm{~m} 11910 \mathrm{~m} 12016-20 \mathrm{~m} 124$ $32 \mathrm{~m} 1289 \mathrm{~m}, 43-48 \mathrm{~m}, 48 u \leftrightarrow 1291-6 \mathrm{~m}, 6 u \leftrightarrow$, $35 m 13011-13 m, 11 u$ "aufgeregten", $12 u$ "sich|möglichst" $2613 m$
vol. 2, 729 11u "die \mid Schild" 731 20-29m, 26$28 u \leftrightarrow, 31-33 m, 36-38 m, 37 u \leftrightarrow, 40-41 m 732$ 10-16m, 13u "auflfallen" 743 13-14w upcurve fig.z, fig.w these ought to curl a little more outwards (see Wallace - correct by him; Reduce Wallace's drawing \& face same way with Boar $14 u$ "rückwärts", 17-18u "Diel kurtz", $19 u$ "ragenlsie" 745 15-17m, 15$16 u \leftrightarrow, 34 u / w \tau$
vol. 3 NB 236 Vidua; 322 Paradisea; 745 Rupicola
$2365-9 m, 18-20 m$, 19u "feuerroth", 23u "roströtlich", 40-44/42-43u "paarweise" 237 3$5 m, 4-6 \mathrm{w}$ sings when in fine plumage 292 15-18m, $15 u$ "bedeutend kleiner", $16 u$ "ist lauf" $2934 u / w \tau, 6 u / w \tau, 11-12 u \leftrightarrow 3251-4 m / 1-2 w$ long feathers $9-12 m, 9 u$ "sonderbar 1 Geräusch" $32624 u$ "Bennett's", 26-32w cannot bear any dust on feathers
vol. 4 NB 351 Courting of black cock; 991 on Courtship (?)
$3529 m, 14-15 m / 19 m 4692-6 m, 18-20 w$ tailfeathers \& secondaries $18 u$ "ungemein

BREHM
stark" 473 10m 990 29-31m, 29-30w few polygamous $33 u$ "Dalgibt"|33-37w more males than female

BREHM, Alfred Edmund Tierleben 2nd edn, Grosse Ausgabe, 9 vols.; Leipzig, Verlag der Bibliographischen Instituts; 1876-1878 [Down] \wp

BRENT, Bernard P. The canary, British finches, and some other birds London; Journal of horticulture and cottage gardener, n.d. [CUL]
hy
NB p.21; p.22; p.30; p. 109 Hybrid Canaries $218-12 m 22$ 19-21m/20u "feather-footed" 30 12-16m $557-11 m 10932 m$

BRENT, Bernard P. The pigeon book London; Cottage gardener office; n.d. [CUL]
br, hy, oo, v
NB w
Q p4 13 - Hybrids with C. Oenas
Q 41 - Kite Tumbler after splDing become black
46 Trumpeter $1 / 16$ blood not trumpeting
55 - Lace Fantails always give lace to offspring what a contrast with my Japan silk Fowls!
60 - The story about Hawks killing tired Carrion wrong.
$\rightarrow 36$ definition of splash pigeon
13 6-12m, 14-16m 36 41-47m 41 12-18m 46 $20-31 m, 28-31 m 50$ zt $5527-31 m 6020-22 m$

BRIGGS, Thomas Richard Archer Flora of Plymouth London; John Van Voorst; 1880 [Down, I] \wp

BRIOSI, Giovanni Intorno un organo di alcuni embrioni vegetali (extr.); 1882 [Down]

British Association Report of the third meeting of the British Association for the advancement of science held at Cambridge in 1833 London; John Murray; 1834 [CUL, S]
SB Brit Assoc Vol 3; p. 50 x; p. 447; O/ Octr. 1857

50 17-29m/w Hooker quite agrees 446 1520 m 447 21-26m
\wp throughout
British Association Report of the eleventh meeting of the British Association for the advancement of science, held at Plymouth in

July 1841 London; John Murray; 1842 [CUL] em, fo, gd, hl, ig, ir, sp, t, ti, tm, ts, v
SB1 1841; p. 77; p. 96; p. 173; p. 181 Waterhouse - low in scale; 185 185; 186; 192; 193; 196; 198 to end.-
SB2 \quad - β
96 Different form of Vertebrae in ant \& post part of column. Ch 7. Kinds of Transition.- \diamond 173 Owen intermediate fossils -185-196 Summary on do
181 do - animals on confines of groups present great differences
197. Argument (Owen) against Transmutation - Resting on assumed rise in development - Grand discussion.-
201 Embryology of recent Reptiles resembles ancient
\wp
77 49-54m 96 44-50m/? 173 37-45m, 44-47m $18123 u$ "like|a"|21-27m/1-24w this is like Waterhouses remark that low groups vary much, $29-34 m / 29-51 w$ according to this, if there were many Monotremes, they wd vary much.- 185 41-48m, 46u "Pleiosaurus"/46w Enaliosaurians $49-53 \mathrm{~m} / 50 \mathrm{u}$ "other fishes" $/ \mathrm{w}$ p. 186 53-54 $\rightarrow 186$ 30-32m $19236-41 \mathrm{~m} / 1-44 w$ As species are long lived (must be!!) so are genera - how is this in Mammifers Badger long-lived - Carnivora in Eocene 193 33u "terrestrial"/31-49w These cd have been np terrestrial Mammifers for 70 specimens of Iguanodons have been found $1969-11 \mathrm{~m}, 13-$ $15 m, 20-22 m, 24-30 m, 36-38 m, 48-52 m 197$ $21-25 m / 33-37 m / 1-35 w$ assumes the series to be perfect \& a tendency to higher development - 198 12-14m/12-42w must confess even on my view imperfection of record surprising $-22-25 m, 36-38 m, \Uparrow 8-2 m$ $1993-5 m, 7-9 m, 18-30 m, 32-44 m, 49-54 m$ 200 1-8m, 29-33m, 45-51m, whole $\uparrow w$ Do those geologists who tacitly think the record pretty perfect - think that there were only 3 Mammifers during Oolitic \& only.-Reptiles during Carboniferous \& so many in Permean \& * Triassic 201 22-25m, 36-41m, 43-50m 202 6-8m/w Falconer 11-15m, 21-24m 8

THE BRITISH AVIARY London; Dean and Munday; n.d. [CUL]
18 โm/"... 20 8-18m 25 wb 232 介8-1m 33 6$14 m 348-16 m 406-14 m 434-10 m 50 \Uparrow 4-2 m$ $511-2 \mathrm{~m} / \mathrm{m} 57 \Uparrow 10-7 \mathrm{~m} 681-4 m$

British Museum (G. Busk and J.E. Gray) Catalogue of Marine Polyzoa in the collection of
the British Museum 2 parts；London；by order of the Trustees；1852／1854［CUL］
Part 1， 39 1－4m 44 18－22m $54 \Uparrow 13-11 m$ ，$\uparrow 9-$ 5 m Description of plates，iii＂$p l$ XXII＂．m
Part 2 NB \langle not $C D\rangle$
$673-8 m$ ，$\uparrow 11-7 m$ 70 2－4m，介16－14m 83 16－ $19 m, 24-27 \mathrm{~m} 84$ 介3－1m $947-9 m 1043-7 m$ ， $16-21 m, 19-21 m / 21 \ldots ", 29-33 m 10513-26 m$ ， $\Uparrow 11-1 m 1061-7 m / 2-7$＂．．．＂$/ 2 a$＂seta＂\＆the $2 a$ ＂observed＂－$\uparrow 4-1 m / \Uparrow 3 u$＂avicularial far＂ 107 $8-11 \mathrm{~m} / \mathrm{w}$ Both avi〈cularium＞\＆vibr〈acula〉 108 table．m

British Museum（J．E．Gray）List of the specimens of Mammalia in the collection of the British Museum London；by order of the Trustees； 1843 ［CUL］
gd，geo，is，$s x$
Part 1， $21 u\langle u$ henceforth a〉 $41 u, 11 u 519-$ $21 \mathrm{~m} / 20 u$ ， $33 u 621-25 \mathrm{~m} / 21 u 76$ ， $76 u$ ， $25 u$ ， $33-34 \mathrm{~m} / 33 u 81 u, 17 u 929-31 \mathrm{~m} / 29 u \quad 1016 u$ ， $20 u, 24 u 1117-18 m / 17 u, 21 u, 26 u 1218 u, 32-$ $24 m / 32 u 1318 u, 27-29 m / 27 u 1518 u$
Part 2 front and back blue covers．w Seals
NF What seals Kergueles Isd Aukland \＆ Campbell Isd Azores S Shetland Georgia Ascension？Falkland Seals－ice－action
NB There is no case of Seal confined to single isld So not case parallel to Bats．－No species common to N．\＆S．but species of same genus N．\＆S．－In fact nothing for me．－
p22 \＆ 24 Caspian Seals It is a Northern genus alone
viib 15－16w Fur seal viii 13－14w representative species in North $22-24 \mathrm{~m} / 23 \mathrm{u}$ ＂Ursinus＂，31－40m 2 34－37m 3 41－43m 13 $23 w$ Packed ice $33 \mathrm{~m} / u$ 〈u henceforth place－ names〉 $146-8 m / 17-18 m / 1-18 w$ Ice does not come to New Zealand $1623-25 \mathrm{~m} / 24 \mathrm{u} / 25 u$ ， 41－42m，wb Distance from S．Orkney to Tierra del Fuego $174 u 2231-39 \mathrm{~m} / 32 u / 33 u /$ $36 u / 37 u 24$ wt good case as identical species in P．viz P．vitulinus Hardly because may have ranged further formerly $9 u, 11-13 \mathrm{~m}, 36-$ $37 u 3441-42 m / 41 u$ ， $43-44 m / 43 u 3531-33 m /$ $31 u / 32 u, 41 u, 45 u 3721-24 m / 21 u$ ， $38 u$ ， $40-$ $43 m 4320-22 m, 24-32 m 4538-39 m$
Part 3，viib $19 m, 23 w$ ？common viiia $17 m *$ ， $36 w$ C Aegoceres $38 \mathrm{~m} / \mathrm{u} / \mathrm{w}$ Aegoceres viiib 16－17m，19－21w C Dar \＆＊29－32m，32w Smith $34 \mathrm{~m} / \mathrm{w}$ Babing $36-37 w$ Colours ixa $4 \mathrm{~m} /$ w Colours 48 〈u henceforth sex－differences〉 $4 u$ ， $6 u, 8 u, 10 u, 18 u 1005-6 \mathrm{~m} / 5 \mathrm{u}, 36-40 \mathrm{~m} / 36-37 u$ $10430 u 10637-40 \mathrm{~m} 12420 \mathrm{~m} 1282 u 1331 u$ ，
$5 u 13422 u 136$ 6u， $25 u 13730 u$ ，35u 139 26u $1417 u, 14 u 14233 u 1435 u 14416 u, 16-17 u$ $14633 u, 40-42 m{ }^{2} 14728 u, 30 u 14819 u, 20 u$ $1496 u, 7 u, 14 u, 17 u, 20-21 u 1507-10 \mathrm{~m}, 8 u$ $15135 u, 36-37 u 15224 u 1534-5 u 1579 u$ ， $15 u, 16 u, 17 u, 19 u 16018 u, 31 u, 37-40 \mathrm{~m} 171$ $36 u$＂in male only＂ $17237-40 \mathrm{~m} 17735 u 179$ 18u，23－25m，42－43m 185 20－22m，28－30m 216 40－43m 220 29－31m 242 24－28m

British Museum（F．Smith）Catalogue of British Hymenoptera in the collection of the British Museum London；by order of the Trustees； 1855 ［CUL］
beh，fg，mhp，oo，sp，sx，tm，v
NB－p225 Ask about accidental other species of they lay their eggs
SB1 DR
16 ．How far mixed；46；114；117；118；144； 158，161； 108 to end SB2 $\square \beta$
16 Mixed colourings of 3 genera \＆ 5 species．Wd not blindness of instinct lead them to become parasites
46 The bee whose larva preyed on，does not interfere with Parasite Bee Q
117 The parasite closed nest in some cases NQ
158 Great diversity of instincts of Bees of same genus：variable in species also Q
174 Males in one genus，female in another hard to distinguish
185 diversity of Habits NQ
211 Bombus diversity in nests Q
225 on occasional presence of working Bees of different species，in nests of others Q
$17 u$＂added lone＂ $2 w b$ for Apidae p 11316 wt Fabre believes certain Sphexidae occur only parasitic $2-5 m, 9-10 m, 13-15 m / 13 u$＂$a$ mixed＂，18－22m 46 1－11m，11－13m，25－30m $56 z t{ }^{2} 11420-21 \mathrm{~m} / \mathrm{w}$ Hibericum 117 19－23m， 26－32m 118 14－22m 144 25－30m 145 16－18m $15810-14 m, 10-28 w$ variable situations of nests $11-28 w$ variable in species \＆genera
 ＂burrows 1 banks＂，20m，25－26u↔，44－46m 161 10－14m，10uA， $12 u$＂underside llying＂ 173 32－ $37 m 17418-22 m, 23-31 w$ In Andrena it was the males which were so difficult to distinguish $27-30 \mathrm{~m} 185$ wt Megachile a leaf culture，what diversity of Habit－11－14m 208 22－26m，29－31m 209 42－46m 210 12－16m 211 $44-46 \mathrm{~m} / \mathrm{wb}$ Build in different situations \＆use moss $\rightarrow 212$ 6－12m，14－18m，43u／w 2213 $15 u / w \quad 3 \quad 25 u / w \quad 1 \quad 36-39 m / Q / 36-38 u$＂inl numerous＂ $\mid w b$ These varieties are males females \＆workers $21423 w$ 1 32－40m， $32 u$ ，

BRIT. MUS. (SMITH), HYMENOPTERA
$37 u / w 21 / 2,40 u / w 12157-11 m / 8-10 u, 21 u / w$ $233 u / w 336 u / w 121622 w 2,29 u / w 231 w 1$ $21723 w 034 w 138 w 021822 w 230 w$ 2, $32 w 121925 w 11 / 2$ 29w 11/2 31w 1221 1w $210 w 1$ 16w 1 26-30m $2234 w 19 w 111 w 1$ $33 z 22433 w 2,38 w 1 z b \geqslant 2254 w 118-$ 30m, 18m, 22u "workers" 226 21w 1 24w 2 26w 21/2 227 22w $134 w 239 w 122918 w 0$, $24 w 11 / 223027 w 032 w 11 / 234 w 123121 w$ $032 w 236 w 22337 w 123 w 326 w 2$

British Museum (T.V. Wollaston) Catalogue of the coleopterous insects of Madeira in the collection of the British Museum London; by order of the Trustees; 1857 [CUL, I]
is, $s p, v$
SB $\square \beta$
Whole Introduction marked -p85 note Canal Elateridae Telephoridae
vii $11-19 m, 11-13 w$ dele these 3 vars. $16-$ $18 w$ add 5 vars. viii $6-10 m$ ix $3-4^{* *}, 7^{*}, 14-$ $15 w$ Italics $16 u$ "far", 25-28wec x $\uparrow 13-11 z$ xii $32-36 m$ xiii $12-14 m, 19-30 m$ xvi wt The species f. on all 3 islands, are all rather indigenous 4-9m $1 z b 207$ wt The numbers to left hand are the vars. to each species added from great Book \& corrected in few cases.- Omit in counting all those marked by one or two Asterisks (a.s counted) 5^{*}, 10.3 〈ie, line 10, CD writes '3' to left hand〉, 17.4, 30.1, 34.1, 42.4208 2.1, 5*, 10.1, 12*, $15.1,20.1,23.3,31.1,34.1,39.1,52^{*}, 53.5209$ $2^{*}, 4^{*}, 17-19 c, 26^{*}, 39.1,43 c, 44 c 2105.1,39.1$, $42.12115 .121229^{*}, 30^{*}, 40^{*} 21312^{*}, 21.1$, 29* $21411^{*}, 17^{*}, 20^{*}, 27.2,29^{*} 2156.5,14^{*}$, $25^{*}, 33^{*}, 41.1216$ 16.4, 19.1, 21.1, 27.2, 28.1, 50.1217 15*, 27.2, 34.1, 35.1, 40.1218 22.1, 26.2, $32^{*}, 43.121910 .1,17^{*}, 20^{*}, 26^{*}, 28^{*}$, 28.1, 29*, 34*, 35*, 36.2, 42* 220 7.1, 10.1, 11.1, 13.5, 18.1, $41.12217^{*}, 29^{*}, 31.1,38.4$, 39.2, 43.1, 44.2, 45.2222 12*, 14.1, 17.1223 7.1, 17*, 27*, 28*, 33.1, 44.1, 53* $2242.1,24^{*}$, $26^{*}, 46^{*}$
Catalogues of the zoological collection in the British Museum 8 zb

BROCA, Pierre Paul On the phenomena of hybridity in the genus Homo London; Longman, Green, Longman and Roberts; 1864 [CUL]
f, h, he, hy
SB 25 Definition of fertility in hybrids; 38; 39; 40; several statements to this effect - quote when I speak of inferiority of Mulatto under Reversion
18 21-26m 25 19-34m 27 29-36m 30 12-18m 33 23-26m, 28-32m 36 9-15m 37 19-24m 38

5-12m, 22-26m 39 18-21m, 32-33m/w Proc R 40 28-30m 49 7-11m $607-34 m 63$ 10-13m, $12 u$ "indirect communications" 66 15-19m \wp

BRONN, Heinrich Georg Handbuch einer Geschichte der Natur Stuttgart; G. Schweizerbart; 1841; 2 vols. and atlas [CUL] ad, af, beh, br, cc, cr, cs, ct, em, ex, f, fg, h, he, hy, ig, is, $\mathrm{mg}, \mathrm{mn}, 00, \mathrm{sl}, \mathrm{sp}, \mathrm{sx}, \mathrm{tm}, \mathrm{ts}$, ud, v, wd, y
vol. 1, xviii $12-13 m 37831-33 m$
vol. 2 NF When in doubt for reference see Index to first time name is mentioned
SB $\langle 10$ sheets, numbered $2-10,12\rangle$
2
Bronn. Geschichte Th. 2
Cross means useful
a p. 93 cage-birds deprived of light become black \& snow insects from * same cause do-
p.96. birds black from food \& being in dark places, generally assume proper colour next year .- (Bechstein)
X p.do (b) nestling goldfinches in cage covered with cloth all became black, resumed colour * next month
do (c) fe male pyrrhulas took on plumage of female in cage (other cases analogous)
(d) Hence light has influence, \& whiteness of polar animals perhaps effect of snow-light Negros!!
Introduce discussion.- though polar animals may have been created white \& beetles under stones black, we yet know that it is possible they may have been so altered.Against relation between tadpoles \& Siren
X Q (e) Beetles become darker \& darker (traced by gradations) till black on snowcovered 7000-8000ft summits of Alps.- but thought species by some authors - so in going to pole: hence climate, though opposite effect on Vertebrata, such beetles must in pupa or larva state must be long under ground
3
p. 99 (a) yellow var of Zygaena not found at Erfuhrt, but common in south Germany.-
(b) accounts for increase of cattle in Australia from greater birth of cows to Bulls 3-to-1 \& in Man ??!
(c) Rabbits \& Hens breed much oftener, in domestication, with food \&c, than free
p. 100 (a) quote Roulin on infertile geese, when taken into America \& Garcilasso for hens not procreating; though now become fertile, yet game-cocks from England are
less so.-
p. 101 (a) late eggs of butterfly produce a different variety from early eggs
p. 102 (a) much food increases fertility:mountain sheep produce only one lamb; whilst lowland more \& if former brought into good pasture, even in first year produce more than one; on other hand, Marsh-sheep taken to mountains retain fertility for 3-4 generations [How opposed to Doubleday!] X X109 Hares larger \& smaller in Woods \& Fields
p110 Most important: Gloger thinks similar differn in feathers of wing in Ducks, especially Musk-Duck differences between migratory \& stationary birds of same species. $=\mathrm{X}$
〈4〉
p111 change in stomach in owl for vegetable food (a) X wh. caused it to perish X alludes to milking of cows - I may say difference is sudden in La Plata
(b) In pig-races, wh. have many young more tits give milk than in less fertile races.
p113 X Difference in Habit of single \& many Beavers.
p. 113 (a) Rabbits much ferreted (?) taken to live in farms (F. Cuvier): anyhow a variation in habits
117. Latent instincts in animals become feral aie tameness
p. 117. It is important to consider whether the male in plants or animals (V. Koelreuter) can propagate the sportive tendency, because if so it will show, that the varying tendency in the generative system, under domestication, is the effect of impregnation \& not the womb influence. In fact if fish \& silkworms vary much, it cannot be foetal influence $X|\mid$ (Yes it may in Egg), nor indeed in birds, as the mother only influences the egg by its warmth, after a very early stage:
p. 118 (a) origin of most varieties of plants, through sports by unknown causes.
p. 118 (a)(a) attribute sporting of apples \& such like to the transplanting, pruning \&c, wh. they have undergone. [no. corn sports as much as anything)
5
p. 119 when a man has once got an \rangle variation (a) (or through bastardising), then he can easily go on raising more \& more. ie variation tends to increase. [this comes very near to my facts]
p119 (b) No character resists variation in cultivated plants; in lesser degree in wild state: cannot compare effects of nature during course of years, with our during a few
years.-
$\mathrm{X} \| \mathrm{p} .120$ (a) is said, that Dahlias at first sported on single characters, \& then in less degree in all: this very important, from analogy to wild (\& whether relations of subgenera to genera)
X 121 variability of heredetariness in weeping ash \& Peach
p123 (a) cases of sports in Dahlia flowers; \& of whole plant producing different coloured flowers Geranium do - Dianthus - case of wild Achillea do
(b) apple with no petals or stamens, but 14 styles; fruit peculiar, when impregnated.
p124 (a) curious account of seeds of a Carduus sown - one young plant came up different, \& the seedling for 3 years from it same, \& then on same soil lost one of its chief ch
$\underline{6}$
p 127 (a) subsequent offspring of a mare, affected by having once produced a mule. \& sow so affected from a cross with wild Boar \& on two races of dogs
p. 130 (a) tailless fowls appear to have an abortive unformed, knotty projection, instead of the Cuckoo-Bone
p. 130 (d) left wound snail can pair with only left - but young are right, in Helix pomatia (contrary to Sowerby)
p. 131 Tail feathers in waders \& webs sometimes X vary in number - Gloger \& Hodgson (references)
p132 (a) case of carp (which bred true) with 4 times larger scales in lines, with some places bare X - call Looking-glass Carp.-
X p. 132 (b) Indian races of sheep \& oxen where female hornless - he compares it with deer-tribe.
X p. 132 (D) cow lost left horn by suppuration, afterwards had three calves with left horn a mere stump attached to skin. X p 133 (a) Bug generally apterous, found in marshes with wings elytre bred in a house produced offspring with abortive wing $\diamond \mathrm{M}$ Dictionary [case where we know what an abortion]
7
p 135 (a) - remarks that the nature of the affinity in plants, wh. favours crossing is not known - because
p141(a) Gartner not external similarity.
some of the closest species have not offspring when crossed; \& because some genera, especially amongst the Monocotyledons will scarcely cross!
(b) No cross of two species produces as many seeds as the * true species; yet

BRONN，HANDBUCH
above says it is sometimes easier to get fertile seeds，through cross，than with no cross．－
p136（a）remarks on uncertainty of Koelreuter experiments，how many trials necessary－first flowers fail－K．saying all that are fertile are vars．，is arguing in circle．－ Good summary of Crosses＝
141．（b）genera crossed with difficulty
p146－（a）［good summing up of results of Hybridisation
（a）seems to think，the more remote，the crossed species \＆the more intermediate the offspring，the less fertile they are \＆more subject to monstrosity which particularly affects generation system（？）
p147（b）－How odd it is hybrids crossing easier \diamond parents than \diamond

8
It is important to show in Azaleas，in（p．147） Lilacs，in animals，that the sterility is not due to tendency to vegetate or to increase of fruit \＆c．－but to some direct influence on propagating system．－
p． 147 （b）（b）remarks from Köl，that variation in hybrids，depends on the parents（or parent？）having been domesticated，or tending to vary－
p148（X）It wd be easy to take 100 double flowers \＆count，which has male \＆which female part most affected
p． 152 （a）From Koelreuter，hybrids self impregnated．others lose or retain their small fertility，or approach to one parent in form \＆ gain in fertility
p152（B）Lindley on Hybrids not propagating in the $3 d$ generation．X
p154（a）－hybrids not intermediate between parents（as by Koelreuter）but seldom！！in some parts like father，in some like mother Gartner

9

155 （a）Gartner．Hybrids the more fertile the nearer they take after the mother－side，less so，the nearer after the father side Hybrids go back to Mother side！Herbert says just different
155 （B）says Hybrids from same species differ（？？）\＆that the facility of impregnation depends on the selection of the sexual organs，\＆not as general relations．Reverse crosses similar offspring
p． 156 （a）He says some species of a genus ＊impress their characters on hybrids，much more strongly than other species（does not d＇Orbigny assert this in some Indian Races？） p156（b）He says either return to mother，or lose their procreative faculty

X p156 Passiflora more fertile with other pollen than own．
10
p． 164 （a）in making hybrids the female generally resists male；so that male donkey must be painted like zebra to cross with mare zebra
Mares will only take stallion－donkey in dark， \＆stallion horse must never have＊seen mare before－alludes $X(d)$ to physical difficulty of crossing some races
X（e）Buffon says that female foxes，dogs，\＆ wolves though in heat drove off with bites the males of other species．
（f）Cuvier says Dingo \＆common dog wont breed，though often＊couple（they will in Australia）\＆Zoolog Garden of London good $\mathrm{X} \|$ See to authority
H ．case of dog pairing with chained wolf X p165 crosses of Domestic Cock with other Birds \＆Finches
p172（a）Case of some crossed by boar （perhaps previous impregnation）had one tame pig \＆other wild \＆c \＆C
X p168 variation which comes on with age appear at corresponding age
X p． 169 \＆ 172 BB －Mongrels have the character of（but many exceptions）〈rest 0 》 hybrids have character \langle rest 0）
〈over〉
It is an old argument，but never to be forgotten，that we must look with our gained experience＊on the history of the world，as an＊animal of years duration must on the variation of domestic animals he wd never suspect such a thing．
12
p184（a）Ammon reckons on colours of of horses being certainly true if only two generations are known true
（b）white hens，peacocks，mice all come true
（D）contrasts fruit－trees－gives Van Mons case of 35 years selection producing all good fruit－（natural mongrelising he does not notice）\＆trees bore fruit sooner
p185（a）High－heel boots，have affected form of childrens feet in Germany！Thaer
p186（b）Shepherd－dog instinctively＊ rounds sheep
X（a）mongrel sheep－dog \＆pointer for several generations pointed at Birds．
（e）varieties sometimes cross whilst wild； white hares in Cornwall \＆C
－Have parasitic plant genera wide range as Waterhouse says parasitic insect do have No
p．54．

SB $\square \mathfrak{R}\langle 4$ sheets, numbered 1, 11, 13, 14〉
56 on mixing of Salt \& FW Fish in Baltic
58 do. \& of shells \& Crust in Caspian
69 changes of colour \& quality of fruit from soil.
77 Doubling of flowers, discussion on.
83 changes of flowers on mountains, intense colour, plant less size, but larger flowers
85 cases of plants changing by culture. Lobelia \& Ziziphora (Refer to in note) \mathbb{Q}
89 Summary on changes of Fur of animals under changed climate
107. most important case of variation of Fish 96. Hawk in Berlin went back to earlier plumage
11
170×8 generations absorb another race, in which one blood is 99.62 of whole

- strong case of sheep taking after Ram in reciprocal cross X
- on crosses not intermediate: on horns going from father X
177 Description of Hybrids wolf \& dog
179 Particulars on Hybrid Canaries \& Goldfinch
I have used all this Book for Hybrids 13

187. feral dogs soon reclaimed (Schomburgk)
188 -Bechstein says Zeisig more readily pairs (Ch. 6.) with \& green than with yellow Canary Birds
189 Brehm's subspecies not merely geographical Races
188. White Hares of Cornwall.- (must allude to Bronns Gesichte in Preface; if soon Gartner, Kolreuter, Decandolle Huzard.Hooker's works - Lyells Geology. Isodore G. St. Hilaire
195 References to G.St. Hilaires doctrine of external cause causing change
210 Horses swim 7 German miles
189. on accidental migration of Lemmings, insects \&c
223 References to falls of inorganic bodies 224. Lost animals - Turtles - \& Birds on continents
225 Reference to Hawk Case Fontainbleau

- R. Brown on Gulf seeds germinating

229 case of Head of Bos m. washed on shore of Greenland shows course of iceberg, with respect to plant common to White Mnt. \& Greenland.-
234 Excellent accounts of falls of seeds, with references
236 Fish \& Crab Rain
247 Remarkable that N. Holland more plant common to Europe than S. Africa -

explained by me

14
252 on Relation of Red Sea to Mediterranean - Wiegmann Arch/- on distrib. of insects \& Lacordaire.-
253 Alpine climate not very like polar.
254 Snow region in Alps 12 plants, many more in Melville Isd
-Table of heights \& Latitudes to show correspondence
272 Duration of Seeds vitality of
284 number of seeds - kind of animals
which have most - number of eggs in Crab-

Fishes

286 number of mice one pair can produce in year

- increase of cattle in America with dates

293 Destruction of forests by insects
297 - on insects destroying crops-
299 Rein-deer killed by insects
300 Mice destroying trees
302 increase of mice, followed by increase of weasels
505 causes of extinction, yet not real for they do not apply to rarity
v 9-12?, $14-18 m, 1-26 w$ Read all on this problem vi $4 m, 23-26 w$ Read vii $20-24 w$ Read viii $1-30 m, 18-23 w$ Read xi $2-12 \mathrm{~m} / \mathrm{w}$ Read \& marked 28 wt Tobacco plants in 5 years wd cover all Germany 29-31m/30w (a) 54 8-10m, 13m/u "die Pflanzen", $19 u$ "lange", $\pi 2-1 m / w$ (a) $w b$ Trees not killed by cases of shells of seawater - did annual seeds spring up again? ask Mr Higgins $557-17 w$ sea \& freshwater shells mixed together 56 14-20w on Fish inhabiting salt \& F. Water $16-17 u \leftrightarrow$, $32 u \leftrightarrow / 30-35 w$ Cyprinus in F. \& salt water 58 21-40m, 23-28w Caspian Fauna genera of salt \& fresh fish \& Crust \& Shells $43-44 m 59$ $28-40 \mathrm{~m}$ * $30-41 w$ changes in vegetation spread of a grass when forests cut down 65 12-17w (Must skim previous Part May 12 45 Begun $69 \quad 23-31 m / w$ dark red Rosa became streaked with white by earth colouring $29-31 m, 32 m, 35-38 m$, $35 u$ " 1837 ", $44 w$ Is this good authority? $w b \times$ other cases of flowers changing colour in diff: soils. $x x$ case of grape strongly manured cow-dung, alum, horse-chips \&c changing from small * yellow-green, with flatened grapes into large watery dark blue grapes 70 wt A Different manures affect greatly melons in quality $2-$ $10 \mathrm{~m} / 3 u$ "Gewürz|zartheit"/w A 72 wt sugarcane \& * Pineapple seedless, from antithesis of sap \& pulpy fruit 1-4m, $1 u$ "Ananas", $2 u$ "verwildert|kleine", $29 m 74$ 1$27 w$ instances of different parts, with

BRONN, HANDBUCH
parenchyme enlarged by culture, as in Cabbages \& Plums 16-27m, 28-29u↔, 29$30 m, 35-39 m / w$ These trees did not produce fruit, from luxuriousness of vegetation 751 $2 u \leftrightarrow, 8-13 m / w$ cutting trees makes them fruit. $7619 a / u / w \tau, 16-28 m / w$ on change of sex in dioeceous plants $771-21 m / 4-17 w$ on doubling of flowers $27-30 m$, $27-35 w$ old \& new seeds differ in producing double flowers $7811-26 w$ did seeds produce female plants - large fruits is opposed by antithesis to seeds $7935 u$ "dasselbe Individuum"|35-37w loose or gain hairyness $8120-22 m / 19-25 w$ European biennials changed into annual in Crete $8211-17 m / 11 u n / 15 u$ "Weiss" $116 u$ "Hibiscus l weisse" 174 "Roth"/w Lilacs when put in hot-house changed from white to red $21 u$ "Wimmer", 28-38m, 44-45m/w (I have not thought worth quoting) $\uparrow 2 w / w b$ all facts on next page I believe taken from this $w b$ R. Brown believes in great alterations in flowers on mountains $834-7 m / w$ dwarf from growing on high mountain $9-13 w$ leaves change a little 20-26w Hairyness increases on heights \& in wet places $27-29 w$ other time lose them $30-35 \mathrm{~m} / \mathrm{w}$ Colours of flower - stem darker 37-45w flower larger sometimes though petal smaller even twice $w b \times$ from above changes many varieties have been considered as other species $8419 u$ "Nessell dioica"/16-22m/ w Link says southward Urtica dioica changes into U. caudata $41 m 85$ wt (a) Lobelia lutea from England flowered for 4 years in Pawlowsk, did not seed, was divided into 3 plants, \& they lost their lance-formed teethed leaves \& has broad, egg-shaped leaves, with different flower; became the L. bellidifolia 1$7 \mathrm{~m} / \mathrm{Q}$ 9a/u^/10a/u^/7-12m/w Both. C.G.H. flowers diff. colour diff time of flowering 30$33 m / w$ Form, direction \& connect less affected; great influence on instincts $39-40 \mathrm{~m}$ $8622 u$ "kleiner|unfruchtbarer"/23-24m!?/24u "die Grad" $/ 17-28 w$ Animals on limits of proper climate less fruitful!? and less size. $31-37 w$ Peron's case of shells altering in size in Australia 37-38m/wb On increase \& decrease in size in Helix's on Alps 89 wt European goats in high mountains have some fur $7-14 m / 10-16 w$ on change in fur in European animals in Himalayas midpage Q $40-41 m, 45-46 m$, $w b$ this Page summary of facts on fur $904 u a / 4-6 m / 4-9 w$ looses hair when old $6-10 \mathrm{~m} / 9-19 w$ Pigs with different hair in different parts of S. America 16-20m, $19 u$ "weit I Winterhaar", 26-30m/w No cause for Angora wool $42 m 9115 u$ "Gloger"/14$21 \mathrm{~m} / \mathrm{w}$ almost all beasts undergo some change in winter in colour $19 u$ "tropischen

Gegenden", 20u "höherlsind", 21u "hellel grauweise", $22 u$ "Polen" $938 m, 14-16 m, 28-$ $33 \mathrm{~m}, 28 w$ (a) $38 u / w b \tau 943-16 \mathrm{~m} / 2-9 w$ animals at pole become white $23-36 \mathrm{~m} / 21-32 w$ birds do all or in patches $951-5 w$ Men, horses \& Birds white with age. $12 u$ "Eichhörnchen"/9$15 \mathrm{~m} / \mathrm{w}$ some darker by age \& by hot climate, $20-27 \mathrm{~m} / \mathrm{w}$ other colours change in birds by climate $28 \mathrm{~m}, 29-32 \mathrm{~m} / \mathrm{w}$ head, neck \& eyes change colour 43m/43-44w Gloger - much praised by him 96 wt a Hawk went back in Berlin to an earlier plumage $3-6 \mathrm{~m} / 5 \mathrm{u}$ "zurückschlagen", 9w (a) 12u^/15un/12-15w Galapagos Finches Black 17a/u/w (b) 22$23 \mathrm{~m} / \mathrm{w}$ (c) $27-30 \mathrm{~m} / 28-29 \mathrm{w}$ d $32-33 u$ "Osw. Heer", 36-39w e Quoted 97 1-18w/wt! Most of these observations are vitiated by doubt of what are species - reason against my going into details $13 u$ "Viele dieses", 14-15u "Systemen I worden", 31-33w Quoted 40u^ 98 $7 u \uparrow, 介 7 m$ 99 11-13m/w a $29-31 \mathrm{~m} / \mathrm{w}$ (b) 38$41 \mathrm{~m} / \mathrm{w}$ (c) 42-43?? 100 12-16m/16u "Schafe"/ $13 w$ (a) $38 \mathrm{~m} / \mathrm{w}$ Gloger $w b$ on different singing in same Birds 101 14u "Freyer" $/ 10-14 \mathrm{~m} / \mathrm{w}$ In Ray has written much on Butterflies no authority $15-19 m / 16-17 w$ (a) $22-26 m / w$ effects of good food chiefly through young 31$36 \mathrm{~m} / \mathrm{w}$ affects flesh more than bones 102 15$16 w$ (a) $26 \mathrm{~m} 10514-26 \mathrm{~m} / \mathrm{w}$ on change in Merinos in France \& Holland $10626 w \tau 107$ wt This case so important as to be quoted 10-12m/13-14u "grosse Ientstanden"/ $11 w$ (a) $w b$ (a) the intermediate form between * these two supposed species, found in a ditch where one species had been turned in. Yarrell. vol I alludes to these two fishes \& gives summary of their differences $1092-4 \mathrm{~m} /$ $2-6 w$ made from many individuals $13-17 \mathrm{~m} / \mathrm{w}$ birds black from seeds $27 u$ "Bombyx |viel", $28 u$ "B.|Blättern", $35 \mathrm{~m} / \mathrm{u}$ "Waldhafen 1 Hirsche" $/ 36 u$ "Gebirge", $48 \mathrm{~m} / \mathrm{wb} \mathrm{x}$ wood-hares larger than field-hares Mem: Fox of Highland 110 20-23m/20-22u "Schwung|Truthühnern"/ $23 w$ Musk duck 25-29m/29u "Gloger" $33 u$ "S.109"/30-33w toes \& membrane (a) $w b$ p109 Alludes to different figures of Mountain \& plain cattle $1115 w$ (a) 19-20u "bisl Werfen"/ $18-25 \mathrm{~m} / \mathrm{w}$ tame cows more milk than wild: organs adapt themselves $34-36 \mathrm{~m} / \mathrm{w}$ (b) $40 \mathrm{~m} / \mathrm{w}$ Greyhounds in Mexico $112 \mathrm{5u}$ "Scheue" $\mid 4-8 w$ domestic animals loose cunning $1134-14 m / w$ case of dog walking on hind legs $18-24 w$ Beavers difference when single \& in company $26 \mathrm{~m} / \mathrm{w}$ (a) $28-30 \mathrm{~m} / \mathrm{w}$ Ducks 115 23-33w original temper \&c of wild dogs different $11614 u$ "Menetries", $41 \mathrm{~m} / \mathrm{u}$ "Isis 1832" $39 w$?read? 117 wt So Rabbit in Falklands, Horse in La Plata Latent
instincts.- 1-12 \rightarrow, $13-16 \mathrm{~m} / \mathrm{w}$ Young wild Cuba dogs reared are tame !! $25-26 m, 33-$ $34 \mathrm{~m} / \mathrm{u}$ "Aber 1 mögen" $/ \mathrm{w}$!! No $40-41 \mathrm{~m} / \mathrm{u}$ "HopkirklIsis 1819" 118 3-6m/w understand? $9-10 \mathrm{~m} / 9-15 \mathrm{w}$ sports on single branches hereditary (a) $21-23 \mathrm{~m} / \mathrm{w}$ (a)(a) 119 $2-8 m / 5 w$ (a) $11-17 \mathrm{~m} / 13-14 u$ "dass 1 vor-komme"/12-17w (b) not understand $20 u$ "1790"/21un/20-23w ? Dahlia history of 30$33 w$ flowers of two colours on 1 plant 33-34u "D. Itrug", $34-38 \mathrm{~m} / \mathrm{w}$ sported extraordinarily $39 m 120$ wt First affected single parts, then all parts of plants but in less degree $1-2 \mathrm{~m}$, $4-6 m / 4 u$ " 6 ' -7 " " $/ 5 u$ " 3 ' $-4^{\prime \prime} / 3-5 w$ by selection $7-12 w$ period of flowering earlier 42-44m, wb (on Cabbage-varieties) $12122-32 \mathrm{~m}, 22-25 \mathrm{w}$ weeping Ash hereditary $29 w$ not hereditary $31-34 w$ Weeping Peach hereditary Qw, $38 \mathrm{~m} /$ u "Versuch 1 Monographie"/w Potatoes 41$44 m \mathrm{~m} 12211-19 \mathrm{~m} / \mathrm{w}$ cases of leaves soldered up like Nepenthes 123 2-3m/wr, 5$9 m / 6 w$ (a) $10-11 u$ "eines 1 Weiss", $13-14 m / u$ "rothgefärbten IJahre", $14 w$ Geranium Dianth $20 w$ (b) $41 \mathrm{~m} / \mathrm{w}$ (a) $42-43 \mathrm{~m} / \mathrm{w}$ (b) $45 \mathrm{~m} / u$ "Ann.|XX"/w Oranges $12421-22 u \leftrightarrow / w$ (a) $23-26 \mathrm{~m} / 24 w$ (b) $w b$ (b) very curious, seedling became smooth instead of hairy; but it was found in ensuing summer, that it was hairy in spring \& smooth later in summer 127 20-22m/w (a) 23-24m, 45-46m/ wb Dog cases 128 34-35m, 39m (Blumenbach), wb skull of tufted Holland-Hen monstrous bladder of bone (yet sexual) 129 15-16m/16u "mehrerlKnochen", 42-44m 130 $1-3 m / 2 w$ (a) $12 m / 13 u$ "Schlegel" $/ w$ (b) 14$23 \mathrm{~m} / \mathrm{w}$ some moveable part in tortoise variable $25-30 \mathrm{~m} / \mathrm{w}$ These genera of Bell only monsters $33-36 \mathrm{~m} / \mathrm{w}$ (D) $37-38 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{w}$ (D) $131 \Uparrow 12-10 \mathrm{~m} / \mathrm{w}$ (a) 132 wt Now see whether number varies in different species $3-5 m$, 6$12 m / 8 w$ (a) $16 u$ "Lambert" $/ 16-19 w$ skin with spines $21-22 \mathrm{~m} / u \leftrightarrow, 31-33 \mathrm{~m} / \mathrm{w}$ (b) $35-37 \mathrm{~m} /$ Q α_{0} / w (D) $39 m, 42 m / w$ (D) $13322 w$ (a) 135 15-16w not cross! $17 u$ "Pelargonium" $/ 18 u \leftrightarrow /$ 17-18!!, 18-21m/w Herbert $26-30 \mathrm{~m} / 27 \mathrm{w}$ (a) 36-37m/w (B) $1369 u$ a, $11 u$ "deren I fruchtbar", 24-39m, $33-35 u \pm / w$ (a) 42-43u "den 1 Petropolitanae" $/ w$ (a) $\pi 2-1 m / u / w b$ Novi Commentarii? 137 44-46m/? 138 1-12w Herschel experiments appear valueless to me $34 \mathrm{~m} / \mathrm{w}$ What result $14031 u$ "Dr Gärtner", 43-46m $1411 u$ "oft l leicht", $10-13 \mathrm{~m}, 10-14 \mathrm{~m}$, 13-14m, 13-15u "keineswegs $\mid A$ " $/ w$ seldom so many seed as in pure cross (a)(b) $21-25 \mathrm{~m} / \mathrm{w}$ all changes take place more slowly 26$29 u \leftrightarrow$, $31 u$ " 600 I $30 " 1445 w$ (a) 17-18u "Alle I praecox", 25-26w Monocotyledon 26$34 m, 36 m, 38 m, 39-40 m, 43-46 m / w$ Amaryllis
$1451-10 \mathrm{~m} / \mathrm{wt} / 1-10 w$ all sterile except 2 cases, as are pure Amaryllis on account of tending to bulbs; How does Herbert find this? $40-45 \mathrm{~m} / \mathrm{w}$ Look to Passiflora Rosa 146 $16-35 \mathrm{~m} / 28 \mathrm{w}$ (a) $37-42 \mathrm{~m} / \mathrm{w} 1824$ to $348 £$. Bailliere $1471-2 m, 4-6 \mathrm{~m} / \mathrm{w}$ (b) $10-11 \mathrm{~m}, 38-$ $42 \mathrm{~m} / \mathrm{w}$ (b)(b) $\uparrow 5-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ tendency to monstrosity; is not this like large fruit of Pears 148 wt Most often sterile on male side $1 u$ "am häufigsten", $2 \mathrm{~m}, 10-17 \mathrm{~m} / \mathrm{w}$ greater * vegetation power of hybrids $1527-12 \mathrm{~m} / 9 \mathrm{w}$ (a) $38 \mathrm{~m} / \mathrm{w}$ В $47 \mathrm{~m} 1534 u$ "Henschel", 5-7m, $44 u$ "Nielzeigten", wb Hybrids never intermediate as in Koelreuters !! V p. 138 $1549 u$ "Gärtner", 22-25m, 27Q, 29-30u "einzelne | Vater" $/ 22-31 w$ Fruit never affected by a cross in the plant itself $36-37 \mathrm{~m} / \mathrm{u}$ "kommt 1 überein", 41-42m, $43 m \star$, wb effects of crossing varieties exceedingly uncertain $1551-20 w$ History of variation of mongrel maize, not very important $30-33 \mathrm{~m} / 31 \mathrm{w}$ (a) 38-41m/39w (B) 43-44m, 45m/w Gartner 156 $1-5 m / 2 w$ (a) $7-9 m / 8 w$ (B) $26 u$ "genannten", 27-30m, 27-28u "ganzenlForm", 30 u "Saamenstaub \mid Früchte", 35-37m, 36-40m, 36u, $w b$ Grt fertility of Hybrid Passiflora than with own pollen 157 29-31w wild Hybrids $40 \mathrm{~m} / \mathrm{w}$ Authority for all 158 wt/1-10w How curious the number of natural Hybrids in Gentianella \& Verbascum \& Conicus I doubt whether some of them are not varieties \& Zygaena in insects $11-12 u$ "dass 1 verband", 13-19m, 18$21 m, 18 u$ "hat \mid Mutter", $18 u$ "Charaktere", $19 u$ "Kelchlausgenommen", $\quad 14.27 \mathrm{~m} / \mathrm{w}$ some character like one parent \& some like other 22-23u "in Iden", 31-32u "scheint 1 unfruchtbar", 36u "Fruktifikation I Vaters", 37u "es \mid Saamen" 159 13-16u "Habitus 1 spuria", 16u "Fähigkeit ISaamen" $28 u$ "Die ICharakter", $37 u / w \tau$, 39-40u/w $160 w t / 1 u$ "auszubilden"/1$4 w$ parents must live together $5-8 w$ L. marshy fields $6 u n, 11-12 u$ "bald \mid Mittel" $\mid 22 u$ "häufig|ähnlicher"/9-25w are not these varieties? they are fertile 29[... $1611-3 m$, 1ua $16214 w \tau, 17-42 w$ curious case of change,- but possibly a hybrid - (not like the Asphodelus case. of Linn Soc) for it has a seedling, 14-15u "angebliche Verwandlung", $21 u$ "blühete|zinnoberroth", $22 u$ "purpurrothen", 25-26u "blüheten IStreifen", $30 u$ "aberlals", 39u "Schneevogt|zwar", 44m 163 8-14m $1643-6 \mathrm{~m} / 4 \mathrm{w}$ (a), $9-11 \mathrm{~m}, 12-13 \mathrm{~m} / \mathrm{w}$ (d) $16-17 \mathrm{~m} / \mathrm{w}$ (e) $19-20 \mathrm{~m} / \mathrm{w}$ (f) $22-23 \mathrm{w}$ She-wolf or dog, 22-23u, 25m/w (h) 31-32Q/33-34w p $13235-38 m / 27-37 w$ are these species? $40 \mathrm{~m} \bullet, 42 \mathrm{~m} 16514-15 \mathrm{~m} / \mathrm{w}$ Bechstein!!! $17 \mathrm{~m} / \mathrm{w}$ * minute account $18 \mathrm{~m} / \mathrm{w}$ minute account! $25 m, 37 m, 45 m 1665-6 \mathrm{Q} / 6 m, 10 w 112 w 2$

BRONN，HANDBUCH
$16 w 6,19 w 916810 u \leftrightarrow / w t$ Peculiarity which comes on with age，are hereditary at same age $w t / 1-9 w$ self－acquired peculiarities scarcely ever transmitted ！！， $8 u$＂allen 1 zwischen＂， $13-16 \mathrm{~m} / \mathrm{w}$ sex determined by strength \＆age of parent $27-30 \mathrm{w}$ on sex of offspring $16914 u$＂Varietäten－Kreutzung＂$/ w$ intermediate $16 w$（B） $18-20 w$ varying when parents vary $21-25 u \pm 170 \quad w t / f i g . w \quad 8$ generations transform one race to another （so Kolreuter says in Species？）Q屯 8－9u↔， 10－11Qas， $15-19 m / 20 u a / 13-20 \mathrm{w}$ strong case of sheep taking after rams ie sex．23－33w cases of odd hereditariness not intermediate in claws \＆horns $28-30 u \leftrightarrow, 32 u$＂gehörnte Kuh＂， $32 u$＂ohne Hörner＂， 33 u＂stall 1 Hörner＂ 171 2－5u士，14－15m，27－29u＂Ein Nachkommen＂，31－32m， $32 u$＂Godine＂， $32 u$ ＂vorzugsweise！gleichen＂，44－45m，45wt，wb Probably good，as he trusts to numbers （Read） $1721-2 u \leftrightarrow, 4-10 m / 6 w$（a） $11-12 w$ Royston \＆Carrion Crows $12-13 u \leftrightarrow, 15 u$ ＂aber $\$ Fällen＂， $16 u / w \tau, 14-20 w$ Q considers them as varieties Newman must be consulted． $24 w$ B $24-26 u \leftrightarrow / 27 w$（e） $34-35 u \pm$ ， $43 m, 44 m 17312 w$ Fish $14 u$＂beruhet \mid von＂， $20 w$ female 174 8－9ua，13－14u＂viele lJunge＂， $28-30 u \pm, 33 u / w \tau, 39 u$＂auch｜legen＂， $42 u$ ＂keine Eyer＂ $17518 u / w \tau$ ， $24 u / w \tau$ ， $32 u$ ＂gleichen｜alle＂，33－35m／34u＂einlähnlicher＂， 34－35u＂ein｜ähnlicher＂， $35 u$＂zuletzt｜ zwischen＂$/ 33-39 w$ is this not effect of which bird is father or mother， $43 u$＂sind fruchtbar＂ 176 10u＂sechs 1 Mutter＂／10－12w Lumbar vertebrae $17 u$＂doch｜beiderlei＂，29－31u士 177 $14-16 m, 27-40 m / 28-45 w 3$ Hybrid wolf－dogs from one litter differed in form \＆instincts： female bore young to a hound $28 u$＂war menschenscher＂，30u＂Kopf＂，39u＂andern｜ Kreutzung＂ $1781-5 m / w$ other cases of dissimilar hybrids $5 u$＂Charakter＂， $5 u$ ＂sanfter＂， $9 u$＂nurlzeigen＂，19－40w Minute account of hybrid of Cat \＆Martin not infrequent－seen in copulation！！ $17910-32 \mathrm{~m} /$ 18－20w A，38－39u＂sich lausgemacht＂／34－40w Crosses of Canaries \＆Finches breed with one parent $\Uparrow 2 m / w$ See to this $\Uparrow 1 m / w$ About breeding of Musk \＆common Duck wb A history of hybrid of canary \＆goldfinch hybrids wb Says the Hybrids of Musk \＆ Common Duck can breed． $1815-10 \mathrm{~m} / \mathrm{w}$ Hereditariness of extra fingers 10－34w How wonderful！the cell shd have such power Often good instance of peculiarity appearing in grandchild．－ 182 1－28w Much of my sort of argument about return to parent－forms－30－ $34 m, 35-38 w$ Crow cases $42 u \wedge / 40-43 \mathrm{~m} / \mathrm{w}$ Koelreuters case 183 wt （my remark）2－5m／w
reasons in circle $23-27 m / 23 w$ remark，$w b$ cases，as sixfingered or case where only one parent has peculiarity ought to make one cautious about saying there is so strong a tendency to return to parent form．184 5－6u ＂216｜Pferden＂／8u＂nur 1 Junge＂／ $15 u / 5-14 w$ only 11 out of 216 pairs produced foals of different colours（b） $23 w$（D） $24-25 u$＂dass scheine＂｜！ 185 13－24w account of what selection \＆crossing have done like my skeleton $30-33 \mathrm{~m} / 32 \mathrm{w}$（a）， $35-41 \mathrm{~m} / 35-45 \mathrm{w}$ mutilation hard to inherit yet believes in tailless dogs from this cause！！ $47 m, 22-23 u$ ＂gehörnten｜zurückschlägt＂／wb which did not go back：no wild permanent vars go back $18612-15 m / 13 w$（b） $17-18 m / w$（a） $21-23 \mathrm{~m} / \mathrm{w}$ （e） $24 u$＂ S .190 ＂， $26-30 \mathrm{~m} / \mathrm{w}$ race of one horned wild stags $37 u$＂Gmelins＂，wb（a） some species resisted culture for $2-3$ years －but with proper culture returned to parent－ form－ $1875 m / w t / 1-5 w$ perhaps often cross now with dogs if inhabitant \＆so with horses． 10－11u＂aber I Rassen＂， 15 u＂Schomburgk＂｜16u ＂nach I Ohren＂$/ 13-15 m / 12-17 w$ wild dogs in 1st generation tame $29-33 \mathrm{~m} / \mathrm{w}$ seems to think new species are formed． $1886 u$ ＂Brehm＇s＂，30－32m，33－35m，33－34u＂nach｜ paart＂， $35 u$＊， $37-39 \mathrm{~m} / 38-39 w$ Brehm subspecies $1891-28 w / w t$ These sub－species are not exclusively geographical vars or species $5-18 m / 16 u \wedge / 18 u$＂aus \mid diese＂$/ 7-15 w$ case where Brehm splits old species into 2 $19 u$＂tinnunculus ${ }^{\text {einen＂，}} 19-30 w 4$ sub－ species（See Gould）Bronn seems to consider them varieties $30 u$＂Sie \mid Klima＂， $34 u$ ＂meisten｜Jäger＂， $35 u / w \tau$ ， $38 u$＂nach｜und＂，39－ $42 m / 39 u$ a／$/ 40-41 u$＂Bär 1 Striche＂ $1903 u$ ＂nach 1 Couche＂$/ w t$ Must see to this． $1-2 m / w$ Hares differ $3-6 m / w$ White Hare $33-37 m / 35 w$ a $39 m, 41 m, w b$ Slow geological change important because domestication shows slowness $191 w b$ I begin to suspect too slow， except in sudden immigrants x－In this case we have fewness of number，sudden change，（in organism \＆external conditions）， but on other hand not many to select from．－ especially changing island．－ $1921-33 w$ seems to think that some species may be varieties 193 11－12u＂viele｜Spezies＂／w tortoise－genus， $41 \mathrm{~m} 19523-26 m, 24-25 u \leftrightarrow$ 202 19－21m，32－35m／w double creations probable $w b$ remarks that 2 must have been created of bisexual animals－［Multiple Creations must not be treated dogmatically］ 203 14m／u＂Candolle Sohn＂，15－21m／w believes whole surface covered with new species $20426-29 m 210$ wt plants distributed along rivers $1-3 m, 32 u$＂ 71 Meilen＂$/ 30-35 m / w$

Horses swim 211 33wt, 34-35u↔/w whether same one does not know $2161-29 w$ in certain periods animals congregate \& migrate in no fixed direction or fixed time hard to explain $31-34 m / 33 u$ "O.1W.", 35$36 \mathrm{~m} / \mathrm{w}$ (a) $w b$ (a) In these cases Congregating always announces intention to migrate, though when in years, when number not great, there is no tendency to congregate 222 29-39w congregate \& migrate, when food \&c fails in own country 223 17-18m 224 16-18w Lost Turtles 26-31w Lost birds on continents $2253-4 m, 30-32 m$, $40 \mathrm{~m}, 41 \mathrm{~m} 2266-15 \mathrm{~m} / \mathrm{w}$ Eggs of mollusca may be attached * fuci \& wood 227 wt x said that maize was floated to Japan 1-2m/w x 229 wt (a) quadrupeds carried on ice may transport seeds- $3-13 \mathrm{~m}, 6-10 \mathrm{w}$ (a) White Bears. Wolves. $15-21 \mathrm{~m} / \mathrm{w}$ Bone washed to Greenland on ice so cd seeds $38 u / w \tau 230$ $11-13 m, 28-40 w$ if Storm Petrel so often blown inland, other birds might be blown to sea $w b$ The real cause of surprise in birds, insects \& light seeds, that not more distributed. 231 19-24m/23u "leichterl schliessen" $/ 22 w$ (a) wb distance to wh. pollen is carried bears on seed transportation 232 $2-20 \mathrm{~m} / 2 u$ "Lupinen" $4-10 \mathrm{w}$ cases of pollenshowers $18 u$ "vor 1 Feldarbeiter" $16-25 w$ This bears on seeds. Meteoric paper of Coniferae.- $233 z b 2343-5 w$ rain of seeds 9$11 \mathrm{~m} / 11 u$ "dielwaren", $14-18 \mathrm{~m} / 18 u$ "zuml Art" $114-20 \mathrm{w}$ corn raised in Africa fell in Spain $15 u / w \tau, 21 \mathrm{~m} / \mathrm{u}$ "Schleffen", $41 \mathrm{~m} / \mathrm{w}$ Read 42m/u "und 217 ", $43 m 23532 m 236$ 16-21w Crab \& Fish Rain 237 7-10w Fish Rain $14 u$ "zweillebend", 27u "Fischen|Fröschen", 28u "und|lebend", $29 u$ "lebend" 238 9-11m, 12$15 w$ Frog Rain 241 15-19w Fish eggs perhaps stick to Birds $20 u$ " 50 I Genera", $21 u$ "mit \mid Saamen", $26-31 \mathrm{~m} / \mathrm{w}$ amount of birds with seeds killed by others $24527-28 m, 29 m$, $37 \mathrm{~m}, ~ 41 \mathrm{~m}, ~ 42 \mathrm{~m} \leftrightarrow 246$ 14-15u↔/5-20w ?? shells in America \& Pacific $25-28 m / 26-27 u$ "ziemlich|besitzen", $37 \mathrm{~m}, 39-40 \mathrm{~m} 2478 u$ ه, $9-11 w$ wider genera $13 u \uparrow, 18-19 u \leftrightarrow, 26 u$ "385Ivon", 31u "nurlArten", 33-35m, 33u "701590", 40-41m 248 6-7m, 9-11m, 19-20u "unter|Europa", 27u "Ursus|Fischotter", 28$32 m / 29 u$ "beiden Wiesel"/29-30w two weasels $37 \mathrm{~m}, 43 \mathrm{~m} 24923 u$ "reicher ist" $\mid 24 u$ " $j e l$ seine") 23-28w Hooker says no no! N. Zealand 251 $24 \mathrm{~m} / \mathrm{u}$ "22| Reiche", 41m 252 5-6m, 7-8m, 17u "Fischen"/18u "Korallen gemein"/19u "500"/ $20 u$ " 32 " $/ 17-21 m / 15-27 w$ Red Sea \& Mediterranean Phillipines make shells more in common $36 m 253$ 11-16w climate of mountain tops differ much from Polar

Regions $25417 w$ in $48^{\circ} w b$ Snow regions of Alps only 12 phanerogam whereas Melville Isids \& Spitzbergen much richer $2555 w$ exclusively confined not peculiar $\ddagger w$ Heer on insects of Alps.- *The number of peculiar insects appear very small at the great heights - most peculiar species at bottom $25624-27 m / 25 w$ (a) $w b$ (a) Larger the continent, larger the animals - Australia \& S America contrasted with Java \& Borneo !!! 272 wt Duration of seeds $27338-42 m / w$ old seeds reviving $278 \quad 25 u$ "Spallanzani's Versuchen" $/ 25-31 w$ no fish eggs keep more than 2 months dry $\Uparrow 2 m, \Uparrow 1 m$, wb account of a disconnected pool annually dry \& annually repeopled with Fish $28416 u \leftrightarrow / 14-18 m / w$ Less propagating powers by ostriches !! wolves !! $\times 19-21 w$ because not destroyed $29 u$ "ihres hundert" $/ 28-34 w$ number of seeds from a 1000 year old trees $w b \times$ number of eggs compensate viability chance of destruction in full grown state \& youthful state \& egg state $28518-19 \mathrm{~m}$, 18 un , 19un, 29u*, 30un, 31u^, 32u^, 33un, $42 u$ "PolygamiclHuilhner", wb How evident protection of womb does in place of many eggs (yet rats) 286 11u "Feldmaus", $12 u$ " 5110 ", 15-21m, 19m, 34u "27 Jahre", 35u "40008000", $36 u$ "35.444"/wt, $37 u$ " 65.1 Besitznahme", wb One is always astonished at geometrical increases $2872 a$ "Rudel" flocks $1-2 m, 40-42 m / u$ "Lyell's Principles of Geology" 288 38-41w impregnation 42-45m, 42u , $43 u \star 2937 u \star, 8-9 w$ destruction of forests 11-18m, 22u/w 294 5-10w Forests destroyed wb To see what injury horses do \& sheep to young plants I have often wondered how anything grows up 296 11m 297 1-3m, 17u "von I Engl.", $18 u$ "land einwärts", $18 u$ " 200 ", 38u^, 39m, 39u "den 1 unmöglich", 43-45m 299 29-32m, 29u "Rennthiere", 31a "Drittel"/u "solstirbt" 300 32-36m, 33u "Feld|Maus", $35 u$ "bedeutende junge" $301 \quad 15-19 \mathrm{~m} / \mathrm{w}$ Epidermis in Caterpillars 302 6m, $42 u 303 w t$ Weasels increased $1 u$ "Wiesel", $2 u$ "Mäuse" $50525-28 m / 25 w$ (a) $w b$ (a) all these great causes given of extinction, yet none of these apply to rarity \& therefore (with exceptions) to extinction

BRONN, Heinrich Georg Morphologische Studien über die Gestaltungs-Gesetze der Naturkörper Leipzig und Heidelberg; 1858 [CUL, I]
$40910-11 w \tau$, $13-16 m$, $19 w$ no $19 u$ "bisher gänzlich entgangen"

BRONN, Heinrich Georg Untersuchungen über die Entwickelungs-Gesetze der organischen Welt Stuttgart; E. Schweizerbart; 1858 [CUL]

SB - p78 Oken Grant 1835 use my copy d'Alton, Unger 1852; p. 80 ?
$7936 m 8034-37 m$, $34 w \tau$
BROOKES, Richard The natural history of insects London; J. Newbery; 1763 [CUL, preB, S]

BROOKES, Richard The natural history of waters, earths, stones, fossils and minerals London; J. Newbery; 1763 [CUL, pre-B, S]
$\left\langle w \varkappa_{0}\right.$ not $C D$; give melting-temperatures of various metals; u mainly names of metals]
iv $34-37 w, 34 u$ v $26-28 w$, $26 u$ xxiv $27-30 w$, $27 u$ xxvi 19-26w, 19u $258 u, 9 u, 13 u$, $30 u 26$ $4 u 98$ 26-31w, 29u, 29a $10215 w 11015 w 111$ 5-10w, 8u $11431 w, 31 u, 32-38 w, 37 u 1162-$ 3u, 2-5w 117 3-9w, 3u 122 38-41w, 38u 128 $15-16 w, 15 u, 23-24 w$

BROUGHAM, Henry, Lord Dissertations on subjects of science connected with natural theology 2 vols.; London; C. Knight \& Co.; 1839 [CUL]
ad, beh, br, ch, cs, fo, h, hl, no, oo, phy, sh, $\mathrm{sl}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{y}$
vol. 1 NB1 is there anything odd in the nidification of Penguin Duck.- M. Miller says so - we want cases of this
N.B. some birds feed their young with different food from what they eat themselves - this paves the way for explaining habits of solitary wasp, * in this book considered good plan thus to take one example.-
Ask Fox to obtain information about Tumbler Pidgeons. cross them.-
NB2 1 all to 54; 70; 77; 79; 84; 91; 102; 107; 108; 116; 119; 123; 121, 122 to 134 to 138 to to 143 to $155 \rightarrow 161,167 ; 179 ; 188 ;$ 196; 203, $204 \rightarrow$ 208; 216- Journal =; 267; 244; 332
SB $\square \beta$
Q 17 Case of solitary wasp feeding young with spiders \& caterpillars. good better than Birds feeding different food
Q 28 Brougham definition of instinct [Insects life too short for much experience or gained habit]. Though habit may do something for higher animals not needed for most complex instincts
Q 30 Instinct - (47 do \& , 52) 70, 203
Q 77 Mathematical work to show how perfect the Bees cell is 79 contrast with man making a plan - p. 244.

Q 117 good instinct - chicken pecking circle inside shell cannot be an habitual action; 208 young alligator snapping/ Chicken seeing, walking, pecking at early youth reflex continued
Q 124 Intelligence
196 On Abstraction in animals Q 219 On the form of Bee Cells All Q
$711-17 m 8$ wt therefore growth an instinct!! $5-7 m 9$ wt or rather apparently voluntary analogy from ourselves would lead one to consider voluntary $2-3 m 1111-15 m 15$ 介11$1 m 17$ wt in whatever way I create my instincts \& habits, or changes in brain's structure, the instincts must have been formed step by step on account of effects of crossing 19-25m, wb excessively hard to account by habit - $244-12 m$, $5 u$ "inl number" $281-7 m / w / w t$ this hardly applies to S. American horse cantering wb Yes the gratification of an habitual action.- or even without it, but disagreeableness of prevented - One sees this in dogs - 29 16-21m/17-23w but why does she like half killing them 30 wt Spallanzani \& the Bat is good to exemplify what I mean 1-2m, $5 u$ "instant" $/ 5-7 w$ false in Bees $7-12 w$ Here is common confusion of means $3212 u$ "cylindrical cells"|? 33 15-25m 42 19-25m 43 1-12m 47 13-23m/w no retriever action does not apply to it $22-25 \mathrm{~m} /$? 48 wt Yet S American Horse cantering * would be called instinctive. ? will not my definition, of that which, according to our own consciousness, wontO be done with deliberation. 1-6m 51 14-18m/Q 52 10-18m, $21-25 m, w b$ is it not that most instincts happen to have some end in view? $70 \Uparrow 5-$ $1 m, w b$ applicable to habit $77 w t$ very wonderful - it is as wonderful in the mind as certain adaptations in the body - the eye for instance, if my theory explains one it may explain other. 2-17m 79 5-25m, wb some wax-working woman worked under a cloth, \& so made likeness by touch $8421-25 m$, $w b$ take the case of chicken being born with powers of sight, which man only acquires slowly - we can see no reason why man shd not be born so - this might be worked into good case $851-19 m, w b$ also lamb walking \& baby not - the movements of lamb in womb could never teach it to balance body - an act which must be most difficult 91 12-14m 102 10-25m 107 12-22m 108 18-25m, wb Casarita boring through mud walls - swallows building on wet places 116 1-13m 117 15-24m/21-22u "and lend"|23-
$25 m / 16-21 w$ hard to account by my theory $12112-18 m, w b$ Blackwall has seen same thing $1224-25 w$ the blindest instinct, birds building nests, is somewhat adapted to circumstances 22-24m, wb I am surprised at this being called intelligence $1238-17 \mathrm{~m} / 9-$ $10 w$ See Rengger $1243-6 m / 4-5 w$ Yes Rengger $w b$. 125 3-7m, 8-12m 134 22-25m 137 14-25m/23w/wb Blackwall - No 139 13$25 m 1401-11 m 143 \mathrm{wt} \mathrm{x}$ it is a faculty $5 u$ "examined 1 Instinct" $/ 4-7 \mathrm{~m} / \mathrm{w}$ very false $\times 19$ 21m 145 19-25m 146 1-7m 147 22-25m 155 12-14m 161 17-25m 167 11-25m 179 6-10m, $14-23 m, w b$ always compare savages 188 23-25m 189 2-5m, 13-18m/15u "which1 kindred", wb Have animals taste? dogs like looking out of window $1968-19 m / 13-14 w$ dont understand $1973-7 m, 3-25^{\prime \prime} . .{ }^{\prime \prime}$, $5 u$ "Judgment | Reasoning", $9-25 m \quad 199$ wt Rengger shows that monkeys domineer over dogs, like men over other animals 203 15$18 m 2046-11 m 20814-17 m 2161-6 m 222$ 18-21m $225 \quad 2-4 m 229 \quad 20-25 m 231$ 13-15m 233 14-22m 235 17u "trihedral" 241 11-15m $2447-19 m / 11-12 u \pm / 11 w w_{0} / 12-13 w a c$ astonishing on my Th. that infinite attempts should have reached that perfection which mathematics requires - this instinct has same relation to geometry, which the eye has to optics $2458-11 \mathrm{~m} / 8-9 u$ "not \mid rhombus" 264 18-20m 265 1-2m/1u "but |three" 267 1118 m 270 10-16m 278 9-14m 279 10-15m 332 $9-13 \mathrm{~m} / \mathrm{w}$ the instincts of young Cuckoo are like those of larva $w b$ The instincts of the young of anims are probably remnants of instincts of ancient larva-state
\wp
vol. 2 NF S
NB 52; 56; 65; 66; 84; 108; 183
SB $\square \beta$
84 Rattle of Rattle-snake; if given to paralize prey by fear useful; not given to warn animals - go on to say Trigonocephalus to show case.- Ch. 9 108 Vis Medicatrix

52 11-18m 56 wt Man's mammae !! abortive wings, under * united wing-cases !! 1-8m, 13-26m 65 13-23m, wb Preservation of life! 66 1-15m $845-10 \mathrm{~m} / \mathrm{w}$ curious instance of injurious structure $1081-25 \mathrm{~m} 109$ 1-13m 183 $w b / \uparrow w$ How many times have shells been changed in Europe since Eocene? Mammals probably greater number. \& how many at present \& how many during Eocene - We might calculate how many have lived in Europe alone yet only 160 have been found fossil

BROUN, Thomas Manual of the New Zealand Coleoptera Wellington; James Hughes; 1880 [Down]

BROWN, Robert The miscellaneous botanical works 2 vols and vol. of plates; London; The Ray Society; 1866-1868 [Down]
vol. 1 §
vol. $2 \wp$
273 3-5m 278 16-21m, 33-37m, 37"... 279 wt -, $1-3 \mathrm{~m} / 1 \mathrm{u}$ "some confidence", $6-8 \mathrm{~m}, 12-14 \mathrm{~m}$ 281 2-4m
\wp
BROWNE, James Crichton The West Riding lunatic asylum medical reports London; J. \& A. Churchill; 1871-1875 [CUL]
beh, ds, phy, sx
vol. 1 NB 95 Blushing; 8 Death of males important for Descent
85-12m, 13-15m
\wp
95 27-28u "nitrite of amyl", 29-33m, 33u "bright|face", $34-36 \mathrm{~m}, 38-39 \mathrm{~m}, 45 \mathrm{~m} 965-7 \mathrm{~m} /$ $5 u$ "eyes lexcited" $9732-39 m, 40-44 m$ \wp
vol. 2 NB for Cicuta p5 or Conium Maculatum $\langle u \otimes\rangle$
$27 *$ Conia acts on the Motor centres of the Brain but I tried HyosycamusO
81 Poisons in animals \& vegetables
297 Singing preserved when voice lost - Drosera
v $13 m, 15 m, 22 m, 27 m$ vi $3 m 271-2 m / u$ "firstly|periphery" 81 20-23m/22-24w Frank has shown $39 m 8214-18 m, 17-20 m$ (G. Harley) 83 6-13m, 29-34m 8420 m 297 16$17 m / 10-21 w \mathrm{Dr} \mathrm{J}$ Crichton Browne 31-33m/ $32 u$ "to sing"
vol. 5 NB O/
vii $4 m, 8 m, 10 m, 17 m, 19 m, 27 m, 31 m$
BRUGUIÈRES, Jean Guillaume Encyclopédie Méthodique - histoire naturelle des vers 1 vol in 2 parts; Paris; Panckoucke; 1789-1792 [CUL, pre-B]
v
vol. 1 part 1 title page "sixième" corrected to premier 163b $13 u / w_{\text {a }}$ 164a $15 u \wedge, 49-55 w$ B. not tulipe? 164b 27u^ 165a 32u^ 166a 29$33 m, 29 u$ a $/ 39-41 w$ var. B. balanoides 166 b $35 u / w$ var. tintarly $56 u \uparrow$ 167a $13-15 w$ var. lentenabulus 167 b 21u 168a $1-2 m, 12 u$ a 168b 1-2?, 31-32m 169b 19un 170a $6-8 \mathrm{~m} /$

BRUGUIÈRES
$8 u \uparrow / 6-9 w$ Probably a ChthanalusO 23-24m 170b 35-38w Conia? Tetradila serrata? 171a 18u^172a 38u^305 $2 m$

BRUNTON, Thomas Lauder The Bible and science London; Macmillan \& Co.; 1881 [Down, I] \wp

BRUNTON, Thomas Lauder On digitalis, with some observations on the urine London; John Churchill \& Sons; 1868 [Down, I] \wp

BRUNTON, Thomas Lauder Pharmacology \mathcal{E} therapeutics London; Macmillan \& Co.; 1880 [Down, I]

BUCH, Leopold von Description physique des Îles Canaries, suivie d'une indication des principaux volcans $d u$ globe Paris; F.G. Levrault; 1836; trans. C. Boulanger [CUL] geo, ve

NF Etna albite lava also produce pumice. p. 328
NB - See Burney - for Shortland world Solomon Isld -
155 25-28m 156 14-17m 159 17-18m, 21$31 \mathrm{~m} 1629-22 \mathrm{~m}, 11-17 \mathrm{~m}$, $31-35 \mathrm{~m} 1631-4 m$, $6-13 m, 29-35 m, 29-31 m 16827-33 m \mathrm{~m}_{0} 1703-$ $6 m * 23-27 \mathrm{~m} 17124-31 \mathrm{~m}$ 173 7-18m, 3135m 178 4-13ma 181 12-18m 182 31$33 m{ }^{183} 32-35 m / 32 u$ "écailles striées" 1841 $18 m 1851-5 m 19015-20 m, 30-35 m 191$ 12$17 \mathrm{~m}, 18-22 \mathrm{~m} / \mathrm{w}$ (A) $19213-22 m \mathrm{~m}_{\mathrm{a}} 193$ 28$35 m \varlimsup_{0} 196$ 22-35m* 197 9-15m/11u* 200 6-16m $2013 a$ "l'autre" (of W) 1-9m, 1-13ma, 20-22m, 20-23m 202 15-19m*, 30-33m 206 20-25m/! 207 15-16z 212 19-23m 215 14$17 \mathrm{~m} 21628-35 m \mathrm{~m}_{0} 27725-28 \mathrm{~m} 283$ 15-19m, 26-29m 293 24-35m, 30-35m* 294 1-10m 295 $12-28 m, 28-35 m 3005-21 m 3238-17 m 3241-$ $4 m 327$ 1-2m, 21-22m, 31-33m $3281 m 3291-$ $3 m, 14-16 m 33327-30 m, 31-32 m 33422-25 m$, 34-35m 335 1-3m, 7-8m 336 9-11m 339 29$35 m$ (E. de Beaumont) 340 1-2m 342 13-18m 343 33-35m 346 1-3m 349 31-34m 350 1-3m, 5-6z, 11-14m, 15-16m 351 7-10m 354 24-27m 355 3-6m 356 20-23m, 22-25m 358 35"...屯 359 9..." 373 16m $3747-11 m 386$ 11a "Island" Same as Amargura Krusenstern 392 31$34 m \varkappa_{0} 3931-10 m$ * 398 6-10m 400 10-15m 403 10c "Ouest"/10w east $40430-34 m$, 31$35 m 4052 m / 3-7 m / 2 w$ Mathews Rock 406 15$17 m, 24-30 m 407$ 10-14m, $17 w$ Lava 32-34m 409 5-8m 411 29-35m 412 1-3m, 13-15m, 21$27 m, 29-32 m 413$ 20-25m 415 11-14m, 27$31 m 4165-7 m 418$ 17-20m $4191-3 m, 30-32 m$,

34-35m 422 1-3m, 1-2m, 17-23m, 33-35m 423 32-35m/Q/33-35m 424 1-2m, 27-29m 425 15$18 m, 19-21 m, 34-35 m 4261-2 m, 33-35 m 427$ $1-3 m 428$ 9-14m, 9-14m 429 18-22m 430 2327 m 435 9-11m 442 6-11m 443 2-8m 446 17$21 m 45026-31 m 4518-13 m, 13-17 m 452$ 13$20 m$, 22-25m 455 1-12m 456 17-24m 457 1$6 m 4581-7 m 4606-13 m, 24-29 m 4661-25 m$ 467 1-26m, 29-31w Valparaiso Earthquake $30 m, 33-35 m 46926-33 m 47025-34 m 471$ 1$4 m, 7-11 m, 12-35 m, 17-20 m, 23-25 m, 34-$ $35 m$, wb XX $4725 m, 10 \mathrm{~m} / 8-25 \mathrm{~m} 4755-10 \mathrm{~m}$ 477 8-13m 480 1-8m, 22-27m 482 4-9m, 4-8m 483 23-31m 485 24-32m 486 16-20m 487 16$19 m, 28-29 m 48813-16 m, 19-20 m$ (Humboldt) $4903-8 m 49129-31 m 4942-12 m 5019-13 m$, 10-14m 505 33-35m 506 1-2m, 19-20m 508 $29-32 m, \quad 29-33 m \quad 514 \quad 18-20 m \quad 519 \quad w b$ Does not some one describe Volcanos in S. Shetland besides great crater; New Isid Discovered 1839 by Enderby's Ship; St Pauls or Amsterdam seems quite omitted.; Proby Isld - Isd North of Bonin Ramilla on coast of Ascension - Matthews Rock

BUCH, Leopold von Travels through Norway and Lapland during the years 1806, 1807 and 1808 London; Henry Colburn; 1813; trans. J. Black [CUL, on B, S Charles Darwin M. Video Nov. 1832]
xvi 19-20m, $24-25 m, 28-29 m$ xvii $16-17 m$, $30-32 m 948-20 m 2367-10 m 3068-16 m$, 16u "fruit 1 maturity", 16-17m, 27-28m, 27u "not 1 well" $3075-9 m, 7 u$ "presented |fruit", $8 u$ "barren"

BÜCHNER, Ludwig Aus Natur und Wissenschaft Leipzig; Theodor Thomas; 1862 [CUL]

BÜCHNER, Ludwig Conférences sur la théorie darwinienne de la transmutation des espèces Paris; C. Reinwald; 1869; trans. A. Jacquot [CUL]
ad, beh, fg, h, ig, phy, t
NB 79 good sketch of Häckel's views on first organisms \& spont. Generation
114 Helmholtz Eye not perfect

- Man 123 Schaafhausen - Gorilla 1/2 way between erect \& quadruped.-
- How difficult to young child to stand upright
- 124 do - on milk teeth of man
- 132 self-reflection or consciousness
-135; 137; 144
- all Q
title page $z 793-29 m 114 \quad 27-32 m 123 \quad 30-$ $33 m 1244-11 m 129$ wt Büchner L. wt 39? 132 6-11m 135 8-18m 137 30-32m, wb higher apes \& lower races of man $\rightarrow 138$ 2-8m 141 6-9m 144 30-32m

BÜCHNER, Ludwig Die Darwinsche Theorie von der Entstehung und Umwandlung der LebeWelt Leipzig; Theodor Thomas; 1876 [CUL, I] \wp

BÜCHNER, Ludwig Liebe und Liebes-Leben in der Thierwelt Berlin; Hofmann \& Comp.; 1879 [Down, I]

BÜCHNER, Ludwig Die Macht der Vererbung Leipzig; Ernst Günther; 1882 [CUL, I] \wp

BÜCHNER, Ludwig Man in the past, present \mathcal{E} future London; Asher \& Co.; 1872; trans. W.S. Dallas [CUL]
h
NB Nothing need be quoted - Nov 1873; All on Man; 120 very good' resume; 142; 156; 266
$11934-37 \mathrm{~m} / 37 \mathrm{w}$ quote $1201-4 m 142$ 13-25m 156 12-17m, 25-30m 266 3u "Dr. Lisch", 13$15 m, 17-25 m$

BÜCHNER, Ludwig Mind in animals trans. of 3rd edn by Annie Besant; London; Freethought Publishing Co.; 1880 [Down] beh

NB 159 on instincts of ants
$159 \Uparrow 2 a$ "are" ie pratensis $36-42 \mathrm{~m} / \rightarrow, 20-41 \mathrm{w}$ \& yet pratenses taken as pupa $16010-13 m$, 41-42m

BÜCHNER, Ludwig Sechs Vorlesungen über die Darwin'sche Theorie der Verwandlung der Arten Leipzig; Theodor Thomas; 1868 [CUL] beh, ds, ex, h, ig, 00, t, y
NB
179; 180; 190; 195; 198; 202 good when described; 210; Schaafhausen Book \& Rutimeyer Paper
SB $\rightarrow \Leftrightarrow$
p. 179 Man first dentition like Apes.- conclude * feed on Plants 180
\Leftrightarrow All used Man
p 90 on Self-consciousness of Savages
195 on the exactly intermediate manner in which apes walk on Hands - good It might have been asked how cd there have been transition between hand \& foot?

198 interval will get greater between man \& higher apes, from extinction of latter
p202. Rutimeyer apes interval between Catarhine \& Platyrhines.-
210 The milder disposition of young apes, perhaps only like mildness of young Carnivora - Bücker

179 12-15m, 12-14w ask Huxley $14 u$ "auffallende", 15-18u "indem l hat", 17-20m, 23-26m 180 14-21m 190 11u/w , 15m, 15$25 \mathrm{~m} / \mathrm{w}$ asks whether savages reflect on relations of things 195 wt Gorilla intermediate in upright position - if not existed wd not be kn 1-5m $198 \quad w t / 3-12 m / 1-14 w$ interval between Man \& higher apes will get greater, from death of lower races \& higher apes. 201 9-10m 202 22-26m $2035-7 m 205$ 25-26m 210 $w b$ The milder disposition of all young apes only like young tigers or lions - perhaps does not indicate descent from a mild form.\wp

BÜCHNER, Ludwig Sechs Vorlesungen über die Darwin'sche Theorie der Verwandlung der Arten 2nd edn; Leipzig; Theodor Thomas; 1872 [CUL]

title page $18 u$ a
 \wp

BÜCHNER, Ludwig Die Stellung des Menschen in der Natur; 2. Lief "Wer sind wir?"; 3. Lief "Wohin gehen wir?" Leipzig; 1870 [CUL]

NB Reichenbach \langle rest 0\rangle
170 - (Lamarck before him)
O/
2. Lief \wp

BUCKE, Richard Maurice Man's moral nature London; Trübner; 1879 [Down, I]

BUCKLEY, Arabella B. A short history of natural science London; John Murray; 1876 [Down]

BUCKTON, George Bowdler Monograph of the British aphides 4 vols.; London; The Ray Society; 1876-1883 [Down]
00, $\mathbf{s x}$
vol. 1 NB p.71; p91 Dimorphism.
p. 71 Some Plants not often attacked by aphides - even very poisonous ones
71 10-13m, 17-23m, 23-26m, 33-39m 914 $17 \mathrm{~m}, 36-37 \mathrm{~m}$
\langle vol. 2, \wp; vol. 4 published after CD's death〉

BULLER, Walter Lawry A history of the birds of New Zealand London; John Van Voorst; 1873 [CUL]
ad, beh, br, ds, gd, mg, 00, phy, sx, t, y
NB1 p29 Protective Colour of Birds
p56 - affection between paired Birds S S. Q p66 - Huia Quin Beaks different in 2 sexes \& aid each other SS
NB2 p74, 76, 78 migratory Birds to N. Zealand
81,84 spreading of a species
93 - Rats destroying Birds
Nothing for Descent
NB3 167 Birds with good wings, but incapable of flight
219 male colours on one side fainter \& the Bird feeds laterally SS
224 Courting of Pied Oyster Catcher, not important
278 - Gulls catching Moths
SA $\langle p p$. 2-3 $\rangle \square \beta$
р. 1; 15; 19; 111; 117; 121; 137; 163; 165

SA $\langle p .372 ;-\infty\rangle$ p. 29 Stringops large wings
but no muscles for flight - colouring assimilative must be protective from Birds of Prey, whilst resting during the day
Part II
p.74, 75, 78 Cuckoo summer immigrant believed to be partly parasitic in incubating but not feeding its young
p.81. Birds, Zosterops which has spread from S. Isid. rapidly
84 Changed Instincts, also, has become permanent resident
94 Believes rats by destroying much chief cause of decrease of
95 Anthornis or Bell-bird - decorates nest with Brilliant feathers.
Part III \& IV
167 Weka good-sized wings, but incapable of flight.
$291-4 m, 6-7 m, 8-10 m, 16-19 m, 17-25 w$ why as no beasts of prey Rats? There are Birds of Prey 33 9-10m 55 15-23m, 37-42m 56 14-19m, 20-23m, 25-26m 66 19-29m 74 29u "another|visitant", 31-34m 76 11-16m 78 19$22 m 811-6 m, 6 u$ "indigenous", $7-11 m 846-$ $15 m, 20-25 m$ 93 13-17m, 24-26m, 31-34m, $41-43 m 947-9 m 9522-26 m 167$ 6-10m 219 33-41m 224 11-20m 242 14-17m 278 6-16m

BURBIDGE, Frederick William Cultivated plants, their propagation and improvement Edinburgh \& London; William Blackwood \& Sons; 1877 [CUL]
fg, hy, phy, v, y

NB p. 34 size of seeds effects on growth of offspring
58 grafting, rules of 4 species which will graft
95, 96 - on Variability
$132 \sim$ - Hybrids dying young
$155 \propto$ - on Hybrids taking after either parent
33 26-33m, $28 u$ "Dr Gustav Marck" 34 1-48m $353-9 m, 5 u$ "Professor Lehmann of Munich"
58 9-18m, 14w Recipient 19-30m, 32-38m 95 4-17m, 18-27m, 28-39m, 42-43m 96 14-45m 132 18-34m 155 2-14m, 5-16m, $10 u$ "comes most", 26-31m, 38-43m 156 13-18m, 26-33m 157 36-43m $15929 m$
\wp
BURCHELL, William John Travels in the interior of Southern Africa 2 vols.; London; Longman, Hurst, Rees, Orme and Brown; 1822 [Down, pre-B, S]
fg, tm
vol. 1 NB p529, 536 wonderfully hooked seed; with woodcut; 529 grapple plant
27 8-9m 101 27-29m 124 23-24m $1584 m, 12-$ $14 m 2591-3 m 40916-17 m, 27-28 m, 34-35 m$ 427 13-14m, 24-27m 428 22-24m 429 10-11m 529 fig.m 536 10-14m
vol. 2, $591-6 m, 10-12 m 6926-27 m 7132-$ $33 m 7211 m, 16 m 7313-14 m 7428-31 m 78$ 12-13m 172 21-24m 173 zt 207 7-13m 450 22-27m

BURGESS, Thomas Henry The physiology or mechanism of blushing London; John Churchill; 1839 [CUL]
beh, cc, cr, h, he, phy, sx, t, ud, y
NB1 p. 1 Youth more liable - care more for opinion of others
Sighhing - Grief
NB2 - p10 Expression
B says Blushing Hereditary in one family (both parents being never subject) except when one child diseased with cyanosis heart -
SB1 p. 1 Youth blushes
10 Description of fear
23 Female blush most
24 Designed by Creator, as check The

- In Ezra \& Nehemiah - Bible
-31 scar in negro blushing
- 33 Mulattos
-34 Otaheitians
38 Albinos blushing - (Iris)
43 Circassian do-disuse Tha
48 Morbid sensibility $\mathrm{Th} \rightarrow$ \$

50 Power of accusers
－ 54 Causes
－56 Infant do not blush，but redden with
passion（evident do not blush）（old age no <0 ）
－61 Hereditary
－ 62 Blushing no proof of guilt x
68 Rage，expression of－Rage
－114， 122 Why face blushes more－
－ 125 Exposure to air
－ 128 whole body glows
－ 133 Sensation on face before blush
－ 134 Concomitants of Blushing \＆Sham 〈ie Shame）
Over
〈over〉
－ 137
－p156－only a moral stimulus excite blush （not a passion）not shrugging shoulders（no shyness）commonest of all causes or self consciousness－
－ 177 Decline of blush
N．B．Personal remark makes a person blush more than anything self consc
－This is differently on my view that vanity does not cause blush－it is on depressing self－consciousness which alone causes it－ No a pretty girl who thinks a man is admires her will blush－One is more sensitive to the ill－feeling than good opinion of others．－
x 180 says depressing cannot be called either exciting or depressing
－ 182 Herditary blushing 10 children
\Leftrightarrow tear－ducts in youngest
＊ 187 upbraiding shy people makes them worse
« 188 Edgeworth quoted（good）
All about Blushing except p68 Rage
Burgess
SB2 Burgess on Blushing p 10
Fear
in regard to voice in Aeneid
＂Obstupui，steteruntque comae，et vox fau－ cibus haesit＂
〈over〉
Will the albinism observed by Dr B
Dr B＂the strength alters the－＂
\otimes_{0} Dr B observed with \＆two albinos that th
＂caused them to blush deeply．－
1 9－10u＂sensitivelconscious＂ 10 10－20m＊ 11 $8-11 m 231-3 m, 1 u$＂children and females＂ 24 $3-5 m / w$ see to this $8-11 m, 9-13^{\prime \prime} . . .1 / 12-13 w$ ） $257 u$＂Ezra＂，8－11m／w Ch IX．6， $20 u$＂blush＂／ w Jer Ch VI v． $1526 u$＂alwrought＂ 31 21－ $24 m, 21^{\prime \prime} . . . "$＂${ }^{2}, 22 a / c / w / 23 a / c / 23-25$＂．．．＂$\notin, 28-$ $29 \mathrm{~m} / \rightarrow 3224-27 \mathrm{~m} 335-8 m, 13-16 \mathrm{~m} 34$ 19－ $21 m 3823-26 m 3913-16 m, 15 m, 20-25 m$ ， $29 \rightarrow 404-8 m, 4 u$＂ears＂， $9-12 m, 20-22 m, 29 m$

43 6－9m，13－16m 48 14－17m 49 3－7m，12－15m 50 16－19m，17u＂presencelaccusers＂ 54 wb nearly all cases，his real \＆false blush， connected with what people will think of one －Remorse does not cause blush．－ $568 u$ ＂hereditary＂，13－15m，15－16u＂of old age＂ 57 $9 u$＂idiot＂，13－14u＂but｜blush＂ 61 1－5m，15－ $18 m 626-11 m / 1-11 w / w t$ no test of guilt because the thought that the other was thinking of you suffices to cause it $6811-12 u$ ＂flushed｜fire＂，17－18e＂My｜rage＂，19－21m／u ＂heart｜rage＂，wb glittering 69 11－13m 114 9－ $13 m, 19-24 m, 20-23 w$ effects of use or Habit 122 1－10w but neck \＆ears colour $5-13 m$ 125 20－29m 128 7－11m，10u＂epigastric＂ 133 18－20m 134 1－20w mental agitation which affects heart and respiration 6－8w \＆ Gratiolet good $10-11 \mathrm{~m} / \mathrm{w} \bullet$ p． 349 \＆ 366 22－ $28 w$（awkward gestures）stammer peace of mind lost 156 wt He may shrug his shoulders voluntary－he may pretend to laugh 6－7w affecting＂to his mind＂9－12w no shyness 177 13－20m 180 21－25m 182 1－11m 187 19－23m， $22-24 m / \rightarrow 1881-4 m / 2 u$＂countenances＂， $5-7 m$ $18921-26 \mathrm{~m} / 24 u$＂frequently wept＂

BURKE，Edmund A philosophical inquiry into the origin of our ideas of the sublime and beautiful，with an introductory discourse concerning taste，and several other additions London；Thomas M＇Lean； 1823 ［CUL．1900，I by G．V．Jackson］
beh，sx，t

NF

The morality \＆Metaphysics of Ambition \} ? I am going to Italy next Summer Sublimity
NB1 Simple Ambition instinct of excellence over other men satisfied（1）
Pride．ditto．with comparison to other men so as to undervalue them．（2）
Fame．desire that（1）should be generally known．\＆acknowledged（3）
Vanity，［do］（3）with undervaluation of others， or overvaluation of yourself（4）
Arrogance a determination to show pride without real pride having been attained
Conceit－pride without foundation and on trifling subjects？
＊But the ideas raised by these words refer to peculiar kinds of character
NB2 He can see reason why instincts （sexual）of animals stronger than in man－ because not having any notions of beauty to keep them in right line
these involve feeling triumph Theoo feelingoo of \rightarrow Sublimity akin to feeling of pure（1）

BURKE
gratified ambition－connected preeminently with consciousness of being a sentient being arising from many ideas．－each preeminent of its class．－［feeling of triumph at being a sentient being］brought on by the thinking faculty by being very active \＆exhilarating （hence aided by bodily conditions）with power to look inwards $=$ Euclid too absorbing $=$ yet conclusions from mathematics sublime－Gravitation sublime－ thinking on subject If pleasure from a source not well understood，sooner look to yourself \＆hence sublime－
iv $6 m, 8 m$ vi $8 m 559-17 m 5613-21 m$（Scipio， Cato） 57 21－25m 58 16－20m 66 zt 103 11－25z $114 \quad 14-15 z \quad 115 \quad 2-25 z \quad 162 \quad 13 ? / u \quad$＂objects small＂163 5－10m 191 13－14m（Tommaso Campanella）

BURMEISTER，Hermann Beiträge zur Nat－ urgeschichte der Rankenfüsser Berlin；G． Rainer； 1834 ［CUL］
em，fg，phy
14 15－17m／w eggs not contemO impregnated 15 3－5m 16 28－29m 17 20u＂Organe＂ 18 3－ $5 \mathrm{~m} / \mathrm{w}$ eye becomes double $194-6 \mathrm{~m}, 20-23 \mathrm{~m}$ $2020-24 m / w$ feelers \＆eyes thrown off 21 $10-11 m, 23-27 m 223-6$ ！！ $2317-19 m / w$ no trace of seam in shell $2423-27 \mathrm{~m} / \mathrm{w}$ calc． plates $251-4 m / w$ epidermis on all young shells $26-30 \mathrm{~m} / \mathrm{w}$ Ovaria within young shell 27 $5-6 m 2811-17 m / w$ eggs in different state in different parts $29 \quad 1-2 m \quad 30 \quad 13-15 m / 14 u$ ＂Gräten＂$/ w$ fish－bones $16-29 \mathrm{~m} / \mathrm{w}$ Burmeisters description best of mouth．－ 31 14－18m／w cissi all alike $3511-16!!371-3 m, 15 u / w \tau$ ， $16 u / w \diamond \tau, 22-26 m 384-6 m, 19-20 m 4011-$ $14 \mathrm{~m} / \mathrm{w}$ case of moth $22-29 \mathrm{~m} / \mathrm{w}$ pretty good $411-3 m, 14-16 m / w$ so cissus ant．are longest $19-20 w$ rest of cissi similar 45 21－ $23 m 4913-16 m 5013-16 \mathrm{~m} / \mathrm{w}$ compare with Cyprus 26－28m $5126 m, 26 u$＂Stomatopoden＂， $27 u$＂lässt｜der＂， $28 m 28 m 535-6 m, 12-13 m$ pl．facing 60 wt \notin

BURMEISTER，Hermann Histoire de la création Paris；F．Sary；1870；trans．E．Maupas ［CUL］
\wp
656 30－33m 667 31－36m
BURMEISTER，Hermann The organization of trilobites London；The Ray Society；1846； trans．Bell \＆Forbes［CUL］
$\mathrm{co}, \mathrm{ig}, \mathrm{sp}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}$

NB p37 \＆ 38 Species Theory
SB $\square \beta$
p．37．The earlier geological types present peculiarities of various existing groups passing into one another Good Remark to quote
1 zb 33 3－4m，3－4w 337 16－18m，37－42m 38 1－6m，12－17m，12－17w Mollusca！Corals support this
\wp
BUSCH，Otto Arthur Schopenhauer München； Fr．Basserman； 1878 ［Down，I］\wp

BUSCH，Otto Arthur Schopenhauer：Beitrag zu einer Dogmatik der Religionslosen Heidelberg； Fr．Bassermann； 1877 ［Down］\wp

BUSCH，Otto Arthur Naturgeschichte der Kunst Heidelberg；Fr．Bassermann； 1877 ［Down，I］\wp

BUTLER，Samuel A．Evolution old and new London；Hardwick \＆Bogue； 1879 ［Botany School，FD］
〈markings presumed to be by FD〉
BUTLER，Samuel A．A sketch of modern and ancient geography for the use of schools 4th edn；London；Longman，Hurst，Rees，Orme \＆Brown； 1818 ［CUL，pre－B，S］
title pages 〈much illegible scrawl）v $2 w 4004$ vi $2 m, 7 m$ vii $37 \mathrm{~m}, 39 \mathrm{~m}, 41 \mathrm{~m}$ viii 4 m ix 11 m ， $21 m, 25 m \times 4 m, 28 m, 33 m, 40 m \times x$（dates）， $5 m, 45 m$ xii $7 m$ xiii $13 m, 17 m$ xiv $9 m, 27 m$ ， $42 m$ xv $17 \mathrm{~m}, 22 \mathrm{~m}, 25 \mathrm{~m}, 32 \mathrm{~m}, 38 \mathrm{~m}$ xvi 5 m 10 wbec 11 wt $-1211 m 1323 m 1516 m 1712 m$ ， $17 \mathrm{~m} 208-14 \mathrm{~m}, 17-20 \mathrm{~m} 31$ wtec $3210 \mathrm{~m} 33 \mathrm{7m}$ $3418 m 3510 m, z b 363 m 3732 m 3914 m 40$ $1 m 4122 \mathrm{~m} 43 \mathrm{3m} 517 \mathrm{~m} 63 \mathrm{zt}, 2-15 \mathrm{~m} 64 \mathrm{zb}$ $6724 m 8414 m 8518 m 8912 m 9320 m 97$ 11m 99 16u＂Ennius＂／w 169BC 100 6w 281 104 wt 〈note about events of 264BC） 122 zt 146 $27 m 1482 u$＂Thucydides＂，2－9w son of Plorus an Athenian died 391 before Christ $1493 m$ $1516 m 15314 m 15411-20 z, 23-25 w 449$ died BC $1555 m, 17 m 15816 m 1597 m 1605 m 161$ $2 m 16211 m 16317 m 16416 m 16611 m 168$ $2 m, 23 m 16921 m 185 w t$（dates）， $11 u$＂Apelles and Hippocrates＂ 186 7－10w（dates）， $9 u$＂Zeno＂ $191 w t / 8 w$（dates）， $7 u$＂Diogenes＂， $8 u$ ＂Mithridates＂，18m， $23 u$＂Punic war＂／wes 218bc 192 30u＂Mithridates and Strabo＂， $32 u$ ＂Pompey＂，30w／31w／wb（dates） $19317 u$ ＂Lucullus＂， $18 u$＂Mithridatic＂，9－16w／17－19w／ $w t / w b$（dates and events BC） $19423 u$ ＂Anaximenes＂ $\mid w, 26 u$＂Themistocles＂ $\mid w$（dates）
$19521 m 196$ 10u＂Strabo＂／w（dates） $1991 m$ 20217 m 20910 m 21026 m 237 wt － $240 \mathrm{2z}$ $241 z t 243 z t 249 w t / 5-8 w$ Mani Manc Mane Manc 251 wt 251253 7w Aegyptus 254 wt Dr Darwin 255 wt Darwin 258 17m

BÜTSCHLI，Otto Studien über die ersten Entwicklungsvorgänge der Eizelle die Zell－ theilung und die Conjugation der Infusorien Frankfurt am Main；Christian Winter； 1876 ［CUL，I］
fg，phy，sx
title page 11u＂Bütschli＂，16u＂1876＂ 207 28－ $32 m 2085-12 m / w$ for a renewal of youth \＆a reformation of parts $20918-22 \mathrm{~m} / 18-19 u \leftrightarrow$ ， $27 m 210$ 10－13m／10－11u↔，19u＂Vereinigung｜ Actinophrys＂，22u＂scheinlich｜Encystirung＂， $31 m / 30-33 w$ Give Butschli first \＆Enger \＆ then Carter 211 19m，22－28m／22－23u＂dass I ist＂$/ 27 u$＂Verjüngungsepoche＂$/ 26-30 w$ this is just what he has said about Infusoria $w b$ According to this view Conjugation is a renewal of youth \＆size which gradually decreases \＆propagation thus division．－ Process seems analogous 212 2－11m／w same process without conjugation or with 2 spores formed 214 17－22m／22u＂denlde Bary＂／w the first man 17－22m／w He fully admits that conjugation is the first step to sexual copulation $2153 u$＂Dagegen＂$/ 5 u$ ＂wirkliche Befruchtung＂ $33-7 m / w$ not so＊with Proteus infusoria \＆c \＆c $10-17 \mathrm{~m} / \mathrm{w}$ seems here all for connection of conjugation \＆ sexual reproduction $22-24 m / u$＂dass 1 erkennen＂$/ w$ Conclusiv $32 u$＂1838＂$/ m$（J． Müller） 216 3－6m／w seems to say that conjugation of infusoria is the same with s ． generation $8-9 u \leftrightarrow 219$ 9－26［．．．］，25－26u ＂erhalten｜Fortpflanzung＂ 252 wb p． 207 to 219

CABOT，Louis The immature state of the Odonata 2 parts；Cambridge，Mass．，Uni－ versity Press；1872－1881［Down］

Part 1 NB O／

CAMERANO，Lorenzo La Scelta sessuale e i caratteri sessuali secondari nei coleotteri Torino； Ermanno Loescher； 1880 ［Down，I］\wp

CANDOLLE，Alphonse de Géographie botan－ ique raisonnée 2 vols；Paris；J．Kessmann； 1855 ［CUL］
ad，af，beh，cc，che，ci，co，cr，cs，ds，dv，ex， f, fg ，fo，gd，geo，gr，h，he，hl，hy，ig，in，is， $\mathrm{mg}, \mathrm{mhp}, \mathrm{mn}, 00$ ，phy，se，sl，sp， $\mathrm{t}, \mathrm{ts}, \mathrm{v}, \mathrm{ve}$ ， wd
vol． 1 NB1 p478 His＊Geogrph Regions As there are only 3－5 Ascension Plants，\＆ I think DeC speaks of several inhabitants，it is one of strongest case of many introduced plants．
NB2 Philology pxxii；p．xiii；p．xiv to end of Introduction
p535．Decandolle Memoir vol X on compositae
SB Mem．Carrier Pigeons caught at Dover－ See McGillvry number of seeds in crop．
That Transport does little for continents，but much for isld．is what I shd have expected．－ In Compositae \＆all others．－Proportion of seeds with plumes \＆small seeds ought to be great in islds；even if not same species．
It may be possible to take two great groups for comparison of range．it cd be useless，I think to compare orders of Vertebrata
SA 〈pp．528－529， 5 sheets〉
SA1
5．Sous－regions 〈ecu showing〉 34 species to Fam．
3 Sous regions 〈ccus showing〉 28 species to Fam
〈over〉
4．Sous－regions 〈a showing〉 40 species to Fam．
This again is hostile，contrary to largest Families do not extend furthest
SA2－5 \square R
SA2
－Vol Ip 516 Decandolle
〈numbers of species in certain families totalled＞
Water Plants seem to make large proportion of Monocot．－wide ranges
Taking the 23 Fams．of Dicot．\＆ 4 Fams Monoc together，with more than 500 species；we have 27 Families，with species inhabiting more than 2．regions

CANDOLLE，VOL．I：NOTES
＜calculation that〉 4.5 is the standard of all
Families whatever
$\langle o v e r\rangle \Leftrightarrow$
SA3 p． 512 of Decandolle；〈list of numbers of species，and totals；names $\Leftrightarrow\rangle$
〈over〉
$\Leftrightarrow 1$ think if Families are used，whole world or Continents shd be used as field of Compositae．But I cannot say why I think so \＆May 1． 56 I have taken the Families （p．512．Decandolle）on other side 〈above〉 from Drege（Flora B．2．1843）．There are 21 （one omitted）Families，which have their species ranging over a＊larger number of the 20 divisions，into which the Cape District is divided．there the average（viz 1.6 re－ gions）＊range of all the Dicots．\＆Ferns together？－These 21 Families have each on average 126.2 species，but if the Compositae from having more than double number of species be subtracted；then the average is only 77．1．－There are other 37 Families which range＊less than the general average mean of 1.6 \＆these have 87.9 species to Family．So that nothing can be inferred safely from these results，＊ Families being too large．－［lf we give a reasonable number to the Compositae，viz 500 species，then the average of the wide－ ranging Families is 96．7］
SA4 〈 x_{0} and \Leftrightarrow ）
Voll p． 516
〈continues totalling numbers of species＞
This gives for the 23 Families of Dicot with some 500 species，that the proportion of species＊per cent which inhabit more than 2 regions is 4．3．The standard for all Dicot being 4．1．－If we＊consider the＊ 7 Fam－ ilies marked $\boldsymbol{\sim}$ which I consider Tropical， \＆which have less means of spreading，for Tropics divided，we find these 7 large families have only 2.0 per cent species widely spreading，so that means of distribution come into play，\＆the remainder， wd be above 4．9．Those of Tropical Families，have 6044 species \＆only 124 in more than 2 Regions．－
〈over〉
Picking out Families with more than＊ 500 species，no of species，no of wide rangers〈list follows，with species names and totals，some marked $\boldsymbol{\wedge}$ ）
SA5 Dicoti only．Families with under＊ 50 species．
〈list follows，with species names and totals，and number of wide rangers）
〈over〉
〈continues list from SA4；calculates that〉

The standard of all Dicots is 4.1
＊General Conclusions
Families with more than 500 have a little above average of wide rangers \＆Fams beneath 50 rather fewer wide rangers，than average－But there is far greater difference according to nature of Family itself，than its mere size．
N．B．Decandolle does not use the very small Families，here used in his average．

SA6 $\Leftrightarrow\langle p p .560-561\rangle$
Cruciferae－p． 550
〈table of totals of species and those in more than 2 regions in various islands \rangle
N．B．If the Labiatae \＆Polygonum worked out this way，it wd show $\&$ in how isolated＊ spots some species of each Family occur．－ $=33 / 100$ agrees nearly with Decandolle
I conclude islds must either have some easy way of getting inhabitants or double creations are tenable
〈over〉
〈another similar table〉 Compositae，p． 552
$=22$ per cent leaving out Canary Isd only 13 per cent．
xii $24 m$ xiii $12-17 m$ xiv $7-10 m$ xv $\uparrow 9-5 m / w$ true xx $30-33 m$ xxii $34-36 m$ xxviii $19 m$ ， $34-$ $35 w$ Individuality xxix $16-17 w$ Cultivated Plants $32 m \mathbf{x x x} 21-22 w$ Definition of species 45 19－33m 47 16－21m〈FD $\rangle, 23-25 m 62$ 6－ $7 w\langle F D\rangle 72$ 8－12m／10－11Q 14－22m 84 8－22m／ $8-9$ ？ $857 w$ say read $88 \Uparrow 3-1 z 11636-39 m$ 117 6－8m，13－16m，27－30m，37－39m 118 6－ $9 m, 16-21 m 1441-4 m 1474-7 m, 9-10 m, 17-$ $25 m 15611 w$ say read $1834 w$ say read 200 10－16m 201 1－7m／3－5w examples of causes $28-31 m 20225-29 m 20336-38 m 238$ $24-30 \mathrm{~m} / \mathrm{w}$ Read $39-40 \mathrm{~m} \quad 246 \quad 18-26 \mathrm{~m} / \mathrm{w}$ Does this refer to America？if so or to Islands？ 247 2－7m，6－8m $25020-28 m / w$ I do not think even at lower limits except approaching a Desert 264 10－11m，12－16m／ 12－13u＂enfin｜nord＂／15u＂on｜fait＂，16－21m 268 9－11m 270 16－31m，28u／29m／w Spain 279 10 w says read 30520 w say read． $31634 \mathrm{~m} /$ $32-34 w$ theoretical average of minimum height $34 m / w b$ I have no doubt native 326 $30-37 \mathrm{~m} / \rightarrow 32914-21 \mathrm{~m} / \rightarrow 3301-7 \mathrm{~m} 3344 \mathrm{w}$ I only read $3376-7 \mathrm{~m}, 9-10 \mathrm{~m} / 9 \mathrm{u}$＂lat．I degrés＂， 15－16m， $15 u$＂selconnaît＂， $25-28 m, 27 u$ ＂environ Itrente＂， $30 \mathrm{~m} / \mathrm{u}$＂bord \mid degré＂ $\mid \rightarrow 338$ $5 m, 41-43 m 339$ wt Island Saxifrages $2 u$ ＂aux louest＂， $3 u$＂la 1 Asturies＂ 340 15－20m 341 $23 m 3437-12 m 39420-24 m, 32-34 m 395$ 12－ 15 m 397 20－22m，23－24m，25－28m，32－38m， $39 \mathrm{~m} / \rightarrow 398$ 29－33m $3998-15 m 406$ 12－18z／w （circle with compass points marked）， $31-36 \mathrm{~m} /$
$31 u$ " 8495 ", wbcc, $z b$ (oval with compass points marked)/wb 4 times elongated E \& W $4077 w$ arctic 11-13m/12u "Montagnes I Japon", $14 u$ "Turquie d'Europe", 37 u "Caucase" 408 15$18 m / 16-17 w$ S. America 410 16-19m 411 2529m, 31-32m 412 3-6m, 12-15m, 38-42m/40u "Sierra-Nevada" 416 11-13m/15-17m/7-20w so make Alpine Plants of N America, so means more wonderful 24-26m 417 11-16w -But Asa Gray's Alpine plants are more than this alone. 35-38m, wb The southern hemisphere of Hooker $4185-10 m, 10-12 m, 25-28 m, 30-$ $33 m 419$ wt All used in the Chapter on Sociability - Struggle for existence Stations \& wt Not used on proportion of genera to range $4221-2 m, 26-29 m, 36-39 m$ 424 36-40m 428 31-35m/32-33Q 431 38-39m $44419 m 44728-34 m / \rightarrow 4488-10 m, 11-13 Q$ 15-18m, 18-20Q 21-23m, 35-36m 450 24-27m $45312-17 \mathrm{~m} / 12-13 \mathrm{Q} 21-26 \mathrm{~m}, 27-36 \mathrm{~m} 4541-$ $5 m, 6-7 m, 24-26 \mathrm{Q} / 26-31 m / 26-37 w$ Every one of such species wd cover ground if no other species present: if rarity here is step to exclusion, then the greater importance of other organic beings is shown $w b$ p463 near confines become rare necessarily, but yet, (at least sometimes) social; see top of p462 (Q) $4556-16 m / 8-9 Q-/ w t$ Not Q 22-23m, 2628Q 31u "caractéristiquelblé" $4561 u$ "dans I cultures", $14 u$ "Plante 1 champs", $40-44 \mathrm{~m} / \mathrm{Q} 457$ $15 u$ "ne labsolu"/15-16w because impossible $4581-3 m 45916-18 w$ I shall not Q. this $28 u$ "espèce I sociale", 20-33w a broad distinction in terms between repandu or diffused, \& abundant or social. (a) see p. 463 wb (a) Does former depend chiefly on physical conditions the latter on other species ??? The latter must chiefly on other species, except where, perhaps conditions very peculiar. $46026-28 \mathrm{~m} / 36 \mathrm{~m} / \mathrm{Q} / 25-38 w / w b$ I am inclined to think that H.C. Watson facts go only to show that most widely diffused are diffused likewise most in smaller areas: hardly descends to such minute areas as field. A species might abound on one spot \& yet be rare over all England, but is this so? $4614 m / u$ "nuisent", $19 u$ "directementlindirectement", 6-29w It comes to this, whether there are * many social plants in good common soil? 25-26u "toutes I grand" $\mid 25-28 \mathrm{~m} /$ $\leftarrow, 11-12 m / 14-15 m / 12-20 w$ Alder in Larchwood, but this must imply adaptation, else wd not grow up. 23-24Q/w Mangrove forests 27-29m, 31u "les lalpines", 34-38m/36u "paraissent | abondance"/38u "d'êtrel moins"/31-39w This is fact of same kind as not being dwarfed $38 u \pm / w b$ This is opposed quite to view that each form more depends on other
organisms than on external conditions, wb ie great numbers to live $w b$ But on the extreme limit of a desert, then plants grow separately, I think 462 1-4m, 3-4m/4u "isolés l étroite"/wt meadows very full of social plants $3 a$ "espèce" but not of all life? 5-9m/Q/wt Q when a form can once live, then it may be social from mere number of seeds. \& occupation.- $11 u$ "enlisolés", 13-16m/w (a) \rightarrow wt (a) As long as conditions exactly same. in relation to physical nature \& other species \& its own * excretions, then of course there will be many individuals, \& so be social.- 13-14u "causes I locales"/12-15w This must include other species. $19-23 m / 18-31 w$ Except (z) at the Cape, it seems the more fertile the land, the more diversified the flora; \& according to me, it is more fertile of production in life in part because more diversified.- (z) The forest of firs grows slowly, for land poor \& cold. \mathbb{N}_{2} $1 Q / w b$ case (z) explained by diversity of stations, such as occur in all dry regions.as stated before $17-34 m / w$ I cannot but think the number of species, depends in part on the goodness of conditions; but why I do not see; much life causes much decay makes strata \&c \&c \& many stations. for different times of year will have species all times of year. good. $\uparrow 11-9 u$ "surtout I station", $\uparrow 5-2 w$ This is cart before horse?? There wd not be many species without stations; yes, how many species can be introduced. $w b$ a field of grass cannot be called so rich for so many genera. - (a damp rich tropical soil \& a damp cold poor soil ought to be compared) 463 wt the many cases of introduction of new species into islands, shows the simple free-road to, from elsewhere created, is important element.Creations not easy work thus also shown.My theory shows how slow \& difficult it must be.- Supply not equal to demand. $-8-9 w$ all this discussion strikes me as unsatisfactory, from struggle with other species, not being here prominent. $10-11 \mathrm{w}$ Not Quoted $14-18 \mathrm{~m} /$ w depends, I think, on beating other species $14 a$ "répandent" no doubt one element $15 a$ "vent" Yet Compositae confined, $14-18 \mathrm{~m} /$?, $7-23 w$ He shows towards end of Book, that genera increase with no of species - but not I think with individuals - yes for mean density \& decay create other stations) $20-$ $25 m, 26-29 m / 28 a$ "communes" but not yet social; but sociality and commonness bound together, for perhaps hardly one absolutely social plant to exclusion of all others, except such as Mangrove $\uparrow 6-5 w$ but yet it seems when does appear is sometimes social.

CANDOLLE, VOL. I: 463
$\Uparrow 4 u / a$ "est \mid rare" Yet social plants occur near limit $\Uparrow 1 u$ "delelle", wb A great diversity of forms will follow from adaptation to different stations (supposing free inroad), as well as from supposing a great amount of life, for the latter creates many stations, iw Would not under same climate a uniform good soil support more diverse forms than uniform poor soil \& climate? $4641-4 m / w t / 1-7 w$ No hardly - flatly contradicted by his social Plants. $8-11 \mathrm{~m} / \mathrm{w}$ thus if compositae abound in many countries it must be due to their organisation; but if * the species in certain countries are more or less common due to conditions $10 a$ "les" different $12-18 m / w$ Does this not imply that habits of species have more in common than they really have?$w b$ One sees a Railway cutting temporarily covered with plants (in most cases only the natives of seeds) next year there wd be more seed, yet the abundance soon ceases.- here struggle comes in. 465 wt these tables refer to species being very generally dispersed within their own region of habitation.- 2-3Q 2nd table "composées".w largest family $6 u$ " 1 sur 4 ", $10-15 \mathrm{~m} / \mathrm{w}$ It wd be very curious to see what result wd follow from genera. calculated in this manner by averages $11-12 u$ "mais Isensible"| $12-14 m / 14 u$ "soit|100"/15u "18|45", 13-15XQ, wb Can Families include too great a range of adaptations to answer for such calculations?? The resemblance in Families may be due to parentage? $4661-10 \mathrm{~m} / \mathrm{w}$ Tropical Families have nearly as many common species as non tropical Families.- This shows how little adaptation to climate goes through a Family. table "Phanérogames".w standard table.w Here again it is clear that largest Families do not have greatest number of common species $\uparrow 12-7 m$, $\uparrow 4$ $3 u \leftrightarrow, \Uparrow 2-1 m 4671 m / 1-4 w$ \& yet it may be social!!! p. $4627 u$ " $17,8^{\prime \prime} / w$ ie below the average of all Phanerogams. $9 w$ ie average $11 w$ the very small families have more than average!! $12-13 \mathrm{~m} / \mathrm{w}$ quite opposed to my views.- table "Phanérogames".w standard table.w Here again same general law 468 table.m/w This goes as it shd do 2nd table "phanérogames". $w / w b$ These are 2 largest families \& they have nearly $1 / 2$ the common species, but single spears in other Families are excessively common $469 \quad 27-31 \mathrm{~m} / \mathrm{w}$ Doubt whether Watson not too large. 34$35 m, 40-41 \mathrm{~m} / \mathrm{w}$ doubts. 470 wt Ask Hooker about paragraph 3.- what it means $8-11 \mathrm{~m} /$ 10-11uн, $13-14 m, 16-17 \mathrm{~m}, 18-20 \mathrm{~m} / 18-19 u$ "moyens 1 remarquables", $20-23 m, 19-24 w$ ।
cannot believe, much is due to this??? Yet it must be part element.- $23 a$ "Quant" to common species of $23-26 m / ?, 27 w *$ What does he mean $31-32 \mathrm{~m} /$??, $34-36 \mathrm{~m} / \mathrm{w}$ but excess of numbers very small $37-39 m, 40-$ $43 \mathrm{~m} / \mathrm{Q} / \mathrm{wb}$ "species with restricted range are not common" ie confined range \& rarity go together. $\Uparrow 2 m / \Uparrow 4-1 w / w b$ propagating by number may account for this to certain extent 471 wt Only those social plants which inhabit common ground are the difficult ones to understand. if such exist near limits $1 a$ "sociale" certainly if conditions peculiar $1-3 \mathrm{~m} /$ $1-8 w$ It shows that sociability does follow other laws than * commonness; how can they help each other. or injure others? $4 a$ "espèces" Can means of propagation come into play $4 u$ "circonstances locales", $5-8 \mathrm{~m} / \mathrm{w}$ diffusion depends more on climate $7-8 w$ This like Benthams cases on Pyrenees. $16-21 \mathrm{~m} /$ Q, $34 u$ "c'est l'abondance" $/ 34-37 m / w$ social plants most easily affected 472 wt If this fact of social plants entirely disappearing be true it shows again that there must be some other law.- It is analogous to social plants suddenly appearing on their limits $w t$ If sociability depends on other species \& not on external conditions, then very slight change might determine their existence 1$2 m / 6-9 m / 8 u$ "parlnaturelle" $11-16 \mathrm{w}$ it is like change in Oyster Beds.- I cannot believe; flatly contradicted by History of shells.- No this seems to apply exclusively to plants social or not social in same area.- is not part of this that social plants now conspicuous, espcially in forests midpage.w But it cannot be that every individual disappears from field $16-22 w$ It looks as if one individual protected another, \& so this wd lessen when preyed on by insects \&c: Trees, wind.- $24-28 m / 24-30 w$ Everyone knows how hard to rear few ears of corn in Garden.- my Radish seed from apparently mice $\Uparrow 11-7 w$ cross impregnation $\uparrow 7-1 w / w b$ are social plants very defined in their adaptations: It has been shown I think greatly depends on number of other species adapted generally to same sort of conditions. $w b / \uparrow w-$ But why none in tropics; because oldest climate, \& all species mostly perfectly adapted: most of the facts come to adaptation in preponderant degree.- $w b$ These several cases seem to show that all the individuals of social plants disappear together owing I presume to rotation - 473 $w t$ The Paris is well fitted as shown by its mere presence; it is social from numbers of seed sown: this I conclude must be
governing element, but easily overlooked in Tropics where more closely adapted species.- 2-12w Destroy $5 / 6$ of English plants \& many wd become social which are * not so now.- 4-32w These two Pages not worth quoting $23-25 m, 23-25 m / w$ of rotation 28-29m/29u "sur|considérable", $31 u$ "de l^{\prime} 'Europe", $\Uparrow 4-2 m /!$, wb/ $\uparrow 15-1 w$ I wonder whether Cardoon is social in Europe? \& spotted thistle of Pampas? If so it wd seem to be merely * excellent adaptations, like when Railway cutting first exposed, due to seeds. wb Fennel - Hooker \& Bentham say yes. $4741-2 z / w$ ordinary shape \langle oval〉, $\Uparrow 8 u$ "endémique" $/ m$, 介6u "sporadique", $\uparrow 3 m 4751$ $2 m, 21-26 \mathrm{w}$ difficulties in defining areas \& terms 476 2-4m, 10-13w Before making any calculations whatever skim over to p 519 26$35 \mathrm{~m} / 28 u$ "mais \mid rares" 33 u "espèces |aire"", wb Introduction $478 w t / 1-5 w$ Now the question is whether this applies to means of transportation or adaptation, probably the latter; for plants seem to have such power of spreading.- The adaptation must be to struggle with other species \& not conditions $4-5 u$ "del $\mathrm{famille"} / 5-9 m / 7 w$ (a) 479 wt The transportation is a theoretical question \& implies single origin, \& probably not considered by Decandolle. In Birds, according to Goulds idea, was considered with means of transportation.- The very nature of the areas, some continuous and others disconnected, shows he did not consider means of transportation. $22-23 \mathrm{~m} /$ $22-25 w$ Can it be right to run them together.- $22 u$ "Archipel indien" $/ 23 u$ "Nouvelle-Guinée"| $24-25 m / ?!!$, $26 u$ "NouvelleZélande" $/ 26-27 \mathrm{~m} / \mathrm{w}$ are these distinct $32 u$ "Bermudes" 480 1-26w without knowing whether areas connected by continuous land or separated by sea, the results seem to me useless. How different cases of plants common to Irdia, \& Africa or tropical S America \& ones common to Europe \& Siberia, must make some difference. 481 2$13 w$ Thus far it seems that intertropical species do not range so far as temperate (but tropical lands * more divided by seas?) not the American provinces. table.w very regular laws indicated by this table. $4847-$ 11m, $15-17 m / 15-32 w$ Q I cannot think why; this fact keeps very constant, see note below, when more species discovered so that a given percentage in each Family are sporadic 486 1-4m 488 table.w R. Brown 489 table.m/w Aetheogames $=$ Mosses, Fern, Hepetiae, $\uparrow 15-5 m / \Uparrow 11 u$ " 730 " $/ \Uparrow 8 u$ "dont 1 Europe" $\mid \uparrow 7 u$ " 8 " $\uparrow \uparrow 14-11 w c e 490$ table.m/wec,
wb ?? So Auckland isld more in common with other countries, but less with Europe If this community is the S American, it accords with glacial, having been subsequently peopled. Kerguelen ought to have been most with S America \& less with Europe - See next Page.- So he counted ones about Glacial agency. 491 2nd table.m/w These must have come from North. 493 table.w/wt (What a contrast with the 730 Phanerogams of N.Zealand more water, more coast - more higher mountains.) Dryness alone most important element, but not enough to account for this difference table "Phanérogames".wct, table.w Far larger proportion common to Europe than in N . Zealand \& Auckland Isd; So far more species in Larch wood, than in all Falkland or Tristan I or Norfolk Isld. Only 272 in Society Islds $\Uparrow 18-1 w$ this shows how much free access determines the number of species: is not this against former continuity of Land. table. $\rightarrow / 5 u$ "soit $\mid 100$ ", $5 u$ "soit 2,3", table. $\rightarrow / \uparrow 5 m, \Uparrow 4 u$ "1843", $\Uparrow 3-1 w / w b$ $5009+1686=6595$ species of Phanerogams The fewness of European plants very interesting as compared with all land further South. Was not Africa the old Tropics? The glacial climate \& ice action explains the greater community in other regions. $494 w t$ Von Buch only \rightarrow Canary Isd Dicot $322+$ Mon 59=381 species. 496 table.m (Dicotyledons)/w so that Kamtschatka \& Labrador have nearly same number of species in common with Europe. (Mem Iceland all in common) $497{ }^{2-}$ $3 \mathrm{~m} / \mathrm{u}$ "Remarks 1 plants", $15-18 \mathrm{~m}$, $\uparrow 2-1 \mathrm{~m}$, table.m/? $/ \rightarrow / w b$ what a contrast with Alpine Plants of N. America 498 1-16w These contrasts of numbers, show that islands never united to mainland $17-23 w$ e contrast with Falkland Isd 18-31w Feroe 192 Dic+80 Mon=272 a contrast with the Oceanic islds $499 \pi 9-6 m / w b$ is this owing to closer adaptation? or longer existence of simple plants, \& \therefore part of existing means of dispersal. wb/iw Means of dispersal \& adaptation are all confounded - in Cryptogams at least, means of dispersion wd come into play. $\uparrow w$ The cases from which he argues are in very many cases islands; \& even when same species occurs in $\underline{2}$ continents * means of distribution must come into play.- 500 8-12m, 17-19m, 21$29 m, \Uparrow 2 u$ "mesure \mid découvertes" $\uparrow \uparrow 2-1 m / w b / \uparrow w \mid$ cannot think cause of this. Perhaps it is only that certain species of genera range far, like certain families in order: but why as discovery progresses, does the relative

CANDOLLE, VOL. I: 500
proportion keep constant? Does the proportion hold good in different countries \leftarrow I shd think it was only chance that more wide rangers \& were found \& more local species. 502 wt can this have anything to do with Glacial Period? carried by ice from Tierra del Fuego? - but none could go from New Holland. At Glacial period New Holland very favourable for introduction of temperate plants. $1-4 m, 6-8 m$, table.w some compositae have wide range.- $5031-3 m / 2 u$ "dont 1 France" $/ 1-3 w$ water-plants (condition more uniform) 4-6m, table-title.w This is the more important comparison? table.m/w These very large \& natural Families have only a few: (a) table.w/wt These 13 Families have 149 species on average: they have 37 species in common with N. Holland, or average nearly 3 in common with N. Holland 2nd table.w These 33 Families (those with less than 15 species being omitted) have 1541 species on average only 47 species each \& not one in common $w b$ (a) N.B. There is another element, besides facility of transport, the durability of same form. No - but this is the very point that we are considering that large Families are wide rangers \& most convertible [but that it is only a few which are wide rangers; the others changed into species]: I see I have not clearly relation between very wide rangers \& variability.- as in water plants. Indeed if wide rangers are only generally variable, then some wd be identic at great distances. $5042-4 m / \rightarrow / w t$ Even if these are added to list on other side, the Families, which on average have larger number of species, have most in common with New Holland.- $3 u$ "Lemnacées"/4u "Hydrocharidées"/5u "Lythrariées", $5 u$ "Alismacées"/w water. 505 table.u "Composées" $/ w$ some wide rangers table.w it is evident that the Glumaceae most widely spread. \& I shd think means of distribution must come into play. second table. $\uparrow 4-2 m / \rightarrow / w$ compos. $50714-16 m / 15 a$ "austral" which are common to Southern islands \& Europe.- 508 wt N.B. Pritchard shows the $\&$ mntains go partly E \& W in Lat 10° N.Africa. 9-15m/w 96/7000 What a contrast with T del Fuego. 18-19u "etlCap", 20 u "oulantérieures", table.m (Salsolacées)/w Here again; must be owing to means of transport. table.c "Fougères" "Phanérogames" "Composées"/wb These 16 Fam. (with species in common with France) having 2222 species have 139 species per Family; ie nearly twice as large as those families which have not one: there wd have been none if Compositae had not
been omitted table.m "Composées"/w so many omitted 509 wt The Cape \& Europe valuable, because have means of distribution, cannot be so important as when islands are compared. - No Sahara - but how in glacial period.- table.w These 41 Fams. with 2895 species, have on average only 70 species to Famy. (wd it be worth great labour to calculate by genera.) $11 u$ "pour 1 moins" $/ w$ on account of smaller Families not giving true averages \diamond calculate this 2nd table.c "Fougères" "Phanérogames"/wb These 21 Fams. having species in common with Cape, having 2438 species have an average of 116 species; if we \& leave out Compositae as so numerous (at least at Cape), we have 20 Fam with 1960 species each Fam. has 96 species - (ie double of those Fam. with no species in common) - see over $5102 u$ "15 | moins"|table.m/wt These 24 Fam. having 916 species (with none common to Cape) have an average of 38 species each $4[\ldots$, 2nd table.m "Composées" 511 table.w \uparrow, 2nd table.w see over There are numerous very small Families with very many species in common, which wd make case the more hostile 2nd table.m "Graminées...26"/w can this be accurate? wb These 13 Fams <in left half have only 36 species to Fam. \& have 255 species in common to N. Africa $w b$ These 13 Fam <in right half〉 have 52 species on average \& only 243 in common. Here then the larger Families have fewer species in common with America. First hostile case. $51216-25 m / w$ These two groups might be contrasted $\uparrow 13 u$ "Documente 1843 " $/ \uparrow 10 u$ "plus | (a)"/ 介13-1w/wb I might work at this Dividing the Plants into 2 groups of those ranging above the mean 1.6 those ranging beneath the mean - (Being continental wd depend not on means of transport) \& not tropic come in, or so much astounding range of water plants $\uparrow 1 m, w b$ Would it be possible to work out this in genera??? Taking for instance the genera found in 2 \& upward sous-regions \& see what average of species such genera have, ie of general average of genera, or give or take those Genera found in only one sub-region 513 wt N.B. Hooker says Dreges Book is great Book with elaborate distrib: (perhaps in Linn Soc) \& he will lend me; good to work out genera larger \& small for distribution.- Does not give genera, only Families $5 w 226-7 m / w$ omit this in calculation $9 w \star 18 w 37$ Ledebour $\Uparrow 12-5 w$ I feel sure that this wd be hostile to view that largest Families range furthest $\Uparrow 8-4 m / \Uparrow 2 w$ This is mean $\uparrow 2 u$ " 6366 lprès"

514 wt F. Water Plants demonstrate that some element quite distinct from numbers of species, come into play in wide distribution. Is not same thing observable in Salsolaceae? love of salt? 515 wt This table gives the proportion in each of the named Families of the wide ranging species to the whole number of species in the Family.- 516 $1-39 w$ This table looks * hostile Can my view be applicable only to single continuous regions; if so, Cape of Good Hope \& Russia wd be excellent.- 517 20-22w V. note p.519 * anomalous 518 table.m " 9 à 7,1" "1 à $0 " / w$ These 2 might be compared table." 1 à $0 " . w$ But these seem mostly tropical $5193-9 m, 9 u$ "danslinfère", 18u "Calyciflores I compliquée", $20-23 m / 20-27 w$ according to this one ought to compare * size of Families in same great division \& not as I have done in great totals. $26-29 m$, 28-29m, 29-33m 520 13-15m, 29$32 m / 30-38 w$ Marshes cannot be so uniform in conditions. But Marsh Birds visit 521 11$14 m / w$ ie Marsh Plants $16-17 m, 23-24 u$ "lal salés", 35-36u "les I grande" 522 table.w Table of acquatic \& Marsh Plants $34-35 u \leftrightarrow / w$ This looks like conditions $8-10 \mathrm{~m} 5238-11 \mathrm{~m} / \mathrm{w}$ conditions \& means of transportation here explained. $20 u$ "plantes annuelles", $38-39 u \pm$ $5244-5 m, 8-11 m, 12-14 m / ? / 13 u$ "plantes arides" $/ 14 u$ "semblent" $/ 13-23 w$ why? few other species or inhabitants, this wd apply to water-plants \& sea-side plants. $\uparrow 4-1 m 525$ 12-15m, 17-18m, 28-34m 526 table-title.m/u $527 \downarrow w$ Trees often dioicous chance transport of one seed insufficient Might be tested by other dioicous Plants. $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ Trees most limited. Herbaceous plants next - annuals most widely - can live in hot countries during their winter $w b$ Does not this depend on means of dispersal, as annuals for very conditions of life must have great means of dispersal.- wb Trees depend less on means of dispersal 528 table.w Have these big seeds? What can reason be? Mostly Tropical $5292-3 m, 10-11 \mathrm{~m}, 21-22 \mathrm{~m} /$ 22-23u "quel mer", 32-35m/w/wb What can reason be Higher developed \& more changeable $5302-3 m, 5-6 \mathrm{~m} / \mathrm{w}$ small seeds 531 table.w In same Families distribution according to annual \& herbaceous \& trees. All accord in same general Result.- 532 12$15 \mathrm{~m} / \mathrm{w}$ no general rule means of distribution greater or less $18-20 \mathrm{~m} / \mathrm{w}$ seeds in proportion small $20 w / 1-20 w$ There is, also, relation of size \& highness in series.- Because big requires more food \& is therefore a flourishing organism. $\uparrow \uparrow 15-1 w / \rightarrow / \Uparrow 9-5 w$ (a) If I am right on size, wd go to show wind.-

But then Compositae!! Yet here the * transportation comes into play; but then the Genera ought to be widely distributed. How is this.- This ought to be worked out in Decandolle \rightarrow or better look to Flora of islands \& see whether genera of Compositae more usually the other genus. $\uparrow 5 u$ "peut-être beaucoup", $\uparrow 4 u$ "reproduction 1 dissémination", $w b$ (a) Means of distribution coming in so importantly is quite in accord with Barriers (ie the stopping of distribution) being so effective; so beyond anything the most important 533 11u "Ailes" $/ w$ or pappus $12 u \leftrightarrow, 17-18 m, 26-27 m, 29 m / w$ This does not concern wind $32-33 \mathrm{~m}, 38 \mathrm{~m} / \mathrm{w}$ I wonder whether in Royal or Linnean Soc.- $w b$ If I am able to add anything new to Decandolle to means of transport, it will show how curiously imperfect our knowledge is.- 534 4-6m, 7-10m 535 wt Wind generally accompanied by Rain will the pappus then cause seed to stick?? table.w I must study distribution of genera. $\uparrow 14-1 m$ 536 wt (a) Note/ the proportion of genera with single species with \& without pappus nearly the same: if transported by pappus \& transmuted, then ought the most genera with single species with pappus $1-20 \mathrm{w}$ As these calculations include many continents, the seeds cannot be more transported than others. $5-7 m, 19-25 m / \uparrow w \quad \therefore$ Pappus, therefore, would seem to act like hooks which can transport to only short distance: remember no transport avails except it be to unoccupied land: no false look at introduced plants $\uparrow 17-10 \mathrm{~m} / \Uparrow 11-10 \mathrm{~m}, ~ \Uparrow 9 \mathrm{~m} / \mathrm{w}$ (see last page) $\uparrow 5-3 m / w$ (a) $5376-9 m / 6 u$ " 2,2 " $/ 7 u$ "2,9", 9m, 13-14m, 17-18m, 20w Range rather small $20-21 w$ therefore rather peary I shd think $5381-2 m$, table.w In same Family species with fleshy fruit have widest range; is it because animals eat them? 31-32m, $38-39 m, w b$ without Isld are specially considered, I hardly dare trust these discussions, for my purpose, as adaptation must so overrule powers of dispersion 539 $2 m, 3 m 5403-7 m / 3-7 u \pm / w$ what complication. 541 介5-2m 544 23-26m, 33-37m/w Russia may be considered as new country peopled from whole South 545 3-5m, 28-34m/29-37w Here isolation clearly comes into play; but this does not account for smaller range of plants within Cape District. 38u "Flora, 1843" 546 16-22m 550 table.w As far as I can see (which is very little) isolation of area seems to have little to do with confinement of species!! In this Family 552 wt Here again it seems perfectly insulated regions have the

CANDOLLE, VOL. I: 552
wide-ranging species in greater proportion; this cd happen whether formerly connected by land, or chance introductions: No if isld was only a bit of a continent, it would not be so, but if it received species, then it wd have wide rangers left half of table: $17 \mathrm{~m}, 18 \mathrm{~m}$, $21 \mathrm{~m}, 26 \mathrm{~m}, 28 \mathrm{~m}, 29 \mathrm{~m}, 30 \mathrm{~m}, 42 \mathrm{~m}, 45 \mathrm{~m}, 48 \mathrm{~m}$, $49 m$, right half of table, $12 u$ "purement insulaires" $/ w$ New Holland Mem 13-16m, 20$26 \mathrm{~m} /$! 554 wt Here again the less the connexion between the areas forming one group, the more species they have which are generally wide rangers or Isld generally possess large proportion of wide ranging species. table.m, 2nd table.m/wb Caledonia a 555 table.w 59 regions $\Uparrow 1 u \leftrightarrow, \Uparrow 4 m / w b$!This exactly opposite result to top of last page 558 table.w This agrees with Bentham 559 $18-19 m, 25-28 \mathrm{~m} / \mathrm{w}$ uniform bad conditions \& means of dispersal $37-40 \mathrm{~m} / \mathrm{w}$ can think of no explanation * $w b$ Give this as example of unexplained facts or law $5608-9 m, 12-$ $13 u \leftrightarrow / 12-25 w$ great regions more separated, but how can this bear on distribution within Cape Region. The very wide rangers which inhabit different great regions will a fortiori inhabit the smallest.- $23 \mathrm{~m} / a$ "proportion" of wide rangers $28-32 m, 33-37 m, 33-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ North most united before Glacial, or rather by ice action during glacial. and Before Glacial action 561 1-4m/3u "Cruciferes"/4m/u "Composées" $/ 3-13 w$ try this with really oceanic isld say only volcanic isld - It is here done: no great difference $10-11 u$ "présentent lautres", $11-17 \mathrm{~m}, 20-26 \mathrm{~m}, 28-30 \mathrm{~m}$, 35-40m/38-39Q ${ }^{3} / 35-40 \mathrm{w}$ I shd have looked at this just contrariwise $w b$ I never shd look at it under this light; yet perhaps agrees with Herbert's views - When then only few species, we must suppose either others extinct, or then few only as yet introduced. 562 $1-4 m / 1-10 \mathrm{w}$ All this opposed to groups with largest number of species having widest rangers $16-17 u$ "indiquent I petit" $/ 17-18 m / 16-$ $20 w$ This perhaps comes into law that great wanderers are very great wanderers. 32$36 \mathrm{~m} / 37-40 \mathrm{~m} / 30-38 \mathrm{w}$ in fact isolation by deserts or climate or sea equal $5631-3 m$, $12 u \leftrightarrow, 13^{*}, 20-30 \mathrm{~m} 56415 \mathrm{~m} / \mathrm{w}$ introduced 36$38 \mathrm{~m} / \mathrm{w} \quad 1 / 2$ world 567 46u 569 46-48m (Hooker) 573 44-46m 579 32-37m 581 24-25m, 36-39m/38u "d'un Icultivé" 582 3-4m, 9-13w 47/117 acquatic or semi-acquatic ! $26-33 w c$ $\Uparrow 14-13 m / \Uparrow 15-7 w$ This looks as if due to * unoccupied site $\Uparrow 2-1 m / w b c c \mid 583-4 m$, $18 m 584$ 2-5m, 15-17m, 21-22m/21u "en Abyssinie", 30-33m, 30-35m, 38-40m 585 1$3 \mathrm{~m}, 15 u$ "La Légumineuses"/15-17m, 19-21m/
w (a) 26-27m, wb (a) yet how extraordinary the law lately developed, that where there are few species of a Family, then average range is greater than when many.- species occur.- The latter are local vars. considered as species $5861-3 m / Q 3-6 m / 5 u$ "àlbaies", 12-14m, 15-16m 587 12-14m, 22-29m/22-24w very local plants $34-39 m 58813-14 m / 12-32 w$ This bears on $*$ few species inhabiting 2 areas, where there are many species. Does it not come to this, that widely extended species break into varieties \& these become species. with confined ranges.- anyhow this shows how complicated a question it is 21$25 m, 36-38 m / 37 u$ "restreintes \mid vastes" 590 28$30 \mathrm{~m} / 27 a$ "la" Mediterranean 591 11-13m, 22$23 \mathrm{~m}, 30-31 \mathrm{~m} / \mathrm{u}$ " 120001 existent", 34-36m, 36$38 m 5927-11 m / w$ Labrador lately colonised, 11-16m $59414-16 \mathrm{~m} / 13-20 \mathrm{w}$ This is important for shows creation by adaptation does not explain. see p. 599 28-30m 595 1-7m 596 2$5 m, 36-37 m, 37-39 m \quad 597$ §22-20m/ $\uparrow 22-9 w$ No, because opposed to generally contest within same Families:- One Family may fail over world. animals or insects allied over world. $\Uparrow 12 u$ "Rutacées", $\Uparrow 12 u$ "Zygophyllacées" $\uparrow \uparrow 13-5 m / w$ (a) $w b$ (a) Here is case in ease with which var. changes into species; \& tending to extinction: Rutaceae \& Zygophylleae small orders in alliance of Rutaceae, which has several small orders $w b$ Antiquity of sp. anoth cause. Most complex problem $59818-21 m / 18-25 w$ seems to attribute much to simple fact of ancient existence. $30-34 m / w$ contrasts these islands in range $37-39 m / w b$ here comes in creation: they are new in North. 599 2-4m, $24 w$ Marsh Plants $26-28 m, 29-30 m, 37-40 w / w b$ speculation, which I shall introduce on Fish, bears on this; changes of River courses: most lakes connected with streams.- How many fresh water deposits with recent shells.- $\uparrow 1 u$ "aux causes" $/ w b$ why, mere hypothesis $6002 u$ "ou lespèces" $/ 2-4 m / w t / 1-7 w$ I think many acquatic plants are social, which is proof not fully occupied; see to this I remember it is in salt-marshes, water-lilies Reeds \& Flags \&c. $9-11 \mathrm{~m} / \mathrm{w}$ whirlwinds 2328m, $38 u$ "Protacées"/38-40m $6015-7 m$, 23$25 m, 28-29 u$ "commelplantes", $29-31 \mathrm{~m} / \mathrm{w}$ no evidence for this $32-34 m 602$ table "régions arctiques". m / u "Petits lespèces"/?/w recently unoccupied area "régions tempérées".m/?, "régions australes". u "Petit nombre"/?/m/??!, $\Uparrow 3-2 u$ "les lextrême" $/ m / w b \therefore$ closely adapted: parasites opposed to this.- 603 table "marais". u "Uniformitél physique"/m/!!!/w why this was contradicted "plantes nivales".m/!!,
"forêts".m/u "époque Iglaciers"|!! 604 tabletitle.m, "Organisation simple".m/wt I see he always thinks simple organisation \& ancientness corelated. More probably is related to adaptation to diverse conditions. I presume complexity or highness \& close adaptation go together. $60538 \mathrm{~m}, 44 \mathrm{~m}, 46 \mathrm{~m}$

CANDOLLE Géographie botanique vol. 2
NF Read \& write sketch \& look over; Read Hooker Galapagos New Zealand \& Flora Antarctica
SF \square ロR
When this read skim over (make index); Reread Hooker N. Zealand \& \& FI. Antarctica \& Galapagos; Skim my own portfolio; Then read my own old sketch, \& write essay
compare D.C. list of introduced Plants in America \& see whether they abound in vars. \& whether large genera: taking average of species with vars. in whole U. States Flora but those very sparingly introduced ought to be excluded.-
NB p. 1130 ask; $1179 *$ ask *; 1332.- Error (about Potatoes

* on absolute numbers in small distant islands.-
If Decandolle cd be trusted we shd have * greatest difficulty to transport seeds from isid to isld in same archipelago \& as most volcanic archipelagoes are rising we shd have the wondrous spectacle of a naked isld somewhere in ocean.-
Isolation most important, as preventing migration \& so altering conditions, \& making gaps in economy of nature, \& quite secondarily causing organisms to vary. Also few individuals would aid in checking crossing, especially the bisexual.- A vigorous wider spreading spec, \& which consequently varies, when isolated, under most favourable conditions to vary. Possibly isolation not long enough in many cases, as in Alps \& F.W. Fish.- Few individuals for isolation, \& this gives bad chance of new forms, but time wd make up for that.-

SB1 $\square R$ Index to Decandolle Chief Points $1 \Leftrightarrow$

$\bar{p} .72$ p.117,8, 147, 201, 203 Adaptation to external conditions, chiefly climate, showing how differences of temp. will affect differently diff. plants, on trees exposed to whole year cold hence (I shd think, dwarfed
p. 264 more height no influence; hence alpine plants show nature of former Glacial
land better than arctic plants.
-p.268. humidity.-394-418*
$x \Leftrightarrow 238$ on difference in leafing \&c of Beech in Madeira. Read essay 397?
246 on sea not determining limits of plants in Europe
250 Nothing said about sterility of plants at lower limit of range [ask Watson or Decandolle at some future time] shows limit dependent on other forms.
$c \rightarrow$ though they are sterile at upper limit
270 Alpine Plants. 316-327, 329 Polar \& height limits are corresponding in different species; 407 Japan Mts; 412 Spain -
\Rightarrow p416 bears on general forms of area of Plants.; 490 Bears on Glacial Period $x \oplus 337$ Limit of cultivation of maize
343 on N. American vines, European does not succeed.
$\Leftrightarrow x$ means used for 1st Volume
x 406 only few plants have elongated area \& 416
$\mathrm{X} \Leftrightarrow 422,428 \mathrm{Q} \Leftrightarrow$ Adaptation to conditions; 447 Q \Leftrightarrow alternation of natural Crops $\Leftrightarrow 453$
\Leftrightarrow Struggle between Fish \& Water Plants
\Leftrightarrow p455 why more species in dry than humid climates
456 Corn Plants, list of
$x \oplus 457$ to $465 \Leftrightarrow$ on abundance of species, or Social Plants.- my discussion on selection of diversity of form to amount of life.- p. 470 to 473
\Leftrightarrow p465 Book on the subject to consult)
465 to $470 \mathrm{Q} \leadsto$ on relation of frequency \& largeness of genera; bears on extinction.503 - 509 in connection with very wide * ranging genera or Fams. \& large genera. see infra
x 476. When species in 2 distinct countries are generally in intermediate - ratio of wide ranging species \& families. Families which range furthest, without regard to obstacles. There is p484 great distinction between Weak species \& very widely extended species, ie when a species is once a spreader it spreads widely. 490 Proportion of N. Zealand \& Auckland Is. \&c with Europe \& \& 505.- on expansion of absolute numbers within Larch wood. On relations of polar districts to each other. 496 Labrador, Kamtschaka \& Europe 499 Low plants 519 (u®) Q ω range furthest ω with exceptions p500.- 498 Bears on former continuity of Islands \& continents.

- Decandolle plants not being spread N x 502 on introduction of glacial plants into N. Holland p.507/508 contrast of Cape \& T. del Fuego in European species.

CANDOLLE, VOL. II: NOTES
x 502 some Compositae wide rangers. 505-508.510.

- 508, 509

503. 509. On largeness of groups \& wide ranging. 511 hostile.
$\Leftrightarrow 514$. \& highness \& lowness in plants 499/519
other causes determining range.- also greater division of Tropical land.
519 on wide range of acquatic plants 522 good index.- do Marshes yet not so uniform 521 sea-side plants do
527, 532 Trees much limited; herbaceous plants next; lastly annuals - good MS. remarks. Bears on distribution of F.Water productions
533 to 540 on * Range in relation to nature of seeds
544 to $563 *$ Range in different countries as Russia \& Cape \&c \& Islands
563 Plants which range over $1 / 3$ of world p. 582 47/117 semi-acquatic/ p584 108/117 in N. temp \& arctic lands, where land continuous, good to show effect of continuity - so good remark on same plants 584 being found on the intermediate islands
1. Azores less endemic sp. than Canaries;

Färoe has none - cases of very local species

SB2 $\square \beta<4$ sheets, numbered $2-5\rangle$ Alph. De Candolle for 2d \& 3d Vols.$\frac{2}{5}$
590 Species which inhabit other areas besides Mediterranean, inhabit all its Provinces
594 shows extension of acquatic plants cannot be explained by uniform conditions p. 599 do
595 winged Compositae not large range p. 600 small seeds widest rangers 596 not large-fruited seeds.
597 to 600 On sp. of same Families having small range in very different countries, but that they come into competition with nearly same Fam.- Good about dominant species spreading:- Long \& Good Discussion on this subject
Vol 2 Naturalisation. by Nature \& by Man
608 Each sp. not perfectly adapted to its own home, \& [good] good MS remark physical causes cannot engender new species perfectly adapted
613 seeds blown up 5400 feet \& effects of wind
617 currents of sea (Madeira to Canaries) note 61620 years in F. Water alive
618 action of Birds on transportation in
various ways. (p769 admits agency of Hooks 797 good)
624 seeds alive in earth.
629 Cases of naturalised plants confined to few localities in new country. [Cardoon, Guava Peaches \& Oranges several cases
631 Few disjoined species, \& even species of same genus generally in same country
631 Cases of aboriginals, which are often injured by weather or do not ripen seeds. [this again shows want of perfect adaptation in indigenes.
632 Curious case of irregular distribution chiefly F. W. Plants: [Birds now rarer] good suspicion. one may say that means wd be now less effectual.
637 List of plants which have spread recently moderate distances
645 List of nat. plants in Britain [compare with Hookers list * of nat. Plants f. in Australia *
698 Resume on do. 83 certain - 10/83 from America \& Discussion on causes.
709722 Nat. at great distances. in various countries; Europe/U. States 716 in 26 years 600 miles of Lat. Many other good facts of rapidity/- 720 Monte Video cases, when became social/ Juan Fernandez on Australian list.
723 Plants nat. in Europe since * date of Columbus; from all countries (Compare with Australian List)
742 Resume on do. 64 sp. good in contrast to many on islands (None from any island) No p. 754). The introduced sp. are wide rangers in home
746 Plants nat. in N. America (751 Nat. plant in many countries \& wider range than its own nat.)
754 Resume of do. p755 (proportion 122: 35) of plants of 2 worlds.- Proportion of Fams. of Nat. Plants nearly same as of indigenous in Europe.-
(p .759) the naturalised plants here again wide rangers in Home
761 Plants probably from merely scientific reasons nats. by nature in Tropics of Africa \& S. America
796 Resume on - shows very few cases from continent to continent.
797 Again rule that naturalised, were originally spread widely \& have naturalised widely
798 On difficulty of succeeding in naturalising a plant. When tried intentionally good to show importance of struggle
804. The species which * have become naturalised belong it seems to Fam. which
have not wide average nat. range; but that does not concern me * on account of specification; if the individual species have that is all
Overlooks time See MS remark.
3
Alph De Candolle for Vol 2. \&3.
807 Recent Fir trees extinct in Ireland \& Shetland Isd - Faroe \& Nut-trees.-
995 cases of trees with Disjoined ranges (Alpine, Glacial \& 996
Disjoined acquatic Plants
999 After Glacial period more lakes - p 1024
Eriocaulon 1027-1029 - Nymphaea W. Plant range of.
1007 Disjoined Alpine Plants to 1019
1019 Alpine Disjoined Species (but some partly glacial) connected with being aberrant forms. p1035 get Hooker to look over lists.
1025 Inter-Tropical Disjoined species.
1030 Cyperus polystachyus hot soil. Mem. Hooker Himalayan Cyperus in Hot Springs shows a genus adapted to become fitted for peculiar site.
1034. No sp. common to S America \& S. Asia, unless also fd in Africa - why on theory of creation? good
1036 Sp. common to Mauritius, Madagascar \& India. do. difference is in Bourbon \& Mauritius.
1047 Good discussion on Disjoined species. 1047. Species common to N. and S. not found in Tropics. Glacial: Antarctic ocean 1054.

1055 Conclusion on Disjoined Sp. races
1056 on ancients causes of dispersion. remarks in general
1062 on antiquity of species - old Trees
1067 Brongniart on relation of American \& Europe in vegetation fossils
1092 to 1104 On Origin of Sp . Extinction, Isolation
1097 Concentration of close species the rule \&
1110 Multiple origin of species (1116 do)
1127 Genera more real than species.
1129 some analogy intimated between all species of genus (1131 do) see my reference below 1145
1130 Disjointed genera - 1132 Metropolis of genera with wandering species
1133 small genera with few far separated species [Glacial] a difficulty here.
1137 The bigger the genus the wider its area of extension; specially if it has subgenera
1138 Relation of area of genus to that of its component species

1141 Genera confined to single isld with several species.-
1141 Case of Genera with very wide \& very narrow Ranges: Average range.
1144 number of individuals not guide to aboriginal country, but number of species is so.
1145 External characters go with consti: differences, as shown by crossing \& grafting. 1146 Cannot explain by any cause Distrib. of Families. 1149
1151 Distribution of Families like species of a genus.-
1152 Outlying genera abnormal or aberrant
1153 Single species ranging far taking place
or representing or equivalent in distribution
many local species in other cases.
4
Älph De Candolle 2d \& 3d Vols.
1158 Fams. with immense ranges \& local
List of small Fam. with few genera \& few species (Aberrant)
1161 Concentration of genera - not range in proportion to number of species.
1165 I suspect lower Fams. more broken?? good if I could show as it could be due to increase in number of species in higher Fams.- No. Higher Reptiles. higher Mollusc. Higher or more Reptilian Fish most broken: if contest within each Family it would be so.-
1170 Definition of Dominant families, which have most species.
1172 on number of species to genera \& to Families in various areas.
1176 On proportions of species of Dicot \& Monocot in different countries \& Islands 1180 Something in common with regard to Temp. even in all Monocot. \& Dicot. So on (1185) Mountains 1188 Humidity chief relation in the Mono. \& Dicot.
1189 to 1233 On the Dominant Families in various countries \& Islands.
1233 Discussion on \& good M.S. remarks.
1236 The richer in species any area, the greater the no of Families, ie more diversity in inhabitants
1237 Under unfavourable conditions the great \& dominant Families only survive.

- The Dominant Fams. over world are not always in same proportion to most numerous; they seem to be the increasing Families.-
1238 On how far the dominant Fams. are affected by climate. The most dom. seem now very complex. 1241. Even in Tropics Leguminosae, Compos. \& Gram. are the dominant Fams.

1247. Local dominant Fams, at Cape \&

CANDOLLE，VOL．II：NOTES
Australia（1251 for cases）
1249 good sentence，cannot explain proportion of Fams．in Islds by conditions．
1252 Arctic Regions very peculiar conditions yet very few peculiar forms，no Fam．Good
1254 Excellent Table of＂characteristic＂ Fams．（not found elsewhere）over whole world 1258 Detailed Table．
1267 On families with double \＆treble centres．
1267 Glacial
1268 good Glacial 1269 Cape at base of Page．
1271 Total no．of species in areas of various sizes（1273 small areas）
1275 same sp．range more widely in Sweden than in France 1276 still less widely at Cape \＆S．Australia
1279 \＆ 1282 On number of species in small islds．－
1278 Africa，tropical poor in species \＆very poor in characteristic Fams．（for latter see 1254 \＆1268）
1287 On proportion of no．of species to genera in various countries \＆ 1288 Islands．
1289 good discussion bearing on the problems of more life supported by more forms（1298）and generally on insular Forms．－ 1293 often monotypic－ie preserved from extinction． 1297 Islands again
1308 First great Division of Distribution of World are not related to Climate，like the forms of land．
1309 remarks Old \＆New Worlds greatest division．－
5
Alph De Candolle（Vol 2．\＆ 3 of mine）
1313 Plants of Europe in relation to Glacial． 1326 Glacial
1326 Lyell on most ancient sp．most repanded．
1329 Vegetation of Madagascar allied to India
1330 Africa \＆America never united all points to ancient Broken Land．
－Many species in common to Mountains of W．Indies Glacial．California \＆Chile
1331 \＆ 2 on Plants of Pacific isids
1332 Ligneous Lobelia in Tahiti
1333 Submerged countries when elevated have uniform vegetation
1334 admits some species are derived by modification
1340 Cause physique of present period one of subordinate importance．
Feb．17th 1860 I have now abstracted whole grand Work．

SA1－10 $\langle p p$ ．878－879〉

SA1 $\square \Re$

Introduction
＊p72 Hence dwarf？；84；116，8；144；147； p． 238
200 －influence of other species overlooked here \＆in similar cases．－
202 \＆so here．A cause which prevents more than $1 / 20,000$ seeds vegetating or giving full－grown plant．－Here in this page：preoccupation overlooked．How little climate explains what species are common \＆ what rare in same district－When ground preoccupied seeds of other plants wd have to arrive at period，when not in full vegetation．－goode
＊246；250；264，68；270；326；395；397； 406， 408 to $418 ; 422 ; 447$ to 474 to ）
SA2
p465 DeCandolle Books to see whether frequency goes with genera，as it does in Families，not in latter markedly in larger Families．
Boreau Flore du centre de la France
Miquel Disquisition Geograph Bot de Plantarum Regni Batavi Distrib 1837 Lugd： Batav：
Furnrohr Flore de Ratisbonne in Naturhist． Top．Regensburg 1839
＊De Plantis Salvadoricis 1830 Ev．Meyer
Meyer on Cape Plants p509 \＆ 512
SA3－6 \square R
SA3
Oct．15／55／：As every organism struggles for life：the individuals of every species，will try to adapt itself to several stations（of course chiefly wide－spread species will meet with such）for thus more will live．Why a species cannot adapt itself to all stations，depends probably on hereditary laws \＆actual chemical nature of its body．－But it may be said＊more wille live by being adapted to several stations；I think this is obvious；we might kill probably many species adapted to flourish under trees
\Leftrightarrow（or food of which species wd disappear \＆ decay if they not present）
without proportionally more trees－（or more chemical change，best measure of amount of live）＊living．－The better the conditions the more the life；\＆the more the life， probably the more the forms
see p 462 Tome 1 Decandolle why？I cannot prove this
（at least the more the small diversity of forms ie species，the more the great diversity ie genera，but not in same ratio．
－though the latter 〈ie number of forms〉 chiefly
depends on diversity of conditions，$\& \&$ for plants，at least，as Decandolle fils
＜over）has shown are most in warm，dry countries．Under peculiar conditions，small stations，there may be a good deal of life \＆ yet few forms，－as in arctic seas，－do the forms live throughout seas？or are they not short－lived．Why have Lakes few forms？no tides，not much diversity；no estuary of brackish water
\Leftrightarrow The question which I cannot answer is， why under bad climatal or soil conditions there shd be fewer forms than under good climate \＆soil．ie when little life，few forms but most diversified in stations．$\rightarrow\langle$ to SA4 \rangle ＊I think Decandolle explains why fewer social plants in good climate \＆soil．viz where more species there will be more neat adaptation．$\rightarrow\langle$ to SA4〉
I can see in case of salt marshes，because like small isolated isld（for salt－marshes are isolated by conditions themselves）there has not been room for creation：all the salt－ marshes in world under approximately similar climate wd make but a small world．－ All F．W．Lakes of same climate（besides too much separation）are likewise small．－Land fitted for heaths small－Even arctic seas small，especially if killed in winter．－
SA4 \rightarrow 〈from SA3〉My old question why so much life in North Seas，\＆so few forms，is probably in fact an illusion，the eye struck by number of same species．One is surprised to see any life compared with arctic Land．－
（Small area only bad from fewness of individuals giving chance of new forms， hence this is opposed to isolation being advantageous）
$\rightarrow\langle f r o m$ SA3〉 In bad climate \＆soil，the amount of live，from slow growth probably smaller than it appears \＆number of forms perhaps really in proportion to quantity of live considerable．－It has acquired a great laboratory to make all forms－Perhaps once there was no arctic Regions．－Hence few Alpine plants on really isolated Mountains．－ this caused by slowness of creation
Caspian biggest brackish water \＆a good many species．
〈over）mos
We may move to discussion on number of species．（N．B．few species，but many individuals in salt marshes）with the distribution of mammifers on premise that I exclude Cetacea，Chriopter \＆Seals？）The presence of Bats＊very strong case．－
\Leftrightarrow Is not Madagascar a great opposed fact to my views of distribution of Mammifers－
perhaps so large as to rank with Australia－ very separate \＆mammifers very like．－
（The way the Inula \＆Alders \＆Gorse， appeared in patches，shows seeds a very important element）
Ought the law of＊common plants belonging to large families，as is faintly case with Decandolle facts，to be common to large genera．A Family may \＆does contain many genera not increasing，but then a genus may \＆does contain many species not increasing．If on average genera contain forms more closely allied，\＆either decreasing or increasing more regularly， then the law wd hold more with genera than with Families－How does a Family increase by the genera increasing \＆splitting up \＆ other genera dying out \＆c Family turns into an alliance by a few portions only increasing \therefore I think law always better tested by genera than by Families．－
Some agricultural green crops are said to be advantageous because they smother weeds Here abundance of seed is important
SA5 Feb 15／57／：In every small area＊if not of some extraordinary nature，there are many genera to species．ie much diversity in organisms \＆no great number of individuals in relation to species－Sqr yard of Lawn－a single wood－\＆a coral islet－an islet of any kind．－This depends on most＊life being supported on small area．－
aaa But if the site be very peculiar，the former part of law fails，\＆species not very different as on Heaths－saline plains Cyperaceae as in Hots－pools（Hooker Himalayan Journ）there peculiar adaptations will come into play：In these cases \＆there are also generally many individuals in comparison to species because only few things can live there．＊
〈over）
Diversity of sites great cause of most numerous species（D．C．explains well effect of dryness）．Subject to this I shd expect \＆ believe it is，that most species when most life，for as organisms are so intimately related to organisms this will in itself cause more species．And this bears on unfav－ ourable conditions，as Arctic Regions \＆c
SA6 aa If the site be small，\＆somewhat peculiar \＆as compared to rest of world，As in arctic regions（near winter）Alpine summits －Lakes of F．Water－then there will be many genera to species，\＆very many indiv－ iduals to species．－
why is this 1 believe because laboratory small；if in nearly whole world，with myriads

CANDOLLE，VOL．II：NOTES
of individuals selection has effected what we see，we could not expect so much for restricted asites，specially if of no great antiquity：as Arctic Regions－［N．B．this is contradicted by islands；No but into these forms transported from other countries come into play］Possibly unfavourable conditions may come into play，but I doubt from case of Lakes．－
〈over〉
p462
SA7－10 〈numbered 1－4〉
Nouvelles Recherches sur les lois on distribution des formes vegetales Humboldt， Sw Acad Sci 19 Feb 1821.
p． 6 Notre imagination est singulerement frappée de la preponderance de certaines q＇a cause de leur facile reproduction \＆cc （would aid no doubt）＂Fallacy．There is something quite unknown about social plants．The cause of such cases in the Mangrove is nearly obvious＝in pine forests in N．America，which when cut down for few years only bear oaks cactus \＆Bamboos＝in our heaths．I think that it is simply，that there are conditions of some peculiar nature to which only few $*$ species adapted．Yet how comes it that in Northern parts of Europe \＆ N．Zealand Ferns are so preponderant． Where a species is so obviously well adapted \＆abundant，there seems no tendency to form new species．A species to form new ones，ought to have been widely spaced under different conditions，\＆not simply numerous under the same，though peculiar conditions
2
II I think this explains the absolute want of relation between abundance in individuals \＆ species of the genus？：it shows that new species not formed by mere chance or laws of simple propagation I suspect the line of succession in making a new family may be this \＆not branch out till＊a new \＆useful form is formed．
p． 9 Generic forms numerous on Mountain summits（ - small area）as in Glacial region：there must be a cause
（as in Dark cases，Blind Fauna．as on Coral islands also）
\＆why such peculiar \＆ill－fitted situations ＂recoivent des colons d＇un grand nombre de genres＂．\＆Why do not several＊species of same genus become adapted，I think it must be because same spot can support more life under very widely different forms－Take glacial region or dark caseses－can support

1 nocturnal 1．diurnal carnivore－one grain－ feeder \＆\＆c\＆c（There is something very remarkable in this \＆very different habits imply generally different genera．（a））
〈back of 1〉
$\Leftrightarrow \rightarrow$ On this view the small number on Coral Isld is due to not－suitable conditions， \＆prob to few arrivals．
＜2 again）
p． 16 Under a given latitude \＆in either the old
3
or new world（which in several families have different proportions between the families） $\langle u \Leftrightarrow\rangle$ if we know the number for instance of the Leguminosae，we can judge of total phanerogames．
© not in Patagonia（Hooker）
〈back of 2〉
（a）We can understand this in animals \＆we must suppose something analogous in plants though not intelligible to us．
（3 again）
p． 22 The proport．numbers of the great families are the same in Germany \＆France； hence the species of Leguminosae， Cruciferae \＆Umbelliferae，which appertain exclusively to Germany，must be replaced by other species of the same families in France． Again France has 1700 or 1800 more species than the German list，\＆yet their additional number must be proportioned in same manner as whole．
＜calculations follow〉
\Leftrightarrow All this ought to be advanced as creationist facts
〈over〉
New species not having been created in Aegypt since Mummies \＆Pyramids is less result of physical conditions having remained unaltered，than of other organic beings having remained the same．－

4
$\bar{p} .23$ ．Taking even few square leagues near Berlin having only 900 species．Vide last page．
These facts show in most astonishing manner how if a new species has to be created，or more strictly perhaps to be introduced（ie if a gap be left in economy of nature）how it will depend on the character of every other plant in country－（Think of this with respect to animals，whose place in the economy of nature we understand better）The point is to consider what old species could be introduced $*$ ，their subsequent modification is a separate question．－

Shows how a gap in Nature is a fixed \＆ difficult point
〈table of calculations follows concerning proportions of Monocotyledons，Cyperaceae， Compositae and Rutaceae in the equatorial zone of the old and new worlds）
How does this list bear on above remarks does it not invalidate it？Wonderful adaptation of some kind is shown．－
〈over〉
－ p 466
SA11 〈pp．980－981〉 $\square \beta$
〈list of species〉 Unknown according to Bentham
SA12 〈pp．1020－1021〉 $\square \Re \otimes_{0}$
p．1020：The case of Geum－Veronica， Myosotis－go to show that Mediterranean was land during Glacial Period．－as does Moufion on Sardinia．－\＆some Alpine plants （in former page）on the Mediterranean islds －Perhaps bears on connection with Abyssinia．－sub－alpine plants on opposite side of Gibraltar－read J Smith？on change of level at Gibraltar
SA13 〈pp．1078－1079〉
Changed habitses
Decand $\&$（9．）
Edin．New Phil．Journ．61／70 fish salt water； Zoologist p． 20 do
Quatrefages Unite p79 Goose laying at new time
6．Colin $1 / 426$ animals accustomed to new food；Gard．Chronicle 1841． 291 Cherries vegetating earlier under Heat
SA14 〈pp．1232－1233〉 $\square \Re$
All these tables with under nearly same climate，the similar proportion of great Families impress my mind，very strongly how the existence of every species，depends on fixed laws \＆relation of organisms．－ Especially the latter respect，when we see how considerabiy different the countries are －It shows too by what laws the creation of new species will be governed．－
The proportion of the great Families in the Atlantic islds，impress strongly my mind as an argument in favour of continuity．Only coral isld（most of which probably at one time have been immersed）shows that different groups only are allowed to live．\＆ seeds from adjoining country wd be in proportion to that country．－
SA15 〈pp．1238－1239〉 ロæ •
〈table concerning Compositae and Leguminosae〉 As Legum are generally good sized seeds＊ I have made out this table of all the islands in foregoing list \＆it certainly seems very
doubtful how far size has anything to do with transport－But then floating；\＆crops of Birds come into play－
Upon the whole nothing can be inferred from this list
$608 w t / \uparrow w$（a）it might as well be argued that plants do not change under domestication because not perfectly adapted to man＇s use． De grants complete adaptation is proved not to hold good arguable，\＆yet argues because there is room left for new species， no change can be effected．On contrary，it might be argued if every country had its species perfectly adapted，then there wd be no cause，or means by selection to change species．－III－good 1－3m／3u＊＂Causes actuelles＂，4－7m／6u＂L＇adaptation complète＂，8－ $10 u$＂et lébranlées＂！！！w（a） $6092 u$＂passagères 1 adventives＂， $30 \mathrm{~m} / 30-39 \mathrm{w}$［The many plants which can live \＆the few which can propagate，shows that seedlings or life of seedlings the most crucial part of existence］ C．D．610 34－36m 611 1－3m，12－17m 613 38－ $49 m$（Boussingault） 614 6－10m，25－30m 6151 － $3 w$ Spiders webs Fall of pollen C．D．15－17m／ 16u＂10Ilieues＂616 31－33m，35－36m 617 10－ $12 \mathrm{~m} /$ ？， $27 u$＂courant \mid Canaries＂，31u＂l＇est letc＂ 618 12－15m， 36 m 619 wt in MacGillvray even Carrion Crow attacked a flying wounded Grouse $3-5 m / 4 w$（a） $11-12 m, 21-24 m, 32-36 m$ $620 \quad 28-35 \mathrm{~m} \quad 623 \quad 10-12 \mathrm{~m}, \quad 28-30 \mathrm{~m} / 30 \mathrm{u}$ ＂transport｜légère＂624 20－25m，34－37m 625 $1-3 m / 2 u \quad$＂magasin 1 graines＂ $628 \quad 30-36 w$ Peaches Oranges La Plata Guava in Tahiti $6291-2 m / 1 u \leftrightarrow, 15-21 m, 23-26 w$ shows difference of conditions $27-36 \mathrm{~m}$ 630 15－18？， 24－31m／27u＂Cel rarement＂ 631 1－4m，7－11m， 18－24m／24w JoyO $632 \quad 17-18 \mathrm{~m} / \mathrm{w}$ of irregular distribution $18-22 w$ । do not see that owing to non－transported $24-29 \mathrm{w}$ very curious details in following pages $63327-30 \mathrm{~m}$ $63414-16 \mathrm{~m} / 15 u$＂enclavés dans＂ $116 u$＂vent 1 le＂，21－25m／ヶ，31－35m／31u＂hypothèse＂｜33u ＂autrefois \mid facile＂ $\mid 35 u$＂accidentelle｜disparition＂｜ 31－39w Only one fact for this hypothesis $37-39 \mathrm{~m}, 40 u$＂àlcertaines＂／wb What an hypothesis 635 wt If herons eat fish with seed，such means wd have been more energetic formerly，when country wild．－1－ $5 u \pm / 19-22 m / \rightarrow / 2-7 w$ less time equally good theory 9－10m 636 9－10m 645 wt p． 703 He excludes plants growing only in cultivated ground，very correct．3－10m／w Big type certainly not． 687 1－3m $6989 u$＂satisfaisant 1 probabilité＂，11u＂quatre－vingt－trois＂／w $8312 u$ ＂avant｜siècle＂， $15 u$＂ 10 venant＂$/ w$ 10／83 Amer 26－28m，31－33m 701 wt（b）England formerly

CANDOLLE, VOL. II: 701
connected, hence most plants which could live in England wd have immigrated. If any species had been introduced by Birds within the last century, \& was not mentioned by old Books, it wd have been thought to have been overlooked.- $30-37 \mathrm{~m} / \mathrm{w}$ (b) (a) So very recent since $1700 w b$ (a) But is there not some arguing in circle for it is the very probability of being introduced by some one chief argument $70220-25 \mathrm{~m}, 26-27 \mathrm{~m}, 27-28 \mathrm{~m} /$!, 33-34m/! $7036 u$ " 55 ", $6 u$ "en 1724", 12$13 m, 39-40 m 7046 m, 7-20 m, 26 u$ "trois mille" $/ w$ Cent? $27-31 \mathrm{~m} / 30-35 w$ How can this be told - look at connections, before any ancient Floras $31 u$ "alpine laquatique" $7057 u$ "manque lexactes" $/ 6-8 w$ this shows the means he uses $7068-9 m, 36-38 m 7075-8 m$, 16$18 \mathrm{~m} / \mathrm{w}$ shows conditions $19-22 \mathrm{~m} / \mathrm{w}$ proves too much $24-26 m 7081-3 m, 8-13 m, 17-21 m$, $32-35 m, 36-40 \mathrm{w}$ even in same country difficult $709 w t$ (a) if all true, either doubt creations, or new isld do not form; but new isld do not form.- $3-6 \mathrm{~m} / \mathrm{w}$ by wind or animals $11 u$ "devaient|rares"/w (a) $17 w$ These are only a few of the best cases 711 $2 m / u$ "1629" "1623", 5-8w age of early good Floras $9-10 m / 10 u$ " $p .11627$ ", $37 m / u 71622-$ $27 w$ in 26 years 600 miles of Latitude Ch. 5 718 28-33m 719 12-13m/13u "quatrelaprès" $/ w$ Ch. 5 18-19m, 23m, 26-27m, 29-30m * 720 17-22m/19-20u "nelMontevideo", 27-28m, 32$38 m 7214-5 m / 3-9 w$ Falkland Isd Azores? Canary Isld How many (See next Page) $7 u$ "le| ordinaire", 18-22m, 30-35m 722 9-18m, $21-23 \mathrm{~m} / 22 u$ "espèces 1 naturalisées", $24-28 m$, 29-32m, 38-39m (Hooker) $72625 m, 30-31 m$ $7317-11 \mathrm{~m} / \mathrm{w}$ on account of Hybrids.- Ch. 9. $18 u$ "la| résolue", 19-20u↔ 732 17-18m/18u "de 1857 ", $19-20 \mathrm{~m} / \mathrm{u} \leftrightarrow, 42 \mathrm{~m} / \mathrm{u}$ "les 1 comme", $48 u \leftrightarrow 7331-4 m / 1 u \leftrightarrow / 3-4 u \leftrightarrow / 1-4 w$ what does Bromfield say on this? $40-42 \mathrm{~m} / 41 u$ "c'est I blanche" 734 7-15m, 16-17u "appuient|vue", $20-24 m, 30-32 \mathrm{~m} / 33 \mathrm{~m}, 37 u$ "que IStramonium" $7426-9 m / 8 u$ " 64 espèces", 17-19m, $30 \mathrm{~m} / \mathrm{u}$ "grand" 743 38-40m 744 1-5m, 6-8m/7u "18। siècle", $19 w$ (1) 20w (2) 18-24w I think this Law wonderful; but not applicable (?) to island.- 25 w (6) $29-30 \mathrm{~m}, 31-36 \mathrm{~m} / \mathrm{w}$ These introduced species are wide rangers in their own countries. $7459-11 u \leftrightarrow, 12-14 m / w$ Q6 746 18-21m 750 14-17m 751 23-31m 754 34$36 m / 35 u$ "à $184 " / 37 u$ " $172 \mid 12$ " 755 16w 35:172 18-20m, 35-36m 757 8-10m, 22-25m $7586 u$ "184", 7-12m, 30-33m 759 17-22m, $34-37 \mathrm{~m}, 39-40 \mathrm{~m} / \mathrm{Q} 7601 u$ "561nouveaux" $/ 2 u$ "Parmilsont"/1-3Q 30-34m 761 1-4m, 23m 762 3-4u "l'ancien 1 monde", 6-9m/6-7u "aux I sont", $9 u$ "trèslinconnue" $/ w$ This may be
natural $15-16 u \leftrightarrow / 18$? $76326 u$ "les courants", 28-36m/30-33w currents from Africa to America \& reverse 764 20-25w Current of Pacific from Hooker $38 u$ "dell'ouest" $/ 39 u$
 Carolines $7657-15 m / 9 w$ currents $19-21 m$, $23 u \leftrightarrow 7665-8 m, 15 w$ The Disjointed Species appear in further list, where there is no good evidence of true partition 769 14-16m/13-21w I see he admits often hooks are powerful agents of dispersion. 773 4-9w Rhizophora on 2 sides of America 774 23-25m, $26 u$ "peulgenre"/25-28m $796 \quad 8-10 \mathrm{~m} / 10 u$ "et 1 Océan"/8-22w opposed to my idea of storms. But so few \& agency of man so difficult to eliminate, that the case is not important. 19$21 \mathrm{~m} / 21 u$ "est légard"/23-38w All this shows that sea is a very effectual Barrier, when wide. How then islands in open ocean. Wind from isld to isld?- $28 u$ "était \mid tropicale", 30$31 m 79710-11 m / 11 u, 13-15 m / 12-17 w$ makes the case of such plants, peculiar to Isid, the more striking.- $17-22 \mathrm{~m} / \rightarrow / \mathrm{wb}$ This often mentioned before \& shows truth of rule, that when a plant ranges widely, it can range very widely Ch. 7. Acclimatisation 798 3-4m, $11-15 \mathrm{~m}, 18-21 \mathrm{~m} / \mathrm{w}$ not on islds $31-32 \mathrm{~m} 799$ $1-7 \mathrm{~m}, 33-38 \mathrm{~m} / \rightarrow 80030-34 \mathrm{~m} / \mathrm{w}$ so could live $801 w t / 1-15 w$ Could I get list of Naturalised Plants from Lowe for Madeira; for Canaries - Webb \& Berthelot; for Azores St. Helena. Sleeman - Watson: it in his publishO lists Bojer has done it for Mauritius.- This cd be important as showing means of distribution \& as showing inhabitants of islands not well adapted. $8024-5 m, 16-18 \mathrm{~m} / \mathrm{w}$ already disseminated $80328 \mathrm{~m} / 28-29 u \leftrightarrow / \mathrm{Q} 804 w t$ I fancy the Compositae agree with my law that Compositae have as class narrow range, \& few the species of range widely. No, my law was that when the species range widely the class ranges widely. But plants will not serve. Except so far how species range narrowly \& I fancy genera range narrowly. $3-6 \mathrm{~m} / 5 \mathrm{w}$ (a) $27-32 \mathrm{~m} / \mathrm{w}$ time, time (a) he argues for 2 or 300 years last 100 only known at all well.- $w b$ The Azores has 100?? European plants, if 1 transported in 1000 years then 1000 wd get in a hundred thousand years.- Who will pretend to think * real species has existed, so short a time? 805 23-28m/20-25w Bears most importantly on origin of cultivated species $29-30 u \leftrightarrow 806$ $9-10 u \leftrightarrow, 17-25 \mathrm{~m}, 24-25 u$ "le lencore", $40 \mathrm{~m} / \mathrm{u}$ "Illespèce" 807 21-27m, 29-33m 809 18-21m, 24-28m 810 || /wt N.B. Most domestic animals \& Plants can withstand most diversified climate, \& therefore (like
accidentally transported plants) they have probably wide range \& therefore are very unlikely to have become extinct or be unknown. $1-5 w$ Mosses only. Animals accidentally transported by man. $4-7 \mathrm{~m} / 1-5 \mathrm{w}$ Generally conspicuous * \& certainly useful. xxx 6-11w Shows that are becoming extinct belong to small broken genera.- This not $15 w$ (Good to compare all this with Bentham's article) $20-24 m, w b$ xxx Might say probably not local species $811 \rightarrow$ from p. $810\rangle / w t$ I suspect it will appear for Decandolle that the originals have not wide ranges; but I suspect Decandolle in the following discussion.- To make this argument perfect, they ought to run wild. Nor fowls \& Fancy Pigeons do not run wild. 815 19-27m 826 9-13m, 15-17m, 23-25m 827 4$7 m, 8 m, 20 u$ "combien 1 par" $/ 20-24 m / w$ not selected except size \& colour of root 32$33 \mathrm{~m} / 33 \mathrm{u}$ "pendant|altérées" $83138-40 \mathrm{~m} 832$ $1 \mathrm{~m}, 4-6 \mathrm{~m}$, 11-14m $8355-8 \mathrm{~m} 836$ 13-15m, 18$19 m 8382-5 m 8401-7 m, 15-19 m / 19 u$ "estimés généralement", $20-21 \mathrm{~m} / 21 u$ "origines 1 Choux", 26-27m $84212-16 m / w$ yet all cross - must be created in Hybrid Chapter. 22-24m, 26$31 \mathrm{~m} / 27-28 u \quad$ "deloleracea"/26-35w Here comes in argument * as in dogs, that reputed parents are closer than variations $32-36 m / 36 u$ "Systema"|? 843 27-34m 844 3$11 m 84820-25 m, 27-31 w$ See in Gartner about fertility. Nothing - 34-38w Not known wild positively - wb Hence not likely that the numerous varieties shd have each wild prototype 849 9-12m, 16-17w Not known positively wild $8507-19 w$ The fertility of the N . chinensis being American bears on the vars. in China (not known wild there) 854 wt/ $1-18 w$ I shd remember that * edible vegetables may be killed out by being eat up.- in times of famine at least annuals. but then seeds in ground, as Decandolle remarks. But annuals do not appear in winter time during famines - $85713-15 \mathrm{~m} /$ $13 u \leftrightarrow 86334 m / w \quad$ Citron $35-39 m / 36 u$ "d'espèce I celle", 40-42m $86421 \mathrm{~m} / \mathrm{u} \leftrightarrow, 29-30 \mathrm{~m}$ $8655-6 \mathrm{~m} / u / \mathrm{w}$ (2) $12-14 \mathrm{~m} / 13-14 u \leftrightarrow, 28-32 \mathrm{~m} /$ $28 w$ (3) $86633-38 m, 41-44 m 86719-21 m / 19 w$ bitter orange $868 \quad 8-13 m \quad 869 \quad 22-23 m / 22 w$ Sweet orange $30-36 \mathrm{~m}, 37-38 \mathrm{~m} / \mathrm{w}$-shows how he believes in hereditariness $39-40 \mathrm{~m}$ $8706 w 410 m, 15-21 m, 22-24 w \mathrm{Sp} . ? 624$ $25 m, 26-27 m 8714-6 m, 11-12 m, 28-29 m / 29 u$ "Bergamotte", 30-34m, 35-37m 872 18w \& Crimea 21-22m, 23-24m, 25-27m, 32-34m, 40-42m $873 w t / 1-3 w$ I daresay wild - Secy Boucher de Perthes in same Library. Hort. Soc. Agricult Soc., Antiq. Soc. $4-6 m / 5 u$
"Reynier"/4-6w Worth reading for Cattle \&c 875 16-19m/17u "multitude ${ }^{1}$ ces" 876 12-18m, $29-33 m, 34-36 \mathrm{~m} / \mathrm{w}$ Flora Jamaicae? $37-38 \mathrm{~m} /$ $36-40 \mathrm{w}$ good case for no doubt an eastern Plant 877 2-3m, 3-4w Poor 3-5m, 6-7m, 10$15 m, 23-24 m, 26-27 \mathrm{~m} / 26 u$ "plusieurs espèces" 878 20-21m, 27-30m, $34 m 87937-40 \mathrm{~m} / 38-39 u$ "faveur I sûr" $39-40 w / w b$ Hence probably derived from single species $88010-12 m 881$ 4-9m, 30u "Malumlils"/29-31m 882 6-7x / u "hort|121", 11-14m, 15-18m/16u "Théophrastelavant" $883 \quad 35-37 m \otimes 8843-$ $8 m / x$ 885 3-7m/x, 13-15m, $22 u$ "en 1857"/ $22-25 m, 27 m / x$ 886 11-12m/12u "S'ill espèces" $/ 1-31 w / w t$ There is strong difference in Laburnum \& Orange? \& apple cases the tree goes on producing separate fruit \& blended fruit. But this case (together with several stones of seed) makes Peach \& Nectarine different far more analogy with Sports. In LaburnumO case it is not pure yellow which produces pure purple; it is a mixed tree.- $19-22 \mathrm{~m}, 30-35 \mathrm{~m} / \mathrm{w}$ Peaches \& Nectarines $35-46 m / w / w b$ I shall have to read all Gartner on this subject $\uparrow 9-1 m, \uparrow 6 u$ "Journ" $1 \uparrow 5 u$ "V"/ $\uparrow 2 u$ "1851।299" $/ \Uparrow 3-$ $1 m 88711-14 m / x$, 17-21m, 35-40m 888 $23-25 m, \quad 26-32 m \quad 889 \quad 24-27 m, \quad 33-35 m$, $w b$ Great cause of doubt in fruit trees is escaped seedlings $8911-2 m 89716-20 \mathrm{~m} 902$ 27-31m 910 §12-9m/ $\uparrow 19-6 w$ (In Loudon good account.) confined range. Probably single origin. good to point out amount of variation. $\uparrow 13-11 m / \uparrow 9-7 m$ 911 1-4m, 14-15m/11-14w This good as well as gooseberry $\Uparrow 14 u$ "1557", 介12u "1597" 918 20-21m, 35-37m 919 25-26m 920 4-6m/4-8w Forster must be read again 921 32-34m 922 1-7m 923 7-9m, 15$16 \mathrm{~m}, 37-40 \mathrm{w}$ Mem Schomburgk in Guyana 925 24-30m 926 4-9m 928 4-7m (Lindley), 12$13 \mathrm{~m}, 16-18 \mathrm{~m} / 17-18 u \leftrightarrow, 21-26 \mathrm{~m}, ~ 26-31 \mathrm{~m}$, 35$37 m / w$ Read $9291-3 m, 5-6 m, 8-12 m / 9 u$ "150। froment", $15-24 m / 17 x / 15 w$ old vars $28-33 m / 28-29 m / 26-32 w$ Does not stigma \& anthers with pollen protrude what for if not for external fecundation in fine weather. $30-$ $31 x$, $35-37 \mathrm{~m}, 39-40 \mathrm{~m} 9301-10 \mathrm{~m} / 4-5 x / \uparrow w$? see the accounts of Australian savages how they try everything - Look at Carrot, Parsnip. Gooseberry - I am sure I have read somewhere of savages getting grass seeds.- Zizania aquatic (?) in N. America How large. $10-16 m / 10-11 x$, $17-21 m / w$ yet do not run wild.- $25-26 \mathrm{~m} / x$ /26-27u "nonl changé"/27-29m $9314 u$ "2822"|x 932 10$18 w$ Only 1 of the 4 species found on any good evidence wild.- So that at least the 200 or 300 sub-vars cannot have wild

CANDOLLE，VOL．II： 932
aboriginals $16-21 \mathrm{~m}, 22-25 \mathrm{~m} / 20-26 \mathrm{w}$｜doubt whether language can be trusted？so far as he does． $25-31 \mathrm{~m} / \mathrm{w}$ it is clear that one arrives at maximum $\Uparrow 3-1 m 9334-6 m, 7-8 m$ ， $15-16 u \leftrightarrow, 32 m, 39-40 \mathrm{~m} / 39 u$＂Bull． 166 ＂$/ x / w$ I have read this $93416-24 m, 38-40 \mathrm{~m} 9355-$ $6 \mathrm{~m}, 12 u$＂hexastichon＂／ $13 u$＂distichon＂｜ $14 u$ ＂vulgare＂，11－13x／w 3 sp．23－24x $/ 24-26 m$ ， $28-30 m, 33-34 m, w b$ The more I reflect the more I come to conclusion that antiquity of man one of the most important elements in history of variaton．－ $936 w t, 17-18 x * / 18 u$ ＂l＇Hordeum distichon＂ $118-20 \mathrm{~m} / \mathrm{w} 1$ or $2 / 4 \mathrm{f}$ ． apparently wild．－ $21-24 m, 31-34 m$ ，wb Lindley or Loudon makes probably only one species of Rye $93719 u$＂Econ．Eg．＂ 938 介10－3m，$\uparrow 2$ $1 \mathrm{~m} 9396-7 \mathrm{~m}$ ， $15-16 \mathrm{~m}, 34-38 \mathrm{~m} 94012-17 \mathrm{~m}$ ， $30-31 x / m$ ，$\uparrow 2-1 \mathrm{~m} 94115-17 \mathrm{~m}, 35-37 \mathrm{~m} 942$ $18-21 m, 22-23 u \leftrightarrow, 28 u \leftrightarrow, 31-32 x$ ，$\uparrow 3-1 m /$ w see about European vars． $948 \uparrow 9-6 m 950$ $5-7 m, \uparrow 7 x / \Uparrow 6 u$＂avait I considérable＂$/ \uparrow 5 u$＂au－ jourd＇huil nouveau＂，$\uparrow 5-4 m, \Uparrow 4-2 m, \Uparrow 15-1 w$ Did I not find it in elevated deposit？ 95110 m ， $13 x / 15 x / 11-18 m, 19 m, \Uparrow 15-14 m, \Uparrow 12 m$ ，$\uparrow 11-$ $8 m$ ，介4－1m 952 15－19m 956 10－11m 957 36－ $37 m 960$ 19－22m／20u＂localitélauteur＂ 961 25－ $27 \mathrm{~m} 9621-4 m, 18-21 \mathrm{~m} 966$ 10－15m 969 20－ $21 \mathrm{~m} / 21-22 u$＂grandel Rouge＂ 980 4－6m，18－ 20 m 981 table．m／w＜notes Bentham＇s opinions as to wildness，affinities and principal locations of species listed；so also pp．982，983） 982 wt Plants not mentioned by Decandolle Celery －（Medlar known wild）Cynara cardunculus （Pistachio nut origin unknown）Anel or Fennel Asparagus Atriplex Isalis lint \＆ Ricinus Castor－oil Plants（origin doubtful） 983 1－3m，4－7m 〈in text below table〉 984 21－23m， $25-28 m, 29-34 m / 30 u$＂ 157 ＂， $34-35 u$＂ $21 \mid 85$＂／ $35-40 \mathrm{w}$ omit in my calculation，though several authors，I think，wd not put in the 85 $9852 u$＂32 laient＂， $9-10 m, 11-14 m / 12 u \leftrightarrow / 11-$ $18 w$ comparatively modern．\therefore this which at first appears a very important original is not so important． $14-15 u$＂dans 1 connus＂$/ m$ ， $20-27 m, \Uparrow 3-1 x * / \Uparrow 6-4 u \leftrightarrow / ? ? / \Uparrow 12-1 m / \Uparrow 11-8 w$ against creation for man？986a $5 \mathrm{~m} /$ ？， $9 \mathrm{~m} /$ ？， $14 \mathrm{~m} /$ ？， $18 \mathrm{~m} /$ ？ $986 \mathrm{~b} 5 \mathrm{~m} /$ ？， $12 \mathrm{~m}, 13 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}$ $9871-4 m / w t / 1-6 w$ Celery not cultivated in Tierra del Fuego Potatoes not south of Chile．because not being civilised for culture No S．America，but Incas far enough \＆long civilised． 988 1－2w But I think ground cultivated in La Plata when discovered 4－ $10 w$ How many of these cultivated along Cordillera－Look to this． $9 w$ Tomato $\uparrow 4-1 m$ $9891 \mathrm{~m} / \mathrm{w}$ This all used $3-4 \mathrm{~m}, 6-8 \mathrm{~m}, 10-14 \mathrm{~m} /$ w exactly the same as in Pigeons $15 u$ ＂XVIe＂， $16 \mathrm{~m} / 16 \mathrm{u}$＂choux l courges＂， $19-22 \mathrm{u} \pm /$
$21 m / 15-21 m / w$ but no evidence that have not reappeared $23-27 m, 27-29 m, 29-37 m 9905-$ $9 m / 7 x / w t \times \mathrm{He}$ seems to have overlooked the indirect effects $1-2 m, 3-4 ? ?, 15-21 \mathrm{~m} / \mathrm{w}$ But this all implies such perfect commun－ ication $28-34 m / 28-29 u$＂oulcommunication＂／ $27-37 w$ Here he admits faulty commun－ ication．This argument equally applicable to var．arriving in one country $31 u$＂silautre＂／ $32 a$＂spontanément＂in same country $\uparrow 5-1 m$ 991 6－8m／？，16－17u＂Quand lagriculture＂／14－ $24 w$ ！How can he pretend he knows origins of agriculture．－（Celts are thought to be agricult．lists）$\pi 7-1 \mathrm{~m} / \mathrm{w}$ How can he tell no change．－No＊selection $9921 \mathrm{~m}, 3-7 \mathrm{~m} / 4 \mathrm{w}$ quote $8-16 \mathrm{w}$ So when one attends to any species，instantly one begins to get new varieties．－ $14-15 \mathrm{~m} / \mathrm{u}$＂seulement lorigines＂ 993 18－20u＂examinél transport＂｜！，24－25m 994 20u ＂occupé＂ $119-20 \mathrm{~m} / \mathrm{w}$ forgets wild 23－26w in Keeling Isid some larger fruited trees $9957 u$ ＂en Sardaigne＂ $15-7 w$ So Decandolle thinks these species distinct $21 \mathrm{~m}, 23-24 \mathrm{~m}, 26-27 \mathrm{~m}$ ， 32－33m／32u＂Quercus Suber＂，33u＂il 1 Madère＂ 996 1－4m，10－11m，19－20m／17－22w Pigeons might transport Beech most or Oaks 1 §6－1m $99714 u$＂Bourbon 1 Maurice＂／ $13-15 w$ ？How if not Fact？ $13-15 m / 13-25 w$ I think there must have been some great subsidence here．－ 1 might ask Maury about soundings between Mauritius \＆Bourbon． $26-27 w$ wingless Birds $9984 u$＂Bourbon，Maurice＂，22－25w He does not bring in depths．－ 999 wt I think soon after Glacial epoch，country with more lakes， like Finland？？ $16 u$＂en Abyssinie＂ 117 m ，21－ $23 m, 28-30 \mathrm{~m} / 29 u$＂flottent｜germination＂，33－ $36 \mathrm{~m} / 36 u$＂aux｜Shetland＂ $10008-9 \mathrm{~m} / 9 u$＂à l＇île＂，14－15m，18－19m，14－25m $10013 u$＂en Lithuanie＂，6－7u＂nord｜Italie＂， $17 u$＂La｜du＂， 24－28m／24w Extinction 31w Extinction $34 u$ ＂dans I méridionale＂，39u＂en Algérie＂ 1002 1u ＂aulEspérance＂， $2 u$＂dans \mid Amérique＂，34－35m 1003 wt Sea breaks with F．W．lagoons often bordering coasts．－1－2m／w Extinction？ $7 w$ Extinction（？）19－21m，29－31m，37－38m 1004 $10-13 \mathrm{~m} / \mathrm{w}$ wd surely stick on birds $22-25 \mathrm{~m}$ ， $32 u$＂mûrit Ide＂$/ 31-34 m / w$ Birds pick up $\uparrow 2-$ 1m 1005 15－17m，20－21m，23－25m，29－33w must conclude belong to causes geological or anterior $\uparrow 8-1 m 10061-4 m / 2-3 u$＂l＇autre I montagnes＂， $10 u$＂d＇immenses＂ $11 \mathrm{~m}, 23-24 m$ ， $27 u$＂première hypothèse＂， $28-29 m / 28 u$ ＂chaque lespèce＂ 1007 5－8m，8－11w D．C． speaks of 300 leagues $=15^{\circ}$ Lat．12－13w nearly 20° between Lapland \＆Switzerland． $17-18 \mathrm{~m} / \mathrm{w}$ Hence 108＋18／685 not altered since glacial epoch $23 u$＂purement＂$/ 22-24 m / w$ I do not understand whether these 124
exclude the Swiss $26 u$ "arctico-alpines" $\mid 26-$ 27 m 1008 wt (It being only genera \& not species in common on Borneo \& Australia, is a difficulty.-) wt Not one of these is Atlantic isld. 10u "au Caucase", 17u "Carinthie"/w where $22 u$ "variété d'Amérique" $/ w$ Extinction $\Uparrow 2 u$ "monts I centraux" 1009 13-15m/13-19w this shows I think, former land transport \& not by icebergs $32 u$ "Corse" $101024 u$ "SierraNevada" 1012 2-4m/3u "arctico-alpines", 15$16 \mathrm{~m} / 15 u$ " 3 Ilieues", $22-23 u \leftrightarrow / 19-26 \mathrm{w}$ This seems to me to presume that we know the causes of struggle far better than we do.-$26-29 w$. Elsewhere far less of these $30-36 w$ mountains \& therefore probably other species take their place $\Uparrow 4 m 10131-2 \mathrm{~m} / \mathrm{wt}$ of course for implies first wide extension. 5$9 m, 14-16 m, 28-29 m / 29 u$ "les \mid Abyssinie" $/ 30 \mathrm{w}$ There are mountains in Ab of $10,000 \mathrm{ft} w b$ Are there many genera in common between Abyssinia \& Europe not fd in intermediate country? $101414 u$ "Sinai", $\uparrow 3-1 m 1015$ 1-2m, $7-8 m, 16-17 \mathrm{~m}, ~ 24-28 \mathrm{~m}, ~ 29-33 \mathrm{~m}, ~ 34-36 \mathrm{~m} / \mathrm{w}$ my facts go only to genera.- $10161-7 \mathrm{~m}, 18 u$ "aux 1 pieds" $/ 19 u \quad$ "dans 1 montagnes"| $20-25 w$ This must have been imported during glacial period (a) $28 u$ "Abyssiniel pieds", $31-32 m$, $37 \mathrm{~m} / \mathrm{w}$ extinction $38-40 \mathrm{~m} / \mathrm{w}$ since glacial $\pi 1 \mathrm{~m} / \mathrm{u}$ "aux|hauteurs"/w (There are also alpine insects $w b$ (a) This good argument against connection by land or if land connection a very long one for cold \& warm plants, so plenty of time for immigration of everything whicho cd immigrate us land quadrupeds.- 1017 1-4w Mem: if seeds transported by icebergs $\$$ it wd be irregular.- $5 u$ "Sommités" $/ 5-6 \mathrm{~m} / \mathrm{w}$ extinction since glacial $8-9 m / w$ extinction $11 u$ "montagnes" $/ 10-11 \mathrm{~m} / \mathrm{w}$ extinction since glacial (?) 16-17w Extinction since glacial. $24 m, 30-36 w$ one of the species which has transmitted down Andes crossing by Behring Straits $\uparrow 6-5 w$ extinction since glacial 10184 7 m , 9-10u "L'identitél quoique"l?!, $14-16 \mathrm{~m} / \mathrm{w}$ extinction since glacial $24-29 m, \uparrow 4-1 m / \uparrow 2 u$ "déposélimpalpables" 1019 13-17m 1020 wt The fewness of these cases show how usually habitat continuous 3-10w Spain \& Greece \& Palestine. Extinction 15-19m/w alpine in Spain \& Taurus 22-23w Extinction $26-27 w$ extinction $32-33 w$ extinction $36 w$ extinction $39 \mathrm{~m} / \mathrm{w}$ extinction $41 \mathrm{~m} / \mathrm{w}$ extinction $44 u / 45 \mathrm{~m} / \mathrm{w}$ partly alpine $w b$ Those with x seem most likely to have been separated by extinction, but they do not seem very good cases or worth calculating for extinction.- $\langle x$ against Minuartia dichotoma, Viscum cruciatum, Solanum persicum> 1021 wt All
these 16 cases are Spain of Western portion of Mediterranean $2 w$ some extinction? 6x, 8$9 u$ "sur 16500 ", $12 x / w$ do $15 m / x, 21 u$ "habitant I sablonneux", 27m/w true $29-30 u \leftrightarrow /$ 28-37w Depth not excessive Now the islds in Mediterranean are not simply volcanic isd I think, but fragments of other rocks. See Map of Europe $39 u \wedge / 39-41 w$ species of Atlantic isld. $38 a$ " p." none mentioned./ mentioned at p. 10161022 2-8m/w After giving Spain \& W. Mediterranean Give Spain \& Ireland.- $7 u$ "car 1 montagnes" $/ 3-8 w$ During glacial period by Rennells current.- hence might have travelled by land during glacial period. 10$12 \mathrm{~m} / \mathrm{w}$ Great Genus $10-11 \mathrm{w}$ See S. America $13-14 m, 20-22 m / 16-22 w$ has only 3 species Decandolle makes a Family: Lindley a sub-family.- with 5 genera $25 \mathrm{~m} / 23 w$ Great Genus $27 u$ "à| famille", $30 u$ "des 1 Népaul", 28-29w Extinction $\Uparrow 10-1 w / w b$ Genus of 3 species Saurureae Rich., Alismaceae Rich. (so I suppose very peculiar) genera. Lindley gives only 4 genera to Saururaceae. It really might be worth while to work out the Spanish cases. No not worth.- $\Uparrow 4 u$ "Etats $10 u$ " $/ w$ this refers to these 2 last cases entirely dying groups. $10231-4 m, 5-7 m / w$ He always leaves out struggle with other species.- 9$12 w$ a great genus: Lindley 9 genera in Eriocaulaceae $22 u / 21-24 w$ Decandolle puts genus in the Family $28-30 \mathrm{~m} 1024$ wt F. Water habitats not being well stocked less likely to become extinct.- $1-2 m, 3-4 m, 7 u$ "la|Eriocaulon" $77-9 m, 10-13 \mathrm{~m}, 19 \mathrm{u}$ "mais \mid quantité" $114-20 \mathrm{w}$ Large genus not small subfam in Lindley.- (now thought peculiar species?) $\uparrow 12-19 m \quad 10254-5 u \leftrightarrow, 12-13 u$ "dirailimpossible", 28 u "siguelles" 1026 14?, 28? 1027 1?, 40-42m 1028 10-11m/10u "Lieux humides", 19?, 26u "Lieux humides"/?, 32? $1029 w t / \uparrow w$ If these are transported accidentally what hundreds of thousands of genera requisite.- May one speculate on excessive antiquity of F.W. Plants.Continents were all once united theo-retically.- It seems most improbable that the great laws of Creation shd be different for simple elements of aquatic Plants.- Is there any geological evidence of Water Plants being older? There is something in relation to land \& F.W. Mollusca, I think; Morris would know. ?The genera of F. W. Molluscs are most ancient $3 u$ " $I l \mid$ humides", 5-6u "les 1 humides", $10 u$ "Lieux humides", 31u "terrains humides", $35 u$ "les Ihumides" 1030 $3 u$ "montagnes IIndes", $4 u$ "montagnes intertropicales", 12-13u "mêmel 20° " $114-15 u$ "où|Antilles"/11-14w Ischia Volcano 1032

CANDOLLE，VOL．II： 1032
$13 u$＂humides＂， $18 u$＂graines＂， $21 u$＂humides＂， $34 u$＂humides＂， $37 u \leftrightarrow, 39 u$＂prés humides＂ $10334 u$＂Lieux humides＂， $10-15 \mathrm{w}$ I see one Dicliptera in Keeling Flora $22-25 m, \Uparrow 3-2 m$ $103417-18 \mathrm{~m} / \rightarrow / 19-21 \mathrm{~m} / \mathrm{w}$ why if creation． 1035 6u＂endroits marécageux＂，8－10m，12－ $17 \mathrm{~m} / \mathrm{w}$ small genus Lindley small Sub－Fam． \＆put it with（？）in another small Fam．26－ $30 m, 33-41 m 10361-3 m, 4-6 m / w$ Double creation．subsidence in Pacific $10-12 \mathrm{~m} / 9-19 \mathrm{w}$ either on coming or on going off of glacial period：species might have travelled by Arabia \＆c Canaries Isld 180 miles from Africa．－ $20 u$＂àl Mariannes＂／21－24m／23－24u \rightarrow／ $x x / w$ Primulaceae；moderate Family $34 m, 36 u$ ＂sont｜Mascareinhes＂，39－40m，wb good to compare list of Mauritius \＆Bourbon to see difference like difference in Galapagos \＆c 1037 9－11m，15－17m，22m＊，27－28w Supplemental list $30-32 w$ These seem all less certain．－ $103817 u \leftrightarrow 1039$ 11－12m，23－ $25 m 1047$ 1－2m，4u＂il monocotylédons＂，5－ $6 \mathrm{~m}, ~ 9-10 \mathrm{~m}, ~ 11-14 m, 15-18[. .],. 19-20[\ldots$.$] ，$ 20［．．］，21－22m， $21 u$＂êtrel hygrophiles＂， $25 m$ ， $27 \mathrm{~m}, 28-35 \mathrm{~m}, 39 \mathrm{u}$＂des 1 existes＂， $40-41 \mathrm{~m} 1048$ 20－25m，35－37m，38－40m 1049 21－22u＂Pour Maloiunes＂$/ w$ Var．of islds $35-48 m / 48 u$＂sept． parte＂ 1050 3－8m，9－12m／12u＂Il｜lithosperm＂， $22-28 m, 30-31 m, 33 w$ Arabia 34－35m，39u ＂Lieux humides＂，48u＂sericeal peine＂ 1051 1－ $2 m / 2 u$＂Les 1 maritimes＂， $2 u$＂Lieux humides＂， $6-7 m, 19-20 m, 31-35 m 10522-6 m, 33-40 m$ $10548-23 w$ There is something very odd in Family resemblance with Cape：quite beyond speculation．－〈u henceforth place－names〉 $8 u$ ， $11 u, 12 u, 14-15 m, 16 u, 22 u, 23 u, 24-25 m$ ， $27 u / 28 u / 26-29 m / w \quad$ cirripede in this predicament $30-31 u, 31 u, 33 u / 33-36 \mathrm{~m} / 34 u$ ， $38-40 m, 43 u, 45 u$ ，wb How little is known： power of floating \＆duration of vitality in salt－ water $10551 m / u, 14 u, 15 u$ ， $16 u, 29-30 m$ ， $42-44 \mathrm{~m} 1056 \quad 1-3 \mathrm{~m}, 4-12 \mathrm{~m} / 10-16 \mathrm{w}$ The separation of areas depends entirely on anterior causes？ie no means of present for transport． 1057 12－16m，25－27m，31－34m，35－ $37 m 1058$ 7－18m，23－26m，28－31m／32－34w Does not mention small number on islands． $\Uparrow 8-5 m, \Uparrow 4-1 \mathrm{~m} / \mathrm{w}$ If we cd believe in antiquity greater，this wd be explained．－ $10593-7 \mathrm{~m} /$ $5 w$（a），wt（a）If I remember right， Compositae wider range in Europe \＆Siberia than at Cape－if so formed into distinct species in latter．－ $10603-7 m / w$ Gerligg wd give opposite presumption $20-35 \mathrm{~m} / \mathrm{w}$ oh！oh！ Look to shells analogous formations．East \＆ West N．\＆S．America．－India．－not exactly contemporaneous $1062 \Uparrow 16 m$ ，wb He looks at extinction as due all to Deluges \＆c！！！ 1063

29－31m，32－39m 1064 1－14m，14－20m，23－ $24 \mathrm{~m}, ~ 38 \mathrm{~m} / \mathrm{w}$ 〈FD〉， $40-41 \mathrm{~m} 106639-41 \mathrm{~m}$ （Unger） 1067 wt Lyell refers to Murchisons Paper on Alps $4 u$＂pliocènes d＇Oeningen＂ $\mid w$ Oeningen．9－14m，15－19m／！！！， $27 \mathrm{~m}, 31-34 \mathrm{~m}$ $10694-7 \mathrm{~m} / 5 \mathrm{w} \bullet / \mathrm{u}$＂mais insuffisante＂， $15 u$ ＂la｜manque＂ $116-17 m, \quad 26-27 u$＂prennent importance＂／28－29m 1070 21－24m，25－28m， 29－32m $10717-17 m / 10 \mathrm{w}$ See next Page 18－ $21 m, 25-29 m, 30-35 m, 40 u$＂ville，village＂ 1072 $24 u$＂nouslépoque＂， $24 u$＂avec 1 données＂ 24 $32 w$ Not one of these characters agrees with primrose \＆Cowslip $26-40 \mathrm{~m} / \mathrm{w}$ The definition； but practically，\＆as far as my subject is concerned descent \＆creation come into play． $33 u$＂positivement I commune＂／wb Here creation comes into play No 1074 14－17m $107512 u$＂zoologistes＂， $18 \mathrm{~m} / \mathrm{u} \leftrightarrow, 23-25 \mathrm{~m}, 32-$ 33 m 1076 9－10m／10u＂la coттиие＂，19－22m， $28-31 m, 28-31!/ 29-34 m, 34-35 \mathrm{~m} / 35 u$＂pollen 1 bouton＂／？， $37 \mathrm{~m} / \mathrm{u}$＂quodlcreatae＂ $10773 u$ ＂hybrides＂$/ w$ oh $4-6 u$＂et｜qu＇on＂$/ 5-9 m / 6-9 \mathrm{~m} /$ $8-9 u \leftrightarrow, 11-12 u \leftrightarrow / w$ So he wd not argue from quadrupeds $19 u$＂la 1 succession＂，34－35u ＂Ainsil seulement＂$/ 35-36 \mathrm{~m} / \mathrm{w}$ even in Hybrids 1078 wt there is no separation between domesticated \＆wild variation $6-8 m, 10 u$ ＂variations 1 races＂， $15-18 \mathrm{~m} / 15 u$＂On \mid même＂／ $16 u$＂années＂ $14-31 w$ variations are fleeting changes in Individual：Probably answering to ＊（shell in brackish water）size in animal and wool－or blackness in Bird fed by Hemp seed 29－30m，33－34m， 37 m 1079 1－2m， $6-9 m, 12-13 m, 18-20 \mathrm{~m} / \mathrm{w}$ not hereditary $21 u$＂perdent 1 toujours＂，$\Uparrow 3 m$ ，$\widehat{4}-2 w$ Horse－ Chesnut origin known． $108019 u$＂àl multiples＂， $18-20 \mathrm{~m}, 26-27 u$＂variations \mid var－ iétés＂ $26-29 \mathrm{~m} / \mathrm{w}$ ie can be propagated by grafts． $30-38 \mathrm{~m} 1081$ wt If this cd be trusted， it wd be very important．－ $1-6 m / 1-4 w$ Chance seedling surely must have been raised？？ $5 u$ ＂jamais I semis＂，14－23m，31－33m 1082 7－13m， $25-26 m, 30 u$＂asperges＂$/ w$ asparagus $34-37 \mathrm{~m} /$ w Race $=$ sub－species $10831 m / x, 2-4 \mathrm{Q}$ 8－ $14 m / 9-10 \mathrm{Q} \quad 16-21 m / 17 u \quad$＂pourpre＂$/ x / 20-21 \mathrm{Q}$ $21-24 m, 24-29 m / 26 \mathrm{w}$ any crossing？ $34-36 \mathrm{~m}$ $108420-23 \mathrm{~m} / \mathrm{w}$ very good \＆new $38-40 \mathrm{~m}$ $10858 u$＂curieuse 1 rarement＂， $17-20 \mathrm{~m} / 20 \mathrm{w}$ only requires selection．21－23m， $25 u$＂est I dans＂， $30-31 u \leftrightarrow, 32-33 u$＂imparfaits 1 borné＂， $34-35 m 10867-13 m / 7-20 \mathrm{w}$ For my view I do not want races，only more variability：these introduced plants are excellently adapted，for they hold their ground in a well stocked country． $19-24 m / 19 u$＂conditions I tendent＂， $24 u$ ＂depuis I siècles＂／22－25w because adjoining continent stocked $27 u$＂cette chimère＂／28－ $30 u \leftrightarrow / 25-30 \mathrm{~m} / \mathrm{w}$ Azores plants．Himalaya

Rhododendron Ceylon Plants. $\uparrow 7-4 m, w b$ The Kidney Bean objection goes for nothing; those who bring it, seem to think that climate acts on all: it is selection \& we know not that colder climate has anything to do with production of hardiest varieties, yet I believe climate does gradually harden plants 1087 3$6 m, 23-30 m, ~ \Uparrow 2 u$ "influence du climat" $/ w b$ (always this) He has not the Key.- 1088 5$6 \mathrm{~m}, ~ 7-12 \mathrm{~m}$, 33-35m 1089 16-20m/15-16w Bears on old glacial period $25-31 \mathrm{~m} / 25-35 \mathrm{w}$ I suppose he means they wd not have been created not to extend for they cd not have extended, owing to their isolation.- $1090 \mathrm{Im} /$?, 8-9m, 25-30m, 36-37m, 38-39m 1091 6-8m, $11 u$ "c'estlcultivé" $109212-17 \mathrm{~m}, 20-23 \mathrm{~m} / \mathrm{w}$ Shows not shadow of evidence in shells !! $109310-16 \mathrm{w}$ not isolation in case of trees; many species in same island.- 18-22m, 25-32m/26-27u "distincteslautre", 38-40m 1094 7-8m, 10-13m, 14-24m, 34-37m, 39-40m 1095 $10-13 \mathrm{~m}, 16-19 \mathrm{~m}, 29-32 \mathrm{~m}, 33-35 \mathrm{~m}, 37-40 \mathrm{~m} / \mathrm{w}$ same argument as Cuvier about Dogs $\uparrow 5 \mathrm{~m} /$ wb but many think these are only varieties 1096 wt (a) It must be most rare, when species gets isolated \& sports suddenly: I shd think favourable but diverse conditions (referring chiefly to other co-organisms) but numbers in the sport not great. - 5-6m, 8$10 \mathrm{~m}, 11-18 \mathrm{~m} / \mathrm{w}$ In fact he here follows man's method of selection too servilely.- $14-18 \mathrm{~m} /$!, $19-22 \mathrm{~m} / \mathrm{w}$ islands $20-25 \mathrm{w}$ (a) Isolation chiefly requisite to get new conditions. $23-30 \mathrm{~m}, 32-$ $34 m / 32-33 u \leftrightarrow 10971-3 m / w$ This necessary for if contrary was rule, they cd not have descended.- 4-6m, 6-10w (a) (Antelopes same case at Cape) 9-14m/12-13u "causel naturelle" $/ 10 w$ Selection 17-24m/14-21w This exactly the reverse argument of old Decandolle about Araucaria $\Uparrow 14 w$ Yet in Compositae we have case of Centaurea in HD Hieracium \& $\uparrow 21-1 w$ Get Watson to give some particulars about Hieracium: see in marked list, how many doubtful vars. $\uparrow 8-1 \mathrm{~m} /$ $\Uparrow 12-3 w$ What is Henslow composite plant which has a palustr species or $*$ Kierecium.〈he means Hieracium), wb (a) Elevation slow * subsidence. every continent has been many times divided into islands. $1098 \quad 7-8 m / 8 u$ "isolement" $/ 7-11 w$ ie avoiding crosses.- yet he says many are impregnated in bud.- 9$12 m /!!109924-26 m, 32-38 m / 35-38 w$ always overlooks selection.- 1100 2-6m, 7-8m, 16$18 \mathrm{~m}, 31-33 \mathrm{~m}, 39-40 \mathrm{~m} 110110-14 \mathrm{~m}, 22-31 \mathrm{~m} /$ 27-28w Well stocked countries $34 w$ (time) $36-38 \mathrm{~m}, ~ 39 \mathrm{~m} \quad 11026-17 \mathrm{~m}, 20-30 \mathrm{w}$ । do not see any good in discussing this hypothesis.- There is so little analogy in a
plant taken suddenly $29-30 \mathrm{~m} / \mathrm{w}$ false $\uparrow 10-$ $2 m /!$? 1103 22-23m, 29-39m 1104 24-31m, 32$37 m 1105 \quad 6-8 m 1110 \quad 36-40 m 1111$ wt (a) Those geologists, chiefly continental, who believe that species all destroyed by catastrophe, upset the whole theory.- $5 w$ (a) $30-33 \mathrm{~m} / \mathrm{w}$ just like shells, with increasing knowledge all upset. $34-37 \mathrm{~m} 11122-5 \mathrm{w}$ Mem. India \& Africa $35-37 \mathrm{~m} 11132 \mathrm{~m} / 3-5 \mathrm{~m} /$ $1-9 w$ Mem. how little is known about Chalk. Hooker is much opposed.- It is like arguing about Mammifers.- $11143-8 m, 21-26 m 1116$ $1-5 m, 17-22 m, 24-27 m 111718-20 m, 29-32 m /$ $33-35 \mathrm{~m} / 28-40 \mathrm{w}$ All this agrees with my theory, but I confess I do not see much weight to argument concerning facts of introduction accidental. 1119 1-4m 1121 21$25 \mathrm{~m} / 25 u \leftrightarrow 11241-5 \mathrm{~m} /$?/wt This shows how little he appreciates real antiquity of world.-27-31m 1125 9-12m, 18-21m 1126 27-28m 1127 14-21m, 27-30m 1128 2-6m, 16-22m $11291-2 m / 2 u$ "complète", $11 m$, $18 m 1130$ wt Glacial Th. 3-4m/w Ask 9-13m 1131 3-4m/3u "individus Ifaits"/2-8w ie you may have many species \& few individuals; or reverse.- 11$13 m, 15-20 \mathrm{~m}, 22-23 \mathrm{~m} 11328-10 \mathrm{~m}, 13-15 \mathrm{~m}$, 16-18m, 21-23m, 22-24m, 26m, 29-30m, 31$32 \mathrm{~m} / 31 \mathrm{u}$ "Les 1 dispersés", $32 u$ "plus rares", 3940 m 1133 wt Are these aberrant genera? 1$2 m, 4-6 \mathrm{~m} / 6 u$ "et \mid Brésil" $/ 4-7 \mathrm{w}$ small genus with wide range, \& species itself wide ranger. $9 w$ cold period $14-16 \mathrm{~m}, 21-23 \mathrm{~m} / 22-$ 23m, 24-25m, 30-32m/26-40w/wb opposed to my doctrine but how little we know of agglomeration of individuals - The number of species will always depend on anterior causes, of individuals or actually existing causes.- $\uparrow 4-1 \mathrm{~m} / \mathrm{wb}$ Yet as far as H.C. Watson's Cybele goes, it wd appear so.-$11343-7 \mathrm{~m}, 8-12 \mathrm{~m}, 18-22 \mathrm{~m} / \mathrm{w}$ on the number of genera in a region.- $27-29 \mathrm{~m} 11351-8 m$ 1136 table.w but here comes in old cause of doubts that regions, not divided according to apparent obstacles of transport. 7-8m * 1138 $1-5 m, 7-11 m / 12-16 m / 7-18 w$ a good proof that with wide diffusion differences supervene all showing slow transport.- $\uparrow 15-9 m, \Uparrow 4$ $3 u$ "la| régulière" $1139 \quad 1-3 \mathrm{~m} / \mathrm{w}$ General conclusion 21-23m, 24-27m/24-39w see next Page So that perhaps (he admits) it is only in the less large genera (ie growing genera) that extension of * one of species affects course of genus $11403-6 \mathrm{~m}, 10-11 \mathrm{~m}, 17-26 \mathrm{~m}$, $28 u 1141$ 18-19m, 22-30m $1142 \uparrow 13-12 \mathrm{~m} / \rightarrow$ / $1-14 w$ area of genus thrice size of species .$X * X$ Perhaps really six times as great as species $11434-6 \mathrm{~m} / \mathrm{w}$ How little he understands extinction. $16 u$ "isolement", 17-

CANDOLLE，VOL．II： 1143
19m，33－35m／34u＂un lprès＂ 1144 27－29m 1145 14－17m 1146 6－10m，11－15m 1147 31－ $32 m 114924-30 \mathrm{~m} / 25 u \leftrightarrow / 28 u$＂n＇est locéan＂， $38-40 \mathrm{~m} 115023-24 \mathrm{~m}, 25-26 \mathrm{~m} 11518-10 \mathrm{~m} / \mathrm{w}$ This like species of a genus $19-21 m, 27-$ $31 m, 35 u$＂quilFissenia＂｜ $36 u$＂doit｜rapporté＂｜ $34-35 w$ seems abnormal genus 1152 wt In Steudel Bontia put in many Families $3 u$＂à l＇extrémité＂$/ w$ small Fam． $6 u$＂Bontia＂$/ 5-8 w$ is Bontia abnormal in the Myoporaceae $7 u$ ＂Sélaginées＂／7w small Family $8 u$＂Gym－ nandra＂$/ 8 w$ abnormal $23-24 m, \quad 28-30 m$ ， 31－32m 1153 1－5m，16－19m 1154 12－15m，17－ $18 m, 23-27 m, 30-33 m, 35-40 m 1155$ 27－28m， $33 u$＂soit $\mid 100$＂ $35 u$＂ 2,5 ＂／36u＂7 1／2＂，36u ＂12 1／2＂／31－40w／wb There are more species of Graminaceae in Holland，than in France， but far more individuals of Graminaceae．\＆ so fewer Leguminosae even of individuals than of species． $115622-25 m 115726-27 m$ 1158 16－18m，29－30w Families with confined ranges $36-37 \mathrm{~m} 115916-19 \mathrm{w}$ I doubt whether cd have been exterminated elsewhere 20 w above 300 species $11604-6 m 11617-8 m$ ， $22-25 m, 26-29 m / 27 u$＂d＇une l régions＂ 1162 22－ $27 m 116414-16 m, 24-26 w$ Examples of above 1165 25－28m／25－32w Monocots．much more broken families Lower Families more broken：so Ferns，Equinatae \＆c．more distinct．－ 1166 1－3m 1167 24－28m 1168 11－ $14 m \quad 1169 \quad \Uparrow 3-1 m \quad 1170 \quad 10-13 m$ ， $14 u$ ＂caractéristiques＂， 22 u＂l＇absence＂， $25 u$＂Enfin I familles＂， 27 u＂delFougères＂ 1172 12－17m／12－ $21 w$ Bears on numbers in small isld－but yet the diversity of forms bears on adaptation $27-29 m / 29 u$＂diminue＂ 1174 介8－ $5 m 11778-10 m 1178$ wt for World 83／17 table．m＂Grande Bretagne＂｜．w Penny Encyclop． 83，827 sq miles table．m＂Nouvelle－Zélande＂｜．w 8600 sq miles－Crawfurd 1179 table．w I wish I knew real size 〈of islands＞so as to see as compared with continents real miles of inhabitants．〈rest of table has dimensions of islands marked \rangle ，wt Make out or ask author whether mere relation to distances from mainland does not influence number of species wbec 1180 19－23m／20－27m／19－35w These are important as showing something common in constitution of the grandest div－ ision of Veg．Kingm． 1181 1－4m， $19 m 1184$ $\Uparrow 9-6 m$ ，$\uparrow 9 u$＂del Monocotylédones＂，$\uparrow 8 u$ ＂beaucoup $\operatorname{régions"~} 1185$ 17－19m 1188 16－18m $118929 u$＂prédominantes＂／w Definition p1170 1194 2nd table．m＂Amentacées＂ 1195 3rd table．w This very different proportion 1197 3rd table．m＂Légumineuses＂ 1199 1st table．m ＂Crucifères＂，3rd table．m＂Composées＂ ＂Scrophulariacées＂＂Renonculacées＂ 1200 1st
table．m＂Graminées＂ 1202 3rd table．m ＂Légumineuses＂ 1203 3rd table．m／w about size of Canary Isd 1204 1st table．m／w／wt Compare Sardinia \＆Canary Isd too Big 1206 2nd table．m＂Rosacées＂＂Composées＂＂Amentacées＂ ＂Renonculacées＂｜．w very curious 1207 2nd table．m＂Sur 157 Phan＂＂Rubiacées＂＂Ver－ bénacées＂$/ w$ very peculiar 1208 first table．m／w These families prevail irregular 1209 3rd table．m＂Salsolacées＂ 1210 3rd table．w Cambridge has 866 sp．m／wb How much more pure $w b$ Same general proportion as elsewhere 1211 1st table．m／w How the orders of the Families agree．－ 1212 1st table．m ＂Rosacées＂＂Amentacées＂，2nd table．m＂Lég－ umineuses＂，3rd table．w Rosaceae seem to abound in N．America 1214 2nd table．m 1215 2nd table．m＂Orchidées＂｜．w Compositae not here 3rd table．u＂ 57 Fougères et 9 Lycopodiacées＂｜．w hardly any Compos． 1216 1－2u＂Composées＂！！，3rd table．m＂Acanthacées＂ 1217 1st table．m＂Orchidées＂＂Rubiacées＂｜．w like New Guinea 1218 1st table．m，2nd table．m ＂Malvacées＂ 1219 2nd table．w Malvaceae prevail in W．Indies 1220 1st table．m＂Mél－ astomacées＂＂Malvacées＂，2nd table．m＂Orchi－ dées＂，3rd table．m＂Euphorbiacées＂ 1222 3rd table．m 1223 2nd table．m＂Scrophulariacées＂ ＂Rosacées＂＂Crucifères＂ 1225 11u＂Mél－ astomacées＂，table．m＂Protéacées＂＂Eparc－ ridées＂，$\uparrow 2-1 m 1226$ table．m，$\Uparrow 3 u$＂ 29° lat． S．＂ 1227 1st table．m＂Graminées＂＂Malva－ cées＂＂Aspholédées＂，2nd table．m＂Scro－ phulariacées＂｜．w None ．u＂Myrtacées＂，$\Uparrow 3 u$ ＂Scrophulariacées＂，$\uparrow 2 u$＂Epacridées＂ 1228 1st table．m／w very peculiar 1229 3rd table．m ＂Cypéracées＂＂Géraniacées＂ 1230 table．m＂Gra－ minées＂ 1231 3rd table．m＂Myrtacées＂＂So－ lanacées＂＂Berbéridées＂ 1232 12－14m，18u ＂316＂｜18－20m，table．m＂Composées＂＂Caryo－ phyllées＂ $12341-24 w$ He seems to think great object to get picture of country 1235 $23-25 m, 21-31 w$ ie the number of Fam．， making half the Flora．ie about 7 or 8 this number depends on richness of species in Flora $\Uparrow 2-1 u$＂nombrelVert＂w so he considers these islands have few species 1236 15－18m／12－24w This wd have been more useful to me if all Families had been counted．I do not see how it bears on me．－ 1237 11－14m／10－16w Hence under unfavourable conditions the great \＆ increasing Families chiefly prevail $22 u$ ＂Prédominantes＂／w Definit p1170 22－25w These must be the growing Families，either over world，or in some regions．－but sometimes peculiar regions．－26－32w Hence the predominating Families do not depend
solely on the number of their species. 1238 $1-2 m 1239$ wt When one sees Legum. Compos. \& Graminae. increasing one can hardly doubt that complexity of vegetation is increasing \& getting higher.- $13 u$ "àl Maurice", $17-23 \mathrm{~m} / \mathrm{w}$ Falkland 19/100 Juan Fernand 25/100 Tristan 9/100 25w \downarrow, 26-28w Madeira 13/100 Azores 111/2/100 | think these facts overcome the fact that individual species are not widely disseminated, because they are correlated. $\uparrow 15 u / w$ \& Timor \& New Guinea 1240 17-19w Perhaps replace Compositae $\uparrow 20-12 m$, $\uparrow 6 u$ "Les I ces" $12411 w$ tropical $1-2[\ldots], 3 u$ "nos \mid tempérés", $7 u$ "Mélastomacées", 13-16m 1242 24-27m 1243 1st table.m, $\uparrow 4-1 m 12441-2 m 1245$ 17-24m 1246 28u "la Nouvelle-Zélande"|?, $\uparrow 4-1 m 1247$ $15-24 m / 17 w$ Cape 1248 2-5m, 13-14m/14u "sont l représentée", 29-32m $124919-21 \mathrm{~m} / \mathrm{w}$ ie, I presume in proportion of Families $\mathbb{1} 7-$ $6 m, ~ \Uparrow 5-1 m$ 1251 16-20m, 21-24m, 21-22u "presqueld'espèces", 27-30m $125218 u$ "la| boréal", $19 u \star$, $17-20 \mathrm{~m}$, $34-35 u$ "Commel arctique" $/ 34-36 \mathrm{~m} / \mathrm{w}$ new forms do not arise under unfavourable conditions. $12534-17 \mathrm{~m} / \mathrm{w}$ It is rather small region, like Lakes, as well as unfavourable.- In middle tertiary still smaller area. Perhaps sea round Pole - If there be circumpolar sea, on some theory Probable.- $125423 u \leftrightarrow / 23-24 m / 12-19 w$ These imply the most fundamental \& longest separation, excepting so far as difference may depend on conditions $26 u$ "énumeration", $27 m$, $28 w 333 m *, 35-36 m / w b$ Except that Isld no islands seem to have any characteristic Fam. 1255 1-2w 4 3-6m, $7 u$ "intertropicale", 9-13w 16 Fams highly characteristic add one for Chile 18-19m, 24$23 w$ only $4 *$ highly characteristic $\uparrow 10-9 w 5$ $\Uparrow 4-3 w 512561-6 \mathrm{~m} / \mathrm{wt}$ Looking at plants on I or at animals, taking most distinct forms. It is clear I think that S . America excluding S . extremity most distinct - then Australia (2), Asia (3), - Mediterranean (4), Cape (5) (temperate N. America 6) - But Decandolle does not consider very small Families. 1257 $27-29 m 1258$ wt These right-hand tables apply to number of species in each Family, compared to world: conditions must influence to considerable extent.- table.m, "Renonculacées". w Refers to other division where found \& in order "Onagrariées". w equal "Cactacées".w *high land 1259 "Uvulariées".w 13 beginning with 2. ie more preponderant in N. America than in any other region. 1260 table.w 20 beginning with 31262 table.w 30 beginning with 4 - many peculiar 1263 table.w seem very distinct from
temperate old world.- 1264 table.w (numbers of species) $1265 \mathrm{wb} 34-10$ with 10 or * more predominant than in other countries 1266 介4-1m 1267 10u "Familles I principaux", $11 u$ " 15 " $/ 14 u$ " 3 " $/ 11-14 w$ This looks as if ancient connection by East old world.- $15 u$ "familles I principaux", 27-29m/w Glacial $\uparrow 4 u$ " 6 " $/ m$, wb I doubt whether had better be used $1268 w t$ I believe no revelation in science will be more wonderful, than the ancient history of geography of world, when we can feel sure that individual species \& genera are descended from one common point, when we know more of means \& facts of distribution of all organisms.- 1-15w Behrens St in Eocene Period.- 11u "ensuitel avec" $/ 10-13 \mathrm{~m} / \mathrm{w}$ Glacial $18-27 \mathrm{~m} / 14-35 w$ Only the wider spreading Families have reached Africa. This looks as if Africa peopled at late times from Asia; \& that at very ancient times there had been much communication between Asia \& tropical America.- $20 u$ "intertropicale $|2 "| 26 u \quad " 15 " \mid \rightarrow / 17 w$ very old介11-8m $12693 u$ " 1 ", 38-39m, $42 m 12709-$ 10m, 13-16m 1271 table-head.w or 75 miles wbac 1272 table.m "Nouvelle-Zélande" 1273 table.m $12752-4 m, 6-11 m / w$ ie same species range more widely over Sweden. 1276 3-7m, 9-15m, 19-22m, 24-27m 1277 36-38m 1278 3$5 m, 15-18 m, 32-34 m 1279$ 9-11m, 32-37m 1280 11-14m, 21-23m 1281 6-8m/6u "les Malouines", 23-25m/21-24w In archipelagoes all isids never in action together $\uparrow 16 u \leftrightarrow$, $\Uparrow 15 u \leftrightarrow, \Uparrow 11 u \leftrightarrow, \Uparrow 10 u \leftrightarrow, \Uparrow 2 u{ }^{\prime \prime}{ }^{2}$ ooker's 1241 ", $\Uparrow 10-1 w$ I cannot at all admit enough to kill vegetation more than Madeira. Look at Etna, Vesuvius or even Sandwich IsIds.- 1282 wt/ Iw It might be argued that there has been fully as much or more creation than could have been anticipated, on theory of some unknown ratio of creation to area (but such theory is complicated by relationship of immigration to creation). Those who do not admit possibility of immigration, but believe in multiple creation, wd be most puzzled.Then antiquity comes into play it may be said that islds near continent not old enough to have creations.- (a) Etna very old But generally if no new species exist in isolated isids looks as if some land - it can't be assumed that each isld very old.- $\uparrow w$ Even theory of creation is complicated by the relationship to easy immigration.- \& by affinity to adjoining lands. $1-2 m, 3-6 m, 9-$ $13 \mathrm{~m}, 14-16 \mathrm{~m}, ~ 21-30 \mathrm{~m} / 24-25 u$ "ont | élevées"| $26-37 w$ volcanic soil very rich, except when too dry. How fertile Mauritius \& Society Islds $12831-9 m, 19-20 m, 30 m 128411-19 m / 2-25 w$

CANDOLLE，VOL．II： 1284
＊During glacial epoch the conditions of low country must have been＊more similar，？ from length of days ？？\＆absence of peculiar united to present alpine climate ？ than to present arctic regions．－There must always have been some arctic regions 1285 $2-3 m / 2 u$＂200，000＂ 1286 19－21m 1287 table－ head．w what a pity not real number $3 w$ p1271 table．m／！ 1288 table．m／w very curious 1289 wt／ $1-26 \mathrm{w}$ What I want to show is that when little life can be supported，most can be supported by very different forms；when more life，more forms；but not so different， as less differns in the conditions to be filled up．$-10-12 \mathrm{~m} / 11 \mathrm{w}$ of course $14-16 \mathrm{~m}, 19 \mathrm{~m}, 20-$ $23 \mathrm{~m} / \mathrm{w}$ more fertile the country，more species in $*$ each genus． $25-27 m, 28-32 m, 33-37 m / w$ In short in＊species are created easier than genera $\Uparrow 4 u \leftrightarrow / w$ with poor countries this doubtful 介10a＂pauvres＂in species not in fertility $\uparrow 10-1 w / w b$ My vars in Keeling good case．showing that species might come in closest approximation？$w b$ it seems whatever causes may be，whether nature of country，or difficulty of immigration，\＆ slowness of creation，when few species， many genera：must be only the different causes，I shd think．－ $\mathbf{1 2 9 0} 3-7 m, 8-11 m, 15-$ $21 \mathrm{~m}, 36-40 \mathrm{~m} / \mathrm{w}$ these causes rather different． $12914-7 \mathrm{~m}, 14-17 \mathrm{~m} / \mathrm{w}$ I do not think subject here approfondi $21-27 \mathrm{~m}, 30-31 \mathrm{~m} 12921-2 \mathrm{~m} /$ $1 a$＂proportion＂in Falkland $14-18 \mathrm{~m} / 1-18 \mathrm{w} / \mathrm{wt}$ This looks as if isolation was not so important as many individuals．－a large archipelago Quite a continent－most favourable of all chiefly rising，but attor．\rightarrow Small outgrowing island may be most favourable，\＆yet make but \＆few species difficulty of immigration of forms to become modified 29－31m，33－35m／34u土 1293 wt in quadrupeds，no Batrachians：－Apteryx \＆ Curious Parrot－Extraordinary Parrot of Pacific Dodo \＆other birds of Mauritius，－ where for from not flying have become insulated．Can insulation be more related to peculiar conditions than to mere crossing．－ $17-23 m / 14-21 w$ One sees not only created so different ie very abnormal from ocean or islands（a）25－31m 1296 table．m 介＂Ile de Madère et Porto Santo＂ 1297 3－5m，6－9m／w but this does not go to cause $16-17 \mathrm{~m} / 16 \mathrm{u}$ ， $19-20 \mathrm{~m}, ~ 21 \mathrm{~m}, 22-23 \mathrm{~m}$ ， $23-28 \mathrm{~m} / 29-40 \mathrm{~m} / 23-$ $40 w / w b$ If we reject accidental introductions，I argue impossible．but look at Keeling Islds．－ We shd conclude that in enormous period， certain genera \＆Families wd increase，\＆ extinguish the various ones introduced \＆so bring proportion to average $w b$ Think of
effect of reuniting America \＆S．Africa，or New Holland 1298 19－29m，24－27m 1299 19－ $20 \mathrm{~m} / 19 \mathrm{u}$＂de chaque diluvium＂ $13018-9 \mathrm{~m}, 10-$ $11 m 130434-37 \mathrm{~m} 13055-6 m, 32-36 \mathrm{~m}$ ，38－ $41 m$（E．Meyer） 1306 36－39m $13071-2 \mathrm{~m} 1308$ wt Climate was first idea，just as adaptation was first idea to explain structure of bodies－ neither position of an organic being depends on adaptation to conditions，nor structure， both show＊a ruling however，viz descent．介3－1m $1309 \leftarrow\langle$ to $p .1308\rangle / w t$（a）it is very important to show that the first great divisions of world are not according to climate，but geographical．$-4-5 \mathrm{~m} / \mathrm{w}$（a） $7-8 \mathrm{~m}$ ， 15－17m，28－29m，32－34m 1311 1－3m 1312 26－ $29 \mathrm{~m} / 27 \mathrm{u}$＂lel septentrionales＂ 1313 8－9m／iw The relation being between North \＆Alps \＆ England，looks perhaps more like land：\＆ only north colonised subsequently．We must remember before it was warmer．－\＆ apparently with more American vegetation．－ The uniform extra outer vegetation，wd have been driven South．Baffin Bay then a great separation．\＆Iceland \＆Greenland Faroe， must have been peopled subsequently to Alps \＆old lowland of Europe 11－14m，$\uparrow 6-1 m$ $131429-37 m / ? / 29-30 w$ transported by ice 1315 34－38m 1316 28－34m，35－38m 1317 18u ＂districts montueux＂ 1318 3－8m／1－6w Land of Mediterranean rest on much better ground．－ $18-30 w$ ！！This is poorest speculation in whole Book 1319 15－18w But these Compositae hate damp． $35 u$＂espèces 1 anciennes＂ $13205-9 \mathrm{~m} /!!$ ， $10-11 \mathrm{~m}$ ，$\uparrow 7-1 \mathrm{~m} 1321$ $17-20 m, 22-26 m, 26-27 u \leftrightarrow, 34-37 m 132225-$ 30 m 1326 6－18m（Lyell），27－34m／w covered with ice different from Kerguelen Land 1327 29－33w ？more likely cold，from neighbouring great continent．－ 1328 14－20m／16u＂Alph． 1 341 ＂ $144 w$ Hills of Java？26－29m，$\uparrow 3 m / w$ What evidence $13291-5 m / w$ yet quadrupeds so distinct．－ $13-16 m, \Uparrow 2-1 m$ 1330 8－13m， $27 u$ ＂aux \mid Antilles＂$/ 24-28 \mathrm{~m} / \mathrm{w}$ agrees with extinct Mammifers $32-33 u \leftrightarrow 1331$ 1－5m，4－9m，25－ 28m，33－38m 1332 1－5m×0／1－5m／4－5＂．．．＂，7u \leftrightarrow / w What kind of seeds．－ 13 uk＂Lobéliacée ligneuse＂， $15-16 \mathrm{~m} / 12-21 \mathrm{w}$ Do not more complicated plants change more rapidly，like Mammifers．－$\uparrow 9-8 m 13336-10 \mathrm{~m}, 23-27 \mathrm{~m} / 25 u$ ＂Avec l imagination＂，29－32m，37－38m 1334 6－ $10 m 13354-6 m / 1-21 w$ ie that the species were once common to all the islands：I cannot believe this：it wd make species too numerous；\＆not applicable to variation：－ This is good argument，the existence of vars．$-13361-4 m, 5-7 m / 5-11 w$ why shd the species supposed to have been identical have become extinct \＆not the others？ $9 u$
"àlespèces", 11-12u↔, $15-18 \mathrm{~m} / 16 u$ "inexplicable|la" 1337 4-8m, 28-30m/29u "Sainte| Afrique", $31-32 u$ "laquelle 1 précédé", $32-40 \mathrm{~m}$ 1340 9-11m 1346 3-7m, 17-19m/18-19u "quel utiles", $\uparrow 2-1 m 1361 \Uparrow 3 \mathrm{~m} / \mathrm{w}$ Longifolia on Ischia p. 1030 1362a $6 u$ " 982 I 986 ", $11 \mathrm{~m}, 12 \mathrm{~m}$, $13 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m}, 16 \mathrm{~m}, 18-19 \mathrm{~m} / 18 \mathrm{~m} / 19 \mathrm{~m}$

CANDOLLE, Alphonse de Histoire des sciences et des savants, suivie d'autres études sur des sujets scientifiques et particuliers sur la sélection dans l'espèce humaine H . Georg; Genève, Bâle, Lyon; 1873 [CUL, I]
beh, gd, h, pat, sp, v
SB p7 species generally in groups in the same country
357-358-361
Selection of Barbarians \& uncivilized man * Somewhere in Vol.
$724-31 \mathrm{~m} / \mathrm{w}$ no separation a disparity 10 19$23 m 1130-31 m / 31 u$ "vol|ailleurs" 316 28-33m $3218-9 m 3221-5$?/3u "robes 1 dames", $21-24 m /$ w Cuckoo answers this question 357 11-16m 358 19-23m $3592-4 m / 3 u$ "manière régulière"/ 3-4w certainly not $6 u$ "barbares", 7-8u $\leftrightarrow 361$ $6-12 m 482 \mathrm{wb}$ Return by atavism of tendency to disease \& about vaccination quite new

CANDOLLE, Alphonse de La Phytographie Paris; G. Masson; 1880 [CUL, I] mhp, tm, v
NB 38 Notes; 81 Variation; 185 Cotyledon of Conifer in appearance multiple 197198 Bloom
$381-7 m 8113-16 m, 32 m 19716-27 m 1985-$ 10 m

CANDOLLE, Augustine Pyramus de Mémoires et souvenirs Genève; Joël Cherbulier; 1862 [Down, I to FD] \wp

CANDOLLE, Augustine Pyramus de Prodromus systematis naturalis regni vegetabilis 2 vols.; Paris; Treuttel \& Würtz; 1824-1825 [Down]

CANDOLLE, Augustine Pyramus de Théorie élémentaire de la botanique Paris; Déterville; 1819 [Down, pre-B, ED]
NF Preserve 〈CD? \rangle
v $17 m$ vi $28 m$
CANDOLLE, Alphonse de, \& CANDOLLE, Casimir de Monographia phanerogamarum 3 vols.; Paris; G. Masson; 1878-1881 [Down, I in vol. 3] \wp

CANESTRINI, Giovanni Origine dell'uomo 2nd edn; Milano; Gaetano Brigola; 1870 [Down]

CANESTRINI, Giovanni La Teoria dell' evoluzione Torino; Unione TipograficoEditrice; 1877 [Down] \wp

CANESTRINI, Giovanni La Teoria di Darwin criticamente esposta Milano; Fratelli Dumolard; 1880 [Down] \wp

CARLIER, Antoine G. Darwinism refuted by researches in psychology London; Jarrold \& Sons; 1872 [Down, I]

CARNERI, Bartholomaeus Gefühl, Bewußtsein, Wille Wien; Wilhelm Braumüller; 1876 [Down] \wp

CARNERI, Bartholomaeus Sittlichkeit und Darwinismus Wien; Wilhelm Braumüller; 1871 [Down]

NB O/
CARPENTER, William Benjamin Introduction to the study of the Foraminifera London; The Ray Society; 1862 [Down] \wp

CARPENTER, William Benjamin The microscope and its revelations London; John Churchill \& Sons; 1868 [Down]

CARPENTER, William Benjamin Principles of comparative physiology 4th edn; London; John Churchill; 1854 [CUL]
ad, af, beh, br, cc, ci, dg, dic, em, fg, fo, gd, h, he, hl, ig, mhp, mn, no, oo, pat, phy, rd, $\mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{tm}$, ts, ud, v, wd, y
NB p. 480 Regrowth of thumb - Doubling of Germ
SB1 ロK
The difference between high \& low in Fish, I think, is whether other classes are considered besides Fish.

* So many insects, It is very odd how many inhabitants of Fresh Water - Gasteropods Insects - Spiders - Plants are landproductions metamorphosed \& not marine productions. How few have passed on to the Sea. Hence so few Radiata in F Water The Sea has Whales, Seals \& Penguins \& formerly Lizards, Sea-Snakes, Turtles
p.3; p.15; p. 16 to 42 to r; p. 257; p.271; p.273,7; p.291; p.309; p.313; p.317; p.319;

CARPENTER, PHYSIOLOGY
p. 322 to p. 332; p. 359; p 377; p 405; p 413;
p 425; p 433; p 448; p.458; p.467; -470;
p. 476 to 480; 493; 546; 553; 561; 569; 571;
$573 ; 575$ to 585 to 610 to end
SB2 $\square \beta\langle 2$ sheets \rangle
〈1〉 16 on highness \& lowness
79 - High Fish. N.B. I think on this subject there is much difference whether we look to Fish alone or to other classes ??
92 same number of cervical vertebrae in Giraffe \& Whale - As in Reptiles only 2 sacral vertebrae in Kangaroo
96. top - special from the general in development
101 Rudimentary \& not developed used as synonyms. [as well to talk of $*$ the final s in generitive, which is rudiment of his, as prophetic of new change, as in Rudimentary organ]
102 Compensation,- Balancement (only terms)
107 Fossils approach nearer to Archetypal form \& to embryos of recent forms p110 Examples p. 112 old forms intermediate or rather with various characters combined, which are now separate [an admirable summary chiefly from Owen on this subject] p 117 Summary of do
122 Even Carpenter believes plethoric population breeds less. Q So did Hugh Miller; must fight against
131 Even the most specialised organs retain other \& more general powers Q
257 On 3 Kinds of Lungs in Fishes NQ
271. same organ, viz. heart, in 2 Classes developed at very different rate.
272, 277 Branchial vessels in loops in young chick like those in Fish or tadpole
279 Branching from aorta very variable in man
320 Gradation in Respiratory organs NQ Wings of insects Branchiae: ReuseO of swimming bladder \& originalO fraena into wings
322 respiratory organs in Arachnidae \& Vertebrates NQ
332 Branchial slits
359 Pagets explanation of Rudiments (false) [over] Carpenter Comp Anatomy lent to L.K. Bruce
<2
405. Atrophy of muscle \& bone when nerve cut of hind leg of Rabbit
$413,425,433$ Glands are f. of utmost simplicity in lower animals - Mammary, Biliary \& Urinary
448 thinks light of larvae of glowworm for Birds to feed on them! Q
458. Q Birds quits eggs when temperature 71° or 72° - not instinct or feeling? 465 Q The "proper electric current" of frog has curious analogy with electric discharge of Fish
467 Q Electrical Fishes 470471 Explanation of
477 to 79,80 | had better allude to Spallanzanis experiments of regrowth to show nisus formativus
480 On Double Monsters being a division of one.- Good discussion on Nisus
493. Abstract of M. Thuret on sexes of Fuci (Chapt. 3)
553 Medusae generally have sexes separate 561 Synapta hermaphrodite differently from * all other Echinodermata

569 Hermaphrodite Byrozoa F.W. false
573 Salpidae Dichogamous 574 Lamellibranch generally hermaphrodite 575 Davaine Carpenter seems to doubt their Dichogamy p. 577 Pteropoda require congress of two 589 Planaria do
577 Eggs of Linnaeus can be dried up \& revivified
590 On Ascaris 64 Million Eggs Q
592 Dorsibranchiate Annelids dioicous,
Tubicolae do. being fixed by Water - 595 Myriopoda do.
602 In White Ants, soldiers are Pupae NQ
608 Some Acaridae hermaphrodite water or land?
610 Fallopian \& Placenta foreshadowed in Fish
627 Explanation of 2d young taking after 1st Father
Chapter on Development might read to see on law of most developed soonest * developed
633 Orchis case, another instance
635 Decandolle says the more common \& robust plants vary most
690 Secondarily automatic - mastication without will
693, 4 Definition of instinct - 696 Relation to habitual (N.B. origin seems chief difference between $*$ instinct $\&$ Habit
726 Different position of eyes, show I think all org never cd become sensorial NQ 730 Eye of Cephalopods Q
734 Eye avoids spectral aberration \& chromatic aberration
title page $w b 1854$ xvii $z b \quad 3 \quad 5-10 \mathrm{~m} / 6 u$ "totally" $\mid 7 u$ "evolution" $92 u$ "the of" $104-7 m$ $1519 u$ "functional"/a "and" internal 16-19m/ $18 w$ (a) $w b$ But why shd analogy or functional correspondence be so much more
than homological or structural correspondence?? $1614 u$ "Lemna" 15 u "Zostera", $17 u$ "degraded" $116-21 w$ I wonder whether really: is there much abortion? $28 u$ "TreeFern"|29u "LemnalZostera"/27-31m 17 51u "gradelin" 18 1-3m, $6 u$ "homogeneousness", $15-16 \mathrm{~m} / 13-19 w$ I have misunderstood Von Baer 48-50m (Budd) 19 45-48m 20 25-28m 23 4-6m 25 30-35m 29 8-15m 42 14-19m/16u 50 $23-27 m 5822-31 m 6029-35 m 6229-37 m 63$ 2-5m 79 26-32m 85 8-12m 87 9-13m 88 49$50 m 8941-44 m 9048-50 m 9137-40 \mathrm{~m} 9210 u$ "7", $13 u$ " 11 । 20 " $/ 12-16 \mathrm{~m}, 35-40 \mathrm{~m}, 44-46 \mathrm{~m} 93$ 6-11m, 13-16m, 47-50m 95 7-10m, 45-49m 96 $5-9 m, 32-38 \mathrm{~m} / 34 u$ "regarded 1 general", $38-40 \mathrm{~m}$ 97 8-12m, 29-42m 99 11-15m 101 6-12m/w Electric organs Poison glands $33 u$ "rudimentary", "underdeveloped" 33 w not synonymous 41-48m 102 34-36??/36u "principle I compensation", $38 u$ "occasions" $/ 40 u$ "accompanied"/42-51w These do seem to me good examples $10432-39 \mathrm{~m} / 34 u$ "teeth" 107 13-17m, 28-31m/30-31u "archetypal generality", $40-47 \mathrm{~m} * 10921-25 \mathrm{~m}, 23-26 \mathrm{~m} 1101-$ $6 \mathrm{~m}, 15-19 \mathrm{~m} 111$ 1-8m, fig. $\mathrm{m}, 22-39 \mathrm{~m}, 40-43 \mathrm{~m}$ $1123-8 \mathrm{~m} / 6 u$ "not lowest", 15-18w ask Huxley $40-44 m$ (Forbes) $11312-21 m 1145-$ $11 m, 23-28 m /$! 115 1-4m, 27-31m, 34-37m 116 1-4m, $5 u$ "but ltype" 117 19-41m, 29-32m/31u "osculant I forms" 122 22-27m/?/Q $12827-30 \mathrm{~m}$ $1304-8 m 13132-36 m, 38-47 \mathrm{~m} 137$ 10-19m $142 \quad 41-42 m \quad 143 \quad 1-3 m, 13-20 m / w$ Falkland Islds - Elephants $32-37 \mathrm{~m} 159$ 9-13m 257 31$42 \mathrm{~m} 2581-11 \mathrm{~m} / \mathrm{w}$ The foundation for another kind of Lung 261 16w Fish?, 18-20m/18-19u "Lepidosiren" 264 13-17m 271 25-30m 272 1$9 m 277$ 26-39m, 44-50m 279 4-9m 290 33$38 \mathrm{~m} / \mathrm{"} . .$. "/ u "rate of life" $30910-15 \mathrm{~m} / \mathrm{w}$ Double organ 313 21-24m $31615 w$ see p 325, 23$27 \mathrm{~m} \bullet 317$ 38-50m $31942-51 \mathrm{~m} / \rightarrow 3201-3 \mathrm{~m}$, 29-34m 322 17-32m 323 21-26m, 30-34m, 45$48 \mathrm{~m} / \rightarrow 3245-12 \mathrm{~m}, ~ 27-31 \mathrm{~m} 325 \mathrm{wt}$ variable organ \& a transitional group $3 u$ "alll developed" $/ 5 u$ "Lepidosiren" $/ 4-9 w$ So ranks as Reptile \& not Fish 14-22m 326 fig.w snakelike Saurian 332 21-34m $33330-37 \mathrm{~m} 359$ 23$31 \mathrm{~m}, 33-43 \mathrm{~m} / \mathrm{w}$ But why present cases of undeveloped glands. 43-35w/wb Rudiments of wings of insects. Rudiment of bone, when so much matter of same kind excreted. wb Rudiment of teeth in young growing whale, when so much phosphate of lime wasted. $w b$ Rudiments in plants! more cellular as a rudiment of a style. Rudimentary instincts. 377 39-45m 405 33-40m, 41-52m 413 27-32m, $29-31 \mathrm{~m} / 30 u$ "simple structure" 425 1-8m 433 $44-51 \mathrm{~m} / \rightarrow$, $w b$ organs 434 1-4m $44849-53 \mathrm{~m} /$ Q $45830-36 \mathrm{~m} / \mathrm{w}$ not instinct 465 18-25m/19-

20Q 467 33-38m/33-34Q $4705-10 m / 6-8 Q 471$ 7-43m/13-14Q/9-10w see p 455476 36-41m, 51-55m, 54u "subjected|influence", 54-55u "has Ispecies", wb But the domestic varieties keep constant under their proper condition. 477 22-31m, 33-39m/36u "not I larva", 45-46m/ $\rightarrow 4787-15 m 479 w t$ for 6 fingers $1-2 m, 21-$ $24 m, 42-48 m 4802-19 m, 11-12 m, 33-43 \mathrm{~m} / 34 u$ "thumb double"/ 35 u "each | perfect" $/ 37$ u "along 1 nail", $43 u$ "formed" $48120-23 m$, $22 u$ "possessing| rudiments" 493 26-33m 546 7$10 \mathrm{~m} 55340-42 \mathrm{~m} 56139-44 \mathrm{~m} 56933-37 \mathrm{~m}$, 38$40 \mathrm{~m} / 39 u$ "visceral cavity", $40-44 \mathrm{~m}, 48-50 \mathrm{~m}$ (Van Beneden, Allman) 571 10-16m/13u "within I cloaca" 573 18-23m/20u "ovarial testes" $\mid 21 u$ "not self-fertilizing", 25-28m 574 37-41m 575 1-3m/3u "ostensible co-existence", $8 m, 10-16 m, 19-23 ? / m / 21 u$ "oval recognised"/ $23 u$ "which | place", 27-32m/31u "which|find"/ $32 u$ "general|shell" $57637-39 \mathrm{~m} / 38 \mathrm{~m} / \mathrm{u}$ *, 42$43 m 577$ 23-25m, 29-31m/30-31u "being| fertility", 32-34m 585 43-47m, fig.m 587 wt Phillip Philip 35-39m 588 8-16m 589 24-29m, $30-41 \mathrm{~m} 590$ 11-15m/Q $59226-27 \mathrm{~m}$, 32-34m, 41-45m 593 1-3m/3u "in|Planariae" 595 33$36 m / 33 u$ "Myriapoda" $36 u$ "dioecious" $599 w t$ Larvae not being simply embryonic but likewise adaptative is never noticed.- 602 8$11 m 60843 u$ "Acaridae" $/ 42-45 \mathrm{~m} / \mathrm{w}$ land or water? 610 24-27m 611 5-8m 613 20-27m, $27-33 m 6153-5 w$ not applicable only in Vertebrata? 5-7m, 27-30m 616 42-46m 627 $40-47 \mathrm{~m} / 42 w$ (a) $w b$ (a) Grafting nearest analogue. does not support this view Do you think if you injected blood from one into other it wd make hair grow different? 628 17$38 m 632$ 9-14m 633 11-22m, 48-50m 634 8$12 m, 24-27 m, 36-40 m, 43-48 m$ 635 1-4m, 31$33 m$, $32 u$ " $61 \mid$ species", $38-43 \mathrm{~m} / 45 u$ "are common" $6373-8 m, 26-36 \mathrm{~m} / \mathrm{w}$ not if nothing better possessed 638 29-32m, 49-51m (Owen), 68-70m 639 40-45m 690 8-13m/ "Medulla Oblongata"/10-11Q\&s, $17-19 \mathrm{~m} / 19 \mathrm{u}$ "684" $692 \quad 31-38 m \quad 693 \quad 25-31 \mathrm{~m} / 27 u$ "immediatel sensations", $28 u$ "intentional adaptation", $43-47 \mathrm{~m} / 45 u$ "nol required", 48$52 m 694$ 4-8m, 14-17m, 17-29m/18-23w sensori-motor connected with Instinct. $25 u$ $69631-37 \mathrm{~m} / 32 a$ "these" habitual $6987-14 m$, 17-20m, 22-45m 699 35-38m 702 20-24m/2030 w dogs turning face on one side not see another petted.-708 10-13m, 23-27m/19-26w Fear of punishment 726 15-19w Mysis Cirripede $18-30 \mathrm{~m} / 20-34 w$ difficult to explain, except on general diffusion of perception. 730 18-21m, 26-28Q/26u "iris", 29-30m, 49$51 m$ (Siebold) 734 11-18m, 28-33 w wonderful! 30-36m

CARPENTER, William Benjamin Principles of mental physiology London; Henry S. King \& Co.; 1874 [Down, I]

CARPENTER, William Benjamin Researches on the Foraminifera (extr.); 1855 [Down] \wp

CARRIÈRE, Élie Abel Production et fixation des variétés dans les végétaux Paris; Libraire agricole de la Maison Rustiane; 1865 [CUL, I]
cc, cs, dic, ex, fg, he, hy, sx, tm, v
NB 21; 30; 28; 34 to 58 very good, wonderful on Bud-Variations; 65; 66; 69; 70 Bud variations; 72; 57 Cytisus Adami

- p 21 \& 30 on Dichogamy \langle rest 0\rangle

SB \propto p.28. on influence of Father - on colour \&c. goodish evidence in certain cases p67 On Hybrids presenting quite new characters Relation to Doublecross
Many valuable facts referred to proper places -
6a 16-23m 21b $36-57 m / 40-44 w$ colouring self-fertilised $48-50 \mathrm{~m} 28 \mathrm{~b} 4-12 \mathrm{~m}$ 30a $27-32 \mathrm{~m}$, $32-34 m / 30-38 w$ in cold weather pollen matured later, $35-44 m, 37-41 \mathrm{~m} / 40 u$ "gelées" 30b 36-49m 31a 28-32m/"..."/29ces/32c| $28-32 w$ ie not crossed 34a wt Bud-variations 1-18m/2-7w Chrysanthemum 35b 12-14w Roses get list 36a $1 u$ "Baronne Prévost", $3 u$ "cinq variétés" 37a 27-28w Cherry, 51-55m/w does not revert perfectly 37b 10-11w 3 fruits 38a 10w Plums 38b $10-11 w$ Grapes $49-57 m$, wb Apples show 39a 6-10w Haricot Maize \& Potatos $23-38 \mathrm{~m} / \mathrm{w}$ But this is by seed 38$41 \mathrm{~m} / 30-34 w$ variable when sown by seed 39b 15-18m 40b $28 u$ "surlsur" $/ 25-29 m / w$ Maize 29-36m 41b 2-13m/5-6w Potatoes 42b 10-16m 54b 1-3m 57a 26-33w Hycanths 57b 1-2w Cytisus 4-6m, 12-14m/12-13x, 19-24m, 33w New character $3636-37 m$ 58a 21-34m, 21-22m, 23-28w Xud variation Effects of conditions 64a 46-58m * 65a 76$82 m / w b$ Varies or breaks like tulips or Vidua 65b $63-73 m$ 66b $67-76 m / 71 w$ ie $w b$ strongly heredetary $67 \mathrm{a} 4-34 \mathrm{~m}$ 69b $33 \mathrm{~m}, 46-55 m$, 61$71 m$, 75-78m 70a 6-13m/w Double flowers $28-32 m, 33-40 \mathrm{~m} / \mathrm{w}$ form of bud variation like tulips, $44-50 \mathrm{~m} / 41-42 w$ conditions 70b 15$19 m / 13-25 w$ moss Rare for seed $24-25 w$ by seed $43 u$ "Moussense partout"/40-45m/w Bud var 54-61m/w Bud var 65-73m/66-67x | 75$79 m / 75-76 x / 78-79 m / w b$ good like his case of Radish - Causes of Variation 71a $25-30 \mathrm{~m} / 30 x / 25-26 \mathrm{w}$ Bud var. $44-66 \mathrm{~m} / 57-$ $61 m /!72 \mathrm{a}$ 32-39m/32-39m $/ 33-34 x / 32 w / w b$ Barbary; this is in principal buds, not all
affected conditions wb Causes of Variation Use these new facts under Var. under Nature 72b wt change slowly $1-3 m, 6-13 m$, $12-23 m / 15-20 \mathrm{~m} / 20-23 \mathrm{~m} / \mathrm{wb}$ These facts of beech \& Barberry bear more on relation of conditions to inheritance $27-30 \mathrm{~m}, 31-40 \mathrm{~m}$

CARUS, Julius Victor Geschichte der Biologie München; R. Oldenbourg; 1872 [Down, I]

CARUS, Julius Victor, and ENGELMANN, Wilhelm Bibliotheca zoologica 2 vols; Leipzig; Wilhelm Engelmann; 1861 [CUL]
vol. $2 \wp$
979 58-64m $107043 m$ 1792a $26 m$ 2000b 61m, $78 m$ 2001a $1 m, 2 m$ 2026a $52-55 m$ 2030b $64 m$ (Morren) 2039a $3 m$ (Newport), $4 m, 38 m$ 2129a $35 m$ (Wallace), $39 m, 40 m, 41 m$

CARUS, Julius Victor, and GERSTAECKER, C.E. Handbuch der Zoologie Leipzig; Wilhelm Engelmann; 1875 [Down, first vol. only] \wp

CASPARI, Otto Die Urgeschichte der Menschheit 2 vols.; Leipzig; Brodhaus; 1873 [Down] \wp

CATALOGUE of the books and maps in the library of the Geological Society of London London; R. \& J.E. Taylor; 1846 [CUL]
NB1 Read p109 Darluc Hist Nat Provence 112 Risso on Ranges
p. 111 Cirripedia Lamarck

In the Presentation Copies in list given in Journal Feb 1851 - Many useful to M Periodicals
p8. Linn Trans of Normandy
Good Journals
Agassiz Recherches sur les Poissons Fossiles - of Old Red Sandstone p. 60
Calcutta Journal of Nat Hist vol 3 \& 4
NB2 107 〈he means 109〉 Dict des sc nat
109 Forbes Star-fish
111 Loudon, Arboretum
112 Royle
Buckland's \& Bridgewater Treatise
p67 Pictet Pal.
Bowerbank - Plants of London Clay
R. Agricult Journal - Edinburgh - other Journals
Wernerian Transactions \& Other Journals recd
Boston Journal
xii $8-9 \mathrm{~m} / \mathrm{w}$ marked $36-37 \mathrm{~m} / \mathrm{w}$ marked $315 \mathrm{~m} /$ $16 w$ read $438 \mathrm{~m} / \mathrm{w}$ read $519 \mathrm{~m} 641-42 \mathrm{~m} 71-$ $2 m, 30 \mathrm{~m} / \mathrm{w}$ read $813 \mathrm{~m} 92-7 \mathrm{~m} / 4 w \mathrm{~m}_{\mathrm{s}}$ Hooker
for $8 w$ read $12-16 m, 19 \mathrm{~m} / \mathrm{w}$ read $21 \mathrm{~m} / \mathrm{w}$ read, $27-29 m \quad 12 \quad 24-25 w$ I do not think worth reading $25 m, 35 \mathrm{~m} / \mathrm{w}$ read $136 \mathrm{~m}, 8 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{w}$ read $46 m 145 m / w$ read $6 m 2538 m 3326 m$ $585-8 m, 10-11 m 602-8 m 614 m, 28 m 6510 \mathrm{w}$ vol. 2 11-12m $6635-36 m 6728-29 m, 40-41 m$, $42 u$ "in vol. 4", 45m, 48m $6833-35 m 10618 m$ $1079 \mathrm{~m} 1087 \mathrm{~m}, 14 \mathrm{~m}, 23 \mathrm{~m}, 27 \mathrm{~m}, 32 \mathrm{~m}, 41 \mathrm{~m} 109$ $6 m, 18-19 m, 34 m 11040 m 1113 m, 27 m, 33 m$, 39-40m $11249 m 11312 m$
§
209b 53-55m (Brocchi) 210a $4 m$ (Bronn) 217a $18 m$ (Lea, J.)

CATALOGUE of the Chiroptera in the collection of the British Museum (G.E. Todd); London; by order of the Trustees; 1878 [Down, I]
ig, tm
NB xvii Gradations in complex Nasal appendages of Bats
xvii $21-35 m, 36 m$ xviii $17-26 m$ xix $10-19 m$
CATALOGUE of the scientific books in the library of the Royal Society London; Richard \& John E. Taylor; 1839 [CUL, S]
fg
NF E.W. Strickland 31 Robert St Chelsea Mondays \& Thursdays
NB1 Hills Essay on Natural Hist 1752;
Montagu Testacea; Libr in Royal
NB2 Brickells Nat Hist of N. Carolina
Whewells Bridgewater Treatise
read Lawrence Lectures on Man 1819
Read Harlan medical \& phis Researches
Edwards. sur la charactere physiologique des hommes des races diverses p. 497 1829 - read - 2d Edit 1841 is to be published
James on man physiologically \& spycologically considered
Edinburgh Hort Soc \& Highland Soc
p 387 List of Hort \& Agricult transacts
Lindley's Horticulture ??
p. 721 Forster on Migration of Birds

505 by Isode G. St Hilaire
p740 = Amoenitates Acad.-
p767 Stillingfleet Transact do -? read Broderip?
p.639. Asiatic Journal Hooker says good.

NB3 p 396 Decandolle papers
p 552 Quetelet sur la loi de la croissance de l'homme
p. 758 Quetelet sur l'homme et le developpement de ses facultes
Dubois voyage
Lichtenstein's Travels read

Loefflings travels Louisiana
Mackenzie north PoleO
Ramond's voyage on M. Perdu
Natural Hist.:
p581 Barton's fragment in Nat. Hist.
583 Catesby's Nat Hist of Florida
585 Linnaeus on study of nature
Virey's Philosophie \& Histoire Naturelle 1835 a miserable book according to Brougham read
Lawrence Lect on Man
538 Meckel
474, 582 Blumenbach: must be read.-
582 Buffon.
449 Pallas Spicilegia Zoolog
510 Haller
contents page $9 m / w, 11 m / w, 12 m / w, 13 m / w$, $14 a \notin, 15 \mathrm{~m} / \mathrm{w}, 17 \mathrm{~m}, 18 \mathrm{~m} / \mathrm{w}$ marked $3873-32 \mathrm{~m}$, $7 \mathrm{~m}, 9 \mathrm{~m} 38820 \mathrm{~m}, 23 \mathrm{~m} /$? $39333-36 \mathrm{~m} 39648-$ $53 m 39813 m 4006 m 40137-38 m$, 42m 403 $43 m 40444-45 m 4058 m, 29 m 40637 m / w$ read $40838 m 40953 m 41041 m 41150-51 m$ $4128 m 4143 m, 5 m, 7-10 m, 8 m 41537 m 416$ $6 m, 11 m 41823 m / w$ read $29 m 42014 m, 32 m$ $4217 m, 50 m 4224 m / w$ read $42538 m, 40 m$, $42 \mathrm{~m} 4281 \mathrm{~m} / \mathrm{w}$ read $10 \mathrm{~m}, 16 \mathrm{~m} / \mathrm{w}$ read 18 m 429 40-41m $43033-34 w$ read $43117 m, 18 w$ (one Edit 1619) 19-21w Recommended by Blyth $43212 m, 14 m, 16 m, 18 m 43318 m, 41 m$ $43442 \mathrm{~m} 43530 \mathrm{~m} / \mathrm{w}$ read $38 \mathrm{~m} / \mathrm{w}$ read 43932 $33 m, 44 m 44020-21 m, 22-24 m, 32 m / w$ read $4411 \mathrm{~m} / \mathrm{w}$ read $20 \mathrm{~m} 44216-19 \mathrm{~m}, 26-29 \mathrm{~m} 443$ 26-29m, 43-45m 444 14-20m/w Read Pigeons \& Fowls $44511 \mathrm{~m} 44722 \mathrm{~m}, 31 \mathrm{~m} 44810 \mathrm{~m} / \mathrm{uta}_{\mathrm{s}}$ " $1788-1806$ ", $14 \mathrm{~m} / \mathrm{w}$ read $46 \mathrm{~m} / \mathrm{w}$ read 51 m $4493-10 m, 9 m, 43 m, 46-47 m$, wb Shriften BerlinD p. $58945035 m 45348 \mathrm{~m} / \mathrm{w}$ read 454 $17 \mathrm{~m} / \mathrm{w}$ read 18 w vol 2 has the $-20-21 \mathrm{~m}$, 22-26w Has this cirripedes? $28 m 45520 \mathrm{~m}$, $22-23 m, 29 m / w$ read $45625-26 m 45715-16 \mathrm{~m} /$ w read 19c/w 8to x $44 m 46117 m, 18-19 w$ read 19-21m $47454 \mathrm{~m} / \mathrm{wb}$ QuotedO by Prichard 497 10-12m/11w read $50547 \mathrm{~m}, 49 \mathrm{~m}$ $50638-39 m / 38 w$ read $51221-23 m 51311 m$ $52244 m 52432 m 538 \quad 14-27 m / 16-30 w ~ D r$ Holland says some good views on generation See which vols $23 m, 27 m 55620 \mathrm{~m}$ $56610 \mathrm{~m} 58137 \mathrm{~m} 5828 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{w}$ read 41$42 m 5836 m, 19 m 58529-30 m, 41-42 m / w$ read $58738 m, 43 m, 47 m 58926 m / w / 22 w$ vol 1 \& vol $559032 m, 36 m 59146 m 5932-3 m, 8 m$, $18 m, 34 m / w$ read $5989 m, 48 m 59953-55 m$, $53 m 60017-22 m / 16 w$ read $23 a$ "Agriculture"/ $m / 29-34 w$ this followed by Archives $54 m 601$ $21 m, 51 m, 53 m 60224 m / w$ read $61447-49 m$, $48 m 63645 m 63718 m 6386-9 m, 53-54 m 639$ $12 m, 23 u$ "1816-1832", 49-53m, 48-49m/wb

CATALOGUE: ROYAL SOCIETY
Hooker says good $64026 m 65113 m 652$ $36 m$, zb $6537 m$, $16 m 65549 m 6564 m 657$ $42 m, 47 w$ read $54 m 6589 m 6597 m, 32 m 660$ $6-13 m, 15 m 66143 m, 47 m 66216 m 66426 w$ read $6656 \mathrm{~m}, 15 \mathrm{~m}, 19 \mathrm{~m}, 44 \mathrm{~m} / \mathrm{w}$ read $50 \mathrm{~m} / \mathrm{w}$ read $66622 \mathrm{~m} / \mathrm{w}$ read 41 w read 43 m 66714 m $66835-38 m, 50 m 66942 m, 53 m 6701 m / w$ read $67139 \mathrm{~m} 67247 \mathrm{~m} 67425 \mathrm{~m}, 29 \mathrm{~m}, 36 \mathrm{~m} /$ $34-35 w$ read, $38 m 6763 m / 4-7 w$ | suspect appalling on separation $67712 m, 32 m 682$ $44-47 m 68825 m 68926-28 m 72126 m 740$ $25 \mathrm{~m} / 21-28 w$ Lyell believes Broderip has Engl. translation $7445 m 76738 m$

CATON, John Dean A summer in Norway 1875 [CUL, S, I]

NB O/
CATON, John Dean The antelope and deer of America New York; Hurd \& Houghton; 1877 [Down]
beh, br, cc, v
NB p. 46 Antelope weeping; 90; 156; Deer not breeding in Parks 294; do.- 304
46 33-42m 47 3-10m $9026-31 \mathrm{~m} / \mathrm{w}$ analogous var. 156 32-42m 157 30-37m 158 27-32m 294 17-22m, 21-31m 295 9-14m, 22-28m 304 22-
$24 m 3051-4 m, 6-9 m, 12-15 m$
CATTANEO, Giacomo Darwinismo: saggio sulla evoluzione degli organismi Milano; Fratelli Treves; 1880 [Down] \wp

CHAMBERS, Robert Ancient sea margins Edinburgh; W. and R. Chambers; 1848 [Down, I]
geo
$2125 m 1003-9 w c ¢ / 3 u$ " 847 ", 26-27w 1202, say; 1210110 17-19m 113 11-13m 115 1-2m/ w p61 of mine $5-8 w$ also entirely overlooks my arguments for the terraces 124 23-27m 157 9-10w 968; 821-6 15-17w 628; 706187 $1 m$, $28 \mathrm{~m} 1893 m 3283-5 w c c, 11-22 w$ average interval 20 ft . $330 w t / \uparrow w 27 \mathrm{ft}$ interval on average \& each observ. * has for 5 or 6 ft of variation. so that real interval not more than 10ft table.m/wec, wbec
[CHAMBERS, Robert] Vestiges of the natural history of creation 6th edn; London; John Churchill; 1847 [CUL]
$\mathrm{ad}, \mathrm{ci}, \mathrm{ds}, \mathrm{em}, \mathrm{fo}, \mathrm{geo}, \mathrm{hl}$, is, $\mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{ts}, \mathrm{v}, \mathrm{y}$

SB1 ロR

р.67; 90; 123; 186; 195; 209; 225; 235; 249 Key of Book; 268; 274; 276; 280; 281; 283; 286; 290; 301; 307; 312; 319 p494; 501

The idea of a Fish passing into a Reptile (his idea) monstrous.-
How easily a soft cirripede might give rise to Balanus Segments of shell - if loose wd be lost
I will not specify any genealogies - much too little known at present.
Never use the word higher \& lower - use more complicated, as the fish type (\& not a mere repetition of parts) where cartilaginous forms are higher for being nearer reptiles \& consequently mammalia.-
SB2 ${ }^{-1}$
90 Embryonic Reptiles now have biconcave vertebrae, extinct form had do
209 Inherent impulse to advance from oldest \& simplest up to highest - \& inherent impulse to become adapted. Quote in Preface. * 249do 225 compare with tadpoles metamorphosis.
235 Yarrells Birds Gull getting thickened stomach Vol. 3 p571 Quotes Pennant on Trout in Galway getting thickened stomach. Was it Trout? Yarrell Fishes vol. 2 p. 57 thinks Gillasso only a var. inner cuticle only undirected.
274 Monomyarian Molluscs before Dizaria latter higher?
276 Young Gasteropods all alike when very young (Forbes) in Jameson's Journ
277 Nucleus of Cephalopods shells is also spiral like Gasteropod (Forbes) Carpenter Gen. Physiology This about Cephalopods, important for it shows what precursors were: see if accurate
280 Dibranchiate Cephalopods commence in Oolitic 281 Cephalopods change quicker because higher
301 Talks of nature being equally ready to go back as well as forward
307 Cecilia is a snake-like Batrachian
494,2 Curculios - Corydalis \& Libellula \& Scorpion in Coal
367 Remarks on isld not having mammals \& less perfect life but really I need not allude to such Rubbish

67 12-19m (Agassiz) 90 5-8m, 17-20m 123 21$26 \mathrm{~m} / 22-25 \mathrm{w}$ See to this in true chalk 179 17$26 z 1868-14 m / w$ new creations !! $16-22 m$ $1954-5 \mathrm{~m} / \mathrm{w}$ is not Pecten very old 209 116"..." $4 u$ "inherent" $/ 1-8 m / w$ quote to show difference V . Whewells remarks against this 11u "inherent" 219 22-26[...] 220 13[... 221 3...] $2255-12 \mathrm{~m} / \mathrm{w}$ whole key to theory 229 16[... 230 24...] $23110 \mathrm{~m} / 10-14[\ldots], 17-21[\ldots]$ 232 9[..., 20-25[...] 235 11...], 20-22m/w Yarrell! 249 23-26m 267 17-18??!/18u
＂exclusively marine＂ 268 2－7m，7－18m （Agassiz） 274 11－21m 276 9－17m／12－13w Forbes 277 14－26m／24w Carpenter 278 6－20m 280 20－24m $2812-16 w$ I must allude to all this $28312-15 m 2861-17 w$ It is strange error that generally he looks at every form，as having started from some known form．19－ $23 m 290$ 1－3m 301 7－11m，15－17m 307 10－ $15 \mathrm{~m} / \mathrm{w}$ I forget this Amph》？ 312 1－3w Hence many Turtles transformed！！4－9m $3191-3 \mathrm{~m} /$ ！！！，17－20m／！！！／20w oh 3405 ！！／u＂walrus＂ 409 $11 ? / z / u$＂monkeys｜houses＂ 494 10－22m 501 7－ $8 m 5058 m, 22 m$

CHAPMAN，Henry C．Evolution of life Philadelphia；J．B．Lippincott； 1873 ［Down，I］ NB O／
$218 w 2230 w 25$ 13－15＂．．．＂$/ 15 w$ Haeckel 86 $2-5 " . . . " / 4 w 10013 w / c 10232 w / c 13028 c 170$ $34 w$
〈untranscribed words not CD＞

CHAPMAN，John Neuralgia and kindred diseases of the nervous system London；J．\＆A． Churchill； 1873 ［Down，I］

NB O／
xiv $21 m$ xv $8 m, 17 m$ xviii $3 m$ xx $5 m, 6 m$ xxiv $21 m, 23 m$
§
CHAPUIS， F ．Le Pigeon voyageur belge Verviers； 1865 ［CUL，I，S］
beh
SA $\langle p p .170-171\rangle$
〈conversions of km to miles）
© nearly say 35 miles
George calculated these and average rates per minute for 20 selected flights the rate is 1066 metres per minute which gives per hour as above
59 18－24m 86 24－27m 87 1－2m，3－7m／5w Instincts $10 u$＂certains mâles＂／9－24w ca，23－ $25 m, 24-27 m 133$ wt Verviers to Lyons 156 11－15m 159 1－3m 161 9－16m 165 19－20m，24u ＂kilomètre ${ }^{\text {minute＂，}} 28 m 166 \quad 18 u \quad$＂soit 1 mètres＂， $23 \mathrm{~m} / \mathrm{u}$＂ 925 ＂ $1677-10 \mathrm{~m} / \mathrm{w}$ but due？ $16822 \mathrm{~m} / \mathrm{u}$＂947＂ 169 1－4m／1u＂Espagne＂｜ $2 u$ ＂Liége＂，5u＂1 kilomètre＂ 171 wt which is kilometers？；average of 20 flights $\mathrm{cc}, 5-6 \mathrm{~m} /$ $w \star=366$ metres？

CHARPENTIER，Jean de Essai sur les glaciers et sur le terrain erratique du Rhône Lausanne；Marc Ducloux； 1841 ［Down］

CHAUMONT，Francis Stephen Bennet Lectures on state medicine London；Smith， Elder \＆Co．； 1875 ［Down，I］

NB 135 Beer； 165 cistern
CHILD，Gilbert W．Essays on physiological subjects Oxford；Combe，Gardner，Hall \＆ Latham； 1868 ［Down，I］
beh，he
NB Consang．Marriages
CHILD，Gilbert William Essays on physiological subjects 2nd edn；London； Longmans，Green \＆Co．； 1869 ［Down，two copies］
NB O／
\wp
CHILDREN，John George Memoir of J．G． Children Westminster；Josiah Bowyer， Nicholas \＆Sons，for private circulation； 1853 ［Down］

CHUN，Carl Fauna und Flora des Golfes von Neapel，1．Ctenophorae Leipzig；Wilhelm Engelmann； 1880 ［Botany School］\wp

CLARCKE，Benjamin On systematic botany and zoology London；J．Bale \＆Sons； 1870 ［Down］

CLARK，Henry James Lucernariae and their allies Washington；Smithsonian Institute； 1878 ［Down］\wp

ClARK，Henry James Mind in nature New
York；D．Appleton \＆Co．； 1865 ［Down］
af，ct，fg，he，ig，sl，sp，tm
NB O／
SA $\langle p p .94-95\rangle$
p．61，66 Pangenesis； 81 do； 85 shows how numerous gemmules must be for carrying on to next generation Not all used up in formation of the animal．－This view of division of single egg，\＆not union of 2 ，is now very generally admitted．
Planaria cut in two says it is true budding
－ 203 Snails asymmetrical．－
263 Lepidosiren，affinities
279 projecting instead of selecting
Lereboullet consult
272－276 Doubtful on intermediate forms in lower classes
279 projecting instead of selecting
61 16－18m，25－29m，30－31u↔，32－36m 62 1－ $4 m \quad 66 \quad 16-20 m \quad 81 \quad 22-23 m / 23 u \quad$＂fissi－

CLARK，MIND
gemmation＂， $33-35 \mathrm{~m} / \rightarrow 8216-18 \mathrm{~m} / 11-19 \mathrm{w}$ but with budding，I suppose for formation of eyes $32-35 m 8515-17 \mathrm{~m}, 25-28 m, 30 \mathrm{~m} 861-$ $5 m 9324-26 m / 25 u$＂budded out＂， $29 \rightarrow 9415-$ $17 m 203$ 13－16m 267 9－15m 272 1－4m 273 1－ 13m 276 10－21m 279 23－30m

CLARKE，J．W．Cattle problems explained Battle Creek，Michigan；published by the author； 1880 ［Down］

CLAUS，Carl Grundzüge der Zoologie 2nd edn， 4 vols．；Mauburg und Leipzig；N．G． Eltwert＇sche Universitäts Buchhandlung； 1871 ［Down，S］\wp

CLAUS，Carl Untersuchungen zur Erforschung der genealogischen Grundlage des Crustaceen－ Systems Wien；Carl Gerhold＇s Sohn； 1876 ［Down］

CLELAND，John Evolution，expression and sensation Glasgow；James Maclehose； 1881 ［Down，I］

COAN，Titus Adventures in Patagonia New York；Dodd，Mead \＆Co．； 1880 ［Down］
NF not yet entered in Catalogue of Books
COGNETTI DE MARTIS，Salvatore Le Forme primitive della evoluzione economica Torino；Ermanno Loescher； 1881 ［Down，I］ \wp

COHN，Ferdinand Die Pflanze：Vorträge aus dem Gebiete der Botanik Breslau；Kern； 1882 ［Down，I］

COLIN，Gabriel Constant Traité de phys－ iologie comparée des animaux domestiques 2 vols．；Paris；J．B．Baillière；1854－1856［CUL］ beh，cs，fg，he，hy，ig，mn，no，oo，phy，sx， tm，v，y
vol． 1 SB p．131，5；p． 142 to p．160；p．192； p374；426；p617；426；p614
Londeners Walk Watch while Snail fixed in crevice pulled in 3 directions to free itself V．2d Vol for Abstract
127 9－10m $13110-12 m / 1-12 w$ none to aid another animal without that aided itself $13 u$ ＂ait｜inutiles＂／w V．p． 134 15u＂susceptible！ essentielles＂， $26-31 w$ wildness in aboriginal Galapagos Birds．－ $32-33 \mathrm{~m} 13435 u$＂animal sanguinaire＂ $13527 m, 29-31 m / 29 u$＂mulet 1 dans＂$/ 30 u$＂espècelcactus＂＂ 142 10－14m／11－ $12 w$ no gradation $14330-31 m 14427-31 m$ 145 wt I have seen young Ourang at looking
glass 4－7m／5w（a） $14731-34 m 151$ 29－32m 160 13－16m $19216-20 \mathrm{~m} 374$ 35－39m 426 2－ $5 \mathrm{~m}, 13-18 \mathrm{~m} 614$ wtec，12－18m／14u＂bout douze＂／16u＂dix I vingt＂／17u＂unelfois＂ 617 wt my notions not half so odd as life of Parasite；bred in fish \＆matured in cormorant wtec， $1 u$＂les 1 membraneux＂， $4 u$＂le héron＂，3－ $5 \mathrm{~m} / \mathrm{w}$ V．next Page 11－15m，33－40m，34u ＂pylorelétroitesse＂，35u＂duvet｜poils＂ 618 6－ $9 m$
vol． 2 NB Book p 405；p492；496；529； 530 to 548； 614
SB $\square \boldsymbol{R}$
374 On Hinny neighing on account of shape of Larynx
426 How soon animal gets accustomed to any particular food．－
614 －excellent on length of time grain kept in crop of Turkey－18－20 hours－
617 Hawks throw pellets because pylorus so narrow

Vol 2.

492．M．Desfossé on hermaphrodite Fish Serranus
529 case of hybrid of Horse \＆Cow NQ author admit clearly only monster
530 Q $\underset{ }{\oplus}$ on ovules in mule
532 Vauban calculated produce of Sow in 12 years at 6 millions－on rate of increase Guinea－Fowl－on sterility of fat animal Ch． 3 Tegument of eggs of wild Peacocks
536 on characters of Mongrels so like Gartner Q
537， 539 Hinny more after ass than Horse Quos〈over〉
540 Horns transmitted from either parent 542 The older races transmit most surely 61410 Mammae in Rabbit，Dogs \＆c
$40544 m$（Geoffroy St Hilaire and Cuvier），wb Has Waterhouse got it 492 12－15m 496 17－22m 497 28－37m 529 1－2m，11－24m 530 5－ $12 \mathrm{~m} / 8-9 \mathrm{Q}$ m， 15 m （Aristotle），29－31m 531 18－ $23 m$ ，29u＂tigrellion＂， $34-36 m / 35 u$＂font 1 sanglier＂，45m／u＂fait loeufs＂ $\mid \rightarrow 532$ 2－6m，26－ 30m，27m／w Sow？？36－37u＂engraissement 1 oiseaux＂，介4－1m 534 10－15m／11－12u＂Suisse। Poitou＂ 535 28－31m， $34-43 \mathrm{~m} / 41 u$＂d＇unel portée＂ $5361-4 m, 5-7 m / 5 u$＂intermédiaire＂$/ 7 u$ ＂mélange Ifusion＂ $5-12 w$ how like to Gaertner， 14－17m，15u＂taureaulJura＂，25－30m，31u ＂mulet｜âne＂， $39 u$＂deux｜cotés＂ $53710 u$＂le｜ mamelons＂， $18-19 u \leftrightarrow, 35-36 \mathrm{~m}, ~ 40-41 \mathrm{~m} / 40 \mathrm{w}$ variable $43-45 \mathrm{~m} / 44 u$＂incontestablement 1 prédomine＂ $5387 u$＂l＇hémione mâle＂，11－12m $5392 u$＂bardeaulmulet＂， $3 u$＂la｜exceptées＂， 31－34m，40u＂cheval IHartmann＂，wb Hartman
is a German Book which 1 have seen referred to elsewhere 540 13-15m, 19-21m, $37-39 m$, $38 u \pm 541$ 36-38m 542 18-19m, 30$32 m 5431-3 m, 14-18 m, 38-40 m$ 544 14-19m/ 17-18u "boeufl breton"/24-26m/1-27w it certainly is not true that one can get as perfect offspring as parents 548 1-6m 614 $17-19 m, 21-23 m, 40-45 m 62731 \mathrm{~m} /$?

COLLETT, Robert Zoologi: Fiske Christiania; Grøndall \& Søn; 1880 [Down] \wp

COLLINGWOOD, Cuthbert Rambles of a naturalist on the shores and waters of the China Sea London; John Murray; 1868 [CUL] beh, gd, ss

NB 173 Electric snake

* Butterflies attracted by dead specimens S. Selection
* 182 Referred
* I have read as far as p 260 (very little)

367 all inhabitants of the Sargasso basin
374 Flying fish Habits
1 11-12z 173 27-34m 182 6-9m/"..." 1834 $6 \mathrm{~m} / 5-6 u$ "frequent battles" 367 12-21m 374 17-21m 37532 m 376 9-12m, 24-29m 377 14$19 m$ end of booklist $w b 64$

COLUMBUS, Christopher Selected letters ed. R.H. Major; London; Hakluyt Society; 1847 [Down]

COMSTOCK, John Henry Report upon cotton insects Washington; Government Printing Office; 1879 [CUL]
beh, gd, mg, oo, phy, tm
NF extra-floral glands; moths boring into melons $\rightarrow 84-85 ; 86-87 ; 90-91 ; 97 ; 89$ great powers of flight of moths; sweet juice eliminated - 319-320
NB 84 Extra-floral nectar-glands
89 Migration of moths grt distances
117 do \& distribution
120 do
213 ants destroy enemies of cotton Nectaries
320 to end with Bibliography.
$8410-22 m, 41-46 m 852-12 m, 19-26 m$, $28-$
$32 m, 38-47 \mathrm{~m} 864-21 \mathrm{~m} 891-16 \mathrm{~m} 1177-13 \mathrm{~m} /$ 13u "Argotis annexa" 120 27-32m 183 26-29m
$21328-30 \mathrm{~m} 317 \mathrm{wb}$ W. Trelease $32022-26 m$
325 14-22m, 31-38m 326 1-7m 327 5-7m 331
$3-7 m, 21-25 m, 38-43 m, 44-46 m 33224-30 m$, $40-47 \mathrm{~m} /$? $3331-5 \mathrm{~m}, ~ 9-15 \mathrm{~m}, 45 \mathrm{~m} 33611 \mathrm{~m}$

COMSTOCK, John Henry Report of the entomologist of the United States Department of

Agriculture for the year 1879 Washington; Government Printing Office; 1880 [CUL] ab

NB 203 Change of Habits in insect; 246 do 203 25-28m 246 17-23m, 18-19u "At । acquired"

CONGRÈS INTERNATIONAL d'anthropologie et d'archéologie préhistorique (Bologna, 1871) Bologna; Fava \& Gavagnani; 1873 [Down, I by Cappellini (secretary of conference)]

\wp

$5401 m 54213 m$
CONTA, Vasile Théorie du fatalisme Bruxelles; G. Mayolez; 1877 [Down]

CONVERSATIONS on vegetable physiology vols. 1 and 2; London; Longman, Rees, Orme, Brown \& Green; 1829 [Botany School, pre'B, FD, E. Catherine Darwin in vol. 1]

CONYBEARE, William Daniel, and PHILLIPS, William Outlines of the geology of England and Wales Part 1; London; William Phillips; 1822 [Down, pre-B]

〈a few editorial marks, not $C D$ 〉
COOK, James and KING, James A voyage to the Pacific Ocean 3 vols.; London; W. \& A. Strachan; 1784 [CUL]
vol. 1 NF This Work was given on its first publication by Josiah Wedgwood Esq of Etruria to Erasmus Darwin M.D. of Derby and is given to their Grandson Charles Robt. Darwin by his Father in 1840

COOKE, Mordecai Cubitt Mycographia, seu Icones fungorum vol. 1; London; Williams \& Norgate; 1879 [Down]

COTTA, Bernhard von Die Geologie der Gegenwart Leipzig; J.J. Weber; 1866 [CUL] af, ch, gd, geo, sp
SB p.198; 200; 208 good; Geology, change of species; closely allied species; Die Urwelt der Schweiz Notes pinned
198 10-12m, 14-15m 199 24-30m 200 21-23m, $31-33 m 20117 m / 14-16 w$ all found together 207 4-12m 208 1-3m/2u "dort | Kreide", 13$15 m / 13 u$ "sechsmalige", 21-25m, 25-27m 209 $1-2 m, 21-23 m / 22 a$ "ausgedehnten" Sea 210 34 m 22128 m

COTTA, Bernhard von Geology and history London; Trübner \& Co.; 1865 [Down]

COTTA，Bernhard von Die Lagerungs－ verhältnisse an der Grenze zwischen Granit und Quader－Sandstein Dresden und Leipzig； Almoldische Buchhandlung； 1838 ［Down， fragment］

COX，Edward William What am I？A popular introduction to the study of psychology London； Longman \＆Co．； 1873 ［Down，I］ ct，fg，hy，phy
$64 \Uparrow 12-8 m / w$ One pollen gr not enough 66 1－13w I hardly understand what you mean by germs 68 18－19x／16－18w hybrids 70 19－ $21 m / 14-21 w$ fused together $712-5 m 723-$ $16 w$ influence of nerves－Plants 73 26－28m／ $27 u$＂must be＂

CRAWFURD，John A descriptive dictionary of the Indian islands and adjacent countries London；Bradbury \＆Evans； 1856 ［Down］ br，gd，geo，is，se，v，ve，wd
SA $\langle p p .216-217\rangle$
10；14；15；16；28；32；38；46；56；59；73； 74；86；88；92；101；107；113；119；121； 122；123；125；92．；135；138；143；144； 145；152；153；171；172；217；220；225；255； 256；268；269；278；288；291；298；306；316； 318；320；407；417；420；433；A volcanic mountain wd undergo enormous degradation when subsided；Penlth note sheet missing SA2 1β
See map at beginning Very many facts show that very large quadrupeds will not exist in the smaller isids
14 Mountains heights \＆nature of
15 Zoology of archipelago
38 Bantam Poultry came from Japan
112 History of Cock Q
119 Genus Cervus
121 Dog NQ
125 Duck no wild ones，Penguin common var．
136 Elephant of Borneo described by Pigafetta
145 Goose not breeding in Manilla
152 Hog ，wild species of
153 Horses many breeds of，not aboriginal
$\frac{\mathrm{Q}}{255}$ Cat of Malay Q
268 Marian isld nothing about aboriginal quadrupeds
288 Monkey wild species of
316 Ox tribe
10；11；16；88；28；31；46；56；59；74；217； 225；92；279；337；143；171；220；291；298； 306；318；321；407；417；420；433：〈names of mammals of different islands）
$1057-62 m / 59 u \pm 1140-43 m, 46-50 m / 46 u \pm 14$ 40－43m，45－47m 15 20－28m，30u士，35u土，40－ $41 \mathrm{~m}, 45-51 \mathrm{~m} / 51 \mathrm{u}$＂Babirusa＂，53u土，56－62m 16 $1-6 m, 4-9 m / 5 u \pm, 13-17 \mathrm{~m} 2852-61 \mathrm{~m} 323-$ $10 \mathrm{~m} 3816 u$＂It Java ＂， $23-27 \mathrm{~m} 4658-61 \mathrm{~m} / 61 u$ ＂the lcat＂ 47 1u＂Thelhog＂ 56 42－48m，44－ $51 m / 46 u$＂hog＂ 58 37－43m 59 20－43m 73 52－ $59 m 744-19 m 8654-59 m 877-15 m 8811-$ 20 m 92 40－45m 101 14－18m 107 12－20m 112 51－56m，61－63m／Q 113 1－3m／1u＂amongl rudest＂$/ 2 u$＂domestic state＂， $2 u$＂bears｜species＂／ $3 u$＂Sumatra＂， $4 u$＂Java＂， $4 u$＂Malayl Philippines＂，5－18m，18－20m／19u＂Malays Javanese＂，21－28m，29－31m，31－37m／35u＂do। such＂，42－48m／44u＂in｜Hindostan＂，51－56m 119 1－16m， $4 u$＂Cervus \mid Cervus＂， $11 u$＂The belongs＂ 121 46－62m $1225-11 m, 58-63 m 123$ 4－9m／8u＂crown－pigeon＂ 125 9－11m，12－20m 135 52－59m 136 1－18m 138 1－3m 143 10－ $16 m 145$ 49－57m 152 19－29m 153 26－62m， $32 \mathrm{~m} / \mathrm{u}$＂Therel breeds＂， $33 u$＂onelto＂， $36 u$ 〈u henceforth place－names $\rangle, 37 u, 40-41 \mathrm{Q} 43 u, 44 u$ ， $48 u, 49 u 49 u, 52 u, 54 u 15420-24 m, 42-51 m$ 155 13－18m 171 47－61m，61－64m 172 14－21m 217 12－17m 220 26－29m，33－40m 225 40－52m 255 44－51m，50－52m 256 13－19m，31－38m 268 14－21m，51－58m 269 14－18m，37－39m 278 60－ $64 m 2794-6 m 2884-19 m 29126-27 m 2987-$ $14 m, 36-45 m 30022-25 m, 31-40 \mathrm{~m} 30658-$ 60 m 316 9－16m，22－29m 318 19－24m／20u ＂about I miles＂，29－34m／29－31w Depth 320 51－ $58 m 321$ 6－9m 33754－59m 407 3－5m 417 32－ 42m 420 54－61m 433 26－31m

CRAWFURD，John A grammar and dictionary of the Malay language vol．1；London；Smith， Elder \＆Co．； 1852 ［CUL］
beh，gd，geo，is，sy，ti，wd
NB ii；viii；xcv；civ；clxxxiii；ccvii；ccxl－on animals of Isd；ccxlviii；？cclii area of New Zealand；ccliv；cclx；cclxii，\＆iv
SB \quad－
civ at Lucon no horse or Oxen－－only Hog， Dog，Goat，Fowl \＆perhaps Buffalo xcv Timor said to be primitive ccvii Horse wild probably feral in Celebes ccxl Domestic animals of Pacific
cclv \＆c on men colonising isids in Pacific cclix Dogs of N．Zealand same race of in Society Isd
cclx Traditions of introduction of esculent plants into N．Zealand
cclxii In Marianne group natives use Fish Bones for arrows \therefore not deer x
cclxiii Fowls wild or feral，probably from wreck，as Cat then found？
ii $1-6 m$ iv $3-8 m$ v $20-23 m, 24-26 z$ vi $22-26 m$ ，

27－29z viii 19－22wec， $34-38 m$ xcv $28-31 m$ civ $25 u$＂absence＂， $26 u$＂buffalo＂，27－30m clxxxiii $25-27 m$ ccvii $3-5 m$ ccxl $23-27 m$ ccxli $27-30 m$ ccxlviii $7 m, 19-22 m$ cclii $18-22 m$ ，19－ $21 \mathrm{~m} / 20 a / w_{\notin}$ ccliv $27-30 \mathrm{~m}$ cclv $25 w$ Sandwich cclvi wt Yet Sandwich had dogs，Hogs \＆ Fowls wt Probably the frequency of being cast adrift wd make it obvious that，the Polynesians had better try to preserve animals．．－ $2-6 \mathrm{~m}$ cclix $15-17 \mathrm{~m}, 20-23 \mathrm{~m}$ cclx $1-11 m$ cclxii $8-13 m, 15-24 m / w$ see to Magellans voyage about Deer cclxiii $8-9 m$ ， $11-15 m$ cclxiv $6-8 m, 23-30 m, 34 u$＂hog 1 wild＂， 35－36？

CROLL Climate and time in their geological relations London；Daldry，Isbister \＆Co．； 1875 ［Down，I］
NB Glasgow Geolog．Soc．iv． 313 p7； Athenaeum Sep 22．＇60； 32
xii $30-32 m 25$ 10－11wec，17－19w 〈not CD〉 331 9－14m 332 6－9m（Geikie and Jukes）

CROOKES，William Psychic force and modern spiritualism London；Longmans，Green \＆ Co．； 1872 ［Down］

CUNNINGHAM，Robert O．Notes on the natural history of the Strait of Magellan Edinburgh；Edmonton and Douglas； 1871 ［Down，I］
beh，gd，is，y
NB \propto 〈page numbers \Leftrightarrow 〉
p56 Live terrestrial insects in sea when 1 found them
94 Young Logger－Headed Ducks can fly but lost when old
131 says Upland Geese do frequent lakes by the sea
195 lizard in T．del Fuego．－
56 9－12m／9u＂live beetles＂，15－17m 94 29－32m 131 1－5m 195 6－10m

CURTIS，William The botanical magazine，or， flower－garden displayed 2 vols．in one； London；Stephen Couchman； 1793 ［Down， pre－B］

CUVIER，Georges Essay on the theory of the earth，with geological illustrations by Professor Jameson 5th edn，trans．by Jameson；London； William Blackwood，Edinburgh \＆T．Cadell； 1827 ［CUL，pre－B，S］
281 1－4m／2w C11 9－11m＊／24w C21 282 9－ $10 m 2837 w 3$ 10w 4 19－21w 5，6， 7284 15w

8 21－22w $92857 w 1012-23 m / 17 w 1118-$ $21 m 345$ 21－23m 346 20－25m 347 2－9m 354 29－31m

CUVIER，Georges Leçons d＇anatomie comparée vols．1－5；Paris；Baudouin；1799－1805［CUL， pre－B］
〈most w apparently not $C D$ 〉
vol．1， 1410 m 1618 m 1826 m 2129 m 22 2－ $3 \mathrm{~m} 231 \mathrm{~m}, 2 \mathrm{~m} 245 \mathrm{~m}, 9 \mathrm{~m}, 10 \mathrm{~m}, 14 \mathrm{~m} 255 \mathrm{~m}$ ， $9 m, 10 m 2612 m 2922 m 3619-20 u \leftrightarrow 3726 c /$ atoe $4617 c \notin 5013 m, 24-27 u \pm 5113 m, 19 m$ ， $20 u$＂irritabilité＂， 24 m ， $28 u$＂poissons＂， 29 m 52 $3 m / 5 m / 1-5 w$ Quant ils font sauter tout hors de l＇eau $6 u$＂n＇ont aucune＂ 62 11a／ctom 92 $16-17 \mathrm{~m}, 30 \mathrm{~m} 933 \mathrm{u}$＂sont＂， $4 \mathrm{~m} / \mathrm{u}$＂parallèles＂， 5－6u＂leurs extrémités＂ $944 m, 5 m 9521 u$ ＂moindres＂， $23 u$＂véritablement＂， $24 m 963 m$ ， $6 u$＂auxquelles＂， $7 u$＂après 1 mort＂， $8 \mathrm{~m}, 12 \mathrm{~m} 97$ $2 m, 3 m, 5 u$＂le fibre＂， $6 u$＂delcorps＂ 98 19－ $20 \mathrm{~m}, \uparrow 4 \mathrm{~m} 9911 u$＂temps＂， $13 w$ रnot $C D$ ）， 15 m ， $18 u$＂dont＂， $18 u$＂nerfs＂， $26 u$＂insensibles＂， $27 \mathrm{~m} 10016 \mathrm{~m} / \mathrm{u}$＂nerfs＂， $18 \mathrm{~m} / \mathrm{u}$＂fonctions＂， 19 u ＂dépendent＂， $20 \mathrm{~m} / \mathrm{u}$＂médullaires＂ $1019-10 \mathrm{~m} /$ $9 u$＂charnue＂， $14 m, 23 m, 24 m, 27 u$＂fluide＂， $28 \mathrm{~m} 1022 \mathrm{~m}, 15 \mathrm{~m}, 19 \mathrm{~m} 1109 \mathrm{~m} / \mathrm{w}$ oiseaux 111 $20 \mathrm{~m} / \mathrm{w}$ oiseau $25-27 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{w}$ remarque 29 m ， $30 \mathrm{~m} 11612 a / c \notin 12010 \mathrm{~m} 12213 \mathrm{~m} \otimes_{\mathrm{s}} 12424 \mathrm{a} \mathrm{k}_{0}$〈not CD $125 \quad 14 m$ un $13318 u$＂sensibilitél irritabilité＂， $19 \mathrm{~m}, 25 \mathrm{~m} 13411 \mathrm{~m}, 12 \mathrm{w}$ 〈not CD ， $15 m 1353 m, 19 u$＂le milieu＂，20m，27－28m $1372 \mathrm{~m}, 17 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}$＂tous sens＂， 29 m 1381 － $2 m, 5 m, 7 m 13919 u$＂cordes＂， $25-26 m / 26 u$ ＂mêmes＂ 140 25－26m 141 28－29m 144 14a／ clote 209 4－6men 248 16－17m 256 10u ＂preuves＂， $11 m 27622 m 288$ 15w remarque 34320 m 《 365 22－25w \langle not CD $\rangle 449$ 3－4m $46312 u$＂poches＂， $13 u$＂qui＂ $46414 m 46521 u$ ＂muscles＂，23m，23u＂muscle＂ $4662 m / u$＂et s＇alonge＂， $3 m, 10 m 472$ 23－25m 476 5－6m，19－ $20 \mathrm{~m} / \mathrm{w}$ 〈not CD） $480 \quad 28 \mathrm{~m} 484$ 8u屯 ＂déploiement I certain＂，11－12u«s＂et lopposé＂ $48611 u$＂talon létendre＂， $12 \mathrm{~m}, 14 u$＂fournit 1 immobile＂， $15-16 \mathrm{~m} / \mathrm{w}$ marquez $23 \mathrm{~m} / \mathrm{w} \notin 488$ $8 u$＂soulever＂， $9 u$＂extenseurs＂， $10 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}$ ＂homme＂ $4896-7 m / 7 u$＂et du＂， $8 u$＂talon 1 arrière＂ 490 9u／c＂gauche＂ $19 w$ d．derriere 11m 494 16－17m 497 23－29m／25－26w $* \mathbb{k}_{5} 501$ $11 u \not \underbrace{}_{s}$＂certain point＂， $12 u \nprec$＂seroit lélastique＂ $50810 m, 14 m, 17 u$＂leurs lque＂／［．．．，18u＂pieds sont＂ 509 7－8m 510 14u＂Lal mouvement＂，15－ $16 u \leftrightarrow, 25-26 m 5115 u$＂avant d＇arriver＂， $6 u$ ＂le premier＂，7－8m，27－28m 512 5－6m，9－11m， $25 m 51316-17 m 5143-4 m, 8 m, 11 m, 15 u$ ＂les 1 dans＂＂martinets 1 fous＂， $16 \mathrm{~m}, ~ 23-24 \mathrm{~m}$ ， $30 \mathrm{~m} 5151 \mathrm{~m} / \mathrm{u}$＂inflexible＂， $4 u$＂centrel gravité＂， $5 u, 6 m, 8 m, 11 m, 15-16 m, 17 u$＂inférieure corps＂， $22 \mathrm{~m} / \mathrm{u}$＂os＂， 23 u＂cylindre｜creux＂｜23－

CUVIER，ANAT．COMP．
 $3 u$＂traitant des＂，5－6m，10－11m， $12 u$＂entre＂， $13 u$＂expansion｜peau＂，15－16m，24－25m 517 $2 m, 3 u$＂grèlel centre＂，10m，24－25m 522 14u屯 ＂156＂，table．wan］
vol．2， $3814 c / w$ à noter $9321-22 m 945 m$ ， $30 \mathrm{~m} 953 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$ ， $21 u$＂sensations＂ 96 $12 \mathrm{~m} / \mathrm{w}-9718 \mathrm{~m} / \mathrm{u}$＂rendre＂， $20 u$＂nerf simple＂／ w gen $23 w$ à noter， $24 m, 26 m / u$＂plupart des＂， $28 u$＂renflemens＂， $29 w$ à not $30 \mathrm{~m} 982 w, 4 m$ ， $8 m 10323 u$＂médullaire＂， $24 m, 25-26 m 104$ $15 u$＂médullaire＂， $16 \mathrm{~m} 10529 \mathrm{~m} 1065-6 \mathrm{~m}$ ， $20 \mathrm{~m} 10713-14 \mathrm{~m}, 14 \mathrm{~m}, 24 \mathrm{~m}, 25-26 \mathrm{~m} / 25 u$＂con－ sommer＂ $1087 m, 8 u$＂substance essentiel－ lement＂， $9-10 \mathrm{~m}, 13-14 \mathrm{~m}, 15 \mathrm{w}$ noter $24 \mathrm{~m} / \mathrm{w}$－ $1091 w$ electrique $3 m / u$＂isolés＂， $4 u$ ＂conducteur＂，5m， $6 u$＂cohibans＂， $10 \mathrm{~m} 11015 u$ ＂branlement＂， $16 \mathrm{~m}, 20 \mathrm{~m} 1115 \mathrm{~m}, 10 \mathrm{~m}, 19 u$ ＂autres ordres＂， $20 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}$＂contracte＂$/ \mathrm{w}$ facture $29 u$＂des sensations＂， $30 \mathrm{~m} / \mathrm{u}$＂portion nerf＂ $1123 m, 12 m, 13-14 m 1138 m 1159 m$ $11714 m, 17 a / c \notin, 21-23 w\langle n o t C D\rangle$
vol．3，xxi $29-30 \mathrm{~m} 389 m 464 m 15410-14 m$ 156 24－29m $40210 \mathrm{~m} 4073 m$
vol．4， $3084 m 30913 m 31915 m 33112 m / w$〈not CD ，13m／w 〈not CD 364 15－17z／20－22z $37414 m 48622 m, 23 u$＂quelfils＂，24u ＂membranes \mid unissent＂， $25 u$＂trachée＂

CUVIER，Georges Le Règne animal 5 vols．； Paris；Déterville； 1829 ［CUL，on B］
beh，sx，tm
vol．1， 151 26－28m 214 20－24m 219 30－32m 220 9－11m， $27 m 227$ 25－28m 228 5－7m，13－ $16 m 30623-28 m 4582-4 m 45910-12 m 460$ 24－25m 462 11－12m 496 9－13m 560 8－14m
vol． 2 NB p． 78
Q \＆G Cap Freycinet；L＇Uranie（wrecked in Falklands）；S．Astrolable
Peron，Lesueur artist；Baudin－Australia
Lesson \＆Garnot voyage de Coquille Capt．－ Duperrey
viia $34 w 1$ viiia $33 w 2$ viiib $31 w 3$ ixa $29 w 4$ ixb $7 w 512 w 629 w 7$ xb $15 w 828 w 936 w$ 10 xia $11 w 1115 \mathrm{~m} / \mathrm{w} 12$ xib $1 \mathrm{~m}, 6 \mathrm{w} 1315 \mathrm{w}$ 14 xiia $1 w 1512 w 1,32 w 2$ xib $10 w 337 w 4$ xiiia $23 w 51224-27 m 2823 m 3013-17 m 54$ $20-23 \mathrm{~m} 603-4 \mathrm{~m} / \mathrm{u} \leftrightarrow, 6 u$＂commelfemelle＂ 65 20－22m 66 19－20m 73 8－10m 81 15－19m 83 $11-15 m 8828-30 \mathrm{~m} 1015 \mathrm{~m} / \mathrm{w} \mathrm{c}_{0}$－ 103 3－5m 104 29－31m 106 9－11m 107 14－17m 110 32－ $36 \mathrm{~m} / \mathrm{Q} 111$ 20－22m 112 14－16？ 113 10－17m 114 5－7m 119 4－6m 189 zt 237 21－24m／23u ＂s＇enfle｜saison＂ 247 22－27m 255 11－13m 333 $15-18 m, 23 m / w$ Cape Fairweather
vol．3， 11 23－25m $1425 m 1516-17 m{ }_{c} 1710-$ 14 m 29 12－15m 33 1－4m，10－15m，16－18m， 23－25m $353 w 507 w 57,10 w 5818 w 6636$ $1 w 7012 w 11019 w 11320-21 m 397-9 m 40$ $15-17 m, 31-33 m 42$ 21－23m $443-5 m, 7-9 m$ ， $14-16 m 46$ 14－16m 47 19－20m 48 8－9m，25－ $27 m 516-8 m 5515-17 m 598-11 m 604-7 m$ 62 18－21m 68 17－19m $784-9 m 81 \quad 13-16 m$ ， $22-25 m 8416-20 m 87$ 21－24m $911-6 m 166$ $\Uparrow 10-9 m, \Uparrow 8-7 m, \Uparrow 3-2 m 168$ 17－22m 170 1－4m 175 20u＂douze paires＂ $17715-18 m, 17 m 179$ 16－20m 207 16－17m 225 20－24m 228 1－4m $2291-5 m 2354-7 m, 10-12 m 2386-10 \mathrm{~m} 266$ 23－25m，30－31m（von Baer） 276 22－23m 300 10－13m 301 1－4m（Lamarck），15－16m 302 20－ $22 m 306$ 6－7m，9－10m 308 13－16m 318 5－13z， $22-24 m 339$ 介4－1m 348 11－12m，介4－1m 350 $9 m, 14 m 373$ 介4－1m $37516 m, 19-22 m 3792 m$ 380 19－22m，32－33m，35－36m 385 10－13m 386 7－10m 392 20－23m 400 24－27m 402 27－29m， zb 403 3－5m 404 12－13m 40923 m 413 17－20m 415 2－4m 416 4－6m 422 7－10m 426 3－10m \wp
vol．4，xvii 11－12m／w Schiropoda， 9933 23－ $27 m 4410 m 5111-12 m, 16-19 m 6712 m 76$介9－6m $794 m, 5 m 822 u \pm 8414-18 m 919 m$ ， $10 \mathrm{~m} 9213-16 \mathrm{~m} 9531 \mathrm{~m} 9710 \mathrm{~m}, 15-17 \mathrm{~m} 100$ 7－10m 108 14－18m $1104-6 m 11721 m 1188-$ $9 m 1199 m, 11 m, 26 m 1207 m, 24 m 12124 z$ 122 19－20m $12331 w 212417-18 w 31286-$ $10 \mathrm{~m} 13217-18 \mathrm{Q} 1336 \mathrm{~m}, 9-10 \mathrm{~m} 1359-10 \mathrm{~m}$ ， $22 m 1366 w 313824 m 1403 m 14114 m 142$ $4-8 m 15114 w 15815428-32 m 15812 m 171$ $26-30 m 2293-6 m 23422-25 m 23521-22 m$ 236 2－5m，17－18？ 240 14－19m 241 9－11m 242 20－22m 244 7－9m，32－34m 247 2－4m，10－12m 250 25－27m 251 23－25m 254 4－5m 255 29－ 30 m 257 27－28m 258 5－8m，12－15m，24－26m 259 22－23m 261 21－24m，32－33m 270 21－23m， 33－37m 273 27－28m 275 9－12m 278 19－21m 281 6－8m，25－27m 286 2－5m， 16 m 287 27－30m $28910 \mathrm{~m} 2901-3 m 3344-8 m, 28-29 m 335$ 5－ $6 m 337$ 24－27m $33816-20 m, 28-30 m 34127-$ $29 m 346$ 27－28m 542 30－39m 543 1u＂mort fuite＂
vol． 5 NB p． 305 Leon Dufour has written on stinging instruments of ants
p． 291 －on antennae differing in male \＆ female Cynips in no．of Joints．－
206 23－25m 305 31－33m 399 13－14w 2403 29w $34085-7 w 541510 w 825-27 w 9423$ $22-23 w 10$

THE CYCLOPAEDIA of anatomy and physiology ed．R．B．Todd， 6 vols．；London；

Longman，Green，Longman \＆Roberts；1835－ 1859 ［Down］
beh，phy，tm
vol．2，221a $6-12 m, 8-9 u, 62-66 m$ 221b $1-7 m$ ， $34 u, 44 u, 47 u, 49 u, 51-54 m / 54 u, 56-59 m, 61-$ $69 m, w b$ the lower eyelid acts during laughter 222a $17-26 w$ very little about it，seems to depress eyebrows \＆causes frown 21－26m， 65－68m 222b $10-14 m, 15 c, 38-42 m$ 223a 26 － 31m，54－55u 224a 9－13m，24－28m 224b 6－9m， $12 c / w \notin, 50-55 m$ 225a $31-33 \mathrm{~m} 225 \mathrm{~b} 17 \mathrm{~m}$ ，33－ $35 m$ 226a $48-56 m$ 226b 3－9m 227a 6－10m， 53－56m，62－69m
vol．3，90a $21-30 m$ 93a $38-43 m$ 94b $24-25 u$ 98a 13－17m 566a 55－58m 566b 41－51m 722， $723 w\langle F D\rangle$ vol．4，1415a $43-44 u$ ， $44 m$ 1415b $29-31 m, 30 u, 35-37 m / 35 u \quad 1424 a \quad 38-41 m$ 1424b $14-17 \mathrm{~m}$ 1425a $42-50 \mathrm{~m}, 54-59 \mathrm{~m}$ 1427b $16-24 m, 31-40 \mathrm{~m}, 44-51 \mathrm{~m}$ 1427a $8-12 \mathrm{~m}$ 1428a 53－58m 1496b 4－11m，29－36m 1497a 38－42m／ 39u 1499a wtє，1－6m，57－61m／60u 1500a 30－ $34 m$ 1500b $1-4 m, 40-46 m$ 1503a $15-19 m$
vol．6，301b $50-57 \mathrm{~m}$ 302b $35-40 \mathrm{~m}$ 303b 9－ 13 m 304a $10-13 \mathrm{~m}, 12 u$＂vermiform＂304b 24－ $28 m / 25 u 317 b 37-42 m$ 318b $24-36 m / 28 u$ 334a 38－47m 642a $35-37 \mathrm{~m} /{ }^{\prime \prime} .$. ＂642b 1－5m，1－ 8＂．．．＂／7c 643b 16－19m

DALLAS，William Sweetland A natural history of the animal kingdom London；Charles Griffin \＆Co．；n．d．［Down］\wp

DANA，James Dwight On the classification and geographical distribution of Crustacea Philadelphia；C．Sherman； 1853 ［CUL，I］ gd，hl，sp，t，ti
SB $\square \beta$
1557 No species in common to W．America \＆central Pacific，except few cosmopolites
1498 On number of species in Torrid zone （Q）
1501 less numerous but higher
1504 Tropics most prolific in Crustacean life 1528 general discussion on above heads
SA 〈pp．1588－1589；part of a letter from J．D． Dana）

1498 35－39m 1501 28－29m 1503 36－38m 1528 1－24m 1529 1－9m 1531 4－5m 1533 wtcc， table．m＂Hyas＂，wb Right 〈also totals in each column totalled 1536 table．m＂Cyclograpsus＂ 1538 table．m＂Lithodes＂＂Paguristes＂ 1542 table．m＂Jaera＂ 1543 table．m＂Amphoroidea＂ 1544 table．m＂Anonyx＂＂Gammarus＂ 1551 $30 x$／30－39m／34u，39u 〈place－names），35－37w Before Glacial B．G． $15527 m, 7 m, 9 m, 12 m$ ， $31 \mathrm{~m} / \mathrm{w}$ Med \＆Japan $33 \mathrm{~m}, 40 \mathrm{~m} / \mathrm{w}$ Med \＆ Japan $15531 m / w, 3 m / w, 5 m / w, 7 m / w$ Med \＆ Japan $8 w 36$ species with enormous ranges $z b \quad 1554 \quad 4 x / 3-9 w \quad 42 \mathrm{sp}$ with curious ranges．－belong to many genera $15571-5 \mathrm{~m} /$ $4-5 x-11 u \leftrightarrow, 23 x *, 28-33 w$ Evidently far more relation between E．\＆W．America than in shells \＆more species in common：but I can hardly judge $35-37 \mathrm{~m}$＊ 1558 19－24m／ $21 x \geqslant 15613 w$ a temperate genus $3 x \otimes / w$ New Zealand \＆America $25 x$ 1564 $30 x$ 1567 18－19x 1569 10－11w New Zealand \＆ S．America $12 x$ ， $16 w$ do $19 x$ ， $26 u$＂eighty－ one＂， $29 u$＂thirteen IJapan＂ $1 x / w$－New Zealand \＆Cape $30 u$＂three＂ 15030 ， $13 x 15747 a$＂above＂ $337 x / w 33$ species in common 15－17m，19x／19－22w it is a difficulty so few being common to Europe \＆ Cape $29 w 12$ Natal \＆Japan 1576 19u ＂eastern｜Australia＂，25－28w New Zealand \＆ America 29x／？ 157821 u＂Hymenicus 1 near＂／ $21-32 w$ No representative case can be made out，as for common Antarctic land；New Zealand \＆America $\uparrow 13-8 m / \Uparrow 11 u$＂over twelve＂$/ \Uparrow 9 x / \uparrow 9-7 w$ are any of these southern genera I wonder $\uparrow 10-8 w$ p． 1561 \＆ temperate genus of Amphoroidea $\uparrow 8 u$ ＂Cyclograpsus＂／wb is a wide ranger，Mid Pacific Florida $\Uparrow 8 u$＂Paguristes＂$/ w b$ wide ranger $\Uparrow 7 u$＂Betaeus＂／wb Indian Ocean

DANA, CRUSTACEA
torried $\uparrow 5 u$ "Palaemon" $/ w$ torrid $w b$ Cancer none torrid $\mathrm{N} \& \mathrm{~S}$. America Ozius torrid 1579 $3 x / u$ "Ozius \mid Xantho", $13 x / u$ "Lithodes 1 Galathea" $/ \mathrm{w}$ range equator wards? $\uparrow 8-1 \mathrm{~m} / \mathrm{u} / \mathrm{w}$〈ranges and climatic zones of species named〉 1580 28-29x $15814 u$ "Glyptonotus"| 3-4x $6 x * / 13 x * / 6 w$ New Zealand \& Cape \& S. America $15827 x / 10-11 x$ /8-9w \& Turtles \&c $15838 x$, 12x, 18-19x/19u "not zone", 21x $27 x / w$ New Zealand \& America 27-28u "AmphoridaelOzius" $\mid x$, $35 x$ 1584 9x ${ }^{2}$, 13c "Horn"/w G Hope 22$23 x / 26-27 x / 36 x / 38 u$ "Japan" $15854 x$, 11c "Horn" Good Hope $16 x$, $27 x 1586$ 13$14 x$, 21-22x , 29-30x , 32-33x 1587 13$25 m / 13-14 x$, $24-25 x$ 1588 33-34x 1589 3-4x

DANA, James Dwight Corals and coral islands New York; Dodd \& Mead; 1872 [CUL, I]
geo
NB p.365; p. 308 Loyalty Isld Quart Jour. 1847 p. 61
7 26-30m 108 8-10m 116 9-13m, 13-16m 158 1-2m, 10-11m, 31-32m $17112 m, 15-17 \mathrm{~m} 184$ 22-26m 193 17u "Metia or" 199 9-10m 219 12-14m 259 13-16m $267 \Uparrow 8 \mathrm{~m} 27315 \mathrm{~m} 301$ $9-18 \mathrm{~m}, \quad 11-12 \mathrm{~m}, \quad 15-17 \mathrm{~m}, \quad 30-33 \mathrm{~m} / 33 \mathrm{u}$ "westernmost islands" 302 11-16m 303 3-7m, $10-13 m, 14 w$ why not $23 u$ "occurlare", 30$31 m 30410-13 m, 18-25 \mathrm{~m} / 23 \mathrm{w}$ why 3059 12m, 13-14m, 16m, 20u "Tatoal volcano", 28$32 \mathrm{~m} / 30 \mathrm{u}$ "evidence I very" 306 6-8m, 12-14m, $14-17 \mathrm{~m}, 20-22 \mathrm{~m} 3077-9 \mathrm{~m}, ~ 12-13 \mathrm{~m}, 18-23 \mathrm{~m}$ 308 25-29m 309 16-19m, 23-24m 310 6-12m $31129-32 m 317$ 8-10m 320 14-19m 321 1620 m 322 1-4m 323 17-23m 324 1-6m, 9-11m, $27-32 m \quad 325$ 11-13m/11-15"..."/12u "deep bays" 326 16-20m, 24-25u "Tutuila Icoral", 28-32m 327 6-11m, 15-16w I do not trust this evidence?? $17-22 \mathrm{~m} / 18 u$ "wide reefs", $26-31 m$ 330 28-31m 331 wt Mr D also shows on authority of Mr Hale that $\%$ these islanders seem to be here held * where certain on Ponape were sacred $1-8 m / 4-8^{\prime \prime}$...", $9 m 333$ $22-28 \mathrm{~m} / 22 u$ "the lagoon", $29 u$ "two feet", 31$21 \rightarrow 3342-4 m, 16-18 m / 18 u$ "six feet"/ 14-21w This wd protect the leeward side $25-26 \mathrm{~m} / \mathrm{w}$ From Keeling Isid $25 a$ "Metia" or Aurora solid coral rock $27-32 m / 29 u$ "northeastern" 336 11u "three hundred", $26 u$ "Rurutu", 28u "high", 29 u "lower eminences", $30 u$ "hundred", $30 u$ "three hundred", 32u "part basaltic" 337 5-8m/6u "All Tonga", $10-14 \mathrm{~m} / 12 u$ "layer thick", $31 u$ "one 1 height" $3384-7 m, 14-17 w$ Samoan elevtn 2 or $318 u$ "twolthree" 339

16u "prooflelevation" 341 12-14m 342 24$26 m / 24 u$ "four Isix" $34319 u$ "onel has", $32 u$ "full | feet" 345 17-37m 346 wt The nature of the slope - (Galapagos \ominus) Tasman - birds of atolls 351 19-23m $3651-7 m / 1-2 u \leftrightarrow / 4 u$ "of Hawaii" 394a $1 m$ 394b $1 m, 3 m$ 395b $13 m, 22 m$

DANA, James Dwight Manual of geology Philadelphia; Theodore Bliss \& Co.; 1863 [Down, I]

DANDOLO, Vincenzo The art of rearing silkworms London; John Murray; 1825 [CUL, pre-B]
NB 23; 244; 270

\wp

23 20-27m/22-23Q 244 1-3m 270 7-11m 349 25-28z

DANIELSSEN, Daniel Cornelius and KOREN, Johan Zoologi: Gephyrea Christiania; Grødahl \& Søhn; 1881 [Down] \wp

DARESTE, Camille Recherches sur la production artificielle des monstruosités Paris; C. Reinwald \& Cie.; 1877 [Down, I]

DARWIN, Charles De Afstamming van den Mensch (The descent of man) trans. H. Hartog Heys van Zouteveen; Delft; Van Ijkema \& Van Gijn; 1871 [CUL] \wp

DARWIN, Charles En Naturforskares resa omkring jorden (Voyage of a naturalist) trans. G. Lindström; Stockholm; J.L. Törnquist; 1872 [CUL] \wp

DARWIN, Charles Het Ontstaam der Soorten (The origin of species) trans. T.C. Winckler; Haarlem; A.C. Kruseman; 1860 [CUL, I] \wp

DARWIN, Charles Origine delle specie (The origin of species) trans. G. Canestrini; Torino; Unione Tipografico Torinese; 1875 [Down] \wp

DARWIN, Charles L'Origine dell'uomo e la scelta in rapporto col sesso (The descent of man) trans. M. Lessona; Torino; Unione Tipografico-Editrice Torinese; 1871 [CUL] \wp
DARWIN, Charles Über die Entstehung der Arten in Thier- und Pflanzen-Reich durch natürliche Züchtung, oder Erhaltung der vervollkommneten Rassen im Kampfe um's Daseyn (The origin of species) trans. H.G. Bronn; Stuttgart; E. Schweizerbart; 1860 [CUL]
af，cc，cr，ct，ds，em，ex，fg，gd，ig，oo，phy， rd，sl，sy，t，ti，tm，ts，v

SF $\square \Re \propto\langle 4$ sheets \rangle
Bronn＇s criticisms for New Edit of Origin
Objects that I cannot precisely say why two species of Rats Hare \＆Rabbit assumed by selection their present characters－very true I can in no case say this－we know so little of use of parts \＆laws of correlation．－But I confess，I thus evade every special difficulty． Why one gets round and another pointed leaves．
Objects that in case of two varieties still living in abundance side by side how can intermediate races＊have been exterminated－But are there such cases， excluding such vars as albinos．－Do not they inhabit distinct countries or stations－surely this is general rule．－
Do you believe in Brehms sub－species．Have you seen them？
Thinks that variation arising from exter－ nal conditions are linked together by intermediate－not those produced by n ． selection．－
Why of two cells，primordial，one got volition \＆sensation \＆other did not．－
Says I ought to answer＊whether my primordial forms were created as eggs or full－grown \＆c．－Admits that vegetable－cell wd come first．
〈over〉
I think Schmidt says the eyes not so completely grown，at least form more related to those of external world＊near extreme of case－＊
I shd never suppose with respect to his supposed changes in 2 Rats，that first longer or shorter tail \＆larger ears were acquired， but that all were modified together．－
\Leftrightarrow Might I not ask Creationist why tail longer or ear shorter？I could not ask this of him who believes that God makes his creation different for mere variety－like man fashions a pattern for mere variety．

〈over〉

Objects there might © ${ }^{\circledR} 100,000$ creations as well as one：I agree © then these would not have borne signs of common descent in homologies \＆embryology \＆rudimentary organs．
Some mistakes about my supposing several glacial periods．－Permian \＆Chalk
＂Why shd the process of development have always caused one race rats in all different parts of world＂I do not believe so－N． Zealand \＆Australia．
\Leftrightarrow I cannot see force of your objection because one cannot explain origination of life－the far grandest problem of any－why it wd not be gain to explain or account for forms；if this could be done－so we $\%$ do not know what selecting is，but - this its action．－
I fully agree to your final sentence－\＆I fully admit the many awful difficulties in my view．〈over〉
Certainly，as he grants ${ }^{(8)}$ that both rats descended from one common parent．
As I cannot justify my opinions in any one single case，so I need not in any．－is as true ＊as it is severe－
Though I can in no single instance，（except by conjecture，as longer legs of Hare for fleetness \＆not－longer ears to hear with） explain changes＊yet the structures \＆c led me to conclusion．－Laws of Variation will hereafter be understood far clearer
1 wt With
$\wp\langle m i s s i n g$ from p．463〉
DARWIN，Charles The zoology of the voyage of H．M．S．Beagle，under the command of Captain Fitzroy，R．N．，during the years 1832 to 1836 London；Smith，Elder \＆Co．；1840－1842 ［CUL］
ex，gd，ig，mg，sp，ti
Part 1， 9 wt 4 apparently the Olivallaria auricular of d＇Orbigny 19－20u＂Oysters＂$/ w \bullet$ ， 22－23c／w \notin ，22－37m 17 23－28m $2810 c / w$ already alluded to $11-13 \mathrm{~m} / \mathrm{a}$＂Toxodon＂in several cases it deviates from 29 1a＂Rodent＂ 55 13－21m，20－25m／20w a Pachyderm 24a ＂Macrauchenia＂$/ w$ animal 72 33－37m 74 19－ $21 m 107$ 1－2m，37－39m

Part 2， 17 31－36m 35 13－15m 48 21w 1273 $2 w 28813-6 m$

Part 3，NB S Representative species p31； 85.

85 capital Glacial Representative，not quoted 113 Beaks of woodpeckers muddy at base
67．intermediate var in intermediate regions 16 〈u＝colourings $\rangle 4 u, 5-6 u, 9-10 u, 10-16 \mathrm{~m} / 10-$ 12＂．．．＂，29－34m／33u 31 11－13m 34 7－8Q 66 19－20Q 67 29－30Q $8322-24 z 859 m 10816-$ $17 w$ Matutina $17 c$＂ruficollis＂ $11332 m / Q 143$ 10－12Q

Part 4，SB1 0

Important to find out those genera which have no marine species or migratory species．In these distribution must offer great difficulty．－Are there many？Feb．／56／

DARWIN，C．，BEAGLE VOYAGE
SB2 Galapagos Fish 〈list of species〉
SB3 $\square \beta$
－p340 odd about Alpine forms becoming less numerous \langle rest $\diamond\rangle$
F．W．Fish
p3 True Perch in S．America
p18 Dules R Tahiti－other species Java
p79 Atherina Valparaiso－some in brackish， some salt species
p98
p114 Poecilia Cyprinidae Lebias S．America p120 Mesites Nov．Gen．
Salmonidae
p123 Tetragonopterus
p131 Aplochiton F．W．Genus Falklands \＆T． del Fuego
p142 Anguilla N．Zealand
Part 5， $212 w 11141 w 251 w 3616 w 47$ $16 w 581 u / 5-6 u$ 〈colourings〉，9－14m，27w 6 $101 w 7111 w 81220 w 91323 w 101431 w$ $111533 w 12171 w 13187 w 121413-4 m$ $5110-12 m$

DARWIN，Charles 〈end of German translation of Beagle Journal？＞［CUL］
pat，phy
$2981-17 w$ thinks palm sap owing to life being continued 299 14－23m／w in Challen Id a well person new arriving made all sick－ believe in New Zealand

DARWIN，Erasmus The botanic garden part 1 and part 2 vol．1，bound together；London；J． Johnson；1791；and part 2，vol．2，2nd edn ［CULR，pre－B，S］
fg，gd，mhp，sp，sx
NB p．8；p197；p200；p202
Species of Plants p． 4 to 7 ； 10 to 26 to 40 ； p．60；75；125；147；169；185；186；Abstract Dec 1857
p3 \＆ 4 female bending down；p． 5 In Genista the pistil Bending round to stamens which last shed their pollen；p． 6 Labiatae similar observation；p． 16 On Arum preventing Flies escaping（Ch．3）； 60 seeds of Tillandria found sticking to trees； 169 Amoen Acad on Rams giving fleeces
vol． 1 title page $w b$ Second＊part 1790 which was published first $823-31 m 91 " \ldots$＂． $19715-17 \mathrm{~m} 17 u$＂the lbush＂，20－21m 198 介5－ $1 \mathrm{~m} / \mathrm{w}\langle F D\rangle 20014-16 m, 21-22 \mathrm{~m} 202$ 17－20m， 22－25m（White）
vol．2，part 1， $418-20 \mathrm{~m} 58-11 \mathrm{~m}, 15-18 m$ ， $20-24 m 69-12 m / 8-15 w$ These facts do not appear to me impossible，though Sprengel
denies them 7 12－17m（Linnaeus）， $19 u$＂with। only＂ 10 11－15m 12 15－18m 14 12－15m，19m／ u＂twoldifferent＂，23？／u＂approach｜pistil＂ 16 11－20m 17 30－32m／31u＂letter 1 with＂ 26 介4－ $2 m 38$ 20－22m 20u＂Caterpillars which＂，26－ $27 m$ 26u＂The lark＂ $3911 u$＂those I green＂ 60 22－24m $23 u$＂withlon＂ $75 \Uparrow 4 m 76$ 8－9m 107 15－19m 121 11－15m 125 20－22m 146 23－25m 147 15－23m 148 18－20m 149 7－9m 169 19－ $20 m 185$ 2－6m 186 4－21m

DARWIN，Erasmus The botanic garden，part 2 vol．2；Lichfield；J．Jackson； 1789 ［CUL， pre－B］

DARWIN，Erasmus Phytologia London；J． Johnson； 1800 ［CULR，pre－B，S］
beh，br，ch，che，cs，fg，mhp，pat，sh，sp， spo，sx，tm，y
NB 45 leaves closing in rain 959699102 106108114
116，8－direct action of pollen of beans V． fabaO
137148181324320350379451452501 532535541543545568570579583
p207 215 Phosphorus not enough attended to but he thinks shells contain an abundance 217 use of Strawo
SB \quad Q
106 Q Case of broom other plants bending pistil to late anthers，I doubt
116 Most curious case of rows of Beans， crossed Bath Soc．vol．5，p． 38
451． 1746 a Mr Cooper selecting his veg－ etables with care，\＆evidently indep－ endently（shows how it may have gone on） \＆with this care，does not find any change of seed．necessary．Quoted from Commun－ ications to Board of Agriculture
532 On Gout produced by intemperance． children can bear less．
568 Phytolacca 1 species with 20 stamens， another with 10，\＆another with $8 \& 8$ Pistils \＆another dioicous－Properly Decandria \＆ DecagyngiaO

2 3－4m 45 9－13m 55 10－12m 76 31＂．．．／32m 77 1－3m，9．．．＂，27－29m 79 29－32m 95 1－12m 96 $10-16 \mathrm{~m} / \mathrm{w}$ will not account for sporting 97 16－ $19 m / w$ How do Horticulturers propagate these $99 \quad 1-3 m \quad 102 \quad 1-5 m \quad 106 \quad 11-32 m / w$ shows that stigma long remains susceptible of impregnation 107 1－9m 108 10－19m，28－ $32 m$（Bonnet）109 6－9m 114 13－18m，21－32m 115 24－32m 116 1－3m／3－1m／11c＂Seelwork＂｜ 22－28m／2－28w important shows extent of crossing 117 21u＂Vol．｜Academic＂／18－21m （Schreber） 118 5－7m，20－29m／22u＂plantsIhis＂

119 4-8m 137 7-15m/11u "Fordyce" 148 19$21 m 181$ 1-5m 207 19-20m/19u "universallyl vegetables"|20u "sufficiently|to" 209 15-16m 211 6-8m 215 6-9m, 7 m 217 6-10m 316 13m $3201-4 m 32424-32 w$ so that Sir G. Sebright explanation of ill effects of breeding in \& in same as my grandfathers for diseases in old trees $3503-9 m, 29-31 m 37927-32 m /$? $4331-$ $2 m, 6-7 m 4511-5 m / w$ good $7-14 m, 19-23 m$, 28-32m 452 2-5m, 25-30m, 28-29m 467 9$12 m 501$ 16-18m/18u "after flowering" 531 1$9 m \quad 532$ 10-15m, 19-25m 533 14-18m (Linnaeus) 535 2-4m (Linnaeus)/4u "Tracts Hist." 541 18-22m 543 18-25m 545 16-19m/ $16 u$ "Philos. 1 Nature" $5577-10 \mathrm{~m}, 18-21 \mathrm{~m}, 22-$ $25 \mathrm{~m} / 24 u$ "old organizations", $30-32 \mathrm{~m} 5595-$ $8 m 5684 w$ Fish? 6-10m/6u "the lorgans" $/ w$ is this so? $9 w$ Lamarck $11-30 \mathrm{~m} 569$ 2-16m 570 1-3m 577 27-29m 579 17-20m (Murray) 583 20-23m

DARWIN, Erasmus The temple of nature London; J. Johnson; 1803 [CULR, pre-B, S; 2 copies, one unmarked]
beh, cr, phy, tm
NB O/
p54 In Man fundus not over opening of urethra; 63; 134
notes p.1; p.18; p. 25
124 Love your mother as yourself
54 consonant to the dignity of the Creator of all things
Notes
120 Machine to speak
87 Reference to my Father on Spectra vol. 76
p11 - advantage of \& Power Microscope
54 12-13m, $26-28 m / 24-28[. .] 6326-.27 m 68$ 11-18m 73 13-17m 124 13-21m (Socrates)/1721[...]/18c/19c£ $1345-8 m, 5-6 m$
Notes, contents " 270 " m, " 295 " m 1 20-21m $115-9 m 183-7 w$ external or internal yolk sac - means of passage $=6-8 m 232 w *$ Read 25 15-19m 33 3w Read to p. 3645 20-23m 120 7-14m/8-12"...", 21-27m

DARWIN, Erasmus Zoonomia 2 vols; London; J. Johnson; 1794-96 [CULR, pre-B] beh, cc, ch, ds, gd, he, ig, pat, phy, sx, t, tm, v
vol. 1 NB1 23; 24; 46; 50; 52; 55; 57; 103; 104; 108 Malebranche gustation; 114; 130; 142; 140; 147; 148 Expression; 150; 152 Expression; 154; 160; 162; 190 I must show habits descended and then $0 ; 192 ; 201 ; 203$ whole chapter on sleep very good \& all
marked; 214; 242; 253; 265; 267; 268; 269; 423 expressions; 425; 427 - good yawning; 483; 487; 502; 504; 505; 509; 510; 517
NB2 p. 183 centipedes cutting worm into 2 pieces
SA $\langle p p .504-5\rangle \square \beta$
140 Q An infant soon forgets to suck - if calf once sucks cannot be up by hand
160 Q Kitten covering spoonful of water. EttyO shaking foot, when it heard water
191 Compares Music with Instinct \& when putting nose into glass
504 Lamarck concisely forestalled by my Grandfather
508 Teats on sheath of Horse (\& in Mule)

- Plato thought that all animals Hermaphrodite
$1214-19 m 237-20 m / 8 w$ (a) $w b$ (a) This is strange as hungry men never dream of hunger $24 \quad 6-32 m \quad 46 \quad 6-21 m \quad 50 \quad 17-19 w$ instinctively so $522-4 m 5512-15 m / w$ the mouth alone repeats the sensation $578-10 \mathrm{~m}$, $13-29 m / 29 u$ "whole skin" $581-9 m / w$ hope is mental desire $9927 \mathrm{~m}, 31 \mathrm{~m} 10322-25 \mathrm{~m}$, 29$32 m 104 \quad 7-16 m 105 \quad 19-31 m / 23-27 w$ does habit imply having ideas? $10630-32 \mathrm{~m} 108$ $22-25 \mathrm{~m} / w$ as soon as we became locomotive 114 8-15m 139 8-17m (Haller) $1405-7 m$, 2026m (Harvey, Hippocrates) 148 14-18m $1505-$ 13m 151 11-14m 152 18-20m/w Sir C. Bell says because he looks back $15412-14 m / w$ Ding to dogs in S. America $30-32 m 160$ 15$21 m$ 162 17-21m, 28-32m 182 9-12m, 19u "flesh|instincts" 183 9-17m 190 28-31m 191 wt There appears to be perfect gradation from concatenated movements of which is only partly unconscious.- to those which by no effort can be recollected yet, but yet one does by instinct \& habit.- $1-5 m, 7-11 m, 13-$ $15 \mathrm{~m} / \mathrm{w}$ \& indeed the more she does the better $w b$ all this is the reverse of intellectual power 192 19-24m $1948-17 m 195$ 24-28m 197 4-6m $19921-24 m / w$ no consciousness介4-1m 201 19-22m $20225 m 203$ 1-14m 207 22-27m 208 4-10m 213 4m/x 214 11-13m 215 13-16m 216 19-22m 219 1-5m/2u "tremulous convulsions" 242 22-25m 253 1- $2 m, 4-7 \mathrm{~m} / \mathrm{w}$ tastes hereditary do $16-20 \mathrm{~m} 25515-18 \mathrm{~m} / \mathrm{w}$ * tooth on edge sound, when earth is crushed between teeth - hear similar sound 2654 $8 m 26713-20 m / 18-19 u$ "sensation" $/ w \bullet$ I think this is $22-23 m / w$ only by drying the mouth 268 20-23m, 24-27m, 28-31m 269 21-25m/22$27 w$ is there or not a muscular contrivance to expel this 27016 - $23 \mathrm{~m} 27316 \mathrm{~m} 339 \Uparrow 7 \mathrm{~m} 356$ $14-17 \mathrm{~m} / \mathrm{w}$ Vide $3593 \mathrm{~m} 38719 \mathrm{~m} 4097 \mathrm{~m} / x{ }_{\mathrm{c}}$ $42112 m * 4227-10 m, 14-16 m / 14 u$ "exertion

DARWIN，E．，ZOONOMIA
of＂，24－25m 423 15－19m，29－31m，32m／w over 424 25－32m $4257-9 m, 11-24 m, 27-31 m 427$ wt yawning．streching fidgets（see Dr Holland）convulsions affecting the voluntary muscles－muscles of jaw，perhaps soonest brought into action \＆likewise perhaps connected by associations with \＆digestive powers \＆therefore soonest gives relief．7－ $9 m / w$ hence yawning attacks these muscles $43124 m / x 4335 m / x$（Helvetius） $4359 m / x$ $4559 m / x 456 \quad 15 m / x \nless 0 \quad 483 \quad 26-28 m / 27 u$ ＂polygonum viviparum＂ 487 10－19m 500 22－ $24 m /[\ldots] / 23 u$＂lactescent women＂ 501 1－5［．．．］， $3 w$ 〈not CD〉 502 13－26m，26－31m／w Bell Bridgewater Treatise argues against this 503 8－16m，25－28m 504 6－16m／12－16＂．．．＂／11－13w Lamarck！！ $5051-3 m, 5-7 m, 7-11 m, 12-18 m$ 506 wt Sir Charles Bell perfectly confutes all this $7-13 m / 7-23 w$ May be quoted，to show no more wonderful．－if merely proved a law of nature we are accustomed to the former．I attempt to show means－which is impossible in the one animal $5077-10 m, 10$ $11 \mathrm{~m} / \mathrm{x} / \mathrm{w}$ variation $19 u$＂learned＂$/ 19-20 w$ what an assumption！！！ 508 11－32m $5094 a$ ＂generation＂／wt aided by endless attempts，of which only few are preserved．－Vide Hume＇s works 1－4m（Hume），17－24m 510 27－32m／w This prob the Dr $5111-8 m 51215-16 w$ sex of Bees changed by food 514 3－11m 517 8－14m
vol．2， $404-8 m / 5 w\langle C D ?\rangle 431-6 m 4612-15 m$ 145 1－19w 〈not CD〉 352 17－31m 573 2u／w〈not CD

DARWIN，Robert Waring New experiments on the ocular spectra of light and colours London；J．Nichols； 1786 ［CUL］

DARWIN，Robert Waring Principia botanica； or，a concise and easy introduction to the sexual botany of Linnaeus London；Longman，Hurst， Rees \＆Orme； 1810 ［CUL，pre－B］

DAUBENY，Charles A description of active and extinct volcanos London；W．Phillips； 1826 ［Down，pre－B］
geo，mi，ti
94 21－25m／22－23w A 95 6－12m＊／8－9w A 104 30wぬ Miocene 105 15－17m，23－31m 170 15－ $16 w\langle n o t ~ C D\rangle 171$ 13－14w 〈not CD〉 180 18－ $27 w$ Covington copy $28-39 m, 28-34 m, 30-39 m /$ ＂．．．＂／36－37u＂frequent I matrix＂ 188 11－15m／w A 265 13－22m $2667^{\prime \prime} \ldots \prime$＂，11－24ww This is correct is taken from chart of the Azores by Reade 13－24m（von Buch），20c／w \neq ，fig．w fathoms 24＂．．．＂ 267 zb 270 27－33m，33m 272 11－12m／11u＂Madagascar＂ 273 1－2m 312 9－
$16 m 313$ 20－26m 323 16－17m／w Carteret in new Britain V．Krusens－ 324 wt New Britain Carteret saw spouting 1－4m， $5 u$＂Ahryn＂， $7 u$ ＂Tanna＂ 325 12－19m 326 1－6m 334 18－27m 343 27－30m 350 1－35m 351 1－11m 361 21－ $25^{*} / 25 m, 27-35 m / 34 w \notin, w b$＊Do either of these periods include \＆Caracas \＆Quito case of connect＞ $3869-11 \mathrm{~m} / 10 u$＂pearly lustre＂， $26-28 \mathrm{~m}, 35-37 \mathrm{~m} / 35 \mathrm{u}$＂nepheline I leucite＂ 387 18－27m，26－33m 388 1－6m 401 1－ $12 \mathrm{~m} / 2-5 w *$ Not in shifting sands 402 10－35m

DAUBRÉE，M．Études et expériences synth－ étiques sur la métamorphisme et sur la form－ ation des roches cristallines Paris；Imprimerie Impériale； 1860 ［Down，I］\wp

DAWKINS，William Boyd Cave hunting London；Macmillan \＆Co．； 1874 ［Down］ wd

NB Used； 77 Domestic Anims；78；137； 382 77 25－31m 78 2－8m 137 2－13m，15－21m 382 25－29m

DAWSON，James Australian aborigines Melbourne；George Robertson； 1881 ［Down， I］
beh， 00
NB White louse beaten out by black louse－ p． 13
p． 90 Change in Habits in Opossum
13 1－5m 90 25－33m
\wp
DAWSON，John William The fossil plants of the Devonian and Upper Silurian formations of Canada Montreal；Dawson Bros．；London； Sampson，Low，Son \＆Marston； 1871 ［CUL， I］
74 21－32m 77 8－13m 80 7－10m，22－26m
DEFRANCE，M．Tableau des corps organisés fossiles Paris；F．G．Levrault； 1824 ［Down，I by F．W．H．］\wp

DE LA BECHE，Henry Thomas Researches in theoretical geology London；Charles Knight； 1834 ［CUL，on B］
che，geo，mi， t ，ve
NB1 Every mountain chain may be considered as the ruin of an earthquake aided or obliterated by time！It is vain to bring first \＆other causes to bear they are comparatively insignificant．－
－192；198；219；242；252；293；297；
greenstones traversing granites serious drawback -
NB2 - 12 Spec Grav of Limestone-; 13 on Sulphur; 34; 43; 44; 53; 58; 95; 97 to 100 to 109 \&c. Cleavage; 128; 131 When considering M. chain; 141 Hence value of unitary System enters; 147; 151; 177 futility of lake theory well shown
$1230-34 m 1324-30 m 141-13 m 3111-12 w$ of silver $345-9 m 431-12 m$, $\uparrow 5 m / w b$ If so absence of ice in Arctic region proof of heat of bottom $441-4 m 3330-34 m 587-17 m / 12-$ 16 w I cannot understand this $15-22 \mathrm{~m} / 17-18 \mathrm{w}$ No 19-33m/xa/wbre Study Mr Palmer's papers in Royal Transactions 60 19-20m, wb Something wrong because breakes from sea and swell nearly similar $611-31 m a 1$ 1$33 m 63$ 2-12m*, 15-27m 74a $15 m$ 74b $4 m, 9 m, 10 m 7511-12 m, 12-14 m 93$ wt Iquique $1-13 \mathrm{~m} 95 \mathrm{wt}$ with respect to obsidian $3-30 m \quad 965-27 m \quad 97$ 19-28m/25u "subsequently"/?? e_{0} wb whilst soft because lime blends with clay $w b$ lquique $w b$ anhydrite $9914-22 m *$, wbs Fissure seen otherO to determine convulsing action.- Hence veins of quartz in many rocks. $10013-33 \mathrm{~m} / 32-33 \mathrm{~m}$, wbes Hollow concretion $10112-17 \mathrm{~m} 1033-8 m$ 104 2-15m 105 14-33m $\boldsymbol{c}_{109} 109-25 m 11122-$ $30 m 128$ wt Falkland Isd 1-8m $1296-22 m$, 12-15z 130 24-26m $1314-11 m 13210-31 m$ 136 11-16m 141 17-26m 147 13-25m 149 28$34 m 150$ wt Hence carbon removed from primary rocks - hence hydrogen \& nitrogen 151 wt X Thence all the bituminous rocks, layers of shales, because carbonic acid decomposed water $10-26 m 16015-28 m 177$ 6-24m, wb applicable to Terraces 192 26-33m 193 1-33m 194 1-15m, wb formed by beaches 198 wt as long as stream rapid form gorge straight (why?) then zigzag, widen it, but could not produce sloping tub $12 w$ V. p200 200 11-18m, 19-21m, wb hence gorge straight 212 12-31m 213 1-15m 219 10-31m 220 11-19m 221 13-32m 242 24$28 \mathrm{~m} 2431-9 m 252 w t{ }^{2} 2$ not too strong. $-5-23 m /!!$, wbow how can the part above the sea determine the action, submarine part may do so.- 267 16-28m 292 wb Mem. carbonic Acid in Springs- 293 12$19 m, 33 u /{ }^{\prime \prime} . . . ", w b$ Insist upon thickness in Cordillera however difficult to understand 297 2-17m 407 23-27m*/24a凶 "Voluta" O/

DE LA BECHE, Henry Thomas A selection of the geological memoirs contained in the Annals of Mines London; William Phillips; 1824 [Down, pre-B] \wp

DELAGE, Yves Contribution à l'étude de l'appareil circulatoire des Crustacés édriophthalmes marins Paris; A. Hennuyer; 1881 [Down, I] \wp

DELAMER, Eugene Sebastian (Edmund Saul DIXON) Pigeons and rabbits in their wild, domestic and captive states London; G. Routledge \& Co.; 1854 [CUL]
br, che, geo, 00, v
NB1 Carbons; Salt \& Old Mortar \& gravel to floor
Runt; Turbit?; Almond-Tumbler; Carrier; Fantail; Powter
NB2 p.1; p.2; p.22; p.38; p.51; p.53; p.66; p.68; p.69; p.70; p.72; p.75; p.77; p.82; p.95; p. 114 good one Rabbit outbred other; p.133; 139

SB $\square \beta$

95 Rabbits probably in Caesars time in Britain
114 If Warren stocked with Grey \& Silver the latter will soon be bred out (on var. beating another Ch. 5)
141 Rabbit with longest ears known 22 inches and this length of ear great point.136 do not breed true.

1 19-23m 2 20-35m/22u "Columella" 3 29$33 m 14 \mathrm{zb} 1723-25 \mathrm{~m} 1827 \mathrm{~m}$, 28m, 31-32m, $35 m$, 37 m 19 3-4m 22 10-14m 30 14-16m 32 34-35m $337 \mathrm{~m}, 35 \mathrm{~m} / \mathrm{u}$ "twenty inches" $342-$ $15 m, 34-39 m$, $w b$ Brick next Pan 35 22-23m, 30-32m 36 12-14m 38 12-17m, 25-27m, 27$28 m 4123 m, 37-38 m / 38 u$ "bay salt" $4226-$ $28 \mathrm{~m} / 27 \mathrm{u}$ "cumin" 43 12-14m, 15-16m/16u "old mortar" 44 12-14m, 30-31m 46 9-11m 51 28$33 m 5324-31 m$, $w b$ marked to end 54 38$39 m 562-7 m, 8-12 m, 21-23 m / 21 u$ "pair" $22 u$ "twolmore", 34-39m $578 m, 26-29 m, 32-34 m$ 58 9-11m 59 27-29m $6122-24 m 63$ 16-19m, 21-39m 65 1-4m $668-16 m, 27-29 m 67$ 29$36 m 68$ 2-12m, 25-35m 69 3-11m, 33-37m 70 15-20m, 34-38m 71 25-31m 72 30-35m 75 17$25 m$ facing 76 fig.w fig. 5 Copied from Mr Delamer 77 28-39m 81 14-15m 82 7-10m 95 12-22m 114 9-15m/10-11Q $13320-39 \mathrm{~m} / \rightarrow$ 134 15-22m/18u "Angora rabbits" 135 14-18m 136 6-23m, 9-18m, 12-15m 137 2-6m, 13$17 \mathrm{~m}, 33-36 \mathrm{~m} 13933-35 \mathrm{~m} / 33$?/u "seveteen 1 ear", wb See next Page $1415 m, 32-33 Q 凶$, 36-39m, 36-39m

DELGADO, Joaquim Filippe Nery da Encarnação Sobre a existencia do terreno siluriano no baixo alemtejo Lisboa; Academia Real das Sciencias; 1876 [Down, I] \wp

DELPINO，Federico Ulteriori osservazioni sulla dicogamia nel regno vegetale Milano； Giuseppe Bernardoni；1868－1874［CUL，S］ $\mathrm{cc}, \mathrm{ct}, \mathrm{fg}, \mathrm{mhp}, 00, \mathrm{phy}, \mathrm{sx}, \mathrm{t}, \mathrm{tm}$

NB1
p． 16 Utricularia \langle rest 0 〉
91 Goodenia
170 Passiflora princeps
p177 In Liguria 1／3000 of Ophrys araneifera only get seed；a good many more near Florence
188 Marcgraviacea
224 Ceropegia
62 George \Leftrightarrow Has seen Bees，not Bombus visit flower of Trifolium．－
NB2 On Anemophilous Flowers（very full \＆ good）
NB3 337； 342 Pontederia trimorphic
Cephalantera Grandiflora－p149， 150 Orchids
154 －male more conspicuous \＆visited first
$123+124$ Ophrys oo
（here also Pt 2）
orchids p61－62；p60 Laburnum
L．MortigonO
NB4 Arumi p18
SB ；${ }^{\text {P }}$
p61 Great Laburnum flower
62 Serapias perhaps gnawed
63 Calyx commestible long discussion on
121 says Sprengel right \＆M．\＆I wrong about nectary \＆lower flower only visited False drops of nectar．
149 Cephalantera ensifolia
150 Waechter－news of explosion of Neottia
See Part I on Ophrys
〈over〉
a；＊
Much on Orchids in Delpino Part II 211f Observazioni

Part 1， 6 4－9m 14 23－26m 15 20－22m 16 2c／ $a \notin, 30-35 m 22$ 11－14m 29 29－32m $3314 u / w \tau$ 35 11－14m 51 19－21m 52 2－7m 59 23－29m 62 1－9m 75 24－26m $11822-23 m 1195-8 m$ ，35m 121 27－31m 122 1－2m $14423-27 m$ ，29－35m 148 7－10m 149 17－19m 158 15－17m 173 3－5m 176 11－13m 177 16－24m 188 6－8m，15－16m $1987-8 u / w \tau$ ， $10 u / w \tau 202$ 4－6m 229 26－29m 258 31－33m

Part 2，fasc．1， 22 7－9m 24 13－15m 25 15－ $18 m, 23-25 m 371-6 m$ fasc．2，title page $w 21$ Ruppia 2459 31－35w cells 60 32－35m 61 29－ $32 m$（Fritz Müller）／29－35w Kind of powder attraction to visit loose cells $627-10 \mathrm{~m}, 23-$ $27 m 634-17 m$（CD），20m，22－31w Calyx \＆

Petals attractive to be gnawed $1216-34 m / w$ thinks H ．Muller \＆self wrong \＆Spengel right about false nectary－says only first flowers visited \＆then bees find out mistake－and that only few pods get $1222-16 w$ says cold accounts for bursting of Epidermia cells within the nectary $30-31 m$ ，wb Other plants with false＊\＆true nectar－pollen both on same plant．Mem How long it is before nectar secretes 123 1－29w Despises idea that nectar an excretion \＆supposes false drops are rare excretion．－（Mem．common Laurel \＆\＆\＆Vicia．－wb Shining swelling like nectar \＆drops of true nectar on same plant． －thus explains case of Ophrys－Liperzia a case－I shall believe when insects seem to try \＆suck．＊ 124 22－27m 149 9－42m／9－ 39［．．．］／w C．ensifolia 4 pollen－masses．－Viscid matter from stigma probably besmears backs of insects \＆thus pollen is carried $1501 u$ ＂Periplocea＂ $11-4 \mathrm{~m} / \mathrm{w}$ like Orchids 13－40w W apparently did not know of CK Spengel，but was well aware of necessity of insects for fert．of Orchids \＆describes well the fert．of Neottia，viz．explosion of－ $15410-11 \mathrm{~m} / \mathrm{w}$ Read $25-32 m$ ，$w b$ it explains male fl more conspicuous than female fl so as male to be visited first 155 28－34m（Buchan White， Spengel） 158 34］ 210 13c $\# 337$ wt Dimorphic one protogynous \＆proterandrous $2-3 \mathrm{~m} /[338$ 30－35m 342 2－4m 343 15m／w Read $27-28 m /$ 28w Read 344 1－7m，21－24m，24－29m／25－26w Read 346 11m，12－14m／15w Read 347 19m／w Read 348 8m，10m／w Read 14－15m $34925 m /$ w Read 351 31m

DENTON，William Is Darwin right？ Wellesley，Mass．；Denton； 1881 ［Down］

DESCRIPTIVE AND ILLUSTRATED CATA－ LOGUE of the fossil organic remains of Mammalia and Aves contained in the Museum of the Royal College of England London； Richard \＆John E．Taylor； 1845 ［Down，I by President and Council］

DESMAREST，Anselm Gaëtan Mammalogie ou description des espèces des Mammifères Paris；Veuve Agasse； 1820 ［CUL，pre－B］
beh，hy，phy，rd，sp，ss，sx，sy，tm，v，y
NB（• up to＂四＂）
p481；p840 to；p．499；434； 437
Dog p190；Cats p233x－Tortoiseshell； 391
414 Hybrid Zebra \＆Horse
499 Ox
p347 Rabbit white star on forehead Important So silver grey has this when
young on head－I think Fancy rabbits have star on forehead No Brent says not particularly often
439 Cervus of Marianne Isld
p193＜he means 198）Canis jubatus with curl of Hair along back female not differ from male Sexual selection
p392 Babyroussa female with lower canines smaller than male．－Wd Bartlett kn any waits〈ie weights〉 \＆body proportions of animal SB $\square \beta$
190 Classification of Dogs－nothing particular，but I daresay good
233 Tortoise－shell cats all female
347 Young Hares always white star on Forehead（Silver Grey Rabbit has this）
391 Mongolia Pigs when young are striped
414 Hybrid Zebra \＆Ass band on legs
421 Corsican Pony small
430 Cervus elaphus smaller than common form
437 Cervus Marianus bad specimen－ Sumatra species very close to
480 Goats，Horns absent in female of some Races－Horns differ in sexes \＆abort in some vars，either in one or both sexes
488 Wild Mouflon．Female either with small Horns or destitute of do
500 Little Zebra，Horns rudimentary per－ iodically cast（like Deer Horns）
Do not mow but grunt
504 S．American cattle several varieties！ Perhaps from different stock introduced

47 wt Primates to p． 107 61a 17－19m，18－ 20 m 61b $20 u 凶_{0} \pm, 48-50 \mathrm{~m}$ 65a $42 u \leftrightarrow, 53-$ 54u＂sommet I crête＂65b 1－2u＂parties I chair＂，4－16m／4u＂Sensiblement I petite＂／8－9u ＂crêtes I saillantes＂ $12-13 u$＂canines petites＂／ $12 \mathrm{~m} / \mathrm{w}$ Canines $16-17 u$＂là locciput＂，29－30m／ u＂indice \mid vertex＂$/ w$ yet male 66b 6－15m，16－ $18 w$ see p65 20－24m／21u＂parltouffus＂／ $22 u \leftrightarrow 67 \mathrm{a}$ 21－23m 67b 14－15u＂dont 1 cornet＂／w ear 45－49！，50－51u＂poils I haut＂68a 1－4m，1－3m／2u 68b 1－2m 69a 38－41m 69b $35-36 \mathrm{~m}, 36-37 \mathrm{~m}$ 70b $34-35 \mathrm{~m}, 44-51 \mathrm{~m} / 44-50 \mathrm{~m}$ 71b 19－30m／20－21ues＂par 1 pelage＂75a $z t, 3 m$ ， 24－27m 75b 4－8m，17－18m 79b 28－35m． 80b $35-37 \mathrm{~m}$ 98a 21－29m 100b $10-12 \mathrm{~m}$ 101a 1－6m 107b 34－36m 189b 16－18m 191a wt xxx 195；xx 292 191b 37－38w Greyhound 192a 16－17m 193b 17－20m／18u＂Chien courant＂， 38－42m／39ud 194a 24－27m 195a 30－31m／30u＾ 195b $8-9 m / 8 u \uparrow / 8-9 u \uparrow, 34-41 m / 36 u \uparrow, 46-50 m$ 217b $28-30 \mathrm{~m}$ 219a $50-52 \mathrm{~m} \nless \mathrm{z}, ~ z b$ 223a 37－ $42 m$ 233a $3-5 m, 22-23 m, 43-49 m, 50-51 m$ 233b $23-24 m, 30-31 m, 37-38 m, 50-53 m, 55-$ $57 m$ 241b $3-7 m$ 241a $25 u$＂mâle adulte＂，

27－28u＂Carinél moyenne＂243a 17u＂im－ proprement｜blanc＂，20－28m，20－23u土，27u ＂marron｜noir＂ 29 ＂restelest＂， $33 u$＂bi－ furcation｜les＂，51－52m 246b 15－19m 249b 46－ 51m 250b 42－44ma／43－44m 253a 9－11m 256b 46－47m 267b 24－27m 304b 35－38m 347b 2－ $4 \mathrm{~m} / \mathrm{w}$ is this not common character of Rabbits？349a 49－52m 349b $55 u$＂Mais। terriers＂350b $4 u$＂ne｜terre＂，46u＂queuel dessus＂351a 43－44u＂uneljoues＂351b $8 u$ ＂nelterriers＂， 37 u＂unlsous＂352a $17 u$＂nel terriers＂387b 48－50m 390a $15-18 \mathrm{~m}$ ，23－24u ＂canines Idéfences＂391a 31－33m／w Ro Q凶， $44-46 m / 44 u$＂oreilles＂， $44 u$＂très pointues＂ 391b $1 u$＂Siam＂， $2 u$＂Guinée＂410b 17－19m 412a $23-24 m$ 414a $12-22 m / 15 u$＂la 1 membres＂ 421b 14－19m 425a 32－36m／33－34Q® 427b 5ucs 429b $15-17 m$ 433a $46-48 m$ 434b 38－40m， 44－50m 435a $40-47 \mathrm{~m}$ 437a 3－6m，12－13m，19－ $25 \mathrm{~m} / 20 u$＂envoyél Sumatra＂／ $21 u$＂àl voisine＂ 438b $53-55 m$ 445a $22-27 \mathrm{~m} / 23 \mathrm{w}$ Horns $36-38 \mathrm{~m}$ 450a $22-25 m$ 452a $37-38 \mathrm{~m} / \mathrm{w}$ female hornless 453a $10-13 m / w$ hornless 453b $53 m$ 454a 42－43m／43u＂Corine＂455a 27－28u＂brosses pouce＂， $38 u$＂brossesllarmiers＂，$\quad 37-39 \mathrm{~m} / \mathrm{w}$ Horns smaller 455b 31u＂celles｜minces＂｜w Horns smaller $32 u$＂les I corine＂$/ w 454$ 457b $\quad 28-30 m / 29 u \quad$＂dans 1 seulement＂$/ w 17$ species 466b $28-33 \mathrm{~m} / 30 u$＂dans 1 sexes＂$/ w 2$ species 468a 30－34m，44－45u＂existant 1 seulement＂470a 3－7m／4u＂couleur I gén－ éralement＂$/ w$ Hornless 470b $30-34 \mathrm{~m} / 32-$ $33 u \leftrightarrow / w$ Hornless 471a $3-4 u / m / w 1$ species 471b 12－13m，41－42u＂quelquefois \mid femelles＂ 473b 18－19u＂Cornes Isexes＂476a 54－55m／w Hornless smaller 477b $42-44 m$ 480a $45-47 \mathrm{~m}$ 481a $32-34 m \quad 482 b \quad 34-37 m / 34-35 u$＂les 1 uniformes＂483a 31－35m，47－50m／48u＂qu＇en l étant＂，$w b \times$ differ in sexes \＆abortive in some vars．483b $17 u$＂Point Itemps＂485a 12－ $15 m, 23-24 m 485 \mathrm{~b} w b 10$ varieties in world 487a 43－46m 487b 33－37m／34－35u＂des 1 mâles＂488b 25－27m 491a 8－21m，45－48m，wb 8 vars with subvars．no particular account of French vars．492a 3－7m 493a $13-17 m$ 498b 30－32m 499b 19－21m，27－29m 500a $10-12 \mathrm{~m}$ ， $12-14 m, 24-26 m, 30-31 m, 33-40 \mathrm{~m}$ 503a $2 w$ Holland $w b 16$ French vars of which one said to be introduced from Holland－some of these vars．have sub－vars．and there is appearance of truth about whole account． 503b 42－47m 504b 3－12m，17－20m，29－31m， 41－45m 505a 20－26m

DEVAY，Francis $D u$ danger des mariages consanguins 2nd edn；Paris；Victor Masson； 1862 ［CUL］
beh，br，he，mn，pat， t, v

DEVAY
NB p97 Close interbreeding cause of mutants？
p103 Albinism very unsightly inheritance
p116 correlation of Deafs \＆Blinds－Cats see Boudin p125 Deaf－mutes
p141 Ohio laws against marriage of cousins Q ${ }_{0}$
97 24－28m／25－26Q4，wb Fish \＆Dogs are $1037-8 m / 8 u$ ，11－18m 117 26－28m 119 17－20m $12521-24 m / 7-24 w$ if true cause of variability 141 21－26m／23Q 142 3－11m

A DICTIONARY of chemistry compiled by A． Ure；London；Thomas Tegg； 1823 ［CUL，pre－ B，S］
che
NB1
Mem 1880 Assuming our well water to contain 15 gr of Hard＊Matter per gallon （some water contains 20）it would require 20 gr （say 21gr）or 1 sample to gallon to precipitate the Lime－It is said that oxalic acid is poisonous when 2 or 3 drachms（ie 60×2 or 3 ）are taken．
NB2
ix 28－29u＂Evaporation Idew＂xi 5－9m 74a 10c ＂by＂／10－59w carb of amm of shops carb A 55 Amm 30 Water 15 75a wt Nitric acid 731／ $3262 / 3$ nitrogen $8-46 w$ Org carb of am 56 carbon \＆ 43 ammonia $w b$ Amm 82 nitrogen 17.6 hydrogen 75b $49 u \leftrightarrow 80 \mathrm{a} 59 u "=4.5^{\prime \prime}$ 157a 39 u＂17．64＂385b $9 \mathrm{~m} / \mathrm{u}$＂ 16° colder＂386a 44－46m 386b 43－46m 387a 25－39w swandown best substance 387b 36－39m，40u＂Charcoall rust＂，42－43m 578 wtcc 582a wt Ammon．a．－ Chrom．a $10 \mathrm{~m} \psi, 11 \mathrm{~m}, 12 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m}, 16 \mathrm{~m}$ ， $17 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 24 \mathrm{~m}$ ， $25 \mathrm{~m}, 27 \mathrm{~m}$ • 28 m • 584a $2-26 m, 45-50 \mathrm{~m}$ 587a $26-29 w / 35-36 w / 52 w / 57-58 w / 64 w$ 〈weights of meteors \rangle 587b $3 w / 4 w / 7 w / 19-20 \mathrm{~m} / \mathrm{w} / 24-25 w /$ $34-35 w / 37-38 w / 41 w / 45 w / 51 w / 55 w / 60 w$〈weights of meteors〉 588a 4－5w／12w／16－17w $22 w / 31 w / 36 w / 54 w$ 〈weights of meteors〉 806a 17－18wcc， $19 \mathrm{~m}, 30 \mathrm{~m}, 37 \mathrm{~m}$ 806b 18 m 807 zb $810 w b 100=180811$ table divided by red and blue vertical lines，$w b x / x / x / x \nless 0144-10 w c c$

A DICTIONARY of chemistry compiled by H ． Watts， 5 vols．\＆suppl．；2nd edn；London； Longmans，Green \＆Co．；1871－1872［Down］ che，phy，tm
vol．1， 118 33wcc 125 wt Morphine 591 5－7m 727 28－30m／29u＂1／1000＂ 781 15－26m 866 41－ $46 m, 54-62 m 92236 m$
vol．2， 21 56－64m 639 11－13w Albumin \＆

Oxygen $60-64 m / 62 u$＂homogeneous substance＂ $64030-37 \mathrm{~m} / 32-33 u \quad$＂albumin 1 composition＂ 643 47－49m 829 15－17m（Liebig）
vol．3， $72128-33 m, 55-60 m$
vol．4， $19957-60 \mathrm{~m} / 60 u$＂and lacids＂$/ w$ I used best of common $7303-7 m$
vol．5， $34937-40 \mathrm{~m} 95016-33 w$ the products of organic which have played their part in the animal organisation 20－21u＂thel oxidation＂ 1016 1－6m，18－21m 1019 5－8m 1020 65－66m 1021 1－7m supplement， 974 4－13m

A DICTIONARY of the English language compiled by S．Johnson， 2 vols．；4th edn； London；W．Strahan； 1770 ［Down，S of Josiah Wedgwood］

DICTIONARY of the Spanish and English languages compiled by Newman \＆Barrett； 5th edn，vol．1，Spanish－English；London； Longman，Rees \＆Co．； 1831 ［CUL，pre－B］

NB rebotar to rivet；chiquechaque，a Sawyer 75 12－17m，60－62w rummage 84 wt nasty， narky 446 30－32m

DICTIONNAIRE classique d＇histoire naturelle vols．1－17；Paris；Rey \＆Gravier；1822－1831 ［Down，pre－B，on B，S in vol．1］
beh，gd，sx，tm，v
vol．1，17b 17－22m／19－20u＂Cellelanalogue＂ 323a $52 u$＂Aurifera＂，wb no Gymnoflora．323b wt 1815． $3 u$＂Lepas＂，4－9m 324a 16 m ， 20 m ， $28 m, 32 m$
vol．2，145a $11-15 \mathrm{~m} / 15 u$＂Balanus＂146a 45－ 48m 451a 5－22m，13－15m，23－25m
vol． 3 SB Article Chameau； 450 Nothing； Balancement；Bones \＆Hair correlation；But see the references to＂Anatomie＂\＆＂Armes＂ 97a 10－14m 98a 9－13m／10u＂bifurcus＂376b $39 u$＂aul mai＂，41－43m，wb males an interval of eight mnths 447b 18－21m 448b 28－33m 450a 19－21m，21－26m／w In BromptonO Dog reverse 49－52m，50－54m 451a 52－54m 451b 6－9m，24u＂deux 1 garrot＂452b 20－23m，wb 3 varieties 454a 53 u＂Don 1 Theran＂454b 27－ 29m，43－45m／43－44u＂une｜Alpaca＂，50－54m 455a 1－6m
vol．4，8a 18－24m（Cuvier）
vol． 5 SB 274 on Cyprinus； 277 on varieties of Gold Fish－
118a 14－16m，17－18m，24－25m，28－32m，34－ 41m，43－47m 261b 1－5m／3u↔ 262 1－5m 274a
$9 u$＂guère que＂274b 21－27m 275a 49－52m 276b 27－40m，47－54m 277a 2－10m，8－10m， $14 \mathrm{~m} / \mathrm{u}$＂une grosse＂， $20-43 \mathrm{~m} / 31-33 \mathrm{~m}$ 277b 18－ $20 m, 46-47 m$ 278a 3－5m，8－9m
vol． 7 SB 499．frog introduced from Mad－ agascar into Mauritius
120a $17-21 m, 47-49 m$ 120b $5-9 m$ 121b $28 u$ ＂quinzelqueue＂，35－39m／36w Ptel 122a 32－ $34 m / 32-33 u \leftrightarrow 122 b$ 15u＂une｜retardé＂／13－ 16m／Q 137a 24－25m 487a 26 ＂Greffe＂．w read 488a 24－29m 499b 46－54m
vol．8，274a $29-32 m, 31-34 m, 33-34 m, 36-$ $37 m$ 324a 17－18m 329b 23－24m 336a 30－54m 405a 29－31m， $34 \mathrm{~m} / \mathrm{u}$＂M．S．Ch．E．＂／wb Kol－ reuterts refers to these 405b $2-7 \mathrm{~m}, 26-28 w$ Potato，Dahlia $28-38 m / 29-39 m / 29 u$＂les espèces＂406a 7－17m，39－40m 406b 4－8m，8－ $21 \mathrm{~m}, ~ 43-47 \mathrm{~m} / 46 u$＂ovules \mid avortés＂， $52-54 \mathrm{~m}$ 407b $5-10 \mathrm{~m} / ? ? / 7 u$＂de structure＂ $467 \mathrm{~b} 8-12 \mathrm{~m} /$ w teeth like points
vol．9，150a 48－53m 151a 9－16m／9－16m 324a 36－41m 324b 11－25m 428a 25－26u＂secondel mâchoires＂
vol．10，121a 3－6m（Buffon），15－23m，30－34m／ 31？／32u＂entièrement＂121b 3－5w only colour 34－36m，37－38m 492a wt What direction did it arrive How many degrees of Longitude 30－ $32 m$ 569b 33－43m
vol．12，305a $43 u$＂clitandre＂，wb Preface 305b 23－24x，wb Preface 39－44m／w exp－ lanation of differn． $48 x / u$＂rétinacte＂， $50-54 \mathrm{~m} /$ 53？／u＂Belardia＂306a 18－21m，22－23u＂ill loge＂307a 14－21m 307b 16－19m，42－50m
vol． 13 NB Lesson； 419 Sea Elephant Penny Encycl \＆Vries； 402 Stemmatope F． Cuvier \＆GrattonO
361a 22－26m 361b 14－20m，21u＂plages＂， $22 u$ ＂entièrement découverte＂402b 40－43m 418a 45－54m／46－47u＂àlamours＂418b 1－5m，32－ 37w Polygamy 39－41m 419a 13－14m／u↔，25－ $28 m$ 610a 38－40m／38u＂Rana Pipa＂
vol．14，10a $25-27 m$（Lamarck）10b 48－51m 131b 29－30Q
vol．15，18b $30-31 u \leftrightarrow, 33-34 u$＂entièrement \mid verdâtre＂， 35 u＂roux＂， 36 u＂élevées＂
vol．16，195b $24-25 u \leftrightarrow 194 a 45 u \leftrightarrow 196 a 48 u$ ＂Tetrao lagopus＂vol． $17 \wp$

DICTIONNAIRE raisonée，étymologique，syn－ onymique et polyglotte des termes usités dans les sciences naturelles ed．A．J．L．Jourdan， 2 vols．； Paris；J．B．Baillière； 1834 ［CUL，on B］
vol．1，286a 45－49m／47－48u＂nom I Candolle＂， wb Coelosperms 286b 1－2m 342a $z b$

DICTIONNAIRE DES SCIENCES NATUR－ ELLES，Planches Paris；F．G．Levrault；1816－ 1830 ［CUL］
che，v
NB Vol with Conia 1818
Lépadiens w PL．115，fig．3．w \times（2）back of plate 2 same size as B tulips in Brown－2a good size for valve；all same size Balanides〈first plate〉 wt PL 116 m, fig．2．w I largish fig． $5 . w$ versicolor or Mitra colur．back of plate 1．－ size of B．suleatum in Brown 4．－size of B． perforatum in Brown Balanides 〈second plate） $w t$ PL $117 \notin$, fig．1．w 3d size fig．4．w 2d size

DILLWYN，Lewis Weston A descriptive catalogue of recent shells arranged according to the Linnean method with particular attention to the synonyms 2 vols．；London；John \＆Arthur Arch，Cornhill； 1817 ［CUL，pre－B］
gd，v
vol． 1 SB $\langle C D$ copies out detailed summary of distinguishing features of the following 35 shells：Chiton，Lepas，Pholas，Mya，Solen， Tellina，Cardium，Mactra，Donax，Venus， Spondylus，Chama，Arca，Ostrea，Anomia， Mytilus，Pinna，Argonauta，Nautilus，Conus， Cypraea，Bulla，Voluta，Buccinum，Strombus， Murex，Trochus，Turbo，Helix，Nerita，Haliotis， Patella，Dentalium，Serpula，Teredo）
〈untranscribed w：CD writes＂ B ＂，meaning ＂British＂）
$625 w 87 w 116 w, 20 w 121 w 1311 w 149 w$ not British $11 w$ not B 20w，21－22u ＂interstices＂， $23 \mathrm{w} 153 \mathrm{~m}, 4 \mathrm{~m} / u$＂communis＂$/ \mathrm{w}$ no $6 m, 17 w, 19 w(2) 37 w$ copied！ $40 u$＂and $f . " / w 167 w, 10-15 w(3)$ var of crenatus or balanoides $11 w, 17-19 m, 25 w, 30-36 w(4) \mathrm{B}$ ． punctatus？－Yes 37－38u＂substances 1 abundance＂ $176 u$＂Lepas borealis＂$|\rightarrow| w t \mathrm{~L}$ ． borealis $1 w, 4-8 w$ is this Ch．ChthamalusO $4-5 w(5) 19 w, 20 w(6) 28 u, 41-42 m / 41 w, 42 w$ $7181 m, 1-9 w$ can this be CranchiiO 16－ $18 w$ CranchiiO $29 u$＂narrow glove－like＂， $32 w$ （8） $35-36 w, 37-39 w=$ sulcatus $199 m / u{ }^{2}$＂p ． 101＂， $15 u$＂striatus 1 Brit＂$/ ? \AA_{0}, 21-22 \mathrm{~m} / 21 u$ ＂Cape｜Bruguiere＂， $29 w$ not recognisable 20 20－24w amphitrite？var cupidusO $w b$ not to be recognised $217-15 c / 6-10 w$ not to be recognized $19-22 w$ B．amphitrite？or idoneus？ $32 \mathrm{~m} / 31-34 \mathrm{~m} / \mathrm{w}$ this is curious 22 $11-14 w$ var of tint $27 w *, 28-32 w$ var of tint 38w，wb $924 z t, 1-8 m, 21 w 25$ 18－20！！ 2624 25？／u＂Kurile Islands＂ 27 12w 28 25－27w I $27 m, 27-36 m, 28 m / w 1806$ ？30－31w 1815？ 29

DILLWYN
$24 w 305 w, 27 w, 34 m 31$ 11w, 13u "Montagu test"|we 1803 22w, 22-23w of Lamarck 25-26u "Ellis 1557 " 32 3-5w var 11w 33 10w Lithotrya, $12-14 m / 13 u$ " p. 197", 25w, 30u "Seba"/28-30w 1734-65 29m/w 1815 30a "Poli." 1791 33u "membranacea"/w 180835 $7 w 3640 w 381 w, 6 u$ "striatus", $26 w 403 w 41$ $10 w$ not $\mathrm{B} 14 w$ not $\mathrm{B} 17 w 4216 w, 38 w 45$ $24 w, 26 u$ "distorta" $/ w$ Ligula $36 w 468 w, 21 w$, $30 w 473 w, 16 w, 20 u$ "Ligula prismatica", 29w, $32 u$ "Ligula substriata" 49 19w, 22u "Mya pictorum" 50 25w, 29w Mya ovalis 52 16w 55 $1 w, 17 w 5711 w 5829 w, 41 w 5932 w 607 w$, $22 w 6424 w 656 w 6930 w 7026 w 7724 w 79$ $1-2 w, 5 u$ "Solen vespertinus" $8125 w, 28 w$ Tenuis 86 10w, 22-23w Pandora inequivalvis $8933 w 90$ 10w, $14 u$ "Tellina Laskeyi", $41 w 91$ $11 u$ "Tellina inaequistriata", $23 w, 29 u$ "Tellina squalida", $41 w 9230 w 9425 w 9512 w 968 w$, $13 u$ "Tellina polygona", $37 w 991 w, 18 w, 39 w$ $10015 w, 38 w 1012 u$ "Tellina solidula", 21w 102 17w, 23u "Cardium discors" 103 27w, 33u "Cardium arcuatum" 104 10w, 25u "Cyclas cornea", 41w $1055-6 w$ Cyclas lacustrus $15 w$, $18 w$ Cyclas amnica $11327 w 11424 w, 40 w$ $1165 w 12312 w 12719 w 13030 w 1314 w$, $16 w, 30 w 1383 w, 8 u$ "Cardium" $/ w$ Edentula 304 5w, 12u "Mya Pholedia"

DIPPEL, Leopold Das Microskop und seine Anwendung 2nd part; Braunschweig; F. Vieweg und Sohn; 1872 [Down]

DIXIE, Florence Across Patagonia London; Richard Batty; 1880 [CUL, I]

DIXON, Edmund Saul The dovecote and the aviary London; John Murray; 1851 [CUL] af, beh, cr, cs, phy, sl, sp, t, tm, v, wd

NB1 Read Willughby \& Aldovrandi Latham NB2 Columella 8/8 Ch.; \& Pliny L10.53; \& Varro 1X/2; \& Aelian B3/15 Greek
Read Read Aldovrandi in Royal Soc Willughby in Royal Soc translated by Ray
Read Latham Royal Soc.- Sloane Birds of Jamaica not in Royal.- Brisson Aves p437 Royal 1760
Read - Ray; Frisch some German Book mentioned by Riedel
Read - Albin Royal p428 1731-38 p57-18 days - Cocks on nest at 2 oclock SB1 Mr Dixon
How Carrier taught to cross the sea.p.165, p166 rather hard to accuse of Atheism because created - worthy of quoting - are you not open to same on account of feathered pigeon legs. - or even
more or less feet - Can you show that you p. 275 do not in this exalt "the idol nature in an

Turbit p77 wd be good to get.
Linn Syst. Nat (my copy) vol.2.769. vars of Pigeon. Read
〈over〉 p.6; p. 11 to 184; p.237; p.247; p. 428
SB2 1β
14 Pigeons feral in Norfolk Isid Qao
88 Case of Phas. colchicus \& versicolor in Q. Review 1850 - cross between the two Pavos Qus
97 Some crosses Runt, Fan-tail \& Nuns p110 Q
155 Blue Rocks do not like other Pigeons (Ch. 6/. p. 156 Q
247 Guans very tame, but breed slowly 428 Every Goose domesticable

6 10-12m, 26-32m 7 1-3m, 7-11m 11 22-27m $1231-33 m 136-8 m 147-11 m, 20-22 m / \mathrm{Q} 15$ 26-32m 16 11-14m 17 1-3m, 8-11m, 17-20m, 28-30m 18 22-25m $2020-22 m 27$ 25-27m 33 21-24m $5426-28 m / 27 u$ "fivelold" 55 1- $2 m 57$ $5-10 m, 12-13 m 583-5 m / 3 u$ "eighteen days" 64 4-8m/6-7u "These leye", $10-12 \mathrm{~m} 7013-14 \mathrm{~m} /$ $13 u$ "It $\mid a$ " $114 u$ "ever become" 71 1-3m 72 21$23 m 743-6 m / 1-15 w$ no argument of what wd take place by caging $9-12 m, 14-16 m, 21-$ $26 \mathrm{~m} / 17-27 \mathrm{w}$ there is now little object in selecting new slight vars. $761-13 w$ even if we admit several species; these must have altered. $29-32 \mathrm{~m} / 31 \mathrm{w}$ no $771-4 m, 13-16 m$, 18-20m 79 20-22m, 26-27u "Short-faced"/? 80 $27 u$ "more" $24-27 m / w$ Geology!! $8123-26 m$, 28-30m $8215 u$ "the lbe" "1637", 17u^/18ua/ $19 u$ "Persian \mid Turkish", $19 u$ "not" $\mid 17-24 w$ yet never feral 83 13-15u/14-15m $8510 w 711 w$ $812 w 913 w 1014 w 1115 w 12-\mathrm{p} 12087$ 10-14m, 28-33m 88 2-6m, 9-12m, 17-20m/Q* (Blyth), 28-32m 89 5-6m, 10-17m, 19u "Willughby" $/ w$ Date $22-23 \mathrm{~m} / 23-24 u$ "than six" 90 19-22m 91 2-4m, 11-17m, 20-24m, wb It wd be worth to ascertain numbers in all the species in Brit. Mus. 92 16-20m $936 w$ 1.31/2 10w 11 18m/w 1.111/2 94 1-6m 96 $11-13 \mathrm{~m} / 12 u$ "second degree", $14-16 \mathrm{~m}, 17-19 \mathrm{~m}$, 23-25m 97 18-21m, 22-25m, 27-29m, 30m 98 18-19mes, $24-27 m / 26 u$ "Runts $1 m a y " / w$ var. $9926-27 m, 29-32 m 1003-6 m$, $24 u$ "arel black", 28-31w 2 vars. \& subvars. 102 29$31 m 1034-6 m, 22-24 m, 29-32 m / 31-32 u \leftrightarrow 106$ 4-11m/4u "mottled", 27-28zen, 33-34m 107 1$4 m, 8-11 m, 23 m \notin, 24-27 m, 31 u$ "Dutch। bill" $10822-24 m 1091-3 m 11025-26 m 11114$ $16 m, 29-32 m 1152-5 m, 19-21 m, 20-22 m / w$ No 117 8-24m 118 4-10m, 9-13m, 13-16m, 17-23m 119 6-8m 120 25-28m 122 21-25m
$1232-5 m / 3 u$ "verylthem", 9-15m/w Nothing about powting 126 4-10m 132 22-31w How the Seas? 27-32m 133 24-27m 136 16-23m $1372-4 m / 1-15 w$ because direction not known or acquired but they probably cd guide themselves if this known $17-23 \mathrm{~m} /$? $13914 u$ "fleshy excrescences", $20-22 \mathrm{~m} / 21 \mathrm{u}$ "still 1 slim" 140 9-11m 141 7-9m, 11-12m, 26-29m 142 57 m 148 17-19m, 21-24m, 26-28m 152 27-33m 153 1-4m, 13-14m 155 5-8m, 25-30m 156 1015m, 16-19m, 24-27m/26u "attributed |Moore" 157 18-22m 158 1-3m 159 26-28m 161 wt Bull-dogs wd not go wild 2-6m, 12-14m, 29$33 m 162$ 29-32m 163 2-4m 164 25-29m, 31$33 m 1651-10 m / 3-6 w$ does Blyth say so 27$28 m, w b$ this ought to be considered a 4th species, if affines be a species.- $1662-6 \mathrm{~m} / \mathrm{w}$ How close! $7-13 \mathrm{~m}, 15-19 \mathrm{~m}, 31-33 \mathrm{~m} / \mathrm{w}$ I wish certain $1671-3 m, 11-14 m / 13 u$ "remarkable I struck", $25 a$ "intermedia" no. 168 7-16m 176 1-5m 184 5-7m, 12-13m, 25-27m 237 6$11 \mathrm{~m} 2475-10 \mathrm{~m} 252$ 17-18m 428 17-21m/Q

DIXON, Edmund Saul Ornamental and domestic poultry: their history and management London; The Gardeners' Chronicle; 1848 [CUL, I]
beh, br, cs, ds, ex, gd, he, hy, mn, rd, sl, sp, sx, t, tm, v, wd, y

NB1

Though, perhaps or probably several of our domestic breeds may have descended from several wild stocks, yet I think others cannot probably have come from their crossing - on account of one absorbing the other \& without systematic selection, the difficulty of making thus any true Breed.
NB2 x; xiv to end; p34; 48; 69-79; 83; 87; 90; 97; 101
p. 188 good case of Hereditary accident with growth
Fox thinks Cochin, Spanish, German, Bantam originally distinct breeds Geese p142.
SB1 p.103; 110®0; 112; 118-122; 125; 128; 137; 139; 146; 174; 183; 188; 196; 200; 202;
205; 251; 264; 273; 277; 281; 285, 6; 291, 2; 300; 305, 9
SB2 \quad 1
p.314, p.200 Cross-bred Fowls sittinges
p8 Peafowls fighting \& preening their feathers
34 - The chicks of Norfolk \& Cambridge Turkey different
48 Old Canada Geese wd not breed with Audubons, unless the young of same species whereas the young of same species wd

79 Guinea Fowl rolling strong eggs into Nest
87 Slight variation in China Goose
101 \& 103 Contrast in Teal \& Wigeon breeding in confinement
111 White Peafowl of inferior size
1153 vars of China Goose (so the goose can vary)
118 Duck could fly in Columella's time
Mem ore Read all about Ducks
122 - Become feral in Marshes Quos
137 Goose origin of - Apt to pair quite as widely with other species as own Qas
139 Gander always white - - Prolificacy increased by high feeding
146 Barnacle Goose is increasing in power of breeding in confinement
183 Cocks not created in Aristotles time
202 Hybrids between Guinea-Fowls \& Fowls NQ

- 253 Chickens of Spanish Fowls 264 of Dorkings 273 Cochin 277 Malays; 285; 287; 306; 309; 325 of Polands; 324 chicks of
273 Cockrels of Cochin do not show rudiment of tail feathers till oldish Q
325 Golden Polands partly webbed O Q
326 Distinction of sex comes on late in Polands (true) Q
81 Peahen makes first advances to Cock
x $2-7 m, 13-15 m, 26-30 m$ xi $5-7 m, 10-13 m$, $16-17 \mathrm{~m}$ xii $24-30 \mathrm{~m}$ xiii $w t$ Look at the oxen of every different country of Europe - look at dogs of do - look at men - if their variations are denied - my work might be closed 1$12 w$ Mr Dixons opinion \& Van Mons show permanence of varieties, it has same effect on them, which wild species has on naturalised, I know the feeling myself.- 1216 m xiv $13-18 \mathrm{~m} / 9-20 \mathrm{w}$ tell him about Bulldogs xix $3 m, 5 m 811-13 m, 14-17 m / 15 u$ "frequently lother", 17-19m 12 3-9m, 8-12m 34 $22-23 m, 35-38 m 4820-22 m 494-7 m 5935-$ $38 m 6033-35 m 633-8 m, 18-20 m 6625-27 m$, 29-31m 69 18-20m, 27-28m $7210 \mathrm{~m}, 30-35 \mathrm{~m} \mathrm{c}_{0}$ $76 \quad 33-35 m \quad 79 \quad 7-9 m \quad 83 \quad 9-10 m / 10-11 u$ "tubercle|neck", $24 m / u$ "harsh|ceremonious", 34-37m 84 6-10m, 24-26m 85 16-17m, 35$36 m 87 \quad 7-13 m, 16-17 m, 25 u$ "clanging| trumpetings" 88 9-10m, 34-38m 90 21-24m 97 4-11m 101 2-3m, 18-21m $103 \quad 8-10 \mathrm{~m} / \mathrm{w}$ contrast with Widgeon 110 3-16w Thinks original species now dead 22-24m $1111-2 m$, 4-8m (Lamarck), 20-24m 112 11-16m 113 12$18 \mathrm{~m}, ~ 29-33 \mathrm{~m} 115$ 1-6m, 9-11m, 12-13m 118 $15-24 m, 27-32 m / Q=1195-7 m 12025-35 m$ 122 18-36m/24-26w NQ 125 17-19m, 29-31m/30-31Qณ 126 6-18m 127 35-38m 12824 $39 m$ (Audubon) 136 31-35m, 36"... 137 1-4m/

DIXON，POULTRY
Q＜＜／3．．．＂，18－22m，23－27m 139 5－7m，13－15m 142 19－23m 146 3－9m 150 5－8m 152 19－23m， $19-24 m / 20-21 Q$ Q $17335-38 m$ 174 11－12m， $16-24 m, 35-37 \mathrm{~m} 17622-23 \mathrm{~m} / 23 \mathrm{w}$ No $32-40 \mathrm{~m}$ 179 17－18m，29－31m，30－32m 183 28－35m 185 29－36m，37－38m 186 23－27m 187 37－38m 188 $15-21 \mathrm{~m}, 20-23 \mathrm{~m}, 22-26 \mathrm{~m} / 22 u$＂grew＂ 189 21－ $25 m 19026-38 m 19629-34 m 197$ 11－23m， $35 m 199$ 32－33m 200 1－5m，30－33m／Q风，35－ $38 m, w b$ He does not appear to have any facts．－ 201 14－17m $20217-21 m / w$ NQ 36－ 38 m 203 1－3m／2u＊＂five 1 ears＂， $4 w \omega_{0} 17 w \omega_{0} 2$ 9－10wぬ 6205 23－27m 247 3－8m $2495-7 m$ ， $29-30 \mathrm{~m} / \mathrm{w}$ pencilled \＆spangled $251 w t$ seem very upright－apt to jerk their heads $33-34 m$ 252 1－3m 253 1－2m，8－16m 254 33－34m，wb I saw Aug 55 an Andalusian Fowl all slate colour $2558-18 \mathrm{~m} / \mathrm{w}$ Spanish Fowl $34 u$＂bluel colour＂ 264 18－22m 265 17－20m 273 7－9m， $14-18 m, 24-26 m, 33-35 m 2758-12 m 277$ 36－ $38 m 28134-38 m / \rightarrow 285$ 31－32m 286 29－31m 287 21－25m，31－33m，34－35m 288 14－18m 289 9－10m，18－20m 291 3－9m，33－34m 292 7－9m $305 \quad 26-28 m \quad 306 \quad 10-12 m \quad 308 \quad 16-20 m / 18 u$ ＂Aldovrandi＂， $26 u$＂Coral｜Greys＂ 309 9－12m， $36-38 m 31033-35 m 31121 m 312$ 18－19m／？， $26-29 m, 31-34 m 31420-23 m, 24-27 m 3159-$ $13 m 316$ 12－15m 318 9－12m，13－17m 320 5－ $8 \mathrm{~m} / \mathrm{Q} 32116 \mathrm{~m}, 25-28 \mathrm{~m}, 30-34 \mathrm{~m} 32338 \mathrm{~m} 324$ $18-20 \mathrm{~m} / 18 u$＂white breasts＂ $32520-23 \mathrm{~m} / \mathrm{Qe}$ ， 26－28m，29－38m 326 8－12m，19－22m，33－36m 327 1－5m凶 332 10－13m 333 28－33m 342 1－ $13 m$

DIXON，Frederic The geology and fossils of the Tertiary and Cretaceous formations of Sussex London；R．\＆J．E．Taylor； 1850 ［Down，I by R．Owen］

DOBELL，Horace Lectures on the vestiges of disease London；John Churchill； 1861 ［Down， I］\wp

DODEL，Arnold Die Kraushaar－Alge，Ulotrix zonata Leipzig；Wilhelm Engelmann； 1876 ［CUL］
fg，sx
NB 125； 126 I must allude to this
$12412 m, 35-38 m 12524-32 m / w$ if the sexual zoospores do not copulate，yet they ger－ minate $1262-4 m, 3-8 m / 3 u$＂Pringsheim＂，11－ 14m 127 28－31m

DODEL，Arnold Die neuere Schöpfungs－ geschichte nach dem gegenwärtigen Stande der Naturwissenschaften Leipzig；F．U．Brodhaus；

1875 ［CUL，I］
sl, tm
ix $27 m 112 w t$ In Grey seedling a few hairs on the leaves，as a protection，may determine which out of a 1000 seedlings will survive 1－5m 115 21－22m \wp

DOHERTY，Hugh Philosophie organique： l＇homme et la nature Paris；Didier \＆Cie．； 1881 ［Down］\wp

DOHRN，Anton Fauna und Flora des Golfes von Neapel 3．Pantopoda Leipzig；Wilhelm Engelmann； 1881 ［Botany School］\wp

DOHRN，Anton Untersuchungen über Bau und Entwickelung der Arthropoden vol．1； Leipzig；Wilhelm Engelmann； 1870 ［Down， I］

DOLFUSS，Gustave Principes de géologie transformiste Paris；F．Sary； 1874 ［Down，I］

DOMESTIC MEDICINE，a handbook London； Bell \＆Daldy； 1872 ［Down］\wp

DONDERS，F．C．On the anomalies of accommodation and refraction of the eye trans． W．D．Moore；The New Sydenham Society； 1864 ［CUL］
NB 573.574
19－10m，wb 10
\wp
573 18－21m 574 6－17m，26－28m／27u＂tension। accommodation＂，32－35m，37－40m／38u＂with－ out＂

DONN，James Hortus Cantabrigiensis 10th edn，ed．J．Lindley；London；C．\＆J．Riv－ ington； 1823 ［CUL，pre－B，ED］
mhp，tm
facing $66 w\langle C D$ ？\rangle NB Lobelia in Linnaeus is Syngenesia monogamia as Lindley says stigma with rings of hair wipes pollen out of anther in same manner as in that order〈many other markings，presumed to be by ED＞

DONNEGAN，James A new Greek and English lexicon 3rd edn；London；Sipkin， Marshall \＆Co．； 1837 ［Botany School，ED］

DOUGLAS，John William，\＆SCOTT，John The British Hemiptera London；The Ray Society； 1865 ［Down］\wp

DOWNING，Andrew Jackson The fruits and fruit trees of America London；Wiley \＆ Putnam； 1845 ［CUL］
ad，cc，cs，ds，fg，gd，he，hy，no，oo，pat， phy，sl，sp，spo，sx，sy，t，tm，v，wd

NB1 262 Walnuts
NB2 Catalogue of Books at Beginning p．viii SB1 Catalogue of Books p．viii；p． 10 to 12； p55；60，9；75；106；115；116，9；124；130， 4；139；150，3，6，8；161；171；176；184； 192；195，6， 8
Does Thompson give origin of Fruit Varieties D It is important as showing what in small things makes variation．is the sporting from true kind，when grafted．
202；210；215，6；220；248；250；252，4，6， 9；260，3，5；278；280，4；304，7；310，12， 17；317，29；330；340；356，8；366；379； 396，99；419，21，22；447，8； 460 to $\rightarrow 5$

〈over）

p．469；470，3．to 502；517；524，25，31； 542，7；553， 7
SB2 -1β
p． 5 On fruit－trees not being true，when grafted－Good
8．Facts against．Van M．viz old var． producing good plants
9．Crossed apple with fruit different at 2 ends
60．Every district has its fruit best adapted to it．（Mem：Chinese）
75．A marked American Apple
116 Italian tender apple－Several hardy ones mentioned in County of Wick \＆p． 124 － Several sub－vars mentioned as（p．130） several Reinettes \＆c
150 Difference in hardiness in Almonds p473 in Peaches $\langle u$ ）p488 do Raspberries p． 517 －Strawberries p． 533
157 Hardy apricot
176 American Cherry p． 184
« 192 Sporting Cherry
195．Cluster Cherry；a flower has several pistils \＆each produces a fruit－Flemish peculiar cherry
as 198 a var．of cherry liable to attack of insects more than other vars．
220 Mildew stops culture of Grapes in U．S
248 The wild native vines differ in quality p．253，p254，259／p．261．do．vars of wild Hiccory
256 A cross between old world \＆new world Grape
270 Purple Plums much most attacked by certain diseases，never yellow vars．Many vars．of Plums raised in America p289， 292 \＆Peaches $\langle u *\rangle$ p． 469

284 －Siamese Plum－attached together on one stalk
304 Groups of Orleans Plums，when known to have descended－many plum hereditary 317 Pears not native，many vars－Pliny says \＆heavy most only good when cooked 422 Washington，a very distinct pear discovered in Hedge
I 462 The yellow disease originating with American Peaches 466 Yellow Peaches much most affected
470 Classification of Peaches by glands on leaves \＆serration \＆size of Flower－
476 Most Peaches either free or clingstones， but one is on same tree always either \otimes_{0} bothes cling or free xx scores of instances cd be given of this
492 Some Peaches very variable by seed， others constant \＆so it was with Plums
501 Smooth－skinned fruit destroyed by Curculios
er over
〈over〉
502．Nectarine from Peach \＆now true by seed
525 on selection turning Hautbois her－ maphrodite
553 Northern Apples will not do in Southern States
viii $33-37 m$ xi $5 m$ xii $28-29 m$ xiv $27 m 1 z b 2$ $5 m / u$＂chance when＂ 3 22－24m，37－42m 4 10－ 14m，35－37m，45－48m 5 16－22m，19－29m／22u ＂tolof＂，23－28m 6 15－19m，24－25m，33－35m， 46－48m 7 4－8m， $10-12 m / 11-12 u$＂subduel luxuriance＂，16－17u＂he Ishortens＂$/ w$ this does not look like excess of food $18-20 \mathrm{~m} / 19 u$ ＂vigour 1 trees＂， $29-31 m, 36-42 \mathrm{~m} / \mathrm{w}$ why more in America than in Europe $86-8 m, 9-10 m$ ， $40-45 m \quad 934-37 \mathrm{~m} / \mathrm{w}$ are these species V ． table $40-42 m, 43-47 \mathrm{~m} / \mathrm{w}$ any case of crossed species like this $101-2 m 551-2 m / 1 u$＂singlel moths＂ $605-9 m / w$ is this selection or adaptation．latter I think $6916-17 \mathrm{~m}, 27-28 \mathrm{~m}$ 75 11－13m $1064-5 m 115$ 28－29m，32－33m， $36-37 \mathrm{~m} 11636-37 \mathrm{~m} 11914-15 \mathrm{~m} / \mathrm{w}$ sub－var $124 \quad 23-24 m \quad 130 \quad 21-22 m, 37-44 w / w b 4$ Reinette；several Pearmain；several Russett； several Sweeting；p．139；Spitzburghs 134 wt 4 11－13m 139 32－35m $1504-9 m 1515-9 m$ 152 20－23w Study all．I have only skimmed 153 43－45m 154 2－4m，3u＂have litle＂， $6 u$ ＂Stone l bitter＂，35－39m，39－41m，44u＂adhering somewhat＂， $45 u$＂Kernel sweet＂ 155 7u ＂Kernel bitter＂，12－14m， $15 u$＂compressed＂， $32 u$ ＂Flesh separating＂ 156 12－16m，13－15m 157 $24 m, 31-35 m$ ， $38 u$ 158 19－21m 161 13－16m 167 1－3w p9．Heart \＆Bigarrieu have been

DOWNING
crossed by Knight $17125-29 m 176$ 2－5m，3－ $6 \mathrm{~m} / 6 \mathrm{u}$＂called＂ 184 10－15m／13－15w Mem Graft 189 18－21m 192 6－11m $1935-8 m$ ，9－ $11 \mathrm{~m} 1951-5 \mathrm{~m}, 39-40 \mathrm{~m}, 41-42 \mathrm{~m}, 48 \mathrm{~m} / \rightarrow$ 196 4－6m，34－36m，35－37m 198 16－17m，24－ $26 m 20035-37 m 2024-10 \mathrm{~m} / \mathrm{w}$ I suppose only one original species \＆no possibility of Hybridising $204 \quad 15-22 w$ vars in size of berries \＆bunch colour sweetness \＆time \＆ fruiting 25－26m 205 7－9m 210 12－13m／13u ＂perhaps Ihardiest＂ 213 10－11x／10u＂one fourth＂ 215 25－28m／27u＂149｜considered＂／ 28m ，38m，40－45u士 216 4m／u＂Early＂，20u ＂obovate＂$/ 22 u$＂oblong＂ 24 ＂oval＂ 217 ． $14 u$＂hangs＂， $33 u$＂flavour 1 rate＂ $22031-34 m$ ， 36－41m 248 25－36m $25046-48 m 252$ 34－38m／ $34 u$＂Prince 1 describe＂ 253 2－7m，23－24m／23－ $24 u \leftrightarrow 25415-18 \mathrm{~m} / 24-28 \mathrm{~m} / 30-34 \mathrm{~m} / 1-37 \mathrm{w}$ all this sporting must be in state of nature \＆ seized by Selection as owing to little general cultivation of country $2551-3 m, 35-37 m$ 256 17－18m／17－18u＂habit｜here＂，24－41w Ascertain whether this comes under the Fox （V．Labrusca）p． 253 group or under some other（V．adlum or Prince），if so case of two species blended by crossing，though unintentionally crossed．25－26w p240 Old World Grape；a native Grape 257 43－44m／ $44 u \leftrightarrow 2591-12 m 2607-10 m 261$ 18－21m／Q \propto_{0} $2633-6 m, 20-41 w$ the number of American plums really surprising $w b \times$ it cannot be extra food which makes so many new vars． of apples Peaches \＆plums in N．America－ V．further on－climate or soil very fav－ ourable 265 33－35m／\rightarrow ，39－46m 266 22－27m 267 48m 270 9－13m／7－21w colour \＆ constitution－is there not something about peaches \＆nectarines？42－46m 271 29－30w 1 272 22－23w 2 30－31w $341 w 4273$ 11－12w 5 $2757 w 617 w 727-28 w 837-38 w 9276$ $9-10 m, 40-41 m 27721 w 1024-26 m, 38 w 11$ $27831 w 1232-33 m$ 2，34－35m，43－45m 279 $3 \mathrm{~m} / 3-4 u$＂has 1 shoots＂， $11-12 \mathrm{~m} / 12 u /[\ldots]$ ， 33 w $1328031-32 w 1434-40 m, 34-39 m 2824-5 w$ $1533-34 w 1628415-19 m / 17 w 1731 w 18$ $35-36 m 28510 \mathrm{~m} / \mathrm{u}$＂handsome round＂， 22 m 287 39－40w 19289 13－19m／13w $2038 w 21$ 291 28－32m／28w 22292 19－20w 23 22－33m $2935 w 2418 w 2524 w 2635 w 27296$ 8－9w 28299 29－30w $293007 m, 10 w 30301$ 8－9w $313025-6 w 3230312 w 3337 w 343046-$ $38 \mathrm{~m} / \mathrm{w}$ There have been several cases of fruits thus classed，where reproduction is known or inferred $3051-3 m / w 35307$ wt I have noticed that most of the varieties differ in all respects as well as in fruits $1-2 m 309$ $3-4 w 3613 w 3733 w 3831012-13 m$ ，41－ $45 m 312 \quad 37-39 m 313 \quad 36-38 m / w \quad 393147-$

8m 315 16－17w 40317 24－26m，39－46m， $46 \mathrm{~m} 3297-12 \mathrm{~m} 330$ 1－6m 340 1－5m 356 19－ $25 m 3584-8 m, 12-14 m 366$ 33－38m 379 34－ $35 m 391$ 37－46m 396 37－39m 399 8－9m 415 $33-36 m 4193-6 m / w$ numerous cases such as this $42140-44 m 42213-15 m, 13-16 m$ ， $19 u \leftrightarrow 442$ 19－25m 447 3－5m 448 39－41m 460 $17-19 m, 21-22 \mathrm{~m} / 22 u$＂twenty years＂， $25 u$＾ $46144-48 \mathrm{~m} / \rightarrow 462 \quad 17-22 \mathrm{~m}, ~ 23-24 \mathrm{~m}, ~ 36 u$ ＂established I question＂，39－40m／43－44m／39－45w new disease originated in America 463 7－9m， 18－19m，31－33m／32u＂many｜peach＂ 465 37－ 38m，41－42m 466 15－17m，20－22m，23－25m 469 10－15m ，11－13m，17－22m，26－28m／21－ 30 w almost certainly though probably derived from Eng．seeds 41－48m 470 1－4m，13－ $16 m, w b$ I rather doubt how far genealogical wd be best it wd be the most scientific classification of varieties even putting crosses on one side $w b$ 4ss for p． 475 not hereditary $47320-22 m 47520 m, 36-41 m, 36-$ $41 m$ ， $37 w$ H． $40 u$＂absence I glands＂ 476 14－18m，30－31w many American kinds 478 11－12m 485 32m＊ 488 29－32m／30u＂garden I New＂ 489 10－11m／10ma， $23 u$＂is 1 variety＂， $34-38 \mathrm{~m} / 34-38 \mathrm{~m} / 34 \mathrm{~m} \quad 49213-14 \mathrm{~m}<\mathrm{m} / 11-$ $19 \mathrm{~m} / \mathrm{w}$ others contrast p489 p494＋ 493 1－ $5 m 4941-5 m$ ，2－5m／4－5mes，7－9m／7u ＂reniform＂， $15 u$＂without glands＂，25－27m， 44－45m／45mu／u＂frequently｜with＂ 496 21－ 22mes 501 12－14m，15uts＂smaller＂，26－ $31 m$ ， $27-29 m, 33-35 m / 34 u$＂all soils＂， $39 u$ ． ＂Vol．14，p．53＂ 502 23－26m ＂wasla＂， $36-38 m$ ， $37 m 505$ an $19 m$ ， $35 m$ ， $37 m 510$ 13－18m 514 21－23m 517 17－18m／w V．p514 523 34－38m 524 1－6m，1－4m ，11－ $13 m, 26-30 m$ 〈ин〉 $525-17 \mathrm{~m}, 17-18 \mathrm{~m} /$ $18 u, 19 u, 21 u, 22 u, 23 u, 33-47 / 37-40 w$ selection producing $5261 w$ N American $52722-23 m, 22-23 m \otimes / 23 u \leftrightarrow, 28 u$＂seeds। imbedded＂， $35-37 \mathrm{~m} / 36 u$＂Fruit \mid size＂， $38 u \leftrightarrow$ $52825 w$ Surinam $5317-8 m, 7-8 m$ ，20－21m $5322-3 m / 3 m * / 2 w$ Pine $13-15 m 5333-5 m$ 534 12－14w English origin $37-40 m$ 535 15－ $17 m 542$ 26－29m 547 41－42m 553 35－41m 557 17－21m

DOWSON，J．Erasmus Darwin：a lecture London； 1861 ［CUL．1900］
NF 6 Dec 1871
DRAYSON，Lieut．－Col．On the cause，date and duration of the last glacial epoch of geology London；Chapman \＆Hall； 1873 ［Down，I］

DREHER，Enger Der Darwinismus und seine Stellung in der Philosophie Berlin；Hermann Peters； 1877 ［Down，I］

DROUËT，Henri Mollusques marins des îles Açores Paris；Baillière； 1858 ［CUL］
gd，sh，sp
NB 8 No Fresh－Water Shells
9 Many land－shells Endemic－very few Marine－peculiar
Species common to Mediterranean Canaries \＆Antilles
Much Sargasso weed
p26 2 sp of Littorina
8 31－32m／u＂illAçores＂9 9－13m／12u＂Ant－ illes＂， $23 u$＂ 139 ＂， $25 u$＂ 75 ＂／w 5／75 new $29 u$ ＂ 70130 ＂， $30 u$＂inédites＂ $31 w$ perhaps more endemic $115-17 m, 22-24 m 125-6 m 138 u$ ＂nombre｜doublé＂ 24 19－22m 26 3－6m／3m，11－ $14 m 34$ 17－20m

DRYSDALE，John The protoplasmic theory of life London；Baillière，Tindall \＆Cox； 1874 ［Down，I］

DUB，Julius Kurze Darstellung der Lehre Darwin＇s Stuttgart；E．Schweizerbart； 1870 ［Down］

NB O／
\wp
DU BOIS－REYMOND，Émil Gedächtnissrede auf Johannes Müller Berlin；Königliche Akademie der Wissenschaft； 1860 ［Down］

DUCHENNE，Guillaume Benjamin Mécan－ isme de la physionomie humaine，ou analyse électro－physiologique de l＇expression des passions Paris；Jules Renouard； 1862 ［CUL（Plates at Down），S］
beh，h，phy，t，y
NB 2 woodcut of facial \langle rest 0\rangle
SB $\square \mathbb{R}$
Duchenne 8vo Edit
Part I
p．31．showing absurdly how all examples created．
$38 *$ describes facial muscles continuous．
seem quite aware of many sources of error
－Huxley says discovered muscles．
Part II
p8．eyebrows－move least under will
－29 separation of pyramidal \＆frontal
36，43， 53 antagonism of sourcilier \＆frontal 75 triangular of lip
〈not CD〉 180 On the pyramidal bringing down the brows
184 In a false laugh the zygomatic is alone contracted

Part 1， $54 u$＂1805＂／4－5m，6－7u＂a composé＂ 20 15－18m 22 22－26m／w only one muscle used！！ $2617 u$ 18－19m $18 u$ 29 15－22m 31 介12－ $1 " . . . " / \Uparrow 10-6 u \pm / \Uparrow 11-2 m \Uparrow 12-9 w$（as in the many Limb movements of our limbs．）$\uparrow 11-$ $6 m!!/ w \leftrightarrow$ good to show how theory fails $\uparrow 5-$ $1 w \diamond / w b$ Praise his book．Well－known for other excellent Treatises，\＆add much undervalued，in my opinion，by other writers －a vast step in advance $w b$ After speaking of the movement of the limbs，he turns to the ph．of the face，\＆remarks $3320-22 \mathrm{~m} 34$ $17-20 m 3610-12 m 381-5 m / w$ All muscles continuous－says it is an illusion $25-26 \mathrm{~m} 39$ $1-3 m, 7-8 m, 21-23 m 40$ 11－14m 42 11－25m 43 $1-34 m, 17-18 m / 17-21 w$ in Laughter upper palpebrae，also；but these diurnal in young because associated with intense \＆painful attention． $473 \mathrm{~m} / \mathrm{w}$ eyes $5113-16 \mathrm{~m} 5210-$ $12 \mathrm{~m} / \mathrm{w}$ No．endurance $537-10 \mathrm{~m} 593-5 m$
Part 2， 2 fig．w（identifying little and great zygomatic）8 15－17m 16 12－15m $262 u$＂ces gonfle＂／w by mere corrugator $277-8 \mathrm{~m} / 8 u \leftrightarrow$ $285-8 m 297-11 m, 23-25 m 305-8 m 318-$ $10 \mathrm{~m} 323-6 \mathrm{~m} / \mathrm{w}$ The contraction of orbiculars by themselves do not give look of Hardness $367-9 m 438-11 m / 3-16 m / w$ Judging by his experiments，the movement does seem entirely due to something which I suppose opposes sourcilier $18-21 m, 23-26 m 441-2 m$ ， 3－5m，6－7m 53 1－3m 56 10－11m 61 21－24m $6215-16 \mathrm{~m} / 15 u$＂paupière inférieure＂， $17-22 \mathrm{~m} /$ w See Large Plates $6313-14 m, 21-26 m 73$ 16－18m $7515 u$＂lèvre＂， $16 u$＂peu lavant＂，20－ $21 m 761-4 m 7810-13 m 857-10 m 8722-25 m$ $8910-12 m, 15-17 m 906-13 m 916-9 m, 10-$ $13 m 92$ 23－27m 104 22－24m 105 1－3m 106 3－ $6 m, 26-27 m 10721-23 m 17623-26 m / w$ the eyes being open to see $18014-21 m 18413-$ $17 m$

DUFRÉNOY，Pierre Armand，and ÉLIE DE BEAUMONT，Jean Baptiste Armand Léonce Mémoires pour servir à une description géologique de la France 4 vols．；Paris；F．G． Levrault； 1836 ［CUL（vols． 3 and 4 only）］ geo，mi，se，t，ti，ve
vol． 3 SF1
There appears to me great force in De Beaumont opposition to lava basalts（which certainly have been most fluid）stretching into wide sheets at inclination as great or narrow streams of lava on planches of cones －
p．255．says superficial basalts of Auvergne resemble those of submarine at Teneriffe ？？ forgets flatness of bottom of sea－

DUFRÉNOY \＆BEAUMONT
p．254．Proofs of recent elevation at Canary Islds－
〈over〉
p256 M．Babbage says part of crust，when volcanic forces have acted most likely to be elevated－
With respect（p257 \＆c）to thinning out of lava，round craters of elevation，not at all satisfactorily explained
It is very foolish giving one theory to any craters of elevation－
States that beds thicken towards source－ are strata upset at Cantal？Yes－
The foundation of Theory original explosion
Says Vesuvius \＆c all active volcanos put out
of the question by both parties．C．Prevost p． 315 Bull．Soc
SF2 Are the lower trachytes of M．Dore sub－ aqueous？
p．241．Cantal different streams，unequal contradiction to first statement
Good god leaves out the Sea
Says Basalt must have had greater fluidity－ Which agrees with supposition of being under water－
p．243．Basalt Terrestrial
p． 246 Cause of no cones subaqueous Good．〈over〉
Is it certain Basaltic platforms lavas of Ccantal flowed in air？
Is Cantal perfect crater
is basalt so uniform
He himself slightly contradicts himself on latter point．
His rigid comparison with Etna alone most unsophisticated
p． 217 important on inclination of lava without becoming basaltic
243 15－22m／19u＂plaines｜plateaux＂ 246 12－
$19 m 287$ 18－23m 288 21－26m 291 1－8m 295
$15-19 m 302$ 22－24m，25－28m 303 1－2m 309 zt
vol．4，SB1 〈6 numbered pages〉
1
Elie de Beaumont Recherches sur les Terrains volcaniques des deux－Siciles
a Vol．IV．Memoires pour servir a une description geologique de la France
p57 M．G．Rose first published fact that （Annales des Mines 3° Tome viii p3）\＆lavas of Etna Labrador Pyroxenes \＆some peridodt，fer Titanea
also Stromboli \＆some streams in Auvergne \＆have lava of same constitution
p95 as far as argument has yet gone，no proots of the ancient lava being ancient－
as N．B．though no proofs every one seems to consider they are ancient
－\＆therefore all this argument about small quantity of recent ejections trifling
p98 says the successive ejections only tend to make cone of Etna L° of 8．－or rather $\%$ uniformly less than Central gibbosity－p． 97 compare it with＊volcanos－？？
π_{0} seems to leave out of question case of all eruption being from centre
＊
$\underline{2}\langle$ top line 0\rangle
can scarcely doubt AscensionO a＊cone if eruptive，but no proofs
（part as）The whole argument appears to me founded on assumption that eruptions must always have＊proceeded from the same points as they now proceed．－
p． 102 Theory of Etna given in few words
p103．dike theory，p115，p116 clearly given
p． 106 matter thrown applicable to separate volcanos in Cordillera
p． 118 －Theory well given of Etna：ask will it not explain domes of Trachyte
p331 〈he means 131 －text erroneously has 331〉 dike ought to incline＊outwards in Val del Bove if the strata had been originally nearly horizontal
p331．parallel Bands of cellular rocks in
dikes from stretching \propto－theory of Keihan＇s dike．－
p133 Etna dikes are often accompanied by faults－how are Cordillera dikes？in this respect？great difference in formation of the kinds of dikes
3
p．132，some dikes join like roots to streams．－
＊｜Dikes generally run to ENE \＆therefore the elevation（cause of them）does not tend to form＂noyau centraux
p137 Valle del Bove like the Taoro in Teneriffean
p141 argue badly against cavity under Etna 142 －then argues fluid near surface，\＆ hence eboulement of Val del Bove；\＆hence elevation of noyau centraux（non sequitur） p144 are not centres of elevation，now all given up（see Bull．Soc）No are they not all Eboulement．－
p． 145 Wishes now to consider dikes as mere feeders of ancient lavas
$\otimes_{\&} \&$ forgets by his own argument they show elevation．－
4
$\bar{p} .149$ argues that dike T the union not minutely © viz thickness at point of junction； coarseness of lapilli at spot
＊the loss of parallelisms＊which he says would surely happen if streams hot flowed
over great slope，rests on supposition of lower cones being points of eruption instead of solely upper ones．$-*$ ，is their＊breadth ＊is a quality so explained
p151 Volcanic cones are generally from 18° to 40° in inclination
p158 the argument of gibbosity from his own showing here，may be invalidated because this is tending to form two kinds of slopes， where \＆everything takes place from one point． \checkmark
p161－Talus depends on form of fragments $\&_{\infty} \&$ is the same in air \＆under still water ！ good．－
5
p161－curious error repeated at 182 in reasoning could not have been formed beneath the sea because they are recent－？ Perhaps they overlie Tertiary strata？？
as Gradual elevation of the slope would exactly counterbalance the decrease of slope from the thicknening of the end lava stream at bottom of cone．－
${ }_{40}$ There is a fallacy（165 166）in arguing as if Val del Boves was entirely formed from loose matter \＆not partly from lava
p182 says streams have great horizontal extension－how ascertained－by section at head of valley
p． 188 seems to consider＊elevation of Etna quite sudden
p．do line of elevation in Etna－not true ＂crater of elevation＂
6
p191 considers Val del Bove engulfed like Papandugong．－
192 considers subsidence of Val del Bove like the pits formed on the crevasses in Etna －＋
193．thinks elevation sudden because of discordance between ancient \＆more modern lava．－N．B．part must have been gradual whether dikes point to centre or not 194．Think it was so because subsidence probably sudden why was it not for collection of gaz
\＆De Beaumont talks of the play of the fragments on Etna excellently expressed p．116＠
Etna must consist of two volcanic his from the point of eruption having changed \＆ the older part dislocated \＆inclination of beds－added to from distension．－
SB2 Dufrenoy
p．286．Somma extensive 26° strata $23^{\circ}-30^{\circ}$ 349．Tuft of pumice Siliceous infiltration Pompeii

354 soda in Vesuvian formations potash in Volcano of Camp－Phlegreens Read Naples geology in Lyell
356 Trachyte first，Somma beds 2 Trachy 3. Veins lava of Ischia Vesuvius \＆Mt Nuovo〈over〉
p．361．－I conclude when the great eruption of Vesuvius took place，there was accumulation of Pumice \＆Trachyte Matter in Upper part of Volcano－Somma being base of ancient great cone，the summit of which was trachyte．If Teneriffe fell \＆was then then blown out，first great eruption would be trachyty \＆the central one might be basaltic like flank－Study Lyell－The tuft on Somma shows central trachyte mass．－
p374．Lava streams diffuse composition or surface－in body－
〈over〉
p．382．Feldspar \＆Albite not＊in Lava！\therefore little Silex
Compare the Analyses of the substances from upper \＆middle part of stream p372

112 12－15m 131 26－28m 173， 174 〈pages cut and restuck $175 w t$ 〈CD transcribes part of p ． 174〉 178 12－15m 183 21－27m 191 19－20m 272 15－18m 371 1－8m

DUHAMEL DU MONCEAU，Henri Louis Traité des arbres 2 vols．；Paris；H．L．Guérin \＆ L．F．Delatour； 1755 ［CUL，pre－B］
vol．2， 233 21－22m／21u＂racines lendroits＂
DUMONT，Léon A．Haeckel et la théorie de l＇évolution en Allemagne Paris；Germer Baillière； 1873 ［CUL］

NB 15
7 2－5z 15 12－16m，26－27m
DUMONT，Léon A．Haeckel et la théorie de l＇évolution en Allemagne Paris；Germer Baillière； 1873 ［Down］\wp

DUNCAN，Andrew The Edinburgh new dispensatory Edinburgh；Bell \＆Bradfute； 1826 ［CUL，pre－B，S Charles Darwin 1826］ che
$10625 m, 27-33 m / 29 u$＂pounds I grains＂，39－ $41 m$ ，wb Correct by Almanac $w b$ © 107 10－ $12 w c a, 11-14 \mathrm{~m} / \mathrm{w}$ Correct by Almanac 110 wtct 111 wt $8750=1$ Pint of distilled water ie $1 / 8$ of 10 lb or 70,000 iw Penny Encyclop says 280 grains $\mathcal{I} w_{0} \mathrm{Mr}$ Baxter says 1 fluid oz of distilled water at 60F certainly contains 437.5 gr ．apothecaries or

DUNCAN，A．
FI oz；$c \subset, w b$ correct I do not doubt x $437.5 \times$ －Almanac wbas 1 fluid oz contains 455.77 grains 480 grains

DUNCAN，James Matthews Fecundity， fertility，sterility and allied topics Edinburgh；
Adam \＆Charles Black； 1871 ［CUL，I］
beh，br，ds，no，sx，t，v，y
SB $\quad \infty$
53 Variation of weight of infant according to age of mother
59 of length of do according to do．
100 on Twins produced chiefly by women between 25－29 years old．
252 on ages at which women may marry \＆ produce only Malthusian numbers of children NB 53；59；64； 100 Summary on Twins；262； 334 Important Descent； 382 do．Death of males
53 7－15m 59 8－12m 64 14－24m 100 18－23m 262 25－30m（Malthus） $29723 m 302$ 6－11m 334 13－21m 382 24－25m

DUNCAN，John Shute Analogies of organized beings Oxford；S．Collingwood； 1831 ［Down， on B，I to Lord Widmouth］

NB 54
54 25－28m
DUPONT，Edouard L＇Homme pendant les ages de la pierre Bruxelles；Macquardt \＆Cie．； 1871 ［Down］
45 5－11m，16－24m
DU PREL，Karl Freiherr Der Kampf ums Dasein am Himmell Berlin；Denike； 1874 ［Down］2nd edn； 1876 ［Down］

DU PREL，Karl Freiherr Die Planeten－ bewohner und die Nebularhypothese Leipzig； Ernst Günther； 1880 ［Down］\wp

DU PREL，Karl Freiherr Psychologie der Lyrik Leipzig；Ernst Günther； 1880 ［Down］\wp

DURAND，Jean Pierre de Gros Essais de physiologie philosophique Paris；Germer Baillière； 1866 ［Down，I］
NB O／
DURAND，Jean Pierre de Gros Les origines animales de l＇homme éclairées par la physiolgie et l＇anatomie comparatives Paris；Baillière； 1871 ［CUL］ ig，phy，tm

NB 32；88； 138 Eyes imperfect Helmholtz； 90；93； 138 Lamentin， 141 Hallotherium allied to； 137 Steenstrup on Sole \＆Turbit SB 88； 158 on Eyes imperfect； 93 The hinder legs of Lamantin subserve as tail 141 on gradation in structure of Talpa，with figure of Humerus
43 31č＂pas＂ $6416 w$ qui $887-12 \mathrm{~m} / \mathrm{w}$ Does this apply to normal organ p． 33290 18－25m $919-10 m 9226 u / x \notin 935 u$＂queue anatomique＂， $6 u$＂résiduldestitué＂ $1296 \mathrm{~m} / \mathrm{w}$〈refs．to figs．） 130 10a／w，12a／w 〈refs．to figs．） $1311 a / w, 2 a / w, 7 a / w$ 〈refs．to figs．） $1324 a / w, 5 a / w$ 〈refs．to figs．） $13710-14 m$ ． 138 11－14m 141 19－25m 144 28－32m 158 1－ $6 m$

DUTROCHET，René－Joachim Henri Mém－ oires pour servir à l＇histoire anatomique et physiologique des végétaux et des animaux Paris；J．B．Baillière； 1837 ［Botany School］

DUVAL，Joseph Histoire du pêcher et sa culture Paris；De Roret； 1850 ［CUL］

NB Nothing
DUVAL，Joseph Histoire du poirier（Pyms sylvestris）Paris；De Roret； 1849 ［CUL］ phy，wd

NB
p． 2 Certain Pears known to have been wild seedlings
－ 32 p41 p47＊＊
Two Pears which do not take well on Quince stock
2a $61-64 m$ 2b 16－20m，44－57m，59－64m 5a 49－52m 32a 31－39m 41b 4－12m 47a 32－41m 48a 22－30z

DUVAL，Joseph Histoire du pommier et sa culture Paris；De Roret； 1852 ［CUL］
beh，wd
NB O／
2a $2-8 m, 57-59 m, 57-64 m / w$ origin probably of orchards

EATON, John Matthews A treatise on the art of breeding and managing tame, domesticated and fancy pigeons London; the Author; 1852 [CUL]
beh, br, cs, em, f, he, phy, sl, t, ti, tm, v, y
NF1 Annals \& Mag. vol. 191847 p. 105 variability of Pigeons
NF2 Of noblemen \&c p.vi coming after p88
NB1 p.62. Powter grand Passage; p.vi
NB2 Facility of * crossing \& Keeping
Breeds pure - Value as Carriers -
It will be all important to find whether the vars. vary in the points, which characterise them as vars.
Questions
About fertility of crosses; Young Birds; Feathers in tail of Fan Tail.
NB3 First Part
piv; p xiv; xvii Buy; p26; p34; p.40-50, 52to; p. 62
Second Part
p.iii to vi; p21 - Important about not telling qualities of Birds in nest.-; p.22; p32; p.37; 41
p.vi 2d part funny Passage
noblemen \& gentlemen vi of Almond Tumbler \langle not $C D$ 〉
SB $\square \beta$
Special facts on Pigeons not given always x XV advice to young Fancier to keep to one kind (Ch I) $1 / 2$ quoted S
40 Total length of Carrier Q
46 On tendency to degenerate in highestbred breeds, ie selection not perfect S
49 Mayor on flight from Bury St Edmunds to London in $21 / 2$ hours
51 Length of Pouter Q 65 Fashion varies
56 On ill effects of not intercrossing Pouters p.v about changes effected during last 100 years Q
vi "the field is as still open for competition as it was 100 years ago" Q (on limit of variation)
9 Advice to keep on Goldfinches head S* $\times 11$ Advice to young Fanciers not to try for too much Q S*
11 on great variability in feather in Almond Tumbler - Selected first \& now variable 21 on difficulty of judging young Tumblers
33 believe many of the shortest beaked birds perish in egg Q (Ch 6)
p. 32 Beak may still be shortened S

Part 1, iv $4-6 m$ xv $w t$ Hence many vars. 1$3 \mathrm{~m} / 2 \mathrm{u}$ "this 1 knowledge" $3 u$ "Turke 1 Morocco" vi $21-23 m, 37-42 m$ xvii $4-9 m, 23-24 w{ }_{c}$ This Yarrell has 27 u* " 1765 "/...][..., 30...][...,
$36 m / w$ I have Delamers work published by Routledge $40 u$ "Bees \mid Rabbits" $\rightarrow / 36 w$ Buy it wbe A Treatise on Domestic Pigeons, London Printed for the Proprietors (no date) 2.6.old. lent me by Mr Evans - before 1809 for owner name has this 26 26-29m 3448 $49 w 176540$ wt Did old Aegyptians keep Pigeons? 8-9m/8u "Tavernier", $11 u$ "but |the", $22-26 \mathrm{~m} / 23 \mathrm{u}$ "fifteen", 33-35m 41 wtc¢, $3-4 \mathrm{~m}$, 34-38m, 48m 43 28-30m/30u "of l half" 44 15$17 m, 19-21 m, 29-32 m, 33-36 m 45$ 18-23m 46 $1-3 m, 31-37 \mathrm{~m} / 32-33 u$ "therel back" $34 u$ "cast offs", 39-41m, 42-45m 47 1-5m 49 2-3m, 10$13 w c \in, 17-18 m 508-14 w$ very different from now 27-28m/28u "Horsemanl Cropper" 51 1$3 m, 9-11 m, 15 w$ in 1765 21-22m/22u "wanting|quarter", 41w $\neq 41-42 u$ "merel inches", $42 u$ "sevenlit", $43 u$ "inllength", wb Ask Mr Bult 52 1-3m/1-4x $/ w$ MarredO 17$19 m 581-4 m, 9-19 m / 9-43 w$ The Horseman being thought by some to be a cross between Carrier \& Powter 21w Dutch Powter $591 u$ "English 1 miniature" 61 33-41m 62 20$24 m, 35-38 m 6318 x$, 21-25m/22x $642 u$ "jowlter leye" 1 - $8 \mathrm{~m} / \mathrm{w}$ Rollers? 33-34x 2, 39$42 m 651-3 m, 5-12 m / 8-9 \mathrm{Q} 凶$ ®, $15-17 x$, 29$33 \mathrm{~m} / 31 \mathrm{u}$ "bald \mid beard", $40-44 \mathrm{~m} 66$ 4-9m 67 1$2 m 6835-38 m \quad 705 u$ "turnedlduck", $7 u$ "bending Iswan", 8-11m/9u "his 1 bird", 29-30m $713-6 \mathrm{~m} / 4-5 u$ "three 1 long", $5-7 \mathrm{~m}, 22-27 \mathrm{~m} / 23 \mathrm{u}$ "Runts \mid Runt" $/ 27 u$ "havel half", 41-43m, 45$46 m 72$ 11u "and 1 more", 12-14m, 23-26m 73 $3 u$ "blues" $/ w t$ probably bars $1-2 m, 5-7 m, 40 u$ "sometimes blue" $749 u$ "sixlfeathers", $20 u$ "therelblue", 21-23m 75 8-24m, 29-30m, 33$34 m 762-4 m 77$ 19-21m, 22-24m, 30-31m, $36-37 \mathrm{~m}, 45-47 \mathrm{~m} 78 \mathrm{wtcc}, 11-12 \mathrm{~m} / \mathrm{u}$ "six|tail"| w var. $813-8 m, 26-27 m / 2-28 w$ This shows variability in the tumbling fraternity $5 u$ "thoughlthis", 12-14m, 20w Probably the same as Finnikin \& Tumbler $23 u$ "Dutch। Drager", 24-27m, 48-49m/49u "Archangel" 82 $5-12 m, 6-8{ }^{\prime \prime} \ldots \prime$.." $834-11 m, 51-56 m, 51 u$ "AntwerpI sharp", 52u "sharpl cunning" 84 1$4 \mathrm{~m} / 1 \mathrm{u}$ "Roman nose" 86 44-49m

Part 2, iii $41-43 m$ v $46-56 m / 46-50 \mathrm{~m} * / 47 u$ "seven-eighths", wb V. p.9xx vi 6-9mQ $x^{2} / 6-$ $7{ }^{\prime \prime} . . . ", 30-36 \mathrm{~m} / \mathrm{x} / /^{\prime . . . ", ~ 49-51 m} 819-21 \mathrm{~m} / 14-$ $21 w$ ie variable $95-6 m, 8-12 m / x x / u$ "fiveeighths", $13 u$ "three quarters", 16-18m, 19$26 \mathrm{~m} / \mathrm{"..."/20u}$ "the I beak" $106-13 \mathrm{~m}, 51 \mathrm{~m} 113-$ $6 \mathrm{~m} / 3-4$ "..."/Qan, 7-10m, 12-16m, 25-29m, 3438 m , 40-45m 20 50-51m 21 1-9m/6-8m 22 37-41m 32 50-57m 33 13-17m/w Q Ch 637 47-55m 41 34-40m

Part 3, ii $14-16 \mathrm{~m}$

EATON，John Matthews A treatise on the art of breeding and managing tame，domesticated， foreign and fancy pigeons London；the Author； 1858；［CUL，bound with：］
MOORE，J．Columbarinus，or the pigeon－house， being an introduction to a natural history of tame pigeons London；J．Wilford； 1735 ［pre－B］ beh，br，cs
NB p60 Pouter；carr p44 Carrier
Frontespiece Tumbler 100 Barb；Jacobin； Fantail；Turbit
SB 78 Q
86 Fashion goes in extremes with Fanciers．－Q ${ }^{\boldsymbol{s}}$
120．in Beards
Q 145 Blue Tumbler bred from Splash Cock \＆Kite Hen see p．

78 53－61m／55u＂original Columbarian＂ 79 24－ $30 m 86$ 43－55m，57－60m 120 48－53m 127 42－ 45m 145 3－6m

ECKER，Alexander Die Anatomie des Frosches 3 vols．；Braunschweig；F．Vieweg \＆Sohn； 1864－1882［Down］\wp 〈some marks by FD＞

EDGEWORTH，Michael Packenham Pollen
London；Hardwicke \＆Bogue； 1877 ［Down］
EHRENBERG，Christian Gottfried Mikro－ geologische Studien Berlin；K．Akademie dr Wissenschaften； 1873 ［Down，I］

EHRENBERG，Christian Gottfried Vorläu－ fige Nachricht über das kleinste Leben im Weltmeer，an Südpol und in den Meeres－Tiefen Berlin；L．Voss； 1844 ［CUL，I in each part，S］ gd，geo，ve
Part 1， $39 m 413 m, 31 m 59 m, 17 m, 26 m$ ， $34 m 61 m, 21 m 78 m, 14 m, 23 m, 25-28 m, 29 m$ $89 m 1027 \mathrm{~m} 1417 \mathrm{~m} 153 \mathrm{~m} 1613 \mathrm{~m}, 15-16 \mathrm{~m}$ ， 31－36m（Darwin） $188 m, 13 m, 25 m, 36 m 19$ $8 m, 32 m$

Part 2， 12 21a／ct
Part 3 title page w Nothing
Part 4 title page w Matter Dust
Part 5， $1132-34 m$
Part 6 title page w Patagonia－Infusoria－B． Blanca－Pampas 10 19w 2511 15－19w with some fragments of Infusoria 12 14－16m／ $4-16 w$ volcanic character more clear \＆ number of Infusoria increase each time 13 $13 u / w \tau 145 u$＂verglühter＂， $25 c$＂A＂，26－32m／ $27 c$＂B＂， $27 \mathrm{~m} / \mathrm{w} \tau, 29 \mathrm{~m} / \mathrm{w} \tau, 30 \mathrm{~m} / \mathrm{w} \tau, 31 \mathrm{~m} / \mathrm{w}$ ， $32 u$＂ 8 ＂w 〈locations of species〉， $33 u \tau, w b$ land
forms $153 w$ though near $8 u$＂Süsswasser＂， $9 u$ ＂verschiedenen＂， $10-16 \mathrm{~m}, 14 \mathrm{~m} / \mathrm{w}, 15 \mathrm{~m} / \mathrm{w}, 16 \mathrm{w}$〈locations of species）， $25 \mathrm{c} \mathrm{c}_{0}$＂$A$＂， $26-31 \mathrm{~m} / 29 \mathrm{c} \mathrm{c}_{0}$ ＂B＂／30m／27w p90 wb p． 17516 wt no．Inf－ usoria $1-4 m, 1 m, 2 m, 4 m, 5-6 w 137-9 m / 7 u /$ $w \tau / 9 u / w \tau 19$ 11－16m，19－24m，34－38m
Part 10， $518 a / c \notin \notin$
part 11 title page $z 33326 \mathrm{~m} / 26 c / w_{\notin} \equiv 339$ 12a／ c $\notin 359$ 9－25m
Part 12 title page w Nothing
EICHWALD，Eduard von Geognostisch－ palaeontologische Bemerkungen über die Halbinsel Mangischlak und die Aleutischen Inseln St．Petersburg；Buchdruckerei der Kaiserlichen Akademie der Wissenschaft； 1871 ［CUL］\wp

EIMER，Theodor Untersuchungen über das Variiren der Maureidechse Berlin；R．Stricker； 1881 ［CUL，I］
204 10m 21210 m 2192 m
ÉLIE DE BEAUMONT，Jean Baptiste Armand Louis Léonce Leçons de géologie pratique Paris；P．Bertrand； 1845 ［CUL］ beh，ch，geo
137 11－17m 140 22－27m，22－24u＂terrel diminution＂，26－29m，27－30＂．．．＂ 141 16w Buildings $17-19 m, 19-20 u \leftrightarrow, 23-27 m, 29-32 m$ $1421-7 m, 2-3$＂．．．＂ 143 23－32m 145 23－32m 148 24－29m，25－26u＂permanence l végétale＂ $1498-13 m, 22-25 m 1501-5 w$ has changed very little 2－6m， 3 u＂l＇an 451＂ 152 wt He did make sections，\＆ 1 shd thought may have been steeper 1－6m，30－32m 153 1－4m 160 wt Tumuli in many parts $1644-9 m 1651-11 m$ ， 17－22m 168 6－10m，6－29w I think earth－ castings when they come to bottom of slope must be carried away $16921-25 \mathrm{w}$ He forgets new Humus formed 182 26－32m 187 29－33m 18920 m 226 29－32m
\wp
ÉLIE DE BEAUMONT，Jean Baptiste Armand Louis Léonce Note sur les systèmes de montagnes les plus anciens de l＇Europe Paris； 1848 ［CUL］
124 17－29m
EMERY，Carlo Fauna und Flora des Golfes von Neapel 2．Fierasfer Leipzig；Wilhelm Engelmann； 1880 ［Botany School］\wp

ENCYCLOPAEDIE der Naturwissenschaften Breslau；Trewendt；1879－1882［Down］\wp

ENGELMANN，Wilhelm Bibliotheca histor－ ico－naturalis vol．1；Leipzig；Wilhelm Engelmann； 1846 ［Down］
gd，wd
NF buc
NB1 Any of Nillson in French？； 305 Is Nillson＇s Handbook in German or Swedish？－ I think not； 367 Wagner on Geog Distrib of Mammals；Pritzel Thesaurus Literaturae Bot． 2.2 （in Athenaeum Club）；Steudel Nomenclator Bot． 33 in Linn Soc．
NB2 Tidsshrift p133
Danish Tra．p57
p289 Vermischte Zoolog．includes domestic animals
Ancheria p749
Sardinia p157
p531；p．636；73； 142
ix $11 m / w \notin \pm, 12 m 3846 m, w b$ England \＆ Amer p38 France p61 $489 m 5751 m 6135 m$ $10317 m 13322 m 15749-53 m 240$ wt 303 $6 m 3043 m / w$ Meyer－got $45 m 31148 m 320$ 31－34w 1st edit about 181636 m （Cuvier），38－ $39 w$ this is mine $33839 w \notin 33943 \mathrm{~m} / \mathrm{w}$ out of print 341 39－47w／wbec，44－45u＂1789－1813＂ $42942 m 48631 m 52731-32 m$ ，41－43m（F．L． Delaparte） $53130 u$＂R．IXXXIX＂ $5543-7 m$ 749a 19m 754b $5 m$ 785b 44－48m

ENTEN，Schwanen und Gänsezucht Ulm； Ebnerschen Buchhandlung； 1828 ［CUL］ $\mathrm{f}, \mathrm{v}, \mathrm{wd}$
NB p．25；28，36；78；83；87；143； 144
SB $\square \beta$
p25 Goose sometimes top－knot p36 Wild Goose 10－12 Eggs p28 tame lays 13－18
p87 Tame Duck will lay 80－100 Eggs in year p143 Details of Rearing wild Ducks in Sweden－Tiburtius reared them for 3 generations \＆they did not vary in least in taste or feather．
$2512-14 m \quad 13 u$＂selten isabellgelb＂ $14 u$ ＂Straus＂ 28 介7－5m 36 介10－9m $741 u$＂un＂／？ 78 介10u＂wilde \Art＂｜！！ 79 14u＂Busch｜Kopfe＂｜ w what $\Uparrow 10 u$＂hängende＂，$\uparrow 3-1 m / \Uparrow 3 u$＂Chinal Vaterland＂ $83 \uparrow 4-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ one considers the handsomest tufted Ducks those，whose tufts are made of many little tufts． $876-10 \mathrm{~m} 143$ $13-15 m / 15-25 w$ Has reared \＆formed useful Ducks from wild Birds Q 144 5－10w Have kept for 3 generations feathers \＆taste like wild Ducks

ERCOLANI，Giovanni Battista Nuove ricerche sulla placenta nei pesci cartilaginosi e nei mammiferi e delle sue applicazioni alla
tassonomia zoologica e all＇antropogenia Bologna；Gamberini \＆Parmeggiani； 1880 ［CUL，I］\wp

ERCOLANI，Giovanni Battista Sull＇unità del tipo anatomico della placenta nei mammiferi e nell＇umana specie e sull＇unità fisiologica della nutrizione dei feti in tutti i vertebrati Bologna； Gamberini e Parmeggiani； 1877 ［CUL，I］\wp

ERICHSEN，John Eric The science and art of surgery 5th edn， 2 vols．；London；James Walton； 1869 ［Down］

ERNEST，J．A．Dictionary，Graecium lexicon London；J．Rivington； 1816 ［Botany School， pre－B，ED］

ERRERA，Léo Sur la structure et les modes de fécondation des fleurs Part 1；Gand；C．Annot－ Braeckman； 1878 ［CUL，I］
v
NB 212；62，65， 66 Cleistogamic Flowers； 70；117；144；123；Plantago 170 variation passing from Entomoph into Anemophilism； 129 Table of terms；133； 146 Index of terms； There is also much on variation of Pentstemon
62 3－19m 65 5－25m 66 26－28m 70 12－24m 84 $22 u$＂àlguêpes＂， $24 u$＂Linaria sriata＂ $854 u 111$ 1－23m（Sprengel） $12217 \mathrm{~m} 1235-17 \mathrm{~m}$ ，18－21m 124 6－10m $1335-21 \mathrm{~m} 135$ 28－30m 136 16－ $27 m 154$ 11－19m 196 22c＂portaient＂ 212 24－ $31 m 213$ 20－24m

ESCHRICHT，Daniel Frederick，REIN－ HARDT，Johannes Theodor and LILL－ JEBORG，Wilhelm Recent memoirs on the Cetacea ed．W．H．Flower；London；The Ray Society； 1866 ［Down］
NB not read
$5732 u 6613-17 m, 22-24 m / 22 u, 30-39 z 746-$ $9 m 7826-31 m$

ESCHWEGE，Wilhelm Ludwig von Beiträge zur Gebirgskunde Brasiliens Berlin；G．Reimer； 1832 ［CUL，on B］
gd，sh
NB 3666486 Shells at Bahia \＆St Pauls
The last chapter I have marked，but must be read again carefully 36 6－12m／7u＂aufgeschichtet＂
\wp
469 24－25m 471 5－7m 472 1－2m／u＂Bergbaul getrieben＂ 478 7－9m $47912 m 483$ 1－11m 484 $9 u$＂Granitmassen＂$/ 9-16 \mathrm{~m} / \mathrm{u}$＂nichts＂$/ 15-16 \mathrm{~m}$ 486 6－16m 488 9－13m，34－38m

ESPINAS，Alfred Des sociétés animales；étude de psychologie comparée Paris；Baillière； 1877 ［CUL］
beh，co，in，oo，or，sl，t，ts，wd
SB $\square \beta$
p14
47 Instinct of Aphides
54 Actions performed without distinct reasoning－good
－196；Much on instinct
\＆the mental qualities of animals \＆ individually on sexual selection，but I have not read all carefully．
p． 300
305；308； 317
〈over〉
Except in the coral instance I do not believe that either corporeal structure or mental ability are $*$ due＊to the preservation of single individuals
a I have never alluded to the very useful work of definition，but it seems to me that the term social ought to be confined to＊ animals which are induced \Leftrightarrow to $*$ live together through mental attributes， independently of any physical bond，\＆if so corals \＆c cannot be said to be social even in the lowest degree，any more than the buds on the same tree．－but it is rather beyond my line of work，being too philosophic or
I have now read your work，but I have nothing particular to say
It seems an interesting \＆very valuable Work \＆you have been great adaptible in acquiring great knowledge from all sources．Every one alluding to the mental power \＆nature of animals wd be bound to study it．／p54 As you hardly admit to principle of evolution we view all subjects from such widely differt points of view，that it is not surprising that we should often differ．Allow me to point out that you have unintentionally misrepresented me at p． 47 I have not discussed the origin of the instinct of domesticity，\＆have only alluded to them with respect to the question whether the aphides have any advantage from giving to the ants the social instinctsO I shd have added differs from conscious

14 2－5m 47 16－24m 54 14－31m 55 1－12m 57 $7-17 m 196$ 1－9m $3007-13 m / w$ fear makes cluster more together？ $3051-8 m 3081-$ $3 m$ 309 wt a Cat \＆a Dog brought up together will love one another 9－12m，21－ 23？ 317 8－12m 351 12－18m

EURIPIDES Hecuba Oxford；J．Vincent，H． Slater，J．Mawman，Deighton \＆Sons； 1836 ［CULR，S Charles Darwin，Christ．Coll．］
〈here and there，translations and para－ phrases of text）

EYTON，Thomas Campbell Osteologia Avium 2 vols．；R．Hobson；Wellington，Salop； 1867 ［Down］

FABRE, Jean-Henri Casimir Souvenirs entomologiques, études sur l'instinct et les moeurs des insectes Paris; Ch. Delagrave; 1879 [CUL, I, S]
beh, v
NB p122; p.129; p174; p.211; p241; 271, 2
SB $\quad 121$ p. 122124 variation p. 122124 Instinct good; 129; 176-177 some variation of; 211 on finding way; 241; 318.
$\Leftrightarrow 168$ cutting off Antennae; 172 shutting up cell; 177 parallel case
title page u 〈author, title〉 $7326-27 m 12131-$ $35 m 122$ wt Gauchos killing by pittingO 6$17 m, 36 m 12319 u$ "criquets \mid habituels", $36 m$ $1241-3 m 12532 u$ "dernier siècle" $12628 u$ "gиêpe" 129 33-36m 168 31-35m, wb antennae or palpae when former cut off 169 $17-20 \mathrm{~m} / 19 \mathrm{u}$ "tous 1 palpes", $30-36 \mathrm{~m} / \rightarrow 1702-$ $5 \mathrm{~m} / 3-4 u$ "six loviscapte", 19-22m $17134-36 \mathrm{~m}$ 172 9-15m, 17-22m 174 2-13m 176 31-36m 177 1-4m, 14-22m, 25-31m 211 15-24m, 27$29 m 24125-32 m, 33-35 m 26214-29 m 271$ 21$28 m, 32-35 m 272$ 27-32m 274 wet 296 18$26 m 297$ 18-24m $29926 m 311$ 8-21m 315 30$36 m 318$ 28-32m

FAIVRE, Ernest La Variabilité des espèces et ses limites Paris; Germer Baillière; 1868 [CUL, I]
ct, em, f, he, phy, spo, sx, t, v
SA $\langle p p .12-13\rangle \square \Re \notin$
Dom. Animals
Faivre Var. des Espèces

- p. 44. various sports enumerated some good.-; p. 100 on certain cult. plants which lose their character in certain sites
p71. for Pangenesis. on special action of poisons Cl. Bernard \Leftrightarrow
- p 111. Pangenesis on embryonic limb grafted \& developing itself. p. 132 do; p114 on permanence of new race of Datura Tatula obtained by Godron.
$\Leftrightarrow 119$ Cases of Reversion by seed.
155 vitality of pollen
- 112 good (on Canna)
$7 \quad 13-20 m, \quad 36-37 m \quad 10 \quad 36-37 m / 30-37 w$ Termites 8 forms!! 22 2-9m 23 1-14w or rather a state of Direct action Polymorphism 16-31m $2536 m 44$ 24-28m/26-27w Sport 36$38 \mathrm{~m} / \mathrm{w}$ Sport $454-7 \mathrm{~m}, 12-17 \mathrm{~m} / \mathrm{w}$ Sport $37 u$ "Carrière" $/ 37-38 m 7135-38 m$ 90 9-16m 95 $27-35 m 10010-37 m 1012-18 m 102$ 21-36w yet has said before few * natural races!! 103 11-21m $11033-35 m, 36-37 m \quad 111$ wt Pangenesis $1-4 m, 38 m 1121-6 m / 2 u$ "membre anormal"|4u "cette|plan"/1-2w Pan 114 11-

15m 119 9-16m $13234-37 m 13310-17 m 141$ 33-35m 155 12-14m, 25-28m, 36-37m 156 15$19 m 158$ 15-18m, 16u "Balisiers", 16-19w Canna Dict. class. 159 9-11m, 19-24m, 2630 m 177 8-15m, 18-22m

FALCONER, Hugh Palaeontological memoirs 2 vols.; London; Robert Hardwicke; 1868 [Down, I in vol. 1]
tm
vol. 1 NB 577 Canines; 581
xv $18 m$ xvii $16 m, 18 m, 20 m, 28 m$
\wp
577 24-25m/25u "caninesljaw" 581 33-40m vol. $2 \wp$

FALCONER, Hugh Report on the teak forests of the Tenasserim Provinces Calcutta; F. Carbery; 1852 [Down, I]
NB 3030 11-22m, 25-31m $3134-39 m 32$ 20$24 m 336-10 \mathrm{~m}$

FARRAR, Frederic William Chapters on language London; Longmans, Green \& Co.; 1865 [Down, I]
beh
NB Gesture language 104
104 1-19m $113 w\langle n o t C D\rangle$
THE FARRIER and Naturalist edited by a member of the Zoological Society of London 3 vols.; London; Simpkin \& Marshall; 18281830 [CUL, pre-B]
ch, sl, tm, wd
vol. 1 NB Those struck out read in Vol I; 338*; 380* Q 452 * ; 466 change in Wool in sheep; 469* 547. - Guinea-fowl on St Helena in 1588
$3381-3 m / Q 3806-13 m 452 w t$ All Q $17 u$ "the sorrel", $20-21 m, 26-28 \mathrm{~m} / 26 u$ "often" $\mid 27 u$ "black|dark", 28u "often"/Q 32m, 45m 453 $1 u$ "sorrel", 3-5m, 25u "tincturedlclaret" "brown", 25-31 \rightarrow /31u "dappled", 39-41 $\rightarrow 455$ $5 u, 7-8 m / 7 u$ "fallow", $10 u$ "because I goes", $12 u$ "thence | backed", 19-21m/19u "fallow|duns"| $20 u$ "faintly dappled", $40 \mathrm{~m} 45626-30 \mathrm{~m} / \mathrm{w}$ Q colour 466 32-41m 467 1-7m 469 33-35m 547 21-22m, 26-27u "pintados"
vol. 2 NB Dog

- 151; 349; 365; 368; 379

Allude to Wilson Essay
151 25-33m 349 26-31m 365 24-26m 368 10$14 m 37920-24 m, 39 m 3807-12 m$
vol. 3 NB 17; 115
Rabbit \& Hare not crossing Qas

FARRIER
17 9－20m，wb no selection by men 115 16－ $25 m$

FAUNA UND FLORA des Golfes von Neapel， Monografien 1－4 Leipzig；Wilhelm Engelmann；1880－81［Botany School］\wp

FAYRER，Joseph The royal tiger of Bengal London；J．\＆A．Churchill； 1875 ［Down，I］

FENWICK，Samuel The student＇s guide to medical diagnosis 2nd edn；London；J．\＆A． Churchill； 1871 ［Down，FD］

FERGUSON，George Illustrated series of rare and prize poultry including comprehensive essays upon all classes of domestic fowl G ． Ferguson；Beaufort Library； 1854 ［CUL］
af，beh，br，cc，cr，cs，dg，f，fg，he，hy，in，sl， sx，wd，y
NB 1 must be careful about trusting this man．－Mr Tegetmeier says not known as a Farrier．Mr Brent does not know，but says he offered to sell Coops \＆Aviaries－so must at least have kept Birds．－
Tegetmeier has commented The whole Book a pack of lies \＆compilations

SB1 $\square \Re$

ivャ；iv；v＊；v；vi»；p．v＊；vi
23；27；31；32；35；49；67＊；69＊；75，75＊；82；
85 ；91；93；108；151；162； 163
－$\&$ see $p .27$ to explain
＊a good deal of remarks on Polish Spangled Cock \＆Hen；Cocks \＆Hens almost always different Spangling v ．wild Hen which is I think barred
$\left\langle\boxminus ; \star \otimes_{0}\right\rangle$ Cuckoo Poland；Cocks \＆Hens almost always different from part Spangling \＆barring plannedO in Hens
SB2 317；320；333； 342
$\langle(\Delta) ;\rangle$ Always put after Page names of Breeds（Shangae）（Game）\＆c；connect perhaps 4 by dots ．．．．．．．．（See p．27）；Clean well the pencil marks．－；Keep Book Clean．； Write smallish on one side，number your pages．
〈over〉
$\leftrightarrow \mathbb{k}_{0} \rightarrow$ Mr Norman put in name at top
171； 172 н；176；177； 186 Good example of Malays；187；192；201；206；230； 254；260；262；277；281； 284 －KissingO each other； 296 see Weight of Malays 297； 299；302； 304 ；305；311； 313
$\langle(a) ; \Leftrightarrow]$ Look at weights of Malays
over
SB3 $\square \beta$ 风
p vi．no ancient selection $Q \Leftrightarrow$
p． 23 Black－red Cock Shangai resembles game $\mathrm{Q} \Leftrightarrow$
－ 27 on power of male Cochins in courting shy females
35 Shangai eggs granulated $Q \Leftrightarrow$
49．－slowly feathered
75 Prefer breeding from bad bird of good pedigree to good bird with bad pedigree
83－experiments on interbreeding Spanish＊ causing Degeneracy．
93 Grey Dorking like male X
108 about ascertaining \＆selecting flavour of flesh when killed＊preserve brother：with respect to neuter insects．－X
162 Fanciers select each point to excess．a little peculiarity＊valueless－a great more valuable or．－quote．－X
172 All birds more readily acquire than lose a peculiarity．－Polish Fowls heads very hereditary see Poultry Chronicle Easily grafted by a cross
186 O Malay Hen 10 caudals－crow peculiar．－individual differences
〈over〉
192．Deist－believes of multiple origin $\mathrm{Q} \Leftrightarrow$
201 Hybrids with Pheasant－Lies 〈u．＠〉
285 on proportion of Male \＆Females－ Males in excess．－
297 Eggs of Black Bantam different shape Q
302 Cuckoo Bantams Q \Leftrightarrow
311 Highly－bred Birds－many eggs unproductive
313 －change of locality lessens injurious effects of interbreeding
317 Freemans Game stock degenerating from interbreeding
iv $14-20 \mathrm{~m}$ v $23-30 \mathrm{~m}, 34-35 \mathrm{~m} / 34[\ldots$ vi $1-10 \mathrm{~m} /$ 3－4Q $2313-17 \mathrm{~m} 271-6 \mathrm{~m}, 20-24 \mathrm{~m}, 26-33 \mathrm{~m} 28$ $1-10 \mathrm{~m} 3116-21 \mathrm{~m} 328-17 \mathrm{~m}, 18-23 \mathrm{~m} 3412-$ $13 m 35$ 11－21m 49 22－26m 67＊28－33m 69＊ 30－33m 75 30－33m 75＊1－4m 82 24－31m 83 1－ $5 m 915-8 m 9331 w$ Grey Dorking 32－33m $1085-11 \mathrm{~m} / \mathrm{Q} 151$ 11－17m 162 24－32m 163 1－ $3 m, 4-15 m 171$ 19－28m $1725-12 m 176$ 28－ $33 m / 30 w$ Dixon $1773-17 m$ 186 7－10m，29u ＂ 13 ＂／28－32m／w see Bantams 187 17－22m 192 2－5m 201 4－29m 206 20－29m 230 25－28m 235 10－16m 252 33u＂Thel varies＂ 253 1u＂froml cream＂， $7 u$＂hens \mid unusually＂ 254 26－31m 260 4－8m，13－16m，17－18m，18－24m 261 15－25m 262 24－33m 277 32－33m／wb Pencilled H． 282 1－4m，7－11m 284 31－33m 285 1－2m，9－15m 287 6－11m 296 2－6m，15－17w Cock \＆Hen same plumage $19-22 \mathrm{~m}, 29-33 \mathrm{~m} 29715-22 \mathrm{~m} /$ 19z $299 \quad 8-12 m \quad 302$ wt Cuckoo Poland mentioned $1-3 m 30511-15 m, 23-26 \mathrm{~m} 31130-$
$33 m 312$ 1－5m 313 5－10m，20－29m 317 11－ $32 m 320$ 3－9m 333 1－8m 342 7－11m〈 67^{*} means second $p .67$ etc．）

FERRIÈRE，Émile Le Darwinisme Paris； Germer Baillière； 1872 ［Down］

NB O／

FERRIÈRE，Émile Le Darwinisme Paris； Germer Baillière；n．d．［Down，another copy］ NB O／

FERRIS，Benjamin G．Origin of species，a new theory Ithaca，N．Y．；Ithaca Democrat Print； 1871 ［Down］

FICHTE，Immanuel Hermann Die Seelen－ fortdauer und die Weltstellung des Menschen Leipzig； 1867 ［Down］
xlvi $9-46 \mathrm{~m} / 10 \mathrm{w}$
FISKE，John Darwinism and other essays London \＆New York；Macmillan \＆Co．； 1879 ［Down］

FISKE，John Outlines of cosmic philosophy based on the doctrine of evolution 2 vols．； London；Macmillan \＆Co．； 1874 ［Down］
vol．1， $1297 m, 8 m$
FITTON，William Henry Notes on the progress of geology in England London； Richard Taylor； 1833 ［Down，on B？，I］

FITZGERALD，Robert David Australian orchids vol． 1 i－vii，vol． 2 i，iii，iv，v；Sydney； Thomas Richards；1877－［Botany School，I］ $\mathrm{f}, \mathrm{fg}, \mathrm{gd}, \mathrm{sp}, \mathrm{tm}$
vol． 1 i， $126-27 x$ ， $27 \mathrm{~m}, 28 u \uparrow$ ， $34 u \uparrow / 34$ $39 m, 35-38 m / 36-41 w$ How in other parts of range？ $40 u$＂in 1 seed＂ $\mid x / w$ seed with every 44－47m／44u＂or Itime＂，49－50m／x 2 wt is this native rate－Try with own pollen F． Muller \＆Scott（in Fs letter one is perfectly fertile if own pollen placed on stigma） $1-3 m$ ， $34-40 \mathrm{~m} /$ ？， $50-52 \mathrm{~m} 31-5 \mathrm{~m} / \mathrm{x}, 5 x$ ， $12 x$ ， $16 x / w$ rare $41-6 w$ As the seeds did not germinate，it cannot be told that nat fertilisation occurred 13－15x，16－17m，26－ $30 m, 47-49 m$ Pterostylis longifolia $8-9 m$ ， 14－19m／15u＂from｜half＂ $16 u$＂onelfive＂，22－ $27 \mathrm{~m} / 22 u$＂instantly carried＂$/ 24 u$＂twol pollen＂， 33－35m，36－39m，40－42m，43－44m Caladenia dimorpha $7 u$＂lip｜column＂， $7-9 \mathrm{~m} /$＂．．．＂$/ \mathrm{w}$ Genus like $10 u$＂without｜such＂，24－26w are
not the calli nutritious
vol． 1 ii，Spiranthes $15-17 m / x / 16-17 u$ ＂touch 1 stage＂， $20 x / u \leftrightarrow, 23-27 \mathrm{~m} / x / 26 u$＂under 1 fertility＂Adenochilus 14－16m／x Saccolabium $2 x$
vol． 1 iv Thelymitra $13-17 \mathrm{~m} / 16 u$＂havel the＂， $18-25 m, 28-42 m$

FITZROY，Robert and KING，Philip Parker Narrative of the surveying voyage of H．M．S． Adventure and Beagle 3 vols and appdx．； London；H．Coburn； 1839 ［CULR， 2 copies of vol．3，one marked by FD］
gd，geo，gr
vol． 1 NB－2；8；56；136；140；204；210； 258；306；328；337；363；375；385；copied out
SB 〈not CD
2 15－17m 3 21－27m 6 3－6m 8 1－4m 56 31－ $34 m / w$ Feb $5722-24 m 581-3 m 595-7 m 87$ 14－16m 133 29－33m 136 6－10m，29－34m 140 9－12m，19－20m，22－28m 204 20－28m 210 18－ $25 m 25822-26 m 306$ 3－9m 307 22－26m 328 9－12m 329 9－10m 337 1u＂some｜which＂，14－ 21m／16－21w 168 ft ！！42ft 126 28－31wec 343 $7-8 m 363$ 10－13m 375 20－28m 385 1－6m 398 24－30m
\wp
vol． 2 NB1－251；277；415；418； 420 copied out
NB2，SB 〈not CD \rangle
39 30－31m 43 13－15m 65 5－7m／w no 131 （markings not by CD until） 251 33－34m 277 30－33m 412 20－25m 413 10－13m，18－20m，22－ 28m，33－36m 414 1－13m，15－23m 415 1－7m， 18－20m 420 5－15m 421 1－7m，33x／u＂twenty toises＂ 485 31m 486 17－18m 488 22－23m 490 $23 m / m / u$＂ 1832 ＂ 496 27－30m $49811 u$＂James Island＂， $12 u$＂side ICharles＂， $8-14 m / w$ the leeward side compared with 502 9－11m，35－ $37 m$ 504 19－22m 505 15－18m／16u＂north－ west＂，30－34m，36－37m
vol． 3 NB 209 \＆ 210 Law of succession of life in S．America
153 Distribution not always
〈many markings not by CD，except〉 153 1－4m 154 17－21m 184 wbec 185 wtcc 201 wtcc 209 4－6m 210 6－9m 215 31a＂The＂／31－33c／31－37w／ $w b$ puma，with the condor on its train follows \＆preys on the guanaco（Habits of．） 216 1－7c 272 16－17m，25－26m 273 9－20m 307 wbcc 460 4－7m（Henslow） 556 3－4m 585 3－15m

[^1]FLEMING，John A history of British animals Edinburgh；Bell \＆Bradfute； 1828 ［CUL，pre－ B］
br，tm，v
NB p． 264 －Analogous to Pigeons－on vars of Helix nemoralis coupling together．－〈untranscribed w are page－number references〉
$599 w, 37 w, 42 w 604 w 941 w 11620 w, 33 w$ $1171 w 14815 w 16213 w, 35 w, 49 w 177 w t$ acanthopterygious $22 w, 37 w 1781 w, 19 w$ ， $29 w 2022 w, 8 w, 29 w, 36 w, 39 w 2031 w, 11 w$ ， $22 w, 38 w 224<2 w$ not in this volume $12 w$ $2254 w, 8 w, 9 w, 10 w, 14 w, 15 w, 17-19 \mathrm{~m} / \mathrm{w}$ ， $21 w, 25 w, 26 w, 28 w, 29 w, 31 w, 33 w 226$ $12 w, \quad 25 w \quad 264 \quad 13-20 \mathrm{~m} / 16 u$＂Reverend I Sheppard＂ $114-16 w$ Linn Trans？27－29wec 281 \＆ $33 w, 34 w, 36 w 296$ \＆ $3 w$ Scutibranchia $12 w, 13 w, 15 w, 20 w, 27 w, w b$ Cryptobranchia Heart entire detached from rectum Scutibranchia Heart with two auricle traversed by the rectum． $29712 w, 16 w 328$《 $5 w, 12 w, 17 w, 23 w, 29 w, 32 w, 36 w, 39 w$ $3291 w, 2 w, 5 w, 8 w, 10 w 381 \leftrightarrow 11 w, 22 w$ ， $29 w, w b$ Siphonida．Cloak more or less closed forming syphons ．．．． $4083821 w$ ， $9 w 408 \not 2 w, 10 w, 26 w 409 \Leftrightarrow 1 w, 17 w, 32 w$ ， $43 w 4101 w, 7 w, 14 w 467 \otimes_{2} 23 w 472 \otimes_{3} w$ ， $7 w, 9 w, 13 w$ not in this volume $47388 w$ ， $10 w, 12 w, 13 w, 18 w, 20 w 4749 w, 17 w, 20 w$ 505 d $2 w, 3 w, 5 w, 7 w, 10 w$ not in this volume $506 \Leftrightarrow 9 w, 24 w, 27 w, 35 w, 43 w 528$＊ $3 w, 5 w, 12 w, 19 w 538 \nless 10 w, 16 w, 23 w, 27 w$ ， $31 w$

FLEMING，John The philosophy of zoology 2 vols；Edinburgh；Archibald Constable \＆Co．； 1822 ［CUL，pre－B，S in both vols．］
beh，br，cc，fg，gd，is，mg，oo，phy，sx，t，ti， ud
vol． 1 NB1 See Class Index in next volume． NB2 almost all first relating to Instinct 20；50；52；221；224；229；231，2；236； 241 －good；246；254， 6 to 268 to 274；277；298； 302；308；409；425；427xx；429；430； 432
20 10－15m，27－34m／30u＂instinctive linjuries＂／ 28－32w how loosely worded 50 19－21m 52 15－18m（Linnaeus） $2208 u$＂Association IIdeas＂ $2212-6 m / 6 u$＂recollection＂， $9 w$ dreams 224 19－23m／？，23－26w 225 2－8m／w how known？ $2297-9 m, 32-33 m 23026-30 m 23123-27 m$ $2324-9 m / w$ like Audubons Water－Dog 10－ $17 w$ Old Greyhounds will not run if Hare starts at a distance 233 25－31m 235 23－32m $2365-11 \mathrm{~m} / \mathrm{w}$ shamming death＊My Rio de Janeiro spider shows insects know their 241 $\uparrow w / w t$ The individual who by long intellectual study acquires a habit，\＆can perform action
almost instinctively，does，that in his life time，which successive generations do in acquiring true instinct：－instinct is a habit of generations，－each step in each generation， being intellectual for in lowest animals some intellect？No！23－25m／27－28m／u＂rather 1 impulse＂／$\ddagger w$ the distinction between these habits perhaps important $w b$ it is strange according to my theory that habit which results often of intellectual processes，－ Habit may result from any train ie only incidentally effect of reason or 〈of intellectual processes \rangle－is so related to instinct，which analogy of plants leads one to believe to exist，independently of intellect．－ $2435-9 m$ ， $10-16 w$ How wonderful young of Kangaroo sucking $247 w t / 1-6 w$ \＆turning round before sleeping－covering dung \＆c show that principle may possibly be laid down that every instinct preserved is not changed \＆ some of these may once have been important．7－10m／x 254 4－6m，7－8m，31－34m 255 12－13m 256 19－23m 257 1－4w station \＆ home confounded $258 \quad 29-32 \mathrm{~m} / \mathrm{w}$ monkeys pulling things to pieces－looking behind looking－glass 259 28－32m／30u＂immediatel individual＂，33－34m $2618-14 \mathrm{~m}, 26-30 \mathrm{~m} 263$ $1-2 m / w$ monkey with dogs 265 wt the sudden way insects recover from feigning death shows it is not effect of fainting－do insects such as Byrrhus contract their legs in dying？？？3－7m，11－12m，12－13u＂Affections I pain＂， $14-17 w$ ！！！Baby＇s affect．to Mother！！ $2681-3 m / w$ difficult to be accounted for 9－ $12 m, 19-22 m 27227-31 m / w$ difficult 273 17－ $20 m 2744-7 m / w$ dogs－wolves porpoises 277 9－13m／w By nerves in＊some compound animals 298 2－6m 302 9－16m／w ！！！dogs running Hare p304 304 18－21m，29－ $35 \mathrm{~m} 30510-17 \mathrm{~m}, 23-30 \mathrm{~m} 30824-26 \mathrm{~m} / 21-28 \mathrm{w}$ What are active powers？ 309 1－6m 409 19u／a ＂neuter＂$/ 17-19 \mathrm{~m} / \mathrm{w}$ of both sexes my theory like plants $4251-4 m / w$ Has true Eggs 15－ $17 \mathrm{~m} / 15 \mathrm{u}$＂tol confined＂， $19-29 \mathrm{~m} / \mathrm{w}$ । think infusoria properly breed $4261-2 m 4275-$ $18 \mathrm{~m} / 13 u$＂Soc． 1268 ＂，23－30m／w argument not conclusive also x by flowers not being permitted．wb Hypothesis－such plants were originally long lived and have become annual，having been transported（by nature） to cold climate． $42811-14 \mathrm{~m} / \mathrm{w}$－in course of time，every $25-28 \mathrm{~m} / \mathrm{w}$ this is merely same as successive buds on trees $31-34 \mathrm{~m} / 33 u$ ＂acotyledonous＂，36－38m，wb Hence one can only say－strongly tempted to believe， only true reproduction is seminal－ 429 $w t / 1-6 w$ makes vast distinction between plants \＆animals $7-9 m / 8-9 u$＂preventivel
aversion＂$/ w$ ？assumed V．p． 430 note．－27－ $29 \mathrm{~m}, 29-34 \mathrm{~m} /$ ？ $4307-8 m, 29-30 \mathrm{~m}, 30-32 \mathrm{~m} /$ $32 u$＂whichlexhibited＂ $4329 u$＂procreating＂， $10 u$＂of species＂$/ 10-12 w$ only applies to plants vol． 2 NB1 The sexes of Nightingales arriving at different times，is illustrated by sexes separating as in chaffinches，where there is no migration．－
NB2 good Chapt on migration of Birds
5；6；8；10；12；30；33；35；40，3，4．；108； 140；149；355；356；362；379；407；530；535； 578； 618
SB $\square \Re$
231 C．cornix breaking shells
\＆ 233 All here excellent illustrations of reason in animals．－
241 some good remarks on instinct vol． 2
10 Horse in Zetland pregnant only biennually Q
42 Flight of Birds Rate of－Hawk－case．－ 44 On birds knowing time \＆direction 149 on masculine instincts in old Females 356 Fecundity of Fish
5 24－30m 6 9－10m／10u＂excite｜vomiting＂ 8 $12 u$＂produced \mid stature＂$/ w$ sometimes $14-16 m$ ， 19u 10 20－21Q 24u＂his｜year＂｜ $25 u$＂twelfth＂｜ $26 u$＂abovel years＂$/ 24-29 m / w$ How other horse －goodish－How in cattle 12 9－33m 13 16－ $20 m 308-16 m 3234 u$＂leafing｜elm＂ $28-34 m$ （Linnaeus，Stillingfleet） $331-5 \mathrm{~m} / 2 u$＂leafing sycamore＂， $19-24 m, 31-33 m \quad 34 \mathrm{wt} / 1-5 \mathrm{w}$ These facts show how much influence small differences of temp－have upon－ distribution of Birds 5－9m 35 2－22m，21－24m， 30－32m／w Zoology of those Islds $361-7 m$ ，9－ $13 m 41$ 1－8m，25－34m 42 wt in Montagus Dict it is said from Dr Show that a Falcon of Duke of Cleve flew out of Westphalia into Prussia in one day－but this too vague． 4 $37 w$ In Montagu Col．Thornton estimated that a Falcon after a Snipe went at rate of 9 miles in 11 minutes $=49$ miles per hour but independently of numerous turnings $433-7 \mathrm{~m} /$ w all correctly quoted $8-13 m$ ，$w b$＂certainly 100 miles is not beyond a fair computation for migratory continuance＂．Montagu． $447-$ $26 m / 15-19 w=$ very good $=20-23 w$ Pacific also $w b$ proves a faculty－useless in indulge in mere conjecture as has been done，showing ＊that electrical currents $1089-11 \mathrm{~m}, 30 \mathrm{~m}$ ， 31u＂fallow－deer＂，32m 109 25－27m 140 5－30m 149 3－16m，19－21m
\wp
355 1－4m 356 1－4m，20－35m 357 21－24m，27－ $29 m \quad 362$ 1－5m $366 \quad 28-32 m \quad 379 \quad 10-12 m / w$ Secondary male characters $21-22 m 407$ 21－
$24 m 5306-8 m, 35-38 m 5356-10 m, 33 m$ \wp
$57814-23 w$ is presence of neuters universal in these genera
\wp
$6194-8 \mathrm{~m} / \mathrm{w}$ possibly serve for reference 10 $16 w$ See about Royston Crow

FLOURENS，Marie Jean－Pierre Examen $d u$ livre de M．Darwin sur l＇origine des espèces Paris；Garnier Frères； 1864 ［CUL］

NB 4864 nothing
48 1－5m 64 8－9m 65 1－9m
Catalogue \wp

FLOURENS，Marie Jean－Pierre De la longévité humaine et de la quantité de vie sur le globe Paris；Garnier； 1855 ［CUL］
br，ch，cs，f，geo，he，hy，pat，t，ta，tm
NB p．50；p．84；p．105－9
p120；p130；p146；p．148；p156；p．173；p185 SB \quad－β
109＊ 143 Hybrid Dogs \＆Wolves sterile from 4th generation－p． 156 － Q
p144 On Prevalence Q of types in crossing Asses \＆Horsean Dog \＆Jackall \＆c \＆c
145 reduced in 4 generations to pure form Q 148 It is succession，not resemblance which makes＂a species＂．（Ch．4） 185 vis medicatrix
title page u 〈author，title〉 $50 \Uparrow 15-1 m 84 \downarrow w /$ wt How utterly the law fails in insects，How in Birds？Pigeons mature very quick；yet they live pretty long 104 介4－1m／！！ $1055-8 m$ 106 介11u＂le thur＂／$\uparrow 11-8 m 108 \Uparrow 6-1 m 1096-$ $12 m, \uparrow 8-4 m, \Uparrow 2-1 m 1204-15 m 130 \Uparrow 7-1 \mathrm{~m} / \mathrm{wb}$ Has a Man seen an escarpment worn by the sea？ 134 wt argues against an inherent tendency to change． $1356!/ u$＂aucunel espèce＂，9－10m 140 介15－1m／wb Yet Cuvier believed in Dogs． $141 \Uparrow 15-1 \mathrm{~m} / \mathrm{w}$（a）$w b$（a） shows only the difficulty of deciding $143 \Uparrow 1 u$ ＂dès la＂／w at wb context shows this meaning 144 wt This shows，means in \＆in．The interbreeding may have aided，only aided， the natural sterility of the Hybrids． $1-2 \mathrm{~m} / \mathrm{w}$ （a） $4 u$＂bientôt＂， $6 u$＂Mes expériences＂$/ 6-8 m$ ， 12－13m，$\uparrow 10-9 m$ ，$\uparrow 8-6 u \pm, ~ \Uparrow 6-1 m ~ 145 ~ 3-6 m$, $7-16 m, 18-19 \mathrm{~m} / \mathrm{w}$ crossed with pierpoints Q_{o} $1462 u$＂bientôt＂， $4 u$＂bientôt＂ 148 介6－4m 149 $12-13 \mathrm{~m} /$ ？ $154 \Uparrow 12-10 \mathrm{~m} 1564-8 \mathrm{~m}, ~ 9-12 \mathrm{~m} / \mathrm{w}$ 161 male 133 fem $\Uparrow 7-5 m 157$ wtec $1731-4 m$ $18510-15 \mathrm{~m} / \mathrm{w}$ always forming the bones \＆ therefore capable of forming a lost part V ． ante

FLOURENS, Marie Jean-Pierre De l'instinct et de l'intelligence des animaux 2nd edn; Paris; Paulin; 1845 [CUL]
beh, br, cs, ex, f, h, hy, mg, sp, t, ta
NB p.26; p.32; 50; 57; 85; 88; 97; 101; 106; 110; 130; 141; 175 〈he probably means 173); 191; 200

SB $\square \beta$
27 Condillac on instinct Q
32 Instinct a Primitive Force, \mathbf{Q} like intelligence
50 man alone reflects
57 Qa F. Cuvier has compared instinct to Habit - Well discussed
85 On Breeding of Monkeys \& Hybrids in confinement, 88 do
97 On Breeding of Chacals \& Hybrids of
101 Camel \& Dromedary produce sterile mules
106 Breeds of sheep all fertile \& with Mouflon
108 Zebra - crossed with Cattle Hybrid fertile
111 Q Beavers always amassing material in Cage
121 Thinks Fox \& Dog will never couple p 121
131 Dog \& Wolf sterile from 2d generation (Think of savages)
191 Cat exercise Kitten with Mice NQ
200 He saw bear wash poison off cakes NQ
$2612-15 w$ He thought it actual habit 27 7$9 m / w$ in that generation $3215-18 m 47 w t$ bird modifying nest not migrating 18-19m 50 17$20 \mathrm{~m} / 1-21 \mathrm{w}$ except by consciousness of oneself, how can this be told? if not there are no proofs that animals do not reflect 57 8-11m 58 3-6m, 13-20m 60 11c "habitude"/ $11 w$ intelligence $19-21 \mathrm{~m} 85$ 〈at top of page a portion of The Times is stuck, concerning Duke of Northumberland giving Cercopithecus griseo, Grivet, and C. viridis to Royal Surrey Zoological Gardens; dated 10 August 1847), $10-$ $12 \mathrm{~m} / \mathrm{w}$ p. 88 14-17m 88 4-9m/6u "makilblanc" $9711-14 m / 15 u \leftrightarrow, 18-19 m 1013-4 m 1064-$ $6 m, 19-21 m 10716-19 m 1086-7 m, 12-14 m$ 110 9-13m/Q 111 9-11m 114 2-5!/m, 11-14m 116 2-6m, 9-15m 121 9-15m 130 wt/1-10m/w no doubt Pallas theory presupposes the extinction of many aboriginal species 14-23w only tenable by getting a little blood of some other species in.- $1317-10 m, 20-24 m 132$ $14-17 \mathrm{~m} / 1-18 w$ the Pig good to state Pallas hypothesis from. $13319-21 m 141$ 11-13m 173 18-20m 191 11-12m 200 1-2m/1u \leftrightarrow

FLOWER, William Henry Catalogue of the specimens illustrating the osteology and dentition of vertebrated animals contained in the Museum of the Royal College of Surgeons of England part 1; London; David Bogne; 1879 [Down]

FLOWER, William Henry An introduction to the osteology of Mammalia London; Macmillan; 1870 [CUL, S]
af, ds, phy, rd, sx, tm, v
NB 64 Caudal Vertebrae *
p.265-268 - good for * plates of Homologies of Limb-Bones
270; 279 Analogy; 291 Rudiments; 294 Descent
Descent 325 spur of male Echidna
296 Ligamentum teres
303 Rudiment
321 foot of Marsupials origin
SB π_{0} Flower Osteology of Mammals
p.265-268 excellent figures of Homology of Bones of Limbs

- p. 270 va
p279-good case of analogical resemblance in bone of foot
p.291. Rudiment of Limb in Cetacea, used for attachment of Bone of Penis
p. 296 List of animals which do not possess Ligamentum teres to thigh-bone - Orang is one. Have I not read case in Man doubtful? Mivart says cavity in Orang \& Chimps variable
303 Rudiments of Limbs present in an ancient Sirenia, but absent in all existing species
64 13-15m/14u, 18-21m 270 24-30m 279 1-8m 291 25-33m 292 5-10m 294 12-17m, 22-24m 296 1-7m 303 1-6m, 15-17m, 18-21m 321 28$33 m 322$ 1-6m, 7-12m 323 1-33m 325 3-5m

FLÜGEL, Johann Gottfried English-German E German-English Dictionary part 1; Leipzig; G. Liebeskind; 1838 [Down] \wp

FOCKE, Wilhelm Olbers Die PflanzenMischlinge Berlin; Gebrüder Borntraeger; 1881 [CUL, S, I]

\wp

$4645 m 48310 m$
FOL, Hermann Recherches sur la fécondation et le commencement de l'hénogenie Genève; Henri Georg; 1879 [Down, I]

FOLLEN, Eliza Lee The life of Charles Follen Boston; T.H. Webb \& Co.; 1844 [Down]

FORBES, Edward On the Asteriadae found fossil in British strata (offprint) [CUL, I] af, ds, em, fo, sp, t, ti, tm

SB1

p. 458 \&c
\& 526 This paper must be read after looking over Von Buch
to end - I am not at all convinced by it -
SB2 $-\beta$
458 Crinoidae \& Echinidae essentially "chronomorphic"

- Knowledge of Fossils confined to N America \& Europe, evidently one region.460 Silurian star-fish a recent genus
526 Table of affinities of Echinoderms, showing that does not go with age p531
$4571 u$ "Asteriadae", $2 u$ "Forbes", 12-16m 458 1-6m, 10u "chronomorphic", 14-20m, 42-43m 459 21-25m, 35-38m, 43c "corresponding"/ww Silurian 460 11-13m 461 3-12m 463 33c "Lower" 464 5c "Lower", 21c "Lower" 526 wt/ table.w How absolutely without Law is the development of groups ie nothing like * embryonic metamorphosis $1 u$ "Echinidae"/ wt doubtfully palaeozoic p458 $1 u$ "Asteriadae"/wt existing genus Bala. \therefore oldest p. $4593 m / w$ carboniferous ?Older? table.w Silurian table.w I do not see why Cystideae may not have been the parent form \& given out 3 lines; as well as be inserted between Crinidae \& Echinidae. table.m "Crinoideae"/w Lowest order * order wb I do not see why Cystideae placed above Crinoideae; the only sd. argument ought to be derived from simple organization.- 527 $25-27 m \omega_{0} 531$ 16-23m*s, $33 u$ "first" $/ w$ I fancy not in time 532 11-12!, 13u "negative ! polar", $24-36 \mathrm{w}$ absolutely unintelligible $5338-9!/ 9 u$ "exactly \mid value", 15-17!, 38m, 39-40!

FORBES, Edward A monograph of the British naked-eyed Medusae London; The Ray Society; 1848 [Down]
sy
NB * 40 Remark on nomenclature
FOREL, A. Les fourmis de la Suisse Zurich; Zurcher \& Furner; 1874 [CUL, I]
beh, cs, em, fg, he, ig, no, or, pat, phy, r, $\mathrm{sp}, \mathrm{sx}, \mathrm{tm}, \mathrm{ud}, \mathrm{v}$
SF $\square \beta \rightarrow$
Kreisirrenanstalt Munich
NB Page III
13-19 121-134 144-147 116-121 258-269 272-274 276-283 285-293 299-300 308$310 \quad 341-351 \quad 314-315 \quad 371-374 \quad 386-388$

391-396 440-449 443
SB1 $\quad \beta$ -
All marks from beginning to end SB2 \sim
p. 14 on differences of worker Ants
p. 123 Brains of male female \& neuter very curious
135 Ants clean each other, 152 take old nests \& modify them to their own use
p. 203 Make or work on roads.- 206 invent new methods \& vary their work.
208 adjoining colonies friends 248 in cutting off heads of other ants - knows position of ganglion
249 courage varies according to number of community. $250 *$ attend to slightly injured ants - leave badly wounded.- 251. Friendly ants rather perish than attack each other for food. 258263 allied ants of distant species274. In fighting tactics of different species different. 280 association of 2 species
286 On ants recognising each other for a time \& at last forgetting - Huber error
296 A few ants determine course of others 301 signal communicated
304. Ants get mad with rage when fighting \& are calmed by the others
307. Stupidity of Rufescens in not taking cocoons on ground, because will try to find entrance to supposed nest. p. 321 number of slaves 20,000-25,000 under 1 year by P. rufescens They examine previously the nests to be attacked.
343 In one genus concludes that all crossing except between Brothers \& sisters male cannot leave Nests (dimorphic!) (but I think courting \bullet)
〈over〉
p341 a slave-maker.- 347 gradation towards perfect slave-maker.
p. 359 F. sanguina number of slaves very variable p. 363 Errors of F. Smith
363 Different tactics of 2 species in fighting
365364 var of rufa F. rufa normally makes slaves $366 *$ number in nest -
367 sick one attended to by comrades 367 play
373 Mixed colonies, not explained.
394. Nymphs of Ants cannot open cocoon for themselves, without aid from others, often aid them in removing the skin
397 same female fecundated by several males - 398 fecundated female does not enter old nest
399 females fecundated are often caught \& brought back by force to natal nest, \& these must have been fecundated by males of same nest.

FOREL
417 not known how new colonies est－ ablished．
419 very curious evidence how rarely ants of distinct nests intercross．
421，422 Ants protect their Aphides from all enemies－so mutual service．
440 excellent summary of Whole；approves of what I have said of origin of slave－making 441．thinks atrophy of ovaria in Neuter may be due to development of their brains．－ 441 trace of castes in neuters very general－ about intercrossing 446 Indecision of Mind \＆ Struggles between opposed instincts．

14 9－16m，18－24m 15 1－4m，6－8m 7u＂règlel distincts＂，11－12m，介6－4m 18 16－20m 19 1－5m $123 \Uparrow 18-16 \mathrm{~m}, ~ \Uparrow 13-10 \mathrm{~m} 135$ 介14－12m 152 11－ $16 m 2036-8 m / 8 u$＂travaillent \mid les＂ 206 10－12m $2085-11 m, 12-17 m 209$ 介6－1m 248 15－19m $249 \Uparrow 12-9 m 2501-4 m 1 u$＂exceptionellement＂， $\Uparrow 3-1 m 25110-12 m 258$ 介18－15m，$\uparrow 9-5 m 262$ $1-3 m, 10-14 m 10 u$＂fraîchement écloses＂ $111 u$ ＂travaux｜des＂，18－20m／19u＂trois｜jours＂ 263 3－7m 274 介14－12m／$\uparrow 14 u$＂tactiquelest＂$/ w$ of different species $280 \uparrow 8-2 m / w$ association of 2 distinct species 286 15－20m 15－16u＂Voilà I origine＂ 287 1－4m 1 u＂compagnes 1 mois＂，18－ $22 m, 23-24 m 296 \Uparrow 18-14 m / \Uparrow 18 u$＂la 1 donnée＂， $\Uparrow 3-1 m / \Uparrow 3-2 u$＂elles \mid arrière＂ $301 \Uparrow 12-7 m / \Uparrow 10 u$ ＂un｜toutes＂$\uparrow 94$＂dans 1 direction＂$/ w$ clearly signal $302 \Uparrow 15-12 m 304 \Uparrow 10-3 m 3078-15 m$ ， 16－18m，20－24m，介7，／u＂esclaves 1 reconnurent＂ 308 介11－8m／介10u＂Revue｜scientifiques＂ 321 11－16m，$\uparrow 7-4 m 3255-6 m / w$ ponte larva 16－ $18 m$ 17－18u＂tandis＂ 343 介4－1m 344 1－5m， $\uparrow 7-5 m / \uparrow 7 u$＂P．rufescens＂ $347 \Uparrow 3-1 m 359$ § 8 － $4 m 3604-9 m 3626-8 m 3632 m, 4-8 m 6 u$ ＂faisaient｜du＂，$\uparrow 5-1 m \quad 364 \quad 14-15 m, 17-$ 20 m 18 u ＂savoirlplus＂ 365 介18－16m 366 介9－ $3 m / \Uparrow 8 u$＂ 50001500,000 ＂ 367 17－19m，$\uparrow 6-1 m$ $369 \Uparrow 14-11 m / \uparrow 14-13 u \leftrightarrow, \Uparrow 8 m 373 \Uparrow 10-1 m$ $3947-11 m, 13-20 m 395$ 介 $13-9 m / \uparrow 12-11 u$＂sel seules＂ 397 20－22m $3984-5 m 5 u$＂de 1 diverses＂ $399 \Uparrow 15-11 m, \Uparrow 10-9 m, \Uparrow 7-5 m 400 \Uparrow 2-1 m 402$ $\Uparrow 14-10 \mathrm{~m} 417$ 12－15m 418 介14－12m 419 11－ $28 \mathrm{~m} / \mathrm{m} 4215-8 \mathrm{~m}, ~ 9-11 \mathrm{~m}$ ，介12－9m 422 7－9m 436 介2－1m 440 介14－6m 441 1－7m $5 u$＂le｜du＂ $6 u$＂atrophie I secondaire＂， $10-12 \mathrm{~m}, 18-20 \mathrm{~m}, 21-$ $23 \mathrm{~m} 442 \mathrm{Im}, 15 \mathrm{w}$ Sexual differences $\Uparrow 17 u \leftrightarrow /$ $\Uparrow 15 u$＂travail 1 tout＂$/ \uparrow 9-6 \mathrm{~m} / \mathrm{w}$ not transmitted， but given to neuters \＆thus indirectly acquired by by males $\&$ females．very curious．$\uparrow 5-4 m, \Uparrow 3 u$＂aulautre＂ $4438-9 m / w$ I ought to read again about Strong．testaceus 10－13m， $19-22 \mathrm{~m} / 21 u \quad$＂dans I manière＂$/ 22 u$ ＂d＇uneld＇autres＂，24－26m／w \＆most dominant on earth $\uparrow 3-1 m 4442-10 m \quad 3 u$＂tandis besoin＂，9－12m $44512 u$＂les 1 sont＂，$\uparrow 20-18 m$ ，
$\Uparrow 13-11 m, \uparrow 7-4 m, \Uparrow 3-1 m 4463-15 m, \Uparrow 10-7 m$ ，介7－4m 447 1－3m

FORSTER，Johann Reinhold Observations made during a voyage round the world London； G．Robinson； 1778 ［CUL，pre－B，S］
beh，co，gd，geo，gr，is，se，sp，ve，wd
NF Classes Islands p14
p． 27 Tanna volcanic and has I certainly think elevated coral on coast
NB $-21 ; 22 ; 179 ; 183,5 ; 187,9 ; 193$
（Abstract）
187 Besides two domestic Mammals only Bat in Western isld；\＆Black Rat in Society， Friendly \＆New Hebrides p188 in Tanna 2 species of Bats．
p188 Hogs of same breed in the several isld 193 Natives of Society \＆Friendly Isld catch \＆tame Pigeons \＆Parrots－
14 2－23m，7u 〈place－names）／5－8w Maatea a little to SE of Tahiti V．p $938 u$ 〈place－names）／ w close together $174-5 m 201-2 m 2318-$ $23 \mathrm{~m} / 20 \mathrm{u}$＂formed of corals＂ 24 1－5mes 26 20－ $23 \mathrm{~m} 2716 \mathrm{~m} 698-10 \mathrm{~m} 7018-22 \mathrm{~m} 147$ 7－16m／ $7 u$＂onelonly＂w V．173！10－14w NB in Cooks voyage nothing is said about Forster landing here $17 u$＂Turtle Island＂｜15－20w ？ought this not to be written Savage Isid In journal（his own）says passed by it，no anchorage 155 18－23m 173 8－16m／10－11u ＂raised｜water＂ 13 u＂grew｜without＂ 179 17－ $19 m / \rightarrow 1801-5 m 18318-21 \mathrm{~m} / \mathrm{w}$ stuck to rocks 185 22－24m 187 4－6m，18－19m 188 7－ $9 \mathrm{~m}, 16 \mathrm{~m} / 14-16 \mathrm{w}$ implies same var． $17-20 \mathrm{~m}$ $1898-16 m / 9-10 w$ implies same var． $1939 u$ ＂at Isize＂，12－15m 229 15－18m 235 5－9m 237 14－17m 238 1－7m，26－27m 251 23－24m 326 1－ $3 m 327$ 18－19m 364 11－13m 384 介7－5m 403 4－5m 432 22－23m 450 13－15m 459 6－8m 554介9－8m，$\uparrow 2-1 m 5601-4 m 56112-16 m 56220-$ $26 m 567$ 18－19m 569 9－11m 588 15－21m 589 1－4m

FORSTER，Thomas A synoptical catalogue of British birds London；Nichols，Son \＆Bentley； 1817 ［CUL，pre－B，S Charles Darwin 1826］
sp，y
facing $2 w_{0}$ The Ringtail in Turton＇s British Fauna is made a distinct species，under the name of Falco Pygorgos－as does Lewin \＆ Wolcot facing 11 wes 77.78 These are considered by Turton，on the authority of Dr Latham，as only the young \＆very old ones of E ．Nivalis

FOSTER，Michael，and BALFOUR，Francis M．The elements of embryology part 1； London；Macmillan \＆Co．； 1874 ［Down］

FOSTER，Michael，and LANGLEY，J．N．A course of elementary practical physiology London；Macmillan \＆Co．； 1876 ［Down，I］

FOURNIER，Eugène De la fécondation dans les Phanérogames Paris；F．Savy； 1863 ［CUL］ dic，fg，gd，mhp，00，sx
NB 56 Read；Fert of Lilium
p．52．－Lopezia curious contrivance for fertilisation

－ 61 Drosera

68 ．
73 Flowers under water make ball of air－ － 117 to 130
61 Parietaria like Nettle（wind）
117 on fertilisation of grasses
118 Dichogamy
120 Moicous like Dioicous in fertilisation
Cucurbita Pepo monoicus \＆dichogamous
52 15－20m 56 2－10m 57 25－30m 61 2－13m／5u ＂acide cyanhydrique＂ $55-6 u$＂les lacides＂， $23 u$ ＂Pariétaires＂ 62 12－21m 66 6－11m 68 13－25m （Hofmeister） $703-9 m / 1-5 w$ no doubt wd visit occasionally 73 10－14m 117 18－25m 118 14－ 16m，26－31m 119 22－26m 120 9－12m

FRANCISQUE－MICHEL Du passé et de l＇avenir des Haras Paris；Michel Lévy Frères； London \＆Edinburgh；Williams \＆Norgate； 1860 ［CUL，S］
beh，v，y
SA 〈pp．81－82；a fragment〉
NB 7 Horse imported into France 705－7
47 different colour valued by end of 15 th cent
Xes 50 Arab do
－ 84 only end of 8th century－ Charlemagne gives precise valuation about Stallions； 90 Prince of Wales bring a Stallion in 1305
SB • p7；p．47；50；84；90；all classed
title page u 〈title，author〉 $72-4 m / 3 u$＂arabis＂， 15－19m 47 6－8m，11－13m／12u＂liart pommé＂ $50 w t / 5 w \leftrightarrow / 7 w$ 〈not CD），5－10m／w arab superstition about calves Hoof 51 19－21m＊ 84 1－2m，6－7m／6u＂des 1 reproducteurs＂，11－ $12 m 909-10 u$＂Edward \mid Canterbury＂， $11-23 \mathrm{~m} /$ $13 u$＂etlétalons＂， $15 u$＂beaulservir＂， $16 u$ ＂prêter＂／20u＂bien 1 ramèneront＂

FRANK，Albert Bernhard Beiträge zur Pflanzenphysiologie Leipzig；Wilhelm Engelmann； 1868 ［CUL，S］
mhp，t
$526 m 826-28 m 930-31 m 1020-26 m / w 128-$ $31 m / w 211$ 14－20m 15 27－28m 16 30－31m 17

26－28m 19 11－21m／14－15u＂musslauswärts＂， $25-27 \mathrm{~m} 2523-33 m 2626 m 3211-12 m 3822-$ $25 m 39$ 25－26m 42 15－18m 43 8－14m，22－ 23ma，24－25m $4613 m 4722-24 m 5433-34 m$ $5530-32 m \operatorname{m}_{6} 56$ 11－17m $573-5 m 597 w 15 / 9$ $17-27 \mathrm{~m}, ~ 28-30 \mathrm{~m}$ 区 $6115-17 \mathrm{~m}, ~ 21-22 \mathrm{~m} / 21 \mathrm{u}$ ＂Die 1 völlig＂，25－26m 70 table－columns．w V＇X＇ V X 72 17－23m／17－19m／18－19m 76 6－8m 77 $w t$ Good Boy 78 23－25m／24u＂inneren Schichten＂ $804-19 w$ inverted radicles，quite perpendicularly yet moved downwards 81 1－ $4 m / w t$ Explains by growth not being equal all round $83 \quad 32 \mathrm{~m} 85 \quad 18-27 \mathrm{~m} / 21 u$＂Helio－ tropismus＂ 244 ＂Geotropismus＂ 86 4－5u＂häng－ enden｜trauernder＂$/ w$ geotropic $13 u$＂Sie｜ während＂ $112-14 m / w$ capable during whole growth $887 \mathrm{~m} 9017-20 \mathrm{~m} 912-6 \mathrm{~m}, 17 \mathrm{~m}$ ，19－ $26 \mathrm{~m} / 20 u$＂Decandolle＂， $23 w$ BR $971 m, 3-5$ ？， 24－27m， $26 u$＂concentrirte Zuckerlösung＂， 27 u ＂Krümmung unverändert＂ 98 wt＊，1－3m，12－ $14 m$

FRANK，Albert Bernhard Die natürliche wagerechte Richtung von Pflanzentheilen Leipzig；Hermann Weissbach； 1870 ［CUL］ ad，beh，cc，mhp，phy，t，v

SB1 $\square \mathfrak{R}$

From final chapter

p． 90 Organs will grow in all directions some favourable \＆some hurtful－will change into favourable position－I suppose individ． movements．－
Movements become so firmly associated with certain external influences such as light \＆gravity that the latter suffice to cause the same process of growth or movement．
good／like instinct－compare with chicken seeing food \＆eating it an associated habit in this case
over
（over）
We must say that we＊take nearly the same general view as Frank does about the manner \＆means by which all the parts of plants adapt themselves to the position in which they stand \＆to external agencies；but with this considerable important difference that we now know that each growing part is continually in circulation，ie bending to all sides，\＆if it be advantage to a part \＆to the plant，for it to bend in any direction with respect to the remainder of the plant，or to any external agency，if this agency produces any effect which can be perceived by the plant，then the circulating movement can be modified to or for such agency，or the time of such movement can be modified in

FRANK
atten. O to such agency as in the shape of $*$ Leaves.- no darkness may be cause, but not of direction.
SB2 $\square \beta$
A.B. Frank Die Naturliche Wagerichtes Richtung von Pflanzentheilen 1870.
p. 2 speaks of sense for attraction

17 says position of all horizontal stems due to gravitation \& light; but at
18 Light always preponderant over gravity
20 Fragaria stolons see to this movements very slow.
45 leaves stand at right angle to light inclined when light strike one side
46 leaves rise up in darkness - ie are apogeotropic \& light causes them to be horizontal.
In short an organ will put itself in any position with reference to light which may be advantageous; but then the rising in the evening is odd.
52 twisting confined to petioles.- \& not to jointsO how different from Pfeffer.
62, 64 leaves of tree which do not rise in darkness.
75 Hofmeister nearly discovered transverseO - geotropism \& Heliotropism

2 wt a sense for attraction of gravity $2 u$ "einlfuir" 17 12-18wes at least often get into horizontal position by epinasty $18-23 \mathrm{~m}$, wb Nothing * else $1810 u \leftrightarrow / 10-12 \mathrm{~m} 2022 \mathrm{~m}, 33-$ $34 w$ Fragaria 35-39m, 40u "erfolgendel gediehen", wb takes place very slowly 219 $13 m$, 13-16m 22 10-12m, $24 u$ "vertical aufrecht" $237 u$ "Achsen", 14-19m, 24 m 24 8$9 m, 26-27 m 2533-38 m 2614 u$ "aber 1 die", 15u "der|gleich", 24-27m 27 25u "horizontaler Richtung" 28 31-35m, 36m, 38-39m, wb He overlooks epinasty 29 17-20m 3027 u* "eine Incurvation", 29-32m 31 \& $7-8 m, 12 m, 14$ $16 m, 36-38 m 32$ 1-4m, $34-37 m 33$ 1-2m $34 ぬ_{0} 17-22 m 358 m 36$ 12-16m 45 18-21m, 21-22u "Beziehung|steht", 24-27m/w inclined when one side shaded $29-36 \mathrm{~m} / 31-33 w$ evidence of $4611-16 \mathrm{~m} / \mathrm{w}$ leaves rise up in darkness $15-24 w$ \& is an apogeotropic but says that light causes them into horizontal 52 9-15m/10-11u "eigentliche| übernimmt"/1-12w * twisting confined to petiole; *, 19-21m/19u "der Stiel"/17-25w How different from Pfeffer 53 1-10m/w Use of compound Leaves 14 $17 \mathrm{~m} / \mathrm{w}$ especially when fixed by tendril 19-21m, $33 u$ "Clematis" \rightarrow /22-25w Mutisia Bignonia Fumaria $\bigcirc 5511 m 5923-28 z / z b$, $34-39 w$ This might be tested by Klinostat 60 $3 m, 28-38 w / w b$ This is the same thing as epinasty Origly caused by light afterwards
guided by geotr. $6226-30 \mathrm{~m} / 23-34 w$ I thought he said rise in darkness $32-33 \mathrm{~m} / 32 u$ "Letztere| und" 33 u "ihre|horizontal" 63 32$35 \mathrm{~m} / 33 u$ "weniglaufrechter" $641 w$ in darkness $3-7 m, 8-13 m / 8-9 u$ "durch 1 können" $/ 12 u$ "ausgeprägte |Lichte", $13-17 \mathrm{~m} / 14 u$ "Schwerkraft \Licht", 35-39m $735-8 m / 6 u$ "Achsen" $/ 7 u$ "andererldurch", 10-15m, 23-27m 74 21-27m $751-3 m / 1-2 u \leftrightarrow / 2 u$ "Hofmeister" 76 15-19m, $25-32 w$ goes on growing $34-37 \mathrm{~m} / \mathrm{w}$ fulvinus 1 believe error Pfeffer 77 11u "der 1 in" $/ 14-17 \mathrm{~m} /$ $11-17 w$ seems to consider it a direct result and not mere excitement $26-30 \mathrm{~m} / 27-28 u$ "Transversal Heliotropismus" $7834 m, 35 u \leftrightarrow$ 81 wt I seem always to consider the movement direct effect of light $5 m, 9-32 w$ this assumption appears to be merely lazy so it is $8528 m 89 \downarrow w$ He believes that the individuals which originally chanced to have, for instance, plumule erect \& radicle vertically downwards, would survive; but this as yet does not apply to movements, \& still less to cases like sleep-movements.- $\mathbf{9 0} 2 \mathrm{~m}, 3 \mathrm{~m}$

FREKE, Henry On the origin of species by means of organic affinity London; Longman \& Co.; 1861 [Down, I]

FRÉMONT, J.C. Report of the exploring expedition to the Rocky Mountains in the year 1842, and to Oregon and North California in the years 1843-'44 Washington; Gales \& Seaton; 1845 [CUL] \wp
beh, br, gd, is, sl, y
NB1 It might well happen, as in Horses of Falkland, that the old animals might live at ease \& not be driven to search new countries, open to them (as is evidently the case with the Buffalo) and the pressures are chiefly falling on the young.- It is important to observe that no selection cd aid Horse in Falkland.- or Horses in Paraguay except strength of constitution \& breeding at diff time of year; but that cd be effected only if a little earlier or later was more favourable
NB2 Windhorn Mountain Lat $43^{\circ} \mathrm{N}$; 84; 124; 174; 144
166.

Abstract Feb 57
p144 The Buffalo only crossed R. Mountains lately owing to persecution

84 44-51m 124 45-49m 144 43-46u士, 49-53m 166 wt $/ \uparrow w$. Previously there was good evidence of the Buffalo having been driven into new districts by Hunters one race of Indians much obliged for this

FREY, Heinrich The histology and histochemistry of man trans. A.E.J. Barker; London; J. \& A. Churchill; 1874 [Down] \wp

FROHSCHAMMER, Jakob Das Christenthum und die moderne Naturwissenschaft Wien; Tendler \& Co.; 1868 [Down] \wp

GALLESIO, Georges Traité $d u$ citrus Paris; Louis Fantin; 1811 [CUL, pre-B but read later: S C Darwin Feb 1842]
cc, cs, f, fg, gd, hy, ig, mn, oo, or, pat, spo, $\mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB1 p146 Orange; 143
32; 40; 46; 62 to 85 to 167
line across page 〈hereafter page-numbers by CD but some words possibly not)
193 to 222 Hist of Citron, marked but unimportant
to 286 - ditto ditto
p. 292 \&c \&c Sweet Orange different from bitter \& later introduced
p. 297 * Origin of Sweet orange
p. 321
p. 327 to end
p. 359 the only passage on acclimatisation of orange
NB2 Nothing important in all these extracts below the cross line \rightarrow 〈to NB1 line across page)
Nov. 47 I think that experiments cd be worth looking over again.-
Look at the Synoptical Tables first.-
SB $\square \Re$
34. Sweet \& bitter oranges \& almonds \& Peach \& nectarine always true
40 orange fruit affected by pollen of Lemon! 46 crosses with pinks analogous, striped \& some pure white \& red.
67 The Lemons which depart most from type, (or are monstrous are sterile) p331
147 Mixed orange, lemon \& citron
co 359 curious case showing how slowly \& rarely real attempts have been made at naturalisation $\langle u \Leftrightarrow\rangle$
a poor Book
$3023-25 m 3111-13 m 3218-20 w$ it is not different in W Indies $20-22 \mathrm{~m}, 22-24 \mathrm{~m} 341$ $2 m 40$ 18-23m 45 24-26m 46 1-5m/w Like chrysanthemums latter prbly a cross of 2 vars. 12-16m 47 12-15m 62 9-15m/10u "grande 1 mélanges" $/ w$ polyadelphia *, $13 u$ "nombre infini de races" 63 9-11m/9-10u "plusieurslévènements" 66-67 wt xox according to this view, a plant as soon as it became accustomed to new conditions, would produce more seeds, \& therefore in most cases would produce * less fruit \& hence would be said to degenerate!! $667-$ $14 m, 16-17 u$ "ils I variétés"/15-22w shows how little weight he puts to character of sterility $25-29 w$ for he certainly admits * varieties distinct from hybrids $18-19 \mathrm{~m} / \mathrm{w}$ both hybrids 66-67 wbas, part * This is quite new view of varieties being born sterile, it is

GALLESIO
certainly case with many pears，apples \＆c \＆c not due to mere effects of conditions on the actual $\&$ plant，but $*$ is born with $x x$ tendency to be sterile（\＆hence good fruit or fine double flowers are produced）－think Kolreuter found certain individual hybrid－ crosses＊more sterile than others，thus if pear seeds are sown，some seedlings are more sterile than others $673-4 u$＂celles 1 stérilité＂$/ 1-5 m, 13 u$＂leurs \mid toujours＂，20－ $21 u \leftrightarrow, 22-28 m,\{w \notin$ in animals out of conditions no case of offspring being born sterile（？do not perhaps get full fecundity for some generations？）but in plants it is very frequent case $\|=$ very important：＝view－ xxx XOX 68 17－18u＂pour 1 distinction＂／w $\mathfrak{\text { nato }}$ oxen！！ $7110 u \leftrightarrow 737-10 m 832-5 m / 2 u$＂ces noms＂｜ $3 u$＂innombrables＂ $854-8 m 9027 u$ ＂plusieurs siecles＂， $28 u$＂conservée＂ $911 u$ ＂variétés＂， $3-5 m, 3 u$＂Dès lcolline＂， $5 u$ ＂multiplierl semence＂，6－7m 92 26－28m 95 7－ $8 \mathrm{~m}, 11-18 \mathrm{~m} 962-3 \mathrm{~m} / 3 \mathrm{u}$＂souvent＂ 97 16－20m／ $19 u / w \tau 10015-17 m 10220-22 m / u \pm / w b$ This is not like Kolreuters certain hybrids $1033-8 m$ 109 12－14m 116 20u＂vulgo Pomum＂ 117 19－ $20 \mathrm{~m} / 20 u$＂jamais pu＂ 118 3－5u士，9－12m 119 $12-14 u \pm / 10-16 w$ Every one of his hybrids as yet conjectural $w b$ Has the Bergamot seeds？？ $1219-11 \mathrm{~m} / 10 u$＂Il semence＂ 125 27－ $28 m 126$ 1－3m $1294 u$＂n＇offreljaunes＂ 130 14－16m 133 24－25m／u＂ils 1 dépine＂ 135 4－5？， 22－23m／u↔ $1378 u$＂feuille l crépue＂，9－10u ＂la｜limonier＂， $12 u$＂orangier＂，21－23m／23u ＂hybrides Ise＂， $26 u$＂variées I proportions＂ 140 $18 u \leftrightarrow, 23-24 m / 24 u$＂en 11270 ＂ $14322-28 m /$ $22 u$＂Ses lespeces＂$/ 23 u$＂blanchâtres＂ $1466 u$ ＂1644＂，24－27m 147 6－10m／1－10w／wt X are the several cases of citrus above given with flowers \＆fruit of different＊forms cases of hybrids sporting．－ $11-20 \mathrm{~m}, 22 u$＂aussilpoint＂／ $24-28 \mathrm{~m} / 25 u$＂unel de＂／wb／8－28w These are extreme cases of sporting \＆hybrids－no more probably like Laburnum－like mottled Hollies sporting back to pure leaves 148 1－ $2 u$＂arbrelformes＂， $4-7 m / 7 u$＂orangesisans＂， $14-16 \mathrm{~m} / 15 \mathrm{u}$＂orangers l cédrats＂， $18-21 \mathrm{~m}, 22-$ $25 m 1546-7 u$＂quild＇épines＂，7－10m，11u↔ 155 4－6u＂etlordinaires＂，8u＂quelquefois｜ semis＂ 156 19－21m／20u＂couleurl de＂ 157 3－5u ＂nelchétives＂， $6 u$＂c＇est｜fécondation＂$/ 7 u$＂il！ pépins＂， $8 u$＂selsemence＂ $\mid 5-8 w$ not a hybrid because no ways intermediate $9-24 m / 23-$ $25 m 15827 \mathrm{~m} / \mathrm{u}$＂exclusive \mid Chine＂ 159 25－28m $16513 u$＂du।de＂ $1667-9!/ 9 u$＂quilespece＂ 167 18－19m 194 10－11m／11u＂en Médie＂ 197 17m， $18 u$＂Palestine＂ 198 19－20m／19u＂Théo－ phraste＂$/ 20 u$＂description dans＂ 203 4－5m 207 $1-2 m / 2 w$ conjecture $11-23 m / 17-20 u \pm / 7-22 w$
proofs of old cold climate V．Arago $25 u$ ＂quel vigne＂， $28 u$＂ellelpoint＂ 208 3－5m，6－ $8 \mathrm{~m} / 7 \mathrm{u} /$ ？＂certainement＂ 210 20－21m 217 8－ $15 \mathrm{~m} / 8 a$＂Paludius＂｜15u＂dans｜siecle＂ 218 14－ $16 \mathrm{~m} / 15 u$＂lelquatrieme＂ 222 20－22m 223 3－5m／4u＂plusitransmigration＂ 227 12u ＂Madere ICanaries＂， $13 u$＂dès 1463＂ 252 20u ＂1383＂，22－24m 257 5－8m 270 13－15m 287 14－17m 292 9－12m，16－19m 293 11－16m 295 1－6m $2975-13 m / 8 u$＂deltransmigration＂ 321 $10-11 \mathrm{~m} 32627 \mathrm{~m} 3271-3 \mathrm{~m}, ~ 9-11 \mathrm{~m}, 15-16 \mathrm{~m}$ ， 22－24m，26－28m 329 1－2m $3306-8 m 3314$ $6 \mathrm{~m} / 6 u$＂celuilstérilité＂， $8-9 \mathrm{~m} / 8 \mathrm{u}$＂cettel singuliere＂ 334 1－6m，18－22m，25－30m 344 9－ 12m，24－26m 345 11u＂d＇Acosta＂，11－22m，22－ $25 m 3497-10 m, 13 u$＂l＇Espagne＂， $14 u$＂un orangers＂， $16 u$＂touslgreffés＂， $19 u$＂demil commencé＂， 20 w to sow seeds of Sweet Orange $\uparrow 3 \mathrm{~m} / \mathrm{u}$＂oranger 1 Sauvageon＂ 351 15－ 17m／15－16u＂Dansladroite＂ 352 1－7m 355 11u＂1709｜Ligurie＂ 357 4－6m，7－8m／w in Liguria $17 u$＂unel portât＂ 359 1－6m

GALTON，Francis The art of travel，or，shifts and contrivances available in wild countries London；John Murray； 1855 ［CUL，I，S］
NB1 〈by FD
NB2 91 Authority； 115
2 7－9m 3 1－3m，6－13m 4 13－14m 5 23－26m 8 31－32m 9 12－15m 14 10－14m 15 7－8m／7u 16 5－12m 17 1－3m，26－28m $1826-27 \mathrm{~m} 265-6 m$ 31 25－29m 35 23－25m 91 16－17m 115 25－30m

GALTON，Francis English men of science： their nature and nurture London；Macmillan \＆Co．； 1874 ［Down，S］
＜markings not by $C D$ 〉
GALTON，Francis The narrative of an explorer in tropical South Africa London；J． Murray； 1853 ［CUL，ED］

GARROD，Alfred Baring The essentials of materia medica and therapeutics 3rd edn； London；John Walton； 1869 ［Down，FD］
〈markings not by CD＞
GARROD，Alfred Henry The collected scientific papers London；R．H．Porter； 1881 ［Down］\wp

GÄRTNER，Carl Friedrich Beiträge zur Kenntniss der Befruchtung der vollkommeneren Gewächse 1．Teil；Stuttgart；E．Schweizerbart； 1844 ［CUL］
cc，cs，dic，em，f，fg，gd，he，hy，in，is，mhp， no，oo，pat，phy，sp，sx，t，ta，tm，v，wd

NB ω_{∞} N．B．p 137．on varieties of Verbascum crossing \Leftrightarrow used
p． 212 Fruchnoten 〈ie Fruchtknoten〉＝ Germen；griffel＝stylus；narbe $=$ stigma
SB Oct． 1855 This book abstracted \＆ abstracts \＆references distributed．－
SA1 $\langle p p .622-3\rangle$
This is Index of whole volume p75 on Honey to p92．
p． 104 on time of shedding pollen
to p119 on contabescence
to p128 on richness of pollen； 137 on pollen varying in species \＆individuals of Dianthus p137 on fertility of vars of Verbascum according to colour
to p .148
p．220．p222
p242；p250 on concepcion．to p． 253.
p． 328 on periods of concepcion；to p367
p． 440 on abortion p． 444
See over Page
＜over〉 p528 on＊dispersion of Lychnis （quoted from Tausch）diurna \＆vespertina in hermaphroditism．－I presume the number of seed here refers to cultivated Plants
p539 on crosses taking place at distances p．550．do
p560；p564
p571 on crossing \＆c to 577．do．
p598．on number of seed in Lychnis vespertina－diurna；p600
p366 self－fert often fails in＊Lycium， Tropaeolum，Mirabilis \＆Campanula \＆ Lycium－
All these references have been recopied out into papers in＊Hybrid Chapter
SA2 $\langle p p$ ．622－3〉 口 β
$136368386497-138$－134，135；136；
386567595
\checkmark p． 128 on quantity of pollen．
135 Each embryo requires more than one pollen grain－
226 Narben－fuchte 〈ie feuchtigkeit〉 secreted from stigma at various points
236 secretion of stigma of Nicotiana took months to dry－so very different from that of Orchis．－
256 Reichenback Vol．l p． 120
345,347 quantity of pollen required for full fertilisation
351， 600 Successive application of pollen necessary
for Orchids
〈over）
－In Corn \＆Hemp Fields \＆Palms clouds of pollen p107
Cop
p116 Contabescence

SA3 $\langle p p$ ．622－3）
Dichogamy Gärtner Kenntniss s． 539 on plants 6－800 yards fertilising each other very good．p551？p573－577
（Keep）
xi $6 \mathrm{~m} / \mathrm{w}$ Read $7-10 \mathrm{~m} / 10 \mathrm{w}$ Read $12-15 \mathrm{~m} / 13 \mathrm{w}$
Read $17 \mathrm{~m} / \mathrm{w}$＊Read 20m／w Read $21 \mathrm{~m} / \mathrm{w}$ Read $32 m, 33 m / 33-34 w$ because it will show crossing $34 m, 35 m / w$ read $36 w$ read， $37 w$ read
8
$752 w$ read 18－21w nectar before opening of flowers $76 \quad 5-6 w$ after pollen 18－19u ＂Wandelbar fanden＂／w secretion variable $*$ ， no doubt due to conditions $24 u a / 24-25 \mathrm{~m} / \mathrm{w}$ no＊secretion 31－38m／w sometimes honey in hermaphrodite，but not in unisexual flower of same species．Sometimes in male sometimes in female $777-13 \mathrm{~m} / \mathrm{w}$ quite absent in many flowers 78 14－15w increases ＊flower falls $791-7 \mathrm{~m} / \mathrm{w}$ quite sterile Hybrids have nectar 80 1－10w They do not seem to know about Vetches $859-16 \mathrm{~m} / \mathrm{w}$ does not think nectar can be accounted for by for insects alone to favour fructification 87 9－ $11 m / 11 u$＂Tilia europaea＂／8w No nectar！！11－ $12 u$＂Tilia odorata＂$/ 11-14 w$ small \＆nectar do not go together 89 wt generally the period of concepcion，the spreading of pollen， secretion of honey，\＆opening of flower all together． $1-4 \mathrm{~m} / 3 u$＂den meisten＂， $8-10 \mathrm{~m} / \mathrm{w}$ often put out by circumstances $16 \mathrm{~m}, 18-20 \mathrm{w}$ Sometimes nectar before opening of anthers 23u＂Leguminosen I Cruciaten＂／23－26w In these most nectar，when pollen is mostly or quite shed．－ $9022-27 w$ Thinks no relation between secretion of Honey \＆density of Pollen－many Families have no nectary 31－ $34 w$ no relation in quantity of pollen \＆nectar 91 1－2ua／w Pollen not dusted yet much Honey $3 u$＂Dichogamen＂／4ua／4－7w Male flowers of these no nectar－but females have $8-9 m / w$ castration no influence on nectar 12－14w Absolutely sterile Hybrids have nectar $18 u$＂Leguminosen ICruciaten＂／ $19 u$＂Dehiscenz I Antheren＂ $117-19 w$ in these nectar begins after opening of anthers．20－ $21 w$ But then in Legum：pollen is brushed out by stigma 26－30w When fructification has taken place nectar ceases though pollen not shed． $9510-11 \mathrm{~m} 10411-16 \mathrm{~m} / \mathrm{w}$ pollen shed before opening of flower 19－33m $1064 u \uparrow / 5-$ $8 m / 8 u$＂verstäuben＂ $1-8 w$ Pollen usually dispersed in air，except in families where of large size as these． $10-14 \mathrm{w}$ a cloud $* 11 / 2$ inch in diameter 107 22－25w clouds of pollen in corn \＆Hemp fields． $10812 u$＂ $6-8$＂$/ 11-15 w$

GAERTNER, BEFRUCHTUNG
emptying the anthers takes these hours.109 12-13m/u "MalvaceenIscheint"/ w wind much influence 113 23-28w castrated flowers seldom visited by Bees, than even quite sterile Hybrids $1171 u, 2 u a$, $3-4 w$ Contabescence of anthers $17-19 w$ colour often changed of anther $27 u \uparrow / 26-27 w$ sometimes filled with Water $28-29 u 4,31 w$ grain ill-shaped $1183 \mid 1 / 1-3 m / w$ even no pollen anther shrivelled up. $5-8 m / w$ rarely sometimes only 1 or 2 anthers or $1 / 2$ anther thus affected $13-16 \mathrm{~m} / \mathrm{w}$ Generally all flowers affected $17-22 w$ When one flower has one another affected, all flower more or less affected. $25 a$ "superbus" Europe $25-36 \mathrm{~m} / 33-$ $35 u$ "Wenn| haben"/26-27w gradations in contabescence 29a "barbatus" Germany 119 wt N.B The contabescence probably due to effect of conditions on parents, at least in many cases.- $1-4 w$ these anthers can be perceived at earliest period of development $10-12 w$ affections permanent in individuals $14-15 w$ except in Silene $17-19 w$ cannot be altered by cuttings \&c or in new soil \&c 1920ulan Europe, England, Germany/w These species continued so for 4 years 22-23ua/ 22-31w a plant taken out of wild of Lychnis did not alter in the least. 22-31w Nor did these alter when moved from pots to plain ground. $\uparrow 8-5 w$ Doubts whether hereditary, for experiments give different results 1-25w This is a point of resemblance to Hybrids which keep sterile during whole life.- wb A All this vehemently against my notion of change of conditions, indeed, almost disproves it.- I am not so sure any peculiarity wd be propagated by layersO $1207-$ $10 w$ concludes since an individual in earliest stage. $-10-15 \mathrm{w}$ seems to occur in all plants, but more common in some than others, \& most common in Hybrids. $14 u$ "Caryophylleen" $/ w$ most common in free \& cultivated Caryophyllea $18-19 w$ next cases 20an England, S. Europe, Britain, Italy 22$23 u \pm, 27 u$ A, $28-30 \mathrm{~m} / \rightarrow / 28 u$ "Unfruchtbarkeit 1 Gewächse", $34-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ In these female flowers, sometimes stamens occur in same state as the contabescent flowers 121 17$28 w$ In these, contabescence hastens conception period, \& praecosity of stigma always connected with contabescence; yet perhaps not necessarily allied 122 8-23w Contabescence has no destroying influence on female organs: but this not universal, for has observed instances with both sexes imperfect, very in \rightarrow 〈to "Verbascum", "Dianthus"), $12 u \uparrow / 10-17 w$ These species with quite sterile stamens produced normal
number of seeds \& no more wb Contabescence no effect on lengthening life of plant, even when conjoined with female impotence 123 wt [Must never forget the great fact that exotics most subject to these affections.] $1-5 m / w$ above shows that contabescence confined in its action to the stamen alone. $7-10 \mathrm{w}$ Generally female organ not affected, when stamen are contabescent $20 u \oplus / 16-22 w$ many have attributed this affection to planting in damp earth; but his found in light sand on mountains 26-30w These plants produced more pollen when nourished by pure water. wb (no doubt cause of contabescence, must be very early in life of plant, we know that state of plants one year determines its fruiting next year C.D) $1242 u \backsim / 2-17 w$ These plants were quite sterile for 4 years on female side but produced pollen.- affects from it became quite contabescent \& female organs remaining sterile $\Uparrow 16-1 w / w b 3$ of this plant was quite fertile \& all flower \& \& twigs which had flowered were cut off, \& then all the flowers which came were more or less contabescent \& many with precocious stigma \& small corollas: (a) subsequently perfect flowers were again produced.- (b) Repeated same experiment with same results next year 125 $14-16 \mathrm{~m} / \mathrm{w}$ (a) note on last page $24 \mathrm{~m} / \mathrm{w}$ (b) $26-28 m / 26-33 w$ never saw a male of this species with contabescent anthers, thinks therefore state is connected with hermaphrodite condition $126 \quad 5-12 w / \rightarrow / w t$ Thinks that contabescence of Hybrids \& pure species must be something distinct. It is evident there is no difference in appearance in the two classes of facts $12 u$ "Treviranus"/ $14-19 w$ Trev attributes to fungi; G. inclined to think this is a secondary cause. Leaves it all unexplained 127 wt Pollen when some degree \vee part gathered \& placed in water or in transplanted plants, but female capacity much more easily injured - $1-11 \mathrm{~m} / 4 \mathrm{w}$ (a) 128 wt I do not doubt this shedding has caused belief in impregnation in closed flowers C.D. $1-3 m / w$ In these anthers shed pollen when closed. A $12 u$ "ungekörnter" $/ 11-13 w$ ungrained pollen powerless $23-24 m / 23-30 w$ Richness of pollen always great [1 think can only be explained by crossing.] Of course dioecious \& Monooecious plants must be excepted $\uparrow 3-2 u$ " $8-10$ ", $\uparrow 2 u$ " $80-96 " / w$ has ten times too much $12932-34 m / w$ some monoecious plants little pollen 131 29-35w no relation between size of stigma \& quantity of pollen $13229-33 \mathrm{~m} / \mathrm{w}$ quantity of pollen has no relation to wind or insects $1337-8 m, 10-$
$12 w$ little pollen few seeds $20-22 w$ few seeds richer in pollen 31－32w many seeds little pollen $1346-7 w$ many seeds much pollen 135 11u＂ein Eychen＂／11－15m 136 12u＾／13uャ／ $12-16 \mathrm{~m} / \mathrm{w}$ great size of pollen；yet size varies greatly in some of the species． $24-28 \mathrm{~m} / \mathrm{w}$ size of pollen no influence on hybridising $30 u$ ＂Kleinheit｜Unförmigkeit＂｜31u＂bestimmten＂｜ $32|\mid 137$ 11－13 w Pollen different in Petunia 16－21m，21u＂Tulpen＂，16－25w Pollen generally same throughout genus but different in different species of Dianthus \＆in varieties $34-36 \mathrm{~m} / 31-35 \mathrm{w}$ most important compare Kölreuter experiments \＆Gaertner＇s wb good pollen known by bright colour as well as regular shape $13825-35 w$ Proved that pollen in same species of different shapes，but G．doubts whether all effective 145 15u＂Caryophylleen＂，16u＂48I kräftig＂， $17 u$＂Conception＂$w 4$ 4－6 days $20 u$＂dritten＂， $33 u$＂ $9.1 / w 9$ days $1476-16 \mathrm{~m} / \mathrm{w}$ Henschel＇s cases in fact showing natural crossing；did Henschel castrate？if so useful facts．－ 148 $9-16 \mathrm{~m} / \mathrm{w}$ in water all the grains do not explode，but some become transparent 153 $w b$ Finished from 104 －to 153

220 21－37w N．B When many pistils，then number variable［when many of any organs apt to be variable；Why．Hairs \＆c \＆c vertebrae of serpents］$w b$ Nature does not keep count 222 15－22m／w says anthers open in Labiatae before flowers open \＆implies impregnated then 226 11－15m 229 wb Read to here 236 9－11m $2419 w$ Read 242 5－12w concludes $\&$ all C．C．Spengels dichogamy depends on the abnormal praecosity of pistil！！ 247 28－35w Mere opening of stigma of Mimulus does not show yet ready for impregnation 250 17－26w power of conception varies in individuals．sometimes absent without apparent cause $2513-7 \mathrm{~m} / 2-$ $13 w$ want of power of concepcion most often observed in exotic from warm countries．as in examples．but sometimes observed in home plants． $17-28 \mathrm{~m} / \mathrm{w}$ influence of fresh air， \＆light seems necessary to fertility of some plants，as in these when placed in pots in chamber，though pollen was produced． $27 a \tau m / w$（a）$\Uparrow 4 u / w \tau, w b$ unhurt roots appear very important for concepcion for plants＊if they have not＊mourned over trans－ plantation，But seldom give good seed．－has often experimented on this．－ 252 wt In many cases Plants in pots with roots coming out of vent－hole in bottom，taken up with greatest care，\＆with pots placed in saucer with water，though development of flower
continued as much \＆pollen good was produced，yet ovarium was $\&$ remained undeveloped \＆unfertilized－so never in cut－ flowers in water 253 wt But Digitalis has stood transplanting out of open ground into pots，\＆has yet retained capacity of being fertilised． $1-7 \mathrm{~m} / w$（a）$w b$ Chester Read $w b /$ $\rightarrow\langle$ to＂Brassica Rapa＂〉 But roots were left p333 wb／\rightarrow to $p .252,23 \mathrm{~m} / 31-34 \mathrm{~m}\rangle$ cases of Coniferae producing seeds in cut flowers \＆ cases of Monocotyledons plant doing same．－ 328 1－14m／w From general way of speaking of coincidence of stamens \＆pistils evidently does not believe in Conrad Sprengel 23－ $28 m / w$ In these Fam．pollen shed \＆partially spread on stigma before flower opened $\AA 8$－ $1 \mathrm{~m} / \mathrm{w}$ occasionally within flowers $3291-6 \mathrm{~m} / \mathrm{w} /$ wt In these sometimes corolla ready before stamens $9-18 \mathrm{~m} / \mathrm{w}$ Pistils generally ready after stamens $\pi 7-3 \mathrm{~m} / w b$ The relation of development of flowers \＆organs of fructification not very fixed，especially in Exotics $33211 m, 13-20 \mathrm{~m} / \mathrm{w}$ From this it almost follows that artificial self－fructification was done in House 333 1－2m／wt Many plants more fertile in wild state than in Garden or greenhouse．11－12u＂Gräsern｜u．s．w．＂ $13 u \uparrow /$ $14 u \uparrow / 15 w$ Nothing $5-15 m / w$ In some，rich food makes more seed，in others a withdrawal of food．In former，those with dark．16u＂Henschel＂$/ w$ Has written on the above $33511-12 w$ aid of insects overrated by some，underated by others 13－14u ＂Labiaten IIrideen＂，35－16m／20－25w admits to considerable extent service of insects in impregnation wb Ch．Morren worth reading 336 22－31m 337 4－16m／w In most flowers stamens \＆pistils so near together that by the twisting of anthers must be impregnated； \＆the co－temp ripeness of both bears on this point． $20 \mathrm{~m} 33812 w$ Campanula $34411-16 \mathrm{~m} /$ $14-15 u / 11 w$ Kolreuter $22 m, 25-27 m / 24-31 w$ In these genera，one stamen suffices to impregnate all ovules $2 u$＂Geum＂$/ w$ 1／8 345 $23 / w 10$ pollen $26-27 w$ failed $30 w 20$ pollen $\Uparrow 2-1 w 30 \mathrm{gr}$ failed 346 wt Malta $1-16 w$ Some grains seem used to exact position of capsule \＆c 5u＂Vierzig＂／w 40 15－16u＂diel versehen＂，18 \rightarrow 〈to p．347，介10》，21－29w In Malta 40 grains required for even imperfect impregnation $3476 m, 23 w$ S．p． $351 \pi 9 w$ saturated $3496 u$＂ $15 \mid 20$＂$/ 7 w$ failed $14-15 u$ ＂ $30 \mid 35$＂$/ w$ failed $26 u$＂vierten＂， $34 u \leftrightarrow 35036 u$ ＂nicht｜von＂ $3515-8 m, 16 u$＂wiederholte＂ 353 $11 \mathrm{~m}, 27-31 \mathrm{~m} / \mathrm{w}$ signs of fructification slower after evening fructification than after morning fruct．Is not this like Hybrids．－ 358 32u＾／31－ $36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ became more fruitful \＆almost

GAERTNER, BEFRUCHTUNG
exclusively female by the destroying of male flowers - Bernhardi has observed opposite in Cannabis $364 \Uparrow 8-1 m, w b$ When seeds few number constant, when many seeds variable.- Law of variability - Lower animals, generally most vegetation. $3651-10 \mathrm{~m} / \mathrm{w} / \mathrm{wt}$ (a) In artificial impregnation number of seeds * often more variable, accounts for it by isolation out of free air $11-15 \mathrm{~m} / \mathrm{w}$ But in some cases can hardly account for difference $17-20 \mathrm{~m} / \mathrm{w}$ some * are as fruitful in Chamber as in free $22 w$ not castration $w b$ All above shows how easily \& inexplicably fertility is affected- $£ w$ All these observations show that he must have considered all causes affecting his standard of comparison for Hybrids $w b$ p. 600 important experiment showing the repeated application of pollen necessary for full impregnation \& this is not done artificially $36613-15 m / 12-$ $23 w$ How observed pollen out of another individual in these 3 genera more efficacious ie advantage of crossing - $\uparrow 11-1 m / w b$ artificial self-impregnation often entirely fails, for reasons quite inexplicable - Very odd that he never seems to have included Primula in this Category.- $3676 m, 11 u / w \tau$, $12 u$ "verharren", $14 u / w \tau 439$ wb Read \& skimmed $44015-18 \mathrm{~m} / \mathrm{w}$ Thinks quantity of pollen merely for security of impregnation. $20-23 \mathrm{~m} / \mathrm{w}$ But pollen is perfected. 441 19$23 \mathrm{~m} / \mathrm{w}$ abortion commoner by artificial than in nat. fruct. $44236 u$ " 500 Eychen" $/ 33-36 \mathrm{~m} / \mathrm{w}$ In polyspermous plants, always some ovules abort.- cc 443 13-14u^/17u^/12-35m/18-26w curious experiment try to remove fertile flowers \& see whether sterile wd become fertile $44428-33 \mathrm{~m} / w$ cuttings \&c give plants apt to abort $33-34 w$ luxuriant fruit $45936 m$ 528 介20-3m/w p618 Tausch in Flora 1833 p. $22553323!!535$ 26-32w $123539 w t$ above 500 experiments we thought it sufficient if our experimental plants were from 6-800 steps from their like kind, when castrated, but was much deceived $8-11 \mathrm{~m} / 9 u$ "hinreichend"| w (a) $11-12 u$ "der 1 hatten", $16 u$ "zwei"/w 2/2 flowers $20-22 c \leftrightarrow / w 0 / 223-25 w$ $3 / 5$ flowers gave good seed $31 w 2 / 235 w 6 / 9$ 540 Iw [numbers of flowers giving good seed, as previous page], $\Uparrow 3-2 w 25$ were impregnated $w b$ in these castrated flowers no doubt stigma wd remain far longer ready for impregnation than in hermaphrodite yet it shows how much pollen of same species is carried to same flower (V. p145) 550 table.wer, "After-befruchtung 202"/w Very striking this many out of 520 flowers dusted with foreign pollen $w b$ No doubt others refer
to pollen left in flower or brought from outside $560 \Uparrow 4-3 u \uparrow / w$ Is this Lilac, if so no seed. Yes it is $5649-10 \mathrm{~m} / 12 u \wedge / 8-17 w$ Many exotic plants produce fruit but no seed, rather owing to bad pollen than female organ.- 565 zt 571 34u "Frühzeitiger" $/ 34-36 \mathrm{~m} /$ $33-34 w$ precocious good word $w b$ Power of concepcion in frühzeitig stigma causes impregnation before flower opens 572 2-6w stigma in such cases goes on growing 2026 w chief cause of after-befruchtung lies in act of Castration. $57310-12 \mathrm{~m} / 8-15 \mathrm{w}$ has observed after fruct in Nicotiana when 80100 yards distant; on account of fineness of pollen.- $16 \mathrm{~m} / \mathrm{w}$ read. $5745-35 \mathrm{~m} / 13-15 \mathrm{w}$ all cases of after fruct. $16 w / 26 w / 29 w / 32 w / w b$ (number of species and genera totalled) $5752 w /$ 1-4wec, 12-14m/w $5764 u$ " 520 " $6 u$ "202 Afterbefruchtung"|wt 499 (remains 29 whose seeds did not grow) wb 8577 wt $831 w 70$ $w b$ The fewness of these after befrucht have compared with those given before in experiment out of doors, show that the latter received pollen from other flowers, I think $5985-9 m / 7 u$ " 234 " $6005-17 m / w$ repeated impregnation necessary to full impregnation of Tropaeolum 604a $23 \mathrm{~m} / \mathrm{w}$ Kolreuter on Contabescence $25 \mathrm{~m} / \mathrm{w}$ What books is this of Sprengel V. Pritzel (I have looked \& there is none) 610b $26-27 m, 30-33 m$, $34 u$ " 1838 Vol XII" 611b $6 \mathrm{~m}, 36 \mathrm{~m}$ 618b 41-47m, wb on distribution of some LichnisO 619a $3 \mathrm{~m} / \mathrm{wt}$ Mustel on fruit in glass cases not having seed

GÄRTNER, C.F. Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich Stuttgart; 1849 [CUL]
af, br, cc, che, cs, ct, dic, ds, em, ex, fg, gd, h , he, hy, ig, is, mhp, mn, pat, phy, oo, rd, sl, sp, spo, sx, sy, t tm, v, wd, y

SF Oct. 1855 * This work is abstracted \& abstracts distributed, except the Bundle herein enclosed.
\Leftrightarrow p521 top. p524 on germination of Hybrid seed. \& all seeds.
The abstract has been carefully compared with those of all Kölreuter \& Herbert \&c \& c \&c
NF1 Gaertner Bastard When read make Abstract; \& read one abstract of Koelreuter \& make abstract of Herbert \& look over Portfolio When finished read Berkeley Criticisms on ...
NF2 I think began Sept 15/54/
1849

NF3 p602 Mothers name first
p. 444 Definition of Gemischte \& Zusammengesetze Bastarde \& Ausnahmen typus p502 Better definition \& examples Griffel style
p. 602 Nicotiana glutinosa female mother perenne male father
p429 Explanation of Kolreuter "aufsteigenden Grad" absteigenden grad p. 451
NB Books of great importance to Refer to Note 626717 p. 734 of this Book p. 157 Seeds long retaining vitality p142 See to this important p577 fertility of dogs
Has he ever experimented with the umwandelung of Varieties?
p. 640 Genera which produce good pollen \& ovules \& yet require pollen of other species to fertilise them
p. 418 Ask Author
p. 387 Digitalis for comparison with Herbert

There are facts on variation.-
Ask Author: p. 84 Were any of the Mongrel Peas reared? p.92(?) Stet p. $102=$ Table of Primula= p577 p578 p. 579
86 duration of pollen
322 Maize p292
Treviranus ought to be read. He seems a Lamarckian.
SA1 $\langle p . x v i\rangle$
The real odd thing is in Hybrids, that not * varieties not thus affected \& $2 d$ that offspring are sterile.
Does he give any case of two wild varieties when crossed, producing a more variable offspring than two true species? in first generation, because the difference in variability he makes so important distinction in vars \& species (p581)
〈over) Hybrids
Does pistil or stamen ever become monstrous?
Stigma * becomes more divided
In Hybrid offspring Does Male sex sometimes fail \& sometimes female or always both equally? which more often Relation of Hybridisation to Variability Dissimalirity of Mongrel offspring
Did Kolreuter cross many Silene vide p. 140 of Gaertner?
Do not two Hybrids breed easier together sometimes than each with self - for this wd upset Gaertners explanation of weakened pollen.-
SA2 $\langle p p .728-729\rangle$
\Leftrightarrow For p .178
〈a list of species, and some editorial comments>
<not CD; note on application of the terms
"calycantha", "communis", "veris" and "officinalis">
(C.C. Babington)
vi $17-21 m$ viii $26-29 m / 29 u$ "Uebereinkunft"/ w great agreement in animals \& Plants in Bastardising xi $6-7 m$ xiv $21 m$ xv $15 w$ Compounded 5 11-12w confirms Köelreuter 7 $15 u / w \tau 87-19 m / w$ under apparently similar circumstances produce difft quantity of seeds. Hybrids few seeds $26-27 u \leftrightarrow / 24-28 \mathrm{~m} /$ w these have succeeded only once or twice. $912-14 m / w$ cause of failure chiefly in female organs. 10 1-2m,5/7/8u/w, $21-22 w$ Herbert p. $37122 u / w \tau, 25-29 w$ all injurious influences more injurious to hybridising. 11 wt N.B. As damp \& rain so injurious to fructification it makes it odder that flowers are not $\%$ regularly impregnated in closed state, for they can be impregnated haufig in this condition. In cases of Campanula which are impregnated in bud, are these foreigners? \& wd they open in own country. 11u "häufigl Blume" $12 u$ "bloss", $14 u / w \tau, 22 u / w \tau, 25-29 m$, $31 u / w \tau$, $33 u / w b \tau, 34-35 m 1210-12 m / w$ some effect of variability on hybrids $\mathrm{Q} 14-17 \mathrm{~m} / \mathrm{w}$ no great difference in hybridisation of wild \& cultivated $19 u / w \tau, 28-31 \mathrm{~m} / \mathrm{w}$ Disputes Herberts case of fertile hybrids $35 u / w \tau$, 35$37 \mathrm{~m} / \mathrm{w}$ thinks has mistaken the fertility of some hybrids, with the results of a first impregnation. $131 u / w \tau, 2-5 w$ some hybrid fruits are richer in seed, than the fruit produced by first union. 3/6/9/23/27/31u/w 14 $30 u / w \tau 15$ 5/10/24/26u/w 19 21u/w $1,23-26 w$ condition of pollen on stigma changes sooner or later according to relationship 21 $\Uparrow 1 u / w b \tau 229 u / w \tau 235 u / w \tau 28$ 17-21w fruit falls off, from imperfect impregnation $296 u /$ wt 30 wt it is not Hybrids - but Hybridfructification. Most important distinction which I have overlooked. $18-21 \mathrm{~m} / \mathrm{w}$ Hybrids never produce full abundance of seeds. $21 u / w \tau 32$ $7-10 w$ Hybridisation requires all outward circumstances favourable. $347 u$ "fremden" $/ w$ Never the least effect.- $3523 w$ no mixed effect 31u "rustica"/w female prefers paniculata $32 w$ female $33-34 w$ prefers Langsdorf $4322-27 \mathrm{~m} / \mathrm{w}$ pure \& hybrids out of same capsule, but no tincture. 45 11/27u/w $465-6 \mathrm{~m} 501-8 \mathrm{~m} / \mathrm{w}$ Q case of variety with characters like other species $3 u$ Ansätzel Zähne" 52 10u "dreifach|gemischten"/8-10w 3 sorts in same capsules $5518-22 w$ Herbert believes in tincture $561-16 w$ This is what might have been expected mere physical difficulty?? $17-28 w$ This slowness is important as it is character in parents \& not

GAERTNER, BASTARDERZEUGUNG: 56 in hybrid. 29-32m/w injures the other ovules 58 28u/w $6410 u$ "einemlPollen", $12 u$ "rusticol Langsdorfii" $/ 7-14 w$ In Hybrids father or mother's pollen makes own powerless. so does quite foreign pollen sometimes $15 u / w \tau /$ $16 u$ "erotischen", 20u/a "Lobelia" Example 15$22 w$ In some pure, specially exotics, own pollen will not impregnate, whilst that of other undivided, or even other species, get own pollen good.- $28 u$ "W. Herbert", $28 u$ "Zephyranthes" $/ 27-31 w$ p. 355 so Herbert with Zephyranthes but not good example see xx next Page. 32u "Bosse", 32a "Hippeastrum"/ wb Amaryllidae p. 371 - in this case it is Hybrid with hybrids 33-34u "Passiflora" 65 wt xx This like Herberts Zephyranthes case; P. racemosa can be fructified by pollen of coerulea, but stigma of coerulea cannot be fructified by pollen of racemosa or by its own - we may say female organ of coerulea injured. $3 u / w \tau$, $5-9 m / w$ xx $10-12 m / w$ takes the view given above xx 13/14/19/25u/w , 21$23 \mathrm{~m} / \mathrm{w}$ compares with snails $6628-31 w$ seldom any pollen has no action on stigma $675-9 m / w$ sometimes stigma decays \& flowers fall without slightest fructification. 68 $16-20 \mathrm{w}$ gradation of affinity shown by time of decay of stigma \& flowers $6927 u / w \tau 729-$ $19 w$ Thinks the fruit of hybrids is not due to pollen-influence, but to that power of forming fruit, which the most sterile hybrids without any pollen do produce Repeated p106 73 1$3 m / w$ mother not more powerful than pollen 13-15w Hybridising generally no effect on seeds. $22-24 w$ apple half sour half sweet.-28/29/31-32u/w, $29 u$ "liess", 1-34w castrated pear-blossoms in orchard bore much fruit, showing crossing $35 \mathrm{~m} / \mathrm{w}$ thinks experiment not careful enough $7510 u / w \tau, w b$ Disbelieves (perhaps very truly) all these cases of direct effect of pollen on the mothers fruit.- $7611 u / w \tau, 19 u$ "Pelargonium" $/ w$ Q $_{0}$ sport in $23 u \wedge / w$ sports in 24un, 28un/w sports in wild 77 2/5/9u/w 78 1-5w Discussion on Koelreuters 3 cases of seeds directly affected by Hybridisation. $14-15 \mathrm{~m} / \mathrm{w}$ seeds vary much. wb Disbelieves seed ever really affected; the only difference he has ever observed being solely in size.- 80 wb see p499 \& p135 81 qw . This most important, * if crossing varieties * has had anything to do with diverse coloured seeds, then they are crossed naturally by Bees.$w b$ Has tried Wiegman experiments with quite different results, ie seeds never affected see next several Pages $\uparrow 10 w$ All a mistake. $\uparrow 7-6 m / \Uparrow 6 u$ "reine" $/ \mathrm{w}$. The selfimpregnated flowers gave same result as the
castrated \& cross impregnated \& these showed colours altered $821-2 \mathrm{~m} / \mathrm{w}$ most constant vars. $19-25 \mathrm{~m} / \mathrm{w}$ here seeds were coloured $28 \mathrm{~m} / \mathrm{w}$ * were these mongrels $832-$ $3 / 5 / 10 / 16 / 34 u$ (colours of seeds) $841 u / w \tau, 20-$ $24 m / 22 u / w \tau 8510-11 m / w$ \& Berkeley's $10 u /$ $w \tau, 13 u \pm / w$ see account p. $1415 u$ "geringer Fruchtbarkeit", 18-25w plants from Wiegmanns Pisum oticia he rather thinks varietats-Bastard rather than a hybrid, because, flower impregnated with common impregnation \& pollen of Vicia had no effect. $29 w$ ie offspring of Wiegmans Piso-vicia 86 $25 u$ "sondern|war"/w Conclusion mere variety, \& says nothing about mongrel. 30$33 \mathrm{~m} / \mathrm{w}$ cd not make any of them cross. $31 \mathrm{~m} /$ $w b$ Loudon makes these distinct species besides vulgaris $871 u / w \tau$, $6-8 m / w$ Leguminosen opposed to Hybridisation 8$12 w$ If then mongrelising takes place easily; yet cannot at all between Wiegmanns hybrids 13-15m, 18a "аппиа" Cruciferae $18-21 w$ W doubts about seeds in Matthiola
 $31-35 m / w b$ Mays not affected $88 w t$ also Berkeley did not artificially cross.- 89 wt xx It seems he does fully admit that cross fertilisation does in Pisum affect seeds, \& as Wiegmann did not artificially impregnate, shows that Peas, when $*$ not castrated, are crossed naturally. Be sure read Book mentioned in note 62 p734 (How strange considering sweet Peas) $9 x x, 12 / 15 / 21 u / w \tau$ $9017-19 \mathrm{~m} / \mathrm{w}$ female sterility transmitted in cross. $17 / 18 / 19 u / w \tau, 30-35 \mathrm{~m} / \mathrm{wb}$ The tinctures on half-bastards of Koëlreuter, Wiegmann \& Herbert are upset.- $9110-17 \mathrm{~m} / \mathrm{w}$ Father \& Mother element more powerful in some 11/ $16 / 17 u / w \tau, 21-26 w$ Hybrid pollen more effect on own stigma than on other pollens; but the converse no effect $31-33 \mathrm{~m} / \mathrm{w}$ another severe case of different effects. $928 u$ "Lychnicucubalus" $/ w$ Hybrids, I suppose $10 u$ "Lychnis diurna", 22-24w colour \& size of pollen no relation to fructification $28-30 \mathrm{~m} / \mathrm{w}$ most important see his other work. $28 u$ "Varietäten"/wb speaks p181 of species so holds good with species too From table at end really species $30 u$ "fruchtbare"/wb more fruitful, \therefore crossing cross colours less fruitful \therefore perhaps Hollyocks thus accounted for. So he says most distinctly in his Beitrage p137 in regard to Verbascum. $9319-20 w$ (a) $w b$ (a) Koëlreuter * confused imperfect impregnation in the first cross, with the imperfect fructification of Hybrids, but this shows how similar the case is.- $945-12 w$ imperfect fructification differs from no fruct, in
seeds being more perfect $7 u$ "Grösse", 9$11 \mathrm{~m} / 10 \mathrm{u}$ "ohnel worden", $17-20 \mathrm{~m} / \mathrm{u} \pm / \mathrm{w}$ first cross * never quite fertile as of cross of pure species. $9610-12 w$ no relation in state of capsule \& state of seed. 17-27w fertility of original act of hybridisation so different, that even in flowers of same plant, that it is difficult to make scale of fertility or consequent relationship. $w b$ (a) * Grades of Fructification, imperfect to normal \& perfect pollen no more effect than foreign dust; occurs even not seldom in species of same genus, "from want of sexual affinity"- (mere words) $973-4 u$ a 101 16-17u "erlaus"/Q 20u "schwachen ILeben", 21-24w out of many imperfect seeds \& 1000 buds apparently perfect, * not one germinated. $25 u$ "nicht \mid gekeimt" 102 1-2x/wt every gradation of imperfection in capsule with one or more seeds, capable of germination. $4-7 \mathrm{~m} / \mathrm{w}$ Important $7 u / w \tau, 12-14 \mathrm{~m} / \mathrm{w}$ most fertile hybrids $1032 u$ "Sageret", 1-2w See to this Annales des Sciences Nat 105 2-6m/wt can the effect of pollen of plant in producing capsule be analogous to Ld Moreton's case? $10811 u$ "Morton", 12-17m/w Morton attributes power of hybridisation to capacity of domestication.- $1099 u$ "grosser" $/ 8-9 w$ greater number will not hybridise $11 u$ " 700 ", $12 u$ " 250 " 12a "Bastarde" different sorts? $\Uparrow 14 u$ "versagt", $\Uparrow 13-11 m / w$ unions which failed with Kölreuter $110 \$ 15-14 u$ "einel Elemente" $/ w$ a certain sexual harmony necessary for union.- (I presume in contrast to general affinity) $\uparrow 4 w \tau, \uparrow 5-3 w$ pollen does not adhere to stigma $1118-15 w$ even when pollen does cling to stigma fructification very often fails in hybrids the stigma fails $\uparrow 10-9 u$ "wie|scheint"/w (a) $\uparrow 10-9 w$ Only certain individuals can be hybridised $w b$ (a) I cannot but think hybridisation commoner with animals than plants.- $1123 u / w \tau 11311 u$ "Prof.", table.w shows natural crossing $\uparrow 10 w$ 14 genera $\uparrow 9 u$ "Alle|Samen", $\uparrow 9-5 m 114$ $10 u / w \tau$, table.c/w no scarcityO table.w List of Families which have admitted of hybridisation 115 table.m/w failed with these, but experiments not numerous enough to show cause.- 116 table. u "Primuleae"/w easy table.w Fams. of easy manipulation $5-7 m / w$ capacity for hybridisation not liesO in Family Character. $-10 u / w \tau, 13-18 w *$ in families with regular species, subdivided into not real genera, most hybridisation $19 u / w \tau, \pi 9-8 u a /$ $\Uparrow 11-6 m / w$ The spec of most natural Families very - resist hybridisation $\uparrow 2 u / w$ No hybrids in Compositae $11722 u$ "Apocineen" w is not this * Vinca $25 u / w \tau$, 26-30w thinks

Orchideae \& Asclepiadae wd be hard to cross. from structure of flower $1197 u$ "Gymnogramma", $17 w$ Disputes from hybrids, thinks only variations observed only in Gymnogramma 120 16-20w Dioecious less easy hybridised than hermaphrodite 121 3$5 \mathrm{~m} / \mathrm{wt}$ The capability of * fructification * lies in more special character, than those characterising any whole family $2-4 m, 13 m$ $1222-10 w$ No distinct relation between polyspermous \& oligospermous plants \& capacity for hybrid. fruct.- $\mathbf{1 2 3}$ wt Dioecious plants a longer capacity for impregnation. wt | see uses Dichogamous = Dioecious $1-2 \mathrm{~m} /$ u "inlBlüthe", $4 u$ "neun", $5 u$ "zu Conceptionskraft" "Lecoq"/w a book on Hybrids $\uparrow 11-9 m / w$ (a) $w b$ (a) Dioecious plants less capable of Hybrid-fruct: at least than some hermaphrodite $1257 m$, table.w (asterisks added)/w other observers have suceeded, though he failed $1268 w \tau, 9 w \tau$, $\Uparrow 6-5 u$ "Aquilegia" $/ w \bullet$ Hooker thinks all same species $\uparrow 10-1 w / w b$ closely allied genera differ greatly in tendency to hybridfructification several examples \& I believe quotes Kolreuter but observes only few species in each experimented on.- 127 6-12m 128 2nd table.m, $8 w \tau$, $10 u$ "Afterbefruchtungen", 13-14u/w 1 , $15 w \tau$, $3 r d$ table.m/w All this shows that when anther removed, how much crossing can take place from adjoining plants - i.e. intermarriage 129 $1 w \tau 130 \Uparrow 11-10 \mathrm{~m} / \mathrm{w}$ I do not know whether Kolreuter or self. he suceeded anyhow. $\uparrow 7-$ $5 u \star / w$ Dichogam crosses $\Uparrow 1 u$ "wiederholten Versuchen" $1311 w \tau, 3 w \notin, 2-3 u$ "vergeblich hatte" $/ m / w$ (a) wt (a) Reverse case which always failed with Kolreuter succeeded once with him,- but was very difficult Hybrid Plants no ways different - $14 w \notin 1324-12 w$ none of these bigeneric seeds germinated. though some had embryo $\uparrow 10-4 w$ only ones known Bigeneric crosses $w \notin 134 \Uparrow 8 m 135$ $11-14 m / w$ universal law that pollen of parents fructifies hybrids more then own. $20 w \notin 136 \pi 3-1 \mathrm{~m} / \mathrm{u}$ "Canis 1 Mouflon"/wb ram or he goat $137 \Uparrow 3 w \notin 138 w t$ (a) Against limit of genus being determined by power of crossing, even Herbert does not pretend all species can cross, though when any true species do cross, he says they must belong to same genus - so the "reverse crosses!! \& cases of Crosses which after years succeed only once, go against law of genus by crossing being connected. $8-22 \mathrm{~m} / 12-15 \mathrm{w}$ sense given above (a) $\uparrow 3-2 u$ "inneren 1 Arten" $\mid a$ "in" power of uniting depends on $1391-2 u \leftrightarrow / w$ Hence a sexual \& systematic

GAERTNER, BASTARDERZEUGUNG: 139 relationship $15 w_{\notin}, 17-20 \mathrm{w}$ genera formed of diverse * characters 140 wt When two genera have united, the species do not always in these genera readily unite. Tormentilla \& Potentilla, though so close, will not unite. $1 w \notin, 1-3 \mathrm{~m}, 6-16 \mathrm{~m} / \rightarrow, 17-30 \mathrm{w}$ it is quite wrong to infer because some species within a genus, will cross that all will; generally only a few. Herberts cases, however, rather contradict this. Hippeastrum, Azalea, Calceolaria 141 wt (a) Sections of genera will sometimes unite \& sometimes not $1-5 m / w_{\text {(a) }} \uparrow 18-10 \mathrm{~m} / 16-14 w$ Sections of genera $\uparrow 8 / \uparrow 6 w * \notin, ~ \Uparrow 6-5 u$ "blauen 1 gelben" $/ m$,介1ua $1428-12 w$ in his Treatise speaks of species see to this $9-11$??, $12 \mathrm{~m} / \mathrm{u} / \mathrm{w} \diamond \tau, 13 /$ 15wぁ, 13a "Pepo" pumpkins $14 a$ "Citrullus" Water melon $15-17 w$ Girou succeeded in these $15 w \tau, 19 w \tau, 20-30 w$ The list of sections of genera which will not cross, shows no necessary relation of genera \& crossing.- $1436 u \pm / 6-15 w$ sexual affinity belongs only to species, \& often to only individuals, \& cannot be externally recognised. Different Times of flowering do not prevent hybrids. $\uparrow 3-2 u \bullet, w b *$ Bush with plant? $1441 w \tau, 3-6 w$ annual, biennial \& perennial cross. 16-19w evergreen with deciduous cross $21 w \tau, 22-32 w$ many hybrids wh succeed in summer, \& fail in Autumn some succeed so seldom may be called accidental. $\uparrow 2-1 m, w b$ the most different varieties can cross.- $1453 u a / w$ can cross $14 u$ "Lecoq" $/ w$ see to this $147 \Uparrow 12-10 u$ "Nicotiana Iglauca" $115-7 \mathrm{~m} / \mathrm{w}$ Pollen of some plants can impregnate others, but not be impregnated by them. $\uparrow 7-1 \mathrm{~m} / \mathrm{w}$ case of Nicotiana which will neither impregnate or be impregnated by other close species. wbuo 8 specs $148 \Uparrow 1 u$ "jene"/wb species 149 wt Van Mons thinks stability in first generation \& variability in first distinctive character of species. $1 u$ "diese" $/ w$ varieties $8-11 m / w$ analogous to some organisms not varying in domestication $8-10 u \pm / 9-15 w$ some hybrids as these keep constant in 7th \& 8th generations but this rare.- $14 w \tau$, $\Uparrow 12 u$ "Blyth" $/ w$ see to this $\Uparrow 10-9 w \tau, \pi 3 w \tau$, wb I had better give cases of closely allied \& identical species in different climates to show species, \& very different species in similar climates to show not direct effect of climate $1501 w \tau, 1-15 w$ I quite agree very near or identical species may have been created, but this has to be decided. $14 \mathrm{~m} / \mathrm{u} /$ $w \tau, 20 w \tau, 17-22 m / w$ (a) $20-30 w$ Seems to agree with Blyth, I must study him - wb (a) A great power of place - attraction has no
relation to geographical range.- in direct opposition to my view, but agrees with Hooker on Compositae. 152 9/11w 153 5/ $6 w \tau, \Uparrow 10 w \tau, \Uparrow 1 u \leftrightarrow / w$ genera with many doubtful species $1542 / 6 w \tau$, $\Uparrow 7 / \Uparrow 6 w \tau 155$ $18 w \tau$, $\uparrow 5 w \tau 156 \Uparrow 12 / \Uparrow 11 w \tau 157 \pi 4-1 m / w$ seeds long retaining vegetating Power 158 $1-12 m / 8-12 w$ Wheat-seed identical $\uparrow 14-8 m / w$ These plants identical before So cross with recent. 159 $\uparrow 17-13 \mathrm{~m} / \mathrm{w}$ says varieties go back $160 \Uparrow 15 w \tau 1611 w \tau, \Uparrow 8 w \tau 162 \Uparrow 17 w \tau$, $\Uparrow 9 w \tau 16310 w \tau$, $15 u$ "nahe verwandte" $/ w$. hybrids from close species when united with another, show their differences even plainer than whilst pure 8-11w I think it means only the result of A.B.C where χ differ from each other (a) $15 u$ "nahe verwandter", 18-19u " z. fulgens" $115-21 m$, 21-22u "geben 1 Bastarde", $22-28 \mathrm{~m} / \mathrm{w}$ Remarks This very odd if these close species descended from common ancestor. $\uparrow 8-3 \mathrm{~m} / \mathrm{w}$ The existence of species consists of fixed sexual relation to other species $w b$ (a) Is there any case of two close vars. when united to a 3d var. producing very different mongrels. $16411 w \tau$, $16 w \tau$, 17-18u "dielfruchtbar", 16-20w Kolreuters Law of sterility can hardly be accepted. $24 u a / w$ do they seed? $23-30 w$ These 2 Penstemons though so like, as to be considered varieties, cannot be crossed. $w b$ wrarely certain individuals will not be impregnated see G. Beitrage. $1655 w \tau$, $\uparrow 17-$ $13 m, w b \times$ There are two P. gentianoides in cultivation the one commonly so called is the Hartwegi so misnamed - the true gentianoides is rare in cultivation differently shaped and not red $1669 u$ "der 1 seie" $/ 8-12 m$ $167 \uparrow 14-11 \mathrm{~m} / \mathrm{w}$ nearly related but will not cross $\uparrow 4 u$ "H. Lecoq" $1681-5 w$ I fancy that this is only that parents have originally crossed. 3wt, 12u/a "Vareitätsbastarde" I do not understand. are circumstances $\&$ as the second generation of species - bastard Will explain more afterwards $13 w \tau$, $14-24 w$ Holds good with some wild 4 species which fructify each other but do not sport like true vars whereby these plants are characterised like true species. 19-26m/w Get information on these - wild * species Fertility tested by himself $\uparrow 6 m / w$ (a) $w b$ (a) Genera with species agreeing in Habit, as above, hybridise most, Yet some species of these will not cross. $1694-8 m / w$ These species cross easily, yet other others of the genus, will not cross. $9-17 w$ Though power of crossing sometimes goes with external resemblance yet the most natural Families \& genera as here do not hybridise well.- 14-
$16 u \uparrow, \Uparrow 13 w \tau, \pi 12 m / w$ Hybridises differently $1712 u$＂Umbellaten＂$/ w$ No Hybrids tried on Umbellifera $\uparrow 16-12 w$ Thinks wd hybridise from being so variable $\uparrow 9 u$＂Cruciaten＂／$\uparrow 9-$ $5 \mathrm{~m} / \mathrm{w}$ all failed $172 \pi 17 u$＂Labiatae＂ $17-10 \mathrm{w}$ Labiatae little tried，but I know that Mimulus has succeeded $1731-4 \mathrm{~m} / w_{1}$ Most Natural Family $9-11 \mathrm{~m} / \mathrm{w}$ all failed $\uparrow 10 u$＂Sageret＂ ＂Lecoq＂$/ w$ quotes from Sageret $\uparrow 9 u / w \tau$ ，$\Uparrow 11-$ $9 m / \Uparrow 11-1 w$ Sageret \＆Lecoq has found vars of Cucurb．will not cross promiscuously （References hardly bear out conclusion） 174 $1-6 \mathrm{~m} / \mathrm{wt}$ cases of only few species in very close genera uniting，new species which are hard to specifically characterise．－table．w cases of very close species＊or more exactly，species having the same habitus which will not unite．－$\uparrow 5 u \wedge$ ，$\uparrow 5-1 m, w b$ cases of species having very different habitus which do unite，chiefly from Herbert， except darks $1751-7 m, 9 w \tau, \Uparrow 14-7 \mathrm{~m} / \mathrm{w}$ So Kolreuter shows，that propinquity does not go with power of hybridising $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ other examples of the same law $17611-13 \mathrm{~m} / \mathrm{w}$ so says Morton of Beasts $14-20 \mathrm{~m} / \mathrm{w}$ The non－ success of reciprocal impregnation clearest proofs that hybridisation not＊result of affinity．$\Uparrow 13 w \notin, ~ \Uparrow 11-3 w$ cases of non－ reciprocal fructification $1772 a$＂Langsdorfi＂ cannot be fructified by the 4 named sorts， though it can fructify them \＆some easily． $10-20 \mathrm{~m} / \mathrm{w}$ even when mutual crossing does take place in closely allied species，yet facility not alike（this is new） $21 u \wedge / m / w$ closely allied，yet unite with difficulty \＆will not be reciprocal． 178 wt \｜officinalis \＆ acaulis not in Loudon．－p721 officinalis $=$ veris＝Cowslip－I see it is barely possible without consulting Babington to know which is which wt Here are vars which will not unite 1－2w Most important 3－4u／w $1 / w$ on Babington＇s authority see Table $4-8 \mathrm{~m} / \mathrm{w}$ ． Compare these very difficult $10-14 m, 11-15 w$ very different in Habit，yet unite easily．－ 179 $7-11 m / 8 w$ Herbert $10 u$＂Cereus＂，11u＂schon längst＂，13－19w Cactus or Cereus Melocactus Echinocactus，Echinopsis， Phylocactus $20 u$＂H．Neubert＂，21－22u ＂Cereus 1 Ottanis＂，24u＾，24－25u＾，25u＾，27－ 28u＾，24－28w Neubert has succeeded in these crosses $1803-6 \mathrm{~m} / \mathrm{w}$ Mongrels sport \＆ he has seen same thing Cucurb．$\$ 19-16 m$ ， $\Uparrow 12-8 w$ Flowers very unlike yet cross $\uparrow 4-1 \mathrm{~m} /$ w Colours of Verbascum $1811-5 m, \uparrow 9 u \leftrightarrow / m$ $1829-13 m / w$ These succeeded with G． having failed with Koel：$\uparrow 10-2 m / w$ shape of pistil no effect in hybridising $183 \Uparrow 7-3 \mathrm{~m} / \mathrm{w}$ size of pollen no effect $184 \Uparrow 6-5 m 185 \Uparrow 7 / \Uparrow 6 /$
$\Uparrow 2 w \tau 1866-8 m / 1 \Uparrow 8 w$ cause of Hybridising a Vital action \＆allows that the sexual relations is mere word $15 w \tau, 19-20 u$＂sondern｜beide＂｜ $m, \Uparrow 12-1 m / w$ Summary but nothing new 187 $1-15 \mathrm{~m} / \mathrm{w}$ Summary but nothing new $\uparrow 16-8 \mathrm{~m} /$ w cases when fructification has taken place， once after repeated failures．－ $1886-14 \mathrm{~m} / \mathrm{w}$ cases of plants differing chemically，compare this with difference in their sexual affinity $10 w \tau, 15 w \tau$ elective affinity $189 \quad 13-20 \mathrm{~m} / \mathrm{w}$ The closer or less close affinity．is shown by action of pollen on stigma \＆corolla．－$\Uparrow 10-$ $7 m / w$ a chain of graduated affinities 191 10－ $13 \mathrm{~m} / \mathrm{w}$ • Yet in table does not put K．but i a $15-17 \mathrm{~m} / \mathrm{w}$ reverses with fewer seeds 194 wt Fertility of Hybrid，＊is in even less reation〈ie relation）to affinity of parents than facility of first＊union or hybrid－fructification．It seems no relation between case of getting 1 st hybrid \＆this hybrids fertility．This is case with the common Mule．－ $4 w \tau$ ， $7 w \tau$ elective affinity $3-13 m$ ， $11 u$＂manche＂ $112 u$＂leicht＂ $\mid 10-$ $15 w$ many plants easily cross，whose hybrids are quite sterile $11-16 m, 16 u$＂sexuell 1 verwandt＂， $16 u$＂49＂，17－18u＂waren fruchtbar＂，22－25m／w and fertility of similar Hybrids very variable $25 w \tau$ ，table．w Hyb． fruct．of great difficulty $w b$ I think Verbascum is case in point． 195 \＄16－14w seeds in pure ＊parent cross $\uparrow 15 u$＂ 801120 ＂，$\uparrow 12 u$＂paar 1 Samen＂$/ w$ numbers of seed Hyb．fruct．＊ when crossed $\Uparrow 10 u$＂ $151 " / \Uparrow 9 u$＂ $29 " / w b$ numbers of seeds in reciprocal 〈u（x）〉 Hyb． fructification $w b$（hyb．－fruct．best expression） $w b$（pure．fructification） 196 wt Bad simile We might as well as deny that the different were really different，because they had no ＂elective affinity＂（I use word of Gärtner） whereas other two had strong elective affinity \＆wd unite \＆make a third．－ $4 w$ sexual non－reciprocity of the＂elective affinity＂．－ 197 wt The reciprocity of sexual alliance is not only different in strength，but is often entirely deficient $1-4 m, 6-8 m, 12-$ $24 \mathrm{~m} / \mathrm{w}$ cases of slight unequal reciprocity in very closely allied species，some even thought to be varieties．table． m / w cases of more unequal reciprocity $198 \uparrow 10-1 w$ cases of sexual non－reciprocity $1994 w \tau, 14-15 u \mathrm{a} / \mathrm{w}$ most striking example $\uparrow 13 w$（a）$w b$（a） Special potency of pollen to impregnate other species of genus occur in Verbascum nigrum \＆Geum＊coccineum 200 wt In cases of entire sterility of one side of the reciprocal union，the other side generally only slightly fertile．－1－4m 201 wt（z）｜｜The absence of perfect reciprocity even in nearly related species，shows that male \＆female

GAERTNER, BASTARDERZEUGUNG: 201
power of union do not go together: but the difference of male \& female has no effect on the hybrid offspring $8 \mathrm{~m} / \mathrm{w}(\mathrm{z}) \rightarrow 202 \Uparrow 16-1 \mathrm{w} /$ wb Hybrid $\mathrm{A}+\mathrm{b}$, crossed with pollen of C , hybrid is always like C. Repeated on p.273, \& speculates, but does not explain says vital power of Hybrid is subordinated to the pure species.- $203 w t$ (a) N. rustica will not unite with N. glutinosa, but hybrid N. paniculata rustica, will with glutinosa, \& the character of rustica is seen in offspring. $-8-12 \mathrm{~m} / \mathrm{w}$ (a) $\uparrow 7-$ $5 w \rightarrow$ do $2051-13 w$ as in Primula \& Verbascum (?) But thus question of what species are is begged - $15 u$ "Kölreuter", $16 u$ "hybride Befruchtung", 14-17w First cross * never bring so many seeds as nat. fruct. $\Uparrow 4 u$ "jedem Eichen" $/ w$ from each $\uparrow 2-1 m$, $w b$ Remarks that Herbert's Crinum was not growing in own climate - But he says every ovule was impregnated. $2062-4 m / 4 u$ "Calceolaria bemerkt", $\uparrow 12-5 w$ The number of seeds in Hybrid though dependent on conditions does not pass certain maximum 207 wt (a) Can judge of scale of elective affinity by number of seeds in hybrid-fruct., as compared to normal fruct. $1-18 \mathrm{~m} / \mathrm{w}$ (a) $\Uparrow 16 w \tau, \Uparrow 9 u$ "nicht constant", $\uparrow 8-7 u \leftrightarrow, \Uparrow 2-$ $1 u \leftrightarrow, \Uparrow 15-1 m, w b$ an average of seeds taken from a number good plant growing in open nature $208 \pi 15-12 \mathrm{~m} / \mathrm{w}$ seeds variable in colour \& size $w b$ as far I understand this, properly to count good seed, all ought to be tried by germination \& growth, but then more elements of growth \& death of seeds come into play $209 \Uparrow 11-6 m, w b$ on account of unfavourable conditions, we take maximum of seed of hybrid cross. $2101-6 \mathrm{~m} / \mathrm{w}$ always requires repeated experiments.- $\uparrow 13-8 \mathrm{~m} / \mathrm{w}$ only single instances of these unions. 211 $2 x, 13-22 m / w$ in wild Plants number of seeds do not differ so greatly as to cause much difficulty in estimating numbers. $\uparrow 5-1 \mathrm{~m} / \mathrm{w}$ There are * differences in flowers of same plant in being impregnated by foreign pollen.- $2123-8 w$ as individuals differ in some respect, as last page, several must be experimented on.- $8-9 \mathrm{~m} / \mathrm{u} \leftrightarrow, \quad 16-19 \mathrm{~m} / \mathrm{w}$ cases of individual plants wh were femally sterile $\Uparrow 14-1 w$ as the difference between nature \& artificial self-impregnation is never so great as in Hybrid fructification; he has taken wild plants as base of calculation, which seems to me to be an error. $\uparrow 4-3 u$ "selbst $1 k a ̈ m e " \mid w b$ Effects of crossing every plant by self injurious.- see Beitrage p. 366 $213 \Uparrow 14 m$, $\Uparrow 8 w \tau 214 \uparrow w$ Sexual affinity calculated by maximum of good seeds till further experiments ever increase this
maximum $\Uparrow 7-1 m$, $w b$ experiments shd be tried at different times on different plants. 215 wt (a) Take average of number of seeds capable of germination under normal circumstances as the standard for comparison of best fruits $5 u$ "vollkommensten" $/ m / w$ (a) $14 u$ "keimungsfähigen", $\uparrow 6-1 m / \Uparrow 4 u$ " 20 Versuchen", wb very important, if this smaller number be not due to * art used in the fructification. 216 table.a "polline" naturally * impregnated table.w Scale of sexual elective affinity, inferred from maximum seeds from hybrid-fruct, not from Hybrids themselves 217 $\Uparrow 8-3 m / w$ (a) $w b$ (a) Gärtner thinks that these tables of affinity show that pure species are aboriginally formed sterile.- It is contradicted absolutely by his vars. $218 \Uparrow 1 w$ Silene of Steudel $w b$ Here a genus more fertile than other species wb 777/7000 219 wtec, table.w 3 genera before other species $2204 u$ "Kreuzung" $/ w$ with G. \& Kolreuter implies reciprocal fertilisation $\uparrow 2-1 m / w b$ cases of non-reciprocal fructification. $22117 w$ Reciprocity holds good generally when hybrid is intermediate in character. $20-23 \mathrm{~m} / \mathrm{w} \mathrm{Re}$ ciprocal case $\Uparrow 3-1 m / w$ (a) $w b$ But when hybrid takes after mother or father type. then reciprocity will not take place.- This seems very curious $2224 w$ Mother type 6-9w Father-type most numerous. $\uparrow 14-11 \mathrm{~m} / \mathrm{w}$ (a) $\Uparrow 7 m, w b \quad 1$ fancy that the predominating power of one of 2 species, as shown in the hybrid - prevents reciprocity.- But there are exceptions. $2231-24 w$ self \& Köelr. find the reciprocal crosses exactly alike. $19 u$ "allgemeine" w This is general rule, specially in wild plants, which are not varieties. 22-23u "Abweichungen |Farbe", 26u "Ausnahmstypen", $\Uparrow 10-1 w / w b$ Difference from animals as Mule \& Hinny also hybrid animals differ in same litter; but in animals all half domesticated $2241-5 w$ Diff in animals \& Plants owing to sexes separate in animals. $\uparrow 16-12 m / \Uparrow 15 u$ "Differenz|Habitus", $\uparrow w$ In comparison of sexes we must suppose habit the same, \& form of parts direct result of sexual peculiarities. Whiskers in Man!! $\uparrow 7-6 m / w$ Hybrids varied $w b$ Whiskers \& Mane cannot be thus accounted for $w b$ No difference in Habitus of Plants, when sexes separate (because I say do not struggle for female: so lower radiata. $2258-12 \mathrm{~m} / \mathrm{w}$ exceptions to uniformity of reciprocal crosses $\uparrow 18-8 w$ curious exceptions in Genus Digitalis; not reciprocally alike 227 17-20w slight variations in hybrids $22814 m 230 \Uparrow 17-12 m / w$ Double flower raised from male or female 231 wt Differs from animals for sex no effect on

Hybrids $4-9 m / w$ a $10-14 m / w$ see to this 232 $13-19 \mathrm{~m} / \mathrm{w}$ Form of hybrids stable in 1st generation $20-24 m / w \rightarrow$ does not hold good with animals. $2338-10 \mathrm{~m} / \mathrm{w}$ experimented with wild plants $234 \uparrow w / w b$ it is proved by long course of his \& Köl's experiments that bastard even in 1st generation from same parents are always alike; \& return in constant course to either parent when repeatedly crossed with such. \rightarrow (a) Thinks this evidence of permanence of species; but I do not see more than ordinary generation keeping true; perhaps tests the trueness in another way: but a plant does not vary in first generation, when part out of normal conditions. $\uparrow 13-4 m / w$ (a) Notice this argument 235 wt (a) Hybrids unions therefore follow same law in first generation as the union of pure species. $-5-7 \mathrm{~m} / \mathrm{w}$ a $6 w \tau, 9-19 w$ Thinks the few exceptions to this normal structure of hybrids is due to variation $19-21 \mathrm{~m} / u \leftrightarrow / w$ (a) $\uparrow 13-5 \mathrm{~m} / w(\mathrm{z}) \mathrm{wb}$ (a) Rather hard, it seems to me to draw distinction; but Gaertner (z) urges the resemblance of Hybrids made at same time \& after long intervals from same pure parents. $2368-14 w$ The normal Hybrid type keeps constant in succeeding generations only in the most fertile hybrids, generally. $2371 w \tau, 6-14 w$ very rarely sometimes single sports in a set of normal hybrids out of same fruit; \& $9 u$ "einzelnel Bildung", 11u " sehrl einem", $12 u$ "dochlmehreren" $2382 m / u$ "Digitalis, Lobelia"|wt only genera in which these exceptional types have been observed: (z) These exceptional types from same species always resemble each-other!! $12-15 \mathrm{~m} / \mathrm{w}(\mathrm{z}) \rightarrow \Uparrow 12-6 \mathrm{~m} / \mathrm{w}$ on two years a peculiar yellow rare, so unlike as might be thought different kind. The mother type prevailing $239 \quad 12-17 w$ From this cross obtained common normal \& abnormal type. $2405-8 w$ one species of abnormal type. $w b$ I observe that these abnormal types often take after one parent 242 2-5m/wt 2 plants of Passiflora differed from each other. 243 6$8 m / 6-12 w$ neither father nor mother exclusive influence on abnormal types but depends on likeness to one or other. $15-17 \rightarrow, 19-22 \mathrm{~m} / \mathrm{w}$ These abnormal are not vague, but fixed production. $\uparrow 7-1 m / w$ similar unlikenesses occur in these several cases $24411 m, 16-$ $23 w$ abnormal types generally quite sterile; (this very curious) $\uparrow 9-4 w$ compares these abnormal types to atavism $\uparrow 6 / \Uparrow 4 w \tau$ 245 11-15w In abnormal types like both parents but most like one. $2462 w \tau 247 \Uparrow 16 w$ (a) These varieties seldom repeat each
other. $\uparrow 9-7 m / u \leftrightarrow / w$ They occur chiefly in such species as are so closely allied, as to be held mere varieties wb The irregularity of reappearance, \& slightness of differences seem only distinct differences with his abnormal Hybrids of the previous chapters.249 12-16m/w (a) $w b$ (a) The abnormalities in Hybrids has observed only in plants, long cultivated in gardens, \& not in wild plants; but I remember that only one side wild in Kölreuter is sufficient $250 \Uparrow 11 / \Uparrow 6 w \tau 25120-$ $25 w$ not seldom $*$ in Hybrids one side or species prevails over other; \& their prevailing is not accidental but is constant. $252 \Uparrow 4-1 \mathrm{~m} /$ $\rightarrow / w b$ most difficult which of two parentforms a hybrid comes nearest to $2553-7 \mathrm{~m} /$ wt Does not believe that Hybrids are ever unlike both parents $256 \pi 20-15 \mathrm{~m} / \mathrm{w}$ cases where one side in Hybrid preponderates. $\Uparrow 14-13 u \uparrow / w$ strongest instance $\uparrow 7-6 m / w$ (a) $w b$ (a) N. paniculata is almost lost in N. paniculata-vincaeflora, whereas in N. quad-rivalvi-vincaeflora, vincaeflora is almost lost. - $2575-7 m / w$ Father type in this mixture prevails $13-16 \mathrm{w}$ seldom in Hybrid two parents of equal force. 258 wt (a) When two hybrids * unite, \& one offspring takes almost exclusively after one side, hybrid is sterile. $1 w \tau, 5-7 \mathrm{~m} / \mathrm{w}$ (a) $11 u \uparrow$, $11-12 u \star$, $14-$ $18 \mathrm{~m} / \mathrm{w}$ * one spec took most closely after father; was fertile. 259 13-16m/w Hybrids generally higher than pure; seldomer dwarfed. 261 4-5m/w Hybrid Verbascum generally woolly in Pots. $262 \uparrow 13-1 w$ odd that this hybrid no rudiment stamen, considering structure of both parents. $\uparrow 5-3 \mathrm{~m} /$ w (B) $w b$ (B) Female organ generally shows no signs of imperfection even when perfectly sterile. $264 \Uparrow 10-9 m / u \leftrightarrow 2659 u$ "Thiervarietäten", 19-21m, wb The entire differences, of different authors in ascribing more or less to Father or Mother shows there no real rule. $266 \Uparrow 15-12 m, \Uparrow 15-14^{\prime \prime} . . . ", ~ \Uparrow 13 u$ "pater major" $/ w$ seems pretty true 268 $\uparrow 17-11 w$ in Plants neither father or mother has exclusive influence $269 \uparrow 12 \mathrm{~m} 2733 \mathrm{~m}$, 5u "oben|202", 1-24w See in Kolreuter whether vars. with a species give very similar Hybrids - 19a "Specifische" (a) 19-20u $\rightarrow, 23 u$ "Stramonium \mid Tatula" $/ 22-25 m / w$ (a) different species because hybrids different $\Uparrow 13 u$ "ganz|Bastarde", $\uparrow 11-9 u \star / w$ These with N . glutinosa give quite similar product \& therefore considers them vars. $\uparrow 9 a$ "asiatica" not in Loudon $\uparrow 9 / w$ and these vars. of rustica $w b$ (a) (On Datura see my Abstract of Kolreuter p.8/Bis) I see no reason why varieties shd not equally show this

GAERTNER，BASTARDERZEUGUNG： 273 distinctness in same way．Does not Ancon sheep impress offspring very remarkably？？ 274 11－15w External conditions no special influence on character of Hybrids． 275 4－8w Hybrid Dianthus more stabile than other genera－ $12 u a / w *$ Mongrels follow different laws to Hybrids 13－16w Digitalis peculiar in its sporting，\＆exceptional．$\uparrow 17-15 m / w$ G $\Uparrow 8 w$ In embryo plant no alteration in Hybrid from Mother $\uparrow 7-6 \mathrm{~m} / \mathrm{w}$ embryo of mother $w b$ G Thinks the by far greater number of normal to abnormal Hybrid types opposed to their resulting from external circumstances． 276 wt In Hybrids，form of the cotyledons affected $27712-19 m / w$ differ $20 w \tau, w b / \ddagger w$ । think children of pure parents，thus go after either one or other or intermediate but as he says for Hybrids how＊difficult to judge \＆ compare 279 介17－10w Exactly intermediate in number of segments of Pistil，\＆in sterility of stamens $\uparrow 7 a$＂ruber＂of same parents 280 $w t$ In the cross Lychnis quite prevails over Silene，so that Hybrid is like var．of the Lychnis 2－4m， $7 m 281$ table．w Really intermediate Hybrids Kölreuter thought they too many intermediate $\uparrow 9-4 \mathrm{~m} / \mathrm{w}$ most difficult to settle whether plant most like Father or Mother 282 2－5m／wt commonest in close species $19 w$ When one part more resembles （but is never identical with）Father，another the Mother；this part this，that part that \＆c－ 283 9－15w This gemengte character constant in those species，where it occurs．$\uparrow 16-1 m$ $2843 w$ sterile $140,18 w$ sterile $20-21 u \leftrightarrow, 220$ ， $240,270,30028513-14 w$ Puts strongly how these 3 classes blend into each other．． $14 w$ When a hybrid most strongly resembles either parent $\Uparrow 1 u$＂decidirt｜mütterlich＂，wb These terms used when the two have been crossed not reciprocally－Relativ－vaterlich \＆c used，when they do cross reciprocally \＆ takes after the father in cross specified．－ 286 $10-15 \mathrm{~m} / \mathrm{w}$ No relation in closer resemblance to Father or Mother to fertility of Hybrid 15－ $17 \mathrm{~m} / 15-23 \mathrm{w}$ reciprocal crosses take place though＊the offspring take decidedly after one parent．20a＂syphilitica＂Decided types generally sterile，but not always as in Lobelia $\Uparrow 4 w$ strongest example $\uparrow 3-1 m / w b *$ These Hybrids，\＆are a cross of Hybrid $\& \&$ a third species－How is it called when two Hybrids cross？ $2876 \mathrm{~m} / \mathrm{w}$ strongest case 288 $5-9 w$ some exceptional types \ldots come into this class． 289 wt Perhaps gemengte（or 2d class）the commonest p．282．－ $4 \mathrm{~m} / \mathrm{w}$（a）$\uparrow 7 \mathrm{w}$ （a）$w b$（a）So there are species of genus which a prepotent fertility＊power on other species；so others have predominating
influence on structure of Hybrids；but these two are not connected $2905 u$＂Gat－ tungstypen＂， $4-10 \mathrm{~m} / 4-25 \mathrm{w}$ These kinds specially influence structure of Hybrids of other species，as \rightarrow These are generally very distinct species．－Even these are sometimes overborne by other species；or rather there is a series of these gattungs－ types $2911-2 m / w t$ Even in the mixed types， one part now resembles one parent，now another part the other parent．－ 292 wt No relation between facility with which A will impregnate B or be $*$ impregnated by it，in different cases，$\&$ the resemblance of hybrid to the parent． $10-17 \mathrm{~m} / 10 \mathrm{w}$（a）$\uparrow 2-1 \mathrm{~m} / \mathrm{wb}$ This seems a Lamarkian $2931 w \tau$ ，介10m 295 wt（a）Always something new in appearance of Hybrids；but not absolutely new，but appear so from odd unions \＆opposition of parent forms $1-3 m / w$（a） $7-9 m / w$（a） $17 u$ ＂Mirabilis＂／w cases of in 17－20w N．B Both sporting genera $296 \Uparrow 18-11 m / w$ Day sleep of Lychnis blended \＆\＆modified 297 15－20w power of reproduction by shoots \＆c Much exceeds that of pure parent $298 \pi 8 u$ ＂Morton＂$/ \uparrow 8-3 w$ Dogs vary from 10－6 nipples；thinks owing to crosses $301 \Uparrow 17-12 w$ Colour variable often，in crosses \＆ unexpected 302 13－20w Variations in colour in Hybrids 303 13－18m／w flowers do not take after Mother or Father in colour．－$\uparrow 2 u \pm / \Uparrow 4$ $1 w / w b$ Some simple Hybrids retain in successive generations their colour as in Dianthus \＆c．But generally（next Page）case very different；colour most variable $304 w t$ variation said to keep true．－Vinca rosea a store Plant．Syringa Lilacs p743．The Book quoted probably cd not be consulted $2-5 \mathrm{~m} /$ $\rightarrow / 3-4 u$＂Vinca 1 coerulea＂， $8-14 m / w$ very variable colours in successive generations of Hybrids 19－24w complex Hybrids even more variable in colour．$\uparrow 10 u$＂zusammengesetzten＂／ $\Uparrow 10-4 w$ These hybrids take almost always colour of father． 305 wt Sports 1－5u土，3－7m， $8 u$＂dreilverschiedenen＂，$\uparrow 14 u \uparrow / w$ Sport 306 $\Uparrow 10 m$ ，$\uparrow 9-7 m / w$（a）$w b$ White flowers commoner here than more South．－ $307 w t$ Important on account of $\&$ Kolreuter Verbascum Lychnite with white flowers rarely with yellow on sandy Places－（So Kolreuter case goes for nothing） $1-4 m / w$（a） $8-12 \mathrm{~m} / \mathrm{w}$ seed from yellow gave chiefly white $14-20 \mathrm{~m} /$ w when crossed colours did not mix，but came pure yellow or white 6－20w See 3d Fortset．p． 35308 介13－12u＂gelbe I Blume＂／w vars． $309 \$ 10-6 \mathrm{~m} / \uparrow \mathrm{w} w$ In Henslows List considered as varieties：I am nearly sure has been experimented on．Watson in Cybele
seems to consider them distinct: says perhaps or probably 2 species both varying. Refer to experiments of Magazine of Nat Hist V. p.493. \& VIII. 634 \& Phytologist 2.164 $\uparrow 6 \mathrm{~m} / \uparrow 10-6 \mathrm{w}$ Ask Babington.- 310 $\uparrow 12-8 \mathrm{~m} / \mathrm{w}$ colours changing during summer $312 \Uparrow 15 w \notin$ 313 10-12w Blue \& Yellow seldom unite 19$22 w$ curious ways colours unite. 323 wt (a) In Mongrel Maize self-impregnated seeds of two colours $6 u$ "selbst" $/ 4-8 \mathrm{~m} / \mathrm{w}$ (a) $3244-17 \mathrm{w}$ in 2d generation of Hybrid Maize seeds variously coloured $325 \Uparrow 8-4 m, w b$ It is decided that seeds of Zea not affected immediately as in Pisum. Yet Next Page 326 $15-17 \mathrm{~m} / 16 u$ "wie \mid Pisum", $\uparrow 7-2 \mathrm{~m} / \mathrm{w}$ The Peas in second or hybrid generation varied in colour independently of immediate action of Pollen.- $329 \uparrow 8-7 m / w$ (a) $w b$ (a) Hybrids are affected especially in Male organs, with exceptions $3325-11 w$ anthers \& pollen in appearance sometimes good yet hybrid quite sterile $333 \Uparrow 9 u$ "Liliaceen" $/ w$ often mentioned $\Uparrow 9-5 m / \Uparrow 8 u$ "und | Gewächsen", $\uparrow 9-1 m$, wb/ $\uparrow 9-$ $1 w$ In these plants. pollen, though in appearance good yet no impregnation follows * (may be faculty of female organs) C.D] pollen though swells, does not burst, in water, yet admits it may be owing to female organs, or structure of roots $33410-18 \mathrm{~m} / 1-$ $18 w$ But in cases, where plant can be impregnated by other individuals or species, we can infer pollen is bad. 12a "candidum" p745 Duvernoy $18 \mathrm{~m}, ~ \uparrow 12-8 \mathrm{~m} / \mathrm{w}$ In most fruitful hybrids, pollen is unequally developed.-336 6-9w The contents of pollen grains commonly fails. $\uparrow 6-2 w$ seldom give out contents when placed in water 339 wt (a) In this hybrid M. Jalapa-longiflora, own pollen more powerful than own concepcion power.- $2-7 \mathrm{~m} / \mathrm{w}$ (a) $34018-21 \mathrm{~m} / \mathrm{w}$ in Hybrid Birds no spermatozoa $\pi_{6}-1 w$ thinks in animals as in plants, male organs more deficient than female. $34413-17 \mathrm{~m} / \mathrm{w}$ even in most fruitful hybrids normal number of seeds never produced \& always mingled with bad ones. $\$ 14-11 \mathrm{~m} / \mathrm{w}$ compares this fact to result of Hybrid fructifications. 346 7-10w Kolreuter failed in this Reversed experiment 347 介14m $34819 m 350 \Uparrow 7-5 m / u$ "dass 1 vermögen" 353 $8-12 \mathrm{~m} / \mathrm{w}$ Power of fructification in Hybrids always weakened $17-22 m, w b$ Speaks of bisexuality as quite exceptional in vegetable Kingdom- 355 wt (a) insists male organs more \& earlier affected in Hybrids than female $10-15 \mathrm{~m} / \mathrm{w}$ (a) $35617 u \mathrm{~m} / 15-19 w$ case of pure species with female organs impotent while male perfect $22 u \star / w$ so Passiflora $\uparrow 9 u$ "freien lerzogenen" $/ \uparrow 8 u \uparrow / w$ so this $\uparrow 2-1 m / w b$

On other side pollen fails, yet female organ quite perfect \& potent; in some Dianthus, this happened only with individuals plants.$357 \mathrm{qm} / \mathrm{w}$ The wonderful cases, where in Lobelia, Verbascum \& Zephyranthus, pollen wd not impregnate own stigma, but wd impregnate other species; these * stigmas being also impregnated by pollen of other species $\uparrow 8 / \uparrow 7 w \notin 358 w t$ (a) The foregoing cases seem chiefly in plants brought from a warmer climate.- 1-4m/w (a) 5-9m/w Such anomalies much plainer in Hybrids $14 u \leftrightarrow / w$ Hybrids 3 forms of sterility 17-18w cases of I. $3591 u \uparrow / 1-5 w$ case in single individual of the Hybrid $\uparrow 20-1 w$ Gaertner has great advantage that the sexual organs certainly are weakened, as producing so few seeds $\Uparrow 7-3 m / w(B) \pi 2 u$, $\Uparrow 1 u / w \tau, w b$ (B) Puts this under category, that male less potent than female in each case; but surely Herberts is more true, viz advantage of crossing. - See to Herbert.- 360 wt (B) In this III. pollen of Hybrid wd not act on self, but in both parents; \& pollen of latter impregnated Hybrid. accounts for this (not as I shd by advantage of crossing, \& which I still think must hold in Herbert's case) but by believing (\& it is probable) that both male \& female organs weakened \& cd not act on each other but only pure parents, or even the Nicotiana on a 3d species. $4 u / w$ (B) $5-8 w$ is there any parallel III case in pure species? $10-25 w$ These (I, II. \& III) cases in Hybrids wonderful parallels to what happens in joining pure species!!! 361 wt (a) Reurges male organs fail first \& most in Hybrids 1 $4 m / w$ (a) $17-20 \mathrm{~m} / \mathrm{w}$ says above * analogous with animals $21 \mathrm{~m}, \Uparrow 13-10 \mathrm{~m} / \mathrm{w}$ (B) $\uparrow 8-2 \mathrm{~m}$, $w b$ (B) In Dioecious plants not hybrids, in females, male organs sometimes imperfectly developed, yet can fertilise; but in male rudiment of pistil never acquires power of conception. $3621-25 w / w t$ in L. Vespertina, in female flower, the rudiments of stamen much smaller than in L. diurna, \& consequently only in latter are anthers sometimes found. Does not this well show that a rudiment has something essential \& real in it - Very Good We can prove Mammae in Male to be a reality.- Wings in insects \& Here we can prove in another way. Gaertner somewhat suggests in Carrot to cut off the fertile flower early \& see whether other flowers wd become fertile. At p345 \& p. 330 long description of crosses of Dioecious plants study it all.- $\uparrow 14 w(z) \Uparrow 11-$ $5 w$ Similar changes take place easier in Monooecious than in Dioecious 363 15xx,

GAERTNER，BASTARDERZEUGUNG： 363
$\Uparrow 12-8 w$ In doubling male organs always change first $w b$ Reasons why male organs more affected than female；seasons quite worthless．－May it not have some relation to Falconers Law of external parts first affected 364 wt accounts for hybrid breeding easier with parents than with self by own pollen having less strength；so in cases as below （zz） $1-6 m / \rightarrow, \pi 8 / \Uparrow 7 u \uparrow / m / w$（zz）$\Uparrow 5 a$＂ 333 ＂ $357 \Uparrow 5 u \uparrow, \Uparrow 5-1 m, w b$ I cannot see how his explanation holds good，for the pollen of L ． fulgens（s．64）did impregnate two other pure species． 365 wt（a）says much experience has shown him that hybrids，after 8－10 generations，have their procreative powers weaker \＆weaker；\＆hence cannot be prolonged．－（But then all crossing avoided） $4 m, 8-13 m / 13 u$＂wie｜hat＂｜！／10w（a） $3662 w$ quite sterile $11-15 w$ Some individuals of these Hybrids quite sterile．$\uparrow 16-1 w / w b$ Degree of fertility in most Hybrids，except the quite sterile，generally very variable， even in Hybrids from same capsule \＆reared alike（This shows how innate，$\&$ is opposed〈written over＂compared＂）to its being a character of species，as species．）－（P） Hence different accounts by different authors，as follows，－ 367 wt A）This unfixedness of fertility of Hybrids，their special character，\＆not observed in pure species．－ $5-6 m / w$ A $13-23 m / 13 w$（B）$w b$（B） Some Hybrids，produce only seed at end，or middle，or（generally）beginning of their flowering，\＆are at other times sterile．－This a peculiarity，confined（when so pronounced） to Hybrids．－ 368 介10－7［J／w Does not believe 369 wt Cases in pure Dioecious plants of changes in sexual relations $1-3 m / w$（a） $7-$ $12 m / w$ Female sterility of D．Japonica transmitted to offspring in Hybrids．$\uparrow 7-3 m$ ， wb Hybrid Plants which produce an extraordinary number of flowers \＆are quite sterile；caused by sterility p． 372370 wt Same thing sometimes occurs in pure species 1－6m 373 wt ？？In Hybrids crossed with either parent，\＆thus assuming fertility \＆ the ancestral form，yet fertility variable in such individuals；in the successive generations．－ $2 u$＂eigenen＂，5－8m／w（a） 377 wt（a）seems to attribute sterility of Liliaceous Plants to state of roots．－ $13 u$ ＂der｜Liliaceen＂$/ w$（a）$\uparrow 5-1 m / w$ all sterile Cape of Good Hope Oxales 378 wt My point that plants often sterile $\&$ yet not unhealthy not touched on．－G．gives only obvious cases of infertility． $12-15 \mathrm{~m} / \mathrm{w}$ Hybrids in pots more fertile than in open ground． $20-22 m / w$ In fruitful years more birth from domestic
animals $24 m, \Uparrow 4-3 m, w b$ More often cause of infertility on male than female side；as in Caryophyllea \＆Verbascum 379 12－16m／w cases when pollen good but female organ $17 u$＂manchenlunseren＂，20－30w often in exotics，pollen \＆female organs are ready at different times，\＆so can be impregnated artificially $X \uparrow 10-7 \mathrm{~m} / \mathrm{w}$ insects less important than wind！！$\uparrow 4-1 \mathrm{~m} / \mathrm{w}$ Infertility through long cultivation by layers \＆c $w b$＊Would he say that C．Sprengel＇s facts were due to climatic influences？ $3801 w \tau, 2-5 w$ Reported by Reichenbach $10-30 w$ case of wild Verbascums \＆in pots，with certain flowers sterile \＆certain fertile；cannot explain．like Kolreuters cases 381 介13－10w Female mules in warm country breed．$\uparrow 7 u$＂erwähnt I Crax＂ $7-5 m, \Uparrow 4-2 w$ Black swan with white $3826 u$ ＂männlichen＂ $\mid w$ Male Hybrid pheasant sterile 15－19m／w Morton thinks relation between capacity of Hybridising \＆domestication $\uparrow 5 u$ ＂Fruchtbarkeit＂／w（a）$w b$（a）Fertility a fixed attribute of pure species（in natural conditions C．D）Mem．cases of moss not breeding，（these are probably Dioecious）in Hybrids a varying attribute． $3833 w \tau, 7 u \wedge / w$ fertile according to Kolreuter $38412-14 u \leftrightarrow$ ， 15－19m／16u＂immer＂， $16-18 \mathrm{~m} / \mathrm{w}$ in pure species artificial impregnation has not always yielded full number of seed $\uparrow 7-5 m / x / \Uparrow 10-5 w$ I do not think G had GreenHouse he always speaks of ZimmerO $w b$ Hybrids always less seeds than pure parents，as in following examples．－ 385 wt See in Beitrage p398 Lychnis vespertina－diurna gave with own pollen 234 seed． $1-4 m / w$ see to Kolreuter about Datura $3 u$＂200－280＂， $4 u$＂ $600-800$＂， $7 u$ ＂192＂／8u＂210ISamen＂／7－8m／w differences between natural \＆artificial impregnation $\uparrow 6-$ $2 m / w$（B）$w b$（B）Great differences in different individuals of same hybrids $\&$ in different years，in fertility striking．－ $3862 m$ ， $\Uparrow 12 u \leftrightarrow / \Uparrow 14-12 m / w$ Genera with most fruitful Hybrids 387 1ua／wt Henschel says this fertile，but reverse quite sterile．See Henslow．13－20w No relation between fertility of pure parent \＆the facility of uniting，or with these Hybrids having fertility $\uparrow 12 / \Uparrow 9 w \tau$ $3881 w \tau, 5-8 m / w$ Hybrids nearly as fertile， but never quite as pure parents．－table．w The reverses of these not equally fertile． ＂Lobelia＂．w（K）in Table＂Matthiola＂．w This not in list \rightarrow as repeated at $0.402 \rightarrow$ The table is probably wrong＂Verbascum＂．．w Some great mistake Not in List！！！$w b$ in little degree fertile，which is commonest case 389 table．＂Verbascum＂．\rightarrow to previous table， $8 u$ ＂Absolut unfruchtbare＂ 390 table．w／1－5m／w

The above numbers show that in Hybrids greater inclination for sterility than for fertility．介 $9-7 m / 14-3 w$ Fertility so variable at different times，\＆in different individuals，that simple classes of fertile \＆infertile Hybrids will not do． 391 wt（B）Here are 4 cases，in which other authors find fertility whereas Gaertner finds great sterility：was he bad Gardener？ $5-10 \mathrm{~m} / \mathrm{w}$ various striking cases of difference fertility，as found by different authors． $8 u$ ＂unseren＂， $8 w$（1） $9 u$＂total steril＂， $11 u$＂bei uns＂／w（2） $13 u$＂beiltotal＂， $14-19 \mathrm{~m} / \mathrm{w}$ one year so fertile as to self sow，in next year very sterile．$\uparrow 14 u$＂immer total＂ $\mid w$（4）（B）$\uparrow 6-$ $3 m / P, w b(P)$ cases of Hybrids out of same capsule，of different degrees of fertility \＆ some quite sterile．－ $3927-15 w$ In the greater number of Hybrids sterility belongs more to the individual than to the kind；（ie some are or may be fertile）$\Uparrow 14-3 w$ in same category stands fact (χ) that Spring or first flower of Hybrids only bring seed generally． $3935 u$ ＂ersten Früchte＂ $7 u$＂ 40 Samen＂， $8 u$＂2－3＂／w Examples of above laws $\chi \Uparrow 11-6 \mathrm{~m} / \mathrm{w}$ In pure species the difference in no．of seeds in early \＆late flowers inconsiderable $\uparrow 9 u / w \tau$ $3947 m, 8-14 w$ Variability of Fertility cannot be accounted for by luxuriance $17-20 w$ In pure species，when periodically infertile not very luxuriant $\uparrow 4-3 m / w b$ Fertility does not stand in inverse relation to their Luxuriance 395 9－14w Herberts＇case of fertility after 16 years might be due to pollen of pure parent． $\Uparrow 6-1 w$ No art or＊culture will alter or improve the organs of generation in Hybrids． $39610 w \tau, 16 z, \uparrow 9-7 w$ Fertility does not go by genera $\uparrow 5 u$ н，$\uparrow 4 u \pm, \Uparrow 4-1 m 397 \Uparrow 8-1 w$ The inequality of fertility in hybrids from same generation，shows that fertility cannot depend on outwards circumstances 398 2－ $4 m / 1-8 w$ Hybrids in pots easier bear seed than in open land，because too much luxuriance thus checked $11-16 \mathrm{w}$ tried experiment to see effect of different culture \＆c \＆cd perceive none．－ 399 wt II Certainly a priori，one wd have expected a gradation in fertility of hybrids \＆old mongrels as Dogs In Gaertner Tables there is appl to this． $4 m, \Uparrow 11 w \tau 4003-13 w$ Contradicts Wiegman that maternal or paternal types fertile individuals sterile．$\$ 13-$ $1 w$ Chief conclusions（1）Unfixity of fertility in same hybrid The varying form of the＊ Hybrid is the abstract which can be divided into following classes． $402 \Uparrow 2 / \Uparrow 1 \mathrm{~m} 4034-6 \mathrm{~m}$ $404 \Uparrow 2-1 u \leftrightarrow 405 w t$（a）Hence resemblance of Hybrids to either parent no marked influence on fertility．－ $1 u \mathrm{a} / \mathrm{w}$ male $5-7 \mathrm{~m} / \mathrm{w}$
（a）$\uparrow 20-12 m, ~ \Uparrow 20 w$（B）$\Uparrow 10-3 m, ~ \Uparrow 10 w$ Examples $\uparrow 7 u$＂ 256 ＂，$\uparrow 5 u$＂diesen 1 Bastarde＂， $\Uparrow 4 u$＂absolut unfruchtbar＂，$\uparrow 3 w$ Examples $\uparrow 2-$ $1 m / \Uparrow 1 u$＂ 49 ＂，$w b$（B）These authors think law of relation between fertility of Hybrids \＆the affinity of parents；but if we judge of latter by seeds yielded，there is no relation to fertility of Hybrids when reared from them 406 9－ $10 m, 9-11 m / 8-13 w$ We conclude that fertility of hybrids stands in no near relation to＊ elective affinity of parents．－ $25 x / 16-19 w$ Yet strong exceptions on next page 20－30w When plants cross easily both ways，hybrids most commonly fertile．This fertility seems to depend on resemblance in Hybrids of parents，but with exceptions 407 wt（a）In Hybrids from reversed crosses，even when quite like each other，Yet fertility not same，\＆ in one case even on one side quite sterile．X os Important as shows not in essence of Hybrids．－ $2-12 \mathrm{~m} / 10 u \leftrightarrow / w$ Yes for see p .385 $13-16 \mathrm{~m} / \mathrm{w}$ Ease 〈he probably means Case〉 when reverse cross easy，yet Hybrid sterile $\uparrow 6-2 m / w(\mathrm{~B}) w b$（B）From＊facility of union cannot infer fertility of product $4089-10 u / 8-$ $13 w$ It seems that systematic affinity of Parents favours the fertility of Hybrids see p．410．$\uparrow 7-5 \mathrm{~m} / \mathrm{w}$ Above law it seems has been discussed table．w see p． 414 Hybrids from these have remarkable fertility \＆were considered by Kolreuter as varieties．wb When we consider these facts we might conclude that fertility of Hybrids indirect relation to affinity of parents $4091-20 \mathrm{w}$ But on other side（ \rightarrow this other side seems most strong）many close species will not unite，\＆ （2d）that some species will unite \＆produce more fertile hybrids than more closely allied species．examples． $18-20 m, \Uparrow 13-12 m 4101 u$ ＂Herbert＂，5－7w Examples as before 12Jl， table．w Examples of nearly related species having hybrids quite sterile $\uparrow 8-4 w$ Most unlike dogs breed \＆produce fertile offspring． $\pi 1 \mathrm{~m} / \mathrm{wb}$ concludes that likeness in Habitus cannot be ground cause of fertility or sterility of Hybrids． 411 12u＂constitutionellen＂$/ w$ considers this an unknown element $\uparrow 8-5 m$ ， $w b$ Repeats that as fertility varies in Hybrid from same parents，it belongs to the individual \＆not to the Kind 412 wt Even in quite sterile plants in both sexes，yet flowers remain longer when stigma dusted with pollen of either pure parent so in truth not utterly ste．rile $2-7 m, 8-11 m$ ，$\uparrow 8-1 m / w$ argues against the several explanations of Herbert of special cases of sterility $41314-18 w$ not on account of evergreen \＆deciduous leaves． $41413 u$ ，table．w considered varieties

GAERTNER, BASTARDERZEUGUNG: 414
by Kolreuter from fertility "Datura", "Malva". w ia (others). w o o means not tried by Gaertner "Dianthus".w XX 2nd table.w o not tried These 2 are added, though Kolreuter cannot dare to call only vars. $\uparrow 4 u$ "parum vel", wb XX. V. My M.S. p. 19 on Kolreuter, showing that all Botanists agree in thinking these only vars. 415 table.w/wt ia But as several of these are probably rare it is very important that G. says not so fertile as pure parents, for we get then a series table.w also highly fertile Hybrids "Matthiola".w Bentham says var. $3-5 m / w$ but yet not so fertile, in any of above cases, as pure parents. $3 u$ "allen diesen" $3-10 w$ Yet he has not tried all Koelreuters must mean these last alone $4 u$ "ausgezeichneten", 5-6u "niemals | hervorbringen" 417 wt (a) Agrees with Herberts constitutional doctrine (which I think means only some internal difference. $3-8 m / w$ (a) $418 \Uparrow 12-8 m / w$ (a) 5-2m, $w b$ (a) The most fertile hybrids always lose fertility in successive generations.- some sterilish plants if artificially fertilised increase in fertility 420 12-25w In 2d \& other generations of Hybrids, fertility becomes unstable \& often less, so that even parent-pollen will then have little or no effect. This sterility, however, varies much in different individuals \& depends especially on the individuals 13 $18 m$, $\Uparrow 9-6 \mathrm{~m} / \mathrm{w}$ A $\uparrow 5-2 \mathrm{~m} / \mathrm{w}$ Fertility never greater in 2 generation, than in first. $\uparrow 1 w \tau$, $w b$ (A) In Mongrels, fertility even greater in second generation, than in first. see further on; for this perhaps implies less fertility in crossing varieties.- 421 wt (B) This decrease of fertility in second generation has been observed in less fertile hybrids of Nicotiana, \& fertile Dianthus hybrids, as in example given. As this is only second generation cannot be due to want of crossing.- $1-4 m / w$ B 8-9m/w So in animals according to Morton $15-25 w$ sometimes fertility increased after repeated artificial impregnation in succeeding generation, but this plant has commonly gone back to either father or mother type $20 w \tau, 25-27 m / w$ D $w b$ (D) Many very fertile hybrids propagate themselves, with unaltered type like pure species, as in list, but always with decreasing fertility. 422 3$4 m, 5-10 \mathrm{~m} / \mathrm{w}$ in 2d \& succeeding generation hybrids sport much * $\uparrow 6-1 m$, wb some remain like hybrid others go back to either grandmother or grandfather 423 wt (a) The * manner in which type divides, \& goes back, varies much.- $2-8 \mathrm{~m} / \mathrm{w}$ (a) $13 u \mathrm{a} / \mathrm{w}$ offspring of this varied more than from reverse $15 u \mathrm{~m} / \mathrm{w}$ greatly \& $\uparrow 15-9 m / w$

Kolreuter compares these with hybrids crossed with pure parents. $42415-21 \mathrm{~m} / \mathrm{w}$ The exceptional or abnormal hybrids, when fertile, generally produce normal hybrids. $\Uparrow 8 m 42512 u \wedge / 12-16 \mathrm{~m} / \mathrm{w}$ with own pollen 4 seeds with pollen of D. barbatus 10. seeds.$16 u$ " 29 gute" $/ 17 u$ " 67 hervor" $/ 16-17 m / 16-23 w$ so again, \& thus often.- \& likewise so with very fertile hybrids.- $\uparrow 8-3 w$ \& so with quite sterile hybrids, corolla remains longer when dusted with either parent pollen.- 426 11$14 w$ examples as last page $\Uparrow 12-1 w / w b$ when parent \& hybrid pollen mixed, latter rendered quite ineffectual, so that no need to castrate; just like when foreign \& own pollen applied to a plant, own eliminates quite effect of the foreign.- This Curious. 427 wt (A) Pollen of a third kind will sometimes produce more effect, than own hybrid polien. $1-2 w(A) 3 u \wedge$, $5 u \uparrow / 3-6 w \quad 13$ seeds with own pollen; langsdorfii 16 seeds. $18 u \tau 428$ 15-19m/13$30 w$ The pollen of the two parents has no regard to their sexes in the effect they produce, but that pollen, which has most power of metamorphosis or umwandelung, which will be discussed afterwards, I suppose that pollen which soonest converts hybrid into pure species, produces also most seeds in Hybrid. $\uparrow 18-7 m / \Uparrow 13 w$ A $w b$ (A) Niger again variability of offspring of selfimpregnated hybrids. = so mongrels are.- 429 $1 / 2 / 4 w \tau, 12 u$ "aufsteigenden", $16 w \tau, 17-18 u$ "väterliche Bastarde" $/ w$ Paternal Hybrids - are offspring of pollen of * same species twice $\pi 6 u$ " 2 " $/ w b$ If this $*$ hybrid had been crossed with pollen of atro-purpura, it wd have been a "Muterliche Bastard" or "absteigenden" grade p. $4514301-8 w$ by Father pollen more seed generally then by Hybrids own pollen, but generally not so many as in first cross of pure parents $14 u$ "einfache", $15-17 \mathrm{~m} / \mathrm{w}$ much unfixedness in this class of Hybrids $17 \mathrm{~m}, 18-30 \mathrm{w}$ Like second generation of simple hybrids, these Paternal Hybrids vary much \& differ much in fertility, out of same capsule. So very different results from repeated experiments with same species. $4311-3 m / 1-10 w$ The more fruitful hybrids vary less, \& go back more to paternal type, but have often reduced fertility, as, - examples $9 w \tau, \Uparrow 17-7 w$ When they take less after paternal type \& are much less fruitful, so vary much.generally under 3 types, in accordance with resemblance to ancestors \& parent.- $\Uparrow 10 u$ "schwächeren"|? 432 wt Different species have different tendency to communicate their variability; old cultivated plants $9-11 \mathrm{~m} / \mathrm{w}$ (a)

介14-1m, wb In these cases the of type which normally approaches to father or double pollen side is less fertile $433 w t$ I am not quite sure that these two pages are fully understood $8-13 m / w$ Here the type which came nearest father was most fertile. $17 w \tau$, $18-25 w$ all sorts of variability in type \& fertility $\Uparrow 2 u 4342 m, 16-20 \mathrm{~m} / \mathrm{w}$ It is clear that fertility does not always at all increase $*$ in resemblance in succeeding generations, with $t \rightarrow \infty \rightarrow x$ ancestor $\uparrow 12 u$ "fünf"/ $\uparrow 16-12 w 5$ different types out of this "paternal" hybrid $\Uparrow 10-8 \mathrm{~m} / \mathrm{w}$ Here case of coming near the paternal type with considerable fertility 435 wt A Commonest rule or appearance in this stage of conversion is that the more the hybrids differ from mother \& approach the paternal type, the more they suffer in fertility.- Thinks the reverse more probably really the law. $12-16 \mathrm{~m} / \mathrm{w}$ A $18 w \tau$, $\uparrow 12-6 w$ Female organs recover first their powers.$\Uparrow 4-1 m, \Uparrow 1 u a / w b$ Fertility in this in such as \rightarrow always very variable $4364-8 w$ Examples of above variability in fertility $10-30 \mathrm{w}$ These "paternal" hybrids are when self impregnated, generally more fertile, than in former generation, \& of themselves tend to approach the paternal type; ie even when self impregnated \& are variable in structure. $\Uparrow 10-9 u$ "in I Generation", $\uparrow 10-3 m / \Uparrow 8 w$ В $w b$ B This particular hybrid came by itself more fertile, which he seems to consider normal result of repeated impregnations of own pollen 437 wt Think the above like avatismus in Animals 1-4m, 8-9u "inlGeneration", 8$12 w$ when go back to Mother, not quite \& unequally. $16 w \tau, \Uparrow 10 w \tau$, $\uparrow 9 u$ "Puvis" "Van Mons" $/ \Uparrow 9-4 w$ So these authors wrongly dispute tendency to avatism 438 8-12w Thinks all variation from cultivation when free tend to go back. 19/20wr, 19-22w tends more to mother than Father $\uparrow 10-4 m / \Uparrow 9 w(A)$ $\Uparrow 3 w \tau, w b$ Happens oftener with same genera than with others; never in the very fruitful Hybrids- $4396 u$ "Lavateral Generation", 710 w This first time more to mother in another case more to Father. 14-20w In these going back progenyO of Hybrids, fertility less, sometimes gone, never increased. $\uparrow 13 / \Uparrow 8 w \tau$ $44010 w \tau$, $116-4 m, \Uparrow 9 w \tau$, wb | believe he here argues that going back of Hybrid offspring, \& of varieties not crossed, is evidence of aboriginal foundation form of species. So it is some evidence - V . p. 455 my Note. Good. 441 wt Thinks the former Laburnum case a proof of sterility of species \& tendency to go back. $1-3 m, 9 /$ $10 w \tau, \Uparrow 13-3 w$ The occasional approach to
father in simple Hybrids or in second generation of Paternal Hybrids, is rarer than the approach to the mother. $4428-13 w$ amongst simple Hybrids Those that approach Father are more sterile. 19u/19$20 \mathrm{~m} / \mathrm{w}$ These are apt to tend to Father 112 $1 w$ The Paternal Hybrids in 2d degree which go back to father have increased fertility. These cases liable to error. $4436 w \tau, 6-9 w$ All the above facts like avatismus in animals. $4441 w \tau, \Uparrow 3-1 m / \Uparrow 2 u$ "weiteren Generationen", $w b$ in very fertile hybrids these goings back to mother or father have not been perceived, so prevented apparently by strength of sexual organs. 445 wt (A) These goings back agree with the Abnormal types, except these latter are the result of the crossing of pure parents: they also are very sterile. 1$3 \mathrm{~m} / \mathrm{w}$ Law of variation $6-7 \mathrm{~m} / \mathrm{w}$ A $17-20 \mathrm{w}$ In successive generations more variability $\Uparrow 13 u \uparrow / \Uparrow 13-11 w$ These sorts of Hybrids give most variation. $\uparrow 8 w$ D. barbatocarthusia,carthusium. $\mathbb{1 7} u$ "väterliche Bastarde", $\uparrow 7-3 w$ variation seldom then in last case (* next Page on do) $\uparrow 2 u$ "paniculatorustico-glutinosa"/ $w b$ These hybrids always with one exception approach father (or 2d species) \& commonly totally sterile Yet I think they were sometimes more fertile than with own pollen.- $4464 m, 6-10 \mathrm{w}$ Male more power in causing variation than female. $\uparrow 14-6 w$ Cause of variability lies in act of generation perhaps aided by circumstances 447 介16u*/ $\Uparrow 16-12 w$ not to be distinguished from pure N. rustica, but less sterile $\uparrow 8 u \uparrow / \Uparrow 8-6 w$ \& even in this generation less fertile $z / w b$ Mother Father * pure a paniculata Grand Father * Mother Gt Gr. Mother (3) Grt Grt grandFather (4) was paniculata $4481-8 w$ Different species are changed at very different rates with the paternal type, but this varies in same species $4493 w \tau, 8-10 \mathrm{~m} / 3-$ 10 w colour of flower does not vary more in later generation than in first, which is different from other variability $\uparrow 15 w$ A $\uparrow 7 u \mathrm{~m} /$ $\pi 7-1 w$ Even some of these quite sterile in both sexes wb A In some case, especially such as are slow to be converted, the fertility is lessened, especially on male side, even when hybrid has gone back nearly to paternal type. 450 wt A Such Hybrids with own pollen improve fertility \& of themselves go nearer the paternal type. $1 m, 1-12 w$ Even some fruitful paternal hybrids in 3d degree were quite sterile on male side. Generally with higher degree of Paternal hybridism, so much more fertile. $14 u \star / w$ A $\Uparrow 13 w \tau, \Uparrow 12 u \uparrow$, $w b$ In each paternal degree this became

GAERTNER, BASTARDERZEUGUNG: 450
more sterile on female side, because it approached D. Japonica which is naturally sterile on female side. 451 §10w $4521-4 w$ More fertile than corresponding paternal Hybrid $9-12 w$ varies more $\&$ than paternal hybrid $\quad x \rightarrow$ chinensis-barbatus female barbatus male table.w These bore 6-15 varieties $\uparrow 10-1 w$ Most of the vars have approached very close to pure maternal type 453 wt xxx I shd think caused by female side of Hybrid being most fertile \& other side being crossed with same type, through a male, caused their greater fertility. \& is partly proof of more fertility on female side. $8 m, 10-$ $14 w$ More fertile than corresponding Paternal Hybrids xxx 17-28w But even here amongst those most closely resembling Maternal type, quite sterile individuals are found. Here also male side fails in fertility more than female. $\pi 12-9 m / w$ A $w b$ A \ln further generations, when self impregnated, become of themselves more like mother \& more fertile \& less variable- 454 10-20w The more fruitful stick to the hybrid type longer than the less fruitful. Rate of going back varies according to Kind $455 w t / 1-5 w$ A Neither var. shd be an aboriginal form. This makes me believe the reported fact that Mongrels go back: Bell insisted on this to me one day, in regard to Pigeons, \& I think Dixon did. So Gaertners remark that this proof of Real Species fails, for applicable to Varieties 1$15 w \rightarrow$ But it might be said that one var. was an ursprungliche forme.- $8 u$ "zur Stammmutter", 7-18w The law that these (1 fancy both paternal \& maternal, anyhow the latter) of themselves, self-impregnated go back to type of Mother, most important. (A) $22-23 w$ The metamorphosis of one species into another like a variety into another seems opposed to species being something distinct as Entity.- XX $\uparrow 6-5 w$ In Tollets case of Malay Fowls so long affecting breed is case of a var. with stronger tendency than others to go back, like species $w b \mathrm{XX}$ It is argued that the sterility of hybrids, shows that species are a distinct entity, then surely the points in which they agree, may be fairly adduced to show that they are not essentially different $45710 w \tau 458 \pi 7-4 m / w$ (a) $w b$ (a) The rate of metamorphosis depends chiefly on the species employed; but also in less degree on the variety (This rate has narrow limit) of the individuals employed; on account of different degree which they go back in type 459 13-16w The shorter the period of Metamorphosis the less variable $16 m, 19 w \tau, \pi 14-12 m / \Uparrow 16-5 w$ in
reverse cases, the metamorphosis at different rates, even though the hybrids from the reverse * be alike. Thinks this proof of aboriginal creation. $\uparrow 2-1 m / w$ A wb A Always approach to type of ancestral form before organs of generation quite perfected; ie these are last restored. 460 wt it is not likely we shd understand the slow restoration of the generative organs, as long as we remain so ignorant regarding the esesential action of these organs; \& why two sexes necessary.- $8-10 \mathrm{~m} / 6-16 \mathrm{w}$ Not seldom quite like pure parents \& yet even quite sterile, specially male organs; sexual organs universally * in some degree affected 11$12 u$ "allen | Ausnahme", $\uparrow 16-12 \mathrm{~m} / \mathrm{w}$ Law, that male organs not only more easily affected but slower restored. $\pi 7-1 \mathrm{~m} / \mathrm{w}$ do not understand. 461 iw extreme variability of fertility during the umwandelung, not connected with any law.- Never suddenly appears by a jump. Yet one almost exception by Kolreuter, with unusual approach to pure type, and Gaertner one other case with relatively little approach to pure parent. These cases show that the gain of fertility a is due to peculiarities of the individual 17-22u士 463 wt (A) As in first generation, decided types (Given in last page \& p285) arise close to one parent, so it is evident the number of generations required for metamorphosis must vary much. $6-12 \mathrm{~m} / 8 \mathrm{w}$ A table.w on average $464 \Uparrow 13-7 \mathrm{w}$ As far as yet known never requires more than 6 or 7 generations $\uparrow 10 / 7 w \tau, 6 m 465 w t$ A Attributes the variability not entirely to the difference of the going back of individuals, but also to variability due to long cultivation, for has not perceived it in the wild-growing, nor in the more fruitful hybrids.- $11-19 \mathrm{~m} / 12 \mathrm{w}$ (A) $\uparrow 14 u$ "oben 1220 ", $\Uparrow 13 z, ~ \Uparrow 13-1 w$ In reversed crosses, even when hybrids are alike yet they are not metamorphosed with equal readiness, which shows some difference in their nature $\rightarrow \Uparrow 2-1 u \leftrightarrow / w$ example $w b$. Thus Dianthus 466 wt Hybrids may be considered as a united brother \& sister $17 w \tau 467 \quad w t / 1-10 w$ Would not "Reduction" good be term for Umwandelung $=$ inversion in Dict. \rightarrow Absorption by Father form wt Reduction by the Father or of mother or by paternal pollen or maternal pollen $7-10 \mathrm{~m} / 7-17 \mathrm{w}$ (B) Fertility of hybrids stands in no special relation to capacity for metamorphosis: Examples,- very sterile \& yet in 3 power almost reduced to D. car. 13u^, 16u "dritten Grade", $20-24 m / w$ fertile but require 5 powers \&c \&c $\uparrow 2 m, \Uparrow 1 w$ other
reasons for（B）． $468 \pi 8-5 \mathrm{~m} / \mathrm{w}$ A $w b$（A） Generally with less＊＂sexual affinity＂of first pure parents the Reduction＊slower，\＆the reverse with＊more fertility 469 8－10w Exceptions to＊last rule $\Uparrow 15-12 w$ Examples of above rule $470 w t$ Foregoing examples show no fixed relation between periods of Metamorphosis \＆sexual affinity of Plants．－ 1－2m／w A $8 u$＂der 1 Typus＂$/ 6-15 w$ A species with this power of producing a decided type will reduce a species in the reverse manner介13－10m／w There is also relation to systematic affinity of species．wb Systematic affinity must mean＂likeness of characters externally visible． $471 \Uparrow 14-6 \mathrm{~m} / \mathrm{w}$ Examples of last Rule $\Uparrow 3-1 w$ Exceptions to 472 wt（ Q ） The different powers of reduction in hybrids from reversed crosses，show no fixed relation to＂systematic affinity of parents 9－ $13 m / w$ Q $473 w t$（B）Returns to parent－forms through self－impregnation are very slow，\＆ require many generations． $11-15 \mathrm{~m} / \mathrm{w}$（B） 23 m $4746-10 \mathrm{~m} / \mathrm{w}$ The goings back seldom observed in wild plants when experimented on $12 a$＂ 428 ＂ 438 ？13－20w Conclusions（1） Facility of Reduction not absolutely depends on sexual or systematic affinity．－（2）Returns more often to Mother than Father．$\uparrow 8-6 w$ Not all embryos affected alike． $475 \mathrm{i} w$ I suppose he wd say there was a hatred in the Vegetable Kingdom to these crosses： perhaps his argument directed against those； like Herbert who believe in hybrid origin of species． $2 w \tau$ ，16－17ua／13－18w In reduced hybrids traces of parental character may be yet discovered． $19 w \tau, \Uparrow 13-8 m / \Uparrow 11-10 u$ ＂unzweidentigen＂$/ w$（a）$\Uparrow 1 w \tau$ ，wb Thinks the Reduction of species affords＂unequivocal＂ proof that the limits of species confined \＆ fixed．How curious．I can see force in this argument in reductions by self－ impregnation．－ $4761 w \tau, 1-6 \mathrm{~m} / \mathrm{w}$ Excessive care in preventing parent pollen，Kept in chamber．－$\uparrow 9-8 w$ The old stories of Grasses changing into each other．$-\uparrow 4 w \tau 4778 w \tau 478$ $5 w \tau$ ，4－6w Hornsuch defender of transmutation $13 w \tau, 17 u$＂ $\operatorname{Berg} " 496 \Uparrow 7 w /$ $\Uparrow 4 w / w b \tau, w b$ Amongst seed of Vetch，some chickpea，which produced 2 vars．like Vetch $497 \Uparrow 7-5 w$ Amongst the seeds he found 4 vars． $498 \quad 18-23 w 4$ vars of Peas，very slightly different，raised out of bought seed．－ $4998-16 w$ no variously coloured seeds produced \＆it is clear he wd like pairs to prevent crossing $\uparrow 11 a$＂ 51 ＂ 3 correct $\Uparrow 3$／ $\Uparrow 2 w \tau 500$ 〈fn nos corrected〉，wt（a）Remarks that many plants when put out of proper conditions do not vary，\＆those that do，their
union retain \＆power of union suffer much less $7-10 \mathrm{~m} / \mathrm{w}$ a $11-16 \mathrm{~m} / \mathrm{w}$ Cases of change of Form chiefly in Lecoq $16-18 u \pm / m / w$ these very fixed $\uparrow 14 w \tau, \Uparrow 10-8 w$ long cultivated plants as $\uparrow 6 u$＂Cerealien，Leguminosen＂ $1 \Uparrow 4-2 u$ ＂DianthuslTabacum＂$/ \mathrm{m} / \mathrm{w}$ vary $5011 \mathrm{~m} / \mathrm{wt}$ same cause makes them＊easily depart from normal Bastard－type 7－9w varieties tend to go back；no facts given $8 w \tau$ ，〈fn nos corrected $\rangle, \uparrow 12-6 m$ ，wb Quotes Herbert，that domestic variations do not affect organs of generation $50322 w \tau, 23-24 w$ There are 6 of these classes． 504 5－8w Simple＇Hybrids of own type 2nd table．w I cannot think why Reduced Hybrids per patrem are here omitted $w b \rightarrow$（a）\＆（b）Hybrids alike \＆so also（c）or Reduced Hybrid per matrem． 505 $9 m, 11 m, 23 m / w(\mathrm{C}) 506 w t$（a）It is only the quantity of blood from either side which makes a difference．4－17w Thus these are alike（a）But when one factor is more powerful in its influence，then there is a difference，as． $12-17 \mathrm{~m} / \mathrm{w}$ very variable \＆ generally very sterile with exceptions． 507 $1 w \tau, 2 m / u$＂aus \mid Faktoren＂， $19 u$＂sind \mid steril＂ \mid 15－19w Excessively variable \＆generally absolutely sterile 22－23w compounded． 3 species same as last only mother a hybrid $\uparrow 2-1 m / w b$ In type always（yet a prepotent type in any species has some influence）go to Father：＊but in different degrees．－（So Kolreuter also says）fertility varies generally little．－ $5084-5 u$＂vermittelnde＂$/ 3-5 w$ are very distinct from class $56-10 \mathrm{~m} / \mathrm{w}$ In this subclass the 3 pure parents are somewhat allied table．w very little fertility in one folling case very considerable fertility $\uparrow 2-1 \rightarrow 509$ $\pi 7 m, \Uparrow 5 w(A) w b(A)$ In the second subclass， species are used which will not cross without the intermediate \＆3d species，\＆therefore are very little allied in sexual affinity．－These always most closely resemble pure father． Excessively sterile 511 14－19m 512 13－15m／w a tendency to vary even in individual plant $17-24 m / 22 w$（a）$w b$ This extreme closeness to father very singular \＆against ordinary laws of Hybridism，explained by greater potency of pure pollen of Father，as likewise is shown in the 3d class，in which Mother is pure \＆yet it seems no leaning to either side． $513 \uparrow 19-11 w$ It seems that where pollen pure \＆ovules hybrid，then appr to pure \＆less variability $\uparrow 9-4 m / m, w b$ not so variable，apparently owing to the potency of effect of pure parent．－ 514 wt A Conclusions （1）that hybrid ovule or pollen cause of variability．（2）that the pollen，even of hybrid origin has preponderating influence over

GAERTNER，BASTARDERZEUGUNG： 514
female I！！I do not see how second conclusion $1-6 m / w$（A） $5 w \tau, 6 m 5154 w \tau$ ， table．w Here whichever species has the most typical strength，the offspring resembles it－ quite sterile table．w Not one is Double 516 tablew 4 species united table．w In this the several offspring resembled all four parents table．w Excessively variable，no two individuals alike．Fertility lost． 517 wt It is clear that the more complicated the unions the more variability ensues．$\uparrow 14-11 w$ Hybrids can be told from pure only by variability $\uparrow 6 u$ ＂schonlersten＂，$\uparrow 5-3 u$＂niemals｜Arten＂$/ m / w$ repeated over \＆over again $\uparrow 1 m$ 518 $2 m$ ， $3 m *, 8 m *, 10-13 u \leftrightarrow, 14 m * 15 m * 16 m \otimes$ ， $17-18 \mathrm{~m} / \mathrm{w}$ not more subject to mal－ conformation than pure species $18-19 u \leftrightarrow$ 519 wt Some hybrids can be much more easily impregnated when growing in pots than in open land，because too much luxuriance checked．－Good instance of ease of effect of too much luxuriance $1-7 \mathrm{~m} / 3 \mathrm{w}$（a） $\Uparrow 4-2 w$ some seeds look poorer 520 1－10w of these many seed fail quite or seedlings live very short time or rather longer or only just flower $16-17 w$ examples of above $\Uparrow 13-4 w$ The above one exception to rule，\＆may be due to greater susceptibility of outer causes $521 \Uparrow 14-13 u \leftrightarrow / x, \Uparrow 11-10 u$＂Sageret laus＂／$\uparrow 11-$ $9 m 522$ 1u↔，18u＂11｜Bastardarten＂$/ m / x / 1-$ $18 w$ ．Period of germination in Hybrid seeds very various $523 \quad 13-14 m / x$ ，$\Uparrow 18 u$ ＂Bastardsamen｜Art＂／$\uparrow 18-16 m / x, \quad \uparrow 15-13 m / x /$介13－12u＂weil｜werden＂，$\uparrow 12-11 m / w(\mathrm{a})$ 介8－ $5 \rightarrow, w b$ The typical strength of a species over the other is shown in affecting period of germination of Hybrid seeds 524 13－17m，介16－15u＂daherlgrosse＂／介16－8m 525 介4－1m， $w b$ Hybrid seeds do not appear to keep so long as pure seeds $526 \pi 4-1 m / w$ all observers agree about luxuriance of hybrids $5275 w$ long stems $\uparrow 12-8 w$ Easily propagated by cuttings \＆\＆c $\uparrow 9 u$＂stocken sich＂／wb Even in stocks＂make offsets＂$\uparrow 7-$ $6 m$ ，$\uparrow 4 u$＂Seitenästen＂ 528 8－9w Proliferus 17－ $23 w$ Thought to be related by Kolreuter to sterility of Hybrids 21wt，$\Uparrow 9-1 w / w b$ Opposed to this is the fact that luxuriance begins before development of sexual organs I do not think this objection 529 3－8w（3）all very sterile hybrids are not luxuriant 12－17w（4） These hybrids which are most fruitful are the most luxuriant $\uparrow 14-10 w$ concludes luxuriance a peculiar quality of Hybrids．$\Uparrow 9 u / w \tau 5304-$ $10 w$ Hybrids flower earlier with exceptions 531 13－19w unseasonable flowers This is odd．Is it not like double flowers？$\uparrow 11-4 w$ stamens \＆stigma increase in number
sometimes，but not both $w b$ rare exceptions to above，when very distinct species united． 532 13－25w Kolreuter accounts for above by sterility，but doubts as most fruitful＊Hybrids， are those which produced most flowers $17 u$ ＂diejenigen Bastarde＂，wb＊Yet these are in some degree sterile $533 \Uparrow 16-8 w$ absolutely sterile hybrids have $*$ their flower long preserved，when dusted with pollen of either parent．－ $534 \Uparrow 15-13 w$ Flowers longer $\uparrow 2-1 w$ some exceptions $537 \Uparrow 18-5 w$ Because Bees freely frequent quite sterile hybrids，for Honey，thinks no close relation between dissemination of pollen \＆nectar．＊Might as well as say elytre not connected with protection of wings，because present in apterous insects $\Uparrow 11 u$＂Fruchtungsvermögen＂ $539 \uparrow 6-1 \mathrm{~m} / \mathrm{w}$ Thinks Kolreuter wrong in concluding these are only vars 540 § $20-15 \mathrm{~m} /$ $\Uparrow 20-5 w$ Never gives so many seeds as pure parent．As pure species are often sterile sterility cannot be taken as proof of hybridism 541 wt can offer no explanation of Sterility 1－6m 542 wt Duration of plants whether 1 or 2 years always very variable 3－ $5 m / 5 u$＂Koch＂，7－17w Hybrids longer lived． strong character of such plants，as below $\Uparrow 4-3 u \leftrightarrow 544 \Uparrow 3-1 m$ ，wb attributes above partly to sterility，but $-5454-15 w$ objects that some quite sterile are only annuals，\＆ objects that castrated parents have not life prolonged． $17 w \mathrm{c}, 16-18 \mathrm{~m} / \mathrm{w}$（a）$\uparrow 17-12 \mathrm{w}$ in crossing hermaphrodite to 2 unisexual plants sexual organs repaired．$w b$ in dioecious plants organs imperfect of one sex．in Hybrids perfect，but functionless 546 wt Hybrids become decrepid in successive generations． $1-4 m / w$（a）$\uparrow 15-1 m / w$ Hybrids can bear cold better than parents，which is connected with their tenacity of life $5485-$ 10w However Some hybrids from little related species are tender． $549 \Uparrow 18-17 u$ ＂den \mid Tulpen＂$/ w$ These vary during life of individuals but then variable flowers $\uparrow 16-1 w$ In This Hybrid（perhaps only a mongrel iy） some of the flowers in middle of summer \＆ autumn went back to Mother in flowers 550 $3-5 w$ other cases of above $14-17 \mathrm{~m} / \mathrm{w}$ Suspect the 2 Tropaeolum only vars，yet very different．$\uparrow 7-5 m / w$ a $\uparrow 7 a$＂speciosissimo＂ female $\Uparrow 7 a$＂phyllanthus＂male $w b$（a）This hybrid for first three years had angular 5 sided stigma，\＆then became like Phyllanthus．－ 553 12－13u $\leftrightarrow / 15 u \uparrow / 10-20 w$ cases of hybrids in which type has kept very constant，in this case for 10 generations，but with lessened fertility $19 x \pi_{0} 21 x \neq \pi 8-4 w$ above only examples of progeny of hybrids
not varying 554 2-18w Fertility even more variable than other characters. Rarely becomes more fertile in 2d generation but generally, even in most fertile Hybrids, much more sterile. 556 wt The tendency to go back, he argues, wd prevent new species being formed by variation; but overlooks any mention of selection picking out the new form adapted to new end.- $1-5 \mathrm{~m} / \mathrm{w}$ (a) \rightarrow $\Uparrow 16-8 w$ Local \& constant varieties are different as long as new conditions are present, but change them \& the species will go back 557 wt (a) as opposed to those who believe genera are made by crossing of species, brings case of Verbascum with species most difficult to distinguish, yet most sterile.- $1-6 \mathrm{~m} / \mathrm{w}$ (a) $9-15 \mathrm{w}$ Thinks monstrosities not occurring more in Hybrids than pure species, though Kolreuter did think so.- 558 wt Has made 1000 artificial impregnations 1-2u "an | Befruchtungen" 559 $\Uparrow 17-13 w$ cases of Dwarf Hybrids enumerated by Kolreuter 561 11u $\uparrow / 14 u \sim / 11-16 w$ The doubling of calyx \& colouring of do., even in these genera, not once observed. 564 wt Hybrids become double like pure speciesDoes not seem more apt to be double $1-3 \mathrm{~m} /$ $2 u$ "Jäger"/wt Has described double flowers in all classes. $5658-12 \mathrm{~m} / \mathrm{w}$ rare case of double hybrid, if parents single $\uparrow 11-8 m / w$ sparing \& retarded dusting with pollen, most apt to bring double flowers $\uparrow 5-2 m / w$ (a) $w b$ (a) Hybrids more inclined to double than * pure species 566 10-15m/w It wd appear that this stock was impregnated by Plants 100 yards off - $5677 c / w \notin, ~ \Uparrow 14 c / w \notin, ~ \Uparrow 13-7 w$ luxuriant growth no doubt necessary for doubling, but some other cause shown to exist $\pi 3-1 m / w$ near Hot Spring several Plants double $5681-4 w$ cases of wild flower double $\Uparrow 4 w \tau 569 w t$ (a) This seems to agree with male organs being most easily rendered sterile in Hybrids. $4-7 \mathrm{~m} / \mathrm{w}$ female organs more often spared from changes in double flowers (a) $7 \mathrm{~m}, 10-14 \mathrm{w}$ The coupling of stamens in Hybrids the opposite of Doubling. $\Uparrow 10-5 \mathrm{~m} / \mathrm{w}$ Pistil more often converted into Petals in pure species than in Hybrids. 571 $\Uparrow 13-10 \mathrm{~m} / \mathrm{w}$ Monstrous Sea-hound with 2 heads $5727-10 w$ it is remarkable that vegetative strength owing to sterility does not disturb rest of flower $\uparrow 15-1 w$ The Pollen \& ovules themselves must have to be modified: the variation is not due to mere mixture of two kinds of cells $\Uparrow 3-2 m / w / w b$ very strange that corolla as altered * stamen is not modified in Hybrids. wb In the second generation of Hybrids we have much
variation, which is kind of monstrosity 574 wt xxx This remark very curious \& bears on what I have shown The large genera var most. I do not know whether remark applied to wild or tame. If wild $*$ as I fancy all is right. If tame it wd indicate that my explanation of spreading \& favourable conditions must be superseded by some new law. Could it be tested by Loudon, ascertaining the proportion of genera with single species. by Lindley??? $1-2 w$ Shd this rule hold for domestic plants, then we may account for it by variability being necessary to improve plant. $2-3 w$ As I thought of doing with Domestic animals. Wd it be good to take domestic Plants \& see proportion of species to genera??? (or do it all by Loudon. that wd be best) according to Nat Family \& whole Kingdom. 5-7w Maize has one (or two Molina!?) species) $8-10 w$ Rye has only 2 species Rice only one? $\$ 12 u \uparrow / w$ Hardly vary at all anywhere $\uparrow 10-9 u \star / w$ These vary vastly $\uparrow 10-4 m / w$ (B) $\uparrow 7-4 m / w$ xxx (a) $\Uparrow 1 w$ aescutus Horsechesnut 1a "macrostemma" Red Horsechesnut $w b$ (a) Q Some have thought that single species of genera do not vary (Man!) much, but case of Platanus given $w b$ (B) But the Platanus of Pavia have more than one species as far as I can find out 575 wt Admits the crossing in cultivation must check the ausartung of plants but doubts whether this holds in wild Plants!!! 1$9 m, 15-18 m / w$ variation affects every part of Plant. $\uparrow 13-7 w$ crossing of species \& varieties an evident cause of variation $\uparrow 4-1 \mathrm{~m} / \mathrm{w}$ variability quite $*$ owing to mongreling than to external agency $5761-3 m / w$ Van Mons 2 kinds of variation $13-17 \mathrm{~m} / \mathrm{w}$ some varieties are constant but crosses of where vars. very variable $18-22 \mathrm{~m} / \mathrm{w}$ White Dahlias not one white seedling $\uparrow 3 u$ "zum Theil" $/ \uparrow 5-1 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ all agree that vars cross \& produce partly more fertile * offspring, than the pure parents.- But exceptions as on next Page $5773 a$ "von"/wt at $p .87$ says these two vars grown in garden always kept pure. 3-4u "Cucurbitalmajor", 3-8w These unite with great difficulty, but offspring very variable \& fruitful $8-10 \mathrm{~m} / \mathrm{Qa}, 8-10 \mathrm{~m} / \mathrm{w}$ says some vars of Dogs, some crosses are more fertile than others Ask $14-18 u \mathrm{a} / \mathrm{w} \mathrm{K}$. calls these stabile vars. (Gaertner the following; some Botanists consider as species $21 u$ "unserer 1 fortpflanzen" $/ w$ finds like Herbert the vars of Hollyock constant. $23 u$ "Lychnis" $24 u$ "phoenicea" $/ w$ (A) *, $\uparrow 11-5 m / w$ Mongrels like offspring of simple Hybrids, only more variable, (which surely might be expected

GAERTNER, BASTARDERZEUGUNG: 577
C.D) $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ case of variability in varieties wb (A) These true species in relation to variability like Mongrels, in fertility like Hybrids.- Yet Lychnis is wild \& not cultivated Plant see p. 582 at top 578 wt In Cucurbitae, on same plant often two kinds of fruit in shape \& flavor $1 u \uparrow / 1-4 m / w$ (B) $6 w \tau, 7-8 u \leftrightarrow /$ w Important $8 w$ intermediate \& this is commonest in close species see p. $28313 u$ "früher" $/ 16 \mathrm{~m} / 9-20 \mathrm{w}$ The uninjured \& often increased fertility of mongrels, accounted for by luxuriance of Hybrids (I do not see this) \& says he finds garden Plants varied from crossing vars. are earlier than ordinary vegetables. (The earliness is hardly same as greater fertility.) ? ask table. V to each line/w On account of greater but not equal to pure species fertility. Kolreuter considered these as only vars: * G. thinks from actual experiments $\%$ only the Hyosciamus as true varieties, because by cultivation one turned into other. $w b$ Steudel makes agrestis a Synonym of H. niger G. says they turned into each other $5795-6 u \wedge / w$ same conclusions regarding these $7 u$ "Bastard", $10 u$ "Bastarde" $/ 11 u$ "absolut" $/ 8-14 w$ says fruitfulness of Hybrids not absolutely * proof of parents being only varieties $7-8 \mathrm{~m}, 9-11 \mathrm{~m} /$ w ask author, I fancy means only some fertility. wb Examples of Hybrids very fertile but not as fertile as pure parents $w b$. These are not hybrids, but nearly the union of two pure species. 580 table.w The hybrid from these quite sterile $\Uparrow 20-1 w$ seems to admit quite the crossing of varieties left to themselves \& may be cause of return of vars to parent forms. says mongrels in their variation in successive generations may be classed like the Hybrids, which he has classed. 581 wt Says besides infertility Mongrels differ from Hybrids in * varying in the first generation whereas Hybrids vary in 2d or in paternal \& maternal reductions. He gives no case of wild varieties, when first crossed varying more than mongrels; at least I cannot remark any. $1-4 m / w$ (a) $6 u$ "andere | Bastarde" $/ w$ in other respects like Hybrid only more like to pure species. 8 m , $10-25 w$ He evidently considers these very important characteristic differences (just respecting p.273) between $\&$ crossing species \& varieties $\uparrow 4-1 m \quad 582 \quad 1-4 m / w$ mainly repeats p. 577 9-10w more accessible to impregnation of other vars $12-13 w$ More tendency to revert to parent form $14-17 \mathrm{~m} / \mathrm{w}$ more variable $18 u$ "gewöhnlich"|18-19w commonly more fertile $\uparrow 6-1 m / w$ (a) $w b$ (a) Lecoq states great variability in Iris,
supported by observations of Berg, hence suspect that there may be variety-bastards So necessary to show no need of crossing look at Potatoes \& Maize \& Rice!!! * 585 4$7 w$ The smaller proportion of Hybrids are "intermediate" 586 $\uparrow 14-12 \mathrm{~m} / \mathrm{w}$ speaks of law of both organs being ready at same time! $5872 a$ "Wimmer" * $15 /$ all folling numbers wrong $\Uparrow 10 w \notin, w b$ see Corrigenda 589 16c/ $w \notin 5902 u a / w$ Natural Hybrids 5-8m 591 7$17 \mathrm{~m} / \mathrm{w}$ cases of Verbascum self-formed Hybrids, yet offspring these Hybrids excessively sterile. $598 \Uparrow 15-11 \mathrm{~m} / w$ (a) $w b$ says not know how long \& in what limits keep true. but wheat shows how long can be preserved under same conditions. 601 8$10 \mathrm{~m} / \mathrm{w}$ The inner nature of Plants cannot be judged from outside.- $6024 u$ "paniculata" 3 3$6 \mathrm{~m} / \mathrm{w}$ He puts Mother first \& Father after, some have followed an opposite course 605 $\Uparrow 8-3 m$, wb Thinks the facts of Hybridisation show that original species forever remain true $6066-7 w$ all $Q \Uparrow 4-1 m$, $w b$ as varieties can generally be propagated, as known for centuries, any alteration, if they ever occur, requires careful observation.- $607 \Uparrow 8-3 \mathrm{~m} / \mathrm{w}$ (a) $w b$ Points in which grafted Plants do differ from same raised by seed 608 6-10w sometimes less fruitful, sometimes more.10?, $16 u$ "vollkommenere" $/ 17 u$ "zahlreichere"| 18u "Geschmack|Früchte"/16-22w seedlings generally bear more perfect \& more numerous seeds than when grafted. $\uparrow 13-7 w$ sometimes life rendered longer, sometimes shorter $\uparrow 4-1 w$ longer in foreign trees $60910-$ $14 \mathrm{~m} / \mathrm{w}$ evergreen oak grafted on common cast leaves \& Daphne laureola flowered in winter 15-22w effect of one Pear grafted on an earlier kind was to make it actually later! $23 w \tau, \Uparrow 10 w$, 10 true is right $\Uparrow 6 w \tau, \pi 3 c / w \notin$ $611 \Uparrow 11 u$ "Oleander" $/ w$ cases of mottled leaves affecting the Stock. 613 5-9w Even the wood keeps distinct at place of grafting. $6202 u$ "allein \mid vermischte" $\mid 5 u$ "selbst $\mid z u$ "|110 w a statement that two kinds of grapes branches split \& joined longitudinally produced striped fruit \& crossed foliages. G. does not believe. $\uparrow 8-5 w$ other similar cases $6219-13 m, \Uparrow 12-9 w$ objects that these are cases of sporting $\uparrow 5-2 \mathrm{~m} / \mathrm{w}$ ughO $6285-25 w$ case of sport in common Laburnum with flowers like C. Adami Is not this like the orchard case? Were they sterile? The sport \& parent in Austrian Bramble are sterile. (Herbert has shown are sterile. in Hort. Journal) $w b$ (B) He is dreadfully puzzled about the Laburnum case \& says not analogous to anything known $6294-12 m / 8 w$

B $\uparrow 14-4 w$ Power of grafting＊much longer than of hybridising；even very different genera（A）（It makes it the more remarkable that certain vars．shd．not do well together．） $\Uparrow 11 / \Uparrow 9 w \notin, \uparrow 7 / \Uparrow 6 w \tau, w b$（A）I think I have heard it said same Family．wb Syringa Fraxinus Olea Chrisanthus－all Oleaceae 630 wt The relation of the different kinds which can be grafted on same stock is very different from the relationship on which hybridisation depends $2-7 \mathrm{~m}, 8 \mathrm{~m} 6317-13 \mathrm{w}$ A certain affinity necessary beyond doubt．11c／ $w \notin, \Uparrow 16 w \tau, \uparrow 15 u$＂organischen Structur＂，$\uparrow 9-$ $8 u$＂die Individuen＂$/ \uparrow 11-5 w$ The above influences not only possibility of graft，but＊ fructification \＆duration of life $\uparrow 5-1 m$ ，$\uparrow 6 u$ ＂Familien－Affinität＂ $\mid w b$ Family affinity，though greater difference between the graft \＆stock in wood，yet permits the graft． $6328-9 \mathrm{~m} / \mathrm{u}$ ＂schlagen \mid Diel＂／Q／3－13w great difference in powers of grafting．Pear \＆Apple though altered will with difficulty graft．－Difference in reverse case $18 w$ Will not hybridise．$\uparrow 15-$ $12 \mathrm{~m} / \mathrm{w}$ can be grafted but not hybridised 633 $11 c / w \notin 635 \quad 5-7 m / 5-12 w$ Puvis speaks of grasses modifying but not exactly crossing． Has Wiegman shown that grasses cross？ $\Uparrow 10-4 m / w 2$ colours in turnips not capable of crossing $639 \Uparrow 14-11 m / \Uparrow 14-1 w$ Genera which have perfect pollen \＆ovaries，but produce commonly no good seed，but will produce if impregnated by pollen of same species， specially by pollen of another individual 641 $\Uparrow 4 m 648 \quad 9-12 w$ Mainly how they worked p．354，369，374） $15 u$＂Herbert＂$/ m / w$ See $651 \Uparrow 8-7 m / u$＂Unkenntnis｜Gewächsen＂，wb Ignorance of process of fructification in some plants has caused＊failures 653 wt cases in wh he failed but others succeeded $4-7 \mathrm{~m} / 7 \mathrm{u}$ ＂oben 1126 ＂，$介 13 m 6549-13 m / w$ has never seen ill effects from castration，except when all castrated．$\uparrow 9-5 m / w$（a）$w b$ Dichogamous plants less \＆capable of hybridising；\＆very liable to crypto－hermaphroditism．－ $6551-20 w$ （Can the pollen of another individual or var overpower own pollen？）－ $8-9 m / 8-12 w$ Best generally to castrate at moment of open－ ing of flower． $19 u$＂Leguminosen＂， $20 u$ ＂Malvaceen＂ $18-22 w$ Necessary have cut or open or partly or wholly cut away petals 22 － $23 u \leftrightarrow / 25-28 w$ Oenothera Epilobium Fuchsia Clarkia 22－23m／w（a）（Quoted）$\uparrow 9-7 w$ Lecoq says pollen of Fuchsia not shed for 3 days after flower opened $\Uparrow 5-1 w$ even whole corolla can be removed without injury to seeds $w b$（a）Anther＊ripe before opening of flowers in these Families \＆the fructification takes place not only some
hours，but even days before flowers open． Then how do Cruciferae \＆Peas cross？？ 656 $16 w$ Pincers $65714-18 w$ cut with scissor or pull off stamens，not touch anthers $658 \uparrow 16 w$ （a）$\Uparrow 4 m, w b$ Stigma of Lobelia in own climate seldom protrudes till lost capacity of being impregnated，\＆hence species bears no seed，but if anthers drawn over stigma produce plants．－I think this is meaning． 659 $1-2 m / w$ Pistil grows in Geum after impregnation．$\Uparrow 15-11 w$ By many plants pollen \＆ovaries not ready at same time $\uparrow 7-$ $4 m / w$ Impregnate easily，because Pollen keeps its strength $w b$ Stigma generally ready when flowers open，but sometimes not ready for some time afterwards 660 9－12w Repeats impregnation several times． $662 w t$ Cultivated in Pots so thus excluded from cross impregnation $1-4 m 663 \Uparrow 9-1 m / w$ The artificial impreg of many flowers on same plant injurious to it．－ 664 wt（a）The impregnation with own pollen，\＆fertility always greater than in any Hybrid，\＆equal or at least near Natural fertility，but sometimes less．－Really this accounts for the（i a）of Hybrids． $2-10 \mathrm{~m} / \mathrm{w}$（a） 10 m 665 $11-15 w$ Plants to be fertilised in chamber facing S．E． 666 1c／w $w 667$ 11－15w Many Hybrids bring seed in Pots，but not in open land． $6701 \mathrm{~m} / \mathrm{wt}$ Isolation only superfluous in exotic plants when only one present $4-5 u$ ＂Diel Nothwendigkeit＂$/ 2-8 \mathrm{~m} / \mathrm{w}$ speaks of the absolute necessity of isolation（\＆so does Lecoq）which all shows how some crossing goes on． $8 \mathrm{~m}, 14-16 \mathrm{w}$ cutting off all flowers injurious 674 〈fn nos corrected〉 $6753 m 677$ 〈fn nos corrected） 678 §5 $6794 u$＂ganzen Habitus＂， $5 u$＂M．longiflora＂， $14 u$＂ 5,2 ＂， $15 w$ intermediate $16 u$＂ 12,5 ＂， $17 u$＂ 3 ＂，$\uparrow 10-9 u$ ＂Farbe IJalapa＂，$\uparrow 8 u \leftrightarrow, \uparrow 10-5 \mathrm{~m} / \mathrm{w}$ seed of this Hybrid returned to two distinct parent forms． $w b+\&$ so in Maize I am nearly sure 2．vars of seeds in Mongrels $683 \Uparrow 18-15 w$ fertility varies more in different experiments． $684 w t$ （Get Hooker to read over this list）There are important facts $*$ in this Table not noticed in my abstract or results．3－7w instances of series of fertility $12-13 w$ count how many pure species have（ K ）when self impregnated See whether any difference in two vars．，I have seen to Verbascum $22 w$ Mothers name first $\Uparrow 12 w$ succeeded with Kolreuter $\Uparrow 11 w=$ arvensis Loudon Cat．$\Uparrow 10 w$ $=$ arvensis Steudel $\Uparrow 8 u$＂ 9 ＂，$\uparrow 15-3 w$ I do not think same species Herbert succeeded see p． 653 are these the English species？（yes．） $\| 1 w$ no of flowers no of fruit $w b$ See how many genera no result，\＆genera I believe

GAERTNER, BASTARDERZEUGUNG: 684
with close species: this bears on vars. $w b$ I shd trust this more * (see case p.706) more information given ? of results of self impregnation The very near to approach to (K) \& yet the rarity of actual (K) makes me think the effect of artificial fecundation. 685 wt Hooker thinks that probably Canadensis \& atropurpurea, are merely synonyms: Hooker thinks Canadensis \& vulgaris distinct $5 w$ Siberia $8 w$ var. Hooker $9 w$ of vulgaris ?? $12-13 w$ Steudel var of atro-purpurea $14 w$ This means hybrid crossed by Father $22 w$ What Ask author Steudel makes var of atropurpurea $26 w / 27 w$ var of vulgaris $28 w$ var of atropurpur $\uparrow 13$?, $\Uparrow 10$?, $\Uparrow 3 w$ var. of vulgaris $w b$ viridiflora is a Siberian species of Pallas var. of atropurpurea according to Steudel 686 wt In this country Hooker says C. littoralis or maritimum is considered a very close but distinct species $1 w$ var of vulgaris $3 \mathrm{~m}, 12-15 \mathrm{~m} / \mathrm{w}$ Steudel makes synonyms $13 w$ Prop. Poll $\Uparrow 23-17 w$ Dr Hooker considers undoubtedly vars. except steticumO $\uparrow 22 w$ Prop pol $\Uparrow 19 w$ wild var $\Uparrow 18 w$ Prop poll w wild var $\Uparrow 16-1 w$ in text p. 197 \& elsewhere Maritimus is spoken of as crossing with C . Behen Must be a misprint. anyhow C. Maritimus $=S$. inflata according to Steudel.- $\uparrow 15 w$ very different Hooker $\Uparrow 14 u, \Uparrow 14-1 w$ all these i a \&c are from crossing varieties. wb (species names equivalent to Silene inflata Steudel) Some authors think Silene italicus, pilosa There is nothing in Loudon Catalogue to make me doubt the conclus $68719 m, 25 w=$ incornis of Kolreuter 688 wt Asa Gray considers the D. tabula as var of D. Stramonium \& introduced into America Dr. Bromfield in Phytologist says he has tried every gradation between these two forms \& yet here not fertile (K). This then is case of some sterility, if we are to trust the same class of facts as we infer sterility from.- $\ddagger w$ See p. 385 for degree of sterility of D. tabula \& stram $\uparrow 23 w$ ActaO $\Uparrow 13 w=$ plumaria Linn. $689 \Uparrow 20 w$ Prop. Poll $69517 w$ Prop. Poll. $696 \pi 18 w$ Croatia $\Uparrow 11 w \star, \pi 1 w$ perhaps var. $697 w t$ [p. 225 Much important on reciprocal crosses in Digitalis.] $11 w$ var of last Lindley makes $12 w$ perhaps \& var $17 w$ some think var of 2. last $17 w$ ambigua of Kolreuter p. 175 ambigua anyhow probably distinct 19/20w perhaps var $\Uparrow 19 w$ var. of ferruginea acc to Lindley 698 $2 m / w t=$ angustifolium Steudel $\langle u$ henceforth: numbers in cols. 2 and 3$\rangle 6 u / w$ Prop pol $7 u, 6-$ $15 \mathrm{~m} / \mathrm{w}$ crosses more fertile than with own pollen. 10w Yet Newman says quite fertile $15 u / w$ Prop. poll. $22 w$ Prop. Poll. $\pi 8 w$ Dr

Salter Bell says quite fertile Phytologist 699 $18 m, \Uparrow 19 w=$ niger $\Uparrow 18 w=$ niger Probably vars. $\uparrow 13 w=$ niger? $\uparrow 12 w=$ niger $\Uparrow 12-11 w$ perhaps vars. $w b$ p.578. G. says agrestis $=$ albus as known by experiment - Steudel makes albus distinct $-70010 \mathrm{w}=$ undulata $\Uparrow 20 w$ I think Herbert p. 345 succeeded \& they sowed themselves. $\uparrow 19 u /!, \$ 13-12 m$, $\Uparrow 8-7 m / w$ Prop. Poll $701 \pi 13 m d / x \diamond, \Uparrow 7 x / w$ Prop. poll $7027-8 m d, 11 m, \Uparrow 18 w$ Prop. pollen $\Uparrow 13 m / w$ Prop Pol $\Uparrow 10 w$ This is speciosa fertile according to Herbert p. $34670314 w=$ sylvestris $15 w$ Prop pollen $15-20 \mathrm{~m} / \mathrm{w}$ see my slip of Paper about Synonyms $18 w$ var. self $\operatorname{im} 20 w=$ dioica $23 m, 24 w=$ Silene nicosa $\Uparrow 18 m, \Uparrow 13 w=$ Silene $w b$ It is evident from Steudel that Silene, Lychnis \& Cucurbitum all most closely allied 704 9w p385. contradicted $\uparrow 16-12 m / w$ Here it is evident that first cross normal $\uparrow 16-7 m / w$ Prop. pollen $70522 m / 23 m / 25 m / 23-25 m / w$ see Beitrage p598. \& compare with p. 385 of this Book. Shows that (K) is quite correct $\Uparrow 13 / \Uparrow 12 / \Uparrow 11 m$ $7064 u / 1-4 m / w$ What differences $19 u, 20 \mathrm{~m} /!!$, $24 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m}, 27 \mathrm{~m}, 19-27 \mathrm{w}$ (This very important) see Koelreuter about this. $23 m$, $30 m$, $\Uparrow 19 x / w$ Loudon ten week start O $\Uparrow 18 m$, $\Uparrow 16 x / w$ smooth $\Uparrow 15 m$, $\Uparrow 7 m / w$ Prop. poll. wb These seem distinct \& $7072 \mathrm{~m} / \mathrm{w}$ Kolreuter raised them $4 \mathrm{~m} /$?, $25 \mathrm{~m} / \mathrm{w}$ Sageret raised them p. $35 \Uparrow 5 m, w b$ according to Steudel nearly all these are true species of Nicotiana $70826 m / w$ f $29 m 709 \Uparrow 15 m 711$ $\Uparrow 9 m / w \otimes^{2}$ Prop P. $7134 m, 9 m 71727 w=$ Lamarckian 718 22-23m/w p. 168 some authors think vars. $\uparrow 19 u / m / w$ Prop $\Uparrow 18 u$, $\Uparrow 18-11 m / w$ More fertile than with own pollen $\Uparrow 12 u / m / w$ others have succeeded $7196 w \notin$, $9 w$ or cocanus $16 w$ cocanus $20 w=$ vidacea St $22 \mathrm{~m} / \mathrm{w}$ see Herbert p. 379 More fertile than either parent $7203 w=$ vulgaris $14-30 \mathrm{~m} / \mathrm{w}$ Here are plenty of undoubted vars. producing only i a.- Great effect of artificial impregnation or separation in House. 14 m , $15 m, 20 \mathrm{~m}, 21 u \leftrightarrow / m, 29 m, 30 \mathrm{~m}, 32 \mathrm{~m} / \mathrm{w}$ This really only cross between two peas 32 m , $33 m, 34 m 721$ wt number of Flower wt of Fruit $5 w$ Prop. Poll 15w Prop pollen $22 w$ vars fertile $\Uparrow 24 w$ Florist var of Oxlip. Oxlip primrose $\uparrow 24 w$ Not normal or $\mathrm{K} \Uparrow 23-21 m$, $\Uparrow 20-19 \mathrm{~m}, ~ \Uparrow 17-15 c$ <c henceforth: entries in cols. 2, 3 and 4 crossed out), $\uparrow 14 w$ Oxlip $\uparrow 13-$ $3 w$ p. 247 it is evident that he did cross elatior \& officinalis, Table not correct $\uparrow 13-$ $12 m$, $\Uparrow 11 c$, $\uparrow 10 c, \Uparrow 9-8 m, \Uparrow 7-5 m / w$ cowslip $\Uparrow 4 w$ cowslip Elatior $\uparrow 4-1 m k_{0}, w b$ If this be elatior calycantha, most strange 722 wt I see he has not tried Primula proprio polline $3 c$,
$4 c, 5 w$ Cowslip $6 w$ primrose $6-7 m, 8 c, 9 c$, 10 w Oxlip var $11 w$ Oxlip. $16 \mathrm{w}=$ floridum $\Uparrow 16 w$ Prop. poll. $\uparrow 15 w$ Silene inflata $\uparrow 14 m / w$ S $\uparrow 13 w$ S. pilosa $\uparrow 12 w$ S. italicus $72326 w$ Prop Polline $\uparrow 10 w$ Prop. poll. wb 1 see Moerch considers same species p549 Gaertner says perhaps only varieties $724 w t$ It is impossible to make out whether vars. albus \& luteus are put first \& second on principle or by chance $3 u, 3-4 w \downarrow, 4 w$ Yellow? Yes says p. $2805-7 \mathrm{md}$, 10 w , $8-$ $14 w$. Colour? If Yellow half agrees \& opposed to rule of vars. of same colour most opposed 21 w agrees with $20-25 \mathrm{~m}, 30 \mathrm{w} 1845$ 1827/ $18 \Uparrow 14 w$ Blattaria $\Uparrow 8 w$ Colour? $\uparrow 8 m /$ $w b$ Steudel make = virgatum, which is yellow $\Uparrow 1 x$ /w $2861617253-4 m, 9 w$ yellow 10$13 \mathrm{md} / \mathrm{w}$ opposed to rule $17 w$ Probably yellow, both parents being yellow 17-27w Even Babington admits there are 2 coloured vars of V . Iychnitis $20 \mathrm{~m}, 26 \mathrm{~m}, 29 \rightarrow, 30 c\langle c$ henceforth: whole entry crossed out), 32c/w These lines merely guiding 34c, 37c, 39c, $\Uparrow 13 / \Uparrow 7 / \Uparrow 4 / \Uparrow 3 / \Uparrow 2 c, \pi 10 / \Uparrow 8 / \pi 6 / \Uparrow 5 / \Uparrow 1 m, w b 226$ 182. 119. $142 \times 7261 w$ Colour see Index not in index $19 \mathrm{~m}, 25 \mathrm{w}$ yellow $26-28 \mathrm{md} /$ $w \bullet, \Uparrow 21 w$ yellow $\uparrow 9-\Uparrow 20 \rightarrow, \pi 9 ?, \pi 9 c, w b 234$ x $837273 w$ yellow $5 m, 6-11 \rightarrow, 7-8 w$ opposed to rule 11c/w why luteo put first? $15 w$ Purple $28 w$ yellow $\uparrow 20 w$ why luteo put first $w b 179$ - 201×68728 wt years no of flowers number of seed $1 w$ bright yellow $2 m$, $4-9 \rightarrow$, $19 w$ yellow $20-23 \rightarrow, 22-28 \rightarrow$, $\uparrow 13-$ $12 u *\langle$ first 4 columns $\rangle / w \times 13884 \pi 11 w=$ Scrophyll $\uparrow 8-1 m / \Uparrow 8-1 m \varepsilon_{0} / w$ vars yet all i B . \& i g. wb $22730 . \mathrm{b} 62 m, 73 m 73462 w$ at Hort Soc.? account of experiment with Peas, see to this $67 w$ Berg Read variation of Leguminosa 17w Read 73682 m , 110-112m $737129 \mathrm{~m}, ~ 137 \mathrm{w}$ • $138140-141 \mathrm{md}$, 145/146m/ w Read 149-152m/w Herbert $\%, 152$ Worth reading or consulting p. 145 of Book 157 w See to this Blyth $738186-188 \mathrm{~m} / \mathrm{w}$ seeds retaining long vegetating power 191w Omalius disputes vars going back $207 w$ See to this $3 m, 25-26 w$ Read Girou on vars of Cucurb crossing Sageret do not crossing $26 x$ * 740 X.10m/x/w Read 742 18-19m/x 743 XVIII.15x $74427 \mathrm{~m} / \mathrm{w}$ Read on curious sport in Oenothera $47-48 \mathrm{~m} / \mathrm{w}$ Read on the 2 Anagallis being vars. 745 11-12m 746 XXI. $2 w$ Read $3 m / w$ Beitrage $6-7 \mathrm{~m} / \mathrm{w}$ Read XXII.1$2 w$ Read $74717 w$ Zuccarini on sterility of Oxalis from C. of Good Hope $22 w$ Read 24 $25 \mathrm{~m} / \mathrm{w}$ Read $27 w$ Read $28 w$ Read XXIII.7w Read $21 w$ Read 748 98-99m $75259 \mathrm{~m} / \mathrm{w}$ But opposed to much alteration Perhaps worth reading $54 m / w$ cases of transformed plants
p. 500 text 55 w nothing $56 \mathrm{~m}, 57 \mathrm{~m} 75321 \mathrm{~m} / \mathrm{w}$ on duration of seeds 754 8). $5 \mathrm{~m}, 10$). 3 w p. 540 755 13). $13 \mathrm{~m} / \mathrm{w}$ read 756 XXXIV. 2 md , $3 w$ See $4 w$ very important Puvis $6 w$ Read $12-17 m$, $17 w$ Sageret read $19 w$ Herbert $20 w$ Read wb To get titles it will be necessary to look over these notes at beginning of these notes, for it is impossible to make out by Index the titles 757 23w Read? 45w Theophrastus on crossing plants: how old! $51 w$ I dare say V. Baer quoted by Lecoq in V. Berg $52 w$ on variation of lris 759 XXXVII. $2 w$ Read Link on relation of grafting to Hybridisation $3 w$ Puvis Read?? I have got impression that Puvis no good authority 760 $46 w$ Read? $53 w \times$ Read $76164 w$ Diel XXXVIII. 5 Puvis on crossing of grasses $22 . w$ x Beitrage on pollen \& Stigma being ready at different times 762 45w Read 763 Blyth.m 778 Lychniti-pyramidatum.m 781.b $2 m * 789$ Vater.w 253790 "Wahlverwandtschaft".u/w "Elective affinity" Chemical term Dict.

GASTALDI, Bartolomeo Lake habitations and pre-historic remains trans. C.H. Chambers; London; Longman, Green, Longman \& Roberts; 1865 [Down]
NB O/
GAUDRY, Albert Animaux fossiles du Mont Léberon P. Fischer \& R. Tournouër; 1873 [Down, I]
ex, ti, tm
13 25-27m 75 6-13m 89 1-2m, 26-32m 91 19$23 m 9229-31 m, w b$ Yes these are old forms generally verging to extinction Jäger $931-3 m$ 94 9-15m, 28-32m 96 1-4m

GAUDRY, Albert Animaux fossiles et géologie de l'Attique Paris; F. Savy; 1862 [Down]

GAUDRY, Albert Les Enchaînements $d u$ monde animal dans les temps géologiques Paris; F. Savy; 1878 [Down, I]

GAUSSOIN, Eugene The island of Navassa illustrated Boston; 1866 [Down]

GEE, Samuel Auscultation and percussion London; Smith, Elder \& Co.; 1870 [Down, probably FD]

GEGENBAUR, Carl Elements of comparative anatomy trans. F. Jeffrey Bell, revised \& with preface by E. Ray Lankester; London; Macmillan \& Co.; 1878 [Down, I]
〈markings by FD>

GEGENBAUR，Carl Grundzüge der vergleich－ enden Anatomie 2nd edn；Leipzig；Wilhelm Engelmann； 1870 ［Down，I］
v $25 m, 26 m$
GEGENBAUR，Carl Manuel d＇anatomie comparée trans．C．Vogt；Paris；C．Reinwald \＆Cie．； 1874 ［Down］ phy
NB 37 fibre－cartilage
37 21－24m／22－23u＂tissul fibreux＂ 38 11－15m \wp

GEGENBAUR，Carl Untersuchungen zur vergleichenden Anatomie der Wirbelthiere 3 Hefte；Leipzig；1864－1872［Down，I］\wp

GEIGER，Lazarus Zur Entwickelungs－ geschichte der Menschheit Stuttgart；F．G． Gotta＇schen； 1871 ［Down］\wp

GEIKIE，James The great ice age 2nd edn； London；Daldy，Isbister \＆Co．； 1877 ［CUL，I， ED］
geo，t，ti
NB1 0
362 Glaciation S．of Thames
364 O Glaciation
$30 \diamond$ Glaciation \diamond
405；427；0；521；548；550； 554
NB2 427 Post－glacial Mammoth \＆ Rhinoceros；547； 564
226 ；374 Erratum？；p． 14 at top．at you speak of glacier theory before iceberg theory；but I heard of iceberg theory \＆ alluded to icebergs in S．Am．at last of \＆c but glacier theory 415．Holsts；Axel Blytt also p．545
Skertchly What a first－rate observer whom I believe always on sound observations
484 Glaciation in S．Hemisphere； 506 Stones standing on end
1220 m 3411 m 786 m 854 m 101 zb 1332 m 191 19m 226 12－23m $22737 m 32612 m 374$ 14a＂certainly＂， $14 c$＂posterior＂， $14 w$ anterior 386 15－20m，22－38m 415 37－41m 41620 m 427 $24 u$＂postglacial＂，27－31m， $29 u$＂mommoth rhinoceros＂ $4427-8 m 4851-9 m 4878-9 m 488$ 11－13m 491 16－19m 492 14－16m，20－22m 496 $13-15 m, 29-31 m, 36-37 \mathrm{~m} 4995-7 \mathrm{~m} 502$ 20－ $22 m 50416-18 m, 25-27 m 50532-35 m 506$ 15－ $21 m 511$ 11－13m $5212-5 m 5242-5 m, 23-26 m$ 527 19－23m，24－29m，31m 528 6－10m，16－ $20 \mathrm{~m}, 27-30 \mathrm{~m} 5291-3 m 5304-7 m, 8-10 \mathrm{~m} 531$ $-4-6 m, 31-34 m 5325-7 m 53318-20 m 534$ 19－
$20 m 540$ 10－15m 541 16－18m，27－30m 542 2－ $4 m 545$ 3－13m，42－45m 547 26－30m／w sub－ sequent to great glacial deposit $5481-3 m$ ， 29－31m 550 18－21m $55111-15 m, 37-39 m 554$ $1-2 m, 13-14 m 55515-18 m 5563-6 m, 26-28 m$ $5594-7 m 5638-10 m, 18-21 m 56418-23 m$ ， $27-30 m 5655-7 m 56734-37 m 56844-47 m$ $61318 z$

GEIKIE，James Prehistoric Europe：a geological sketch London；Stanford； 1881 ［CUL，I］ geo
NB1 132 －brick earth covering gravel； 165 Do
409；414； 432 or（500）；457； 335 \＆Chap XIV
loess（Mackintosh Erratics of England as far as Wolverhampton）
Mr．Kerr p230 Falkland Isds frequent
As a bay the Severn floods from melting of snow more turbid than from rains．
101；111； 112
NB2 166 Richthofen
〈rest by FD＞
$386 m 503-8 m$ ，11－14m／12－13u＂equablel times＂ $548-12 m 75$ 介15－11m 89 介9－6m 101 $10-12 m 1024-8 m 11114-17 \mathrm{~m} 112$ 介7－4m 114 13－18m／w Conclusions $1178-11 \mathrm{~m} 11813 \mathrm{~m}$ $132 \Uparrow 3-1 m 15413 m 16511-13 m 166 \quad 1-5 m$ $16710-13 \mathrm{~m} 239 \Uparrow 7 \mathrm{~m} 260 \Uparrow 11 \mathrm{~m} 261 \mathrm{zb} 263$ 16－20m 335 介7－2m $34715 m 3558 m 414$ 介16－ $13 m, \Uparrow 10-3 m 420 \Uparrow 11-9 m / z$（drawing），$\uparrow 7-3 m$ $42111-15 \mathrm{~m} / \mathrm{z}$（drawing）， $20-24 \mathrm{~m} / \mathrm{z}$（drawing） $42210-15 m, \Uparrow 10-7 m, \Uparrow 2-1 m 425 \Uparrow 12 \mathrm{~m} / \mathrm{u}$ ＂Oaks＂ 428 5－8m $4325-7 m, 15-17 m 4352-4 m$ 457 9－15m 461 介 $23-19 m$ ，$\Uparrow 17-16 m / \Uparrow 17 u$ ＂consisting｜pine＂，$\uparrow 12-7 \mathrm{~m} 46211-15 \mathrm{~m}$ ，17－ $21 \mathrm{~m} / 20-21 u$＂rot l bogs＂ $483 \Uparrow 2-1 m 486 \Uparrow 3-1 m$ 487 介7－3m $4887-9 m 495 \Uparrow 14-10 m, \Uparrow 1 m 544$ $14-16 m 5529-12 m 553 \Uparrow 12-9 m 554 \Uparrow 9 m 555$ $12-15 m 561$ 介 $9-6 m$

GENTRY，Thomas G．Life－histories of the birds of eastern Pennsylvania Philadelphia， 1876 ［I］［CUL．1900］
beh，v
NB1 O／
NB2 I have read only first part
Very Dull
Variability of nesting
GEOFFROY SAINT－HILAIRE，Étienne Principes de philosophie zoologique Paris； Pichon \＆Didier； 1830 ［CUL］
af， cr, em ，he，ig，mn，rd， $\mathrm{sp}, \mathrm{tm}, \mathrm{v}$

SB $\square \beta$
65 Curious statement on what plan animals created（good to put at end of Chapt．6）Qan It is proper to speak of him shortly as M ． Geoffroy
214 Law of connexion invariable
215 Properly speaking there is but one animal
215 Q Monstrosities，always resembles other species（allude to this in Ch．7）
216 speaks of ultimate form of species as irrevocable！
218 Does not seem to attribute Unity to inheritance for speaks of it as Law
11 3－10m 12 4－15m 19 5－11m 32 18－30m （Milne Edwards） $335-10 \mathrm{~m}, 11-15 \mathrm{~m}$（Savigny） 49 8－12m（Laurencet，Meyranx） 55 26－29m 56 19－22m $57 \quad 1-4 m 5923-27 \mathrm{~m} / \mathrm{w}$ ancestral \＆ modern types 61 19－23m $65 \quad 12 u$＂parl composition＂，14u＂ressemblance＂，23－24w Curious words $26-29 m, 26^{\prime \prime} \ldots, 27 Q \notin, 27 u$ ＂bien I fécond＂｜28－29m，wb I demur to this alone $661-4 m / 1 a$＂nature＂$/ w t$ all this will follow from selection．The unity of course due to inheritance 69 18－31m（Cuvier，Serres） 71 12－24m 83 3－16m 111 18－22m 114 18－23m $1151-7 m 2091-6 m 2101-20 \mathrm{~m} / \mathrm{w} / / 1-5 \mathrm{w}$ As it appears to me strongest argument against G．H．is existence of trees，which are so hardly separateO from animals 214 4－6m 215 $1-5 \mathrm{~m}$ ，16－28m／21－23Q／26u＂développement naturelle＂ 216 1－15m（Tiedemann，Serres）／8－9u ＂irrévocablement＂！！，17－21m 217 18－26m 218 wt All this is not G．H．writing but he approves \＆publishes it $4-18 m / 10-12!/ 10 u$ ＂laisser 1 distraire＂ $111 u$＂des Iorganes＂｜14－15u ＂parlimposée＂，18－21m，24－26！／25u＂créés 219 25－30m 222 1－16m（Cuvier）

GEOFFROY SAINT HILAIRE，Isidore Essais de zoologie générale Paris；De Roret； 1841 ［CUL，S］
ad，af，beh，br，cr，ds，f，gd，he，hy，ig，in，is， rd，sl，sp，sx，sy，t，tm，v，wd，y
NB Read 420 to 468 again
SB $\square R$
$\frac{1}{83}$
$\overline{8} 3$ With respect to rudiments Vicq d＇Azyr says native does not depart from primitive model
90 old Geoffroy states never new organ－in relation to Electric Fishes 94 ＂Nature always works with same materials＂
142 on parallel series by＊Geoffroy
165 Goethe believed in Balancement
167 Believed in change of species，as did old Geoffroy．＂Modificateurs ambiants＂sur
l＇organisme＂．Yes this is his belief 247 Introduce in Preface
257 Distinction between tamed \＆domestic 260 On animals not breeding．Rein deer good case of animal not spreading not interfering with being domesticated in Ch． 2. M．S．add to case of Goose
281 argues well that F ．Cuviers doctrine of Sociability not only key to domestication 286 do
292 Pallas Spicilegia zoologica
〈over〉 2
297 Art．Mammifera Dict．Class．Hist．Nat．－ on colour of domestic quadrupeds
298 Cat intestine longer
299 Dog with splitO nostrils
306 We have no case of Spaniel or Blood Hound \＆with Savages（CD）
344 Mammals in close sub－groups do not differ much in size
350 Remarks on small isid having small mammals－see how small isld have mammals in Malay Archipelago 353 forgets Java \＆Sumatra！I contradict his statements flat－think of S．America formerly．
382 insists on difference of size in allied dogs． 381 Table of measurements．－All I need say is that author has insisted strongly on differences in size．compared to wild species
433 Old Geoffroy on degree of influence of external conditions on species－Mem．Acad． Tom．xi．p．93．－
〈over〉 3
442 Madagascar a fourth continent
445 Ceylon same mammals with India
491 On spots \＆c on young quadrupeds
493 Cross between gold，silver \＆common pheasant just mentioned \underline{Q}
496 Cases of ten species of Birds which have assumed male plumage
506 changes of habit in old Hen，like cocks
513 Horns growing on old female Deer
516 －His law of Mongrels \＆Hybrids．N．Q．
$75-8 m 4913-14 m / ? / w$ what $14-30 \mathrm{~m} 73$ 20－ 21 m （Newton） $753-6 \mathrm{~m} / 3-15 \mathrm{w}$ This argues against descent of species being held by the Geoffroy sect of Philosophers 76 26－28m 77 15－19m 79 28－29m（Leibnitz） 81 3－8m／4－6？， 25－32m（Herder，Demaillet，Cuvier） 82 20－23m， 26－27m（Vicq d＇Azyr） 83 1－2！／u＂générall regret＂，6－11w compare with Pig with solid Hoofs－ $23-25 m, 29-31 m / 24-31 w$ compare in this respect skull of Greyhound \＆Bull－dog－ $w b$ Decrease in size of Frontal Bone in Hornless ox：strictly analogous to the intermaxillary bone of man－ $8714-19 m$ ，$w b$

GEOFFROY, ZOOL. GEN
compare this fundamental idea with what Decandolle has shown has taken place in Cabbage.- $897-11 m \quad 90 \quad 17-23 \mathrm{~m} / 17 u^{\prime \prime} \mathrm{il} \mid$ nouveau", 27-28?/u "sélaciens", wb see previous note for reference $916-7 ? / 7 u$ "polyptères" 94 9-10"...", 10-12m 96 22-24m (E. Geoffroy) 142 19-22m 143 3-17m/7-10?, wb why Man more perfect than coleopterous Beetle or Bee 144 18-21m/19u "semble" 146 18-20m 147 23-28m (Serres) 148 27-29m (Blainville, Cuvier) 151 11-17m $1538-10 m$ (Goethe), $23 m$ (A. Saint Hilaire)/ w Botany 165 19-25m, wb What is developed more in Apterix in consequence of little wings.-?? 166 1-9m 167 10-11m/u "Goethe" "Buffon et Lamarck", $12-15 \mathrm{~m} / 13 \mathrm{u}$ "modificateurs ambiants" $18 u$ "1822", 23 u "docteur Koerte"/ $20-25 \mathrm{~m} / \mathrm{w}$ see this in Goethe's Works translated by Martins $16913-17 \mathrm{~m}$ (Duméril, Blainville, Goethe) 199 15-21m $2007-16 \mathrm{~m} 202$ 2-9m/3-4? 203 3-7m 205 8-21m 207 15-17m 232 25-28m (W. Edwards) 237 4-12m, 16$21 m / w$ assumed $26-28 m, 29 u$ "quelquefois nuls" 238 13-17m/19u "espèces sauvages", 23$24 m / 24 u$ "variables 1 inégaux" $23927-29 m, w b$ * true wild varieties, would be equally ready to sport $w b$ How comes it that there is species to every small variation of conditions? - so it is - How another question $2401-9 m / 1-2 u$ "rigoureusement fixée", $16-19 \mathrm{~m} / \mathrm{w}$ does not allude to selection $27-29 \mathrm{~m} / \mathrm{w}$ Man some involuntary selection 241 18-23m $24325-27 \mathrm{~m} /$ w don't understand $w b$ rest of this section Nothing 244 12-17md 246 24-29m (Dureau de la Malle) 247 12-17m, 26m (Buffon, Goethe, Lamarck) 257 1a/u "apprivoisement"/wt tame wild 1-2m/1a/u "captivité"/wt chained wild 23$24 m 2581-4 m, 10-11 m, 25-26 u$ "civettes \mid marabouts"/w Guanaco 259 wt capital cases of non-breeding $1-3 \mathrm{~m} / 3 \mathrm{ua}$, $6 a / u$ "gиépard" $/ 5-$ $6 w$ hunting leopard $6-12 m, 8-9 u$ "éléphant", 17-19m, 27-29m, wb In case of Elephant, cannot be considered as weakling - when we consider feats in war - less so than the stunted elephants in North India - 260 wt/1$19 w$ Ferret not very tame yet breeds not less tame than many of Renggers quadrupeds- $18-20 \mathrm{~m}, 19 \mathrm{u}$ "mais \mid race", 24 $25 m, 25 u$ "mais 1 mêmes", wb The effects becoming hereditary, show, that apprivoisement "tameness" has an effect on organization: hence is new condition. Hence sterility $=2615-15 w$ we must not assume camel could not $15-28 m / 18 w$ Buffalo?? 21u "partout"/w Camel?! 22w Rein Deer. 23-25m, $w b$ The present great diffusion, so different from other mammals, renders probable this is effect of acclimatisation - contrary of
camel. shows not necessary. 263 12-14m 265 $12-21 m, \quad 22-29 m d \quad 266 \quad 1 w * / 3-8 w \quad$ Aperia breeds readily in S. America Rengger 267 6$8 m, 13-16 m / 16 a$ "oie" Canada \& Chinese Geese $18-21 w$ Fallow \& Rein Deer? omitted 269 12a "lama"|8w 2 spec 13u "l'yack"/w Hybrid? 23-24u "temps immémorial" 272 fig.m 274 1-5m, 15-17m/16-17u \leftrightarrow, wb Neither Cat, nor Ferret social 277 6-7w Guinea pig No 8-13w Ass does yet - ferret - Rabbit $=$ Fowl - $9 u$ "sauvage" $/ 9-10 \mathrm{~m} / \mathrm{w}$ because not of much use 278 27-28m 279 1-5m (F. Cuvier), $8 u$ "solitaire I domestication" $/ 8-10 \mathrm{w}$ yet many quite tame 11-28m/11u "chat Ifuret" 280 1$5 m, 28-29 m 281$ 1-2u士, 5-6u "importance exclusive", $8-9 w$ Zebra $11-13 m / 12 w$ untame? 282 3-6m/5u "alimenter", 16-19m, 24-29m/w opposed by monkeys $w b$ this doubtless much easier in social intelligent animal feeding on vegetable food.- $2838-11 \mathrm{~m} / \mathrm{w}$ no, not in wild ducks $15-25 \mathrm{~m} 28416-19 \mathrm{~m}, 22-$ $26 m 2851-3 m, 5-15 w$ this last argument certainly shows that these species. as well as families probably were not easy to "tame". 11-13m, 14-17m, 17-22w Guanaco, would make one think some species happened to be as easy. $18-21 \mathrm{~m} 2861-4 w$ is this so? Lord Spenser 4-5m, 9-14m, 23-25m 287 9-12m, 22-29m/22-23u "plus|avantage"| $25 u$ "et 1 soumettre", wb Australian dog shows by what little advantage may be induced to take pains- $2891 u \leftrightarrow, 6-8!, 14-16 m, 27-28 m$ 292 24-26w In Royal Soc Library? 25-27m (Pallas)/u "Spicilegia zoologica" 293 12-14!/u↔ "fixitélespèce" $/ w$ in France 14-15u "quel encore", $19-20 \mathrm{~m} / \mathrm{u}, 21 u$ "variations", $22-23 u$ "dénuées |variations"/w 1- p.L; 2 p. 294294 $w b$ - only assumed there not proven - 295 $2 u$ "intensité", 9-10m (Cuvier) 296 wt would say descended from several wild types.- 1$5 m, 10-12 m /!$, 16-22m 297 3-5m, 13-14m 298 9-12m, 15-20m 299 3u "crânel supérieurement", 6-7w sudden varieties 9$12 \mathrm{~m} / 9 \mathrm{u}$ "autre|palmées" $30021 m$, wb The principal value of this Sect to me is showing other motives besides facility of variation, has determined the domesticated animal - \& therefore that variation would probably have occurred in nearly all, which must have been selected.- $3031 \mathrm{~m} / \mathrm{u}$ "de Pallas", 13-14m/?, 17-22m, 23-28m (Roulin) 305 13-16m 306 10$15 w$ non-selection 11-20m 307 wt The following sections not very important.- 312 $14-17 \mathrm{~m} 3138-9 \mathrm{~m} / 9 u$ "sil réussissait", $26-28 m$ (Temminck) $3146-8 m 31526-27 m / w$ no notice of selection 320 wt Mr Blyth 10?! 1-3m/u "six espèces" $11-12 \mathrm{~m} / 11 u \leftrightarrow, 19-21 \mathrm{~m}$ (Duvaucel, Cuvier), 29-30m 324 13-15m/13u "àldegré",
wb Spanish ass \& Sykes little ass 339 wt All these sections vague \& of little value to me $12-17 \mathrm{~m} / \mathrm{w}$ Lizards unevenly so $3403-6 \mathrm{~m}$, 13$19 m / w$ Whale \& smallest porpoise 342 10$12 m 3435-18 m$ (Blainville), $13 x / \rightarrow / w b$ in short in sub-genera no great diversity of size 344 $1-9 m, 4 x, 22-26 m, 27-29 m$, wb like what Lund says anciently was in Brazil- 346 4-9m, 1526m, wb Polar Bear! 349 7-14m, 17-18m, 24$26 m, w b$ was S. America once desert.- like Siberia $3506-7 u$ "très-petites" $?$?, 20-24m 351 1-5m (Virey)/ $2-3 u$ "ceux 1 déserts" $/ w$ S. Africa 352 17-24m, 20-24m, wb Bull grows large in Falkland ?- Horses smaller. = are the White Bulls very large? 353 11x, 13-15m/w Java!! Sumatra $21-25 m, 26-28 m, w b \mathrm{X}$ It is odd no fragment of continent - is it effect of few only being supported - their inter-breeding destroyed by men - Auroks decreased in Russian Forest 354 24-28m 355 21-23m/22u "cerfs" 356 3-5m, 9-12m, 17-20m 363 14-32m, 16-18!!/m, 17-25m 364 10-15m 366 1-3m, 24$29 m 367$ 9-14m 368 16-22m $3698-11 m 370$ $14-24 \mathrm{~m} / \mathrm{w}$ all very loose $3713-6 \mathrm{~m} 374$ 12$14 m, 24-28 m, w b$ Mountains $=$ Northern plains 375 12-18m/w How dreadfully false when thinking of Sumatra 376 wt Megalodon!! 377 16-19z 378 1-21w Fatness element peculiar to domestic animals \& Greater Prolificness $12-13 m / ? / u \leftrightarrow, \quad w b$ Domestic animals are forced into more various uses \& exposed to more varied conditions, hence change of size more - but differs only in degree \& not kind $3797-12 \mathrm{~m} /$ w The subsequent remarks well prove this = $23-27 \mathrm{~m} / 25-26 u \leftrightarrow, w b$ because not selected for this end- $38016 u$ "de chacal" $15-16 \mathrm{w}$ S. America! 382 7-13m, 14-16m, 21-23m, 26u "au furet", wb do they differ more than Cats.- 383 25m (Dureau de la Malle), wb Before referred to $3848-10 \mathrm{~m}, 15-29 \mathrm{~m} 385$ $w t / 1-14 \mathrm{~m} / \mathrm{w}$ Aug. 1841. Saw Shetland Pony exhibited. Whose at withers I measure was $321 / 2$ inches (\& less in centre of back) Beautifully formed - I presume have no aboriginal horses. $4 a$ "taille" $/ 8-9 w 34.9$ English Indes $12 \mathrm{~m} / \mathrm{u}$ "froides" $/ \mathrm{w}$ No India $14 u$ "est I connu" $3865-7 m 387$ 15-18m 388 9$11 m, 20-23 m 389$ 15-20m, 28-29m 390 19$24 m 392$ 16-20m 393 11-17m 404 24-29m (Villermé, Haller), 28-29w/wb \& doubtless hereditary $4051-m 407$ 10-25m/13-16? 415 24-28m 421 22-24m 430 9-12m 433 24-26m (E. Geoffroy) 434 1-7m, 7-14m, 16-24m (Cuvier) 435 1-6m $437 \quad 1-10 \mathrm{~m} / 3-5 \mathrm{w}$ dont understand $12-20 \mathrm{~m}$, wb He overlooks successive creations - not worth arguing against such a view as this pretended one of

Cuvier 438 1-5m, 17-20m/? $4401-3 m, 8-11 m$, 15-18m, 27-28m $44311 u$ "archipel Indien"|1016 w How absurd remarks India \& East Indian islds $25-28 \mathrm{~m} 44512-22 \mathrm{~m} 459$ 3-6m/5u "dans 1 individus", 18-24m 489 6-16m $490 \mathrm{wt} /$ $1-9 w$ The case of Irish Hare which turns when old, makes one suspect not final cause Acquatic birds being white V Dr Fleming - At least my theory will prevent those animals being white wh would be so injured by it- $3-7 \mathrm{~m} / \mathrm{x}, 27-28 \mathrm{~m} 49113 u$ "seul"/w ?? 15"..., 15-32m 492 8-12m, 20$24 m 493 \quad 22-26 m / 23-24 \mathrm{Q} 495$ 9-11m 496 9-10u "femelle|paon", $14 u$ "poule", $14 u$ "canard", 20u "dix espèces", 24-26m, 27-29m (Yarrell) 498 12-17m 499 27-29m 500 1-2m, $25-27 m 501$ 11-13m 504 1-4m, 10-13m, wb good case of adaptive sexual structure 505 $18-21 m, 24-26 m 5068-12 m$ (Home), $28-32 m$ $5071-2 m 5104-8 m$ (Edwards) $51110 u$ "poules d'Inde", 19u "encore"/w Blyth $5138 u$ "paons"/ $15-18 m, 22-29 m / 29 u$ "chevreuil" 516 6-14m, $17-22 m / 20-22 u \pm / 19-20 w$ N.Q.

GEOFFROY SAINT HILAIRE, Isidore Histoire générale et particulière des anomalies de l'organisation chez l'homme et les animaux 3 vols and atlas; Paris; J.B. Baillière; 1832-37 [CUL]
af, beh, br, ct, em, f, gd, h, he, hy, ig, in, mn , phy, rd, sp, sx, sy, t, tm, v, wd
vol. 1 NB Have I read the Philosophie Zoologique
p. 241 Book = Edwards Suites Races Humaines
(?p. 677 Book worth getting? most cases seem given in text) ??
p. 711 Coll of Surgeons worth consulting

16 wt Embryology 1-2m 18 11-14w What is difference? $14 u$ "l'âge embryonnaire" $/ m, 15 u$ "l'âge foetal" $228-14 m, 14-32 w$ I do not see how the reverse could be effected even if doubt monsters start from the germ 30-31u士 23 8-11m $246-7 m, 15-16 \mathrm{~m} / 16$ u "Loilsoi" 25 $1-3 \mathrm{~m} / \mathrm{m} 3912-17 \mathrm{~m} / 13 \mathrm{u}$ "quilses", $18-19 \mathrm{~m}$, $24-28 m / u \pm 5214-18 m, 25-26 m 531-3 m 59$ 29-33m $602-11 \mathrm{~m} / 5 u$ "leur $1 a_{\text {a ", }}$ 31-33m $6130-$ $32 \mathrm{~m} / 31-32 u$ "unlmême" $625-12 m, 30 \mathrm{~m} 64$ $28-31 m / 28-29 u$ "onlrudimens" 104 13-25m, 17-20m, 27-32m 105 26-32m/x, wb x I ought to apply it to Varieties $11518 u$ "unlplacés" "l'habile anatomiste", $20-22 \mathrm{~m} / 20-21 \mathrm{u} \leftrightarrow, 32 \rightarrow$ $11616-18 \mathrm{~m} / 18 u \quad 129 \quad 12-13 \mathrm{~m} / 12 u$ "extérieur congéniales", $30-31 \mathrm{md} / 31 \mathrm{u}$ "sont 1 congéniales" $13116-20 \mathrm{~m} / 18 u$ "foule 1 cas" $1439-14 \mathrm{~m} / 9 u \leftrightarrow /$ 13-14u土 147 7-9m/8u "mais|ans" 152 12$13 m, 15-17 m, 19 u$ "Dans \mid vieillesse", $21-23 m$,

GEOFFROY, HIST. GEN. ANOM. VOL. I 25-26u "fort 1 moyenne", 27 u "dont l'un", $28 u$ "lui", 31-33m 153 8-12m, $31 m 1544-12 m, 5-$ $8 m, 10-12 m / 11 u$ "dessus 1 moyenne" $/ 12 u$ "àl nain" 158 25-27m, wb p. 164 exception 159 6$9 \mathrm{~m} / 8-9 \mathrm{u}$ "bienlélevée", $16-18 \mathrm{~m}$, 21-30m 160 7-10m 161 13-32m 164 8-10m, 22-27m 165 7$12 m, 21-22 m$ (Blumenbach) wb Rengger gives plenty of cases 167 9-17m $18316-19 m$, 26$32 m 1849-12 m$, 28-32m 185 24-27m 186 1$3 m, 14-16 m 1894-8 m, 15-16 m 1907-15 m 191$ $22-26 m, 29-33 m, w b$ The Laws of growth \& reproduction being so allied, may it explain any of the facts of sterility? Hybrids not. 192 5-22m, 28-33m 193 29-33m 196 4-16m, 22$24 \mathrm{~m} / 22 u$ "transmissible" $\mid 23 u$ "Ill point" 208 24-31m 210 17-20m, 23-25m 211 2-4m, 17$21 m 213$ 1-4m, 19-33m 215 4-15m $2165 u$ "particulier", 6-8m, 29-33m 217 1-3m, 3-8m, 14-16m/15-16u "mais|tempérés" 218 29-31m 219 9-12m 220 6-9m/9m 221 1-6m, 8-13m, 21-26m, 32m (Dureau de la Malle) 222 12$14 m, 23-25 m 2239-17 \mathrm{~m} / \mathrm{w}$ This is case of animal being smaller northwards $19-24 m 224$ $30-33 \mathrm{~m} 225$ 5-9m 227 8-9m, 15-17m, 26-31m 229 3-16m 231 11-13m, 14-17m, 26-31m 236 26-33m 240 20-26m, 27-31m, 32w (Last page) Coll of Surgeons. 24133 m (Milne Edwards), wb New Edit? Never published Balliere 242 13-20m/13-16u士, 21-27m, 28$31 m 243$ 1-3m, 8-14m 253 4-8m, 21-23m, 24$26 m 254$ 1-3m 255 28-32m/w corn==cutter 258 26-28m, 29-33m/30u "dogues" 260 31$32 m 2611 m, 8-10 m, 19-22 m 262$ wbec $2637-$ $8 m / 7 u$ "frères 1 pesait", wbec $2695-12 m, 23-$ $28 \mathrm{~m} 2706-7 \mathrm{~m}$, 32-33m (Aristotle) 272 6-8m/ $u \pm, 14-17 m 27530-33 m 2741-4 m 276$ 28$29 \mathrm{~m} / \mathrm{Q} 2781-2 \mathrm{~m}, 29-31 m$ (Meckel), wb There seems gradation between Monsters of this class \& varieties. $2811-5 m, 5-7 m, 14-22 \mathrm{~m} / \mathrm{Q}$ 282 1-3m, 24-25m 284 1-2m, 11-12m, 13$14 m, 13-21 m, 22-24 m 28520-24 m / Q 286$ 1$20 \mathrm{~m}, 26-30 \mathrm{~m} 287$ 9-14m, 18-20m/Q 22-24m, $26-28 m, 28-31 \mathrm{~m} / 28-29 u \leftrightarrow, 29-33 m 2883-6 m$, $15-18 m, 30-33 m$ (Serres) $2897-11 m, 29-30 m$ 293 21-26m 294 8-15m, 30-31m 299 1-2m 305 $16-18 m 3063-6 m, 13-18 m / 16-22 w$ । do not agree 19-28m 307 1-7m, 25-27m (Schreber) 311 7-8m 315 17-19m, 23-25m 316 32-33m 317 20-28m 318 11-14md, 20-23md 319 1819 m 320 11-14m $3247-9 m, 10-12 \mathrm{~m}, 20-23 \mathrm{~m}$ 525 3-5m, 15-17m 326 13-15m 328 23-26m, 31-34m 334 29-30m 335 3-4m, 12-14m 337 wt Bay horses Goats Pigs Cows $1-3 m /$? 328 1$6 m, 12-14 m \quad 344 \quad 6-11 m / 7 u \quad$ "caractères 1 maladies", 28-32m/20u "était 1 mâle" 347 17$24 m 392$ 15-20m $4004-6 m$, 11-16m 404 27-29m, 30-32m (Meckel), wb X outer reversement not so explained 405 2-9m/4-

6??, 24-26m/24-25u "c'est|uterine" 408 19$22 \mathrm{~m} / 20 \mathrm{u}$ "cils 1 sourcils" 409 23-24m 410 17$20 \mathrm{~m}, 21 \mathrm{u}$ "de l'irritation", 22-24m, 27-28m/w shows how common. $41112-14 \mathrm{~m} / ? / 13 u$ "bouc", 15-16m, 28-30m 413 27-30m/29u "combien|situation" 414 5-8m, 16-21m 415 $11-14 m, 15-18 m, 21-23 m, 25-26 m 41625-27 m$ $4171 m 4188-9 m, 13-25 m / w$ This wd go to show that any part which has changed much will tend to change more. $16-18 \mathrm{~m} / \mathrm{Q} 42013-$ $17 \mathrm{~m}, 23-32 \mathrm{~m} 4214-16 \mathrm{~m}, 24-31 \mathrm{~m} 429$ 12-14m/ w bears out embryological view 29-31m 430 12-15m 431 2-3m 434 17-20m/18-19u "le। mâchoire", $22-25 \mathrm{~m} / 25-26 \mathrm{u}$ "de 1 surnuméraires", $27-30 \mathrm{~m}, 33 \mathrm{u}$ "la transposition" $4351-5 \mathrm{~m} 436$ 26-29m/27-28u "fréquemment" 437 1-6m, 11$13 m, 19-23 m 4398-10 m, 31-32 m 44018-23 m$ 441 24-25m (Serres), 32-33m 445 11-19m, 15$16 m 447$ 23-25m $45018-26 m 452$ 8-9m, 13$15 m$ (Breschet) $45316-18 m, 26-27 m 45620-$ $21 m 459 w t / 1-4 w \times$ there have been endless remarks such as this; but they appear vague, considering what endless diversity the whole series of animals must present. 5$7 m / x 462$ 3-6m 467 1-2m 470 11-13m 473 23$25 m 478$ 3-4m, 14-15m 479 19-21m 480 1-2m, $9-10 \mathrm{~m}, 26-28 \mathrm{~m} 48316-17 \mathrm{~m}, 20-21 \mathrm{~m} 484$ 1$33 w / w b$ Q Avoiding term of "development excentrique" I ought to say that variation parts, as trunks \& branches of arteries \& nerves, depend in some degree upon which are first developed in embryo, the first being most constant. 13-16m, 22-25m 485 1-33w/wt No case of hereditariness in any of these varieties, but then hard to discover how seldom father \& son dissected. 11-12m, 16$17 \mathrm{~m}, 27-29 m 4965 m, 8-11 m 5084-7 m 5091-$ $3 m, 13-15 m, 17-18 m 51524-26 m 527$ 2-5m 528 5-8m 531 10-13m, 18-21m 532 1-5m, 12$15 m, 22-25 m 53617-22 m, 29-33 m * 537$ 25$30 \mathrm{~m}, 31 u$ "affinitélsoi", $32 \mathrm{~m} / \rightarrow 538$ 17$22 m, 19-21 m 54022-25 m / Q 24-32 m, w b$ This perhaps may bear on some organ single in some animal \& double in another.- V. Cuvier Anat: Comp: $w b$ see next Page $5413-4 u$ "ordinairement médiane", $16-25 \mathrm{~m} / 17-18 \mathrm{Q} 32 \mathrm{~m}$ (Martin) 542 3-7m/5u "médiane"/9m/1-9w/wt some other cases of monstrosities have been given in Man \& Mammifers 544 24-26m 545 25-26m/Q 546 12-15m/Q 548 25-26m 549 1-3m 550 19-24m, 30-32m (Dr La Roche) 552 $10-15 m / 3-15 w$ See what Müller says on this Theory $31-33 m 5531-5 m, 15 m, 17-26 m$, 32$33 m 557$ 29-32m 558 1-9m 561 24-30m 564 $1-3 m, 3-5 m 5653-7 m 5791-2 m, 11-15 m 580$ 18-21m, 26-31m 581 23-26m 582 3-6m/5u "bien 1 poissons" $5831 \mathrm{~m}, 21-25 \mathrm{~m}, 27-28 \mathrm{~m}, 29-$ $33 \mathrm{~m} / 30 \mathrm{u}$ "nés I portée" 588 26-29m 589 24-30m

599 6－8m 601 15－17m，28－33m 603 1－2m 604 $4-8 m, 11-14 m 60514-18 m 60614-18 m, 29-$ $31 m 60724-26 \mathrm{~m} / \mathrm{w}$ ．This is hereditary Dict： Med：Sci：$w b$ This tendency to monstrosities by arrest of development，is perhaps allied to＂avitism＂．－No，sporting back of hybrids， where germ affected shows no connection with arrest of variation $6106-8 m 6131-3 m$ ， $4-5 m, 7 m 6141-2 m 6227-11 m, 13-16 m, 22-$ $26 \mathrm{~m} 6231-2 \mathrm{~m}, 5-6 \mathrm{~m} 6248-13 \mathrm{~m} 63014-17 \mathrm{~m} /$ $16-17 u \leftrightarrow 6315-7 m, 18-20 \mathrm{~m}, 22-23 \mathrm{~m} 6321-$ $2 m, 3-6 m, 13-14 m 6341-2 m / 1 u \leftrightarrow 63513-27 m$ （Meckel）／18－20Q 21u＂cuisselpied＂，32－33m $6361-3 m, 8-15 m, 29-32 m 63711-14 m, 28-$ $31 m 638 \quad 1-9 m, 27-28 m 641 \quad 25-27 m$（ ． Rousseau）642 17－22m，25－27m 643 17－24m 644 5－9m（Otto）， $10-13 m, 22-27 m 645$ 13－ $16 \mathrm{~m} / 14 u$＂au｜plupart＂，26－29m 648 6－7m，20－ $21 m, 28-31 m 64914-16 m 6501-3 m$ ，1－6m， $9 m, 11-13 m, 28-29 m 651$ 10－14m 655 11－12m 656 27－30m 657 1－5m，28－30m 658 1－4m，26－ 28 m （Borel，Danz） 659 1－8m，22－24m，28－29m （Gavard，Soemmerring）， $29 u$＂chez I nègre＂ 660 $3-6 m, 12-17 \mathrm{~m}, ~ 26-29 m 627-11 \mathrm{~m}, 12-13 m$ ， $15 a$＂général＂of homologous organs varying $16-17 \mathrm{~m}, 32-33 \mathrm{~m} 6658-9 \mathrm{~m}, 10-12 \mathrm{~m}, 14-17 \mathrm{~m}$ ， $22-25 m 66612-13 m, 16-20 m, 24-26 m 6672-$ $6 m, 13-18 m, 27-29 m 6681 m, 5-7 m, 13 m 669$ $10-13 m 6701-3 m, 3-9 m 6718-13 m, 16-19 m$ $672 \quad 17-19 m \quad 673 \quad 4-5 m$ ， $16-19 m, \quad 20 \mathrm{w}$ Another 21－22x $22 m, 23-26 m 6742-4 m$ ， $26-27 m / x \geqslant 67524-28 m 67622-23 m, 24-25 m$ $6777-8 \mathrm{~m} / 8 u$＂rudiment＂， $10 u$＂orteils arrondi＂， $13-14 u \leftrightarrow, 17-18 \mathrm{~m} / 18 u$＂quelfille＂， $33-35 m$（Béchet） 678 1－13w inheritance of diminished fingers $3-6 m, 4 u$＂leurs incomplètement＂， $10-11 \mathrm{~m}, 10 \mathrm{u}$＂étaient rudimentaires＂$/ 11 \mathrm{u}$＂Le père＂， $12-13 \mathrm{~m}, 16 u$＂de moignon＂$/ w$ rudiment in the father $22 u$ ＂réduits＂$/ 21-22 w$ in granddaughter $26-29 \mathrm{~m} /$ $26 u$＂par diminution＂$/ 28 u$＂par augmentation＂ $68117 w$ to $7026823-6 m, 4-5 m, 11-14 m$ ， $13 m 68313-15 m / 3-29 w$ How often have light monstrosities accompanied grave ones．30－ $33 m 6843-10 m$ ， $12-13 m / x / u$＂le chien＂ 685 wt x quite regular so is to be counted $17-18 \mathrm{~m} / \mathrm{x} 68630-31 \mathrm{~m} 6873-4 m$ ，9－11m， $13-15 m 68826-28 m / x$ 689 $1-2 m / x$ ，8－10m／ x ， $10 u$＂trois doigts＂， $18-19 m / 19 u \$$ ＂cinq＂，20－22m，31－33m／x（F．Cuvier），32－ $33 u \leftrightarrow 6906 u$＂deux＂， $7 x$／u＂cheval＂，13－ $15 m, 17-22 m, 18-22 m$ 692 10－11m，19－22m／ x ， $25-32 \mathrm{~m} / \mathrm{w}$ rudimentary organ variable 30－31u＂presquelterre＂ $6931-2 m, 3-4 x$ ，6－ $8 m / x$ \＆ $10-11 m 6941-2 w$ two thumbs $2-7 m$ ， $9-10 x$ ，23－24m，28－29x 33 m （Bechstein） $6956-8 m, 15-16 x * 69614-18 m, 20-21 m 697$ $13-15 m \quad 699 \quad 20-24 m \quad 700 \quad 8-10 m, 14-15 w$
grandchildren $20 u$＂quatrième génération＂，23－ $26 \mathrm{~m}, 28-29 \mathrm{~m}, 30-31 \mathrm{~m} 7011-2 \mathrm{~m} / x$ ，3－4m， $13 u \leftrightarrow, 14-16 \mathrm{~m} 7021 u$＂poils＂，5－6m 70617 m $71016-22 m, 24-25 m, 29-31 m / w$ yet no abortive parts $7112-3 m, 9-12 m, 14 u$＂même d＇hommes＂，16u＂M．Percy＂，25u＂se développe＂， $28 u \leftrightarrow, 32-34 m, w b$ Consult for Cows 712 11－15m 716 7－9m，26－28m 717 20u ＂des oiseaux＂， 23 u＂oiseaux＂｜！？，31－33m 718 8－ $10 m 719$ 23－25m 721 3－5m 722 18－21m，22－ $23 m 729$ 12－15m（Jussieu）， $30 \mathrm{~m} 73010-12 \mathrm{~m}$ 731 14－18m，7－10m／9u＂rudimentaire＂ 736 3－ $4 m, 13-16 m 737$ 8－12m，13－17m（Martin Saint Ange）
vol． 2 NB1 200 Classification
NB2＂Traité élémentaire＂．w X
SB1 Abortive organs
Hereditariness
Period of Monstrosity supervening cause of
Are rudimentary parts more variable than other parts？
〈over〉 26；44；60；63；110；134；137；144； 196；210；214；221；223；224；229；233；234； 243；249；251；262；288；344；375；382；393； 395；399；403；407；409；413；415；441；464； 470；477；512； 519
Use the word anomaly for his variations or often Monstrosities Usage＂anomaly＂is not quite correct
SB2 $\square \mathrm{R}$
1 Vol 2
29 shells to left in vars．\＆species of same Family
$57 \& 110$ on change in habits in old Hens 110 on Carps with imperfect female organ like neuters（Ch．9）
210 on rudiments of limbs． 223 hereditary in Dog．
224．some rudiment almost always present．－ 395 do．
413 certain monstrosities more common in certain species than others，－quite inexplicable．－
The intermaxillary bone when it appears in man is only a rudiment，\＆yet it occasionally appears so here we have a tendency in a rudiment to appear
SB3 ロK
Vol I Study of Monstrosities
39 admits that arrests of Development do not apply to variation．
104 Correlation of Monstrosities
115 dispute M．Vernière
116 Monst like other animals X 285 Carp． X 276 Q Compensation Ch．Kidney \＆ super－vent capill
－ 281 Most abnormalities in abnormal

GEOFFROY，HIST．GEN．ANOM．VOL．II organs．
294 young spotted old mature
－ 418 organs most change in position which during normal development change most
484 X Q Parts earliest developed vary least because later formed affected by earlier
635 Muscles of arms when monstrous take after legs－Homologous parts $X Q$
692 rudimentary organs variable
Vol 3.
$352 \times$ trunk so frequent in Pig．－relation between monstrosities \＆varieties
392 first forms tend monstrous because late organs must be affected by first formed （Andral） X Q \mathbb{Q}_{0}
402 correlation of Monstrosity without apparent cause X Q
〈over〉 406 distinction between amount of development \＆of position
437 Monstrosities resembling lower animals X Q
$265-7 m, 8-10 m / 9-10 u \leftrightarrow, 14-21 w$ Sowerby facts show almost hereditary $25-27 \mathrm{~m} 273-$ $5 \mathrm{~m}, 8 \mathrm{u}$＂Canalifêres＂， $12 u$＂cinqlque＂，14－16m， $16 u$＂très ${ }^{n}$ nombre＂，$\quad 29-32 \mathrm{~m} / 31 u$＂Helix nemoralis＂，wb over $\rightarrow 28$ 22－25m 29 1－2m， 2－3m，7－8m，11u＂genre｜physes＂，17－19m，26－ $27 \mathrm{~m} 4417-21 \mathrm{~m}$（Serres） $578-9 m / 7-11 \mathrm{w}$ does not Yarrell say that they fight？ $23-25 m 60$ $14-15 m, 15-36 w$ p． 57 \＆ 110 There is analogy （？）in change of instances of old Hen－birds \＆ mules，with instincts of neuter insects \＆ castrated cocks $22-23 m 6317-21 m 11020-$ $25 m$（Gaspard） $13414-29 m 13713 \mathrm{~m} / \mathrm{u}$＂del séminale＂ $1441-7 \mathrm{~m} 19614-17 \mathrm{~m}, 26-33 \mathrm{~m} 197$ 15－17m（Blainville）， $18-21 \mathrm{~m} 21024-25 u$＂très－ rudimentaires＂，$\quad 25-27 \mathrm{~m} 211 \quad 1-2 \mathrm{~m} / 1 u$ ＂rudimentaires＂， $24-27 \mathrm{~m} / 26 u$＂soudés 1 eux＂$/ 27 u$ ＂rudiment＂ 214 12－13u＂d＇un moignon＂，13－ $15 \mathrm{~m} / 13 u$＂terminél par＂ 144 ＂imparfaits 1 rudimentaires＂ 221 21－23m 222 28－30m／28u ＂de｜non＂ 223 2－4m／w hereditary rudiment $3 u \leftrightarrow$ ，6u＂moignonslcourts＂ 224 1－2u↔，2－ $7 \mathrm{~m} / 4 u \leftrightarrow 228$ 23－30m $2293-9 m$（Schenckius）， $27-29 m, 33 \rightarrow 23015-19 m / 16 u \leftrightarrow 23322-24 m$ ， 28－32m 234 1－2m，3－5m，23－28m 243 3－4m／u ＂on linférieure＂，13－14m， $14 u$＂soudés । longueur＂， 16 u ＂plus fréquemment＂， $21 \mathrm{~m} / \mathrm{u}$ ＂soudés＂， $31-33 \mathrm{~m} / 33 u \leftrightarrow 249 \quad 11-14 \mathrm{~m} / 14 u$ ＂renfermel deux＂，17u士 251 12－14m／14u＂parl non＂ $2626-9 u \pm / w t / 1-13 w$ does not hereditariness prove this，or may same cause affect embryo in its growth？7－11m， 20－21m 288 18u＂de l＇éventration＂，20－24m， $31-32 m$ ，wb xx often before remarked Monstrosity in one part it seems，causes
monstrosities in may other parts 289 12－ $13 x x / u \leftrightarrow 3442-7 m 375$ 17－21m，wb May be mentioned as one of the laws governing variation $=$ in what cases have we double organs in one species becoming single in another．Womb？ 382 9－13m／9u＂représentés＂， $27-28 m, 28 u$＂les 1 des＂ $38317 u$＂atrophiel complète＂， $18-19 \mathrm{~m}, 18 \mathrm{u}$＂nasal＂， 19 u ＂représentel extérieur＂， $22-27 \mathrm{~m} / \rightarrow 38511 u$＂àl l＇extérieur＂，12u＂Intérieurement I contraire＂ 393 15－25m（Meckel） 395 13u↔，14－18m／16u ＂attentifltoujours＂／ 17 u ＂cartilages informes＂， $w b$ It is remarkable that many of the former monstrosities of the head，not uncommon with man has never been observed in animals $3993-4 m, 29 m 403 w t / 1-7 w$ There is most evident gradation in this sort of rudimentary organ $9-11 \mathrm{~m} / 10 \mathrm{u}$＂elles । rudimentaires＂，12－13u＂Les I celles＂ 407 1－9m／ w this may be very important $41022-30 \mathrm{~m}$ 411 11－14m／12u＂lapin＂ $4133 u$＂pourquoi＂，7－ $8 u \leftrightarrow, 15-18 m 415$ 15－20m 441 3－6m／4－6u↔ 464 17－21／18u＂atrophie complète＂ 470 22－24m 477 15－17m $5127-11 m 5134-5 m 5191-4 m$ ， 27－32m 536 13－20m 537 16－18m／16u＂en général＂，28－33m 549 20－25m，29－31m 550 $17 u$＂Ellesidépourvues＂ 551 1－8m，10－11u ＂mais｜constatée＂，11－12u＂c＇est！dentition＂ 552 13－16m，17－20m 560 7－9u＂car 1 distinct＂，11u ＂l＇autrel contraire＂， $12 u$＂parties accidentelles＂， 18－24m（Meckel）／18－22u士 561 17－21m 562 28－ $33 m$（Bichât） 564 22－25m
vol． 3 NB 187 Zoology Double Headed WormsX
Owen says this book inaccurate－M．de Serres not to be trusted；some truth in law of Excentricity V Müller－Meckel good authority p． 503 Try experiments on eggs galvanize them－
SB1 $\square \mathfrak{R}\langle 3$ sheets〉
1 Vol 3
111．The perfect union of one leg or arm of some double monsters very striking
284 －on some double monsters breeding， opposed to their sterility but then it is the one perfect which breeds 377 fertile generally．
350 domestic animals，like man，have numerous variations in veins
352 monsters occur differently in number \＆ head in different species－a trunk specially common in Ele ．Pigs．－ 355 in wild animals very few monstrosities－there is evident relation between monsters \＆varieties
392．organs or parts later formed，always must be affected by causes producing monstrosities．Quote Andral－on first formed
least monstrous－（shows most monstrosities do not come on very early）
402 on coexistence of monstrosities，without any evident relation of parts．
〈over〉
406．distinction between arrest of devel－ opment \＆of formation
437 Q cases of monstrosities in man resembling Lower animals resulting from permanence of embryonic condition
448 －intimate parallelism between the embryonic，zoological \＆teratological series． 456 again insists on law of number varying in part when numerous，\＆being in itself variable
456 Summary on laws governing variation－ generally rudiments－（hence cause does not act very early）
462 On homologous parts uniting both in monstrosities \＆in Nature．－Do not some account for this by division of cells at some period of growth？？
479 on germs being originally monstrous
499 arguments for monstrosities being produced late \＆ 500 Read， 503 See Ray Catalogue）．－506，7
〈over〉 3 Tom． 3
347 －throws over imagination having any effect on nature of monstrosity．392．Q
593 －summary of Laws of monstrosity， nothing new
604 on parallel series in zoology
609 good instances，showing how easily final causes may be falsely invented．
SB2 Owen
de Soi pour soi－Centripetal Law－ Balancement des organs－M．de Serres－ old Geoffroy；Isidore；－Meckel；－Carus
〈over〉 Vol 3
I．St．Hilaire．Anomalies
p．89．p． 111
p． 134 shows how all parts go together
138143151
172 －at 267 skim chapters to 349
246257261264279284321350 to 359 376 to 279391 to 418428 to 547551
p592 p． 597 p． 602 p． 604 p． 606 p． 608
$897-9 m, 18-20 u$＂restent｜grêles＂， $24 u$＂elles｜ même＂， $29 m 901-3 m 1118-14 m / x, 25-26 m$ ， $w b$ the perfect union of the two adjoining arms or legs of some of these monsters，is very striking． $13425-29 m 1356-7 m, 32-33 m$ （Serres） 138 4－8m 143 22－24m $15123-27 m$ 172 wt X this，I suppose consists of two limbs united．p． 157 8－11m／9u＂cel membre＂ $1874-5 m, 25-27 m$（Pallas） 246 11－14m／5－28w case of a perfect＊individual bearing
another head with no trunk on it－How curious this new course of the arteries 12－ $14 m / u \pm, 21 u$＂n＇avoirlaucune＂ 257 9－12m，29－ $31 m /$ ？ $26114-17 m / 17 u \leftrightarrow / 12-26 w$ because the jaw is generally only developed in these parasites－good instance of this Law of＂soi pour soi＂wb V．p． 285 where this is discussed．X N．B I dont see why if a jaw， considered as an amorphous mass，be considered as an individual－why not an additional finger shd not？He wd answer because as additional finger makes asymmetrical part of the perfect individual：－ yet why not law of＂soi pour soi＂put this finger in proper place－improbable 264 1－ $12 m, 20-21 m / 21 u$＂mais loiseaux＂，22－24m 279 24－26m， $27 u$＂chez｜grenouille＂ 284 2－3m，4－ 6m，12－14m，16－19m，20－22m 285 28－32m 286 15－17m，17u↔ 321 14－21m，13u＂des originairement＂／15u＂qu＇un seul＂／18？／w what $18 u$＂épigénèse＂，22－28m $3504-6 \mathrm{~m} / 5 \mathrm{u} \leftrightarrow$ ， 7－9m， $7 u$＂ses｜vaisseaux＂，10－12m，10－11u ＂sinon Imoins＂ 351 19m， $20 u$＂ 3,000 nais－ sances＂ 352 21－23m／22u土 353 3－5m，7－11m／ $x / \mathrm{Q} 17-20 \mathrm{~m}, 22-24 m, 29 m 3541-3 m, 8-9 m$ ， 13－15m 355 1－7m／2w not domesticated ？ 8－14m，20a＂classes＂Mammifers \＆Birds 22－ 24m／23－24u土，28－33m 356 6u＂quelcerf＂， $7 u$ ＂lièvre｜taupe＂，8－9u士 359 15－17m，28－31m 376 25－27m 377 1－2u↔，11－16m 378 9－10m， 14－17m，25－28m，30－32m 379 3－4m， $7 u \leftrightarrow, 8 u$ ＂sont lectroméliens＂， $11 u$＂donc｜de＂， $12 u$ ＂monstruosités ectroméliens＂， $15-20 \mathrm{~m} 391$ 16－ $18 m / w$（a）next page $3921-4 m, 5-8 m / x$ ，7－ $9 m, 9-10 m, 17-19 m, 20-22 m, 25-28 m, 29-$ 30m，31－32m（Andral）／Q 393 1－5m，6－8m／w a ＊9－12m，29－30m／u↔，wb（a）＊Does not this explain variability of hair－size \＆c \＆C ？Q 394 17－20m，22－27m，32－33m（Serres） 395 1－ $2 m, 5-6 m, 7-18 w$ surely in embryos the heart is hear to beat very soon？V．Müller 3977 7－ $11 m 39827-31 m / w$（a）（B）$w b$（B）Therefore applicable to any part，as skin，which has no central，uniting point 400 17－20m，24－25m 402 $4-8 m / x / /^{\prime . . . "}$＂Q $40328-30 \mathrm{~m} 405$ 1－6m／2－3u士， 7－9m，20－21m，22－23m，29－30m 406 2－4m， $15-16 m, 31-33 m 407$ 2－4m，16－18m，22－24m 408 10－12m 414 20－23m，24－29m 415 1－5m 416 8－9u＂faitelféminin＂，9－12m／10u＂del hémitéries＂$/ w$ clitoris？ $13-15 m, 22 u$＂et l douteuse＂$/ 14-24 m / w$ pooh！a tailless animal excess of development because man has no tail！！ 417 11－16m，19－22m 418 13－16m 428 14－ 19m，21－23m，28－30m 433 3－7m，30－33m 434 $11-16 m \quad 435$ 24－28m 436 13－15u＂Les I supérieurs＂／？， $17 u \leftrightarrow, 18-24 m / 20-23 Q 4372-$ 5Q 11－17m／11u＂parlqueue＂， $15 u$＂absencel biliaire＂， $22 u$＂cloaque＂， $22 u$＂lal matrice＂，18－

GEOFFROY, HIST. GEN. ANOM. VOL. III
26m/25-26u "bifurcation \mid pénial", 28-30m, 30-
$33 m 438$ 1-4m/1u "parldes", 5-23m/13-15?/
$13 u$ "la|profonde" $114 u$ "diverses cavités" 439 2-10m/5-7?, $15-20 m / 18-19 w$ pooh! $20 u$ "chezlanoures", $21-27 m \quad 440 \quad 23-27 m \quad 441$ 10-11m, $15-27 \mathrm{~m} / 19 w$ pooh! 448 21a "embryonnaires" He means embryological $21 u$ "les l espèces", 24-25u土/20-30w What is this? No variation from a likeness of the parents can be strictly normal - 449 4-5w V. next page xxx so be cautious- $8-10 \mathrm{w}$ all this he considers only analogy.- $11-13 m, 16-17 m$, 20-26m 450 9-15m, 18-20m (Serres), wb NB in case of limbless, tailless, fingerless races (\& reverse) the hereditariness must come on at nearly same age (as in horns) for the early foetus has not these parts.- $4511-19 m$, wb $x x x$ according to the bearing of this discussion, there wd be only an analogy, between a man become fat by much eating, or large \& one born \& fat or large; * which I think is false?-4525-11m 456 22-31w What is Owens law? about these organs? is it that the reduction of these organs is one step in development $24-27 m / Q / 26 u$ "variabilité anomale", $27-31 m / 30 u$ "constantelimportante" $4571-4 m$, $5-11 m / 6-7 u \pm, 9-13 w$ \& more chance of exposure to new conditions? 14-16u "par|spinal", 15-20w when any connection but not in so pairs 23-25m, 28$33 m / 32-33 u \leftrightarrow 4581-3 m, 4-10 m, 14-20 m /$ $18 u$ "quelconservés", $19 u$ "rudimentaires 1 formations", 27-28w no examples $29 u \leftrightarrow \rightarrow$, 30$32 m 4591-4 m / 1 u$ "avecldes" $4605-17 m$, 29$31 m 46129-32 m / 32 u$ "seulement" $4628-9 m / u$ "semblables 1 analogues", $18-20 m, 21 u$ "Loilsoi" 463 9-11m, 24-25m/25u "chezlcomposés", 26$28 m, 29-31 m 46420-22 m, 28-30 m 465$ 30$33 m 47917-18 m, 18-31 m$, wb I shd think the cause must be often anterior to impregnation $4997-9 m, 16-17 m, 24-27 m 500 w t / 1-16 w$ Hereditary \& legless Dogs \& Men with polydactylism show that germ can communicate such tendency $2-3 \mathrm{~m}, 14-16 \mathrm{~m}, 18-$ $33 w$ according to this male wo have no influence in producing monstrosities $2 \overline{2 w}$ see Ray Catalogue $22-24 \mathrm{~m} / \mathrm{m}, 25-27 \mathrm{~m} / 25 u$ "t.xxxiv"/26-27m/27u "t.1511", wb Study this to see whether small deviations as long legs \&c were produced - In plants we know it is from treatment of parents \& out of generation $-14-16 w$ III $5011-4 m$, wb I must allude to III this when 1 give my view of cause of deviations to parent treatment before impregnation $50211-13 m, 14-16 m$, $13 u$ "soit simples", 14-15u "atrophielyeux", 22-26m $5031-3 m, 2-4 u \leftrightarrow, 27-30 m / 28 w$ Where? 506 26-28m $507 w t / 1-5 w$ in plants it
may be said gestation of seeds causes anomaly - but seeing what effect male pollen can do, I shd greatly doubt $1-9 m, 11-$ $14 w$ This applies to all slight deviations 12 15m, 20m, 21-22u "quilmême", 22-23m, 25$28 m, 29 u$ "delanciens" 510 13-17m 515 1-3m, 4-17m, 21-23m/22u "nilentièrement" 516 2$6 m 521$ 4-7m 522 29-31m 523 4-8m, 9-14m 524 5-8m, 18-20m (Serres) 526 2-7m 529 25$27 m 5301-6 m, 8-14 m, 28-31 m / 29 u$ "problème complétement" $5311-3 m / 2 u$ "cettelforce" 534 4-6m 541 4-8m 542 11-13m, 14-17m 543 13$16 m 54513-15 m, 24-27 m 547$ 3-5m, 15-19m, 25-30m 551 24-27m, 25u "congéniauxl originels" 592 3- $6 m, 29-31 m 5931 m, 22-27 m /$ 26-27u "quelnombre", $29 u$ "pèrelsoi", $32 \rightarrow$ 594 6u "Théorielarrêts" 597 9-11m, 32-33m 602 19-22m (Cuvier), 29-30m, wb X Reflect of the possibility of classification of monsters (and many other $\%$ artificial things) is showing that classification may be quite independent of any theory of origin, as I suppose is implied in Natural Classification $6047 \mathrm{~m} / u$ "parallélisme 1 séries", 12-17w agrees with Forbes $13-18 \mathrm{~m} / 18-19 u \pm, 20-24 m, 30-$ $32 m 605$ 12-13m 606 3-4m/3u "cettel que" 608 $7-8 \mathrm{md} / \mathrm{wt} * / 1-15 \mathrm{w}$ rather attributes species to monstrous births than to small changes. 28-29m, $28 u$ "profondeur", $29 u$ "espèces animales", $7 x \rightarrow 609$ 23-24↔X, 13-15m, $22 u$ "encorelintelligence", $24 u$ "qu'ilslla", 26u "nelque" $61313 m 61419 m, 28 m, 32 m, 37 m$ $6153 m, 9 m 6185 m$ Catalogue, 1 11-12w Read Skimmed through

GEOFFROY SAINT HILAIRE, Isidore Histoire naturelle générale des règnes organiques 3 vols; Paris; Victor Masson; 1854-62 [CUL] br, ex, f, gd, geo, h, he, hy, ig, in, is, sl, sp, sx, sy, v, wd

vol. 1 NB Read

SB $\square \beta$

- 4; 10; 14; 431; a miserable Book - all words, words, words
Abstact Feb. 58
5 Dog not mentioned in Genesis
14 Goats with pendant ears
4 14-15m 5 20-21m $104-7 m 1120-24 m 121$ $3 m, 4-8 m 1422-24 m, 25-29 m 43110-14 m$, 21-22m, 24-27m
vol. 2 NB On Man 167 to 260
SB $\square \beta$
On extinction I have too much overlooked subsidence of isld like St Helena \&c volcanic outburst \&c \&c
vol 2

185 Rank of Man Man
－How are teeth in Sirenidae－yes they have but not very ample＊naked？Man Elephant
－216；243 Man凶；287；304； 311 to； 1 apply races only to domestic productions － 383 to 438 History of Believers in modification Say that I shall notice only the m conspic writers－when I began I had no idea of rest of catalogue
－p． 431 －to p． 438 Isidores own argument that species change．
－441；448；474，476；482，485，
$488 \rightarrow$ Reference about White Ants important for me； 498 －Must include sexes
Explain that I use his race in particular man
185 2－13m（Linnaeus） 213 24－26m 216 1－7m， $9-11 m / 8-14 w$ variation \＆sexual difference going together $17-19 \mathrm{~m} / 17 \mathrm{u}$＂lion－marin＂， $25 u$ ＂cravate I gau＂$/ 21-26 \mathrm{~m} / \mathrm{w}$ I thought some sexual differences in Monkeys？？vide my Notes．－27－28m，30－31m，wb How in young Nylgaus V．Andrew Smith wb Mem．Eye－ brows Paget＇s fact．－ 217 2－5m，6－11m 243 1－ $7 m, 18-20 \mathrm{~m} 244$ 13－18m 287 1－2m，22－23m $304 \quad 29-30 \mathrm{~m} 31114-20 \mathrm{~m} / \mathrm{w}$ yet very slight differences even if inherited wd hardly be called Races－ 312 11－15m（Kant） 321 15－ $18 m 326$ 22－24m／23－24u士 328 18－22m 329 1－ $4 m 3337-8 m 337$ wt（a）not really known under nature，because inheritance not thus ascertained $=$ sub－species or species $1-3 \mathrm{~m}$ ， $6-8 m / w$（a）does for species $9-15 m 347$ 23－ $25 m 383$ 6－8m（Buffon） 386 4－9m（Buffon） 387 6－10m，12－15m 388 2－6m（Buffon）390 13－21m （Buffon） 393 9－12m，13－14m／w this will do for variation $3947-10 m 39618-23 w$ a collection of individuals which perpetuate＊them－ selves for considerable periods \＆\＆which are sufficiently unlike other forms to deserve in the opinion of Naturalists a nameO So with varieties Add found in state of nature． 399 2u＂Daubenton＂，5－9m 402 16－18m 405 $15-17 m, 16 u$＂1801｜1803＂， $19 u$＂1809＂ 406 27－29m（Goethe）， $27 u$＂était I partisan＂ $4086 u$ ＂besoins＂，7－9m，26－29m（Lamarck） 416 11－ $14 m / w$ No change now $41825-27 m 423$ 11－ $12 m$（Cuvier） 431 5－6m 432 20－23m 437 16－ $19 \mathrm{~m} / \mathrm{w}$ not distinguished from race 441 15－ $16 w$ Definition of species $4488-9 m / 8-12 w$ This refers to alternate generation \＆larvae \＆c \＆c 17－20m（Leuckart） 465 15－17m （Meissner） $47422-23 \mathrm{~m} / \mathrm{w}$ sexes $4767-10 \mathrm{~m}$ （Gould）／8－9w variable？ $4775-9 m, 12-14 m$ ， 31－32m 478 11－15m／w variable？？ $4817 w$ Drilus $8-14 m, 14-15 m 48226-33 m$（Latreille） 483 25－30m（Desmarest，Audouin，Milne

Edwards） 485 wt（a）Andrew Smith case of Birds of 2 size－Azara＇s case of Moloths Land－shells are all Dimorphism－ $6-10 \mathrm{~m} / 7 \mathrm{w}$ （a）23？／u＂mâles＂ 488 16－18m，19－20m （Lespés） 489 1－3m 498 18－20m
vol． 3 part i NB Oct 19 1860
I have selected for my 1st volume on Dom animals－Must be all gone over again \＆Indexed Especially for Hybridisation very good．－
Cats hybrids p． 177 Used
22 9－20m 23 26－29m 27 18－22m（Dareste），29－ $31 m 2825 m, 26-27 m 2926-29 m 343-5 m 45$ $18-19 \mathrm{~m} / \mathrm{u}$＂Tels 1 soie＂$/ \mathrm{w}$ silk－worms artificially fed \＆well domesticated $25 m 46$ 9－13m，20－ $22 m$（Aristotle）47 24－25m，28－30m（P．Julien）， $28 u$＂quarantelsiècles＂ 48 7－8m，13－15m 49 $12-15 m / 13 w$ no selection $508-10 m, 11-13 m$ $512 u$＂dix loiseaux＂ $527 w$ Colour in mimicry $8-10 \mathrm{~m} / \mathrm{w}$ colour \＆size in Turkeys $20-22 \mathrm{~m} 55$ 2－3w Swan not varied 56 20－22m（Varro） 57 $10-14 m, 32-33 m 5810-12 \mathrm{~m}, 19-21 \mathrm{~m}$（Pictet） $5910-13 \mathrm{~m} / \mathrm{w}$ Guinea Fowl not much variation 60 4－6m，13－15w Peacock no variation 21－ 23m（Aristotle） 61 28－29m（Pucherau） $627-$ $9 \mathrm{~m} / 8 \mathrm{u}$＂Zend－avesta＂， $13-14 \mathrm{~m} / \mathrm{m}$ ，21－23m （Link），22－23m（Pictet）， $33 u \leftrightarrow 63$ 28－30m （Aristotle） 65 17－19m／17－24w Chinese swans not known form not perfectly 67 20－21w Llamas 69 21－26m（Albert Geoffroy，Linnaeus） 72 6－8m／w Guinea Pig Origin unknown 73 9－ $15 / w$ Ferrets probably Polecat $751-3 m / w$ Rabbit not in Greece or Italy 13－14w originally Spanish $24-27 \mathrm{~m} / 29 u$＂îles｜Baléares＂／ $25-30 \mathrm{w}$ rabbits in France \＆Spain before our $\begin{array}{lllllll}\text { era } & 77 & 18-19 m & 78 & 8-10 m & 79 & 23-25 m\end{array}$ （Hamilton Smith），31－33m（Fitzinger） 82 wt／1－ $3 w$ Savages may reclaim animals Caffres nato Oxen－Dogs－Pacific Ocean Ascension Dogs－Pampas Indian take to Horses so readily $7-10 m, 13-16 u \pm 834-9 m$ （Dureau de la Malle）／7－8w N．Q．10－12m 84 9－ $12 m / \mathrm{Q} 851-4 m, 20-24 m$（Fitzinger） $8612-$ $16 m 87$ 1－4m（Pallas，Güldenstädt）／2－3Q 88 13－15m 91 10－13m，15－23m（Pictet）$w b$ Why shd not name of conquering races become modified \＆transferred 95 29－32m（Joly， Pictet）／31u土 $962-3 m 9720-23 \mathrm{~m} / \mathrm{w}$ Blyth 98 3－ $8 m 99$ 1－10m，2u＂Cretzschmar＂ $10031-33 m$ （Link）／w Dog wall Q 18－21m $1021 m / u$ ＂uneloreilles＂ $1037-9 m / w$ How about spots over eyes 106 6－13m 107 18－30m（Pliny），35－ $37 \mathrm{~m} / \mathrm{Q} 1083 u$＂tel｜Tilesius＂， $6 u$＂chiens｜ africains＂， $7-9 \mathrm{~m} / 9 \mathrm{u}$＂Ehrenberg et Hemprich＂， 15－19m，25u＂kaukasischen Schakals＂，27－29m （Güldenstädt） $1098-9 m / 8 u$＂Rueppel＂， $9 u$＂ C ． simensis＂，10－14m／w like Greyhound 110 33－

GEOFFROY，RĖGNES ORGANIQUES
$35 m$（Broca） 111 29－32m 112 1－4m，6－9m （Bellingeri），14－16m，22－30m（Cuvier） 113 2－ $6 m$（Flourens）， $14-17 m 1141-2 m 11519-23 m /$ Q 121 29－30m／w too few recent 123 6－8w Rabbit Coney Bird $7 \mathrm{~m}, 12-13 \mathrm{~m}, 27 u$＂enl transitions＂／w Only Habit 154 15－19m 155 16－ 20m（Aristotle，Pallas），27－29m（Dryander） 157 $15 \mathrm{~m} / \mathrm{u}$＂L＇hybriditél tétras＂，21－22m 158 8－9m／ $8 u$＂dindon 1 faisan＂，15－16u↔ 159 6－8m，11－ $12 m 16012-13 m 1613-4 m / ? ? / w$ see $\&$ pp163 $4 u$＂surtout l bouc＂，19－21m 162 9－12m 1634 $5 m 1647-8 m 1652 m, 13 m 167$ 19－21m， $25 m$ 168 2－3m，18－20m 169 29u＂menstruation＂ 171 32－34m（Hunter），33u＂Wolflare＂／w Dogs 172 10－12m，13m，14－15m／w Dogs 173 1m／！， 14－15m 175 35－36m／36u＂baudet Isans＂ 176 16－18m 177 18－19m／Q，21－22m 179 21－24m， 29－31m／w Pheasants $1801-4 m, 7-9 Q 9-14 m /$ 11－13w Pigeons crossed $25 m$（Dureau），29－ $30 m 1815-13 m 182$ 9－13m（Gloger） $1977-$ $9 m 1996-9 w$ same rules hold in individuals $12-15 w$ \＆The rule holds with squirrels 17－ $18 m 200$ 18－23m 203 7－9m 204 4－8m 206 13－ $19 m 207$ 1－3m，6－8m 211 24－26m（Broca）／w see p． 222216 22－26m／w Dogs \＆Wolves 28－ $30 m$（Buffon） 217 1－3w Q under Dog 4－5m （Flourens），13－18m（Flourens），27－29m／w Chacal \＆Dog 30－31m（Duvernoy），31－34w Q under Dog 218 2－8m，16－17u↔ 219 1m，13－ $14 m, 20 m, 25-27 m$（Francisco de Therau） 220 9－10u↔，24－29m（Weddell，Denis） 221 19－21m $2221-2 u \leftrightarrow, 18-19 u \pm, 27-31 m 223$ 1－2m，4u ＂troisleux＂，5－8m，9－10m，19－21m（Broca）， 24－26m，28－32m（Rouy） 225 1－4m，18－20m， 28－30m 226 3－9m 227 21－23m（Lecoq） 228 17－ 20m，21－23m 229 4－8m，10－13m，23－27m 234 6－8m 254 12－28m／13－15Q／u＂1784＂ $16 u$＂surl jaune＂，18－20w selection 27－28wc¢ 259 12－ $18 m / 14 w$ atavism 27－32m（Roulin） $2601-7 m$ （Cantal） 261 9－12m
vol． 3 part ii SB1 $\square \Re$
322；328； 336 to $377 ; 402 ; 407,409 ; 427$ ； 434；438；41；446；450；461；469；472； 476，8；482；498；507； 529
SB2 1β
＊ 330 Falcons or Hawks caught at long distance from home．
\rightarrow Variability of species in state of Nature
（Not abstracted）
402 changes in naturalised Helix $\Leftrightarrow-$ May bear on Madeira \＆P．Santo peculiar species－
$3223-12 m 323 \Uparrow 1 \rightarrow 324 \Uparrow 2-1 m 3285-12 m$ 330 9－17m 332 1－6m 333 1－2m，7－10m 335 1－ $5 m 336$ 介3－1m 337 6－12m 338 16－21m 340 $12-17 m 342 \Uparrow 19-9 m 345 \Uparrow 15-11 m 347 \Uparrow 14$
$11 m$ ， $19-6 m 3482-8 m 3501-7 m, 13-19 m, 20-$ $25 m 3511-3 m$ ，$\uparrow 13-7 m 354$ 介 $8-1 m 357$ 介11－ $6 m 359$ 18－21m $3606-12 m$ ，$\uparrow 10-5 m 36510 m$ ， $\Uparrow 3 m 370$ 介18－16m，$\uparrow 8-1 m 373$ 9－13m 376介19－14m 377 10－15m，$\uparrow 5-1 m 402 \Uparrow 17-10 \mathrm{~m}$ 403 wt is this allied to Madeira or Porto Santo close species 7－15m 407 6－15m 409 10－20m $4271-5 \mathrm{~m} / \mathrm{w}$ But how kn parent $\Uparrow 12-$ $9 \mathrm{~m} / \rightarrow$, §3－1m 434 介3－1m $4354-6 \mathrm{~m}$ ，$\uparrow 12-6 \mathrm{~m}$ ，介1u＂1834＂ 438 介7－2m／Q屯 441 12－21m 446 10－15m／m，介2－1m 447 16－18m 448 tab．w six times as long－tail not included wbac 449 $\uparrow 13-7 m 450$ 介15－10m，$\uparrow 9-4 \mathrm{~m}$ ，$\uparrow 3-1 \mathrm{~m} / \mathrm{m} \boldsymbol{m}_{3} 451$ $5-9 \mathrm{~m} / \mathrm{m}, 18-21 \mathrm{~m}, ~ \uparrow 3-1 \mathrm{~m} / \rightarrow$ \＆ $4531-6 \mathrm{~m} / 3-6 \mathrm{~m}$ ， 14－22m 455 5－8m，$\uparrow 8-1 \mathrm{~m} / \mathrm{m} 461 \Uparrow 3-1 \mathrm{~m} / \uparrow 1 u$ 469 介8－3m 472 17－20m 476 介7－3m／Q＊ 478介6－2m 479 1－4m 482 12－14m／w Cart－Horse \＆ Race Horse 498 12－15m 507 8－13m 529 3－ 17 m

GEOFFROY SAINT－HILAIRE，Isidore Vie， travaux et doctrine scientifique d＇Étienne Geoffroy Saint－Hilaire Paris；P．Bertrand； 1847 ［CUL］
ad，af，beh，em，geo，ig，mn，rd，sp，tm，v， wd

NB1 p．69；p．121；p．134；p．139；p．157；p． 212 to p．218；p．229；p．238；p．245；p．258；p．281； $291,4,7$ ；to 312 ； 332336 to 357 －Omalius d＇Halloy on changes in species
NB2 Read 428；？ 454 Book G
SB $\square \beta$
135 all organs，are same modified \＆c
139 never a new organ，with respect to Electrical organs
213 Relative position \＆mutual dependence， more important than forms or functions in ascertaining homologies－＂Un organ est plutot aneanti que transpose＂－（small changes）
214 Law of Balancement，quote Goethe－ attributes Rudimentary organs to Balancement
229 Teeth in Birds， 238
291 monstrosities made by shaking eggs \＆c 294 Meckel in 1812 proved that mon－ strosities were arrested embryonic states 298 On affinity of same part in Monsters the same 302 in Monsters，\＆in normal states
337 It wd seem that Geoffroy has not propounded change of Species No p． 345
347 Local conditions only causes of change 350 ＂Leur monde ambiant＂
353 ＂It is problem for future＂
1 16u＂1772＂ 69 10－12m 121 26－28m 134 21－ $28 m 135$ 11－12m 139 16－18m／？，21－29m 157 $6-10 m \quad 212 \quad 9-11 m / 1-11 w$ in ascertaining
homologies $12 u \leftrightarrow 213$ wt (a) because small changes will not transport $3-4 m, 7-8 m / w$ (a) $28 m 21414-16 m /!/ 16 u$ "affinités électives", 24 $25 m 215$ 1-8m, 12-13m/??/u $\leftrightarrow 218$ 3-7m 229 $15-17 m \quad 238$ 6-8m, $25-28 m \quad 245$ 1-2m (Savigny), $24 m 258$ 13-18m 259 1-3m/1?/ $2 u$ "différenceslest" 281 13-15m, $14 u$ "subordination | caractères" 290 18-24m/21-22u "surtout|verticale", 24-25m 291 12-22m 294 6-16m (Meckel) 297 20-24m 298 14-21m 299 $11-15 m 30115-20 m$ (M. Serres) $3023-5 m / w$ (a) $24-26 m, w b$ (a) if true parts gradually brought near wd become confluent.- 312 811m 332 16-20m 336 7-12m/7w Cuvier 337 $w t$ (a) apparently, this refers to theory of change of Species $2-7 \mathrm{~m} / 3 \mathrm{w}$ (a) $338.13-15 \mathrm{~m} /$ w see Catalogue at end 339 22-26m 341 18$19 m, 22-23 m, 24-27 m 3451-2 m, 16-17 \mathrm{~m} / \mathrm{w}$ Mutability of species. $20 u$ " 1828 ", $24-25 m d$, $27-28 m \quad 347$ 1-4m, $9-12 m \quad 348 \quad 16-20 m$ (Lamarck)/19u "regret", 21-22u "prêter 1 même" 350 wt (a) Compulsory changes of condition \& habits, as in domesticated animals. $6-12 \mathrm{~m} /$ $9 u{ }_{0}$ "monde ambiant" $/ 8 w$ (a) $16-18 m 3518-$ $11 m 352$ 12-13u土, 13-15m/14u "Lamarck"/15u "des limites", 23-24m $3536-9 m / 9 u$ "oul encore", 10-12m 354 6-8m, 8m, 16-18m, 27$29 \mathrm{~m} 3552-5 \mathrm{~m}$, 13 u "d'un|nouveau", $15-17 \mathrm{~m} /$ 16 u "où leux" 357 2-4m, 26-28m 423 33-39m/ ? 427 27-38m 428 1-40m $4291-2 m, 20-21 m / w$ not much I shd think $45429 m, 31 \mathrm{~m}$

GÉRARD, R. La Fleur et le diagramme des Orchidées Paris; Faculté de Médicine; 1879 [Down, I]

GERLAND, Georg Über das Aussterben der Naturvölker Leipzig; Friedrich Fleischer; 1868 [CUL, S]
beh, cc, ex, f, h, he, oo, pat, sl, sx, ud, v, y
NB Left off p.124** 136
NB2 4 On Man alone

- p37; 56; 89; 122, 3, 4

SB $\langle 8$ sides; not $C D\rangle$
1 Introduction - List of dying out Races Includes all cases from whatever cause - no special account of causes
2nd Receptiveness of savage races for miasmal illnesses, which arise spontaneously on the meeting of savage \& civilized races
This first gives a great number of accounts of spontaneous illnesses. \& of the greater ravages of moderately hurtful European illnesses - His theory to account for this - is not that there is some noxious influence emanating from the civilized races
$\underline{2}$ caused by their being shut up in ships etc - but that we are all innoculated, as it were, from our earliest childhood with the germs of all kinds of infectious disorders - but that we partly by inheritance \& partly by use are able to possess these germs in a latent state These same germs being quite able to infect savage races. He gives in proof of this that certain illness seem only to appear at certain intervals - that the
$\underline{3}$ innoculation only lasts a certain number of years \& then wears out when we are again liable to the attack of this epidemic (I suppose under certain conditions is understood - H.E.D.)
〈expanding on "latent state"> because we have assimilated their nature to ours \& so they are not wholly inimical to us.
43 Directly brought in diseases The same principle applies to directly brought in infectious \& contagious diseases The first introduction was the most violent but they continued to rage furiously -
The worst of all the smallpox It broke out in Mexico 1520 brought by a slaver - raged then carried to Antilles where it raged amongst the natives without killing one European -
Waiz says Smallpox has killed more than near * drinking together in America. at least $1 / 2$ perhaps $2 / 3$ rd of the Population.
5 According to Meinecke smallpox broke out spontaneously in New Holland
We now come to the original illnesses of * savage races An illness raged in New Zealand before Cook - but illnesses are rare -
A gall fever raged in Central America every 100 years (4) Treatment of $\%$ Illness in Savage Races All dangerous illnesses are made worse thro' mistreatment
6 In America steambaths with cold washing directly after nearly always killed the patients. In Australia they only exorcise evil spirits whom they suppose the cause of all illness - They pretend to draw a bit of stone out of them. They kill the bewitcher \& rub the bewitched with his suet. Or to bleed away the Magic They are cleverer in outside injuries \& serpent bites -
They are buried before they are dead in Feejee so that they mayn't bother the living. In the New Hebrides they kill delirious patients so that
7 they mayn't infect others - In Melanesian it is all taken for work of demons, tho' they practise bloodletting \& such means- *
In Polynesia the sick are not cared for. In

GERLAND
Mukuhiva they hold the nose \＆the mouth of the sick to＊keep the＊spirit or life firm． only in New Zealand they know better how to manage－They used hot springs，light food，\＆rubbing of the limbs－In Tahiti they hold it wicked to take Medicine－but they $\underline{8}$ are clever surgeons The Mexicans are acquainted with Medicines－but put more faith in magic．－The drawing out of the stone found in Haiti \＆Brazil as well as Australia． The Botokuda in Sth Am．alone use natural means Steambaths all over America Real Doctors \＆magic doctors The Hottentots consider it all as the work of evil spirits－\＆ they $\&$ in the Antilles draw out the stone（or here bone）as in Australia In America \＆ Africa they punish unsuccessful doctors

SA $\langle p p .52-53\rangle \square \beta$ \＆ 4 sheets \rangle
$\underline{2}$
Ch VIII p48 infertility of woman only cause of dying out．－intermarriage in Botokudos－ general misery \＆hard work of women－ Lactation－\＆c \＆ c －
Killing children $\langle u\rangle$ Knisteno kills female Children to save them being brought up to misery－Pooh－
$\langle u \geqslant$ Guianas kill $1 / 2$ children of both sexes －［In Upper Paraguays kill all children but own according Azara，$\langle u\rangle$ hence race almost disappearing］p51
［Abipones save－not more than 2 children $\langle u\rangle$－Indians do not speak of child murder
［Darish says women p． 53 kill + children＊ to save their beauty：also in Upper Paraguay Azara $\langle u$ ，says p．51．－Proof of Indian women valuing their own beauty．］
Many other cases of infanticide．－
［ $p .54$ in Melanesia only bring up 2 or 3 children］\＆many other islands of Pacific much infanticide－especially Tahiti－II some women had killed $4,6,8$ ，or so $*$ children
p57 Infanticide in Sandwich Isd
1 Austerben－Gerland－ 1868
Great extinction of many races－
p． 8 Poeppig＂poisonous breath of civilisation＂ ｜｜p．10．Williams says healthy ships，bring disease，\＆not infectious disease－
$\| \$ \mathrm{~s} .12$ If an Indian tribe is once reduced in number，generally becomes extinct－ Tschudi in N．\＆S．America found this to be the case－In N．America some exceptions．－〈u \rangle
Ch．2．－
Known diseases introduced．Especially small－pox in America－\＆in all parts of
world．－
Ch． 3
＊Children suffer in health in p．27． Proportion of women to men in Australia according to Grey 1：3－others says as 2： 3 －female infanticide practised．$\langle u\rangle$ Women little food－long Lactation－
Many causes against health，\＆so we can understand why numbers of each tribe not great \＆no increase，but as he says does not explain actual decrease．
\Leftrightarrow Galton too unsettled to work
〈over〉
Sexual selection
Tattooing．about being so ugly．
3 Sexual selection
$\| /{ }^{*}$ Arevi kill（Tahiti）all female children： Tahiti kill in order to keep $\langle u\rangle$ beauty．－ Wonderful amt of infanticide．in whole Pacific．Laziness one of main causes of infanticide－particularly kill girls－old custom－Thinks religious motive－
｜｜e p． 82 Natural physical conditions do not destroy races，viz T．del Fuego \＆ Esquimaux．
Sense of Justice very strong in Savages－ shown even by Revenge－Depression of Spirit causes extinction．
Mutual wars－infanticide－Unfruitfulness \＆ long Lactation－diseases brought by Europea－drink \＆c Depression－Dissolut life－
Tribe when once reduced seldom revives again
Famine．－Unhealthy life－Hostile \＆ appearance of Whites most hurtful of all－ Psychical effects most important－ Introduced diseases－When several causes so act effect marked－＊Savage races are not increasing，so always must be much＊ extermination going on，\＆a little addition from $\&$ advent of Whites，turns the balance 4 Sandwich Isld Population not decreasing Said to be increasing in Tahiti．Tonga not decreased Feejie Keep up．－
＜The following passages are annotated with literal translation and／or close paraphrase of the text 11 （title） 3 12－20，25－43 4 19－29 5 13－22， 32－41 6 wt，3－8，11－27，37－44 7 wt，2－4，6－14， 25－36，39－45，wb 8 8－14，27－42 9 10－44 10 $w t, 1-23,27-45, w b 11 w t, 1-20,7-19,25-40$ $12 w t, 1-17,20-30,30-45, w b 13 w t, 1-8,3-$ 14，13－19，18－40，19－23，26－39，41－45 14 wt， 1－17，1－17，16－22，21－41，38－43，wb 15 wt，1－ 16，18－22，25－29，31－40 16 wt，1－15 17 11－20 18 12－20，24－27，33－45，wb 19 wt，4－8，22－27， 30－36，40－45 20 5－15，18－22，25－33，35－40 21

5－11，14－29，26－35，32－34，37－42 22 1－5，11－ 13，15－24，31－45 23 2－5，8－17，19－24，29－34， 35－43，39－42 24 7－16，21－24，28－29，31－40 25 3－16，4－11，16－18，25－27，29－34，40－45 26 wt， 8－12，16－21，31－45 27 15－20，22－31，36－45 28 wt，3－8，14－18，36－45 29 1－5，14－18，21－23， 25－29，31－43，wb 30 wt，4－8，11－22，25－28 31 $w t, 3-8,10-24,20-33,31-3832$ 11－26，39－45 33 3－8，17－30，32－45，wb 34 wt，2－3，8－45，wb 35 1－4，6－24，28－39，45－49 136 1－5，9－14，18－ 35，36－40，wb 37 wt，1－2，10－45，wb 38 wt，5－ 17，24－25，wb 39 wt 48 wt，4－20，22－43，32－38 49 4－8，10－15，17－19，29－45，wb 50 1－12，14－ 18，24－38，36－45，40－45，wb 51 2－13，3－5，15－ 26，18－31，28－45，wb 52 3－19，21－39，27－29， 43－44，wb 53 1－4，8－14，15－17，18－24，25－36， 27－43，wb 54 wt，2－4，8－15，23－30，35－45，wb 55 wt，3－17，19－21，24－45 $56 w t, 3-4,6-13$ ， 14－21，23－34，39－45 57 wt，8－13，15－27，29－ 32，34－45，wb 58 wt，5－23，26－33，41－45，wb 59 wt，1－7，11－26，29－37，38－43，wb 60 wt，1－ 10，11－20，21－23，25－31，33－45，40－45，41－45 61 wt，6－15 79 wt，1－29 80 wt 81 13－14，28－ $3982 w t, 1-6,10-24,26-31,40-43837-11$ ， 14－33，23－42，35－45，wb 84 wt，1－19，10－17， 20－23，21－26，30－32，34－41 85 6－45 86 wt，14－ 22，25－35，wb 87 2－45，28－45，wb 88 1－11，18－ 32，37－45，wb 89 wt，1－9，1－14，19，21－33，34－ 39，wb 90 wt，1－7，9－13，17－29，30－35，36－38， wb $91 w t, 1-36,40-45, w b 92 w t, 4-23,28-32$ ， 37－45，wb 93 wt，1－36 94 wt，1－45，wb 95 wt， $1-3,17,19-32,25-40, w b$ 96 wt，16－29，31－45 $97 w t, 1-45, w b 98 w t, 1-27112$ wt 11524 32，36－38，wb 116 wt，1－45，wb 117 wt，1－45， wb 118 wt，1－45，wb 119 wt，3－9，16－32，34－ 45，wb $120 w t, 1-45$ ，wb $121 w t, 1-45$ ，wb 122 $w t, 1-11,12-38, w b 123$ wt，1－45，wb 124 wt， 1－18，16－38，wb $125 w t, 1-43,20-43126$ wt， 1－45 127 wt，1－45，wb 128 wt，1－45，wb 129 $w t, 1-45, w b 130 w t, 1-45$, wb 131 wt，1－27， 4－45，wb 132 wt，1－40，wb 133 wt，1－34，5－45， wb 134 wt，1－16，24－40，wb 135 wt，1－14 136 $w t, 1-45, w b 137 w t 138 w t, 1-3,9-43139 w t$ 141 27－45 142 wt，3－43 143 wt，1－45，34－45， wb $144 w t$ ，wb $145 w t, 1-9$

GERVAIS，Paul Les trois règnes de la nature： Histoire naturelle des mammifères vols $1 \& 2$ ； Paris；Curmer；1854－55［CUL］
br，ex，gd，h，hy，sl，sp，sx，t，ti，tm，v
vol． 1 NB p．282，285 Rabbits for Dom．A．
title page Tome $1608-13 m 614-6 \mathrm{~m} / \mathrm{w}$ apparently not sexual $623-5 m, \Uparrow 18-16 \mathrm{~m} 63$ fig．w see Back $X \underline{2}$ rubicondus 64 wt Seven figures＊rubicond \＆marked with X fig．w （1）X comatus $676-10 m 68 \Uparrow 5-1 m 741 m / u$ ＂favoris＂，$\uparrow 14 u$＂barbeldescend＂，last fig．w X

78 23－24u＂pygerythrus＂， 29 ＂rufo－viridis＂ 79 1u．＂cynosurus＂ $89 \Uparrow 19-13 m 9118 x$ ，24n／u ＂quel colore＂ 102 介12u＂boursouflures mexillaires＂ 103 5－8m，$\uparrow 17-15 m, \Uparrow 16-15 u$ ＂leur Iblanche＂，$\uparrow 13-12 u \leftrightarrow, ~ \Uparrow 11-9 m / \Uparrow 9 u$ ＂rides＂，介8u＂parlmême＂，介7－4m，§3u ＂MalbroukIGrivet＂／w p． 78 Cercopithecus $104 z t, 2-5 m, 7-9 m$ ，top fig．w $\times 6 \uparrow 4 m / u$ ＂menton｜jaunâtre＂ $1052-5 m / 4 u$＂leur 1 rouge＂， $17 u$＂G．Cuvier＂，18－21m， $24 u$＂auxljeunes＂，介6－4m 106 1u＂la｜verdâtre＂，1－2u＂Dans｜ généralement＂$/ w$ of Hair $3-4 u \leftrightarrow, 5-7 m 107$ 17－18u＂âgelolivâtre＂， $19 u$＂simulant 1 perruque＂， $20 u$＂restel camaie＂ $108 \Uparrow 2-1 m / u \leftrightarrow$ 110 介5－ $2 \mathrm{~m} / \uparrow 5 u$＂Chez｜plus＂$\uparrow \uparrow 4 u$＂lesquels \mid иne＂ 119 top fig．m／w well－coloured M． chrysurus 120 20－22m 124 last fig．w $\times 3128$ top fig．w X 4 last fig．w X 5150 10－15m \wp
$27914 u$＂doigts＂， $15 u$＂de dernière＂， $16 u$＂del dix＂，19－20u＂six l supérieures＂，21－22u＂cinq 1 inférieures＂，$\uparrow 6-5 u$＂quel noir＂，$\uparrow 5 u$＂noirel dessus＂，$\uparrow 4 u$＂sontlavec＂ 2803 ＂deloreilles＂ 282 9－25m／w Every part of Europe has its peculiar Hair 〈ie Hare！ 283 3－8m／8u＂saufl pointe＂， $12 u$＂des 1 Russie＂，$\uparrow 20-16 \mathrm{~m} / \uparrow 18 u$ ＂oreille＂$\uparrow 17 u$＂noire＂ 284 11－12u＂Il oreilles＂， $20 u$＂un｜noire＂，$\uparrow 8 u$＂le｜noir＂，$\uparrow 5 u$＂le｜noir＂ 285 10－11u＂sauf｜des＂，15u＂seslan＂，16u ＂saufloreilles＂，24－25u＂aveclannée＂，31u ＂Lepus brasiliensis＂，33－34m，$\uparrow 6-5 u$＂leurs fermés＂ 286 9－10m／10u↔，16－20m，24－28m， $\Uparrow 4-3 m / u$＂conséquent I lombaires＂ $2872-9 m / u \pm$ $2889-12 m / 10 u$＂sans 1 songt＂， $18 u$＂Sal oreilles＂， $19-20 \mathrm{~m}, ~ \Uparrow 22-21 \mathrm{~m}$ ，$\uparrow 17-14 m$ ，$\uparrow 14$ 12m，介6－4m 289 4m／u＂commel Nord＂，10－ $11 u \leftrightarrow, 16-18 \mathrm{~m} 292$ 介25－23m，介19－15m，$\uparrow 15-$ $13 m$ ，$\uparrow 11 u$＂le \mid Espérance＂，$\uparrow 3-1 m$
vol． 2 NB p144 ancient Horses Selection 153 Hybrids－ 2 Genera
140 Canines in Equidae absent in females
146 colour of Colli of one breed－forked stripe on shoulder of Zebra
150 vars of Ass
title page wt Tome $25222-23 \mathrm{~m} / 23 u$＂sont｜ arrière＂，$\uparrow 18-15 w 6 / 7 \pi 3-1 m / \Uparrow 2 u \uparrow / w 5 / 653$ ＂Cynhyène＂．w 6／7 55 1－4m， $110 u$＂solitaires bandes＂ $563 u$＂réunit｜individus＂， $11 \mathrm{~m} / \mathrm{u}$ ＂soixantel jours＂，$\uparrow 23-20 \mathrm{~m}$ ，$\Uparrow 23 u$＂Douél naturel＂\uparrow T $21 u$＂illlieux＂ $57 \Uparrow 3-1 m / \Uparrow 1 u \leftrightarrow 58$ $\Uparrow 26 u \uparrow, ~ \Uparrow 24 u$＂pasl séparé，$\uparrow 15-14 u$＂Loupl sinus＂$/ w$ C．Sinensis Sinensis $\Uparrow 4 u$＂àl inférieures＂ 59 top fig．w 6／6 $608-11 \mathrm{~m} 617-$ $15 \mathrm{~m} / \mathrm{w}$ variable in races of Man $9 u$＂M ． Nordmann＂，21u＂OnlChacals＂，介13un，介12u＾，介11u＂ChacallMorée $62 \quad 13 u$ ＂énumèrelà＂，23－25m／w I．G．add C．
gervais
sinensis like Greyhound $27 m 63$ 介12u＂Chien crabier＂，$\uparrow 7-4 m \quad 64 \quad 4-5 m, 22 m / u$＂bien préférable＂，$\uparrow 14 \mathrm{~m} / \mathrm{u}$＂au Chien＂ $65 \Uparrow 17-12 \mathrm{~m} / \mathrm{w}$ if one extinct species could be believed in， one might accept these doubts $666-10 \mathrm{~m} / \mathrm{Q}$ $\Uparrow 24-20 \mathrm{~m} / \mathrm{Q} / \uparrow 21 \mathrm{u}$＂que I genres＂，$\uparrow 20-19 \mathrm{~m} / \mathrm{w} \mathrm{V}$ ． p． $767 / 8$ Molars $\uparrow 18 u$＂six｜dernière＂ 67 §27－ 26u／＂．．．＂＂Jelobjection＂，$\uparrow 19-17 u \pm / m / Q ~ \Uparrow 13-$ $12 u$＂illdomestique＂，$\uparrow 7 u$＂Lel hyéroglyphes＂， $\Uparrow 6 u$ restél Babyloniens＂ 68 介9－5m $69 \uparrow 6-1 m$ ，
 $87 \Uparrow 12-10 \mathrm{~m}, \uparrow 7 \mathrm{~m}, \uparrow 4 \mathrm{~m} / \mathrm{u} \uparrow$ ，$\uparrow 3 \mathrm{u} \uparrow ~ 883-5 \mathrm{~m}$ ， 8－10m 89 1－2m，4－8m 13817 w All used for Ch．3．on Horse $139 \Uparrow 16 \mathrm{~m} / \mathrm{u}$＂dont I rudimentaire＂，$\uparrow 10 \mathrm{~m} / \mathrm{u}$＂sortel $6 / 6^{\prime \prime} 140$ 1－3m $143 \Uparrow 20-10 \mathrm{~m} / \mathrm{Q} 144 \mathrm{fw}$ Classical period pairs taking in breeding $1454-8 m, 6 \mathrm{Q} 9-12 m$ ， $13 u$＂v．29＂ 146 12u＂la｜Camargue＂，13u ＂noirâtres I poils＂，pl．Zebra．w Fork of shoulder Stripe here much plainer $150 \Uparrow 15-9 m 151$ 18u＾ 153 10－12m 177 5－7m／5u＂mais｜vrai＂ 178 1－5m 183 13－18m 187 介22－21u＂sans। souche＂，$\uparrow 18 u$＂chanfrein＂，$\Uparrow 16 u$＂unel caractères＂，$\uparrow 4 u$＂al Afrique＂ $1893-8 m, 14 u$ a， $15 u \mathrm{~A}, ~ \Uparrow 22 u_{\mathrm{A}}, ~ \Uparrow 20 \mathrm{~m} / \mathrm{u}$＂fort 1 Asie＂，$\uparrow 14-11 \mathrm{~m}$ $1912-5 m, 14 m / w(1) \Uparrow 12-10 m, \uparrow 9 w / \Uparrow 8 w / \Uparrow 7 w /$介3wet 192 6－10m 236 wt Nothing to quote about Pigs $7-13 m, \uparrow 13-10 m / \Uparrow 11 u$＂êtrel espèces＂，介8－2m $2373-4 m 2386-9 \mathrm{~m} / \mathrm{m}$ ，介17－ $14 \mathrm{~m} / \mathrm{m}$ ，$\uparrow 8-3 \mathrm{~m} 2391-2 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m}$ ，$\uparrow 6-$ $4 m$
\wp
GIRAUD－TEULON，Alexis Les origines de la famille Genève， 1874 ［I by author；CUL．1900］

GIRTON，Daniel The new and complete pigeon－fancier：or，modern treatise on domestic pigeons new edn；London，n．d．［CUL］
beh，cs，pat，sp，v，wd
NB $*_{2}$ Nothing Ap． 1857
7 19－22m 9 30－34m $10 w b$ describes the Blue Rock by the name of Stock dove $1232 a \notin 14$ 8－19m，22－24m 15 1－3m，12－13m 17 10－12m， 28－30m，34－35m 18 1－5m，14－16m 19 13－15m， $36-38 m$＊14 1－3m，7－9m＊15 23－26m／w education＊16 37－38m／wb Seems to consider all the Horsemen \＆Dragoons crossed breeds Can this be so considering how true？ ${ }^{*} 17$ 17－20m，31－34m＊18 10－19m $203-8 m 22$ 20－22m，34－36m 23 1－4m／1u＂withllong＂， $28 u$ ＂fourllength＂，31u＂the I Roman＂，34u＂table＂ 24 8－12m，13－15m，30－32m 315－7m 32 7－9m $331-3 m, 4-5 m, 5-6 u$＂the 1 better＂，$w b$ so that for me，it is immaterial whether originally different species，as these qualities differ in each．－ $344-7 m, 29-30 m, 30-31 u$＂muchl
name＂，32－35m， $36-37 \mathrm{~m} 3512-14 m 362-7 m$ ， $17-18 \mathrm{~m} / \mathrm{u}$＂less \mid thirty＂$/ w$ Varies $35 u$＂neck \mid is＂ 37 19－20m，23－25m，33－34m 38 13－17m，23m， $33-34 m, w b$ This \＆following shows that domestication has produced much effect．－ $3924-32 m 5518-31 \mathrm{~m} / \mathrm{w}$ a curious treatment for apoplexy $5715-17 \mathrm{~m}, 23-27 \mathrm{~m}$

GLEN，William Cunningham Collection of Poor Law Statutes 2nd edn；London；Shaw \＆ Sons； 1857 ［Down］
y
12 13－15m，31u＂three＂，35－38m，45－47m 13 $10-13 \mathrm{~m} / 10 u$＂two guardians＂， $23-27 \mathrm{~m}, 31-34 \mathrm{~m}$ ， 42－45m 14 1－5m $151-3 m, 11-14 m 178-11 m$ $1922-25 m 2222-29 m 235-26 m 2524-26 m$ ， 27－30m，45－47m 26 1－5m，30－33m 27 43－49m 28 4－14m／9u＂but 1 money＂，20－25m，45－46m 29 30－33m，36－38m 32 20－25m 33 1－3m 34 $14-22 m 369-15 m 4612-20 m, 32-36 m$ ，43－ $46 \mathrm{~m} 475-7 \mathrm{~m}, 9-14 \mathrm{~m}, 21-25 \mathrm{~m}, 27-32 \mathrm{~m} 487-$ $14 m, 31-39 m, 43-46 m 491-3 m, 33-38 m 507-$ $14 m, 36-40 m 529-12 m, 24-28 m 533-7 m 55$ $35-41 \mathrm{~m} 5739-48 \mathrm{~m} 5826-29 \mathrm{~m} 5914-19 \mathrm{~m} 63$ $32-38 m 6432-36 m 6526-32 m 6626-31 \mathrm{~m} 67$ $10-14 m, 42-45 m 6844-49 m 69$ 13－16m，18－ $22 m 7025-27 m 713-7 \mathrm{~m} / 3 w$ ie under 7 years old $19-20 \mathrm{~m}, 33-36 \mathrm{~m}, 40-43 \mathrm{~m} 725-8 \mathrm{~m}, 23-$ $25 m 731-4 m, 7-10 m 7426-28 m, 32-38 m 75$ 25－30m 76 26－32m，34－38m 77 17－19m，35－ $38 m$ 78 14－18m，29－31m，44－46m 79 23－29m 80 24－27m 81 43－46m 82 18－21m，45－46m 83 $4-6 m 8720-27 m, 35-44 m 8821-26 m 8924$ $34 \mathrm{~m}, 42-45 \mathrm{~m} 9030-33 \mathrm{~m} 9332-33 \mathrm{~m}$ ， $38-39 \mathrm{~m}$ $9520-23 m 9743-48 m 9820-25 m 9928-30 m$ ， 40－48m

GLOGER，Constantin Lambert Das Abänd－ ern der Vögel durch Einfluss des Klima＇s Breslau；August Schulz \＆Co．； 1833 ［CUL， on B］
br，cc，fg，gd，he，ig，no，pat，rd，sp，spo，sy， ta，tm，ts，v，wd，y
NB Only skimmed very poor Book all Assertion
Graba＇s Ornith Voyage Feroe
p42；p．44；p69；p．74，75；89；98；103；113； 138； 140
SB1 $\square \mathfrak{R}$
23 tints of plumage vary with Climate
69 Nillsson on variation of Beak in Tetrao saliceti Q
70 many short－tailed birds have 1 or 2 pairs of extra－caudal．（as Kingfisher）can this be compensation or rudimentary．（allude when I talk of important organs being few \＆not variable．－）

69 References to Bruch's papers (I have read)
74 on changes of Ducks wings \& feet, tamed \& Geese according Bruch
103 on spreading of sparrows with cultivation in Russia
143 corvus of Faroe \& C. cornix
Appendix systematics at end on doubtful species
157 on Tetrao saliceti \& scoticus being same species Q
SB2 722. on variability of Head \& Beak Brehm made some of his species from single specimens \& dry specimens.
722 Colymbus 18 or 20 tail feathers
731 Beak \& length of * promb in Anser segetum variable - so it is with domestic geese
733 tail feathers increase in number in Colymbus with age
© Is Anser segetum supposed part of domestic goose.-
Bruch in Isis 1828 Band XXI
do Isis 1829 Band XXII
p. 629 Caudals increase with age. variable in Anser segetum - 16-20!
p. 152 on the Sparrow Ch 4
xv $17 m / w$ - Begin xxxi $3 m 2 \ddagger w / w t$ Defines "Ausartung" - a deformity, as white or crossbilled sparrow, not hereditary - not affecting all individuals under any circumstances - not exact relation to true characters [this not true as all deformities have such relationst"Abanderung" - is, as a Spanish sparrow, where change is superinduced from climate on previous organization, \& affects all; \& young inherit it, \& gradation into common character can be traced. Alpine plants wd have Abanderung yet not hereditary Monsters are hereditary Vague distinction wb All sports wd be Ausartungs - In Abanderungs the change will * I shd think, supervene by effect produced on mature animal during generation.- 3 wt 1. Variety directly dependent on external influence 2. Variety indirectly so dependent \& directly on propagating system. $\ddagger m / w$ P.S. I think the upshot of his distinction, is whether the change be produced, at early period through propagating system being affected, or whether, during one or more generations, the mature being is affected \& altered. $5 \Uparrow 3 u$ "wirklichen", $\uparrow 1 w \tau, w b$ true \& imagined, true \& false, constant \& changeable skulldifferences $156 m / 1-17 w$ it appears that warm countries affect colours like age. 33$38 m / w$ late arriving XX $w b$ XX Quails from
hot south country with red throats. $212 x 22$ 20-25m/w Nut-hatch more blue in warmer countries 23 wt X I might say according to Gloger plumage varies little according to climate wt Green seldom brighter in hot countries-x $1-3 m, 22 x$ 24 5-11m/w legs \& beaks in difft climates vary in colour 2519 m $2728 m 28$ 21-29m, 7-34w About $1 / 5$ of Kolreuter's white-variegated in Faro!? \& yet these do not pair together $293-7 m, 4 u$ "Schwandrorsel (Amsel)" $11-7 w$ This Bird in Italy has in first month white bar over tail 829m, 29-30m 42 14-17m/w thinks same species 44 10-33w Nillson does not think Tyrol have same as Northern 69 20m (Bruch)/w V. Read $26 u$ "Varietät durch" $/ w$ Whistling Duck 29-31m/w Bruch good See to this $34 u$ "Pfeifenten"|34-39w Nillson says out of 30 , Beaks differ in all $Q 31 \mathrm{~m} / 39 \mathrm{~m} / \mathrm{wb}$ Both Read $7013 u$ "gar 1 mehr" $\overline{7}$ - $13 w$ many shorttailed birds have a pair of extra tail-feathers. $17 w \tau, 20 u$? " 14 oder 13", 17-25w 3 out of 12 had 14 or 13 tail-feathers instead of 12 Kingfishers in Dictionary. $7418 \mathrm{~m} / \mathrm{u}$ "etwas \mid Flügel"/17-20w Goose shorter wings what compared with?! $27 \mathrm{~m} / \mathrm{w}$ Duck 31-34m/32-33u "dass| langt"/33-34u "fast lerreicht" 75 1-2u "Füsselaber", $3 u$ "schwimmt| geworden", $7 u$ "plumperen" 76 24-25m/w isis $8915-25 m / 8-$ $24 w$ Nillson - Tree sparrow in N. is found about houses in greater numbers, than common sparr 98 14-20m/1-23w all cuckoos eggs in different years differ $10324-30 \mathrm{~m} / \mathrm{w}$ spreading of sparrows $11341 m 1174-5 Q$ 138 16-34w number of deaf \& dumb vary extremely in diff parts of Prussia 140 31-33m 141 14-16m 143 25-28m 152 3-22m 157 33-37m/33u/wr/33-35Q

GODMAN, Frederick du Cane Natural history of the Azores, or Western Islands London; John Van Voorst; 1870 [CUL] \wp $\mathrm{mg}, \mathrm{ti}, \mathrm{tm}, \mathrm{v}$

NB Variation - p19
Dentition Summary on
Birds - 330

- Coleoptera - 335

Immigration of Birds - 337
Upper Miocene - 338
\Rightarrow formed in full size at close of Glacial Period - ${ }^{-140}$
co Wandering of Insects \& Birds - 341
19 26-33m, 32-34m 20 9-12m, 18-21m, 30$34 m 2523-27 m 4323-27 m 3303-18 m 3314-$ $21 m 3351-7 m, 19-24 m 337$ 25-29m 338 1$14 w$ They seem much more modern than Madeira 340 29-33m 341 5-27m

GODRON，Dominique Alexandre De l＇esp－ èce et des races dans les êtres organisés et spécialement de l＇unité de l＇espèce humaine 2 vols．；Paris；J．B．Baillière et Fils； 1859 ［CUL］ ad，beh，br，cc，ch，cs，ex，f，fg，gd，geo，h， he，hy，ig，in，mg，no，or，sl，sp，sy，t，ta，ti， tm，ts，v，wd，y
vol． 1 SB1
p10－History of Believers in Mutation
19； 30 to 58 to to 260
－no marks
341； 346 to end of volume
\nless Book of Gervais referred to．on Zoologies （over）p10 History of＊Believers of Mutation SB2［1］；\otimes_{0}
Godron sur l＇Espece All abstracted for my 1st vol．separately．－
Vol I
36 change in range of Sparrow
77 on naturalised plants from hotter countries becoming extinct－one good case of plant naturalised，yet not getting seed－ like lvy under nature
90 curious special adaptation to particular localities in plants p． 95
120 \＆ 124 Batrachian Ranunculus 2 kinds of Leaves，－means of transition to pre－Glacial Ranunculus
134 Puerile to quote Pompeian \＆Aegyptian remains，as nothing in antiquity
148 cases of seeds long buried coming up
160 case of＊ancient variety of Mercurialis
168 on the facility with which Aegilops triticoides is produced
181 Hybrids of Partridge－p． 183 cases of copulation of distinct molluscs so no repugnance under nature p． 196 Hybrid Pheasants
195 〈he means 193〉 Antiquity of Common Mule in Bible
247 references about Hybrid－Papers
249 Fertility of Hybrids p250
391 No stripe on Black Ass
title page $1 u / 6 u$ 〈author，title〉 $101 u$＂Fries＂／ $1-2 \mathrm{~m} / \mathrm{w}$ Believes in Mutability $194-7 \mathrm{~m} 303-$ $7 \mathrm{~m} 348-9 m 366-15 m 377-9 m 3811-16 m 39$ $15-22 \mathrm{~m} / \mathrm{w}$ Fish same in different kinds of Water $28 \mathrm{~m} / 28 \mathrm{~m} / \rightarrow \mathrm{Q}_{0} 402-6 \mathrm{~m} 41$ 17－22m 43 $1-7 m 4420-23 m 4619-26 m / w$ These are not natural acclimatisations $475-8 m / w$ acclimat $489 m, 22-24 m \quad 581-2 m, 12-15 m / w$ like Peloria；what does Ruta belong to？27－30w analogous variations $611-5 \mathrm{~m} / \mathrm{w}$ several analogous facts before \＆after this． $643-5 \mathrm{~m} /$ w variable in genus $10-15 \mathrm{~m} / \mathrm{w}$ var．in individual． 21 u＂unel monstrosité＂， $31-35 m 65$ $6-7 m, 15 m 676-11 w$ Cases of plants with
wider ranges identical．－12－18w Alph D．C．of course gives infinitely many cases $778-15 \mathrm{~m}$ ， $20-24 m / w$ this is like such cases as lvy naturally ranging where cannot fruit 7824 $27 \mathrm{~m} / \mathrm{w}$ not really changes $8517-23 \mathrm{~m} / \mathrm{w}$ I think other characters of Alpine plants 17－ $23 \mathrm{~m} / 18 \mathrm{w}$ on mountains $901-5 \mathrm{~m}, 13-20 \mathrm{~m} 95$ $5-15 m / w$ shows how ignorant we are 1184 $8 m, 19-28 m 12010-14 m / w$ Mentions 2 organs $12112-15 \mathrm{~m} / \mathrm{w}$ analogous variations $12416-$ $22 m / 17-18 w 2$ forms $12527-28 m 1276-10 m$ $134 \quad 19-24 m / 18-29 w$ nothing whatever compared to geological facts puerile to quote them． 148 19－22m $14911-19 m 15414-19 m$ $160 w t$ Did he observe its origin $1-4 m, 4-8 w$ Has it spread or increased？？21－24m，22－ 25m，25－26m（Marchant）161 5－9m，15－17m 168 22－26m 169 3－6m，21－26m，30－31 \rightarrow 170 $16-23 \mathrm{~m} / \mathrm{w}$ shows how much crossing $27-29 \rightarrow$ 171 2－7m，31m $1727-18 m 17331 \rightarrow 1744$ $11 m 179$ wt This wd be very good argument if we did not meet such difficulty in well－ known countries $2-7 \mathrm{~m} / 5 \mathrm{w}$（a）11－16m 181 17－ $24 m 1831-3 m 1937-8 m, 9-11 m 1965-14 m$ 238 2－9m 239 2－18m 247 24－25m，26－27m 249 23－27m 250 3－6m 251 12－13m 252 11－17m 260 15－27m 261 1－12m 336 16－18w All used about dog 341 12－15m 342 4－ $7 \mathrm{~m}, 18-27 \mathrm{~m} / 21-$ $22 u$＂l＇arcadelarquée＂／Q 346 19－22m 348 7－ $11 m 3521-5 m 3555-10 m, 17-18 m 357$ wtes All used about dog $8 w$ All used Cats 358 23－ $24 m 359$ 16－18m $3626-8 m 3634-6 m, 8-10 m$ ， 12－13m， 27 m （Cuvier）， 28 m （Gervais）， $29-30 \mathrm{~m} /$ Q 364 8－10Q® 365 26m／26－30ws All quoted except antiquity of certain Breeds 367 16－ 19m 368 3－9m，24－26m（Cuvier） 369 17－20m， $29 m 3701-5 m, 9-23 w$ give summary of facts for arguments－gradation of domestic race －fertility crossing when tamed，\＆character of those gone wild．－Q\＆o 374 14－20m 375 10－ $12 \mathrm{~m} /$ ？，27－28m 376 1－10m／4－5Q＊ 377 11－ 13m，28－29m 378 1－3m，4a＂Cheval＂$/ 9-14 w$ All Q in Ch． 3 on Horses 379 2－9m 382 15－19m 387 17－18m 389 6－7w p． 391 Black Asses no stripes $39125-27 \mathrm{~m} 40215-18 \mathrm{~m}, 18-27 \mathrm{~m} / 22-$ 23Q $4065-7 m, 19-21 m, 22-25 m, 27-29 m 407$ 6－7m 409 16－18m 416 13－19m 441 21－27m 442 2－4m，20－24m／Qđ，25－26m 443 10－16m， $27-28 \mathrm{~m} / \mathrm{w}$ Black less common 30 m 4445 m ， $25-27 \mathrm{~m} 4456 \mathrm{~m} 446$ 11－12m， 27 m 458 11－16m 459 17－21m 460 8－10Q $11-13 m / 12 u$＂ 2700 ＂， $18-20 \mathrm{~m} / 19 u$＂ 1494 ＂ $4617-10 \mathrm{~m} / \mathrm{w}$ is this race 9－18m／15－17m／w Dandolo 18－19m，20－24m／ 20－23m $4626-7 m / 6 u$＂leur forme＂ $77 u$＂bien 1 fournir＂， $8-10 \mathrm{~m}, 12-16 \mathrm{~m}, ~ 25-27 \mathrm{~m} / 19-25 \mathrm{w}$ Quatrefages（They do not stick their eggs） 29－30m 463 4－5m Catalogue \wp back cover 38－44ma（Boudin）
vol. 2 NB1 Melon p.62; 95 Apricots; 84
Dahlia see Loudon Encyclop.
NB2 56 Pea
NB3 Gosse p. 301
SB1 *
$\Leftrightarrow 246$ to 337 About Man good.
$\Leftrightarrow 374$ character of races of Man
p. 300 Case of Man exaggerating natural peculiarity
p. 322 argues against effect of introduced women into Harems.-
p. 326 differences in chiefs of Polynesia

- Book p. 251 Castelnau Auguste G St Hilaire
SB2 1β
Go Godron vol 2. sur l'Espece
Much about Man. good. [All abstracted for my 1st vol.]
as good case of bitter almonds not being eaten by Mulots \& therefore sown in Preference for wood Q Θ

4 23-24m 6 21-23m 9 22-24m, 26-27m, $w b$ effect of scanty milk when young - given in puppies - But is this hereditary? $2212-17 \mathrm{~m} /$ w Cresy's fact $271-7 m 287-15 m 301-4 m 35$ $30 \mathrm{~m} 4029-30 \mathrm{~m} / \mathrm{w}$ read $431-6 \mathrm{~m} / 2 \mathrm{w}$ Zebra? $442-6 m / w$ this is his argument everywhere $9-10 \mathrm{w}$ Pouters $4922-25 \mathrm{~m} / \rightarrow 501-6 \mathrm{~m} 52$ 13$19 m, 25-27 m 5412-13 \mathrm{~m} / \mathrm{w}$ Turnips \& Rape ?? 24-27m $553-6 \mathrm{~m} / \mathrm{w}$ B. canpestus oleifera $9 u$ "Colza", 10u "Chou-Rutabaga", 10-14m/w Swedish Turnip 27-28m (Metzger) 56 21-24m 57 12-18m 58 9-13m $6013-17 m, 23-26 m 63$ $12-13 \mathrm{~m} / \mathrm{X}$, $20-23 \mathrm{~m} / 20-29 \mathrm{w}$ differs in selected part \rightarrow so in cabbage it is only selected part. which differs $644-8 \mathrm{~m}, 11-16 \mathrm{~m} /$ w analogous variations in distinct species $18-20 \mathrm{~m} /{ }^{\prime \prime} . . . " \notin, 26 \mathrm{~m}, 28 \mathrm{~m}$, 30 m \& $6711-12 \mathrm{~m}$, $22 \mathrm{~m} / \mathrm{w}$ selection $695-8 \mathrm{~m}, 12-22 \mathrm{~m} 7011-12 \mathrm{~m} /$ $9-17 w$ How are Bulbs of Hyacinth in contrast. I think they can be recognised. 71 $8 m 721-5 m, 7-9 m, 12-17 m 736-8 m$, 14-17m, 27-29m 74 13-16m, 21-24m 75 5-19m, 6-7m/ $6 u$ "exactement parallèles", 7-16w if these all real species, still odder that not known wild $16 u$ "présentel races", $22 u$ "sont 1 espérances" $/ w$ Triticums $762 u$ "Nous 1 patrie" $/ w$ Rye 77 10-12m, $18-25 m \quad 78 \quad 15-16 w \quad 3$ Hordeum 19-20w 2 Oats wb 5 Triticum + 1 Rye +3 Hordeum +2 Oats all in N temperate parts of old world. $-!=11$ species + one Hordeum \& common wheat apparently known in wild state 79 9-10m, 11u "panicule serrée", 13-14u "pourvuesld'arête", $14 u$ "albumen", 16-17u "ne I caractères", 19-21m 80 21-23m, 29-31m 81 7-10m 82 18-20m, 21$22 m 843-8 m, 26-28 m 858-12 m, 20-23 m, 27-$
$29 m, 30-31 m 863-8 m 871-3 m 88 \quad w t$ in single flowers selectors only try for size brilliant colour \& regularity of shape wt in Thyme I have noticed grt differn in shape of corolla \& * stigma $7 w$ - run regular $7-9 m$, 8-11m, 19-20u "reproduisent I stérile", 21-25m, $22-31 \mathrm{~m}$ 89 26-30m $901-3 m, 26-29 m 912-$ $5 m$ \$/3-4u "encorelaiguillons" $9318-21 \mathrm{~m} 94$ 23-28m $971-4 m 9815-18 m / w$ good selection 100 13-19m 101 14-17m, 20-22m, 24-27m 102 3-5m, 13-15w what a proof of powers of variability $18-21 \mathrm{~m} / \mathrm{w}$ but so it wd be in France \& England. 103 14-17m, 18-22m, 23$25 \mathrm{~m} 1063-10 \mathrm{~m}$, 16-19m, 21-25m 107 1-9m, 12-13m 216 10-14w Form of shin \& heel of Negro $16-32 \mathrm{~m} / \rightarrow$, $18-21 \mathrm{w}$ could not be produced by Selection 25-32w Different amount of Beards before mentioned - views of Huc's 217 1-11m/9-11x $\$ / w$ Conditions with colour 246 16-18m 247 5-8m, 10-11w Migration 12-15m 248 9-11m, 12-14m, 18$19 \mathrm{~m}, 22-24 \mathrm{~m}, 23-28 \mathrm{~m}, 25-27 \mathrm{~m} 249$ 9-13m/1$18 w$ These American facts diversity of very good to show not climate - We simply do not know 15-20m 250 1-5m, 8-12m (Humboldt) 253 11-14m/w like sexual selection 254 19-21m/w Migration good to show race $2553-6 \mathrm{~m} / \mathrm{w}$ this looks like sexual selection $2613-8 m 26313 m 265$ 2-6md 266 2-6m 268 wt This agrees with poorness of colour of productions of Galapagos \& Patagonia - But then how in Chiloe? \& Tierra del Fuego 3-8m 269 3-10m/w Compare tropical Africa \& America Tasmania 275 3-6m 276 1-5m, 13-18m, 19$21 \mathrm{~m} / 20 \mathrm{u}$ "mais|toujours", 28-31m 277 wt my notion of correlation \& darkness of skin not applicable to Tasmanians for healthy climate, migration- $3-11 \mathrm{~m} / 5 \mathrm{w}$ (a) $24-27 \mathrm{~m} 278$ 8-12m, 16-22m 279 10-11m 280 1-2m 282 22-25m 283 4-8m 285 8-9m, 22-23m, 25-28m 288 7$13 m 289$ 10-19m 297 1-6m 299 6-27m/9u "deux"|13u "incisives"/15u "phalangel doigt"| 11-15w mutilations not hereditary $Q 3005-$ $7 m, 7-8 u$ "ce|naturelle", $9 u$ "laideur" $/ w$ no 301 18-25m, $27-28 \mathrm{~m} / 22-30 \mathrm{w} / \mathrm{wb}$ This wd be good to show Man exaggerates peculiarities 302 27-30m/? 308 8-9m/8u "poitrine", 11$14 m, 15-21 m 3111-6 m 3131-9 m$, 18u "quel climat" $\mid 18-21 w$ but how vague $20-25 w$ p308 $w b$ It may be said if conditions of life can do something, why not make Pouter \& fantail, but we see no corresponding difference \& we cannot believe this it seems incredible to me - especially in case of pigeons, \& this other agency which is a real agency I have shown selection suffices for 322 13-20m 324 $17-28 m \quad 326 \quad 15-25 m \quad 327 \quad 22-27 m \quad 333$ 15-

GODRON
$21 m 3341-4 m / w$ Jews 336 17－21m 337 12u ＂genre＂／9－16m／w food \＆exercise 17－21m／w intellect，vistas \＆happiness 374 19－24m 375 12－15m

GONNE，Christian Friedrich Das Gleich－ gewicht in der Bewegung Dresden；R．V．Zahn； 1882 ［Down］\wp

GOOCH，Robert On some of the most important diseases peculiar to women London； The New Sydenham Society； 1859 ［Down］

GOODSIR，John，and GOODSIR，Harry Anatomical and pathological observations Edinburgh；Miles MacPhail； 1845 ［Down］\wp

THE GOOSEBERRY GROWERS＇REGISTER for the year 1862 C．Leicester；Macclesfield ［CUL］
v
NB 192 London；Dwts；Pennyweight； 210 Hamp．O；All＊these named gooseberry won Prizes the one year winner？
205 wb 38206 wb 35207 wb 44208 wb 36 $209 w b 342104 m$ ，wb 39211 wb 17 wbcc 243 kinds

GOSSE，Philip Henry Letters from Alabama， chiefly related to natural history London； Morgan \＆Chase； 1859 ［CUL］
beh，gd，00，pat，v，wd
NF 〈list of synonyms and antonyms〉
NB 106；146；161； 191 odd flower；Moths sucking Melons 229； 280 Mules；Beaver fur 300
SB
p106 Partridges laying in Hens nest
146 Aegeria with appearance \＆manner of flight like wasp
161 Picus eating fruit passionately
229 Moths sucking wounded Water－melons
106 2－14m，28－35m 146 4－15m 161 9－16m 190 22－24m 191 2－5m 229 24－29m 280 8－15m 300 3－8m

GOSSE，Philip Henry A naturalist＇s sojourn in Jamaica London；Longman，Brown，Green \＆Longmans； 1851 ［CUL，S］
ab，gd
NB p． 91 Enquire；339；340； 386 Pigs ${ }^{4}$ ； 418 ；430X；442，3；447；469；Singing 168
－Wool of Sheep－Colour of Cows－Sea－ Horse rabbit
SB \square
339 The Alco－or Mexican Mopsy，white woolly var．wd．only associate with another

Dog of its own Breed－becomes passionately attached to single individual $Q e_{s}$ 340 Feral Dog of E ．Haiti different from St Domingo of Col．Smith；thought to be an aboriginal S．American feral Dog Q
386 Feral Hogs of Jamaica Q
429．Haiti tradition of Frogs brought by shower－alludes to Moreau case
431 Frogs imported \＆spread in several W． Indian islds
441 Rabbit feral Q but not common－Slate－ coloured Q＊o
447 European Ferret rendered useless from their inability to overcome Chigoe infestment Q
469 On the indigenous Capromys of W． Indian islds．－

91 介13－10m 331 2－3m，6u＂absolutely mute＂， 11－20m／11u＂Alco＂／ $12 u$＂from Mexico＂，19－ 22m，21－22u＂aleye＂ $3327 u$＂Mexican Mopsy＂ $33514 u$＂AgnaralSurinam＂，28－30m／Q 338 28－32m 339 2－5m 340 24－27m，29－32m／29u ＂Dog｜Haiti＂／Q 30－31u＂Feral｜Domingo＂ 386 5－7m，15－20m／Q 389 1－2m／Q 9－11m，19－20u ＂well－toothed＂ 428 3－9m 429 19－22m，24－27m／ $26 u$＂bull－heads＂ 430 9－12m，23－28m，31－33m $44127-29 m / Q 4424-8 m$ ， $7 u$＂deeply＂／Q 443 6－10m 447 4－9m 469 21－28m， $31 m$ catalogue \wp

GÖTZ，Theodor Hunde－Galerie 2nd edn； Weimar；Eduard Lobe； 1853 ［Down］

GOULD，Benjamin Apthorp Investigations in the military and anthropological statistics of American soldiers New York；Hurd \＆ Houghton； 1869 ［CUL］ cc，f，gd，h，he，phy，tm，v，y
NB All for Man Chapter
93；107；115；116；126；131；132； 134 Height； 207 Colour of Hair； 256 length of legs－not rank； 288 do in Sailors；negro 298；do－arms 301；do foot 302；Pelvis of Indian 310；do 316；Inferior vitality of Mulattoes－319；Summary of eyes 359； Size of head 371；Size of Lungs Negros 471；Pilosity of Negros Q 569 ．
SB \quad ；$; \cdots$
x p93 Different stature of men of W． Virginia \＆New Jersey
$x 107115$ growth longer continued
x ． 126 Causes of statures xp． 136 do．
$x 134$ sailors stunted
［Even so simple an affair as stature depends on concealed conditions．－Yet a direct nature for transplanted infants affected］ －（Military Statistics）
$\propto 206$ colour of Hair \＆Eyes，seems effect of conditions
－ 256 Length of legs in white soldiers，the most variable element in stature
－ 288 Sailors in comparison with soldiers have longer legs \＆shorter arms，in a degree entirely disproportionate to difference in height
－ 289 Neck greater．－chart－waist \＆hips small．－ 290 instep thicker．－Direct action．－ 298 in Blacks distance from tip of finger to patella differs much from Whites
301 Blacks－Length of Humerus
302 do great length of foot $\langle u$ 〉
310 Red men very long arms－palms very broad

316 Table of Summaries

317 Length of two sections of arms
319 Summary in words on differences of races less Vitality of Mulattoes
358 Better Summary
371 Size of head varies with stature，not in same proportions
471 different capacity of Lungs in Black \＆ Whites 〈u＊
569 No difference in pilosity between Black \＆White but this is the U．States．－
［U．States Sanitary Commission］
$9127-34 m / w$ p109 \＆ 111 p115 36－40m 93 13－22m 107 8－13m，35－36m 111 11－21m 115 9－15m 116 3－8m $1254-8 m 1265-11 m$ ，16－ 18m 127 4－5m，6－8m $1315-7 m, 11-15 m, 18 m$ $1323 u$＂agency linfluence＂，12－16m，31－33m 134 12－14m 206 介18－1m 207 4－16m 256 介5－ 1m 288 5－11m，wb These cases not known to be inherited $2895-7 \mathrm{~m} / 5 u$＂girth＂$/ 6 u$＂ 3 ＂$/ 7 u$ ＂breadth｜hips＂， $24 \mathrm{~m} / \rightarrow 29021-25 m 29825$ 30 w ie distance from tip of finger to patella 32－33w see p． 253299 1－5m 301 16－18m／ $17 w \leftrightarrow, 26 u$＂fore－arm＂$/ w \leftrightarrow \nless<$ humerus $30-32 m$ 302 13－15m 310 6－8m，19－22m，32－35m 316 $2 w$ Summary Table 317 7－15m 319 12－13m／w Mulattoes 24－28m $3594-9 m, 14 u / w \notin 37112-$ $19 m 47110 \mathrm{~m}, 15-18 m 5699-10 \mathrm{~m} / \mathrm{w}$ Pilosity 12－16m $620 \Uparrow 15 m 640 w b 9$

GOULD，John Handbook to the birds of Australia 2 vols．；London；by the author； 1865 ［CUL］
beh，br，ds，f，sl，sp，sx，sy，t，tm，ud，v，y
NB 145 variation in nests
SB
97 female larger \＆brighter Gould＊Vol I 118 Merops Young
124 Dacelo Y \＆sexes
130 Halcyon Y
135 －good case Kingfisher with sexes cur－
iously different－young male like female 136 sexes with different ．．Kingfisher
Kingfishers
140 Y
How are young in species in which tail differs in colour．\＆ring－neck．
［When adult obscure 2 like I think young always alike］no
Sexual Selection
145 Y；168；177； 181
193 Y complex changes；196； 200 sexes
210 males conspicuous \＆shy Q
213 2nd year males assume plumage； 215 Y； 249
256 sexes \＆Y
260 sexes alike young different； 266 do
277；278 N
300 Menura visits same mounds
310 tail \＆nest of Menura
〈over）
317 N Nest dome－yet female obscure－ strongly against Wallace as Splendid Birds during Breeding Season
（I have erased recently all marks I must look over volumes．）
［I may put the case that many Birds which differ sexually build domed nests．－\＆many which do not differ \＆are not brilliant also build such nests．］－
395 female less than half size of male Q \checkmark
419 castanotis
442 Bower Bird－Give figure to 461
457 Beauty causing shyness \mathbf{Q}
471 Corcorax displaying himself to utmost advantage
（It wd be well to look apropos of nest， whether many of Honey－suckers are bright－ 597 peculiar noise made by wings by males \checkmark
602 female never beautiful
［In same genus with sexes alike，\＆young either like or unlike adults．？］
All about Sexual Selection
94 21－25m 97 1－6m 99 12－15m 118 21－22m， $32 u$＂this Ideep＂ $1192 u$＂black｜blue＂ 124 10－ $15 m 12512-15 m 1308-11 m 1345-10 m, 15-$ $17 \mathrm{~m} / \mathrm{w}$ very fertile $31-35 \mathrm{~m} 1356-9 m 13626-$ $34 m 137$ 22－25m 140 7－11m，19－21m，30－32m $14515-17 m, 30-35 m$ 162 3－7md 168 13－15m 169 24－28m 181 8－9m，16－18m，18－19m，33m 182 13－15m 193 20－21m／20u＂brown＂，22－ 26m／25－27u士，28－30m $1963-8 m / 3 u$＂throat back＂／4u＂jet－black＂／7u＂uniformlhead＂，20－ $21 u$＂throat Igrey＂ $197 \quad 10-11 m \quad 200 \quad 21 u$ ＂Camphegae I Graucali＂， 23 u＂sexes I colour＂ 210 3－7m／Q 213 12－14m 214 12－16m 215 28－31m

GOULD, AUSTRALIA HANDBOOK
249 1-2m 256 24-27m $2608-11 m / 8 u$ "sexes alike", $8 u$ "young"/10-14w observe bird 266 $19-23 \mathrm{~m} / \mathrm{w}$ get/observe birds $2771 u$ "sexes considerable", 17-19m 278 31-33m/32u "black। scarlet" $2796-13 w$ how is rest of plumage $15-20 \mathrm{~m} / \mathrm{w}$ common to both sexes whilst others differ more 280 1-4m 285 9-13m 287 $12-13 \mathrm{~m}, ~ 21-23 \mathrm{~m} 29022-26 \mathrm{~m} 29416 \mathrm{~m}$, 18$21 m 30026-29 m 30123-26 m, 32-34 m / 33 u$ "appearancel roofed" 302 15-18m 303 21-26m $3088-13 \mathrm{~m}, 22-23 \mathrm{~m} / 22 u$ "powerful| voice", $24 u$ "own Ibeautiful", $24-26 \mathrm{~m} / 24 u \pm, \quad 29 u$ "of 1 grounds" $3091-3 \mathrm{~m} / 2 u$ "domed", $33-35 \mathrm{~m} 310$ $1-3 m, 30-34 m 311$ 11-14m/13u "and lin" 312 $9-11 m / 12 u$ "domed lone" 317 wt (a) many species all so far as known differ greatly by sex \& build dome nests $6-9 \mathrm{~m} / \mathrm{w}$ (a) $11-13 \mathrm{~m} /$ $12 u$ "build dome" 318 19-21m, 24-27m 319 $28-29 m / 28 u$ "whichlshaped" $3206-18 m 323$ 24-26m, 33u "dome" 324 18-22m 325 3u "dome-shaped" 340 5-7m/6u "openinglside" 341 27-29m 358 19-21m 359 26-29m 362 2$5 \mathrm{~m} / 2 u$ "dome-shaped" $363 \quad 32-34 m 364$ 19$20 \mathrm{~m} / 19 \mathrm{u}$ "domed" 365 15-17m 374 2-4m/ $3 u$ "domed", 33-34m 383 4-6m, 7-9m/7u "recommended lobserver", $10 u$ "domed form" 386 27-28m/27u "entrancelabout" 387 19-20m 388 17-19m/17u "dome-shaped nests" 389 3-5m $3919-12 \mathrm{~m} / 9 u$ "oflform", $18-19 \mathrm{~m} / 18 u$ "arel similar" 395 16-19m/17u "which Isize" 407 3$5 m / 4 u$ "dome-shaped" $4147 u$ "Plain|finch", $16 u$ "domed form", 19-20u "absencelfemale" 418 2-5md/3u "pendant"/6u "offer" 419 2729m/u "upperlwhite" 440 24-27m 441 3-6m 442 wt B. genera no doubt co-descendedO by some ancient bird, which acquired their strange instinct. $1-3 m \quad 443 \quad 23-26 \mathrm{~m} / 24 u$ "differed" $/ 25 u$ "third larger", 30-32m, 33-35m $4442-4 m, 3-6 u \pm, 5-7 m, 11-12 u \pm, 16-17 u$ "which 1 males", $11-14 m, 19-20 \mathrm{~m} / x$, 26$27 u \leftrightarrow, 29 m *$ "pick|leaf", 32u "openinglthe" $4458 u$ "blue-black", 11u "velvetyl shining", 14-16m, 20-23m/w Eyes 25-27m 447 12-15m 448 2-6m, 7-9m/8u "both|these", $9-12 m, 12 Q 12-14 u \leftrightarrow 44914-18 m$, 16u "2 1/2llong", $22 x / 22-23 u \quad$ "flying|side"/ "..., 27-29m/28u "the |pink" 451 1-2m/2u "threelin", 3u "beautifullylgrasses", 5$6 u$ "bivalvelby", 10-16m, 10u "stones 1 within"/16-17u↔/17x 21u "round", 23$24 m / 24 u$ "formed lindividuals" 452 16-18m 453 8-16m 455 1-2m $/ 1 u$ "thickl4", 2-3m/3u "Snaill berry", 9-12m, 10x, 10u "4 Ihigh", 11u. "somelberries" 457 20-24m/Q 26-27u "twolconflicts" 458 26-32m 459 25-28m 460 5-9m, 22-25m 461 2-6m, 8-11m, 21-26m 464 $14-17 m, 30-35 m 47110-14 m 47823-24 m$, 25$27 m, 30-33 m \quad 483 \quad 19-21 m \quad 486 \quad 8-17 w$
generally beautiful \& nest not domed, I think. 495 11-12m 496 33-35m 497 13-17m 50214 $17 \mathrm{~m}, 31-33 \mathrm{~m} 5045-7 \mathrm{~m} / 6 u$ "rest 1 shaped" 509 $16-17 m, 30-31 m 5256-7 m 52631-32 m 527$ $16 u$ "of birds" $/ 15-17 \mathrm{~m} / \mathrm{w}$ nest open \& cupped 531 32-33m 534 12-15m 535 22-26m 542 21$26 m 5479-10 m, 18-20 \mathrm{~m} / 18 u$ "denuded" $119 u$ "knob"/20u "less lanceolate" 556 1-6m $5623 u$ "on I shaped", $6 u$ "inltop", $17-22 w$ beautiful birds 21-27m 567 22-25m 573 23-26m 574 15-17m 581 1-2m 588 14-15m 5971-5m/3u" a hundred" 602 12-17m 603 32-33m 604 1-2m 607 1-2m 617 6-11m, 20u "the 1 brown", 3031 u "upper \mid rufous", $33-35 \mathrm{~m} / 33$ u "tail \mid white" $6254-6 \mathrm{~m} / \mathrm{w}$ * 633 30-32m
vol. 2 NB 538 New Zealand many * anomalous Birds
6 18-22m/19u "yellow|centre"/20u "crest" 7 18-22m 10 7-10m, 19-21m $123-4 m 1433-$ $34 m 1733-34 m / w$ and white cockatoo $185-$ $16 \mathrm{~m} / 8-11 w$ Generally different $206-9 m, 16-$ 19m $224-5 m 254-5 m, 29-31 m 2820-23 m /$ $20 u$ "the plumage" 30 10-12m, 32-34m $3127-$ $29 m 321-5 m, 10-11 \mathrm{~m} / \mathrm{u}$ "thighs I green"/w var $3622-24 m, 25 u$ "the 1 scarlet", $33 u$ "throat | red" 37 3-5m $3824-27 \mathrm{~m} 4031-32 \mathrm{~m} /$ $31 u$ "rich I glory" $4119 m 4534-35 m 46$ 1-4m, 4-7m 48 32-34m $4931-33 m 547-11 m, 24-$ $27 m 5527 u$ "beautiful bird" 56 fw Hence It does not seem as if variation had occurred early in life, but had crawled backwards or invaded the young. \& it seems whenever this happens it invades both sexes $-\&$ ceases to be limited to one sex. $-\Uparrow 5-1 m / \Uparrow 5 w$ one of the most Beautiful spec $w b$ In other species of genus young very different - very beautiful. Shows not descent - from differently coloured ancestors 59 11-14m, 33$35 m 6122 m, 24-25 m 6312-14 m 6624-25 m$ 67 20-21m 68 25-28m 70 8-10m, 32-35m 72 3-5m, 20-21m, $22 u$ "bandlless", $23 u$ "conspicuous|blue", $24 u$ "bordered labove" 74 $15-17 m 76$ 18-20m 77 5-6m 78 19-20m 82 $14-17 \mathrm{~m} 8312-14 \mathrm{~m}, 32-35 \mathrm{~m} 8515-17 \mathrm{~m} 87$ $35 m 9035 m 922-4 m 9519-20 m 9718-29 m$ 99 34-35m $10121-22 m 10232-33 m 109$ 11$12 m, 14-15 m, 29-30 m 1111-2 m 1121-3 m 113$ $28-31 \mathrm{~m} 117$ 22-23m $1197 \mathrm{~m} 12129-31 \mathrm{~m} 129$ 30-31m 132 16-18m 134 12-14m 143 18-19m 144 24-26m 147 25-28m 149 12-13m 154 27$33 m 17816-20 m 18028-31 m 1834-5 m 186$ 6-9m, 20-22m 187 19-21m 188 10-12m 191 20-23m 200 6-7m 203 6-8m 212 7-10m 213 30-31m 215 12-15m 220 8-12m 228 30-33m 232 23-25m 234 4-6m, 23-25m 236 33-35m 255 15-20m 264 19-23m 275 20-26m 276 18$22 m 283$ 33-35m 285 28-31m 295 29-31m 312

33-35m 319 26-28m 329 7-8m 333 24-28m 335 18-21m 337 27-32m 351 14-15m 355 27$29 m 359$ 24-26m 360 29-32m 362 18-22m 363 $31-32 m 364$ 1-4m 366 24-26m 373 16-18m $378 \quad 15-17 m \quad 380 \quad 6-8 m \quad 383 \quad 13-17 m / 14-15 u$ "thislperceptible", 21-24m, 33-34m 384 16$19 m 433 \mathrm{zb} 49121-24 m 497$ 15-19m 500 31$35 m 502$ 25-28m $50313-17 m 505$ 20-25m 511 $26 u \leftrightarrow, 29-31 m 5136-8 m 52022-23 m 5275-$ $8 m 53024-28 m 531$ 13-15m/13-14u "straight | beak" 538 27-31m

GOULD, John An introduction to the birds of Australia London; Richard \& John E. Taylor; 1848 [CUL, I]
ex, gd, in, mg, oo, sp, sx, v
NB p. 8
SB1 p. 8 to 18; p.23; p30; 36; 51; 64; 70; 75; 82; 101; 112; 134
I have forgotten to observe the relation of range of genera \& species
SB2 $-\beta$
10 Smooth Trees accounts for no Woodpeckers
10 Many representative Birds in Australia of those of North. (but I do not know, whether f. in intermediate region: I did ask.

15 Vars of Birds in Tasmania, migrating in one \& not in other Ch. 6
23 Strix numerous in species \& individuals in Australia
36 Grauculus of Tasmania
51 vars of Anthus 70 vars of Cacatua - 75 101
64 Law of representation in Australia chiefly holds E \& W
71 Nestor of Philip Isd extinct
82 Megapodium 3 species Q or rather genera - all male keep for hatching. Description of Habits
$822-27 m 915 a / 8-13 w \notin\langle n o t C D\rangle 1025-28 m$, 38-49m 11 3-5m $151-3 m, 6-17 m, 19 m, 37-$ $38 m 161-2 m 171-2 m 1841-43 m 2322-31 m /$ $1-31 w$ this wd look as if number of species \& number of individuals were related - not so in plants $3012-20 w$ I daresay true 31$46 \mathrm{~m} / \mathrm{w}$ * Hence in mundane genus - close species represent each other in different parts of same continent $361-4 m 5141-45 \mathrm{~m} /$ $42 u$ "extra-tropical regions" $6428-36 m 7039-$ $44 m 7113-14 m, 38-40 m, 42-45 m 7541-42 m$ $8239-42 m / w$ mother attends them p 8883 $35 m / u$ " $12-13$ " 84 19-20m $855-7 m \cdot 883-7 m$ 89 17-19m, $38 \mathrm{~m} 9046-47 \mathrm{~m} 919-10 \mathrm{~m} / 10 u$ "lat 1 South", 21-23m, 25-26m, 29-30m/29u "six feet" 101 17-19m $11023-26 m 112$ 2-6m/ wt what authority? 122 table "Name of
species".w You may shorten name. table "Number of Volume and Plate".w This column nothing $\langle p p$. 122-33, many entries in column headed "South-eastern Australia or N.S. Wales" marked with a cross) 134 25-30wec, 34-36m

GOULD, John Introduction to the birds of Great Britain London; Taylor \& Francis; 1873 [CUL, I]
beh, cc, ex, fg, gd, is, mg, oo, sl, sp, tm, y
NB • 23 S. Selection
SB $\quad \infty$
5,7,8 On migration
7 Birds not common in parts of England where not formerly known.
11 Destruction of Birds during severe winters 13 Protection of certain species unduly increases other species
16. On slight differences of Birds of Britain \& Europe \& on small size of insular Birds
21. Eggs in Holes generally white; but others white as with Wood-pigeons \& exposed.
22. Water-birds can swim at once; \& one kind of grouse can fly almost at once.

5 15-24m, 33-39m, 46-50m 644-49m 75-9m $81-7 w$ So France is not S. $14-21 \mathrm{~m} / 10-20 \mathrm{w}$ In Ireland no 25-29m 11 15-20m, 31-37m, 45$49 m 1320-22 m 161-9 m, 12-22 m 177-9 m, 8-$ $12 \mathrm{~m}, 12-14 \mathrm{~m} 2119-26 \mathrm{~m} 222-7 \mathrm{~m} 231-8 \mathrm{~m} 42$ 31-43m

GOULD, John An introduction to the Trochilidae, or family of humming-birds London; Taylor \& Francis; 1861 [CUL, I] beh, cs, gd, ig, in, sp, sy, t, tm, v
NB1 All references seem here abstracted. Those not struck out, all refer to slight variations \& doubtful species.- No doubt many of the doubtful species could be cleared up by more specimens.-
141 ${ }^{\text {; }} 146$ var; 158 var; 161 var; 164 do; $167 \mathrm{do} ; 170 \mathrm{do} ; 174 \mathrm{do}$ 176; 177, 8 do do 174 tips of 4 central tail feathers, tipped with dark green
Mem vast numbers of species are known by only few spec.
would it not be worth while to quote all the cases of doubt -
State that many of the doubtful forms would be cleared up. \& considered distinct, on other hand would be connected by intermediate gradation.

- 7; 9; 14; 18; 19; 20; 22; 52 Vars \& close species.
61 var; 62 do; 67*; 74 * close species; 83 do; 86 var; 89 var; 91 var; 98 do; 102 do;

GOULD, TROCHILIDAE
106 do; $109 \mathrm{do} ; 112 \mathrm{do} ; 116 \mathrm{do} ; 118 \mathrm{do} ;$ 120, 126 Salviae; 127 var; 129 var; 136 var; 138 var
NB2 Mr G. says * he has never noticed vars; but then he admits some slight individual variations \& if he find 2 forms for 2 districts ever so slightly different, they are called species.- In the same district at same time, seem to be similar
variation hardly can occur; \rightarrow 〈to NB1, 61 var)
States as the Groups have been carefully monographed - \& also confined to warm part of our Continent, good to consider * what amount of doubtful species were offered - Then state within same region could hardly vary. on account of crossing SB ${ }^{\circ}$
p.7. Humming Birds very confined ranges.
8. Juan Fernandez p. 141
9. West Indies distinct species.

14, 17, 18 Great sexual differences: given exhibition of $*$ p. 20 nest ornamented with feathers

- 22 singing \& beauty not together
p. 20 nest loaded with stone to make Heavy \& keep level
- 28 pugnacity
p. 35 sexual * similarity

52 do females in excess
67 do female more beautiful gorget than male

75 do

120 more than 20 males to 1 female - male very gorgeous.-
49 Males Shafts of feathers expanded in male

7 5-32w Humming birds very num. \& confined ranges $35 \rightarrow 830-36 m 920-28 m$, $31-32 m 1437-45 m 15$ wt Bates Butterflies when underside displayed this is beautiful 1$2 \mathrm{~m} / \mathrm{m}$, $24-29 \mathrm{~m} / 24 \mathrm{u}$ ब $/ 25 u$ "pierce I bases" $/ 28 u$ "Bourcierlbird" 17 21-25m 18 1-10m/5u "beards", 14-19m, 19-23m, 30u "blue eartufts", $33 u$ "bearded", $43-46 \mathrm{~m} / 44 u$ "undertailcoverts", 49-50m/50u "from behind" 19 6-8m, 9-15m, 17-21m, 24-26m, 41-50m/42-44"..."/ $43 w$ of the nest $47-51 c \leftrightarrow 201-3 m, 36-43 m$ $2211-16 m / 1-13 w$ because the charm suffices Nature never extravagant 18-39w However fighting \& beauty go together p. 2828 46$50 \mathrm{~m} / \mathrm{w}$ males? 29 16-22m/19-20u "perceived fastened", 23-26m 34 31-33m 35 1-3m 46 21$27 \mathrm{md} / 26-28 \mathrm{~m} 49$ 32u^, $33-36 \mathrm{~m}$, $41 u$ "similarlitylappearance" 52 19-22m, 37-42m/ $42-47 m / 18-47 w$ so that weapons of war might be gained even when males few 61

12-15m 62 8-11m $6435-40 m / 26-43 w$ Males or females more numerous? 67 17-22m, 35$38 m 7425-31 m 7525-29 m 8338-43 m 8924-$ $26 m 9137-38 m 9828-32 m 10215-16 m$, 21$25 m, 41-44 m 10315-17 m 106$ 26-32m 109 13$15 \mathrm{~m} 1109-10 \mathrm{~m}, 13 u \leftrightarrow, 14 u$ "white | four", 17$20 \mathrm{~m} / 18 \mathrm{u}$ "That $\mathrm{ls}_{\text {sole", }} 23-25 \mathrm{w}$ see p102 for Andes - case $37-38 m$ 111 4-9m/6u "attractive as may be" 112 29-32m, 35-39m 113 32-36m $1165-9 m 1181-8 m / 6 w$ only 119 35-38m 120 11-13m 126 11-16m 127 38-41m 129 31-34m 136 42-44m $13840-44 m 141$ 27$35 m 146$ 26-29m 158 26-31m 161 7-10m, 20$22 m 16428-30 \mathrm{~m} 16715-20 \mathrm{~m} 17018-20 \mathrm{~m} 174$ 40-42m 176 1-3m 177 16-18m, 22-23m 178 2$5 m, 30-33 m$

GOULD, William An account of English ants London; A. Millar; 1747 [CUL, pre-B]

2 13w Myrmeco

GRABA, Carl Julian Tagebuch geführt auf einer Reise nach Färö im Jahre 1828 Hamburg; Perthes \& Besser; 1830 [CUL, on B]
beh, br, gd, is, mg, sp, tm, v, wd
NB
50 to 67; 62 wild Pigeon; 80; 102; 106; 118; 150; 187; 205
SB
51. The White Raven not fixed (Magilluray $3 /$ 745) Descript of - other ravens drive away, only at Faroe as pair together
56 anthers varying in measurements \& tints \& 67 Q

- 63 C. livia varies (read)

65, 80 Larus 2 spec. varies much in beak \& tarsi Q
103 * seldom found 2 birds of same kind of same dimensions - took great pains on 100s of specimens
107 another capital case of Uria, see to this Q (p150 another case of 2 forms breeding together)
118 Colymbus, beak \& tarsi variable Q 205 there are migratory Birds in Faroe Q
The Pied Faroe Raven is analogue of Hooded Crow \& Jackdaw \& Magpie(?)
title page w See about Pie-bald Raven mentioned in Macgillvry Vol. 3 end. Does Ch. Martins in Voyage to Scandinavia mention this Bird.- p70 1 wb Read 38 16$23 m 5025-28 m 5116 w$ vol 3 p 745 of Macgillvry 17-19m, 24-25m/24u "nicht|auf"| $25 w$ not a fixed species $5210 u$ "Derlstark", 11-12m, $15 u$ "sehrlvorne"/12-16w agrees pretty well with Mac. $25-28 \mathrm{~m} / \mathrm{w}$ exactly same
as Mac $30 \mathrm{~m} / \mathrm{u}$＂hornweiss＂ 53 16u＂diel mittlern＂， $20 u$＂Schwanz＂，21w black in Mac． $23 u$＂rein schwarz＂$/ w$ agrees $25 u$＂Krallen｜ weiss＂， $27-30 \mathrm{~m} / \mathrm{w}$ varies 54 wt very curious being produced only at Faroe $9-10 \mathrm{~m} / \mathrm{w}$ ornithologist 10u＂Viell．｜Brehm＂／11u＂Brün－ nich＂／w have named it $14-17 \mathrm{~m} / \mathrm{u}$＂gewöhn－ liche｜vorkommt＂／w pecking him away 20－ $23 m / u$＂dass lerhält＂，$\uparrow 4-2 m / u$＂einlJunge＂ 56 $27-29 m / w$ measurements not here to be trus－ ted 57 2－4u＂Mailübrigen＂，8－9m 59 1－3m 62 18－21u＂daslbehalten＂，18－25w Des－ cription 63 17－26m／20w varies $24 u$＂eine＂／ $25 u$＂eine Andeutung＂／25－26m，27－28m／28u ＂ist｜gemein＂ 65 22－27m，29u＂Knoch－ enbildung＂，$w b$ skeleton $664-7 m / 5-6 u$＂diel wirken＂， $11-13 \mathrm{~m} / \mathrm{w}$ very rash to trust to measurements on dryed skins $19-24 m / w$ does not trust to measurement without they are constant over 25－30m， $26 u$＂Papagei－ taucher＂／wb Puffin $674 u \wedge, 7-9 w$ differences of 2 specimens－ $22-27 \mathrm{~m} / 24 u$＂ 1 11／12＂ 80 13－15m／14u＂5 Linien＂ 102 22－30m／24－25w Variation 103 4－8m／7－8u＂und｜wären＂， 22－26m，23－25u＂hunderte｜untersucht＂ 106 20u＾，22－24m，25－26u＂halben I Zoll＂，27u＾／Q $w b$ Faber $w b$ See MacGillvry for other localities $29-30 \mathrm{~m} / 30 u \leftrightarrow 1071 u \leftrightarrow / w t / 1-7 w$ Uria ringvia var of U ．troile．is certainly only a variety，though he at first doubted $8-17 w$ MacGillivray 5 p .328 with picture of head．Q 7－9u＂einigen 1 Auge＂，16－17u \rightarrow ，19－21m 118 21－22m 146 14u＂dunkelbrauner＂／10－13w 2 other chance visitors $22-25 m / w$ Goldfinches arrived 150 6－8m／Q $1878-12 m / 9 u$＂die Hälfte＂ $20219 m 205 w t$ Faroes about 160 miles from Shetland \＆further from Iceland $7-10 \mathrm{w}$ in Iceland I think many migratory Birds $11-12 \mathrm{~m} /$ $u \leftrightarrow / w$ migratory \mathbb{Q}

A Graduate from Cambridge The Darwinian theory of the transmutation of species London； James Niskett； 1867 ［Down］

GRANT，Robert Edmond Outlines of comparative anatomy London；J．B．Baillière； 1835 ［CUL］
NB 〈back cover of each of the four parts〉 Nothing
Part 3，Catalogue， $1825 m 1940 \mathrm{~m} 206 \mathrm{~m}$ supplement to Catalogue， 1 16－17m 3 10－ $13 \mathrm{~m}, 45 \mathrm{~m} 625 \mathrm{~m}, 29 \mathrm{~m}$

GRATIOLET，Pierre De la physionomie et des mouvements d＇expression Paris；J．Hetzel； 1865 ［CUL，S］
beh，he，pat，phy，t, v

NB1 Book 14；p． 311 Book；p135
NB2 p． 123 Hensleigh；p137；161；p． 167 Dyspnoea；Englehart；MouthO BD
title page $1 u / 3 u$ 〈author，title〉，wb See p436 for Lecture 7 1－4m，22－25m 12 8－10m，15－ $20 m$ ，21－25m 14 17－20m 15 4－12m，15－17m 17 $5-8 \mathrm{~m} / \mathrm{w}$ rolling eyes $1815-19 \mathrm{~m} /$ ？ 19 17－19m 23 15－16m，18－20m $243-5 m, 10-21 \mathrm{~m} 26$ 18－ $23 m 3519-25 m / 22$＂．．． $371-9 m / .$. ＂ $428-13 m$ 43 9－12m 47 5－13m，14－17m 51 12－15m／w p256 p346 52 1－8m，12－23m $539 u$＂presquel regard＂，10－12m／10－11u＂mouvements｜ sensibles＂ $112 u$＂tête inclinée＂， $13 u$＂chairs du＂， $14 u$＂flasques＂ 65 18－25m／＂．．．＂ 66 2＂．．．，4－8m 73 3－5m 75 12－15m 78 8－13m 79 12－14m／w colour changes suddenly in Turkey $21-22 \mathrm{~m}$ ， 23－25m 81 1－7m，15－17m，19－22m 82 5－8m， $20-23 m 8310-15 m 848-13 m 8510-14 m 90$ $6-7 m, 24-25 m 914-9 m, 17-22 m$ ． 92 6－25w Have the capillaries muscular coats？Does Beale discuss this？（of course） $20-25 m, w b$ This view of nervous power merely general $941-7 m / 1-5^{\prime \prime} . . . " / 4 w$ oh $16-19 m 986-10 \mathrm{~m} / 8 \mathrm{w}$ Cats 14－16m 99 3－6m $10015-20 \mathrm{~m} /$ ？ 101 1－ $8 m 104$ 21－25m 105 1－4m 106 7－10m 113 6－ $8 m 1155-23 w$ seems to say that noise of laughing \＆crying the same 117 9－13m，19－ $20 \mathrm{~m} / ? / \mathrm{u} / \mathrm{w} \tau 118$ 9－13m／w hence close eyes $22-25 m$ ，wb Bell wrong on expanding chest for effort $120 w b$ retardation of circulation 121 $14-18 m / 5-17 w$ to check the circulation 19－ $21 m 12521 u$＂bâillement＂ $1264-9 m, 13-16 m$ 127 5－7m $1299-11 m / w$ trembling at dawn of life $\Uparrow 2 u$＂l＇action \mid froid＂ 144 wt to see distinctly $1-4 m 145 \quad 1-4 m 1464-7 m / w$ tears too bright light $1525-8 m 1558-25 m 1574-7 m$ 160 14－25m 161 11－19m，23－25m 168 14－21m 186 17－25m 187 21－25m $1881-3 m!!/ . . . " 189$ 13－24m 206 19－21m 207 wt This is Key－stone inherited 1－2m，4－7！ 212 24－25m／＂．．． 213 1－ 4m／1－5．．．＂，16－19m 217 22－24m 218 19－24m 221 11－13m 230 4－11m 232 4－6m，10－12m 233 8－9u＂oublient 1 respirer＂，10u＂cet lqui＂ 234 11－14m 247 18u＂excessive tourmente＂，19－ $25 \mathrm{~m} / \rightarrow / \mathrm{wb}$ shortest injured limb 248 1－5m 250 8－15m，22－25m 251 3－7m，20－25m 253 6－9m， 23－25m 254 4－6m，7－9m／w astonishment । doubt 19－24m 255 3－4m，fig．m／w like Husckke 256 8－11m 257 5－9m 264 5－12m／6－8w Piderit 21－25m 265 17－20m 268 11－16m 283 wt to 287 10－14m，18－23mas／20w do 23－25m 284 6－ $10 \mathrm{~m}, 10-15 \mathrm{~m}, 22-25 \mathrm{~m} / \mathrm{w}$－〈about placebo effect） 285 10－19m 286 wt The wish to stop crying increases it－1－4m，8－10m 287 10－ $11 \mathrm{~m} / \mathrm{w}$ Lemon 289 13－15m／14u＂M．Chevreul＂ 290 20－25m 311 5－7m 322 13－18m 323 12－ $18 m 32414-18 m / 15 m / 14-18 u \pm 3346-21 m / 8 w$

GRATIOLET
opposite feelings 335 13-15m/10-17w anger does the same $16-21 m, w b$ Is it not because it has led to action see Note in Portfolio 336 $5-10 m, 17-21 m / 21 u$ "pousselaffreux", 24-25m, $1-25 w$ can pain be said to excite an animal - yes if not accompanied by fear whipping of a horse shows it - $*$ collapse soon follows $w b$ (See Bell) 337 17-25m $3384-8 m 345$ 18$23 m 346$ 11-14m, 19-23m 351 wt Antithesis to humility $1-12 \mathrm{~m} 35710-12 \mathrm{~m} 358$ 20-24m 359 $w t$ hides his face $3-6 \mathrm{~m} / \mathrm{w}$ shame $16-18 \mathrm{~m}$, $20 m, 22-25 m, w b$ hiding thus is wildness \& distinct from shame, which makes a blush 360 1-3m 362 1-6m 369 15-18m 370 14-19m 376 16-25m 378 21-25m 384 24-25m 436 5$7 m 438 w b$ p253 Hippocrates: cannot feel pain in 2 places at once

GRAVES, George The naturalist's companion London; Longman, Hurst, Orme, Brown \& Green; 1824 [CUL, pre-B, S Charles Darwin August 4th 1825] \wp

GRAY, Asa Botany for young people: part 2, How plants behave New York \& Chicago; Ivison, Blakeman, Taylor \& Co.; 1872 [CUL, I]
fg, mhp, 00
NB 17; 18; 34; 42; 45; 12 error
12 21-24m/21u "is right" 17 2-6m $1831-33 m$, wb No, because a tendril that has caught nothing coils $3416-23 \mathrm{~m} / \mathrm{w}$ insects \& pollen 37 20-21m 42 5-15m 45 28-37m (Linnaeus)

GRAY, Asa Darwiniana New York; D. Appleton \& Co.; 1876 [CUL]
cs, t, v
NB1 Westminster R July 1875
NB2 357-58 Design \& Purpose
Raindrops 157
Cloth 85
p338 about variations wearing out of oncecrossed
iv $7-9 m 114 u c$ " $h e " / w$ Dana 357 29-31m 358 19-33m

GRAY, Asa First lessons in botany and vegetable physiology New York; G.P. Putnam \& Co., and Ivison \& Phinney; 1857 [CUL, I] ct

NB 51 Sarracenia; 165 Proteine
49 20-24m $5129-38 m 1201-6 m 12314 m$, $25 m 12734 u$ "wholelovary", $38-40 \mathrm{~m} / 39 u$ "orange|berry" 130 19u "Caryopsis IGrain", $23 u$ "Indian corn", 26-29m/26u "hazelnut", $29 u$ "in|husk" 165 17u "Proteine", $23 u$ "as 1 lining", 25u "Protoplasm" 210 17m

GRAY, Asa Manual of the botany of the northern United States 2nd edn; New York; 1856 [CUL]
gd, sp, sx, t, v
NB 257 Q var. of Azalea
p80 Rhamnus dimorphic clearly

- p123 Crataegus wrong

SB1 $\square \Re$
Asa Gray
Phanerogams (calculations showing) 2.6 species to genera; 134 Families〈line across page〉
Introduced by Decandolle on whole U States (calculations similar to above)
SB2 <not CD; lists of species naturalised from Europe; some calculations by CD in pencil similar to above>
<o = marks by Mr Norman identifying plants naturalised from Europe; most m/u mark "common" $>$
$422 u 64 m d, 17 m / u, 36 m / u 75 m / u$, $38 \mathrm{~m} / u 8$ $4 m / u, 16 \mathrm{~m} / \mathrm{u} 911 \mathrm{~m} / \mathrm{u}, 13 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{u}, 35 \mathrm{~m} / \mathrm{u} 10$ $100,180,27 \mathrm{o}$, $32 \mathrm{o} 1119 \mathrm{~m} / \mathrm{u} 123 \mathrm{~m} / \mathrm{u}, 60,12 \mathrm{o}$, $24 \mathrm{~m} / \mathrm{u} 13110 \quad 1426 \mathrm{~m}, 30 \mathrm{~m} 1518-26 \mathrm{~m} / \mathrm{w}$ These remarks mean nothing $193602121 \mathrm{~m} /$ u $234 \mathrm{~m} / \mathrm{u}, 18-19 \mathrm{~m} / \mathrm{u} 2412 \mathrm{~m} / \mathrm{u} 2510$, 80, 110, 140, 20o, 33o, 40o 26 1o, 6o, $17 \mathrm{~m} / \mathrm{u} 277-8 \mathrm{~m} / \mathrm{u}$ $286 \mathrm{~m} / \mathrm{u}, 80,100,13 \mathrm{o} 3090,160,35-36 \mathrm{~m}, 36 \mathrm{~m} /$ u, 39 u $31403231 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m} 3413 \mathrm{~m} / \mathrm{u}$, 35 m 35 $11 \mathrm{~m}, 13 \mathrm{~m} 3610,50,150,21 \mathrm{o}, 24 \mathrm{o}, 27 \mathrm{o}$, 28 o 38 160, 200, 360, 39039 1o, 5o, 240404041 130, $17 o 4224 \mathrm{~m} / \mathrm{u} 43 \mathrm{~mm} / \mathrm{u}, 10 \mathrm{~m} 448 \mathrm{~m} / \mathrm{u}, 13 \mathrm{~m} / \mathrm{u}$, $18 \mathrm{~m} / \mathrm{u}, 24 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m}, 27 \mathrm{~m}, 350$, 39 md 5012 m , $28 \mathrm{~m} / \mathrm{u} 5135 \mathrm{~m} / \mathrm{u} 5216 \mathrm{~m} / \mathrm{u} 542805530$, 90, $31056220,29 \mathrm{~m} / \mathrm{u}, 310$, 35057 1o, 9058220 , $2805960,21 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u} 604 \mathrm{o}, 90$, 230, 31 o 61 $110,140,2906210 \mathrm{~m}, 140,17 \mathrm{o}, 33 \mathrm{~m} / \mathrm{u} 63100$, 15064 190, $2406511 \mathrm{~m} / \mathrm{u} 6620,50,10 \mathrm{o}, 160$, 21067 33o, 37m/u, $40 \mathrm{o} 68106910,36 \mathrm{~m} 72$ $9 m / u, 15 m / u 7311 o, 19 o, 22 o 749 m / u, 13 m / u$, $17 \mathrm{md} 7523-24 \mathrm{~m} / \mathrm{u} 7735 \mathrm{~m} / \mathrm{u}$, $41 \mathrm{~m} / \mathrm{u} 786 \mathrm{~m}$, $8 m / u 793-4 z, 6 u$ "Flowers often polygamous", 41080 wt long-style \& short pedicels is more Masculine wt in R. catharticus $5-6 \mathrm{~m} / \mathrm{u} 81$ $40 \mathrm{~m} 8323 \mathrm{o}, 38 \mathrm{~m} 8435 \mathrm{~m} 855 \mathrm{~m} / \mathrm{u} 8630 \mathrm{~m} / \mathrm{u} 87$ $22 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m}, 46 \mathrm{~m} / \mathrm{u} 9119 \mathrm{~m} / \mathrm{u}, 330,38092150$, $200,2509360,110,160,220,250,330,37094$ $50982 \mathrm{~m} / \mathrm{u} 9924 \mathrm{~m} / \mathrm{u} 10027 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} /$ u $10111 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 41 \mathrm{~m} 1022 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m}$, 42010350 , 9o $1044 m 10510-11 \mathrm{~m} / \mathrm{u}$, 21 m , $24 \mathrm{~m}, 27 \mathrm{~m} 10828 \mathrm{~m} / \mathrm{u}, 30 \mathrm{o}, 40 \mathrm{~m} / \mathrm{u} 10930 \mathrm{~m} / \mathrm{u}$ $11211 \mathrm{~m} / \mathrm{u}, 260,29 \mathrm{md}, 43 \mathrm{~m} / u 11312 \mathrm{~m} / u 114$ $3 m / u 1153 m / u, 220$, 280, $31011626 m / u$, $30 \mathrm{~m} /$ u, 42m/u $11730 \mathrm{~m}, 42 \mathrm{~m} / \mathrm{u} 11813 \mathrm{~m} / \mathrm{u}$, 29 m , $31 \mathrm{~m} 1195 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} / \mathrm{u} 120 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} / \mathrm{u}$ $1218 m / u, 26 m, 28 m, 29 m / u, 36 m / u, 43 m / u 122$ $30 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / \mathrm{u} 12310,60,14-26 \mathrm{w}$ NB This
was omitted by me $270,41 \mathrm{~m} / \mathrm{u} 1247 \mathrm{~m} / \mathrm{u}$, $10 \mathrm{~m}, 13 \mathrm{~m}, 17 \mathrm{~m}, 34 \mathrm{~m} 12516 \mathrm{~m}, 17 \mathrm{~m}, 18 \mathrm{~m} / \mathrm{u}$, $38 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} 1262 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{u} 12823 \mathrm{o}$ $1295 \mathrm{~m} / \mathrm{u} 13011 \mathrm{~m} / u, 19 \mathrm{~m}, 39 \mathrm{~m} / \mathrm{u} 1318 \mathrm{~m}, 9 \mathrm{~m}$, $10 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 13 \mathrm{~m} / \mathrm{u} 1327 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m} / \mathrm{u} 133 \mathrm{~mm} /$ u, $31 \mathrm{~m} / \mathrm{u} 1346 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u} 1356 \mathrm{~m}, 7 \mathrm{~m}, 8 \mathrm{~m} / \mathrm{w}$ $313624 m 1374 m / u, 9-10 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} 14120$, $18 \mathrm{~m} / \mathrm{u} 14324 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u} 14542 \mathrm{~m} / \mathrm{u} 14639 \mathrm{~m}$ $15030-31 \mathrm{~m} / \mathrm{u} 15125 \mathrm{~m} / \mathrm{u} 152$ 1o, 80 , $30 \mathrm{~m} / \mathrm{u}$, 330 , 410154290 , $3501561 \mathrm{~m}, 8 \mathrm{~m}, 11 \mathrm{~m}, 230$, $28015710 \mathrm{~m} / \mathrm{u}, 13 \mathrm{~m} / \mathrm{u} 15822 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u}$, 27o, $3401601 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u} 16114 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} /$ u, $34 \mathrm{~m} / \mathrm{u} 1643 \mathrm{~m} / \mathrm{u}$, $23 \mathrm{~m} / \mathrm{u}$, $41 \mathrm{~m} / \mathrm{u} 16522 \mathrm{~m}$ $16618 \mathrm{~m} / \mathrm{u} 16722 \mathrm{~m}, 24 \mathrm{~m}, 34 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m} / \mathrm{u} 168$ $10 \mathrm{~m} / \mathrm{u} 1709 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 22 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m}, 43 \mathrm{~m} / \mathrm{u} 1712 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u}, 13 \mathrm{o}$, 40 u 172 1$2 w$ DD $7 w$ DD $8 m, 21 m / u, 25 u, 33-34 m / u / w$ DD $17321 w$ DD $26 m, 30 m 1743 w$ DD $4 m / u$ 176 4o, 33o, $4101773018519 m / u, 26 m 186$ $25 \mathrm{~m} / \mathrm{u} 18814 \mathrm{~m} / \mathrm{u} 18990$, $1801906 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} /$ u, $36 \mathrm{~m} / \mathrm{u} 19113 \mathrm{~m} 19210 \mathrm{~m}, 13 \mathrm{~m} / \mathrm{u}$, $20 \mathrm{~m}, 24 \mathrm{~m}$ $19311 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / u, 37 \mathrm{~m}, 45 \mathrm{~m} / \mathrm{u} 19410 \mathrm{~m} / \mathrm{u}$, $19 \mathrm{~m}, 20 \mathrm{~m} / u, 27 u, 38 \mathrm{~m} / \mathrm{u} 19511 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u}$, $36 \mathrm{~m} /$ u, $38 \mathrm{~m} 19625 \mathrm{~m} / \mathrm{u} 1976 \mathrm{~m} / \mathrm{u} 1988-9 \mathrm{~m} / \mathrm{u}$, 21m/ u, $26 \mathrm{~m} / \mathrm{u}, 31 \mathrm{~m} / \mathrm{u}, 50 \mathrm{~m} / \mathrm{u} 1995-6 \mathrm{~m} / \mathrm{u}, 26 \mathrm{~m} / \mathrm{u}$, $34 m / u \quad 20121 m, 22 m / u, 27 m / u$, $32 m / u 202$ $18 \mathrm{~m}, 28 \mathrm{~m}, 33 \mathrm{~m} 20423 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m} / \mathrm{u}$ $2056 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 20619 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 22 \mathrm{~m}$, $26 \mathrm{~m} / \mathrm{u}, 31 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 208 \mathrm{1o}, 50210$ $20 \mathrm{~m}, 38 \mathrm{~m}, 46 \mathrm{~m} / \mathrm{u} 21214 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{u} 2132-3 \mathrm{~m} / \mathrm{u}$, $5 \mathrm{~m}, 8 u, 90,37 \mathrm{~m} 21416 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{u} 21510 \mathrm{~m} / u$ $21740 \mathrm{~m}, 42 \mathrm{~m} / \mathrm{u} 21817 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{u}, 24 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m}$, $41 \mathrm{~m} / u 22045 \mathrm{~m} 2224 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} / \mathrm{u} 2247 \mathrm{~m} / \mathrm{u} 225$ $40,110,140,21 o, 230,2902264 \mathrm{~m} / \mathrm{u}, 50$, 80, 150, 22o, $29022710,35 m, 37 o 22840,26 \mathrm{~m} / \mathrm{u}$, $30 \mathrm{~m} / u 22914 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}, 23 \mathrm{o}$, 33 o 230 $6 \mathrm{~m} / \mathrm{u} 23150,13 \mathrm{~m}, 15 \mathrm{~m}, 17 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u} 23250$, 11o, 150, 190, 250, $34023350,38 \mathrm{~m} 2344 \mathrm{~m} / \mathrm{u}$, $220,280,310,340,41023510,110,170,230$, 250, 310 $2363 \mathrm{~m}, 19 \mathrm{~m}, 27 \mathrm{~m} 2377 \mathrm{~m} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u}$, $33 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m}, 43 \mathrm{~m} / \mathrm{u}, 48 \mathrm{~m} / \mathrm{u} 2386 \mathrm{~m}, 8 \mathrm{~m} / \mathrm{u}, 16 \mathrm{~m} /$ u $23939 \mathrm{~m} / \mathrm{u} 24022 \mathrm{~m}, 24 \mathrm{~m} 2415 \mathrm{~m} / \mathrm{u}, 80$, 150, 20o, $25024217 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 244 \mathrm{6m} / \mathrm{u}, 10 \mathrm{~m} 245$ $5 \mathrm{~m} / u 24720 \mathrm{~m}, 35 \mathrm{~m} / \mathrm{u} 24817 \mathrm{~m} / u 24924 \mathrm{~m}$, $26 m / u, 37 m / u, 42 m / u 2502 m, 5 m, 7 m, 9 m$, $26 \mathrm{~m} / \mathrm{u} 251$ 11m/u, 29m/u $25244 \mathrm{~m} / \mathrm{u} 25538 \mathrm{~m} / \mathrm{u}$ $2563 \mathrm{~m}, 8 \mathrm{~m}, 28 \mathrm{~m} 257 \mathrm{~mm}, 9 \mathrm{~m}, 17-19 \mathrm{~m}, 36 \mathrm{~m} / \mathrm{u}$ $25934 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m}, 38 \mathrm{~m}, 39 \mathrm{~m} 2605 \mathrm{~m} / u, 19 \mathrm{~m} / \mathrm{u}$ $26110 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u} 26219 \mathrm{~m} / \mathrm{u}, 28 \mathrm{~m} / \mathrm{u} 263$ 17$18 m 26423 m / u 268210,36 m 269$ 10, 13m, $17 m 27022 m 27224 m / u, 40 \mathrm{~m} / u 2734 m / u$, $17 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m}, 26 \mathrm{~m}, 28 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 27490$, 150, $40 \mathrm{~m}, 41 \mathrm{~m} / u 2768 \mathrm{~m} / u 277$ 29m/u 279 10, 80, 13o, $25028021 \mathrm{~m} / \mathrm{u} 281$ 18m/u 283 22o, 30o, $350,39028412 m / u, 140,200,260,290$, 350 $28541 \mathrm{~m} / u 28638 \mathrm{~m} / \mathrm{u} 2887 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / \mathrm{u} 290$ $23 m / u, 32 m / u 2916 m / u, 14 m / u, 160,19 m / u$, 23o, 27o, $32029239 \mathrm{~m} / u 2939 m / u$, 22m/u,
$27 m / u$, 35m/u $29542 m / u 296$ 22m/u 298 27o, 310, $4103001 \mathrm{~m} / \mathrm{u} 303$ 17o, 21o, $28 \mathrm{~m} 3041 \mathrm{~m} /$ $u, 10 \mathrm{~m}, 14 \mathrm{~m}, 280,34030512 \mathrm{~m} 30613 \mathrm{~m} / \mathrm{u}$, 260, 340, $37030730,70,130,270,40 \mathrm{~m} 30870$, 10o, 16o, 30-31m/u 311 31o, 40 o 31230313 $38 \mathrm{~m} / \mathrm{u} 31526 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m} / \mathrm{u}, 350$, 43 o 316 3o, 130 , 190, $33 \mathrm{o} 317 \mathrm{~mm}, 11 \mathrm{~m}, 15 \mathrm{~m}, 28 \mathrm{o}, 380$, 42 o 318 1o, 120, 150, 17o, 22o, 260, 34031940032040 , 8o, 13o, 17o, 24o $32133 o 322103244 m, 220$, 300, $43 \mathrm{o} 32515-16 \mathrm{~m} / \mathrm{u}, 17 \mathrm{o}, 24 \mathrm{o}, 310,360331$ $19 m 333230$, 280, 40033440,290 , 340335 $8 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} 33618 \mathrm{o} 3378 \mathrm{~m}$, $25 \mathrm{~m} / \mathrm{u} 3405 \mathrm{~m}$, $13 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m} / \mathrm{u}, 230,290,320,40 \mathrm{o} 34110,130$, $160,230343330,41034430,9034520 \mathrm{~m}$, $36 \mathrm{~m} / \mathrm{u} 34636 \mathrm{~m} / \mathrm{u} 347 \mathrm{2m}$, $35 \mathrm{~m} / \mathrm{u} 35019 \mathrm{~m} / \mathrm{u}$, $28 \mathrm{~m}, 29 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m} / \mathrm{u} 35218 \mathrm{~m} / \mathrm{u}, 26-27 \mathrm{~m} / \mathrm{u}$ $3536 \mathrm{~m} / \mathrm{u} 3544 \mathrm{~m}, 5 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / \mathrm{u}$ $35513 \mathrm{~m} / \mathrm{u}, 350$, 43 o 356240 , 30 o $35734-35 \mathrm{~m} /$ и 358 8-9m/u, 18m/u $35926 \mathrm{~m} / \mathrm{u} 36128-29 \mathrm{~m} / \mathrm{u}$ 362 41o 363 13o, 200, 260, 320, 39o, 440364 9o, 17o, 21o, 25o, 29o, $35036514 \mathrm{~m} / \mathrm{u}, 20 \mathrm{o} 367$ $14 \mathrm{~m} / \mathrm{u}, 29 \mathrm{~m}, 37 \mathrm{o} 368120,190,250$, 290, 360, 42 o 369 3o, 16o, 22 o 3705 m 372 60, 20m/u, $24 m / u, 28 m / u, 35 m / u, 44-45 \mathrm{~m} / u 373100,170$, $36 \mathrm{~m} / u 3744 \mathrm{~m} / u, 5 \mathrm{~m}, 9 \mathrm{~m}, 22 \mathrm{~m} / u, 29 \mathrm{~m} / \mathrm{u}, 41 \mathrm{~m} /$ и 375 12-13m/u, 200, 33m/u, 350376 1o, 38m/ и 377 14m, 27o, 33o, 390, 450378170379 $22 \mathrm{~m} / \mathrm{u}, 36 \mathrm{~m} / u 3824 \mathrm{~m} / u 38320 \mathrm{~m} / u, 34 \mathrm{~m}, 35 \mathrm{~m}$, $37 \mathrm{~m} / u 38418 \mathrm{~m} / \mathrm{u}, 21 \mathrm{~m}, 30 \mathrm{~m} 38627 \mathrm{~m} 387 \mathrm{6m} /$ u, $13 \mathrm{~m} / \mathrm{u} 38830,21 \mathrm{~m} / \mathrm{u}, 35 \mathrm{~m}, 41 \mathrm{~m} 3892 \mathrm{o}$, 17 o $3904 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m}, 40 \mathrm{~m} / \mathrm{u} 396 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} /$ u $39714 \mathrm{~m}, 17 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}$, $39039819 \mathrm{~m} / \mathrm{u}$, 24o, $2803997 m / u, 23 m / u, 36 m / u 4018 m / u, 34 m / u$, $40 \mathrm{~m} / \mathrm{u} 40228 \mathrm{~m} / \mathrm{u}, 42 \mathrm{~m} / \mathrm{u} 403 \mathrm{Im}, 12 \mathrm{~m} / \mathrm{u}, 19 \mathrm{~m} /$ и $40422 \mathrm{~m}, 37 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u} 405 \mathrm{1m} / \mathrm{u}, 4 \mathrm{~m}, 9 \mathrm{~m}$ $40619 m /$?, $22 m 4073 m / u, 12 m / u, 18 m / u$ "hybrid", $43 \mathrm{~m} / \mathrm{u} 40823 \mathrm{~m} / \mathrm{u}$, $39 \mathrm{~m} / \mathrm{u} 4091 \mathrm{~m} / \mathrm{u}$, $16 \mathrm{~m} / \mathrm{u} 41112 \mathrm{~m} / u 41233 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} 413 \mathrm{5m} / \mathrm{w}$ Omit whole genus Mr Norman $41838 \mathrm{~m} / \mathrm{u} 419$ $28 m 4222 m / u, 8 m / u, 15 m / u, 20 m / u 42311 m / u$ $42521 \mathrm{~m}, 22 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 42711 \mathrm{~m}, 11 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m}$, $37 \mathrm{~m} / u 4288 \mathrm{~m} / \mathrm{u}, 48 \mathrm{~m} / \mathrm{u} 43011-12 \mathrm{~m} / u, 21 \mathrm{~m} / \mathrm{u}$ $43116 \mathrm{~m} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u} 43222 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m} 43312 \mathrm{~m} / \mathrm{u}$ $43424 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}, 40 \mathrm{~m} / \mathrm{u}, 44 \mathrm{~m} / \mathrm{u} 4351 \mathrm{~m}, 14 \mathrm{~m} / \mathrm{u}$, $30 \mathrm{~m} / u, 31 \mathrm{~m} 4364 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m} / \mathrm{u} 43718 \mathrm{~m} 4386 \mathrm{~m} /$ u $43917 \mathrm{~m} / u, 18 m, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 31 \mathrm{~m}$, $31 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 33 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{u} 44126 \mathrm{~m} / \mathrm{u} 4421-2 \mathrm{~m} /$ u $44412 \mathrm{~m} / \mathrm{u} 44518 \mathrm{~m} / \mathrm{u}, 23 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} / \mathrm{u}$, $39 \mathrm{~m} / \mathrm{u}$ $44610 \mathrm{~m} / \mathrm{u}$, $18 \mathrm{~m}, 36 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 44737 \mathrm{~m} / \mathrm{u}$, $43 \mathrm{~m} / \mathrm{u} 44825 \mathrm{~m} / \mathrm{u}, 45 \mathrm{~m} / \mathrm{u} 45010 \mathrm{~m} / \mathrm{u}$, $37 \mathrm{~m} / \mathrm{u}$ $45214 \mathrm{~m} / \mathrm{u} 453 \mathrm{~mm} / \mathrm{u}, 20 \mathrm{~m} / \mathrm{u} 45420 \mathrm{~m} / \mathrm{u}, 25 \mathrm{~m} / \mathrm{u}$, $40 \mathrm{~m} / \mathrm{u} 455$ 6-7m/u $45641 \mathrm{~m} / \mathrm{u} 458$ 18m/u 459 $22 \mathrm{~m} / \mathrm{u} 46015 \mathrm{~m}, 17 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u} 4613 \mathrm{~m} / \mathrm{u} 462$ 12$13 \mathrm{~m} / \mathrm{u}, 14 \mathrm{~m} 46316 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u} 46413 \mathrm{~m} / \mathrm{u}$, $19 \mathrm{~m} /$ $u, 22 m 466$ 1o, $70,28 \mathrm{~m} / \mathrm{u} 46714 \mathrm{~m} / \mathrm{u}, 22 \mathrm{~m} / \mathrm{u}$, $33 \mathrm{~m} / \mathrm{u} 468$ 190, 280, 370, 430, 4904704 m , $38 \mathrm{~m} / \mathrm{u} 4715 \mathrm{~m} / \mathrm{u}, 10 \mathrm{~m} / \mathrm{u}, 27 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u} 47343 \mathrm{~m} /$ u $4742 m / u 4752 m / u, 25 m / u 47639 m / u 479$

GRAY, NORTHERN U.S.
$37 \mathrm{~m} / \mathrm{u}, 39-40$? $4808 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m} / \mathrm{u} 481$ $21 \mathrm{~m} / \mathrm{u}, 28-29 \mathrm{~m} / \mathrm{u}, 37 \mathrm{~m} / \mathrm{u} 48211 \mathrm{~m}, 25 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u}$ $48320 \mathrm{~m} / \mathrm{u}, 32 \mathrm{~m}, 34 \mathrm{~m} / u 48428 \mathrm{~m}, 29 \mathrm{~m} / \mathrm{u} 485$ $14 \mathrm{~m} / \mathrm{u} 49126 \mathrm{~m}, 27 \mathrm{~m} / \mathrm{u} 49235 \mathrm{~m}, 37 \mathrm{~m} / \mathrm{u}, 46 \mathrm{~m} / \mathrm{u}$ $49323 \mathrm{~m} /$? , $35 \mathrm{~m} / \mathrm{u} 49410 \mathrm{~m} / \mathrm{u} 4951 \mathrm{~m} / u$, 16 m $49612 \mathrm{~m} / \mathrm{u}, 24 \mathrm{~m}, 27 \mathrm{~m}, 29 \mathrm{~m} / \mathrm{u} 4972-3 u / 3 \mathrm{~m}$, $10 \mathrm{~m} / \mathrm{u} 4987 \mathrm{~m} / \mathrm{u}, 17 \mathrm{~m} 5003 \mathrm{~m} / \mathrm{u}, 22 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}$, $45 m 50124 m, 26 m, 28 m / u \quad 5029 \mathrm{~m} / u, 14 m$, $16 \mathrm{~m}, 17 \mathrm{~m} / \mathrm{u}, 27 \mathrm{~m} 50318 \mathrm{~m} / \mathrm{u}, 30 \mathrm{~m} 50526 \mathrm{~m} / \mathrm{u}$ $50632 \mathrm{~m} / \mathrm{u} 507$ 13w Mr Norman omit 510 10u $5116 u, 30 u, 31-32 m 5126 u, 24 u 5139 m, 19 u$, $23 u, 31 u 51428 u, 30 m 5156 m, 7 m, 8 m, 9 m$, $11 m, 12 m, 16 u, 37 u, 41 u, 43 u 51611 m, 14 m / u$, $27 u 5179 m 51815 m, 18 m / u 51910 \mathrm{~m} / u, 13 u$ $52131 u, 46 m 5227 u, 7 m 52315-16 m 524$ $20 \mathrm{~m} / u \mathrm{u} 52534 m$, $36 m$ 526 11u, 14-18w Naturalised $5274 u 53014 u, 31 u, 43 u 531$ $25 u, 35 u, 40 u 53227 m, 29 u 53419 m, 22 u 540$ $4-5 m / u, 8 m / u, 27 m / u, 41 o 5411 o, 9 m / u$, 17o $5424 m / u 54338 m / u 54420,10 \mathrm{~m}, 240,290$, $34 o 5458 \mathrm{~m} / \mathrm{u}, 12 \mathrm{~m}$, $42 \mathrm{~m} / \mathrm{u} 5464 \mathrm{~m} / \mathrm{u}$, $10 \mathrm{~m} / \mathrm{u}$, $15 m / u, 44 m / u 54721 m / u 5493 m / u 55014$ $15 \mathrm{~m} / \mathrm{u}, 39 \mathrm{~m} / \mathrm{u} 5521 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 15 \mathrm{~m} 553 \mathrm{31m}$ 554 11o, 180, 20o, 300, 320, 40o 555 zb 557 $150,220,34 m 55820 \mathrm{~m} / \mathrm{u}, 33 \mathrm{~m}, 36 \mathrm{~m} 55916 \mathrm{~m} /$ u, $34 \mathrm{~m} / \mathrm{u} 5602 \mathrm{~m} / \mathrm{u}, 9-10 \mathrm{~m} / \mathrm{u} 56114 \mathrm{~m} / \mathrm{u} 562$ $33 \mathrm{~m} / \mathrm{u}, 42 \mathrm{o} 56328 \mathrm{~m} / \mathrm{u}$, 33 o 56410 , $39 \mathrm{~m} / \mathrm{u} 565$ $4 \mathrm{~m}, 10 \mathrm{o}, 210,41 \mathrm{~m} 566 \mathrm{Im}, 70,280,330,380$ 567 4-5m/u, 17m/u, $25056819 m / u 569$ 3o, 70, $110,29 \mathrm{~m} 57043 \mathrm{~m}, 44 \mathrm{~m} / \mathrm{u} 5715 \mathrm{~m}, 24 \mathrm{~m} / \mathrm{u}$, $40 \mathrm{~m} / \mathrm{u} 57225 \mathrm{~m} /$? 573 180, 240, 300, 330, 41o 574220 , $29057560,20-21 \mathrm{~m} / u 577$ 19o, 22m/u, $260,29 \mathrm{~m} / \mathrm{u} 57810 \mathrm{~m} / \mathrm{u}, 11 \mathrm{~m}, 19 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} / \mathrm{u} 579$ $10 \mathrm{~m} / \mathrm{u}, 15 \mathrm{~m}, 18-19 \mathrm{~m} / \mathrm{u} 58023 \mathrm{~m} / \mathrm{u}, 34 \mathrm{~m} / \mathrm{u}$, 460 581 10o, 180, 23o, 27o, $31058223 \mathrm{~m} 58315 \mathrm{~m} /$ $u, 23 m / u 58413 m / u$, wb Here Mr Norman ends

GRAY, Asa Natural science and religion New York; Charles Scribner's Sons; 1880 [CUL, I] 80 11-17m 84 21m

GRAY, George Robert A fascicle of the birds of China London; 1871 [Down, I]

GRAY, Henry Anatomy, descriptive and surgical 5th edn; London; Longmans, Green \& Co.; 1869 [Down, probably FD]

GRAY, John Edward Synopsis reptilium London; Treuttel, Wurtz \& Co.; 1831 [Down, S] \wp

GREEN, Charles The history, antiquities, and geology, of Bacton, in Norfolk Norwich; Josiah Fletcher; 1842 [CUL, I Charles Darwin from C. Lyell]

GREENE, Joseph Reay A manual of the subkingdom Coelenterata London; Longman, Green, Longman \& Roberts; 1861 [Down, I]
14 27-31m/31u/w viz. Protozoa
GREENWELL, William British barrows Oxford; The Clarendon Press; together with ROLLESTON, George Description and figures of skulls Oxford, The Clarendon Press; 1877 [Down, I] \wp

GREG, William Rathbone The creed of Christendom London; Trübner \& Co.; 1863 [Down]
NB • 〈CD? \rangle 31; 75; 85; 117
GREG, William Rathbone Enigmas of life London; Trübner \& Co.; 1872 [Down, I]

GROBBEN, Carl Beiträge zur Kenntnis der Männlichen Geschlechtsorgane der Dekapoden Wien; Alfred Hölder; 1878 [Down, I] \wp

GROVE, William Robert The correlation of physical forces 4th edn; London; Longman, Green, Longman, Roberts \& Green; 1862 [Down, S]

GÜNTHER, Albert Description of Ceratodus London; Taylor \& Francis; 1871 [Down]

GÜNTHER, Albert The gigantic land-tortoises (living and extinct) in the collection of the British Museum London; by order of the Trustees; 1877 [Down] \wp

GÜNTHER, Albert An introduction to the study of fishes Edinburgh; Adam \& Charles Black; 1880 [Down, I]

GÜNTHER, Albert The reptiles of British India London; The Ray Society; 1869 [Down]
$12230-33 \mathrm{~m} / 30-31 u$, $33-38 \mathrm{~m} / 33 u / 35 u / 36 u / 38-$ $39 u 1239 u 12517 u 12813 u 130$ 13-14u, 2021u $1313 u, 7-9 u 1329-12 m, 18-21 m 13422-$ $31 m 1355-7 m, 16 u, 18 u, 27 u$, wb - 136 3-6m 143 32u, $34 u, 36 u 38619-21 m / 20 u 41315-$ $17 m / 15 u, 26-28 m, 35-36 m / 35 u, 37-39 m$

GUTHRIE, Malcolm On Mr Spencer's formula of evolution London; Trübner \& Co.; 1879 [Down, I] 〈markings by FD

GUY, William A. Principles of forensic medicine 2nd edn; London; Henry Renshaw; 1861 [Down, FD]

HAAST，Julius von Geology of the provinces of Canterbury and Westland，New Zealand Christchurch；The Times Office； 1879 ［Down］

HABERLANDT，Gottlieb Die Schutzein－ richtungen in der Entwickelung der Keimpflanze Wien；Carl Gerold＇s Sohn； 1877 ［Down，I］
NB \langle not $C D$ 〉
33 30－31m，34－35m 42 9－10m／9u＂viele＂／10u ＂Verbreitungsfähigkeit＂43 13－16m，33－37m 45 $11-13 m, 23-25 m 5026-29 m 6035-37 \mathrm{~m} 62$ 21－ $25 m 6836-37 m 8331-32 m 8832-34 m 9835-$ $36 m$

HABERLANDT，Gottlieb Die Schutzein－ richtungen in der Entwickelung der Keimpflanze Wien；Carl Gerold＇s Sohn； 1877 ［CUL］ cc，che，fg，ig，mhp，pat，phy，t，y

SA $\langle p p .52-3 ; 2$ sheets $\rangle \square$
Dr Haberlandt Schutzrichtungen 1
p． 23 The hypocoty of Phaseolus first geotropic \＆then apogeotropic do not allude to，as may be different in different plants
25 The coats of seed by rubbing roots causes bending which increases geotropic bending－compares with what Sachs says about Earth．p． 26 shows by drawing what takes place．（mem diff．with Peas．
48 seedlings resist frost wonderfully
52 Winkler \＆Irmisch－the sinking of hypocotyl．axis in Earth－shorten so that cotyledon drawn into Earth
66 must break through Earth，or at least find cracks to pass through－Brakes through bowed to protect growing point p． 69 do．－ explain grasses breaking through the ground by turgency \＆stiffness of cotyledon．
69 Plants with hypo〈gäisch）cotyledon break through ground bowed－The convex side of arched hypocotyl turn up through apogeotropism．
72 Helianthus annuus weight of Cots．cause bowing
79 －Allium true Knee in the Cot．
79 experiments with cutting off Cots of Barley repeatedly \＆did not Kill
〈over〉 Haberlandt p．94．Cots of Lupinus anatomically intermed between sub－1 \＆ hypo〈gäisch〉 Cots In Leguminosae all gradation between the 2 states
98 The 2 sides of Cots．not usually so much differentiated $\%$ as in true Leaves．
title page $w t$ Can Nutation help seedling rise through earth $w b$ p．4；12；Time 16O；$w 0$ 29； Dry 61；Mangroves 63；Climate 64；See

Wiesener chlorophyll 2 10－13m 3 1－3m $410-$ $13 \mathrm{~m} 7 \mathrm{7m} 1112-16 \mathrm{~m}, 18 \mathrm{~m} 1226-28 \mathrm{~m} 152 \mathrm{~m}$ ， $31-34 m 167-11 m 1712-15 m 1835 m 2332-$ $37 m 248 m, 25-29 m 2514-23 m 2927-30 m 30$ $21 \mathrm{~m}, 30-33 \mathrm{~m} 35 \mathrm{~lm} 3716-18 \mathrm{~m} 396-8 \mathrm{~m} / 7 \mathrm{w}$〈FD ， $33 \mathrm{~m} 4327 \mathrm{~m}, 33-37 \mathrm{~m} / \mathrm{w}$ weight of seed $456 u$＂trockenen＂，10－13m，34－35m 48 7－10m， 10－14m／12u＂Jelälter＂，17－19m 49 12－16m， $27-38 m 5120 \mathrm{~m} 52.31-35 m 53$ 1－6m，11－ $15 \mathrm{~m} / 12 u \mathrm{us}_{\mathrm{s}}$＂hypokotylen＂／14u屯s＂Verkürzung I Keimachse＂ $58 \quad 7 m \quad 61 \quad 1-5 m$ 66． $13 u$ ＂bergenden 1 Erdreichs＂，1－14w may not sensitivity to light of PhilexiaO serve to find way through cracks $30 u$＂genannte Keimblattscheide＂$/ 21-30 \mathrm{w}$ short＊stem bowed to protect bud at end $\Uparrow 4 u$＂ 27 ＂$/ w b \tau 6728-$ $30 \mathrm{~m} / \mathrm{w}$ This explains grasses getting out of ground 69 wt Put＊ He attributes most importance to older part \＆partition of young plant．We have learned much from this valuable essay，though our observations tend to differ in some points $1-10 \mathrm{~m} / 6-8 u$ ＂rückwärts｜nachfolgt＂／11m，17－18m／12－24w This is utterly different from my view 12 － $24 m / 17-18 w$ do not understand $28 u$ ＂Raumverhältnisse｜wird＂ 70 10－15m $7114 m$ ， $36-40 \mathrm{~m}, 36-40 \mathrm{~m} / \mathrm{wb}$ So he knows nothing of my Nutation $7224-30 \mathrm{~m} / \mathrm{w}$ weight of Cots cause stem to bend $7515-19 m / 10-20 \mathrm{w} \mathrm{He}$ evidently considers this the sole Nutation 76 $19 \mathrm{~m}, ~ 22-27 \mathrm{~m} 77 \quad 1-4 \mathrm{~m}, \quad 20-25 \mathrm{~m} / 20 \mathrm{u}$ ＂Keimblatt＂，24－26m／24－26u＂mittelst｜Rede＂， 33－35m／35u＂Sachs｜Experimentalphysiologie＂ $796-13 \mathrm{~m}, ~ 21-25 \mathrm{~m} / \mathrm{w}$ bears on my light experiments $8512 \mathrm{~m} 8814 \mathrm{~m} 944 \mathrm{~m}, 14-19 \mathrm{~m} / \mathrm{w}$ Lupine cotyledons anatomically $15 u$＂grünen， vergrösserten＂ $\mid 17-18 u \leftrightarrow, 23 u$＂Rückbildung＂， 25m／u＂ausserlbau＂，31－32m 95 wt Gradation $2-22 m, 17 w$ Bean $9626-30 m, 26 u$ ＂Aussenseite＂ $26-29 m \quad 97 \quad 25 m \quad 98 \quad 1-16 m / w$ Different function of upper \＆lower surface－ the Upper much more active $18 u$＂der Transpiration＂，29－31m／w in Cotyledons 31－ $35 m$

HABERLANDT，Gottlieb Vergleichende An－ atomie der assimilatorischen Gewebesystem Berlin；G．Bernstein； 1881 ［Down，I］

HAECKEL，Ernst Anthropogenie oder Ent－ wickelungsgeschichte des Menschen Leipzig； Wilhelm Engelmann； 1874 ［Down］\wp

HAECKEL，Ernst Anthropogenie oder Ent－ wickelungsgeschichte des Menschen 3rd edn； Leipzig；Wilhelm Engelmann； 1877 ［Down， I］\wp

HAECKEL, Ernst Arabische Korallen Berlin; Georg Reimer; 1875 [Down]
NB 20
20 29-36m
HAECKEL, Ernst Zur Entwickelungsgeschichte der Siphonophoren Utrecht; C. Van der Post Jr.; 1869 [CUL]
cc, ds, em, mn, phy, t, v
NB p. 79 Regrowth
p. 80 \& elsewhere extraordinary tendency in Larvae of Medusae to produce monsters \& varieties.-
98 Monstrosity throwing light on primordial parent-form.-
NF \quad p218; 220; 232; 233; 243; Best passages Häckel <cannot refer to this book only 120 pp .)
36; 73; 80; 92; 97; 100; 103
79 6-12m 80 14-22m/w Slight changes in conditions cause monstrosities $813-4 w$ new structures arise $9815 \mathrm{~m} / 18-24 w$ Monstrosity throwing light on primordial parent-form \wp

HAECKEL, Ernst The evolution of man 2 vols.; London; C. Kegan Paul \& Co.; 1879 [Down]
tm
vol. 1, $16911-13 w$ does not satisfy me 181 $8 m 22021 m 28014 m 2877-15 m, 17 m 389$ 28 m 39421 m
vol. 2 SB 321 about differences between spiral tendril \& notochord

HAECKEL, Ernst Freedom in science and teaching prefatory note by T.H. Huxley; London; C. Kegan Paul \& Co.; 1879 [Down] \wp

HAECKEL, Ernst Freie Wissenschaft und freie Lehre Stuttgart; E. Schweizerbart; 1878 [Down, I]

HAECKEL, Ernst Generelle Morphologie der Organismen 2 vols.; Berlin; Georg Reimer; 1866 [CUL, I in vol. 1]
af, beh, ct, ds, em, fg, h, in, 00, pat, phy, rd, $\mathrm{sp}, \mathrm{ss}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{tm}, \mathrm{ts}, \mathrm{v}, \mathrm{y}$
vol. 1, xxvii $3 m / 4 w$ skimmed $5 m, 22 m, 36-$ $39 m / 36 w \mathrm{R}$ to $39-43 m / 41 w \mathrm{R}$ xxviii $2-5 m / 4 w$ R $22 m$ xxxi $21 m$
\wp
280 6-15m
vol. 2 SB Band 2.- Ernst Häckel

- p. 36 add spores to test of means of propagation. or proof of internal separation given not to Hackel; 59 on eggs of insects of many cells
© Vol. 2
p. 242 colour of pelagic animals

244 Selectio feminina
245 Sexual selection; 246 do good Cop
239 good criticism on my term of struggle for existence - says ought to be confined to struggle between organisms for same end all other cases are dependance - Misseltoe depends on apple.
259 Law of Perfectiona
270 Rudimentary organs; 272 do
over
\langle over \rangle
In man Chapt I might add as proof of theory - "the progressive perfection or development of organic beings" - their diversity or differentiation"
[Under Man - allude to fullest description of Rudiments ever given by Hackell]
p278 Rudiment in Man \& injurious, in what animal fully developed? Propose vermiform of intestine - see Todd Encyclop Man Copa Rudimentary organs to p. 285.
305

- 361 Book order Copar
- p238
xi $22 m, 29-33 m, 33 m, 35 m, 36 m, 37 m, 38 m$, $41-46 m$ xiv $9-13 m / 11 w$ R $49 m \times 1-20 m \times v i$ $13-17 \mathrm{~m}, 36 \mathrm{~m} / \mathrm{w}$ R
\wp
cli $w t$ abstracted cliii $4 u \leftrightarrow / w t$ it is indisputable 1-3m (Huxley) clv $w t$ says if no prejudice no one wd doubt affinity with tailless or anthropomorphic apes - $8-10 \mathrm{~m} / 5-$ $13 w$ next division of tailed \& tailless apes of Old World $28 u$ "Gesässschwielen"/25-30w anthropoids no callosities on rump $44-51 \mathrm{~m} / \mathrm{w}$ Men sometimes have large canines. wbt clvi $9-13 m / 8-15 w$ none of these existing anthropoids is ancestor $3633-42 m / 24-42 w$ Formation of spores a distinct process $377-$ $9 m, 10-12 u$ "solstrenger" $/ w$? Spores of Ferns?? $5910 u$ "aus Izusammengesetzt"

171 20-22m 242 18-42w Sea - Pelagic animals of many classes colourless \& transparent - good $24338-42 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ larvae which are pelagic colourless and not the adults $24510-13 \mathrm{~m} / 11 u$ "menschlichen", 1721m, 27u "Wamme IStiers"/27-31w dewlap of Bull a defensive weapon!! 30u "Schnabelthiers"/35-37w ornith * 246 26-
$32 \mathrm{~m} / \mathrm{w} \times$ women ornament themselves to attract men 33-41w women the most beautiful \& song $24716-22 m / w$ may act materially on both sexes $28-30 \mathrm{w}$ acts on intellect 253 3-12w Divergence or Differentiation of organs * explained, as I have done for species $2591-10 \mathrm{~m} 2708-18 w$ organs become rudimentary as slowly \& as by as many steps, as they are first formed. 272 9-26w not only organ, but whole individual may be said to be rudimentary. $2751-25 m / 6-8 w$ eyes rudimentary $2778-9 w$ Limbs rudimentary $27827 m, 28 m, 32 u$ "Menschen 1 rudimentärer", $33 u$ "Processus Blinddarms", $36-40 m \quad 279 \quad 26-42 m / 28-32 w$ rudiments of sexual organs in both sexes 284 1-20w eg Parasitic animals are rudimentary wholes. 305 2-10m 427 11-20m $42822-38 m, 22-28 w$ line of descent $4292-$ $21 m$

HAECKEL, Ernst Gesammelte populäre Vorträge aus dem Gebiete der Entwickelungslehre 2. Heft; Bonn; Emil Strauss; 1879 [Down, I] \wp

HAECKEL, Ernst The history of creation trans. revised E.R. Lankester, 2 vols.; London; Henry King \& Co.; 1876 [CUL, S in both vols.]
ad, cc, cs, hy
vol. 1 NB 〈w not $C D\rangle 43$; 49 facts for D; 52; 108 Baer; 117 monde ambiante
$517 m 43$ 10c/w£ 49 21-22m 52 19-20m 109 9x/u "Baer" $1174 u$ "ambiant" 118 13-18m (Naudin, Lecoq) 146 17-20m/w no 148 5-6?, 19 w no 16017 m 16512 m catalogue, 79 wt hybrids crossing - ApercaO \& sheep \& goats wt p118 Saporta \& Gaudry 8-21w Adaptation bad term 80 wt 160 wb 13
vol. 2 NB 45 very good
〈by FD > errata 71; 16; 195
93; 106; 108; 111; 340?
$14-6 m, 7-8 m, z b 1113 m 454-22 m 71$ 19$20 \mathrm{~m} / 19 c / w \notin 7617 c$ "by" $/ x 93$ 21-22m 106 17$19 m 108$ 23-24m 109 1-2m 111 29-30m, 31u "Gnetum I Ephedra" 112 3-4m 195 22-23m/c/ $w_{\notin} 1978 m 23520 m 3407-9 m 37532 m 408$ $z b$

HAECKEL, Ernst Die Kalkschwämme 3 vols.; Berlin; Georg Reimer; 1872 [CUL, I in vol. 1] ds, in, phy, sp, v
vol. 1 NB 381 cause of var.
382 grt. var. of Sponges; 385 do.
462 on origin of Sponges
$381 \quad 25-30 m \quad 382 \quad 15-37 m / w$ variability of Histology of Elementaries 383 22-28w variable in the species \& in the individuals $38428 m 385$ 22-39m
\wp
462 30-33m/31u "homophyle"
vol. $2 \wp$
HAECKEL, Ernst Natürliche Schöpfungsgeschichte Berlin; Georg Reimer; 1868 [CUL, I]
ad, ds, em, ex, h, he, hl, ig, in, is, mn, or, phy, r, rd, ss, sy, t, tm, ts, v

NB1 p240 I must no about embryology

- 390; 409; 437 to 509

NB2
469 Classification of Mammals; 492 of Quadrumana; 501 Genealogy of Man.-
Read 1st Chapt
p228; 390 to end
good p. 5 - for the beginning of my Book
Nothing about Sexual SelectionOO
SB $\square \beta$
Hack-
p. 230 reduction of parts an advance in ordganisation
p235 imported rudiment-Lung
p446 anomalous forms surviving in Rivers.
p457. Manner of descent of Birds
Placentata descended from several implacentata
481 Contrast of adaptation \& inheritance Lion \& Sea-Lion
482 Intermediate forms
Man all used.
vii $2 w$ Read ix $31 w$ I have read $\times \Uparrow 6 w$ । have read $\uparrow 3 m$ xii $19 w$ Read xiv $32 m / w$ Read xv 19m, 31m xvi 12-13m, 13-15m 524 $27 m / ? / 16-28 w$ (a) Perhaps begin my Book wb When theory generally accepted I say light will be thrown on the origin of man \& his history. * The meaning of this cd hardly be misunderstood, but I can see isO not the period of going into details. now that the views $1223-26 m / 14-27 w$ List of Rudimentary Organs
\wp
228 26-32m/iw I shd think more differences in $\&$ civilized individuals than in savages (?) Bates 230 3-5m, 11-19w lessening of number a result not cause of development $23130-$ 33m/31-32u "die \mid Rückschritt" 235 1-7m/wt Very important organ a rudimentary Lung $11-12 u \pm / w$ ovaries 22-23m $2363-5 w$ See to this 251 17-23m, 18u "Organen", 19u "Kiemenbogen", 9-17w Branchial arches

HAECKEL, SCHÖPFUNGSGESCHICHTE
$20 u / w \tau, \quad 27-31 m \quad 252$ 19-20u "dreil Schwanzwirbeln" 253 3-9m/4-7u "muss Stammes", 21-29m 256 1-25w the lower forms change more slowly than higher Applies to Man (or I think terrestrial)
\wp
$390 \quad 19-32 m / 22-29 w$ single origin most probable $40920-29 m 4373-4 m / u \uparrow / w$ This last remnant of class $16-20 \mathrm{~m} / 17 u$ "Pallas Nachtschmecke" $18 \mathrm{u}, 24 \mathrm{u}$, 28 um , $33 \mathrm{~m} / \mathrm{u}$ "während lembryonalen" $4381-3 m, 10 u$ "weill noch", $27 u$ "merkwürdig übereinstimmt"|25$28 w$ embryology of Amphioxus 439 wt X I shd say creations like larvae of Ascidians gave rise to Vertebrata $5-9 m / w \times$ Both groups out of same sources 442 29-33m/w Selachians parent-form of all chief Vertebrata 443 24-27w Selachii only in remnant $44433 a \notin 4456-8 m / w$ Selachians parent form $13-16 \mathrm{~m} / 14 u$ "Urfischen" $/ 12 w$ Selachii 446 9-13w Rivers $44711 u$ "Flussfischen", $10-12 \mathrm{~m} / \mathrm{w}$ Rivers $14 u$ "Zwischen I Amphibien", 14-16m, 17u^/w Rivers $22-24 w$ separate intermediate class 448 11-12u "Stammformen 1 Wirbelthiere", 1620m/18u/a "Lurchfische" Lepidosiren 450 12$15 m 453$ 13-16m 457 wt I shd prefer supposing that both classes descended from forms more intermediate than Dinosaurs \& Solenhofen Birds 16-19m/18u "zweifelsohne dieser" 461 20-23m/21-22u "Ornithodelphien I unterschied" 462 4-6md/5u "Jurazeit" 463 wt Man has cloaca 2-6m/6u "zwölfte Woche", 8$10 \mathrm{~m} / \mathrm{w}$ Breast bone like Birds $19 u$ "eine I Klasse", 27-30m, wb absence of teeth a change $46924 \mathrm{~m} / \mathrm{w}$ Hydrax $471 \mathrm{1m} 47217 \mathrm{~m}$ $473 \quad 27-28 u \leftrightarrow 474$ wt X Placentata descended from several implacentata or Marsupials $6-10 \mathrm{~m} / \mathrm{w}$ thinks X 47527 m 481 wt contrast of adaptation \& inheritance Sea-Lion \& Lion - $10-16 m, 21-25 \mathrm{~m} / \mathrm{w}$ separate Lemurs from Monkeys 27-30u土 482 1-22m/w intermediate forms, leading to various orders.- $26 m 495$ 27-33m 496 9-13m, 20-23m 497 22-25m 498 1-3m/2c/u "Rolle"/w£, 7-8u "dasslkann", 21u "Affenähnlichkeit Menschen", 22u "einen I Volke" $49928 u$ "Rolle" $50310-12 \mathrm{~m} / 11 u$ "abgekürzte Vererbung" 505 $9-11 m / 9 u$ "entfernter" 506 8-11m, 18$22 m, 24-26 m, 31-34 m, 35-37 m$ 507 2-3u "theilweisen 1 Behaarung", 2-3w loss $28 u$ "aufrechte | Sprache" $/ 26-31 w 2$ chief points upright position \& speech $33 u$ "Kehlkopfs"/wb Head of windpipe 508 6-7u "höherel Extremitäten", $8-11 u$ "Indem 1 Sehens", $18 u$ "Veränderungen I Gefolge" 509 17-19m/18w (a) 25-26u "denlerblicken", 26-27u "August Schleicher", wb (a) Remember a special part
of Brain for speech 510 18-20w speech polygenitive $29 u$ "SprachenIUrsprache", 30$32 \mathrm{~m} / \mathrm{wb}$ but we know nothing about lost primitive tongues, during earliest stages. 511 $15-21 \mathrm{~m} / \mathrm{w}$ my argument \& Huxley 51220 m , $25 u$ "Afronegern I findet", $29 u$ "Mongolen", 30u "Mesocephali", 31u "Amerikanern" 513 25-43m 515 1u "meisten|Asien", $2 u$ "das 1 Ort", 22$26 m / 23 w$ islands 517 11-12m $5186-9 m 520$ 20-24m $55419 m$

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 2nd edn; Berlin; Georg Reimer; 1870 [Down, I] §

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 3rd edn; Berlin; Georg Reimer; 1872 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 4th edn; Berlin; Georg Reimer; 1873 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 5th edn; Berlin; Georg Reimer; 1874 [Down, I] \wp

HAECKEL, Ernst Natürliche Schöpfungsgeschichte 7th edn; Berlin; Georg Reimer; 1879 [Down, I] \wp

HAECKEL, Ernst Les Preuves du transformisme, réponse à Virchow trans. J. Soury; Paris; Germer Baillière \& Cie; 1879 [CUL, I]

HAECKEL, Emst Das Protistenreich Leipzig; E. Günther; 1878 [Down] \wp

HAECKEL, Ernst Die Radiolarien 2 vols.; Berlin; Georg Reimer; 1862 [Down, I] \wp

HAECKEL, Ernst Studien zur GastraeaTheorie Jena; Hermann Dufft; 1877 [Down, I]

HAECKEL, Ernst Das System der Medusen 4 vols.; Jena; Friedrich Manke; 1879-1880 [Down, I]

HAGEN, Hermann On some insect deformities Cambridge, Mass.; University Press; 1876 [Down, I by A. Agassiz]

HAHN, Otto Die Meteorite (Chondrite) und ihre Organismen Tübingen; H. Laupp; 1880 [Down]

HAHN, Otto Die Urzelle Tübingen; H. Laupp; 1879 [Down, I]

HALL, Sydney An alphabetical index of all the names contained in a new general atlos of fiftynine maps London; Longman, Rees, Orme, Browne \& Green; 1831 [CUL, on B, S]
NB $w c$
170 col. 323 m 251 col. 141 m 285 col. 160 m , 61 m 287 col. $353 \mathrm{~m} / \mathrm{u}$ "Sarstedt"

HALL, Sydney A new general atlas London; Longman, Brown, Green \& Longmans; 1829 [Down, on B, ED]

HALLEZ, Paul Contributions à l'histoire naturelle des Turbellariés Lille; L. Danel; 1879 [Down, I]

HANCOCK, Albany On the organization of the Brachiopoda extract of communication by T.H. Huxley; 1857 [Down, I] \wp

HANSEN, Adolph Vergleichende Untersuchngen über Adventivbildungen bei den Pflanzen Frankfurt a.M.; 1881 〈said to belong to CD but no indication) [Botany School]

HARRIS, George The theory of the arts 2 vols.; London; Trübner \& Co.; 1869 [Down, vol. 1 only, I] \wp

HARRIS, Thaddeus William Entomological correspondence ed. S.H. Scudder; Boston; Society of Natural History; 1869 [Down, I by editor]
gd, v
NB var insects do not vary in all localities p125
201 joints of Antennae variable - 201 Referred
$1251-4 m 201$ wt joints of Antennae variable
HARRIS, Thaddeus William A treatise on some of the insects injurious to vegetation new edn; Boston; Crosby \& Nichols; 1862 [Down, I]

HARRIS, Thaddeus William A treatise on some of the insects of New England, which are injurious to vegetation Cambridge, Mass.; John Owen; 1842 [CUL]
beh, em, in, oo, sp, sx, ta, tm, v
NB Orthoptera 121- to 133
128 Katy-did calling
133 Fiddles of Locusts

SB 56, The weavil of N.A. attacks the introduced Pea
59 Remarkable variations in sexes \& individuals of Brenthidae
68- variable instincts
121 - Males musical Grasshoppers; 124,125 - Males

128, 132,33 I fancy these musical instruments, which are secondary sexual differ much in 2 sexes - Rivalry of Males
x 165- musical male Cicada
315 - Night-Moths dull coloured
373 - Larvae of Hymenoptera spin from lower life like Caterpillars - same structure in very different groups.
$2427-28 w\langle C D$? $)$ At what season $2610 u$ "dors", 10u "darers"/? 56 17-20m 57 5-7m 59 $26-28 m, 28-29 u$ "even 1 sex", wb How in different species? of genus? $6834-35 \mathrm{~m} 69$ $1-6 \mathrm{~m} / 2 u$ "variable instincts" $12135-38 \mathrm{~m} 124$ 29-31m 125 1-5m, 31wa 128 5-8m/5u 132 1w Acrididae $23 u$ "the males" 133 9-15m 165 17$20 \mathrm{~m} / 18 u$ "The lorganization", 26-28m, 34-37m 315 33-34u $\leftrightarrow 373$ 12-14m

HARTMANN, Eduard von Wahrheit und Irrthum im Darwinismus Berlin; Carl Ducker; 1875 [Down, two copies]

HARTUNG, Georg Die geologischen Verhältnisse der Inseln Lanzarote und Fuertaventura Zürich; 1857 [CUL]
gd, is, v
NB 142 Differences of Plants in Lanzarote \& Fortaventura Remarkable
\wp
HARVEY, William Henry Nereis australis, or algae of the southern ocean London; Reeve, Benham \& Reeve; 1849 [Down, I]
harvey, William Henry The sea-side book; being an introduction to the natural history of the British coasts new edn; London; John Van Voorst; 1849 [CUL]

NB 66 Q
66 6-16m/Q 27-29m/Q
HASSE, Carl Das natürliche System der Elasmobranchier Jena; Gustav Fischer; 1879 [Down]

HAUGHTON, Samuel Six lectures on physical geography Dublin; Hodges, Foster \& Figgs; 1880 [Down, I]

HAWKINS, Benjamin Waterhouse A comparative view of the human and animal frame London; Chapman \& Hall; 1860 [Down]

HAWKINS, Richard The observations of Sir Richard Hawkins, Knt, in his voyage into the South Sea in the year 1593 London; The Haakluyt Society; 1847 [Down]

HEAD, Francis Bond Rough notes taken during some rapid journeys across the Pampas and among the Andes London; 1826 [Down, pre-B]
$1268 w$ O $1274 w$ oh $8-10 z, 12-13 w$ oh 128 $1 m 1296 m / u, 13 w$ R

HECKEL, Édouard Du mouvement végétal Paris; G. Masson; 1875 [Down, I]
NB Vol of Trans Phyllo 0
19 22-24m 49 3-7m, 9-15m
HEDERICUS, Benjamin Graecium lexicon London; J, Rivington; 1816 [Botany School, pre-B, ED]

HEER, Oswald Contributions to the fossil flora of North Greenland, being a description of the plants collected by Mr. Edward Whymper during the summer of 1867 communicated by Professor Stokes, F.R.S.; 1869 [CUL, I]

HEER, Oswald Flora fossilis arctica 6 vols; Zürich; Wurster; 1875 [CUL]
\wp

HEER, Oswald Flora fossilis Helvetiae vols. 13; Zürich; J. Wurster \& Co.; 1876-77 [Botany School]

HEER, Oswald Die Miocene Flora und Fauna Spitzbergens Stockholm; P.A. Norstedt; 1870 [Botany School, I, FD]
$1527 m 1713-15 m / 13-14 u$
HEER, Oswald Le Monde primitif de la Suisse trans. J. Demole; Genève \& Bâle; 1872 [CUL]

HEER, Oswald Recherches sur le climat et la végétation du pays tertiaire trans. C.T. Gaudin; Winterthur; J. Wurster \& Co.; 1861 [Botany School]

HEER, Oswald Untersuchungen über das Klima und die Vegetationsverhältnisse der Tertiärlandes Winterthur; Wurster \& Co,; 1860 [Botany School, I]
ad, af, cc, ex, fg, fo, gd, geo, gr, is, mg, no, or, $s h, s p, t, t a, t i, t m, ~ v e$

NB Read from p. 115 to end
SB $\square \beta$
Oswald Heer N.B. Hooker says the Mull Flora Miocene according to Heer allied to that on W. Coast of Greenland.
p. 116 to 120 In Iceland various Miocene Trees - with American character like rest of Europe N.B. During Glacial period would Mediterranean \& Ara-Caspian joined with Black Sea prevent S. migration of temperate plants \& thus destroy many forms whilst in N . America would have remigrated from N . Or is it not that greater area of Old World has caused greater advancement of consequent extinction. Odd Horse surviving in Old World \& it \& Rhinoceros extinct in New World.
121 Madeira Tertiary flora Diluvial not many so ancient as Iceland. Thinks some of the fossil plants formerly lived in Europe
122 N.W. American fossil pl. like those of Europe. Subtropical up to 50° North
124 At Eocene period European Flora not American (NB Nebraska lower Miocene shows affinity with Europe.) In India Miocene feeble American character which is stage in Upper Miocene - Pliocene - disappears at diluvial period.
126 It seems one palaeotherium in underMiocene period.-
127 Considering the well-proved warmth of Miocene period, the hot parts of world were probably very large \& number of tropical forms ought too to be very large
128 List of Tropical forms together with cold forms which now flourish on Madeira which show how they could have lived during Glacial in Tropics. Mem. C. Moore list at Sydney.
129 list of trees which can bear our climate, but of which few bear ripe seeds.
131 Willow seeds perish if not sown immediately - showing on what odd particulars distribution, for instance to N . Zealand, may depend.-
132 general conclusion \& comparison of state of Europe during Miocene Period
135 Miocene Insects American same general results as from Plants
137 Apparently Zones of Tem. in Europe during Miocene as now
138 Reference to paper on Arabo-Caspian since Murchison \& Co
143 On Proportion of American forms now in N . Europe from Martius

144 On connection of Europe \& N. America in Diluvial Time - On relation of several Atlantic Isd in formation of plants to Europe - on greater relation to Europe than to Africa - On relation of living Madeira shells to extinct European species.- Relation of Madeira plants to American
148 on separation of shells at C. Cod.
149 Arguments against Hopkins deflected Gulf-Stream
150 Arguments against Lyells views on World Temperature from change of Land.-

116 19-23m/21u "Liviodendron|islandica"/w American? $32 u$ "Platanus aceroides", $38 u$ "Rhus" 118 3u "Pinus|Mx.", 6u "entspricht 1 Nordamerikas", $7 u$ "amerikanischen", $9 u$ "Alle Islands", $10 u$ "sind IFormen" 119 20-21u "nord|Tulpenbaum", $23 u$ "Juglans bilinica" 120 13-14u "jetzigel hat", 9-15w Tertiary vegetation of Iceland, like rest of Europe a decidedly American character 16-21w Iceland existed as Volcanic Is. in Miocene period. $1211 w$ Not so ancient as Iceland Plants 12-13u "Laurus|verschwunden", 18u "muss | Zeit" 122 1-4w N.W. American plants like European 3-7m, 16-21m/18-21u士 124 18u "eocenen", $19 u$ "dielamerikanischen", $21 u$ "untermiocene", $22 u$ "subtropischen", $27 u$ "grossentheils \mid Arten", $28 u \leftrightarrow, \quad 32 u$ "Der deutlicher", $34 u$ "pliocenen", $35 u$ "noch subtropische", $37 u$ "Derldas", $47 u \leftrightarrow 12644$ 45u "reicht | hinauf" 127 13-29w considering that range of Hottest countries was so great during Miocene - the number of species in Equatorial regions ought to be very great; had they not been destroyed during Glacial period. 128 wt There are truly tropical forms which flourish in Madeira, so cd have borne the Glacial climate. At Sydney some tropical forms live. See C. Moon letter to me. 129 7$19 w$ All these trees can bear much colder climate than own, but do not get ripe seeds $46-47 m / 47 u$ "reift IFruichte" 131 41-42m/w Willow seeds perish immed. if not sown immediately 132 10-12u "unteres Itreffen" 135 $2 w$ Insects $4 u$ "Pflanzenwelt |übereinstimmen", 30-33m/w American Insect-forms 13629 m 137 13-14u "Bewohner I geben", 17-22w Zones of temperature as now in Europe during the Miocene period 42-45m 143 33-34m, 46-48m, 50-54m 144 22-23m/23u↔, 28-29u "erstens Insel", $31 u$ "weitaus|Bowdichiana", $32 u$ "einer 1 Art", 34a "sie" $/[\ldots, 38-39 u \leftrightarrow, 41 u \leftrightarrow$ $1453 m, 4-8 \mathrm{~m} / \mathrm{w}$ Relation of Madeira Plants to American forms $17-20 \mathrm{~m} / \mathrm{w}$ Land-shells like tertiary land-shells of Europe $26-45 \mathrm{~m} / 28 u$ "527|einheimisch" 146 41m/u "Zurlsolche",

49-51m, wb It is remarkable extinction of Rhinoceros \& Horse in America \& not in old World, as there seems to have been more extinction \& replacement of forms in New World than in old. $1471-3 m / 1 u$ "australisches" $/ 2-3 w$ Australian forms in Madeira 46-48m/was Hooker says no Pittospora is Indian.- $14840-42 m 1497 x$, 45$51 m / w$ Remarks against Hopkins deflected Gulf-Stream $150 \quad 1-8 m / 1-2 w \quad$ World Temperature

HÉLIU La loi unique et suprême. 1, Genèse terrestre Paris; Brasseur; 1878 [Down]

HELLER, Karl Bartholomaeus Darwin und der Darwinismus Wien; UniversitätsBuchhandlung; 1869 [Linnean Society of London]

HELMHOLTZ, Hermann Popular lectures on scientific subjects trans. E. Atkinson, introduction John Tyndall; London; Longmans, Green \& Co.; 1873 [CUL, S]
ad, che, phy
NB 219 imperfection of eye; 227 do.; 269 do.; 390 do.
234* like Drosera - pressure Good - chem action \& Heat
Nothing for Descent

- Mrs Treat preserved T.H. Farrer Answers to Donders Helmholtz
219 10-20m/10-14"..." 227 13-24m, 26-30m, 32-34m 228 3-11m 234 6-10m (Johannes Müller)/w so with Drosera 235 15-18m 269 14-23m 372 13-17m 390 5-18m 391 15-19m

HENFREY, Arthur Botanical and physiological memoirs London; The Ray Society; 1853 [CUL]
cc, fg, he, hy, phy, spo, tm, wd
NB xxi, xxii \&c; 2; 8; 23; 42; 94; 307; 310; Book 312 X important; Book 317 X? to end of part
346; 352
116; 118 Books on Divergence of Leaves
SB $\square \beta$
xxi Statement that C. Adami produced by
budding - doubts p. 317 to 320
xiii Nat Hybrid in Laburnum
3 Teeth in Whales
42 Littorella lacustris never flowers under water
310 Hybrid Ferns
312 Single-leaved Fragaria
312 On Hereditariness in Sports of certain Trees
henfrey, bot. \& PHYs. MEM.
313 my view of cultivation, putting luxuriance very strongly forward Ch I
314 Sports
xi $10-11 m, 22-27 m$ xii $2-11 m, 18-21 m, 25-$ 26Q xxii $2-10 \mathrm{~m}, 14-16 \mathrm{~m} 232-38 \mathrm{~m} 337-38 \mathrm{~m}$ $440 u / w \notin 822-29 m 2334 u$ "multiplication" 24 12-25m 39 22-25m, 30-34m 42 9-14m, 21$27 m 457 u / w \notin 4610-12 m, 33-36 w$ p xxiii 81 $33-35 m 94$ 介5-1m $957-17 m 97$ 33-36m 108 30-41m 115 42-43m 116 12-24m, 27-29m, 28$31 \mathrm{~m} / 28 u$ "Principles 16 " $1173-6 m, 9-12 m 118$ wb (Fibonacci numbers in plant organisation) 119 23-30m 195 11-18m 307 36-38m 310 19$32 m, 41-45 m 312$ 20-21m/21u "Godron", 41$45 m, w b$ Henfrey cannot trace this essay 313 5-16m, 21-24m, 32-35m, 40-44m 314 5-12m, $21-27 m, 25 m, 29 m, 32-39 m 3152 m, 6-10 m$, $10-11 \mathrm{~m}, 11-23 \mathrm{~m} / 13-15 \mathrm{w}$ seems to think $15-$ $16 \mathrm{~m}, ~ 20-21 \mathrm{~m} 31614 \mathrm{~m} 3171-3 m, 5-9 m$, 18$19 \mathrm{~m} / 19 \mathrm{u}$ "Horschuch's 1 plants", 21-23m, wb A. Henfrey says that Hornsuchs essay is long \& formal essay in the earlier numbers of the Ratisbon Flora for 1848. Ueber Ausartung der Pflanze.- 318 36-39m 319 9-12m 320 1$8 m 322$ 4-14m 347 19-20m 352 34-38m \wp

HENFREY, Arthur Outlines of structural and physiological botany London; John Van Voorst; 1847 [Down]
ct, gd, phy, tm
NB Aquatic PI no epidermis no fibrovascular bundles - but elongated cells no stomata

HENFREY, Arthur (ed.) Reports and papers on botany London; The Ray Society; 1849 [CUL]
gd, mn, 00, v
NB p. 471 Hooker on Conifers in S. Hem. SB1 $\square \mathfrak{R}$
p263; 285; 289; 313; 319; 320; 361, 2; 384;
386; 388; 418; 421, 2; 427; 435, 7; 447;
450; 465; 468, 9; 4 .
SB2 $\square \beta$
263 on variable twisting in Solanum dulcamara
385 Remarkable distinction in E. \& W Flora of C. Colony (as in Australia
388 Flora of Azores
422 Central European Plants on S. Nevada \& Pindus - p447 - 450 Endemic Alpine Plants

- Hooker on Islands having wooded plants of Compositae.- Summary of -
435 Thistle of Pampas not social in Europe

437 Rhetian Alps 106 Phanerogam in 23 Fams - 468 Cordillera 250 sp in 50 Fams.
468 S. American Alpine forms at great height in Cordillera, with Arctic forms
469 Hooker on resemblance of Vegetation of Pacific isld being more apparent than real.
471 Hooker on Coniferous Tree of Australia 8
263 10-16m 284 19-21m $2857 a$ "case" $77-10 \mathrm{~m} /$ w ie when style developed before corolla 15$18 m 286$ 12-13m, 14-17m 289 10-11m, 25$26 \mathrm{~m}, 28-30 \mathrm{~m} 313$ 17-18m 319 21-29m 320 1$5 m 361 \quad 27-37 m \quad 362 \quad 6-9 m$, $31 u$ "general Japanese", $38 \mathrm{~m} 38429 u$ "Rubus" $/ 27-30 \mathrm{~m} / 25-$ $28 w$ Is this f. in Tropics $3856-13 m 38620-$ $25 m 3881-6 m, 29-35 m 38938 m 3904-7 m$ 418 17-19m, 22-29m, 29-32m 419 4-6m/w no. * Antarctic Lands $11-12 m, 30-36 m, 36-38 m$ $42127-33 m / 32 u$ "provided the" $/ 33 u$ "with। climate", 39-42m 422 8-12m, 36-39m, 40-43m 423 1-4m 427 17-19m 435 5-7m 437 1-5m $445 \quad 27-29 m \quad 447 \quad 20-24 m \quad 450 \quad 16-24 m / w$ species Alpine $4655-12 m / w$ not isolated Mountain 468 26-30m 469 15-28m

HENLE, Jacob Handbuch der systematischen Anatomie des Menschen Braunschweig; Friedrich Vieweg \& Sohn; 1858 [CUL]
phy
NB p135-162

\wp

133 wt (a) Muscles all blended together 1$6 m / w$ (a) $21 u / w \tau 135 w t$ to be reduced to $2 / 3$ - sides cut off where I have put pencil lines〈preparation of fig. for reproduction>, 11-13m/w see Back $1364 w$ pyramidis 6-17w The Pyram is not attached to skin between Brows - I must refer only to movement, however. caused. $34 u$ "sehr dünne" $/ 35 u$ "sehnig"/36w sinewy $40 \mathrm{~m} / \mathrm{u}$ "M. pyramidalis" $13838 u / w \tau, 42-44 m, 45-50 w / w b$ (a) It does not seem clear what muscle acts in those who can move their ears. $1396 w(B) 35-$ $42 \mathrm{~m} / 38 \mathrm{w}$ (а) 142 fig. $\mathrm{m} / \mathrm{w} \notin 14333 \mathrm{~m}, 34-36 \mathrm{~m} /$ $34 u$ "M. malaris" $/ 35 u \leftrightarrow 1445-7 \mathrm{~m} / 6 \mathrm{w}$ (a) $32-$ $38 \mathrm{~m} / 34 \mathrm{w}$ (b) 145 fig.w (names of muscles) 146 $14 m, 38-43 m / 38-39 u \leftrightarrow 14731 m, 33 u$ "bedecktlorbicularis" 148 fig.m/w (names of muscles) 149 wt All the 3 previous muscles (ELS) sometimes equally draw up nostrils as the levator prop. $22 m$, fig.m/w (names of muscles) $15024-34 m / w$ hardly distinct from platysma $1513-5 m / w$ (a) $7 m 15412 u$ "M.। sup." $15512 m 1593-18 w$ Nothing particular \wp

HENRY, William The elements of experimental chemistry 2 vols.; London; Baldwin, Cradock \& Joy \& R. Hunter; 1823 [CUL, vol. 2 only, pre-B, S]

HENSLOW, John Stevens Descriptive and physiological botany (Lardner's Cabinet cyclopedia) New edn; London; Longman, Orme, Brown, Green \& Longman; 1837 [CUL]
ad , beh, br, cc, che, co, cs, dg, ds, ex, f, fg, fo, gd, gr, he, hy, is, mhp, mn, oo, or, pat, phy, $s p, s x, t, t m, t s, v$

NB1 Are there yellow hyacinths for there are blue \& pink-?

- The purple Dahlias show approach to the third colour or blue?
- Does Desmodium gyrans. p. 166 sleep * Zostera is one of family, not peculiar characters \& Ground-Nut the most hostile flower p. 278 to non-intermarriage theory Does not flower under ground
NB2 - People constantly speak about every organism being perfectly adapted to circumstances, if so how can there be a rare * species breeding power being efficient (food not sufficiently \& abundant is answer NB3 *
If my argument see previous page be pushed to its extreme it will include every organic being - which is unfortunate. Geograph: range has ceased to argue for this \&c \&c \&c.- Transmutation of organs have done so.- That is criterion
* How close an analogy between dicotyld. seed. \& bulb.-food in each case laid up in a modification of leaves. for a germ
- I do not understand whether the bud makes the leaf, in the axilla of which it stands? p. 79
- Where can 1 find many facts about monstrosities in plants bearing on laws of abortion degeneracy \& adhesion
- Continue description of woodcut

NB4 Ask Henslow
*; * The simplicity in ultimate structure of Vegetables very remarkable
2; $\rightarrow 11$ - ? Marchantia -; 28; 51; 52; 56R \&; 58; 71; 79; 98; 118; 114; 140; 163; 169; 188; 195 reference ask Henslow - coral; 201 ?; 186. ?; 220?; 221?; 223; 233; 236; 241; 249?; 253; 254; 256; 259; 261; 263?; 266 266?; 272?; 276?; 279?; 281; 286?; 288?; 290?; 294?; 300?; 303; 308; 312
[49 Twining stems]
p173. Water will not freeze till $161 / 2^{\circ}$ in capillary vessels authority? - in relation to
roots melting.
Spiral p175.
SB $\square \beta$
p. 130 Variation in Phyllotaxy - Flower pentamer. \& tetramerous.-
15 cylinders becoming Hexagons \& Dodecahedrons - for Waterhouse view
p169 Poisons -
114 Cotyledons of Sycamore due to division 167 Dionaea Knight gave bits of Beef to Fly-Catching Plant.
220 Night-flowering plants with lurid flowers - Cereus with splendid flower only at night Coloured ??
277 The pulp round many fruits does not accelerate their growth
278 Exceptions to damp closing pericarps
1 zb 2 21-27m/wb Phen Life 1 Physiological description of organs in themselves \& in different animals 2. Theory of cotransmutation of organs, not separate, or Descriptive Botany relation to habits \& conditions, which cannot be told by consideration of separate organs. $1113-18 \mathrm{~m} /$? 49 fig. $41 . w$ Left hand Right H $5112-17 \mathrm{~m}$ $526-10 \mathrm{~m} / \mathrm{w}$ tree of life $564-7 m 573-17 m$, 18-21m 58 1-22m, wb How can tuber be distinguished from sporule of cryptogams? by being organ for its production? $713-8 m$, $9-10 m 983-18 m 1057-9 m / 8-9 u$ "is 1 stone" 107 1-6m/3-4u "Lindley" 113 7-10w V. p268 13-19m 114 22-25m/24u "proven subdivision" $11811-29 m / 26-29 m / 1-29 w$ is this merely apparent, will be said that parent never was regular flower? $12011-17 \mathrm{~m} / \mathrm{w}$ find out some true species which is distinguished by bearing thorns $26-36 \mathrm{~m} / \mathrm{w}$ all this might be put strongly to favour my theory $1211-15 m 122$ 1-7m 126 8c/w $\ddagger 127$ 16u "twenty-one", 31$34 \mathrm{~m} / 32 u$ "eight", fig. | 128 wbet $1308-11 \mathrm{~m} /$ $8 u$ "few cones", 15-17m 132 19c "9/34"/w 13/ $3422 c / m / w$ 21/54 (he means 55) 163 19-38m 164 1-10m 165 22-23u "but| depressed"/21$24 m / w$ try this with Ether $\Uparrow 1 u / w b$ Drosera has duct But Dionaea not so $1666-12 \mathrm{~m} / \mathrm{w}$ Does Desmodium gyrans sleep 24-28m 169 1-5m, 7-27m, 33-39m 173 14-20m 186 14u "carbonaceous matter"/15-19w whence derived primarily $18812-19 m / 1-21 w$ touching mutual impregnation 193 1-31m/10-26w try with Corallina $w b$ if Corallina do, then doubtless the Nullipora will, although living in 200 fa. $19511-20 \mathrm{~m} / 13 u$ "feet", 17-19w where described $17-21 \mathrm{~m} / \mathrm{wb}$ relates to the three colours in varieties 201 19-26m/?/23u "freel exceptions", wb State in new Edit - case of species having pure colours $2202-4 m / 2 u$

HENSLOW, DESCR. \& PHYS. BOT.
"night-scented stock"/wt Is this peculiar variety $22129-38 \mathrm{~m}, 38 u \leftrightarrow / w$ is there a bag here? wb how like vipers 222 21-27m, wb describe (See Humboldt) Argument for one origin how curious the similarity in products between animals \& vegetables is - $22322-27 \mathrm{~m} 232$ 16-22m/w Oak \& Chestnut - Chartworth Vol $223337-39 \mathrm{~m} / \mathrm{wb}$ will it ever check flowering or more especially fruiting? $\| \rightarrow 2341-5 m 236$ 28-31m 237 8-19m 238 19-22m, 24-29m 240 2-12m, 29-30m 241 1-9m 249 22-24m, wb How do you reconcile this with Lemna 253 11-22m (De Candolle) 254 24-36m 256 12-21m $259 \quad 30-35 m \quad 261 \quad 19-31 m / 23-26 w \quad$ where related $2621-8 m, 10-14 m, 23-30 \mathrm{~m} / 30 u$ "in succession", 32-39m/37u "Stylidium", 38-39m/ $w b$! examined this at Maer $2631-2 m / w t / 1-$ $4 w$ has opposite tendency $\&$ fact (a) $26-27 u$ "the influence"/w Subularia \&c \&c 33-38m/wb How can these cross - $2641-15 m, 26-33 m$ $26512-16 m$ 266-267 wb Then it is certain whole grain of pollen must be wafted even as in Palm!- where 30 miles apart $27215 u$ "ovaries" $/ \mathrm{w}$ ovules? $18-20 \mathrm{~m} / 19 u$ "ovules 1 abortive", 31-35m 276 16-22m, 25-33m 277 22-27m/24-25u "pseudospermic \mid provision" $/ w$ how 28-31m, $33 \mathrm{~m} / \mathrm{u}$ "compensation|which" 278 13-16m, 29-39m 279 21-26m/22w hermaphrodite 24-26m, 24c/a "produced 1 the"/ $w \varkappa_{0}$ is carried $w b \varkappa_{2}$ But Dic Class says that the Arachis flowers above ground 280 18$22 m 281$ 1-6m 286 13-27m 287 16-21m/?/20$21 u$ "scarcely differ", wb Azalea, Rhododendron, Lychnis \& Cucubalus? 288 $3-9 m, 13-18 m / 18 u$ "marked 1 species" $116-23 w$ is not this arguing in a circle $\$ 11-3 m / w b$ From the not greater number of hybrids in Dioecious might it not be argued that there might be super-foetation by the more fertile pollen?- $\uparrow 5 a$ "we"/wb a great exception Herbert \& Knight 289 16-23m, 26-35m 290 4$12 \mathrm{~m} / \mathrm{w}$ argue against this $12 w$ who? 12-13w Most strange doctrine, when we reflect on animals.- Potato - Dahlia even granting two species $w b$ sowing Ribston Pippin * a ribston pippin but not quite like, is produced $2943-24 \mathrm{~m} / \mathrm{w}$ periodicall + opening of flowers even in dark does not harmonize with this 300 32-35m/w No 303 wt Compare St Helena in distance with Sandwich Isls $10-19 \mathrm{~m} 308$ 1$18 m 312$ 22-32m/19-27w See Bowerbank's work $w b$ What is the character of my Van Diemen's Land Fossils 313 28-29md

HENSLOW, John Stevens A dictionary of botanical terms London; Groombridge \& Sons; n.d. [Down, S]
NB Lancinata not given

HERBERT, William Amaryllidaceae London; J. Ridgway \& Sons; 1837 [CUL]
ad, beh, br, cc, ch, cs, dic, ds, dv, f, gd, he, hy, ig, mhp, no, phy, sp, spo, sx, sy, t, ta, tm, ts, v, wd
NF In Letter talked to me of an Appendix NB1 Read whole Memoir
p.8; 28; p. 32

411, 12, 16 - Supplement
p. 28

Any Plates of Hybrids
136 \&c \&c description of the Hybrids
V. Hybrid in Index

NB2 411 Labels for Gardens
© Oct 18/55/ This Book has been fully abstracted \& the abstracts distributed.-
p412 Case of Hybrid sporting into character like other species \underline{Q}
p416 Hybrid from Rhodora Canadensis \& Rhod. Ponticum in Flower
8 3-30m (Lindley), 32-40m 18 20-33m 19 18 m (Jussieu), 20-27m, 37-39m $2838-44 m 29$ 2-17m, 22-27m $3232-38 \mathrm{~m} / 38 u$ "on l ripened" 211 18-26m, 27-35m 283 12-19m/12m/13m/ $15 w$ fertile Hybrids $20 \mathrm{~m} / 21 w$ infertile Hybrids 284 1-3w note p. 412335 4-7m (Kölreuter)/w in $* 1775$ \& following years $7-8 u 33630-31 u$ "hybridising loffspring"/w what in varieties?! 337 wt (a) I see in Journal he in fact gives up genera - ie thinks some genera, which will not cross, have probably descended from one stock $3 \mathrm{~m} / \mathrm{w}$ (a) $6 u$ "anylintermixture" $/ w$ Fowl or Peacock! $9 u$ "tol genus" $/ 9-18 w$ Grouse \& Pheasant all one genus. if term genus thus ill-used some other term must be invented. $29-30 \mathrm{~m}, 34$ $38 \mathrm{~m} / 37-40 \mathrm{w}$ Polyand $41-42 \mathrm{~m} / 41-42 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$〈botanical terms) 338 16-18m/17-27w not known probably because changed gradually - same answer can be made to those, who say. when was species made? 37-38Q 40$41 \mathrm{~m} / \mathrm{w}$? where published $40 u$ "Mentha" $/ w b$ Pallas specifies the Labiatae as plants which cannot naturally be crossed. He must, however, be refer to Snap-Dragons $42 \mathrm{~m} / \mathrm{wb}$ No Papilionaceous flowers Some Monooecious \& Dioecious... 339 19-24m, 42-43m/ $43 u$ "father" $3401-2 m, 5-7 \mathrm{~m} / 5 u$ "black I pony"/ $5-12 w$ instance of my law of variation agreeing other species of genus $30-33 \mathrm{~m} / 32 u$ "31 sterile"/ 33 u "quote I constitution", 34-36m 341 wt (a) contains remarks on acclimatizing of plants $1 u$ "Sweet \mid Britannicus" $/ m / w$ (a) 6$9 \mathrm{~m}, 9-10 u$ "naturally lapproximated", $10-15 \mathrm{~m} /$ $12 u$ "isolated" $15 u$ "ready to intermingle", 33$37 m / 34 u$ "varieties $~$ prevented", 41-42u "did I sterility" $342 w t+$ is this not error: does not
constitutional difference confer some difference in innermost organization，or rather on whole organization $1-4 m / 3-4 u$ ＂greater lothers＂， $7 u$＂constitutional＂$/ w+8 a$ ＂botanical＂w ie external $16-32 w$ It might be worth while to consider native conditions in Kölreuter 23－24u＂dissimilar I genera＂／w Crinum 27－32m，41m 343 wt Animals \＆ plants are domesticable because not rigidly adapted，\＆these are easily hybridisable．－1－ $2 m$ ， $5-15 m / 10-14 m / 10-11$＂．．．＂＂。， $16-17 m$ ， $\Uparrow 14 w$ Crinum $\uparrow 12-4 m, w b / \uparrow w$ Habits \＆c determining sterility（\＆hence probably intermarriage in some degree）is very important，as solving the case of willow wren \＆explaining great importance generally solving question of habits in determining what is species－a fact tacitly admitted by all naturalists．Habits being not fixed in domesticated animals，or indeed in plants， not exactly related，＊to the varying conditions causes the greater facility in being crossed．－ 344 17－23m／18w Calceolaria 29－ $30 \mathrm{~m} / \mathrm{u}$＂abundantly fertile＂／＂．．．＂，32－34m 345 $w t$＊Loudon both of Europe，figured in Bot． Mag．99，\＆2183．－ $2 u \star / w^{*}$ Linaria 3－ $5 m / u \pm /$ w Mexico Penstemon $4 a$＂gustifolium＂ Louisiana 10u＂whole｜which＂／11－14m／13u ＂offering Ifertile＂， $22-28 \mathrm{md} / 22 w$ Cereus $42 w$ Cucumis 346 5－6m／u＂reproduces abundantly＂／wt Did I not examine this at Maer ？？？4u／a＂special＂／wt p． 352 properly Lowii 17．1455 Herbert Bot．Reg．4a ＂speciosa＂ $\mid 4-7 w$ Bot．Mag． 3604 this reference from Loudon $12-14 m / 12-13 u$＂that I genera＂， $15-17 \mathrm{~m}$ ， $18-23 \mathrm{~m} / 18-200^{\prime \prime . . ", ~} 36-$ $43 m / x / w b \times$ This would all apply to animals． but breed is．not introduced with this consideration．－ 347 wt We know there is something in intimate structure of Marsh Plants which renders it wholly impossible to live in dry \＆vice versa with dry．\＆as \＆ crossing＊makes constitution half way，it affects the most important part of whole structure，－even as much as form of heart or other vital structures．－4－5u＂In I parents＂， 12－18m／w How exactly similar to giving dash of courage to greyhounds by Bull－dogs blood $23-24 u$＂accidental seedling＂／23－31w This is like sudden appearance of cowslip from primrose it is analogous to Australian dogs， producing piebald young． $25-31 \mathrm{~m} / 26 \mathrm{w} \times 33-$ $34 m, w b \times$ against my theory．－change， however，is sudden－\＆not many generations．－From foregoing facts，about constitution we should expect such changes to be slow．\＆likewise any attempt to change aquatic to dry plant This is only one
particular，in others the change？$w b / 35-42 w$ See．Sir J．Banks Vol I．Hort．Transact． Laurels not raised by success．generations 348 10u＂connected I membrane＂／11－14m／11－ 21w Now does this tendency to sport in hybrids decrease after several generations of same appearance same fact as in varieties of animals where crossed． $22 w / 24 w * \pm, \Uparrow 9-$ $1 \mathrm{~m} / \mathrm{w}$ must be read $\uparrow 9 \mathrm{~m} / \mathrm{w}$ read $\uparrow 7-6[\ldots]$ ，介5］ $3496 u$＂thelout＂／w $313 u$＂cross－bred seeds＂， $28 u$＂coverings＂／w 32－38m（Gaertner， Hedwig，Kölreuter） 350 1－8m／4u＂full｜seeds＂｜ wt I doubt whether Gaertner now allows this． See to it．－ $25-31 m, 25-28 m, 38-43 \mathrm{~m}$ （Gaertner） 351 6－11m，27u＂every ovule＂／15－ $17 w$ impossible to be more fertile $26-29 \mathrm{~m} /$ $m \otimes / 22-27 m / 26 u \uparrow / 27 u$＂big revolution＂$/ 29-30 u$ ＂Datura laevis＂／26－30w x Crinum Datura wb Might not Gartner have been a bad Gardener \＆so not had his plant so healthy －I think Herberts positive facts outweigh negative：he knows so well causes of error \＆ trusts to nothing but appearance of hybrid plants－ 352 8－10m／7w Lobelia 9－14m，14－ $16 \mathrm{~m} / 15 \mathrm{u}$＂seeded abundantly＂， $18-19 \mathrm{~m} / \mathrm{u}$ ＂Wiegmann｜language＂$/ w$＊Enquire at Linn Soc 23－26m，28－32m，33－38m，41－43m，wb does the multitude plants preserve them，by allowing very many impregnations，the stigma keeping its power－with respect to wheat 353 2－8m／w Note in Philosoph－ Transaction．about White Blue Peas 354 9－ $18 m$（Gaertner，Wiegmann，Knight）／12u＂is erroneous＂$/ 13 u$＂oat＂$/ 16$ a＂racemosa＂Scarlet $18-22 \mathrm{~m} /{ }^{\prime \prime} .$. ＂$/ 22 u, 24-28 \mathrm{~m} / \mathrm{w}$ This must be functionally dichogamous．27u＂Calceolaria＂／ 24－28w In Calceolaria＊stigma ready before ＊pollen 29u／a＂Pelargonium \mid Alstroemeria＂ 29－33w in these＊stigma ready after pollen $\Uparrow 6-2 m / \Uparrow 4 u$ a 355 3－5m， $8 w$ Zephyranthes 13－ $17 \mathrm{~m} / \mathrm{w}$ This shows two sexes differently affected by conditions：are sexes ever unequally affected in Hybrids．－15－19m，23－ $25 m 356$ 〈u＾〉 $1 u / 3 u / 4 u / 7 u / w t$ Crinum， Hippeastrum 20－24m，21u＂accidental impregnation＂，29－35m 357 〈u＾〉 wt Pelar－ gonium 1－5m，8－12m， $9 u, 10 u, 14 u, 14-17 w$ see Sweets work on Geraniums $20 u / 21 u$ ，24－ 25u土，27ll，29w Passiflora 32－37m／34u＂not I fruit＂／w ！！my notion of fruit improving 358 wt Note p． 411 11－12w Gladiolus $10-15 m / 13-22 w$ seems to leave out of question，greater indelibility of some stocks than others 16 － $24 m / 21-24 m, 25-30 m, 36-40 \mathrm{~m} / \mathrm{w}$ good step in series of infertility $35919-20 \mathrm{~m} / 20-23 \mathrm{w}$ Rhododendron Rhodora Azalea $30-32 \mathrm{~m}$ ， $38 \mathrm{~m} / \mathrm{u} \uparrow / \mathrm{w}$ Nicotiana $42-43 \mathrm{~m} 3606-11 \mathrm{~m} / 6-$ $14 w$ I am sure I have heard of some such

HERBERT
facts in animals: new characters educed this is constitutional ? difference $21-23 m$, $\uparrow 12-$ $10 m / \Uparrow 12 u$ "fragrance", $\uparrow 8-6 m / \Uparrow 6 u$ "veryl number", $\uparrow 2-1 u$ "Altaclarae" 361 5-8m/5u "profusion", 42-43m/u $\leftrightarrow 362$ wt I should think it impossible that many hybrid permanent species were produced from the conditions of the place seldom being better adapted to the hybrid than to either parent. $1-3 m, 1 u$ "important", $4 u$ "themselves 1 situation", 15II, $15 u$ "Rosa", 21-24w Rosa nothing particular 25-31m, 43II/u "honeysuckles" 363 7]l, $8 u$ "magnolias" $/ w$ Magnolia 7-11][/wen Calceolaria $13 u$ "Calceolaria", 23-43m/35-36u "therefore I thereof" $/ 26-30 w$ (a) $Q w b$ (a) My rule of variation from domestication producing changes analogous to those found in other species of same genus, thus is seen to hold good with varieties produced by crosses $3645-7 m / 3-8 w$ there is a case of different constitutions crossing 16-22w Calceolaria Loudon makes 12. many species \& many vars. $23-30 \mathrm{~m} / 26-27 u$ "they sorts" 365 6-9w Gaertner tried only few, but fertile 10JI/w Gladiolus $3669 u$ "floribundus", $18-21 \mathrm{~m} / \mathrm{w}$ (a) $27-31 \mathrm{~m} / \mathrm{w}$ Is this fact owing to these being double $33-43 \mathrm{~m} / 34 u$ "almost" $/ 36 u$ "double" $/ 37$ u "pink" $/ 39$ u "although|together"/ $34-38 w$ these if single, or quite fertile would be true species $w b / i w$ (a) Now this shows that some * species will not cross (which cannot be accounted for by constitution), which yet by their appearance must be forced into one genus - \|| on other hand we have seen most remote forms forced into one genus - shows definition of genus will not serve \& shows power of crossing has no close relationship to affinity, (even of constitution) but to some other causes - age - 367 27-28w Camellia 369 31-43m/35-36Q@, $42-43 m \quad 370$ wt X weakly anàlogous to successive generations fixing peculiarity 1$5 m / 2 w \times 23-36 m / 24-25 w$ Turnips 371 wt B. This may be wellO introduced in my views of all organic beings marrying $-4-7 \mathrm{~m} / 7-14 \mathrm{~m} /$ $5-12 m / 10 w$ B $6-12 m / w$ Mr Knight makes very same remark Vol 1 Hort. Transact. $15 u$ "different \mid aspect $" / 15-22 m, \quad 27-32 m / 27-34 m / w$ in this case of hybrids tested probably by slight infertility (a) $\uparrow 6 u$ "pollen lanother" $\uparrow 6-$ $1 m / w$ my theory explains this: because offspring differ in the two cases, in one going back to parent, \& in \& other remaining constant $\uparrow 3 a$ "stock" But they do not yield so much seed with pure parent $\Uparrow 3 u$ "fecundate them", $\uparrow 2 a$ "themselves" still stronger when with a 3d species $\Uparrow 2 a$ "fertilise" $/ w b$ but they fertilise less wb Probably stigma would
actually prefer pollen of other plant; as stigma * remains open to choice - \& as in Mammalia bred in \& in, loose passion (but I do not know whether prefers other kind)372 7-10m, 18-31m, 30-36m/w No. note p. 375 38-43m 373 wt XX I think these facts only show that constitution, or internal differences are far more important than external.- $23-30 \mathrm{~m} / 25 \mathrm{w}$ XX $28 w$ Nerine 28 $34 m / 31 u$ "Loxanthus", $\uparrow 4 u$ "conformity", $\uparrow 4 u$ "41mule"/w XX $\Uparrow 3 u$ "verified" $3743 a$ "feature"/wt namely the difference of the perianth being centripetal or centrifugal, in addition to * its distortion $6 w \mathrm{P} 81 / / w$ Heaths 9-12m, 25-29m/27u "referable! genera", 33-38m/33-34u "The lespecially", $\uparrow 5 u$ "complete fertility" $/ \downarrow w / w b \underline{P}$ As constitutional differences, probably, show * greater distance of common ancestor, than external differences, so as these constitutional differences can be readily discovered by facility of crossing such facility admirable assistance.- in same way habits of animals so useful. $3751-7 \mathrm{~m} / 1 u$ "sixteen"|7u "1835", 34-35m 376 10-16m/w last step in series of infertility $\uparrow 4-1 m 3771$ $2 m / w t$ it is analogous to the seedling Camellias recovering their simple flowers 8 $16 \mathrm{~m}, 18-23 \mathrm{~m}$, 35 w Nicotiana $\uparrow 3-1 \mathrm{~m} / \uparrow 2-1 \mathrm{~m} /$ $\Uparrow 1 u \leftrightarrow / w b \quad$ Variation in * unimportant character 378 3a/u "different power"/wt Gaertner p. 262 says false $1-15 \mathrm{~m} / 1-7 w$. case of the passing of a plant from one Linnaean class to another. $w b$ NB See P p. 374 The value of crossing, as a test of genera \& c is of little value, as the Natural System seeks to know relationship \& does not attempt date of separation 379 wt (a) This cross in Gaertner i a, \& ig. ie less than (K)a normal. May not much be attributed to skilful gardening ?? 9-13m/w Petunia (a) 11a "P. nyctanigenaeflora" Hardy 11a "phoenicia" frame $11-13 \mathrm{~m} / 13 u$ "than I parent", $14-16 \mathrm{~m} / 15-$ $17 u \pm, 20-23 m / 21-23 m / 21-22 u$ "in 1 itself", $\Uparrow 6-$ $4 m / \Uparrow 7 w / \pi 3-1 w$ anagallis failed with Gaertner; Hibiscus not tried by G 380 11-14m, wb Hybridise sensitive Plant \& sleeping Mimosa \& then try my experiment - $4028-12 m, 21-$ $24 m 411$ 23-33m, 37-41m/37w p. 358412 1$7 \mathrm{~m}, ~ 33-40 \mathrm{~m} / 35-37 \mathrm{Q}$ 38-40m 416 52-55m/w considered by Lindley a true genus Catalogue <New works in course of publication by James Ridgway E sons, April 1837; scored on last page against Forbes, Horticultural tour through Germany, Belgium and France)

HERMANN, Ludimar Elements of human physiology London; 1875 [Down]
105 10-13m

HERMANN，H．C．The Italian alp－bee G． Neighbour \＆Sons； 1860 ［CUL］ beh，ct
NB \notin Cells Instinct \＆c \＆Marked
6 9－12m，19m／u＂Yellow Alp－bee＂，21－23m 7 $1-4 m, 25-27 m 817-19 m, 21-24 m 103-5 m$ ， $10-14 m 1129-30 \mathrm{~m} / 29 u$＂ 2,000 ＂ $2410-16 \mathrm{~m} /$ 15c／w 〈not CD $\rangle, 31-36 m 251-9 m$

HERMANN，Ludimar Handbuch der physio－ logie 6th vol．，part 2；Leipzig；F．C．W．Vogel； 1881 ［Down，I］

HERSCHEL，John Frederick William A manual of scientific enquiry London；John Murray； 1849 ［CUL］
161 21c／a＂surprising＂／w some degree of 22c／ $w \notin$

HERSCHEL，John Frederick William Phy－ sical geography Edinburgh；Adam \＆Charles Black； 1861 ［Down，FD］

HERSCHEL，John Frederick William A preliminary discourse on the study of natural philosophy London；Longman，Rees，Orme， Brown \＆Green \＆John Taylor； 1831 ［CUL， on B］

25 8－19m 35 20－27m／22u＊＂depending｜will＂ $9310 \mathrm{~m} / \mathrm{w}$ yes $183313521-28 \mathrm{~m} 136$ 2－8m 167 24－31m 182 1－20m（Bacon） 287 27－33m 351 5－12m，29－33m 352 1－ $7 \mathrm{~m}, 16-20 \mathrm{~m} / 16^{\prime \prime} .$.

HERSCHEL，John Frederick William A treatise of astronomy London；Longman，Rees， Orme，Brown，Green \＆Longman \＆John Taylor； 1833 ［CUL，S 1838］
118 3－10m，24－30w
HERSCHEL，Mrs John Memoir and cor－ respondence of Caroline Herschel London；John Murray； 1876 ［Down］

HERTWIG，Oscar Über das Zahnsystem der Amphibien Bonn， 1874 ［I by author］ ［CUL．1900］
SB $\square \beta$
101101257
〈over〉 $\mathrm{O} /$
HERVEY－SAINT－DENYS，Léon $d^{\prime} \quad R e-$ cherches sur l＇agriculture et l＇horticulture des Chinois Paris；Allonard \＆Kaeppelin； 1850 ［CUL］
sl

NB 23219 dates； 229 speaks of History of Chinese standing $w \diamond 1000$ years SB $\square \Re$
229．ancient precise Rule for selection
p． 219 This great Encyclop was published in 1737．－but it is compilation
p221．Name of this Encyclopedia
23 5－6m／u＂Ma－touanlin＂ 24 zt 219 3－5m 221
$2 u$ 〈title〉 229 9－12m／10we Plot $12-14 m / 12-$
$13 m 239$ 8－9m 254 4－7m 255 7－9m
HEWSON，William The works of William Hewson，F．R．S．ed．G．Gulliver；London；The Sydenham Society； 1846 ［CUL，I by editor］ phy，v
SF 〈letter from Gulliver〉
NB Blood corpuscles nothing particular for me，I think
p． 218 p． 238 vars．\propto in vars．X in Do
\wp
218 5－7m，18－19m，35－37m 219 10－13m 236 39－40m 237b $47 \mathrm{~m}, 48 \mathrm{~m}$ 238a $13 \mathrm{~m}, 14 \mathrm{~m}, 23 \mathrm{~m}$ 238b $18 m, 20-22 m, 27-29 w$ very variable $w b$ what var．239b $w t$ send blood $6 \mathrm{~m}, 46 \mathrm{~m} / \mathrm{w}$ white＊owl $w b$ which is white owl 241b 10 m \wp

HEYWORTH，Lawrence Glimpses at the origin，mission and the destiny of man London； Williams \＆Norgate； 1866 ［Down，I］

HIBBERD，Shirley The fern garden 4th edn； London；Groombridge \＆Sons； 1872 ［Down］

HIGGINSON，Thomas Wentworth Out－door papers Boston；James G．Osgood \＆Co．； 1871 ［Down］

HILDEBRAND，Friedrich Die Geschlechter－ Vertheilung bei den Pflanzen Leipzig；Wilhelm Engelmann； 1867 ［CUL，S］ cc，cs，dic，ex，fg，hl，mhp，oo，rd，sp，sx，ti
NB p37e； 28 abortion of Rag Floret of Compositae for－p20 Digitalis most fertilised by pollen first on closed stigma 1 18－22m 3 10－12m，20－22m，24－26m 4 8－12m 5 10－19m 7 wt Dioecious \＆Mon．plants flower in Spring，when little honey in other flowers $1-2 m, 24-25 m, 26-27 m$ 9 23－25m 11 $1-3 m / w t$ Consider Thyme a case of Polygamia $6-18 m / 11-25 w$ each kind of flower on separate tree \rightarrow ash－\＆tree？ $127-10 \mathrm{~m} 13$ wt It may be that lower plants have survived owing to having this advantage of separated sexes．6－7u＂mehr｜zwittrigen＂$/ w$ Doubtfully Thinks Hermaphrodite earliest state 9－11m，

HILDEBRAND, GESCHLECHT
11-12m/ 11-15w (a) Lower plants oftenest have separated sexes $30-31 m 1420-23 \mathrm{~m} /$ $21 u$ "Mehrzahl", 23-24m 15 3-7m/4w Sprengel $30 \mathrm{~m} 1614-17 m$ (Sprengel), 18-24m, 27-28m 18 8u "Protogynische", 10-11m, 21$32 m 20$ 12-16m 21 12-20m 22 13-17m, 18$23 m 23$ 21-25m, 27-30m $249 u$ "Protrandristen | Blüthen" $/ 5-17 \mathrm{~m} / \mathrm{w}$ Rudimentary organs 14-16m 25 13-15m 26 10w p11 11-14m/ 10-16w In Thyme anthers of Hermaphrodite flowers developed before the pistil 14-17m, 16-29m 27 6u "allelsind", 11$15 m 28$ 14-25m/15-18w Compositae 17u/wr, $19 u / w \tau, 20 u / w \tau$, 26-34m $321-4 m, 17-25 w$ more dichogamous than non-dichogamous!! wb 2 divisions when anthers lie so close as to fertilise the stigma \& when distant from stigma $3632-33 m \quad 3712 m, 12-13 u$ "diel übertreffen", 19-22m, 27-34m/30-31x 39 23$33 m 40$ 1-6md, 23-27m $421-10 m$ 13$16 m 453-6 m, 10-15 m 4811-14 m / 5-20 w$ in Cruciferae, manner in which anthers open checks self-fertilisation $511 m, 5-7 m 5311-$ $15 m 54$ fig.w Viola tricolor $5612 m, 20-34 w$ D does not know the self-fertilisation by movement of petals. $5717-21 m 5910-15 m$, 15-18m 62 19-22m/w Does not Cyclamen self-fertil. $637-9 m, 31 m / w$ BorgniO $6726-$ $29 m \quad 73$ 20-21m/w Dimorphic 74 1-4m, 28$29 m$, 32m (Walz) 77 12-14m, 23-25m/w waterflower $28-31 \mathrm{~m} / \mathrm{w}$ come to surface $w b$ instead of flowering under water, as we see is quite possible. $7814-16 m 79$ 29-33m 801 $28 m 8216-19 m / 1-20 w$ adduces Snails - 1 think must have been primordially self-fertile $13-16 m$, $12-20 \mathrm{w}$ Thinks flowers are hermaphrodite to favour crossing - one to favour seeds.- like bulbs \&c 84 17-19m 86 13-17m 87 4-9m 90 4-10m, 14u "Alter1 Gesetzes"/w age of law

HILDEBRAND, Friedrich Die Verbreitungsmittel der Pflanzen Leipzig; Wilhelm Engelmann; 1873 [CUL, bound together with previous item, I]
ad, fg, gd, mhp, 00, phy, sp, sx, t, v
NB p5 \& 6 List of authors on Means of Distribution
p36; p.80; 104; 107; 112; 114-117; 129 to 150; 155 to end
SB ${ }^{-\infty}$
p. 5 \& 6. List of works on Means of Distribution.
36 fruits eaten by birds on trees - those which stick to furry coats on branches of Herbs (p.160)
80 fruits with Arillus (My case)
104. wonderfully many adaptations for scattering seeds fleshy fruits more open.
107. fruits which do not open have only 1 seed.
112. fruits do not become coloured or tasted until ripe. (Like calyx of Polygala) \& shell of seed hard as a protection
114. good remarks on coloured fruit

116 wonderful economy in the means of distribution - nothing superfluous \& vary 2 ways - confined to the female flowers
129 - Bears on what useless Q
144. Cases of same sp. with 2 means of distribution
145. Means often differ much in allied plants. 150 When many seedlings of same sp . struggle together all weakened, not different sp. kill each other more easily - \& thus good of distribution.

151 \& parents close interbreeding

2 12-14m $411 m 82 m 9 z t 133 m 2020 \mathrm{~m} 26$ 23 m 36 1-7m 4117 m 48 8-10m 52 15-16m 57 21-23mas $614 u$ a $73 \mathrm{3z} 7917 \mathrm{mas} 802-11 \mathrm{~m}$ $9026-27 m \psi_{0} 9925-26 m 10127-29 m 102$ 22$25 m 10417-30 \mathrm{~m} / \mathrm{w}$ all sorts of adaptations to scatter seeds $29 m 1071-2 z, 3-5 m, 23-31 m$, 33-34m $1123 m, 12-15 m / 14 u$ "hervortretende"| 15-16u "der|Geruch", $16 u$ "angenehme Geschmack", 26u↔ 114 18-22m/19u "Asparageen|Früchte", 25-29m 115 5-7mas 116 3-6m/3-4u "an IFrïchte", $24 m / 20-26 w$ Great economy in superfluous adaptations 117 1$4 m, 17-20 \mathrm{~m} / 17-18 u \leftrightarrow, 23-31 \mathrm{~m} 12512 z{ }^{4} 129$ 19-26m 130 26-30m $14422-34 m / 23-29 w$ on same Plant $1451-16 \mathrm{~m} / \mathrm{w}$ Means of Distribution often differ much in allied Plants $1505-12 m / 1-34 w$ When seeds of same kind * sown together all struggle together \& all weak - not so when different kind for then the strong kill the weak $15122-26 m 15528-$ $33 m 157$ 11-14m, 18-20m 159 14-22m, 17$20 \mathrm{~m} / 21 u$ "ausbilden 1 nicht" $1603-4 \mathrm{~m} / \mathrm{u} \leftrightarrow / w$ Hooker $6 u$ "Vögel", 7-10m/7u "anlstrauch" $1618-12 \mathrm{~m} / \mathrm{u} \pm 162 \mathrm{wb}$ [When pollen is brought from a distance commonly - it is possible that means of distribution wd be less necessary C.D]

HILDEBRANT, Gustav Die Verbreitung der Coniferen Bonn; Carl Georgi; 1861 [Down] \wp

HINDS, Richard Brinsley The regions of vegetation, being an analysis of the distribution of vegetable forms over the surface of the globe in connection with climate and physical agents London; G.J. Palmer; 1843 [CUL, I] gd, no, sp

SF $\square \beta$

11 Greenland 2 species to genus
36 Species of European genera in Mexico distinct - like other alpine regions no peculiar Family \& few genera (Like lakes \& Arctic regions
48 Mountains of Brazil vitis, Galium, *, Gaultheria (Nothing)
54 Alludes to Pisidium or Guava at Tahiti 62
62 Vaccinum \& Fragaria on Sandwich Isd
63-47 species in Low Arch, belonging to 40 genera \& 27 Families (small size few individuals \& therefore not new species)
94 Relations of Abyssinia to Cape of Good
H. Protea, mesembryanthemum

NB1 What has Schow written, who is so often quoted on Bot Geog.??
NB2 p.11; p. 14 to end
11 1-2m 14 16-20m 15 2-7m 17 17-20m 20 $27-28 m, 28-29 m 2227-29 m, 30-31 m 2416-$ $17 \mathrm{~m} 254-7 \mathrm{~m} 27$ 12-13m, 16-18m $3013-19 m$ $368-9 m, 13-14 m / 12-18 w$ Contrast this with species being same further north; also T. del Fuego 17-19m/u "It | genera" $/ 9-16 \mathrm{w}$ so lakes \& Arctic regions $21-23 m \quad 39 \quad 6-11 m / 7 u$ "strongerlthan", 18-20m 41 17-19m 43 23$32 m / 27 u$ "ribes, rubus" $/ 28 u$ "andromeda" $/ 29 u$ "vaccinium" $30 u$ "berberis" 44 20-22m/21u "oflabies" 47 21-34m/24-25画/26-31w * No European forms $w b$ see to this $486 \mathrm{~m} / 7$?/45 w not species $4920-24!/ 22-26 \mathrm{~m} 5414-17 \mathrm{~m} /$ $12-20 \mathrm{w}$ compare with mountains of Brazil p148 V. Von Martius 27-28m 58 10-13m, $15 u$ "ribes 1 vaccinium", $17 u$ "salix", $18-20 \mathrm{~m}, 23 \mathrm{~m}$, 28-31m 62 1-2m, 16-17m, 31-34m 63 13-15m, $27-33 m 641-2 m 687-10 m 711-3 m 7415-$ $18 \mathrm{~m}, 28-34 \mathrm{~m} / \mathrm{w}$ some of these are American \therefore ought they not to be considered mundane 79 17-20m, 20-22m $8113 u$ "salix| viola"/w mundane. $18-19 m \quad 82 \quad 26 m \quad 83 \quad 9-11 m / 11 u$ "stronger।India" $8726 u \leftrightarrow 31 m 88$ 24-29m 90 10-12m 94 20-22m 98 15-18m 101 9-12m 102 4-8m, 12-13m 104 1-4m 115 23-28m 117 32$34 m 1191-10 m 12114-19 m 12211-15 m 125$ $9-12 m 1284-5 m / 4 u$ "dwarf|stunted" $/ w$ so in Himmalayah $13015-18 \mathrm{~m} / 15 u$ "Sempervivum"/ $17 u$ "sedum" 133 19-25m 135 17-18m 136 16$20 \mathrm{~m} / 17 \mathrm{w}$ odd $27-34 \mathrm{~m} 1397-10 \mathrm{~m}, 29-31 \mathrm{~m}$

HITCHCOCK, Edward Final report on the geology of Massachussets 2 vols.; Amhurst; J.S. \& C. Adams; 1841 [Down, I] \wp

HOCHSTETTER, Ferdinand von Reise der Österreichischen Fregatte Novara um die Erde ... 1st vol., 1st and 2nd parts separately; Wien;
K.K. Hof \& Staatsdruckerei/ Karl Gerold's Sohn respectively; 1866 [Down] \wp

HODGE, Charles What is Darwinism? London and Edinburgh; T. Nelson \& Sons; 1874 [Down]

HODGSON, Shadworth H. The theory of practice 2 vols.; London; Longmans, Green, Reader \& Dyer; 1870 [Down, I] \wp

HOEK, Paulus Peronius Cato The zoology of the voyage of H.M.S. Challenger: 10. Report on the Pycnogonida London; Longmans \& Co.; 1881 [Down, I] \wp

HOEK, Paulus Peronius Cato Embryologie von Balanus Leiden; E.J. Brill; 1876 [Down]

HOERNES, Rudolf, and AUINGER, M. Die Gasteropoden der Meeres-Ablandungen der ersten une zweiten Miocären Mediterran-Stufe 3 parts; Wien; J.C. Fischer \& Co.; 1879-1882 [Down, I by Hoernes] \wp

HOFACKER, J.D. Über die Eigenschaften welche sich bei Menschen und Thieren von den Eltern auf die Nachkommen vererben, mit besonderer Rücksicht auf die Pferdezucht, mit Beiträgen von F. Notter Tübingen; G.F. Dsiander; 1828 [CUL, on B]
beh, br, cc, cs, fg, h, he, pat, phy, sp, sx, tm, ud, v, y

SB Hofacker

10 on Heredetary colour of Horses; when forefathers for some generations of same colour, more easily transmitted. p94
15 on confining of animals of 2 colours \& offspring taking after one or other NQ
34 on handwriting heredetary Qwos
83 of Hybrid NQ canaries Birds propagating for 4 generations: inter se? Q
98 on changes of colour in calves from parents of two colours. with age Q
107 on stags with one horn, producing a Family of. Q \mathbb{A}_{0}
$7 \quad 27 m \quad 8 \quad 1-8 w$ Shape of hoof \&c \&c hereditary $101-6 \mathrm{~m} / 5-10 \mathrm{w}$ approximate colour 12-13u "deml seyn", $23 u$ "nurlsich", $27-28 \mathrm{~m} /$ $28 u$ " 5.87 " $/ w b$ colour of forefathers appearing easier in colts 11 1-5w/wt Horses of different breeding establishments of different colours 12 wt Chestnut appeared when neither parent chestnut $7 u / w \tau, 8 u / w \tau$, 〈u: "Goldfuchs" and "Hellfuchs"> $10 u, 11 u, 13 u, 14 u, 15-16 \mathrm{~m} /$ $u, 18 m 1317 x / \mathrm{Q} \mathbb{Z}_{0} / w$ Chesnt $11-27 w$ cases

HOFACKER

of new colours appearing 14 7-8u "braunen 1 Braun" $/ 7-11 \mathrm{~m} / \mathrm{w}$ brown mare always bore chesnut foals $17 u$ "Mausrappen", $17 u$ "Braunen" 16 -19w Mouse-black from black \& brown $26-27 \mathrm{~m} / \mathrm{w}$ piebald $151-6 \mathrm{w}$ not so with Horses $8-11 \mathrm{~m} / \mathrm{w}$ like Hollyocks $13-14 \mathrm{~m}$, 15$23 u \pm 161 m \quad 176-11 w$ great tendency (without white young destroyed) for all animals to become white - $237-8 w$ Mulattos smell like Negros $22-26 \mathrm{~m} / \mathrm{w}$ odours of different parts of body hereditary $244 u$ "Rheumatismen I Catarrhen", $\quad 25-27 \mathrm{~m} / 18-27 w$ when both parents fat young fat very early. $2516 \mathrm{~m} / u \leftrightarrow 29$ 12-16w great strength hereditary $30 w b$ Genius not hereditary [How many qualities together make Genius!] $323-13 w$ Hereditary genius $23 u$ "Bach 150 ", $24 u$ "Bernouilli" $348 u$ "Handschrift" $/ 6-15 \mathrm{~m} / \mathrm{w}$ handwriting hereditary $354 u$ "Brugnone"/1$7 \mathrm{~m} / \mathrm{w}$ recommends starting horse not to be bred from. $14-22 w$ cross of pointer \& shepherd dog, after many generations when become like sheep dog still pointed birds 36 21-29w/wb short \& high heredetary (produced by manner of life) $378-10 w$ diseases of eye hereditary in horses. 39 21u "Grösse I Geschlechtstheile", 23u "leicht I gebären"/22-23w facility of birth hereditary 43 $1-2 m / w 20$ female cats for one male $6015 m$ $801-13 w$ sex of plants influenced by conditions 83 17-18m, 29-30m $848 \mathrm{~m} / \mathrm{w}$ genera $18 u$ "Perlhahn", $19 m / u$ "Haushenne", $20 u$ "Jungen der", $25 \mathrm{~m} / \mathrm{w}$ gen $896 u$ "Absicht Grösse", 10-11u "JungelZebra" 6-12m/w hybrids of one kind resemble father \& of other kind, mother 12-13m, 21m, 27-29m/w Fineness of Hair after father $908-9 u$ "Denl Vater", 11u "Den 1 Mutter", 13u "Diel Vater", 15u "MutterIOhren", 18u/w 23 , "Schweif", $23 u$ "Mutter" 91 2-4m, 6-11m/8-9u "Zahl| überwiegt", $11 u$ " $7: 2$ ", $12 u$ "3:1", $13 u$ "16:3" $933-4 m$, 14u "keine Bastarde", 20-25m/23u "Statur" $124 u$ "Länge 1 Beckendurchmesser", wb Pelvis $94 w t / 1-24 w$ stallions transmit qualities more than mares. because generally former of long-continued good breeding but mares are less so \& crossed. $16-25 m 967 \mathrm{md}, 8 \mathrm{md}$, $11-14 \mathrm{~m}, 15 \mathrm{md}$, $19 \mathrm{~m} / u / \mathrm{w} \tau 97 \mathrm{wt} / 1-5 \mathrm{w}$ Duns hereditary colour - but these are picked cases of hereditary transmission of colour $\langle u$: colours in $3 r d$ column $\rangle 3 m / u, 6 u, 8 u, 9 u, 10-$ $12 m / 12 u, 22 u, 23 m / u, 27-29 m 9819 u \pm, 20 u \pm$, 23-24m/u士 99 4-5m, 14-15m $1003-4 m$, 6u "Männchen" $1016-9 \mathrm{~m} / \mathrm{w}$ men affected by producing one mule $10222-25 \mathrm{~m} / \mathrm{w}$ children like first husband 105 19-20m/u "oder haben" 107 8-9m/9u "Burdach", $11 u$ "Nabelbruch", $13 w$ Hare-lip $21-25 m / w$ one-horned stag Q*o,

26Q $\underbrace{}_{110}\langle u=$ names of diseases $\rangle 13-23 \mathrm{~m} / 13 u /$ $14 u / 18 u / 19 u / 20 u / 21 u, \quad 22 u / 22-23 u$, $24-27 \mathrm{~m} /$ $24 u / w \tau, 25-28 w$ tendency to bleed on small hurts $111 \quad 7 u$ "Roz"/w glanders 9-10u "Exostosis 1 tarsi", 11u "Exostosen", 20u↔ 112 9m, 23-28m/26-27u "wederlSchauher", wb discussion on hereditary venereal diseases probably, when from father, not actual mother. 114 16u "nurlVater", 17-18u "nurl nachkommen" 123 22-24m $1308-13 \mathrm{md} / 8 u$ "nur Raçen" 140 3-18w many old nations married their near relations

HOFFMANN, Hermann Zur Speciesfrage Haarlem; De Erven Loosjes; 1875 [CUL] cc, che, cs, ds, fg, gd, he, phy, sp, sx, t, tm, v

NB All abstracted

p. 53 Papaver somniferum self-fertile
p66 On Causes of Variation \& Range of Viola lutea \& tricolor
11 Adonis aestivalis self-fertilised protandrous
Look over, some references for Good for crossing Book
p4 What he considers evidence of specific form ! p27
7 causes of variability
8 Reversion
17 on the form of Anagallis blue \& red arvensis cd not cross them!
22 Range of \& differences of -
3 18-21m/w no - Cytisus adami $412 m$, 21$23 \mathrm{~m} / 22 u$ "Blosse I Nachweis" $/ 13-27 \mathrm{w}$ it comes to this that without direct evidence of descent from 1 to other forms must be considered as species! Blood Hound \& Fox Hound * $71-5 m / w$ external conditions do not influence when no relation to chemical nature of soil.- 9-23m, 24-25u "sondern Erscheinung", $26 \mathrm{~m} / \mathrm{u}$ "unabhängig IImpulsen"/ 24-36w Excites not direct cause !! like an illness excited on effect of a poison which I have said $813-14 u \leftrightarrow, 12-17 w$ thinks reversion prevented by successive changes of structure. $1124-27 \mathrm{~m} / 24 w$ Adonis 17 1315m, 17-21m, 29-34m/w did not cross 18 6$10 \mathrm{~m} / 6 u$ "Bemühungen 1 kreuzen", $26-34 \mathrm{~m}$, 27$31 \mathrm{~m} 192-7 \mathrm{~m}, 11 \mathrm{~m}, 14-17 \mathrm{~m} / \mathrm{w}$ crossed with no result $30-32 m / 31 u \leftrightarrow 20 \quad 5-6 u \leftrightarrow$, $11 u$ "isochronisch" 21 29-31m 22 2-4m/3u "sich। decken" 26 30-32m 27 wt yellow berry holly also nearly constant \therefore according to his rule a species! $3-4 m / u \pm 283-7 m / w$ reverted to parental \& typical form 22-24m/w only evidence that it is a var. is above $3034-37 \mathrm{~m}$ $327 m 43$ 31m 46 22-26m 47 23w Papaver
alpine 24-37m/27-30w Covered with net $37 \rightarrow$ 48 3-10m, 14-17m/15u "anscheinende 1 bei", 17$21 \mathrm{~m} / \mathrm{w}$ Protandrous state variable 5024 m 53 $28 u$ "Selbstbefruchtung I kann", $\quad 33-34 m / 33 u$ "keimten sie", 35u " 72 I producirten"/34-38m 59 $5-7 m 6116 m 662-4 m 6812-20 m, 23-26 m$, 37-38m 69 19-22m 70 4-7m

HOFFMANN, L. Thier-Psychologie Stuttgart; Schickhardt \& Ebner; 1881 [Down, I]

HOFMANN, August Wilhelm The life-work of Liebig London; Macmillan \& Co.; 1876 [Down, I]
NB not read
HOFMEISTER, Wilhelm Die Lehre von der Pflanzenzelle Leipzig; Wilhelm Engelmann; 1867 [Down]

HOFMEISTER, Wilhelm On the germination, development and fructification of the higher Cryptogamia trans. F. Currey; London; The Ray Society; 1862 [Down, S]
fg, tm
NB 439; 406 pollen-tubes of Conifers; 415 \wp
280 26-29m $2841 m, 11-13 m 2857-9 m / 8 u$ "third internal" 286 1-2m 287 5-7m, 12-13u \leftrightarrow 289 1-5m, 20-23m $29014-16 \mathrm{~m}, 32-36 \mathrm{~m} 293$ 17-19m, 27-29m $29428-30 m 295$ 2-5m 296 27-31m $2978-11 \mathrm{~m} / \mathrm{w}$ archegonia $2982-3 \mathrm{~m}$ 299 22-25m, 36-39m 406 15-20m 415 12-17m, $18 u$ "endosperm", $19-21 \mathrm{~m} / 21 u$ "end 1 second" 439 13-22m

HOGG, Jabez Elements of experimental and natural philosophy London; Henry G. Bohn; 1861 [Down, S of Henrietta Crofts-Adel]

HÖLDER, H. von Zusammenstellung der in Württemberg vorkommenden Schädelformen Stuttgart; E. Schweizerbart; 1876 [Down]

HOLLAND, Henry Chapters on mental physiology London; Longman, Brown, Green \& Longman; 1852 [CUL]
beh, y
NB Chapter on instincts - (Notes \& References in M.S. notes -) Nothing Else.234 Family trait long inherited
214 change of $*$ sobbing in child; \& so with laughing, pain primary
223 Habit, good
91 24c/w 〈not CD〉 201 5-8m, 24-26m 203 2$4 m 204$ 17-20m 205 6-7m, 10-13m 208 27-
$31 m \quad 209 \quad 12-14 m \quad 210 \quad 26-30 m \quad 211 \quad 11 u$ "automaticlaction", $12 u$ "from instincts", $17 u$ "congenital propensities" 213 18-21m 214 23$28 m 216$ 33-35m 220 11-14m 222 8-10m, 27$32 m$ (De Candolle) 223 1-5m, 28-31m 224 19$22 m, 24-25 m 2345-11 m, 27-29 m / Q 244$ 21w instrument

HOLLAND, Henry Chapters on mental physiology 2nd edn; London; Longman, Brown, Green, Longmans \& Roberts; 1858 [CUL, I]
beh, mhp, t
NB p.79-114
111 Effect of attending to any part
237 Habits in plants
239 do to quote Habit \& Instincts compared p212 Read whole Chap of Instincts \& Habits
79 16-17m (J. Müller) 81 2-4m 83 4-8m, 23$26 \mathrm{~m} 8528-31 \mathrm{~m} 8623-25 \mathrm{~m} 8715-17 \mathrm{~m} 9114-$ $18 m / 15 w 193934-6 m 10417-29 m, 23-27 c$, 29-31m 105 1-6m 106 6-9m, 14-19m 111 15$20 \mathrm{~m} / 15 \mathrm{u}$ "effect | circulation" $116 u$ "suddenly directed"|17u "oftenlimmediate" 228 22-28m 237 23-30m 239 5-13m 246 29-31m
\wp
HOLLAND, Henry Essays on scientific and other subjects London; Longman, Green, Longman \& Roberts; 1862 [Down, I]

HOLLAND, Henry Medical notes and reflections London; Longman, Orme, Brown, Green \& Longmans; 1839 [CUL]
beh, he, pat, phy, sx, y
SB $\square \beta$
10 Strong sentence on Heredetariness - 22 18 Child most like parent in feature \&c inherits its diseases
20 Hydrocele transmitted through female
25 Form of hereditariness occurring in children \& grown up people at same age 33 Disposition of members of same Family to be affected similarly under like Maladies 35 Hereditary diseases appearing at same age
$\mathbf{x} 25 \mathrm{~m} / \mathrm{c} / \mathrm{w} \notin, 27 \mathrm{~m} \mathbf{x i} 3 \mathrm{~m}, 5 \mathrm{~m}, 9 \mathrm{~m}, 11 \mathrm{~m}, 13 \mathrm{~m}$, $15 \mathrm{~m}, 24 \mathrm{~m}, 26 \mathrm{~m} 110 \mathrm{~m} 1010-17 \mathrm{~m}, 24-28 \mathrm{~m} /$ "..." 13 10u/10-11m (Whewell) 16 7-23m 17 15-21w faulty texture of skin, hare-lip stratismusO all hereditary $184-8 m, 9-10 \mathrm{~m}$, $10-13 \mathrm{~m}, 19-23 \mathrm{~m} 192-16 \mathrm{~m}, 30-32 \mathrm{~m} 205-7 \mathrm{~m}$, $9 . ..], 20-27 w$ blindness often hereditary gives cases also deaf \& dumb. 32-33m 21 wt disease of heart hereditary, 4 brothers died

HOLLAND, MED. NOTES 1ST EDN
between 60 \& 65 - another case in their generation - obesity hereditary - cutaneous diseases hereditary $-7-8 \mathrm{~m} / \mathrm{w}$ case of Patella was wanting to father \& son. $10-15 m, 18-$ $25 m, w b$ are men more exposed - hence Rheumatism \& haemorrhage?? more in-temperate.- hence gout.- 22 10a "effect"/4$10 \mathrm{~m} / \mathrm{w}$ Pellagra of Lombardy gives Reference $20-23 \mathrm{~m} /{ }^{\prime \prime} . . . "$, wb Diabetes. Prout \& Co * Self say hereditary asthma. 24 22$24 m / 25-28 w$ enlarges this strongly $w b$ Suicide seems on sufficient evidence to have tendency to become hereditary Pinel Dr Rush D Burrows 25 1-31w Chomel rates as high as half proportion of rheumatism cases where patients have suffered $21-24 m$, $w b$ Make some remarks about diseases, not connected with particular stimulus, being hereditary, as gout, scrofula. * 26 wt/1$26 w=1$ presume more men, than women are subject to gout, to * rheumatism \& to haemorrhagic tendency? 1-2m, 12-15m, 29$33 \mathrm{~m} / 4-34 \mathrm{w}$ Consult this.- to see whether predisposing causes act chiefly during manhood, as in gout, in relation to secondary male character $w b$ speaks of cases where a child escapes hereditary. disease (\& likewise resemblances in countenance) for one generation 27 28-32m $3123-28 m 321-5 m 3324-30 m 351-10 m / x$, $w b \times$ Boerhave gives cases of schirrus, icterum \& melancholia, at certain age in same family $36 \quad 29-33 m \quad 37 \mathrm{wb}$ H. says looking over works of Morgagni gives many cases of hereditary diseases to which he incidentally refers. $658 u$ "attention" $/ 10 u$ "direction \mid consciousness" $\mid 8-10 \mathrm{~m}, \quad 22-25 m 66$ 1-5m, 13-15m 67 3-7m, 16m, 22-24m 68 2-5m $691-3 m 708-10 m, 20-22 m 323$ wt 0 These muscles which are subject to involuntary action (so eyelids \& eyebrowO) are not subject to Pulse.

HOLLAND, Henry Medical notes and reflections 3rd edn; London; Longman, Brown, Green \& Longmans; 1855 [CUL, I] beh, hl, in, pat, phy, ta, y
NB1 276 Mind \& Body cannot work hard at same time
NB2 19.
24* Wonder that all not inherited
31 Hydrocele per female
inheritance at corresponding age \& in same
Family - 33 Ask - 44 good

- 36; 40
xiv $3 m 510-11 m 98 m, 32 a$ "way", wb as to the duration of Life, and the influences upon
health of individuals \& communities the various physical \& moral conditions to which they are submitted $114 w$ fully $1214-17 w 0$, $24-31 w 0,30 c / w \notin 1323-24 m 1911-14 m 24$ 14-16m $3125-29 m 326-9 m 331-2 m / w$ at early age? $7-9 \mathrm{~m} / \mathrm{w}$ eyes $19-21 \mathrm{~m}, 22-24 m 35$ 28-30m 36 26-29m 40 30-32m (Chomel) 41 $1 m, 16-18 m 422-3 m 4314-15 m / w 49$ 16$18 m, 21-22 m 44$ wt When peculiarity appears in several members of family without having occurred in parents it is clear comes on at same age - and it is form of inheritance 1$2 m, 5-6 w$ same age $6-10 m, 13-16 m, 22$ Q $\infty_{\text {, }}$ 30-32m 45 25-27m 49 1-5m 50 21-25m, 28$33 \mathrm{~m} / 29 u$ "certâlschirrum" $/ 31 u$ "icterum"/33u "certâ aetate"
\wp
HOLLAND, Henry Recollections of past life London; Spottiswoode \& Co.; 1868 [Down, I]

HOLUB, Emil Seven years in South Africa 2nd edn, 2 vols.; London; Sampson Low, Marston, Searle \& Rivington; 1881 [Down] \wp

HOLUB, Emil, and PELZEN, August von Beiträge zur Ornithologie Südafrikas Wien; Alfred Hölder; 1882 [Down, I]

HOOKE, Robert Micrographia London; James Allestry; 1667 [Botany School, pre-B, ED, FD]

3 19-21m

HOOKER, Joseph Dalton Botany London; Macmillan \& Co.; 1876 [Down, I]

HOOKER, Joseph Dalton The botany of the antarctic voyage of H.M.S. Erebus and Terror in the years 1839-1843: 1. Flora antarctica 2 vols in 1 binding; London; Reeve; 1844-47 [CUL] af, ds, ex, gd, ig, in, is, no, oo, phy, sp, sy, v

SB $\square \boldsymbol{\beta}$

Hooker Antarctic Flora
1 Auckland \& Campbell Isid - Arctic Plants (G)

4 Ranunculus with hooked seeds - curious variety
23 case of wide difference in proportions of Nat. orders in Falkland \& Aucklands
30 case of plant common to highest mountains of New Zealand (G)
53 Myrsine common to Cape. Abyssinia \& Azores

56 Gentiana eminently alpine \& yet not common \& N \& S low-lands
61 Veronica with 3 stamens sometimes
62 Remarkable variations Ch 4
73, 74 No alpine plants in S. p. 74 (GI.) North much richer in species than the S. - even in S. America - 75 N . Zealand very poor Flora, contrast with Australia-
97 One Arctic group common to S. varying in N. but not in Campbell Isld N.B I notice in Webbs Canary isld that often only one form of a varying plant is there found
114 A species varies more in one country than in another p.271, p115 or not varies in one
116 Variation Ch. 4 varying in one country more than in another
211 All Antarctic Lands take after T. del Fuego, except Auckland \& Campbell Isd -
217 Plant extinct at St Helena between Hookers 2 visits Few species to genera generally in isld
246 True Arctic plant or representative in T. del F. p. 280 do
268 Acaena with beautiful hooks confined to Kergueles Land \&
275 Wandering species from Australia.exiled sp of Decandolle
276 On representatives \& identical species going together 277 On relation of number of individuals to species 278 Very good cases
288 Plant constant in leaves in Falkland, very variable at R. Plata
306 A form from one country unites two in another country
315 On confined range of Senecio species, yet genus very large range
327 American Epacris, very distinct form.
387 Tussack group so eminently fitted for cattle as to be on road to extermination in country where no quadruped (Hooker) often Hooked seeds
390 At Chonos Isd the flora unite but Dr Hooker remarks no blending of forms as if from descent Ch.6.
549 On affinities of Lyallia of Kerguelen to Bolivian Plant
vi $18-19 \mathrm{~m} / 19 \mathrm{u}$ "Crozet | volcanic" vii $15-16 \mathrm{~m} /$ $15 u$ "vastlcontinent" $232-36 \mathrm{~m} / \mathrm{w}$ great difficulty $413 \mathrm{~m} / u$ "uncinati" $/ w / \mathrm{V}$. Plate $15-$ $17 \mathrm{~m}, 20-22 \mathrm{~m} / \mathrm{w}$ var. 41-43m 5 35-39m (H.C. Watson)/36-38u土 $74 m 106-8 m, 16-17 m 11$ 6-7m, 12m, 22u "specieslone", 33-34m 13 5$7 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m}, 38-39 \mathrm{~m} 1510-12 \mathrm{~m}, 28-$ $29 \mathrm{~m} / 28 u$ "decidedly|form" 18 13-15m 22 41$42 m 23$ 3-10m $3025-26 m 332-7 m 3516-22 w$ Mr Norman not to be counted with varieties

- nor any species introduced as notes 37 $25 w$ not count. in Norman 39 25-27m, 43$45 m 40$ 24-26m 53 3-8m (De Candolle) 54 21$27 m 5526-30 m, 28-30 m, 31 u$ "Indeed 1 genera", 33-35m/34u "confined|Andes", 41u "blueflowered" $561-2 w$ How alpine a genus! 3-8m, 9-11m, 14-15m 57 6-11m, 41-44m 58 11-17m $617-8 m, 10-12 m, 33-35 m 629-17 m, 9-12 m$, 14-16m/16u "3-valved" $6637-40 \mathrm{~m} 676-9 \mathrm{~m}$, $11-13 \mathrm{~m}, 20-22 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{w}$ var $41-42 \mathrm{~m} 7336-$ $43 \mathrm{~m} / 40 \mathrm{u}$ "on loccur"/w explain $741-5 m$, 6$11 m, 12-15 \mathrm{~m} / 13 \mathrm{w}$ whence paucity $21-25 \mathrm{~m}$, $28-31 \mathrm{~m} / \mathrm{w}$. S. America even isolation compared 39-44m $751-3 m, 10-12 \mathrm{~m}, 14-15 \mathrm{~m}$, $16-18 m, 21-23 m, 26-27 \mathrm{~m} / 26 u$ "exuberant 1 necessarily", $29-30 m 784-9 m 8027-29 m 82$ 4-8m 83 1-4m $8516-17 \mathrm{~m} / 16 u$ "most|L.", $20 u$ "L. ITasmania" 90 20-23m 92 37-38m 97 14$15 m, 17-18 m, 19-21 m, 24-28 m 10134-36 m$ 10325 w Mr Norman end here 104 21-23m 106 1-3m 107 15-16m, 35u " 500 miles", 4042m, 44-46m $10932-37 \mathrm{~m} / 33 \mathrm{u}$ н $11124-27 \mathrm{~m}$ $11211-14 m, 21-22 \mathrm{~m} / 21 u$ "naturall cannot" 113 wt Mr Norman nothing to be counted in this part $16-17 m, 25 m, 34-35 m 1146-9 m, 25-$ $30 w$ This Lycopodium may have travelled along Andes $1153-5 m / 4 u$ "like 1 does", 27$28 m, 41-44 m / 43-44 u \pm 1167-8 m, 14-15 m, 17-$ $18 \mathrm{~m}, 31-32 \mathrm{~m}, 35-36 \mathrm{~m}, 46 \mathrm{~m} 1177-8 \mathrm{~m}, 9-13 \mathrm{~m}$, $16-21 m, 23-25 m, 26-27 m 1187-9 m 11915-$ 16 m 12438 m 126 37-39m 127 22-23m 129 wt Mr Norman, nothing to be counted in this Part 132 18-21m 134 8-9m, $15 m 141$ 11-12m 145 wt Mr Norman not count this part 146 $10-13 \mathrm{~m} 1623-5 \mathrm{~m} 167$ 16-18m 169 31-32m 209 8-10m 210 1-4m, 1m 211 4-7m, 9m, 1516m, 20-22m (Humboldt), $22 a$ "west" $\mid u$ "west \mid stream"/w East 24-25m/25u "Gmelin's 'Flora Siberica" $27 u$ "approximated I geographical" $/ w$ 1000 miles $29 u$ "flanks 1 Himalayah" $/ 30 u$ "Tristan I Cape" $/ 29-31 m / w$ not flanks, but opposite side of continent $33 u$ "Sandwich" $/ w$ in Labiatae \& Lobeliaceae 39-42w/wb actually same species? very good yes Have a list $40-41 \mathrm{~m} / u \pm / w$ Cynocusus P a grass 212 21u "North|Antarctic"/w Panama? 23u "granitic" $?, 36-37 \mathrm{~m}, 39-40 \mathrm{~m} 213$ 28-29m 215 $21-25 \mathrm{~m} / ? / \mathrm{w}$ do not understand $21623-25 \mathrm{~m}$, $25-27 \mathrm{~m} / 27 \mathrm{u}$ "twenty 1 plants", $29-32 \mathrm{~m} / 29 \mathrm{~m} / 29-$ $30 u \pm, 36-38 \mathrm{~m} / 37 u$ " 16,062 feet" 217 2?/u^, $5-$ $9 m, 22-24 m, 26-27 m, 30-32 m, 34-35 m, 35-$ $40 \mathrm{~m}, 37-40 \mathrm{~m} 219$ 16-23m/18?/u "Colobanthus" "fossil" $22133 x$ /u 223 28-33m 224 26-28m 225 10-12m, 26-27x/26u "This \mid plant", $39 m$ 2279 w var $33-36 \mathrm{~m} 22818-20 \mathrm{~m}, 40-41 \mathrm{~m} 229$ 33-39m 230 8-9m, 14-17m, 21-23m, 24-25m, $26-28 m, 29-31 m 23131-32 m 23226-28 m, 28-$ $29 m, 39-42 m 2331-4 m, 31-32 m, 35 w$ not

HOOKER, FLORA ANTARCTICA
count as var. $24021-25 m$ 241 15-16m/16u "American Andicola", 30-35m, 37?/u^ 242 14m, 6-10m (De Candolle), 22-23m, 34-35m 245 $32-40 \mathrm{w}$ This is first European genus with no evidence of other species on Cordillera of Chili or Peru $2464-5 m, 21-22 m, 26 m, 27-$ $28 m, 35-36 m 2476-9 m, 9 u \pm, 11 m$, $15 u$ "excluded North", 33m/w var, 37-41m 248 10-12m, 43m 25027 w var 29-30m 251 1-9m/ $14 w$ var 2 18-19m 252 20-22m 253 3-4m, 8$12 w$ I think these are Oxalis in the Cordillera of Peru $27 w$ var $25912-13 m, 30 m 2601-2 m$, $8-10 \mathrm{~m} / 7-12 w$ I suppose not found in intermediate districts $25-26 \mathrm{~m}, 32-33 \mathrm{~m} / 32 u$ "maritime", $35-37 m, 38 m 2613-5 m, 9-10 m$ 262 13-14m, 21-25m, 34m 263 26-27m, 39$41 m 2643-4 m$, 13-14m $26738-39 m 268$ 2-5m, $18 w$ var. 19-20m/20u "South Georgia", 38$41 w / w b$ A plant with hooked seeds confined to Kerguelen Land. V Plates beautifully hooked. $2706-7 \mathrm{~m} / \mathrm{w}$ var 31-33m, 42-43m 271 $1-2 m, 4-5 m, 16 m, 20 m, 23-25 m, 26-27 m 272$ $1 m, 7-8 m, 13-22 w$ another case of plant skipping the intermediate parts of S. America. $28 w$ var. $140 \mathrm{~m} 2745 \mathrm{~m} / \mathrm{a}$ "another" 3d $8 u$ "even 1 rudiments", $32 u \leftrightarrow, 38 \mathrm{~m} / \mathrm{u}$ "same species" $27525-28 m, 35-37 \mathrm{~m} / 36 \mathrm{u} / \mathrm{w} / \mathrm{w}$ large range $36-37 u \mathrm{u}, 39-40 \mathrm{~m}, 41 \mathrm{~m} / \mathrm{m}$, $w b$ This not holding in Birds, is argument against much accidental transportation $2763-8 m, 9-12 m$, $30 w$ var $40-41 \mathrm{md} 2779 w$ var $37-39 \mathrm{~m} / \mathrm{w}$ it may be if all individuals of all the species be counted. $2782-3 m, 5-7 m, 8-12 m, 19-20 m 279$ $5-6 m \quad 280 \quad 22 w$ var. 3. $27-29 m / 29 u$ "of 1 America", $34 m, 39-40 m 28220-21 \mathrm{~m} / 21 u$ "inl flowers" $28421-22 m, 30-31 \mathrm{~m} / 30 u \pm, 37-38 \mathrm{~m}$ $2853 m 287$ 21-23m, 25-26m, 31m 288 4-6m, $7-8 m 289$ wt Nothing marked in this Part 302ii $8-9 m$ 303ii $24 m 30516-19 m 3061-3 m$, 16 w 2 vars $18-19 \mathrm{~m}, ~ 20-21 \mathrm{~m}, 25-27 \mathrm{~m}, 28-29 \mathrm{~m}$ $30723 w$ var. $130833-34 m 30914 w$ var 1 $31226 w$ var $\mid 3132 w$ var $112 w$ var 1315 17-21m/19u "both \mid flowers", $22-25 m, 31-33 m$, $36-38 m, 38-39 m 3178-9 m, 9 m, 12 w$ var 322 $32 w$ var $3238 w$ var $32 m, 35 m 32410-11 m$, $19-20 \mathrm{~m} /!32631 \mathrm{w}$ var $132722 \mathrm{~m}, 37-39 \mathrm{~m} 328$ 2-4m 32919 w 1 species 36 w do not count this 331 1-5m, 26-28m, 40-44m $33412-14 \mathrm{~m} / \mathrm{w}$ water-plants $21-24 m / 23 u$ "perhaps" $33523-$ $26 m 3361-3 m, 30-32 m 33716-17 m, 27-30 m$, $35 w$ var 338 27-29m $3391-2 m, 9 w$ var 12$13 m, 29 w$ var 2340 wt Though we cannot explain same species common to Australia \& Fuegoe yet the generic conection is in harmony -: hence the identity of some species with Europe is in itself probable 1$2 m, 14 w$ var. $224 w 4$. 341 17-18m 343 14$16 m 34436-39 m 34515-19 m 346$ 13-16m,17-
$21 m 347$ 14-16m, 19-20m $35238 w$ var 1354 $19-21 m, 39-40 m 3618 w$ var $36328-30 m 368$ $6-9 m, 25-29 m, 32-36 m 3701-4 m, 35 w$ var. 1 $37235 w$ var $37317 w$ var $13787-11 m 379$ $11 w$ var $538134 w$ var $338223 w$ var 3384 $19 w$ var $138617-20 m 387$ 1-7m 389 15w var $425-27 \mathrm{~m}, 33 \mathrm{~m} / \mathrm{w} \mathrm{Mr}$ Norman end here 390 $16-20 m 39134-36 m 39231-33 m 39310-12 m$ 394 23-25m 395 17-18m 457 17-29m $5437 m$, $9 m$

HOOKER, Joseph Dalton Himalayan journals 2 vols.; London; John Murray; 1854 [CUL, I in vol. 1]
af, beh, cc, ch, gd, geo, gr, oo, no, sp, t, ti, tm, v
vol. 1 NB See index for case of coloured Ticks.-
24; 28; 30; 101
109 - Tropical \& temp vegetation
159; 248 Glaciers; 257 Cedar \& Deodar; 293; 314 - Cocks crow; 380; 400
p221 - Poa annua \& Shepherd's purse 314; 380; 400; 221
$244-9 m \quad 28 \quad 6-8 m 3031-33 m 385-21 m 101$ 28-31m $10914-16 m, 24-27 m, 30-33 m 15928-$ $30 m 221$ 6-10m, 23-25m 248 29-33m 257 5$7 m$, 24-37m $293 \quad 30-34 m \quad 314 \quad 8-10 m \quad 342$ $26 \mathrm{md} / \mathrm{a} / \mathrm{w}$ \& $\notin 380 \quad 18-23 \mathrm{~m} 398 \quad 10-24 \mathrm{w}$ about 500 ft - 262 ft see 440 vol 2. $24-34 \mathrm{~m} / 31 \mathrm{u}$ "of 1 English"/34c "Dioscorea"/33-34u "Saponarial Dioscorea", wb 2 not English 400 10-14m
vol. 2 SF $\square \beta$
p18 Mixture of Tropical \& temperate plants p39 \& N. American genera \& Japan.
25 Himalayan Reptile allied to N. America p. 305 do

67 gathered 47 plants without rising - 30 average in England - alludes to struggle.
92 few Mammals in moist cold atmosphere.
96 Bengal Toad rise to Tungu - a good height Q
255 Rose on plain of Bengal - Salix in Terai, shows how little form related to climate Q
280 Khasia flora richest in India, owing to very various sites
281. Primrose \& cowslip not one species on Khasia mountains (Hence very ancient according to my view \& hence probably aboriginal) some change at early period of growth
302. A judge will tell whence Elephant came (Ch. 4)
336 Stylidium an Australian genus with 1 species here.

NB1 Mixture of Tropical \＆tem plants－p． 18 25； 26
On mixture of European，N．American \＆ Japanese forms 39
57
67 －on no．of plants in limited species
92；96；150；255；281；302；305； 314 flowers under water；312．\＆ 317
Mixture of Tropical \＆temperate plants－ 319 333；336； 415
p． 281 On Khasia range H ．speaks of Primrose \＆Cowslip！
－p251 \＆Poa
NB2 p38 rippled sand
18 24－30m 25 31－34m，34－39m 26 31－34m 39 $1-4 m, 6-25 m 5724-27 m 6724-27 m, 31-36 m$ $924-11 \mathrm{~m}, 16-21 \mathrm{~m} 9619-23 \mathrm{~m} 15012-16 \mathrm{~m} / 12 u$ ＂double＂ $114 u$＂twins＂ 255 20－26m 281 6－8m， $32-33 m 2879 c / w \notin 302 \quad 6-18 m \quad 305 \quad 21-27 m$ $312 \quad 6-7 m 31426-36 m 31730-31 m 31928-$ $33 m 333$ 15－21m 336 11－13m，25－27m $4159-$ $25 m$

HOOKER，Joseph Dalton Introductory essay to the flora of New Zealand London；Lovell Reeve； 1853 ［CUL］

HOOKER，Joseph Dalton Memoirs of the geological survey of Great Britain vol．2，part 2； ［CUL，I］
gd，geo，ig，no，phy，v，y

SB1 $\square \beta$

399 Tasmania 200 miles long has four times as many flowers as New Zealand 900 miles long（\＆higher mountains）
410 Venation generally very important in Ferns；but differs in older \＆younger forms of some species－kind of transition－Ch． 8

SB2＊

Prelim good－upright ferns but distinctly large separated
Ferns drifted being greatly objected to by whom．－Why not allude to Bunbury \＆Lyell on N．America
I valuated O the Owen
Most interesting indeed quite amusing

Whole Plates

I wonder you do not suggest aquatic plants appear to meet so well all the same case with leaves of fern \＆cones－
〈over〉 391－392；399；410；429； 437
title page w Hooker Carboniferous Plants n．d 391 18－21m 392 5－9m，17－19m 399 15－ $17 m 41024-29 m, 30-33 m 4112-3 m 42929-$ $33 m 437$ 29－39m

HOOKER，Joseph Dalton On the flora of Australia（introductory essay to flora of Tasmania），London；Lovell Reeve； 1859 ［CUL］
cc，ch，che，co，cs，gd，geo，hl，ig，is，no， 00 se，sl，sp，sx，t，v，wd

SB1 $\square \beta<24$ sheets \rangle
I intended in this but to copy out all Falkland \＆T ．del Fuego plants on parallel lines
〈lists of plant species and their sexes〉
〈on p． 24 of lists〉 This list has been marked by Hooker for close species．－NB See what big genera are left out．－They ought not to have been left out for mem．highness．－But Hooker does not know CarexO or UrociniaO so these ought to be left out．－Leave out genera with single species．
SB2 $\square \beta \Rightarrow$
Hooker Flora of Tasmania
V．no two countries present all vars．of same sp．on common p．xiv
－But－marked vars．on confines of range
－simplest groups present most variable species
vi．more unstable than stable forms－social plants constant
vii no relation between isolation of group \＆ closeness or definition of its species．
－Extinction allows us to define groups．
ix conditions of cultivation are not really unnatural
xiii one var constant．the other var．of same sp．variable．
$x v$ ．Flora of isld not nearest related to nearest mainland
xvi．great contrast between Hebrides \＆Fidji xvii Effect of dampness in extending range of Tropical products
－Has used glacial hypothesis for New Zealand Mountains
xviii Fuegian species not entering Mexican table－land
xix to Geological succession－no progression
xxiv Many plants are higher（so－called） plants reduced．
On Highness \＆Lowness
xxvii Richness of Antarctic in forms－xxviii not so very peculiar a Flora as thought to be．
xxix Peculiarities common to same orders in diverse parts of world．－
xxxi on similar proportions in great groups （due to battle of life）
xxxiii xxxiv Relation to Africa－xxxv Invaders in S．E．Australia
xxxvi No of species to genera in Australia
wide rangers in Tropics－Hooker thinks not material to know Look to A De Cand－Again I suspect very few confined to hottest parts of Tropics．which might be expected from range in Australia \＆C．of Good Hope．－ There must be discussion in Alp．D．C．on range of Tropical plants compared to temperate．－if the range were given $N . \& S$ it would be best．－But America from Atlantic Ocean complicated problem．－xlix $15-18 \mathrm{~m} 1$ 3－7m，7u／9un，10u＂Malayan Peninsula＂，13－ $16 \mathrm{~m}, ~ 20-23 \mathrm{~m}, ~ 26-28 \mathrm{~m}, ~ \Uparrow 7-2 \mathrm{~m}, ~ \Uparrow 3-1 \mathrm{~m} / \Uparrow 2-1 u$ ＂great I genera＂li $8-11 \mathrm{~m} / \mathrm{w}$ most favourable in conditions \＆larger $12-13 \mathrm{~m} / x, 17 u$＂ 1700 ＂， 20－21w Eyre＇sO desert between $\Uparrow 12 w$ wonderful lii＂Acacia＂．w $82 / 133 \mathrm{sp}$ ． ＂Eucalyptus＂．w 55 liii 18－19m，22－23m，25m／ w in S．E．a much more mixed \＆imported Flora liv $1-4 m, 17-20 w$（a）One intruding dominant form might well destroy several closely allied representative species．介21－ $20 \mathrm{~m} / \mathrm{w}$（a）$\Uparrow 21-20 u$＂It｜area＂$/ m / x / w$ yes because dominant forms wo only invade the land．－$\uparrow 16-12 \mathrm{~m} / \mathrm{w}$ was not S．W．corner an archipelago with representative species like Galapagos or Madeira \＆P．Santo with respect to land－shells？？？He hints at this further on．wb Indian Tropical plants formed in big area \＆fitted for Tropics \＆not for temperate parts have invaded \＆almost exterminated Australian Flora of Tropics．－ Further on states that Indian Flora（as distinct from Malay）is formed in low part of Malay Isd $w b$（a）Pampas \＆N．temp．Europe \＆Siberia are all lately tenanted lands by dominant species \＆are not number of species few？？Perhaps different case altogether lv 9？，16－19m，$\uparrow 5-1 \mathrm{~m}$ Ivi $\uparrow 20-19 \mathrm{~m}$ lxxxiv 3－4m，15－17m， $19 u$＂fully one－fifth＂， $20 u$＂one－tenth＂，$\uparrow 21-18 m, \Uparrow 14-11 m$ lxxxv $2-$ $5 m, 14 x, 18-19 m, 23-25 m, \Uparrow 15-11 m, \Uparrow 9-5 m$ lxxxvi $\uparrow 3-1 \mathrm{~m}$ lxxxvii $6-9 \mathrm{~m}, 11-13 \mathrm{~m}, 15-17 \mathrm{~m}$ ， $18-19 \mathrm{~m} / \mathrm{w}$ This looks again as if S．W．corner was original focus of Australian forms $\uparrow 21$－ $20 \mathrm{~m}, \Uparrow 18-1 \mathrm{~m} / \mathrm{w}$ very striking looks to me conclusive that never continuous land．-x wb x we can with some probability suppose that plants wd have marched along continuous land－but we know hardly anything about march across seas．－lxxxviii $9-12 \mathrm{~m}, 15 \mathrm{~m}$ ， $19-24 \mathrm{~m}, 25 \mathrm{~m} / \mathrm{u}$＂eastern＂，$\uparrow 9 x / \mathrm{w}$ it looks as if more transport during Glacial Period－ icebergs $\uparrow 12-10 \mathrm{~m} / \mathrm{w}$ dominant invaders lxxxix $5 \mathrm{~m} / \mathrm{u}$＂theory 1 migration＂$/ \mathrm{w}$ You do not know effect of Salt－water on the seeds． 10 － $11 \mathrm{~m} / \mathrm{w}$ ？I do not understand $15-18 \mathrm{~m}, \Uparrow 3-1 \mathrm{~m}$ xc $1-2 m, \Uparrow 2-1 m$ xci $\Uparrow 9-6 m$ xcii $2-5 m / w$ some excessively ancient connection xciii $7 x / u$
＂220｜genera＂ $\mid w$ Hooker believes only few $8 a$＂are＂ wwt almost exclusively $4-6 \mathrm{~m}, 7-11 \mathrm{~m} / \mathrm{w}$ But I suppose many found in Tropics？？？－ see p ．xcviii for same question $\mathrm{xcv} w t / 1-15 w$ I wish I knew which of these genera are not found in lowland Tropics \＆include species representative of those f in northern Europe or N ．Asia for on Glacial view these have been modified since Glacial period．（next page 38 identical species are given）It has always been my greatest fear that there has been so much modification since Glacial， that it wd．upset view．－Some few genera may formerly have been mundane \＆ Tropical \＆not now so．－$\uparrow w$ For Glacial strike out all those marked Trop．Strike out those marked with＊Are many of these genera monotypic like the identical species－？？ Water plants ought＊perhaps to be struck out－no．not so if not found in Tropics．X This mark means species identical with Europe（＊）but the water plants not struck out．because not marked by Hooker xcvi〈similar markings，no $w\rangle$ xcvi－xcvii，SA $\langle n o t e$ for Hooker， 8 April 1860 on numbers of supposedly post－Glacial genera not found in Tropics but common to Europe and Australià xcvii $3 u$＂ 38 ＂$/ w$ These plants immigrated during Glacial period．－＂Montra＂x / w Water ＂Alioma＂x / w Water＂Glyceria＂x / w Water $\Uparrow 6-$ $1 \mathrm{~m} / \mathrm{w}$ Hooker says about 18／38 are monotypic $\uparrow 2-1 \mathrm{~m} / \mathrm{u}$＂great｜plants＂xcviii 1－ $14 m, 2 u$＂them｜alpine＂，＂Taraxacum＂．m／w composi great range tab．w These genera I presume not found in Tropics？wb The species in S．Africa seem not to be identical －is this fact or want of knowledge of species are your facts taken from Drege？ xcix $20-21 m$ с $1-4 m / w$ Arctic Plants $11 a$＂ 30 ＂ Fuegian 14－16m，20－22m， $22 a$＂is＂doubtful $23-27 m$ ci $12-15 m, \$ 9-6 m$ ，$\langle m a r k$ by FD \rangle cii 2－4m／u＂types 1 migrated＂$/ w \notin, 11-12 ?, \$ 14-$ $12 m$ ，$\Uparrow 2-1 m$ ciii $\uparrow m$ civ $1-2 m / u$＂and Islands＂，〈mark by FD＞， $19-1 \mathrm{~m} / \mathrm{w}$ good about Struggle cv 1－4m，风o $\Uparrow 5 u$＂unoccupied 1 England＂$/ w$ were these spots bare？cvi 2－ $3 m / ? ?, 1-21 w$ very good showing how many of the same species are naturalised in Australia \＆U．States with very different climates；opposed to your conclusion cvii ＂ 38 ＂m ，＂ 51 ＂m cviii＂78，79，81，85，89，92， $93 " \mathrm{~m}, \downarrow w$ Several Indian plants \＆US shows us such grt necessity of constant introduction of seed．cix＂ 115 ＂m ，＂ 139 ＂m ，wb No remarks on cultivated plants！！！cxii 14wed

〈bound with previous item〉 HOOKER，Joseph Dalton Introductory essay to the flora of New

HOOKER，AUSTRALIA
xli Exclusive Tropical orders are all Indian． See MS note liv
xlii Great range of many tropical sp．because are much Extinction during Glacial．good see MS note Ask Hooker．
I Entire want of reciprocity between India \＆ Australia
Ii Wonderful difference between S．E．\＆S．W． Australia
liii to Iv in S．E．a much more mixed \＆ imported Flora：The invaders have destroyed many indigenes
Ivi Tasmanian list classed geographically
Ixxxiv Discussion on．On European Plants． much modification in Tasmania lxxxv The Alpines of the mundane genera are more variable than the Alpine \＆Australian genera．－Perhaps the latter existed before Glacial epoch．－
Ixxxvii Wonderful facts on absence of Aus． Plants in N．Zealand－showing non－ continuous land．Dominant invaders in N ． Zealand．Ixxxix Lord Howe＇s Island．－
Ixxxix Antarctic Plants xcii \＆xcviii S．African forms：$\langle u\rangle\rangle$ relation with respect to Glacial period
xcv \＆xcvii Important lists bearing on Glacial．－Many monotypic＊in Australia
xcviii Grand list bearing on Glacial distribution V．good remark p ．cii
c．not reciprocity in Europe with Australia〈over〉 Hooker Flora Tasmania
pci Relation of fossil \＆recent plants
ciii Discussion on Glacial Flora
civ Good remarks on Struggle for Existence cv．On Naturalised plants good－M．S． Remarks on．－
cx Many Native Esculent plants
SB3 $\square \Re$ oo
C．Darwin References to whole in Abstract of 4to Pamphlets
v $11 \mathrm{~m} / \mathrm{u}$＂and｜both＂， $14-15 \mathrm{~m} / \mathrm{w}$ proof？chiefly from variation in arctic countries $\uparrow 5-4 m$ vi $10-11 m, \uparrow 19-17 m / w$ crossing vii $4-5 m, 7-8 m$ ， 11－16m，介15－11m viii 3？？／u＂a unalterable＂， 18？／u＂weakened lexhausted＂，$\uparrow 19-18 \mathrm{~m} / \mathrm{w}$ ？ without selection doubtful $\uparrow 18-17 x / u$＂the inhabits＂$w b \times 1$ doubt whether holds with animals．－With Elephant it does perhaps．－ix $5 u$＂neglected＂$/ w$ with or without propagation by seed？！！ $14 \mathrm{~m} / \mathrm{u}$＂originallapple＂／w good $15 u$＂extent 1 Roses＂$/ \mathrm{m} / \mathrm{w}$ where are facts on roses？$\uparrow 20-19 m$ ，$\Uparrow 17-12 \mathrm{~m} / \mathrm{w}$ good $\Uparrow 3-$ $1 \mathrm{~m} / \mathrm{w}$ good $\times 21-22 \mathrm{~m} /$ ？？xii $\uparrow 5$ ？／u＂different 1 provinces＂，$\Uparrow 3 u$＂morel permanent＂，介3a＂per－ manent＂\＆more easily disseminated xiii 3－ $5 \mathrm{~m} / \mathrm{w}$ do not understand $\uparrow 21-29 \mathrm{~m} / \mathrm{w}$ Battle
of life pretty equal．－$\uparrow 6-4 m / w$ Does it differ beyond having bulb．－xiv $1-3 m$ ，$\uparrow 18-17 m$ ， $\Uparrow 12-11 m$ xv $w t$ is there not Epacris in Sandwich：how allied to Fuegian genera of Epacris？ $1 u$＂very＂， $2 u$＂often＂， $3 a$＂Africa＂ yet African，\＆islands，barren $5 u$＂somel forms＂， $8 a$＂found＂exceptionally $8 u$＂Tristan d^{\prime} Acunha＂$/ w$ is it not nearest to America？1－ $8 m$ ，$\uparrow 11-9 m / w / w b$ As coral islands them－ selves are included，they will generally have subsided，at intervals \＆been stocked by sea－borne plants \＆coral－soil very peculiar．－ \therefore In Indian Ocean comparison not valuable． xvi $1-15 w$ An isld so lofty \＆ancient as Tahiti，whether rising or sinking must have been long peopled．1－15w Hardly facts enough known－some islands rather near continent included．－（Marianne \＆Caroline Isd ought to be included．－\＆Gambier Isld） $5-7 w$ I doubt whole case $\Uparrow 8-1 m$ xvii $3-7 \mathrm{~m} / \mathrm{w}$ Effects of dampness on range－9－20m， $115-$ $4 m$ xviii＂ 29 ＂m / w I doubt because the temperate forms have crossed the Equator in old \＆new world，\＆tropical orders still exist in both $\uparrow 5-1 m$ xix＂Lycopodiaceae＂．m xx $1 u$＂genera＂$/ w$ \＆Devonian not different $13 u$ ＂conel Araucaria＂，15u＂Cretaceous＂，16u ＂Juglans＂$/ w$ Juglans old \＆intermediate $18 u$ ＂Characeae＂ $\mid x / w$ Lyell says in Middle Purbeck xxi $7 \mathrm{~m} / \mathrm{u}$＂ 900 ＂，介 $18-14 \mathrm{~m}$ xxii $1-2 \mathrm{~m}, 4-9 \mathrm{~m}$ xxiii $\uparrow 16-14 \mathrm{~m} / \mathrm{w}$ good $\uparrow 12-9 m$ xxiv $1-3 m, 5-$ $15 \mathrm{~m} / \mathrm{w}$ Highness \＆Lowness．$\uparrow 19-17 \mathrm{~m} / \mathrm{w}$ । have somewhere discussed this $\uparrow 10-1 \mathrm{~m} / \mathrm{w}$ good Highness \＆Lowness xxvii $\uparrow 11-9 m$ xxviii $9-20 \mathrm{~m} / 17-18 u \pm, \uparrow 22-18 \mathrm{~m}$ ，$\uparrow 15-11 \mathrm{~m}$ ， $\Uparrow 6-3 m$ xxix $1-3 m / w$ peculiarities common to Orders xxxi $3-6 m, 9-12 m / w$ Shows relations of organisms most important in battle of life． $18-19 m / w$ A Farmer in Australia would 1 presume follow same rotation of crops at equal＊intervals in N．\＆S．xxxiii $12 u$ ＂South Africa＂$/ 11-17 \mathrm{~m} / \mathrm{w}$ curious $19-20 \mathrm{~m}$ ， $\Uparrow 15-14 \mathrm{~m} / \mathrm{m}, \uparrow 9 x$ xxxiv $1-10 x / w$ Those with cross aboundedO next most in S．Africa This looks as if affinity to S ．Africa had come round by N．$\uparrow 15 u$＂the genera＂，w chiefly mundane orders．xxxv w Invaders，with more species modified．w This makes difference look considerable w \＆all over World Alph De Candolle xxxvi $6 m / u$＂six＂，〈in table $1 b\rangle c$ ＂Cruciferae＂$/ w$ Coniferae w How many species xxxvii $2 m / x$ xli $\Uparrow 9-7 m$ xlii $8-10 \mathrm{~m} / \mathrm{w}$ must take old \＆new worlds as distinct categories．$\downarrow w / w b$ What a number African \＆ some American NB great extinction within Tropics during Glacial explains vast range of many tropical plants in at least old World Ask Hooker．－Whether there are not many

HOOKER, NEW ZEALAND
Zealand (reprint of)
cc, ch, ex, f, gd, geo, in, is, no, or, sy, t, v
NF pxxxiii Note Definition of "Antarctic" । have I think been misled, \& often in doubt by not knowing this definition earlier

SB $\square \beta \propto$

Plants common in New Zealand \& South America but not European
(not CD, annotated by him with locations of species listed; 6 sheets)
Abstract no $20\langle 6$ sheets: abstract of Botany of the antarctic voyage "Flora Novae-Zelandiae", not this Introduction)
ii "Chapter 1".w J Lubbock you had better skip this first Chapter x $16 \mathrm{~m} / \mathrm{u}$ "reproduce processes", $17 \mathrm{~m} / \mathrm{Q} 17-23 \mathrm{~m}, \uparrow 22-17 \mathrm{~m}, \Uparrow 12-8 \mathrm{~m}$, $\pi 5-1 m$ xi $1-3 m, 5-6 m, 8-9 m, \Uparrow 14-12 m, \Uparrow 11-$ $9 \mathrm{~m} / \mathrm{Q} \Uparrow 8-5 \mathrm{~m}, \uparrow 1 \mathrm{~m} / \mathrm{Q}$ xii $17-19 \mathrm{~m} /$?,$\uparrow 4-1 \mathrm{~m} / \mathrm{Q}$ xiii $5-7 m, \Uparrow 11-10 \mathrm{~m} / \uparrow 11 u \leftrightarrow$ xiv $w t$ shows that vars. * on these different in different countries $3-6 m, 12-14 m \times 1-5 m, 7-9 m, \Uparrow 10-$ $9 m$ xvi $13-18 m$, $\uparrow 3-1 m / \Uparrow 2 u$ "transport 1 sex" $\Uparrow 4 m$ xvii $2 a$ "typical"/wt of that species $2 \mathrm{Q} / \mathrm{u}$ "we I common", $116-14 \mathrm{~m}, ~ \uparrow 12-10 \mathrm{~m}$ xviii $7 \mathrm{~m} / \mathrm{u}$ "of 1 seas" $/ w \mathrm{~V}$. Harvey Whether absent in Tropics $\uparrow 22-20 \mathrm{~m} / \mathrm{w}$ Decandolle 250,000 I think! $9 u$ "did \mid Zealand" xix $\Uparrow 17-16 m$, $\Uparrow 8$ $7 x / m / w$ how many common to North? $\uparrow 6 m /$ u "greater I peculiar" $/ w$ see further on. $\uparrow 4-1 \mathrm{~m} /$ $x / \uparrow 4 u$ " 100 genera" $/ \uparrow 3 u$ "confined to", $\uparrow 2 i u$ "one species", $\uparrow 2 a$ "species" $/ w b$ different?? if different points to some ancient connection.xx $2 a$ "so" $w t$ comparatively $2 a$ "Africa" $\mid w t$ about 1600 miles! $2 u$ "placed IAfrica", 1- 4 m , $4 u$ "Antarctic", 4-5m/u "New \mid Australia" $\mid x / w$ Does this remark extend of Fuegia? $4-5 \mathrm{~m} /$ x / w exactly like White M \& Europe. circumpolar cold $8-10 m, 11-14 m / x, 15-16 u$ "many|Tasmania", 18-19x, 22-23u "individuals|scattered" $/ w$ Yet Decandolle says often social! $\Uparrow 12 u \leftrightarrow / a$ "related" they wd not be $\underline{2}$ natural orders, if there were many connecting links.- $\uparrow 10-8 m / x, \Uparrow 1 u \leftrightarrow$ xxi $13 u$ "the lbirds" $/ w$ are these land Birds. I think not. $\uparrow 8-7 m / x$ xxiii $14-28 m / 14-15 x \geqslant / 20!/ u *$ "Chili", $\uparrow 16-13 m$ xxiv $2-3 m, 9-13 m, 14-15 m$, $18-23 \mathrm{~m} / \mathrm{w}$ division of Alpine Floras $18 x$, 19x 18a "Those" regions or flora 18-19u "none \mid Arctic/w $|\mid$ But surely there are northern European forms.- 21a "Alps" X would you add Auckland \& Cambell Isd \& Kerguelen land? No $22 u$ "mountains"/w see Meyer $23 u$ "Pacific Islands"/w Sandwich? $\pi 11-6 \mathrm{~m} / \mathrm{w}$ do not quite understand $\uparrow 9 u * / w$ which $\uparrow 8 a$ "difference" $/ w b$ ie show more species to be in common $\uparrow 8 ? / \mathbf{u}$ "three", $\uparrow 7 u$ "they" $\mid w$ in difference $\Uparrow 7-6 u \leftrightarrow \Uparrow 4 u$ "Fagus"/
wb Xhy These are Java, N. America, Europe. Give up wb Mem. Beech leaves before Glacial in T del Fuego xxv 1u/a "the islands" $/ w$ which? $9-16 \mathrm{~m} / 10-11 \mathrm{Q} 16 \mathrm{u}$ "the 1 islands" $/ w$ which T del Fuego? $20 u \leftrightarrow / w-$ Can this be from change of seed? * (Mention under my Ch.6) $22 u$ "Sonchus" $/ w$ vide (\& algae) $\uparrow 11-10 x$, $\uparrow 11-7 m / w / w b$ very curious. So mammals in the 2 Americas - \& Australia. Decandolle. Australia. \& even C. of Good Hope - Might it not be that NO temperate plants of S . shores of Australia wished to get still further south \& far from wishing to get north. Yes. The tropical plants wd crowd the equator \& some few might cross. Hence Borneo plants wd have come from equatorial regions. $w b$ The mere numerical preponderance of N . forms, from form of land wd account for it $w b$ It wd make great or some difference whether northern or southern forms first occupied the gaps in the Tropics; when once occupied, S. forms wd have little chance of holding their own then. $w b$ If it require time for some degree of acclimatisation than I think it wd certainly make difference $w b$ But being driven out wd not make any difference in spreading. wb If cold first came on on N. side? I think it wd explain. wb No: it wd be that the southern plants wd be not driven out by by fresh arrivals from further south, or only feebly so. Yes*, $\uparrow 9 u$ "are |transit", $\uparrow 8 u$ "have|altitude"/ w attributes apparently to * altitude xxvi 15$18 \mathrm{~m} / \mathrm{w}$ if an individual dies suddenly, is his formation sudden? xxvii $\uparrow 12-10 \mathrm{~m}$, $\Uparrow 10 \mathrm{u}$ "Myrtaceae" $/ w$ any species in common p.xxx 1 in common $\uparrow 10 u$ "Epacrideae" $/ w$ p.xxx some in common $\uparrow 10 u$ "Protaceae" $/ w$ do not one only 2 altogether? \rightarrow X $\uparrow 9-4 m$, $\Uparrow 10-1 \rightarrow \star, w b$ This is all fully answered at p.xxx p.xxx. Compositae \& Orchideae Australian genera. Surely there is considerably more affinity to Australia with Tasmania than to any other quarter of World, both in same species \& genera Yes p.xxx: this was very impressive in looking over the Flora. vide Strezlecki whether Eucalyptus formerly in Tasmania NO xxviii $4 u \leftrightarrow / w$ ie very distinct. $5-7 m /!, 8-10 m$, $\uparrow 19-$ $17 \mathrm{~m} / \mathrm{w}$ So at C. of Good Hope very many bushes. xxix title.w Endemic $\Uparrow 20 u$ "Phaenogamic", $\uparrow 20-16 \mathrm{w}$ more than $* 2 / 3$ of which peculiar or $507 / 730 \Uparrow 12 u$ "genera", $\Uparrow 11 u$ "Australia" $/ \Uparrow 11 c$ "otherwise" $/ w$ great inaccuracy $\&$ making order. $\uparrow 8 u$ "twelve species" $/ w$ \& 5 genera $\uparrow 4 u$ "Dammara", $\uparrow 2 u \leftrightarrow$ xxx wo Are many of the 60 European species Annuals $1 u$ "NewlCaledonia", $3 u$
＂but Thuja＂， $6 u$＂Atlantic＂／w Canary Isd $10 u$ ＂onelspecies＂$/ w \quad X$ of these Calceolaria seems the only special one to S．America why not Fuchsia mentioned 10－11u＂Mimuli Ourisia＂，13－14m／u \rightarrow ， $16 u$＂and \mid Australian＂， $19-20 u \leftrightarrow, 22-27 \mathrm{~m} / 24 u \leftrightarrow / 26-27 u \leftrightarrow, ~ \Uparrow 15 u \leftrightarrow$, $\Uparrow 11 m / w * 76$ genera are S．American－of which 17 not in Australia（pxxxii）or in Old World．$\Uparrow 11 \rightarrow \Uparrow 15-11 w$ Q pxxxii＊as well as in number of genera Therefore I infer N ． Zealand in species，as well as such genera as Fuchsia \＆Calceolaria，more allied to S ． America than is Australia X ？$\$ 11 \rightarrow / w b$ have you lists？11a＂American＂of which only 12 not in Australia，\＆ 29 （some of them unaltered forms from old temp：antarctic land．Yes）not Europe；\＆ 39 not in Antarctic $w b$ of those 89 common $(\rightarrow 17 / 76$ of the genera to which these 89 species belong， are confined to New Zealand（ie not Australia）\＆America．\therefore are not Arctic see Q．p．xxxii This shows，again，much affinity betwen N．Zealand \＆America－It clearly is not transport direct from S．America to New Zealand which has caused affinity．V．（Q） pxxxii）to N．Ze．\＆S．Amer．there are 29 not in Europe；（ \rightarrow How many of these not f．N． of Equator？see opposite page for 7 of the 29 species；are there more？）which are these？are they N．Asian， 1 is N．Asian，or are they all southern forms．or almost mundane except Europe $\uparrow 12-7 m / w$ p．xii． Flora Antarctica there is said to be Arctic forms in Auckland \＆Campbell Isids $\uparrow 10 a$ ＂above＂of the 50 indicate no particular affinity $\uparrow 9 a$＂ 4 ＂These seem all world to me but wd require cold $\uparrow 9 a$＂species＂come direct to each from North $\uparrow 9 w$ Are these all Australian？$\langle u \Leftrightarrow$ pxxxii， 17 may have come by Sea．$\uparrow 8 w$－Therefore the affinity is not closest by now coldest regions．－Yet affinity by mountain plants．$\uparrow 7-6 u$＂decided Ispecies＂， $\pi 6-5 u$＂generalalso＂，$\uparrow 3-2 u$＂ 2401 countries＂ xxxi $1-2 m / w$ The making of species \＆ conditions renders this doubtful．－\＆ Galapagos－though $8 w$ \＆Casuarina 9－11m／ w very wonderful；but yet we know not means of transport viz duration of vitality． anyhow not continuous land．－ $12 a$ ＂Clianthus＂／w a Legum，\＆most rare Family in N．Zealand．12－13u↔／w Has Norfolk Isd many Leguminosae in common with Australia $14 u \leftrightarrow 20 u$＂admirably｜transport＂$/ w$ ？generally killed by sea－water；yet some Float \＆Mimosa sensitiva survived 50 days． $23 u$＂land I between＂$/ 22-24 \mathrm{~m} / \mathrm{w}$ ie in negative point of view，which wd be very strong if we knew means of transport．－ $22-24 w X$ R．

Brown has said some survived．Gulf－Seas $27 u$＂Edwardsia＂28u＂the I Carmichaelia＂29u ＂feebly｜plants＂，介14X $\mathbb{1} 13 u$＂ 89 ＂，$\Uparrow 13$ u／a ＂some＂$w \mathrm{wb} 26$ confined to Southern temperate Zone $\uparrow 13 u$＂Myosurus aristatus＂ $\Uparrow 12 w 7 \pi 8 c$＂former＂$/ w$ N．Zealand $\Uparrow 8 u$ ＂representative＂，$\uparrow 8-6 m / \Uparrow 7-6 u$＂is 1 shown＂， $\Uparrow 6 u$＂Fuchsial Calceolaria＂，$\uparrow 5-4 X$ ，$\uparrow 1$ u＂ 76 ＂ xxxii $1 a$＂ 17 ＂／wt yet only 12 species not f ．in Australia（I shd think from N．Z going further south） $1-2 m / w(\mathrm{Q}) \mathrm{V} . \operatorname{p.xxx}(\mathrm{Q}) 1 a$＂found＂ either 1a＂Australia＂｜｜1c＂elsewhere＂，1X 2c＂latter＂ $\mid w 173 a$＂form＂some groups 4X＊， 7－9Xe／u士， $9 a$＂European＂ie 29 14－15u ＂Many \mid numbers＂，17－24wec，19－20u＂161 were＂， $21-22 X, 23 a$＂five＂which are the 5 ？ Sonchos PrD Sanaxicum Cotula $23-24 \mathrm{~m} / \mathrm{u}$ ＂Thelso＂， $24 a$＂ones＂in N．Zealand？？介14－ $9 m, \Uparrow 8-4 m, \Uparrow 4 u \wedge / w b$ Have these become since extinct in Australia or have they arrived by other route：Australia has many European plants not f．in New Zealand．xxxiii $1 u$ ＂European 1 Australian＂， $1-5 \mathrm{~m} / \mathrm{w}$ absent in N ． Zealand $7-8 \mathrm{X} / \mathrm{X}, 7-14 \mathrm{~m}, 10 u$＂Thosel Europe＂$/ w$－come from North $13 X X \$ / w$ either from Common source of Old Antarctic land．15－16 \rightarrow ，17－19m／17a＂those＂species 20a＂these＂antarctic 20a＂genera＂but not genera f exclusively in South $20 a$＂ 50 ＂ genera $22 u$＂Drosera＂$/ w$ such genera may be representative，from - in North．$\uparrow 8-5 \mathrm{~m} / \mathrm{w}$ Definition $\uparrow 4-3 m / x \& 4 \rightarrow / w b$ \＆we have seen New Zealand contains some 17 not in Australia xxxiv－xxxv 〈marks against nearly all lines，indicating location of species listed wt X Would you mark genera f only S．of S． Tropics with S．－only N．of Tropics with N． Excepting mountains within Tropics＊would you mark the Genera not f．North of Equator S ．Tropics？wd it not have made it much more interesting of the identical species had been put in．$\uparrow 17-12 w$ very strong case（ p 80 ）only one other species known wb This very strong Antarctic genus （p128 F．N．）with species on all the S．lands including Tasmania $w b$ p．154．N．Z．very remarkable alpine plants of N．Z．Tasmania， \＆Fuegia，nearly allied to extensive Australian genus of Stylidium．xxxv wb $\times 7$ North having representative species 18 Mundane \＆doubtful 25／50 Southern genera （There are 5 cases of representative species between S．America \＆＊Australia \＆not occuring in New Zealand．）xxxvi $1-13 w$ S 14－19m／X 20－31m／24u／a＂New Caledonian＂ great subsidence of $28-31 \mathrm{~m} / X *, ~ \Uparrow 5-1 \mathrm{~m} / \mathrm{m}$ ， $\Uparrow 2 u$＂Epacrideae＂xxxvii tab．m／w see average

HOOKER，NEW ZEALAND
number of species $\$ 16 \mathrm{~m} / \mathrm{u}$＂that I genera＂$/ \mathrm{w}$ This variability is rather different from actual vars．for if very polymorphous．vars．are not designated．$\quad 12-11 m / \Uparrow 11 u$＂necessarily vague＂，$\uparrow 8 m / u$＂that Itendency＂，$\uparrow 6-4 m, \Uparrow 3 u$ ＂and lvariable＂xxxviii $1-2 m / w$ How in N． America？ $3-5 m, 8 m / w$ more variable $12 m$ ， 14－15？／u＂geographical｜characterize＂， $16-17 m$ ， $\Uparrow 4 u$＂Banksial form＂xxxix $\uparrow 12-9 m, \Uparrow 4-2 m$

HOOKER，Joseph Dalton and BALL，John Journal of a tour in Marocco and the Great Atlas London；Macmillan \＆Co．； 1878 ［Botany School］
gd
NB Geographical Distribution； 417 to 446 whole discussion
1 1－10m 417 24－36m 420 1－6m 421 11－17m， $25-29 m 436 \quad 1-7 m 440 \quad 28-35 m 441 \quad 4-8 m / 6 u$ ＂half＂ 445 1－6m，23－28m 446 14－23m

HOOKER，Joseph Dalton，and THOMSON， Thomas Flora Indica 2 vols．；London；W． Pamplin； 1855 ［CUL，vol． 1 only，I］
af，cc，ch，ds，ex，fo，gd，hl，ig，in，is，no，00， phy，sp，sy，t，ti，tm，v
NB1－If very few temperate European plants occur in S．Africa probably Africa hottest part of world during Glacial period： but Heath＊extended over whole－
The connection of Flora of Old \＆New World before Glacial period，when temperate forms inhabited now $*$ arctic regions－probably by Beering St－
Hookers remark，somewhere，that flowers whose organs are only a little meta－ morphosed from leaves are most variable is only part of general law，that lowest＊ organisms most variable．－
Glacial epoch；p．87；p．101；p．103，4； 104 Khasia \＆India \＆Java； 105 Japan \＆China； 108；113；253；126； 235
NB2－Mayatts cinquefoil strawberry advertised
p．11？；p．13；p 19 to 43；p82；87； 91 to end of introduction
р．2；p．22；p．28；56；p89；91；165；171，2； 186；207；217，8；222；226；233，34；240； 243 to 248 Ask Hooker；251＊ 258
$\leftarrow\langle$ to NB1 \rangle Glacial
SB $\square \beta$ 〈last three references on separate small sheet＞
over（Flora Indica）
p．13．Remarks that local Botanists new species makers（Ch．4）
p． 24 Says generally plants vary more in one climate than another（Ch．4）
－Cannon．〈he means＇canon＇〉 Similar climate in distant areas not inhabited by same or similar plants
p26 Plants of N．Zealand more variable than those of India
27 Dry hot lower hills of central India poor in species
28 Individual variation（Ch．4）
29．Organs least modified vary most XX
30 Cedar of Lebanon \＆Deodar
30 Division of vars．of more permanent which accompany change of locality ？？（Ch． 4）
32．Change of value in timber－Oak worthless at Cape
32 Great change in medicinal properties of Plants in different climates
37 Many extraordinary instances of deficiencies，as no Oaks \＆Pines－Caution about Islands．Woodpecker \＆Vulture in Australia
41．India \＆Java formerly continuous！Argues against chance introduction as too harmonious；－＊look at dispersal of Boulders．－
41．Good remarks on strife of Plants
82．Mean temps of Equatorial Zones（？）for Glacial－at 30° of Lat． 1 for each Degree 1° for $300 \mathrm{ft} \therefore 3000=10^{\circ}$ of Lat
87．Lower Himalaya \＆plant of Ceylon at 8000 ft ，often identified（Glacial）
91 India very general sort of Flora（\＆very central site C．D）
92 Local numerous assemblages of species only connect on temperate \＆subalpine districts
99 4000－6000ft truly temperate veg． supersedes Tropical
113 Connection of Africa \＆India，especially mountain plants p． 129 do p152
114 Cases of identical \＆representative species in remote \＆exceptional areas
－Abnormal very wide rangers but disconnected？？p． 165 do \＆
237 In Khasia orchids 1／12 of vegetation
〈line across page〉
p2．On Highness \＆Lowness－Low variable Q
28 Ranunculus species of widely diffused， therefore variable Q
165 The most perfect species in group ought to be used for classification
171 Organ of vegetation，as wood of no value for classification
207 －Orders of limited extent point in many directions，just like Cucurbitaceae of Wight， though he took distinctness as element．－
217 Berberis aplexus of species（Ch．4）

218 Berberis some species evergreen, some deciduous \& some variable - (so in Privet? \& Oaks).
219 Marked vars of Berberis vulgaris (Ch. 4) 233 \& 34 on remarkable structural differences in member of same Family. p. 234

237 Point of classification

240 All water plants wide rangers \& variable The Glacial references are marked at end of Book
p248 "structure of grave interest in a Physiological point of view, but of no weight in systematics"
249 Connecting link between two Nat. Fam. 259 Corydalis one of few genera with many species in Himalaya, in which majority are remarkably distinct.-

Introductory essay, $1128 ? / u$ "descriptions", $29 u$ "definitions" $135-10 \mathrm{~m} / \mathrm{w}$ Shows how vars. \& species run into each other $22-25 m$ $1920-23 \mathrm{~m} 203-6 \mathrm{~m}, 23-27 \mathrm{~m} 212-11 \mathrm{~m} 223-$ $5 m, 20-22 m /!$!, $24 u$ "but |in" 23 1-4m 24 16$18 \mathrm{~m} / 16 u \leftrightarrow, 20-27 \mathrm{~m} / 22-23 \mathrm{~m} 254-5 \mathrm{~m}, ~ 8-10 \mathrm{~m} /$ $8 w$ What $11-16 w$? Yet parentage of scarcely any oldest plants known $16-24 \mathrm{~m} / 20 \mathrm{w}$ (a) $32-$ $36 \mathrm{~m}, \mathrm{wb}$ (a) All very good against mere climate or change in conditions.- $264-8 \mathrm{~m}$, $9-14 m, 35-36 m \quad 27 \quad 2 u \quad$ "dry|lower" $/ 2-8 \mathrm{~m} / \mathrm{w}$ How absolutely opposed to Gardner \& Bromfield 9-10u "Such 1 is", $12-17 \mathrm{~m} / 14 \mathrm{w}$ (a) $w b$ (a) Everywhere existing conditions of existence thought to be cause $293-6 \mathrm{~m} / 5-7 \mathrm{Q}$ $9-10 \mathrm{~m}, 9-33 \mathrm{~m}, 15-16 \mathrm{~m}, 32-33 \mathrm{~m} / 32 \mathrm{u}$ "leaves 1 bracts" $/ 33 u$ "perianth" $307-11 \mathrm{~m} / 11 u$ " 2 ", $12-$ 20m/16-18u "habit lexposures", 28-34m 31 1$4 \mathrm{~m} / \mathrm{w}$ Why put under 2d Head? 32 6-9m, 16$21 m 3321-24 m 3517-23 m 3722-30 m 3916-$ $19 \mathrm{~m}, 23-24 \mathrm{~m} 412-5 \mathrm{~m}, 8-10!$, $9-11 \mathrm{~m}, 14-19 \mathrm{~m} /$ 15-23w are not oceanic currents Harmonious Look at drift deposits.- 42 1-2m/u "is continuous"/??, 3-8m, 19-21m $825-9 \mathrm{~m} / \mathrm{w}$ See next Page $831-2 m 879-22 m 918-20 \mathrm{~m} / 10-$ $16 w$ India \& Africa oldest parts of world 92 $27-30 \mathrm{~m} / \mathrm{w}$ Have you list? Several species of same genus? 32-36m $932-10 \mathrm{~m}, 11-16 \mathrm{~m} 96$ $33-36 m 9829-32 \mathrm{~m} 9910-11 \mathrm{~m}, 25-28 \mathrm{~m} 1011-$ $5 x / 2 u$ "Gentiana" $/ 3-4 m 10322-28 \mathrm{~m} / 22 x$ */u "Malay peninsula", 32-36m/33x 104 1-4m/w can they have travelled up? $18-23 \mathrm{~m} / \mathrm{w}$ When these connected the few Australians arrived in Ceylon 105 6-9m, 11-14m, 19-23m, 25$29 m / 26 w$ (a) $w b$ (a) I suppose these species are found in temperate China: this is important.- $1061-2 m / w t$ I presume absent in Tropics $1081-3 m / 1 x * 11-22 m / 17 x * 1091-$ $4 m 112$ 10-14md 113 15-22m, 27-30m/27-28u
"mountain \mid Africa" $114 \quad 8-11 \mathrm{~m} / 9 \mathrm{u}$ "Few \mid identity", $10-16 \mathrm{~m}, 20-24 \mathrm{~m} / 18-30 \mathrm{w}$ Wandering species seem to connect whole world.together $32-34 m, 35-36 \mathrm{~m} / 36 u$ "identity| species", wb Identical Species \& representative going together. $115 \quad 22 u$ "representation", $28 u$ "Chilian species" 29 u "representatives" $\mid 26-30 \mathrm{~m} / \mathrm{w}$ are these genera Chilian 116 1c/a "Western" East/ 120 5-8m, $17-21 \mathrm{~m} / 15-23 \mathrm{w}$ during cold period wd be driven here as last refuge $126\langle u \mathrm{a}\rangle 11 u, 12 u$, $13 u * 13 u, 17 u, 19-20 m 12927-34 m 1332-$ $7 \mathrm{~m} 15224-28 \mathrm{~m} 16519-20 \mathrm{~m} / 20 \mathrm{w}$ (a) $\mathrm{I} w$ It is only species common to distant points of continents, \& when accidental sea-carriage out of case. $w b / 24-36 w$ it wd be worth seeing in all such cases, whether there were small aberrant genera, indicating extinction. There were cases before in Book. (Myrsine at Cape \& Abyssinia a case ??) $17022-27 \mathrm{~m}$ $17328-33 m 23513-17 m, 20-23 m 2373-6 m$ 253 1-4m/x
vol. 1, 2 wt 2. $22-33 \mathrm{~m}, 39-46 \mathrm{~m} / 41-45 \mathrm{Q} 22$ $44-47 \mathrm{~m}, ~ 49-51 \mathrm{~m} 2843-47 \mathrm{~m} 2925-28 \mathrm{~m} 33$ $19 m 408 m 46\langle u \sim\rangle 17 u, 18 u, 19 u, 22 u, 23 u$, $27 u, 28 u, 29 u, 32 u, 33 u, 34 u, 35 u, 36 u, 37 u$, $38 u 5628-32 m 8920-23 \mathrm{~m} / 22 u$. 91 8-11m/w here, 1 think, some temperate forms occur 157 zb 165 35-37m 171 41-46m, 53-56m 172 45-53m 186 9-11m $20738-43 \mathrm{~m} / \mathrm{w}$ like ancient Fossils - There are living Fossils 217 46$52 m, 53-55 m 21830-38 m / 34-36 \mathrm{Q} 2193-6 m$ $2223-8 m 22635-39 m 23332-37 m 23424$ $26 \mathrm{~m}, 27-30 \mathrm{~m}, 34-37 \mathrm{~m}, 38-39 \mathrm{u}$ "explained \mid apparent" $/ \mathrm{w}$ What mean? 237 3- $6 \mathrm{~m} / 3 \mathrm{w}$ What? $37-41 m \quad 41-50 m \quad 240 \quad 1-2 m, \quad 5 u$ "thalamiflorous polypetalous", 6-7m, 21-27m, 33-35m/33-34u "all 1 ranges", $35 u$ "from 1 stamens" $24146 \mathrm{~m} 243 \mathrm{£m} / \mathrm{w}$ If these characters did not vary \& so in BarberusO they wd be good species. $2471-2 m 2481-$ $6 \mathrm{~m} / 2-4$ "...", 26-31m 249 10-12m/11u "being structure" $25141-45 \mathrm{md} / \mathrm{w}$ is having a style a peculiarity $258 w t$ owing to corydalis $1-3 m$, $45 m 259$ 1-3m, 33-34m

HOOKER, William Dawson Notes on Norway 2nd edn; Glasgow; George Richardson; 1838 [CUL, I by J.D. Hooker]

HOOKER, William Jackson The British flora 4th edn; 2 vols.; London; Longman, Orme, Brown, Green \& Longmans [Down, FD, 1st vol. only]

HOOKER, William Jackson The British flora 4th edn; London; Longman, Brown, Green \&

HOOKER，W．J．，BRITISH FLORA
Longmans； 1838 ［CUL，S C．Darwin April 1841］
f，fg，gd，mhp，no，phy，v
NB1 178 variety
NB2 Galium aparinaO hooks on seed \＆ leaves Agrimonia？I should doubt acting as hooks In end of August flowers of Lathyrus Nissolia do not open $\%$ have petals $41 / 2$ size of those in spring，\＆of a very pale dirty purple，but yet get seed，are produced abundantly．
NB3 p． 35
〈untranscribed $w:$ W meaning Water－plants〉 $121 w 27 w, 23 w, w b$ some water $32 w *$ Marsh $7 w$ water $40 w$ water $534 w, 41 w 6$ $1 w 814 w, 27 w, 40-41 w 98 w, 18 w, 28 w, 37-$ $38 w 109 w 1131 w, 38 w, 46 w 124 w, 13-14 w$ ， $46 w$ Marsh 13 20w Marsh $25 w$＊Marsh 15 $4 m, 16-19 m 1632-37 m, 38-43 m, 45 m 175-$ $9 m, 36-39 m, 43-44 m 185-8 m, 10-16 m$ ， $19 m$ 19 29－32m $211 w, 6 w 247-9 w, 28-29 w, 47 w$ $256 w, 25 w, 37 w 268-9 w, 17-18 w, 25 w, 37-$ $38 w 27$ 13－14w，21w，32w，47w 28 13－14w 30－31w，38－39w $294 w, 28 w, 34 w$ ， $40 w 316 w$ ， $12-13 w, 18-19 w 3315 w, 38-39 w 3443-45 w$ $351-8 m / 4-5 w$ ，44－46m $3610-14 m, 22-25 w$ 38 28－30w 40 24－26w 41 11w 50 13－14w，41－ $42 w 5326-27 w 5430-33 w 5738 w$＊ $582 w$＊ $6011-13 w, 24-25 w 6642-45 w 688 w, 17 w$ ， $34 w, 43 w 696 w, 16 w, 23 w, 27 w, 33 w 706 w$ ， 19－20w，31－32w $711 w, 18 w, 31 w 737 w 74$ $10-11 w 754 w * 9 w \bullet, 14 w * 895 w 9015-$ $16 w, 25-26 w, 33-34 w 938-10 m, 13-14 w, 29 w$ $9524 w, 32 w, 40-41 w 9827-28 m / w$ Below Barston 100 22－23w，46－48w 101 13－18w Eastbourne $10744 w 1084-5 w 110$ 8－10w 111 $43-45 w 1125-6 w, 45 w 1134 w 114$ 29w，36w $1158-9 w, 26 w, 34 w, 43 w 1169-10 w, 20-21 w$ 118 12－13w，30－31w，39－40w 120 介2－1w Down，Aug 45129 28－29w 130 20－21w 131 17－18w 132 22－23w，34－35w 133 6－7w 137 $35 w 1384-6 w 1436 w, 38-39 w 1444-5 w$ ， $12 w, 23 w 1458-9 w, 31 w, 43-44 w 1464 w, 14 w$ 147 10w，34w 148 19－20w，29w 150 32－33w $1516-7 w, 15-16 w 15216 w, 22 w 1533 w, 9 w$ ， $20 w, 34 w 15411-12 w, 25-26 w, 33-34 w$ ，41－ $42 w 1559 z 16029-31 m 1613 w, 27-28 w, 34-$ $35 w 16212 w, 15-17 w, 35-37 w 164$ 41－42w $16528 w 166$ 32－33w，43－45w 167 11－12w 172 $37-39 w, 45-46 w 17341-42 w 17420-21 w, 30-$ $33 w 178$ 28－30m $1792 u 18110-11 w, 20 w 190$ 13－15w，36－38w 192 11w，18－19w 206 7－9w $20833-34 w 2153 w, 11 w, 19 w 216$ 31－34w 217 17w 218 27－28w，33－34w，42－43w 219 2－ $3 w, 31 w 22039-40 w 22644 w 227$ 7w，18－ $19 w, 26 w, 39 w, 45-46 w 228$ 12－13w，32－33w $22919 w 23242-43 w 23517 w 23741-42 w 238$

29w Down 36w Down 239 2w Down 13w Down 28－29w，35－36w 240 20－22w 247 40－ $42 m 249$ 17－18w，22－23w，37－38w 251 24w 253 27w，35w，41w 254 1－2w 262 17－19w 270 9－10w 273 zb 274 24－27w Down Aug．29th 281 15w，47w Down 282 33w，34－36w 284 25w very common $2895 w$ Down 292 2－4w， 20－21w 296 42－43w 297 42－43w 298 14－15w， 41－42w 299 3－4w，36－37w，42－43w 300 5－6w， 39－40w 301 30－31w 302 17－18w 303 10w 304 9－10w 305 18－19w，26－27w，40－41w 306 38－ $39 w 307$ 1w 313 7－9w Down common 15w Maeres Down 27w Beechy Head 314 35－37w Down June 22／43 46－48w 315 3w』 Maer $15 w \leftrightarrow \infty_{0}$ Maer $29 w$ Eastbourne $35 w$ N．Wales $43 w$ Down 316 2－7m，8－18m，22－24m，27－32w Down June 25／43 27－29w Down June 15／43 $38 w$ Down 317 3－4m，37w Down 318 17－18w， 27w Maer 43－45w Down May 21／54 319 21－22w，30w Down 320 8－10w，18－19w，26－ $28 w 321$ 18w，24w，29w，39w $3226 w, 12-13 w$ part W 28－29w Marsh 33－34w Marsh 323 $33 w, 42 w 3246 w, 11-12 w 325 w b 9$ water 3 marsh $32840 w, 47 w 3297 m, 9 w, 19 w, 30 w$ ， $47 w 3306 w, 14 w, 19 w \bullet$ ， $30 w 3313 w, 3 w$ Bogs 12w，14w Bogs 31w，33w Bogs 332 $5 w$ W／Bogs $28 w$ W／Bogs $36 w$ W／Bogs $44 w$ W／Bogs 333 15w Marsh 17w，27w Marsh 29w，44w＊Marsh 45w $3344 w, 5 w *$ Marsh 34w Marsh 45w Marsh 336 6w Marsh 40w Bogs 337 3w rocks $14 w$ Marsh $27 w$ Water $42 w$ Bogs 338 10w Bogs 17w Marsh 35w Bogs 42w Marsh 339 22w Marsh $48 w$ Marsh $3407 w$ Marsh $48 w$ Bogs 341 10w Bogs 342 33－34w 343 21w，33w，41w $34441 u$＂watery＂／ w Marsh $3454 w 34632 w$ Water $3477 w, 20 w$ ， $29 w$ Eastbourne $30 w 3484 w *$ Down 350 35－ $37 w$ part Marsh 351 31w Marsh $3529 w$ Marsh 27w，wb 1 Water 3 Marsh 354 39w Marsh $35514 w, 35 w, 45 w 356$ 36w 357 21w， $43 w 35814 w, 27 w, 41 w 35935 w 363$ 29w，
 Bogs 376 30w $3774 w, 10 u$＂wet rocks＂，11w， $32 w, 34 w 378$ 30w Water $37926 w, 31 w$ ，wbcc $4342 m / w 39819 w 403$

HOOKER，William Jackson，and ARNOTT， George Arnott Walker The British Flora 7th edn；London；Longman，Brown，Green \＆ Longmans； 1855 ［CUL］
sy，v
NB Q 486 Variability of Zannichelliae
166 ＂ 39 ＂．m ，＂ 5 ＂．$m 167$＂ 7 ＂．$w 8$＂ 18 ＂．m ＂ 23 ＂． m 168 ＂ 39 ＂． m 486 17－22m／Q $5609-12 \mathrm{~m} /$ $6-10 w$ In 4th Edit．this is a Bromus $17-18 u \leftrightarrow$

HOOKER，William Jackson et al．Sup－ plement to the English botany of the late Sir J．E．

Smith and Mr Sowerby vols．1，2，4，5； London；J．D．C．\＆C．E．Sowerby；1831－65 ［Botany School］

HOPE，Frederick William The coleopterist＇s manual London；Henry G．Bohn； 1837 ［Down，I］§

HOPKINS，Evan On the connexion of geology with terrestrial magnetism London；Richard \＆ John Edward Taylor； 1844 ［Down，I］

HORNER，Leonard Alluvial land of Egypt London；Taylor \＆Francis； 1858 ［Down，I］\wp

HOUGHTON，William Gleanings from the natural history of the ancients London；Cassell， Petter，Galpin \＆Co．；n．d．［Down，I］\wp

House of Commons Report of the Select Committee on wild birds＇protection London； House of Commons； 1873 ［Down，I by C．D． Groom Napier］ no
NB Dr Groom tells me that there is much in this volume about the increase \＆decrease of Birds of last year in England
48a 24－30m，32－43m 121a 50－53m
HOVELACQUE，Abel Notre ancêtre Paris；E． Leroux； 1878 ［Down］\wp

HOWORTH，Henry Hoyle History of the Mongols part 1；London；Longmans，Green \＆ Co．； 1876 ［Down，I］\wp

HROMADA，Adolf Die vorsokratische Nat－ urphilosophie und die moderne Natur－ wissenschaft Prague；Druck der Stadt－ haltereidruckerei； 1879 ［Down］

HUBER，François Nouvelles observations sur les abeilles 2 vols；Paris－Genève；J．J． Paschoud； 1814 ［CUL，pre－B］
beh，che，em，f，fg，oo，no，phy，sx，ta，v
vol． 1 SB 171 Queen killing sisters 10 minutes after Born－
184，198 can sting each other without being killed，but risk is run．
190－How Bees treat strange Queen
220 Queen killing larvae of other Queen
231，235 mistaken Instincts
－Not abstracted
169 2－3w Read $171 \Uparrow 6-1 m / \Uparrow 6 u$＂peinel minutes＂ $184 \quad 10-22 m 190 \Uparrow 11-9 m / \Uparrow 10 u$＂la reconnoissent＂$/ \uparrow 12-9 w$ their own Queen $\downarrow w$

W．Fox says workers know strangers 198 1－ 5m $2005 w$ Read 208 1－2w Read 220 9－18m／ w V． 224 介7－1m 224 3－7m，11－13m 225 4－9m 231 介8－2m $235 \Uparrow 5-2 m 359 \Uparrow 3-2 w$ Read． Read 360 1－3w Read
vol． 2 NB 104 －Wax secretions piling wax
140 seems to consider architect a different race
SB $\square \Re\langle 2$ sheets \rangle
p426 to 430 Very good
43．show same peculiarity appearing in many＊Evidently different for old \＆battered Bees．）
442．Bourdon workers lay only Males \＆ Workers
444．Ants always killed by copulation
It seems quite possible that the 1st row may be formed differently，as they cannot initiateO work with usual number of Bees〈over）
66，67， $69 \times$ Instinct 188
98； 110 Vide PI 4；120； 141 to 187；211； 215
219 Instinct bending comb
286 The fallen comb
222 to 226 size of Drone cells．－gradation of size before \＆after． 3 or 4 rows or when Honey abounds（247）Bears on W．Indian cells
234 to \＆c
238 inclination of prisms to base not yet inserted－distorted．－
250
342 Ventilation 357 to 360
374 Bees begging for Humbles
Huber proper Bees have very acute smell－〈2）
On First Wall p110，146－141
ก thus
$2 / 3$ of diameter of cell
175 repeat over \＆over again edge rounded of outer margin of base of first cell
235 ribbon of wax surrounds whole comb when bigger
〈over：drawing of small circles and hexagons＞
＜words here indicate that this is a scrap torn
from the abstract of a different book and re－used）
66 15－20m 67 1－2m，7－11m $695-8 m 989-$ 12m 104 20－25m 108 11－18m $10913-22 m 110$ 6－9m，6－8u＂six｜cellule＂， $12-13 u$＂mais！ élévation＂ $120 \quad 6-8 m \quad 140 \quad 3-8 m, 10 u$＂les 1 architectes＂ $14119-21 \mathrm{~m} / 20 \mathrm{u}$＂petite cavité＂， 21－23m 142 3－5m／3－4u＂bordslcire＂，8－9u ＂maislalongés＂$/ w$ this will be the posterior face 14－15u＂étant｜alongé＂， $17 \mathrm{~m} / 9 u$＂del diamètre＂／u＂portionlbrute＂ 143 wt $\cap[\mathrm{He}$ speaks of this as connected with \wedge independently of walls］3－5u＂Le｜rectilignes＂，

HUBER, ABEILLES
$4-13 m / 5-25 w$ If the sides of separate cell one are angular before other cells formed fatal to my theory. opposed by my facts.yet Icaria; but lcaria only becomes angular after some cells formed $20-23 u$ "douées 1 épaisse", $23-25 m, w b$ [This is very last part excavated!!! that they begin near where 3 planes meet.] 144 11-13u "ainsi|autres"/w | presume simultaneously $146 \quad 2-5 \mathrm{~m} / 5 u \leftrightarrow$, 11$14 m 14718-20 \mathrm{~m} 14816-17 \mathrm{~m} / 17 u$ "une 1 droite" $149 \quad 15-23 w$ when (1) cell only $2 / 3$ of diameter in height ie. $2 / 3$ of total height what will acquire $1503-4 u 1517-8 u \leftrightarrow, 17-21 m 152$ $16-18 m, 21-23 u \pm / w$ Queen cells $1532-$ $4 u \leftrightarrow / 2 a$ "derrières"/wt or posteriors 12-22m/ 12-13u "tardèrentlpartie", 18-19m, 23-24u "àlà", wb [1 believe never done, except when cell added or where Bee can stand] $1544-7 m 15511-18 m 15819 u$ "approfondirl cavités", 22-25m 159 13-18m 161 112-1w/wb [Here he speaks as if 1st cell completed before any trace of other 2 above on same side, \& one above on opposite side. inaccurate $1645-9 m / 5 u$ "mais|elles", 8-11m/ 9-10u "elles lcavités", 17-19m 165 1-2u "dont I prolongés", $3 u$ "tandis", $9-12 \mathrm{~m} / 9-10 \mathrm{~m} /$ $u \leftrightarrow, 16 a / u / w \tau, 22-24 m, 23-25 u \leftrightarrow 1686-7 \mathrm{~m} / \mathrm{w}$ 1 st cell of 2 d row $7-8 u / 8 a$ "mais quelques" other $15-25 w$ He speaks as if one hex outline of 3 rhombs always first formed, but says nothing about these being zig-zag $1692-5 m / 4-8 w$ so that they begin on level of base of prisms $7-11 m / 1-11 w$ Error here hexagon before excavating $\pi 6-3 m / w$ Error $\Uparrow 5-3 m / w / w b$ it seems that this rhomb was completed on one face before the face in 2d row was begun: I doubt this. $\mathbf{1 7 0} \mathrm{Iw}$ [Here it is clear, that he thinks hexagonal outline completed before excavation begins $\uparrow 2-1 \mathrm{~m} /$ $w b$ it is clear that they perfect one rhomb \& then other two $171 w t / 1-5 w$ I may say after outline of trihedral pyramid formed; \& added to, the outline seen through wax guides according to Huber the excavation of the base \& making the internal planes $1-3 m, 7-$ $8 u \leftrightarrow 1722-5 m / 4-9 w$ ie first of $2 d$ row on posterior face $173 \quad 20-22 m / 21 u$ "d'abord arrondi" w always round $175 \ddagger w$ [Error - in fig 21 he draws hexagonal outline with no pyramids!! $\uparrow 8-6 u \pm / m / w$ but then all outlines obtained * from adjoining cells 176 12-16m, 18a "élevant"/ $18-23 w$ first an arched line, then converted into $1792 u$ "aucunel bornent" $180 w t / 12-18 m / 1-19 w$ Here he shows he thinks hexagonal outline at first up \& down vertically $15-16 w$ of pyramid bases $18220-$ $24 m / 21 u$ "alternativement" $18314-17 \mathrm{~m} / 16 u$ "l'obscuritél gâteaux" $1846-14 m / 12 u$ "creuses I
bloc", $21 u$ "uneldes" $1858-11 u \leftrightarrow 1868-15 m$, 16-19m 187 wt [I doubt about wax being added in successive stages.] $5-11 m / 7-11 m$ $1882-7 m / 4-5 w$ Internal 211 1-5m/w How can this be considering Drone cells \& other irregularities? $2156-9 m 21910-17 m, 18-20 \mathrm{~m}$ 222 1-6m, 24-25m 223 1-3m, 9u "trois quatre", 14-15m/14u "à quatre" 224 7-8m/8u "formes bizarres" 226 15-16m/15u "ill poute" $2277-12 m 2284-8 m / w$ because cd not stand to measure?? \& edges rounded?? 234 13$17 \mathrm{~m}, 20-25 \mathrm{~m} 23510-16 \mathrm{~m}, 23-25 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ the little wall of first wax surrounds the whole comb 236 5-8m 237 15-20m 238 3-5m/4-5u "quatrelcinq" 242 1-3m/w/wt no pyramids like case in Fig 2 PI IX 247 6-8m/w Drone cells 250 7-12m 252 wt All about Proportions except words about fallen comb. 256 12-16m 286 19-25m 287 23-25m 288 16-19m 294 1620md 295 24-25m 318 〈err. printed 317〉 $3 u$ "àlquart" 342 wt Has shown by laborious experiments; that Bees require constant ventilation on acct. of carbonic acid, \& that they do ventilate the Hive. $1-14 \mathrm{~m} 3431-3 m$, $24-25 \rightarrow 344$ 17-18u "dansltout" 357 5-9m, 13-16m $360 \quad 20-24 \mathrm{~m} / \mathrm{w}$ only workers know how to ventilate $37412-16 m \overline{426} 12-16 \mathrm{~m} / \mathrm{w}$ Hated \& killed by other bees $428 \quad 16-17 u \leftrightarrow /$ $12-19 w$ shows |vast| number affected same way $4307-16 \mathrm{~m} / 12-13 m 43322-25 m 442$ 11$19 w$ Many workers of Bourdon fertile \& lay only male eggs $4443-9 m$

HUBER, Pierre Recherches sur les moeurs des fourmis indigènes Paris; J.J. Paschoud; 1810 [CUL, pre-B]
beh, cc, em, in, mg, oo, phy, sp, sx, v
$203-7 \mathrm{~m} /$? $6014-17 \mathrm{~m} / 14 u$ "fourmis rouges", $18 m, w b$ F. rufa in tree at Moor Park $6110-$ $12 \mathrm{~m} / 11 \mathrm{u}$ "représentent $\mid \mathrm{l}$ 'enfance", 14-15m 75 4-10m $779 u$ "au sexe", 12-14u "donnent| mâles" 79 9-11m/10-15w differs in larvae of different seasons $22-24 m 8021-24 m 8416$ $20 m 8524-26 m$, wb Differ in species \& variable in individuals $8811-14 m 1104-7 m$, $8-10 z 111 \quad 10-14 m \quad 114 \quad 6-8 m, 9-11 w$ Virgin Queens 12-15m 115 5u "cetleur" 116 21$24 m 11815 u$ "le plus"/16-19m/w Free Queens feed themselves 144 wt Migration $3 m / u$ "puis Ifemelles" $14524 \rightarrow 146$ 23-24m/w Make roads $15015 u$ "quatre mois", 17-19w 4 months afterwards $22-24 m 1511 u \leftrightarrow, 9-10 m$ $1594 u$ "fourmis" $/ 5-6 u$ "ont ld'armes"/4-6m/w what genus? $7-9 w$ V. Latreille Treatise 165 9-13m 173 17-24m 179 16-19m $1817-8 m$, 15$\begin{array}{lllllll}17 m & 183 & 13-14 m & 186 & 5-9 m & 188 & 9-20 m / 9 u\end{array}$ "les 1 manoeuvres", 20-23m 189 7-12m 192 5-
$8 m 19324 \rightarrow 194$ 4-10m $19524 \rightarrow 1963-6 m$, $8-10 m 201$ wt \times Coverings for Aphides on stems. 8-10m/x 204 19-22m 205 19-21m, 22$24 \mathrm{~m} / \rightarrow 2065-7 \mathrm{~m} 207$ 1-4m 210 13-15m 212 $12 u$ "larvel nymphe" 213 1-5m/2-3w like M 215 2-5m 216 3-6m/4u "indifféremmentlces" $219 \quad 12-13 m \quad 228 \quad 1-4 m / 3 a$ "soin"/wt of the males \& females 229 7-12m/12u "gardent| nid" 230 2-8m 231 14-16m 232 14-17m 233 9-11m, 12-14m 234 1-3m, 8-10m, 15-16m 235 8-9m, 19m, $21 m 239$ 10a "retour" without Booty 10-12m, 17-21m 240 11-12m 241 1-5m, 7-20m $2429 u$ "noir-cendrées"/w F. fusca 14a "mineuses" F. cunicularia 243 20-21m 244 1$4 m, 6-10 m 2457-10 m 2516-11 m, 10-12 m$, 15-16m 252 7-11m/8u "rarity", 18-24m 253 1$4 m, 11-14 m, 17-19 m 254$ 13-16m, 17-19m 255 4-6m, 12-13m 257 12-14m, 15-18m, 23-24m $2593 m, 16-22 m 2708-11 m / w t / 1-15 w$ They must mistake the amazon workers, for males or females, for these are fed by their own workers. $14-15 \mathrm{~m}, 16-18 \mathrm{~m} 27116-17 \mathrm{~m} / 16 u$ "une fois", $24 m \quad 2763-6 m$, 18-20m/w different? 21-22u "que l cendrées", $23 u$ "comme elles" $2773 m, 4 u$ "quelquefois", $5 m / u$ "lal auxiliaires" $/ w$ different $7 \mathrm{~m} / \mathrm{w}$ * What says $8 w$ F $13 x / u$ "certaines I fourmis", $15 u$ "on I troupes", $18-20 m$, wb X it is remarkable any ants preying on \& keeping slaves of same species $27822 u$ "cendrées" $2792 u$ "et 1 captivité", $\Uparrow 3 u$ "assiégées lassiégeantes" $2827-$ $13 m 2836-9 m, 18 u$ "cent lpas" $2842-4 m, 7 m$, 9-10m, 12-14m, 19-22m/19-24u士, 23-24m, wb not due not knowing road $2853-5 m / 4 u$ "fauves", 20u "mineuses"/20-24m, wb F. cunicularia $2863-5 m$, 11u "sanguines 1 roussâtres", 13-16m, 19-22m 297 3-6m/4-10w \& variation in individuals as F . Smith shows $3001-7 m 31010-14 m$ last plate $w \uparrow$

HUBER, Johannes Die Lehre Darwin's München; F. Leutner; 1871 [Down]

NB O/
HUBRECHT, Ambrosius Arnold Willem Studien zur Phylogenie des Nervensystems Amsterdam; Johannes Müller; 1882 [Down, I]

HUC, Evariste Régis Recollections of a journey through Tartary, Thibet and China London; Longman, Brown, Green \& Longmans; 1852 [Down, S]

DIE HÜHNER und Pfauzenzucht in ihren ganzen Umfange Ulm; F. Ebnerschen; 1827 [CUL, pre-B]
dg, fg, gd, he, hy, ig, oo, phy, sp, sx, sy, t, tm, v

NB p1 to 21 Rest Nothing
SB 11 Crested Fowl either wattles or beard, parent no beard easily killed by Hawks: cannot see them for tuft $\&$ can hardly see to eat) Q
12 Breed without Middle long tail feathers NQus
17 Black-boned degenerate in Germany Q $\underbrace{}_{0}$ 20 Hens with spurs NQ

4 wb How many eggs has wild F.? $617-18 u$ "vierzehn" $/ w 14$ tail feathers $9 w b$ (14 kinds with subdivisions) 11 wb The tufted fowls prevent fowls from seeing food \& will grow them, \& be easily killed by Hawks. who ever would have thought that a tuft on head wd determine whether fowl shd be more easily killed by Hawks.-9-12w has either flat-tufted or feather beards $18-20 \mathrm{~m} / \mathrm{Q} \star_{0}, 23-25 w$ Pure breed no wattles 12 wt Some think little wattles because nourishment go to crest -$1-4 m$, $5 u$ "mexikanische" $/ 5-6 w$ all Mexican Hens said to be of this race $14-17 w$ sometimes feather footed \& always rough skin $17 w$ varieties of Tufted Hens $18 u$ "brabantische", $20 u$ "goldfarbige", $22 u$ "Gewöhnlich", $28 w$ Large Birds 32-36w/wb in this \& longtail feathers wanting \& other tail feathers smalier $w b$ I shd think these were Gold \& Silver speckled Hamburghs $1311 m$, $18 u$ "Kolo"/13-23w Long in legs with small Body \& red flesh with ornamental Beak. Like Philippine Hen. $1426 u$ "Steissbeins", wb Tailless hens, shortening of coccyx is the cause $167-10 \mathrm{~m} / 8 \mathrm{w}$ (a) $21-23 \mathrm{~m} / 22 w$ (b) $w b$ (a) In crisp Fowl Hen has no tail!? wb (b) Wooly Hen, black legs \& comb common in China, Japan, \&c 17 wt Black-boned Fowl degenerate in Germany Q屯, 1-2m, 5-9m/w Mongrels intermediate $11 w$ bantams $17-20 w$ naked feet very small $20 w$ do. $21 w$ feathered feet 24-28w Feet very short Belly almost touches ground.- wb Feet wonderfully feathered 18 21-22u "einen ISchwanz"/19-22w Hens from isthmus of Panama 19 5-10w Philippine Hen with excessively short legs, wings scrape ground $11 u$ "Hamburgische", $13-21 w$ Belly \& legs like Velvet very sharp Beak, tuft of feathers over ears Legs \& feet blue with yellow soles. $13 u / w \tau, 24 m, 25 u$ "paduanische", $26-29 w / w b$ is as big again as foregoing double comb \& tuft of feathers Rough Voice 20 wt Bahia Hen race of Padua hen $2 u$ "Persischen IPeguanischen" $\mid 2-6 m / w$ Yet their feathers very late $9 u$ "türkische", 10-11w Beautiful feathers $20 u$ "Sansevarre"/w white

HÜHNER
comb；under other comb．22－23w very big eggs $27-28 w$ Hens spurs like cocks $w b$［l suspect all this copied from some Systematics Book］ $21 w b$ See Linnaeus Syst Nat（my copy）vol II p． 737 for good references Bright \＆Pallas \＆Willughby 3－4w 5 －toed breed spur divided 65 zb

HUMBOLDT，Alexander von Cosmos 2 vols．，trans．E．Sabine；London；Longman， Brown，Green \＆Longmans； 1846 ［Down］ vol． $1 \wp$

HUMBOLDT，Alexander von Essai géo－ gnostique sur le gisement des roches dans les deux hémisphères 2nd edn；Paris \＆ Strasbourg；F．G．Levrault； 1826 ［CUL，pre－B， S］
geo，mi
176 10－13m／11c＂O＂／12m／w E 17－21m，32－ $33 m 326$ 24－26＂．．．＂，28－32m 327 9－12m，14－ $16 m$ ，18－19w A $25-26 \mathrm{~m} / 25 \mathrm{w}$ A $31-32 \mathrm{~m} / \mathrm{w}$ A 328 1－11＂．．．＂， $4-5 \mathrm{~m} / \mathrm{z} / 5 \mathrm{u}$＂grès schisteux＂，6－ $11 \mathrm{~m} / 6 u$＂nids \mid roguous＂$/ 7 u$＂juxtaposition＂$/ 11 u$ ＂rubanée＂， $23 \mathrm{~m} / \mathrm{u}$＂zones parallèles＂／22－24＂．．．＂， $30-33 \mathrm{~m} / \mathrm{w}$ No centre to mine $w b \mathrm{~A}$ ．do． Obsidian nodules no centre 329 1－3m 334 6－ 16 m

HUMBOLDT，Alexander von Fragmens de géologie et de climatologie asiatiques 2 vols．； Paris；Gide，A．Phian Delaforest，Delaunay； 1831 ［CUL，on B，S in both vols．，vol． 2 Chas Darwin Monte Video Novem：1832］
geo，mi，sp，t
vol． 1 NF1 Metaphysics
NB2 Interesting parts begin P．84；The Andes P143
NB1 27；53； 97
NB2 Species theory O／March 57
7 wb Metaphysics 27 14－16m 53 1－8m 74 1－ 20m，wbec $9514-20 \mathrm{~m} 976-17 \mathrm{~m} / 7-8 w$ seems high $13310 c$＂horizontales＂$/ w$ secondaires 137 12c＂amphibole＂／w Diorite $14415 u$＂Teneriffe＂／ w TolimaO
\wp
vol． 2 NB 320；331；March 57 O／
320 12－14m／13w 1200－1500 $327 \mathrm{wtcc}, 13 \mathrm{~m} / \mathrm{u}$ ＂260－270＂，15－16wø 328 15－18md，19－20m 329 8－12m 331 7－13m／10－11u＂d＇un｜la＂｜12a ＂Barrière＂／w 1560 13a＂Mysore＂／w 2400361 wbec 385 10－15m 386 1－20ma $38715 w$ 62d 560 15－19w \uparrow／wb © 621 18－19m

HUMBOLDT，Alexander von Personal narrative of travels to the equinoctial regions of
the New Continent during the years 1799－1804， by Alexander von Humboldt and Aimé Bonpland trans．M．H．Williams， 7 vols．； London；Longman，Hurst，Rees，Orme \＆ Brown；1819－29［CUL，pre－B and on B；vols． 1 and 2 （1822，in one binding），vol．3，3rd edn（1822），vol．4，1st edn（1819），vol．5，1st edn（1821），vol．6，1st edn（1826），vol．7，1st （1829）；I in vol． 1 by Henslow：J．S．Henslow to his friend C．Darwin on his departure from England upon a voyage round the World 21 Septr 1831］［CUL］
af，beh，br，cc，co，cs，ex，fg，gd，geo，gr，ig， is， mg ，mhp，no，oo，se，$s p, s x, s y, t, v$ ，ve， wd
vols． 1 and 2 NB 177， 186
SB
Voll 1 p1
121 top
123 bottom
Abstract at end of last Vol
125 m
195 m
262 b ．The diffusion of volcanic Dust explains diffusion of Lichens．
270 m．－an oak allied to that of Thibet．How transported was acorn－Volcanos show elevation，this subsidence－hence Continent extended nearer．－Pidgeons bring grain to Norfolk－Maize to Arctic America Nutmeg－ Grain like fishes falls in India．（a）
274 －When studying Geograph of Canary Botany look to this part．
〈over〉
（a）Bruce describes East of Nile daily，whole troops regiments of enormous dark glittering ＊pillars of sand，raised by whirlwinds
274．Camels abundant in Fortaventura \＆ vegetation different than from＊other Islands－N．B Numerous wild asses formerly in Fortaventura．Vide Early part of Chapt．
〈line across page〉
2d Vol
p269－Goats； 276 t．－
vol．1， 60 28－30m 61 16－21m $9810 z 171$ 16－ $29 \mathrm{~m} / 19 \mathrm{~m} /$＂．．．＊ $1722 \mathrm{~m} / \ldots$＂．．＂ $19915-16 \mathrm{~m} / \mathrm{w}$ Geology 203 23－24m 205 21－20z 212 10－13m／ w quote on craters of elevation 219 9－11w A 222 11－15m／w A 240 8－12m 262 19－27m
vol．2， $94-20 \mathrm{w} 35^{\circ}$ to 25 or perhaps 30 to 20 called by seamen Horse－Latitude because subject to calms in which horses die for want of water，food \＆are thrown over के 195－9wac 177 wb 6 in year $1867-9 m 187$ 24－26m 207 4－19m 208 9－17m 209 15－19 210 1－6m 213 5－14m 214 19－22w Agrees with
equatorial rise $20-27 m 2174^{\prime \prime} \ldots, 12-27 m$, 28-31.circled 218 4..." 219 21-28m 224 17$21 m 2253-21 m$, 7w February $19 w \star_{0}$ (1797)? 20-21wcc, wb Guadaloupe to Quito 1650 miles in BorneoO Rialza to 53° of Lat $=3180 \mathrm{~m}$ \& $226 w t$ (a) Guadaloupe \& Cumana 400 miles St Vincent to Caraccas * $370-3-11 \mathrm{~m} / \mathrm{w}$ About 400 miles $16-20 \mathrm{~m} /$? 227 12-19m, table.w/wb cc 229 3-16m 269 19-23m
vol. 3 NB1 July 61881 to p417; April 3 1882 finished
NB2 360; 383; 491, 2, 8, 9
SB
14B Allude to this, when saying, the causes of the progress of intellect from Monkeys to Man is inexplicable.
p42. Aug 1872
48. M.
63. note

71 Mr Milne
P. 205 Sleep of Leaves
106. t
227. M \& note. like Indian Castes

229 b. expression thinking
234
360; 383 Q; 491-9 Silla of Caraccas vegetation

48 9-14m, 15-17m 106 6-12m 205 20-28m 227 18-24m 229 19-30m 316 wt 332 25-30z 333 $1 m, 25-29 z 360$ wt Thus man has trained plant to its own destruction.- Nature makes seeds somewhat palatable to ensure dissemination 5-9m 383 wt Birds sing better in one district than in another $5-18 m 491$ 1$13 m 4921-4 m / 3-4 w$ see (a) $49312-20 m / 12 m /$ w (a) $17-18 m, 21-23 m, 23-26 m / w$? do not understand See original $w b$ (a) Have not probably plants migrating from equatorial mountains to both temperate zones \& not vice versâ - $4946 u$ "befaria"/w spec. different $V \times 49711-12 m 4958-13 m, 14-18 m$, 22-26m $4962 m, 5-6 m, 10 m, 12-21 m$, wb a rising mountain, (like isid in midst of sea) affords a station free for seeds to germinate, from other mountains.- We may consider all seeds equally wafted, but their growth in most cases is prevented. $4971-21 \mathrm{~m} / 5 \mathrm{w} \times w b$ The distrib. of alpine plants, (considering elevation) can only be compared to imagining case of new continent. A desert isld has never been found.- $4981-4 m 500 w t$ The Befaria is other species $2 m, 11 m, 15 m$ 520 12-15m, 21m, 22-23m
vol. 4 NB 84,$6 ; 106 ; 111 ; 173 ; 231 ; 333$; 336; 351; 380; 384 Geolog. Cop.; 422;

437; 441; 447; 459; 484; 489; 506
p.466-522 ornamentation by Savages

527 Tears Monkey; 528 - recognizing pictures of insects
5 11-25m 6 3-8m 11 8-16m 20 14-19m 21 1$8 m 2710-14 m / w 630$ miles $2917-20 m 301-$ $18 m / 4-6 w$ with Chimbrazo 32 29-32m 36 13u* "1796", 17u* " 1796 "/w 4.1797 28u/w "1811" ? $181230 u / w{ }^{4} 1811$ " ? 181245 20$29 m 461-15 m 8418-20 m 1061-3 m 111$ 18$21 m 1121-2 m 116 \quad 11-15 m, 12-14 m 17315-$ $21 m 231$ 13-24m 232 8-11m/8w V 246246 2$\begin{array}{llllll}9 m & 333 & 19-24 m & 336 & 18-19 m / u, ~ w b & \text { in }\end{array}$ Paraguay cannot run wild $35129 m 38014$ 17m 384 13-18m/14-15w Like Patagonia 422 15-20m, 18-19m 437 22-30m 441 24-28m 447 18-20m 459 28-30m $46614-17 m, 17-24 m 489$ $11-13 \mathrm{~m}, ~ 16-20 \mathrm{~m} / 17-18 u$ "three \mid tortoises" $/ 20 u$ "thirtylmillions" 490 11-13m, 19-21m 506 1$5 m 5147 u$ "furnishes 1 colour" 515 5-9m 518 17-22m 522 11-16m 527 7-11m, 16-17m, 22$28 m 528$ 23-29m 556 11-28m/15-19u土
vol. 5 NB $79 ; 80 ; 81 ; 98 ; 101 ; 107 ; 110$; 161; 180; 193; 221; 352; 410; 440; 503; 540; 565; 585; 590; 620; 672
17 20-23m 18 15-19m 24 15-17m/w Yes 25 $1-3 m$, 11-13m 26 19-22m 79 3-4m/w like Guanaco 80 18-20m $9813-20 m 10111-14 m$, 19-22m, 24-26m 107 1-4m $11024-28 m /!161$ $17-21 m, 27-30 m 1806-21 m 18126-28 m 183$ $14-17 m 1936-10 m 22124-30 m / w$ \& MD \& p. 225222 1-2m 225 14-19m 352 3-7m 410 2$8 m 440$ 3-14m 454 1-6m, 1-25m 456 2-12m/ $2-5 w$ Chili 457 1-2m 459 1-11m 503 8-16m 540 11-15m/w V p543 541 16-19m 543 5$12 m / 8 u$ "squirrels", $8 u$ "parrots" $/ 9 u$ "macaws"/ $7-8 w$ so dispersed $56510-16 m, 17-20 m 585$ $5-25 \mathrm{~m} / 9-22 w$ good to give idea of number 590 fw To show how animals prey on each other - what a "positive" check. 8-20w Think of death only in Terrestrial Vertebrates $\ddagger w / w t$ Smaller Carnivora - Hawks - What hourly carnage in the magnificent calm picture of Tropical forests. Let him from some pinnacle view one of these Tropical how peaceful \& full of life $23-25 m / w b$ Probably two or three hundred thousand Jaguars in S. America What Slaughter! Daily - \& as many Pumas $62010 u, 12-14 m / w 33 y r 6723-9 m$
vol. 6 NB1 Nothing respect to Species Theory
Granitic areas of Parime p526; p604
NB2 390 Geolog - before any general view \& Patagonia
71 17-32m 73 1-6m, 10-26m 74 4-7m 99 26$30 m 1001-16 m 10119-23 m 10214-30 m$ part 2, contents page $p .391 . m, p .624 . m 409$ wtca,

HUMBOLDT \& BONPLAND
20-29m/".." 411 15-19m 417 1-10m 421 1314? $42216 u$ "Vincamarca", $17-21 \mathrm{~m} /$ "..." 423 16-29m 425 2-8m 441 18-30m 461 1-11m 464 $1-3 m, 19-30 m 46515-18 m 4661-7 m 471$ 17$19 \mathrm{~m} /{ }^{\prime \prime} . . . " 50312-13 \mathrm{w} 300 \mathrm{~m} 60016-22 \mathrm{~m} 504$ $2 a$ " 25,000 "/wt some error $5191-10 m 526$ 15$17 m, 22 w 102023-30 \mathrm{~m} / 26 \mathrm{w} 420527$ 1-8m, $1-18 m / 8-17 m 5297-27 m 531$ 1-16m 532 1$30 m 5331-29 m 5351-18 m 5431-21 m 5792-$ $29 m 5811-5 m 5828-25 m, 22-25 m 5831-12 m$ $5861-5 m 5911-30 m 5921-30 \mathrm{~m} / 1-16 \mathrm{~m} / 11 u / ?$, $19-30 \mathrm{~m} / \mathrm{w}$ I think most decidedly so Either way, but in each spot one direction far more prevalent $5931-3 m, 6-9 w$ not necessarily so, but since appears frequently to happen 17$18 w$ Change as gradual or sudden 19-20m, 28-31m, zb $5941-30 m, 9-10 m 595 \mathrm{zt}, 1-28 \mathrm{~m}$, 16-18m 596 1-29m, 17-25m, wbec 597 1-3m, 8-9wce, 23-28m, wb n. 28604 24-31m, 24$25 m, w b$ p504 25000 square leagues 609 21$25 m 631$ 11-20m (von Buch) 645 13-20m, 20$25^{\prime \prime}$..." 6466-10m
vol. 7 NB 51 - Coral
86 - to $90,291,309,320$
75; 439
SB $\square \beta$
Humboldt Vol. 1
275 - Suggests the former union of Canaries with Mainland Vol. 3. p48 Male animals giving milk
106 The male wh. reasons best
227 good remarks on races of Man, especially in mountains, who do not intermarry with others keeping uniform.
383 Monkeys differ in disposition greatly from certain isld can be tamed easy
360 Birds \& destroy corns owing to goodness of seed.-
492 Violet on Peak of Teneriffe common to Pyrenees
493 Silla of Caraccas has alpine plants of same genus as lowlands
497 On relation of Befaria of Caraccas, are specifically different from those of Bogota
Vol 4 p. 173 Gyrocarpus, one S. America - 1 India - 2 Australia (Has been put into many orders) some have made order for it \& one other genus
p336 wild cattle on Llanos, in relation to Paraguay
422 Alligators males kill each other in loveseason (Ch.6)
489 Turtle \& lay 100-116 eggs.-
Vol 5101 The Pulex penetrans distinguishes a new arriver from Creole
193 On great destruction of Cattle, so that Farmer beggared by Bats, \& those increase
favoured by Drought - lilyO?
352 Birds do migrate in Tropics
410 Near social plants, generally a few stragglers, at least with trees
503 The Colchicum always solitary amongst grasses: allied plants social.
591 Black Jaguar said never to mingle with others (vars keeping distinct
Vol. 6. \& 7 Nothing
51 16-26m/25c "fathoms"/u "20130"/w ??? feet $521-15 m / 8 ? / 8-9 u \leftrightarrow / 9 ? / 11 c / \quad w \notin / Q 25-$ $30 m 5328-31 m 541-25 m, 26-27 m 5526-28 m$ 75 14-17m 87 9-30m 89 3-23m 134 3-34m 291 4-21m 309 4-29m, 27-28m 319 9-21m 320 1-25m, 21-26m 369 13-14m 434 21-25m 439 4-11m 480 1-14m

HUMBOLDT, Alexander von Political essay on the kingdom of New Spain trans. John Black, 2 vols.; New York; I. Riley; 1811 [CUL, pre-B, on B, S Chas Darwin Buenos Ayres]
fo, geo, mi , se
vol. 1 NF Height of town of Lima above Callao. 582ft p25
Fall of R. Magdalena in feet - p 23
an p.63. Elevated Shells
$631-13 m$
vol. 2 NB Tome Saltpeter Concepcion
$2594-9 m, 12-19 m 2616-16 m 3454-6 m$, 33$36 m 346$ 12-20m 347 5-13m

HUMPHREY, George Murray Observations on the limbs of vertebrate animals Cambridge \& London; Macmillan; 1860 [Down, I]
NB O/
HUNT, Robert Researches on light in its chemical relations 2 nd edn; Longman, Brown, Green \& Longmans; 1854 [CUL] cc, gd, hy
NB p. 215 to p. 239 (p. 238 Abstract); p.376; p. 378

217 1-3m (Daubeny), 5-8m/8u "its illuminating" $2261-12 w$ Salt those plants as Silene which have maritime species $13-20 \mathrm{~m} /$ $21-23 m / 24 m / 14-24 w$ one might alternate the glasses $22925-28 \mathrm{~m} / \mathrm{w}$ when $23436-37 \mathrm{~m} 235$ $1-3 m, 14-16 m, 19-23 m 23612-16 m, 32-37 m$, $w b$ This wd do instead of picking off flowers 237 wt Look over annuals \& consider which are easiest raised. Werner looking glass? 7$11 \mathrm{~m}, 10-11 \mathrm{~m} / \mathrm{w}$ (a) 14-20m,15-18m, wb Make Hybrids under red glass. $2389-10 m, 22-36 m$, 23-36m 239 15-16m, 24-26m, 29-32m 376 5$10 \mathrm{~m}, 17-22 \mathrm{~m} 3784-19 \mathrm{~m}$ 379. 27-32m

HUNTER，John Essays and observations on natural history，anatomy，physiology，psychology and geology and
OWEN，Richard The introductory lectures on the Hunterian collection of fossil remains 2 vols．；London；John Van Voorst； 1861 ［CUL］ beh，cs，ct，em，he，phy，sx，tm，v，wd
vol． 1 NB Add to Hubers case－p． 50 Wasps recognizing each other like by ants
Expression 144 Relation of lapping \＆ sucking with form of lips，so as to expose teeth
185 Oxen compared to Cows \＆Bulls of same breeds with respect to neuter males〈line across page〉
Sexual character
－p185 $\rightarrow 236$ Castration of Bull，short curled Hair on face
－ 194 Zebra painted for Ass－very good
245 On split Lizards tail will form 2 tails Pangenesis
267 Expression
Hunter remarks p． 194 male more eager than female p194｜｜＂she requires being courted＂ to give her desires．＂
p236 Description of Eunuch
xiii $3-14 m, 17 m, 34-40 m \times v 8 m, 9-13 m, 24$ $30 m 451-3 m 5027-33 m 1442-14 m 18524$ $29 \mathrm{~m} / \mathrm{w}$ Oxen of Black Cattle larger than male \＆female $42 u$＂and lnot＂ 194 18－20m，22－27m， 28－30m 236 1－12m，14－23m，26u＂his 1 curved＂ 245 20－24m 267 31－32m
8
vol． 2 NB p． 2 Negro small extremities \＆ Head
p． 135 Musk Deer has ruminant stomach in embryological condition
322 Geese crossed with wild
461 Humble－bees 6 or 8 different sizes in Workers
2 20－35m 3 1－7m，14－19m 135 35－38m
HUNTER，John Memoranda on vegetation London；Taylor \＆Francis； 1860 ［CUL，I］ phy
NB 1 proof that＊shoot in same line with trunk does receive more sap than laterals；〈also w by FD〉
117－19m
HUNTER，John The natural history of the human teeth London；J．Johnson； 1778 ［Down， Robert Darwin］

HUOT，Jean Jacques Nicolas Atlas complet du précis de la géographie universelle de Malte－ Brun Paris；Aimé André； 1837 ［Down，ED］

HUSSEY，Mrs Thomas John Illustrations of British mycology London；Reeve，Benham \＆ Reeve； 1849 ［Botany School，S］
HUTCHINSON，W．N．Dog breaking 2nd edn；London；John Murray； 1850 ［CUL，S］ beh，pat，sp，v
NB 24 line on page \＆rather narrower lines Sir B．Brodie
SB1 1β
39 Pointer which not taught wo move round to opposite side of thicket \underline{Q}
46 Retriever killing one Bird to bring other \mathbb{Q} 111 Dog running straight to bring anything dropped \＆not on trail
144 Puppy pointing by self \underline{Q}
279 Different breeds of Dogs more liable to distemper Q
Hutchinson on Dog
SB2 33；39；46；111；143； 279
9 25－26m 33 23－25m，26－28m 39 25－28m 46 $8 u$＂two partridges＂$/ 12-17 \mathrm{~m} /$＂．．．＂， $19-23 \mathrm{~m} /$ 21cॄ／21－22＂．．．＂，1－26w Colquhoon Moor \＆ Lock－exactly parallel case 48 7－12［．．．］，17－ 23［．．．］，wb 231 words 111 10－25m 143 19－ $24 m, 27-31 m 1445-6 m, 10-12 m, 14-16 m 279$ 27－31m，40m

HUTH，Alfred Henry The marriage of near kin London；J．\＆A．Churchill； 1875 ［CUL］ beh，cc，phy，ta，v
SB Ch．VI； 285 with respect to pigs attributes the result to fat．＊； 297 M．Legrain； 302 Reference to Journal
$861-9 m, 7-10 m / 8 u$＂relative ages＂ $1383-6 m$ （Darwin） 142 23－31w animals have no such horror $143 \quad 25-32 m \quad 146 \quad 25-26 w$ oh $152 \quad 20-$ $23 m 15728-31 m 27220-22 w$ began with 300 sheep $24-28 m \quad 274 \quad 17-23 m / 22 u \quad$＂signl degeneration＂ 278 21－32m 280 18－22m 281 13－ $17 m \quad 282 \quad 4-22 m \quad 283 \quad 5-8 m \quad 284 \quad 22-34 w$ differences in different animals like difference of withstanding changed conditions 285 25－ 31m 286 7－15m 291 5－10m 295 1－15m 299 1－ $6 \mathrm{~m} / \mathrm{w} 3$ generations of Brothers \＆sisters 7－ $20 m, 19-22 m 3003-4 m / 3 u$＂fifth generation＂， $27 m / x$ ， $31 u$＂paired＂ $3011-2 m, 14-16 m 3023 u$ ＂sixth＂，7－14m 305 14－18m 307 18－21m 312 23－28m

HUTTON，Thomas The chronology of creation；or，geology and scripture reconciled Calcutta；W．Thacker \＆Co．； 1850 ［CUL］ gd，h，sh
NB 202．
SB1 $\square \beta$
202 case of Shell，which can bear heats of

HUTTON
plain \& ascends above $10,000 \mathrm{ft}$ of Himalaya SB2 202; 408; 407; 410; 413
$202 \quad 25-27 \mathrm{~m} / \mathrm{Q} \quad 407 \quad 6-11 m \quad 408 \quad 1-4 \mathrm{~m} / \mathrm{w}$ antiquity of man $4101-5 m 41310-13 m$

HUXLEY, Thomas Henry American addresses
London; Macmillan; 1877 [Down] \wp
HUXLEY, Thomas Henry The crayfish London; C. Kegan Paul \& Co.; 1880 [Down, I]

gd

NB Good facts in last chapter on Geographical Distribution - Japan \& S Hemisphere \&c \&c
8 1-2m 10 14-15m $1718 m 19$ 21-24m $209-$ $10 \mathrm{~m}, 23-24 \mathrm{~m} 227-9 \mathrm{~m} 3117-18 \mathrm{~m} 3226-27 \mathrm{~m}$ 33 13-14m $357-12 m 3610-12 m 394-6 m 43$ 8-9m, 10-12m $7117 u$ "fibrous tissue" 99 3$8 \mathrm{~m}, 11 \mathrm{a} / \mathrm{c} \neq 12 \mathrm{c} \neq /^{\prime \prime} .$.

HUXLEY, Thomas Henry Critiques and addresses London; Macmillan \& Co,; 1873 [CUL, I]
t
NB1 $\langle b y$ FD \rangle
NB2 287 Material \& formal morality Used
HUXLEY, Thomas Henry Critiques and addresses London; Macmillan \& Co.; 1873 [Down, ED, I to ED]

HUXLEY, Thomas Henry Evidence as to man's place in nature London; Williams \& Norgate; 1863 [CUL, I]
af, beh, em, h, pat, phy, sp, sx, t, tm, v, y
NB \& p. 65 Diameter of H. Ovum
74-73 ribs; p. 110 Owen's quotation
SB1 23 specific characters which man-likes
have in common
24 affinities
27? 26 when possible (Dutch)
X 38 Expression
Boston Journal Nat. Hist. vol IV \& 1867 (he means 1847) Dr Savage (p. 211 Huxley 46 do.)
$\times 48$ Expression picking up 50
49 Polygamous
65 to 119
Look at all scores before writing about man
137 Correlation of frontal sinuses \& strong muscles
144 good reference (p.46)
153

- Reduction of Wise-tooth

SB2 Man $3443 *{ }_{*}$

Species th 40 variability in skulls of * Orang
Read Lubbock - Wallace - Lyell - Prichard - Pickering - LoringO

21 32-36m 23 21-35m/25u "their 1 than" $248 u$ "possess callosities", $10-12 m$, $14 u$ "intol excrescences", 27-30m $261 m 27$ 9-12m/w masculine chants $13-14 m 3315-20 \mathrm{~m} 341-$ $3 m / 1-2 u, 4-7 m 3516-21 m, 27-32 m 3812-$ $13 \mathrm{~m} / \mathrm{w}$ The expressive face of young Orang 32-37m 39 17-19m, 21-24m, 27 m 40 17-22m/ 22-28m/14-28w important as bearing on causes of difference in Man $4132-34 m 43$ 19-21m/w warts? $33-36 m 448-9 m, 15-17 m$ $453-6 m, 30-31 m 461-4 m, 35-36 m$, $w b$ On Chimpanzee p. 21 48 $18-21 \mathrm{~m} / 19-20 u \leftrightarrow, 20-$ $26 \mathrm{~m}, 26-30 \mathrm{~m} / 27 \mathrm{w}$ Expressions $4920 \mathrm{~m} / \mathrm{u}$ "the lsex"/w Polygamous 21-23m/w sexual selection $505 u$ "a yell", 8-12m $527-9 m$, 13$14 m 5916-23 m 6519-29 m, 34-36 m 6719-$ $22 m 70$ 9-12m/1-11w Key-note of Book 2628m/w Africa 74 31-35m $774-7 m 814-7 m 84$ 1-7m, 10-15m 90 25-28m $914 u$ "tol deep", $6 u$ "as 1 man", $18-20 \mathrm{~m}, 19 u$ "alfoot", 29-32m 92 13-16m, fig.w fig. $20931-2 m, 3-7 m, 14-17 m$ $946-9 m, 12-16 m 9511-15 m 1021-6 m 103$ 14-17m $104 \mathrm{zb} 20-25 \mathrm{~m}, 27-32 \mathrm{~m}, \mathrm{zb} 106$ 11$16 m 109$ 18-23m 110 16-19m, 28-37m, 28-30u "conceivel growth", 31u "or 1 degree" 111 1-4m 119 2-7m 137 6-29m $14435-36 m 15313-36 m$, wb Skulls in some races fixed in others variable - Rutimeyer wrong about Orang brachycephalic

HUXLEY, Thomas Henry Hume London; Macmillan \& Co.; 1879 [Down]

HUXLEY, Thomas Henry An introduction to the classification of animals London; John Churchill \& Sons; 1869 [CUL, I]
em, h, phy, rd, sp, sy, t, tm
NB Sp Theory
p. 53 Natural system?

65 - Digit in Fishes
73 Mammary Glands
77 to 85 on Classes
87 Class of Mammalia
93 Placenta - 99
class of 99 Man * Primates
6 wba $5332 u$ "rudimentary" $/ w$ nascent 65 4-8m 73 21-23m 77 25u "Articulata", 26u "Arthropoda" 78 13-14m/13u "Annulosa" 81 $8 u$ "Echinodermatal scolecida", $18-21 \mathrm{~m} / 19 \mathrm{u}$ "Annuloida" 85 29-30wa, 29m, 30-31m/w \& 87 15-18m 88 13-15m 89 1-4m 93 1-10m 994 $10 \mathrm{~m}, 17-19 \mathrm{~m} / 18 \mathrm{u} \leftrightarrow$

HUXLEY, Thomas Henry Our knowledge of the causes of the phenomena of organic nature 6 vols; London; Robert Hardwicke; 1862 [CUL]
00, tm
vol. 1 title page $5-12 m 1619-20 z, 29-32 z 20$ $19 m, 21-26 m / 22 u$ "limits"
vol. 2 NF \langle not $C D\rangle$
3825 m 48 lm
vol. 4 NB Phil 1813
vol. 5 NB1 Fan-tail have tail \& feather fixed in relating points; 111 too strong; 113; 122 very good on Relations of all Beings in struggle of life
NB2 122
$11127-31 m 1138-9 m / 9 u$ "absolutely|one" 115 $2 m 1222-32 m$
vol. 6, $1431 x / u$ "Sanscrit" $1518 m / w$ <not CD), $28 m$

HUXLEY, Thomas Henry Lay sermons, addresses and reviews London; Macmillan \& Co.; 1870 [Down, S]
NB O/
〈other marks by FD>
HUXLEY, Thomas Henry Lectures on the elements of comparative anatomy London; John Churchill \& Sons; 1864 [CUL]
af, fg, phy, tm
NB $15 ; 19 ; 62 ; 69 ; 72$; Character of Fishes Birds; $288\langle b y$ FD ; 140, 143 visceral arches; Have read the last Ch. p. 298
SB \Leftrightarrow
15 Sponges true sexual Process
19 Infusoria do
62,64 Fishes \& Amphibia hardly distinguishable - (good case telling how unlike say a Frog \& Salmon.-)
69 Birds are aberrant Reptiles.
70 Hiatus between Birds \& Mammals.
72 Mammae extreme modification of sebaceous glands-
298 Result on homology of skull compared with Vertebrae
15 29-33m/29w Sponges $194-7 m, 10-12 m 62$ $26-37 m$ 63 1-36m 64 8-16m 69 9-12m 70 35$37 m 72$ 11-15m 75 29-30m/29u "Arthropoda" $7618 u \leftrightarrow 819 u *$ "Coelenterata" $808-13 \mathrm{~m} /$ w Molluscoids $31 u$ "Molluscoida" 140 11$21 m 2891-3 m / 1 c / w \notin / 3 c / w \notin 2982-7 m$

HUXLEY, Thomas Henry A manual of the anatomy of invertebrated animals London; J. \& A. Churchill; 1877 [Down, I, S, FD]

HUXLEY, Thomas Henry A manual of the anatomy of the vertebrated animals London; J. \& A. Churchill; 1871 [CUL, I, S] fo, ig, tm
NB $p 174 ; 248 ; 375 ; 387 ; 461 ; 469 ; 482$; $484 ; 486 ; 491$; excelent abstract of the Anatomy of Apes
SB \propto_{0}
174 gradation in characters of Vertebrata of Amphibians in amphicoelus nature
375 Intermediate types, Hippotamidae
387 Toxodon show how impossible to construct animal from parts of skeleton
461 on outer \& upper incisors some falling out in certain Lemurs - Others permanently have only 2.
76 2-4m 79 zb 115 30-36z 174 22-28m 248 $36-38 m 375$ 32-38m 387 16-25m 409 32-36m 461 35-37m 469 1-3m/3a "Cynomorpha"/wt all - $4827-14 m 48437-39 m 48630-37 m 487$ $18-21 m, 27-37 m 49130-31 m 492$ 12-16m

HUXLEY, Thomas Henry The oceanic hydrozoa London; The Ray Society; 1858 [Down]
NB O/
HUXLEY, Thomas Henry On our knowledge of the causes of the phenomena of organic nature London; Robert Hardwicke; 1863 [Down, $\mathrm{FD}]$

HUXLEY, Thomas Henry Physiography London; Macmillan \& Co.; 1877 [Down] geo
NB 10 variation of compass
10 17-20m
HUXLEY, Thomas Henry Science and culture, and other essays London; Macmillan \& Co.; 1881 [Down]

HUXLEY, Thomas Henry and MARTIN, H.N. A course of practical instruction on elementary biology London; Macmillan \& Co.; 1875 [Botany School, FD]

HYATT, Alpheus The genesis of the Tertiary species of Planorbis at Sceinheim Boston; Boston Society of Natural History; 1880 [Down, I]

INGERSOLL，Ernest The history and present condition of the fishery industries：the oyster industry Washington；Government Printing Office； 1881 ［Down］

L＇INSTITUT：Sciences mathématiques，physiques et naturelles 2 vols．，1ère section； 1837 and 1840 ［CUL］\wp
cc，cs，fg，fo，gd，geo，gr，ig，mi，no，sp，y
vol． 1 SF Paper Boards in volumes； L＇Institut \＆Year on Back
$\mathrm{SB} \square \beta$
255 〈he means 253）Mammales of W．Indies－ a Sorex in Cuba \＆Rodents
285 Blocks of Granite in S．Shetland－proof of S ．Continent
149 wt Humboldt wt Andesite Mexican albitic Trachyte 156a $17-25 \mathrm{~m} \alpha_{0}$ ，17－20m 173 wtes Edwards on Corallines 192b 3－13man 205b 26－38m（Lartet），39－54m 206a 6－17m 243a 2－70m 243b 4－62m（Buffon，Lartet）247b 47－59m 248a 66－71mo 253 wb Cuvier says genus Capromys confined to Cuba West Indies Gervais．253b $20-40 \mathrm{~m}<\mathrm{s} / 34-39 \mathrm{~m}$ 273 wto＜names of various metallic salts found in mines 279 wt Blocks transported on Shetland 283b 35－43m／＂．．．＂297b 51－54m 315 wt $319 \quad 320$ Brongniart fossil vegetation 319b 16－22m 320a $63-69 \mathrm{~m} /$ ？320b $44-51 m$ 321a 8－20m 330b 46－53m＊／48－55m （Ehrenberg）331a $50-62 \mathrm{~m} / 51-61 \mathrm{~m}$ 346a 39－46m， $53 u$＂beaucouplarrondis＂，61u ＂radeaux｜glace＂， $62 u$＂des \mid d＇eau＂ $\mid w$ of facts？ 68－71m，wbo surely a local circumstance 346b 11－15m 367b 27－52m 369 wt Analogy of Molluses with Vertebrata $371 \mathrm{~b} 9 \mathrm{~m} / \mathrm{u}$ ＂centripète＂$/$ ？374a 22－62m 405a＠10－25m 417b 47－70m 418a 1－38m＊
vol． 2 SB 221 Cross of Cerf \＆Axis
274 Bees in Nova Zembla Baer
345 Isopod Crustacea 800 young
408 Prevost has crossed two Ranae，but not toad
49 wt 53 53b 21－31m 57 wt 5884 wt 87 87a 32－35m 101 wt p106 106b 介28－26m，$\uparrow 21-23 m$ 133 wt p137 137a 10－14m／14u＊＂13＂，30－ $32 m$ 143b 40－42m 149 wt p154 \＆ 151 151a 19－22m（Kirschleger）154a 3－6m 157 wt 159 159a 介14－5m 165 wt 169 169b $\quad 11-20 m$ （Wesmael） 173 wt 175 175a $\uparrow m 181$ wt Read 189 wt 193 misprint V．189b 3－4m，8－9m，14－ $16 \mathrm{~m}, 22-24 \mathrm{~m}, 24-26 \mathrm{w}$ just like Plot 29－33m， 35－39m 193b 39－41m 205 wt 207， 211 207a $49-54 m, 62-67 \mathrm{~m} 211 \mathrm{~b} 62-67 \mathrm{~m} 213 \mathrm{wt}, 218$ Geology 218a 33－41m 221 wt p221 221a 43－ $44 m$ 221b 1－3m／3u＂zoologie générale＂（I． Geoffroy） 229 wt 232 232a $28-29 m, 32-35 m$ ，

49－50m，54－57m 233b 16－21m 237 wt 242 Geology 240 242a 4－11m／5u＂lel servant＂ 255 wt 256 256a 13－14m／u＂parlgermes＂ 269 wt 271， 272271 wb Nylgerres？？step to S. Hemisphere wbo I suppose Nylgerries vegetation is analogous to Cordillera according to Humboldt－European genera， species all different geographically （considering revolution in climate）Mountains of Caraccas，further than with European，like the of 271a 59－66m 271b 5－11m，30－50w West indies mountains in relation to Caraccas－Tierra del Fuego：is more connected 53－57m $272 w b$ No doubt M Martins papers on the vegetation of Alpine in Europe o－272a $37-39 m$ 272b $7-12 m$ 274a 34－36m／w Means of crossing plants wb Look in Index for former paper by M Baer on some plants not flowering 274b 9－15m，50－ $70 m$ 275a 10－16m 293 wt 293 293b 5－12m， 19－42m 301 wt p303，p306 303b 14－16m （Martins）／14－19w This author wrote in Bibliotheque Genève 20－23w 2d paper abstracted in L＇Institut 306b 15－18m，27－30m， $47-51 m, 54-47 m, 58-60 m 313$ wt 316 316a $63-68 m$ 321 wt 321 321a $33-37 m$ 322a 42－ $45 m / 43 u$＂nonlPhoque＂，62－65m 329 wt 336 336a 23－27m 345 wt p345 345a 23－25m 381 wt 381 381b 42－43m 389 wt 392， 394 392a 58－60m 394a 58－60m $405 w t$ p408 408a 14－ 17 m
§
437 wt 444 444b 35－58m，61－62m，65－69m
INTERNATIONAL HORTICULTURAL EX－ HIBITION and botanical congress London； Truscott，Son \＆Simmons； 1866 ［Down］ 114 35－39m 115 28－32m 117 30－31m

IRMISCH，Thilo Beiträge zur Biologie und Morphologie der Orchideen Leipzig；Amrosius Abel； 1853 ［CUL］
fg，00，phy，tm
SA＜not CD；pp．78－9；tr of part of fn；then：）
（Compare A Brogniart＇s treatise on these plants ety - ）that however Brown＇s opinion （in which Brogniart agrees with him） according to which the fruitful stamens of Cypriped belong to a different whirl，than does the Stamirodium，
〈over〉
is the one，in accordance with nature－the history of development also most clearly shows．
NB 25．Birds nest not parasite； 78 View of Anther in Cypripedium； 55 Epipogum
vii $39 \mathrm{~m}, 40 \mathrm{~m}$ viii $14 \mathrm{~m}, 26 \mathrm{~m}, 27 \mathrm{~m}, 39 \mathrm{~m} 2223 \mathrm{w}$ R 2536 w not parasite $556-9 m 7844-46 m$

JAEGER，Gustav Die Darwin＇sche Theorie und ihre Stellung zur Moral und Religion Stuttgart；Hoffmann； 1869 ［Linnean Society of London，I］

JAEGER，Gustav Die Darwin＇sche Theorie und ihre Stellung zu Moral und Religion Stuttgart；Julius Hoffmann；n．d．［CUL］
ad，beh，cs，no，oo，sx，v
$\mathrm{SB}\langle$ following from $p .63\rangle \mathrm{X}$ old Black rat with Aegyptian parent，the colour was not originally black－Now the Hanoverian Rat occasionally produce a blue－black var \＆it is said this var is rapidly increasing－so that he believes will sooner or later supplant the common brown var．－This he attributes to much greater difficulty in Cats seeing the black var．in the dark in Houses．－
NF p86 Crossed marked Pig 〈this book only 64pp）
$145-20 m 1620-22 m$＊ $1818-27 m 193-29 m$ 20 3－29m 21 14－26m 39 8－15m（M．Wagner） $\begin{array}{llllll}55 & 4-27 m & 56 & 1-25 m & 58 & 9-23 m / 12-21 w\end{array}$ Measured legs \＆neck of Flamingos \＆P． very variable the long－legged being the more numerous． $23-25 m 59$ 1－13m／w The male chosen or favoured by the female $13-26 \mathrm{~m} / \mathrm{w}$ J ；who has had not much experience with animals，＊states that he has observed a male silver pheasant which＊had been victorious，had been chosen by the female， had its ornamental plumage spoiled \＆＊ immediately his rival got the upper hand \＆ led the flock． $6022-27 m 6324-27 \mathrm{~m} / \mathrm{w} \mathrm{m}_{\mathrm{o}}$ From comparison of $X \rightarrow\langle$ rest on $S B\rangle$

JAEGER，Gustav In Sachen Darwin＇s insbesondere contra Wigand Stuttgart；E． Schweizerbart； 1874 ［CUL］
ad ，beh，br，cc，ch，cs，dv，em，hl，in，mhp， oo，r，sl，sp，ss，sx，tm，ud，v，wd
NB 106 Climbers；243－244 Expression SB1 $\square \Re \subset$
p． 4 to 16 on ammonites \＆c changing in successive strata \＆on variability
p．29．variations which were perpetuated without selection
p．33－39 causes why fruit \＆flowers not made very large by nature，as under cultivation
40．Selection cannot act on embryo，in relation to environment
48．explains how use increases a part．
52．thinks insects feeding on a new kind of plant，wd gain a new odour \＆wd then not cross with other individuals

69 Eggs of silkmoth vary in resisting cold
70．Several pigeons killed by Hawks all white or yellow vars．
86 Higher form can adapt Characters \＆ range further？？
90．In all divergence there is always advance or retrogradation of organisation
114 nictitating membrane a necessary constituent of Eyelids
SB2 〈an apparently unrelated fragment〉
SB3 \rightarrow
on account of view of constant（old）forms \＆ variable forms considers dom．plants \＆©．－ The grainO a fixed form，but many allies－ The－fixed very isolated－Plants wd be best－Is any cultivated \＆variable plant monotypic？
\Leftrightarrow
p69
p102 good nectar
All marked
p243 Expression
p106 Climbers
〈over〉 Many marks；p38
SB4
p． 115 on use of skeleton of Vertebrates its ground－plan．－
p．130－134 Sexual S．use of barb of fishes as exciting organs．
176 to 183 Each new modification necessarily throws back the embryological stages，unless whole evolution is longer－ （not so with insects）
$423-28 m 51-3 m, 1-23 w$ it is a mistake to assume all species variable－Yet domestic $20-24 m, 28-30 \mathrm{~m}, 34-36 \mathrm{~m} 8 \mathrm{23-26m} / 25-26 u$ ＂nämlich variirende＂ $931 \mathrm{~m}, 33-36 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ It may be no selection alsoO $w b$ if all species varied equally all wd be in confusion $105-$ $16 \mathrm{~m} / 7-21 \mathrm{w}$ very false calculations．number of species wd not arise Case like RussiaO 11 $29-36 \mathrm{~m} / \mathrm{w} 2$ periods 1）of plasticity \＆2） invariant 12 wt It is strange all animalsO shd have lost their flexibility at same time $5 u$ ＂Biegsamkeit＂$/ w$ flexibility $14 m, 18-21 \mathrm{~m} / 18-$ $36 w$ if long exposed to same conditions form hardens \＆loses plasticity－how came it so many domestic forms vary．29－30u＂sondern 1 Art＂$/ m, w b$ variation makes the form new \＆ vigorous．This is like effects of crossing（a） $1312-15 \mathrm{~m} / \mathrm{w}$（a） $14 w t$ This is proof that the variable forms have given rise to many species．1－4m $158-14 m, 20 \mathrm{~m}, 26-30 \mathrm{~m} / \mathrm{w}$（a） $w b$（a）Yet Terebratulae very old \＆yet very variable：so Foraminifera $174 m 297-9 w$ without selection $15-18 \mathrm{~m} / \mathrm{w}$ with selection 30 3－12m／？ $3322 u$＂Stiefmütterchen＂ $11-22 w$ Not

JAEGER，CONTRA WIGAND
good soil for many generations－often start from too large fruits－Pang $3425 m 3815-$ $21 m, 27-30 \mathrm{~m} / 24-36 \mathrm{w}$ no naturalist could improve variability in characters not possessed by the forms $394-7 m / 1-5 w / w t$ To make gigantic gooseberry like gourd tissue would have to be allowed \＆roots for supply $406-11 \mathrm{~m} / \mathrm{w}$ cannot act on embryo before Birth relation to external conditions $484 m$ ， 32－35m 49 1－8m／3－5w blood increases in 33－ $36 m \quad 52$ 12－20m／13－24w odour of mint probably easily changed，$\&$ thus wd not pair with old stock． $5329 m 6920-26 m / w$ Eggs varied in their resistance to cold． $7013-17 \mathrm{~m} /$ w struggle between nestlings \＆Caterpillar $21 w$（a）$w b$（a）found several pigeons killed by Hawks \＆all were white or yellow vars！！ $8627-36 m / 14-36 w$ Higher forms can range further can adapt themselves more？ 87 8－ $12 \mathrm{~m} / \mathrm{w}$ extermination only when（？） $885 \mathrm{~m} / 1-$ $8 w$ ．On progressive development $906-9 m$ 921 m 9918 m 102 fw \＆protected from rain \＆evaporation \＆stored for use－\＆saving of Honey from other preyers $22-27 m 1031-5 m$ ， $19-22 m / w$ to decrease number of visiting insects very good $10422-31 m / 8-29 w$ Thinks visitation by insects searching for pollen might cause secretion of Honey－ 106 24－ $28 m / 1-29 w$ Plants growing in shade have thin stems－a character of climbing plants－ no movement of Axes by wind $10710-14 \mathrm{~m} /$ $7-28 w$ Fruits stronger leaves support the plant $1149 m, 18-19 u$＂nothwendigel Augenlider＂， $17-21 \mathrm{~m} / \mathrm{w}$ The nictitating membrane a necessary constituent of Eyelids 115 24－31m／w thinks I am wrong 117 $26-26 m / 29 w$（a）$w b$ Roaring to disturb prey \＆ then to track them？？\＆so with Rattlesnake $13017-24 m 13114-23 m 1331 m, 4-8 m / 7-9 u$ ， $8-30 w$ Thinks males are sacrificed to protect female for good of species？？？32－36m 134 $8-29 w$ Brillian male butterflies decorated to save females，whilst laying？？？ 16323 m 176 wt With each new change－process of evolution necessary thrown backwards－not so with insects $3-11 m, 22-25 m 1831-7 m 190$ $24 m \quad 218$ 10－12m 240 13－18m／w Instinct of Dogs to scratch backwards variable 242 1－ $11 \mathrm{~m} / 2-3 w$ Expression 244 wt good criticism－ an habitual movement implies nervous force －I ought to say nervous force independently of any use $3-4 m, 35 m 24518-19 z$ ， $23 m 246$ $2-27 w$ accuses me of confusing Reflex \＆ partO－voluntary movements 250 17－26m 251 10－19m

JAEGER，Gustav Lehrbuch der allgemeinen Zoologie 2 vols．；Leipzig；1871－78［Down］ 80

JAEGER，Gustav Seuchenfestigkeit und Constitutionskraft Leipzig；Ernst Günther； 1878 ［Down，I］\wp

JAEGER，Gustav Seuchenfestigkeit und Constitutionskraft Leipzig；Ernst Günther； 1878 ［CUL］\wp

JAEGER，Gustav Zoologische Briefe Wien； Wilhelm Braumüller； 1876 ［Down］\wp

JAMES，Constantin $D u$ Darwinisme ou l＇homme－singe Paris；E．Plon \＆Cie．； 1877 ［Down］
$\mathrm{NBO} /$
8
JAMESON，Robert Manual of mineralogy Edinburgh；Archibald Constable \＆Co．； 1821 ［CUL，pre－B，S］
che，geo，mi，se
NF1 Charles Darwin Esq．MD，FRS， ASS？？Member of the Royal Medical Society of Edinburgh Honorary Member of the Royal Plinian Society
NF2 Tusus＊Contrarius Ceriltrum Giganteum
〈u＝mainly colours of rocks etc＞4 $10 w$ is this emitted from the Trap Rocks near Edinburgh $618 w$ is found in the oldest primitive rocks $1022-27 w$ Owes its deliquesance to the Lime \＆Magnesia Blue \＆Red colours are owing to the Iron $1117 w$ Rock salt has never been found in Scotland 177 w Sub Sulphate of Alumina $23 \quad 7-8 w$ Easily distinguished from Marble by yielding to the Nail $w b$ Easily mistaken for Satin Spar but can be distinguished by its softness 28 10－ $11 w$ melts like lce Before the blowpipe $36 u$ ＂rare／w very 29 wt All Alum is not prepared from this Mineral $29 w$ Always associated with Volcanic Rocks $31 u, 35 u$ ，wb＊Fluor－called so from being used as a flux 30．19－20［．．．］， 19－26w False Topaz（\＆according to their respective colour are called false gems．） 31 $10 w$ Chlorophane $321 w$ Phosphate of Alumina wb Phosphate of Lime was formerly thought to belong solely to the Animal Kingdom：\＆after that，it was thought to be an animal formation $34 w b^{*}$ First discovered in Arragon 35 6－18z 〈drawings of crystals〉，wb Fragments of Arragonite will scratch Calcareous Spar． $363 u, 29 u, 30-31 z 372 w$ Iceland Spar 38 20－21w Never contains organic remains 39 wt A block of Statuary Marble values 200－4－11w while marble equal to the Sarian is found in small pieces
in Sutherland $4034 m, w b$ The Break-Water at Plymouth is composed of this rock; \& therefore is much attacked by the Pholas. 41 wt Sometimes this limestone contains fragments of shells such as the Nautilus \&c, \& gives rise to a very beautiful appearance.it is called Fire-Marble 20 w Is supposed by some to be of volcanic origin $21^{*}, w b$ * It is disputed whether this mineral is caused by fusion; or by fragments of a broken strata ejected by the Crater $4218 \mathrm{~m} / \mathrm{z}$, 19-21w Formation of distinct concretions $29 w$ occurs only in Secondary rocks $w b^{*}$ Is only found in very small quantities in Scotland; but is found in great quantity in England 44 1-4w The Flint only occurs in 3 upper deposits $9 w$ The newest of the Secondary Rocks $11 u$, $19 w$ Extends from Flamborough Head down to Sidmouth $20^{*}, 20-21 w$ so-called because it is found emitting through rocks So called from Agaric $453-4 u / w$ in Salisbury Craigs $11-12 w$ does not yield to the Nail.- $31 w$ is continually forming $46 \quad 7-9 w$ generally diverging $32^{*} 4724 w^{*}$ Nearly all Rome is built of a compact Variety of this Mineral 28 30z, 31-33w Formation of the Concretions 48 $31^{*}, w b$ * Easily know by its pearly lustre 49 $24-26 w$ * So called from Lucullus a Roman Consul who proved these sorts of Marble $33 u$ "fetid" $/ w b$ Owing to Sulphurs Hydrogen $w b$ * If the variegated specimen be immersed in weak Muriatic Acid The limestone is dissolved, but the animal matter remains.- $5022 w$ Owes its colours to bituminous matter $26 w$ Often globular 51 19$27 z 52 w b$: It is Carb. of Lime with Alumina \& Silica met with in the Coal Series $5417 w$ also accompanied with Copper Pyrites is called Copper Slate $20-23 w$ Owes its dark colour \& bad smell to animal matter $55 w t$ Extends for a very great distance in Europe \& varies extremely in thickness $5 w$ Magnesian limestone 13-14w Called so from Dolumin a celebrated French Geologist 22$25 w$ is harder \& heavier than limestone 30 w sometimes it is slightly flexible 31-32u $567 u$, $16^{*}, 18 w$ Only occurs in Secondary Rocks wb * The Cathedral Walls of the City of York are built with this mineral $5711 u 5816 u 5916 u$ $6227-28 u 6314-15 w$ The Damascus Steel is supposed from this mineral $29 u$ 70 $1-3 m$, $28 w$ from Dr. Withering $7130 w 2$ also in Shropshire 72 20-21w Something similar to Porcelain Earth easily distinguished by its great Sp. Grav. is called Cawks $7411 w$ is of most common occurrence 77 wb Calcareous. Fluor. Heavy. Spar. often occur together 78 14-18w Alestone looks like some varieties of

Quartz. but of course much softer called so because the first kind that was described was of a blue colour $w b$ (The term Sparry is nearly synonymous to Foliated) $824^{*}, 34$ $35 u, w b$ * Occurs most abundantly in the upper parts of the vein $883 w$ has lately been met with in Brazil 4* 89 wt * Have not I a specimen of this in my Cabinet? wb (Nearly all these Lead Spars are daily forming: thus Spades \&c have been found coated with Carb: of Lead) $9817 w$ Carb: of Copper $1064 w$ to shine $14 w$ Arceniate of Copper $20 u, w b^{*}$ By a late Analysis appears to be Phosphate of Alumina $1077 w$ * Phosphate of Uranium 108 5-9c 114 4-7z 115 $17 w \times$ Phospate of Iron Vivianite $x / z b 1181 u$, $2 u, w b$ Occurs in isolated irregular pieces in different strata.- $1195 w$ Talc is derived from a Japan word meaning Tallow $12 u, 13 u, 18 w$〈Greek〉, $25 u, 26 u$ 120 9-14w Nearly always contains Magnetic Iron Ore $1214-9 w$ often accompanies \& is intermixed with Shockcrystal $24 a / w$ dark copperish $12214 w$ in Calton Hill Arthur Seat Pentland Hills when heated changes into a red which is used as a pigment $26 u / w$ pearly $35 u$, $36 u 123 w t$ Crayons are prepared from produced Talc mixed with the various colouring matters $17 w$ The Chines ornament their walls with ground Talc $w b$ (Rouge is made by extracting the colouring matter from Saffron by Carb. of Potash praecipitated by Acetic Ac. * sediment is well mixed up with powdered Talc) $1242-3 w$ made into Culinary Vessels 12-13w Used for coating Furnaces in Norway $1265 w$ \& in by - Shropshire 127 10u, 14 $15 w$ Case 2nd of the Museum begins here $32 u \quad 128 \quad 18-21 w$ occurs sometimes associated with Volcanic Rocks $35 w^{*}$ from its scaly structure $w b$ very beautiful $1295 w$ rather unfrequent $26 u / w \times$ Foliated Structure $1307 w$ lustre inclining to Metallic $1313 u, 28^{*}$, $w b$ * looks like Bronze 132 15u, 30u/30-31w Copper colour $13312 u, 16 w$ occurs as a constituent of Greenstone $13416 u 13511 u / w$ colouring matter 32-33m 136 20-24w Called so from a Dutch officer who first discovered it in the Cape of Good Hope $\uparrow 6 x / w b \times$ generally botryoid \& internally diverging 138 $17 u, 28 w$ rests upon Calcareous Spar in drusy Cavities $13931 u 1415 u, 6 u / 6-10 w$ named White Garnet generally assuming the form of Garnets $12 u 1422 u /^{*}, 4-6 w$ * The lava generally contains a good deal of Soda. whereas the leucite contains only Potash $22 u 14334-36 w$ The crystals are generally twin placed cross-wise $14712-15 z, 12 u, 16 u$ 148 wb (Supposed Zeolites to be formed by

JAMESON, MINERALOGY
infiltration) $1534 w$ Warellite. Appendix II P333. $9 u / w$ Signifies a Rock $15413 w$ from the mountain Adula 1566 w appears to have suffered heat $22 w$ One of the most abundant minerals in the Crust of the Earth 157 9u, $26-27 w$ contains Soda not like the other Felspars, Potash wb Potash was first detected in the Mineral Kingdom in the Lepidolite 158 I- $2 m / 16 w$ this perhaps ought to be a distinct species $1593-5 w$ Salisbury Craigs * the White variety $1601 u, 2-5 w$ Braid Hills Pentland Hill There must be some 100000 tons of Soda in this rock $23 w$ is met with in the centre of solid granite \& deep in mines $16128-29 w$ For the process of making Porcelain see Jameson's System. $1653 w$ from shining $8-9 w$ The green colour in the secondary rocks of Edinburgh is caused by augite $21 u, 34-35 \mathrm{~m} / \mathrm{w}$ colours owing 167 11$12 w$ from Coccus a grain $17025 u / w$ blended in other rocks Refers to its toughness 2829w contains much less Magnesia than Augite 172 6u, $7 w$ from occurring in Basalt $8 u, 20 w$ Arthurs Seat $27 u, 29 u 1742-3 w$ from a mountain in land $26 u / z 17521-22 w$ is composed of very minute crystals of White Hornblende $1764 w$ mountain leather $12 w$ Hornblende $30 u \quad 17730 w$ from Pistachio green $32 u$ "green" $17833 u 18022 u 1814 w$ Lapis Lazuli. App.II P.317.- $10 w$ from Andalusia in Spain $1826-7 w$ might perhaps used as a substitute for Emery from Saussure. 18-21w Case 3rd of the Museum begins here.- $183 w t$ * Spinel occurs by far most beautifully near Equator $9 w$ * Spinel Ruby 12a, 24u/w Colouring matter 32a/w The most beautiful specimens $w b$ (many gems are composed of Alumina) $w b^{\text {* }}$ The most beautiful specimens was in possession of Josephine $18427 u$, $32 w$ is highly crystallized Alumina $1859 u, 27 u, 33-34 w$ must be distinguished from the Spinel is an uncrystallized Sapphire $186 \quad 3 w$ Chiefly composed of Alumina $10-12 w$ may be supposed to connect Emery \& Sapphire 188 wt I think it not impossible that some time Diamond will be found to be a vegetable secretion $2 u, 3 u, 6 u 18915 * / w b$ * Said by some to have been the universal solvent 190 $\Uparrow 11^{*} / w b$ * when polishing on the wheel it flies into pieces which the true Emerald does not 191 29-30m/30u $19210^{*} / w b^{*}$ Beryl is well described by Pliny $1933-9 w$ is an old Saxon word expressing the disagreeable sound caused by the friction of two pieces of Quartz 194 14*, 17-18z, wb * It is Silica coloured with Iron Manganese $19511 w$ in its upper part 15-19z, 33-34w very rare in

Secondary \& Tertiary rocks wb * in Specimens from Dauphigny have one very large acuminating plane the 5 others being almost evanescent 196 wt sometimes encrusted \& interspersed with Chlorite $8 u$, $10 w$ are distinguished from Topaz by inferior Sp. Grav. \& Hardness 12*, $18 w$ never occurs crystallized $26 w$ Silica coloured by Manganese $w b$ * When put in dry places, exposed to the light looses in a few years looses its colour 197 wt X The massive variety is easily distinguished from all other minerals by its superior hardness 4-5w A flexible variety occurs in Arthurs Seat $21 w$ from its light green colour.- $198 \pi 11^{*} / w b$ * Common Quartz impregnated with Iron 200 $2 w$ wood petrified with Hornstone $w b$ (The Tick tree in Calcutta has been known to form a strong Mineral. like Woodstone) $2018 u / w$ owing to Bituminous matter $12 w$ is often traversed by veins of white Quartz $17^{*}, 18 w$ That variety which is free from veins is used for touchstone $w b^{*}$ by comparing the streak of the pure gold, with that of the specimen essaying 202 wt is of rare occurrence in Scotland owing to the scarceness of Chalk 10-13w The base of pudding of stone in quartz; the concretions flint $13 w$ from Calcedon in Asia Minor 16x, 18u/18-21w where blue is called Sapphirine by the Jewellers $w b \times$ The dendritic variety is called Mocha Stone from a place in India or from a German word signifying moss, this appearance is owing to Iron \& Manganese $2031 x / w t \mathrm{x}$ is mentioned by Pliny as a different mineral $4 u / w$ owing to Nickel $27 w$ from its colour $20414 u / 14-16 w$ The green colour is owing to Green earth $25 w$ origin of name disputed $29 u /^{*} / w b$ * mentioned by Dr Clarke as occurring near Cairo in great plenty $2062 x / w t \times$ Clay long exposed to heat $14-15 w$ is Quartz combined with Alumina $\Uparrow 4 x / z b / w b \times$ some varieties are called EyeStones $207 w b$ (All these Romboidal quartz when heated \& thrown into water, splits in direction of its cleavage) $20831 w$ is daily forming $2106 w$ (minute portions have been found in Scotland 30-31w has lately been found in Mexico \& Faroe Islands 212 23-26w distinguished from Jasper by superior lustre 21310 w in New-Holland 18 w from Menil, a hill near Paris 214 23-24w from Obsidian a Roman 215 5-8m/w Colouring matter \& Carbonaceous matter $16 w$ often imbedded portions of Pearl-stone $25 w$ from its resinous appearance $25 x / w b \times$ black colour owing to Carbonaceous matter $2163 w$ in Arran 218 $7 w$ the crystals resemble the head of an axe
$21926 u, 33^{*} / w b$ * Is Chrysolite in a less perfect form. 220 wt Meteoric Iron often contains a mineral like Chrysolite or Olivine - $12 w$ near Edinburgh - Arthur Seat $13 w$ Borate of Megnesia 29 m , 36w always 221 $15 u / w$ Bubulite $w b$ (Boracic Acid is found in Salisbury Craigs) 222 11w occasionally contains a little Boracic Acid $18 w$ from a village in Saxony. $22427 w$ signifying a Gooseberry $22519 w$ from $\mu \varepsilon \lambda \alpha \sigma$ niger 226 $2^{*} / w t$ * From the different colours it undergoes under the blowpipe 227 wt Many of the Carbuncles of the ancients are garnets: the origin of the name signifying its shining in the dark is erroneous, this word sometimes refers to the Quartz \& Sapphire $2286-7 w$ from its beautiful red colour $18 u$, $25 w$ is called the Bohemian Garnet. 232 25*/ wb * not unlike Hyacinth distinguishes from yielding to the knife $2349 w$ from oxide of Titanium $23622 w$ Oxide of Copper $23830 w$ Oxide of Tin $240 w b$ Distinguished from Tin Ore by its stump being of reddish brown colour; Tin ore having a yellow grey colour 243 1*/wt Streaks yellowish 33w (Streaks a distinguishing character) $w b$ Occurs in Magnesian rocks. such as Talc \& Serpentine.- 244 5-6u, 10u/9-10w The magnetic property only occurs in rocks near the surface.- $31 w$ when pure, affords 70 per cent of Iron 24510 w in Salisbury Craigs 14 $15 u, 28 u, 32 u 246 w t$ (The Magnetic Iron Ore occurs in greater plenty in the North. The Specular in the South) $17-19 w$ occurs in plates in the crevices of Volcanic Rocks. as. Vesuvius $19^{*} / w b$ * distinguished from Mica by the rigidity of the Plates $25018 w$ Hydrate of Iron $18^{*} / w b$ * Makes better Steell than the two former varieties $2547 * / w b$ * is well adapted for making cast Iron $8 w$ is daily forming in boggy places $26328 w$ Occurs in newer formations than the last.- 266 wt formed of crystals; in this mineral. by cubes $2 u, 13 w$ because when struck gives out sparkes $19 w$ Arsenuent of Nickel $2732 x / w t \mathrm{x}$ decays more rapidly than the other varieties $27418 u 275 w t$ does not afford sparks with steel $10 u 2802 w \times$ continues to be formed by aqueous means $289 \quad 24 u \quad 294 \quad 36 w$ associated with Native Arsenic 29529 w along with compact Gypsum 296 wt Every time volcano emits sulphur mostly in form of Vapour.- 298 wt (all the insects inclosed in amber are extinct.) \& different from those now alive $29922 w$ Pitchford \& Coal-Brook, Dale 300 wt The walls of Babylon were cemented by melted Mineral potash $6 u, 19 w$ Mineral Caoutchouck $30118 w$ the remains of
ancient trees.- 30210 w but must be mixed with some connecting matter $30331 w$ common Coal $3045 w$ the most common variety $w b$ Is of older formation than the Browne.- (was formed before Mammalia Aves Amphibia but there existed fishes \& shells) $3058-9 u, 29 x / w b \times$ little Bituminous matter 307 wb The Browne coals when burnt emit a very bad smell The Glance Coals never contain vegetables were formed before vegetables existed 317 14-19w Iron Pyrites is often disseminated in it is then mistaken for gold $23 w$ * Lapis Lazulis has been met with in Vesuvius wb Origin disputed. whether formed. or merely broken fragments.- $333 \quad 6-7 z \quad 337 \quad 22 u / w$ not homogeneous $338 \quad 34-37 z, w b$ a basis including crystals $3395-8 z, 9-11 w$ a basis containing cavities or other foreign substances of an amygdaloidal form 29-30w vid: the secondary rocks of Arthur Seat 32$35 z, w b$ * the grains joined without basis or cement. 340 10-12z, 13-15w A Slaty B Granular 17-21z, 19-20u, 25w of rarer occurrence $26 u / w$ Base granular $31 u / w$ Base slaty $3412-5 z, 11 w$ of frequent occurrence in the Carlton Hill $\quad z b \quad 342 \quad 35^{*} / z b \quad 344 \quad w b$ (Hydrogen \& Nitrogen are emitted in greater quantities in some Volcanic countries) 346 $16-25 z / 25 w$ Hornblende $26 w$ Felspar Syenite wb (Felspar is distinguished from Quartz by its inferior hardness, yielding to knife) 361 $15 w$ These four rocks generally cccur in the order here placed minute scales of Mica 365 $25 w$ according to the formation or is this state of crystallization $36928 w$ so called from its resemblance to the colouring of Serpents- 370 wt a mixture of Marble with Serpentine is called Verde Antique.- wb Magnesia occurs in the greatest quantity in the newer Primitive Rocks as Serpentine 371 29-30w perhaps ought to be considered a variety of pormilica Greenstone $3775 w$ is clayslate with imbedded fragments $6-10 \mathrm{z} 382$ $w b 1$ Old Red Sandstone 2 Mountain Limestone 3 Bed Conglomerate 4 Magnesia Limestone 5 New Red Sandstone 6 Shell Limestone 7 3rd Sandstone formation 8 Oolite 9 (Sand Clay Marl.) Chalk Marl 10 Chalk formation $38310 w 1384 \mathrm{wb}$ It is disputed that this rock is of the primitive series $38533 u 3864 u, 17^{*} / w b$ * Sometimes contains Iron Pyrites, which from its decomposing entirely unfits for building 387 $w t \times$ The Trap in this formation is composed of Augite \& Felspar 10u/x 392 29w $73941 w$ $915 w 339613 w 73985 w 935 w 1039913 w$ $114053 w$ an earthy greenstone $410 w b$
whole substance is removed \& merely a cast remains sometimes it percolated with some Fossil matter \& then it is named petrified.. $5047-11 m, z b 505$ whole page. $z 506$ whole page.z

JAMESON, Robert A treatise on the external, chemical and physical characters of minerals Edinburgh; Archibald Constable \& Co.; 1816 [CUL, on B, S C. Darwin Feb 13th 1826]

JARROLD, Thomas Anthropologia: or, dissertations on the form and colour of man London; Cadell \& Davies; 1808 [CUL, pre-B]
h, tm
NB p.87, 90, 110, 115, 116; 191, 192 freckles; 216 grey eye formerly more common
$3213 c 3315 a 8728-33 m 9015-20 m 9116-$ $18 m 11020-24 m 11520-24 m 11610-14 m 190$ 32-36m 191 1-4m, 24-27m 192 28-32m 216 10-19m

JEFFREYS, Gwyn, and CARPENTER, William Benjamin The 'Valorous' expedition London; Taylor \& Francis; 1876 [Down, I]
NB O/
JENYNS, Leonard Memoir of the Rev. John Stevens Henslow London; John Van Voorst; 1862 [Down, I]
 $7 w$ B 7-9[...]

JENYNS, Leonard Observations in meteorology London; John Van Voorst; 1858 [Down, I] \wp

JENYNS, Leonard Observations in natural history London; John Van Voorst; 1846 [CUL, I]
beh, em, ex, gd, h, mn, no, oo, tm, v, wd, y
SB1
Introduction good writing
Squirrel eating little galls
Variation
Like your remarks on givens - on statistics p. 162 Martins (1)
210. Cy) \& some Carabus
p313 Mem breaking leg
p315 Planaria (land species)
Barometer Brit. Assoc. ψ_{0}
〈over〉 38; 51 to 60; 76; 100; 108 \&c; 114; 131; 137; 147; 150; 162; 168; 188; 210; 221; 216; 266; 278; 290 Arachnidae do not undergo any such metamorphosis; 318; 321; 324

SB2 38 Birds using NQ material at hand \& adapting nest to situation
54 One cat rejoicing in Bat, another indifferent to it Ch.6.
Polecat devouring Eels p. 55 some parallel facts. Rooks p. 150 feeding on Fish p147 on Eggs
78 Rabbits with incisors grown very long Monstrosities Ch 5
100 Pheasant betraying place of roost \underline{Q} by screaming (mistake of instinct) * Hen Clucking on Egg
107 On destruction of Rooks \& Sparrows \& yet no diminution Ch. 5
114 Destruction does not fall on very young Birds Ch. 5
137 Abnormal NQ nest of long-tailed tit.
162 Caged Birds carrying bits of thread \& stick in Beak Q a_{0}
168 Increase of turtle Doves since 1823.
212 Abnormal Gold Fishes
278 Flies hatched in gentlemans intestines.
318 On sudden great increase in Water Shells. Ch. 5
321 Ransome case of cistern with molluscs
324 On difference in habits in closely allied Pisidiums.
38 31-32m/32u "Bolton's Harmonia" 51 18$23 m 549-11 m, 26-27 m 5519-21 m 5629 m 60$ $1-3 \mathrm{~m} / 2 \mathrm{u}$ "rare" 64 18-19m 76 18-20m 100 9$11 \mathrm{~m} 10717-21 \mathrm{~m} 1081-12 m, 16-19 \mathrm{~m} 1093-$ $8 m, 13-23 m, 24-25 m, 26-31 m$ (Wagner) 110 29-32m 114 26-30m 115 5-18m, 23-27m, 28$30 \rightarrow 1168-13 m 1172-3 m, 6-7 m 1313-5 \mathrm{~m} / \mathrm{w}$ V. p. 134134 7-9m, 19-20m 137 15-18m/w unusual? 147 14-17m, 23-27m $15010-12 m$ 162 2-9m/Q 163 7-19m 168 6-12m 187 19$26 m 210$ 24-26m 211 11-12m, 15-19m, 32m 212 1-8m 213 1-9m, 17-22m, 30-32m 216 16$19 m 21724-25 m 2213-7 m 26612-15 m 267$ 15-16m 278 15-16m $27925-27 \mathrm{~m} 29021-23 \mathrm{~m}$ 318 8-12m 319 9-11m, 21-22m 321 13-17m 324 4-7m
$\langle p .329$ ff., markings presumed not by $C D$ 〉
JEVONS, W. Stanley Elementary lessons in logic London; Macmillan \& Co.; 1881 [Down]

JOHNSON, Samuel A dictionary of the English language london; C. \& J. Rivington; 1826 [CUL, pre-B]
JOHNSON, Samuel W. How crops grow London; Macmillan \& Co.; 1869 [Down, FD]
JOHNSTON, George The natural history of the eastern borders: vol. 1 botany London; John Van Voorst; 1853 [Down]

JONES, John Matthew The naturalist in Bermuda London; Reeves \& Turner; 1859 [CUL]
beh, cc, fg, gd, geo, is, mg, mm, oo, sp, ta, tm, wd

SB $\square \beta$,

Jones' Bermuda
ix Sea-Birds tame on discovery of Isd x Hogs run wild \& swarmed p.1. 3 mice p12 At discovery 1609 no rats \& mice
12 to 16 to On migrations of Bats occasional (like Birds)
27 to 84 Migrations of Birds (p174 Blank season)
30 European Lark killed in Bermuda! p45 Land-Rail do
43 variation in tail-feathers in Snipes
67 case of wanderers of same species as resident
70 case of enormous migrations 72 do
76 probable rate of flight in Plover during migrations 30-35 miles per hour
98 Scincus no Batrachians
115 Honey-bee perhaps Apis caffra
121 Only 3 nocturnal Lepidoptera
133 Antigua Orange-trees all destroyed by coccus p. 117 Ants very destructive to Rabbit Poultry
172 Imported poultry all die
190 Sapindus saponaria not growing in foreign Gardens, raised from sea-drifted seeds.- - Gulf Stream occasionally wanders from course \& brings timbers to Bermuda
191 At Azores trees torn up by roots \& 2 dead were washed ashore (See Bate)

SB2 ${ }^{*}$

ix; x in 1609; 11,2 Bats; 12; 27 to 38; Read to 66 to end; p190
No peculiar Birds; good
Audubons flight across Bays cutting off distance explains case.-
vii $4-6 m$ ix $23-26 m \times 4-7 m$ 11 $5 u$ "exception 1 domestic" $/ 5-7 m \quad 12$ 11-14m, 19$22 m, 26 u \pm, 27-31 m 139-13 m, 17-18 m, 26-$ $31 m 154-6 m, 12-15 m, 18-21 m, 28-30 m 16$ 20-22m 27 4-8m, 24-27m $2825-30 \mathrm{~m} 293-9 m$, 8-11m $3010-15 m 3317-20 \mathrm{~m}$, 23-26m 34 10$28 m 3514-18 m 3622-26 m 4122-25 m$, 27$\begin{array}{llllll}29 m & 42 & 9-13 m & 43 & 4-5 m, & 12-15 m / w\end{array}$ S. Brobsinio 44 1-4m, 7-10m, 19-26m 45 7$14 m, 19-22 m 4629-31 m 6227-30 m 655-7 m$ $6628-31 \mathrm{~m} 67$ 2-7m, 10-14m, 17-20m/18w imitation $22 u$ "flock"/?, 25-29m/26x< 6814 $16 \mathrm{~m}, 19-20 \mathrm{~m}, 24-26 \mathrm{~m} 694-7 \mathrm{~m}, 24-28 \mathrm{~m} 703-$ $6 m 725-8 m, 15-19 m 734-9 m 7427-31 m 75$ $22-25 \mathrm{~m}, ~ 29-31 \mathrm{~m} 76 \quad 15-16 \mathrm{~m}, ~ 30-31 \mathrm{~m} / 31 \mathrm{u}$ "moderate 1 thirty" 77 8-9m 80 17-21m 81 22-

JONES
$23 m / w$ go to Jamaica $8230-31 m 8412-17 m$ $986-8 m, 25-26 m 1151-4 m 117$ 7－10m 121 20－21m 133 20－26m 172 16－28m 174 2－8m $1904-6 \mathrm{~m}, 9 \mathrm{u}$＂pine timber＂， $11 u$＂mahogany＂， 29－31m $1914-8 m$

JOURNAL OF A HORTICULTURAL TOUR through some parts of Flanders，Holland and the north of France in the autumn of 1817 Edinburgh；Bell \＆Bradfute；1823；London； Longman，Hurst，Rees，Orme \＆Brown ［CUL］
ch，fg，he，hy，spo，ta，v
NB $25,48,84 ; 67,8 ; 107 ; 134-$ ；178；185； 193，5；205；293，5；308；328；331；363；419； 423；459；470，72；495，6； 538 Don on Elms SB $\square \beta$
107 Purple Beech Hereditary
185 out of 1000 seedlings $1 / 2$ dozen good Hyacinths \＆Tulips is reckoned good
196 on the rearing of Tulips，certain whole classes have come a certain Breeder，I may say even in most sportive plants，more hereditariness than generally supposed
293 Brussels Sprout has been true for 400 years 295 a sub－var rendered true
459 Paradise \＆Doucin original dwarf vars of Apples
495 The varin Lilac Hybrid between common \＆Persian
$257-13 m 48 \quad 12-16 m 67 \quad 3-7 m / w t$ Weeping Cherry mentioned before $6813-16 \mathrm{~m} 8413-$ $15 m 107 \Uparrow 9-6 m 134 \Uparrow 15-10 m 178 \Uparrow 5-3 m 185$介15－13m 193 介16m／u＂J．B．Sickler＂ 195 2－4m／ $u \pm, \Uparrow 2 \mathrm{~m} / \mathrm{u}$＂Alexplained＂ 196 1－3m，8－13m， 15－17u士，18－21m，介11－5m 205 10－15m 293 $\Uparrow 12-11 m 295 \Uparrow 15-13 m, \Uparrow 4-1 m / \Uparrow 4 u$＂only most＂ 308 介11－10m $3095-10 \mathrm{~m}, ~ \uparrow 15-12 \mathrm{~m} / \uparrow 13-$ $12 u$＂proving｜bad＂ 328 $\uparrow 6-4 m / \Uparrow 6 u$＂P． 1 Corsica＂ $331 \Uparrow 10 \mathrm{~m} / \mathrm{wb}$ will here probably treat of change of seed $3631-2 m 419$ 112－2m／ $\Uparrow 12 u$＂Salix｜revolutis＂ 423 1－3m，6－8m 459 $\Uparrow 6-3 m, \Uparrow 2-1 m 470 \Uparrow 2-1 m 4724-5 m, 14-15 m$ ， $\Uparrow 7-6 \mathrm{~m} / \mathrm{u}$＂seventy＂，$\uparrow 2-1 \mathrm{~m} 4736 \mathrm{~m} / \mathrm{u}$＂ 130 ＂， $\Uparrow 7 \mathrm{~m} / \mathrm{u}$＂forty＂ 495 $\uparrow 2-1 \mathrm{~m} 496$ 10－12m 538 10－ 17 m

JOUVENCEL，Paul de Genèse selon la science． La Vie Paris；Garnier Frères； 1859 ［CUL］
he，hl，hy
NB 99 highness \＆lowness；p283－see Isidore Polydactylism Two cases of mules given with polydactyl Hoof－can this be reversion？
Isidore Geoffroy $1 / 691$ gives several cases －in pure Horse－so facts nothing $9920-23 m 28320-27 m$

JUAN Y SANTACILLA，Jorge and ULLOA， Antonio de A voyage to South America trans． John Adams，4th edn；London；John Stockdale \＆c．； 1806 ［CUL，vol． 1 only，on B， I by FitzRoy］
beh，gd， 00
NB 9－20
\bigcirc Journal 17.1826
〈untranscribed w apparently not $C D$ 〉
iii $11 u$＂is 1 remain＂vi wbec $217 m 24<6-7 m$ $25<2 m 26 \Leftrightarrow 17 m, 27 m 27<23 m, 35 m 28$ 25－33w 29 ＊ $4 \mathrm{~m}, 12-13 \mathrm{~m}, 15-16 \mathrm{~m}, 31 \mathrm{~m} 30 \propto_{0}$ $6 m 31<9 m 32<4-5 m 33<20 m 35<6$－ $7 \mathrm{~m}, 17-18 \mathrm{~m} 36<6 \mathrm{~m}, ~ 13-14 \mathrm{~m}, ~ 17-18 \mathrm{~m} 39$ 风 $9 m, 27 m 40 \not 23-26 m 445-17 w 5217-21 m$ ， $31-32 m 5314-16 m 5414-18 m 556-8 m$ ，9－ $11 m, 17-18 m 561-2 m 5716-33 w 5835-36 m$ $59 \quad 1-23 \mathrm{~m} \quad 60 \quad 31-36 \mathrm{~m} 61 \quad 1-5 \mathrm{~m}, ~ 14-29 \mathrm{~m} / \mathrm{w}$ snakes in Jamaica $621-21 m 631-6 m, 9-18 m$ $6423-25 w$ Jigger Chigoe $6524 m$ ，wb exaggeration of pain caused by insect sting in Carthagena 66 14－24w 67 24－37m 68 10－ $24 m 6919 m 715-9 m, w b$ Thinks mistake They have only one crop in year $7211 m$ ， $26 w$ Pineapple $744 m, 7-30 m$ ，$w b$ Some description as to planting and mode of gathering is necessary $7713-18 m 9226-$ 27m／w， $28 u$＂The｜irregular＂，30－32w 97 17w $12327 \mathrm{~m}, 28-30 \mathrm{~m} 13219 w-255 \mathrm{wtec} 277$ 29－39m 278 ＜ $2-34 m, 26-27 m$

JUDD，John Wesley Volcanoes London；C． Kegan Paul； 1881 ［Down，I］
se，ve
NB Volcanoes along coasts，greatest pressure Fissures due to general elevation

JUKES，Joseph Beete General report of the geological survey of Newfoundland London， 1843 ［CUL．1900］［I］
geo
NB p． 130 cleavage
143 Boulders
145 rest on clay \＆c
130 介6－2m 143 10－14m 145 5－9m
JUKES，Joseph Beete The student＇s manual of geology Edinburgh；Adam \＆Charles Black； 1857 ［CUL］
fo，gd，geo，hl，ir，sp，t，ti，tm
NB p160 to 165
SB \square 亿
p160 to 165 on interruptions to Deposition
177 on length of time of Deposit
254 good remark on Denudation
275 Denudation－some very ancient
antiquity world
317 Littorina bright colours in Tropics dark in north
321 - generic areas inexplicable
387 on breaks in resurgence of fossils \& formations
388 foundations not strictly contemporaneous before \&c
389 law of succession same at all times 390
391 imperfection of record
393 Higher groups as well as species more limited in time
395 - one fossil in extreme Arctic Regions
399 do $x \rightarrow\langle$ to 388\rangle

- 489 to 503; 565

489 breaks in 3 stages of Purbeck
503 Breaks in succession $\rightarrow\langle$ to 399\rangle
565 on antiquity of world
160 23-27m 161 18-21m 162 35-40m (Emmon) $1638-13 m, 23-25 m \quad 164 \quad 19-23 m, 26-29 m$, $27-39 m, 30-39 m, 10-39 w$ This is strongly supported p167, 168 by small area of most beds 165 11-14m, 27-32m 177 30-35m 254 $13-24 m 27516-24 m 317 \quad 26-38 m 321 \quad 21-25 m$ 387 1-4m, 15-20m $388 \quad 36-45 m \quad 389 \quad 26-30 m$ 390 31-35m $39123-26 m, 37-40 m$ (Owen) 393 $10-19 m 39531-38 m 3994-12 m 489 \quad 29-34 m$ $5031-10 m 5658-18 m, 21-30 m$

JUKES, Joseph Beete The student's manual of geology Edinburgh; Adam \& Charles Black; 1862 [Down, I]

NB 414; 402
Begin \& read at p425
414 22-29m, 29-31m 415 40-44m (Owen) 416 14-29m 444 fig.w Crust Plant Pol

JUKES, Joseph Beete, DE LA BECHE, Henry, SMITH, Warington W. and HUNT, Robert Record of the School of Mines vol. 1, part 2; London; Longman, Brown, Green \& Longmans; 1853 [Down, I by Jukes] \wp

KASPARY, Joachim Natural laws; or the infallible criterion London; J.A. Brook \& Co.; 1876 [Down, I]

KATER, Henry, and LARDNER, Dionysus Mechanics (Lardner's Cabinet cyclopaedia) London; Longman, Rees, Orme, Brown \& Green; 1830 [CUL, on B]
NF 〈lists of volumes in Lardner's Cabinet cyclopaedia>

KEIR, James Sketch of the life of James Keir London; R.E. Taylor (printed for private circulation); 1859 [Down, I by editor]

KERNER, Anton Joseph Die Cultur der Alpenpflanzen Innsbruck; Verlag der Wagner'schen Universität; 1864 [CUL] gd, sp, 00, v

NB $\mathrm{p} 2, \mathrm{p} 20$ laws of variation
p42 - On slips \& other situations; Alpine plants long hold their places of lower land p52 - species which are swamp plants on the plains, not so higher up p139 feeding of Alpine plants \underline{Q}
vii $4-8 m, 19-22 m$ viii $7-15 m$ ix $18-24 m 211-$ $18 m, 19-27 m 2017-22 m 4221-31 m / 5-30 w$ On slips \&c alpine plants hold their place occupancy $5211-12 m, 23-29 m / 13-32 w$ are swamp plants on plains \& not so on mountains.-139 5-10m

KERNER, Anton Joseph Flowers and their unbidden guests trans. W. Ogle, with a prefatory letter by Charles Darwin; London; C. Kegan Paul \& Co.; 1878 [CUL, S]
ad, che, phy
NB Use of every Part - 6
p. 136 Oxalate of Lime discharged from edges of leaves
p141 * adaptation never a direct one
SB $\square \beta$

* / How can this be reconciled with the facts
as they stand in the case of polygonum amphibiani?
$611-21 m 720-26 m 12921 x, w b$ pollen flower 136 1-5m 141 19-25m
8
KEY, Axel, and RETZIUS, Gustaf Studien in der Anatomie des Nervensystems und des Bindegewes 2 vols.; Stockholm; CentralTryckeriet; 1875-1876 [Down, I by Retzius]

KIDD, William The canary London; Groombridge \& Sons; n.d. [CUL]
tm, y

KIDD
NB $p 10$
SB \quad Q 18 Prize canaries have black wings \& tails only till 1st month
$1020-23 m 1214-18 m 1331 m 147-9 m 188-$ 15m/11-12Q/16-18Q 19-22m, 23-25Q 25-27m/ $25 u$ "Albirds"

DAS KIND: Tagebuch eines Vaters 2nd edn; Leipzig; H. Hartung \& Sohn; 1876 [CUL, I] beh, y
NB 7 knowing; 121 blushing; 147 one year old; 68,9 6 months
$72-3 m 8910 m 12126-27 m / 27 u$ "Sie|roth"
KIRBY, William Monographia apum angliae 2 vols.; Ipswich; J. Raw; 1802 [CUL, pre-B] beh, oo, sp, sx, v
vol. $1 \mathrm{NB} Q \mathrm{Q} .47$ has been stung by Ichneumon; p200 males \& females of Bees; p.4; p.204; p. 40 palpi * differing in one genus
$40 \quad 13-16 m \quad 47 \quad 3-5 m \quad 200 \quad 21-30 m / 24 u$ "females" $\mid 25 u$ "neuters" 204 22-27m
vol. 2, $38715 \mathrm{~m} / \mathrm{w}$ read $3887-8 \mathrm{~m}$ plates z
KIRBY, William and SPENCE, William An introduction to entomology 3rd edn, vol. 1 (1818); 2nd edn, vol. 2 (1818); 1st edn, vols 3 \& 4 (1826); London; Longman, Hurst, Rees, Orme \& Brown [CUL, pre-B]
ad, beh, br, cc, che, fg, he, hl, ig, in, mg, mhp, no, oo, phy, rd, sl, sp, sx, t, ta, tm, ud, v, y
vol. 1 NB1 Reaumur's work ought to be read
Are there any instances serving the parent itself which come into play, after period of propagation, connected with death, making a place to die in - such as cats going into holes, because these cannot be acquired by habits \& then transmitted, they must be consequences of some previous habit wasps killing their young in autumn at first appear so, but then perhaps some of the old murderous wasps survive.- As neuters are sometimes converted into Queens \& then breed my argument * against instinct arising from habit, is not perfect.- are neuters of ants ever converted? The instincts of neuters, probably same with those of females of same species anciently
NB2 136; 148; 153; 166; 171; 176; 179; 192, 194, 199, 201, 203**, 4, 9; 230; 270; 272; 293 to 98 insect impregn; 322; 332; 336; 357; $361 ; 371$ to $4 ; 76$ to $82 ; 386 ; 390$; 399; 402; 435; 442; 448; 459; 472; 474; 476; 78; 492; 98; 500; 505

NB3 496 on manner in which Bees form their cells
p293 Capital references about all Plants which catch insects
SB1 ${ }^{-1}$
165 There are in Hives Bees called corsairs idlers Q
179 Seed of Clover Crops almost destroyed by Apions.
192 Cucumbers not injured by insects in England but much in America
203, 230 on artificial substances - p386 390; Cases of foreign fruits in England \& America injured by insects, so changes in Habit
203 - Nectarine destroyed by insects in America \& not Peach - selection wd act on a trifle Ch. 6.
357 Q good relation ichneumon with long ovipositor laying eggs in larvae in fir-cone
371 Q Female ant first takes charge of nest (but I presume is never soldier \&c)
274 Q Mother wasps, several in nest take charge of young
380 Q Humble Bees
382 Case of reason in Bees Q
391 Q When insect has fed on one sort of plant will die rather than change \underline{Q}
435 Q Ant-Lion \& Fly making same sort of trap for catching prey.
459, 461 Q Q Remarkable instincts 474
478 NQ Caterpillars social in early stages remarkable fact
492. Musc \& wax making Bees - former do secrete little Honey - (ant which secretes sweet juice in Westwood
to 504 Q Bees. Nothing particular for me in Instincts
SB2 $\square \Re$ Vol I
p382 * Bees supporting comb till pillars built

- W. White about snail pulling them at L' (ie at right-angles \rangle to extract themselves
- p391 about changes of food Q*
- p435 Ant-Lion \& Fly same sort of trap Cuckoo \& Molothus
459-461 Tineae cutting leaves to Pattern
- \star_{0} Sentence about comb each part depending on what has gone before
380 Workers destroying eggs of Queen Humbles, Spider
$13625-26 m$, wb We can thus see how Oestrus acquired instinct of depositing eggs to be licked up. 148 9-11m, $10-13 \mathrm{~m} / \mathrm{w}$ What use is to Coleopters? $153 \quad 20-22 m 1653-5 m$ 166 29-31m 171 $26-28 m, 29-31 m / 30 u \leftrightarrow 176$ 26-28m 179 6-17m/7ua/9u. "purple"/13u^/14u
"Dutch 1 clover" 192 27-28m 194 4-6m/m 196 19-21m $199 \quad 2-11 m / 3 u$ "some। Germany"/10$11 u$ "fortunately|us"/6w Why $20112-13 \mathrm{~m} / 13 u$ "1787", 21-22u "tolstreet" 202 14-16m/14 $15 u$ "are lempire" 203 wt change of instincts $4-5 u$ "which Ifruit" $3-8 w$ curious considering not aboriginal fruits $11-14 m / 14 u$ "fruit unripe", $17-22 \mathrm{~m}, 30-32 \mathrm{~m} / \mathrm{w}$ yet only varieties 204 22-28m/23u "datelthe" 209 14-15m 230 $1-6 m, 7-10 m 255$ 10-18m 270 12-18m, 22$27 m 272$ 3-7m 293 14-18m (Barton), 22-30m, 31-33m 294 18-20m, 25-32m/27u "rich soil" $2951-7 m, 28-30 m 29615-27 m 297$ 4-23m 298 $9-10 m, 30-33 m 2999-12 m, 26 m, 28-31 m / 29 u$ "Mordellae" $32122 u$ "perennial knawel", $23 u$ "in 1 country" $3321-3 m, 27 m, 29-30 m 333$ 3$13 m, 32 m$ (Humboldt \mathcal{E} Bonpland) $3361-3 m$ 337 6-10m 357 12-20m $3614-6 m$, 14-16m 371 $27-29 m 372$ 9-10m 374 14-16m 376 19-22m, 20-21m $37814 m 3797 x, 8 u$ "drones 1 workers", $16 x 3801-4 m, 8-11 m, 9-15 m / 9-10 u$ "mayl bounds", $15-17 w$ useless instinct $w b$. This instinct coming into play, only $3826-9 m, 12-$ $13 m, 19-23 m, 22-24 m 38616-17 m$, 18w V. p. $3903902 u$ "the 1 purpose", 1-3!, 1-6m (Réaumur), 5-6m, $23 m$, $25 m 3916-9 m /{ }^{\prime \prime} .$. "/ $7 c \notin, 18-19 m 39918-19 \mathrm{~m} / \mathrm{w}$ useless 402 11$16 m 435 \quad 2-4 m / 2-11 w$ very singular not inherited from same parent stock $44215-19 m$ 448 25-32m $45210-17 m / 16-17 u \leftrightarrow, 27-31 m$ 453 10-15m, 21-23m $45430-31 m 455$ 15-19m, $21 u$ "flowers", $22-25 m / 24 u$ "flowers" 456 9$11 m, 10-16 m / 10 u$ "A. Pini" 459 20-27m/21$22 w$ V $4644611-4 m 472$ 8-13m 474 6-9m $4763-5 m, 7-24 m 47813-14 m / 12-17 w$ This is remarkable contrast with parents instincts 485 4-6m 486 1-2m 487 6-8m 491 5-6m, 10$11 m 49210-11 X / 11-16 m$, $w b \leqslant \mathrm{X}$ The Humbles who make pillars of wax shows adaptation of instinct to circumstances 493 $2-4 m / w$ gradation $Q e_{0}, w b$ It is analogous to difference accompanying age or sex attached to something unknown - being produced contemporaneously is novelty 494 15-16X/4-28w Humbles all secrete a viscid fluid to unite various substances 49519 m , $22-25 m / 24 u \leftrightarrow 496 w t / 1-8 w$ Ants work by hollowing clay \& wood out, same principle V. ante $3-9 m, 10-17 m, 20-22 m 4972-8 m$, 29$31 m 49816-22 m, 23-24 m, 24-27 m / 24 u$ "butl successive", 25m, 28-30m 499 11-16m, 20-24m 29w Habit $30-32 m 50018-23 m, 27-32 m 501$ $25-32 m 502$ 2-4m 503 12-14m 504 21-23m/ $22 u$ "thin \mid purpose", 31u "irregular|placed" 505 1-2u "connected 1 wax", $3 u$ "pale| bodies", $7 u$ "orallmight", 15-16u "flattened ldimensions", $20-21 \mathrm{~m} / 20 u$ "the cells" $21 u$ "female", 26-31m, $28 u$ "goblet-like", 29-31m, $30 u$
"chiefly", 32m 506 3-4m, 5-6m 507 10u "hexagonal" $5087 u$ "but 1 convex", 26-29m 510 1-3m 512 25-26m, 29m
vol. 2 NB1 1 think Kirby considers Bees converting * Neuters into female \& Ants taking prisoners, as the most wonderful instincts
NB2 p. 119 Bees boring holes, p. 523 references on ditto
Linn Trans Vol VI p222 Huber says he has seen large Humble bees try to enter "fêves" \& failing bite hole in corolla, whilst smaller Humbles entered the corolla - He has seen them bite the tubes of "l'ancolie" The seed * pods of the fêves were not injured.-
NB3 p395 Beetle Pneum
SB1 Kirby. Vol 2-
$12 ; 22 ; 30$ to $5 ; 51,58 ; 68$ to $100 ; 108$ to 119; 125 to 216; 220 to 241; 267; 288; 302; $421 ; 459 ; 468$ to end of Vol
SB2 $\square \beta$
12 Q Emigrating insects not usually social makes case odder
31 Bees, Wasps \& Ants, one female lays foundation. How in Termites p35 they seem never to work \underline{Q} (Full account of Societies of Ants \& Bees \&c
35 Termites contend for the females
74 Q Each ant seemed to know its own fellow of nest - p. 80 Slave ants Bees Q 231 Beetle living in Hot-bed \& standing Boiling water.
234 Beetles shamming death \underline{Q}
420 Showers of insects falling
471 Q Definition of instinct - 473 Q good remark on
476 NQ Substitution of one material for another
481 Q Instincts of same species different at two Seasons
492 Q instinct 496 good remarks on not reason - 507 good

511 wonderful Q

514 Reason Q

- A fertile worker is throwing Back.-
- My metaphor of hereditary piano-forte, ought to have been 1st hereditary spinet, simple \& grand piano-forte player. What wd good player do if in concert note stuck. If hereditary playing failed in tune, new tune wd be formed if new tune did imply several notes altered contemporary.
- Read all. with idea that originally many queens \& no workers - then few queens with workers \& lastly one queen.- \& that instincts in neuters retain traces of old instinct when made Queens

KIRBY \＆SPENCE
〈over〉 There is antagonism between an habitual action \＆reason－a person knitting meets some accident \＆reason comes into play－it is no argument that not reason because a person did not intend a perfect repair

SB2 $\square \Re$

Female spiders destroy Male
Vol 2．Kirby
12 Emigrating insects not social congregating like some Birds－\＆some birds congregate without emigrating－
35 workers of Termites－Queen．－
－ 74 Each ant knows its own nest \＆males Do not go out till Workers Slaves are ready － 77 Slave makers are not allowed to go abroad till others have neuter pupae
－ 86 The Slave feed the Slave making Neuters－Do the Negros in their own nest feed Males or Queen ？？
〈over〉 2
p55 workers usually found to come back
－ 119 Hive Bees begging Honey from Humble．Means of new Instinct 207 Corsairs －148， 155 －Neuters keeping Queens prisoners－（may say endless strong instincts \＆then allude generally \rightarrow Ch． 8 \＆no passage known few other Bees Known．－
161 Confused \＆mistaken instincts in Hive Bees
－ 194 Ventilating Hive
－ 234 shamming Death
－X 470 young Bees making comb perfectly
－ 471 good definition of Instinct
－（p．92．Migrations）
－ 473 Spiders Nets pitt－falls insects beat higher animals
－ 476 case of sensible adaptation of instinct of insects（Door of inteligence）487／495／
－（481 Marked variation at 2 times of year
－ 496 argues not reason
－513， 511 Perhaps old instinct retained
（Von Baer about organisation of Bee
－ 516 Really reason
－ 519 Ants in hot place not moving Pupae X
－ 525 Communication of Knowledge in Ants － 529 Swarm successive years
〈over；${ }^{3}$
208－210 Astounding manoeuvre once in life
227 Variation in making Cocoons or home
277 Making exit for moth \＆thread to guide it 287 jaws given for this purpose to be used once
4 p31 Sedentary Spider turned Hunter
2／495 cells longer on one side of comb opposed to Waterhouse．－
2／187 Knight on artificial Propolis－
$1216-19 m / 18 u$＂swallows＂ $131-2 m \quad 2224$ $31 \mathrm{~m}, 25-29 \mathrm{~m} 3030-32 \mathrm{~m} 3110-13 \mathrm{~m}, 17 \mathrm{~m} / 17-$ $18 u$＂ants Ilays＂ 32 17－18m／17u＊ 33 17－18m， $21-22 m, 28-29 m / 28-29 u \leftrightarrow 342 m / u$＂four 1 female＂，6－9m，29－32m（Huber）35 2－3u＂a get＂，3－5m，6－9m／＂．．．＂，10－14m，20－23m， 29 m 51 wt Probably nascent female never practices the work of a soldier ant－not has it same structure？any structure which profits its work in early days wd be selected．Ask F． Smith V．F．Smiths work on Ants $1 m, 3-8 w$ The jaws of soldiers must have been made by selection $4-6 \mathrm{~m}, 26-28 \mathrm{~m} / \mathrm{Q} / 27 \mathrm{u}$＂toujours＂／ $28-29 u \leftrightarrow 531-3 m / 2 u$＂females 1 birds＂ $55 w t$ xx I can understand a neuter having any instinct which the female could have had， but no others cd have been acquired by habit $3 u \leftrightarrow / 1-4 m / 2-5 w$ origin of most instincts in neuters $\mathrm{xx} 7 \mathrm{~m}, 13-14 u$＂prudent Iinstinct＂／ 13－18w Neuters do not breed！How instinct acquired．19－21m，19－22m／20u＂workers＂，24－ $25 u$＂wholout＂，29－30m／u＂some 1 common＂ $\mid w /$ $w b$ So one female may wish to determine others！ $582-6 m$（Huber and Gould） 68 16－ $17 \mathrm{~m} / \mathrm{u}$＂besides Ibag＂／12－29w Many insects have reacting glands of anus for bad smells \＆c \＆we here see，used either as sting，or poured into wound． $27-30 \mathrm{~m} 695-7 m 707-$ $13 m 74$ 19－23m $755-6 w$ Slaves $10-12 m 76$ 21－24w Latreille confirms $27-31 m$（F．Smith） $777-10 \mathrm{~m}, 14 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{u} \leftrightarrow, 24-25 \mathrm{~m}, 30-31 \mathrm{~m} / \mathrm{u}$ ＂link｜Myrmica＂ 78 15－16m／15u＂composed neuters＂ 79 21－22m 80 28－29x／28－32w only fighting neuters $34-38 \mathrm{~m} / \mathrm{w}$＊they have no neuters then？or many soldiers？？ $35-38 \mathrm{~m}$ （Latreille），wb like Cuckoos with their eggs in other birds Nests $817 u \mathrm{n}, 7 \mathrm{~m} / \mathrm{u}$＂others purpose＂， $29 u \oplus 836 m 851-2 w \times$ Smith sold Myrmica 3xx，13－14u＂Active｜field＂ $13-17 w$ so these are neuters 17－18u＂Solthey＂，21u ＂will｜suffer＂ $\mid x x / X \geqslant w$ impossible to explain $29 x$ 86 22－26m $87 \quad 7-8 x$ ， $16 u$＂thel helpless＂$/ w$ gradation $18 \mathrm{~m}, 29 \mathrm{~m}, 30-32 \mathrm{~m} 88$ $5 m, 9-12 m, 15-16 u$＂It｜character＂ $12-16 \mathrm{w}$ for the Negroes dread the Robbers $27-28 \mathrm{~m} 89$ $25 \mathrm{~m} / 26 u$＂alternately＂， $30 \mathrm{~m} / \mathrm{u}$＂that 1 cows＂ 90 3－5m， $10 \mathrm{~m} 913 m, 5-9 m$ ， $10 x / u$＂with｜pays＂， $20-21 m, 21 x$ 92 9－11m，12－14m 9318 m ． $10018-21 \mathrm{~m} 10815 \mathrm{~m}, 16-20 \mathrm{~m}, 27 \mathrm{~m} 10923 \mathrm{~m}$ ， $31 m 1101-2 \mathrm{~m}, 9 \mathrm{u}$＂male＂， $9 u$＂than Ifemale＂， 18－19m，26－27m，29－30m 114 16u＂the ！ females＂ $114-16 \mathrm{w}$ Ask F ．Smith $20 \mathrm{~m} / \mathrm{u}$＂in｜ resemble＂，23m，29－31m 115 24－30m 116 9－ $11 \mathrm{~m} / 9 \mathrm{u}$＂honey｜pollen＂ 110 u ＂males \mid females＂／ $11 u$＂pure honey＂， $12 \mathrm{~m}, 20 \mathrm{~m} 1172 \mathrm{~m}$ ＂between \mid workers＂，5－7m，8－10m，11－12m 118 $10-11 \mathrm{~m}, 13-15 \mathrm{~m}, 24-25 \mathrm{~m} 1191-5 \mathrm{~m}, 6-7 \mathrm{~m}, 8-$ $27 \mathrm{~m} / 11-27 \mathrm{w}$ How new instincts cd arise 30 m ，
$32 m 1254 u$ "Two females", $10-11 u \leftrightarrow, 11-14 m$, $12 u$ "areloccurrence", $35 u$ "shorter" $/ w$ Queen $1261-2 m / u \leftrightarrow, 3 u$ "straighter maxillae", $4 u$ "not |theirs", $12-13 \mathrm{~m} / \mathrm{Q} / \mathrm{u} \leftrightarrow 1271 \mathrm{~m} 1281 \mathrm{~m}$, $2-3 m, 4 m, 5-8 m 12931-32 m 13110-12 m / 10-$ $11 u \leftrightarrow, 14 m$ "differently|mandibles", 17-18Q 20m, $21 u$ "curvelsting", $22 u$ "wax-pockets" $13225 m 136$ 13-21m 137 24-28m 139 12m, $14 u$ "thoselfour", $17 m 14014-23 m, 21-24 w$ acquired to injurious self $24-26 \mathrm{~m} / \mathrm{w}$ false instinct injurious 142 12-13Q $15 m 145 \quad 6 a$ "the" worker 22-23u "forlfortiori" $14712 m$ $1489-15 u \pm, 20 u$ "oflher", $w b$ it is difficult to believe the workers could have acquired these instincts when they were gender before their neutrality was gained. 151 $15 m, 16-24 w$ Maternal aversion !! how accustomed we are to maternal affection= 26-30m/30w p. $148 \quad 1527-11 \mathrm{~m} / 9 w$ p. 148153 $13-14 m 1556-10 \mathrm{~m} / 7-27 w \times 148$ in state of females, they could never have learnt so to respect \& value a female; this implies there being few females \& hence the neuters having their femality cod not acquire it. $11 \mathrm{~m} /$ $12-17 \mathrm{~m} / 13-19 w$ XX this might arise from mere social affection originally $20 u$ "pregnant state", $26-27 m / 27 u$ "enable", $29-31 m / 30 u$ "twenty|day", $32 m 1563-5 m / 3 u$ "sometimes", $8 u$ "atlto" 157 24-25m 158 1-4m 161 wt What are males fed on $1 \mathrm{~m} / u$ "laying \mid worker", $2 u$ "male cells", 5-6m, 6-7u "male ${ }^{2}$ ones", 7$9 m, 8-11$ "..." $/ 10-11 u$ "male ${ }^{\text {jelly" }} / 11 m$, $12 m$, 13-14m 162 26-31m 166 3-4m/w X p. 148168 3-5m, 8-10m $16912 \mathrm{~m} / \mathrm{u}$ "Herel defective", 15 m $17112 m 17216 m, 23 u$ "male|royal" 173 4 $5 m, 13-16 m / 14-15 u$ "result|drone" $1773 m / u$ "both|young" $17922 \mathrm{~m} 1805-7 \mathrm{~m}, 17-19 \mathrm{~m} 182$ 8-11m (Aristotle) $18324-28 \mathrm{~m} 18430-31 m 187$ 10-12m, 32u "Philos.l1807" 191 20-30m/28$29 u / 21-27 w$ shows not individual Knowledge $1924-5 m / w$ like Humbles $\times 1946-7 m 1955 u$ "workers", $10-11 m, 14 u$ "in files", $18 u$ "twenty", $24 u$ "retinas" 198 6-8m 207 17-19m 208 8-10m 215 26-31m 216 7-9m 220 5-8m, $21-23 m 223$ 18-24m 231 3-5m, 16-17m, 20u "hot dung" $20-21 m / w$ not by nature 24-25!/ $25 u$ "native station" $2336 u$ "orangelthorax", 8-9m, 12-14m 234 15-17m/16u "by|death", $19 u$ "which|dead" 235 8-9m, 18m, 19u "simulation 1 death", 22m, 23-24"..." 241 5-9m 267 10-32m $28826-29 m 3024-9 m / 4 u$ "рира" 303 6-10m $358 \quad 25-28 m 384$ 1-10m 385 14$18 m 387$ 15-19m 391 1-8m, 3u↔, 20-21u \leftrightarrow, $24 u$ "baselelytra", $27 u$ "would t heir" 395 1$4 m, 18-20 m 396$ 19-25m 399 3-6m 401 5-10m, 16-22m 407 3-13m 411 8-10m/9u "though1 light" 412 27-28m $4131 u$ "is winged", $20-21 m$ $415 \quad 18-22 m \quad 420 \quad 8-18 m \quad 421$ wt A, How
gradually acquired? $7-12 m / 7 w$ A $42420-28 m$ 459 16-20m 468 11-16m (Lamarck), 20-21m/?, $28 m / u$ " $i 1.325$ " 1 ? $4708-11 m, 13-22 m 47113 u$ "faculties", 14-16u "independent|view", 16a "without"|w necessarily or even generally 17-19m, 20-21u "whichlignorance" 472 9$14 m, 30-33 m$ (Germar) $47312-19 m, 14 \mathrm{~m} / 23 \mathrm{~m} /$ u "All"/14-16w Migrations Hatching eggs Bears HousesO 25-32m/28u "regular cities" "nets|artfully", $32 u$ "sheepllabour" "pit-fall" $4748 u, 27 u$ "never attempts", 27? $47521 u$ "variation laccommodation", $22 u$ "amongl numerous", 29-32m/29u "cowlhorse", 31-32u 476 1m, 5-9m/5u "bark"/6u "pieces 1 paper", $29-31 m / x / 31 u$ "span $\mid w e b$ ", wb X These seem to show that they do know end in view or rather what they work for $4777-8 \mathrm{~m} 479$ 2$6 m, 12-24 m, 29-30 u$ "requiring lonly" $48025-$ $31 m / 31 u$ "Bonnet" $4811-16 m / w$ See to this it wd appear as if the latter brood had acquired this instinct $32 u$ "Oeuvres, ix.370" $4831-4 m, 27-30 m / 28 u$ "lids lordinary" $4845-$ $11 m, 13-17 m 48530-32 m 48619 u$ "glass" 487 3-6m, 10-12m/11w good $26-30 m 488$ 9-12m/ $10 u$ "propolis m mixture" 492 15-16m, wb compare them to bricklayer born with consummate art - \& provided with actual instruments 493 18-20m/19u "would|less", $20-27 m 49511-32 m / 20 u$ "the former" $/ 21 u$ "the I latter" $114-15 w$ Knitting wb The difficulty is just as great if we look at instinct as innate power $49626 u$ "Variationslinstincts", $28-30 \mathrm{~m}$, wb it comes to this because reason goes so far \& no further, it is not reason. An Australian co not do Principia.- $29 u$ "always"/wb How do we know this 497 3-4m, $22-23 m, 23-27 w$ Knight on use of graftingO Mixture 28-31m 498 5-10m, 27-30m 499 19u "manifold", 20-21m $5001 u$ "not mean", 2-4m, $18-20 \mathrm{~m} / 20 \mathrm{u}$ "another", $26-27 \mathrm{~m}, 29 \mathrm{~m}, 31 \mathrm{~m} 501$ 6-8m, 27-30m 502 4-7m $5032-4 m, 8-10 m 504$ $5-10 \mathrm{~m} / 8 u$ "A third", 11-14m 505 2-5m 506 $22-29 m 5071-3 m, 5-7 m, 8 m, 16-18 m, 18-20 m$ $5086-8 \mathrm{~m}, 16 \mathrm{~m}, 17-18 \mathrm{~m}, 30-31 \mathrm{~m} 5105-7 \mathrm{~m}$, 6$25 m, 23-28 m 5114-11 m, 25-30 \mathrm{~m} / 25-26 \mathrm{w}$ old instinct retained $51230-31 u$ "fed Imaturity", $w b$ is this given ordinarily to all queen larvae $5137-12 m, 23-26 m / w$ (a) $w b$ (a) One may suppose that originally many queens were ordinarily thus reared \& a few workers \& the instinct is thus retained $51422-25 m 515$ 21$28 m 516$ 8-13m, 17-20m, 25-29m 517 23-30m 519 10-13m, 15-20m, 21-22Q 24-28m/24-32w like Robin which built on Steam Engine 520 $1-3 m$, 19-26m $5214-7 m$ 522 5-9m, 12-15m 523 16-19m 524 5u "all", 11u^/w not indigenous $5254-7 m, 19-30 m \quad 52714-17 m$ 529 3-27m 530 5-11m

KIRBY \& SPENCE
vol. 3 NB 89; 95 \& 96; 101; 162; 202; 210; 221; 227; 257; 261; 276; 287; 305; 330; 338; 466; 474; 593; 594; 605; 632; 645; 654
SB $\square \beta$
Marshall 284
89 Number of eggs various insects
96 adaptation of eggs like seeds of \& plants 208-210 Q Astounding manoeuvre performed once in life.
227 Q very important variation in Habit Perhaps Instinct rather
261 var. in \% colouring of crysalises
277 NQ larvae preparing exit for imago \& even providing guide to find trap-door.-
287 Q jaws given for this sole purpose (under selection Ch. 6) to be used only once!
474. Good sentence about no new organs being produced without transition Q
594, 605 Rudimentary organs for symmetry
632 In Hymenoptera the progress of neuration of wings can be traced
645 Scales, as on Butterfly appear in some Diptera
665 Number of legs vary in luli \&c.-
$891-7 m / w$ Proof that numbers here depend on means of prosecution $8-24 m / 10 u \uparrow / 11-$ $20 w$ We only know by experience that every species can increase if not checked $12 u$ "30,000", $14-15 u$ " 40,0001 more", $16 u$ " 200,000 ", $22 u$ " $211,449,600$ " 95 22-25m 96 $1-3 m, 14-22 m / 14-17 w$ adaptation as in seeds $1018-14 m \quad 1625-11 m \quad 202$ 9-14m/10-11w adaptation $208 \quad 10-31 m \quad 210 \quad 1-29 m / 10-14 w$ wonderful 211 19-25m/20u "now" $21 u$ "silken" $/ 22 u$ "horizontal", 29-31m 212 1-2m, 3-7m, 12-21m, 13-31m $2132-9 m, 17-28 m 221$ 19-25m 227 1-5m 256 15u "рирае", 21-25m 257 8-10m, 17-22m 261 9-12m 276 28-32m/ $28 u$ "previouslylpupa" 277 1-10m, 28-30m 278 1-4m 287 1-10m/4-6u $\rightarrow 299$ 27-28m 300 $1-4 m / 3-5 w \notin, \quad 6-9 m \quad 301 \quad 26-29 m / 28 u \star / 29 u$ "female | rubra" 302 1u "red", 4u "elytre", 23u "testaceous |black"/w Lepidopt 24-26m/26ua/w male $28 u \star$, wb Aperture Iris emperor 23u*/ $w b=$ Polommatus aegon $3031 u a, 2 u$ "orange 1 upper", $3 u$ • 305 21-25m, 28-31m 306 $7-8 m / 7 u$ "tibia| bearded" 309 14-19m 313 4$7 \mathrm{~m}, 11-17 \mathrm{~m}, 21-26 \mathrm{~m}, 27 \mathrm{~m} 31428-30 \mathrm{~m} / \mathrm{Q} 315$ $16-17 \mathrm{~m} / 17 u$ "female male" 323 1-5m 327 3$7 m \quad 329$ 17-26m/19u "pectoral" $/ 21 u$ "weevil" 330 19-21m, 23-25m, 26-27m 331 30-31m 332 1-18m $33316 u$ "incrassated 1 male", $23 u$ "the erroneously"/w incrassated not always sexual 336 6-9m 337 18-27m/Q $3381-4 m / Q 3402 u$ "Pneumonia" 342 26-30m $344 \quad 5 u$ "ofl Coleoptera", 11-12m 345 15-18m 346 26-29m

466 20-22m 474 wt If all Mammalia which have ever existed were preserved, probably as many traces of abortive organs wd be found as in insects in nearly all of which they are present. $2-10 \mathrm{~m}, 19-25 \mathrm{~m} / \mathrm{Q} / 21 \mathrm{u}$ "but 1 organs" $5931 \mathrm{~m} / \mathrm{u}$ "represented lthe", 18-19m 594 22-29m, 25-26m $5951-3 m 60517-18 m$, 18-23m/21u "appearance|elytre" 632 14-26m 645 29-31m 654 13-18m 655 〈erroneously 665〉, 5-11m
vol. 4 SB1 Vol IV
p.31; p.357; 358; 373; 397; 405, 6, 8, 411 to 15 wretched trash; $478 ; 484 ; 486$ to 508
SB2 $\square \beta$
31 Crippled Spider from Sedentary became Hunter See. J. Banks. Ch. 8 Q
373 on use of larva in classification
478 On number of individuals in different orders, without relation to number of species 488 Calasoma poor in species \& individuals, very wide ranging genus.
500 Battles of Lethrus (a vegetable feeder) 156 stings \& ovipositors described.-
$314-7 m, 8-10 m 156$ 8-9m/? 258 wt Calcaria $25910 \mathrm{~m}, 12 \mathrm{~m} 2613 \mathrm{~m}, 16 \mathrm{~m}, 19 \mathrm{~m}, 27 \mathrm{~m} 263$ $27 \mathrm{~m} 26411 m, 27 m 2675 m, 27 m 26817 m$, $19 m, 20 m 27012 m 27118-21 m 27219 m, 28 m$ $27312 m, 18 m 27421 m, 28 m, 31 m 27720 m$ $2783 \mathrm{~m}, 27 \mathrm{~m} 2791 \mathrm{~m}, 8 \mathrm{~m}, 16 \mathrm{~m} 2801 \mathrm{~m}, 3 \mathrm{~m}$, $7 m, 13 m, 21 m, 24 m 28127 m 2821 m, 4 m, 7 m$, $15 m 28821 m 2936 m 294$ 17w Margin 20$21 m, 23 m, 25 m 2953 m, 17 m, 25 m 29730 m / u$ "Spurious suture" 302 18-22m, 27-29m 303 5$6 \mathrm{~m}, 9-11 \mathrm{~m}, 17-20 \mathrm{~m} 32027 \mathrm{~m} 32114 \mathrm{~m}, 17 \mathrm{~m}$ $32218 m \quad 3257 m \quad 32719-20 m 33410 m, 15 m$ $357 \quad 7-11 m \quad 358 \quad 7-13 m, \quad 15-17 m, \quad 30-33 m$ (Linnaeus) 3595-6u, 19-20m, 26-29m 373 2227 m 397 4-13m/6-7u "especially| distinct", 14$19 m / 15-16 u \leftrightarrow / 18-19 u \leftrightarrow 4051-2 m$, $16-21 m$, $16-19 m, 20-25 m, 30 m 40626-30 m 4081-17 m$, $19-20 m, 29-30 m 4094-7 m 411$ 18-21m 413 16-19m 415 21-27m 421 zb 478 9-15m/8-12w Think over this $48418-21 m 48611-16 m / 13-$ $14 u \leftrightarrow 4878-10 m, 20-22 m, 29-32 m$ (Latreille) $48820-21 m, 23-28 m, 27-28 m$, $w b$ This is opposed to my notion of formation of genera. Think over this Extension in this case must depend on adaptation to some peculiar food \& not to any general superiority over congeners.- $4891-11 m, 17-18 m$, 23$32 m, w b$ My notions require that number of individuals \& species \& genera shd in some degree accord which is doubtful.- NB Comparison can be instituted only when there is struggle. Diptera \& Coleoptera cannot be compared 490 1-6m, 22-25m 492 3-7m 494 1-2m, 9-11m (MacLeay), 12-16m

496 22-27m 497 1-5m, 21-22m, 25-28m 498 $4-7 m 5003-6 m / 4-5 u \leftrightarrow 508$ 19-25m 512 25$27 m$

KIRCHHOF, F. Das Ganze der Landwirtschaft Leipzig \& Torgau; 1835 [CUL]
beh, br, f, fg, he, mn, sp, sx, sy, tm, v, wd, y
NB A very poor book with wretched classification.-

- 1 to 56; 79; 88,90 Geese - large in Pomerania small in Poland; 104 Duck lays 30-36 eggs; 111-114
April 1857 Nothing except above Ducks good to quote in Ch. 4
6 Polish swine broad stripe down back related to young wild swine being striped
3 11-12w swine with undivided hoofs $26 u$ " 61 Junge" $/ w$ wild swine 4 wb Breeds differ in size short feet bowed back power of fattening $512-17 w$ great difference in size of wild swine $19 w$ Races $24 u$ "10। Junge", $26 u$ "seine | Glieder"/26-27w fine hair on joints $32 u$ "kurz|Körper", 33u "Ohren", 32-35w short round bodies, long ears, woolly bristles $61-$ $3 w$ broad stripe along the back $31 u$ "ist $\mid 9$ ", $32 u \leftrightarrow, 35 u$ "vielen I sein" $/ w$ must be provided with many teats $819-20 \mathrm{~m}$, 21-25w Do wild breed twice a year? $531-2 \mathrm{~m} / \mathrm{w}$ The leg on which roost generally stronger than other! 54 $25 m, 32 w$ pointed head $34 u$ "kleinen Federbusche", $37 u / w b \tau 551 w$ crested 7-10w cannot find way when crest wet with rain $10 u$ "brabantische" w Gold spangled $13 u$ "silberfarbige Hahn", 16u "zart|Eier"/w punctured eggs $17 u$ "Der 1 Hahn", $18 u$ "rothe 1 Schnabels" $/ w 2$ red warts on side of beak $26 w$ Tail-less $33-36 w$ Frill-like Fowis collar almost like Jacobin!? $561-8 \mathrm{~m} / \mathrm{w}$ can hardly fly $5-7 \mathrm{w}$ Bantams 11u/w $10 u$ "Hamburgische" $10-23 w$ Cock \& Hen have legs clothed like velvet cock sharp beak: yellow circle \& band of yellow feathers round eyes with tuft of black ornamenting ears 22-24m, 24-25w Frizzled Fowl 26u "Kammlschwarz", 33u "einen। Farbe", 35-36?/u "hat | Kehllippchen" 57 wt Hen spurs like Cocks $6 \mathrm{~m} / \mathrm{w}$ Dorking 79 wb this tuft cd have been mistaken for monstrosity $88 \quad 26-31 \mathrm{~m} / \mathrm{w}$ Geese in Pomerania very large. small in Poland 90 15-20m $10424-26 m / 24 u$ "siellegt" 10514 $17 \mathrm{~m} 11128-29 \mathrm{~m} / 29 \mathrm{u}$ "aber $\operatorname{lbringt",~30u/w\tau \text {,}}$ 33u "fast I bringt", $35 u / w \tau 112$ wt I shd think this man knows very little or nothing of subject) $2 u$ "Schnabel I dick", 3u "Schneppe", $3 w$ Trumpeter $5 u$ "oft \mid zeit", $11 u$ "ihrlfehlt", $22-25 \mathrm{~m} / \mathrm{w}$ Pouters some vars males \& females different males being spotted. I
wonder whether true? wb vast number of coloured vars. of Pouters $1132 w$ Carrier 3$4 m / u$ "Dalentfernen" 114 1-2!/1u "einen 1 Schwann", 29-32m/w Carmelite

KLEIN, Edward Emmanuel The anatomy of the lymphatic system part 1; London; Elder \& Co.; 1873 [Down, I]
part 2; London; 1875 [Down, I]
KLEIN, Edward Emmanuel, BURDONSANDERSON, John Scott, FOSTER, Michael and LAUDER-BRUNTON, Thomas Handbook for the physiological laboratory 2 vols.; London; J. \& A. Churchill; 1873 [Down, I, FD]

KOBELL, Franz von Grundzüge der Mineralogie Nürnberg; Johan Leonhard Schrag; 1838 [Down]

KOHLRAUSCH, Otto Leitfaden der praktischen Physik Leipzig; B.G. Teubner; 1877 [Down] \wp

KÖLLIKER, Albert von Anatomischsystematische Beschreibung der Alcyonarien vol. 1; Frankfurt a.M.; Christian Winter; 1870 [Down, I] \wp

KÖLREUTER, Johann Gottlieb Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen Leipzig; in der Gleditschischen Handlung; 1761-66 [CUL, pre-B]
beh, cc, cs, dic, f, fg, gd, he, hy, ig, in, mhp, $\mathrm{mn}, \mathrm{no}, \mathrm{oo}$, pat, phy, sp, spo, sx, sy, t, ta, v, wd, y
NB1 * Read Muller in Berlin Trans
NB2 Oct/55/Everything - this Volume fully abstracted \& abstracts distributed.-
NB3
What good experiments might be made by mixing pollen together of several kinds.-
p. 12 Male \& Female organs in Hybrid unequally affected.
According to Gaertner (p.273.) when several varieties of the same species are crossed with another species, offspring closely alike; but when several close, but true species, are crossed with another species offspring very unlike. This must be tested in this work, specially in 3 races of Nicotiana.- In the Nova Acta he experimented on plenty of vars of Mirabilis * Jaleppa. but \mid fear that vars differed only in colour. But Dic Classique remarks that Mirabilis Jalep differs only in colour of flowers

KÖLREUTER, GESCHLECHT DER PFLANZEN Part 1, $922 u$ " 4863 " $/ w$ pollen $*$ in flower $25 u$ "dreyssig"/27-28u "fünfzig I sechzig"/25-30w 30 seeds from 50 or 60 pollen grains 1021 $26 \mathrm{~m} / \mathrm{w}$ less than 10 pollen grains did not fructify $111-5 m / w$ in cold weather more pollen is required $9-14 w$ in very late \& cold season no quantity of pollen suffices 12 wt when all but * one stigma cut off, yet all capsules with seeds $1-4 m 155 c \notin, 11 u$ "noch I geschlossener", 13 u "Gräser", 1-22w Know nothing dichogamous plants.- $29 \mathrm{um} /$ $31 u a / 26-31 m / w / w b$ Grasses \& these are all flowers, which are impregnated, without aid, by contact, \& even in the yet unopened flowers!! 17 wt pollen of some Mono \& dioic plants fully \& others spored on all sides.-$13-15 m, 25-31 m$, wb plants with stigma right under anthers. $1819-23 \mathrm{~m} / \mathrm{w}$ In rue stamens move over stigma $197-14 w$ stamens move to stigma quicker or slower according to weather. $20-23 \mathrm{w}$ stamens move when anther removed. $2126 u$ a, 26-30w Malvaceae impregnate only by insects 28 u "allein"/28$31 \mathrm{~m} / \mathrm{wb} \mid$ was astonished good sentence to translate $221 u / w \tau, 1-9 m, 5-9 m 2928-31 m$, $w b *$ juice, sought by Bees secreted from stigma of Iris $364-13 w$ Scrophularia \& Antirrhinum lay their anthers on the stigma but are also aided by insects 436 w V p. 10 next Chapt- fertile $=$ when this season experiment succeeded. $8-10 \mathrm{~m} / 8-15 \mathrm{w}$ inverse experiment produced infertile seeds but rather larger $10-22 \mathrm{~m}, 17-30 \mathrm{w} / \mathrm{wb}$ those wh . appear in an unpregnated capsule $20-24 \mathrm{~m} / \mathrm{w}$ in many plants $44 w b$ seems to think, pollen of foreign \& own can together act \& produce a tinge of Bastardism this seems possible as 20 grains of pollen are in some cases requisite for any fructification, but not proven.- 47 18-24m, wb What Crown Imperial not much frequented by * Humble - secretes honey from opening to withering of flower

Part 2, 10 23a "Nachricht" p. 43 26-29m 11 wt produced another year 24 * capsules p. $234 w \quad 8$ petals $9-13 m / w$ absolutely undistinguished from reverse experiment 12 $4-7 \mathrm{~m} / \mathrm{w}$ infertile on male side but fertile on female $1327-29 m, 29-30 u$ "einigelweniger" $1410-11 m / 9-12 w$ in some parts more than in others rather like to Rust. $16-17 \mathrm{~m} / \mathrm{w}$ some plants more good seeds than others $18-22 m$, $24-28 \mathrm{~m} / \mathrm{w}$ plants from same capsule differed in fertility $151-3 \mathrm{~m} / \mathrm{w}$ differed from all parents 17 20-21m, 23-26m/25u "Fruchtbarkeit", $27 u$ "unterschieden" $181-6 \mathrm{~m} / \mathrm{w}$ most of them are more infertile than the hybrid parent $7-9 m / w$
as if tendency to miscarry was given 11$13 \mathrm{~m} / \mathrm{u} \leftrightarrow, \quad 16-21 \mathrm{~m}, 15-19 \mathrm{w}$ some seeds, however, produced plants. $13 x / w b \times$ All these results are confirmed by (p .20 other, different experiments $\rightarrow \&$ by an analogous experiment p87) (\& by same p.91 \rightarrow) of next Part; but one of them quite sterile 19 12$14 \mathrm{~m} / \mathrm{w}$ varied $19-23 \mathrm{~m} 2011-12 \mathrm{~m} / \mathrm{w}$ did not take at all after perenne $221-4 m / w$ fertility much increased $14-21 \mathrm{~m} / \mathrm{w}$ concludes probably that hybrids with some pollen change into maternal form. 23-25w p. 55 of 3d Part one plant came much nearer to Rust. 26c\&, $29 a$ "einen"/wb genugen $2320 u$ "Missgeburten" $/ 19-23 w=$ Miscarry? or monster? 22-23w another instance p54 of 3d Part in another cross 24 wt In Hybrids from Rust \& Panic, male or reverse the hybrids have no good pollen but female principle yet acts on both A. $12 u$ "gänzlich", $11-13 \mathrm{~m} / \mathrm{w}$ ganzlich means very \& tolerably $w b$ A. How unintelligible is this, as this hybrid fructified itself p. 21 prop. pulv. consperso $25 w t \leqslant X$ odd this not taking at all after perenne $4 u \leftrightarrow /$ $x, 5-12 m, 8-22 m, 9 w$ two pollens $21 u \leftrightarrow 26$ $10 u \leftrightarrow, 12-16 \mathrm{~m} / \mathrm{w} 3$ pollens mingled together \& not hybrids $295-8 \mathrm{~m} / 1-8 w$ exactly intermed $9-11 m, 26-32 m / w$ hybrid more flowers plants higher \& taller $1-23 w \quad X$ this shows that hybrids are well suited in soil \&c \&c 30 11$13 m / 7-13 w$ absolutely sterile $31 w t / 1-2 w$ or seven-hill tobacco $3 \mathrm{~m} / \mathrm{w}$ var of Mag. \& vulg. $17-24 m / 5-24 w$ Difference from last hybrid $\%$ correspond to differs. of 2 varieties 32 wt A gave smaller capsules \& fewer seeds, than when this hybrid was impreg. with pure N . Rust. or Pan $5 m / 15-18 w$ var of N . Maj vulg. $21-24 m / 22 w$ ㅅ $3-5 m / \rightarrow 3316-19 w$ \& this is a second cross $9-10 \mathrm{~m} / 9-15 \mathrm{w}$ These two hybrids differed greatly. 36 14c/17c "male" female/9-25w exactly intermediate between male \& female $386-24 m / 23 u \leftrightarrow / 2-24 w$ Pollen quite worthless Capsule began to swell, with other pollen.- 25-31w/wb I suspect, pollen fails in hybrids, easier than female principle $395-25 w$ These \& other hybrids tend to throw up strong stems in autumn $4119 u$ "Mit | Worte"/19-22w finally very like male parent $424 m / 1-6 w$ (quote this) as different as Cat \& Lion $4322-24 w$ V. same experm p119 next Part: 25c "carthus." $\mid x / w$ barbatus wb Sweet-William 44 wt Yes Does Gaertner mention this? 3-6w seed affected $5-7 m$, 8$30 \rightarrow, 27-29 m / w$ A $30-31 m$, $w b$ I shd think female principle more defective than male.?? V. p. 117. 45 wt I see in Loudon this is Hibiscum vesicarius $=$ African Irionum $=$ Bladder Kelmia these are all right $\rightarrow 3 w$

Cavanilles \& Decandolle make this 2 species, but they are evidently very close both from Africa. $4 w$ Kippist thought it very doubtful whether real species $5 w$ reverse $5 w$ Mongrels $5-10 \mathrm{~m} / 10 \mathrm{u}$ "Hibiscus", $10 u$ "blosse Varietäten" $/ 8-10 \mathrm{w}$ Probably 2d Edition of Linnaeus 14-15u "beyden I Seiten", 19-21m/17$21 w$ Like each other in reverse exp differed from each other $24-27 w$ Repeated with same results p. 128 next Fort $28 w$ Cheiranthus p51 $\Uparrow 1 u$ "Levcojen", wb stock-gilliflower $\Uparrow 1 u$ "Lack" $/ w b$ Walifiower (Dictionary) $467-9 m / 5-$ $11 w$ difference in period of flowering in the reverse experiment $16 u$ "einfach", $16 u$ "gefillt" " $12-16 w$ The mongrels were single, the pure-bred were double? $17 x x, 23 u$ "anders I ganz" $117-25 w \times$ cannot make out in Loudon what species they are $w b$ XX p. 128 second Fort raised intermediate \& quite fertile hybrids; hence considers only varieties $478-9 m / 5-11 w$ quite sterile p. 124 3d Fort quite fertile 50 1-16w refers to individual plants $7-29 m \quad 541-13 w$ reiterates greater infertility of male side $5510-27 m 5823-24 m /$ $24 u \leftrightarrow / 21-30 w$ Generally speaks of * mongrel having possibly lost some fertility, sometimes. $60 w t / 1-14 w$ cannot account for varying degree of infertility in foregoing hybrids; even in one case increased infertility though plant became more like mother. 12$14 m, 15-16 w$ fruitful on female, but sterile on male side $61 \quad 1-31 m / 1-18 w$ only some exception to characters of hybrids being intermediate \& chiefly in $\times 12-20 \mathrm{~m} / 20 \mathrm{u}$ "als 1 Bastarden" 63 2-4m/4u "Vater|der" $64 w t$ Experiments which did not bring offspring, interesting as showing gradation in effect 19$20 \mathrm{~m} / \mathrm{w}$ reverse failed $657-8 \mathrm{~m} / \mathrm{w}$ reverse failed $13-14 \mathrm{~m} / \mathrm{u}$ "Die IGrösse", $16-18 \mathrm{~m} / \mathrm{w}$ seed appeared good 23-24u "Diel natürlichen" 66 12-13m, $12 u$ "Beym umgekehrten", $26-27 m, w b$ capsule fell of when half ripe $676-7 m / u$ "einigelsitzen"/ 6 $10 w$ Do some remained on * $13-22 w$ gave offspring p58 Fort 2 next year $\rightarrow 25-30 \mathrm{~m} / \mathrm{w}$ seeds did not appear quite perfect 68 wb see p. 45 to see what species $69 w t / \uparrow w$ Impregnation Hibiscus impregnated by pencil \& by insects, during many days was done almost as well by the insects, though they lost some days during rain $11-12 m / 11 u$ "310", 13-15m/13u "10886"/14u "11237"/15u "351", 24-28m $71 w t / 1-25 w$ Pollen of misteltoe expelled into flower before open, \& several flies are attracted by the sweet juice on both male \& female flower \& \& C impregnate it $20 \mathrm{X}, 22 u$ "Stacheln", $23 u$ "unterlzusammenhängt", 28-30m, 29u "Gat-
tungen Fliegen", wb X pollen covered with points \& sticks together $728-11 \mathrm{~m} / \mathrm{w}$ not by wind $17-25 \mathrm{~m} / \mathrm{w}$ remarks that depending on insects \& Birds

Fort. 2 Part 3, $86 u$ "Häufig"/5-9w Canaries \& Linnet hybrids of fertile. 11 u "absteigenden 1 erstreckt" $\mid x$, wb X This near crossed again by Canary bird twice over.- $95 w \mathrm{~S}$. Europe 11$14 m / 13 u$ "Sulz| Neckar"/w experiment tryed at Sulz Neckar 17-20w Britain \& Italy/L $10 w t$ p.1-46 in 3d Fortsetz all about Verbascum. $2 w$ England $5 w$ England 10-26w Mem. Mr Herberts letter to me $20-24 m / 22-23 u$ "grossen|Blume", 25u "ringste|Befruchtung", wb Found on many flowers on the 3 plants on two successive summers, that the female of phoenicena, cd not be impregnated by its own pollen, showed no sign of fructification, but yielded seed to 4 other species growing in same country!! 11 wt There were 3 plants of this phoeniceum. 9-10w same on another plant $13-14 m / w$ cannot explain. $w b$ The female or phoeniceums were garden seedlings \& p. 41 3d Fort not grow here wild 16 19-30w exactly intermediate 17 1-25w every point exactly intermediate $185 z 217-$ $9 m / 7-18 w$ colours rather different in different plants \& petals of same, not similarly coloured. 23 16-21w intermediate $2412-13 z$ $2725-28 \mathrm{~m} / \mathrm{w}$ flowers varied a little in colour 30 12-19w intermediate $3520-27 w$ intermediate 39 11-19w anthers held little 24-31w power of growth vigorous, for they flowered sooner than natural $30-31 \mathrm{~m} / \mathrm{wb}$ quite infertile even with pollen of parents $401-6 w$ but a half fructified for germen swelled $11 u \leftrightarrow / 12-$ $15 m / 11-18 w$ colours of the autumnal flowers became darker \& more like female $411-18 w$ intermediaie (even in such points as smell which the parent \& the other has not at all.44 wt only one plant raised $3-6 \mathrm{~m} / \mathrm{w}$ quite sterile $8-28 w$ I observe most of the plants in this Fortsetzung either raised on Hotbeds or planted in boxes in open air, \& transplanted into pots $451 m, 13-15 m / 13-19 w$ fertility in same degree as in former V appendix 46 $12 w$ pot 50 1-4w nearly intermediate 14 $18 \mathrm{~m} / 12-17 \mathrm{w}$ later flowers became darker 22$23 w$ not quite intermediate $w b$ N.B in former experiments, where no mark characters are intermediate 52 1-11w not intermediate, but does not say after which parent. $5321 u \wedge / 20-22 w$ differs in leaves, stem flowers shape of $w b$ p. 19 N . perenne seems distinct in shape of leaves \& small sharp capsule of fruit, \& shape of flowers 54 $7-8 u \wedge, 17-29 m / 19-20 w$ plenty of differences

KÖLREUTER, GESCHLECHT DER PFLANZEN
$26-28 w$ Habits different Leaves move in evening to stem. $w b$ Certainly these vars. most distinct \& only the last said to have been found wild in Tobago $551-25 \mathrm{w}$ crossed 5 as he believes, varieties of tobacco \& found offspring intermediate \& quite fertile $24-27 \mathrm{~m} / 26-30 \mathrm{w}$ were intermediate in every respect between parents. 56 1-15w Hyb fruct. more successful Offspring quite unfertile (l think) more fertile than <Nicot. mai.) or vice versâ 1 * believe but cannot make out which V. p. 60 (this Fort:) 11-12m/w varieties of same as shown p55 14-15m/w a very little fertile $18 u$ "Hauptsache", $23-25 \mathrm{~m} /$ $20-26 w$ differed only as much as the 2 vars differed $28 u$ "geringen Grad", wb X thinks some little of own pollen may have got mixed!? * ? (No according to Gaertner) 57 $19-24 \mathrm{~m} / x 5816-21 \mathrm{~m} / \mathrm{w}$ These failed the year before 16-21w Reverse experiment of last offspring as like to them as egg to egg 60 wt (a) This is very important (though only belief) well grounded/: has shown that N. perenne, N. major var fl. alb.O N - are all varieties by perfect fertility (\& not mentioned as species by Loudon), or yet N. perenne seem rather more fertile with N . glutinosa, than other vars. \& is 1) Major fl. alb.O 2) Major vulg 3) Transylvan. 8-11u "so | Varietäten" $\mid \mathrm{m} /$ w (a) $13-28 \mathrm{~m} / w$ XX shows that little of own pollen prevents quantity of foreign pollen having any effect. $611-11 m, 11-27 m 6216-$ $23 m / 10-23 w$ very little being used, hybrid was produced $731-29 w$ In all respects A more approaches male, except in particular p. 77 further on 12-17w A on p78 on sterility male quite sterile, female side more fertile than $* 742 m 771-14 w$ this refers to the parent A except in some respects differed from all parents, as in dwarf growth \& shape of leaves 78 wt All this refers to parent hybrids marked by an A $w t / 1-16 \mathrm{~m} / \mathrm{w}$ Essential difference, * (though male side quite sterile), female more fertile (when impregnated with pure pollen) producing 100 seeds, instead of as in parent hybrid only $20-30$ seeds $2-13 \mathrm{~m} / 10 u \leftrightarrow 791-25 \mathrm{w}$ These hybrids (in the 3 generation) all (many) closely resembled each other \& the Pan. \& were nearly with few exceptions quite as fertile as it. $8014 \mathrm{~m} / \mathrm{wt} / 1-14 \mathrm{w}$ The infertile few, partly sterile probably both on male \& female sides. $812-31 w$ Proved their fertility by all kinds of crosses \& so found they very nearly equate in fertility to Pan: $823 m 84$ $27 w / w b$ two of the three quite unfertile 86 1$29 w$ some fertile, some unfertile, though some of the latter came nearest to Rust., in
which respect apparently some variability 89 $14-23 w$ The hairiness \& smallness of leaves not common in this degree of descent X in hybrids $29-31 \mathrm{~m} / \mathrm{w}$ Results of these confirmed $9010-13 \mathrm{~m} / \mathrm{w}$ plants differed $* 2$ from other \& in fertility 4 of other sex raised $10-12 \mathrm{~m} / 10-$ $11 u$ "einige | weniger", $27-28 m$, wb pretty good pollen \& left to self produced very good seeds. 97 12-14m/12-24w differs a good deal one from another especially in colour \& substance of leaves $w b$ seedlings described at p59 next Fort. $9828-31 x / w b$ fresh proof of variation in second descent, when crossed with either parent.- $997-8 w$ barbatus? see p. 112 23-27m 100 1-18w in all respects analogous to last experiment. $26-31 w$ all pretty fertile except one plant $w b$ The fact of one species by crossing with another assuming such infinitely various new characters is an argument in favour of possible variation $1012-4 m / w$ some variation in different plants. $10-11 w$ reverse of Exprmt p.96. 13c "carthus." barbatus $14-28 w$ does not bear so many seeds as pure Chinensis, but more than some experiments hence the hybrid male has more confined fertility as a female, than as male. $w b$ N.B I think this requires more testing $1027-11 \mathrm{~m} / 9 \mathrm{w}$ variation 103 14-19m/14-19u士 $1049 u / w$ one of the plants $16-18 m / 10-21 u \pm 105 \quad 5-11 w$ on the whole fertility increased with some exceptions $1061-6 w$ p. 166 3d Fort another experiment described $5 \mathrm{~m} / \mathrm{w}$ barbat $12-15 \mathrm{~m} / \mathrm{w}$ partially fertile, like hybrid-parent in character $8-19 w$ in my Abstract (p 18) of experiments: I see there is D. Carthus \& barbatus.- $20 \mathrm{~m} / \mathrm{w}$ Italian = barbatus $10719-21 \mathrm{~m} / 19-20 \mathrm{w}$ very like Hortensis $23-26 w$ in Hortensis pure, pollen often not matured $28-31 w$ less fertile than hybrid mother $10817 \mathrm{~m} / \mathrm{w}$ Be sure to see to Reverse p. 66 next Fort. 19-20m/w of very difficult impregnation 17-20w experiments with different varieties of both *, 24-29u士, wb B Does this case occur elsewhere of difficult impregnation, \& yet hybrids so raised, being fertile rather? Has reverse been tryed? $1093-6 w$ p 65 next Fort prop. pulv consperso $15-18 u \pm / w$ Hybrids $23 m, w b$ B These four differ, as they are separately described. but they appear to have come from different varieties of Hortensis $1101-17 w$ in some points after one parent in some after another, in some intermediate Mostly after male. 30-31w/wb Male parent or Hortensis, double. $1113-11 w$ flowers double so that monstrosity can be transmitted to other species. $30-31 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ important, because takes most after * the
male an artificial variety; Not because the female is also a variety. $11211 \mathrm{~m} / \mathrm{w}$ a variety of $12 \mathrm{~m} / 3-12 \mathrm{w}$ a wild plant on poor rocky ground. $11520-23 m / w$ pollen partly good 116 wb appears upon the whole to have taken most after the wild male. certainly not intermediate as so generally happens. 117 $22-28 w$ female side, was fertile with pollen of other species wd not self fructify $w b$ This seems to show the want of intermediary due to cultivation. 118 wt Vide former Fortsetz p. $431192-5 \mathrm{~m} / \mathrm{w}$ some little variation in the hybrids 120 wt 4fold or 201 u "meisten" $/ 2-4 w$ most not all 121 14-19w empty. smell bad pollen in some of growing wild - 17c/u "plumar"/wb p. 69 ought to be D. superbus \uparrow $\rightarrow \mathbf{1 2 2} \mathbf{7 u}$ "vervielfältigen Kupfernelke"/w \& M 11ua/11-14w \& in others Botanic garden 19$20 u \leftrightarrow, 25-29 w$ \& in other wild plant $28 u \star$, $28 w$ \& in $w b$ compares this to blight of Oats \& suspect it due to weather. so be cautious $12418-19 w$ see 3d. Fortsetz p114 28-29m/ $w b$ offspring did not flower owing to cold summer $12510 \mathrm{~m} / \mathrm{wt}$ See Gaertner p273 on Distinctness $11 \mathrm{~m} / \mathrm{w}$ England Smith says(?) Loudon says aboriginally S. America $12 \mathrm{~m} /$ $10 w \mathrm{~N}$. America $11-14 m / 18 u \leftrightarrow / 11-21 w$ all like each other \& quite fertile \& so varieties contrary to Linnaeus $w b$ I see Gaertner gives the reciprocal experiments only i.(a) $1267-$ $1 \mathrm{~m} / \mathrm{w}$ quite agreed with each other $8-9 w$ Read vars. $23-26 m 1287 w$ Stocks

Fortsetzung 3, 1 wt Experiments carried on * from p. 1 of last Fortsetzung $12 x$, wb Crossed many Verbasca of that country, \& found them fertile, to his surprise, as he thought that plants of same country did not readily yield hybrids. $25 w$ No $6 w$ S. Europe $7 w$ Brit 14-15u "Scherben", 21un/4-9w Never seen * Thapsus \& Phlom. growing in same spot though in same country $23 w$ \& Thaps. 4 19-24w intermediate $516-17 w$ quite infertile 20-21w Reverse p. 12 2d Fort: $20 w$ Britain $21 w$ S. Europe $23-24 w$ exactly like $614 w$ England $15 w$ Britain $\times w b \times \mathrm{p} 35$ when crossed with flav. var. colour of hybrid-flower rather darker.- $79 m 911-20 \mathrm{w}$ intermediate $26 w$ sterile $102-4 w$ some Mountain flowers $17 \mathrm{~m} / \mathrm{w}$ Britain 17-26w exactly similar to last. reverse of last- $113-4 m / w$ Britain 15 13-24w sterile: those in pots, produced larger empty capsules (a) perhaps from pollen of neighbouring plants.- p. 20 same fact 24 $26 \mathrm{~m} / \mathrm{w}$ Reverse of last $w b$ (a) N.B. In almost every experiment plants saved in hot-bed, \& transplanted into open ground \& pots; so Wiegmann wrong. 16 1-11w like last, or
reverse, except in leaves, being shorter \& with little wing-like projections, as in female $14 w$ Britain $15 w$ S. Europe $24-26 \mathrm{~m} / 24-25 u \leftrightarrow /$ $26 u$ "strohgelbe", $27-28 \mathrm{~m} / \mathrm{w}$ except in some colour. $17 \quad 3-4 \mathrm{~m} / \mathrm{w}$ Britain 19 14-25w intermediate $20 w t / 1-4 w$ This shows a negative potential power, \& ignores my argument from cucubulus. Thus several cases where one species has not an organ, (as in this case one species hair \& the other has not hairs with knobs) the hybrid has it in less degree.- $4-8 w$ p. 24 an analogous fact in stalks of leaves $24-25 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ those in pots near other plants half fructified, but no seeds - (same fact p26 onwards) $213-4 \mathrm{~m} / \mathrm{w}$ Reverse of last quite like. 23 17-19m/u "beyl davon" $2414 w$ see opposite page $15-25 w$ intermediate $16-19 \mathrm{~m} / \mathrm{w} \mathrm{V}$. ante a $\mathrm{X} 19 \mathrm{u} / \mathrm{w} \tau$ 25 9-12m/w a X do $25-27 \mathrm{~m} / \mathrm{w}$ a X do 29$31 m / w$ sterile $268-9 m / w$ Reverse of last $21 u$ "wesentlicher" $/ 22 u$ "nur schienen" $\mid w$ no great differn 27-28u "sondern|muss" 28 15-22w intermediate $2918-22 \mathrm{~m} / 19 \mathrm{w}$ sterile 31 $14-26 \mathrm{~m} / \mathrm{w}$ intermediate $3218-21 \mathrm{~m} / 15-21 \mathrm{w}$ intermediate $3322-25 \mathrm{~m}$, wb It is evident, from the great similarity between these hybrids \& the foregoing ones, that Phionrides \& Tha $343-4 m / w$ infertile $7-8 \mathrm{~m} / \mathrm{w}$ reverse of last $20-22 m / 14-26 \mathrm{w}$ quite like last, except in colouring of some of the flowers N.B. One parent is a var 27 u "vier", $28-30 \mathrm{~m} /$ w intermediate in colour - p307 Positively contradicted by Gaertner wb quite fertile 35 wt Even Babington allows that there are two such. vars. $1 u / w \tau \tau, 5-7 w$ wild Natural variety (a) $8 w \tau, 10 u$ "beträchtlichen Anzahl", $12 u$ "nicht Art", $15-16 \mathrm{~m} / \mathrm{w}$ case of var. $w b$ (a) It is biennial - grows wild close together, yet during 4 years found they came true; in some districts, only white vars.- Why do they not cross naturally? very strange. Like Hollyock case. $3612-14 m / 1-14 w$ corollas of many of these hybrids fell off the unopened flowers. 17 u "fünf 1 Gattungen", 16-18w only native species $3720-22 w$ self formed hybrid 39 wt insects visit all Mulleins, but no hybrids, because own pollen strongest effect $1 x / 2 u$ "zur \mid beytragen" $/ w$ especially assist $27-$ $30 \mathrm{~m}, \mathrm{wb}$ says he has shown by certain experiments that species will take only own pollen, if two blends put on together.- 41 wt V. phoenicum, which grows in Lower Saxony \& Silesia near Kalw, is sterile on the male side with itself (as said at p.20, 2d Fortz) 4$8 m / x, 9-10 u$ "von \mid selbst" $/ w$ \& yet it seems it had pollen. 11-15m/10-21w 2 always fertile in one plant $15-22 m / 15-18 u \pm / 19-20 u \pm / 21-$ $22 u \pm, 23-25 u \pm 421-4 w$ self-formed Hybrids.

KÖLREUTER, GESCHLECHT DER PFLANZEN $6 x / 7 u / w \tau 44 w t$ all hybrids of Verbasc. sterile (yet easily male C.D.) $2-6 m, 13-17 w$ sort of half fructification $21 x, w b$ wd appear as if quicker growth, longer flowering \&c was property of * all hybrids.- especially of those that properly flower the second year or die 45 wt hard to explain strong vegetation before flowering: the permanence of flowers explicable by their sterility $2-4 x, 4-7 m / x 46$ $18-22 w$ 1. 2. 3. V. p. $5324 u$ "sieben" $/ w$ z $25 u$ "noch höhern"/25-27w yet higher fertility $w b$ z These do not seem to sport. $472-6 w 1.2 .3$. $48 u$ "zehen" $/ w$ z $13-15 \mathrm{~m} / \mathrm{w}$ some few bad pollen-grains in autumn $23 w$ no offspring 48 $1-9 \mathrm{~m} / \mathrm{w}$ did not differ from hybrids between Pan \& Rust 23-29w sterile. 2 of the plants differed from a third $w b$ NB in bringing back a hybrid to either parent, does not appear favourable to sporting $4914 w 116 w \leftarrow 217 w$ Spring from self sown seed $w b$ This \& following appear extra fertile; is there any difference between first cross of Pan \& Rust, \& reverse? $502-7 w$ some with more seeds and some with less $519-15 w 1-1 / 2$; 2-1/4; 3-1/8; 4-1/16; $516-17 m, 25-26 u$ "durch1 Merkmal" 52 13-19m/x/wb probably some plants may be changed in more or fewer generations $-x$ probably this facility is in proportion to the fertility of the hybrids. 53 10-16m/xx/19-20u "aus | Kräften", wb xx important; the gran-children, of themselves, without crossing come nearer to Pan (as if crossed again with Pan. as in XX) $544-8 m /$ w now more resembled each other $14-16 \mathrm{~m} / \mathrm{w}$ not very fertile $565-7 \mathrm{~m} / \mathrm{u}$ "denen 1 Unterschied", 15-20m/w these hybrids came into flower sooner than either parent $28-30 \mathrm{~m}$, wb Hybrid pinks often arise naturally in gardens \& cross much $5720-21 \mathrm{~m} / \mathrm{w}$ (a) $23-$ 25m, 28-30u "dalerstreckt"/w Pinks!! wb (a) This unnatural case of pollen not being mature in time often happens with native pinks when planted in gardens 58 16x/12 $16 w$ p. 99 2d Fort same as Dia. carthus. 59 wt (a) These hybrids self sown. become * partly more sterilized or partly more fertile in seeding themselves, but offspring sterile \& tend of themselves to return to * side of Barbatus 5-8m/w (a) $25 u$ "Forts. 1 unter", 28$30 m$, wb become very like mother-plant \& assumed fertility by self action $60 \quad 7-11 w$ supported by reverse $612-4 w$ less fertility 62 $17-19 m / x, w b$ - hardly differed from Hort. \& was double, so that these varieties produced full effect on a compound hybrid.- 63 19$23 \mathrm{~m} / \mathrm{w}$ differed \& double on double calyx 64 $8-14 w$ intermediate $17-22 w$ vary in colour 66 1u "AnsehenlSamen", 14m, 21-28m/23u
"vielen"/ 24 u "einige"/ $25 u$ "einen \mid etliche" $/ 21-$ $27 w$ very few capsels with very few good seeds $677 u$ "einfach" $/ 9 u$ "gefüllte" $/ 8-11 w$ varied much 2 double $18-19 \mathrm{~m} / 22-24 \mathrm{~m} / 19$ $26 w$ resembled one in reverse experiment \& greatly resembled the reverse cases wb. Does the homogeniousness of reverse experiments hold in varieties, as well as species? $68 \quad 18-21 w$ varied in colour all single $26-30 m / x / w b \mathrm{xx}$ took much after Hortensis: thinks in 3 or 4 generation wd be undistinguishable-69 $13-15 m / x x \quad 70 \quad 2-3 u \leftrightarrow /$ $1-16 w$ D. chinensis two varieties can be impregnated with D. superbus (a native) as * surely \& fully as with own pollen. 72 1$17 \mathrm{~m} / \uparrow w$ wonderful how intermediate in every point, even the colour (wh varies) these hybrids are; yet we kn. one a wild species, other cultivated varieties. $w b$ (a) Pollen of these Hybrids partly good partly bad, yet impregnation of parents sure as in pure D. Chinen $732 w$ (a) $3-5 u \leftrightarrow, 10-11 u \leftrightarrow / 9-21 w$ inherited doubleness strongly more or less inherited Yet wild male \& inclined to be hose in hose - colour darkens in Autumn 25u "inl sich", wb Could never self impregnate them; but produced when begottened by other species \& by seeds $74 w t / 1-12 w$ duration of flowers \& power of vegetation shows their hybrid origin, as in other instances. $25-27 \mathrm{~m} /$ $w b$ Doubleness hereditary from female as well as male side $7529 u$ "durchgehends", wb On male side quite sterile, on female with other pollen produced some seeds. $7615 w$ p108 16-23w intermediate $77 \quad 13-18 w$ self infertile but fertile with pollen of superbus 78 $7-12 w$ intermediate $16-23 w$ self-infertile but fertile with Hortensis $791-4 w$ Both these \& reverse of difficult impregnation. Reverse of last $5-15 w$ intermediate \& like last $19 w$ variety $20 w$ wild growing $w b$ barbatus is Sweet William 81 12-18w intermediate 82 1$7 w$ quite sterile $9 w$ variety $10 w$ wild plant 83 $5-26 w$ | cannot tell whether intermediate in colour seems to take after chinensis - sterile $8416-24 m / 4-28 w$ Varied greatly in colour doubleness strongly heredetary $85 w t$ Though species \& simple varieties, take intermediate colour, when crossed, yet those which have been much cultivated, sport greatly $1-23 w$ has carefully self-impregnated some much altered Varieties \& finds offspring sport much $5-29 w$ So that this analogy has not escaped him-13-17m, 15$16 u$ "nicht ISorten", $19-26 m / x / w b$ \& thinks long-continued changes of conditions tends to destroy the balance \& preserved in ordinary generation, in form colour \&c \&
everything as in hybrids of the first ascending or descending degree 8617 m , $18 \mathrm{~m} / \mathrm{w}$ double $19 \mathrm{~m} / \mathrm{w}$ wild species $27 u$ "zehn", $28 w 10$ hybrids $871-31 w \mathrm{X}| |$ strictly intermediate, even in colour, but also the flowers double, so showing strength of double hereditariness!! $8825-26 \mathrm{~m} / 25 u$ "kein \mid einfachen"|26-27u "vervielfältigten | gefüllen"| $23-26 w$ Not one simple $891-4 w$ quite sterile on female side. $92 w t / 1-10 w$ intermediate in some few points apparently less like male or chinensis $Q \quad 15-16 \mathrm{~m} / \mathrm{Q} \quad 17-20 \mathrm{~m} / \mathrm{w}$ considerable fertility on both male \& female side 21-22u "wenn|Saamenstaube", 24-25u "zwanzig \mid ziemlich", 31u "nach|von" 93 1-10w about $1 / 3$ of natural seed \& next to [63] the most fertile hybrid he has raised $13 \mathrm{~m} / \mathrm{w}$ Loudon makes distinct $13-16 \mathrm{w}$ thinks a var: of D. deltoides a wild species $24-26 \mathrm{~m} / 24-$ 30 w form of petals a little different in D. glaucus from D. deltoides 94 wt (a) sowed seeds of wild D. glaucus \& sometime a red flowered plant came up like D deltoides * Both British \& considered by Loudon as distinct 5Q $8 m / w$ (a) $961-3 w$ intermediate 6$7 w$ quite sterile $16-26 w$ supported strong vegetation $=$ theory of all hybrids whether quite sterile or partly fertile $97 w t / 1-5 w$ B. This experiment produced much good seed; which surprised him, as this hybrid impregnated with D. Hortensis gave none. NB is perhaps explained by great fertility of D. plum sib with D. chinensis (p.43) So that a third species is more fertile with the hybrid, than one of the parents $6-8 \mathrm{~m} / \mathrm{w}$ B $9-12 w$ ought to be repeated to be trusted. $9812-$ $16 w$ intermediate $995-8 w$ offspring differed considerably in every respect from same capsules $10012-17 \mathrm{~m} / \mathrm{w}$ sterile except in one, some good seeds. 101 12-13w Another example 13a "der"/w 1st 14u "S.32" 102 2$18 w$ The two hybrid plants differed in colour \& in some other respects $w b$ confirms remark, that hybrids in second generation with other hybrids not so constant, as in the first cross $103 \quad 6-8 w$ fertility of some increased $15-16 \mathrm{~m} / 15-26 \mathrm{w}$ wild species yet does not seem to induce its form in this cross with any particular force. $10425-28 \mathrm{~m} / \mathrm{w}$ fertile with self by self $10511 m, 19-26 m, 26 u$ "zwergartige" $/ w$ dwarf wb 3 plants differed in colour * two approached nearer to D. barbatus \& one to D. chinensis.- 106 1-19w similar hybrids from 2 reverse experiments sported \& two leaned to D. barbatus $24-31 w$ seems no rule in the variation of such hybrids $1071-3 \mathrm{~m} / \mathrm{w}$ tendency to be dwarf 109 wt seems to * say, that, as in a hybrid,
the male or female side is most fertile, so will its offspring take after that side. $7-12 m$ $112 \pi 2-1 m / w b 2$ differed * 3 hybrid generation $11324-31 m / 12-29 w$ repetition of old experiments $114 \quad 17 u \uparrow / 18 u \wedge / 1-24 w$ intermediate \& quite sterile - fertile: \& hence varieties Loudon makes out diff. shrubs \& plants China \& E. Indies 25-26m, wb Hooker looked to these Hibisci for me; those now thus named are very distinct \& really very distinct in appearance \& male even into 2 genera: case cannot be trusted 116 wt A) Hooker found for me, that Mat. incan \& annua are thought vars. by R. Brown \& Bentham says M. glabia is also only a var. So case fails $4-6 m / 1-6 w$ thinks infertility shows these distinct species $18-20 \mathrm{~m} / \mathrm{w}$ Make a list with reference to X Hunt out these vars $18 w=$ Mathiola in Loudon A. $23 u$ "Winter 1 $z u ", 24-29 w / w b$ Gaertner has not tried this, Note given in K. to reciprocal cases of M. annua \& glabia p. $7061027 w$ so that 3 reported species are distinct $w b$ x Resembled each other in inverse Incana is Purple stock. annua ten-week stock. 117 19$20 \mathrm{~m} / \mathrm{w}$ as fertile as two parents $26-29 m$, $w b$ Must be considered as varieties, though flowering at different times duration of flower \& other differences. 118 wt Impossible to make anything out in Steudel Mem. species not in Loudon 1-2w Sida Not experimented on by Gartner $10-15 \mathrm{~m} / 7-10 \mathrm{w}$ fertile hence varieties intermediate 19-21w cannot be traced in Sageret 22-26w Compare with Sageret. 119 wt Hooker allows these two Aquilegias probably distinct 5-6w intermediate \& fertile $8 w$ varieties $17 \mathrm{~m} / 15 \mathrm{w}$ Columbine $22 w$ double $24 u$ "einfach" $/ w$ single wh I see Gaertner p365 experimented much on Aquilegia \& nearly all (i.g.) (but no Ks.) with many species: *Now Hooker thinks all one species; has he published? 120 14-15u "stark verveifältigen"/w V very double 122 $1-15 w$ Greatly varied * in colour \& doubleness. $18-27 w$ as in inverse \& varied as in do 123 wt Attributes the great variation to the cultivated state of the garden Columbine: supports statements at p.85. 10$11 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "und \mid Fruchtbarkeit" $/ w$ not small * fertility $\times 9-14 m *, w b / 17-31 w$ Some might think these hybrids p49 might be selfpropagated for perpetuity; he does not believe, as seeds somewhat less, or doubleness only right number in parents. also from the tendency in many cases to return to either parent form $124 \quad 22 w$ Hyosciamus $23 w$ p46 $1258 m 12719-27 \mathrm{~m} / 10-$ $31 w$ I have not well made out following

KÖLREUTER，GESCHLECHT DER PFLANZEN
pages．wb In Syngenious plants，the pistils head down \＆touch pollen＊C．Sprengel I shd think did not know this 130 22－24m 131 $9 m \quad 134 \quad 1-6 m / 1-15 w$ wonders at the movement，as he thinks impregnation $\%$ happens by insects alone $13627-31 \mathrm{~m} / \mathrm{w}$ On Pollen 152 1－18w pollen in water，when swelled，does not burst in many genera

KONINCK，Laurent Guillaume and LE HON，Henri Recherches sur les Crinoides du terrain Carbonifère Bruxelles；Académie Royale de Belgique； 1854 ［Down，I by Koninck

NB 55
$554 w$
KÖRNER，Friedrich Thierseele und Men－ schengeist Leipzig；Otto Wigand； 1872 ［Down］
$\mathrm{NB} \mathrm{O} /$
\wp
KOWALEWSKY，Wladimir Monografie der Gattung Anthracotherium Cuv．1．Theil； Cassel；Theodor Fischer； 1873 ［CUL，I］ ad，dv，phy，tm，ts

SB ${ }^{\circ}$
147 The older pari－\＆impari－digitata have collar bones much more alike than they have now－gradual divergence
147 thinks changes very stow 〈ie slow \rangle
153 thinks reduction of 4 －toed to 2 or 1 toed wd be grt saving，for reduced blood－vessels \＆C
183 much about adaptive \＆unadaptive changes．
What I do not understand
$13725 m 14513 m 147 \mathrm{wt}$ The older forms of the paridigitata \＆imparidigitata have collar bones much more alike than at present day －gradual divergence．－2－16m，35－41m 148 8－9m 149 23－26m／25u＂Choeropotamus＂ 151 $27 \mathrm{~m} 15311-21 m, 37-40 \mathrm{~m} 1546 \mathrm{~m} 16135 \mathrm{~m}$

KRUSENSTERN，Paul von Wissen－ schaftlichen Beobachtungem auf einer Reise in das Petschora－Land im Jahre 1843 St． Petersburg；Carl Kray； 1846 ［Down，I by Murchison］\wp

KUHL，Joseph Die Descendenzlehre und der neue Glaube München；Ackermann； 1879 ［CUL］
title page wt Febr
\wp

KÜHNE，H．Die Bedeutung des Anpas－ sungsgesetzes für die Therapie Leipzig；Ernst Günther； 1878 ［Down］

KÜHNE，Wilhelm Untersuchungen über das protoplasma und die Contractilität Leipzig； Wihelm Engelmann； 1864 ［Down］\wp

KUNTZE，Otto．Methodik der Species－ beschreibung und Rubus Leipzig；Arthur Felix； 1879 ［Botany School，I］\wp

KUNTZE，Otto Um die Erde Leipzig；Paul Frohberg； 1881 ［Down，I］\wp

KURR，Johann Gottlob von Untersuchungen uiler die Bedeutung der Nektarien in den Blumen Stuttgart；Henneschen Buch－ handlung； 1833 ［CUL］
ad，beh，che，fg，gd，mhp，mn，no，oo
NB $w<$
SA $\langle p p .28-29\rangle \square \beta$
Jan． 191861 Abstract of whole Book
He asserts that Cruciferae are unfrequented before flower opens（Kurr）
〈over） 0
Jan．13th／61／Nectar an excretion－as seen in Legum．\＆Laurel－see also Kurr for other cases．－In Bracteen \＆flowers later produce only when sun shines－sugar is highly oxidised，$\&$ is not oxygen exhaled when sun shines．－Nectar is sought eagerly by various insects－C．C．Sprengel，finds case that it is excretion in various parts \＆organs within flowers \＆its very general presence in highly organised plants（see Kurr）was of special use to plant by attracting insects．－He erred in supposing that these visits were for self－ fertilisation；though in many cases necessary for self－fertilisation（a）\＆for various of the Dioicous plants．The real object as shown by many general considerations is to ensure occasional cross．－But true as it in those flowers，as Papaver \＆
〈over〉 \＆Verbascum（Kurr）no nectar，yet these genera naturally cross－I suspect pollen－searchers do the job－But there are some as grasses，conifers，on pollen of which insects do not seem to feed－here wind both unites dioicous \＆crosses the hermaphrodites－Often have feathered pistil without pollen in adundance－dangling anthers－open petal flower \＆c \＆c．－\＆no nectar（except Poa aquatica probably）Think of number of Insects which feed chief on Nectar！
（a）A hermaphr plant not self fertilising itself \＆thus requiring insect agency is in fact for same object of crossing
SB2 $\square \beta$
Nectary p． 129 p133 V tricolor Delphium
（over）Abstract of Kurr on Nectary Jan 14 18611
p． 17 Cyperaceae \＆Gramineae Junceae no nectar Arum none（false）－p34 Rumex， Atriplex none Rheum has 36 Plantago none 25 Calyx of certain Iris secrete Nectar
29．Lip of Butterfly orchis secretes before flower opens $\|$ throws light on secretions in Listera \＆c
28＊Bracteen of certain orchids secretes honey
29 Cypripedium no nectar！
－ 79 Polygala vulgaris none；yet I have seen Hive－Bees smelling shows how rarely secretion happens So Viola same facts
39 Small flower with nectar Veronicas（44 Myosotis） 54 Galium 2 spe．\＆Asperula／64 Epilobium hirsutum \＆Montanum） 79 Stellaria \＆Sagina procumbens／83 Draba verna／
40 Verbascum none（yet cross naturally）－ Solanum tuberosum \＆parent none
42 Syringa vulgaris none？whether in own country？
80 The fruitful flowers of Viola have no corolla or nectary－（probably self－fertilisers） 85 in Cruciferae generally fertilisation in compound flowers．－\＆Honey after fertilisation $=$ some error $=$
86 Papaveraceae（they have the guiding mark of C．C．Sprengel）no nectar
95．Amentaceae $\%$（except Salix known to be visited by Bees．）no nectar．Or Coniferae Good as showing use of nectar in several cases as Graminae Cyperaceae．\＆ Coniferae when we see structure \＆pollen strong that wind is agent No nectar
〈over〉 99．List of plants without nectar
102 Nectar rarely secreted before pollen shed but last afterwards
115 cases of nectar secreted outside of flower（does not know of many cases）
124 cases of Orchids which get no seed when spurs cut off．－but opposite cases given in note
126．Viola tricolor bore seed when spur cut off probably bees do not see \＆are guided by flower－so with Corydalis later
129 general conclusion from 441 experiments barely lessened seed．－
131．some orchids bore fruit when corolla cut off
133 V．tricolor bore fruit 135 General
conclusion that cutting off corolla did not prevent flower producing fruit！
138 to 142 General conclusion of whole Book on use of Nectaries－All spoilt by not knowing of use of Crosses．
$12 w b$ Krultz $173 m / w$ Arum must have Honey $11 w$ none $\Uparrow 15-10 w$ none Poa aquatica must have－one Moth frequents 19 $4 w$ none $2215 \mathrm{~m} / u$＂beiden untern＂ $25 \$ 14$ $12 m 285-10 \mathrm{~m} / \mathrm{w}$ No Honey look at night－ $\Uparrow 7-4 m / \Uparrow 6 u$＂Bracteen＂ $292-5 m / w$ lip of Butterfly orchis before flower opens 18 m 32 $7-15 m / x / w$ Proteaceae with nect on one side 34 ＂Rumex＂．x，＂Chenopodeae＂．x 36 ＂Plantago＂．x ，＂Primula＂．$x 381-10 w$ Bees wd not go where the nectar accumulates．- ie in Nectar pollen $\Uparrow 9-8 m 395-15 w$ Veronicas， though so small secrete Honey 40 ＂Verbascum＂．m／w X Yet cross so readily！ Naturally moveableO by polien－searchers ＂Solanum＂．m / w none 42 ＂Syringa＂．m / w none 44 ＂Myosotis＂．m / w small flower $45 \Uparrow 8 u \leftrightarrow 49$ ＂Apocynum＂．m $50 \Uparrow 18-14 \mathrm{~m} / \uparrow 17-16 u$＂welche। Saftmal＂$/ w$ receptacle 51 ＂Pyrola＂．m 52 1－2m／ wt shows secretion of pollen relates to opening of flower 3－8m 54 ＂Galium＂．m／u，介3－ $1 m 571-4 m / 4 u$＂unterelHälfte＂， $16 u$＂der 1 umgibt＂， $19 u$＂ihnlumfasst＂ 64 ＂Epilobium＂．m 65 ＂Potentilla＂．m $66 \quad$＂ 25 ＂$m \quad 67 \quad 5-6 m / 6 u$ ＂Saftabsonderungldem＂ 71 ＂Melianthus＂．m／w latent 74 介4－1m $751-2 m / 1 u$＂ist einseitig＂ 79 ＂Cerastium＂＂Spergula＂．m／u，＂ 11 ＂m ，＂ 12 ＂m ， $" 13 " m, \quad \Uparrow 11-9 m, ~ \Uparrow 10 u$＂keine Honig＂／w Bees frequent $80 \Uparrow 10-1 \mathrm{~m} / \Uparrow 2 u$＂einigemall wurzelständigen＂ 83 ＂ 9 ＂$m 85$＂Cheiranthus＂．$m /$ ！／u士 86 ＂Papaver＂．m / w Yet cross naturally 88 ＂Anemone＂．m／u 95 ＂ 1 ＂－＂4＂．m，＂ 7 ＂$m, ~ \Uparrow 4-1 m$ 96 3－5m 97 ＂ 27 ＂m ，＂ 44 ＂$m 99$ wt Poppies have mark at base of petals to guide Bees $6-7 w$ Eliz has plant＇s／ua，$\ddagger w$ Anemone remarkable exception cover up Anemone 100 3－5m $101 \Uparrow 14-8 m / w$ good for looking to Pistil $1029 u$＂höchst selten＂， $22 u$＂gleich häufig＂，$\ddagger w$ Nectar very rarely secreted before pollen shed but sometimes lasts after fertilisation． Present in dioicous plants $103 \Uparrow 18 u / w \tau$ ， $\Uparrow 16 u / w \tau$ ，$\quad \uparrow 14-10 \mathrm{~m} / \mathrm{w}$ Nectaries become regular in double flowers $10412-16 \mathrm{~m} / 15 u$ ＂Orchis Imaculata＂ $17 u$＂sehrlabsondern＂／w Nectar receptacles present where no honey！！？These，I suspect，are cases of secretion at odd times． $21-24 \mathrm{~m} / \mathrm{w}$ doubts whether they serve as guides to insects． 115 $\Uparrow 6 u \mathrm{t}_{\mathrm{o}}$＂heisser＂，$\uparrow 12-6 \mathrm{~m} / \uparrow \mathrm{w}$ Secretion of sugar by other parts of Plants $1197-10 \mathrm{~m}$ ， $14-17 \mathrm{~m}, \quad 20-22 \mathrm{~m} \quad 120 \quad 1-12 \mathrm{~m}, \quad \Uparrow 12$ ？$/ u$ ＂Viehwaiden＂，$\uparrow 10 u / w \tau 1212-6 m$（Sprengel）／w

KURR
(a) wt (a) First who saw use of nectar to temt insects $1245-7 \mathrm{~m} / \mathrm{w}$ O. conopsea bore no fruit $8 u$ " 15 ", $9 u$ "nurlan" $/ 8-9 m, \Uparrow 6-1 m / w$ contrary result 126 wt Nectarys cut off 11$12 \mathrm{~m} / \mathrm{u}$ "alle|reife" $/ \mathrm{w}$ it is clear Bees do not perceive when nectary cut off.- $1278-9 m$ 128 " 27 " m, " 30 " $m 12914 a$ "Versuchen" with nectary cut off $\uparrow w$ before the whole cutting off nectary hardly lessened Seed. 130 wt Orchids Cutting off flower $\uparrow 11 u$ "keine trug", $\uparrow 7 u$ "Blumen| Kelch" 131 wt corolla cut off $4 u$ "sind gereift", 8-9u "aber|Frucht", $18 u$ "eine Frucht", 21u "Hälfte" 133 5-6m, $11 m$ "Blumen | Früchte", "Viola". $m / m / w$ (a) $w b$ (a) Could he have artificially fertilised these flowers? 134 " $69^{\prime \prime} m /!/ u$ "sie | Saamen" 135 " 76 " m, " 77 " m / u "Fruchtbildung", "Il"m $138 \quad 7-10 \mathrm{~m} / \mathrm{wt}$ says as he cut off corolla \&c \& yet plant bore seeds yet cannot argue that these parts useless so he says with Nectarys $\uparrow 4-1 m$, wb argues against Sprengel, because in most honey-secreters no help is wanted (does not think about crossing) he has proved in many cases no help wanted. Because many are fertilised in bud, as Campanula!! $1392-6 \mathrm{~m} / \mathrm{w}$ no help wanted $7-9 \mathrm{~m}, 10-12 \mathrm{~m} / \mathrm{w}$ Nectar fails in many dioicous plants. $16-17 w$ B $19 u$ "solhabe", $\pi 17-1 m / \uparrow 10-8 y \pm, w b \quad$ B Believes insects necessary for some dioicous plants, but cannot believe so important an office left to chance! $1401-4 m 1415-9 m 142 \Uparrow 8-2 m$, $w b$ Secretion of nectar, he concludes, relieves flowers, like menstruation, before seeds are got.-

KURTZ, F. Die elektrischen und BewegungsErscheinungen am Blatte der Dionaea muscipula Leipzig; Veit \& Co.; 1876 [Down]

LABILLARDIÈRE, J.J. de Relation du voyage à la recherche de la Perouse 2 vols.; Paris; H.J. Jansen; 1791 [Down, pre-B] \wp

LACEPÈDE, Bernard Germain Étienne de Histoire naturelle des cétacées 2 vols. in one binding; Paris; Plassan; 1809 [Down, pre-B]

NB 242
vol. 1, 239 12-14m 242 9-17m

LAING, Sidney Herbert Darwinism refuted; an essay on Mr Darwin's theory of "Descent of man" London; Elliot Stock; 1871 [Down]
NB O/

LAMARCK, Jean Baptiste de Histoire naturelle des animaux sans vertèbres 1st edn, 7 vols.; Paris; Verdière; 1816-17 [CUL, pre-B, on B ?]
gd, sy, tm

vol. 1 NF Have

〈untranscribed w are page-number references; $\omega\rangle$
vol. 2, $172 w, 13 w, 17 w, 24 w, 25 w 181 w, 2 w$, $3 w, 6 w, 8 w$ Order Polypes Tubiferes 405415 $228 w, 14 w 71 z t 908-12 m, 9-23 c / 15 w$ (a) $w b$ (a) Flustra is stony \& entirely membranous $9117 w, 18 w, 19 w, 20 w, 21 w$, $22 w, 23 w, 24 w, 25 w 10511 w, 12 w, 17 w, 22 w$ 123 15-17m $4496 w, 7 w 4572 w, 19 w 4587 w$, $15 w 5049-10 m 5272 w, 9 w 5281 w 53014-$ $18 m$
vol. 4 NF ∞
Hymenoptera 38; Neuroptera 179; Orthopteras 229; Coleoptera 266; Dom. 272; Frim. 275; Tetrar. 283; Heterom. 366; Pentam. 437; fil. 439; clav. 532; Lamell. 564 $4225 w 433 w, 12 w, 18 w, 24 w, 28 w, 32 w 123$ $10 w, 14 w, 18 w, 22 w, 25 w 18519 w 227$ 31$32 m 2348 w \Leftrightarrow 240 w b$ caught a specimen 370 miles from coast of Africa where it must have come from $24815-18 m 27210 w$, $11 w, 12 w, 13 w, 16 w 28414 w, 21 w, 25 w 285$ $2 w, 4 w, 6 w 35823-26 m 36720 w, 27 w, 30 w$ $3682 w 3975 w 3991 w \Leftrightarrow 4391 w, 4 w, 7 w 440$ $14 w, 18 w, 20 w, 24 w, 27 w, 29 w 49227 w, 28 w$ $4933 w, 13 w, 14 w, 15 w, 16 w, 20 w, 22 w, 25 w$, $30 w, 31 w 4943 w, 4 w, 6 w, 8 w, 9 w, 13 w, 14 w$, $19 w, 20 w, 21 w, 25 w, 28 w, 31 w, 32 w, 33 w 532$ $\Uparrow 1 w 5332 w, 6 w, 9 w 5668 w, 9 w, 11 w, 14 w$, $18 w, 19 w, 23 w, 30 w, 31 w, 32 w 5672 w, 5 w$, $9 w, 10 w, 11 w, 13 w, 19 w, 22 w, 23 w, 24 w, 26 w$

LAMARCK, Jean Baptiste de Histoire naturelle des animaux sans vertèbres 2 nd edn,
revised by G.P. Deshayes and H. MilneEdwards, 11 vols.; 1835-45 [CUL]
ad, af, is, mhp, t, ud
vol. 1 NB1 It is doubtful whether Lamarck has done more good by awakening subject, or harm by writing so much with so few facts.-
This volume no facts, wild metaphysical speculations - very poor
vol. 7 - Land-Snails on Isids
Nothing else in whole work March 1857
NB2 March 1857 Nothing
111; 112; 114 to 116; 126; 132; 134; 151;
152; 153 to 165; 197; 249
287 On analogies
$11127-28 \mathrm{~m} / 28 u \leftrightarrow 11210-11 \mathrm{~m}, 12-14 \mathrm{~m} 113$ $28-33 m$, wb Owen gives Rept (Rept Brit Assos) as strongest case of wide range of perfection $11430-35 m 115$ 19-23m 116 2931!/30u "perfectionnement" 126 34-36m 132 2$18 \mathrm{~m}, 23-25 \mathrm{~m} 134$ 12-14m, 18-20m, 28-33m, wb Milne Edwards 135 22-25m/!! 151 20-24m $1521-12 \mathrm{~m} / \mathrm{w}$ evidently has no notion $9-14 m$ $15518-23 m, 19-20 w$ * 156 1-16m, 4-7w only proofs $1571 \mathrm{~m} / \mathrm{u}$ "loilobservation" $!!!/ \mathrm{wt}$ Because use improves an organ, wishing for it, or its use, produces it!!! oh - 158 5-6m, $24-25 m, 26-27 m, 30-31 m \quad 159 \quad 3 m, 4 u$ "habitudes 1 prises", $5-12 \mathrm{~m} / \mathrm{w}$ this is nonsense applied to Plants, What makes them acquire a habit $13-18 \mathrm{~m} / 15-16 \mathrm{w}$ Base of theory $20-$ $23 \mathrm{~m} / 21 \mathrm{w}$ oh 163 14-16m $165 \quad 7-19 \mathrm{~m} / 11 u$ "peu|plus", 31-36m/ $\rightarrow 166$ 33-35m 197 32$36 m 2491-5 m 2871-3 m, 4-11 m / 9 w 28817-$ $18 \mathrm{~m} 2887-12 \mathrm{~m}, 16 \mathrm{~m}$
vol. 5, 646 33-36m, wb V. Thompson Zoolog. Researches No 3 p69 651 22-28m 652 18$21 \mathrm{~m} / 18 u / w \notin$

LAMARCK, Jean Baptiste de Philosophie zoologique 1st edn.; Paris; Duminil-Lesueur; 1809 [vol. 1 only; CUL, pre-B, cover is that of 1830 edn.]
ad , beh, cc, ch, che, cr, cs, dg, ds, dv, ex, fg , fo, gd, geo, h, he, hl, hy, is, mhp, mi, no, oo, phy, sh, sl, sp, sy, t, ti, tm, ts, v
NB p261 On effects of intermarriage in preventing multiplication of species
SB $\square \mathfrak{R}$
44 It is odd that in animals organs for conservation of life important, in plants organs of reproduction - But a flower is more than organ.
58 good remark how arbitrary the distinction race \& species is.
62 alludes to conditions. [in Preface ask
whether from earliest * age there can have been revolution of climate corresponding to the many changes in organisms on earths face.]
Very poor \& useless Book
21 19-25m 22 14-18m, 19-21m 25 23-27m 26 $8-12 \mathrm{~m} / 9 \mathrm{w}$ Why? $10-21 \mathrm{~m}$, 21-22m/u "oul existé", wb Fallacy common to Swainson \& Macleay 31 wt X Here seems to think existing series perfect $12-14 m, 21-26 \mathrm{~m} / \mathrm{x} 32$ 18-21m 33 26-28m, 27-28m, wb V. p31 38 wb In this Chapter argues that all divisions or gaps are artificial or that the series is either now perfect or has been so - Fallacy - 39 $9-12 \mathrm{~m} / 11 u$ "parenté" $4410-13 \mathrm{~m} / \mathrm{w}$ why so strong a division? $5024-28 \mathrm{~m} /$? $511-12 \mathrm{~m} 52$ $w b$ On the importance of relations $5511-25 m$ 56 14-25m 57 22-25m, $w b$ Lower animals where many species $581-9 m, 18-28 m 5916-$ $17 \mathrm{~m} / 16 \mathrm{u}$ "forment \mid rameuse", 18-24m 62 21$28 \mathrm{~m} /$?, $w b$ is there any marked difference between races produced in same or different countries, with respect to propagation? 63 1$5 m * /$? $6422-26 m / 23-24 m, w b *$ a want of Proof $68 w t / 1-12 w$ The case of acquired hereditary instincts, shows that instincts can be acquired. 3-4m, 10a "tout" $/ \rightarrow / 8 u$ "sublime Auteur", 21u "nature" 70 21-27m, 24-28m, wb \& not isolated pair 71 1-4m/??, $13-15 \mathrm{~m} / 14$ $15 \mathrm{~m} / \mathrm{w}$ Well-said $18-21 \mathrm{~m}, 20-28 \mathrm{~m}$, wb Like Lyell in Geology $751-7 m, 10-14 m, 13-27 \mathrm{~m}$, $w b$ not well stated $761-25 m, 10-23 \mathrm{~m} / 14 \mathrm{w}$ Poor $13 u$ "à détruire" $\mid \rightarrow / w b$ S. Africa 78 1$26 w$ The similarity of type on old Continents \& in oldest seas - does it point to first Creation?? wb Lamarck argues, species of shells, not killed by man, no apparent cause of death; but causes of change are present \therefore therefore fossil same species with modern.- $7913-15 m, 24-29 \mathrm{~m} / \mathrm{w} \therefore$ rate of change not uniform in world, except on great scale $w b$ Geologists judge of time by change of species, these changes effect of physical changes (dynamical changes). these we can only judge of by present day - Therefore measure of past ages is reduced to observation of changes at present day .- 80 $w b$ Therefore every fossil species direct father of existing analogies \& no extinction except through man!- [Hence cause of innumerable errors in Lamarck] 81 wb On species - argues against permanence, when conditions changing - series branching now or once perfect - no genera - conditions change species \& these changes by time become fixed - assumes some more species made by (p.64) by hybridity \& fixed

LAMARCK, PHIL. ZOOL.
by time - wants produce habitudes, the source of actions, faculties \& instincts argues against Egypt case \& asks what is 2000 to 3000 years? -/definition of species 75 /doubts any extinct animals! (hence theory must be false $X X w b$ There is nothing about types as Geograph. Grouping 83 9$15 \mathrm{~m} / 10-11 u$ " n 'offrant | parfait" \mid ?, wb nearly all compound animals being fixed, analogy with vegetables,- caused probably by * imperfect transmission of will preventing voluntary \& coinstantaneous movements. 84 $1-4 m /$? $861-4 m 8916-22 m /$? $931-5 m 101 \mathrm{wb}$ Speculations 105 11-14m, 21-25m 106 17$27 m 107$ 15-27m/17u "quelle" 108 13-22m 109 9-16m $11024-28 m 127$ 15-23m $129 w b-$ Classification - p.105. few animals at the limits of classes - animals in series \& not ramified p. 109 (quite different from my view) - organs vary in developement \& not in same ratio, as the developement of the class to which it belongs $13427 \mathrm{~m} 1351-3 \mathrm{~m} 1361-$ $6 m 1401-27 w$ There appears to me to be some confusion in these ideas of degradation. What makes perfection, except that towards the end wanted. Look at House $)$ of Crustacea wb Scale (of many kinds) of complication $=$ on exists. $1441-3 m$ $1456-14 m, 13-27 w$ Here is the difference between Lamarck \& Me 146 5-8m/? 147 1$2 m 1483-8 m, w b$ The economyzo of world would have gone on without Bats or Ostriches.- It can only be following out some great principle it is clear Birds made preeminent for air. yet if no birds: Mammalia would best take place 149 wb <continuation of p. 148) There limit to this Adaptation. Fish could hardly have lived out of water. Though Crabs - Spiders under water.- $\mathbf{1 5 0} \mathbf{w t / 1 - 5 m /}$ $? / w$ This is rather false; Simply to differ from highest animal, does not prove degradation. Who can doubt superiority of some organs \& therefore senses in lower animals $15-28 \mathrm{~m} / \mathrm{w}$ How curiously different from Swainson $16 u$ "palmipèdes"/w Why? 18u "sortant|marcher" $1516-10 \mathrm{~m} / \mathrm{w}$ as bad as Swainson 155 13$15 \mathrm{~m} / \mathrm{w}$ no links with high classes 156 15$16 \mathrm{~m}, 16-28 \mathrm{~m}, \mathrm{wb}$ according to his class of argument. This not degradation because mere effect of in $1575-10 m$, wb NB Snakes perform the parts of fish, \& fish of snakes.$1587 u$ "odorant" $/ \rightarrow / w b$ On this scheme of organization lower down it would not be expected to find organs smell more perfect. But in others as articulates it is much more perfect 217 wbot This chapter must be looked over again: L. distinguishes between degraded or abortive organs, such as
extremities of Cetacea, \& less developed forms -: discussion on this point fills much of this Chapt. wbe The want of progression in the vegetable world serious fact Lamarck has rather overlooked - Though no doubt vegetable world should rather be considered as one family (not so large as insects) in the scheme of organic beings. $22123-27 \mathrm{~m} 223$ 14-21m/w Therefore not same theory to plants \& animals 229 24-28m/28u "formées । pays" \mid ? $23516-18 m / 17-22 w$ are there any facts? I doubt 241 3-8m, 13-16w Australia honey-sucking marsupial. $2421-6 \mathrm{~m} / \mathrm{w}$ Mem. Tucotucu wb Coleoptera wings beneath soldered cases $2448-13 m / 9$? $2465-13 m 261$ 22-28m 262 1-7m $2667-14 m, 10-28 m$, wb Does not pursue this into Geographical Distribution 267 7-16m, 18-27m 268 wb Explains how animals \& plants change. Lamarck's theory differs for plants \& animals - It is absurd this way, he assumes the want of habit causes animals annihilation of organ and vice versâ - \|Explains how crossing presents innumerable varieties of man - \& supposes if no distance between men, there would not be many races of man - does not extend this view 376 1-3m/1-13w This shows connection of life with laws of Attraction- $16-28 w$ If food in stomach is vitalized one need not wonder at the power of the womb $37810-18 \mathrm{~m} / 12-13 w$ crystal 379 $19-25 m / 21-22 m 3801-7 m / 3$? 381 wt Have not crystals certain properties common to the whole \& not to part? $1-3 m, 1-10 m, 4-14 m$ 382 20-21u "toujours laccidentale"/w crystal 25-28m, wb Endosmos \& Exosmos purely Physical action 384 1-28w The interruption of ordinary laws of classical attraction most striking character of life $13-26 \mathrm{~m} / \mathrm{wb}$ Other final cause 388 13-26m/ 24-25m 392 6-9m 393 16-27m

LAMARCK, Jean Baptiste de Philosophie zoologique new edn, revised and introduced by Charles Martin, 2 vols.; Paris; F. Savy; 1873 [Down, I by Martin] \wp

LAMBERT, Charles L'Immortalité selon le Christ Paris; Michel Lévy Frères; 1865 [Down, I]
\wp
231 14-18m $23311 m, 14 m 25624-26 m 275$ 12-16m 27922 m
\wp
LAMBERT, Charles Le système $d u$ monde moral Paris; Michel Lévy Frères; 1862 [Down]

LAMBERTYE, Léonce Le Fraisier Paris; Auguste Goin; 1864 [CUL]
hy, sp, tm, v
NB All used 1865
p. 14 M. Gay ; p. 24 no runner; 37 5-leaved curious; 50,51 to p.63; 76
History 125; 127; 137; 221 - 230; 2445 leaved; Belle Bordelaise not a Hybrid
14 6-11m/w Hautbois $2425-27 m 37$ 17-20m 50 17-20m, 25-31m 52 19-23m 53 24-25m/w Scarlet 57 11-22m (Hooker) 59 1-2m/1u "c'est 1 subalpine", 27-31m 61 4-7m, 16-21m 62 25-30m, 31-32m 76 19-24m $7735 m$, wb not hybrid $125 \quad 14 w \quad 1683127 \quad 28 w \quad 1746 \quad 29 u$ "citées"/29-31m 137 11u "Fressant"/4-14w 1766 all specs known 5 vars with some subvars of F. vesca $17323-29 m 22124 m$, 28$33 m 230$ 13-19m, 21u "Belle Bordelaise", 28$33 m 24431-34 m 2451-3 m, 4-7 m 37923 m$

LAMONT, James Seasons with the sea-horses London; Hurst \& Blackett; 1861 [Down, I] beh, gd
NB 89 Drift wood on Spitzbergen from W. Indies \& some N. country
141 Walrus fighting manner of
$897-18 m 1411-3 m 1439 m, 25 m$
LAMOUROUX, Jean Vincent Félix Exposition méthodique des genres de l'ordre des Polypiers Paris; Veuve Agasse; 1821 [CUL, pre-B, S]
facing viii table.wec $5 \mathbf{b} 32-33 m$ 11a 20-22m 107a 20 m 107b 19 m 108 21m, table $31 . w$ Pavonia table 57.w Modespora table 64.w Cillepora, 12-16 F, 171822 Cill table 65.wt Cilla - table 65.wb Tert

LANCIANO, Raffaele L'Universo, l'artro e l'individuo Napoli; Tipografia Italiana; 1872 [Down, I] \wp

LANESSAN, Jean Louis La Lutte pour l'existence et l'association pour la lutte Paris; Octave Doin; 1881 [Down]

LANESSAN, Jean Louis $D u$ protoplasma végétal Paris; A. Parent; 1876 [Down] \wp

LANKESTER, Edwin Ray Degeneration. A chapter in Darwinism London; Macmillan; 1880 [CUL]
$\mathrm{ci}, \mathrm{dg}, \mathrm{sx}$
NB male cirripedes the shorter cirripedes the primitive cirripedes
reason for Mites being degenerated Spiders Anclasma Ibla

LANKESTER, Edwin Ray On comparative longevity in man and the lower animals London; Macmillan; 1870 [CUL, I]
beh, ct, fg, h, he, in, 00, pat, sl, sx, ta, y

NB1 Bears on Natural Selection

p. 75 Rate of Reproduction

I think I had better only say after discussing how long the series of changing cells goes on (perhaps for even senile diseases) that longevity is a more difficult subject $\&$ refer to this book.-
NB2 Who has * discussed this obscure subject more fully than 2 other recent authors
Pangenesis 31, 36
Longevity \& Individuation *
45 longevity
do $71 \checkmark$
76
Pang - 77, 108 © Death-rate of married men
$\checkmark 79$ 人
Summary on Longevity 87 Summary; 119

- 91 Struggle for existence between societies
- savages perish in old age from starvation - 117
- 120 Destruction by Intemperance; Table p. 114
- 122 - The struggle for existence includes rearing children
- average mortality has increased - 126
- 128 on Fraser's article

31 16-24m, 28-29m (Darwin) 32 12-20w no, they multiply $33 z t$ 00000000 wt the last will consume all gemmules in repair wt How many stages of metamorphosis $1-6 w$ I suppose after a time, same cell reproduced 8-14m/w Gemmules? used up in repair 36 1$11 \mathrm{~m} / \mathrm{w}$ If any gemmule had but limited power of increase all wd be clearer $451-4 \mathrm{~m} / \mathrm{w}$ Parrots Tortoise? 71 21-28m 75 28-30m, 28m/ w ? Herbivores $31 m \quad 76 \quad 17-23 \mathrm{~m} / 18 u$ "generative expenditure" $/ 9-21 w$ greatly opposed to his belief $7713 u$ "castrated animals" $/ 12-15 m / w$ They ought to be for they retain gemmules \& , 23-29m 79 8-12m 87 13$25 m / 17-22 u \pm 916-11 m 10827-28 m 1175-8 m$ $119 \quad 6-8 m \quad 120 \quad 28-29 m \quad 122 \quad 17-19 m / 15-20 w$ that not starved to Death, to marry \& rear children 126 7-9m 127 9-13m 128 20-24m, $26-28 m / 26 u$ "social virtues" $12919-21 m, 30 m$, $31-33 m /$?, wb No some differn in constitution same disease not twice
catalogue \wp

LARDNER, Dionysius (ed.) The cabinet cyclopaedia; outlines of history London; Longman, Rees, Orme, Brown \& Green; 1830 [Down, I Charles Darwin 1839]

LATHAM, Robert Gordon Man and his migrations London; John Van Voorst; 1851 [CUL]
af, beh, cc, ds, ex, gd, h, ig, mg, no, oo, sy, tm, v
NB 49 Man \& Monkey compared by summary, only numerical on Resemblances
SB1 $\square \mathfrak{R}$
p.47, 49 (If we cd we shd class Man by Descent, I think) p. 74
p.62; 70

97 - Perhaps a decrease or unfavourable conditions might destroy the intermediate vars, or the increase of a new \& better variety or species. when formed overtakes the intermediate vars.
123; 135; 156
SB2 $\square \beta$

- Latham Man \& His Migrations - refer to \& read these passages.

48. Quotes Owen with approval, teeth offering more valuable character because not surrounded by muscles.-
69 \& 70 good remarks on contrast of sudden removal and the natural slow movements of spreading species or man.-
49. Excellent remark (quote in Ch. 6?) on how during incroachment, one var. will 123 do obliterate intermediate forms: I do not see force of Displacement .- If one form gains an advantage over the other independent of climate, it will overwhelm the graduated intermediate forms
74 Excellent remarks on classification by descent \& resemblance
135 Clever remark on different climates which man inhabitants of Cape of G. Hope \& of S . America must have passed through.over
\langle over $\rangle .156$ contrasts the primary diffusion of man, with that of subsequent diffusion, when man is opposed by man - N.B the wide \& rapid spreading of introduced plant is something like this - its progress are not yet developed
47 24-27m 49 3-11m 70 1-4m 74 6-17m, 26$27 m 75$ 11-12m, 15-16m/16a "same" descent 24u "Ethnology", 28 m 76 2-7m 97 21-23m 123 26-28m 135 19-27m 145 wb 205156 wt But in quite open country man wd increase more rapidly $\quad 5-13 \mathrm{~m} \quad 181 \quad 8 \mathrm{~m} / \mathrm{u} \quad$ "Comorin" $/ \mathrm{w}$ Matapari? 191 6-9m

LATREILLE, Pierre André Histoire naturelle des fourmis Paris; Théophile Barrois père; 1802 [CUL, pre-B]
beh
NB Abstract of Oct/58/
71 Winged ants $\&$ carried low in nest when it is disturbed
73 Workers try to keep in winged individuals in nest.
title page wt Latreille died 6 July 183371 1$2 m 733-6 m 14018 w$ В $1431 w$ В $1504 w$ В $1511 w$ В $1565 w$ В $1591 w$ В $1667 w$ В 168 $8 w$ В $1952 w$ В $2467 w$ В $2516 w$ В $2551 w$ В $2571 w$ В $2591 w$ В $34517 w 8$ <number of eyes) $3474 m 349$ 9-10m, 12u "Huit", $26 m$

LAUGEL, Auguste Les Problèmes de la nature Paris; Germer Baillière; 1864 [Down, I]

LAUGEL, Auguste Science et philosophie Paris; Mallet-Bachelier; 1863 [Down, I]
272 7-11m
LAVATER, Jean-Gaspard L'Art de connaître les hommes par la physionomie new edn by M. Moreau de la Sarthe, 10 vols.; Paris; Depélafol; 1820 [CUL, pre-B]
beh, pat, phy, ss
vol. 1, Avis 19 u "en 1807" 20927 u "cel1806"
vol. 3, $1391 w$ Read to p .162
vol. 4 NB All read

- p. 15 Camper Book; 17 Sexual Selection; 48; 52; 54; 120 sexual selection; 123 do - 194; p. 205 to end Abstracted
p.194, 217 Plate of Muscles

15 19-20m 17 15-17m 48 19-21m $527-10 \mathrm{~m} /$ $7 w$ Buffon 54 4-14m (Maupertuis) $12022-29 m$ 121 13-15m $12310 \mathrm{~m}, 11-13 \mathrm{w}$ all soft parts 205 4-8m/5-7u "c'est 1 musculaire", $17 u$ "celui respiration", 18-20!!/20u "d'unelépisodique", $21 u$ "parole \grave{a} ", 29-30 $\rightarrow 2067-9 m, 10-12 m$ $20922-25 \mathrm{~m} / \mathrm{w} / 30 \mathrm{~m} / \mathrm{wb}$ can it have been of service like language voluntary use to express ideas thus coming into aid of natural beginning $\rightarrow 2101-4 m, 14-15 m, 27-30 \mathrm{~m} 211$ 1-4m/2u "suivant Haller" 221 18-22m 222 2$4 m 22323-25 \mathrm{~m} / \mathrm{w}$ same as corrugator 27 $29 \mathrm{~m} / \mathrm{w}$ differeint from Duchenne 224 14-18m/ $1-18 w / w t$ in opposition to the muscles which depress eyebrows in grief \& concentrated thought 228 24-26"...", $26 a$ "concentrées"/wb He then adds that these muscles from their attachment \& position are fitted * 229 $1-2 m, 1-2 u$ "principale|physiognomique", $3 u$
"sentiments sombres", 3-12"..." 230 12-14m 231 25-29m 237 2-3m, 12-15m 244 12-16m 263 3-10m, 18-20m 264 23-24m 274 20-23m 282 14u "noirlsang", 15u "le lartériel" 293 9$11 \mathrm{~m} / 15-22 \mathrm{~m} / 8-23 w$ is most delicate abounds with nerve \& tissues hence perhaps no other part could bleed so easily, \& specially liable to be affected by cutaneous eruptions 300 16-18m, 26-29m, $29 m 3013-9 m, 17-26 m 302$ $18-27 \mathrm{~m} 3031 u$ "beautélébène", $13-17 \mathrm{~m}$, 19$28 \mathrm{~m} / 19 \mathrm{u}$ "parlfront", $30 \mathrm{~m} 3042-7 m 30510-$ $14 m, 19-21 m$
vol. 6, 27 zt
vol. 8, 274 18-22z
vol. 9 NB whole volume skimmed; 116 \& they hear excellently Pampas; 266 Hope; 273; 278; 289; 293; 295; 299; 300
116 8-13m $2664-5 m, 24-25 m 26727-29 m 268$ 12-13m 273 13-15m 277 fig. $11 . w$ fear $2785-$ $6 m 2797 u$ "les $\mid m e ̂ m e " / w$ drawing back $10 u$ "prunelle | paraître", 25-26u "le|autre"|".../w frowning \& astonishment together $2808 u$ "voulant respirer" $11-8 m / w$ If I want to show what rubbish has been written a translation of this will do.- 13..." 289 fig. 19/20.w sorrow fig. 21/22/23.w excessive pain fig. 24.w joy 293 fig. 25.w laughter fig. 26.w angry fig. 28.w passion $4 a$ "fermés" ie brought down at each end 3-8u土, 8-11m $2944 u$ "les lenflées" $2953 u$ "les 1 enflammés", 6-7u "narines lélargies", 8$10 \mathrm{~m}, 11 u$ "grinces", 13-15u "veines 1 hérissés" 299 19-21u士, 300 16-18m, 23-25m, 28-30m

LAWRENCE, John The horse in all his varieties and uses London; Longman, Rees, Orme, Brown \& Green; 1829 [CUL, on B]
ch, he, pat, rd, v
NB p.5; p.9; p.30; p.230,234; 265; 283
SB $\square \beta$
30 Hereditary diseases of Horses
230 Changes in Fox Hounds Quo
p. 14 Tushes variable in Mare - Variable Rudiment
5 25-26m 9 28-29m/Q 14 28-32m 30 17-22m, 24-29m 230 9-16m/7-8Q 231 20-24m, 27-33m $2341-7 m 235$ 23-25z $2654-10 m, 24-25 Q 26-$ $\begin{array}{llllllllllll}32 m & 266 & 8-10 m & 267 & 1-3 m & 283 & 19-28 m & 285\end{array}$ 25 m

LAWRENCE, William Lectures on physiology, zoology, and the natural history of man London; Benbow; 1822 [CUL, pre-B]
beh, cc, ch, gd, phy, rd, sl, ss, sx, sy, tm, wd, y h, sx, tm, v
NB p 484 * 243 Blushing
172 position Heart - \& other organs,
clearly by form of thorax \& attitude
Appendix vermiformis 191 *
Expression - Tears vented by various animals - 205
Sexual selection $\downarrow 272274276$ Beard

- 393 Arabians beautified - Persian Chardin

397 Selection not applied to man (ω by other men it shd be added)
Ure $\rightarrow 484$ Ure's $\underline{Q}{ }_{\square}$ sense organs.

- 437 Pallas on changes of coats of domestic \& wild animals in winter \& summer.-

452. Eyes of Negros at Birth

317, 319 exaggerate form of Head
337 . flatten nose
354 Ears

- 356 Tattoo females
- 357 Lips
- 366 Hottentot women
- 368 Baboons* steatopyga
vb $3-9 m$ via $21-24 m, 40-55 m$ vib $17 m, 57 m$ viia $17-23 m$ viib $1-7 m, 22-30 m, 24 m, 59-61 m$ viiia $10-13 m, 20-25 m$ viiib $1-7 m$ ixa $12-16 m$ ixb $2-10 m, 15-20 m, 43-46 m, 53-62 m$ ха $27-$ $34 m$ xb $3-22 m, 38-60 m 1721-6 m / 6 w \notin 173$ 12-18m 191 9-13m/11w Ateles 204 26-36m $2057-11 m 243$ 16m/u (Forster) "Observations 1 229" 272 3-10m, 30-33m $2731-4 m, 8-12 m / 8 u$ "practice lextermination", 20-21u $\rightarrow, 25-27 m$ 274 9-11m, 18-21m 278 5-10m 317 25-31m 319 19-33m 337 30-32m 354 8-26m $3551 u$ "the South" $11-4 m \quad 356 \quad 30-32 m / 32 u$ "of the" 357 1u "female sex", 19-21m, 24-25u↔ 366 23-26m 368 31-34m 393 3-14m/7-11m/10-11w found $20-28 m, 31 \mathrm{~m} / \mathrm{u}$ "evenlsprung", $w b$ Chardin $\uparrow 5$ ".../wb Chardin says $3941 u$ "on countries", $8-14 \mathrm{~m} / 10 \ldots$... $/ \mathrm{w}$ poor $39715-17 \mathrm{~m}$ $40421-27 m 405 \mathrm{wb}$ In all parts of the world confined to one stock $w b$ Pallas 437 24-32m, $31 u$ "Siberian roe" $/ w b$ Capreoli Sibirici subecaudata $30-33 u \pm \quad 438 \quad 32-33 \mathrm{~m} / \mathrm{w}$ \& Gligium ordine $177845130-34 m, \uparrow 6-1 m 452$ 1-2m, 5-12m

LAWSON, Peter and son Lists of seeds and plants Edinburgh; Peter Lawson \& Son; 1851 [CUL, I by W.J. Hooker] v

NB Oct 1857 O/
p. 65 Hollyocks; p.67; 87; 179; Nuts, Currants \& Gooseberies described 206 Synonyms of fruit; p. 20 Grasses
12a $10-11 w{ }_{c} 16$ vars $13 \mathrm{~b} 19-20 w \mathrm{~m}_{0} 21$ $6535-37 m 6711 w$ How many $871 w$ How many vars. $2 w$ 3-5 feet $4 u$ "constant" 179 23-29m, 35-42m

LAWSON, Peter and son Treatise on the cultivated grasses and other herbage and forage plants 〈bound with previous item〉
20 8-14m, 21-29m, 21 m 23 3-7m 27 22-23m
LE BRUN, Charles The conference of Monsieur Le Brun, chief painter to the French King, chancellor and director of the Academy of painting and sculpture London; John Smith; 1701 [Down, pre-B]

LE COUTEUR, John On the varieties of wheat Jersey-London; H. Payn \& H. Wright; n.d. [CUL, I to C Darwin Octob 1841]
ad, cc, cs, dg, fg, he, mhp, no, oo, phy, sl, spo, v
NB Introduction \& p. 1 to 79; p17
SB vi variability of common wheat. adaptation to different soils
p. 6150 vars

12 chance origin of some vars X
15,16 careful selection of separate ears of corn in Columella's time \& Virgil
52 disbelieves necessity of change of some seeds but then he studiously varies the manure
$551 / 10$ of seed perishes even with greatest care Q
59 on one variety soon predominating over (good) another in wheat \& hence called degenerating (He has shown how every little trifle is heredetary) without destruction Q
65 an incorrigible tendency to sport in some vars. Q
66 Talavera does not cross because flowers earlier Q
70 Wheat seems affected by climate whence derived (Evidently believes in crossing)
23 Habit of growth differs
proportion of gluten
64 flower at different periods
79 quality of straw
vi $6-8 m / 4-12 w$ Henslow corroborates the degree of variation in wheat vii 22-24m $22-$ $5 m, 28 m 311-13 m 510-12 m, 11-13 m /!/ 12 u$ "perfect oats", 19-20m $64-6 \mathrm{~m}, 24-25 \mathrm{~m} 815-$ $18 m 1115-17 m 121-4 m, 5-6 m, 26-27 m 13$ $8 m, 17-20 m 1415-20 m / 19 x$ 15 10-12m 16 3-5"...", 5-6m, 9-10m 17 4-5m/4u "similar appearance", 9-15m/10u "tolsorts" 22 17$18 \mathrm{~m} 241-2 \mathrm{~m}, 5-7 \mathrm{~m}, 17-18 \mathrm{~m} 2622 \mathrm{~m} / \mathrm{u}$ "is tall" $353 \mathrm{~m} / \mathrm{u}, 15-16 \mathrm{~m} 388 \mathrm{~m}, 13 \mathrm{~m}, 16$-17m 41 16-19m/17u "fourteen"/19u "forty-two" 47 1$3 m 528 \mathrm{~m} / \mathrm{u}$ "is 1 idea", 23-24m $534 u$ "grown 1 land", $5 u$ "becomes \mid with" 54 5-6m/5u "brick| all" $5514 \mathrm{~m} / \mathrm{u}$ "one-tenth", $27-28 \mathrm{~m} / 27 u$ "seven
varieties" $583 u$ "degenerate", 8-9u "has 1 quality", $10 \mathrm{~m} / \mathrm{u}$ "less suited" 59 wt the same proportion wd exist $2 u$ "werelseed", $4 u$ "bel degenerated" 60 7-9m 64 6-8m/6a "some" different $6 u$ "some varieties", $23 u$ "A17" 655 $6 u$ "threelears", $7 u$ "two hundred", $8 u$ "twenty-one"/w $29 u$ "eighty six"/w $310 u$ "and |smooth"/wo $412 u$ "ear \mid discovered", $13 u$ "mixed Icorn", $19 u$ "Kentish|seedling", $26 u$ "smooth ears", $27 u$ "appearancelgrain" $662 u$ "eight|sort", 3-5m/3u "it incorrigible", 5-7m/ $7 u$ "is 1 pure", 11-13m 67 9-11m 70 9-12m 79 $20-21 m, 23-24 m, 26 m$

LE COUTEUR, John On the varieties, properties, and classification of wheat 2nd edn; London; W.J. Johnson; 1872 [Down, I]

LECOQ, Henri Études sur la géographie botanique de l'Europe et en particulier sur la végétation du plateau central de la France 9 vols.; Paris; J.-B. Baillière; 1854 [CUL]
$\mathrm{af}, \mathrm{cc}, \mathrm{ch}, \mathrm{cs}, \mathrm{dic}, \mathrm{ex}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}, \mathrm{hl}$, hy, ig, in, is, mhp, no, oo, pat, phy, $s p, s x, t, t m, t s$, ud, v
vol. 1 NB Index at end of Vol 9-
SA $\langle p p . x v-1 ; 10$ sheets $\square \beta$ except that referring to vol. 2
0
Lecoq. Vol. $1 \Leftrightarrow$ (Put in at end of Vol 9)
8. Number of species \& number of individuals not correlated in Coniferae

- Red mark cross pollination \& Dimorphism

56. Alpine plants often do not mature seed.

80 Saline plants in Puy de Dome!
139 Ref. to Catalogue of Plants of central France with rarity marked.
\Leftrightarrow A good deal about Tyme-like flowers 2 forms
144 Terminal flowers often different from others
159 Natural Hybrids
162 Hybrid Primulas fertile \checkmark
165 isid. Geoffroy on close representative species.
170. good remarks on resemblance of American \& European plants \& on Arctic plants varying much, explained.
182. Increase of Branchiae from use \& of Lungs from disuse in Proteus submerged.
194 Alpine plants bud at fixed time when transplanted
197. Vars. of Solidago flowering at different times
207. Von Buch on small genera in Islands * Believe in mutation of species \& so Lecoq 209 Land Mollusca of distinct species seen
in copulation
250．Lecoq believes in Transmutation
Feb． 71877 I have copied all I want for quotationo
Vol 2.
－ 162 plants standing very different climates
－Lapland \＆Greece
199 Atlas \＆New Grenada plants in comm．
205 Alpine Plants good
283 Forms which have wandered from Tropics
289 do．－Isolated Tropical forms
331 species ranging from high to low on Mountains
404 Alpine plants
406 do
410 alpine plants；their varieties
412 do
414 do－Middle heights have most peculiar forms
419 Alpine vars \＆intermediate vars．
－ 430 duration sign of Highness he remarks 162 Plants ranging from Lapland to S ． Granada； 32 in number．－
Vol 3
71．thinks annuals highest forms！
72 Only one annual dioicous
75 few monooecious．
76 on proportion of Trees with separated sexes \checkmark
79 on separation of sexes all good \＆curious －
80 Extraordinary cases of separation of sexes under different latitudes，like lvy case． Imperfection of Nature
94 Imperfect flowers of Violet
102 On diversity in same species in flowering
161 different periods of flowering of same species on X plain \＆mountain－a day for 90 ft
182 flowers which open at night
211．Replacement of one group by another
214 Changes＊in plants in pastures
222 Parasitic plants generally on very different plants－－gradation in degree
257 Northern Trees unarmed．by thorns
287 villosity character of plants in warm countries $X\langle \&$ \＆not of mountains－ 291．dryness most effect
X $\rangle 405,7$ Piebald flower for crossing， like Gallesio
410．do striped flowers
see Back
Vol． 4.
4 White flowers steadily increase from S．to N．
11 In Arctic few bright

14 So on mountains
27 On smell of flowers Dichogamy
57 On social plants－to 68 on do
73 do
80 definition of sum of life
86 association distinct from social
207 Association parallel in different regions
233 representative species or vars．－
237 parallel species in different soils
239 do
272 On absence of certain forms in Islands
304 on struggle between allied Plants
407 Some sp．of Clematis polygamous D．
425 Some with aborted female fl． 431
470 Shady var．of Ranunculus no petals
482 Ranunculus sceleratus，or Dichogam．
488 Caltha polygamous D
497 Helleborn，probably by insects．D
514 Aconitum a Dichogam
$\left\langle n o t C D ; x_{0}\right\rangle$ Vol．V．$\langle u, C D\rangle$ D．means Dichogamy
p． 6 \＆ 15 crosses wd be difficult
p． 22 \＆ 26 Fumaria self impregnated
p． 157 Cistus clouds of pollen in early． morning．
p． 180 〈CD〉 Viola imperfect flowers alone seed
p． 196 Drosera flowers open only in sunshine
p． 200 Parnassia D．
p 227 D．p． 241 D．
p 242 Silene five stamens often aborted
p 246 D 250 － 249 D
p 252 a Diochous Silene
p 257 Lychnis
p． 273 Arenaria with viscid glands．
p． 288 Holostium flowers very sensitive to light
－ 295 Stellaria D
－ 305 \＆ 309 Cerastium stamens move to pistil
－ 317 Linum catharticum stamens move to pistil $\langle\langle C D\rangle$
$-331-332,336,338 .\langle C D\rangle$ Malvatiae D〈over〉
367 Acer eminently polygamous
371 Vine pollen of carried by air American Diooichous．
377，379，380．Geranium D．fertilized after petals fall
397 Erodium D ？
384，387，391．Geranium D．
397 Erodium D ？
401 Impatiens dimorphic
411 Ruta fert．by second set of stamens．
416 Erconymus．the upper flower often has
5 parts like Ruta the other flowers having 4
－$\langle C D\rangle$
418 Paliurus one of the Rhamnic D．

LECOQ, GÉOG. BOT.
420 Rhamnus Catharticus male \& female trees have different kinds of leaves - is dioicus \& hermaphrodite $\checkmark \leqslant\langle C D\rangle$
422 R. infectorius dioicus. R. alpinus ditto
$\langle C D\rangle$ Vol 5 . continued

* \langle not $C D$

424 R. frangula. flowers for the most part hermaphrodite
426 R. alituruus. dioicus
468 Ononis. dimorphic
481 Medicago - its fruit twisted either to the
left or right, whilst in most species the
twisting is from left to right. $\checkmark\langle C D\rangle$
513 Trifolium subterraneum buries its fruit. - $\langle C D\rangle$

Lecoq. Vol. 61
15. Spiraea fertilised when flower opens 40 F. Elatior Dioicous
88 Potenium - monoicous \& yet dioicous in function
118 Epilopicum some dichogam some not
so. $121,125,126,128$
133 Cricaea do?
156 - Lythrum - species.
160, 166 Byonia, Portulacea Tropical forms 200 Sedum, some species dichogamous
209 Sedum with 2 kinds of flowers differing in number of petals \& stamens
214 Sempervivum curious case of Dichogamy. showing slow regular movement of stamen not to impregnate - as in Berberis.-
224 Ribes * sexes separated
262 Sanicula polyg - female dichogam. Umbelli=
266 Eryngium dichogam =ferae
273 do. 275 do, 277, 283,, 289, 310, 318, 323
367 (not all Umbelliferae marked)
310 Foeniculum central * umbels sterile. 335, 344.
335 Imperfection of structure
371. Hedera dichogam

〈second sheet〉
Vol 6
376 Cornus - in fact monooecious
386 Adoxa 2 kinds of flowers
402 Lonicera periclymenum fertilised in bud.
420 Rutia (Rutiacea) nocturnal
425 Galium tricorne polygamous
429 Galium anglicum do - day flower
473 Knautia (Dipsacea) strongly poly-gamous.-
477 Scabiosa * succisa do -
Vol 7.
357 Pyrola minor apparently dimorphic
369 Holly dioicous, sexes unequally separated

391 Menyanthes dimorphic
400 Gentians Dichogam, 401, 403, 406, 407
449 Echium vulgare dimorphic
452 Pulmonaria angustifolia do
504 Gratiola (Personata) dichogam $\boldsymbol{\downarrow}$
(Scroph.
526 Erinus (do) fertilised in bud
538 Veronica spicata dichogam
573 Lathrae fertilised in bud -

- Vol. 8

6 Lavandula fecundation in bud
9 Mentha syrhastus dimorphic peculiar
26 Origanum vulgare dioicous by abortion 1*
29 Thymus from Vaudan dimorphic
32 Satureia dioicous occurs
37 Calamintha dimorphic. do. when flowers
44 Hyssopus do almost
48 Nepeta do - same as Glychoma regular
74 Stachys dichogam -
146 Hottonia dimorphic
150 Cyclamen Dichogam.
157 Globularia female Dichogam
241 Polygonum flower different in Water \& out.
254 Stellera, fertilisation of
324 Celtis a true dichogam \& polygamous
326 Ulmus - do - do
535 Crocus fecundation in bud
557 Asparagus dioicous

-

- Vol. 9

393, 431 Lecoq believes in Modification by conditions of life
395 changes in kinds of trees in Denmark 411 on single species of group with immense ranges
414 when species numerous, range restricted
423 In Compositae the feather separate from seed!!
128 Juan Fernandez proportion of endemic plants
435 relation of Madeira to America
438 More disjoined species in N. than in Tropics \& we can see cause in Glacial
445 Cyperus \& Pteris by Hot Springs of Ischia old Tropical plants left there, says
455. All this Alpine plants common to Finland \& New Grenada make stage of Alps(?) 482 passage for my Orchid Book on Diversity of Orchids.
(I began reading this volume at only p. 386 -
8 23-29m 56 16-22m 80 2-6m 139 24-31m 144 21-23m 159 12-23m 162 8-14m 165 1-

$16 m 1707-17 m, 26-31 m 1718-10 m, 11-16 m$, 25-27m 182 25-29m (Schreibers) 183 31m 194 17-32m 197 5-8m/5u "alpestris" 204 18-26m, $32 u \leftrightarrow / w / w b$ Do my tables show more or less vary. in Monocotyl?? 205 1-5m, 7-11m, 13$14 m, 32 \rightarrow 2067-12 m, 13-14 m$ (Goethe), 30-32m/31-32u↔ 207 15-23m 209 25-30m 229 $23-32 m \quad 250 w t / 1-3 w$ From certain other passages, it is here difficult to know how far he extends his belief in the modification of organic beings 4-12m 287 20-28m
vol. 2 §
162 32-34m $19928-32 m 20520-21 m, 23-24 m$, $25-27 \mathrm{~m} 29-31 \mathrm{~m} / \rightarrow 2062-8 m, 26-29 m 2073-$ $9 m, 10-12 m, 18-23 m / 19 u, 32 \rightarrow 2088-10 m 283$ $2-6 \mathrm{~m} / 4 \mathrm{w}$ which $4-5 u$ " 80 " $/ 6-10 \mathrm{w}$ ask Hooker are these large genera? $7-20 \mathrm{~m} / 10-11 u \leftrightarrow$, $22-27 m 2895-9 m, 10-15 m, 22-30 m 331$ 21$25 m, 25-27 w$ ie plant How little climate has to do with Heather 30 m 332 "plupart espèces" $116 u$ "cette catégorie" $/ 12-17 \mathrm{~m} / \mathrm{w}$ ie plant growing at various heights between $6000 \mathrm{ft} 24-25 \mathrm{~m}$ • 402 8-10m 404 10-12m 405 $30 m 4065-10 m 41021-30 m 4116 u$ "parl Heer", 16 w var. $16-17 \mathrm{w}$ all Mountain vars. 412 wt cor-responding varieties \& corresponding species $12 w, 14 w, 16 w, 17 w$, $18 w, 19 w, 21 w, 22 w, 23 w, 24 w, 26 w, 27 w$ species $4147-14 m / 9-12 w$ would there be more struggle then? $17-21 m 415 \quad 1-2 m / 3 w$ Mntains 419 4-6m, 8-9m, 11-14m $4308-16 m$
vol. 3, $7122-27 m$ 73 $26-29 m / 29 u$ "dioique" 75 1a/u "monoïques"/wt or annuals $11-13 m, 18 u$ "1:35"/w 1:12 in polycarpius $7610-11 m, 25-$ $29 \mathrm{~m} / \mathrm{wcc}, 28-29 \mathrm{~m}, w b$ ie more than a $1 / 3$ of polycarp plants with separate sexes are trees 77 1-2m/2u "monoëсie" $/ 3 u$ "dioëcie", 25$30 m 78$ 9-12m, 27-29m 79 7-8u "particulièrel dioïquement", $11-13 m, 14-20 \mathrm{~m}$, $14-15 \mathrm{w}$ imperfection 23-27m $801-5 m 9426-32 m / 28 u$ "intéressant mémoire" $955-7 \mathrm{~m} / 6 \mathrm{~m} / \mathrm{u}$ "colorées 1 Hortensia" $\mid w=$ Hydrangea same as 96 27$30 m 10217-23 m / w$ imported ? by nuts? 161 $20-24 m / w$ bears on crossing $31-32 \rightarrow 16216-$ $18 \mathrm{~m}, 20 \mathrm{~m}, 21 u$ "vernales" $18215-19 \mathrm{~m}, 26-$ $32 m / 32 u$ ^ $1832-7 m / 3-4 u$ "oenithères lépilobes" 185 20-30m 211 19a "gordura" $\rightarrow 1$ 6ин, 16$19 \mathrm{~m} / 18 u$ "graminée" $/ \mathrm{w}$ replacement of one group by another 21-29m, 25-26m 214 17$25 m 21525 m 216$ 6-10m 222 22-24m 223 22$32 m 2574-7 m 2874-7 m 28810-13 m 291$ 22$26 m 40512 u$ "une 1 couleurs", $20-32 \mathrm{~m} / 20-$ $25 u \pm / w$ piebald 406 wt <results of the crossing of 3 varieties of colours), $3-4 u \leftrightarrow, 29-32 m / w$ perhaps from a cross $4071-3 m, 16-19 m / 17-$ $18 u$ "qu'une I panachures", $21-25 m 4104-11 m$ 411 14-18m
vol. 4, $426-31 m \quad 5 \quad 1-4 m \quad 11$ 7-10w Mem Bates on insects $1323-30 m 1426-28 m / 31-$ $32 m / 25-32 w$ Partly cold in both cases 26 $24 m, 24-27 w$ white flowers sweetest 2714 $16 m 578-9 m 581 u$ "orchis", $3 u$ "seconds", 14-16m, 22-24m, 23-25m, 32m/u "augmenter" $591-2 m, 32 m 6011-12 m, 17-19 m 611-4 m$, $32 m 62$ 29-32m 67 10-12m (Humboldt), $22 m$, $25-29 m, 31 m 68 \quad 12-16 m \quad 731-7 m / 1-15 \mathrm{w}$ । have seen Heath at isolated shows that they can live separate - bad term "social".false term $8025-28 m 8621-25 m, 27-30 m 207$ $12-24 m, 26 m 20911-14 m, 15-21 m, 21-25 m$ 233 30-32m 234 1-5m, 18-32m 237 7-10m, 14-17m 239 12-30m 272 1-9m, 11-18m 273 6$7 w * / 6 u$ "Coprosma", 13-18m 293 22-27m 304 $11-16 m$, 19-32m 407 11-16m $425 \quad 28 u$ "Quelques fleurs" $/ 28-31 \mathrm{~m} / \mathrm{w}$ it is not second distinct plant $43122-26 m 466$ 11-14m, 21$27 m 470$ 21-26m 482 10-19m 488 12-18m 497 25-30m 514 18-23m
vol. 5 NB Vaucher's Book p. 142
SB 6-15 makes crossing difficult; 22; 26; 157; 180; 196; 200; 227; 241; 243-246; 249; 252; 257; 273; 288 flowering sensitive to light; 295; 305; 309; 317; 325 Linum; 331; 332; 336; 338; 367; 372; 377; 379; 380; 384; $387 ; 391 ; 397 ; 401 ; 404 ; 411 ; 416 ; 418 ; 420$ to 426; 430; 469; 481; 513; Abstracted
$6 \quad 10-16 m \quad 15 \quad 10-13 m \quad 22 \quad 12-15 m \quad 26 \quad 6-11 m$ $157 \quad 4-10 m \quad 180 \quad 4-13 m / 7 a / u \quad$ "fleurs" w cleistogam 196 15-20m $200 \quad 3-4 u$ "ses 1 glanduleux" $/ w$ any movement? 6-9m 22714 $19 m 2419-17 m 24223-26 m / 24 u$ "illétamines" 243 17-21m 246 18-27m 249 24-29m 252 6$8 m 25729-32 m / w$ but will they fertilise 273 $30-31 m 274$ 4-8m 288 2-6m 295 2-7m 305 10-12m 309 7-12m 317 1-4m $3257-14 m, 10-$ $12 m 33122-24 m 332$ 26-28m 333 29-30m 336 $1-4 m 33821-25 m 36726-30 m 3682-28 m 372$ 6-14m 377 17-21m 379 13-14m $380 \quad 23-27 m$, $27-28 m 3847-14 m 387$ 1-3m 391 26-29m 397 $7-12 m 401$ 6-10m 404 19-22m 411 1-6m, 14$20 m 416$ 16-19m 418 26-29m 420 25-29m/w Mem R. Lanceolatus 422 6-8m 423 5-6m 424 $12-13 m / 12 u$ "hermaphrodites" $4268-11 m 430$ $1-4 m \quad 469 \quad 1-4 m, 29-30 m \quad 481$ 3-8m/5-6u "plupart des" 513 2-15m
vol. 6, 15 25-30m 40 19-22m 88 15-27m 118 $7-11 m 12117-20 m 1252-4 m 12615-18 m 128$ $\begin{array}{lllllll}7-9 m & 133 & 24-27 m & 156 & 2-30 m / 20-22 w & p .158\end{array}$ $15820-25 \mathrm{~m} / 20 u$ "déploient 1 fin"
〈between p. 158 and p. 159, tiny fragment of a letter)
$1601-7 \mathrm{~m} / 5 u$ "illstérile", 26-28m/w Balsanus another case 162 28-32m 166 2-7m 200 18$27 w 210206 \mathrm{p} 204$ not so some other

LECOQ, GEOG. BOT.
species $23-29 m 20410-14 m / 12 w 20620626-$ 30 m 209 10-14m, 32 $\rightarrow 210$ 18-23m 214 21$28 m 224$ 13-19m 262 20-23m 266 26-30m 273 18-22m 275 25-28m 277 1-3m, 35m 283 10$13 m / 13 u$ "celal Ombellifères" 289 16-19m 310 $12-17 m, 12 u$ "petitslsouvent", $15 u$ "quel stigmates" 313 21-26m 318 20-26m 323 15$17 \mathrm{~m} / 17 u$ "avancelstigmates" 333 21-24m 335 15-24m/22-23u "Il |semences"/24u "ne |placer", $27-29 m 34423-28 m 3671-5 m 371$ 3-6m 376 $1-7 m 3867-14 m / w 2$ kinds of flowers $15-18 m$ 402 1-6m 420 23-26m/23u "Elle 1 celles" 421 23-25m 425 5-10m 429 9-12m/11u "s'ouvrent | soirée" 473 3-9m, 4-6u↔, 6-9w fertility because so strongly protandrous. 477 28$31 m$
vol. 7, $35723-25 m / 24 u$ "inclus 1 saillant" 369 17-23m 391 12-14u "danslcilié" 398 16-20m/ $17 u$ "toutes"/w no! 400 10-13m 401 26-28m 403 11-13m 406 15-17m/15u "tard, seulement" 407 22-25m 449 29-31m 452 18-21m 504 19$22 m 52611-17 m / w$ other cases of assertions not always marked 538 14-19m/14u "indirecte" 573 9-21m
vol. 8 SA $\langle p p .144-5$: fragment of an abstract \rangle
are tied together by a few weak elastic threads
6 11-13m 9 24-28m 26 17-22m 29 10-13m/ $12 u$ "Lalmâle", $14-16 \mathrm{w}$ good cases of gradation $16-18 \mathrm{~m} / 17 \mathrm{u}$ "toujours lavorté", 20$28 m$, 29-32m 32 16-22m 33 21-29m 37 1-7m 38 15-26m 40 23-29m 44 20-23m 48 3-5m 74 $3-9 m 129 \quad 13 z 141 w b$ \& in Europaeo-arctic contrast○ some not differ from Keeling \& PD 142 1-3m $1436 u$ "moyenne | australe", $9 u$ " 40 ", $10 u$ " 50 " 146 7-13m 150 18-21m 157 4$8 m 241$ 1-9m 254 17-21m 324 1-3m, 14-21m 326 15-17m 535 26-29m 557 10-14m
vol. $9 \wp$
395 10-14m, 17-24m 397 25-27m 411 5-10m 414 11-17m 423 14-18m 428 27-30m 431 6$14 m 435$ 1-28m 438 19-26m (de Candolle) 445 13u "Tenore", 14-15m, 21-26m 455 30-32m 482 7-9m, 26-31m

LECOQ, Henri De la fécondation naturelle et artificielle des végétaux et de l'hybridation Paris; Audot; 1845 [CUL]
fg, mhp, mn, sp, spo, tm
NB * p5 p6 Books Appendix ordered
title page $17-18 u \leftrightarrow$ xv $1-3 m / 1 u$ "ébranler" 4 $6-25 w$ contrivances \& movements of anthers \& pistil $516-21 \mathrm{~m} / \mathrm{w}$ pollen shed first before flower but contact afterwards 28-34w in Veronica impregnation when corolla falls with pollen at its base $63-4 w$ so in lris $16-19 w$

Use of Hairs on corolla $91-4 m / w$ flower under water \& secretes air 16 11-12u "quand létamines", $14 u$ "position lorganes", 1720m, 20-23m/21u "une infinité", 25-26u "àl indirecte" 18 13-18m 21 1-3m/1u "habitude"/2a "acquise", 21-23m/22-23u "surtout Inouvelles" 22 11-25w At Maer Gardens new case of Polyanthus seedlings all sports of Primrose 30-33m/32u "primevères"/33u "primevère"/w Ch. $4 w b$ shows the primrose can cross 34 $14-20 \mathrm{~m} / \mathrm{w}$ pull petals off double flowers 39 $14-23 m / 17 w$ oh $33-34 m$ (Vaucher) $4317-22 m$ $441-3 m / 1 u$ "directe \mid indirecte" $5230-32 m / 30 u$ "monoiquement" 53 24-25m, 26u "doitl indirecte" 61 13-15m 70 1-4m/2-3Q 27-28m/ $27 u$ "àl défloraison" 71 1-2m, 6-7m 72 16-17u "stigmatelétamines", 17-19m $737-8 m 75$ 2$5 m, 15-18 m 7717-21 m, 27-29 m 807-11 m$, 25-29m 81 15-17m $853-9 m, 19-21 m 874-7 m$ $9210-13 m 953-5 w$ are these Trees $9-11 m$, 26-27m 97 2-4m/w How false 29-30m/30u "légèrement l époque" 99 1-2m, 25-28m 101 14$16 \mathrm{~m}, 18-20 \mathrm{~m} 1029-12 \mathrm{~m}, 33$ u "entourél poils" 103 1-5m, 5-9m $1056-7 m 1158-12 m, 13-18 m$ 119 9-12m, 19-21m, wb Good to contrast flowers \& fruit. $12415-19 m 1281-7 m, 7-14 m$ $1296-7 m 1315 m 14216-19 m 1765-10 m 179$ 8-12m 195 6-9m, 10-13m, 23-28m 196 2-7m $1977-9 m 20310-12 m * / 11 u$ "les poirées" $/ 12 u$ "leurs feuilles", 15w 2 species 208 5-8m 218 30-31u "On lautres" 219 1-4m/2-3u "quoiquel indirecte" 234 20-24m/21-22? 238 30-33m 239 19-25m/22u "M. de Bure", 30-32m, wb Look in Pritzel 240 11-13m 243 1-3m 253 20-22m $268 \quad 29-32 m \quad 269 \quad 26-28 m \quad 270 \quad 23-29 m \quad 272$ 19-23m/20u "pluslvariétés", $\quad 25-27 \mathrm{~m} / 25 u$ "Seringe | Philippas" 273 9-12m

LECOQ, Henri De la fécondation naturelle et artificielle des végétaux et de l'hybridation 2nd edn; Paris; Libraire agricole de la Maison rustique; 1862 [CUL]
$\mathrm{cs}, \mathrm{dic}, \mathrm{f}, \mathrm{fg}, \mathrm{he}, \mathrm{hy}, \mathrm{mhp}, \mathrm{mn}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}$
NB 76 - Orchis sterile like Scotts case X 79
81 Nectar aids fecundation
92, 94; 126
220 Natural Hybrids
233. Flower of circumference more often double in Compositae X
303 * Mirabilis crosses of $X=$ panachures= 308 ; 311; 315*; 325; 335; 338
Get a Stapelia
368 - Parentage of Gladiolus gandavensis
393 Seeding \& growth antagonists
404; 411
SB $\square \Re$
p 81 〈not $C D\rangle$ Nectar aids fertilization
p. 404
p.93, 95 on Trollius, open flower, crossing spont.
126 Reseda dichogam
220 spont. Hybrids of Sedum
311 Hybrids from 2 sp . of Mirabilis sporting so much as to be very different
315 on Hybridisation causing type to break \Leftrightarrow or vary
325. reversion in Hybrids p. 237

Hybrids becoming more fertile with age \& very fertile
335 Cannabis \& Morus clouds of pollen
338 Fertilisation of Ficus
411 in some Graminae stamens short \& remain enclosed in florets.-
Lecoqs. Fertilation
title page $17 \mathrm{w} \mathrm{c}_{0} 18627624-31 \mathrm{~m} 7912-17 \mathrm{~m} /$ 12-14Q 81 26-31m 92 19-21m/19u•/20u^/19$23 w$ sporting $931-5 m 9411-14 m / 11-12 u$ "aulcette", 26-30m 126 14-17m $2201-22 \mathrm{~m} / 5-$ $6 u$ "tous 1 infécondes" $2331-7 m 3025-10 \mathrm{~m} / 6 u$ "guère de", 8u "presque", 13-15m, 12-13u "presque\identiques", 21-23m/21u "panaché"/ $22 u$ "deux \mid fondues" 303 17-23m, 26-27m, 35m 304 6-9m, 11u "Rougel primitive", 24-28m 308 4-12m 311 1-3m, 12-18m, 31-35m 313 15$17 m / 17-20 u \pm \quad 315 \quad 3-5 m \quad 325 \quad 4-6 m / 4 w$ reversion $12-13 \mathrm{~m}$, $35 \mathrm{~m} 32631-35 \mathrm{~m} 3273-7 \mathrm{~m}$ 335 3-5m/4u "de| nuages", 28-30m 338 5-15m, 23-24u "Elles 1 maturité", $21-27 \mathrm{~m} / \mathrm{w}$ but generally are sterile $36818-22 m 3697-10 m$, 19-21m (Herbert) $3935-27 m 4046-9 m / w$ wetting stigma with honey keeps from pollination 411 9-10u "Quelquefois|filets" $/ w$ what

LEES, William Elements of acoustics, light and heat London \& Glasgow; William Collins \& Sons; 1877 [Down]

LE HON, Henri L'Homme fossile en Europe Bruxelles; C. Muquardt; 1867 [Down]
NB O/
vii $14 m$ ix $9 m$
LEIDY, Joseph The ancient fauna of Nebraska Washington-New York; G.P. Putnam \& Co.; 1853 [CUL]
fo, gd, geo, ig, sp, ti
NB 8 List of Tertiary Mammals; 17; 24; 29; 57 Nebraska Mammals very close; 67 good name; 78; 79; 95
SB $\square \beta$; $-\infty$
8 List of all fossil mammals

17 paridigitata \& Imparidigitata
24 Intermediate forms 29 do
57 relations of European \& N. American fossil mammals 67 do. 78 do.
79 \& 80 Rhinoceros apparently older in N America than in Europe
95 Machairodus in N. America.-
8 1-6m, 41m 17 27-29m 24 27-28m 57 19$23 m \quad 67 \quad 2 u$ "Imparidigitata" $/ w$ Paridigitata $22 \mathrm{~m} / \mathrm{w}$ European genus $78 \quad 24-27 \mathrm{~m} / 25 a$ "Titanotherium" close to Palaeotherium 79 2$6 \mathrm{~m}, 12 u$ "two species", 16a "Rhinoceros" What age? $17-18 \mathrm{~m} / 15-20 \mathrm{w}$ I think none so old in Europe as Eocene or older Miocene 80 30$33 m 9518 m$ (Owen)

LEIDY, Joseph Contributions to the extinct vertebrate fauna of the Western Territories vol. 1 Fossil vertebrates Washington; Govern ment Printing Office; 1873 [Down]
vol. 1, 154 2-5m 155 18-19m 160 37-41m
LEIGHTON, William Allport Lichen-flora Shrewsbury; printed for the author; 1872 [Down, I]

LE MAOUT, Emmanuel and DECAISNE, Joseph Traité général de botanique Paris; Firmin Didot frères; 1868 [Botany School, FD]

LEMOINE, Albert De la physionomie et de la parole Paris; Germer Baillière; 1865 [CUL, S] beh, h, he, pat, phy, t, ti, tm, y

NB 19; 28; 30; 32; 41 to 135; 181 Expression; 185. Man; 190; 160 HamburghO
19 4-10m $284-5 m / /^{\prime \prime . . . " ~} 308-10 \mathrm{~m} 3221-25 m$ (C. Lebrun) 41 22-24m (J. Parsons) 42 20$24 m$ • $481-6 m 50$ 17-22m $5311 u$ "cherchél raison"/11-12m (C. Bell) 54 1-5m 57 22-25m/ $22 w$ Bell $581 m, 10-12 m 598-12 m 604-6 m$ 62 17-25m $65 \quad 5-8 m \quad 69$ 19-25m 70 1-15w voluntary mvment \& action of Heart \& Mind all asserted $21-23 \mathrm{~m}$ (C. Bernard)/w sur les Tissus vivants?? $726-10 \mathrm{~m} 7412-14 m 783-$ $7 m 836-22 w$ He objects no proof, but one can see whether agrees with common experience $8714-19 m 893-5 m, 7-25 m / 14 u$ "dédain"/ 8-18w avoid such compound emotions hard to define 19 " "mépris" 91 17$19 m 92$ wt Child may be attentive to any arousal or pleasure, as sucking, \& no howling. 1-2m,3u "front \mid sourcil" $/ w$ grief? $5 u$ "pensées", $\uparrow w / w b$ If one thinks ever so attentively on pleasant subject, no

LEMOINE
contraction of brow, but if an puzzle or difficulty occurs, though not actually unpleasant, brow contracts, every * difficulty during early infancy accompanied by this movement. * Perhaps aided by vision in primordial times.- But why not corners of mouth?? With infant first beginning is the frown.- $935 \mathrm{~m}, 19-20 \mathrm{~m} /!? / 20 \mathrm{u}$ "sphincter \mid iris" $9421 u / 21-25 w / w b$ Does iris contract under emotion - well shown to do so in Brain affection? Bowman, How in paroxysm of mania? 95 15-18m 99 19-22m 101 1-7"..." $/ m /$ w Sir C.B whose merit has been fully appreciated by late French writer 103 13$14 m, 15 w$ Instinct $16-19 \mathrm{~m} / 17 \mathrm{w}$ doubtful 104 $w t / 1-8 w$ argues from difference of observers \& writers that there can be no innate knowledge - but we can tell family likeness 16-20m $10512-16 \mathrm{~m} / \mathrm{w}$ taught by exper $1072-$ $10 \mathrm{~m}, 16-21 \mathrm{~m} / 19-20 \mathrm{u}$ "baisse Itête" $/ \mathrm{w}$ not to be seen or hide faces $1097-10 m, 20-25 m$, wb Children cry for aid, voluntary $1105-8 \mathrm{~m} 118$ 2-4m/wt/1-3u "que|poussé" $/ w$ animals do 125 7-10m 126 2-5m, 9-11m/ 10u "souriant| effraye" $13013-18 \mathrm{~m} 1354-6 \mathrm{~m}, 8-10 \mathrm{~m} 1819-$ 12m/1-10w Bowman.- Person born blind blushes?? for shame $16-25 w$ do they look downwards? or cast their eyes down.- wb whether blush as much or at all? not redden for anger.- $1851-3 m / w$ Tylor shows they do invent $1907-10 \mathrm{~m} / 7 \mathrm{u}$ "parole" $1914-10 \mathrm{~m}$, wb a stone first instrument of man \& monkey $1971-6 m / 3-4 w$ laws of mind

LEMOINE, Victor Recherches sur les oiseaux fossiles des terrains tertiaires inférieurs des environs de Reims Reims; F. Keller; 1878 [Down, I]

LEPELLETIER de la Sarthe, Alme Traité complet de physiognomie Paris; Victor Masson \& Fils; 1864 [Down]
NB O/
Rubbish!
\wp
LESSON, René-Primevère Manuel de mammalogie Paris; Roret; 1827 [Down, pre-B]
29 19-22w F. ascribes to Cuvier 39 5-8w L. Hunt $426-7 m, 8-9 w$? Smith $38 w$ pronett 43 9-15w Pig \& $459 \mathrm{~m}, 15 u$ "lubricité" 465 $6 m 4713 w$ No

LESSON, René-Primevère Manuel d'ornithologie 2 vols.; Paris; Roret; 1828 [Down, pre-B]

LETOURNEAU, Charles Physiologie des passions Paris; Germer Baillière; 1868 [Down]

NB1 95*; O/
NB2 O/
LEWES, George Henry The history of philosophy 3rd edn, 2 vols.; London; Longmans, Green \& Co.; 1867 [Down]

LEWES, George Henry The physical basis of mind London; Trübner \& Co.; 1877 [CUL, I] ad, beh, cc, ds, oo, t, ud

NB 43; "External conditions of existence" 45; 71, 2 On use \& Disuse \rightarrow 104, 7; 110 definitions of Struggle \& Adaptation; 120 Organisms descended from several primordial forms; 124; 126; 377 Expression〈other notes, by FD>
$432-5 \mathrm{~m} / 3 \mathrm{u}$ "external 1 existence", $30-35 \mathrm{~m} 45$ $20-24 m, 27-30 \mathrm{~m}, 32-35 \mathrm{~m}, 36 \mathrm{~m} 7122-30 \mathrm{~m}$, $35-36 m 72$ 29-36m $73 \quad 18-21 \mathrm{~m} 10418-35 \mathrm{~m}$ $10532-38 m 1061-14 m 1071-2 m, 24-27 m$ (Darwin and Spencer) $1087-13 \mathrm{~m} 10920-23 \mathrm{~m}$, $31-34 m 11012-16 \mathrm{~m} / \mathrm{w}$ they do in some way, or are the result of some cause $1113-8 m$ 120 29-38m $12433-38 m$ (Pasteur) $12530-39 m$ 126 20-28m 127 20-26m 377 33-36m $480 z b$

LEWES, George Henry The physiology of common life 2 vols.; Edinburgh \& London; William Blackwood; 1860 [Down, vol. 2 only]
287 5-6m, 6-7m
LEYBOLD, Federico Escursion a las Pampas Argentinas Santiago; Imprenta Nacional; 1873 [Down, I]

LIEBIG, Justus von Organic chemistry in its applications to agriculture and physiology ed. Lyon Playfair; London; Taylor \& Walton; 1840 [CUL, S Charles Darwin 1841]
h, phy
NB 46; 49; 85; 109; 110; 139; 152; 157; 287; 352; $369\langle w$, not $C D\rangle$
SB $\square \beta$
369 The blood of a man with fair complexion has different odour from dark man
49 1-3m 85 26-30m $10915-18 m 1104-8 m$, 11-15m 139 26-30m 140 1-7m, 4-8m, 15-24m, $29 m 1419-11 m 1529-14 m, 27-31 m 1575-$ 12 m 183 10w 3287 7-10m 352 17-27m 369 26-30m

LINDEMUTH，Hugo Vegetative Bastard－ erzeugung durch Impfung Berlin；Wiegandt， Hempel \＆Parey； 1878 ［Down，S］

LINDLEY，John A natural system of botany 2nd edn；London；Longman，Rees，Orme， Brown，Green \＆Longman； 1836 ［CUL，I Charles Darwin 1840］
af，no，phy，sp，sy
NF Does not Lindley use Diagrams to represent affinities，like the maps of Strickland？
Have any of the great Divisions，the Alliances，only one or two species？
Orders with few species rarer in Vertebrates \＆insects
NB 163－ 308 Grafts of Olive \＆Ash Q
163 9－11m／10u＂flowers｜none＂ 238 1－4m 242 $8-10 \mathrm{~m} 3084 u$＂Von Martius＂，7－13m／8u＾／ $9 u \wedge / 10 u \wedge / 11-12 m$

LINDLEY，John An outline of the first principles of Botany London；Longmans； 1830 ［CUL，S］
fg，phy，sl
$77 \Uparrow 8 u$＂pistillum＂，$w b$ The pistillum being a modified leaf 78 ＂ 421 ＂m / u＂Hazel－nut＂ 79 wt Fruit \＆stone of Plum，Peaches，Cherry not essentially different－kernel in the seed ＂ 424 ＂ m / w（a）＂ 425 ＂ m / u＂pericarpium＂／a ＂ovarium＂i．e．formed of lamina of leaf ＂ 427 ＂u＂Peach＂$w \therefore$ also plum cherry $w b$ probably seeds rarely selected for themselves No Peas．－ 84 ＂ 452 ＂u ＂Strawberry＂，＂ 453 ＂m

LINDLEY，John School botany and vegetable physiology new edn；London；Bradbury \＆ Evans； 1856 ［Down］
〈markings presumed to be by FD＞
LINK，Heinrich Friedrich Die Urwelt und das Alterthum，erläutert durch die Naturkunde Part 1；Berlin；Ferdinand Dümmler； 1821 ［CUL，pre－B］
cc，gd，is
NB p． 96 cases of plants apparently brought by Sea
p．do Osbeck saw on Ascencion only 4 plants 102 speculates on change of climate connecting N \＆S．alpine plants
181 African cattle
（All skimmed）
Inhalt $5 w$ Read $12 m 96$ 9－23m，31m／u＂Sahl Arten＂ 102 9－21m 181 15－19m， 21 m

LINNAEUS，Carl Philosophia botanica 2nd edn；Vienna；Johan Thomas de Trattern； 1783 ［CUL，pre－B］
$\mathrm{cc}, \mathrm{fg}, \mathrm{mn}, \mathrm{sp}, \mathrm{tm}, \mathrm{v}$
NB p． 80 Double flowers natural orders of some which are never double
Maris fundus p87 seeds
Not much satisfactory too brief $=$
p79 Flowers apetalous from cold
245 Variation in colour of seed
$79 \Uparrow 1 \rightarrow 95$ 33－39m 98 30－31m 245 33－40m
LINNAEUS，Carl Systema naturae Lund； 1735 ［Botany School，pre－B］

LINNAEUS，Carl Systema naturae 13th edn， ed．J．F．Gmelin， 10 vols．；Lund；1789－96 ［Down，vol． 1 missing？］

LINNAEUS，Carl Systema vegetabilium Göttingen；C．Dietrich； 1797 ［Down，ED］

LIPPERT，Julius Die Religionen der Europäischen Culturvölker Berlin；Theodor Hoffmann； 1881 ［Down，I］\wp

LISLE，Edward Observations in husbandry 2nd edn， 2 vols．；London； 1757 ［Down，pre－ B］
〈markings presumed to be not by $C D$ 〉
LOCARD，Arnould Études sur les variations malacologiques ．．．du bassin du Rhône 2 vols．； Lyon；Henri Georg； 1881 ［Down，I］\wp

LOCKE，John An essay concerning human understanding 2 vols．；London； 1726 ［CUL．1900］
vol． 1 contents＂ch．$x x i .37 / 38^{\prime \prime} . X \sim 027$＂ $26^{\prime \prime} x$
 282 ＂ 4 ＂X 283 ＂ 5 ＂X®，＂ 6 ＂X 286 介 $17 x 288$ 介 $5 x$ 290 1－3x $29410 x 306$ 介6－3x 329 ＂ 12 ＂X＜ 330 8－10X＊ 331 介4－3X 333 介16－15X 334 21－ 24mas 339 11－13x，$\uparrow 5-4 x \quad 3417-8 x 344 \uparrow 6-5 x$ 345 介16－13x 346 13－14x $347 \Uparrow 10-8 x 34822 x$ $34915 x 35020 x 35120 x 352 \Uparrow 9-6 x 354$ 介 $7-$ $5 x$
vol．2， 145 介4－3x $25717 w{ }_{\text {Word }}$
LOISELEUR－DESLONGCHAMPS，Jean Louis Auguste Considérations sur les céréales， et principalement sur les froments Pairs； Bouchard－Huzard； 1842 ［CUL］
$\mathrm{cc}, \mathrm{dg}, \mathrm{fg}$ ，he，hy，mhp，oo，sl，sp，t，ta，tm， v ，wd

LOISELEUR
NB Part I
\rightarrow p.12; 32 to 49; $70-78 ; 83$ to 107, 8
© II: 165; 181; 183; 199; 200 to 205; 208,210; 217-219; 224; 234
SB1 *
35 Wheat less attended to \& modified than garden vegetables - contrast with Dahlia certainly not a conspicuous variation.
37 Wheat must have been nearly what it was when first cultivated. Q
45 M . Dalbret has cultivated 30 years 150160 vars, \& all keep true, except in seed itself-
49. Wild Oat of Australia, Journal Agricult Soc. Vol 2. Part 2.
70322 vars.
78 Botanists disagree what to call species
80, 83 thinks wheat impregnated with closed flowers
81. has never seen Hybrids, between his $100-200$ vars. sown near each other.
84. Aegyptian vars. differ from French

89 Vilmorin on carrot. *
94. Argues if wheat changed by culture, so ought all weeds * quite ignores selection 97 grains from Aegypt as good var \& no
107. Had it not been for innumerable vars. he wd have thought that what was at first as now
108 contrast variability of wheat \& seigleO
SB2 $\square \Re$
Part II.
179, 183 gain of weight in grains when cultivated in France - certain effect of climate. Q
200 Tessier on no good from change of seed.
202 disproved by his own experiment \& observation explain Tessier by great care of cultivation Change of seed usual practice in France
bad seeds producing equally good plants with good p. 216 - rather opposed to principles of selection
224 Effect of climate on habit of wheat Q p. 29 Mongolian Wheat

12 23-28m 43 6-10m, 15-18m, 30m 14 6-9m, $11-14 m, 24-26 \mathrm{~m} 2914-20 \mathrm{~m} 329-14 m, 20-$ $24 m 35 \quad 24-26 m 36 \quad 25-31 m 37$ 19-20m, 26$28 m 397-13 m 444-13 m 454 u$ "trente ans", $7 u$ "cent|soixante", 17-19m 46 19-22m/19u "depuislans" 47 1-2m 49 18-20m 69 21-22m $704-7 \mathrm{~m} 713-4 \mathrm{~m} / \mathrm{w}$ \& 1 or 2 others 77 22$27 m 785-7 m$, 8-12m $801-8 m, 18-19 w$ Quo 19-22m/20u "àlleur", 24-29m/w pollen partly shed. $w b$ R. Brown says the hairs in stigma cannot admit pollen tubes $811-3 m, 14-19 m$,
$20 u$ "semées lautres" 82 10-11m/10u "nombre| tardifs", $21 \mathrm{~m} 839-12 m 84 \mathrm{wt} / 1-5 \mathrm{w}$ In a mass of interlaced roots different nourishment or position be acquired Manure. $7-10 \mathrm{~m} / 9 \mathrm{u}$ "trop simple" $\mid 6-11 w$ they have not to struggle with other species: sowed in different soil $13-14 w$ Climate \&c $\uparrow 10-6 \mathrm{~m} 855-10 \mathrm{~m}, 15-17 \mathrm{~m} 9317-$ $19 m 9410-18 \mathrm{~m}, 29-30 \mathrm{~m}, \mathrm{wb}$ Knows nothing about selection $952-6 m 961-3 m / w t$ again does not consider culture $9710-22 \mathrm{~m} 989-$ $21 m / 10-18 w$ the actual grains quite similar to wheat 100 14-18m, 20-22m $10214-17 \mathrm{~m} 107$ 20-30m 108 1-15m
Part 2, $1654-10 \mathrm{~m}, 12-15 \mathrm{~m} 1814-8 \mathrm{~m} 183$ 1$3 m 199$ 23-27m 200 18-21m, 30m 201 23-26m $2025-11 m, 14-17 m 20324-29 m$, wb I have no doubt that degeneration is a wrong idea.205 6-11m $2083-6 m, 8-10 m, 13-27 m, 28-$ 30m/29-30u "produit | grains" 209 1-3m, 22$27 \mathrm{~m} 2104-7 \mathrm{~m} / \mathrm{w}$ opposed to selection 211 $28-31 m 216 w t / 1-7 w$ Would be opposed to Principles of Selection, if vars with all bad seeds were chosen. $w t$ The size of grain differs much according to what part of ear it comes from.- $\leftarrow\langle$ from 217 wt it wd seem that the grains vary extremely without affecting the race: but a new race might be selected - a good race though it may have some poor seeds, yet the quality of the race is inherent in such seed.- $2-3 m / \rightarrow 21828-$ $31 m 219$ 12-14m/w Peas \& Beans! 224 813m/Q 234 8-10m/9u "huit \mid deux", 23-30m

LOMBARDINI, Luigi Ricerche sui Cammelli Pisa; T. Nistri; 1879 [Down, I] \wp

LOUDON, John Claudius (ed.) An encyclopaedia of plants London; Longman, Orme, Brown, Green \& Longmans; 1841 [CUL]
$\mathrm{f}, \mathrm{mhp}, \mathrm{sp}$
NB

- White Yellow White Bengal quick Bankl; Quercus olivaeformis (mossy cup) heavy loam V Vol 13 of Gardeners Mag for some trees
more of Dentzia scabra \& corymba; Bignonia radicans; Tropaeolum 302,1184; Tendrils 516

6 " 19 ". $x 12$ 介 $1 \mathrm{~m} / \mathrm{u}$ "In|evergreen" 16 " 258 ". x 18 " 51 ". $w 1146$ " 318 "m/w viscosissima sessilis asceuleus 20 " 319 " a / w purpurea "321"a/w plantago 36 " 83 ". $x 42$ " 105 ".w 1150 44 " 115 ". w p. 115054 " 953 ". $x 68$ " 206 ". $w 1$ sp. Decand 70 " $1233 / 1235 / 1236$ ".w sp. a. D.C. $\uparrow 40-35 m, ~ \Uparrow 32-27 m \quad 71 \quad " 1233 / 1235 /$ 1236 ".m 94 " 1620 ". $x 102$ " 305 ". x 106 介4-1m/
w The yellow berry Holly came true from seed 120 ＂1916＂．x 126 ＂350＂．w 1156 ＂ 2031 ＂．m ，＂ 2041 ＂．m 127 介23－15m，$\Uparrow 22 u$＂the crossing＂，介6m 132 ＂369＂．w 1156134 ＂2146／ 2149＂．m $136^{\prime \prime} 382^{\prime \prime} . w$ p． 1158 ＂ $2206^{\prime \prime} . w$ end of Nic． 138 ＂ 383 ＂．x ，＂2224／2240＂．m 140 ＂2260／ 2266＂．m，＂387＂．$x 142$＂388＂．x 144＂402＂．w 1162146 ＂ 413 ＂．$x 152$＂ 439 ＂．x 154＂ 440 ＂．x 156 ＂ 450 ＂．$x \quad 156$＂ 2517 ＂．m / w Tomato 158 ＂ 2530 ＂．x，＂ 2534 ＂．$m 162$＂ $463 "$. w 1164 ／166 ＂ 464 ＂．x, ＂ $2713 / 2719$＂．$m 167$＂ $2713 / 2715$＂． \boldsymbol{m}_{0} 170 ＂ 474 ＂．$x / w 1164$＂2789＂．w Mr Henfrey 174 ＂ 501 ＂．$x 176$＂ $504 " . x 178$＂ $507 " . x 180$＂ $515 " . x$ 184 ＂ 3018 ＂．m／w fulva 193 $\uparrow 4-1 m$ 194 ＂574＂．x 208 ＂615＂．w $1170 \quad 232$＂3916／3918／ 3922／3929／3937＂．m $254 \quad$＂ 4286 ＂．$x / m \quad 270$ ＂4597＂．m，介7－1m 282 ＂ 815 ＂．$x / m, ~ " 4862 " . x / m$ 290 ＂ 843 ＂．$x 298$＂ $868 " . x 302$＂ $875 / 876^{\prime \prime} . x 306$ ＂5180＂．m 318 ＂ $901 " . w \quad$ p． 1184 ＂5449／5450／ 5461／5463＂．m 320 ＂ 904 ＂．w p． 1186324 ＂ $916^{\prime \prime} . x$ 326 ＂ $5586^{\prime \prime}-$＂ 5590 ＂．$x \quad 328$＂923／924＂．$x \quad 358$ ＂1014＂．w 1190362 ＂1019＂．w 1194362 ＂1027＂．x 380 ＂1051＂－＂1052＂．x 394 ＂1082＂．x 396 ＂1086＂．x 410 ＂Order 3＂．u 411 ＂1148＂．x 420 ＂ $1128^{\prime \prime} . m 422$＂1129＂． \mathbf{m} damson \＆cherry ＂7056＂．m 424 ＂1132＂．w 1204426 ＂7093／7099／ $7101^{\prime \prime} . m$ ，〈text：〉 $1-3 m / w$ increase 428 ＂1139＂．w 1208442 ＂7464／7467／7473／7477＂．m， $\Uparrow 4 u$＂centifolia，damascena． $443 \Uparrow 3 \mathrm{~m} / \mathrm{u}$＂ 300 varieties＂ 444 ＂7480／7486／7493＂．man 446 ＂7497／7495＂．mぬ 448 ＂7500／7502／7509／7510／ 7512＂．m屯，＂7512＂．w DropnaeaO 450 ＂7515／ 7518／7521＂．m 454 ＂7630／7633＂．m 472 ＂1203＂．x 474 ＂1206＂．$x 479$ 10－12m／w probably in first generation！！！ 480 ＂ $1219^{\prime \prime} . x 482$＂ $1227^{\prime \prime} . x 508$ ＂ $8395 / 8399$＂．$m \quad 509 \quad$＂8395／8399＂．$m \quad 514$ ＂1294＂．x，＂8538＂．m，＂1297＂．w p． 1226515 ＂ 8538 ＂．m 516 ＂1299＂．$x \quad 518$＂1308＂．$x \quad 520$ ＂1322．w 1228522 ＂ $1328^{\prime \prime} . x 526$＂ 8765 ＂．$x / m$ ， ＂ 8771 ＂．m，＂ 8772 ＂． md ，＂ 8793 ＂．$m 527$＂ 8771 ＂．m， ＂ 8793 ＂．m 530 ＂ $1355 " . w 1078-554$＂ 9245 ＂－ ＂ 9247 ＂m / w（a）capitata Blistered A． Decandolle thinks all the same． 564 ＂ 1459 ＂．x 572 ＂ 9523 ＂．$m, ~ " 9540 " . m 574$＂ $9546 / 9565 / 9568 /$ 9575＂．m 576 ＂ $9633 " . m 582$＂9711／9731／9732／ 9733／9731／9764＂．m，＂9733＂．w sterile 583 ＂ 9731 ＂．m 584 ＂9766／9768＂．m 586 ＂9835／ $9846^{\prime \prime} . m 588$ 4－8m，6u＂herbaceum＂， $9 u$ ＂cultivated＂，10u＂nankeen－coloured＂ 590 ＂ 9897 ＂－＂ 9921 ＂m／w Genus Abutile see p． 1236 592 ＂ $1496^{\prime \prime} . w 1238600$＂ $9970^{\prime \prime}-" 9973 " . x 602$ ＂1511＂．$x \quad 604$＂1513＂－＂ $1519 " . x$＂ $1521 " . x$ ＂10030＂m / w open fl ＂ 10031 ＂．m / w open flower 606 ＂ 1522 ＂．x, \quad＂ 1524 ＂．$x, ~ \downarrow w$ \＆Cytisus \＆ Rotinia 11 genera true with prop．flowers 614 ＂10247＂－＂10248＂．m 615 ＂10231／ $10235^{\prime \prime} . m 621 \pi 6-4 \mathrm{~m} / \mathrm{w}$ Yet the open flowered is specific character 624 ＂10435／

10449＂．m 626 ＂10460＂－＂10462＂．m 630 ＂10554＂－＂10558＂．m／w D Desmodium 631 介2－ $1 m / x 632$＂10560＂－＂10563＂．m／w D＂10566＂－ ＂10580＂．m／w D＂10600＂．m／w D＂10577＂m／w－ ＜text：） $5 u$＂during｜night＂ 633 ＂10569＂．m／u ＂stem climbing＂ 640 ＂10787＂．m 642 ＂10802＂．m，＂10811＂．m，＂10836＂．m 656 ＂10998＂．m $688 \quad$＂1683＂．$x \quad 690$＂ $1686^{\prime \prime} . x$ ， ＂1696＂．$x 692$＂11625＂．$x, \quad " 11626 " . x \quad 712$ ＂1741＂ not CD） 766 ＂1934＂．$x 774$＂1944＂．x 786 ＂13287＂－＂13289＂．x 796 ＂13415／13417／ 13419／13420＂．m $798 \quad$＂13433＂－＂13434＂．m／x，〈text：〉 $8-11 m / 9 u$＂varylsoil＂ $9 u$＂scarcelyltree＂ 800 ＂ 13462 ＂．$m 802$ wt P．macrocarpa quick grower＂2011＂．w 1270 ＂13504＂．m／w quickest grower of all 804 ＂2013＂．w 1274806 wt Juniperus 848808 ＂13560／13563／13565／ 13566＂．m／w 809 介12－10m 810 ＂13573／13577／ 13578／13579／13590＂．m 814 ＂2039＂．$x \quad 834$ ＂2066＂．x 836 ＂2080＂．x 838 ＂2083＂．$x 844$ ＂2114＂．w $1278 \quad 854 \quad " 2123 "-" 2125 " . m$ ， ＂14104＂m 855 ＂14101＂－＂14104＂．m／u土 864 ＂2143＂．w 1278 ＂14279／14280／14285／14286／ 14289＂．m 865 ＂14280／14285＂．m 1166 ＂2543＂．x， ＂17012／17013＂．$\quad 1226 \quad$＂17592＂．m 1228 ＂17633＂．w 13021272 ＂18056＂－＂18057＂．m／w Sir John very handsome 1288 ＂3118＂．m 1300 ＂ $3652^{\prime \prime}$－＂3654＂．m 1301 ＂ 357 ＂．m／u＂Joseph Plant｜Staffordshire＂ 1307 ＂Anagallis＂．m

LOVÉN，Sven Ludvig Études sur les échinoïdes Stockholm；P．A．Norsted \＆Söner； 1875 ［Down，I］

LOW，David On the domesticated animals of the British islands London；Longman，Brown， Green \＆Longmans； 1845 ［CUL］
ad，beh，br，cc，ch，cs，f，gd，he，no，sl，sp， sx，ta，tm，v，wd，y
NB Questions for Mr Low；Introduction；p． 36 $S B \square \beta$
LXIII．Supposes the longer any quality in breed comes truer－Believes in ill effect of interbreeding
LXIX States roundly that vars．of sheep \＆ Dogs will keep distinct p671
p． 5 \＆ 8 Species of lbex
12．Syrian Goat same character for 2000 years（no authority）－Horns absent sometimes in one or both sexes（do sie no authority））p． 14 in India
24 Horns in Female wild sheep often wanting or small
91 Black－faced sheep will not amalgamate by crossing with other Breeds
159 Rye－land sheep will not do．－
188 Remarks how soon a breed in any

Low
county changes with no record of it S
239 On various Park cattle of England with coloured vars p. 241 p. 301
242 .
242 Crouching instincts of young lost immediately - no doubt lost in Chickens, not in Turkeys through tameness of Parents
258 Crosses with Indian Cattle said to be fertile inter se
297 Zetland cattle receive male earlier than any other Breed Q
309 Kerry Cattle white ridge along spine
316 Modern Aberdeenshire Breed hardly true as yet
351 Sheeted colour common to several breeds \& strongly inheritable
370 Long-horn with difficulty amalgamated Colling \& Bakewell r name Ellman for sheep 387 Short-horn communicate character very easily \& yet is an imposed modern Breed 402 Male Boar tends to destroy young to prevent too great increase - so some Rams attack pregnant females!!!
409 Wild not gregarious? (Bechstein) tame are. \& even when feral in S. America
411 Tame pigs 3 incisors in each jaw \& number not constant
415 Vauban calculation of increase of Pigs (Ch 3)
428 Sus Papuensis - young striped along back
646 Canis anthus of Arabia very like Dogs sculptured on Pyramids Q
650 Half-bred Dingos wd attack Poultry Low kept them
717 Some of Dholes of India like Greyhounds - Pointers Mute Q
721 Pedigrees of Greyhound attended to like Races
a Poor Book - not to be trusted.
v $14-18 m$ vi $15-18 m, 27-29 m$ vii $21-27 m$ viii $15-16 m$ lii $33-36 m$ liii $5-12 m, 14-16 m$ liv 4$9 m, 27-29 m, 31-35 m$ lv $26-33 m$ lvi $34-35 m$, wb This I think, must be a specific character \& not direct effect of temperature lvii $7-22 m$, $27-28 m, 32-33 m$ lviii $19-24 m, 28-34 m$ lx $16-$ $21 m$ lxi $8-9 m, 13-15 m$ lxii $25-27 m, 34-36 m$ lxiii $1-7 \mathrm{~m}, 8 u$ "characters 1 supposed", $9-16 \mathrm{~m}$, $20-23 m, 32-36 m$ lxiv $11-14 m$ lxv $20-24 m, 30-$ $34 m$ lxvi $17-22 \mathrm{~m}$ lxviii $26-28 \mathrm{~m}$ lxix $12-16 \mathrm{~m}$, $13-14 m, 16-18 m, 16-17 m, 28-30 m, 31-34 m$, $35-36 \mathrm{~m}$ lxx $1-10 \mathrm{~m}$ lxxi $33-35 \mathrm{~m}$ lxxii $19 \mathrm{~m} / \mathrm{u}$ " $13 \mid 18$ " lxxiii $20-21 \mathrm{~m} / 21 \mathrm{u}$ "onelare" lxxiv $19-21 m / 20 u$ "werelyoung" xcviii $1-7 m, 16-$ $19 m, 20-23 m$ с $24-26 m$ ci $2 m$ ciii $7-10 m, 7-$ 9 m cvii $18-21 \mathrm{~m}$ cxi $25-28 \mathrm{~m}$ cxii $16-20 \mathrm{~m}$ cxiv 17-20m, 34-36m cxv $1 m 15-6 m 231-36 m 3$
$2-4 m, 6-8 m, 12-17 m 819-23 m 11$ 17-28m, $35-36 m \quad 12 \quad 3-7 m, \quad 19-20 m \quad 14 \quad 10-11 u$ "sometimes lears" 15 4-6m, 31-33m $2415 u$ "hornsismall" $258-10 m, 12 u$ "inloften", 2427 m 27 1-5m, 5-6m, 13-16m 32 27-28m, 29$30 \mathrm{~m} 3330-32 \mathrm{~m} / 27-34 w$ There must be 100 s of species caught, not probable for trouble wb We know how apt savage natures are strike on same plans \& therefore domestication wd probably take place to great extent - taming wild animals \& birds common t Dt $344-7 m, 31-33 m 3528-31 m$, $33-34 m$, $35-36 m \quad 36 \quad 7-8 m$, $17-18 m / 18 u$ "character", 26-27m, $28 u$ "hair", 32-34m 37 $16-18 m, 26-28 m, 35-36 m 3818-22 m 393-5 m$, $10-13 m, 18-19 m 4028-31 m, 35-36 m 5828$ $30 m 5927-28 m 604-5 m 6222-23 m 6322-$ $24 m 655-7 m, 25-29 m, 31-36 m 668-11 m 68$ $1-2 m, 10-11 m, 13 m 69 \mathrm{wb}$ comparable to the trifling characters distinguishing geographical representation $7319-22 m, 26-27 m, 28-29 m$ 75 22-25m 81 10-11m 82 3-5m, 24-26m 836$7 m, 14-17 m 8430-33 m 8527-29 m, 32-35 m 86$ 1-4m, 14-18m $871-3 m, 22-23 m 9117-18 m 93$ 31-32m $941-3 m, 16-17 \mathrm{~m} / \mathrm{u}$ "Theirlquarter", $31 m, 34 m 11317-18 m, 27-28 m 11431-32 m$ $11534-36 m 116 \quad 6-7 m \quad 117 \quad 27-35 m 118 \quad 17-$ $20 m, 23-26 m, 31-32 m 1205-7 m / 5 u$ "outline of" 121 12-13m, 35-36m 123 6-8m, 33-36m 124 30-33m 125 9-11m $1265 m / u$ " 4000 ", $10-$ $11 m 133$ 29-33m 134 12-14m, 24-26m 136 1$6 m, 10-12 m, 22-23 m, 27-28 m, 34-35 m 137$ 12-13m 138 31-32u "The ISheep", 32-35m/3233u "knowlare" 141 26-31m 143 20-23m, 25$28 m 145$ 15-20m 147 32-36m 148 13-16m 150 4-6m 151 27-30m 155 13-16m, 32-33m 158 15-19m 159 2-5m 163 13-21m, 28-31m 164 $13-14 m 1707-9 m, 11-14 m 1738-12 m 1744$ $9 m, 18 u$ " $501 \mathrm{lb} . " 118-24 w$ Does not P King say 65?!!! at first in Australia $1751-5 m / w$ must be due to external agents $1772-6 m$, 19-21m 179 11-12m 181 13-16m, 29-30m 184 $12-14 m, 24-26 m 185$ wt Crossing evidently produces rapid effects \& has done much more than selection.- 4-6m/x $188 \quad 18-21 m$ 192 2-4m 193 1-2m, 11-13m, 29-30m 194 25$30 m 195$ 31-35m 196 1-6m 197 27-36m 198 $2-4 m 19931-36 m 20922 m 21735-36 m 231$ $7-8 m, 28-32 m / 30 w$ (a) $w b$ (a) No such great change has been effected in reclaiming the common Ox of Europe V. further on.- 233 33-41m 234 34-36m 236 3-5m 238 6-9m, 12$14 m, 15-27 w$ Compared to Falklands! $30-31 m$ 239 1-2u "existed 1 immemorial", 3-4m, 13$17 m, 31-36 m 241$ 18-19w like Pigeons 19$22 m, 23-26 m 242 w t / 1-7 w$ instinct by young animal lost, $\&$ it must be lost by change in instincts in old animal. by the old ones not
depositing their young. $3-7 m / 4-5 u \leftrightarrow, 8-12 m$ 256 6-8m, 25-30m 257 2-5m 258 14-16m 259 3-5m 261 19-22m 264 28-30m 265 9-11m, 2428m, 29-33m 266 9-11m, 20-22m, 23-25m 296 $28-30 \mathrm{~m}$, $\quad 30-31 \mathrm{~m} \quad 297 \quad 11-12 \mathrm{~m} / 12 u$ "Scandinavian", 13m, 21-24m 299 25-27m, 2936 m 300 15-18m, 29-31m $3017-10 \mathrm{~m}$, $30-31 \mathrm{~m}$ $3043-4 m, 32-33 \mathrm{~m} 30616-18 \mathrm{~m} 3073-6 \mathrm{~m} / \mathrm{Q}$ $10-12 m 30820-25 m 309$ 14-15m/14u "white", $30-32 \mathrm{~m} 31022-26 \mathrm{~m}, 27-30 \mathrm{~m} 31625-36 \mathrm{~m} 318$ $28 \mathrm{~m} 31926-27 \mathrm{~m} 32127-30 \mathrm{~m} 322$ 3-7m 324 $22-24 m 3347-9 m 33922-24 m 3443-6 m 345$ $24 m 34625-27 m 34927-29 m, 31-33 m 350$ 29$31 m 3513-7 m$, 14-16m 353 28-31m 357 1920 m 358 19-22m 359 15-17m, 22-24m, 29$31 m 362$ 17-21m $3632-4 m, 7-11 m / 10 u$ "late | century", 17-20m/17x /18u "1769", 31-32m, 32-34m 364 10-15m, 16-19m/18u "not" 365 10-11m, 13-15m 366 8-10m, 11-12u "very short", $15-16 \mathrm{~m}, 21-22 u \leftrightarrow 3684-5 \mathrm{~m} / \mathrm{Q} 8-10 \mathrm{~m}$, $24-27 \mathrm{~m} 3691-2 \mathrm{~m}, 4 \mathrm{~m}, 8-9 \mathrm{~m}, 11 \mathrm{~m}, 12-15 \mathrm{~m}$, $16-17 \mathrm{~m}, 20-21 \mathrm{~m}, 22-24 \mathrm{~m}, 34-35 \mathrm{~m} 370$ 13-15m $3713 u$ "goodly|horns" $3726 \mathrm{~m}, 14-15 \mathrm{~m}, 30-$ $34 m, 35-36 m 3736-7 m, 35-36 m 3751-2 m, 4-$ $6 m 376$ 9-12m, 27-29m, 30-34m/32w (a) 377 $1-2 m / 1-8 w$ (a) because cannot see within.Selection cannot regulate position of fat.-32-34m 379 26-31m, 32-34m 380 34-36m 381 $5-6 m, 23-25 m$ (Colling) $/ w$ I ought to use his name $28 u$ " 1770 " $3823 u \leftrightarrow, 6-10 \mathrm{~m}, 17-20 \mathrm{~m}$, $30 \mathrm{~m}, 34-36 m 38325 u$ "crosses", $26 u$ "Scotch 1 Galloway" 384 1-5m, 6-8m $38513 w$ Cows $17=3873-5 \mathrm{~m} / \mathrm{Q} 7-9 m, 14-15 m, 27-29 m, 34$ $35 m 389 \quad 7-8 m \quad 393 \quad 34 m 39411-13 m / 8-16 w$ such selection ed never apply to wild animals, as every parent must be adapted to same conditions 396 19-21m 397 7-8m, 14-16!??/15-16u "is |Africa" 401 20-24m 402 2021m, 22-24m, 34-35m/35u "prevent I great" 408 24-26m, 32-34m 409 4-5m, 10-12m, 19-22m, 25-29m, 31m 410 3-5m, 13-16m 411 4-6m, 4$5 \mathrm{~m}, 10 \mathrm{~m} 4158-10 \mathrm{~m}, 15-22 \mathrm{~m}, 35-36 \mathrm{~m}, \mathrm{wb}$ What is average age of Elephants? 421 8$10 \mathrm{~m} 42218-19 \mathrm{~m} 424$ 20-21m, 22-25m, 26$27 \mathrm{~m} 42612 \mathrm{~m} 42810-12 \mathrm{~m}, 28-30 \mathrm{~m} 4293-7 \mathrm{~m}$ 431 14-18m 433 6-10m, 12-14m, 25-27m 438 $24 u$ "Asses", 27-28m 441 31-34m $44527 u \leftrightarrow$, 29-31m, 33-36m $45336 m 457$ 8-14m 468 8-14m/11-12u "hardy|enduring" $/ 9-16 w$ Change of character from external conditions. $4695-$ $7 m, 15-18 m 47021-25 m 513$ 9-13m, 31-34m, 35-36m 514 30-32m 516 5-6m/6u "piebald" 517 9-11m 523 1-4m, 21-23m, 28-31m 524 23-25m 527 12u "King Herod", 13-14Q 1516m, 25-26w Darley Arabian 30u "Eclipse" 528 15-16m, 30-33m 529 20-21Q $22 u$ " 334 winners" $122-23 m, 26-27 m 53020-22 m 532$ 1$3 m, 7-10 \mathrm{~m} / \mathrm{l}$..."/Q $20-21 \mathrm{~m}, 27 \mathrm{~m}, 31-33 \mathrm{~m} 533$

1-2m, 9-11m 544 17-18m, 20-22m 546 7-10m, 10-12"..." $/ m, 19-22^{\prime \prime} . . . " / m / Q 5841-5 m 5881-$ $3 m 598$ 22-26m, 27-29m, 35-36m 602 30-31m $60612-17 \mathrm{~m} 6078-10 \mathrm{~m}, 11-14 \mathrm{~m} 60821-23 \mathrm{~m}$ 617 8-9m, 12-14m $6192 m, 3-5 m, 8 m, 17-21 m$ $62513-17 m 62818-28 m 6411-4 m, 18-20 \mathrm{~m}$, 21-24m, 27-29m 643 18-21m, 32-33m 646 29-$30 m, 32-35 m 649$ 14-16m 650 3-5m, 3-4m, 34-37m 653 28-32m 655 1-5m 656 30-31m, $35-36 m 6571-4 m, 5-10 m, 31-36 m$ 658 5-7m 660 13-19m 663 3-7m $66413-17 m, 27-28 m /$ $28 u$ "Maltaldog" 665 5-15m, 16-25m, 26-32m $6666-10 m, 22-27 m / 21-31 w$ one cross, without fertility inter se, wd produce effect.good - $67120-21 m / 21 u$ "race" 22-24m, 28$29 m 672$ 24-26m 673 12-15m, 22-26m 674 10$11 m, 17-18 m, 26-28 m, 30-31 m 6777-9 m 678$ 27-30m 706 1-9m, 34-36m 711 21-25m 716 6$9 m 717$ 30-36m 718 32-36m 719 10-15m 721 $14-17 \mathrm{~m} / \mathrm{Q} / 15 u$ "pedigrees of", $22-25 \mathrm{~m}, 28-31 \mathrm{~m}$ 723 19-21m, 32-33m 724 1-3m $73016-19 m / 8-$ $26 w$ Sulivan's case of other dogs doing so at Falkland $\quad 21-24 m / 27-28 m / 30-36 m / 22-35 w$ adaptation, striking case of $7313-7 m, 10-$ $12 m 735$ 22-23m 736 4-6m 740 32-35m 741 4-6m, 18-20m 743 1-2m, 32-34m 744 15-18m $7458 \mathrm{~m} / \mathrm{u}$ "webbed" $7464 \mathrm{~m} / \mathrm{u}$ "His|webbed" 747 16-18m 749 15-18m, 16-19m, 24-27m, 28-31m 751 25-32m

LOWNE, Benjamin Thompson The anatomy and physiology of the blow-fly London; John Van Voorst; 1870 [CUL, I] beh

NB p. 18 Flight of insects a form of crawling $1410-15 m, 17 u$ "thirty times", 23-27m 15 17m 18 27-30m 34 5-6m

LOWNE, Benjamin Thompson Descriptive catalogue of the teratological series in the Museum of the Royal College of Surgeons of England London; R. Hardwicke; 1872 [CUL, I]
ct, ds, em, h, rd, v, t
NB Rudiments \& Law of Variation; xii Rudiments; xiv Doubling of embryo in single Blastoderm; xvii "soi pour soi"; xviii; Nothing for Descent of Man
xii $16-20 m, 36-37 m$ xiii $24-26 m$ xiv $24-27 m$ (Milne-Edwards) xv 20-22m xvii 3-6m 18 17$22 m$

LOWNE, Benjamin Thompson The philosophy of evolution London; John Van Voorst; 1873 [CUL, I]
beh, cs, ds, h, he, ig, in, rd, t, tm

LOWNE

NB1 All concerning Descent of Man
119 No Bird or Reptile comes between
Amphibian \& Mammals - good
141 Flies know plaintive cry of captured fly

NB2 p41; 43
accounts for good from crossing by giving plasticity. -44
55; 57; 58 Rudiment; Pangenesis 62 or 65
All marked to end of Book
$4117-21 \mathrm{~m} / \mathrm{w}$ if of use to the individual 27 m $4210-12 m / 11 w$ Yes $432-6 m, 25-28 m 4410-$ $15 m 558-15 m 571-8 m, 20-28 m 58$ 17-23m/w No in rudiment of pistil $625-8 m, 8-14 m 63$ $15-19 m 6514-17 m / w$ because they must collect the earliest stage $7221-27 \mathrm{~m} / 21-23 w$ Sir J. Paget $753-6 m 7611-18 m /!!/ \downarrow w$ It is incredible to me so fine a balance. If so American ought not to be more naked than European - Brain not so much developed 104 17-28m 105 7-15m, 19-22m 115 21-28m 118 22-27m 119 22-28m (Parker) 120 12-18m $1238-13 m / 9 u$ "homoplastic" $14123-27 m 144$ 23-28m (Bain)

LUBBOCK, John An account of the two methods of reproduction in Daphnia ... (extract), communicated by Charles Darwin; 1857 [Down, I]

LUBBOCK, John Addresses, political and educational London; Macmillan \& Co.; 1879 [Down, I]

LUBBOCK, John Ants, bees, and wasps 4th edn; London; Kegan Paul, Trench \& Co.; 1882 [Down]

LUBBOCK, John Monograph of the Collembola and Thysanura London; The Ray Society; 1873 [Down]

NB O/
\wp

LUBBOCK, John The origin of civilisation and the primitive condition of man London; Longmans, Green \& Co.; 1870 [CUL]
beh, h, t, y
NB p355 Savages \& Men cry or weep only slight occasionly copiously - Q Puzzled savage frowning
p 277 signs of affirmation.
$427-10 m, 31-32 m 4819-22 m 5017-20 m / w$ \& so forth 52 23-29m 55 13-16m 60 16-19m, 20u "almost", $25-27 \mathrm{~m} / 25-26 u$ "communal marriage" $648-11 m, 14-18 m / 1-18 w$ it is very
odd that children shd not know their mother. or rather conversely. $66 \quad 28-31 m \quad 67$ wt (a) other explanation of closer connection of child to mother 11a "M'Lennan" \& MorganO (a) $11-17 \mathrm{~m} / \mathrm{w}$ says so, but am not convinced $6911-16 m, 24-26 m 707-9 m, 12-14 m, 23-28 m$ 72 11-14m, 19-21m $7620 u$ "Malay" 77 1-2m $7928 u$ "Fijians", $30-31 m 861-5 m 878-11 m$ 88 19-27m/6-26w This all looks like communal marriage $9327-31 m 941-2 m / w t /$ $1-4 w$ What is the evidence $5-7 \mathrm{~m} 9917-20 \mathrm{~m} /$ w or rather of many places $1008-9 \mathrm{~m}, 10-$ $11 m, 28-32 m 10129-32 m 1043 m, 13-18 w$ because tribe of utmost importance 105 2$5 m 108$ 24-28m 119 9-22m 128 10-24m 171 $25-30 \mathrm{~m} 22130-34 m \quad 259 \quad 2 u$ "friends" $4 u$ "words |justice" $\mid 2-4 w$ but reality $260 \quad 28-31 m$ 261 26-29m 263 2-6m, 26-28m 265 30-32m $27334 m 274 w b$ I think I need only refer to L on wickedness of savages \& Primitives $w b$ Moral sense citing the term - the latest acquisition is that which impels a Man to certain actions each or wholly or in part not counting to his own * advantage, or plans, \& which reports h have under the term <rest 0) 277 3-8m 278 14-27m 321 7-8u "Amongl Saxons", 11-15m/Q 21c/w $3554-7 m / 6 u$ "knit | brows", 19-38m/29-31m

LUBBOCK, John On the origin and metamorphoses of insects London; Macmillan \& Co.; 1874 [CUL]
ad, ds, em, ig, sy, tm, ts
NB - Modern Classification 20 (Error) Termes - F. Müller; 66; 73; 81
SB
p66 - Similarity \& dissimilarity of Larvae, relating to mature state - Medusae the most wonderful case.
p73 on difficulty of believing that a suctorial mouth cd be developed into a mandibulate one, \& vice versâ; both descended from intermediate form.
p82 summary on metamorphoses "adaptional \& nonadaptational"
$663-25 m 7312-25 m 813-5 m 8611-20 m$
LUBBOCK, John On the ova and pseudova of insects (extract); 1858 [Down]

LUBBOCK, John Prehistoric times London; Williams \& Norgate; 1865 [CUL, I] beh
NB \langle not $C D\rangle$
337 14-22m, 28-30m 354 18-20m (Crawfurd) 451 18-24m 473 9-12m/w Rengger $25 m 474$ $1-3 m, 29-32 m 47516-21 m 476$ 14-18m, 20-
$29 m 477$ 23-30m/w Castes of India 478 1-5m 479 13-19m 480 20-26m (Wallace)

LUBBOCK, John Prehistoric times 2nd edn; London; Williams \& Norgate; 1869 [CUL, I, S]
beh, gd, h, tm, y
NB 417 Advance in Savages
562, $563 \rightarrow 437$ Power of counting by Savages No abstract terms

- 471 females noses flattened
- 508 size of underlip standard of beauty (?) - 507 Amers. shape of Head very deformed 539; 543; 545 independent inventions showing o property of Savages
552 Kissing not general
553, 554 - odd mores \& fashion
558 - Mental development of Child, near like
563-564- Religion
569 - Witchcraft
- 571 - Cloud of evil hangs over savages
animals using weapons - 572
574 - State of Race when they first spread over Earth
399 1-3m 402 14-16m 405 5-7m, 11-13m 417 20-31m 437 15-27m 471 25-27m 506 16-17m 516 27-28m 539 30-34m 542 20-31m 543 11$20 m 5452-7 m 5527-12 m, 21-25 m 553$ 5-9m, $11-17 m, 17-20 m, 33-34 m 5544-10 \mathrm{~m}, 11-16 m$, $25-27 m, 28-29 m 55822-31 m 5626-8 m$, 23$26 m 5637-9 m, 16-20 m 5651-11 m 569$ 1720 m 571 wt one must consider their evidence or their dread fully to appreciate the important benefit of knowledge \& science. 4$6 m / 5 w$ (a) 572 10-14m 574 wt when they spread over the earth $2-6 \mathrm{~m} / 2 u$ "ignorant 1 pottery", $5 u$ "Theylarrows", $7 u$ "boats" $18 u$ "possible character", 1-19w , 15-25w , 1820"...", $30-32 " . . . " / m / w$ He adds $21 . . . " / w$ \& Fire But he admits that from why 575 13$20 \mathrm{~m} / 17 \mathrm{u}, 26-34 m$

LUBBOCK, John Scientific lectures London; Macmillan \& Co.; 1879 [Down, I]

LUCAE, Johann Christian Gustav Der Fuchs-Affe und das Faulthier Frankfurt am Main; Mahlau \& Waldschmidt; 1882 [Down] 8

LUCAE, Johann Christian Zur Statik und Mechanik der Quadrupeden Frankfurt am Main; Mahlau \& Waldschmidt; 1881 [Down]

LUCAS, Prosper Traité philosophique et physiologique de l'hérédité naturelle 2 vols.; Paris; J.B. Baillière; 1847 [CUL]
beh, br, cc, che, cs, ct, ds, em, f, fg, gd, he, hy, ig, in, mn, no, or, pat, phy, sl, sp, spo, sx, sy, t, ta, ti, tm, ud, v, wd, y
vol. 1 NB
Prof. Piorry Not ancient, probably Medical work; I think French. on Hereditary diseases. Enquire prior.-
title page $\uparrow 8 m$ (Piorry), wbcc xxiii $10-16 m$ 114 14-20m $1273-11 m 12917 \mathrm{~m} / \mathrm{u}$ "neuvième। naissance", $32 \mathrm{~m} 1303 u$ "enfants d'Edward" $1494-7 m$ (Gall) $175 \quad 18-32 w$ period of variation different according to different authors. Cause \& time of appearance may be very different $176 \quad 17-20 \mathrm{~m} / 17-32 w$ variation of hybrids inter se wd make one believe in this distinction of parent acting on germ.- 177 8-13m 179 18-24m 180 12-16m $18113-20 \mathrm{~m} / \mathrm{w}$ inheritance cannot be cause of variation has nothing to do with it.-1833$12 m / 4$? / $10-11$? $18427-29 m / 29 u$ "unl spontané" $1854-9 m, 19-22 m / 19-32 w / w b$ Difference of twins looks against every theory. specially of germs. Action of parent different on germs Twins in Plants Extra uterin \& inter uter Why one take more after grandfather than other Entire mystery, can say only a law 187 2022m, 25-26m/26u "sponanéité" 195 2-5m/! 196 $3-5 m, \Uparrow 3 m / w b$ What. Not cited before I have looked all $1985-11 m, 16-19 \mathrm{~m} 1993-4 m 203$ 15-16m 211 20-24m 212 13-20m/w colours not mixing $21514-17 w 216$ couple 205 true 11 false $2176-8 m / w$ species not good to give one particular. $18-20 \mathrm{~m} 221 \quad 22-25 \mathrm{~m} / 25 u$ "moindres", 27-28m 222 19-21m, 32m 223 10$13 \mathrm{~m} / 11 u$ "soixante ans" $/ 13 u$ "trente ans" 244 $17-19 w$ constitutional inherited peculiarities $20-22 m \quad 245$ wt These are necessarily inherited at same time $1-4 m, 5-7 m / 5 u$ "précosité", $8 u$ "développement tardif", $10 u$ "puberté" 291 23-27m 305 13-15m 313 2-6m $3144-8 m / 5-17 w$ my selection view not applicable to all melanism. By variation \& by crossing in Birds \& squirrels 32518 m 326 3$4 m *, 13-23 w 1234 / 842 / 6$ of children 16 $22 w$ How very hereditary these six fingers 26-28m/27u "du limmémoriale" 327 1-3m/2x 333 18-27m 337 1-11m $380 \Uparrow 1 \mathrm{~m} / \mathrm{wb}$ Hybrid Rhododendrons $3881-7 m 392$ 8-10m 393 18$26 m, 27-28 m 39527 m 39614-17 m 399 \quad 20-$ $21 \mathrm{~m} / \mathrm{w}$ same age $22 \rightarrow, \Uparrow 6 \rightarrow 4002-6 \mathrm{~m}, 18-$ $19 u$ "trentel fille", 19-20u "dix-neuflans", 22$23 \mathrm{~m} / \mathrm{w}$ Earlier $26 u$ "treize", $27 u$ "onzième année" 4013 u "onze ans" 428 1-14m 4297$10 \mathrm{~m} 43014 u$ "nous | notre" $/ 15-21 \mathrm{~m} / 15 u$ "quil congéniales" $463 \quad 7-18 m \quad 577 \quad 4-13 \mathrm{~m} / 9-10 u$ "même lenfants" 584 6-14m 598 18-21m 600

LUCAS
24－28m 602 13－15m 605 28－29m 614 22－25m
（Maupertuis） $62519 m 62621-22 m$
vol． 2 NB On sexes p 159－163
SB1
393；399；400； 428 deaf Cats；430；463； 577； 584 Music；598；600；602； 605 good〈over〉 Tom 1
p．114；127；129；149；175，180－5 used； 187；195；196；203；211，12；221；244；291； 305；313，14； 326 －many fingers；333；337； 380； 388
I must order Piorry
－Probably offspring never absolutely like parent，in mind or body．at least in Man．－ Whatever causes this difference is exaggerated in varieties．if we look at similarity as the powerfulnesso of generation
Allude to the many opinions
－p． 175 I shd allude to uncertainty of period， as complicating our ignorance of causes of variation．
Think of difference in Twins．p． 185 Good〈over〉
－In inheritance the only point which concerns us New structures being inherited or not．
One might fancy that in Ass crossed with Horse there is a greater potency of race，\＆ that this potency is transmitted more by male in this case than in others．Niata cow transmits with more force than Bull－Pouter Cock \＆Hen equally．
SB2 $\square \beta$
Tom I Heans Inheritance
114 Twins with circulation in common very different dispositions
129 Lambert，horny excresses given to children H\＄
149 Difference in young pure wolves of same litter＊in disposition
175－185 on period at which variation caused （I believe Q）
195 ancient law of the beautiful marrying－ in Crete
196 on likenesses in children coming on at corresponding age to parent (H)
211 Colours not mixing in species $\langle u$ ）\＆ varieties $X \geqslant Q$
222 Hereditary Hernia not at same age H
244 corresponding periods of inheritance H：connected with periods of life dentition，puberty．
305 Adams thought deformations by arrest were not hereditary H^{8}
326 Polydactylism very heredetary－my view everything very heredetary，but not
rendered latent H
333， 337 On Double monsters，whether really double X
388 Taste for Barley changed by domestication in Pig．Sir F．wild Pigs wd not eat swill
H\＆Curious case of Hereditariness in eye in Lens moving \＆causing blindness（Ch．8）
399 same age blindness supervening H
577 in Cretins comes on in infants－calls it exceptional H
428 Blind Deaf Cats \＆White－Adams in Cyclop of Practical Medicn Vol 2．p． 418
463 Blending instincts by crossing vars \＆ species
584 Musician heredetary H
598 In Hybrid Wolves \＆Dogs，likeness to wolf in all the males and conversely $H * S$ 600 Hereditary sleeping on back \＆crossing legs H
605 Good summing sentence about Hereditariness．－H\＄
SB3 $\square \Re$
439；445；455，7；471，2，5，8；483，4；501；
567；571；574，7；580；592，5；605；611； 627
678 same age \rightarrow summary on this head．；
691 do； 700 do； 702 do； 713 do； 715 do；
748 do； 759 do； 849 age； 850 age；852－
age
858；891； 892 very important on crossing obliterating individual character；896； 904 2
129；135，7－140－145； 156
157 on latent characters，in respect to reversion
158 － 165 －good．
172－5
180 comparison of Hybrid \＆Mongrels ＂Race－Hybrids＂－＂Species－Hybrids＂
185； 190 －Books important； 192
198， 212 to 218 Crosses of Zebra \＆Ass．
229；240；253；296；299；301；307；310；315； 334；347；382， 4
I must express things diffuse \＆with＊a most wearisome pretence to formulas．
〈over〉
2 children have some peculiarity which no＊ ancestor had－

So Porcupine \＆Echidna Orchis \＆Asclepias Explanation same，in some degree similar constitution acted on same causes，but in latter case selection comes into play very importantly－Both，however，derived from modified pair－Turned up snouts in Crocodile，Goldfish \＆Bull－dogs．
But now in bars on Pigeons \＆Asses legs \＆ Horse back no selection．It comes to this can we believe external agencies cd
produce the bars；I do not－
That there is real \＆not mere external potency of race；Gaertner I think shows by rapidity of conversion into another form．－
〈over）Tom 2
See Back of Page
p．4；p8； 33
40 The most inexplicable case wd be an additional finger reappearing a tendency to form it somehow checked．－p48 Yes there are cases．－ 45 So masking theory must be given up．
54， 58 effect of ant－copulation
75,78 on action of Sexes，contradictory．
$82,85,86$ ，（ 88 opposed to my theory of colour \＆constitution．）
93， 94
103－5 about which sex has greater influence 109
111， 12 Preponderance of race in different sexes \＆p120
116 Book Huzard
124
SB4 1β 〈 2 sheets \rangle
－T． 2
8．Male giving certain parts p． 75 Summary on do． 78 do． $82\langle u$ 〉
33 on similarity in children distinct from inheritance H \＆
40 Atavism，as in six－children：H Predisposition－may say latent；not marked．，＂Ruckslag＂〈ie Rückschlag〉
58 Cases like Ld Moretons Q
X 85 Colour \＆character going together 88 93,94 shows colour \＆constitution do not go together
103 Whether male or female parent preponderate in general in a cross，to p．105． Much diversity $\langle u \otimes\rangle$ of opinion
109 He thinks they have equal power－ p．111．in some［instances］male most，in some females－ p 112 Q examples of preponderance of race 114 so with individuals 120 Potency of Race in one sex p 124 Sexuality in itself nothing（good summary）
129 Differences in Monoicous \＆Dioicous flowers Ch． 6 Sexual selection（Probably much correlation of growth
135 Sexuality goes for nothing in crosses
137 Sexes transmit commonly to own sexes － 140 in many cases reversed H S
158 Differences in sexes throughout animal Kingdom（look at under Ch．6）
165 Excellent case of same Peculiarities attached to either males or females S（is it due to sex tendency to transmit to own sex？ H8

171 Father of Polydactilism \＆c showing how does not go by sexes．H
X \＆ 180 Q Comparison of Hybrids \＆ Mongrels－Upset to Geoffroy Rules to 190 － 192 Summary on．D Lucas firm believer in Species
185 case of non－reciprocity in Mammals Q
194 Subdivides resemblance with groups like Gaertner（Compare）
198 Cases of parts taking after one parent （ Give case of tail taking after Male in Triple cross
217， 218 accounts for all new Characters by Combination，forgets sports in birds－This is in fact same sort of theory，as that which accounts for all races by crossing
229 Melange takes place only where parts are like．
240 Hare \＆Rabbit good case of difficult union in close species．Buffalo \＆Cow Cow （？）
253 His law of election \＆mixture \＆ combination
296 On animals，as Bull \＆Stallion，having much more choice than wd think．Ch 6 （
301 Q On Old Race preponderating in cross 307 Hybrid of Fowl \＆Pheasant，fertile Q
308 On＂Reduction＂Q of races； 310 Effects of Q climate on reduction p 315 The rate of reduction as shown by Gaertner shows that there is real potency in $1 / 2$ breeds
355 on various combinations of colours
347 Knox \＆Weber think both sexes present in embryo（Knox \＆Weber）Ch． 8 Opposed by gt authors p382
445 Classification of variation with congenital －spontaneous \＆immediate；never alludes to effect of causes on ovules \＆spermatozoa 483 Dumb Dogs learning to Bark in England 484 －Hereditary Handwriting Comptes Rendus H
501 ．Effects of accidents heredetary H
5.

〈over）
－Tom 2
567 Hereditariness at corresponding periods H
571 Good Remarks on little distinction between inheritance of predisposition \＆ disease itself H
576 List of Hereditary diseases Ho
580 Diseases appear，when inherited，under insufficient causes（Ch． 6 when showing how inheritance aids primary causes of variation） 592 Disease to be inherited need not appear early，any more than character in imago $\mathrm{H} \otimes$ 595 Inherited Disease not very rarely appears in infant H

LUCAS
605 Inheritance from parent after an abnormal state has appeared．H X
611 Doubts any great distinction of inheritance of acute \＆Chronic diseases 627 Veterinaries especially believe in heredetary diseases（short quicker breeders） H \＄
Hereditary cases at same age（or nearly）or rather young 678 good same disease at different age p． $691700702(713$ 715） 748 759 H
－Hereditary cases at very different ages
848 Summary on Hereditariness at same age to 852 H ＊
858 Local diseases inherited Ha
891 Noble Families endure barely 300 years 892 Owing to marriages，character of one＊ single individual is soon lost Ho［Lateral characters on both sides different case for Crossing］C．D
904 Summary on ill effects of Breeding in \＆ in．（＊）

4 23－26m $715-16 m * 83-6 m 337-10 \mathrm{~m} / 3-14 w$ Bears on Reversion as Sir H．Holland．－ What brings them，but something in common similarity acted on． 40 14－16m（Burdach）， 15u＂prédisposition＂ 45 1u＂Ruckschlag＂，wt Reversion better than atavism throwing back 2－5m $4833 m 5425 u \leftrightarrow, 27-30 m 581-10 m$ （Van Helmont \＆Haller） 59 15－17m 75 4－10w great diversities in relation to action of Sexes 78 26－32m 79 26－29m 82 19－32m 83 24－26m 85 15m／u＂Da Gama Machado＂，20－33m／21u ＂coloration I caractère＂ 86 24－27m，25－26u ＂transmission 1 couleur＂，26－27u＂du tem－ pérament＂ $886-10 \mathrm{~m}, 28-32 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ My point is only whether generally．－\＆only relation of colour \＆diseases of hot countries That colour \＆withstanding climate are connected all organisms show－No it may be effect of light $9315 a$＂$L e " / m / u \leftrightarrow / w$ Mental I think $942-6 m, 28-29 u$＂penchants Ifacultés＂ 95 18－22m 103 9－12m 104 13－16w diverse opinions $26-27 \mathrm{~m} 10513 \mathrm{~m}, 23-24 \mathrm{~m} 1095-8 m$ $111 \quad 30-32 m \quad 112 \quad 15-26 m / 17-18 \mathrm{Q} / 18-23 w$ preponderance of one race over another with a 3d race 113 wt Austrian face must，I shd think go with father．－ $3-6 \mathrm{~m} / \mathrm{w}$ preponderance of race according to sex $13 u$ ＂mongole＂ $13-19 \mathrm{w}$ preponderance when either sex－like Pouters \＆Fan－Tails． 114 5－ $11 \mathrm{~m} / 4-25 \mathrm{w}$ crosses of individuals like races \＆like species－Same conclusions as Gaertner－with the difference that the sex variously determines the preponderance 116 $25-26 \mathrm{~m}, 31-32 \mathrm{~m}$（Huzard） $12012-16 \mathrm{~m} / \mathrm{w}$ case of potency of race in sex $12416-21 \mathrm{~m} / 16-$

19u土， $28-32 m / 31 w$ a $w b$ ie an individual， either male or female can preponderate，\＆ so he thinks it is（1 think）in species；but surely he must allow one species or race alone preponderates $1252 u$＂Cettel des＂，16－ $18 m, 16 w \tau, 26-31 u \pm / 28 w$（a）$w b$ in fact every animal is bisexual $126 w b$ Sexual characters generally confounded with other characters 129 5－10w Differences in monoicous flowers $23-29 w$ great differences in dioicous flowers $31-32 \mathrm{~m} 13028-31 \mathrm{~m} 135$ 25－27m 136 9－11m 137 9－12m／w was the 1st Pouter a male？11－14u士，22u＂unel ces＂， 23 u＂métamorphose＂， $24 u$＂épidermiques＂， $25 u$ ＂polydactilie＂ 138 6－16m， $7 u$＂chrom－ atopseudopsie＂ $14022-23 \mathrm{~m}$ ， $25 u$＂dire｜père＂। w in many cases $1457-10 \mathrm{~m} / 8 \mathrm{w}$＊in－version $12-14 m, 15 u \leftrightarrow 15620-24 m, w b$ It is clear that characters sometimes go with sex－as sometimes polydactylism \＆c－Pouting \＆ Wattle，\＆so if useful to one sex can be selected \＆returned－In fact both sexes have these characters but not displayed 157 $w b$ The latent characters as shown in reversion to ancestors are illuminated by cases of females having them in potentiality $7-10 \mathrm{~m} 158 \mathrm{wt}$ Differences between males \＆ females $4-29 m$＊ $159 \quad 2-9 m / m * / 5 u$＂la Raie＂$/ w$ Fish $9 u$＂ChienIque＂$/ w$ M $1612 \mathrm{~m} / \mathrm{u}$ ＂la huppe＂， $3 u$＂voile＂，4－5m／5u＂gutturaux＂， $8 m / 8-9 u \quad$＂épines \mid latérales＂， $15 u$＂crête｜ Condor＂，16u＂aigrette lespèces＂，17－21m／19－ $20 u$＂barbel Élan＂ 162 4－6m／4u＂odorifères＂ 163 12－21m／13－18u士／13－15w u Badger Otter \＆Lynx $\uparrow 2 m / w \ominus$ ，$u *$ Monkey $164 w b$ all the foregoing＊ie of male sexual character being transmitted to males alone is wrong，as shown by sterile females－but it is latent in female 165 wt Looking at everything which can be transmitted being transmitted，in a child What a number of latent principles，from parents \＆ grandparents－there may be a latent tendency to produce long or very short tails， \＆by no means necessarily an intermediate tail $11-12 u \leftrightarrow / ? / 11-15 w$ Mem．Polydactylism sometimes goes in males \＆sometimes in females，I think．$\rightarrow 16-20 \mathrm{~m} / 18 \mathrm{u}$＂masculin 1 mâles＂，21－23u↔，29－31m， $30 u$＂affectél femmes＂$/ 22-33 w$ hence，I shd think cannot be called an＂annexed＂character．or only accidentally annexed． $1665-9 m, 10-12 \mathrm{~m}, 16-$ $17 u$＂exclusivement lauquel＂ $1674 u$＂occasion＂， $5 u$＂elle｜cause＂ $1724-5 w$ Table on Back $9 \mathrm{~m} / \mathrm{u}$ ＂intermittent＂ ？ 173 1－4m 175 9－14m／10－11w I doubt this $17625-27 \mathrm{~m}$ ． $180 \quad 5-8 m / 5 u$ ＂rarement｜moyenne＂$/ 6-7 w$ just reverse $10 u$ ＂d＇autres règles＂， $15 u$＂intermédiaire＂，19－21m／
w just reverse $1815-7 m / w$ Hence preponderant $18327-31 m$ 184 2－4m，7－16m， $19-21 \mathrm{~m} / \mathrm{w}$ ass prevails－one here $19-21 \mathrm{~m} /$ w odd go back？domesticated $\uparrow 12-8 m / \Uparrow 11 u$ ＂Chien｜Boue＂$/ w b$ This variability of hybrids is independent of domesticity 185 16－20m， $\pi 6 u \leftrightarrow / w$ Q $\Uparrow 7-5 m / w$ Reference \＆c next Page $w b$ case of non－reciprocity $18630-31 m$ 190 14－17m，19－21u＂la｜produite＂，28－29m， 32－34m 192 3－10m／3－4u＂contrastantes＂ 194 $9 w$ Decided type 14－16w mixture of characters，or fusion $18-20 \mathrm{w}$ fusion of do $1989-13 w$ election of character agrees with Sturm $26-27 m, 32 m / w$ Good Book 199 1－4m／ $1 u$＂Étalon｜Anesse＂ $3 u$＂semblable \mid père＂ $\mid 2-5 w$ Election of character by sex $7-8 \mathrm{~m} 2007-8 \mathrm{~m} /$ $7 u \leftrightarrow 2018-11 m 20227 m, 28 m / 27-32 w$ In Mus of Practical Geology 212 33－34m 215 2－3m／ $2 u$＂combinaison Ichimie＂， $3 u$＂nouveau principe＂， $25-28 m 216$ 9－13m 217 7－17w He explains all variation \＆even in same species to this fancied law of chemical combination． $2186-20 w$ He forgets sports，which upsets his theory of variation by chemical union of qualities of two parents $22919 u$＂similitude। caractères＂ ？， $21 u$＂Mélange＂／21－23w What does Gaertner say？ 253 20－24m， $23 u$ ＂mélange＂$/ w b$ similarity $24 u$＂combinaison＂ $\mid w b$ affinity wb What rubbish 295 21－25m，28－ $30 \mathrm{~m} / \mathrm{w}$ Cows 296 3－20m／9u＂Chevaux＂$/ \mathrm{w}$ Individual choices 296－97＜paper fragment attached） 297 25－28m 299 18－19m 300 27－29m 301 wt as a mere matter of chance when anything has appeared in many generations， more likely to appear－Perhaps this is all 1－ $5 m /$ ？ $30723-24 m / Q 28 m / Q u$＂sal génération＂， $32 m 30817 u$＂septième génération＂ $3106-18 w$ Perhaps black－faced sheep－Anyhow I must be cautious about potency of race 315 2－5m， 8－11m（Burdach），12－14m，18－22m， 28 m 316 13－17m 317 15－19m 334 26－32m 335 15－25m 347 14－16m 382 10－16m 384 10－18m 439 13u ＂Muller＂，18－21m，20－21u $\rightarrow 444 \quad 19 u$ ＂médiates＂ $445 w t / 1-9 w$ Divides variations（＊ into spontaneous ？）\＆direct effect of external agencies on the parents \＆on the individuals after they have life，or when born． He seems to use congenial 〈ie congenital〉 when generated \＆not when born．－10c ＂premier＂$/ w$ spontaneous $12 u$＂sans \mid externe＂ ？，15－16u $\rightarrow 14-21 w$ never seems to think of action on ovules \＆sperms before conception wb He gives so much in following pages to external conditions that I know not what is left for spontaneity． $4551-15 \mathrm{~m} 457$ $1 u$＂révoquent｜caractères＂， $2-3 u$＂qu＇ils 1 développent＂／w after born 459 wt My rabbit black when young．then turning grey－there
is no reason why this shd be so．－ $1-3 \mathrm{~m}$／／ w ？whether new characters $3 a$＂âge＂$/ 2-$ 10 w ie whether the parents are young or old． Quite different question from mine． 471 8－ $11 m / 3-14 w$ He puts all this down to climate without any reason，except that they do differ in different climates 30 u ＂Prichard 142 ＂ 472 13u＂Vilmorinlont＂， $31-32 m 473$ 1－7w Puts all this down to climate \＆overlooks selection 475 3－6m，14－15u＂jusqu＇aul gallinacés＂， $16-32 m, \Uparrow 1 u \leftrightarrow / w b$ see to this 478 1－6m 483 13－16m $48412 u$＂des $|d u "| 11-19 w$ How he does confound congenital variation with real habit $28-30 \mathrm{~m} / \mathrm{w}$ on writing see p .92 ． $4931-4 m$ ， 10 w coincidences $50117-26 \mathrm{~m} / \mathrm{w}$ accident might have produced poor offspring 567 5－15m $571 \quad w t / 1-7 w$ Differences of predisposition \＆disease chiefly being inheritable，blend together \＆not very great， \＆are both present though much discussed－ good remarks all refer to $7-13 \mathrm{~m}, 15-19 \mathrm{~m} 574$ $7-10 \mathrm{~m} / 6-19 \mathrm{w}$ tendency to same disease clearly transmitted in species Man during many generations $57615-18 m$ 577 2－6m， 9 u ＂Les laccord＂， $10 u$＂prédisposition＂ 580 29－ $32 \mathrm{~m} / 30 \mathrm{u}$＂avec｜concours＂$/ 32 u$＂l＇excitation 1 insuffisantes＂，wb This enlarged on in following pages $5927-12 m, 15-30 \mathrm{w}$ To be hereditary，disease need no more appear at first，than that the imago shd not be heredetary，because not preceded by larva． $59525-28 \mathrm{~m} / \mathrm{w}$ good many cases given， of non contagious cases $605 \quad 17-26 \mathrm{~m} / \mathrm{w}$ Grognier What is melanism 611 9－12m，19－ $20 u$＂c＇est Piorry＂ 627 17－20m 678 17－19m， $19-21 \mathrm{~m}, 20-21 \mathrm{~m} / 20 u / 21 u, 24 u, 25-27 \mathrm{~m} / \mathrm{m}$－／ $27 u$＂enfance＂ $6791-4 m / 2 u$＂depuislannées＂， $5 u$＂âgélan＂，14－29m／16－20w asthma strong cases of Hereditary $6918-9 m / u$＂cinquante critique＂／w not good 17－19m／19u＂dèslans＂ 700 8－11m／9－10u＂pèrelcroissante＂ 702 14－ $18 \mathrm{~m} / 15 \mathrm{u}$＂euxlans＂／w goodish $71324 w$ Clionea 25－28m／26u＂aulâge＂ $714 \quad 29 m / u$ ＂quinze＂ 715 5m／u＂dans l＇enfance＂，7－8m 748 11－18m／12u 〈ages〉， $14 u$＂méningite tuberculeuse＂｜15－16u 〈ages）／11w apoplexy 759 $12-14 \mathrm{~m} / 13 u$＂quarante ans＂ 802 21－22m 803 8－10m $804 \quad 23-25 m 80514-18 m 8068-11 m$ 809 22－25m 810 3－6m 813 25－27m 815 20－ $21 m 818$ 22－24m $82311-17 m 848$ 8－11m／10u ＂d＇élection＂，12－15m／w This important to me 849 〈u《＞〉 6－17m／7u＂chorée＂／11u＂phthisie＂／ $14 u$＂goutte＂$/ 18 u$＂apoplexie＂$/ 6-11 w$ almost necessarily hereditary at same age $22-25 \mathrm{~m}$ ， $28-30 \mathrm{~m} 8503-13 \mathrm{~m} / 3-8 u \pm, 15-16 u \leftrightarrow 85132 \mathrm{~m} /$ wb young age $8521-3 m, 4-7 m 8583-11 \mathrm{~m} / 4$ $5 w$ Local diseases $891 \quad 18-23 \mathrm{~m} / 19 u$＂on। filles＂／ $21-22 u$＂nominale＂$/ w$ ie by male side

LUCAS
$w b \leftrightarrow \subset 8928-13 m / 7-16 w$ This crossing may be rather different from the obliteration of a variety by changes of conditions \＆selection 18－22w Crossing will even obliterate a specific character $25 u$＂somme｜caractères＂／22－ $28 w$ In crossing the character is not latent at all． $25 u$＂individu＂／wb ie with constant crossing $w b$ In very latent characters both parents have．it for all ages．－Hence it comes out in cross $8931-7 \mathrm{~m} / \mathrm{w}$ Yet likenesses in families where peculiarities have never been fixed like specific characters． $8944-9 m / w$ characters produced in act of generation $23-29 m 89521-23 m 896$ $25-30 \mathrm{~m} 90428-30 \mathrm{~m} / \mathrm{wb}$＊attributes ill effect of 905 9－10m $90613-24 m 907$ 14－15m，16－ $18 m 914$ 22－26m 923 10－13m 924 6－9m，26－ 29 m 93319 m

LUERSSEN，Christian Handbuch der systematischen Botanik 2 vols．；Leipzig；H ． Haessel；1879－82［Botany School，FD］

LUNZE，Gustav Die Hundezucht im Lichte der Darwin＇sche Theorie Berlin；Louis Gerschel； 1877 ［Down］
NB not read only skimmed
LYELL，Charles Elements of geology London； Murray； 1838 ［CUL，I］
geo，mi，t，ve
NB1 for Lyell
156158359439462524
NB2 Myself
－；$\quad \infty$
p． 27387688119171 173X 181207212 217233237290 295，299－Glen Roy 329 350411417419426437432447449450 461473474517

23 wt 〈no．of words on page counted〉 27 介10－ $1 m$ ，wt C．of Good Hope 38 8－10m 76 11－ $16 m$ ，wt I must be cautious about Ascension 88 fm 119 fig．m $125 \Uparrow 8-3 \mathrm{~m} 1569-16 \mathrm{~m} / \mathrm{w}$ ？all infiltered？ $158 \quad 2-6 \mathrm{~m} / 4 \mathrm{u}$＂some 1 rocks＂ 161 $\Uparrow 15 x, \Uparrow 14 x$ ，$\uparrow 11 u$＂Labrador－felspar＂，$\uparrow 8 x, \pi 7 u$ ＂magneticlolivine＂ $1623 u$＂Phonolite＂，10u ＂trachyte｜basalt＂ 3 u／a£ 163 14－15u士，21u ＂baslatic｜trachytic＂， $22 u$＂Hornblende rock＂， $\Uparrow 5 u$＂syenite \mid granite＂，$\uparrow 4-3 u$＂greenstone＂ 164 $1 u$＂Obsidianllava＂， $2 u$＂pitchstone＂， $9 u$ ＂Pearlstone＂，12u士，16u＂Pitchstone＂，21u ＂basaltic dikes＂， $22 u \pm \Uparrow 13 u$＂of tuff＂，$\uparrow 12 u$ ＂Pumiceltrachyte＂，介11u＂augitic porphyry＂， $\Uparrow 9 u$＂Scoriae＂，$\uparrow 2 u$＂Syenitic greenstone＂ 165〈many lines．u〉 171 fig 93．m／w ？reference？$w b$ An argument against lateral injection，that
the origin of common dike is lateral tension which must be prolonged to surface \＆ therefore no tendency 172 1－15m／w Argument for－curious－separation of matter．Mem St．Jago dike was amygdaloid？？？16－19w if so introduction note 173 fig．m／wt is relative position faithful？ of fragment \＆clear salband．fig． m / w is cleavage faithfully represented？Twe The cryst threads of greenstone at Salisbury Craigs．caused by cavities，like veins－when hollow－quartz veins in quartz rocks．－ cavities in lava．－（space yet pressure）$\uparrow 3-$ $1 \mathrm{~m} / \mathrm{w}$ shows not altered great dike $w b$ The streching formed vacuum．\＆more fluid parts sucked in to walls or round fragment．－ 181 Im，$\Uparrow 2 \rightarrow, \Uparrow 1 m, w b$ These cases appear to me most wonderful $1821-5 \mathrm{~m} / \mathrm{w}$ or if stone was very fluid so as to communicate pressure $1 u$＂if no＂$/ m * /!!$＊ $207 \Uparrow 4-2 m /$ ？，wb cause？ $212 \quad 6-10 \mathrm{~m} / \mathrm{w}$ Hornblend pumped out？ 217 介17－8m／w poor 233 介8－3m 237 โm 266 〈no．of words on page counted） 290 1－8m 295 1－10m 299 1－3m 329 1－5m／？ 350 介6－1m 359 wt would be preserved on such coasts as are now muddy $1-2 \mathrm{~m} /$ ？ $4111-3 \mathrm{~m} 417$ 13－ $19 m 419 \Uparrow 6-1 m / ?$ ，wb Sydney \＆C．of Good Hope．－ 426 fig．m $4321-6 m / 4 u \leftrightarrow 4373-6 m / 3 u$ ＂existing genera＂／5u＂Cephalopoda＂／6u＂more widely 439 14－18m／？ $447 \mathrm{\imath m}, \mathrm{wb}$ At - all vertical 449 9－15m／w UspollataO 13？／u ＂clear＂ $450 \Uparrow 1 m /$ ？，wb Mem．Bartram．－${ }^{\circ}$ See scrap of Paper pasted at end of Book A 458 7－14m $4615-13 m 4621-2 m /$ ？ $4735 u$ ＂opposite directions＂$/ 5-9 m 474 \pi 6-1 m$ ，$\uparrow 3 ? / u$ ＂olivine＂ 475 1－14m 517 wt Chalk highest bed－case analogous to Cordillera $2-12 m$ 524 介 $9-6 m, w b$ \＆Humboldt

LYELL，Charles Elements of geology 6th edn； John Murray； 1865 ［Down，I］ ad，ex，fo，gd，geo，gr，ir，no，oo，sp，ta
SB \quad ，
155；168； 231 Dryopithecus；265；269；299； 306；311； 377 to 384 good case of imperfection with MammaliaO；387；230； 410；414；435；451；509；510；542；552；569； 576；580； 583
SA $\langle p p$ ．664－5，not CD \rangle
Lyell＇s Elements of Geology 1865.
p． 155 Depths at which sea－shells can live 231 on Dryopithecus．
265 Myocene Flora richer in species than any existing
269 To West of Rocky Mountains extinct genera now formed to the east．
265 to p． 273 on the supposed Atlantis

299 Footprints of mammals in great numbers in upper Eocene
306 On the Eocene nummolitic rocks. forming parts of great mountain chains.
310 On great break between chalk \& Tertiary
377 to 384 On Purbeck beds showing imperfection of record - 387 ditto
410 On great breaks in oolite series. 414 ditto
435 St Cassiew Beds. 1st appearance of some Paleozoic genera
451 Hitchcock on Footprints in U. States
509 On airbreathers in Coal period in U. States
542 On lowers Devonian formation at C. Good Hope
552 On oldest known fossil fish
571 Table of Cambrian formations
576 On some of the oldest fossils
579 On the Laurentian formations
580 Speaking generally Silurian deposits have a pelagic character
583-585 Table of the first discovery of fossil vertebrates
viii $2 m$ ix $9 m, 34 m 1551-4 m 16832-39 m 231$ 9-46m 265 39-47m 269 21-29m 271 1-5m, 3441 m 273 8-18m 299 31-37m, 42-47m 306 2$15 \mathrm{~m} 31025-31 \mathrm{~m}, 32-41 \mathrm{~m} 31117-20 \mathrm{~m}$, 44 49 m 333 15-21m 377 21-38m/32-33u土 $3806-$ 17 m (Owen and Falconer) 384 27-34m 386 19$32 m 387$ 9-15m 390 15-34m, 35-39m 410 1424m, 36-40m 411 9-17m, 43-46m 414 7-17m, 24-29m, 29-45m 435 16-23m, 24-30m 451 16$27 m 50825 w$ Coal $26-31 m 5104-21 m 542$ $33-40 \mathrm{~m} 5529-17 \mathrm{~m}, 20-30 \mathrm{~m}, 32-42 \mathrm{~m} 553$ 1219m 569 16-23m 571 table.m, "Lower Cambrian Rocks".m 576 10-14m, 40-44m 577 6-14m, 46$49 m 578$ 43-45m, 46-47m 579 2-3m, 5-7m, $20-21 m, 24-38 w$ must have lived on prey 41$49 \mathrm{~m} 5804-7 \mathrm{~m}, 11-13 \mathrm{~m}, 18-21 w$ now has Eoozoon 581 1-3m, 15-17m 583 table.m 584 33-40m 585 28-34m

LYELL, Charles The geological evidences of the antiquity of man London; John Murray; 1863 [CUL, İ]
cc, ch, ex, fo, gd, geo, gr, h, ig, in, ir, is, no, 00 , or, r, sl, t, ta, ti, v

NB1

Torquay Head \& shoulders

Fuller description of Celts
Alludes too much to Principles.-
Imperfection of Geolog. Records very good. 187
p107 reduced
p. 111 fallen level
p. 147 - square acres

179 Sir Andrew Smith
One sentence for S. Hemisphere \& absence in Tropics New. Zealand Celts.
NB2 Man Chapt.; p 87. Variation of Australian skulls; 90; 91; 370; 375 378; 386; 493; 496; 495
21; 22; 24; 143; 145; 146; 157; 191; 216; 236; 282,285; 288; 351; 365; 367; 375; 400; 427 - to end of Chapter; 433
SB $\square \Re$
p.145. Imperfection of Geolog. Record

157 Glacial Mammals
216 Contrast of Flora \& Mammals of Norfold (ie Norfolk〉 Drift (see 2d Edit)
236 changes of climate in Greenland.
282, 285,288 wonderful complex changes during Glacial period
351. Ice action on N. American continent

365 Bending of isothermals Europe \& N. America
367 Depth of Baring St.
400 Eocene mammals in stages older than formerly thought.-
427 Davidson reduces Brachiopoda immensely. - gradation of forms
429, 437, 439 well argued - gradation
446 Argument that Bats \& Seals have not produced on Islands new forms of life - Why not wingless Bats. there is no insectivorous apterous Bird ??
over
p449 Imperfection of Geological Record
x $37-38 \mathrm{~m}$ xi $4 \mathrm{~m}, 22-23 \mathrm{~m}, 35-36 \mathrm{~m} 917-19 \mathrm{~m}$ $1613-16 m 214-9 m 2230-31 \mathrm{~m} / 30 u$ "swamp" 23 29-33m 24 14-18m 25 11-24m 26 6-12m $275-11 \mathrm{~m} 871-11 \mathrm{~m} 9017-20 \mathrm{~m} 915-8 \mathrm{~m} 107$ 28-29m/28c "reduced" 111 26-27m 143 6-12m $145 \quad 19-26 m \quad 146 \quad 21-32 m \quad 147 \quad 7-8 \mathrm{~m} / 7 \mathrm{u} / \mathrm{c}$ "square" 157 8-15m 187 18-26m 191 8-12m/w How modern compared with old stone period 216 18-23m, 29-32m 229 24-29m 231 17-25m $23622-29 m 23726-33 m 24312 u$ "stones"/w striae $257 \quad 31-32 m \quad 282 \quad 2-29 m, 1-13 w$ wonderful changes, so complex $2854-13 m$ $28812-15 m, 20-25 m 2941-2 m 351$ 18-22m 365 14-22m 366 5-10m 367 1-4m (Darwin and Hooker), 20-23m $3704-24 m / 13-18 w$ Progress 28a "stone" polished? $37410-11 \mathrm{w}$ S. Africa 375 3-12m $3781-4 m 3791-18 m / 2-4 w$ wrong? Australians $3865-8 m / 6-7 w$ see reference 400 6-18m 412 26-27m/26u "labours" 413 4-6m/5u "is| by" $42124 \mathrm{~m} / \mathrm{u}$ "Sefström" 426 8-14m 427 8-17m, 33m 428 23-31m 429 15-22m 430 27$33 m 433 \quad 25-32 m 4365-15 m 4375-13 m 439$ 2-6m, 20-30m (Leidy) 442 23-32m (Hooker) 443 13-16m 444 18-21m $4451-7 m, 23-27 m$

LYELL，ANTIQ．MAN， $15 T$ EDN
446 19－21m／21u $4473 m / 1-14 w$｜\＆have added great＊means of change vast nos of individuals－in my discussion whether rapid change $27-32 m 449$ 28－30m $45010-15 m$ ，21－ $22 m / 21 u$＂macrurus＂ 457 5－8m 463 10－12m 464 3－4m 465 24－25m 467 17－18m 469 18－ 24m，27－28m／u＂become｜probable＂ 493 24－29m （Agassiz） 495 20－22m（Quatrefages）， $21 w$ No 496 11－17m 497 wt Rengger says Monkeys are improvable $1-3 m / 2 u$＂progressive｜reason＂／ 1－5w compared Dog or wolf or Jackall $9 u$ ＂capable limprovement＂ 500 3－8m／？ 503 $17-21 m$ 505 1－4m／4u＂unprogressive＂ $5 u$ ＂improvable reason＂$/ 2-3 w$ oh $5068-16 m, 23-$ $29 m$

LYELL，Charles The geological evidences of the antiquity of man 3rd edn；London；John Murray； 1863 ［Down，I］

LYELL，Charles The geological evidences of the antiquity of man 4th edn；London；John Murray； 1873 ［CUL，I］
ig，tm
NB 486， 488 on the intermediate types，very good
486 1－9m 488 1－13m（Falconer）
LYELL，Charles A manual of elementary geology 3rd edn；London；John Murray； 1851 ［CUL］
ch，co，fo，geo，gr，mi，se，sl，sp，tm，ve
SB CD 65；66；68；95；98；103；107；139； 147；150；151；152；155；174；176；188；197； 200；219；231；235；265；270；273；297；298；
301；306；309；324；336；340；359；360； Abstracted；V．Principles
〈over〉
p217 coral－mud known to be transported Spec growing by Ascencion
p221 S Amer Chalk
p220 p． 235 p． 282
Copper in Sea－water－absent in Volcanic regions
sucked out of rocks
facts not given
area of elevation－like a fan
$3633 u$＂may＂，34－37m／34u＂artificial mixture＂， $41-42 \mathrm{~m} / \mathrm{w}$ on volcanic rocks $4025-28 \mathrm{~m} /$ ？ 55 12－19m 64 wtce，16－19m 65 27－33m $6613 u$ ＂running＂$/ 14 u$＂marine current＂ $12-29 w$ ！Think of the $32,000 \mathrm{ft}$ of strata－so much deposited；sea－chalk $683-13 m / 12-14 u$＂at another＂，14－18m $8133 a$＂sun＂earthquakes $36-37 w$ shell－sand sand－dunes $8417-18 \mathrm{~m} *$／ w＊only rising $856-8 m / 6 u$＂In 1 cases＂ 95 3－
$10 \mathrm{~m} / 4 \mathrm{w}$ so age $9820-30 \mathrm{~m} 10335-40 \mathrm{~m} 107$ 4－16m 113 23－34m 139 1－10m，13－24m 147 $31-37 m$（Owen，Meyer） 150 8－29m 151 19－ $27 m$－ $15227-29 m 155$ 21－28m 166 42－43m／ $42 u$＂Carentan＂ 174 20－23m，fig．153．m 176 $13-18 m 177 \Uparrow 3-1 m / x, w b / \uparrow w$ singular how rarely little patches of half－a－mile of green left except outlyers．colour in large patches－ ？Silurian largest？V．Map of Europe？\＆ World 188 3－9m，zb 197 1－8m 200 11－32w see what difference even within Eocene 21－ $34 m$（Brongniart） $21942-44 m 22834 m 231$ 15－24m，23－26m 235 20－24m，45－49m 265 29－ $36 \mathrm{~m} / \mathrm{w}$ Mem Purbeck animais changes 38 m 266 1－11m，38－44m 270 14－24m 273 1－3m 297 42－45m（Hitchcock）／43w 44 46－47 $\rightarrow 29844$ $46 m$（Owen），31－40m 299 22－24m，38－43m （Dana） 301 10－11m，14－18m 306 16－22m 309 19－22m $324 \quad 12-16 m \quad 336 \quad 30-37 m \quad 337 \quad 5-7 m$ （H．von Meyer） 340 38－40m 359 1－5m 360 3－ $12 m, 15-33 m$（E．Forbes） $4682-6 m$ ，fig． $509 . m$ $46930-35 m$ ，32－37z 472 4－12m 480 27－35w granite not flowed；grain in granite

LYELL，Charles A manual of elementary geology 4th edn；John Murray； 1852 ［CUL］ t

NB $p 139$
SB 〈errata－sheet〉 Please paste this in without delay
x fig．m xiv fig． $529 . m, 25-34 m$ xvi $27-33 m$ xviii $12-31 m, 29-33 m, 41-45 m$ xix $10-15 m /$ $13 u$＂Cephalopoda＂，24－26m，31－41m（Owen） xx $8-9 m /$ ？， $13-18 m, 23-27 m, 28-32 m, 39-40 m$ ， $41-44 m, 45-47 m$ xxi $11-13 m, 15-16 m$ ，18－ 19m，29－32m，42－47m／46a／u＂embryonic＂ ＂perfect condition＂／wb This is not an equivalent proposition xxii $9-17 m, 28-32 m$ $294-10 \mathrm{~m} 30 \quad 15-17 \mathrm{~m}$ ， $30-34 \mathrm{~m} \quad 314 u$ ＂carnivorous＂ $34 \quad 35-40 z \quad 138$ 41－42m，41u ＂post－glacial deposits＂ 139 3－6m／w what evidence 13－39m

LYELL，Charles A manual of elementary geology 5th edn； 1855 ［CUL，S］
ch，ex，fo，gd，geo，ig，is，no，oo，or，r，sl，sp， t，ti，tm，v，ve

NB

Chapter on Veins absent in volcanic regions as shown by no veins on any volcanic islds p． 460 misprint
Amber beds L．talks more about Lower Limburg or Hampstead Beds
p． 231 Hardly distinct age of Alps ？
It is shame you have never read my Abstract of S．Amer
p118 p． 130 p． 18 p．53．p． 97 Principal For．
p. 23811 from top - Cambrian
p. 295 not clear whether 3 strata with gypsum?
Wealden more historical
p310 misprint
p. 339
p406 very good
504 Canary Isd. do.
SB
I begin at Chapt $* X$.
p. 114
p140 important to end of Cha. Think of effect of the cold Permian current meeting the N. downward current.
p154 to - p 435; p.447; p448 to 463
Abstracted
$1147-9 z, 38-49 m 1151-6 m, 41-46 m / w$ Plants probably long-lived $11912-25 \mathrm{~m} 120 \quad 21-28 \mathrm{~m}$, $38-42 m 14020-23 m, 34-37 m, 38-42 m / w$ see next page $47-49 m 14227-31 m, 28-29 m 143$ $15-18 m, 43 m 14427-32 m / w$ How is this in Europe. 29-32w Macrauchenia in Patagonia $40-49 w$ In Chiloe recent shells occur in changed proportions. $14538-41 m, 46-47 m$ $1461-5 \mathrm{~m} / \mathrm{w}$ is it certain that Elephas \& Rhinoceros survived glacial Epoch.- $15433 u$ "variety called", $35 u$ "some naturalists", 36$38 \mathrm{~m} / 33-47 \mathrm{w}$ is there not great difference about fossil Boves. Have Nillsons writings been translated into German? 157 18-25m $16448-50 m 1831-5 m$, 32-35m/34u "seven species"/23-49w These numbers, as in Brazil cases, wd make one think succesive Faunas merged.- 192 25-29m, fig.169.m 193 1-4m $19543-46 m 19733-49 m / 37-42 w 3$ Mamm Faunas besides recent 207 20-23m 212 26$30 m 213$ 18-23m 217 19-29m 220 24-28m 227 $39-42 m \quad 230 \quad 40-46 m 2314-6 m \quad 232$ 24-29m/ 19-35w Yet continents must have existed nearly as now during later Tertiary periods. $23612-17 m, 41-44 m$. 237 8-16m, 19-25m, $\begin{array}{lllll}29-34 m & 238 & 11 c / w & 251 & 24-26 m / 26 u\end{array}$ "perhaps Wealden" 255 21-28m, 30-32m 256 26-27m/27u "ten other", 33-35m 257 1-6m 258 26-39m/w so geographically; consider this.- same functions \& purposes, slight differences; implies separation: hardly S. \& N. species at $\%$ Shows a coordinate change in several forms. 267 9-14m, 17-22m 2684 $7 m 295$ 4-7m, 29m, 34-35m 296 14-20m 297 $7-9 m 3007-17 m 3016 u$ "great lime"/2-6m/w Selection slow - change of species reacting. new introductions. 22-26m $30833-35 \mathrm{~m} / 33 u$ "of change" 309 1-2m $3107-16 m 311$ 17-20m $31332-38 \mathrm{~m} / \mathrm{w}$ Has not 4 th species been discovered 316 17-22m 319 31-35m 321 zb $324 \quad 1-2 m \quad 335 \quad 25-31 m \quad 337 \quad 21-26 m$ (A.

Brongniart) 342 17-32m 343 43-46m (Owen) 348 38-43m 349 40-41m (Owen) $35040-44 m$ $3519-12 m 35724-30 m / w$ duration of plants 358 32-37m (Murchison) 359 27-32m 360 25$28 m 36334-45 w$ When we come here Plants have changed even more than animals 369 35-36z 373 22-28m $38040 u$ "sixty-eight" 389 $4 u$ "Scarabaeus family" $11-4 m / w$ ancient \& great classes of insects. $9-10 \mathrm{~m} / \mathrm{Q} \propto_{\mathrm{s}} / 9 u$ "severall Termites" $40035-37 \mathrm{~m}$, $40-42 \mathrm{~m} / 41 u$ "nolthan" 401 13-21m $40433-36 m 405$ 3-4m, $15-16 m, 20-22 m$ (Owen), 31-32m, 36-39m 406 $5-15 m \quad 407$ 11-17m, 14-16m $408 \quad 3-8 \mathrm{~m} / \mathrm{w}$ Passage a difficulty. great one. $20-22 m 410$ $30-35 \mathrm{~m} / \mathrm{w}$ This analogous to Goulds birds coloured in interior of continents. $4117-10 \mathrm{~m}$ 416 fig. $536 . m 4177-12 m, 15-19 m 4186-10 m$ $423 \quad 26-27 m, 29-32 m \quad 424 \quad 11-14 m \quad 433 \quad 1 w$ Read 435 33-35m 446 6-10m 447 3-10m, 24$28 m, 31-32 m 4481-2 m, 13-15 m 44927-31 m$, 34-36m 450 39-42m 451 3-9m, 21-24m 453 1$4 m, 17-21 m, 30-31 m$ (Murchison) 454 9-14m, fig. 617.m, 27-31m/28u "facies of" 455 15-19m 456 17-21m, 22-25m/22u "unconformably", 24$26 m, 28-32 m 45717-20 m, 20-21 m, 24-26 m$, 30-37m, 45-47m 458 8-13m, 17-21m, 24-28m 459 3-5m, 17-19m, 42-46m $46016 a$ " 1839 " no Secondary Bird 38-40m/39a "18101C8"/w 7 48-53m 461 15-18m, 35-41m, 44-50m, 47-49m $4626-12 m, 12 m, 15-19 m 4635-9 m, 13-15 m$, 17-24m $55318-25 m / 22 w 3^{\circ}$ Lat $27 w 4 h 31 w$ 5h $516 \Uparrow 16-11 z \epsilon_{0}$

LYELL, Charles Principles of geology 1st edn, 3 vols.; London; John Murray; 1830-33 [CUL, on B, S]
ch, f, geo, ti, ve
vol. 1, 308 11-23m $31432 u$ "forty-sixth"/w what Volcanos ? $31511-16 \mathrm{~m} / 11-14 \mathrm{~m} /$? 325 $11-40 m 346$ 1-24m 374 20-38m 440 11-19m $468 \mathrm{i} w$ We may more easily imagine the fluid stone injected (as occurs in every mountain chain) amongst damp strata. $-w b$ at time of Earthquake Lava under great pressure, how could water penetrate to it would it not be driven back with violence?470 28-38m 471 22-39m 476 1-19m 477 13$18 w$ if there are hollows left what forces up the lava
vol. 2 NB p153 Ulloa * on asses multiplying See this Book generally on this subject 201 5-22m 248 1-7m 291 12?/u "Otaheite", 24$25 w$ oval \& irregular form? $29413-18 m / 15 w$ Galapagos 19-34m 295 7-14m
\wp
vol. 3 NB1 6.- Sand as 1 \& 2; 7. Large shingle or Rock

LYELL，PRINCS．GEOL．，IST EDN
NB2
$5820 u$＂synchronous＂$/ 20-23 w$ if the rate of change is everywhere the same $11410-15 \mathrm{~m} /$ $? / w$ Flat valleys \＆terraces $1528-9 w$ Estuary
Glossary， $6130 \mathrm{~m}, 32 \mathrm{~m} 628 \mathrm{~m}, 28 \mathrm{~m}, 38 \mathrm{~m} 63$ $6 \mathrm{~m}, 7 \mathrm{~m}, 10 \mathrm{~m}, 17 \mathrm{~m}, 28 \mathrm{~m}, 34 \mathrm{~m}, 38 \mathrm{~m} 64 \mathrm{1m}, 5 \mathrm{~m}$ ， $9 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 21 \mathrm{~m}, 24 \mathrm{~m}, 36 \mathrm{~m}, 41 \mathrm{~m} 651 \mathrm{~m}$ ， $6 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 42 \mathrm{~m} 662 \mathrm{~m}, 5 \mathrm{~m}, 6 \mathrm{~m}$ ， $8 m, 21 m, 27 m, 29 m, 49 m 6718 m, 29 m, 33 m$ ， $37 \mathrm{~m}, ~ 43 \mathrm{~m} 685 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}, 18 \mathrm{~m}, 38 \mathrm{~m} 693 \mathrm{~m}$ ， $4 \mathrm{~m}, 13 \mathrm{~m}, 15 \mathrm{~m}, 29 \mathrm{~m}, 35 \mathrm{~m}, 40 \mathrm{~m} 703 \mathrm{~m}, 12 \mathrm{~m}$ ， $23 \mathrm{~m}, 25 \mathrm{~m}, 32 \mathrm{~m}, 38 \mathrm{~m}, 42 \mathrm{~m} 715 \mathrm{~m}, 16 \mathrm{~m}, 21 \mathrm{~m}$ ， $37 m 723 m, 22 m, 33 m, 42 m 7310 m, 21 m$ ， $26 \mathrm{~m}, 29 \mathrm{~m}, 32 \mathrm{~m} 743 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 19 \mathrm{~m} 75 \mathrm{11m}$ ， $15 \mathrm{~m}, 35 \mathrm{~m} 765 \mathrm{~m}, 14 \mathrm{~m}, 18 \mathrm{~m}, 20 \mathrm{~m}, 23 \mathrm{~m}, 25 \mathrm{~m}$ ， $34 m 773 m, 20 m, 32 m, 34 m 7814 m, 21 m, 30 m$ $793 \mathrm{~m}, 23 \mathrm{~m}, 27 \mathrm{~m}, 30 \mathrm{~m}, 31 \mathrm{~m}, 32 \mathrm{~m}, 34 \mathrm{~m}, ~ 42 \mathrm{~m}$ $803 \mathrm{~m}, 8 \mathrm{~m}, 13 \mathrm{~m}, 18 \mathrm{~m}, 20 \mathrm{~m}, 25 \mathrm{~m}, 30 \mathrm{~m}, 32 \mathrm{~m}$ ， $34 m 813 \mathrm{~m}, 7 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}, 24 \mathrm{~m}, 30 \mathrm{~m}$ ， $33 \mathrm{~m}, 34 \mathrm{~m}, 40 \mathrm{~m}, 42 \mathrm{~m} 824 \mathrm{~m}, 6 \mathrm{~m}, 10 \mathrm{~m}, 18 \mathrm{~m}$ ， $37 \mathrm{~m}, 41 \mathrm{~m} 83 \mathrm{~m}, 6 \mathrm{~m}, 12 \mathrm{~m}, 15 \mathrm{~m}, 23 \mathrm{~m}$

LYELL，Charles Principles of geology 5th edn， 4 vols；London；John Murray； 1837 ［CUL］ ad，beh，br，cc，ch，che，co，cr，cs，dg，ds， dv ，ex，f，fg，fo，gd，geo，gr，h，he，hy，ig，is， $\mathrm{mg}, \mathrm{mhp}, \mathrm{mi}, \mathrm{mn}, 00$ ，or，pat，phy，se，sl，sp， $\mathrm{sx}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{ts}, \mathrm{v}, \mathrm{ve}, \mathrm{wd}$
vol． 1 NB $144 ; 146 ; 147 ; 153 ; 155 ; 161$ ； 168；187；248；270；278；285；326；350； 381 132 9－32m／＂．．．＂ 144 1－20m／15－20w Mem Guanaco dying near water $14614 u$＂tropical plants＂ $14-17 w$ C．of Good Hope 147 wt Jaguar in Lat 42° Puma－ 53° ？1－3m，16－ 20 w Puma $10,000 \mathrm{ft}$ high near snow 150 18－ $20 \mathrm{~m} / \mathrm{w}$ Guanacos at $70^{\circ} 29-31 \mathrm{~m} / \mathrm{w} 69^{\circ} 151$ 6－10m（Pallas） 153 12－14m，18－22w Mem desert character of C．of Good Hope 155 17－ $24 m, w b$ Mem．tropical vegetation．South America approach．limits of perpetual congelation． 161 wt Tree ferns appear not to like the light，most gloomy spots $14-23 \mathrm{~m} 168$ $25 u$＂Indian＂ ？ 187 15－20m／16u＂longer 1 sun＂ 248 7－19m 270 14－22m 278 17－27m $279 z t$ 284 zt 285 wt Lockhead on Guyana－ Demerara river．Edinbg Transact Vol IV 15－ $21 m 31825-31 m$（Sedgwick） $3266-15 m, 16-$ $30 \mathrm{~m} / \mathrm{w}$ Gypsum stalactites Ascension wb Little evidence of Volc action in many parts of Tropical coral forming seas 350 wt How can lime be precipitated？more water．－1－ $17 \mathrm{~m} / 2-8 \mathrm{~m} 381 \mathrm{wb}$ great tides sometimes on very open coasts，Patagonia $43416-17 \mathrm{~m}$
vol． 2 NF1 Mississippi，New Madrid，\＆ Caraccas 46
Albite Volcanic Rock V．Buch p175

Necker on curves Mag．\＆Mountain chains p． 326
－Exert．m
Exemplify the force of pebbles knocking together
Beach．is only cause of sediment on whole of Peru，－as far as granite so far same sediment
NF2 〈drawing of mountain〉
p． 336 trees touching ground
p． 217 Dolomen Calabria
NB1 〈on p．442〉
X Argument 2nd．Excellent argument sheep do not get big tails in Africa or cattle longhorn or cow bumps on back，or dogs like fox in Australia，or－or－or－yet whole breed being so．it must be effect of country， yet exciting or else Nature would have altered back XXX
XXX Now if in course of ages（having shown time is requisite）offspring differed as much from Indian Cattle \＆as Buffalos nearo long horned \＆as these do now from common stock．then would they perish．－
These irreversible changes may explain extinction they might act on some important organs \＆become hereditary like diseases
Without reference to either，but simple change
The great difficulty appears，that though some animals long domesticated change not indefinite（Do we know this），but most domesticated animals are hereditary monsters．yet we should have expected some race which would have showed a slight repugnance to breed with our animals X 2d．The changes apparently being rapidly superinduced in domesticated animals．The very character of species is＊character being hereditary，\＆as we know we can give forms not hereditary，some that are；we might expect gradation

NB3

p． 215
187 Ask Captain about earth parting from solid Rock
Beechey is he authority of Concepcion？－ No，Lesson？－no
Stokes，height of any land near Concepcion？ Sulphur passing from solfatara like veins， analogy
Abich bulletin of Geological Society of France Leucite in specks．Galapagos VII－ 1835－1836
Von Buch．Canary Isid．－
NB4 12；20；27；36；41；42；46；55；149； 151；185；188；192；218；221；255；256；305； 351；356；403； 416

The two kinds of Elevation going on together Error in Constant Prevost. p. 154
$\langle w$ © \rangle
p323
12 wt The work of degradation goes on in inland bays.- St Joseph.- 2-8m (Pallas) $13 z t$ $205-13 m / 10-12 w$ Peru $2724-28 w$ Mouth of St of Magellan $31 w$ St. Helena $36 w b$ Pebbles beaches enormous manufactory for sediment draw back.- muddy water Calcaire 41 10$18 m / 13 w$ No $428-29 m$ (Humboldt) $461-8 m$, 20-26w Juan Fernandez 29-32w ancient trap rocks $557 z, 8-16 m 54 z t 1492-8 m 151 z t$, fig.z, 18-22m/19u "dike" 154 27-29m 156 9$16 m 158 \quad 1-17 m \quad 175 \quad 15-31 m / 17 u$ "local earthquakes"/18u "conceded" 185 zt 186 wt/1$7 \mathrm{~m} / \mathrm{w}$ Connection O of local earthquakes fig.z $18823 u$ "northward" $/ w$ South $1901-4 m / 2 u$ "one hundred" 192 11-17m, 21-23m 203 wtac, 16-33m, wb New Madrid to coast of Caraccas 2040 miles 218 13-16m 221 15$20 \mathrm{~m} 25516-26 \mathrm{~m} 25616-21 \mathrm{~m}, 22-25 \mathrm{~m}$, 22$28 m 2573-8 z / 4-5$? $2983-17 m 30126-32 m$, 30-33m 302 29-34m 304 wt How come stones not displaced? $1-8 \mathrm{~m} 305 \mathrm{zt}, 15-23 \mathrm{~m} / \mathrm{z} /$ $18 w$ Pampas $z b 307 \quad 21-24 m / w$ no $w b$ Jamaica. Isd in Pacific Ocean 311 4-18m/7$14^{\prime \prime} .$. " 318 8-10m 326 5-13m 336 16-25m 351 $32-34 \mathrm{~m} /$?, wb \& water $35616-23 \mathrm{~m} 360$ wt It is somewhere said Hippopotamus found in rivers of Asia - ?! This must be looked to 362 24-25u "progenitors", 25-27m (Geoffroy), $32 u$ "ancestors" $3643-5 \mathrm{~m} / 4 \mathrm{u}$ "still more" 365 wt When writing refer to this abridgment compare \& see if true $6-13 m 36812-18 m$ (Lamarck)/w isolation not considered $370 w t$ why if changes in circumstances rapid not changes in species.- It looks as if each peculiarity required to be firmly impressed XX 2-9m, 9-15w loss of tail a loss of organ $16-21 w$ Double flowers assumption of organ wb XX hence plants long cultivated cannot be recognized! - Pyramids of Egypt 374 23$34 m, w b$ Because there were localities fitted for simplest animals as well as the most complex. therefore some remained simple, if not created. The incidental good that one race performs to others proves adaptation in Universe. 375 1-7m, 28-32m $376 \quad 1 u$ "progressive"/wt change of adaptation 17$34 m$, wb very diff from my view $37722 x$, wb No more inexplicable than Bump in Indian Cow or change in Plants.- 381 1-3m 384 17$23 m 386$ 1-8m, 13-34w in mammalia we must stick to one rule - let fertility be test.- wb Hogs varieties in animals but in plants species which are fertile? $38721-26 m$, wb

Mem. find of Land Shells 391 7-11m 392 16 m , wb Varieties are made rapidly by man. Are there any cases of animals going back in one generation to parents stock 393 32$33 m$ (Dureau de la Malle) 395 wt X I think this fact coupled with Egyptian shows change suddenly produced 1-33w Not time to form varieties in America \& Australia $-X$ Appeal to any breeder, whether if none imported, some breed would there be endemic $w b$ Yet those animals in certain countries have been changed, but yet fresh ones now imported do not change Oxen do not get long horns now in S. Africa. 397 24-25u "three I centuries" 398 wt see Boussingault Falkland Rabbit \& Horse Study Azara. Mice of Cape de Verde $2 u$ "The I cattle" $11-5 \mathrm{~m} / \mathrm{w}$ Falconer Dobrizhoffer $14-34 m / 14-15 w$ great difficult. X wb Have they? What is date of Cat of Persia Dog of Australia Sheep of Cape of Good Hope. 399 wt Llama of S. America $40026-31 m 4015-$ 10m, 31-32m (Smith, Knight), wb Study Horticultural Transactions 402 1-9m, 1-6m/1$17 w$ parallel-Monsters in Animal Kingdom 403 6-15m (Henslow, Herbert) 17-26m 404 wb Wild dog of Australia, grand fact. It would be good experiment to find whether plants which transmit their varieties easily * present any difficulties in crossing.- wb There appear two kinds of variations one persistent \& other varying. Man offers instance of first - how is fact of crossing with them/- 406 wt A So they maybe be not very permanently ? Esquimaux dog on Indian Cattle could they. $1 u$ "its", $28-34 m$ 407 wt The idea of slowness, \& of long intermarriage to make variety perfect \& then when perfect it will rebranch off.- $1-5 \mathrm{~m} / \mathrm{X}, 7-$ $19 m / 8-9 w$ A $29-33 w$ Yes until it is made species $w b$ in those where change greatest we do not know what was aboriginal 408 21$22 u$ "indefinitelages" $/ w$ adaptation $w b$ The effects of time must be shown in effecting propagation. Wheat, \& old vegetables most constant. yet we hear of new \& strange variations produced in far countries 41032 m (Roulin) 412 17-27m, 32-33m (Jameson) 416 1$4 m / 1 a$ "in"/wt parts of $41713-17 z / 15-18 w$ not to Man but beast $32-33 \mathrm{~m} 4195-34 \mathrm{~m}, 4-7 \mathrm{~m} /$ $w b$ \& when perpetuated, more might be gained like the intellect of civilized man.- 420 $17-31 \mathrm{~m}, 19-31 \mathrm{~m} / \mathrm{w}$ Strong argument 24 m 421 $w b$ If wolf \& Fox same very different habits 423 21-26m (Buffon), 27-32m, 30-34m, wb Where 425 wt Tiger \& Lion intermediate 330 m (Hunter, Wiegmann, Prichard), 32 m (Hunter) 426 6-34m 427 11-18m, 13-15m, 27$33 m 428$ 12-32m 431 11-23m 432 6-21m 433

LYELL, PRINCS. GEOL. 5TH EDN
$13-22 m$. 435 8-16m, $19 u$ "species", wb Centaurea hybrida $4391-7 m 44128 a$ "great"/ 26 w or small $30-32 \mathrm{~m} / \mathrm{w}$ with $34 a$ "offspring" $/ \mathrm{w}$ with no tendency to go back wb respect to changes superinduced in short period 442 $10 u$ "improvement or deterioration" $/ 4-12 \mathrm{~m} / \mathrm{w}$ if this were true adios theory
vol. 3 NF1 p63 Vanessa migratory
p93 AD1794 unparalleled for drought.
Cape de Verde? Monkey peculiar?
How far High land from the Radark Isids
Insist very strongly on animal, resisting
powers of breakers
NF2 z
NB1, $2 z$
NB3 Lyell for Ch

- 7; 8; 10; 19; 31; 32; 50; 70

109; 115; 121; 182; 227; 270; 272; 274; 380;
434; 424; 440,41,42; 445
128; 138; 182 ; 179; R Recent; 380
4 wb There is a resemblance analogy of animals of tropics like that of animal inhabiting Water or air - This is different from forms of Isd near continents $523-33 m$, wb Consult R. Brown. Appendix 65-14m, 19$31 \mathrm{~m} 74-10 \mathrm{~m} / 4-6 \mathrm{w}$ V. Lesson $816-22 \mathrm{~m} / \mathrm{w}$ Royle $9 \quad 27-34 m / 24-25 ? * 10 \quad 7-11 \mathrm{~m} / \mathrm{w}$ authority? 1432 m (Brown) $19 \mathrm{zt}, 19-27 \mathrm{~m}$, $29 m, w b$ In Jenner paper Royal Transact pidgeon cross daily England \& Holland 20 wt The first origin of migration must be before countries had divided $30-34 \mathrm{~m} 211-8 \mathrm{~m} 23$ 327 m (De Candolle), 6-23m 29 10-14m/11u "three|belonging" $\mid w$ \& c wb \& subgroup.Madagascar \&c $30 w t$ Ask Lyell for authority 1-4m, 33m (Temminck) 31 15-18w Barbarossa Marsupial animals $21-24 m, 25-28 m 321 w$ Falklands $3-5 m, 24 w$ was taken by Cook to N . Zealand 33 wt Crocodile near the Navigators 1-5m $3415-20 \mathrm{~m} / 17$?/u "remote"/w 10 miles 35 wt Elephant Borneo \&c \&c! 42 $3-33 m, w b$ Not in the least applicable to big animals 43 1-29m 46 1-4m, 18-27m $484-18 m$ (Spallanzani), wbeq 50 25-28m, 25 w * Ascension wb. Frogs not on Volcanic Isd. Snakes Lizards first 51 wt How far from Mainland? $13 \times / 13-25 m 5415-20 \mathrm{~m}$ (Gmelin), 33 m 57 11-24m 58 1-19m (Lowe)/21-28m/wb the species of general diffusion are they like Lizards \& Frogs, with rsp to eggs.- 62 1$23 m, 7-9 \mathrm{~m} / 8 u$ "sea-pens" $/ 21-23 \mathrm{~m} / 7-23 \mathrm{w}$ Duck weed Caryophillia Sponge 63 21-24m, 32$34 m$ (Kirby \& Spence) $6422-32 m$ (Kirby) 69 28-33m $7024-30 \mathrm{~m} / 26-27 \mathrm{w}$ No wb Falklands Bourbon Norfolk Isld Pitcairn? Mauritius Galapagos 71 13-29m, wb Dillons Voyage 78 24-31m 79 1-4m 80 1-34m $816-33 m$, wb All
this agrees perfectly with my theory 85 21$33 m 93$ 25-29m $99 w b$ (Most Philosophical Chapter) $1095 \mathrm{~m} / ? / \mathrm{u}$ "lizards" $1123-12 \mathrm{~m} / \mathrm{wt}$ Journal $24-29 m, 32-33 m, w b$ Reference to quadrupeds native inhabitants 1153 w St of Magellan 117 21a "of"|19-20w intellectual 119 $16-29 m, w b$ will the theory do, forms acquired but not unacquired \therefore change extermination $12122 \mathrm{~m} / ? / \mathrm{u}$ "mangrove" 128 1$8 \mathrm{~m} / \mathrm{w}$ capital 30 u "shallow|the" $/ \mathrm{w}$ where 133 10-19m, wb authority? 134 wt Were separate sexes introduced in those orders most subject to variation? $13520-33 \mathrm{~m} 1363-19 \mathrm{~m}$ $138 w t$ Besides difficulty of transportat in two directions, surely time required for such change of climate would produce fresh species. 139 wt Alpine forms ought to be varied, to be sure mountains generally near each other $1-5 m, 13-23 w \times$ Yes but he accounts for the insects on top of mountains $22-33 m / x, w b$ intermediate steps species, propagation on isld.- $1403-19 \mathrm{~m} / \mathrm{wt} / 1-15 \mathrm{w}$ Certainly not but the chesnuts \& some of the Tropical forms must be altered into races 18-33m 141 1-19m, wb Good 144 4-10m, 18$22 m, w b$ \& where whole continents have become colder then Mountains centre 146 $23-26 \mathrm{~m} / \mathrm{w}$ which reasons? wb Sudden appearance of animals quite done away by my theory. State what opposite theories have been driven to. 149 zt 152 wb Nothing beyond this with reference to Transmutation of Species $1531-3 z 15422-34 m$ • 178 wt Worms turning up soil 1-10m (MacCulloch) $179 w t / 1-7 w$ May this not be viewed merely that the peat plants cannot grow whilst under trees but conquer when blown down $8-15 \mathrm{~m}$ $18210-19 \mathrm{~m}, 19-31 \mathrm{~m} / 22-26 \mathrm{w}$ action of bog on red sand $217 z b 227$ wt earthquake caused by subsidence $4 u$ "subsidence learthquakes" $270 \Uparrow 9-1 m$, wb Coral was on Stones Yet probably moved $274 w t / 1-28 w$ in one case dependent on the species, in other on no decomposition zt, 20-26m $2753-6 \mathrm{~m} / \mathrm{w}$ only in some zoophytes 276 fig.m, $z b, w b$ not characteristic 279 1u "land birds" $281 z t$, 1$4 m 282 z t, 3-8 m, 21-26 m, w b$ Only can be judged after subsidence artificial channels in Cocos soon filled up.- $283 \mathrm{zt}, 14-20 \mathrm{w}$ Meandrinae - $25 u$ "we admit"/w No 286 1$22 \mathrm{~m} / 14 \mathrm{w}$ very good $288 \mathrm{zt}, 10-21 \mathrm{~m}$, 16 u "Otaheite" $/ w$ parallel lines $23-27 m$, $24 u$ "corals" 289 15-19m $290 \mathrm{zt}, 14-24 \mathrm{~m} / \mathrm{w}$ Mud 292 18-29m/w very good 22-29m 293 wt । suspect reefs of diff strata in diff parts $1-3 \mathrm{~m}$ 294 1-2? $2978-11 \mathrm{~m}, 12-15 \mathrm{~m} 298 \mathrm{wb}$ where is the reef 600 miles long? 299 wb Why lime not all fastened near Equator 380 9-15m
$424 z t, \quad 14-28 m$ (Daubeny)/w Galapagos Ascension 434 zt , 1-19m/w ought not this to have come sooner or never 440 1-13m/w follow it out $4413-5 \mathrm{~m} / 4 \mathrm{u}$ "at lelevations", 24$34 m, w b$ This would be the result if the periods of repose followed each other in a moreO accelerating $442 w t$ at first stage little more repose would destroy bit z, but how much longer to destroy z: fig.m/w, 7-13m/w X surely all valleys $w b$ Origin of St. Cruz Valley $w b$ Mouth of St. of Magellan $44325-31 \mathrm{~m} /$?, wb Terraces; cliffs; on sides of valleys; Inclination of valleys $445 \quad 2-23 m / 12-16 w$ Capital!
vol. 4 NF1 p. 25 elevated hills Red Sea Good remark on Cleavage; and on cal. columns
The pureness of the Primary Limestones argument in favour of not sole metamorphic but separation
p. 13 Geograph Journal Vol V Ca rises from the bottom with stones Thames \& Angara is frequent.- it cannot be dribbled water merely freezing in large estuary.
p. 224 Shows much inclination after elevation into dry land
NF2 Mem. Transportat of shells by sea weed
Falklands, no Boulders \therefore subsidence ${ }^{2}$ Baron Munchausen story of frozen horse Gold being found near surface of Granitic countries, same vapor pressing upwards
Tension? does it express * compression?-
NB1 - Read Meyer Look to Humboldt Vol II
p. 213 Pata wronO spelt - Lucanas?

Put Table of Chapters
Lucanas diocese Guamanga 25 or 30 SW of Guamang, Lat $12^{\circ} 50^{\prime}$.
150 miles from Sea Volcan so called in Chapt in Humboldt Map p40 N. subl leads to coast
Index wron Mountain elevation of I.
NB2 - date of earthquake Concepcion wrongly spelt
number of numbers wrong G.F.
What is proof of hills of Miocene, Scoriae
Lyell's index wrong ice Vol. I 269 icebergs 7; 9; 38; 80; 99; 107; 125; 141; 143; 161; 162; 201; 214; 224; 244; 252; 254; 258; 262; 264
Vol I p. 25724 If elevation eheu! date wrong 1752
Are the plates of shells worth their expense Just mention M St Elias
282; 284; 292; 298; 308; 309; 311; 312; 324; 332; 350; 360; 363; 366; 372; 377; 378; 380; 381; 388; 386; 392

3 14-32m/15-16w G 18-25z/w G 7 wt ?Has not great force tendency to break things smoothly, mem pane of glass with bullet 88 $15 \mathrm{~m} / 11$?, $14-18 \mathrm{~m} / 15 \mathrm{u}$ "made|upwards" 9 1$14 m / 3-5 w$ St Helena $101-5 \mathrm{~m} / 3 w$ scoriae 16 $8-17 \mathrm{~m} / 10 u$ "chiefly"/11u "historical"/?, 14?/w no doubt generally 23-25?? $179 u$ "Rimao" $\mid w$ C. $16-23 \mathrm{~m}, 26-32 \mathrm{~m} 183-20 \mathrm{~m} / 6 u$ "Pacific", $10-14 w$ dip seaward 19 zt $20 \quad 30-34 m$ (Deshayes) 23 9-25m 24 22-23m, wb What would Hopkins say to expansion without fissures?? $2522-30 \mathrm{~m} / \mathrm{w}$ Ehrenbergh 2821 $26 m / 11-26 w$ odd - in tusk 38 wt Why not estuary? 47 2-5m, 3-9m/?!!! 63 17-20m $807-$ $14 z / w$ too much? $8125-31 w$ first origin? wb break? $83 z t 99 z t, 1-3 m / ? 107 z t, 23-32 m$, wb Azores? Melted lava Galapagos $\%$ volcanic rocks $109 \mathrm{zb} 117 \mathrm{wt} / 8-15 \mathrm{~m} / \mathrm{w}$ Black silicified wood/B. Blac red Clayed 16-18m, 18-19w X Patagonia 31-33? 124 fig.z 125 31-33m, wb This different from other section \& like Patagonia 126 1-4m 141 10-29m, wb Ascension $143 w t$ a very admirable specimen of descriptive geology 161 wt excellent for beginners but elementary $1-19 \mathrm{~m} 16215-22 \mathrm{~m} /$ w excellent 20-3m 163 1-10m 201 wb Leave out Mosaic flood? flood generally 214 10-33w Mem Ascension Migrants proves London movesO from - 224 iw How far from base of escarpment does gravel extend (of the S ought to be more marked)(then 3 to 4-) $w b$ show * inclination after elevation into dry land 225 zt 226 1-13z, 20-29z 227 fig.w very good 232 fig.w Diluvius tilted 244 wt Doing away anticlinal line hollow chalk continuous $2-25 w$ transverse valleys $=$ every crust part of linear valleys $=2521-13 w$ it appears owing to your dread of Elevation Craters 17$31 w$ incomprehansible to me: $21-32 \mathrm{~m}$, 30 u "whole mass", wb ridge of unstratified rock vera causa 253 5-9m/? 254 14-34m, wb Make analogy stronger pumping in, instead of out fluid rock 258 fig.w good $8-21 m 2591-10 m$ 262 3-21m (Mantell)/w What do they say? $26427-30 \mathrm{~m} 282 \mathrm{zt}$, wt is there not marine animal, case undistinguishable fig.m $284 \mathrm{wt} /$ 1-28w How wonderful that any character of vegetable earth remains - silicification 915m, 20-28m 292 3-19m/w All this comes rather flat after first admirable chapters $w b$ do p. 297297 3-33z 298 1-10m/w Cordillera 308 9-15m/2-16w Coast of Brazil Just water \& other formations 309 20-24m/w Pampas Delta wb Has Indian delta been examined -- where can I read account? $3108-31 \mathrm{~m} / \mathrm{w}$ very strong \& very honest $w b$ as long as Didelphys - x Monkey no progression wb Man strong fact on opposite side you lean

LYELL, PRINCS. GEOL., 5TH EDN
311 wt I think it is an argument for precedence of certain $\%$ classes at former times, the precedence of orders now.- as pachyderms in Tertiary - Deer now 11-12?/ $9-17 w$ do not understand $15 m, 25-32 m$, $w b$ Galapagos plenty of reptiles $w b$ Distribution of animals at present day evidently not owing to mere circumstances: \therefore great lizards not!- $3128-17 \mathrm{~m} / \mathrm{w}$ T. del Fuego 324 $1-11 m / w$ Unfortunate $332 w t / 1-4 w$ if not correspond of my short parallel line $4-7 \mathrm{~m} /$? 333 zt $338 \quad 7-18 m$, fig.w Elevatory $18 u$ "reader"/w beginners 339 wt is it good paper? $1-5 \mathrm{~m} 3403-15 \mathrm{~m} / \mathrm{w}$ very remarkable 341 fig. m / w very good $w b$ very common 350 $z t, 1-12 m$, $w b$ arrival of fresh peated matter 360 wt good abstract $1-4 m, 5-31 \mathrm{~m} / \mathrm{w}$ Cordillera. Snow hence Metamorphic; not like basalt $z b 036133 m / w$ wrong reference $3625-9 m, 10-17 m * / 11-12$? 363 wt Does any one? 4-9m/? 366 3-12m/5-6w St Jago 14$24 m / w$ wrong $21-33 m /!/ 22 u$ " 6001 high" 367 $w t$ fragments brought up much more altered $10-23 m 370 z \neq 371$ wt Wire has been known to crystallize \& become brittle from frost \therefore arrangement of particles $3721-9 m, 11-26 \mathrm{~m} / \mathrm{w}$? would not percolation destroy symmetry? 373 wt permeation of solid coral rock by tides $5-8 \mathrm{~m} / 6 u$ "sponges", $29-32 \mathrm{~m} 3741-7 \mathrm{~m}$ $37520-25 m 377 w t$ is this theory or fact 8 $13 m / 10-11$? 378 29-32m 379 1-2m 380 wt Henslow Botany 5-11m 381 21-30m/z 385 wt contrast general lowness of Tertiary formations $1-12 m \quad 388 \quad 1-29 m, 1-14 w$ Elementary $38913 u$ "visible" $/ 13-22 z / w$ almost solely elevation because rests on very hypothesis 392 19-26m/w Who? 393 5-8w Sir \checkmark Herschel $7 u$ "infinitesimal" $/ w$ HJS? 394 11$17 m / 12-21 w$ Does it not always appear vice \& versa $18-29 m 39525 m / w t$ beneath coast of Chili 408.b zt, 1-13m

LYELL, Charles Principles of geology 6th edn, 3 vols; London; John Murray; 1840 [CUL, S] ad, beh, cc, ch, co, ds, ex, fo, gd, geo, gr, h, hy, ig, in, is, mg, mi, no, oo, or, se, sl, sp, spo, t, ti, tm, v, ve, y
vol. 1 NB1 Lyell
Account of Hutton very eloquent - not credit enough; Metamorph - not blame enough 138 misprint; 155
190 Whole Chapter inimitably good New Continent -
193 You yourself remark same form has never reappeared - hardly cautious enough.-

201 Cayman Isd
232; 240, 241 Excellent Chapt; 252; 260; 272; 279; 282,5,6; 295; 296; 317; 328; 330; 370; 372; Springs Chapt very - 395; 396
NB2 Self
Spec Theory; 134; 137; 154; 193; 209; 230,248 Chapt IX excellent summary against theory of progressive development; 249; 252 Lyell always considers that there is saltus between man \& animals -
Chapt XI Showing chasms in Animate world not real - most striking passages pages p.284, 287, 295, 298, 301

392; 414; 415 Geology
xvi $22 m / m 134 \quad 28-31 m 137$ 15m, 15-16u "hippopotamus lonly", 21-29m (Strickland)/24u "bear", 31-32m 138 20-21m 154 22-25m 155 wt some one says plants of six months growth $1-5 m$ pl. f190 wt New continent 193 wt Facility of transport of seeds \& not adaptation perhaps causes this $2-26 m, 4-8 m$, 14-15?, $17 \mathrm{~m}, 18 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ G?? 201 13$17 \mathrm{~m} / 15 w$ no $20919-32 m$, $w b$ not sound as species of shells numerous at first commencement of Tertiary $2101-33 m 222$ 23-24m/!, 24-27m $2304-28 m 231$ 17-28m 240 $28-31 \mathrm{~m} / \mathrm{w}$ not clear to me 241 15-25m, 26$34 m / 34[\ldots] / w$ no $33 u / w b$ not quite accurate: parts of continent 248 1-24m $2495-27 \mathrm{~m} / \mathrm{w}$ All this applies only to man as cosmopolite, i.e. civilized $28-34 m / w / w b$ not man, with such knowledge as he is born with $25214-21 \mathrm{~m} /$!, $18-19 m, 23-25 m /!!, 24-25 m 260 w b$ । do not think you clearly enough state that there is no evidence of progressive development like metamorphic rocks that we know, species have successively appeared - but we know nothing of first peopling this planet, like its origin. The introduct of man, only greater change than any species ornithorhyncus 261 $w b$ we know that species differ much from each other.- 272 3-16w Hereafter enormous area of S. America Tertiary desposits 1800 Tertiary deposits 279 27-28m/ ?/27u "persuading" $282 \quad 23-34 m$, wb again man as cosmopolite also p. $285 \quad 283 \quad 2-8 m$ 284 9- $24 \mathrm{~m} / 10 \mathrm{u}$ "with|chasms" $28515 u$ "anterior Iman"/w p. 286 20-21w Peru 26-32w raised beaches with cotton thread $w b$ What would you say even to American Geologist who said man did not exist, because no remains of Patagonian soil $28610-12 m /!/ 11 u$ "at earth" 287 3-15m/7-8w Self 295 20-23w possibly many $24-34 m / 29-30 w$ Self $2961-7 w$ \& as nature of bottom changes different distribution $9-16 w$ no known relation with respect to change $17-19 w$ Scicily elevation

Lyell $w b$ My theory goes to show that period is excessively long, during which species do not change, because no case of such change in any one structure can be shown $29721-24 m / w$ Self $29814-18 m / 12-22 w$ add. to this Europe exception \& not rule - World simple $30128-32 m 31712 a$ "in" the breccia $32825 w$ rain \&c \&c $331 w t$ Tropical plains 1$2 m / ? 37024 X, w b$ Col Jackson describes much dirt \& stones with Russian 392 20-24m/ $22 u$ "withlthe" $3932-5 m / 2 w$ - $395 w t$ abundant in Cordillera $1-3 m / w$ very 396 18$19 \mathrm{~m} / 19 u$ "many parts"/w where $41410-14 m$ 415 23-28m
vol. 2 NB1 Lyell-; 266 isI N. of Ascension =; 278; 297; 372; 399
NB2 Self
Geology * 106, 279, 447
Spec 416
108 29-33m 120 14-16m 130 27-28x/24-28w incorrect layer 134 11-16m 266 15-16m 279 11u "attributes"/ w stronger 297 23-24x, wb Most interesting feature omitted of volcanos already in action. $37211-13 w$ V. your Map ?? 399 1-2m/?d/u "hydrometer" 416 27-31m 447 7-11m
vol. 3 NB1 *
Where are Wiegmans experiments on plants p. 66 Amoenitat Acad * p. 204 authority? * 300 *
Lyell p.116; p.127; 157; 200
295 Coral Chapt. Very satisfactory
Have a recapitulating character she means chaptery on whole bearing of vols to explain present state of earth, which at first every one thinks formed by catastrophe
NB2 Self. Spec The.; 10; 34; 48; 67; 93 to 136; 204; 275; 300; 357

- 313 Geolog -

10 13-19m/15-17w extra claw $20-32 m$ (Lamarck)/26-28w weak $w b$ no new organs in whole classes $34 w t$. St. Hilaire $1-8 \mathrm{~m} / 4$? wb G. St Hilaire $3615-22 m, w b$? $3923-25 m / ?$? 41 22-25m $4216-20 \mathrm{~m} /$? , $20-21 \mathrm{~m} / \mathrm{w}$ no $4425-$ $28 \mathrm{~m} /$? $4715-17 \mathrm{~m} /$? $48 \mathrm{wt} / 1-28 \mathrm{w}$ surely new Varieties sport, though individuals may be acclimatised in few years $4-6 m, 10-34 m, w b$ Think of all this when writing $491-21 m, 28-$ 31 m (Cuvier, Dureau de la Malle) 51 26-28m, $27-29 m, w b$ accustomed in early infancy 66 10-14m 67 29-31m (Wiegmann), wb Where 74 7-11m $904-7 \mathrm{~m} 997-10 \mathrm{~m} 10024-29 \mathrm{~m} 1087-$ $9 m 11625-29 m / w$? Beale 118 wt XX My Patagonian case Weissenborn on Libellulia

Squirrels \& e?? wb (a) Why do men in fear herd together - 119 wt (a) Why does suffering make animals flock? wt Not always of same kind in insects XX 17-18m/x, 1-30w The useless ones cannot be for killing the animal, or they would have died from want wb 2 kinds of migration useful \& useless are here confounded $1214-6 m 1257-8 x, w b \times$ once connected with main by verdant continuous trails. $1276-8 \mathrm{~m} /!!/ 7$ u "pumas" 138 $33 m$ (Richardson) 139 23-26m (Gmelin), 27$32 m, 33 m 140 \mathrm{wb}$ do any fish live on seeds? fish eaten by Herons- 146 10-14m 157 Iu "Pitcairns" $/ w$ - 161 9-17m, 21-24m 174 wt/1$26 w$ The number of years some rare plants have occupied same spots - ? exact spot? argument against this - \& the fact on opposite page antagonist principle. $20-26 \mathrm{~m}$, 30-34m (De Candolle) 175 wb/1-34w/wt XX would merely affect new countries \& new devastations. (seeds in ground part of same class)- in short time struggle must come into play - occupancy can only hold to actual plant or tree, in first seedling struggle must commence - the surrounding land possibly more favourable because leaves of own kind best manure- $3 u \leftrightarrow /$? $19733 \mathrm{~m} 2007-9 \mathrm{~m} 201$ 4-9m, 17-31m $2042-7 \mathrm{~m} / \mathrm{w}$ Please tell me authority $7 w$ Thinks M F. Cuvier 221 15-24m 222 10-14m 224 1-11m/5-6? $2275-32 m 228$ 1-11m/5!!/wt/1-6w Let whole world get hotter or colder whole continent or whole islet 27$32 m, w b=$ islands $=$ Absurd - as we know in every country some new forms can be introduced 15a "marshes" 229 wb from lake in midst of Africa !!!! whence can come lacustrian plants $w b$ Form islet, let this become Mountain, whence the Alpine plants?!! 276 1-3m 292 10-31m/22-24w V. p. 297 wb Refer to Lunds theory \& quote Lyell against it. $293 w t / 1-2 w$ The cause of this association of iron with limestone \& corals - laws of organic forces?? 13-21m/15x $29510-13 \mathrm{~m} / ? ? / \mathrm{wt}$ What should empty it 297 1-8m 300 24-28m, wb p. 303 do you believe contemporary? $3031-13 m$ 305 $20-23 \mathrm{~m} / 23 \mathrm{u}$ "alcolour" 313 1-6m, wb as wood drifts by surface currents it may be transported to parts where no sediment is accum 357 6-8m 367 20-22m 370 26x/28-30w Dr Allan p77 372 $24-26 w$ at most 30 fathoms 377 23-25m, 3032 m 378 wt set of little rings $27 w 493843-$ $5 m /!/ 4 u$ "supposes" $3886-8 m /$? $14-17 w$ does not give as fragments $21-25 \mathrm{w}$ leeward side dead \& not growing 391 11-13m/? 394 5-6? 395 1-20w border denuded \& real growth of upsurge Corals denuded $39624-25 w$ no! 398 7-8? 399 24-29m $4003 c$ " $b e^{\prime \prime}$ is

LYELL, Charles Principles of geology 7th edn; London; John Murray; 1847 [CUL, I, S] geo, sp, t
SB 〈list of changes from previous editions〉
NB1 Icebergs; 97; 101; 228
NB2 97 ice; Species Theory; 83; 105; 125; 134; 156; 177; 589; 591; 592 596; 600; 604; 605; 606; 608; 671; 697 of $\&$ next Edition $8320-26 m 9737-40 \mathrm{~m} 101$ fig. 2cc, 4-5m,7$8 m 105$ 29-39m (Hooker) 125 12-14m/14u "11 3" $1341-40 \mathrm{~m} 1351-7 m 15625-37 m 19741-$ $46 m 2312-7 m 321 z b$ (drawing of mountain) 362 24-28w Such however is not the case $40137 w$ must? $44 w$ or valley $46 w$ valley 589 $21-23 m$ 591 31-49m/ $\rightarrow 592$ 5-10m, 8-12m, $13-15 \mathrm{~m}, 27-29 \mathrm{~m}, 31-37 \mathrm{~m} 59612-16 \mathrm{~m} 6005-$ $9 m, 37-43 m 6047-15 m 605$ 11-22m, 25-45m $6061-9 m, 37-43 m 6088-23 m 6711-7 m$

LYELL, Charles Principles of geology 9th edn; London; John Murray; 1853 [Down]

LYELL, Charles Principles of geology 9th edn; John Murray; London; 1853 [CUL, I]
NB 697; 184; 343; 489; 753; 769; 795
162 39-44m 184 20-21m 238 zt 278 32-35m 279 24-29m 569 3-5m, 6-7m, 11-15m 572 2$6 m 66945 \mathrm{w}$ to p. $68067016-17 \mathrm{~m}, 47 \mathrm{~m}$, 48$49 m 673$ 2-4m, 40-41m (Kirby) 675 10-11m, $27-28 m 6763-4 m 67738-43 m 6808-9 m 685$ 38-39m/u "twenty|thousand" $?$?, 41u "eight thousand"

LYELL, Charles Principles of geology 10th edn, 2 vols.; London; John Murray; 1867-68 [Down]

LYELL, Charles Principles of geology 10th edn; London; John Murray; 1867-68 [CUL, I] $\mathrm{ad}, \mathrm{cc}, \mathrm{ch}, \mathrm{gd}, \mathrm{geo}, \mathrm{gr}, \mathrm{hl}, \mathrm{mg}, 00, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$
vol. 1 NB 146 on advance of organization 174 on changes of climate
393 Means of Distribution
209 9-10u "sandstone Ishale", $14 u$ " 300 I least", $15 u$ "Viennal Switzerland", $18 u$ "severall feet", $19 u$ " 6,000 feet" 273 2-8m 393 13-24m, 26$29 m, 31-33 m, 34-36 m 3941-8 m$
vol. 2 NB Sp. work Theory; 323; 338 to 345 G Distrib.; 355; 358; 366; 369 to 395; 406 to 431 very good
Errata \& Remarks; p.291; 307 corrections; 308; 317; 377; 421; why did you not contrast sea \& Land-shells; 476; 478; 488; 489 । rejoice; 490 Ditto
Man; 469; 471 when? to 491

SB $\boldsymbol{\sim}$

1867.- Lyells Principles 10th Edit Vol I
p146 Discussion on advance of organisation.
174 Chapt. on causes of change of climate
393 Means of distribution - organisms in borings by Artesian wells - even living fish. Vol. 2.
p. 341 on Geographical Distribution p. 341 Japan
p. 345 Madagascar - good speculations
p. 355 Means of Distribution, p. $358-365$ to p.395.-
p. 406 persistence of same Flora in Madeira from Pliocene to present day, shows then separated.- to 431 - Admirable discussion on relations of Fauna \& Flora of Madeira \& P. Santo to each other \& to Europe.-

246 20u "tolextent" ? (Geoffroy and Lamarck) $29124 u$ "germ cells"/w no 307 26-28m,/? 308 $13-16 m 30933 w$ short $3173-8 m 32326-37 m$ (Linnaeus) 324a 38-41m 338 12-39m 339 38$39 \mathrm{~m} 341 \quad 27-35 \mathrm{~m}$ (Wallace) 343 21-24w chance migration by sea $26-31 \mathrm{~m} 34528-37 m$ 355 4-10m/11w Singapore 19-24m 358 3-5m 359 17-22m 365 1-3m 366 16-20m 369 1723 m 370a $40 \mathrm{~m} 37126-28 m 37722 u$ "New Holland" 380 30-39m 387 32-35m $3917-13 m$ 395b $36-37 \mathrm{~m}$ (Henslow) 406 7-11m (G. Hartung), 22-24m 408 11-15m $4104-9 m, 35-$ $37 m 414$ 30-33m 418 31-39m 419 10-21m (Hooker) 420 21-25m 421 10u^ 422 28-34m $42314-21 m, 26-36 m 4267-17 m 4271-4 m$, $21-28 m 4281-5 m, 22-29 m 42910-16 m$, 17$32 \mathrm{~m} / \mathrm{w}$ well stocked Birds of Galapagos; the case I give of shells \& of true genera 430 25-31m 431 26-32m $46927-30 m 47136-38 m$ (Brace, Wallace) 473 29-35m $474 \quad 27-35 m$ (Wallace) $47627-30 \mathrm{~m} / 28 u$ "to vary" 478a 38m/ w Error 479 27-38m 481 24-29m 482 8-18m, 19-31m/28u "Gaudry's memoir" 483 31-34m 484 8-13m (Gaudry) 485 18-19m $48733-36 \mathrm{~m}$ 488 9-12m 489 14-17m, 20-24m 490 27-31m $4917-12 \mathrm{~m} / 9 u$ "higher Iorganisation" $/ w$ What is higher 21-29m

LYELL, Charles Principles of geology 11th edn, 2 vols.; London; John Murray; 1872 [CUL, I]
af, geo, h, hl, t, v
vol. 1 NB 149; 159; 162; 212; 342
\wp
149 16-21m/16-17u "primordial | Barrande" $\mid 20 u$
"Orthoceros", 27u "chambered 1 Orthocerata"
159b 33-40m (Owen) 162 14-21m 163 7-11m 212 31-37m $2325-9 z \wp$
342 4-6m (Jamieson)
\wp
vol. 2 NB Resemblance from similarity of exposure - p. 295 in Dogs -
p496 Difficulty of a higher grad from lower
Is not a very cleverer man a sight higher than a dull man? Is not that power of a man work of - or power of Brain \& wd not the replication of the degree of cleverness ultimately produce a great result?
\wp
295 9-26m (Flower and Wallace)
$\wp 396$ 11-13m (Forbes) $49631-33 m$
LYELL, Charles A second visit to the United States of America 2 vols.; London; John Murray; 1849 [CUL]
ad, beh, ci, ex, fo, gd, geo, mg, sp
vol. 1 NB Read second time
p.29; p.303; p.330; p.348; p. 351

SB 29 Lat $43^{\circ} 6^{\prime}$ S limit of Boulder Deposit
303 Many genera of Birds \& Mammals with representative species on two sides of Rocky M
330 Birds \& Squirrels having habit of burying acorns allude in my Staffordshire case as not applicable to it
348 No less than 3 species of Horse in N. America
29 28-31m 303 21-25m, 27-31m 304 1-12m, $15-25 m 33019-26 m 34818-22 \mathrm{~m} 3513-27 \mathrm{~m}$ 366 14-17m
vol. 2 NB1 250 Rate of deposition of Delta.
NB2 293 * Migration; 294*
150 - Cirripedes; 270; 312

Abstract

p. 270 Dr D. Owen says newly introduced Plants, first overrun the country \& then become scarcer (Ask A. Gray)
312 Footprints of Air-breathing Reptile in Carboniferous Rocks
250 9-12m 251 12-17m 270 19-23m 312 3-7m 313 25-29m

LYELL, Charles The student's elements of geology London; John Murray; 1871 [CUL, I] ex, fo, gd, geo, ig, no, sp
NB 160 Mammals before \& after glacial period
348 Muscle chalk absentes in England
357 intermediate * Caspian α_{0} beds
361 Reptiles in Trias very rich
467 absence of Cephalopoda in Upper Cambrian
470 fossil of Longmynd Groups -
Read Ch VII p263
xii $5-6 m, 14-16 m$ xiii $38-39 m \times v 9-11 m \times v i$ $33-34 m 1601-11 m 348 \quad 23-26 m 356$ 11-16m

357 10-33m, 35-36m 358 20-27m 359 1-2m 361 1-4m (Meyer), 22-24m 467 33-41m (Barrande) $47021-27 \mathrm{~m}$ \wp

LYELL, Charles The student's elements of geology 2nd edn; London; John Murray; 1874 [Down, I]

LYELL, Charles Supplement to the fifth edition of A manual of elementary geology 1st edn; London; John Murray; 1857 [CUL]
gd, geo, ti
1 15-17m, 18a "older" crag 2 40-43m 3 16$21 m 533-38 \mathrm{~m} / 35 u$ "Norwegian 1 Lemmus" $/ w$ Does Lemming inhabit Alps. Vide Waterhouse 6 17-21m, 25-28m (Falconer) 9 21-29m/ w How blended Eocene \& Miocene 11 10ul 7-10w What age of oldest Elephant 11-16m, 34-35m, 37u, 38u "Pliocene" 12 22-25m/23u "partly|period"|18-25w no one dreams sea acting all time $1430-31 u$ "no 1 marsupial", 32$38 m 153 u$ "Triconodon" $\mid w$ Marsupial 40u "probably marsupial" 18a $45-49 \mathrm{~m} 2027-31 \mathrm{~m} /$ $30 u$ "rangelmarsupiala", 43-45m 22 21-23m (Falconer) $2310-13 m 23 \mathrm{~b} 15-18 m 248-11 m$, 15-17m, 17-21m, 23-28m 25 2-4m, 6-7!/7u "climatal", 13-24m/15-17?, 34u "St Cassian beds", 37-39m 28 26-28m, 29-31m, 35-38m 29 18-21m (Lindley), 44u "Palaeozoic"/wb not diphthong $305-8 m, 17-19 \mathrm{~m} / 19 u$ " 27 ", 20$24 \mathrm{~m} / 20 \mathrm{u}$ "beds" $123-24 \mathrm{~m}, 28-33 \mathrm{~m}, 36-43 \mathrm{~m} 32$ 29-42m 33 39-46m 34 17-25m

LYELL, Charles Supplement to the fifth edition of A manual of elementary geology 2nd edn; London; John Murray; 1857 [CUL]
ex, fo, geo, ig
NB - p14 intermediate forms
p30 Old N American Mammal Trias or Permian
Lo Letter from Lyell - new proof that Dromotherium below - - perhaps not actually Permian same discovery sinks the level of Hitchcocks Birds Tracks
14 9-11m (Falconer), 10-23m/16u "Rhinoceros Anoplothera" 30 5-29m/10u "Chatham Carolina" $/ 19 u \wedge$, $26-29 m 33$ 25-28m 35 1924wec 37 35-39m 39 wt New edition

LYELL, Charles Travels in North America 2 vols.; London; John Murray; 1845 [CUL]
af, cc, ch, ex, fo, gd, geo, gr, h, no, se, sp, t, tm
vol. 1 NB1 138. any extinct Gnathodons?? or Fulgur??

LYELL, TRAVELS
Lyell says Cretaceous \& Eocene quite conformable \& similar substances, so that most difficult to separate.
〈drawing of a continental shelf or bank of slowmoving river
NB2 Species Theory ; p.5; p.7; p.9; 10; p.20; 52; 55; 67; 78; 87; 134; 137; 168; 173;

178; 198; 202
Geology S. America
Mastodon \& at Niagara *; p. 164 Mastodon \&c Cursed Horse Tooth; 201 Man skeleton in Brazil
p.48. subsidence Glaciers-period.

SB $\square \beta$
5. Daisy will not live in U. States

735 per cent of shells of Massachussetts identical, many representatives
10 On the curves of cold being same at Glacial Epoch as now
20 on certain shells having wide geograph \& geotropical Range
52 on time since Niagara formed (since Glacial?) 67 Mastodon since Glacial
78 Of New Jersey Cretaceous shells only 4/ 60 identical, but many representatives. Reptiles analogous - some of them identical have greatest vertical range
87 Devonion \& Silurian Strata $41 / 2$ miles thick
134 shells analogous to Suffolk Crag p. 138. only 9 Miocene identical The shell Fauna then distinct of America \& Europe (\& in Chalk
178 Of Eocene shells $7 / 125$ identical. Now 1 fancy in S. States very few identical or more but many representatives
202 Number of F.W. shells in U. States
$521-24 m 7$ 3-6m (Gould)/w now are these 70 Glacial 13-15m, 16-18m 9 1-3m, 6-8m/w against seeds transported $1014-19 m 2016-$ $22 m 483-10 m / 4^{\prime \prime} . . " 523-19 m 544 m 552-4 m$ $678-10 m, 11-16 m 787-9 m, 26-27 m 791-3 m /$ w V. proportion of living $8-9 m, 20-24 m, 27 m /$ $\rightarrow 807-11 m, 15-18 m, 20-24 m, 25-26 m 81$ $10 a / u$ "coralslinsects" $/ 5-14 w$ Satularia very like of V. Diemen's Land ?!? $14 \mathrm{~m} / u$ "arcticl antarctic"/w ?!! no wb Dr Beck Margarita is found in * Antarctica, which is genus not found in Tropics $8722-25 m / w=41 / 2$ miles 134 12-13m/12u "verylthose" $13623 u$ "147" 137 4-5m/4u "close affinity", 26-27m 138 2$5 m / 2 u$ "mine" $/ 5 u$ "with \mid species", $7 u * / 8-10 m+/$ $8 u \star, 14-17 m, 18-21 m 1512-5 m / 3 w$ Breath $9 u$ "absorbed" $/ m /$?, $11-14 w$ The absurdity of arguing from one position $1683-7 m 17214$ $27 m 173$ 1-9m 178 21-23m, 25-27m/x, wb | forget how many Miocene common to

Europe \& America - see to this- $181 \mathrm{Im} /$? $18518 u$ "depressinglspirits" 198 19-22m 202 $15-20 m$
vol. 2 NB Sp Theory p.19; p.30; 48; p.50; p. 52 54; 59; 131; 135; 152; 154; 158; 179; 187; 188; 190; 255
Geology; p. 60 Mastodon \& Elephant with Recent shells
p. 99 - Subsidence during ice-period
$S B \square \beta$
19 Carboniferous shells some identical, \& most closely related
35 Proportion of Trees on Indian Mounds
Plants many identical, I think not surprising, when land in fact continuous
2/3 identical of Coal Plants (See Below)
51. Silurian shells not many in common - so with Russia. Exploded doctrine
52 Orthis still living in Mediterranean, but very rare - 54 Causes of absence of landplants in Silurian - Good discussion -
152. Lat $44^{\circ} .25^{\prime}$ most S. Lat in which Arctic shells have been found
155 Arctic shells have retreated 14 degrees of Latitude
158 Lingula. still living, in oldest Silurian Rocks
179 Carboniferous strata of N. Scotia 4-5 thick p187. Ten layers of upright trees p187 37/48 Plants identical. Of $35 / 53$ of Coal plants of U. States, further S. are identical.
19 6-10m, 14-19m, 22-25m, 26-27m $205-8 m$, 13-15m, 17-21m (Brongniart) 21 8-16m/13u*, $18 u$ "genera", 20-21m 30 6-10m 35 12-27m 37 20-21w No 48 19-27m, z/wb 50 22-26m 51 3$10 m, 13-20 m$ (Murchison and De Verneuil), $21-25 m 5210-21 m / w$ ie rare genus $5317-$ $19 m \quad 545-6 m / ?, 11-13 m$, wb/ $1 \mathrm{w} w$ Old formations are oceanic; because these have the best chance of being thick \& last brought up; this rests on idea of movements being widely extended \& continuous, which is also proved by continents. $551-9 m / w$ There must have been a considerable continent.- $12-$ $16 m, 17-20 m, 22-26 m, 27 \rightarrow 56 \quad 12-15 m$ (Murchison and De Verneuil) 57 1-3m 5914 $17 m 991-17 m 131$ 1-8m, 10-15m, 20m 135 $24-26 m \quad 152 \quad 3-5 m \quad 154 \quad 9-13 m / w \quad p .149 \quad$ \& number of species of genus $1551-2 m / w t$ ie. Arctic Climate has retreated at least 14 degrees of latitude - effects of changes of Geography - not connected with central Heat $1583-7 m, 17924-27 m / \rightarrow / w$ with vertical trees $181 \quad 20-22 m \quad 187 \quad 8-14 m$, 24-25m/25u "ten levels" $188 \quad 11-15 m / w$ important as showing former communication 19-27m 189 1-6m 190 25-27m 255 1-27w Mainly \& 12
divisions judging from fossils corresponding to Upper \& Lower Silurian formations many lines in table marked; subdivisions 24-28 bracketed.w Devonian

LYELL, James Carmichael Fancy pigeons London; The Bazaar Office; 1881 [Down]

LYMAN, Theodore Ophiuridae and Astrophytidae Cambridge, Mass.; University Press; 1875 [Down]

NB O/

LYMAN, Theodore Supplement to the Ophiuridae and Astrophytidae Cambridge, Mass.; University Press; 1871 [Down]

NB O/

LYON, W.P. [as "Homo"] Homo versus Darwin, a judicial examination of statements recently published by Mr. Darwin regarding "the descent of man" London; Hamilton, Adams \& Co.; n.d. [Down]
title page $w b$ By the Revd. William P. Lyon (near Norwich)

McALPINE, Daniel The botanical atlas, part 1 Edinburgh \& London; W. \& A. Johnston; 1882 [Down]

McALPINE, Daniel Zoological atlas Edinburgh \& London; W. \& A. Johnston; 1881 [Down]

MACAULAY, James, GRANT, Brewin and WALL, Abiathar Vivisection scientifically and ethically considered London; Marshall Japp \& Co.; 1881 [Down, I by H. Gillespie] \wp

McCLELLAND, John Indian Cyprinidae, part 2 Calcutta; Bishop's College Press; 1839 [CUL, I]
f, gd, oo, no, sp, sy, t, tm, v
NB1 A Good many fish - semi-alpine 4-500 feet nevertheless no species similar to European-I believe - V. Synopsis
Contrast with Hope's paper on insects \rightarrow especial contrast with Water beetles, I believe,
Good contrast with Fish of Pacific \& Indian Oceans-
How is this in N. America?-
NB2 The Commencement of this Book good to consider when treating Quinary System It must be considered
229; 230; 232; 237; 266; 364; 385; 399; 458; 452
SB 230 Fishes bright to be caught
266 on domesticated Fishes of India varying so much - Ch 1 or 2
262 On Salmonidae in India- place filled by Cyprinidae
229 13-22m, 20-22m $230 \quad 6-13 m / 16 w$ see p. 229 19-23m/19-26w I must utterly deny this.- If this could be passed - farewell my thesis- $27 \mathrm{~m} / \mathrm{w}$ Nothing new spec $2313-6 m$, 18-20m 232 1-3m 237 23-27m 266 12-13m/w V. p. $313 \quad 26-28 m / w \quad$ p. $268 \quad 268 \quad 4 m \quad 313 \quad 15-$ $19 \mathrm{~m} / 17 u$ "form" pl. 46 wb Perilampus perseus $365 \quad 23-28 m \quad 385 \quad 4-9 m 399 \quad 13-15 m$ 452 1-7m (Hügel, Heckel) 458 22-27m/w not so much destroyed \& therefore not become so prolific $4591-3 m, 17-21 m 469 b \overline{3 m} 4 m$, $6 m, 7 m, 10 m, 12-19 m$

MacCULLOCH, John A geological classification of rocks, with descriptive synopses of the species and varieties comprising the elements of practical geology London; Longman, Hurst, Rees, Orme \& Brown; 1821 [CUL, S Chas. Darwin June 1837]
geo, is, mi

MACCULLOCH
NB 185 to $188 ; 199 ; 270 ; 332 ; 349 ; 351$ ； 364；376；471；475；528； 531
Ap 21／57 〈CD？〉
Macculloch from p－to p will be worth looking at before writing Cleavage
$18522-24 m 1878-14 m, 16-22 m 188$ 8－13m， $15-20 \mathrm{~m} 1891-7 m 19914-21 \mathrm{~m} / 17-21 \mathrm{~m}$ ， wb ？？ quartz ever fluid from Heat even in granite $2335-7 m, 18-21 m 244$ 9－14m 270 4－10m， $11 m, 13-23 m$ ，wt \＆see p273 \＆ $2742736-$ $14 m 27411-18 m 301$ 19－22m 332 12－20m／w like F．Isids． $34918-24 m 35020-24 m 35113-$ $18 m 36411-24 m 3654-6 m 3767-13 m 4712-$ $4 m \quad 475$ 13－19m 528 13－20m 531 wt Make note to Obsidia paper say it is remarkable that no one has hereto stated the fact of separation 5－14m，20－24z

McCLINTOCK，Francis Leopold A narrative of the discovery of the fate of Sir John Franklin and his companions London；John Murray； 1859 ［Down，I by publisher to Mrs Darwin］

NB p16；p20；p102
16 11－20m $2024-27 m 10222-25 m$
MACGILLIVRAY，William A history of British birds 5 vols；London；Scott，Webster \＆Geary；1837－52［CUL］
af，beh，br，cc，ch，cs，ds，ex，gd，gr，hy，mg， no，oo，phy，rd，sy，t ，ta，tm，v, wd，y
vol． 1 NB do show extinction not so easy extinct in England Capercailzie recently extinct，Bustard
p．5；For Pigeon－ 25 －Skeleton；90；101； 119，20；153；162；173；192，7；225；249； 265，6；270；274，8－Pigeons to 289；331； 398；．Read from 90 to 96 well；423；501； 505；512； 529 to $534 ; 538 ; 569 ; 571 ; 604$
269 Scutella； 231 Skeleton of Pigeon； 285 number of seeds in crop；skeleton $\$$ ；Black grouse 157 superorbital space becomes red in Breeding season
SB 90 －ostrich rudimentary tie
119 Disputes ring－neck pheasant being a Hybrid
153 variation in intestines in length of Black Grouse
162 Q Black \＆Red Grouse crossing
249 In Pigeons Head \＆Bill chief characters of Family
270 On Birds having Beak crusted with earth or mud
275 On＊House Pigeons taking to Rocks－ taming Pigeons
285 on number of seeds in Crop of Pigeon
289 On C．oenas building in Rabbit holes
398 Cases of natural pairing of Green－Finch
\＆Gold Finch Q
422．Abnormal characters in Cross－Beak varying Q
501 On Faroe Raven（I believe quoted）
512 NQ Ravens build in cliffs in N．，in trees
in South p604 So starlings in Hebrides
538 Rook varying much in Beak．
569 Eggs of Magpie varying much shape， size \＆colour
570 Magpie getting 3 females－another case of size Q
157 supraocular carmine space brighter red during breeding season．－

5 18－22m／w nearer literal relationship 24 27－ $28 m 25$ 11－12m，16－17m $261 u$＂sacral＂，33－ 36 m 27 fig．w＜naming of parts of skeleton〉 28 $11 u$＂manubrial＂， $22 u$＂crest｜ridge＂ $299 a$＂is＂ clavicle $316 u$＂ilium＂， $8 u$＂pubes llatter＂ 34 20－34m $754-6 \mathrm{~m} / 4 u$＂a large＂， $19 u$＂accessory plumage＂，26－28m／26－27u＂tollength＂， $28 u$＂in feather＂ $128-32 m$（Richardson，Audubon） 90 19－ 20 m plates w（parts of skeleton＞ $1014-6 \mathrm{~m} / 5 \mathrm{u}$ ＂second quills＂，22－24m， $26 w$ Crows 106 7－ $11 m 11125 u$＂twelve＂ $11813 u$＂Length inches＂， $14 u$＂tail 18 ＂， $14-17 w$ say 18 to 21 tails $1193 u$＂ 26 inches＂$/ 4 u$＂tail 11 ＂／3－5w say ab 12 inch $8-10 \mathrm{w}$ analogue of P ．torquatus $12-14 m, 15-18 m / 17 u$＂very \mid varieties＂ $12110 u$ ＂tail 20＂，14－15m，18－20m $12215 u, 19-22 m$ ， $31-32 m / 31 u$＂Phasianus torquatus＂ $1512-3 m$ ， $34-37 m 15228-31 m 15328 m 15432-37 m 157$ $34-38 m, 35-38 m / 37 u$＂a deeper red＂ $1583-7 m$ ， $7-14 m, 21-26 m 15914-16 m, 18-19 m 16128-$ $30 \mathrm{~m} 1626-10 \mathrm{~m} / \mathrm{Q} 16912-13 u$＂breast \mid white＂， 16－17u＂breast｜barred＂ 172 23－24u＂breast｜ chestnut＂ $1733-7 w$ proportions different $9 w e c, 12 m / w c c, 20-28 \mathrm{~m} / 23 u$＂lighter red＂， $26 u$ ＂lighter＂， 27 u＂but duller＂， $30 u$＂is I brownish＂， $31 w$ see over 174 2－3Q 5u＂lowerlare＂， $6 u$ ＂spotted｜barred＂，11u＂less｜white＂，21－25m／ $22 u \leftrightarrow / 24 u$＂tips I feathers＂ 184 11－15m 185 25－ 26Q 187 14－19m 193 5－14m 197 20－27m 207 17－19m 216 32－35m 219 35－37z 225 3－5m 249 13－15m $25122-24 m, 25 u$＂seven dorsal＂ 257 11－12m，37－38z 265 7－10m 266 16－18m 269 $3 u \leftrightarrow, 11-16 \mathrm{~m} / 14 u$＂the I fourteen＂ $27034-36 \mathrm{~m} /$ w seeds 274 36－38m 275 15－17m／x，37－38m 276 8－18m 277 24u＂James Barclay＂ 278 16－ 19m，22－23m 279 15u＂Mr Andrew Duncan＂， 16－18m／17u＂tamed＂，32－33m $2819 u$＂threel long＂ 282 24－27m $28313-14 m / 14 u$＂is 1 feet＂， 31－32m（J．Smith），36－37m 284 5－8m 285 17－ $19 m / 18 u$＂ 1000 lodds＂ $19 u$＂ 510 ＂ 289 31－35m 331 14－19m 352 21u＂in｜which＂ 370 14－18m $3725-8 m 373$ 17－19m，21－24m 375 30－34m （Temminck） 398 9－11m，12－13Q 20－23m 422 34－36m／Q $4231-3 m / Q 29-37 m 4281-4 m 501$

8－10m，15－17m，20u＂Feroe Isles＂／20－24w see in Travels which I have，what is said about this．26－28m $50536-38 m 51210-12 m, 13-14 m$ $52914-15 m, 17-20 \mathrm{~m} / \mathrm{Q} 5324-5 \mathrm{~m}, 30-31 \mathrm{~m} 533$ $21-22 m 5341-4 m, 11-13 w$ This is good case of doubtful species $13-17 \mathrm{~m}, 18-21 \mathrm{~m}, 21-22 \mathrm{~m} /$ $21 u$＂being｜wilder＂｜22－23Q 24－26m，25－27m 538 9－12m／9u＂remarkable diversity＂ 569 1－8m $57034-38 \mathrm{~m} / 35 \mathrm{u} / \mathrm{Q} 571$ 10－11Q 11－14m／12－ $13 u$＂saw leggs＂ 572 32－34m 577 zb 599 10－ $14 \mathrm{~m} 60416-27 \mathrm{~m}$
vol． 2 NB1 451 Crested Tit female has crest smaller
417 Crested wren crest paler
NB2 Upon the whole little variation in Birds except rarely tendency of colour \＆size \＆ proportions．No races
p．53；84；92；91，6；98；102； 104 transportat of seeds；113；118； 125 －transport of seeds；130；138；143；172；245；302；438； 446；483；484，5
185 Anthus breeding flight； 354 do better \underline{Q} 52 Dipper； 83 T．merula； 100 P ．torquatus SB $\square \beta$
92 Thrush \＆Blackbird pairing in Nature Q
96 Nestling Black－birds know cry of danger； 99 crowing like a Cock
104， 125 Disbelieves strongly that Birds disseminate for never but＊twice having f any．viz Mountain Ash
172 ＊Eggs of Alauda arvensis varying greatly
438 Tomtit feed their young 475 times in day on caterpillars Q
483 ＊Doubt about distribution of Motacilla alba \＆Yarrelli，after comparing French Birds
$276-17 m / 7-9 w$ Voice Muscles $2917-24 m$ ， 22－24m $5231-35 m, 31-33 m 533-8 m, 22-25 m$ 55 14－20m， $31-35 m 841-4 m \quad 91 \quad 30-33 m$ （Blyth） 92 13－18mQ $967-11 \mathrm{~m}, 13-16 \mathrm{~m} 9724$ $28 m 98 \quad 14-19 m \quad 9910-12 m 10017-19 m 102$ $26-28 m \quad 103 \quad 7-12 m \quad 104 \quad 14-20 \mathrm{~m} / 19-20 u$ ＂whichlintestine＂，30－33m 113 5－12m／6wec， $7-12 w$ proportions vary $1188-15 m 1259-$ $17 \mathrm{~m} / 11 \mathrm{u}$＂sixty｜various＂ 130 14－21m 138 31－ $32 m 14328-34 m 1724-10 \mathrm{~m} 18533-36 m 188$ $16-21 m$／16u士 223 16－18m 245 14－15m 256 $2-5 m \bullet / 3 u$＂much \mid frequent＂ $3027-9 m 32924$ $28 m 35411-16 m 43836-38 \mathrm{~m} / \mathrm{Q} 44624-27 \mathrm{~m}$ ， 31－33m 451 27－28m 460 13－17m 461 18u＂of। fable＂ 483 11－26m 484 29－34m 485 30－33m
vol． 3 NB1 548 on making preparations of Digestive organs．
NB2 11；17；36；39；59；60；113；140；187； 208；215；224；250；256；299； 300 rate of flight；329；351；376；459；Owls prey on
shrew－480；535；560；591；599；607；625； 700；713；714；717；721；730；745，46 SB $\square \beta$
17 Beak of wren variable； 36 Creeper do 140 American Cuckoo hatching young successfully Q
187 Scutella in Buzzard variable
215 Eagle carrying \＆dropping Pig alive
225 variation in wings of Tracheae \＆ intestines in Sea Eagle p250 p329 in Caeca intestine p351
257 soles of Hawk crusted with mud
300 Peregrine Falcon does not much exceed a Pigeon ψ_{0} in rate of flight
535 Waxwing－the wax－like terminations variable in number．－Abnormal variable Q
560 Swallow lateral tail－feathers more or less elongated do \underline{Q}
Swallows entombing Sparrows Q
599 Disputes Swallow Q gluing materials together 625 Q present in Swift X
736 on Bird carrying \mathbb{Q} egg from nest to prevent discovery
11 17u＂Furnarius＂／ $17-18 w$ variable in species 17 16－19m 22 1－19m，21－30m 23 9－ $11 m$（Weir） $247-8 m 368-11 m 3920-23 m$ （Audubon） $597-11 \mathrm{~m} / 8 \mathrm{w}$ differences $25-28 \mathrm{~m} /$ $25-26 w$ diffs． $6026-29 \mathrm{~m} / \mathrm{w}$ singular organ presenting differes $6121-22 m 795-7 m 833-$ $5 m 8423-26 m / 26 u$＂till 1 sonorous＂ $855-8 m / 7-$ $8 u$＂feathers 1 crimson＂ $878-11 m / 9 u$＂crown 1 crimson＂，29－30m 88 8－18m，24－30m，25u ＂vibratesItree＂ $89 \quad 30-34 m, 32 u \quad$＂amatory performance＂ $944-7 m 102$ 23－24u土 113 11－ $18 m, 29-34 m * 12124-27 u \pm 12215-17 m 124$ $20-23 m, 28-37 m, 33-37 m 12518-26 m 12621-$ $27 \mathrm{~m} 12916-25 m 13318-26 m 13928-30 \mathrm{~m} 140$ 3－6m 187 14－16m，19－30m 208 30－34m 215 8－ $13 m, 14-17 m \quad 224 \quad 23-34 m \quad 225 \quad 10 m, 12 u$ ＂scutella＂，13－19m $250 \quad 27-35 m 257$ 28－29m 299 1－20m 300 19－21m $3291-10 m 351$ 12－ $16 \mathrm{~m}, 20 \mathrm{~m} 376$ 31－37m $45932-37 \mathrm{~m}$（Bonaparte） 480 3－5m 502 9－10u＂head｜black＂，16－18u \pm w female barred on parts inferior $53513-14 m$ ， 19－21m／Q 560 21－22mQ $59124-34 m 2992-$ $3 \mathrm{~m} / 2$ u＂по саеса＂， $35-38 \mathrm{~m} 62531-37 \mathrm{~m} 626$ 8－ $12 m 7005-11 m 7132-4 m 71436-38 m 7151-$ $3 m, z b 717$ 15－17m 745 15－16u＂neglected｜ stranger＂，18－21Q 20－22m，21u＂being convinced＂，27－29m／27u＂The I larger＂ 746 2－3u ＂head｜white＂， $5-9 u \pm, 11 u$＂coverts＂$/ w$ parts of wing 14－16Q $16 u$＂throat｜the＂， $19 u$＂The｜ white＂， $32-37 \mathrm{~m}$
vol． 4 NB • 371 No difference in summer \＆ winter Plum．of Snipe
SB1 ロR
xiii，iv，viii；89；155；206；309；370；422；446；

MACGILLIVRAY
476; 572,3,4; 593; 606; 611,14,17; 627; 632;
665; 687
SB2 $\square \beta$
p. 89 Remarkable variation in Beak of Plover
p206 do in Tringa p370 Snipe
pxx
155 do in Oyster catcher perhaps case of abnormal varying \underline{Q}
422 several cases of American Bittern shot in England pxiii, xiv, xviii other American Birds.
446 Q Herons building in trees, on rocks, \& on heathy ground
573 Geese \& Ducks all blend together, might be left in one genus. Flamingo modified form 593 thinks Anser forms ancestor of domestic goose
655 variations in internal organs
687 var. in number of tail-feathers in Swans
xiii $25-26 m$ xiv $9-10 m / w 2$ xviii $6-7 m / w 3$ 23 33-38m (Temminck) 33 15u "somel polygamous" 89 19-23m $1034 u$ "scarcelyl their" 109 3-4m/3u "males Ifemales" 155 6-15m/8-9Q 171 16u "Female| lighter", 17u "more grey", $21 u$ "theland" $1728-16 \mathrm{~m} 173$ $28-30 m \quad 17730-38 \mathrm{~m} / 35-36 u$ "naturelbirds" 178 17-20m 180 1-5m/4u "MaylJune", 6-9m, $30 u$ "fivelsix", 31 u "about lounces" 181 6-8m, 10-13m, 15-23m, 21-22m $18720 m 20614$ $18 m 30924-27 m 37035-37 m 3713-8 m$, $34 u$ "zigzags along", $35 u$ "zoolzee" $3724 u$ "Airgoat", 16-17u "amuselmore", 25-29m/25-26u "Welhas", 27u "bylonly" 422 5-21m/9-12w American Bird 446 12-14m, 33-37m 476 16$20 \mathrm{~m} / \mathrm{w}$ wader very wide Rangers 537 27-28m/27-28u "betaking lease" $54524 m 55035 m$, $36 m 572$ 3-7m 573 18-29m 574 17-19m 576 13-15m 580 18-24m 587 25-27m 593 23-28m, $30-35 m 606 \quad 27-30 m 61125-31 m 61424-27 m$ 617 27-34m 627 27-29m 632 17-39m 639 18$21 m / 19 u$ "obtuselknobs" $651 \quad 23-27 \mathrm{~m} / \mathrm{Q} 665$ 10-14m/Q 671 11-14m $678 \quad 38-39 m 6879 u$ "eighteen Ifeathers", 12-15m, $16 u$ "twenty"
vol. 5 NB Lestris, Gulls \& Terns, female like male, except generally smaller - very white Birds - Oceanic
p. 226 Princeps tuft on Head \& Raff in female rather smaller
228 Merganser crest do
Puffin, Razor-Bill, Cormorants, Uria, Gannet males $=$ females
70 Double-Moult of Pintail within less than 2 months
223 Merganser Moults \& makes an appr to female
(reckoned one of most extraordinary facts in Nature)

31-40 * tooth-formed * conical reversed teeth Merganser first Entry
SB1 36; 39; 69; 64; 58; 51; 38; 59; 114 wd fly to water \& might be killed there.; 205; 247; 255; 272; 279; 500; 518, 546 vary same way in same genera; $550 ; 577 ; 596$ SB2 18
36 Wild Duck, thinks flight 100 miles per hour
69 Pintail Teal \& Wild Duck (p38 seeds * feed on p64 other Ducks p. 114 p51/58/six species of Ducks p255 Even Grebe eat seeds. 272 do 278
89 Wigeon has bred with Pintail \& Common Duck
247 Grebe, tail a mere tuft of down. How is Coccyx - see Brit. Mus.
518 variation with age \& almost disappearance of hind Claw in Kittiwake
550 change in Stomach of Raven when kept on vegetable food, \& so in Gull, as I understand in times of year, when it feeds on seeds.
577 colour of outer Primaries vary in same way in 2 species of Gulls \& in in allied Gavia p. 596
$346 u$ "and \mid coloured", $10 u$ "speculum 1 male", $23 u$ "24th|May", $28 u$ "23rd", 30-34m, 30u " 6 thl July", $34 u$ "10th", 31-32w about 3 months $368 u$ "Seedslgramineae", $30-33 m 37$ 1-6m $3831 u$ "and lspawn" 39 22-26m $5136 u$ "seeds!grasses" 58 10u "aquaticlseeds" $644 u$ "seeds I gramineae" $694 u$ "seeds and" $702 u$ "bylAugust", 8u "of l September" 71 8-11m 73 $34-38 m 8914-17 m 112 \quad 20-27 m 114 \quad 29-32 m$ (Temminck)/30u土 129 10-16m/12u "with orange" $13 u$ "bluish-white patch", $17 u$ "plumage|blue", 20-21u "plumage|black" 134 $13 u$ "unguis", $14 u$ "sideslorange", $15 u$ "upper 1 yellow" 140 13u "upper \mid yellow" 199 13-16m/14-15u "conicallbackwards", 28-31m $20526-30 w$ It might be worth examining note 30-33m, wb Goosander: \& M. serrator Dundiver: M. castor or M. Merganser 207 18u "head|black" 208 5u "billlduller", 6u "reddish-brown", 8u "upperlgrey", 10u↔ 210 $31 u$ "scapularsllong" $21122-25 m / 25 u$ "scapulars" 213 20-22m/20-21u↔ 214 27-33m 223 17-21m $24731 \mathrm{~m} / \mathrm{w}$ How are Coccyx 255 35-36m 266 31-33m 272 10-11m/10u "seeds" $2797 m 326$ 9-10u "alwhite" 327 7Q 11-13w see Grebe p. 107 13-16m, 24-27m/24-26u "Eye |half" 328 2-5m/Q 329 10-11m, 12Q 14$16 m$ (Yarrell), 19-20m 330 22-24m/Q $33112 u$ "prevailing | white", $17-19 \mathrm{~m} / 18 \mathrm{u}$ "plumage 1 on", 19-22m 436 34-39m/35u "bodylpale" 50034 $39 m 50817 u \pm 5091 u$ "Younglat", $2 u$
"plumagelbrownish" $51518 u$ "black|grey", 20-21u "except I grey", 22u "head I pure" 518 1$15 m \quad 525 \quad 19-25 m 546 \quad 25-30 m / 27 u$ "unless quills" 550 19-22m 577 34-37m/36u "thel primaries" 584 15-18m 585 3w L 596 11-14m

MACGILLIVRAY, William The natural history of Dee Side and Braemar ed. Edwin Lankester; London, for private circulation; 1855 [CUL]
beh, dg, gd, is, 00 , no
NB 176; 310; 387; 388; 412; 462; 468; 470; 474; 476; 480; 482; 487
SB $\square \beta$
310 on massive mountains descend lower than on isolated mountains; \& sometimes will be quite absent on such isolated mountains - Perhaps shows that a mass of same species necessary to keep up stock.
474 Deer swimming for isld 12 miles distant 476 Degeneracy of Deer owing to best Stags being killed

176 10-12m 310 19-32m 387 22-23m 388 29$31 m 3895-8 m 412$ 11-14m/11u "var. scotica" 462 2-7m (Bonaparte) $4687-15 m, 18-21 m 469$ 30-33m $470 \quad 6-9 m 474$ 19-21m 476 16-20m, $28-36 m 48033-37 m 48114-17 m 482$ 20-22m 487 29-35m

McINTOSH, William Carmichael A monograph of the British Annelids 2 vols.; London; The Ray Society; 1873-74 [Down]
vol. 1, NB 3
2 36-43m 3 1-5m, 11-15m, 20-25m, 27-32m vol. 28

MACKINTOSH, James Dissertation on the progress of ethical philosophy 2nd edn, preface by W. Whewell; Edinburgh; Adam \& Charles Black; 1837 [CUL, S]
beh, h, he, t, v, y
NB Whewells Preface good Abstract
56 to $68 ; 97 ; 103 ; 113 ; 129 ; 151 ; 152 ; 164$; 188?; 194; 196; 200 The remarks on Butler contain the cream of Sir J's opinions; 224; 231; 233; 234; 239; 240; 248; 251; 254; 255; 257; 261; 262; 265; 272; 326; 328; 333; 346; 348; 356; 359; 364; 368; 375
16 ought 231 Man Chapt
377; 380; 382; 397
$163-6 m \quad 414-5 m /!? / 5 u$ "moral sense" "invariably", $11-14 w$ but why the separate parts? 56 6-11m, 20-21m 57 3-4m, wb A pointer ought to stand $6016-18 \mathrm{~m} /$? $628-12 \mathrm{~m}$ $661-4 m 971-2 m 1034-12 m 1131-11 m 128$
wo 129 15-20m/11-31w0, wb even our true taste is pleasant * according to habit $1315-$ $27 w \diamond 13513-17 w 01418-26 w \diamond 15111-26 m$ $1521-8 m, 12-13 m, 17-20 m, 26-30 m 1531-$ $11 m 16422-26 m 18816-28 m 1941-7 m / 4-5$? , $12-14^{\prime \prime} .$. " $/ m / w$ if so, my theory goes.- in child one sees pain \& pleasure struggling 196 9-13m 198 11-15m, wbro How can cowardice, or avarice or unfeelingness be said to be dispositions leading to action yet conscience rebukes a man, who allows another to drown without trying to save his life.- 199 24-27m/!/26u "desire", $26 u$ "will"/ $27 u$ "conscience", 29-30m $20030 u$ "with direct" 201 1-2m/?/1u "action \mid will" 224 9-18m (Hume) 231 11-14m, 15-17m 233 11-14m 234 $2-12 m / 4-7 w$ common to animals $2401-7 m$, $w b$ Try whole question with the breaking mere rule of etiquette $248 \quad 6-10 \mathrm{~m} / \mathrm{w}$ Try theory of place in brane $25133-35 m / w / w b$ See Brit Museum 254 21-24m (Hartley)/23u "perception and emotion" $2556-15 m, 16-25 m$, 26-31m (Lord Kames) 256 13-18m 257 18$29 m / 18-22 w$ common to animals hence love of Place. $\mathrm{x} w b \times$ will not explain love of parent to child - except hereditary.-261 22$29 \mathrm{~m} / 23-24 w$ rather instinctive $26226-30 \mathrm{~m} 263$ 11-14m, 26-30m 265 17-21m/19u "almost instinctively" $2675-12 m 272$ 17-22m/17-19w with respect to life $17 w$ music? $21-24 m 326$ $7-13 m 3284-8 m 33312-26 m / 23 u$ "impel the will" $/ 22-28 w$ can the instincts of bird building nest be said to impel will.- $25 u$ "emotions"/ $w b$ yet emotions are results - are trains of thought long * associated with action 346 $25-28 m \quad 348 \quad 9-17 m \quad 349 \quad 25-29 m / 28 u$ "is 1 remembrance" 350 1- $6 \mathrm{~m} / 1-4 \mathrm{w}$ so in birds it is $3537 \mathrm{~m} / \mathrm{u}$ "moral approbation", wb certainly independent of conscience which applies only to one self.- ?sympathy? yes because one feels the pleasure for others which one would have felt, if one had done it oneself 355 5-15m 356 8-24m 357 6-7u "beneficial tendency" $3591-17 m / 3 x$, wb poor attempt to account for beneficial tendency being test of virtue $36426-30 m 3687-19 m 3721-5 m / 1-2 w$ assumed $10-30 \mathrm{~m} / 17-19 w$ poor $37311-13 \mathrm{~m} /$ 12-13u "resentment lour" 375 15-24m 377 wt Nonsense - similar association may be made with actions, involuntary as \& etiquettes of society broken unconsciously.-$1-7 m, 14-21 m / ?!!378$ wt All this applies to moral approbation but scarcely to conscience, which $1-13 m 379$ 20-23m 380 21-27m/23-24u "contact I were"/w trash $27!!/ u$ "mental contiguity", wb because the primary instinctive feeling tends to action like an emotion.- 381 8-10w here considered as

MACKINTOSH
unity $w b$ Emotions having been formed by actions will always lead to them．－ 382 $1-7 \mathrm{~m} / 2 u$＂beneficial tendency＂$/ 3-4 u$＂that 1 sentiments＂， $12-30 \mathrm{~m} / 19-20 \mathrm{w}$ poor 383 2－19m／ $7-8 w$ poor 385 zb 397 3－5m／？， $6 u$＂perfectly＂， 7 u＂different spheres＂

MACKINTOSH，James The history of England vol．1，Lardner＇s Cabinet cyclopaedia London；Longman，Rees，Orme，Brown \＆ Green； 1830 ［CUL，on B，S］
NF
MACLAREN，James A critical examination of some of the principal arguments for and against Darwinism London；Edward Bumpus； 1876 ［Down，I］
NB O／
MACLAREN，James Natural theology in the nineteenth century London；Edward Bumpus； 1878 ［Down，I］

MACLAREN，James Some chemical difficulties of evolution London；Edward Bumpus； 1877 ［Down，I］
$123-5 m$＊
MacLeay，William Sharp Horae entomo－ logicae London；S．Bagster； 1819 ［CUL，pre－B］
32 31－32m 42 22－26m（Latreille） 289 4－10m／5－ 6m／6u 291 30－32m 321 4－20m 447 17－23＂．．．＂

McLENNAN，John Ferguson Primitive marriage Edinburgh；Adam \＆Charles Black； 1865 ［CUL］
beh，ch，h，he，hl，no，sl，ss，sx，v，y
SB 〈3 sides，\uparrow ）
M＇Lennan＊All Used
22,30 It is clear that brides purchased，but man wd choose prettiest－except when bought mostly young．－It will depend on forms of inheritance common to Man， whether females alone or both sexes affected
31,40 －choice in woman－Fuegians Pages marked
74,76 choice－Betrothed does not keep woman
45 no choice when captured 50 No Bates 95122 intermarriage incestuous
118，120 Exogamy keeps distinct tribes similar opened to sexual selection．
166165 －origin of infanticide to lessen number of Women．to 208 good summary on Polyandry \＆Exogamy．

As yet idea of practice of avoiding incest not explained，probably arose in time of monkey－men
The scarcity of Women from infanticide of females leading to＊－to promiscuous intercourse \＆polyandry，wd make the selection of women very difficult－ had Men wd then be selected－p． 176 （Promiscuousness a grt difficulty）
〈over〉 There must have been a time judging from lower animals，when men did not forsee，when there was not infanticide \＆ when sexes equal，\＆then sexual selection wd come in \＆only occasionally since，at least when general licentiousness or polyandry prescribed．－
\Leftrightarrow p． 288 I cannot help doubting whether lesser number of females owing to infanticide was so common as to make so many tribes exogamous．－？Extension of feeling for a cross－where close interbreeding in small tribes－passion－ instinctive for foreign blood．
Effects of Habit for Explanation of Younger males－or instinct－
〈over〉 Guiana kill most female children bring up about 1／2
\＆Abortion，which wd destroy both sexes
\＆Abipones
\＆many tribes
It does seem rare to kill females alone
24 4－5m／4u＂bargain＂ $30 \quad 13-16 m / 13 u$ ＂Kalmuchs \mid price＂ 31 17－29m 32 1－4m，12－ $15 m / 13 u$＂price＂ 40 9－13m $454-8 m$ ， $21 m 46$ $6-10 m \quad 50 \quad 6-17 \mathrm{w}$ why not a father receive money for parting with his useful daughter？ $574-14 m 66 \mathrm{wb}$ There is no evidence as yet that men might not marry in own tribe．－if they lost their wives they would steal others 74 14－16m 75 13－14m 76 5－6m／5u＂celebrated｜ beauty＂，19－21m 95 13－18m 99 10－15m 102 12－17m $103 \quad 2-4 m \quad 118 \quad 7-12 m / w$ Keep tribe similar $1203-8 \mathrm{~m} 121$ 10－15m，14－15m 122 9－ $11 m \begin{array}{lll}130 & 5-10 m & 134 \\ 6-11 m & 138 & 13-18 m \\ 139\end{array}$ $5-13 m, 21-23 m 140 w t / 1-3 w$ but if all tribes killed their daughters how is this possible？ 3－9m 146 4－7m 147 16－21m 148 1－4m 151 7－ 11m 159 1－4m／w Gorilla 162 3－5m 163 1－ $3 \mathrm{~m}, 14-17 \mathrm{~m} /$ ？， $18 u$ 165 6－14m，7－13m， 10－13m $1661-7 w$ More Males killed in War 8－12m，12－15m，13－15m，18－20m 167 2－ $5 m, 6-8 m, 9-11 m / ?, 12-14 m$ 168 $7-$ 11m，16－18m，20－22m，wb Fuegians 170 1－ $7 \mathrm{~m}, 7-9 u$＂The existence＂，7－9m／8u＊ ＂assuming＂，9－10m 171 7m／？／u＂Wel promiscuity＂，13－15m，16－21m，17－21m 172 3－ $6 m 1733-7 m, 5-9 m$ 177 $\ddagger w$ There may
have been a stage with infanticide \& other stages of almost promiscuousness $5-8 m$, $15-$ $1 m$, wb Judging from the lower animals, 1 cannot persuade myself that at any early times powerful Men would not get more wives \& 178 2-7m 179 11-14m $1801-8 m$ $1818-14 m 19019-21 m 19318-20 m 1944-5 m /$ $3-16 \mathrm{w}$ Has there been so much infanticide??? See the Chapt. on infanticide.- 197 5-8m $2045-7 m 207$ 1-6m, 7-9m, 10-15m 208 wt can this account for races formerly modified \& then being stationary: but now acting a little $1-10 m, 6 a$ "earlier" but not earliest $7-9 u \leftrightarrow, \uparrow 9 u$ "artificially", $\uparrow 5-3 u \pm 209$ $1-7 m, \quad 10-13 m, \quad 16-19 m \quad 210 \quad 2-7 \mathrm{~m} / 3 u$ "practising polygunia", $7 u$ "originally promiscuous"l?? 211 1-2m, 3-6m 212 1-7m 213 12$14 m 223$ 8-18m $2251-4 m, 7-11 m 228$ 14-19m 229 10-15m $2307-10 m, 12 a$ "of" foreign $12 a$ "stocks" within the group $2331-4 m 2451-5 m$ $2512-7 m 270$ 12-20m $2885-14 m / 1-13 \mathrm{w}$ but it wd hold to female, with which each man was familiar 289 12-16m

McLENNAN, John Ferguson Studies in ancient history, comprising a reprint of Primitive marriage London; Bernard Quasitch; 1876 [CUL, I]
beh
NF 〈pp. 133-34 of Nature, 14 December 1876; review of this book>
133b $8-12 m, 26-30 m, 33-37 m$ 134a wt I think McL always believes that Lubbock implies by marriage monogamy 3-10m]

MACQUART, Justin Facultés intérieurs des animaux invertébrés Lille; L. Daniel; 1850 [CUL]
beh, em, h, he, ig, no, or, phy, sp, sx, tm
NB $p 2, p 6, p 10, p 14, p 95, p 111, p 112$, p149, p210, 218, 230, 243, 264 a miserable Book
SB 2 Condillac on Instinct being only Habit NQ
6 Duges definition of instinct, as Hunger \&cReflex action; True instinct NQ
14 Flourens Reflexion distinction of man NQ 210 Instinct of larva of Meloes hard to account for by gradation NQ
218 Larva of Hydrophilus shams death, as does one species of Zygaena NQ

2 26-30m/29-30u "cependant | toujours"/wb Hereditary Habit. 4 11-12m 6 22-25m, 27$33 m 77 u$ "Dugès" $/ w$ What written? 15-20m/ $16 w$ Reflex action $31-34 m / w$ True instinct 10 $\begin{array}{lllllll}12-13 m & 12 & 1-6 m & 14 & 5-6 m & 95 & 17 u\end{array}$
"d'Hermaphrodites | Androgynes", 17w What difference? $11119-31 \mathrm{~m} / 30-31 \mathrm{~m} / \mathrm{wb}$ They can do more, or as much, with fewer organs.-$1128-13 \mathrm{~m} / 9 \mathrm{u}$ "sanslefforts" 149 1-2m $2107-$ $11 \mathrm{~m} / \mathrm{w}$ How did this instinct come? $13-18 \mathrm{~m} / \mathrm{w}$ Human cases show that larvae can survive \& live 218 31-33m 230 26-30m 243 1-15m 264 4-11m

MAGNUS, Paul Wilhelm Beiträge zur Kenntnis der Gattung Najas L. Berlin; Georg Reimer; 1870 [Linnean Society of London, I] $9 z t 1114 m / c \notin 3316-18 m 3611 \notin \bigotimes_{0} 37$ 介 20 m , $\Uparrow 15 m, \Uparrow 10 m 456-12 m 6110 \notin\langle C D ?\rangle$

MALLERY, Garrick A collection of gestures and signals of the North American Indians Washington; Government printing office; 1880 [Down]

MALLERY, Garrick Introduction to the study of sign language among the North American Indians Washington; Government printing office; 1880 [Down]

MALLERY, Garrick Sign language among American Indians, compared with that among other peoples and deaf-mutes Washington; Government printing office; 1881 [Down, I]

MALM, August Wilhelm Göteborgs och Bohusläns Fauna, Ryggradsdjuren Göteborg; Göteborgs Handelstidnings Aktie-Bolags Tryckeri 1877 [Down, I] $\wp 0$

MALTHUS, Thomas Robert An essay on the principle of population 2 vols., 6th edn; London; John Murray; 1826 [CUL, pre-B but S in vol. 1 C. Darwin April 1841]
beh, ex, f, h, no, 00, ta, y
vol. 1 NB In the British Critic or in the Critical Review for 1804 Review of Malthus by W. Taylor of Norwich
(Savages purchase wives - get arms \& tools)
(Expelled natives with no stones near death) 5 Increase in U. States; 6 According to Euler SB1 3; 29; 23; 41; 81; 343 Doubleday; 499; 517; 519
SB2
3 Malthus \& Franklin saw the law of increase in animals \& Plants clearly
23 Allows increase of some very population may be * prevented by powerful \& obvious checks.
343 Force of life in each country in inverse ratio to Fecundity (Doubleday)
malthus
517 On Doubling in U．States in 25 years〈Also attached，a letter to the editor of the Times）

2 21－22Q 3 3－6m 5 12－16m，21－25m 6 10－ $14 m 2330-32 m 29 w b$ Even in savagest life some preventive check，for all savages do not marry quite young，have generally to purchase wife \＆prepare tools and implements．－ $4115-17 \mathrm{~m} 8112-18 \mathrm{~m} 343 \mathrm{wt} /$ $1-4 w$ This is much the same as to say well－ fed are less fecund．－ $7-9 m /!$ ， $22 m / u$＂mosgt 1 countries＂， $27 \mathrm{~m} / \mathrm{u}$＂M．Muret＂，$w b$ give note after Doubleday 344 4－6m，15－17m，22－23m 352 23－28m／24u＂487／379＂，wbc屯，wb preventive checks come into play．－ $3539 u$ ＂preventive check＂ $4996-8 \mathrm{~m} / \mathrm{w}$ \＆animals 517 $10-19 m 51914-18 m, 22-24 m 52116-18 m$ ，22－ 27 m vol． $2 \wp$

MALTHUS，Thomas Robert An essay on the principle of population 6th edn；London；John Murray； 1826 ［vol． 2 only；Down，pre－B，ED］
〈markings presumed to be by ED＞
MANTEGAZZA，Paolo Fisiologia del piacere 5th edn；Milano；G．Bernardoni； 1870 ［CUL］ beh

NB Like dog not wagging tail when it gets food
119 1－14m 483 1－11m，15－18m，17－20m，22－ $30 \mathrm{~m} 4847-9 \mathrm{~m}, 15-16 \mathrm{w}$ illust．ion $26-34 \mathrm{~m} 485$ $1-5 m, 7-11 m, 12-16 m, 17-20 m, 22-29 m, 30-$ $34 m 4861-34 m 4893 m / w 649128-34 m 492$ 8－9m 497 3－8m 522 7－10m，12－17m，26－30m， $31-34 m 56517 m 56714 m$

MANTEGAZZA，Paolo Fisionomia e mimica Milano；Fratelli Dumolard； 1881 ［Down，I］ \wp

MANTEGAZZA，Paolo Rio de la Plata e Tenerife Milano；Gaetano Brigola； 1867 ［CUL， I］
beh，$h, s x, t, t m, v$
NB
［Seeing what a passion for se it is strange that races of man not more altered．］
658792
Q 162163 166－67 186－87
320－325 334352389391453457 458－9
463465525 to 546615624676 X
tembeta
American \＆Negro Beards
A 525 Exaggeration of what he has from nature．
（526 Beards）

529 teeth s
530 －\＆\＆
Nose in all parts of World
525－546 tattoos \＆ornaments
19 4－5m，9－10m $202-10 m 52$ 24－27m，30－ $32 m, 34-36 m 5713-14 m, 24 m 6515-36 m 66$ $1-35 m 7116-18 m 8730-36 m 881-37 m 92$ $26-34 m \quad 9314-36 m 9416-35 m 16214-25 m$ ， $27-36 m 16318-24 m 166 \quad 25-36 m 1671-22 m$ $18623-36 m 1871-4 m, 5-15 m 32033-36 m 321$ $1-36 m 32215-19 m, 24-35 m 3231-4 m, 6-16 m$ ， $18-36 m 3241-34 m 3251-21 m \quad 33412-36 m$ $3351-5 m, 8-36 m 352$ 29－36m 353 1－10m 389 $12-16 m 391 \quad 21-36 m \quad 392 \quad 2-6 m \quad 453 \quad 34-36 m$ $4541-36 m 4551-4 m, 5-10 \mathrm{~m}, 13-17 \mathrm{~m}, 21-36 \mathrm{~m}$ 457 29－31m，33－36m 458 1－36m 459 1－5m，9－ $12 m, 16-20 m, 24-35 m 4635-7 m, 10-14 m, 21-$ $36 m 464$ 17－31m 465 6－11m，16－35m 511 15－ $19 m \quad 525 \quad 21-30 m / 23-28 w$ Man always exaggerates what he has $5261-24 m / 7-9 w$ Calmuks beardless $16-17 \mathrm{~m}, 16-27 w$ New Zealand No woman for Hairy man．$w b$ As from T．del Fuego to Vancouver Isd（Sproat） ie Lat to Lat New Zealand the natives eradicate the beard－not likely to be merely handed down fashion or custom；but dependent on the general principle of man exaggerating natural characters． $5274-21 m *$ 528－546（m on every page except 542－544 inclusive） 528 1－20w deformation of Head （also Mentioned by old Classical writers） 529 $15 u / w \tau, 15-18 \mathrm{~m} / \mathrm{w}$ women $18 u / w \tau, 24 u$＂Alto Nilo＂， $25-26 u \leftrightarrow 5308-10 \mathrm{~m} / 9 u$＂averlcani＂， 21－22m， $24 w$ Nose 531 23w Lips 532 22－23m／ u＂donne inferiore＂／w women 533 wt lower lip 4 inches in diameter $1-3 m / x / 3 u$＂quattrol diametro＂， $24-31 m, 24-31 m / \rightarrow / 24 u$＂tembeta＂／ $30 u$＂con I gioia＂$/ w b$ curious account of man who sold his tembeta from lower lip \＆was ashamed of hole left \＆all laughed at him．－ $5342-5 m / w$ women with upper lips perforated $19 u$＂Zenzibar＂$/ w$ Ears $27 u$ ＂Negrilaustrali＂／w Ears 535 6u＂Bali＂／w Earring $8 u$＂Nepal＂／8－9w Nepal earring $12 u$ ＂Car－Nicobar＂／w Ears 24－25w New Zealand Earring $536 w t$ It is curious that face far more operated on than rest of body－in same way as we think more of beauty of face than rest of body．－ $15 u$＂qualche｜spalle＂／ $14-18 \mathrm{~m} / \mathrm{w}$ Ears distended to touch the shoulders．！ $28 u$＂vanità＂， $29 u \leftrightarrow, 27-34 w$ Motive for tattoing－add sign of tribe \＆High birth 537 wt it is curious how in all parts of world，Men paint \＆tattoo themselves－\＆ perforate their ears－In Africa \＆America both lips are perforated \＆distended－Every part of face in some part of world is
perforated- lips cheeks all parts of nose.-5$6 m / 6-7 m / 5-9 w$ old Jews tattooed \& Ancient British $19 u$ "Nuova Zelanda" $19-21 w$ New Zealand \& Pacific Isds $28-31 \mathrm{~m} / 30 \mathrm{u}$ "donne tatuate", $30 \mathrm{~m} / 31 \mathrm{w}$ women less tattoed 32 $33 m / u$ FN 538 1-5m, 3u "Nuova Caledonia"/3$7 \mathrm{~m} / \mathrm{w}$ New Caledonia tattoo 6 m , "Non-hiva", $10 \mathrm{~m} / 11 u$ "donnelgodono" $10-16 \mathrm{w}$ Tattoo but not women except partially $5399 u$ "Novao Goda" $/ 11 u$ "menolfaccia" $/ 9-11 \mathrm{~m} / \mathrm{w}$ face not tattoed $26-27 \mathrm{~m} / 27 u$ "Giapponesi" $/ w$ Japanese tattoo $32 u * / 30-32 w$ women only powder themselves 540 wt Women of high birth in some cases allowed to tattoo most.- $1-3 \mathrm{~m} / \mathrm{w}$ Hindoos $6-8 m / 7 u$ " $] \mid$ tatuano" $/ w$ Burmans 13$15 \mathrm{~m} / \mathrm{w}$ sometimes the women 23 u "Etiopia"। 24-25u "strappanole" $24-26 \mathrm{~m} / \mathrm{w}$ tattoo \& pull out eyebrows \& paint lines $5 \mathrm{~m} / \mathrm{wb}$ Tembeta 541 wt (a) Africa tribe-marks also Royal marks (not ©) 1-9m, 11-12m/11u "donnel unghie" $/ 11-16 w$ colour nails \& so in several parts of Africa $18-22 \mathrm{~m} / \mathrm{w}$ (a) 542 wt Women of Kattivar tattoo arms \& \& chin \& are thought * irresistly attractive.- Men. My case N. Zealand or Tahiti 2-3m/u "annevisconol labbra" $/ \mathrm{w}$ paint? * Eyelids $5-7 \mathrm{~m} / 6 u$ "son|attrattiva" $/ w$ (a) $8 u / w \tau, 18-19 \mathrm{~m} / 18 u$ " $\mathrm{In} \mid$ hanno" $/ 20 u$ "Esquimesi" $/ w$ women \& men 26 m $5431-36 w$ They paint themselves in the most diversified manner with various colours - as is notorious.- $11 u$ "vicinilo" $112 u$ "sempre Iagli" $/ 10-16 \mathrm{w}$ S. America tattoo \& paint thinks not for beauty but to look terrible $28 u$ "è 1 livrea"/26-31w The slaves of same master paint in same way as Livery. $33 \mathrm{~m} / \mathrm{u}$ "tatuano" 544 1-2m/1u "invecelsi", $9 u$ "abipone", 11u "quandolnubili", 10-13w Women paint themselves when marriageable $19 u$ "tatuaggio", $21 u$ "laldonne", 20-22w virgins of women $26 u \leftrightarrow / 25-28 \mathrm{~m} / 25-31 w$ Chief of S. America much tattooed in face 5454 $22 \mathrm{~m} / 8 u$ "quelle" 546 1-5m, 11-16m 588 25$26 m 5891-3 m, 4-22 m 59429-33 m 611$ 17$25 m 6157-8 m$, 11-16m 621 12-19m 623 23$28 m, 31-36 m 62414-17 m, 19-36 m 6251-18 m$ 645-647 , m/w $6767-32 m$

MANTEGAZZA, Paolo Studii antropologici ed etnografici Firenze; Tipografia dell'arte della stampa; 1877 [Down, I] \wp

MANTEGAZZA, Paolo Il terzo molare nelle razze umane Firenze; 1878 [Down, I] rd

NB Shows that the wisdom tooth is really being rudimentary

MARCHAND, Étienne Voyage autour $d u$ monde 5 vols., introduction by C.P. Claret Fleurieu; Paris; Imprimérie de la République; 1792 [Down, pre-B] \wp

MARSHALL, William Minutes of agriculture made on a farm of 300 acres of various soils, New Croydon, Surrey London; J. Dodsley; 1778 [CUL, pre-B, I]
MARSHALL, William A review of the reports to the Board of Agriculture from the northern department of England York; Thomas Wilson \& Son; 1808 [CUL, pre-B, belonged to Josiah Wedgwood]
ch, cs, or, $\mathrm{sl}, \mathrm{t}, \mathrm{ta}, \mathrm{v}$
NB Please do not rub out these numbers Ch. Darwin
50; 73; 74; 78; 80; 95; 97; 99; 115; 153; 154; 196; 200; 202; 295; 303; 403; 404; 406; 480; 487; 489
SB $\square \beta$
78 Oats - varieties very transient
192 Origin of Potato Oat in Potato Field 200 On the want of Uniformity of the unshepherded sheep in different parts of England, whereas those within fences, each have uniformity - owing to crossing
295 Great attention paid to changing sets of Potatoes
406 Speaking of sheep, on common of Yorkshire "as they are mostly in small lots they can never be improved"
$5014 m 7325-31 m 7430-31 m 789-11 m 80$ 12-18m, 26-29m 951 m 97 37-38m 99 17-20m, $25-27 m \quad 100 \quad 5-7 m \quad 115 \quad 29-36 m$. 153 2627 u "byladvantage", 27-28u "areldisadvantageous", 38m/u "preserve lold" 154 21-23m 177 14-15m 192 5-10m, 12-25m 196 30-31m, 34-37m 200 8-18m, 25-31m/25-26u "Sheep| in"/Q* 201 14-19m/15u "p.199"/w Selection $32-35 m 20214-16 m / x / w b \times$ But it does not follow that the aboriginal stock varied like present mixed unshepherded sheep $22-24 m$, 27-29m, 37-38m 262 12-13wec 295 wt 1808 $8-9 m / 7-12 w$ seeds or false bulbs? 20-21x, $26-27 m$, wb X Lancashire great authority in Potato crops 296 1-6m 303 9-10m, 11u "curl", 19-22m, 37 m 403 12-18m/12u "which on" $114 u$ "plow|discernable" 404 17-20m/17u "be suited" $/ 18 u$ "soils I climatures" $4052-4 m / 3 u$ "beltwo" 406 19-21m, 38-39m 480 32-34m 487 27-29m/27u "mixed \mid two" $48927-32 \mathrm{~m}$

MARSHALL, William E. A phrenologist amongst the Todas London; Longmans, Green $\&$ Co.; 1873 [CUL, S]
beh, ex, h, no, sx, t

MARSHALL, TODAS
SB p100 Infanticide
110 do \& cousins marrying.-
193 infanticide Britons
194 infanticide extinct with Todas
196 good evidence
204 Polyandry among the * barbarians surrounding the Jews
212 Todas girls can reject a Man * they are in a very primitive condition \& the damsel bought for Buffaloes
225 Natives promiscuous union was aboriginal
228 causes of Polyandry
232 polyandry \& female infanticide always together or the latter has existed
as number of sexes differ in animals there must be some other causes than infanticide
xi $26-28 w$ O/ xii $22-23 m$ xiii $16-17 m, 23 m$ xvi $14-16 \mathrm{~m} 1 \mathrm{zb} 213-16 \mathrm{~m}, 22-25 \mathrm{~m} 8$ 介 $17-9 \mathrm{~m}$ 81 17-19m $83 \quad 26-29 m 997-10 m 1005-10 \mathrm{~m} /$ $9 u$ "Suspected" $1015-8 m 1106-10 m, 34-35 m$ $1113-6 m, 13-15 m, 17-30[\ldots], 24-33 m 12315-$ $23 m 12421-22 m, 23-24 m 1251-3 m 1367-$ $13 m 14215-18 m 145 \Uparrow 4-1 m 154$ 27-32m 160 $\Uparrow 1 m 1661-3 m 1766-10 m, 12-13 m 1804-5 m$, 11-13m 193 20-22m 194 23-31m 195 31-33m $196 \quad 4-10 m \quad 198 \quad 19-23 m \quad 204 \quad 14-18 m / w$ Semites polyandrous $25-28 m 206$ 6-9m 212 $1-4 m 213 \quad 28-32 m 215$ 1-4m 225 7-11m 228 12-19m 229 6-9m 232 15-22m 260 1-2m 263 29-30m

MARSHAM, Thomas Coleoptera Britannica 2 vols.; London; J. White; 1802 [CUL, vol. 1 only, pre-B, S]

MARTIN, W.C.L. The history of the dog London; Charles Knight \& Co.; 1845 [CUL]
beh, br, cs, ds, gd, h, he, hy, 00, or, sx, sy, ta, tm, v

NB 1 to $21 ; 18$ cross Rabbit \& Hare
$52 ; 61$ to $71 ; 78 ; 84 ; 104 ; 107 \& 8 ; 114$ to end
SB $\square \beta$
14 Dog in Zoolog. Garden Q learned to Bark 18 Proc. Zoolog. Soc. Hybrid Hare \& Rabbit I see M. doubts parentage of Richardsons Dogs
p. 31 admits only a cross with such

51 Dogs of antiquity Q
63 Remarks on instinct : barking do. acquired
67 Yarrell Zoolog. Soc. Proc. on Hairless Dog toothless Q
104 First Dog affects subsequent puppies
106 Classification of all Vars Q

116 Esquimaux \underline{Q} taking Wolves to improve Breed
146 Rough Greyhound aboriginal form QN 154 In Greyhound females smaller 180 On a Dog liking to catch carp \& trout \& M. Jukes mentions another Dog in Lapland ch. 6)
203 African Dogs in Tower never bred Q
title page $w b 1845512-13 m 76-8 m$, 15$16 m, 25-27 \mathrm{~m} 911-12 m, 17-21 m 113-4 m 12$ 29-32m $14 \quad 10-11 m / Q 15 \quad 1-2 m 18 \quad 2-4 m$, $9-$ $13 m, 18-19 m 19$ 9-12m $2126-27 m 316-17 m$ $4510-12 m 464-7 m 47$ 27-28m 49 13-31m/16$17 u \leftrightarrow / 25 u$ "old turnspit" $/ 27-28 u$ "most 1 dog" $513 w$ peculiar $5227-32 \mathrm{~m} 5311 \mathrm{~m}, 13-16 m$, 14-17m, 18-22m/22u "andlextant" $549-11 m$ $572-3 m, 8-9 m / u$ "tolears", $17 m, 28 m 613-$ $7 \mathrm{~m}, 19-20 \mathrm{~m}, 23-24 \mathrm{~m}, 25-26 \mathrm{~m} 624-5 \mathrm{~m}, 11$ $14 m 63$ 15-23m/18-21"..." 64 10-11m/"...", $27-29 m, 29-32 m 654 u$ "is an acquired", 5-8m, $23 u$ "all \mid scent" $672-4 m, 9 m, 18-21 m, 24-30 m$ $701-2 m, 11-13 m 71$ 介14-6m $781-6 m 8410$ $15 m 10421-24 m, 26-31 m 10610-35 m 1085-$ $8 m 11427-31 m 11513 u$ "great ltrue", 21-24m $116 \quad 11-15 m / 14-15 u \leftrightarrow 126 \quad 21-25 m \quad 128 \quad 14$ $22 m 129$ 13-18m 131 29-32m 132 21-24m 134 26-32m 136 9-11m 137 16-18m/17u "All। were", $21-24 m$, wb H . Smith wd say from crossing 139 14-15m/14u "smooth|sprung" 143 4-9m $146 \quad 20-30 m \quad 147 \quad 1-4 m 148 \quad 1-2 m$ 152 2-6m 153 26-28m 154 23-26m 155 16$20 m 170$ 3-10w St Bernard Dog 9-15m 173 19-22m, 21-23m 176 27-32m 180 29-32m 181 wt Jukes mentions dog in Newfoundland 1$4 m, 21-23 m / 22 u$ "abbreviated" 192 13-16m 202 $22 u$ "Central Africa" 203 7-9m/8u "wonder bred"/Q $14-17 m / 15 u$ "related 1 hound", $18 u$ "old Spanish", $19 u$ "vigorouslactive" 204 27-29m/ $28 u$ "which 1 quarter" 205 1-5m 212 6-10m 215 5-6m, 22-24m 216 5-8m

MARTIN, William Charles Linnaeus The history of the horse London; Charles Knight \& Co.; 1845 [CUL]
beh, fg, fo, gd, geo, gr, hy, is, or, phy, ta, v, wd

NB 28 to $50 ; 86 ; 97 ; 129 ; 134 ; 155 ; 159 ;$ 167; 169; 171; 177; 190; 202; 205; 208; 211; 212; 220; 221 to end
SB $\square \beta$
41 Tarpans scrape snow with feet Qu
97 Red-Back Horses only asinine in colour Q
129 Period of gestation differs very much.
Q×
134 Dappling in black, Bay \& Gray Breeds Q 206 Striped common ass \& Mule 212

207 Ass more variable than generally supposed: 3 breeds in Syria 222 Zebra Mules Q
title page $w b 1845614-23 m 813-19 m 10$ $18-24 m \quad 123-12 \mathrm{~m} / \mathrm{w}$ Brazil cases $16-20 \mathrm{w}$ Beavers $24-38 w$ There are no regular strata, young enough 21 17-21m $2839-40 \mathrm{~m} 30$ 23$26 m 31$ 19-21m $341-6 \mathrm{~m} / 3-4 \mathrm{Q} \mathrm{m}_{\mathrm{a}}$, 15-19m, 31$33 m, 38-39 m 355-8 m, 32-38 m 361-4 m 372-$ $6 m 4015-20 \mathrm{~m} / 12-17 \mathrm{w}$ ie real wild Horse 41 2-4w S. wind Falklands $5-8 \mathrm{~m} / 7 \mathrm{x} \mathrm{k}_{\mathrm{c}}, 37-40 \mathrm{~m}$ $481-3 m 508-13 m 6230-35 m 631-4 m 863-$ $7 \mathrm{~m}, 35-39 \mathrm{~m}$ 87 12-15m, 27-33m, 34-36m, 38$40 \mathrm{~m}, w b$ Are horses found * in Peat Bogs?-$883-8 m$ 89 1-5m, 6-9m 97 24-29m/25-26Q $1296-10 \mathrm{~m} / 9-10 \mathrm{Q} \pm$, $25-30 \mathrm{~m}, 40 \mathrm{~m} 13023-27 \mathrm{w}$ like Roulin mules $26-33 \mathrm{~m}$ 134 $13-16 \mathrm{~m} / 15 u$ "still \backslash circles", $18-20 \mathrm{~m} / 18-19 \mathrm{~m}, ~ 23-27 \mathrm{~m}, 31-$ $32 m 15519-21 m 15933-41 m 1601-4 m 167$ $6-9 \mathrm{~m} / 9 \mathrm{u}$ "mouflon ranges", 10-12w insular quadrupeds 169 19-23m/22u "several ponies"/ $20-24 w$ not all aboriginal $29-30 \mathrm{u} \leftrightarrow, 34-37 \mathrm{~m}$ $17136-40 \mathrm{~m} 1721-4 m 1777-9 m, 27-33 m 190$ $34-39 m \quad 202 \quad 5-10 m \quad 205 \quad 14-16 \mathrm{Q} \quad 16-17 u$ "clouded | ground", $18 u$ "dapple", $26 u$ "dorsall bar", $35-40 \mathrm{~m} / \mathrm{Q} / 40 \mathrm{u}$ "double cross" 206 1-4m, 9-13m/Q 17-22m/18-19m/ues "small \mid breed"/ $21 u \pi_{0}$ "Syrian ladies", 28-29ma, 34-36man
 "saddle", $40 \mathrm{~m} / \mathrm{u} \mathrm{E}_{\mathrm{s}}$ "is 1 stout" $2082-4 \mathrm{men}, 7-$ $9 m 20927-29 m 211 \quad 2-4 m \leftrightarrow / 3 u$ "Genesis $x x v i " 212$ 4-7m, fig.Q 218 23-26m 220 2124m/Q 221 19-24m (Thomas Bell), 33-37m 222 $4-9 m, 35-37 \mathrm{~m} 2237-9 m, 11 u$ "was 1 dun", $18 u$ "drab|dun"/Q 23u* "more|down" 124 u "side 1 fetlocks" $/ 22-25 \mathrm{~m} / \mathrm{w}$ Burchells Zebra \& Ass

MARTIN-SAINT-ANGE, Gaspard Joseph Mémoire sur l'organisation des cirripèdes Paris; J.B. Baillière; 1835 [CUL]
beh, af, ci, phy, sx, sy, tm
2 19w 18067 22-24m 8 24-25m 9 26-28m 10 1-4m, 8-10m $118-9 m, 21-22 m / w$ does not mention inner tunic of sack $25-28 \mathrm{~m} / \mathrm{w}$ are these muscles in 6 bundles 13 15-16m/1620 w Does not perceive homology $22 a / u$ "seconde" $/ w$ double $23-24 \mathrm{~m} / \mathrm{w}$ all right $23 u$ "en| même"/24u "les|une"/26m/23-31w does not state that this is the conum for inside of - $32 u / 32-33 m / w$ pedical not articulated 14 11-15m, 21-24m/X, $\Uparrow 1 x$, wb Does not describe much of pedicel of body- 15 wt Cirri power of separating from each other \& two rows from each other $1-2 m, 4-5 m, 6-12 w$ does not mention much of dorsal articulation $14-15 w$ or their attchm to 2 d joint of pedicel 22-24m/16-24w knows nothing about
apodeme or homology $28-30 u \pm / w$!! 4 pair, right Considers palpi as Mandibles $30 u$ "langue"|wb ? \& p. $23165 u$ "une ligue" 1 ?, $6 u$ "muscle constrictor", $10 x, 12 w$ does not moulting $14-16 \mathrm{~m} / \mathrm{w}$ quite right $26 x, 33 x$, wb a single caecum!! $177 u$ "d'une lenfoncemens", $9-12 \mathrm{~m} / \mathrm{w}$ I always have found loose. $16-18 \mathrm{~m} /$ $16-33 w$ is not aware of the distinctness of rectum shown by moulting, for he does not describe the two coats - or two coats of oesophagus. $w b$ I believe it contracts itself, when separated by the cloche of rectum 18 $10-12 \mathrm{~m}, 13-14 x$, 14-16m, 17-19m, 20-29w ie what I have called - oviduct - There is hollow in middle of pedicel of body 19 17$25 \mathrm{~m} / x / 18 u$ "filet \mid salivaire" $/ 24 u \pm, 30-33 \mathrm{~m} /$ x / w thinks legs thoracic!! $w b$ is this owing to basal joint being confluent?! probably 21 2-4m, 11u "la queue" $/ 10-11 \mathrm{~m} / \mathrm{w}$ No $16-17 x$ $227-8 m$, 9-17w Male organs differ considerably from those of a true Crab. 23 $23-24 \mathrm{~m} / \mathrm{w}$ this must be when agitated by fear $26 u$ "petite langue" $\mid 27 u$ "deux dernières" $\mid 26-$ $29 \mathrm{~m} /$? $2415-18 \mathrm{~m}, 24-30 \mathrm{w}$ is edge of oesophagus fixed to stomach? I think so $z b /$ $w b$ ant support Dorsal support muscle attached to end of spoon \& opening valvular mouth 25 wb Look at stomach of B. candidus - $2628-30 \mathrm{~m} / \mathrm{w}$ in Polliceps too hard to contract surely.- $271-3 \mathrm{~m} / 2 \mathrm{u}$ "sur| repli", 6$9 m 291-11 w$ Body generally bent a good character Articulation oblate except 5. posterior abdominal segments. $26-30 \mathrm{~m}-30$ 26-27m $3625-27 m!!/ w$ wrong $371-3 m!!/ w$ No $6-9 \mathrm{~m} / 8 u$ "branchires" $/$?, $12 w$ Yes $14-15 \mathrm{~m} / \mathrm{w}$ Yes $20 u$ "autre part" $119-23 m /!/ w$ No $22-$ $23 m!!/ w$ No $26-27 m, 29 w$ Yes $33 u$ "sac membraneux"/w No 38 1-3m 41 9-11m Plates〈parts of animals named)

MARX, Karl Das Kapital vol. 1; Hamburg; Otto Meissner; 1873 [Down, I] \wp

MASARYK, Thomas Garrigue Der Selbstmord als sociale Massenerscheinung der modernen Civilisation Wien; Carl Konegen; 1881 [Down] \wp

MASKELYNE, Nevil Tables requisite to be used with the Nautical ephemeris 3rd edn; London; 1802 [CUL, pre-B, on B, S]

NF wed

\Rightarrow When barometer stands higher than the neutral point the Capacity is to be added: when lower it is to be subtracted The logs at end of this book to be used.

MASKELYNE
NB 〈a drawing〉
$57 w$ p. 1 These tables are explained at end 62 wbuca

MASTERS, Maxwell Tylden Vegetable teratology London; The Ray Society; 1869 [CUL]
he, mhp, mn, sp, tm, v
NB 29; 90; 320 phyllotaxis; $204 \boldsymbol{\sim}$; 340; 373; $404 \boldsymbol{\checkmark}$ Cleistogam flowers; 410; 424; 467; 472; $478 \checkmark$ Pang; 483; 485; 486; 488 SB
A $\langle n o t C D\rangle$ Masters on Teratology
29 Cohesion of stamens in exaggerated degree as in normal species
$2926-32 \mathrm{~m} 9021-26 m$, fig. 42.m $911-4 m 131$ $30-32 m \quad 204 \quad 12-20 m \quad 251 \quad 7-9 m \quad 253 \quad 24-26 m$ $32018-28 m 3403-13 m 3737-8 w$ other cases 10-16m 404 2-18m 410 1-6m $42430-42 m 467$ $13-34 m 472 \quad 27-34 m 478 \quad 6-14 m 479 \quad 2-14 m$ 481 1-3m (Bentham) 483 20-22m 485 11-19m 486 16-29m 488 15-23m $534 z b$

MATTHES, Benno Betrachtungen über Wirbelthiere Dresden; 1861 [CUL.1900] \wp

MATTHEW, Patrick On naval timber and arboriculture Edinburgh; Adam Black; 1831 [CUL, S C. Darwin Apr. 13th 1860] h, $00, \mathrm{sl}, \mathrm{sp}, \mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}$
NB 32 Oaks 2 vars or species sessile \& peduculated
107 on selection of Forest-trees why not flowered
302 Occupancy like Herberts view of plants not growing in soil best suited to them
307 on Selection good Man interferes with law \& this causes variation.
357 Size of English \& Scottish acorns \& quicker growth of tree from English Acorns
364, 381 Law of Natural Selection published
in G. Chronicle April 7th 1850
$\langle C D ?\rangle$ 364-5, 381-3, 106-7
$328-17 m 1065[\ldots 1076-19 m 108 \Uparrow 11 \ldots] 302$ $14-25 m 3031-6 m 30724-26 m 308 \quad 2-17 m 328$ $30-31 m \quad 357 \quad 22-27 m \quad 358 \quad 18-21 m \quad 365 \quad 8-9 u$ "morelkind" 381 5[... 382 17-21m/w too near to 29 u "nearlyliving" $3831-4 m, 27-29 m{ }_{0}$ 388 10...]

MAUDSLEY, Henry Body and mind London; Macmillan \& Co.; 1870 [CUL]
beh, h, he, mn, pat, sx, t, tm
NB1 * p. 48 Hand of idiots - thumb not used in
NB2 p51 Idiots smelling food see Scott Deaf
\& Dumb - p86
p7,8,10 \& all 1st Chapter
53 Savage snarl - Selection
p47-49,51 Reverse idiots Hair After Vogt \& idiotcy
p. 55 Brain weight

59,60 Moral Sense
62 - Brain Wanting parts
All referred to proper places
p10 . Savage snarl of Habitual MicrocephO Insane Reversion
p29,p85 Devotion
$29 m, z b 76-18 m 83-7 m / 3-13 " \ldots " / 8-13 m 10$ $28-30 \mathrm{~m} /{ }^{\prime \prime} .$. " $117-11 m, 14-18 m 127-12 m 13$ $1 u$ "ganglionic nuclei", $2 u$ "arelwith" 2829 $30 m$ 29 16-22m/19w devotion $305-9 m 31$ 19$23 \mathrm{~m} / 23-25 \mathrm{~m} / 20-29 \mathrm{w}$ like other secondary sexual characters $413-7 m 4710-15 m$, 19$27 m \quad 48 \quad 23-24 u \approx$ "oftenl hands", 25-27m/ $27 u$ "shortlcheek", 30u* "filthy" 49 16$22 m / 17-18 u \leftrightarrow 5029 u *$ "dirty in" $513-7 m /$ 3-4"..."/Q 24-29m, 29-30w smelling 30-32m, 32-33us "his 1 smell", 35-36m $531 u$ "savage snarl" $11-3 \mathrm{~m} / \mathrm{Q} 55$ 10-16m (R . Wagner) 59 1$18 \mathrm{~m} / 7 \mathrm{w}$ H. Spenc $604-8 \mathrm{~m} / 5-7{ }^{\prime \prime} \ldots$ ". $/ \mathrm{wt} / 1-7 w$ sympathy \& social affection deteriorated wd suffice $62 \Uparrow 3-1 \mathrm{~m} / \mathrm{w} \bigcirc$ wanting parts 67 zb 85 11-14m

MAUDSLEY, Henry Body and mind London; Macmillan \& Co.; 1873 [Down, I] \wp

MAUDSLEY, Henry The physiology and pathology of mind London; Macmillan \& Co.; 1868 [CUL]
beh, h, pat, phy, sl, sx, tm

SB1 -0 Man

Maudesly on \approx Mental Phys; p. 220 p. 19 p311 imagination
54 Brain of Bushwoman
108 Language \& Expression \Leftrightarrow

- Good

SB2 \rightarrow Maudesly on Insanity; Expression; 103; 104; 109; 148; 158; 160; 193 (?)
SB3 $-\beta$
19 Man; 54 do; 72; 89; 103 Use increasing sensitivity of senses; 104 Instinct; 108 Origin - term of Natural Selection -; 109; 132. Man (good) Q; 148; 158 Expression; 160; 193; 220 Man (Imagination); 311; 199 Laura Bridgman The tongue grt organ of speech
Look over
Slips all put in proper places
$1928-34 m 54$ 9-20m 72 8-14m, 21-25m 89 25-30m/26w Drosera 103 12-20m 104 26-34m

105 34-39m 109 8-12m 125 28-37m $13430-$ $31 u$ "of \mid places" $/ 32 u$ "senses 1 again" $/ 29-33 m / w$ looks as if man gaining more perfect smell $148 \quad 7-10 m \quad 149 \quad 19-21 m /!/ 20-21 u \quad$ "selfexpansion" 158 32-34m, 35-39m 159 13-17m 160 11-15m 193 31-39m $19914-20 m, 27-36 m$ $220 \Uparrow 3-1 m 311$ 18-24m (Coleridge)

MAUDSLEY, Henry The physiology of mind London; Macmillan \& Co.; 1876 [Down, I by publisher]
beh
NB 384 Expression
270 19-20m 384 31-36m 385 5-6m

MAWE, John Travels in the gold and diamond districts of Brazil new edn; London; Longman, Hurst, Rees, Orme, Brown \& Green; 1825 [CUL, pre-B, on B, S Chas. Darwin Octob: 1832 Buenos Ayres]
$1827 u$ "fazenda"/w Brazilian
MAXWELL, James Clerk Matter and motion London; Society for promoting Christian knowledge; 1882 [Down, FD]

MAZAROZ, Jean Paul La Genèse des sociétés modernes Paris; A. Lévy; 1877 [Down]

MEDLICOTT, Henry Benedict and BLANDFORD, William Thomas A manual of the geology of India 2 vols. and a vol. of maps; Calcutta; 1879 [Down, I]

MEEHAN, Thomas The native flowers and ferns of the United States 2 vols.; Boston; Prang \& Co.; 1878 [Down] \wp

MEETKERKE, Cecilia Elizabeth The guests of flowers London; Griffith \& Farran; 1881 [Down, I]

MEITZEN, Ernst Bhawani Leipzig; E.H. Manen; 1872 [Down]

MELIA, Pius Hints and facts on the origin of man London; Longmans, Green \& Co.; 1872 [CUL]
beh, pat
NB p. 47 can these statements be true? Deaf \& dumb do not know what right \& wrong is As dogs have social instincts it is incredible that deaf \& dumb shd not - though I daresay they do not know what is called right or wrong
∞ But no doubt they may have social instincts \& family affections which wd prompt them to right action.
47 18-23m
MENGOZZI, Giovanni Ettore Della filosofia della medicina vol. 1; Livorno; Scuola italica; 1869 [Linnean Society of London, I]

MERRIAM, Clinton Hart A review of the birds of Connecticut New Haven; Tuttle, Morehouse \& Taylor; 1877 [Down]
beh, ch
NB 52 Changes in Habit of Birds
52 23-34m
METZGER, Johann Die Getreidearten und Wiesengräser Heidelberg; C.F. Winter; 1841 [CUL]
ad, cc, ch, ds, gd, mhp, no, sl, sp, ta, tm, v, wd
NB N.B. The cases of grains changed from Summer to Winter wheats \&c is rather a different course of variation from anything which I have hitherto considered; an self adaptive power
12; 24; 36; 47; 50; 54; 56; 63; 65; 66; 68;
88; 90; $96 ; 114 ; 116 ; 137 ; 185 ; 206$ to 217
SB $\square \Re$
18 Summer \& winter Barley differs only in constitution \& easily goes back 54 Wheat do.- a self adaptive power, a habit -
24 Naked Barley changes into common
63 advocates change of seed in Germany
66 \& 116 var varied at first, \& then came more (20 years) constant being accustomed to climate 25 years This fact very important for shows yet accustomed to change.
69 a var. not injured by late frosts.
91 vars. variable in one climate not in others 116 so in different soils
114 a very constant var; many unconstant mentioned.
206 on Maize, difference in height \& period of Vegetation; says American seed gives plants which become acclimatised \& altered in form - Each land has its own form; form of seeds \& number of rows differs.
208 Description of changes in Maize from American seed, 210 due to climate, so quick - Change in period of ripening. - Variation (p.212) comes on in Europe; \& American vars. quickly take European Character. 217 very early Maize. [Believes all maize one species \& gives reason for]
All used

METZGER
title page wt 3 Herbacious 4 oats $912 w$ $1121 w^{*} 21835-37 m, w b$ no difference between summer \＆winter barley except time of sowing \＆ripening \＆will go back again （NB so it is in Mexico） $191-2 m, 31-32 u$ ＂einelhat＂，wb might be quoted as constitutional difference with no external difference $244 u$＂Wirlbemerkt＂，6－10w changes in common Barley $32-36 \mathrm{~m} / \mathrm{w}$ naked seeds $271-2 w 33613-14 m / u$＂weill ausartet＂ 47 19－21w no Botanical difference $23-25 \mathrm{~m} / 23 w$ changes $503-5 \mathrm{~m} / 4 \mathrm{w}$ changed wb to p． $12054 \quad 29-32 \mathrm{~m} / 31 u$＂Aussaat Frühling＂ 56 30－31u＂DieselÜberzug＂，31－ $35 m 5712-13 m / 12 u$＂jedoch｜sich＂， $27 u$＂artet 1 Spielart＂， $28 u$＂jetzt keine＂， $35 \rightarrow 58$ 32－33u ＂ist l übergeht＂ $63 \quad 18-25 \mathrm{~m} / \mathrm{w}$ strong on advantages of change of seed $6510-11 \mathrm{~m} /$ $10 u$＂artetlund＂，17u＂Jahrhundert＂ 66 29－ $36 \mathrm{~m} / \mathrm{w}$ varied first year then became more constant 68 9－10m／u＂grösserelKälte＂ 69 $14 u$＂SpäterelSchaden＂ $88 \quad 27-28 m / u$＂und erscheint＂ $9132-34 m / 35 u$＂einen beständigen＂／ $\rightarrow 921 u$＂Charakter angenommen＂， $9 u$＂wohl beständigen＂， $17 u$＂in｜wechselnd＂， $18 u$＂bald 1 länger＂ $9621-24 m 9732-36 m / w$ changes in colour of seed $11417-18 \mathrm{~m} / \mathrm{u}$＂und beständig＂ $116 w t / 1-16 w$ we have seen that some varieties of wheat in a colder climate have been variable，so no relation to food $19 u$ ＂günstigen＂，20u＂magerem Boden＂，21－23m／ $21-24 m / w$ variable for 25 years at last constant $35 m$ ， $38-43 m$ ， $38 u$＂Seitllang－ jährigen＂／41－42w variable 117 17－19m／18－ $19 u \leftrightarrow / 19 \mathrm{~m} / \mathrm{wb}$ । do not see that selection has anything to do with this $13528 w 1137$ wt many trifling cases of Variation not marked $8 m / w \tau, 9-12 m / w$ awns vary in presence $\%$ $14112 w 21451 w 324 w 418513-14 m / w 14$ kinds of Rice $20619 u$＂dem｜Jahrhundert＂， $24 u / 25 u / 27 u / 28 u c \in, 20-27 w$ no plant more variable than Maize 29－32w vegetative periods $32-33 m$ ， $34 u$＂selbst｜Form＂，35－38m， $39 u$＂Dalbesitzt＂，wb the longest－vegetation American kind sowed in our climate in gd year gives seeds which \＆vegetate in shorter time \＆ripen seed，\＆the form \＆ shape of seed alter \＆become like common German 207 13－15u＂Reihe I Samen＂，23m， $28 u$ ＂eine Stammform＂ $24-35 \mathrm{~m} / \mathrm{w}$ thinks all maizes same species though some forms more persistent 208 〈many m, u ） $6 u * / 7 u$＂Flach＂／ $8 u$＂kleinen Zahn＂$/ 8 u * / 5-9 m / w$ shape of seeds seems to vary greatly $10-11 w 12$ Unter－art． 13 u＂12 Fuss＂， $14 u$＂oberen＂，22－ $24 m / 22 u$＂ $9 \mid$ Fuss＂$/ 23-25 m / 21-26 w$ some seed of 1 st year seedlings departed from type 27－ $35 u \pm, 28-36 \mathrm{~m} / \mathrm{m} 209 \mathrm{wt}$ see Description
$1-7 m$ ， $1-6 m, 1-7 u \pm, 8 m * / u *$＂ $12 \mid$ Samen－ reihen＂， $9 u$＂längerlbreit＂，10u＊＂Zahn＂， $16-18 m / 15-22 u \pm / 18-20 m$ ， $29-33 m$ ，33－34w same variation as above $w b$ two vars． returning into one．－） $2103 u$＂Engelmann＂／wt good man 9－14u士／wt／1－18w［These are the most striking facts of effect of climate．18－ $20 \mathrm{~m} / 18-22 w$ no one wd really believe in such change $22 u$＂Chicken corn＂，23－24w a more constant form $26 u$＂ 12 ＂$/ 25-28 w$ rows of seeds differ $29 u$＂ersten Jahre＂， $34 u \leftrightarrow 211$ 14－ $15 \mathrm{~m}, \quad 15-18 u \pm, 24-25 \mathrm{~m} / \mathrm{w}$ long cultivation fixing forms $34 u$＂starkenlausgehend＂$/ 32-35 w$ seeds toothed $2126-7 u \leftrightarrow / w$ wet summer $8 a /$ $u / w \tau, 9 u$＂Diese Spielart＂， $10 u$＂zeigt 1 mehr＂， $18 w$（a） $20-22 u \pm, 24 u \leftrightarrow, 35 u$＂rund ${ }^{\text {gewölbt＂，}}$ wb（a）Every variety seems to change in Europe $2131-2 m, 5-6 m / 5-11 w$ thinks all the European Maizes descended from the two great varieties of America $15 u \pm, 26 \mathrm{~m} / \mathrm{u} \pm 214$ 20－23m $21510 u$＂12－20＂，15m／u＂Stammt Spanien＂，20－30w 3 or 4 Spanish varieties 216 〈u） $3 u$＂unregelmässigen＂， $8 u$＂diel beständig＂， $15 u$＂verzweigten ästigen＂， $22 u$ ＂Kolben 1 kurz＂， 23 u＂meist 12＂， 25 u＂Italien＂， $26 u$＂Cinquantino＂／26－27w Italian 217 9－10m／ x ， $14 u$＂artet laus＂

MEYEN，Franz Julius Ferdinand Beiträge zur Zoologie gesammelt auf einer Reise um die Erde including
ERICHSON，Wilhelm Ferdinand and BURMEISTER，Carl Hermann Conrad Beschreibungen und Abbildungen der von Herrn Meyen auf dieser Reise gesammelten Insekten Breslau \＆Bonn；Verd．der Kaiserlichen Leopoldinisch－Carolinischen Akademie der Naturforscher； 1834 ［CUL，S，on B］
gd
NB p．112．
8
$6224-26 w$ middle Chile at most height \＆c $634 u$＂Insekten｜Würmen＂，6u＂paarweise＂， 26u＂Spiegel＂ 64 21－22m
80
MEYEN，Franz Julius Ferdinand Neues System der Pflanzen－Physiologie 3 vols．；Berlin； Haude und Spenersche Buchhandlung； 1837－39［Botany School，FD］

MEYEN，Franz Julius Ferdinand Outlines of the geography of plants London；The Ray Society； 1846 ［CUL］
cc，gd，geo，gr，is，no，sp
NB Hooker says very poor \＆I quite agree〈CD？〉 Meyens Travels Lichtenstein Martius Humboldt Treviranus Biologie Gaudichaud

SB1 3; 4; 40; 43; 69; 82; 93; 94; 95; 99 to end.; 103; 187; 251; 253; 255; 256; 258; 261; 264; 270; 272; 323; 326
SB2 43 Trees Cedrela washed to Canary Isds from America viz Cedrela
103 Representatives of S. African Flora in Spain, according to Link
187 O/ 109 Genera in La Plata 70 Europe \& 85 N. Hemisphere (\& as few identical species there must be much representation, without these 85 genera are Mundane.
248 Bejaria in Florida in Lat 30° at level of Sea
255 very few genera confined to Alpine regions
256 Near Snow-line of Cordillera, the greater number of alpine plants are peculiar (very poor authority)

- Reinwardt says none of Java alpine plants identical with Europe (Hence at least vars)
257, 258 On American Alpine plants of Chile \& some European forms
261 Fewness of plants on islands has been disputed by Schouw
3 24-26m 4 24-26m/? 40 19-22m 43 18-31m 69 15-18m $828-11 m$ (Humboldt), 21-23m 83 6-7m, 26-28m 93 25-28m (Schouw) 94 30-33m $957-9 m, 12-15 m, 28-29 m 99$ 11-13m, 21-23m 103 12-15m, 32-35m 119 2-4m 1665-7m 187 33-35m 248 19-24m 251 13-14m, 22-23m 253 $27-29 \mathrm{~m}, 31-35 \mathrm{~m} /$? 255 17-20m, 23-24m, 25$26 m, 27-29 m, 29-33 m$ 256 11-31m, 11-13m 257 15-24m 258 1-2m, 7-11m, 16-25m 259 5$8 m 261$ 15-21m (Alphonse De Candolle, Von Buch) 262 21-26m, 28-31m 264 34-38m 265 1m 270 17-22m, $30-34 m / ? ? / w$ V. Hooker $35 w$ p. $27336-38 m, w b$ i.e. under countries of similar climate, extant soil \& height \& inhabited by similar forms the proportions keep similar; this is curious.- 272 wtcc, 12$15 m 273$ 26-38m, 36-38m 323 29-30m 326 11$28 m$

MEYER, Friedrich Albrecht Anton Versuch einer vollständigen Naturgeschichte der Hausthiere, im Grundrisse Göttingen; Johann Christian Dieterich; 1792 [CUL, pre-B]
tm, v
NB March 19th 1857; Nothing
p.38; 98; 119; 125; 126

I have only skimmed after p150 for the whole a wretched compilation though it seems he is Entomologist
$3812-15 m 937-12 m / 1-11 w$ Gmelin skin on back saccatus $9814-15 m / w$ Angora Rabbits 119 18-19m 125 wb Molar teeth; 5 toes on hind feet; palmated feet; chief difference tailless 127 28-29m 128 14-15w Pug

MICHELL, John Conjectures concerning the cause, and observations upon the phaenomena of earthquakes London; 1760 [CUL, pre-B, S, I "the Author's Present", i.e. not to CD] geo, t
NB 16; 459 * 70
10 vibration from same point; 16 ; 17 \& 26 my argument used by Mihell; 46; 55; 58; 70.

8 20-22m 9 1-2m 10 18-20m 11 13-16m 16 12 m , 29 m 17 1-19m 26 1-11m 35 5-14m 36 1$20 \mathrm{~m} 3828-33 \mathrm{~m} 391-3 m 461-10 \mathrm{~m} 5515-27 \mathrm{~m}$ 58 4-19m 70 30-32m

MIERS, John Travels in Chile and La Plata 2 vols.; London; Baldwin, Cradock \& Joy; 1826 [CUL, pre-B, S in both vols.]
vol. 1 , vii $7 \mathrm{~m}, 8 \mathrm{~m}, 10 \mathrm{~m}, 11 \mathrm{~m}, 13 \mathrm{~m}, 14 \mathrm{~m}, 16 \mathrm{~m}$, $18 \mathrm{~m}, 19 \mathrm{~m} 38321-32 \mathrm{~m} 3925 \mathrm{w} \rightarrow \rightarrow$ n 7-12z, 19-29m $3931-7 m 3941-8 m, 14-19 m 3951-$ $2 m, 6-7 m$
\wp
MILLER, Hugh Footprints of the creator London; Johnton \& Hunter; 1849 [Botany School]
$\mathrm{cr}, \mathrm{em}, \mathrm{geo}, \mathrm{ig}, \mathrm{sp}, \mathrm{tm}$
$91-2 m 1510-14 m / 12 w$ Why not? $404-7 m 46$ $3-8 m 6020-25 m 686-9 m /!6915-22 m$, wb What is embryonic Head of a Placoid or ganoid Fish $837-10 m, 24-27 \mathrm{~m}, 28-32 \mathrm{~m} / \mathrm{wb}$ This assumes no transition of such minute characters $841-8 m 10414-18 m 1054-7 \mathrm{~m} / 6 \mathrm{w}$ Devonian 107 1-4m 109 6-9m (Murchison) 133 13-14m 136 4-7m 144 15-18m, 27-30m 146 24-25m 147 25-27m 150 17-21m 154 1$5 m 15511-14 m 1619-15 m / 8-11 w$ too few 162 $28-32 m / w$ good but too hasty.- $1632 a$ "early" p. 161 1-5m/wt yet in Red Sandstone two kinds 166 20-23m $17511-20 \mathrm{~m} 17921 u$ "two"/w or three? $18212 u$ "Brachiopods" $/ w$ \& Cephalopods 17-21m 193 19-24m 196 7-13m (Lyell), 14-17m 197 11-14m 200 16-25m 203 25-32m 204 1-4m 214 9-22m 215 3-7m 216 $5-7 \mathrm{~m} / \mathrm{w}$ often cease earlier $7-10 \mathrm{~m}, 10-16 \mathrm{~m} / \mathrm{w}$ decay when in sediment $13-16 \mathrm{~m} 2177-11 \mathrm{~m}$ 219 22-23m 243 17-27m 280 19-20?

MILLER, Philip The gardener's dictionary 3rd edn, 3 vols.; London; for the author; 1748 [Down, vols. 1 and 3 only]

MILLER, William Allen Elements of chemistry: Part 2, inorganic chemistry 3rd edn; London; Longman, Green, Longman, Roberts \& Green; 1864 [Down, FD]

MILLIGAN，Edward A．Corn．Celsi medicinae libri octo Edinburgh；Maclachlan \＆Stewart； 1826 ［Down，S］\wp

MILNE EDWARDS，Henri Histoire naturelle des crustacés 3 vols and vol．of plates；Paris； 1834－40［CUL］
af，ch，ci，cr，ds，dv，em，gd，gr，in，is，sp，sx， sy，t，tm，v
vol． 1 NB 〈on p．468〉
（Species Theory）p．6．p117．p．184，5
p191－Hence Branchiae in the Podophthalm
Crust．perhaps not so anomalous－not more a new organ than in Cirripedes．
196 p121；227，8
SB $\square \beta$
186 Newport says in Scolopendra mandibles first formed－Jaws formed before legs in Crustaceans
197 The changes which Crustaceans undergo when hatched are the＂complement＂ of those within the egg
226－8 On 2 methods of classification；that of Cuvier impracticable（very good sentence）
title page u 〈author，title〉 2 29－30m／30u ＂cing｜de＂ $31-2 m / 1$ u＂sept paires＂$/ 2 u$＂nommés antennes＂， $4 u$＂coeur artériel＂， $6 u$＂sont doubles＂ $62-5 m, 30-32 \mathrm{~m} 121-7 \mathrm{~m} 1425-27 \mathrm{~m}$ $1519-20 \mathrm{~m} 164-6 \mathrm{~m} / \mathrm{w} \mathrm{V}$ ． $1810-19 \mathrm{~m} 192-$ $3 \mathrm{~m}, ~ 6-9 \mathrm{~m}, ~ 13-16 \mathrm{~m} / \mathrm{z} / 15 \mathrm{u}$＂généralement＂$/ 16 u$ ＂ordinairement｜dernier＂，24－28m 21 6－8m 23 $19 m \quad 27 \quad 7-9 m, 16-20 m \quad 296-10 m \quad 30 \quad 28-32 m$ 31 23－29m 40 15－16m 41 30－35m 42 21－22m $437-10 m 441-2 m, 5-8 m, 14-29 m 45$ 24－29m， $24-26 m 47$ 2－5m，3－4m 48 14－16m $50 \quad 16-18 m$ 51 1－4m 55 14－16m，26－29m，30－32m 61 17－ $30 \mathrm{~m} / 19 \mathrm{u}$＂lame cornée＂ $621-4 \mathrm{~m}, 6-8 \mathrm{~m}, 15-$ $17 m$ ，19－20m 64 9－11m 72 25－30m 73 2－6m， $10-13 m, 25-27 m \quad 74$ 4－6m，11－13m $755 u$ ＂Édriophthalmes＂，6－9m，28－29m 76 5－10m， $29 m$（Cuvier） $78 \quad 28-29 m 79$ 12－14m 80 14－ $18 m$ ， $22-28 m \quad 81 \quad 12-13 m / 5-23 w$ what difference in branchiae of Stomapods 82 29－ 32 m 84 21－25m，29－30m 97 15－18m $1007-$ $10 \mathrm{~m} 10417-20 \mathrm{~m}, 22-23 \mathrm{~m} 1105-7 \mathrm{~m}, 10-11 \mathrm{~m}$ ， $12-17 m, 27-30 m \quad 114 \quad 23-25 m / \mathrm{Q} \quad 115 \quad 8-10 \mathrm{Q}$ $11-18 \mathrm{~m} / 12 \mathrm{w}$ stemmate 116 1－2Q 5－7m／16－ $24 m$ os w Larva of Lepas $10-13 m 117$ 1－ $11 m / w_{0}$ This must be case in Larva of Lepas $6-10 m / 7 w$ Sp．Q $11818-19 m, 19-22 Q$ 20－22m 119 1－2Q 5－8m，20－22m 120 1－2Q 4－ $6 m, 17-18 m, 28-29 m 1211 Q 15-19 m / 1-19 w$ Species theory． 2 into 1 －into 2 into none $16-17 w$ V．Daphnia $26-29 m, 29-33 m 12312-$ $15 \mathrm{~m} / \mathrm{w}$ the second pair are the exterior 128 31－32c／w $\neq 12910-13 m, 31-32 m 13121-23 m$ $1335-8 m, 10-20 \mathrm{w}$ Cirripedes come near

Isopods $13521 u$＂nerfs＂$/ \rightarrow / 28 a$＂céphaliques＂， $29-33 m \quad 136 \quad 20-23 m / 21 u$＂nerfs gastriques＂， 25－27m， $28 \mathrm{~m} / \mathrm{u}$＂formentlde＂ 138 9－11m／7－ $18 w$ argues with＊cirripedes for 1 st thora． goes to all pied machoirs \＆c \＆c．－Jaws \＆c $18-24 m / w$ This is strongest possible argument that 1st cirrus is a pied mach 140 wb Pedunculated cirripedes in concentration about $=$ to half way between Astacus \＆ Palemon． 141 30－31m（Cuvier） 142 13－16m $1438 m 14432-35 m / 34 u$＂la Squilla＂ 153 1－8m $16517-21 m, 22-24 m / w$ not in cirripedes 166 $\begin{array}{lllllllllllllllllll}4-7 m & 168 & 25-28 m & 170 & 1-4 m & 184 & 21-23 m / w\end{array}$ mandible already formed $26 \mathrm{~m} / 23-26 \mathrm{w}$ ie 7 cephalic segment transformed $28-29 m 185$ wt Now irregular development does not proceed regularly from ant．to Post．end $4-$ $5 u / 1-5 m / w$ ie 1 st thoracic segment $\times 24$ $27 m, 31-32 m 186$ wt Brullé so far right．wt Newport tells me that in Scolopendra mandibles first formed． $3-5 m, 4-6 \mathrm{~m} 191$ $6-10 m \quad 196 \quad 25-29 m \quad 197 \quad 13-15 \mathrm{~m} / 15 u$ ＂Complément＂ 198 9－12m 199 21－25m 200 2－ $5 m 22624-31 m 2271-4 m, 7-28 m, 8-10 m, 33 m$ $228 \quad 24-30 m \quad 231 \quad 24-28 m \quad 233 \quad 1-3 m / 1 u$ ＂plusieurs séries＂ $2349-11 m, 12-17 m 2362 w$ （1） $13 w$（2） $19 w$（3）$w b$（4）－Cirripedia 238 31－33m 239 1－3m，11－13m 242 8－11m $25310 u$ ＂pates－mâchoires＂
8
vol． 2 SA $\langle p p .50-51\rangle$
p42；p50
＊add 2 short－styled out of Orchard〈over〉

（Books of Rules）
8
42 32－34m 50 17－20m，27－28m 441 9－11m， $14 m, 16 m 4444-6 m, 5 m, 6-7 m, 8 u$＂sept＂， $9 m /$ u＂conformés＂， $19-20 \mathrm{~m}, 20-22 \mathrm{~m} / 20 \mathrm{u}$＂aul sept＂ $22 u$＂le 1 de＂， $23-24 m, 25-27 m 4454-6 m /$ $4 u$＂Trois＂，14－16m，25－28m 446 2－3m，10－ $14 \mathrm{~m} 4481 \mathrm{~m}, 4-5 \mathrm{~m}, 17-18 \mathrm{~m}, 25-27 \mathrm{~m} / \mathrm{w} \quad \mathrm{p} 471$ $46 w$ p． 489449 6－7m／7u＂Schiropodes＂ $4501 u$ ＂tous les＂， $3 \mathrm{~m}, 10 \mathrm{~m}, 17 \mathrm{~m} 45122-23 \mathrm{~m}, 26-27 \mathrm{~m}$ 455 29－32m／30u＂soitlflancs＂ 465 5－8m／5u ＂aplati＂ 468 10－11m／10u＂Lalsaillante＂，14u ＂deux paires＂， $15 u$＂paire de＂ 470 5－6m／5u ＂feuille＂， $24-25 m 4711 \mathrm{~m} / u$＂dépourvues palpiforme＂， $2 m, 3-6 m, 13 u$＂sept 1 huit＂，20－ $21 m, 24 m, 26-27 m \quad 473 \quad 7-9 m, \quad 9-10 u$ ＂lamelleuses l apparentes＂，15－24m，20－24m，25－ $32 m, w b$ \＆ 1 st thoracic legs very small 474 $6 m / u *$＂très－petites＂ $4751 u *$＂ill rudimentaire＂， $3-4 m, 10-11 m, 12-13 m$ • 480 $25-27 m / 25-26 u$＂pates I réduites＂ 486 22－23m 487 12－13m，13－16w V，p． 473 foliaceous 32－
$34 x x 4887-10 m / x / w$ Misprint $9-10 m, 21-$ $22 m 51020-22 m$
vol． 3 NB 〈on p．638〉
410 On Cirripedia
p412 Even in Copepods organ of generation in last thoracic segment
SB $\square \beta$
555 Difference of Crust，in proportion to separation of area，other things being equal 561 only 2 or 1 Endemic Crustaceans at Canaries Isld
567 Individuals of same species are almost always continuous areas 571－
573 few cases of interrupted ranges
574 Crust individually numerous in Polar seas
5 13－16m 103 5－9m
\wp
$3491 w$ Entomostracous 391350 16－18m 353
11－13m 354 14－18m 364 11－12m 372 11－13m， $12 m 373$ 9－10m $3743-13 \mathrm{~m} / 6-8 w$ probly not Copepods 375 29－34m 376 12－18m 377 2－5m $3916-7 \mathrm{~m} / 7 \mathrm{u}$＂rames＂，19－21m 393 17－20m $410 w b$ Cirripedes allied to family of Daphnia only by dorsal anus，ovaria，inflected abdomen \＆shell－（differ widely in cirri \＆ mouth）\＆in caeca at cardiac end of stoma－ More allied to Stomapoda $4124-7 m, 17-18 m$ 432 5－8m 433 29－31m $4341-3 m 437$ 26－28m 447 22－25m 448 12－15m 539 17－18m，21u ＂yeux composés＂ 541 8－9u＂on｜paire＂／w answers to 1st cirrus 17－18u＂plutôt｜paires＂ 542 14－18m 544 11－13m／12u＂quilavant＂，17－ $18 \mathrm{~m}, 25-27 \mathrm{~m} 5451-2 \mathrm{~m}, 9-11 \mathrm{~m} 555 \mathrm{wt}$ How explains this，except by single creations $17-$ $23 m / 1-24 w$ without regard to anything else－ Make a Barrier \＆you will have species different on opposite sides $w b$ । do not think read with sufficient care 556 29－33m 557 4－ $20 \mathrm{~m} 56121-26 \mathrm{~m}, 22-23 \mathrm{~m} 56411-12 m 5652-$ $5 \mathrm{~m}, 15-17 \mathrm{~m}, 23-26 \mathrm{~m}, 23 \mathrm{~m} / \mathrm{u}$＂Palémons＂ 566 32－3m 567 9－10m，16－18m 568 1－9m，11－14m， $31 m \quad 571 \quad 18-19 m \quad 573 \quad 3-12 m, \quad 6-7 m / w$ Interrupted ranges $30-31 \mathrm{~m} / \mathrm{w}$ do $57422-23 \mathrm{~m} /$ 19－24w Arctic Sea likes big lake 588 〈u》〉 $11 u$＂versans \mid Atlantiques＂，$\quad 14-15 \mathrm{~m}, \quad 15 u$ ＂Ptalycarcin＂，17－18u＂pas｜Antilles＂，20u＂au Chili＂， $21 \mathrm{~m} / \mathrm{u}$＂au Chili＂， 23 ＂Callianasses＂， $24-25 u \leftrightarrow, \quad 29-30 u$＂àl Hollande＂， $32-33 u$ ＂Hippolytes＂ 593 11m／w Mouths $14 \mathrm{~m} / \mathrm{w}$ Mouths 597 10－39［．．．］ $60039 w 26014 w 3$ $60240 w 360315 w 432 w 5$

MILNE－EDWARDS，Henri Introduction à la zoologie générale Paris；Victor Masson； 1851 ［CUL］
ad，cc，ch，ci，co，ct，em，fo，geo，he，hl，ig， in，mn，or，phy，rd，sl，sy，t，tm，v
SF $\square \beta$
7 Diversity of organisms first condition of nature（Ch 4）
9 Law of＂economy of nature＂＂sober in innovations＂－Qas has not recourse to any new creation of organ．other strong expressions on do p .10 Q
13 nature varies degree of perfection Q 14 as embryonic development
31 On Highness \＆Lowness 25 to 34
35 Division of Labour $\underline{Q} p .57$ do $60,61 x * Q$ 43 Beautiful gradation in stomach Q－63 in Respiration Q；in annelid surface \＆body near legs．
$\times 61$ Q Nature rarely introduces a new organ
p．64， 65 in Squilla new organ introduced Q
－but cirripedes have shown how cautious one must be 118 do＊ 121 do Q
68 Q Clearly admits that new organs are at last created． 118 do
96 On Embryological similarity p98 mistake of Branchial slits p102 not arrest p112 p114 111 Point in Classification．
124 Parallel series
126 on animals＂borrowing＂（instead of inheriting）structure from other class．
132 on different kinds of fusion or unison 137
132 Rudimentary organs tend to become separated from proper connexions！
138 absolute disappearance of organs
141 Law of Balancement of minor importance
148 Law of connexion 151，154
161 If one part is changed others are changed（so with varieties of \＆monstrosities of gross nature）
163 on various empirical connexions of structures
165 On subordination of characters i．e． character in connexion with other（Jussieu） 169， 166 doubts this pp171
172 on value of characters in classification
NB1 〈refers to Catalogue attached to book〉 18 Milne Edwards Books； 26 Decaisne Cours Floriculture et Potagest 7.6
NB2－132－137 Jussieu primordial
iv $4-7 m 7$ at＜page number）， $13 m 93-4 m / 3 u$ ＂sobre d＇innovations＂，5－6Qas／6u＂autantlest＂｜ $7 u \leftrightarrow, 10 u$＂loi d＇économie＂／Q 28－30m，30－31u ＂aucune \mid nouvelle＂ $10 \quad 6-7 \mathrm{~m} / 7 u$＂rendent avare＂，8－9Q $12 u$＂quarante＂， $23-25 \mathrm{~m} / 24 u$ ＂seule｜physiologique＂ 11 1－5m，13u＂apus＂， $18 u$＂Céphalopodes＂， $24 u$＂Reptiles sauriens＂， 26u＂Lépidoctéel Mississipi＂ $1232 m 1313-16 m$

MILNE-EDWARDS, ZOOL. GÉN.
14 16-20m 16 17-22m 17 1-3m 21 9-17m/11u "puissance" $/ 12 u$ "perfection" $/ 15 u$ "quantité"/ $16 u$ "qualité", $20-23 m / 22-23 x, w b \times$ Best way of putting superiority.- though each perfectly (?) (Can young be said to be perfectly?) adapted to conditions. $227-8 u$ "illvie", $18 u$ "grandeur 1 résultats", $20 u$ "massel dont" 254 $9 m 262-5 m / x x / w t$ Is true individual? Gigantic Saurians.- Cetacea - Pachydermata Devonian Sharks 17-18u "on Icelles"/w Megatherium? 27 wt How value secreting, muscular \& nervous * organs. $2 u$ " n 'entraîne| nécéssairement", $8-10 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{x} / \mathrm{u}$ "lal dont" 29 wt So relation of size to warmth of Climate $1-4 m / 3 u$ "cette nature" $/ 4 u$ "cel seulement", $16-17 \mathrm{~m} / 17-18 u$ "se répéter" $116-$ 20 w vegetation repetitive cellular division 30 $1-5 m$, 9-12m 33 25-31m/27-28u "précision। actes" $35 \quad 13-15 m \quad 42 \quad 14-28 m \quad 43 \quad 6-20 \mathrm{w}$ beautiful gradation $571-3 m 608-11 m, 15-$ $18 m 619-11 m, 15-17 m, 25 u$ "unlnouveau"/Q 63 23-32m/24-25Q 64 8-11m, 13-21m/14-15Q $651-13 \mathrm{~m} / 1-3 u$ "d'organes 1 perfectionné"/Q/4 $5 u$ "déterminentlsurface" $66 \quad 28-31 m \quad 68 \quad 12-$ $16 m$, 24-25m/24-28u士, $31-32 m \quad 70 \quad 25-31 m$ (Prévost and Dumas) 74 17-20m $8030-32 m 81$ $1-3 m 85 \quad 5-11 m 86 \quad 10-13 m \quad 94 \quad 28-32 m / 28 u$ "Généralisant I vagues" $9515-18 m 9720-24 m$ (Tiedeman, Serres) $984-11 m, 12-17 m 10218 u$ "est I mouvant", 20-25m, 24-26m, 29-32m/ $30 u \leftrightarrow 1039-13 m 1055-10 m 1079-14 m 109$ $6-9 m, 25-31 m 1116-8 m, 23-29 m 1129-12 m$, 12-18m $11312-14 m 11412-16 m, 23-26 m 115$ $7-8 m$, 11-12m $11718 u$ "besoin|variété"/w poor! $20 u$ "tendanceléconomie"/w poor! 118 11-13m/12-13u "puis | instruments", wt/1-13w This very important: if proved upsets changes in species $1198-10 \mathrm{~m} *, 27-32 \mathrm{~m} / 27-$ $31 m / 29 u$ "types fondamentaux" $31 u$ "types secondaires" $12012-13 m 12124-30 \mathrm{~m} / 24 \mathrm{Q} 26-$ $28!!, \quad 28-30 u \leftrightarrow / ?, \quad 31-32 \rightarrow \quad 122 \quad 25-26 u$ "unlexemple" $/ 24-27 w$? only functionally or physiologically new $12311-16 m, 9-13 w$ natural enough by Selection $19-22 \mathrm{~m} / 21 u$ "Dacgtylopère", 29-32m 124 14-17w Marsupial parallel 126 1-32w what metaphorical rubbish, how much simpler my view 127 1$4 m, 9-12 m 1284-10 m 1305-9 m 1323-4 m / 3 u$ "fusion primordiale" $/ 4 u$ "développement confus", 26-28m 137 15-16m/16u "unlconfus", 19$22 m, 23-25 m / 24-25 u$ "la disparition", 26-32m/ $26 u$ "jeune" 138 17-22m, $25 \mathrm{~m} / \mathrm{u}$ "la répétition", $30-32 m 13910-13 m, 17-19 m, 31-32 m 1403-$ $4 m, 10-14 m 14118 u$ "vitales \mid pouvaient", 2026 m (Geoffroy St Hilaire)/22u "loilbalancement" $23 u$ tenir compte/ $26 u \leftrightarrow 1421 u$ "ce chevaulement", $16 u$ "la carapace" $14317 u$ "texturelpropriétés" 148 17-20m, 19u "con-
nexions anatomiques", 1-23w because even monstrosity could not invent-; manner of growth + hereditariness p151 20-24m, 2527 m (Geoffroy St Hilaire) $15113-14 m, 18-21 \mathrm{~m} /$ w if can be moved by steps $1524 u$ "Lal rapports", $5 u$ "tendance" 153 15-18m 154 4$14 m / w t / 1-15 w$ are not these parts lastformed in womb \& so exposed to modifying circumstances? $28-29 m /!? / 17-32 w / w b$ one feels an early embryo more independent of outside world, but why? so less apt to vary the late-formed parts exposed to sum of influences \& to selection; selection cd not act on embryo $15813-19 m / 13^{\prime \prime}$... $16124-25 m$ 162 1-3m 163 9-11m, 15-16m, 18-23m, 28$32 m 164 \quad 9-12 m, 10-15 m / 10-11 u$ "harmonies empiriques" 165 9-10u "principel caractères" $16618-20 m, 26 u$ "répondre affirmativement", 28-32m 168 9-12m $169 \quad 26-27 m 170 \quad 25-29 m$ $1716-11 \mathrm{~m} / 8 u$ "conséquences" $10 u$ "effets" 172 $2 u$ "caractères prédominants", $8-16 m, 17-19 m$, $20-22 \mathrm{~m} / 20 u$ "système dentaire", $30-31 u \leftrightarrow /$? 173 1-7m, 7-15m, 21-32m Catalogue, 12 9$11 m$ (Milne Edwards) $188-11 m, 17 m, 29-31 m$ (Decaisne)

MITCHELL, Silas Weir Researches upon the venom of the rattlesnake Washington, The Smithsonian Institute; New York, Appleton \& Co.; 1861 [CUL, S]
beh, phy, sy, tm, v
SB
5 Powers of fascination
12 Relation of Poison to Venom glands
37 do
43 do
66 classed
5 10-14m 12 41-42m 13 7-8m 37 32-35m, 42$45 m 431-9 m 6639-44 m / w$ so with Rabbits So illustrates variability
\wp
MIVART, St George Jackson On the appendicular skeleton of primates (extract, pp. 299-429), communicated by T.H. Huxley; 1867 [CUL, I]
h, v
SB 403 Variation; 410 \& 412 Man; 424
$40329 \mathrm{~m} / \mathrm{u}$ "digit", 38-41m 410 31-33m, 35$37 \mathrm{~m}, 38-40 \mathrm{~m} 4113-5 m, 9-10 m$, $11 \mathrm{~m} 4123-6 m$ 424 35-38m

MIVART, St George Jackson On the genesis of species London; Macmillan \& Co.; 1871 [CUL, I]
ad，af，beh，cc，ch，ci，cr，ct，ds，dv，em，ex， fo，gd，geo，h，he，ig，mm，mn，oo，or，phy，r， $\mathrm{rd}, \mathrm{sl}, \mathrm{sp}, \mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{ts}, \mathrm{ud}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$

NB1－Mivart；p15 I do not understand；15； 35 false quotation；54；60x Not fair；You entirely ignore use－ 67 Use entirely overlooked
NB2 Sp．Theory；p120； 145 Distribution Geographical； 155 Homologies
Vol 3 p． 327 of Cyclop of Anat \＆Phy．on Larynx of Kangaroo－Owen in Phil Trans p． 182 Gascoyen
SB1 $\square \beta$ य \langle by Emma \rangle
Mivart Genesis of Species
p21 List of his objections
25 Giraffe，with MS notes
34 On variations in all directions MS notes
37 Flat fish．
39 Origin of limbs $\langle C D, \Leftrightarrow\rangle$ do not consider
40 Whalebone
42 Larynx of young Kangaroo $\langle C D, \Leftrightarrow\rangle$（add after Whale）
〈CD，$\Leftrightarrow 44$ Pedicellariae
46 Metamorphosis of flies．
47 Mammary glands $\langle C D, \Leftrightarrow$ \＆ 42 for Larynx
50 Cobra．
53 Rods of Corti
62 Objection demonstrably sufficient
72 The shoulder of pterodactyls．
75 \＆ 77 ear \＆eye of cuttlefish v ．MS notes
$80\langle C D, \Leftrightarrow\rangle$ Avicularia
81 Placentae of mammals \＆sharks．
82 Resemblance of mouse \＆marsupial．
85 Effects of conditions on butterflies from Wallace
97 Modification as great as between Hipparion \＆horse－
〈over〉 Mivart Genesis
105 Abortion of finger in the Potto
107 believes wing of birds comp．suddenly developed－
107 On origin of tendrils $\langle C D, \Leftrightarrow$［see p47］
110 Macrauchenia a very generalised structure．
112 M．S．notes on suddenness of var．good －
130 Seems to believe that bat \＆ pterodactyle suddenly developed．
139 Argues rate of change in progenitors before their divergence from the amount of difference in their descendants
145 The same fishes in distant continent
148 Plurodont lizards \＆certain insectivora in Madagascar－
153 \＆ 158 Diff．from homologies of skull bones．

163．H．Spencer on \＆serial homologies
164 Mivart thinks there is an internal force or tendency．
170 There is serial homology in Chitons〈over）Mivart Genesis
174 Correlation very slight between teeth \＆ hair
176 Homology between limbs \＆fins．
178 M．S．notes on primitive homologies．
$\langle C D, \Leftrightarrow$ p107 sudden change of Birds wing．－
SB2 Kangaroo Larynx；Strange arrangement 125 \＆Pottos forefinger
$\langle C D$ ，hereafter〉 See to Mouth－Find ＂Brewster＂on age of Cephalopods－
Placentae of Sharks \＆Mammals－like Fritz Mullers cases \＆Claparede－
Mr Mivart＇s book consist of all objection to nat．selection advanced by various authors \＆ myself，expanded \＆admirably illustrated， with nothing said in favour，except in opening chapter
p147 Get Gunthers Catalogue
p196 Morals over
〈over）

（drawing of lens）

Evolution whether N．Selection is admitted is all important，as long as changes gradual， for then facts can be tested，for scientific purposes Mr Mivarts belief that sudden change，as Horse \＆Hipparion，\＆I suppose －Birds bats \＆Pterodactyles（otherwise his argument of intermediate not being found wd be valueless）seems to me no gain over the old belief of separate creation：Of course it may be true，but will be most difficult to prove

21 17－19m／18a＂useful structures＂and useless $20-24 m 2415-21 m, 27-30 \mathrm{me} 2517-$ $18 u$＂supposition｜tended＂ $\mid 17-20 \mathrm{w}$ only tallest animals in each country $267-9 \mathrm{~m} / \mathrm{w}$ only dense forests 27 16－25w Variations not supposed－too large an animal for country $27-31 m / 29 w$（a）$w b$（a）If large antelope \＆ giraffe can now exist or flourish under so much competition，so cd intermediate sizes $281-23 w$ We do not know whether in all countries trees are as nutritive as Mimosa 23－26m，wb Escape other beasts of prey 29 $4 u$＂theseldrought＂／w No 34 7－13m／4－12［．．．］／ $m / w t / 1-13 w$ I do not see．－no because only the most like some object wd be selected．－ if exactly equal Variation they wd counter－ balance each other．－wt M．on（there I do allow＊to the mO of my doubts） $353 u$ ＂mimic＂$/ w$ Mock 12x 36 13－17m，28－31m／w｜ do not see $378-10 \mathrm{~m} / 8 \mathrm{l} \ldots / 8-10 \mathrm{w}$ see Portfolio

MIVART, GENESIS, 1ST EDN
on gradation fig.w Ask Gunther 15-22m/22[... 38 3-9m/5...], 19u "functionless" $/ w$ * No no 39 wt we have no means of judging 7-14w idle objection $403-7 m 41$ wt (Straining or sieving action.) $7-15 \mathrm{~m} /{ }^{\prime \prime} . . . ", 11-12 w$ Ducks Beak 42 $24-30 \mathrm{~m} /[\ldots] 431-2 w$ Voice $3-6 w$ ie about Kang \& also all oth $4432-34 m / 13-34 w$ Cirripede Branchiae first nascent structure applied after to other uses. $24-27 \mathrm{~m} / \mathrm{I} . . \mathrm{J} / \mathrm{w}$ (a) $451 w$ He adds 2-7[...] 8-10w never useful structures 46 9-12m/9-14w Lowne explains intermediate conditions 47 17-21m/L...J/w p. 53 $22-26 \mathrm{~m} / 22 u$ "mammary|breast", 22-27[...]/24u "sucking|scarcely"/w Mucus massage fails 28-34m, wb M doubting about sucking; but to this kno does not run 50 fig.w Mem snake devoured by Peacock in India to frighten enemies $515-11 w \mathrm{M}$ - Linn Soc Fascination $30-34 m / w$ not in native country $5211-14 m 53$ $25-28 m \quad 54 \quad 1-17 m / 4 w$ No $10 u$ "only| enjoyment"/11u "perfect I performances"|6-15w are used for some other purpose Crustaceans $579 u$ "escaped" $/ w$ No $601-12 w$ not fair not to add $6122-23 \mathrm{~m} / 23 u$ "seems irresistible" 62 wt with mimickry init. resemblance $\&$ more distant to one var. \& in another to another var. $3-8 \mathrm{~m} / 6 \mathrm{w}$ (a) $15-17 \mathrm{~m} /$ $15 u$ "demonstrably insufficient", wb I have never said demonstrated but in highest degree probable $678-10 \mathrm{~m} / \mathrm{w}$ so do I $21-24 \mathrm{~m}$ 72 25-29m/wb Here add that Mr Mivart sees such strong improbabilityO I cannot see it.Variation analogies do arise $7511-15 \mathrm{~m} / \mathrm{w}$ he always omits the share of selection 7633 m 77 wt Remember what structure is necessary for vision Lens are found in Annulosa 4-6w utterly deny $6-11 \mathrm{~m}, 7-9 \mathrm{~m} / 7-8 \mathrm{u}$ "independent 1 variations" $/ w$ (a) $16-21 \mathrm{~m} / \mathrm{w}$ what does this mean? wb (a) you cd not make greyhound \& pug - pouter or fantail thus - it is selection \& survival of the fittest $8119-27 \mathrm{~m} 821-7 m$ 84 23-27m 85 1-7m, 25-31m, 27-33m, wb Direct conditions $9716-18 u \leftrightarrow, 17-19 \mathrm{~m} / 19 u$ "Hipparion IEquus" $981 u$ "sphenoid" 102 22$27 \mathrm{~m} / 23-25 w$ false quotation $10511-16 \mathrm{~m} / 11 w$ disuse $1071-3 m / w$ oh $5-7 m / w$ see my paper. 109 9-12m!! 110 6-12m 112 2-7m, wb Says variation, of which we have evidence, \& not exceptional cases were suddenly changes \& unnatural changes, such may sometimes have occurred. $w b$ As dom. productions so much more variable, these variations probably greater, \& the strongest partake of nature of Monstrosities.- In large genera, very known in nature, including recent \& fossil, the species are so close, that steps probably not great in line of death. 119 13$17 m / 13-21 w$ we do not know causes of
variability $12013-17 \mathrm{~m} / \mathrm{w}$ yet it varies in W.Indies. 21a "some" most 121 19-24m/1930 w I say so merely because other reasons make me believe in it. 123 wt Do I not give it as a mere possibility when arguing against this view? $2 w(a) 6-11 m 1301-5 w$ Does he believe that a Bat \& Pterodactyle was suddenly produced - such facts tell against Evolution, as well as nat. selection.- so with Whale \& Zeuglodon - 139 1-34w this seems false reasoning, he assumes amount of difference in progenitors from amount in existing divergent descendants. $14522 u$ "distant" $23-31 \mathrm{~m} / 27-28 u$ "is I fresh" $1465-13 \mathrm{~m}$ (Günther), $31 m 1472 u \wedge$, $3 u$ "China 1 Moreton", 4-6m, 10-12m/w ask Gunther 23-24m/22-28w Is this an aberrant \& ancient form 148 1$11 m, 15-17 w$ Distinct genus $25-27 \mathrm{~m} / \mathrm{w}$ no remnants 151 20-24m 153 2-6m 157 17-19m 158 11-15m 159 1-3m (E.R. Lankester)/w | have called analogy $16323-29 \mathrm{~m} 16416-18 \mathrm{~m} /$ $17 u$ "is \mid tendency" 166 9-13m $17016-20 m$, 20$22 m 174 \quad w t / 1-12 w$ So add, but the connection, if any, as Mr. Mivart provided not extremely vague.- some evolutionary tendency in both to vary together $13-15 \mathrm{~m}$ $1751-3 m, 13-16 m 176$ 6-12m, 16-18m/14-28w ask for Günther's view $177 \quad 12-13 \mathrm{~m} / 12 u$ "tarsus |cartilaginous" 178 wt/1-11w Parts primordially similar wd be apt to vary in same way, but can be congruent to any extent - to moderate extent - Veronica.How primordially similar, is an obscure subject.- repetition of past one of commonest forms of variation. 179 11-14m, 24-27m (I. Geoffroy) 182 10-13m/11u "Gascoyen", 20-22m 192 18-22m 196 1-17m, 26-29m/27w No 197 2-11m 198 15-20m 200 19-24m 204 7-14m 212 15-21m/wt/1-21w Not longer duration than gemmules of atavic structure such as stripes on Horse. 213 28 m . $10-15 \mathrm{w}$ like pollen-grains within ovule 214 28-32m (Lewes) 215 6-8w gemmule \& germs $10-14 w$ absorbs organic matter \& divides 19-20w true $21-25 m$ 217 24 $30 m 22112 m, 24-26 m 223$ 11-13w from conditions $2255-7 m 22615-20 \mathrm{~m} 227$ 21-23m $2309-13 m 2316 m 232$ 4-19w How great, see my remarks at end $20-21 m / 21 u$ " "greatly different" $23927-30 \mathrm{~m}, 31-34 \mathrm{~m}$, wb differs only in colour \& size? $2403-5 m, 25-28 m / 27 u 242$ $w b$ Urges any amount of sudden variation of which we have evidence, \& not monsters (\& not reversion) I will admit, but probably less than we see under Domestication.

MIVART, St George Jackson On the genesis of species 2nd edn; London \& New York;

Macmillan \& Co.; 1871 [Down, S]
48 17-22m
\wp
MIVART, St George Jackson Lessons in elementary anatomy London; Macmillan \& Co.; 1873 [CUL, S]
h, ig, rd, tm, v
NB1 - Rudiment in Gorilla
Inguinal mammae in Lemuridae \& 2 pairs in Galago \rightarrow 〈to NB2, 489)
NB2 125 Hyoid Bone

- 396 Lobule of ears

489 Mammae
496 Difference of Man \rightarrow
\rightarrow tiny distance under an anatomical point of view
125 6-9m 396 19-22m, 27-29m, fig.m 489 42$44 m 496$ 20-25m
\wp
MIVART, St George Jackson Man and apes London; Robert Hardwicke; 1873 [Down, S]
NB O/
MOGGRIDGE, John Traherne Harvesting ants and trap spiders with supplement; London; L. Reeve \& Co.; 1873 [CUL] beh, che, fg, gd, oo, y
vol. 1 NB1 Very clearly * described Wallace NB2 p. 36
p. 128 Young spiders make web as perfect as old ones Q
The seeds stored in ants nests not germinating - these cutting off the radicals \& bringing up damp seeds to dry are the most remarkable instincts
Trap door spiders very wonderful
Perhaps add to when I specify the wonder of ants
xi 3-5m 128 5-12m (Blackwall), 14-16m
Supplement, NB1 p.161; 164
174 acid on seeds
p. 161 closely allied species in the same district have different habits
164 curious instinctive manner in which Cicendela seizes ants
174 acids \& seeds
161 7-15m, 20-24m 164 1-23m 174 4-15m
MOHL, Hugo von Principles of the anatomy and physiology of the vegetable cell trans. A. Henfrey; London; John Van Voorst; 1852 [CUL, S]
ct, mhp, mn, no, phy, sp, tm

NB1 Drosera; Cells; 37 Protoplasm; 38 do; 79 do; 84; 87 nutrition; Drosera 99; 100
76 Sp. theory; 109 do; 133en On Grafting various forms number of pollen-grains in some plants.-
Chlorophyll not absorbed so purple suppuration from the purple fluid must be protoplasm
NB2 Orchis 133
147 Tendrils, 151 to 156 to end
143 Knight on gravity
146 Roots turn from light
158 Bot. Zeitung
25 13-16m 26 39-42m 28 8-12m 29 1-4m. 37 38-47m, 44-46m 38 1-16m, 3-6m, 24-39w speaks as if nucleus necessary $3920-24 m$, 40-43m, 45-49m 40 24-31m 41 16-20m, 47 \rightarrow $422-7 m, 34-37 \mathrm{~m}, 37-40 \mathrm{~m} 443-9 \mathrm{~m}, 14-18 \mathrm{~m}$ (Kützing) 75 28-32m 76 30-35m 79 22-26m, 34-36m 84 46-49m 87 44-48m (Bouchardat) 93 $16-25 m$, $36-38 \mathrm{~m} 9514-25 \mathrm{~m}$ (Brown) 99 2532m (Schulz) 100 19-27m 109 36-43m 133 3640 m (Kölreuter) 39 u " 120,000 pollen", $40-45 \mathrm{~m}$ 143 34-47m (Knight and Dutrochet) 146 4046 m 147 1-6m (Knight), 24-29m 148 47-50m 151 45-46m 154 22-27m (Dutrochet) 156 1117m, 29-34m, 35-48m (Treviranus), 35w Phyllt 157 9-21m, $17-19 \mathrm{~m} / 18 u$ "of which", $24-27 \mathrm{~m} /$?, 41-46m 158 3-9m (Dutrochet, Mohl) 14-19m

MOHL, Hugo von Über den Bau und das Winden der Ranken und Schlingpflanzen Tübingen; Heinrich Laupp; 1827 [CUL, preB]
ig, mhp, no, phy, rd, sp, t, ta, tm, v, y
NB p. 39 Lygodium; p. 112 Species Theory non-climbing Plant - occasionally climbing; 125.

SB1 1 \&
1 Summary twiners
All objects same - twiners either way glass - will clasp when young \& grow -Palm.-

- America arboreal - most highly organised tendrils
Dropping off or withering up of uncaught tendrils - these results useful special contraction after clasping or formation of linksO-
Anyone who did not understand the of the movement of the t . would conclude that as the internodes revolve \& carry the tendril, \& as these at the same time are revolving, that the tendrils would necessarily twist in advance more quickly than the internodes \& get in advance of them one internode instead of both moving harmoniously

MOHL，BAU UND WINDEN
together as is the case．But in fact the $* t$ ． incurves to the＊upper internode of a twining plant when several are revolving，
－but is $\&$ generally separated from it by a rigid petiole；\＆in the former part of the P．it was explained how several internodes revolve together by their whole length successively moving to all points of the compass．There is，however，this difference that in many cases the revolving t ．is separated from the revolving stem by the rigid petiole；＊but this makes an important differn in the movement－There is another difference，$*$ namely that $*$ along the $\&$ part from which the tendril＊arises，the terminal \＆motionless young shoot almost always projects；this＊generally projects on one side，so as to be cut of the way，\＆of the tendril which at the time is revolving；but when it is not sufficiently not of the way we have seen in El how well the I passes this obstacle in its path，by shifting \＆straighten slowly，\＆rising vertically upwards．－ ＜over〉 〈various plants listed，with rates and amounts of twining
SB2 Palm＊Mohl on Twiners－Tendrils
p． 4 Tamus elephantoides X－\＆Paullinia winding stems \＆tendrils it is one of Sapindaceae．
37 gradation of leaves with tendrils
39，50 Astragalus rudimentary tendrils No \Leftrightarrow
39 Lygodium leaf－climber
40 Cocculus Leaf－climber－－Ophio－ glossum leaf－climber
41 Uvularia like Gloriosa Nepenthus Θ－ Smilax stipulae
43 Fumaria claviculata tips of branches converted into tendrils
45 Maurandia scandens－flower peduncule irritable－Sapindaceae－on Vines 47 Passiflora
49 Vanilla
52 on winding of tendrils spontaneously p78
57 tendrils increase rapidly in strength
59 on spontaneous winding with notes by self
63 Sensitiveness of t ．touch does nothing！！ look（too old）S． 65
65 convex side not sensitive \Rightarrow in Cucurbit \＆ Passiflora
70 Virginian creeper
77 Vine creeper point to N．\＆dark．other t． not affected by light
82 will wind on glass，tendrils
〈over〉 Mohl on Twiners
103,108 twisting cause of revolving movement
111 no twisting of axis when plant twines！
round smooth support \＆old twisting disappears
112 a plant already twisted cannot twine！！ do．stems ＊sensitive
－ 112 Asclepias Xincetoxicum twines only when it grows in most shady places 116 Experiments on odd＊supports， showing influence of light，
＊ 119 Twiners care little for light，especially Ipomaea
－ 125 Abrus a right－hand winder
－ 135 will not twine round very thick support － 135 Hooks on certain twiners，specially Ipomaea muricata
－ 149 has seen axial twisting vary in same plant
SB3 Palm
SB4 Bull．Soc．Bot．de France Tom V 1858. Dutrochet．Comptes Rendus．1843．Tom． 17.〈over〉 Comptes Rendus 1844 Tom 19.
SB5 1864．Weights 〈table of equivalents〉〈over〉 1863 C4

2 8－9u＂Bewegungen 1 werden＂$/ 8-10 \mathrm{~m}$（De Candolle）， $16-21 m / w$ Tendrils \＆winding plants totally different $45-8 \mathrm{~m} / \mathrm{w}$ Touch not mentioned $24-26 m, \quad 25-26 u \leftrightarrow / x \$, \quad 30 u$ ＂Paullina＂，wb Paullinia winding stem with cissus $59-10 \mathrm{~m} / 9 \mathrm{u}$－$/ 10 u$＂in lauslaunen＂，21－ $22 x \geqslant / 21 u$＂Vicia tarba＂ 6 1－3m，4c＾／w 214 $5 \mathrm{ca}, 6 u \mathrm{a} / \mathrm{m}, 11 \mathrm{c}, 13 \mathrm{w}$ Sapindaceae 14 w A，15ca， $16-20 w$ All worked with Lindley $18 w$ A，22w A 31 28－31m $3310 u$＂beil Strephanthus＂ $110-12 w$ ！Apocynaceae 13－ $14 m / x / 13 u$＂bleibt \mid Abfallen＂ 35 19－20m，21－ $24 m / w$ Oenius Gloriosa $3724-25 m / x \$ / 26$－ $29 w$ gradation yet jump 38 25－26m／25u ＂äussern＂ 39 11－12m／11u＂dielaufrechtem＂， 18－19m／19－20m／16－20w Rudimentary $22 w$ Leaf climber $36 \mathrm{~m} / x \Leftrightarrow 40 \leqslant 3-5 \mathrm{~m}, 23-24 \mathrm{~m} / \mathrm{w}$ Leaf climb $41 \geqslant 6 \mathrm{~m} / \mathrm{u} \uparrow, 32-33 m 421-2 m, 8-$ $18 w$ none of these seem to catch $4316-17 \mathrm{~m}$ $454-5 m, 8 x \geqslant w$ all wound into a tendril $10-12 m, 12 u$＂diel Traube＂$/ 12-14 w$ does not say whether catches $19-24 \mathrm{~m} / 20 \mathrm{u}$＂diel ist＂ 47 $9 u$＂zweiltragenden＂， $23-25 m / x$ ， $31-34 m$ （Jussieu） 49 4－18m／9－16m $50 \quad 4-7 m / x \$ / w$ Mucro in Legumin $18 m 5131 m 5220-23 \mathrm{~m} /$ $x 5712-13 x$／ $11-13 m / w$ t．grow strong \＆ long 5811 u＂demldurchaus＂， 13 u＂Blattstiels＂， 31－32m／18－35w seems to think lateral movement consequent on twisting＊ 59 11－ 14！！／12－13u＂dalBewegungsfähigkeit＂，13－14m／ u＂die｜Spirale＂， 18 m ，21－22u＂Fläche IUhr＂｜ 20－24w Gloriosa winds up differently from ordinary tendrils． $22-34 \mathrm{~m} / 33 u$＂Korkziehers＂$/ w$ Smilax does not wind up．B．un not Vines do not？Cissus does when it catches 60 1－
$10 \mathrm{~m} / \mathrm{w}$ does not at all understand reversed twisting of tendrils $10 x \$ / u$ "der 1 innen"/11$12 w$ i.e. sensitive side $639 u$ "eine | besitzt"/ $8-10 \mathrm{~m} / \mathrm{w}$ Tendril sensitive $13-14 x$ /!!/u "Einfache 1 Berührung", 16-23m/18-27w Touch does nothing were they too old?? I presume expected movement too soon $26 x \geqslant /!!!/ u \leftrightarrow$ $641 m, 2-3 x * / u$ "gerade \mid Zusammenwinden"/w this looks as if he took too old-13-15!!/15u "von 24 Stunden" $652-5 m * / w$ convex side not sensitive 3a/u "Passiflora" $/ w$ \& Peas $21-22 m / u \pm / x<70 \quad 18-20 \mathrm{~m} / \mathrm{w}$ Virginian creeper $718-9 u \pm / 9-10 x * / 7-10 w$ swelling in all parts when touch 20-21x "Vollendung Längewachsthums" $/ w$ AmentO 75 13-14m/1$21 w$ Astonishing that he did not see spont. movements. - I presume too old $775-6 x / 1-$ $10 \mathrm{~m} / \mathrm{w}$ Grape tendrils point to north \& to wall $13-20 \mathrm{~m} / \mathrm{w}$ not common to other tendrils of various plants kept in House $24-27 \mathrm{~m} / \mathrm{w}$ so with Pea $7827-30 \mathrm{~m} / x * / 28-29 u$ "während \mid herabsteigt" 79 1-3m/x $/ 2-3 u$ "welche nothwendig" 82 wt Big. cap \& cot wd not stick $6 u / w \tau / 4-6 x / m \quad 105 \quad 14 x / 11-15 m / 12-18 w$ seems to consider twisting in axes cause of movement $26 u$ "eine"/27u "dreilsechs"/22$26 m / 23-24 x * w$ number of twists $29-32 w$ end becomes spiral $30-34 m / 31-32 x$, $w b$ (a) I presume from each lower part of internode ceasing to move or acting like a fulcrum106 1m, 6-7m 108 16-17x/13-19m/w accounts for movements by spiral twist 109 $6 u$ "mehreremal" $/ 6-8 w$ passed mark many times in day. 110 wt He shows well how climbers get to their support. 4-5x $111 w t$ movement ceases when plant comes into contact with support!!! 4-7m/4u "hört"/6u "auf"|w (a) 13-14m, 15x /13-16w Vascular fibresO do not become twisted when plant twines round stem? 19-28m/22x 21-26w When plant twines axes not twisted !! 112 4$6 \mathrm{~m} / 4 u$ "Kreisbewegungen" $/ \mathrm{w} / / 1-4 w$ This looks as if he knew tendrils performed a circle. 11$16 \mathrm{~m} / 16 u$ "sich \mid schlingen" $/ 8-13 \mathrm{w}$ a plant which is already twisted cannot climb!!! $21-25 \mathrm{~m} / \mathrm{w}$ twining plants have sensitive stems!! 33$34 u \cdot / 33-36 m / w$ twines are not according to place of growth $w b$ I must explain why tendril bearing plants do not twine - tip does not move in some - 116 12-13x /12-33w experiments on odd shaped support strong influence of light $1192-4 \mathrm{~m} / \mathrm{w}$ do not so much incline to lighter $6-9 \mathrm{~m} / 8-9 \mathrm{u}$ "sich $\mathrm{richten}^{\prime}$, $14 \mathrm{~m} / \mathrm{m}, 16 \mathrm{u} / 16-22 \mathrm{w}$ This plant cared paticularly little for the light $29-32 m 1207-$ $8 m, 9-13 w$ Yet light some influence on Ipomaea $20 m, 22-34 w$ Explain little effect of light by all sides turned to it - will not do 122

11-13m/12-13u "sie \mid Kreisbewegungen" 124 32-34m 125 1-4m/2u "Gattung IFamilie", $22 x / w$ Legumin. $12629 m 130$ 29-30u "beil vorkommen" 134 3-4x 4-12m/5-9w Every thread suffices to wind on $17 \mathrm{~m}, 22 u$ "von! Zoll", $31 u$ "3|Zoll", $32 u$ " 9 Zoll" 135 1m, 3$19 w$ will not wind round a very short stick. - I suppose movement not arrested till bent considerably \& movement acts on opposite side $32-36 \mathrm{~m} / 35-36 \mathrm{~m} / 32 \mathrm{w}$ Hooks $1395-7 \mathrm{~m} / \mathrm{w}$ spiral arrangment of vessels $1404-6 \mathrm{~m} 143$ $32 m 1475 u$ "findet | desselbe"/4-6w Palms sole proof of identity $28-32 m /!!!/ 29 x * / u{ }^{\prime \prime} u m$ I gedreht" $1494-6 \mathrm{~m} / \mathrm{w}$ He disputes this $7 x$, $8-12 \mathrm{~m} / \mathrm{w}$ and says owing to Stutz not being smooth $15 \mathrm{~m} / \mathrm{u}$ "an IInternodien", 18 u "beobachtete lebenfalls", $115-20 \mathrm{w}$ he has seen twining in opposed directions $23-25 \mathrm{~m}, 30-$ $32 w$ Disputes Cuscuta case $15023-30 \mathrm{~m} / \mathrm{w}$ Palm did not discover irritability of Tendrils $1512 u$ "Rückwärtsbewegung", 9-11!!/m, 12x $16-18 m / 16 x / 16-17 u \leftrightarrow 1527-10 m, 15-18 \mathrm{~m} /$ $15-16 x \geqslant$

MOHL, Jules Vingt-sept ans d'histoire des études orientales 2 vols.; Paris; G. Reinwald; 1879-80 [Down] \wp
MOJSVÁR, Edmund Mojsisovics von Die Dolomit-Riffe von Südtirol und Venetien Wien; Alfred Hölder; 1878 [Down, I] \wp
MOJSVÁR, Edmund Mojsisovics von Das Gebirge um Hallstatt Part 1, 2 vols.; Wien; K.K. Hof- und Staatsdruckerei; 1873-75 [Down, I] \wp
MOJSVÁR, Edmund Mojsisovics von
Geologische Übersichtskarte TirolischVenetianischen Hochlandes [Down, I]
MOJSVÁR, Edmund Mojsisovics von Über die Triadischen Pelecypoden-Gattungen Daonella und Halobia Wien; K.K. Hof- und Staatsdruckerei; 1874 [Down, I] \wp

MOLESCHOTT, Jacob La Circulation de la vie 2 vols.; Paris Germer Baillière; 1866 [Down]
cc , phy
vol. 2 NB 43 particular earth good for particular plants
43 7-34m
MOLESCHOTT, Jacob Der Kreislauf des Lebens vol. 1; Mainz; Victor von Zabern; 1877 [Down]
〈markings presumed to be by FD>

MOLESCHOTT, Jacob and FUBINI, S. Sull'influenza della luce mista e aromatica nell'esalazione di acido carbonico per l'organismo animale Torino; G.B. Paravia; 1879 [Down] \wp

MOLINA, Juan Ignatio Compendio de la historia geografica, natural y civil, del reyno de Chile 2 vols.; 1788-95 [CUL, pre-B, on B, S in vol. 1 Charles Darwin, Valparaiso 1834] gd, gr, he, ve
vol. 1 NB1 369 Pace of Horse inherited Earthquakes
3-8
33 globe of fire
NB2 30; 36; 57; 62; 81; 95; 102; 105; 114
earthquakes
NB3 earthquakes
28 15-18m 30 15-28m 33 6-37m/29w Copiapò earthquake $3618-32 m 57$ 26-30m 58 1-5m, $6-8 m, 17-18$?, $19-23 m / w$ Not to where I say no map of sea $591-7 m 6214-19 m 635-15 m$ $735 m 7625-27 \mathrm{~m} / \mathrm{u} \leftrightarrow 8128-30 \mathrm{~m} 82$ 1-9m 95 $15-29 m 10019-25 m 1061-11 m, 13-24 m 114$ 9-13m 223 22-26m $2627-15 m 268$ 1-16m 294 $20-28 m \quad 301 \quad 25-30 m \quad 302 \quad 6-12 m, \quad 12-13 u$ "ladran", 13-15m, 16-20m/13-20w do the early voyagers say anything about dogs in T. del Fuego 304 26-30m/was V. p. 330330 21$23 w \vee 304331$ 7-8m, 10-28m 343 15-29m 368 3-5m 369 22-25m 370 9-13m 373 zb 376 $20 u$ "Los Pehuenches", 22-23u "cabrones especie"/Q 418 wb Birds p. 257 Quadrupeds p. 301

MONIEZ, Romain Mémoires sur les cestodes Part 1; Paris; Octavo Doin; 1881 [Down, I by Alfred Giard] \wp

MONS, Jean Baptiste van Arbres fruitiers 2 vols.; Louvain; L. Dusart \& H. Vandenbrock; 1835-36 [CUL]
cc, ch, cs, f, gd, he, hy, or, phy, sl, sp, spo, $t, t a, t m, v, w d$
vol. 1 SB1 440 to $446 ; 450 ; 453 ; 458$ \& 457

- In first origin cd not have been transported must have sported in nature \& not grafted; 472; 478; 486
SB2 - | think much must be attributed to selection of good sorts
- =He mingled his seedlings=
p.215; 218; 221; 225; 230,1,3,4,7; 247,8
- Old cultivated kinds tend to vary loose the hereditary quality of goodness
254-6,8; 322; 373; 400; 406; 410; 415; $430,32,34 ; 437,39 ; 441 ; 446$
〈over〉
successive generation. at short intervals, with selection, the key
113; 115 not fixed
160162,4 Chief end of his system is to domesticate them, ie to give them the effects which richer soil \& cultivation will give
172-179-180-183-184
This system chiefly illustrative of effects of external conditions on successive generations. \& fixity of the characters ie goodness - not injured by seasons - taste $\&$ consistence *
Short period of renewing must be an element if he is true about earliness - yet not applicable to animals
187 to 209
SB4 1β
115 Cannot account why one stock increases size of part more than other (p113)
180183 with his successive sowings there was selection; \& it is valuable case that after last, he got great majority good p203 almost all good. Whence it is proverbial 204,206 that if you sow seeds of any ordinary good fruit very 0 you get anything good. Law of character becoming fixed with selection by successive generations 247-472
186215 Seed not ripe (probably to cause sterility in offspring; \& from first fruit, weak
230 Great changes take place at first sowings??
400 "Variation est une chose insatiable." Elle entre dans un sentier sans issue et plus elle advance moins elle peut reculer"
406 Facts against pears crossing in adjoining trees
431 Cd tell by leaves or growth 800 or 900 Pear Trees
437 Has never got seedlings identical with parent
444 Wild seedlings like domestic apples \&c $-446 \mathrm{Q}_{0}$

8
$11323-27 m 1156-10 m$
$1605 w$ Origins $6-13 m 1622-6 m, 15-21 m 163$ $6-10 m, 14-19 m, 20-24 m 16417-22 m, 22-25 m$ 80
172 9-12m, $13-19 m / 13-14 w$ like cabbages 179 3-6m, 27-30m, 32m $1802-4 m$, 6-7m, 20$24 m, 25-32 m, 27-32 u \pm 1814-8 m 18327-31 m$ $1843-8 \mathrm{~m} / \mathrm{w}$ time only thus saved $1854-6 \mathrm{~m}$ $1864-8 m \quad 187 \quad 1-5 m, 4-7 m$, $13-21 m / w$ crossing? $18813-17 m / 23-28 m / 12-32 w$ fruits \& leaves do not go together $1891-3 m, 16-20 \mathrm{~m}$ $1907-12 m, 25-26 m 19118-22 m /!$! 194 12$16 m \quad 195 \quad 6-10 m \quad 196 \quad 1-5 m \quad 197 \quad 1-5 m / 2 w$
curious 21-23m $198 \quad 29-32 m \quad 203$ 9-16m, 12$15 m, 18-22 m /$? 204 17-22m 206 14-18m, 29$32 m 208 \quad 30-32 m 209$ 1-2m 215 12-17m 218 8-14m, 26 w not roses $22120-24 m 2257-12 m$ $230 \quad 21-26 m \quad 231 \quad 28-29 m \quad 233 \quad 29-32 m / 30 w$ tulips $23416-20 \mathrm{~m}, 24-27 \mathrm{~m} 23711-14 m 2477-$ $12 m 248 \quad 20-24 m 25416-20 m 2564-7 m$, 8$11 m, 29-32 m 258$ 21-25m 259 19-23m
8
322 9-13m
\wp
373 9-13m
8
400 5-11m 406 21-30m 410 25-30m 415 wt Belgium good for Pears $1-7 m$ (Duhamel) 430 4-32m 431 15-20m, 21-30m 432 16-18m, 22$26 m 433$ 1-3m 434 14-26m 437 4-20m 439 30-32m 440 1-5m 441 6-10m 442 10-13m 444 $13-22 m, 27-31 m 44625-30 m 45014-17 m / 11-$ $21 w$ This makes me believe in other cases.H. Watson no 452 26-32m 453 4-8m 457 19$\begin{array}{lllllll}22 m & 458 & 9-29 m & 472 & 6-12 m & 478 & 4-10 m\end{array}$ (Klinkhardt) $4864-8 m, 12-15 m$
\wp
vol. 2, $103-6 m 1618-20 m, 22-23 m 242-4 m /!$ 8
81 27-32m 86 17-23m 108 19-23m/wt/1-22w some trees do a little - period of flowering too slow for selection; in animals, a nonconstant is rejected $1238-17 \mathrm{~m} / 10 u$ "concevable \mid effet" 126 2-4m (Cabanis)/w doubt it 128 15-20m $13123-29 m$, wb cases of some good ones springing up, only hypothetically doubted 132 19-27m/19-20m 144 3-8m 149 29-32m 158 3-5m $1612-5 m 17028-32 m 178$ $8-12 m 18111-16 m$ (Sageret) $18414-18 m 197$ $3-6 m, 1-23 m 20215-20 \mathrm{~m} / \mathrm{w}$ not seed 203 22$28 m 20530-32 m 2093-8 m 225$ 3-13m, 23$\begin{array}{llllll}32 m & 226 & 1-13 m / 4-9 m & 241 & 18-24 m / w\end{array}$ The experiments are related before $2491-6 m, 9$ $11 m 2504-22 m / w t / 1-26 w$ important. not caused by season, for all trees in the same nursery not affected $24-27 \mathrm{~m}, 30-32 \mathrm{~m} 251$ 1$5 m 252$ 28-32m 253 1-4m, 23-27m 254 11$16 m 25527-32 m, w b$ Can the wild be too vigorous to be crossed by domesticated ones; but I think he tryed the reverse 256 $16-20 \mathrm{~m} 258$ 11-16m 263 11-20m 264 25-32m $2652-6 m 2716-11 m / 7-9 w$ crossing? $2861-$ $8 m \quad 290 \quad 27-32 m \quad 291 \quad 1-7 m$, 2-3Qa, 6u "séquestration 1 vigne" 293 12-20m 298 1-6m/w Grape $30810-18 \mathrm{~m} / \mathrm{w}$ just contrary to Knight 312 20-27m 313 11-15m, 21-27m 314 5-10m \wp
385 9-16m 386 11-23m 388 22-30m 403 14$22 m, 30-32 m 4041-5 m, 5-8 m, 14-19 m, 22-$ $27 m 4061-10 m, 18-22 m 413$ 8-12m 414 10-

15m, 20-24m, 30-32m 415 1-15m 416 8-22m/ $9 u$ "prunier 1 pommier" $4187-12 m 4214-10 m$, 29-32m 422 15-22m 424 7-16m 428 18-24m
§
$4841-9 m$
8
MOORE, David and MORE, Alexander Goodman Contributions towards a Cybele Hibernica Dublin; Hodges, Smith \& Co.; 1866 [Down]
cc, gd
NB p.xx, xxiii
xx 16-20m/16-17w Water plants $17 \mathrm{~m} / \mathrm{w}$ Doubts $18 m$, 20u "Atlantic" $19-22 w$ doubts whether not naturalised xxiii $10-14 \mathrm{~m}$
80
MOORE, Frederic Descriptions of new Indian lepidopterous insects Calcutta \& London; Taylor \& Francis; 1879 [Down] \wp

MOORE, George The first man and his place in creation London; Longmans, Green \& Co.; 1866 [Down]
beh, h, pat, v
NB 252 Nods; 341 *lackness \& Fever
252 2-7m 341 20-29m, 36m

MOORE, Thomas The poetical works London; Longman, Brown, Green \& Longman; 1847 [Down]

MOQUIN-TANDON, Alfred Éléments de tératologie végétale Paris; P.: Loss; 1841 [CUL] af, cc, ch, em, f, fg, gd, he, ig, mm, mn, no, 00, phy, rd, sl, sp, sx, t, ta, tm, v, wd
NB1 266; 271; 285; 295; 300; 303; 305; 309; 322; 324; 326; 328; 329; 342; 345; 352; 354; 370; 385
N.B. I have not attended to variations with normal abortive parts
NB2 V. Back First for N.B.; 19; 20; 25; 29How then are flowers in fern-leaved Beech Irish yew \&c \&c; 30; 37; 42; 44; 50; 53; 54; 56; 58; 60; 62; 65; 66; 68; 69; 73; 77; 79; 85; 91; 113; $114 ; 116 ; 121 ; 122 ; 124 ; 126$ to $130 ; 132$ to $146 ; 154$ to $159 ; 163 ; 166$ to 192; 197; 213; 214; 216; 219; 221; 225; 229; 235; 236; 252; 254
SB1 ロK
30 varieties, i.e. slight modifications rarely congenital
42 Mountains destroying colour sometimes Qa to 58 a good deal about striped flowers

MOQUIN-TANDON
\& fruit
61 effects of good soil on villosity, \& low elevation Q®u
68 Atrophy of organ often causes villosity of Part
73 Fleshiness of leaves caused by proximity to sea Q
113 Monstrosity of axil almost always affects the parties appendiculaires Q
115 Monstrosities more common under cultivation than in state of nature.
116 Q Monstrosities are generally normal in some other species.
121,139 organs arrested $\&$ rudimentary at different ages of evolution \& hence more or less rudimentary.
Q 124 organs often repeated are most variable in form \searrow_{0} Isidore G. St. Hilaire
126 in Maize a return to supposed primitive form.
128 comparison of rudiments of stamens to normal rudiments in other flowers
138,140,156,167 case of monstrosity analogous to other species- Q
$\checkmark 173$ good
156 Believes in Balancement; 158 Q
163 changes of form when organ becomes rudimentary
168 variation of "Piment annuel" see Vilmorin Catalogue
172 analogous variation in most distinct plants; crinkled leaves.
SB2 $\square \Re$
189 great tendency in irregular flower to become regular (or peloric) - this is return to ancestral structure? p191 hereditary generally sterile. Why?- see further, for the peloric flowers retake their normal structure
212 Monstrosity analogous to other allied genus
221 in Malus apetala all stamens converted into pistils
225 Rudiments normal of parts.
248,266 on soldering of homologous parts Q 285 on trunk of tree with nuts \& acorns in solid wood (a\& Birds nests - Loudon Journal.)
309 Deplacement very rare monstrosity, as in animals
323342 Q Monstrosity analogous to another genus in Family
327 Q Linnaeus on plants wh. lose corolla in Arctic regions
352 Return in stamens to normal number, even when rudiment not present
353 Remarkable heredetary Capsella bursa pastoris
385 Description of the St-Valery apple
ix $21 m 19$ 4-6m, 19-23m $207-12 m 2516-17 m$ $291-3 m, 6-9 m \quad 305-6 m, 10-11 m, 14 m / w \vee$ note 31 16-18m!!, 31-32m 37 29-30m 42 1014m, 16-19Q凶, 20-22m, 28-30m, 32m (SaintSimon) 44 9-10m $475-7 m / w$ like Apples half sour \& sweet $8-10 \mathrm{~m}, 13-15 \mathrm{~m}$ (Knight), 19$21 m 5016-17 m, 22-24 m 5329-31 m 5427-$ $29 m 569-14 m, 22-24 m$ (Sénébier) 57 16-18m (De Candolle), 24-27m 58 1-4m 60 29-30m 61 7-8m 62 19-22m/20w Ch $726-27 m 632-4 m$ 65 3Q*, 6-8m 66 6-9m, 28-30m 67 11-12m, 18-21m (De Candolle) 68 11-14m, 27-29m 69 $1-5 m 7323-28 m / w$ Q Good for Chapt. 777 3-4m, 9-10m 79 24-26m, 28-29m $856-11 m$, $14-16 m$, $19 \mathrm{~m} / \mathrm{u}$ " 618 ", $21 u$ " $4 \mid 5$ ", $23 u$ "moitié", $25 u$ "qu'àlstation" $913-4 m / 4 u$ "généralement I stériles", $5-7 \mathrm{~m}, 6 \mathrm{u}$ "Ses dimensions" $/ 8 u$ "ses habituels", $13-16 \mathrm{~m} / \mathrm{w}$ Do they seed $25-29 m 11322-23 \mathrm{~m} / \mathrm{Q} 1147-9 m$ $28-29 m 1151-4 m, 5-6 m 1161-2 m, 3-5 m / Q$ $12014 \mathrm{~m} 1211 \mathrm{~m}, 2-4 m, 5-6 \mathrm{~m} 1229-18 \mathrm{~m} / \mathrm{w}$ I suppose frequent 124 at 〈page no.), $7-8 \mathrm{~m} / \mathrm{Q}$ $1255-6 \mathrm{~m}, 16-18 \mathrm{~m} / \mathrm{w}$ naturally so, I suppose $1264 u$ "involucre calice" $/ 4-9 \mathrm{~m} / \mathrm{w}$ known to be true - good case $10-13 m, 22-24 m / w$ now known $26-27 m 127 w t$ wild Quince tree $1 u /$ $w \tau, 3 m, 6-7 m, 11 m, 27-28 m$ 128 1-2m, 5-7m, $17-18 m, 20-23 \mathrm{~m} / 21-26 \mathrm{w}$ actually compares with normal cases $28-30 \mathrm{~m} / 28 u$ "rudiments" 129 3-6m 130 2-5m, 20-23m, 25-28m 132 13$15 m, 16-19 m 1367-9 m / 5-12 w$ example with respect to the balancing of organs $1376-8 \mathrm{~m} /$ $7-26 w$ also occur normally V. note but in different families: Does this not bear on such cases, as similarity in Orchis \& Asclepias? 138 18-19u "Solanum Dulcamara", 20u "deux étamines", $22 u \leftrightarrow, 23-24 u \quad$ "quelquefois extranormales", 29-33m/16-19Q $29 u$ "une habituel", 32-33u "Solanum tridynamum" $1396 u$ "Anémones", $9 u$ "les \mid Goëthe", $11 u$ "Diplotaxis", $10-14 w$ are these same families? (No) 15u "Cleome" 140 23u "Seneçon", 28-29m/u "Barkhausial Crepis" $/ w$ I think same family $31-32 m / w$ worth reading $1469-10 \mathrm{~m} / \mathrm{w}$ is this not analogue of Turnip 154 10-13m $1552 w$ Quote generally 11-13m 156 wt Q Q 1-2m, 9-13m, 12-13m (De Candolle, A.P.), $17-23 \mathrm{~m} / 17 \mathrm{u} / 19 \mathrm{~m} / 22 \mathrm{u} / 21-$ $22 w$ same Family $25 u$ "temps|pédoncules" $26 u \leftrightarrow / w$ Balancement 28-30Q/31-32m (De Candolle, A.P.), $24 u$ " Muscari" $\mid w b$ I cannot make out in Loudon whether this is Feather Hyacinth $1573-5 \mathrm{~m} / \mathrm{w}$ same Family $13-16 \mathrm{~m} /$ $14 w$ Balancement $22-28 \mathrm{~m} / \mathrm{w} Q$ cart before horse $31 u a / 32 u$ "caractères | Carex" $131-33 m$ $1583-6 \mathrm{~m} / \mathrm{w}$ Right horse before cart $10-12 \mathrm{~m} / \mathrm{u}$ "sexuelslhabituel" $/ \mathrm{w}$ Balancement $24-27 \mathrm{~m} / \mathrm{w}$ Garden fruits \& seeds $30 \mathrm{~m} / \mathrm{w}$ worth reading

159 9-10m/w Balancement $1631 m, 19-20 m$ 164 1-2m $166 \quad 6-12 m / 9 u, 21-23 m, 25 m 167$ 19-21m, 27-28m 168 5a "Podolepis".w 7-8m, $13 \mathrm{~m}, 26-28 \mathrm{~m}, 32 \mathrm{~m} 1691-2 \mathrm{~m}, 16-18 \mathrm{~m} 172$ 11-13m/w Umbellifera Coniferae Compositae $14 u$ "Chou", $14 u$ "Laitue"/14-15m, 16m/w Parsley? 28-30m $173 \quad 24-30 m \quad 174 \quad w t$ variegation but only analogous $1-6 \mathrm{~m}$, 14 $16 m, 18-20 m 1758 m, 8-9 u$ "oultemps", $23 m$ $18227-29 m 1849-12 m, 19-21 m / x 18517 m$ 186 11m, 13-14m, 15-16m, 18-19w 13 species of Linaria ! $1873-4 w$ Linaria $10 \mathrm{w} /$ $13 w / 15 w / 17 w$ a 7 genera 188 12-14w (10 genera) $17-19 m, 24 u$ "Rhinanthus" $1893 u$ "Chelone", 15-19m, $19 m 191$ 6-9m\&, 15-16m, $20-21 m, 23-25 m, 26-31 w$ see only about 6 stamen, too many $1922 \mathrm{~m} / 6-10 \mathrm{Q} 11-13 \mathrm{~m}, 20-$ $22 m / w$ so I saw in Laburnum $1935-12 m$, 14$16 m$ (De Candolle, A.P.) 197 3-5m/5u "habituelles", 7-8m 207 25-27m 213 1-10m/5u "Arbousier 1 Éricinées", 8-9u "Argophyllum", 24-26m/Q 214 25-27m 216 1-2m 217 6-9m, 19-21m $2189 m 2191-2 m, 3 m, 30-31 \rightarrow 220$ 24-27m 221 19-20m 223 11-14m 225 5-7m/6$7 u$ "trouvel onglet", $14 \mathrm{~m}, 27-30 \mathrm{~m} 2358-10 \mathrm{~m}$, 11-16m 236 15-17m (Richard) 248 1-2Q 4-9m, $20-24 w$ Leaves or their lobes 249 27-28u "Gleditsia"| $28 m$, wb 250 2u "Dracontium" 251 16u "Séphales", 25u "Pétales" 252 1$2 m, 25 u$ "Étamines" 253 15u "Pistils" 254 $6-7 m / w$ influence variation $25815 m 263$ $3 w$ buds 266 23-29m/Q 267 3-5m, 23-25m/ m 271 9-11m 285 19-21m 295 29-30m 297 3-6m, 9-11m $30016-19 m, 29-31 m 3017-10 m$ $30310-12 m, 30 m$ (Guillemin and Dumas) 304 16-17m $3092-4 m$ (Geoffroy St Hilaire) 315 1$2 m, 28-30 m \quad 319 \quad 28-31 m \quad 320 \quad 7-10 m \quad 322$ $14-17 \mathrm{~m} 3235-6 \mathrm{~m}, ~ 15-17 \mathrm{~m} / \mathrm{w}$ which is Leguminous $23-24 m 3248-10 m, 11-12 m, 13-$ $18 m 325$ 9-12m, 21-25m/21-23m, 31-33m/32u "2,500", $33 u$ " 658 " 326 25-26m, $25 u$ "foule|causes", 26-27m, 26u "plupart", 27u "normalement" $327 \mathrm{~mm}, 4 \mathrm{~m}, 5-6 \mathrm{~m}, 8-10 \mathrm{~m} / 11-$ $13 \mathrm{~m} / 8-13 w$ are there many arctic Plants, without corolla $3285 u \uparrow$, 5-6u "bois disparition", 6-7m, 19-21m, 22-24m 329 6-8m, $11-13 m, 21-24 m, 29 m 3301-3 m, 4-6 m 342$ $20-28 \mathrm{~m} / 20-23 m / \mathrm{Q} / 24-27 m 3431-2 m, 14-19 m$, $23-25 m, 27-28 m 3445-6 m / 5 w$ What is it 14 $16 m 3458-9 m, 21-22 m 352 \quad 2-6 w$ So in Azalea $18-20 m, 24-26 m, 25 u$ "d'éléments nombreux" $/ 27-30 \mathrm{~m} / 29-31 \mathrm{~m} / 29-30 u \leftrightarrow / 6-32 w$
Here I suppose not even a rudiment present, but tending to produce perfect organ, or rudiment 353 9-12m, 24-27m, $33 m 3541-3 m$ (A.P. De Candolle) $3707-9 m 385$ 26-33m 386 10-12m, 31-33m, 31u "Mém.lLinn.", 33u "Seringe 1117 " 394a 39m, 41m

MORGAN, Lewis Henry The American beaver and his works Philadelphia; J.B. Lippincott; 1868 [CUL]
beh, h, or, sx, v

NB1 Instinct

- 300 Castoreum not sexual Used p. 44 * variability

89; 93; 95; 100; 102; 116; 133; 140; 158; 165; 191; 222
248, 250 to end Best observers admit intellect
instinct 264 good
289 variability
NB2
Mind of Man-poor-252; 256; 258; 259; 272
Blind Pelican fed
Our pity is an instinct; Blyth; crows - Fowl
$443-19 m 8317-33 m / 22-26 m, w b$ over $847-$ $11 m 8917 u$ "and lbark" $117-19 w$ instinct first arose accidentally? $93 \quad 1-3 m$ 95 29-32m 99 $13-18 m 100 \quad 26-33 m 10420-23 \mathrm{~m} / 22 \mathrm{~m} 10518-$ $20 \mathrm{~m} / 19 u^{\prime \prime}$ "than I structure" $10818-20 \mathrm{~m} 11616-$ $22 m / 1-22 w$ could a lodge have been originally found in centre of stream? 133 12$15 m 14025-29 m 15816-24 m 16521-27 m 172$ $28-30 m 19111-14 m / 11-12 m \quad 2228-9 m$, $14 u$ "much \mid members", 23-27m 248 12-28m 250 10-14m, 27-32m 252 6-11m, 17-21m 256 2630 m 258 1-5m, 6-8m (Hamilton), 12-16m/14 $16 m 2593-7 m, 18-21 m 262$ 8-12m 264 3-9m 265 6-9m 266 9-11m/8-14w No - Chicken picking up grain - Sphynx Moth 18-19m/w Wasp-Ants 272 23-31m 273 15-29m 278 17$23 m 289$ 19-24m

MORGAN, Lewis Henry Systems of consanguinity and affinity of the human family Washington; The Smithsonian Institute; 1871 [Down, I] \wp

MORREN, Édouard Actes $d u$ congrès de botanique horticole Liège; Fédération des sociétés d'horticulture; 1877 [Down]

MORREN, Édouard Principes élémentaires de physiologie végétale Gand; C. AnnootBraeckman; 1871 [Down]

MORRIS, John A catalogue of British fossils 2nd edn; London; by the author; 1854 [Down]
geo, ti
NB 363 Hooker Eocene Temperate Plants \wp
363 30-34m

MORTON, Samuel George Types of mankind; with contributions by L. Agassiz, W. Usher, H.S. Patterson ed. J.C. Nott and G.R. Gliddon; Philadelphia, Lippincott \& Grambo; London, Trübner \& Co.; 1854 [CUL]
ad, af, br, cc, cr, cs, dg, ds, ex, fo, gd, geo, h, hy, in, mn, or, sl, sp, sy, t, ta, tm, v, wd

NB Dtitute of Mankind 1200B.C. Sir W JD 800B.C. Wilson \&
\Leftrightarrow Prichard Last Edition
-
Jackinot, Considerations generales Voyage au Pole Sud Zoologie (Royal Soc-? must be studied.-
Rosellini Athenaeum Monumenti dell'Egitto \& c

Champolion

Morton Crania Aegyptiaca

Lipsium Denkmalen (read)
Mr BirchO seems to have written illustrated Book
p. 459 - 724 Important Book. G. St. Hilaire p. 675 Chronology

688 -Aegyptian Dynasties.-
691,2; 696 Chinese; 701,2 Assyrian; 712; 715 Hindoo
Sir James BrookeO says positively DyaksO कt no greyhound, only degenerate Chines Dog. \& Pig seems equally degenerate Chines
SB1 xlv; liv; Ix to end of Agassiz; 56; 54 to 66 to 75; 81-85
90 Have 1 read Edwards description of Races of Man
94; 141; 156; 169; 175; 179; 181; 186; 194; 212; 237; 256; 272; 275; 280; 305; 309; 322; $338 ; 340$ to $403 ; 413,14 ; 425 ; 436 ; 439 ; 440$; 449

As mere naturalist, excepting from blending of races to certain extent, independently of crossing, I shd look at races of man as deserving to be called distinct species, yet 1 consider as descended from common stock, so come back at common belief; only difference is name whether to be called species or variations.
What effect wd idea of beauty have on races and selection. it wd tend to add to each peculiarity. V. our aristocracy.
The question of Origin of our domestic animals from 1 or more stocks, as only of interest, as showing amount of variation \& hybridity
<over〉 - It will be quite necessary for me to state most strongly how impossible it is to
guess the steps by which even vars., as of human race (or of Pigeons) have attained their characteristics.-
It is of course no ways impossible that some of the dogs of the Monuments may have descended.-
I am beginning to conclude that it is more difficult to account for small variations, as of man, when there is no adaptation than greater differences, when adaptation.
Consider cases of Rabbits, mere laws of growth
So geese \& Ducks
Nothing is more odd than similarity of Fuegian \& Brazilian. Why Puma shd range continent unvaried \& Monkeys differ in every province.- It is great hiatus in knowledge. I may contrast Man with Monkeys, for on my theory, the Monkeys have varied.-
xlv $25-28 m$ liv $7-11 m / 8 u$ "Monograph on hybridity" lx $8-11 m, 17-20 \mathrm{~m} / 18$?, 24-27m lxvi $31-38 m / 32-33$?, 37-43m lxvii $42-43 m / 43 u$ " A. Wagner" lxix 24-32m/w How false for how distinct S. America \& North temperate America. lxx 6-14m, 28-32m/w what forced reasoning ! lxxi 12-14m/12-17w Cape of Good Hope Plants of ! so distinct. 1xxii 12$18 \mathrm{~m} / \mathrm{w}$ Here single genus, instead of whole Fauna taken. Ixxiv $7-11 m / 10-12 m / 1-17 w$ But it will come in, what is meant by primordial, except that not descended from other form. 10a "Characteristics"/11-13m/9-16w nor does analogy cause doubt whether they may not have varied. $26-29 m, 35 u$ "as |the" $/ 31-35 w$ this not known $32 u$ "primordiallforms" 31 $34 w$ primordial begs the question $w b$ "organic forms now keeping distinct" wd be more correct - but in common acceptation, certainly origin comes into play: hence cowslip \& primrose discarded. lxxv 11-13m lxxvi wb Plants used at beginning, ignored at Cape of Good Hope, \& New Zealand look at Madagascar - Look at same race in United States \& S. America oh fish pudor Agassiz!.- 54 34-35m (Prichard)/34u "1847" 56 8-9m (Lepsius)/8w read 57 30-34m (Prichard), 46-48m 58 21-35m/26-32w well argued $40-47 m 668-13 m$ (Pickering) $6826-$ $33 m 7216-19 m 7435-40 m 754-7 m 7643 m$ 81 17-18m, 20-23m/19-27w These terms are objectionable because "allied" means also systematically allied. $858-11 m 903-10 \mathrm{~m} 94$ $1-13 m$, $22-26 m$ 95 16-21m, 26-30m, wb depends on the individuals or race \& not on law of proximity. $14121-25 m$, wb can men portraits ${ }^{\text {s }}$ rude sculptures be trusted 146 "Memnon".m/wb Knox Races of Mankind
says p. 204 that Bust of young Memnon is that of a Jew (see next Page) 148 "Ramses $I^{\prime \prime} . m / w b$ Dr Birch says this is young Memnon of Knox $15424 u$ "Romenen", 29$34 m \quad 156 \quad 33-35 m \quad 159 \quad 34-41 m \quad 160 \quad 23 u$ "Japhetic", 25-30m 163 6u "Chinese"/8u "Tartar" $12 u$ "Mongolian" $/ 6-8 m / w$ are Chinese \& Tartars now alike 169 39-41m, $43 \rightarrow 1701-3 m 17311-13 m / 11-12 u$ "variously explained", $19 u$ "Israelitish|Hyksos", 19-23w shows that the races not so easily recognized $27 u$ "Semitic", $39 u$ "Hyksos" $17412 u$ "northernlorigin", $26-29 m / 26 u$ "Champollion I Greeks"/29u "Hyksos-family" 175 16u "Semitic", 19-26m 179 9-16m, 23-32m $18123-27 m, 36-38 m 18632-37 m 19026-32 m$ (Prichard) 194 37-44m 212 9-10m 237 23-27m 256 37-41m 272 13-16m 274 wt To show how little we know how variations are produced mem. changes of colour in domestication; reduction of size \& interbreeding - small \& great forms rising in same country, as sheep \& Bantams \&c \&c - why Yankees differ from English? 26-30w mem. an old-worid form, mem. nose $31-34 w$ similarity owing to character of first intruder $35-36 w$ a group 40$43 m / 37-43 w$ slight distances these are. 275 $1-9 m / w t$ like the Puma $43 m \quad 27611 u$ "infinitude of types", 13-18m, 36-40m 277 41$43 m 28034-42 m / 35 u$ "without material" 305 $22-26 \mathrm{~m}, 35-37 \mathrm{~m} / 37 \mathrm{u}$ "peculiar 1 constitutions" 319 31-35m 322 20-28m 327 25u "Usher"/w unknown to Lyell $3386 m 33943 m$ (Cuvier) 340 32-34m (Buckland), $38-40 m 341$ 2-3m, 9$10 \mathrm{~m} / 10 \mathrm{w}$ ancient $26-28 \mathrm{~m} / \mathrm{w}$ European Dog 35-38w Eocene age? 41-42m 342 1-2m, 32$34 m$ (Serres), 37-38m, 41-42m/z $3431 m, 6-$ 8?!!/m (W. Mantell) 347b $43 m$ (Schmerling) 35341 m 357 1-2m 364 wt The age of Man very important, as most savage races have domestic animals (at least dogs), \& hence is concerned with origins of Man. 368 13-20m/w Successive extinction $37318 \mathrm{~m} / \mathrm{w}$ since contradicted $23 w$ do. $25 m, 27-28 m$ 374 17$22 m 375$ wt Race-hybrids Species-hybrids 2$6 \mathrm{~m} / 4 \mathrm{u}$ "Charleston Medical Journal", 26-30w implying, I think, separately created $38-39 \mathrm{~m}$, 40-41m, 42u "turnspit"/wb (A Monster) 43$45 m 3771-4 m, 26-28 m, 32-33 m, 34-35 m 378$ $10-16 \mathrm{~m}, ~ 39-41 \mathrm{~m}, ~ 43-45 \mathrm{~m}$, $50-52 \mathrm{~m} / \mathrm{w}$ Col. Ham. Smith $37913 u$ "unprolificlse", $13 u$ "without | coupled" $/ 12-15 \mathrm{~m} / \mathrm{w}$? no precision $17 u$ "victoriously 1 Morton" 19 "Charleston 1 Journal"/Q凶, $27 w$ Buffon 30-31w See Chartsworth Journal $37 \mathrm{~m} / \mathrm{w}$ inter se $45-48 \mathrm{~m}$ 380 19-21m/20u "Bolta|Layard", 28-44m/41$44 m, 45-46 w$ p. 724 good references $47-50 w$ not intended $382 \quad 12-15 \mathrm{~m} / 13 u$ "among
themselves" $115 u$ "wolf-dogs", 18-19m, 32-37m, $38-40 \mathrm{~m} 3834-7 \mathrm{~m} / 7 \mathrm{u}$ "continues 1 remarkable", $8-9 m, 19 w$ i.e. C. Lupus of many authors $34-$ $40 \mathrm{~m} / 36-40 \mathrm{~m} / 36-37 w$ Richardson 37-39m, 39$40 m, 52-53 m 3841-3 m, 8-9 m, 10-12 m$, 21$29 m, 42-45 m, 46-49 m, 47-49 m 385$ wt Think of the geographical distribution difficulty $12 u$ "Tchudi" $12-13 w$ most probably in Nat History $13-17 \mathrm{~m} / 13-14 u$ "found l epoch" $/ 14-15 u$ "that lseldom", 23-25m, 45-48m 386 10w quoted from Lyell 26?/u "inlforms" 387 fig.235.w Pariah dog $16-18 \mathrm{~m}, 43-50 \mathrm{~m} 388$ wt Rosellini fig.237.m, fig.240.m, $1-4 m, 3 a / u$ "3400", 16-18m/17a "dynasty" 2400-2100 BC $21 w$ Lepsius $22 w$ *, $25 u$ "alhound", $28-30 \mathrm{~m} /$ $29 u \quad$ "IVth \mid dynasties" $30 u$ "curled tail", fig.240.w How alike Jackall \& supposed Greyhound 41-42u "the! BC" 389 fig.241.w Rosellini $7 u$ "from 1 Roti", $9 u$ "XIIth" $/ w$ 24002100 13u "gazelle", fig.242.wヵ modern 29$30 \mathrm{~m}, 31-33 \mathrm{~m}, 42-45 \mathrm{~m}, 51 \mathrm{u}$ "at 1 species", 52$55 m / 53 u$ "small|peculiarities"/w Eyton $3902-$ 5 m , fig.243.w What dog is this? so long in body. Lepsius Dankmalen Rosellini ears not like $13 u \leftrightarrow, 15-19 m, 20 u$ "Rossellini's", fig.244.w Lepsius short body - what a tail fig.245.w Rosellini big ears fig.247.w ears not like hound, long body 391 2-4!, $5 u$ "common 1 of", $8 u$ " 433 " $/ w$ Hoskins Ethiopian $12 u$ " 434 "/ 13-19m/12-16w Bennett Tower menagerie has figured African Bloodhound (?) $29 u$ "twentyl before", 35-37m 392 8-10m, 10-15m, fig.251.w Layard \& Vaux 38-39m 393 6-7m, $14-18 m, 27-33 m 3943-7 m / 4 w$, $10 u$ "pugs $\mathcal{E} c$ "/10-12w no sort of evidence $17-28 m 395$ $1-10 \mathrm{~m} / 2-6 w$ i.e. variation due to crossing $5 w$ Pigeons 41-44m, 46-50m 396 10-17m 397 $36 m 398 \quad 37-40 m 400 \quad 14-24 m, 27-29 m, 34$ $35 m 4013-5 m / 4 u$ "but lhound", 10-11m, 21$23 m, 24-25 m, 32-36 m, 41-44 m 4024-12 m 403$ $3 u$ "natural" $/ 3-5 m / w$ Giant Horse 12-14m 413 4-10m/7u "nolcamels"/8u "nolfowls" $/ 4 w$ Gliddon $21 u$ "may $\mid B C$ ", 24-26m, 27-30m, 44$47 \mathrm{~m}, ~ 48-53 m \quad 414 \quad 32-35 m \quad 415 \quad 1-3 m$ (Crawfurd) 424 38-43m 436 28-36m 439 3$15 m$, $41-44 m / 43 u$ "excessive" 440 1-4m, $3 u$ "authentic documents", $4 u$ "anomalous conformation", $13-21 \mathrm{~m} / 13-16 \mathrm{~m}, 35-37 \mathrm{~m} / 37 u$ "foetus" 449 24-28m 669 12-14m (Rosellini) $67524 m, 27 m 6881-4 m / 3 u$ "pyramids 1 tombs"/ $4 u$ "thirty-fifth" $6898 m$, 10u "Pyramids extant" 691 41-45m 692 20-25m/w \therefore Romans probably did not receive domestic Birds 693 $35-37 m 70117-20 m 70214-18 m 71420 m 715$ $11-13 m, 37-39 m$ 717b $35-39 m$ 724a $51-52 m$ (Ritter), $54-55 \mathrm{~m}, 57 \mathrm{~m} / 59 \mathrm{~m} / 56-60 \mathrm{w}$ Camels hybrid wolves Pallas on wolves 724b 74$76 m, w b$ St. Hilaire

MOSELEY, Henry Nottidge Notes by a naturalist on the "Challenger" London; Macmillan \& Co.; 1879 [CUL, I]
ad, beh, cc, ch, gd, no, 00, rd, sx, tm
NB 123 Distrib; 125; 133; 154 Rudiments; 168; 265; 457-84 Expression 492; 337; 292; 305; 360; 386; 591
Geogr Distribution; 17; 24; 123; 135; 164; 281; 368; 386; 433
SB Moseley
125 changes of Habit
169 Plants in Antarctic growing on mounds wind
292 Nesting of Edible swallow
305 Gill-cavity partly lung \& partly store for air
3861 male nutmeg to 50 female trees 586 Competition
591 Light \& colour of animals at grt depths
17 25-26m $2435-37 m 354-6 m 45$ 17-19m, $36-38 m 1237-10 m 1258 u$ "under stones", $12 u$ "totally new", 14-19m 133 14-25m, 29-33m $13511-21 \mathrm{~m}, 31-36 \mathrm{~m} 14217-21 \mathrm{~m} 154$ 18-26m $1644-11 \mathrm{~m} 16835-38 \mathrm{~m} 1691-7 \mathrm{~m} 2651-4 m$ 281 1-8m 284 27-33m 285 8-17m 292 35-38m 305 27-37m 337 11-16m (Darwin) 360 12-16m 368 5-10m, 12-14m 386 8-12m, 23-25m, 2738 m 387 1-4m, 5-9m/6u "eject I hard", 12-16m $42130-32 m 43223-26 m / 24 u$ "701east" 433 $15-22 m, 32-33 m, 35-37 m 457$ 27-33m 492 29$35 m 538$ 22-23m 540 13-14m 581 17-18m 586 $17-34 w$ Competition with other forms far more important than conditions $58723-28 m$ 591 17-35m (Wallich)

MOSELEY, Henry Nottidge Oregon: its resources, climate, people and productions London; Edward Stanford; 1878 [Down, S]

MOSELEY, Henry Nottidge On the structure and development of Peripatus capensis (extract); 1874 [Down, I]

MOSSO, Angelo Kreislauf des Blutes im menschlichen Gehirn Leipzig; Veit; 1881 [Down, 1] \wp

MOUBRAY, B. A practical treatise on breeding poultry, pigeons and rabbits 7th edn; London; 1834 [CUL]
beh, br, f, he, no, wd
NF1 Recommended by Mr Brent
NF2 p. 147
NB1 Hens, Domestic Hints p70
NB2 p13; 17 to 24; 30; $54 ; 87 ; 106 ; 130$;
133; 152; 154; 156; 165; 168; 176; 185; 203

SB $\square \beta$
13 Game Chickens very pugnacious. Q Eggs very thin. Ch 6 Q
30 Some Hens much addicted to lay eggs in other nests
54 tapping on board with nail induced chicken to peck
107 colour of Ducks eggs going with plumage - Correlation (Memb. B. Ayles Duck)
133 Qas Hen Pheasant lays seldom more than 10 in confinement but 18 to 20 wild
170 London to Liege $4^{\circ} 34^{\prime} \mathrm{AM} 10^{\circ} 24^{\prime}-5^{\circ} 50^{\prime}$ said to be 45 miles per hour.
176 Some Cats Ratters \& some Mousers Chapt 6 (Hereditary) \& took to water \& swimming
A Blyth on Felis cilidigitataO aquatic kitten dabbling in water.-
185 Hare-Rabbit large eyes
$1314-17 \mathrm{~m} / \mathrm{Q}$ 18-19m, 25-26m/Q $1723-25 m$ 18 4-5m/4u "white tops", 12-13m, 23-25m 19 12-13u "exclusivel very", 16-17m 20 9-10m 22 $11-12 \mathrm{~m} 24$ 11-13m 30 19-23m 54 19-24m 55 16-21m 70 3-17m 87 3-12m (Buffon) 106 14$17 m 1072-8 m 13031-32 m 13328-31 m 152$ 24-25m 154 17-22m 155 14-16m 156 28-32m 162 1-5m 165 1-3m $16828-30 m 17028-32 m$ 171 3-6m 176 4-6m, 20-21m 185 8-14m 203 2-6m
\wp
MÜLLER, Ferdinand von Fragmenta phytographiae australiae vol. 7; Melbourn; J. Ferres; 1869-71 [Down, I]
NB O/
§
MÜLLER, Friedrich Allgemeine Ethnographie Wien; Alfred Hölder; 1873 [Down, I] \wp

MÜLLER, Friedrich Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859: anthropologischer Theil 3. Abtheilung, "Ethnographie"; Wien; Kai-serlich-Königlichen Hof- und Staatsdruckerei; 1868 [CUL]
beh, cc, h, mg, t, tm, v
SB1 p.127- He discusses \& disputes whether the civilization of W . coast of S . America is due to immigration from Asia- I wd remark if so, the aborigines must have already been somewhat advanced, for for while not nec with our inference, it is very unlikely that a few shipwrecked men from some less civilized nation co have produced any permanent effect on savages.-

SB2 xi Remnants of Races xii Beard no connection with Climate．－
xi $34-39 m$ xiii $11-15 \mathrm{~m} / \mathrm{w}$ Beard correlation $19 u$＂Australier stark＂xiv $22 m 12721-22 m$ §

MÜLLER，Fritz Facts and arguments for Darwin London；John Murray； 1869 ［CULR］ br，ch，ds，em，ig，sp，sx，t，ta，tm，ud
NB 80 Orchestia shown
79 sexual differing good development goes on
40 zigzag above
21 \＆ 26 two such forms
Species Theory
83；94； 98 to 109 embryology no fixed plan
110，119 Metamorphosis of Insects acquired 139 like Plant
80 means of transition from changes going on in the sexually mature males Case like the larvae of Batrachians breeding
$1430-33 m 1912 w$ p． $922-23 m 201 u$＂anterior antennae＂， $8 u$＂Copepoda＂，15－19m，22－25m／ $23 u$＂different＂，28－30m 21 fig．m／c／w 25 fig．w Fig｜ $11 u$＂powerful chelae＂ $262 u$＂bylterms＂， figs．w Fig 2， 327 12－13u＂females 1 species＂， figs．m，24－26u＂coxal｜process＂ 40 20－26m （Milne－Edwards），21u／a＂inferior＂．w posterior $475-23 m \quad 72 \quad 23-26 m / w$ this is specific difference 76 6－7u＂structure 1 sexes＂ $781-7 \mathrm{~m} /$ $w t / 1-3 w$ acquired only during adult age $791-$ $7 \mathrm{~m}, 8-9 \mathrm{~m}, 10-11 \mathrm{~m}, 14-17 \mathrm{~m}, 15-17 \mathrm{~m}, 19-21 \mathrm{~m}$ ， 23－31m 80 1－13m，figs．m 83 19－25m 94 1－4m， figs．m， $6 u$＂plus 1 the＂， $27-34 m 959-18 m 981-$ 18 m 100 29－30m 101 25－28m（Rudolf Wagner） 104 22－29m 105 1－6m 106 26－29m（Cuvier） $1077-18 m / 16 a$＂and the＂Spider $1081-6 m 109$ 20－21a＂us＂！ 110 21－23m $1114-12 m, 7-13 m$ ， 19－25w But the Embryo of the intermediate progenitor will reveal this stage $11414-18 \mathrm{~m}$ 116 15－30m $117 \quad 23-30 m \quad 118 \quad 1-3 m, 27-30 m$ 119 1－6m，8－40m（Gerstäcker） $12040-42 \mathrm{~m} / u$ ＂amongladult＂ $12131-38 m 127$ 11－15m 131 15－24m 137 11u／？＂carina＂ 139 6－11m

MÜLLER，Fritz Für Darwin Leipzig； Wilhelm Engelmann； 1864 ［CUL，I］ sx，tm
SF $\langle 4$ sheets，not $C D\rangle \square \beta \notin$
13 figs．3－6．w 2 forms of same male 17 figs． 8 and 9．w 2 forms of same male 19 $3 m, 14 m 716-8 m / 6 u$＂gleichem＂

MÜLLER，Hermann Alpenblumen Leipzig； Wilhelm Engelmann； 1881 ［Down，I］ f, v
$16920-21 m 18935-38 m, 40-41 m 205<26-$ $29 \mathrm{~m} / 26 u$＂Wohlgeruchs＂｜28u＂Auszackung＂ 206 10－13m 267 5－16m $26840-42 m 269$ 41－43m $2797-9 m 2871-3 m, 6-8 m 2881-3 m 2891-$ $4 m 290$ 20－29m 297 25－29m，35－41m 305 2－ $5 m, 18-19 m, 20-24 m, 25-32 m, 40-41 m 352$ $10 m 477$ 37－38m $4781-2 m, 37-38 m 4791-3 m$ ， 25－26m 481 fig．m 483 41－42m 484 29－30m 486 $4-7 m, 24 m 4875-7 m, 35-38 m 48830-35 m 492$ 37－40m 493 25－33m 495 2－4m，7－18m 496 2－ $4 m, 33-35 m 49710-21 m / 15-17 m, 31-35 m 498$ $7-10 m, 21-22 m, 36-39 m 5004-5 m 50212 m$ 503 table．m $50523-24 m 5068-10 m, 35-40 m$ ， $41 m 507$ 1－2m，25－29m 508 fig．m 509 3－7m 511 17－20m／19－20u＂dal darbieten＂ 513 1－3m， $11-13 m 514$ 21－25m $5151-4 m, 28-31 m$ ，42－ $43 m 521$ 17－21m，34－38m＊ 528 28－32m，43－ $44 m 5291-2 m, 9-10 m 53022-25 m 53119 m$ ， $33-35 m \quad 533$ 31－33m 536 32－34m 539 31－39m 540 31－32m 541 1－3m，41－43m 543 31－34m $54612-14 m, 18-39 m \quad 5471-5 m 548$ 19－22m， 38－41m 549 38－42m 551 37－40m 552 23－26m， 42－44m 554 23－25m $55516-24 m, 28-36 m 558$ $30-36 m 559$ 9－16m $560 \quad 27-30 m$ 561 24－29m $56226-30 m 56418-23 m 5654-15 m$ ，21－22m， 34－38m 566 19－21m 567 3－5m，27－28m／27m， $35-36 m, 39-40 \mathrm{~m}$

MÜLLER，Hermann Befruchtung der Blumen durch Insekten Leipzig；Wilhelm Engelmann； 1873 ［CUL，I］
ad，beh，cc，f，fg，ig，mhp，no，oo，or，phy，sl， sp，sx，t，ta，tm，v，wd
NB $\left\langle\Theta\right.$ ，repeated $\left.\propto_{0}\right\rangle$
extraordinary facts about the 2 forms of Rhinanthus \＆Malva－very important as showing new way of variation－Strange they do not blend－wd it not be worth while to cross and experimentise on with ε_{0} them \＆ publish separate paper－
© ${ }^{0}$ 369．Scabiosa case like Thymus－ female flowers smaller．
p． 37 Orchids 0 p73 0 all have descriptions separate
430 for Orchids
4033 for Orchids
$\left\langle\ominus\right.$ ，overwritten $\left.\sum_{\square}\right\rangle$ p444 of Mullers Laws of Variation
title page $2 u$ 〈author〉， $10 u$ 〈title〉 3 14－18m 4 11－15m／／．．．J／13－15u＂ohnel müsse＂$/ 5-23 w$ have been blamed，but is \＆ $18-21 \mathrm{~m}, 23 ? / \mathrm{u}$ ＂Sprengel｜Erkenntnis＂， $41 \mathrm{~m} 717 \mathrm{~m} 136 \mathrm{~m} / \mathrm{u}$ ＂cleistogami＂ 17 7－38w it seems that Axell has shown that many flowers can be self－ fertilised 18 22－25m／24u＂Windblüthen＂ 19 $26 w$ Why not you give on page 2238 m 27 $20 u$＂1868＂， $23 m$（Fritz Müller）， $27 m, 28 m$ ，

MÜLLER, H., BEFRUCHTUNG
$28 m 3511 u$ "zu fressen"/w Diptera 43-46m 37 32-40m/36u "Rhingial Rüssellänge" $/ 33-36 \mathrm{w}$ Flies not stupid $399 u$ "die Empisarten", 10u "Anbohren lbefähigt" 46 14-22m 47 13-20m, $16-22 m \quad 49 \quad 15-23 m \quad 58$ wt p235/p333 Erythraea 4a/u "LaburnumlCarum"/w 10061 35-37m/39u "sich|blühten" $7534 \mathrm{~m} / 35 \mathrm{~m} /$ 31-34w Hildebrand on late pollen 39-44m/ 35-37w self-fert orch $49-53 \mathrm{~m} / \mathrm{w}$ self-sterile $53-54 m$, wb Proc 76 35-36w 5 spec 81 21$22 m 8324-29 m, 33 u \star$, $34 u \uparrow$, 43u*, $43 u$ "Blüthen Imascula"/w $249 u \wedge / w$ 3, $4844 u$ " 32 ", $42-57 \mathrm{~m} / \mathrm{w}$ shows time right $8517-20 \mathrm{~m}$, $21-23 w 1-6$ Bombus 2 other \& $8727-31 m$, $39-41 m 8813-21 m 901-5 m$, 20-22ms 92 37-40m (Sprengel) 97 wt Ensuring crossfertilisation $20 \mathrm{~m} / \mathrm{u}$ "proterandrische Dichogamie" $9934-40 m \quad 113 \quad 31-33 m \quad 115$ 43-47m/45-46u "Diese \mid ihrer" 122 8-12m, 23-26m, $24 w$, $29-32 m, 41 u \wedge$, 42-43m, 42u "Ritterspornart" 127 15-27m (Fritz Müller), 30-31u "und|Blüthenstaub" 131 39-43m 133 $1-4 m, \quad 4-7 m \quad 143 \quad 10-13 m, 23-26 m, 28 u$ "Prosopisarten", 49-50m/49w no \& $1453 u$ "Sprengel", 3-4u "Hildebrand", 20-27m, $23 u$ н, $26 u$ "dieselbewirken", $32 u$ "kleine", 32u*, 32-34m (Delpino), $34 u$ "Selbstbestäubung|tricolor" 146 21-30m 147 13-23m, 45-47m 149 37-39m 151 10$11 \mathrm{~m} / \mathrm{u}$ "werdenlaufgelockt" 153 42-48m/ $46 u$ "von Dipteren und Hymenopteren" 154 $28-30 m \quad 165 \quad 34-37 m \quad 167 \quad 35 u$ "fünf Honigtröpfchen", $45 u$ "gleichzeitig", $46 u$ "doch 1 statt" 168 18-20m, 23-26m, 27m/u "durch। 70", 27-28m, 29-32m 169 19-21m, 23-25m 173 27-47m, 35-36m, 38-39m (Kölreuter, Gaertner) 174 9-10m, 27-31m, 27-28u "zu|hindurch", 35-37u \leftrightarrow / m, wb Several other non-dimorph species $1758 m / u$ "Insektenbesuch beschränkten", $34 u$ " 41 ", fig. $56 . m / w$ How like dimorph (must be origin of 176 3-4u "proterandrischer Dichogamie" $1855-6 u \leftrightarrow 188$ 20-22m (Axell) 193 6-7x/6u "langer", fig.m, 10-21w \& different form \& size. $12 \mathrm{~m}, 13-15 \mathrm{~m}, 13-26 w$ Spike when cultivated plants as we shall see variation $19 m, 22-23 m 1951-2 m 2243-6 m, 46-47 m 232$ $45 \mathrm{~m} / \mathrm{u}$ "monadelphisch" 235 15-17m $24024 u$ "honiglos", 24-26m, 32-33m/33u "Honigbiene" 241 wt excellent observations compare mine $9 u$ "welcheloben", $15-17 \mathrm{~m} / 16-17 u$ "aller| zwängen", $30 u$ "dielRücken", 31u "der plattenförmige", 35-41m/? 242 22-27w । cannot but think adaptation $33-35 \mathrm{~m} / 37-$ $47 \mathrm{~m} / 37 u * / 30-45 w$ Saft-maal \& no Honey yet he thinks Bees $42-46 m, w b *$ a juicy swelling near centre of Standard $2438 u$ "luteus" 249 $19 u$ "HoniglInsekt", 15-26w Beautiful
adaptation $28 w$ must be strong $30-32 w$ Difficult flowers for endemic insect $36-39 \mathrm{~m} / \mathrm{w}$ Thinks notior insects wd be stronger so fertilise better $48 \mathrm{~m} / \mathrm{u}$ "Viertelstunde", $w b$ very few Bees visit them $2503-9 m, 38-41 m$ (W. Ogle) 253 42-46m $2582-7 m / 4 u$ "coccinus", 8$37 w$ distinct species conclude must be crossed - this the one Phaseolus which flowers at the same time distinct species 1723 m , 23u* "vulgaris"/wes wrong 46-49m 264 3-6m, $7-17 m / 14-16 m 2659 u$ "einen Theil", $28-32 m \quad 267 \quad 29-34 m / 31 u$ "ausgeprägtel Blüthen" 277 9-10m/10u "Blumenkrone", 12u "nigrum", 30u "Blüthen| Honigtröpfchen", 32-33u* "orangel und", $34 u \leftrightarrow, \quad 36 u$ "uberwiegend wahrscheinlich", 37us "Insektenbesuchel möglich", 46-49m, 47u "Saftmaal" 278 12-14w various insects 35 © "Thapsus" $27940-41 \mathrm{~m}$, $42-46 \mathrm{~m} / \mathrm{m}$ 282 29-33m/30u "Wespen" 284 1-2m, fig.100.w It is a dichogam) \&o (Ogle \& Spengel) 23$30 \mathrm{~m} / 17-30 \mathrm{w}$ Think self fertilisation of seed 32-34m/33u "Bot. Z. 1865", zb 285 6-9m/w 287 10-12m, 39-42m 289 wt The more conspicuous a flower is the more likely to be fertilised by foreign pollen \& to be sterile if not visited $20-37 \mathrm{~m} / 28 w$ (a) $29241-46 m 295$ 8-11m, 42-43 $\rightarrow 296$ 22-29m 303 46-48m 306 22-28m, 31-32m/31u "Bezug|Ogle" 311 2126 m 318 fig.116.w Polygonum dioicius 18-25m/23-24u "weiblicher 1 seltener" 319 20-22m/ $21 u$ "Die kleinblumigen", 33-36m, $50 u \leftrightarrow$, wb greater fertility is real cause $32520-22 m, 28-$ $29 m \quad 326 \quad 10-21 m \quad 328 \quad 5-9 m / 7 u$ "proterandrischer", $8 u$ "kleinblumigerlStöcke", 6-7w forms $14 u \leftrightarrow 334$ 1-3m/2u "13"/w p113 341 $20 u$ "Bot. 167 "/w many cases given 34239 $41 m / 28-42 w$ fecundation wind \& insects $w b$ Begins by saying that D. describes 3 forms which noteO in passingo of owing to plants it \& $3432 u$ "sammelnde | Pollen" $/ 2-3 w$ on pollen from 4-6m, $43 u$ "ausgeprägten proterogynischen" $3451-3 m, 5-9 w 2$ Gradations between Arumarten \& Erbsenarten $346 \quad 37-44 \mathrm{~m} / 40 u$ "homomorphischelproterandrische", $38-39 w$ non-dimorphic $42 u$ "striata", 43u "Riceallongifolia" 347 21-25m/ $23 u$ "Kelcheldie" $/ 21 w 4$ Hon $39 w$ cases 40$44 m 348 \quad 5-11 m / 7-8 w \quad 2$ forms 349 18$19 u \leftrightarrow, 28-30 m / 28-29 u$ "Narbel Staubgefässe"/ $30 u$ "honiglosen" $3507 \mathrm{~m} / \mathrm{u}$ "Den 1 der ", fig. $130 . w$ between two \& three as long $14 u$ " $0,0111 \mathrm{~mm}$ ", $30-34 \mathrm{~m}, 32-35 \mathrm{~m} 3511-3 m$, 6$18 \mathrm{~m} / \mathrm{fig} . \mathrm{m} / 6-8 w$ chiefly Diptera $10 u$ " 103 ", fig.c

MÜLLER, Hermann Die Wechselbeziehungen zwischen Blumen und den ihre Kreuzung
vermittelnden Insekten Breslau; Trewendt; 1879 [Linnean Society of London]
1 wt From the Encyklopaedie der Naturwissenschaften Linnean Soc. presented by C. Darwin

MÜLLER, Johannes Elements of physiology trans. W. Baly, 2 vols \& supplement; London; Taylor \& Walton; 1838-42 [CUL] ad , af, beh, br, cc, ch, che, cr, cs, dic, em, fg, geo, h, he, hl, hy, ig, in, ir, mhp, mn, oo, pat, phy, rd, sl, sp, sx, t, ta, tm, ud, v, wd, y
vol. 1 NB1 Owen says he can perceive not much difference between reflex action \& effects of habits - (he conceives an habitual action takes place through special cord)
404 On division of Planariae
It seems to me most difficult to separate a really habitual (if such there be) \& hereditary habit- from real mental willed actions, which the consciousness does not perceive from want of attention, in same manner as it does not perceive all coinstantaneous impressions on the senses -
\& Associations may become hereditary, which wd account for the alliance of instincts with times, places - V. Hartley on association??
NB2
How then can Geologists say, that animals were first created!!! a capital argument showing that we must not generalize from absence of organic remains - see p. 46

9; 10风; 16; 19; 20风; 23; 26; 28; 30; 39; 41; 43; 47; 48; 54; 56; 72; 76; 89; 90; 144; 158; 165; 193; 194; 198; 203; 254; 225; 290; 298; 302; 320; 350; 352; 354; 364; 373; 394; 395; 399; 401; 402; 407; 431; 448; 460; 499; 500; 568; 570; 572; 624; 280; 686; 698; 713; 719; 720; 730; 735; 739 \& following pages for association; 748; 762; 778; 786; 791; 793; 794; 818; 820; 822; 824; 836; 846
Expression; 350-354; 730; 740; 748; 762; 778; 818
p407 Nails Reproduced
721 Theory of reflex actions
SB $\square \beta$
33 The more developed the parts, the more dependent on each other
54 All organs require occasional use to keep perfect
76 Young Dogs as long as blind generate less heat, born at earlier period
165 Branchial arches in higher animals p302, 320
290 on same part attracting same
substances, as in Tumours (Pangenesis)
395 Peculiar teeth in ornithorhynchus, Anteater \& Whale
399 On similarity of embryos of higher animals
403 On monstrosities in relation to division of genus - Double monsters Pang
499 In sucking objects to Cuviers idea of Dream for instinct NQ
686 On the insulation of the will to certain muscles in playing piano NQ
713 Reflex action compared by me with Habit.- 716 Reflex adaptive - 721 NQ
791 On atrophy of nerve of eye from lesions 468 Urea in blood \& separated by glands
$136 u$ "Sodium" 4 28-34m 5 6-14m/? 9 40$43 m, w b$ As if this whole function of life was first used in counteracting ordinary chemical laws- $10 \Perp 3-6 \mathrm{~m} /!/ 4 u$ "oflorganic", $12-17 \mathrm{~m} /$ 13-15w remarkable 16 wot How is this to my theory (\& parasitical insects) $3-8 m, 6-8 m$, $10-16 \mathrm{~m} / \mathrm{w}$ like diseases proof of relation of man to other animals $24-26 \mathrm{w}$ great change $26-27 m 174-13 m, 24 m 1836-42 m / w$ poor 19 $w t / 1-41 w$ NB in the growth \& ground of reformation of those simple animals in which any part out of will make new individuals the ordinary growth must be nearly same as true reproduction. \& the theory may probably be extended to all organisms $1-10 \mathrm{~m} / 5 \mathrm{w}$ poor $11 w{ }^{0}$ Yet a snail will reproduce its head!-21-26w There must be some wider difference between ovum \& bud.- wb There must be in the bisected parts organs sufficient to keep them alive \& then any part may be reproduced.- $\mathbf{2 0} 38 a$ "adaptation"/c "end" $|w|$ (as the effect of) $*$ circumstances 23 12-15m/w well seen in Zoophyte buds 34$38 \mathrm{~m}, 40-44 \mathrm{~m} 24$ wo now in a bud we must suppose there is one old particle of old organized structure.- a filament of old nerve $1-22 m / 7-8 w$ very good $38-42 \mathrm{~m} / 41 \mathrm{u}$ "anencephalous monsters" $25 \chi_{0} 3-5 m, 6-8 m / 7 u$ "byidream" $/ 9 w$ bad comparison?? wb The inherited structure of brain must cause instincts: this structure might as well be bred. as any other adapted structure.- 26 9$13 m 2738 m 2832-36 m$, wb Combustion, 1 shoud think, was strongest analogy to live.instead of heat being produced by the action. life - * $3027-32 \mathrm{~m} / 30 \mathrm{x} / \mathrm{u}$ "those life", wb X The vital principle produces the organs.- as the latter vary, so must the vital Principle. $315 u$ "indispensable" $15-6 \mathrm{w}$ deep water sea-weeds! $3326-28 \mathrm{~m}, 30-32 \mathrm{~m} /$?, 35$40 \mathrm{~m} / \mathrm{w}$ I suspect false 3410 u ? "transferred" $3923-25 \mathrm{~m} / 23 \mathrm{u}$ "organiclalso" $4120-22 \mathrm{~m}$, 32-
in (Note p.1661) German Translat. of Prichard
1661 Rudolphi Beitrage zur Anthropologie, treats of Species \& Hybrids -
p. 1671 List of good Books on Races of Man

List of good Books

- 1144 frowning

NB2 870; 928; 931; 934 Book on Expression; 936 to 950; 965; 1038; 1071; 1086; 1090; 1110 to 1117 to 1125; 1144 \& 1150 Expression; 1148; 1169; 1229 Appendix p8; 1233; 1236; 1245; 1262; 1311 Expression; 1315; 1318 Instinct; 1328 do; 1335; 1339; 1344; 1347 to 1364; 1384; 1399; 1400; 1405; 1407; 1421 to end
Best abstract against metamorphosis which I have seen

- 1335; 1339; 1347

Expression 933,34; 1311 See Passions, Index; 1328; 1351 animals \& man's mind compared; 1399; 1144 frowning short sighted people close eyelid \& frown
SB $\square \beta$
928 Consensual movements - at birth in eyes
935 instinctive walking (Heredetary easy flow of nervous force to certain muscles) Q 939, 943 Q
946 Definition of instinct. 947-949-950
on importance of Coordination. Q
Müller Phys 2d vol
965 Rudiments of toe in Horse \& Pig do not touch ground
1344 Instinct Q - 1347 innate ideas - 1361 1405 Argument that monsters not due to imagination of Mother. (good)
1407 on temperaments of the old writers shows rubbish.-
1425 A Polype is a multiple of all that is necessary for development of individual (Pangenesis)
1437 A good sentence in relation to reproduction in connexion with superfluity for own Life ${ }_{c}$ in relation to Doubleday
1453 Tape-worms either bend \& fertilize themselves or two unite - shows how important crossing must be as pollen of later dichogamous flower wasted \& so with Lymnaei
1454 Tendra is it Bryozoon? sexes distinct 1458 Rudolphi has enlarged on sexual difference in his Beitrage Pang
1478 Imperfect Spermatozoa of Hybrids
1569 Membrane of egg agrees with membrane of uterus (Mem Fish coming to have Placenta
1592 On how far true that all embryos
resemble each other
1596 on embryo Torpedo increasing in weight in womb (a sort of Placenta * 1597 (striking case of Passage)
1599 great difference in 2 species of Mustelus in placentation
1610 Relation of Vertebrae in Fish to embryos of higher animals
1622 Sharks have gills during early part alone of embryonic life
1661 Definition of Species
1662 On the two causes of Variation: innate \& external
1663 characters fixed by long intermarrying〈over〉 Passions

870 26-43m 928 wt N.B The summing up in this chapter good $3-15 \mathrm{~m}, 16-19 \mathrm{~m}, 41-42 \mathrm{~m} /$ $42 u$ "be|habit" 929 4?/u "of birth"/w instinct 931 31-38m 932 8-17m/12-13u "any action" 933 wt what makes a passion? 6-15m, 25$29 m 934$ wt $0,2-8 m, 2-3 m, 4-5 m, 5-8^{\prime \prime} \ldots$ ", 41-42m (Huschke) $93524-39 m$, wb this bears on instinctive walking The nervous fluid flows into habitual channel $93623-26 \mathrm{~m}, 33-37 \mathrm{~m}$ $9373-9 m / 6-7 u$ "There 1 mind" $/ 8-9 u \leftrightarrow, 34-36 m$ 938 14-16m, 15-19m/15-16u "the production", $16-20 m, 17-19 m, 23-24 m, 29-31 m$ 939 25-32m/28-29"..." 946 15-22m/"...", 36-38m 947 17-18m, 23-24m/u "the form" $/ 23$ "..., 24-25u "unison laction" $/ 25-28 w$ yet upon some education 948 4-6m, 23-27m, 25-27m 949 $20-22 u \leftrightarrow, 20-22 m, 23 w$ (a) $31-32 m, 35 u$ "decapitated", $35 u$ "were spasmodic", wb These are hereditary in Horses paces.- 950 18$21 \mathrm{~m} / 18 u$ "the 1 movements" $96543-44 m 1046$ 6-7m 1071 9-11m 1086 3-35m 1088 wt Q to p. 11621089 34-36m/36u "convex |crustacea" $10902-4 m / 3 u$ "three modes" $23-28 m, 25-27 m$, 29-31m 1091 19-21m 1092 1-2u "mosaic instrument", $2 u$ "concentrating |organ" 1099 1$3 m 11106-7 m, 28-30 m, 38-42 m 11117 u$ "pupillopening", $10 \mathrm{~m}, 21-22 \mathrm{~m}, 23-25 \mathrm{~m}, 32-$ $33 m, 34 m, 36 m, 38-40 \mathrm{~m} / 38 u$ "perception" 1112 $4 m 11134-5 m, 9 m / u$ "the cornea", $9 u$ "in general", 15m, 21z, 23m, 27-28m, 33m 1114 68 m (Milne-Edwards), $8 u$ "Callianassa", 9un, $10-11 u \leftrightarrow, 13-14 u$ "the Icones", $17 u \wedge, 23 \mathrm{~m}$, $24 \mathrm{~m}, 28 \mathrm{~m}, 33 \mathrm{u} \mathrm{A}, 36 \mathrm{~m}, 39-41 \mathrm{~m} / 40 \mathrm{u}$ "namely humour" 1115 1-2m, 7-9m/8u "manl generally", 19-20m, 22-24m, 25m, 28-29u "larvae 1 eyes", $36-37 \mathrm{~m} 11163-4 x$, $7 x / u$ "the I oblong", $9 x, 37-39 \mathrm{~m} / 38 u$ "more lbody" 1117 11-12Q 12-14m, 24-26m, 37-38m, 42-44m/44u "rudimentary state" 1118 13-15m, 28-30m/w Have they lens for images $111929 \mathrm{~m}, 36 \mathrm{~m} /$ $u^{\prime \prime}$ characteristic of" 1120 5-6m 1123 24Q 26$27 m, \quad 28-30 m \quad 1124 \quad 11-13 m \quad 1126 \quad 6 \mathrm{~m} / \mathrm{u}$

MÜLLER, J., PHYSIOLOGY
$41 m, 33 m, w b$ Plants going to sleep without the stimulus of darkness strongly analogous to a voluntary action from a diffused nervous system. $438-10 m 4625-33 m, 34-42 m 47$ wt Look at differences of variation propagated 2-5m/??, 9-27m $4834-39 m 5120-23 m 54 w t$ in savages no cause apparent. [an ourang more ear? $5-15 m 564-22 m, 11-12 w$ curious $6525-27 Q 31 \mathrm{~m} / u$ "torpedo", 38-39u $\rightarrow 40 u$ "of 1 distributed", $41 u$ "gymnotus and", $42 m$ $666 u$ "hundredlnerves", 9-10u "branches 1 superficially", $11 u$ "without", $18 u$ "nervus vagus", 20 u "intercostal nerves" 72 13-43m 73 wt Vitality is to ternary compounds, what electricity is to binary $-3-9 m /!7631-37 m 89$ $26-27 \mathrm{~m} 901-3 \mathrm{~m} /$?, $23-28 \mathrm{~m} / 25-26 u$ "torpor 1 time", 34z 92 30-35m 107 20-22m 141 21-25m $14437-43 m 1458-13 m 158$ wt it shows, I think, that * same external form may be arrived at from two very different courses of generation $1-6 w$ it is an extreme case of analogy $16533-38 m$, wb Hence prototype aquatic $19234-38 m 19312-16 m 19814-30 m$, $w b$ therefore habit of general movement of body would act on the heart.- 203 18-21m $22520-25 m, 33-37 \mathrm{~m} / 35 u$ "such $/$ gallopavo" 290 $26-30 \mathrm{~m} / 1-39 w$ But it does not follow that any cancerous particles are in the blood to be attracted. $28-37 w$ Transmission of varieties is answer enough. $38-44 \mathrm{~m} / \mathrm{w}$ Rose-gall \&c \&c $w b$ it is less wondrous that each new structure should reproduce itself if cancer does $29517 u$ "tembrio" $/ w$ tenebrio? 298 3$6 \mathrm{~m} / \mathrm{w}$ impregnated? $30223-30 \mathrm{~m}$ (Rathke), 42$48 m \quad 303 \quad 22 m \quad 320$ 1-21w Hence greater complexity of structure in early than in later stages. 13-23m (Geoffroy) 350 12-15m, 20$25 \mathrm{~m} / \mathrm{w}$ what has pouting to do with respiration $351 \quad 9-25 m, 20-23 w$ crying imagination disgust $27-38 m 3521-4 m$, 11$33 m / 21-25 w$ urine from fear! 353 26-27u "oblongata 1 nasal" $/ 25-30 \mathrm{~m} / \mathrm{w}$ established by habit $32-35 \mathrm{~m} / \mathrm{w}$ analogous to tickling $37-39 w$ not alae of nostril? $35435-44 w / w b$ in playing a tune are the fingers connected with brain? or cerebellum $w b$ why more difficult than any instinctive movement. 364 22-23u "Nutrition reproduction", $23-24 m, 26-35 m 36529-30 m$, $30-34 m 373$ 34-36m, 42-43m 374 1-15m 395 $31-38 m 399$ 1-10m/8u "but lwhile", 11-24m, $28-34 m 40040-42 m 4011-13 m, 27-38 m 402$ 1-30m 403 6-11m, 14-43m $4044-11 m$ (Dugès) 407 31-33m $41028-30 \mathrm{~m} / 28 u$ "it Itransparent", 32-33u "affinitylsurface" 412 37-39m 416 3$5 m 431$ 25-30m/! 447 32-41m 448 30-37m 460 10-17m, $34-39 \mathrm{~m} / 39 u$ "and lornithorhynchus" $4684-7 m 469$ 13-33m 473 15-18m 486 27wョ $4877-12 m /$? $4893 u / w \notin 49930-42 m$ (Cuvier)

500 1-2m 513 32-33m 514 wtc氏, 4-6m/5u "1.14 to", $27 w 48451534-35 m 568$ 8-12m $57036-41 m 57234-35 m 6241-5 m / w$ * would a blind man have sensation of light $8-10 \mathrm{w}$ nerve aborted $680 \quad 23-27 m \quad 686 \quad 22-24 m$ 698 1-6m, 23-33m, 38-40m 699 25-27u "radiation lcord", 27-33m, 34-37m 713 30$36 \mathrm{~m} / \mathrm{w}$ Infant winking see how old Willy was $33-36 \mathrm{~m}$, wb Pretend to poke a man in the stomach, he will ward off. quite involuntary. Mr Wickham. Surely this must be custom $71432-41 m 715$ wt Bell wrong $1-3 m, 4-10 \mathrm{~m} /$ $6-11 w 2$ sets of nerves for same end $13-15 m$ $7164-9 m / 5-18 w$ but why does it not excite instead of this misadapted movement 717 wt the eye would not work $5 x, 18-24 m / 19 x, w b x$ it has been said that respiration, also, subject to the will - Habitual movements show that any may become reflective 718 14-23m $71937-42 m / 38-40 u$ "therelaction", $w b$ the connection here is hypothetical why not custom? 720 1-2m, $12-24 m, 14 m / u$ "somel communication" $114-16 w$ surely custom $w b$ I think Dr. Holland has some remarks on the connection of instinctive reflex \& habitual.721 wt XX May not a movement be said to be instinctive, when it is become reflex, without connection with true sensation, at least accompanied by conscience $11-20 \mathrm{~m} /$ 14XX 724 26-34m 727 10u "warming agent"/w heat not light $73026-32 \mathrm{~m} / 23-29 w$. Hence there is some such conclusion $30-37 m$, wb This makes my notion about effects of passion \&c very hypothetical No $73535-41 m$ 739 19-34m 740 10-15m, 23-25m 747 39-43m 748 1-39m 762 28-30m, 39-44m/42u "tickling" $7635 u$ "reflection 1 brain" 778 38-41m, 39w Cockatoos $w b$ expression of species of genus same? 786 19-23m 791 30-37m 793 23-36m 794 9-30m 818 19-44m 819 1-14m, 29-37m 820 15-24m 822 34-42m/34-36w/wb | suspect all this is not so certain from the obscurity of sensitive plants. 823 11-12x/u "it I matter"/wt ? when habit becomes heredetary?? 9-17m/11-12xx, 17-18m/?!, 20u "dreams" $/ 20-21 w$ memories \therefore ? dreams 24 $42 m, w b$ curious coincidence of thought with my notion of hinge of shell \&c \&c \&c $8245-$ $44 m 825$ 9-41m 836 23-26m, 23-31m, 31-41m $8373-14 m 84631-39 m / w$ in reference to tumblers $36-40 m$ Catalogue $16-7 m$ (M. Allen) 2 wbec
vol. 2 NB1 None hardly worth buying see Coll of Surgeons
p. 1458 Reference to book on secondary male characters -
p. 1478 Wagner Physiologie on Hybrids - \&

MÜLLER, J., PHYSIOLOGY
"cornealbody" 1133 1-3m 1144 13-15m/w opposed to frowning theory $1145 \quad 24-26 m$ $1148 \quad 38 u \leftrightarrow \quad 39-40 \mathrm{~m} \quad 1149 \quad 25-26 \mathrm{~m} / \mathrm{u}$ "voluntaryliris" $1150 \quad 6-9 m \quad 1159 \quad 13-14 m$, $19 m, 32 m 11693-12 m, w b$ The case of chickens shows how inappropriate the expression of dream is to this instinct - it is a habit. $112931-33 m 12301-4 m, 30-32 m$ 1233 24-29m 1236 15-16m 1245 22-27m 1252 $34-43 m 126219-23 m 131110-11 m / 11 u$ "the eyelids" $/ 6-11 w$ I shd say Habit, no in infant $13158 \mathrm{~m} / \mathrm{u}$ "rudimentarylbone", 28-30m, 28$29 \mathrm{~m} / 29 u$ "human I rudimentary" $/ w$ | believe in Negro more developed 32-33w Bentham law 1318 17-20m $132819 u$ "may|unperceived"/1626 w Has remarked this with all senses, bears on habitual actions not being perceived $133518-22 m / 18 u$ "germ Iparent"/ 19-20u "merely|plant" $/ ? / 21 u$ "only|organised" $133923-26 m 134426-30 m, 30-35 m, 42-43 m$ $13455-7 m / 5-6 u$ "The I consciousness" 1347 21$27 \mathrm{~m} 13481-5 m, 8-9 ? ? ? / 8-12 w$ savage has power $11-13 m, 32-33 m / 33 u$ "distinct power" 1351 21-33m/21u "humanlable", 30-31u "and \mid speech" $/ 28-33 w$ V. Ld Brougham \& Althorp 42-44m/44u "arelnotion" 1352 5-9m/ wt if there is 'abstraction' on smallest scale, it may graduate into the highest $-7-9 m / 8 u$ "imagel constant", 30-40w this does not apply to animals doing things for first time 1353 2$6 m, 18-19 u$ "but|reaction" $136125 x, w b \times \ln$ the case of the Dray horse, there is, he wd say, no intermediate step, by generalising or abstracting that function retards movement \&c \&c - but simple association - $136222 \mathrm{~m} / u$ "special|memory" $1364 \quad 28-30 \mathrm{~m} / 30 \mathrm{u}$ "but relation", 31-33m, 40-43m/40-41u↔ 1399 $20 u$ "ennobling|form", $23 u \leftrightarrow 140026-36 m 1405$ $15-19 m, 27-30 m 140713-16 m, 32-35 m$, 42$44 m / 42 u$ "temperaments" $142119 u \pm / 17-20 w$ I remember Owen doubted this. 1424 19-26m $14255-6 u \leftrightarrow / 3-9 m / w$ good expression 1426 $18-21 m, 12 u \star$, $20 u$ "a force", 25-26u "formative power", $32 \mathrm{~m} / \mathrm{u}$ "formativel latent", $36-37 \mathrm{~m} / 37 u$ "then 1 manifested", $\quad 40-41 \mathrm{~m} / 40 u$ "formative l cytoblastema" 1427 34-37m 1428 1$5 m, 26-27 u$ "But 1 may", $27-31 u \pm / 29 w$ (a) $w b$ (a) differs in duration of life $=$ nonmetamorphosis or less variation. $=143510-$ $15 \mathrm{~m}, \mathrm{wb}$ I have to treat simply of variation by gemmiparous \& sexual generation 1437 1115 m , $21 u$ "force", $23-26 \mathrm{~m} / 23 u$ "differs fissiparous", 29-30m, 36-37m $14387-13 m$, 33$35 m 1439 \quad 13-16 m / 15 u$ "gemmation 1 division" $144030-34 m 144436-38 m 14451-9 m, 7-9 m$, $10-17 \mathrm{~m}, ~ 10-12 \mathrm{~m}, ~ 18-19 \mathrm{~m}, 30-32$?, $33-34 \mathrm{~m}$, $37-43 m \quad 1447 \quad 7-9 m \quad 1448 \quad 19-20 m, 19-21 m$ 1449 1-3m, 33-40m 1451 21-29m 1452 22-

32m, 23-24u "notion linadmissible", 30-31u "somelalone" $1453 \quad 5-7 \mathrm{~m} / \mathrm{u}$ "eachlindependently", 21-22m/21-24w like dichogamous flowers $30-31 \mathrm{~m} / 31 u$ "Onceltapeworm", 38$39 m 1454$ 4-6m, 12-13m, $25 u$ "includes sexes", 26-29m 1455 11-14m, 18-35m 1456 28-29m, 40-42m (R. Wagner) 1457 27-32m, $37-39 m \quad 1458$ 12-14m/12uн, $41-43 m$ (Rudolphi), 44w Poor Book 1459 4-6m, 31u "but |internally" $146131-33 \mathrm{~m} / 33 u$ "but | atrophied" 1462 42-43m 1463 1-2m 1464 9$10 \mathrm{~m} / 9 \mathrm{u}$ "inlembryo" 1478 wt z) not more peculiar 4 to hybrids than to Mongrels $16 \mathrm{~m} /$ w z)? 21-25m, 27-29m, 30-32m, 34-36m (R. Wagner), 34-36w analogue to Digitalis $43 \mathrm{~m} /$ $w b$ Coll. of Surgeons $14791-10 \mathrm{~m} / 4-7 \mathrm{w}$ are these dioecious? 35-36m (Meyen) 1480 22$24 m 1481$ 30-34m (Geoffroy, Cuvier) 1482 37$40 \mathrm{~m} 150225-26 \mathrm{~m}$, wb the conditions which allow free propagation of leaf buds will yet prevent flower buds $15045-14 \mathrm{~m}, 18-20 \mathrm{~m} / 19 \mathrm{u}$ "downlstock" 1506 15-18m 1516 29-33m (Rathke, Reichert) 1520 16-19m 1531 16-17m/ 16-17u "fishes Itype", $38-39 \mathrm{~m} 1553$ 18-19m/u "thelarches" 1555 zb 1566 20-22m (Prévost and Dumas) 1569 2-4m, 17-19m 1570 34-35m 1586 42-43m/43u "3lslits" 1589 16-18m, 17$18 m 15922-6 m, 10-12 / 11 u \leftrightarrow, 13-15 m$, 19$21 m, 22-24 m / 23 u$ "unaptly|branchial", $25 m$, 28-31m, 34-37m, 38-41m $159320 \mathrm{~m} / \mathrm{u}$ "are reduced" $15967-11 m, 34-38 m 1597$ 2-3u "humanisharks", 3-4m, $15 \mathrm{~m} / \mathrm{u}$ "Mammalial Man"/w always contrasts them 1599 6-10m/ $7-8 u$ "genus lfoetus" $161025-27 \mathrm{~m}, 37-38 m$ 1613 42-43m, 44u "whichlabortive" 1614 5$11 m 161511-14 m, 32-39 m 1616 \mathrm{wb}$ All this section had perhaps be better reread 1619 $34-36 m \quad 1620 \quad 1-3 m \quad 1621 \quad 1-3 m$, $3-5 m / 5 u$ "early lembryo" 1622 33-35m $1624 \quad 11-17 m$ (von Baer) 1629 32-36m 1630 20-23m, wb ones wonder is lessened, * at selection making an eye, when one sees how eyes are really formed $163239-41 m 163320-22 m$ (Huschke), 34-41m 1639 23m, 32-38m 1640 9$11 m, 13-14 m 165028-40 m 166114-18 m / 17 u$ "certain invariable", 19-25m/!, 27-29m/29u "another genus", $30 u$ "natural repugnance", 36-38m, 39-42m (Rudolphi, Prichard) 1662 6$9 m / 8 u$ "varieties I faculties", $12-14 m, 16 ? / u$ "races"/17w individuals $20 u \leftrightarrow, 26-28 m / 26 u$ "islspecies", 31-34m, 39-42m 1663 2-8m, 19$29 m, 27-30 m, 31-35 m, 37-40 m, 44 u$ "alsol education" $16641-3 m, 9-12 m, 14-21 m 16651-$ $20 m, \quad 37-42 m \quad 1666 \quad 12-13 u \quad$ "caused propagation", 35-44m (Vrolik) 1667 4-7m, $9 u$ "ossalone", 18-20m, 29-30m, 33-35m 1669 15-18m, 42-44m $167132 m$ (Vrolik), 34m (R. Wagner), 38m/u "R. Wagnerl1840" 1675.a
$66 m$ 1675.b $2 m$ 1688.a $56 m$, $57 m$ 1701.a $22-$ 36 m appendix, 1 wt $\mathrm{O} / 8$ 19-27m (Retzius)/ $21 w$ gradation $28-31 m 107-9 m$

Supplement Recent advances in the physiology of motion ... [ed. Baly and Kirkes]; London; Taylor \& Walton; 1848
rd, sX
NB 111 Rud. uterus in Males Q $23 \Uparrow 16 x / u$ "crystalline" 26 12-15m $60 \Uparrow 20-$ $17 \mathrm{~m} / \mathrm{w}$ Now there has. Newport $111 \Uparrow 12-6 \mathrm{~m} /$ Q

MÜLLER, Johannes Über die Gattungen der Seeigellarven Berlin; K. Akademie der Wissenschaft [Down, I]

MUIR, John (?) Supernatural religion 2nd edn, 2 vols.; London; Longman, Green \& Co;; 1874 [Down, I] \wp

MURCHISON, Roderick Impey The Silurian system 2 parts in 3 vols.; London; John Murray; 1839 [CUL]
$\mathrm{ci}, \mathrm{fo}, \mathrm{gd}$, geo, gr, is, mi, se, sp, sx, t, ti, tm, ve
vol. 1 NB X means Species Theory
18; $104 \times$ Curculios \& Neuropterous insects in L. Coal.; 109; 111
116 In reading an account of the Carboniferous formations - the variety of beds on which the whole rests \& the thinning out of certain portions - the footsteps in New Red \&c \&c show how many partial elevations like East Indian Archipelago -
140; 151; 160; Read Chapt 13 again with sections; 183; 186; 189; 200; 205 list of good sections in Ludlow Rocks; 211; 230; 233; 235; 243; 244; 245
$18 \quad 18-24 m / w$ compare with coasts of Patagonia in the map appear like isid in the map.- 104 21-25m (Buckland), 29-31m 109 33-38m 111 11-15m 116 24-30m $140 \quad 1-31 m$ 151 33-37m $160 \quad 23-28 m \quad 183 \quad 14-17 m / w$ Do they reappear in the Carboniferous 186 6$14 m 1894-8 m 20017-21 m 20514-23 m 211$ $3-9 m 23033-38 w / w b$ p109. look back to Malvern ? several other instances occur of reelevation of lines/volcanic eruptions. \& on simple lines of violence $23132-35 m 23314$ $20 \mathrm{~m} / \mathrm{w}$ Curious analogy with Falkland Isd the sandstone there resembling Caradoc sandstone 235 24-32m 243 12-15m 244 17$33 m 245$ 19-24m 246 20-23m, 26-39m 247 1$7 m, 22-29 m$
vol. 2 NB O Species Theory
256; 260; 262; 271; 273; 277; 278; 283; 291
Bedded trap. worth visiting; 299; 360; 374; 400 how curious the connection of sandstone caradoc at Falklands with quartz; 407; 421; 426; 482; 491; 515; 517; 522; 534; 553 \& 554 \& 557 On range of Mammalia; 560 do; 564; 569; 572
$2566-21 m / 11-13 w$ rather faulty $26021-25 m$ 262 1-11m, 7-13m 271 10w Perr fig.41.m 273 $1-6 \mathrm{~m} / \mathrm{w}$ I much suspect metamorphosed dikes 277 25-30m/w Cordillera same case 278 29-31m/w analogous to the copper mines of Chile 283 4-10m 291 30-42m 299 1$8 m 360$ 18-25m, 26-33m/28w V. p. 362362 $32-39 m \quad 374 \quad 11-15 m / 15 w \quad$ V. p. 377 377 22$24 m, 24-28 m / 24 w$ see p. 378378 16-21m, 22$28 m 4005-9 m 401$ 1-5m 407 25-38m 421 12$18 m 426$ 1-6m 482 10-15m 491 25-29m 515 $5-9 \mathrm{~m} / \mathrm{w}$ this shows the withdrawing power of the sea $51712-15 m, 23 w$ i.e. islands 5226 $32 m 528$ 8-10m, 24c/w€ 533 3-5m 534 37$39 m 536$ 8-11m, 9-14m 553 20-22m 554 9$12 m, 15-17 m 555$ 15-16m (Strickland) 557 wb Mammalia on both sides of channel dividing England good instance to remove difficulties - they might have been before united. 560 21-24m 564 15-22m 569 9-26m 570 20-22m, 32-38m 571 3-5m 572 6-12m
vol. 3 NB 583; 584; 585; 589; 665; 666 eyes in Cymothoadae, sexes of $\mathrm{Q} ; 671 ; 701$ $58310-43 m 5845-35 m / 25-29 w$ if seas less divided this would follow $5858-17 \mathrm{~m} / 10 u$ "true I transition", 28-31m, 33-36m 589 4-6m/ !! 595 31-39m/33-35w only analogy? 665 1$15 m, 29-32 m 66632-37 m$, 33-44m 667 43$44 m 668$ wb Nesocila 669 20-29m, 30-33m/ $33 u \leftrightarrow / w$ from me?! $67114-16 \mathrm{~m} / 15 w$ Falkland Isld $70133-42 m$
\wp
MURCHISON, Roderick Impey The Silurian system (from Edinburgh review April 1841) [Down, I]

MURPHY, Joseph John Habit and intelligence 2 vols.; London; Macmillan; 1869 [CUL, I from publisher in vol. 1]
af, beh, ds, he, hl, mhp, ig, no, oo, pat, phy, sl, t, tm, v, y
vol. 1 NB p.215; 233; 237; 238; 241; 253; Carp 258•Man*; 263; 265
294- contractile Sarcode with musclesHypothetically there must be diffused nervous muscle in lower animals \& even Plants - 304 Surely * in fish we have

MURPHY, HABIT, 1ST EDN
gradation to bone from cartilage?- Other tissues?-
301; 303; 307 * ; 322
\& 339 Causes of difference in number of offspring - Ratios of increase \& Struggle for Existence. See H. Spencer, Principles of Biology
SB \sim I.
233 Medusae will root \& develop polypites
237 of Ungulates alone bear horns
238 Tissues of all Vertebrates homologous
241 Serial Homology ought to precede Homologies between distinct species.-
247 on Difference in no of cervical vertebrae in different Mammals.-
253 differentiation of tissues \& organs mark of Highness
265 The young flowers which swim vertically retain primordial condition \& so may be said to reverse-
294 on possibility of transitions in tissues (see M.S. notes at end of Book)
301 Homologies of Trachea - Mucus-sack
322 striped muscles common to Vertebrates \& Invertebrates, cd have been derived from common ancestor for wd have been too low.-

215 17-20m, 36-37m (Huxley) 233 34-38m (T. Hincks) 237 22-24m $23818-23 m, 24-27 m / w-$ 239 18-21m 241 11-20m 247 5-19m 253 1-5m 258 1-5m 263 11-16m, 18-23m, 28-37m (Huxley) 265 29-35m/ $\rightarrow 294$ 1-11m 301 19$25 m 303$ 16-25m 304 35-38m (Spencer) 305 $13-17 \mathrm{~m} 3074-18 w$ This seems all rubbish $35-38 m \quad 320 \quad 1-15 w$ Look at the greyhound See dom. animals $32211-17 m, 27-29 m 323$ $28-30$! $33921-29 m / 17-27 w$ Death falling on young more probable selection
vol. 2 NB p.2; 186 read; 187 * 190 * Copied
SB \propto Vol. 2
p.2. forms of Blindness in which iris opens \& closes \& yet no transmission of light.-
v $3 m$ viii $2 m$ xiv $8 m, 21 m$ xvi $25 m 235-37 m$ $59 \quad 24-31 m \quad 186 \quad 37-39 m \quad 187 \quad 33-36 m / 34 u$ "selfish|contentious" $1881-6 m, 12-17 m / 14 u$ "are fidelity", 26-30m 190 31-36m

MURPHY, Joseph John Habit and intelligence 2nd edn; London; Macmillan \& Co.; 1879 [Down]
no, sp, v
NB 241 Delboeuf
Law of Equality of number of vars \& species 241 21-28"..."

MURRAY, Andrew The geographical distribution of mammals London; Day \& Son; 1866 [Down]

MURRAY, Andrew The geographical distribution of mammals London; Day \& Son; 1866 [CUL]
ad, af, ch, gd, geo, h, sp
NB All on Geographical Distrib.

- no explanation of adaptationp. 8 Change of dogs in W. Africa 17 error
19; 20 \& 30 \& 32 Glacial
34; 36; 38 to 56 Man; 57 do; unimportant
126; 138; 140; 144; 151; 155 Reindeer of N . America; 197; 209 Glacial; 213; 216; 261; 312; 314

8 33-42m 17 28-30m 19 16-23m 20 15-23m/ $16-17 w$ I dispute $3013-17 m 313-8 m 3226-$ $32 m 3423-28 m 36 \quad 6-10 m 38$ 39-41m $3926-$ $28 m 40$ 9-12m 42a 32-38m (Malmgren) 42b 33-38m $438 w$ Spain $4534-41 m 56$ 17-21m 57b 36-42m (Pickering) 59a 22-35m 59b 38$43 m 126$ 2-15m 127b 35-43m (Falconer), $46 m$ 138 15-19m, 22-27m (Lund) 140 6-10w Dr Hayes○ says now a native of Greenland 144 $20-27 m 15132-36 m 155 \quad 5-8 m 197$ 31-35m (Cuvier and Owen) 209 22-36m 213 31-43m $2147-10 m / 1-9 w$ This theory does not account for affinity of American \& Indian genera. 12-23w Same species being accorded 2 distinct Indian lines will account for their similitude $39-41 \mathrm{~m} 2167-14 m 261$ 1$8 m 3121-7 m / 3-4$? $3145-14 m$

MURRAY, Lindley An English grammar 5th edn, 2 vols.; York; T. Wilson \& Sons; 1824 [CUL, pre-B, on B, S Robt FitzRoy 1831]
vol. 1, 218 4-6m 219 13-16m 220 1-6m, 26$32 m \bullet 22114-18 m *, 27-30 m, 31-33 m 2221-$ $3 m, 5-9 m, 10-11 m, 13-15 m 225$ 22-23m 226 14-24m 228 21-29m 229 1-10m 395 25-26m $39629-30 m 3973-5 m, 15 m, 19 m 3985-6 m$ vol. 28

NÄGELI, Carl von Botanische Mittheilungen 2. Band; München; F. Staub; 1866 [CUL]
ad, af, cc, ch, che, cs, ct, ds, em, ex, f, gd, geo, h, he, hl, hy, ig, in, mhp, mn, no, oo, or, pat, phy, sl, sp, spo, t, ta, tm, ts, v, wd
SB $\square \beta$
106 Von Baer - believes Bee on its own type higher than Fish
210 He has 2 embryos in his possession that he cannot tell whether they are Mammals or Fish or young Birds - (good to quote)
211 The more different 2 animals, the further back we must go to * find similarity. (I believe date 1828 see last number. Must have preceded M Edwards
214 The embryo of higher animal resembles the embryo of lower
217 Dog \& Pig resemble each other - still longer Pig \& Cow
219 \& 220But embryo of Mammal more like mature fish, than embryo of Fish is like mature Mammal
221 Arrests of Development well established for Monotremes
228 The higher the histological \& morphological differentiation, so is perfection of type
229 Retrogression of types
231 Ruminants stomach more perfect than mans
267 Twisting of leaves in relation to great size: correlation??
103 wt All marked $11025-34 m / w / w b$ var. grows everywhere in all soils strongest Europe - But other vars also produced (it is a polymorphic genus) $1119 \mathrm{~m}, 16-17 \mathrm{~m}, 21-$ $24 \mathrm{~m} / \mathrm{w}$ also Differt vars in same plant 113 10-17m $114 w t$ other examples as before 115 $5-11 m, 14-15 m, 17-20 \mathrm{~m} / 17-25 \mathrm{w} \quad 2$ vars adapted to 2 stations rarely mixed in equal number * in both $31-33 m 1161-2 m, 4-11 m$, $16-22 \mathrm{~m} / \mathrm{w}$ cases of direct action $23-30 \mathrm{~m} 118$ $3-22 m / 5-12 w$ On Hardyness of Plants 13$32 w$ Various vars in same station, so not effect of evolution 24-32m 119 16-19m 120 wt growth of size \& chemical products direct effect of conditions- $1-7 \mathrm{~m} / \mathrm{w}$ Light on colouring matter 121 wt Alpine forms due only to want of food \& not form true races 1 $10 \mathrm{~m} 12215 \mathrm{~m} 1231-14 \mathrm{~m} / \mathrm{w}$ He argues from these facts that height no influence but these no proof - so others $w b$ He overlooks effect of length of exposure \& inheritance - 125 $16-26 m, 29-34 m / 29 w$ Summary $w b$ Maintains that Alpine height does not cause Large size of flowers. $1263-13 \mathrm{~m} / \mathrm{w}$ My objections of
time \& chance $=$ spreading considered. 127 $w t / 1-19 w$ Variation must depend on some chance relation between state of organism \& certain conditions 17-19u "Ueberhaupt | Ausnahme", $32-34 m \quad 128 \quad 1-3 m / w t / 1-20 \mathrm{w}$ These close species which inhabit distinct Districts $*$, shows how little we know about adaptation of near var - So some close species, live mingled together. Are we sure that the 2 Oaks are not specially adapted for special circumstances - 2 AnagallisO 15-16u "Primula |elatior", 23-24u↔, 29-30u "die| andere", 33-34u $\leftrightarrow 129$ wt When alone, each will grow on wrong formation; but not in company for then I suppose competition, this looks like adaptation. $1-3 u \leftrightarrow, 4-7$ m, 19$26 m / 7-17 w$ says all true local vars. wd behave thus. $130 w t / 1-11 w$ All foregoing reasons do not apply to vars. arising from inner causes; but something must set inner causes into action. 5-6u "durech 1 sind", 25$30 \mathrm{~m} / \mathrm{w}$ Opposed vars. arise under cultivation 131 wt one plant might absorb different elements from another $1 m, 1-2 u$ "äussern können", $18 \mathrm{~m} 1331-7 \mathrm{~m}$ • $134 \mathrm{wt} / 1-24 w * \mathrm{He}$ seems to admit there is some relation between variation \& extreme conditions \& $1-24 w \mathrm{He}$ remarks that greater size independently of good soil * never could become hereditary \& constant $w b$ Effect of grafting - \& cultivation \& wide range \& budvariation all show that extreme condition have close relation $1353-20 \mathrm{~m} / 1-20 \mathrm{w} / \mathrm{wt}$ He admits that difference of soil \&c may in course of generations affect chemical \& molecular constituents \& then lead to changes of form - this is the same thus -$23-33 w$ as individuals differ so will results differ in fluctuating variability 136 wt a chill is direct cause of various illnesses $-1-11 w$ but here denies all before apparently admitted $16-33 w$ Denies that a plant can in same bed with others absorb different nutriment * 138 $15-18 m, 30-34 m / 26-34 w / w b$ permanence in culture in garden no test of specific distinction 141 wt Yet if these sp . were cultivated like P. Ponticum it wd no doubt vary thus perhaps not so much.- $5 a / u$ "Alpenrose" $/ w$ Rhododendron ferrugineum 6$7 u \leftrightarrow, 8-10 \mathrm{~m} / \mathrm{w}$ (a) $8 u$ "trockenen", $8 u$ "oberitalienische", $9 u$ " $700 \mid 1300$ ", $20-27 w$ similar facts $143 w t / 1-10 w$ objects to Hooker on acclimatisation.- (He is a general objector.) $13 \mathrm{~m}, 20-31 \mathrm{~m} / \mathrm{w}$ He tried experiments but failed with uncertain results $1443-6 m, 11-12 w$ explains fact $149 w t$ difficulty of knowing direct action of conditions on account of Selection.- 1-6m

NÄGELI, BOT. MITTHEIL.
150 wt Asks Have plants which * have long lived under different conditions different constitutions, though externally alike? He doubts $151 \quad 1-2 w$ Conclusions on Direct action $5-6 w$ natural Distribution $7-9 u \leftrightarrow$, 11$12 u \leftrightarrow, 19-20 u$ "innerelbedingt" $/ w$ But what excites them; something must, as with illnesses.- 25-34w His Causes work through chemical condition of Plants \& cause direct \& indirect effects 152 29-34m, wb He assumes direct effects never become heredetary.- $155 w t / 1-28 w$ He allows that changed conditions give impulse to variation; the differences in the results must depend on differences in the individuals; but these differences must have had some cause. 17$34 m 15610 m 158 w t / 1-23 w$ | think here he attributes the mixed vars in same locality to selection, or adaptation wb Finally I do not see that he throws much light on * subject - Everything remains as odd as before some good facts on Distribution of Varieties.- $164 w t / 1-21 w$ On Alps when no detritus - chemical nature of racks has influence on distribution.- $18-31 \mathrm{~m} / \mathrm{w}$ representative species on different soils 170 $13 \mathrm{~m}, 16-32 \mathrm{w}$ Closely allied plants excluding each other - my view 172 6-26w Struggle for existence explains well, but not new.- 174 $34 m 175$ wt Both the Achillaeas will live on wrong soil - if only one form is present, so no struggle.- 7-13m, 16-18u士 176 11-26w These sp. exclude each other according to dampness.- $20-23 \mathrm{~m}, 28-30 \mathrm{~m}, 29-32 \mathrm{~m} 1779-$ $13 \mathrm{~m} / 11 \mathrm{w}$ do 179 wt Thinks many plants do not grow in certain places, because seeds have never been brought there. $3-7 \mathrm{~m}, 25 \mathrm{~m}$ 180 9-11m, 24-25u "Aufl Arten", 27u* 181 $11 u$ "Kerner" $111-13 w$ doubt his observations $29 u$ "Gültigkeit"/w authenticity 182 19-21u \leftrightarrow, $29 m 18719 w$ I have not read $29410-12 w$ some close plants distinct $15-18 \mathrm{~m} / 16 u$ "Mittelformen", $17 u$ "Verbindungsgliedern", w some thus $20-21 m, 25-27 w$ says very important?? $300 \quad 12-14 m 30514 m 31025-$ $34 m, w b$ argues well against those intermediate forms, which are constantly or frequently found, near the forms which they connect, being Hybrids 312 wt a complete graduated row of intermediate forms may be hybrids, but such cases are rare - The exactly intermediate wd be rarer than the steps on either side. $12 u$ "Verfechter" $/ w$ defender 313 25-29m/28-29u "zwischen officinalis" $25-31 w$ intermediate forms exist both Hybrids \& really intermediate \& constant \& fertile.- $3141-20 \mathrm{w}$ He evidently doubts (with reason) any * constant
intermediate form being Hybrids. 31812 m 319 wt (a) If species which are connected by intermediate forms are blended with single species the result monstrous. $-5-10 \mathrm{~m} / 7 \mathrm{w}^{\prime}$ (a) $13-18 w$ must be enumerated as intermediate forms- $3207-18 w$ these are good instances of a species constant in one place \& variable in another from crossing with intermediate forms. $21-23 m 32410 m, 17-$ $20 \mathrm{~m} / 16-26 \mathrm{w}$ Middle forms not Hybrid generally inhabit nearly same districts as the forms they connect- $29-33 \mathrm{~m} / \mathrm{w}$ but less in number $w b$ I presume he attributes the intermediate forms to variation $32612 u \wedge / w$ Hybrid 18w Hybrid $28 w$ Hybrid 327 2-3u "beiden 1 Uebergänge", 3-5w Hybrid? or middle form? $34 w$ Hybrid $3285 w$ Hybrid? 11w Hybrid 21-22w Hybrid 25w Hybrid $32 w$ Hybrid 329 18-20w gradations from crossing 29$30 u \star \leftrightarrow 3305 w$ Hybrid 23-24u "da| vor", $30 u$, $32 u$ "Das I Vorkommen" $32-34 m / w$ not Hybrid yet intermediate $331 \quad 2-26 w$ it seems improbable to decide whether a hybrid, which in places has become constant, or has arisen from variation of one of the 2 species which it connects.- $332 w t / 1-8 w$ another doubtful case $8-9 u$ "Sielacaule", 10-15m $3334 w$ Hybrid $3355 u \wedge, 7-8 u$ "Dieses IUrsprungs", $13 w$ Hybrid $17 u$ "Zwischenformen", 18u "wiederholt | Floristen"| w not Hybrid 21-24u "fast \mid der", 31-32u $\leftrightarrow 336$ 13-14w Hybrid $24 w$ Hybrid $32-34 w$ True intermediate form 337 17-18w Hybrid 23$26 m / w$ Hybrid 338 15-16w Hybrid $23 u$ "Siel Uebergangsreihen", 24-28m, 30w Not Hybrid $339^{*} 3-4 w$ not Hybrids $3425-10 m, 6-8 u$ "welche lauftreten", 28-33m/29-31u $\leftrightarrow 343$ 32$34 m / 34 u$ "entspringen 1 Ursachen" $3443 u$ "verzichten" $/ \mathrm{w}$ delay 4-6m/5-6u $34510 \mathrm{u} \uparrow /$ $10-14 w$ most variable \& graduating of all endemic genera. 31-32u "dielsind", 34u "nur ISpecies" $3464-6 \mathrm{~m} / \mathrm{w}$ between the 3 no intermediate forms $24-32 w$ looks at this species as in process of formation the intermediate forms not extinct $3475-8 w$ also Hybrids formed. 349 wt The Hauptformen are much commoner \& * then the intermediates $1-3 m, 4 u$ "Die \mid vielen", $5 u$ "die \mid finden", $7-8 u$ "IchI von", 10 u "Tausendfache übertroffen", 11$17 \mathrm{~m} / \mathrm{w}$ Intermediate do not extend beyond range of Haupt-formen $19 \mathrm{~m}, 20-28 \mathrm{~m} / \mathrm{w}$ range in height rather more than Haupt- $f 30-34 \mathrm{~m} / \mathrm{m}$ $350 \quad 14-17 \mathrm{~m} / \mathrm{w}$ no intermediate forms between exclusively Alpine \& exclusively plain species $3512 m, 12-13 m / 10-15 w$ What he has said before on Hybridism applies to * Hieracium $35518 \mathrm{~m}, 21-25 \mathrm{~m} / \mathrm{w}$ are Hybrids in some places 357 9-11m/u "H. |angesehen"

359 Im 361 10m 362 17u^/18u "Welchel Zwischenformen"/16-19m/w the only 2 forms previously characterized $3662-12 \mathrm{~m} / \mathrm{w}$ Evidence from treatment by authors how intermediate some of these forms are $367 w t$ The Haupt-forms must first be settled \& then the intermediate forms - (so it wd be if we possessed all linear descendants) 1-3m 393 $14-24 w$ I think because as much vars of one form as of other $22-24 \mathrm{~m} / 22 u \leftrightarrow 39412-16 \mathrm{~m} /$ $12-14 u \leftrightarrow, \quad 23-28 \mathrm{~m} / \mathrm{w}$ Constancy most important element. 39610 m 397 wt We must judge of constancy only from many individuals from many different stations.- $1 u$ "verschiedenartigsten" $39928 m 401$ 19m 402 $11-15 \mathrm{~m} / \mathrm{w}$ closely allied species exterminate each other $40430-33 \mathrm{~m} / w / w b$ but no great difference effect of good soil- $4065-15 \mathrm{~m} / 6-$ $7 w$ grades of species $16-27 m / w$ He does not believe Kerner 407 15-22m/w natural selections of genus going with power of Hybridity $410 w t / 1-13 w$ Does not believe the intermediate forms are commonly Hybrids $41117-24 \mathrm{~m} / \mathrm{wt} / 1-11 \mathrm{w}$ Between 2 forms either a few intermediates or a whole series of steps, \& in the latter case the species more allied $\mathrm{i} w$ N.B May not many of Nagelis constant intermediate forms be Hybrids. which * are constant like Gärtners * hybrid Dianthus? I suppose not.- $27 u$ "grenzlose Verwandschaft" $27-34 m$, wb in these the Haupt-form, (independently of the intermediate forms) is variable, whereas in former case, when growing solitary the Haupt-formen are constant 412 13-15m, 21$25 \mathrm{~m} / 22 \mathrm{w}$ examples 413 wt We have, also, variability in the first individual planting Constant as in Vine-tendrils - or occasional i.e. sports, or bud-variations $\hat{\imath}$ w We have protean or chaotic species nowhere $\%$ constant - species constant in places but connected by few or more intermediates, \& true species not thus connected.- it looks like a process of exterminating the intermediate links.- $28-31 m$, wb His grades of affinity graduate into each other. $-41410 x /$ wt This shows that conditions have certain effects $17 x / w t$ The chaotic forms in places have fixed characters $9-11 m / w$ Hybrids \& intermediates absent in certain localities 12 $16 \mathrm{~m} / \mathrm{w}$ examples $15-20 \mathrm{~m}, 22 \mathrm{~m}, 28-31 \mathrm{w}$ mingled vars. adjoining \& representative vars Distinctly-inhabiting vars 415 5-6u "hängt| dasein" $/ 3-6 w$ This refers to true species $12-$ $14 u$ "entwederlsind", 15-22w so much 2 plants mingled, generally so much more synodically distinct $19-21 w$ \& therefore can live together $21-23 \mathrm{~m} \star, 30 \mathrm{~m} / w b$ Close.
species of same genus tend to exclude each other.- $4164-7 w$ representative forms. 6-8u "oft|die", 20-21un/21-22un/19-23m/w more forms adapted to different stations $25-27 \mathrm{~m} /$ $w b$ These forms sometimes found mingled, sometimes as synodic or representative 418 wt/1-16w Constancy alone will not decide what forms to call species; for many finest varieties are constant \& Jordans species wd all have to be admitted. Comes to what I said amount of difference deserving a name. $20-22 u \leftrightarrow, 28-34 u \leftrightarrow 4191-2 m, 17-21 u$ "Sol Zeiträume" $/ 17-33 w$ a species depends on degree of relationships (or difference from) other forms. $42024 m 42111 m, 22-27 \mathrm{~m} / \mathrm{w}$ all the forms which are connected by intermediates cannot be united as a single species.- 33-34u "doch|sind", wb "generally sharply defined" must be admitted as part of definition of species!! 422 11-29w Rules cannot be applied to forms inhabiting distinct areas. $42333 u$ "Zwischenarten", $34 m$, wb Ought to be so designated, so new term 426 $31 m 4273-4 u \leftrightarrow / 6 u$ "bleiben I Hauptformen"/wt/ $1-6 w$ Thinks the variables \& intermediate forms extinguished by competition. 22-24m/ 22-23u "Gattung I Entwickelungsprocesses", 23$32 m / 25-29 w$ The glacier is a stream, though one does not see the streaming $33 w$ examples

NÄGELI, Carl von Die niederen Pilze in ihren Beziehungen München; R. Oldenbourg; 1877 [Down]

〈markings presumed to be by FD>
NÄGELI, Carl von and CRAMER, Carl Pflanzenphysiologische Untersuchungen 3. Heft; Zürich; F. Schulthess; 1855 [Botany School]

NASH, Wallis Oregon: there and back in 1877
London; Macmillan \& Co.; 1878 [Down, S]

NATHUSIUS, Hermann von Abbildungen von Schweineschaedeln zu den Vorstudien für Geschichte und Zucht der Hausthiere Berlin; Wiegandt \& Hempel; 1864 [CUL, S]

NATHUSIUS, Hermann von Vorstudien für Geschichte und Zucht der Hausthiere zunaechst am Schweineschaedel 1 vol. \& vol. of tables and plates; Berlin; Wiegandt \& Hempel; 1864 [CUL]
cc, ch, cs, ds, fg, fo, gd, he, ig, in, mn, no, pat, sl, sp, sy, t, tm, ud, v, wd, y

NB 103; 104; p133 use; Use Q

NATHUSIUS，VORSTUDIEN
SB $\square \beta$
Used
Nathusius Schweineschaedel
〈over〉 \langle not $C D$ except X and $\Leftrightarrow\rangle$
Nathusius p． 2
p． 104 X The culture，shape of skull does not depend upon race most different races have it，yet most seem crossed with the Indian．
p． $105 \times$ about skull－dogs \＆Nata cattle
106 but common swine have not the short culture－head
113 the Diploe different in wild \＆culture races．Extremest culture－skulls
131 ＊Great Yorkshire race－probably crossed with Indian，has all its characters． wonderful changes incisors do not touch．not monstrosities for all inherited $\langle u, C D\rangle$
133 x articular suffaces of condiles of occiput modified head not much used
134 case for brain not much changed
135 all these great changes only a climax of those seen in wild boar races
136 all house pigs belong to the above two races
$138 X \$ 1 / 32$ even $1 / 64$ of Indian blood is sufficient plainly to modify the skull
138 great differences in the ears \＆c \＆c in the 2 great tribes
139 all Indian Swine introduced into England have short ears
$140 X$ Q Berkshire swine of 1780 is quite different from that of 1810 \＆since that time 2 quite difft races have borne that name
141 All the new English breeds seem to have Indian blood
142 Sculptures in Herculaneum shew no doubt that Neapolitan breed then existed． this breed \＆Andalusian \＆Rutimeyer＇s grau bundtner race are all like Roman therefore like the Indians
144 Roman probably is a cross from the Indian
146 is not convinced that the turf－swine was wild，but will not dispute it－147．gives reasons why with swine difficult to tell -148 in India wild cross with tame
149 almost certain that turf \＆Indian closely allied
150 curly swine with curly wool in South East Europe from lower Hungary－closely allied to Indian
153 Japan swine in skull is near to Indian．
157 certainly stands near to short－eared Chinese race．
〈over〉 Used $\langle C D\rangle$
〈over〉 160 Nathusius
Rutimeyer has shewn that N．African wild
swine is like European
163．S．verrucosus excluded 164．S． Celebensis skull like Past
165 S．vittatus from Java like skull like Indian
166 S．Timoriensis close to vittatus
167 in S ．barbatus tho＇with long face， lachrymal bones are short
168 S．lucomistax from Japan like S．vittatus 169 Arn wild Pig
$\ell_{0}\langle C D\rangle$
173．Summary on wild swine
175．Diagnosis
185 wild Boar of Hindustan
\langle over $\geqslant\langle<C D\rangle$
Laws Nathusius Pigs 1
p．2．X Gestation earlier in Culture－races \＆ features less matured
20 －teeth developed in well－fed races
63 S．scrofa－tamed races－\＆greater height of head in relation to length－in all dimesions broader－p． 66 －all differences variable 68．－in tamed intermediate in character between young \＆old wild explain changed shape by less use of scratching in ground．
71．The position of rows of teeth a central character．
72．Much intermediate variability．
$74 X$ In these swine beginning of changes more plainly seen in culture－races－
75 These swine in Russia \＆all over N．\＆ central Europe．
76．Difference in length of Ears－hair－ colour．length of limbs \＆shape of body all different．
Indian
\langle not $C D ; X Q C D\rangle$
77 Almost all now crossed with Indian；not known wild，comes from China
83 Shortness of lachrymals most remarkable character
86 and the shape of the palate \＆position of row of teeth
89 position of last upper molar－ 89 X Considerable slight differences in teeth－ 90 width of fore part of palate does not depend solely on divergence of pre－molars
91 X skull broader in relation to length than in common swine
94 Indian swine a distinct species if no reference made to domestication．［ \Leftrightarrow Culture races］\Leftrightarrow
95 the above Indian pigs not more affected by culture than common swine
$99 \times$ Berkshire not high culture race \＆ descended from Indian，a born dispeptic individual had skull much modified \＆legs
elongated，\＆period of appearance of the teeth \＆crowns of molar teeth affected．
Laws
103 rich food during youth gives short \＆ broad head
103 X in high culture races the incisors stand much higher than back teeth；the canines of upper jaw stand before the canines of under jaw \＆this is a most remarkable anomaly．
$2 \mathrm{Im} / w$ period shorter in the early matured races．gestation different in sheep \＆swine．－ In early culture races of swine，the young less matured in skull $*$ ：perhaps from crossing with Indian． $316 \mathrm{~m}, \Uparrow 4 \mathrm{~m} 4 \Uparrow 5-1 \mathrm{~m} / \mathrm{w}$ change of skull from growth to adult comes from elongation of front part of skull \＆ separation of the 2 laminae $20 \Uparrow 15-10 \mathrm{~m} / \mathrm{w}$ teeth developed earlier in well－fed．culture－ races than in common pigs． $231-2 m 2720-$ $23 m \quad 636-8 m / w$－in tame i．e．face shortened．$\uparrow 2-1 m 66 \Uparrow 4-1 \mathrm{~m} / \mathrm{w}$ differences in these swine from wild are variable． 68 介 $20-$ $15 \mathrm{~m} / \mathrm{w}$ common swine＇s skull intermediate between that of young \＆old wild swine $\uparrow 15-$ $1 w / w b$ Explains differences by primarily wild swine wholly living by rootingO \＆using greatly the muscles attached to back of head－entailing that other differences in skull by action during youth－lays great stress on this view．－Mem．he does not here refer to Culture－races．－ 71 iw a＊constant difference in flexure of row of teeth $*$ in common \＆Indian swine or their crosses．－ 72 $\Uparrow 12 u$＂kürzen I des＂，$\Uparrow 15-10 \mathrm{~m} / \mathrm{w}$ individual variability $7412 \mathrm{~m} / \mathrm{u} \pm, 10-13 \mathrm{~m} / \mathrm{w}$ In these swine beginning of changes，which are variable，in teeth which are greater in culture－races $17-20 \mathrm{~m} / \mathrm{w}$ wild swine with simple teeth $75 \Uparrow 16-13 m, \Uparrow 4-3 m / u \pm / w$ such swine in these countries 76 6－7u＂Ohrlänge Rippen＂$/ w$ of these swine with same skull these parts differ \＆can be selected $22 u$＂lang｜kurzohrige＂， $24 u$＂osterlogisch \mid begründet＂， $25-27 \mathrm{~m} / \mathrm{w}$ He formerly placed some of the short－eared races in this class， which have been crossed with Indian． $779 u$ ＂indischen Hausschwein＂， $10 \mathrm{~m} / \mathrm{u} \leftrightarrow, \uparrow 8-3 \mathrm{~m} / \mathrm{w}$ almost all cultivated swine crossed with Indian $\Uparrow 1 u$＂nur 1 Culturrasse＂$/ w$ not known wild $7814-15 u \pm / 14-18 m$ ，$\uparrow 5 u$＂zwei＂$/ w$ Few skulls exist only 2． $792 \mathrm{~m} / \mathrm{u}$＂chinesischen Hafenstädte＂，$\uparrow 5-1 m / \uparrow 4 u$＂Chinal 14 ＂ $83 \Uparrow 8$－ $7 \mathrm{~m} 86 \quad 10-15 \mathrm{~m} / \mathrm{w}$ shape of palate or space between teeth different in Indian \＆wild介14－12m $89 \quad 3-4 m, \quad 13 u$＂bedeutende Verschiedenheiten＂$/ w$ considerable slight
differences in teeth $906-8 \mathrm{~m} / \mathrm{u} \pm, 12-16 \mathrm{~m} / \mathrm{w}$ width of fore parts of palate does not depend solely on divergence of premolars介12－11m 91 介8u＂ist \mid zur＂，$\uparrow 6 u$＂Hausschwien sind＂，$\uparrow 5 u$＂in 1 geringerm＂ $928-10 w$ Breadth may have been graduated． $14 u$＂Kürzel Breite＂$/ m / w$ no trace of these in common swine．－ $11 u$＂eine \mid Schweine＂ $931 u$＂dass 1 im＂，3m／u＂Breitel Gaumens＂ 94 5－12m／w concludes that Indian race descended from distinct wild species \＆this wd be admitted by Zoolog．if no reference made to identity \＆ domestication $9510 \mathrm{~m}, 11-17 \mathrm{w}$ The above Indian pigs not more affected by culture than common swine before described．－not highly cultured race $\uparrow 8-7 u$＂und 1 Jugend＂，$\Uparrow 6 u$ ＂einen｜aller＂ 99 15－18w Berkshire not very high culture race．skull \＆descended from Indian．－$\uparrow 16-13 w$ A Dyspeptic individual from youth $\uparrow 10-9 u \pm / w$ skull thus modified by want of food－Can this be Reversion？ 101 §4－ $1 m / \Uparrow 4-3 u$＂Kopf I geworden＂，$\Uparrow 2 u$＂ernährten \mid geworden＂ 102 20－22m／w Period of teeth appearance \＆structure affected in this dyspeptic pig． $1034-7 \mathrm{~m} / \mathrm{w}$ division of crown of molar teeth affected． $11-12 \mathrm{~m} / \mathrm{u} \leftrightarrow, 16-20 \mathrm{w}$ \＆Do not use their muzzles because ringed $\Uparrow 6 u \leftrightarrow, \Uparrow 1 \mathrm{~m} / \mathrm{u} / \mathrm{c} / w \tau \notin, w b$ see p． $1301045-6 \mathrm{~m} /$ w Proofs $9-12 \mathrm{~m} / 9 \mathrm{u}$＂langohrige Rücken＂， $10 u$ ＂diese \mid wie＂， $15-22 m, \uparrow 9-3 m / w$ Nata Ox 105 $1-8 \mathrm{~m} / \mathrm{w}$ Offspring vary in shortness of head according to keepO $17-19 \mathrm{~m} / \mathrm{w}$ says not hereditary！！！19－21m／w happens with our cattle \＆sheep 23 u ＂Egelkrankheit＂，$\uparrow 14-12 \mathrm{~m} /$ w Bull－dog analogy $\uparrow 11-5 \mathrm{~m} / \mathrm{w}$ argues this does not contradict his explanation of want －of Snout 106 1－2m／1－4m／w common swine like wild－Boars have not this short head 13－ $16 \mathrm{~m} / \mathrm{w}$ probably might be gained．by progeny of common wild Boar．19－21m／u $\leftrightarrow 10813 \mathrm{~m} / \mathrm{a}$ ＂Form＂i．e．short－head $1123 u$＂Stirnhöhlen＂， $4 m / a$＂Schwein＂in cultur pigs $4 u$ ＂Entwicklung laber＂ 113 4－7w Diploe different in wild \＆cultur－races 130 9－11m／w p． 103 $\uparrow 20-5 m 1318-10 \mathrm{~m} / \mathrm{u} \pm, 21-22 u \leftrightarrow, 21-30 \mathrm{~m} / \Uparrow 3 u$ ＂Gehörgänge＂ $1322 u$＂Augenhöhle＂，$\uparrow 15-13 \mathrm{~m} /$ w do not touch $1334 u \leftrightarrow / m / w$ all inherited $\Uparrow 20 u \quad$＂Gelenkfläche＂$/ \uparrow 20-15 \mathrm{~m} / \mathrm{w} \quad$ articular surface condyles of occiput modified $\rightarrow \Uparrow 4$－ $1 w$ because head not used $134 \ddagger w$ can affect Brain？Very similar $1359 u$＂nurldort＂，8－ $12 \mathrm{~m} / \mathrm{w}$ All these great changes only a climax of those seen in the races like wild Boars． $14 u / w \tau, \Uparrow 10-1 \mathrm{~m} / \mathrm{w}$ two Races $1363-7 \mathrm{~m} 138$ $\Uparrow 15-13 m$ ，$\uparrow 12-8 \mathrm{~m} / \mathrm{w}$ Argument for Indian Race being parent of Domestication $\uparrow 4-1 \mathrm{~m} /$ w All these differences in pure European \＆ Indian Races $139 \Uparrow 14-11 w$ Siam \＆China all

NATHUSIUS，VORSTUDIEN
with short－Ears $\uparrow 9 u$＂Siam＂，$\Uparrow 4 m / u$＂Rassel Pallas＂，$\uparrow 1 m 140 \Uparrow 5-2 m 14114-19 m, \Uparrow 10-7 m$ 142 11－16m／11u＂aus Herculaneum＂$/ w$ Neapolitan Breed！ 143 2－5m／4u＂Andalusien＂， $6-9 w$ All these like indian $11 u$ ＂Graubündtner＂， $12 u / w \tau, \Uparrow 16-15 u$＂dass \mid steht＂ $14419 \mathrm{~m} / \mathrm{u}$＂romanische Schwein＂ 146 介11－ $10 u \leftrightarrow / \Uparrow 12-6 m, ~ \Uparrow 12 u / w \tau, ~ \Uparrow 5 u$＂wilder＂$/ w$ is not convinced that turf swine was wild 147 $11-16 \mathrm{~m} / \mathrm{w}$ wild swine in fertile plain joints different $\uparrow 19-14 m / w$ turn out tame when stock of wild reduced $1487-14 \mathrm{~m} / \mathrm{w}$ in India wild swine cross much with tame $\uparrow 19-14 \mathrm{~m} / \mathrm{w}$ Rutimeyer difference between wild \＆tame born generally correct，but must be received with caution with pigs $\uparrow 13-11 u \pm 149$ 1a ＂Formen＂Turf \＆Indian 1－3u土，5－6u＂Diel Gaumens＂， $10-12 \mathrm{~m}$ ， 15 w Not certain 16－ $17 u \leftrightarrow, \uparrow 16 u$＂des indischen＂$/ w$ only for Pallas介13－12u＂allel Japan＂，$\Uparrow 8-7 m / u \leftrightarrow / w$ not certain for E．India $1507 w$ curly Hair $12 u$ ＂südöstlichen Europa＂，$\uparrow 14 m / u$＂sogenannten Schwein＂，$\Uparrow 12 u$＂aus Ungarn＂，$\Uparrow 4 u$ ＂Niederungarn＂ 151 1－3m $1528-10 \mathrm{~m} / \mathrm{w}$ like Indian $153 \Uparrow 15-13 m, \Uparrow 8-7 u$＂Der｜bekannt＂ $1541-8 w$ Gray makes it a distinct genus $\uparrow 14-13 \mathrm{~m} / \mathrm{u}$＂daslnahestehend＂，$\uparrow 5-4 m$ ，$\uparrow 1 u$ ＂weil＂$/ \mathrm{m} / \mathrm{w}$ Indian swine has not forked snout 156 3－9m，介14－12m $157 \Uparrow 7-5 m 1604-6 m, 10-$ $13 m, 15 u$＂Nilinseln＂／16u＂Aegypten＂／15－17m， 19－20？ 161 介14－13u＂das｜ähnlich＂，$\uparrow 6-4 m / w$ doubtful 162 13－14m，介10－1w Gray not to be trusted in the least $1637-9 u$＂kann／nahe＂， 14－18w whether Hindostan \＆European different not yet known．$-\Uparrow 4 u$＂S ．verrucosus＂／ w Excluded as parent of our domestic Pigs $164 \Uparrow 8 u$＂S ．celebensis＂／$\AA 8-1 w$ skull very like that of S ．verrucosus \＆not parent of domestic $1655 m, \Uparrow 13 u$＂S．vittatus＂／w different from European \＆like＊Chinese skulls $16617-18 \mathrm{~m} / \mathrm{u}$＂Sus｜vittatus＂，$\uparrow 10 \mathrm{~m} / \mathrm{u} \leftrightarrow$ $16712-13 u$＂dass｜Wildschwein＂／w though with long face $14-17 w$ argues that \therefore specific character in Chinese $1683-5 \mathrm{~m} / \mathrm{w}$ in general appearance like S ．vittatus $11-13 u \pm / m / w$ but in these respects liker to S ．vittatus $19-20 \mathrm{~m}$ $1695-6 m, 7 u$＂Typus 1 haben＂，$\uparrow 8-6 m 1708-$ $9 u$＂dass｜Thränenbeins＂，$\uparrow 19-15 \mathrm{~m}, \uparrow 14-8 \mathrm{~m} / \mathrm{w}$ no proof that wild $171 w t / 1-2 m$ if Arn Pig is feral shows constancy of character of Indian Swine 173 介10－1m 174 ＂5＂－＂7＂．m 175 Im，$u \pm$ 176 im 179 1m／u＂Daslkurz＂ 183 7－8m／u ＂männlichen \mid Cochinchina＂，$\uparrow 5-3 u$＂Eckzähnel gleich＂ $184 \quad 15-16 m, \quad \uparrow 14 m / u \quad$＂ächten Maskenschwein＂，$\Uparrow 6 u$＂Breite｜Gaumens＂ 185 $1 \mathrm{~m} / \mathrm{u}$＂auch｜von＂， $7-11 m, \pi 10 u$＂sind 1 europäischen＂，$\uparrow 9-8 m, \Uparrow 6-3 m 186$ £m
Atlas Taf．II，＂ 10 ＂．＊

NATHUSIUS，Hermann von Vorträge über Viehzucht und Rassenkenntnis 2 vols and supplement；Berlin；Wiegandt \＆Hempel； 1872－80［CUL］
cs，ds，f，fg，he，in，pat，sp，sx，t，ta，tm，ud， $v, w d, y$
vol． 1 NB 8；26； 63 Descent； 64 Horse； 135 Sheep Case Q
title page $w t$ Horn of Sheep $84-8 m / 1-13 w$ now so many no such need 2120 m 26 9－ $17 \mathrm{~m} / \mathrm{w}$ False the Chili ones are cross between goat \＆sheep $24-30 \mathrm{~m} / \mathrm{w}$ swine distinct． 28 10m 35 14－15m 47 10－11m $5012 m$ $5931-34 m / 32 w / w b$（a）individual differences $635-9 \mathrm{~m} / \mathrm{w}$ females more like males most variable 11－13m，11u＂eigentliche Representant＂ $12 u$＂welches｜Universellen＂ 64 $1-11 w$ can Long Horns be Reversion to wild state？－See Antelopes 18－20m／16－20w castration stops Horn in Sheep（a）3－31w castrated rather late－the effect may be known when done earlier－castration ought to produce greatest effect．How with Welsh sheep on both sexes－but then they end wb （a）is there not here curious relation \＆ evidence of Horns retaining more of S．Lex． character than in cows－in as much as the females of some breeds have no horns？In Merino is white males alone are horned． 68 $3 m, 5 u$＂ganz gleich＂／4－7m／w Free－martin horns like oxen－！ $6912-16 \mathrm{~m} / 17-18 \mathrm{~m} / 12-$ $19 w$ Food makes differences of period when adult character attained $21-22 u \leftrightarrow / 21-24 w$ even when capable of reproduction $7124 m$ 93 wt（a）early \＆late maturity depend in part on food of pregnant mother \＆milk，\＆partly on race．－ $4 m / w$（a） $7 m 9425-33 m / 3-34 w$ proportion of 3 stomachs altered in highly nourished young $9814 m, 16-21 w$ early maturity only slightly hereditary $993-6 \mathrm{~m} / \mathrm{w}$ Treatment alters period of gestation $18-25 \mathrm{~m} /$ $21-28 w$ related to early maturity \＆ $1 / 2$ breeds show hereditary 100 wt individuals differ in profiting by same amount of food 4－10m 102 $23 m 10917-18 m, 27-29 m / 27-31 w$ castration causes less consumption of food．－ 1121 m $11825-31 m / 11-31 w$ Rule of male or female transmitting certain parts false．－ $12219-27 \mathrm{~m} /$ 15－28w Merino sheeps tails cut for years \＆ not inherited． $1271-3 m * 13525-30 \mathrm{~m} 1401-$ $6 \mathrm{~m} / \mathrm{w} / 1-3 \mathrm{w}$ of same race individuals transmit with greater power $19-20 \mathrm{~m} 1425-10 \mathrm{~m}, 13 \mathrm{~m}$ ， 15－23w Does not believe in individual potency of transmission $14524 m 1584 m 166$ 27 m
vol． $2 \wp$

Supplement "Kleine Schriften und Fragmente" Berlin; Wiegandt, Hempel \& Parey; 1880
iii $\Uparrow 15 x / u$ " $249-264$ " Inhalt " 93 ". $m, ~ " 179$ ". m \wp

NATURAL HISTORY 2 vols. of plates; London; Whittaker; 1824-26 [Down, pre-B]

THE NATURALISTS'S LIBRARY ed. W. Jardine Ornithology vols 9, 14; Edinburgh; W.H. Lizary; n.d. [CUL]
beh, cs, gd, hy, mg, sx, tm, v, wd, y
vol. 9, Pigeons; SB $\square \beta$
117 Carpophaga oceanica excrescence at base of Beak sexual
178 Wilson \& Audubon on rice in Pigeon crops at New York
$90 \quad 23-26 m 113$ 21-30m 117 18-23m 136 20$23 \mathrm{~m} / \mathrm{w}$ - 140 1-5m 144 9-11m, $12-15 \mathrm{~m} 146$ 23u "Orkneys" 148 5-6m 151 19-23m 153 12$15 m, 24-31 \mathrm{~m} 157$ 12-17m 158 10-16m $1605-$ 9 m 161 6-8m, 15-17m 164 11-13m 179 1-5m
vol. 14, Gallinaceous birds; NB 203205 P superbus
166169 Argus Pheasant
SB $\square \beta$
129 Turkeys associating. 3 sitting on one nest
138 wild often crossed with tame
173 Siberian or Russian Muffler with tuft from lower jaw
184 Gallus forcatus
126 17-22m/Q 127 1-10m/2-3u "strut| feathers"/6u "strutting|puffing"|3-4Q 128 17$19 m 12927-30 m 1386-16 m, 10-15 m 1391-$ $3 m 1401-4 m 141$ 15-19m, 28-29m 166 20$25 \mathrm{~m} / 22 \mathrm{u}$ "feathers \mid inches" 167 12-15m/13-15u "being | flight"/"...", 18-24m (Temminck), 27$29 m 1683-7 m 1691-3 m, 7-22 m 17118-21 m$ (Temminck) $1721-18 \mathrm{~m} / 3-10 \mathrm{w}$ Malay $21 \mathrm{~m} / \mathrm{w}$ Sultan Persian $25-26 w$ X Bearded crested $1735-8 \mathrm{~m} / \mathrm{w}$ Bolton Grey Siberian or Russian Muffler. 10-11w This Dorking is baby one $17 w$ The true Dorking $26-28 w$ A cross from the Silk fowl $1741-3 \mathrm{~m} / \mathrm{w}$ Jap 15 c "Crested" Frizzled 175 24-25u "withlchestnut"112-28w Resembles the black breasted Red Game $1761-6 \mathrm{~m} 1777 \mathrm{~m}, 12 \mathrm{~m} / \mathrm{w}$ nonsense $\times 13-$ $14 \mathrm{~m} / \mathrm{w} \mathrm{J}$ right I think $17 \mathrm{~m} / \mathrm{w}$ pumilo is crested 21-22m/w Sebright not a Bantam $23 \mathrm{~m} / \mathrm{w}$ not near $w b \times$ Crawfurd says from Japan. on what authority? $17811 \mathrm{~m} / \mathrm{w}$ Malay pl. 9 w tail purple 183 wt Mr Blyth says positively a hybrid between G varius \& ...? wt N.B G. varius is distinct from G. furcatus or does he mean only Synonym?? 184 wt When Blyth
says not furcatus does he only mean that G. varius is prior name - 1 suspect so.- $10 u$ "with|entire" $/ w$ yes $11 u$ "single \mid springing" $/ w$ yes $12 u$ "they| red" $\mid x x w b \mathrm{xx}$ if G. furcatus $=$ varius this utterly wrong description.- pl. 10 w Feathers on neck short \& rounded Crawfurd says wretchedly unlike 185 23-24w so will a pheasant $1887 u$ "the 1 margin", 9$10 \mathrm{~m} / 10 \mathrm{u}$ "mottled \mid markings", 15-20m (Latham) 203 9-12m/11u "feather 1 feet", $13-14 \mathrm{~m}$, $15 u$ "more|feet", 15-17m 205 12u "3|long", 21$23 m, 22 u$ "The llength" pl. 19 wt 237 zt 251 3-5m (Dickson)

NATURAL SCIENCE, religious creeds and scripture truth by "the author of the Divine footsteps in human history"; Edinburgh \& London; William Blackwood \& Sons; 1870 [Down, I by publisher] $\wp 0$

NATUURKUNDIGE Verhandeligen van de hollandsche Maatschappij der Wetenschappen, te Haarlem Part 3, 3rd edn; Haarlem; De Erven Loosjes; 1878; containing
FRITZ, Hermann Die Beziehungen der Sonnenflecken [Down] \wp

NAUDIN, Charles Nouvelles recherches sur l'hybridité dans les végétaux Paris; 1862 [CUL, I]
cs, fg, he, hy, no, sp, t, v
SB $\square \beta$
151 Pangenesis - good on Hybrids being a living mosaic of 2 species \& on specific essence of each (this is vague term) being accumulated \& self-alternatedo either in ovules or pollen-
161 Definition of a species-
title page $w t$ Nouvelles Archives du Muséum TTome 1 p25 274 w Father; Mother 20-22m/ 20-21u "turbinée lovoïde" 29 25-26m $302-6 \mathrm{~m}$ $3223-28 \mathrm{~m} / \mathrm{w}$ First generation flowers of both colours \& panachee $331 u$ "bandes 1 pourpres", $2-3 u$ "quelquefois I couleurs" $36 \quad 1-14 \mathrm{~m} / 3 \mathrm{u}$ "deux"/7u "un cependant" $/ 10 u$ "dix-sept"/ 13 u "un |maturité" $10-18 w$ given in full in Chapt 27 on Pangenesis 22-31m/23-25w Pangenesis 37 7-10m 41 25-28m 42 15-20m $4528-30 m 475-7 m / 1-8 w$? yet most distinct species $15 u$ "fleurs Ifertiles"!!!, $23-30 \mathrm{~m} / \mathrm{w}$ action of pollen good - like Hildebrand's facts $497-13 \mathrm{~m} / 13 \mathrm{u}$ "influence lannihilée", 24$25 \mathrm{~m} / \mathrm{w}$ like my sweet pea case Ch. X $25-$ $31 \mathrm{~m} / 26-31 u \pm, \quad 31 \rightarrow 50 \quad 1-3 \mathrm{~m} / 1 u$ " "qu'un quart" $/ 2 w$ Loevis 4-6m, 9-10m/9u "hybridité disjointe" $511-6 w$ He does not say the seed was separated, only other capsules

NAUDIN

produced the two forms $19-23 m 53$ 22-25m $5416 w$ Sweet Pea 22-24m/!!!/18-24w Polyanthus \& Cowslip one of grandchildren returned to pure Cowslip $588-17 m 6029$ $31 m 9328-31 m 9925-30 w / w b$ He admits the L vulgaris grew near !! \& yet advances the case as one of Reversion- He never counts seeds! Seeds were forgotten \& other neglegences \& never apparently protected from variation Careless experiments in every way.- $10012-14 m, 25-29 \mathrm{~m} / \mathrm{w}$ colours not blended 113 8-22m 126 12-17m 127 3-6m/5u "pas lembryonée" 131 17-20m 135 20-31m 136 8-14m 137 9-11m, 13u "la| année"/13-14w crossed with common none were peloric 22 $24 m / 23 u$ "cinqlégaux", $24-25 m / u$ "alors 1 présence" $1411415 u$ "l'hybriditélovules"/w confirmed $1428-11 \mathrm{~m} / 10 \mathrm{u}$ "unlovaire", 17$19 m, 21-23 m, 24-25 m, 27-29 m 14323-27 m /$ 23-25u "car|vertu" 145 3-8m 146 6-9m/6-7u "unelgénération" 147 23-27m (Klotzsch)/23$25 w$ Reciprocal Hybrids like each other 148 $6 u$ "intermédiaires", $7-9 u$ "l'immense lespèces", $18 u$ "c'est |tort", $19 u$ "au|père" 149 11-12w prepotent species $12-14 u$ "dont lespèce", 24$26 u$ "la|hybrides" 150 22-26m/21-28w/wb If so this pollen of a hybrid placed on one of parents or on third species wd give widely different results from Hybrid fertilised by the same. 151 1u*s "deux essences", 10-16u士/10$11 w$ Pangenesis $19-35 \rightarrow 1521 u$ "les hybrides", 13-18m, 20-23m, 25-28m 153 12$14 m, 16-21 m 15419-23 m, 28-31 m 1551-4 m$, $32-35 m / 32 w$ loevis close $1619-14 m, 15-18 m$, 26-29m

NETTER, Abraham De l'intuition dans les découvertes et inventions; ses rapports avec le positivisme et le Darwinisme Strasbourg; Trenttel \& Wurtz; 1879 [Down]

NEUMAYR, Melchior and PAUL, Carl Maria Die Congerien- und paludinenschichten Slavoniens und deren Faunen Wien; Alfred Hölder; 1875 [CUL, I]
cc, ch, ds, dv, gd, geo, gr, ig, 00, sp, sy, t, ti, tm, v

NB1 All marked very important on direct effect of conditions-
NB2 p57
$5725-28 \mathrm{~m} / \mathrm{w}$ like Hyatt $30-33 \mathrm{~m} 8440 \mathrm{~m} 90$ 1$3 \mathrm{~m} / \mathrm{w}$ gradual slow changes $45-55 \mathrm{~m} / 45 u$
"viele | Typen"/48-50u "Viviparen 1 müssen"|53$55 u \pm 9136 m$ (Lyell) $9326-28 m / 29 m / 17-35 w$ Is vehement that it is arguing in a vicious circle to call all forms which can be connected by gradations the same species [true but useful or necessary for systematic work.] 95 22-
$27 m / 23-25 u$ "die 1 sind", 27-32m/30-32u "dass Gestalten", $36 m$, 41-45m 97 26-31m/28u "Auftreten I Formenreihen" $/ 30$ u "variiren 1 Abänderung", $33 w 3$ species of new genus $34-39 z / 39 w 3$ species $43 m 989 u$ "Reihen", 11-12u "während I slavonischen", $13 u$ "mehrfach Ammoneen", $17 u$ "sondernlUebergänge", 20$21 u$ "dass lfeinsten", $31-40 \mathrm{~m} / 31-35 \mathrm{w}$ each form in a successive bed. $52-54 \mathrm{~m} / 53-54 u \leftrightarrow$ $991 m, 20 u$ "auflX", 19-22m/w Table of Descent $47-48 u \leftrightarrow$, 49-51m/50-52u "einel Hauptverbreitung" 100 3-4u "währendlauftreten", 4-12w Looks as if periods of rapid variation \& then of rest, but denies. 25-27w modification goes on in same district. $31 u$ "kein", $32 u$ "innerhalb|stattfindet", 33-34u "Auftreten IMutationen", 33-40w a row of forms divides into 2 rows only in separate districts $41-46 \mathrm{~m} / 42 \mathrm{~m} / 45 \mathrm{w}$ an exception 101 wt just what 1 have said $3-5 m, 18-19 u$ "vonlhin", $20 u$ "dielVariationen", $21 u$ "erhalten sich", $24-27 \mathrm{~m} / 27 \mathrm{u}$ "die| nicht", 30 m , 32-33m/33u "solAuge", 35-38m, 40-41u "Verdickung|Sculptur" 102 2u "Verdickung| Sculptur"/3u "Unionen"/4u "Dickschaligkin"/1$5 w$ in a distinct genus, (showing effects of conditions. $7-10 m / 8-9 u \leftrightarrow / 12 u$ "Einwirkungl suchen" $/ 8-13 w$ in a different district another series of forms. $18-24 m / 14-22 w$ Thickening of shell in small pond to be due to water becoming more fresh. $30-34 \mathrm{~m} / 30-32 u \leftrightarrow, 36-$ $37 u$ "Nurlangenommen", $46 m 103$ 19-23m, $40 u$ "abgeänderten|wird", 41u "constatirt| können" $1041 u$ "innerhalb|ihrer", $4 u$ "von 1 bekannt", 16-17u "dass I Reihen", 18-22m/w fail on sea because we do not have whole area $33 m$, $42-45 m / 43 u \quad$ "Mealnopsis \mid nachgewiesen" $145 u$ "Jahrb. I Heft" 105 1m, 19-20u "betrachten |Formenkreise", 20-21u "wiel Verbindung", $50 \mathrm{~m}, 51-52 \mathrm{~m} / 51-55 \mathrm{w}$ same kind of variation in several distinct forms 106 1$3 m / 1-5 w$ same var. at very distinct periods

NEUMAYR, Melchior Zur Kenntnis der Fauna des untersten Lias in den Nordalpen Wien; J.C. Fischer; 1879 [CUL, I]
fo, geo
NB 45 Parallelism of Ammonites
8
45 8-18m
NEUMEISTER, Gottlob Das Ganze der Taubenzucht Weimar; B.F. Voigt; 1837 [CUL] beh, cs, f, he, 00, ta, tm, v, y
NB 4,6
SB $\square \beta$
Neumeister*

17 Dovecots do not like Fancy Pigeons 18 Crosses very fruitful
21 In young white bars nearly red \& true Q character remains only till 3 or 4 years 24 Nearly parallel case
29 odd heredetariness in Trumpeter
31 Hinkel flight-feathers doubts Q P19 Never seen yellow or red Fantail
title page $w t$ A working man enquired all himself; Laugher ${ }^{\circ}$ Finnikin Spanish rust not mentioned θ Frill-back i 11-12m $49 w 20-24$ years $8-10 w$ These fancy races $6-8$ years age.- $12 u$ "Holländerknopftaube" 17 wt 17 5ul $w \tau, 10 u / w \tau, 13 u$ "Gesellschaft |zahnen" $112-14 w$ Dovecots do not like fancy pigeons $188-9 u$ "Es \mid Tauben" $/ 6-9 w$ House Pigeons crossed with Fancy very fruitful $2113 u$ "schwarz"/ $11-16 w$ correspondence in age $18 u$ "gewöhnlich"|19-20u "der|schön"/I.../18-22w in young the white bars are rust-red \& perfect character remains only till 3d or 4th year old $2212 w$ shell-shaped cap $13 m / 14 m$ "Muschelhauben" $113-23 w$ cross at back of Head top of head white upper \& lower Mandible different colours $2311-12 w$ * This seems rather different $12 u$ "etwas grösser", 13u "Brust |Oberrücken", 14-15w Head smooth white tail flight feathers \& feathers on feet white $17 u / w \tau$ 19-24w These have strongest shell-shaped caps of all Breedsruns down half neck $245-8 w$ In young the white feathers are first edged with colour $11 w$ Spot $251 u$ "wegen 1 kurzen", $5 u$ "Schnabel lals" $/ w$ I see this is mine $267-11 w$ I have now written descriptions on plates 27 $10 \mathrm{~m} / \mathrm{w}$ Blue 23 w (a) $w b$ (a) called Riedel Polish Pigeon $292 w \tau, 2-9 w \mathrm{Mr}$ Gilbert will back one of his to travel for $1 / 4$ of hour $7 u$ "einen I Schnippe", $16-17 \mathrm{~m} / \mathrm{u}$ "doch \mid trommeln"/ Qa, 17-18u "Ohne 1 tauben", $18 u$ "noch ${ }^{\text {g }}$ gt", $19 u$ "Altenburgische" $3024 u \pm 311-2 \mathrm{~m} / 1 u$ "Schwungfender I doppelte", $4 u / w \tau$
〈all plates.w (descriptions of varieties of pigeons and doves))

NEWBERRY, John Strong The structure and relations of Dinichtyes Columbus; Nevins \& Myers; 1875 [Down, I]

NEWTON, Alfred Zoology London; Society for promoting Christian knowledge; 1874 [Down, I]

NICHOLSON, Edward An elementary treatise of ophiology Madras; Higginbotham; 1874 [Down, I] ig

NB O/
10 Gradation
10 1-22m 29 22-25m
NIEMEYER, Felix von A textbook of practical medicine revised edn, vol. 1; London; H.K. Lewis; 1871 [Down, FD]

NIEMEYER, Felix von A textbook of practical medicine vol. 2; London; H.K. Lewis; 1871 [Botany School, F.D.]

NILSSON, Sven The primitive inhabitants of Scandinavia 3rd edn, ed. with introduction by John Lubbock; London; John Murray; 1868 [Down, I]
h, oo, t
NB I a universal law that strong tribes extirpate weaker; 104; 248
$126-30 \mathrm{~m} 1042-9 \mathrm{~m} / \mathrm{w}$ identity of man under similar conditions 248 29-31m (Lovén)

NITZCH, Christian L. Pterylography ed. Philip Lutley Sclater; London; The Ray Society; 1867 [Down]
no, tm, y
NB 39*; 110*; 16*; 13 numbers of feathers; 14 young birds 13 40-43m $148-12 m$

NOGUEIRA, A.F. A raça negra sob o ponto de vista da civilisação da Africa Lisboa; Minerva; 1880 [Linnean Society of London, I]
title page $w t$ as Mark wb 233
NOIRÉ, Ludwig Der Ursprung der Sprache Mainz; Victor von Zabern; 1877 [Down, I] \wp

NOIRÉ, Ludwig Die Welt als Entwickelung des Geistes Leipzig; Beit; 1874 [Down, I]
title page $w t$ Prof. of Mainz
NOIRÉ, Ludwig Das Werkzeug Mainz; Diemer; 1880 [Down] \wp

NORDENSKIÖLD, Nils Adolf Erik The voyage of the Vega round Asia and Europe London; Macmillan \& Co.; 1881 [Down] ss
NB 97 Sexual Selection, dogs
97 11-23m/11-21[...]
NUSBAUM, Jozef L'Embryologie de Mysis chameleo (extract); Warsaw; n.d. [Down]

ODART, Alexandre Pierre Ampélographie universelle ou traité des cépages 2nd edn; Paris; De Dusacq; 1849 [CUL]
ad, br, cc, ch, ds, gd, mhp, no, oo, or, sp, $\mathrm{sy}, \mathrm{t}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}$, wd
SB1 18; 20; 34; 41; 43; 48; 51; 54; 55; 70 *; 70; 72 to 84; 107; 228 variation; 243; 244 taste \&c \&c varieties besides common peculiarities resisting wind another quality early fruits - age at which it produces; 254; 268; 327; 362; 397; 401; 429; 436; It is striking how many varieties there are, \& how some seem to do better in one province than another
SB2 266 Journal Geolog. Soc *
SB3 $\square \beta$
$42,44,48$ of immense numbers sown, rarely new variety produced.
70 on classification of grapes - 74 p. 80 wd like descent if possible p107 is possible (p244 Sub-families)
71 same grape has round \& oval berries Q
78 Simon (like Van Mons) cannot think all came from one Parentage (Ch. 2)
227 grape like dry, but apt to rot when ripe p243 slow to * breed but ripens fruit early; fruit resists long-continued humidity; attracts wasps A_{0}; p254 apt to be broken off bunch - resisting wind \& 254 More attacked by insects 362 Early excited by April sun \& so killed by Frost
243 \& 254 \& 362
327 a Grape more than. 600 years old.-
397 see leaves turning yellow when fruit ripe
429 Pulp adheres slightly to seed 436 in other case turning red, at lower part of shoot.-
(All Quoted)
18 4-8m (Dussieux) 19 17-20m, 30m $201-3 m$ $341-2 m 4129-30 \rightarrow$, $w b$ very few \& yet thousands sown; applicable to domestic birds $4323-30 m$ (D. Simon) $443-5 m, 22-30 m$ (Rozier) 48 4-9m 51 19-24m 53 12-13w 600 to $800545 u$ "ait | huit", 6 u "un |cultivées" 55 $1-3 m \quad 70 \quad 1-3 m / w t / 1-7 w$ Wants to make classification natural $4-9 m, 11-14 m, 16-18 m$, 19-24m 71 15-18m/16-17u \rightarrow, 26-29m/Q凶 72 3-6m 74 16-19m 75 12-14m 76 13-19m 78 $17-25 \mathrm{~m} / \mathrm{w}$ like Van Mons on peas 79 20-21m/ 20 "oùltrouver" 121 u "surlla" 80 24-25m 84 12-18m $8522-24 m$ • $1072-3 \mathrm{~m}$ "ce 1 toujours", 10-22m, 21-25m 227 介2-1m 228 1-3m↔, 2$4 m 243 \quad 20-21 m 244$ 11-16m/13-14w Subfamily $254 \quad 18-19 m / 19 u \quad$ "cet I fragilité", $28 u$ "passerillerlguêpes", 29u "cette espèce"/w raisins? $2681-2 m, 8-11 m 3272 u$ "plus|six",

8-11m 362 26-29m 397 23-25m, 25-27m 401 5-10m 429 7-10m $4364-9 m$

UN OFFICIER DU ROI Voyage à l'isle de France Neuchâtel; Société typographique; 1773 [Down, pre-B]
NB 8 use of broom for cordage - Pliny 8 last paragraph.x $1701-5 m 1731-2 m, 4-7 m, 9-16 m$

OGLE, John William The Harveian oration, 1880 London; 1881 [Down]

OKEN, Lorenz Elements of physiophilosophy trans. Alfred Tulk; London; The Ray Society; 1847 [Down] \wp

OUR BLOOD RELATIONS; or the Darwinian theory London; Sipkin, Marshall \& Co.; 1872 [Down]
O^{\prime} NEILL, T. Warren The refutation of Darwinism Philadelphia; J.B. Lippincott; 1880 [Down]

ONTARIO, Province of Annual report on agriculture and arts for the year 1872 Toronto; Hunter, Rose \& Co.; 1873 [Down]

OPPERT, Gustav On the classification of languages Madras; Higginbotham \& Co.; 1879 [Down, I]

ORD, William Miller On the influence of colloids upon crystalline form and cohesion London; Edward Stanford; 1879 [CUL, I] phy
NB 31; 154 bears on concretion in worms 31 14-19m 154 29-33m 155 1-9m

ORDINAIRE, C.N. Histoire naturelle des volcans Paris; Levrault; 1802 [Down, pre-B] \wp

ORMATHWAITE, John Benn Walsh Astronomy and geology compared London; John Murray; 1872 [Down]
NB O/
ORTON, James The Andes and the Amazon New York; Harper \& Brothers; 1870 [CUL] beh, br, che, gd, no, phy
NB $1 / 4$ of Plants near Quito are Compositae colour of flora due to chemical rays 103 107 Geese not breeding; 283
$1033-6 m, 20-24 m$ (Herschel) 107 21-23m 283 $1-5 \mathrm{~m}$ *

ORTON，James The Andes and the Amazon 3rd edn；New York；Harper \＆Brothers； 1876 ［Down］
ex，fo
NB 154 Extinct deer fossil in Amazonia 154 15－17m／15u＂deer＂

OSBORNE，J．The horsebreeder＇s handbook London；Benjamin Clegg； 1881 ［Down，I］
x 42－44m
OTLEY，Joseph A concise description of the English lakes 4th edn；Keswick； 1830 ［CUL．1900］
NF 〈prob CD \rangle Sept 241830 Kendal
OVINGTON，John A voyage to Suratt London；Jacob Tonson； 1696 ［CUL，pre－B］ gr ，is
NB 69 72
69 Floating Isd 100 ft long \＆broad covered with grass about 4 leagues at sea－
$6912-14 w$ See p．64．probably 4 leagues from shore $14-18 m 726-15 m 4481-3 m$

OWEN，David Dale Report of a geological survey of Wisconsin，Iowa and Minnesota 1 vol ． with vol．of illustrations；Philadelphia； Lippincott，Grambo \＆Co．； 1852 ［Department of Earth Sciences Library，I by J．D．Dana］
fo，ig，ir，sp，sy，ti
NB Think what wd classification be if only Eocene fossils had been unearthedO
p． 50 Fossil Lingula
p． 198 Nebraska－some of Leidy genera very intermediate－＊
p． 571 do．Nebraska intermediate mammals
50 14－19m 19ं 5－17m $1992 \mathrm{~m} / \mathrm{u}$＂eоселе＂， $\Uparrow 1 \rightarrow 200$ 8－16m $571 \Uparrow 3-1 \mathrm{~m}$

OWEN，John Pickard［i．e．Samuel Butler］ The fair haven ed．W．B．Oxen；London； Trübner \＆Co．； 1873 ［CUL，I，S］ beh
NB 52； 40 an halln．；51； 134 judgemt 179 do〈some editorial marks in text〉

OWEN，Richard On the anatomy of vertebrates 3 vols．；London；Longmans，Green \＆Co．；1866－68［CUL］
ad，af，beh，ch，em，ex，fo，h，he，hl，ig，phy， $r, r d, s s, s y, t, t a, t m, v, y$
vol． 1 NB 168；170； 179
SB1 Voll Owen
331 Eyes of Fishes in Lancelet \＆some other as simple as in the lowest craniaO； 342＊range of gradation great in F．\＆R．；vol 1； 354 Electric organs； 358 similar action with Muscles
xxxvi；254；345；378；393；401；409；486，7； 492，7； 533 Wollfian glands Man； 543551 567 －Regrowth for Chapter on Inheritance －；576；588； 589 sexual selection；609；611； 612； 615 sexual sel．；616； 640
SB2 $\square \beta \propto\langle n o t C D\rangle$
Owens Anatomy of Vertebrates Voll 1866
p．xxxii Rudimentary \＆nascent organs． Cases of fins becoming rudimentary in old age．
254 Gradation between homocercle \＆ heterocercle tail－also in embryos．
345 On air bladder in Colitis aiding organ of hearing
378 Six modifications of structures of teeth in fishes， 2 sometimes in same fish or each in same tooth．
393 On egg feeding serpent with mouth without teeth but with vertebrae acting as teeth in the gullet．
401 Dicynodonts approach mammals in having growing tusks，besides as in other reptiles being implanted in a socket．
409 In an extinct crocodile the teeth can be divided into canines，incisors \＆molars．
486 on the persistence of an embryonic structure of the branchiae in certain low fishes．
487 on an accessory breathing organ in the climbing perch．
492 Structure of air bladder in fishes． 497 ditto．
551 Drawing of the female Surinam toad with eggs on back
588， 576 Gradation in reproductive organs of fishes
609 Embryonic characters of fishes permanent in sharks．
611 Metamorphoses in fishes．
640 On transitory tooth in young sharks \＆ lizards for cutting through egg
xxxii 10－18m（Tiedemann and Vrolik），19－25m xxxiii $3-6 m, 6-10 m$ xxxv $7-15 m, 21-27 m$ xxxvi $1-7 m, 27-31 m$ xxxvii $14 u$＂selective＂ 9 $12 m, 26 m 1228 m 1419 m 1524 m 16624-25 m$ $167 \quad 22-24 m \quad 168 \quad 23-27 \mathrm{~m} \quad 179 \quad 16-19 m$ ， fig．112．m 254 8－25m 331 24－29m 342 10－14m 345 19－25m 346 1－8m $3541-6 m$ ，19－23m 355 29－36m 356 25－32m 358 31－42m 378 12－27m， $23-27 m 39317-33 m 40038-41 m 4011-5 m$

OWEN, VERTEBRATES
409 7-12m 486 17-32m 487 1-6m/fig.325.m 492 35-43m/fig.327.m 493 1-7m, 25-30m, 34$38 m 497$ 13-18m (Borelli) 533 8-13m 543 7$14 m 551$ fig. $367 . m 5671-12 m / 11 u$ "Anourous", 26-29m (Van der Hoeven) 568 10-12m 570 39$42 m 5764-16 m 58819-29 m 59937-43 m 609$ $5-9 m 611$ 32-40m 612 9-16m, 20-34m 615 $3-5 m$, 12-15m, 17-19m, 21-24m, 23-24u "submaxillary glands" 616 24-38m 617 3-6m 640 6-13m 646 54-56m
vol. 2 SB
p.12 affinities of Birds - greatly Modified Birds their affinities
read as far as p.14; 517 * Tail of monkeys *; 551 \& 552 . Apes anthropomorphism Man; 544 \& 560 to end Man
All used
258 Sexual diffrn in Beak
12 23-27m 13 10-16m
\wp
p. 258 27-34m 517 27-36m 520 33-35m, 36$38 m 55127-29 m / 29 u$ "mastoid processes", $31 u$ "the Ithe", $32 u$ "auditory process", 33-43m/37u "posteriorlinternal", $40 u$ "ectopterygoidlthe" 552 1-3m, 13-17m 553 8-14m/10u "great toe"। $11-12 u$ "perhaps adaptive" $/ w$ adaptive 5644 $15 m 50616-21 m$
vol. 3 NB
Law of Inheritance 619 Hair in foetus; 628; 624 \& 630 Man; 632 \& 634 to 638 sexual selection; 641; 675 Rudiment; 676; 685 Man; 687; 701 Sexual; 706; 739 Law of Inheritance; 767; 791; 746 Polygamy; 770 Gradation in Marsupial pouch; 791 Gradation in characters of Horse; Man external 236 \& 244 Ear; see about external ears
SB 〈a fragment〉
323; 325* 336 gradation of characters; 347 affinities of Hippopotamus shown by Milk Teeth; 348 • Relation of Horns \& Canines *; 415 Kangaroo Ruminating; over
vi $7 w$ to 219 read viii $7 w$ read $17 w$ read $23 w$ read ix $19 w$ read $39 w$ read $\times 7 w$ read

8
54 17-20m 60 18-23m 63 21-25m 71 24-29m 135 31-37m 228 1-2m/fig.171.m 229 2-6m 236 $16-29 m / 22 u$ "only|and" $/ 23 u$ "inlare" 243 38$42 m 244$ fig.189.w 245 8-11m, 12-14m (Lamarck) $2605 u$ "thirdllid", $39-42 m$ $2612 u$ "nictitating| developed", 5-9m, $8 u$ "Quadrumanal Man" 279 23-24u "or|with", $26-30 m 28314-17 m / 14 u$ " 1601281 ", 20-22m, $43 m 284$ 15-21m 285 fig. $231 . w$ p. 331315 15$20 m 317$ 3-7m 318 wt Chimpanzee 320 31$35 m 321$ 14-18m 323 10-13m/10-16"..."/13$15 m \bullet / 14 c / 15 c / 16 c \notin 3259-10 m, 21-23 m 331$

30-31m 336 2-7m 347 16-21m 348 38-41m $3495-6 m, 11-13 m 41511-18 m 416 \quad 26-28 m$ 417 fig. $315 . m \quad 433 \quad 36-38 m / 38 u$ "terminall short" 434 1-5m 441 36-40m, fig.345.m, $39 u$ "follicular glands" $585 \quad 35-37 m \quad 595 \quad 7 u \leftrightarrow / 6-$ $8 \mathrm{~m} / \mathrm{w}$ \& so is the Porcupine $5981-3 \mathrm{~m} / \mathrm{w}$ Lemuridae $34-35 m 60010-11 m / 11 u$ "alone sing", $12 u$ "Laryngeall Orang-utan", 13-18m/ $17 u$ "sacculi"/18u "adult males" $6014 u \uparrow$, 7$10 \mathrm{~m} 60318-19 \mathrm{~m} 6196-9 \mathrm{~m}, 28-30 \mathrm{~m}, 32-36 m$, wb J. Müller Archiv fur Physioly 1837624 20-22m, 31-33m 626 12-14m 627 wt Law of Inheritance 1u/a "Commencing|1855", wt when about 5 or 6 months old $6-8 w$ ie from Jan or Feb $185562840-42 \mathrm{~m} / 40 \mathrm{u}$ "in 1 both" $6294 u$ "in year", $20-22 \mathrm{~m} / 21 u$ " 20 points", $24 u$ "yearling fawn", $40 u$ "seventh" 630 1-4m/ $1 u$ "condition \mid snags", $11-13 \mathrm{~m} / 12 u$ "swelling \mid throat" $6313-12 m, 26-31 m, 42-44 \mathrm{~m} / \mathrm{w}$ not so sexual in char see Mullers letter $63218-20 \mathrm{~m}$, $31-33 m 63318 u$ "pairs", $19 u$ "in pairs", $23 u$ "not gregarious", $33 u$ "in pairs", 35u "not gregarious", $43 u$ "in pairs", $45 u$ "in pairs", $46 u$ "ib." $6343 u$ "in pairs", $12 u$ "in pairs", $16 u$ "in pairs", 22-26m, 31-32m, 37-42m 635 17-21m/ w sexual? $6376-12 m, 13-30 w$ Seems not generally sexual $63835-36 u \leftrightarrow, 39-42 m 639$ 19-23m 640 13-15m 641 8-10m, 16-17m 675 fig.532.m 676 16-23m $68538-43 m 6863-7 m /$ $4 u$ "two uteri" 687 35-41m 701 18-21m/ $21 u$ "Lemuridae", $23 u$ "vaginal|cavity", $24 u$ "Insectivora" 703 6-8m/7u "not 1 cornua", 21$23 m / 22 u$ "last 1 cornua" $7063-5 m 73933-37 m /$ w Cattle nearly equal $7463-9 m 7631-3 m / 2 u$ "active| rut", 5-7m 767 14-23m, 25-27m 770 32-39m/33-34? 771 9-13m, fig.605.m 791 16$35 m, 39-40 m 792$ 19-24m 793 2-4m 796 13$19 m 798$ 37-42w Say, as far as 1 mention damn this 41-48m $7993 a / c \notin / w$ Man 9-11m (Darwin) 800 18-22!!/20u "my basis", 26-30m 807 10-13m \wp
OWEN, Richard Description of the skeleton of an extinct gigantic sloth (Mylodon) London; John Van Voorst; 1842 [CUL, I]
af, ch, em, fo, ig, rd, sp, sy, tm
NB $83 ; 97$ to $106 ; 137 ; 154 ; 155 ; 162 ; 165$; 166; 170
SB $\square \beta$
100 striking gradations in abortion p.101-106 162 Sloth now seems to be a remnant of large class - Sloth most anomalous if looked at by itself
165 Modifications of teeth in this order extreme - indicating low ebb \& flickering of development
166 approach Birds in some respects

83 28-31m 97 1-4m, 4-6m $98 \quad 1-2 m / 1 u$ "atrophy" $/ 1-2 w$ another term 99 9-10m 100 $11-15 \mathrm{~m}, 23-26 \mathrm{~m} / \mathrm{w}$ entirely aborted 10120 u "fifth" $20-22 m / 20-25 w$ 5th here present absent in Unau. What a gradation of abortion! 106 18-23m 137 17-18m/17u "Thel structure", 31-33m 154 32-34m 155 15-19m 162 30-31m 163 1-4m (Cuvier, Blainville), 10$12 m, 15-17 m 16414-18 m 16516-19 m, 20-$ $21 \mathrm{~m} 1661-6 \mathrm{~m}, 7-10 \mathrm{~m}, 11-14 \mathrm{~m}, 19-20 \mathrm{~m} 167$ $3-5 m \quad 170 \quad 19-25 w$ is Glyptodon in the Phyllophagous group?

OWEN, Richard A history of British fossil mammals and birds London; John Van Voorst; 1846 [CUL, S]
af, beh, ch, ds, em, ex, fo, gd, geo, ig, ir, is, $\mathrm{mg}, \mathrm{no}, \mathrm{or}, \mathrm{rd}, \mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{t}, \mathrm{ti}, \mathrm{tm}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$
NB Owen - Queries?

- p.81.-; 83,7; 99; p212 - Reference to Corsica cavern
p441 \& 432 How far are * Anoplotherium \& Palaeotherium distinct; are they are as distinct as are at present the unequal \& equal-toed Pach-Rum:- or rather were the two Eocene groups of equal and unequal toed animals as distinct, as present 2 groups
p245 width of tusks 160 sp .
SB1 All Introduction
It is important S. America having Mammals in Eocene Toxodon \& Rio Negro \& Miocene Mastodon
Most of cases animals also found in Strata This looks as if record not so imperfect p. 151 How few skeletons even any number of perfect Crania! though enough to make out species
p.7,8,10; 20; 25; 31; 49; 53,5,6; 61,2,7; 74,6; 78; $30,3,6$ to $91 ; 107,9,12 ; 114,7 ; 121 ; 129 ;$ $130,1,3,5 ; 171,3 ; 192 ; 197 ; 202,8 ; 211 ;$ 213,4,5; 220; 236; 243,4; 293,5,6; 300; 311; 341; 334, 342; 346,50,354; 359; 372, 381,5; 388,90,92,97; 413,14,18; 427,29,30,32; 436441; Over
〈over〉
Owen B. Blanca. Toxodon plateum
- p.xxi; xxiv; p.28; How far can close species be distinguished by skeletons for instance American \& English Beaver
How isolated would the elephant be without fossils . How is pachydermata \& Ruminanta fall into 2 new classes not this
Mastodon \& Dinotherium to connect it with Tapir? or Palaeotherium
p.442; p.449; p.451,2,4; p.458; p437,8; 473,8; 483; 488; 493,4; 499,500; 505,8; 510; 512; 514; 520; 526; 540,2; 546,8; 557

SB2 $\square \Re\langle 2$ sheets \rangle
xxi Dinotherium \& narrow t. Mastodon diminish distance between Lophiodon \& Elelphant
xxxvii - On relation of fossil to recent mammals of same districts to xliii no fossil Mammal in N. Zealand - xliv ${ }^{2}$ except seal - Huxley
87. variability in rudimentary premolar in Ursus * spelaeus
111 Badger oldest existing mammal Red Crag
133;2 varieties of Dog * doubtful case Q
173. Domestic cat. not from F. maniculata
197. On the animals which have existed since Peat cd form in Britain.-
212 Rabbit Bones in Corsica
214 Lagomys do \& in Britain N.B variability of Tusks of male Elephant in India is a variable sexual character
261 Southern range of Mammoth in America. p359 of woolly Rhinoceros in Tuscany
296 Mastodon older than Elephas \& intermediate in structure of teeth
334, 342 affinity shown by rudimentary organ
$\langle o v e r\rangle$?
394 Elasmotherium forms link between Horse \& Rhinoceros, especially some fossil Horses.
413 Fossil genera between Sus \& Hippopotamus
432 Anophotherium, remarks on rudimentary teeth in Ruminants; young of latter approach anophotherium.- (N.B. A form whilst forming would not spread? © p. 436
540 on Rudimentary teeth in Whales, \& embryonic character in Ruminants
514 Bos longiform parent of British wild cattle
title page wbo 1846 xiv $31-33 \mathrm{~m}$ xv $35-36 \mathrm{~m}$ xvii $21-24 m$ xx $16-19 m, 29-31 m$ xxi $1-3 m$, $25-26 m, 30-31 m$ xxii $1-3 m, 10-11 m$ xxiii 24 33 m xxiv $1 \mathrm{~m} / \mathrm{w}$ at same time $20-21 \mathrm{~m}, 29 \mathrm{~m}$ xxv $1-8 m, 16-19 m$ xxvi $17-20 \mathrm{~m}$ xxviii $12-$ $16 w$ about Tiger swimming a few miles xxxi $25-27 m$ xxxii $7-9 m, 21-27 m$ xxxiii 19-20m (Nilsson)/w see Description to understand fully $w b$ altogether 2 . Bos Primigenius \& longiform 2. Bisons priscus \& minor xxxiv $25-30 \mathrm{~m}, 32-33 \mathrm{~m}$ xxxv 33 m xxxvi 1-5m, 6-10m xxxvii $1-2 m$, 5 w Hippopotamus 7-11m, 14-19m, 27-31m xxxviii 9-11m, 13$17 \mathrm{~m}, 18-19 \mathrm{~m}$ xxxix $10-14 \mathrm{~m}, 15-16 \mathrm{~m}, 31-32 \mathrm{~m}$ xl 11-12m xlii $9-13 m$ xliii $4-6 m, 17-19 m$ xliv $6-8 w$ (see my Journal) $10-13 \mathrm{~m}, 23-26 \mathrm{~m}$ xlv

OWEN, FOSSIL MAMMALS
3-8m 7 11-13m $88 \mathrm{~m} / \mathrm{u}$, 21-23m 918 m , 20$24 m, 23 m 105-6 m$ (Lyell) $2021-22 m 259-$ $11 \mathrm{~m}, 13 u$ " "gigantic Beavers", $14 u$ "watermole", 17-19m, $22 \mathrm{~m} 271-3 \mathrm{~m} / 3 u 2821-22 \mathrm{~m}$, 25-28m $3133 m 495-8 m 52$ 24-26m (Cuvier) 53 13-16m, 24-28m 54 1-4m, 31-34m 55 16m, 27-28m (Cuvier) 56 9-11m, 31-34m $619-$ $12 m 623-6 m 67$ 29-33m 69 15-16m, 27-29m $743-6 m 76$ 6-8m, 9-14m (Cuvier) 78 10-14m, $28-33 m, w b$ Philippi shows in shells, that decrease in size does not go with increasing rarity $791-3 m \bullet, 5-6 m \bullet 808-10 m, 11-14 m 81$ 3-4m/4u "verylexceptions", $25-27 \mathrm{~m} / 26-27 u$ "from 1 character" $8324-25 u$ "in 1 obliterated" 86 23-25m 87 18-20m, 21-22m/w \therefore direction variable? $8820-23 w$ firm species are hard to settle from Bones 91 9-17m 99 5-7m/5-6u "the \mid destructive" 107 1-3m, 27-34m 10914 17 m 111 22-24m 112 16-21m 114 10-13m, 15$16 m 116$ 4-5Q 117 18-19m/u "the | Weasel" $12121-22 \mathrm{~m}, 33-34 \mathrm{~m} 1264-5 \mathrm{~m} 127$ 27-30m/ $29 u$ "Wolfl Dog" 128 28-31m 129 12-21m 130 $2 m, 5-12 m, 19-21 m$ (Cuvier, Daubenton) 131 $4-7 m, 19-22 m, 24-30 m, 32-33 m 1336-7 \mathrm{~m} / 6 u$ "two l notably", 11-13m (Blainville), 21-22m/! (Schmerling), 22u "recent", 23u "Human remains" 135 2-4m/! (Bell), 30-32m 171 9-15m 173 12-15m, 19-20m, 22-23m (de Blainville) 178 12-19m $1927-9 m 19711-26 m 2028-16 m$ (Lyell) 208 12-14m (Bell) 211 16-21m, 24-26m $21215-16 \mathrm{~m} / \mathrm{u}$ "osseus 1 Corsica" $/ \mathrm{w}$ See to this as change of surface $21315-17 \mathrm{~m}, 21-24 \mathrm{~m}$ 214 8-10m, 14-15m 215 27-28m 216 4-7m, 13-15m 220 1-4m 232 3-8m 236 1-5m 243 31-33m $24433 \mathrm{~m} 24524 u$ "hundred | sixty" 261 $15-17 m 293$ 16-21m 295 17-22m 296 2-5m, 27-31m 300 10-11m, 31-32m 311 10-13m, 15$19 m 3341-12 m$, $9-13 m$ (Cuvier)/w affinity from abortive organs $3416-13 m, 36-38 \mathrm{~m} 342$ 20-26m, 33-35m (Pallas) 346 1-2m/2u "Caldy Island" 350 13-19m 354 12-17m (Pallas)/12$22 w$ England \& N. America good case of range, interrupted, with Siberia between 359 $26 \mathrm{um} / 23-26 \mathrm{~m} / \mathrm{w}$ This is the cold animal 32 m 372 8-13m 381 4-7m $38423-25 m, 28 m 3859-$ $10 \mathrm{~m}, 14 \mathrm{~m}, ~ 23-25 \mathrm{~m}$ (H. von Meyer) 388 5-6m 390 29-30m, 33m 391 9-15m 392 10-12m, 21$22 m$ (von Meyer) 393 1-4m, 22-26m, 27-33m 394 1-5m, 7-9m 397 1-3m, 14-16m, 19-21m, $29-33 \mathrm{~m} / \mathrm{w} 4$ species in England $w b$? whether Drift \& Pliocene \& caverns will not turn out very different periods $41313-16 \mathrm{~m}$, $23 \mathrm{~m} 41425 \mathrm{~m} / \mathrm{w}$ Eocene $4151-3 \mathrm{~m} 41814 \mathrm{~m} /$ $14-17 w \mathrm{X}$ analogical or real $18-22 \mathrm{~nm} 25-28 \mathrm{~m}$ 427 11-12m, $16 \mathrm{~m}, 20 \mathrm{~m} 4292-4 \mathrm{~m}, 20-22 \mathrm{~m} 430$ 12-15m $432 \quad 12-13 \mathrm{~m} / 7-16 \mathrm{w}$ Reference to Lamarcks views $16-17 \mathrm{~m}!/ / \mathrm{u}$ "or rudimentary", 19-20m, wb Owen says young of present

Ruminants in not having horns \& rudimental teeth approach Anoplotherium 433 5-12m, 31m (Goodsir) 435 17-20m 436 27-30m, 31$34 m 441$ wt/1-18w Did ruminants then exist in some other quarter $-1-3 m, 4-5 m, 9-10 \mathrm{~m} /$ $10 u$ "forlRuminant", $15-18 \mathrm{~m} / 18 \mathrm{u}$ "young Musk-deer" 442 26-28m 443 1-8m 449 32-34m 451 6-8m 452 4-5m, 13-14m, 18-19m, 29$30 \mathrm{~m} / 29 \mathrm{u}$ "The l both" $45332 \mathrm{~m} 4547-10 \mathrm{~m}, 26$ $29 m 45828-29 m / 28 u 467$ 19-25m 468 3-7m 473 3-9m 478 8-10m, 11-14m, 18-20m, 2328m, 29-32m 483 25-29m 488 9-13m, 19-20m $4902-4 \mathrm{~m}, 8-10 \mathrm{~m} / 9 \mathrm{u} \uparrow / 10 \mathrm{u} \uparrow$, $14-15 \mathrm{~m}$, 19-20m 493 24-30m $49428-31 \mathrm{~m} 4956-10 \mathrm{~m}$, 19-21m $4963-9 m, 17-19 m 49723 x$, wb This seems whole evidence of Bison minor 499 21-23m/w now extinct? 500 12-20m, 31-33m (Bell) $/ w \mathrm{~V}$. p. $510505 \quad 2-4 m 50818-20 \mathrm{~m} 509 \mathrm{wt}$ Nillson (V. Annals 1849 p.350) makes another doubtful species B. frontosus $1-2 m$ (von Meyer) 2-5m (Cuvier) 3x , 7-10m, 19-22m/ 21x/21-22u "primitive \mid Bos", $31-32 \mathrm{~m} / 32 u$ "species" $510 w t / 1-29 w$ NB The Rhinoceros, Elephant Hippotamus (Horse?) Bos primigenius \& Bison priscus all having had such immense ranges; is opposed to the cattle of different parts of Europe being descended from several species. $1 u$ "or variety", $10-13 \mathrm{~m}, 11-13 \mathrm{~m}, 27-31 \mathrm{~m} 5116-11 \mathrm{~m}$ (Ball), $30-32 m \quad 512 \quad 33-35 m, \quad 36-39 m / 38 u$ "havelBos" 513 1-2m/x 514 7-14m 515 6$9 m, 18-22 m 520$ 14-16! $52610-11 m 54025-$ $33 m 5411-8 m, 26-27 m, 32 u$ "еосепе" $/ 31-33 m$ / $w \diamond$ only probable age $\rightarrow 5425-7 \mathrm{~m} 5463-8 m$ (Cuvier, Mantell) 548 29-33m/31u "still lany"!! 557 4-5m/u "referred lapproximated", 21-25m

OWEN, Richard Lectures on the comparative anatomy and physiology of the invertebrate animals 2 nd edn; London; Longman, Brown, Green \& Longman; 1855 [CUL, S]
ad, af, beh, br, ci, cs, em, ex, fg, gd, hl, ig, oo, phy, sl, sp, sx, sy, t, ti, tm, v
SB1 91; 110; 125; 130; 152; 153; 157 to 162; 179; 183; 187; 194; 208; 211; 212; 220; 223; 236; 239; 254; 264; 267; 268; 297; 301; 324; 334; 339; 342; 346; 354; 399; 405; 406; 425; 437; 439; 443; 455; 459; 467; 476; 479; 498; 508; 521; 525; 527; 528; 537; 543; 560; 563; 565; 566; 576; 589; 603; 615; 638; 642; 643 to end

SB2 1 -

86 Union observed in Planariae
125 Hydra sometimes male, sometimes female, sometimes both \underline{Q} variable by double organs p. 137 Q
151 Spermatozoa escaping from Bryozoa Ch. $3 \mathrm{~K}_{\mathrm{o}}$

161 My notion of relation of Medusae \& Hydrozoons
179 On dioicous Acalephae
213 Synapta only hermaphrodite Echinoderm 221 Parasite of Synapta, wd seem impossible to cross
239 On Homology of Tracheae (?) Q
256 Earth worm \& Leech unite
264 Great diversity in having or not metamorphosis in Annelids
268346 In low organized classes, there is extreme gradation in forms - Perhaps more extinction in lower than in higher forms
297 Thinks Larvae typical of Epizoa \& Cirripedes!
425 in all insects the 1st segment is quickly modified \& most modified
439 Owen compares Embryo of Vertebrate, of independently living to larva
443 Arachnids a short special branch, beginning very low
455 Spiders with both pulmonary sacks \& Tracheae
459 Hermaphrodite Acarus 467 do
477 Solitary Ascidians of distinct sexes, aggregate hermaphrodite
521 Lamellibranchs generally dioicous
527 Doubts locomotion in larval stage of Molluscs
539 Pteropods coitus reciprocal
543 Gastropods, before Lias have simple shell-mouths
560 In a few Gastropods pulmonary sack combined with Branchiae
565 Bulini make nest for eggs with leaves is it water tight? in Coll. of Surgeons
567 Larvae of naked Mollusc Tritonia survived for 2 weeks in sea-water
577 Nautilus Pompilius \& Spirula only representative of the vast assemblage of old Cephalopods - (single species in genus) Vide p. 650 Classification
603 Belemnite combines characters now separated
638 No Metamorphosis in Cephalopods \& I believe none in Spiders
643 Vegetative repetition
645 all organisms alike in very earliest stage - 647

648 Laws of embryological development
$86-9 m, 10-17 m 29$ 39-41m (Barry) 38 32-34m 39 32-34m, 33-34m 42 34-40m 58 12-17m 69 $6 \mathrm{~m}, ~ 7-8 \mathrm{~m} / 7 \mathrm{u}$ "androgynous", $12-15 \mathrm{~m} / 14 \mathrm{u}$ "small orifice" $115 u$ "pore 1 male", $22-24 m 86$ 34-37m $9134-37 \mathrm{~m} / 35 u$ "dioecious generation" $9240-42 w$ <renumbering of lines of text which are wrongly ordered〉 93 1-6w 〈renumbering
continued) 1, 6, 7, 8, 2, 3, 4, 5, 9110 36-39m $11827 \mathrm{~m} 12515-17 \mathrm{~m} / \mathrm{Q} 1307-14 \mathrm{~m}$ (Ehrenberg and Krohn) $13522-25 m 13714-19 m / Q 150$ 15-16m, 33-35m (Van Beneden) 153 16-19m/w but others are dioecious 157 14-21m 159 12$24 m 16014-19 m, 23-25 m 1616-9 m / 8 u$ "few analogous "/wt/1-22w If some larvae of Beetle truly bred in this state we shd have then have parallel of Hydrozoa \& Acalephae. If the male glow-worm had been like female then wd have been case. But all Acalephaeought to have hydrozoa larvae, without the embryo be concealed in egg state i.e. either Hydrozoa or none.- p183 some have \& p187 40-42m 162 1-6m 179 11-13m, 17-18m $18235-38 m 1835 c \quad " 3$ " 7 7-12m 184 fig.w The Medusa first produces an infusoria planula which turns into a polyp $18735-37 \mathrm{~m}$ 188 1-3m 191 13-15z 198 1-6z 199 6u "starfishes", 8-12m 208 8-9m $21138-40 \mathrm{~m} 21234$ $36 m 2131-3 m, 7 m 216$ 39-43m (J. Müller) 217 8-11m (von Baer) 220 29-33m (J. Müller) 221 11-16w Mollusca parasite of Synapta 30$32 \mathrm{~m} / \mathrm{w}$ seems impossible to intermarry $36-$ 40 m 223 15-25m, 27-31m 236 1-5m 23924 $34 m / 26-27 Q / 29 u$ "lateral sacs" $33-34 u \leftrightarrow 254$ 37-40m 255 22-23m, $25 w$ worms couple $28-$ $29 m 256$ 18-19m, 30-31m 264 6-19m, 21-24m 267 21-28m $268 \quad 6-7 m, 26-29 m$, fig.114.w Extinction. 269 14-15m $28333-37 \mathrm{~m} 297$ 1-2m/ $!/ 1 u \leftrightarrow, 41-42 \mathrm{~m} 301 \quad 37-39 \mathrm{~m} 32427-37 \mathrm{~m} / \mathrm{w}$ Daphnia do their females or larvae undergo metamorphosis 325 31-36m $3341-4 m 339$ 5$9 w$ not adapted to active life 342 14-30m 346 7-11m/7-16w retrograde development or rather in another line, less height.- $23-26 \mathrm{~m} /$ 26-27u "the lvaried" $/ 19-28 w$ because not really lowest, but retrograde developed 353 5-6m 354 40-43m 399 10-13m, 32-34m 405 $29-33 m \quad 406 \quad 17-21 \mathrm{~m} / \mathrm{w}$ I wonder whether anyO selection 425 5-9m 437 17-21m 439 $15-17 \mathrm{~m} / 16 u$ "the structure", $37-41 \mathrm{~m} 443$ 20$25 m 44536-41 m$ (Simon) $4465 u n$, $8 u$ "waterbear" $447 \quad 40-43 m \quad 455 \quad 23-29 m \quad 459 \quad 24 a$ "Macrobiotus"|24u "is androgynous"/19ua/19$22 w$ is acquatic p446 23-26w p. 446 see fig. of.- 466 41-43m 467 36a "Macrobiotus" aquatic $37-38 \mathrm{~m} / 38 \mathrm{u}$ "hermaphrodite", $39 \mathrm{w} / \mathrm{wb}$ Inhabits follicles in skin - p. 445 they swim in Pus- \therefore hardly land animals $47633-35 \mathrm{~m} /$ $34 w-477$ 37-38m (van Beneden) 479 7-10m (Milne Edwards) 480 19-23m 481 15-23m 483 $31-32 \mathrm{~m}$ (Krohn) $49834-37 \mathrm{~m} 50813-19 \mathrm{~m} / \mathrm{w}$ nearly terrestrial $521 \quad 35-37 \mathrm{~m}$ 522 $26-28 \mathrm{~m}$ (Krohn) 523 2-4m, 23-26m 525 27-31m, 29$32 \mathrm{~m} 52733-40 \mathrm{~m}$ (Forbes), 42 m 528 11-13m, 14-16m, 29-32m 529 19-23m, 36-38m 537 40$41 m 53931-33 m 541$ 1-2m 543 22-25m 560

OWEN, INVERTEBRATES
$7 m, 12-14 m 5631-2 m 5658-10 m 566$ 9-10m/ w how transported $56718 w$ Tritonia 19-20m, $41 m 568$ 30-34m 576 24u "fromltypes", 35$37 m 577$ 5-6m/6ua/w Dibranchial 589 17$18 \mathrm{~m} / 18 u$ "ink-gland" $60311-17 m 605$ 8-12m 615 1-2m 638 21-30m/21-24w p. 466 Q 34$38 m 64122-27 m 6421-6 m, 34-37 m 6431-5 m$ $64521-24 m, 30-36 m 64615-17 m 647$ 11-14m, $27-35 m 6482-7 m, 10-18 m, 18-22 m, 27-31 m$

OWEN, Richard On the nature of limbs London; John Van Voorst; 1849 [CUL] ad, af, ch, ds, em, fo, h, ig, rd, t, tm, ts, v

NB 1 look at Owens Archetypus as more than ideal, as a real representation as far as the most consummate skill \& loftiest generalizations can represent the present forms of Vertebrata.- I follow him that there is a created archetype, the parent of its class
NB2 2; 9
$S B \square \beta$
2 the primal pattern of all the modifications of a part
9 Man does not trammel himself in his inventions by any common type
10 Final causes not sole governing principle 14; 37
13 Capital comparison of hand of Mole, Bat \& Fin
33 In Elk rudimentary hoots of use in marshy ground
35 Abortion of one toe variable in Ourang
39 a desire to ascend to cause of Homologies
40 On Head of Human foetus formed of pieces for parturition not applicable? Chick
45 Horses legs \& Lepidosiren good contrast if simplicity from abortion \& original
45 Only rudiment of Pelvis in Whales - 78 rudimental limbs in Boa
82 Lepidosiren realises nearly ideal Archetype (see my remarks at end of Volume)
84 Some think falsely (I argue. that conformity of plan is opposed to idea of design.
86 Alludes in grandiloquent sentence to some law governing progression, guided by archetypal light - \&c.-
99 Vertebrae of head \& thorax first developed
103 on variability of coalesence of segments of vertebrae.-
115 Rudimental tail proportionally longer in embryo man, than subsequently.

2 28-30m/28-29u "essentiality|form", $35 u$ "primal pattern", $36 u \leftrightarrow 316-18 \mathrm{~m} / 17 \mathrm{u}$ "special homology" 8 zb 9 33-36m 10 9-11m 13 1-3m, 22-25m, 33-35m 14 3-6m 15 1-2m 30 9-14m 32 19-23m 33 20-24m/21u "dangle | project" 35 $6-8 \mathrm{~m} / 7-8 u$ "commonly", $10 u / w \notin 3628-31 \mathrm{~m} 37$ 27-36m 39 14-28m 40 6-11m, 24-26m $4522 u$ "lepidosiren" $19-23 \mathrm{w}$ in all these cases the tibia \& fibula shows that they are simple by abortion \& it is rash to argue from. about original simplicity of limb. 23-24m/13-25w apparently aboriginal simplicity. $31-35 m / 34 u$ "rudiment" wb The contrast between the 8 almost singly serial bones of Horses leg. (p8) \& appendage of Lepidosiren good instance of * rudimentary \& primeval or transitory stage $4928-31 m, 35 m 5610-14 m /!/$ $10 u$ "return lit"/12-13u "development I point", $16-18 m \quad 59$ 17-18u "osseous fishes"/17-21w What is relation in Sharks? 78 21-29m 79 15$19 m 8233-35 m 8412-14 m, 21-34 m 867-9 m$, $12-17 \mathrm{~m} 8934-39 \mathrm{~m} 9639-40 \mathrm{~m} 97$ 1-8m 99 29-36m 103 27-30m/?, 33-37m 115 6-10m

OWEN, Richard Palaeontology Edinburgh; Adam \& Charles Black; 1860 [CUL] e, geo, ig, tm
NB 57 \& 69 shows how important record is 70; 132; 145; 150; 152; 199 Enaliosaurians . SB $\square \Re \rightarrow$
57 \& 69 \& 70 shows how imperfect record of Mollusca is
132 gradation in ossification of first bones 145 generalised ancient member of Sturgeon Family
150 The History of Fishes indicates mutation rather than development - good remark -
57 2-4m 69 30-33m $7012-15 m 13216-19 \mathrm{~m} / \mathrm{w}$ grades $14515-19 m 15016-22 m, 31 u$ "special piscine type" 151 10-14m 152 6-8m 199 9-21m

OWEN, Richard Palaeontology 2nd edn; Edinburgh; Adam \& Charles Black; 1861 [Down, S]
25 9-14m, 24u^, 27u• 27 22-25m 28 5-6m 30 19-31m 39 9u^ 54 32c/wも $552 u$ "long", 8$10 \mathrm{~m} / 9 \mathrm{u}$ "mid", 24u* 57 1u "havinglspires", $4 u$ "deltidium", $11 u$ "internal partitions"
8
OWEN, Richard On parthenogenesis London; John Van Voorst; 1849 [Botany School, I to Alexander Bain]

OWEN, Richard On parthenogenesis London; John Van Voorst; 1849 [CUL, I]
br, ci, em, fg, h, he, in, phy, sp, t, ti, v

NB 13; 25 metamorphosis of epizoic Crust
5, 6, 7, 8 Pangenesis
25-26 - Owen's Belief
64 do
75 Pangenesis - buds \& ova alike
Remember that Metagenesis (generation or growth within) blends into Metamorphosis any explanation for one must hold for other.SB1 ロケ 13; 20; 25; 35; 53; 62; 64
To Owen's view, there appears to me \& 3 objections.- 1st the astounding diffusion of the spermatic force in many mosses \&c which for centuries do not breed - 2d the vis medicatrix - nails produce over stump in Man's \& fingers, which facts blend into gemmation. 3d facts of buds \&c partaking of character of old time, \& not varying, whereas seeds go back \& take new characters. $=4$ th (p26 - growth \& gemmation are hardly distinguishable
SB2 $\square \beta$
13 Larva of cirripede more typical of class than Mature Barnacle
title page wb $1849527-35$ "..."/32-35m 6 8$9 \mathrm{~m} / 8 \mathrm{u}$ "individualitylspermatic" 7 26-28m 8 22-23m, 25u "legacy|virtue" 9 29-34m 13 4$8 m 207-16 m$ (J. Müller) 24 19-22m, 28-31m 25 14-17m, 21-24m/25-27m/"..."/23-27m/17$34 w$ He uses expression that it is Metamorphosis - growth within $36 \mathrm{~m} /$ "... 26 1$5 m, 6-10 \mathrm{~m} / 6 \ldots$... $8-22 w$ all growth may be thus called parthenogenesis for metamorphosis gradates into metagenesis 35 29$35 m 535-11 m 623-8 m 643-7 m 7511-13 m$

PACKARD, Alpheus Spring (the younger) A guide to the study of insects Salem; Essex Institute; 1868 [Down]
beh, sx, tm
NB1 124 On Cells of Bees
NB2 149; 177- Mutillariae females wingless, but in 2 species females winged; Habits of Ants
177 28-32m 181 10m (Huxley, Latreille, Kirby, Spence)

PACKARD, Alpheus Spring (the younger) Insects injurious to forest and shade trees Washington; Government printing office; 1881 [Down]

PAGE, David Man, where, whence and whither Edinburgh; Edmonton \& Douglas; 1867 [CUL]
beh, cc, ch, ex, geo, gr, h
NB . Man; 55; 62 good Q; 88; 92; 98; 142; 153; 171; Extinction of old civilisations 55 17-24m (Agassiz) 62 6-8m/1-12w Tropic Dr Hayes * yet little change, not more than between Tropic of old \& new world $8-13 \mathrm{~m} /$ $16-22 w$ Effects on Habits of Life $8812-19 m$, $19-23 m 926-16 m / 9 w$ refer to 98 wt but not through inheritance $3 a$ "members" $/ 3-8 m 142$ 22-27m (Huxley) 143 1-7m 152 24-27m 153 $1-5 m / 1 w$ Lyell 170 12-17m $171 \quad 23-28 m$ (Owen)

PAGET, James Lectures on surgical pathology vol. 1; London; Longman, Brown, Green \& Longman; 1853 [CUL]
af, beh, cc, ch, che, ct, em, h, he, in, pat, phy, rd, sx, t, ta, tm, v, y
NB p.25;32; 39 \& 41 Size of Bloodvessels through attention to part- Expression; 63; 67; I have read First 3 \& last Sections; 69; 71; All read; Ch 7 wd be worth reading; Pangen \leqslant; 1.11 ; p. 13
SA $\langle p p .38-39\rangle \square \beta$
Lectures p39 \& 41 On thought increasing Blood-vessels
SB1 Pagets Pangenesis $1 \otimes$

- p. 11 growth of new tooth \& hair by offset go for simile with cell-gemmules
- p. 13 each hair
∞
a feather lives its appointed time \& then dies.
p. 19 On differences in parts or cells appearing alike as shown by symmetrical diseases due to * matter in blood which has affinity with those certain parts
$\checkmark 27$ On affinity of each part for

PAGET
certain substances in blood Kidneys for urea \& for certain morbid poisons. as chancre.Hydrophobia
50 scar propagating itself for years; \& bears on blood altered for life by certain diseases
72 transplanted spur of cock, excessive growth of.-
$150 \checkmark$ Repairs of parts wonderful provision ready though so seldom wanted.- adult repaired by adult form - tail of tadpolehence same force which was Oefore occupied in its maintenance during wear \& tear
154 power of reparation inverse to amounts of power, already consumed in development of individual
158 Gemmation retards repair of injury
159 Nais cut into $30-40$ pieces \& all formed individuals
163 Insects which do not go through much metamorphosis can alone when adult repair injuries p. 164 power of development of embryo same as that * in restoration from injury
SB2 181 \& 331 The theory of coagulable lymph developing structure \& as I supposed containing gemmules
219 - cuticle on sole thicker than elsewhere \& so renewed, independent of pressure. good sentence to quote under Nisus, \& on identity of power of development \& of repair
239 Q On the tissues of scars gradually \& slowly altering \& assuming proper character 243 first material thrown down in uniting Bone.
343 assimilative power was assigned formerly to each tissue or the coagulable lymph in the vicinity
357 False membranes assume character like adjoining parts 369 Lymphatics
384 on Pus cells

- 254 Repair of Bones
- 256 good

SB3 Pangenesis; Pagets Lectures on Path.
11; 13; 19-20; 22 Laws of Variation ; 27; 32 *; 50; 58; 60 good - refer to in *; 72; 150; 154; 158; 163; 164; 181 good; 199 . Nisus formativus; 209 quote; 239; 243; 263; 268; 290; 331; 343; 351; 357 Ask- Nisus Formativus; 384; 483 Direct Action
I must say that Paget maintains that ordinary reparation \& growth \& gemmation \&c are all the same.-
[I shd say that unknown cause prevents a man cut in twain from reproducing - partly too much injury]

SB4 $\square \beta \rightarrow$

25 Rudimentary organs serve to excrete matter Human foetus covered with wool
27 Kidney increases \& does double work if one destroyed 67 skin growing thicker from use
39,41 on thought of part increasing bloodvessels
71 on growth of Hair, near where surface inflamed 73
72 enormous growth of spur on comb did not decrease spurs on legs
SB5 \quad e
Mem.- it is possible that gemmules may come from surrounding tissues \& be developed in the Lymph - case of Negroskin looks like this so with elastic tissue, which comes afterwards.-
<over, part co>
Mullers Phys I p410 speaks of effused Lymph as transport \& formation of new parts as due to its reciprocal action on inflamed adjoining structures.
[p416 regenerated skin in Negro after a time became black.- shows that gemmules entered after a time over

1 zb $112 u$ "shows I connection"/wt/1-6w These germs must be very different from my gemmules; far larger \& with power of male \& female gemmules uniting - probably always distinct \& not united into germ like that of tooth. Yet there is analogy in these cases. 15-19m, $15 u$ "fromlgerm", 16-17u "separating|germ", 28-34m (Kölliker)/15-34w These germs may be compared with offsetbulb 13 15-19m $143 m 1815-24 m 193-5 m 20$ 11-16m 22 7-10m (Budd), 12-16m 25 21-32m/ $22-24 w$ like milk teeth $33 m 261-9 m, 9-14 m$ $271-9 w$ special affinities $12 w$ Hydrophobia 13-16m, 17-20m $325-12 m / 9-15 w$ Horns for fighting $\quad 13-17 \mathrm{~m}, \quad 19-24 \mathrm{~m} \quad 33 \quad 10-16 \mathrm{~m}$ (Treviranus) 39 29-30m 41 14-17m $5015-25 m$ 58 12-13m, 14-15m/18a "But" $/ w$ not $23-28 m$, 28-33m $597-11 m, 14-17 m, 17-18 m 601-31 w$ How on my view can milk $2 d$ teeth, what are effects of old first teeth resemble those of father $5-9 \mathrm{~m}, 17-21 \mathrm{~m}, 25-30 \mathrm{~m} / \mathrm{w}$ important $31-34 m / 34 w$ good $613-5 m \quad 6312-13 \mathrm{~m} / \mathrm{u}$ "dependence 1 composition" 67 9-16m 69 5-9m, 22-26m 71 10-14m, 22-25m/w Bears perhaps on wet producing more hair $35 \rightarrow 722-6 \mathrm{~m}$, 16-18m $734-6 m 1502-6 \mathrm{~m} /{ }^{\prime \prime} . . . " / 6 c / 7 c \notin, 32-$ $34 m 151$ 1-3m/1-2u "tolparts", 9-29w Newport has some remarks on this in Myriapoda 31-34m/w tail of tadpole which cut off $15215-19 \mathrm{~m} / 17 x$ 154 $7-9 \mathrm{~m}, 13-18 \mathrm{~m} /$ $13-16 \mathrm{~m} / 11-21 w$ when body grows old
gemmules like rest of structure cannot multiply． 155 1－2m $15827-29 m$（Trembley） 159 2－5m，8－11m（Lyonet）／9u＂Nais＂ 163 6－8m／w some mature incr $1644-10 \mathrm{~m} 1818-14 \mathrm{~m} / 1-$ $31 w$ must contain gemmules of many kinds； coag．lymph．I suppose is not cellular but forms cells 29－33m，wb p198－coagulable lymph is apparently＊exuded always with＊ some inflammation．－ 182 1－6m，23－30m 187 $\begin{array}{llllll}5-7 m & 198 & 10-12 m & 199 & 3-6 m / w & \text { false }\end{array}$ membranes $2091-2 \mathrm{~m}, 11-18 \mathrm{~m} / \mathrm{w}$ from Coag Lymph but has said before on Hairs $28-31 \mathrm{~m} /$ ＂．．．＂ 210 6－8m 217 1－3m／wt outgrowth of Blood－vessels into granulations 238 13－16m， 19－22m $2392-4 m / 4 u$＂changelyear＂， $7-11 m$ ， 12－19m $24328 w$ Bones $29-31 m 2548-13 m$ 256 11－13m／12u＂exposed＂，14－15m 257 9－14m $26330-34 m / 30 w$ cartilage 268 11－12m 290 10－12m 331 9－10u＂coagulable lymph＂， 11－19m，11u＂inflammatory exudation＂， $12 u$ ＂pellucid＂， 13 u ＂through 1 capillaries＂，17－19m， $34 m 333 w t$ These are evidently formed 2－ $5 \mathrm{~m}, 2 u$＂coagulation Iordinary＂， $3 u$＂corpuscles form＂， $9 u$＂corpuscles 1 cells＂， $10-14 m, 15 u$ ＂first＂， $20-22 u$＂not I nucleus＂， $23 u$＂in I hours＂， $24 u \leftrightarrow, 26 m 3347 u$＂exposes 1 nucleus＂， $9 u$ ＂thelcells＂， $15 u$＂various degenrations＂， $15 u$ ＂pus－corpus＂ 335 3－10m，31－35m 343 22－34m 351 1－3m，16－18m 356 6－10m，10－12m， 14 $15 \mathrm{~m}, 33-34 \mathrm{~m} / 34 u$＂fibrous \mid ligamentous＂ 357 $2 u$＂bone＂， $2 u$＂osseus＂， $3 u$＂epithelium＂， $3 u$ ＂epithelial＂， $7-9 u / 7 w$ Bone？？14－18u↔，23－ $27 u \pm, 32-34 m 369$ 11u＂that 1 first＂ 384 28－ 31m／19－31w Differs from L．Beale 483 20－ 30 m

PAGET，James Lectures on surgical pathology 3rd edn；London；Longmans，Green \＆Co．； 1870 ［Down，I］

PALEY，William A view of the evidences of Christianity London，1822， 7 vols［CUL．1900］ vol．1， 130 介11－8m 307 9－11m $3156 c$ ＂fortuis＂ 342 11－13m
vol． 2 NB 159
33 11－15m 34 介15－10m 39 wt Peter \＆John 41 wt Stephen $18 w$ persecut $4311 w$ James $44 \uparrow 6-5 w$ Barnabas $453 u$＂one＂$/ w$ Paul $\uparrow 5 w$ Luke 46 wt $57 \Uparrow 10-5 \mathrm{~m} 80 \Uparrow 2 w$ Matthew 81 1－10w Mark Luke John 140 1－7m，9－17m，9－ $17 \mathrm{~m}, 20 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{u}$＂our Digesta＂，$\uparrow 10-9 \mathrm{~m} / \mathrm{u}$ ＂Old \mid Testament＂，$\uparrow 6-5 m 19016 u$＂Nothing＂ $\mid w$ the letting of a house some times depends upon it！ 233 18－25m 236 介18－1m $238 \Uparrow 15-1 m$ 239 1－6m，13－16m 257 Im 258 1－20m 263 1－ $12 m 264$ 介7－1m $2651-20 \mathrm{~m} 269$ โm 270 1－6m 272 ปm 273 ปm 274 fm 275 ปm $2781-15 m 280$

1－6m $2899 m 30913 m 3106-10 m, 16-22 m$ 335 介18－1m $3361-12 m 341$ โm $342 \uparrow m 385$ โm $3861-8 m 393 \uparrow 20-1 m 394 \mathrm{\imath m}$
vol．4，xxii＂vi－xxii＂．m xxiii＂Part II＂．m ，＂x－ $x i i " m / w$ read＂Part III＂．m，＂Book $I V^{\prime \prime} . m / w$ read＂Book V＂．m／m xxiv＂Book VI，ch x＂．w read
vol．7，vii－xiv 〈dates between 29 November 1840 and 4 September 1842 written against contents entries＞

PALM，Ludwig Heinrich Über das Winden der Pflanzen Tübingen；C．Richter； 1827 ［CUL，pre－B］
gd，mhp，or，phy，sp，v，t，wd
NB1 Phaseolus cirrosus； 29 \＆ 52 Momordica winds to left； 52
NB2 p． 34 Hops
NB3 ${ }^{\text {s }}$ Species Theory
p． 26 Convolvulus sucking plant like Cuscuta．－origins of new habit－Anagous var．see p． 45 perhaps describes growth of papillae of Cuscuta
41 on certain plants becoming＊Twiners－ good analogous variation．－see my Paper on Climbers
p45 On growth of Cuscuta
p2 Movements of Plants
1 介4－1m 2 19－21m／19u＂Calcana＂ 6 17－23m／ 23u＂Fünftel＂， $26 u$＂ 6110 ＂ 7 6－7w 4／5ths 10 $27-32 m / 27-28 u$＂die iführen＂ $113-7 m / 4 x$ ， 19u＂Blumenstiele＂，21u＂Amplideen＂，22－24m， 32－34m／33u＂Blattstiel＂ $1218 \mathrm{~m} / \mathrm{w} 42422 \mathrm{~m} / \mathrm{w}$ $33924 m / w 37829 m, 31 \mathrm{~m} / \mathrm{w} 58933 \mathrm{~m} / \mathrm{w} 402$ $132 m / w 66433 \mathrm{~m} / \mathrm{w} 653142 \mathrm{~m} / \mathrm{w} 686 \mathrm{~mm} / \mathrm{w}$ $5118 \mathrm{~m} / \mathrm{w} 52412 \mathrm{~m} / \mathrm{w} 53816 \mathrm{~m} / \mathrm{w} 28120 \mathrm{~m} / \mathrm{w}$ 205 21m／w $20523 m / w 15825 m / w$ • 713 ？27－ 28（line across page），29－31w all world not－ Lindley $1512 m 16$ 17－20m，32－34m 17 6－8m $18 \quad 8-10 m \quad 26 \quad 10-19 m \quad 27 \quad 2 m \quad 28 \quad 25-27 \mathrm{~m} /$ $26 u$＂Arten 1 Gattung＂，30－31x，30u＂wahr－ scheinlich＂，31u＂Gattungen｜natürlichen＂ 29 14u＂Passiflora＂，14u＂Mormodica＂ $3031-34 \mathrm{~m} /$ $x \$ / 32 u$＂Stengels 1 sich＂ $3226 m 343-4 m, 6-$ $8 x, 13-17 m * 3531-32 m 413-4 m / x * / u \leftrightarrow$ ， $15-20 m, \quad 22-26 m / x * 26-28 u \leftrightarrow / 28-30 \mathrm{~m} / 25-$ 30 w wild plant $426-9 \mathrm{~m} / 7-8 \mathrm{u}$＂es 1 Habitus＂， 21u＊ 43 10u＂Periplora＂，14－16x $/ u$＂denn Aesten＂ $459 w$ not read $4819 u$＂sich। Gegenstände＂$/ 17-21 \mathrm{~m} / \mathrm{w}$ Mohl devices 52 11－ $15 m 53$ 27－29！，28－30！ 54 15－17m 55 3－ $6 \mathrm{~m} / 4 x \geqslant / u$＂für 1 hält＂， $26-27 \mathrm{~m} / \mathrm{u}$＂sind \mid Blum－ enstile＂，29－30x 31u＂Sielvon＂，32－33u ＂und｜untersten＂ $565-12 w$ do not curl up 12－ 14x $/ \mathrm{m} 57$ 14u＂Cardiospermum＂，16－24m／22－ $24 m$ ， $32-34 m 585-7 m / 5 x * / u \star, 30-34 m /$

PALM
$34 x / 23-34 w$ Cirri more like Ivy Plants 60 $12-14 m, 14-15 x / m 6111-12 m, 23-29 m / 14$ $29 w$ Will not twist lvy 62 27－28m／28u 63 10u＊／10－11w Linaria $14 u$＂dielselbst＂x $6831-35 m / 33-34 x$ 20－22m 92 13－14x ， $15-28 w$ no irritability！！！ $934-7 \mathrm{~m} / 4-6 \mathrm{~m}, 7 \mathrm{~m} / x *$ $9430 u \uparrow$ ，31－33u＂ersteres｜Windung＂ 95 wt This shows his theory $1 m, 5-6 m, 7 x \geqslant 9 u$ ＂Die｜Spiralform＂， $33-35 \mathrm{~m} / 34 \mathrm{~m} / \mathrm{u}$＂mit｜Breite＂ $963-7 m / 5 x$ ，32－35m／x $9734 u$＂diel selbst＂ 98 1u＂aberlvariire＂，10－11u＂indeml Pflanzen＂，15－16x $/ u \leftrightarrow, 26-27 \mathrm{~m} / \mathrm{u}$ Wachs－ thum｜unabhängig＂$x \Leftrightarrow 100 \quad 21 \mathrm{~m} / 21-22 u \leftrightarrow / 1-$ $25 w$ there is no relation of quickening in movement of cirri to revolution $31-33 \mathrm{~m} / 31 \mathrm{~m} / \mathrm{u}$ ＂paralell｜Wachsthum＂ 101 wb｜cannot make out whether he knew revolving movement of tendrils

PAOLUCCI，Luigi Il Canto degli uccelli Milano；G．Bernardoni； 1878 ［CUL，I］\wp

PAOLUCCI，Luigi Il Canto degli uccelli Milano；G．Bernardoni； 1878 ［Down，I］\wp

PARIS，John Ayrton The elements of medical chemistry London；W．Phillips； 1825 ［Down， pre－B，S］\wp

PARIS，John Ayrton Pharmacologia 6th edn， 2 vols．；London；W．Phillips； 1825 ［Down，S］

PARKER，William Kitchen A monograph on the structure and development of the shoulder－ girdle and sternum in the Vertebrata London； The Ray Society； 1868 ［Down］\wp

PARKES，Edmund A．A manual of practical hygiene 4th edn；London；J．\＆A．Churchill； 1873 ［Down，FD］

PARKINSON，James An introduction to the study of fossil organic remains London； Sherwood，Neely，Jones \＆W．Phillips； 1822 ［CUL，ED，S（Erasmus crossed out and replaced by Charles）］

PAUCHON，A．Recherches sur le rôle de la lumière dans la germination Paris；G．Masson； 1880 ［Down，I］\wp

PENNANT，Thomas History of quadrupeds 3rd edn， 2 vols．；London； 1769 ［CUL，S in vol．2］
beh，hy，tm，v
vol． $1 \mathrm{NB} \rightarrow 237-242 ;$ p． 21
$2116 \mathrm{~m} 3311-14 \mathrm{~m} 3414-17 \mathrm{~m} 151 \mathrm{~lm} 2371 \mathrm{~m}$
$23816-17 m, 21-27 m / 21 u$＂produced \mid puppies＂ 239 22－26m 242 17－21m／20u＂videli．49＂
vol． 2 （markings presumed not by $C D$ 〉
PERNETY，Antoine Joseph Journal historique d＇un voyage aux Îles Malouines en 1763 et 1764 2 vols．；Berlin；Étienne de Bordeaux；1763－64 ［CUL，pre－B］
vol．2， $4381-9 m$

PERRIER，Edmond Les Colonies animales Paris；G．Masson； 1881 ［Down，I］\wp

PERSOON，Christian Henrick Synopsis plantarum 2 vols．；Paris \＆Tübingen；C．F． Cramer \＆J．C．Cottam；1805－07［CUL，ED］ gd，sx
vol．1，222a $31 \mathrm{~m}, 38 \mathrm{~m}, 43 \mathrm{~m}, 52 \mathrm{~m}$
vol． 2 NB1 Eucalyptus Icosandria
NB2 Many monoeic dioecious plants in New Zealand \＆many trees \＆bushes compare Monooeic \＆Dioecious here marked by crosses
〈untranscribed w：W meaning Water－plants〉
506b $15 u$＂labello tripartito＂512a $7-10 \mathrm{~m}$ 529b $4 w, 30 w$ 530a $11 w 531 b 5 m$ 532a $37 w$ 532b $19 w 534 a \operatorname{17w} 550 b 11 m$ 551b $9 m$ 557b $23 m$ 561a 9－11m 562a $28 m$ 562b $21 m$ 565a $27 m$ ， $42 m$ 566a $2-3 m$ ，11－12m，45－46m 567a 18－ $20 m$ 571a $43 m$ 571b 25－26m 572a $15-17 m$ 572b $46-47 m$ 573a $16-17 m, 28-29 m, 50-51 m$ 576a $32 m, 49-50 m$ 576b $\Uparrow 21 m, \Uparrow 4 m$ 577a $50-$ $52 m$ 578a 2－3m，36u＂geminis elongatis＂579b $36 m, 52 m$ 580a 31－33m 580b $32 m$ 588a 39－ 40 m 588b $34-35 m, 45-46 m$ 589a $3-5 m$ ，15－ $16 m, 32-33 m$ 596a $6 m$ 597a $6-7 m, 33 m$ 597b $28 m$ 598a $50-51 m$ 598b 21－22m 604a 41－43？， $44 m$ ，54－55m 608a 6－9m 612a 32－33m，41－ $43 m$ 612b $31-33 m$ 616a $12-13 m, 35 m, 39-40 m$ 616b 47－48m 617a $2-4 m$ 622a 12－13m，29－ $30 m, 42-43 m, 51-52 m$ 622b $43-45 m$ 623a 2－ $3 m, 14-15 m$ 623b 3－6m 624a 24－26m 626a 2－ $4 m, 20-21 m$ 626b $2-4 m$ 628a $47-48 m$ 628b $27-29 m$ 629a $23-24 m$ 639b $9 m$ 630b $29-30 m$ $6326-8 m, 21-23 m$ 632b 39－40m 633a 22－24m 634a $44-46 m$ 634b 22－24m

PETTIGREW，James Bell The physiology of the circulation in plants，in the lower animals， and in man Edinburgh；Oliver \＆Boyd； 1873 ［Down，I］

PETTIGREW，James Bell On the physiology of wings Edinburgh；Neill \＆Co．； 1871 ［Down，I］

PHILIPPI, Federico Catalogus plantorum vascularium chilensium Santiago de Chile; Imprenta Nacional; 1881 [Botany School, I] 80

PHILLIPS, John Geology of Oxford and the valley of the Thames Oxford; The Clarendon Press; 1871 [Down]
fo, geo, sy
NB p. 404 on the filiation of Secondary Molluscs
$4041-9 m / w$ see previous cases $40517-20 \mathrm{~m} /$ $17 w$ Palaeotherium

PHILLIPS, John Life on the earth Cambridge \& London; Macmillan \& Co.; 1860 [CUL, I] ch, fo, geo, ig, ir, or, sh, sp, t, ti, tm
NB1 (a) argue against this; it is not always the perfect types which first appear Ruminant \& Pachyderms. Intermediate Reptiles - Intermediate fish-
In Asa Grays Review of this book (I think in Origin Portfolio) I have some remarks on one important subject, why some forms are changing I bring forward some mammals not changing
p. 163

NB2 Species Theory; 212 \& 214 good (a); $66 ; 69 ; 99 ; 126$ calculation of sediment of Ganges; 133 - Time required for formation of Coal; 141 Retrocession of Falls; 167 Age of chief axes of Britain; 207 Breaks are not real, elsewhere filled up
When I come to Geolog. Record or Laws of Succession look over this Book

69 21-27m 99 23-27m 126 9-15m/6-14w Blank interval omitted $12717-18 \mathrm{~m} / \rightarrow 12916-$ $20 m 1308-11 m 13324-26 m / 26 u$ "127.5" 134 3-6m, 9-12m 141 23-25m 163 wb $23316714-$ $19 m 2062-27 w$ Silurian strata not like Tertiary - one steep inletO at MalvernO 207 $1-17 \mathrm{~m} / \mathrm{wt} / 1-18 \mathrm{w}$ but what percentage of identical fossils in these stages - what term for each 3 or 4 percent $1-13$ w How can this be said, when we have such cases as Forbes 3 sets of shells $17-24 w$ it is hard to judge of breaks. 210 9-21m $2127-22 m 214$ 4-12m, 17-26m

PHILLIPS, John A treatise on geology (Lardner's Cabinet Cyclopaedia), 2 vols.; London; Longman, Orme, Brown, Green \& Longman; 1839 [CUL, S in vol. 1]
che, fo, gd, geo, mi, sy, t, ve
vol. 1 NF Buy Brewster on Microscope
267 37-38m $26820 u$ "red \mid masses" $119-21 w c a$ 272 19-22m 277 36-40m
vol. 2 NB1 Lyell; p. 13 wretched classification; Mention this, whenever I come to S. America; Copied
NB2 18 〈he means 13) List of Mam. of Europe must be referred to for notes

- 46; 51; 57;

The whole of Plutonic including trap veins perhaps do not differ greatly from the whole of the Volcanic.- But in the latter there has been a greater separation of ingredients, from position, causing cooling \& crystallisation
lead \& silica do not separate, whilst both fluid - How is brass, \& glass with red lead in it? Attraction 0 in these cases.-
63; 65; 73; 80; 83; 100 St Jago; 115; 125; 135; 160; Copied
1 zb 13 21-43m (Lyell, Cuvier, Owen, Agassiz)/ $26-36 w$ not applic. to S. American fossils 24 $25-27 \mathrm{~m} / 26$ u "Irish Elk" 27 15u "Irish|Ec" 28 27?/u "fallow" $/ 26-29 \mathrm{w}$ see Bell's quadrupeds $46 \quad 27-33 m / 30-31 w$ see p. 5050 介 $10-1 m 51$ $24-39 m \quad 52 \quad 1-28 m \quad 57 \quad 29-35 m$, $w b$ This classification infers that there is as great a difference in the Plutonic as the Volcanic which I reject 65 9-15m, 2nd fig.m 66 11-12m, wb Felspar is in excess surely see analysis of greenstone 68 1-27m (Phillips) $72 w b$ There are dikes of granite $73 w t$ Tortuousness still more distinguishing character hence not streched mechanically shrinking $1-37 w$ The Plutonic rocks being so much most internally heated would shrink more than volcanic. Do most substances shrink in solidifying, yes, except water. iron shrinks?? wb Trap veins most analogous in Salisbury craigs to Plutonic: $80 \quad 37 u$ "porphyritic", $39 u$ "never \mid case", wb Andes 81 $17-22 m / w$ argue granite near surface of all ages in all parts of world hence thinness of crust $835-39 \mathrm{~m} / \mathrm{wb}$ thin crust theory $843-20 \mathrm{~m}$ 100 4-6m (Daubeny, Von Buch) $11530-37 m$, $38-39 m, w b$ augitic porphyry: granite:: basalt: trachyte $1161-8 m, 20-24 m / w$ thin-crust theory $125 \quad 1-28 m, z b 1264-39 m 1271-38 m$ (Necker) 128 1-26m (Dufrenoy) 129 15-18m/w No 135 3-18m (De la Beche) 160 12-19m (Fox) 162 14-23m (Patterson) 209 3-32m (CD)

PHILLIPS, John Vesuvius Oxford; The Clarendon Press; 1869 [Down]

PHILLIPS, William An elementary introduction to the knowledge of mineralogy 3rd edn; London; W. Phillips; 1823 [Down, preB]
che, mi

PHILLIPS, W., MINERALOGY
SA $\langle p p$. 224-25〉 Jamieson lecture 2.2.1846 about iron when cmpds. scratched SA $\langle p p .62-63\rangle$ ditto, about Hornblende
SA $\langle p p .350-51\rangle$ ditto, about Tin when scratched
xxvii $26-27 m$ cvii $4 w$ potash○ 58 wtec, 17$19 z w b 114 w t / w b$ (calculations for making various compounds), $10 \mathrm{~m} / 13-20 \mathrm{w}$ Jamieson 136 14-16m 146 wbec 147 wtcc 161 14-15m, $31-32 m, 34-35 m 3681-4 m$

PHILLIPS, William An elementary introduction to mineralogy 4 th edn, ed. R. Allen; London; Longman, Rees, Orme, Brown, Green \& Longman; 1837 [CUL]
55 fig.wed $21810 \mathrm{~m}, 36-37 \mathrm{~m}$
PICKERING, Charles The races of man new edn, to which is prefixed An analytical synopsis of the natural history of man by J.C. Hall; London; H.G. Bohn; 1850 [CUL] fg, gd, is, ti, wd

SB1 I have not read this book sufficiently * Read again
$46 ; 74 ; 63 ; 315 ; 317 ; 318 ; 323 ; 326 ; 333$
Table; 339 ; $340 ; 346 ; 366 ; 369 ; 372 ; 374$; 377
Consult Index for History of ancient animals

- Mr Birch told me that History of Fowl is
given in some work by Pickering
SB2 $\square \mathfrak{R}$
Selected References Oct 56
317 Dog, thinks introduced into America.338 Feral Animals of Pacific
315 She means 335) Rhamses Sethos,
Bullocks in Aegypt during his age
361 Domestic Pigeon in Sama Vida
374 Ancient History of Fowl
361 \& in Institutes of Menu
58 on island only 2 plants \& drift wood
55 transported seeds
59 lizards
$4625-33 m 553-10 m 5813-27 m, 31-34 m 59$ $30-33 m 61$ 31-33m 63 6-8m/7-8u↔ 75 20$29 m 274 \quad 1-7 m 314$ 介 $4-1 z / z b 315 \quad 6-8 m$, 17$20 \mathrm{~m} / 25 \mathrm{u}$ "Greyhound|Turnspit" 317 3-6m 318 $29-32 m 32325-31 m 3264-8 m 339$ 9-11m/11u "has \mid wild", $\quad 16-17 \mathrm{~m} / 16-17 u \leftrightarrow, \quad 22-25 \mathrm{~m} / 23 u$ "Hawaii", 23u "accordingISamoa", 26-27m, $36-39 m / 38 u$ "greatly|Honolulu" $34027 m 345$ $27-29 m 346$ 9-11m 355 33-34m 359 36-39m/ $38 u$ "Rhamses Sethos", $45 m$ (Rosellini), wb age 360 29-30m, $43 m 36113 m, 14-16 m, 34-37 m$, $36-46 m / 37-46 m \quad 362 \quad 4-5 m \quad 363$ 13-15m 368 $38 u$ "sixth \mid Saccara" $3694-21 m / 4-5 m, 10-15 m$, 19-21m 370 2- $4 m 372$ 19-21m/19u "BC2200",
$23 u$ "Beni-Hassan", 29-33m, 33-37m, 39-41m 373 45m 374 18-27m, 26-28m, 29-32m/30u "Medinet Abou" 377 36-38m 415b 48w

PICTET, François Jules Traité élémentaire de paléontologie vols. 1 and 3; Genève; Cherbuliez; 1844-45 [CUL]
cc, ch, ds, em, ex, fo, gd, geo, hl, ig, im, ir, is, mg , no, or, sp, t, ta, ti, tm, v , wd
vol. 1 SB1 $\square \beta$
$67 x-x 91$ Law more ancient the animal the more different from living (must mean in mass p.69)
89 argues no important differences in domestic animals
$91 x$ argues against change of species, from apparition of new types. Good like new organs
91 admits that successive stages of same formation have closely allied forms
108 curious to see how lately my conclusion wrong on coming in of Mammalia
126 what a number of monkeys over world must have existed since Eocene period \& tertiary beds of Hymalaya \& Brazil continuous in Europe - How rash to judge of what world holds from Europe: no insectivora or hollow-horned Ruminants in S. America - Madagascar no Carnivora Australia Carnivora. Europe probably once an isid.
144 Cuvier doubts on species of Ursus
154 on intermediate forms
165 Dog, origin of, important
Bearing in mind Glacial periods rash to say conditions similar in stages of one formation; or if so look to space as guide.-
I will cease extracting better get new Edit
SB2 read as far as p37. Pictet Vol I
66; 80; 83; 91; 108 creation; 126; 129; 134 to End of Vol.; 362

66 16-20m 68 5-11m/5-7w Fish!! $696 u$ "terrains anciens", $15-16 \mathrm{~m}, 19 u$ "térébratules", 24-25m 80 16-17u "gastéropodes", 24-30m/25w ancient $831-11 m 895-16 m 913-5 m, 23-30 m$ $10820-25 \mathrm{~m} / \mathrm{w}$ immigration of ruminants?? 126 18-30w/wb What an immense number of monkeys must have existed - this highest form being Eocene convinces me of prior existence of Placental Mammifers. How many marsupials since Jurassic ones. we may always put on one side cases ie those of Brazil \& N.S. Wales 127 24a "Simiae"/w old world 129 19-25w In Europe from Eocene to Miocene \& only 2 fragments 134 24-26m $1381-5 m / w t / 1-6 w$ Australia now no great Carnivora - $1411-3 m / w$ none fossil or recent
in S. America 145 18-21m/w Madagascar no Carnivora? 149 24-27m 154 10u "bassin 1 Paris" $/ w$ Eocene 11-19m, 14-15m, 18-21m 157 24-25m/24u "desIsa" 158 3-4m/4u "miocène" $16022-24 m, 24-26 u$ "dèslqu'ils", $28 m 1655-7 m, 17-19 m 16610 u$ "osseuses 1 Sardaigne"/10-11m 168 26-28m 172 26-27m $17423-25 \mathrm{~m} / 6-25 \mathrm{w}$ it is evident that Carnivora more connected formerly than now 178 10-12m $18215-19 m / 14-21 w$ yet widest ranges, ought to have lived long $18726-30 \mathrm{~m}$ (Lund) 188 19-20m 190 14-17m 195 24-26m 212 23-25m 231 20-21m 235 10-14m 236 11$16 \mathrm{~m} 2375-8 \mathrm{~m}, 11-13 \mathrm{~m}, 15-16 \mathrm{~m} / 16 \mathrm{w}$ recent 238 10-11w Miocene Mastodon 255 26-29m, wb I do think it odd that not more intermediate forms - many as they are. Preservation only at periods 256 24-26m 258 $20-22 m 259$ 8-9m $26030-31 m 2646-8 m, 12-$ $14 m 267$ 9-12m, 14-16m 269 1-2m 274 2830 m 275 15-16m 276 13-15m 280 2-4m 288 6-12m $289 \quad 9-12 m / 9-25 w \quad$ Ruminants \& pachyderms coincide in India- From Edentata of La Plata how rash to argue Rumin not created - or Australia 297 13-14m 308 9-11m/w S. America $w b$ We see now that several tribes more restricted than at latest Tertiary period, so formerly they might have been still more so - If we knew that the Anoplotherium was created at Eocene then we might argue that Ruminants were created lately $320 \quad 16-19 m \quad 346 \quad 16-21 m$ (Cuvier)/19u "onze espèces"/16-21w cf. Water \& Land Birds! 13-25w/wb How strange not more common in Secondary period Lobsters Fish in Old Red also - Didelphys again What a gap from Lower Jura to Tertiary $3478 u$ "l'argilelLondres", $16 u$ "l'argile 1 Londres" 349 22-24m (Schmerling) 350 20-22m $3517 u$ "àldoigts" $5-8 m$ (Lund) 362 18-21m
vol. 3 NB1 I must allude to Pictet in Preface as having argued against perfectibility \& variability with great skill.-
NB2 45 Ampullaria Branchiae \& pulmonate cavity
SB1 In the Gasteropods \& in a lesser degree in the Acaephales, it is really surprising how few exceptions there are to the succession of the genera - when a genus appears in Silurian it almost always (all exceptions marked) appears in nearly all the great formations. When we consider the different mineralogical nature of some of the formations; \& difference of depths (such as chalk Sea probably deep) it is wonderful when an existing genus appears in Jurassic
almost * always * far most generally appears in Chalk \& Tertiary [Fish are genera are too short-lived for this to appear: but yet I think it holds pretty often; but then the formations for fish are so rare] It must be remembered how easily errors occur.
SB2 See to this \& to Chelonia \& Crocodiles, \& in few existing genera of Mammifers which are formed in Eocene. It wd be very important to show that this is law; certainly in Mollusca it is impressed on one; \& so in few Cephalopods?- It would be like showing connection in Geographical Range. so in space \& time.- [I did not think of this, till beginning Gasteropods: easy to see to it in other orders] In Fish the law had better be tested by families. It will signally fail if M. Bolca in Cretaceous
7 15-19m 10 13-15m/?, 28-30m 11 19-20m 12 $23-26 \mathrm{~m} 213-4 \mathrm{~m} 2718-21 \mathrm{~m} / \mathrm{w}$ certainly 26 m , 27-30m 36 1-5m (d'Orbigny) 39 6-9m, 16-18m $4313-15 \mathrm{~m} / \mathrm{w}$ Have they Branchiae 45 11$13 \mathrm{~m} / 11-17 \mathrm{w} \mathrm{V}$. Cuvier would the abortion of Branchiae give structure of Pulmones? 46 15-18m 47 17-21m 53 3-4m/w Turritelles 90 $12 w$ Triassic $15-17 m$ 95 1-2m 128 $15-18 m$ 133 12-15m 208 28-30m 223 18-24m 224 18$22 m 225$ 3-9m 241 1- $2 m 252$ 10-17m 256 9$12 m 270$ 11-12m $27312 m$ * 305 28-30m/25$39 w$ Thus the extinct genera occur in considerable formations $w b$ What a number of genera are Silurian; it is most clear that according to me Silurian must have been preceded pretty much by longer time than has since elapsed. Cephalopoda lead to same result. $31323-25 m, 26 \mathrm{~m} /$? $32215-17 \mathrm{~m}$ 325 16-18m 327 27-30m/29u "tandis \mid Europe"/ w perhaps not $33319 m, 23-24 m 36222-27 m$ $36513-29 m / 14-15 w$ series is extinct $w b$ it may be said, when a genus is extinct \& occurs in several formations, those with rarest exceptions are consecutive formations $\rightarrow 366 \mathrm{wb} / 23-28 w$ This class of facts makes one think the record for Mollusca pretty perfect, but it does not affect frequency \& size of gaps in record. 397 1-5m $40825-28 m$ $409-15 \mathrm{~m} / \mathrm{w}$ so found in consecutive formations

PICTET, François Jules Traité de paléontologie 2nd edn, 4 vols. and atlas; Paris; J.B. Baillière; 1853-57 [CUL]
af, ch, ds, em, ex, fo, gd, geo, gr, hl, ig, ir, no, oo, or, se, sp, sy, t, ta, ti, tm, v, wd
vol. 1 SB $\square \beta$
42 to 55 D'Archiac Law to 75 to 133 157; 166; 169 to end

PICTET
573 important on classification
202 on fossil Dogs Q
363 on Bos
46 16-19!!/17-19u↔, 27-30m/28u "verra que"/ 29-30u "les 1 tranchées" 47 9-16m, 20-22m 48 $18-20 \mathrm{~m} 49$ 13-23m, $30-33 \mathrm{~m} 5312-14 \mathrm{~m}$, 20 u "delpour" $5411-16 m 558-11 \mathrm{~m} / \mathrm{Q} 5620-25 \mathrm{~m}$ 57 26-28m 58 15-18m 59 7-11m, $28 u$ "terrains anciens", $29-30 \mathrm{~m}, 31-33 \mathrm{~m} / 33 \mathrm{u}$ "térébratules" $605-6 \mathrm{~m}, 8-12 \mathrm{~m} / 8-18 \mathrm{w}$ not evidence enough - How few new orders have appeared 61 $14-25 m / 16-18 w$ decreasing Forms $622 u$ "dévonien"/w Lizard $7 u$ "époque oolithique"|!, $9 u$ "monodelphes"|! 65 29-31m $676-7 m 68$ 13$15 m 691-7 m, 20-22 m 7024-26 m 718-14 m /$ $8 u$ "genres"/9u "celle|familles" $7314-15 \mathrm{~m} 74$ 9-11m 75 29-30m 77 24-28m/25w Extinction $30-33 m, w b$ it is not surprising that Geologists shd talk so, but it is astonishing that Naturalists shd do so - 78 1-6m 79 2728 m (Elie de Beaumont), 29-31m 82 20-23m, 24-28m 85 1-4m 87 29-33m, wb like Vestiges 89 1-3m, 25-29m 100 9-19m/13-14? 101 20$22 \mathrm{~m} /$? 111 7-14m 133 21-27w 5 or 6 Faunas in France beneath recent 157 27$33 m 1611-2 m 16314-17 m 1665-7 w$ yet how specialised a genus $9-10 \mathrm{~m}, 11-12 \mathrm{~m} / \mathrm{ua} / \mathrm{w}$ same genus $1698-10 m, w b 1854$ Spalacotherium tricuspidus present Mammals in Purbeck 17920 m , wb Machairodon f. in Nebraska Eocene 186 12-14m 188 411 m (Serres), $31-34 m \quad 192 \quad 16-17 \mathrm{~m} / 17 u$ "intermédiaire", 21-24m $1936 u$ "pendant 1 existence" $1946-8 m$, $9 u$ "miocène", 28-33m $20214 u$ "tertiaires éocènes", 15-17m 203 16$21 m 2045-7 m, 13-19 m$ (de Blainville), 26-29m 205 6-8m/7u "crânes 1 sont" $20716-17 \mathrm{~m}$, 18$19 m \quad 209 \quad 13-15 m \quad 211 \quad 20 u \quad$ "miocène d'Auvergne" 214 17-19m/18u "transitions intéressantes" 216 4-5m 223 20-28m 226 2930 m 230 6-8w Now in N. America \& I believe S. America 234 17-18u $\leftrightarrow 257$ 23-26m 261 22-25m/24u "comblé l'espace" 262 4-7m 263 9$12 m \quad 273 \quad 8-11 m \quad 276 \quad 18-21 m / 18 u$ "tous 1 habitent" $/ 19 \mathrm{w}$ no $2926-7 \mathrm{~m}, 11-17 \mathrm{~m}, 20 \mathrm{~m}, 21-$ $23 m, 32-33 m 2933-5 m, 10-11 m / 6-12 w$ Look at globe \& see where a spot explored 25$26 w 2$ series of Pachyderms $28-29 u \leftrightarrow$, 31$33 m 313$ 29-30m 318 29-34m 335 15-16m/12$34 w$ Ruminants may have existed in other continents $w b$ In all such cases, it is not that Ruminants \& Pachyderms then existed. How often people have wondered why no Ruminants in Paris Basin! 343 21-23m 344 $5-8 m$, 11u "moyenne" 352 10-12m/11u "tertiaires | supérieur" 361 19-21m, 26-27m 363 22-23m 364 29-32m $3655 u$ "commelboeufs",

12-13m (von Meyer), 14-15Q 16-17m (Owen), $18 u$ "brachyceros" 366 28-29m/27-35w I shd think Probably new order; but naturalists object properly to new orders. $36713-15 m$, 28-31m $3757 \mathrm{~m} / \mathrm{u}$ "ordre nouveau" 38326 w Arctic seas $w b$ \& Sirenidae Tropics 38414 $15 w$ What range $38625-28 m 3904-10 m$ (Buckland) $392 \quad 15-18 m \quad 393 \quad$ wb 1854 Stereognathus ooliticus a larger quadruped Charlesworth Stonefield 2ce the size of many of his \& $39527-28 \mathrm{~m} / \mathrm{u}$ "espèces de"/w Didelphus in lower Miocene 404 18-24m/20$22 w$ Iguanodon Owen 407 26-28m 408 1012??, $13 w{ }_{c}$ see p. $52741022-23 m / 22 u$ "la| de" 411 18-19m/18u "Strix"/19u "gypses। Montmartre" $\mid 20 \mathrm{u}$ "genre I caverne" $41222-23 \mathrm{~m} /$ $22 u$ a $4142 u \wedge, 3 u$ "cavernes 1 Brésil" $/ m, 6 u \wedge$, $8 u \star$, 15-17m/17w Am $4157-8 \mathrm{~m} / 7 u$ "gypses Paris" 416 1-3m, 6-8m (Lund), $19 u$ "sousgenre Rhea" $/ 18-20 \mathrm{~m} / \mathrm{w}$ Good Birds follow law 417 11-12m (Owen) $4196 \mathrm{~m} / \mathrm{u} \uparrow 42020-23 \mathrm{~m}$ (Mantell) 421 17-18m/18u 425 1-3m 429 27$33 m 430$ 11-15m 431 10-12m, 17-20m, 29$35 \mathrm{~m} 4325-8 \mathrm{~m}, 10-14 \mathrm{~m}, 18-21 \mathrm{~m} 43911-13 \mathrm{~m} /$ $w 4$ families \& Chelonians $440 \quad 28-32 \mathrm{~m} 455$ 14-16m 459 13-17m/13-28w Emys \& Trionyx being now present alive in F.W. is another instance of F.W. preserving alive ancient forms. 474 wb 1654 Nothelis destructor a minute Megalosaurus - Owen - 475 28-30m, 33-35m 493 21-27m/22w Transition $500 w t / /$ 1-6w Even to a certain extent our generally FW crocodiles are only remnants of the large families numerous Secondary \& ancient Tertiary Marine genera So many were formerly F.W. forms $5017-8 m, 9 u$ "rappelle Icrocodiliens", 12-14m 513 21-22m 527 10-12m (Owen) $52913 u \leftrightarrow, 22 u$ "sauriens 1 de" 530 12-16m 532 19-22m 543 7-10m, 18$21 m$ 544 3-5m, 6-8m $54527-29 m 547$ 9-11m 551 4-5m 554 15-17m, 20-23m (P. Duff and W. Mantell) 555 23-26m, wb Excellent case of Analogy (?) 556 6-10m 560 3-6m, 8-9m $56813-20 \mathrm{~m} 57234-37 \mathrm{~m} 573 \mathrm{wt}$ Does it come to be whatever is fixed? 1-4m,5-6m
vol. 2 SB1 22 to 40; 77; 98; 101; 102; 127; 132; 196; 226; 309; 310; 318; 349; 361; 363; 368; 371; 386; 396; 399; 405; 406; 409; 411; 413; 476; 481; 482 to 484; 490; 502; 580 ; 582; 585; 601; 619; 649; 659 groups of ammonites more or less confined to different stages; 485 Balancement; 476 blending; 480 soldering; Vol 2
22 13-16m, 19-22m 23 1-2m 24 5-8m (J. Müller)/5-6u "esturgeon 1 polyptère", 14-16m 25 7-9m 26 19-23m, 23-28m 27 11-14m, 22-25w Eocene mammals very-different 24-26m, 34-
$35 m / 34-35 u$ "àlépoque" 28 11-13m, 30-33m $30 \quad 8-11 m \quad 31 \quad 3-6 m \quad 32 \quad 22-26 m / 27-33 m / 17-$ $33 w / w b$ sea shells \& echinoderms convince one sea was salt if there was rain there wd be lakes. Might as well say no caves. $351 u$ "Glavis"/w Tertiary $3624-27 m / 17-29 w$ So he thinks Teleosteon a recent fish the most perfect 37 16-20m 40 14-16m 77 14-19m 98 $30-34 m \quad 101$ wt Constantly removed from sea, is why not more ancient. 7-13m, 15$17 m, 33-34 m 1028-9 u$ "d'eau douce", 9-11m $12716-18 m, 28-29 m 12813-21 m / w$ If we look to sea alone more striking still $1291-4 m 132$ 16-21m 133 1-5m 196 31-34m 226 21-24m 309 16-22m 310 12-19m, 22-24m 318 21-23m 329 20-22m 349 1-2m 361 1-9m 363 21-24m 368 3-8m $37124-25 m 38023-27 m 3861-4 m$ 396 13-15m 399 25-26m 405 18-20m 406 23$26 m 40913-14 m 41123-26 m / 23-32 w$ \& very different in Fish \& in Mollusca Cephalopods $27-30 m 4137-8 m, 22-28 m, 28-29 m, 31 m 414$ $28-32 m \quad 476 \quad 23-29 m \quad 480 \quad 12-13 u \quad$ "mais। ensemble" 481 21-28m 482 15-22m/6-22w Gestation or incubation necessary for discovery of Metamorphosis or free \& different life $4836-11 m, 12-14 m, 27-28 m 484$ 1-5m 485 1-2m/ 1 u "àl thorax", 3-7m 490 16$25 m$ (Barrande) 502 22-25m 570 wb $4741 w$ is a boring sponge $8 w$ is a boring sponge 580 9-11m, 31-33m 581 19-25m 582 1-5m, 26-30m, 31-33m 584 29-33m 585 2-8m, $9 u$ "des|diverses", $11 u$ "pendant 1 primaire", 1620m, $33 u$ "deux |branchies" 593 1-2m 594 14m $6013 a$ "spirulides" $/ w t$ all Tertiary $4 a$ "céphalopodes"/wt Lias $2-6 \mathrm{~m}, ~ 7 \mathrm{~m}, ~ 12-14 \mathrm{~m} /$ $13 u$ "famille|tenthides", $14 u$ "bélemnites", $16 u$ "aptiens" 619 6-8m, 10-14m, 16-19m, 21-24m 649 24-31m 6595-12m
vol. 3 SB $\square \beta$
$7 \& 11$ \& 12 \& 14 \& 36 \& 38 \& 128 How excessively slow Gasteropods species change - how few groups appear or disappear since Eocene.-
250; 333; 416
463 It is evident thus very few exceptions at whatever stage species a genus or Family commences it is continued till it becomes extinct. This being capable of in fact strongest fact I turn against Imperfection of Record. Perhaps only shows no enormously long blank intervals
7 26-33m 11 10-13m, 17-21m 12 15-20m 13 $13-16 m$, $21-25 m \quad 14 \quad 5-11 m \quad 36 \quad 25-29 m$ (d'Orbigny) $38 \quad 6-7 m 128 \quad 26-31 m 2505-11 m$ $33312 m, 17-20 m, 32 m 3343-4 u$ "orthoconques sinupalléales", $26-33 m 3351-5 m, 14 u \leftrightarrow 416$ 2-5m, 7-9m 463 3-9m
vol. 4 SB $\square \beta$
2; 7; 8; 42; 79; 90; 119; 231; 261; 263; 284; 293; 360; 481; 487; 532; 562 to 569; 577; $578 ; 580 ; 584$ to 617 to end of Vol.
All evidence in this Book relates to Genera It may be that species change quicker without than genera; about higher \& lower forms changing quicker
SB2 (over) On my view of formation of long intervals (because during subsidence \& when mud) \& though each very long in years yet infinitely short compared to all time; the chief difficulty is contemporaneousness of formations over Europe \& in America - it shows some grand movement of earths crust yet very existence of continents implies very wide elevation-

2 6-9m 7 16-18m, 20-22m, 27-29m/28u "presquelmoitié" $81-3 m / m * / / 3 u$ "vingt-huit", $7 u$ "dix", $10-12 m / 9-17 w$ le genera which change quickly necessarily have short duration wb When many species \& genera exist they change quickly because they are too common \& varying forms not in class but in whole Kingdom, \& are quickly replaced 9 1-3m, 11-12u "quatorze linférieur" 42 11-15m $7928-31 m 903-5 m, 4-8 m, 19-20 m 11923-$ 26 m 231 wb so many cases of this (leaving out Silurian) that it must be a rule, though exceptions as in Fish Ctenoids coming in 261 wt show how small proportion of lines from Silurian to present day compared to what has existed $3-9 \mathrm{~m} / 5 \mathrm{w}$ (a) $26317-19 \mathrm{~m}$ 284 12-16m $285 \quad 17-20 m, 30-31 m / 31 u$ "trois quarts" $2861-5 m, 5-21 w$ There seems no relation to speciality \& absence of genera here 293 27-28m 360 15-21m, 24-26m, 27m $3611-4 m / 1 u \oplus, 6-8 m 4814 w 796 w 519-13 m$ $4877-11 m 53216-21 m 5623-7 \mathrm{~m} / 3 u^{\prime \prime} \mathrm{Si}^{\prime \prime}, 15-$ $16 \mathrm{~m} / 15 u \leftrightarrow, 23-25$! $5632-4 m, 9-13 m, 16-18 \mathrm{~m}$ 564 27-30m 565 18-23m 566 17-22m 569 1921m, 27-30m 577 3-6m (Agassiz) 578 fig.w Inequality of relations of successive Formations $58017-26 m, 32-34 m$, wb Marine Triassic not well known $5811-3 m / w$ less marked $58324 w$ St Cassian? 584 18-21m $58615 u$ "six genres" $114-16 w$ In total 588 27$28 m 589$ 19-20w change rapidly $29 u$ "dont 1 spéciaux" $6174-5 m, 8 m, 14 w$ St Cassian 16$20 m 618 \quad 12-16 m \quad 619 \quad 20-25 m / w \quad$ \& very closely allied $31-33 m \quad 620 \quad 1-3 m, 23-31 m$ (d'Orbigny) $622 \quad 34-35 m \quad 624 \quad 25-27!/ 27 m / u$ "Unlde", 29-30m $6274-5 m / 4 u$ "deux 1 genres" $6304 m, 8-9 m 63412-14 w$ no Genera see Table 636a $27 \mathrm{~m}, 37 \mathrm{~m} 636 \mathrm{~b} 7 \mathrm{~m}, 8 \mathrm{~m}, 12 \mathrm{~m}, 17 \mathrm{~m}$, $25 m, 26 m, 28 m, 42 m 64437-38 m, w b$ So he brings down to level of Teleostees \& before

PICTET

that Fish not very rich $6459 u$ "en Amérique"/ $1-31 w$ shows how many sub-divisions can be locally traced, not so everywhere $64624 u$ "sont labondants", 31-32m $6493 u$ "gault |de" 650 9-11m $65112 u$ " y |connus", $15-16 m / 15 u$ "genres" $65236-37 m / 36 u$ "mont Liban" 666 2$4 m 6671-4 m / 4 u$ "ont |tranchées" $66814-16 m$, 31-38m 669 10-13m/w 7672 37-39m 678 19$24 m 684$ 2-4m 687 18-20m, 28u "Monte Bolca" 688 12-16m $6927 u$ "quelques 1 douce", 13-14m $70240-41 m 7034-5 m, 25-27 m$, wb Palaeozoic, Secondary \& Tert., only due to larger gaps

PIDERIT, T. Wissenschaftliches System der Mimik und Physiognomik Detmold; Klingenberg; 1867 [CUL]
af, beh, ds, h, pat, phy, rd, t, tm, v, y
NB 21 to 27 His view given
p. 88 do to end of Chapt
p107-9 Th. resume -
p. 91 Perhaps a rudiment ask W. Turner.

After p. 109 Not one word for me
Many good bits in this Book, but the fundamental idea seems to me groundless \& fanciful - Nov. 67
SF $\square \beta \ll 10$ sheets, not CD; mainly a translation of $p p .21-27\rangle$
4 4-13w Man understands expressions without a grammar Very interesting 24-28w No explanation $56-12 m / w$ Sir C. Bell does not explain why certain muscles act during certain emotions. $14 u$ "Oken", 15-18w explains by Homologies of muscles of Limbs \& face.- $75-6 \mathrm{~m} / \mathrm{w}$ madness? 21-23m/w order 8 wt He prior to Gratiolet $1-5 m$, 16$17 \mathrm{~m} \quad 19 \quad 7-13 \mathrm{~m} / \mathrm{w}$ Face most expressive because nerves site nearest to Brain!!! $212 w$ Translated 23 3-16w Each abstract idea appears to mind like real object $19-20 \mathrm{~m}, 20-$ $25 m 252-4 m 26$ 19-21w His theory!! 21-27m 40 14-26w Hence face muscles not very distinct so Huxley says $23-25 m$ 44 wt corrugators used in shutting eyes very closely $1-2 m, 10-11 u$ "und|Auges", 20-31w Henle considers Corrugator as part of Osb. Palp. 46 1-13w wrinkle forehead pulling on Boot.- a stammerer.- Concentrated thought, when difficulty - seeing or hearing anything with difficulty. Suffering diseased Men.- 48 4-8w Expression of eyes modifies character of frown- 50 wt widely open eyes astonishment $527-12 w$ occip-frontal raises eyebrows \& thus opens eyes widely 5624 $27 \mathrm{~m} / \mathrm{w}$ shining of eye $588-20 \mathrm{~m} / \mathrm{w}$ secretion of tears excited differently from saliva or milk 59 15-33w Rubbish - no explanation - nerve
excited because near seat of mind.- 60 12$23 w$ why do tears relieve grief why do scream relieve pain - $6124 u$ "Lebensmonate"/ $22-26 w \underline{Q} \cos ^{2}$ Cretins do not cry nor babies 63 wt Brightness of eye depends on fullness of ball $1-4 m / w$ In Cholera eye collapsed $7 m / w$ in dead do $6418-19 m / 9-23 w$ in Fever eyes sparkle owing to capsules gorged with blood, so perhaps in passion - $6520-24 w$ in grief circulation depressed \& eye dull $31 u$ "Freude|Zorn" 66 14u土/w sparkle 67 7-8w Drinking eye dull 70 13-23w Kissing initiation of sucking - movements of Babies: after nodding, but not instinct for Fuegians do not kiss.- $727-18 w$ mouth opened with bitter taste that the tongue may not be rubbed against palate $21-30 w$ good account of expression from bad taste. upper lip raised $745-28 w$ Thinks the bitter look, with raised upper lip comes in expression of horror Leonardo says upper lip raised as if for scream $794-8 w$ In great exertion one shuts mouth \& teeth firmly. 11-5m/11-22w the exertion spreads in useless way to other muscles: especially face muscles- (so in yawningO) $8026-30 \mathrm{~m} / \mathrm{w}$ nearly my view 81 $15-17 w$ firmly closed mouth expresses 18$22 m 8218-28 w$ in \& rage upper lip raised!! for bitter taste \& teeth closed for energy $w b$ X Wings of nostril raised, because respiration \& heart action increased. \& with closed teeth person must breath through nose - No $\pi 3-1 m / x / w$ All like my views 83 $29 w$ Contemplative expression 84 1-5w lifts head \& looks downwards \& sideways \& half closes eyes. 20-29w upper lip bitter expression Lower lip as if to push away something disagreeable $28 u, w b$ blows out air as if to blow away some insignificant object. $85 \quad \Uparrow 3-1 m \quad 87$ wt/1-23w When Eustachian tubes plugged by mucus in inflammation of the throat Hearing rendered difficult $14-22 \mathrm{~m}, 25-27 \mathrm{~m} / \mathrm{w}$ He who listens to unclear sound opens his mouth \rightarrow wb See my old Notes - Whales Dr. Murie. all very doubtful $884-7 w$ I must quote him 8-13w elevates eyebrows in astonishment opens mouth. 11-15m, 15-22w My theory is here given, \& is applied to mental phenomena. $22 u 89 w b$ When horses \& dogs surprised \& startled they prick their ears, Man opens mouth - \& raises eyebrows 91 23-26m/w rudimentary $w b$ See Moreau's Essay - He does not know this Essay The variability of Muscles of face stated by Moreau perhaps indicates the tendency to rudimentary condition in many \& agrees with descent 92 $11-23 w$ nostrils distended in surprise $\&$ in

Careful observation This f true curiosity.Perhaps owing to being startled. $932 u$ "Mm.|nasi", 3-5m/w orifice of nose made smaller $13-16 \mathrm{w}$ in bad smell shut nostrils with upper lip $968-13 w$ by Laughter after powerful respiration goes back by starts; conversely in crying $9 u$ "rückweises", $9 u$ "Zwerchfell", w diaphragm 15-24m/w attributes respiration affected by emotions to nerves arising near sense-organs!!! 97 1-18w In fact he explains nothing about laughing or crying. $28-32 \mathrm{~m} / 28 u$ "Zeichen IInnervation", wb spasmodic action, want of force, the nerves which wd show during exertion of respiration 98 wt see Duchennes photographs $4-17 w$ In laughter \& crying mouth opened wide speaks as if no difference in shape 1 !! $992 u$ "l,h,o", 4-6m/4u " p, q ", 22-25m/23w Smile 100 $6-12 w$ dimple caused by some muscles not extending to corner of mouth 101 wt Great laughter approaches to pain, thinks brows contracted!!! $1-4 m / w$ oh $102 \mathrm{wt} / 1-13 \mathrm{w}$ action of depressor alae nasi only difference between crying \& violent laughing. I rather trust Duchennes; but how little known about muscles The action of this muscle is to narrow nose \& says it can be easily perceived. $26-30 \mathrm{~m} / \mathrm{w}$ This muscle does not contract in Babies $10314-17 m, 22-34 w$ in Babies tears irritate eyes \& surrounding muscles contract !!! oh oh!! Sir C. Bell fig. 15 w Bad taste fig. $19 w$ Horror fig. $46 w$ excessive laughter fig. $47 w$ still more excessive laughter, so as to have bitter expression
PISTOR, E.M.W. Das Ganze der Feld- und Hoftaubenzucht Hanau; C.F. Edler; 1831 [CUL, on B, S Ap. 10/56]
beh, cc, cs, f, he, hy, v
NB p.12-22, p. 46
SB $\square \beta$
15 Hybrids of Barb \& Fan-Tail sterile Q
46 Lesser fertility of Dovecots only owing to less food
v $11 m, 13 m 7$ wt will not feed themselves 5$7 \mathrm{~m} 1212 u$ "krumme"/10w bowed 15-18w carriers $27 u$ "Augenkreis", $27 u$ "weisswarzig", $w b$ white wattle \& very big only differences $1314 u$ "zwölf"/15u "zweilbesitzen"/14-16w 12 to $3214 \quad 3-5 m / 5 w$ will cross with Turbits \& have both characters $16 u$ "bläuliche", $19 w$ Jacobins $1512 u$ "Ciprianer", $13 w$ Barb $19 u$ "Hövchen"|Pfauentauben", $24 u \leftrightarrow, 26 w$ like barbs but bigger $w b$ Eggs of Barbs \& Fantails sterile $162-4!/ 3 u$ "kurzen", $5 w$ Runts $215 m, 9 u$ "dreht|Burzler" $\infty_{0} 15 w$ C. Coronata $465-7 m, 12-17 w$ owing to food

PLANCK, Karl Christian Seele und Geist Leipzig; Fues; 1871 [Down]
xviii $6 m$ xxii $43 m$

PLANCK, Karl Christian Wahrheit und Falschheit des Darwinismus Nördlingen; Bech; 1872 [Down]
NB not read
PLANS of the various lakes and rivers between Lake Huron and the River Ottawa Toronto; John Lovell; 1857 [Down, I by M. Logan]

PLAYFAIR, John Illustrations of the Huttonian theory of the earth Edinburgh; Cadell \& Davies; 1802 [CUL, pre-B, S] geo, mi, t

NB 414 sand \& gravel moving〈CD? ${ }^{\text {P }} 501 ; 511 ; 524$ Theory \& observation viii $4-10 m \quad 54-9 m \quad 6 \quad 1-3 m, 22-25 m \quad 97 u$ "other 1 series" $1218-20 \mathrm{~m} 139$ "Primary", $9 u$ "Primitive" $1426 m^{*} 15$ 1-9m 18 1-5m $218 u$ "pressure", $17 u$ "increased pressure" $2214 m^{*}$ 25 19-27m/22? 26 6-10m $3014-20 \mathrm{~m} 311-4 m$ $321-5 m 331 u$ "pyrites", $3 u$ "the 1 fire", $4^{*} 37$ $18-21 m 3911 m / u$ "trona" $4224 u$ "moved angularly" 43 4-5u "in llayers", 6-9m 45 1-5m $46 \quad 21-24 m \quad 49 \quad 16-20 m \quad 51 \quad 5-9 m, 18-19 u$ "breccial between", 21-22u "is 1 general" 5 $14 m, 26-29 m 547-16 m 552-3 u$ "expansivel heat" 58 20-23m 67 11u "spathose", 19-20u "series I gradations" 68 11-12u "This \mid former", $29 u$ "solwhinstone" $695 u$ "carbonat lime", $8 u$ "compressing force", 24-26u "hencel surface", $27 u$ "whinstone", $28 u$ "un-erupted lava" 71 22$23 u$ "one| them" 72 11-15m 75 20-25m 78 10$13 m, 20-24 m 796-10 m 824-9 m 8316-19 m$ 84 14-19m 99 3-6m 102 18-26m 104 13-21m $1071-5 \mathrm{~m} /{ }^{\prime \prime} .$. " $1141-3 \mathrm{~m} 11921-26 \mathrm{~m} /$? 125 $\begin{array}{lllllll}19-25 m & 135 & 6-10 m & 144 & 18-22 m & 148 & 6 u\end{array}$ "Buffon", 9 u "Almistake", 14 u "omitting", 15 u "coal", $15 u$ "carbon" 151 22-24u "at | degrees" 163 15-21m 167 20-25m/24u "small lother" 170 17-21m/19-21u "it Iformation" 186 14-15u "Friction |heat" 189 10-14m 191 14-16m/? 195 $22 m 1987-13 m 20817-21 m 2105-20 m$, 2327 m 211 4-8m, 27-29m 217 11-17m 222 16$20 m 225$ 19-23m/19-20u "have I soft" $2261-3 m$ 227 11-16m 240 13-16m 242 25-27m 243 1$2 m \quad 246 \quad 23-27 m \quad 248$ 11-14m 256 2-4m 258 22-26m $26319 u$ "largelterraces", 22-23u \rightarrow 265 9-13m, 19u "granite", 20u "basalt" 267 $14 u$ "extinguished volcanoes", $17 u$ "fire mineral" 283 12-17m $28421 m, 27-28 u$ "that which" 285 1-18m/1-2u "is lother" 294 2-8m 296 12-24m 298 16-19m 304 17-19m/18u

PLAYFAIR
＂plumbago＂ 336 11u＂schistose＂， $15-20 \mathrm{~m} / 18$ ？／ $19 u$＂fluidity＂ $33823-27 \mathrm{~m} 340$ 1－4m 351 21－ $22 m 36213-23 w$ explained ice theory $3647-$ $10 \mathrm{~m} / 8 \mathrm{w}$ ice $37110-16 \mathrm{~m} 3731-4 m, 15-19 \mathrm{~m}$ 374 13－17m，24－27m 377 8－11m 378 10－14m， $23-28 \mathrm{~m} 39011-14 \mathrm{~m} 3931-3 \mathrm{~m} 39417-28 \mathrm{~m}$ ， $w b$ Geneva Stone angular 399 11－19m 401 $17 u$＂is I we＂／w retiring sea $41420-29 m 417$ 23－27m 488 14－22m／＂．．．＂ 494 17－26m（Buffon） $4971-8 m 49915-16 m, 21-28 m 5001-5 m 510$ $13-17 \mathrm{~m} 50518-24 m 5061-14 m 5115-6 m 512$ $20-25 m 5181-4 m 521$ 11－13m 523 17－21m $52424-27 m, 28-29 m 5251-7 m, 8-19 m, 21-$ $28 \mathrm{~m} 5261-6 \mathrm{~m}$
\langle other markings here and there not by $C D$ 〉
POMPPER，Hermann Die Säugethiere，Vögel und Amphibien nach ihrer geographischen Verbreitung Leipzig；F．C．Hinrich； 1841 ［CUL］
gd，is，v
NB 1 Lepus variable Iceland
p． 5 Animals of Greenland \＆not Greenland〈lists follow〉
title page $w t$ Nothing $121-23 \mathrm{~m} / 23 u$＂Island＂ $57-8 m / 7 u$＂M． 1 Grönland＂，9－11m／10u＂auch 1 Grönland＂，14－15m，16u＂Grönland＂，17－19m／ $18 u$＂C．｜zwischen＂｜ 19 u＂nicht I Grönland＂

PORCHER，F．Du Fuchsia，son histoire et sa culture Paris；Audot； 1844 ［CUL］
$\mathrm{f}, \mathrm{sp}, \mathrm{v}$
NB Oct 1857 O Nothing
3；94； 98 Read；105；35； 95722 vars 34 species
title page 10 w Porcher p． $10233 u$＂trente－ quatre＂， $5 w \star 3532 u$＂Constellation＂，33－35m／ $34 u \wedge 9320-33 m / 21 u \wedge, w b$ Corallina not in list！ $94 \quad 6-8 m 97 \quad 24-26 m 98$ 9－12m 101 37－ $38 m, w b$ How fruitful Corallina has been 102 22－24m 105 16－20m／17u＂tube｜nul＂

POSNETT，Hutcheson Macaulay The hist－ orical method in ethics，jurisprudence，and political economy London；Longmans，Green \＆Co．； 1882 ［Down，I］

POUCHET，Georges The plurality of the human race trans．of 2 nd edn by J．C．Beavan； London；Longman，Green，Longman \＆ Roberts； 1864 ［CUL］
h ，is，pat，$s p, t, t m$ ，wd
NB 50
SB $\square \beta$
50 Aegyptian types not so distinct
60 Negros Yellow Fever
－ 83 Pouchet has argued at length that domestic animals are quite different take easily plants removed to new isld
－About Will of Animals being destroyed－ does not apply to plants
114 \＆ 118 Remarks on Species Theory of no value－
114 Definition of Species
50 2－12m 60 28－44m 83 3－19m（Cuvier and I． Geoffroy St Hilaire） 114 1－6m，16－23m（Buffon） $1151-4 m 11830-33 m 11911-20 m$

POURTALÈS，Louis François de Illustrated catalogue of the Museum of comparative zoology， at Harvard College．No．IV：Deep－sea corals Cambridge（Mass．）；Museum of comparative zoology； 1871 ［Down］

POWELL，John Wesley Inroduction to the study of Indian languages 2nd edn； Washington；Government printing office； 1880 ［Down， 2 copies］

POZZI，Samuel Du crane（extract）；Paris； 1879 ［Down，I］

PREYER，Thierry William Die Blausäure 2 parts；Bonn；Max Cohen \＆Sohn； 1870 ［CUL］
che，in
part 2 NB1 I cannot find place where said that different individuals are differently susceptible to P．Acid
NB2 Not read
PREYER，Thierry William Die Blutkrystalle Jena；Manke； 1871 ［Down］\wp

PREYER，Thierry William Das myophysische Gesetz Jena；Manke； 1874 ［Down］\wp

PREYER，Thierry William Naturwissen－ schaftliche Thatsachen und Probleme Berlin； Gebrüder Paetel； 1880 ［Down］\wp

PREYER，Thierry William Die Seele des Kindes Leipzig；Th．Grieben； 1882 ［Down，S］

PRICE，John Old Price＇s remains London； Virtue Brothers \＆Co．；1863－64［CUL］\wp

PRICHARD，James Cowles Researches into the physical history of mankind 3rd edn，vols． 1 and 2；London；Sherwood，Gilbert \＆ Piper； 1836 ［CUL］
beh，cs，f，gd，h，he，hy，oo，pat，sp，sx，tm， v ，ve
vol. 1 NB1 w
NB2 * Alpine Botany of do
The entomology of Tierra del Fuego with respect to Europe - Patagonia to S. Africa must be well studied-
Vol. 47 Zoolog Soc about contagious diseases my Father about diseases common to animals.
The Highlands \& Western Isles in Letters of Walter Scott: 4 Vols
W. f D. Edwards sur les Characters des Races Humaines
Lesson Hist. Nat. des Mam. often quoted
NB3 p114 Lyell's mark
14 to 56 all worth reading again - to 164. 174
ask Henslow to put name in my catalogue.March. 1857 I have not looked through all these, but I have gone through the later Edition
206; 216; 220
225 on Blushing \& 271 - Good
242,4; 258; 264; 266; 286; 288; 305; 311; $314 ; 318 ; 333 ; 334 ; 340 ; 350$ to end of Vol done Feb 25/01 $\langle F D\rangle$
xii $36-38 w$ this not in Ed ii xiii $36-37 w$ $=\mathrm{p} 130$ Ed ii xv $29 w=192$ Ed $21427-32 m /$? $153-5 m$, 11-19m $1739 m$ (Rudolphi) 21 27$31 w$ singular/catacea/converse of antiquity $31-32 m+/ w$ Latin $242-39 m 251-8 m, 26-30 \mathrm{~m} /$ w How does my collection show this 31-32w a great difficulty $35-36 \mathrm{w}$ I suspect not so 26 $24-32 m / 28-30 m 291 u$ "analogous species"/1$4 m / w$ in a limited sense.- $7-22 m$ (Humboldt, Robert Brown)/11-12w insects forms 30 3-12m (Humboldt), $7 w \quad$ B $31 \quad 7-10 m / w$ Waterhouse similar remark $29-34 m, 35-37 w$ Tell Henslow $3522-28 \mathrm{~m} / 27 \mathrm{w}$ aquatic? $3722-$ $28 m$ (Rudolphi) 43 6-13m (Rudolphi), 15-17m, $23-28 m 4412-20 m 451-3 m / ?, 38-39 m 501-$ 7 m (Linnaeus) $511-39 \mathrm{~m} 521-38 \mathrm{~m}$ (Humboldt, A.P. De Candolle) 53 1-5m 57 23-28m/24u "the 1no", 37-38m (Latreille) 58 1-11m $6037-$ $38 \mathrm{~m} / 37 \mathrm{u}$ "Quarterly Review, vol. 47" 61 6-33m (Lyell) $6338 m$ (Lesson) $6434-36 m, 36-39 m 66$ wt consult Beales Book 1-15m 67 3m, 6-9m, $39 \mathrm{~m} / \mathrm{u}$ "Gmelin | Amoenitat." 68 17-30m 73 20$27 \mathrm{~m} / 24-27 m$ (Lesson), 35-37m 74 18-23m/19u "chironectes" \mid ?, $32-37 \mathrm{~m} / 35$ u "parameles", $35 u$ "New Guinea" 77 26-33m 80 10-14m 82 10$23 m / 14-17 w$ Flying squirrels in N. America 84 16-20m/16u "The |everywhere" $853-11 m / 4-6 w$ Relation to trees?? $8611 u$ "Moluccas"/w ! Baluchian 89 34-35m/36u "Annales 1 vii", 38$39 m$ (Cuvier) $9038-40 m 93$ 9-11m (Lesson) 95 11-13m 105 6-20m/6!!!, $7 u$ "definite", $8 u$ "separate origin"/10-11?!!!/11"..." "always" 106

4-19m (A.P. De Candolle) 107 31-40m (A.P. De Candolle) 108 36-37m (Geoffroy St Hilaire and Serres) $1121-4 m, 33-39 m / 35-36 u \leftrightarrow 115$ $18-25 m, 31-33 m 11823-29 m 11936-38 m 130$ $11-22 m, 29-36 m, w b$ | have heard of some facts different from this 13836 m (Rudolphi) 139 37-38m (A.P. De Candolle) 144 37-39m $14524-27 m / ?$? (Gaertner) 149 9-13m 153 30$36 m 155$ 12-21m 156 19-31m 157 31-36m, wb In Malcolmson's Pamphlet is there not something about goitre peculiar to races 158 1-5m 163 2-37m 166 37-38m (Jacobi) 174 4$8 m \quad 175 \quad 6-31 m / 31 u$ "everywhere", $36 m$ (Hancock), wb Anafuras have no such beliefs 176 1-39m $18028-31 m / 29 u$ "voyager Kolben", wb consult for Cattle \&c see p. 182183 5$10 m 216$ 26-31m $22030-33 m 22531-33 m / 32 u$ "parlhonte" 242 20-23m 243 17-32m, 17-19w Consult Rengger $22 w$ when? $29 u$ "permanencylbreed"/w how long? 244 1-7m/w strongly versus Walker; if considered races 32-33m, 39m 245 9-15m/13-15m, 19-21m, 2731m, 37-38m 258 31-35m 264 16-20m 266 1014 m 271 18-22m 286 10-15m, 17-24m 288 27$33 m 30438 m$ (W.F. Edwards) 305 11-15m 311 $26-30 m 314 \quad 21-32 m 318$ 12-21m/12-13? 333 6-11m, 21-29m (Vrolik) 334 18-22m (Owen) 340 18-29m 341 1-11m 350 31-39m (A.P. De Candolle) 351 38m (Pallas) 352 29u "byl organs", $27-30 \mathrm{~m}, 27 \mathrm{w}$ retriever ! $38-39 \mathrm{~m}$ (Meckel) 354 4-25m, 27-37m (Buffon) 355 134 m (Blumenbach) 356 5-10m, 10-36m (Blumenbach and Cuvier) 357 1-28m, 29-31m (Pallas) $36031-37 m 361$ wt I have note of small sheep on Red Sea $1-2 m 36730-39 m$ $36823-30 \mathrm{~m} 3709 m, 10-13 \mathrm{~m} / \mathrm{w}$ This being cross, father ought to have given $20-27 \mathrm{~m} / \mathrm{w}$ Mr. Walkers Theory!!! The father here gave only part of cuticle!!! $30-40 \mathrm{~m} 371$ 23-28m $374 \quad 6-11 \mathrm{~m} / 8-9$? $375 \quad 10-12 \mathrm{~m} / \mathrm{u}$ "separatel economy" $/ 10-13 \mathrm{~m} / \mathrm{w}$ assumed $17-20 \mathrm{~m} /$?, 31$39 \mathrm{~m} /$? facing $3764-18 \mathrm{~m}$ (Prichard)
vol. 2 NB March 1857 I have not looked through.-
2; 3; 10; 33; 95; 97; 141; 175; 181
197 All before Chapt X: very dull This whole Chapt. amusing
207; 210; 221,2,3,6; 264; 275; 278- is this true; 323,5 ; 329 ; 331 ; 336,$8 ; 340$ whole section; 344 -copied FD; 348 Done FD
SB 〈by FD, referring to $2 n d$ edn, vol. 2 \& $4 t h$ edn, vol 4〉
2 3-8m 3 34-36m (Lacépède) $1031-33 m 333 w$ Galapagos $7 u$ "abounded 1 size" $/ 5-8 \mathrm{~m} / \mathrm{w}$ New Zealand 9w Gap $9533-34 m 974-37 m 141$ 16-20m 154 9-16m 175 34-37m (Rüppell) 181 19-32m/25-26m $197 w t$ The case of African

PRICHARD, MANKIND
nation which has grammatised its language from the Arabian has been mentioned, so much so, that it might be mistaken for Semitic dialect 15-18m 207 19-22m 210 38$41 m 221$ 26-28m 222 1-38m 223 1-39m/39u "purposely framed" $2241-8 m, 13-38 \mathrm{~m} / 15-20 \mathrm{~m} /$ 14-17w What evidence? 226 2-14m 264 25$30 m 275$ 29-31m 278 14-21m, 28-30m 279 4$5 m 323$ 1-16m 325 9-22m, 25-38m 32934 $38 m 331$ 17-22m $334 w b$ - 336 17-24m 338 $7-34 m, 36-39 m 3391-4 m, 19-27 m 3401-4 m$ 344 5-13m/8-9"..." 345 17-21m 348 24-35m

PRICHARD, James Cowles Researches in the history of mankind 3rd \& 4th edns, 5 vols.; London; Houlston \& Stoneman; 1841-51 [CUL]
beh, cs, f, gd, geo, gr, h, he, hy, is, mg, mn, no, pat, sl, sp, sx, ta, ti, tm, ud, v, ve, wd
vol. 1 NB1 〈note on Mendel by FD〉
NB2 Blumenbach de Unite de Genre Humain
Blumenbach Beytrage zur Naturgesichte \& Meckel Traite general de Anatom Compr Must be read Has not Erasmus one of their works
Pallas Spicilegia Zoolog
p311,320
271 Blushing said to have been acquired by Negros (passage in text is about Amerindians)
SB1 Prichard Vol I p.23; 26; 33; 41,42; 61; 84; 87; 90; 94; 112; 115; 133; 141; 144; 153, 163; 175; 224; 228; 245; 271; 311; 316 How like my Book all this will be.
I must read some Book on geograph distrib of insects or of one great class
p.321; 322 \& p. 324 \& 331 on relation of body, pelvis \& Head
311; 334; 340; 345; 349; 351; 353; 366; 370 SB2 $\square \beta$
23 S. African plants in Europe (Glacial?)
42 quotes Lyell \& Keith on seeds in Baltic from Germany do. 61 Eding. Phil. Mag. 1832 on Distribution of Parrots
84 Bat in Sandwich Isld 87 Pteropus keraudren at Marian \& Oualan; at Tonga peculiar species
90 Australian Dog same as that of N. Ireland M. Lesson N.Q.

141 Sparrmann says hybrids of common \& Aethiopian Hogs fertile
144 It seems Buffon was strong on repugnance to 2 species to cross
155 On Heredetary Plica Polonica - on races of Man becoming predisopsed to disease in certain countries

163 do on diseases of Hot countries
224 Albinos subject sensible to bite of flies 245 Good Heredetary cases of toes \& fingers - Heredetary rudiments
311 Xasal cavities large in American skulls, Blumenbach connects with high smelling powers
321 Cox says flattened head "an essential point in Beauty" in American Indians
324 Vrolik says shape of Pelvis must have some influence on that of Pelvis **s Headeo 331333
334 Lumbar vertebrae sometimes six in Negro
341 In Tobolsk Cats generally red Q
343 Skin \& hair go together in colour Sheeps Mouths black when \& hair black
345 On complexion \& temperament.
349 Porcupine Man coming on at same time in him \& children
353 Blumenbach on some strange vars of Pigs - Marcel de S. on skeletons of dogs \& wolves Eding. Phil J July 1835 p. 244
356 Feral horses of Pallas in Siberia. Dun or brown Q \mid
$2316-18 \mathrm{~m} / \mathrm{w}$ N. Migration during cold Period 16-20m, 20-25m 26 3-10m 33 38-41m 41 27$35 m$ (A.P. De Candolle) 42 26-29m/w Fundus maris semina non destruct $4328-29 m 4439 u$ "marine birds" 58 19-22m (Latreille), $36-39 m$ $5936 m$ (Illiger) $6136-37 m \quad 84 \quad 8-10 m / 9 u$ "small crepuscular" $874 m / 4-5 u$ "has 1 Oualan" 90 31-33m (Lesson) 94 25-28m (Buffon) 112 29-39m $1153-9 w$ who can tell - it is begging question to say constant. $11-12 m, 19-23 m$ 133 9-12m, 21-23m $141 \quad 13-14 m$, $37 m$ (Sparrmann) $14435-37 m 15331-35 m 1556-$ $10 \mathrm{~m} / 10 u \leftrightarrow, 11-15 \mathrm{w}$ The point to show is that a race by living in district long may acquire hereditary tendency $14-21 \mathrm{~m} / \mathrm{w}$ proof of peculiarity acquired by certain race in certain area $24-25 m, 26 m, 33-38 m / 37-38 m, 39 m 156$ $1-6 m, 8-16 m, 23-30 m 15718-21 m, 27-29 m$, $32-33 m, 36 m 1581-4 m 1596-10 m, 36-37 m$ (Winterbottom)/36-38w would be worth reading $38-39 m 1633-9 m 1751-3 m 22435-$ $39 m 225$ 30-34m (Buffon) 228 6-18m 245 7$16 \mathrm{~m} / 11 u$ "rudiments of"/ $15 u \leftrightarrow / 11 w$ Heredity $17-21 \mathrm{~m} 27117-21 \mathrm{~m} / \mathrm{w}$ no doubt wd increase tendency $311 \quad 1-3 m, 28-35 m \quad 316 \quad 12-17 m$ (Tiedemann) $31739 m 318$ 16-22m 320 22-25m $3217-9 m, 7-8 u$ "They|point", 18-19u "Dublin|1834" 322 16-18m 324 3-10m (Vrolik) $33126-29 \mathrm{~m} / \mathrm{w}$ see references to Book p324 333 25-28m/w p281 for main character of skulls $26 u$ "oval shape" $/ w$ do.
head $28 a$＂oblong＂do．head $28 a$＂Mongolians＂ do．head 334 19－21m $34040 m$（Blumenbach） $34116 m$（Gmelin） $3435-8 m$ ，wb over $34433-$ $35 m 345$ 14－16m，17－21m 347 21－23w氏ct， $29 u$＂barklhide＂ 348 11－13m，21－26m（H． Baker） 349 7－9m，21－24m（Lawrence） 351 7－ $9 m / 7 u$＂J．F．Meckel＂ 353 13－20m，33－35m （Serres）， $36 u$＂Beyträge｜$u b i$＂， $38 m 354$ 14－16m， 18－20m 355 18－21m（Blumenbach） 356 6－7m／ $6 u$＂dunlbrown＂ 366 18－23m 367 36－37m 370 32－36m／w Piebald

NB［done FD Feb 25／01］
vol． 2 SB1 p33；p45；p181；p334
SB2 $\square \beta$
33 Dogs \＆Goats in Canaries－Cada．Mosto discovered C．de Verdes
181 To produce effect on race by crossing， the two parent races must be nearly equal in number．
334 Reference to table of complexions by Esquirol，possibly may allude to liability to disease（But it was madhouse）

33 9－13m，30－32m／31w／u＂Cadamosto＂ 35 $22 u$＂bandages lskin＂ 45 23－32m 46 6－9m 47 7－12m 181 20－31m 334 31－34m
vol． 3 NB O／
vol． $4 \mathrm{NB}\langle w<$ ，not $C D\rangle$
［FD copied］p103； 243 －X not N．Sel；407； 413；423；454xx；477；492；519x Beauty； 525； 529 －ext condus
530 common mule（c of Ass \＆Horse）shows that no great variability or appearing of new characters in Hybrids
534537 Beauty 539 Climatex 616
SB $\square \beta$
103 Date of Vedas 1343 B．C． 477 History of China 2200 B．C．
407 X on shape of Head in relation to senses
454 X On variability of chief characteristics of each Race of Man 519， 530
519 X Chinese admire Chinese beauty 534 so Siamese 535 Cochin China 537
$1036-12 m / 8 w$ concludes $24330-39 m / 34-36 m$ 407 19－21m，23－27m $4136-10 m 4231-5 m 454$ $21-23 m / 21-38 w / w b$ so darkness variable in Hindoos－Bump in Hottentot，\＆I think many other particulars which I have omitted to mark，wd require selection to separate． There was something on skull of Australians． So shape of Pelvis．－Shin Bone of Negros？ 476 18－26m，31－37m（Rémusat） 477 4－7m，10－ $12 m 492$ 22－25m 519 12－13m（Barrow）／u＂thel nose＂， $15 u$＂highlbones＂， $17-18 \mathrm{~m}, 24 u$ ＂Pallas＂，25－29m， $39 m 5202-5 m / 5 u$＂short｜
flattened＂，15－16m／15u＂hands｜feet＂ 521 34－ $35 m 525$ 10－19m 529 6－10m 530 35－38m 533 30－36m，38－39u＂features I bold＂ $5341 u$ ＂small＂， $2 u$＂nostrils＂， $4 u$＂rather thick＂，8－ $13 m / 9 u$＂breadth lof＂，13u＂large＂，27－28u ＂beauty｜them＂，29－30u↔／29－32m／w Siamese $5354 u$＂Cochin China＂，26u＂globular＂， $27 u$ ＂orbicular \mid face＂， $33-35 \mathrm{~m} / \mathrm{w}$ Cochin China 39 m 537 21－26m 539 22－28m 615 13－15m
vol． 5 NB 67 Beauty
SB1

X 67 Beauty

146 Drift wood Easter Isd
168 Spaniards introduced Stag，Mariane Isd？From Freycinet．Lib 3．p． 270
283 Differences of Oceanic People－ 292 N． America－Man in a Polymorphous condition． 419 Mandans grey－hair
463 Chest \＆Body of Indians
$\checkmark 476$ Beauty
542 Differences in American Races
X 145 Difference low level Islets \＆High Volcanic isld－
〈over〉 ${ }^{\text {© }}, \infty$
In my note on Man－Ask what makes any peculiarity not always heredetary；then why shd not this cause act \＆react．－Effect of civilisation on poor children \＆rich．－Hair \＆ colour－Polymorphous state Geographical reprentatives most difficult to decide whether to call vars．or species． Moral＊restraints－ （Spreading not like spreading of other animals？）Allude to Pritchard on colour \＆c
\rightarrow ，\oplus
Mans Sexual characters like tufted Ducks．－
FirstO spreading out evenO families wd be partO

67 16－21m／19－21m，22－25m 141 18－21m 144 32－36m 145 2－7m，21－29m 146 33－36m 168 30－35m 283 6－10m（Foster） 293 17－29m （Morton） 418 31－35m 476 35－37m（d＇Orbigny） 542 28－33m（Humboldt and d＇Orbigny） 543 17－23m（d＇Orbigny）

PRINCIPLES of organic life London；Robert Hardwicke； 1868 ［Down，S］

NB O／
\wp
PROCTOR，Richard A．Pleasant ways in science London；Chatto \＆Windus； 1879 ［Down，I］
geo， 00
NB p379 Dust important for Worms
379 wt But this cannot apply to a whole country 6－37m，wb St Jago When covered

PROCTOR，RICHARD
with vegetation＊very little dust raised 380 $1-2$ ！， $26-37 \mathrm{~m} / 30-35 \mathrm{~m} / 13-35 \mathrm{w}$ But clay O must have been taken from one part to another

PROCTOR，Robert Narrative of a journey across the Cordillera of the Andes London；A． Constable； 1825 ［Christ＇s College Library，on B，S］

NF Have read as far as the pages are cut －X Vizcacha Azara ；Biscacho－ Proctor；Cachia Caldcleugh；Cuvier Viscatcha
$15 w b$ Gau 〈for Gauchos〉 $368 w t / 1-2 w$ Gua Gua Gau quipos Gau

PSYCHOLOGICAL ENQUIRIES（published anonymously by B．C．Brodie）；London； Longman，Brown，Green \＆Longman； 1854 ［CUL］
beh，ch，gd，gr，h，or，phy，t，tm，ud，ve
NB1 Emma 104
NB2 much good on man
p166；p183，4；186；190；192；194；196；198；

203

p． 196 Man wd not spread beyond Tropics till fire invented nor very widely，perhaps，till Boats？
Perhaps first Learnt in a Volcanic region， with lava flaming things around

SB $\square \beta$

188 Q Good case of Bees building comb beneath a fallen hive temporarily
192 Moral sense due to Social Instinct p203
195 Man must have had more instincts when first Produced
199 Q An acquired habit converted into instinct show change in Brain

166 13－19m $18319-22 m 18420-23 m /$ ？ $1865-$ $9 m 187$ 18－22m $188 \quad 13-19 m / 17 \ldots " 189 \quad 24 m$ （Dujardin） 19023 m 192 16－18m，17－24m 194 21－24m 195 4－8m，15－18m 196 14－18m 197 21－22m／u＂instinct of self－preservation＂ $1985-$
7 m 199 18－21m 203 7－10m，22－24m

PUBLIC LIBRARIES in the United States of America Part 1；Washington；Government printing office； 1876 ［Down，S］
NF 419－442；476－504
\wp
PUGIN，Augustus Welby Contrasts or parallels between the noble edifices of the middle ages and corresponding buildings of the present day London；Charles Dolman； 1841 ［Down］ \wp

PULTENEY，Richard A general view of the writings of Linnaeus London；J．Mawman； 1805 ［Botany School，pre－B，ED］

PUSEY，Sidney Edward Bouverie Per－ manence and evolution London；Kegan Paul， Trench \＆Co．； 1882 ［Down，I］\wp
NB All mere rubbish
PUTSCHE，Carl Wilhelm Ernst Tauben－ katechismus Leipzig；Baumgartner； 1830 ［CUL，on B］ no，v，wd
NB Nothing March 1857
p27；p30
iv $16-19 m / 17 u \leftrightarrow$ v 6－8m／6u＂dreyssigjähriger＂ vi $9 u$＂Leipzig＂，9－10w I have $2219 u$ ＂Montauban＂，20－22w Leghorn Rump scanderosus \＆c $239 w$ Carrier 26 9m， $32 u \leftrightarrow /$ 31－32w／wb Almond Tumbler has been reduced in England 27 14－15u＂auch｜ihnen＂｜ w Turbits $28-30 \mathrm{~m} / 28 u$＂ 1573 ＂ 30 21－24w same as spots $3122 w$ with a mane $3213-$ $24 m / w$ Swallow－Pigeons thus seem to be domesticated

PUVIS，M．A．De la dégénération et de l＇extinction des variétés de végétaux Paris； Huzard； 1837 ［CUL］
ch，che，cs，dg，fg，phy，sp，t，ta，ti，v，wd
NB p1－41 \rightarrow chiefly on old vars of Fruit－trees dying；48；p．63，5；76－79； 82
SB 36 on apples half one sort，half another． Attitude to direct fecundation
37 on genera varying in having only single species Q
41 on vars．of Peaches within recent times
76 on certain fruit－trees coming true
7781 in cultivating a number of Cereals，all those near each other，were greatly modified in garden of Society－attributed to crossing but I doubt Q
〈over〉
p10 M．S．reference to Lindley on grafting
$58-10 \mathrm{~m} / \mathrm{w}$ Fruit－trees $1511-16 \mathrm{~m}, 18-21 \mathrm{~m} 22$ 27－31m 15 11－16m，18－21m 22 27－31m 25 25－ $28 m 301-8 m 311-5 m, 10-13 m 3410-15 m 36$ $1-7 m$ ，$w t / 1-4 w$ attributes all variation to crossing 11－12m，19－23m（A．P．De Candolle），24－26m，27－32m\＆37 wt Maize Rice Potato $1-4 m, 1 u$＂principalement＂， $4 u$ ＂kolreuteria＂， $3 u$＂seigle＂／w Rye 5－6m，7－8Q $11 u$＂platanes＂， $12 u$＂encore entr＇eux＂$/ 9-1.4 \mathrm{~m} / \mathrm{w}$ Ch 4 Big grain \＆small grain－13－15m，wb The Variation in Fruit－Trees shows that many generations are not necessary to cause
variation $3920-28 m 411-4 m, 11-14 m 4819 u$ "Annales"/19-21m (Sageret) 49 5-8m 63 20$23 m 654-10 m 762-4 m$, $15 w$ cultivated $15 u$ "franche", 16-18m, 19-21m, $24 u$ "prune", 31$32 m 771-2 m, 9-11 m, 21-23 m, 24-29 m 783-$ $7 \mathrm{~m} / \mathrm{w}$ chemical change $18 u$ "été" $/ 9-18 w$ Thinks it all due to crossing affecting the very grains. 79 11-14m 81 23-26m $82 w t$ spell. Dict. French $1-3 m / 1 u$ "épeautres", 8$11 w$ ask about Aegilops 12-15m 83 10-12m

QUADRI, Achille Note alla teoria Darwiniana Bologna; Giuseppe Vitali; 1869 [CUL, I] ad, ex, fg, is, no, sh, t, ts
NB1 p26 * p. 28 very good; Struggle for existence
NB2 〈not CD
SB Ch2 p37; 3 p105; 4 p137; (I have not read)
$28 w t / 1-9 w$ (a) Prophesied that Culicidae wd be rare on account of vast number of Empitae, \& these abounded because Waterbeetles sick \& very rare $9-30 \mathrm{~m} / \mathrm{w}$ (a) $32-35 \mathrm{~m} /$ $34 w$ (b) $w b$ (B) Land-shells devoured by Mice - one kind protected by Carduus - like plants on commons by Thorns - Beans on shells in islands, where no mice, lately exterminated $\rightarrow 29$ wt He classes the relations of the Economy of Nature $8-9 \mathrm{~m} / 4$ 21w The more perfect the organism the less Evolution (external) wb Mr Traherne Moggridge remarked to me that he cd find seed of Legum. climbing plants only when dropped among thorny plants, in all other places devoured

QUATREFAGES DE BRÉAU, Jean Louis Armand de Charles Darwin et ses précurseurs français Paris; Germer Baillière; 1870 [CUL, I] NB O/
8
QUATREFAGES DE BRÉAU, Jean Louis Armand de Études sur les maladies actuelles du ver à soie Paris; V. Masson; 1859 [CUL, I] ad, beh, br, em, ex, gd, he, mn, 00, pat, rd, sl, sx, ta, v

NB 12; 31; 101; 209; 214; 304; 321
SB $\square \beta \alpha_{0}$
Q
12 \& 214 do One knows that everywhere in France white races have resisted disease better than yellow.- [It may of course have been accidental coincidence]
31 Disease Hereditary The old races promptly disappeared from whole country 101 Great care is always taken in selecting cocoons for breeders.
209 a breed of which females had much finer \& not so monstrous wings $*$ as in the South-* certain black caterpillars resist disease much better
214 some breeds have lost property of attaching eggs to any support
304 Often mere rudiments of wings $\langle u\rangle$ doubtful whether due to disease 321 an account of diff vars. of Mulberry with leaves of different qualities some only fitted

QUATREFAGES, VER À SOIE
for caterpillars in latter stages; Hence selection might easily come into play - as the stiff-leaved vars could exterminate a species.- No doubt judging by our oaks only the more delicate trees wd be thus exterminated.
12 27-28m 31 18-20m 101 21-24m $2091 u$ "vers 1 Jean", $17 u$ "plusidans", $18 u$ "sont \mid étalés", 25-28m 214 14-15m, 16-17m 217 26$29 m 3041-13 m / 7-8 Q 3214-12 m / 6-9 Q / 8-9 m /$ 9 u "qu'on 1 davantage", $14 u$ "assez \mid découpées", $15 u$ "feuille \mid plus", $19 u$ "laquelle \mid ramassage", $23-26 \mathrm{~m} / 25-26 \mathrm{~m}, 29 \mathrm{~m}$
QUATREFAGES DE BRÉAU, Jean Louis Armand de Histoire naturelle des annelés 2 vols.; Paris; Roret; 1865 [Down, I] \wp
QUATREFAGES DE BRÉAU, Jean Louis Armand de Métamorphoses de l'homme et des animaux Paris; J.B. Baillière \& Fils; 1862 [CUL, I]
cc, em, fg, gd, mn, oo, phy, sx, t, tm, v
NB 32; 79; 84; 94; 99; 103; 113; 118; 122; 129
SB $\square \Re$ no
32 Embryology
79 do
84 - Destruction of caterpillars by Ichneumonida
94 - Neuter insects
994 forms of successive Respiration in Frogs
103 do.
113 Retrograde development
118 F.W. Molluscs no metamorphosis
122 Embryology
129 Period of monstrosity X
174 alternate generations
251 True generation always necessary
280 Parthenogenesis in Wasps
299 do.
293 do.
312 \& 315 \& 317 Embryology
32 8-16m $7917 u$ "quatre formes" $/ 13-25 m$ (Fabre), 28-34m (Joly) $8427-30 \mathrm{~m} 9421-24 \mathrm{~m} /$ $1-24 w$ I doubt - will not explain two castes of ants $9921-30 \mathrm{~m} / 18-30 \mathrm{w}$ four forms of respiration 100 1-9m, 19-25m 103 1-6m, 8$24 m 10422-32 m 10731-34 m 11323-27 \mathrm{~m} / 23 \mathrm{w}$ Lernaea $118 \mathrm{wt} / 1-2 w$ Why ? No food $23-27 \mathrm{~m}$ 119 13-16m 121 27-30m 122 24-29m 129 48 m (Meckel and Geoffroy), 13-23m/7-19w so with all variations $28-30 \mathrm{~m} 17412-30 \mathrm{~m} 251$ 12-19m 280 4-11m (Leuckart) 28212 w ovipary 290 9-14m 293 6-13m 312 18-22m 313 9-12m 315 4-7m 317 29m (Dufossé)

QUATREFAGES DE BRÉAU, Jean Louis Armand de Nouvelles recherches faites en 1859 sur les maladies actuelles $d u$ ver à soie Paris; Victor Masson; 1860 [CUL, I]
NB O/1860
QUATREFAGES DE BRÉAU, Jean Louis
Armand de Physiologie comparée. Les métamorphoses Paris; Estrail de la Reine des Deux Mondes; 1855 [CUL, I]
$\mathrm{ad}, \mathrm{cc}, \mathrm{ct}, \mathrm{em}, \mathrm{fg}, \mathrm{in}, \mathrm{no}, \mathrm{sx}, \mathrm{t}, \mathrm{ta}, \mathrm{v}, \mathrm{y}$

SB1 ${ }^{\circ} \beta$

In insects variation cannot come on till later in life-so no necessity for coming on early The case may be early if measured by year towards close of life.
85; 96; 102; 118; 121; 125; 126; 134; 136; 138; 140 Hermaphrodite Fish.
By the enormous increase of individuals by gemmation in animal \& vegetable kingdom number of eggs increased, \& at times of year when perhaps not good for seeds or eggs to be produced-
SB2 $\square \beta$
96 great differences in Metamorphoses of closely allied Polyps
125 Transformations, Metamorphoses, genea-genesis.- all forms of Metamorphosis 138 Summary of do

140 Serranus Hermaphrodite Fish

N.B. In an ephemeral insect how late a variation appears in life as measured by time - though the causes may act at a very early period
85 26-41m 96 7-14m (Löwen) 102 23-29m 116 9-11m 118 18-24m, 28-32m 121 1-6m, 21$25 m 1231-10 m$ (Owen) $1255-11 m 12623-$ $25 \mathrm{~m} / 20-34 \mathrm{w}$ This after all turns on metaphysical point of what is individual. $37 u$ "monogénèse", wb In young Anodon wd it be mono or digenesis - the cases blend together $12715 m, 22 m$ (Carpenter)/u "son l fond" $1283-4 m, 6-9 m / w$ just as I thought 129 $3-7 m 13416 m, 26 u$ "n'aura|germe"/w No 27$31 w$ His own case of Moths.- 136 17-21m $13735-37 m 1381 a$ "oeuf"/wt \& the young organisms adapt to external. conditions 2$8 m, 37-40 m 14040-43 m$ (Dufossé)

QUATREFAGES DE BRÉAU, Jean Louis Armand de Souvenirs d'un naturaliste 2 vols.; Paris; Charpentier; 1854 [CUL] af, ch, dg, em, gd, no, or, phy, sx, t, tm
vol. 1 SB1 vol 2 p.184; p.193; p.278; p. 338 vol I p.116; p.121; p.123; p.135
p. 254 works out well particularly of laws of
propagation in animals \& vegetables.p296; p.306; p.308; p. 321
SB2 $\square \beta$
121 On division of labour, 297
137 Great size with degradation in Nemertes vol 2193 simple eye of Annelid
338 On important change in one part not compelling changes in other parts, with good remarks against the subordination of Characters of Cuvier

116 2-6m/4-5w analogue 117 18-23m $121 w t$ How applicable to Plants - Shark \& Salmon \& Pike The mere facts of being less like Reptile makes more Fish-like $1-4 m, 7-10 \mathrm{~m} /$ $9 u$ "inférieur", 24-25m (Milne Edwards) 122 11-15m/11u "types", $17-21 \mathrm{~m} / 20 u$ "plan général", 23-25!/23-24u "le | branchie" $1235 w$ Lamprey 22-26m 135 15-18m, 26m 137 3-6m, 25-26m 139 14-20m/16w Fish? $26 m 1403-5 m$ 257 18-22w The leaf buds are \& larvae 295 24-26m 296 1-11m 297 24u "illans"|23-25m (Milne Edwards), 25-26m 306 1-7m 308 22$26 m 309$ 3-8m, 19-22m 321 10-22m/22u "réunis", $23 \mathrm{~m} / \mathrm{w}$ Land $24 w$ some Rotiferae are bisexual $26 w$ Land $27 u$ "Turbellariés" $/ w$ Land 29-32m (van Beneden), wb * There have been land-forms produced because such has been possible owing to these being M All wrong
vol. 2 NB1 40; 48; 52; 64
NB2 40; 48; 52
NB3 O
$4017 u$ "représenter" $4126 m 43$ 9-14m 52 13$17 \mathrm{~m} / 13 u$ "parenté zoologique", 16-21m, 23-24u "d'identité apparente" 53 2-4u↔ 62 10-13m 64 4-8m $1841-7 m \quad 193 \quad 1-13 m / 3 u$ "partout 1 centre" 278 6-15m/10-11w Teredo $3382-23 m$, 15-18m, 24-26m 339 1-5m (Jussieu), 9-16m, 20-21m

QUATREFAGES DE BRÉAU, Jean Louis
Armand de Unité de l'espèce humaine Paris; J. Claye; 1861 [CUL]
beh, br, ds, em, h, hy, phy, sp, v
SB1 $\square \beta$
20 Man. Language
31
39- Definition of Species
Some truth to similarity, some truth to descent alone
$52 ; 53 ; 57 ; 78 ; 119 ; 152 ; 156 ; 158 ; 161$; 169; 205 a Book on Health of World
Americans altering looks like conditions
Whatever produces 6 fingers, could if prolonged produce six.-
Nothing important
Jan 1861 Quatrefages on me

SB2 $\boldsymbol{\circ}$
20 Compares Languages of Man \& of Animals
152 Results of crossing Primrose \& Cowslip 156 on the crossing of 2 species of Camels. doubts thrown on.- \& 2 species of Guanaco. 158 on the sheep \& Goats of Chile.
161 Naudin on Law of Return of Hybrids - I doubt - It is certain that he does not believe much in insects.-

19 11-16m $20 \quad 28-35 m \quad 21 \quad 21-23 m / 22 u$ "caractères moraux", 26u "vertulvice", 37$41 m, 43 u$ "sel généralement" $3127-30 m, 31-$ 38m, 40-41m, 42u "compagnie" 32 9-14m 33 $1-6 m 3920-25 m 52$ 31-38m (De Candolle) 53 26-34m, 35-40m (Linnaeus) 54 34-39m 55 3340 m (F. Cuvier, I. Geoffroy St Hilaire) 56 3-9m 57 6-12m (Sageret) 59 21-22m 69 29-33m 78 12-15m $79 \quad 24-36 m$ (Geoffroy) $88 \quad 14-21 m$ (d'Orbigny) $93 \quad 40-41 m \quad 95 \quad 39-40 m$ (Desmoulins), 39u "seize" 119 25-35m 125 2$10 m, 28-33 m / 29-30 w$ like Wallace 128 24$43 \mathrm{~m} \quad 129 \quad 21-24 m, \quad 36-39 \mathrm{~m} \quad 152 \quad 12-20 \mathrm{~m}$ (Naudin) $1565-24 m$ (Khanikoff) 157 37-41m (H.A. Weddell) 158 18-24m 159 2-9m, 31-34m 161 wt I must study Naudin on Return; 1 cannot but suspect crosses $25-30 m 16926$ $37 m$ (Geoffroy) 205 21-27m (Winterbottom), 31-38m (Boudin), 39-41m, 介3u "Boudin" $/ w b$ I must read that book 206 11-16m

QUETELET, A. Sur l'homme et le développement de ses facultés 2 vols.; Paris; Bachelier; 1835 [Down, ED]

THE RABBIT BOOK London; Journal of horticulture; n.d. [CUL]

NB p.2; 4; 14; 16; 22; 24; 34
2 2-8m (Confucius) 4 33-35m $145 u$ "Double Full" $/ w$ Oar lop - Horn-lop $13 u$ " 5 thleye", $20-23 m / 21 u$ " It inches" $/ 22 u$ " 5 " 15 fig.m 16 2$4 m, 29-32 m 22$ 28-32m 24 27-33m 26 16u "Chinchilla", 20u "wild|sprig", 23-29m 28 1$3 m$, 12-14m 30 15-17m, 19-21m, 22-23m 31 11 u "Ram Rabbit", 17-19m/18u "from 120 " 32 $4 u$ "Rouennais", 4-16m/12-16m, 19-23m, 2628m/26u "Nicard" $348-10 \mathrm{~m}$

RADCLIFFE, Charles Bland Dynamics of nerve and muscle London; Macmillan \& Co.; 1871 [CUL, I]
beh, phy, tm
NB1 Does killing Drosera cause contraction - is elasticity contracted during life?

NB2 9 \& 27 \& 29 \& 38 Torpedo
144; 165 Blushing
178 contraction of muscle due to elasticity contraction of amoeba
237 Trembling- why excitment, because too great
9 3-5m (Du Bois-Reymond) 27 25-31m (Matteucci) 28 30-31m 29 1-11m, 23-27m 38 $2-8^{\prime \prime}$..." $/ 3-10 m 144 \quad 7-17 m \quad 1654-10 m$, $19 u$ "vaso-motor" 178 22-31m 179 20-23m 237 2030 m 238 3-15m/14-16m

RADENHAUSEN, Carl Osiris: Weltgesetze in der Erdgeschichte 3 vols.; Hamburg; Otto Meissner; 1874-76 [Down] \wp

RAM, James The philosophy of war London; C. Kegan Paul \& Co.; 1878 [Down]

RAMES, J.B. La création d'après la géologie et la philosophie naturelle part 1; Paris; F. Savy; 1869 [Down, 1]

RAMSAY, Andrew Descriptive catalogue of the rock specimens in the Museum of practical geology London; G.E. Eyre \& W. Spottiswoode; 1858 [Down, I]
11 1-3m 13 1-7m 148 13-14w Galapagos 149 $16-19 m$
\wp
RAMSAY, Andrew Crombie The physical geology and geography of Great Britain London; Edward Stanford; 1863 [Botany School, I]

RAMSAY, Andrew Crombie The physical geology and geography of Great Britain 3rd edn; London; E. Stanford; 1872 [CUL, I] geo se
NB Will Shrinkage account for surface grt elevation \& subsidence on same area p. 261 Earth brought down by Rivers 261 1-9m

RAMSAY, Andrew Crombie The physical geology and geography of Great Britain 5th edn; London; Edward Stanford; 1878 [Down, I]
ad
NB p107 On Marine animals getting accustomed to salt water $10731-34 m$

RANG, Sander Manuel de l'histoire naturelle des mollusques et de leurs coquilles Paris; Roret; 1829 [CUL, on B, S]

RANKE, Johannes Grundzüge der Physiologie des Menschen 3rd edn; Leipzig; Wilhelm Engelmann; 1875 [Down] \wp

RAY, John The correspondence of John Ray ed. Ray Lankester; London; The Ray Society; 1848 [Down]
NB (not CD)
$3564-7 m$
RAY, John The wisdom of god manifested in the works of the creation 2nd edn; London; Samuel Smith; 1692 [Botany School, S]
NB1 \& Instinct so Babies
Vine 99 manured in Vine leaves
99; 107 babies; 100
NB2 p106 112114115121 125-140
p. 134 p. 136 Part II
part 1, 106 9-18m $1071-5 m\langle F D\rangle 108 \uparrow w$ As domestication makes some animals more prolific (? fresh teats produced?) questions answered $1091-8 m / w t / \downarrow w$ are the last eggs fertile If so, possibly animals might regulate their prolificness according to case of feeding young Will not apply to caterpillars.Was not Doris superfluously prolific 112 介3$1 m 113 \Uparrow 12-1 m 114 \Uparrow 10-1 m 115 \Uparrow 10-1 m 116$ 6-20m $1214-6 m, \Uparrow 6-1 m 1251-10 m 1271-$ $7 \mathrm{~m} / \mathrm{w}$ if not they would not live. This argument shows in what strife each species lives wb Adaptations might be classed always necessary to existence, necessary under $0128 \Uparrow 10-1 m 1293-12 m 130 \Uparrow 16-1 m$, wb burrowing animals grow analogues 132
wt Co relation in structure, as breast \& womb, must be result of laws of organisation $\ddagger w$ Adaptations which may have grown with formation of the species $5-20 m 136$ "II".? $139 \Uparrow 10-3 m$
〈other markings not CD - some FD)
part 2, 68 介20-1m 69 8-14m 134 10-16m 136 4-20m

RAY, John Memorials of John Ray ed. Ray Lankester; London; The Ray Society; 1846 [Down] \wp
$1498-10 m$
READE, Thomas Mellard Chemical denudation in relation to geological time London; David Bogue; 1879 [Down, I] \wp

READE, Winwood The African sketch-book 2 vols.; London; Smith, Elder \& Co.; 1873 [CUL]
beh, gr, h, sl, ss, sx, tm
vol. 1 NB African do not 41 Kissing

- 60 Error; 306 Aymara <text has "Amyamara")
152 Direction of Hair on arm of Gorilla \& manner of killing
223 Women ugly in lowest tribe \& selected as slaves
- Ananga pretty story (Sketch of African discovery)
445 Rage Expression
109 wonder
41 21-23m $603 u 109$ 16-18m 152 25-27m/25$26 u$ "rainlhead" 223 9-13m $306 \Uparrow 1 u$ "Amyamara" 445 5-17m
vol. 2 NB African Map. ingored
Missionary 153313 savages singing when excited
253 Beauty, \& 521-522 Blackness
258 intelligence of Negros
306 \& sexual selection man
- 310 Language

313 singing
394 Blue eyes in negress, uncanny
364 M. of N.
Your map not alluded to
153 16-19m 253 1-7m, 11-14m, 18-22m 258 10-16m 306 17-23m/19-20w like male Birds $30729 \rightarrow 30811-14 m, 15-16 m, 19 u$ "women fanciers" $/ 18-24 w$ American Men have as long hair as women $310 \quad 18-22 m \quad 312 \quad 11-15 m / ?$, 26-29m 313 11-12m/11u "the", 16-20m 394 1$4 m, 10-12 m \quad 520 \quad 6-10 m, 16-19 m, 29-32 m /$ $31 u \leftrightarrow, 32-34 m 5211-2 m, 7-10 m, 22-24 m, 29-$
$31 m, 33-35 m, 38-39 m, 40 m 522$ 1-4m, 12$15 m, 20-21 m, 31-34 m, 35-36 m 5231-2 m$

READE, Winwood The martyrdom of man London; Trübner \& Co.; 1872 [CUL, I] beh, h, or, sl, t

NB 112*; 410*; all very striking \& original; 415 Poetical 434* 420; 423; 237; 441 \& 453 What authority

SB $\square \Re=$

Passion
420 \& 421 combination depends on language Selection Man
423 Sharpening sticks by rubbing probably origin of Fire.

- 437 Origin of curiosity

441 Savages - When excited singing What authority Own
453 Origin of $\&$ decency \& propriety - Mind of Man

W Reade Martyrdom of Man
112 14c "West"/w East 410 12-17m 415 3$10 m 420 \quad 13-17 m 421 \quad 17-18 m 423$ 8-9m 434 6-9m 437 15-18m/w Why not danger 441 19$30 \mathrm{~m} 4538-20 \mathrm{~m}$

RÉE, Paul Der Ursprung der moralischen Empfindungen Chemnitz; Ernst Schmeitzer; 1877 [Down, S]
NB O/
REEVE, Lovell The land and freshwater mollusks indigenous or naturalized in the British Isles London; Reeve \& Co.; 1863 [Down, I] gd
NB 255-57 Distribution of
255 2-10m, 41m 256 10-17m, 20-24m 257 18$21 m, 21-22 m, 21 u$ "havelinfluence", 32-34m 258 24-30m

REICHENAU, Wilhelm von Die Nester und Eier der Vögel Leipzig; Ernst Günther; 1880 [Down] \wp

REINKE, Johannes Untersuchungen über die Quellung einiger vegetabilischer Substanzen Bonn; Adolph Marcus; 1879 [Botany School I to Grisbach; FD]

RENDU, Victor L'Intelligence des bêtes Paris; L. Hachette \& Cie.; 1863 [Down]

NB Mere Compilation not worth reading
RENGGER, Johann Rudolph Naturgeschichte der Saeugethiere von Paraguay Basel;

RENGGER

Schweighauser; 1830 [CUL, on B]
ad, beh, br, cc, cr, cs, dg, ds, fg, gd, geo, gr, h, he, mg, no, oo, or, pat, phy, sp, sx, t, ta, ti, tm, v, wd, y
NB
I did not notice whether tame Monkeys have bred
354; 357; 360
334; 336; 340; 364; 368,9,70,90
$10 ; 21 ; 38 ; 41 ; 43 ; 45 ; 47,8 ; 50$
$71 ; 100 ; 106 ; 110 ; 115 ; 118 ; 125 ; 126 ; 149$; 152; 155; 165; 212; 214
368,9,10
173; 174; 175; 185; 189; 196; 201; 208; 224; 233; 249; 250; 259; 263; 265; 268; 276; 288; 291; 294; 295; 298; 301; 309; 327; 331; 342; 345; 351
xv $6 m, 9 m, 10 m, 11 m, 12 m, 14 m, 15 m, 16 m$, $17 \mathrm{~m}, 18 \mathrm{~m}, 19 \mathrm{~m}, 20 \mathrm{~m}, 21 \mathrm{~m}, 22 \mathrm{~m}, 23 \mathrm{~m}, 24 \mathrm{~m}$, $25 m, 26 m, 27 m, 28 m, 29 m, 30 m, 31 m, 32 m$, $33 m, 34 m, 35 m$ xvi $2 m, 3 m, 4 m, 5 m, 6 m, 7 m$, $8 m \quad 35-14 m / 7-10 w$ resemble of women to men 20-22m/w Beard 26-27u "Die|Farbe", 30-32w complexion in passion $418-20 \mathrm{~m} / \mathrm{w}$ from Life in Canoes 8 19-22m, 24-25m/w See correction pxv $97 c / w \notin, ~ \Uparrow 5 c / w \notin 1032$ $38 m$, wb Jemmy Button sharper eyesight than sailors 11 1-5m $1412 u$ "ums ! Zoll", 22$34 m / 23-28 w$ sexual differences in colour 26u飞n "graulich-gelb", 27u凶 "bräunlich-gelbe", $29 u$ "jungen Carayas", $30 u$ "tragen 1 Weibchen", 34u "rötlich-braun", $35 u$ "dritten Schwan", $37 u$ "viertenlJahre" 15 27-28u "Das Stimmapparat", 33-37m, 34u "Beimldieser", 35-36u "zweil Männchen" 20 19-22m/w Polygamy 21 5u "Des Morgens", 6u "der warmen", 11u "Männchen!gewöhnlich", 14 $15 u$ "oft|lang", $17-24 \mathrm{~m} / \mathrm{w}$ these Monkeys make noise merely for pleasure $232-4 m 26$ $14-17 m+2726 u$ "sieben" $3130-31 \mathrm{~m} / \mathrm{u} \leftrightarrow 34$ 32-37m $3512 u$ "Cebus-Azarae", 16u "der Eckzähne", 17u "etwaslSchwanz", 18u "Gesichtswinkel" 38 15-17m, 22-23m $3921 u$ "einige Töne", 33-34u "mit|lösen" $/ 33-37 \mathrm{~m} / \mathrm{w}$ Beat the oranges to losen rind $402-4 m / w$ Yet oranges not aborigin $41 \quad 19-22 m / w$ Monkeys drive flies from their young 42 35$37 m$, wb afraid of cold Mothers $4320 u$ "häufig", 36u "Käfich" 45 30w Cebus 34w/ $36 w / w b \tau 46$ wt Ennui - desire for object astonishment - passion - Fear \& pain Joyful recognition 1-8w Desire astonishment (2) Passion (3) Fright or Pain (4) (5) (6) $9 u /$ $11 w \tau 13-16 \mathrm{~m} / \mathrm{w}$ same in all - instinctive 19$27 \mathrm{~m} / \mathrm{w}$ the crys cause very strong associated emotions \& act on them $30-33 \mathrm{~m} / \mathrm{w}$ Crys \& laughs $34-35 \mathrm{~m} / \mathrm{w}$ Laughter $32-34 u \pm / w b$

Expression wbt, wb Humboldt mentions crying monkey $4728 m 4825 u$ "Zorne"/24 $27 \mathrm{~m} / \mathrm{w}$ Harm by passion ! by spirits $491-2 m$, $11-12 \mathrm{~m} / \mathrm{w}$ male monkey arrives later at puberty than female $15-18 \mathrm{~m}$ 50 $1-6 \mathrm{~m} / \mathrm{w}$ Monkeys diseases very like men $5-23 \mathrm{~m} / \mathrm{w}$ colds, coughs consumption. Cutting teeth die from fever accompanying. Cataract. Apoplexy \& inflammation of the bowels. Medicine produces same effect on them 51 $5-19 m$, 5-12w directly accustom to confinement - very affectionate \& loose even wish of freedom $26-30 \mathrm{~m} / \mathrm{w}$ like Negros best $34 u$ "Hunde", $32-36 \mathrm{~m} / \mathrm{w}$ People say horses created for men, I might say dogs created for monkeys wb (With reflection a monkey with these feelings would be sorry having attacked his friend) 52 wt How like to man's character! do for comparison $1-4 m$, $6 m, 8-20 m / 7-16 w$ (Vengeance encircledO) 21-26m, 29-31m, 34-37m 53 wt Emma often perceived he had been on dining room on the table \& found it so $-1-10 \mathrm{~m} / 2 \mathrm{w}$ Jemmy did this $3-5 w$ but SquibO was not so $12-13 u$ "Habsucht", 17-24m $545 m, 6-8 m, 14-15 m / 14 u$ "selbstständigen Charakter", $20-22 \mathrm{~m} / 20 \mathrm{u}$ "andere 1 unterwerfen", $24-29 \mathrm{~m} / 25-33 \mathrm{w}$ Rides dogs \& makes them go where he likes. $w b \times$ Man to horse, Molothrus to cows dog to monkeys (\& even some crustacea probably to Cetacea see Macleay in on accidental selections; $551-3 m / w / w t$ was easily taught $\%$ to open shells of Palm with stones $7-15 \mathrm{~m} / 8$ $11 w$ generally learns to break eggs. $15 w$ Learns by exper $15 u$ "sachte", $16 u$ "zerbrochenen Theil", $17 u$ "nur einmal", 17$18 \mathrm{~m} / 17-20 \mathrm{w}$ if once cut himself with tool very careful $35-37 \mathrm{~m} / \mathrm{w}$ wasp always listened to paper $35-37 \mathrm{~m} / \mathrm{w}$ knows expression of Man wbou these alpaca in S. America Man to Mule! better 56 wt A This shows how arts wd be acquired. $6-18 \mathrm{~m} / \mathrm{w}$ A once taught to break nuts, with stone, uses this art to break nut with stones with bad taste $19 w$ \& boxes $20-27 \mathrm{~m} / \mathrm{w}$ N.B Monkey gave me nut out of herself \& seem to expect it to be cracked 57 wt strength of judgment $2 u$ "Urtheilskraft", 6$10 \mathrm{~m} / 4-11 \mathrm{w}$ senses of Monkey * are much impressed by circumstances $8 u / w \tau, w b \times 58$ $10 w$ Nothing about breeding $61 \quad 22-27 \mathrm{~m} / \mathrm{w}$ p38. lay only on other side $6210-11 m$, 17$18 w$ Nocturnal Monkey $6415-20 m 7116-18 m$ 99 19-26m/20-23w Occasional differn in sexes $10010-18 m$, $20-28 m, 29-37 m$, $34-$ $36 \mathrm{~m} / 36 u$ "Farbenabänderungen" 106 18-23m/ $19 u$ "Gefangenschaft" $19-20 u$ "Jahre lang" $121 u$ "zeichen" 107 1-3m/1-2u "der 1 Behandlung", $12 u$ "Derlzahm" $1107-9 m 1155-9 m, 14-18 w$

This is a representative species $16-26 \mathrm{~m} / 18-$ $19 u \leftrightarrow 118 \quad 13-15 m \quad 125 \quad 5-7 m / 7 u$ "von Geschlechtstrieb", $12-13 \mathrm{~m} / 13 u$ "sehr zahm" $114 u$ "folgt|wird" 126 13-14m/14u "grösseren|zu" 129 29-32m $14126 u$ "solzahm" 148 12-14m, $31-36 m 1491-5 m, 26-32 m / w$ like Bizatcha useless instinct 151 1Q $15212-19 \mathrm{~m} / \mathrm{w}$ Proofs from name of places that Dog is aboriginal $21-22 m, 32-36 m$, wb Thinks hairless dog probably aboriginal - is called Chinos which is evidently wrong, as African species is nearest $15318-22 \mathrm{~m} / 18 \mathrm{w}$ (a) $22-28 \mathrm{~m}, 30-$ $33 \mathrm{~m} / \mathrm{w}$ not uncommonly some of the Hairless Dogs, are dumb, only howl - wb Qao The naked dogs appear to cross less with the common than the latter amongst themselves - where they do cross young take after mother - * never knew a hairy dog produce hairless or half hairles how in vixen 154 XX Although Spaniards introduced many races, now so generally mingled that it is rare to find trace; though that sometimes can be done $6-9 m / w$ concludes hairless dogs descended of aboriginal dumb dogs $11-18 \mathrm{~m}$ 155 14-18m/14-32w wild dogs like tame in colour \& form - burrow holes hunt like wolves single or in packs do wolves burrow 24-25m 161 29-36m $1657-9 m / w$ curl end of tail like cats $18-21 \mathrm{~m} / \mathrm{w}$ do not break neck 173 $25 u$ "bewegen 1 Schwanz" $/ 24-27 \mathrm{~m} / \mathrm{w}$ like cats. $174 \quad 23-26 m \quad 175 \quad 17-23 \mathrm{~m} / \mathrm{w}$ does not live probably 20 years produces 1 or 2 young $1832-6 \mathrm{~m} / \mathrm{w}$ like young deer $8-22 \mathrm{~m} / 11-17 w$ slight different shades of colour 189 25-28m/ $27 u$ "schmiegtenlan"/26w \& p. 190 30u "Spinnen"|29-32m 190 14-15m 194 10-14m $1965-8 m, w b$ the variation of wild animals probably is only at different point of wider range- very different from domesticated animals $19916-24 m / w$ Toads \& serpents kill this Cat $32-36 m 2013-6 m / w$ even in Native country $7 \mathrm{~m} / u$ "Niederkunft Iseine" $/ w$ odd possession in instinct $210 \mathrm{wt} / 1-7 \mathrm{~m} / \mathrm{w}$ Two cats in same country with very similar habits yet much rarer 212 wt/1-10w Most important instance of my theory Marriage keeping form constant 10Q 11-14m, 13-30m, 16u "300 Jahre", $22 u$ "fortwährend", $26 u$ "kürzere", $28 u$ "Schwanze", 15-19m/15-32w/wb The cats of interior of Paraguay differ in quantity of hair, \& places of body where most scanty, \& \& forms for European, but not in Aegyptian where European Cats have perpetually been introduced 213 3-4u "verschnittene Männchen"/ w castrated males larger 11-12m, $35-37 \mathrm{~m} / \mathrm{w}$ no wild cats! $w b$ wild dogs rare in Paraguay common in La Plata $2141-7 m / 1 u$ "Eseln", $10-22 w$ no old wild cats - even
when left behind, die $224 \quad 22-28 m \quad 233$ 4$8 w$ not good case p. 236 9-14m/10-12w representative Species $23-26 \mathrm{~m} / 22 w$ exceed $28-33 m / w / w b$ but wild far from Man $2361-2 m$ 249 28-29m/29u "wie I Kaninchen", 32-34m/34u "allelkamen" 250 25-31m 251 25-35m/28-29w variation $33 u$ "dritte" 252 1-4m 259 18-22m/w variation $26031 m 26111-13 m 26314-25 m /$ 23-29w shows how necessary for * pheasant to avoid this path $w b$ has confessed it varies a little from British species $26533-37 m, w b$ is it not unhealthy women which most miscarry? 268 31-32m 276 34-36m, wb no variation 277 6-10m, 27$36 m / w$ not parent of Guinea Pig - wb without indeed the changes in constitution of latter, prevents its breeding with the Aperia 288 20$25 m 29133 m 29424-31 m / w$ anchylosis kind of vis medicativa $29529 u$ "nicht | vor"/28-32w yet very similar habits $2986-8 m 2995-6 \mathrm{~m} / 5 u$ "gemein" 301 26-30m 304 3-6m 309 1-6m 310 $27-28 \mathrm{~m} / 27-35 \mathrm{w}$ other species rarer than foregoing but habits rather diff. $31218-20 \mathrm{~m}$ 325 1-2m 326 13-16m 327 11-15m/w yet so tame almost domesticated $331 \quad 1-3 m / 1 u$ "gross"/2u "solJunge", 24-27m 334 1-29w \& in 1580 (ie 43 years afterwards) Sarmiento saw horses with the Indian in Str of Magellan. 1-25w Horses new in 1545. have run wild for 300 years $27-29 m, 34-38 \mathrm{~m} /$ w so increased without man's care $w b$ Pampas did not exist $33513 u$ "beilvon"/w like Capons 23-31m/w Q Compare Azara 34-37m/36-37u "brauner \mid Farbe" 336 14-19m 340 $21-27 \mathrm{~m} / \mathrm{w}$ rickety horses short in legs $30-$ $32 m / x / 30 u$ "gourme", wb Glanders \& gourme, shows that contagious diseases peculiar to constitution \& break out without contagion. $34126-27 m$, $w b$ ass remained unchanged in colour - more degenerated than horse - 343 13-18m * $34426 u$ "braunlichroth" $3456 u$ "Mittellinie I Brust", $\quad 10-14 \mathrm{~m} / 12-13 u$ "Der 1 und" $/ 10-11 w$ Deer $19-22 m 351$ 28-30m 354 $6-9 \mathrm{~m} / \mathrm{w}$ therefore different habits 355 22$27 \mathrm{~m} / \mathrm{w}$ secondary character $3573-10 \mathrm{~m} 360$ 14-22m 363 6u "1546", 26-29m, 28w. oranges $3646-12 m / w$ Paraguay no wild cattle - from flies $3692-17 m, 3-8 w$ no monkeys rest of Andes $13-17 m \quad 370$ $1-7 \mathrm{~m} / 1-20 \mathrm{w}$ apparently horse constitution peculiarities go with genera C.D. 8-19m 371 $1-8 m / 2-6 w$ these limits of genera all wrong $15-18 m / 15-22 w$ species of Carnivora, Bats genera. not generally confined in longitude, with some exceptions. 372 20-25m 274 2$10 \mathrm{~m} / 5-6$? 375 wt Thinks distribution of these animals, which do not feed on grass, is determined by vegetation, which changes

RENGGER
much in longitude. I doubt- X 1-26m, 29$32 m$, 32-33m 376 2-7m, 13-15m, 18-22w Distrib. of Carnivora indirectly follows plants 27w (see p.396) 28-31w Distribution bears relation to process of locomotion of species $32-37 m / w$ even rivers separate Monkeys $w b$ in some genera chiefly depends on the form of the tail!! $w b$ NB Memo Sir F. Chantreys story of tame Monkey readily taking to water 377 4-10w (a) examples of distrib in proportion to tail $13-18 \mathrm{~m} / 16 \mathrm{w}$ a 21 u "zum Laufe" $/ 20-27 m / w$ surely this does not apply to antelopes of Africa 31-32u "einigel ausgenommen" $/ 31-37 w$ one exception shows range not determined by powers of locomotion but by adaptation $w b$ (a) Surely the doctrine of range being determined by locomotion powers \& kind of foods (such as can be perceived) is false; for think of case of two ostriches: they living together shows $\langle r e s t \geqslant\rangle 3781-9 m / w t / 1-4 w$ This is all absurd,powers of locomotion will perhaps greatly limit in many cases most wonderful overuled Coypus extension, but adaptation is great feature N.B Are not these remarks applied to genera if so perhaps true $8-9 w$ Biscatcha \& Agouti $27-31 m, w b$ ie as far as $\&$ food \& climate (\& enemies preoccupation by other species) ie conditions allow species \& genera to range, so will they range in proportion to their mode of progression \& the form of the land $3794-8 \mathrm{~m} / \mathrm{w}$ S Africa 15$22 \mathrm{~m} / \mathrm{w}$ Monkeys partial migration \& of other animals $3801 u$ "Auchl Einfluss", 2-12m, 25$29 \mathrm{~m} / 24-33 w$ Beasts of prey destroyed others increase immensely, \& drive others from habitation $3811-3 m, 25-26 \mathrm{w}$ probably increased 26-28m/27-28u "fünften laller" 382 $2-4 m / 3 u$ "kleinen Raubthiere", 11-24m/w chief deaths of carnivora when young 390 wb Waterhouse Mice generally or sectionally very large range, but many species of S. America show that species small range Now this agrees with Rengger 376 fact about Monkeys, but the larger range coincides with possibility of transport.

RETZIUS, Gustaf Anatomische Untersuchungen Stockholm; Klemming; 1873 [Down, I]

RETZIUS, Gustaf Finska Kranier Stockholm; Central-Tryckeriet; 1878 [Down, I]

RETZIUS, Gustaf Das Gehörorgan der Wirbelthiere part 1; Stockholm; CentralTryckeriet; 1881 [Down, I]

REYNIER, Louis De l'économie publique et rurale Genève, 1818 [CUL.1900]

SB all Q

363 Merchants visited England \& Ireland before Caesar
418 several vars of Cereals cultivated by the Celts at time of Caesar
486 nomad people do not improve beasts. Celts did attend to this subject.
499 Celts had 2 races of sheep with work for different purposes
503 Celts improved Horses.
$363 \Uparrow 6-2 m, \Uparrow 2-1 \rightarrow 3645-9 m 48614-17 m 487$ 4-8m 499 9-14m 503 9-13m, 13-15m

RIALLE, Girand de La Mythologie comparée Paris; C. Reinwald \& Co.; 1878 [Down] \wp

RIBEIRO, Carlos Noticia de algumas estações e monumentos prehistoricos Lisboa; Academia; 1878 [Down, I] \wp

RIBOT, Théodule L'Hérédité psychologique Paris; Germer Baillière; 1882 [Down]

RIBOT, Théodule Heredity London; Henry S. King \& Co.; 1875 [CUL]
beh, h, he, mn, pat, t, ta, tm, y
NB + p.25; 33,34; 39; 142; 323; 373
SB \bullet
253334 Relation of instinct \& intelligence.
39 Effects of Habit in giving short-sight
142 Calculation like LutkeO on chances against accidental reappearance of attribute in children.-
373 Average duration of French noblefamilies
25 2-34m 33 32-38m 34 6-12m/7u "iflexist" 39 19-37m 142 25-28m (Maupertuis) 323 25$36 m 373$ 27-36m (Benoiston de Châteauneuf)

RICHARD, Louis-Claude Démonstrations botaniques ou analyse du fruit Paris; Gabon; 1808 [CUL, S]

RICHARDSON, H.D. Pigs Dublin; J. McGlashan; 1847 [CUL]
Cs, f, or, sl, tm, v, wd, y
NB p.15; 24; 29; 30; 32; 38; 41,2; 44
SB $\square \beta$
26 Cross with Chinese restores lessened fertility Q
29 Berkshire a spotted Breed Q
30 Irish Grey-hound Pig with appendages Q
3716 British Breeds NQ
41 Westphalian $1 / 2$ wild Breed always have
young striped like wild (p. 43 do)
42 Crossed Breed of 3 kinds in Pigs, forming a Breed Q
44 Good sentence on selecting short legs of Swine
$152-7 m, 11-12 m 1912 m 245-8 m 261-3 m$, 5Q 12-15m, 22-24m, 8u "Lawrence"/Q 29 1$4 m 30$ fig.w compare with drawing in title 32 1-2m $3314-18 m 344 w 15 w$ Berkshire $7 w 2$ $31 w 339 w 43522 w 536 w 6365 w 710 w 8$ $19 w 926 w 1032 w 1138 w 1243 w 13374 w$ 14 22-23Q 38 16w $1529 w 1633-36 m 41$ 9$10 \mathrm{~m}, 11-12 \mathrm{Q}$ 13-18m $4211-13 \mathrm{~m}, 26-27 \mathrm{~m} 43$ $33 w$ N.Q. $34-36 m \quad 44 \quad 5-8 m, 34-37 m / 35^{\prime \prime} . . /$ $37 u \leftrightarrow / 34-35 \mathrm{Q} \leftrightarrows, w b$ it has been obtained \wp

RICHARDSON, John Fauna Boreali-Americana 3 vols.; London; John Murray; 1829-36 [CUL, on B and later, I (14 August 1837)] ad, beh, ch, cs, ex, gd, gr, ig, mg, oo, sl, sp, sx, ta, tm, ts, v, y
SB1 Richardson Vol 1.
p.xxxi.

Fauna B Americana

- NB Write to Dr Richardson about selection of dogs of
p3; p.11; 14; 16
- 26 (p35 Journal) - Canis Azarae Bahia Blanca cat in Chile - an armadillo at Concepcion Mntains
294247 to 5161 to $95116 \quad 125,7136$ $\begin{array}{lllllllll}140,2 & 157 & 161 & 166 & 181 & 191 & 195 & 231 & 233\end{array}$ 239241250 p252 p. 263 p. 268 p. 276 p. 280 vol. 1 SB2 $\square \beta$
15 White rings around neck characterises several bears when young \underline{Q}
29 Vars. of Bears in colour differing in ferocity p. 66 variation in Wolf
49 Mustela with aquatic habits Q
51 Local races of Pine Martins
64 on resemblances in appearance \& voice of Dogs \& Wolves 75 do. 79 do.
67 variation in Wolves Q
62 Dogs broader feet for running on snow \underline{Q} 72 Crossing of do
Q 76 Var. of American wolf analogous to European wolf - $84 \underline{Q}$ do. in Foxes in C. lagopus, fulvus \& vulpes
93 on Cross Foxes Q
140 on Brown Rat exterminating black in N. America, as Europe, (\& as N. Zealand?)
aso Hooker shows how many plants which are naturalised in America are same with those in Europe
142 Field Mouse occupying sheds in N. America

191 Squirrel approach to structure of Flying Squirrels Q
239 Rein Deer \& distinct vars. inhabiting woods 250 \& other barren grounds
241 Horns various Sexual Q
263 Herds of Deer which remain, all destroyed by wolves. Q here we see manner of destruction p88 Colonies of Foxes do. destroyed.-
268 Female * antelope with only prominences \& no horns see the account \underline{Q}
xxxi $23-24 m / 24 u$ "same |animals", $35-37 m$ xli $25 m 334 m 1125-26 \mathrm{~m} / 25 u$ "larger \mid tail" 15 17-23m/Q $1628 m, 30-32 m 2637-39 m 2910$ $12 m 3510-11 m 42$ 25-26m $494-6 m, 7 u$ "its otter"/w a Mustela $10 u$ "haunts Ihunts"/9-14w Q good to argue against the assumed impossibility of otter-transformation 51 20$21 \mathrm{~m} / 20 \mathrm{u}$ "Particular races" $61 \quad 16-17 \mathrm{~m} / 16 u$ "others totally", 23-24m/24u "Wolves I litter" 62 $1-2 m, 4-5 m, 13-15 m, 16-18 m 6319-20 m 64$ $25-26 \mathrm{~m} / \mathrm{Q}$ 28-29m/28u "fourlnine", $30-32 \mathrm{~m}$, $33 m / Q 651-3 m 6612-13 m 675-6 m, 8-9 u$ "reindeer", $10 \mathrm{~m}, 22 \mathrm{~m}, 25-28 \mathrm{w}$ shorter, though larger animal $29 m 7017 \mathrm{~m} / 15-21 w$ greater than in last, though this is smaller wolf 30 m , 33-34m 71 1-2m 72 12-13m 73 1-3Q 74 1$2 \mathrm{~m} / 1 u$ "muzzlelears" $757-8 m, 10-13 \mathrm{~m}, 14 \mathrm{~m} /$ Q $761 m, 3-4 m / Q / 3 u$ "characters" $/ 4 u$ "which 1 wolves" 77 13-14m, $15 u$ "fivel litter" 7920 m , 25-27m/Q/"..", 31u "the 1 paws" 80 19-21Q 26-27m/Q $8122-23 m 8442-43 m$ (Gmelin) 86 35-36m 88 5-9m/6-7m 90 13-15m, 24-29m 91 19m, 22-24m, 27m 92 21-24m/21-22u "Cross Foxes"/Q + $9315 \mathrm{~m} / \mathrm{Q} / \mathrm{u}$ "inclined to", 24-25m/ $25 u$ "beldifference" $9426 m$ 95 $25 u$ "an arangement" $11638-39 m 1173-4 m / u$ "threel young", 11u "great lcause"/w So with Beavers 125 31-33m 127 23-25m 136 9-11m 140 20$22 m 1415 u$ "1730", 6u "1775", 8-9m 142 10$13 m 1434-5 m, 13 u$ "varieties 1 met", $14-15 \mathrm{~m} /$ $14 u$ "in Itail" $15718-19 m / 18 u$ "rudiment of" 161 3-5m 166 1-3m (Sabine) 181 18-23m (Pallas) 191 24-25Q 25-26m (Vigors) 195 15$17 m, 18-21 m 231$ 9-10m 233 8-10m 236 30$33 m, 34-36 m 237$ 20-22m/20-21"..."/21m 239 $6-9 m / w$ only for keeping distinct $Q 19-20 m$ 240 top fig.w 19 points low fig.w 29 points 241 12-15m/12u "largest I horns"/Q/13u "havel branched", $18 u$ "majority", $29-33 \mathrm{~m} / 32 u$ "byl bucks" 242 1u "month|May" $2505 m / 6-7 m / w t /$ $1-9 w$ other var In May the Females proceed northward to coast \& the males follow in June $8-10 m / 11 u$ "Lake Superior"/9-14w Q only for keeping distinct $15 \mathrm{~m} / \mathrm{u}$ "September"/ $16-17 \mathrm{~m}$, $15-19 \mathrm{w}$ other var. proceeds southwards at this month $24-30 \mathrm{~m} / \mathrm{w}$ does not

RICHARDSON
appear that Bucks \＆Does migrate separately in the other var：does $2527-9 \mathrm{~m} /$ $8 u$＂moose 1 rein＂，16－20m（Cuvier） 259 35－ $37 m$－ 263 29－33m／Q 32－34＂．．．＂ 268 1－4m 276 17－20m 280 15－18m，20－23m
vol． 2 NB－Remark about Beak
G．R．Gray ask about number of tail－feathers； 27；30； 31
SB $\square \beta$
pxx The Younger Birds are driven away \＆ go wandering
27 var．in tooth of mandible of Jer Falcon， present or absent p30 Q
31 var．analogous to other species of Hawks Q
60 variability in length of primaries $-80,90 \mathrm{Q}$ all 3 quoted
89 Owl fishing 139 Tyrannus do 192 Orpheus changing range with man
268 Similarity in Habits of Goldfinch－Habits often more constant than Structure
283 Var．geolographical of Sturnella
292 Eggs of Magpie different from those of Europe；so with an Owl
331 \＆ 332 Change in migration of Swallow－ Q nest differing Q only for nest
361 On a Grouse running in circles
404 Fulica var in number of tail feathers Q
469 Variability in length of tarsus \＆toe in Anser canadensis \mathbb{Q}
xix $34 m$ xx $1-10 m$ xxxv $2-3 m \bullet / 3 u$＂mostly｜ birds＂ 27 25－26m，28－33m／33Q 30 30－31m， 32－33m，35－38m $315-9 \mathrm{~m} / \mathrm{w}$ analogous Q 57 $21-27 \mathrm{~m}, 34-36 \mathrm{~m} / 36 u$＂perhaps I birds＂ 58 －$-4 u$ ＂third｜fourth＂，4－6m，20－21m／20u＂third｜ equal＂ 59 3－5m，34－37m 60 4－6m（Savigny and Temminck） 70 19－20m $729 u$＂birdlof＂，26－ $28 m 778-9 m 801-2 m 834-6 m / 5 u$＂localities＂／ $6 u$＂rufous tints＂ $8526-29 m, 30 u \leftrightarrow 898-9 m$ $905 u * / 5-6 u$＂Thelshorter＂$/ w$ not equal $8 u$ ＂about｜fifth＂$/ \mathrm{w}$ 1st short $34-36 \mathrm{~m} 91$ 11－13m／ $13 u$＂the lother＂ $118 \quad 12-13 m / 13 w$ very close $13935-36 m / 36 u$＂dives \mid fish＂ $15035-38 m / 37 u$ ＂octavelwhole＂ 177 1m $18712 m 189$ zb 192 18－19m，22－25m 226 30－32m $23136 m 233$ 33－ $34 m 249$ 32－33m， $34 m 25010 m 268$ 22－26m （A．Wilson）$/ 20-28 w$ other instances of representative species，having allied habits－ Thrush in their songs \＆nests－Gull in S． America $2787-9 m, 22 \mathrm{~m} 28224-27 \mathrm{~m} 28330 \mathrm{~m}$ ， $33 u$＂ 6 ＂$/ w$ yet small $34 m, 35-37 m 29216-$ $18 \mathrm{~m} / 17 \mathrm{u}$＂blotches 1 diffused＂，27－35w English eggs shorter but broader $33-36 \mathrm{~m} / 35 \mathrm{~m} / \mathrm{w}$ broader 293 34－35m 305 13－16m，25－27m 306 36－37m（Swainson） $33118-19 m, 20-22 m, 25-$ $29 m, 36 m 332$ 2－4m，4－7m，9－13m，25－29m， $34-36 m \quad 343 \quad 1-5 m, 6 u \leftrightarrow 355$ 35－38m（E．

Sabine），wb observes measurements from stuffed specimens often vary apparently． 359 $5-17 m / 7 u$＂celebrating｜wedding＂$/ 8 u$＂buzzing｜ ground＂ $19 u$＂bare｜size＂$/ 13 u$＂presencel intended＂ 361 32－35m 362 1－3m，4－7m／4u ＂last I more＂ 404 29－30m，32－33m（Cuvier） 407 $39-40 \mathrm{~m} / 39 u$＂thanlamong＂ 413 31－35m 422 17－21m，22－24m 443 18－21m（Pennant），22－ $23 m, 25-27 m 44838-39 m 453$ 22－27m， $38 m$ $456 \quad 36-39 m 469$ 19－22m／21u／22u 〈numbers〉， $23 u$＂same length＂／w Q（a） $24-25 m / 24 u$ ＂middlel lines＂，wb（a）many cases especially amongst these water birds，of variations in total length，have not been marked 472 17－ $23 m$（Pennant and J．R．Forster） 475 8－9m，33－ $34 m / 33 u$＂The lbut＂
vol． $3 \wp$
RICHARDSON，John and GRAY，John Edward The zoology of the voyage of H．M．S． Erebus and Terror London；Longman，Brown， Green \＆Longman；1844－48［Down，I by Gray］

RICHARDSON，Samuel The history of Sir Charles Grandison 7 vols；London；W． Strachan； 1781 ［CULR，on B；vols 1 and 2 missing；S in each vol．Charles Darwin Buenos Ayres Sept．1833］

RIEDEL，W．Die Taubenzucht Ulm；F．Ebner； 1824 ［CUL，pre－B］
ad，beh，br，cs，ds，f，hy，no，oo，or，sp，sx， ti，tm，v，wd

SA $\langle p p$ ．232－233〉 $\square \beta$
17 Fertility of Crossed Pigeons
25 Turbit \＆Fantail with Bald Pate－ 27 other Hybrid Q
41 On Hawks catching light－coloured pigeons
42 Dragon silent Q
86 Some she pigeons prefer stranger pigeons to own husband
158 Same coloured pigeons pair more readily（Ch．6）
163 Results of crossing different colours
9 wt Home－doves not so fertile as field！ $12 u \leftrightarrow 1021 w$ carrier $25 w$ Turkish Pigeon $29 w$ Ranger $11 w t$ long wing－feathers $1 u$ ＂Möven＂， $4 u$＂Schwungfedern＂w（a） $7 u$ ＂Hauben＂$/ w$ Capuch $8 w$ Top－knots $9 m / w$ Tumbler 11w Fantail； 17 wt Bastards very good breeders Vilmorin Turkish to Carrier \＆common Pigeons either bastard will bastardize with other bastard $193 u$ ＂gewöhnlich behaupt＂／3－6w German variety of
carrier $2030-32 w$ Horsman on origin of Carrier 21 1－2w great Pigeon $*, 6-14 w$ Beak middling long little curved great Wurzel \＆ skin at nose Body \＆wings small 22 wt Either these Turkish Pigeons or as cross with common pigeon，so not pair breeding with Owls \＆Trumpeters－Owl hybrids \＆ trumpeters $6-9 \mathrm{~m} / \mathrm{w}$（a） $13-18 \mathrm{w}$ Canton crossed with Powters fertile $2321-23 w$ all kinds can inflate crop． 25 26－31m，wb Hybrid Turbit－fantail X into a Bald Pate 26 5－10w can be crossed with Capuchin \＆Powters $19 w$ Jacobin $23 w$（a）$w b$（a）Wings so long as often to sweep ground $27 w t$ very quiet $1-3 m / w$（a） $25-27 \mathrm{~m} / w$（a）$w b$ Hybrid Capuchin－Trumpeter X Turbit 288 m, 26－$^{-}$ $28 m, w b$ Bechstein never sees so many as 32 feathers $298-9 u / w$ Bald orbits $30 w$ Trumpeter $30 \quad 14-17 w$ male \＆female trumpeter alike $3131 m$ ，wb Trumpeting varies $327 w$ Pair $8 w$ Swallow $12 u$＂Feen！ Feentaube＂$/ w$ Fairy 16－29w Marked like the PowO of Sea Swallow of the Germans colours vary I think mine very pure．Purest not very true．－Those with crest have been crossed generally $w b$ Swallow smooth beaked feather footed coloured as mine－ only little smaller than Field Dover but slenderer quick flyer Thin legged $331 u$ ＂einer 1 versehen＂，wb Good flyers \＆at first wild 34 wt not caught by Hawks for manner of flight like swallows $4-6 m / 4 u \pm 358 m, 9 u$ ＂Cypersche＂，10－15w Bald Pate？a toy Neumeister Priest $23 u$＂Pfaffen＂$/ w$ Priest 36 $21-27 w$ Bechsteins birds 1 genus $3829-30 m$ ， wb 14 sub vars colours of the Monck Pigeon or Bald Pate $394 w$ Toys $4017 u$＂Spot Pigeon＂ 41 16－20m／17w（a）21－28w same account as Neumeisters variety of Horseman or Carrier $w b$ very great difference is attributed to colour in facility of Hawks catching them 42 wt very silent；I think our Dragon is．－ $3 m / w$（a） $8-12 w$ crossed with Turkish produces following 10 w The Turkish is figured by Neumeister $12 w$｜cannot think what this is $13 u$＂Römische＂， $14-17 w / 16 u$ ＂Schnabel ldick＂used for carrying letters 20－ $24 w$ not the Spanish Birds $w b$（B）Moore says white Barb is the Mahomet Pigeons，so little known $43 w t$ I suspect all details here copied $4 w$ Barb $5 u$＂Indianischeljudische＂ $\mid w$ Barb see Neum 10－11w Leghorn，Runt．16－ $19 w$ Tail stands up $24 w$ a Toy $w b$ on Finakin and Turner 44 wt These strike their wings together like trumpeters $1 u$＂Trommler＂，8－ $14 w$ very small fingers，Legs very short feathered Beak excessively short 17－29m／w Not the Lace Pigeon but the Foilback 33－
$35 m, w b$ with a mane He has not seen this $455 u$＂Col． 1 Forficata＂，6－10w Pigeons with forked tails $12 u$＂Thiergärten＂， $26-28 \mathrm{~m} / \mathrm{w}$ very modern 46 wt Ring Dover $543-12 w$ Blue Rock Pigeons 9－11m，32－33m／w doubtful 55 $9-34 w\langle n o t C D\rangle 568 m, 10-15 \mathrm{~m} / 12 w$（a）$w b$ （a）Will occupy old trees when house destroyed $6130-34 m 62 \quad 23 c / w \notin 8613-20 w$ some she pigeons prefer stranger to own husbands $1585 \mathrm{~m} / \mathrm{w} / 1-13 w$ This seems to imply like coloured Pigeons prefer each other． $159 w b$ same coloured Pigeons pair most readily 16022 m 161 wt （a）difference is reciprocal cross of Pouter \＆common Pigeon $11-12 w$ Hybrids bigger $12-19 m / 15 w$（a） $21-$ $24 w$ male gives form the female instinct $24 m$ 162 17－32w Rules of results in crossing colours $1645 w$ cry back $2274-34 w / w b$ रnot $C D\rangle 244$ 8－16w $\langle n o t C D\rangle 2451-2 m / w$ a popular error 246 wt 〈not CD＞3－6w Whitish yellow skin over nose 11－19wunot CD〉，21－26w V．Dixon．－24－26m／24u＂Campana＂ $2475 w$ Foilback 15－16w Sea swallow Turkish 248 5－ $12 w$ Tumblers turn on ground with Crop inflated 13－17m／w $\mathbf{n o t} C D\rangle, \pi 13 u \quad$＂Pag－ gedetten＂／w Horsemen $\Uparrow 3 w$ Carrier $2493-8 \mathrm{~m} /$ w Powting Horsemen wb〈not $C D\rangle 250 \downarrow w\langle$ not $C D\rangle 251 \downarrow w / w b\langle$ not $C D\rangle$
RIEDEL，Wilhelm Die vorzüglichst bekannten Feinde der Tauben Ulm；F．Ebner； 1824 ［CUL， pre－B］
NB O／
\wp
RILEY，Charles Valentine Annual reports on the noxious，beneficial and other insects in the State of Missouri Jefferson City；Horace Wilcox；1871－77［CUL］
beh，ds，em，fg，gd，h，ig，mg，mm，no，oo， or，r，rd，sl，ss，sx，ta，tm，v
no． 3 （1871）NB 14 Stridulating insects；46； 52； 67 Transitions；92；97；101；127；131； 139；141； 148 Descent；156； 164 V； 168 Origin
SB1 $\square \Re \rightarrow\langle n o t C D\rangle$
Riley on noxious insects
156 Autumnal broods alone of a certain caterpillar having a peculiar instinct of forming house，so that it is developed in alternate generations
SB2（as SB1）
Riley Noxious Insects of Missouri
46 Pea Weevil one of the few injurious insects endemic in Europe America \＆ introduced into Europe．
52 Sudden spreading of Bruchus fabe＜i．e． fabae＞

RILEY, MISSOURI INSECTS
67 Larvae of a same moth of 2 distinct colours \& respectively attached to corresponding objects. Means of sudden transition
92 \& 139 Native insect which has lately acquired an appetite for cultivated apples, but only in certain districts, so considers it a newly formed race with new habits.
97 Rapid spreading of potato-beetle.
100 Increase of its natural enemies; certain vars. of potatos more exempt than others
127 Phytophagous races.
131 Same insects forming coccoon above or below ground \& varying in being single or double brooded
$\Leftrightarrow\langle C D\rangle$ Very good essay on Mimicry
14 48-50m 33 40-44m 35 12-17m 46 27-35m $5216-20 m 676-15 m, 17-25 m 923-12 m, 17-$ $20 \mathrm{~m} 973-6 m, 8-21 m, 39-45 m 10019-23 m 101$ $24-28 m, 38-41 m 12738-45 m 1314-8 m$, 40$42 m 1397-11 m 14120-24 m 14843-47 m 149$ 14-16m $156 \quad 27-36 m 15717-27 m 163$ 21ua, $26-32 m, 37-42 m, w b$ Archippus has bad -$16421-25 m 168 w t / 1-13 w$ Grt destruction of the grey makes the preservation of the Old Type important $15-19 m, 22-25 m, 33-37 m$
no. 4 (1872) NB $\mathrm{p} 10 ; 11 ; 16 ; 23 ; 35 ; 58 ; 63$; $66 ; 74 ; 85 ; 119 ; 123$
SB $\square \mathfrak{R}$ -
10 On new colonists at first most injurious
16 Enemies increase \& acquire new habits
11 change of Habits in introduced insects
23 local var. of moth of caterpillar attacking peaches.
35 Migration of an American insect
58 Aphis, two distinct types of Habits though forming same sp. \rightarrow to p. 66
74 Silk-moth the caterpillars of distinct $s p$. quite alike at first
$106-13 m 112-4 m, 7-12 m 1629-33 m, 41-43 m$ 23 1-3m $357-13 m, 21-24 m 58$ wt leaf-galls \& roots-galls $1-4 m 6310 u$ "No leaf-galls", $11 u$ "Leaflabundant", 26-27u "Nollice", 29u↔, 32-34u↔, 43-45m, 46m 64 1-3m, 24-26m 65 3-5m, 46m 66 25-31m 74 7-15m 85 15-27m, $33-34 m, 38-42 m, 43 m 865-7 m, 20-22 m 119$ 25-29m 123 13-18m
no. 5 (1873) NB 63 Change of Nature; 66 Phylloxera; 83 Mistaken Instinct; 86 of Transportation of Pollen of Coniferae Q

- 87 Scale insects of Vars. of apples 150 The moths which fertilised Yucca for crossing
Nothing for the Descent of M.
SB 63 Phylloxera. Change of instincts 83 Mistakes in instincts in Scale-louse
150 The Moth which fertilizes the Yucca

63 17-24m 64 13-18m 66 39-43m/40u "as most"|42-43u "Somelhere" 83 25-33m 86 36$40 \mathrm{~m} 871-4 \mathrm{~m} / \mathrm{Q} 7-13 \mathrm{~m} / \mathrm{Q}$
no. 6 (1874) NB 115 Sexual Selection in Curculio; 131; Pronuba Moth, Yucca
114 33-38m (Wallace) 115 4-20m
no. 7 (1875) NB 20; On Hemiptera with perfect wings \& more or less wingless copulate together \& continues inhabit distinct regions, the wingless generally to the north.-$2031-40 \mathrm{~m} 21$ 1-6m
no. 8 (1876) NB1 103 Grasshoppers drifted far down Mississippi clinging to logs
106- take advantage of wind \& often travel 100 miles per hour-
122 very curious changes of vegetation owing to Locusts destroying certain kinds; \& the change in vegetation caused proportion of insects to change
NB2 - 103; 106; 122
103 12-17m 106 16-21m 122 wt because the I plant not eaten $1-7 m, 14-18 m, 22-27 m 123$ $12-14 m, 14-17 m, 18-23 m, 31-39 m$
no. 9 (1877) NB 18; 17 Indigenous insects how learn to prey on endemic; 20 Rudiment; 24; 37 Rate at which potato bug travelling; 40; 52 new Habit in insects attacking Wheat 57
$828-35 m 17$ 3-8m 20 fig.m 21 6-16m 2414 $18 m 378-14 m / 9 u$ "average 1 bribes" $4013-27 m$ $523-7 m 57$ 8-12m

RILEY, Charles Valentine The cotton worm Washington; Government printing office; 1880 [Down]
mg
NB 23 wide migration of moths; 34 ants
$1520-24 m / 21 u 2322-30 m, 32-34 m, 35-44 m$ $341-10 m, 17-24 m / 23 u, 24-28 m$

RILEY, Charles Valentine The locust plague in the United States Chicago; Rand, McNally \& Co.; 1877 [Down]

RILEY, James Loss of the American brig Commerce ... with an account of Timbuctoo London; John Murray; 1817 [Down, S C. Darwin Feb. 13th 1826] $\wp 0$

RITCHIE, Archibald Tucker The creation. The earth's formation on dynamical principles 5th edn; London; Daldy, Isbister \& Co.; 1874 [Down, I] $\wp 0$

ROBINET, Stephane Manuel de l'éducatuer de vers à soie Paris; Dusacq; 1848 [CUL]
beh, sx, v

NB p267 female cocoons heavier－ （separation of Sexes）probabilities
p． 275 I suppose Males were tested again－ ley eggs immediately
4 9－11m 5 26－29m， $30 \mathrm{~m} 716 \mathrm{~m} / \mathrm{u} \leftrightarrow 816-20 \mathrm{~m}$ ， 29－30m 12 1－6m，10－16m，17－20m 13 17－24m $157-11 m 262-6 \mathrm{~m} / 2 \mathrm{w}$ mistake $3025-26 \mathrm{~m} / \mathrm{m}$ $311-3 m / 1-2 m 3724-29 m 266$ 20－26m 267 $1-3 m, 20-21 m 26919-20 m 27116 m, 22-24 m$ ， $25-27 m 2727-9 m, 26-29 m 2732-4 m 30316-$ $18 m 3044-8 m 30621-23 m, 24 m 307$ 11－12m $30828-29 m / 28 u$＂vers＂ $3092-3 m, 14-17 m 310$ $1-3 m / 2 u$＂teinte verdâtre＂，15－17m 311 1－2m 312 9－12m 313 9－10m 314 13－14m 315 6－7m $3165-7 m, 23-24 m / 23 u$＂Les 1 deviennent＂ 317 $20-22 m, 22-25 m, 26-27 m 31816-20 m$

ROLLE，Friedrich Darwins Lehre cc，ex，gd，00，spo，v，wd
$6631-36 \mathrm{~m} / \mathrm{w}$ crocodiles of Egypt $761-6 m / w$ variation of forest trees $14-20 \mathrm{~m} / \mathrm{w}$ rich soil produces variation $784-9 m / w$ wild sport 84 $6-9 m / w$ Tacitus says Germans ate wild apples $851-4 m / w$ Perhaps butO cultivated of Crab cider？1－4w parents $33-34 m 8710-$ $22 m / 10-12 w$ acclimation $107 \quad 5-6 m / w$ Properties of sexes attended $1775-7 \mathrm{~m} / \mathrm{w}$ Rutimeyer says not known $15-18 \mathrm{~m} / \mathrm{w}$ 1st record $26-30 \mathrm{~m} / \mathrm{w}$ treating Common Rat 31－ $35 m / w$ kill each other $1793-6 m, 15 u$ ＂Deutschland＂， $19-20 \mathrm{~m} / \mathrm{w} \quad 180 \quad 14-15 \mathrm{~m} / \mathrm{w}$ Mice earlier $1823 u$＂grossen＂，6－10m，10－ $15 m, 13-15 m / w$ are the larger beasts of 0 destroyed？

ROLLESTON，George Forms of animal life Oxford；Clarendon Press； 1870 ［CUL，I］ ad，af，fg，gd，geo，in，no，sp，sy，t，tm

NB1 $\langle w$ by $F D\rangle$
－p136， 152
NB2 XXI Sp Theory
XXXII La！
－VIII Generative Organs
XXXV Reproductive organ
LI Sp Theory
LXVII Affinities of Fishes to Dipnoi \＆ Ganoids
LXXX CV •Classification of Fishes
Sp．Theory
XXI＊Ascidians C．I
LI；C．V．Spe Theory；CX CXXV CXXVI SB \quad－
pXXI Von Baer paucity of individuals \＆ species \＆confined area go together
pLI Dental papillae with caps of dentine observed in Parrots
p．C．V．On important organs multiplied in Annulosa，but not in Arthropoda
p．CX Transition between aerial \＆aquatic respiration．
\Leftrightarrow Rolleston
xxi 1－5m，33－36m（Wyville Thomson）xxxii介2－1m xxxv $13-27 m$ xxxviii $4-6 m$ li $34-36 m$ lxv $27-29 m$ lxvii $\uparrow 12-7 \mathrm{~m}$ lxviii $7-11 \mathrm{~m}$ ，11－ 14 m lxxiv $39-40 \mathrm{~m}$ lxxv $15-17 \mathrm{~m}, 30-37 \mathrm{~m}$ lxxx 21－24m，24－27m，介8u＂Ganoideiltype＂lxxxi $5-8 \mathrm{~m} / \mathrm{w}$ Lal， $11-15 m, 24-26 m$ lxxxiv 6－13m， $20-22 m$ ci 13－14u＂distinctivelVertebrata＂cv $3-6 \mathrm{~m} / \mathrm{w}$ I suppose multiplied inversions in Vermes cx 19－30m cxxy $20-24 m / 21-28 w$ these might seemO at every point cxxvi 11－ $32 m$ cxlvii $1-2 m$ facing P1． $10 w$（barometer readings）

ROLPH，W．H．Biologische Probleme，zugleich als Versuch einer rationellen Ethik Leipzig； Wilhelm Engelmann； 1882 ［Down，I］\wp
［ROMANES，G．J．］＂Physicus＂A candid examination of theism London；Trübner \＆Co．； 1878 ［CUL］
〈markings presumed to be by FD＞
ROMANES，George John and EWART， James Cossar Observations of the locomotor system of Echinodermata（extract from Phil． Trans．Roy．Soc．）； 1881 ［Down，I］

ROSENBUSCH，Carl Harry Ferdinand

 Mikroscopische Physiographie der massigen Gesteine Stuttgart； 1877 ［Down］\wpROSS，James The graft theory of disease，being an application of $M r$ Darwin＇s hypothesis of pangenesis to the explanation of the phenomena of the zymotic diseases London；J．\＆A． Churchill； 1872 ［CUL，I］
beh，ch，ct，em，fg，he，or，pat，phy，r，sp，t
NB Pangenesis；p40
quotes Hippocrates on Pangenesis－ 4248
description of growth of cells -53
113；114；241； 247249252 Beauty；262； 267
conclusively inquires on origin of contagious Diseases－ 269272
$401-11 m, w t / 1-11 w$ This bears on pangenesis i．e．not gemmules in blood 42 1－ $3 m, 29-30 m 4816-23 m 5318-23 w$ but the skin on sole of foot is inherited $5425-30 \mathrm{~m} 55$ $18-26 m \quad 58 \quad 25-30 m \quad 59 \quad 3-20 \mathrm{~m} / 9-11$ ？ 112 $16-18 m, 21-24 u \leftrightarrow, 25-28 m 1134-6 m, 9 u$

ROSS
＂circulation＂$/ 8-11 \mathrm{~m} / \mathrm{w}$ this is against me 114 $26-30 \mathrm{~m} / \mathrm{w}$ I look at quantity $w b$ ．No Nature must be different $w b$ The prepotency of foreign pollen depends on general vigour for a change 224 wt development may be said to result from the fecundation of tissue by gemmules from older tissues $1-3 m 24130 \mathrm{~m}$ （Adam Smith） $2473-9 m / w$ The delicate kind of Beauty 249 16－21m 252 2－13m（Burke， Dugald Stewart） 261 14－22m（Wallace） 267 12－ $20 m 268$ 8－28m 269 15－20m 272 8－19m

ROSSI，Darius C．Le Darwinisme et les générations spontanées Paris；C．Reinwald； 1870 ［Down］

NB O／
ROUX，Wilhelm Der Kampf der Theile im Organismus Leipzig；Wilhelm Engelmann； 1881 ［CUL，I，FD］
$1422 \mathrm{~m} 6521 \mathrm{~m} 71 \mathrm{11m} 8123 \mathrm{~m} 9416 \mathrm{~m} 100$ $5 m 12131 m 1279 m 1345 m 14113 m 14928 m$ $15411 m 17111 \mathrm{~m} 21819 \mathrm{~m} 22419 m$

Royal Commission Report on the practice of subjecting live animals to experiments for scientific purposes London；HMSO； 1876 ［CUL］
NB
р．30 ；74；166；172； 200
iii＂Colam．．77＂m x＂4672＂－＂4667＂m／ ［＂．．．＂］，＂1188＂－＂1543＂$m /[$＂．．．＂］xii＂ 1442 ＂m xv＂1018＂－＂ 2242 ＂m xvi＂ 1867 ＂－＂ 1874 ＂m xvii ＂5627＂$m, 21 a$＂knowledge＂／w $-\quad " 4934 "-$ ＂5037＂m ，介12m 78b＂1538／1541／1543／1546／ 1548＂m 166b $\uparrow 2-1 m$ 167a＂ $3163 "-$＂ $3178^{\prime \prime} m$ 169a＂ $3218^{\prime \prime} m$ 172b＂ 3298 ＂m 176a＂ 3383 ＂m 279a＂5583＂m 282a＂5627＂m 335a ＂Innervation＂．m

ROYAL SOCIETY Catalogue of scientific papers， $1867-79$ vols 1－8；London；Eyre \＆ Spottiswoode［Botany School］
vol．2，142．b $22 m$（Dana）153．b 36w General work 154 wt Lythrum Illustration Essay 0 655．b 57 m （Forbes）656．a 53 m （Forbes）
vol．3，482．a $59 m$（Huxley）483．a $53 m$（Huxley） 483．b 57 m （Huxley）687．b $10 \mathrm{~m}, 24 \mathrm{~m}$（Knight）， $42 m, 45 m$（Knight）688．a $33 m$（Knight）， $39 m$ ， 43m 688．b $11 m$
vol．6， 247 wt A narrative of travel on the Amazon 1853 wt 7 papers 1850－53 247．b ＂ 8 ＂． m ，＂ 11 ＂．. m ，＂ 12 ＂． ．large number of papers put here $248 . \mathrm{b} 18 m, 27 m, w b 55$ papers up to 1863
vol．7，140．b 13 m （Bentham）744．a 26 m （Gaudry） $10465 m$（Hyatt）

ROYER，Clémence Origine de l＇homme et des sociétés Paris；Guillaumin－Masson； 1870 ［CUL］
beh
NB－67；84；89；328； 337 good；339； 121 good note \diamond on growth
67 6－10m／6w courage $842-6 m 8915-20 \mathrm{~m} / \mathrm{w}$ No quite different 121 23－26m（Gratiolet， Huxley）／26u＂atropié＂，wb some monkeys here becoming extra arboreal if so hand degraded Hence degraded in some of the swinging monkeys $\Uparrow 1 \rightarrow 1223-8 m$（Huxley） 328 6－15m 337 at p． 337 wt never defend each other only good，perceiving danger （Rabbit social \＆silent）C．D． $33914-18 \mathrm{~m} / \mathrm{w}$ Birds pair \＆yet are social

RUDOLPHI，Carl Asmund Beyträge zur Anthropologie und allgemeinen Naturgeschichte Berlin；Haude \＆Speuer； 1812 ［CUL］

NB 〈on p．188〉
40＊58，72，78 〈he means 73〉 Felis Manul origin of Angora；Pallas Books
115 to 137 to $167 ; 184 ; 186$
SB ロஅ
Rudolphi
115 does not believe after careful looking that seeds ever stick to birds feathers，as Willdenow accounted for water－plants，
139 Bring case of F．W．Fish，difficulty in diffusion
139 Linnaeus asserts that the Pike is disseminated by Birds
－ 143 Rudolphi argues f
155 Rudolphi was greatly misled by little knowledge of antiquity of world in present state
161 cases of Hybrid Fish
163 －Zebras（only references），no one good case for me
163－Rabbit
165 －Hellenius case Q
184 on the Hen of＊Vidua（？）with long tail disowns cock when robbed of it（very good） 186 Beautiful male butterflies more difficult．

40 8－11m（Pallas） 58 14un， $15-17 \mathrm{~m} / 15 u$ ＂stammelab＂ 72 26u＂Petrop．1780＂，31－32m （Pallas）／wb｜have，I think，read 73 3－4m／w supposed parent of Angora Cat 78 16－18m $812 w$ not read $11513-16 w$ Bird \＆beasts can do but little in spreading plants $20-26 \mathrm{w}$ still less sticking to feathers of Water Birds，
for feathers oily.- 116 1-6m/w Has looked to many Water Birds \& fd. no seeds. Stomachs of migratory he has always fd. empty.- $21 u$ "Wassergewächse" $/ 18-30 \mathrm{w}$ He thus accounts by water-birds for wide distribution of water plants - by sticking to feathers \& in dung $11922 m 1209-12 m / w$ When salt, sea-side Plants occur $124 \quad 14-20 w$ wind cannot transport from mountain to mountain 1274 $6 \mathrm{~m} / \mathrm{w}$ when cold $1295-9 \mathrm{~m} / \mathrm{w} 1812137$ 10$12 \mathrm{~m} / \mathrm{g}-18 \mathrm{w}$ When wingless insects fd. in 2 parts of world proof of distinct Origin $139 \mathrm{wt} /$ 1-3miw (Remember Water-spouts) So before Agassiz - Fish speak strongly that they have been created at many points, as same Fish in distinct rivers - $7 \mathrm{~m} / \mathrm{u}$ "Fischen 1 Wassers" $/ \mathrm{w}$ (Remember Löess) 11-12w Rivers of Scotland. 14-20w Alps; But if all under sea, it requires more means of transportat. 22-24m/ w Glacial case makes of Fish much more difficult 25-26u↔, 26-27u "ablseritur", $28 u$ "Th|1391"/w My Edit - 35-36m, wb Take North of Gt Britain alone all under water, except Peaks perhaps, \& then wd not have Fish.- But then since united to Mainland,as shown by land-animals.- $142 \quad 22-27 \mathrm{~m} / \mathrm{w}$ if only pair created then carnivores wd have destroyed the herbivores \&c 143 19-22m/19$29 w$ When S.B. found on Alps \& Mtain of Asia what right to suppose came from one to other 154 wb How completely all this is Nott \& Gliddons work in Abstract - fortified by the Aegyptian work 155 wt All that I shd expect wd be that Negros raised in U. States wd be more variable in slight degree in colour \& other respects.- $6 u$ "Anfang" $/ 6-11 w$ there shd be at least the beginning of variation in Negros \&c in U. States 13-14u "nicht |ist"/ $13-18 w$ as we know the world not so old in present state!! 156 26-28m/17-32w Mem Races have been driven from place to place, confounding effects of conditions \& so with animals. $1595-7 \mathrm{~m} / \mathrm{w}$ how like Agassiz \& c 10-11u "alle !bleiben", 21-26m/19-29w species or no according as one looks to variability of limits $1614-11 \mathrm{~m} / 6 \mathrm{w}$ Hybrid Fish $32-33 \mathrm{~m} / \mathrm{w}$ Hybrid Canary 162 1-7m/1u "Citronenzeisig"/ w Siskin $5-6 w$ Bechstein fruit Bronn- Have $1633-4 m / 3-8 w$ Donkey painted like Zebra before it was permitted to cover the Donkey 23-24m (Hartmann)/23-26w This Book I have seen referred to $25 \mathrm{~m} / \mathrm{w}$ Hybrid Zebra 164 6$8 \mathrm{~m} / 7 \mathrm{u}$ "äthiopischen I gemeinen"/Q 10-12m, 1416m, 38u "Auszuge" $/ w$ abstract $1653 u$ "Rehkuh" $/ 2-7 w$ Sardinian Roe-Cow was this not probably a Mouflon?? $13-17 \mathrm{~m} / \mathrm{w}$ case os Seals old observer offspring not described $166 z t, 22-23 u$ "Meerschweinchen" $/ w$ vars of

Guinea Pigs true 167 wt albino $2 a$ "Kakerlaken" albino 2a "Kaninchen" rabits 180 14-16m/u \leftrightarrow / w female elephants \& Rein-deer 181 24-26m 182 29-31m/u "bey|mehr"/w | suppose confined to male $18313 \mathrm{~m}, 18-19 \mathrm{u}$ "der hindert"/ w checks flight 21-22u "Dann | fliegen", $26 u$ "fesseln", $30-32 \mathrm{~m} / \mathrm{w}$ Polygamous $1842-5 m / 2-10 w$ The female does not recognise the "Anmer" without tail when robbed of tail $-4 u / w \tau, 20-27 w$ What cause of beauty of snakes? 30 u "fand \mid zwey" 185 $w t$ Lizard or Newt $1 u / w \tau \tau, 5 u \leftrightarrow, 8 u \leftrightarrow, 9-12 m$, 19-21w Salmon Hook male fish different 20$23 m 1867 u$ "Leuchtkäfern", 9-13m/w female shells $15-19 w$ male butterflies most beautiful $1871-9 w$ female Bees sting $20-22 \mathrm{~m} / 22 u \leftrightarrow / w$ spiders $188 \quad 10-15 \mathrm{~m} / \mathrm{w}$ generally no differences in flowers in dioicous flowers 1719m, 20-24w Exceptions of Male flowers authority Ask Hooker

RÜTIMEYER, Ludwig Beiträge zur Kenntnis der fossilen Pferde Basel; Schweighauser; 1863 [CUL, I]
gd, geo, sp, tm, v
NB Milk teeth; 38 Sp . Theory; 57; 79; 136 Sp . Th
$3820 u$ "sol dieser"|21-22u "Moschusarten"| $24 u$ "Anoplotheriumart" $/ 26-27 u \leftrightarrow / 15-31 w$ milk teeth of Moschus like 2 d teeth of Anoplotherium 57 19-21m, 28-32m 79 1-14m, $15-20 \mathrm{~m}, ~ 23-30 \mathrm{~m} 126 \quad 12-17 \mathrm{~m} \quad 131 \quad 5-6 \mathrm{~m} / \mathrm{w}$ Slight difference in teeth $6 m, 8-9 m, 12-17 w$ does not know whether present Horse of same district like the ancient one of Lake -, $23-25 m / u \pm / w$ great differences in other respects $26 m \quad 132 \quad 1-2 u$ "Celtisch bezeichneten" $/ 1-4 w$ In Horses of bronze \& Celtic periods $5-7 \mathrm{~m} / 7 \mathrm{u}$ "Bronzezeit", $24 \mathrm{~m}, 32-$ $33 m, w b \mathrm{E}$. fossilis distinct from E. caballus which is the living Horse $1334-7 \mathrm{~m} / \mathrm{w}$ one Horse; probably not endemic, but imported from several places \& times $11 u \leftrightarrow, 12-14 u$ "Equus \mid Varietät"/w fossil Horses in S . Russia $22-24 w$ but not same as true E. fossilis 134 3-4?, 8-12w In Switzerland few remains belong to E . fossilis $13526-28 \mathrm{~m} / 28 u$ "Diluvium" 136 14-18m/w E. plicidens doubtful

RÜTIMEYER, Ludwig Die Fauna der Pfahlbauten der Schweiz Basel; Schweighauser; 1861 [CUL]
br, ds, e, f, gd, geo, ig, mg,sp, tm, v, wd
NB p30 Wild Boar formerly larger than now Changes in Foxes, Weasels \&c \& C

RÜTIMEYER, SCHWEIZ
SB1 Variation of Nature; Spec very good Look through volume
SB2 $\square \beta$

- 75 Friesland ox nearest to B P

Cattle Rutimeyer
130 cows bones proof of old domestication
133 teeth present certain difference from our present cows
134. People of Stone period possessed race of cows of different sizes

- Turf cow oldest race short body \& fine legs \& feet like Zebu $\boldsymbol{\checkmark}$
-136 \& very large races
137 Trochoceros race fd only in 1 locality 140 domesticated - 148 doubtful sp.
140 Primigenius races found everywhere, of slightly variable size, \& agreeing closely with wild type mixed races
143 Brachyceros Brachyceros race or longiform p148 very distinct $\boldsymbol{\sim}$ - small race - B. frontosus very close to it - This agrees closely with Turf cow of which is so common in oldest buildings

145. B. frontosus of Owen race now living in Switzerland, did not exist during Stone period.-
145 from moment of taming wild allied races, then stability is lost $\&$ hence he calls them races - B. taurus for commonest races Bos. primigenius \&c for species.
148 Simmenthal race now in Switzerland belong to frontosus-races
201 Oldenburg Holland Friesland race. = Primigenius
205 Brachyceros-race fd in Switzerland V 207 frontosus-race - thinks, possibly the Norwegian race descended from it not fd in Stone period - but living in Switzerland
211 Canton of Freiburg cattle belong to this race
The great part in all these fo fossil \& domesticated
214 Brachyceros race no white, different shades of - dark-colours with lighter stripe along back \checkmark
215 Frontosus race red or black - * or some patched with white
216 for M. \& W. Europe - Brachyceros race East \& South

- 221 B. trochoceros - formerly domesticated, but does not recognise as parent of any country race - so may be passed over-
SB3 $\square \beta$
Rutimeyer Pfahlb Pigs

27. S. crofa \& S. scrofa palustris - latter wild \& domesticated
30 wild swine formerly bigger otherwise
identical
42 Summary on difference of teeth of Turf swine
28. X Stone turf swine as wild species. 53 X nearest to Siam
120, 121 on domestication of Turf swine \& common swine
163 Turf swine domesticated towards end of Stone period X
167 - a still smaller race at a later period
168 a Roman race with different teeth
171 Races of 6th century
181, 184, 186 Bundtnerschwein - Turf-races
188 all tame swine have different back head
190 Turf \& Indian swine closely allied X
SA $\langle p p .102-3\rangle \square \beta$
Rutimeyer
Cats. 23,28 Swine p. 27 \& 120, 160, 168, 171, 175, 176
Cattle p. 71 to $112-130$ to 149 p.161, 172, 200 to 223, 235
Dog 117, 119, 162, 170, 238
Horse 122, 164
Goat 127
Sheep 128-191
Swine continued 181
Hens 231 about
15 wt character of Bones different in wild \& Tame animals. $1-5 m, 4 w / 5 w \tau, 16-17 m / 16 u$ "Ur und Bison" 16 8-15w urges effect of domestication on the Bones $11-17 m, 21-28 w$ Recent skeleton of wild swine darker than tame 22 25-30w Fox not so large as wild certainly same species $2328-31 m 257-12 w$ Beaver of greater size apparently teeth modified $7 u$ "ausser", $8 u / w \tau 275 w$ excluding sub genera $8 w$ only 3 known species $13 w$ Fitzinger rubbish $23 w$ House-swine few remains $24-30 u \pm, 26-33 w$ the common swine is a race, now extinct, which he calls Turf swine existed with the wild swine - $27-28 m$ $281-7 w$ Turf swine also domesticated People would call this a species. $2911-13 w$ Bones of wild \& tame swine break differently 30 19-28w The wild swine of old period bigger than recent, otherwise identical.- 33 $2 u$ "Das Torfschwein", 9-11m/w From reasons given does not consider distinct species. 42 $6-18 \mathrm{~m} / \mathrm{w}$ summary of differences of teeth of Turf swine $4922-23 m 5232-34 m / 32 u \leftrightarrow$ 53 1-5m, 1-8w Later Turf-swine was domesticated \& traces yet remain in our Breeds.- now extinct in wild state 23-29w comes nearest in short face to Siam swine, which is not known wild $5521 u$ "erlischt"|17$22 w$ Turf-swine has some characters of Miocene Suidae $576-8 w$ identical with
recent $13 w$ Horns variable 18-21w differences do not bespeak new race 58 $7-9 m, 8-14 w$ great weight of Horns in old animals causes slight differences in back of skulls 20-22w great size of skeleton 60 23-24u "umlübertrauf" 61 1w no change 70 20-30w Musk \& Bison both lived during Stone Period.- over all Switzerland.- 72 $6-9 m / w$ cattle descendants of Urochs 75 14-15w Friesland Ox nearest to Urus 84 $3 u$ "Der $\mid Z e b u$ " $\mid 3-8 w$ I see many references to differences in various Bones $8515 u$ "Zebu|Taurus" 98 2-3m/2u "Genus 1 Mitte" 101 8-11m/9-11u士 109 4a "Auerochs"/wt Bison 3-4u "gemeine 1 Auerochs" "/w B. primigenius $6 u$ "Urochs 1 Ochs" $/ 8 u$ "doch 1 constant", $6-8 \mathrm{~m} / \mathrm{w}$ points of anatomical agreement $13 u$ "auch \mid Ausnahmen" 11112 m $11213-19 \mathrm{~m} / \mathrm{w}$ What a History of changes 117 28u "kleinsten 1 Race" $/ 25-28 w$ Stone Period one very constant race of Dogs. 118 23$\overline{24 m} / 23 u$ "welchel Grösse" 119 2u "Wachtelhund" $/ 2-4 w$ quail-Dog setter-Spaniel agrees with this $10-12 \mathrm{~m} / \mathrm{w}$ agrees in these respects with Hunting dog - 21ula "Jagdl Wachtelhund" $19-25$ w both remote in equal degree from Wolf \& Jackall; \& agree with the oldest known domestic dog.- 120 6u "Wangen"/6-8w no tame swine here $9 u$ "Moosseedorf", $29-33 \mathrm{~m} / \mathrm{w}$ in these later buildings the Turf-swine was domesticated 121 1u "Schwächung I derselben", 5-7w good arguments that turf-swine was domesticated $18 u$ "gewöhnliche Wildschwein"/w not then domesticated. 25-28w in these the wild swine were domesticated \& which agree with present swine $12213-15 w$ very rare, though present in all $27-33 w$ common in newer Buildings; large \& small Big \& Small Horse $w b$ as they kept so many domestic animals, probably many domesticated.- 127 12-15w Goats identical with present Swiss goats $19 u$ "ältern Pfahlbauten", 19-21w Goat commoner than sheep in older Buildings 128 wt Goat has not altered since the old period. $12914 a /$ u "Solche | Ziegenhörnen" $/ m / w$ wild horses like those of Stone-period. now in Orcades, Wales.-15-18u土, $22 u \leftrightarrow, 26 u$ "Schaf 1 war" $/ 24$ $27 w$ very small sheep with thin \& rather high legs. 130 29-33m/w cows bones show marks of long domestication. $133 \quad 24-28 \mathrm{~m} / \mathrm{w}$ some teeth like those of present kinds, some different.- $134 \quad 12-16 \mathrm{~m} / \mathrm{w}$ differently sized Races.- 18-20w Different Breeds at all seasons localities 23-30w The commonest races, especially in oldest buildings (but these not exclusive) is the Turf-cow.- This had short body \& very fine legs \& feet. like

Zebu.- 135 1-3m/w Zebu very unlike our cattle in proportions $30 u$ "Concise" w has the turf cow \& a race larger than largest present race. 136 2-6w Robenhausen besides Turf cow race as large as one between largest race \& Urus.- $12-14 m, 23-25 u \leftrightarrow / m \quad 1379-$ $11 m, 16 u$ "welche lengster" $117 u$ "aufgestelltel Species" $/ 15-18 w$ only found in one $*$ locality $1404-8 m / 1-8 w$ Trochoceros shown to have been domesticated by variability of size of Bones $14-15 w$, $18-24 w$ Trochoceros is a very large-horned race.- $24-27 m, 28-33 w$ Former domestic race confined to W. Switzerland. This present race found everywhere, of variable size \& agreeing with wild B. primigenius. $14120-22 \mathrm{~m} / 21-22 u \leftrightarrow$ $14221-23 m / w$ size does not vary greatly 143 $1 a$ "Concise" $11-3 w$ skulls certainly of mixed races between these two $4 w$ or longiform "mit |Rhinoceros", $8 u$ "Torfmooren \mid Megaceros", $9 u$ "römischen Antiquitäten", 26-30w B. frontosus comes very close to B. longiformis.- $26 u \leftrightarrow, 28 u$ "kleinhörnige lauf", $31 u \leftrightarrow 1442 u \quad " a b \mid$ Torfkuh" $/ 1-8 w$ The foregoing agree with Turf cows which is so common especially in oldest Buildings.rarer in the more modern-145 15-20w The above 3 Races alone found- A common living "frontosus" race now in Swiss, is not found. $18-20 \mathrm{~m}, 25-29 \mathrm{w}$ From the moment of taming allied wild species, their stability as species is lost - Hence he calls them races. $29-31 m / w$ a $31-32 u \leftrightarrow$, wb (a) The right of giving the descendant of distinct species under name of Bos taurus is not so difficult, as the separating the wild parents.- wb What a proof of fertility of distinct species.- If not good species what variation in a state of nature.- 146 wt the races, Bos primigenius, trochoceros \&c for wild Taurus primigenius, trocheros \&c for tame $1 u / w \tau, 18 u$ "Owen" $/ w$ Nillson $19-20 \mathrm{~m} / \mathrm{u}$ "Boslindicus"/w 3 other parents of our tame oxens $32-34 m$ (Cuvier), wb Cuvier thinks primigenius one of parent races $1479 m, 11-12 u \leftrightarrow, 13-17 w$ Yet some difference between these \& tame Oxen of present day. 29-31m/w differences perhaps due to crossing $1481-3 w$ more doubts abour specific differences of B. trochoceros $9 w$ or longiform 11-14w This form very distinct from the 2 others 149 1-6w Zebu more distant from B. primigenius \& others, than any of these from each other. $15-18 \mathrm{~m} / \mathrm{w}$ difference in no incisors in such as he has seen Does not Blyth speak about differences at birth? 17 u "Verminderung|Incisiven", 21$22 u \leftrightarrow$, $31-33 m / w / w b$ quite immaterial in bump of fat - appears in Argali \& Rein Deer

RÜTIMEYER, SCHWEIZ
in winter.- 156 22-25w Extinction \& rarity of some species. 157 wt who could have ever expected so much change??- $1-2 m, 3-8 w$ Changes in wild anims gigantic size of perhaps differs in Horns of the(1) - small size of Foxes - the sharper teeth * of some of the Carnivora 25-27w Abbeville 2 races of cows of different sizes $15915 u$ "Verschiedenheit" $111-19 w$ Morlot's Bones from Railway cutting, are like present races \& very different from Pfahlbauten - \& of variable size, whereas constant in the Pfahlbauten -. 161 17u "Brachyceros"/w or longiform 18-28w Turf cow almost exclusive in oldest buildings.- In later supplanted by large primigenius races. \& in one region the other larger B. trochoceros.- $w b$ (The whole importance of case depends on the 3 forms being found fossil \& not domestic. C.D.) 162 $1 u$ "einer 1 zahmen", 2-3u "Concise 1 Rindvieh", $5-7 w$ native Concise only tame beasts were Turf-cow \& one small dog. $7 w \tau 10-15 w$ Dogs do not change, whilst cattle do $1631-3 \mathrm{~m} / \mathrm{w}$ In Morges, dog larger 9-11w Turf-swine domesticated towards end of Stone period. $20 \mathrm{~m} 16410 \mathrm{~m} / \mathrm{g}-13 \mathrm{w}$ The Horse of Morges belonged to very small Breed 167 4-6m/4$17 w$ a still smaller race of swine than the Turf-swine.- in a rather recent Building, this Breed a strong Breed - so diversity in the lost race of Turf-swine 168 23-31w or Roman - this race of Pigs like little turf race, but with stronger marks of domestication, \& change in Molar $31705-7 w$ in 563 different Dog from Stone Period $1712 m, 3-9 w$ in 6 th century Swine large race \& above mentioned smaller domestic Turf-races with difference in teeth. $26-31 w$ The shortening of row of teeth.- Here comes question whether race really same as Turf swine $31-32$ "äusserst $3^{\prime \prime} 17221-27 w$ a very small race of cows of rather recent date $17525-30 \mathrm{~m} / \mathrm{w}$ Does not doubt that long-raced common swine descended from S. ferus 176 4-10w Turf swine - wild seems to come nearest to Siamese swine.- 179 10-11m 181 wt He has before remarked that all the Eastern, Chinese, Siamese are pretty closely the same $9-11 m / w$ Berkshire \& Chinese Swine skulls closely alike 17-23w a small peculiar Swiss race somewhat allied to Berkshire. 184 $16-22 w$ Turf swine differs greatly from Berkshire but with some exceptions comes near the small Swiss Race p. $1811867 x, 7-$ $19 w$ Berkshire reverse in Teeth of Turf-swine $20 u$ "Bündtnerschwein", 23-28w This Breed near to Turf swine, like common swine to the wild Swine 29-30u↔ 187 15-19w Berkshire
perhaps related to S . Celebensis $23-24 w$ Berkshire a crossed Breed 188 5-8m/w certain of back of Head common to all wild Swine $10-12 m / 11-15 w$ all tame swine have a * different back Head - $13 u$ "sondern 1 betrachten", $16 u \leftrightarrow, 25 w$ Summary $26-27 u \leftrightarrow$, $32 u \leftrightarrow 1893-4 u \leftrightarrow, 8-9 u$ "das 1 Formen", 16$19 \mathrm{~m} / \mathrm{w}$ not improbable that Turf-swine related to short-faced Breed. 25-29w Turf-swine in wild state assuredly not confined to Swiss. $1908-13 w$ He widely thinks Turf-swine \& Indian swine closely allied.- wb The great point is that a distinct wild species or variety, * has been domesticated - (probably more). Whether the Turf-Schwein be called a race or species is unimportant - it differs osteologically $19117 m, 19-21 w$ Stone sheep different from present common races 192 20$21 \mathrm{~m} / 21 u \leftrightarrow 1933 a$ "Wildschafes"/wt Wild forms not enough known.- $1-5 w$ Thinks many parent-forms probably.- $6-9 \mathrm{~m} / \mathrm{w}$ The only known fossil sp . differs from the known wild $19-20 \mathrm{~m} / \mathrm{w}$ Not one to him known race of sheep agrees with that of Stone Period 195 $1 u$ "den \mid Nalpsthales" $/ 1-8 w$ Here a race of Sheep like those of Wales \& agrees with Stone Race (I do not think this race wild.) 201 16-20w He misses in Stone period one existing race; \& amongst the existing there is one not found in Stone period.- $21 u$ "Friesland | Holland", 22-27w These races agree with the Primigenius race of Stone Period closely in skulls. $2051 w$ This is the same as fossil longiformis of Owen 207 21$22 w$ Found in Turf in Scandinavia 23-24u \leftrightarrow 208 5-7m (Nilsson)/6u "Ausser 1 dieser", 11$13 m / 11-22 w$ thinks that some Norwegian cattle may be descendants not found fossil in Switzerland in Stone Period but domestic races belong to it in Switzerland. 21118 m , $20 u$ "Freiburg"/ $19-22 w$ These cattle belong to frontosus race * $w b$ * The great point is that 3 or 4 species or forms of cattle have been found fossil, \& clearly allied domestic groupd are found at the present day.- $21212-14 \mathrm{~m} /$ 11-16 w apparently a crossed race with that of Brachyceros 214 21-28w agriculturalists make 2 chief Swiss races, which are geographically separated $30-33 w / w b$ all dark coloured - a lighter stripe along Back - This agrees with Brachyceros Race (ie longiform) see next Page $21512 w$ a Southern Breed 21-22u "roth |gefleckt"|21-25w patchy colours This is Frontosus race $2166-7 w$ a Northern Race 19-21w This present at oldest period $20 u$ "Brachyceros", $21 u$ "Frontosus", $22 w$ this is a later importation $32 u$ "nördliche |zweite"। $w b$ ie frontosus $2181 m, 7-8 u$ "romanische

Vieh"/w with great Horns $8 u$ "folgenden 1 rechnen", 27-32w 4 Wild Races primigenius frontosus longiform or Brachy \& trochoceros 220 18u "Simmenthal|wahrscheinlich", 19$20 u \leftrightarrow 221$ 1a "brachyceros"/wt Norwegian wt longiform $8-9 m, 14-15 m / 14 u$ "bracycheros"/ $15 w$ longiformis $16 w$ Final result $17-21 u \pm / w$ longiformis 20-21u士, 22-26w as this found in oldest Buildings, probably endemic in Switzerland, not so B. frontosus $22 u$ "Bos", $27-28 u \leftrightarrow / 28-32 w$ This formerly domesticated; but he does not recognise it in any living race.- $2228 u$ "podolische | romaische"/8-10w origin doubtful perhaps from $10 u$ "Bos primigenius", $11 u$ "trochoceros" $/ w$ or $14-19 \mathrm{~m} /$ 15-17w Indian ox distinct 223 11-14m/13u "Mischformlansehe" 225 15-16u↔/13-16w Robenhausen true old Stone period Q\&o, 23u/w $24 u$ "Roggenl Hafer"/w none 226 4$5 u \leftrightarrow, 9 u$ "Fruchtkappeln", 10-12u "kleinerel Klappen", 14-15w more like this 17-21m/17$19 u \leftrightarrow, 29-30 u \leftrightarrow / w$ apples $33 u$ " 14 mm " $/ 34 u$ "22 Millim" 227 1-3m/3u "oder|Robenhausen" 228 6-8m/6u "Vorkommen IScop."/7u "fehlt 1 ganz", $9 a$ "findet" now this is found $9 u$ "ist I L.", 14-20w Hooker disputes that they can be distinguished $22-24 w$ The P. mughus now in Mountains $25-27 \mathrm{~m} / \mathrm{w}$ case like as in Ireland turf-bogs $31-32 m, 33-34 m, w b$ These plants now only in mountain-lakes $2293-4 m$ (Kölliker)/w this plant now very rare $6-7 m / w$ formerly very common in turf-waters 9-15w Altogether flora of old \& present times nearly the same; so different from Denmark 23-26w yet some traces of vegetation changes in Swiss 230 10-14m/w Except for Bones of Buildings did not know of these 3 animals $21-23 u \leftrightarrow 2318-11 m / 9 w$ changes in animals $13-15 \mathrm{~m} / 13 \mathrm{w}$ no mice or rats 19 w no cats or Hens 23-24u "Hausthierenl Hund", 25-27m/w two races of cows $30 w$ next come Pigs 232 $3 u$ "concise"/wt more modern 5-12w The large House swine from wild swine seem to have suppressed the small previous Turf swine. 16-18w After Concise new domestic beasts appear $17 u$ "grosses Hund", $19 u \leftrightarrow 233$ $w t$ since then wild \& tame are near $1 u$ " 6 . Jahrhundert", 7-10w not much change in domestic animals during the whole immense period 11-15m, 11-23u士, 21-23m 235 20-28w Frontosus race $*$ is absent in older periods - The longiform has endured. The old primigenius race has disappeared; apparently remained until 10th or 12th century. 237 wt oldest period $1-3 u \leftrightarrow / w 2$ races of cows $5-6 u \leftrightarrow, 8 m, 14-15 u \leftrightarrow, 15 a$ "dieser" those $2381 m, 21 u$ "Torfhundes 1 Pferdes", 22-24m, 22-27w These probably
from the East for not known fossil in Europe $27-28 u \leftrightarrow 23910-14 w \quad$ B. frontosus race seems to have travelled from the North.-

RÜTIMEYER, Ludwig Die Grenzen der Thierwelt Basel; Schweigerhaus (Hugo Richter); 1868 [CUL, I]

RÜTIMEYER, Ludwig Die Rinder der TertiärEpoche part 2; Zürich; Zürcher \& Furrer; 1878 [Down]

SABATIER, Armand Études sur le coeur et la circulation centrale dans la série des vertébrés Montpellier; C. Coulet; 1873 [CUL] em, he, ig, phy, y
SB p. 315 to 322 Embryology of Heart \& animal series-
$31513-33 m / \rightarrow / 11-12 w$ inheritance at younger age 316 10-12m/11u "précose | penser" 317 11$13 \mathrm{~m} / \mathrm{w}$ see p319 319 10-12m/w good 24-28m 320 10-17m 322 3-13m, 22-26m

SACHS, Julius Geschichte der Botanik vom 16. Jahrhundert bis 1860 München; R. Oldenburg; 1875 [Botany School]

SACHS, Julius Lehrbuch der Botanik 2te Auflage; Leipzig; W. Engelmann; 1870 [CUL, I]
dic, f, fg, he, hl, ig, oo, phy, sx, tm
NB 633. \vee Vegetable Elements; 638 Separation of sexes in lowest Plants; C.Sprengel on non-sexual fertilisation - was he before Kolreuter?; 641 small Cleistogams imperfect perfect always sterile V 0 ; 665 \& 676 Abstract of Nägeli on intermediate form on inheritance of morphological characters \wp
$1695-6 m 17010-17 m, 31-35 m, 37-40 m, 41-$ $43 m 171$ 8-11m 173 37-41m 175 34-36m 176 8-13m 177 22-24m, 41-43m
8
633 30u "dielactiv", 31u "andere 1 passiv", wb Even in the vegetable K. Sachs in speaking of S. ElementsO he says $6388 m, 16-34 m$, $41 w$ Monoiacous $6394-7 \mathrm{~m}, 18-22 \mathrm{~m}, 30-34 \mathrm{~m} /$ 31u "auch \mid Farnprothallien" $\mid w$ Dichogamy 41$46 m$ (C. Sprengel) $65436 m 65622 m 665$ 13$42 \mathrm{~m} / 24-41 \mathrm{w}$ Nageli struggle 66743 m 676 646 w about inheritance of morphological characters, worth studying $43-47 \mathrm{~m} 677$ 3$34 m$

SACHS, Julius Lehrbuch der Botanik 3te Auflage; Leipzig; W. Engelmann; 1873 [CUL, I]
che, mhp, phy, tm, v
NB1 86 Bloom on fruit \& leaves NB2 Drosera
p771 p782 interesting discussion Carbonic acid in atmos
on catch of clasping movt of Tendrils
p785 Movement causes of
801 He Sprengel quotes Contrivances 0
[The Last section of Book hasO discussion on Variation 0
p134,143 Trichoms
p674 Effect of gravity on movement of Plants

- 118 Work on Harz-elongationO Bot Zeitung/
v $24 \mathrm{~m}, 30 \mathrm{~m} 86$ 32-33m
\wp
118 2m, 50-51m (Hanstein)
\wp
771 1m, 32-47m/47u "de Vries" 772 19u "Verkürzung der" $118-21 \mathrm{~m} / 18 \mathrm{w}$ chiefly $23-32 \mathrm{~m} /$ $25-26 u$ "durch | Oberseite" $/ 25-28 w$ by pressure the concave side $39 m, 41-44 m / 42 w$ (a) $w b$ some tendrils can clasp only thick objects $7736-10 \mathrm{~m} / 7 w$ (a) $24-31 \mathrm{~m} / \mathrm{w}$ press more closely on object after clasping $78214-17 \mathrm{~m} /$ 14-15u "starkl Atmosphäre" 785 16-19m/17$18 u \leftrightarrow 78925 m 8014-13 m, 40-47 m$ (Sprengel)

SACHS, Julius Traité de botanique trans. of 3rd edn; Paris; F. Savy; 1874 [CUL]
cc , che, ct, em, he, mhp, oo, phy, sp, sx, t, ta, tm, v

NB 829 Roots making mark on Marble bears on Chalk in Worm experiments
SB (See other paper)

* (By bloom I refer to movements in my experiments by shaking
803; 831; 846; 850 Bloom; 853; 854 Temp.; 855 Bloom 856 do.; 867 Bloom; 868 on refrangibility of rays which actO in chlorophyll, 875 Bloom; 887 (do); 889 do; 890 do; 901 do; 903 do; 908; 919; 924 Bloom; 936 glycerine extracts \& water; 953 Bloom; 957; 958; 972 Bloom; 986 Bloom; 988 do
〈over〉 996 Geotropism depends on growth; Bloomes \& 999 ; 1010; 1020 Tendrils; Bloomas 1025 to 1031 Bloom; 1035 transitory rigidity, what I have called paralyzed; Bloom 1039 to 1051 Mechanism of Movt; 1056 crossing to 1061 Sexualityes; 1072 dox; 1093 Struggle for existence between closely allied species; 1021 Bloom to 1018 \& all this last Part
ix $w t$ Dissolution of dextrine by protoplasm Traube on passing of fluids out x 49 m xxix $10 m, 36 m$ xxxi $42 m 268-13 m 4320-23 m$ $\begin{array}{llllll}\text { (Nägeli) } & 49 & 13-29 m & 51 & 12-16 m, & 15 u\end{array}$ "métaplasme" $5523-28 m 63 \mathrm{wt}$ The contents of cells cannot be considered as chlorophyll because not in grains $3-4 u \leftrightarrow / 5 u$ "couleur homogène" $/ 3-7 m / w$ \& entire cells contents green 64 21-26m, 22-23u "masse |chlorophylliens" 65 8-9u "des|rouge" $719 u$ "Pisum sativum", 11-14m, $12 u$ "d'aleurone", $13 u$ "légumine", fig.w over 72 5-8m/7u
"albuminoide" 77 35-40m 101 1-4m 116 fig.w 73/74/75 16-20m, 21-24m/21-22u 117 31$36 m, 35-37 m$ (Strasburger) 118 2-7m 119 18-20m/19-20u "bien \l'épanouissement" 153 26$28 m$ (J.B. Martinet) 155 1-3m 769 9-15m 771 1-11m, 34-39m, 40-43m (Nägeli) 772 14-19m 774 4-9m, 32-36m 779 6-16m, 17-19m, 18$32 m$ (Traube) 803 23-27m, 25u "absorber appréciable", 25 w (a) $28-31 \mathrm{~m}, \quad 39-42 \mathrm{~m}$ (Duchartre), $46 m$, wb Plants with bloom must be different - their epidermis perhaps not that protective $804 \quad 14-23 m \quad 820 \quad 24-31 m$ 823 41-43m, 45-46m 824 16-21m 827 2-3u "abstractionltransitoire", 11-12m, $12 u$ "inuline", 13 u "formatrices I cellulaires" 828 35$40 \mathrm{~m}, 35 u$ "albuminoïdes", $36 u$ "transport organes", $37 u$ "nombreuses", 41-46m/41u "albumine", 41u "caseine", 42u "gluten", 45$46 m 8316-14 m, 23-26 m 8398-15 m$, $10 u$ "grains d'aleurone", $13 u$ "formation! protoplasma" $8442-12 m, 14-17 m / 17-18 u$ "les 1 endosperme", 21-24m, 32-35m, 36-42m 846 5$10 \mathrm{~m}, 8-12 \mathrm{~m} 85030-32 \mathrm{~m} / \mathrm{w}$ Drosera $8515-7 \mathrm{~m} /$ w Leaves $7-39 m, 7-11 m, 38-41 \mathrm{~m} / 39 u$ "rosée $q u i " 853$ 12-15m $8545-8 m 855 w t$ for I did not know of analogous observations $10-19 \mathrm{~m}$, $26 u$ " $47^{\circ}-48^{\circ}$ " $/ 25-28 m$ (Nägeli), $28 w$ over $29-$ $30 \rightarrow 856$ 11-16m 857 35-46m 867 29-34m, 40-43m 868 6-11m/7u "faible refrangibilité" $/ 8 u$ "rouges |verts" 11 u "rayons frangibles", 12$13 \mathrm{~m} / 13 u$ "actions mécaniques", $31-37 \mathrm{~m}, 45 u$ "autrelammoniaque", wb | had better try first in dark 875 38-41m, 40-41m 876 1-3m 877 4$5 u$ "danslintensités" 887 11-17m 889 21-27m/ $21 u$ "obscuritélieu", 33-38m/34-36w an error 890 12-15m/9-15w He thinks Mimosa same case as sleep?? $90138-40 \mathrm{~m} 903$ 15-20m/w many facts about growing $21-22 \rightarrow$, $33 u$ "déterminées I pesantent" 904 2-5m 908 13-19m/18-19u "pourlaccroissement" 919 wt ${ }^{\text {In }}$ Drosera is must be elasticity of under cells $1-3 m 924$ 11-17m, 35-39m 925 6-10m, 13$15 m 9367-12 m 9536-22 m, 26-29 m 95725-$ 33m/28-34[...] 858 42-46m (Hofmeister) 972 1$9 m, 31-38 m, 39-41 m$ (Reinke, Sanio) 973 310m, 24-26m/24-25u "allongement Inuit" 986 8-13m, 35-38m/36u "contact I protoplasma" 988 $14-27 m / 7-24 w$ if so, they cannot go back 996 35-37m 997 3-9m 999 23-25m 1003 20-24m/ 20 w leaves 1004 11-18m, 19-22m, 24-43m/ 29-37w owing to growth!! $100514-21 m 1010$ 25-34m 1020 38-43m $10215-17 m, 21-24 m$ (de Vries), 27-37m 1022 wt ??Does he apply growth to sensitive Plants ? May not elongation on one side favour growth $8-14 m$, $20-26 \mathrm{~m} / \mathrm{w}$ (a) $w b$ See how quick P . gracilis bends - 1 think in a few seconds - is it credible that it can grow so quickly? 1023

12-17m (de Vries) 1025 8-12m, 19-20u "parce I influence" $/ 20 \mathrm{~m} / 21 u$ "complétement 1 croître" $/ 16-31 w$ How are movements of leaves of Mimosa \& Desmodium with respect to age $20 x / w b \mathrm{X}$ may be these more sensitive 1026 15-16u "selaccroissement", 28$32 m$, $36-39 m / 36-38 w$ No Stem of RandoniumO $39-43 \mathrm{~m} / \mathrm{w}$ This asserts that tendrils owe only to growth $102737-45 m / 42 u$ "variations I température" $1028 \quad 6-11 m / 3-13 w$ How different from Drosera in which the bending plant is not touched $15-17 w$ Distinct category $30-32 \mathrm{~m}$, $41-45 \mathrm{~m} / 43 u$ "Starrezustände\1863", $46 m$ (Meyen) 102924 $26 \mathrm{~m}, 27 \mathrm{u}$ "différente l latérales" $/ 27-29 \mathrm{~m} / \mathrm{w}$ I do not quite understand $36 u$ "Marsilia", 45-46m (J. Sachs) 1030 wt in climbing plants the movement is only required whilst young \& growing 21-22u "feuilles \mid autonomes" $/ 18-22 \mathrm{~m} /$ w I suppose this is by nutation $23-28 \mathrm{~m}, 35-$ $38 \mathrm{~m} / 36 u$ "Phaseolus", $40-45 \mathrm{~m} 1031$ 26-32m, 33-34m, 35-36m $103445 u$ "rigidité transitoire" $10351-4 m, 6-11 m, 17-22 m$, 23-26m/24u " $490-500$ ", $30-32 \mathrm{~m}, 34-39 m, 42-46 \mathrm{~m} / 42-43 u$ "Bert I Paris" 1036 20-23m/16-23w my test of C. of Amm. is better $22-24 m 1037$ 22-26m (Kabsch), 31-38m, 34-39m 1038 7-12w 1039 1-9m/1-2u "endomostiquelélasticité" $/ 1-3 m$, 19-20m, 30-35m, 45-46m (Unger)/46m 1040 19-21m, wt 1st Protoplasm Passes out of cell - Endosmosis \& Exosmosis may be supported by - but wb be like in effect 1041 wt of cell-wall \& not expelled wt must have some different object $5-8 m, 6-9 m$, 9$12 m, 15-17 m, 35-37 m 104224-29 m 10431-$ $5 m, 36-42 m / 36-37 x / 39-40 x$ 1044 19-25m/ x /19-20m, 37-41m 1046 29-36m, 41-44m 1047 6-10m, 24-29m 1048 1-5m (Pfeffer), 7$12 \mathrm{~m} / 7-8 u$ "que I cellules", $19-26 m, 33-38 m$ (Brücke), 44-46m (Dutrochet) $104932 u$ "pétioles I continuel", 34-36m 1050 6-17m 1051 $4-12 m, z b 1053$ wt under same conditions action with the exterior tends to cease \& the union of 2 differently exposed differentiated the aggregate $1-4 m 10567-10 m / 1-18 w$ may be related to exposing them to different conditions so as to diversify them 1059 2$17 \mathrm{~m}, 31-39 m, 44-46 \mathrm{~m} 10611-7 \mathrm{~m} / 1-5 \mathrm{~m} 1072$ $40-43 m 109318-44 m$

SAGERET, Michel Mémoire sur les Cucurbitacées Paris; Huzard; 1826 [CUL] cs, ds, gd, h, he, hy, sp, t, v, wd

SB1 Sageret 7; p8; 10; 12; 17; 18; 20; 23; 25 to 30 to 55
2d Part; 5; 93; 102; 104; Duchesnes Works? Bailliere or Hort. Soc.; see to

SAGERET, CUCURBITACÉES Duchesnes
SB2 $\square \beta$
8 certain melons more true than others
17 A melon from U. States
25 \& 27 Melon with seeds of different shapes
28 Hybrid melons more vigour 30 more fertile 36 repeated
I must see Duchesnes' works look in Pritzel Catalogue
Part 1, $622-26 m 77-19 w$ He evidently thinks descended $10-14 m / 11-13 w$ all cross 14 $21 m 83-5 m, 7-12 m / 7-15 m * / 12-14 m$ 9 5-9m $11 \quad 6-7 m \quad 12 \quad 15-16 \mathrm{~m} / 10-16 \mathrm{w}$ colour and character 17 21-23m $1811-12 m 208-10 m 23$ $1-3 m, 8-10 m 24$ 13-16m, 17-25m $257-9 m /$ m 26 9-11m $27 \quad 2-7 m \quad 28 \quad 5-9 m / 1-10 w$ confesses it doubtful whether Cucumis flexuosus a species $25-26 m$ 29 9-11m, 10$14 m$, $15 a$ "le" $\mid w \star$, $15 a$ "dudaïm" p30 17$24 m$ / $20 u$ "les 1 naître" $/ 21 m, w b$ all animals \therefore fertile $30 \quad 16-17 \mathrm{~m} / \mathrm{m} \otimes 31 \quad 16-17 m \quad 33 \quad 9 u$ "Koelreuther", 24-25m/u士 34 18-19m 35 1-5m/ $3 w$ Tobacco 36 1-2m, 12-13m 37 19-25m 38 22-27m (Duchesnes) $3920-21 m 401-3 m, 5-$ $6 m / ?, \quad 7-9 m$ (Vilmorin), $13-15 \mathrm{~m} / 14-15 u$ "époquelculture" 41 25-27m 43 1-4m 45 6-8m $461 \mathrm{~m} / \mathrm{w}$ " a gourd $3 u$ "giromont", $5 u$ "pastisson", $6-9 m / 3-11 w$ Look in Bot Catalogues $10-12 m, 14 u$ "dans louvrages"/13$14 m$ (Duchesne)/w He is avitism man 47 15$17 m, 18-19 m 527-10 m, 12-13 m, 15-18 m 53$ $13 w$ gourds $5410-11 u \leftrightarrow / 8-13 \mathrm{~m} / \mathrm{w}$ variation \& tendency to hybridise does not go together $557-13 m / 10 u$ "bastisson"/12w V. supra
Part 2, $513-17 m 931-2 m, 15-16 m / 5-15 w \times$ Hence I suppose fertile $1027-12 m 104 w t / 1-$ $11 w$ all these plants appear cultivable on same system, so constitutions not different. $6-11 m / w$ other cases

SAGERET, Michel Pomologie physiologique Paris; Hizard; 1830 [CUL, on B]
$\mathrm{cc}, \mathrm{ch}, \mathrm{dv}, \mathrm{f}, \mathrm{fg}, \mathrm{gd}$, he, hy, in, phy, sl, sp, spo, sx, t, ta, tm, v, wd, y
NB 6 compare grafting \& Hybridisation are there any exceptions to plants of same Genera being grafteable.-; $9 ; 13 ; 14 ; 16$ effects of graft \& 44 summing up $=; 43 ; 47$; 48; 65 as odd as Crinum being more readily impregnated by foreign species; 72; 105; 106; 126; 134; 136; 138; 143; 146; 151; 153 to $158 ; 161 ; 168 ; 217 ; 218 ; 222 ; 228 ; 231$ to 404; 491; 552 to end
$\mathrm{SB} \square \beta$
17 Sterility from grafting Q

43 \& 72 seeds from grafting Pear on Quince gives more varieties than on pure stock
47 Contrasts the diminution of size in seeds of fruit-tree, with increase in size of nuts, Almonds \& chestnuts by selection
65222 some vars of pears succeed better on Quince Qan than on own stock (like case of Crinum) Q
106 The more a plant departs from type the more tends to depart (contrast with opinion of limit)
126 on double fecundation in melon like Thwaites Inula case
136556 on "variantes" or slight direct variation from conditions
155 does not believe in acclimatisation, only in seedlings vegetating at different periods
218 on changes in fruit-trees
262 on some pears \& apples being true by seed
321, 346 Peach does not succeed equally well on all plums Quo
358, 364, 367, 382 Remarkable vars of cherries - good to quote as more than trifling
398 Work on Gooseberry
561 in characters of parents in Hybrids N.Q. 569 two Fathers

6 23-26m 7 10-12m 9 14-17m 13 10-13m 14 9-10m, 24-26m (Thouin) 15 26-28m 16 19-
 $22 m \quad 43 \quad 24-27 m \quad 47 \quad 8-10 m, 18-23 m, 20 u \leftrightarrow$, 27-28m 65 24-28m, 25-26Q*, 25u "chosel remarquable", wb Coignassier is quince 668 12"...", 20-22m 72 3-6m (Cabanis) 105 1-4m $1068-12 m 1075-9 m / w$ like hybridisation 126 7-11m/12-13w like Fuchsia 14-17m/15-16Qas $1275-6 \mathrm{~m}, ~ 12-13 \mathrm{~m}, 21-25 \mathrm{~m}$ (Brongniart) 134 2-16m 136 10-14m, 16-19m, 21-28m 137 17$22 m, 21-28 m 13811-17 m, 21-23 m 14313-$ $17 m, 17-19 m 14611-14 m 15124 u$ "datura stramonium" $/ w b$ is it N. America? 153 10$13 \mathrm{~m} / 13 u$ "crois \mid plus " $/ 10 \mathrm{w}$ acclimatisation 28 m $1553-7 m, 9-15 m, 22-25 m 15713-16 m 1583-$ $5 m$ (Thouin) $161 \quad 19-22 m \quad 168 \quad 12 u$ "arbres hybrides", 16-18m, 18-19m 217 18-22m (O. de Serres), 22-26m 218 10-21m (Duhamel) 219 20-23m 222 13-21m/16-18Qu, 22-27m 228 24-26m/24-25? 231 1-5m/2w p. 251 8-13m 233 2-11m, 12-18m 239 10-14m (Knight) 240 13-14m 241 13-16m/5-27w How inexplicable that the improvements should suddenly stop, as soon as fruit gets arbitrarily good.- 244 $11-14 m \quad 245 \quad 1-5 m / w t / 1-15 w$ By selecting these poor seedlings, the race passes through many changes.- this perhaps explains it; but then we must suppose that
all the good old fruits have been sudden sports!!! or they have been long individually exposed to same conditions $2461-6 m, 7-$ $10 \mathrm{~m} 2471-3 m, 10-13 \mathrm{~m} 24822 \mathrm{~m} 25014-20 \mathrm{~m}$ 252 1"..., wb X Perhaps whole case resolves itself into that good fruits do not come in first generation - V. Mons choosing spicy plants has relation, Poiteau says, to their bearing early 253 28..." 257 3-8m 258 11-14m 259 9$11 m \quad 260 \quad 16-19 m \quad 262 \quad 7-12 m, \quad 27-28 m / 28 u$ "leur espèce" 263 2-3m, 4m, 14-16m 264 3-4m 265 13u "Belges", 20-24m 266 7-9m 271 2$4 m / w t / 1-5 w$ very true Van Mons all bosh except so far better try successive seeds seedlings than of established pears which may have been produced suddenly C.D. 272 25-28m $2734 m, 5-9 m 288$ 10-13m (Van Mons) 289 13-17m 293 11-15w I never knew what the paradise stock was $14-17 \mathrm{~m} 296$ 22$26 m 297$ 3-8m $2997-9 m$ • 303 19-22m, 27$28 m 306$ 3-6m $3136-7 m 32015-17 m 32117 u$ "pêcher", 18-21m/18u "prunier", 24-25Q®o, $25-28 m 3251-4 m 3465-8 m, 9-12 m, 13-15 m /$ $14 w$ for plums $22-24 m, 23-26 \mathrm{~m} / 24-25 u$ " ll | abricotiers", 25-27m/Qג 351 2-4m 355 1220 w Before rereading this be sure to look at Loudons Ency of Gardening p. 922358 16$20 \mathrm{~m} / 17 \mathrm{~m}$ 364 16-24m/19-20x Q 367 2-4m/ x /Q $5-7 m, 13-15 m / 14-17 w$ Monter 17-19m, 20-21m $3694-5 m, 21 u$ "soixante-quinze" 379 $3-5 m, 24-26 \mathrm{~m} / 24-25 x$ /u $\leftrightarrow 38025-26 \mathrm{~m} /$? 381 14-17m 382 3-5x /4-6m 393 20-23m 398 23$24 m 4006-11 m, 12-16 m 404$ 18-22m 491 22$26 m 552$ 24-28m $5541-4 m 55516-19 m /$? 556 $20-25 m$ 558 25-28m 559 6-13m 561 25-28m/ 27 u "non dans une fusion" $5621-2 m, 3-7 m$ $5652-3 m / 3 u$ "plus étonnante" 566 17-20m 569 24-28m 571 10-15m (Vilmorin)

SAINT BARTHOLOMEW'S Hospital reports ed. J. Andrew and T. Smith, vol. 11; London; Smith, Elder \& Co.; 1875 [Down, FD]

ST. CLAIR, George Darwinism and creation London; Hodder \& Stoughton; 1873 [Down, I]

NB1 〈author's address)
NB2 O/
SAINT-HILAIRE, Auguste de Leçons de botanique Paris; P.-J. Loss; 1841 [CUL]
af, ch, ci, cr, ds, em, fg, gd, h, hl, ig, in, mhp, mn, no, oo, or, phy, rd, sp, sx, sy, t, ta, tm, is, v, y
SB1 $\square \beta$
57 analogies, Tillandsia like Lichen (172)

63 Rudiments of many organs, a so called gland
143 \& $153 Q$ abnormal * organ in class, variable
145 good case of Balancement: 199.-619 Q 183 Q var in individuals analogous to difference in classes
226 species turning into branches
301 Q on passages being general 508 stronger 541 do
407 Rule of colours (same for vars \& species)
413 Embryology in plants irregular flowers at first regular
442 rudimentary stamens- 475 of Pistils: 637

- 446 var. in individual \& differences in species?
448 on anthers of Asclepias
516 two kinds of placentation in same genus characterising two sections of genus = passage by jumps possible $=$

548 do on ovules

572 a multitude of flowers are impregnated in bud. strong case of - in Goodenia
617 seems to think multiplication sign of highness
A under classification allude to Ch. 7 my discussion showing abnormal parts variable
711 Genus not natural when founded on one character
754 on classificatory value of different parts of seeds; it is in fact embryology
756 On great difference in cotyledon in 3 allied plants, showing no charcater is constant
SB2 1β
761 Ash 500,000 seeds
763 introduced plants into S. America
782 \& 784 on value of character, according as it allies itself with others, which is inferred simply from being constant
786 on value of characters good - embryo most important, yet it is a whole
787 direction of embryo in Helianthemum, very different
788 good showing that physiological importance no rule, because importance of all characters variable.
789 Remarks on Mirbels views on classification
791 \& 793 \& 814 on High \& Low plants good m.s. remark
793 on series not being lineal
815 good case of impossibility of arrangement
818 Monstrosities are only anomalies of the species Q

SAINT-HILAIRE, A., BOTANIQUE
821 Classification of varieties.
826 no resemblance of embryo in plants as in animals
834 Important organs may vary in early stocks: hypothesis. 836
confirmed by Owen on swim bladder in vol on Fishes
SB3 35; 43; 47; 51 to $57 ; 63 ; 66 ; 127 ; 138$; 143; 145; 152; 154; 159; 170; 171; 172; 183; 195; 199; 226; 297; 301; 312; 332; 352; 355; 356; 358; 364 series in Pappus; 369 in Nectaries; 375; 391; 403; 407; 410; 413; 415; 417; 418; 422; 439; 441; 442; 446; 448; 454; 461; 475; 481; 482; 508; 509; 515; 516 SB4 526; 534; 541; 548; 554; 556; 568; 570; 571; 572; 587; 590; 599; 600; 613; 616; 618; 619; 625; 629; 630; 633; 637; 639; 643; 652; 708; 710; 712; 714; 720; 734; 753; 754; 758; 760; 763; 767; 772; 779; 780; 782; 784; 786; 788; 791; 793; 794; 798; 810; 813; 814; 815; 816; 818; 821; 823; 826; 833; 836; 839
title page $z 357-11 m, 29 m, 33 m 361-3 m 43$ $1-2 m 474-7 m$, $33 m 481-5 m 511-3 m, 7-8 m$, $23-24 m 5328-30 m 574-5 m, 6-7 m, 8-11 m 63$ 29-33m 66 17-19m, 22-28m, 30-33m 70 28$30 m 7123-24 m 891-8 m 127$ 21-23m, 21-22m 138 13-18m 143 18-19m, 26-33m/Q 28-33w/ $w b$ Case of double organs No. not exactly. but of same on different slates $\rightarrow 1456-8 \mathrm{~m} /$ Q $8-11 \mathrm{~m} / \mathrm{w}$ How is this in Cauliflower 152 $29 u 1531-3 m, 21-23 m, 30 \mathrm{~m} / \mathrm{c}$ " 5 " $/ \mathrm{w}+81154$ 1-7m 159 4-9m, 21-30m 170 27-33m 171 30$33 m 1721-4 m, 21-24 m, 29-31 m 1734-9 m 183$ 4-6m, 11-15m/Q 195 19-22m 198 20-33m 199 1-3m/Q 226 30-32m 297 15-19m 301 5-6m 312 24-29m 332 9-13m 352 14-15m $3554-8 m /$ w is there not analogy or relation with masssizes? $17-18 m, 27-28 m$ * 356 9-13m 358 11$14 \mathrm{~m} 36411-15 \mathrm{~m}, 18-21 \mathrm{~m} / \mathrm{w}$ series in pappus $24-28 m 3691-2 m / w$ Then not true nectary! 375 16-25m 391 1-7m, 10-12m 399 1-4m, 5$8 m, 11-13 m, 21-24 m$ (Schleiden) $40320-21 m$, 24-26m 407 9-12m, 14-17m, 23-31m/23u "le même", $24 u$ "jaunelbleu", $30 u$ "bleues", $31 u$ jaunes", $33 m 40814-17 m 410$ 18-19m, 22$25 m$, $27-29 m \quad 413 \quad 7-10 m \quad$ (Schleiden)/w Embryology $415 \quad 16-23 m / 14-30 w$ Laws governing abortion 416 9-11m 417 6-8m, 10$12 m, 15-18 m 4184-6 m / 4-20 w$ as many exceptions as facts $25-27 \mathrm{~m} 4225-6 \mathrm{~m} / \mathrm{w}$ Law of variation $4395-7 m 44114-15 m 4428-10 m$, $11-12 m, 15-17 m, 20 u$ "doigt | Gallinées", 27$28 m$, 31-33m 443 1-4m 446 9-15m/10u " M. Mohla", $14 u$ "la|des", 14a "grains" in same genera 447 15-19m $4483-6 m$, 18m, 19-21Q $23-25 \mathrm{~m} 45411-28 \mathrm{~m} / \mathrm{w}$ number of non varying characters 455 zb 461 20-24m 475 10-16m,

16-17m 481 12-16m (Guillard, Schleiden, Vogel) 482 24-26m 508 15-19m/Q 509 30$33 \mathrm{~m} / 32 u$ "altranché" 515 30-33m $516 \quad 1 \mathrm{~m} / u$ "axiles | Puisque", $27 m 517$ 1-10m, 7-12m/7-8u "placentas axiles" $111 u$ "pariétaux |axiles", 13$14 m, 21-22 m, 23-25 m 526$ 21-25m 534 24 $26 m, 29-31 m / 29 u$ "sans exception" 541 19-25m 548 2-11m, 24-26m, 27-30m, 30-31m, 32m, $33 m, w b$ I wonder how if species $5491-2 m$ 552 4-6m, 20u "M. Schleiden" $119-22 m$) 554 19-21m 555 zb 557 4-20m (Schleiden) 56814 $18 \mathrm{~m} / \mathrm{w}$ curious $57026-29 m$ (Salvert) $5714-7 \mathrm{~m}$ $57230-33 \mathrm{~m} / 30 u$ "une foule" $/ \mathrm{w}$ Q!!? $5731-9 \mathrm{~m} /$ 4-5Q 577 3-5m 587 1-11m 590 30-33m 591 $1-3 m, 4-6 m, 6-8 m, 16-19 m 5991-7 m, 7-12 m$, 13-19m, 20-22m $60031-32 m$ (Jussieu) 613 3$4 m / w$ not so in animals Owen $61633 \mathrm{~m} / 32-$ $33 w / w b$ How made out value of series 617 wt let have no nervous system, no man alsoO head 1-2m, 29-30m, wb If most complicated \& altered form is to be highest - no for worm forms first - origin might then be highest.- 618 9-13m 619 20-22m, 23-25m, 28-29Q 29-31m 625 2-6m 629 20-22m 630 $10-13 m 631$ 13-15m, 17-22m, 23m 633 12$19 m$ (De Candolle, Guillard, Schleiden) 637 wt V.p. 643 How know ever existed? 2- 6 m 639 4-8m (Roeper) 642 28-33m 643 4-12m, 15$16 \mathrm{~m} / \mathrm{u}$ "Commencement I développement", 20$21 u$ "suppositionlthéorique" 652 17-20m, 21$23 m \quad 708 \quad 5-7 m \quad 710 \quad 25-29 m \quad 711 \quad 18-21 m$ (Kunth), 21-22m 712 4-17m, 7-9m/9-12u "mais | faible" $/ 8-17 w$ good similarity $17-31 \mathrm{~m} /$ 18-22u土, $24 u$ "n'en! pas", $25 u$ "secs", 27-28u "contraire | génériques" $7135-8 m, 16-18 m$, 21$23 m, 26-27 m 7141-5 m, 6-8 m, 12-18 m 720$ $20-23 m 73425-29 m \quad 735$ 22-24m 753 16-17m $7541-3 m, 12-15 m, 30-31 m 7551 a$ "sa"/wt the embryo $1-4 m / w$ like embryonic animals $5-$ $6 m, 7-10 m, 10-12 m$, $13-14 m, 20-21 m$, 22$25 m, 26 u$ "n'est 1 caractère", 28-32m 756 1-4m $75811-27 w$ Means of dispersion of seeds by springing of capsules \&c \&c $75914-17 \mathrm{~m} / 17-$ $26 w$ it is curious both seeds \& envelopes, being thus furnished good argument for final cause. $19 u$ "les fruits", $20 u \leftrightarrow, 21 u$ "graines elle", 28-29m $7609 u$ "corniche I haute"/8-12w What kind of seeds. Gilliflower \& Sedum 761 $4-5 u$ "cing 1 fruits", $6 u$ "trois mille", $21 \mathrm{~m}, 23-$ $24 m 762$ 32-33m 763 1-11m, 17-19m, 21u "aucunelculture", $30-31 \mathrm{~m} / 31 u$ "laines" 767 $10-11 \mathrm{~m} / 10 u$ "cent ans", $14-15 \mathrm{~m} / 15 u$ "laissées vingt", $25-26 \mathrm{~m} / \mathrm{u}$ "vingt|ams", $33 u$ "moins \mid siècle" 768 16-20m 772 17-20m 779 27-30m $780 \quad 4-8 m \quad 782 \quad 25-30 m, 31-33 m / 31 u$ "s'ill possible", wb We know from experience that any one character is general it will go with others - all organization is corelative 7848 -
$10 m, 13-16 m, 19-20 m, 21-23 m, 23-24 m 785$ 4-5m/4u "caractèrelpeu", 12-16m, 17m, 24 $25 m 7866-7 m, 7-8 u \leftrightarrow, 8-10 m$ (De Candolle〈both〉), 13-15m/15u "d'ailleurslmoins", 1518m, 26-28m/27u "delcaractères", 31-33m/! 787 4-7m, 4-6m, 6-8m/7-8u "ne! isolé", 13a "caractères" of embryo $12-15 \mathrm{~m}, 14-15 \mathrm{~m} / \mathrm{u}$ "leur 1 constance", $16-17 \mathrm{~m}, 22-25 \mathrm{~m}, 27-30 \mathrm{~m} /!/$ $30 u$ "del différente", wb How well worth getting good Botanist to explain variation of do $7886-9 u \pm, 14-16 m, 16-17-19 u \pm, 20-25 \mathrm{~m} /$ $21 u$ "nous 1 serions", 25-26u "lalMalpighia", 27-31m $7891-4 m, 5-8 u \pm / 7-10 w$ where has Mirbel done this?? $8-18 u \pm, 18-24 m$, wb Descent is the key, least variable will then be best guide, whatever the part may be 791 wt Whatever parent form we can trace * modification $w t$ \& so agrees with my theory $20-24 m / 25-27 \mathrm{~m} /!!/ 28-32 m / 4-33 w \quad$ Schleiden Compositae Hooker some parasite So in parasite Lerneidae \& cirripedes, especially males of $33 \mathrm{~m} / \mathrm{u}$ "Renonculacées", wb There is no highest, there is most modified but when much rudimentary, what we must call useless, \therefore not highest \& by man's standard high \& low. The impossibility of saying what is highest is conformable to my theory which is highest var of cabbage or dog? most changed will not do - put man on one side having any index - except most unlike a primary simple form $7931-3 m, 13-15 m, 18$ $20 \mathrm{~m}, 23-25 m, 25-27$!, 27-31m/27-28u "moins 1 Composés", $33 m 7941-2 m, 4-6 m, 11-14 m, 15-$ $17 \mathrm{~m}, 19-21 \mathrm{~m}$ (Jussieu), 22-24m, 25-26m 798 1-3m, 4-6w - type of family $7996-7 m, 7-$ $10 \mathrm{~m}, 10-11 \mathrm{~m} 8101-3 m, 5-9 \mathrm{~m}$ (Schleiden) 813 $24-27 \mathrm{~m} / 25-26$ u "nous \mid rapports" $814 \quad 7-15 \mathrm{~m} /$ 12-13u "les 1 complètes", 17-20m, 20-24m, 24$26 m 8152-4 m, 8-10 m, 11-13 m, 15-16 m$, 117 w What case of impossibility of arrangement $8165-11 \mathrm{~m} 81810-15 \mathrm{~m}, 16-17 \mathrm{~m}$, $20-22 m, 24-27 m 8213-7 m, 8-13 m 8237-11 m$, $19-20 m 8267-13 m / 1-33 w$ it does not appear that embryo of Dicot, is like at any stage embryo of Monocot or Cryptogamic plants Even Dicot \& Monocot are quite unlike in earliest age. as shown by name)- wb N.B Reflect on plants not passing through any larva-embryonic state (?because they come at once to play their part in nature?) good selection. $8278-11 \mathrm{~m}, 16-18 \mathrm{~m}, 18 \mathrm{~m}, 18-24 \mathrm{~m} /$ $19 u$ "surl différents" $83314-15 m, 18-21 m, 27-$ $28 m \quad 834 \quad 9-12 m / w t / 1-20 w \quad$ N.B X May use account for diversities in important characters in families, to their having varied in the lower or parent stocks. $83511-16 \mathrm{~m}$, 25-26m, 29-31m 836 17u "fleurs", 20-24m/20u "grandes différences", $25 u$ "bornerai", $26 u \leftrightarrow 1$
$26-30 w$ V. Lindley on the rest $83711 u$ "mucilagineuses", $28-32 \mathrm{~m} / 28 u$ "mucilagineuses"/29u "morphologiques"/30u "carlces"| w I think there has lately in Linn Trans 839 $1 \mathrm{~m} / \mathrm{u}$ "mêmelet"

SAINT-HILAIRE, Auguste de Voyage aux sources du Rio de S. Francisco 2 vols.; Paris; A. Bertran; 1847-48 [CUL]
beh
vol. 1 NB Unreadably Dull

SB $\square \Re$

17 Aboriginal Indians cultivated the ground; 70 a proprietor can sell on $1 / 10$ of his stock of cattle yearly
17 7-10m 70 13-16m 71 1-2m, 9-11m
vol. 2 NB Unreadable
ST. JOHN, Charles Sketches of the wild spots and natural history of the Highlands London; John Murray; 1878 [Down, FD]

ST. JOHN, Charles A tour in Sutherlandshire 2 vols.; London; John Murray; 1849 [CUL] beh, br, cs, hy, no, oo, sx, t, v, wd
vol. 1 NB see end of Vol 2 for Abstract
x 16 m xi $19 \mathrm{~m} / \mathrm{u}$ "Fighting of Stags" xii 10 m xiii $15 m 1513-16 m 7414-18 m \quad 109 \quad 21-26 m$ $1343-8 m$
vol. 2 SB1 Vol I; 15; 74; 109; 134
Vol 2; 178; 208

SB2 $\square R$

Voll
15 On Herons breeding on ground
74 On cross of common \& wild cat - simple facts
134 on increase of Grouse when clever keeper \& trapper kept -
Vol 2
178 More particulars on what Birds have increased by destruction of vermin 179.
179- Q on resemblance of the several grouses to where they haunt; \& importance is shown by the great increase in numbers when Hawks destroyed.
iii $19 m, 22 m / u$ "Fox-chace" iv $16 m$ vi 17 m vii $4 m 1784-5 m, 12-17 m 1794-20 m / 10-11 Q 208$ $1-3 m$

SALTER, John The chrysanthemum London; Groombridge \& Sons; 1865 [CUL]
sports, t, v
NB Laws of Variation; The first breaking or change is the difficulty- \rightarrow p.3; 41* to 43 . Sports

SALTER
2 21-26m, 26-27m 3 15-18m, 24-27m 6 25$27 m 727-32 m 413-6 m, 10-12 m, 14-17 m, 18-$ $20 m, \quad 27-28 m, \quad 29-31 m, 31-32 m, \quad w b$ p. 3 primordially yellow $423-6 m, 8-10 m, 16-18 m$, $19 a$ "Dr. Brock" yellow kind $21-25 \mathrm{~m} / 21 \mathrm{u}$ "yellow", 31-33m/31u "in suckers" 43 9-15m/ 10-12m

SALTER, John William and WOODWARD, Henry A descriptive catalogue of all the genera and species contained in the accompanying chart of fossil crustacea, including an abstract from the Geological Magazine, Oct 2, 1865 London; J. Tennant; 1865 [Down]

SAMOUELLE, George The entomologist's useful compendium London; Thomas Boys; 1819 [CUL, pre-B] t

NB 338 Explanation of terms
SAPORTA, Gaston de Le Monde des plantes avant l'apparition de l'homme Paris; G. Masson; 1879 [Botany School, I]

SAPORTA, Gaston de and MARION, Antoine Fortuné L'Évolution du règne végétal: Les Cryptogames Paris; Germer Baillière \& Cie; 1881 [Botany School]

SAPORTA, Gaston de and MARION, Antoine Fortuné Recherches sur les végétaux fossiles de Meximieux, précédées d'une introduction stratigraphique par Albert Falsan Lyon, Genève, Bâle; H. Georg; 1876 [Botany School]

SAPORTA, Gaston de and MARION, Antoine Fortuné Révision de la flore Heersienne de Gelinden Bruxelles; 1878 [Botany School, I]

SARMIENTO DE GAMBÓA, Pedro Viage al estrecho de Magellanes Madrid; Imprenta Real de la Gazeta; 1768 [Down, pre-B, S]

SAUSSURE, Henri Louis Frédéric de La question du lac Genève; Charles Schuchardt; 1880 〈extract from Journal de Genève〉 [Linnean Society of London, I]

SAVAGE, Minot Judson The religion of evolution Boston; Lockwood, Brooks \& Co.; 1876 [Down]
$\mathrm{NB} O /$

SCHACHT, Hermann The microscope London; Samuel Highly; 1855 [Down]

SCHERZER, Kärl von Aus dem Natur- und Völkerleben im tropischen America Leipzig; Wigand; 1864 [Down, I] \wp

SCHERZER, Karl von La province de Smyrne Wien; Alfred Hölder; 1873 [Down, I]

SCHIFF, Maurice Leçons sur la physiologie de la digestion 2 vols.; Paris; Germer Baillière; 1868 [CUL]
beh, che, 00 , phy, t , tm
vol. 1 NB
64 vegetable feeders can undergo greater \& more prolonged fatigue \& thus whole structure is in condition. Curious remarks, explaining this
379; 380 Experiments; 396 Expts; 387 Tests; 396 Tests
0 os
p255 p261 p263 266270 Blushing

- 270

16 Vogar
63 26-35m 64 1-2m, 13-20m/13u "activité", 24-27w Esquimaux Dogs 69 27-32m 73 3$7 m / 3-11 w$ so probably C. of Ammonia not digested \& is not nutritious $30-32 \mathrm{~m} 25514-$ $17 w$ l ought to read the previous Chapter 19$25 m 256$ 14-17m 261 12-16m, 17-19m 263 510 m 266 13-16m 268 2-8m, 18-21m 270 11$15 m 37610-12 m / 13-15 \mathrm{~m} / 2-15 \mathrm{w}$ There is this difference that it digests at ordinary tempsso must stomach of Frog $3791-4 m, 15 u$ "substance albuminoide"/w cabbage juice 17$18 \mathrm{~m} / \mathrm{w}$ Extract of Belladonna 29-31m 380 1$13 w$ l ought to add C of soda to a leaf which has dissolved cube of albumen \& see if any precipitate $15-17 w$ see p. 382 for salt. experiments 382 21-22m/u "Lelmercure"/w see p. $38738319 u$ "acide tannique"/18-19w Try $23-25 m 38727-30 m, 33-35 m 388$ 8-10m $390 \quad 30-33 m$, $34 m 39630-35 m 41131-38 m /$ $34 w$ Have read $41313-15 m, 45-46 m 4142-$ $4 m$ 19-20m
vol. 2 NB1 \langle not $C D\rangle$
NB2 150 Exper. with Milk done; 154 Exper. done; 157
Drosera 4 to 200 * 245299 304; 281; 304 Blushing 527; 539
410 Expression 415 * 0
SB $\square \beta\langle b y$ Emma
Schiff
Vol 1. p. 73 Digestion modifies food \& therefore probably, C of Ammonia is not strictly digested by Drosera.
－〈CD〉 p．376．On Digestion of higher animals requiring heat
$\Leftrightarrow\langle C D\rangle$ p．379．On changes of albumen thro＇digestion Do－On certain forms of albumen $\checkmark\langle C D\rangle$ not precipitated by boiling 383．Digestion requires an acid．
390．All albuminous substance acquires same properties thro＇digestion
Vol 2
p． 4 On strength of acid best for digestion
18 On digestion of cold－blooded animals．
22 \＆ 25 On dissolution of albumen by weak acids X 〈CD \rangle
〈over〉 Vol 2
$\Leftrightarrow\langle C D\rangle 29$ On replacements of acids．
$\rightarrow \infty\langle C D\rangle 38$ Fibres of fibro－elastique cannot be attacked by pepsine．
$\Leftrightarrow\langle C D\rangle 56$ On weakness of acids best for digestion．
$\Leftrightarrow\langle C D\rangle$ On replacement by various acids．
77 It is doubtful whether pepsine is an albuminous substance：Mem－my pepsine not really pure．
80 There is a relation between quantity of pepsine \＆digestive matter
86－The same subject
$114\langle C D\rangle$ Demonstrates that pepsine is destroyed during digestion
126 Same subject
142 Gastric juice cannot affect amedon
$145 \Leftrightarrow\langle C D\rangle$ Excellent description of changes in muscular fibres from digestion of W．I did not know when I described my changes．
$\langle o v e r\rangle\langle C D\rangle\langle u\rangle$
p387 Remarks of Millon with a fly
〈over〉 Schiff Vol 2
$\Leftrightarrow\langle C D\rangle$ 149．On angles of cubes of albumen being dissolved．
－$\langle C D\rangle 150$ On liquid casein or Milk \＆its coagulation not due simply to the acid－
$153 *\langle C D\rangle$ On solid Casein．His explanation does not apply to my experiments．
－$\Leftrightarrow\langle C D\rangle 154$ On Legumin soluble in water \＆its coagulation by gastric juice．
－$\langle C D\rangle$ Long boiling turns albumens into peptones．
104 Gastric juice of carnivorous \＆herb－ ivorous is the same．
188 Mechanical irritation of stomach causes acid secretion but not true pepsine－ 245 － same subject
196 After copious digestion the stomach is destitute of pepsine
200 On peptogenes
\langle over $249 *\langle C D\rangle$ It appears that if gastric juice does not act characteristically on
gelatine，it at least efficaciously accelerates its modification by acidulated water．
281 The peptic glands seem to be different from the mucous glands．Nevertheless the former present an acid reaction．In Drosera they are combined．
304 〈CD On a layer of mucous preventing the auto－digestion of the stomach． $157 \|\langle C D\rangle$ On digestion of fibro－cartilage \＆on the solution of bones－

4 25－31m／24－29w shows how little acid required $530-32 \mathrm{~m} 17$ wtec， $30-32 \mathrm{~m} / \mathrm{w}$ How about cold－blooded anims $1812 u$＂liquide＂／ $13 u$＂à froid＂ $12-15 \mathrm{~m} / 14-17 \mathrm{~m} / 1-17 \mathrm{w}$ The pepsine of Drosera probably differs from that of warm－blooded but how about cold－blooded in water $35 u$＂néanmoins 1 poissons＂$/ 19-35 \mathrm{~m} /$ 24－35w all related to liquid Albumen 19 1－ $9 m / 7 u$＂deux 1 semaines＂， $19-21 \mathrm{~m}, \quad 33-34 m$ （Spallanzani） $2110 \mathrm{~m} / \mathrm{u}$＂l＇albumine liquide＂$/ \mathrm{w}$ loh 25 12－14m／13u土 $2924-33 m 38 \quad 26-27 \mathrm{~m} /$ 26u＂fibro－êlastique＂ 39 5－6m／u $\leftrightarrow 56$ 18－24m （Brücke） 57 27－31m 58 13－19m 59 24－30m 71 2－10m 77 13－15m，18u＂un lazoté＂｜14－26w it causes inflation of－of Drosera but these seem not to be absolutely pure $8031-35 \mathrm{~m} 86$ 22－26m 114 28－35m 126 23－25m（Brücke），wb He has shown that it is impossible to get pepsine \＆pure without the most laborious operations even if it be possible at all－ 127 $18 u$＂matières albuminoides＂， $24 u$＂graisses 1 intestin＂ 142 4－8m 145 5－28m／［．．．］／9－18w transverse chain of dots which I saw－there being no more $11-27 \mathrm{~m}, 30-32 \mathrm{w} X$ not Page $1462-12 m / / \ldots / / 7-12 m / 8-9 u \leftrightarrow 149 \quad 7-12 \mathrm{~m} / 8 u$ ＂angles＂ $150 \quad 29-32 m 1511-2 m, 23-29 m 153$ $25-30 m, 31-32 m / 30-33 w$ No not so with Drosera 154 15－20m，21－22m 156 13－30m （Blondlot） 157 1u＂fibro－cartilagineux＂ 166 wt／ $1-3 w$ Turn them into peptones $3-6 m 18421-$ $25 m 18813 u$＂sécrétion acide＂$/ 16-17 u \leftrightarrow / 12-$ 17 m （Corvisart） 196 12－18m $2003-6 \mathrm{~m} 202$ $35 m 203$ 1－4m 245 5－7m，15－16w Mechanical irritation $25 u$＂liquide acide＂， $23-26 \mathrm{~m}$ （Tiedemann，Blondlot） 249 9－13m $28123-27 \mathrm{~m} /$ $26-27 u \leftrightarrow / 24-25 w$ Same glands in Drosera $3049 u$＂l＇autodigestionll＇estomac＂， $10-16 \mathrm{~m}$ ， 17－23m（Kölliker），24－25u＂et｜pepsine＂，33－ $35 \mathrm{~m} / 34 u$＂alcalin＂ $41022-28 \mathrm{~m} / 22-24 u$＂très 1 altéré＂，29－33m 411 9－10m，12－14m，15－16m， $19-20 m, 26-32 m * 41430-35 m, 31-35 m 415$ $1-3 m, 12-16 m, w b$ Perhaps for expression I had better read next Chapter $527 \quad 6-8 m$ （Ludwig）／4－12w I have not read this Essay $12-17 \mathrm{~m}, 20-24 \mathrm{~m} 5396-31 \mathrm{~m} 545$ 22－23m 553 4－5m，17－18m，32－33m 554 10－11m，26－27m， $30-40 \mathrm{~m}, ~ 49-50 \mathrm{~m} 5555-6 \mathrm{~m}, 15 \mathrm{~m}, ~ 25-26 \mathrm{~m}$ ，

SCHIFF
$40 m, 47 m 55615 m / u$ "extrait renfermant" 557 $1-3 m / 2 u$ "influences \mid acide" $/ w$ Drosera $47 m /$?

SCHLEGEL, Hermann Essay on the physiognomy of serpents Edinburgh; Maclachlan, Stewart \& Co.; 1843 [CUL]
beh, br, gd, geo, ig, in, is, 00, or, phy, rd, $\mathrm{sp}, \mathrm{sy}, \mathrm{tm}, \mathrm{v}$, ve

NB p.10; p.21; p26,7 to 55; 71; 80; 85; 92; 129; 131; 144; 146; 149; 197 to end

- It might be worth looking to great work to see if he argues his local varieties.
Many for Java \& Celebes
SB $\square \beta$
10 Q Many innocuous serpents have grooved teeth 42 on do. important 47 Q
22 Snakes \& Lizards a good gap well filled up p24
26 Q Great changes in position of viscera owing to shape of body conclusion Ch 7 \& great difference in different forms. External organs more constant
27 Number of vertebrae differing in same species
38 Rudiment of posterior extremities in 3 genera
45 Q Snakes with tips of ribs forming teeth
55 Q Pancreas © spleen differing in species \& varies in individuals
80 NQ Crotalus mutus has spine $\langle u \geqslant\rangle$ not rattle
146 Coluber canus only species of genus in S. Africa \& abnormal species

199 Snakes in Isid of Pacific
203 Section of genus Elaps, trifling distinction in S. America (shows persistence of trifling characters)
206 Corvus cornix \& Corone breeding at Dresden (Ch. 4)
207 Sardinia has many vars. (but not many distinct species)
218 Many Mammals of Japan identical
219 Saurians \& snakes of Japan all distinct from Europe. Frogs the same!
222 to 226,8 - to 235 The Monkey of Timor a darker var. this looks as if endemic \& other Mammals. Much on Zoology of Malay Arch. Philippines \& Ceylon allied!
240 N. America in Reptiles seems to have derived from South (do not range far N.
$107-13 m / 8-10 \mathrm{Q} 2122 a$ "species" approaches to $224-8 m / 3-26 w$ good passage if such organs did not exist now, we shd marvel at the transition. p24 $24 \quad 6-14 m / 8 u$ "difficult impossible", $30 u$ "Pygopus"/30-34m/w Snake or Lizard? 25 36-39m 26 7-13"..."/Q/10u "but|lung", 24-26Q 27-32m, 34u "external"

27 35-39m/37-38u "in | vertebrae" $28 \quad 2 u \quad 38$ 24-28m $425-10 \mathrm{~m} / 5 u$ "salivary", $19 u$ "anterior end", 31u "posterior part", $32-36 \mathrm{~m} / 33-35 \mathrm{~m} / \mathrm{Q} /$ $34 u$ "morelsaliva" $4313-15 m, 26-30 m, 32-$ $36 \mathrm{~m}, 37 u$ "fatal" $4410 c / 9 u$ "germs"/w gums $25 \mathrm{c} / w \notin 45$ 31-34m/Q 36-38m 46 14-18m, 31$32 u$ "developed 1 venomous", 32-35m, 36-37m $471-4 m / w$ Explain origin of teeth $9 w$ Salivary $11-13 \mathrm{~m}, 15 \mathrm{~m} / \mathrm{u}$ "tendinous", $21 u$ "tendinous", $23 u$ "tolarticulation" $481 u$ "dangerous", 1a "consequences"/wt it is painful, at once 5529 $32 \mathrm{~m} / \mathrm{Q} 71$ 1-3m $806-10 \mathrm{~m} / \mathrm{Q} 8522-26 \mathrm{~m}$, 33$36 \mathrm{~m} / 34$?/u "local variations", $37 \mathrm{~m} 8630-33 \mathrm{~m}$ 92 14-20m 99 36-38m 110 37-39m 129 37w Plenty of cases afterwards show no. of vertebrae vary $13137-40 \mathrm{~m} 14421-27 \mathrm{~m} 146$ 9-11m/10u "known 1 Africa", $15 u$ "curious"/19$20 u$ "This ${ }^{\text {species" }} 115-21 w$ a wanderer 149 15-18m * $19716 u$ "most I means", 15-20m, wb Snakes can live without eating 6 \& 18 months $19836-38 \mathrm{~m} / \mathrm{w}$ not volcanic isids 199 $6-9 m, 12-14 m, 19-22 m / 20 u$ "other species"/21$22 u$ "often 1 Antilles", 28a/u "Japan"/w Java 29-31m, 35-38m 205 15-23m 206 17-26m, 26$30 \mathrm{~m}, ~ 38-41 \mathrm{~m} 2078-9 m, 10-12 \mathrm{~m}$, 14m, 1719m, 24-29m $21032-36 m 211$ 34-40m 212 26$30 \mathrm{~m} / 28 u \quad$ "elevation 1 species" $213 \quad 37-41 m$ (Buffon, Lamarck) 216 29a/u "Cameleon"/22$34 w$ Q case, I suspect, of great peculiarity, variable. 31u "Ptytodactilus | nose"/28-32m 217 31-35m 218 17-21m, 27-34m/37-41m (Siebold, Bürger) 219 wt Sea \& Land must have been connected between Europe \& Japan.- 2$11 m / 11 u$ "laudatus" $/$?, 21-25m (Temminck), 29-33m/30-31u "Saurians IOphidians", wb what a difficulty introduction of F.W. Eel in Otaheite \& some of the Antarctic Isds - Do not they breed in Sea. $2203-17 m 221$ 29$31 m 222$ 3-9m, 26-40m, 30-31m/30u "Timor" 223 wt consult Waterhouse.- 1-5m, 6-40m, 13-15m/14u "Timor", 18u 224 2-19m/8u "Timor", 20-26m 225 3-5m (Temminck), 9$36 \mathrm{~m} / 26 u$ "Marianne Islands"/28u "Timor", 34 $36 \mathrm{~m}, 39-40 \mathrm{~m} 226$ 1-8m/1u "Timor", 8-10m, 10-20m, 21-23m, 24-29m, 32u "Marianne" 227 5-13m, 23-24u "Sumatral Borneo", 33-38m 228 wt Sumatra \& Java very different soils 2-9m, 24u "islands। Timor", 27-34m 229 2832m, 33-35m $2303 u$ "and iknown", 5-8m, 9$13 m / 12 u$ "No Antelopes", 14-26m, 26-30m, 34-41m/35u "also 1 tail" 231 17-19m, 22-25m, 38-41m 232 20-24m, 29-36m, 37-42m 233 1823m, 24-36m/25u "Canis |Javanicus" 234 20$23 m, 23-28 m 235$ 11-16m, 33-40m 237 16$19 m 23821-23 m, 29-34 m 2391-2 m, 18-25 m$, 25-34m 240 21-30m $2455 w$ Cuv I p405 246 $\Uparrow 7 w$ l. 409247 12w Edw p375.I./l.p410 248 $\Uparrow 16 w$ l. $409 \Uparrow 5 w$ l.p410 $2494 w$ I p409 250
$\Uparrow 3 w 1.411 \Uparrow 8 w$ Edw p374 col $21.410 \Uparrow 18 w$ Edw p374／l．406 $2513 w$ Edw p378．2／l．417 $\Uparrow 11 w$ Edw：p378 col $2 / 1.4162522 w 1.419$ 11w Edw p377．2／l．413 介5w Edw：p377／I． 414 $\Uparrow 10 \mathrm{w}$ Edw p376 1.412 〈cross referencing of Shlegel＇s arrangement of serpents to other works）

SCHLEICHER，August Darwinism tested by the science of language trans．A．V．W．Bikkers； London；John Camden Hotten； 1869 ［CUL，I by translator］
beh
NB Languages primevally invented difficulty －p． 54
Speculation on grammar
If one admitted＂amabo＂is formed of 3 words I will love，agglomerating amabis I＊ you will love
title page $9 m 545-17 m$
SCHMIDT，Oscar Descendenzlehre und Darwinismus Leipzig；F．A．Brockhaus； 1873 ［Down，FD］\wp

SCHMIDT，Oscar The doctrine of descent London；Henry S．King \＆Co．； 1875 ［CUL］ $\mathrm{cc}, \mathrm{ch}, \mathrm{fo}, \mathrm{hl}, \mathrm{ir}, \mathrm{mg}, \mathrm{no}, \mathrm{sp}, \mathrm{t}, \mathrm{tm}$

NB＋94；97，8；152；174； 214
SB c
p． 97 gives reference to German Palaeontologists who have shown impossibility of separating Ammonites into species．－Now if the exuberance of forms had occurred in only some one sea or at only one time we might easily have had not record－with occasionally a few forms emigrating \＆spreading．good resume of Wurtenberger \＆c
p152 case of apparent convergence of character in Sponges（higher organism）
p174 causes why no two groups or stems of polyps are exactly alike．
p214 Ammonites（like Hyatt）first changing in external conditions
94 2－32m 95 1－14m（Haeckel），23－32m （Agassiz） 97 7－16m（Waagen，Zittel，Neumayr， Würtenberger，$\quad 23-32 m \quad 98 \quad 7-32 m$ （Würtenberger） 152 29－32m 174 1－25m 214 1－ 19 m 215 1－11m，16－32m

SCHMIDT，Oscar The doctrine of descent and Darwinism London；Henry S．King \＆Co．； n．d．［Down］

SCHMIDT，Rudolf Die Darwin＇schen Theor－ ien und ihre Stellung zur Philosophie，Religion und Moral Stuttgart；Paul Moser； 1876 ［Down］
NB not read
SCHNEIDER Der thierische Wille Leipzig； Abel； 1880 ［Down，I］
58 m 1025 m
SCHOUW，J．F．The earth，plants and man together with
KOBELL，F．von Sketches from the animal kingdom trans．A．Henfrey；London；Henry G．Bohn； 1852 ［CUL］
ad，cc，ch，cr，gd，hl，is，mhp，oo，sp，t，ti， tm，v，wd
SB1 ロஅ p．4；6；12；17；18；23； 27 to 29； 59，60；64；81；95；102；138；140；172；210； 218
SB2 $\square \beta$
12 on great number of naturalised plants on Islds
18 argues for double creation from Alpine Plants（Glacial Chapt）
20 thinks higher animals never are created at 2 places
29 Alpine plants extremely variable
59 Parallelism in Labiatae \＆ Scrophulariaceae
95 Lotus of Hot Springs in Hungary
218 There have been instances of Convolvulus arvensis sending papillae into plant，which supports it very interesting in relation to Cuscuta（Ch．4）（marked vars）
4 32－34m，35－40m 6 1－2m 12 21－31m／21－23！！ $22 u$＂seal recent＂，26－27u＂extent｜where＂ 13 7－41m，10－14m／！！！，21－23！！！，33－35！！！ 18 1－2m， $22-27 \mathrm{~m}, 33-40 \mathrm{~m} 1914-16 \mathrm{~m}, 39-40 \mathrm{~m} 20$ 8－ $10 \mathrm{~m}, 29-33 \mathrm{~m} / 29 \mathrm{u}$＂many places＂， 29 u ＂single＂ 23 18－19m，37－40m 24 19－25m／w never has 27 20－30m $2828-31 m, 33-34 m 291-4 m 59$ 32－40m 60 30－34m 61 19－28m，28－36m $6435-$ $41 m 666-9 m 8132 u \pm, 36-41 m 8218-25 m 93$ $2-3 m \quad 95 \quad 35-40 \mathrm{~m} 10235-36 \mathrm{~m}$ ，wb many species are required to confine \＆modify habits of forming species． $1035-6 \mathrm{~m} 13818-$ $32 \mathrm{~m} 13923-28 \mathrm{~m}$ ，34－37m，38－40m $1401-4 \mathrm{~m} /$ $w t / 1-4 w$ ？by acclimatisation？ 141 13－16m $17226-29 m 2101-6 m, 40-41 m 21814-17 m$ ， 23－29m catalogue attached \wp

SCHÜBELER，Frederick Christian Die Pflanzenwelt Norwegens Christiania；A．W． Bragger；1873－75［Down，I］
NB 381， 82
$38137-41 m$

SCHUFELDT, R.W. Osteology of the North American Tetraonidae 1881 [CUL.1900, I by author]
title page "Osteology".u
SCHULTZE, Fritz Kant und Darwin Jena; Hermann Dufft; 1875 [CUL]
NB1 O/
NB2 Hand revisionsO
25; 26; 27; 28; 32; 38; 46; 47; 48-50; 55-58; 61 (1775); 65; 76; 84 \&

SCHULTZE, Fritz Die Sprache des Kindes (Darwinistische Schriften 10) Leipzig; Ernst Günther; 1880 [CUL]

SCHULZ, Ernst Nine plates of photographs: facial expression [later than 1867] [CUL]
wr to most photo-captions
SCHWANN, Theodor Manifestation en l'honneur du Professor, Liége, 23 juin 1878 Düsseldorf; L. Schwann; 1879 [Down]
[SCIENTIFIC LAYMAN] The new truth and the old faith London; C. Kegan Paul \& Co.; 1880 [Down, I] \wp

SCORESBY, William Jun. An account of the arctic regions, with a history and description of the northern whale-fishery 2 vols; Edinburgh; Archibald Constable \& Co.; 1820 [Down, pre-B]
gr, tm
vol. 1 NB p. 457 whalebone; 485 Balaenoptera (6-9 miles)
$25114-17 \mathrm{~m} / 15 u$ "three $\mathrm{in}^{\prime \prime} / 14 u$ " 100 " $/ \mathrm{w} 480$ $\mathrm{ft} 22-24 \mathrm{~m} / 23 \mathrm{u}$ " 325 " $/ 24 u$ " 150 " $/ 25 u$ " 250 ", wber $2523 w \quad 2 \quad 1 / 2$ miles $13-15 \mathrm{~m} / \mathrm{w} \mathrm{V}$. Forster 255 27-30m 259 17-19m, 23-25m, 26$28 \mathrm{~m} 4572 u$ " 300 ", 4-6m/4u "Fifteen I greatest", 24-25m 479 14-15m/15u "4 feet" $48314 u$ "3। long", 16u "fringel bristly" 484 8-9u "about| length"/6-13w Balaen. p457 p483 p479 485 $26 \mathrm{~m} / \mathrm{u}$ "whalebone linches" $48612 u$ " 9 inches" 490 9-10m/Q 491 8-11m/Q
vol. 2 NB p. 416 Whalebone
416 19-22m
SCOTT, John Annual report on the experimental poppy gardeners at Deegah and Meetapore Calcutta; Bengal Secretariat Press; 1876 [CUL, I]

NB O/

SCOTT, John Manual of opium husbandry Calcutta; Bengal Sectretariat Press; 1877 [CUL, I]
ad, beh, cc, che, fg, he, oo, phy, sl, tm, ud, v

NB see to all marks; 46; $36 ; 70$ to 77 ; 81 ; 111; 130; 131; 154; 167; Cross-fertilisation SB ${ }^{2}$
36 Effects of salts in causing seeds to germination
49 acclimatisation of vars. \& closer adaptation to climate 77 slight chemical differences in vars.
80. 111 apparently inherited effects of scarification like inherited milking
154. vars. differ in liability to mould

167 gnawing capsule with the opium causes convulsive twitch to Caterpillar
ii $14 m, 17 \mathrm{~m}, 20 \mathrm{~m}, 33 \mathrm{~m}$ iii $3-9 \mathrm{~m}, 33-37 \mathrm{~m}$, $39-$ $45 m, 47-55 m$ iv $20-28 m$ v $14 m$ vi $7 m 3620-$ $28 m 431-3 m 458-11 m / 9 u$ "althe" $461-3 m$, $35-40 \mathrm{~m} 4843-51 \mathrm{~m} 4912-16 \mathrm{~m}, 41-46 \mathrm{~m} 5027-$ $36 m 5120-23 m, 23-25 m 52$ 8-14m 56 34$39 \mathrm{~m} / 36 u$ " $80,000190,000$ " 70 15-21m 7124 $32 m 777-17 m 785-35 w$ He has before said is found in petals \& stamens $9-12 m$ (Schleiden), 15-21m, 22-30m, 32-35m/? $8016-$ $26 m / 16-35 w$ i.e. not due to selection - 1 suppose he means inherited effects of Scarification $45-51 m 818-13 m 1114-11 \mathrm{~m} / 9 \mathrm{u}$ "earlylexercise" 130 27-32m, $37-40 \mathrm{~m} / 37 \mathrm{u}$ "Bulklabsolute" 131 1-3m, 11-14m 134 32-34z 154 27-31m 167 9-13m

SCOTT, John Report on the experimental culture of the opium poppy Calcutta; Bengal Secretariat Press; 1874 [CUL, I]
00 , phy
14 1u* "weighing I capsules", $36-42 \mathrm{~m} / \mathrm{m} 20$ $13-19 \mathrm{~m} / 14-20 \mathrm{~m}, 32-37 \mathrm{~m}, 40-42 \mathrm{~m} / \mathrm{m} 2110-$ $39 m / 22-24 m / 35-37 m 2420-22 m 2929-34 m 30$ $16 m 42$ 44-53m 47 49-54m 53 32-37m 54 4147 m 58 11-33m/25u "affecting only" $6042-$ $47 \mathrm{~m} 6130-38 \mathrm{~m}, 47-56 \mathrm{~m} 6342-46 \mathrm{~m}$

SCOTT, John Report on the experimental culture of the opium poppy for the season 187778 Calcutta; Bengal Secretariat Press; 1878 [CUL, I]
00, phy
NB Frank Protection from Insects p9 Monkey
17 to 21-22, 28 Protection of poppy by Opium Frank
part 1, $139-46 m$
part 3, $91-15 m 1762-70 m 184-12 m 1948-$ $64 m 2024-29 m 2158-68 m 2262-66 m 25$ 8$23 m, 29-35 m$

SCOTT, W.R. The deaf and dumb 2nd edn; London; Bell \& Daldy; 1870 [CUL, I] beh, he, pat, t

NB 8*; Deaf Mute reason - ?; 10 smelling - Imbeciles; Expression - 10 Proof of laughing sign of pleasure; 12 Continuation of Gesticulation
There is nothing about antagonism of expressive gestures

- 53 Savage snarl of Insane Reversion

$85-12 m, 15-16 m, 18-23 m$, 21-23m 10 9$11 \mathrm{~m} / 10-13 \mathrm{w}$ Maudsley has similar case 13$14 u$ "the | boy", 19-22m/20u "laughing" 12 19$26 \mathrm{~m} / \mathrm{m} /\left[{ }^{\prime \prime} . . . "\right]$

SCROPE, George Julius Poulett Considerations on volcanos London; W. Phillips; 1825 [Down, pre-B]
geo, se, t
iv $23-29 m$ vii $1-20 m$ xiii $9-16 \mathrm{~m} / 10-14 \mathrm{w}$ Sir H $301-21 m, 17-22 m 6437-43 m 6527-38 m 107$ $11-13 m 147$ 21-24m 194 6-14m/11? 199 22$25 m / 26-29 m / 22-28 w$ maximum elevation having expended the force $w b$ NB none of these theoretical views agrees with the structure of the S. American Andes. 212 8$42 m / 21-22$? $2643-5 m / w t$ The curved stratification of the clay beds is not accounted for. Humboldt gisement.

SCROPE, George Julius Poulett Volcanos 2nd edn; London; Longman, Green, Longman \& Roberts; 1862 [Down] \wp

SCUDDER, John M. Specific diagnosis Cincinnati; Wilstach, Baldwin \& Co.; 1874 [Down, I]

SCUDDER, Samuel Hubbard Butterflies New York; Henry Holt \& Co.; 1881 [Down]

SCUDDER, Samuel Hubbard Historical sketch of the generic names proposed for butterflies Salem; Naturalist's Agent; 1875 [Down]

SEDGWICK, Adam A discourse on the studies of the University of Cambridge 5th edn; London; John W. Parker; 1850 [CUL, I] ad, af, cc, ch, ds, em, ex, fo, gd, geo, he, hl, ig, ir, no, or, sp, sy, t, ti, tm, v, wd, y

NB1
NB2 xxvi; 33; xlv; xliv
SB1 \square R
The publication of the Vestiges brought out * all that cd be said against the theory excellently if not too vehemently
I am almost sure that Hooker in one letter says that Salix is not variable in Himalaya Is rubus - this very important.-
The constant speaking of a species, as a something known to be definite is source of error.-
$216 \rightarrow$ Introduct. Even the insertion of a Genus between any two others, though it cannot be said to break down a family, yet in fact tends to same way, for the two portions of the family might have been formed into two sub-families. Sedgwick speaks as if family or group of any kind fixed \& ascertainable thing.- The not filling up of gaps depends * chiefly on * our view of how far Palaeontology represents old inhabitants of world - but it
〈over〉 might have been expected that some
forms intermediate between $\&$ Mammals \&
Birds, like ornithorhyncus should have been found - such must have existed probably anterior to Silurian system.- As far as evidence goes decidedly opposed.-
$294 \cdots$ take any species in which there are several varieties - make any one or two races $\&$ we are making a species at the present day.- this is the only evidence possible - What domestic varieties are not making!? I do not mean mere seedlings-

SB2 \square R

Introduction; 26; 33; 48; 54,7; 62,4 to 139; 151; 212; 216 V. next page of this paper; 219; Appendix; 152; 185; 188 to 192 we here see that a Bony fish as a fish may be highest, but as part of the Vertebrata lower; 208; 278; 290; 294 V. Back
SB3 $\square \beta$
Ixv Oldest Fish highest (Book written against law of development higher \& higher with which I have nothing to do
lxxi X good against evidence for any number of supposed fossils xciv
xcvii difficulty of appearance of Cycloids \& Ctenoids (Developed in hot ocean)
ci - on separation of Fish \& Lizard
cxiii argument for coming in of Mammals, now broken down by Purbeck
cxxv Falconers argument that serial species do not accord in time or space
ccxii nature shows love of order \& harmony independent of mere vulgar use - one may say this when one knows one plant or

SEDGWICK
animal so well as to say why its numbers are so many, not that 1 pretend every character useful - Inheritance \& Laws of correlation \& direct effects of conditions
ccxvi On genera \& orders always keeping distinct. V. note at Back
152 Socrates on use of eye-lashes
186 Good account of why Fishes. Sharks highest to p. 193
188 On Embryological Development p. 278
192 On coexistence of spiral valves in intestine \& Bulbus arteriosus in Ganoids \& so allied to Batrachians
208 Oldest Rocks in America
ix $z b$ xxxiii $1-3 m, 16-18 m$ xxxiv $11-15 m$ xlviii $4-6 m, 14-20 \mathrm{~m} / 15-17 \mathrm{w}$ not put fairly liii $17 u$ "Cuvier", $24 u$ "Agassiz" liv $7 u$ "Owen"/ 9-14m/1-8w 3 greatest authorities, pointedly, even bitterly declared against theory So Horticulturalist about varieties lv $\uparrow 5-2 m$ lvii 19-23w absence of links between classes lxii $4-11 m$ lxiii $4-8 m$, $15-23 m$ lxiv $17-20 \mathrm{~m}$ lxv 28-30m (Owen) lxviii $1-5 m$ lxxi $6-9 \mathrm{~m} / \mathrm{w}$ all excellent lxxiv $11-15 m$ lxxxiii $1-3 m$ xci $20-23 m$ xcii $13-19 m$ xciii $13-15 m$ (Cuvier) xciv $14-16 \mathrm{~m} / \mathrm{w}$ very true $30 \mathrm{~m} / \mathrm{a}$ "Classes" Kingdoms $30 u$ "Classes" $/ w b$? not the Fishes \& Reptiles xcvi $23-26 m$ xcvii $6-9 m$ xcix $10-$ $14 m$ c $25-28 m / w$ But take existing fish \& existing Reptiles ci $5-12 m$ (Agassiz) cii $w t / 1-$ $12 w$ the first appearance alone ought to be chronologically in harmony with natural affinities $24-27 m, 30-31 m$ ciii $5-22 m$ civ 9$16 \mathrm{~m} / \mathrm{w}$ shows how imperfect our knowledge of aerial productions $19-23 m / w$ Birds a capital argument versus. cvi $7 w$ no! cvii 1$3 m$ cxii $23-25 m$ cxiii $10-12 m$, $29-30 m$ (Cuvier) cxvii $1-5 m / w$ except change in nature of deposits 6-7u "organic interval", $27-29 m / 27 u$ "seem" cxix $6 u$ "Ceteosaurus"/w Where described? cxxv 13-16m, 17-18m, 19$26 \mathrm{~m} / \mathrm{w}$ opposed to Agassiz argument of affinities going with space cxxvi 3-6m,3$13 m, 14-20 m, 22-25 m, 5-26 w$ The most important case I have yet seen cxxvii $5-10 \mathrm{~m}$, $15-17 \mathrm{~m}$ cxxviii $1-3 \mathrm{~m}, 17-19 \mathrm{~m}$ cxxix $25-27 \mathrm{~m}$ cxxxiv $21-27 m$, wb All facts \&c. do not show that there is no difference between species \& varieties, only that no one can often distinguish them - cxxxix $3-5 \mathrm{~m} / 3 u$ "gradually exterminated" $/ 5 u$ "not \mid transmutation" cli 16 m (Whewell), 30 m cliv $3-6 \mathrm{~m}, 14-16 \mathrm{~m}$ cxii $2-6 \mathrm{~m}$, $16-23 m$ ccxiii $20-22 m / 21 w$ Owen coxvi wto True great classes will never run into each other - even Lepidosiren does not do that.$w t / 1-16 w$ what does break-down mean either then true classes run into one, or are
not so distinctly separated $4-5 u$ "therel organic", 5-9m, 13-14m/we. What does this mean 14u* "improvelperfect", 14-15u* "breakl down", $15-17 \mathrm{~m} / \mathrm{w}$ yet naturalists often do this ccxix $9 u \mathrm{e}_{\mathrm{o}}$ "organiclanalogy", 1418man, 20-21m 181 13?/u "Neptune" 185 28$32 m 1865-9 m, 15-19 m$ (Owen, Hugh Miller), 29-32m, 36u^, wb Electrical Fishes 187 15$21 m / 17 u$ "chronological history"/w no $18 u$ "stultifies | development" $/ w$ yes $1883-5 m, 11-$ 19 m (H. Miller), 31-36m $1901-10 \mathrm{~m}$ ($\mathrm{M}^{\prime} \mathrm{Coy}$), 19-21m 191 26-36m (Agassiz) 192 35-36m 193 1-3m 208 16-19m/16w $/ 17 u$ "oldest", 33-36m 276 1-19m (Vestiges, Owen) 277 22-32m/22u "what I prove" $290 \quad 13-17 \mathrm{~m} / 13-20 \mathrm{w}$ quite certain no means of telling what is a species 294 14-15u "appearance finished"/13-16m (Vestiges)/w no $-V$. note my M.S.

SEDGWICK, Adam Geology of the Lake district Kendall; John Hudson; 1853 [Down, I]

SEDGWICK, Adam Supplement to the memorial of the trustees of Cowgill Chapel Cambridge; University Press; 1870 [Down, I]

SEELEY, Harry Govier Index to the fossil remains of Aves, Ornithosauria and Reptiles pref. by Sedgwick; Cambridge; Deighton, Bell \& Co.; 1869 [Down, I by Sedgwick]
NB O/
SEELEY, Harry Govier The Ornithosauria Cambridge; Deighton, Bell \& Co.; 1870 [Down, I by Sedgwick]
$\mathrm{NBO} /$
SEEMANN, Berthold Flora vitiensis London; Lovell, Reeve \& Co.; 1865 [Down] \wp

SEGUENZA, G. Ricerche palaeontologiche intorno ai Cirripedi Terziarii 2 parts; Napoli; Regia Università; 1874-76 [Down, I]
part 1 NBO /
part 28
SEIDLITZ, Georg Beiträge zur DescendenzTheorie Leipzig; Wilhelm Engelmann; 1876 [Down, I]

SEIDLITZ, Georg Carl Maria von Die Darwin'sche Theorie Dorpat; Mattiesen; 1871 [Linnean Society of London, I]
title page wto Presented by C. Darwin (Duplicate)

SEIDLITZ, Georg Die Darwin'sche Theorie Dorpat; C. Mattiesen; 1871 [CUL, I] beh, ct, em, gd, he, mm, mn, oo, or, phy, sx, ud, v, y

NB 37 Variability of Embryo
47 Castrated Reindeer does not cast Horns off
0
122 Causes of colour of eyes of Birds
127 Protective Colours of Beetles
135 Instinct good - diving of young ducks whose parents fly away - only like squatting - for parents do not dive to avoid danger 208 Origin of senses in cells in skin sensitive to light
144 Reversion in blind insect \& has imperfect eyes
147 Replacement of rats in Europe
176 Carabus in Pyrenees \& in N. of Europe
37 21-33m (von Baer) 38 25-29m 47 31-33m $1228-33 m, 34-37 m 12627-32 m 12735-36 m$ $13421 \mathrm{~m} 135 \mathrm{wt} / 1-4 w$ Diving of young ducks whose parents fly away cannot have been learnt by no by ancestors $16-22 \mathrm{~m} / 18 \mathrm{w}$ (a) 144 18-21m 147 12-29m 176 8-13m 208 2$38 m$ (A. Müller) $21027 m$

SEIDLITZ, Georg Die Darwin'sche Theorie 2nd edn; Leipzig; Wilhelm Engelmann; 1875 [Down, I] 80

SEMPER, Carl Gottfried Arbeiten aus den Zoologisch-Zootomischen Institut in Würzburg Hamburg; W. Mauke Söhne; 1876 [Down, I] \wp

SEMPER, Carl Gottfried The natural conditions of existence as they affect animal life London; C. Kegan Paul \& Co.; 1881 [CUL] gd , is, t

NB 287298 Geog. Distribution
290 Wagners Theory
287 15-21m, 38m 288 10-13m, 18-21m, 23$26 m 2901-5 m$ (M. Wagner) 292 11-14m * 298 $20-28 m 30010-15 m 3039 m 3086-15 m$

SEMPER, Carl Gottfried Die natürlichen Existenzbedingungen der Thiere Leipzig; Brockhaus; 1880 [Linnean Society of
London, I]

SEMPER, Carl Gottfried Die Palau-Inseln im Stillen Ocean Leipzig; F. Brockhaus; 1873 [Down, I] \wp

SETTEGAST, Hermann Gustav Die Thierzucht Breslau; Wilh. Gottl. Korn; 1868 [Down]
cc, 00, tm, v
NB p39 - Buck-wheat - Affecting animals differently coloured

- p41 graduated skulls

39 36u/w 41 1-41m

SEWARD, Anna Memoirs of the life of Dr Duncan London; J. Johnson; 1804 [Down, pre-B, S]

SHAFTESBURY, Anthony, Earl of Characteristicks of man, manners, opinions, times 3 vols.; London; 1749 [Down, ED]

SHARPE, William Man, a special creation, or, the preordained evolution of species London; Robert Hardwicke; 1873 [Down, I]
h, pat
NB p. 119 Colour \& resists disease Used
118 22-26m 119 1-6m, 21-24m
SHIREFF, Patrick Improvements of cereals Edinburgh \& London; William Blackwood \& Co.; 1873 [CUL]
cs, sl, spo, ta, v
NB 7 several vars. selected out of Fields
SB
7 selected 3 new vars. in one year, from 70 Ears collected out of several fields
p. 10 vars. crossing
p. 33 \& 35 constant \& inconstant vars. from crossed wheat.
p. 47 The vars. naturally cross, but seldom
p.94. crossing increases variability, \& gives greater field for selection
7 1-7m 10 12-24m 29 18-25m (Darwin) 33 20-23m/23u "constant variety" $3411-14 m 35$ $18-19 m, 23-24 m 471-7 m / w$ do not cross much $11-16 \mathrm{~m} / 12 \mathrm{w}$ bud-sports $9412-16 \mathrm{~m}, 15-$ $24 m$

SHUCKARD, William Edward Essay on the indigenous fossorial Hymenoptera London; by the author; 1837 [CUL, I]
ex, f, fg, ig, in, sp, spo, sx, sy, t, tm, v
NB1 Neuration of wings variable in the species of Fossorial \& \& difference in this point characterizes the sexes.-
So individual bugs are winged or less \& so sexes.

SHUCKARD
So jaws of Lucanus sexual \& variable So horns of Sheep.
NB2 $=$ Make stalk of variable parts $=$ also in Coleoptera
5111923
Variation p40 43486264 to $707679 \& 80$ $\begin{array}{llllllll}85 & 98 & 100,2,5,7 & 137 & 139 & 141,4,8 & 186 & 191\end{array}$ 204213 241,2 250
Besides these species which are variable, it must be remembered how very many are rare \& therefore may vary, but it is not known-
SB $\square \beta$
$40 \underline{Q}$ variation of nervures $p .43$ do better case in genus Typhia Q
39 Neuration differs in sexes Q
$48-\mathrm{Q}$ In Pompilus nervures differ in species \& in individuals (p. 4 Neuration of fundamental importance in classification of these Hymenoptera, as shown by Jurine 241 Excessive variability of shades of colour in Cerceris
I see I have note about Bugs being winged according to sex \& variable individually
$57-9 m / 8 u$ "to vary", 11-13m/13u "marked constant" $818-19 m$ * $1116-18 m / 17 u$ "great genera", 21-23m 19 10-12m 22 15-23m $231-$ $2 m, 8 m, 11-12 m / 8-18 w$ Important as showing some species are fertile, not owing to any general law, but to the peculiarities of their own propagation.- $3928-29 \mathrm{~m} / \mathrm{Q} 4020-31 \mathrm{~m} /$ $21 \mathrm{~m} / 25 \mathrm{~m} / 27 \mathrm{u}$ "stigma nearly" $/ 29 \mathrm{~m} 4231-33 \mathrm{~m}$ 43 3-5m $4818 \mathrm{~m} / \mathrm{u}$ "in 1 individuals" $/ 16-19 \mathrm{~m} / \mathrm{w}$ are different in Fossores in males \& females V. p. 39 24-25m/u "P.Imonstrosity" $/ 20-25 w$ In allied families wings absent in females 62 $10 \mathrm{~m} / \mathrm{u}$ "oflposterior" $64 \quad 18-20 \mathrm{~m}$, $18-19 \mathrm{u}$ "which I Aporus"/w a diff. genus 65 15-19m/ 16-17u "and lpunctured" 67 14m, 20-23m/20$21 u$ "markings|wings" $703-4 m$, $3 u$ "line colour", $4 u$ "traversing 1 not", $21-22 \mathrm{~m} / 21 u$ "markings vary", 27-28m 76 33-35m 79 31$32 u$ "third Ipetiolated" $806-8 m 8523-25 m / u \pm$ $9818-19 m 10023 u$ "black ring", $24-25 \mathrm{~m} / 24 u$ "sometimes obsolete", $27 \mathrm{~m} / \mathrm{u}$ "interrupted", 27$28 u$ "yellowimargin" $102 \quad 12-13 u$ "arel interrupted", 13-14m $10315-19 \mathrm{~m} / 16 u$ "male"/ $18 u$ "multitudelspecies" $10432 u$ "abdomen", 33-34u "first I red", 34u "is I red" $1051 u$ "or black" $/ 2 u$ "sometimes" $/ 3 u$ "lacteous 1 of" $/ 4 u$ "segment" $11-4 m \quad 1071-3 m / 2-3 u$ "characters тисro" 137 2-3u "yellowlabove" 139 14$16 m 14134-35 m / u \leftrightarrow 144 \quad 9-11 m, 9-10 u$ "sometimes lonly" $14823 u$ "sometimes", 2426m, 25u "reduced 1 spot" $1498 u$ "variablel abdomen" 152 10-12m 156 11-12m 186 4-6m/ w These may be compared to the sports of

Roses \& Wheat $19114 m 20419-21 m / 21 u$ "frequently entirely" 205 12-14m 213 3-5m 241 14-20m, 27-32m 242 4-6m, 26-29m/!!!, 29-30u "without I fault" $2507-9 m, 22-25 m 251$ $1-2 m, 7-8 m$ • $2528-10 m, 15-17 m$

SIDGWICK, Henry The methods of ethics London; Macmillan \& Co.; 1874 [Down, I, S]

SIDGWICK, Henry A supplement to the first edition of The methods of ethics London; Macmillan \& Co.; 1877 [Down]

SIEBOLD, Carl Theodor Ernst von Beiträge zur Parthenogenesis der Arthropoden Leipzig; Wilhelm Engelmann; 1871 [Down, I]

SIEBOLD, Carl Theodor Ernst von On true parthenogenesis in moths and bees trans. W.S. Dallas; London; John Van Voorst; 1857 [CUL, S]
beh, cc, cs, em, f, fg, hy, 00, phy, rd, sp, sx, v

NB1 Find single seed-bearers \& mix pollen of two species or vars
p. 70 order F. Smith get good description of Italian Bees
NB2 4; 34; 38; $53 ; 61 ; 68$ to 75 vars of Bees; Crossing natural; 107; 107 Hooker -Gall-insects male \& female in different galls SB1 $\square \beta$
p. 4 long life of Spermatozoa - p. 61

34 Female Psyches in rudimentary condition
53 Dzierzon on unfertilized eggs producing drones
68 Differences of Italian Bees - dark Bees appear amongst the Italian Bees Apis Ligustica p71.
69 Golden Bees more industrious \& better tempered
70 References to the Bienenzeitung 72 fertile when crossed
107 on differences of sexes according to conditions of life of larvae of certain Hymenopter. insects.
106 sexes in Parthenogenesis
<fragment of a letter from B.D. Walsh of 25 February 1867>

4 17-21m 34 17-26m/w rudimentary state 38 10-15m $3922 w$ why ? 23-33w They are not fully developed \& therefore are in degree in larvae state 53 25-28m (Dzierzon) 56 24-28m (Dzierzon) 61 24-26m $684 u$ "variety" $33-6 m / w$ F. Smith calls species $8-19 m / 9 u$ "rustyl colour", 23-26m, $24 u$ "amongst \mid yellow", $27 u$
"praesentior 1 magis", wb V. original German to see whether in same hive $691-3 m, 5 u$ "gold \mid Bees", $6 u$ "together", $10 u$ "cum \mid alvo" $/ w$ same hive $16 u$ "rectioribus cruribus"/w ask F. Smith 20-22m, $25 u$ "1806", $29 u$ "Lago Maggiore", 32u "accordingISpinola", $33 u$ "alsol Piedmont", 35-39m 70 1-8m, 20-22u "Fromlbee", 21-25m, 40-42m (Berlepsch)/w order this book $7110 u$ "crossings"/wt/1-10w I must ascertain whether this refers to pure Italian Mothers. $14-16 \mathrm{~m} / \mathrm{u} \leftrightarrow$, $14 a$ "Italian" crossed?? 20u "only", 21c "Such"/21-24m/w I do not understand V. original 72 24-32w clearly much crossing has taken freely place \& yet fertile $735 u$ "hybrid hives", 13-15m/14a "hybrid" ized 18a "hybrid" ised 19-20m 74 16-19m, 34-36m $757-12 m, 14 c$ "otherwise say", 20a "hybrid" ised 94 25-34m (Herold) 106 27-32m 107 19-23m (L. Dufour)

SIEBOLD, Carl Theodor Ernst von and STANNIUS, Hermann Anatomie comparée, 2 vols in 3 parts; Paris; De Roret; 1850 [CUL] cs, em, fg, phy, sx, sy, tm
vol. 1, 1st part, NB p.12; p.22; p.34; p.48; p.51; p.70; p.106; p.142; p.170; p.221; p. 223 like Land-Crabs; 229 Hirudo no metamorphosis-; Annelids Cephalobranches fertilised by means of water
12 26-29m 22 1-3w Larvae ? 4-6m 34 1-4m 48 21-24m, 40-42m 51 34-35m 69 1-2m 70 1$6 m 9415-19 m 1063-5 m 1074-8 m 1422-6 m$, 8-9m $1705-8 m, 7-11 m 221$ 17-21m 223 6-9m 229 15-17m, 18-20m $23014-17 m 231$ 19-23m
vol. 1, 2nd part, NB p.282; p.285; p.328; p.330; p. 341 \& 2; p.348; p.355; 520; 527; 535; 537; 568; 594
SB $\square \beta$
330 Ampullaria Lungs \& Branchiae
342 Male \& female glands invaginated \& yet leading to distinct orifices! p. 348
529 Tardigradae, Arachnidae Hermaphrodite $28220-27 m / 11-31 w$ is Herm. so must be able to cross $2856-7 m 3287-11 m 33037-$ $41 \mathrm{~m} 3411-7 \mathrm{~m}, 14-17 \mathrm{~m} / 16 u$ "invaginés", 19 m $3421-14 m / w t / 1-16 w$ How striking as they arise from invaginated glands: showing bisexuality $3431-8 m 3485-11 m, 10-17 m, 30-$ $34 m 3556-10 m, w b$ shows animal System not perfect, nowhere to put Sagitta, throughout exceptions made $4006-15 m 410$ 6-7u "Monografisk|1842" 77 m (Kroeyer) 418 27-30m/! 426 1-6m 433 1-2m 434 27-31m 436 $7 \mathrm{~m} / \mathrm{u}$ "yeux Ifacettes" 443 7-8m, $27 \mathrm{~m} / \mathrm{u}$ "Karsten 120" 445 1-5m 465 10-18m 470 1$14 w$ glands for viscid substance $47320-24 m$ 476 38-41m (Goodsir) 477 1-2m 489 32-35m
(Rathke)/33u "Wiegmann", 36-37u "Erdll 1843" $49124 m$ (Rathke), $28 m$ (Goodsir), 33-39m/37-38u "Kröyer| Homerus"/w Bell 38w 1 $39 u$ "Erdl 18 "/w 2520 17-21m 521 1-4m, $44 \rightarrow 522$ 28-31m 526 1-19m/w curious case of poisons so different in two orders 527 6$28 m 529 w t / 1-3 w$ see p. 496 for references 5$9 w$ I cannot find out what $5-7 w$ only genera Milnesium Macrobiotus Enydium 9-12m, 13$14 u$ "Les Tardigrades", $14 u$ "hermaphrodites"/w What are Tardigradae $5355 u$ "desitrès", $8 u$ "entre\postérieures", $14 u$ "prolongement | menton", 22-23m 536 18-19m, 21-25m 537 $12 u$ "aboutit |abdomen", 19-21m, 26-29m/w peaking 40-43m (Menge) 568 13-16m 594 1$2 m 601$ 22-27m
vol. $2 \wp$
SIEGWART, Karl Das Alter des Menschengeschlechts Berlin; Denicke; 1873 [Down]
NB O/

SKERTCHLY, Sydney Barber Josiah The physical system of the universe London; Daldy, Isbister \& Co.; 1878 [CUL, I]
geo
NB George p369; p315 References on Denudation; decay of flints; 321 Denudation \& Worms
xiii $7 m, 13 m, 26 m$ xiv $7 m 31527-31 m$ (Taylor, Geikie) 321 4-20m 369 19-22m

A SKETCH of a philosophy, part 2: Matter and molecular morphology London; Williams \& Norgate; 1868 [Down] 8

SMELLIE, William The philosophy of natural history Edinburgh \& London; Elliot, Kay, Cadell \& Robinson; 1790 [CUL, pre-B, I by J. Wedgwood, S C. Darwin Given me by my uncle J. Wedgwood]
beh, f, fg, he, is, $\mathrm{mg}, \mathrm{mm}, 00, \mathrm{no}, \mathrm{sl}, \mathrm{sx}, \mathrm{ta}$, y

NB Poor Book; p.139; p.146; p.150; 204; 254; 258; 282; 281; 310; 381; 389; 393; 396; $458 ; 462 ; 466 ; 472 ; 491 ; 500 ; 512 ; 515 ; 520$ SB $\square \beta$
p383 Marine Birds few eggs - Orang outang - Lions a good many p284

396 Pair of sparrows destroy 3360 caterpillars weekly
515 age of toad (Ch. 5)
513 age of some Big Birds.- Ravens \& Geese lay a good many eggs, yet old livers - So with Carp, which lay so many eggs-

SMELLIE
139 14-19m 146 17-19m $14922 \mathrm{~m} / \mathrm{u}$ "and |it" $1505-11 \mathrm{~m} 151$ 4-5m, 7-8m 204 19-21m 253 $19 u$ "seeds" $119-31 w\langle$ not CD 254 28-31m 258 $6-9 m, 29-32 m 28110-11 m, 15-16 m 3103-$ $14 m 3815 w$ V. p. 383 7-10m/7-32w/wb What is probable cause of this? - Why should many struggling for life ultimately better succeed, than a few $=$ is it that young carnivores are protected by fierce parents in youth? - are parents long lived? or not destroyed by other animals? $3832 a$ "carnivores" $w w$ marine birds few eggs $4 a$ "waters"/wt crocodiles $2 a$ "prolific" Elephant, Ourang!!! 2a "quadrupeds"|wt pooh. V. p. 284 for Lions \& tigers - contrasted with horse sheep \&c \&c ! $2-4 m / 4 u$ "who are all carnivores", 4-6m, 6-19w Ostrich many eggs - Humming birds few eggs?? = does defending powers of parent cause few young ?* by only few being destroyed? 389 5$6 m, 9-10 m, 23-25 m 39320-22 m /!/ 22 u \leftrightarrow, 24 u$ "annihilated | universal", 25-29!, 27 u "single| permitted", 28-29m 396 1-4m $3971 \mathrm{~m} / \mathrm{u}$ "and weeks" $454 \quad 25-27 \mathrm{~m}, 30 \mathrm{~m} 462 \quad 13-14 \mathrm{~m} / \mathrm{u}$ "Dogs Igenerations", 30 m 466 16-18m, 24$26 \mathrm{~m} / 24 u$ "a 1 mark" $\mid 25 u$ "impossible 1 immense", $28-30 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ This being habitually considered wonderful, shows how closely they resemble each other. 472 9-12m 491 7-9m/w occasional yet true migrations are of difficult explanation $5001-4 m, 20-21 m$ 512 7-8m, 27$29 m$ (Buffon) $5133 u$ "Eagles", $6 w 41+$? 11$12 u$ "The pelican", $13 u$ "eighty", $17 u$ "twentyl years", 19-20m, 24u "knewlyears", 26u "hundred \mid years" $5158 u$ " 1 years" $/ w$ toad $20 u$ "old toad", 21u "thirtylyears" 520 10-11u "annihilation |species", $13-14 w$ islands!! $16 u$ "would |this"!!

SMITH, Alexander The philosophy of morals 2 vols.; London; Smith, Elder \& Co.; 1835 [Down, JW]

SMITH, Andrew Illustrations of the zoology of South Africa 4 vols.; London; Smith, Elder \& Co.; 1849 [CUL]
af, beh, ex, gd, geo, ig, is, mg, oo, sp, sx, sy, t, tm, v
vol. 1 SB $\square \beta$
Macleay p6 Says importance of character inversely to variability
8 thinks anomalous groups merely mean links lost
$56-22 m, 23-26 \mathrm{~m} / 23 u$ "gепия" $630-33 m 7$ 1$5 \mathrm{~m}, 19 \mathrm{u}$ "Natural arrangement" $/ 18-29 \mathrm{w}$ It may be asked what is meant by natural arrangement - first step vague.- if it is said affinities of animal - what does affinities
mean? 29-32m/!, wb most resemblances endless disputes, sum of differences I conceive object is real relationships 8 1518m, 41-43m
vol. 2 NB \& PI. 13 \& 17 other vars. \& colour; Pl. 26 .
SB $\square \mathfrak{R}$
PI 13 \& 17 other cases of vars. in colour surprising =
\& PI 3 bright green good case of local var.
Pl. 26 good case of Local var of Lizards Pl.77 + pl. 11- $35-39 \mathrm{~m}$ pl. $11+31 \mathrm{~m}$ pl. $13-$ $15 \mathrm{~m}, 21-30 \mathrm{~m} / \mathrm{w}$ see before good case of variation $36-37 \mathrm{~m}$ pl. 18+ 1-3m pl. 27- 1516 m pl. $38-8-9 \mathrm{~m}$ pl. $38++32-33 \mathrm{~m}$ pl. 3932 m pl. 39+ 9-12m pl. 78- 22-26m
vol. 3 SB1 $\square \Re$ Aves
Pl vi; Pl ix; Pl xxii XX; Pl xx 9; PI. 44; PI 63; PI 68 species replacing each other; PI 110 SB2 $\square \beta$
PI ix one swallow taking others place periodically during migration of former.
Pl. xxii Variation of Beak - good sentence --44 Variation in size even $1 / 3$ longer -
-63 many close representative species Cape \& Senegal -
-110 A lark, which strikes its wings together in flying up
Pl. 7-19-22m Pl. 10-33-36m pl. 23-35-39m pl. $30++13-16 \mathrm{~m}$ pl. $45-1-10 \mathrm{~m}, 15-16 \mathrm{~m}$ pl. 64-22-30m pl. $69+14-17 \mathrm{~m}$ pl. $110-26-27 \mathrm{~m}$
vol. 4 SB $\square R$
PII
Pl. 3033 Q 38 one Antelope ranging further than other feeding together \& then separating \& one ranging further South Thinks some animals as Elephant migrate from Will others from impulse.Catoblepas Gorgon
pl. 9- $z b$ pl. $14-\Uparrow 7-3 m$ pl. $29+26-41 m / 26 u$ "proportion 1 herds" $/ 28-30 u \pm / w$ Polygamy $36 u$ "male \mid young" $/ 35-39 w$ killed when expelled \& not adults of others watching pl. 31- 21$23 \mathrm{~m} / \mathrm{w}$ these two species have different habits.- vide next species $25-27 \mathrm{~m}, 37-40 \mathrm{~m}$, $w b$ Every continent must once have been islands - hence representative species would radiate out \& keep to their localities pl. $31-13-20 \mathrm{~m}$ pl. $32-30-33 \mathrm{~m} / \mathrm{w}$ This is the other pl. 33- 25-27m pl. 39-1-3m pl. 39-36-40m pl. 42+wt Koodoo

SMITH, Charles Hamilton Dogs (vols 9 \& 10 of The naturalist's library: Mammalia) ed. W. Jardine; Edinburgh; W.H. Lizars; 1839-40 [CUL]
af, beh, br, cc, cs, dg, ex, f, fg, fo, gd, he, hy, ig, mn, no, oo, phy, rd, sl, sp, sx, t, ti, tm, v, wd, y
vol. 9 NB1 - It would appear that greater the difference as in pigs between parents greater the fertility, as long as difference is not connected with generative system. Infertility is not consequence of difference in size.
Dioecious \& hermaphroditic flowers can be crossed.
NB2 What a case of confusion in the canines, what are species \& what races especially the diurnal canines
75; 87 to 190; 239
p75 Reference to Pallas Works Paper on Degeneration See Cuvier Eloge
SB $\square \beta$
88 Australian Dingo not breeding at Paris Q
89 Capra tharal breeds easily with domestic goat
93 Young * of feral boars striped this is a return of long latent character. as well as Tusks \& bristles Q
94 Hair of tail in Indian Boar bristly \& sagittated. Mem. W. Indies \underline{Q}
96 Bos gaveus fertile. see Griffiths Animal Kingdom
101 Posterior branch of lower jaw in Mastiff, altered Q
98 Cuvier says Jackall comes nearest to Dog Q
106 Mastiffs always in temperate countries (Cuba Bloodhound, Aegyptian do N.Q.
119 Difference in gestation in domestic animals by Tessier
136 The Siberian race of Wolves easily known 148 various vars. of
152 Pallas on crossing of Black \& White wolves \& Dogs Q
155 says Black \& White wolves keep separate from others (see Mauduyt pamphlet) (Ch. 6)
154 Doubts on distinctness of American \& European wolves
168 The Red wild Dogs of India destroy young Felidae
xii 10-13m, 13-15m 7521 m (Pallas) $871-6 \mathrm{~m}$, 13-17m, 17-20m 88 8-11m, 13-14m, 18-20m/ ?/14-22w curious if true $891-3 \mathrm{~m} 913-17 \mathrm{~m} 93$ $3-10 \mathrm{~m}$ (Cuvier), 13-23m/Q 94 11-16m, 1618Q, 19-21m 95 25-28m 96 19-23m (Griffith) $9727-31 m$ 98 17-19m $10025-27 m$, wb quite overlooks selection $10110-14 m 10220-24 m$ (Cuvier) $1043-19 m, 22-24 m / w$ no! $10528-$ $31 m 106$ 19-23m 108 8-14m/wt/1-15w | think several allied forms have lately been found
$1096 u$ "foxes", 32-33m $1107-8 m 112$ 17-21m 117 11-13m $1183-5 m 11924-27 m 12421-$ $24 m, 30-31 \mathrm{~m} 12515-19 m, 24-30 \mathrm{~m}$, wb stories not being invented to show revenge in dogs, makes one believe it in monkeys 127 1-5m $129 w b$ is the Aguarachas related to fossil Hyena of Lund. $13330-31 m \quad 13620-21 u$ "Siberian race", 22-24m 144 13-21m 148 16$25 m 149$ 2-17m 150 17-19m 152 16-23m, 31m (Pallas) 154 10-19m (J. Richardson) 155 6$10 \mathrm{~m} / \mathrm{w}$ How known?! $26-31 \mathrm{w} / \mathrm{wb}$ good case, if true, of 3 allied \& analogous species in the two continents 159 24-28m (J. Richardson) 168 $6-14 m$, $16-21 m / 16 u$ "surmise" $18 u$ "keep \mid increase" $17111-15 \mathrm{~m} / \mathrm{m} \bullet / 19025-26 \mathrm{~m} /$? 239 24-28m $2678 \mathrm{~m} / \mathrm{u}$ "End|I."
vol. 10 NB1 The analogy of sheep \& Cattle makes me doubt Col. Smith hybrid view of dogs (supported with recent conditions \& showing pains taken in old times) - for equal numbers must be used to make an intermediate breed \& how many parent sources \& these sources with characters more permanent (because since hybridised) than now, more acute greyhound - more * brave bloodhound.- occasionally crossing produces effect merely like ordinary variation in excess \& thus I believe in - as all hybrids are intermediate, we must suppose as many types as now varieties. How many does H . Smith make?
NB2 78 to 236 * 302
Think over how many English Breeds how many in Zoolog Gardens \& other parts of world \& extinct kinds!!
SB \quad Q
7 Q9 Mammae of Dogs 10 to 7
94 Ancient Dogs, few Q
103 Colour attended to in ancient dogs, Xenophon (Selection Ch I
104 no pendent ears in old Dogs except in one Aegyptian Dog p107 do
121 Feral Dogs of St Domingo Q
133 Newfoundland semi-palmated Q
156 Florida Indian Dog like Wolf of country Q
158 American dogs breeding freely with wolves of Country N.Q.
196 Pointers standing $1 / 4$ hourQ
207 Bull-terrier a crossed Breed
210 Extinction of Dogs in Pacific
214 Q Patagonian Dogs destroying poultry - Ears erected in all these

215 Fuegians value dogs
217 Mastiffs indifferent to form crosses with other Breeds!
218 Toes of Mastiff very generally a fifth in hind feet Q

SMITH，C．H．，DOGS
243 Races of Foxes
Synopsis of Canidae at end．
〈over〉 The Plate of Alco dog shows hair growing round eyes

\wp

78 28－30m（Richardson） $798 u$＂inlsow＂／Q 9－ $10 u$＂species 1 intermixed＂， $10-14 m$（Daubenton）， 15－16u＂and lother＂w hence variation 20－ $22 m / w$（a）$w b$（a） 1 doubt any hybrid having unequal mammae $807-9 \mathrm{~m}, 10-13 \mathrm{~m} / 10-11 u$ ＂albinism and melanism＂，12－13u＂theyl generation＂ $8115 u$＂alllof＂， $16-17 u$＂intol variety＂ $821 \mathrm{~m} 891-2 m, 8-10 \mathrm{~m}, 16-17 \mathrm{~m}, 21-$ $23 \mathrm{~m} 941-2 \mathrm{~m}, 6-11 \mathrm{~m}, 15-17 \mathrm{~m} 971-15 m, 14-$ 19 m 99 19－20m，26－30m（Buffon） 101 17－25m $1021-3 m, 4-9 m, 11-14 m 1039-10 m$ ，11u ＂vulpine character＂， $16-20 \mathrm{~m} / 17 \mathrm{u}$＂were originally＂$/ 18-20 u \pm 1041-2 m, 3-5 m, 30-31 \mathrm{~m} /$ $30 ぬ^{\prime} . . / 31 u$＂exception 1 instance＂ $105 \quad 2-5 \mathrm{~m} /$ $5 \wedge_{0} . . ", 14-22 m 10628-31 m 1071-4 m$ ，6－7？， 16－18m，20－24m，28－29m $10913-15 m 1104-$ $7 m 11118-21 m 11312-17 m / 14 w$（a）$w b$（a）a most unclear rigmarole of old names，all these latter pages $11612-13 m 12011 m$ ，11－ $12 m 121$ 14－16u＂large｜ears＂／m／Q 22－23m／ $u \leftrightarrow, 26 u$＂whitish－grey＂， $27 u$＂slate coloured＂ 122 14－16m，28－31m 123 1－3m／1u＂blackish＂， 15－19m， $25-27 m \quad 124 \quad 3-8 m, \quad 17-19 m / 18 u$ ＂webbed I furred＂ $1313-4 m, 24 m 1327-8 m / Q$ 133 12－14m 134 13－16m／13－14u＂Esquimaux｜ races＂ 136 22－26m 137 16－18m，18－19u＂tilll innate＂ $1398 u$＂Theldog＂， $19 u$＂Molossian 1 dog＂ $1407 u$＂Theldog＂， $14-16 \mathrm{~m} / 15-16 u$ ＂called｜Society＂ 150 18u＂Turkmen｜dog＂ 152 $23 u$＂yet｜to＂ $1531 u$＂the 1 Domingo＂ $1545 u$ ＂The Drover＂，6u＂Firma in＂， $24 \mathrm{~m}, 29-30 \mathrm{~m}$ $155 \quad 28-29 m \quad 156 \quad 22-23 m / Q 15711 u$＂the 1 national＂， $12 u$＂like wolves＂， $19 u$＂the Caygotte＂，22－25m，29－30u＂The｜resemble＂ $1581-5 m, 24-26 m 1596-11 m 1605-6 m 162$ $1!!/ u$＂such 1 modern＂，3－7w how little he knows of Selection $8-11 m / 9-10 u$＂form！ qualities＂， $23 u$＂instead 1 smell＂／w Bull－dog！25－ $26 u \leftrightarrow, 29 u$＂individual attachment＂ 163 12－ $16 m 164$ 11－13m，16－17m／17u＂black＂ $1654 u$ ＂Russian｜Tahtar＂，6u＂silky＂， $8 u$＂Southernl Western＂， $10 u$＂haired Ithose＂，22－26m，26－28m $16713-15 \mathrm{~m} / 14 u$＂personally attached＂ $1681 \mathrm{~m} /$ $w 15-6 m / w 214-15 m / w 316912 w 41701 w$ 5172 3－5m（Bacon）／4－5u＂idols I kennel＂，11u ＂breeding－in destroys＂， $12 u$＂afterlfirst＂，21－ 24m／22－23u＂which｜rough＂174 16－17u＂that I many＂ 17520 u＂longlears＂ 176 17－18m 180 21－26m／25u＂race＂，26－31m 181 1u＂small Hyaena＂，3－4u＂Lychaon pictus＂，7－10m 182 $8 u$＂tigris＂， $12-13 \mathrm{~m} 18412-15 \mathrm{~m}, 16-17 u \leftrightarrow$ $185 \quad 1-4 m \quad 188 \quad 26-28 m, 26-30 m$ ，$w b$ always
overlooks the necessity of long selection to make a crossed－race $19014-16 \mathrm{~m} / 15 \mathrm{u}$＂more crossed＂ $19120-22 m, 27-28 m 1949-11 m, 20 m$ ， 23－24m $1953-4 m, 11-15 m 1963-7 m, 7-11 m$ ， 15－16m，16－18／Q 197 1－4m 198 3－5m 199 $12 m 20016-20 m 20219-22 m 203$ 24－31m 206 $26-31 m 2071-4 m, 15-18 m 20911-14 m$ ，14－ $16 m 210$ 15－17m 211 9－26m，27－29m 213 2－ $7 m 214$ 2－7m，15－17m，18－20m，22－24m，28－ 31 m 215 7－13m（FitzRoy） 217 14－16m 218 19－ 23m／Q 219 2－4m 220 4－5m 221 14－24m 222 17－22m 224 18－20m 226 25－27m 227 10－19m， 19－26m 228 10－12m 236 3－6m 237 28－31m 238 3－4m 239 10－12m 242 12－14m 243 15－ $16 \mathrm{~m} / 16 u$＂smaller＂ 244 3－5m，6u＂black ring＂， $7 u$＂more grizzled＂， $7-8 u$＂Mr Pennant＂， $8 u$ ＂cur foxes＂， $8-9 w$ V．this descript： $11 u$ ＂without I mark＂， $12-17 \mathrm{~m} / 14 u$＂becomel the＂， 24－26m 246 13－15m 248 23－24m 250 5u ＂The｜Fox＂ 251 11－13m／11u↔／12u＂larger size＂ $113 u \leftrightarrow, 18 u \leftrightarrow 252$ 5－8m 253 29－31m （Cuvier，Richardson） 265 15－17m／16u＂fifth＂ 267 10－13m（Lalande） 268 22－24m／22u $\rightarrow 269$ 4－6m（Rüppel） $2767-10 m 2825-8 m$（Lalande） 284 15－17m 285 18－20m 289 12u＊＂have small＂， $27 u$＂odour offensive＂ $3026-8 m / 8 u$ ＂common I wolf＂，10－13u土， $14 u$＂is I south＂

SMITH，Charles Hamilton Horses（vol． 12 of ＂Mammalia＂in the Naturalist＇s Library），ed． W．Jardine；Edinburgh；W．H．Lizars； 1841 ［CUL］
hy，or，sp，sx，t，ti，v，wd
NF This work is reviewed in Veterinary for October？\＆November 1841
NB1 \approx Mrs Hamilton Gray＇s Etruria says the figure of the old Etruscan horses are like． those of a Dongola breed
NB2 ix；xi； 63 to $120 ; 135 ; 145 ; 151 ; 156$ to 185；192；199；202；207；208；210；224； 237 to \＆c \＆c 266 to end
ix 1－2m xi $7-9[\ldots] / 8 u / c / w_{\notin / 9-12 m / Q / 11-13[. . .] / ~}^{\text {／}}$ $11 u \notin$ ， $26 u$＂curiously spotted＂ $6319 u$ ＂Tahtarylireland＂，$\quad 22-23 m, \quad 32 u$＂somel Ireland＂ $6413-16 m, 20-21 \mathrm{~m} /!/ 21 u$＂other genera＂ 65 29－30m $664 u$＂upwardsisurface＂， $5-8 \mathrm{~m} / \mathrm{w}$ ice period！ 67 © $10-11 u$＂existence type＂， $12 u \pm, 13 u$＂Asia，Africa＂， $14 u$ ＂Mediterranean＂， $19 \mathrm{~m} / \mathrm{u}$＂cannot have＂， $27-30 \mathrm{~m}$ 68 « $2-5 m /!, 7-10 m 69<1-3 m, 8-16 m$ ，18－ $19 m, w b$ it certainly is no greater difficulty in supposing many pairs，than one pair produced．-70 \＆ $8-10 m, 14-18 m, 28-29 u \leftrightarrow$ $71 \Perp^{\circ} 17 u$＂ 1821 ＂， $22 u$＂fivelafter＂ 72 （ 5－ $9 m, 16-25 m, 22 u$＂plurality＂$/ 26-33 w$ point of comparison between varieties \＆species crossing 73 4－8m， $11 u$＂one lspecies＂， $14 u$
"Equus caballus", 16-31m 75 1-2ma/u* "it noticed", 14-15m, 23-25!!/m 76 27-29m, 29$33 m 823-9 m 854-6 m$ (Moses) 87 32-33m 91 $2 u$ "feral" $/ w$ good word 94 16-18m 95 20-23m (Herodotus, Aristotle, Pliny) $101 \quad 17-18 \mathrm{~m} /$ $17 u \leftrightarrow, 19 u$ "still|Axia", $20-23 \mathrm{~m}, \quad 21 u$ "Attention 1 in" 103 22-25m/24u "in|fortieth" $1061-4 m, 7-10 m, 12-24 m 109$ 18-20Q 2022m, 21u "alcolour" $11031-32 m 1127-10 m$ 116 15-19m, 22-23m 120 7u "poneys" $/$?, 8$14 \mathrm{~m} / \mathrm{w}$ are these now different??? 121 zb 135 3-4mas, 4-7m, 11-12m 140 9-12m 141 7-8m 145 12-19m $1487 u$ "Forster", $10 u$ "Pallas", 11-22m 151 19-26m 156 1-2m/u "Great। highlands", 3-12m/6-10m/7-8u "the | black" 157 24-25m 158 20-23m/20u "Prussia" 159 2-4m/ $3 u$ "eelback dun" 160 17-20m 163 11-15m, 16a "Tarpans" ie wild horses $16-18 \mathrm{~m} / 17 \mathrm{u}$ "tan mouse" 164 12-15m, 15-20m 165 5-7m 168 14-18m (Virgil), 23-27m 169 3-6m 173 21$22 m$ 174 24-25m (Rengger)/25u "1537", wb 3 authors 175 13-16m, 25-26m,31m 176 8-11m, $13-21 \mathrm{~m}, 14-15 \mathrm{~m}, 30-31 \mathrm{~m}$ 178 21-25m, 24-25m $1791-3 m, 5-7 \mathrm{~m} / 5 u$ "mostly bay" $18126-31 m$ 182 23-28m 183 1-3m, 6-9m, 29-31m 184 5$15 m 1924-7 m 199 \quad 12-19 m / 14 u$ "five great stirpes" $/ w$ what? $19 u$ "some seals", $20 u$ "the 1 brown", 22-25m 202 21-23m, 25-27m 207 25$31 m 208$ 19-21Q 21-23m/w 5 stocks $21027-$ 29m 224 14-15m 237 24-28m 243 24-31m 253 5-11m, 18-23m 266 24-29m 268 17-20m 269 13-16m, 23-24m 274 wt chesnut 1-9m, 7-9m, $12-26 m$, 28-29m $2752 \mathrm{~m} / 2-3 u$ "when I grey", 3-5m, 5-10m, $13 u$ "divergent I chestnut", 1416m, 15-16m, 18-19w Kutch \& Malay Archipel. 21-22x, 23-25m/23u* "dunlthe", 25-26u "without Icause", $26-27 \mathrm{~m} / 26$ um "dappled" 276 28-31m 277 1-4m 280 2223x , 24-29m 2816-8m, 10-11m, 28-31m 283 10-16m 284 12-16m 285 6-16m, 28-31m 286 14-23m 287 11-13m $2887-10 \mathrm{~m}, 10-11 \mathrm{~m} 289$ $3-6 m 2903-7 m, 19-24 m 29224-32 m 2931-$ $5 \mathrm{~m}, 13-20 \mathrm{~m} 2995-6 \mathrm{~m} 30416 \mathrm{~m} / \mathrm{w}$ Bands on legs $22-27 m$ (Banks), wb Not likely from Zebra Cross 307 1-21w Utter confusion of species $3083-6 m 30916-20 \mathrm{~m} 3133-7 \mathrm{~m}$, 12$14 \mathrm{~m} / 14 u, 24-25 \mathrm{~m} 3144-10 \mathrm{~m}, ~ 13-15 \mathrm{~m}, 16 \mathrm{~m}$ (Pliny) $316 \quad 5-8 m 318$ 8-11m/Q $319 \quad 29-31 m$ (Duvaucel) 334 16-18m (F. Cuvier) 337 7-11m $33813 m, 22-25 m 33911 u$ "twol camel", 13u "including I chartreux", $15 u$ "cat \mid Pennant", 16u "tortoiseshell cat", $17 u$ "originally indigenous", 21u "females Ipreserve"/w bosch! $3406-10 \mathrm{~m}$ 342 2-13m 343 1-6m, 11u "femalelass", 14 15m, 15u "slate-coloured", 30 u "mule। indifference" $344 \quad 22-26 m \quad 345 \quad 16-17 \mathrm{~m} / 16 u$ "grey|Egypt", 22-23m/22u "race|large", 31u "dun | breed" 346 7-12m/10u "twolfemale" 348
$7-9 m / 8 u$ "claim 1 demonstrations" facing 352 1?, wb a Doubtful species-

SMITH, Charles Hamilton The natural history of the human species Edinburgh, W.H. Lizars; London, Henry G. Bohn; 1852 [CUL] geo, gr, se, t, ti
NB1 Australian Geologists BoulderO
NB2 Caspian of the Euxus

- 116; 117; 146

Nothing May 301857
47 wt Consider proofs of uprising of Siberia.- Erratus? no I think before Glacial Deposits wt Cd the Caspian have joined the Japan Sea $4-5 m, 24-25 \rightarrow 486-10 m / 2-9 w$ See Murchison $13-27 m 49$ 20-25m/21w Fish $26-27 \rightarrow 5022-27 m 1167-12 \mathrm{~m} / \mathrm{Q} 1176-8 \mathrm{~m} / \mathrm{w}$ what an argument $21-22 m$ 146 5-10m

SMITH, James Edward The English flora 4 vols.; London; Longman, Hurst, Rees, Orme, Brown \& Green; 1824-28 [Down, pre-B, ED] che, fg, gd, oo, sp, tm, v, wd
vol. 1 NB1 Well worth while to plant seeds of common teazel \& see if they cd be turned into hooked teazel; Preserve〈CD?
NB2 Verbascum Nineveh
329 first flowers 5 -cleft subsequently 4 -cleft; Preserve 〈CD?)
NB3 5
5 22-24m 280 wb Proved by Henslow, see Hooker that they are same species- grow mixed at Down in same field - foliage different 306 36-39m (W. Hooker) $30844 u$ "3|high" $3091 u$ "seldom branched", $3 u$ "decurrent", $4 u$ "covered 1 sides", 11-15m, $38 u$ "yard high", 39u "panicled |top", 41u "dark| above", 42-43u "not decurrent" 311 wtos Dec 41862 Rev . W. A. Leighton says he has tried this repeatedly on V . virgatum with like result $\times 9-17 \mathrm{~m}, 40-43 \mathrm{~m}$, wbu I suspect end to partial capsule: \& blow ants incidentally like chloroform on stamens of Picaberg.- 329 35-36m 333 9-22m, 45m $3344-9 m 339 z b$
vol. 2 NB Maple Rare in Scotland; p337 Great variation in seeds of Spergula, but in no other part
$3834 u$ "centrallcoloured" 39 35-38m/36u "one"|37u "neutral 1 red" $21814 m, 16-17 w \mathrm{~V}$. Down Nov. 5231 2m, 17u "rare \Scotland" 337 33-38m, 40-48m 398 wb Down. Oct. 13/42/ Found a Bramble with 9 or 10 petals.
vol. 3 NB 157 Subularia
$93 w b$ in colour \& size of flower - in shape

SMITH, J.E., ENGLISH FLORA
of spots on lower lip in their absence or in their being white or yellow - Down $108 w b$ Found wild Thyme with no stamens. Down Oct.13./42 126 wb Down $15724 u$ "always" 252 13-15u土, $17 u$ "slightly|tips", 21u $\leftrightarrow 427$ $1-5 m, 7 u$ "barren florets", $8 u$ "reddish Corolla" $43342-46 \mathrm{~m} / \mathrm{Q} 43431-34 \mathrm{~m}$
vol. 4 NB 149 Acorn out of Pheasant crop grew
23 wb July 2d found snow white Conopsea 1843 - Down. 32 32-34m 43 24m 149 32-36m, 38-43m, 42u "whylerror", $43 u$ "contrary|botanists"

SMITH, James Edward A grammar of botany, illustrative of artificial, as well as natural, classification, with an explanation of Jussieu's system London; Longman, Hurst, Rees, Orme \& Brown; 1821 [Down, on B, ED]
sy, tm
NF Preserve
$205-7 m, 13-14 m, 18-19 m 21$ 9-26m $221-4 m$ $281-4 m, 18-20 m, 24-28 m 291-4 m, 7-10 m 30$ $2-18 m 40$ wt There are figures illustrating each class $422-3 w *$ Geranium $6 w$ Broom $18-19 w$ compound flower $22 w$ orchis 43 1$12 \mathrm{~m} / 4 \mathrm{w}$ Nettles $14-16 w$ Mosses, Ferns 45 11 m

SMITH, James Edward An introduction to physiological and systematcal botany 4th edn; London; 1819 [Down, pre-B, ED]
$414-6 m, 10-13 m 62$ 19-25m 63 26-29m 64 $20-21 m 6921-24 m, 28-29 m 14916-19 m 150$ $6-7 m, 27-29 m 21716-17 m 2275-6 m 2312$ $6 m 232$ 14-16m $24120-23 m 244$ 17-19m 247 15-17m 250 1-2m, 7-10m 253 26-27m 256 2527 m 257 15-17m 385 13-15m 387 11-14m

SMITH, J. Toulmin The Ventriculidae of the chalk London; Richard \& John E. Taylor; 1858 [Down] §

SNELL, Karl Die Schöpfung des Menschen Leipzig; Arnold; 1863 [CUL] r

NB p. 54 Remarks on me; 103*; O/ $5412 m$

SOLE, Francesco Il Positivismo Napoli; V. Morano; 1881 [Down] \wp

SOLE, Francesco Su la sensazione Napoli; V. Morano; 1882 [Down, I] \wp

SOLIS Y RIVADENEYRA, Antonio de Historia de la conquista de Mexico Madrid; Antonio Fernandez; 1790 [Down, pre-B, S]

SOLMS-LAUBACH, Hermann zu Fauna und Flora des Golfes von Neapel 4. Corallina Leipzig; Wilhelm Engelmann; 1881 [Botany School] 8

SOMERVILLE, Mary On the connexion of the physical sciences London; John Murray; 1834 [Down, on $\mathrm{B}, \mathrm{S}, \mathrm{ED}$]

NB z
\wp
SOMERVILLE, Mary On molecular and microscopic science 2vols.; London; John Murray; 1869 [Down] \wp

SORET, J. Louis François Pictet, notice biographique Genève; Ramboz \& Schuchardt; 1872 [Down]

SOWERBY, John Edward, JOHNSON, Charles and JOHNSON, C. Pierpoint British poisonous plants 2nd edn; London; John Van Voorst; 1861 [Down] \wp

SPENCER, Herbert The classification of the sciences 3rd edn; London; Williams \& Norgate; 1871 [Down]

SPENCER, Herbert The data of ethics London; Williams \& Norgate; 1879 [Down, I]

SPENCER, Herbert Descriptive sociology London; Williams \& Norgate; 1873 [Down]

SPENCER, Herbert Education: intellectual, moral and physical London; G. Mainwaring; 1861 [Down]
NB O/
SPENCER, Herbert Essays, scientific, political and speculative (2nd series); London; Williams \& Norgate; 1863 [Down]
beh, phy, t, tm
NB 138 Definition of Emotion \& Sensations title page $w b 1863 \infty$
8
$10630-31 m, 33-35 m 107 \quad 20-21 m / 21 u \leftrightarrow 109$ 11-15x/m/11c "For"/"...", $12 u$ "existing force", 14-15u "must \mid somewhere" 110 wt after I speak of grinding teeth cont the sensor, give H.S. view that the nerve force is thus
expended instead of exciting goes to feeling \& thought. $1-2 \mathrm{~m}, 15-18 \mathrm{~m} / \mathrm{w}$ the nervous energy is concentrated in the mind 111 wt not in Love or gentle dislike or despair $1-2 u \pm / w$ why $14 u$ "purposeless"/ $13-$ 20 w so for frantic gestures of rage or intense grief $23-26 u \pm / 27 u$ "organs 1 speech", $31-34 m /$ w sobbing must be explained 36 ?/u "extra action" 112 8-10m, 11u "undirected energy", 17u "upperlare" $/ 8-17 w$ Give this under Man under direct action 27-34m/29-32u $\pm w$ why $32-35 m 114$ wt/1-28w but why does the kid amuse persons even if it causes laughter - a bore might interrupt the train \& yet not cause Laughter or enough anger to take off superfluous nervous power $15-18 \mathrm{~m} / 1^{\prime \prime}$ "... / $17 x$, wb Use of voice goes with pleasure by calling social members to each other - to parents - to other sex. 116 wt [Can any idea or remembrance stimulate or depress the brain - does it not first act on the circulatory system \& this excite or depress the brain??] $1-3 w$ [As hurting a nerve does so, probably it can] $22-27 \mathrm{~m} / 24 u$ "falling jaw" $/ 20-23 w$ passive wonder 118 28-36m 119 wb He seems to conclude when sensorium excited a certain quantity of nerve force is generated, which must flow off in thought, sention muscular or glandular action.- 135 $5-7 m 13711-13 m / w$ \& so the idea of snake $1387 u, 13 u, 18-19 u 1393 u, 5-6 u$ \wp

SPENCER, Herbert First principles 6 issues; London; G. Mainwaring, Williams \& Norgate; 1860-62 [CUL, S in no. 1] \wp

SPENCER, Herbert First principles 2nd edn; London; Williams \& Norgate; 1867 [Down, S]
〈markings presumed to be by FD>
SPENCER, Herbert Grundlagen der Philosophie trans. B. Vetter; Stuttgart; E. Schweizerbart; 1875 [Down] \wp

SPENCER, Herbert The principles of biology vols 1 \& 2 bound together; London; Williams \& Norgate; 1864-67 [Botany School, S]
ad, af, cc, ch, ct, ds, em, fg, h, he, hl, hy, mn, no, oo, or, phy, sh, $s l, \mathrm{sp}, \mathrm{sx}, \mathrm{t}, \mathrm{tm}, \mathrm{ud}$, v, wd
vol. 1 NB1 186. nisus formativus; 179 Pangenesis; p. 181 Pang.; 186 Use \& Nisus; 191 Use
NB2 p.243*; 244•; 240; 248 - 249 Use;

254 Pangenesis Theory of Generation when limb of Newt cut off tadpole - $仑$ - limb not proved 259*; 260*; 262 - Twins; 264; 269 Man acted on unequally * differently by same power; 272 ; 309,10 ; 316
NB3 p. 383 Vertebrae number cannot be accounted for by type
NB4 445 Sp Theory; 451-2 used under Domestication
455 small jaws in civilized Man
47 21-23m 179 32-35m 180 34-36m 181 1-5m, $10-28 \mathrm{~m}, ~ 24-26 \mathrm{~m} \quad 182 \mathrm{wt} / 1-5 \mathrm{w}$ like my attention on elective affinity $18319-24 m / 19 u$ "physiological", $22 u$ "physiological units" 186 19-26m 191 21-29m 243 15-18m (Sedgwick) 244 32-35m (White Cooper) 248 18-20m 249 $9-13 m 25322-25 m, 29-31 m, 30-31 m / 31-32 u$ "undifferentiated cell" $2541-3 m, 5-8 m$, 1316m/w Pan $15-16 \mathrm{~m} / \mathrm{"..."}, 18-20 \mathrm{~m}, 24-28 \mathrm{~m}$ $2551 u$ "Heredity", 13-21m/"...", 14-18m/w $\operatorname{Pan}\langle u \otimes, 16 u$ "on 1 large", $21-31 m / w$ shows that he has not got idea $23-34 m *, 26^{\prime \prime} \ldots *$, $34 . . . " 2566-13^{\prime \prime} . . . \mid 7-12 m * 2593 \mathrm{~m} / 4 \mathrm{w}$ increase $8-10 \mathrm{~m} 2601-3 \mathrm{~m}, 7-12 \mathrm{~m} 261$ 20-25m 262 3-14m 264 1-7m 269 19-21m $2721-6 \mathrm{~m} / \mathrm{w}$ Monsters? $2744-10 \mathrm{~m} / x / 5^{\prime \prime} \ldots 27920-26 \mathrm{~m} / \mathrm{x}$ 285 wt Chapt XI $8 \mathrm{~m} / \mathrm{B}_{1} 10^{\prime \prime}$ ".." 286 6-10m 289 $34 z 30925-35 m 3101-3 m 3162-8 m 3835-$ $\begin{array}{llllll}14 m & 435 & 11-17 m & 445 & 14-19 m & 20 \mathrm{~m} / \mathrm{u}\end{array}$ "maintained l produced" 449 29-34m 450 1014m 451 5-6m, 12-16m 452 5-11m, $13 u$ "The। skull", 14u "seated |thickened", 16u "vertebrael neck", 17u "ligaments", 18u "muscles", 21u "upper dorsal", $22 u$ "spines", $26 u$ "bones \mid legs", $27-35 m / 34 u$ "blood \mid nerves" $/ w$ Use wd come in- 455 20-22m $4564-7 m / w$ feet smaller? 457 1-3m $46825-31 \mathrm{~m} /{ }^{\prime \prime} . . . "$
vol. 2 NB1 O/
NB2 Direct action
145 Laws of Variation
147 shape of flowers
151 to 154 do
157-158 Umbelliferae
Hooker disagrees about Umbellifers
NB3 185*; 188*; 201 Origin of Vertebrae
Copied 233 - direct action
Explains first cause of change in prototype organisms
NB4 not abstracted
NB5
326 How animals acquired Lungs in shallow water.-
399 Struggle for existence \& Law of Increase
NB6

- 428 He does not understand Pangenesis

SPENCER，PRINCS．BIOL．
A
437 Bears on Hybridism
－ 439 Antagonism between growth \＆ Reproduction for Pangenesis
401 Causes which determine degree of fertility
409； 471 to 473
X470； 416 Male fish guarding nest ask further
SB1 \langle not $C D\rangle \square \beta$
Vol 1
383 Good about vertebrae．Why are those of the sacrum anchylosed together？
445 Speaks of the importance of Nat．Select． in maintaining as well as producing structures
Vol． 2
145 on the general relation of form to conditions 147 in relation of obliquity of flowers to their position
151 Do－with respect to Peloric flowers．
157 discusses outer florets of Umbelliferae \＆ Compositae．Hooker disbelieves
185 ＂the naked Gasteropods in losing their shells have lost that immense one－sided development of the alimentary system which fitted them to their shells，\＆have acquired that bi－lateral symmetry of external figure which fits them to their habits of locomotion； but the reproductive system remains one－ sided，because in respect to it，the relations to external conditions remain one－sided＂
188 Discusses one－sided fishes
201 argues well with Amphioxus that the muscles first gave rise to Vertebrae but first of all to the Neural Spines（see quotation of Owens＇）
233 argues from bulk \＆cells outside \＆ inside of leaves on the effects of external conditions
〈CD） 346 Origin of Nerves
〈over〉 Herbert Spencer Principles of Biology
SB2
That many structures are directly related to differn of the incident forces，as highly probably as shown by Mr H Spen，but hard to distinguish from selective spontaneous variations．But＊p． 253 it is difficult to bring proof of such［Direct Action］
p． 263 flow of sap－origin of vessels
p． 269 ；p． 270 p． 273 p． 274 ；p．276；p．278；280； 287； 294
See note of err．I have marked all 296－97 Thickened epidermis Origin of Horns，Nails，hoofs
301 formation of teeth \＆Hairs
313；319；Laws of Variation
H．Spencer No． 16 Vol． 2 （Not abstracted）

〈over〉 •，\rightarrow

I am inclined to attach＊much weight to＊ Mr Spen＇s 4 views \＆inquest；but they do not \＆harmon with the method followed in this work of giving the variations actually observed under domestication，so that I will ＊say no more on this head．
SB3 No． 16 H ．Spencer
253－direct action；269，58 trunks of trees an by exuding sap Use \＆Disuse； 263 formation of vessels by elongation of cells；a Sap \＆ vessels 273274 direct action－Species； 287 first formation of skin； 297 Origin of thickened epidermis by used \＆of spurs on Birds wings Sp．Theory； 313 gizzard hardened；\propto_{\square} Ch．3．IV \＆V SB4 $\square \beta=$
p399－473 Rate of Increase \＆Struggle for existence
The conclusion is that fertility is increased on demand by N．selection，according as wanted too great an increase being an evil to the species－producing more than can take，but that will not injure individuals，but each mother expends more than is necessary．She who produces few eggs will produce better eggs－But there is limit to possible amount of fertility going on by individuation of organism \＆expenditure in vital actions \＆growth．－［I think there is error， the individuals who produce much young，wd not be themselves or offspring injured，\＆ them that produce few wd not profit．－］
〈over〉＜a fragment of note relating to Westwood，Insects，1840，vol．2，p．541）
$371-6 m 938-11 m, 16-23 m 14422-24 m / c / w \notin /$ ＂．．．＂ 145 1－7m／2＂．．． 146 fig．m 147 19－28m 151 $26-30 \mathrm{~m} / 1-30 w / w b$ Plantains are on spike by of，$i w$ May it not be that insects visit indifferently male \＆an upright \＆ 153 22－ $36 m 154$ 3－13m 157 11－18m 158 26－30m，32－ $36 m 185 \quad 27-36 m / \rightarrow 188 \quad 18-34 m \quad 201 \quad 7-19 m$ 233 4－10m，wb Bark cells－outside \＆inside of leaves $2538-14 \mathrm{~m}, 16-20 \mathrm{~m} / \rightarrow 2541-30 \mathrm{~m} /$ $4-18 w$ but how distinguish relations $12-17 \mathrm{~m}$ 258 22－31m 263 5－10m，17－20m 269 25－29m／ ＂．．．＂ $2707-25 w$ spiral winder hundreds of feet in length！ 273 25－32m 274 11－15m 276 21－27m 277 7－10m〈FD？ 278 20－25m $28023-$ $28 m 287$ 9－24m 289 23－25m／24－30w in man， but in lower anims yes 294 26－33m 296 25－ $34 m / 9-32 w$ But then a sort of spur grows to wing of Blackbird \＆claw of tail of Lion 297 12－15m，18－19u＂nails I horns＂，27－29m，33－ $36 m \quad 299 \quad 2-8 m \quad 301 \quad 1-11 m \quad 313 \quad 26-36 m$（J． Hunter） 319 22－34m 326 1－12m 338 16－27m 345 17－24m／18－19w Rickets children 354 17－ $24 m 368$ 27－31m 369 6－9m 375 23－27m／26u
＂interdependence 1 parts＂ 398 22－28m，30－35m 399 21－30m 400 29x 401 1－3m，14－17m／16－ 17u＂major 1 mortality＂，22－26m 402 25－30m／x 403 23－26m 407 19－22m 409 1－2m，31－35m 416 34－36m 428 7－9m／8u＂orl part＂ 437 14－ 24 m 439 11－31m（Carpenter） 470 wt I must confine my remarks to beings equally highly organised $w t$（1867）Chapt II to XI 1－10m 471 9－21m／x 472 14－27m／x 473 15－28m

SPENCER，Herbert The principles of psychology London；Longman，Brown，Green \＆Longman； 1855 ［CUL，I］
beh，hl，ig，t
NB1 178 swimming；330－332 essential unity of intellect \＆instincts； 400 ； 410 High \＆ Low； 539 Instinct
Trick，in studying sense \＆habit－if inherited are comparable to＊or rather identical with 2 ways in which instincts are acquired；\＆ 2 ways in which corporeal structures acquired．－
573 Man 596 Expression
〈other w not CD
NB2 \langle not $C D$ ）
viii $30 \mathrm{~m} / \mathrm{wb}$ Here he explains how gradation necessarily comes into play 21 14－15m 117 zt 400 21－23m， $25 u$＂ability｜decompose＂， $26 u$ ＂Water＂ 401 1－14m（Schultze）， 36 m 402 15－ $22 m 4107-11 m / 8-9 w$ Well put $41126-32 m$ $41520 c$＂heron＂，20w hawk 21c＂fish＂，21w heron $539 \quad 3-7 m \quad 540 \quad 5-10 m, \quad 16-23 m$ （Carpenter） 542 33－35m 573 16－21m 596 9－ $15 w$ also alludes to in Essays $10-32 \mathrm{~m} / 11-$ 18＂．．．＂ 599 31－36m

SPENCER，Herbert The principles of psych－ ology 2nd edn， 2 vols．；London；Williams \＆ Norgate；1870－72［CUL，S］
vol． $1 \mathrm{NB}\langle b y$ FD \rangle
〈most markings probably by FD＞
〈CD〉 131 介4－2， 138 12－18m $14015-17 \mathrm{~m} 141$ $11-15 m \quad 323$ 介13－11m 324 介 $15-13 m / 14 u$ ＂organism｜duration＂ 377 11－13m 390 介10－1m／ ？ 391 介15－10m 515 7－11m $614 \Uparrow 4-1 m 61514-$ 19 m
vol． 2543 11－13w fingers！ $546 \Uparrow 5-1 \mathrm{~m} / \mathrm{w}$ quite otherO Gratiolet $5526-15 \mathrm{~m} /{ }^{\prime \prime} . . . " \mathrm{l} / \mathrm{w}$ Slyness －checking the turning of the head to look to one side $5562 u$＂every feeling＂$w b$ love $5 u$ ＂degreelstrength＂$/ w$ No $1-4 m$ ，$\Uparrow 11-7 \mathrm{~m} / \Uparrow 10 u$ ＂conceal I primary＂

SPENCER，Herbert The principles of sociology London；Williams \＆Norgate；1874－77 ［Down］\wp

SPENCER，Herbert The study of sociology 6th edn；London；Henry S．King \＆Co．； 1877 ［Down］

SPENGEL，Johann Wilhelm Die Fortschritte des Darwinismus Köln；E．H．Maner； 1874 ［CUL，I］
$\mathrm{h}, \mathrm{ig}, \mathrm{mm}$ ，phy， $\mathrm{sh}, \mathrm{sp}, \mathrm{sx}, \mathrm{t}, \mathrm{tm}, \mathrm{v}$
NB protective colours of shells Nakedness of Man
Put note 0
on Physiologcal cause why has Hand escaped I may be quite wrong
〈words torn away at top of cover〉
$518 u$＂Planulaten＂，1－23m／w Chains of species connected $21-24 u \pm 64-9 \mathrm{~m} / \mathrm{w}$ Surely I give this view 12－14m 8 1－3m 10 23－26m 19 wt whether I could show that the long Hand in Chimpanzee are touching organs $12-15 m$ 27 27－28？ 71 1－6m／3u＂adaptive＂， $7 u$ ＂Strahlen 1 Flecken＂，12u＂dunkelbraune Schale＂， $16-17 u \leftrightarrow 7316 m 7711 \mathrm{~m} 8016-10 \mathrm{~m} / 18-19 u$ ＂aus｜werden＂ $\mid 18-25 w$ Universally rejected－ Nakedness is a sexual character $824 u$ ＂Adern＂$/ w$ veins $7-10 m$

SPIX，Johann Baptist von and MARTIUS， Carl Friedrich Philipp von Travels in Brazil 2 vols．；London；Longman，Hurst，Rees， Orme，Brown \＆Green； 1824 ［CUL，pre－B， on B，S Chas．Darwin Buenos Aires］
beh，cc，geo，gr，mi，t
vol．1， $1088 w$ \＆Slavery 110 16－17？ 164 7－ 8？，9－11？ 214 19c＂a mile＂$/ w 8$ miles $216 w t /$ $1-27 w$ when I visited this spot in 1832 this retired cottage was uninhabited $2208 c$ ＂granite＂$/ w$ gneiss 19－21？，22－23？，wb on this coast there is no shelter for their growth 221 wt Insecta Arachnida Zoophytes Testacea！ $247 w t / 1-16 w$ All this appears to me much exaggerated 273 2－6m 289 9－19m 290 1－7m， 17－30m 291 7－22m 301 8－19m
vol．2， 51 3－30m 117 24－30m／26－28！／28u ＂from｜N．E．＂ 136 24－30m 137 1－29m 138 17－ $31 m 147$ 18－27m 152 18－30m 154 12－20m 156 1－30m 158 1－28m $1641-30 \mathrm{~m} / 8 u$＂incumbent＂， 26－27u＂decomposed＂ 168 16w p164 172 wb The Lithomarge cannot be decomposed Gneiss－if it contains Topazes \＆the solid $\langle w s-\rangle$ difficult $17327-36 \mathrm{~m} / \mathrm{w}$ Germany $w b$ The altered mica is here also incumbent 185 8－ $28 m 187$ 3－9m 189 23－28m 211 zb 270 1－17m 273 14－22m＊ 281 11－26m

Sprengel，Christian Konrad Das entdeckte Geheimnis der Natur im Bau und in der

SPRENGEL
Befruchtung der Blumen Berlin; F. Vieweg; 1793 [CUL, pre-B, S]
ad, beh, cr, cs, dic, f, fg, gd, hy, mhp, mm, mn , no, oo, phy, rd, sx, sy, t, ta, tm, ud, v, wd, y

NF He treats of forms of seeds with reference to means of distribution
NB1 It would be worth while to cross Vinca to see if it would then produce seeds-

- Strong case of Dichogamy in Paridaceae in Gaertner Bastard p. 65
Gaertner Bastard p. 537 a most weak argument against final cause of Honey to attract insects
586 speaks of it as general law that male \& female organs are ready at same time at p. 659 contradicted
- Gaertners Beiträge must be studied all about Honey p. 75-92
p. 242 attributes all C.C. Sprengel facts to praecosity of pistil.-
- Kolreuter 3d Fort p127 on movement of pistil to anthers in Compositae \& on other cases of movement: this latter subject largely described by Gaertner in Beitrage -
March 19. 59. Lathraea squamaria visited by Bombus - right at top pistil bends slightly over towards passages, projecting \& apparently ready, but pollen not shed Yet pollen on stigma for Bee - In lower (\& earlier) flower pollen shedding, so that here female organs apparently ready first.
p. 415 on Spiders haunting plants with nectar: mem Willy's remark on Listera
NB2 260 on the red Lychnis flowering at different period from the whites ask Henslow or Babington or Watson
- p. 367 Seeds diff shape from disk \& \&374 Margin of Picris Composite flower -
- Flower of males larger than of Females

March 30-46-Read straight through from 1 to 223-299. Read all
Only subjects not on crossing X
Good case of mechanical action comparable to action of pollen on head - for no use in seeds being different \rightarrow
369 Differences in shape of seed in Disc \& centre of Composit.
374 do - (this must be a correlation of structure, \& perhaps owing to insects) Figures of 3 kinds from same flower
371 On stigma in Compositae bringing out Pollen - Rudimentary organ useful
383 do - otherwise rudimentary - very curious case
Watch Acacia - Put pollen of own \& other var. of Cabbage \& shut up flowers

- X Lobelia - Crucianella; Examine next spring; Arnica to see how far passage closed X; Aristolochia whether insects can escape; Honey in night in Orchis morio; Impregnation of Ophys \& seeding of try crossing \& see whether some seed; Heartease - whether night insects do the work; Castrate common Pea, several \& impregnate several \& see if Bees go for pollen or Honey, as perhaps they wd not visit pollen-less Peas.-; Arum about filament about insects escaping; Fraxinella if my account accurate
SB1 $\square \beta$
2 Iris only by Bees
8 Violets
3 Flys impregnate Orchis 21 \& 23 do
4 Epilobium impregnated from younger flowers - same in Euphorbia
16 marks on Corolla to guide insects none on right flower
18 was not aware of use of crossing Bees boring holes dispose necessity of his marks. 42 pollen generally ready first
43 quite as many dichogamous, as dioecious \& monoecious
61 case of Salvia
106 Butterflies - Phlox - Dichog:
111 On Campanula read
117 Phyteuma = does not get dusted in room X (one of Campanulaceae) * Solanaceae * p126 \& 167 Passiflora, stigma not ready during the second day whilst another moving up. (Mention after Barberry) probably night flower
186 Allium in same case with Parnassia
212 Horse chesnuts, probably Dichogam.
240 Kalmia like Barberry, moves on being touched
244 Saxifraga saw fly impregnated
SB2 ${ }^{-1} \beta$
249 Dianthus dichogam, \& yet stated to be impregnated in close flowers
296 saw ants carry pollen (Nothing to show Dichogamy in this class
346 Hollyock Dichogam.
354 does not understand impregnation of Pea.
358 on depression of wings in Bean-flowers \& other Legum. causing exsertion of Pistil \& anthers so Bees impregnate - whole structure of flower with rectangular pistils fitted for this end - Keel springs up slowly to old position
359 Phaseolus, does not know about one side - hairs of pistil brush out pollen; thinks a dichogamit.
390 violet - cavity full of pollen stopped by
pistil from being shaken out；curved point of stigma moved by bees
394 can know when no Bee has visited by no shed pollen－
395 proved it by putting gauze over
397．does not know much about Heartease
SB3 13 Kurr
〈over〉（List of plants supposed to be fertilised by the wind \rangle
〈over〉In one of the Ray Soc．Report Bot． Paper a long description on position of nectars in Veg K．
SB4 $\square \beta$
403 Orchis latifolia－thinks this impregnate －never saw Bees．－has never seen nectar in．calls them sham－nectar producers－ nectary within hairy－look at night－
405 Butterfly orchis has nectar－smells at night－probably a moth impregnation
406 Listera ovata has nectar \＆visited by Ichneumon（p407）with 2 pairs on head． 409 Next year other cases \＆Beetles．Saw the act of impregnation effected．
414 often see Flies in Epipactis，cd not be impregnated without insects
415 saw fly remove the pollen－masses \＆has figured it sticking on back．－
419 Aristolochia from structure cannot be impreg．without insects－ 421 f ，many flies on with pollen on 423 thinks flies cannot escape owing to smoothness of bottom of trap \＆from number，but Mem Arum may be here introduced to show how then little insects can carry pollen．－
over
〈over〉 426．No，flies cannot escape on account of hair in passage－ 428 Fabricius has made same remark－（Does not say has f．many dead flies）
〈over〉 〈List of dichogamous species〉
SB5 OR
A Tussilago or Petasites vulgaris type if grows disc hermaphrodite say female（some plants all female \＆so Senecio vulgaris）； Pistil acts in brushing out pollen but has no stigma．；Antennaria always dioicous．－； Pimpinella magna－tends to have some exclusively male；Anthriscus sylvestris say floret with imperfect stigma \＆no stamens． thinks never sets seeds．－
P see Babington for seeds on orchids \＆ ViolaO；Picris＝Helminthia
－Tabulate how many Dichogamous \＆ species
Henslow．Aug 13／1857
1 wb Hairs protect nectar from Rain 222 $25 w$ Corolla coloured to attract bees
insects $29-30 m, w b$ lris can be impregnated only by Bees $38-12 w$ see p． $526-29 w$ hairs of pistil to keep pollen $30-32 m / w$（a）$w b$（a） Flys impregnate Orchis morio \＆latifolia \＆ Aristolochia in former attracted by colour，as if there was nectar of wh．there is none 4 $37 w / w b$ N．B．Epilob．august \＆Nigella pistil always impreg．by Bees from pollen of younger flowers－Reverse in Euphorbia 5 wh in this page upsets at other uses of Nectar 75－10w Most perhaps all Nectar plants require（W）insects for impreg．12－13w P wb P．Bees carry pollen as well，wh． Nectar，as when pollen－hunting $817 u$ ＂Märzveilchen＂／w 1 1 30 w 2 wb 1．Violets require Bees for impregnat（2）Most hermaph．flowers require insects for their impregnat． $1236 m$ ，wb Suppose all these contrivances only to protect nectar wh he imagines protected even at expense of anthers！ 14 wb C．D．The permanence of standard of Kidney－Beans，when lower petals are decayed，shows that the petals serve other protecting ends besides nectar $156 u$＂haaricht＂$/ 3-9 w$ I do not think explains use of hairs on lower lip of foxglove $16-18 \mathrm{~m} /$ w stel．Vp．29X 18－21w all nectar－flowers have corolla．－ $22-28 w$ He says p． 19 Euphorbia has nectar！！！29－34w Euphorbia has no true corolla R．Browno 16 wt Marks on corolla guide insects $10 \mathrm{~m}, 39 a$＂ihnen＂$/ 35 \mathrm{u}$ ＂Nachtblumen＂｜＂．．．＂，38u＂Saftmaal＂，39u ＂ihnen IStatt＂ 17 34－36m／36u＂kürzer 1 Dichogamie＂ 18 1－25w Seems to think fact of insects being required at all does not deserve any explanation \＆how poor a one of Dichogamy for convenience of insects－！！ 14－16m／14u＂jeder｜gewählt＂｜15－16u＂nicht｜ kann＂，22－23u＂halbgetrennten 1 ähnlich＂， $25-33 \mathrm{~m} / \mathrm{w}$ How poor！ 30 w （a） $37 a$ ＂Schirmblumen＂／u＂ganzen Familien＂｜36－37w dichogam $w b$（a）Has no notion of advantage of intermarriage 19 4u＂Euphorbia＂， $5 u$ Blume＂， $13 \rightarrow$ ， 14 u＂Saftblume ist＂， $20-22 \mathrm{~m} / \mathrm{w}$ How poor！as in p． $1823 \mathrm{~m}, 32-40 \mathrm{~m} / \mathrm{w}$ First \＆ last flowers in the true kind Dichogam must remain unimpregnat $w b$ This kind of Dichogamy requires secretion of nectar for long time，as both old \＆young flowers must be visited；final cause？ 20 wt（a）some plants as Euphorbia \＆Umbellifera visited by insects／all kinds \＆visited irregular in manner；not so other flowers $3-5 \mathrm{~m} / 4 \mathrm{w}$（a） 13－22u士，Says Bees guided to Antirrhinum by the saft－maal；but has the Purple Linaria a saft－ maal．－No whole flower slightly veined but not there more than elsewhere $219 u$ ＂Fliegen＂，10u＂Asclepias＂，14u $\leftrightarrow, 37-39 m$ ，wb

SPRENGEL
X abortive florets of Golden Rose \& Centenary * act for this end V. Viburnum 23 3-4u "kleine Fliege"/4u "Serapias longifolia" $/ 5 u$ "Staubkölbchen"/4-5w Serapias ophidious 24 $5-9 m / 7 w$ z 34-35u "aus 1 Saft", $38-41 m$, wb z Directions for finding nectary $252 u$ "Blasensüsse |Blumen" 27 7-15m, 9-10m/9u "GewächselTreibhause", 15u "Jasione", 19-20u "Coronilla Emerus", 30-31m/30u "wenigstens 1 Art"/w (a) $33-36 m, w b$ (a) I saw one in Allen's garden a Campanula $285-6 u \leftrightarrow$, 38$41 m / w$ (a) $w b$ (a) Bees attracted by their beauty to some flowers without nectar, for pollen \&c \&c fructify them 29 wt So then he disbelieves pistil bending down \& touching anthers. $7 w$ Elder $8-12 \mathrm{~m}, 14-16 \mathrm{~m}, 14-20 \mathrm{~m} /$ $16 w$ P 21-25m, 23-24m/23w L. 31-37m, 38w These are Hermaph flowers impregnated by wind $w b \mathrm{P}$ Hostile to my theory.- are many mono or dioecious plants saft-leer, if so less so - Carex? 30 3-8w Quantity of pollen in Poplar \& Pinus sylv. $15-18 \mathrm{~m} / \mathrm{w}$ male catkins larger than females $3123 u \wedge / 24 u \wedge / 20-23 \mathrm{~m} / \mathrm{w}$ Horse willows impreg by insects $27 u a / 31 u$ "den |werden" $27-34 w$ Hence flowers without nectar are impreg by insects [but have pollen] 37-41m, 43a "liegen" $/ \mathrm{m} / \mathrm{w}$ allow to intermingle this being so \& being large or pollen plentiful, with $w b \times X$ Important to discover what hermaph flowers, are impregnat by wind $3224 a / u / w \tau$, $32 w$ secretion, but serving for no other end?? wb Q flowers before leaves not to prevent impreg. by wind \& before leaves of other trees 33 wt M. case of false final cause very poor $17 w$ M 34 19-22m/w no, not in wheat 35 $34-38 w 18$ days longest duration of flowers! 34-35u "achtzehn", 41-45w flowers fade after fruct. $3611 m, w b \times$ in Scrophularia, stamens move to pistils one after other but S says they are dichogamous - female first 37 wt P . hidden flowers exhale much odour $11-13 \mathrm{~m} / \mathrm{w}$ P 40 wt (a) Anthers \& stigma in same place that Bees may touch both $7 \mathrm{~m}, 29-31 \mathrm{~m} / \mathrm{w}$ (a) $w b$ * \& yet Bees bore holes in the Salvia \& Stachys! 42 21-23m/w (a) $26-28 m / 26-31 w$ Hairs on underside of Foxglove to keep off rain! 31-32u "dass I herabhangende", 33-34m/ $34 u$ "regular 1 müssen", wb (a) how generally he seems to think pollen is mature first 43 $1 u \star$, $6 u$ "Linde", $7 u \uparrow, 8 u$ "Bienen nicht", $9 u \star$, 14-17m, 17-20m/17-24w no! I saw small ones at holes \& reverse $27 u$ "irgend" $24 w \mathrm{P}$ 27$28 \mathrm{~m} /$ "...", $34-36 m, 42 u$ "Schirmblumen Euphorbien", 43-44m, wb P. If this had been 'always' instead of 'ever' it would have been correct perhaps 45 wt compares nectar of fresh seeds $15-18 m / w \mathrm{~m} 28 w \mathrm{P} 32-34 m / w \circ$
$w b$ Hence relation of plants to mammals $w b$ o Seeds which are eaten are conspicuous like nectar-flowers $4637-44 m / w$ considers the vast numbers of seeds necessary for some to be preserved $471 w \times$ means Read $4 \mathrm{X}, 30 \mathrm{w}$ requires insects $491 \mathrm{X} 501 \mathrm{X}, 24$ $26 m$, $25 u$ "Dichogamist", $26 u$ "männlich weiblicher", $27 u$ "Antheren" $528 u$ "dass findet", $10 u$ "vonlum" 55 wb insect impregnation $5812 x 615-10 m, 15-18 m 637-$ $9 m / 7 u$ "männlich weiblicher" $6425 x 65$ 12-13u "dass 1 ist", 29x/ua $665 u \wedge / 4-6 m / 4-14 w$ male flowers larger than female in order that insects may visit male first $25 u \leadsto / 26 u$ "grösser sind"|17-41w So in Strawberries Gardners Chronicle Aug 1861 \& so in Wild Thyme- 67 $8 x \quad 682 x \quad 693 u \leftrightarrow$, $6 a / u$ "keinesweges mechanische" $/ w$ gives good reasons $19-20 m$, $39 x$, $41 x 7043 x 72$ wt X analogous to Hive Bees at Humble Apertures. 4-5m 74 24-30w Iris impregnated by pollen of distinct flowers $7531-35 m, 40-41 m / u \leftrightarrow, w b$ iris must be impregnated by Bee which has come from another flower $7932 x / w$ Rye $38 u$ "Saftdrüse", 39-41m, $\uparrow w$ (a) \mid observed in every spike of a Rye-grass anthers hanging \& pistils feathering, projecting on one (or both?) sides of scales so as to be easy of impreg observed this in one other grass. $w b$ In Introduction confesses he knows no use for nectar in grasses \& this upsets his theory of its sole use.- I kept wheat in glass \& was astonished at one night how many long stamens were produced - hence fruct effected by wind, as he remarks; but the Pistil in the wheat, though very healthy, seemed quite concealed. One day in (a) 81 $8 x 823 x, 4-5 w$ large marginal florets, that insects may see flower from side, as well as from above $-14 m, 20-22 m, 24-36 m / 29-31 w$ Candy tuft $w b$ The variation in marginal florets of Viburnum good instance of structure being acquired - CD $8340-42 \mathrm{~m} / 40-$ $41 u \leftrightarrow / w$ (a) $w b$ (a) pollen first ready $8420 x$, $39 x 851-3 m$, $1 u$ "Ameisen", 1-2u "inl hineinsteckten", $8 x 91$ 1-25[...] 94 2-6m/w cannot be impregnated by wind but by insects $21 x 9733-37 m / 35 w$ (a) $w b$ wb Dichogam, males first ready 98 1-6m, 2025m, 32x 100 44-45u "Dichogamisten| Art" $10139 x 102$ 13-15m/13u "Kultur"/14-15u "Saftmaall können", 28w* Nothing 28x, 30x $1037 x 10425 x, 28 u$ "Saftlich", 29u "Saftblume ist" 105 18x, 20x, 42-43m/43u "Dichogamist", wb Manlich dichogam 106 1$3 \mathrm{~m}, 47 \mathrm{~m}, 12 \mathrm{~m} / \mathrm{u}$ "Schmetterlingen" $/ x 10813 u$ "sondern|Insekten", $15 u$ "Krone zukehren" 109 $28 m 110$ 32-34m/33u "älteren", 43-44m 111 8-
$10 \mathrm{~m} / \mathrm{u}$ "könnenlist", 22-24m, 36-37m/w (a) $40-44 \mathrm{~m} / \mathrm{w}$ no real explanat $w b$ Perhaps it is so in Menganthes, but impregnation does not necessarily follow $11311 x$ 115 5-13w dichogam manlich 117 25u "dieselben 1 jüngeren", 26-27u "dasloder", 28u "Erfahrung|überzeugen", $32 m, w b$ in some stigma got no pollen, field covered with it 120 $\begin{array}{llllll}15 x & 121 & 11 x & 122 & 26 w & \text { knows nothing }\end{array}$ whatever in whole Genus No Honey discernable 129 5-6u "Sie|besucht" $13041 w$ not Solenaceae $13111-16 \mathrm{~m} / \mathrm{w}$ stigma turned from anthers $13512 m 13717-18 m, 20-22 m$, $31-35 m, 35-37 m, 41-42 u \leftrightarrow / 42 x 13917 x 141$ 8-11m 142 43-45m/44ua $1437-9 m, 11-12 \mathrm{~m}$, $13-15 m, 19-20 m \quad 14516-20 m, 28-30 \mathrm{~m} / 29 u$ "Bemühung vergebens", $31 u$ "kleine Wespe", $33 u$ "nachging" 146 27-28m 149 38-39u "welche | Füssen" $1504 x, 19 x / 18-19 u$ "bloss \mid wegen" 152 17-19m/17-18u "dass 1 Art", $44 m$ $15421-23 m / 22-23 u$ "für l bestimmt" 156 wt it is evident that many genera are dichogamous $1 u$ "diese Blumen", $3 u$ "zwar 1 männlich", 6-7u "Noch|IV", $7 m 15725 x / w$ plenty? $29-37 \mathrm{~m} / 33 \mathrm{w}$ (a) $w b$ Last umbells planted or plant had imperfect pistil; became dichogamous \& therefore useless \& no pollen or other flowers $158 \quad 2-3 u$ "Schirmblumen IGriffel", 40u "von IDichogamie" 159 19-20m, 23-24m, 23u "geschlechtslose" 160 5-6u "Saft | Blumenkäfer", 8x 164 31u "3lauf", 31-33m/33u "nicht !kurz", 34-35u $\leftrightarrow 166$ 10x, wb Next page Pollen ready on stamen one after other other move stigma not formed - so dichogamous 167 4$7 \mathrm{~m} / 5-6 u$ "nicht Igeblieben", $8 u$ "von 1 Insekt", 14-18m/16u "verlängern" $117 u$ "das | hinlegt", 33-34u "fünf| sieben", $34-36 \mathrm{~m} / 35 \mathrm{u}$ "und \mid verwelkt", 42-45m/42-45u士 168 33-36m/33u "drey verschiedenen" $35 u$ "Ein Umstand" $/ 37 u$ "Kennzeichen I Dichogamie" 169 wt (a) How is Loaca in these respects). $5-6 m, 7 w$ (a) 35$39 m$, wb On mechanical theory successive rising of stamens useless $17023-26 \mathrm{~m} / \mathrm{w}$ this should be not is $35-39 \mathrm{~m} / 35-38 \mathrm{u} \rightarrow 1711-2 \mathrm{~m} /$ $1 u$ "Stigmalist", $33-36!/ 35-36 m 17222-23 \mathrm{~m} /$ w (a) $w b$ Cover some plants day \& night some by day - some by night 173 20-23m/w B 25-26u "Ob|Geheimniss", 26u "nicht entdeckt", $28 u$ "als |kann", 41x 182 11-17w this \& snowdrop can have not be impreg. except by insects $18422 u$ "ein 1 Dichogamist" $1865-7 u \pm, 9 u$ "männlich 1 Dichogamist" 187 26X, $27 x 188 w b$ Martagon enclosed seeded - hence Spr. cannot see thinks exception use of Nectar \& 6 stamens - ! I can, occasional intermarriage $18929 m / x 19032-$ $37 m / 32-24 w$ nectar impreg. not easy 199 29-
$34 w$ a feather hyacinth $20031-32 u \leftrightarrow 201$ $w t$ feather-hyacinth 203 7-12m/7u "Dass I befruchtet"/10-11u "und|Krone" 204 39-45m $205 w b$ Berberis more than anthers might on stigma $20723 u$ "also wahrscheinlich", $24 u$ "Insekten", 25u "staubvolle" 209 4x, 6-8m/6$7 u$ "die \mid Geschlechts", wbo 2 May $612101 u$ "Schein 1 männlichen", 22-23u "Wind IStigma", wb associated plants must be in same predicament $w b / 1-7 w$ Dioecious plants are produced where self-impregnat. too easy??? Hence is it that so many trees each having so many flowers all dioecious?? See to this for my theory $21125-32 m, 41-44 m / 43-44 u$ a $2122 u$ "immer 1 Dichogamie", $21 w$ (a) $25 u \wedge$, 27-28u "Trauben ${ }^{2}$ viel", $28 u$ "Strauchs", 31$32 m, 35-36 u$ "eine 1 Krone", wb (a) Horsechesnuts probably dichogam $* 2133-6 \mathrm{~m} / 4 \mathrm{u}$ "mehr 1 Zwitterblumen", $5 w$ (a) $14 w$ (a) Veratum nigrum has many male flowers 214 14x 216 23u "männlich-weiblicher", 45X 219 1$2 m 220$ 33u "die|weibliche", 45X $2214 u$ "Nachtinsekt" 223 10x/w from p. 1 to here 225 wb stamens ready first saw Bees impregnating $22625 w$ (a) 25-26ua, wb same 229 40-41m/41u "mechanische geschehe", 42un, $43 u$ "angezeigt" $23025 x 2312 x 232$ 14u "Befruchtung durch" 233 28-42[...] 234 3234m/33u "Dichogamie|findet" 238 11x, 15u "vonlberuihrt" $2405-7 m / w$ (a) $25 x, w b$ (a) This, as I thought, appears like case of self-impregnation.- 243 26-27w Dichog. $24416 u$ "Fliege", 16-17u "habelangesehen", 22u "jüngen", 23u "hineingekrochen", $26 u$ "eine Blume", 44X 245 16-18m, 19u "Dichogamie", 45X 247 15x, wb I found this Dichogam. June 2d $186124924 w$ (a) 24-25u "das IStigmate", $32 u a, w b$ \& yet Editor of Annales des Sc. says impreg. before opening 252 zb 255 31-32m/u "ihrer Einrichtung", $41 x 258$ $17 u \leftrightarrow /$?, $24-27 m, 33-35 m / ?!/ w$ no $37-38 u$ "Nachtinsekten|nicht" $259 \quad 38-40 \mathrm{~m} / 38 u$ "als Nachtblumen", $43 u$ "sondern|Loch"|42-45w Humble Bees bite holes 260 5-9m/5u "weiblichen"/6u "weiter", $6 u$ "männlichen"|7u "zwanzig", 34-38m/36-37Q 44x $26137 x 262$ 15-17m/16-17u "Spergula 1 Dichogamie" 263 $6 u$ "männlich|Dichogamist" 264 5-6m, 8u "dichogamischer Einrichtung" 266 4x, 7-8m, 15-16m, 16u "Käserlandere", 24-26m, $25 u$ "zuerst|Dichogamie", 35-37m, 35u "denn | Pistill" 268 18x $26935 x 270$ 6m, 7x 272 29x, 31-32m/u "denn!können" 273 5-7m, 6u "Bienen befruchtet", $6 u$ "wahrscheinlich", $9 u$ "leicht wegblassen", 18x 277 17x 278 13-15m/ 14-15u "sielsind", $31 x 279$ 22-23u "Blumen 1 Artheren", 23-25m, 39x, $41 x 2803 u \leftrightarrow, 4 m, 6-$ $9 m, 21-22 m, 28 x, 30 x, w b$ Bees biting holes

SPRENGEL
287 6-8m 289 12-13m, 20-23m, 32x $295 \mathrm{wt} / 1-$ $19 w$ Repeatedly shows that impregnation is not by mechanical act; such movements appear chiefly to favour insects $15 u$ "mechanischer Befruchtungsart" $29626 u$ "Ameise", 30w saw ants impregnate $3057 u$ "AuchlDichogamist" 307 29x 308 5-6m 309 6X $31523 x, 31-32 m$, wb hole cut. $3165 m / u$ "häufig besucht", 12x, 28x 317 25-29m, 3x, 32x $31942-45 m / 43-44 u$ "Staublabstreifen" 320 $1 u \leftrightarrow, 13 u$ "Bienen", $14-16 \mathrm{~m} / 16 u$ "sondern Horn", 24-26m, wb Bites holes 321 32x 323 36-37m/36u "weiblich| Statt" 324 23-26m 325 $1-2 m, 12 x, 44 m 32622-24 m / 23 u$ "sie ein" 327 $3 x \quad 329$ wt Nothing in class to show Dichogamy $3354 x \quad 336 \quad 20 \mathrm{~m} / 20-21 u \leftrightarrow$, wb Lindley thinks in Pelargoniums this is effect of culture $34126-28 m 3423-4 m / u \leftrightarrow 34324$ $28 w$ Skimmed $34440 x 3456 x 346$ 26-29m/ $29 u$ "zwischen lsind", 43-45m/45u "älterer Blume" 347 14u "Um|vermuthlich", 23x 349 23x 350 16u "scheint", 17u "Dichogamie", 30x, 32x, 33u "Saftblume" 351 31x, 33x 352 15$17 \mathrm{~m} / 16 u$ "keinen 1 gefunden", $29-30 \mathrm{~m} / \mathrm{w}$ (B) 36 $36 \mathrm{~m} / \mathrm{w}$ (a) $40 u \leftrightarrow, w b$ (a) In Gardeners Chronicle humbles were said to bite base of Bean-flowers $3534 x, 6 a$ "tinctoria" saw Humble at Shrewsbury sucking flower $9 u$ "keinen", 11x, 12u "keinen Saft", 16u↔, 21x, $23 x 3547-8 m, 8 x, 31 x, 37-38 u \leftrightarrow / 38 x 35542 u$ "vermuthlich \mid Befruchtung" 356 wb He knows of Honey on the stipulae $35713 x, 29-31 m$, $29 u$ "oberen", $30 u$ "Loch", wb Holes 358 5-6u "dass I waren", 6-11m, 13-20m/13uн, 29-31m 359 26-44m/32-40w Kidney Bean $42 w$ (a) $w b$ (a) Does not mention Bees always going on one side $3603-6 m, 8-9 u \leftrightarrow, 27 m, 28 w \mathrm{~K} 27 x$, $29 x$, wb K bites holes $36142 x 3632 x 36414 x$ 365 14-28[...]/15u "Saftblumen", 30x 366 23x, $24 w=$ Helminthia $25 x 36717-27 m / 17 u$ "des 1 Scheibe", 21w seeds 21-23u "Dielbesetzt"/Q 24-25u "Seitelbesetzt", 27x 368 15x, 24u "den lbesucht" 369 14x, 19u "Bienen ungemein", $38 x \quad 370 \quad 26-31 m / 28 u$ "wenn Befruchtung" $/ 30-31 u$ "sondern 1 sind", $36 x$, $47 x$ 371 17-18m, 28-29m $3737 x 374$ 10x, 27m/Q $30 m, ~ 41-43 m \quad 3773 x$, 5-37[...] $37927 u$ "von|Insekt", 33-35m, 42u "Insekten", 43u "nützlich", 44u "schädlich" $38013 x 381$ 3-6m/ 3-4u "geschlechts|saftleeren", 15-17m, 36x, 38x $38228 u$ "Insekten geschieht", 29-33m 383 12-16m/12-13u "Siel Zwitterblumen", 32-36m/ w (a) $39-41 m$, $w b$ (Q) a most curious case of abortive organ being made useful, like marsupial bone in some male marsupial animals $3841 u$ "Blume hineinschieben", 11ua, 19x $38527 x 386$ 3u "männlich-weiblicher", 4], 6[$38829 m, 37-38 m, 45 X 38934 u$
"vollkommen trocken"/w (a) wb (a) like that of Kalmia - I have no doubt this is case with Allen Wedg plant wh does not seed 390 1120 m 391 10-12m/11u "bestaubt", $11 u$ "nothwendig I Theil", 21-22m 394 6-9m 395 3$9 m, 39 x, 40 x 3976-8 u \pm, 16-17 m, 35-37 \mathrm{~m} / \mathrm{w}$ (a) 40-42m, wb (a) as I have seen $44-45 \mathrm{~m} /$ $w b$ no $4005-8 m / w$ (a) $13 x$, $w b$ (a) From Henslows account is common to genus. But I believe at different periods $4024 x, 34 X / u$ "Bewegung machte" 403 10-11m/11u "es 1 wollen", 19-21m, 23-25m/23u "niemals" $/ 24 u$ "Saft langetroffen", $38-39 \mathrm{~m} / \mathrm{u}$ "inwendiglist", 44-45m, 44u "Scheinsaftblume", wb | am nearly sure nectary of Butterfly covered with growths 404 wt Cannot be deceptive for insect has at once to fly to catch florets 16m, 7-21w p. 418 Aristolochia clematitis $14 u$ "Osterluzen", 32a "Morio" fresh winged 35$36 \mathrm{~m} / 35 u$ "Scheinsaft", $41 u$ "beweist Orchis", 44-45m/45u "nurlSamen", wb Little flies often on stigma can stigma secrete sweet better $4051-8 m / 1 u$ " 26 "/ $/ 2 u$ " 42 " $/ 2-5 u \pm, 9 u$ "wohlriechendes"/w Habenaria, Butterfly orchis certainly $26 u$ "der Saft", $27 w$ nectar $35 u$ "das|vortrefflich", $36 u$ "Nachtblume ist" $4065-7 \mathrm{~m} / 6 u$ "mit|versehenen", 12-14m/14x/u "Serapias |verdeckt", 16x/w Listera 24X/u "trockner", 28-30m, 41X 407 8-11m/10-11u "denselben 1 vergebens", 12-14m/12u "ähnliches Insekt"/13u "zwey Staubkölbchenpaare", 18m/al u "ähnliches"/w 3d 19-22m/20u "ablecken konnte", $29 u$ "jederlZeit", $36-38 m$, $37 u$ "abzulecken", 40m, 43-45u士, 45m, wb Would succeed only by stickiness of stigma $40820 u$ "oder lankleben", 27-28u↔, 38u "Absicht", 38$40 u \pm / 40 m, w b \times$ otherwise he would have caught a third hair $4096 u$ "wieder", $7 u$ "an Kopf", $8 u$ "einen 1 Käser", $10 u$ "Kopfschmuck", $17-21 m$, wb X saw act of impregnation by Hymenopt 411 25w One of the Ophrydiae) Lind Epipactis 26X, wb = Ep palustris - 1 think this - certainly this No or Cephalanthus ensifolia - this latter I now believe 413 31$34 m, 42-45 m$, wb He does not really understand this flower $41410-11 u / w$ with Insekts $12-21 \mathrm{~m} / 14-15 u \leftrightarrow / 18-19 u$ "weil 1 habe", $22-45 w$ He probably examined only flowers which had gone off $w b$ he forgot to look whether any sticky contrivance to anther He overlooked the spherical rostella 415 21-27m/ w Saw fly with pollen mass on Back $30-45 m$, wb Remarks about spiders making nets on plants which afford nectar $4187 x 419$ 17-18u "Alsdennlseiner", 20-21u "Alsdenn|geöffnet", 28-29m, 42-45m 420 12-16m, 45X 421 32$34 \mathrm{~m} / 33 u$ "zuweilen"zehn", $38 u$ "vor 1 kleinsten", 44-45u "dasslansetzen" 422 28u "Muth-

massung", 34-35u "dergleichen | habe"|35-36u "dass I bestimmt" $34-40 \mathrm{w}$ so let flys escape or go to other flowers? 423 2-36w All this passage a priori reasoning V. vulpa $41 u$ "schliess | theils", 42-45m/45u "vielleicht I glatt", $w b$ If the flies were really imprisoned - this would be strongest case except perhaps Zostera of self impregnat. remember Figs 424 wt Nothing, for he could not found nectar in Beans 1-4m, 23-24u "dass ansetzen" 425 wt $\bullet \times$ Why do so few flowers, then, produce seed which he has insisted on as explained? $17 \mathrm{~m} / \mathrm{u}$ "jedesmal", $38-40 \mathrm{~m} / 40 \mathrm{u}$ "sondern \mid Art" 426 5-8m, 8-10m, 38-39m 427 $12 u$ "muss \mid leicht", $23-27 \mathrm{~m} / 23 a$ "Zustand" of ripe pollen stigma $46-48 m 42826 u$ "nicht verwelkt", 37-39m 429 9-11u↔, 12x, 14x, 21x, 34-35m $43017 x, 24 u \star$, 25u^, 27u "kleinen Fruchtknoten" 431 wt According to my notions all associated plants ought to be essentially dioecious (as single trees are) 4 6m, 15-16u "solfinden", 24-26u "Dielan", $28 x, 30 x, 36 u \leftrightarrow, 38 x, 40 x, w b$ The - is perpetuated like insects-plants Most plants seeds are perpetuated like wind - dioicious plant $4321 u$ "keinen Saft", $12 u$ "Stigmate gross", 14x, 16x, 27-28u "unansehnlich 1 Krone" $4332 x, 4-12[\ldots], 14 x, 40-42 m / 41 u$ "die 1 voller" 434 17-18m/18u "so |Stielen", $44 x 435$ 2-22x/ 14-15u "Die|grösser", 24x, 34-35u "die| weiblichen" $43634 x, 39-41$ m/40-41u "vielen weiblichen", $42 x 4374 x$, 17u "Irrthum", 18u "die| männlichen", 30-31u士 $43824 x 439$ 25$26 u \leftrightarrow, 42-45 \mathrm{~m} / 43-44 u$ "sehrlwird" $44018 u$ "Lütschen", 20-21u "ganzen|Körper", 22u "aber ITheile", 26u "keine Blätter", $29 u$ "weit \mid Stiel", $43 x 4412 x, 4 u$ "männlichen", $5 u$ "weiblichen", 10x, $12 u$ "weiblichen", $26 x, 28 x$ $44224-25 u \leftrightarrow, 27 u$ "längeren 1 sitzen", $33 u$ "aber I vorhanden", $38 u$ "einmal| weise", $39 u$ "welche lhervorgebracht", $44 x 4433 x 444$ 11x tab.i z tab.xx w Speak of it as seed (acherium) It is calyx which differs Tussilago is superflua Picris aequalis

STAINTON, Henry Tibbats A manual of British butterflies and moths 2 vols.; London; John Van Voorst; 1857 [CUL, GD]
(markings presumed to be by GD)
STEBBING, Thomas Roscoe Rede Essays on Darwinism London; Longman, Green \& Co.; 1871 [Down, I]
NB O/
STEENSTRUP, Johann Japetus On the alternation of generations trans. G. Busk;

London; The Ray Society; 1845 [CUL]
beh, ct, em, fg, gd, in, mn, oo, sx, t, ta, tm, y
NB1 It is clear in each successive stage of development, that the young are formed from what he calls germs, little aggregations of cells, \& that these go through regular gradations, in each stage; I do not know how they can be distinguished from ovaJun. 63/so my notion on * difference of true generations \& buds destroyed.-
NB2 Abstracted March 1857
p.1; p.2; p.3; p.6; p.13; p.23; p.25; p.31; p.43; p.45; p.71; p. 96
F.W. Fish almost normally have Trematoda within eyes
112; 113; 114
1 20-23m 2 31-35m 3 23-27m, 32-33m 4 1922? $632-37 \mathrm{~m} 1320-23 m, 30-31$?, 32-33? 23 $27-29 m$, wb so Medusa does not pass through state of Polype Owen $24 \mathrm{wt} / 1-$ $27 w$ This comparison of polyp-formed nurses $1-7 w$ with neuter Bees very loose indeed! [The nurse is a compound body \& larvae are not formed by simple section - wt/1-7w (which I imagine are more like Medusae than the Medusae larvae) $7 a$ "or" a $31-35 \mathrm{~m} /$ w This shows power of division at all periods $w b$ I do not think propagation at any time of life by division odd 25 4-6m/5-6u "belongs other" $3130 u$ "perfect 1 Medusae", 34-38m/35u "their" 43 1-3m 45 11-14m 46 17-20m, 38$40 \mathrm{~m}, \mathrm{wb}$ I cannot anywhere see that the foster generation is seminal $716-8 m / 7 u$ "originally from" 92 16m 96 29-32! 113 1-3m, 16-18x/!, $17 \mathrm{~m} / \mathrm{u} \leftrightarrow, 18 u$ "alsolsex", wb X Because males with aborted organs wd not have the proper instincts $\rightarrow 1145-6 m, 7-$ $10 w$ 〈CD? connected with end $10-13 \mathrm{~m}, 13-$ $37 w$ - analogous to common metamorphosis \& hence the bud-like system of generation returned $16-38 w$ The generative system supervening later in life ought $11514-25 m$, $w b$ Termes are Neuropterous insects

STEENSTRUP, Johann Japetus Hectocotyldannebsen Kjöbenhavn; Bianco Luno; 1856 [Down, I]

STEENSTRUP, Johann Japetus and LÜTKEN, Christian Frederick Bichagtil Kundskab om det aabne Hans Snyltekrebs og Lernaer samt om ... parasitike Coprepoder Kjöbenhavn; 1861 [Down, I by Steenstrup] \wp

STEPHENS, James Francis Illustrations of British entomology 2 vols.; London; Baldwin \& Cradock; 1828-29 [CUL, on B]

STEPHENS, ENTOMOLOGY
vol. 1, $522 w$ p27 $24 w$ p74 6 33-35m, 40-41m $71-30 \mathrm{~m}, 30 \mathrm{~m} / \mathrm{u} \leftrightarrow, 31-42 \mathrm{~m} 81 \mathrm{~m}, 26 u \leftrightarrow, 27 \mathrm{~m} /$ w Brinston Butterfly $1018 w$ clouded sulphur 24 41w Wood-white $272 w$ Black-veined White $2820 \mathrm{~m} / \mathrm{u}$ "12 Cynthias" 30 10w Heath fritillary $3223 w$ Small fritillary $3321 w$ Plantain fritillary $373 w$ Lesser silver spotted fritillary $3922 m / w$ Great fritillary $4017 w$ The Great Fritillary $424 w$ The dale common 37w The great Tortoise shell 43 32w The lesser tortoise shell $44 \quad 15 w$ Peacock $45 \quad 4 w$ Camberwell beauty $467 w$ The admiral 47 $23 w$ Painted lady 50 11w The purple emperor $524 w$ White admiral or admirella $5423 w$ Speckled wood $556-7 w$ The Gt. Argus or Wall B. 56 14w The Grayling B. 57 26w The martled White 58 27w The Gatekeeper 59 $18 w$ The meadow Brown $608 w$ The Ringlet $6438 w$ Scarce Heath 75 29w The Brown Hair Streak $7618 w$ Purple Hair Streak 78 $17 w$ The Green Butter. 79 22w The Copper $818 w$ Large Copper 85 5w The Azure Blue $864 w$ Bedford Blue 87 14w Argus Blue 88 $26 w$ Chalk Hill Blue $8936 w$ The Chifden Blue $9129 w$ The Blue B. 93 26w Silver studded Blue 94 27w Edged Brown Argus 95 13w White-spot Brown 97 19w Grizzle B 98 12w Dingy skipper $1007 w$ Chequered skipper 101 $15 w$ Small skipper $32 w$ Large Skipper 102 19w Pearl skipper
vol. 2, $2 w b$ L. nocturne p86 Semidiurne p140 35 25-27m

STEPHENS, James Francis Illustrations of British entomology vols. 3 and 4; London; Baldwin \& Cradock; 1829 [Down, on B]

STEPHENS, James Francis A manual of British Coleoptera London; Longman, Orme, Brown, Green \& Longman; 1839 [Down, I to $\mathrm{FD}]$
<markings presumed to be by FD>
STEPHENS, James Francis A systematic catalogue of British insects 2 vols; London; Baldwin \& Cradock; 1829 [CUL, pre-B] gd, v
(untranscribed w : names of places where $C D$ has seen the species listed)
〈some w not CD〉
vol. 1, $27 w, 12 w, 18-20 m, 31 w$ Hope 39-40w $37 m, 13 w, 25 w, 38 w 41-2 w, 8 w, 25 w, 29-$ $30 m$, wb $526 m 611-12 w 78 m, 16-17 w 8$ $15 w, 32 w 914 w, 23 m, 34 w 108-9 w, 12 m, 19-$ $20 w, 30 m 1115-17 w$ Hope and Thompson $27 w, 32 w 122-3 w, 12 m, 22 w$ Hope $32 w 131-$
$3 w, 8 m, 16 w, 18 w, 20 w, 29 m, 35 w, 38-39 w 14$ $5 w$ Waterhouse $8 m 1510-11 w, 14 w, 21-24 w$, 31-32w $1613 m, 21 m, 32-33 m, 40-41 w 1711-$ $12 w, 20-21 w, 26 w, 31-32 w, 36 w, 41 m 186 w$, $7-22 m, 14 w$ Waterhouse $24 w, 40-42 \mathrm{~m} / 40 \mathrm{w}$ A. Cooper 43 w Mr Waterhouse 19 14-16m/w, $37-39 m 207-9 w, 15 w, 21 m, 26 m, 34 w, 37-$ $38 w, 42 w 211 w, 4 w, 11 w, 23 w, 27 w, 32 w$, $41 w 223 w, 6 w, 10 w, 25-26 w, 39-40 w, 235 w$, $11 w, 16 w, 19 m, 24 w, 34 w, 37 w, 39 w, 40 w$, $41 w, 44 w 2415 w \mathrm{Mr}$ Waterhouse $9 m, 16 w$, $21 m, 26-27 w, 32-34 w, 38 w 256-8 w, 32 w, 41 m$ $269 m, 16 w, 19 w, 22 w, 31 w, 33 w 271 w, 7 w$, $19 w, 22 w, 26 w, 32 w, 38 w 281 w, 5 w, 8 w, 9-$ $11 \mathrm{~m} / 9 w, 16 w, 18 w$ var. $20 w, 26 w, 29 w, 36 w$, $38 w, 41 w 295 w, 21 w, 23 w$ Hope 26w, 41w 30 $10 w, 18 w$ Hope $30 w, 31 w, 33-34 w, w b$ Waterhouse $3113-14 m / 13 w 3214 w, 34 w$, $37 w, 43 w 3334-36 w 341 w, 6 w, 15 w, 18 w$, $23 w \bullet, 29-30 w, 36-37 w, 40 m 3518 w, 27-28 w$, $30 w, 34 w$ Waterhouse $40-42 m 36$ 18-19w 37 $19 w, 21 w, 23 w, 28 w, 32 w, 34 w, 37 m 381 w$, $13 w, 15 w, 18 w, 29 w 3911-12 w, 27 m, 34 w 40$ 31-32w 41f w 42f w 43f w 44f $w 459-10 w$, $22 w, 35 w 4625 w 4832-34 w 48 f w 494 w$, $12 w, 15 m, 19 w, 23 w, 30 m, 35 w, 39 w, 44 m 50$ $5 w$ Hope $7 \mathrm{~m}, 10-11 \mathrm{w}, 13 \mathrm{~m} / \mathrm{w}, 18 \mathrm{w}, 24 \mathrm{w}, 28 \mathrm{w}$, $34 m, 39 w, 43 w 516 m, 19-20 w, 21 w, 24 m / w$, $28 m, 30-31 w, 34-36 w 5211 w, 18 w, 21 m, 29 m$, $36 w 5314 m, 26-28 w 5432 w, 37 w 55$ 5-6w 56 $41 m 5727 w$, 30w $5830 \mathrm{~m} / \mathrm{w}$ Hope 59 11w, $20 w 604 w 211 \Uparrow 20 m 221 \Uparrow 19 m$, $\uparrow 14 m$, $\uparrow 6 m$ $2223 m 2231 m, 6 m, 15 m, 24 m, 27 m, 31 m$, $34 m 22416 m, 25 m, 33 m 2254 m, 26 m, 32 m$ vol. 2, 28 11-14z, $27 m$ 28f $w 37$ wt Moths

STERNE, Carus (i.e. Ernst KRAUSE) Werden und Vergehen Berlin; Gebründer Borntraeger; 1876 [CUL] \wp

STERNE, Carus Werden und Vergehen 2nd edn; Berlin; Gebrüder Borntraeger; 1880 [Down]

STEUDEL, Ernst Gottlieb Nomeclator botanicus Stuttgart \& Tübingen; J.G. Cottae; 1841 [CUL]
sx, sy, wd
NB p. 112
Poinsettia Cyanophyllum Hot House Plants Azalea anaena
Hibiscus (Abutilon) allied to Viscus (Hooker) Rudgea Rubiaceae dimorphic
part 1, 5b $48 m$ 95b $10 m, 18 m, 20 m, 26 m$, $32 m, 37 m, 41 m, 46 m, 48 m, 52 m, 54 m, 58 m$, $59 m, 63 m, 65 m, 68 m, 72 m, 77 m, 78 m, 83 m 96 a$ $2 m, 5 m, 12 m, 18 m, 22 m, 25 m, 26 m, 28 m, 31 m$,
$37 m, 47 m, 50 m, 53 m, 58 m, 64 m, 66 m, 72 m$, $80 \mathrm{~m} 96 \mathrm{~b} 5 \mathrm{~m}, 7 \mathrm{~m}, 12 \mathrm{~m}, 13 \mathrm{~m}, 15 \mathrm{~m}, 22 \mathrm{~m}, 33 \mathrm{~m}$, $37 m, 39 m, 42 m, 47 m, 49 m, 50 m, 53 m$ 112a 50 m 118a 35-37m/35u "hypogaea" 256 zt 450b $73 m, 74 m$ 451a $1 m, 32 m$, $33 m$ 494a $14-15 m /$ $14 u$ "uncinatum" 494b $82 m$ 495b 43 m , 64 m 496a $3 m, 6 m, 59 m 496 \mathrm{~b} 45 m$ 507a $29-32 m$, 34-37m, 45-50m, 53-58m 507b 7-12m 559a 61m 601b 6 m 677b $67 \mathrm{~m} / \mathrm{u}$ "cinereum" 678a 35-37m $/ 35 u$ "Endressii" 678b 10m 679b $20 \mathrm{~m} / \mathrm{u}$ "Richardsons", 66m 681b $50 \mathrm{~m} / \mathrm{u} \leftrightarrow 766 \mathrm{~b}$ 80-84m
part 2, 51a $74 m, 75 m$ 51b $8 m, 14 m, 26 m, 63 m$, $83 m$ 52a $4 m, 54 m$ 52b $26 m, 27 m, 43 m, 62 m$, $71 m, 74 m$, wb 14 94b $75 m$ 106a $30 m, 32 m$, $57 m, 60 m$ 325b $39 m, 63 m, 75 m$ 326a $75 m$ 326b 18 m 386a 58 m 391b wbct 395a $64 m$ 590a $26 m, 45 m$ 748b $13 m$

STEWART, Dugald Philosophical essays 3rd edn; Edinburgh; 1818 [ED, CUL.1900]
$\langle p r o b a b l y$ CD $\rangle 415 \Uparrow 10-6 m 416 \Uparrow 12-10 m, \Uparrow 2-$ $1 x$

STONEHENGE (i.e. John Henry WALSH)
The dog London; Longman, Green, Reader \& Dyer; 1867 [CUL]
br, cs, he, sl, ta, tm, v, y
NB - Reversion in $3 \& 5$ generations - 173 Reversion
175 Breeding in \& in

- Shows how soon Bull-dog form is eliminated-
179 \& 183 good on crossing Bull-dog \& Greyhound
Period of adultness in dogs - 187 - Periods of adultness
188 Breeding in \& in; 196
223 form of young animal- cannot be selected
Reversion Close interbreeding Crossing, elimination of character Period of adultness Qas Form of young * Dogs
118 6-15m/7-9"..." 173 18-27m $174 \quad 1-13 m$ 175 13-17m 177 1-4m $179 \quad 7-17 m / 10 u \leftrightarrow 181$ $4 w$ child, 1st yr $1821 w$ grandchild $2 d 1831 w$ grgrchild 3d 2-4m,5m,6-8m $1841 w$ grgrchild $18716-19 m 18810-14 m, 17-20 m 1891-5 m$, 15-22m 190 2-4m 223 2-5m, 14-16m

STRASBURGER, Eduard Sur la formation et la division des cellules revised edn; Jena; Herman Dabis; 1876 [CUL, I] \wp

STRASBURGER, Eduard Über Zellbildung und Zelltheilung 2nd edn; Jena; Hermann Dabis; 1876 [Down]

STRASBURGER, Eduard Zellbildung und Zelltheilung 3rd edn; Jena; Gustav Fischer; 1880 [Down, I]

STRAUSS, David Friedrich Der Alte und der neue Glaube 2nd edn; Leipzig; G. Hirzel; 1872 [Down]

104 11m
STRICKER, Salomon Handbuch der Lehre von dem Geweben des Menschen und der Thiere 5 parts; Leipzig; Wilhelm Engelmann; 186872 [Down] \wp

STRZELECKI, Paul Edward de Physical description of New South Wales and Van Diemen's Land London; Longman, Brown, Green \& Longman; 1845 [CUL, I]
$\mathrm{f}, \mathrm{fo}, \mathrm{gd}, \mathrm{h}, \mathrm{is}, \mathrm{mg}, \mathrm{no}, \mathrm{se}, \mathrm{sp}, \mathrm{ta}, \mathrm{ti}$
NB Abstract March 57; 143 Van Diemens long an isld for coast elevated 100 ft 143 so that animals cannot have passed from one isld to another, recently
56 .
254 Proteaceous leaf Bulinus \& Helix 296 Van Diemen Carbonifer series Morris
302 Diprotodon Marsupial. Pachyderma Fossil to 312 (not important)
314 List of Animals \& birds common to Australia \& Van Diemens Land
347 Sterility of one race of Mankind with another.
352 number of natives Van Diemens Land
143 23-26m 254 2-16m (Darwin, R. Brown, G.B. Sowerby) $2708 w 12716 w 22721 w 2$ $7 w 314 w 421 w 52735 w 617 w 72745 w 8$ 275 20w 9 New genus $27613 w 925 w 10277$ $7 w 1117 w 1225 w 132785 w 1412 w 1525 w$ one same $2797 w 1628 w 17280$ 10w 18281 $6 w 192827 w 2026 w 2128318 w 222844 w$ 23 20w $242855 w 2528 w 262865 w 2723 w$ $282879 w 292882 w 3028 w 312898 w$ not new $22 w 322904 w 3329110 w$ or $342961-$ $3 m 301$ 34-37m 302 9-12m 303 26-28m 305 $3-4 m, \quad 31-33 m, \quad 34-37 m \quad 30631-32 m / 31 u$ "marsupial" 309 32-35m $31032-35 m 311$ 22$30 m 312$ 9-14m 314 wt x means common $23 m 3159 x, 18 x 3161 x, 7 x, 25 x, 29 x 3171 x$, $6 x, 8 x, 12 x, 14 x, 16 x, 18 x, 27 x, 30 x, 33 x 318$ $4 x, 15 x, 18 x, 20 x 3199 x, 14 x / ?, 16 x, 32 x 320$ $10 x, 23 x, 33 x 3213 x, 5 x, 7 x, 12 x, 14 x, 22 x$, $28 x 3222 x, 14 x 3238 x, 23 x, 25 x, 27 x, 32 x 324$ $15 x, 20 x, 28 x 3255 x, 8 x, 13 x, 17 x, 19 x, 21 x$, $23 x, 25 x, 27 x, 29 x, 31 x, 33 x 3263 x, 5 x, 8 w$ not $16 x, 21 x, 27 x, 30 x, 32 x, 34 x 3272 x, 8 x$, $10 x, 13 x, 15 x, 17 x, 20 x, 22 x, 25 x, 29 x, 31 x 328$

STRZELECKI
$1 x, 4 x, 10 x, 12 x, 17 x, 20 x, 23 x 24 \mathrm{x}, 28 \mathrm{x}, 30 \mathrm{x}$, $32 \mathrm{x}, 34 \mathrm{x}, 36 \mathrm{x} 3291 x, 3 x, 5 x, 7 x, 9 x, 11 x, 13 x$, $15 x, 17 x 3471-8 m$

STURM, Carl Christoph Gottlieb Über Raçen der landwirthschaftlichen Hausthiere Ebberfeld; Büscher; 1825 [CUL]
beh, cc, ch, cs, dg, h, he, hy, in, or, phy, rd, sl, sx, t, ta, tm, ud, v, wd, y
NF This book shows that any laws can be made out, in accordance with authors own observations on such ill defined points as resemblance to parents \&c- The only way \& that poor is to take indifferent peoples statements \& from such statements build facts. Reason for quoting \& for authorities NB p15 to
SB $\square \mathfrak{R}$
16 Rule of ant. part taking after father NQ
82 On weakening of cows maternal instincts Q
85 Q In districts where cattle worked, it is well known young are more easily broken in - so in Pampas Horses) Compulsory instinct. 104 NQ Horns always after Merino Ram: one cross from Horned Bull gave Horns to Hornless Herds, (because a part previously lost, so tendency to return.- (N.Q. in Ch. 9)
107 Attention quicker or slower according as we take male or female of H \& cross it with B.

67 drawn back neck in alpine sheep like Alpine kinds
120 Selection
ii $1-9 \mathrm{~m} / \mathrm{w}$ does not always quote his authorities $54-12 w$ longer a variety exposed to any condition greater the change \& then harder this change to vary $78-15 w$ Head most important sure race-character amongst intellectual animals $153-6 \mathrm{~m} / w \mathrm{t} / 1-$ $14 w$ general forms of heads of domestic races especially differ from each other, even in horses, \& even in cows $1614-17 \mathrm{~m} / 13-26 w$ Father gives heads, \& mother hinder parts is general rule. Some exceptions do not destroy the rule! $23-24 m, 26 u$ "Daubenton", $29 \mathrm{~m} / a$ "Landschaf"/wb Sheep crossed with Merino ram head \& fine wool on anterior part of body take after father - case given in p18 \& in p19 with Birds anything can be proved! $171-30 w$ His laws hold to hybrids as well as Mongrels $187-8 m, 13 m 19$ wt HofackerO gives many cases of changes in colour in Foals as they grow 2-18w Muscovy \& drake crossed with common duck follows same law $2 u$ "türkischen", 7-8u "Jungelähnlich", 10$14 m / 11-12 u \leftrightarrow, 15-16 u$ "Kopfeslvon", 25-27w
\& crossed geese \& crossed pheasant 20 1$7 w$ foals from old stallions have old looking heads!! Bosh. not in men $=10 u$ "Im \mid Bande", $11 u$ "Maulthier", $13 u$ "Maulesel", 27-28m/27u "Alle | haben" 28 u "Mutterl dem" 21 1-2m, $3 u$ "Kopfes 1 Glieder", 21-22u士 22 2-8w Size of head varies much in bulls compared with size of body $239-19 w$ Eyes \& ears vary much in races of cows \& horses $248-10 w$ Horns vary in individuals of same race 17$25 m, 21-26 w$! Quoted more curled the wool the more the horns $w b$ introduce in relation to teeth \& pairs $258-12 w$ The hair on head often characteristic $15-19 w$ one race of sheep with woolless head another with head covered with wool 26 wt \times Can convert one race into another most preferably by crossing of the male $1 x / w \leftarrow$ Can 30 wt N.B These enumerations of differences merely show that all parts differ - $311-2 m 32 w t$ Fig. wrong $4230-33 m / 28-33 w / w b$ No authority for sheep in S. Sea loosing wool 47 $8-12 w$ Cabbages change forms 48 wt White Cabbage seed planted in Naples gave Black-Kohl but generally cauliflower?? 2$13 m / 8 u / w \notin 15-22 m / 16 u$ "mir" $/ 20 w \times \mathrm{xa} w b \times$ (a) Says from own observation clearly made out that the naked huskless barley especially in wet year of 1823 always degenerates into common $491-13 m / 5 w$ (a) $w b$ One ought not to infer that climate causes these variations, but only that they cease being persistant under new climates 50 19-20m/? 53 19-24m/ w Says Cattle taken to E Indies decrease in size in few generations $5426 m 5526 u$ "brasilianischen" $/ 26-30 \mathrm{~m} / \mathrm{w}$ Brazilian (Rio Plata) proverbially best $5716 \mathrm{~m}, 24-28 \mathrm{~m} / \mathrm{w}$ Portuguese cows transported to Brazil give better milk 58 12-26m/12-21w quantity \& character of milk varies in diff. countries 28 $30 \mathrm{~m} / \mathrm{w}$ milk varies in different years 5915 m , $16-22 w$ candle manufacturers prefer Russian tallow 60 wt X he attributes this to the effects of climate but Youatt shows it is in breed \& can be got by selection 3-9w Much more tallow in Holland races, than in Tyrolese $9 x 6118 m \quad 28-29 u$ "dass I hat"/w of Men what wd Malthus say? 67 wb Remarks that true sheep have drawn back neck like all Alpine animals, wh is quite lost in lowland sheep - Mem Levington Sheep - $683 m 74$ $3-14 \mathrm{~m} / \mathrm{w}$ says all animals living in mountains as sheep, goats \& pigs are less fruitful than in low countries 79 14-15m/u "Consuetudol natura" $8123-29 m$, wb instinct of period of propagation has varied in all ruminants $\mathbf{8 2}$ $14-25 \mathrm{~m} / \mathrm{w}$ says cows from long generations habit do not care for their calves being taken
away directly here. $27-28 w / w b$ have lost maternal instinct $831-7 \mathrm{~m} / \mathrm{w}$ says he has observed great differences in cows himself 19-20u "während I duldet"/9-27w The Merinos will let about any strange lamb suck them, because Spaniards kill weak lambs \& put strong one to them; hence individual Maternal instinct is destroyed. 84 13-27w says the acquired instincts of dogs are easily lost, so are natural ones, as burrowing \& wildness in Rabbits 85 18-21m/18-26w it is well known, in districts where oxen are used for draft they are easier broken in $-27-30 \mathrm{~m} /$ $27 u \leftrightarrow$, wb good case of compuisory instinct $9928 u$ "Kartoffeln", wb many races of fruit \& Potatoes have risen from crossing! 100 11$16 \mathrm{~m} / \mathrm{w}$ Merinos originally a crossed breed $10110-13 \mathrm{~m} / \mathrm{w}$ Father chief, especially in mind $13 u$ "nurlbeträgt", $22 u$ "neue Mittelrafe", $23 u$ "TypusiVaters" 103 1-6m/w Father chief?? 21-24m/21-30w Hair, horns \&c are most easily altered by crossing other parts more difficult 104 5-13w curly hair from alpine bulls transmitted to first cross $16-26 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ so with Merino rams, even in parts of body which have no hair in the mother: in one case length of tail not increased, but covered with wool $1055-10 \mathrm{~m} /$ w always has horn of Merino Ram 11-18m/ 14-21w A 1 think this is because lost part; or rudimentary $21-29 \mathrm{~m} / \mathrm{w}$ Hoof takes after father in Oxen \& Horse wb (A) In herd of invariably hornless cattle for many generations, one year of war the hornless bulls were lost \& horned ones were used, \& first year 9 out of 10 calves had horns 106 15-16u $1073-7 \mathrm{~m} / w$ alterations slower according as sexes of different breeds are crossed $6 u \notin$ "friessischen Ochsen", 12-16m/Qa 109 wt Memory 3-8m, 5-6u "Kunst fertigkeiten", 6-7u "Raphael's, Mozart's, Dante's" 110 11m, 29$31 u \leftrightarrow / 21-31 w / w b$ as many years as teeth require so many generations for new race!! $11118 u$ "dem 6ten", $19 u$ "oft"/w variation 112 wt in crossing head after father \& in succeeding generations the change travels down the Back! $4-6 m \quad 113$ 1-8m/4-5w instance of above! $16-19 m / 17 w$ A $w b$ A Has already shown that attention through father is so much quicker, as this does not depart much from original race $115 w t / 1-8 w$ A says to produce new race (viz to make a Merino breed come out of country sheep) it is very disadvantageous to commence crossing very unlike breeds, better begin with a half-bred \& so go on step by step. A $1-20 m 11726 u$ "gemeine Veredlung"/25-28w selection with crossing $30 u$ "individuelle Veredlung", wb
what we call selection without crossing 119 $6-10 \mathrm{~m} / \mathrm{w}$ good milking tendency goes by father: curious - 18-21m/w instance 120 15$26 \mathrm{~m} / \mathrm{w}$ Quote English selection best means least requires great knowledge \& a fixed forelook on stocks of cattle $27 u$ "Ductilität" $12110-14 m$, wb says particularly necessary to know influence of Father \& Mother in this kind of selection - this I doubt

SULLY, James Sensation and intuition London; Henry S. King \& Co.; 1874 [CUL] beh, r, t

NB Expressions; 29 to 36 goodish 17 16-21m/w What can I have said $297-39 \mathrm{~m}$ $3038-41 m 3424-32 m 3614-24 m / 6-23 w$ This wd apply only to social animals

SULLY, James Sensation and intuition London; Henry S. King \& Co.; 1874 [Down, I; 2 copies] \wp

THE SUPERNATURAL in nature London; C. Kegan Paul \& Co.; 1878 [Down]

THE SURVIVAL London; Remington \& Co.; 1877 [Down, I by publisher]

SWAINSON, William The cabinet cyclopaedia, natural history: A treatise on the geography and classification of animals London; Longman, Rees, Brown, Green \& Longman; 1835 [CUL, S]
ad, beh, cc, ex, gd, is, mg, 00, no, sp, sy, t, ti, tm, wd

NF1 Read Kirby on Geograph Distribution of Insects
N.B. European Plants on Himalaya agrees with idea of great zone
\leadsto Swainson has written in the Geographical Dictionary
There is a great deal of nonsense talked about perfection of groups \&c as far as I can discover; some families have mingled characters \& varied habits, others confined characters \& peculiar structure.-
NF2 A_{0} Chas Darwin
p.8. Each country is said to have an original breed of own domesticated quadrupeds.p12 General aspect of forms from different countries
p. 17 No large animals in Madagascar
p. 21 waders peculiar to Europe
p. 22 Parrots confined to particular Isis p. 24 soft billed birds best characters taken from-
p. 26 Many genera in Europe

SWAINSON, GEOG. AND CLASS.
492 Lions
50 Malacca birds peculiar
55 European birds go to Asia not v versa
58 North Australia like Africa
69 Mexican Ornithology
106 Australi genus in S. Africa
110 Madagascar
115 Australia \& 118
NB I see grallatores greatest range among birds
Antelopes in North America
p107 Barn Owl S. Africa
SB $\square \beta$
8 says neither temp - food, foes \&c account
for local distribution - good to quote him as an example of ignorance - something must check - See about nightingale in Bechstein. 12 show how climate is given up. What a contrast between Java \& Madagascar N. Guinea. New Zealand \& N. Caledonia as far as is size of Mammals.
21 Waders greatest ranging Birds
50 Analogy of S. Asia \& Africa (Probably much extinction in Tropics series before glacial period)
111 on relation of Mammals of Madagascar \& India
$334-38 \mathrm{~m} / \mathrm{w}$ Motacilla - nightingale 7 19-31m $87-18 m, 35-39 m \quad 12$ 1-6m 17 wt New Zealand Caledonia New Guinea contrasted with Sumatra \&c \& c \& England $4-9 \mathrm{~m} / 5 \mathrm{~m} / \mathrm{u}$ "absencel Madagascar", 11-16m 21 15-29m 22 $27-35 m / 32-35 m 2422-25 m 26$ 11-16m, 21$39 m 271-13 m, 30-35 \mathrm{~m} / \mathrm{w}$ because better known? $297-20 \mathrm{~m} / 10-11031$ 35o/u "perfectly naturalized" 35 zb 39 29-30o 48 5-6o, 12-130, $23-38 m \quad 49 \quad 22-39 m \quad 50 \quad 24-30 m \quad 51 \quad 1-10 \mathrm{~m} / \mathrm{w}$ like Elephants driven down $5541-43 m 582-$ $7 m, 9-11 m / ? / w$ Brown 69 28-36m 72 8-9o 81 8-10o 87 20-24o $92 \quad 7-90 \quad 103 \quad 35-380 \quad 104$ wt Monkeys even in Cape 35° ! $1-2 w \mathrm{~N}$. America 5-11m $10530-38 \mathrm{~m} 106$ 21-31m, 3840 m 107 31-39m $11031-39 m 111$ 2-18m, 31$39 m \quad 114$ 29-33m 115 1-21m/20-24w Mem Brown on Birds $1161-13 \mathrm{~m} / 8-11!/ 4-8 w$ Opossums make nests 118 2-28m 119 18$26 m, 35-37 o 243 w t / 1-3 w$ Every word in this page will serve for the Caracara - an aberrant Eagle $1-36 m 245 w t / 1-3 w$ it would appear that some circles unite many characters \& varied adaptations others more confined 4-7m 357 29-36m (F. Cuvier)

SWAINSON, William The cabinet cyclopaedia, natural history: The natural history and classification of birds 2 vols.; London; Longman, Rees, Orme, Brown, Green \&

Longman; 1836-37 [CUL]
beh, ch, ds, gd, ig, no, sp, sy, t, tm, v, wd
vol. 1 NB 166 Monkey noise a call note 31 Expressions p. 31 - Crests *

- 29 Head ornate

I do not allude to call notes \&
167 on singing of Birds to
185 Nests
29 26-39m, $37 u$ "Guinea-fowl", $38 u$ "havel horns" 31 10-11m/11u "danger langer" 72 fig.w angle too ac little too sharp too coarsely shaded 166 4-15m, 27-32m (Buffon) 167 8-9u "autumnal l robin", 13-14u "exerted 1 where", $18-25 m 1687 w$ cranes $10-13 m, 15-20 m, \Uparrow 2 u$ "of perchers"/wb swallow $1695-7 m, 9-13 m$ $17021-26 \mathrm{~m} / 21 u$ "swallow", $30-36 \mathrm{~m} / \mathrm{w}$ cawing a tone song $17435-38 \mathrm{~m} / 35 u$ "Insessorial" 177 23-30m 185 31-37m
vol. 2 NF 11 is Falcunculus cristatus a shrike? Vanga a crow?
SB $\square \beta$
11 Falcunculus. Australian Shrike tears off Bark \& hunts for insects; do well to insert in Ch 8 on Transition, when 1 treat Bird becoming like Woodpecker
112 Vidua, widow Bird of Cape wd suffice for Ch. 6
$5 \quad 13-18 m \quad 6 \quad 8-15 m / w$ This should be considered in the Fissirostrial type $10 w b$ It is like Echidna \& Histrix having spines 11 30$39 m / 31-33 w$ Examine this Bird $w b$ N.B. XX It is not difficult to see how all types would be repeated. because all spring from one stock \& same circumstances. which makes order, would make same number of representative wild forms $144-8 w$ what difference $6-10 \mathrm{~m} 15$ $1-20 \mathrm{~m} / 4-8 w$ thoroughly unphilosophical 307 10-15m 308 11-15m

SWAMMERDAM, Jan The book of nature London; C.G. Seyffert; 1758 [CUL, pre-B, S Charles Darwin 1827]
title page co Josiah Wedgwood to Erasmus Darwin, to R.W. Darwin to Charles R. Darwin to William Erasmus Darwin 1858
A present from my ingenious friend Josiah Wedgewood to Erasmus Darwin F.R.S.
(CD) This book 1 wish to be given to George
part 1, 125b 35-41m 132a 3-8m 217b 14-22m
SWANK, James Moore Statistics of the iron and steel production of the United States Washington, Government printing office; 1881 [Down]

SWINHOE, Robert Narrative of the north China campaign of 1860 London; Smith, Elder \& Co.; 1861 [Down, I]

SWINHOE, Robert Notes on the island of Formosa London; F. Bell; 1863 [CUL, I]
beh, cc, gd, gr, ig, is, $s x, t, t a, t m, v$
NB Introduction 0.29
Ibis p.12; p.47; 57; 75; 86; 103
p. 2 to 5 Zoolog Proc

Formosa Ornith lbis P 44 Female assuming late Plumage of Male; 50. Petrocinala; 68 Oriolus do do - but rarely; 131 \& 132 Squacco Herons
SB $\square \beta \propto_{0}$
Introduct lbis p. 29 general character of Fauna of Formosa- distance from China
p. 12 lbis - grades of differences \& variation in Birds of Formosa
p47 example well-worked out in Lanius
57 do in Garrulus
75 Drymoeca - less marked vars
86 Wagtail more complicated vars like British - conditions of life 103 Centropus do.-
Zoolog. Proc.
p. 2 to p. 5 general characters of mammals, also to slightly differ in characters of colour slight vars, some distinct
Good for Variation - Geograph. Distrib.- and effect of Conditions of life.-

Introduction, 29 34-56m
Ornithology of Formosa, 12 11-25m, 26-28m $1311-13 m 44 \geq 23-28 u \pm, 27-35 m$, wb Ibis Jul 1863 p. 2247 1-11m, 13-20m $5011-16 m 57$ 17-27m 68 23-28m/26u "green I spotted" $/ 29 u$ "This|much" 75 16-19m 86 5-30m 103 2-6m $13110-13 w$ sexes alike same places $24-$ $32 \mathrm{~m} / 27-28 u$ "splashed I very" $13216-20 \mathrm{~m}$ Mammals of Formosa, $21-4 m, 44-47 m / 46 u$ "generally darker" 3 5-9m, 14-15m, 17-22m, $27-33 m, 43-46 m, 48-50 m 41-6 m, 10-19 m 5$ 29-31m

SYME, Patrick Werner's nomenclature of colours 2nd edn; Edinburgh; 1821 [CUL]
sx, tm, v
NF
Beak of female; ash grey males nearly black Legs \&c exact orange - few

Soles of feet yellow, skin of beak with very faint - legs partly - shape of feathers becomes same - lower mandible \& part of upper - grey

TASSO, Torquato Gerusalemme liberata 2 vols; Firenze; 1821 [CUL.1900]
3 "vi".m, "viii".m 4 " x ".m 8 "xxiii". $m 10$ "xviii".wt 21 "lxi".X

TAYLER, John James Christianity London; Williams \& Norgate; 1868 [Down]

TAYLOR, John Ellor Flowers London; Hardwicke \& Bogue; 1878 [Down]
NB O/
TAYLOR, Richard (ed.) Scientific memoirs vol. 1; London; 1837 [CUL]
che, mhp, t

NB Nothing October $/ 56 /$

vii $25 m$ (Ehrenberg) $2246-10 \mathrm{~m} / 7-8^{\prime \prime} . . . ", 9-$ $10 z, 22-26 m, 27-45 m 2255-9 m, 11-15 m, 15-$ $21 m, 33-38 \mathrm{~m} / 33-34 u$ "the 1 multiplicity" 227 wb The whole Universe a life, the plant a crystal, a life - i.e. his definition, but what commonly called life, a unity producing a different class of complexity than other unities.- Good idea- to show life only laws like universe $23435-42 \mathrm{~m} / 37-39$?, $w b$ Is there more unity in zoophytes 236 15-16u "utterly incapable" $/ ? / 9-17 \mathrm{~m} / \mathrm{w}$ Mem. plants gain habits 25-28m/? 240 16-19m/18w Zoophites 411 14-38m

TEALE, Thomas Pridgin Dangers of health London; J. \& A. Churchill; 1878 [Down]

TEGETMEIER, William Bernhard The poultry book 11 parts; London; Orr \& Co.; 1856-57 [CUL]
cs, he, v, wd, y
part $1 \mathrm{NBO} /$
part 2 NBO/
part 3 NB p.47, p. 48
$47 \quad 26-27 \mathrm{~m}, ~ 27-28 m / Q \quad 48 \quad 10-12 \mathrm{~m}, 10 u$ "the lquill"
part 4 NB Cuckoo Cochines; 53; 56
52 31-33m/33u "Cuckoo" 53 26-28m
part 5 65; 66; 72 Correlation of Eggs and plumage; 76
$653-5 m, 32-37 m 6635-37 \mathrm{~m} / \mathrm{w}$ like wild 72 8-10Q, 10-14m, 36-37m $7625-28 \mathrm{~m} / \mathrm{Q}$
part 6 NB 86; 87
$861-6 m, 38-40 \mathrm{~m} 876-11 \mathrm{~m}, 12-15 m$
part 7 NB 89; 95 good Reverses
$\chi_{0} 2$ [Q ?] non * sitters producing sitters not so with me
98; 99; 100 spur often on Hens; 93 related Characters of Spanish not shown early

TEGETMEIER，POULTRY BOOK 1856
It would be good to cross 2 distinct hen－ tailed breeds \＆see if tails wd not come－
Cross 2 breeds of which chicks are not barred \＆see if not come barred．
$897-11 m, \quad 36-39 m \quad 90 \quad 11-14 m \quad 93 \quad 1-5 m$ $9517-21 m, w$ Reverse $Q \varkappa_{0} 20-21 m / 21 u$ ＂sits lsteadiness＂ $9724-25 \mathrm{~m} / \mathrm{w}$ Andalusians 25－29m／27u＂themlweeks＂ 98 5－7m 99 $1-3 \mathrm{~m} / \mathrm{Q}, 41 \mathrm{~m} / u$＂is 1 sharp＂，$\uparrow 1 \rightarrow 1001-2 \mathrm{~m} / 1 u$ ＂set｜leg＂， $2 u$＂that \mid softer＂， $37-41 m / 39 u$ ＂markings 1 reason＂
part 8 NF Plates of Ptarmigan NB 102；111； π_{0} Comb if not clipped fearful vantage fighting
$101 \pi 9-8 m / u \leftrightarrow / w$ in same sub－breed 102 $13-15 \mathrm{~m} / \mathrm{w}$ very different from other breeds 17 u＂henslformer＂， $19-20 \mathrm{~m}, 30 \mathrm{~m} 10314-$ $16 \mathrm{~m} / 25-27 \mathrm{~m} / \mathrm{w}$ a relation between Hens \＆ Cocks $\uparrow 11-10 \mathrm{~m} / \mathrm{m} / \rightarrow / w b$ I think a Cochin Cuckoo yes p． 53 \＆Dorkins（I think I have seen a Cuckoo Spanish at Anerly $\uparrow 9-5 m / w$ loss of character $106 \Uparrow 16-10 \mathrm{~m} / \mathrm{w}$ Boldness $111 \Uparrow 16-15 m$
part 9 NB 115 to end；123；133； 123. Sexual selection．

SB \quad－

p． 123 Pheasant attached to single Hen．
124 Hybrid Pheasant \＆Fowls
－ 133 crossed Hamburgh good motherings．
$115 \Uparrow 13-11 m 11613-15 m$ ， $19-7 m 119$ 9－11m， 26－29m $122 \Uparrow 17-13 m, \Uparrow 14-13 m<1232-5 w$ it is an ambiguous variation $21-22 m$ ， $\Uparrow 12-11 \mathrm{~m} / \Uparrow 11 u$＂somel favourite＂$/ w$－Selecting Bird T3Q $1243-6 m, 7-9 m, 10-11 m, 14 u$ ＂extraordinary wildness＂，14Q＠，15u＂tails very＂， $16 u$＂andlwas＂，17－20m，19－20u ＂whilst I pheasant＂，19－21m／w Prepotency Qus $21 u$＂entirely black＂，介14u＂colourldark＂， $\Uparrow 14-4 w$ Different race of Fowls unduly affects hybrid with Pheasant shows Pheasant not preponder in colour $Q \propto_{0} 125$ $\Uparrow 8-5 m / \Uparrow 7-6 u$＂that Inest＂／w Q ag death of embryo $\uparrow 4-3 m \quad 126 \quad 8-12 m, 9-13 m \quad 129$ 13－14m $130 \Uparrow 7-4 m 1315-7 m$ ，$\uparrow 12-10 m, \Uparrow 6 u$ ＂threelvarieties＂ 133 介7－4m／Q® 135 5－6m， 6－7Q 136 8－11m，14－15m，$\uparrow 18-14 m, \Uparrow 8-7 m$ ， $\Uparrow 7-4 m / \Uparrow 7 u$＂Cuckoos＂，$\Uparrow 6-5 m$ ，wb Spangling runs through several breeds
part 10 NB several pages marked
\pm 154．relation of sterility \＆Hen－tailed Sebright Bantams．
142 9－12m 148 介5－2m 150 10－13m，介13－10m， $\uparrow 9-4 m \quad 153 \quad \Uparrow 6-1 m \quad 154 \quad 5-9 m, \quad 13-15 m$ ， 16－18m风，25－28m 1569 ＂assume 1 tinge＂，11－ $12 \mathrm{~m}, 18 u$＂twolhere＂，19－22m， $\mathrm{m}^{23-26 \mathrm{~m} /}$ $24 u$＂for 1 years＂／Q
part 11 NB $\neq 162$ Chicks of silky Fowls
Q－

163 Silkiness not transmitted to offspring plate＂White Aylesbury Ducks＂．w Lemon Beak 158 18－21m，$\Uparrow 6-3 m 159$ 18－20m／19u ＂Spangled Bantams＂ 161 wtw 161 $11-15 m / 13-15 m$ ，$\Uparrow 9 u$＂its｜hue＂ 162 1－3m， $12-14 m, \quad \Uparrow 17-13 m \quad 163 \quad 11-14 m \quad 164 \quad 12 u$ ＂Somellike＂， $13 u \pm, \Uparrow 10-5 \mathrm{~m} 16512-18 \mathrm{~m} / \mathrm{Q} 172$ $\uparrow 5-3 m$

TEGETMEIER，William Bernhard The poultry book 15 parts；London；Routledge； 1866－67［CUL］
beh，br，cs，f，fg，gd，he，hy，in，or，phy，sl， ss，sx，ta，ti，tm，v，wd，y
part 1 NB O／
part 2 NB Marked \＆referred to old Pages
$40 \Uparrow 4 m 41 \Uparrow 3-2 m 4219-20 m 461-2 m$ ，$\uparrow 13-$ $11 m / \Uparrow 12 u$＂consumelgrass＂

part 3 NB

Cochins produce many Cocks
p．49．New
p55 \＆p． 58 Q Brahmas crossed Breeds now true for Cochins \＆Chiltern greys a large var． of Malays．－Himalayan Rabbits
p72 \underline{Q} Crossed birds after moulting not true．－
Reversion in individual Birds
$4914 m / u$＂pectoral＂，介2－1m $5511-16 m 58$ $\Uparrow 6-1 m \quad 72 \Uparrow 3-1 m$ plate＂Silver Polish＂．w Black Poland with white white－Poland with black Silver Poland Golden Spangled Poland part 4 NB strong shells 78
Malays very small comb \＆wattles 76 new
－ 79 Interbreeding Q
73 1－2Q，9－11m／Q 76 介13－10m 78 15－17m 79 $1-6 \mathrm{~m} / \mathrm{w}$ Hens $\rightarrow / 25-30 \mathrm{~m}$ ，17－21u士，23Q／a ＂fact＂says $24 a$＂necessarily＂cause $24 c$ ＂the｜who＂，25－26＂．．．＂，25c＂breedinglin＂， 28－30＂．．．＂ 81 7－13m
part 5 NB Copied
－ 97 Old Cocks getting yellow Hackles Reverse in individuals
p102 Q in ch． 24 Spanish Fowls originally＊ Mediterranean origin
$974-7 m$ ，$\uparrow 1-13 m / \Uparrow 17-16 u \leftrightarrow 102$ 8－12m， $\pi 10-8 m / w$ Tender $\pi 3-1 m / \rightarrow 103 \quad 2-5 m$ ，介19－18m／介18u＂immenselface＂，$\uparrow 5-1 m 105$ $\Uparrow 6-2 m 106 \Uparrow 3-1 m$ • 107 14－16m， $16 m 119$ $17-20 \mathrm{~m}$
part 6 NB 123 new．form of sexual selection － 128 Black \＆white Games not breeding Q． － 40135 Interbreeding Game spurs extra on Game breeds．
121 11－12m，$\uparrow 10-8 \mathrm{~m} / \uparrow 8 u$＂early \mid precocious＂ $12317-23 \mathrm{~m} / \mathrm{Q} 凶_{0}, 25-26 m 1246 u$＂necklstray＂， $8 u$＂whole land＂，9－10u＂wings I powerful＂，10u ＂thighsimuscular＂， $18 u$＂plumagellike＂， $24 u$
＂beaklmassive＂，26u＂The spur＂， 27 u＂dense 1 leg＂， $28-29 m 125 \Uparrow 3-1 m / \Uparrow 2 u$＂arel savage＂ 128 $23-25 m 131 \Uparrow 12-9 m 1351-6 m, \Uparrow 14-12 \mathrm{~m} / \mathrm{Q} \mathrm{o}_{0}$ 137 3－6m $139 \Uparrow 8-4 m$ ，$\uparrow 7 \mathrm{c} / a$＂an＂ $\mathrm{An} \uparrow 7^{\prime \prime} . . . "$ ，介7a＂bird＂as＊Mr T＇s poultry works
part 7 NB p． 165 Pheasant male；p．155；157； 165，167 Hybrids
$150 \Uparrow 18-12 m \quad 1554-7 m$ ，8u＂pairs｜hens＂， $8-9 w$ Hens selected $11 u$＂Golden Mooneys＂， $14-16 \mathrm{~m}, 19 \mathrm{u}$＂hens＂，$\uparrow 4 u$＂the small ＂，$\Uparrow 1 \rightarrow$ $15620-22 \mathrm{~m}$ ，29＊ 157 介17－14m，介13u ＂year \mid feathers＂，$\uparrow 12-9 m 15813-18 w$ As also produced by crossing probably reversion－ $17 u$＂they｜pencilled＂， $17 c / a$＂ 8 ＂ 2 \＆ 8 17－ $20 \mathrm{~m} 163 \Uparrow 13-7 m \times 5$ 亿18－1m，介18u＂the single＂，$\uparrow 17 u$＂affection 1 common＂，$\Uparrow 13$＂．．．α_{0} ， $\Uparrow 13-11 u \leftrightarrow, \quad \Uparrow 10 u \quad$＂entertain lto＂，$\Uparrow 8 u$ ＂artifice lanything＂，$\uparrow 6 u$＂sooner 1 takes＂，$\uparrow 2-1 u$ ＂Extra－ordinary wildness＂ 166 介9u ＂Silver 1 Hamburgh＂，$\uparrow 9-8 w$ Pheasant male $\uparrow 7-5 m / \Uparrow 6 u$＂close pencilling＂ 167 19－22m，介14－12m，$\uparrow 9-7 m$
part 8， $17238-40 \mathrm{~m} 17320-25 \mathrm{~m} / \mathrm{w}$ no too young $30-32 m, 35-37 \mathrm{~m} 1752-5 m, 7-10 \mathrm{~m}$ ， $22-23 m, 23-28 m 18126-27 m 18418 m 185$ 24－26m，37－41m 191 9－12m
part 9 NB 204 Houdans
$20933-36 m / 36 u$＂and lhorned＂，$\Uparrow 1 \rightarrow 210$ $1-5 \mathrm{~m}, 26-29 \mathrm{~m}$
part 10， 219 26－29m，32－33m，40－41m，43u ＂are non－sitters＂ 222 9－10m／9u＂bright blue＂ $2243-7 \mathrm{~m} / 4 u$＂produced 1 had＂， $14-17 m 231$ $33-40 \mathrm{~m} 23440-42 \mathrm{~m} 2361-4 m$
part 11， 248 1－5m，11－13m 250 19－25m
part 12 NB 269 Turkey 271277
Fertility 280， 282 eggs Peacocks Q
285
269 14－23m（Baird） 271 20－23m（Baird） 277
28－30m，36－38m 280 18－20m 282 3－5m 285
$12 u$＂fiveleggs＂
part 13 NB O／
part 14 NB O／
part 15 SB $\square \beta$
The Poultry Book
p． 47 \＆ 48 Cochins－O middie－toe very long．－p． $41 \& 42 \&$ tail very short－ primaries very short．
p． 446 Cuckoo Cochins p．$* 46$ Cochins graze much－57＊49．Pectoral muscles little developed
65 Sykes on Fowls imported from Deccan Pigeons from Aegypt breeding at first（as did my African Fowls）
72＊Malays 81 eggs variable in size \＆ colour 〈u \langle Q＊78－chicken Q feathers slowly
p．76．97．Cuckoo Dorking Cock ， remarkable for having nearly same coloured
feathers in both sexes．
86．102．\＆ 107 Spanish－tender－p103． immense comb in both sexes．87\％ 103. Shape of Skull，affected by Comb
88．89． 105 Two strains of Spanish；one from Holland．－Q 106 get white patch at different periods $\langle u\rangle$
－ 90 p107．About Spanish Fowls not sitting p97．R
93 in Spanish Fowls great uncertainty in getting the cordedO white face
－ 95 p． 119 Two non－sitters produce sitting chickens．p． 133 do R
X 97 Spanish Audubons \Leftrightarrow p121 \Leftrightarrow get secondary male characters very early：crow at 6 weeks Q
99． 123 Pedigrees of Game Fowls extend ＊ 100 years
X 100． 124 Spur often present in Hens of Game．－（\＆savage）
100 Colours differ in cocks of several sub－ breeds of Game；more than Hens．X but p． 131 Hens（p．102）also differ much
193131 Cuckoo Game
X 103131 A Game sub－breed with Cocks \＆Hens alike
111．139．Comb a fearful vantage to foe． curious like injury for Beauty sake！
116 Pencilled Hamburghs described by Aldovrandi－X Cocks not pencilled．119 150 non－sitters
123 Spangled Hamburgh－p155 2 sub breeds underg to Pheasants
123．124． $165 \Leftrightarrow$ Pheasants selecting particular Hens to pair with
－ 165 \＆ 167 stronger－like Hyaenas
－ 124 Young Hybrid Pheasants ＂Extraordinary wildness＂Reversion．－R \＆
126 167 First crosses of breeds of Fowls \＆Hybrid Pheasants very large size
1292 ＊p．155 sub－breeds of Spangled Hamburghs
X 130 Hen－tailed Cocks p154 do strong generally not very fertile；［but Hen－tailed game are said to be so p．102］
135172 Polish Fowls at least 200 years old
$136172 \Leftrightarrow$ Difference in top－knot of Cock \＆ Hen Polish．－Hackles in Cocks correlation comb only rudimentary－wattle \＆Beard congenitive－Nostril 175 not so open； inter－maxillary bones absent．－ $\boldsymbol{\theta} \Rightarrow$
173 Blumenbach on the Skull－good
181 in some breeds wattles，in some beard．－
$\Leftrightarrow 175$ Correlation of Skull \＆Plume
\Leftrightarrow do form of comb
p． 136 Cuckoo $185 \Leftrightarrow$ Polish：Silver \＆Golden

TEGETMEIER，POULTRY BOOK 1866 Spangled．
p． 188 Sultans－p． 191 Ghoudkas－
p． 158 Bantams，length of feathers on leg－ Breed nearly extinct 159 Spangled Bantams p161．Breeds of Silk fowls p． 162 Degenerate in this country：Chickens Q very pretty canary－yellow－ 163 224 Silkness not transmitted，but colour of skin \＆bone is transmitted．
165．Ringless Fowls producing tail－feathers－ never true to colour．－
over
〈over〉
172． 209 Creve－coeurs．large toothed 2－horned comb．
150． 241 Origin of Sebright Bantams－ complex cross．
$\Leftrightarrow 156$ 248．White Bantams，when mature tend to assume yellow colour \＆ $\mathrm{Q} \Leftrightarrow$ this very heredetary－Reversion．－－so with Black－Bantams when 2 or 3 years old． Reversion．－R \Leftrightarrow
－New Geol 204 Houdans described \Leftrightarrow
210 Advantages of crossing Fowls
219 Guelders，Comb mainly a rudiment； Cuckoo Guelder－a sub－breed of polish．no top knot
224 Crossed Silky Fowls
231 good case of Reversion，without a cross － 234 ＊combs Immense Comb
236 Weight of Poultry \＆Ducks
250 Bantams with feathers on legs \＆ 2 outer toes longer than wing feather Ch． 25 Correlation of Growth

TEGETMEIER，William Bernhard Profitable poultry London；Darton \＆Co．； 1854 ［CUL，I］ beh，cs，sl，v

NB 17；18；24；27；28；32；37； 40
SB $\square \beta$
27 Black Cockins produced from Buff \＆ White－Cochins never fly
36 White lappet very uncertain in Spanish Fowl－（Selection）

17 28－30m 18 13－18m，20－22m，29－32m 19 $28-31 m \quad 20 \quad 16-31 m / 16-21 m / 21 u \quad$＂crumbly paste＂ 21 1－2m，14－18m 22 14－19m 24 1－11m， $26-32 m \quad 25 \quad 29-33 m \quad 27 \quad 1-4 m / 1 u \quad$＂small rudimentary＂， $31-32 m 28$ 11－13m 29 5－7m， 17－19m，27－28m $3012-14 m, 16-19 m, 28-32 m$ $312-3 m 3227-30 m 335-7 m, 8-10 m, 14-17 m$ $3424-30 m 354-7 m 365-8 m, 12-16 m, 19-20 u$ ＂long I comb＂ $3710-12 \mathrm{~m}, 30-33 \mathrm{~m} 392-3 m 40$ wto golden Hamburgh 2－6m，17－20m 41 6－ $8 m, 12 u$＂Creoles I grays＂ $423-6 m$

TEGETMEIER，William Bernhard Pheasants for coverts and aviaries London；Horace Cox； 1873 ［CUL，I］
cs
SB See to；p47．scent；112－114． crossing＊；＊
24 9－13m 47 5－12m 92 37－40m 93 18－23m， 24－27m 113 26－34m 114 2－11m

THOMAS，Cyrus Acrididae of North America Washington；Government printing office； 1873 ［Down］
NB 25
25 11－14m
\wp
THOMPSON，J．New，correct and complete ready reckoner Gainsborough；H．Mozley； 1805 ［Down，pre－B］
NB
THOMPSON，William The natural history of Ireland 3 vols．；London；Reeve，Benham \＆ Reeve；1849－51［CUL］
beh，br，cs，ex，gd，hy，ig，is，mg，oo，or，no， pat，sp，sx，t，ta，tm，v，wd，y

SB1 ix；xix；122；136；138；208；307；309； 311；329；339；341；366；373； 407 good cases of occasional migrations；Dixon＇s Poultry first part merely amusing；Index Corvidae Rare birds dull
SB2 $\square \beta$
ix Disease of Birds in England compared to continent \＆Ireland comp．to England．Odd against migration p22 Sea Eagle preferring Black Fowt－p39 Peregrine Falcons getting a mate when one killed－Eyries well known－ Ch． 5
xix on increase of Missel Thrush Ch 5 （p．122）
136 Q Thrush odd variations in place of nest \＆materials of
307 Carrion crow races in Ireland 208 different variety of Tomtits in Ireland \＆ England
309 Cross with Hooded
330 Q On Magpie changing place of nest from persecution－tame in Norway Q
366 On American Cuckoo in Ireland－
373 Kingfisher American do 407 Swallow \＆ Bittern
〈over）
\approx viz by leading the Bird to be constant in one or the other Method．－
Ducks
ix 16－23m xix 17－27m $2214-19 m$（Edmonston） $3913-19 m$

8

122 1-5m 136 18-20m, 25-27m 138 1-4m 208 1-6m 209 12-15m (Macgillivray, Jardine) 307 $17-18 m \quad 309 \quad 27-30 m \quad 311 \quad 3-5 m \quad 329 \quad 27 u$ "reward", 29-32m/31u "persecution", $36 m 330$ 1-8m (Hewitson)/1u "collection!notice", 28$33 m$ (Selby) 339 28-30m 340 23-27m (Jardine) 341 1-3m 366 5-14m (Temminck) 373 16-20m (Thompson) 407 20-24m (Yarrell) 434a 37-38c/ $w \notin$
vol. 2 SB1 $\square \Re$
p12; p19; 27; 42,4; 47,9; 60; 65; 69; 70; 85,8; 98; 103; 122; 133; 146; 164; 172; 228; 247; 256; 272; p314; p328
SB2 $\square \beta$
11 In Islay half Rock Doves chequered
15 Flight of Carrier Pigeon
49 Cases of grouse breeding in confinement
61 Decrease of Partridges, even to local extinctions, cause very obscure 314 Rails at same time
65 Q Different Habits of Partridge of Scotland \& Ireland in rising quietly or scream $69 \underline{Q}$ increase of Quails \& of those staying to breed 70 do Q
122 NQ our shore birds know Equestrian less dangerous than footman 133 Q Heron not afraid of Train
146 Q Herons breeding on the ground
172 Q American Herons in Ireland at time of Migration in America, which was case with Cuckoo
247 Q Breeding of Woodcocks in Ireland256 Q Case inexplicable Probably would not cross 254 thought to be lighter natural colour Q
272 Crested Snipes var. several shot.
328 Q Waterhen not covering eggs in a safe Place.

* 327 Waterhens fighting violently for females
$1117 u$ "in Islay" $/ 16-20 \mathrm{~m} / \mathrm{w}$ * Ireland $32-35 \mathrm{~m}$ (Andrews), 36u "Col. macularia" $12 \quad 5-9 \mathrm{~m}$ (Blyth) 15 1-5m 19 16-19m 25 29-37m 27 25$33 m 42$ 9-11m (G. White) $4421-23 m$ (Sabine, Eyton) 47 17-20m, $28 m 4912-16 m 604-6 m$, 8-11m 61 2-3u \rightarrow, $10-15 m$ 65 15-19m/19u "morel of", 31-35m 69 1-7m $705-8 m 852-7 m$ 88 wt singular so small a habit $1-2 m, 15-$ $21 m / 17-19 w$ different genus $98 \quad 32-35 m$ (Selby) 103 11-14m (Yarrell), 13-14u "ringed feathers", 14-18Q 16-18m/16u "several |ringed" 122 14-15m 133 31-35m/w game $14630-35 m$ (Jardine) 147 8-10m 164 11-12m, 16-18m (Selby) 172 27-33m (Temminck, Keyserling, Blasius, Schlegel) 173 1-2m 228 5-8m 229 2123 m 247 2-6m (Thompson) $25410-16 \mathrm{~m} 256$

19-27m (Selby) 257 1-4m 272 9-12m, 30m 314 9-16m 327 28-33m 328 13-22m
vol. 3 SB1 p17; p31; 39; p.44; 63; 68; 70; 102; 110; 323; 441; 457,8; 461,2,5; I have read only 1st vol. of Yarrell
SB2 $\square \beta$
31 Origin of Domestic goose - variable (good) p. 44 Domestication of Grey Lag: or Parents
63 Q Migratory instinct wearing off in 12 years in wounded geese
102 Division of flocks of Wigeons \&c into distinct flocks (Ch. 6)
441 Extension of frequency of Starling of late years, after loss.
457 Hybrid Blackbird \& Thrush (intermediate young)
458 Various Hybrid Swans to 462
465 Ages of Birds Ch. 5

- 39 \& 70 Hybrids Ducks \& Geese

17 1-5m, 33-35m 31 8-16m/11-12Q@ 39 1$7 m$ (Yarrell) 44 26-28m 63 20-26m 68 1-5m (St John) 70 31-34m 102 9-13m, 18-28m/2327 m 110 12-16m 323 31-33m, 35-36m 441 1$4 m 45636-37 m 4576-8 m, 30 m, 30-37 m 458$ $1 m, 13-15 m, 25-26 m 46026-27 m 4614-15 m$, 22-27m (Yarrell), 29-32m (Selys-Longchamps) 462 6-10m (Westwood, S. Moreton) 465 33$35 m$ 467 12-14m, 16-17m, 19-21m, 24-25m, $27-28 m, 37 u$ "fifty-one years"

THOMSON, David Handy book of the flowergarden 2nd edn; London; William Blackwood \& Sons; 1871 [Down]

THORELL, Tamerlan Études scorpiologiques Milan; J. Bernardoni; 1877 [Down, I] \wp

THORELL, Tamerlan On European spiders Upsala; Ed. Berling; 1869-70 [CUL, I]
ad, af, sp, sx, sy
NB a generalised group of spiders with radiating affinities \& small genera, very distinct - p41
135 Blind Spiders in caves

- 205 Sexes

41 2-9m 135 13-15m (Keiserling) 205 16-21m
THORELL, Tamerlan Remarks on synonyms of European spiders Upsala; J. Lundström; 1870-73 [Down, I] \wp

THORNTON, Robert John A new illustration of the sexual system of Linnaeus vol. 1 [Down]

THOUGHTS on the mental functions Edinburgh; Oliver \& Boyd; n.d. [Down, I] beh
NB 115 to end
On Expressions
116 recognises Expressions instinctively $\mathrm{O} /$
iv $6-7 m, 10 u$, $w b\langle n o t C D\rangle \mathbf{v} 8 m, 9 m, w b\langle n o t$ $C D\rangle$ vi $20 \mathrm{~m}, 29 \mathrm{~m}$ vii $9 \mathrm{~m}, 17 \mathrm{~m}, 28 \mathrm{~m}, 31 \mathrm{~m}$, $33 m, 49 m$
8
116 23-35m

TIEGHEM, Philippe Van Traité de botanique 4 fasc.; Paris; F. Savy; n.d. [CUL, S] che, ct, fg, phy, tm
fasc. 1 NB p61,2 Bloom; p155; -85 Fluids for absorbing Light; 91 Constituents; 96; 98; 122 Frank Bicarbonate; 138 read to 60 fig.m 61 11-22m 62 1-5m 86 1-8z 9124 $30 m 9623-29 m, 40-47 m 9840-46 m 9916-$ $23 m, 48-51 m$ (Sachs) $10323-25 m, 26-28 m$, 40 m 123 35-48m (Sachs, Guillemin), 41-44m/ $43 u$ "cupro-ammonicale" $12614-17 m 1383 m$ $1472 m 1551-5 m, 7-8 m, 42 m$ (Sachs)
fasc. 2 NB 202 \& 208 \& 209 Frank. Loss of weight of grains; 209 Bears on my experiments with drops of water; 225 Root-Hairs.-; 248 Effect on Haricot crest of Ammonia in humid air; 255 Hairs
202 16-23m, 38-40m $2035 m, 40-46 m / 46 u$ "Barthélemy I Dispacées" 208 6-7m, 8-30m, 39$46 m 2094-12 m, 34-36 m, 38-43 m 2251-4 m / 3 u$ "Rapa", 41-43m 248 31-34m 253 介2-1m 255 20-26m 309 $\uparrow 15-12 m 315$ 9-11m 318 15-19m
fasc. 3 NB 474; 480 Protoplasm
341 1-4z 343 34-42m 355 18-27m 359 17-20m $4327-12 m 43735-37 m 45020-22 m 4535-9 m$, 15-18m 456 31-35m 474 15-18m, 37m 480 39$45 m$
fasc. 4, $4904-5 m / 5 u$ "leucite" $/ w$ or Aleuron! 492 11-19m, $28 u$ "condense 1 protoplasma", 43$46 m 493$ 8-14m 494 9-12m 498 fig A.m, fig B.m, 18-19u "partagent I protoplasma" 50040 $45 m 505 \quad 20-21 m / 21 u$ "latex 1 Euphorbia" 524 35-37m/35-36u "paraissent | réserve" 526 27$29 m 52841-44 m 52929-34 m 532$ 18-22m 574 $34-46 m 5965-10 m, 13-18 m 598$ 28-32m, 41$45 m 6221-6 m 6247-10 m, 19-25 m / 19-20 u \leftrightarrow$ 627 8-12m

TIETZE, Emil Über Devonischen Schichten von Ebersdorf Cassell; Theodor Fischer; 1870 [Down, I] \wp

TIMIRIAZEFF, Clement An essay on the theory of Darwin St Petersburg; 1865 [CUL, I] [in Russian]

TORNØE, Hercules Chemi Christiania; Grendall \& Son; 1880 [Down] \wp

TRÉMAUX, Pierre Origine et transformations de l'homme et des autres êtres Paris; L. Hachette; 1865 [Down]

TRÉMAUX, Pierre Origine et transformation de l'homme et des autres êtres part 1; Paris, L. Hachette; 1865 [CUL]
NB O/
TREUB, Melchior Notes sur l'embryogénie de quelques orchidées Amsterdam; Johannes Müller; 1879 [Down, I] \wp

TRIMEN, Henry and THISELTON-DYER,

 William Turner Flora of Middlesex London; Robert Hardwicke; 1869 [Down] ex, gd, noNB 345 large number of rarest plants, compared with common in Middlesex 345 15-23m
8
TSCHUDI, Friedrich von Sketches of nature in the Alps London; Longman, Brown, Green \& Longman; 1856 [CUL]
beh, cc, gd, mhp, 00, ta, v, wd, y
NB1 p16.
NB2 16
SB1 p.18; p.89; p.151; p.152; p.160; 170; 178; 236
SB2 $\square \beta$
163 weeks between blossoming of highest \& lowest Cherry-tree
89 case of Fox carried by Eagle \& escaped alive Goat 90 children
1513 vars of Bears - Black feeds more on vegetable. 152 Brown attacks Goats
160 Cattle in Spring know the Bell for turning out for Summer Q
178 Wild sheep in Alps - Bergamesque peculiar Breed N.Q.
236 lbex or Steinbock very different on Alps \& Pyrenees
96 Chamois common to Pyrenees, Caucasus, Carpathian
16 3-7m 89 16-28m, 35-38m $90 \quad 27-36 m 91$ $3-6 m \quad 151 \quad 20-23 m, \quad 26-27 m \quad 152 \quad 8-12 \mathrm{~m} / 9 u$ "while Ibrown" $160 \quad 31-37 \mathrm{~m} / 33-34 \mathrm{Q} 170 \quad 22-$ $26 m 178$ 5-9m, 29u "Bergamesque" 179 1-9m 236 23-27m

TUCKER，Abraham The light of nature pursued 4 vols；London； 1831 ［CUL．1900］
vol．2， 269 介14a＂implying＂no
TUKE，Daniel Hack Illustrations of the influence of the mind upon the body in health and disease London； 1872 ［CUL．1900］
beh，em，phy，t
SB All on Expression，except p． 282 on imagination of Mother
remarks sensation via the epigastric region from many emotions long ago observed．
p． 2930758898135136141154159223 244261263269271273
282 －Effect of imagination of mother on foetus
340345
$296-7 \mathrm{~m} / \mathrm{w}$ He experimented on himself 8－ $10 \mathrm{~m} / \mathrm{Q} 303-5 \mathrm{~m} / 4 u$＂sensory ganglia＂，11－16m $754-5 m 88 \mathfrak{\downarrow w}$ I err when I speak of retching from Habit or resulting tone－imagination is cause． 89 15－22m 98 介5－1m $1353-7 m$ ，介12－ $6 m 136 \Uparrow 19-16 m, \Uparrow 12 u$＂burning shame＂，介9－ $7 m 141$ 8－18m 154 介10－3m 159 16u＂Pride＂， $18 u$＂elevationlhead＂， $17-20 \mathrm{~m}, \mathrm{wb}$ Does a man making himself tall－account for position of Head－He is ready for action－ 223 5－12m 244 介4－1m 261 2－12m／？ 262 介18－ $9 m, \Uparrow 8-1 m 263$ 2－6m，13－17m 269 8－18m 271 $\Uparrow 19-16 m, \Uparrow 15 u \leftrightarrow 273 \Uparrow 12-9 m \quad 282 \Uparrow 16-3 m$ $34018-24 \mathrm{~m} / \mathrm{w}$ shows how different emotion is from will－like reflex action $345 \Uparrow 14-10 \mathrm{~m}$ 347 17－23m，$\uparrow 14-10 m, \Uparrow 4-2 m 3505-12 m$

TURTON，William British fauna vol．1； Swansea；J．Evans； 1807 ［CUL，pre－B，S Charles Darwin 1826］
sh，tm
$87 \Uparrow 4 w \notin 118 \Uparrow 10-9 w \star B>12916 w \ll$ Horse Luck $1364 m 13832 m 14039 m 141$ $32 m 14247 m 14331 m, 36-45 m 1445-9 m 145$ $47 \mathrm{~m} 14624 \mathrm{~m}, 31 \mathrm{~m} 14755 \mathrm{~m} 14813 \mathrm{~m} 14927 \mathrm{~m}$ $1504 m 1543 m, 27 m, 40 m 1562 m 15721 m$ $159 \mathrm{Im} 1613 \mathrm{~m}, 16 \mathrm{~m}, 39 \mathrm{~m} 1629 \mathrm{~m}, 32 \mathrm{~m}, 51 \mathrm{~m}$ $1637 \mathrm{~m}, 26 \mathrm{~m} 16515 \mathrm{~m} 16736 \mathrm{~m} 17137 \mathrm{~m}, 52 \mathrm{~m}$ $17333 \mathrm{~m} 17417 \mathrm{~m} 1772 \mathrm{~m} 1785 \mathrm{~m}, 40 \mathrm{~m} 179$ $41 m 184<30 m / w$ Odostomia $32 w 141 w 2$ $46 w 353 w 4 w b$＊Shell spiral produced， mouth contracted subangular generally distinct from，in body short \＆furnished with teeth $185 \propto_{0} 7 w 522 w$ Sym：30w 9 39w do $18688 w 16 w 723 m / w 830 w 939 w 10$ $46 w 11187 \pi_{0} 1 \mathrm{~m} / w^{*}$ Planorbis $22 \mathrm{~m} \Leftrightarrow / \mathrm{w}$ 1＊* $29 m \Leftrightarrow / w 236 w 345 m \Leftrightarrow / w 452 w 5 w b$ Shell simple，spiral，depressed，spines lateral mouth oblique $188 * 3 w 610 w 716 w 8191$

18w Sym：26m，42m 192 4w Sym：11w do $17 w$ do $24 w$ do $36 w$ Sym $43 w$ do $50 w$ do 193 do do $8 w$ Symnaea 33m／w Symnaea $34 w$ 1＊$^{*} 41 w 247 w 3$ wb＊Shell ornate conical mouth entire longitudinally oblong the rt lip joined to the left at the base \＆folding back on the pillar $194<1 w 47 w 515 w 6$ $21 \mathrm{~m} / \mathrm{w} 728 w 841 w 10195 \times 1 w 111966 m$ ， $21 \mathrm{~m}, 40 \mathrm{~m} 197 \mathrm{Im}, 35 \mathrm{~m}, 42 \mathrm{~m} 1986 \mathrm{~m} 2014 \mathrm{~m}$ ， $50 \mathrm{~m} 207 \uparrow 11 w_{\neq} 20822 m, 24 w$ Fecal orifices turned one way $29 m 20923 m, 28 m, 52 m 210$ $12 m 21139 m 212 \Uparrow 29-28 m, \Uparrow 23-22 m$ ，$\Uparrow 18$－ $17 m, \Uparrow 13-12 m, \Uparrow 7-6 m 21336 m, 52 m 21411 m$ $21526 \mathrm{~m}, 33 \mathrm{~m}, 38 \mathrm{~m}, 43 \mathrm{~m}, 45 \mathrm{~m} 21615 \mathrm{~m}$ ， $31 \mathrm{~m} /$ w of Lamarck $37 \mathrm{~m}, 41 \mathrm{~m} 21714 \mathrm{~m}$ ，30w Chelata of Lamarck

TUTTLE，Hudson The origin and antiquity of physical man Boston；W．White \＆Co．； 1866 ［CUL］
h，no，v
NB 35 Number of races of man made by various Authors
$357-16 m$（Buffon，Kant，Hunter，Virey， Blumenbach，Desmoulins，Bory de St Vincent， Morton，Pickering，Burke，Jacquinot）， $7 u, 9 u$ ， $10 u, 12 u, 13 u, 14 u, 15 u$ 〈numbers〉

TWINING，Thomas Science for the people：a memorandum London；C．Goodman； 1870 ［Down］

TYLOR，Edward Burnett Anthropology London；Macmillan \＆Co．；1881［Down］

TYLOR，Edward Burnett Primitive culture 2 vols．；London；John Murray； 1871 ［CUL，I from the author with regrets that chap．II was in print before the Descent of man was published－Apr．28］
beh， t ，tm

vol． 1 NB Expression

p． 150153 voice tones of； 167 do； 169 pleasure only in air Greenlanders turn up nose in contempt or horror； 27
16 15－21m，28－31m $15029 u$＂accompanied＂／w （a）$w b$ I shd say the sounds cause the form of face $1516-9 m 15321-34 m 16621-30 \mathrm{~m} / 28 u$ ＂whine of＂ 167 24－37m 169 15－19m

TYLOR，Edward Burnett Researches into the early history of mankind London；John Murray； 1865 ［CUL］
beh
NB Expression
41 opposition in signs p38－Opposition p51

TYLOR，MANKIND 1ST EDN
\＆ 53 －Gestures Kissing rubbing noses \＆c 62 ； 54 foreigners talk by gesture
Nodding do gestures
$615-18 m 3521-25 m 384-18 m 4126-30 m 45$ $12-17 m 5118-27 m 5226-31 m 532-8 m 543-$ $21 m 621-4 m$

TYLOR，Edward Burnett Researches into the early history of mankind 2nd edn；London； John Murray； 1870 ［CUL］
beh，h，t
NB1 p45 snapping fingers；p52
Expression；38；41； 44 Book；47；48；52； 69 p272 Excellent on Progress with Mankind－ \＆similarly of mind－Referred

NB2

$385-9 m, 14-22 m 4123-35 m 4429-31 m, 38 m$ $45 \quad 15-17 m, \quad 16-25\left[^{\prime \prime} . .{ }^{\prime \prime}\right], \quad 24-28 m, \quad 34 u$ ＂smelling＂ 47 10－15m 48 20－23m，33－34m 51 $23-29 m / 23 u$＂pleasure \mid greeting＂$/ 24 u$＂rubbing 1 other＇s＂$/ 29$ u＂pattings I Fuegians＂ 52 16－21m 53 13－15m，19－22m／19u＂back with＂ 69 1－5m／2u ＂with fingers＂， $36 m$（Lieber） 275 31－32m（G．J． French） 276 16－23m 372 3－38m，19－20z 373 1－ 20 m

TYNDALL，John Address delivered before the British Association assembled at Belfast，with additions London；Longmans，Green \＆Co．； 1874 ［Down］

TYNDALL，John Essays on the use and limit of the imagination in science London； Longmans，Green \＆Co．； 1870 ［Down，I］

TYNDALL，John On the physical phenomena of glaciers（extract）；London； 1858 ［Down，I］ \wp

UNITED STATES Entomological commission for the years 1878 and 1879 relating to the Rocky Mountain locust Washington； Government printing office； 1880 ［Down］

VACEK，Michael Über Österreichische Mastodonten Wien；Alfred Hölder； 1877 ［Down，I］\wp

VASSEUR，Gaston Recherches géologiques sur les terrains tertiaires de la France occidentale part 1：Bretagne Paris；G．Masson； 1881 ［Down，I］\wp

VAUCHER，Jean－Pierre Étienne Histoire physiologique des plantes d＇Europe 4 vols．； Paris；Aurel； 1841 ［CUL］
cc，cs，dic，f，fg，hy，ig，mhp，phy，sp，sx，t， tm，v, wd

NB1 Not abstracted nor is Lecoq
NB2 160 Williams vessels of Cruciferae
SB Voll
Everything without red cross is about cross－ fecundation
p4 D； 17 －wind D；Look over Marks； 21．D；24．D
－to 58 （from now I shall skip largely）
All used about Crossing
74D．
143－151 Fumaria D
156 Cruciferae
Law of Variation 159 X 160 D 163200 D Dimorphism 308 X Violets do－ 316 X Reseda
$\times 322 \times$ Drosophyllum allied to Drosera D 329 Polygala D 388；D 347；D 350；D 355；D 364
Sagina $377 \times$ dimorphic？
D 383
Used $+400,403$ Linum
407 Malva D
－ 408 Do
493 Acer D
518521 Pelargonium D
523528 D
542 X Noli me tangere Dimorph
Dimorph
544 X Oxalis
563 －Dictamnus D
572587
very poor Book
〈over〉 24D
〈D indicates＂dimorphism＂〉
vi $25-28 m$（Cassini） $417-21 m 821-37 m / w C$ ． Calycina 10 23－27！／25－28m 11 1－6m 17 33－ $36 m 2030-37 w$ opening of anthers $31-40 \mathrm{~m}$
(Sprengel) 21 13-16m/15u "etlpied" 23 26$30 \mathrm{~m} / 28 \mathrm{u}$ "premièrel mâle" (Jussieu) $2424-28 m$ 33 20-25m 36 1-3m (De Candolle, A.P.), 39$41 m 44$ 21-26m $58 \quad 27-31 m \quad 7410-16 m 112$ 20-21m $1175-6 m 1437-13 m 14422-25 m 150$ $13-18 m$ (Soyer Willemet) $1518-16 m, 36 u$ "Capnoïdes" 154 20-24m 156 26-31m 159 11$26 \mathrm{~m} / 16 u$ "Cochlearialalpina" 117 w good $20-$ $21 w$ Law of Variation 160 1-6m (De Candolle, A.P.) $161 \quad 1-4 m \quad 163 \quad 35-40 \mathrm{~m} \quad 200 \quad 15-31 m$ (Gaudin) 308 12-15m, 19-21m 309 8-15m, 26$28 \mathrm{~m} / 26 \mathrm{u}$ "deldans" 316 15-27m 322 22-26m $32327-32 m 324$ 8-10m 325 3-6m 329 13-15m, 16-20m, 21-25m 347 3-9m 350 3-10m 355 26$30 m \quad 364 \quad 25-30 m \quad 377 \quad 13-16 m$ (Gaudin)/ $14 u$ "souvent apétale" $/ w$ dimorphic $3851-4 m 400$ $3-8 m / 4 u$ "Austriaticum" $401 \quad 21-25 \mathrm{~m} / 22 \mathrm{~m} / \mathrm{m} /$ $24 u$ "c'est les" 403 16-18m/18u "dix carpelles" 404 19-20m 407 11-22m 408 18-23w Fermond 22-27m 493 23-26m, 29-33m (Linnaeus) 518 $37-39 m 52118-20 m, 30-32 m 523$ 37-41m, wb I have seen this differ in Greenhouse vars $52516-21 \mathrm{~m} / 16-27 \mathrm{w}$ strange notion but shows what a relation there is in position of anther \& nectary 528 3-8m 542 30-38m 543 21-24m/ ?? 544 8-15m 546 10-12m 547 21-23m 549 6$13 m 555$ 28-29m $55937-39 m \quad 5601-8 m 563$ 7-14m 572 19-25m 578 16-21m
vol. 2 NB p371 Lythrum
SB $\square \beta$
Vol 2 Vaucher
21 \& 22 Rhamnus - dimorphic or polygamous
42 Leguminosae Dichogamy \&c
64 Spartium Dic.
82 Ononis dimorphic
90 Nat. Hybrids
188 Nectar-glands Vicia - Dimorphic Vicia
194 Lathyrus. Dimorphic \& good gradation
204 Phaseolus - Dic.
213 Lupinus 2 sorts of anthers
225 Arachis dimorphic
225-299 Dioicous Legum. Dic
327330333 Epilobium \&c Dic
339 allied genus D. Moth caught by proboscis
370 Lythrum Dimorphic
535 Saxifraga Dic.
558563565 to 571 Umbellifera Dic
610611624627 Flowers of Ray \& centre in Umbellifera. Law of Relations; in relation to Daucus - central flowers at 613,614
644 Adoxa central flower, form from position 682, 693 Crucianella. Dic.
702 Galium sexes separate
732 Scabiosa dimorphic
11 18-28m, 21u "dioiques", 33-36m, 33u
"femelles" $2113 u$ "diö̈ques lavortement", $14 u$ "hermaphrodites", 23-24m 22 8-10m $4241 \mathrm{~m} / \mathrm{w}$ Legumin 65 19-22m (Koch) 82 28-33m 90 5$12 m \quad 106 \quad 19-29 m / 28 u$ "filets 1 neufs" 110 31-35m/32u "renflent I ferment" $111 \quad 1 u$ "Globosum", 2-3u "les |les" 188 10-18m, 31$37 \mathrm{~m} 1897-11 \mathrm{~m} 1947-11 m$ (De Candolle, A.P.) 204 15-19m 205 39-41m 213 10-15m, 39-41m $22434-36 \mathrm{~m} / ? / 35 u$ "fleurs infertiles" 225 15$22 m, 36 m 2265-8 m 227$ 34-38m (De Candolle, A.P.), 37-41m/39u "vers larbre" 229 2-4m 231 20-21m 327 21-22m (Koch), 25-30m 330 13$17 \mathrm{~m}, 20-23 \mathrm{~m}, 28-34 \mathrm{~m}, 35-39 \mathrm{~m} 331$ 35-38m/ $37 u$ "ouvrent lsoir" $33316-20 \mathrm{~m} 3398-13 m$, 25-27m $36834 w$ Read $36930-32 m / 31 u$ "oùl et" $37030-38 m, 34-40 m 3711-12 m, 4-12 m$, $22-24 m 38115 w$ Read $53513-21 m 558$ 8$16 m 5639-21 m 5644-7 m 5656-9 m, 24-28 m$, $34 z 56634-37 m / 35 u$ "la 1 sessile" 568 8-11m $571 \quad 25-29 m \quad 610 \quad 13-15 m \quad 611$ 6-10m (De Candolle, A.P.) $61322-26 \mathrm{~m} / 23 u$ "et l rouge" $61413 u$ "ombellule 1 ordinairement" $\mid w$ see p.611 624 16-19m 627 9-13m, 14-17m, 18-22m/18-19u* "la|femelle", $33-39 m / 34 u$ "femelle centrale" $63038-40 \mathrm{~m} 636$ 33-38m 644 25-33m 682 20-24m, wt Rubiaceae 693 7$\begin{array}{llllllllll}12 m & 702 & 31-40 m & 703 & 41 m & 705 & 10-11 m & 732\end{array}$ $30-36 m, 37-41 m$
8
vol. 3 SB Vol 3 Vaucher
300 Compositae. Dichogamy
307 Lobelia fertilization a dioicous form D
309 Goodenia References good D
387 Asclepius does not believe is D.
396 Apocynum D.
399 Vinca D
402 Menyantes Dimorphic
413 Dic.
454 Dimorphic
461 Echium dimorphic
461 Pulmonaria do
466 Myosotis palustrus do
518 Digitalis Dic
576 Mentha dioicous
578 Lycopus do
584 Salvia manner of fert (subsid) Dic.
596 Origanum 599 Thymus 603 Satureya
611 Melissa 687 General Remarks on d.
723 Hottonia dimorphic 724 Lysimachia
738 Primula dimorphic 741 Soldanella dimorphic?
In former Volume about Lupins with 2 coloured Stamens?
3 3-4w Not read to p. 299300 12-16m, 34$38 m 3014-7 m, 9-13 m 3073-8 m, 27-31!!309$ $5-7 m, 28-32 m 38722-27 m 3996-8 m, 13-15!!/$ $m, 30-33 m 402$ 6-11m 413 27-32m 461 21-

VAUCHER
$22 m, 23-28 m 46230-31 m / 27-31 w$ mentioned by Gray $4661-4 m 48929 w$ Read 490 9-11m $518 \quad 36-39 m \quad 596 \quad 15-19 m \quad 599 \quad 7 u$ "Thym commun" $/ 6-13 w$ not our garden plant see Steud 18-22m, $24 u$ "souslcouchées", $33 u$ "fleurs I dioïques" 600 15-17m, 19-20u "le। avorte", $21-31 \mathrm{~m} / 26 u$ "fleurs 1 rose" $60128-34 m$ $60325-28 \mathrm{~m} 611$ 12-17m 687 24-32m 71840 $41 m 7191-3 m 72310-17 m 7244-6 m 73813-$ 16!/m 741 16-21m (Koch)
vol. 4 SB $\square \beta$
Vol 4
35 Atriplex
complex sexual case gradation
521
very imperfectly skimmed, but as much as it deserves
521,522 on relation of fertilization to position of nectar Dichogamy

35 12-27m 434 15-17m 521 2-11m, 15-18m $52230-34 m$

VEITH, Johann E. Die Naturgeschichte der nutzbaren Haussäugethiere Wien; W. Braumüller; 1856 [CUL]
cs, dg, gd, geo, or, sl, sp, tm, v, wd

NF Veith

title page wt Reith Veith 11 29-36m/31w (a) $w b$ (a) races produced by selection deteriorate when neglected 15 24-25m/u "weilltheilt" $24 \quad 24-29 \mathrm{~m} / \mathrm{w}$ wild horses of central Asia $28 u$ "ohngefährlgewöhnlichen"/w small 33 u "Ihrelkraus" 25 1u "lohbraun", $2 u$ "isabellgelb|mäusegrau", $9 u$ "weissliche", $10 u$ "behaarte|Pamer", 12u "Kumurah|Bergpferd", $13 u$ "das ISardiniens", $14-16 \mathrm{~m} / \mathrm{w}$ doubtful whether really wild $17 \mathrm{~m}, 27 u$ "dunkelbrauner silbergrauer" 29 wt How little we can trust geological evidence shown by the 2 Americas $1 u$ "werden|Hauptstämme", $11 u$ "dunkelbraune 1 Pferd", $3-17 \mathrm{~m} / \mathrm{w}$ I daresay from Smith 20-25w Remarks cannot be traced 31 11-13m/12u "langel Mähnen" 33 wt 1 remember lately seeing that English horses had beaten Aegyptian 10u "Siel Stammältern" $3412 u$ "noch|gemeine"/w Dray Horses 20$21 w$ india Pony still different $22-25 w$ But new Forest Shetland \& Welsh Ponys have different appearance $26-28 \mathrm{~m} / \mathrm{w}$ English Pony $3520 u$ "Neapolitaner", $21 u$ "schweren \mid Kopf", $22 u$ "Höhe gerichteten", $27 m, 33 u$ "sardinischenlklein" 36 7-15w nothing particular $3713 u$ "abstehend|hängend"12-19w Great heavy horses $3816-22 w$ Germany nothing particular- $25 w$ Northern horses tow.- $394 u$
"russische", $7 u$ "lange Mähnen", $8 u / w \tau$, 11$14 w$ These crossed by Eastern Horse $15 u$ "liefländischen", 21u "Ukraine", 25u "domische Kosakenpferd", $26 u$ "Ganaschen"/w lower jaw $31 u$ "polnische" $/ w$ very distinct $35 u / w b \tau 407 u$ "Bachmatten!Podolien", $16-17 m / 16 u$ "sehrl haut" $416 u$ "edle ungarische", $28 u \leftrightarrow, 34-35 \mathrm{~m} /$ $34 a$ "Paarung"/wb i.e. Neapolitan-Spanish 42 $11 m / u \leftrightarrow, 12 u$ "in I Slavonien", $16 u$ "böhmischen Pferde", 18u "fleischigen\Augen", 19-20u \rightarrow, 27 u "Steiermarks", $31 u$ "Salzburgs", $33 u / w \tau 44$ $10-11 \mathrm{~m} / 10-14 w$ never have white spot on forehead $48 \quad 32-33 m / u \leftrightarrow 52 \quad 30-32 m 55$ 13$15 m$, $18 u$ "Dielraçe", $19 u$ "spitzigem Kopfe", 21u "hohen Beinen", $32 u$ "Das | Würzthaler" 56 $1-3 m / 1 u$ "das | Vieh" $/ w 3$ 30-35m/33w $6573 u$ "England" $33-5 w$ England not counted 20 m , 26u "Holländer", $33 u$ "friesischer" $583 u$ "Tütische", 8c£, 10-11w Short Horn $17 u$ "Alderney", 18u "aus |stammend", 20u "fette Milch", $25 u$ "grosselscheckige", $30-31 u$ "Hintertheil ! Schwein-wurzel" 59 wt could these all arise from few crosses? $1 u$ "Simmenthaler ISaanervieh", $5 u$ "Tiroler", $18 u$ "einelMaul", $19 u$ "Ohren", $22 u$ "Schweizer" $601 u$ "Vorarlberger", $7-10 \mathrm{w}$ sub-vars $17-27 \mathrm{~m} /$ $22-25 w$ sub-vars $29 m / 29-35 w$ So above does not include crossed races in his opinion.- 64 26-27u "Alpenketten 1 Nordasien", $27-28 u \leftrightarrow$, 33-34u "Früher 1 heimisch" ? 65 1u "Sardinien 1 getroffen", $2 u$ "jung zähmbar", $4 u$ "Gebirgel Nordafrika", 6-7u "im Armenien" 67 10-12m $6831 m / w$ Felt $33 u$ "gemeine Landschaf" $695-$ $7 \mathrm{~m}, 14 u$ "Lüneburger 1 Niederungen", $16-19 \mathrm{~m} /$ $16 \mathrm{w} 3.25 u$ "ungehörnt lhohen", $30-33 \mathrm{~m} 70$ 5u^, 11u^, 12u "abstammend", 34-35m 71 22$24 m 725 m, 11-12 m, 31 u$ "hängenden Ohren" 73 3-4m 78 9-10u "hatlZitzen", $22 u / w \tau 80$ $21 u$ "grosselkleine" 81 2-4m, 9u九, 10u "konstant", 11-12u "Das|ähnlichkeit", 18u "durch Kreuzung", 21-22u "Chinalvor", $27 u \leftrightarrow, 31 u$ "Russland" $8525-27 m, 27-28 u \leftrightarrow$ $865-7 m, 19 u \wedge / w$ setter $25 u$ "selten Haare" $/ w$ spaniel $26 u \pm, 32 w$ Newfoundland 87 1-2!/2u "kegelförmiger 1 Ohren", 4-5w Greyhound 14$15 w$ Cattle Dog 22-23w short snout hanging ears \& jaws $25 w$ Terriers $28 w$ Pointer 88 5$6 w$ Danish Dog 14-15w Pug 17w Bull-dog 27w Mastiff 32-33w St. Bernard 91 10-12m/ 11u "maniculatalRüppel", 19-21m/19w Tortoise shell

VERITY, Robert Changes produced in the nervous system by civilization London; S . Highly; 1839 [Down]

33 21-25m 34 1-3m 134 3-12m

VERLOT，Jean－Baptiste Sur la production et la fixation des variétés dans les plantes d＇ornement Paris；J．B．Baillière； 1865 ［CUL，I， FD］
cs，dic，f，fg，gd，he，hy，in，mhp，mn，or， phy，sl，sp，spo，sx，t，ta，tm，v

NB 4 \＆ 5 Sports；Hybrids； 14 Cytisus adami； 22；28；31； 46 Hybrids；54； 56 Colour of flowers；59； 63 panachure；61；71，2； 80 \＆ 88； 84 very good；90； 92
SB1 $\square \beta$ not CD but dictated by him and with corrections in pencil by him）
Verlot
p． 4 \＆ 5 Bud variations－goode
11 Hybridization，facts on Bryanthium Genera
14 case of Datura illustrating Cytisus Adami 20 Leptosiphon Polemoniaceae case of crossing naturally
28 \＆ 31 Vilmorin on selecting greatest duration
30 causes of variation－age of see \＆ time when gathered
32 \＆Individual plants of same variety alone having power of transmission
34 individual dwarf Ageratum sterile
38 case of dwarf Saponaria with no power of transmission
39 another dwarf with strongest power
42 Macnab on different effect on offspring of pollen from difft anthers of different size in Rhododendron
46 on crossing Tropical \＆temperate Amaryllis case like Rhod．Arboreum．
54 inheritance of purple beech \＆of purple barbary．\Leftrightarrow Used in Ch xi
56 principle of the 3 colours in flowers．
59 white flowers very rarely vary into other colours
$63 \& 66$ Vilmorin on θ origins of $\&$ stripe of striped flowers being case of partial reversion．Good．I shew also from crossing． \Leftrightarrow I think partly used
SB2 〈as SB1）
\Leftrightarrow Copy of Dichog Next
66 Vars of Convolvulus，Antirrhynum \＆ Nemophila naturally crossing good as I know the 2 former are self－fertile
71 Do on dianthus
72 some plants Tomatos Pimentos \＆c said never to cross naturally
72 Cases of corellation of colour of flower \＆ seed Q s
74 White spotted leaves inherited partly Q 80 Hose \＆hose primrose sterile
84 Stocks producing mostly double plants quite sterile \＆a few single－flowered plants
by which race is propagated，illustrating production of neutral ants．Used
85 Old seeds positively said to produce most double flowers not since disputed
＜$\langle C D$ 〉 Bears also on selection，knowledge of vars
86 case of gardener who cd distinguish 150 vars of Camellia when not in flower 884 cases of monstrous flowers which can be inherited \＆therefore are not sterile SB3 〈simile〉
$89 \& 90$ On Peloria of Linaria
92 Var．horrida of common Hawthorn （used）
93 on inheritance of weeping trees
94 Exaggeration of fastigate habits in seedling Irish yew
\rightarrow
$422-27 m / 23-25 w$ sport $27 u$＂une famille＂ 5 $15-22 m / 17-18 w$ sport $1127-33 m 1414-22 m$ （Naudin） 22 19－25m／w crossed naturally 28 $19-33 m 3024-28 \mathrm{~m} / 25 u$＂moins récemment＂ $26 u$＂recueillies sur＂ $28 u$＂plus Itardives＂ 31 12－18m $327 u$＂Vilmorin＂， $8 u$＂plantes 1 semblables＂， $9 u$＂mêmelmême＂，11－24m／16u ＂semencelnombre＂， $18 u$＂tandislautres＂， $20 u$ ＂dans \mid descendance＂， $22-24 m / 1-24 w$ individual plants transmitting colour vars $348-11 m 38$ 17－24m／w non－inheritance 39 6－10m 41 5－7？／ 7 u 42 12－18m（Масnab） 46 8－14m，21－24m 54 13－35w Purple Beech degree of inheritance 55 17－19m（Bertin）／Q／18u＂et l variêté＂ 56 6－ $12 m 5911-18 w$ white flowers rarely vary vary into coloured $23 u$＂rose｜Robinia＂ $613-37 m 62$ $w t$ The striping is by seminal generation in Vilmorins case by bud－var with tulips \＆in carnations $w b$ Gallesio \＆Lecoq \＆self with sweet peas show it can come by crossing 63 wt I suppose care was rather to prevent the white flowers from being crossed－p． 66 care was taken with flowers when one striped wt Simple Reversion with crossing 1－6m，2－6m， 7－30w Perhaps I ought to allude to Vilmorin under Tulips $30 w$ done $7-12 m / 9-$ $12 \mathrm{~m}, 12 u$＂quil par＂ $\mid 10-15 \mathrm{w}$ see p66 15－17m／ $u \leftrightarrow, 27-32 m$（Vilmorin）／27w read $29 u$ ＂manièrelgraines＂，36－37u＂parlblanche＂ 66 $1-3 m$ ， $10 u$＂cultivél distance＂ $11 u$＂Nemophila insignis＂$/ 8-14 \mathrm{~m} / \mathrm{w}$ yet self－impregnated $21-$ $25 m, 25-28 m 6924-27 m 714-7 m \quad 723 a / u$ ＂Piments＂，wto 1 suppose Pimenta on Jamaica true of the Hills 3－4u＂Aubergines mélangent＂$/ 4-5 \mathrm{~m} / 3 \mathrm{we}$ Both Solanum $27-36 \mathrm{~m} /$ $15-34 w$ correlation of colour of flower \＆ seed． $7428-35 \mathrm{~m} / 28-29 m / 14-30 \mathrm{w}$ inheritance of spotted leaves $751-5 m, 6-10 \mathrm{~m}, 15-22 \mathrm{~m} / \mathrm{w}$ inheritance $768-12 m, 32-34 m / Q<8021-$

VERLOT
$24 m / w$ Monster sterile $8410 u$ "Quarantaine", 11-13m, 16-22m, 16-18u "sel simples", 20-21u "parlsimples", 23-24u "sildoubles", 1-25w excellently good case illustrating selection of neuter ants 33w/u "Cheiranthuslquarantaine" $8510-24 \mathrm{~m} / \mathrm{w}$ old seeds produce double flowers 86 22-26m/22u "Camellia" $/ 24 u$ " 1501 inspection" $88 \quad 8-15 \mathrm{~m} / 8 u \uparrow / 10-13 w \quad$ Monster inherited Calendula 17-19w Monster do 25$26 w$ Monster do 29-31m, 32-34m 89 2-4m/3w neuter $24-26 m \quad 90 \quad 14-16 m, 25-28 m / 25 w$ Linaria $92 \quad 28-30 \mathrm{~m} / \mathrm{Q} \quad 93 \quad 19-20 \mathrm{w}$ weeping trees $22 u$ "Fogus pendula", 23-26m/24u*/25u "àlforme", 34 m 94 2-6m (Macnab), 32m/ua/ 25-34w Exaggeration of character

VIARDOT, Louis Libre examen Paris; A. Le Chevalier; 1871 [CUL, I]

VIARDOT, Louis Libre examen new edn; Paris; A. Le Chevalier; 1872 [Down, I] \wp

VIARDOT, Louis Libre examen 5th edn; Paris; C. Reinwald; 1877 [Down, I] \wp

VIARDOT, Louis Libre examen 6th edn; Paris; C. Reinwald; 1881 [Down, I]

VIARDOT, Louis Libre examen (a fragment starting p. 97) [Down] \wp

VINCENT, Charles W. The year-book of facts in science and the arts for 1875 London; Ward, Lock \& Tyler; 1876 [Down]

VIRCHOW, Rudolf Cellular pathology trans. from 2nd edn by F. Chance; London; John Churchill; 1860 [CUL, I]
af, ch, che, ct, em, fg, he, in, pat, phy, sp, sx, t, tm, v
NB O/

- How can 2 widely separated ends of tendon be rejoined by * proliferation of cells from either end - or does connective tissue between rendings then change - No doubt he wd say yes
\& Sp Theory p334 Mammary glands \& sebaceous glands, identical in nature
442 give up Nisus formativus
SB1 π_{0}
14 a body represents a social arrangement of parts every element having its own special action
18 an enormous mass everywhere of minute centres of action
27 plastic matter given up - no structure starts de novo
39 everything formed by prolification.
important m.s. note
50 cellular view not established for all structures
60 no morbid growth really new
66 Hairs found in Brain
83 early single bone-corpuscle really possesses conditions of nutrition peculiar to itself
123 affinities between definite tissues \& definite substances 126 example of do organic poison \& disease
129 great importance shd be given to specific action of the elements of the tissues 155 a pus corpuscle cannot be distinguished from colourless blood-cells
162 Fibrine not excretion, but local formation 187 \& 219 cancer spreads by absorbence to * near glands but acctual cells not absorbed - Smallpox can be given by volatile matter \& does not require a pus corpuscle.
233 speaks indirectly of all the tissues of body including blood cells building themselves up directly from the Embryonic formative cells of the ovum.*
245 on single cells in single skin papilla being diseased \& growing into a condyloma 284 whole body consisting of vast number of centres of action -
SB2
294 Woorara poison special action on nerves, \& in Bernard, some other book, but such cases are not specialized from single cells
390 \& 392 Filmous exudations do not occur in all parts, not in Brain or liver, formed by adjoining parts, with exudations from blood
396 Rejects Blastoma; believes in continuous development of tissues from tissues
398 \& 406 connective tissues as germs of the body
399 ovum a cell
400 Two principles, proliferation \& division of cells (\& endogamous growth within cells less important than latter)
402 subordinate differences in proliferation of cells in morbid structures.
404 Formative cells of embryo exactly alike whether a muscular or nervous element will proceed from them - so they change. \& must be impregnated with gemmules
410 In cancer in Bone, the cancer-cells are the indirect descendants of the cells of the Bone.-
SB3
412 cartilage-cells may be converted in medullary or osseous, or back again changes all

412 fat-globules can pass into cells
414 with cartilage \& bone we can always trace direct descendence of cells from cels, but with changed nature
421 Pus can be traced back to the elements of preexisting tissues, generation by generation.
422 Cartilage into bone, into marrow, into granulation tissues \& into pus - (NB \& these latter changes depend on conditions, \& not on gemmules, why not former changes? see MS notes on broken bones
426 In formation of Bone a series of permutations \& substitutions
431 Cartilage can only calcify, when it becomes bone it is transformed, the chonodrine changing into gelatine
439 In repair of bones connective tissues become changed into bony tissues
441 every new formation has its origin in preexisting cells - no new acceptions to body - Give up Nisus
445 Pus young tissue with dissolution of intervening matter
450 indifferent formative cells, which might become pus, mucus, or epithelial cells.
SB4
453 granulations in every case arise out of tissues
454 galls \& morbid growth show that gemmules not reproduced for change - so change colours of parrots' feathers
Muller about Polypoid growth peculiar to each part
460 every single epithelial cell \&c leads a sort of parasitical existence in relation to rest of body - so distinct in each cell
463 All new formations are at first of similar same nature
484 allude to dermoid growths in the orang which produce hairs, teeth \& sebaceous glands
SB5
Virchow
function of nucleus
14 an individual consists of cells
18, 27, 38 The eye only epidermis for Origin 99 do
39 important M.S. notes
50; 53; 62; 64; 66; 68; 83; 101; 123; 126; 128; 155; 162; 164; 187; 219; 223; 245; 284; 294; 334 Sp. theory; 441 Species Theory ; 442 Sp Theory; 445 to $463 ; 484$; 487 All references to Pangenesis except two SB6 * The independent life according to V. * of each cell or cell-territory * accords well with each cell procreating its own gemmule - making its own offset
xxiii $24 m / u$ "The |continuous" 11 1-6m 14 6$14 m 18$ 13-16m, 15-16m 27 9-12m, 15-21m, $34-35 m \quad 38 \quad 19-22 m \quad 39 \quad w t / \downarrow w / w b$ But remember action of pollen on Mother plant: here we have proof that male element can affect cells during proliferation $14-16 m$ (Remak)/15u "proliferation", 20-26w yet many produce gemmules at each age, but of what use? $20 u$ "proliferation", $23 u$ "exception| lymphatic", $24 u$ "belonginglorgans", $27-30 \mathrm{~m} /$ $27-28 u$ "when I divide", wb the question is whether a new cell formed from gemmule in opposition with another might not be confounded with division or proliferation 50 $7-11 m / 1-21 w$ \& Paget says muscles, nerves \& Blood-vessels are not formed in * effused lymph.- $8 a$ "the" internal $531-5 m 60$ 6c "physiological" $/ w$ natural 20a "every" newly formed 21-24m $621-4 m, 22-26 m 6335 u$ "ofl structures" 64 2-3u "consists \mid business", 3- $8 \mathrm{~m} /$ 6-7u "Heterotopialloci" $/ w$ see p. 6666 23$32 m$, $30-32 m \quad 67$ 9-12m, 15-18m, $25 u$ "epidermic", $26 u$ "tumour", 27-28u "structurel epidermis", $31 u$ "sometimeslparts", $32 u$ "epidermis", $33 u$ "of lymphatic" 68 17-20m 83 17-18m/17u "single l corpuscle" $9924-27 \mathrm{~m} 101$ $34-35 m$, wb Elastic tissues $12315-18 \mathrm{~m} / 16-$ 18u "certainl constitution" 126 17-23m, 21a "substances", 20-27w no doubt organic substances poison of Hydrophobic for salivary glands.- $28-20 \mathrm{~m} / \mathrm{w}$ Blister-Beetle 31$35 w$ Poisonous Fishes $w b$ Small-pox on skin 128 23-26m 129 17-20m, 24-26m 155 25-31m 162 12-18m 164 21-25m 165 2-5m, 33-35m 187 7-15m 219 10u "corpuscular"/w or cancer-cells $12-17 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ of cancer $30-$ $33 m \quad 223 \quad 18-22 m \quad 245 \quad 1-5 m, \quad 6-11 m / 7 a$ "papilla" though so minute $11-12 \mathrm{~m} / 11 u$ "acuminatel condyloma" 284 4-10m 294 32$36 \mathrm{~m} / \mathrm{w}$ special affinity of organs pulsates \bigcirc 334 17-22m 335 17-19m 338 28-33m, 33-35m $33910-15 m 39022-23 m, 28-31 m 3914-7 m$, $35 m 3928 m, 10-11 m / 11 u$ " $p .162$ ", 14-18m, $31-35 m 3934-9 m 3962-6 m, 21-23 m 397$ 21$25 m, \quad 27-35 m \quad 398 \quad 7-11 m, 14-17 \mathrm{~m} / 14-16 u$ "substitute 1 germs", $26-28 m, 33-35 m, 35 u$ "connective" $3993 u$ "connected framework", 10-15m (J. Müller, Schwann) 400 1-4m, 7-9m 401 17-18u "endogenous icells" 402 18-20m, 30-35m 403 8-19m, 21-25m 404 12-17m 405 $11-14 m 406$ 1-6m, 19-23m, 29-32m 407 1-6m $41033-35 m 4128-10 \mathrm{~m} / 8^{\prime \prime} . .44131-5 m / 5 \ldots{ }^{\prime \prime}$, 17-29m, 18c "in"/u "nucleilthem", 21-33w i.e. do not generate fat $32-35 \mathrm{~m} / 33$ u "may|fat", $w b$ if this be so many gemmules may pass into cells - it certainly appeared in intestines \& liver that fat passes into \& out of cells 414 15-19m, 16-19m/16u "proliferation" 421 28-

VIRCHOW

$34 m 4222-26 m, 18-21 m, 23-26 m / 23-25 w / w b$ what a change of nature must have included gemmules; or it is rather chemical, can hardly be chemical as at any age such changes supervene in broken bones.- 425 13-17m/16-17u "intercellular substance" $/ 17 u$ "artilaginous", 19 u "calcification lensues", 24 $27 m 42612 u$ "permutations 1 substitutions", 25$31 m 43131-35 m 4392-4 m, 16-19 m, 20-23 m$ $44130-34 m 442 w t / 1-2 w$ | must give up Nisus formativus 1-8m 445 9-12m 446 12$14 m 447$ 11-14m 448 18-23m 449 29-34m 450 $12-17 m 45316-19 m, 25-27 m, 30-32 m 4545-$ $8 \mathrm{~m} / \mathrm{wt} / 1-21 w$ Galls \& morbid growths shows that cells may be modified, without new gemmules by morbid nutrition or stimulus a $45515-17 m, 25-27 m 4578-11 m, 29-31 m 458$ $25-27 \mathrm{~m} / 17-27 w$ this looks like gemmules 459 $1-5 m 46026-35 m, 26-28 m 462$ 29-30m 463 1$9 m 484$ 19-24m/22-24u "producelovary" 487 $4-8 m, 19-26 m 4882-6 m$

VIRCHOW, Rudolf Über einige Merkmale niederer Menschenrassen am Schädel Berlin; K. Akademie der Wissenschaften; 1875 [Down, I]
h, r
$51-3 m / 1 u / 3 u, 15-18 m, 16-19 m$
VIRCHOW, Rudolf and HOLZENDORFF, Freiherr von Sammlung gemeinverständlicher wissenschaftlicher Verträge 1. Serie; Berlin; Carl Habel; n.d. [Down, I by Theodorus Müller] \wp

VÖCHTING, Hermann Beiträge zur Morphologie und Anatomie der Rhipsalideen Leipzig; 1873 [Down, I] \wp

VÖCHTING, Hermann Botanische Abhandlungen aus dem Gebiet der Morphologie und Physiologie. 3. Der Bau und die Entwick-lung des Stammes der Melastomeen ed. Johannes Harnstein; Bonn; 1875 [Down, I] \wp

VÖCHTING, Hermann Über Organbildung im Pflanzenreich part 1; Bonn; M. Cohen \& Sohn; 1878 [CUL]
26 14-16m 27 26-30m 28 9-12m 34 13-16m 57 15-17m $674 u$ "krautige", 26-28m 79 19$21 m 8619-22 m 9136-37 m 9936-37 m 107$ 12-22m 169 4-8m $17213-17 m 1757-10 m, 32-$ $33 m 18010-12 m 18915-17 m 19926-28 m 200$ 19-20m 201 19u "Stachell Weiden" 202 24u "Hollunder", 25-27m 203 2-5m/3u "irrige", 27-28m 209 23-24m 211 1-5m, 21-26m 213 4$7 m, 12-15 m 215$ 15-21m 233 20-29m 242 1419m 244 11-15m/12u "Anstösse" 247 27-30m

VOGT, Carl Lectures on man ed. J. Hunt; London; Longman, Green, Longman \& Roberts; 1864 [CUL]
he, ig, $s p, t, t s, v$
NB - p.45; 395 Turf-swine; 397,8 Cattle; 399 Sheep good; 400 Barley; 355 Herr on do; Used
p.452-453 Transitions 454 457; 458 good 468
SB $\square \beta$
452 on intermediate forms between the classes \& between species.
4 454 Do

* 455 gives Agassiz blunders on first coming in of various classes
411 Even purely bred black Cats whose pedigree is known for some generations have kittens fairly striped at birth
See back of Page on Transmission of Characters
$\infty_{3}, 121$ Negro pelvis
${ }^{*}\langle$ not CD \rangle p. 45
(Species Theory)
C. Vogt

8123 "head \mid rounder", $24 u$ "jaws \mid skell", 25$38 m, 29 u$ "type 1 skull", $37-38 \mathrm{~m}, \mathrm{wb}$ over 82 $18-24 m 88$ table. m to lines $1,5,23,27,29,31$, $339022-29 m, 30-38 m 9115-19 m, 32-36 m$ $12133-36 \mathrm{~m} / 36 u$ "cuneiform, lengthened" 127 9-11m, 12-15m 129 12-14m, 20-22m $13314 u$ "self-consciousness" 137 15-16m, 18-22m 150 6-9m, 6u "gap|diastema", 9-10u "tooth| chimpanzee" 151 5-8m 189 5-9m/5w Child 222 27-32m 290 36-38m (Lund) 355 10-28m (Rütimeyer, De Candolle, Alphonse) 356 26$32 m 39528-32 m 3961-3 m, 7-10 m$, $34-39 m$ 397 4-6m, 17-19m (Rütimeyer) $3982-7 m$, 1112 m (Owen), 18-22m, 27-30m, 37-38m $3992-$ $5 \mathrm{~m} / 4 u \wedge, 8-11 \mathrm{~m}, 12-15 \mathrm{~m} / \mathrm{m} / \mathrm{m} / \mathrm{w}$ Sheep 15 m , $23-24 m, 28-31 m 40030-31 \mathrm{~m} 4117-13 \mathrm{~m} 421$ 19-21m/? (Rengger) $43134-37 \mathrm{~m} 45216-38 \mathrm{~m}$ $4536-31 m$ (Andreas Wagner) $454 \quad 26-34 m$ (Gaudry) 455 26-39m (Agassiz) 457 27-33m 458 19-26m (Lovén) 459 8-12m $46421-31 w$ Orang developed Gibbon 465 2-3w developed Macacus $12 u$ "mandril", 17-21m (Gratiolet) 467 1-2m 468 7-20m

VOGT, Carl Lettres physiologiques Paris; C. Reinwald \& Co.; 1875 [Down]
NB read to p. 83. May 3d
VOGT, Carl Mémoire sur les microcéphales ou hommes-singes Paris; 1862; including
QUATREFAGES DE bréaU, J. Comptes rendus des scéances de l'Académie des Sciences

64 (1867): 1-5 [review of Vogt] [CUL, I]
af, beh, dg, ds, dv, geo, h, he, hl, ig, pat, r, ta, ti, tm, v

Quatrefages, NB 2; 4
title page Quatrefages on Vogt on Man (important) All used
2 22-27m, 29-33m 3 3-6m 4 6-13m (Gratiolet), $17-20 m, 27-30 m, 35-38 m$ (Vogt) 5 8-11m, 22$24 m, 28-31 m$
Vogt, SB1 $\square \beta \infty$
This will come under Arrest
Vogt on Microceph; \& Quatrefages on Vogt
Add Vogt to names of those who have declared descent of man
50 on Prognathism pithecoid of Microceph in Anthropomorphic apes the intermaxillary bone disappears very early
54 curious correlations of frontal sinus \& muscular force \& degraded state \& age in man \& apes
56 crests for jaw muscles in Microceph \& old apes
59 Skulls simian, faces human
73 ages at which last molar or dens sapientiae appears
79 Apes born with relative larger skulls or brain than Man
125126 idiots case like endowed with less surface of brain than simiae but more in mass
168 good. Desor no dom. animals imitate; notorious that monkeys do - so do savages so do grt. microcephalic idiots - Imitation no doubt plays a most important part in education
176 idiot, when Brain excited near death, recalled old recollections so do animals, remember without thinking of them.
184 are very fond of climbing: one does not doubt the Theory of lambs, \& kids frisking on a tiny hillock as alpine animals, but every one wd laugh at passion in Boys for climbing trees being remnant of arboreal Habits.-
SB2 $\square \beta$
197 summary on Skulls \& brains of Microcephalous
199 on parentage of man - from a form lower even than Ouistitis
Quatrefages
p. 3 argues that man not descended from Anthropomorphous but I think Vogt expressly admits this.
p. 4 admits Gratiolets view of no real affinity between Anthropomorphous apes - Blyth admits also.- says man not descended from one ape. but that all apes \& man descended from a common unknown type - quote

Quatrefages - but this implies so much convergence I cannot admit - probably the split was taken way back
SB3 Vogt p. 169 Micro tendency to imitation to extraordinary dgree
171 Micro dumb
Small skulls - yet development of frontal sinus - prognath going dumb - good. strong tendency to imitation, eg fond of climbing
p. 197 convolutions of brain simpler

198 Prognathus effrayant
184 strong, very active, jumping \& gambolling - grimaces - go up stairs on all 4 s
185 Versatile - attention never long to anything - intelligence below that of animals

20 30u "docteur Behn", 31-32m/31u "treize ans" $/ 32 u$ "en rougissant" $214-6 m / 5 u$ "oeill une" 26 30-32m 27 1-2m/1u "enltête" $\mid 2 u$ "d'unel suivants" $3 u$ "accentuer 1 fortement" 50 $8-10 m, \quad 16-18 m \quad 54 \quad 20-21 m, \quad 22-23 w$ correlation $25-27 m, 27-28 m 561-6 m 5721 m$ 59 1-3m 73 10-12m $786 m 796-11 m 12413-$ $17 m$ (Rudolf Wagner) 125 11-13m $1264-9 m$ 127 3-4m 156 25-31m/27w correlation $1603-$ $6 m 16827-31 m 1691-3 m, 6-8 m, 20-24 m$, 26$27 \mathrm{~m} / 26 \mathrm{w}$ Savages $1763-10 \mathrm{~m} 18425-28 \mathrm{~m} 185$ $13 u$ "versatilité", 22-24m 191 17-22m 194 17$29 m$ (Rütimeyer) $1972-11 m / 9 u$ "requius", 27$30 m$, $32 m 198 \quad 2-4 m$, $20 u$ "prognathisme effrayant" $19930-32 m \quad 200 \quad 1-3 m, 15-17 m$ (Lartet), 19-23m

VOGT, Carl Über die Aufgänge der Organismen Hadelborn; Ferdinand Schöningh; 1870 [Down]

VOLZ, Wilhelm Beiträge zur Kulturgeschichte Leipzig; G. Teubner; 1852 [CUL]
beh, br, ch, cs, ex, gd, h, hy, is, mg, oo, or, no, sl, sp, t, ta, v, wd

NB x_{0}
77 Goose 78 Duck Antiquity
NB2 Many important marks; marked from here p137; p226; p230; p232; p264; p371; 380; 400; 455
NB3 p.99; Dates of Authors; p392.
SB $\square \Re$
7 Bischof \& see beginning says seeds stick to water Birds
$47 \times$ Mixing of races forbidden -3 Moses 19.19 shows was attended to \& done
$76 \times$ Polycrates of Samos had done much to improve cattle (which cd only be selection)

VOLZ
78 age of Fowls well made out - Duck not known tame in Aristotles
80 X Alexander chose best Indian cattle to send home
91 Sheep \& Goat in Ctesias time larger than in Europe
$99 \times$ increase in number of varieties of Plants \& Dates
115 History of Dog - sheep dogs shd be white
114 Sheep in Columellas time improved by cross
137 Ducks introduced in Germany from Rome. Anas Enten
226 increase of animals in S. America
2292 breeds of cattle in Brazil
231 Newfoundland not fd in N. England when discovered
400 Alpine cattle generally small Q
5 39-40m (Brown)/39-45w 13 plants in W. Africa from W. Indies are there any American genera? $616-20 \mathrm{~m} / \mathrm{w}$ Siebold says Mays washed ashore in Japan 1200 years ago 43 m (Link), $44 m$ (Siebold) 7 wt No precise facts in regards to distant migration $3-8 w$ Bischoff seeds hang to water-Birds. Look to this $4-6 m, 9-13 w$ Have any waterPlants hooked seeds - $16-21 w$ cases of distribution of plants in own country by animals $29-30 \mathrm{~m} / \mathrm{w}$ so first Rose transported No precise facts $815 \mathrm{~m}, 23 \mathrm{ua} / 22-29 \mathrm{~m} / \mathrm{w}$ It might be questioned whether these species not created during period of agriculture 10 $27 m 12 w t / 1-10 \mathrm{~m} / \mathrm{w}$ Flowers of potatoes same on Ms of Chile, as in plains of Siberia 10-16w Cereals same in Aegypt old \& new $16-22 w$ onion from mummy hand grew!!! like present $32 u$ "Blumenkohl", $32-35 \mathrm{~m} / \mathrm{w}$ Cauliflower ? introduced 16 13 $13-20 \mathrm{~m} / \mathrm{w}$ Citron changed since time of Palladius $35-$ $42 w 1500-1600$ only wild Tulips now 5000 kinds of Tulips $17 w b$ N.B as many, even most Camels? Sheep cd not run wild, or all domestic animals have run wild, whereas many vegetables in their present recognisable forms as wheat, probably wd become extinct with man: it shows plants most altered. To some extent it may be that plants more diffused \& everywhere better stocked.- C.D. 19 23w Barley 25-26w Origins not known of these $25 w$ Rye $25 w$ Wheat $25 u$ / $w \tau, 26 u / w \tau, 27 u / w \tau, 41-44 ? / m$ (Dureau) 21 $34-36 w$ Sheep never run wild 22 19-23m/w Camels run wild in S. Siberia $2311-15 \mathrm{~m} / \mathrm{w}$ Places where wild Horses said to exist formerly $24 w t / 1-17 w$ Reichenbach has an astonishing theory that races of Dog get like
the animals they pursue. Quote perhaps for folly $1-20 m, 29 u$ "wussten" $\mid 28-32 m / w$ The Greeks had not dogs with hanging ears? 25 $7 u$ " 948 " $/ 7-10 w$ Cats previous in this year $41 u$ "Truthühner"/w Turkey 26 wt Hens known in oldest times of Aegypt $1 \mathrm{~m}, 2-4 \mathrm{~m} / 2 u$ "Hesiod \backslash Testament", $3-4 w$ Hens not mentioned $19-20 \mathrm{~m} / 17-22 \mathrm{w}$ old Aegyptians distinguished wild \& tame geese 2930 m 35 $31 m 4620-27 w$ Moses speaks of Cinnamon so common very old $30 \mathrm{~m}, 33-35 \mathrm{w}$ Peacock "Kings" 43 m 47 1-5w Horses brought by Soliman from Aegypt 10u "Abraham"|11u "Tauben" $/ 10-13 m / w$ Abraham Pigeons $26-$ $27 m, 39 m, 42 m / w$ Pigeons $46 m, w b$ Mixing of races forbidden: this shows formerly done or by other nations 48 wt The antiquity of races is very important in showing how very slow variation is - Horses have varied since 2$6 \mathrm{~m} / \mathrm{w} 2$ races of donkeys in Abrahams time Hence have varied since $11-13 \mathrm{~m} / \mathrm{w}$ Pigeon let out of ark 14-16m/14-19w in old Testament hens not mentioned 32-33w wheat barley spelt $4911 u \leftrightarrow / w$ Leek Onion $18-23 w$ Wine olive figs pomegranate $5024 w$ almond $512-7 w$ Plums Pears Quince Trees $568 u$ "Schafe | Kameele" $/ 7-9 w$ Sheep Camels Ass Cattle 13-14w In old Aegypt no Buffalo $14-18 w$ horses like Dongola $16-25 w$ horses in Moses time but their cultivation not that ancient apparently 57 wt Terrier $1-5 m / 3 u$ "Windhunden \mid Arten" $\mid w$ Greyhound 16-17w Geese Pigeons 58 1-2w 2 kinds of Barley 69 $10 m \quad 70 \quad 29-31 \mathrm{~m} / \mathrm{w}$ Grafting attributed by Athenians to Eumolpus $73 \quad 6 m \quad 75 \quad 16 u$ "Theophrast" $118 u$ "Kopfsalat" $116-17 \mathrm{~m} / 16-22 w$ 2 kinds of cabbages cabbage lettuce vars of Lettuce in time of Athenians $76 \mathrm{wt} / 3-6 \mathrm{~m} / 1-$ $7 w$ Polycrates of Samos had done much to improve breed of Oxen $17 \mathrm{~m}, 25-30 \mathrm{w}$ Horses of Phidias, fiery, simple but noble $32-38 w$ mules in Homers time Swine do $778-17 w$ Great Molossus dog from Albania in Alexanders time $26-27 w$ Hunting dogs \& Grey-hounds X $37 w$ Goose $38 u$ "Homer", $42 u$ "noch | bekannt"/41-42w/wb Fowls not known to Homer or Hesiod, but later wb X certainly strong argument that so little done in last few 1000 years, compared to what must have been done before $78 w t / 1-8 w$ Athenaus says imported from Persia. Hence not Europe - age well made out of Fowls $1-3 \mathrm{~m} /$ m (Homer), 4-6m/w Duck not tame in Aristotles times in Greece 16u "Perlhühner"/ $21 u$ "Pfauen" $114-26 w$ Peacocks \& Guineafowls in Aristotles times - (Perhaps extinct again in Dark Ages. C.D.) 79 wb Aelian 222 after Christ $805-10 \mathrm{~m} / \mathrm{w}$. Alexander chose the
best of the Indian cattle to send to Macedonia to improve the Breed $7 u / w \tau 81$ 18－25w Elephants tamed long before Alexanders times in india $846 u / w \tau 8517-$ $23 w$ North China native Land of Silk Worm 88 38－43w Peach not common in Theophrastes times $891-5 w$ in Lucullus times sweet cherries in Europe 26ua／26－28w mentioned by Strabo \＆Aelian 38 m ，wb All these facts impress on me that at one period there is limit of amount of variation． $915-13 w$ Times of Ctesias sheep \＆Goats larger in India than Europe 98 20－33w Spread of Fruit Trees 99 tab．w Increase of varieties $30-33 \mathrm{~m}$ ， wb p． 79 Aelian 222 after Chr．Dates $1005-$ $7 w$ Roman Pears $1075 m 109$ 38w Savoy 110 $1 u$＂Krauskohl＂／w Cabbage 1－4w Broccoli 5 kinds $7-13 m / 7-8 u \oplus / 8 u \star / w$ Romans $9 u \wedge 113$ $3 \mathrm{~m} / \mathrm{u}$＂Plinius \mid Rosen＂$/ w$ Roses $114 \mathrm{wt} / 1-15 w$ Spanish sheep celebrated for wool in Columellas time improved by cross of N ． African $25 u$＂man＂$/ w$ Ferretts $33 a$＂nicht＂$/ 29-$ $30 w$ un？？？ $30-33 m / w$ arose in time of Roman Emperors $32 \mathrm{~m} / \mathrm{w}$（a） $34 w$ Nictures $w b$ （a）Our present beloved races of Dogs not known to Graecians \＆Romans，as clear from Monuments 115 wt A．D． 79 Herculaneum \＆Pompei buried in Pliny＇s time $1 u$＂Herculaneum 1 Stabiä＂， $1-4 w$ all belong to rough spitz－Dogs $2 a$＂Pudel＂ Spaniel \＆Poodle 2－3w first in time of Augustus $3 u$＂Schoos＂，5－7w Lap－Dogs as large as squirrels $9 u$＂Schäferhund＂／w Sheep－ dogs 38－43w Sheep dogs white not to mistake for wolf Q 11730 m 128 17－27w Caesars time English great Dogs \＆Horses taken to Rome $26-29 m 13728-31 m / w$ Ducks introduced from Rome 226 6－11m，18－21m $22933-37 m$ ， $35 u$＂sehr verschiedener＂，36u ＂unterscheidet I wenig＂， 45 m 230 39m，40u ＂allein I geblieben＂ $339-40 \mathrm{~m} / \mathrm{w}$ sheep have not run wild $23137-45 \mathrm{~m} / \mathrm{w}$ Newfoundland not f in New England when discovered 232 42－45？， $w b$ Das Ausland a Periodical 264 14－21w not received from almond $22-26 \mathrm{~m} / \mathrm{w}$ new maize $37123-25 \mathrm{~m} / \mathrm{w}$ S．Sea isld $26-29 \mathrm{~m} 380$ 17－ $22 m 400$ 26－30m，41－45m／42u＂Berg vieh＂$/ 45 u$ ＂Simmenthaler｜Freiburger＂ 455 38－39m

VRIES，Hugo de Over de Bewegingen der Ranken van Sicyos Amsterdam； 1880 ［Down］ \wp

VULPIAN，Alfred and CARVILLE，Henri Canille Leçons sur l＇appareil vaso－moteur 2 vols．；Paris；Germer Baillière； 1875 ［Down］ \wp

WAGNER，Moritz The Darwinian theory and the law of migration of organisms trans．James L．Laird；London；Edward Stanford； 1873 ［Down］\wp

WAGNER，Rudolf Elements of the com－ parative anatomy of the vertebrate animals ed．Alfred Tulk；London；Longman，Brown， Green \＆Longman； 1845 ［CUL］
em，phy，rd，sp，sx，sy，tm，v
NB March 27－46
Read as far as p． 130 \＆marked thus far－\＆ I do not think worth reading further－
SB $\square \Re$
4．Hairs even in Ant－eater \＆Ornithorhyncus （good remarks on Skeleton \＆bones） 43 gall－bladder
36 Narwhal 1 large tooth，the other small
60 on great diversity of foetal envelopes
70 Skull of Birds
73 Cervical vertebrae so constant in mammals variable in Birds
78 Rudimental bones in Birds
98 Tongue rudimental
109 On Trachea differing much in allied species \＆between 2 sexes of same species 124 on stages in rudimentary state of right ovaria in Birds
217．On Electric fishes．
$48-14 m / w$ any relation to absence of teeth？ $56-11 m / w$ what a different order from true relations $\uparrow 11-8 m 6 \Uparrow 11-9 m, \Uparrow 1 u \leftrightarrow 7 \Uparrow 11-$ $10 m 103-4 m, \Uparrow 7-4 m 148-10 m, 14-16 m$ ，$\uparrow 3 x$ 15 3－8m 16 15－19m，20－22m，23－24m／24u ＂to l wanting＂，27－30m $1711-13 \mathrm{~m}, 18-20 \mathrm{~m} 18$ $10-13 m 19 \Uparrow 8-6 m 21 \Uparrow 10-9 m 25 \Uparrow 14-13 m$ ，介12－11m 26 介15m／u＂butlof＂ 32 7－9m 35 $\Uparrow 14-13 m \quad 36$ 14－16m， $18 x, \Uparrow 10-8 m$ ，$\Uparrow 7 u$ ＂molar 1 fall＂ 43 介11m 44 介2－1x $458-9 m 46$ $10-11 m 48$ 介21－21m $494-5 m 502-3 m 554-$ $6 m 583-7 m 5915-18 \mathrm{~m} 608-10 \mathrm{~m}, ~ \Uparrow 12-6 \mathrm{~m} / \mathrm{m} /$ w strange！ 68 14m，$\uparrow 5-2 m 69 \Uparrow 10-9 m 73$ $\uparrow 10-8 m$ ，$\uparrow 8 u$＂the Swan＂，$\uparrow 7 u$＂also 24 ＂ $\mid x / w$ （a）$w b$ Yet very constant in Mammalia？ 75介19－11m 76 12－15m $77 \quad 6 u$＂Trochilus， Cypselus＂ 78 16－18m／16u＂rudiment＂， 119 $16 \mathrm{~m}, ~ \uparrow 14-13 \mathrm{~m}, ~ \Uparrow 8 \mathrm{~m} / \mathrm{u}$＂wanting 1 Emeu＂ 79 16－18m，20－22m，27－29m $92 \Uparrow 20-15 m 9816-$ $20 \mathrm{~m} 109 \Uparrow 13-9 m, \Uparrow 5-1 m \quad 110 \uparrow \mathrm{~m}$ ，$\uparrow 13 u$ ＂convolution lthe＂，$\uparrow 11-7 m \quad 114 \quad 15 u$＂Anas semipalmata＂， $19 u$＂both $\operatorname{Grus"}$＂ $23 u$＂in I extremity＂， $24 u$＂the sexes＂ $1172 u$＂male Mergansers＂， $10-12 \mathrm{~m}$ 124 $\uparrow 21 \mathrm{~m} / \mathrm{u}$＂right 1 rudimentary＂，$\uparrow 19-18 m, \uparrow 17-9 m \quad 1251-2 m$ $1276-8 m 132 \Uparrow 18 u / c / w \notin 217 \Uparrow 21-20 u$＂order 1 Fishes＂，$\Uparrow 18-17 u \leftrightarrow$, ，$\uparrow 8 u$＂Narcine 1 Torpedo＂， $\uparrow 6 u$＂Form 1 Eels＂，$\uparrow 5 u^{\prime}, \Uparrow 1 u \star$

WAGNER, Rudolf Zoologisch-anthropologische Untersuchungen I Göttingen; Dietrichschen Buchhandlung; 1861 [CUL, S, I] ds, gd, sp, ts

NB 51 (Quote Baer as believer in change)
$341-4 m 4413-17 m 50 \pi 9 m /^{*}$, $w b$ I believe in X Vol of St Petersburgh Memoirs see p. 44 apparently 1859 Memoirs of the Imp Acad of Sci in St Petersburg. $51 \Uparrow 3-1 m, w b$ V. B to whom all zoologists feel so profound a respect in M.. about yr 1859 expresses his conviction, wholly grounded on the facts of geoph distribution, that forms, now perfectly distinct, have proceeded from a single parent-form

WAITZ, Theodor Introduction to anthropology vol. 1; ed. J.F. Collingwood; London; Longman, Green, Longman \& Roberts; 1863 [CUL]
beh, h, pat, sl, sp, ss, sx, t, ti, v, y
NB * Too dull to read; 135 Blushing
SB1 p287 When I speak of antiquity of Man, I might add as shown by the branching off of languages \& by their very formation

- p305 sexual selection good man.
- When I speak of evidence of theory of N. selection - add * "the progressive advance in organization - \& diversifications of structure \& host of other such points-"
SB2 〈over; some gone over in ink〉
Waitz Anthropology
208 Virey makes $\underline{2}$ species of Man viz Negro \& all others
198 Agassiz changed from 11 or 12 to 8 species
209 Differences of Negros - very variable race of man.
224 on variability of skulls in same race
227 on different classifications of men no two authors agree in manner of grouping - 96 Beard

99 Colour of Children, when young \checkmark

- 105 Negros fat Buttock beautiful; 107 foreheads of Peruvians
113 Excessive Mortality in children young in Australia
124 Yellow-fever of Negros - doubts on 238 * Feet of Chinese small
266 Capacity of crania in relation to intellect. When speaking of what races have in common, I ought to insist on all having the art of articulate Language
275 All races adorn themselves - quote 291 Belief in an invisible power I might quote York Minster. No Devil in his country
iv $18-26 m / 18-19 w$ | ought to read v $21 m / w$ । have read vii $25-31 m, 31-37 \mathrm{~m}$ viii $3-5 m 90$ $18 w$ I have read whole section $9616-20 m 99$ 20-32m (Camper) $105 \quad 26-30 m \quad 107 \quad 13-17 m$ (Morton) 113 5-10m $1246-32 m 1353-13 m / 7-$ $9 u$ "shame", 14-22m (Roth, d'Orbigny, Spix, Martius), 21-22m $1987 u$ "distributeltwelve", $8 u$ "eight" 208 14-17m 227 1-22m 238 4-8m 266 5-8m 275 1-3m $27821 u$ "invisible", 24$25 u$ "invisible \mid which" 305 1-3m, 10-11m, 12$14 m, 19-20 m, 24-25 m, 26 u$ ® $_{0}$ "rosylflowers", $34 m, 35 m, 37 m, 39 m$

WAKE, Charles Staniland Chapters on man London; Trübner \& Co.; 1868 [CUL]
beh, h, v
NB1 It would be useless to discuss - the possession of general ideas, abstraction, \& the various forms of consciousness, as hardly two writers * use those words $*$ in exactly the same sense; or, \& have come to any general agreement on difference between Mind of Man \& Animals- Nor do we know what a wise old animal fully awake \& not occupied thinks about.- These points \& must be left under our present state of knowledge. Apparently we shall come only to a definite conclusion, when it is admitted from other eivdence that the mind of Man has been developed from * mental powers possessed by a quadrumanous animal - All too abstruse for me.-
NB2 - Man Used; Carpenter Man differs in degree 79; Self-consciousness 81; Spiritual perception criteria of 97 Man; On high art in languages of -101 Savages; Hottentots most distinct 172 from Negros; 199 Frizzled Hair in Americans 205

79 11-29m (Carpenter, Brougham) 81 17-21m (Mansel) 97 16-17u "spirituallideas" $10124 u$ "on lacquaintanceship"/24-27m (F.) von Schlegel), $30 \mathrm{~m} 1027-10 \mathrm{~m}$ (Du Ponceau), 23$25 w$ Monkeys use stones 172 6-12m 199 316 m 205 9-10m, 16-18m, 20-23m

WAKE, Charles Staniland Chapters on man London; Trübner \& Co.; 1868 [Down]
NB O/
WALDNER, Heinrich Deutschlands Faune 2 parts; Heidelberg, C. Winter; 1879-80 [Down, I]

WALKER, Alexander Intermarriage London; Churchill; 1838 [CUL]
af, beh, br, cs, dg, em, f, fg, h, he, hy, in, mn, or, phy, sp, sx, t, ta, ti, tm, ud, v, y

NB1

－Put the case to Sir J．Sebright of two half breed mongrels exactly like each other being interbred－will offspring not be then constant－Ask his opinion of Walkers Book
－Ask Mr Ford whether he has ever matched two half bred animals which were closely alike \＆yet the offspring varied－
－Progeny of hybrid plants stable
－In all crosses of varieties，according to Mr W offspring ought to take in form after male What has Mr Blaine written p． 271 Mr Hunt p． 290 \＆Mr Thacker 291
NB2 It is singular twins being so like，\＆yet between two litter in Man，or in litters so unlike
－Experiments．－To cross some very artificial male with old female－according to Mr Walker，the former ought to preponderate in body－according to Mr Yarrells theory＊ the father ought either in first breed or permanently．－Cross half breed with some other breeds－to see whether grandfather will appear－Cross two $1 / 2$ breeds exactly similar．
NB3 24；61；107；112；118；120；124；From 139 to 144；152；163；175；177；182；202； 205；209；210； 214 to 243；258；266；270； 244；275；276；281；282；290；299；301；303； 309；312；322；361；362；377；379； 396 －on Hermaphroditism
SB1 Argument against Mr Walkers law－The intellect \＆instinct in a cross－breed comes from both parents，as in shepherd dog \＆c \＆c－now one would have thought if one parent gave one part \＆one another，nothing would be so little divisible as the thinking faculty－
SB2 $\square \beta$
24 Capons are female castrated 140 Hereditary fingers \＆toes 205 Knight on cross of Drayhorse \＆pony 161 Knight says long faces go with long limbs－Hard to get head of Greyhound on Bull－Dog
206 do says the male in Hybrids overrules female in giving form
209 A well－bred animal will give preponderance 216 do
223 Wilkinson says he has seen breed between long \＆short horned permanently made
228 Knight believes in breeding in \＆in \＆－ Walker sums up authors Ch 3
243 do－put pollen of 2 colours on female \＆ both kinds when produced not mixed 244 Bitches more inclined to pair with one

Dog than another p． 276
275 effects of imagination on offspring
299 Knight thinks keeping cattle under different circumstances prevent it of in \＆in
362 on advantages of crossed races of Man
377 Accoucheurs state hands of labourers infants larger（disuse）
SB3（4 pages）
1 reject Mr Walker＇s theory of one parent giving（see p．150）one series of organs \＆＊ the other a different set．－because
（1）the propagation of plants．as we see in their crossing \＆c \＆c．is closely similar to that animals，now，in plants we cannot \＆ separate the organs into any two analogous divisions－＊In plants，according to Mr K either father or mother can give＂excitability＂
（\＆I daresay other similar case could be gathered）now excitability or constitutional peculiarities would scarcely be given in one system of organs．－
2d The kind of argument in favour of it，are such as Phrenologists advance．（one series affecting muscle \＆another their supports，ie only in the face）－does not hold good in my experience．or rather a double answer might be given
When different variations cross，the offspring take＊the locomotive system from the male， because，the male has greatest desire for the female being very
〈over〉 different－according to this，this law， would be quite interfered with in $\%$ a case where the＊ova were impregnated by the semen of the male，as in fishes \＆frogs，\＆ yet we know that mule fishes occur，\＆that it is not necessary in insects or fish that male should see female．－Moreover，how in cross of black \＆white man．\＆different varieties of dogs come there to be litters $\%$ of puppies some taking after mother \＆some father．－ Again，there seems to be as much law（\＆as doubtful）in crosses of plants，the greater desire of the male is absurd－Again in some cases，the cross－bred offspring vary much．（as in passion flowers described by Sabine）here then no certain law appears to prevail．Again Mr．W．admits the offspring of cross breeds．p． 220 revert，\＆explains it by． one having the system of
〈over〉 one parent，\＆another a different one －yet by his＂law of crossing＂all will have locomotive system of male，\＆hence the possibility of this Heterogeneity depends on ＊male being less vigorous than female．－（\＆ this is next thing to assumption．for if other wise would have been recognized in human race）

WALKER, A., INTERMARRIAGE
How will Mr. Walker laws explain plants which show traces of 3 parents as in plants i\& - ? animals as ass \& Zebra \& horse * \&c of gardens - This will overthrow his system: no because he allows. (p.301) that one series modifies another! here is cause of error!
He bases some of his view on axiom that "organization is * indestructible" (p.224) how have our varieties been formed?!!
Law of Breeding in \& in
Female always giving locomotive series.probably invented to explain the loss of secondary character in the male, but is not this more probably effect of infertility. which likewise affects the female.-
〈over〉 I must think there is no difference in laws of resemblance to parents in species, varieties, \& individuals -

24 4-8m 107 8-19m $112 \quad 25-28 m 118$ 11-23m $1204-8 m 12424-28 m 1251-10 m 13914-28 m$ (Réaumur, Carlisle) 140 11-28m/22a "this" great Q $1435-13 m / 6-9 w$ This must be case of jumping one 144 19-27m 152 24-29m/w Colour f. has form of father - 160 26-28m (Knight) $1611-14 m / 2-4 w$ Law of symmetry $163 \quad 19-23 m \quad 164 \quad 4-14 w$ Analogous to Renngers descriptions of dogs in Paraguay \& Horses \& Cows $18-23 \mathrm{~m} / \mathrm{w}$ do not go back - yet not fixed, like species 165 17-19?? 175 10-22m (Clarke, Lewis) 177 9-26m (Knight) $1825-11 m / 8-9 w$ See p. 191191 12-19m 202 $13-22 \mathrm{~m} / \mathrm{w}$ How will this apply to Plants \& cases where impregnation is external $205 w t$ He would thus doubtless explain the effects of Arabian $1-5 m, 6-10 m, 11-15 m / w$ this is absolutely different from some other authors 206 9-18m, 11-13m 207 1-11m 209 1-28m, 20-28m $2105-8 m, 24-25 m 211$ 1-2m, 4-5m $2121-3 m, 17-21 m 2137-13 m / w$ according to Mr W. theory, whole bird ought to resemble $19-20 \mathrm{~m} / 20 \mathrm{~m} / \mathrm{u}$ "the I vital" $/ 20-22 \mathrm{w}$ I do not see proof of this $2142-29 m 2151-6 m$, 19$20 \mathrm{~m} /!!, w b$ As yet no notice whatever is taken of litters, where one puppy is of one kind \& another of another,-! 216 8-14m, 11$14 m, 15-26 m / 18-21 w /$ do not understand 217 11-21m, 21-28m (Sebright) 218 26-28m 2191$8 m 220$ wt Surely not if C exactly resemble D, yet these will vary I presume, according to views of Knight \& Co. $3-5 m, 5-7 u$ "forl occur" $/ 6-8 m, 7-15 w$ so that on this depends the possibility of heterogeneous offspring accounting for reversion $w b$ But yet in these crosses I thought the male always prevailed.- The offspring of very wide crosses, when male certainly does
preponderate, ought to be uniform 221 wt if halfbred animal is crossed with some distinct breed, the character of grandfather will reappear, now here breed age surely must be an element * is case true?? $15-20 \mathrm{~m} / \mathrm{w}$ but here I may assert that time comes in as element 222 wt Now this is question in point $1-6 m, 10-12 m / w$ (a) $w b$ is this not explicable on the idea of breeds time asserting the permanency in future generations. the crossbred animal its characters perfectly, the mule not at all 223 19-28w between breeds of equal antiquity the tendency to vary would be less - 224 3-11m (Knight), 27-28!/u "Organizationlindestructible", wb What is origin of all our varieties!! $2267-14 m 2275-$ $25 m$ (Sebright)/6-14w is not vice versâ. They degenerate because they lose productive powers $2285-6 m / ?, 25-28 m 229$ wt The converse of the law t ill effects of breeding in \& in holds in Plants.- namely crosses being more fertile - therefore effects of desire of male nonsense $6-8 m /!!!, 9 m, z b, w b$ Plants \& Fish \&c!! $2301 a$ "female" young or female 231 13-20m, 20-28m/24-26u $\leftrightarrow 232$ 24-26!!/25u "excitement", wb plants \& Fish 233 27-29!/29u "excitment|power" 234 20$29 m, w b$ I would rather trust the Practical Sense of Sir J.S.! 236 22-26m 237 22-27m (Sebright) 243 15-21m 244 5-6m 258 8-12m 266 8-15m/9-10w Dr Holland 270 6-13m (De Candolle, A.P.), 6-28m (Pritchard, Good) 271 5-27m, 4-5??/5u "Blaine", 13-15m, 18-28w This is the opposite of the case I want -1 want new variety 275 12-23m 276 6-8m, 17u "puglspaniel"/w Blaine 18-28m, 24$26 \mathrm{~m} 2779 u$ "female setter", 11u "mongrel", 17u "refused intimacy"/17-26m 280 27-28m 281 23-26m/"..." 282 3-9m 290 68?/7u "Mr Hunt" 291 15u "Mr Thacker" 299 1-14m 301 6-13m (Wilkinson)!!!! 303 4-6m, $11-22 m 3091-13 m / w 3$ solutions may be here given 312 wt surely same law to ordinary births, not to crosses $1-5 \mathrm{~m} / \mathrm{w}$ dogs in litter 9-10m/? 322 14-16m 328 1-4m/w Kangaroo!!! 361 3-21m (Prichard, Pallas) 362 4-17m (Moodie) 363 1-23m (Hancock) 377 12$17 m 3794-7 m / 4-13 w$ about Stallion broken leg see Mr Knights facts on this head I think it is in part where * discussed $3968-28 m$ 397 6-14m 398 13-17m

WALKER, Francis Monographia Chalciditum London; Hyppolitus Baillière; 1839 [Down, 1] \wp

WALKER, John and Charles Atlas of the British Isles London; 1837 [Down]

WALLACE, Alfred Russel Contributions to the theory of natural selection London; Macmillan \& Co.; 1870 [CUL]
beh, fo, h, he, hl, pat, ss, sx, t, ti, v
NB1 350; intelligent power 356 \& 359
NB2 113 a female mocking Diademas
Butterflies
205 Instincts of nidification

- 225 Man

229 mistaken instinct
221 Song of Birds acquired confirmed by Hon Herbert, I suppose in his edition of White - see L. Jenyns

- 353 Santals wd not break their parole

204 wt Female Ants leave the nest \& cannot have seen but very little of the Work done by the Workers \& yet have offspring It is wonderf. 205 wt Cuckoo - Tanagrella 4-8w The last female Bee which is hatched 14$15 w$ cocoons of Butterflies wb Solitary Wasps Spiders 214 8-29w Think of influence of Language Antiquity of Man Brazil \& California 219 9-11m/10-11u "simple hereditary" 221 14-19m (Herbert) 225 1-28w A Man does not make a canoe or arrow-head without practice - so differs from Birds - all a fallacy $2295-13 \mathrm{w}$ mistaken instinct 292 15$30 \mathrm{~m} / 17-21^{\prime \prime} . . . " \geq_{2} / 17 c \notin / 19-22 \mathrm{~m} 2937-19 \mathrm{~m}$, 22$30 \mathrm{~m} 294 \quad 7-15 \mathrm{~m} 336 \quad 19-21 \mathrm{~m} / 4-30 \mathrm{w}$ Yet it must be added that some extremely ancient skulls were fairly well developed $29-30 \mathrm{~m}$ (Lubbock, Huxley) 338 23-25m 340 3-5m 342 $1-23 w$ There is all the difference in the World between an instinct (ie not hereditary habit) \& intellectual act 343 wt It is brain here \& not use of hands $3-6 m, 9-11 \mathrm{~m} / 10-11 u$ "his | disproportionate" $344 \quad 20-26 m / 16-29 w$ If we look to detail to usage of hair above the lips, over whole body 346 21-29m/6-29w Under sexual selection - like injury for Horns of Stags $3506-11 \mathrm{~m} 35124-28 \mathrm{~m} / \mathrm{w}$ incitable/ incidental $w b$ Perhaps specify thus $w b$ He who can count \& reason \& do the rest $w b$ No new faculty 353 11-15m 356 12-15m/! 359 $7-8 u 371 w b$ I admit the possibility but I do not see the necessity or evidence in interference for the production of man as distinct from the production of lower animals.

WALLACE, Alfred Russel Contributions to the theory of natural selection 2nd edn; London; Macmillan \& Co.; 1871 [Down, I]

WALLACE, Alfred Russel The geographical distribution of animals 2 vols; London; Macmillan \& Co.; 1876 [CUL, I]
cc, ex, fo, gd, geo, hl, is, mg, oo, no, sp, t, tm, v, ve
vol. 1 NB
463 poverty of insects \& inconspicuous flowers
Frogs ice - salt-water; Galaxias - without further evidence your view on which provides complications; Bates - T. del Fuego; Poverty of insect life; Aromatic leaves as a protection like thorns
NB2 p.9.
I can hardly believe in connection between Africa \& Ceylon see p. 328 Blandford?
Capital remark on head of Argus How plain a char is when once explained!
Explanation of Java admirable
426 Mammoth in Timor

References

1 am very glad of your somewhat changed views of the wonderful Celebes
SB x_{0}
Geograph. Distrib.
p. 9 to 34 Means of dispersal.
p. 20 Migration
p. 36 Whole book on Distribution, so I will not give Pages.-
p. 346 Argus Pheasant - Head not ornamented
p. 463 Poverty of bright flowers corelated with Poverty of insects

9 32-35m 18 15w Tortoises 20 34-38m (Serres) $219 u$ "moderate widths" $\mid w$ Berents 24 $30-37 \mathrm{~m} 36$ 9-11m, 12-15m 37 12-18m 43 10$14 \mathrm{~m} / \mathrm{w}$ Canaries C de Verde?? Volcanic Etna? 32-37m/32w Axell Blytt 52 1-5m, 5-8m 53 19-26m $5617-22 \mathrm{~m} / \mathrm{w}$ no they must have 57 21-26m 59 5-6u "Madagascar"|?, 11-12?, 16-20m (Günther) 76 wt No look at depth 118 $6-13 m / 11 u$ "animals" 13 u "Miocene" 1504 23m, 25-32m 151 1-5m 157 9-12m, 25-28m $15824-29 w$ cd Man have destroyed the largest $31-37 \mathrm{~m} / \mathrm{w}$ yet higher animals change quicker than low 162 28-32m 163 15-18m 167 33-37m 168 12-17m 174 14-19m/w Antarctic Land 175 33-36m 206 28-30m 207 1-11m, 1421 m 208 1-7m, 9-18m, 17-25m 209 1-12m, 15-27m, 29-36m 210 10-13m 211 22-28m 212 16-21m, $25-28 m 21834-37 m$ (Wallace) 263 27-30m 265 29-37m 268 26-28m 269 22-26m 273 12-15m 274 4-11m 277 8-14m, 16-19m 278 11-14w Madagascar 1000 miles long $15 u$ "lost continent"|? $27911-14 \mathrm{~m} 2807-9 \mathrm{~m} 281$ 9-13m, 14-16m, 24m, 34-36m 282 8-20m, 2830m, 33-36m 283 1-9m, 23-24m 284 7-12m, 16-25m, 29-33m 285 1-5m 286 1-13m, 22$26 m, 33-37 m 2871-3 m /$?, 11-15m/?, 28-34m, 34-37m 288 34-36? 289 20-26m, 28-35m 291

WALLACE, GEOG. DISTRIB.
11-14m, 18-19m, 31-36m 327 1-4m, 18-24m $3281-7 m, 8-14 m, 18-27 m / w$ A continent since Permian times $3409-14 m 34114-34 m$ $3457-11 m 3461-4 m, 32-36 m 352$ 25-37m 357 $29-36 m 358 \quad 12-24 m 35917-22 m / w$? during Miocene more tropical \& this cd have made a larger tropical Land $30-35 m 362$ 22-31m 391 33-37m 395 10-19m (Wallace) 400 12$26 m, 19-29 m, 30-34 m 40111-23 m, 30-37 m$ (Günther) $40213-19 m 4037-28 m / w$ The one fish may have kept long to same species 406 $6-14 m 4134-12 m, 19-26 m 416$ 19-28m, 33$37 m 417$ 23-25m $41927-36 m 42128-31 m 424$ $\begin{array}{llllll}7-16 m & 425 & 1-4 m, & 27-37 m & 426 & 24-28 m / w\end{array}$ Mammoth $43616-20 m 4384-15 m, 35-36 m / w$ Flora! 440 15-19m 442 1-2m 446 3-7m, 24$29 m 4476-11 m, 12-23 m, 26-34 m 44827-39 m$ (Günther) $44910-14 m, 16-19 m 45231-41 m$ $45323-33 m / w$. May they not have in 454 $27-34 m 46027-37 m 4611-11 m, 25-37 m 462$ 25-34m 463 1-18m, 35-37m (Hooker) 464 813 m
vol. 2 NB1 〈draft of letter sent 26 June 1876〉
References Forel - Hooker Great care with which you have worked the Southern part of S. America - I suspect you argue too strongly on the necessity of a large area for the development of many forms.- So many species of same genera on many volcanic islands in inviolated valleys seems sufficient 122 Error??
252 I doubt, though I agree with Principle 265
359 Error
I like much the discussion on the distribution of Land-shells
Axell Blytt paper
NB2 All marked on Geographical Distrib-ution.-
p. 205 N. seals in Baikal 465 Distribution of F.W. Fishes
$725-31 m 2022-37 m 212-17 m$ (Günther) 23 $26-31 m, 34 m 2634-37 m 356-10 m 3827-37 m$ $426-26 m, 29-31 m / 30-31 u$ "not lforms", 34$37 m 4421-33 m, 34-37 m 451-5 m, 26-37 m 47$ $22-26 m 488-12 m, 17-19 m, 30-32 m 514-10 m$ 57 26-34m $594-10 m, 22 u$ " 100 fathom", 32$37 m 6126-31 m 6225-30 m 654-9 m 6627-$ $32 m 76$ 3-9m 79 10-15m/14u "of Anguilla" 80 $2-9 m 8131-33 m 821-5 m 831-8 m 12135-$ $37 m 122$ 1-6m, 11-17w ! Edentata Mastodon Horse Tapir Tertiary! 123 12-16m 154 11-16m 155 10-15w why not separately described then $1624-9 m 20528-35 m 2526-13 \mathrm{~m} /$? 265 $10-11 m 321 \quad 32-33 m 323 \quad 26-31 m 341 \quad 26-30 m$ $3596-7 m 37022-29 m, 27-30 m 3712-5 m 386$ 17-21m, 23-27m 387 25-30m 392 18-23m 423

1-6m 430 9-11m 432 8-13m (Günther) 465 2$8 m, 11-13 m, 25-28 m 4661-12 m, 28-32 m 467$ $1-7 m 4843-18 m, 34-37 m 48716-25 m 496$ 12$16 \mathrm{~m} / \mathrm{wt} / 1-17 \mathrm{w}$ several other such cases of semi-tropical or warm Eocene Antarctic found $5006-14 m 5031-5 m, 9-11 m$ 26$30 \mathrm{~m} / \mathrm{w}$ • by $52433-37 \mathrm{~m} 5251-8 m, 12-17 m$, $23-35 m 526$ 1-8m 537 12-28m 546 5-15m, 16$31 m 548$ 19-26m 549 11-16m 550 31-36m

WALLACE, Alfred Russel Island life London; Macmillan \& Co.; 1880 [CUL] gd, geo
NB \bullet p46; 88 Percentage of C. of Lime in Chalk; 68 have long thought so \& so other to Günther
166 great amt of Denudation 207 Tylor on Denudation; 251 Means of Distribution; 262 do; 294 do
$462-5 m / w$ Viti New Caledonia New Hebrides 68 9-15m 72 15-19m/? $887-12 m 89$ 21-41m 166 29-33m 172 29-33m/29u "the water" 199 26-38m 207 1-5m (Tylor), 35-36m 208 19-22m 250 28-40m 251 21-41m 262 12-24m 294 3$9 m, 24-28 m \quad 295 \quad 5-12 m \quad 345$ 2-13m 403 19$22 m$

WALLACE, Alfred Russel The Malay archipelago 2 vols.; London; Macmillan \& Co.; 1869 [CUL, I]
beh, fo, gd, geo, h, mhp, oo, or, sl, sp, sx, tm, v, wd, y
vol. 1 SB1 $\square \beta$
Vol I Wallace
1923 to 24 Origin Geographical Distribution - 022 Mem Institution

49 Pitcher-Plants insects

- \& 87 Orang throwing missiles

183 \& 184 Alpine Vegetation
222 Distribution
225 do=0
245-248 453 Birds -transportation of seeds 318 Distribution to 327
418 Megapodius instinct
427 Distribution to end of Chapt

- 428 Pigeons with racket tail
$441 \sim$ Vars. in Outline of wings of
Butterflies in Celebes.-
- 468 Kingfisher do do
- 433 Barbirusa Defence 435
- Penny Encyclop p246 Vol 23

SB2 over \star_{0}
splendid Eulogia on Rajah
How interesting plants of BorneoO wd be Timor splendid case
on Subsidence directly due to pouring out
of Lava - Reports Habits
\checkmark Sondiacus
Caterpillars Hairy－JennerO Hair
\Leftrightarrow Style very good
Celebes splendid
Babyrusa organ of defence I presume lower canine not developed
Sevalik miocene fossils－
18 1－2？， $20-22 m 1911-21 m 2118-25 m 23$ 3－ $10 \mathrm{~m} / 12 w$ Origin $14-18 m \quad 24 \quad 21-25 m \quad 26 \quad 24$ $26 m$ ，zb 29 13－20m 49 11－15m 60 1－2w／fig．w Gunther do not believe story 87 11－17m／13－ $16^{\prime \prime} . . " / 12 w / 14 a \notin 183$ 22－26m 184 11－16m，19－ $25 m 1851-3 m 222$ 20－26m 225 15－20m 226 $12-21 m 2451-3 m 2481-6 m 31818-26 m 319$ $16-26 m 320 \quad 2-12 m 321$ 11－25m 322 14－23m 323 18－21m，23－24m $325 \quad 10-16 m \quad 327 \quad 5-8 m$ $32917-23 m 418 \quad 14-21 m / w$ may it not be argued that large egg necessary to develop young Bird so perfectly？ 419 11－15m 427 17－ $24 m 42820-22 m 42913-14 m, 19-20 m 43122-$ $26 m 432$ 9－11m，12－18m $43324-26 m 4342 a$ ＂eyes＂$/ 1-4 w$ with the tips in－curved so that they cd not possibly be used as weapons 7 － $9 m 4357 \mathrm{~m} / \mathrm{wt}$ probably originally weapons $11-13 \mathrm{~m} /{ }^{\prime \prime} .$. ＂， $14-16 \mathrm{~m} / \mathrm{m} / \mathrm{w}$ How about the lower 437 13－18m 438 16－17m 439 19－22m 441 fig．m $4437-9 m, 19-22 m 444$ 7－15m 445 wt More probably round－reflects on connection with Africa of Sevalik fossils．9－ $15 m$（Sclater） 453 9－11m／10u＂crimson mace＂， 12－14m
vol． 2 NB
SB1 D β
$\leftrightarrow \infty$ p． 43 Man－a small colony lose its language and yet impresses its character to certain extent \＆may increase into large nation．－ 49 do
＊o 103 Tropical fruits have all been improved by Selection
141－142 Distribution－Pigs swimming － 150 Casuarius females sitting alternately ？？
－ 178 \＆ 207 Man
－ 203 Birds of Paradise seasonal
－ 252 do Dance
－ 255 Man 445－453
276 failure of instincts in Insects boring trees or sticking in holes
－male fighting Beetles
290 Distribution
295 Flowers not fine in Tropics
－ 306 Man beauty
－ 314 Sexual characters Diptera
－ 388 Paradise－skim through Chapt．－ 399
431 Distrib，435， 436
SB2 〈over〉
－you make sometimes feel young again as
if I was once again collecting specimens
p150 ask Casuarius
1 am astonished you ever returned alive
－ 236 for Western read Eastern
255 Savages males self－ornament－do they care for admiration of women？or of other men，for presumably not exclusively self－ admiration ？
－Distribution
－ 295 number of insects no need to be conspicuous．
－ $315 \sim$ like Elk－do you not mean Moor or fallow Deer 399 ask
43 14－16m，19－21m， $22 u$＂Malayl language＂， $w b$ if a small colony native language 48 $18-20 u \pm 4916 u$＂Orang Sirani＂，21－23m／u ＂withlstocks＂ 103 16－24m 141 9－15m 142 1－ $9 m 145 \quad 12-16 m 1463-13 m 1504-6 m 1533-$ $11 m \quad 178 \quad 13-17 m, 25-26 m \quad 179$ 4－5m， $8 u$ ＂twisted beard＂，13－15m 203 16－20m 207 11－ $15 m 236 \Uparrow 5 c / w \notin 25217 u$＂dancing－parties＂， 21－26m $2538 u$＂arelover＂，11u＂striped the＂， $13 u$＂then overshadowed＂，14－15u＂emerald｜ throat＂ $25516-17 \mathrm{~m} / \mathrm{w}$ self－vanity $2763-13 \mathrm{~m}$ ， 23－26m 277 1－6m，8－11m $2907-23 m 291$ 20－ $23 m 2959-15 \mathrm{~m} / 7-23 w$ so many insects no need to be conspicuous $2966-14 m / 7-25 w$｜ think Humboldt remarks Tropical plants not so social $29726 m 2985-15 m 3061-3 m 314$ $12-14 u \leftrightarrow 3151-3 m, 4 u$＂elk＂$/$ ？， $13-16 m / 14 u$ ＂None lany＂ $390 \quad 11-12 m / 12 u$＂feathers colour＂， $14 u$＂across \mid forehead＂ 391 1－2m，17－ $18 \mathrm{~m}, 18-19 u$＂effect｜moultings＂，23－26m／24－ $25 u$＂assumed Iseason＂ 393 4－9m 394 24－25m 395 1－2m $398 \quad 5-8 m, 9-12 m \quad 399 \quad 1-19 w$ ． variety of colour $9-22 m, 21-22 w$ I do not see \＆I wish I did see it the connection between variation having been first a long ago selected \＆\＆then appearing at an earlier age than more recently selected variations．I can see，why an increase in the length of feathers，which has to be fully formed \＆then added to in length by variation \＆then further modified，shd appear later in life $4058 u \mathrm{a}$ ， $17-20 \mathrm{~m} / 19-20 u \leftrightarrow 4065 \mathrm{~m}$ ，6u＂blackl colour＂， 11－12m 407 7－12m 408 9－12m 409 2－4m 420 $9 u$＂eighteen＂ 431 19－26m $4357-10 m 43618$－ $22 m 445 \quad 15-16 m \quad 453 \quad 1-6 m / 3 w \quad 456 \quad 455$ 8－ $13 m * 45615-18 m 4607-10 \mathrm{~m} / \mathrm{w}$ like a herd of animals

WALLACE，Alfred Russel The scientific aspect of the supernatural London， 1866 ［S］〈presentation copy〉

WALLACE，Alfred Russel Tropical nature and other essays London；Macmillan \＆Co．； 1878 ［CUL］

WALLACE, TROPICAL NATURE
NB 59 Mimosa
59 31-32m (Pfeffer) $604-8 m 616-11 m$ (Bates)
WALLICH, George Charles Eminent man of the day London; John Van Voorst; 1870 [CUL]

WALTERSHAUSEN, W. Sartorius von Untersuchungen über die Klimate der Gegenwart und der Vorwelt Haarlem; De Herven Loosjes; 1865 [Down] \wp

WALTHER, Alfred and MOLENDO, Ludwig Die Laubmoose Oberfrankens Leipzig; Wilhelm Engelmann; 1868 [CUL]
gd , is, $00, \mathrm{sp}, \mathrm{t}$
NB1 218 Intermingling in range of mosses
224 Even close species of mosses do not live close together; the Struggle for Life, being severest between nearest forms good!
263 translated to end
265 gives cases against M. Wagner's Isolation
$21822 \mathrm{~m} 2244-10 \mathrm{~m} / \mathrm{w}$ close species do not live together $26421 m, 30-35 m 2659-25 w$ Argues against M Wagner Not result of isolation

WALTHER, Friedrich L. Der Hund Giessen; G.F. Heker; n.d. [CUL, pre-B]
beh, br, cs, ds, gd, h, tm, v, wd
NB \otimes_{0} This only useful for ancient History of Dogs Q
March 291857
Find out what classics translated
Athenaeum London Library
Aristotle; Pliny; Xenophon 0 ; Varro
Columella; Oppianus; Treviranus
1 doubt whether any use
40 Greyhounds do not bark
48 Dogs of ancients 0
31 Bechstein first remarked about skin between toes
39 Animals of Corsica speckled
1 doubt whether any use
4 31-35m 5 6u "Varro"/6-9w In Athenaeum "Rei Rusticae Scriptora" $7-8 \mathrm{~m} / 8 \mathrm{u}$ "Columella" $631-35 m 913 m$ (Linnaeus), $17 u$ " 22 ", $19 m$ (Linnaeus) $1210-12 w$ ears very variable 21$22 \mathrm{~m} / \mathrm{w}$ Lungs of swift dogs very + large $33-$ $35 \mathrm{~m} / \mathrm{w}$ 10-8 nipples latter more rare $167-$ $13 w$ Crossed with these 2037 m (Azara) 21 $33-34 m 237-11 m, 14 m, 15-17 \mathrm{w} 2$ dogs in New Zealand $26 m, 31 m 2623-26 m / 24 u 28$ 18m, 19-20w Spaniel 33-35w Carrying Dog
$299 w$ Poodle $17 u$ "Herrmann" $3027 m 312-$ $5 w$ always slavering mouth $11 u \leftrightarrow / 9-11 w$ webbed feet $14 u / w \tau 34 \Uparrow 10 w$ our Bull Dog 35 30-32w Claw on hinder feet 37 15-16w Pointer 39 36-38w Animals of Corsica oddly speckled 40 1u "Hühner 1 Hunde" $/ w t / 1-5 w$ Men, hounds, hens black on coasts of Guinea! 18-21w Danish carriage dog 25-28w Greyhounds do not bark $41 \quad 16-18 \mathrm{~m} / \mathrm{w}$ Persian greyhound $28 u / w \tau, 29 u$ "Hasen"/w like Hare $425-6 w$ naked dogs $28-30 w$ terriers $4324-30 \mathrm{w}$ Carver says only 1 dog amongst Americans $32 u \leftrightarrow 44 \quad 3-7 \mathrm{~m} / 4 u$ " 1622 "/2-10w Newfoundland dog not found there in $16224630-32 w 2$ dogs Chile $482-$ $9 \mathrm{~m} / \mathrm{wt} / 1-11 \mathrm{w}$ talks of impossibility of recognising dogs of ancients $14-19 \mathrm{~m} / 12-20 \mathrm{w}$ doubts whether they could have been kept pure. $22 u$ " 400 Jahre", $27-33 \mathrm{~m} / \mathrm{w} 2$ kinds of dogs described $28-34 \mathrm{~m}, 34-36 \mathrm{~m} / 34 \mathrm{u}$ " 350 "/ $35 u$ "3-4" $4924 u$ "Melitäischen" $\mid 23-25 \mathrm{~m} / \mathrm{w}$ Pliny mentions quite a little dog $34-35 w$ \& Indian Dog 50 21u "ex Icane"/25-26?/14-29w I see that Aristotle * attributed Dogs to crosses with wild animals! whether correctly may be doubted? $5117-19 \mathrm{~m} / 17 \mathrm{u}$ "ersten Jahrhundert", 19-22u $/ \mathrm{w} 12$ Dogs $30 \mathrm{~m} / \mathrm{w}$ 2d century $33-36 \mathrm{~m} / \mathrm{w}$ many breeds 527 m , 9$11 \mathrm{~m} / \mathrm{w}$ which variety in Dogs $21 \mathrm{~m}, 30-31 \mathrm{w} 1$ $36 w 2531 w 34 w 46 w 58 w 68 w$ aids in Hawking $10 w 712 w 813 w 95510 w 1017 w$ 1158 19w Charlemagne $23 u$ "Molossus"/w Bloodhound $6016-22 \mathrm{~m} / \mathrm{w}$ only few hounds in Germany at this period $6910-14 m 704-5 m$, $11-13 m, 20-26 m / 13-27 w$ long legged \& long snouted thin haired dogs in hot countries, short legged thick haired in cold countries

WALTHER, Friedrich L. Das Rindvieh Giessen; G.F. Heker; 1817 [CUL, pre-B] br, cs, f, gd, geo, rd, sx, t, tm, v, wd
NB p. 17 p. 113 Book; Nothing after p.150; (Very little)
SB $\square \beta$
30 Humped cattle with hump much larger in Bull than Cow
31 Horns in Iceland
Bring fruitful offspring with common cattle
$316-17 \mathrm{~m} / \mathrm{w}$ wild nothing known $25-26 \mathrm{~m}$, $w b$ same as Aurock $631-33 m / w$ Grt humped Ox in Alexanders time $1225-27 \mathrm{~m}$ (Buffon), 31$39 m$, wb thinks the Aurocks may have crossed with our cattle. By Buffon they have crossed 15 29-34m, wb I presume all these breeds are different but are not here described 16 18u "Hochbeinig"/17-20w longlegged with outstanding horns $178-10 \mathrm{~m}, 11-$
$12 m, 29 m, 31-32 m / u \leftrightarrow / w$ See Next Page 18 $18-22 \mathrm{~m} / 19-20 \mathrm{w} \bullet, 21-22 u$＂ungemein sind＂ 19 $24-25 m 2021 w 3226 \ddagger w$ White aurochs or Ladrones three wild Cattle of Scotland mistaken for 29 wt（a）Pallas theory that N ． America \＆Europe one united island \＆ wrecks of old land $5-16 \mathrm{~m} / 9 \mathrm{w}$（a） $30 \mathrm{Iu} / 3 \mathrm{u} / 4 \mathrm{u}$〈place－names〉，11－13m／5－16w Oxen a hump， cows very little Breeds with common subherds with a Bump 17－18m／17u＂Beiträgen IV＂， $30 u$＂fruchtbare Junge＂ $127-32 w$ lose hump in other climates！！Breed with common cattle $30 u \pm, 33 \mathrm{~m} 3114-16 \mathrm{~m} / \mathrm{w}$ Hornless in iceland commoner than Horned $17 u \pm$ ，20－ $24 w$ Mem how different from sheep of Iceland $26-31 w$ Aelian remarked on herd of hornless cattle $31-32 m$ ，wb in S．America when crossed with hornless，calves no horns $w b$ very odd considering rudimentary when contrasted with sheep 54 25－38m／w 2 Indian Oxen described one with long mane $554-$ $5 \mathrm{~m} / \mathrm{w}$ 3d kind $5719 u$＂Aegypten＂／19－23m／21u ＂Cameelen＂ $613 u$＂ 50 ＂｜ $4 u$＂Vierzig＂／1－6w Varro 50 Books on Agriculture $664-9 \mathrm{~m} / \mathrm{w}$ Italy several Breeds in Columellas time．－ 73 $14-20 w$ Romish cattle very different from those of N ．Land $22 \mathrm{~m} 83 \quad 1-6 \mathrm{~m} / \mathrm{w}$ cattle curious Thuringia $9023 \mathrm{~m} 1138 \mathrm{~m}, 9 \mathrm{~m}$

WANDERINGS through the conservatories at Kew London；Society for promoting Christian knowledge；n．d．［Down］

WARD，Robert Arthur A treatise on investments London；E．Wilson； 1852 ［Down］

WARINGTON，George The week of creation London， 1870 ［CUL．1900，I］

WATERHOUSE，George Robert A natural history of the Mammalia London；H．Baillière； 1845－48［CUL，I，S］
af，beh，cc，ds，fo，gd，he，hl，ig，in，is，oo， $\mathrm{rd}, \mathrm{sp}, \mathrm{sx}, \mathrm{sy}, \mathrm{tm}, \mathrm{v}, \mathrm{wd}, \mathrm{y}$
SB1 $\square \Re$ 〈at end of part 22〉
p． 32 p． 52 p． 54 p． 66 p． 68 p． 106 p． 111 p． 144 p． 161 p． 187 p． 188 p． 190 p． 202 p． 452 XX p． 467463469
SB2 $\square \mathfrak{R}$ 〈at end of part 22，several sheets〉 p． 2 All Marsup．out of Australia \＆N．Guinea belong to sub－genus of Phalangista Cuscus， which is not fd in Australia，but is in New Guines．In N．Guines 7 species in 6 genera p． 3 Talks of ranges，－ 1 species ranges from Ambyona to New Ireland！introduced I shd think about 1400 miles from Ambyona to N ． Ireland，about same as to Timor
p． 3 species nearly allied generally do not inhabit same district
13 Stonesfield marsup．cannot be arranged in any known group of recent marsups．
18 on greater amount of difference in low orders
232831 on relations of Montremata
47 var．or species of Echidna in Tasmania．－ 53 slight rumination in Kangaroos
56 Eye－lashes only in diurnal Kangaroos
61 Rodents with Marsupials＊
87 Kangaroos on Barrow isd 30 miles off Mainland－
109 Echymis，hairs varying to species in same genus Gradation
〈over）
131 var．of Kangaroo in Tasmania
183 Macropus Brunii of N．Guinea approaches in many respects anatomical to the N ．guinea genus Dendrologus，a new Guinea genus－cd only be accounted for by descent
194 var．in molar teeth．
204 local vars．from W．Coast
232 Gigantic Diprotodon \＆Nototherium of Owen between Rat Kangaroo \＆Wombat
244 Fossil Wombat very close to recent
256． 265 certain small teeth varying in species \＆individuals
277 Cuscus purchased from natives by Lesson
293302 vars Tasmania
310 Phalangista with skin some way between legs giving character of Petauruses， no habit to explain use
318 Curious analogy to flying squirrels even to form of tail in different realmsO
〈over〉
343，4 Rudimental teeth in Tarsipes variable
424 Doubtful Tasmanian Species How much more distant N ．Guinea than Tasmania；not then climate comes into play
537 Cuscus chrysorrhos in N．Guinea－list of Marsup．of N．Guinea
538 East \＆W．Australian districts have only $8 / 60$ in common（compare with N．Guinea \＆ Timor）－S．Australia hardly only few peculiar $9 / 20$ peculiar to Tasmania Thylacinus \＆a sub－genus peculiar to Tasmania，but both fossil in Australia
〈over〉
Rodents beginning at Part xii
32 Fossil Lagomys Northern genus in Corsica \＆Sardinia
52 Lepus variabilis in N ．of Alps，almost in Middle Europe
54 Thinks same species with Irish a：It does not appear that L．glacialis

WATERHOUSE
106 p111 marked variations in populations of Hares（161 in Cavy）
141 Brazilian Hare approaches most nearly to N．American Hare－inhabits Bolivia as well as Brazil－\＆p144 very close to Cave Hare of Brazil，identical except size－Came during glacial period $\&$ so the Antilope
452 When a species has is characterized by maximum development that part is most subject to variation．Q
463 Nepal Porcupine breeds domesticated
467 vars of Java Porcupine，there \＆in Sumatra \＆Borneo
477 Porcupine Fernando Po \＆Sierra Leone
vol．1， 2 19－23m 3 wt All caught \＆solidly native p277 wt do．p283 esteemed a great delicacy 5？？？， $6 \mathrm{~m} / \mathrm{w}$ Temminck $9 a / \mathrm{c}$ ＂Cavifrons＂$/ w$ Orientalis V．p． 279 Some make this a distinct section of Genus $12 u$＂seven species＂， $14 u$＂six distinct＂， $20-23 \mathrm{~m}, 27-30 \mathrm{~m}$ （Müller）／28w when？ $46 m, 25-31 m$ 5 6－8m／！ 6 $24-25 m 10 \quad 28-30 m, 31-32 m 111-6 m 128-$ $11 w$（wait for explanation） $133-5 m, 18-22 m$ $174-7 \mathrm{~m}, 12-14 \mathrm{~m}, 18-21181-3 m, 4-5$ ？，12－ $19 m / 14-15$ ？， $16-19 m \quad 20 \quad 1-2 m \quad 21 \quad 25-28 m$ （Owen） 23 1－2m 28 4－6m 31 9－11m 32 26－ $28 m 40$ 13－14m 42 17－18m 47 20－21m，28－ $30 m 4819-23 m 5016-17 m 516-8 m 52 \quad 5-7 m$ 53 12－13m 54 22－23m 55 9－13m，13－17 56 3－ $5 m 615-7 m 6423-24 m / w$（a）$w b$｜thought Gould said there were different varieties at the two places $698 w 18 w 222 u / 22 u / 25 u / 25 u$〈numbers）／23－28w proportional variation in bredth of teeth $35-37 \mathrm{~m} 709-11 \mathrm{~m}, 18-20 \mathrm{~m} 72$ 11－14m（Gould） $7430-32 \mathrm{~m} 77 \mathrm{Im} 873-5 \mathrm{~m} 90$ $13-15 m$ • $9332-33 m 109$ 9－12m／w case of series in same genus $28-31 m 1106-9 m 113$ $1-2 m 12529 m / u \leftrightarrow, 32-33 m 12632-34 m 131$ $8-12 m 13530-31 m * 13828 c$＂ear＂$/ w$ tail $32 m$ ， $w b$ same total length but parts vary 1489 m ， $10 \mathrm{~m}, 12 \mathrm{~m}, 13 \mathrm{~m} / 10-16 \mathrm{w}$ smaller，yet longer tail，\＆longer from nose to ear $17 \mathrm{~m} 15011-$ $14 m, 22-23 m 15520-22 m 1583-5 m, 6-8 m 159$ $25-26 m 16029 m / 29-32 w$ specimen longer yet tail shorter $16230-31 \mathrm{~m} 16336 \mathrm{~m}$ ，wb ear less in larger specimens $1666-8 m, 25-28 \mathrm{~m} / 23-$ $31 w$ yet a former species was described as inhabiting rocks $1706-7 \mathrm{~m}, 16 \mathrm{~m} / \mathrm{m}, 19-27 \mathrm{w}$ similar variations；age may have something to do $17230-32 m / w$ representative？$w b$ NW Coast $18030 m 181$ 9－11x，wb X Gould has this work in Dutch－will there be any tables of the Mammifers 182 21－22m 183 3－5m，7－ $9 m, 19-20 m, 22-23 m 1851-4 m, 5-9 m$ ，10－ $15 m, 16-19 m 18622-25 m 19433-35 m 202$ 25－ 27 m 214 13－14m，16－19m 215 tab．m 216 1－3m， 7－10m 218 18－22m 226 24－26m（Ogilby） 232

30－34m（Owen） 256 20－23m $262 \quad 11 m / u$ ＂protected leyelashes＂ 265 11－15m $2678 m 275$ $4 m, 6-8 m$（Temminck） $2774-6 m 27917 \mathrm{~m} / u$ ＂Timor＂ 286 33m 287 8－17w I have often observed all parts do correspond in X size， when a specimen is extra large $29032-33 m$ 291 4－5m 293 6m，7u＂specifically＂ 295 26－ $27 \mathrm{~m}, 32-33 \mathrm{~m} 30214-15 m 30825-27 \mathrm{~m} 31013-$ $15 m 3123-18 w$ there seems no habit to account for skin from sides of body to legs $3134 \mathrm{~m} / \mathrm{u}$＂of 1 the＂，8－10m 318 15－19m 323 9－ $10 m, 30-31 m$ ， $35 m$ 332 26－27m 343 13－18m $34424 \mathrm{~m} 34714 u$ 〈numbers〉， $16-18 \mathrm{~m} / \mathrm{m}$ • 355 $2 m, 22-23 m 35615 m, 19-20 m 38712 m 4031-$ $2 w$ generic character $3 m * / 3-4 u$＂The pouch＂ 417 26－28m 418 15－19m 424 10－13m 429 28m／ 28－29w／wb species appear nearly all distinct here．V．how many genera $43210-14 m, 30-$ $32 m 4387-9 m, 10 \mathrm{~m} /$ ？， $12 \mathrm{~m} 4435-6 m$（Gould） $4441-2 m 451$ 1－4m $4824-6 m, 5 m, 7 m 4842-$ $7 m, 3 m, 4 m 4931-2 m 5184-7 m 52925-27 m$ $53430-32 m 537$ 13－15m，15－21m，25－27m 538 $3-7 m, 8-9 m, 13-16 m, 18-22 m$
vol．2，3 9－10m $1019 m 1231 u$＂supra－orbital process＂ $131 \mathrm{~m} 324-6 \mathrm{~m} / 4 \mathrm{u}$＂Corsica＂，15－16m／ $15 u$＂Sardinia＂ 34 19－38m $3514 u$＂supra－ orbital＂，27－32m $365 u$＂square 1 middle＂，7－ $11 m 3916-17 u$＂ears｜point＂ 41 22－23m／23u ＂blacklabove＂， $25 u$＂brownish colour＂ 43 11－ $12 m .4510 u$＂withlexternally＂， $13 u$＂Thel along＂ 46 6－7u＂withlapex＂， $12 u$＂taillabove＂ 48 26u＂withlapex＂，34－35u＂blacklmargin＂ 49 27－28u＂apical｜black＂ $5134 u$＂Winter fur＂， 35－36u＂upper 1 yellow＂ $524-6 m, 10-11 u$＂tail｜ surface＂， $30 u \leftrightarrow 531 u$＂and lears＂， $4 u$＂with｜ ears＂ $544 u$＂andlabove＂， $16-29 \mathrm{~m} / 22 u$ ＂surfacelgreyish＂ 55 zt ，tab．m $578 u$＂with｜ black＂，10u＂tinted 1 surface＂ 58 6－8m $6011 u$ ＂dense fur＂， $12 u$＂surface \mid colour＂， $24 u$＂upper 1 black＂ $6414 u$＂taillabove＂ $66 \mathrm{wt} / 1-6 \mathrm{~m} / \mathrm{w}$ The argument against variation must be extended to all these cases $5-6 m, 10-12 m 6712-13 u$ ＂which｜black＂，32－34m $684-9 m$ ，11－12m 70 23－24u＂externallylextended＂ $7220 u$＂ears externally＂， $23 u$＂pencilledlabove＂ 74 30－31u ＂withlexternally＂， $32 u$＂taillabove＂ $821-2 u \leftrightarrow$ $8310 \mathrm{~m}, 25-27 u \pm 8420-21 u$＂taillblack＂ $867-$ 8 u＂margined \mid black＂ 8735 u＂externally \mid patch＂ 93 11－13m $9634 u$＂areland＂ $977 u$＂on colour＂ $10420-25 m 1057 u$＂soles 1 ears＂ 106 $3 u / 5 u / 5 u / 9 u / 9 u$ 〈numbers） $110 \quad 13-17 m 111$ $21 u / 25 \mathrm{~m} / \mathrm{u}\langle$ numbers $\rangle 116$ 18－22m 144 21－26m $17710 u$＂ 3 ＂／w in fig． 12187 tab．w proportions different $188 \quad 10-20 m$（Rengger）， 17－18m 189 11－19m，26－28m，29－33m （Rengger） $190 \quad 31-34 m \quad 191 \quad 9-12 m, 14 u$ ＂previously domesticated＂ 192 15－18m，27－33m
(Rengger) $2024-10 \mathrm{~m} 203$ 8-10m 21710 m , $18 u$ " 10 " $29625 w$ where is it found. $4529-$ 11Q 17-19m, 19-24m/Q $4535 w \bigcirc 46330$ $32 m 467$ 8-17m 469 3-7m (Gray) $4775 m$

WATERHOUSE, George Robert The naturalist's library; Mammalia, vol. 11: Marsupialia Edinburgh; W.H. Lizards; 1841 [CUL, I]
af, $\mathrm{sp}, \mathrm{tm}, \mathrm{v}$
NB 67,8; 81; 84; 86 to 105
from 200 to 251 only skimmed nothing
253; 263; 266; 284; 306; 313
SB $\square \beta$
68 Owen on marsupial Bones in Reptiles \& arteries in Marsupials like them
84 Analogous var in stripe in other species of Opossum \underline{Q}
$496-8 m, 14 w$ New Ireland $27 m 508-10 m 67$ 23-26m 68 16-18m (Owen) 81 15-22m 84 11$15 m / 13-14 \mathrm{Q} 28 w$ see $8629-30 \mathrm{~m} / \mathrm{Q} 863-5 m /$ Q $8929 m 961-3 m 10515-17 m 135 \quad 26-27 m$ (Gould) 253 3-4m 263 19-20m 266 23-25m 267 19-21m 284 wt I see some squirrels in Zoolog. Gardens have flattened tails like the flying squirrels $8 m 3066-7 m 31319-32 m 314$ 13-14m, 28-30m 323 6-8m

WATERTON, Charles Essays on natural history London; Longman, Orme, Brown, Green \& Longman; 1838 [Down, S of Matthews]

WATSON, Hewett Cottrell Cybele britannica 4 vols. and part 1 of supplement; London; Longman \& Co.; 1847-60 [CUL, I] cr, gd, geo, no, phy, sh, sp, t, tm
vol. 4 NB 397 misprint; 123 introduced Plants
SB
Forbes \mid quite agree Alpine \& recent of glacial sea-shells only good parts - You always write with such vigour \& spirit that I am carried along with you over dryest points.

- i.e. thanksO

Reconnectibility
Value of Groups very good; I was so glad to see you praise Bentham's paper.-
62 curious coincidence in idea with what I have written
I am glad you praise Alp. D.C.
SB2 p16
175 It would be easy by this Table to calculate distribution by the 112 countries of census in larger \& smaller genera. Take one
of old lists with names. In order to see whether the most diffused species are the species of larger genera (see p.438)
Pages marked not abstracted Cl

16 12-17m, 20-21m 19 13-19m 20 19-21m 25 5-11m, 19-24m $3130-34 m 3218-20 m /$? $331-$ $7 m 4029-32 m 42$ 3-13m $4412-14 m 45 \quad 1-3 m$ 46 8-13m, 13-15m 47 6-10m, 16-18m 49 1$2 m, 7 m 62$ 2-11m 78 2-12m/4-7w American plants $8011-19 m 10526-32 m 1233-7 m$, $7-$ $9 m 156$ 18-22m 159 11-13m 160 22-25m 171 2-4m $1752 w$ p. $23142 w 19 w 410 w 131$ 12w $213 w 10014 w 116 w 12342 u$ " 38 subprovinces"/w counties 278 20-30m (Bentham, Babington), $29 u$ "to 320 " 279 23-27m, 24-30m, $28-29 m 28032-38 m / 36 u$ "partly fallacious" $285 z b 3571-8 m 3591 w$ No of species $2 w$ World 368 27-39m 387 18-34m (Bentham) 388 4-22m, 20-25m 389 5-7w Doubtful British species 397 1? 399 13-18m, 27-32m/31-32u "relativel decreases" 401 30-34m 403 29-34m/ $31-32 u \leftrightarrow / 34 u$ "Thelorders" 404 10-13m (Lindley), 21-27m, 28-30m 405 4-6m, 14-20m $41221-24 m, 25-30 m 41325-33 m 415$ 20-22w \& rate of growth $25-31 m 4176 m, 30-32 m 423$ $7-20 m, 28-29 m 424$ 5-10m 426 21-28m 435 $17-23 m 436$ 1-6m, 28-34m 437 19-25m 438 24-28m 440 7-10m 461 21- $25 m, 30-33 m 462$ $1-4 m$, 5-8m 463 21-25m/21-23m/"...", 2729"..." 464 21-31m 465 12-17m, 18-23m, 24$27 \mathrm{~m}, 27-30 \mathrm{~m} 4665-8 m 46815 w \cdot 47030-32 m$ 474 9-20m, 22-26m 475 5-11m, 13-15m, 19$21 m, 27-34 m 47616-19 m 4862 m \rightarrow 4873 w 1$ $4 w 25 w 87 w 38 w 139 w 1910 w 411 w 6$ $12 w 26$ 21z 519 15-31m 525 30-34m (Lyell) 526 8-9m (Lyell), 22-23m
supplement NB1 p32 On infinite multiplication of species
p118 Definition of species \& groups \& Babingtons Remark that species cannot be defined
NB2 The 2 lists, which have the same species repeated from N. \& S. Britain, must be worked when I consider commonness \& size of genera - But there will be difficulties, as 1 believe the universal ranges are omitted, \& some of new species inserted. I must well consider what to do-

116 19-27m (Babington) 117 5-10m (Babington) 118 10-13m, 20-23m (Linnaeus)

WATSON, Hewett Cottrell Compendium of the Cybele britannica 3 parts; London; Thames Ditton; 1868-70 [CUL]
ex, gd, no, oo, or, r, sl, sp, t

WATSON, COMPENDIUM
Part 1 NB 13223738425052545760 75 (p65 Formulas explained)
p69 Littoral plants

- 1836 Pamphlet wonderfully \& striking excellent sketch of my views
- 54 Misnomer Origin of species in same way that a pug dog owes its origin to man
- 54 I quite agree no evidence except no explano shown
- I have discussed indefinite increase in number of specific forms in 3d Edit p. 141
SB $\square \beta \infty$
p. 13 on manner in which each species dies out in horizontal range.
p. 22 - trespassers are more usual downwards than upwards on Heights.
37-41 Terms for aggregates of super sp.
57 On convergence of forms

60. Definition of Naturalised Plants.

75 on Flora of Greenland v. Hooker.-
$2 \Uparrow 15-10 m 13 \Uparrow 14-6 m 22 \Uparrow 13-8 m 37$ 10-12m, $\Uparrow 1 \rightarrow 386-18 m, \pi 14-1 m / w$ Ist Edit of Handbook wb see p. $4141 \quad 1-5 m, \Uparrow 1 \rightarrow 42$ $\Uparrow 11-5 m 431-3 m 49 \Uparrow 15-12 m * 50 \Uparrow 4-1 m 52$ $\Uparrow 10-5 m 541-4 m, \Uparrow 8-4 m 55 \Uparrow 18-9 m / w$ I have discussed this 3d Edit p141 57 6-15m 60 $\Uparrow 14-6 m 65 \Uparrow 8-1 m 69 \Uparrow 12-1 m 757-17 m$, $\uparrow 12-$ $6 m, \Uparrow 1 \rightarrow 76$ 1-8m 92 " 55 "-"Zones".m, " 56 "-
"Zones".m 96 "72"-"Zones".m, "Littoral".m, "72*"-"Zones".m 103 "110".m, "111".m, "113".m 105 "124".m 107 "131".m 111 "142".m $120 \quad$ "174".m $128 \quad$ " $210 " . m \quad 132$ "228*".m 142 "274".m 154 "311".m 167 "361".m 185 " 444 ".m 186 " 448 ".m 187 "450".m 192 " $471 * " . m \quad 193$ " 476 ". $m 194$ " 478 ".m
Part 2 NB 225
225 " $624^{\prime \prime} . m 229$ " 641 ".m 233 " 657 ".m 235 " $664^{* " .}$ m 248 " $724^{* " .} . m$ 〈all three〉 250 " 731 ". m 266 " 794 ". $m 281$ " 858 ". m 288 " 894 ". $m 289$ " 897 ". m, " 898 ".m, " 899 ".m 290 " 900 ".m 291 " 905 ". m 292 " 911 ". $m 294$ " 918 ". m, " $919 " . m$ 295 " $920^{\prime \prime} . m, ~ " 921 " . m 296$ " 924 ".m, " $925^{\prime \prime} . m$, " 926 ".m 297 " 927 ".m, " 928 ".m, " 929 ".m, " 930 ".m 300 " 940 ". $m, ~ " 940 * " . m 304$ " 954 ". m 306 " 961 ".m 307 " 969 ".m, " 970 ".m 335 "1096".m 340 "1115".m 346 "1135".m, "1137".m, "1137*".m 351 "1153".m 352 "1154".m, "1155".m $353 \quad " 1160 b " . m \quad 359$ "1183".m, "1184b".m $360 \quad$ "1188".m 361 "1190". $m \quad 365 \quad$ " 1208 ". $m \quad 368$ "1218".m, "1217".m $372 \quad$ "1235".m $380 \quad$ "1263".m, "1264".m 385 "1285".m 387 "1293".m 394 " 1323 ". m / w all but 1 of " 1324 ". m, " 1324 *". m 395 " 1325 ". $m, ~ " 1327$ ".m 399 "1340".m 404 "1362". m 405 " 1365 ". $m \quad 406$ "1369". m, " 1371 ". $m, w b$ End 413 " 1397 ". m

Part 3 NB O/
\wp
WATSON, Hewett Cottrell The geographical distribution of British plants 3rd edn, part 1; London; printed for the author; 1843 [Down] \wp

WATSON, Thomas Lectures on the principles and practice of physic 2 vols.; London; John B. Parker \& Son; 1857 [Botany School]

WEBB, Henry Dogs London; Dean \& Co.; 1876 [Down]

WEBER, D.A. Der Taubenfreund 2. Auflage; Leipzig; G. Basse; 1850 [CUL]
beh, br, cs, f, fg, hy, 00, v, wd, y
SB $\square \beta$
41 Fancy Pigeons must be taught to field
42 The more noble pigeons keep separate from others
43 Some crosses Q
6 17-20w 12 feathers in tail normal $22 w$ (a) $w b$ do not tread on sole $135-6 w$ Fantail 26$27 w$ Turbits or Owls 32-34w seldom more than one young $36 w$ Caporetin $145 w$ Powter 22-23w Turkish with curved Beak 26-33m/ $28 \mathrm{~m} / 29 u$ "Pagadette", 30-34w will breed together Carrier 39-41w Runt Spanish 15 15w Romish Runt, like Spanish 9-15w Barb (allied to Turbits) can cross with own \& Fantails $13-16 \mathrm{~m} / 14 u$ "aber|unbrauchbar" $/ w$ (a) $19 w$ Tumbler 26w Trumpeter 31-38w Moon Pigeons so called for great fertility $34 w$ (b) $w b$ (a) Barb \& Fantail have useless eggs wb (b) This new kind to me $16 w t / 1-7 w M$ Brent says a high bred swallow.- is mostly meant by this But the description is applicable to short-footed Tumbler - Riedel gives same account. copied from Bechstein Brent calls it a Magpie Tumbler but possibly not pure.$4 w$ (a) 12-15w shell-tuft behind head 19-21w Swallow Pigeon 27-32w Turn like Tumblers $36-41 w$ Stripe from head along body $w b$ a Carmelite apparently most like almond Tumbler in shape, so low as to walk nearly on Belly. $1714-17 m, 32 m 28$ 12-18w Snuff to destroy insects Powdered quicklime $20 u / w \tau, 36 m 3026 m, 35-37 m / w$ (a) $w b$ some think Pigeons pair after colour \& I think White Trumpeter took first to White Fan-tail 32 wt House pigeons lay oftener than Field Pigeons $357 m, 7-9 w 4$ to 6 months for the pairing $27 \mathrm{~m} 365-7 m, 5-11 w$ choose for purpose - thin, reared in spring 22-24m/w Fertility of field Pigeons lasts longer 41 wt
(a) must not be hybrids, as their eggs are infertile though Birds themselves Bigger 10w (a) $32-34 m, w b$ The house or fancy Pigeons (with few exceptions) will not go to field to feed. Much truth to learn there $4234-38 m$, $w b$ the more noble pigeons keep separate from others.- 43 7-15w Fantail \& Turbit Turbit \& Caporetin Carrier \& Runt Runt \& Carrier

WEDDELL, H.A. Voyage dans le nord de la Bolivie Paris; P. Bertrand; 1853 [CUL]

WEDGWOOD, Hensleigh On the origin of language London; N. Trübner \& Co.; 1866 [CUL, S]
beh, h, hl, pat, t, v
NB 2.; 14* 61 CD fear like cold; 63 astonishment open mouth; 75 disgust spitting good; 76 pride - good on hard breathing in anger; 79 to pout; 91 Origin of no. Who is Charma; 139 Lubbock; * No Explanation of abbrev: Chapter on top of Page.-
$217 u$ "a generation"/w generations \&c $7 w t$ N.B. Savages of T. del Fuego power of imitation \& repeating words \& so Australians $w t / 1-26 w / w b$ or like lowest savage. But is it not possible that Man's intellectual power was lower before improved by use of language $16-17 u$ "tolourselves" $107-26 w / w b$ would you call senseless gabble of Idiot instinctive?? Instinctive scream, when attacked would blend into shout for assistance $7 ? / u$ "instinctively" $146 ? / u$ "instinctively" 41 6-8m/w p. 4545 16-17m 61 5-7m 63 18-20m 75 11-14m 76 9-17m/14-15u "swelling | pride" 78 25-26m 79 1-3m 83 13$17 \mathrm{~m} /$? $1391-12 m 15412 \mathrm{~m} / \mathrm{u}$ "there"

WEDGWOOD, Hensleigh On the development of the understanding London; Taylor \& Walton; 1848 [CUL]
beh, h, t, v
NB p126-133.-
$12622-27 m, w b$ The dog is social \& man is the leader of the troupe $12719-24 m, w b$ will not apply to savages, comes in, but not the * original cause $12825-27 m 1318-11 m 133$ 12-18m

WEDGWOOD, Hensleigh A dictionary of English etymology - On the origin of language 2nd edn; London; Trübner \& Co.; 1872 [CUL, S]
beh

NB1 37 Shudder, cold, disgust Horror; xliv disgust, spitting
Mr W Hensleigh *
Ugly Rage; from state mind
NB2 xliv * Smacking
xxxvii $10-27 \mathrm{~m}, 17-19 \mathrm{~m}$ xlv $37-43 \mathrm{~m}$
WEINLAND, David F. Über die in Meteoriten entdeckter Thierreste Esslingen; G. Fröhner; 1882 [Down, I]

WEISBACH, A. Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859: Anthropologischer Theil, 2. Abtheilung, "Körpermessungen" by K. Scherzer and Eduard Schwarz; Wien; K.K. Hof und Staatsdurckerei; 1867 [CUL]
af, h, ss, sx, tm, v
NB 265 Feet of Chinese women 270 Negro does not approach Orang
SB p.218; $231 *$ width of mouth an Orang character; 232; 234; 236; 239; 243 -245』 265; 269 sexual selection; 270
title page author.u, title.u
\wp
216 11-15m, 17u "Unterschied Ibeiden", 18u " 65 Millim", $20-23 m / 20 u$ " 218 I grösste" 218 fig.wt, 3-5m/3-14w Height of men more variable than women \& before shown that the difference between sexes differs in different races. $2317-11 \mathrm{~m} / \mathrm{w}$ width of mouth Orang character 232 15-17m/15u "Weibern I nicht" $23328 m 234$ 4m/w Back-bone 236 27$29 u$ "dem Orang"/w circumference size of thorax 36-39u士 237 1m 239 23-25m/23u "ändert | Völkern"|24u "viel| Weibern"/36-41w In many points proportions of men \& women different. 243 19-22m $2453 m$, 39-44m 247 $12-14 m 25211-16 m 26514-16 \mathrm{~m} / \mathrm{w}$ slenderest feet round instep $34-37 \mathrm{~m} / 35 u$ "unterl kleinsten" 267 12-14m 269 6u "wovonl Jochbreite" $/ 4-7 m / 4-12 w$ Bears * on sexual selection on greater variability of male. 270 $w t / 1-4 \mathrm{~m} / \mathrm{w}$ no one race in all parts nearer Orang $23-26 m / 24 w$ Translate $w b$ It seems that negros do not approach to Orangs in length of Arms, $-*$ for his legs are likewise long.

WEISMANN, August Beiträge zur Naturgeschichte der Daphnoiden 2 vols.; Leipzig; W. Engelmann; 1879 [CUL, I, S]
em, fg, phy, sh
vol. 1 NB p149 in Part Ill - he shows that summer eggs are nourished by a fluid secreted from the shell-cavity \& are not in more water

WEISMANN, DAPHNOIDEN
69 19-34m $701-3 m$
8
149 20-27m 151 11-17m, $24 m$
WEISMANN, August Studien zur Des-cendenz-Theorie. I. Leipzig; Engelmann; 1875 [CUL]
$c c, d s, e m, f o, h e, p h y, s l, s p, t a, t m, v, y$
$2 \Uparrow 10-5 \mathrm{~m} / \mathrm{w}$ slight season difference * more common 4 1-15w The caterpillars differ but feed on same food \& are all mingled together $\uparrow 7-4 m / \Uparrow 15-1 w$ The differently coloured caterpillars produce the same form of Butterfly $51-5 w 2$ colours not adaptation to conditions $6 \Uparrow 20-12 w$ under sides of wings differ very little- $\uparrow 7 u$ "direkten", $\uparrow 3-2 u$ "Temperatur I Entwicklungsdauer", $\quad \pi 6-1 w$ Dimorphism due to direct effect of conditions 77 m 8 wt Temp. during pupation affects colour of Butterflies. by experiments $91-15 w$ Temperature did not make a complete transformation $126-7 \mathrm{~m} / \mathrm{u} \leftrightarrow 141-8 w$ Summer form is a newly acquired form, \& cold causes avitism \& return to pristine winter forms $15 \Uparrow 12 m 16 \quad 10-15 m / 1-15 w$ effects of climate cumulative like a poison $\uparrow 15-10 w$ bears on climatal variations, which are slow. 23 1-15m/w Explains Marcellus \& Papilio on same principles but reversion easier $\uparrow 7 m 27$ $\hat{\imath} w$ Thinks great heat will cause atavism of the Porima-Vanessa as well as cold $w b c o$ over $28 \downarrow w$ Thinks shaking causes reversion - It comes to what I said, anything which disturbs the organisation. 2913 m 3011 m , $\Uparrow 15-5 w$ The so called alpine \& arctic var. is the parent form. $31 \Uparrow 10-5 w$ Winter-form much less variable than summer form 33 11$20 \mathrm{~m} / \mathrm{w}$ if the same species thus split we must expect it in distinct forms $\uparrow 6-1 \mathrm{~m} / \mathrm{w}$ distinguishes climate \& local variations $w b$ These cases may be compared with the Polar-Bear always white \& Ermine white only in winter- $3415-20 \mathrm{w}$ Thinks this a new definition of Climatal variations (applies to Birds in U. States.) $358-10 \mathrm{~m}, 9 u$ "var. Bryoniae" $/ w$ a climatal var. \& season dimorphic $\uparrow 15-13 u \pm 37 \Uparrow 9-3 m * 385-10 \mathrm{~m} / 3-$ $15 w$ 1st question to decide whether change of climate acts by accelerating or delaying period of * development. Birds in U. States answer this.- $3915-17 \mathrm{~m} / \mathrm{w}$ the result he concludes of higher temp $401-4 m$, wt The change of colour \& males depends on Nature of organism \& not on the warmth 42 $19 m \quad 43 \quad 2-15 \mathrm{~m} / \mathrm{w}$ argues that nature of organism far more important than the exciting cause $11 u \leftrightarrow, 17-23 \mathrm{~m} / \mathrm{w}$ quotes me
to above effect $\uparrow 8 u$ " $i m$ Ischwarz", $\uparrow 7 u$ " $i m 1$ schwärzer", $\uparrow 5-1 m / \Uparrow 8-1 w$ But in Birds the nature of change seems more alike in many species- $44 \quad \pi 12-8 \mathrm{~m} / \mathrm{m} / \mathrm{w}$ Warmth has affected one sex more than the other, so with Birds in U. States. see last Edit. of Descent. $451-4 m / x, \Uparrow 10-7 m 46 \Uparrow 6-1 m / w$ Caterpillars of season - dimorphic alike 47 $\Uparrow 4-2 \mathrm{~m} / \mathrm{w}$ inheritance of corresponding sexual generation 48 6-12m/w New law of inheritance, well-known in asexual generation $\uparrow 20 u$ "cyclische Vererbung", $\uparrow 16 m$,介12-11m/u↔ 49 $\uparrow 20-14 m / w$ climatal vars., but no season dimorphic vars: exist $56 \Uparrow 6$ $1 m 591-3 m / w t$ I think he means that sexual generation has been lost \& is parthenogenetic for intermediate generations 69 wt A Crust.O with summer \& winter eggs the latter alone undergo a regular metamorphosis $1-10 \mathrm{~m}, ~ \Uparrow 14-10 \mathrm{~m} / \mathrm{w}$ We see here a passage from metamorph to none $\Uparrow 8-3 \mathrm{~m} / \mathrm{w}$ think it direct result of climate??? $704 \mathrm{~m}, \Uparrow 10-3 \mathrm{~m} / \mathrm{w}$ Divides cases, as I mentioned, into whether or not, the embryology is different $713 \mathrm{~m} 73 \uparrow 17-14 \mathrm{~m} /$ $\Uparrow 6-4 m / w$ as $74 \Uparrow 12-8 m 751-4 m 7712 m 78$ $7-9 \mathrm{~m} / 8-9 \mathrm{u}$ "die \mid Variabilität", $10-11 \mathrm{~m}$, 16$17 u \leftrightarrow / w$ applies to this particular case $\uparrow 12-$ $9 m 79 \Uparrow 13-8 \mathrm{~m} / \mathrm{w}$ This is same in Jaeger $\Uparrow 7-$ $3 \mathrm{~m} / \mathrm{w}$ allows doubts about Hilgendorf $803-$ $15 \mathrm{~m} / \mathrm{w}$ His theory of isolation referred to * Because variation not quite identical in 2 stations in relative number. $81 \Uparrow 8-1 \mathrm{~m} / \mathrm{w}$ All variation due to changed conditions, but does not directly depend on nature of conditions. $8213-16 \mathrm{~m} / \mathrm{w}$ each species has different history \& so is differently acted on by conditions differently from other sp . $\uparrow 4 \mathrm{~m}$ $831 m, \Uparrow 10-9 u$ "gerichteten \mid Askenasy's" 84 314m, 14-20m, 介11-10u "sie \mid Reize"
Plates figs 1, 5, 10, 11, 12, 13, 16, 17: wa <and whether summer or winter form $>$

WEISMANN, August Studien zur Des-cendenz-Theorie. II. Über die letzen Ursachen der Transmutationen Leipzig; W. Engelmann; 1876 [CUL, I]
ad, ds, em, he, tm, v
NB1 All book marked
p. 5556

In first part shows use of coloured stripes \& ocelli of caterpillars.- In 2d \& very important part - shows that that caterpillars, pupas \& imagos all vary independently - \& that when one stage varies more or differently in 2 groups the difference always stands in relation to conditions to which stage
subjected－Flies－\＆ 2 groups of Hymenoptera best cases．－
good evidence of Axotl being reversion NB2 68； 72 for Letter
all marked wonderful book 277 last mark
xiv $5 m 5524-27 m 5610-16 m 6814-15 m$ ，28－ $32 \mathrm{~m} / 23-32 \mathrm{w}$ I have said do not appear in young $6912-17 w$ stages of ammonite like stages of same caterpillar 33－38w thinks not selection He \＆I inheritance $72 w t / 1-18 w$ Does not allude to rule of inheritance at corresponding ages，but after earlier But why I know not $27 \mathrm{~m} / \mathrm{u}$＂Bildungsgesetze＂ 73 1－3m $792-13 m, 25-29 m 8012-14 m 8113 m 8529-$ $34 m 86$ wt very unsatisfactory on some ancestor 2？ $8732 \mathrm{~m} 8914 m, 28-32 \mathrm{~m} 921-4 m$ $943 m 985 m 10110-19 m / 11-13 w$ Effects of eye－spots $29 m 10316-29 m 1063 m 1166 m$ $12018 m 14218-22 m / 14-21 w$ If developed according to phyletic instinct Kräft 149 5－9m， 15－17m $15034-37 m / 34 u$＂dreileinen＂ 151 1－ $4 m, 6-8 m, 10-12 m, 21-24 m, 29-30 m$ 152 1－4m $15313 \mathrm{~m}, 14-23 \mathrm{~m} / 23-37 u \pm 15414-16 \mathrm{~m} / 11-19 w$ i．e．caterpillar or XX imagos of allied species constant or variable 155 14－15m，28－30m 157 $5 m 1594-10 m, 37-38 m 1601-4 m, 9-11 m 161$ $30-32 m 16520 \mathrm{~m} 167$ 13－23m，25－28m，29－ $32 m$ 170 18－20m／17－22w no characters in common of larvae of Butterflies $1715-7 m$ $17332 m 1763-8 m / 5-6 u$＂in Istehen＂ $17722 m$ 182 9－11m／10u $\leftrightarrow, 14-15 u \leftrightarrow 18329-30 u$＂diel nicht＂ $1847 \mathrm{~m}, 17-20 \mathrm{~m}, 17 u$＂blos＂， $18 u$ ＂Raupen varietäten＂，21－25m 185 9－14m，34－ $\begin{array}{lllll}38 m & 187 & 12 m & 188 & w t / 1-6 m / w\end{array}$ which determines greater variability of one stage than other $24-28 \mathrm{~m}$ 191 $21-37 \mathrm{~m} / 22-27 \mathrm{w}$ All this deserves full consideration $36-38 \mathrm{~m} 192$ 33－38m $19820 \mathrm{~m} 20022-30 \mathrm{~m} 201$ 26－28m 203 4－15m，20m，22－30m 2096 m 210 11－15m，12－ 26m，15－26m，28－38m 212 12－18m 214 6－13m 216 8－24m 219 11－20m，36m 220 1－5m，18－ 20u＂solaufgeben＂ 221 26－30m 223 32－38m $2247-24 m 2253-9 m 227 w t$ I have read this essay before except the appendix p． 273273 22－26m，34－36m，37u＂verwerthbar 1 muss＂ 274 17－20m，21－24m 277 26－30m $28015 m$

WEISMANN，August Studies in the theory of descent trans．R．Meldola；London；Sampson Low，Marston，Searle \＆Rivington；1880－82 ［Down］
part 1 NB 101－107
106 12－30m 107 1－30m 109 14－25m
WEISMANN，August Über den Einfluss der Isolirung auf die Artbildung Leipzig；W． Engelmann； 1872 ［CUL，I］
beh，cc，cs，ds，em，fg，fo，gd，geo，ig，in，is， $\mathrm{mg}, \mathrm{oo}, \mathrm{phy}, \mathrm{sl}, \mathrm{sp}, \mathrm{ss}, \mathrm{sx}, \mathrm{tm}, \mathrm{v}$

SB1 ロR

Weismann Einfluss der Isolirung
p8 p12 p41 on the Hilgendorf case of Planorbis－periods of variability succeeded by constancy－（Mem．Forbes case in Purbeck Birds）p． 137 good arguments against M．Wagner
p．20＊ 42 on manner in which these forms of Planorbis become constant．
p． 45 In a variable colonist to remain constant many individuals must immigrate
47 about drying of eggs of Apus \＆revival 48 Isolation by itself does nothing
51 Periods of variability long，yet shorter than those of constancy
52 My argument M．S．against periods of variability
p． 54 Lays greatest stress on difference in results when a variable or constant species is a Colonist
p． 55 Protective resemblance of butterflies
65 case of constant butterflies in separated areas during Glacial period．－
〈over〉 p． 67 p． 74 He calls it amixie the non－ crossing \＆accounts for very local forms by the same proportion of variation not occurring in one stocked by very few individuals－I shd think slightly different conditions wd likewise influence the propagation of varieties．－The difference these gained wd never exceed the amt of individual differences in species in question
p． 76 cases of extremely slight differences in different countries of Lepidoptera－many most species do not present any local vars． p． 85 Effects of crossing slight \＆slow except in locomotive organisms
9597102 Does he not ignore effects of conditions long continued－p102 good argument against．
107 local form of butterflies have never spread from Corsica to mainland of Italy
106 Cause of richness of endemic forms on islands in part due to fact when once formed not spreading to other areas
8 5－17m $1221-26 m / 19-20 w$ see to Forbes case $1418 \mathrm{~m} 156-30 \mathrm{w}$ argues wonderfully well about these species \＆their distinctness 16 17－19m（Hilgendorf） 1823 m 20 11－21w differently coloured vars of Caterpillars 21 14－15m $2212 m$（CD） $2631 m 323 m 4028-$ $31 \mathrm{~m} 411-6 \mathrm{~m} / \mathrm{w}$ slowness of change $28-31 \mathrm{~m} /$ $26-30 \mathrm{w}$ most important $31-33 \mathrm{~m} 42 \mathrm{wt} / 1-19 \mathrm{w}$ different individuals vary in different ways \＆ all lead to the same end－like what I have

WEISMANN, ISOLIRUNG
said of Giraffe in the Descent. $1-2 m, 13-19 m$, 20 m , 22-23u "vollzieht|werden", 32-34u "sondernlaus" 43 2-3u "sondernloxystomus", 5-7u "Verschmelzung|kommen", $\quad 10-11 u$ "durch Individuen", $26-28 m / 27 w$ (a) $w b$ constancy lost when all individuals fail to cross $4512 u$ "sehrl Individuen" $110-16 \mathrm{w}$ thinks cause of constancy lies in colonies consisting of several individuals $28-32 \mathrm{~m} / 30 \mathrm{w}$ (a) $w b$ (a) Thinks individual differences overstated (?) $4730-32 m$ (Siebold)/30w (a) $33 u \leftrightarrow, w b$ about the drying of eggs of Apus $48 \quad 18-28 w$ Islands where some forms changed \& some identical shows isolation by itself does nothing $27-28 u \leftrightarrow 4918 \mathrm{~m}, 29-31 \mathrm{~m}$ 51 wt a species remains constant till some cause induces variation- $3-8 \mathrm{~m} / 5 \mathrm{w}$ (a) $18-$ $27 \mathrm{~m} / \mathrm{w}$ Evidence of Periods of variation long, yet shorter than those of constancy $31-34 m$ (Hilgerdorf) 52 wt A difference in result whether a variable or constant form in the colonist is new $24 \mathrm{~m} / 4-26 \mathrm{w}$ The species which remain for long periods \& in many countries (\& whole genera) variable are opposed to periods of variability $54 w t / 1-3 w$ i.e. without selection or any new tendency to variation, supposing the new arriver to be already variable- $1-8 m, 32-34 m$, $w b$ says very difficult to prove what are purely morphological characters $5526-28 m, 27-32 m$, $w b$ cases like Kallima $5631 m 58$ wt/1-9w asserts the dark colour of wings of female Blue Butterflies is certainly a protection 1$9 m, 9 z, 9-10 u \leftrightarrow, 11 m, 11-12 m, 11-24 w$ I think because his wings have been coloured blue the female has not this habit because her wings are brown $6016-19 m / 19 u$ "Satyriden", $27 m 62 w t / 1-30 w$ He considers Secondary Sexual characters as morphological or indifferent, but I doubt, for so would be primary sexual characters $34 m \quad 632 u$ "VanessalSardinien" $/ 2-5 w$ case not due to his scheme $5-15 m, 13-22 m 6426 u \wedge / 29-35 m /$ w trace of mark in V. ichnusa $659-14 m, 15-$ 17 m 67 11-15m, 30u "Amixie", 31-32u $\rightarrow 70$ $5-9 m / 9 m / 10-12 m / 4-17 w$ he assumes taste of female wd remain constant.wd be affected by momentary colour - We have cases of local vars of Birds in which males alone differ. $20-27 m / 24-33 w$ have I not case of male Moths like female in Shetland islands $728-14 m / w 2$ Sulphur-Butterflies with female alike $74 w t / 1-25 w$ on his peculiar view isolation cannot make a greater amount of difference than the extreme varieties of parent species - but may be aided by S . Selection $1 m, 5-7 m \quad 75 \quad 12-17 m$, $13 w$ conclusive 76 17-26m, 6-25w very slight
differences in different countries 77 1-12w Cases of absolute identity ever since glacial period $11-16 \mathrm{~m}, 12-30 \mathrm{w} / \mathrm{wb}$ the greater no of species of Butterflies do not present local vars. $821-2 m 854-26 w$ On effect of crossing very slow, in slowly moving organism - true - he ignores greater vigour of crossed offspring $9124 m 9516-22 m / w t / 1-21 w$ But how does he know that the black female not due to directly external agencies $9621-29 m$ 97 wt 1 think so if cause of variation preponderant $5-7 m, 8 u \leftrightarrow / w$ (a) $9 m 1008 m$ $102 w t / 1-28 w$ important that the many local vars of V. cardui in America due to S. Selection because such are not found in other parts of world \& the same argument applicable to direct action of conditions. 103 11-13m/12-13u "als I Stammart" 104 2-7m 105 $25 m 10626-29 m / w$ in islds $10719 u$ "Corsical Sardinien", 24-29m/25u "italienischen"

WEISMANN, August Über die Berechtigung der Darwin'schen Theorie Leipzig; W. Engelmann; 1868 [CUL, I]
cc, ch, cs, dg, gd, he, is, mm, oo, sl, sx, t, tm, v

NB Causes \& Law of Variation most important
All marked
p26 Nägeli to 30
$1121 m \quad 12$ 5-9m/wt/1-9w Caterpillars coloured alike Moths different 1310 m 16 15$22 m, 32-33 m 1721 m, 32-34 m 186 u$ "Eil Larvenhaut", 26-28m/29-31m/u↔/23-31w Why on doctrine of Plan do the shoulder girdle \& pelvis fail in snakes 32--33m (Dohrn) 2220 m $2419 m 268-12 m, 8 m, 14-16 \mathrm{~m} / \mathrm{w}$ degraded organisms $23-33 w$ trifling characters constant - External influences kept constant by crossing $24-29 m, 30 m 273-4 m / 19-29 m / 1-33 w$ I think this means that "morphological" characters are the results of what I call the definite action of conditions -1 do not feel quite satisfied with this - free intercrossing cd perhaps keep * the characters, which are not in use, free from fluctuations.- 28 $21-22 m / 19-23 w$ a cat will vary differently from a dog. $23-26 m / w b$ So the Laws of variation (as well as inheritance) will prevent the same form being produced by two distinct forms- $29 w t / 1-5 w$ In Variation under Dom. I have been strong on ND of species -6-8m/7u "Variationsqualitüt"/w good 16-20m * $30 w t / 1-17 \mathrm{~m} / \mathrm{w}$ This is justly directed against what I have vaguely said of indefinite variability - in all cases the variability, within a large circuit, is definite \& thus certainly
overrides the power of selection $3223-26 \mathrm{~m} /$ $1-26 \mathrm{w}$ my objection that an isolated form could cross at first 33 wt (a) Truly remarks that of offspring, crossed with parents, some wd inherit the new variation \& some wd not, but the latter by natural selection wd be be the less favoured $3-7 \mathrm{~m} / 5 \mathrm{w}$ (a) $28-34 m$ (M . Wagner), wb Thinks much of Sexual Selection $3428-31 m$ (Hilgendorf) $363-6 \mathrm{~m} /$ $5-7 u$ "Jedem $\operatorname{Igrün"} / 3-11 w 2$ or 3 forms of Caterpillars I shd have thought more variability $10 u \wedge, 11-12 u \leftrightarrow, 18-22 \mathrm{~m} / \mathrm{w}$ isolation by itself does not cause change 39 $8-16 \mathrm{~m} / \mathrm{w}$ Plants \& insects later developed on Mountains \& so do not cross with same species on the plains 18 u ,, $19-20 u$ "diel Stynge"

WELLS, William Charles Two essays London and Edinburgh; Archibald Constable; 1818 [Down, pre-B, ED]

WESTWOOD, John Obadiah An introduction to the modern classification of insects 2 vols; London; Longman, Orme, Brown, Green \& Longmans; 1839-40 [CUL, S]
ad , af, beh, ci, em, f, fg, gd, ig, in, mm, mn, no, oo, or, rd, sl, sp, sx, sy, ta, tm, v
vol. 1 NB Change of Habits in House Crickets

SB1

- $\Perp_{0} 427$ Mantis fight

437 Saltatoria 3 Families
439 Crickets
440-442 males chirping noise
445 fight $\& \&$ attract females
450 Gryllidae

- 452 Both se

453 both sexes
457 Locust act by Femora

- Pneumora anoth case
- The use of Limb perhaps stated
?? (p447. Male of one cricket veil. use not stated)
SWestwood Vol. 2 Secondary sexual Ch. Orthoptera
SB2 1 —
104 Variation in Females of Dyticus - Also case of analogous var.?
144 Case of analogous variation
167 Violent Battles in Lucanus Males
164 Definition of Typical form
3435 species of Cionus taken on one plant of Verbascum
396 Coccinellae uniting, but producing sterile eggs

408 Forficula few species, wide ranges
447 So Male Crickett
413 wings not developed in certain species of orthoptera \& Homoptera
SB3 $\mathrm{D} \beta$
447, 445 after p. 456 I will look out for peculiarities to see if variable in single species
75 22-23Q 104 12-15m (Bonelli)/Q 25-28m 144 4-10m/Q 8-15w difference in sexes hardly a variation. $1641-5 m, 5 m 172$ 29-33m, $37 z 1846-13 w$ of the few cases of differ known two being same group some are splendidly coloured $15-17 \mathrm{~m} / 16 u$ "Linnaeus Fabricius" 187 6-11m, 18u^ 212 24-27m/25un 217 21-25m 236 27-30m, 36-41m (Latreille) $34030-35 m 34322-25 \mathrm{~m} / \mathrm{w}$ Hard to see how selection cd make them 396 9-14m 397 3739 m (Dufour) 405 13-16m/15u "rudimental" $/ \mathrm{w}$ wrong 406 15-18m $40834 m$ (Audouin, Brullé) $37 m$ (Serres) 410 22-24m (Serres) 411 16-17m/ $16 u$ "rudimental \mid wings" 413 10-15m 416 16$22 m 421$ 12-13m (Hummel) $42732-36 \mathrm{~m} / 36 u$ "resemblelfighting" $4371 u \wedge$, $13-19 m / 18 u$ "crepitaculum", $20 u$ "foramina" 439 6-10m, $24 w$ Crickets 442 9-13m/9u "fig. 54.7"/w@ ©, $15 u$ "underside", 20-24m, 30-32m 443 37-38m 445 3-6m 447 25-28m, 36m, 37-39m/w does this vary? 450 21-24m, 26-27w Grasshoppers? $4529 u$ "side 1 like", $10-11 u$ "which| stridulation", 22-24m, $27 u$ "two| 14 ", $35 u$ "Linnaean Transactions", $37 u$ "fifteenth volume", 38 u "been 1 Donovan", $40 u$ "as \mid mile" \mid 37-40m (Guilding) 453 1-5m, 6u "exists । covers", $7-9 \mathrm{~m} / 8-9 \mathrm{u}$ "of $\mathrm{which} ", 11-13 \mathrm{~m}$, 15 u "Lehmann ISensibus" 455 30-37m 456 10-11w Locusts 457 25-29m 458 1-6m, 8-12m/9u "large cavity" $/ 11 \mathrm{w}$ probably $13-15 \mathrm{~m}$ (Latreille, Linnaeus, Burmeister) $46030-34 m / 32 u$ "known grasshoppers" 461 13u "gayest \mid insect", $14-$ 17m, 15-16u "posteriorlbeing", $30 u$ "Pneumora", 33-35m/34-35u↔, 38-39u↔ 462 1-5m (Charpentier)
vol. 2 NB1 - 313; 402
NB2 These marks refer to many abnormal parts, which, if required, might be hunted up to see whether variable -1 have put X to them
12; 15; 24; 37; 67; 80; 82; 88; 98; 109; 119; 147; 150; 154; 158; 160; 172; 224; 232; 237; 252; 254; 261; 279; 281; 311; 312; 319; 321; 324; 326; 329; 333; 342; 344; 340; 352; 354; 358X; 356 to 389X; 406; 422; 431X; 432X; 444; 454; 469 \& 478; 481; 483X; 499; 502; 508; 514; 524; 526; 541; 557; 559; 567; 578; 574; 575; 473 Reduvius stridulating; 213 \& 214 Mutillidae; 465 Homoptera

WESTWOOD
SB1 $\square \beta$
40 Suppl Phryganea do Palpi differ in different species?
213 Mutillidae female destitue of ocelli
SB2 $\square \beta$
12 Affinities of Termites
14 on their habits
15 doubts about pupae walking
24 Nemoura species in same genus with or without branchiae
67 do in Phyganea
88 Classification by habits alone fails 262 do
88 Ichneumons use ovipositor as organ of defence \& secretes fluid 150 do
89 antennae very variable differs in number and form of joint, in various species \& in sexes of same species
98 varieties in imago from differences in food (Ch. 7)
10920 parasites on a saw-fly
119 All wood-feeders vary in size. Allude to Wollastons cases of molluscs of 2 sizes \& Birds in note
147 Ichneumons avoiding vital parts of caterpillars
224 Strange diversity of neuters amongst Ants
232 Slaves * only neuter pupae taken
228 Curious variation see F. Smith Pamphlet 155 on - ch 4.
237 On minute characters very constant through whole order - good sentence
261 On resemblance of some Flies parasites on Bees to Bees.
279 Important on diversity of workers in Hive bees. occasional workers Q
311 In Butterfly 34,650 facets on eyes
321 Allied insects generally fed on allied plants (showing how same character goes in genera
324 on single species not having some very abnormal character not sufficient to render character unavailing
342 Definition of typical
344 Cases of Butterfly with many relations
346 \& 348 On Caterpillars of same genus differing greatly 352 \& 386 \& 294 do

- 406 \& in Habits

524 in Diptera
356 Nymphalidae are polymorphous
359 Caterpillar attaching fruit to tree by silk-
thread. (Difficulty) 381 do Q
380 Males of Bombyx flying swiftly
382 two crysalises in one cocoon in relation to something about silk worms
384 Parthenogenesis - males alone in 3d generation
SB3 $\square \beta$

422 Musical instrument of male Cicada hard to understand by Selection
37 good on Libellula noticing bright colours 428 Projection varies in the different species in Fulgoridae
431 Development of wings in Homoptera
454-469 \& 481 Important Ch. 7
444 Retrograde development in Cocci: females lose artic. of body \& limbs 526 Males of Tipulae fight Ch. 6
541 In Tabanidae only females bloodsuckers - Males on Flowers

6 16-23m $811 u$ "Isoptera", 11u "single| Termes", 11x $125-7 m / 6 u$ "economy", fig.w Pupa fig.w Neut fig.w Neuter larvae Neut $1321-23 \mathrm{~m} / \mathrm{w}$ wide rangers $1416-18 \mathrm{~m} / 16 u$ "closely leach" $118 u$ "called |Latreille", 24-28m/u "underlhead"/w Neuters 25u "fromlPo", 32$34 m / 33 u$ "veryl resembling" $1513 w$ Analogy $14-16 \mathrm{~m} / 16 u$ "lose 1 off", $31-36 \mathrm{~m} / 33 x 16$ 9-10x, 18x, 40x 21 28-30m (Curtis, Lucas) $244-11 m$ $\begin{array}{lllllll}\text { (Pictet) } & 25 & 5-10 m & 26 & 27-33 m & 35 & 14-17 m\end{array}$ (Ashton) 37 9-10m, 21-25m (Newman), 25$27 \mathrm{~m} / 25 u$ "In \mid males", $27-29 m 39$ 29-31m (Réaumur) 44 11-12m (Dufour) 67 30-33m (Pictet) $7717 u$ "of 1 valves", 19-20m, 23-27m/z/ 26u "retroserrated spiculae", 28c "latter"/w sheath $29-30 \mathrm{~m} / 30 u$ "articulated internal", $34 u$ "spiculae", 34-35u "servinglinternal" $788 a$ "some" male $9 x 7935 x 80$ 17-20m 82 12-14m, $14-17 m 8335-36 m, 36-39 m 88$ wt Some evidence that formed, like corporeal structures, by selection.- not particular 1$3 m, 2-8 w$ These agree with corporeal structures 38-40m (E.W. Lewis)/Q 89 1-2m/Q $9820 u$ "Dahlbom" $119-21 \mathrm{~m} / \mathrm{w}$ first rate authority $10918-20 \mathrm{~m} 11710-17 \mathrm{~m} 119$ 19-20m 147 17-19m/18u "feeding \mid matter" $15027-32 \mathrm{~m} /$ $30 u$ "painful irritation" 154 26-28w variable 28-29m 158 33-37m $1604-10 w$ like cirripedes $8-11 \mathrm{~m} 1724-7 \mathrm{~m} / \mathrm{w}$ variable $18114-16 \mathrm{~m}, 24 \mathrm{~m} /$ 24-25u "compelslabortive" 182 20-23m (St. Fargeau) 183 25-27m/26x/u "beel makers" 205 8u* "jawslburrowing" 206 8-14m 209 10$17 m 212$ 22-28m (Strickland, Bakewell) 2134 $6 \mathrm{~m} / \mathrm{Q} / 5 u$ "latter|wings" 214 12-17m (Goureau) 217 11-12u "whence labortive", 13-14x, 14-15u "which|wings" 218 4m, 5-6u "but| middle"/w workers 19-20x/u "the leyes", $23 x 21934-35 u$ "especiallylhabits", 38-39m/x $2202 x 223$ 29$30 m / x, 33-35 w$ transition to Hive Bee 36-37x $2247 x, 8-9 m / 9 x, 16-19 m / 19 x, 25 x / u \wedge / 22-26 w$ Different genera 2 workers 28u*, 31-46m/ $34 u \uparrow / w$ 4th genus $38-40 m$ (Huber) 225 32$41 m$ (Wesmael), 32-38m/33u^/w 3d gen 3536x, 35u "immenselsphere", 38u "almost inactive", 39-40m/39u "only|honey" 228 16m,
$29 m 2295 x / u$ "tribes 1 species" 230 19-20m/u "inlspecies" 231 1x 232 21-22x/21u士/18-29m (Huber), $34 u$ "neuter pupae" $35 x 233$ 22x, 25x, 27-29m (Lund), 28x 234 11x, 32x, 33x $2356 x$, 10x $23728-30 w$ folding of wings $2387 x, 30-$ $36 m \bullet$, 37-40m (Jurine) 246 22m/20-22w Kirby says clear nest $2471 x 25225-28 m 2534 w$ Hive do $6 u$ "constructing 1 nest" $\mid w$ * How then had neuter \& lost them? $2547 x / u$ "females 1 alone", $10-16 \mathrm{~m} / 10-11 u \leftrightarrow / 15 u$ "cuckoo"/14-15w How arise $25527 x 26038-39 x 26136-38 m$ 262 2-7w is there any case of Bee occasionally parasitic. $15-21 \mathrm{~m} 26410-11 \mathrm{~m} /$ $10 u$ "Theselall" $/ 11 u$ "and females" $2688 x / u$ "solitary working", $9 u$ "great thhis" $2694 x / u$ "Bees|Trigonis"|w See Dict Class 271 21z 272 28-34m, 30-34w Ch. 8. like webbed geese Q $27838 \mathrm{~m} / \mathrm{u}$ " 50,000 Iqueen" $2793 u$ "distinguished 1 secreting", 23-24u "their 1 pockets" $/ w$ see Kirby $32-40 \mathrm{~m}$ (Huber), 34$41 u \pm, 34 x, 36 x, 39 x, 40 x 2818 x / u$ "Unlike hive", $10 u$ "twolorgans", $13 u$ "pollen posterior", $14 u$ "theljoint", 15-16u "presencel nest", $28-32 m, 29 x, \quad 36-39 m$, $w b$ Disappearance of these pollen plates interesting $28522 x 286 \quad 27 x / 28 x / w$ vide this $2873 x / u$ "neuterslbeing" $31137-39 m$ (Geoffroy) 312 19-25m 313 7-9m, 13-16m 317 34-35m/34u "Zygaenae|wings" 319 6-8m, 1315m 321 28-32m (Loudon), 33-38m 324 29-34 $m 3267-8 m$ (Boisduval) $32915 u$ "seven"/14$16 m$ (Newman), 31-36m 333 11-13m/"...", 38u^ $3354-5 m 342$ 34-37m (Boisduval) 344 29-35m 346 32-37m/34a "Papilio" p. 348348 24-31m $3529-17 m 3547-12 \mathrm{~m} 2 \mathrm{~m} 3568-10 \mathrm{~m} /$ w Nimphalidae 358 10w (variable) $11-13 \mathrm{~m} / x$ $3595-8 \mathrm{~m} / 6 u$ "the lof", 15-19m (Westwood), $15-17 z 36821-25 m, 27-33 m 37637-39 m / 38 u$ "twilight |considerably" 380 1-5m/w which family with rudimental mouth $23-31 w$ it does not appear wingless $26-30 \mathrm{~m}$ (Stephens), 29$31 \mathrm{~m} / \mathrm{m} 381$ 23-24m, 26-29m 382 35-36m/34$39 w$ happens with silk Worms. $3838 u$ "MemoirlTrans."/w Read 384 4-12m/12u "pocket | cllector"|12-13w Bombycidae $16 u$ "Davis 14 ", $\quad 24-26 m, \quad 35-36 m \quad 386$ 15u "prominent" $17-16 \mathrm{~m} / 8-13 \mathrm{w}$ larvae differ more than Moth $30-32 m, 32-33 m / 33 u$ "species wings", $z b 387$ 17-19m, 29-30m, 32m/a "genera" wonderfully $z b 38925-26 \mathrm{~m} / \mathrm{w}$ wings variable?? 390 18-21m 391 17-18z 392 36-
 $3 u$ "pluvial patches" 394 22-27m/w Mem.Crustacea metamorphosis of $3968-11 \mathrm{~m} / 9 u$ "occasionally |vertically" 397 19-24m, 32-34m 400 15-19m 402 25-27m 406 2-6m 416 15x, zb $4196 w$ bristle-like $8 x / w 4321$ 10w $44411 w$ Coccidae $12 w$ Aphidae. Physillidae \&

Aleyrodae $4217 u$ "the 1 three", $10 u$ "antennae", $11 u$ "seven joints", $12 u$ " 6 " $/ w$ or $42215 u$ "legs|not"/w for jumping $17 u$ "males", $19 u$ "the base", $20 u$ "abdomen", $21 u$ "insertion legs", 23-28w How arrived at by selection 26-28m/25-31m/Q (Réaumur, Goreau, Solier), 35$39 m 42312-13 m 4275 c / u \leftrightarrow$, fig. $x, 7 u$ "legs", $8 u$ "general|leaping" $4283-5 m, 5-7 Q 10 u$ "varyinglspecies" 430 10-12m (Merian) 431 10a/u "species"/w of Delphax 13ua/12-14w are some species winged \& some not 14 $21 m$, 24u "antennaeljointed" $4322 u$ "last \mid seta", 5 u "ocelli 1 number", $5 c$ "in number", 17$22 m / w$? variable in individuals $43511 u$ "antennae", $12 u$ "ten joints" $4385 u$ "antennae ljointed" 442 29-30u "broad I wings", $34 u$ "antennael jointed" 444 5-9m 454 16-22m, 23-29m 469 4-7m, 10-11m, 14-16m, 18a "condition" ie with rudiments $20 u$ "destitute rudimental", 22-25w like some plants with 2 sorts of Flowers 37 m (Westwood) 473 17-18m, 23-25m, 31-34m $48132-36 m$ (Curtis, Linnaeus) $4839-10 m / x / w$ variable $4992-5 m /$ $3 u$ "proportionate" 502 10-13m $50316-21 \mathrm{~m} / \mathrm{w}$ a discussion of several pages on this. 5087 $19 m$ (Latreille) $5147-9 m, 17-20 \mathrm{~m} 524$ fig.w all these larvae one family $5267-8 m, 20-22 m$ 541 3-5m 555 33-35m (Linnaeus) $55736-38 m$ (St Fargeau) 567 20-23m, 24-25u "thus Ichneumonidae" 571 3-12m (Jenyns), 35:40m (Owen, Hope) $588 w$ (list of orders of insects and number of subvenient species)
Synopsis of the genera of British insects, 1 $8 w$ p. 30 10w p. $811 w$ Stirps 2 p. $45 z t 823-$ $24 m 21 \quad 26-27 m 22 \quad 27-28 m$, $30 m 451 w$ Antenna long 20 w Antennae short $4923-25 m$ 51 21-23w p79 Aculeata

WHEWELL, William History of the inductive sciences 3 vols.; London; John W. Parker; 1837 [CUL, S]
beh, cc, ch, cr, ds, geo, h, he, ig, mn, oo, no, pat, rd, sy, t, tm, ud
vol. 1 NB 17; 54; 80; 119 curious; 136 good sentence; 169; 238; O Feb/58
xix $18 w$ R 17 18-21m/w Herschel's craving How acquired? $5111-14 \mathrm{~m} / \mathrm{w}$ one does can conceive such ignorance $541-3 m / 1-5 w$ curious with respect to origin of language 80 3-14m/9-10? 119 8-10m 122 13u "1461"|13$15 w$ How was this calculated 135 11-12m/w V. p. 122136 18-21m 138 14-16m/15u "readyl times" 169 13-18m 238 8-25m
vol. 2 NB 127; 177; 287 good; 438; 482; Feb/58 O/
116 11-17m 127 13-22m/w/wb May conclude from this body of Man requisite. Hence

WHEWELL
political state of country Great influence of science hence dark ages as in Spain 177 11-17m $1807[\ldots], 18-19[\ldots], 25[.],. 30[.]$. 1[...], 13[...], 14[...] $183 \mathrm{~m} 2441-10 \mathrm{~m} 287$ 25$31 m 438$ 11-15[...]/m 441 11-22m $48230 m 483$ $1-6 m$
vol. 3 NB 188; 265; 321; 322; 324; 342; $352 ; 354 ; 369 ; 374 ; 379 ; 390 ; 397 ; 415 ; 419$; 436; 448; 452; 456; 458 et sequitur; 466; 471; 472; 574; 576; 578 read whole Chapter; 582; 620
SB $\square \beta$
Vol 3
189374 Definition of classification p374
321 on natural Classification Linnaeus rules 324 very good
342 do. very good.- 352 do
459 Eyes of Cephalopoda discussed by Geoffroy in his Principes de Phil. Zoolog. p. 551830

468 Maintains that every organ has some use

188 24-31m 189 1-2m 255 12-19m 263 30wॄ $3218-23 m / 10-22 w$ This is strictly applicable to family likeness - though rules may be estab to guide observer as os vary least or most 25-26u®s "latent linstinct", 28-29m, wber when such expressions are used, it is certain there must be some great hiatus in our knowledge $3222-7 m, 15-20 \mathrm{~m} / \mathrm{w}$ what is this but to say, that every character is variable Linnaeus $22 w$ V. p. $32424 m, w b$ when Published? 324 13u "but limpossible"/ $11-14 w$ surely not always - Elephant? Man? $3253 c$ "organization of life" $/ w$ descent $342 w t$ Systematic naturalists are the heralds of Nature $7-8 u$ "studylonly", 7-12w What organs abortive? What least subject to change? use of each part $13-17 w$ The relations consequent on one part, or organ changing $18-24 w$ Trifling resemblances independent of external causes of slight weight wb importance of organ is not the rule in species, or even genera. : only the red band on the Furnarii and Synallaxis of S. America. Consider the Trogons of world, whether of there is not more 352 17-28m 354 $18-23 m 3695-22 m 374$ 9-26m 379 15-22m/ 17-18u "Philosophy|Life" 390 1-4m/3-4w see p. $4005-7 m 397$ 8-12m 400 26-27m (Harvey) 401 1-3m (Harvey) 415 11-25m (Grew and Malpighi)/15-18! 419 9-12m/9-22w why not as well as the skin of the hand know how to grow properly, all live fresh again? or tree produces same buds 436 15*/u "five sepals"/ 16u "five"/wb * Preponderates in all Dichotiledons - \& in Radiata - (?) Mem.

Agassiz - Quinarian arrangement - 3 - in Monocotyledons 441 21-30m (De Candolle, A.P.) 448 12-15m, $29 m 45218-31 m, 30-31 m$ (Jenyns, Clark) $4565-14 m / 6-8 w$ Mammae in Man 7-14m/8-12?/9-10?/12-14m 457 11-15m (Geoffroy St Hilaire)/w Clearly wrong 458 wt rather, the function gives rise to the structure $45915-21 \mathrm{~m} / \mathrm{w}$ How singular that so different a series should have arrived at same end. $4613-7 m 4623 a$ "play" w thus qualified is correct. Owing to external contingencies, \& numbers of other allied species \& not owing to mandate of God $4631 z 4661-8 m, 30-31 m /$? (Cuvier) $4674 a$ "made" $2-4 m / w$ born \& altered $4 a$ "offices" $/ 4-5 \mathrm{~m} / \mathrm{w}$ under changing circumstances $30-31 \mathrm{~m}$ (Cabanis) $4683 \mathrm{~m} /$ wt Shrivelled wings of those non-flying Coleoptera?! wt In every science, one may trust that every fact has some relation, $\&$ to whole world $3 u$ "use" $/ w$ relation $w b$ In every animal, final cause or adaptation is applicable to far greatest proportion of structure. For otherwise it would be pressed $4701-3 m, w t / 1-19 w$ All this reasoning is vitiated; when we look at animals, on my view. 4-18m (Kant), 18-20m 471 wt/1$2 w$ When a man inherits a harelip, or a diseased liver is this adaptation as much as Bullfinch to linseed.- doubtless it is in one sense, but not that in which these philosophers mean. $47213-15 m / w$ appears to me rather far-fetched 473 1a/u "possible"/ $w t / 1-3 w$ with innumerable other animals striving to increase 4-5u "thoselit" $5431-5 m$ 574 1-25m 576 1-12m 577 1-31m 578 25-32m/ 27?/28u "constantly" 579 15-17m/16u "additional assumptions", wb These are not assumptions, but consequences of my theory, \& not all are necessary $58027 m$ (Cuvier) 582 22-25m/23u "his 1 beauty" 6107 -15m/10-12? 620 1-5m

WHITE, Gilbert The natural history of Selborne 2 vols.; London; C.\& J. Rivington; 1825 [CUL, S]
af, beh, cc, ch, fg, h, he, mg, oo, or, sp, sx, t, ta, ud, v
NB1 Modifications \& migrations of species of same genus shows great diversity in habits See end of 2nd vol for Classified Index - p169 ; p277 Furnarius boring holes

NB2 p126; 139 Many birds do not pair; 169 allied species similar habits; p246; p255; p256X; p272X; p278; p292

126 17-23m, wb Good instance of punctual migration wb D'Orbigny case of memory of time 139 2-19m/8-9Q/11u "cock| hen", 23-24Q
$1692-10 \mathrm{~m} / 3-6 w$ In S America same fact 246 15-24m/15-19m 255 1-5m 256 6-17m/7-8w Lin $142721-7 m / w$ like my bird boring holes 278 6-26m/7w p. 773292 12-17m $3201 w$ Swallows
vol. 2 NB comparison with man good comparison with old animals gnashing their front fangs
p6; p8; p9; 10; p54; p56; p92; p110; 117; p119; p120; p124; p207; p296; p310
SB Letter 29 - On Partridges
139 On Birds when one shot, getting soon mated Q
246 on singing of Birds, due to rivalry 256 on wren hiding mouth of nest
272 Martins nests continually washed down vol 2
8 on capons hovering or brooding over chickens
110 some notes of own on instincts
117 Barley in Hawks stomach from W. Pigeons
119 Chinese dogs not relishing meat Q
120 sporting Dogs refusing Partridges \&c N.Q.

6 1-18m 7 6-20m 8 1-4m/2-3u "hoverlhens"। $1-9 w$ dormant instincts in every male, account for a difficulty in origin $7-9 m / ? / 9 u$ "Mr. Lisle" 9 9-12m 10 wt This must be reason, instinct would have led hog to have waited for boar 1-5m 54 1-10m 55 15-16z 56 $w t$ cause of straight lines easy to keep direction recollect FitzRoy idea of soundingnoises to hear the line when not see it $1-2 m$ 57 15-22m 92 15-19m/15?/u "miscellanies" 110 wt Habitual action, like instinct does not vary, indeed difficult to vary much bitter experience to cure tricks yet curable. so instincts can be altered.- wt habitual desires \& actions go together in Man.- eating dinner Instinctive desires $w b$ Habitual desires appetite at certain times $w b$ Instinctive action Habitual action - in sucking both must be brought into play $w b$ Instinctive when origin cannot be traced in life of individual 111 wt in an habitual action, consciousness of desire which must be preparatory, obliterated $w t / 1-11 w$ It is not more wonderful that a desire should be hereditary - than that memory itself should be hereditary. or that taste, mental thought should be so $7-24 w$ in Man an habitual desire may become instinctive or heredetary. ambitious man ambitious children - civilized man. civilized children $13-16 \mathrm{w}$ It is transmission of thought through egg $15-19 \mathrm{~m}, 17-21 w \quad \mathrm{X}$ - that cuckoos should know so much the
impregnated ovum should be mathematical $20-25 w$ the mind has only cause to sleep $20-25 w$ because circumstances do not vary $w b$ Man scarcely any instinctive actions. Many desires, \& therefore many habitual $w b$ animals having * many instinctive few habitual actions? 117 14-18m 118 12-19m 119 $15-20 \mathrm{~m}, 20-25 \mathrm{~m} 12020-25 \mathrm{~m} / 21 \mathrm{w}$ good 121 $w t$ If effect of being beaten as seems most probable a most curious instance if not yet an acquired instinct!- 1-4m, 3-6"...", 7-11m, 14-21m $1241-3 m 2078-13 m / 11 w$ reason $w b$ nothing short of it would make them run out of doors $25915-17 z \quad 265 \mathrm{zb} 296$ 2-16m, 18$21 m 310$ 16-19m/17u "Montagu|xxx"

WHITE, Gilbert The natural history of Selborne new edn by L. Jenyns; London; John Van Voorst; 1843 [CUL, I by Jenyns]
beh, mg, phy, sx, tm, y
NB p47 on chaffinches sexes in flocks
p53; p69; p91; p112; p130; p137; p143; p173; p214; p236; p348; p204
SB $\square \beta$
Mice using tail slightly as prehensile Brehm Thierleben says same of monkeys
69 Snakes using Dung Heap to incubate in NQ
$\overline{112}$ on a cat habitually taking to water
137 Differences in migration within England NQ
140 Both male \& female swallows have forked tails - but males the longest
143 Grey or Hooded Crow very rarely builds in England
214 On tough envelope to Dung of young Birds, due to inaction Q
215.

348 On Birds near cotton-mills using cotton for nest. N.Q.
354 Dogs lose taste for flesh. Q
Letter 16 Martens building in exposed situations Q

47 21-32m (Thompson) 53 21-27m 69 18-23m/ $18 u$ "of heap" 82 28-29m 91 17-21m/19u "protract" $13030-34 m 13728-30 \mathrm{~m} 14328-$ $32 m 173$ 24-30m (J.E. Gray, Yarrell) 204 23$32 \mathrm{~m} / 29 \mathrm{u}$ "Mr. Blackwall" 205 30m 206 27-33m 215 23-26m 216 6-8z, 22-29m 217 9-13z 236 21-30m (Robert) 348 24-32m (Thompson) 354 9-14m

WHITNEY, John Dwight The auriferous gravels of Sierra Nevada of California Cambridge, Mass.; University Press; 1879 [Down] \wp

WHITNEY，William Dwight The life and growth of language London；Henry S．King \＆ Co．； 1875 ［Down，I］

NB 139
139 2－6m
WHITNEY，William Dwight Oriental and linguistic studies New York；Scribner， Armstrong \＆Co．； 1873 ［CUL，I］
beh，t
NB All on language
285； 287
No sound argument that Man cannot think without the use of words－296－Quoted 353
354 Uses of unforseen Useda How far Language consciously invented Useda
＜many markings presumed not to be by CD
$24626-27 w$ chesnut $28515-28 m 28722-27 m$ 296 31－35m 297 1－8m，1－24＂．．．＂$/ 12-17 \mathrm{~m} / 12-$ $22 m$（Max Müller），20－24m 353 11－25m，32－ $33 m 354$ 20－25m，33－35m 355 6－8m

WICHURA，Max Die Bastardbefruchtung im Pflanzenreich Breslau；E．Margenstern； 1865 ［CUL，I］
ad，br，cc，ch，cs，f，fg，gd，he，hy，ig，in，mn， no，pat，sp，sx，tm，v，wd，y
NB1＊the most striking case given of constitutional weakness of Hybrids
NB2－p22；p43 Variation under Dom－ estication； 89 do－Look over－allude to theory of non－accommodation－will not do if Primula \＆Linum are sterile．－
SB1 $\square \beta$ \＆＜mostly dictated by CD
Full Abstract Max Wichura
24 Willows have great power of combining into complex hybrids；he has united 6 species into one hybrid．
28 Thinks Gärtner＇s reversions due to parent pollen：Naudin＇s results point to opposite extreme．Does not Gärtner say that cultivated vars．revert more than wild species？Does this not account for difference between Naudin \＆Wichura？
see Book p． 2
29 The 6 fold hybrids cd not live－
31 Says generally that Hybrids are not so strong \＆healthy．－
30 Gradation in sterility of Hybrid willows which in extreme point of scale ends in death of young plants
35 Gradation in potency of pollen．
38 pollen gets worse \＆worse in offspring of Hybrids inter se \＆in（p．39）the more
complex hybrid．
41 Luxuriance in hybrid willows is by no means the rule rather than reverse．
SB2 〈as 1）
42 Cases of weakly hybrid willows
43 Believes in Kohlreuters view that luxuriance of hybrids results from sterility， false from mongrels－
43 \＆ 44 Number of individuals of either sexes modified in hybrid willow．There are more females \＆see p．63．
50 Never saw a prepotent type \＆therefore doubts Gärtner．
56 variability in hybrid willows when hybrid pollen used；uniformity when pure pollen used．
58 \＆ 66 difft kind of hybrid willow found wild 64 Gives proportion of hybrids to pure species in different districts－in some places more hybrids than pure plants－
65 Ingeniously explains how they abound on certain spots from rapid Germination of seed－
80 gives case of species very like each other yet do not unite easily．－
SB3 〈over，CD
Gärtner p． 474 \＆ 582 on Reversion occurring chiefly in cultivated Plants－Naudin who used cultivated plants goes to one extreme \＆＊Wichura who experiments on wild willows goes to other extreme
SB4 〈as 1）
83 Explains sterility of hybrids by combined organization being ill－fitted for conditions．I give this view p．288／3rd ed．of Origin；but contradicted if offspring from homomorphic unions are sterile．
85 Explains increasing sterility of successive generations of hybrids inter se by inter－ breeding like I do．
85 The crossed Triticum \＆Aegilops which increased in fertility had $3 / 4$ of Triticum blood．
89 cultivated plants which vary most often have irregular pollen and seems to think there is some analogy between variability \＆ hybridism
92 Cultivated plants like hybrids，are in a state of dis－accommodation \＆he gives Kohlreuters view on this point

10 13－14u 11 14－18m 22 fig．m／w 6 species compound into one． 24 14－17m／11－17w in Willows great power \＆tendency for production of complicated Hybrids 27 9－ $10 m$（Gärtner）／w 4 generations implied for Reversion 16u＂individuelle＂，13－17w Propagation of individual peculiarity in a

Hybrid 28 wt/1-5w Thinks reversion of Hybrids due with Gaertner's experiments to pollen of either parent - I daresay Naudin's reversions are largely due to his plants being cultivated 3-6m, 27-28m 29 17-18m/17u "sechsfachen" $118 u$ "die 1 Grunde" 30 9-13w Gradation of sterility $16 u$ "aberlin" $315-11 \mathrm{~m} /$ $10 u$ "aber meist" $/ 6-8 w$ gradation in number of seeds $15-16 u \leftrightarrow / ?!35 \quad 24-26 m 386-11 w$ pollen gets worse \& worse from hybrids inter se 39 12-14m/12u "Zahl"/13w mingled 41 8$9 m / u "$ doch \mid Regel", $21-23 \mathrm{~m} / 21-22 u \leftrightarrow, 25-26 \mathrm{~m}$, $30-31 w$ dwarfs from weakness $42 w t / 1-21 \mathrm{~m} /$ w cases of weakly Hybrid willows did not produce flowers $431-9 w$ believes in Kohlreuters view that luxuriousness of Hybrids results from compensation for sterility 20-22w Relation of sexes modified in Hybrid Willows $17[$, $20 u$ "Zahlverhältniss", $21 u$ "als \mid Arten", 29-30u* "Differenzl bedeutende" 44 3-4u "mehrlweiden", 8-13w more females! under nature Hybrid females very abundant $9 u \leftrightarrow, 12-13 w \quad 1 / 10$ males females 16-17u"unter Ibefand" 50 8-16w never saw a prepotent type in willows \& doubts of Gärtners statement $529 m 56$ 17$22 m / 17-18 u \pm 5814-17 m / 16-17 u$ "66|ihren" 63 10-12m 64 6-7m/u \leftrightarrow, $9-13 m$, $34 u$ "einzelne" $651-3 m / 1 u$ "zusammenwachsen", 2$6 \mathrm{~m} / \mathrm{w}$ more Hybrids than pure parents!! 9$28 m / 10-20 w$ Explains how these numbers come from willows vegetating only in bare places $8010-12 m 8221-25 w$ common mule $24 u$ "eine|Bastarde" $/ 24-25 m /$? 83 9x/wt X give this view distinctly p. 288 3d edit of Origin $10-12 m / 10 w$ Clever $15-25 w$ no Hybrid exactly fitted for place in nature contradicted by species from different climates forming Hybrids $84 \mathrm{wt} / 1-5 \mathrm{~m} / \mathrm{w}$ More different the parent species the more imperfect the Hybrids 85 2-11w This is my view of interbreeding causing sterility in successive generation, but too rapid $28-29 \mathrm{~m} /$ $29 u$ "Diel begreift" $898-19 \mathrm{~m} / \mathrm{w}$ Plants which vary have often irregular pollen - I think some connexion between sterility \& varlability $928-29 w$ Cultivated Plants like Hybrids are in a state of disac-commodation.- 33u "Dielwird" 93 1-3m (Koelreuter), 21u "dass $\operatorname{Accommodation",~22u}$ "Fähigkeit | Varietätenbildung"

WIESNER, Julius von Das Bewegungsvermögen der Pflanzen: eine kritische Studie über das gleichmässige Werk von Charles Darwin Wien; Alfred Hölder; 1881 [CUL, I] cc, mhp, phy, t, y
NB * 601 think δ

8 I do not understand; 11 no; 34 no; 80 no; 78 Georges translation; 158* George; 122; 126; 162; 211
〈by GD〉 What you say p. 485 almost justifies Wiesner
SB \leadsto Pots 2, 4, 8, 12, 16, 20 ft (for 4 hr) in 2d $1 / 4$ 3d $1 / 16$ 4th $1 / 365$ th $1 / 64$ 6th $1 / 100$ of the light received by the seedlings in the 1st Pot

3 23-27m 8 12-22m/1-21w do not understand whilst struggling itself accommodation wd stop $94 u$ "beschränkten Masse" $1119 u$ "alle", $19 u$ "Circumnutation", $19 w$ no $20 u$ "Reizphänomene" $241 m, 17-20 \mathrm{~m} / 18 u$ "nicht 1 Zusammenhang"/w no $\quad 30 \quad 13 m \quad 60 \quad 23 u$ "Krümmungsfähig"/w no $6632-34 \mathrm{~m} / 32 u$ "nicht heliotropisch" 68 17-20m/17w Weight can 69 $8 m 711-5 w$ loading very good $732 m 78 z t$, 23-30m/17-29w I do not understand $811 m$ 122 10-31w But will not Cotyledons place themselves horizontally in the dark 123 8$10 \mathrm{~m}, 18-21 \mathrm{~m} /!1248-10 \mathrm{~m} 125 \mathrm{~mm} 126 \mathrm{wt} / 1-$ $17 w$ It ought to be tried again. Whether Cots. (with hypocotyl fixed) bend in proper measure to bright light. $33-35 \mathrm{~m} / 18-35 \mathrm{w}$ In my study, when hypocotyl. bend itself Cots. were horizontal, but when with same light Cot fixed the Cots bent in proper measure 127 3-14m/w | cannot quite follow 20-31w Do all Cots rise if kept in dark? 162 wt lt does not explain lateral mvmt. $5-11 m / 1-11 w$ This does not apply to 2 triangles $205 \star 22 u$ "Fast alle", 23u "sind |bewegungen" 211 23$27 \mathrm{~m} / ? / 26 u$ "verkümmern 1 sterben" $/ w$ no

WIESNER, Julius von Elemente der wissenschaftlichen Botanik: 1. Elemente der Anatomie und Physiologie der Pflanzen Wien; Alfred Hölder; 1881-89 [Linnean Society of London, I]

WIESNER, Julius von Die Heliotropischen Erscheinungen im Pflanzenreiche Wien; K. Gerolds Sohn; 1878-80 [CUL, I]

WIGAND, Albert Der Darwinismus und die Naturforschung Newtons und Cuviers 3 vols.; Braunschweig; F. Vieweg \& Sohn; 1874-77 [Down] \wp

WILCKENS, Martin Form und Leben der landwirtschaftlichen Hausthiere Wien; Wilhelm Braumüller; 1878 [Down, I] \wp

WILCKENS, Martin Grundzüge der Naturgeschichte der Hausthiere Dresden; G. Schönfeld; 1880 [Down, I]

WILCKENS, Martin Die Rinderassen MittelEuropas Wien; Wilhelm Braumüller; 1876 [Down, I]
NB Skimmed too difficult O
WILLIAMSON, William Crawfurd On the recent Foraminifera of Great Britain London; The Ray Society; 1857 [Down]
NB xi
xi $2-11 m$
\wp

WILLIAMSON, William Crawfurd On some of the microscopical objects found in the mud of the Levant and other deposits Manchester; Gillett \& Moore; 1847 [Down, I]

WILSON, John British farming Edinburgh; Adam \& Charles Black; 1862 [Down]
NB Colling, Ellman, Bakewell
WILSON, Owen S. The larvae of the British Lepidoptera and their food plants London; L . Reeve \& Co.; 1877 [Down, S] \wp

WINKLER, Tiberius Cornelius Descriptions de quelques nouvelles espèces de poissons fossiles des calcaires d'eau douce d'Oeningen [Down, I] NB O/

WINKLER, Tiberius Cornelius Des tortues fossiles Haarlem; Les Héritiers Loosjes; 1869 [Down, I] \wp

WOLLASTON, Thomas Vernon Insecta Maderensia London; John Van Voorst; 1854 [CUL, I]
gd, oo, no, sp, tm, v
SB1 Cossyphodes a Blind Insect in AntsNest common to the Canaries Isd with wings obsolete \& Bates says Prelaphidae are blind but some have yet wings \& fly \& are f. in Ants-Nests.
SB2 $\square \beta$ Genera marked Woll. \& so I presumed endemic
〈list of genera and number of their species; totals calculated)
〈untranscribed words are numbers of varieties listed under each species \rangle xxxva $11 w, 15 w, 22 w$, $34 m, 37 m, 40 w \operatorname{xxxvb} 7 w, 11 w, 16 w, 21 w$, $25 w, 29 w, 39 w, 45 w$ xxxvia $4 w, 10 c$ "var β ", $17 w, 18 m, 33 w, 42 w, 45 w$ xxxvib $4 m, 16 w$, $25 w, 34 w, 42 w, 47 w$ xxxviia $2 w, 10 w, 19 c$ "109 spinipes, Woll.", 19 w var a $30 \mathrm{w}, 33 \mathrm{~m}$, $35 m, 42 m, 44 m, 54 w$ xxxviib $4 w, 8 w, 15 w$,
$27 w, 31 w, 32 m / ?, 33 w, 36 w, 37 m, 38 w, 40 w$, $42 w, 45 w, 47 w, 49 w$ xxxviiia $6 w, 9 w, 12 w$, $17 w, 20 w, 28 w, 31 w, 34 w, 37 w, 40 w, 44 w, 45-$ $46 \mathrm{~m}, 47 \mathrm{w}, 50 \mathrm{w}$ xxxviiib $3 w, 6 w, 7 \mathrm{~m}, 9 c$ "var β ", 12w, 14w, 15m, 17w, 20w, 34c "206| Woll" $\mid w$ e var $35 w, 37 w, 42 w, 47 w, 49 w, 51 w$ xxxixa $2 w, 7 w, 8 m, 9 w, 10 m, 15 w, 16-17 m$, $18 w, 21 w, 24 w, 29 w, 31 w, 32 m, 43 w, 45 m$, $46 w, 47 \mathrm{~m}, 48 \mathrm{w}, 53 \mathrm{w}$ xxxixb $4 \mathrm{w}, 7 \mathrm{w}, 13 \mathrm{w}, 15 \mathrm{w}$, $30 w, 35 w, 37 w, 43 w, 46 m, 47 w, 49 w, 50 m, 55 c$ " $281 \mid$ Woll" $/ w$ var $\alpha 56 c / w$ var. β xla $7 w, 12 w$, $14 m, 17 w, 18 m, 20 w, 21 m, 23 w, 25 w, 27 m$, $28 w, 33 w, 36 w, 43 w, 53 w$ xlb $3 w, 7 m, 8 w$, $13 w, 17 w, 19 w, 21 w, 22 w, 23 m, 24 w, 26 w$, $27 \mathrm{~m}, 28 \mathrm{w}, 32 \mathrm{w}, 35 \mathrm{w}, 39 \mathrm{w}, 43 \mathrm{w}$ xlia $4 w, 13 \mathrm{~m}$, $15 w, 17 w, 19 w, 21 w, 30 w, 43 w, 45 w, 49 w$, $50 m, 51 w$ xlib $2 w, 4 w, 5 m, 6 w, 8 m, 11 c$ " $370 \mid$ Woll" $\mid w$ var $\alpha 12 \mathrm{~m}, 14 w, 15 c$ "var β ", $17 w$, $20 w, 22 w / ?, 24 w, 26 w, 29 w, 31 w, 35 w, 36 m$, $39 w, 40 m, 42 w, 46 w$ xliia $3 w, 21 w, 25 w, 30 w$, $33 w, 36 w, 43 w, 46 w, 50 w$ xliib $4 w, 6 w, 7 m$, $10 w, 27 w, 35 w, 37 w, 39 m, 40 w, 45 w, 48 w$, $50 w, 52 w, 54 w, 57 w$ xliiia $4 w, 7 w, 9 w, 17 w$, $20 w, 22 w, 26 w, 28 w, 31 w$ lxiiib $1 m, 2 w, 8 w$, $9 c$ "var β ", 13w, 19w, 21w, 28w, 29m, 30w 21 1-2Q

WOLLASTON, Thomas Vernon On the variation of species London; John Van Voorst; 1856 [CUL, I]
ad, af, beh, br, cc, ch, co, cr, cs, ds, dv, em, ex, gd, geo, ig, is, mg, mn, oo, rd, sh, sl, sp, sy, t, ta, ti, tm, ud, v, wd

NB How are Birds? in size measure wings of Swallow
4 11-14m, 12-19m,22u "namely|creation" 5 11-12Q/u "alstability", 14m/Q 15-16m, 25$27 m 16$ 12-15m 24 13-14m/13u " 240 ", 20-23m 27 25-29m $2915-18 \mathrm{~m} / \mathrm{Q} 3025-29 \mathrm{~m} / \mathrm{Q} 312-$ 9m/Q 20-25m/Q $22 u$ "Europel Madeira", $26 u$ "Sweden I Canaries", 27 u "insect I cosmopolitan" $3211 u$ "the thesis", 12-16m 33 1-9m/7-8w why not a true species $12-19 \mathrm{~m} 347-12 \mathrm{~m}$ (Westwood, Kirby), $23-27 m 3520 u$ "small", 21-23m/22u "of itself", 29!/u "legitimate variation" 36 2-4m, 17-22m, 23u↔ 37 11-17m $381-2 m, 6-8 \mathrm{Q}$ 9-14m, 26-29m/w Glacial Inst $3910-15 \mathrm{~m} / \mathrm{Q}$ 18-23m/Q 40 10-14m/11-12Q 16-20m $414 m, 5-6 \mathrm{Q}$ 6-9m, 15-18m, $w b$ Do not forget changes in larval condition.- as causing change in Mature $4326-29 m / Q 44$ 1-3m/Q 45 1Q 4-6m/w How odd 15-16Q 23$25 m, 28-29 m$ (Westwood) 50 21-24m $5425-$ $26 w$ Great webs, action on the larvae? So in plants, according to Decandolle) $26-28 m 55$ 2-7m 57 14-16m/Q 26-29m/Q 58 2-8m $591-$ $5 \mathrm{~m} / 3 \mathrm{u}$ "solcolour", 10-12m/Q 23-25m (Hardy,

Bold) 60 wt $Q 2 u$ "the change", $12-14 \mathrm{~m} / 12 u$ "southern shores", 22-26m 61 wt Q 4-6m, 1319m, 27-28m $627 u$ "ornamented typically"/6$9 m / w$ variation analogous Q 63 3-6m, 8Q 9$12 m$ (M. de la Ferté) $64 \mathrm{wt} / 1-4 m / 3-4 u \pm / 1-6 w$ Q How curious the impossibility of creation \& variation producing same end. Capacity in one case \& not in other to adapt itself or be acted on.- $8-17 w$ You have a vera causa, but you invent another.- $653-4 w$ do not understand $11-20 \mathrm{w}$ It is begging question to attribute these to soil. 14-18m, 18-29m/22$29 w / w b$ May be the result of something of use, or indirectly connected. 66 21-29m 67 1$5 m$ (Curtis)/ w This common \& important 68 6-14m, 21-23m $691 m, 3-7 m, 12-18 m$, $w b$ Here the forest seems the active cause 70 1Q 13-18m/16-18"..." 71 1Q 22-23m, 25u "constant|atmosphere", 29 u "diminution |area", $w b$ reduces isolation to these - \& interbreeding $72 \quad 11-13 \mathrm{~m} / u \pm / 7-12 w$ Java Sumatra America? 73 15-20m 74 1-4m, 10$12 m, 19-20 m 75$ wt It is very important that the linking forms are often rarer; by Mr Wollastons account, these the extremes: hence easily exterminated. wt How far are intermediate links produced by crossing? If so they wd cease when species made $5-8 m$, $19 m \quad 79 \quad 13-15 m 81 \quad 20-21 m / w$ (a) $w b$ (a) Thinks decrease of wings increases size in some instances \& It makes up for isolation which tends to reduce size $828-9 \mathrm{Q} \quad 10-$
 $6-10 \mathrm{~m} / \mathrm{w}$ \& $\mathrm{p} 858-10 u \pm, 14 \mathrm{~m} / \mathrm{Q} 845-6 w$ Balancement 6-10m, 23-26m, wb But how cd it have gone over low lands, certainly hotter, than present Madeira. Applies to Balea pencosa, \& ! 85 wt With this I can hardly believe, that intermarrying can decrease size. - May not greater powers of locomotion be regained for apterous insects $13-14 m, 15-$ $18 m / 15 u \pm / w$ (2) Q $20 w(3)$ Q $24-26 m 863-5 Q$ 27-29Q 87 12-16w Can this account for absence of thalerophaga lamellicornes 14$16 u$ "iflcertain"/Q wb why not allude to greater propor $885-8 m, 16-20 \mathrm{~m} / 20 u$ "arelelsewhere", 20 w opposed to $891-2 \mathrm{~m}, 2 u$ "external 1 form", wt This cannot be interbreeding \therefore probably in all cases some other relation.- $90 w t / 1-15 w$ it wd be well to put the case of 2 isld were united, there wd be largely intermediate forms: or indeed * the variation prevented. Just as varying exceptionally slow, so a few crosses wd help to check it. 96 6-8m, 10-13m $9724-28 \mathrm{~m} 98$ 19-29w/wb Wings, I suppose last developed organs, can that bear on their variability? 99 wt Insects may seldom be able to fly so
decrease like ducks or silk moths come into play, aided by selection. Analogy of wingless Birds, cd lead to former belief. $10118-23 \mathrm{~m}$ (Westwood, Spinola), 29m 102 1-5m, 20-26m 103 1-6m, 16-17m, 22-24m 104 25-26u "sizel colour", 26-27m 105 12-13u "twol states", 23$28 \mathrm{~m} / \mathrm{w}$ so in Birds $10617-19 \mathrm{~m} / \mathrm{w}$ so in Ploceus \& Icterus 109 4-6m 115 12-14m/? 116 9-15m/? 117 6-8m/?/u "with|powers" 119 $13-15 m$, $14 u$ "once continuous", $15 u$ "slowness" $/ w$ hypothesis $12013-16 \mathrm{~m} /$? 122 19-20m 124 6-9m, 10[...], 16-20m 125 10-14m, $11-13 \mathrm{~m} / \mathrm{w}$ think of confined mammals \& Birds $25-27 \mathrm{~m} / 25 u$ "Its \mid rarity" 126 23-24u "thel regions"/w Lyell 128 10-14m, 12-16m $1293 u$ "Sir Charles" $/ w$ No $5-9 m, 14-16 \mathrm{~m}$, 18-20m, $23 u$ "occur|state", $20-25 \mathrm{~m} / \mathrm{w}$ (not differently associated with other organic beings. 130 11-12u "extreme |progress", 14$15 m 1315-6 w$ \& some appeared 8-10m, 11$31 \mathrm{~m} / 11 w$ variation $13-15 \mathrm{~m} / \mathrm{w}$ (a) 17 w , $w b$ (a) We shd not expect much change in seashells within such a period. $1321-12 \mathrm{~m} / \mathrm{B}-9 \mathrm{Q}$ 13-21m, 27-29m/Q 133 9-12m, 14-18m, 18$22 m, 18-20 m, 21-22 Q 134 w t / 2-9 m / 1-11 w$ Both these wider spreading \& varying species: must do so to have local vars. wb All amount of differences, simply called species, when great (and formed by selection) \& called vars, when small \& intermediate not found 135 wt Did a creative spirit blow from S . to $\mathrm{N} . ?!$ 9-11w unintelligible to me, except a mutation $12-$ $18 \mathrm{~m} / 13 \mathrm{u}$ "that \mid tract" ? $/ 16 \mathrm{u}$ "identical", $22-$ $23 \mathrm{~m} / 23 \mathrm{u}$ "aborigines" 136 15-16m, 25-27m 137 $22-29 w$ i.e. that some $*$ Madeiran insects have got into S. Europe 138 wt Yes when it was cold, there wd have come a different set, even if current always the same $4 u$ "distinct epochs"|? $13912 u$ "genera"|12-14w What have they to do with land $1419-11 \mathrm{~m} /$!, $12 u$ "generic areas" $/ 12-14 w$ but not points $14-$ $15 u$ "on Iplanned" $w w$ no explanation it is mere assertion of fact 143 26-28m 144 14$17 \mathrm{~m} / \mathrm{w}$ sure \& certain witnesses $14710-19 \mathrm{~m}$ (Kirby), 27-31m $148 \quad 2-5 m$ (Lyell) 153 1014m, 15-17Q 26-29m/w/wb Probably often renewed like Alpine Plants $w b$ These cases opposed to struggle for existence $1559-10 m$, 26-28m 158 14-15?/u "first \mid instincts" 163 $19 w$ hypothetical $16517-22 m \quad 166 w t / 1-9 w$ Breaks influence greatly as shown in groups by enchainement $9-24 w$ ie branching whether or not extinction $13-16 \mathrm{~m}, 19-22 \mathrm{~m}$ $168 w t / 1-25 w$ Probably a species ought to be described animal-Vertebrate-Mammal-Carnivore-Canidae-Canis familiaris 170 1924m * 171 9-26w All much too Metaphisical

WOLLASTON
Nothing to me $-27 u \uparrow, 22 a$ "position"/wb in affinity or geograph position $1729 a$ "cannot"/ wt He means always have been!! 11-23w Shows the effect of studying insects in comparison with Mammals $14 u$ "accident", 15$19 m 173$ 20-23m 174 9-16m 175 6-12m, 20$24 m 177 w t / 1-9 w$ How good to make genera when new rising comes on.- 13 w new $14-$ $25 \mathrm{~m} / \mathrm{w}$ most genera in isld he attributes to extinctions but does not apply to cases like coral islds. $-20-25 \mathrm{~m} / \mathrm{wb}$ so A. de Candolle in Plants, but he applied it to very distinct plants - so in Birds 178 29-31m 179 24-26!, 25-27m, 25-26u "convincedl demarcation" 185 6-7Q 10-12w same as A. Decandolle $1865 u$ "most mischievous", $28 u$ "monstrous", $w b$ you may doubt when I doubt, but if you go one step further you will be eternally d-d, quoth the Priest. 187 19w Canary Birds $22 u$ "cultivated plants/21-23w flowers! Rices 188 6-9m, 14u "absurdity", $17 u$ "unsound", 20-23m, 20-29w/wb why then created? Do you know these conditions well enough to say why one is rarer than another. Yet quite ignorant of the Life of larvae. $1933 u$ "traces | design" $/ 3-6 w$ Flowers Canary Birds Fancy Pigeons 8 m

WOLSTEIN, Johan Gottlieb Über das Paaren und das Verpaaren der Menschen und der Thiere Altoma; Hammerich; 1836 [Down]
$118 w b$ O/ Rubbish.

WOODWARD, Samuel Pickworth A rudimentary treatise of recent and fossil shells 2 parts and supplement; London; J. Weale; 1851-56 [CUL]
ad, af, ch, ci, ex, fo, gd, geo, hl, is, mg, oo, no, sh, sp, sx, t, ti, v, wd
part 1, 61 9-11m
part 2 NB p. 271 good
\& Relation of Extinct \& living genera S. America
167 26m/u "Phosphorax, Webb", $28 u$ "Sandwich Ids" $16830 u$ "Cryptella, Webb", 31u "Canary Ids." 169 11u "Canary Ids." 170 19u "Philippines" 271 10u "Miocenel Patagonia"
Supplement, NB All; p. 336 Sexes of Tunicata
p.439; p.454; p. 486

336 19-21m 348a 3-7m, $13 m$, 20m 348b $9 m$ $349 \quad 21-23 m, 38-40 m \quad 35038-40 m, 44-45 m$ (Forbes), wb Read 351 wt X In sense of typical representing structure of whole group, it comes to commonest form have widest
ranges - aberrant form extinction, is quite applicable to this view $8-10 \mathrm{~m} / 1-21 \mathrm{w}$ as aberrant probably here means widely different, must have been produced by extinction 9-10x/20-32m 352 16-20m, 21-27m (Swainson) $3533 w \ln$ Tropics? 26-30m 354 $w t / 1-9 w$ are these not also Cape? $4 a$ "sea" about 30. p. 363 3-5m, 8-9w Never mind 21$22 u$ "Red Sea", 24u "Cape" 355 15-17m (Forbes)/16u "subject।form" 358 wt If Boreal inhabited arctic region, there wd have been more continuous coast land, in fact quite continuous land. 3-5m, 6-8m, 43-51m (Richardson) $35923-29 c / 25 w{ }^{2}$ N. Zealand Chile $26 \mathrm{~m} / \mathrm{u}$ "Mesodesma", $27 u{ }^{\text {un }}$ "Boreal", $26 u$ "Crepidula" $/ w$ is f only wild in Tropics 361 43-46m 362 27-28u $\leftrightarrow / 27-37 w$ What endemic. None $37 u$ " 831 the" 363 1-3m, $9 u$ "about 30"/ $40 u$ " 74 ", $20 u$ " 2001 extinct", $22 u$ "Thel Sea", $38 u$ "common 1 Indies", 39-44w 44 being common to Atlantic \& Red Sea $3646 u \star, 8-$ $9 c / w \notin, 9 w$ S.P.W. $28 u$ "part \mid Caspian" $36518 a$ "shells" living I suppose $36712-13 \mathrm{~m}$, $23 u$ "200", $24 u$ "11Icommon", $25 u$ "whilst |the" $368 w t$ Strange so few $* w t / 1-15 w$ are these found in Tropics with cross seem good case $w t / 1-12 \mathrm{~m} / \mathrm{w}$ All doubtful according to Woodward 18-22m, 39m (Cuming) 368a $8 x$, $9 u$ "Red Sea", 13x, 14x, 15x 368b 7u "Red Sea", $8 x, 11 x, 13 x, 15 x \varnothing_{2} 36918-22 m, 26 u$ "74", $32-34 m \quad 370 \quad 42-44 m \quad 371 \quad 16 x / u$ "Solonella"/w \& nowhere else America \& Medit. $17 u$ "Panopaea"/wes Confined to \& Australia W. Africa * 18 u "Monoceros", 19 m , $20 w$ no- $26 w$ Falklands p378 27a/u "Modiolaria trapezina" Falklands p378 28w book in Index 372 19w During glacial 21$23 \mathrm{~m} / 21-22 u$ "same I found" $3734-8 \mathrm{~m}, 33-34 \mathrm{~m}$, $37-39 m 37510-13 m, 29 m$ (Cuming), $34 m / u$ "Litoral I common" 381 14-18m, 23-24m 382 3$6 \mathrm{~m}, 15-19 \mathrm{~m}, 19-22 \mathrm{~m} / \mathrm{w}$ in Land \& F. W. Mollusca 383 10-11m, $33 u$ " 74 ", $34 u$ "water 1 4 ", 38-39m (Deshayes) $38529 u$ "Spain 1 Syria", 33-37m/34u "mountain"/36u "has $|46 "| 37 u \leftrightarrow$ $3865 u$ "peculiar \mid snails", $14 u$ "and \mid Limaces"/ $9-18 w$? p. 383 only 74 British 19 u " 132 ", 20a "The". $320 u$ "section limax", 22-25m/w Saline, Marine, very little water $28-29 u$ " 111 Santo", 34-35m, 36-41m, 40-41m (Wollaston), $w b$ ca 387 wtec, wt Vide p486 Supplt Fossil Landshells $1-6 m, 2 m / u$ "(132) 111 ", 3-4u " 5 11 ", 6-19w as Sicily has 3 peculiar Limaces, these are probably introduced $13 u$ "Ancylus fluviatilis"| $11-13 w$ introduction \& only 2 F.W. Shells 16-17u士, $22 w$ living 64/132 fossil 22$34 w$ Santo 42-43m (Wollaston) 388 1-5w Looks so.- $8 u$ "Only 13"|10u "and|viz"/8$11 w$ more modern group 1-17u "80|Limax"/
w 60/80 perhaps $18 u$ "these 1 peculiar", $19 u$ "and IIndies", 20u "Physal1", 21-22m, 43u "trunks of", wb Canaries 389 10u "Limax Ascensionis", 18-22m/19u "Thelspecies", 26$27 \mathrm{~m}, 27 \mathrm{~m}, 36 \mathrm{~m}, 45-46 \mathrm{~m}$ (Sowerby) $390 \mathrm{wt} / 8-$ $12 m / 1-15 w$ Hooker says Ferns at Ascension are W. Indian $28 u$ "similar"/w not identical 391 21-22m/21u "section I Madagascar", 38$40 \mathrm{~m} / 38 \mathrm{u}$ "The|peculiar" $39224 \mathrm{~m}, 34-35 \mathrm{~m}$ 393 25-28m, 30-32m 394 16-19m 395 2-5m (Mousson), $38-40 \mathrm{~m} 396 \quad 29-32 \mathrm{~m}$, $30 u$ "peculiar", 33-34u "twolbitentaculata", $36-40 \mathrm{~m} / 37 \mathrm{u}$ "MelanopsisItype", $40 u$ "Vitrina zebra"/wb 2 Vitrine \& in fact naked 397 15$17 \mathrm{~m} / 16 u$ "thoselislands", $31-34 \mathrm{~m} / 31-32 u \leftrightarrow$, 35-37m, 40-42m 398 4-6m, 13-17m/15u "one Limax", 18-26m/18-19u "the 1 multispiral", $21 u$ "HelicesIglabrous", $34-38 m, \quad 41-44 m$ (Humboldt) $399 \quad 33-38 m \quad 400 \quad 41-42 m$ (Waterhouse) $40142-43 m 4025-7 \mathrm{~m} / 6 u$ " 4 ", $12-14 m 4031-4 m, 30-32 m /!/ u \leftrightarrow, 40-41 m 404$ $4-6 m \quad 40519-38 w$ See range of these Genera \&c 27-28m/wes N. Bolivia \& J Fernando $30 u$ "least I shells", $30 u \star$, $35 u \star$, $36 u$ "Spiraxis"/wbon sub. gen W. Indies. Mexico $407 \mathrm{~b} 31 \mathrm{~m} 40828 u$ "close" $26-29 \mathrm{~m} / \mathrm{w}$ so successions of Life $30-31 m 41026-31 \mathrm{~m} / 29 z$ 411 wt on questioning how many forms are this kind $1-4 m / w$ evidence? $11-14 m / w$? compare to sea shells? 14w This is contradicted by changes in islds $15-16 \mathrm{~m}, 16$ $19 m$ (Forbes), 20?, 22-25m, 26w Where means of distribution are Mundane 39-40m (Lyell)/ wb but not these sea-shells - that is not known $4128-11 m$ (Forbes), 14-16m, 18-21m, $31 u$ "some l larger", $36-38 m 414$ wt Capital Table But only some of the genera $1 a$ "of" some large $4 u$ "Litnites" why italics $\downarrow w$ There ought to be a line for each genus 34-36w why both given 25-36w How few began in Tertiary per 415 wt See my Table $1 a$ "of" all? for he speaks of 85 in next Page 9-16w Begin in Tertiary $w b 62$ It wd be curious to arrange these like last table $\hat{i} w_{0}$ <each line numbered) 416 1-25w Other Tribes Cirripedes now must replace other animals $13-15 \mathrm{~m}, 16$ $19 m, 20-25 m / ?, 26-30 m, 34-36 m 417 \mathrm{wt} /$ fig. $\mathrm{w} /$ $1-12 w$ Hence reduced organisms now flourish, \& so it is with Fish: take place of lower animals from some advantage 4-6m, $5 u$ "classes 1 testacea", $9-10 m, 10 a$ "typical", wb Most evenly balanced. $12-15 m 41823-24 m$, $31-32 m 419$ wt I shd say an ideal archetype was that form from which in imagination all others cd be made with parts changed $1-3 \mathrm{~m} /$ $3 u$ "theirlarchetypes", 4-5m, 26-27?, 30-32m, $33 \mathrm{~m} / \mathrm{w}$ end $37-41 \mathrm{~m} 4201 a$ "extent" compared to Land Mammals $2 w \therefore$ if not changed, they
will be widest rangers $26-28 m, 29 u \leftrightarrow 4215-$ $9 m / 9 u \quad$ "White | rusticum"/wt/1-10w a very long Journey for them by Mediterranean 21u/ $u * / 22 u / 23 u * / 19-21 m / 18-25 w \quad$ Are these American. wbo Monoceros America * except M. Zebra No \propto Pseudo olive W. America (but fossil in Europe) only in Eocene.- Solenella America 422 15-17m 439 $\overline{40-42 m} 454$ 11-15m/m, fig.m 486 28-32m

WRIGHT, Chauncey Darwinism: an examination of Mr. St. George Mivart's 'Genesis of species' London; John Murray; 1871 [Down] \wp

WRIGHT, Chauncey Philosophical discussions New York; H. Holt \& Co.; 1877 [CUL, I by editor Charles Eliot Norton]

NB Excellent book

v $5 m$ (Spencer), $9 m, 15 m$ (Lewes), $16 m$ (McCosh, Tyndall), $19 m$

WUNDT, Wilhelm Grundzüge der physiologischen Psychologie 2 vols.; Leipzig; Wilhelm Engelmann; 1880 [Down] \wp

WUNDT, Wilhelm Nouveaux éléments de physiologie humaine Paris; F. Savy; 1872 [CUL, FD]
〈markings presumed to be by FD>
WÜRTENBERGER, Leopold Studien über die Stammesgeschichte der Ammoniten Leipzig; Ernst Günther; 1880 [Down] \wp

WÜRTENBERGER, Leopold Studien über die Stammesgeschichte der Ammoniten Leipzig; E. Günther; 1880 [CUL, I] \wp

YARRELL，William A history of British fishes 2 vols．；London；John Van Voorst； 1836 ［Down］
beh，he，sx，tm，v
vol．1，77 17－20m，28－31m，wb p81 ask further $785-10 \mathrm{~m}$ ，11－12u＂Thesel pacific＂ 79 $14-16 \mathrm{~m} / 15 u$＂both sexes＂／16u＂spawning＂ 81 $14-16 \mathrm{~m} / 14 \mathrm{~m} /$ ？ $844-7 m, 9-15 m 231$ 14－17m 265 12－16m，16－17m，19－21m $2669 u$＂dingyl colours＂ 267 26－29m，介1u＂says｜shorter＂ 268 4－6u士，14－15m，14u＂head｜whole＂， $15 u$ ＂removed two＂ 307 23－28m 319 17x／u＂eightyl varieties＂，22－31m 331 25－31m，32－33m 332 29－31m 336 7－12m 373 17－20m，22m
vol． 2 NB Raia p．415；416； 424
Flattish 210； 217 reversion； 256 Teeth of soles
10 17－24m 11 5－11m 12 13－18m／14u＂ten｜ sides＂ 210 4－9m，17－19m，22－23m，32－33m $2113-5 m, 11-13 m 217$ 22－24m 328 11－19m／ 19w p345 329 20－22m 338 20－23m 345 5－10m $4155 u$＂breadthlit＂， $6 u$＂pectoral＂ 416 wt some sp have all teeth like male some sp do．are like female fig．w G．says true male fem．2－3u＂Thornback lalike＂ $\mid w$ Raia character $10 u$＂skate＂， $11 u$＂sharks＂， $11 u$＂each｜fin＂， $23 u$ ＂claspers＂，24－25u＂peculiarities｜spines＂ 417 $1-3 m / 1-6 w$ G supposes aid to claspers fin by double under $7-9 \mathrm{~m} / 9 \mathrm{w}$ all tectorialO $15-17 \mathrm{~m} /$ w catch by fins $20-21 m 4229-10 m 424$ fig．md 425 5－6m 431 18－23m 436 fig．w The female G says only has the thorn．

YARRELL，William A history of British birds vol．1；London；John Van Voorst； 1839 ［CUL， I 14 June 1839］
beh，br，cc，ch，ex，f，gd，mg，oo，no，sp，ss， $\mathrm{sx}, \mathrm{ta}, \mathrm{tm}, \mathrm{v}, \mathrm{y}$

SB1 $\square \beta$
99 On Relative Length of quill－feathers in Hawks \＆Owls
159 Curious \＆important Rules of colour in Birds compared to young Ch． 6 Sexual Selection
166 Bird quitting nest at certain temperature Q
182 Increase of Missel Thrush
299 X On use of feathers distinguishing species Wrong Q
327 Great tit will kill little Birds
412 Sky－lark breeding in confinement
444 Variation in Nest of yellow ammer，
considerable nest various of Sparrow in different situations \mathbf{Q}
470 Tree \＆House sparrow so different in
rarity \＆yet Tree has wide range Habits \＆ nidification same．Ch． 5
506 Redpoles in confinement do not get red Breast

5 10w 2 eggs $16 u$＂Astrachan＂／17u＂India＂／w immense range $125 w 2$ eggs $174 w 2$ eggs $12 m, 14-15 m 2227 w 2-3$ Eggs $32 m 2428-$ 30m（Jardine） 27 12－14m，19－23m，24－26m 34 10 w Eggs 338 13－16m（Vigors，Horsfield，A． Smith） 42 10w 3－4 29－32m（A．Smith，Selby） $4519 m 506-8 m 545 w 4-510-12 m 551 m, 7-$ $8 m 609 w 3-4$ Eggs $641 w 4-567$ 24－26m 68 5－7m（Thompson） 69 10w 2－3 72 31－33m 73 6－16m（Audubon），13m，33－34m 74 6－8m，24w $57733 w 37931-34 m 8230 w 3-483$ 14－15m （A．Smith）， 17 m 886 w 291 8－12m $9214 \mathrm{w} 3-$ 4 27－28m $9533 w$ 4－5 96 19－21m（Temminck）， 23－24m，25－26m，31－34m（Richardson， Swainson） 99 18－21m／19－20u＂frequently｜ proportions＂ $1029 w 410931 w$ 2－3 $11411 w$ 4－5 117 16－17m／17u土 $11820 \mathrm{w} 4-511912-$ 14m／13－14u＂In｜Owls＂ 122 29w＊ $51241-$ $2 m / 1 w \quad 3 \quad 20-22 m$（Richardson） $125 \quad 1-4 m$ （Gould） $128 \quad 18 w 4129$ 18－22m（Jardine， Temminck），25－26m $13225 w$ 3－4 133 1－2m， 2－3m 140 9－12m 143 10－12m（Rennie）／11w 2 147 33－34m／w 2152 16w 5 27－28m，29－31m， 32－33m 156 17－21m 157 2－3m 159 3－5m，5－ $24 \mathrm{~m} / 7-21 \mathrm{~m}$（Cuvier）$/ 12-14 \mathrm{w}$ ie both have changed from young $30-33 z / z b 16128 w 41 / 2$ $32 u$＂vary 1 markings＂$/ 31-33 \mathrm{~m} / \mathrm{w} 2$ species 162 4－6m 166 19w $41 / 2$ 29－32m／x\＆（A．Knight）Q $17010 \mathrm{w} 818-20 \mathrm{~m} 174$ 16－18m 17710 w 5181 19w 4－5 $20 \mathrm{~m} / \mathrm{u}$＂sometimes＂， $22 \mathrm{~m} 1827-$ $9 m, 12-13 m$（Selby） 186 16－28m，33－34m （Temminck） 191 16w 5194 33w 4－5 195 31m， 33－34m（Nilsson） $2006 w 620419 w 4-5209$ $5 w 4-5$ 10－12m，21－22m 214 20w 4－5 $2216 w$ 4－5 225 4w 4－5 15－16m（Strickland） 231 17w $626-27 \mathrm{~m}$（Hewitson） $23230-35 \mathrm{~m} 23515 \mathrm{w} 5$ 237 13－16m $2391 w 5$ 20－21m／21u＂obtained Ireland＂ $2431 w 5$ 1／2 246 2－5m，31w 5 1／2 247 13－15m（Pallas），24－26m 248 20－26m 251 $8 w 51 / 22561 w 62631-2 m / w 526631 w 5$ 1／2 $2693 u$＂MontagulDict．＂ 270 7－9m，12－ $14 m 27117 w 41 / 227531-34 m 27625 w 41 /$ 2277 22－24m（Blyth） 281 25w 5 29－30m 282 13－14m 283 23－27m（Temminck） $28624 w 41 /$ $229015 w 41 / 229432 w 41 / 2295$ 21－23m （Blyth），25－26m（G．White）299 9－12m（Selby）， $30-35 m \quad 300 \quad 1 w \quad 6 \quad 30331 w \quad 6 \quad 1 / 2 \quad 34 m$ （Doubleday） $30831 w 630917 \mathrm{~m} 312$ 14－17m， 22－24m（Montagu），33u＂Godalming＂，34u ＂bird｜plentiful＂ 313 1－2m／1u＂those｜Wren＂ 314 10w 4315 15－17m 319 3－4m／3u＂under＂， $13 w 83231-3 m, 4-5 m$（Temminck），16w 7 $26 u$＂commonlforests＂ 324 7－9m 327 14－
$16 \mathrm{~m} / 15 \mathrm{u}$ "small birds", 19-22m 328 10w 7 1/2 329 25-27m $33119 w 93364-9 m / 8-9 w 9338$ $19 w 734119 w 61 / 234628 w 1135213 w 5$ 364 14-16m/15u "varieties" $3664 w 41 / 2371$ $25 w 51 / 2375$ 15-17m (Gould) 382 30-31m $38616 w 4$ 1/2 17-18m $3911 w 514-16 m 395$ $28 w 4$ 1/2 396 8-10m (Swainson), 18-20m (Temminck) 404 2-5m/? (Gould) $40521 w 41 / 2$ $41115 w 4$ 1/2 32-33m 412 33-34m/m 414 8$12 \mathrm{~m} / \mathrm{w}$ granivour Birds 417 13-14m $41821 w 4$ $1 / 242327 w 743217 w 543418 w 41 / 2441$ $13 w 4$ 1/2 444 11-13m (Blackwall), 17-20m, $20-24 \mathrm{~m} / \mathrm{"} . . \mathrm{"} / 21-24 \mathrm{~m}, 30-32 \mathrm{~m} 4457 w 5449$ 17w 4 1/2 459 16-18m $4637 w 41 / 2466$ 31$32 m 46722 w 41 / 2470$ 9-13m, 24-32m 471 $8 w 547215 u$ "Lapland", 19-20m/u↔ $4742 m$ 475 29w 5 1/2 476 2-7m 477 30-34m 480 29$31 \mathrm{~m} / 29 w 548524 w 54936 w 41 / 2497$ 23$25 m 498$ 23-26m (Jardine) 500 7-11w How many Birds same with Japan 9-11m (Temminck) $50431 w 41 / 2506$ 23-24m, 26$29 m 51526 w 41 / 252322 w 6$

YOUATT, William Cattle: their breeds, management, and diseases London; Baldwin \& Cradock; 1834 [CUL, S]
ad, beh, br, cc, ch, cs, ds, em, f, fo, he, is, or, phy, rd, sl, sp, spo, sx, t, ti, tm, v, wd, y

NF 84 \& 184 - duplicate pages
NB 9; 10; 28; 31; 33 to 270; 283; 311; 522 to 525; 529
174 \& 283 important Rudiments
calling
191 grain of the meat; 227
SB $\square \beta$
48 Q x_{0} Old Welsh cattle white red-ears Q凶s Even in our Parks selection is required to prevent accidental Variation of each crossing 51 S Curious case of quick deterioration by neglect in Glamorgan. Cattle showing some selection always going on
62 Q Welch Cattle cannot be improved by crossing 69 Scotch do.-; 78 © do; 88-163 75 Great improvement by crossing in 10 years in Arran
116 S English Cattle have strongly altered since Henry VII time \& doubled their size (insensible selection)
116 Selection governed by soil Each District has prejudice for own Breed
128 Ayrshire Breed has originated within century - how not known - probably crosses Azara states appeared in old age
155 Galloway with rudimentary Horns 174 at early age
116 Fifeshire same case shows origin not known till well formed Breed

190 The great progenitor of Long-Horn when yearling very unpromising.
193 Shakespeare bull. A sport in shape 197 In Long-Horns, when castrated Bulls get shape of cows horns
199 S* Q Capital sentence about one improved Breed expelling others good for Ch 6.

202 Qu Cross between Long \& shortHorned $1 / 3$ fail of being in calf
230 S On crossing with Selection in ShortHorn Breeds.
242 Qas In Short-Horns whenever White appears always red about ears
248 Q On replacement of Breeds in same district
283 Frontal Bones narrower in polled Cattle \& 174 Rudiments
310 Calfs eating poisonous Herbs, when turned out without their mothers Ch. 10
524 Explains how in well-bred animals, the influence of male may be greatest, from having been truer bred
$527<0$ On gestation of cattle Q
17 Devonshire Ox larger than Bull \& much larger than Q
SB2 Dr Pritchard by showing that the different races of Man when transported to different countries obtain certain peculiarities does not disprove there are constitutional differnces - it is begging the question if it be assumed they cannot be acquired.
I presume the udder of the Chillingham cattle is not the least like that of a good milker
Many subjects must be selected from this Book = A history of the varieties of each district \& fossil oxen $=$ How obscure the genealogical descent:= ill effects of interbreeding $=-$ Minutiae heredetary $=$ Length of time to form true race $=$
viii $12-19 m / 14-15 w$ read $913-18 m, 16-31 m$ $1033-42 \mathrm{~m} 1139-43 \mathrm{~m} / \mathrm{w}$ yet so many breeds! 47-51m (Somerville), $w b$ not true with respect to Sheep V Phil. Transact. 14 29-33m $177-$ $9 m / Q / 9 u$ "the laware" 28 wt This is a kind of instance of law of equivalent development mentioned by French writers $1-5 \mathrm{~m} / \mathrm{w}$ Fleece \& fat in sheep $4-9 m, 8-9 m 313-9 m, 44-47 \mathrm{~m} /$ $45 u$ "speedilylage", 50-53m 32 14-19m/15-16u "defect \mid pugnacious" 33 24-32m, wb These are results of experiments $3624-30 \mathrm{~m} 373-5 \mathrm{~m} / 4 \mathrm{u}$ "best Ichosen" 41 33-36m/34-35u "There| places", 40-43m/41u "muchlsome", wb even colour uniform $423-7 \mathrm{~m} / 5 \mathrm{u}$ "once" $4417-20 \mathrm{~m}$ $4513-17 \mathrm{~m} / 15 u$ "indicates \mid temper", $\quad 26-29 \mathrm{~m}$ 46 20-22m, $23-25 m, 31-33 \mathrm{~m} / 33 u$ "theyl

YOUATT, CATTLE
exceedingly", 45-46u "dairy|counties" 48 wt This is really like bars on Pigeons considering that Falklands were Spanish \& Tinian 1-5m, 8-16m, 10-16m $495-8 m$, 27$31 \mathrm{~m} / 29 u$ "steer 1 appearance" 51 17-55m/w very curious History 52 21-26m 531-4m, 7-10m, 13-27m/fig.m 54 1-6m 58 22-26m 60 11-12m/ 11u "steers \mid be" 62 48-49m/Q $66 \mathrm{wt} / 1-17 \mathrm{w}$ In wild countries where a good many are killed out \& conditions uniform it certainly appears XX scarcely possible to cross the aborigines - they so far become like species $20-25 \mathrm{~m} / x$, $22-38 \mathrm{~m} / 38 x, 52-55 m, w b$ Dr. Fleming says fossil oxen of Ireland Scotland larger than present $67 w t / 1-7 w$ XX It shows that these races have a considerable degree not only of similarity one to another/of perseverance of characters \& this is one chief character of species 69 35-41m/Q $7527 u$ "1822", 33-34m/ $33 u \leftrightarrow, 42-44 m / 43 u$ "1832", 49-52m 78 43$44 \mathrm{~m} / \mathrm{Q} / \mathrm{u}$ "farmer 1 properly" $80 \quad 1-4 m 88 \quad 12-$ 18m/16-18Q 105 18-20m, 23-26m 115 4-8m, 51-55m 116 3-8m, 9-12m, 16-18m, 17-22m, $w b$ in Parks aided by selection.- $w b$ (a) These facts explain curious statement of Mr Anderson of fine-fleeced sheep of some northern isld being little affected by imported $12251-54 m, w b$ again deer eat different food 125 18-23m 128 fig.c, $25-30 \mathrm{~m} 129$ fig.m, 31$33 m 14928 u$ " 1798 ", $35-44 m / 39 m * / x$, 42u* "which| Ayrshire", 45-51m 154 32-38m 155 2$5 m, 6-10 \mathrm{~m} 1621-5 m 1631-11 \mathrm{~m} / 4-6 \mathrm{Q} 1642-$ $5 m 16629-37 m 167 w t / 1-15 w$ the adaptation of coat to climate Curious case of vis medicatrix.- 15-25m/x, 29-32m 171 17-20m, 40-56m (Boswell) 174 35-39m/37-38u "even 1 age", 38-40m, 39-42m (John Kirby) 181 2-6m, 21-28m $18350-55 m 1845 u$ "early maturity", $6-7 m, 7 u$ "do", 9-11m, 25-29m, 26u "introduced \improved" $188 \quad 17-22 m \quad 1899-$ $17 \mathrm{~m}, \quad 17-20 \mathrm{~m} \quad 190 \quad 24-54 \mathrm{~m} / 36 \mathrm{u}$ "when। unpromising" 191 27-29m, 35-36Q 36-37m, 38-41m/41u "breed", 44-46m, 47-49m 192 3$7 m, 8-13 m, 57-59 m 19325 u$ "Shakespeare", 31-32Q 33-37m, 56m (Marshall) 194 1-2m, $24-28 m, 32-35 m, 32-33 m, 40-43 \mathrm{~m} / 40 u$ " 1791 " $19725-28 \mathrm{~m} / \mathrm{Q} 1991-5 \mathrm{~m} / 2 u$ "early maturity"/ $3 u$ "gained lin", 24-28m, 33-37m, $34 u$ "Westmorland", 40-43m, 48-54m/Q/54u "It nature", wb less than * 100 years get dates of introduction highest prices given 40 years before $2001-2 m, 21-25 m, 30-34 m / 32 u$ "the 1 preferred" 201 53-54m 202 1-4m, 3035m, 31-32m, 41-44m/Q 45-51m, wb Does this occur in crosses between Short-Horn \& Welch 203 9-12m, 43-48m 204 23-29m 205 1$4 m 20823-26 m 217$ 21-23m 220 12-14m 222 13-18m/14u $\rightarrow / 16 u$ "bred Icertain" 223 41-46m,

48-53m, 55m 226 33-34m/33u "be invite" $/ 34 u$ "takenlbreed" 227 6-9m, 15u "eighty years"/ 15-18m, 25-28m, 28-30m/30u "of 1 fat" 229 58 m , $56-61 \mathrm{~m} / 59 u$ "with|horns" 230 33-47w This makes cases very like selection from small varieties naturally produced $38-46 \mathrm{~m}$ 231 wtce, 19-59w/wb at the rate of 157 gns each divide \& give sums as proof of reality of value $23225 \mathrm{~m} / \mathrm{w}, 38 \mathrm{~m} / \mathrm{w}, 49 \mathrm{~m} / \mathrm{wcc} 23314-$ $17 \mathrm{~m} / 15 \mathrm{w}$ recapitulates $26-34 \mathrm{~m} / 27-28 \mathrm{w}$ do. 234 18-21m, 37-42m/38u "early maturity" $/ 39 u$ "characteristic" 239 4-8m, 30-34m 242 11$17 \mathrm{~m} / \mathrm{Q} \mathrm{E}_{\mathrm{s}} / 17 u$ "are|named" 243 11-16m/11u "improved" $114 u$ "combination", 18-19u "general impression", $24 u$ "but|time" 245 46-55m 246 31-36m, 32u "different|doubted" 248 21a "countries"|wt Elsewhere (p.199) speaking of * extention of the Red one near Dishley he says "it wd seem $\ddagger w$ one variety replacing another each sometimes varying - analogy with species $14-17 m / 16-17$ "..."/17u* "the the", 19-21"..." 19 定 "Tollong", 20-26Q*, 27-29"..."/wॄ, 27-28u "HoldernessIbreed", $29 w \bullet \bullet, \Uparrow 25-18 m, \Uparrow 19-17 \mathrm{~m} / 14-12 \mathrm{~m} /!!$, $\uparrow 15-$ 13Q $a, \pi 9-6 m *$, $w b$ Mrs T had two crossbirths Mrs C. her daughter has had two - is this frequent \rightarrow This variation of birth are checked; I believe 3 out of every 100 women die in childbirth - * in long run those with such tendency, would be killed out.- 267 15-18m 268 12-13m 269 8-12m, 29$32 m 277$ 44-52u士, 46-47u/w - 282 41-50m 283 10-13m/10-11w 310 52-55m, wb shows not quite instinct 311 1-6m
\wp
$522 w t / 1-51 w$ as this simple principle only lately discovered even in most reliable practice, no wonder not discovered, as theory of species 37-41m, 44-51m (Berry) 523 wt When did Favourite live? 1-3m, $4 u$ "present day"/w 1833 33-39m, 47-55m/55u "Quarterly| Agriculture", wb not owing to sex from fact of Arabian Mares 524 wt Bruce explains mares most esteemed by Arabs because don't neigh on robbing excursions $1-11 m$, 48-56m 525 17-23m 527 54-56m/56u "differenceldays" 529 1-13m, 17-33m 590a $32-36 m 600$ wt colour \& pure race 242

YOUATT, William The dog London; C. Knight \& Co.; 1845 [CUL, S]
beh, ch, cs, dg, ds, pat, phy, sl, sx, tm, v, wd

SB1 3; 6; 9; 11 Falconer about bull-dog degenerating in form; 14; 16; $31 ; 32 ; 38$ to $72 ; 74 ; 90$ to $104 ; 167 ; 182 ; 183 ; 486 ; 232$; 238; 245; 249

SB2 $\square \beta$
Special Dogs not abstracted
15 Wild Indian Dog tamed Q
90 Setter Historically known to be Spaniel; see what insensible Selection has done \underline{Q}
16 Deterioration of Dogs in India Q
31 On the cross of Grey-hound \& Bull-dog Q - Instinct

35 In greyhound all depends on true Breed p. 31 Change in.

73 difference in size of Dogs \& Bitches
92 Pointer so closely allied to Hound makes the pointing more odd N.Q
182167 Q certain dogs most subject to certain diseases 232 Distemper, Terriers specially white <us
186 \& 238 Difference in pulse, in different Breeds Q
249 On Number of toes in Dogs NQ
3 10-14m, 32-41m (F. Cuvier) $67-8 m$, 10$15 m, 18-23 m 949-52 m 1113-22 m, 25-26 m /$? , 46-47m 14 1-5m $153 u$ "búánsú", 29-31m/Q 16 1-9m/3-5Q 17 38-45m 21 43-51m 31 1$7 m, 43-50 m / 44-46 m 3217-23 m, 25-31 m 335-$ $9 \mathrm{~m} / 6 \mathrm{u}$ "altogetherlscent" $3425-26 \mathrm{~m}, 29-31 \mathrm{~m}$ 35 15-18m/15-16m, 22-25m 38 28-30m, 38$40 m 40$ 23-28m 41 1-4m 42 15-18m, 18-21m, $22 w 12$ var. $4447-49 m 458-10 m, 11-12 m 46$ $14-17 m 5027-31 m, 44-46 m 6211-17 m 72$ 21$25 m 735-7 m / 2-10 w$ Does not Greyhound differ remarkably V. Martin 74 34-38m 90 24$29 m 91$ 1-3m, 3-19m, 16-21m/17u "Irish| exceedingly", 20u "English|setter" 92 25-26m, $w b$ this makes the instinct more curious, as with setter alliance with Spaniel $9318 \mathrm{~m}, 19-$ $26 m, 29 m, 34 m 1038 u \leftrightarrow, 17-19 m 1445-11 m /$ $10 u$ "five months" $111 u$ "seventh" $1533-22 m$, 15-17m, 17-21m 154 1-7m 167 47-48Q 48$50 m 17513-19 m 182$ 39Q 40-42m 186 38-42m 225 44-47m $232 \quad 20-30 \mathrm{~m} / 22-23 u \leftrightarrow, 32-35 m$ 233 48-49m 234 34-39m, 40-42m 235 23-24m, 26-27m, 35-36m, 44-45m 238 18-22m 239 21$22 m, 49-50 m 24014-15 m, 15-16 m 245$ 15$20 m 24933-36 m$, wb How is this in other Canidae Cats same as Dogs Hyena all 4 toes Civettes all 5 toes.

YOUATT, William The pig London; Routledge, Warn \& Routledge; 1860 [CUL] br, cs, he, sl, sp, sx, ta, v

SB Abstract
piii on Selection $Q \ll$ (with crossing
p11 Pedigree of Pigs (Q under Pigs) for selection
p24 25 On Prejudices about colour in Pigs which \underline{Q} would influence selection; also Trueness of Marks; White Pigs Blister

27 Reversion after 27 years
2930333436 on in \& in breeding separate families
All these References for Vol I located in proper places
iii $16-23 m / w$ crossing $326-30 m$, fig. w delete 7 17-25m 11 10-13m/Q 14 fig.c 18 wt/ $1-11 w$ p. 24 is not believed to have been crossed by Chinese or Neapolitan 6-11m/7u "white breeds" 19 28-32m/29u "photographs" 22 16-19Q* 24 21-23m, 34-37m 25 20-27m, 25-28m 26 10-13m $2717 \mathrm{~m}, 18-22 \mathrm{~m} 2912 u$ "second 1 female", $21-25 \mathrm{~m} / 21 \mathrm{~m} / 24-25 \mathrm{Q}$ 25-28m $3012 u$ "Mr. Fisher", 18-25m/Q/22u "Improved Essex", 33-35m, 34-35x 33 11$15 \mathrm{~m} / \mathrm{x}$ \& $3435-41 \mathrm{~m}, 38-39 \mathrm{~m} 3632-33 \mathrm{~m} 371-$ $6 m 59$ 20-24m 61 wtct, 7-13m/Q 12-14w 14 days difference $w b c$

YOUATT, William Sheep London; Baldwin \& Cradock; 1837 [CUL]
beh, ch, cs, dg, ds, pat, phy, sl, sx, tm, v, wd
NB1 163 Where has Daubenton published an account of his crosses in Sheep? Where see French Agricult. Periodicals
234 only Lambs?
240 "dropt Horn" Ewes
238 about Dorset having premature period of oestrum
491 Hot country Sheep all phthisical: Will they breed?- get full particulars
496 Tessiers Paper - date?
p364 Horns misplaced growing in throat
NB2 20 Rudiments do p364 by crossing
8 to 25; 60; 64; 69; 70; 11 to 194; 134 Female Musmon without Horns sometimes; 227; 233 to $352 ; 363 ; 364 ; 371 ; 374$ to 377 ; 404; 407; 408; 491; 492 to 495; 496; 506; $508 ; 520 ; 534 ; 541 ; 543 ; 148$ Merinos (as for female having horns)
as Read Journ. of As. Soc. of Bengal. vol 10. part 2. p. 881 (in Geolog Soc) E. Blyth on wild sheep-
SB1 $\square \beta$

* Good Select

18 Ancient selection
19 Return of sheep to dark colour occasionally
145; 234 R i.e. taking after other vars. R, 20 All hornless breeds occasionally drop sheep with horns or rudiments of? Ch.l. throwing back
25 Fat-tailed sheep, mem rudiments of tail compensation Ch.I
60 Splendid sentence on Selection S*
70 Effects of pastures Qu on wool p. 70

YOUATT, SHEEP
p. 185 in Australia counteracted by Selection S\&; 117 do; 120 \& 167 do
\& 71 on slow \& Q insensible changes in wool of British breeds
1143 vars. of fat tailed sheep (120 fat under throat Q(as)
121 Guinea sheep males horned females hornless
131 \& 134 In Argali smaller
138 Horns of Wallachian Q\& p. 148 of Merino Ewes Hornless 234 Horns of South Downs 247
123 old crosses of Spanish \& Morocco sheep S
142 Many Horns generally accompanied by worse fleece (correlation) Qan
142 Livingston on pendent ears proof long domestication (disuse)
147 in 1464 sheep exported from England to Spain S
152 On the Migratory sheep of Spain
171 Selection of Merinos in Saxony S
172 important under Law of Variation
178 in 4th cross Wool altered completely-
181 Merino sheep not quite fertile when first introduced into England
\& Roulin on sheep in S. America not quite fertile
266 Welch sheep returning thrice into Wales Q
293 Hardiness of Cheviots proved by even crosses failing
301 Sheep descending to coast instinctively for sea-weed
312 Strong sentence Qu on each sheep adapted to its district. Two main Fam. long \& short wooled vars.
312 Sheep separating $Q \not x_{0}$ according to their Breed, when turned out (Ch. 6. Separation
314 On Selection altering breeds of sheep within 50 years without crossing by unconscious selection S $\$$
319 good sentence S
315 excellent case of two men unconsciously altering their breeds by selecting for different objects
325 Leicester sheep not fitted for mountain pastures. Q凶 Black-faced resist crosses Q SB2 $\square \beta$
364 Crosses producing rudimental Horns
377 Sheep returning home Q
404 Lambs if separated from flock will eat poisonous herbs Q
408 on ears pendent or erect according to locality inhabited
491 on great difference in Sheep from foreign countries in Zoolog. Gardens to die of Phthisis Q

494 On qualities becoming fixed by selection \& fitted to their own districts S
avoid too close breeding in-
496 Tessier on gestation of Ewes \searrow_{0} Paris 1817 see Roy Cat Book NQ
520 On drafting the Ewe flock gooded sentencers S*
Variability of best breeds S
title page $w b \quad 1838 \quad 8 \quad 37-41 m / 38 u$ "fundamental principles"/37-39"..." 11 21-24m 17 40-43m 18 6-10m, 17-20m 19 15-19m 20 1-6m 22 8-11m, 20-21u "arelgenerally" 23 10-14m 24 14-16m/14u "the rump", 44-48m, 48-50m $253-7 \mathrm{~m} / 4 u$ "sheep", 13-16m/?/16u "and l unnatural", $39-42 m 6018-31 m$, $20-$ $24 m / 21-23^{\prime \prime} . . . " / 20 w$ (a) $30-31 \mathrm{~m}, 39-41 \mathrm{~m} / 39 u$ "It | different", wb (a) Is not this work, the last of Youatts after most experiences 64 18$22 m, 29-32 m 6915-20 m$ (Somerville), 41-45m 70 3-5m, 23-25m, 42-47m, 45-48m $713-7 m$, 8-19m 103 43-44z, zb 111 1-2m, 11-12m, 23$25 m 1132 u$ "Cheviot", 9-10m $1141-11 m, 17-$ $19 \mathrm{~m} 1179-11 \mathrm{~m} / 10 \mathrm{u}$ "close|wool", 14-25m/1819Q 120 18-23m, 39-46m/42-44Q 45-46m, $47-50 \mathrm{~m} 121$ 14w Bearded sheep enquire above $25-27 \mathrm{~m} / 25 u$ "Thelhorned" $26 u$ "thel hornless", 43-46m, $44 u$ "fromlEast", $45 u$ "prolific" 122 27-30m (Geoffroy, Wilson) 123 22-29m, 50-53m 124 5-9m 126 10-13m 131 20-27m/22u "The land" $13232-34 m$ (Hamilton Smith) 133 3-14m 134 1-3m, 42-44m 135 26$28 m 136$ 11-14m (Walton) 138 8-12m 139 25$28 m 141$ 15-19m \downarrow, 20-21m 142 1-4m, 34$37 m, 53-56 m, 53 m, 55 m$ (Livingston) 14420 $23 m 145$ 19-20m/20u "A.D.41", 44-54m/49u "fixed 1 in" 146 33-36m/34-35u↔, 46-47m 147 24-26m/26u "1464", 27u "sheep1Spain", 3133m, 32-33u "staple|flock" 148 3-6m, 4u "considerably preponderates", $19-22 \mathrm{~m} / 20-21 u \leftrightarrow$ 149 18-22u土 152 wt \underline{P} like the Gnoos of S. Africa $4-6 \mathrm{~m}, 49 u$ "Farmers11826"/48-53w How do they dung. Guanaco? $50-57 \mathrm{~m} / \mathrm{w} / \mathrm{wb}$ Curious hereditary Tendency or habit copied from generations to generations N.B This is good caution often to insert 153 wt z The remembering or associating Time one of the most remarkable parts of this case, D'Orbigny fact of CaraCara every 3 weeks $8-10 \mathrm{~m} / \mathrm{w}$ excellent case $12 w$ z $13-16 \mathrm{Q}$ 18$23 w$ In phil Edinburgh new good similar case of Rein-Deer 55-56m (Dillon, Livingston)/56w/ $w b$ Study these References 154 16-17m/1320 w date of commencement of migration 32$34 m / 32 u$ "bothlewes" 158 12-14m (Lasteyrie), 15-19m, 38-39m/39a "kingdom" as in every country yet mentioned (a) $w b$ Most of these differences unintentional $15912-13 \mathrm{~m} / 12 u \leftrightarrow$,

36-37m $1603-4 m, 7-9 m 16154-55 m / 54 u$ "de। Fran." $/ 55 \mathrm{~m} / \mathrm{u}$ "articles, wool", wb Compare with Spanish accounts 162 2-6m/2-3u "finel for" 163 39-50m (Daubenton) 164 21-24m/21$22 u$ "fourthlfifth", 41-42m/42u "wools llong" $165 \mathrm{~m} / \mathrm{m} / \mathrm{u}$ "kindslimprovement", 17-18u "native 1 improves", 20-21m $\quad 30-33 m 16635-$ $39 m / 37-38 u$ "speedilylor" 167 41-43m, 42-49m/44-45u "neglect|deteriorated", $46-47 \mathrm{~m}$ $168 \quad 2-7 \mathrm{~m}$, $13-16 \mathrm{~m}$, $46-47 \mathrm{~m} / 46 u$ "thus, necessity" $1699-10 \mathrm{~m} / 10 \mathrm{u}$ "small 1 breed", $16-$ 20m, 23-24m/24u "cattle 1 polled" 170 32-35m $1714-7 m, 9-11 m, 12-34 w / w b$ Selection has here quite overruled effects of change as far as wool is concerned $21-22 m, 25 a$ "that" In Saxony 26-28m/26-27u "Thelbreeding" 172 $1-3 m / 2 u$ "second", $4 u$ "third", 5..."/u "slightest blemish", 26-31w surely this ought to be the continuance of such qualities? 31a "too" continuance of the, see next page 31-33m/w (a) 33 "...", $35 u$ "particularlselection", $48 u$ "country degenerated", 38-55w/wb (a) This is important remark, showing that even these most external peculiarities are not invariable effects of climate, but from careful selection 173 3-7!/3u "less 1 Merino" $/ 5 u \quad " 11 \mid 18 " / 7 u$ "60165", 15-17m, 19-21m 175 34-35m 178 5$9 m, 35-37 m / 35 u$ "Wiltshires"/w p. $24435 u$ "ewes Ihornless"/34-40w p. 148 a few only of true Merino ewes are horned $43 u$ "fourth", $56-57 \mathrm{~m} / 57 u$ "fourth" 179 49-50u "severall bore" $18053 m 1819-11 m / 10 u \leftrightarrow, 37-40 \mathrm{~m} / 39 u$ "three|Merino", 52-53u "great Ibarrenness"/Q 56-58m (Somerville), 56u "Itlafter", 58u "lambsloccurrence" 182 37-39m/"..." 183 25$27 \mathrm{~m} 1841-9 m / 4-5 u$ "an 1 influence", $9-16 m$, $22-28 m, 31-34 m / 32 u \leftrightarrow, 41-46 m$ 185 3-8m, 18-20m 187 45-46m 188 1-4m 189 9-10m 194 27-29m/27u "Winchester" $27 u$ "short-woolled"/ $28 u$ "wouldibreed" 227 27-33m, 30-31u "staple|larger", $38-43 m \quad 2337-9 m, 18-19 m$ 234 9-12m/10a "lambs" only?? $19 u$ "the conclusion" $/ 18-21 \mathrm{~m} / \mathrm{w}$ Squirrels \& Marmot 235 29-32m 237 11-17m/14u "it lcharacter", 40$43 m / 42 u$ "the I breed" $2383-5 m / 3 u$ "Wiltshire variety", $9-11 m / 9 u$ "contestlattended", $16 u$ "wherel suited", $32 u$ "Dorsets"/33u "Pampered | oestrum" $29-36 w$ Period of pregnancy 5 months 239 1-2u "contrivelgives" $2404-7 \mathrm{~m} /$ $6 u$ "or|Down", $17 u$ "Dorsets", $18 u$ "dropthorned" $24125 u$ "verylthem", 29-32m/30u "Dorset Isheep" 243 12-14m/13-14u "the I Dorset", $18 u$ "being|hornless", 25-29m 244 28-31m 245 3-5m, 27-31m 247 45-49m/47$48 u \leftrightarrow 248$ 22-23m 249 9-11m/9u "valuelewes" 251 6-10m 252 14u "horned 1 Leicester", 17$20 m 253$ 37-39m 254 22-25m, 25-28m 255 2$5 m / 2 u$ "South Downs" $/ 3 u$ "failed", 6-7u "The
employed" 256 14-18m/14-15u "Mendipl degree", 23-26m/24-25u "genuinelcountry" 257 38-43m 258 12-15m/14u "food lbreed" 259 6-8m/6-7u "Hereford11343" 260 11-14m/12u "muscles Externally" $12 u$ "it | within", 41-43m $2617-9 m / 9 u$ "pasture|with" $26545-52 \mathrm{~m} / 45 u$ "horned I polled" 464 "between 1 black" 266 55$56 m 2675-6 m, 9-11 m, 51-53 m$ (Ellis) 278 33$37 m 2807-9 m / 8 u$ "early", 15-16m 281 6-9m, 11u "frquently|horns" 282 30-35m (Hogg) 283 2-5?!/m $284 \quad 15-18 m \quad 285 \quad 15-18 \mathrm{~m} / 17 u$ "at। crossed", $33-36 \mathrm{~m} / 34 u$ "weight I months" $/ 35 u$ "could I old" 36 u "must | corresponding" $28646 u$ "maturity | sooner", 48 u "ever I behind" 287 19$24 m \quad 288 \quad 1-4 m \quad 289 \quad 33-37 m / 33-54 w$ faculty \& not instinct any more than animals first perceive earthquake does not profit through $29313-17 \mathrm{~m} / 16$ u "naturalized", $35-36 \mathrm{~m} / 36 u$ "to endure", 41-43/43-44u "not lalive", 45-55z/zb $29720-21 m / 21 u$ "often subject" $/ 21 u$ "the natives" $2987-10 \mathrm{~m}, 15-18 \mathrm{~m}, 18-20 \mathrm{~m}, 34-39 \mathrm{~m}$, $51 \mathrm{~m} 299 \mathrm{Im} / \mathrm{m}, 1-4 \mathrm{~m} / 2 u \leftrightarrow, 7 u$ "improved selection" $3013 m, 3-5 ? ? / 4 m, 6-13 w$ not common to all sheep $23-25 m, 42 u$ "Mugg", $44 u$ "growltoes" $30233-34 m \quad 30427 m$, 29$32 m$, wb How much more the having horns varies in sheep than in cattle - no case of hornless cows - with horned Bull 305 4043 m 307 39-40m/40u "Dorset ewe" $141 u$ "old Wiltshire" 309 38-44m 312 16-20m/"...", 21$25 m, 25 w$ (a) $26-32 m / 29 w$ (a) $31-37 m$, $41 u$ "two Isheep", $46 u$ "long wool", $49 u$ "Marshall 75", wb (a) as much adapted to two stations as any two species of deer are: Supports Anderson's views on Shetland Sheep 313 $6 m, 8 m, 9 u$ "In | want", $11 u$ "whitel legs", $14 m$ 314 14-17m, 40-42m/41-42u "appearancel sheep", 43-47m/46u "clearldefined" 315 2-3m (Bakewell), 4u "upwards|years"/3-9[..]/8-9u "appearance 1 varieties", 48-50m 318 32-33m, 35-37m, 43-44m/43u "inclination 1 maturity" 319 3-6m, 5-7m, 26-28m (Luccock), 53m/w (a) $w b$ (a) What objects to breed for - quantity of meat without selecting great bulk - early maturity \& tendency to father good forms 320 $2 u$ "greater! meat", $4 u$ "their lexcellence", $5 u$ "solbreeds", 8-9u "possiblelslaughter", 40$41 \mathrm{~m} / 40 \mathrm{u}$ "increased lboth", 47-49m/49u "forl placed" 323 20-22m/20-21u↔ 325 4-7m, $15-17 \mathrm{~m}, 16-21 \mathrm{~m}, 29 u \leftrightarrow, 30 u$ "sufficient 1 hardihood", $34 u$ "less lold", $43 u$ "seemed"/4345m/Q 326 1-2u "Thelrams", $4 u$ "twolold", $9-10 \mathrm{~m} / \mathrm{u} \leftrightarrow 327$ 3-4u "has limmemorial" 330 34-46m 332 20-22m/20-21u $\leftrightarrow 335 \quad 28-31 \mathrm{~m} /$ $29 u$ "readylfor", 30-31u "that lanimal", 337 49-50m/50u "Bampton limmemorial" 338 47$48 m 33946-48 m 34031-33 m / 31-32 u \leftrightarrow 348$ 23-24m $35150 u$ "two lold" $3521-2 \mathrm{~m} / \mathrm{w}$ (a) $w b$

YOUATT, SHEEP
Early maturity was bred for \& now can be obtained by cross - good parallel of two effects $36335 u$ "superior quietness", $36 u$ "points 1 sheep", 47-48u $\rightarrow 54 u$ "more 1 pollard", 55-56m/u "butltemper" 364 1-4m, 42-43m, 51-55m 371 20-32m, 20-25m, 25-32m 374 2932m, 41-42m/41u "should | separated", 44-46m 375 19-23m/21u "the|adherent"/ $22 u$ "when I blind" $/ 23 u$ "abandoned |helpless" 377 1-4m/3u "p.266", 7-25m 404 21-25m 407 31-34m 408 $4-10 m, 19-22 m, 23-24 m, 33-35 m / 33 u$ "The mother", $34 u$ "otherlthe" 491 16-54w, wb important, compared with Ourang - especially if they can be shown to be same species by crossing $49-51 \mathrm{~m}, 51-54 \mathrm{~m} / \mathrm{Q} 53-$ $54 u \leftrightarrow 492$ 1-3m 493 43-48m 494 2-6m, 27$30 m, 31-33 m, 42-49 m, 42-45 m, 46-49 m, 50-$ 53m, 56-58m 495 1-2m, 3u "mustlblood", 9$10 u$ "He I sheep", 15-16u "selection I breed", $18 u$ "violent crosses", 23-25u士, 52-53m (Low, Dickson) 496 19-21m, 20u "orlram", 41u "146|161", 42u "15 days", 41-43m (Tessier) $50826-33 \mathrm{~m} / 28-31 u \leftrightarrow, 38-41 \mathrm{~m} / 39-40 u \leftrightarrow 520$ 2-3m, 5-8m, 8-9Q 42-44m, 45-47m 521 13$15 m, 35-41 m 534$ 41-53m 541 35-41m 543 39$45 m$

YOUNG, Thomas A course of lectures on natural philosophy and the mechanical arts 2 vols.; London; Joseph Johnson; 1807 [Down, pre-B, S]

ZERFFI, G.G. A manual of the historical development of art London; Hardwicke \& Bogue; 1876 [Down, I]

NB O/

ZIEGLER, Martin Atomicité et zoïcité Paris; J.B. Baillière; 1874 [Down]

ZUCKERKANDL Reise der Österreichischen Fregatte Novara: 1. Abtheilung: Cranien der Novara-Sammlung Wien; Carl Gerold's Sohn; 1875 [CUL] \wp

PART TWO
INDEX AND CONCEPTUAL CONCORDANCE

"Curious coincidence in idea with what I have written" (849h)

Each annotation appears in the index as a string of topicciphers, the key to which is to be found on the fold-out sheet inside the back cover. Each entry is cross-referenced under each cipher in the string. Thus a statement involving the four ciphers A, B, C and D appears in Part two four times, as A-B-C-D, B-A-C-D, C-A-B-D, and D-A-B-C. The structure of the entries under each topic-heading is a s follows:

A [by itself] [pp.] $12 \ldots$ and [in combination] $3456 \ldots$
infra:
ABCD 5
ACE 36
ADFGH4
(etc).
ab 249c 649a
and 38e 193d 193d-e 194f 255e $255 f$ 310a 310c 369f-g 378 g 456a 460b-c 479h-480a 490b 490e 492b 560d-e
$585 f 598 g$ 616a 648h 649a 651f 655e
655f 656b 670d 735g 779a 783h 786f $867 f$
infra:
ab af 651f
ab beh ch tms 867 f
ab beh h ook sx vc g 560d-e
ab behi tmp 786f
ab cce fl 255 f
ab dg hl rsm tms $1479 \mathrm{~h}-480 \mathrm{a}$
ab dg fl mn rsw ty $369 \mathrm{f}-\mathrm{g}$
ab $8 \approx \mathrm{fl} \approx$ rsa sx tms 783 h
ab $8 \approx$ rd tms 456a
ab $8 \approx$ tms 655f
ab 6 ig rd rese tms 649a
ab $\%$ rd tms 193d-e
ab 8 risi tms 38e
ab 8 sxd tms vc 193d
ab 8 tms 585 f
ab $8 \mathrm{tms} v 655 \mathrm{e}$
ab fg wd ≈ 255 e
ab fl sx 255 e
ab flo 378 g
ab flo 路 mhp vc 779a
ab flo sx 490b
ab sxm 492b
ab tmp 490e
ab ig rsa 648 h
ab mn rsm 460b-c
ab phy 616a
ab rsa tma tms ty 656b
ab rsm v $\$ 598 \mathrm{~g}$
ab rsw tms II 670d
ab sxd vc 194 f
ab tms 310a 310c
ab ty 735 g
ad
ADAPTATION
ad 304b 380b 380e 446f 449d 455e 534f 647d
and 7f $13 e 15 c 58 c-d 58 d 58 e 58 g 68 b$ $84 g$ 92f 93a 93g-h 96g 109h 111a 111e 111e-f $112 g 112 g-h 112 h-113 a$ $113 b 113 c-d 114 f-g 114 g 118 f-g$ 120c 120h 121a 121h 122d 123g-h $124 b 125 c-d 128 e-f 128 f-h 129 c$ $130 e-f 131 d$ 131e 131f-g 131h-132a 133a-b 134a-b 134b-c 136d-e 144h $147 e 152 a-b$ 155e 158d 164c $205 e$ 206f-g 216a 242f-243a 244f-g 289a-b $304 e$ 306a-b 306c 331d $357 f$ 358e
359f 366d 369d 369e $373 b 375 a-b$ 375c 380a 380d 389f 397d-e 430a 431c 448h 449d 449f 451f $453 b$
$455 a-b$ 455e 456g $471 f 472 e-f 477 c$
479d $479 e 479 f 483 c 483 e-f ~ 487 c$
500c 509e-f 510d 512g 529g 531e
$533 \mathrm{~g} 540 c 574 d 574 e 574 f 575 c 583 a$
$586 g 587 b 587 c-d 604 a-b 607 c$ 611h
$611 h-612 a \operatorname{614b} 614 f 614 g 616 b-c$
$624 b 625 f 625 g 626 a-b 626 b-c 627 c$
$627 e 630 a 643 b 654 e 655 e 671 d$
690f-g 690h 690h-691a 692g 696c
696h 697a 703c 703c-d 705g 714a
748b 751a 770h 771d-e 776g-h 778f
780f 795g-h 806g 846b 846e-f 855c
856h-857a 868c-d 868d-e 872e-f
$872 g 873 e-f 873 g 874 b$ 877a-b $881 g$
887e 891e 894e
infra:
ad beh 453b 654e
ad beh ce 8 rd tms 655e
ad beh $\delta \mathrm{fd} h$ he pat rsa ty $868 \mathrm{~d}-\mathrm{e}$
ad beh $\%$ rsm 531e
ad beh 8 ta tms 846b
ad beh 8 tms 705 g
ad beh gd rsa tyc 703 c
ad beh tmp 9 751a
ad behb ex var 13e
ad behb 8 @ is phy rsa sl tas $244 f-g$
ad behh cc sh tms vc 771d-e ad behh \approx behr $\approx 9614 b$
ad behh \& fd g gds @ noa nos rsa
rsw spe sph ta tmp ve 131h-132a
ad behi 449 d 453 b
ad behi behm cc 8449 f
ad behi behm 8451 f
ad behi behn cc 893 a
ad behi he sl tms tyc $614 g$
ad behl \& 이 304e
ad behm rse tms ty $\$ 192 f$
ad c2-cs $\& \mathbf{f g}$ fgn flo hl oo phyfl
rsi sxm tms 1 472e-f
ad c2- cs fl 778f
ad c2- gd rsa sph 703c-d
ad c2- \% gdd 114 g
ad c2- tya 624b
ad c2- tyd 357f
ad c1+ cc gds or sp tyc $123 \mathrm{~g}-\mathrm{h}$ ad c2+ cc ex gdi ig oos rsi ve $\mathbb{1}$ $483 \mathrm{e}-\mathrm{f}$
ad c2+ cc ty y 583a
ad c2+ ch fgs 575c
ad $\mathbf{c} 2+$ ch sl sp tyc II $134 b-c$
ad c2+ gd vc 891e
ad cc 122d 614f
ad cc ch che fd gds he no noa
nos ook rat tad ty $128 \mathrm{f}-\mathrm{h}$
ad cc ch fl gds mhp phy ta tms tya
I $242 \mathrm{f}-243 \mathrm{a}$
ad cc ch rsa tay ve ve 574 f
ad cc cs f hy rsa tms tya y II 872e-f
ad cc ds tms ty tya $152 \mathrm{a}-\mathrm{b}$
ad cc em eml emp \& rsa tmp v vc 856h-857a
ad cc ex fd fg ty 369d
ad ccexig no oos sp ve 483 c
ad cc fa hep sl wd 509e-f
ad ce fa tmp 607c
ad cc fa tms 770 h
ad cc 8 tmp 855c
ad cc fd gd 00 or rsi sph ty $\mathbb{I} 456 \mathrm{~g}$
ad cc fl 625 g
ad cc fl phyfl 121h
ad cc fl gdd oos 113c-d
ad cc fl gds rsa 331d
ad cc fls no nos tya II 129c
ad cc fls nos tyc 112 g
ad cc fls $00626 \mathrm{~b}-\mathrm{c}$
ad cc gds gr@in no nos spc ty
T130e-f
ad cc \$ gds © rsm II 125c-d
ad cc $\%$ oo 627e
ad cc $\% 487 \mathrm{c}$
ad cc gd gdc@ sph 111e-f
ad cc gdn var 748 b
ad cc@ no tig tya $112 \mathrm{~g}-\mathrm{h}$
ad cc hep hy sp II $375 \mathrm{a}-\mathrm{b}$
ad cc hl tig tma ty $11121 a$
ad cc hy sp $873 \mathrm{e}-\mathrm{f}$
ad cc nos $\mathbb{1} 131 \mathrm{~d}$
ad cc pat rsa 887 e
ad cc y 692 g
ad ccw fgs gde phyfl spa 124 b
ad ch $471 f 533 \mathrm{~g}$
ad ch flooh wd $134 \mathrm{a}-\mathrm{b}$
ad ch gd gr rsm sp tiv 529 g
$\mathrm{ad} \approx 8$ he $\approx 358 \mathrm{e} 359 \mathrm{f}$
ad cr rsa v 877a-b
ad cs sph ty v var wd $\mathbb{3} 375$ c
ad dg 8 rsa tma 479 d
ad ds dv fg or sp ty $131 \mathrm{f}-\mathrm{g}$
ad em eml rsm 158d
ad em ex 8 fd sl sp ta var 690h-691a
ad em tms 587b
ad ex 8 fgs oo sph tms $\mathbb{I} 389 f$
ad ex gd gde gdi gr @ 00 397d-e
ad fa \approx fge fgs $\mathrm{fl} \approx 455 \mathrm{a}-\mathrm{b}$
ad fa fl hy wd 373b
ad fa tms ty tyc $868 \mathrm{c}-\mathrm{d}$
ad 879 f 587 c -d 696c
ad $\%$ fg flo mhp oo tms $776 \mathrm{~g}-\mathrm{h}$
ad 8 gds @ rsa vc II 894 e
ad $\& \mathrm{gds} \mathrm{tmp} v$ var 7 f
ad 8 hl no 00881 g
ad $y \mathrm{hl} \mathrm{tms}$ \$ 68 b
ad oo spr ty 479 e
ad pat tmp vc 690 h
ad phy tmp wd $\approx 84 \mathrm{~g}$
ad $\%$ rsa tms $846 e-f$
ad rse tms tya 58 e
ad rsi tmp ty 1 306a-b
ad 8 rsw 448 h
ad 8 tms 806 g
ad fgs 455e
ad fgs fls no tya II 112h-113a

epilogue

"I have now read your work, but I have nothing particular to say" (223e)

It seems that CD's ever-active spirit inspired the following distinctly prehumous reviews of this volume:
"Never mind" Charles 'Woodward' Darwin
"Excellent book" Charles 'Wright' Darwin
"Introduction good writing" Charles 'Jenyns' Darwin
"a miserable Book - all words, words, words" Charles 'Geoffroy' Darwin
"possibly serve for reference" Charles 'Fleming' Darwin
"Buy" Charles 'Eaton' Darwin
"goodish" Charles 'Sully' Darwin
"Many good bits in this Book, but the fundamental idea seems to me groundless \& fanciful" Charles 'Piderit' Darwin
"first part merely amusing; Index . . . dull" Charles 'Thompson' Darwin
"Not much satisfactory too brief" Charles 'Linnaeus' Darwin
"Mental I think" Charles 'Lucas' Darwin
"I have only skimmed after p. 150 for the whole a wretched compilation" Charles 'Meyer' Darwin
"Clever" Charles 'Wichura' Darwin
"very remarkable . . . very good . . . very common" Charles 'Lyell' Darwin
and last but clearly not least:
"Praise his book. Well-known for other excellent Treatises, \& add much undervalued, in my opinion, by other writers - a vast step in advance" Charles 'Duchenne' Darwin

\approx	COMPARISON
ab	ABORTION
ad	ADAPTATION
af	AFFINITY
beh	BEHAVIOUR
behb	BREEDING BEH
behc	COMMUNICATION
behe	EXPRESSION/EMOTION
behh	HABIT
behi	INSTINCT
behl	LEARNING/MEMORY
behm	MIND/COGNITION
behn	NEST BEHAVIOUR
behp	PERCEPTION/
	SENSATION
behr	REFLEX
behs	SOCIAL BEHAVIOUR
br	BREEDING (ARTIFICIAL)
bri	IN-BREEDING
c	CRITICISM
C-	NEGATIVE
C+	POSITIVE
c1	OF CD
c2	BY CD
c3	OF THIRD PARTY
("c2+"	positive crit. by CD)
cc	CLIMATE/CONDITIONS
CCC	CONFINEMENT
CCS	SEA (CURRENTS)
CCW	WIND/WEATHER
ch	CHANGE
che	CHEMISTRY
CO	CORAL
CS	CROSSING
ct	CELL THEORY
dg	DEGENERATION
ds	DESCENT
dv	DIVERGENCE
em	EMBRYOLOGY
eml	LARVAE
emp	PUPAE
ex	EXTINCTION
f	FERTILITY/STERILITY
fa	FAUNA
8	NAMED FAUNA
fd	FOOD
fg	FERTILISATION/
	GENERATION
fge	EGGS
fgn	NECTAR
fgp	POLLEN
fgs	SEEDS
$f 1$	FLORA
flg	GRAFTING
flo	FLOWERS/BUDS
flod	DOUBLE FLOWERS
fls	SOCIAL PLANTS
\%	NAMED FLORA
fo	FOSSILS
gd	GEOGRAPHICAL

DISTRIBUTION

gdc	COMMON FORMS
gdd	DISPERSION
gde	ENDEMIC FORMS
gdi	INTRODUCTION
gdn	NATURALISATION
gds	STATIONS
gdw	WIDE-RANGERS
geo	GEOLOGY
gr	GEOGRAPHY
grc	CONTINUTY
@	NAMED PLACES
h	HUMANITY
g	PEOPLES
he	HEREDITY
hef	FATHERS
hem	MOTHERS
hep	PARENTS
her	REVERSION
het	TRANSMISSION/

hl HIGHNESS/LOWNESS
hom homology
hy HYBRIDS mongreis INTERMEDIACY/ GRADATION
in individuals
ir IMPERFECTION OF geological record ISLANDS/ISOLATION
$\begin{array}{ll}\mathrm{mg} & \text { MIGRATION } \\ \mathrm{mhp} & \text { MOVEMENTS AND HABITS }\end{array}$
Of PLANTS
mi mineralog
mm MIMICRY
mn MONSTROSITY
no NUMBER/INCREASE/
DECREASE
noa
nos
00
ooh
relationship of
ORGANISM TO ORGANISM human

INTERVENTION
Kiluing
PARASITES
PREDATION
STRUGGLE FOR EXISTENCE
or
phat
phy PHYSIOLOGY phyfl plant physiology RECEPTION OF

DARWINISM
rd
rs
rsa
rsd
rse

ook	KILLING
oopa	PARASITES
oopr	PREDATION
oos	STRUGGLE FOR
	EXISTENCE

r

RUDIMENTS
REMARKS TO SELF
ASSESSMENTS
DATED COMMENTS
EXCLAMATIONS

rsi	instructions
rsm	MEM
rsq	Quote
(does not include "Q"/"NQ")	
rsw	WONDERINGS Aloud
se	SUBSIDENCE/ELEVATIO
sh	shells
(shfw: freshwater; shl: land	
sl	SElection
sp	SPECIES
spa	ABORIGINAL FORM
spc	Close specie
spd	DOMINANT FORMS
spe	ABERRANT FORMS
sph	HIGHER GROUPIN
spr	REPRESENTATIVES

spz SPORTS
ss SEXUAL SELECTION
sx SEX
DICHOGAMY
Sx3 THIRD/OTHER SEXES GENDERED BEH CASTES
SEXUAL CHARACTERS
SEX DIFFERENCES
MONOECIOUS/
DIOECIOUS
$\begin{array}{ll}\text { sy } & \text { systematics } \\ \text { ta } & \text { TIME/AGE (ORGANIC) }\end{array}$ DEATH GENERATIONS
MATURITY SEASONS YEARS
TIME/AGE (NON-
ORGANIC/GEOLOGICAL)
GEOLOGICAI. PERIODS
TIME (HISTORICAL)
TYPE/MORPHOLOGY
(ARCHE)TYPE
PHIYSICAL CHARACTERS
STRUCTURES
TRANSMUTATION
THEORY (GENERAL)
ACCOUNT
CAUSATION
DEFINITIONS
EXPERIMENTS
USE/DISUSE (ACQUIRED CHARACTERS)
unc UNCLASSIFIABLE
V VARIATION
var VARIETIES
CONSTANT FORMS, RACES
ve VOLCANO/EARTHQUAKE
wd WILD/DOMESTIC
CULTIVATION
$\begin{array}{ll}\mathrm{y} & \text { YOUNG/OFFSPRING } \\ \mathbb{I} & \text { NAMES AND REFERENCES }\end{array}$
a

[^0]: Appendix NB p． 145 p． 143 p． 146
 131 1－10m $13211-20 m\langle C D$ ？ $1433-12 m 145$
 15－18m 146 12－16m

[^1]: Appendix NB p． 145 p． 143 p． 146
 131 1－10m $13211-20 m\langle C D$ ？ $1433-12 m 145$
 15－18m 146 12－16m

