See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1859
1860
1861
1866
1872

Comparison with 1872

parts of one species with those of another and distinct species, can be shown to be homologous, only a few serial homologies, such as the valves of Chitons, can be indicated; that is, we are seldom enabled to say that one part or organ is homologous with another in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part as we find in the other great classes of the animal and vegetable kingdoms.
But morphology is a much more complex subject than it at first appears, as has lately been well shown in a remarkable paper by Mr. E. Ray Lankester, who has drawn an important distinction between certain classes of cases which have all been equally ranked by naturalists as homologous. He proposes to call the structures which resemble each other in distinct animals, owing to their descent from a common progenitor with subsequent modification, homogenous; and the resemblances which cannot thus be accounted for, he proposes to call homoplastic .
For instance, he believes that the hearts of birds and mammals are as a whole homogenous,— that is, have been derived from a common progenitor; but that the four cavities of the heart in the two classes are homoplastic,— that is, have been independently developed. Mr. Lankester also adduces the close resemblance of the parts on the right and left sides of the body, and in the successive segments of the same individual animal; and here we have parts commonly called homologous, which bear no relation to the descent of distinct species from a common progenitor. Homoplastic structures are the same with those which I have classed, though in a very imperfect manner, as analogous modifications or resemblances. Their formation may be attributed in part to distinct organisms, or to distinct parts of the same organism, having varied in an analogous manner; and in part to similar modifications, having been preserved for the same general purpose or function,— of which many instances have been given.
Naturalists frequently speak of the skull as formed of metamorphosed vertebræ: the jaws of crabs as metamorphosed legs; the stamens and pistils of flowers as metamorphosed leaves; but it would in these cases .. be more correct, as Professor Huxley has remarked, to speak of both skull and vertebræ, .. jaws and legs, &c.,— as having been metamorphosed, not one from the other, but from some common element. Naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind— vertebræ in the one case and legs in the other— have actually been modified into skulls or jaws. Yet so strong is the appearance of a modification of this nature having occurred, that naturalists can hardly avoid employing language having this plain signification. On my view these terms may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they would probably have retained through inheritance, if they had really been metamorphosed during a long course of descent from true though extremely simple legs, is in part explained.
Development and Embryology.
This is one of the most important departments of natural history.
Text in this page (from paragraph 3610, sentence 200 to paragraph 3610, sentence 300, word 3) is not present in 1872
parts in distinct species are homologous, but few serial homologies can be indicated; that is, we are seldom enabled to say that one part .. is homologous with another part in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part, as we find in the other great classes of the animal and vegetable kingdoms.
Naturalists frequently speak of the skull as formed of metamorphosed vertebræ; the jaws of crabs as metamorphosed legs; the stamens and pistils in flowers as metamorphosed leaves; but it would in most cases probably be more correct, as Professor Huxley has remarked, to speak of both skull and vertebræ, both jaws and legs, &c., as having been metamorphosed, not one from the other, as they now exist, but from some common and simpler element. Most naturalists, however, use such language only in a metaphorical sense; they are far from meaning that during a long course of descent, primordial organs of any kind— vertebræ in the one case and legs in the other— have actually been converted into skulls or jaws. Yet so strong is the appearance of this having occurred, that naturalists can hardly avoid employing language having this plain signification. According to the views here maintained, such language may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they probably would have retained through inheritance, if they had really been metamorphosed ... from true though extremely simple legs, is explained.
Development and Embryology .
This is one of the most important subjects in the whole round of natural history. The metamorphoses of insects, with which every one is familiar, are generally