See page in:
1859
1860
1861
1866
1869
1872

Compare with:
1859
1860
1866
1869
1872

Comparison with 1866

help to exterminate it; at least authors have thought that this comes into play in accounting for the deterioration of Aurochs in Lithuania, of Red Deer in Scotland, and of Bears in Norway, &C. As far as animals are concerned, some species are closely adapted to prey on some one other organism; but if this other organism had been rare, it would not have been any advantage to the animal to have been produced in close relation to its prey: therefore, it would not have been produced by natural selection. Lastly, and this I am inclined to think is the most important element, a dominant species, which has already beaten many competitors in its own home, will tend to spread and supplant many others. Alph. de Candolle has shown that those species which spread widely tend generally to spread very widely; and, consequently, they will tend to supplant and exterminate several species in several areas, and thus check the inordinate increase of specific forms throughout the world. Dr. Hooker has recently shown that in the S.E. corner of Australia, where, apparently, there are many invaders from different quarters of the world, the endemic Australian species have been greatly reduced in number. How much weight to attribute to these several considerations I do not pretend to assign; but conjointly they must limit in each country the tendency to an indefinite augmentation of specific forms.
Summary of Chapter.
If during the long course of ages and under varying conditions of life, organic beings vary at all in the several parts of their organisation, and I think this cannot be disputed; if there be, owing to the high geometrical powers of increase of each species, at some age, season, or year, a severe struggle for life, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of existence, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, I think it would be a most extraordinary fact if no variation ever had occurred useful to each being's own welfare, in the same way as so many variations have occurred useful to man. But if variations useful to any organic being do ever occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance they will tend to produce offspring similarly characterised. This principle of preservation, I have called, for the sake of brevity, Natural Selection. It leads to the improvement of each creature in relation to its organic and inorganic conditions of life; and consequently, in most cases, to what must be regarded as an advance in organisation. Nevertheless low and simple forms would long endure if well fitted for their simple conditions of life. Natural selection, on the principle of qualities being inherited at corresponding ages, can modify the egg, seed, or young, as easily as the adult. Amongst many animals, sexual selection will give its aid to ordinary selection, by assuring to the most vigorous and best adapted males the greatest number of offspring. Sexual selection will also give characters useful to the males alone, in their struggles with other males.
Whether natural selection has really thus acted in nature, in modifying and adapting the various forms of life to their several conditions and stations, must be judged of by the general tenour and balance of evidence given in the following chapters. But we already see how it entails extinction; and how largely extinction has acted in the world's history, geology plainly declares. Natural selection, also, leads to divergence of
help in exterminating it; at least authors have thought that this comes into play in accounting for the deterioration of Aurochs in Lithuania, of Red Deer in Scotland, and of Bears in Norway, &C. As far as animals are concerned, some species are closely adapted to prey on some one other being; but if this other being had been rare, it would not have been any advantage to the animal to have been produced in close relation to its prey: therefore, it would not have been produced by natural selection. Lastly, and this I am inclined to think is the most important element, a dominant species, which has already beaten many competitors in its own home, will tend to spread and supplant many others. Alph. de Candolle has shown that those species which spread widely tend generally to spread very widely; and, consequently, they will tend to exterminate several species in several areas, and thus check the inordinate increase of specific forms throughout the world. Dr. Hooker has recently shown that in the S. E. corner of Australia, where, apparently, there are many invaders from different quarters of the world, the endemic Australian species have been greatly reduced in number. How much weight to attribute to these several considerations I do not pretend to assign; but conjointly they must limit in each country the tendency to an indefinite augmentation of specific forms.
Summary of Chapter.
If, during the long course of ages and under varying conditions of life, organic beings vary at all in the several parts of their organisation, and I think this cannot be disputed; if there be, owing to the high geometrical ratio of increase of each species, a severe struggle for life at some age, season, or year, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of existence, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, .. it would be a most extraordinary fact if no variation had ever occurred useful to each being's own welfare, in the same manner as so many variations have occurred useful to man. But if variations useful to any organic being do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance, they will tend to produce offspring similarly characterised. This principle of preservation I have called, for the sake of brevity, Natural Selection. It leads to the improvement of each creature in relation to its organic and inorganic conditions of life; and consequently, in most cases, to what must be regarded as an advance in organisation. Nevertheless low and simple forms would long endure if well fitted for their simple conditions of life. Natural selection, on the principle of qualities being inherited at corresponding ages, can modify the egg, seed, or young, as easily as the adult. Amongst many animals, sexual selection will give its aid to ordinary selection, by assuring to the most vigorous and best adapted males the greatest number of offspring. Sexual selection will also give characters useful to the males alone, in their struggles with other males.
Whether natural selection has really thus acted in nature, in modifying and adapting the various forms of life to their several conditions and stations, must be judged of by the general tenor and balance of evidence given in the following chapters. But we already see how it entails extinction; and how largely extinction has acted in the world's history, geology plainly declares. Natural selection, also, leads to divergence of