See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1860
1861
1866
1869
1872

Comparison with 1866

passed, we should have to look to very ancient ancestral forms, long since become extinct.
We should be extremely cautious in concluding that an organ could not have been formed by transitional gradations of some kind. Numerous cases could be given amongst the lower animals of the same organ performing at the same time wholly distinct functions; thus the alimentary canal respires, digests, and excretes in the larva of the dragon-fly and in the fish Cobites. In the Hydra, the animal may be turned inside out, and the exterior surface will then digest and the stomach respire. In such cases natural selection might .. specialise, if any advantage were thus gained, the whole or part of an organ, which had performed two functions, for one function alone, and thus greatly change its nature by insensible steps. Many cases are known of plants which regularly produce at different parts of their inflorescence, as on the summit of a spike and lower down, or at the centre and circumference of an umbel, corymb, &c., or during different periods of the year, differently constructed flowers; and if the plant were to cease producing both kinds and bore one alone, a great change would suddenly be effected in its specific character. It is a distinct question how the same plant has come to produce two kinds of flowers; but it can be shown in some cases to be probable, and in other cases to be almost certain, that this has been effected by finely graduated steps. Again, two distinct organs in the same individual sometimes perform simultaneously the same function, and this is a highly important means of transition: to give one instance,—there are fish with gills or branchiæ that breathe the air dissolved in the water, at the same time that they breathe free air in their swimbladders, this latter organ having a ductus pneumaticus for its supply and being divided by highly vascular partitions. To give another instance from the vegetable kingdom: plants climb by three distinct means, by spirally twining, by clasping a support with their sensitive tendrils, and by the emission of aërial rootlets; these three means are usually found in distinct genera or families, but some few plants exhibit two of the means, or even all three, combined in the same individual. In all such cases one of the two organs or means of performing the same function might be modified and perfected so as to perform all the work, .. being aided during the process of modification by the other organ; and then this other organ might be modified for some other and quite distinct purpose, or be wholly obliterated.
The illustration of the swimbladder in fishes is a good one, because it shows us clearly the highly important fact that an organ originally constructed for one pur- pose, namely flotation, may be converted into one for a widely different purpose, namely respiration. The swimbladder has, also, been worked in as an accessory to the auditory organs of certain fish, or, for I do not know which view is now generally held, a part of the auditory apparatus has been worked in as a complement to the swimbladder.
passed, we should have to look to very ancient ancestral forms, long since become extinct.
We should be extremely cautious in concluding that an organ could not have been formed by transitional gradations of some kind. Numerous cases could be given amongst the lower animals of the same organ performing at the same time wholly distinct functions; thus the alimentary canal respires, digests, and excretes in the larva of the dragon-fly and in the fish Cobites. In the Hydra, the animal may be turned inside out, and the exterior surface will then digest and the stomach respire. In such cases natural selection might easily specialise, if any advantage were thus gained, a part or organ, which had performed two functions, for one function alone, and thus wholly change its nature by insensible steps. Two distinct organs sometimes perform simultaneously the same function in the same individual; to give one instance, there are fish with gills or branchiæ that breathe the air dissolved in the water, at the same time that they breathe free air in their swimbladders, this latter organ having a ductus pneumaticus for its supply, and being divided by highly vascular partitions. In these cases, one of the two organs might with ease be modified and perfected so as to perform all the work by itself, being aided during the process of modification by the other organ; and then this other organ might be modified for some other and quite distinct purpose, or be quite obliterated.
The illustration of the swimbladder in fishes is a good one, because it shows us clearly the highly important fact that an organ originally constructed for one purpose, namely flotation, may be converted into one for a wholly different purpose, namely respiration. The swimbladder has, also, been worked in as an accessory to the auditory organs of certain fish, or, for I do not know which view is now generally held, a part of the auditory apparatus has been worked in as a complement to the swimbladder.