See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1859
1860
1861
1866
1872

Comparison with 1866

lead to the belief that formerly most fishes had electric organs, which most of their modified descendants have lost. But when we look closer to the subject, we find in the several fishes provided with electric organs that these are situated in different parts of the body,—that they differ in construction, as in the arrangement of the plates, and, according to Pacini, in the process or means by which the electricity is excited,—and lastly, in the requisite nervous power (and this is perhaps the most important of all the differences) being supplied through different nerves from widely different sources. Hence in the several remotely allied fishes furnished with electric organs, these cannot be considered as homologous, but only as analogous in function. Consequently there is no reason to suppose that they have been inherited from a common progenitor; for had this been the case they would have closely resembled each other in all respects. Thus the greater difficulty disappears, leaving only the lesser yet still great difficulty; namely, by what graduated steps these organs have arisen and been developed in each separate fish. The luminous organs which occur only in a few insects, belonging to widely different families and orders, but which are situated in different parts of their bodies, offer a difficulty almost exactly parallel with that of the electric organs. Other cases could be given; for instance in plants, the very curious contrivance of a mass of pollen-grains, borne on a foot-stalk with a sticky gland at the end, is the same in Orchis and Asclepias,— genera almost as remote as possible amongst flowering plants. In all these cases of two species, far removed from each other in the scale of organisation, being furnished with a similar anomalous organ, it should be observed that although the general appearance and function of the organ may be
lead to the belief that .. most fishes formerly possessed electric organs, which .. their modified descendants have now lost. But when we look at the subject more closely, we find in the several fishes provided with electric organs that these are situated in different parts of the body,—that they differ in construction, as in the arrangement of the plates, and, according to Pacini, in the process or means by which the electricity is excited—and lastly, in the requisite nervous power being supplied through different nerves from widely different sources, and this is perhaps the most important of all the differences. Hence in the several remotely allied fishes furnished with electric organs, these cannot be considered as homologous, but only as analogous in function. Consequently there is no reason to suppose that they have been inherited from a common progenitor; for had this been the case they would have closely resembled each other in all respects. Thus the greater difficulty disappears, leaving only the lesser yet still great difficulty; namely, by what graduated steps these organs have arisen and been developed in each separate group of fishes. The luminous organs which occur only in a few insects, belonging to widely different families and orders, and which are situated in different parts of the body, offer a difficulty almost exactly parallel with that of the electric organs. Other cases could be given; for instance in plants, the very curious contrivance of a mass of pollen-grains, borne on a foot-stalk with an adhesive gland, is apparently the same in Orchis and Asclepias,—genera almost as remote as is possible amongst flowering plants. In all such cases of two species, far removed from each other in the scale of organisation, being furnished with similar anomalous organs, it should be observed that although the general appearance and function of the organ may be