See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1859
1861
1866
1869
1872

Comparison with 1872

part .. is homologous with another part in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part as we find in the other great classes of the animal and vegetable kingdoms.
But morphology is a much more complex subject than it at first appears, as has lately been well shown in a remarkable paper by Mr. E. Ray Lankester, who has drawn an important distinction between certain classes of cases which have all been equally ranked by naturalists as homologous. He proposes to call the structures which resemble each other in distinct animals, owing to their descent from a common progenitor with subsequent modification, homogenous; and the resemblances which cannot thus be accounted for, he proposes to call homoplastic .
For instance, he believes that the hearts of birds and mammals are as a whole homogenous,— that is, have been derived from a common progenitor; but that the four cavities of the heart in the two classes are homoplastic,— that is, have been independently developed. Mr. Lankester also adduces the close resemblance of the parts on the right and left sides of the body, and in the successive segments of the same individual animal; and here we have parts commonly called homologous, which bear no relation to the descent of distinct species from a common progenitor. Homoplastic structures are the same with those which I have classed, though in a very imperfect manner, as analogous modifications or resemblances. Their formation may be attributed in part to distinct organisms, or to distinct parts of the same organism, having varied in an analogous manner; and in part to similar modifications, having been preserved for the same general purpose or function,— of which many instances have been given.
Naturalists frequently speak of the skull as formed of metamorphosed vertebræ; the jaws of crabs as metamorphosed legs; the stamens and pistils in flowers as metamorphosed leaves; but it would in most cases .. be more correct, as Professor Huxley has remarked, to speak of both skull and vertebræ, .. jaws and legs, &c., as having been metamorphosed, not one from the other, as they now exist, but from some common and simpler element. Most naturalists, however, use such language only in a metaphorical sense; they are far from meaning that during a long course of descent, primordial organs of any kind— vertebræ in the one case and legs in the other— have actually been converted into skulls or jaws. Yet so strong is the appearance of this having occurred, that naturalists can hardly avoid employing language having this plain signification. According to the views here maintained, such language may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they probably would have retained through inheritance, if they had really been metamorphosed ... from true though extremely simple legs, is in part explained.
Embryology and Development .
This is one of the most important departments of natural history. Herein are included the ordinary metamorphoses of insects, with which every one is familiar. For instance, Sir J. Lubbock has recently shown that a certain ephemerous insect (Chlöeon) during its development moults above twenty times, and each time undergoes a certain amount of change; in such cases we probably behold the act of metamorphosis in its natural or primary progress. Many insects, and especially certain crustaceans, show us what wonderful changes of structure can be effected during development. Such changes, however, reach their climax in the so-called alternate generations of some of the lower animals. It is, for instance, an astonishing fact that a delicate branching coralline, studded with polypi and attached to a submarine rock, should produce, first by budding and then by transverse division, a host of huge floating jelly-fishes; and that these should produce eggs, from which are hatched swimming animalcules, which attach themselves to rocks and become developed into branching corallines; and so on in an endless cycle. The belief in the essential identity of the process of alternate generation and of ordinary metamorphosis has been greatly strengthened by Wagner's discovery of the larva or maggot of a fly, namely the Cecidomyia, producing asexually other larvæ, and these others, which finally are developed into mature males and females, propagating their kind in the ordinary manner by eggs.
It may be worth notice that when Wagner's remarkable discovery was first announced, I was asked how was it possible to account for the larvæ of this fly having acquired the power of asexual reproduction. As long as the case remained unique no answer could be given. But already Grimm has shown that another fly, a Chironomus, reproduces itself in nearly the same manner, and he believes that this occurs frequently in the Order. It is the pupa, and not the larva, of the Chironomus which has this power; and Grimm further shows that this case, to a certain extent, "unites that of the Cecidomyia with the parthenogenesis of the Coccidæ;"— the term parthenogenesis implying that the mature females of the Coccidæ are capable of producing fertile eggs without the concourse of the male. Certain animals belonging to several classes are now known to have the power of ordinary reproduction at an unusually early age; and we have only to accelerate parthenogenetic reproduction by gradual steps to an earlier and earlier age,— Chironomus showing us an almost exactly intermediate stage, viz., that of the pupa— and we can perhaps account for the marvellous case of the Cecidomyia.
It has already been stated that various parts in the same individual which are exactly alike during an early embryonic period, become widely different and serve for widely different purposes in the adult state.
Text in this page (from paragraph 3700, sentence 110 to paragraph 3700, sentence 200, word 24) is not present in 1872
part or organ is homologous with another in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part, as we find in the other great classes of the animal and vegetable kingdoms.
Naturalists frequently speak of the skull as formed of metamorphosed vertebræ: the jaws of crabs as metamorphosed legs; the stamens and pistils of flowers as metamorphosed leaves; but it would in these cases probably be more correct, as Professor Huxley has remarked, to speak of both skull and vertebræ, both jaws and legs, &c.,— as having been metamorphosed, not one from the other, but from some common element. Naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind— vertebræ in the one case and legs in the other— have actually been modified into skulls or jaws. Yet so strong is the appearance of a modification of this nature having occurred, that naturalists can hardly avoid employing language having this plain signification. On my view these terms may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they would probably have retained through inheritance, if they had really been metamorphosed during a long course of descent from true legs, or from some simple appendage, is explained.
Embryology .—
It has already been casually remarked that certain organs in the individual, which when mature become widely different and serve for different purposes, are in the embryo exactly alike. The embryos, also, of distinct animals within the same class are often strikingly similar: a better proof of this cannot be given, than a