See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1859
1860
1866
1869
1872

Comparison with 1872

the ordinary structure, and into what I have called complemental males; and in the latter the development has assuredly been retrograde, for the male is a mere sack, which lives for a short time and is destitute of mouth, stomach, and every other organ of importance, excepting those for reproduction.
We are so much accustomed to see a difference in structure between the embryo and the adult, ... that we are tempted to look at this difference as in some necessary manner contingent on growth. But there is no .. reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all their parts in proper proportion, as soon as any part became visible. .. .. .. In some whole groups of animals and in certain members of other groups this is the case, and the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttlefish, "there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed." Land-shells and fresh-water crustaceans are born having their proper forms, whilst the marine members of the same two great classes pass through considerable and often great changes during their development. Spiders, again, barely undergo any metamorphosis. The larvæ of most insects pass through a worm-like stage, whether they are active and adapted to diversified habits, or are inactive from being placed in the midst of proper nutriment or from being fed by their parents; but in some few cases, as in that of Aphis, if we look to the admirable drawings of the development of this insect, by Professor Huxley, we see hardly any trace of the vermiform stage.
In some cases it is only the earlier developmental stages which fail; these apparently having been suppressed. Thus Fritz Müller has recently made the remarkable discovery that certain shrimp-like crustaceans (allied to Penœus) first appear under the simple nauplius-form, and passing through two or more zoea-stages, and through the mysis-stage, finally acquire their mature structure: now in the whole enormous malacostracan class, to which these crustaceans belong, no other member is as yet known to be first developed under the nauplius-form, though very many appear as zoeas; nevertheless Müller assigns reasons for his belief that all these crustaceans would have appeared as nauplii, if there had been no suppression of development;— or that they were primordially developed under this form.
How, then, can we explain these several facts in embryology,— namely, the very general, though not universal, difference in structure between the embryo and the adult;— the various parts in the same indivividual embryo,
the ordinary structure, or into what I have called complemental males, and in the latter, the development has assuredly been retrograde; for the male is a mere sack, which lives for a short time, and is destitute of mouth, stomach, or other organ of importance, excepting for reproduction.
We are so much accustomed to see differences in structure between the embryo and the adult, and like-wise a close similarity in the embryos of widely different animals within the same class, that we might be led to look at these facts as necessarily contingent in some manner on growth. But there is no obvious reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all the parts in proper proportion, as soon as any structure became visible in the embryo. And in some whole groups of animals and in certain members of other groups, the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttle-fish, "there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed;" and again in spiders, "there is nothing worthy to be called a metamorphosis." The larvæ of insects, whether adapted to the most diverse and active habits, or quite inactive, being fed by their parents or placed in the midst of proper nutriment, yet nearly all pass through a similar worm-like stage of development; but in some few cases, as in that of Aphis, if we look to the admirable drawings by Professor Huxley of the development of this insect, we see no trace of the vermiform stage.
How, then, can we explain these several facts in embryology,— namely the very general, but not universal difference in structure between the embryo and the adult;— of parts in the same individual embryo,