RECORD: Darwin, C. R. 12.1835. 'Coral Islands' essay. CUL-DAR41.1-12. Edited by John van Wyhe (Darwin Online, http://darwin-online.org.uk/)

REVISION HISTORY: Transcribed and edited by John van Wyhe 1.2025. RN2

NOTE: See record in the Darwin Online manuscript catalogue, enter its Identifier here. Reproduced with permission of the Syndics of Cambridge University Library and William Huxley Darwin. The paper is watermarked 'R M 1831 1'.
See the fair copy of this essay by Syms Covington in CUL-DAR41.13-23 which is watermarked 'J WHATMAN 1834'.

The geographer David Stoddart first transcribed and edited Darwin's 'Coral Islands' essay in an important publication in 1962. F1576 Stoddart's important introduction and notes are not superceded here. The manuscripts has here been retranscribed showing deletions, writing medium and the sources Darwin used or referred to have been identified.


[1]

Corall Islands                                                (1

Although I have personally scarcely seen anything of the Coral Islands in the Pacifick Ocean, I am tempted to make a few observations respecting them.—

In looking at a chart of the East Indian group, it will be seen that a direction within a couple of points of NW & SE is common to the Western & Eastern Islands. This line is continued to New Caledonia.— It is fronted by the parallel chains of New Ireland, Solomon & Hebrides Islds.—

(a) Perhaps the similar direction of the north part of New Zealand & that part of New Holland, which in its position & barrier of corall reefs is intimately connected with the South sea, may be more than an accidental coincidence.— Those small Islands, which stretch in an E.W direction half way across the Pacifick, are frequently described as being a curved part of that volcanic band of Islands which terminates Southward at the New Hebrides, or more properly in New Zealand.—

Perhaps the similar…accidental coincidence.—] boxed in ink, later crossed in pencil. Second 'l' of corall crossed in ink.

[1v]

(a) Again we see the same fact in the northern part of New Zealand; the constitution of which, like the foregoing Islands, is essentially Volcanic. The NE coast of Australia which is fronted by the great barrier reef & so intimately connected with the Pacifick, has also a NW & SE direction. The whole shore is believed to consist of granitic rocks; a little way inland a long chain of hills runs parallel to the coast line.— (Dr. Fitton's Appendix to King's Australia)*

* Fitton geological appendix to King 1827.

[2]

1835 Corall Islands                                                (2

But I do not think this is a correct view.—In each separate archipelago the direction already alluded to is found.— This law prevails even as far as the Sandwich Isds.— (a) Perhaps the strongest exception will be discovered in the (b) Friendly Isd. that is if these are taken without reference to the group of the Fidjis. All the islands ought rather to be considered as so many short parallel lines, than the continuation of the great volcanic band which sweeps round the eastern shores of Asia.— I have pointed out this fact, as showing a degree of physical connection in the islands of Polynesia. Forster in his observations in a Voyage round the World,* makes three classes for the different kinds: of islandsto each of these may might

(1st) High Islands without a coral reefs; he adduces as examples the Marquesas & Hebrides & two out of the Friendly Is; to them may be added the Navigators*

* Forster 1778, pp. 14-15.

* The Somoan Islands were named the Navigators' Islands by Bougainville in 1768.

[2a]

(a) I may even add the peninsula of California & the shores of North America.—

(New) (b) Mem. the Friendly a field of modern disturbance. & therefore the exception of Value.—

[3]

1835 Coral  Islands (3

as described by Kotzebue,* the Sandwich & Galapagos groups & several other smaller ones.— It would be a curious point to ascertain, whether coral grows abundantly on the shores of any of these islands, although not forming a reef; or whether as at the Galapagos, it may be considered as absent.— This one fact would alone throw much light on the theoretical structure of all the coral formations.— We know that in some parts of the world where corall is abundant, as in the West Indies true Lagoon Islands* do not occur.

II. High Islands encircled by a reef, as a picture is by a frame.— (a) the singularity of this phenomenon, the beauty & utility of its effect has scarcely been enough insisted upon by voyagers.— (a) Forster gives an example in Tahiti, & all the true Society Islands, the higher ones of the Friendly & New Caledonia.—

III The low half drowned islands, composed entirely of coral

Darwin agains uses the unusual technique of abrading away deletions rather than crossing.

* Kotzebue 1830, vol. 1, pp. 251ff.

* A lagoon island is now called a coral atoll.

[3a]

(a) It must be borne in mind, that the line of breakers sweeps round, at a considerable distance from the foot of the mountains.— The interval is occupied by the smooth water of the lagoon & the low alluvial land which has encroached on parts of its former bed.—

[4]

1835 Coral Islands   (4

& including a lagoon.—

IV. Capt Beechey* has described another class, such as Elizabeth, Savage * Wateo Island, (a) which flat islands are composed of corall rock, appear to are of moderate height, & probably before their elevation existed as low or lagoon islands.— Capt. Beechey remarks on the rarity of this class.— I suspect however on a more accurate knowledge, several more will be added to this list. I may perhaps instance Turtle Isd. of Cook, which Forster* brings forward as the best example of subterranean elevation in the Pacifick.— With respect to this classification, it appears to me that the distinction between the II & III division, or the high islands with reefs & the lagoon ones ones, although is artificial.— I believe the reefs and strips of land, which form compose the circular Low Islands are the of the very same structure & origin with those reefs which encircle, as with a belt so many of the lofty ones.— Viewing the Eimeo*

(a) & Perhaps Malden of Ld. Byron*

'& (a)'] marginal pencil. '(a)' pencil.

* Beechey 1831, vol. 1, p. 64 Elizabeth=Henderson's Island; Savage p. 61.

* Forster 1778, pp. 147-48.

* Moorea. Darwin described seeing the encircling reef of Moorea from the mountains of Tahiti in his 17 November 1835 entry in the Beagle diary, pp. 368-9: "The island is completely encircled by a reef, with the exception of one small gateway; at this distance a narrow but well defined line of brilliant white where the waves first encountered the wall of coral, was alone visible; Within this line was included the smooth glassy water of the lagoon, out of which the mountains rose abruptly. — The effect was very pleasing & might be aptly compared to a framed engraving, where the frame represents the breakers, the marginal paper the lagoon, & the drawing the Island itself."

* Figured in Byron 1826, facing p. 205.

[5]

1835 Coral Islds        (5

from the heights of Tahiti I was forcibly struck with this opinion.— The mountains abruptly rise out of a glassy lake, which is separated on all sides, by a narrow defined line of breakers, from the open sea.— Remove the central group of mountains, & there remains a Lagoon Isd. I ground this opinion from the following facts.— There is a general similarity in the two cases in the form & size of the reefs; in the two cases,  their structure appears identical, we have deep scarcely fathomable water in each case, at a short distance on the outer margin; within is a shallow basin more or less filled up by knolls of growing corall or converted into dry land.—

In the Lagoon Islds. there are some, which do not deserve this title, for they consist solely of a circular reef, of which scarcely a point projects above the water; a whilst others have a more or less complete, but narrow ring of dry land.— In the same

[in margin:] a Such as the Isd. near Turtle I.

'a', 'a', 'Such as the'] pencil.

[6]

1835 Coral Isd.         (6

manner in the encircling reefs, although they generally are only ornamented by a few speck formed islands, yet at the fine island of Huahine Ellis states the reef is becoming converted into dry land.* — The essential character of in the one class, viz the of a large encircled Isld. itself dwindles away & becomes ambiguous.— We have the 2 large islands of Raiatia & Taha* (?) included in one reef.— In such cases, as in Gambier Isd. so well described by Capt Beechey, Whylootacke seen by the Beagle, where a group of small hilly islands are encircled by one grand reef, or as in Whylootacke, (seen by the Beagle) when one single one is so situated, it becomes a question in which of the two classes they ought to be arranged.— In the Isd. of Caledonia, as drawn on a large scale in Krusensterns Kruesenstern Atlas, the reef will be seen prolonged at each extremity. & encircling the continuation,

Kruesenstern] pencil clarification of the poorly written same name in ink.

* Ellis 1829.

* Tahaa.

[7]

1835 Coral Isd.         (7

the land, beneath the water of the land. It here requires less effort of imagination to remove the high central hills & to leave a perfect lagoon Isd.— Which process this change judging from the figure, it might be believed was actually in process.—

The last argument which I can adduce is the parallelism between the archipelagoes of the two orders, for instance the low Island & the Society ones.— Moreover, this parallelism is found in the direction of the longer axis of the oval figure, which is so frequent in the encircling reefs & low Island:— One is tempted to extend still further this similarity & to believe that there is no difference between the reef which encircles an island, & those extraordinary barriers of coral, which front for so many leagues the coast of Australia & I believe the northern shore of Brazil.— The high encircled Isds. are composed of various geological formations; no

[8]

1835 Coral Isd.         8

doubt ancient volcanic rocks are most abundant, but in Tahiti M. Hoffman found granite.* Mr. Ellis states that in several of the Society Isds. granite, hornblendic rock, limestone & rock with garnets is found.* Forster in New Caledonia describes the prevalent rock under the name of gestell stein,* which I believe to be mica slate.— Hence we may feel secure (if any doubts could ever have been be entertained) that these reefs encircling reefs are not built on the crests of [illeg] submarine craters.— If the proofs of the identity in nature of the two kinds of reefs, are considered as conclusive, in a like manner, there is no necessity that the lagoon Isd. should be based on such craters. I don't not wish to state that such This view will I think, generally be more satisfactory, than the it removes the difficulty of the immense size of the lagoons far exceeding any known crater: & explains the extreme irregularity of figure exemplified in the Radack*

* This is copied from the Geological diary section for Tahiti in CUL-DAR37.798. See note there.

* Ellis 1829, vol. 2, pp. 554-5.

* Forster 1778, p. 27.

* Ratak Chain, in the eastern chain of the Marshall Islands.

[9]

1835 Coral Is.ds        9

& Ralix* groups, described by Kotzebue. Whether we look at these Islands. as having formerly encircled high land, or raised resting on the brim of a crater, it appears to me, we must admit, the suggestion theory of Mr. Lyell, (Vol II Chapt: XVIII) that their present structure is owing to a series of small depressions.— If the ground on which the lithophytes* have built their edifices has not subsided, it must have remained stationary or been elevated.

(a) It being allowed that the corall animal can flourish only at a small depth, it  follows, on the first supposition, that all the (a) submarine mountains within this limit had the same height & that not one raised its head above the level of the sea.

On the second supposition, of a series of elevations; these movements over a large tract of ocean, ceased & never exceeded the limits already pointed out.— Now, these consequences from the two suppositions, are so very improbable: (for if they are not so, we

It being allowed…its head above the level of the sea.] paragraph cancelled in ink.

* Ralik Chain, in the western chain of the Marshall Islands.

* This is Darwin's first use of this term. He would have seen it in his recent reading in Forster 1778, Beechey 1831 and Humboldt 1819-29 vols. 6-7.

[9v]

(a) On the first of these suppositions it being allowed that the coral* animal can only flourish at a small depth, it follows that submarine mountains, on which the coral is now growing, reached within the xx limits of such depth, the surface, but yet that not one peak ever raised its head above this sea level.—

xx] marginal pencil.

* Note that the deleted passage on folio 9 used an uncorrected "corall" wheras the verso note twice uses "coral".

[10]

1835 Coral Is.ds        10

might expect to find somewhere a tract of country with mountains of an equal height) that to my mind the evidence of subsidence the only remaining supposition is demonstrative.— No doubt the fourth class of islands, the raised coral rock, is an argument on the other side; but their acknowledged rarity appears to me a proof that they ought rather to be considered as exceptions or irregularities in the prevailing movement. If a gradual upheaval was in progress here, as on the shores of S. America, the coral would afford a more palpable & lasting evidence, than could be expected under any other circumstances.—

Capt. Fitz Roy has discovered an interesting tradition amongst the Low Islanders, that the arrival of the first ship. was followed not long afterwards by a great wave inundation which destroyed many people.— Earthquakes are occasionally experienced here; at Tahiti there happened one which was believed to have foretold the arrival of the first missionaries.

the only remaining supposition] an insertion that substantially changes the meaning of a sentence.

[11]

1835 Coral Is.d         11

I looked in vain on the shores of Tahiti for any sort of evidence of a consequent rise.— In the Polynesian researches traditions (Ellises Researches) there are accounts of deluges,* which evidently were accompanied by volcanic phenomena.—

The difficulty in understanding the cause of a reef of living coral, being separated by channels or lakes from the land has not as yet been attempted to be removed. The only explanation which I can offer is (a) chiefly conjectural.a— When at Tahiti I examined the reef.— I found on the exterior margin, a solid broard (30-50 yards?) mound of (B)* coral rock, strikingly resembling an artificial (but low) breakwater on which the surf (A) broke beat with violence.—

The surface of the mound is compact & smooth.— It is slightly curved & dips towards the (C) inside or smooth water of the harbor. From Owing to the surf. I could not examine the outer margin; I am told it consists of

[sketch]*

 

'(a)', 'a'] pencil.

* Ellis 1829, vol. 2, pp. 42ff.

* The three capital letters in the margin correspond to the letters on the sketch.

* There is a revised sketch on a piece of cream-coloured chain-lined paper with no watermark kept with the fair copy in CUL-DAR41.16.

[11a]

(a) It rests on a belief that the species of coral, most efficient in building a reef, flourish best when immersed in the the surf of the outer breakers on the & that [illeg] their growth is checked by sediment & [illeg] fresh water brought down from the central land.—

paragraph cancelled in pencil.

[12]

1835 Coral Isd          12

smooth ledges of living coral, & that its general inclination is great:— It is only on rare occassions, when there happens to be very little surf & a low tide that the living parts can be seen. Not unfrequently after gales of wind, the ledges (probably overhanging) are torn up & in enormous masses thrown far up on the reef: by this means also the natives know the exterior margin is thus constituted. of The central part of the breakwater is entirely dead; on its surface I only saw the chief production is an encrusting inarticulate Corallina. I was assured The sea, breaking violently on the outer margin, continually ously pumps over in shells sheets the water of its waves.— hence the surface is worn smooth & gently declines towards the lagoon.— However I was assured that on the rare occassions, alluded to, the central part is exposed, uncovered to the rays of the sun, & that this invariably kills (a) the animal, & leaves the lithophyte a of dead rock.

[12a]

(a) There must however be some process by which the th mound is repaired; if once worn away so deeply as always to be covered by the water, this process would immediately take place; the case becomes at once similar to the outer parts, perhaps the Corallinas & other small marine productions may protect the surface.—

[13]

1835 Coral Isd          13

The whole reef may be described, as consisting of two parts: the outer margin of the breakwater, the the solid part of which is higher than all the rest, & a tract of very shallow water which varys in width from 100 yards to a mile. In this low part there are little narrow twisting channels & holes of deep water, & on the other hand many points where the coral reaches to the surface. It is in this still water where an observer as has often been described, may watch the fish gliding amongst groves of variously coloured corals. This part of the reef seldom or never is directly joined to the shores: but there is left channels & harbors where a ship can anchor in a fine sandy bottom.— I imagine it is the fresh water & sediment brought down which helps to prevents these spaces being filled up & likewise perhaps the cause that these reefs are seldomer converted into stripes of dry land than in the Lagoon Is.ds— (a) In the shallow parts the most abundant kind of coralls  lithophytes, are stony & branching of generas (as [blank]). Also Fungia & Caryophillia

(a)] crossed in pencil.

[13a]

(a) When such does happen, that part close within the breakwater would from the soft fragments thrown over it, be soonest changed.— there also the water is pure & fit for the growth of some kinds of coralls.—

[14]

1835 Coral Isd          14

Showing them to some intelligent natives I was assured that such kinds never grow on the outside of the reef or compose solid reefs.— From their descriptions, I imagined the prevalent kinds, so situated are such as Porites, Millepora, & some Meandrina & Astræa. Anyhow they appeared to consider that there is a wide distinction in the two cases. Analogy from the habits of all other marine animals would lead one to suppose that the same species would not flourish in two such different localities, as the foam of furious breakers & shallow placid lakes. If this conclusion opinion should be granted, it would be very important; we might infer that those species which build the external solid wall, the highest & most perfect part of the corall rock, will only flourish where the waters break violently.

[in margin:] [hence gaps] / D. L. Beche

M. Quoy & Gaimard, state, "that the species, which constantly formed the most extensive banks, belong to the genera Meandrina, Caryophyllia & Astrea"* & that the Saxigenous polypi increase most considerably in shallow & quiet water. I am not aware whether they suppose, these same species form the outer parts of the reefs. With

[hence gaps]] very faint, possibly erased, marginal pencil.  

* De la Beche 1832, p. 149 summarises the findings of Quoy and Gaimard.

[x15]

Coral Isd          X15

With respect to the ratio of increase I have a few remarks to offer.— In the greater number of the Lagoon Is.ds from the arguments already used, it is clear no movement of elevation has taken place.— Now Capt. Beechey remarks,* that the strips of dead dry coral, divested of any loose sandy materials heaped upon them are rarely elevated more than 2 ft above the level of the sea.

Now whatever this elevation may be, it is clear, that the highest point of the living coral rock is in any Is.d must be the highest point of living coral — for, as high or higher than the dead. Because the dead lived under similar circumstances & may have suffered degradation.— Now this quantity is so much higher than the level of the ocean & therefore than the waters of the lagoon, which can must afford the nearest approximation to judge by.— Hence the coral, which has formed the strips of dry land, are could not the products have been cherished by those quiet waters, within the outer line of breakers, but rather in the turbulence of the breakers, where a surface above the mean

* Beechey 1831, vol. 1, p. 255: "In the above-mentioned twenty-nine islands the strips of dry coral enclosing the lagoons, divested of any loose sandy materials heaped upon them, are rarely elevated more than two feet above the level of the sea".

[X15av]

(x) This conclusion perfectly agrees with what was visible in the reef of Tahiti. [x indicated to margin of following page]

[X15b]

Coral Isd          X15

level would never remain uncovered & exposed to the rays of the sun.(x)— In those cases where true tru coral rock remaining in same pos is above the level of the lagoon,  the land must have increased outwards; (a) but as it appears from the extreme depth, beyond the th reef, that this can hardly be a general process, I suspect that the coral rock may often be difficult to be distinguished from a rock of cemented fragments.— Besides the greater absolute height of the coral which grows in the surf, it must be remembered, that yearly gales of wind, tear off large fragments, some of which are tossed on the reef & others must fall down into the surrounding depths. Yearly the Polypus has to replace this damage.— On the other hand, within the lagoon all detritus accumulates, & if as according to M. Quoy and Gaimard, the coral grows there also most rapidly; how comes it that the lagoon is not more commonly filled up? This is the more surprising if we look at the entire section of a lagoon island in Capt. Beechey & see how trifling the inequality of the foundation. [in margin:] XXX

[X15c:]

(a) as appears to have been the case on the Is.d on which Capt. Beechey found the remains of the wreck of the Matilda so very singularly situated.*

XXX really is. And we must also bear in mind that arguments can be advanced to show that the subsidences must happen after long intervals.— such as few proportionate numbers of submerged circular reefs; & again the quantity of detritus heaped up on the dry coral.—

The general tenor of the foregoing facts, strongly urges me to believe that the coral, most effective in forming the solid reef, will only flourish near to the break of the sea.— I will not pretend to conjecture concerning the cause of this prediliction, whether the motion of the fluid, or the quantity of insolved* air is favourable; to the growth or whether the light and heat, which must pervade still shoal water is injurious to the growth of certain their species.—

* Beechey 1831, vol. 1, p. 259.

* Stoddart 1962 noted that in the fair copy "insolved" was give as "intangled".

[15]

1835 Coral Isds         15

respect to the ratio of increase, it must be remembered, that all the coral which grows within the lagoon accumulates, whereas on the outside yearly large fragments are torn off & carried away. The Polypi have to repair all this damage. That is On the supposition that the dimensions of the reef or island do not decrease. (which at least will be granted), the polypi must yearly repair this damage.* — If then the two following postulates are allowed, much of the difficulty in understanding the coral formation, will I think, be removed.— (1st) That in certain parts of the Pacifick, a series of subsidences have taken place; of which no one of which exceeded in depth, the number of ft, at which saxigenous polypi will flourish: or & of which series, the intervals between the successive steps were sufficiently long to allow of their lithophytes by their growth, to  always bringing to the same level the upper surface of the reef.—

(2d) That those species of lithophytes, which build the outer solid wall, flourish

* The text to this point is cancelled in ink and the x15 pages written as a replacement as noted by Stoddart 1962.

[15v]

[two sketches]

Level of the ocean / C / B / B /E / H / D / A*

Fig II / C / C / C / C / C / B / E / H / G / M / N / D / 1 / 2 / 3 / A / 2 4

* The sketch and its caption letters are explained on the following pages. There is an almost exact fair copy in ink and pencil in CUL-DAR39.134, watermark mostly excised, possibly '1828'?)

[16]

1835 Coral Isd          16

(a) best, where the sea violently breaks.—

(a)> Better to explain my views, I will take the case of an island situated in a part of the ocean which we will suppose at last becomes favourable to the growth of corall.* The circumstances which determine the presence or absence of the Saxigenous Polypi appear are sufficiently obscure, but they do not enter into this discussion.— Let AB represent the slope of an island so circumstanced & CD the level of the ocean. Then corall would immediately commence to grow on the shore (D) & would extend seaward as far as the depth of water would permit its rising from the bottom.— Let this point be (H).— The breadth of the reef (HD) would then depend, on the angle of inclination of the bottom.— This space might either be converted into a piece of alluvial ground, or even, from the corall springing up vertically from E & so protecting the inner space, might exist as a lagoon.—

(a)>] pencil.

* This and the previous double 'l' in "corall" are overwritten with a later single 'l' in ink. The following two 'll's on this page are overwritten with a 'l' in pencil.

[16a]

(a) This second post: is not so necessary as the first: as will be afterwa subsequently seen.— Possibly the fact of the windward side of the low islands, where the surf generally is most violent, being the highest & most perfect may be partly explained by such an admission.—

[17]

1835 Coral Is.ds        17

This reef would however essentially differ from those in the South Sea, in the depth of the water. (I exclude any few exceptions) beyond the wall of the reef not be suddenly becoming excessive.— If the level of this island should remain stationary. I cannot imagine any change.— But if the land should be raised (or sea sink): the outline would be as represented by the dotted line.— We And on the shores a fringe of dry coral rock would be left: This circumstance is known to happen in the East & West Indian Is.ds— Some such fact, may perhaps explain the double reefs found by Capt. Beechey at Loo Choo,* one of which was dead & one living.—

Now if we suppose the land gradually to subside (See Fig. II. I have represented the water rising; the effect of course is the same) the level of the sea will stand at C1 instead of at CD.— The coral of the outer wall favoured by the heavy surf will (a) soon recover its former level.(a)— If this process.

* Beechey 1831, vol. 1, p. 322. Now the Ryukyu Islands.

[17a]

(a) or the whole may be supposed to have same tendency to grow up & recover its former level: but that the sediment &c from the land checks its growth.

[18]

1835 Coral Isds         18

is repeated each time the sea will gain on the land while, the reef rises, nearly vertically on its first foundation. I say nearly vertically, because, any & every small portion removed in front of the lower part & the building upon being continued upwards before its repair, this must throw backwards the whole of the superstructure. When the level stands at (C3), the space between the reefs & the land, will be more, than twice as broard then as at first. This space will probably be occupied by a lake of water the growth of the corall being impeded at first by the fresh water & sediment accumulated by the protection of the reef; & (as I believe suspect), owing to, such circumstances still water, not being favourable to the growth of the most efficient species of coral.— I may mention that when at first the reef touched the shore, in the mouth of each stream, there must have been a channel.— such openings, during the longest series of depressions, would be continued & hence would generally

[19]

1835 Coral Isds         19

face the valleys, as is observed to be the case.(a)— This explanation is referrible to those reefs which front a continent or encircle an island.— If the subsidences are continued, till by the encroachment of the water an island is reduced from large to small, & is at last totally submerged; then there will remain a true Lagoon Is.d — When viewing Eimeo, or the chart of New Caledonia, I talked of removing the central mass of hills, this was the process I [illeg] was considering.

b> If the above hypothesis, all its parts considered together, is considered even as partially satisfactory (for I am aware several objections can be raised against it) it will be worth while to follow out some of the more extended consequences. In those parts of the world, where a general movement upwards is in progress, we ought not to find groups of Lagoon Is. d or that class of reefs, which encircles the land at a distance & has very deep water close to the outer wall. How far this is actually the case I have not

[19a]

(a) These channels would generally have about the same depth as the lagoons; their bottoms being filled up with sand or detritus. The action of currents would prevent their total filling up.—

(b) I must observe that in the early part of the series of subsidences, there can be little doubt that the fresh-water & sediment, brought down from the central land, would be injurious to the growth of the coral within the reef.— But when a Lagoon Island was once formed, (excepting the prejudice caused by the accumulated sediment, as a slippery foundation) we must look to the other argument reasons as an explanation of the continuation of the inequality in growth.—

reasons] pencil.

[20]

1835  Coral Isds         20

sufficient data to judge. In the West Indies, where proofs of recent elevation are abundant, reefs of these structures are not found or at least are not common.— Within the East Indian Islands, the shores of which are frequently overlaid with raised coral rock, I believe likewise they are not found.— In the Pacifick I may (a) adduce the Sandwich Isds.— It will be interesting to discover whether those groups (our first class) which are not protected by reefs, but yet have (B) corall abundant on their shores can be proved to have been recently elevated.B — If such generally is the case, it will give much probability to the idea, that the direction of the movement determines the structure of the reef.—

It is manifest that a Lagoon Isd. might the be raised a trifle, by an oscillation in the general movement without its character being lost.— This appears to have happened at Turtle Is.d (Cook), which Forster (p. 147) brings forward as the best instance of subterranean upheaval in the Pacifick. Plants are described on the reef as growing on the dead coral, which is raised above the

[20a]

(a) How are the Ladrones* (which have dead coral on the surface)? V. Kotzebue II Vol.—

V. some large chart. Kotzebue gives no information on the subject.— / Note

(B) Mr. Bennet* informs me that in the New Hebrides, he saw coral at an elevation of 1500 ft. & that it was abundant forming

Mr. Geo Bennet informs me that in the New Hebrides, which are thus circumstanced, he found dead coral at an elevation of 1500 ft.—

Vide Wanderings in New S. Wales*

'V. some large chart…on the subject.—/ Note', 'Geo', 'Vide Wanderings in New S. Wales'] pencil.

Mr. Bennet informs me…abundant forming] cancelled in ink.

* Now the Mariana Islands.

* George Bennett (1804-1893), physician and naturalist who had returned to London in 1834 from a voyage to Australia etc. Darwin made a note to see his recently published book, Bennett 1834.

* Bennett 1834.

[21]

1835 Coral Is.          21

reach of high water.— yet this island appears to have retained its proper figure. If however such movements were continued, no doubt an Isd of our fourth class would be produced.— Now it is remarkable, that out of the few instances of this class given by Capt. Beechey, two of these islands are surrounded by reefs of growing coral, & [illeg] but these are attached to the shore, & are not being separated by channels or lakes of water. I (a) allude to Henderson Id described by Capt Beechey himself & Wateo by Cook.*

On the opposite supposition of a general progressive subsidence in any part of the world (of course I include only those favourable to the growth of coral) we should expect to find either or both Lagoon Isds & the encircling reefs.— The archipelago (b) of the Society I.s (which are encircled) & that of the Low Is.d occur in the same part of the ocean.— The Friendly Isd in a like manner are divided into the same two sorts of groups.— As decisive evidence of depressions of

'(a)' and '(b)' cancelled in pencil.

* Beechey 1831 is Darwin's source for both islands in this sentence.

[21a]

(a) V. Byron for structure of Malden Is.d—*

(b) V. Chart of the Barrier of Eastern Australia, are there in that district any lagoon Is.ds?—

Note

Note] pencil.

* Byron 1826.

[22]

1835 Coral Isds         22

level, will almost always be deficient: all that we can look to is that there is no evidence of an opposite tendency. Now against this, a flagrant instance, can be brought up, from Mr. Ellis' account of the true Society Is.d— He states, that on the mountains of Raiatea, coral & shells &c are found.* [in margin:] (V. Ellis Vol I P 389)

I do not clearly understand that he himself has examined into the circumstances. Perhaps they may be interstratified with the lavas & only point out a very ancient elevation.— From the mineralogical nature of the strata in Tahiti I felt no doubt, but what they had formerly been submerged beneath the sea.— To all such general views, as these, many exceptions, may always be expected to be found; to ascertain their truth, a far more extended examination of all the phenomena is absolutely necessary. If the reality of them should ever be proved, it would be important to geology. For then we might assume that groups of Lagoon Isds clearly showed that a chain of mountains had there sub= / (a)

* Ellis 1829, vol. 2, p. 6 describes what Darwin cites, his reference here is unexplained.

[22v]

(a) = sided.— And, when in any formation there should be found, a great thickness composed of coral & the genera of which resembled those, which now build the reefs, we might also conclude, that during its successive accumulation, the general movement, was one of depression.—

Before finally concluding this subject, I may remark that the general horizontal uplifting which I have proved has & is now raising upwards the greater part of S. America & as it would appear likewise of N. America, would of necessity be compensated by an equal subsidence in some other part of the world.— Does not the great extent of the Northern & Southern Pacifick include this corresponding area? — Humboldt carrys a similar idea still further; In the Fragmens Asiatiques, P 95. he says. "Par consequent l'epoque de l'affaisement de l'Asie occidentale coincide plutot avec celle de l'exhaussement du plateau de l'Iran, du plateau de l'Asie centrale, de l'Himalaya, du Kuen Lun, du Thian shan & de tous les anciens systemes de montages diriges de l'est a l'ouest; peut etre aussi celle de l'exhaussement du Caucau, & du noeud de montagnes de l'Armenie & de Erzeroum."*

* Humboldt 1831, vol. 1, p. 95. There is a note by Darwin in CUL-DAR41.58 where he has written out the quotation in English: "Humboldt (Fragmens Asiatiques P 95) in a similar manner considers, that the epoch of the sinking down of western Asia coincides with the elevation of the plateau platforms, of Iran, of central Asia, of the Himâlaya, of Kuen lun, of Thian chan, & of all the ancient systems of mountains, directed from east to west." This is copied into the last page of the fair copy CUL-DAR41.22.


Return to homepage

Citation: John van Wyhe, ed. 2002-. The Complete Work of Charles Darwin Online. (http://darwin-online.org.uk/)

File last updated 25 January, 2025